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Résumé

La première partie de cette thèse est la géométrie de la théorie de Hodge non-Abélienne, en
particulier l’étude des propriétés géométriques des espaces de modules.

Le premier résultat principal de cette partie est la construction d’un système dynamique sur
l’espace de modules des fibrés de Higgs, nous montrons que les points fixes de ce système dynamique
sont exactement ceux fixés par l’action de C∗ sur l’espace de modules des fibrés de Higgs, c’est-à-
dire tous les C-VHS dans l’espace de modules. Dans le même temps, nous étudions sa première
variation et son comportement asymptotique.

Le deuxième résultat principal de cette partie est la preuve d’une conjecture (forme faible) par
Simpson sur la stratification de l’espace de modules des fibrés plats, nous prouvons que la strata
d’opérateurs est la strata fermée unique de dimension minimale en étudiant l’espace de modules
des chaînes holomorphes de type donné.

Le troisième résultat principal de cette partie est une généralisation de la construction de
l’espace de twistor de Deligne–Hitchin dans le cas de surface de Riemann, nous construisons des
sections holomorphes pour l’espace de twistor de Deligne–Hitchin généralisé, c’est-à-dire les sections
de de Rham. Nous calculons les fibrés normals de ces sections, et nous avons constaté que les
sections de de Rham ont la propriété wight un, donc ceux sont des courbes rationnelles amples
équilibrées. Dans le même temps, nous montrons le théorème de type Torelli pour l’espace de
twistor. De plus, nous étudions les groupes d’automorphisme des espaces de modules de Hodge et
de l’espace de twistor de Deligne–Hitchin généralisé.

La deuxième partie de cette thèse est l’étude de certaines spécialisations de la correspondance
de Hodge non-Abélienne. Celui-ci comprend principalement deux chapitres, le premier est une
preuve fondamentale d’une conjecture liée aux représentations de carquois proposée par Reineke
en 2003, nous montrons pour les représentations de carquois de type An, il existe un système de
poids tel que les représentations stables par rapport à ce système de poids sont précisément celles
indécomposables. Pour la deuxième, nous construisons la correspondance de Kobayashi–Hitchin
pour les fibrés de carquois sur les variétés Kähleriennes généralisées.

Mot clés: Théorie de Hodge non-Abélienne, Espace de modules, Système dynamique, Strata
d’opérateurs, Espace de twistor, Section de de Rham, Théorème de Torelli, Groupe d’automorphisme,
Représentation de carquoi, Variété Kählerienne généralisée, Fibré de carquoi
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Abstract

The first part of this thesis is the geometry of non-Abelian Hodge theory, especially the study of
geometric properties of moduli spaces.

The first main result of this part is the construction of a dynamical system on the moduli space
of Higgs bundles, we show that fixed points of this dynamical system are exactly those fixed by
the C∗-action on the moduli space of Higgs bundles, that is, all C-VHS in the moduli space. At
the same time, we study its first variation and asymptotic behaviour.

The second main result of this part is the proof of a conjecture (weak form) by Simpson on
the stratification of the moduli space of flat bundles, we prove that the oper stratum is the unique
closed stratum of minimal dimension by studying the moduli space of holomorphic chains of given
type.

The third main result of this part is a generalization of construction of Deligne–Hitchin twistor
space in Riemann surface case, we construct holomorphic sections for the generalized Deligne–
Hitchin twistor space, namely the de Rham sections. We calculate the normal bundles of these
sections, and we found that de Rham sections have wight one property, so they are balanced ample
rational curves. We also show the Torelli-type theorem for this new twistor space. Moreover, we
study the automorphism groups of the Hodge moduli spaces and the generalized Deligne–Hitchin
twistor space.

The second part of this thesis is the study of some specializations of non-Abelian Hodge corre-
spondence. This mainly includes two chapters, the first one is a fundamental proof of a conjecture
related to quiver representations proposed by Reineke in 2003, we show for representations of
quivers of An-type, there exists a weight system such that the stable representations with respect
to this weight system are precisely these indecomposable ones. For the second one, we build the
Kobayashi–Hitchin correspondence for quiver bundles over generalized Kähler manifolds.

Key words: Non-Abelian Hodge theory, Moduli space, Dynamical system, Oper stratum, Twistor
space, De Rham section, Torelli theorem, Automorphism group, Quiver representation, Generalized
Kähler manifold, Quiver bundle





vii

Remerciements

Tout d’abord, je voudrais exprimer ma grande gratitude à mon directeur du thèse, Carlos Simpson,
pour ses conseils aimables, ses encouragements chaleureux et son soutien continu. Il est un grand
mathématicien, et il a des pensées et des idées mathématiques profondes. J’ai tellement de chance
de pouvoir être son étudiant et c’est pour moi un grand honneur d’apprendre les mathématiques
de lui. Il a toujours beaucoup d’idées intéressantes, chaque fois que j’ai des questions, il m’explique
toujours beaucoup, ce qui m’aide beaucoup.

En attendant, je remercie également mon co-directeur du thèse, Jiayu Li, pour son soutien et ses
encouragements continus. Sans son aide, je ne pourrais pas savoir à quel point les mathématiques
sont belles.

Ensuit je voudrais remercier Takuro Mochizuki, pour son aimable aide en mathématiques à
diverses occasions. Son magnifique travaux donne de nombreuses inspirations et sont à la base de
cette thèse. En même temps, je veux remercier Tony Pantev et Guofang Wang pour avoir accepté
d’être les réviseurs de cette thèse.

C’est mon grand honneur que Jixiang Fu, Tony Pantev, Guofang Wang et Xiaohua Zhu aient
accepté l’exigence d’être le jury de cette thèse, leur travaux est profond et beau, je les admire
tellement.

Je suis un doctorant en co-tutelle entre l’Université Côte d’Azur (UCA) et l’University of
Science and Technology of China (USTC). Au cours de ces années, j’ai obtenu beaucoup d’aide
de nombreux mathématiciens, ils me donnent de nombreuses occasions de donner des exposés
sur des séminaires et des conférences. Je voudrais remercier Sorin Dumitrescu, Andreas Höring,
Francois Labourie, Qiongling Li, Xinan Ma, Christian Pauly, Mao Sheng, Nicole Simpson, Nicolas
Tholozan, Jérémy Toulisse, Jinxing Xu, Lei Zhang, Xi Zhang et Kang Zuo. Je voudrais aussi
remercier Isabelle De Angelis, Anita Ibrahim, Jean-Marc Lacroix, Roland Ruelle, Clara Salaun, et
Jean-Louis Thomin pour leur aide.

Je voudrais remercier mon co-auteur, Zhi Hu, avec qui j’ai de précieuses collaborations.
Je voudrais remercier mes collègues et amis en Hefei et en Nice: Wanjun Ai, Min Chen, Xi

Chen, Peng Du, Siyue Du, Najwa Ghannoum, Alexis Gills, Alexis Gracia, Yaoting Gui, Jiao He,
Teng Huang, Zhangkai Huang, Kai Jiang, Xishen Jin, Chao Li, Jiawei Liu, Jie Liu, Biao Ma, Yanci
Nie, Zakaria Ouaras, Chenmin Sun, Ruiran Sun, Furong Tang, Angel Toledo, Zhixin Xie, Xi Yao,
Chuanjing Zhang, Zhiyan Zhao, Jiqiang Zheng, Chaona Zhu et Xining Zhuang.

Je voudrais aussi remercier beaucoup China Scholarship Council pour son soutien financier de
2017 à 2019 lors de mon séjour en France.

Enfin, je voudrais remercier mes parents pour leur soutien et leurs encouragements. Je veux
aussi exprimer ma profonde gratitude à ma femme, Xiaojing Liu, sans son soutien et son amour,
je ne pourrais pas terminer cette thèse. Cette thèse est dédiée à ma femme.





Contents

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Remerciements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction en francais 3
0.1 La Géométrie de la Théorie de Hodge Non-Abélienne . . . . . . . . . . . . . . . . . 5

0.1.1 La Théorie de Hodge Non-Abélienne de la Version Compacte . . . . . . . . . 5
0.1.2 Une Étude de la Géométrie des Espaces de Modules . . . . . . . . . . . . . . 6
0.1.3 La Construction de l’Espace de Twistor . . . . . . . . . . . . . . . . . . . . . 10

0.2 Les Spécialisations de la Correspondance de Hodge Non-Abélienne . . . . . . . . . 11
0.2.1 Stabilité et Indécomposabilité des Représentations de Carquois . . . . . . . . 11
0.2.2 La Correspondance de Kobayashi–Hitchin pour les Fibrés de Carquois . . . . 12

Introduction in English 17
0.3 The Geometry of Non-Abelian Hodge Theory . . . . . . . . . . . . . . . . . . . . . 19

0.3.1 Non-Abelian Hodge Theory of Compact Version . . . . . . . . . . . . . . . . 19
0.3.2 A Study of the Geometry of Moduli Spaces . . . . . . . . . . . . . . . . . . . 20
0.3.3 Twistor Space Constriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

0.4 Some Specializations of Non-Abelian Hodge Correspondence . . . . . . . . . . . . . 24
0.4.1 Stability and Indecomposability of Representations of Quivers . . . . . . . . 25
0.4.2 Kobayashi–Hitchin Correspondence for Quiver Bundles . . . . . . . . . . . . 26

I The Geometry of Non-Abelian Hodge Correspondence 27

1 Non-abelian Hodge Theory of Compact Version 29
1.1 Corlette–Simpson Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2 Flat λ-Connections and Mochizuki Correspondence . . . . . . . . . . . . . . . . . . 39
1.3 Estimates and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 A Study of the Geometry of Moduli Spaces 53
2.1 A Dynamical System on the Dolbeault Moduli Space . . . . . . . . . . . . . . . . . 55

2.1.1 C∗-Action on Moduli Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.1.2 Constructing the Dynamical System . . . . . . . . . . . . . . . . . . . . . . 56

ix



x CONTENTS

2.1.3 The First Variation of the Dynamical System . . . . . . . . . . . . . . . . . 57
2.1.4 Fixed Points of the Dynamical System . . . . . . . . . . . . . . . . . . . . . 59

2.2 Stratifications of Moduli Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.1 Simpson Filtrations on Flat Bundles . . . . . . . . . . . . . . . . . . . . . . 64
2.2.2 Stratifications of Moduli Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.3 Asymptotic Behaviour of the Dynamical System . . . . . . . . . . . . . . . . 77

2.3 Oper Stratum Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3.1 Holomorphic Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.3.2 Proof for Rank Three Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.3.3 Proof for Rank Four Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.3.4 Higher Rank Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3 Twistor Structure Construction 97
3.1 General Twistor Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2 Deligne’s Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3 A Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.2 Another Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.3 C∗-Action, De Rham Sections and Preferred Sections . . . . . . . . . . . . . 105
3.3.4 Automorphism Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

II Some Specializations of Non-Abelian Hodge Correspondence 117

4 The Geometry of Parabolic Non-Abelian Hodge Correspondence 119
4.1 Non-Abelian Hodge Theory of Parabolic Version . . . . . . . . . . . . . . . . . . . . 120

4.1.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.1.2 Special Case: Dimension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.1.3 Non-Abelian Hodge Theory of Parabolic Version . . . . . . . . . . . . . . . . 131

4.2 Parabolic Higgs Bundles as Higgs Bundles over Deligne–Mumford Stacks . . . . . . 137
4.2.1 Higgs Bundles over Root Stacks . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.2 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Stability and Indecomposability of Representations of Quivers 143
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Quivers and Their Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3 Reineke’s Conjecture for Quivers of An-Type . . . . . . . . . . . . . . . . . . . . . . 148

5.3.1 Intrinsic Weight System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.2 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.3 Revisit Intrinsic Weight System via Semi-Invariant Theory . . . . . . . . . . 154



CONTENTS xi

6 Kobayashi–Hitchin Correspondence for Quiver Bundles 159
6.1 Generalized Kähler Manifolds and Quiver Bundles . . . . . . . . . . . . . . . . . . . 160

6.1.1 Generalized Kähler Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.1.2 Quiver Bundles and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Hermitian–Einstein Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Kobayashi–Hitchin Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . 169





Introduction en francais

1





CONTENTS 3

Introduction

Soit (X,ω) une variété Kählerienne de dimension n, et E une fibré vectoriel complexe sur X. Pour
k ∈ Z≥0, notons par Ak(E) := Γ(X,E ⊗ ∧k(T ∗CX)), l’espace des k-formes lisses sur X avec des
valeurs dans E, en particulier, A0(E) = Γ(X,E), l’espace des sections lisses de E. Pour λ ∈ C,
une λ-connexion (C∞) plat sur E est un opérateur C-linéaire Dλ : Γ(X,E) ! A1(E) satisfait la
règle Leibniz λ-twisted suivante:

Dλ(fs) = fDλ(s) + λ∂(f)⊗ s+ ∂̄(f)⊗ s,

où f ∈ C∞(X,C), s ∈ Γ(X,E), et Dλ ◦ Dλ = 0 sous l’extension naturelle Dλ : A1(E) ! A2(E).
Dans ce cas, la paire (E,Dλ) est appelé un fibré λ-plat.

En particulier, losque λ = 1, c’est la connexion plate habituelle, nous utilisons la notation ∇,
et dans ce cas, la paire (E,∇) est appelé un fibré plat; losque λ = 0, décomposer D0 en sa partie
(0, 1) et (1, 0), et nous obtenons D0 = ∂̄E + θ, la planéité de D0 implique (∂̄E)2 = ∂̄Eθ = θ ∧ θ = 0,
ceci définit un fibré de Higgs, qui est le triple (E, ∂̄E, θ).

Le fibré λ-plat est à l’origine présenté par Deligne comme la compréhension de l’idée de Hitchin
sur la construction de l’espace twistor de l’espace de modules des fibrés de Higgs [Del89], qui
généralise les fibrés plats et les fibrés de Higgs. Plus tard, cela est étudié et développé par Simpson
comme la filtration de Hodge sur la cohomologie non-Abélienne [Sim95, Sim08]. Pour mettre
l’accent sur les fibrés plats et les fibrés de Higgs, nous les décrivons ici séparément.

Donc sur (X,ω), nous définissons les trois objets géométriques suivants:

(1) Fibé plat: (E,∇);

(2) Fibré de Higgs: (E, ∂̄E, θ);

(3) Fibré λ-plat (λ ∈ C): (E,Dλ).

En géométrie algébrique, en particulier en théorie géométrique des invariants, il existe une
notion très importante pour les fibrés vectoriels, c’est la stabilité. On dit qu’un fibré λ-plat
(E,Dλ) est stable (resp. semistable), si pour tout sous-faisceau F cohérent sans torsion saturé non
nul qui est invariant par Dλ, c’est-à-dire Dλ|Γ(X,F) : Γ(X,F) ! A1(F), avec 0 < rk(F) < rk(E),
on a

µω(F) < (resp. ≤) µω(E),

où µω(E) := deg(E)
rk(E) est appelée la pente, et deg(E) :=

∫
X c1(det(E)) ∧ [ω]n−1 est la degré. Il est

polystable, si il est somme directe de fibrés λ-plats stables de la même pente.
En particulier, lorsque λ = 1, pour les fibrés plats, on applique généralement les notations

simple (ou équivalente, irréductible) et semisimple (ou équivalente, réductible) plutôt que stable
et polystable1, Puisqu’elles correspondent à des représentations simples (ou équivalentes, irré-
ductibles) et semisimples de π1(X) par la correspondance de Riemann-Hilbert.

En géométrie différentielle, il existe également une notion très importante pour les fibrés vecto-
riels, c’est-à-dire les métriques d’Hermite–Einstein. Pour un fibré λ-plat donné (E,Dλ), avec une
métrique Hermitienne h, alors h induit une décomposition unique de Dλ:

Dλ = λ∂h + θ + ∂̄h + λθ†h

tel que:
1C’est évidemment dans le cas du compact que les fibrés plats sont automatiquement semistables.
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• ∇h := ∂h+ ∂̄h est une connexion h-unitaire, c’est-à-dire dh(u, v) = h(∇h(u), v)+h(u,∇h(v));

• Φh := θh + θ†h ∈ A1(End(E)) est un opérateur auto-adjoint par rapport à h, c’est-à-dire
h(θh(u), v) = h(u, θ†h(v)).

Soit Dc
h,λ := ∂h + θ†h − λ̄(∂̄h + θh), on définit Gh,λ := 1

(1+|λ|2)2 [Dλ, Dc
h,λ], qui est appelée la pseudo-

courbure. La métrique h est appelée une métrique d’Hermite–Einstein si l’équation suivante est
vraie:

ΛωGh,λ = cIdE,

où c = −2π
√
−1 degω(E)

(1+|λ|2)rk(E)Vol(X) est une constante déterminée par X et les invariants topologiques de E.

La théorie de Hodge non-Abélienne est un pont entre la géométrie algébrique et la géométrie dif-
férentielle, qui met en relation la stabilité des fibrés vectoriels et l’existence de métriques d’Hermite–
Einstein. Ceci est principalement basé sur les travaux de Donaldson [Don87] et Corlette [Cor88]
sur les applications harmoniques (fibrés plats), Hitchin [Hit87a] et Simpson [Sim87] sur les fi-
brés de Higgs, et plus tard le travail de Mochizuki sur fibrés λ-plats (principalement des cas non
compactes), qui identifient pleinement la stabilité des fibrés vectoriels et l’existence de métriques
d’Hermite–Einstein, et de plus, fournir une correspondance bijective entre les objets ci-dessus sur
une variété Kählerienne compacte (X,ω). Ce pont offre beaucoup de possibilités sur l’application
de méthodes géométriques différentielles pour étudier des problèmes géométriques algébriques (par
exemple, étudier la géométrie des espaces de modules).

En particulier, si ces fibrés vectoriels ont des classes de Chern nulles (la première et la deuxième),
alors ces métriques d’Hermite–Einstein seront des métriques de pluri-harmoniques (c’est-à-dire la
métrique Hermitienne h telle que Gh,λ = 0, ce qui équivaut à dire quand λ 6= 0, la métrique Her-
mitienne h telle que (E, ∂̄h, θh) devenir un fibré de Higgs; et quand λ = 0, la métrique Hermitienne
h telle que (E,D1) devenir un fibré plat). L’existence de métriques de pluri-harmoniques peut être
conclue dans les énoncés suivantes:

Théorème 1. Soit (X,ω) une variété Kählerienne compacte. Alors

(1) (Donaldson [Don87],Corlette [Cor88]) Un fibré plat (E,∇) sur X admet une métrique de
pluri-harmonique si et seulement si il est semisimple;

(2) (Hitchin [Hit87a], Simpson [Sim87]) Un fibré de Higgs (E, ∂̄E, θ) sur X admet une métrique
de pluri-harmonique si et seulement si il est polystable de classes de Chern nulles;

(3) (Mochizuki [Moc06]) Un fibré λ-plat (λ 6= 0) (E,Dλ) sur X admet une métrique de pluri-
harmonique si et seulement si il est polystable de classes de Chern nulles.

De plus, dans chaque cas, la métrique de pluri-harmonique est unique jusqu’aux multiplicités
scalaires.

Par conséquence, nous obtenons la correspondance entre ces objets, appelée la correspondance
de Hodge non-Abélienne:

Corollaire 1 (La Correspondance de Hodge Non-Abélienne). Soit (X,ω) une variété Käh-
lerienne compacte. Alors pour tout λ ∈ C, nous avons la correspondance bijective suivante entre
les catégories:

(1) La catégorie des fibrés plats semisimples de rang r;

(2) La catégorie des fibrés de Higgs polystables de rang r et de classes de Chern nulles;
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(3) La catégorie des fibrés λ-plats polystables de rang r et de classes de Chern nulles;

ils sont reliés par des métriques de pluri-harmoniques, ils sont donc équivalents à la catégorie des
fibrés harmoniques de rang r.

Il existe beaucoup de généralisations de ce correspondence, une généralisation naturelle con-
sidère les variétés non compactes comme des variétés de base, la correspondance qui en résulte
est dû à Simpson [Sim90], Biquard [Biq97], Jost–Zuo [JZ97], Mochizuki [Moc06, Moc09] et autres.
D’autres généralisations telles que considérer les groupes de Lie réels comme des groupes de struc-
ture, ou considérer les corps de caractéristique positive, les corps p-adiques comme des corps de
base [BGPiR03, GPGiR09, OV07, Fal05, AGT16]. Nous ne prétendons pas donner plus de détails
à ces sujets ici.

Notre objectif principal de cette thèse est d’appliquer la théorie de Hodge non-Abélienne ci-
dessus pour étudier certains problèmes de géométrie algébrique et de géométrie différentielle.

0.1 La Géométrie de la Théorie de Hodge Non-Abélienne

Cette partie concerne principalement la géométrie de la correspondance de Hodge non-Abélienne,
en particulier les propriétés géométriques des espaces de modules associés.

0.1.1 La Théorie de Hodge Non-Abélienne de la Version Compacte

Le deuxième chapitre de cette thèse, en particulier les deux premières sections (§1.1 et §1.2),
est une introduction à la théorie de Hodge non-Abélienne, nous allons essayer d’expliquer cette
théorie explicitement dans des pages limitées, en particulier les fibrés λ-plats qui joueront des
rôles importants dans la première partie de la thèse. Nos nouveaux résultats de ce chapitre sont
principalement dans la troisième section (§1.3), nous commencerons par une estimation de la norme
des sections Dλ-plats sur des surfaces de Riemann compactes, alors nous obtenons un théorème
d’annulation, c’est-à-dire qu’il n’y a pas de sections Dλ-plats sur les fibrés λ-plats stables de la
première classe de Chern nulle sur des surfaces de Riemann compactes. Plus précisément, nous
avons les énoncés suivantes:

Théorème 2 (= Theorem 1.3.1, Corollary 1.3.2). Soit (X,ω) une surface de Riemann compacte
et (E,Dλ) un fibré λ-plat, avec une métrique Hermitienne h. Donc pour toute section localement
Dλ-plate s de E, nous avons l’inégalités suivantes:

(1)
∆ω log

(
|s|2h

)
≥ − 2

(1 + |λ|2)
∣∣∣ΛωGh,λ

∣∣∣
h
,

(2)
∆ω(|s|2h) ≥ −

2
1 + |λ|2

∣∣∣ΛωGh,λ

∣∣∣
h
· |s|2h.

où ∆ω est l’opérateur Laplacien sur (X,ω).
En particulier, si (E,Dλ) est stable de la première classe de Chern nulle, alors il n’y a pas de

section Dλ-plate globale non nulle sur E.
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Ensuite, nous considérons quelques exemples, le premier est des fibrés λ-plats de rang 2 sur
un disque unité ouvert obtenu à partir de “solutions fiduciales” à des équations de Hitchin décou-
plées introduites dans [MSWW16], et nous calculons les solutions explicites des sections Dλ-plates.
Le deuxième exemple considère l’action de C∗, nous calculons une solution spéciale de métrique
de pluri-harmonique de tels fibrés λ-plats sur le disque unité ouvert, cela montre que pour un
fibré λ-plat sur une variété non complete, s’il admet une métrique de pluri-harmonique, il n’est
généralement pas unique.

0.1.2 Une Étude de la Géométrie des Espaces de Modules

Le troisième chapitre de cette thèse est une étude de la géométrie des espaces de modules, qui se
compose de trois sections.

Dans la première section (§2.1), nous construisons un système dynamique sur l’espace de mod-
ules des fibrés de Higgs en appliquant la correspondance de Hodge non-Abélienne, et nous étudions
ce système dynamique. Plus explicitement, par la construction par Simpson d’espaces de modules
via la théorie géométrique des invariants [Sim94a, Sim94b, Sim95], pour une variété projective
complexe lisse X, nous avons trois espaces de modules de les objets précédents et l’espace de
modules de représentations de π1(X):

(1) L’espace de modules de de RhamMdR(X, r): l’espace de modules de fibrés plats de rang r
sur X;

(2) L’espace de modules de DolbeaultMDol(X, r): l’espace de modules de fibrés de Higgs semista-
bles de rang r de classes de Chern nulles sur X;

(3) L’espace de modules de HodgeMHod(X, r): l’espace de modules de fibrés λ-plats semistables
de rang r de classes de Chern nulles sur X;

(4) L’espace de modules de BettiMB(X, r): l’espace de modules de représentations ρ : π1(X)!
GL(r,C).

Tous ces espaces sont variétés quasi-projectives à la Simpson, désignées parMdR(X, r),MDol(X, r),
MHod(X, r) et MB(X, r) les sous-ensembles qui paramètre les classes d’isomorphisme des objets
stables, c’est-à-dire les loci lisses correspondants. Chaque espace est un sous-ensemble ouvert
dense de l’espace de modules correspondant. En particulier, si on fixe un nombre complexe λ ∈ C,
soitMλ

Hod(X, r) :=MHod(X, r)|λ, alors on a

• M0
Hod(X, r) =MDol(X, r),

• M1
Hod(X, r) =MdR(X, r),

• Mλ
Hod(X, r) ∼=an MdR(X, r), où λ 6= 0, “

an∼=” signifie l’isomorphisme analytique complexe.

On a évidement ces propriétés pour les loci lisses MdR(X, r), MDol(X, r), MHod(X, r) et MB(X, r).
Soit MHod(X, r,OX) (respectivement, MHod(X, r,OX)) est l’espace de modules de fibrés λ-plats
semistables (respectivement, stables) de rang r de classes de Chern nulles avec déterminants OX
fixes sur X.

Notre construction du système dynamique commence parMDol(X, r), pour tout (λ, t) ∈ C×C∗,
soit (E, ∂̄E, θ) un fibré de Higgs stable avec une métrique de pluri-harmonique h, considérer le
fibré λ-plat correspondant (E, ∂̄E + λθ†h, λ∂E,h + θ), alors h est également une métrique de pluri-
harmonique pour un tel fibré λ-plat; ensuite nous considérons le fibré tλ-plat (E, ∂̄E+λθ†h, t(λ∂E,h+
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θ)) donné par l’action de C∗, il existe des métriques de pluri-harmoniques notées ht sur (E, ∂̄E +
λθ†h, t(λ∂E,h + θ)), car l’action de C∗ ne change pas la stabilité et la trivialité des classes de Chern
des fibrés λ-plats; enfin par la correspondance de Hodge non-Abélienne, cela détermine un fibré
de Higgs noté (E, ∂̄E,ht , θht), qui porte ht comme sa métrique de pluri-harmonique.

Par conséquent, on obtient un système dynamique lisse ψ(λ,t) paramétré par (λ, t) surMDol(X, r):

ψ(λ,t) : MDol(X, r) −!MDol(X, r),
(E, ∂̄E, θ) 7−! (E, ∂̄E,ht , θht).

De plus, ψ(λ,t) peut être défini surMDol(X, r) comme une application continue.
Par définition, les propriétés suivantes sont évidemment:

Proposition 1 (= Proposition 2.1.1).

(1) ψ(0,t) est l’action de C∗ habituelle donnée par t, et ψ(λ,1) est l’application d’identité;

(2) ψ(λ,t) satisfait la formule de type “cocycle” suivante:

ψ(λt1,t2) ◦ ψ(λ,t1) = ψ(λ,t1t2);

(3) Pour tout λ ∈ C, t ∈ C∗, les fibrés vectoriels stables dans l’espace de modules (c’est-à-dire les
fibrés de Higgs avec champ de Higgs nulles) sont les points fixes du système dynamique ψ(λ,t).

Un problème important dans la théorie du système dynamique est l’étude des points fixes,
dans cette section, en utilisant l’analyse sur des métriques de pluri-harmoniques, nous obtenons
que le système dynamique a les mêmes points fixes avec l’action de C∗ sur l’espace de modules
MDol(X, r):

Théorème 3 (= Theorem 2.1.5). Pour la paire fixe (λ, t) ∈ C × C∗, nous définissons l’ensemble
de points fixes de l’action de (λ, t):

F(λ,t) := {u ∈MDol(X, r) : ψ(λ,t)(u) = u},

alors l’ensemble de points fixes F := ⋂
(λ,t)∈C×C∗ F(λ,t) se compose de tous les points fixes de l’action

de C∗ surMDol(X, r), c’est-à-dire tout les C-VHS dansMDol(X, r).

De plus, nous calculons l’ensemble stabilisateur de points spéciaux dans l’espace de modules
pour le cas d’une surface de Riemann compacte:

Cu = {(λ, t) ∈ C× C∗ : ψ(λ,t)(u) = u}.

Théorème 4 (= Theorem 2.1.7, Corollary 2.1.8). Soit X une surface de Riemann compacte,
et u ∈ MDol(X, r) un fibré de Higgs découplé avec champ de Higgs non nulle, alors l’ensemble
stabilisateur est

Cu = C× {µM , µ2
M , · · · , µM−1

M , 1},

où µM = e
2πi
M , M ≤ r est est une constante. De plus, pour tout (λ, t) ∈ C × C∗, le système

dynamique ψ(λ,t) ne change pas la métrique pluri-harmonique lorsqu’il agit sur un fibré de Higgs
découplé.
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Parallèlement, nous étudions également la propriété locale de ce système dynamique en calcu-
lant la première variation de celui-ci en un point de l’espace de modules (cf. Theorem 2.1.3).

La deuxième section (§2.2) de ce chapitre est les stratifications des espaces de modules, qui est
principalement dû à un résultat important de Simpson [Sim10]. C’est-à-dire que chaque fibré plat
(E,∇) sur une surface de Riemann compacte X admet une filtration:

F • : E = F 0 ⊃ F 1 ⊃ · · · ⊃ F k = 0

satisfait la transversalité de Griffiths ∇(F p) ⊆ F p−1 ⊗ KX(p = 1, · · · , k), et tel que le fibré de
Higgs gradué (GrF (E) := ⊕k−1

p=0 F
p/F p+1,GrF (∇)) est semistable. De plus, une telle filtration est

unique si et seulement si le fibré de Higgs gradué est stable. Nous appelons une telle filtration une
filtration de Simpson.

Pour tout (E, ∂̄E, Dλ) dans l’espace de mudules MHod(X, r)(λ 6= 0), on considère l’action de
C∗, Simpson prouve que la limite limt!0 t · (E, ∂̄E, Dλ) existe et est un point fixe de l’action de C∗
surMDol(X, r), c’est-à-dire un C-VHS, et satisfait à l’égalité suivante (dans l’espace de modules):

lim
t!0

t · (E, ∂̄E, Dλ) = lim
t!0

t · (E, ∂̄E, λ−1Dλ) = (GrF (E),GrF (λ−1Dλ)),

où (E, ∂̄E, λ−1Dλ) est le fibré plat correspondant de (E, ∂̄E, Dλ), et (GrF (E),GrF (λ−1Dλ)) est le
fibré de Higgs gradué induit du fibré plat (E, ∂̄E, λ−1Dλ).

Cela montre qu’il existe des stratifications de type Bialynicki-Birula deMλ
Hod(X, r),MDol(X, r)

etMdR(X, r) en sous-ensembles fermés localement données par l’action de C∗:

Mλ
Hod(X, r) =

⋃
α

Gλ
α, MDol(X, r) =

⋃
α

G0
α, MdR(X, r) =

⋃
α

G1
α,

où l’indice α correspond à la décomposition de l’ensemble de points fixes de l’action de C∗ sur
MDol(X, r) en ses composantes connectées: P = ⋃

α Pα. L’application Gλ
α ! Pα est obtenue en

prenant la limite de l’action de C∗, la fibre en chaque point est un sous-variété Lagrangienne de
l’espace de modules correspondant.

Pour une étude plus approfondie de ces stratifications, dans l’article [Sim10], Simpson a proposé
les trois conjectures importantes suivantes:

Conjecture 1 (= Conjecture 2.2.7, Conjecture 2.2.9 and Conjecture 2.2.11).

(1) (La Conjecture de Feuilletage) Lors de la variation de l’indice α, ces fibres Lagrangien-
nes de p1

α : G1
α ! Pα s’emboîtent pour fournir une feuilletage lisse de l’espace de modules de

de RhamMdR(X, r) avec chaque feuille fermée.

(2) (La Conjecture d’Imbrication) Les stratifications de l’espace de modules de Dolbeault
MDol(X, r) et de l’espace de modules de de Rham MdR(X, r) sont tous deux imbriqués, et
les dispositions pour les deux stratifications sont les mêmes. Ici, l’imbrication signifie qu’il
existe une relation d’ordre partiel “≤” sur l’ensemble d’index telle que Gi

α = ⋃
β≤αG

i
β pour

i = 0, 1.

(3) (La Conjecture de la Strate d’Opérateurs) Dans la stratification de l’espace de modules
de de Rham MdR(X, r), la strate d’opérateurs G1

oper est la strate fermée unique et la strate
unique de dimension minimale. Ici, un opérateur signifie un fibré plat qui admet une filtration
spéciale.
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Dans cette section, nous décrivons la relation explicite entre les filtrations de Simpson et les
filtrations de Harder–Narasimhan pour les fibrés vectoriels sous-jacents des fibrés plats de rang 3
(la description du résultat est très longue, veuillez vous référer à Theorem 2.2.13).

Dans le même temps, nous poursuivons notre étude du système dynamique ψ(λ,t), et introduisons
cinq limites différentes associées à ce système dynamique:

• ψ(0,0)(E, ∂̄E, θ) := lim
t!0

(
ψ(0,t)(E, ∂̄E, θ)

)
= lim

t!0
(E, ∂̄E, tθ);

• ψ(0,0)(E, ∂̄E, θ) := lim
λ!0

(
ψ(λ,0)(E, ∂̄E, θ)

)
;

• ψ(0,0)(E, ∂̄E, θ) := lim
t!0

(
lim
λ!0

(
ψ(λ,t)(E, ∂̄E, θ)

))
;

• ψ(0,0)(E, ∂̄E, θ) := lim
λ!0

(
lim
t!0

(
ψ(λ,t)(E, ∂̄E, θ)

))
;

• ψ(0,0)(E, ∂̄E, θ) := lim
(λ,t)!(0,0)

(
ψ(λ,t)(E, ∂̄E, θ)

)
.

Pour tout point de l’espace de modules de Dolbeault MDol(X, r), ces limites sont généralement
différentes lorsqu’elles existent. Nous étudions ce problème et trouvons des points particuliers tels
que ces limites existent et coïncident dans l’espace de modules.

Théorème 5 (= Theorem 2.2.16). Soit X une surface de Riemann compacte, si (E, ∂̄E, θ) ∈
MDol(X, r) est un C-VHS, ou un fibré de Higgs découplé, alors les cinq limites existent et coïncident
enMDol(X, r).

Pour décrire le système dynamique ψ(λ,t), un point clé est de comprendre la relation explicite
entre la métrique de pluri-harmonique ht et le paramètre t. C’est très difficile à calculer, car il est
difficile de résoudre les équations de Hitchin d’un fibré λ-plat sous l’action de C∗. Nous donnons
une description de ht autour de t = 1:

Théorème 6 (= Theorem 2.2.22). Soit X une surface de Riemann compacte, fixer λ ∈ C∗ et
supposer t ∈ R∗, alors sur un petit voisinage de t = 1, la fonction f := hth−1−Id

(t−1)2 à valeur End(E)
est une fonction analytique réelle par rapport à t− 1.

Dans la dernière section (§2.3) de ce chapitre, nous prouvons la conjecture de strate d’opérateurs
d’une version faible, ce qui donne une réponse partielle à la conjecture de Simpson:

Théorème 7 (= Theorem 2.3.1, Dimension Minimale). La strate d’opérateurs G1
oper est la

strate fermée unique de dimension minimale r2(g−1)+g+1 dans l’espace de modules de de Rham
MdR(X, r).

La preuve de ce théorème repose sur la description de l’ensemble de points fixes P , en particulier
ses composants connectés Pα, via la théorie des chaînes holomorphes. Comme point fixe de l’action
de C∗, un C-VHS peut être identifié avec une chaîne holomorphe d’un certain type. Nous terminons
la preuve en calculant la dimension de l’espace de modules de chaînes holomorphes et la propriété
d’irréductibilité de cet espace de modules.
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0.1.3 La Construction de l’Espace de Twistor

La principale contribution de ce chapitre est dans le cas de la surface Riemann compacte, nous
généralisons la construction de Deligne de l’espace de twistor en collant l’espaces de modules de
Hodge MHod(X, r) et MHod(X̄, r) sur X et son conjugué X̄ [Del89, Sim95], comme une inter-
prétation de la construction par Hitchin de l’espace de twistor associé à l’espace de modules de
Dolbeault MDol(X, r) avec la structure hyper-Kählerienne [HKLR87].

L’idée fondamentale de [HKLR87] sur la construction d’un espace de twistor associé à une
variété hyper-Kählerienne M est un produit topologique de M et la ligne projective complexe P1,
cet espace est noté TW(M) := M × P1. La structure quaternionique (I, J,K = IJ) sur M induit
une structure complexe I sur TW(M). Nous obtenons donc une variété complexe et toujours notée
TW(M), c’est l’espace de twistor de Hitchin, et nous appelons cette théorie la théorie de twistor
de Hitchin.

L’idée de Deligne est en fait une interprétation de la théorie de twistor de Hitchin via la théorie
de Hodge non-Abélienne. Pour l’espace de modules qui paramètre les classes d’isomorphisme des
objets stables sur X (MDol(X, r), MdR(X, r) et ainsi de suite), notée M sm(X, r) la variété lisse
sous-jacente. Alors M sm(X, r) admet une structure hyper-Kählerienne induite par MDol(X, r) et
MdR(X, r) [Hit87a, Fuj91]. Cela donne un espace de twitor de Hitchin TW(M sm(X, r)) suiv-
ant [HKLR87]. L’idée principale de Deligne est de coller les espaces de modules de Hodge
MHod(X, r) et MHod(X̄, r) X et X̄ via l’application de conjugaison complexe et la correspon-
dance de Hodge non-Abélienne, cela donne un nouvel espace de twistor TWDH(X, r) et une fibra-
tion TWDH(X, r) ! P1. Nous appelons TWDH(X, r) l’espace de twistor de Deligne–Hitchin, cela
montre que le locus lisse TWsm

DH(X, r) est isomorphe analytique complexe à l’espace de twistor de
Hitchin TW(M sm(X, r)).

Nous considérons maintenant le cas où X est une surface de Riemann compacte de genre
g ≥ 2, alors X peut être désigné comme la paire (X , I) pour X la surface fermée orientable
connectée lisse sous-jacente, et I la structure complexe. Les classes d’isotropie des structures
complexes sur X peuvent être désignées par son espace Teichmüller Teich(X ), et le groupe éxtendu
modulaire de Teichmuüller Mod♦(X ) := Diff(X )/Diff0(X ) agit sur cet espace, avec le quotient
M(X ) := Teich(X )/Mod♦(X ) appelé l’espace de modules de structures complexes de Riemann sur
X , qui paramètre les structures de surface de Riemann sur X sous biholomorphisme. Lorsque nous
passons en revue la construction de Deligne, les deux espaces de modules de Hodge apparaissant
dans le processus de collage sont sur X et sur son conjugué X̄, ou de manière équivalente, sur
(X , I) et (X ,−I). Donc pour une structure complexe choisie I ′ ∈ M(X ), soit X ′ := (X , I ′), on
peut coller les espaces de modules de HodgeMHod(X, r) etMHod(X ′, r) le long du chevauchement
MHod(X, r)×C C∗ ∼=MHod(X ′, r)×C C∗ ∼=MB(X , r)× C∗ par Riemann–Hilbert correspondance
qui couvre l’application C∗ ! C∗, λ 7! λ−1. L’identification des fibrés λ-plats donnée par le collage
de Deligne d peut être explicitement écrite comme suit:

[E, ∂̄E, Dλ, λ] ! [E, (∂̄E + λ−1Dλ)0,1
X′ , λ

−1(∂̄E + λ−1Dλ)1,0
X′ , λ

−1],

oú (•)1,0
X′ et (•)0,1

X′ désignent respectivement les parties (1, 0) et (0, 1) correspondantes par rapport
à la structure complexe I ′ sur X ′. La variété analytique obtenue est appelée l’espace de twistor de
Deligne–Hitchin généralisé, et est notée TW(X,X ′; r), ce qui donne en particulier, TWDH(X, r) =
TW(X, X̄; r).

Nos principaux résultats dans ce chapitre peuvent être conclus suivante:

Theorem 1 (= Theorem 3.3.4, Theorem 3.3.7, et Theorem 3.3.11).

(1) (Propriété de Poids Un) Pour un fibré λ0-plat fixe (E, ∂̄E, Dλ0), il détermine une section
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holomorphe sλ0 de l’espace de twistor de Deligne–Hitchin généralisé TW(X,X ′; r), appelée
la section de de Rham. Cette a une propriété de poids 1, c’est-à-dire que son fibré normal
satisfait

Nsλ0
∼= OP1(1)⊕ dimC(MdR(X,r)).

En particulier, les sections de de Rham sont les courbes rationnelles amples équilibrées de
degré dimC

(
MdR(X, r)

)
.

(2) (La Théorème de type Torelli) Soit X,X ′ ∈ M(X ) et Y, Y ′ ∈ M(Y) sont des sur-
faces de Riemann de genre g ≥ 3. Si TW(X,X ′; r,O) est analytiquement isomorphe à
TW(Y, Y ′; r,O), alors soit X ∼= Y,X ′ ∼= Y ′, soit X ∼= Y ′, X ′ ∼= Y . Oú TW(X,X ′; r,O)
est l’espace de twistor de Deligne–Hitchin généralisé obtenu en collant MHod(X, r,OX) et
MHod(X ′, r,OX′).

(3) (Groupes d’Automorphism) Soit Aut0(TW(X,X ′; r)) est la composante identité des groupes
d’automorphisme holomorphe Aut(TW(X,X ′; r)) deTW(X,X ′; r), alors chaque élément de
Aut0(TW(X,X ′; r)) mappe les fibres de π : TW(X,X ′; r)! P1 en fibres. De plus, ce groupe
satisfait la suite exacte courte suivante

Id −! K −! Aut0(TW(X,X ′; r)) −! C∗ −! Id,

oú chaque élément de K préserve les fibres de π : TW(X,X ′; r)! P1.

0.2 Les Spécialisations de la Correspondance de Hodge Non-Abélienne

Cette partie peut être considérée comme certaines applications de la théorie de Hodge non-
Abélienne, plus précisément, certaines spécialisations de la correspondance de Hodge non-Abélienne.
Nous construisons des correspondances spéciales de Hodge non-Abélienne.

0.2.1 Stabilité et Indécomposabilité des Représentations de Carquois

Le sixième chapitre de cette thèse est la théorie de Hodge non-Abélienne de la version de carquois,
qui est basée sur une conjecture proposée par M. Reineke en 2003 [Rie03]:

Conjecture 2 (= Conjecture 5.1.1). Soit Q un carquoi de type Dynkin, alors il existe un sys-
tème de poids Θ sur Q tel que les représentations stables par rapport à Θ sont précisément les
représentations indécomposables.

L’importance de cette conjecture tente d’identifier des représentations stables et indécompos-
ables de carquois de type Dynkin par rapport à un certain système de poids. En général, la
stabilité est une condition plus forte que l’indécomposabilité, alors que cette conjecture peut les
rendre équivalentes.

D. Juteau a trouvé des contre-exemples à cette conjecture pour les carquois de type D et E,
une conjecture de Reineke modifiée est proposée suivante:

Conjecture 3 (= Conjecture 5.3.1, La Conjecture de Reineke Modifiée). Si Q est un carquoi
de type Dynkin, alors la catégorie abélienne Repk(Q) est une catégorie stable maximale.
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Un carquois Q est en fait un graphe orienté qui se compose de sommets finis et de flèches finies
qui relient ces sommets. Plus explicitement, c’est un triple Q = (Q0, Q1, s, t), où Q0 et Q1 sont des
ensembles finis de sommets et de flèches, respectivement, et s, t : Q1 ! Q1 sont des applications
qui mappent une flèche a ∈ Q1 à son sommet de départ s(a) et à son sommet terminal t(a),
respectivement, qui peut être désigné comme suivant:

•
s(a)

a−−! •
t(a)
.

Soit k un corps algébriquement clos, une k-représentation du carquois Q consiste à placer un k-
espace vectoriel de dimension finie à chaque sommet et une k-morphisme linéaire entre des k-espaces
vectoriels à chaque flèche. C’est-à-dire que se compose d’une paire X = {(Xi)i∈Q0 , (Xa)a∈Q1}, pour
chaque Xi un k-espace vectoriel de dimension finie, et chaque Xa : Xs(a) ! Xt(a) une k-morphisme
linéaire.

Une k-représentation X du carquois Q est indécomposable s’il n’est pas une somme directe de
deux k-représentations non nulles de Q.

Notée par Repk(Q) la catégorie de k-représentations du carquois Q. Pour un système de
poids Θ = (θi)i∈Q0 ∈ Z|Q0|, w(X) := ∑

i∈Q0 θi dimkXi et r(X) := ∑
i∈Q0 dimkXi sont appelés

respectivement la fonction de poids et la fonction de rangs sur la catégorie Repk(Q).
La notion de stabilité des k-représentations des carquois peut se définir naturellement, une

k-représentation X du carquois Q est (w, r)-stable (reps. (w, r)-semistable), si pour tout sous-
représentation proper non nul U de X, on a

µ(U) < µ(X) (resp.µ(U) ≤ µ(X)),

où µ(X) := w(X)
r(X) est la pente de X par rapport à la fonction de poids w et à la fonction de rangs

r. La notion de polystabilité peut être définie de manière similaire.
Notre principal résultat de ce chapitre est de fournir une preuve de la conjecture de Reineke

modifiée pour les carquois de type An par construction combinatoire d’un système de poids spécial
(nous l’appelons le système de poids intrinsèque). En particulier, la conjecture de Reineke est
valable pour les carquois de type An.

Théorème 8 (= Theorem 5.3.2). Soit Q un carquoi de type An, alors il existe un système de
poids Θ = (θi)i∈Q0 ∈ Z|Q0| sur Q tel que les représentations stables par rapport à la fonction de
poids w(X) = ∑

i∈Q0 θi dimXi et la fonction de rangs r(X) = ∑
i∈Q0 dimXi sont précisément les

représentations indécomposables. C’est-à-dire que la catégorie abélienne Repk(Q) est une catégorie
stable maximale.

Dans le même temps, nous étudions également le système de poids intrinsèque via la théorie
semi-invariante (pour les détails, reportez-vous à Proposition 5.3.10).

0.2.2 La Correspondance de Kobayashi–Hitchin pour les Fibrés de Carquois

Le dernier chapitre de cette thèse est une autre spécialisation de la correspondance de Hodge non-
Abélienne, c’est-à-dire que la correspondance de Kobayashi–Hitchin pour les fibrés de carquois sur
les variétés Kählerienne généralisées.

La correspondance de Kobayashi–Hitchin, est une correspondance entre la stabilité des fibrés
vectoriels et l’existence de métriques d’Hermite–Einstein, qui est introduite au début de cette
introduction, joue un rôle essentiel dans la théorie de Hodge non-Abélienne.
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Dans ce chapitre, nous allons combiner la géométrie de Kählerienne généralisée et la théorie du
carquois, en particulier la théorie des fibrés de carquois. Nous introduirons la notion de fibrés de
carquois sur les variétés Kähleriennes généralisées, ainsi que la stabilité et les métriques d’Hermite–
Einstein de ces fibrés. Une idée naturelle est de considérer la relation entre eux.

Notre principal résultat de ce chapitre est le suivant:

Théorème 9 (= Theorem 6.3.1). Soit Q = (Q0, Q1) un carquoi, E = (E, φ) un Q-fibré de carquoi
I±-holomorphe sur une variété Kählerienne généralisée compacte (X, I+, I−, g, b) de dimension n
tel que g est une métrique de Gauduchon par rapport à I+ et I−, alors E est (α, σ, τ)-polystable si
et seulement si E admet une métrique de (α, σ, τ)-Hermite–Einstein.
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Introduction

Let (X,ω) be an n-dimensional Kähler manifold, E be a complex vector bundle over X. For
k ∈ Z≥0, denoted by Ak(E) := Γ(X,E⊗∧k(T ∗CX)) the space of smooth k-forms on X with values
in E, in particular, A0(E) = Γ(X,E), the space of smooth sections of E. For λ ∈ C, a (C∞) flat
λ-connection on E is a C-linear operator Dλ : Γ(X,E) ! A1(E) satisfies the following λ-twisted
Leibniz rule:

Dλ(fs) = fDλ(s) + λ∂(f)⊗ s+ ∂̄(f)⊗ s,

where f ∈ C∞(X,C), s ∈ Γ(X,E), and Dλ ◦ Dλ = 0 under the natural extension Dλ : A1(E) !
A2(E). In this case, the pair (E,Dλ) is called a λ-flat bundle.

In particular, when λ = 1, this is the usual flat connection, we use the notation ∇, and in this
case, the pair (E,∇) is called a flat bundle; when λ = 0, split D0 into its (0, 1)-part and (1, 0)-part,
and we obtain D0 = ∂̄E +θ, the flatness of D0 implies (∂̄E)2 = ∂̄Eθ = θ∧θ = 0, this defines a Higgs
bundle, that is the triple (E, ∂̄E, θ).

λ-flat bundle was originally introduced by Deligne as the understanding of Hitchin’s idea on the
construction of twistor space of the moduli space of Higgs bundles [Del89], which generalizes flat
bundles and Higgs bundles. Later this was studied and developed by Simpson as Hodge filtration
on non-Abelian cohomology [Sim95, Sim08]. To emphasis flat bundles and Higgs bundles, here we
state them separately.

Hence on (X,ω), we define the following three geometric objects:

(1) Flat bundle: (E,∇);

(2) Higgs bundle: (E, ∂̄E, θ);

(3) λ-flat bundle (λ ∈ C): (E,Dλ).

In algebraic geometry, especially in geometric invariant theory, there is a very important notion
for vector bundles, that is the stability. For a given λ-flat bundle (E,Dλ), it is called stable (resp.
semistable), if for any non-zero proper saturated torsion-free coherent subsheaf F which is invariant
under Dλ, that is, Dλ|Γ(X,F) : Γ(X,F)! A1(F) and 0 < rk(F) < rk(E), we have

µω(F) < (resp. ≤) µω(E),

where µω(E) := deg(E)
rk(E) is called the slope, and deg(E) :=

∫
X c1(det(E))∧ [ω]n−1 is the degree. It is

polystable, if it is the direct sum of stable λ-flat bundles of the same slope.
In particular, when λ = 1, for flat bundles, one usually apply the notations simple (or equiva-

lently, irreducible) and semisimple (or equivalently, reductive) rather than stable and polystable2,
since they correspond to simple (or equivalently, irreducible) and semisimple representations of
π1(X) by Riemann–Hilbert correspondence.

In differential geometry, there is also a very important notion for vector bundles, that is,
Hermitian–Einstein metrics. For a given λ-flat bundle (E,Dλ), together with a Hermitian metric
h, then h induced a unique decomposition of Dλ:

Dλ = λ∂h + θ + ∂̄h + λθ†h

such that:
2It’s obviously in the compact case that flat bundles are automatically semistable.
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• ∇h := ∂h + ∂̄h is a h-unitary connection, that is, dh(u, v) = h(∇h(u), v) + h(u,∇h(v));

• Φh := θh+θ†h ∈ A1(End(E)) is a self-adjoint operator with respect to h, that is, h(θh(u), v) =
h(u, θ†h(v)).

Let Dc
h,λ := ∂h + θ†h − λ̄(∂̄h + θh), and define Gh,λ := 1

(1+|λ|2)2 [Dλ, Dc
h,λ], which is called the pseudo-

curvature. h is called a Hermitian–Einstein metric if the following equation holds:

ΛωGh,λ = cIdE,

where c = −2π
√
−1 degω(E)

(1+|λ|2)rk(E)Vol(X) is a constant determined by X and topological invariants of E.

Non-Abelian Hodge theory, is a bridge between algebraic geometry and differential geometry,
which relates the stability of vector bundles and the existence of Hermitian–Einstein metrics. This
mainly based on the work of Donaldson [Don87] and Corlette [Cor88] on harmonic maps (flat
bundles), Hitchin[Hit87a] and Simpson [Sim87] on Higgs bundles, and later Mochizuki’s work on
λ-flat bundles (mainly non-compact case), which fully identifies the stability of vector bundles and
the existence of Hermitian–Einstein metrics, and moreover, gives an one-to-one correspondence be-
tween above objects over compact Kähler manifold (X,ω). This bridge provides many possibilities
on applying differential-geometric methods to study algebraic-geometric problems (for example,
study the geometry of moduli spaces).

Specially, if these vector bundles have trivial Chern classes (first and second), then these
Hermitian–Einstein metrics will being pluri-harmonic metrics (that is, the Hermitian metric h
such that Gh,λ = 0, which is equivalent to say that when λ 6= 0, the Hermitian metric h such
that (E, ∂̄h, θh) becomes a Higgs bundle; and when λ = 0, the Hermitian metric h such that
(E,D1 := ∂h + ∂̄h + θh + θ†h) becomes a flat bundle). The existence of pluri-harmonic metrics, can
be concluded into the following statements:

Theorem 2. Let (X,ω) be a compact Kähler manifold. Then

(1) (Donaldson [Don87],Corlette [Cor88]) A flat bundle (E,∇) over X admits a pluri-harmonic
metric if and only if it is semisimple;

(2) (Hitchin [Hit87a], Simpson [Sim87]) A Higgs bundle (E, ∂̄E, θ) over X admits a pluri-harmonic
metric if and only if it is polystable with trivial Chern classes;

(3) (Mochizuki [Moc06]) A λ-flat bundle (λ 6= 0) (E,Dλ) over X admits a pluri-harmonic metric
if and only if it is polystable with trivial Chern classes.

Moreover, in each case, the pluri-harmonic metric is unique up to scalar multiplicities.

As a consequence, we obtain the correspondence between these objects, called the non-Abelian
Hodge correspondence:

Corollary 1 (Non-Abelian Hodge Correspondence). Let (X,ω) be a compact Kähler mani-
fold. Then for any λ ∈ C, we have the following one-to-one correspondence between categories:

(1) The category of semisimple flat bundles of rank r;

(2) The category of polystable Higgs bundles of rank r with trivial Chern classes;

(3) The category of polystable λ-flat bundles of rank r with trivial Chern classes;
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they are connected by pluri-harmonic metrics, hence they are equivalent with the category of har-
monic bundles of rank r.

There are many generalizations of this result, a natural generalization is considering non-
compact manifolds as base manifolds, the resulting correspondence is due to Simpson [Sim90],
Biquard [Biq97], Jost–Zuo [JZ97], Mochizuki [Moc06, Moc09] and others. Other generalizations
such as considering real Lie groups as structure groups, or considering fields of positive character-
istic, p-adic fields as base fields [BGPiR03, GPGiR09, OV07, Fal05, AGT16]. We do not pretend
to give more details here.

Our main aim of this thesis is applying above non-Abelian Hodge theory to study some problems
in algebraic geometry and differential geometry.

0.3 The Geometry of Non-Abelian Hodge Theory

This part mainly concerns the geometry of non-Abelian Hodge correspondence, especially geomet-
ric properties of the related moduli spaces.

0.3.1 Non-Abelian Hodge Theory of Compact Version

The second chapter of this thesis, especially the first two sections (§1.1 and §1.2), is an introduction
of non-Abelian Hodge theory, we will try to explain this theory explicitly within limited pages,
especially λ-flat bundles that will play important roles in the first part of the thesis. Our new
results of this chapter are mainly in the third section (§1.3), we will begin with a norm estimate of
Dλ-flat sections over compact Riemann surfaces, then we obtain a vanishing theorem, that is, there
is no Dλ-flat sections on stable λ-flat bundles with trivial first Chern class over compact Riemann
surfaces. More precisely, we have:

Theorem 3 (= Theorem 1.3.1, Corollary 1.3.2). Suppose (X,ω) is a compact Riemann surface,
and (E,Dλ) is a λ-flat bundle, together with a Hermitian metric h. Then for any local non-zero
Dλ-flat section s of E, the following inequalities holds:

(1)
∆ω log

(
|s|2h

)
≥ − 2

(1 + |λ|2)
∣∣∣ΛωGh,λ

∣∣∣
h
,

(2)
∆ω(|s|2h) ≥ −

2
1 + |λ|2

∣∣∣ΛωGh,λ

∣∣∣
h
· |s|2h.

where ∆ω is the usual Laplacian operator on (X,ω).
In particular, when (E,Dλ) is stable with trivial first Chern class, then there is no non-trivial

global Dλ-flat section on E.

Then we consider some examples, the first one is rank 2 λ-flat bundles over punctured unit disk
obtained from “fiducial solutions” to decoupled Hitchin equations introduced in [MSWW16], and
calculate the explicit solutions of Dλ-flat sections. The second one is considering the C∗-action, we
calculate a special solution of pluri-harmonic metric on such λ-flat bundles over punctured unit
disk. This shows for a λ-flat bundle over a non-complete manifold, if it admits a pluri-harmonic
metric, then usually it is not unique.
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0.3.2 A Study of the Geometry of Moduli Spaces

The third chapter of this thesis, is a study of the geometry of moduli spaces, which consists of
three sections.

In the first section (§2.1), we construct a dynamical system on the moduli space of Higgs
bundles by applying the non-Abelian Hodge correspondence, and we study this dynamical system.
More explicitly, based on Simpson’s construction of moduli spaces via geometric invariant theory
[Sim94a, Sim94b, Sim95], for a smooth complex projective variety X, we have three moduli spaces
of above three objects and the moduli space of representations of π1(X):

(1) De Rham moduli spaceMdR(X, r): the moduli space of flat bundles of rank r over X;

(2) Dolbeault moduli spaceMDol(X, r): the moduli space of semistable Higgs bundles of rank r
with trivial Chern classes over X;

(3) Hodge moduli space MHod(X, r): the moduli space of semistable λ-flat bundles of rank r
with trivial Chern classes over X;

(4) Betti moduli spaceMB(X, r): the moduli space of representations ρ : π1(X)! GL(r,C).

Simpson shows that all of these moduli spaces are quasi-projective varieties, denoted byMdR(X, r),
MDol(X, r), MHod(X, r) and MB(X, r) the subset that parametrizes the isomorphism classes of
stable (irreducible, simple) objects, that is, the corresponding smooth loci. And each space is
a dense open subset of the corresponding moduli space. In particular, when fix a λ ∈ C, let
Mλ

Hod(X, r) :=MHod(X, r)|λ, then we have

• M0
Hod(X, r) =MDol(X, r),

• M1
Hod(X, r) =MdR(X, r),

• Mλ
Hod(X, r) ∼=an MdR(X, r), where λ 6= 0, “

an∼=” means the complex analytic isomorphism.

Obviously these properties also hold for the smooth loci MdR(X, r), MDol(X, r), MHod(X, r) and
MB(X, r). LetMHod(X, r,OX) (respectively, MHod(X, r,OX)) be the moduli space of semistable
(respectively, stable) λ-flat (λ ∈ C) bundles of rank r over X with vanishing Chern classes and
fixed determinant OX .

Our construction of the dynamical system is beginning withMDol(X, r), for any (λ, t) ∈ C×C∗,
choose a stable Higgs bundle (E, ∂̄E, θ) with a pluri-harmonic metric h, consider the corresponding
λ-flat bundle (E, ∂̄E+λθ†h, λ∂E,h+θ), it’s clear that h is also a pluri-harmonic metric for such λ-flat
bundle; then we consider the tλ-flat bundle (E, ∂̄E + λθ†h, t(λ∂E,h + θ)) given by C∗-action, there
exists a pluri-harmonic metric denoted as ht on each (E, ∂̄E + λθ†h, t(λ∂E,h + θ)), since C∗-action
does not change the stability and triviality of Chern classes of λ-flat bundles; finally by non-Abelian
Hodge correspondence, this determines a Higgs bundle denoted as (E, ∂̄E,ht , θht), which carries ht
as its pluri-harmonic metric.

Therefore, we obtain a (λ, t)-parametrized smooth dynamical system ψ(λ,t) on MDol(X, r):

ψ(λ,t) : MDol(X, r) −!MDol(X, r),
(E, ∂̄E, θ) 7−! (E, ∂̄E,ht , θht).

Moreover, ψ(λ,t) can be defined onMDol(X, r) as a continuous map.
The following properties are obvious from the definition:
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Proposition 1 (= Proposition 2.1.1).

(1) ψ(0,t) is the usual C∗-action given by t, and ψ(λ,1) is the identity map;

(2) ψ(λ,t) satisfies the following “cocycle”-type formula:

ψ(λt1,t2) ◦ ψ(λ,t1) = ψ(λ,t1t2);

(3) For any λ ∈ C, t ∈ C∗, the stable vector bundles (that is, Higgs bundles with zero Higgs field)
in the moduli space are fixed points of the dynamical system ψ(λ,t).

An important problem in dynamical system is studying the fixed points, in this section, by
using the analysis on pluri-harmonic metrics, we obtain that the dynamical system shares the
same fixed points with C∗-action on the moduli spaceMDol(X, r):

Theorem 4 (= Theorem 2.1.5). Fix (λ, t) ∈ C× C∗, define the fixed point set of (λ, t)-action:

F(λ,t) := {u ∈MDol(X, r) : ψ(λ,t)(u) = u},

then the fixed point set F := ⋂
(λ,t)∈C×C∗ F(λ,t) consists of all the fixed points of C∗-action on

MDol(X, r), that is, all C-VHS inMDol(X, r).

Moreover, we calculate the stabilizer set of special points in the moduli space for the case of
compact Riemann surface:

Cu = {(λ, t) ∈ C× C∗ : ψ(λ,t)(u) = u}.

Theorem 5 (= Theorem 2.1.7, Corollary 2.1.8). Suppose X is a compact Riemann surface, and
let u ∈ MDol(X, r) be a decoupled Higgs bundle with non-trivial Higgs field, then its stabilizer set
is

Cu = C× {µM , µ2
M , · · · , µM−1

M , 1},

where µM = e
2πi
M , M ≤ r is a constant. Moreover, for any (λ, t) ∈ C× C∗, the dynamical system

ψ(λ,t) does not change the pluri-harmonic metric when acts on a decoupled Higgs bundle.

Meanwhile, we also study the local property of this dynamical system by calculating the first
variation of it at a point in the moduli space (cf. Theorem 2.1.3).

The second section (§2.2) of this chapter is the stratifications of moduli spaces, which is mainly
based on an important result of Simpson [Sim10]. That is, each flat bundle (E,∇) over a compact
Riemann surface X admits a filtration:

F • : E = F 0 ⊃ F 1 ⊃ · · · ⊃ F k = 0

satisfies the Griffiths transversality ∇(F p) ⊆ F p−1 ⊗KX(p = 1, · · · , k), and such that the graded
Higgs bundle (GrF (E) := ⊕k−1

p=0 F
p/F p+1,GrF (∇)) is semistable. Moreover, such filtration is

unique if and only if the graded Higgs bundle is stable. We call such filtration a Simpson fil-
tration.

For any point (E, ∂̄E, Dλ) in the moduli space MHod(X, r)(λ 6= 0), consider its C∗-action,
Simpson shows the limit limt!0 t · (E, ∂̄E, Dλ) exists and is a flxed point of the C∗-action on
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MDol(X, r), that is, a C-VHS, and satisfies the following equality (in the moduli space):

lim
t!0

t · (E, ∂̄E, Dλ) = lim
t!0

t · (E, ∂̄E, λ−1Dλ) = (GrF (E),GrF (λ−1Dλ)),

where (E, ∂̄E, λ−1Dλ) is the corresponding flat bundle of (E, ∂̄E, Dλ), and (GrF (E),GrF (λ−1Dλ))
is the induced graded Higgs bundle of the flat bundle (E, ∂̄E, λ−1Dλ).

This shows, there are Bialynicki-Birula type stratifications of Mλ
Hod(X, r),MDol(X, r) and

MdR(X, r) into locally closed subsets given by the C∗-action:

Mλ
Hod(X, r) =

⋃
α

Gλ
α, MDol(X, r) =

⋃
α

G0
α, MdR(X, r) =

⋃
α

G1
α,

where index α corresponds to the decomposition of the set of fixed points of C∗-action onMDol(X, r)
into its connected components: P = ⋃

α Pα. The map Gλ
α ! Pα is obtained by taking the limit of

C∗-action, the fiber at each point is a Lagrangian submanifold of the corresponding moduli space.
For further study of such stratifications, in [Sim10], Simpson proposed the following three

important conjectures:

Conjecture 1 (= Conjecture 2.2.7, Conjecture 2.2.9 and Conjecture 2.2.11).

(1) (Foliation Conjecture) When varying the index α, these Lagrangian fibers of p1
α : G1

α ! Pα
fit together to provide a smooth foliation of the de Rham moduli space MdR(X, r) with each
leaf closed.

(2) (Nestedness Conjecture) The stratifications for the Dolbeault moduli space MDol(X, r)
and the de Rham moduli space MdR(X, r) are both nested, and the arrangements for both
stratifications are the same. Here nestedness means there is a partial order relation “≤” on
the index set such that Gi

α = ⋃
β≤αG

i
β hold for i = 0, 1.

(3) (Oper Stratum Conjecture) In the stratification of the de Rham moduli spaceMdR(X, r),
the oper stratum G1

oper is the unique closed stratum and the unique stratum of minimal di-
mension. Here an oper means a flat bundle that admits a special filtration.

In this section, we describe the explicit relation between Simpson filtrations and Harder–
Narasimhan filtrations for underlying vector bundles of rank 3 flat bundles (the description of
the result is very long, please refer to Theorem 2.2.13).

At the same time, we continue our study of the dynamical system ψ(λ,t), and introduce five
different limits associated to this dynamical system:

• ψ(0,0)(E, ∂̄E, θ) := lim
t!0

(
ψ(0,t)(E, ∂̄E, θ)

)
= lim

t!0
(E, ∂̄E, tθ);

• ψ(0,0)(E, ∂̄E, θ) := lim
λ!0

(
ψ(λ,0)(E, ∂̄E, θ)

)
;

• ψ(0,0)(E, ∂̄E, θ) := lim
t!0

(
lim
λ!0

(
ψ(λ,t)(E, ∂̄E, θ)

))
;

• ψ(0,0)(E, ∂̄E, θ) := lim
λ!0

(
lim
t!0

(
ψ(λ,t)(E, ∂̄E, θ)

))
;

• ψ(0,0)(E, ∂̄E, θ) := lim
(λ,t)!(0,0)

(
ψ(λ,t)(E, ∂̄E, θ)

)
.
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For any point in the moduli spaceMDol(X, r), generally these limits are different when they exist.
We study this problem, and find some special points such that these limits exist and coincide in
the moduli space.

Theorem 6 (= Theorem 2.2.16). Let X be a compact Riemann surface, when (E, ∂̄E, θ) ∈
MDol(X, r) is a C-VHS, or a decoupled Higgs bundle, then the five limits exist and coincide in
MDol(X, r).

To describe the dynamical system ψ(λ,t), a key point is to figure out the explicit relation between
the pluri-harmonic metric ht and the parameter t. This is very hard to compute, since it’s hard to
solve Hitchin equations of a λ-flat bundle under C∗-action. We give a description of ht near t = 1:

Theorem 7 (= Theorem 2.2.22). Let X be a compact Riemann surface, fix λ ∈ C∗ and assuming
t ∈ R∗, then over a small neighborhood of t = 1, the End(E)-valued function f := hth−1−Id

(t−1)2 is real
analytic with respect to t− 1.

In the last section (§2.3) of this chapter, we prove a weak version of the oper stratum conjecture,
which gives a partial answer to Simpson’s conjecture:

Theorem 8 (= Theorem 2.3.1, Minimal Dimension). The oper stratum G1
oper is the unique

closed stratum of minimal dimension r2(g − 1) + g + 1 in the de Rham moduli spaceMdR(X, r).

The proof of this theorem relies on the description of the fixed point set P , especially its
connected components Pα, via the theory of holomorphic chains. Since as a fixed point of C∗-
action, a C-VHS can be identified with a holomorphic chain of certain type. We finish the proof
via calculating the dimension of moduli space of chains and irreducibility of the moduli space.

0.3.3 Twistor Space Constriction

The main contribution of this chapter is in the case of compact Riemann surface, we general-
ize Deligne’s construction of twistor space via gluing the Hodge moduli spaces MHod(X, r) and
MHod(X̄, r) over X and its conjugate X̄ [Del89, Sim95], as an interpretation of Hitchin’s con-
struction of twistor space associated to the Dolbeault moduli space MDol(X, r) with hyper-Kähler
structure [HKLR87].

The fundamental idea of [HKLR87] on constructing a twistor space associated to a hyper-
Kähler manifold M is a topological product of M and the complex projective line P1, we denote
this space as TW(M) := M × P1. The quaternionic structure (I, J,K = IJ) on M induces a
complex structure I on TW(M). So we obtain a complex manifold and still denoted as TW(M),
this is the Hitchin twistor space, and we call this theory the Hitchin twistor theory.

Deligne’s idea is in fact an interpretation of Hitchin twistor theory via non-Abelian Hodge the-
ory. For moduli space that parametrizes isomorphism classes of stable objects over X (MDol(X, r),
MdR(X, r) and so on), denoted by M sm(X, r) the underlying smooth manifold. Then M sm(X, r)
carries a hyper-Kähler structure induced from MDol(X, r) and MdR(X, r) [Hit87a, Fuj91]. This
gives a Hitchin twistor space TW(M sm(X, r)) following [HKLR87]. Deligne’s main idea is gluing
the Hodge moduli spacesMHod(X, r) andMHod(X̄, r) over X and X̄ via complex conjugation map
and non-Abelian Hodge correspondence, this gives a new twistor space TWDH(X, r) together with
a fibration TWDH(X, r)! P1. We call TWDH(X, r) the Deligne–Hitchin twistor space, it’s showed
that the smooth locus TWsm

DH(X, r) is complex analytically isomorphic to the Hitchin twistor space
TW(M sm(X, r)).
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Now we consider the case when X is a compact Riemann surface of genus g ≥ 2, since X can be
denoted as the pair (X , I) for X the underlying smooth connected orientable closed surface, and
I the complex structure. The isotropy classes of complex structures on X can be denoted by its
Teichmüller space Teich(X ), and the extended mapping class group Mod♦(X ) := Diff(X )/Diff0(X )
acts on this space, with the quotient M(X ) := Teich(X )/Mod♦(X ) called the Riemann moduli
space of complex structures on X , which parametrizes the Riemann surface structures on X under
biholomorphism. When we review Deligne’s construction, the two Hodge moduli spaces appearing
in the gluing process are over X and its conjugate X̄, or equivalently, over (X , I) and (X ,−I). So
for a chosen complex structure I ′ ∈ M(X ) and let X ′ := (X , I ′), we can glue the Hodge moduli
spacesMHod(X, r) andMHod(X ′, r) along the overlapMHod(X, r)×CC∗ ∼=MHod(X ′, r)×CC∗ ∼=
MB(X , r)×C∗ via the Riemann–Hilbert correspondence that covers the map C∗ ! C∗, λ 7! λ−1.
The identification of λ-flat bundles given by the Deligne gluing d can be explicitly written as

[E, ∂̄E, Dλ, λ] ! [E, (∂̄E + λ−1Dλ)0,1
X′ , λ

−1(∂̄E + λ−1Dλ)1,0
X′ , λ

−1],

where (•)1,0
X′ and (•)0,1

X′ denote the corresponding (1,0)-part and (0,1)-part with respect to the
complex structure I ′ on X ′, respectively. The obtained analytic variety is called the general-
ized Deligne–Hitchin twistor space, and is denoted as TW(X,X ′; r), which makes in particular,
TWDH(X, r) = TW(X, X̄; r).

Our main results in this chapter can be concluded as the following:

Theorem 9 (= Theorem 3.3.4, Theorem 3.3.7, and Theorem 3.3.11).

(1) (Weight One Property) For a fixed λ0-flat bundle (E, ∂̄E, Dλ0), it determines a holomor-
phic section sλ0 of the generalized Deligne–Hitchin twistor space TW(X,X ′; r), called a de
Rham section. This section has weight one property, that is, its normal bundle satisfies

Nsλ0
∼= OP1(1)⊕ dimC(MdR(X,r)).

In particular, de Rham sections are balanced ample rational curves of degree dimC

(
MdR(X, r)

)
.

(2) (Torelli-type Theorem) Let X,X ′ ∈ M(X ) and Y, Y ′ ∈ M(Y) be Riemann surfaces with
genus g ≥ 3. If TW(X,X ′; r,O) is analytically isomorphic to TW(Y, Y ′; r,O), then either
X ∼= Y,X ′ ∼= Y ′, or X ∼= Y ′, X ′ ∼= Y . Where TW(X,X ′; r,O) is the generalized Deligne–
Hitchin twistor space obtained by gluingMHod(X, r,OX) andMHod(X ′, r,OX′).

(3) (Automorphism Groups) Let Aut0(TW(X,X ′; r)) be the identity component of the holo-
morphic automorphism group Aut(TW(X,X ′; r)) of TW(X,X ′; r), then each element of
Aut0(TW(X,X ′; r)) maps fibers of π : TW(X,X ′; r) ! P1 to fibers. Moreover, this group
satisfies the following short exact sequence

Id −! K −! Aut0(TW(X,X ′; r)) −! C∗ −! Id,

where each element of K preserves the fibers of π : TW(X,X ′; r)! P1.

0.4 Some Specializations of Non-Abelian Hodge Correspondence

This part can be viewed as applications of non-Abelian Hodge theory, more precisely, some spe-
cializations of non-Abelian Hodge correspondence. We build some special non-Abelian Hodge
correspondences.
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0.4.1 Stability and Indecomposability of Representations of Quivers

The sixth chapter of this thesis is non-Abelian Hodge theory of quiver version, which is based on
a conjecture proposed by M. Reineke in 2003 [Rie03]:

Conjecture 2 (= Conjecture 5.1.1). If Q is a quiver of Dynkin type, then there exists a weight sys-
tem Θ on Q such that the stable representations with respect to Θ are precisely the indecomposable
ones.

The importance of this conjecture is trying to identify stable and indecomposable representa-
tions of quivers of Dynkin type with respect to certain weight system. In general, stability is a
stronger condition than indecomposability, while this conjecture can make them being equivalent.

D. Juteau has found counterexamples to this conjecture for quivers ofD- and E-type, a modified
Reineke’s conjecture is proposed as following:

Conjecture 3 (= Conjecture 5.3.1, Modified Reineke’s Conjecture). If Q is a quiver of
Dynkin type, then the abelian category Repk(Q) is a maximal stable category.

A quiver Q is in fact an oriented graph that consists of finite vertices and finite arrows that
connect these vertices. More explicitly, it is a triple Q = (Q0, Q1, s, t), where Q0 and Q1 are finite
sets of vertices and arrows, respectively, and s, t : Q1 ! Q1 are maps that map an arrow a ∈ Q1
to its starting vertex s(a) and terminal vertex t(a), respectively, which can be denoted as the
following:

•
s(a)

a−−! •
t(a)
.

Fix an algebraically closed field k, a k-representation of the quiver Q is by putting a finite
dimensional k-vector space at each vertex and a k-linear map between k-vector spaces at each
arrow. That is, a pair X = {(Xi)i∈Q0 , (Xa)a∈Q1}, for each Xi a finite dimensional k-vector space,
and each Xa : Xs(a) ! Xt(a) a k-linear map.

A k-representation X of the quiver Q is indecomposable if it is not a direct sum of two non-
trivial k-representations of Q.

Denoted by Repk(Q) the category of k-representations of the quiver Q. For a given weight
system Θ = (θi)i∈Q0 ∈ Z|Q0|, w(X) := ∑

i∈Q0 θi dimkXi and r(X) := ∑
i∈Q0 dimkXi are called a

weight function and a rank function on the category Repk(Q), respectively.
The notion of stability of k-representations of quivers can be defined naturally, a k-representation

X of the quiver Q is (w, r)-stable (reps. (w, r)-semistable), if for any non-trivial proper subrepre-
sentation U of X, we have

µ(U) < µ(X) (resp.µ(U) ≤ µ(X)),

where µ(X) := w(X)
r(X) is the slope of X with respect to the weight function w and the rank function

r. Polystability can be defined similarly.
Our main result of this chapter is providing a proof of the modified Reineke’s conjecture for

quivers of An-type by combinatorial construction of a special wight system (we call it intrinsic
weight system). In particular, the original Reineke’s conjecture holds for quivers of An-type.

Theorem 10 (= Theorem 5.3.2). If Q is a quiver of An-type, then there exists a wight system
Θ = (θi)i∈Q0 ∈ Z|Q0| such that stable representations with respect to the weight function w(X) =∑
i∈Q0 θi dimXi and the rank function r(X) = ∑

i∈Q0 dimXi are precisely the indecomposable ones,
that is, the category Repk(Q) is a maximal stable category.
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Meanwhile, we also study the intrinsic weight system via semi-invariant theory (for the details,
refer to Proposition 5.3.10).

0.4.2 Kobayashi–Hitchin Correspondence for Quiver Bundles

The last chapter of this thesis, is another specialization of non-Abelian Hodge correspondence, that
is, the Kobayashi–Hitchin correspondence for quiver bundles over generalized Kähler manifolds.

The Kobayashi–Hitchin correspondence, is a correspondence between stability of vector bun-
dles and existence of Hermitian–Einstein metrics, which is introduced at the beginning of this
introduction, plays an essential role in non-Abelian Hodge theory.

In this chapter we will combine generalized Kähler geometry and quiver theory, especially the
theory of quiver bundles. We will introduce the notion of quiver bundles over generalized Kähler
manifolds, as well as stability and Hermitian–Einstein metrics for such bundles. A natural idea is
to consider the relationship between them.

Our main result of this chapter can be characterized as the following:

Theorem 11 (= Theorem 6.3.1). Let Q = (Q0, Q1) be a quiver, E = (E, φ) be an I±-holomorphic
Q-bundle over an n-dimensional compact generalized Kähler manifold (X, I+, I−, g, b) such that g
is Gauduchon with respect to both I+ and I−, then E is (α, σ, τ)-polystable if and only if E admits
an (α, σ, τ)-Hermitian–Einstein metric.
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Chapter 1

Non-abelian Hodge Theory of Compact
Version

The non-Abelian Hodge theory, which is mainly based on the work of Corlette [Cor88] and Don-
aldson [Don87] on harmonic maps (flat bundles), and the work of Hitchin [Hit87a] and Simpson
[Sim87] on Higgs bundles, gives a correspondence between semisimple flat bundles over a compact
Kähler manifold X and polystable Higgs bundles with vanishing Chern classes over the same man-
ifold. This correspondence can be generalized to a statement concerning λ-flat bundles, a topic
introduced by Deligne [Del89] and further developed by Simpson [Sim95, Sim08, Sim10]. More
precisely, for arbitrary λ1, λ2 ∈ C, Mochizuki [Moc06] established a correspondence between the
categories of polystable λ1-flat bundles with vanishing Chern classes and polystable λ2-flat bun-
dles with vanishing Chern classes. In particular, taking λ1 = 1 and λ2 = 0, this correspondence
recovers the original non-Abelian Hodge correspondence. Their results are obtained by showing
the existence of certain special metrics on certain bundles with additional conditions and can be
concluded as follows (and will be explained explicitly later):

Theorem 1.0.1. Let (X,ω) be a compact Kähler manifold. Then

(1) (Donaldson [Don85],Corlette [Cor88]) A flat bundle (E,∇) over X admits a pluri-harmonic
metric if and only if it is semisimple;

(2) (Hitchin [Hit87a], Simpson [Sim87]) A Higgs bundle (E, ∂̄E, θ) over X admits a pluri-harmonic
metric if and only if it is polystable with vanishing Chern classes;

(3) (Mochizuki [Moc06]) A λ-flat bundle (E,Dλ)(λ 6= 0) over X admits a pluri-harmonic metric
if and only if it is polystable with vanishing Chern classes.

Moreover, in each case, the pluri-harmonic metric is unique up to scalar multiplicities.

As a result, the non-Abelian Hodge correspondence reads:

Corollary 1.0.2 (Non-Abelian Hodge Correspondence). Let (X,ω) be a compact Kähler
manifold. Then for each λ ∈ C, there is an one to one correspondence between the following
categories:

(1) The category of semisimple flat bundles of rank r;

(2) The category of polystable Higgs bundles of rank r with vanishing Chern classes;

(3) The category of polystable λ-flat bundles of rank r with vanishing Chern classes;
29
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The equivalences are through pluri-harmonic metrics, hence all the above categories are equivalent
to the category of harmonic bundles of rank r.

Therefore, in our setting, especially in this thesis, non-Abelian Hodge theory means a corre-
spondence between flat bundles, Higgs bundles, λ-flat bundles, and harmonic bundles.

All the work mentioned above arise from the study of a classical problem in the non-Higgs
setting: a correspondence between the existence of certain special metrics on a vector bundle and
the stability of that bundle, called the Kobayashi–Hitchin correspondence. This correspondence
builds a bridge between algebraic-geometric side of stability of vector bundles and differential-
geometric side of existence of pluri-harmonic metrics. The study of this kind of problem can be
dated back to Narasimhan and Seshadri’s work on the stability of vector bundles [NS65]. Their
theorem states that a vector bundle over a compact Riemann surface is stable if and only if it arises
from an irreducible projectively unitary representation of the fundamental group of that Riemann
surface. The Narasimhan–Seshadri theorem was latter reproved by Donaldson with a differential
geometric method [Don83], which relates the stability of vector bundles and the existence of certain
special metrics. This celebrating idea was later generalized to higher dimensional compact Kähler
manifolds by Donaldson [Don85], Uhlenbeck and Yau [UY86].

There is a natural field arising from non-Abelian Hodge theory, the study of the corresponding
moduli spaces of these objects. From Simpson’s work on the construction of the moduli spaces
[Sim94a, Sim94b, Sim95], we have the following four moduli spaces:

• Betti moduli spaceMB(X, r): the moduli space of rank r representations π1(X)! GL(r,C);

• de Rham moduli spaceMdR(X, r): the moduli space of rank r flat bundles over X;

• Dolbeault moduli spaceMDol(X, r): the moduli space of semistable rank r Higgs bundles over
X with vanishing Chern classes;

• Hodge moduli space MHod(X, r): the moduli space of semistable rank r λ-flat bundles over
X with vanishing Chern classes.

The study of these moduli spaces arising from non-Abelian Hodge theory shows that they are also
related. More precisely, we have

Theorem 1.0.3 (NAHC of Moduli Spaces Version, [Sim94a, Sim94b, Sim95]).

(1) The de Rham moduli space MdR(X, r) and the Betti moduli space MB(X, r) are complex
analytically isomorphic as complex analytic varieties:

MdR(X, r)
an∼=MB(X, r).

(2) The Dolbeault moduli spaceMDol(X, r) and the de Rham moduli spaceMdR(X, r) are home-
omorphic as topological spaces:

MDol(X, r)
homeo∼= MdR(X, r),

and they are C∞ isomorphic over the subset of isomorphism classes of stable objects (smooth
locus).

(3) The Hodge moduli spaceMHod(X, r) has a fibration p :MHod(X, r)! C such that the fibers
over 0 and 1 are exactly p−1(0) =MDol(X, r) and p−1(1) =MdR(X, r), respectively.
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(4) Let Mλ
Hod(X, r) := p−1(λ), when λ 6= 0, then Mλ

Hod(X, r) and MdR(X, r) are algebraic
isomorphic as algebraic varieties:

Mλ
Hod(X, r)

alg∼= MdR(X, r).

1.1 Corlette–Simpson Correspondence

In this section, we will give an introduction to Higgs bundles, flat bundles and their correspondence
based on [Don87, Cor88, Hit87a, Sim87] and [Sim92], we will try to give more details to make it
to be a self-contained part.

Let X be an n-dimensional complex projective variety with the polarization given by a fixed
ample line bundle L = OX(1), let ω be a Kähler form that represents c1(L). For convenience, we
give the following notations that would be used later:

• C∞(X,C): the space of smooth complex valued functions on X;

• XR: the underlying 2n-dimensional real manifold;

• ∧k(X) := ∧k(T ∗XR): the k-th exterior algebra bundle of T ∗XR;

• Ak(X) := Γ(X,∧k(X)), the space of smooth sections of the bundle ∧k(X), i.e, the space of
smooth real k-forms on X;

• T ∗CX := T ∗XR ⊗R C: the complexified cotangent bundle;

• T ∗CX = (T ∗X)1,0 ⊕ (T ∗X)0,1: the decomposition into its (1,0)-part and (0,1)-part;

• Ωp,q
X : the exterior algebra bundle of (p, q)-type, that is, Ωp,q

X = ∧p((T ∗X)1,0)⊗ ∧q((T ∗X)0,1);

• ∧kC(X) := ∧k(T ∗CX): the k-th exterior algebra bundle of T ∗C(X). Easy to see that
∧k
C(X) = ⊕

p+q=k
Ωp,q
X ;

• Ap,q(X,E) := Γ(X,E ⊗ Ωp,q
X ), the space of smooth sections of the bundle E ⊗ Ωp,q

X , where E
is any complex vector bundle over X, sometimes we write it as Ap,q(E);

• Ak(X,E) := Γ(X,E ⊗ ∧k
C(X)), the space of smooth sections of the bundle E ⊗ ∧k

C(X),
sometimes we write it as Ak(E), in particular, A0(X,E) = Γ(X,E), the space of smooth
sections of E. Easy to see,

Ak(E) =
⊕
p+q=k

Ap,q(E);

• Ωp
X : the sheaf of holomorphic p-forms on E, in particular, Ω1

X = ∧n((T ∗X)1,0).

Higgs bundles
Let E be a complex vector bundle over X, and let ∂̄E : A0(E)! A0,1(E) be C-linear operator

such that

(1) ∂̄E(fs) = ∂̄(f)s+ f∂̄E(s) for any f ∈ C∞(X,C) and s ∈ A0(E);

(2) (∂̄E)2 = 0;
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where the second condition is defined under the natural extension ∂̄E : Ap,q(E) ! Ap,q+1(E) for
any integers p, q ≥ 0. Such a pair (E, ∂̄E) is called a holomorphic vector bundle, sometimes we
use a single word E to denote a holomorphic vector bundle. By Koszul–Malgrange theorem, this
is equivalent to the usual definition of a holomorphic vector bundle by holomorphic transition
functions.

Definition 1.1.1. A Higgs bundle over X is a holomorphic vector bundle (E, ∂̄E) together with a
map θ : E ! E ⊗Ω1

X which is holomorphic and integrable, i.e, ∂̄E(θ) = 0 and θ ∧ θ = 0. Such a θ
is called a Higgs field and the triple (E, ∂̄E, θ) denotes the Higgs bundle.

Definition 1.1.2. A Higgs bundle (E, ∂̄E, θ) over X is called stable (resp. semistable) if for any
proper coherent subsheaf F of 0 < rk(F ) < rk(E) and θ(F ) ⊆ F⊗Ω1

X such that E/F is torsion-free,
we have

µ(F ) < (resp. ≤) µ(E),

where µ(E) := deg(E)
rk(E) denotes the slope of E, and deg(E) :=

∫
X c1(E) · [ω]n−1 is the degree of E. It

is called polystable if it is the direct sum of stable Higgs bundles of the same slope µ(E).

Given a hermitian metric h on the Higgs bundle (E, ∂̄E, θ), then h and ∂̄E uniquely determines
an (1,0)-type operator ∂E,h such that ∇h := ∂E,h + ∂̄E is a unitary connection. Here a connection
on a vector bundle E is a C-linear operator ∇ : A0(E) ! A1(E) that satisfies the Leibniz rule
∇(fs) = df ⊗ s + f∇(s) for any f ∈ C∞(X,C) and s ∈ A0(E). A connection ∇ is unitary if it
preserves the metric h, i.e, if dh(u, v) = h(∇(u), v) +h(u,∇(v)) for any u, v ∈ A0(E). This unique
unitary connection is the Chern connection, and its curvature Fh := ∇h ◦ ∇h is called the Chern
curvature. A connection ∇ on E is said to be flat if its curvature F∇ := ∇ ◦ ∇ vanishes under the
natural extension ∇ : Ak(X,E)! Ak+1(X,E) for any integer k ≥ 0.

With h, the Higgs field θ determines an adjoint operator θ†h ∈ A0,1(End(E)) by

h(θ(u), v) = h(u, θ†h(v))

for any u, v ∈ A0(E). The renewed connection D1 := ∂E,h+∂̄E+θ+θ†h is called the Hitchin–Simpson
connection, and its curvature F(∂̄E ,θ,h) := D1 ◦ D1 is called the Hitchin–Simpson curvature.

The holomorphic object Higgs field was introduced by Hitchin [Hit87a] for solving certain Yang–
Mills equations over a Riemann surface that generalizes the classical correspondence arising from
Narasimhan and Seshadri’s work relating holomorphic vector bundles and unitary connections
over a Riemann surface [NS65], and later generalized to higher dimensional compact varieties
by Donaldson [Don85], Uhlenbeck and Yau [UY86]. Hitchin’s work was generalized to higher
dimensional case by Simpson [Sim87], where he built the Kobayashi–Hitchin correspondence that
relating the algebraic notion of stability and the existence of certain good metrics.

Definition 1.1.3. h is called a Hermitian–Einstein metric (or a harmonic metric) on the Higgs
bundle (E, ∂̄E, θ) if the Hitchin–Simpson curvature F(∂̄E ,θ,h) satisfies the following equation:

ΛωF(∂̄E ,θ,h) = c · IdE, (1.1)

where c = −2π
√
−1µL(E)

Vol(X) is a scalar constant. If in particular, the Hitchin–Simpson connection D1 is
flat, i.e, if F(∂̄E ,θ,h) = 0, then h is called a pluri-harmonic metric, and in this case, (E, ∂̄E, θ, h) is
called a harmonic bundle.



1.1. CORLETTE–SIMPSON CORRESPONDENCE 33

Let F⊥(∂̄E ,θ,h) := F(∂̄E ,θ,h) − 1
r
Tr(F(∂̄E ,θ,h))IdE be the trace-free part of the Hitchin–Simpson cur-

vature, then (1.1) is equivalent to

ΛωF
⊥
(∂̄E ,θ,h) = 0. (1.2)

From the definition we can see that a Higgs bundle (E, ∂̄E, θ) together with a pluri-harmonic
metric h gives rise to a flat bundle structure, that is, (E,D1 := ∂E,h + ∂̄E + θ+ θ†h) is a flat bundle.
The following theorem of Kobayashi–Hitchin correspondence for Higgs bundles is due to Hitchin for
rank 2 Higgs bundles over compact Riemann surface, and Simpson for higher rank Higgs bundles
over general compact Kähler manifolds.
Theorem 1.1.4 (Hitchin [Hit87a], Simpson [Sim87]). Let (X,L, ω) be as above, a Higgs bundle
(E, ∂̄E, θ) over X is µL-polystable if and only if it admits a Hermitian–Einstein metric, moreover,
such a metric is unique up to scalar multiplicity.

Moreover, Simpson showed the following Bogomolov–Gieseker inequality for Higgs bundles:
Proposition 1.1.5 (Simpson [Sim87]). If h is a Hermitian–Einstein metric on (E, ∂̄E, θ), then(

2c2(E)− r − 1
r

c1(E)2
)
· [ω]n−2 = C

∫
X
|F⊥(∂̄E ,θ,h)|

2
h,ω ≥ 0, (1.3)

where r = rk(E). In particular, if moreover, c1(E) · [ω]n−1 = ch2(E) · [ω]n−2 = 0, then F(∂̄E ,θ,h) = 0,
that is, h is a pluri-harmonic metric and (E, ∂̄E, θ, h) is a harmonic bundle.

Flat Bundles
Now let V be a complex vector bundle with a connection ∇ : A0(V )! A1(V ) that is flat, i.e,

∇2 = 0 under the extension ∇ : A1(V )! A2(V ).
Definition 1.1.6. A flat bundle (V,∇) is called irreducible (or equivalently, simple) if it has no
non-zero proper flat subbundle, and it is called semisimple if it is a direct sum of irreducible flat
bundles.
Remark 1.1.7. In fact, we can introduce the stability for flat bundles, that is, a flat bundle
(V,∇) is called stable if any non-zero proper flat subbundle has degree strictly less than it, and it
is called polystable if it is the direct sum of stable flat bundles. It’ easy to see that, over compact
manifolds, a flat bundle is stable if and only if it is irreducible, and it is polystable if and only if
it is semisimple.

Given a hermitian metric h on V , there is a unique decomposition of ∇:

∇ = ∇h + Φh

such that ∇h is a unitary connection and Φh ∈ A1(End(E)) is a self-adjoint operator. This
decomposition is easy to make, in fact, we can decompose ∇ into its (1,0) and (0,1) parts: ∇ =
∇1,0 +∇0,1, then define a unique (0,1)-type operator δ′′V,h such that ∇1,0 + δ′′V,h preserves h and a
unique (1,0)-type operator δ′V,h such that ∇0,1 + δ′V,h preserves h, let

∂V,h = 1
2(∇1,0 + δ′V,h), ∂̄V,h = 1

2(∇0,1 + δ′′V,h),

θV,h = 1
2(∇1,0 − δ′V,h), θ†V,h = 1

2(∇0,1 − δ′′V,h),



34 CHAPTER 1. NON-ABELIAN HODGE THEORY OF COMPACT VERSION

then ∇h := ∂V,h + ∂̄V,h and Φh := θV,h + θ†V,h is the desired decomposition. From the flatness of ∇
and the definition of δ′V,h and δ′′V,h, we have

(∇1,0)2 = (∇0,1)2 = ∇1,0∇0,1 +∇0,1∇1,0 = 0,
(δ′V,h)2 = (δ′′V,h)2 = δ′V,hδ

′′
V,h + δ′′V,hδ

′
V,h = 0.

(1.4)

Let D′′V,h = ∂̄V,h + θV,h, it’s easy to check that it satisfies the Leibniz rule:

D′′V,h(fs) = ∂̄(f)s+ fD′′V,h(s),

let Gh := D′′V,h ◦ D
′′
V,h be the pseudo-curvature.

Definition 1.1.8. h is called a harmonic metric on the flat bundle (V,∇) if the pseudo-curvature
Gh satisfies that ΛωGh = 0, if in particular, Gh = 0, i.e, if (∂̄V,h + θV,h)2 = 0, then h is called a
pluri-harmonic metric and in this case, (V,∇, h) is called a harmonic bundle.

From the definition we can see that a flat bundle (V,∇) together with a pluri-harmonic metric
h gives rise to a Higgs bundle structure, that is, (V, ∂̄V,h, θV,h) is a Higgs bundle.

Let G be a complex reductive group, and K ⊆ G be a maximal compact subgroup. Since any
hermitian metric h on a flat principal G-bundle P is in fact a K-reduction, that is, a principal
K-subbundle PK with P = PK ×K G. Any flat G-bundle is equivalent to a representation ρ :
π1(X) ! G, and it is irreducible (resp. semisimple, or equivalently, reductive) if and only if the
associated monodromy representation is irreducible (resp. semisimple, or equivalently, reductive),
here a representation ρ : π1(X)! G is called semisimple (or equivalently, reductive) if the Zariski
closure of ρ(π1(X)) in G is a reductive group. A K-reduction is equivalent to a section of the fiber
bundle P/K = P ×G G/K, which can be thought as a ρ-equivariant map hρ : X̃ ! G/K. Thus a
metric on a flat G-bundle is equivalent to a ρ-equivariant map hρ : X̃ ! G/K.

The fundamental theorem of flat bundles is due to Donaldson [Don87] for rank 2 case and
Corlette [Cor88] for general case:

Theorem 1.1.9 (Donaldson [Don87], Corlette [Cor88]). Let X be a compact Riemannian manifold
and let G be a complex reductive group, a representation ρ : π1(X)! G is reductive if and only if
there exists a ρ-equivariant harmonic map hρ : X̃ ! G/K.

Now we give a brief introduction to harmonic maps here, references could be [ABC+96]. Let
(M, g) and (N, h) be two Riemannian manifolds, let f : M ! N be a smooth map between them,
then the differential df can be thought as a section of the bundle TM⊗f ∗TN , we define the energy
of f to be

e(f) := 1
2

∫
M
|df |2g⊗f∗hdVolM ,

f is called a harmonic map if it is a critical point of the energy functional, that is, if it satisfies
the Euler–Lagrange equation:

∆(f) := ∗d∇ ∗ df = 0, (1.5)

where d∇ : Ak(M, f ∗TN)! Ak+1(M, f ∗TN) is the exterior differential operator induced from the
pull-back Levi-Civita connection f ∗∇N : Γ(M, f ∗TN) ! A1(M, f ∗TN) = Γ(M,T ∗M ⊗ f ∗TN)
on the pull-back bundle f ∗TN , where ∇N : Γ(X,TN) ! A1(M,TN) = Γ(M,T ∗M ⊗ TN) is the
Levi-Civita connection of (N, h), that is, d∇ = f ∗∇N on A0(M, f ∗TN) = Γ(X,T ∗M ⊗ f ∗TN)
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and d∇(α ⊗ s) := dα ⊗ +(−1)deg(α)α ⊗ f ∗∇N(s) for any α ∈ Ak(M) and s ∈ Γ(M, f ∗TN). And
∗ : Ak(M, f ∗TN)! Adim(M)−k(M, f ∗TN) is the induced Hodge star operator defined by

〈α ∧ ∗β〉 := 〈α, β〉 dVolM ,

where 〈•, •〉 is the induced inner product on Ak(M, f ∗TN).
If (M, g, J) is a hermitian manifold of complex dimension n, that is, g is compatible with the

complex structure J , let ω(•, •) := g(J•, •) be the associated fundamental 2-form, then ∗df =
ωn−1

(n−1)! ∧ Jdf =: ωn−1

(n−1)! ∧ d
cf , where dcf := Jdf = df ◦ J . Therefore, (1.5) is equivalent to

d∇(ωn−1 ∧ dcf) = 0, (1.6)

if moreover, (M, g, J) is Kähler, i.e, dω = 0, then f is harmonic if and only if

ωn−1 ∧ d∇dcf = 0. (1.7)

Hence in particular, if M is a Riemann surface, then f is harmonic if and only if d∇dcf = 0, this
equation only depends on the complex structure on M (not depend on the hermitian structure).
From this, we have the notion of pluri-harmonic map.

Let (M, g, J) be a complex manifold and (N, h) a Riemannian manifold, a map f : M ! N
is called a pluri-harmonic map if the restriction to any 1-dimensional complex submanifold is
harmonic. From above analysis, f is pluri-harmonic if and only if d∇dcf = 0.

There is no general relation between pluri-harmonic maps and harmonic maps, but when M is
Kähler, then from above we know that every pluri-harmonic map is harmonic. The other direction
needs more constraints onM and N , this was first proved by Siu [Siu80] whenM is compact Kähler
and N is Kähler with certain curvature conditions, and later generalized by Sampson [Sam86] to
general Riemannian manifolds N with non-positive hermitian curvature introduced by him.

Theorem 1.1.10 (Siu [Siu80], Sampson [Sam86]). Let M be a compact Kähler manifold and let
N be a Riemannian manifold with non-positive hermitian curvature, if f : M ! N is harmonic,
then it is pluri-harmonic.

Remark 1.1.11. Siu–Sampson theorem also holds for ρ-equivariant harmonic maps, that is, for
any compact Kähler manifold M and any Riemannian manifold N of non-positive hermitian cur-
vature, let ρ : π1(M)! Iso(N) be a reductive representation of π1(M), where Iso(N) is the group
of isometries of N . Then by Donaldson–Corlette theorem, there exists a ρ-equivalent harmonic
map hρ : M̃ ! N , this map is pluri-harmonic. In particular, one takes N = G/K a symmetric
space, Iso(N) = G.

Lemma 1.1.12 (Kähler Identities, [Sim87, Sim92]). Let (X,ω) be a compact Kähler manifold,

(1) If (E, ∂̄E, θ) is a Higgs bundle over X with a hermitian metric h, then

(Dc
h)∗ = −

√
−1[Λω,D1], (D1)∗ =

√
−1[Λω, D

c
h],

where Dc
h = D′′ − D′h for D′′ = ∂̄E + θ and D′h = ∂E,h + θ†h, ()∗ is the formal adjoint with

respect to the metric h, in particular,

(D′h)∗ =
√
−1[Λω, D

′′], (D′′)∗ = −
√
−1[Λω, D

′
h].
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(2) If (V,∇) is a flat bundle over X with a hermitian metric h, then

(Dc
V,h)∗ = −

√
−1[Λω,∇], (∇)∗ =

√
−1[Λω, D

c
V,h],

where Dc
V,h = D′′V,h −D′V,h for D′′V,h = ∂̄V,h + θV,h and D′h = ∂V,h + θ†V,h, in particular,

(δ′V,h)∗ =
√
−1[Λω,∇0,1], (δ′′V,h)∗ = −

√
−1[Λω,∇1,0].

Returning back to the case of a flat bundle (V,∇) with a hermitian metric h and the ρ-
equivariant map hρ : π1(X)! GL(r,C)/U(r), the reason for h being a harmonic metric is due to
the following fact:

Lemma 1.1.13 ([Sim92]). h is a harmonic metric if and only if hρ is a harmonic map.

Proof. It’s suffices to show that ΛωGh = 0 is the Euler–Lagrange equation for the energy functional
e(hρ) = 1/2

∫
X |dhρ|2dVolX . In fact, dhρ = θV,h + θ†V,h, so the Euler–Lagrange equation for e(hρ) is

(δ′V,h)∗(θV,h) + (δ′′V,h)∗(θ
†
V,h) = 0 [Sim92]. By Kähler identities for flat bundles (cf. Lemma 1.1.12),

this is equivalent to √
−1Λω(∇0,1(θV,h)−∇1,0(θ†V,h)) = 0,

hence equivalent to
√
−1Λω(∇1,0δ′′V,h + δ′′V,h∇1,0 −∇0,1δ′V,h − δ′V,h∇0,1) = 0.

Since

Gh = (∂̄V,h + θV,h)2

= 1
4(∇0,1δ′′V,h + δ′′V,h∇0,1 −∇1,0δ′V,h − δ′V,h∇1,0) + 1

4(∇1,0δ′′V,h + δ′′V,h∇1,0 −∇0,1δ′V,h − δ′V,h∇0,1),

this gives ΛωGh = 1
4Λω(∇1,0δ′′V,h + δ′′V,h∇1,0 −∇0,1δ′V,h − δ′V,h∇0,1).

Similarly, for (X,ω) compact Kähler, h is a pluri-harmonic metric if and only if hρ is a pluri-
harmonic map, the Siu–Sampson theorem for ρ-equivariant map (Remark 1.1.11) implies that hρ
is harmonic if and only if it is pluri-harmonic [ABC+96, Cor88]. Here we give a proof of this in
the viewpoint of flat bundles.

Lemma 1.1.14 ([Sim92, Lemma 1.1]). Let h be a harmonic metric on the flat bundle (V, h) over
a compact Kähler manifold (X,ω), then h is pluri-harmonic.

Proof. It suffices to show that ΛωGh implies Gh = 0.
From Dc

V,h = D′′V,h −D′V,h and ∇ = D′′V,h +D′V,h we have

Gh = (D′′V,h)2 = 1
4(∇Dc

V,h +Dc
V,h∇).

From conclusion (1.4) and the fact Dc
V,h = δ′′V,h − δ′V,h, we have (Dc

V,h)2 = 0. Since Gh is an
End(V )-valued 2-form, we have the Bianchi identities

∇Gh = 0 = Dc
V,hGh = 0.
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On the other hand,

Dc
V,h = D′′V,h −D′V,h = ∂̄V,h − ∂V,h + θV,h − θ†V,h

= ∇0,1 − θ†V,h − (∇1,0 − θV,h) + θV,h − θ†V,h
= ∇0,1 −∇1,0 + 2(θV,h − θ†V,h),

again by (1.4) we have
∇ · (∇0,1 −∇1,0) + (∇0,1 −∇1,0) · ∇ = 0.

Therefore,

Gh = 1
2
(
∇ · (θV,h − θ†V,h) + (θV,h − θ†V,h) · ∇

)
= 1

2∇(θV,h − θ†V,h).

Now from the Kähler identitiesfor flat bundles (cf. Lemma 1.1.12), ΛωGh = 0 and Dc
V,hGh = 0

imply ∇∗Gh = 0. As a result, we have

‖Gh‖L2 = 1
2

∫
X

〈
∇(θV,h − θ†V,h), Gh

〉
= 1

2

∫
X

〈
θV,h − θ†V,h,∇∗Gh

〉
= 0.

Corlette–Simpson correspondence
So over compact Kähler manifolds, unlike the case of Higgs bundles, there is no difference for a

metric on a flat bundle being harmonic or being pluri-harmonic. So the equation Gh = 0 for a flat
bundle (V,∇) being a harmonic bundle is over determined, the equation ΛωGh = 0 is enough. From
Theorem 1.1.4 and Proposition 1.1.5 we can see that the equation F(∂̄E ,θ,h) = 0 for a Higgs bundle
(E, ∂̄E, θ) being a harmonic bundle is also over determined, the conditions ΛωF(∂̄E ,θ,h) = c · IdE
and ch1(E) · [ω]n−1 = ch2(E) · [ω]n−2 = 0 are enough. Therefore, this produces a correspondence
between flat bundles and Higgs bundles via harmonic bundles (Corlette–Simpson correspondence,
see Corollary 1.1.16).

Reviewing above results, let (V,∇) be a flat bundle of rank r over X, and let ρ : π1(X) !
GL(r,C) be the associated monodromy representation. Given a hermitian metric h on V , let
hρ : X̃ ! GL(r,C)/U(r) be the corresponding ρ-equivariant map, then we have the following
diagram:

h pluri-harmonic metric ks +3

X Kähler

��

hρ pluri-harmonic map

X Kähler

��
h harmonic metric ks +3

X compact Kähler

OO

hρ harmonic map

X compact Kähler

OO

Therefore, the Donaldson–Corlette theorem ( Theorem 1.1.9) can be rewrote as the existence
of harmonic (pluri-harmonic) metrics on flat bundles, which is a type of Kobayashi–Hitchin corre-
spondence for flat bundles.

Theorem 1.1.15 (Donaldson [Don87], Corlette [Cor88]). Let (X,L, ω) be as above, then a flat
bundle (V,∇) over X admits a pluri-harmonic metric if and only if it is semisimple, and moreover,
such a pluri-harmonic metric is unique up to scalar multiplicities.
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If the hermitian metric h on the Higgs bundle (E, ∂̄E, θ) is a pluri-harmonic metric, then it is
also a pluri-harmonic metric for the associated flat bundle (E,D1 = ∂E,h + ∂̄E + θ + θ†h). And
conversely, if the hermitian metric h on the flat bundle (V,∇) is a pluri-harmonic metric, then it
is also a pluri-harmonic metric for the associated Higgs bundle (V, ∂̄V,h, θV,h). Thus we have the
following correspondence of flat bundles and Higgs bundles:
Corollary 1.1.16 (Corlette–Simpson Correspondence, [Sim92]). Let (X,L, ω) be as above,
then there is an equivalence between the category of semisimple flat bundles (V,∇) and that of
µL-polystable Higgs bundles (E, ∂̄E, θ) with ch1(E) · [ω]n−1 = ch2(E) · [ω]n−2 = 0, both of them are
equivalent to the category of harmonic bundles.
Remark 1.1.17. (1) By extension arguments ([Sim92, Corollary 3.4, Theorem 2]), that is, any
flat bundle over X is an extension of semisimple flat bundles, and any semistable Higgs bundle
with vanishing Chern classes is an extension of stable Higgs bundles with vanishing Chern classes.
Above equivalence can be extended to an equivalence of the following two categories ([Sim92,
Corollary 3.10]):
• The category of flat bundles of rank r over X;

• The category of semistable Higgs bundles of rank r over X with vanishing Chern classes.
(2) There is a special kind of flat bundles, and a special kind of Higgs bundles, called complex

variations of Hodge structure (C-VHS for simplicity, and polarized C-VHS in the sense of Griffiths),
and systems of Hodge bundles, respectively. They correspond to the fixed points of C∗-action on
the corresponding moduli spaces (cf. [Sim92, Lemma 4.1, Corollary 4.2]). In particular, we have
the following one-to-one correspondence:
• Flat bundles which are C-VHS;

• Higgs bundles having the structures of systems of Hodge bundles.
In [Sim94a, Sim94b], by the technique of geometric invariant theory, Simpson constructed and

showed the existence of the following three coarse moduli spaces:
(1) The de Rham moduli space MdR(X, r), that is, the coarse moduli space of rank r vector

bundles over X with integrable connections;

(2) The Dolbeault moduli spaceMDol(X, r), that is, the coarse moduli space of rank r semistable
Higgs bundles over X with vanishing Chern classes;

(3) The Betti moduli space MB(X, r), that is, the coarse moduli space of representations ρ :
π1(X)! GL(r,C).

Moreover, he showed:
Theorem 1.1.18 (NAHC of Moduli Spaces Version, Part I, [Sim94a, Sim94b]).

(1) The Riemann–Hilbert correspondence gives the complex analytic isomorphism of MdR(X, r)
andMB(X, r) as complex analytic varieties:

MdR(X, r)
an.∼= MB(X, r).

(2) The Corlette–Simpson correspondence gives the homeomorphism ofMdR(X, r) andMDol(X, r)
as topological spaces:

MDol(X, r)
homeo.∼= MdR(X, r).
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In fact, in [Sim94a], Simpson provides two methods on constructingMDol(X, r), one is thinking
a Higgs bundles as a coherent sheaf on the contangent bundle T ∗X, the other is thinking a Higgs
bundle as a module over ΛDol := Sym•(TX) and then using the geometric invariant theory of Λ-
modules, the constructions are beautiful, but also very technical, we will give a brief introduction
to the construction in next chapter.

1.2 Flat λ-Connections and Mochizuki Correspondence

The notion of flat λ-connection as an interpolation of usual flat connection and Higgs field was
suggested by Deligne [Del89], illustrated by Simpson in [Sim95] and further studied in [Sim08,
Sim10].

We have seen in §1.1 that the two different ways to define a harmonic bundle are in fact
equivalent, in this section, we will give another equivalent way to define a harmonic bundle by the
language of λ-flat bundles.

Let (X,L, ω) be as in the first section, let E = (E, ∂̄E) be a holomorphic vector bundle over
X, with E the underlying complex vector bundle. The following preliminaries of λ-flat bundles
mainly come from [Sim95] and [Moc06] (see also [HH19, Hua20]).

Definition 1.2.1. Assume λ ∈ C.

(1) A holomorphic λ-connection on E is a C-linear map Dλ : E ! E ⊗ Ω1
X that satisfies the

following λ-twisted Leibniz rule:

Dλ(fs) = fDλs+ λs⊗ df,

where f and s are holomorphic sections ofOX and E, respectively. If (Dλ+∂̄E) ◦ (Dλ+∂̄E) = 0
under the natural extension Dλ : E ⊗Ωp

X ! E ⊗Ωp+1
X for any integer p ≥ 0, then we call Dλ

a (holomorphic) flat λ-connection and E a (holomorphic) λ-flat bundle.

(2) A C∞ λ-connection on E is a C-linear map Dλ : A0(E)! A1(E) that satisfies the following
λ-twisted Leibniz rule:

Dλ(fs) = fDλs+ λs⊗ ∂f + s⊗ ∂̄f,

where f ∈ C∞(X,C) and s ∈ A0(E). If Dλ ◦ Dλ = 0 under the natural extension Dλ :
Ap(E)! Ap+1(E) for any integer p ≥ 0, then we call Dλ a (C∞) flat λ-connection, and E a
(C∞) λ-flat bundle.

Clearly, λ = 1 and 0 correspond to the usual flat connection and Higgs field, respectively. If
we work on projective curve, then every λ-connection is automatically flat. Giving a holomorphic
flat λ-connection Dλ on E is equivalent to giving a C∞ flat λ-connection Dλ on E. From now on,
we will denote a λ-flat bundle as (E, ∂̄E, Dλ, λ) (sometimes, (E, d′′E, Dλ, λ), or (E, d′′E, d′E, λ)) in
holomorphic category and (E,Dλ, λ) in C∞ category, or simply, just as (E, ∂̄E, Dλ) (sometimes,
(E, d′′E, Dλ), or (E, d′′E, d′E)) and (E,Dλ) when there is no ambiguity.

Let (E,Dλ) be a λ-flat bundle, and h be a hermitian metric on E, then h induces a unique
decomposition of Dλ:

Dλ = λ∂h + θh + ∂̄h + λθ†h

such that ∇h := ∂h+ ∂̄h is a h-unitary connection, and Φh := θh+θ†h ∈ A1(End(E)) is a self-adjoint
operator.

In fact, when λ = 0, this decomposition is the decomposition into different types which defines
the Higgs bundle structure, that is, D0 = ∂̄E +θ for ∂̄E defines a holomorphic structure on E and θ
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defines a Higgs field. When λ 6= 0, we decompose Dλ into its (1,0)-part d′E and (0,1)-part d′′E that
defines a holomorphic structure on E. From h and d′E, we have a (0,1)-operator δ′′h determined by
the condition

λ∂h(u, v) = h(d′Eu, v) + h(u, δ′′hv).

Similarly, h and d′′E provide a (1,0)-operator δ′h via the condition

∂̄h(u, v) = h(d′′Eu, v) + h(u, δ′hv).

One easily checks that δ
′
h(fs) = fδ′h(s) + ∂(f)⊗ s
δ′′h(fs) = fδ′′h(s) + λ̄∂̄(f)⊗ s

for any f ∈ C∞(X,C) and s ∈ A0(E). We introduce the following four operators

∂h := 1
1 + |λ|2

(
λ̄d′E + δ′h

)
, ∂̄h := 1

1 + |λ|2
(
d′′E + λδ′′h

)
,

θh := 1
1 + |λ|2

(
d′E − λδ′h

)
, θ†h := 1

1 + |λ|2
(
λ̄d′′E − δ′′h

)
.

They satisfy that
d′E = λ∂h + θh, d′′E = ∂̄h + λθ†h,

δ′h = ∂h − λ̄θh, δ′′h = λ̄∂̄h − θ†h,

By direct calculation we can see that ∂h and ∂̄h obey the usual Leibniz rule:∂h(fs) = f∂h(s) + ∂(f)⊗ s
∂̄h(fs) = f∂̄h(s) + ∂̄(f)⊗ s

for any f ∈ C∞(X,C) and s ∈ A0(E), so ∇h := ∂h + ∂̄h is an 1-connection (in fact this is a
h-unitary connection, we will show this later). By definition, θh ∈ C∞(X,End(E) ⊗ Ω1,0

X ) and
θ†h ∈ C∞(X,End(E)⊗Ω0,1

X ), and they are both OX-linear. Moreover, θ†h is the adjoint of θh in the
sense that h(θh(u), v) = h(u, θ†h(v)).

Proposition 1.2.2. ∇h is a h-unitary connection, that is,

dh(u, v) = h(∇h(u), v) + h(u,∇h(v))

for any u, v ∈ A0(E).

Proof. It suffices to show ∂h(u, v) = h(∂h(u), v) + h(u, ∂̄h(v)). In fact, the left hand side equals

h(∂h(u), v) + h(u, ∂̄h(v)) = (1 + |λ|2)−1(h(d′′E(u), v) + λh(δ′′h(u), v) + λh(u, d′E(v)) + h(u, δ′h(v)))
= (1 + |λ|2)−1(∂̄h(u, v) + λh(u, d′E(v)) + λh(δ′′h(u), v)),

while h(u, d′E(v)) = h(d′E(v), u) = λ∂h(v, u)− h(v, δ′′h(u)) = λ̄∂̄h(u, v)− h(δ′′h(u), v), combining all
these gives the desired result.
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Note in particular, when λ = 0, then D0 = ∂̄E + θ, ∂h = δ′h = ∂E,h is the (1,0)-type operator
determined by ∂̄E and h. ∂̄h = ∂̄E, θh = θ, and θ†h = −δ′′h = θ†h is the adjoint operator of θ with
respect to h.

Now we assume λ 6= 0, introduce the following two operators

D′′h,λ = λ̄(∂̄h + θh), D′h,λ = ∂h + θ†h,

then D
c
h,λ := D′′h,λ −D′h,λ = δ′′h − δ′h
Dλ = (λ̄)−1D′′h,λ + λD′h,λ.

(1.8)

The End(E)-valued 2-form Gh,λ := (D′′h,λ)2 = (λ̄)2(∂̄h + θh)2 is called the pseudo-curvature.

Definition 1.2.3. h is called a harmonic metric on the λ-flat bundle (E,Dλ) if the pesudo-
curvature Gh,λ satisfies that ΛωGh,λ = 0. If in particular, Gh,λ = 0, i.e, if (∂̄h + θh)2 = 0, then h is
called a pluri-harmonic metric, and in this case, (E,Dλ, h) is called a harmonic bundle.

From the definition we can see that a λ-flat bundle (E,Dλ) together with a pluri-harmonic
metric h gives rise to a Higgs bundle structure, that is, (E, ∂̄h, θh) is a Higgs bundle.

For λ-flat bundles over compact Kähler manifold, we also have Kähler identities:

Lemma 1.2.4 (Kähler Identities, [Moc06]). Let (X,ω) be a compact Kähler manifold and
(E,Dλ) be a λ-flat bundle with a hermitian metric h, then

(Dc
h,λ)∗ = −

√
−1[Λω,Dλ], (Dλ)∗ =

√
−1[Λω, D

c
h,λ].

The following assertion shows that for any λ-flat bundle (E,Dλ) over a compact Kähler manifold
together with a hermitian metric h, the equation Gh,λ = 0 for h to be pluri-harmonic is over
determined, as we have seen in Lemma 1.1.14 for flat bundles.

Lemma 1.2.5. For λ 6= 0, let h be a harmonic metric on the λ-flat bundle (E,Dλ) over a compact
Kähler manifold (X,ω), then h is pluri-harmonic.

Proof. It suffices to show that ΛωGh,λ = 0 implies Gh,λ = 0. By definition, the flatness of Dλ is
equivalent to (d′E)2 = (d′′E)2 = d′Ed

′′
E + d′′Ed

′
E = 0, which implies (δ′h)2 = (δ′′h)2 = δ′hδ

′′
h + δ′′hδ

′
h = 0.

Therefore, (Dc
h,λ)2 = 0.

From (1.8) we have

Gh,λ = (D′′h,λ)2 = λ̄|λ|2

(1 + |λ|2)2

(
DλDc

h,λ +Dc
h,λDλ

)
. (1.9)

Note that Gh,λ is an End(E)-valued 2-form, so it satisfies the Bianchi identities

DλGh,λ = 0, Dc
h,λGh,λ = 0.
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On the other hand,

Dc
h,λ = D′′h,λ −D′h,λ = λ̄∂̄h − ∂h + λ̄θh − θ†h

= λ̄(d′′E − λθ
†
h)− λ−1(d′E − θh) + λ̄θh − θ†h

= (λ̄d′′E − λ−1d′E) + (1 + |λ|2)(λ−1θh − θ†h),

combing with (1.9) gives

Gh,λ = λ̄|λ|2

1 + |λ|2D
λ(λ−1θh − θ†h).

Now use the Kähler identities for λ-flat bundles, ΛωGh,λ = 0 and Dc
h,λGh,λ = 0, we have

(Dλ)∗Gh,λ =
√
−1[Λω, D

c
h,λ]Gh,λ = 0.

Therefore, we have the desired result

‖Gh,λ‖L2 =
∫
X
〈Gh,λ, Gh,λ〉 dVolX = λ̄|λ|2

1 + |λ|2
∫
X

〈
λ−1θh − θ†h, (Dλ)∗Gh,λ

〉
,

= 0.

Remark 1.2.6. Our proof here is similar to the proof of Lemma 1.1.14 given by Simpson [Sim92].
But we should note that, this property does not hold when λ = 0, as we have seen in the last section,
the metric h for a Higgs bundle (E, ∂̄E, θ) satisfies the Hemitian–Einstein equation ΛωF(∂̄E ,θ,h) =
c · IdE (or even ΛωF(∂̄E ,θ,h) = 0) is not enough to make h to be pluri-harmonic. This reflects the
big difference between Higgs bundles and flat bundles, but much similarity between flat bundles
and λ-flat bundles (λ 6= 0), we can also see this fact from the viewpoint of moduli spaces later.

Proposition 1.2.7 ([Moc06, HH19]). For λ 6= 0, let (E,Dλ) be a λ-flat bundle over a compact
Kähler manifold (X,ω) together with a hermitian metric h. Then the following statements are
equivalent:

(1) h is harmonic, i.e, ΛωGh,λ = 0;

(2) h is pluri-harmonic, i.e, Gh,λ = (λ̄)2(∂̄h + θh)2 = 0;

(3) θ2
h = 0 = ∂̄h(θ);

(4) (θ†h)2 = 0 = ∂h(θ†h).

Proof. Denote by ()†h the adjoint with respect to the metric h, then by direct calculation we have
the following adjoint formulas (see also [Moc06]):

(θ†h)2 = −(θ2
h)
†
h, ∂2

h = −(∂̄2
h)
†
h, (∂h(θ†h))

†
h = ∂̄h(θh)

and the relation λ̄∂̄2
h + λ(θ†h)2 = 0. Therefore, when λ 6= 0, (∂̄h + θh)2 = 0 if and only if θ2

h = 0 =
∂̄h(θh).
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The problem on the existence of pluri-harmonic metrics on given λ-flat bundles was studied
and solved by Mochizuki in [Moc06]. In this paper, by using Donaldson functional and analytic
method, he built the quasi-projective version of Kobayashi–Hitchin correspondence for λ-flat bun-
dles. Moreover, he obtained the equivalence between the category of µL-polystable λ1-flat bundles
with vanishing Chern classes and that of µL-polystable λ2-flat bundles with vanishing Chern classes
for arbitrary λ1, λ2 ∈ C, which in particular, generalizes the Corlette–Simpson correspondence to
non-compact case. But in this section, we just need his results for compact case, and we will call
it Mochizuki correspondence.

Definition 1.2.8. A λ-flat bundle (E,Dλ) over X is called µL-stable (resp. µL-semistable) if for
any λ-flat subbundle (V,Dλ|V ) of 0 < rk(V ) < rk(E), we have the following inequality

µL(V ) < (resp. ≤)µL(E).

It is µL-polystable if it decomposes as a direct sum of µL-stable λ-flat bundles with the same slope.

Remark 1.2.9. In our case, the base manifold X is compact, if λ 6= 0, then for any λ-flat
bundle (E,Dλ) over X, D1 := λ−1d′E + d′′E is a usual connection, which is flat. This means that
deg(E) = 0, and all Chern classes are trivial. Therefore, any λ-flat bundle over compact manifold
is automatically µL-semistable, and µL-stable just means that it has no non-zero λ-flat subbundle.

A morphism between two λ-flat bundles (E,DλE) and (F,DλF ) is a morphism f : E ! F of
vector bundles such that the following diagram commutes:

E
f //

DλE
��

F

DλF
��

E ⊗ Ω1
X

f⊗id // F ⊗ Ω1
X

Denoted by Hom((E,DλE), (F,DλF )) the set of all such morphisms, and in particular, End(E,Dλ)
is the set of all endomorphisms of (E,Dλ).

Lemma 1.2.10. If (E,Dλ) is a µL-stable λ-flat bundle, then End(E,Dλ) = C · Id.

Proof. Let f ∈ End(E,Dλ) be a non-zero endomorphism, we first prove it is an isomorphism.
Notice that we have the following short exact sequence:

0 −! Ker(f) −! E −! Im(f) −! 0. (1.10)

Step 1. f is injective:
By (1.10), (Ker(f),Dλ|Ker(f)) is a λ-flat subbundle of (E,Dλ) with 0 ≤ rk(Ker(f)) < rk(E),

and (Im(f),Dλ|Im(f)) is a λ-flat subbundle of (E,Dλ) with 0 < rk(Im(f)) ≤ rk(E). The stability
of (E,Dλ) implies Ker(f) = 0.

Step 2. f is surjective:
Since Ker(f) = 0, from (1.10) we have Im(f) = E.
Step 3. There exists some constant η ∈ C such that f = η · Id:
Choose a point x ∈ X, then the induced map on fibers fx : Ex ! Ex is an isomorphism, let

η by an eigenvalue. Consider the endomorphism f − ηId, clearly it is not an isomorphism, hence
f − ηId ≡ 0.

The Kobayashi–Hitchin correspondence for λ-flat bundles is due to Mochizuki [Moc06]:
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Theorem 1.2.11 (Mochizuki Correspondence, compact version). Let (X,L, ω) be as in §1.1
and assume λ 6= 0. Then a λ-flat bundle (E,Dλ) over X admits a pluri-harmonic metric if and
only if it is µL-polystable. Moreover, such a metric is unique up to scalar multiplicities.

In some contexts, people usually call Corlette–Simpson correspondence as non-Abelian Hodge
correspondence, in this thesis, non-Abelian Hodge correspondence (“NAHC” for simplicity) is a
more general version that relates λ-flat bundles.

Corollary 1.2.12 (Non-Abelian Hodge Correspondence, [Moc06]). Let (X,L, ω) be as in
§1.1, then for arbitrary λ1, λ2 ∈ C, there is an one to one correspondence between the following
categories:

(1) The category of µL-polystable λ1-flat bundles of rank r over X with vanishing first and second
Chern characteristics;

(2) The category of µL-polystable λ2-flat bundles of rank r over X with vanishing first and second
Chern characteristics.

Moreover, this equivalence preserves tensor products, direct sums and duals.

Proof. Denote by Cpoly
λ the category of µL-polystable λ-flat bundles of rank r with vanishing first

and second Chern characteristics (when λ 6= 0, the vanishing of Chern characteristics hold au-
tomatically!). For any (E,Dλ1) ∈ Cpoly

λ1 with the pluri-harmonic metric h, then h induces the
decomposition Dλ1 = λ1∂h + θh + ∂̄h + λ1θ

†
h. Note that in the case λ1 = 0, this decomposition also

exists, that is, D0 = ∂̄E+θ. Where ∂̄E is the (0,1)-part of D0, which defines a holomorphic structure
on E. θ is an OX-linear holomorphic 1-form, which defines a Higgs field. ∂h = ∂E,h, ∂̄h = ∂̄E, θh = θ

and θ†h is the adjoint of θ with respect to the metric h. This decomposition gives rise to a flat
λ2-connection on E: Dλ2 := λ2∂h + θh + ∂̄h + λ2θ

†
h, with the new holomorphic structure ∂̄h + λ2θ

†
h.

Clearly, h is also the pluri-harmonic metric for the λ2-flat bundle (E,Dλ2). Therefore, the equiva-
lence functor is the following:

Ξλ1,λ2 : Cpoly
λ1 −! Cpoly

λ2 ,

(E,Dλ1) 7! (E,Dλ2).

Remark 1.2.13. (1) When λ1 = 0, λ2 = 1 or λ1 = 1, λ2 = 0, this is in fact the Corlette–Simpson
correspondence:

(E,D0 = ∂̄E + θ, h) 7−! (E,D1 := ∂E,h + θ + ∂̄E + θ†h, h)

and the inverse
(V,D1 = ∇, h) 7−! (V,D0 := ∂̄V,h + θV,h, h).

(2) When {λ1, λ2} = {0, λ}(λ 6= 0), this correspondence is:

(E,Dλ, h) 7−! (E,D0 := ∂̄h + θh, h)

and the inverse

(E,D0 = ∂̄E + θ, h) 7−! (E,Dλ := λ∂E,h + θ + ∂̄E + λθ†h, h).

In particular, when λ = 1, this is exactly the Corlette–Simpson correspondence (Corollary 1.1.16).
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(3) When {λ1, λ2} = {1, λ}(λ 6= 0, 1), this correspondence is:

(E,Dλ, h) 7−! (E,D1 := ∂h + θh + ∂̄h + θ†h, h)

and the inverse

(V,D1 = ∇, h) 7−! (V,Dλ := λ∂V,h + θV,h + ∂̄V,h + λθ†V,h, h).

Remark 1.2.14. (1) A natural direction of the study of non-Abelian Hodge correspondence is
the generalization to non-compact case. In regular case (tame case), Simpson established the
correspondence between tame harmonic bundles and parabolic Higgs bundles for open curves
[Sim90]. The higher dimensional generalization was obtained by Biquard [Biq97] for smooth divisor
case and by Mochizuki [Moc06, Moc09] for general case. In irregular case (wild case), Biquard
and Boalch built the correspondence for curves [BB04]. Later Mochizuki generalized it to higher
dimensional case [Moc11]. Recently, the authors in [GKPT19] built the correspondence to the
context of projective varieties with Kawamata log terminal (brief as klt) singularities.

(2) Another natural generalization is considering the corresponding case for real Lie groups.
In [BGPiR03, GPGiR09], the authors considered principal G-Higgs bundles for real Lie group G.
They studied the Kobayashi–Hitchin correspondence for principal G-Higgs bundles, and therefore,
they built the non-Abelian Hodge correspondence for such objects.

(3) The non-Abelian Hodge theory for varieties over a field of characteristic p was built by Ogus
and Vologodsky in [OV07]. The p-adic version was suggested by Faltings in [Fal05] and finished
by Abbes, Gros and Tsuji in [AGT16].

As a direct application of non-Abelian Hodge correspondence, we have the following correspon-
dence unifying the usual Corlette–Simpson correspondence and Riemann–Hilbert correspondence.

Corollary 1.2.15 (Corlette–Simpson correspondence version of Corollary 1.2.12). Let (X,L, ω)
be as above. Then for any λ ∈ C, there is an one-to-one correspondence between the following
categories:

(1) The category of µL-polystable λ-flat bundles of rank r over X with vanishing first and second
Chern characteristics;

(2) The category of semisimple representations of the fundamental group π1(X) into GL(r,C).

Moreover, this equivalence preserves tensor products, direct sums and duals.

Proof. For the case of λ = 0, we have the usual Simpson correspondence. So we assume λ 6= 0.
Let (E,Dλ) be a µL-polystable λ-flat bundle (with trivial characteristic numbers), then there is a
pluri-harmonic metric h on E. Therefore, we get

0 = (Dλ)2 = (λ∂h + ∂̄h + θh + λθ†h)2

= λ(R(h) + [θh, θ†h] + ∂hθh + ∂̄hθ
†
h),

where R(h) = (∇h)2 is the curvature of the unitary connection ∇h. Hence

R(h) + [θh, θ†h] = ∂hθh = ∂̄hθ
†
h = 0,

which implies (E, ∂̄h, θh, h) is a harmonic Higgs bundle associated with a semisimple representation
ρ : π1(X)! GL(r,C) by Hitchin–Simpson correspondence.
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Conversely, if we have a semisimple representation ρ : π1(X)! GL(r,C), then we have a Higgs
bundle (E, ∂̄E, θ, h) with the pluri-harmonic metric h. Therefore, it gives rise to a flat λ-connection
Dλ = d′E + d′′E with

d′E = λ∂E,h + θ, d′′E = ∂̄E + λθ†h,

where ∂E,h is an (1,0)-type operator such that ∂E,h + ∂̄E is a h-unitary connection, and θ†h is the
adjoint of θ with respect to h. Clearly, h is also a pluri-harmonic metric for the λ-flat bundle
(E,Dλ), hence it is polystable with vanishing Chern characteristics.

Since pluri-harmonic metrics preserve tensor products, direct sums and duals, the equivalence
described as above also preserves them.

1.3 Some Estimates and Examples

In this section, we will generalize some results for usual flat bundles to the case of λ-flat bundles
(λ 6= 0). Meanwhile, we will give some examples, this part is based on the paper [HH19].
Theorem 1.3.1. Assume λ 6= 0. Let X be a Riemann surface with Kähler form ω, and let (E,Dλ)
be a λ-flat bundle over X with a hermitian metric h. Then we have the following estimates:

(1) for any local non-zero Dλ-flat section s of E, we have

∆ω log(|s|2h) ≥ −
2

1 + |λ|2
∣∣∣ΛωGh,λ

∣∣∣
h
,

where ∆ω denotes the usual Laplacian on (X,ω);

(2) for any local non-zero Dλ-flat section s of E, we have

∆ω(|s|2h) ≥ −
2

1 + |λ|2
∣∣∣ΛωGh,λ

∣∣∣
h
· |s|2h.

Proof. (1) Let s be a local non-zero Dλ-flat section, namely we have

d′Es = (λ∂h + θh)s = 0,
d′′Es = (∂̄h + λθ†h)s = 0,

then

∂̄h(s, s) = h(d′′Es, s) + h(s, δ′hs) = h(s, δ′hs),
λ∂h(s, s) = h(d′Es, s) + h(s, δ′′hs) = h(s, δ′′hs),

which gives rise to

λ∂∂̄h(s, s) = λ∂h(s, δ′hs) = h(d′Es, δ′hs) + h(s, δ′′hδ′hs) = h(s, δ′′hδ′hs).

Therefore, we obtain

λ∂∂̄ log(|s|2h) = λ∂∂̄|s|2h
|s|2h

− λ∂|s|2h ∧ ∂̄|s|2h
|s|4h

= h(s, δ′′hδ′hs)
|s|2h

− h(s, δ′′hs) ∧ h(s, δ′hs)
|s|4h

.
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We calculate

h(s, δ′′hδ′h(s)) = h(s, (λ̄∂̄h − θ†h)(∂h − λ̄θh)(s))
= h(s, λ̄∂̄h∂h(s))− h(s, θ†h∂h(s)) + h(s, λ̄θ†hθh(s))− h(s, λ̄2∂̄hθh(s))

= (1 + |λ|2)(−λ|θ†h(s)|2h + 1
λ̄
|θh(s)|2h) + λ

1 + |λ|2h(s,Gh,λs),

where we have used

h(s, λ̄∂̄h∂h(s)) = −h(s, λ̄∂̄h
θh
λ

(s)) = −h(s, λ̄
λ

(∂̄hθh)(s))− h(s, λ̄θhθ†h(s))

= −λ|θ†h(s)|2h + |λ|2

λ̄(1 + |λ|2)2
h(s,Gh,λs),

h(s, θ†h∂h(s)) = −h(s, θ†h
θh
λ

(s)) = −1
λ̄
|θh(s)|2h,

h(s, λ̄2∂̄hθh(s)) = h(s, λ̄2(∂̄hθh)(s)) + h(s, (λ̄)2θhλθ
†
h(s))

= |λ|2λ|θ†h(s)|2h −
λ|λ|2

(1 + |λ|2)2h(s,Gh,λs).

Meanwhile, we also calculate

h(s, δ′h(s)) = h(s, (∂h − λ̄θh)(s)) = h(s, (−λ−1 − λ̄)θh(s)) = −(1 + |λ|2)
λ̄

h(s, θh(s)),

h(s, δ′′h(s)) = h(s, (λ̄∂̄h − θ†h)(s)) = −(1 + |λ|2)h(s, θ†h(s)).

Combining all the above equalities yields

−∆ω log(|s|2h) = 2
√
−1Λω∂∂̄ log(|s|2h)

= 2
√
−1Λω

[
− (1 + |λ|2) |θ

†
h(s)|2h
|s|2h

+ 1 + |λ|2
|λ|2

|θh(s)|2h
|s|2h

− (1 + |λ|2)2

|λ|2
h(s, θh(s)) ∧ h(s, θ†h(s))

|s|4h
+ 1

1 + |λ|2
h(s,Gh,λs)
|s|2h

]
≤ 2

1 + |λ|2
∣∣∣ΛωGh,λs

∣∣∣
h
,

where the last line is derived by Cauchy–Schwarz inequality.
(2) By (1), we immediately have

−∆ω(|s|2h) = 2
√
−1Λω∂∂̄(|s|2h)

= 2
√
−1Λω

[
−
(
1 + |λ|2

)
|θ†h(s)|2h + 1 + |λ|2

|λ|2
|θh(s)|2h + 1

1 + |λ|2h(s,Gh,λs)
]

≤ 2
1 + |λ|2

∣∣∣ΛωGh,λ

∣∣∣
h
· |s|2h.
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Corollary 1.3.2. Let X be a compact Riemann surface and (E,Dλ) be a stable λ-flat bundle with
vanishing first Chern class, then there is no non-trivial global Dλ-flat section of E.

Proof. When λ = 0, this claim follows from Theorem 3.1 in [Car14]. Now we assume λ 6= 0.
Let h be the pluri-harmonic on this stable λ-flat bundle (E,Dλ), and s be a non-trivial global
Dλ-flat section, then the function |s|2h is sub-harmonic by Theorem 1.3.1, (2). If X is compact,
|s|2h is a nonzero constant, hence the section s generates a trivial line subbundle of (E,Dλ), which
contradicts with the stability of (E,Dλ).

Definition 1.3.3. Let © = {z : 0 ≤ |z| < 1} be the unit disk, and ©∗ = {z : 0 < |z| < 1} be
the punctured unit disk, and (E,Dλ) be a λ-flat bundle over ©∗. The λ-connection Dλ is called
regular if for some trivialization of E it can be written as

Dλ = λ∂ + N(z)
z

dz,

where N(z) is a matrix of holomorphic functions on ©.

Proposition 1.3.4. Assume λ 6= 0. Let (E,Dλ) be a bundle over ©∗ with a regular λ-connection
Dλ, and s(z) be a λ-flat section defined in some punctured neighbourhood of the origin. Then s(z)
can be extended meromorphically to origin.

Proof. Write Dλ = λ∂+ N(z)
z
dz under some trivialization of E. Then for any ε ∈ (0, 1), one defines

A = sup
|z|≤ε
||N(z)||, B = sup

|z|=ε
||s(z)||,

where || • || denotes the standard norm for matrix and vector. Pick up a point z0 with |z0| = ε in
the sector where s(z) is defined, and define f(r) = ||s(rz0)||2 for 0 < r ≤ 1. Since s(z) is a λ-flat
section, i.e. ds

dz
= −Ns(z)

λz
, we have
∣∣∣∣dfdr

∣∣∣∣ =
∣∣∣∣2z0s(rz0)ds

dz

∣∣∣
z=rz0

∣∣∣∣ ≤ 2ε||s(rz0)|| ·
∣∣∣∣∣∣Ns(rz0)

λrz0

∣∣∣∣∣∣
≤ 2εA
|λrz0|

||s(rz0)||2 = 2Af(r)
|λ|r

.

Assume f(r) is not zero identically and f(r0) = 0 for some r0 ∈ (0, 1], then we write f(r) =
(r− r0)ng(r) for some positive integer n and some analytic function g(r) with g(r0) 6= 0. However,
the above inequality implies∣∣∣∣ng(r)− (r − r0)dg(r)

dr

∣∣∣∣ ≤ 2A
|λ|r

∣∣∣r − r0

∣∣∣ · ∣∣∣g(r)
∣∣∣,

thus g(r0) = 0. Therefore, we can assume f(r) is zero identically or positive over (0, 1]. When
f(r) is positive, we have

d log f(r)
dr

≥ − 2A
|λ|r

,

hence
f(r) ≤ f(1)r−

2A
|λ| ,
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which yields the estimate

||s(z)|| ≤ B
( |z|
ε

)−A
|λ|

for |z| ≤ ε. The conclusion follows.

Example 1.3.5. Let E be a rank 2 Hermitian vector bundle over ©∗ with the local unitary
frame {v1, v2}. In [MSWW16], the authors introduced the so-called “fiducial solution” of Hitchin
equations expressed in terms of the frame {v1, v2} as follows

A = 1
8

1 0
0 −1

(dz
z
− dz̄

z̄

)

φ =

 0
√
|z|

z√
|z|

0

 dz,
that solves the decoupled Hitchin equations

FA = 0, [φ, φ†] = 0, ∂̄Aφ = 0,

where FA denotes the curvature of A. Let µ ∈ C∗ be a constant, then we have a λ-flat connection
Dλµ = d′E + d′′E with

d′E = λ∂A + φ, d′′E = ∂̄A + µφ†,

then a Dλµ-flat section s =
f(z, z̄)
g(z, z̄)

 should satisfy the following equations



λ
∂f

∂z
+ λ

8
f

z
+
√
|z|g = 0,

λ
∂g

∂z
− λ

8
g

z
+ z√
|z|
f = 0,

∂f

∂z̄
− 1

8
f

z̄
+ µ

z̄√
|z|
g = 0,

∂g

∂z̄
+ 1

8
g

z̄
+ µ

√
|z|f = 0.

(1.11)

Let z ! 0 in equations (1.11), we have

f(z, z̄) −! z−
1
8 z̄

1
8 , g(z, z̄) −! z

1
8 z̄−

1
8 ,

hence we can assume that

f(z, z̄) = z−
1
8 z̄

1
8u(z, z̄), g(z, z̄) = z

1
8 z̄−

1
8v(z, z̄)
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with limz!0 u = limz!0 v = 1. Then u(z, z̄) and v(z, z̄) should satisfy the following equations

λ
∂u

∂z
+
√
zv = 0,

λ
∂v

∂z
+
√
zu = 0,

∂u

∂z̄
+ µ
√
z̄v = 0,

∂v

∂z̄
+ µ
√
z̄u = 0,

which imply
∂u

∂( z
3
2
λµ

)
= ∂u

∂(z̄ 3
2 )
,

∂v

∂( z
3
2
λµ

)
= ∂v

∂(z̄ 3
2 )
.

Therefore, we can write

u(z, z̄) = U
( z 3

2

λµ
+ z̄

3
2
)
, v(z, z̄) = V

( z 3
2

λµ
+ z̄

3
2
)
.

Introducing new variable X = z
3
2
λµ

+ z̄
3
2 , we have


3
2µ

∂U

∂X
+ V = 0,

3
2µ

∂V

∂X
+ U = 0,

3
2
∂U

∂X
+ µV = 0,

3
2
∂V

∂X
+ µU = 0,

which can be solved easily

U(X) = C1 exp(2µ
3 X) + C2 exp(−2µ

3 X),

V (X) = −C1 exp(2µ
3 X) + C2 exp(−2µ

3 X),

where C1 and C2 are two constants. Consequently, any local Dλµ-flat section s is the C-linear
combination of the following two sections

s1 =
 z−

1
8 z̄

1
8 exp( 2

3λz
3
2 + 2µ

3 z̄
3
2 )

−z 1
8 z̄−

1
8 exp( 2

3λz
3
2 + 2µ

3 z̄
3
2 )

 ,
s2 =

z− 1
8 z̄

1
8 exp(− 2

3λz
3
2 − 2µ

3 z̄
3
2 )

z
1
8 z̄−

1
8 exp(− 2

3λz
3
2 − 2µ

3 z̄
3
2 )

 .
One easily checks that ∆ log(|s|2h) = 0.
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Example 1.3.6. (Continue after Example 1.3.5) Let λ′ = tλ. We want to find pluri-harmonic
metric ht for the λ′-flat bundle (E,Dλ′ = td′E + d′′E) with µ = λ. Denote the matrix form of ht in
terms of the frame {v1, v2} by Ht.

Write t · d′E = λ′∂A + tφ, d′′E = ∂̄A + λ(1 − |t|2)φ† + λ′(tφ)†, where φ† denotes the adjoint of φ
with respect to the normal hermitian metric, that is,

φ† =

 0 z̄√
|z|√

|z| 0

 dz̄.
Let φ′ := tφ, note that ∂̄A + λ(1− |t|2)φ† is integrable and satisfies

(∂̄A + λ(1− |t|2)φ†)(φ′) = 0

since the decoupled Hitchin’s equations in Example 1.3.5 hold. So (E, ∂̄A + λ(1 − |t|2)φ†, φ) is a
Higgs bundle, we want it becomes the associated Higgs bundle (E, ∂̄ht , θht) of the harmonic λ′-flat
bundle (E, d′′E, d′E, ht). This means:

∂A = ∂ht ,

∂̄A + λ(1− |t|2)φ† = ∂̄ht ,

φ′ = θht ,

(φ′)† = (φ′)†ht .

Moreover, to make each ht pluri-harmonic, ∂ht + ∂̄ht need to be unitary with respect to ht, θ†ht
should be the adjoint of θht with respect to ht.

In conclusion, Ht should satisfy the following equations

H̄−1
t · (φ′)T H̄t = (φ′)†,

∂Ht = (A1,0)T ·Ht +Ht · (A0,1 + λ(1− |t|2)φ†),
∂̄Ht = (A0,1 + λ(1− |t|2φ†)T ·Ht +Ht · A1,0,

where (•)T denotes the transpose of matrices. We can express Ht as

Ht =
a(z, z̄) b(z, z̄)
b(z, z̄) c(z, z̄)

 ,
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then we have 

a = c,

b · z̄
1
2 = b̄ · z

1
2 ,

∂a

∂z
= λ̄(1− |t|2)b

√
|z|,

∂a

∂z̄
= λ(1− |t|2)b z̄√

|z|
,

∂b

∂z
= b

4z + λ̄(1− |t|2)a z√
|z|
,

∂b

∂z̄
= − b

4z̄ + λ(1− |t|2)a
√
|z|.

It can be resolved as follows

a(z, z̄) = f(z̄) exp
(2

3 λ̄(1− |t|2)z 3
2
)

+ g(z̄) exp
(
− 2

3 λ̄(1− |t|2)z 3
2
)
,

b(z, z̄) = z
1
2√
|z|

(
f(z̄) exp

(2
3 λ̄(1− |t|2)z 3

2
)
− g(z̄) exp

(
− 2

3 λ̄(1− |t|2)z 3
2
))

,

where
f(z̄) = C1 exp

(2
3λ(1− |t|2)z̄ 3

2
)

+ C2 exp
(
− 2

3λ(1− |t|2)z̄ 3
2
)
,

g(z̄) = C2 exp
(2

3λ(1− |t|2)z̄ 3
2
)

+ C3 exp
(
− 2

3λ(1− |t|2)z̄ 3
2
)
,

for constants C1, C2 and C3.

Remark 1.3.7. This example exhibits that for a λ-flat bundle over a non-complete manifold, if
it admits a pluri-harmonic metric, then the pluri-harmonic metric is usually not unique.



Chapter 2

A Study of the Geometry of Moduli
Spaces

Let X be a smooth complex projective variety and let G be a complex reductive Lie group. Picking
a basepoint x ∈ X, following [Sim94a, Sim94b, Sim95], there are four representation spaces (they
represent certain moduli functors):

(1) Betti representation space RB(X, x,G) := Hom(π1(X, x), G), the space of representations of
π1(X, x) into G;

(2) De Rham representation space RdR(X, x,G), the moduli scheme of (E,∇, ξ), where E is a
principle G-bundle with a flat connection ∇ and ξ : Ex ∼= G is a frame for E at x;

(3) Dolbeault representation space RDol(X, x,G) , the moduli scheme of (E, θ, ξ), where (E, θ) is
a semistable principle Higgs G-bundle with vanishing (rational) Chern classes and ξ : Ex ∼= G
is a frame for E at x;

(4) Hodge representation space RHod(X, x,G), the moduli scheme of (E,∇λ, ξ, λ), where λ ∈ C,
(E,∇λ) is a semistable principle λ-flat G-bundle with vanishing (rational) Chern classes and
ξ : Ex ∼= G is a frame for E at x.

The group G acts on these representation spaces such that the universal categorical quotients
exist, and the quotients are independent of the choice of basepoint. They are the corresponding
moduli spaces, and the points in each moduli space parametrize the closed orbits in the corre-
sponding representation space under the action of G. All these moduli spaces are quasi-projective
varieties and can be denoted as follows:

(1) MB(X,G) := RB(X, x,G)//G;

(2) MdR(X,G) := RdR(X, x,G)//G;

(3) MDol(X,G) := RDol(X, x,G)//G;

(4) MHod(X,G) := RHod(X, x,G)//G.

There is a fibration MHod(X,G) ! C such that the fibers over 0 and 1 are MDol(X,G) and
MdR(X,G), respectively. Let MB(X,G),MdR(X,G),MDol(X,G) and MHod(X,G) be the corre-
sponding smooth locus, as Zariski dense open subsets and parametrize the isomorphism classes of
stable objects. In particular, whenG = GL(r,C), we will just apply the notationsRB/dR/Dol/Hod(X, x, r),
MB/dR/Dol/Hod(X, r) and MB/dR/Dol/Hod(X, r) for simplicity.

53
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For any λ ∈ C, letMλ
Hod(X, r) :=MHod(X, r)|λ =: Rλ

Hod(X, x, r)//GL(r,C) (resp. Mλ
Hod(X, r) :=

MHod(X, r)|λ). Let U(r) ⊆ GL(r,C) be the maximal compact Lie group (compact real form), let
Rλ,U(r)

Hod (X, x, r) ⊆ Rλ
Hod(X, x, r) consisting of points (E,∇λ, ξ) that admit a pluri-harmonic metric1

compatible with the frame ξ at x, such condition fixes the pluri-harmonic metric uniquely [Sim08].
The group U(r) acts on Rλ,U(r)

Hod (X, r) such thatMλ
Hod(X, r) = Rλ,U(r)

Hod (X, x, r)/U(r).

Proposition 2.0.1. Let X be a compact Riemann surface of genus g ≥ 2, and assume r ≥ 2. We
define M̊λ

Hod(X, r) =Mλ
Hod(X, r)\Mλ

Hod(X, r). If both Mλ
Hod(X, r) and M̊λ

Hod(X, r) are nonempty,
then we have

codimC
(
M̊λ

Hod(X, r)
)
≥ 2.

Proof. For any partition−!r = (r1, · · · , rk) ∈ Z⊕i+ with∑k
i=1 ri = r and 1 < k ≤ r, letMλ

Hod(X,−!r ) :=
Mλ

Hod(X, r1)× · · · ×Mλ
Hod(X, rk). We introduce the following map

δ−!r : Mλ
Hod(X,−!r ) −!Mλ

Hod(X, r)

by ((E1, , ∂̄E1 , D
λ
1 ), · · · , (Ek, ∂̄Ek , Dλ

k)) 7! (⊕k
i=1Ei,

⊕k
i=1 ∂̄Ei ,

⊕k
i=1D

λ
i ).

Since δ−!r is injective, we have

dimC

(
M̊λ

Hod(X, r)
)

= dimC
⋃
{−!r }

Im(δ−!r ) = max
{−!r }
{dimCM

λ
Hod(X,−!r )}.

Hitchin and Simpson calculated the dimension of moduli space [Hit87a, Sim92, Sim94a]:

dimC

(
Mλ

Hod(X, ri)
)

= dimC

(
MDol(X, ri)

)
= 2r2

i (g − 1) + 2,

then one can easily show that

max
{−!r }
{dimCM

λ
Hod(X,−!r )} = 2(g − 1)((r − 1)2 + 1) + 4,

which means that codimC

(
M̊λ

Hod(X, r)
)

= 4(g − 1)(r − 1)− 2 ≥ 2.

The proof of the following theorem is after Simpson (Lemma 7.13 in [Sim94b], Lemma 8.1 in
[Sim10]) essentially.

Theorem 2.0.2. The natural quotient map q : Rλ,U(r)
Hod (X, x, r)!Mλ

Hod(X, r) is proper.

Proof. The cases of λ = 0, 1 have been proved by Simpson (Corollary 7.12 and Corollary 7.15
in [Sim94b]). For the case of λ 6= 0, 1, we consider a sequence {(Ei, d′′Ei , D

λ
i , βi)} lying inside

the inverse image of a compact subset of Mλ
Hod(X, r), where βi is a frame on Eix, and let hi be

the unique pluri-harmonic metric on (Ei, d′′Ei , D
λ
i , βi). It suffices to show that the characteristic

polynomials of the corresponding Higgs fields {θhi} are uniformly bounded in C0-norm. By the
map (E, d′′E, Dλ, β) 7! (E, d′′E, λ−1Dλ, β) and the Riemann–Hilbert correspondence, Mλ

Hod(X, r)
is complex analytically isomorphic toMB(X, r). Let ρi be the monodromy representation corre-
sponding to (Ei, d′′Ei , D

λ
i , βi), then {ρi} lie over a compact subset of MB(X, r), hence the norms

1For general complex reductive Lie group G and a maximal compact subgroup K ⊆ G, a metric on a principle λ-flat
G-bundle (E,∇λ) is a K-reduction, i.e, a principal K-bundle EK with EK ×K G ∼= E, such that ∇λ has the decomposition
∇λ = ∂̄K + λθ†K + λ∂K + θ with ∂̄K + ∂K a connection on EK and θK + θ†K a self-adjoint section of ad(E) ⊗ ω1

X , where
ad(E) := E ×G g is the adjoint bundle. This metric is pluri-harmonic if θ2

K = 0 = ∂̄K(θK).



2.1. A DYNAMICAL SYSTEM ON THE DOLBEAULT MODULI SPACE 55

{|ρi(γ)|} = {
√

Tr(ρi(γ)ρ†i (γ))} are uniformly bounded for any generator γ of π1(X, x). The limit
point of {ρi(γ)} is denoted by ρ(∞)(γ). By virtue of non-Abelian Hodge correspondence, each ρi
produces another irreducible monodromy representation ρ̃i of π1(X, x) given by the flat bundle
(E, ∂̄hi + θ̄hi , ∂hi + θhi , βi). Then the norms {|ρ̃i(γ)|}} are also uniformly bounded. Indeed, we con-
sider a family of flat bundles (E, ∂̄hi+t−1θ†hi , ∂hi+tθhi) parameterized by t ∈ C∗, and the associated
family of monodromy representations is denoted by ρ(i)

t . It is clear that the map t 7! |ρ(i)
t (γ)| is

continuous. We have the bound |ρ̃i(γ)| ≤ C. If |ρ̃i(γ)| tends to infinity, then for any constant
C1 > C, there is a sequence {ti} which lie in a curve segment joining λ−1 to 1 but not passing
through 0 such that |ρ(i)

ti (γ)| = C1. By Theorem 1 in [Sim91], the map ρ 7! |ρ(γ)| fromMB(X, r)
to R is proper, thus we may assume {ρ(i)

ti } has a limit point ρ♦, then |ρ♦(γ)| = C1. We can also
assume the sequence {ti} has the limit point t∞, then ρ♦(γ) = ρ

(∞)
t∞ (γ) due to the separatedness of

moduli space, whose norm has a bound C2. If one takes up C1 > C2, we will get a contradiction,
which lead to the uniform bound of {|ρ̃i(γ)|}.

Consequently, by Corollary 6 in [Sim91], the L2-norms {||θhi ||L2} are uniformly bounded. Since
the maximum norm of an eigenvalue of a holomorphic matrix is a subharmonic function, the
eigenforms of θhi are uniformly bounded in C0.

So far, we prove the claim on the characteristic polynomial of Higgs fields {θhi}. Therefore,
Lemma 2.8 in [Sim92] or Proposition 7.9 in [Sim94b] implies that there is a harmonic bundle
(E, ∂̄, θ, h, β), a subsequence {i′}, and C∞-automorphisms gi′ such that g∗i′(hi′) = h, both g∗i′(∂̄hi′ )−
∂̄ and g∗i′(θhi′ ) − θ converge to zero strongly in the operator norm for operators from Lp1 to Lp
for p > 1, and the frames g∗i′(βi′) converge to β. Since the λ-flat bundle can be treated as
certain Λ-module in the sense of Simpson [Sim08], Theorem 5.12 in [Sim94a] is valid for this case,
hence there is a subsequence {(Ei′ , d′′Ei′ , D

λ
i′ , βi′)} converges to a point (E, ∂̄ + λθ†h, λ∂h + θ, β) in

Rλ,U(r)
Hod (X, x, r).

Corollary 2.0.3 (NAHC of Moduli Spaces Version, Part II). We have the following home-
omorphism ofMλ

Hod(X, r) andMDol(X, r) as topological spaces:

Mλ
Hod(X, r)

homeo.∼= MDol(X, r).

Proof. A key step has been completed in the proof of above theorem, the remaining arguments are
totally parallel to Theorem 7.18 in [Sim94b], so we omit them here.

2.1 A Dynamical System on the Dolbeault Moduli Space

Let X be a smooth complex projective variety. The Dolbeault moduli space MDol(X, r) that
parametrizes the isomorphism classes of stable Higgs bundles of rank r over X with vanishing
(rational) Chern classes, equipped with an algebraic action by C∗. The fixed points are those
Higgs bundles having the structure of systems of Hodge bundles2. In differential geometric in-
terpretation, they correspond to the critical points of the Morse–Bott functional defined by the
L2-norm of the Higgs fields [Hit87a]. The C∗-action and the fixed points provide a stratification
for MDol(X, r) (also forMDol(X, r)), called the Bialynicki-Birula stratification. There is another
stratification of MDol(X, r) (also forMDol(X, r)) called the Shatz stratification, which is obtained
by the Harder–Narasimhan type of the underlying vector bundles. These two stratifications are

2In many contexts, these fixed points are called “complex variations of Hodge structure”, in this thesis, we will also apply
this expression, or for simplicity, “C-VHS” when there is no ambiguity.
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different in general, but they are coincide in rank two case (cf. [Hau98] for the case of Riemann
surface).

In this part, we will use the C∗-action on MDol(X, r) and Mochizuki correspondence (Theo-
rem 1.2.11) on the existence of pluri-harmonic metrics on (poly-)stable λ-flat bundles with vanish-
ing Chern classes to construct a two parameter dynamical system on MDol(X, r). This dynamical
system recovers the usual C∗-action and the identity map by choosing special parameters, and it
satisfies some “cocycle”-type formula (Proposition 2.1.1).

To study this dynamical system, we calculate the first variation of the dynamical system acts
on an integral curve passing through an original point with holomorphic infinitesimal deformation
of that point (Theorem 2.1.3). Moreover, we study the fixed points of that dynamical system
and show that all C-VHS lying in the moduli space are exactly the fixed points (Theorem 2.1.5).
Meanwhile, we calculate the stabilizer set of some special points in the moduli space for the case
of compact Riemann surface (Theorem 2.1.7).

This section is mainly based on [HH19, Hua20].

2.1.1 C∗-Action on Moduli Spaces

The Dolbeault moduli spaceMDol(X, r) admits a natural C∗-action [Hit87a, Sim92]:

t · [(E, ∂̄E, θ)] := [(E, ∂̄E, tθ)].

This action is well-defined because it does not change the stability and vanishing of Chern classes
(so it also acts on the moduli space MDol(X, r) of stable points). In [Sim95], Simpson showed
the existence of the coarse moduli space MHod(X, r) of semistable λ-flat bundles of rank r over
X with vanishing Chern classes. This moduli space admits a fibration π : MHod(X, r) !
C, [E, ∂̄E, Dλ, λ] 7! λ such that π−1(1) =MdR(X, r) and π−1(0) =MDol(X, r)3.

Moreover, the C∗-action onMDol(X, r) extends to an action of C∗ onMHod(X, r):

t · [E, ∂̄E, Dλ, λ] := [E, ∂̄E, tDλ, tλ].

This action is well-defined and sends a flat λ-connection to a flat tλ-connection, so the fixed points
must lie inside the fiber at λ = 0, i.e, inMDol(X, r). By [Sim92, Lemma 4.1], the fixed points in
MDol(X, r) are C-VHS, that is, of the formE =

k⊕
p=1

Ep, ∂̄E =


∂̄E1

. . .
∂̄Ek

 , θ : Ep ! Ep−1 ⊗ Ω1
X

 .

Following notations in [Sim10], let P be the subset of MDol(X, r) that consists of all the fixed
points, and let P = ⋃

α Pα be the decomposition into its connected components. This fixed point
set will play an important role on the stratifications of moduli spaces, which will be described in
§2.2.

2.1.2 Constructing the Dynamical System

Due to Mochizuki correspondence, we can construct a new action onMDol(X, r), which generalizes
the usual C∗-action. Fixing some (λ, t) ∈ C×C∗, for any stable Higgs bundle [E, ∂̄E, θ] ∈MDol(X, r)

3It’s obviously that these properties also hold for MdR/Dol/Hod(X, r).
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with a pluri-harmonic metric h, we have a stable λ-flat bundle [E, d′′E = ∂̄E + λθ†h, D
λ = λ∂E,h +

θ] ∈ Mλ
Hod(X, r), and hence a stable λ′-flat bundle [E, d′′E, Dλ′ = t(λ∂E,h + θ)] ∈ Mλ′

Hod(X, r) for
λ′ = tλ. The latter one admits a pluri-harmonic metric ht, which gives rise to a stable Higgs
bundle [E, ∂̄E,ht , θht ] ∈MDol(X, r) by Mochizuki’s theorem. We conclude the above process in the
following:

MDol(X, r) −−−−−−−!Mλ
Hod(X, r) −−−−−−−−−−−!Mλ′

Hod(X, r) −−−−−−−−!MDol(X, r)
[E, ∂̄E, θ] 7−! [E, ∂̄E + λθ†h, λ∂E,h + θ] 7−! [E, ∂̄E + λθ†h, t(λ∂E,h + θ)] 7−! [E, ∂̄E,ht , θht ].

As a summary, Mochizuki correspondence provides a two-parameter dynamical system (i.e. a
smooth self-map ψ(λ,t)) on MDol(X, r):

ψ(λ,t) : MDol(X, r) −!MDol(X, r)
(E, ∂̄E, θ) 7! (E, ∂̄E,ht , θht),

and we also call it the (λ, t)-action. From the viewpoint of twistor theory (cf. the next chapter),
to describe the image u′0 of a given point u0 = [E, ∂̄E, θ] under ψ(λ,t), within the Deligne–Hitchin
twistor space, we first walk along the preferred section passing through u0 until the point uλ lying
in the fiber at λ, then we walk along the de Rham section determined by uλ until the point utλ
lying in the fiber at tλ, finally we walk along the new preferred section determined by utλ and get
to the point lying in the fiber at 0, this point is exactly u′0. Clearly, ψ(λ,t) can be also defined on
MDol(X, r) as a continuous map.

We can see that
Proposition 2.1.1. Let ψ(λ,t) be the dynamical system on MDol(X, r) constructed above, then

(1) ψ(0,t) is the usual C∗-action by t on MDol(X, r), and ψ(λ,1) is the identity morphism,

(2) ψ(λ,t) satisfies the following “cocycle”-type formula:

ψ(λt1,t2) ◦ ψ(λ,t1) = ψ(λ,t1t2),

(3) A stable vector bundle (with zero Higgs field) in MDol(X, r) is a fixed point of ψ(λ,t) for any
λ ∈ C, t ∈ C∗.

Proof. These arguments are trivial facts and can be obtained by directly calculation from definition,
so we omit the proof.

2.1.3 The First Variation of the Dynamical System

Let u = [E, ∂̄E, θ] ∈ MDol(X, r) with a pluri-harmonic metric h, then the tangent space of
MDol(X, r) at u is given by the first hypercohomology H1(C•) of the Higgs complex [Sim92]

C• : End(E) θ∧
−! End(E)⊗OX Ω1

X
θ∧
−! · · · .

By Kähler identities, there is an isomorphism

H1(C•) ' H1(E, θ) :={(α, β) ∈ Ω0,1
X (End(E))⊕ Ω1,0

X (End(E))
: (∂E,h + θ†h)(α + β) = (∂̄E + θ)(α + β) = 0}.
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Definition 2.1.2. ([HH17]) The pair (α, β) ∈ H1(E, θ) is called an infinitesimal deformation of
the Higgs bundle [E, ∂̄E, θ]. In particular, if ∂E,hα = ∂̄Eβ = 0, (α, β) is called a holomorphic
infinitesimal deformation.

Now we assume X is a compact Riemann surface. Consider the family u(s) := [E, ∂̄Es , θs] lying
in MDol(X, r) with parameter s such that u(0) = u and du(s)

ds
|s=0 = (α, β) ∈ H1(E, θ). The pluri-

harmonic metric for the Higgs bundle [E, ∂̄Es , θs] is denoted by h(s) with h(0) = h, and fixing λ, t,
the pluri-harmonic metric for the λ′-flat bundle [E, d′′Es = ∂̄Es + λ(θs)†h(s), d

′
Es = t(λ∂Es,h(s) + θs)] is

denoted by ht(s) with ht(0) = ht, which yields operators δ′Es := δ′E,ht(s), δ
′′
Es := δ′′E,ht(s). There is an

integral curve γ in MDol(X, r) passing through the point u with tangent vector (α, β), the (λ, t)-
action maps this curve to another curve γ′, we can study its local property at the point ψ(λ,t)(u)
by calculating the variations of each order of the dynamical system ψ(λ,t), here we calculate the
first order:

Theorem 2.1.3. Assume the original point u and the parameters λ, t are chosen to satisfy ht = h,
and assume du(s)

ds
|s=0 = (α, β) is a holomorphic infinitesimal deformation, then

dψ(λ,t)u(s)
ds

|s=0 = (α + λ(1− |t|2)
1 + |λ′|2 β†h,

t(1 + |λ|2)
1 + |λ′|2 β).

Proof. We write ht(s) = htHt(s), and d′E = d′E0 , d
′′
E = d′′E0 , δ

′
E = δ′E0 , δ

′′
E = δ′′E0 , then choosing a

local ht-unitary frame {ei} of E, we have

λ′∂ht(s)(ei, ej) =λ′∂ht(Ht(s)ei, ej) = ht(d′E(Ht(s)ei), ej) + ht(Ht(s)ei, δ′′Eej)
=ht(Ht(s)d′Esei, ej) + ht(Ht(s)ei, δ′′Esej),

∂̄ht(s)(ei, ej) =∂̄ht(Ht(s)ei, ej) = ht(d′′E(Ht(s)ei), ej) + ht(Ht(s)ei, δ′Eej)
=ht(Ht(s)d′′Esei, ej) + ht(Ht(s)ei, δ′Esej).

Taking derivative with respect to s and evaluating at s = 0 give rise to

ht(d′E(dHt(s)
ds

|s=0)ei, ej) = ht(
d(d′Es)
ds
|s=0ei, ej) + ht(ei,

d(δ′′Es)
ds
|s=0ej),

ht(d′′E(dHt(s)
ds

|s=0)ei, ej) = ht(
d(d′′Es)
ds
|s=0ei, ej) + ht(ei,

d(δ′Es)
ds
|s=0ej),

which implies that

d(δ′Es)
ds
|s=0 = δ′E(dHt(s)

ds
|s=0)− (d(d′′Es)

ds
|s=0)†ht ,

d(δ′′Es)
ds
|s=0 = δ′′E(dHt(s)

ds
|s=0)− (d(d′Es)

ds
|s=0)†ht .

On the other hand, from the pluri-harmonicity of ht(s), namely

[d′′Es + λ′δ′′Es , d
′
Es − λ

′δ′Es ] = −λ′[d′′Es , δ
′
Es ] + λ′[d′Es , δ

′′
Es ] = 0,
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it follows that

(δ′Ed′′E
dHt(s)
ds

|s=0 − δ′′Ed′E
dHt(s)
ds

|s=0) + (d′′E(d(d′′Es)
ds
|s=0)†ht − d

′
E(d(d′Es)

ds
|s=0)†ht)

− (δ′E
d(d′′Es)
ds
|s=0 − δ′′E

d(d′Es)
ds
|s=0) = 0. (2.1)

Due to Proposition 3.2 in [CW19], we have

d(d′′Es)
ds
|s=0 = α + λβ†h,

d(d′Es)
ds
|s=0 = −λ′α†h + tβ.

The condition ht = h leads to

δ′E = ∂E,h − λ̄θ, δ′′E = λ̄′∂̄ − t̄θ†h,

then by (2.1), since (α, β) is a holomorphic infinitesimal deformation, we have

Dcht,λ′D
λ′ dHt(s)

ds
|s=0 = 0,

which implies Dλ′ dHt(s)
ds
|s=0 = 0 by applying the Kähler identities in Lemma 1.2.4. But λ′-flat

bundle (E,Dλ′ = d′E + d′′E) is stable, dHt(s)
ds
|s=0 has to be constant. Therefore, from the calculation

of
d

ds
|s=0( 1

1 + |λ′|2 (d′′Es + λ′δ′′Es,ht(s)),
1

1 + |λ′|2 (d′Es − λ
′δ′Es,ht(s))),

the desired result immediately follows.

2.1.4 Fixed Points of the Dynamical System

In this subsection, we study the fixed points of the dynamical system ψ(λ,t). We first introduce the
following definition.
Definition 2.1.4. For a fixed pair (λ, t) ∈ C×C∗, one defines the fixed points set of (λ, t)-action
as F(λ,t) = {u ∈MDol(X, r) : ψ(λ,t)(u) = u}. For a fixed Higgs bundle u ∈MDol(X, r), one defines
the stabilizer set as Cu = {(λ, t) ∈ C× C∗ : ψ(λ,t)(u) = u}.

The following result shows that the dynamical system shares the same fixed points with the
usual C∗-action, that is, all C-VHS in the moduli space are the fixed points.
Theorem 2.1.5. Let F = ⋂

(λ,t)∈C×C∗ F(λ,t). Then F consists of all the C-VHS lying inMDol(X, r).
Proof. Let u = (E, ∂̄E, θ) ∈MDol(X, r) be a C-VHS of the following form:

E =
k⊕
i=1

Ei, ∂̄E =


∂̄E1

. . .
∂̄Ek

 , θ =


0
θ1 0

. . . . . .
θk−1 0



 ,

where θi : Ei ! Ei+1 ⊗ Ω1
X , we only need to show Cu = C × C∗. Let ηλ be the map that

sends a harmonic Higgs bundle (E, ∂̄E, θ, h) to its corresponding harmonic λ-flat bundle (E, ∂̄E +
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λθ†h, λ∂E,h + θ), and let ϕt be the natural C∗-action by t. Then in fact the dynamical system ψ(λ,t)
can be expressed as

ψ(λ,t) = η−1
tλ
◦ ϕt ◦ ηλ. (2.2)

To show Cu = C× C∗, it suffices to show ϕt ◦ ηλ(u) = ηtλ(u) holds inMDol(X, r), which mans
there exists a C∞-automorphism g ∈ Aut(E) such that

g(ϕt ◦ ηλ(u))g−1 = ηtλ(u). (2.3)

Indeed, under the pluri-harmonic metric h on u, ϕt ◦ ηλ(u) and ηtλ can be written as follows:

ϕt ◦ ηλ(u) =

E,

∂̄E1 λ(θ1)†h

. . . . . .
∂̄Ek−1 λ(θk−1)†h

∂̄Ek

 ,

tλ∂E1,h

tθ1 tλ∂E2,h

. . . . . .
tθk−1 tλ∂Ek,h



 ;

ηtλ(u) =

E,

∂̄E1 tλ(θ1)†h

. . . . . .
∂̄Ek−1 tλ(θk−1)†h

∂̄Ek

 ,

tλ∂E1,h

θ1 tλ∂E2,h

. . . . . .
θk−1 tλ∂Ek,h



 .

It’s easy to see that (2.3) has a solution

g =


IdE1

t−1IdE2
. . .

t−k+1IdEk

 .

Therefore, ψ(λ,t)(u) = u for any (λ, t) ∈ C× C∗.

Definition 2.1.6. ([MSWW16, Moc16]) A Higgs bundle (E, ∂̄E, θ) over X is called a decouped
Higgs bundle if there is a Hermitian metric h on E satisfying R(h) = (∂E,h + ∂̄E)2 = 0 and
θ ∧ θ†h = 0. In this case, h is called a decoupling metric.
Theorem 2.1.7. Let X be a compact Riemann surface, and u ∈MDol(X, r) represents a decoupled
Higgs bundle with non-trivial Higgs field, then Cu = C× {µM , µ2

M , · · · , µM−1
M , 1}, where µM = e

2πi
M

for some positive integer M ≤ r, is a root of unity.
Proof. Case I: λ 6= 0, |t| = 1.

In this case, we first show ψ(λ,t) is the usual S1-action by t onMDol(X, r).
Let (E,Dλ, h) be a stable λ-flat bundle with the pluri-harmonic metric h. The operators

δ′ht , δ
′′
ht , ∂ht , ∂̄ht , θht , θ

†
ht

can be defined via (Dλ, ht) and (Dλ′ , ht), respectively, where Dλ
′ = td′E +d′′E

for Dλ = d′E + d′′E. In order to distinguish them, we add subscripts λ, λ′ for these operators. Then
by definition, we have

δ′ht,λ′ = δ′ht,λ, δ′′ht,λ′ = t̄δ′′ht,λ,
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hence

∂̄ht,λ′ = 1
1 + |tλ|2

(
d′′E + |t|2λδ′′ht,λ

)
, ∂ht,λ′ = 1

1 + |tλ|2
(
|t|2λ̄d′E + δ′ht,λ

)
,

θ†ht,λ′ = t̄

1 + |tλ|2
(
λ̄d′′E − δ′′ht,λ

)
, θht,λ′ = t

1 + |tλ|2
(
d′E − λδ′ht,λ

)
.

(2.4)

When |t| = 1, we arrive at

∂̄ht,λ′ = ∂̄ht,λ, ∂ht,λ′ = ∂̄ht,λ,

θ†ht,λ′ = t̄θht,λ, θht,λ′ = tθht,λ

It follows from ∂̄2
ht,λ′ = ∂̄ht,λ′θht,λ′ = θht,λ′ ∧ θht,λ′ = 0 that ∂̄2

ht,λ = ∂̄ht,λθht,λ = θht,λ ∧ θht,λ = 0,
namely, ht is also a pluri-harmonic metric on (E,Dλ). Then by the uniqueness of pluri-harmonic
metric, we have ht = c · h for some constant c when |t| = 1. Consequently, the morphism ψ(λ,t)
sends a stable Higgs bundle (E, ∂̄E, θ) to another one (E, ∂̄E, tθ), namely, ψ(λ,t) is just the usual
S1-action by t onMDol(X, r).

For reader’s convenience, we give a proof of the uniqueness of pluri-harmonic metrics here. One
writes ht = h · st, where st is a self-adjoint endomorphism of E with respect to both h and ht.
Since δ

′
ht,λ = δ′h,λ + s−1

t δ′h,λst,

δ′′ht,λ = δ′′h,λ + s−1
t δ′′h,λst,

(2.5)

we have
Ght,λ −Gh,λ = λ̄|λ|2

(1 + |λ|2)2

(
Dλ(s−1

t )Dc
h,λst + s−1

t DλDc
h,λst

)
.

Define the Laplacian operator ∆λ
h,ω := −

√
−1ΛωDλDc

h,λ on (E,Dλ), then it follows that

∫
X

∆λ
h,ωTr(st)[ω]n = −(1 + |λ|2)2

λ̄|λ|2
∫
X

Tr
(
st
√
−1(ΛωGht,λ − ΛωGh,λ)−

√
−1Λω(Dλst · s−1

t Dc
h,λst)

)
[ω]n

= −(1 + |λ|2)2

λ̄|λ|2
∫
X
|(Dλst)s

− 1
2

t |2h,ω[ω]n,

which implies Dλst = 0. Therefore we obtain the decomposition of E into Dλ-flat subbundles as
the eigenbundles of st. However, (E,Dλ) is a stable λ-flat bundle, by Lemma 1.2.10, st has to be
a scalar multiplication.

Now let (E, ∂̄E, θ) be a decoupled Higgs bundle with non-trivial Higgs field θ. If it is a fixed
point of ψ(λ,t) for |t| = 1, thus there is a C∞-automorphism g ∈ Aut(E) such that

g∂̄Eg
−1 = 0,

gθg−1 = tθ.
(2.6)

Since (E, ∂̄E) is already a polystable bundle, there is a decomposition (E, ∂̄E) = ⊕N
i=1(Ei, ∂̄Ei) into

stable bundles (Ei, ∂̄Ei) with vanishing Chern classes. By the first equation of (2.6), g must be of
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the following form

g =


a1IdE1

. . .
aN IdEN


for nonzero constants a1, · · · , aN . Denote by prEi the projection prEi : E ⊗ KX ! Ei ⊗ KX ,
if there exists i such that prEi ◦ θ|Ei : Ei ! E ⊗ KX ! Ei ⊗ KX is nonzero, then the second
equation of (2.6) admits a solution for such g if and only if t = 1. If each prEi ◦ θ|Ei vanishes,
since θ is nonzero and [θ, θ†h] = 0, there exist i1 6= i2 6= · · · 6= iM for 1 ≤ i1, · · · , iM ≤ N such that
prEij+1

◦ θ|Eij : Eij ! Eij+1 ⊗KX for 1 ≤ j ≤ M − 1 and prEi1 ◦ θ|EiM : EiM ! Ei1 ⊗KX are all
nonzero. Therefore by the second equation of (2.6) we have

ai1 = tai2 , ai2 = tai3 , · · · , aiM−1 = taiM , aiM = tai1 , (2.7)

thus t has to be M -roots of the unity. Moreover, all components a1, · · · , aN are solved by a series
of equations as the form of (2.7).

Case II: λ = 0, t ∈ C∗.

In this case, ψ(λ, t)-action is just the usual C∗-action by t onMDol(X, r). The similar arguments
as above shows that a decoupled Higgs bundle with non-trivial Higgs field cannot be a fixed point
of ψ(λ,t) unless t is certain M -roots of the unity for some M ≤ r.

Case III: λ 6= 0, |t| 6= 1.

Let (E, ∂̄E, θ) ∈ MDol(X, r) be a decouped Higgs bundle with non-trivial Higgs field θ and
decoupling metric h. We show that (E, ∂̄E, θ) cannot be a fixed point of ψ(λ,t).

One writes 
td′E = tλ

(
∂E,h + t− a

tλ
θ
)

+ aθ,

d′′E = ∂̄E + λ(1− tā)θ†h + tλāθ†h,

for some a ∈ C, then (E, ∂̄E + λ(1− tā)θ†h, aθ) is a Higgs bundle. Note that (∂E,h − λ̄(1− t̄a)θ) +
(∂̄E + λ(1− tā)θ†h) is a unitary connection with respect to h. If one takes

a = t
1 + |λ|2
1 + |λ′|2 ,

we find that h is the pluri-harmonic metric both for the λ′-flat bundle (E,Dλ′ = td′E + d′′E) and
the Higgs bundle (E, ∂̄E + λ(1− tā)θ†h, aθ). Therefore, we get

ψ(λ,t)((E, ∂̄E, θ)) = (E, ∂̄E + λ(1− tā)θ†h, aθ).

If (E, ∂̄E, θ) is a fixed point of ψ(λ,t), there is a C∞-automorphism g ∈ Aut(E) such that
g∂̄Eg

−1 − λ(1− tā)θ†h = 0,
gθg−1 − aθ = 0,

(2.8)
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note that the first equation of (2.8) can be rewrote as

∂̄E(log(g−1))− λ(1− tā)θ†h = 0, (2.9)

acting ∂E,h on both sides of (2.9), applying Kähler identity, and finally integrate over X, which
implies ∂̄E(log(g−1)) = 0.

Since λ 6= 0, |t| 6= 1, this gives θ†h = 0 from (2.9), and hence θ = 0, which is a contradiction.
Combining these three cases together, we complete the proof of the theorem.

Corollary 2.1.8. (1) For any (λ, t) ∈ C × C∗, the dynamical system does not change the pluri-
harmonic metric when acts on a decoupled Higgs bundle.

(2) Assume λ and t are both real numbers with |t| < 1 and tλ 6= 1, then for any decoupled Higgs
bundle (E, ∂̄E, θ) with the decoupling metric denoted as h, we have the limit

lim
n!∞

ψn(λ,t)(E, ∂̄E, θ) =
(
E, ∂̄E + λ(1 + t)

1− tλ2 θ
†
h, 0

)
.

Proof. (1) In the proof of Theorem 2.1.7, for any decoupled Higgs bundle (E, ∂̄E, θ) with the
decoupling metric denoted as h, which is also the pluri-harmonic metric. Then for any (λ, t) ∈
C× C∗, we have

ψ(λ,t)(E, ∂̄E, θ, h) =
(
E, ∂̄E + λ(1− |t|2)

1 + |tλ|2 θ†h,
t(1 + |λ|2)
1 + |tλ|2 θ, h

)
.

(2) This is directly from (1) and calculation.

Remark 2.1.9. In Theorem 2.1.5 and Theorem 2.1.7 we consider two extreme cases, which can be
treated as descriptions of C-VHS and decoupled Higgs bundles from the viewpoint of dynamical
system, since they can be viewed the limits of C∗-action when t! 0 and t!∞, respectively.

2.2 Stratifications of Moduli Spaces

Throughout this section, X denotes a smooth complex projective curve (compact Riemann surface)
of genus g ≥ 2.

Following the description in Section 2.1.1, the natural C∗-action on the Dolbeault moduli space
MDol(X, r) extends to an action of C∗ on the Hodge moduli space MHod(X, r). By a work of
Simpson [Sim10], for each [E, ∂̄E, Dλ] ∈ MHod(X, r), the limit limt!0 t · [E, ∂̄E, Dλ] exists and
is a fixed point that lies in P . Therefore, this action gives a Bialynicki-Birula stratification of
MHod(X, r) into locally closed subsets (see Section 2.2.2). Restricting the stratification to the
fiber over 0, it recovers the classical Bialynicki-Birula stratification of MDol(X, r). Restricting
the stratification to the fiber over 1, we will have a stratification ofMdR(X, r) into locally closed
subsets, and moreover, the space of opers, appears as a special stratum. This stratification is new
to us, provides a new direction on the study ofMdR(X, r).

On the other hand, in the same paper, Simpson showed each flat bundle over X admits a
filtration satisfies Griffiths transversality condition and such that the induced graded Higgs bundle
is semistable (see Theorem 2.2.3). And moreover, the limit of C∗-action on that flat bundle, as a
fixed point inMDol(X, r), is S-equivalent to the graded Higgs bundle, hence coincide in the moduli
space MDol(X, r). This property provides a possibility on the description of certain flat bundles
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(e.g, Theorem 2.2.13), and moreover, plays an important role on the study ofMdR(X, r) (e.g, on
the proof of Conjecture 2.2.9 for rank 2).

This section can be treated as an application of non-Abelian Hodge theory to the study of the
de Rham moduli spaceMdR(X, r). In this section, we will describe the stratifications of moduli
spaces given by C∗-action. Meanwhile, some conjectures related to the study ofMdR(X, r) will be
introduced.

2.2.1 Simpson Filtrations on Flat Bundles

For the C∗-action on the Dolbeault moduli spaceMDol(X, r). Since the Hitchin map

h :MDol(X, r)!
r⊕
i=1

H0(X,Ki
X)

is proper and C∗-equivariant, for any [E, ∂̄E, θ] ∈ MDol(X, r), the limit limt!0 t · [E, ∂̄E, θ] exists
and is a fixed point of this action.

There is no analogue of the Hitchin map for the Hodge moduli space MHod(X, r). However,
for each [E, ∂̄E, Dλ, λ] ∈ MHod(X, r), the limit limt!0 t · [E, ∂̄E, Dλ, λ] of the C∗-action still exists
and is a fixed point that lies in some Pα ([Sim10]). In particular, the limit limt!0 t · (E,∇) of a flat
bundle (E,∇) exists and is a fixed point. Moreover, this limit can be described by the existence
of a special filtration of this flat bundle. This filtration, is found by Simpson, we will call it a
Simpson filtration throughout the whole thesis.

Definition 2.2.1. ([Sim10], see also [HH19, Hua20]) Let E be a vector bundle over X with a flat
connection ∇ : E ! E ⊗OX Ω1

X . A decreasing filtration F • of E by strict subbundles

E = F 0 ⊃ F 1 ⊃ · · · ⊃ F k = 0

is called a Simpson filtration if it satisfies the following two conditions:

1. Griffiths transversality: ∇ : F p ! F p−1 ⊗OX Ω1
X for p = 1, · · · , k;

2. graded-semistability: the associated graded Higgs bundle (GrF (E),GrF (∇)), where GrF (E) =⊕k−1
p=0 E

p with Ep = F p/F p+1 and GrF (∇) : Ep ! Ep−1 ⊗OX Ω1
X induced from ∇, is a

semistable Higgs bundle.

Such a triple (E,∇, F •) is called a partial oper.

Remark 2.2.2. When in particular the filtration F • is of full flag, i.e, k = rk(E), and each induced
map GrF (∇) : Ep ! Ep−1 ⊗OX Ω1

X is an isomorphism, then a partial oper is called an oper.

Simpson proved the following nice theorem [Sim10].

Theorem 2.2.3. Let (E,∇) be a flat bundle over a smooth projective curve X.

(1) There exist Simpson filtrations F • on (E,∇), this means any flat bundle has partial oper
structure.

(2) Let F •1 and F •2 be two Simpson filtrations on (E,∇), then the associated graded Higgs bundles
(GrF1(E),GrF1(∇)) and (GrF2(E),GrF2(∇)) are S-equivalent.

(3) (E,∇, F •) is graded-stable if and only if the Simpson filtration is unique (up to indices shift-
ing).
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(4) lim
t!0

t · (E,∇) = [GrF (E),GrF (∇)] ∈MDol(X, r).

In [Sim10], Simpson gave a wonderful iterated process to show the existence of Simpson filtration
for (E,∇). We now sketch how it works.

Suppose (E,∇) admits a filtration

F • : 0 ⊂ F k−1 ⊂ · · · ⊂ F 0 = E

that satisfies the Griffiths transversality ∇(F p) ⊂ F p−1 ⊗ Ω1
X , and such that the associated Higgs

bundle (V, θ) := (GrF (E),GrF (∇)) is not semistable. To see the existence of such filtration, we can
begin with the trivial filtration 0 ⊂ F 0 = E, the graded Higgs bundle will be (GrF (E),GrF (∇)) =
(E, 0). Then applying the following iteration process, we can always have a such filtration. Take
H ⊂ (V, θ) to be the maximal destabilizing subsheaf, which is known being unique and a subbundle
of V , and the quotient V/H is also a subbundle of E. As a sub-Higgs bundle of a system of Hodge
bundles, H also has a structure of system of Hodge bundles, and is a sub-system of Hodge bundles
of (V, θ), that is, H = ⊕

Hp with each Hp = H ∩ GrpF (E) ⊂ F p(E)/F p+1(E) being a strict
subbundle.

The new filtration G• is defined as

Gp := Ker
(
E !

E/F p(E)
Hp−1

)
.

It satisfies the Griffiths traversality since θ(Hp) ⊂ Hp−1 ⊗ Ω1
X , and it fits into the exact sequence

0 −! GrpF (E)/Hp −! GrpG(E) −! Hp−1 −! 0.

The idea for iterating is that, if the new resulting graded Higgs bundle (GrG(E),GrG(∇)) is still
not semistable, then we continue this process to obtain a new graded Higgs bundle.

Simpson showed this iterating process will always stop at a semistable graded Higgs bundle
by introducing three invariants that are bounded, the iteration process will strictly decrease these
invariants in lexicographic order.

For a system of Hodge bundles F = ⊕
p F

p, denoted by F [k] the system of Hodge bundles with
Hodge index shifted by k, that is, (F [k])p := F p−k. Then above exact sequence gives

0 −! GrF (E)/H −! GrG(E) −! H [1] −! 0. (2.10)

Let A ⊂ F be the maximal destabilizing subbundle, let ξ(F ) :=
∑

rk(F p)p∑
rk(F p) be the center of gravity,

and let γ(F ) := ξ(F/A)− ξ(A). Define the three invariants of F as

(α(F ), β(F ), γ(F )),

where α(F ) := µ(A) and β(F ) := rk(A).
For a filtration F • appeared in the iterating process, the three invariants (α, β, γ) for (GrF (E),GrF (∇))

are shifted invariant, and moreover, they take only finitely many values when iterating.
The key point is to show that when iterating and obtain a graded Higgs bundle that is not

semistable, then the triple of invariants for the new graded Higgs bundle is strictly less than the
old graded Higgs bundle in lexicographic order.

In fact, let F • and G• be the old and new filtration, respectively, such that the associated graded
Higgs bundle (GrF (E),GrF (∇)) is not semistable. Let I ⊂ (GrG(E),GrG(∇)) be the maximal
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destabilizing subbundle, then (2.10) induces a map f : I ! H [1] of two maximal destabilizing
objects, if this map is non-zero, then µ(I) ≤ µ(H [1]) = µ(H), as both of them are semistable. If
this map is zero, then I can be identified as a subbundle of GrF (E)/H, in this case, I is also a
maximal destabilizing object of GrF (E)/H (otherwise, it will contradict to the fact that I is the
maximal destabilizing object of GrG(E)). From the construction of Harder–Narasimhan filtration
we can see that in this case, µ(H) > µ(I).

If the equality holds, namely µ(I) = µ(H), then the map f : I ! H1 is non-zero, consider the
exact sequence

0 −! Ker(f) −! I −! Im(f) −! 0.

If Ker(f) is non-zero, as I and H [1] are both semistable with same slope, then µ(Ker(f)) =
µ(I) = µ(Im(f)) = µ(H). But Ker(f) can be identified as a subbundle of GrF (E)/H, which gives
µ(H) > µ(Ker(f)), a contradiction. Therefore, f is injective and rk(I) ≤ rk(H [1]) = rk(H).

If the second equality also holds, namely µ(I) = µ(H) and rk(I) = rk(H), then I and H [1] are
isomorphic. Hence

γ(GrG(E)) = ξ(GrG(E)/I)− ξ(I)
= ξ(GrG(E)/H [1])− ξ(H [1])
= ξ(GrF (E)/H)− ξ(H)− 1
= γ(GrF (E))− 1.

Corollary 2.2.4 ([Sim10]). Let [E, ∂̄E, Dλ] ∈MHod(X, r) be any λ-flat bundle (λ 6= 0) over X in
the moduli space, then

lim
t!0

t · [E, ∂̄E, Dλ] = lim
t!0

t · [E, ∂̄E, λ−1Dλ] ∈MDol(X, r),

where (E, ∂̄E, λ−λDλ) is the flat bundle (1-flat bundle) associated to (E, ∂̄E, Dλ).

By definition, the filtration for a GL(r,C)-oper is a special Simpson filtration.

Corollary 2.2.5. Each oper (E,∇, F •) over X is graded-stable, in particular, (E,∇) has F • as
the only Simpson filtration (up to indices translation).

Proof. Let (⊕r−1
i=0 E

i, θ) be the associated graded Higgs bundle, where each Ei is a line bundle and
each θ|Ei : Ei ! Ei−1 ⊗ Ω1

X is an isomorphism. This means

deg(Ei) = deg(Ei−1) + 2g − 2 = · · · = deg(E0) + i(2g − 2),

note that each θ-invariant non-zero proper subbundle of (⊕r−1
i=0 E

i, θ) has the form ⊕k
i=0E

i (0 ≤
k < r − 1), with

deg(
k⊕
i=0

Ek) = (k + 1) deg(E0) + k(k + 1)(g − 1),

so
µ(

k⊕
i=1

Ei) = deg(E0) + k(g − 1) < deg(E0) + (r − 1)(g − 1) = µ(E),

this means (E,∇, F •) is graded-stable. In particular, by (3) of Theorem 2.2.3, F • is the only
Simpson filtration for (E,∇).
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Remark 2.2.6. The non-uniqueness of Simpson filtrations on a flat bundle is easy to see. In fact,
any irreducible, rank 2 flat bundle of degree 0 with the underlying vector bundle strictly semistable
which is an extension of a degree 0 line bundle admits more than one Simpson filtration. One is
the trivial filtration, and the other one has two terms with the first term the extension of line
bundle. The two resulting graded Higgs bundles are automatically semistable and S-equivalent to
each other, as a unique representative point in the Dolbeault moduli space, which parametrizes
the limit point of the C∗-action.

2.2.2 Stratifications of Moduli Spaces

Following [Sim10], we introduce the following set:

Gα :=
{

[E, ∂̄E, Dλ, λ] ∈MHod(X, r)
∣∣∣∣ lim
t!0

t · [E, ∂̄E, Dλ, λ] ∈ Pα
}
,

then these Gα gives a Bialynicki-Birula type stratification4 of the Hodge moduli spaceMHod(X, r)

MHod(X, r) =
⋃
α

Gα

into locally closed subsets. There is a natural projection pα : Gα ! Pα by taking the limit of the
C∗-action:

pα : Gα −! Pα,

[E, ∂̄E, Dλ, λ] 7−! lim
t!0

t · [E, ∂̄E, Dλ, λ].

Restricting the stratification to the fiber over any λ ∈ C, we have the stratification ofMλ
Hod(X, r)

Mλ
Hod(X, r) =

⋃
α

Gλ
α :=

⋃
α

(
Gα

⋂
π−1(λ)

)

into locally closed subsets. In particular, we have the stratifications ofMDol(X, r) andMdR(X, r)

MDol(X, r) =
⋃
α

G0
α, MdR(X, r) =

⋃
α

G1
α

into locally closed subsets. The first one is in fact the Bialynicki-Birula stratification ofMDol(X, r)
given by the C∗-action. The second one is called the oper stratification of the de Rham moduli
spaceMdR(X, r), since the space of opers appears as a special stratum (Theorem 2.2.3 and Corol-
lary 2.2.4). For any λ ∈ C, the projection pα restricts on Gλ

α gives pλα : Gλ
α ! Pα. Over each

point u ∈ Pα which is stable, denoted by Gλ
α(u) := (pλα)−1(u) the fiber of the projection pλα over u.

In particular, G0
α(u) = (p0

α)−1(u), and G1
α(u) = (p1

α)−1(u). By Bialynicki-Birula theory, the fiber
G0
α(u) is an affine space. Moreover, in [CW19], by applying the conformal limit techniques, the

authors showed each G1
α(u) is also affine ([CW19, Corollary 1.5]).

4Here a stratification of a topological space means this space can be expressed as the disjoint union of locally closed
subsets, while in general, defining a stratification needs an extra condition, that is, these closed subsets should satisfy a
nestedness property (see the description before Conjecture 2.2.9).
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Denoted by NAH the natural map from Corlette–Simpson correspondence:

NAH : MDol(X, r) −!MdR(X, r),
[(E, ∂̄E, θ, h)] 7! [E,D1 := ∂E,h + θ + ∂̄E + θ†h, h].

(2.11)

Moreover, the authors of [CW19] showed that for each stable point u ∈ Pα, the image NAH(G0
α(u))

of the fiber G0
α(u) under non-Abelian Hodge correspondence intersects with the fiber G1

α(u) trans-
versely at NAH(u).

The non-Abelian Hodge correspondence shares no light on the study of the de Rham moduli
space MdR(X, r) from the study of the Dolbeault moduli space MDol(X, r), since MdR(X, r)
and MDol(X, r) share very few similarities as algebraic spaces. However, the strata G1

α play an
important role on the understanding ofMdR(X, r). Especially the Lagrangian property for each
fiber of G1

α over stable C-VHS (∈ Pα) induces a natural question on the relationship between these
Lagrangian fibers:

Conjecture 2.2.7 (Foliation Conjecture, [Sim10]). When varying α, these Lagrangian fibers
of p1

α : G1
α ! Pα fit together to provide a smooth foliation ofMdR(X, r) with each leaf closed.

This conjecture is still open, one progress was recently made by the authors of [LSS13] for the
case of moduli space of rank 2 parabolic connections on P1 minus 4 points.

This closedness property for MDol(X, r) is clearly not right, since any fiber contained in the
compact nilpotent cone would be not closed. In fact, if it is closed, as a subset of a compact space,
it is compact also, as it is affine, this could not happen.

We give a more explicit explanation here, define the following indexed sets by the limit of
C∗-action:

D0
α :=

{
[E, ∂̄E, θ] ∈MDol(X, r)

∣∣∣∣ lim
t!∞

t · [E, ∂̄E, θ] ∈ Pα
}
.

Then by Hausel’s thesis [Hau98], these sets fit together into the nilpotent cone:

h−1(0) =
⋃
α

D0
α, (2.12)

which is a deformation retraction of the whole moduli space MDol(X, r). Let u ∈ Pα be a fixed
point such that the whole fiber G0

α(u) = {[E, ∂̄E, θ]| limt!0 t · [E, ∂̄E, θ] = u} is contained in the
nilpotent cone, that is, G0

α(u) ⊆ h−1(0). Take any v ∈ G0
α(u) that is not a fixed point, as

t · v ∈ G0
α(u) for all t ∈ C∗ and G0

α(u) is closed, both limt!0 t · v and limt!∞ t · v lie in G0
α(u). Note

the first limit is the fixed point u, and the second limit is also a fixed point by (2.12). By definition,
G0
α(u) can contain only one fixed point, u, this means the two limits of a non-fixed point should

coincide, this couldn’t happen since the fixed point sets are ordered by the energy functional.
Following this idea, with a discussion with Simpson, he told me the following pure algebraic-

geometric result:

Lemma 2.2.8. Let Gm the multiplicative group, and Y be any algebraic variety. Suppose Gm

acts on Y with open dense orbit isomorphic to Gm, and such that the two endpoints are identified.
Then there does not exist an ample linearized line bundle on Y .

Proof. Let y be any point lies in the open dense orbit and let z be an extra point not in the orbit,
denote by Oy the orbit. Then by assumption, Oy and {z} are the only two orbits of this action,
and moreover, limt!0 t · y = limt!∞ t · y = z. Suppose Y has an ample Gm-linearized line bundle
L, then there exists an invariant section of L⊗n for some n ∈ Z+. Hence the linear action of Gm



2.2. STRATIFICATIONS OF MODULI SPACES 69

on the fiber Llimt!0 t·y has positive weight, while it acts on the fiber Llimt!∞ t·y has negative weight,
which is a contradiction.

With this Lemma, we can see in another way why G0
α(u) could not have two endpoints of the C∗-

action on a non-fixed point identified. Since the Dolbeault moduli spaceMDol(X, r) has an ample
Gm-linearized line bundle (see Simpson’s construction of the moduli space [Sim94a, Sim94b]), so it
could not have such G0

α(u) inside with the property. Therefore, G0
α(u) could not have a non-fixed

point with two endpoints of the C∗-action identified.
Let P0 be the irreducible component of P that consists of all those Higgs bundles of rank r with

underlying vector bundles semistable and Higgs field zero, that is, P0 = U(X, r), the moduli space
of semistable vector bundles of rank r and degree 0, which is known being an irreducible variety.
Then the corresponding stratum G1

0 inMdR(X, r) is the unique open stratum that consists of those
flat bundles (E, ∂̄E, ∂+ϕ), where (E, ∂̄E) is a polystable vector bundle, ϕ ∈ H0(X,End(E)⊗Ω1

X),
and ∂ is the unique unitary flat connection, with trivial Simpson filtration. On the Dolbeault
side, the corresponding stratum G0

0 is a dense open subset of MDol(X, r) and can be identified
with the cotangent bundle T ∗U(X, r), we call these strata the lowest strata. And if we take
u = [E, ∂̄E, 0] ∈ P0, then G0

0(u) = H0(X,End(E) ⊗ Ω1
X) ⊆ MDol(X, r), the space of Higgs fields

on E, the authors in [PPN19] showed it is closed if and only if E is very stable, i.e, there is no
non-zero nilpotent Higgs field on E.

A uniformizing Higgs bundle is a Higgs bundle of the form(
E =

r⊕
i=1

Li, ∂̄E =
r⊕
i=1

∂̄Li ,
r−1⊕
i=1

(
θi : Li

∼=−−! Li+1 ⊕KX

))
,

it is clearly determined by L1 ∈ Pic(r−1)(g−1)(X), so the space Pu of uniformizing Higgs bundles is
in fact Symr−1(L⊕ L′) with L′ ∼= L⊕K−1

X , which is parametrized by L ∈ Picg−1(X), the space is
known to be a connected component of the fixed point set P . It corresponds to the oper stratum
G1

oper inMdR(X, r) and the stratum G0
Hit inMDol(X, r), called the Hitchin stratum, as a similarity

of Hitchin component for SL(r,C) case. Moreover, the oper stratum G1
oper is closed inMdR(X, r),

since the Hitchin stratum G0
Hit is closed inMDol(X, r) [Sim10].

In [Sim10], Simpson proposed another method to study the behaviour of the stratifications.
Let M be a (quasi-)projective variety with a stratification of locally closed subsets M = ⋃

α∈ΛGα,
we call this stratification nested if there is a partial order (Λ,≤) such that

Gα =
⋃
β≤α

Gβ,

this implies the partial order is defined as:

β ≤ α⇐⇒ Gβ ⊆ Gα.

The partially ordered indexed set is called the arrangement of the strata.
Conjecture 2.2.9 (Nestedness Conjecture). The stratifications forMDol(X, r) andMdR(X, r)
are both nested, and the arrangements for both stratifications are the same.

Simpson himself studied and showed it for rank 2 case by using the beautiful technique of
deformation theory [Sim10] (for readers’ convenience, we give a detailed proof here), but for the
higher rank case, it is still an open problem.
Theorem 2.2.10 ([Sim10, Theorem 7.6]). Conjecture 2.2.9 is true when r = 2.
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Proof. When r = 2, any point u ∈ P has the form [E = E1 ⊕ E2, ∂̄E =
∂̄E1 0

0 ∂̄E2

 , θ : E1 !

E2 ⊗KX ] or [E, ∂̄E, θ = 0] ∈ U(X, 2). In fact, from [Hit87a], the irreducible components of P are
indexed by Pe for 0 ≤ e ≤ g − 1. When e = 0, P0 = U(X, 2), and when 0 < e ≤ g − 1,

Pe =
{

[E = E1 ⊕ E2, ∂̄E = ∂̄E1 ⊕ ∂̄E2 , θ : E1 ! E2 ⊗KX ]
∣∣∣ θ 6= 0, deg(E1) = e, deg(E2) = −e

}
.

In fact, θ 6= 0 and the semistability condition imply that 0 ≤ e ≤ g − 1,

• when e = 0, deg(E1) = deg(E2) = 0, E = E1 ⊕ E2 is a strictly semistable vector bundle,
which is a point in P0;

• when 0 < e ≤ g−1, θ ∈ Γ((E1)∗⊗E2⊗KX) of non-negative degree 2g−2−2e, it determines
an effective divisor D of degree 2g−2−2e. Therefore, each point in Pe is fully determined by
E1 of degree e and E2 = E1⊗TX⊗OX(D), this means that Pe ∼= Pice(X)×Sym2g−2−2e(X),
which is known to be a smooth irreducible variety.

SoMdR(X, 2) is stratified by G1
e for 0 ≤ e ≤ g − 1:

• G1
0 = {[V,∇]|V ∈ U(X, 2),∇ : V ! V ⊗KX}, which is a dense open subset of MdR(X, 2)

and can be identified with T ∗U(X, 2);

• G1
e = {[0 ( F 1 ( V,∇ irreducible| [E = F 1 ⊕ V/F 1, θ := ∇ : F 1 ! V/F 1 ⊗KX ] ∈ Pe};

similar forMDol(X, 2) and G0
e, it suffices to show G1

α = ⋃
β≤αG

1
β, i.e, for this case, is to show

G1
e = G1

e

⋃
G1
e+1

⋃
· · ·

⋃
G1
g−1, 1 ≤ e ≤ g − 1.

Step 1: G1
e ⊆ G1

e−1 for 2 ≤ e ≤ g − 1:
we will show this by deformation theory, that is, for any point (V,∇) in G1

e, by using the
deformation theory to find a sequence of points {(Vt,∇t)} in G1

e−1 with limit limt!0(Vt,∇t) =
(V,∇). Each (V,∇) ∈ G1

e has the Simpson filtration

0 ( F 1 ( V

such that ∇ : F 1 ! E ⊗KX , where deg(F 1) = e. So by Simpson’s Theorem 2.2.3 it has limiting
point of C∗-action as

lim
t!0

(V, t · ∇) = (E = F 1 ⊕ V/F 1, θ := ∇ : F 1 ! V/F 1 ⊗KX),

which is known to be stable as a Higgs bundle.
Choose any p ∈ X and define Lp := F 1(−p), which has degree e−1, denoted by ϕ the inclusion

map ϕ : Lp ! F 1 ↪! V , that fits into the short exact sequence

0 −! Lp −! F 1 −! Cp −! 0, (2.13)

where Cp is the skyscraper sheaf supported at p. Our aim is to show that we can deform ϕ to
be an injective map so that Lp is a line subbundle of V , thus the new obtained filtration and the
associated graded Higgs bundle will located in the next stratum G1

e−1.
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The deformation complex of the quadruple (V,∇, Lp, ϕ) is

C• : End(V )⊕ End(Lp) Θ−−! (End(V )⊗KX)⊕ Hom(Lp, V ),

where

Θ =
 ∇ 0
• ◦ ϕ ϕ ◦ •

 ,
associated to the deformation complex, there is a long exact sequence

· · · −! Hi(End(Lp)! Hom(Lp, V )) −! Hi(C•) −! Hi(End(V )⊗ Ω•X) −! · · · ,

as a point in G1
e, (V,∇) is gr-stable, hence it is irreducible itself. The infinitesimal deformation of

(V,∇) is given by the first hyper-cohomology of the complex

(End(V )⊗ Ω•X ,∇) := End(V ) ∇−−! End(V )⊗ Ω1
X ,

since (V,∇) is irreducible, H2(End(V ) ⊗ Ω•X) ∼= C, i.e, the obstruction vanishes. To show the
deformation complex C• is unobstructed, which is equivalent to show H2(C•) ∼= H2(End(V ) ⊗
Ω•X) ∼= C, it suffices to show

H1(End(V )⊗ Ω•X)� H2(End(Lp)! Hom(Lp, V )).

There is an induced filtration on the complex (End(V )⊗ Ω•X ,∇) defined as

F p(End(V )) := {α ∈ End(V ) : α(F q(V )) ⊆ F p+q(V ) for all q},
F p(End(V )⊗ Ω1

X) := F p−1(End(V ))⊗ Ω1
X ,

so these filtered terms are given by

F 1(End(V )) = {α ∈ End(V ) : α(F 1) = 0, α(V ) ⊆ F 1}

⊆F 0(End(V )) = {α ∈ End(V ) : α(F 1) ⊆ F 1}

⊆F−1(End(V )) = End(V )

and

F 2(End(V )⊗ Ω1
X) = F 1(End(V ))⊗ Ω1

X

⊆F 1(End(V )⊗ Ω1
X) = F 0(End(V ))⊗ Ω1

X

⊆F 0(End(V )⊗ Ω1
X) = F−1(End(V ))⊗ Ω1

X ,

from the Griffiths transversality for (V, F •) we can easily check that

∇ : F p(End(V )) −! F p−1(End(V ))⊗ Ω1
X = F p(End(V )⊗ Ω1

X),

so we have a filtered complex (End(V ) ⊗ Ω1
X , F

•,∇), and associated to it, we have the spectral



72 CHAPTER 2. A STUDY OF THE GEOMETRY OF MODULI SPACES

sequence
Hi(GrpF (End(V )⊗ Ω•X), θ) = Ep,i−p

1 ⇒ GrpFHi(End(V )⊗ Ω•X ,∇),

where θ is induced by ∇. By our assumption (F 1 ⊕ V/F 1, θ) is a stable Higgs bundle, then we
have E1-degeneration (see Lemma 7.1 in [Sim10]), which gives the isomorphism

GrpFH1(End(V )⊗ Ω•X ,∇) ∼= H1(GrpF (End(V )⊗ Ω•X), θ)

= H1
(
GrpF (End(V )) θ−−! Grp−1

F (End(V ))⊗ Ω1
X

)
.

It follows that

Gr2
FH1(End(V )⊗ Ω•X ,∇) = H0(Hom(V/F 1, F 1)⊗ Ω1

X),

Gr1
FH1(End(V )⊗ Ω•X ,∇) = H1(Hom(V/F 1, F 1) θ

−! (End(F 1)⊕ End(V/F 1))⊗ Ω1
X),

Gr0
FH1(End(V )⊗ Ω•X ,∇) = H1(End(F 1)⊕ End(V/F 1) θ

−! Hom(F 1, V/F 1)⊗ Ω1
X),

Gr−1
F H1(End(V )⊗ Ω•X ,∇) = H1(Hom(F 1, V/F 1)).

In particular, we have the surjective morphism H1 � Gr−1
F H1, that is,

H1(End(V )⊗ Ω•X)� H1(Hom(F 1, V/F 1)). (2.14)

Applying Hom(−, V/F 1) to (2.13) we have the long exact sequences

0 −! Hom(Cp, V/F 1) −! Hom(F 1, V/F 1) −! Hom(Lp, V/F 1) −! Ext1(Cp, V/F 1)
−! Ext1(F 1, V/F 1) −! · · · .

Note that Hom(Cp, V/F 1) = 0 and Ext1(Cp, V/F 1) = Cp, so we have the short exact sequence

0 −! Hom(F 1, V/F 1) −! Hom(Lp, V/F 1) −! Cp −! 0,

which induces the long exact sequence of cohomology as follows:

0 −! C −! H1(Hom(F 1, V/F 1)) −! H1(Hom(Lp, V/F 1)) −! 0, (2.15)

where we used the fact H0(Hom(Lp, V/F 1)) = 0 since deg(Hom(Lp, V/F 1)) < 0 and H i(Cp) = C
for i = 0 and 0 for i > 0. Now applying Hom(Lp,−) to (2.13) we obtain the long exact sequence

0 −! End(LP ) −! Hom(Lp, F 1) −! Hom(LP ,Cp) −! Ext1(Lp, Lp)
−! Ext1(Lp, F 1) −! Ext1(Lp,Cp) −! · · · ,

which induces the surjective morphism

H1(End(Lp)) −! H1(Hom(Lp, F 1)) −! 0 (2.16)
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since Hom(LP ,Cp) ∼= Cp and Ext1(Lp,Cp) = 0. From (2.14) and (2.15) we have the surjective
morphism

H1(End(V )⊗ Ω•X)� H1(Hom(Lp, V/F 1)) (2.17)

and there is an element in the kernel of the first surjective morphism which maps to a non-zero
element of H1(Hom(F 1, V/F 1)). On the other hand, applying Hom(Lp,−) to the short exact
sequence

0 −! F 1 −! V −! V/F 1 −! 0

gives the long exact sequence

H1(Hom(Lp, F 1)) −! H1(Hom(Lp, V )) −! H1(Hom(Lp, V/F 1)) −! 0, (2.18)

combining (2.16)-(2.18), we obtain the surjective morphism

H1(End(V )⊗ Ω•X ,∇)⊕H1(End(Lp))� H1(Hom(Lp, V )). (2.19)

Therefore, H1(End(V ) ⊗ Ω•X ,∇) � H2(End(Lp) ! Hom(Lp, V )), which means the quadruple
(V,∇, Lp, ϕ) is unobstructed. And the map (2.19) has an element in its kernel that maps to a non-
zero element of H1(Hom(F 1, V/F 1)), which means there is a deformation of (V,∇, LP , ϕ) doesn’t
extend to a deformation of F 1 ⊆ V . Hence we have a family of quadruples (Vt,∇t, (Lp)t, ϕp) such
that each deg((Lp)t) = e− 1 and each ϕt : (Lp)t ↪! Vt is a subbundle morphism, each point (0 (
(Lp)t ( Vt,∇t) is graded-stable, hence in the stratum G1

e−1 and with limit limt!0(Vt,∇t) = (V,∇).

Step 2: G1
e ⊆ G1

e

⋃
G1
e+1

⋃ · · ·⋃G1
g−1 for 1 ≤ e ≤ g − 1:

In rank 2 case, the Simpson filtration for a flat bundle coincides with the Harder–Narasimhan
filtration of the underlying vector bundle. Since the Harder–Narasimhan type is upper semi-
continuous, which means that if we have a family of flat bundles {(F 1

t ( Vt,∇t)}t in G1
e with

limit point (F 1
0 ( V0,∇0), then deg(F 1

0 ) ≥ deg(F 1
t ). This is equivalent to say, each family of flat

bundles in the stratum G1
e has limit point either in G1

e itself, or in the upper strata, that is, in
G1
e

⋃
G1
e+1

⋃ · · ·⋃G1
g−1.

Based on this, Simpson proposed another conjecture in [Sim10]:

Conjecture 2.2.11 (Oper Stratum Conjecture). The oper stratum G1
oper is the unique closed

stratum and the unique stratum of minimal dimension.

Corollary 2.2.12 ([Sim10]). Conjecture 2.2.11 is true when r = 2.

Proof. As we have seen in the proof of Conjecture 2.2.9 for r = 2 (Theorem 2.2.10),

G1
e = G1

e

⋃
G1
e+1

⋃
· · ·

⋃
G1
g−1, 0 ≤ e ≤ g − 1.

In particular, one takes e = g − 1, then G1
g−1 = G1

g−1, that is, the oper stratum is closed, and
obviously it is the unique closed stratum of minimal dimension.

In [GnR17], the authors considered the relation between the Bialynicki-Birula stratification
and the Shatz stratification ofMDol(X, 3), where the Shatz stratification is given by the Harder–
Narasimhan type of underlying vector bundles of Higgs bundles. With the inspiration, we can
consider the relation between the partial oper stratification given by the Simpson filtrations and
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the Shatz stratification of MdR(X, 3), where the Shatz stratification is given by the Harder–
Narasimhan type of underlying vector bundles of flat bundles.

For a flat bundle (E,∇) of rank 3, suppose E is not a stable vector bundle. Then the Harder–
Narasimhan type of E can be given as follows:

1. Type (1,2), that is, the Harder–Narasimhan filtration is given by 0 ( H1 ( E with rk(H1) = 1
and deg(H1) = d1. In this case, H1 ⊆ E is the maximal destabilizing subsheaf, so d1 > 0.

2. Type (2,1), that is, the Harder–Narasimhan filtration is given by 0 ( H1 ( E with rk(H1) = 2
and deg(H1) = d1. As in (1), H1 ⊆ E is the maximal destabilizing subsheaf, so d1 > 0.

3. Type (1,1,1), that is, the Harder–Narasimhan filtration is given by 0 ( H1 ( H2 ( E with
rk(H1) = 1, deg(H1) = d1 and rk(H2) = 2, deg(H2/H1) = d2. In this case, H1 ⊆ E is the
maximal destabilizing subsheaf, and H2/H1 ⊆ E/H1 is the maximal destabilizing subsheaf,
hence d1 > 0 and d1 + d2 > 0.

Theorem 2.2.13. Let (E,∇) ∈MdR(X, 3) be an irreducible flat bundle of rank 3 that is graded-
stable, and such that E is not a stable vector bundle. Then its Simpson filtration is determined by
its Harder–Narasimhan filtration as follows:

(1) If the Harder–Narasimhan type of E is (1,2) as above. Let I ⊂ E/H1 be the sub line bundle
by saturating the subsheaf θ(H1)⊗K−1

X ⊂ E/H1, where θ : H1 ! E/H1⊗KX is the non-zero
map induced by ∇. Then

(1.1) 0 < d1 < g − 1 & d1 − 2g + 2 ≤ deg(I) < −d1, the Simpson filtration coincides with the
Harder–Narasimhan filtration. Hence

lim
t!0

t · (E,∇) = [H1 ⊕ E/H1, θ].

(1.2) 0 < d1 < g−1 & −d1 < deg(I) ≤ −d1
2 or g−1 < d1 ≤ 4g−4

3 & d1−2g+2 ≤ deg(I) ≤ −d1
2 ,

in either case, the Simpson filtration is given by

0 ( H1 ( F 1 ( E,

where F 1 = Ker(E ! E/H1

I
) ⊂ E is a rank 2 subbundle. Hence

lim
t!0

t · (E,∇) = [H1 ⊕ I ⊕ E/H1

I
,


0 0 0
ϕ1 0 0
0 ϕ2 0

],

where ϕ1 : H1 ! I ⊗ KX is induced by θ and ϕ2 : I ! E/H1

I
⊗ KX is induced by

∇ : F 1 ! E ⊗KX .

(2) If the Harder–Narasimhan type of E is (2,1) as above. Let θ : H1 ! E/H1 ⊗ KX be the
non-zero induced map and let N := Ker(H1 ! E/H1 ⊗ KX) ⊂ H1 be the sub line bundle.
Then

(2.1) 0 < d1 < g − 1 & 2d1 − 2g + 2 ≤ deg(N) < 0, the Simpson filtration coincides with the
Harder–Narasimhan filtration. Hence

lim
t!0

t · (E,∇) = [H1 ⊕ E/H1, θ].
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(2.2) 0 < d1 < g− 1 & 0 < deg(N) ≤ d1
2 or g− 1 < d1 ≤ 4g−4

3 & 2d1− 2g+ 2 ≤ deg(N) ≤ d1
2 ,

in either case, the Simpson filtration is given by

0 ( N ( G1 ( E,

where G1 := Ker(E ! E/H1) ⊂ E is a rank 2 subbundle. Hence

lim
t!0

t · (E,∇) = [N ⊕H1/N ⊕ E/H1,


0 0 0
ψ1 0 0
0 ψ2 0

],

where ψ1 : N ! H1/N ⊗KX and ψ2 : H1/N ! E/H1 ⊗KX are induced by ∇ : N !
H1 ⊗KX .

(3) If the Harder–Narasimhan type of E is (1,1,1) as above. Let I ⊂ E/H1 be the sub line bundle
as defined in (1) and N ⊂ H2 be the sub line bundle as defined in (2). Then

(3.1) max{−d1, 2d2 − d1} < deg(I) ≤ d2, the Simpson filtration is given by

0 ( H1 ( F 1 ( E,

where F 1 = Ker(E ! E/H1

I
) ⊂ E is a rank 2 subbundle. Hence

lim
t!0

t · (E,∇) = [H1 ⊕ I ⊕ E/H1

I
,


0 0 0
ϕ1 0 0
0 ϕ2 0

],

where ϕ1 : H1 ! I ⊗KX is induced by θ in (1) and ϕ2 : I ! E/H1

I
⊗KX is induced by

∇ : F 1 ! E ⊗KX . In particular, if deg(I) = d2, then F 1 = H2, that is, the Simpson
filtration coincides with the Hardar–Narasimhan filtration.

(3.2) d1 − 2g + 2 ≤ deg(I) < min{−d1, 2d2 − d1},
(3.2.1) d2 < 0,

then the Simpson filtration is given by

0 ( H1 ( E.

Hence
lim
t!0

t · (E,∇) = [H1 ⊕ E/H1, θ],

where θ : H1 ! E/H1 ⊗KX is induced from ∇ : H1 ! E ⊗KX .
(3.2.2) d2 > 0,

• 2(d1 + d2)− 2g + 2 ≤ deg(N) < 0, the Simpson filtration is given by

0 ( H2 ( E.

Hence
lim
t!0

t · (E,∇) = [H2 ⊕ E/H2, θ],
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where θ : H2 ! E/H2 ⊗KX is induced from ∇ : H2 ! E ⊗KX .
• 0 < deg(N) ≤ d1, the Simpson filtration is given by

0 ( N ( H2 ( E.

Hence

lim
t!0

t · (E,∇) = [N ⊕H2/N ⊕ E/H2,


0 0 0
ϕ1 0 0
0 ϕ2 0

],

where ψ1 : N ! H2/N ⊗KX and θ in (1) and ψ2 : H2/N ! E/H2 ⊗KX are
induced by ∇ : N ! H2 ⊗ KX . In particular, if deg(N) = d1, then N = H1,
that is, the Simpson filtration coincides with the Hardar–Narasimhan filtration.

Proof. (1) and (2) are dual to each other, here we just prove (1). Since H1 ⊂ E is the maximal
destabilizing subbundle, we have µ(H1) = d1 > 0, and since I is the sub line bundle of the
semistable bundle E/H1, we have µ(I) ≤ µ(E/H1) = −d1

2 . On the other hand, the induced map
θ : H1 ! I ⊗KX is non-zero, which gives deg(I) ≥ d1− 2g+ 2. These give the maximal bound of
d1 and deg(I) as follows:

0 < d1 ≤
4g − 4

3 , d1 − 2g + 2 ≤ deg(I) ≤ −d1

2 .

Consider the induced graded Higgs bundle (H1 ⊕ E/H1, θ), it is graded-stable if and only if
µ(H1 ⊕ I) < 0, that is, deg(I) < −d1. Therefore, if the conditions in (1.1) are satisfied, the
Simpson filtration is 0 ( H1 ( E, with the associated gr-stable Higgs bundle (H1 ⊕ E/H1, θ).
When (H1⊕E/H1, θ) is not semistable, then its maximal destabilizing subbundle is H1⊕I, which
should satisfy µ(H1 ⊕ I) > 0. By Simpson’s iteration process, the next filtration is

0 ( H1 ( F 1 ( E,

where F 1 = Ker(E ! E/H1

I
) ⊂ E is a rank 2 subbundle. The associated graded Higgs bundle is

(H1 ⊕ I ⊕ E/H1

I
,


0 0 0
ϕ1 0 0
0 ϕ2 0

), with ϕ1 : H1 ! I ⊗KX is induced by θ and ϕ2 : I ! E/H1

I
⊗KX

is induced by ∇ : F 1 ! E ⊗ KX . It is gr-stable if and only if µ(E/H
1

I
) < 0, which can be

divided into the two kinds of bounds for d1 and deg(I) as in (1.2), in either case, the Simpson
filtration is 0 ( H1 ( F 1 ( E. But if the associated graded Higgs bundle is not gr-semistable,
we should have µ(E/H

1

I
) > 0, that is, deg(I) > −d1, in this case, d1 and deg(I) have bounds

0 < d1 < g − 1, d1 − 2g + 2 ≤ deg(I) < −d1. By Simpson’s iteration process, the next filtration
is 0 ( H1 ( E, which comes back to the case (1.1), the associated graded Higgs bundle will be
stable, and the iteration process stop here. Therefore, we finish the proof of (1).

(3) Since H1 ⊂ E is the maximal destabilizing subsheaf and H2/H1 ⊂ E/H1 is the maximal
destabilizing subsheaf. And the induced morphisms H1 ! I ⊗KX and H2/N ! E/H2 ⊗KX are
both non-zero, we have the maximal bounds of deg(I) and deg(N) as follows:

d1 − 2g + 2 ≤ deg(I) ≤ d2, 2(d1 + d2)− 2g + 2 ≤ deg(N) ≤ d1.
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By the uniqueness of maximal destabilizing subsheaf, deg(I) = d2 if and only if I = H2/H1, and
deg(N) = d1 if and only if N = H1.

Look at the graded Higgs bundle (H1 ⊕E/H1, θ), where θ : H1 ! E/H1 ⊗KX is the induced
map from ∇ : H1 ! E ⊗KX . It is stable if and only if µ(H2/H1) < 0 and µ(H1 ⊕ I) < 0, that
is, d2 < 0 and deg(I) < −d1, this is the case (3.2.1). When it is not stable, then the maximal
destabilizing subsheaf should have positive slope, the possible maximal destabilizing subsheaf is
H1 ⊕ I or H2/H1:

(a) If µ(H1 ⊕ I) > µ(H2/H1) and µ(H1 ⊕ I) > 0, that is, max{2d2 − d1,−d1} < deg(I) ≤ d2,
then (H1⊕E/H1, θ) has maximal destabilizing subsheaf H1⊕ I. By Simpson’s iteration, the next
filtration is 0 ( H1 ( F 1 ( E for F 1 = Ker(E ! E/H1

I
) ⊂ E a rank 2 subbundle. Easy to see

that its associated graded Higgs bundle is stable.
(b) If µ(H2/H1) > µ(H1 ⊕ I) and µ(H2/H1) > 0, that is, d2 > 0 and d1 − 2g + 2 ≤ deg(I) <

2d2−d1, then (H1⊕E/H1, θ) has maximal destabilizing subsheaf H2/H1. By Simpson’s iteration,
the next filtration is 0 ( H2 ( E, but we should discuss the stability of the graded Higgs bundle
(H2 ⊕ E/H2, θ′):

• it is stable if and only if µ(N) < 0, that is, when d2 > 0, d1 − 2g + 2 ≤ deg(I) < 2d2 − d1
and 2(d1 + d2)− 2g + 2 ≤ deg(N) < 0, the Simpson filtration is 0 ( H2 ( E;

• if it is not semistable, then its maximal destabilizing subsheaf is N and should satisfy µ(N) >
0, and by Simpson’s iteration, the next filtration is 0 ( N ( H2 ( E. Its associated Higgs
bundle is stable, so the iteration stops.

Combining all the above, we obtain the statement (3).

For each α, let (G1
α)VHS ⊂ G1

α be the subset that consists of polarized C-VHS which can be
identified with those Higgs bundles having the structure of systems of Hodge bundles (i.e, the
fixed point set Pα ⊂ G0

α) by non-Abelian Hodge correspondence, that is, (G1
α)VHS = NAH(Pα).

Simpson guessed in [Sim10] that points in G1
α\(G1

α)VHS do not relate to the points in G0
α via the

non-Abelian Hodge correspondence, this is the following conjecture:

Conjecture 2.2.14.
(G1

α)VHS = G1
α

⋂
NAH(G0

α).

For each polarized C-VHS (E,∇) such that the corresponding monodromy representation is
irrreducible, then its Simpson filtration coincides with its Hodge filtration, this provides a method
to construct its Hodge filtration.

2.2.3 Asymptotic Behaviour of the Dynamical System

After introducing Simpson filtrations for flat bundles, we now come back to study the asymptotic
behaviour of the dynamical system ψ(λ,t) onMDol(X, r) by applying Simpson’s Theorem 2.2.3. We
first introduce the following notations:

Definition 2.2.15. Given (E, ∂̄E, θ) ∈ MDol(X, r) which admits a pluri-harmonic metric h, we
define following five limits

• ψ(0,0)(E, ∂̄E, θ) := lim
t!0

(
ψ(0,t)(E, ∂̄E, θ)

)
= lim

t!0
(E, ∂̄E, tθ);

• ψ(0,0)(E, ∂̄E, θ) := lim
λ!0

(
ψ(λ,0)(E, ∂̄E, θ)

)
;
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• ψ(0,0)(E, ∂̄E, θ) := lim
t!0

(
lim
λ!0

(
ψ(λ,t)(E, ∂̄E, θ)

))
;

• ψ(0,0)(E, ∂̄E, θ) := lim
λ!0

(
lim
t!0

(
ψ(λ,t)(E, ∂̄E, θ)

))
;

• ψ(0,0)(E, ∂̄E, θ) := lim
(λ,t)!(0,0)

(
ψ(λ,t)(E, ∂̄E, θ)

)
.

where in the second limit, the map ψ(λ,0) is defined by Simpson’s Theorem 2.2.3, that is,

ψ(λ,0)(E, ∂̄E, θ) = lim
t!0

(
E, ∂̄E + λθ†h, t∂E,h + tλ−1θ

)
=
(
GrFλ(Eλ),GrFλ(∇λ)

)
,

where h is a pluri-harmonic metric on (E, ∂̄E, θ), (Eλ,∇λ) = (E, ∂̄E + λθ†h, ∂E,h + λ−1θ) is the
associated flat bundle, and F •λ denotes the Simpson filtration on (Eλ,∇λ).

In general, it is not clear that above limits coincide if they exist. The following theorem confirms
the coincidence of these limits for some special cases.

Theorem 2.2.16. Let X be a compact Riemann surface.

(1) If (E, ∂̄E, θ) ∈ MDol(X, r) is a C-VHS, or a decoupled Higgs bundle, then the above limits
exist and coincide inMDol(X, r).

(2) Let (E, ∂̄E, θ) ∈ MDol(X, 3) and assume the maximal destabilizing subbundle of (E, ∂̄E) is
preserved by θ†h for the pluri-harmonic metric h on (E, ∂̄E, θ). If the limit ψ(0,0)(E, ∂̄E, θ)
exists, then it coincides with the limit ψ(0,0)(E, ∂̄E, θ).

Proof. (1) (i) Let (E, ∂̄E, θ) ∈MDol(X, r) be a C-VHS. Since it is a fixed point of (λ, t)-action for
any (λ, t) ∈ C× C∗ by Theorem 2.1.5, we have

ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ) = (E, ∂̄E, θ).

Hence we only need to show ψ(0,0)(E, ∂̄E, θ) = (E, ∂̄E, θ). For λ 6= 0, write

(E, ∂̄E, θ) =
( k⊕
i=1

(Ei, ∂̄Ei),
k−1⊕
i=1

(θi : Ei ! Ei+1 ⊗KX)
)
,

then by virtue of the pluri-harmonic metric h on (E, ∂̄E, θ), we have a holomorphic flat connection

∇ = ∂E,h + λ−1θ =


∂E1,h

λ−1θ1 ∂E2,h

. . . . . .
λ−1θk−1 ∂Ek,h
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with respect to the holomorphic structure

∂̄′E = ∂̄E + λθ†h =


∂̄E1 λ(θ1)†h

. . . . . .
∂̄Ek−1 λ(θk−1)†h

∂̄Ek

 .

There is a Simpson filtration F • on (E, ∂̄′E,∇) given by F p := ⊕k−p
i=1 Ei, 0 ≤ p ≤ k − 1 since one

easily checks that
∇F p ⊂ F p−1 ⊗KX , ∂̄′EF

p = 0.

It follows that ψ(λ,0)(E, ∂̄E, θ) = (E, ∂̄E, λ−1θ) from Simpson’s Theorem 2.2.3.
Therefore, ψ(0,0)(E, ∂̄E, θ) = lim

λ!0
(E, ∂̄E, λ−1θ) = (E, ∂̄E, θ).

(ii) Let (E, ∂̄E, θ) ∈ MDol(X, r) be a decoupled Higgs bundle with a decoupling metric h. We
can assume θ is non-zero. By definition, it is obvious that

ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ) = (E, ∂̄E).

A key observation is that if two Higgs bundles (∂̄E + aθ†h, bθ) and (∂̄E + a′θ†h, b
′θ) for a, a′, b, b′ ∈ C∗

are equivalent, we must have a = a′ and | b′
b
| = 1. Indeed, suppose there is a C∞-automorphism

g ∈ Aut(E) such that g ◦ ∂̄E ◦ g
−1 + agθ†hg

−1 = ∂̄E + a′θ†h,

bgθg−1 = b′θ,
(2.20)

let ∂̄′E := ∂̄E + aθ†h, which defines a new holomorphic on E. Then the first equation of (2.20) can
be rewrote as

g ◦ ∂̄′E ◦ g
−1 = ∂̄′E + (a− a′)θ†h,

same argument with (2.8) and (2.9) implies a = a′. Choose a point x ∈ X and a neighborhood
U ⊆ X of x such that θ|U 6≡ 0, and one expresses θ = Θdz for matrix-valued function Θ over
U . Due to the condition [θ, θ†h] = 0, the r × r matrix Θ|x′ cannot be nilpotent for some point
x′ ∈ U , hence it is diagonalizable. Then from the second equation it follows that | b′

b
| = 1. As a

consequence, we can calculate the limits (in the sense of equivalent classes) from Corollary 2.1.8

lim
(λ,t)!(0,0)

(
E, ∂̄E + λ(1− |t|2)

1 + |tλ|2 θ†h,
t(1 + |λ|2)
1 + |tλ|2 θ

)

= lim
λ!0

lim
t!0

(
E, ∂̄E + λ(1− |t|2)

1 + |tλ|2 θ†h,
t(1 + |λ|2)
1 + |tλ|2 θ

)
= lim

λ!0
(E, ∂̄E + λθ†h)

= lim
t!0

lim
λ!0

(
E, ∂̄E + λ(1− |t|2)

1 + |tλ|2 θ†h,
t(1 + |λ|2)
1 + |tλ|2 θ

)
= lim

t!0
(E, ∂̄E, tθ)

=(E, ∂̄E),

which leads to ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ) = (E, ∂̄E).



80 CHAPTER 2. A STUDY OF THE GEOMETRY OF MODULI SPACES

(2) (i) Consider the family of flat bundles {(Eλ,∇λ) := (E, ∂̄E +λθ†h, ∂E,h+λ−1θ)}λ∈C. We first
assume the underlying family of flat bundles {(E, ∂̄E + λθ†h)} are not semistable on some small
open punctured neighborhood of λ = 0, then by the openness of semistability, the one at λ = 0 is
also not semistable. That is, (E, ∂̄E) is not semistable.

Let L ⊆ (E, ∂̄E) be the maximal destabilizing subbundle, then obviously deg(L) > 0. And by
assumption, for each λ ∈ C∗, L is also the maximal destabilizing subbundle of (E, ∂̄E + λθ†h).Let
L⊥ be the orthogonal complement of L in E with respect to h, that is, we have C∞-decomposition
E ∼= L⊕ E/L such that E/L can be identified with L⊥.

L is preserved by ∂̄E and θ†h, so with respect to above decomposition, we can write ∂̄E and θ as
the following:

∂̄E =
∂̄1 α

0 ∂̄2

 , θ =
θ1 0
β θ2

 ,
where β must be non-zero, otherwise (L, ∂̄E|L, θ|L) is a Higgs subbundle of (E, ∂̄E, θ) with positive
degree, this is impossible. In rank 2 case, the Simpson filtration on a flat bundle coincides with
the Harder–Narasimhan filtration of the underlying vector bundle, so we have

ψ(0,0)(E, ∂̄E, θ) = lim
λ!0

(
E,

∂̄1 + λθ̄1

0 ∂̄2 + λθ̄2

 ,
 0 0
ᾱ + λ−1β 0

).

Taking the C∞-automorphism g =
1 0

0 λ

 ∈ Aut(E), by directly calculation, we have

g ◦

∂̄1 + λθ̄1 0
0 ∂̄2 + λθ̄2

 ◦ g−1 =
∂̄1 + λθ̄1 0

0 ∂̄2 + λθ̄2


g ◦

 0 0
ᾱ + λ−1β 0

 ◦ g−1 =
 0 0
λᾱ + β 0



For the following two Higgs bundles

(
E,

∂̄1 + λθ̄1 0
0 ∂̄2 + λθ̄2

 ,
 0 0
λᾱ + β 0

), (
E,

∂̄1 + λ′θ̄1 0
0 ∂̄2 + λ′θ̄2

 ,
 0 0
λ′ᾱ + β 0

),
they represent a same point in the moduli spaceMDol(X, r) if and only if λ = λ′, hence

ψ(0,0)(E, ∂̄E, θ) =
(
E,

∂̄1 0
0 ∂̄2

 ,
0 0
β 0

) = lim
t!0

(E, ∂̄E, tθ),

As a conclusion, ψ(0,0)(E, ∂̄E, θ) = ψ(0,0)(E, ∂̄E, θ).

(ii) If the family of flat bundles {(E, ∂̄E + λθ†h)} are semistable on some small open punctured
neighborhood of λ = 0, then by assumption, (E, ∂̄E) is also semistable, otherwise the maximal
destabilizing subbundle of (E, ∂̄E) is a subbundle of (E, ∂̄E + λθ†h), with positive degree. In this
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case, it’s easy to see that

ψ(0,0)(E, ∂̄E, θ) = (E, ∂̄E) = ψ(0,0)(E, ∂̄E, θ).

For a fixed t ∈ C∗, then we have a family of one-parameter dynamical system {ϕλ := ψ(λ,t)}λ∈C,
clearly, ϕ0 is the usual C∗-action given by t. The following theorem says, the family ϕλ is continuous
at λ = 0, that is, lim

λ!0
ϕλ = ϕ0.

Theorem 2.2.17. For any (E, ∂̄E, θ) ∈ MDol(X, r), the third limit ψ(0,0)(E, ∂̄E, θ) in Defini-
tion 2.2.15 exists, and coincides with the first limit ψ(0,0)(E, ∂̄E, θ), that is, a C-VHS.

Proof. Let h be the pluri-harmonic metric on the Higgs bundle (E, ∂̄E, θ) ∈MDol(X, r), ht be the
pluri-harmonic metric on ψ(λ,t)(E, ∂̄E, θ).

Writing ht = h · s with s = eχ for χ ∈ End(E), by virtue of formulas (2.4) and (2.5), the
direct calculation shows that the image of (λ, t)-action on (E, ∂̄E, θ) is given by ψ(λ,t)(E, ∂̄E, θ) =
(E, ∂̄′E, θ′), where

∂̄′E(λ, t) =∂̄E + λ(1− |t|2)
1 + |tλ|2 θ†h + λ|t|2

1 + |tλ|2 s
−1(λ̄∂̄E − θ†h)s,

θ′(λ, t) =t(1 + |λ|2)
1 + |tλ|2 θ − λt

1 + |tλ|2 s
−1(∂E,h − λ̄θ)s.

The condition ∂̄′Eθ′ = 0 gives rise to a equation satisfied by s. Fix t ∈ C∗, we can always choose a
small open punctured neighborhood U of λ = 0, such that (E, ∂̄′E(λ, t), θ′(λ, t)) are not equivalent
to each other (that is, they represent different points in the moduli space).

Therefore, we have

lim
λ!0

(
ψ(λ,t)(E, ∂̄E, θ)

)
= ψ(0,t)(E, ∂̄E, θ) = (E, ∂̄E, tθ).

Corollary 2.2.18. (1) For a Higgs bundle (E, ∂̄E, θ) ∈MDol(X, r), if the forth limit ψ(0,0)(E, ∂̄E, θ),
or the last limit ψ(0,0)(E, ∂̄E, θ) in Definition 2.2.15 exists, then the limit must be a C-VHS.

(2) Define F◦ := ⋂
(λ,t)∈C∗×C∗ F(λ,t), then F◦ = F.

Proof. (1) Write ψ(0,0)(E, ∂̄E, θ) = (E, ∂̄′E, θ′). On one hand, we have

lim
t̃!0

lim
λ!0

lim
t!0

ψ(λt,t̃)(E, ∂̄′E, θ′) = lim
t̃!0

lim
λ!0

lim
t!0

ψ(λt,t̃) ◦ ψ(λ,t)(E, ∂̄E, θ)

= lim
t̃!0

lim
λ!0

lim
t!0

ψ(λ,t̃t)(E, ∂̄E, θ)

= lim
t̃!0

(E, ∂̄′E, θ′) = (E, ∂̄′E, θ′).

On the other hand, we have

lim
t̃!0

lim
λ!0

lim
t!0

ψ(λt,t̃)(E, ∂̄′E, θ′) = lim
t̃!0

ψ(0,t̃)(E, ∂̄′E, θ′) = lim
t̃!0

(E, ∂̄′E, t̃θ′),
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compare these two limits, we find that (E, ∂̄′E, θ′) must be a C-VHS.
(2) Let (E, ∂̄E, θ) ∈ F◦, then

lim
t!0

lim
λ!0

ψ(λ,t)(E, ∂̄E, θ) = lim
t!0

(E, ∂̄E, θ) = (E, ∂̄E, θ)

= lim
t!0

ψ(0,t)(E, ∂̄E, θ) = lim
t!0

(E, ∂̄E, tθ),

which means that (E, ∂̄E, θ) is a C-VHS, hence by Theorem 2.1.5, we have F◦ = F.

Remark 2.2.19. (1) When the base field is of positive characteristic, in [LSZ19, LSYZ19], the
authors construct the so called Higgs–de Rham flow via ψ(1,0). More precisely, this flow begins with
a graded Higgs bundle (E0, ∂̄E0 , θ0), then along the non-Abelian Hodge correspondence of positive
characteristic version (that is, the Ogus–Vologodsky correspondence) to obtain a flat bundle and
taking the graded Higgs bundle via Simpson filtration, this process is in fact {ψn(1,0)}n∈N. As a result,
they build the correspondence between Fontaine modules and periodic Higgs–de Rham flows (that
is, there exists some n such that ψn(1,0)(E0, ∂̄E0 , θ0) ∼= (E0, ∂̄E0 , θ0)) over projective schemes.

(2) For a harmonic Higgs bundle (E, ∂̄E, θ, h) ∈ MDol(X, r), it determines a family of flat
connections

Dλ,t := ∂̄E + λtθ†h + ∂E,h + λ−1tθ,

where λ ∈ C∗, t ∈ R+, and ht is the pluri-harmonic metric on (E, ∂̄E, tθ). Fix ~ := λt−1, then we
have a family of flat connections parametrized by t:

D~,t = ∂̄E + ~t2θ†h + ∂E,h + ~−1θ,

the limit lim
t!0

D~,t, when exists, called the conformal limit of (E, ∂̄E, θ). In [Gai14], Gaiotto proposed
the following conjecture:

Conjecture 2.2.20 (Gaiotto’s Conformal Limit Conjecture, [Gai14]). When u := (E, ∂̄E, θ) ∈
G0

Hit, then its conformal limit lim
t!0

D~,t(u) exists and located in G1
oper. And this gives an analytic

isomorphism between fibers G0
Hit(u) ∼= G1

oper(u).

This conjecture was verified by the authors in [DFK+16] recently, and with some generalization
by the authors in [CW19], that is, this conjecture holds true for any u := (E, ∂̄E, θ) ∈ G0

α such
that the limit lim

t!0
t· is stable.

Now we give the following property to see how conformal limits work for our case.

Proposition 2.2.21. Let X be a compact Riemann surface, and (t, λ) ∈ R∗×R, then for a Higgs
bundle (E, ∂̄E, θ) ∈MDol(X, r) such that the limit lim

t!0
t · (E, ∂̄E, θ) is stable, then

ψ(0,0)(E, ∂̄E, λθ) = ψ(0,0)(E, ∂̄E, θ) = lim
t!0

(E, ∂̄E, tθ).

Proof. Define a new dynamical system on the moduli spaceMDol(X, r):

φ(t,λ,η) :MDol(X, r) −!MDol(X, r)
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parametrized by (t, λ, η) ∈ C∗ × C× C∗ as follows:

(E, ∂̄E, θ) C∗−action
−−−−−−! (E, ∂̄E, tθ) NAHC

−−−! (E, ∂̄E + λt̄θ†ht , λ∂E,ht + tθ)
C∗−action
−−−−−−! (E, ∂̄E + λt̄θ†ht , ηλ∂E,ht + ηtθ) NAHC

−−−! (E, ∂̄E,hη , θhη).

Then for (t, λ) ∈ R∗ × R, we have

lim
λ!0

lim
t!λ

(
φ(t,λ,η)(E, ∂̄E, θ)

)
= lim

λ!0

(
GrFλ(Eλ),GrFλ(∇λ)

)
,

where (Eλ,∇λ) = (E, ∂̄E + |λ|2θ†hλ , ∂E,hλ + θ) is the flat bundle, and F •λ is a Simpson filtration on
(Eλ,∇λ).

From above results related to confromal limits, the limit lim
λ!0

(E, ∂̄E + |λ|2θ†hλ , ∂E,hλ + θ) exists
and as an oper, we denote it as (E, ∂̄′E,∇′), therefore,

lim
λ!0

lim
t!λ

(
φ(t,λ,η)(E, ∂̄E, θ)

)
= lim

t!0
(E, ∂̄′E, t∇′).

On the other hand,

lim
λ!0

lim
t!λ

(
φ(t,λ,η)(E, ∂̄E, θ)

)
= lim

λ!0
lim
t!0

(
φ(t,λ,η)(E, ∂̄E, θ)

)
= lim

t!0
(E, ∂̄E, tθ).

Note that lim
t!0

(E, ∂̄′E, t∇′) = lim
λ!0

(
ψ(λ,0)(E, ∂̄E, λθ)

)
= ψ(0,0)(E, ∂̄E, λθ).

In conclusion, for a Higgs bundle (E, ∂̄E, θ) ∈ MDol(X, r) such that the limit lim
t!0

(E, ∂̄E, tθ) is
stable, we have

ψ(0,0)(E, ∂̄E, λθ) = ψ(0,0)(E, ∂̄E, θ) = lim
t!0

(E, ∂̄E, tθ).

Let h be the pluri-harmonic metric on (E, ∂̄E, θ) ∈ MDol(X, r) and ht be the pluri-harmonic
metric on ψλ,t(E, ∂̄E, θ). To characterize the self-map ψ(λ,t), a crucial step is to understand how ht
depends on t. The following theorem gives a description of ht around t = 1.

Theorem 2.2.22. Let X be a compact Riemann surface. Fixing λ ∈ C∗ and assuming t ∈ R∗,
then over a small neighborhood of t = 1, the End(E)-valued function f := hth−1−Id

(t−1)2 is real analytic
with respect to t− 1.

Proof. Fixing λ ∈ C∗, denoted by Aλ(t, χ) = 0 the equation appeared in Theorem 2.2.17 for which
s should be satisfied to preserve the condition ∂̄′Eθ

′ = 0. Obviously this equation has a solution
(t, s) = (1, 0). The linearization of Aλ reads

LAλ(t, χ̇) = tλ

1 + |tλ|2 ∂̄E∂E,hχ̇+ t|λ|2(1− |t|2)
1 + |tλ|2 [θ, ∂̄Eχ̇] + tλ2(1− |t|2)

(1 + |tλ|2)2 [θ†h, ∂E,hχ̇]

+ tλ|t|2(1 + |λ|2)
(1 + |tλ|2)2 [θ, [θ†h, χ̇]]− tλ|λ|2(1− |t|2)

(1 + |tλ|2)2 [θ†h, [θ, χ̇]],

hence
LAλ|(1,0)(χ̇) = λ

1 + |λ|2 (∂̄E∂E,hχ̇+ [θ, [θ†h, χ̇]]).
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If LAλ |(1,0)(χ̇) = 0, we must have χ̇ = 0 since (E, ∂̄E, θ) is a stable Higgs bundle, namely the
linear 2-order differential operator LAλ |(1,0) has a trivial kernel. Moreover, it can be deformed
to an elliptic operator λ

1+|λ|2 ∂̄E∂E,h, thus has index zero, which means LAλ|(1,0) is also surjective.
Assuming t ∈ R∗, due to implicit function theorem, there is a real analytic End(E)-valued function
χ in (t− 1) over a small neighborhood 0 ≤ |t− 1| ≤ ε such that the equation Aλ(t, χ) = 0 holds.
Then substituting the Taylor series χ = ∑∞

i=1 χi(t − 1)i and Taylor series in (t − 1) of coefficient
functions into the above equation, we immediately find that χ1 = 0, that is, χ ∼ O((t− 1)2).

2.3 Oper Stratum Conjecture

In this section, let X be a smooth projective curve of genus g ≥ 2, our main aim is to show the
following result, which is a confirmation of weak oper stratum conjecture:

Theorem 2.3.1 (Minimal Dimension). The oper stratum G1
oper is the unique closed stratum of

minimal dimension r2(g−1) + g+ 1 inMdR(X, r), the Hitchin stratum G0
Hit is the unique stratum

of minimal dimension r2(g − 1) + g + 1 inMDol(X, r).

For each index α, the projections p0
α : G0

α ! Pα and p1
α : G1

α ! Pα are known being Zariski
locally trivial fiber bundles, with fibers affine spaces of dimension half of the dimension of the
corresponding moduli space [HT03, CW19]. Therefore,

dim(Gi
α) = r2(g − 1) + 1 + dim(Pα),

it suffices to show dim(Pα) ≥ dim(Pu) = g, with equality holds only when Pα = Pu.
This section is arranged as the following. Since a connected component Pα of the fixed point

set P of C∗-action onMDol(X, r) can be represented by the moduli space of holomorphic chains
of certain type, in Section 2.3.1, we will give a brief introduction to the theory of holomorphic
chains based on [ACGPS06, BGPG04, Hei16]. For the cases of rank 3 and rank 4, the geo-
metric structure of the corresponding moduli spaces of holomorphic chains are known explicitly
[ACGPS06, BGPG04, Got94], so we will give a proof to Theorem 2.3.1 by explicit descriptions
of moduli spaces in Section 2.3.2 and Section 2.3.3. For the case of general rank, in [ACGPS06],
the authors calculated the dimension of the related moduli space by deformation theory, but we
still do not the geometric structure of the moduli space, so we will provide a general proof to
Theorem 2.3.1 in Section 2.3.4.

2.3.1 Holomorphic Chains

In this section, we will give a brief introduction to the theory of holomorphic chains and its relation
with systems of Hodge bundles. For more details, see references [ACGPS06, BGPG04, Hei16].

Definition 2.3.2. (1) A holomorphic chain5 of length l is a tuple C• = (Ei, i = 1, · · · , l;ϕi, i =
1, · · · , l − 1) that consists of holomorphic vector bundles Ei over X and holomorphic morphisms
ϕi : Ei ! Ei+1, we write it as

C• : E1
ϕ1−−! E2

ϕ2−−! · · · ϕl−1−−−! El.

The collection (−!r ,−!d ) := (rk(E1), · · · , rk(El); deg(E1), · · · , deg(El)) is called the type of the chain.
If ϕi 6= 0 for 1 ≤ i ≤ l − 1, then the chain is said to be indecomposable.

5Later on, we will also apply the notion “chain” when there is no ambiguity.
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(2) Given a collection of real numbers −!α = (α1, · · · , αl−1) ∈ Rl−1, called the stability parameter.
The −!α -slope of a chain C• of type (−!r ,−!d ) is defined as

µ−!α (C•) :=
∑l
i=1 di +∑l−1

i=1 αiri∑l
i=1 ri

,

we may sometimes denote it as µ−!α (−!r ,−!d ). It is called −!α -stable (resp. −!α -semistable) if for any
proper subchain C ′• ⊆ C•, we have

µ−!α (C ′•) < (resp. ≤)µ−!α (C•).

It is −!α -polystable if it is a direct sum of −!α -stable chains of same −!α -slope, here a subchain means a
collection (E ′i , i = 1, · · · , l) of coherent subsheaves E ′i ⊆ Ei, i = 1, · · · , l such that ϕi(E ′i) ⊆ E ′i+1, i =
1, · · · , l − 1.

Remark 2.3.3. In some contexts, for example [BGPG04, GPH13], the stability parameters are
defined to have the l-th term αl. In fact, if we let −!α = (α1, · · · , αl) and −!αl := (αl, · · · , αl), then

µ−!α−−!αl(C•) = µ−!α (C•)− αl,

which does not affect the stability. Hence we can always assume αl = 0, and define the stability
parameter as −!α = (α1, · · · , αl−1) ∈ Rl−1.

If we release the notion of chains being the collection of coherent shaves, then the category of
chains is known to be an Abelian category [ACGPS06]. So each chain admits a unique Harder–
Narasimhan filtration, and each −!α -semistable chain admits a Jordan–Hölder filtration such that
the associated graded term is unique up to isomorphism, which gives the natural notion of S-
equivalent classes of chains. Therefore, the construction of moduli space of semistable vector
bundles over projective curves by GIT method can be applied to the construction of moduli space
of chains of fixed type and stability parameters.

Definition 2.3.4. Define a partial order for −!r : −!r ′ < −!r if ri < ri for all i. The stability
parameter −!α is critical for a chain C• of type (−!r ,−!d ) if there exist (−!r ′,−!d ′) with −!r ′ < −!r and
−!
β := (β1, · · · , βl) ∈ Rl such that µ−!α (−!r ′,−!d ′) = µ−!α (−!r ,−!d ) and µ−!

β
(−!r ′,−!d ′) 6= µ−!

β
(−!r ,−!d ).

If we denote byMDol(X, r, d) the moduli space of semistable Higgs bundles over X of rank r
and degree d (when d = 0, we write it asMDol(X, r) for simplicity), then the fixed points of the
C∗-action are those systems of Hodge bundles6. In fact, we can study the connected pieces of fixed
point set by studying the moduli space of chains of certain type and certain stability parameter:

Proposition 2.3.5. There is an equivalence between holomorphic chains and systems of Hodge
bundles.

Proof. Given a chain C• : E1
ϕ1−−! E2

ϕ2−−! · · · ϕl−1−−−! El of type (−!r ,−!d ), then we have a system of
Hodge bundles

(E, θ) :=
( l⊕
i=1

Ei,
l−1⊕
i=1

θi

)
,

6We have applied the notion “C-VHS” to denote the systems of Hodge bundles with degree 0, and for other degree, we
will still apply the notion “system of Hodge bundles”.
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where Ei = Ei⊗K(l−i)
X , i = 1, · · · , l and θi := ϕi⊗ Id

K
(l−i)
X

: Ei ! Ei+1⊗KX , i = 1, · · · , l− 1. The
type of this system of Hodge bundles is (r1, r2, · · · , rl; d1 + r1(l − 1)(2g − 2), d2 + r2(l − 2)(2g −
2), · · · , dl).

On the other hand, if we have a system of Hodge bundles (E = ⊕l
i=1 Ei, θ = ⊕l−1

i=1(θi : Ei !
Ei+1 ⊕KX)) of type (r1, · · · , rl; d1, · · · , dl), then we can construct a holomorphic chain

C• : E1
ϕ1−−! E2

ϕ2−−! · · · ϕl−1−−−! El,

where Ei := Ei ⊗ K−(l−i)
X and ϕi := θi ⊗ Id

K
−(l−i)
X

: Ei ! Ei+1, i = 1, · · · , l − 1. The type of this

chain is (−!r ,−!d ) = (r1, r2, · · · , rl; d1 − r1(l − 1)(2g − 2), d2 − r2(l − 2)(2g − 2), · · · , dl).

Therefore, the study of (semistable) systems of Hodge bundles of type (r1, · · · , rl; d1, · · · , dl)
is equivalent to study the holomorphic chains of type (−!r ,−!d ) = (r1, r2, · · · , rl; d1 − r1(l − 1)(2g −
2), d2 − r2(l − 2)(2g − 2), · · · , d2) and with stability parameter

−!α Higgs := ((l − 1)(2g − 2), (l − 2)(2g − 2), · · · , (2g − 2)),

we call these chains the corresponding holomorphic chains, we will use the notation −!α > −!α Higgs to
denote αi − αi+1 > 2g − 2 for i = 1, · · · , l− 1 (where we set αl = 0). So we can give the following
definitions:
Definition 2.3.6. A system of Hodge bundles of type (−!r ,−!d ) = (r1, · · · , rl; d1, · · · , dl) is
(1) indecomposable if the corresponding holomorphic chain is indecomposable;

(2) stable (resp. semistable, polystable) if the corresponding holomorphic chain is −!α Higgs-stable
(resp. −!α Higgs-semistable, −!α Higgs-polystable);

(3) coming from a C-VHS if it is polystable of degree 0, i.e, ∑l
i=1 di = 0.

The authors in [GPH13] gave the necessary conditions for the existence of −!α -semistable chains:
Proposition 2.3.7 ([GPH13, Proposition 4]). Let C• be a −!α -semistable chain of length l, where
−!α = (α1, · · · , αl) ∈ Rl is a stability parameter satisfying α1 > · · · > αl = 0, and let µ = µ−!α (C•).
Then

(1) for all j ∈ 2, · · · , l, we have ∑l
i=j(di + αiri)∑l

i=j ri
≤ µ;

(2) for all j such that rj = rj+1, we have

dj ≤ dj+1;

(3) for all 1 ≤ k < j ≤ l such that rk < min{rk+1, · · · , rj}, we have
∑
i/∈[k,j](di + αiri) + (j − k + 1)dk + (∑j

i=k αi)rk∑
i/∈[k,j] ri + (j − k + 1)rk

≤ µ;
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(3) for all 1 ≤ k < j ≤ l such that rk > max{rk+1, · · · , rj}, we have
∑j−1
i=k(di − dj + αi(ri − rj))∑j−1

i=k(ri − rj)
≤ µ.

Equivalently, −!α -semistable chains exist only when non of the following subchains has greater
−!α -slope and non of the following quotient chains has smaller −!α -slope [GPH13]:

1. for any j ∈ 2, · · · , l, then Cj• : 0 −! · · · −! 0 −! Ej −! · · · −! El would be a subchain;

2. for some j such that with rj = rj+1, if dj > dj+1, then ϕj : Ej ! Ej+1 could not be injective,
so

E ′• : · · · −! 0 −! Ker(ϕj) −! 0 −! · · ·

would be a subchain, and

E ′′• : · · · −! 0 −! Coker(ϕj) −! 0 −! · · ·

would be a quotient subchain, this could not happen by −!α -semistability;

3. for any 1 ≤ k < j ≤ l such that rk < min{rk+1, · · · , rj}, then

E ′• : E1 −! · · · −! Ek−1 −! Ek −! · · · −! Ek −! Ej+1 −! · · · −! El

would be a subchain;

4. for any 1 ≤ k < j ≤ l such that rk > max{rk+1, · · · , rj}, then

E ′′• : E1 −! · · · −! Ek−1 −! Ej −! · · · −! Ej −! Ej+1 −! · · · −! El

would be a quotient chain.

Following [GPHS14, GPH13], let Chain(−!r ,−!d ) be the stack of chains of fixed type (−!r ,−!d ),
which is known be an algebraic stack, locally of finite type [GPHS14]. For stability parameter −!α
of real numbers, let Chainss−!α (−!r ,−!d ) ⊆ Chain(−!r ,−!d ) be the open substack of −!α -semistable chains.
Let (−!r ,−!d ) be the type satisfies the condition (2) of Proposition 2.3.7, define the convex stability
region in Rl−1 [BGPGH18]:

Stab(−!r ,−!d ) :=
{
α ∈ Rl−1

∣∣∣ −!α > −!α Higgs and −!α satisfies (1), (3), (4) of Proposition 2.3.7
}
.

Theorem 2.3.8 ([BGPGH18, Theorem 3.2, Theorem 4.1]).

(1) For type (−!r ,−!d ) ∈ Zl+×Zl and stability parameter −!α > −!α Higgs, then the stack Chainss−!α (−!r ,−!d )
is non-empty and irreducible if and only if (−!r ,−!d ) satisfies condition (2) of Proposition 2.3.7
and −!α ∈ Stab(−!r ,−!d );

(2) For type (−!r ,−!d ) ∈ Zl+ × Zl, then the coarse moduli space Chainss−!αHiggs
(−!r ,−!d ) ∈ Zl+ × Zl of

the stack Chainss−!αHiggs
(−!r ,−!d ) ∈ Zl+ × Zl is non-empty and irreducible if and only if (−!r ,−!d )

satisfies condition (2) of Proposition 2.3.7 and −!α Higgs ∈ Stab(−!r ,−!d ).
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LetMVHS(X, r) ⊆MDol(X, r) be the subvariety that consists of C-VHS’s of fixed rank r, this
is exactly the fixed point set P of C∗-action. Denoted by Mind−VHS(−!r ,−!d ) ⊆ MVHS(X, r) the
subvariety that consists of indecomposable C-VHS’s of type (−!r ,−!d ) := (r1, · · · , rl; d1, · · · , dl) ∈
Zl>0 × Zl such that


|−!r | :=

l∑
i=1

ri = r,

|
−!
d | :=

l∑
i=1

di = 0.

LetMs
ind−VHS(−!r ,−!d ) ⊆Mind−VHS(−!r ,−!d ) be the subvariety consists of stable objects.

From Proposition 2.3.7, we have the following properties:

Proposition 2.3.9. IfMind−VHS(−!r ,−!d ) is non-empty and let (E, θ) := (⊕l
i=1Ei,

⊕l−1
i=1(θi : Ei !

Ei+1)) ∈Mind−VHS(−!r ,−!d ), then

(1) for all 1 < j ≤ l, we have ∑l
i=j di < 0;

(2) for all j such that rj = rj+1, we have dj − dj+1 ≤ (2g − 2)rj;

(3) for all 1 ≤ k < j ≤ l such that rk < min{rk+1, · · · , rj}, we have

−
j∑

i=k+1
di + (j − k)(dk − (j − k + 1)(g − 1)rk) ≤ 0;

(4) for all 1 ≤ k < j ≤ l such that rk > max{rk+1, · · · , rj}, we have

j−1∑
i=k

di − (j − k)(dj + (j − k + 1)(g − 1)rj) ≤ 0;

(5) for all 1 ≤ j ≤ l − 1, we have

dj ≤ [2(l − j)− 1]rj(g − 1).

Proof. The first four inequalities directly follows from Proposition 2.3.7. Now we prove the last
one. Let Pl−1 be the first term in the Harder-Narasimhan filtration of El−1. Consider the induced
morphism θl−1 : El−1 ⊗ TX ! El, under which, the image of Pl−1 ⊗ TX is denoted by P ′l−1. Then
the Higgs-semistability of system of Hodge bundles implies that

deg(Pl−1) + deg(P ′l−1) ≤ 0.

Since Pl−1⊗TX is a semistable vector bundle and the induced map Pl−1⊗TX ! P ′l−1 is a quotient
map, we have

µ(Pl−1 ⊗ TX) = µ(Pl−1) + µ(TX) ≤ µ(P ′l−1) ≤ −deg(Pl−1)
rk(P ′l−1) ,
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from which it follows that

µ(El−1) ≤ µ(Pl−1) ≤ rk(P ′l−1)
rk(Pl−1) + rk(P ′l−1)µ(KX) ≤ g − 1.

By recursion, we have

µ(Ej) ≤ µ(Pj) ≤ µ(KX) + µ(Pj+1) ≤ [2(l − j)− 1](g − 1)

for 1 ≤ j ≤ l − 2. Hence, we derive the final inequalities.

Conversely, from (2) of Theorem 2.3.8 and Proposition 2.3.9 we immediately have:

Corollary 2.3.10. For type (−!r ,−!d ) that satisfies (1)-(4) of Proposition 2.3.9, Mind−VHS(−!r ,−!d )
is non-empty and irreducible.

Proof. By (2) of Theorem 2.3.8, for type (−!r ,−!d ) that satisfies (1)-(4) of Proposition 2.3.9, there
is a semistable Higgs bundle as the desired form. However, the condition (1) of Proposition 2.3.9
guarantees that such Higgs bundle is polystable and with each θi is non-zero.

This means the connected components Pα of the fixed point set P are of the formMind−VHS(−!r ,−!d )
with type (−!r ,−!d ) satisfies (1)-(4) of Proposition 2.3.9. Therefore, to show Theorem 2.3.1, it suffices
to show

dimC

(
Mind−VHS(−!r ,−!d )

)
≥ g

whenever Mind−VHS(−!r ,−!d ) is non-empty, and the equality holds if and only if the type (−!r ,−!d )
is chosen such that Mind−VHS(−!r ,−!d ) = Pu, i.e, the connected component of uniformizing Higgs
bundles.

2.3.2 Proof for Rank Three Case

Lemma 2.3.11. When r = 3, let (−!r ,−!d ) be the type satisfies (1)-(4) of Proposition 2.3.9, then
Mind−VHS(−!r ,−!d ) is not empty, irreducible with dimension

g ≤ dimC
(
Mind−VHS(−!r ,−!d )

)
≤ 9g − 8.

In particular, the equality on the left hand side holds true only when

(−!r ,−!d ) = (1, 1, 1; 2g − 2, 0,−2g + 2),

in this case,Mind−VHS(−!r ,−!d ) is the connected component of uniformizing Higgs bundles. And the
equality on the right hand side holds true only when (−!r ,−!d ) = (3; 0), in this case,Mind−VHS(−!r ,−!d )
is the moduli space of semistable vector bundles of rank 3 and degree 0 over X.

Proof. Firstly, we can explicitly describeMind−VHS(−!r ,−!d ) as follows:
Case I: When (−!r ,−!d ) = (3; 0), in this case, Mind−VHS(−!r ,−!d ) = U(X, 3, 0), the moduli space

of semistable vector bundles of rank 3 and degree 0 over X, which is known being an irreducible
variety of dimension 9g − 8.
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Case II: When (−!r ,−!d ) = (1, 1, 1; d1, d2,−d1 − d2), then from Proposition 2.3.9 the degree type
is known to be satisfying 

d1 > 0,
d1 + d2 > 0,
d1 − d2 ≤ 2g − 2,
d1 + 2d2 ≤ 2g − 2.

(2.21)

We have the isomorphism [Got94]

Mind−VHS(−!r ,−!d ) ∼= Jacd1(X)× Symd2−d1+2g−2(X)× Sym−d1−2d2+2g−2(X),

which maps (E1, E2, E3;ϕ1, ϕ2) onto (E1, div(ϕ1), div(ϕ2)), where Jacd1(X) is the moduli space
of line bundles of degree d1 over X, Symp(X) denotes the space of effective divisors of degree
p in X which is isomorphic to Xp/Sp for the symmetry group Sp, and div(θi) stands for the
divisor determined by the morphism θi. Conversely, for a given line bundle L0 ∈ Jacd1(X), and
effective divisors D1 ∈ Symd2−d1+2g−2(X), D2 ∈ Sym−d1−2d2+2g−2(X), we have unique line bundles
Li = OX(Di) with non-zero sections ϕi up to multiplication by non-zero scalars, i = 1, 2. Then we
get an indecomposable system of Hodge bundles(

L0, L0 ⊗ L1 ⊗K−1
X , L0 ⊗ L1 ⊗ L2 ⊗K−2

X ;ϕ1, ϕ2
)
,

which is polystable under the condition (2.21).

Case III: When (−!r ,−!d ) = (1, 2; d1,−d1), then from Proposition 2.3.9 the degree type is known
to be satisfying

0 < d1 ≤ g − 1. (2.22)

When 0 < d1 < g − 1, then Ms
ind−VHS(−!r ,−!d ) is non-empty and birationally equivalent to a

PN -fibration over Jac−2d1+2g−2(X) × Jacd1−2g+2(X) for N = −3d1 + 5g − 6 [BGPG04, Got94].
When d1 = g− 1, thenMs

ind−VHS(−!r ,−!d ) is empty andMind−VHS(−!r ,−!d ) ∼= Jac0(X)× Jac−g+1(X)
[BGPG04], which is known to be irreducible.

Case IV: When (−!r ,−!d ) = (2, 1; d1,−d1), then from Proposition 2.3.9 the degree type is known
to be satisfying

0 < d1 ≤ g − 1. (2.23)

When 0 < d1 < g − 1, then Ms
ind−VHS(−!r ,−!d ) is non-empty and birationally equivalent to a PN -

fibration over Jac2d1+2(2g−2)(X) × Jac−d1(X) for N = −3d1 + 5g − 6 [BGPG04, Got94]. When
d1 = g − 1, then Ms

ind−VHS(−!r ,−!d ) is empty and Mind−VHS(−!r ,−!d ) ∼= Jac−2g+2(X) × Jac−g+1(X)
[BGPG04], which is known to be irreducible.
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Therefore, we have the dimension formula

dimC
(
Mind−VHS(−!r ,−!d )

)
=



9g − 8, (−!r ,−!d ) = (3; 0);
5g − 4− 2d1 − d2, (−!r ,−!d ) = (1, 1, 1; d1, d2,−d1 − d2);
7g − 6− 3d1, (−!r ,−!d ) = (1, 2; d1,−d1) or (2, 1; d1,−d1)

with 0 < d1 < g − 1,
2g, (−!r ,−!d ) = (1, 2; g − 1,−g + 1) or (2, 1; g − 1,−g + 1) .

On the other hand, by (2.21)-(2.23), we have the inequalities

0 < 2d1 + d2 ≤

4g − 4, (−!r ,−!d ) = (1, 1, 1; d1, d2,−d1 − d2);

g − 1, (−!r ,−!d ) = (1, 2, d1, d2 = −d1) or (2, 1; d1, d2 = −d1),

which leads to the inequalities on dimCMind−VHS
(
−!r ,
−!
d
)
as follows:


dimC

(
Mind−VHS(−!r ,−!d )

)
= 9g − 8, (−!r ,−!d ) = (3; 0);

g ≤ dimC

(
Mind−VHS(−!r ,−!d )

)
< 5g − 4, (−!r ,−!d ) = (1, 1, 1; d1, d2,−d1 − d2);

4g − 3 ≤ dimC

(
Mind−VHS(−!r ,−!d )

)
< 7g − 6, (−!r ,−!d ) = (1, 2; d1,−d1) or (2, 1; d1,−d1).

The desired results immediately follows.

Therefore, we confirm the weak oper stratum conjecture for rank 3 case:

Theorem 2.3.12. When r = 3, the oper stratum G1
oper is the unique closed stratum of minimal

dimension 10g − 8 inMdR(X, 3), and the Hitchin stratum G0
Hit is the unique stratum of minimal

dimension 10g − 8 inMDol(X, 3).

2.3.3 Proof for Rank Four Case

Lemma 2.3.13. When r = 4, let (−!r ,−!d ) be the type satisfies (1)-(4) of Proposition 2.3.9, then
Mind−VHS(−!r ,−!d ) is not empty, irreducible with dimension

g ≤ dimC

(
Mind−VHS(−!r ,−!d )

)
≤ 16g − 15.

In particular, the equality on the left hand side holds true only when

(−!r ,−!d ) = (1, 1, 1, 1; 3g − 3, g − 1, g + 1,−3g + 3),

in this case,Mind−VHS(−!r ,−!d ) is the connected component of uniformizing Higgs bundles. And the
equality on the right hand side holds true only when (−!r ,−!d ) = (4; 0), in this case,Mind−VHS(−!r ,−!d )
is the moduli space of semistable vector bundles of rank 4 and degree 0 over X.

Proof. As in rank 3 case, we have an explicit description ofMind−VHS(−!r ,−!d ) based on [ACGPS06,
BGPG04]:
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Case I: When (−!r ,−!d ) = (4; 0), in this case, Mind−VHS(−!r ,−!d ) = U(X, 4, 0), the moduli space
of semistable vector bundles of rank 4 and degree 0 over X, which is known being an irreducible
variety of dimension 16g − 15.

Case II: When (−!r ,−!d ) = (1, 1, 1, 1; d1, d2, d3,−d1 − d2 − d3), then from Proposition 2.3.9 the
degree type is known to be satisfying

d1 > 0,
d1 + d2 > 0,

d1 + d2 + d3 > 0,
d1 − d2 ≤ 2g − 2,
d2 − d3 ≤ 2g − 2,

d1 + d2 + 2d3 ≤ 2g − 2.

(2.24)

We have the isomorphism

Mind−VHS(−!r ,−!d ) ∼= Jacd1(X)× Symd2−d1+2g−2(X)× Symd3−d2+2g−2(X)× Sym−d1−d2−2d3+2g−2(X)

which maps (E1, E2, E3, E4;ϕ, ϕ, ϕ) to (E1, div(ϕ), div(ϕ), div(ϕ)). In fact, for any line bundle
L0 ∈ Jacd1(X), and effective divisors D1 ∈ Symd2−d1+2g−2(X), D2 ∈ Symd3−d2+2g−2(X), D3 ∈
Sym−d1−d2−2d3+2g−2(X), we have line bundles Li = O(Di) with non-zero sections ϕi up to mul-
tiplication by non-zero scalars, i = 1, 2, 3. Then we get an indecomposable system of Hodge
bundles (

L0, L0 ⊗ L1 ⊗K−1
X , L0 ⊗ L1 ⊗ L2 ⊗K−2

X , L0 ⊗ L1 ⊗ L2 ⊗ L3 ⊗K−3
X ;ϕ1, ϕ2, ϕ3

)
,

which is polystable under the conditions (2.24).
Case III: When (−!r ,−!d ) = (1, 3; d1,−d1), then from Proposition 2.3.9 the degree type is known

to be satisfying

0 < d1 ≤ g − 1. (2.25)

When 0 < d1 < g − 1, then Ms
ind−VHS(−!r ,−!d ) is non-empty and birationally equivalent to a

PN -fibration over U s(X, 2,−2d1 + 2g − 2) × Jacd1−2g+2(X) for N = −4d1 + 8g − 9 [BGPG04],
where U s(X, r, d) denotes the moduli space of stable vector bundles of rank r and degree d over X.
When d1 = g−1, thenMs

ind−VHS(−!r ,−!d ) is empty andMind−VHS(−!r ,−!d ) ∼= U(X, 2, 0)×Jac−g+1(X)
[BGPG04] .

Case IV: When (−!r ,−!d ) = (3, 1; d1,−d1), then from Proposition 2.3.9 the degree type is known
to be satisfying

0 < d1 ≤ g − 1. (2.26)

When 0 < d1 < g − 1, then Ms
ind−VHS(−!r ,−!d ) is non-empty and birationally equivalent to a

PN -fibration over U s(X, 2, 2d1 − 6g + 6) × Jac−d1(X) [BGPG04] for N = −4d1 + 8g − 9. When
d1 = g−1, thenMs

ind−VHS(−!r ,−!d ) is empty andMind−VHS(−!r ,−!d ) ∼= U(X, 2,−4g+4)×Jac−g+1(X)
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[BGPG04].
Case V: When (−!r ,−!d ) = (2, 2; d1,−d1), then from Proposition 2.3.9 the degree type is known

to be satisfying

0 < d1 ≤ 2g − 2. (2.27)

Ms
ind−VHS(−!r ,−!d ) is birationally equivalent to a PN -fibration over U s(X, 2, d1−4g+4)×Sym−2d1+4g−4(X)

for N = −2d1 + 4g − 4 [BGPG04].
Case VI: When (−!r ,−!d ) = (1, 1, 2; d1, d2,−d1−d2), then from Proposition 2.3.9 the degree type

is known to be satisfying 

d1 > 0,
d1 + d2 > 0,
d1 − d2 ≤ 2g − 2,
d1 + 2d2 ≤ 2g − 2.

(2.28)

When the last inequality is strict, thenMs
ind−VHS(−!r ,−!d ) is non-empty and birationally equivalent

to a PN -fibration over Jacd2−2g+2(X) × Jac−d1−2d2−2g+2(X) × Symd2−d1+2g−2(X) for N = −d1 −
3d2 + 5g − 6 [ACGPS06]. When the last equality holds, then Ms

ind−VHS(−!r ,−!d ) is empty and
Mind−VHS(−!r ,−!d ) ∼= Jac0(X)× Jacd2(X)× Symd2−d1+2g−2(X).

Case VII: When (−!r ,−!d ) = (2, 1, 1; d1, d2,−d1 − d2), then from Proposition 2.3.9 the degree
type is known to be satisfying 

0 < d1 ≤ 2g − 2,
d1 + d2 > 0,
d1 + 2d2 ≤ 2g − 2,
d1 − d2 ≤ 2g − 2.

(2.29)

When the last inequality is strict, thenMs
ind−VHS(−!r ,−!d ) is non-empty and birationally equivalent

to a smooth irreducible variety of dimension 9g − 8 − 2d1 [ACGPS06]. When the last equality
holds, then Ms

ind−VHS(−!r ,−!d ) is empty and Mind−VHS(−!r ,−!d ) ∼= Jac−4g+4(X) × Jacd1−4g+4(X) ×
Sym−3d1+6g−6(X).

Case VIII: When (−!r ,−!d ) = (1, 2, 1; d1, d2,−d1 − d2), then from Proposition 2.3.9 the degree
type is known to be satisfying 

d1 > 0,
d1 + d2 > 0,
d1 − d2 ≤ 2g − 2,
d1 + 2d2 ≤ 2g − 2.

(2.30)

When −!d 6= (2g − 2, 0,−2g + 2), then Ms
ind−VHS(−!r ,−!d ) is non-empty and birationally equiva-
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lent to a PN -fibration over Jacd1−4g+4(X) × Jacd2−d1(X) × Sym−2d1−d2+4g−4(X) for N = −2d1 −
d2 + 4g − 5 [ACGPS06]. When −!d = (2g − 2, 0,−2g + 2), then Ms

ind−VHS(−!r ,−!d ) is empty and
Mind−VHS(−!r ,−!d ) ∼= Jac−2g+2(X)× Jac−g+1(X).

Therefore, the dimension dimC

(
Mind−VHS(−!r ,−!d )

)
of each case is given by



16g − 15, (−!r ,−!d ) = (4; 0);
7g − 6− 2d1 − d2 − d3, (−!r ,−!d ) = (1, 1, 1, 1; d1, d2, d3,−d1 − d2 − d3);
13g − 12− 4d1, (−!r ,−!d ) = (1, 3; d1,−d1) or (3, 1; d1,−d1), d1 6= g − 1;
5g − 3, (−!r ,−!d ) = (1, 3; g − 1,−g + 1) or (3, 1; g − 1,−g + 1);
12g − 11− 4d1, (−!r ,−!d ) = (2, 2; d1,−d1);
9g − 8− 2d1 − 2d2, (−!r ,−!d ) = (1, 1, 2; d1, d2,−d1 − d2), d1 + 2d2 6= 2g − 2;
5g − 3− 3

2d1, (−!r ,−!d ) = (1, 1, 2; d1, g − 1− d1
2 ,−g + 1− d1

2 );
9g − 8− 2d1, (−!r ,−!d ) = (2, 1, 1; d1, d2,−d1 − d2), d1 − d2 6= 2g − 2;
8g − 6− 3d1, (−!r ,−!d ) = (2, 1, 1; d1,−2g + 2 + d1, 2g − 2− 2d1);
10g − 9− 4d1 − 2d2, (−!r ,−!d ) = (1, 2, 1; d1, d2,−d1 − d2), (d1, d2,−d1 − d2) 6= (2g − 2, 0,−2g + 2);
2g, (−!r ,−!d ) = (1, 2, 1; 2g − 2, 0,−2g + 2).

On the other hand, by (2.24)-(2.30), we have the inequalities

0 < 2d1 + d2 + d3 ≤



6g − 6, (−!r ,−!d ) = (1, 1, 1, 1; d1, d2, d3,−d1 − d2 − d3);
g − 1, (−!r ,−!d ) = (1, 3; d1, d2 = −d1) or (3, 1; d1, d2 = −d1),d3 = 0;
2g − 2, (−!r ,−!d ) = (2, 2; d1, d2 = −d1),d3 = 0;
2g − 2, (−!r ,−!d ) = (2, 1, 1; d1, d2,−d1 − d2);

0 < d1 + d2 ≤ 2g − 2, (−!r ,−!d ) = (1, 1, 2; d1, d2,−d1 − d2);

0 < 2d1 + d2 ≤ 4g − 4, (−!r ,−!d ) = (1, 2, 1; d1, d2,−d1 − d2).

Hence, we arrive at (we takeM to representMind−VHS(−!r ,−!d ) for simplicity)


dimCM = 16g − 15, (−!r ,−!d ) = (4; 0);
g ≤ dimCM < 7g − 6, (−!r ,−!d ) = (1, 1, 1, 1; d1, d2, d3,−d1 − d2 − d3);
5g − 3 ≤ dimCM < 13g − 12, (−!r ,−!d ) = (1, 3; d1,−d1) or (3, 1; d1,−d1);
5g − 4 ≤ dimCM < 12g − 11, (−!r ,−!d ) = (2, 2; d1,−d1);
2g ≤ dimCM≤ 9g − 8, (−!r ,−!d ) = (1, 1, 2; d1, d2,−d1 − d2) or (2, 1, 1; d1, d2,−d1 − d2);
2g − 1 ≤ dimCM < 10g − 9, (−!r ,−!d ) = (1, 2, 1; d1, d2,−d1 − d2).

The desired results immediately follows.

Therefore, we confirm the oper stratum conjecture for rank 4 case:

Theorem 2.3.14. When r = 4, the oper stratum G1
oper is the unique closed stratum of minimal

dimension 17g− 15 inMdR(X, 4), and the Hitchin stratum G0
Hit is the unique stratum of minimal

dimension 17g − 15 inMDol(X, 4).
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2.3.4 Higher Rank Cases

In general cases, the dimension ofMind−VHS(−!r ,−!d ) was calculated by authors in [ACGPS06] by
deformation theory:

Proposition 2.3.15 ([ACGPS06, Theorem 3.8 (iv)]). IfMind−VHS(−!r ,−!d ) is not empty for (−!r ,−!d ) =
(r1, · · · , rl; d1, · · · , dl), then its dimension is given by

dimC
(
Mind−VHS(−!r ,−!d )

)
= (g − 1)

l∑
i=1

ri(ri + ri+1) +
l∑

i=1
ri(di+1 − di−1) + 1,

where one assigns rl+1 = d0 = dl+1 = 0.

Lemma 2.3.16. Let (−!r ,−!d ) be the type satisfies (1)-(4) of Proposition 2.3.9, thenMind−VHS(−!r ,−!d )
is not empty, irreducible with dimension

g ≤ dimC

(
Mind−VHS(−!r ,−!d )

)
≤ r2(g − 1) + 1.

In particular, the equality on the left hand side holds true only when

(−!r ,−!d ) = (1, · · · , 1; (r − 1)(g − 1), (r − 3)(g − 1), · · · ,−(r − 1)(g − 1)),

in this case,Mind−VHS(−!r ,−!d ) is the connected component of uniformizing Higgs bundles. And the
equality on the right hand side holds true only when (−!r ,−!d ) = (r; 0), in this case,Mind−VHS(−!r ,−!d )
is the moduli space of vector bundles of rank r and degree 0 over X.

Proof. Since stability is an open condition, one can consider the problem at the level of stacks.
Let Mind−VHS(−!r ,−!d ) be the corresponding moduli stack, and let Ms

ind−VHS(−!r ,−!d ) be the substack
consisting of stable objects. It follows from Ms

ind−VHS(−!r ,−!d ) being a Gm-gerbe over its coarse
moduli spaceMs

ind−VHS(−!r ,−!d ) [GPHS14] that

dimC

(
Mind−VHS(−!r ,−!d )

)
= dimC

(
Mind−VHS(−!r ,−!d )

)
− 1.

Let Bunri,di(X) be the moduli stack of vector bundles of rank ri and degree di over X. Since there
is ri such that Bunri,di(X) ⊂Mind−VHS(−!r ,−!d ), if ri > 1, we have

dimC
(
Mind−VHS(−!r ,−!d )

)
≥ dimC

(
Bunri,di(X)

)
= r2

i (g − 1) > g − 1.

Therefore, it suffices to show g ≤ dimC
(
Mind−VHS(−!r ,−!d )

)
when −!r = (1, · · · , 1). By Proposi-

tion 2.3.15, we have

dimC

(
Mind−VHS(−!r ,−!d )

)
= (g − 1)(2r − 1) +

r−1∑
i=1

(di+1 − di) + 1

≥ (g − 1)(2r − 1)− (r − 1)(2g − 2) + 1
= g,
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where we have used Proposition 2.3.9 for the second inequality. In particular, the equality holds
if and only if −!d = ((r − 1)(g − 1), (r − 3)(g − 1), · · · , (−r + 1)(g − 1)).

For the inequality on the right hand side in the lemma and the the condition for reaching the
equality, we will see this from the proof of Theorem 3.3.7, which says, the moduli space U(X, r, 0) of
semistable vector bundles, as a connected component of the fixed points set P , is the only connected
component in the nilpotent cone that reaches the maximal dimension 1

2 dimC
(
MDol(X, r)

)
=

r2(g − 1) + 1.

Therefore, we confirm the weak oper stratum conjecture for higher rank cases:

Theorem 2.3.17. The oper stratum G1
oper is the unique closed stratum of minimal dimension

r2(g − 1) + g + 1 in MdR(X, r), and the Hitchin stratum G0
Hit is the unique stratum of minimal

dimension r2(g − 1) + g + 1 inMDol(X, r).



Chapter 3

Twistor Structure Construction

In this chapter we will introduce twistor theory, then apply the non-Abelian Hodge correspondence
to study this theory, and obtain some interesting results.

In the first section, we will introduce the basic twistor theory based on [HKLR87]. The fun-
damental idea on constructing a twistor space associated to a hyper-Kähler manifold M1 is topo-
logical a product of this manifold and the complex projective line P1, the quaternionic structure
(I, J,K = IJ) onM induces a complex structure I onM×P1, and hence gives a complex manifold
denoted as TW(M), we call it the Hitchin twistor space associated to M .

In the second section, we will introduce Deligne’s idea on interpreting this twistor theory via
non-Abelian Hodge correspondence. As moduli space parametrizing isomorphism classes of stable
objects in non-Abelian Hodge theory, the underlying smooth manifold M sm(X, r) carries a natu-
ral hyper-Kähler structure(and therefore, quaternionic), and hence gives a Hitchin twistor space,
TW(M sm(X, r)). Deligne’s idea is, this twistor space can be interpreted by gluing the Hodge
moduli spacesMHod(X, r) andMHod(X̄, r) via complex conjugation and non-Abelian Hodge cor-
respondence to obtain a new space TWDH(X, r) together with a fibration (holomorphic projection)
TWDH(X, r)! P1. This resulting space is called the Deligne–Hitchin twistor space, and the subset
of smooth point locus (such that the projection is smooth) TWsm

DH(X, r) is analytically isomorphic
to TW(M sm(X, r)).

The most difference between these two methods is that, for the first one (Hitchin et al.), one
begins with a manifold with quaternionic structure (that is, M sm(X, r)), then taking the product
with the complex projective line P1, and finally, the quaternionic structure of M sm(X, r) and the
natural complex structure of P1 gives a twistor structure for the product space. For the second
one (Deligne), one glues the Hodge moduli spaces over X and X̄ via complex conjugation and
non-Abelian Hodge correspondence. The preferred sections gives the trivialization(in fact C∞
isomorphism) TWsm

DH(X, r) ∼= M sm(X, r) × P1 and the weight one property for preferred sections
implies the quaternionic structure.

In the last section, we focus on Riemann surface X. Denoted X as (X , I), for X a smooth
connected orientable closed surface of genus at least 2, and I the complex structure that induces
the Riemann surface structure. Then the space of isotropy classes of complex structures on X
can be identified with its Teichmüller space. The extended mapping class group acts on the
Teichmüller space, and therefore, induces an action of the outer automorphism group Out(π1(X ))
on the Teichmüller space. When we trace back to Deligne’s construction, the two Hodge moduli
spaces appearing in the gluing process are over X and its conjugate X̄, or equivalently, over (X , I)
and (X ,−I). The map from a complex structure I to −I stands for a non-trivial element in

1In fact, in [HKLR87], a twistor structure can be constructed for any complex manifold with a quaternionic structure.

97
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Out(π1(X )). Hence we can generalize this to any non-trivial element γ. The resulting two Hodge
moduli spaces can be also glued together to give a new twistor space, where we call it γ-twistor
space, and denoted as TWγ(X, r). We study this twistor space, and obtain some interesting results.
This chapter is mainly based on [HH19, Hua20].

3.1 General Twistor Construction

In [HKLR87], the authors provide a construction of twistor space for any hyper-Kähler manifold
(In general, for differential manifolds with quaternionic structures). LetM be a hyper-Kähler man-
ifold with three complex structures (I, J,K = IJ). The stereographic projection of the complex
projective line P1 ! S2

λ = u+ iv 7!
(
x = 1− |λ|2

1 + |λ|2 , y = 2u
1 + |λ|2 , z = 2v

1 + |λ|2
)

defines a family of complex structures Iλ := xI + yJ + zK on M .
The twistor space TW(M) of M is a C∞ trivialization TW(M) ∼= M × P1. Iλ determines an

almost complex structure I on TW(M), let a = m× λ ∈ TW(M), then

I : TaTW(M) = TmM ⊕ TλP1 ! TmM ⊕ TλP1

is given by (Iλ, I0), where I0 : TλP1 ! TλP1 is the usual complex structure on P1 given by I0(v) = iv.
Clearly, this I is an almost complex structure, and moreover, it is integrable [Sal82, HKLR87],
thus the twistor space TW(M) is a complex manifold of dimension dimC(TW(M)) = 1+dimC(M).

The twistor space TW(M) has the following properties:

(1) the projection π : TW(M)! P1 is holomorphic;

(2) there is an antilinear involution σ : TW(M) ! TW(M), (m,λ) 7! (m,−λ̄−1), which covers
the antipodal involution σP1 : P1 ! P1, λ 7! −λ̄−1, so it gives a real structure on TW(M);

(3) for any m ∈ M , the section {m} × P1 ⊂ TW(M) is holomorphic and σ-invariant, we call it
a preferred section, in some contexts [HKLR87, Sal82], it is called a twistor line;

(4) weight 1 property: the normal bundle along any preferred section is isomorphic toOP1(1)⊕ dimC(M).

Proposition 3.1.1. Preferred sections are σ-invariant. Moreover, locally, preferred sections are
the only σ-invariant holomorphic sections.

If we denoted by Pre the set of preferred sections in the Douaby moduli space Sec of holomorphic
sections. Then “locally” means there exists an open neighborhood U of Pre in Sec such that
preferred sections are the only σ-invariant sections in U [KV98]. To my knowledge, whether
Proposition 3.1.1 holds globally is unknown:

Question 3.1.2. Are the preferred sections the only σ-invariant sections?

Moreover, let p : TW(M) ! M be the natural projection, then the twistor space TW(M)
admits a natural hermitian metric g := p∗gM + π∗gFS, where gM is the hyper-Kähler metric on
M and gFS is the Fubini–Study metric on P1. This metric makes the twistor space TW(M) into
a balanced manifold [KV98] (i.e, the associated fundamental form ω(•, •) := g(I•, •) satisfies the
weak closedness condition d(ωdimCM) = 0).
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Now we apply above ideas to the moduli spaces appeared in non-Abelian Hodge theory.
Let X be a smooth complex projective variety, as introduced in last chapter, denoted by

MdR(X, r) and MDol(X, r) the open subsets of smooth points of the moduli spacesMdR(X, r) and
MDol(X, r), respectively. From non-Abelian Hodge theory, we have C∞ isomorphismMdR(X, r) ∼=
MDol(X, r) coming from the homeomorphism between the underlying topological spaces [Sim94a,
Sim94b, Sim95]. Let M sm(X, r) be the underlying smooth differentiable manifold. Then by the
work of Hitchin ([Hit87a] for 1 dimensional base manifold) and Fujiki ([Fuj91] for higher dimen-
sional Kähler manifolds as the base), M sm(X, r) carries a hyper-Kähler structure that consists
of three complex structures I, J,K := IJ = −JI for I comes from the complex structure of
the base X such that (M sm(X, r), I) is analytically isomorphic to MDol(X, r), and J comes from
the complex structure of the Lie group G = GL(r,C) such that (M sm(X, r), J) is analytically
isomorphic to MdR(X, r). Moreover, IJ =: K gives the third complex structure, which makes
(M sm(X, r), I, J,K) has the structure of a hyper-Kähler manifold. Hence Hitchin’s idea for con-
structing the twistor space of hyper-Kähler manifolds can be applied to M sm(X, r). Therefore,
we obtain a twistor space for M sm(X, r), denoted as TW(M sm(X, r)), and called it the Hitchin
twistor space.

3.2 Deligne’s Interpretation

Deligne’s original aim was to understand the Hitchin twistor space TW(M sm(X, r)) via λ-connections.
The idea is gluing the Hodge moduli space MHod(X, r) over X and the Hodge moduli space
MHod(X̄, r) over its conjugate chart X̄ to obtain a twistor space TWDH(X, r) such that the smooth
locus TWsm

DH(X, r) is analytically isomorphic to TW(M sm(X, r)). This was described and further
studied by Simpson, he interpreted MHod(X, r) as the Hodge filtration on the non-Abelian de
Rham cohomology MdR(X, r). He showed the Griffiths transversality and the regularity of the
Gauss–Manin connection for this filtration [Sim95]. Here we introduce their ideas based on Simp-
son’s papers [Sim95, Sim08].

Let X be a complex projective variety with a fixed base point x. The complex conjugation
ϕ : X ! X̄, x 7! x̄ induces an isomorphism

ϕ∗ : π1(X, x)! π1(X̄, x̄) (3.1)

of fundamental groups. With same notations used before, let MHod(X, r) be the moduli space
of semistable λ-flat bundles of rank r with vanishing Chern classes, let MB(X, r) be the moduli
space of representations ρ : π1(X) ! GL(r,C). The Riemann-Hilbert correspondence gives the
complex analytic isomorphism [Sim94a]:

RHX :MdR(X, r)
∼=−−!MB(X, r). (3.2)

The C∗-action onMHod(X, r) gives the algebraic isomorphism:

rX :MHod(X, r)×C C∗
∼=−−!MdR(X, r)× C∗

[E, ∂̄E, Dλ, λ] 7−! ([E, ∂̄E, λ−1Dλ], λ).
(3.3)

The gluing isomorphism dϕ :MHod(X, r)×C C∗ !MHod(X̄, r)×C C∗ is given as follows:
First by isomorphisms (3.1)-(3.3), any point [E, ∂̄E, Dλ, λ] inMHod(X, r) ×C C∗ determines a

representation ρ(λ−1Dλ) ◦ ϕ−1
∗ : π1(X̄, x̄) ! GL(r,C), where ρ(λ−1Dλ) : π1(X, x) ! GL(r,C)
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is the monodromy corresponds to the flat connection λ−1Dλ. Then by the conjugate version of
isomorphisms (3.2), ρ(λ−1Dλ) ◦ ϕ−1

∗ corresponds to a flat bundle over X̄. Finally, take λ−1 ∈ C∗
and fix the obtained flat bundle at this point, by the conjugate version of (3.3) this gives a λ−1-flat
bundle over X̄. The obtained λ−1-flat bundle over X̄ is [E, λ−1Dλ, λ−1∂̄E, λ

−1]. Therefore, the
gluing isomorphism is

dϕ :MHod(X, r)×C C∗ ∼=MHod(X̄, r)×C C∗

[E, ∂̄E, Dλ, λ]↔ [E, λ−1Dλ, λ−1∂̄E, λ
−1],

which covers the map C∗ ! C∗, λ 7! λ−1. Therefore, we obtained a space TWDH(X, r), called
the Deligne–Hitchin twistor space, together with a fibration TWDH(X, r)! P1 which extends the
projection π :MHod(X, r)! C∗. The fibers of this fibration areMDol(X, r) at λ = 0,MDol(X̄, r)
at λ =∞, and analytically isomorphic toMdR(X, r) at λ 6= 0,∞.

Let [E, ∂̄E, θ, h] ∈ MDol(X, r) be a harmonic Higgs bundle with the pluri-harmonic metric h,
then it determines a holomorphic section p : P1 ! TWDH(X, r):

λ 7−! [E, ∂̄E + λθ†h, λ∂E,h + θ, λ],

where θ†h and ∂E,h are the unique operators determined by (θ, h) and (∂̄E, h), respectively. This
section is called a preferred section.

We can also define an antilinear involution σ : TWDH(X, r) ! TWDH(X, r) that covers the
antipodal involution σP1 : P1 ! P1. This map is defined by gluing the antiholomorphic ismorphisms
σHod,X :MHod(X, r)!MHod(X̄, r) and σHod,X̄ :MHod(X̄, r)!MHod(X, r), where

σHod,X :MHod(X, r)!MHod(X̄, r)

[E, ∂̄E, Dλ, λ] 7! [Ē∗, (∂̄E)∗, (Dλ)∗,−λ̄].

When (E, ∂̄E, Dλ) is a harmonic λ-flat bundle, by taking a pluri-harmonic metric h, then we have
the isomorphism

[Ē∗, (∂̄E)∗, (Dλ)∗,−λ̄] ∼= [E, δ′h,−δ′′h,−λ̄],

where the operators δ′h and δ′′h can be found in in Chapter 1, Section 1.2.
Therefore, over these points admit pluri-harmonic metrics (that is, polystable points, in par-

ticular, stable points), we can write the involution σ as follows:

σ : TWDH(X, r)! TWDH(X, r)
[E, ∂̄E, Dλ, λ] 7! [E, λ̄−1δ′′h,−λ̄−1δ′h,−λ̄−1].

In fact, σ is the product of the following 3 involutions [Sim08]:

(1) an antiholomorphic involution

C : TWDH(X, r)! TWDH(X, r)

[E, ∂̄E, Dλ, λ] 7! [E, λ̄−1Dλ, λ̄−1∂̄E, λ̄
−1]

obtained by gluing complex conjugations of λ-flat bundles;
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(2) a holomorphic involution

D : TWDH(X, r)! TWDH(X, r)
[E, ∂̄E, Dλ, λ] 7! [E∗, (∂̄E)∗, (Dλ)∗, λ]

obtained by gluing duals of λ-flat bundles;

(3) a holomorphic involution

N : TWDH(X, r)! TWDH(X, r)
[E, ∂̄E, Dλ, λ] 7! [E, ∂̄E,−Dλ,−λ]

obtained by −1 ∈ C∗ acts on TWDH(X, r).

By definition, any point in the twistor space determines a unique preferred section. Therefore,
the set of preferred sections gives a homeomorphism

TWDH(X, r) ∼=MDol(X, r)× P1,

which is a C∞ isomorphism over smooth points [Sim95]:

TWsm
DH(X, r) ∼= MDol(X, r)× P1.

Proposition 3.2.1. Preferred sections are σ-invariant. Moreover, locally, preferred sections are
the only σ-invariant holomorphic sections.

Preferred sections are invariant under the antilinear involution σ is easy to see. Here “lo-
cally” means that for any given preferred section p : P1 ! TWDH(X, r), there exists an open
neighbourhood U ⊆ TWDH(X, r) of p such that preferred sections are the only σ-invariant sec-
tions in U . This is true because the normal bundle along any preferred section is isomorphic to
(OP1(1))⊕ dimC(MdR(X,r)).

In [Sim95], Simpson asked the following question:

Question 3.2.2. Does Proposition 3.2.1 holds globally? That is, are the preferred sections the
only σ-invariant sections?

In [Sim95, Sim08], Simpson showed this question is true for twistor space of rank 1 bundles.
Recently, in [BHR19], the authors constructed holomorphic σ-invariant but not preferred sections
P1 ! TWDH(X, 2) for twistor space TWDH(X, 2) of rank 2 bundles over compact Riemann surface
of g ≥ 2.

Now we give a brief conclusion on above two different kinds of constructing the twistor spaces. In
Hitchin’s constructing, we first have a hyper-Kähler manifold (the moduli spaces are hyper-Kähler)
M sm(X, r), then the twistor space has a naturally structure of M sm(X, r) × P1. The complex
structure is induced from a family of complex structures (given by the quaternionic structure)
on M sm(X, r) and the natural complex structure on P1. While from Deligne’s interpretation, the
twistor space is obtained by gluing the Hodge moduli spaces MHod(X, r) and MHod(X̄, r) over
X and the conjugate X̄, respectively. This gluing is obtained via the algebraic isomorphism rX :
MHod(X, r)×CC∗ ∼=MdR(X, r)×C∗ and the conjugate algebraic isomorphism rX̄ :MHod(X̄, r)×C
C∗ ∼= MdR(X̄, r) × C∗, the analytic isomorphisms RHX : MdR(X, r) ∼= MB(X, r) and RHX̄ :
MdR(X̄, r) ∼=MB(X̄, r) given by the Riemann–Hilbert correspondence, and the identification ϕ̃ :
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MB(X, r) =MB(X̄, r) induced from the conjugate map ϕ : X ! X̄, that is, maps a representation
ρ : π1(X, x) ! GL(r,C) to ρ ◦ ϕ−1

∗ : π1(X̄, x̄) ! GL(r,C). That can be outlined by the following
diagram:

MHod(X, r)×C C∗

∼=alg rX

��

dϕ
∼=an

//MHod(X̄, r)×C C∗

MdR(X, r)× C∗

∼=an RHX×idC∗

��

MdR(X̄, r)× C∗

∼=alg r−1
X̄

OO

MB(X, r)× C∗ ∼=
ϕ̃×c MB(X̄, r)× C∗

∼=an RH−1
X̄
×idC∗

OO

where c : C∗ ! C∗, λ 7! λ−1.
Preferred sections give the twistor space the product structure, and the weight 1 property im-

plies the quaternionic structure. This viewpoint shows that a quaternionic structure onM sm(X, r)
is equivalent to the weight 1 property of a preferred section [Sim08].

Moreover, the twistor spaces arising from these two different methods are analytically isomor-
phic:
Theorem 3.2.3 ([Sim95, Theorem 4.2]). The twistor space TWsm

DH(X, r) is analytically isomorphic
to TW(M sm(X, r)).
Remark 3.2.4. Now we come back to see Question 3.1.2, from the answer to Question 3.2.2 given
by the authors in [BHR19], in general, Question 3.1.2 does not have a positive answer, that is,
preferred sections in the Hitchin twistor space TW(M) are not the only σ-invariant sections. In
Simpson’s proof of Theorem 3.2.3, the complex analytic isomorphism identifies preferred sections
in TW(M sm(X, r)) and in TWsm

DH(X, r), hence at least Question 3.2.2 is not right for TWsm
DH(X, 2).

Therefore, we can propose the following question:
Question 3.2.5. When M is a compact hyper-Kähler manifold, are preferred sections in the
Hitchin twistor space TW(M) the only σ-invariant sections?

3.3 A Generalization

In [HH19] (see also [Hua20]), we concentrated on the case with Riemann surfaces as the base,
we generalized Deligne’s construction to obtain the so called generalized Deligne–Hitchin twsitor
space.

3.3.1 Construction

Let X be a compact Riemann surface of genus g ≥ 2 and let X be the underlying smooth surface.
Take G = GL(r,C). Associated to the surface X , there are some geometric objects:
(1) The fundamental group π1(X ):

π1(X ) = 〈α1, β1, · · · , αg, βg :
g∏
i=1

αiβiα
−1
i β−1

i = 1〉.

(2) The Betti moduli spaceMB(X , r) (introduced in last chapter):

MB(X , r) = Repred(X , G)/G,
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where Repred(X , G) := Homred(π1(X ), G), the space of reductive representations of π1(X )
into G. And G acts on Repred(X , G) by conjugation. Repred(X , G) is an affine variety by the
embedding

Repred(X , G) ↪−→ G2g, ρ 7−! (ρ(α1), · · · , ρ(βg)),

andMB(X , G) is a quasi-projective variety. MB(X, r) := Repirr(X , G)/G, the moduli space
of irreducible representations, as a Zariski dense open subset ofMB(X, r), which is a smooth
quasi-projective variety.

(3) The Teichmüller space Teich(X ):

Teich(X ) := {isotopy classes of complex structures on X},

which is identified with the equivalent classes of marked hyperbolic structures on X . It’s
known that Teich(X ) is homeomorphic to R6g−6.

Fix λ ∈ C, letMλ
Hod(X, r) be the moduli space of semistable λ-flat bundles overX of rank r and

with vanishing Chern classes, Mλ
Hod(X, r) the smooth locus of stable objects. ThenMHod(X, r) =⋃

λ∈CMλ
Hod(X, r). When λ 6= 0, we have the analytic isomorphism (in fact, algebraic isomorphism)

µλ :Mλ
Hod(X, r)

∼=−−!MdR(X, r)

given by the map (E, ∂̄E, Dλ) 7! (E, ∂̄E,∇ = λ−1Dλ), with its inverse µ−1
λ : (E, ∂̄E,∇) 7!

(E, ∂̄E, Dλ = λ∇) (rescaling the twistor parameter λ). Moreover, by Mochizuki correspondence
betweenMλ

Hod(X, r) andMDol(X, r) and the homeomorphismMDol(X, r) andMdR(X , r), we can
define another homeomorphism

νλ :Mλ
Hod(X, r)

∼=−−!MdR(X, r),

which is a C∞ isomorphism over smooth locus: Mλ
Hod(X, r) ∼= MdR(X, r).

The extended mapping class group

Mod♦(X ) := π0(Diff(X )) = Diff(X )/Diff0(X )

acts on the Teichmüller space Teich(X ) by precomposition. The quotientM(X ) := Teich(X )/Mod♦(X )
is called the Riemann moduli space of complex structures on X , which parametrizes the Riemann
surface structures on X under biholomorphism.

A generalization of Deligne gluing is the following:
We can write X = (X , I) with the complex structure I ∈ M(X ) that determines the Rie-

mann surface structure, choose a new complex structure I ′ ∈ M(X ) and let X ′ = (X , I ′) be
the new Riemann surface. Then by the analytic isomorphism µλ and the Riemann–Hilbert corre-
spondence, we can glue the Hodge moduli spacesMHod(X, r) andMHod(X ′, r) along the overlap
MHod(X, r)×CC∗ ∼=MHod(X ′, r)×CC∗ ∼=MB(X , r)×C∗ that covers the map C∗ ! C∗, λ 7! λ−1.

More precisely, choose I ′ ∈ M(X ). For [E, ∂̄E, Dλ, λ] ∈ MHod(X, r) ×C C∗, then it cor-
responds to the flat bundle [E, ∂̄E, λ−1Dλ, λ] via the isomorphism µλ, and hence corresponds
to a point (ρ(λ−1Dλ), λ) ∈ MB(X , r) × C∗ via the Riemann–Hilbert correspondence, where
ρ(λ−1Dλ) : π1(X ) ! G is the associated monodromy representation. Again by the Riemann–
Hilbert correspondence, it corresponds to some [E ′, ∂̄E′ ,∇, λ−1] ∈ MdR(X ′, r) × C∗ at the point
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λ−1, consequently, we obtain some [E ′, ∂̄E′ , D
′λ−1 = λ−1∇, λ−1] ∈ MHod(X ′, r) ×C C∗ via µ−1

λ−1 .
From the construction, it’s not hard to see that

[E ′, ∂̄E′ , D′λ
−1
, λ−1] = [E, (∂̄E + λ−1Dλ)0,1

X′ , λ
−1(∂̄E + λ−1Dλ)1,0

X′ , λ
−1],

where (•)1,0
X′ and (•)0,1

X′ denote the corresponding (1,0)-part and (0,1)-part with respect to the
complex structure I ′ on X ′, respectively. That is, for an 1-form α,

(α)1,0
X′ =

√
−1 + I ′

2
√
−1

α, (α)0,1
X′ =

√
−1− I ′

2
√
−1

α

since I ′(α) =
√
−1(α)1,0

X′ −
√
−1(α)0,1

X′ and
√
−1α =

√
−1(α)1,0

X′ +
√
−1(α)0,1

X′ .
Therefore, we define an analytic isomorphism again called the Deligne isomorphsim

d :MHod(X, r)×C C∗ !MHod(X ′, r)×C C∗

that covers the map C∗ ! C∗, λ 7! λ−1. Now we can use this isomorphism d to glue together two
analytic spacesMHod(X, r) andMHod(X ′, r) along their open sets. The resulting space is denoted
by TW(X,X ′; r), called the generalized Deligne–Hitchin twistor space. In particular, it forms a
fibration π : TW(X,X ′; r) ! P1 with the fibers π−1(λ) analytically isomorphic to MB(X , r) for
λ ∈ P1\{0,∞}, and the fibers π−1(0) =MDol(X, r), π−1(∞) =MDol(X ′, r).

In conclusion, our construction is along the following diagram:

MHod(X, r)×C C∗

∼=alg rX
��

∼=an

d //MHod(X ′, r)×C∗ C∗

MdR(X, r)× C∗

∼=an RHX×idC∗
��

MdR(X ′, r)× C∗
∼=alg r−1

X′

OO

MB(X , r)× C∗ id×c
∼=

MB(X , r)× C∗
∼=an RH−1

X′×idC∗

OO

where c : C∗ ! C∗, λ 7! λ−1.
On the other hand, if we replace the isomorphism µλ by the isomorphism νλ in the above

construction, then we can obtain another twistor space T W(X,X ′; r) which is diffeomorphic to
TW(X,X ′; r).

3.3.2 Another Description

Let N := S2\{(1, 0, 0)},S := S2\{(−1, 0, 0)}. Consider the projections

pN : N −! C, (x1, x2, x3) 7! x2 +
√
−1x3

1− x1

with the inverse

p−1
N : C −! N, λ 7!

(
|λ|2 − 1
|λ|2 + 1 ,

2Reλ
|λ|2 + 1 ,

2Imλ
|λ|2 + 1

)
,
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and

pS : S −! C, (x1, x2, x3) 7! x2 −
√
−1x3

1 + x1

with the inverse

p−1
S : C −! S, λ 7!

(
1− |λ|2
|λ|2 + 1 ,

2Reλ
|λ|2 + 1 ,

2Imλ
|λ|2 + 1

)
.

As described as previous section, let M sm(X, r) and M sm(X ′, r) be the underlying smooth
differentiable manifolds of the moduli space MDol(X, r) and MDol(X ′, r), respectively. Then they
are diffeomorphic and they carry the hyperkähler structures (I, J,K := IJ = −JI) and (I′, J,K′ :=
I′J = −JI′), respectively. For the productM sm(X, r)×S, at −!x ∈ S, we assign the fiber M sm(X, r)
with the complex structure

I−!x = x1I+ x2J+ x3K,

and for the product M sm(X ′, r)×N, at
−!
x′ ∈ N, we assign the fiber M sm(X ′, r) with the complex

structure
J−!
x′

= x′1I′ + x′2J+ x′3K′,

respectively. By Simpson’s result, when −!x = (x1, x2, x3),
−!
x′ = (−x1, x2, x3), there is a diffeomor-

phism f−!x ,
−!
x′

: M sm(X, r)!M sm(X ′, r) such that it is a biholomorphism

(M sm(X, r), I−!x ) ∼=
(
M sm(X ′, r), J−!

x′

)
.

Moreover, by virtue of these diffeomorphisms, we can glueM sm(X, r)×S andM sm(X ′, r)×N along
the overlap S⋂N to make the topological product M sm(X, r) × S2 into a holomorphic fibration
over P1 that is exactly biholomorphically equivalent to the smooth locus of the generalized Deligne–
Hitchin twistor space TWsm(X,X ′; r) := MHod(X, r)⋃d MHod(X ′, r), where the complex structures
on fibers have been defined as above and the complex structure on base is the standard one of P1.

3.3.3 C∗-Action, De Rham Sections and Preferred Sections

The Deligne–Hitchin twistor space introduced in the last section is an important example of γ-
twistor space, we can obtain it by choosing γ being the complex conjugation [Sim95, Sim08]. Here
we briefly recall it.

Example 3.3.1 (Deligne–Hitchin twistor space, [Sim95, Sim08]). Let X ′ = X̄ := (X ,−I) be the
complex conjugate of X, which is generally not isomorphic to X = (X , I) unless there is a real
structure on X. Then the Deligne isomorphism d : MHod(X, r) ×C C∗ ! MHod(X̄, r) ×C C∗ is
explicitly given by

((E, ∂̄E, Dλ), λ) 7! ((E, λ−1Dλ, λ−1∂̄E), λ−1).

The Deligne–Hitchin twistor space TWDH(X, r) is obtained by gluingMHod(X, r) andMHod(X̄, r)
with the isomorphism d. There is an antiholomorphic involution σ on TWDH(X, r) covering the
antipodal involution λ 7! −λ̄−1 of P1. It is defined by gluing together antilinear isomorphisms
i :MHod(X, r)!MHod(X̄, r) and i−1 :MHod(X̄, r)!MHod(X, r), where i is given by

((E, ∂̄E, Dλ), λ) 7! ((Ē∗, (∂̄E)∗,−(Dλ)∗),−λ̄).
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When (E, ∂̄E, Dλ) admits a pluri-harmonic metric h, then we have an isomorphism

(Ē∗, (∂̄E)∗,−(Dλ)∗,−λ̄) ∼= ((E, δ′h,−δ′′h),−λ̄).

Theorem 3.3.2. Let {(E, ∂̄′′Ei , D
λ
i )} be a sequence lying in Mλ

Hod(X, r), and assume it has a limit
point (E, ∂̄′′∞, Dλ

∞). Denoted by (E, ∂̄i, θi) and (E, ∂̄∞, θ∞) the Higgs bundles corresponding to
(E, ∂̄′′Ei , D

λ
i ) and (E, ∂̄′′∞, Dλ

∞), respectively. Then the sequence {(E, ∂̄i, θi)} converges to the point
(E, ∂̄∞, θ∞) in the space MDol(X, r).

Proof. Actually, this property is an ingredient of the proof of Corollary 2.0.3, and can be proved
by Theorem 5.12 in [Sim94a] and the separateness of moduli space as what Simpson has done
in [Sim94b]. Now we revisit it by twistor theory. By assumption, we can assume the sequence
{(E, ∂̄′′Ei , D

λ
i )} lie in a sufficiently small open subset of Mλ

Hod(X, r). Every point (E, ∂̄′′Ei , D
λ
i ) gives

rise to a preferred section of Deligne–Hitchin twistor space. From the proof of Theorem 2.0.2, the
sequence {(E, ∂̄i, θi)} has a limit point denoted by (Ẽ, ˜̄∂∞, θ̃∞). It is known that each preferred
section has the weight 1 property, that is, the normal bundle of a preferred section is isomor-
phic to the bundle (O(1))

⊕
dimC(MdR(X,r)) over P1. Hence we get a holomorphic section joining

(E, ∂̄′′∞, Dλ
∞, λ) to (Ẽ, ˜̄∂∞, θ̃∞, 0), this section must be σ-invariant since it lies in the closure of a

σ-invariant subset. However, as we have seen in the last section (cf. Proposition 3.2.1), locally
every σ-invariant holomorphic section is preferred, thus (Ẽ, ˜̄∂∞, θ̃∞) = (E, ∂̄∞, θ∞).

The C∗-action on MHod(X, r) (see Section 2.1.1, Chapter 2) can be extended to the entire
generalized Deligne–Hitchin twistor space TW(X,X ′; r). Indeed, one defines the C∗-action on
MHod(X ′, r) by

t · [E, ∂̄E, Dλ, λ] := [E, ∂̄E, t−1Dλ, t−1λ],

then the following diagram commutes

MHod(X, r) t·
−−−! MHod(X, r)

d

y d

y
MHod(X ′, r) t·

−−−! MHod(X ′, r).

Fixing a twistor parameter λ0 ∈ C∗, associated to a given λ0-flat bundle (E, ∂̄E, Dλ0) ∈
Mλ0

Hod(X, r), we have a holomorphic section

sλ0 : λ 7−! (E, ∂̄E, λλ−1
0 Dλ0)

of MHod(X, r) ×C C∗ ! C∗. By Simpson’s Theorem 2.2.3, the limit lim
λ!0

sλ0(λ) exists and is a
fixed point of the C∗-action, hence sλ0(λ) can be holomorphically extended to λ = 0. By Deligne
isomorphism, we have

d(sλ0(λ)) = (E, (λ−1
0 Dλ0 + ∂̄E)0,1

X′ , λ
−1(λ−1

0 Dλ0 + ∂̄E)1,0
X′ )

as a section of MHod(X ′, r) ×C C∗ ! C∗. Again by Simpson’s Theorem 2.2.3, d(sλ0(λ)) can be
holomorphically extended to λ =∞, and the limit lim

λ!∞
d(sλ0(λ)) is also a fixed point of C∗-action.

The extended section is also denoted by sλ0 , and is called the de Rham section associated to
(E, ∂̄E, Dλ0).
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Given a section s : P1 ! TW(X,X ′; r) of the generalized Deligne–Hitchin twistor space
TW(X,X ′; r), its normal bundle is given by the short exact sequence

0 −! TP1 −! s∗TTW(X,X′;r) −! Ns −! 0.

For the complex (End(E)⊗Ω•X , λ−1
0 Dλ0) associated to the λ0-flat bundle (E, ∂̄E, Dλ0 , λ0), there is

an isomorphism

H1(End(E)⊗ Ω•X , λ−1
0 Dλ0) ∼= H1(E,Dλ0) :=

(α, β) ∈ Ω0,1
X (End(E))⊕ Ω1,0

X (End(E))
: Dλ0α + λ0∂̄Eβ = λ̄0δ

′
h,λ0α− δ

′′
h,λ0β = 0


due to Kähler identities of flat λ0-connection (Lemma 1.2.4), where δ′h,λ0 and δ′′h,λ0 are defined by
the pluri-harmonic metric h on (E, ∂̄E, Dλ0). For any λ ∈ P1, since stability is an open condition,
we have the isomorphism Ns|λ ∼= H1(E,Dλ0).

By Grothendieck’s theorem,
Ns
∼=

κ⊕
i=1
OP1(ni),

where κ = dimC

(
H1(E,Dλ0)

)
= dimC

(
MB(X , G)

)
. The degree deg(Ns) = ∑κ

i=1 is called the
weight of the section s.

In [Ver14], Verbitsky introduced the notion of ample rational curves, a rational curve s in an
algebraic variety is called ample if its normal bundle is positive, that is, if Ns

∼=
⊕
iO(i), i > 0.

Since preferred sections of Deligne–Hitchin twistor space have weight 1 property, they are ample
rational curves. Similarly, we introduce the following notations for γ-twsitor space:

Definition 3.3.3 ([Ver14]). A section s : P1 ! TW(X,X ′; r) is called

(1) a balanced rational curve if n1 = · · · = nκ;

(2) a positive rational curve if its weight deg(Ns) = ∑κ
i=1 ni is a positive integer;

(3) an ample rational curve if each ni is a positive integer.

By Kodaira’s deformation theory [Kod62], the infinitesimal deformations of the section s are
given by elements in the cohomology H0(P1, Ns), and the corresponding obstruction is described
by the cohomology H1(P1, Ns). Hence if s is a positive rational curve, then any infinitesimal
deformation of s is unobstructed.

For de Rham sections of the Deligne–Hitchin twistor space TW(X,X ′; r), we have the following
property:

Theorem 3.3.4. Let sλ0 : P1 ! TW(X,X ′; r) be a de Rham section of the generalized Deligne-
Hitchin twistor space TW(X,X ′; r), then

(1) The weight 1 property holds, namely

Nsλ0
∼= OP1(1)⊕κ.

Therefore, de Rham sections of the generalized Deligne–Hitchin twistor space TW(X,X ′; r)
are balanced ample rational curves;

(2) The infinitesimal deformations of sλ0 are unobstructed



108 CHAPTER 3. TWISTOR STRUCTURE CONSTRUCTION

Proof. Let sλ0 be a de Rham section of the generalized Deligne–Hitchin twistor space TW(X,X ′; r),
take (α, β) ∈ H1(E,Dλ0), under the Deligne isomorphism dγ, we have

d(E, ∂̄E + α, λ(λ−1
0 Dλ0 + β))

=
(
E, (λ−1

0 Dλ0 + ∂̄E + α + β)0,1
X′ , λ

−1(λ−1
0 Dλ0 + ∂̄E + α + β)1,0

X′

)
,

which means that the transition function of the bundle Nsλ0
over P1 is determined by

α + λβ ! λ−1
(√
−1 + I ′

2
√
−1

(α + β) + λ

√
−1− I ′

2
√
−1

(α + β)
)
,

which means that Nsλ0
∼= OP1(1)⊕κ.

(2) Since H1(P1,OP1(i)) = 0 whenever i ≥ 0, the second claim follows from the standard
Kodaira deformation theory [Kod62]

Remark 3.3.5. By [HKLR87], a preferred section p : P1 ! TWDH(X, r) of the Deligne–Hitchin
twistor space TWDH(X, r) is fully characterized by the following three properties:

(1) It is holomorphic;

(2) It has weight 1 property, or equivalently, it is a balanced (ample) rational of weight κ;

(3) It is σ-invariant.

It’s obviously that the last condition could not be deleted, since de Rham sections of the Deligne–
Hitchin twistor space TWDH(X, r) have the weight 1 property. As we have remarked in the
previous content, recently in [BHR19], the authors constructed holomorphic and σ-invariant, but
not preferred sections for TWDH(X, 2) (for X a compact Riemann surface). Hence the second
condition is also necessary, but we do not know whether these three conditions fully characterize
the preferred sections.

The fixed points of the C∗-action on the generalized Deligne–Hitchin twistor space TW(X,X ′; r)
lie in the fibers π−1(0) and π−1(∞), namely the C-VHS in the corresponding Dolbeault moduli
spaceMDol(X, r) andMDol(X ′, r), respectively.

Look back on the stratifications of moduli spaces into locally closed strata introduced in Sec-
tion 2.2.2:

MHod(X, r) =
⋃
α

Gα, Mλ
Hod(X, r) =

⋃
α

Gλ
α, MDol(X, r) =

⋃
α

G0
α, MdR(X, r) =

⋃
α

G1
α,

we can define these stratifications in the level of twistor space. More precisely, define

• G̃α := {Θ ∈ TW(X,X ′; r) : limt!0 t ·Θ = (u, 0), u ∈ Pα};

• G̃λ
α := G̃α

⋂
π̃−1(λ) = {[E, d′′E, Dλ] ∈Mλ

Hod(X, r) : limt!0 t · [E, d′′E, Dλ] = u, u ∈ Pα};

• G̃λ
α(u) := {[E, d′′E, Dλ] ∈Mλ

Hod(X, r) : limt!0 t · [E, d′′E, Dλ] = u};
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where α is an index, λ ∈ C, and u ∈ Pα stands for a C-VHS. Then it’s easy to see that

G̃λ
α = Gλ

α, G̃λ
α(u) = Gλ

α(u).

So from now on, we will use the notations Gλ
α, G

λ
α(u), · · · . For any λ1, λ2 ∈ C∗, and any u ∈ Pα,

it’s clear that Gλ1
α (u) ∼= Gλ2

α (u) as analytic varieties.
For λ 6= 0 and u ∈ Pα which stands for a stable C-VHS, then by Mochizuki correspondence,

Gλ
α(u) gives rise to a smooth submanifold Y λ

α (u) of MDol(X, r), and in particular, Y 1
α (u) is the

image of G1
α(u) under non-Abelian Hodge correspondence. When λ = 0, set Y 0

α (u) := G0
α(u).

By Theorem 2.2.16, Y λ
α (u) contains u, we give the followings notions of smooth submanifolds of

MDol(X, r):

• Y λ
α (u) is called a λ-Hodge fiber over u, in particular,

• Y 1
α (u) is called a de Rham fiber over u;

• Y 0
α (u) is called a Higgs fiber over u.

Some interesting properties are studied and obtained by Simpson in [Sim95], and Collier and
Wentworth in [CW19]:
• Gλ

α(u) is locally closed inMλ
Hod(X, r) and is isomorphic to an affine spaces for any λ ∈ C;

• Gλ
α(u) is a Lagrangian submanifold with respect to the corresponding holomorphic symplectic

forms onMλ
Hod(X, r) for any λ ∈ C;

• Gλ1
α (u) is biholomorphic to Gλ2

α (u) for any λ1, λ2 ∈ C;

• Y 0
α (u) is transverse to Y 1

α (u) at u.
Moreover, in [Sim95], Simpson conjectured that the Lagrangian fiberG1

α(u) is closed inMdR(X, r)
and produces a foliation of the moduli space when varying α (cf. Conjecture 2.2.7). This con-
jecture of rank two in the parabolic context was proved by the authors of [LSS13]. However, as
pointed out by Simpson, G0

α(u) is not closed in MDol(X, r) in general. For example, if we take
u = (E, 0) for any stable vector bundle E, then G0

α(u) = H0(X,End(E) ⊗ Ω1
X), the authors of

[PPN19] showed that G0
α(u) is closed inMDol(X, r) if and only if E is very stable, i.e. there is no

non-zero nilpotent Higgs field on E.
We have the following half-dimensional property:

Proposition 3.3.6. Let u ∈ MDol(X, r) be a stable C-VHS. Then the tangent space TvY
λ
u at

v ∈ Y λ
u is half-dimensional of MDol(X, r).

Proof. Write u = (E , θ) = (⊕k
i=1Ei,

⊕k−1
i=1 θi : Ei ! Ei+1⊗KX), and let s = (E,Dλ) ∈Mλ

Hod(X, r)
be the preimage of v under Morchizuki correspondence. Then there is a Simpson filtration {F •} :
0 ⊂ F k−1 ⊂ · · · ⊂ F 0 = E on the flat bundle (E, λ−1Dλ) such that (GrF (E),GrF (λ−1Dλ)) = u.
The Simpson filtration {F •} produces a filtration on End(E) by

F p(End(E)) := {ϕ ∈ End(E) : ϕ : F q ! F p+q for any q},

hence the graded objects are given by Ep := GrpF (End(E)) = ⊕k
i=1 Hom(Ei, Ei+p). Then there is

a filtration on End(E)⊗ Ω1
X by

F p(End(E)⊗ Ωl
X) = F p−l(End(E))⊗ Ωl

X ,
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which induces a filtration on the hypercohomology Hi(Ω•X(End(E)), λ−1D̃λ). By Lemma 7.1 in
[Sim95], we have

TsG
λ
α(u) ∼= Ts′Y

λ
α (u) 'F 1(H1(Ω•X(End(E)), λ−1Dλ))

∼=
k−1⊕
p=1
H1
(

GrpF (End(E)) GrF (λ−1Dλ)
−−−−−−−! Grp−1

F (End(E))⊗KX

)

∼=
{

(α, β) ∈ Ω0,1
X (

k−1⊕
p=1

Ep)⊕ Ω1,0
X (

k−1⊕
p=0

Ep) : ∂̄Eβ + [θ, α] = ∂E,hα + [θ†h, β] = 0
}
,

where h is the pluri-harmonic metric on (E , θ). The dimension of the last space can be calculated
by Riemann-Roch as done in Lemma 3.6 of [CW19].

LetMHod(X, r,OX) (respectively, MHod(X, r,OX)) be the moduli space of semistable (respec-
tively, stable) λ-flat (λ ∈ C) bundles of rank r over X with vanishing Chern classes and fixed
determinant OX , and let M s

Hod(X, r,OX) be the Zariski dense open subset of MHod(X, r,OX) that
consists of λ-flat bundles such that the underlying vector bundles are stable, its fiber over a fixed
λ ∈ C is denoted as Mλ,s

Hod(X, r,OX). Let TW(X,X ′; r,O) (respectively, TWs(X,X ′; r,O)) be the
generalized Deligne-Hitchin twistor space for a chosen X ′ ∈ M(X ), which is obtained by gluing
MHod(X, r,OX) ×C C∗ and MHod(X ′, r,OX′) ×C C∗ (respectively, gluing MHod(X, r,OX) ×C C∗
and MHod(X ′, r,OX′)×C C∗) together via Deligne isomorphism d.

The following theorem is viewed as the Torelli-type theorem for the generalized Deligne–Hitchin
twistor space, where the approach of the proof follows from [BGHL09]. The key point is the
bound on the dimension of irreducible components of the moduli space of C-VHS from above
half-dimensional property.

Theorem 3.3.7. Let X,X ′ ∈ M(X ) and Y, Y ′ ∈ M(Y) be Riemann surfaces with genus g ≥ 3.
If TW(X,X ′; r,O) is analytically isomorphic to TW(Y, Y ′; r,O), then either X ∼= Y,X ′ ∼= Y ′, or
X ∼= Y ′, X ′ ∼= Y .

Proof. Let (TW(X,X ′; r,O))C∗ ⊆ TW(X,X ′; r,O) be the fixed point locus under the C∗-action.
Then by above half-dimensional property, for an irreducible component Z of (TW(X,X ′; r,O))C∗ ,
we have

dimC(Z) ≤ 1
2MdR(X, r).

In particular, since the dimension of each irreducible component of the nilpotent cone is a La-
grangian variety, hence has half of the dimension of the moduli space, which is due to Laumon
[Lau87] and Faltings [Fal93]. Then by a result of Simpson (Lemma 11.9 in [Sim94b]), above equal-
ity holds if and only if either Z = U s(X, r), the moduli space of stable bundles of rank r over X
with vanishing first Chern classes, or Z = U s(X ′, r).

We have defined the C∗-action on TW(X,X ′; r,O), which gives rise to a non-trivial holomor-
phic vector field on TW(X,X ′; r,O). By Corollary 3.4 in [BGHL09], the restriction of the tan-
gent bundle TTW(X,X ′; r,O) to U s(X, r) or U s(X ′, r) has no non-zero holomorphic sections. Let
ι(U s(X, r)) ⊆ TW(Y, Y ′; r,O) be the image under the composition U s(X, r) ↪! TW(X,X ′; r,O) ∼=
TW(Y, Y ′; r,O), hence ι(U s(X, r)) is contained in (TW(Y, Y ′; r,O))C∗ , which implies either ι(U s(X, r)) =
U s(Y, r) or ι(U s(X, r)) = U s(Y ′, r).

Then the conclusion follows from Theorem E in [KP95].
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3.3.4 Automorphism Groups

In this subsection, we study the automorphism groups of generalized Deligne–Hitchin twistor
spaces.

First we calculate the automorphism groups of Hodge moduli spaces, which generalizes the
result of Biswas and Heller [BH17] to the case of higher rank, we always assume g ≥ 4 and r ≥ 2
when there is no specification.

Proposition 3.3.8. The Picard group Pic(MHod(X, r,OX)) is isomorphic to Z.

Proof. Let M̊Hod(X, r,OX) = MHod(X, r,OX)\M s
Hod(X, r,OX). It is known that the codimen-

sion of M̊Hod(X, r,OX) in MHod(X, r,OX) is at least 3 [BM09, BGL11], which implies that the
pullback morphism provides an isomorphism between Picard groups Pic(MHod(X, r,OX)) and
Pic(M s

Hod(X, r,OX)).
Recall that for an algebraic fibration f : χ ! S of varieties with geometric connected fibers,

there is an exact sequence

Id −! Pic(S) −! Pic(χ) −! Pic(χ/S)(S) −! Br(S),

where Pic(χ/S)(S) is the group of sections of the relative Picard scheme Pic(χ/S) and Br(S)
denotes the Brauer group of the base S. For our case, the fibers of π : MHod(X, r,OX) ! C are
irreducible varieties, Pic(C) and Br(C) are both trivial. Hence, there are isomorphisms

Pic(MHod(X, r,OX)) ∼= Pic(M s
Hod(X, r,OX)) ∼= Pic(M s

Hod(X, r,OX)/C)(C).

Denote the restriction π|Ms
Hod(X,r,OX) : M s

Hod(X, r,OX) ! C by πs. Then the fiber π−1
s (0) is

canonically isomorphic to the cotangent bundle T ∗U s(X, r,OX) of U s(X, r,OX), and the fiber
π−1
s (λ) for any λ ∈ C∗ is a torsor associated to T ∗U s(X, r,OX). Again by the above exact sequence,

we have
Pic(π−1

s (λ)) ∼= Pic(U s(X, r,OX))

for any λ ∈ C. From a Drezet–Narasimhan’s famous result [DN89], which states that

Pic(U s(X, r,OX)) ∼= Z,

it immediately follows that Pic(MHod(X, r,OX)) ∼= Z.

Let Aut
(
MHod(X, r,OX),M s

Hod(X, r,OX)
)
be the subgroup of Aut(MHod(X, r,OX)) consisting

of the automorphisms which preserve both M s
Hod(X, r,OX) and M̊Hod(X, r,OX).

Lemma 3.3.9.

Aut
(
MHod(X, r,OX),M s

Hod(X, r,OX)
)
∼= Aut(M s

Hod(X, r,OX)).

Proof. SinceM s
Hod(X, r,OX) is a dense open subset ofMHod(X, r,OX). We only need to show that

the restriction morphism

Aut
(
MHod(X, r,OX),M s

Hod(X, r,OX)
)
! Aut(M s

Hod(X, r,OX))
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via σ 7! σ|Y is surjective, namely any automorphism of M s
Hod(X, r,OX) can be lifted to an

automorphism of MHod(X, r,OX). Let σ be an elements of Aut(M s
Hod(X, r,OX)), which can

be viewed as a pseudo-automorphism of MHod(X, r,OX). Then σ induces an automorphism of
Pic(MHod(X, r,OX)), by the above Proposition 3.3.8, it must be the identity. Choose Λ to be a
very ample line bundle on MHod(X, r,OX), since

H0
(
MHod(X, r,OX),Λ

) ∼= H0
(
M s

Hod(X, r,OX),Λ
∣∣∣
Ms

Hod(X,r,OX)

)
due to Hartog’s theorem, σ induces an isomorphism of H0(MHod(X, r,OX),Λ), hence an automor-
phism of P(H0(MHod(X, r,OX),Λ)), which gives rise to an automorphism of MHod(X, r,OX).

Theorem 3.3.10. The group Aut
(
MHod(X, r,OX),M s

Hod(X, r,OX)
)
satisfies the following short

exact sequence

Id −! V −! Aut
(
MHod(X, r,OX),M s

Hod(X, r,OX)
)
−! Aut(U s(X, r,OX))× C∗ −! Id.

Let ad(E) be the subbundle of End(E) consisting of trace zero endomorphisms, and H be a tautolog-
ical bundle over U s(X, r, L) such that the fiber is H0(X, ad(E)⊗KX) over a point E ∈ U s(X, r,OX),
then the abelian group V is isomorphic to Mor(C, H0(U s(X, r,OX),H)) consisting of the algebraic
morphisms from C to the space H0(U s(X, r,OX),H) of algebraic sections of H.

Proof. Let σ be an automorphism of MHod(X, r,OX). Denote the following composition

π−1(λ) σ−−!MHod(X, r,OX) π−−! C

by σ̃λ : π−1(λ) ! C. If λ ∈ C∗, it has been shown that there are no nonconstant algebraic
functions on Mλ

Hod(X, r,OX) [Sim91, Sin20]. Hence, σ̃λ is a constant map, in other words, σ maps
the fiber π−1(λ) to another fiber π−1(λ′) for some λ′ ∈ C. By Riemann–Hilbert correspondence,
MdR(X, r,OX) is biholomorphic to the affine variety MB(X, SL(2,C)), hence it does not contain
any compact submanifold of positive dimension, however, by properness of Hitchin map [Hit87a,
Hit87b], MDol(X, r,OX) contains many compact submanifolds of positive dimensions, namely,
π−1(λ) is not biholomorphic to π−1(0) for any λ ∈ C∗. It follows that λ′ actually belongs to C∗,
and σ preserves the fiber π−1(0). Therefore, σ induces an algebraic automorphism τσ : C ! C
satisfying

• π ◦ σ = τσ ◦ π,

• τσ(0) = 0,

namely, τ is expressed as τσ(z) = εσ · z for some εσ ∈ C∗.
Now we assume σ ∈ Aut(Mλ,s

Hod(X, r,OX)). We claim that there is a map η : C! Aut(N (X, r,OX))
such that the following diagram commutes

π−1
s (λ) σ

−−−! π−1
s (εσλ)

fλ

y fεσλ

y
U s(X, r,OX) η(λ)

−−−! U s(X, r,OX),
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where fλ : π−1
s (λ)! U s(X, r,OX) is just forgetful map. Indeed, we consider the following compo-

sition
ξλ : π−1

s (λ) fλ−! U s(X, r,OX) α
−! Alb(U s(X, r,OX)),

where the second map α is the Albanese map to Albanese variety Alb(U s(X, r,OX)) associated
to U s(X, r,OX). For a point e ∈ U s(X, r,OX), since there is no algebraic map from the affine
space f−1

λ (e) to the abelian variety Alb(U s(X, r,OX)), the composition ξεσλ ◦ σ ◦ f−1
λ maps e to

a point κ lying in Alb(U s(X, r,OX)). If there is no point e′ such that σ(f−1
λ (e)) ⊆ f−1

εσλ
(e′), then

dimC
(
α−1(κ)

)
= dimC

(
U s(X, r,OX)

)
, which is impossible.

Therefore, the composition

η(λ) := fεσλ ◦ φ ◦ f−1
λ : U s(X, r,OX)! U s(X, r,OX)

is well-defined.
The automorphism group Aut(U s(X, r,OX)) has been studied well. More concretely, there are

two approaches of producing automorphisms of Aut(U s(X, r,OX)) [KP95]:

• for ` ∈ Aut(X), and L ∈ Pic0(X) with Lr ∼= OX , send E ∈ U s(X, r,OX) to L⊗ `∗E;

• for ` ∈ Aut(X), and L ∈ Pic0(X) with Lr ∼= OX , send E ∈ U s(X, r,OX) to L⊗ `∗E∨.

In other words, Aut(U s(X, r,OX)) satisfies the following short exact sequence

Id −! G −! Aut(U s(X, r,OX)) −! Z/2Z −! Id,

where the subgroup G fits in the short exact sequence

Id −! Pic0(X)r −! G −! Aut(X) −! Id

for Pic0(X)r consisting of the r-torsion points in Pic0(X). From the above characterization, we
find that Aut(U s(X, r,OX)) is a finite group. Consequently, the map η : C ! Aut(U s(X, r,OX))
is a constant map, and then the image is denoted by ησ.

So far, we obtain a group homomorphism

Θ : Aut(M s
Hod(X, r,OX)) −! Aut(U s(X, r,OX))× C∗

σ 7−! (ησ, εσ).

To show this homomorphism is surjective, we only need to note that there ia a natural C∗-action
on M s

Hod(X, r,OX), and an elements of Aut(U s(X, r,OX)) can be extended to an automorphism
of M s

Hod(X, r,OX) since there are natural ways to define the tensor product, pullback and dual on
λ-connections.

Finally, we consider the kernel of the homomorphism Θ. Assume σ ∈ Ker(Θ), then σ(π−1
s (λ)) =

π−1
s (λ) and σ preserves the fibers of π−1

s (λ)! U s(X, r,OX) for any λ ∈ C. Then we have a map

ρσλ : π−1
s (λ)! A

defined by the composition

(E,Dλ) 7! (E, σ(Dλ)−Dλ) 7! (E, hE(σ(Dλ)−Dλ)),
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where A = ⊕r
i=1H

0(X,K⊗iX ) is the Hitchin space, and hE : H0(X, ad(E)⊗KX)! A is the Hitchin
map given by ϑ 7! (Tr(ϑ2), · · · ,Tr(ϑr)) [Hit87b]. When λ ∈ C∗, since codimC(π−1(λ)\π−1

s (λ)) ≥ 3,
there are also no nonconstant algebraic functions on π−1

s (λ). Hence ρσλ is a constant map, and then
the image is denoted by ρ̃σλ. Thus each σ ∈ Ker(Θ) gives rise to a morphism

ρ : C∗ −! A
λ 7−! ρ̃σλ,

which can be extended to the entire C. Moreover, since dimCH
0(X, ad(E) ⊗ KX) = dimCA =

(r2 − 1)(g − 1) [Hit87b], the map (E,Dλ) 7! (E, σ(Dλ)−Dλ) is independent of Dλ, hence yields
a section σ̃λ of H. Consequently, we obtain a morphism

%σ : C∗ −! H0(U s(X, r,OX),H)
λ 7−! σ̃λ,

which provides an isomorphism Ker(Θ) ' Mor(C, H0(U s(X, r,OX),H)) via σ 7! %σ.
Hence we complete the proof.

In [BH17], the authors proved that the automorphism of the Deligne–Hitchin twistor space
which is homotopic to the identity automorphism maps fibers of TWDH(X, r) ! P1 to fibers. In
the following, we will generalize this property to the generalized Deligne–Hitchin twistor space
TW(X,X ′; r).

Theorem 3.3.11. Let Aut0(TW(X,X ′; r)) be the identity component of the holomorphic auto-
morphism group Aut(TW(X,X ′; r)) of TW(X,X ′; r), then it satisfies the following short exact
sequence

Id −! K −! Aut0(TW(X,X ′; r)) −! C∗ −! Id,

where each element of K preserves the fiber of the fibration π : TW(X,X ′; r)! P1.

Proof. Let σ ∈ Aut0(TW(X,X ′; r)). Firstly, we show that σ maps fibers of π : TW(X,X ′; r)! P1

to fibers. Fixing λ0 ∈ P1, if σ does not map the fiber π−1(λ0) to a fiber, then there exists
λ1 ∈ C∗ and a small analytic open subset U ⊂ P1\{0,∞} of λ1 such U ⊂ π(σ(π−1(λ0))). Let
u1 = (E, ∂̄E, Dλ1) ∈ σ(π−1(λ0))⋂ π−1(λ1). By the isomorphism

TW(X,X ′; r)
∣∣∣∣
P1\{0,∞}

∼=MdR(X, r)× C∗,

there is a projection
pv : Tu1σ(π−1(λ0))! Tu′1MdR(X, r)

where u′1 = (E, ∂̄E, λ−1
1 Dλ1). Consider the de Rham section su1 associated to u1. Then there exists

(α, β) ∈ Tu1σ(π−1(λ0) with nonzero α ∈ Ω0,1
X (End(E)) and β ∈ Ω1,0

X (End(E)) such that pv(α, β)
lies in Nsu1

|λ2 ' Tu′1MdR(X, r) with some λ2 6= λ1 ∈ U .
By Theorem 3.3.4, we can take three points (α, β) lying in Tu1σ(π−1(λ0) to determine a sec-

tion s′u1 of the normal bundle Nsu1
such that it yields a section s̃′u1 of π : TW(X,X ′; r) ! P1

which intersects the fiber π−1(λ0) three times. This contradicts the fact that the element of
Aut0(TW(X,X ′; r)) maps a section to another section.
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As a consequence, the holomorphic automorphism σ ∈ Aut0(TW(X,X ′; r)) induces a holomor-
phic automorphism τσ ∈ Aut(P1), which has a form

τσ(z) = az + b

cz + d

with
 a b

c d

 ∈ GL(2,C). Since σ must map the fiber π−1(0) to itself or to the fiber π−1(∞), we

have

τσ(z) =

 εσ · z, τσ(0) = 0, τσ(∞) =∞;
z
εσ
, τσ(0) =∞, τσ(∞) = 0,

for some εσ ∈ C∗. The theorem follows.





Part II

Some Specializations of Non-Abelian
Hodge Correspondence
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Chapter 4

The Geometry of Parabolic Non-Abelian
Hodge Correspondence

The notion of parabolic structure was introduced by Metha and Seshadri [MS80] when they studied
the unitary representations of the fundamental group of a punctured Riemann surface, as a gener-
alization of Narasimhan and Seshadri’s work on unitary representations of the fundamental group
of compact Riemann surfaces [NS65]. In their interpretation, “parabolic structure” on a vector
bundle over compact Riemann surface means at each punctured point, the bundle admits a flag of
non-trivial subspaces of the fiber at that point, and each subspace associated with a “weight” of
real number in [0, 1). Under their setting and by introducing the parabolic stability, they estab-
lished a correspondence between the category of (semi)stable parabolic bundles of parabolic degree
0 and the category of irreducible (semisimple) unitary representations of the fundamental group
of the punctured surface. They also constructed the moduli space of semistable parabolic vector
bundles of fixed rank and wight system with parabolic degree 0, and they show it is a normal
projective variety. Later on, the definition of parabolic vector bundles (sheaves) for higher dimen-
sional projective varieties was given by Maruyama and Yokogawa [MY92], where they constructed
the coarse moduli space of stable parabolic sheaves, and showed it was a quasi-projective variety.
The moduli space of semistable parabolic sheaves was considered by Yokogawa in [Yok93].

The notion of Higgs field for parabolic vector bundles over Riemann surface was introduced
by Simpson [Sim90], in this paper, Simpson gives a different description of parabolic structure
for vector bundles over Riemann surface. In his setting, the parabolic structure is given by a left
continuous and decreasing sequence of sheaves indexed by real numbers, and the parabolic weights
are those indices such that the sequence jump. This definition is equivalent to that of Metha and
Seshadri, his method was applied by Maruyama and Yokogawa for constructing the moduli space,
especially for higher dimensional generalization [MY92, Yok93]. In [Sim90], Simpson produced an
analytic method by introducing the notion of tame harmonic metric which was arising from the
study of Kobayashi–Hitchin correspondence. As a result, he built the one-to-one correspondence
between stable tame harmonic bundles, stable parabolic Higgs bundles of parabolic degree 0 and
irreducible representations of the fundamental groups, as well as stable parabolic local systems of
parabolic degree 0. In [Yok93], Yokogawa also constructed the moduli space of semistable parabolic
Higgs bundles, and showed it was a projective varieties. In addition, he also introduced the Hitchin
morphism for parabolic Higgs bundles, and showed it was projective, as a generalization of classical
result.

The higher dimensional version of Kobayashi–Hitchin correspondence for parabolic Higgs bun-
dles and the non-compact version of Corlette–Simpson correspondence are due to Mochizuki in his
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two important papers [Moc06, Moc09]. As we have already seen in the first part of this thesis, his
results applying to compact case give us many lights on the understanding twistor spaces.

In this chapter, firstly we will give a basic introduction to parabolic Higgs bundle based on
many well-known papers and books, including many definitions and notations that will be useful
for the following chapters. In the first section, we will give the basic definition of parabolic
vector bundles and parabolic Higgs bundles over compact Riemann surface, the main references
are [MS80, Ses82, Sim90] and [GPGM07]. In the second part of this chapter, we will introduce
the higher dimensional generalization, most of these can be found in [Moc06] and [IS07, IS08]. In
[MY92] and [Yok93], the authors considered the parabolic structure with all components of the
divisor combined together, but in [Moc06] and [IS07, IS08], the definition were modified to consider
different filtration to give the parabolic structure for different component of the divisor, we will
use this general consideration.

4.1 Non-Abelian Hodge Theory of Parabolic Version

4.1.1 General Definitions

Not like in the compact case, the parabolic structures for vector bundles and Higgs bundles are
more complicated and abstract, there are several different definitions of these structures, but they
coincide in dimension 1. Our main references for this section are [IS07, Moc06], see also [Hua18].

Let X be a connected smooth complex projective variety of dimC(X) = n, let D = ⋃k
i=1Di ⊆ X

be a reduced simple normal crossing divisor with each component Di smooth and irreducible.
Parabolic structures are usually defined in two different but equivalent ways.

Usual definition of parabolic structures.

Definition 4.1.1 (Mochizuki, Iyer–Simpson). A parabolic sheaf on (X,D) is a pair E∗ = {E , {Eα}α∈Rk}
that consists of a torsion-free coherent OX-module E together with a collection of torsion-free co-
herent OX-modules Eα indexed by multi-indices α = (α1, · · · , αk) ∈ Rk that satisfies following
conditions:

(1) E = E0 for 0 = (0, · · · , 0);

(2) increasing: Eα ⊆ Eβ whenever α ≤ β (i.e, αi ≤ βi for all i);

(3) normalization: Eα+δi = Eα(Di) := Eα ⊗ OX(Di), where δi = (0, · · · , 1, · · · , 0) ∈ Rk is a
multi-index with the only 1 in the i-th position;

(4) semi-continuity: for any given α ∈ Rk, there exists a constant c > 0 such that for any
multi-index ε with each 0 ≤ εi < c, we have Eα+ε = Eα.

E is usually called the underlying sheaf of E∗. In particular, when all sheaves Eα are moreover
locally free, then we call E∗ a parabolic vector bundle.

Remark 4.1.2. (1) Let i : X −D ↪! X be the natural inclusion, then i∗i∗(E) (direct image of
the restricted sheaf E on X −D) is a quasi-coherent sheaf over X, and satisfies

i∗i
∗(E) =

⋃
α∈Rk
Eα.

We use Ẽ to denote this sheaf, clearly we have Ẽ |X−D = E|X−D.
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(2) For any multi-index c ∈ Rk, then from the normalization condition, we can see that the
parabolic structure is fully determined by the c-truncation cE := {Eα}c−δ<α≤c, where δ =∑k
i=1 δ

i;

(3) By the semi-continuity condition, there exist jumping indices α, i.e, these multi-indices α
such that Eα−ε 6= Eα for any ε > 0. Moreover, in a fixed interval (c − δ, c], the number of
jumping indices is finite, since the divisor D has a finite number of irreducible components.

Parabolic structures given by filtrations.
Fix a parabolic sheaf E∗ on (X,D) as defined in Definition 4.1.1, and fix a multi-index c ∈ Rk.

For each 1 ≤ i ≤ k, Ec−δi = Ec(−Di), we have the exact sequence

0 −! Ec−δi −! Ec −! Ec|Di −! 0

for Ec|Di = Ec
Ec−δi

, we can define a filtration {F ia}ci−1<a≤ci of the restricted sheaf Ec|Di by subsheaves
as follows

F ia :=
( ⋃

α≤c
αi≤a

Eα
)
/Ec−δi ⊆ Ec/Ec−δi = Ec|Di ,

so F ici−1 = 0 and F ici = Ec|Di . Let GrFia (Ec) := F ia/F i<a, then (2) of Remark 4.1.2 implies the set
of jumping indices

wti(Ec) := {a ∈ (ci − 1, ci] | GrFia (Ec) 6= 0 }

is finite. We call it the set of parabolic weights of Ec along the divisor Di.
For each 1 ≤ i ≤ k, we write the associated parabolic weights as followings:

ci − 1 = ai0 < ai1 < · · · < aiil−1 < aiil ≤ ci, (4.1)

then the filtration is

0 = F iai0 ( F
i
ai1
( · · · ( F iaiil

= Ec|Di . (4.2)

Therefore, for any fixed multi-index c, from a parabolic sheaf E∗, we obtain the following pairEc, {F iαi} 1≤i≤k
αi∈{ai0,··· ,a

i
il
}

 ,
that satisfies (4.1)-(4.2), call it a parabolic structure given by filtrations.

On the other hand, given a parabolic structure given by filtrations

Ec, {F iαi} 1≤i≤k
αi∈{ai0,··· ,a

i
il
}

 that

satisfies (4.1)-(4.2). Then we can recover the parabolic sheaf. In fact, we just need to recover the
c-truncation cE .

For a multi-index α = (α1, · · · , αk) ∈ Rk, we write Eα as E(α1,··· ,αk) to emphasize to explicit
components.

Define semi-continuous sequence of subsheaves F̃ iαi of Ec|Di indexed by ci − 1 ≤ αi ≤ ci by the
following rule:

F̃ iαi = F iaij , aij ≤ αi < aij+1, 0 ≤ j ≤ il,
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where one assigns aiil+1 = aiil = ci. Now let G(c1,··· ,ci−1,αi,ci+1,··· ,ck) be the subsheaf of E(c1,··· ,ck) that
fits into the following exact sequence

0 −! G(c1,··· ,αi,··· ,ck) −! E(c1,··· ,ck) −!
Ec|Di
F̃ iαi

−! 0,

set
E(α1,··· ,αk) :=

k⋂
i=1
G(c1,··· ,αi,··· ,ck) ⊆ Ec.

Then {E(α1,··· ,αk)} 1≤i≤k
ci−1<αi≤ci

is a collection of increasing and semi-continuous subsheaves (only finite
terms) of Ec with E(a1

1l
,··· ,ak

kl
) = Ec and satisfies the property

Ec−δi = Ec(−Di), i = 1, · · · , k.

This determines a c-truncation cE = {Eα}c−1<α≤c, hence a parabolic structure.

Therefore, these two different methods of defining a parabolic structure are equivalent. We will
alternatively using each one according to our convenience.

We give some basic examples of parabolic sheaves based on [IS07, IS08].

Example 4.1.3. (1) A parabolic line bundle on (X,D) is a parabolic sheaf L such that all Lα
are line bundles;

(2) Fix a multi-index β ∈ Rk, define a parabolic line bundle
(
OX

(∑k
i=1 βiDi

))
∗
by setting

(
OX

( k∑
i=1

βiDi

))
α

:= OX
( k∑
i=1
bαi + βicDi

)
,

where bac denotes the biggest integer no more than a;

(3) Given a torsion-free coherent sheaf E on X, there is a natural parabolic sheaf on (X,D) called
the trivial parabolic sheaf associated to E :

Eα := E
( k∑
i=1
bαicDi

)
.

We call this trivial structure because jump happens only when each αi is an integer, and the
underlying sheaf E0 is E itself.

(4) ([IS07, Lemma 2.1]) Any parabolic line bundle on (X,D) is isomorphic to L⊗
(
OX

(∑k
i=1 βiDi

))
∗

for some line bundle L on X and multi-index β ∈ Rk.

Direct sum

Given two parabolic sheaf E∗ and F∗ over (X,D), we define the direct sum parabolic sheaf
(E ⊕ F)∗ by setting

(E ⊕ F)α := Eα ⊕Fα.
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Then the underlying sheaf is (E ⊕ F)0 = E0 ⊕ F0 = E ⊕ F . Afterwards, we will use the notation
E∗ ⊕F∗ to denote the direct sum of parabolic sheaves.

Denote by wt(E∗) := {wti(E0)}ki=1 ⊆ (−1,0] the set of parabolic weights of E∗ with values
between −1 and 0.

Then we have
wt(E∗ ⊕F∗) = wt(E∗)

⋃
wt(F∗).

Tensor product

Given two parabolic sheaf E∗ and F∗ over (X,D). We define the tensor product parabolic
sheaf (E ⊗ F)∗ by setting for any α ∈ Rk, (E ⊗ F)α is the subsheaf of the quasi-coherent sheaf
Ẽ ⊗ F := i∗i

∗(E ⊗ F) generated by all Eβ ⊗Fγ for β + γ ≤ α. Therefore,

(E ⊗ F)α =
∑

0<β≤1
Eβ ⊗Fα−β =

∑
0<β≤1

Fβ ⊗ Eα−β = (F ⊗ E)α.

Then the underlying sheaf is (E ⊗ F)0 = ∑
0<β≤1 Eβ ⊗ F−β ⊇ E1 ⊗ F−1 = E ⊗ F , which contains

the tensor product of the underlying sheaves E ⊗ F as a subsheaf.
Afterwards, we will use the notation E∗⊗F∗ to denote the tensor product of parabolic sheaves.
Clearly, the parabolic weights of E∗ ⊗F∗ satisfies

wt(E∗ ⊗F∗) = {α + β | α ∈ wt(E∗), β ∈ wt(F∗), α + β > −1}⋃
{α + β + 1 | α ∈ wt(E∗), β ∈ wt(F∗), α + β ≤ −1}.

Dual

Given a parabolic sheaf E∗ over (X,D), for any multi-index α ∈ Rk, define Eα− being the left
limit of the sheaf Eα+ε (ε < 0) as ε! 0.

As in [Bis03], we define the dual parabolic sheaf of E∗, denoted as (E∗)∗ by setting

(E∗)α := (E−α+1−)∗.

Then when the parabolic structure of E∗ is non-trivial, i.e, when E∗ has non-zero parabolic weights,
the underlying sheaf (E∗)0 is strictly a subsheaf of E∗.

In this case, the parabolic weights satisfy

wt((E∗)∗) =
{
− 1− α | α ∈ wt(E∗) \

(
wt(E∗) ∩ {0}

)}⋃(
wt(E∗) ∩ {0}

)
.

Parabolic morphisms

Let E∗ and F∗ be two parabolic sheaves over (X,D).

Definition 4.1.4. A parabolic morphism f : E∗ ! F∗ is a collection of morphisms of sheaves
{fα : Eα ! Fα}α∈Rk that compatible with the inclusion of sheaves, that is, the following diagram

Eα� _

��

fα // Fα� _

��
Eβ

fβ // Fβ
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commutes for any multi-indices α ≤ β. Denoted by HomX(E∗,F∗) the set of all parabolic mor-
phisms f : E∗ ! F∗, and by HomX(E∗,F∗) the sheaf of parabolic morphisms.

A short sequence of parabolic sheaves 0! E∗
f
−! F∗

g
−!W∗ ! 0 is exact if the induced sequence

0! Eα
fα−! Fα

gα−!Wα ! 0 is exact for all multi-index α.
The following facts are from [Bis03, Yok95]:

• (((E∗)∗)∗)∗ = E∗;

• (E∗ ⊗F∗)⊗W∗ = E∗ ⊗ (F∗ ⊗W∗);

• E∗ ⊗ (F∗ ⊕W∗) = (E∗ ⊕F∗)⊗ (E∗ ⊕W∗);

• The functor by tensoring with a parabolic sheaf • ⊗ E∗ is right exact, it is exact if and only
if the parabolic sheaf is locally free.

Let ParX,D be the category of parabolic sheaves over (X,D), then it is an abelian category
with enough injective objects [Yok95].
Parabolic subsheaves and parabolic quotient sheaves

For a parabolic sheaf E∗ over (X,D), we take the 0-truncation 0E , that is, the multi-index
α ∈ (−1,0].

Definition 4.1.5. A parabolic sheaf F∗ over (X,D) is a parabolic subsheaf of E∗ if:

(1) Fα ⊆ Eα for all α;

(2) if Fβ ⊆ Eα for some α < β, then Fβ = Fα.

Definition 4.1.6. A parabolic sheaf F∗ over (X,D) is a parabolic quotient sheaf of E∗ if there is a
surjective parabolic morphism f : E∗ ! F∗ such that if f(Eβ) ⊆ Fα for some α < β, then Fβ = Fα.

Remark 4.1.7. (1) Let E∗ be a parabolic sheaf over (X,D), with E the underlying sheaf. Then
for any saturated subsheaf F ⊆ E , there is an induced parabolic structure on F by setting

Fα := F ∩ Eα,

this makes F∗ being a parabolic subsheaf of E∗, called the induced parabolic subsheaf. Not hard to
see that this parabolic structure on F (i.e, such that F is the underlying sheaf) is the maximal
one among all parabolic structures on F . This is very important when we introduce the parabolic
stability, and the stability condition only need to defined over subsheaves with induced parabolic
structures.

(2) Let W be a torsion free coherent sheaf which is a quotient sheaf of E , that is, there is a
surjective morphism of sheaves ϕ : E ! W . Then there is an induced parabolic structure on W
by setting

Wα := ϕ(Eα),

where ϕ(Eα) is the image sheaf under the composition Eα ↪! E
ϕ
−! W . This makes W∗ being a

parabolic sheaf, called the induced parabolic quotient sheaf. This parabolic structure on W is the
minimal one among all parabolic structures on W . This is also important when we treat stability
related problems.
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Locally abelian conditions
When the base variety is of higher dimension (i.e, dimC(X) > 1), then different irreducible

components of the divisor set may intersect. When the parabolic structure is given by filtrations,
then the fiber at a point which is located in a common intersection of divisor components should
admit the same filtration with respect to different divisor components. So we should put some
compatible condition on the filtrations on the intersection of divisor components, this is the “com-
patible filtrations” introduced by Mochizuki in [Moc06, Moc07], the compatibility condition is also
considered by Li in [Li00] in a stronger sense, this notion is later reformulated by Iyer and Simpson
as “locally abelian parabolic bundles” in [IS07, IS08]. Throughout this chapter, we will apply this
notion.

Definition 4.1.8. A parabolic sheaf E∗ over (X,D) is called a locally abelian parabolic bundle for
any point x ∈ X, there is a Zariski open neighborhood of that point such that in the neighborhood
E∗ is isomorphic to a direct sum of parabolic line bundles.

Clearly, locally abelian condition is trivial when X is a surface. The following property, de-
scribes why locally abelian condition is important for parabolic sheaves over higher dimensional
varieties.

Theorem 4.1.9 ([Moc07, IS08, Bor07]). Let E∗ be a locally abelian parabolic bundle over (X,D),
and let E := E0 be the underlying sheaf. Then Eα comes from previous construction of parabolic
structure by unique filtrations F ia of Ec|Di, and we have the following properties:

(1) all sheaves Eα are locally free;

(2) for each point P inside any non-empty intersection Di1∩· · ·∩Dij , the filtrations F i1• , · · · ,F
ij
•

of EP admit a common splitting, hence

GrF i1l1 · · ·GrF
ij

lj
(EP )

is independent of the order in which it taken;

(3) the functions

fi1···ij : Di1 ∩ · · ·Dij −! Z,

P 7−! rk
(

GrFi1l1 · · ·GrF
ij

lj
(EP )

)
are locally constant functions over Di1 ∩ · · ·Dij .

Conversely, suppose the parabolic structure is given by collection of sheaves Eα which come from
filtrations, if it satisfies above properties (1)-(3), then the parabolic structure is locally abelian.

Clearly, direct sum, tensor product, and dual preserve the locally abelian conditions. Denoted
by ParLA

X,D ⊆ ParX,D the full sub-category of locally abelian parabolic bundles over (X,D). Then
it is also an abelian category with enough injective objects.

4.1.2 Special Case: Dimension 1

Historically, parabolic structure was originally introduced by Metha and Seshadri [MS80] when they
studied the unitary representations of the fundamental group of a punctured Riemann surface, as
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a generalization of Narasimhan and Seshadri’s study of unitary representations of the fundamental
group of compact Riemann surfaces [NS65]. More precisely, let X be a compact Riemann surface
of genus g, and let D = x1 + · · ·+ xk be an effectively divisor given by k points with the condition
that 2g− 2 + k > 0, Metha and Seshadri showed in [MS80] that there is a correspondence between
irreducible unitary representations of π1(X − D) and stable parabolic vector bundles on (X,D)
of parabolic degree 0. Moreover, they also constructed the moduli space of such objects. Their
definition of parabolic structure is given by filtrations, and later Simpson gave an equivalently
definition by filtered sheaves when he introduced the Higgs field for parabolic vector bundles.

Now let X be a compact Riemann surface of genus g, and let D = x1 + · · ·+xk be an effectively
divisor consists of k points with the condition that 2g − 2 + k > 0.

Definition 4.1.10. A parabolic sheaf E∗ over (X,D) is a torsion free coherent sheaf E over X such
that at each x ∈ D, there is a filtration of Ex:

0 ( Ex,1 ( · · · ( Ex,lx = Ex,

this filtration is called a flag of Ex, together with a system of increasing real numbers, called
weights:

−1 < ax,1 < · · · < ax,lx ≤ 0.

We call E the underlying sheaf of E∗.

Remark 4.1.11. (1) In fact in Metha–Seshadri’s setting, the parabolic weights are real numbers
between 1 and 0 in decreasing order, here the weights we choose are in accordance with our previous
setting, that is, between -1 and 0 in increasing order. And we also adjust the following definition
of parabolic sheaf given by filtered sheaves.

(2) Since any torsion free coherent sheaf over a Riemann surface is automatically locally free,
it’s reasonable to call a parabolic sheaf a parabolic bundle.

In [Sim90], Simpson supplied a new definition of parabolic structures by considering an increas-
ing and left continuous family of sheaves indexed by real numbers, this is exactly what we applied
in the first section to define a parabolic sheaf over higher dimensional varieties. More precisely, a
parabolic structure on a torsion free coherent sheaf E is the following:

at each x ∈ D, there is a R-indexed family of torsion free coherent sheaves Exα such that

(1) Ex0 = E ;

(2) increasing: Exα ⊆ Exβ whenever α ≤ β;

(3) normalization: for any α ∈ R, Exα+1 = Exα(x);

(4) right continuous: for any α ∈ R, there exists some ε > 0 such that Exα+ε = Exα;

the parabolic weights are exactly the following set of jumping indices:

ax := {α ∈ (−1, 0] | Grxα := Exα/Exα−ε 6= 0}.

Write the set of jumping indices increasingly as

ax = {ax,1, · · · , ax,lx},
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then this two definitions are equivalent by fitting into the following short exact sequence:

0 −! Exax,i −! E −! Ex/Ex,i ⊗OX,x −! 0.

Now let E∗ =
{
E , {Ex,i} x∈D

1≤i≤lx

}
be a parabolic sheaf given by filtrations with increasing weight

system {−1 < ax,1 < · · · < ax,lx ≤ 0}x∈D.

Definition 4.1.12. The parabolic degree of E∗ is defined as

degpar(E∗) = deg(E)−
∑
x∈D

lx∑
i=1

ax,irkx
(
Ex,i/Ex,i−1

)
, (4.3)

where one assigns Ex,0 = 0 for each x ∈ D. The parabolic slope of E∗ is defined as

µpar(E∗) := degpar(E∗)
rk(E) . (4.4)

Remark 4.1.13. (1) In [MS80] and some other papers, the parabolic weights they choose to define
a parabolic structure over Riemann surfaces are real numbers decreasingly from 1 to 0, and “−”
in (4.3) is “+”. In fact, this is exactly the same as ours by taking −ax,i as weights.

(2) Let F ⊆ E be a coherent subsheaf, then there is a naturally induced parabolic structure
on F by setting Fx,i = Fx ∩ Ex,i for each x ∈ D and 1 ≤ i ≤ lx(E). Note that {Fx,i}1≤i≤lx(E) may
have two or more terms the same, so the filtration of Fx is given by distinct ones and the resulting
filtration is denoted as

0 ( Fx,1 ( · · · ( Fx,lx(F) = Fx,

for 1 ≤ j ≤ lx(F), the induced parabolic weight is given by aFx,j := αEx,i, where i is the smallest
number such that Fx,j ⊆ Ex,i. Such a resulting parabolic sheaf F∗ is called an induced parabolic
subsheaf of E∗.

(3) Let W be a torsion free quotient sheaf of E with the surjective morphism f : E !W , then
there is a naturally induced parabolic structure on W by setting Wx,i = Wx ∩ f(Ex,i) for each
x ∈ D and 1 ≤ i ≤ lx(E). The distinct terms of {Wx,i}1≤i≤lx(E) give a filtration of Wx as follows:

0 (Wx,1 ( · · · (Wx,lx(W) =Wx,

for 1 ≤ j ≤ lx(W), the induced parabolic weight is given by αWx,j := αEx,i, where i is the smallest
number such that Qx,j = f |Ex(Ex,i). Such a resulting parabolic sheaf W∗ is called an induced
parabolic quotient sheaf of E∗.

Proposition 4.1.14. Let E∗ be a parabolic sheaf given by filtrations as above. Let F ⊆ E be a
torsion free coherent subsheaf that fits into the following short exact sequence:

0 −! F −! E −!W −! 0,

then with the naturally induced parabolic structures on F and W, we have

degpar(E∗) = degpar(F∗) + degpar(W∗).
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Proof. This is because for each x ∈ D, the weight system satisfies

{aEx,1, · · · , aEx,lx(E)} = {aFx,1, · · · , aFx,lx(F)}
⋃
{aWx,1, · · · , aWx,lx(W)}.

Let Ω1
X be the sheaf of holomorphic differential 1-forms on X, that is, Ω1

X = KX , the canonical
line bundle of X.

Definition 4.1.15. A parabolic Higgs sheaf over (X,D) is a pair (E∗, θ), where E∗ is a parabolic
sheaf, and θ : E ! E ⊗ KX(logD) a morphism that preserves the parabolic structure, that
is, θ(Ex,i) ⊆ Ex,i ⊗ KX(logD)|x for each x ∈ D and 1 ≤ i ≤ lx. More strictly, if θ(Ex,i) ⊆
Ex,i−1 ⊗KX(logD) for each x ∈ D and 1 ≤ i ≤ lx, then (E∗, θ) is called a strongly parabolic Higgs
sheaf.

Definition 4.1.16. A parabolic Higgs sheaf (E∗, θ) is called stable (resp. semistable) if for any
saturated coherent subsheaf F ( E of 0 < rk(F) < rk(E) with the naturally induced parabolic
structure, and such that θ(F) ⊆ F ⊗KX(logD) we have

µpar(F∗) < (resp. ≤) µpar(E∗).

Equivalently, (E∗, θ) is stable (resp. semistable) if for any torsion free quotient Higgs sheaf (W , θ′)
of (E , θ) of 0 < rk(W) < rk(E) with the naturally induced parabolic structure, we have

µpar(E∗) < (resp. ≤) µpar(W∗).

In the following, we give some examples of stable parabolic Higgs sheaves over Riemann surfaces.

Example 4.1.17 (A basic example of stable parabolic Higgs sheaf, [BGG97]). Let X be a compact
Riemann surface of genus g, and let D = x1 + · · ·+xk be an effectively divisor consists of k points
with the condition that 2g− 2 + k > 0. Fix a square root L = K

1
2
X for KX , and let η = OX(D) be

the line bundle give by the divisor D. Define E := (L ⊗ η)∗ ⊕ L be the rank 2 vector bundle. For
each x ∈ D, consider the trivial filtration

0 ( Ex

with the parabolic weight ax = −1
2 to Ex. This gives a parabolic sheaf E∗ over (X,D). Define the

Higgs field

θ =
 0 1
q2 0

 ∈ H0(X,End(E)⊗KX ⊗ η),

where 1 ∈ H0(X,L∗⊗ (L⊗η)∗⊗KX⊗η) = H0(X,O) is the constant section and q2 ∈ H0(X, (L⊗
η) ⊗ L ⊗ KX ⊗ η) = H0(X,K2

X ⊗ η2) is a quadratic differential. This defines a stable parabolic
Higgs sheaf (E∗, θ) over (X,D) of degree 0. Indeed,

degpar(E∗) = deg(E)−
∑
x∈D

axrkx(Ex) = 0.

When q2 6= 0, then E has no proper θ-invariant subsheaf, so (E∗, θ) is automatically stable.
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When q2 = 0, then the only proper θ-invariant parabolic subsheaf of E∗ is F = (L ⊗ η)∗ with
the naturally induced parabolic structure, its degree is

degpar(F) = deg(F ) +
∑
x∈D

axrkx(Fx) = −(g − 1 + n) + 1
2 × n < 0.

Example 4.1.18 (Stable rank 2 parabolic Higgs bundle over P1 with 3 parabolic points). Let
X = P1 and let D = x1 + x2 + x3 consists of three distinct points. Let (E∗, θ) be a parabolic Higgs
bundle of rank 2, where the Higgs field θ : E ! E ⊗KX(D) satisfies the strong parabolic condition
θ(Exi,j) ⊆ Exi,j−1 ⊗KX(D). Here KX(D) = KX ⊗OP1(D) = OP1(1).

First we assume that at each parabolic point xi, the filtration of Exi is given by full flag
0 ( Exi,1 ( Exi,2 = Exi , and the weight system associated to the filtration is

−1 < ai < −1− ai < 0,

so −1 < ai < −1
2 .

Since E can be written as OP1(m)⊕OP1(n) for some integers m and n. In this case, assume E∗
is of parabolic degree 0, i.e.,

degpar(E∗) = deg(E)−
3∑
i=1

(ai − 1− ai) = 0,

thus the underlying holomorphic bundle E is of degree -3. We can write it asOP1(m)⊕OP1(−3−m).

Lemma 4.1.19. If (E∗, θ) is a stable rank 2 parabolic Higgs bundle with the parabolic structure
given as above, then the underlying bundle has the form E ∼= OP1(−1)⊕OP1(−2).

Proof. Write the Higgs field as

θ =
0 ϕ

ω 0

 ,
where ϕ : OP1(−3−m)! OP1(m+ 1) and ω : OP1(m)! OP1(−m− 2).

If m ≥ 0, then ω must be non-zero, otherwise OP1(m) is θ-invariant subbundle, with the
naturally induced parabolic structure, (OP1(m))∗ has nonnegative parabolic degree since

degpar(OP1(m)) ≥ deg(OP1(m)) ≥ 0.

Hence m ≤ −1, a contradiction.
If m ≤ −3, then ϕ must be non-zero, otherwise OP1(−3 − m) is θ-invariant subbundle, with

the naturally induced parabolic structure, (OP1(−3−m))∗ has nonnegative parabolic degree since

degpar((OP1(−3−m))∗) ≥ deg(OP1(−3−m)) ≥ 0.

Hence m ≥ −2, a contradiction.
Therefore, m = −1 or m = −2, in either case, E ∼= OP1(−1)⊕OP1(−2).

(1). If ω and ϕ both non-zero, then there is no θ-invariant subbundle. Hence (E , θ) is automat-
ically parabolic stable.
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(2). If ω = 0 and ϕ 6= 0, then the Higgs field is as

θ =
0 ϕ

0 0

 ,
then the only θ-invariant subbundle is L = OP1(−1). We need to consider the parabolic structure
on E , this is a choice of a flag Epi,2 ⊂ Epi for each point pi. We first claim that Epi,2 cannot be
contained by OP1(−1)pi for all pi. If not, let Epi,2 = OP1(−1)pi for i = 1, 2, 3, then the stability
condition gives

degpar(L) = −1 +
3∑
i+1

(1− αi) = 2− (α1 + α2 + α3) < 0,

this is impossible by the choice of each αi < 1 − αi < 1. Similarly, we can also find that Epi,2
cannot be contained by OP1(−1)pi for exactly two pi.

(3). If ω 6= 0 and ϕ = 0, then the Higgs field is as

θ :=
0 0
ω 0

 ,
then the only θ-invariant subbundle is L = OP1(−2).

To consider the stability condition, we just need to consider the two θ-invariant line subbundle:
OP1(−1) and OP1(−2), since for other subbundle L = OP1(a) with a ≤ −3, it has parabolic degree

degpar(L) = a+
3∑
i=1

(1− αi) < 0,

which automatically satisfies the stability condition.

Example 4.1.20 (Stable rank 2 parabolic Higgs bundle over P1 with 4 parabolic points).
In this example, D = p1 + p2 + p3 + p4 is the divisor of four parabolic points. Let (E∗, θ) be

a parabolic Higgs bundle, where the Higgs field θ : E ! E ⊗K(D) satisfies the strong parabolic
condition θ(Epi,j)! Epi,j+1 ⊗K(D). Here K(D) = K ⊗OP1(D) = OP1(2).

We assume the parabolic structure is a full flag at each parabolic point and the weight system α
associated to the filtration Epi = Epi,1 ⊃ Epi,2 ⊃ 0 at each parabolic point is given by the following
table

point p1 p2 p3 p4
weight system 0 = 0 < α1 < 1 0 = 0 < α2 < 1 0 = 0 < α3 < 1 0 < α4 < α5 < 1

where ∑2
i=1 αi = 1. Like the analysis in the last example, the underlying holomorphic bundle for

the stable parabolic Higgs bundle (E∗, θ) with the above weight system is E = OP1 ⊕ OP1(−1).
Define a parabolic structure on OP1 ⊕OP1(−1) by having the subspace aligning with OP1(−1) at
each parabolic point pi, taking the Higgs field

θ :=
0 0
ω 0

 ,
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then the only θ-invariant subbundle is L = OP1(−1) which has parabolic degree of

degpar(L) = −1 + α1 + α2 + α3 + α5 = −α4 < 0 = degpar(E),

so this defined (E∗, θ) is stable parabolic Higgs bundle.
On the other hand, if we define the Higgs field

θ :=
0 ϕ

0 0


and define a parabolic structure on OP1 ⊕ OP1(−1) by having the subspace aligning with OP1 at
each pi, then the θ-nvariant subbundle OP1 has strictly positive parabolic degree and so defined
(E∗, θ) is not stable.

4.1.3 Non-Abelian Hodge Theory of Parabolic Version

Now we come back to the general case, let X be a connected smooth complex projective variety
of dimC(X) = n, let D = ⋃k

i=1Di ⊆ X be a reduced simple normal crossing divisor with each
component Di smooth and irreducible. Let Ω1

X(logD) be the sheaf of logarithmic differential 1-
forms on X, that is, the sections of Ω1

X(logD) are differential 1-forms that have a pole of order at
most one at each component of D.
Regular parabolic λ-flat bundles

Let E∗ be a parabolic sheaf over (X,D) indexed by α ∈ Rk, with E := E0 the underlying sheaf
(i.e, torsion free coherent OX-module) and Ẽ = ⋃

α∈Rk Eα be the quasi-coherent sheaf.
Definition 4.1.21. Let λ ∈ C, a regular parabolic λ-connection on E∗ is a C-linear map

Dλ : Ẽ ! Ẽ ⊗ Ω1
X(logD)

that satisfies the λ-twisted Leibniz rule Dλ(fs) = fDλ(s) + λs ⊗ df and preserves the parabolic
structure, that is, Dλ(Eα) ⊆ Eα ⊗ Ω1

X(logD) for each multi-index α ∈ Rk.
When Dλ ◦ Dλ = 0 under the extension Dλ : Ẽ ⊗ Ωp

X(logD) ! Ẽ ⊗ Ωp+1
X (logD) for any

integer p ≥ 0, then we call Dλ a regular parabolic flat λ-connection, and (E∗,Dλ) a regular parabolic
λ-flat sheaf. More strictly, if for each multi-index α ∈ Rk, there exists some ε > 0 such that
Dλ(Eα) ⊆ Eα−ε ⊗ Ω1

X(logD), then we call Dλ a strongly regular parabolic flat λ-connection, and
(E∗,Dλ) a strongly regular parabolic λ-flat sheaf.

A (strongly) regular parabolic λ-flat sheaf (E∗,Dλ) is called a locally abelian (strongly) regular
parabolic λ-flat sheaf if the underlying parabolic sheaf E∗ is a locally abelian parabolic bundle. in
this case, we will briefly apply the notation (strongly) regular parabolic λ-flat bundle when there
is no ambiguity.

From now on, we always assume Dλ being flat. And sometimes we will add subscripts E ,F , · · ·
to Dλ in order to distinguish different objects.

In particular:
• when λ = 1, we will call D1 a regular parabolic flat connection, and we usually apply the
notation ∇. In this case, the pair (E∗,∇) is called a regular parabolic flat sheaf ;

• when λ = 0, we will call D0 a regular parabolic Higgs field, and we usually apply the notation
θ. In this case, the pair (E∗, θ) is called a regular parabolic Higgs sheaf.
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Now let (E∗,DλE) and (F ,DλF) be two regular parabolic λ-flat sheaves over (X,D).

Definition 4.1.22. A parabolic morphism f : (E∗,DλE) ! (F∗,DλF) is a parabolic morphism f :
E∗ ! F∗ of the underlying parabolic sheaves that compatible with the parabolic structures, that
is, the following diagram

Eα
DλE
��

fα // Fα
DλF
��

Eα ⊗ Ω1
X(logD) fα⊗Id// Fα ⊗ Ω1

X(logD)

commutes for any multi-index α ∈ Rk. Denotes by Hom((E ,DλE), (F ,DλF)) andHom((E ,DλE), (F ,DλF))
the set and sheaf of parabolic morphisms of regular parabolic λ-flat sheaves, respectively.

Tame pluri-harmonic metrics and adapted metrics

Tameness condition for pluri-harmonic metrics on Higgs bundle was introduced by Simpson in
[Sim90], in which he studied the parabolic Higgs bundle over open projective curve. Later studied
by Mochizuki in higher dimensional cases [Moc06, Moc07, Moc09]. Let’s briefly recall it here.

Let (X,D) be as above, let (E ,Dλ) be a usual λ-flat bundle over X − D. Let h be a pluri-
harmonic metric on (E ,Dλ), then it induces a harmonic Higgs bundle (E, ∂̄h, θh, h), note that E is
the underlying smooth vector bundle, and E = (E, ∂̄h + λθ†h) is the holomorphic bundle.

For any P ∈ X, let Dj1 , · · · , Djm are components of D that contain P , let {UP ; z1, · · · , zn} be
a holomorphic coordinate around P such that UP ∩Dji = {zi = 0} for i = 1, · · · ,m, this is called
an admissible coordinate. Then the Higgs field θh can be expressed as

θh =
m∑
i=1

θi(z)dzi
zi

+
n∑

i=m+1
θi(z)dzi.

For each i = 1, · · · , n and a formal variable t, write the polynomial det(tIdE − θi(z)) as

det(tIdE − θi(z)) =
n∑
l=1

ail(z)tl,

then the coefficients ail(z) are holomorphic functions on UP −
⋃m
i=1Dji .

Definition 4.1.23. A harmonic bundle (E, ∂̄E, θ, h) over X−D is called a tame harmonic bundle
over X −D if each aij(z) can be extended to be a holomorphic function on UP for any P ∈ X. In
this case, we call h a tame pluri-harmonic metric. A harmonic λ-bundle (E ,Dλ, h) over X −D is
tame if the associated harmonic Higgs bundle (E, ∂̄h, θh, h) is tame.

It’s known that (E, ∂̄h, θh, h) is tame if and only if there exists an extension (E , θ) (cf. [Moc07,
Lemma 22.1]), that is, E is a holomorphic vector bundle over X and Dλ : E ! E ⊗Ω1

X(logD) is a
Higgs field such that (E , θ)|X−D = (E, ∂̄h, θh)1.

A naturally extension is given by the following, which is due to Mochizuki (cf. [Moc06, Moc09,
Moc07]).

Now let E be a holomorphic bundle over X −D with a hermitian metric h. Then h defines a
parabolic structure on E as follows.

1When λ = 1, this is just the Deligne extension for flat bundles (without any given metric) over quasi-projective varieties,
and when λ = 0, the tameness condition is necessary to preserve the extension exists.
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For each i = 1, · · · , k, let σi : OX ! OX(Di) be the canonical section of OX(Di) and let hi be
hermitian metric on OX(Di). The sheaf Eα(h) indexed by α ∈ Rk is, for any open subset U ⊆ X,
let Di1 , · · · , Dim be the irreducible components of D that intersect with U ,

Γ(U, Eα(h)) :=
{
s ∈ Γ(U −D, E)

∣∣∣∣ |s|h ≤ C ·
m∏
j=1
|σij |

−αij−ε
hij

for some C > 0, ∀ε > 0
}
.

Then E∗(h) = {Eα(h)}α∈Rk is a parabolic sheaf on (X,D), called the associated parabolic sheaf.
Let Ẽ(h) = ⋃

α∈Rk Eα(h).

Definition 4.1.24. For a parabolic sheaf E∗ over (X,D), let E ′ := Ẽ |X−D = Eα|X−D, a hermitian
metric h on E ′ is called adapted to the parabolic structure of E∗ if E ′α(h) ∼= Eα for any multi-index
α ∈ Rk.

In general, E∗(h) is not coherent [Moc06], but when (E ,Dλ, h) is tame harmonic, then E∗(h) is
a locally abelian parabolic bundle due to Simpson for dimension 1 case [Sim90, Theorem 2], and
Mochizuki for higher dimensional case [Moc09, Proposition 2.53]. This means that the associated
parabolic sheaf of a tame harmonic bundle appears as an example of locally abelian parabolic
bundle. We call this special associated sheaf as prolongation of tame harmonic bundle following
Mochizuki.

Proposition 4.1.25 (Simpson, Mochizuki, [Sim90, Moc09, Moc07]). If (E ,Dλ, h) is a tame har-
monic bundle, then (E∗(h),Dλ) is a regular parabolic λ-flat bundle. In particular, (Eα(h),Dλ) is an
extension of (E ,Dλ, h) for any α ∈ Rk.

Parabolic Chern characters

A very important idea for parabolic sheaves is that locally abelian parabolic bundles with
rational parabolic weights can be viewed as usual vector bundles over certain Deligne–Mumford
stack [Bis97, IS07, Bor07]. Hence the parabolic Chern characters of the parabolic bundle is defined
to be the Chern characters of that vector bundle over the Deligne–Mumford stack.

The explicit formula for parabolic Chern characters are given by Iyer and Simpson in [IS08].
Taher calculated the first, second and third parabolic Chern characters based on Iyer–Simpson
formula [Tah10], which coincide with the first and second parabolic Chern characters defined by
Mochizuki in [Moc06]. Here we briefly introduce this based on their papers.

Let E∗ be a locally abelian parabolic bundle over (X,D), for a multi-index c ∈ Rk as the base
point, then let cE be the c-truncation.

Definition 4.1.26 (Iyer–Simpson formula). The parabolic Chern character of E∗ is defined as

chpar(E∗) = chpar(cE) :=
∫ cn
cn−1 · · ·

∫ c1
c1−1 e

−
∑k

i=1 αiDich(Eα)dα1 · · · dαn∫ cn
cn−1 · · ·

∫ c1
c1−1 e

−
∑k

i=1 αiDidα1 · · · dαn
, (4.5)

where ch(Eα) is the usual Chern character of the locally free sheaf Eα.

Remark 4.1.27. (1) The numerator of (4.5) is independent of the choice of c-truncation. Indeed,
choose β = α +∑k

i=1 tiδ
i for any (t1, · · · , tk) ∈ Rk, then Eβ = Eα(∑k

i=1 tiDi), and

ch(Eβ) = ch(Eα) · e
∑k

i=1 tiDi .
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Hence achieves∫ cn+tn

cn+tn−1
· · ·

∫ c1+t1

c1+t1−1
e−
∑k

i=1 βiDich(Eβ)dβ1 · · · dβn =
∫ cn

cn−1
· · ·

∫ c1

c1−1
e−
∑k

i=1 αiDich(Eα)dα1 · · · dαn.

(2) If we choose another base point d = c +∑k
i=1 tiδ

i, then

chpar(dE) = chpar(cE) · e
∑k

i=1 tiDi .

(3) The first parabolic Chern character chpar
1 (E∗) can be obtained explicitly as follows:

chpar
1 (E∗) = c1(Ec)−

k∑
i=1

( ∑
a∈wti(Ec)

a · rkDi
(
GrF1

a (Ec)
))
· |Di| ∈ H2(X,R), (4.6)

where rkDi
(
GrF1

a (Ec)
)
denotes the rank of the sheaf GrF1

a (Ec) (as ODi-module).
(4) The second parabolic Chern character is not easy to calculate, for our convenience, here we

apply Mochizuki’s result [Moc06]:

chpar
2 (E∗) = ch2(Ec) +

k∑
i=1

( ∑
a∈wti(Ec)

a · ιi∗
(
c1(GrFia (Ec))

))

+ 1
2

k∑
i=1

( ∑
a∈wti(Ec)

a2 · rkDi
(
GrFia (Ec)

)
· |Di|2

)

+ 1
2

∑
1≤i 6=j≤k

∑
ai∈wti(Ec)
aj∈wtj(Ec)

( ∑
D′∈Irr(Di∩Dj)

aiaj · rkD′
(
GrF i,jai,aj

(Ec)
)
· |D′|

)
∈ H4(X,R),

(4.7)

where

• ch2(Ec) is the second Chern character of the sheaf Ec;

• ι : Di ↪! X is the natural embedding, and ιi∗ : H2(Di) ! H4(X) is the associated Gysin
map;

• Irr(Di ∩Dj) is the set of irreducible components of Di ∩Dj;

• on the restricted sheaf Ec|Di∩Dj , there are two increasing filtrations, namely {F iai}ci−1≤ai≤ci
and {F jaj}cj−1≤aj≤cj with F ici−1 = F jcj−1 = 0 and F ici = F jcj = Ec|Di∩DJ . This induces an
increasing multi-indexed filtration F i,jai,aj := F iai∩F

j
aj
with F i,jci−1,cj−1 = 0 and F i,jci,cj = Ec|Di∩Dj .

The graded term is given by

GrF i,jai,aj
:=

F i,jai,aj∑
(bi,bj)�(ai,aj)F

i,j
bi,bj

,

where (bi, bj) � (ai, aj) means bi ≤ ai & bj < aj or bi < ai & bj ≤ aj;

• under the locally abelian condition, the filtrations F i• and F j• coincide on Ec|Di∩Dj , hence

GrFi,jai,aj
= GrFjaj GrF iai .
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The following properties state that for a torsion free coherent sheaf with trivial parabolic
structure, the first Chern class of the parabolic sheaf is exactly the usual first Chern class of the
sheaf itself (when choose 0-truncation).

Proposition 4.1.28. Let c = 0, then

(1) cpar
1 ((OX(∑k

i=1 βiDi))∗) = ∑k
i=1 βi|Di| ∈ H2(X,R);

(2) Let E∗ be the parabolic sheaf obtained from a torsion free coherent sheaf E with trivial parabolic
structure, then

cpar
1 (E∗) = c1(E) ∈ H2(X,R).

Proof. Direct calculation from the formula (4.6), trivial.

Stability

After introduce the first parabolic Chern character, it’s natural to introduce the stability for
locally abelian parabolic bundles.

Now let L := OX(1) be an ample line bundle over the smooth complex projective variety X of
dimC(X) = n. Let E∗ be a parabolic sheaf over (X,D) with a regular parabolic flat λ-connection
Dλ. As above, choose a multi-index c ∈ Rk as a base point, and consider the c-truncation cE∗ to
define the parabolic Chern characters.

Definition 4.1.29. The parabolic degree of E∗ with respect to L is defined as

degpar
L (E∗) :=

∫
X

chpar
1 (E∗) · c1(L)n−1.

The parabolic slope of E∗ is given by

µpar
L (E∗) := degpar

L (E∗)
rk(E∗)

,

where rk(E∗) = rk(Eα), the rank of locally free sheaf Eα, which is independent of the choice of
multi-index α ∈ (c− δ, c].

Remark 4.1.30. When n = 1 and take 0-truncation, then the parabolic degree in fact coincides
with the one we defined in (4.3) for parabolic sheaves over Riemann surfaces.

Definition 4.1.31. A regular parabolic λ-flat sheaf (E∗,Dλ) is called µpar
L -stable (resp. µpar

L -
semistable) if for any saturated subsheaf F ⊆ Ec of 0 < rk(F) < rk(Ec) such that Dλ(F) ⊆
F ⊗ Ω1

X(logD), we have
µpar
L (F∗) < (resp. ≤) µpar

L (E∗),

where F∗ ⊆ E∗ is the induced parabolic subsheaf (cf. (1) of Remark 4.1.7). It is called µpar
L -

polystable if is the direct sum of µpar
L -stable parabolic sheaves of the same parabolic slope.

Remark 4.1.32. A regular parabolic λ-flat parabolic sheaf (E∗,Dλ) is µpar
L -stable (resp. µpar

L -
semistable) if and only if for any quotient λ-flat sheaf (W ,DλW) of (Ec,Dλ) with 0 < rk(W) < rk(Ec),
we have

µpar
L (E∗) < (resp. ≤) µpar

L (W∗),

where W∗ is the induced parabolic quotient sheaf (cf. (2) of Remark 4.1.7).
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Non-Abelian Hodge theory of parabolic version
Parabolic sheaves are generalizations of usual sheaves to compact smooth varieties with divisor

components (i.e, open varieties). As in compact version, an important project worth studying is the
existence of certain special metrics on these objects, that is, the Kobayashi–Hitchin correspondence
for regular parabolic λ-flat bundles.

When λ = 0, Simpson introduced the Higgs field for parabolic sheaves over compact Riemann
surfaces with divisors, and built this correspondence [Sim90]; later this was generalized by Biquard
to higher dimensional compact Kähler manifolds with smooth divisors [Biq97]; the more general
case by simple normal crossing divisors are obtained by Mochizuki [Moc06].

When λ 6= 0, the correspondence of tame version is due to Mochizuki [Moc09].

Theorem 4.1.33 (Kobayashi–Hitchin correspondence, [Moc09]). Let (X,L = OX(1)) be a
polarized variety with a reduced simple normal crossing divisor D. Let (E∗,Dλ) be a regular parabolic
λ-flat bundle over (X,D), set E ′ = Ẽ |X−D for Ẽ = ⋃

α∈Rk Eα. Then the following statements are
equivalent:

(1) (E∗,Dλ) is µpar
L -polystable with degpar

L (E∗) =
∫
X chpar

2 (E∗) · c1(L)n−2 = 0;

(2) (E ′,Dλ) admits a tame pluri-harmonic metric h which is adapted to the parabolic structure.

Moreover, such a metric is unique up to scalar multiplications.

Now let Parλpoly be the category of µpar
L -polystable regular parabolic λ-flat bundles over (X,D)

with degpar
L (E∗) =

∫
X chpar

2 (E∗) · c1(L)n−2 = 0, as a consequence, we have the following correspon-
dence:

Corollary 4.1.34 (Non-Abelian Hodge correspondence, [Moc09]). For any λ1, λ2 ∈ C, there
is an equivalence of categories

Parλ1
poly

∼= Parλ2
poly

Dλ1 = ∂̄h + λ1θ
†
h + λ1∂h + θh ↔ Dλ2 = ∂̄h + λ2θ

†
h + λ2∂h + θh,

where h is the tame pluri-harmonic metric that adapted to the parabolic structure. Moreover, such
equivalence preserves tensor products, direct sums and duals.

Remark 4.1.35. In particular, choose λ1 = 1 and λ2 = 0, then this gives a correspondence
between:
• µpar

L -polystable regular parabolic flat bundles with trivial parabolic degree and second parabolic
Chern character
and
• µpar

L -polystable regular parabolic Higgs bundles with trivial parabolic degree and second
parabolic Chern character.

This is exactly the parabolic version of Corlette–Simpson correspondence.

As a conclusion, we have the following equivalence of categories:

Corollary 4.1.36. The following categories are equivalent:

(1) the category of tame harmonic bundles (E, ∂̄E, θ, h) over X −D;

(2) Parλpoly;

(3) the category of semisimple flat bundles (E ,∇) over X −D.
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Proof. The equivalence between (1) and (2) is from Theorem 4.1.33. Indeed, given a tame harmonic
bundle (E, ∂̄E, θ, h) over X − D, then (E ,Dλ, h) is a harmonic λ-flat bundle over X − D, where
E = (E, ∂̄h + λθ†h). Then the associated parabolic λ-flat sheaf (E ,Dλ) is regular parabolic λ-flat
bundle (cf. Proposition 4.1.25), and moreover, µpar

L -polystable with trivial parabolic degree and
second parabolic Chern character (cf. [Moc09, Proposition 2.55]).

The equivalence between (2) and (3) is due to a result by Jost and Zuo in [JZ97], which states
that any semisimple flat bundle (E ,∇) over X − D admits a pluri-harmonic metric h which is
tame2. Given a flat bundle (E ,∇) over X −D, then there is a Deligne extension (E ,∇), that is,
∇ : E ! E ⊗Ω1

X(logD) is a regular flat connection such that (E ,∇)|X−D = (E ,∇). This extension
naturally defines a regular parabolic flat bundle (E∗,∇) (of trivial parabolic structure) with trivial
parabolic degree and second parabolic Chern character, and the semistability of (E ,∇) is exactly
the µpar

L -polystability of (E∗,∇). On the other hand, by Theorem 4.1.33, the restriction of any
element in Par1

poly to X −D admits a tame pluri-harmonic metric, hence semisimple by Jost–Zuo
[JZ97].

4.2 Parabolic Higgs Bundles as Higgs Bundles over Deligne–Mumford
Stacks

4.2.1 Higgs Bundles over Root Stacks

In [IS07], Iyer and Simpson showed that there is an equivalence between the category of locally
abelian parabolic vector bundles over a smooth projective variety with normal crossing divisor and
vector bundles on the associated Deligne–Mumford stack. This is similar to that of Borne’s result
[Bor07], where he used the Maruyama and Yokogawa’s definition of parabolic bundles that all the
components of divisors are combined together. In this part, we will generalize their result to Higgs
case.

To construct the Deligne–Mumford stack associated to a projective variety with normal crossing
divisor, we need some definitions and results on root stacks. For reader’s convenience, here we
introduce this theory based on [Cad07] and [BMW13].

Root stacks

Let X be a scheme, let L be an invertible sheaf over X, and s ∈ H0(X,L) be a global section.
Let n be a fixed positive integer.

Definition 4.2.1 ([Cad07]). The category X(L,s,n) fibered in groupoids is defined as the following:

(1) the objects over a scheme Y are quadruples

(f,M, ϕ, t),

where f : Y ! X is a morphism of schemes,M is an invertible sheaf over Y , t ∈ H0(Y,M)
is a section of M and ϕ : M⊗n ! f ∗L is an isomorphism of invertible sheaves such that
ϕ(t⊗n) = f ∗(s);

2This metric is called the Corlette–Jost–Zuo metric by Mochizuki, and this result is later improved by Mochizuki in
[Moc07], which states that any semisimple flat bundle over X −D admits a pluri-harmonic metric which is tame and purely
imaginary, here purely imaginary means the eigenvalues of the residue data of the extended Higgs field along each irreducible
component of D are of purely imaginary. And in both cases, the pluri-harmonic metric is unique up to flat automorphisms
of the bundle (cf. [Moc07, Lemma 25.28]).
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(2) the morphism from an object (f,M, ϕ, t) (over a scheme Y ) and (f ′,M′, ϕ′, t′) (over a scheme
Y ′) is a pair (g, σ), where g : Y ! Y ′ is a morphism of schemes with f ′ ◦ g = f and
σ : M ! g∗M′ is an isomorphism of sheaves such that σ(t) = g∗(t′) and the following
diagram commutes:

M⊗n σ⊗n //

φ

��

g∗M′⊗n

g∗ϕ′

��
f ∗L = // g∗f ′∗L

If (h, τ) is a morphism from the object (f ′,M′, ϕ′, t′) (over a scheme Y ′) to another object
(f ′′,M′′, ϕ′′, t′′) (over a scheme Y ′′), then we define the composition of (g, σ) and (h, τ) as follows:

(h, τ) ◦ (g, σ) := (h ◦ g, (g∗τ) ◦ σ) : (f,M, ϕ, t)! (f ′′,M′′, ϕ′′, t′′)

since the following diagrams commute:

M⊗n σ⊗n //

ϕ

��

g∗M′⊗n

g∗ϕ′⊗n

��

g∗τ⊗n// g∗h∗M′′⊗n

g∗h∗τ
��

f ∗L = // g∗f ′∗L = // g∗h∗f ′′∗L

For an integer k, this root stack with one denominator can be generalized to multi-denominators
n = (n1, · · · , nk). Fix a multi-denominators n = (n1, · · · , nk), let L = (L1, · · · ,Lk) be a multi-
invertible sheaves and let s = (s1, · · · , sk) be a multi-sections with each si ∈ H0(X,Li). Then this
form a root stack denoted as X(L,s,n), called the n-th root stack of (L, s). In fact, the objects of
X(L,s,n) (over a scheme Y ) are quadruples

{(f,Mi, ϕi, ti)}ki=1,

where f : Y ! X is a morphism of schemes, M1, · · · ,Mk are invertible sheaves on Y , each
ti ∈ H0(Y,Mi) is a section of Mi and each ϕi : M⊗ni

i ! f ∗Li is an isomorphism of invertible
sheaves such that ϕi(t⊗nii ) = f ∗(si).

Let {(f,Mi, ϕi, ti)}ki=1 (over a scheme Y ) and {(f ′,M′
i, ϕ
′
i, t
′
i)}ki=1 (over a scheme Y ′) be two

objects of the n-th root stack X(L,s,n). A morphism between them is a pair {(g, σi)}ki=1, where
g : Y ! Y ′ is a morphism with f ′ ◦ g = f , and for each i, σi :Mi ! g∗M′

i is an isomorphism of
sheaves such that σi(ti) = g∗(t′i) and such that the following diagram commutes:

M⊗ni
i

σ
⊗ni
i //

ϕi

��

g∗M′⊗ni
i

g∗ϕ′i
��

f ∗Li = // g∗f ′∗Li

Compositions of morphisms are similar as the one denominator case that we described above.
Now let X be a connected smooth complex projective variety of dimC(X) = n, let D =⋃k

i=1Di ⊆ X be a reduced simple normal crossing divisor with each component Di smooth and
irreducible. Let n = (n1, · · · , nk) be a multi-denominators. Let Li := OX(Di) be the line bundle
associated to Di, and sDi be the tautological section of Li that vanishes along Di. Then we have
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the n-th root stack of (L, s), we denote it as Z := X[D1
n1
, · · · , Dk

nk
] in accordance with [IS07, IS08].

Then Z is a Deligne–Mumford stack (cf. [Cad07], Theorem 2.3.3), let p : Z ! X be the natural
projection, then p is finite and X is a coarse moduli space for Z under p [Bor07, Cad07].

Sheaf on Root Stack

Now we introduce the sheaf on algebraic stacks, which can be found in [LMB00, G0́1, BMW13,
Ols06].

Let Z be an algebraic stack (here we are mainly interest on the case that it is the above
Deligne–Mumford stack X[D1

n1
, · · · , Dk

nk
]), denoted by Sch/Z the category of Z-schemes such that

each object is a pair (U, u), where U is a scheme and u : U ! Z is a morphism over S. A morphism
of two objects (U1, u1) and (U2, u2) is a morphism f : U1 ! U2 of Z-schemes such that the following
diagram commutes:

U1
f //

u1   

U2

u2~~
Z

(4.8)

The lisse-étale site, denoted as Zlis-ét, is a full subcategory of Sch/Z such that for each object
(U, u) of Zlis-ét, u : U ! Z is a smooth morphism and each covering is étale, here we say a covering
of an object (U, u) is a collection of maps {(Ui, ui)! (U, u)}i∈I such that the underlying collection
of scheme-morphisms {fi : Ui ! U}i∈I is a covering, that is, U = ⋃

i∈I fi(Ui). If each fi is an étale
morphism, then we say the covering is an étale covering.

Definition 4.2.2. The structure sheaf OZ on the stack Z is defined to the sheaf on the lisse-
étale site Zlis-ét which to any object (U, u) one associates the sheaf OU . A sheaf on Z is a sheaf of
OZ-modules.

Now we give an explicit description of this. A (coherent, torsion-free, locally free) sheaf F on
the stack Z consists of the data ({F(U,u)}, {ρf}), where:

(1) For each object (U, u) of Zlis-ét, F(U,u) is a (coherent, torsion-free, locally free) étale sheaf
on U .

(2) ρf : F(U1,u1) −! f ∗F(U2,u2) is a morphism of sheaves for each morphism f : (U1, u1) !
(U2, u2) of objects of Zlis-ét and in particular, ρf is an isomorphism if f is étale.

This data satisfy that for any composition (U1, u1) f−−! (U2, u2) g−−! (U3, u3) of objects in Zlis-ét,
the following diagram commutes:

F(U1,u1)

ρg◦f

��

ρf // f ∗F(U2,u2)

f∗ρg
��

(g ◦ f)∗F(U3,u3)
∼= // f ∗ ◦ g∗F(U3,u3)

that is, it satisfies the cocycle condition ρg◦f = f ∗ρg ◦ ρf .
To introduce the Higgs field on the sheaf over the stack Z, we first introduce the sheaf of

differentials on Z as described in [G0́1]. We use the étale morphism to define ΩZ , let u : U ! Z
be an étale morphism, then we set

ΩZ,(U,u) := ΩU ,
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if v : V ! Z is another étale morphism such that the diagram (4.8) commutes, then f : U ! V
has to be étale and we have a canonical isomorphism ρf : ΩU ! f ∗ΩV , which satisfies the cocycle
condition as above.

This can be extended to any morphism Y ! Z where Y is a scheme by taking an étale atlas
U = ∐

Ui ! Z, define
ΩZ,(X×ZU,u◦p2) := p∗2ΩU

by the morphism X ×Z U
p2−−! U

u−−! Z, then ΩZ,(X×ZU,u◦p2) descends to give a sheaf ΩZ,X on X
and this does not depend on the choice of étale atlas U , and the induced isomorphism satisfies the
cocycle condition.
Definition 4.2.3. A Higgs bundles on the stack Z consists of a locally free coherent sheaf F on Z
together with a homomorphism θ : F ! F⊗Ω1

Z such that θ∧θ = 0, here the homomorphism means
to each étale morphism u : U ! Z one assigns a homomorphism θ(U,u) : F(U,u) ! F(U,u)⊗Ω1

Z,(U,u) =
F(U,u) ⊗ Ω1

U such that for each commutative diagram (4.8), the following diagram commutes:

F(U,u)

ρFf
��

θ(U,u) // F(U,u) ⊗ Ω1
U

ρFf ⊗ρ
Ω1
Z

f��
f ∗F(V,v)

f∗θ(V,v) // f ∗F(V,v) ⊗ f ∗Ω1
V

here we use the notation ρFf to denote the isomorphism is associated to the sheaf F .
Now we introduce the stability of Higgs bundles over Deligne–Mumford stacks. In [Nir08],

Nironi constructed the moduli space of semistable sheaves on projective Deligne–Mumford stacks
by introducing the modified Hilbert polynomials with an extra term in the classical Hilbert poly-
nomial. This extra term is a locally free sheaf E on Z such that for every geometric point x! Z,
the representation of the stabilizer group Stab(x) contains every irreducible representation, this
is called a generating sheaf. There is a standard normal crossing divisor D′ = ∑k

i=1D
′
i on Z with

ni ·D′i = p∗(Di) for each i [Sim92]. In our case, the generating sheaf is the locally free sheaf

E =
k⊕
i=1

ni⊕
j=1
OZ(jD′j),

the modified Hilbert polynomial for a coherent sheaf F pure of dimension d is defined as

PE(F(m)) := χ(F ⊗ E∗ ⊗ p∗OX(m)) =
d∑
i=0

aE,i(F)m
i

i! ,

where OX(1) a very ample invertible sheaf on X, E is the generating sheaf, thee pair (OX(1), E) is
called a polarization of the stack Z ([Nir08]). The reduced Hilbert polynomial and the slope are
given as

pE(F) := PE(F)
aE,d(F)

and
µE(F) = aE,d−1(F)

aE,d(F) ,

respectively.
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Definition 4.2.4. A Higgs bundle (F, θ) on Z is called stable (resp. semistable) if for any saturated
coherent subsheaf G of F that is θ-invariant, we have

pE(G) < (resp. ≤) pE(F ).

It is called slope stable (resp. slope semistable) if

µE(G) < (resp. ≤) µE(F ).

4.2.2 Correspondence

Let X be a projective variety and D = ∑k
i=1Di be a normal crossing divisor. Suppose all parabolic

bundles over (X,D) have rational weights, and such that the weights have n1, · · · , nk as their
denominators. Then there is a Deligne–Mumford stack denoted as Z = X[D1

n1
, · · · , Dk

nk
] such that

the natural map p : Z ! X is finite and X is the coarse moduli space.

Theorem 4.2.5. There is an equivalence between the category of locally abelian parabolic Higgs
bundles on (X,D) whose parabolic weights have denominators n1, · · · , nk and the category of Higgs
bundles on Z. This equivalence perserves tensor products, direct sums and duals. Moreover, with
the chosen generating sheaf, this equivalence preserves stability.

Proof. The first statement is a generalization of Lemma 2.3 in [IS07] to Higgs case. This conclusion
is similar as Theorem 4.7 in [BMW13], but they use Maruyam-Yokogawa’s definition of parabolic
bundles, with all divisor components are combined together.

Let (F , θ) be a Higgs bundle on Z, then E = p∗F is a coherent sheaf on X, which is locally
free [IS07]. The associated parabolic bundle E∗ on (X,D) can be defined by

Eα := p∗(F ⊗OZ(
∑
i

α′iD
′
i)),

where each α′i is the biggest rational number no bigger than αi with its denominator diving ni.
We define Φ := p∗θ. We need to show this Φ is a parabolic Higgs field. Indeed,

p∗(F ⊗ Ω1
Z) ⊂ p∗(F ⊗ Ω1

Z(logD′)) = p∗(F ⊗ p∗Ω1
X(logD)) = p∗F ⊗ Ω1

X(logD),

the last equality holds by projection formula since p is finite. Therefore, Φ defines a homomorphism
Φ : E ! E ⊗ Ω1

X(logD), and Φ ∧ Φ = 0 since θ has this property. Moreover, for each multi-index
α, Φ(Eα) ⊂ Eα ⊗ Ω1

X(logD). What we left to show is such constructed parabolic Higgs bundle
(E∗,Φ) is locally abelian, the proof is same as the proof of Lemma 2.3 in [IS07].

In [IS07], Iyer and Simpson showed that the pullback of a locally abelian parabolic bundle is
also a locally abelian bundle. This is also right for locally abelian parabolic Higgs bundles.

Corollary 4.2.6. Let f : (X ′, D′) ! (X,D) be a morphism of smooth varieties with normal
crossing divisors such that f−1(D) ⊂ D′. Then the pullback f ∗(E∗,Φ) := (f ∗E∗, f ∗Φ) of a locally
abelian parabolic Higgs bundle (E∗,Φ) on (X,D) is also a locally abelian parabolic Higgs bundle on
(X ′, D′).

Proof. This is a direct result of Lemma 2.6 in [IS07] and the above correspondence.





Chapter 5

Stability and Indecomposability of
Representations of Quivers

A quiver is in fact a finite oriented graph that consists of finite vertices and arrows connect these
vertices. A representation of a quiver is obtained by viewing each vertex as a finite dimensional
vector space and each arrow as a linear map between two vector spaces. The theory of quiver
representations is an important area that relates with many fields like geometric invariant theory,
cohomology theory, and Lie theory. One of the important problems in quiver representation
theory is studying the classification of finite dimensional representations of a given quiver up to
isomorphisms, this problem is very hard for general quivers, complete classifications are known for
some special quivers, for example, quivers of Dynkin type.

On the other hand, by introducing weight systems, we naturally have the notion of stability of
representations, a moduli related problem comes from this. We can construct the moduli space
via Mumford’s geometric invariant theory, and study the geometric properties of moduli spaces.

A non-Abelian Hodge theory related problem is studying the correspondence between stability
and indecomposability of representations of special quivers. In general, stability implies indecom-
posablity, but the other direction is usually not true.

In this chapter, we will introduce a study of this type problem based on the paper [HH20b].
More precisely, this is based on a conjecture proposed by Markus Reineke, that predicts for repre-
sentations of quivers of Dynkin type, the correspondence is essentially true.

Our main result is the following:
Theorem 5.0.1 (= Theorem 5.3.2). If Q is a quiver of type An, then there exists a weight system
Θ = (θi)i∈Q0 ∈ Z|Q0| such that the stable representations with respect to the weight function w(X) =∑
i∈Q0 θi dimXi and rank function r(X) = ∑

i∈Q0 dimXi are precisely the indecomposables, namely
Repk(Q) is a maximal stable category.

5.1 Motivation

In his remarkable paper [Rie03] published on Invent. Math. in 2003, M. Reineke proposed the
following stability-indecomposability correspondence conjecture:
Conjecture 5.1.1 (Reineke, [Rie03]). If Q is a quiver of Dynkin type, there exists a weight system
Θ on Q such that the stable representations are precisely the indecomposable ones.

If this conjecture is true, it will has some valuable applications. For example, it can be used to
study the stratification of representation varieties of Dynkin quiver [Rie03], and to study identities

143
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between products of quantum dilogarithm series associated with Dynkin quivers [Kel11]. In this
chapter, we will give an elementary proof of Reineke’s conjecture for the quivers of An-type by
combinatorial construction of a special weight system1.

On the other hand, Juteau [Jut17] has found some counterexamples for Reineke’s conjecture in
the quivers of D- and E-type by computer program (unpublished). Therefore, a modified version
of original Reineke’s conjecture is proposed as follows2.

Conjecture 5.1.2 (= Conjecture 5.3.1). Let Q be a Dynkin quiver, then the abelian category
Repk(Q) is a maximal stable category.

A natural extension is to consider the Reineke-type conjecture for certain triangulated categories
with Bridgeland stability conditions3.

5.2 Quivers and Their Representations

In this section, we collect some basic materials of quiver theory (for more details, see [Jr.16]).
Throughout the paper, k is assumed to be a fixed algebraically closed field.

Definition 5.2.1. (1) A quiver Q = (Q0, Q1, s, t) is a 4-tuple, where

• Q0 and Q1 are finite sets of vertices and arrows respectively,
• s, t : Q1 ! Q0 map each arrow a ∈ Q1 to its starting vertex s(a) and terminal vertex
t(a), this is denoted as

s(a) a−−! t(a).

(2) Let Q = (Q0, Q1) be a quiver, Q′ = (Q′0, Q′1) is called a subquiver if

• Q′0 ⊂ Q0 and Q′1 ⊂ Q1,
• s(a), t(a) ∈ Q′0 for all a ∈ Q′1.

In particular, a subquiver Q′ is called a full subquiver if furthermore, a ∈ Q′1 for all a ∈ Q1
satisfying s(a) ∈ Q′0. For example, for the following quiver

• a1−−! • a2−−! • a3−−! •,

• • a3−−! • is a subquiver, but not a full subquiver, while • a2−−! • a3−−! • is a full subquiver.

(3) Let Q = (Q0, Q1) and Q′ = (Q′0, Q′1) be two quivers, the intersection and union of these two
quivers are defined as

Q ∩Q′ := (Q0 ∩Q′0, Q1 ∩Q′1), Q ∪Q′ := (Q0 ∪Q′0, Q1 ∪Q′1),
1From the communications with Prof. Reineke, Prof. Hille and Prof. Juteau, we know that Hille and Juteau have a proof

for this conjecture in An-case, however it is unpublished. Meanwhile, from the report of the referee, we know that in his
paper [Kel11], Keller suggests to resolve this conjecture by the method of [IT09]. Moreover, recently we know from the paper
[Kin20] that the authors of [AI19] have an independently proof of Reineke conjecture for quivers of An-type. The the paper
[Kin20] also considers this problem from another viewpoint, and from the Remark 1.5 of it, the authors have the method
to show counterexamples to the whole Reineke conjecture only exist for quivers of Dn-type (n ≥ 9), E7 and E8-type, this
means they have a complete solution to Reineke conjecture.

2We do not know whether such modified version is true for the Dynkin quivers (even for tame quivers), but so far as we
know, Juteau and Hille [Jut17, Hil17] are attempting to prove it.

3Very recently, we note that the authors of [KOT19] prove that for the derived category Db(Q) of a Dynkin quiver Q,
there exists a Bridgeland stability condition σ such that for an object E ∈ Db(Q) the following are equivalent: i) E is
indecomposable, ii) E is exceptional, iii) E is σ-stable.
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respectively.

(4) A path γ of a quiver Q is a sequence a1 · · · an(n ≥ 1) of arrows that satisfies s(ai+1) = t(ai)
for 1 ≤ i ≤ n− 1, and the starting vertex of a1 and terminal vertex of an are called starting
vertex and terminal vertex of γ, respectively. We denote this path as

γ : • a1−−! • a1−−! · · · an−1−−−! •.

The length of a path γ is defined by the number of arrows in γ, we denote it as |γ|. For each
vertex i ∈ Q0, we denote ei the trivial path that starts and terminates at i, i.e., s(i) = t(i).
Clearly, each trivial path has length 0.

Remark 5.2.2. Clearly any subquiver of a quiver, intersections and unions of quivers are all
quivers.
Definition 5.2.3. (1) Let Q = (Q0, Q1) be a quiver, a representation of Q over k (later we call it

a k-representation, or just a representation for simplicity) is a pair X = {(Xi)i∈Q0 , (Xa)a∈Q1},
where

• (Xi)i∈Q0 is a family of finite dimensional k-vector spaces associated to all vertices i ∈ Q0;
• (Xa)a∈Q1 a family of k-linear maps associated to all arrows a ∈ Q1, i.e,

Xa : Xs(a) −! Xt(a).

Define d = (di)i∈Q0 ∈ Z|Q0| for di = dimkXi, and call it the dimension vector of the represen-
tation X.

(2) Let X, Y be two k-representations of Q, a morphism u : X ! Y is a collection of linear maps
ui : Xi ! Yi for all i ∈ Q0 such that for each arrow a ∈ Q1, the following diagram commutes:

Xs(a)
Xa−−−! Xt(a)

us(a)

y ut(a)

y
Ys(a)

Ya−−−! Yt(a).

We say the morphism u is an isomorphism if moreover each ui is an isomorphism, and denote
it as X ∼= Y . We denote by Repk(Q) the category of k-representations of Q.

(3) Let u : X ! Y and v : Y ! Z be two morphisms of k-representations of Q, we define
their composition v ◦ u : X ! Z by taking (v ◦ u)i = vi ◦ ui : Xi

ui−−! Yi
vi−−! Zi for each

i ∈ Q0. More precisely, if we take X = {(Xi)i∈Q0 , (Xa)a∈Q1}, Y = {(Yi)i∈Q0 , (Ya)a∈Q1} and
Z = {(Zi)i∈Q0 , (Za)a∈Q1}, then the following diagram commutes for each arrow a ∈ Q1:

Xs(a)
Xa−−−! Xt(a)

us(a)

y ut(a)

y
Ys(a)

Ya−−−! Yt(a)

vs(a)

y vt(a)

y
Zs(a)

Za−−−! Zt(a)
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(4) The direct sum W = X ⊕ Y of two k-representations X and Y of Q is defined by the pair

W = {(Wi)i∈Q0 , (Wa)a∈Q1} = {(Xi ⊕ Yi)i∈Q0 , (Xa ⊕ Ya)a∈Q1},

where each linear map is given by

Wa = Xa ⊕ Ya : Xs(a) ⊕ Ys(a) ! Xt(a) ⊕ Yt(a).

A k-representationW of Q is said to be decomposable if there exist non-zero k-representations
X and Y such that W ∼= X ⊕ Y , otherwise it is said to be indecomposable.

(5) Let X and Y be two k-representations of Q. X is said to be a subrepresentation Y if Xi ⊆ Yi
for all i ∈ Q0 and Xa = Ya|Xs(a) : Xs(a) ! Xt(a) for all a ∈ Q1.

(6) A k-representation of Q is called simple if it has no proper non-zero subrepresentations, and
called semisimple if it is the direct sum of simple representations.

(7) We say a k-representation X of Q is thin if dimk(Xi) ≤ 1 for all i ∈ Q0, that is, if each linear
space Xi is either 0 or k.

Giving a quiver Q, an important aim of quiver representation theory is to classify all k-
representations of Q and all morphisms of k-representations up to isomorphism. An important
theorem of Krull and Schmidt makes this classification problem easier, it states that every k-
representation of a given quiver can be uniquely decomposed into the direct sum of indecomposable
k-representations up to the ordering of indices.

Theorem 5.2.4 (Krull–Schmidt Classification Theorem). Let X be a representation of a given
quiver Q, then there is an isomorphism

X ∼= X1 ⊕ · · · ⊕Xs,

where each Xi is indecomposable representation of Q and the decomposition is unique up to order-
ing, more precisely, if X ∼= X1 ⊕ · · · ⊕Xs and X ∼= Y1 ⊕ · · · ⊕ Yr, then s = r and Xi = Yf(i) for
each i ∈ {1, · · · , s}, where f : {1, · · · , s}! {1, · · · s} is a bijection.

A quiver Q is said to be of finite type if it has finitely many isomorphism classes of indecompos-
able representations. Gabriel’s classification theorem states that for a connected quiver Q without
oriented cycles, the following are equivalent

• Q is of finite type,

• the underlying graph of Q is a simply laced Dynkin diagram, namely one of the followings

An :

Dn :
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E6 :

E7 :

E8 :

• the quadratic form
qQ(α) =

∑
i∈Q0

α2
i −

∑
a∈Q1

αs(a)αt(a)

is positive definite, where α ∈ Z|Q0|.

Moreover one has the following bijective correspondence:

isomorphism classes of indecomposable representations X
↕

positives roots of the quadratic form qQ

↕

noninitial cluster variables cX .

For a quiver Q, we express the underlying graph ΓQ as a binary set ΓQ =: {(Q0, Q
′
1)} of

vertices and edges, where Q′1 is obtained by taking all arrows in Q1 as edges. For any edge l ∈ Q′1,
it corresponds to a unique arrow a ∈ Q1, we denote s(l) = s(a) and t(l) = t(a) the starting vertex
and terminal vertex of l, respectively.

Definition 5.2.5. The support of X is a subset of ΓQ consisting of all vertices i with the assigning
linear space Xi 6= 0 and all edges connecting these vertices, that is:

supp(X) := {(Q̃0, Q̃1)|i ∈ Q̃0 if Xi 6= 0; l ∈ Q̃1 if s(l), t(l) ∈ Q̃0} ⊂ ΓQ.

The support quiver suppX(Q) is given by recovering the arrows of all edges in supp(X), that is,
given by the vertices i with Xi 6= and the arrows a with Xa 6= 0.

The following facts are very obvious.

Fact. Let Q be a quiver, then

(1) If X is an indecomposable k-representation of Q, then its support quiver suppX(Q) is con-
nected.

(2) If two k-representations X and Y are isomorphic, then suppX(Q) = suppY (Q).

(3) Let X be a thin representation of Q, then X is indecomposable if and only if the support
quiver suppX(Q) is connected.
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Now we introduce the stability conditions for representations of quivers, our definition here is
more abstract than that in many contexts of quiver representation theory, this is for our convenience
of introducing the modified Reineke conjecture in the next section.

Definition 5.2.6 ([DW11]). (1) Let A be a category, and w, r be two functions on A, called
weight function and rank function respectively, such that r(X) 6= 0 for any nonzero object
X in A. A object X ∈ A is called (w, r)-stable (resp. (w, r)-semistable) if for any nonzero
subobject U of X, we have

µ(U) < µ(X) (resp.µ(U) ≤ µ(X)),

where the slope function µ(X) is defined by µ(X) = w(X)
r(X) .

(2) Let w, r be weight function and rank function on a category A respectively, all (w, r)-stable
(resp. (w, r)-semistable) objects of A form a full subcategory of A, called (w, r)-stable (resp.
(w, r)-semistable) subcategory. Two pairs (w, r) and (w′, r′) is called stable-equivalent (resp.
semistable-equivalent) if they induce the same stable (resp. semistable) subcategories, we
denote this as

(w, r) ∼s (w′, r′) (resp. (w, r) ∼ss (w′, r′)).

(3) LetA be an abelian category, if there exist an additive weight function w and a rank function
r on A such that the (w, r)-stable subcategory consists of all indecomposable objects, then
we call A a maximal stable category.

5.3 Reineke’s Conjecture for Quivers of An-Type

After introducing the abstract stability conditions for representations of quiver in last section, we
can modify Reineke conjecture into the following form:

Conjecture 5.3.1 (Modified Reineke’s conjecture). Let Q be a Dynkin quiver, then the abelian
category Repk(Q) is a maximal stable category.

In this section, we will confirm above conjecture for quivers of type An. Namely, we will prove
the following main theorem:

Theorem 5.3.2. If Q is a quiver of type An, then there exists a weight system Θ = (θi)i∈Q0 ∈ Z|Q0|

such that the stable representations with respect to the weight function w(X) = ∑
i∈Q0 θi dimXi

and rank function r(X) = ∑
i∈Q0 dimXi are precisely the indecomposables, namely Repk(Q) is a

maximal stable category.

5.3.1 Intrinsic Weight System

Let Q be a quiver of type An, we put it horizontally and fix a reference direction from left to right
so that assign numbers 1, · · · , n to the vertices of Q along the reference direction, then we can
classify all vertices into the following four types according to the directions of arrows attached to
them:
• a vertex i ∈ Q0 is called of type I if it is only as the starting vertex of arrows linking to it;
• a vertex i ∈ Q0 is called of type II if it is only as the terminal vertex of arrows linking to it;
• a vertex i ∈ Q0 is called of type III if there is a path goes through i with the reference

direction such that i is a vertex but neither a staring nor a terminal one of that path;
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• a vertex i ∈ Q0 is called of type IV if there is a path goes through i with the direction opposite
to the reference direction such that i is a vertex but neither a staring nor a terminal one of that
path.

Now we define a weight system Θ = {θi}i∈Q0 according to the type of each vertex as follows:

θi =


li + ri + 2liri, i is a vertex of type I;
−li − ri − 2liri, i is a vertex of type II;
ri − li, i is a vertex of type III;
li − ri, i is a vertex of type IV

(5.1)

where li and ri stands for the number of vertices on the left and right of the vertex i, respectively.
Such weight system is called the intrinsic weight system, and the corresponding weight function
wΘ(X) = ∑

i∈Q0 θi dimXi for a representation X of Q is called the intrinsic weight function.
Example 5.3.3. The following quiver of An-type

•
1
−! •

2
−! •

3
−! •

4
 − •

5
 − •

6
−! •

7
, (5.2)

has four types of vertices: 

I : 1, 6,
II : 4, 7,
III : 2, 3,
IV : 5,

Then the intrinsic weight system Θ is given by θ1 = 6, θ2 = 4, θ3 = 2, θ4 = −24, θ5 = 2, θ6 = 16,
θ7 = −6.
Lemma 5.3.4. Let Q = {Q0, Q1} be a quiver of An-type with the intrinsic weight system Θ =
{θi}i∈Q0. Then

1. along any path, the weights at the vertices contained in the path decrease.

2. the sum ∑
i∈Q0

θi of weights at all vertices is exactly zero.

Proof. (1) We just need to show along each arrow a ∈ Q1, the weight decreases, i.e., θs(a) > θt(a)
for each arrow a ∈ Q1. We can draw the quiver Q as follows:

Q : · · · •
s(a)

a−−! •
t(a)
· · · ,

if we consider the two vertices and arrows closed to •
s(a)

a−−! •
t(a)

, then we have the following four
cases:

(i) Q : · · · −! •
s(a)

a−−! •
t(a)
 − · · · , in this case, we have

θs(a) = rs(a) − ls(a), θt(a) = −lt(a) − rt(a),

(ii) Q : · · · − •
s(a)

a−−! •
t(a)
−! · · · , in this case, we have

θs(a) = ls(a) + rs(a) + 2ls(a) · rs(a), θt(a) = rt(a) − lt(a),
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(iii) Q : · · · −! •
s(a)

a−−! •
t(a)
−! · · · , in this case, we have

θs(a) = rs(a) − ls(a), θt(a) = rt(a) − lt(a),

(iv) Q : · · · − •
s(a)

a−−! •
t(a)
 − · · · , in this case, we have

θs(a) = ls(a) + rs(a) + 2ls(a) · rs(a), θt(a) = −lt(a) − rt(a))− 2lt(a) · rt(a),

Since rs(a) > rt(a) ≥ 0 and 0 ≤ ls(a) < lt(a), in each case, we have θs(a) > θt(a).
(2) For any subquiver Q′ = {Q′0, Q′1} of Q, we give each vertex i ∈ Q′0 a new weight:

θQ
′

i = #{a| s(a) = i, a ∈ Q′1} −#{a| t(a) = i, a ∈ Q′1} ∈ {±2, 0},

the difference of numbers of arrows in Q′1 starting at i and numbers of arrows in Q′1 terminating
at i, this construction immediately gives ∑

i∈Q′0

θQ
′

i = 0.

Then for each vertex i ∈ Q0, its weight θi is the sum of all such new weights θQ
′

i for the connected
subquiver Q′ contains i:

θi =
∑

Q′⊂Q connected subquiver
i∈Q′0

θQ
′

i .

If i is of type I, then near the vertex i, the quiver locally looks like  − •
i
−!, all subquivers

contain i can be divided into three classes:
(i) · · · − •

i
,

(ii) •
i
−! · · · ,

(iii) · · · − •
i
−! · · · .

The first class has li subquivers, for each subquiver Q′, we have θQ
′

i = 1; the second class has
ri subquivers, for each subquiver Q′, we have θQ

′

i = 1; the third class has liri subquivers, for each
subquiver Q′, we have θQ

′

i = 2. Consequently,
∑

Q′⊂Q connected subquiver
i∈Q′0

θQ
′

i = li + ri + 2liri = θi.

If i is of type III, then near the vertex i, the quiver locally looks like −! •
i
−!, all subquivers

contain i can be divided into three classes:
(i) · · · −! •

i
,

(ii) •
i
−! · · · ,

(iii) · · · −! •
i
−! · · · .

The first class has li subquivers, for each subquiver Q′, we have θQ
′

i = −1; the second class has
ri subquivers, for each subquiver Q′, we have θQ

′

i = 1; the third class has liri subquivers, for each
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subquiver Q′, we have θQ
′

i = 0. Hence,
∑

Q′⊂Q connected subquiver
i∈Q′0

θQ
′

i = ri − li = θi.

The cases of type II and IV are similar.
Therefore, the sum of all weights is calculated as

∑
i∈Q0

θi =
∑
i∈Q0

( ∑
Q′⊂Q connected subquiver

i∈Q′0

θQ
′

i

)
=

∑
Q′⊂Q

connected subquiver

( ∑
i∈Q′0

θQ
′

i

)
= 0.

We complete the proof.

Denoted by Ip,q the following indecomposable thin representation (the orientation for the graph
is just took as an example)

0 −! · · · −! k
p

1−−! · · · 1−−! k
q
−! 0 −! · · · −! 0,

where 1 ≤ p ≤ q ≤ n. Then the indecomposable representations of Q are classified by Ip,q’s, more
precisely, we have

Proposition 5.3.5 ([KMS06, LM98]). Let X be a representation of a quiver Q of type An. Then
X is indecomposable if and only if X is a thin representation whose support quiver is connected,
that is, X is isomorphic to some Ip,q.

Lemma 5.3.6. Let Q be a quiver of An-type, and X is the indecomposable representation of type
I1,n, then X is stable with respect to the intrinsic weight function and rank function.

Proof. To show the stability, we only need to prove the intrinsic weight function wΘ(X ′) on any
proper subrepresentation X ′ of I1,n is negative.

Obviously, the support quiver Q′ = suppX′(Q) is a proper full subquiver of Q. We first assume
Q′ is connected, then Q must look like as follows:

Q : · · · • −! Q′  − • · · · ,

and denoted by s(Q′) and t(Q′) the two vertices at the boundary of Q′, one draws Q as follows:

Q : · · · • −! •
s(Q′)
· · · •

t(Q′)
 − • · · · .

Let lQ′ and rQ′ be the number of vertices on the left and right hand side of the wholeQ′, respectively.
To compute the weight function wΘ(X ′), we first separate Q′ from Q, and view Q′ as an

independent quiver. Then Q′ carries a weight system Θ′, called the independent weight system,
given by the manner described previously. Denoted by θind(Q′) the sum of the weights belong to
the independent weight system associated to the independent quiver Q′, then it identical equals
to zero. By Lemma 5.3.4, the actual weight function wΘ(X ′) is the sum of θind(Q′) and θadd(Q′),
where θadd(Q′) is the sum of the added new weights at the vertices in Q′0 caused by the connected
subquivers containing not only vertices in Q′0 but also in Q0\Q′0. Such connected quivers are
divided into three cases:
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(i) the considered connected subquiver ( inside the box) contains vertices in Q′ and some
vertices only on the right of Q′, like the following:

· · · • −! •
s(Q′)
· · · · · · •

t(Q′)
 − • · · · · · · ,

(ii) the considered connected subquiver (inside the box) contains vertices in Q′ and some
vertices only on the left of Q′, like the following:

· · · · · · • −! •
s(Q′)
· · · · · · •

t(Q′)
 − • · · · ,

(iii) the considered connected subquiver ( inside the box) contains the whole Q′ and some
vertices both on the right and on the left of Q′, like the following:

· · · · · · • −! •
s(Q′)
· · · •

t(Q′)
 − • · · · · · · .

The first case includes rQ′ · |Q′0| choices. A key observation is that each choice contributes a
term −1 to the sum of weights at the vertices of Q′. Indeed, let Q̃ be a such connected subquiver
which produce new weight for the vertices in Q̃0 as in the proof of Lemma 5.3.4

θQ̃i = #{a| s(a) = i, a ∈ Q̃1} −#{a| t(a) = i, a ∈ Q̃1}.

Then once we compute the sum ∑
i∈Q̃0∩Q′0

θQ̃i , the inner arrows of Q̃∩Q′ do no work, only the arrow

closest attaching to Q̃ ∩ Q′ has effect by providing one term -1 in the sum. Similarly, the second
case admits lQ′ · |Q′0| choices, and each case contributes a term −1 to the sum; the third case
contains lQ′ · rQ′ choices, and each case contributes a term −2 to the sum. Finally we reach

θadd(Q′) = −rQ′ · |Q′0| − lQ′ · |Q′0| − 2rQ′ · lQ′ ,

hence the weight function wΘ(X ′) is given by

θ(Q′) = θind(Q′) + θadd(Q′) = −rQ′ · |Q′0| − lQ′ · |Q′0| − 2rQ′ · lQ′ < 0.

If Q′ is not connected, we denote its connected components as Q1, Q2, · · ·Qs which correspond
to the direct summand X i of the representation X ′, then

wΘ(X ′) =
s∑
i=1

wΘ(X i).

For each summand we have shown it is negative.

5.3.2 Proof of the Main Theorem

We complete our proof of the main theorem by the following lemma.

Lemma 5.3.7. Let Q be a quiver of An-type, then every indecomposable representation is stable
with respect to the intrinsic weight function and rank function.
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Sketch of Proof. Here we just give a sketch of proof here, for more details, see paper [HH20b].
Let X be an indecomposable representation of Q and X ′ ⊂ X be any proper subrepresentation.

Now X must be of type Ip,q with support quiver QX := suppX(Q) connected, and the support
quiver QX′ := suppX′(Q) of X ′ is a proper full subquiver of QX . Therefore our aim is to prove the
following inequality holds for any proper full subquiver QX′ of QX :

wΘ(X ′)
|QX′

0 |
<
wΘ(X)
|QX

0 |
. (5.3)

Let QX′ has s connected components Q1, · · · , Qs, clearly each Qi is a proper full subquiver of
QX . To calculate the total weights wΘ(X) and wΘ(X ′), similar as the proof of Lemma 5.3.6, we
first separate QX from the whole quiver Q to get the sums θind(QX) (= 0) and θind(QX′) (< 0)
coming from the independent weight system on QX . Secondly, we calculate the sums θadd(QX)
and θadd(QX′) when the rest parts of Q are considered.

According to the relation of Qi and QX′ , we can divide our consideration into three different
big cases, and when we take the rest part of Q into account, each big case can be divided into four
different small cases.

Case I: all Qi are in the interior of QX , illustrated as follows:

· · · • −! Q1  − • · · · • −! Q2  − • · · · · · · • −! Qs  − • · · ·

Case II: there is a full subquiver of QX (without loss of generality, assumed to be Qs) that
shares one boundary vertex with QX , illustrated as follows:

· · · • −! Q1  − • · · · • −! Q2  − • · · · · · · • −! Qs

Case III: there are two full subquivers of QX (assumed to be Q1 and Qs) each of which has one
boundary vertex coincides with that of QX , illustrated as follows:

Q1  − • · · · • −! Q2  − • · · · · · · • −! Qs

Denoted by Cases in each case above, then each case can be divided into the following four
different sub-cases:

(a) the two arrows near QX both point into QX :

· · · • −! Cases  − • · · · ,

(b) the left arrow near QX is out from QX and the right one points into QX :

· · · • − Cases  − • · · · ,

(c) the two arrows near QX are both out from QX :

· · · • − Cases −! • · · · ,
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(d) the left arrow near QX points into QX and the right one is out from QX :

· · · • −! Cases −! • · · · .

Our method is analyzing each case and show the stability.

Definition 5.3.8. Let Ind(Q) be the (finite) set of the isomorphism classes indecomposable rep-
resentations over k of a Dynkin quiver Q. For a nonempty subset U ⊆ Ind(Q), one introduces a
subset SZ(Q,U) of Zn with n = |Q0| as

SZ(Q,U) =

Θ = (θ1, · · · , θn) ∈ Zn
∣∣∣∣∣∣
each element of U is stable with respect to the
corresponding weight function wΘ and rank function r

 .
Obviously, SZ(Q,U) ⊆ SZ(Q, V ) if V ⊆ U . SZ(Q,U) is determined by finitely many linear
inequalities f1(Θ) > 0, · · · fm(Θ) > 0, then we define a subset SR(Q,U) of Rn as

SR(Q,U) = {Θ = (θ1, · · · , θn) ∈ Rn : f1(Θ) > 0, · · · fm(Θ) > 0},

and define a convex polyhedral cone C(Q,U) of Rn as the closure

C(Q,U) = SR(Q,U).

The faces of maximal dimension in a cone C(Q,U) are called the walls in Rn.

Corollary 5.3.9 ([Rie03]). Let Q be q quiver of An-type, then the cardinality of SZ(Q, Ind(Q))
is infinite. Moreover, for any element in SZ(Q, Ind(Q)), with respect to the corresponding weight
function and rank function

(1) any semistable representation is polystable;

(2) the Hader–Narasimhan strata are precisely GL(Q, d)-orbits in Rep(Q, d).

5.3.3 Revisit Intrinsic Weight System via Semi-Invariant Theory

Proposition 5.3.10. For each indecomposable representation Ip,q of the quiver Q of An-type, one
defines weight systems Θ(Ip,q) and Θ′(Ip,q) as follows

Θ(Ip,q)i =



1, p < i < q and i is a vertex of type I,
−1, p < i < q and i is a vertex of type II,
0, p < i < q and i is a vertex of type III or IV,
1, i = p and i is a vertex of type I or III; i = p = q,
0, i = p < q and i is a vertex of type II or IV,
0, i = p− 1 and i is a vertex of type I or III,
−1, i = p− 1 and i is a vertex of type II or IV,
0, i = q + 1 and i is a vertex of type I or IV,
−1, i = q + 1 and i is a vertex of type II or III,
0, i < p− 1; i > q + 1,
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Θ′(Ip,q)i =



1, p < i < q and i is a vertex of type I,
−1, p < i < q and i is a vertex of type II,
0, p < i < q and i is a vertex of type III or IV,
−1, i = p and i is a vertex of type II or IV; i = p = q,
0, i = p < q and i is a vertex of type I or III,
1, i = p− 1 and i is a vertex of type I or III,
0, i = p− 1 and i is a vertex of type II or IV,
1, i = q + 1 and i is a vertex of type I or IV,
0, i = q + 1 and i is a vertex of type II or III,
0, i < p− 1; i > q + 1,

then the intrinsic weight system Θ can be written as

Θ =
∑
Ip,q

c(Ip,q)Θ(Ip,q) (or Θ =
∑
Ip,q

c(Ip,q)Θ′(Ip,q)),

where the sum runs through all indecomposable representations of Q, and the coefficients c(Ip,q)’s
are non-negative integers, moreover the sum can be taken over the indecomposable representa-
tions Ip,q satisfying if p 6= 1 is a vertex of type I or IV then q = n or q 6= n is of type II or IV; if
p is a vertex of type II or III then q 6= n is of type I or III; if p = 1 then q 6= n is a vertex of type
I or III (or satisfying if p 6= 1 is a vertex of type II or III then q = n or q 6= n is one of type I or
III; if p is a vertex of type I or IV then q 6= n is one of type II or IV; if p = 1 then q 6= n is one
of type II or IV).

Proof. We prove this proposition by virtue of the semi-invariant theory. Let us first recall it
briefly. For a representation X of a general quiver Q with the dimension vector d , every weight
system W = (Wi) ∈ Z|Q0| on Q defines a character χΘ of reductive algebraic group GL(Q, d) =∏
i∈Q0 GL(di) acting on X as a homomorphism

χW : GL(Q, d) −! k×,

g =
(
gi : gi ∈ GL(di)

)
7−!

∏
i∈Q0

det(gi)Wi .

Conversely, every character of GL(d) must look like the above form. Let

Rep(Q, d) =
⊕
a∈Q1

Hom(kds(a) , kdt(a))

be the affine variety of representations of Q with dimension vector d, a polynomial function f in
k[Rep(Q, d)] is called a W -semi-invariant if g · f = χW (g)f for any g ∈ GL(X). Denoted by
SIW (Q, d) the vector space of W -semi-invariants, then the direct sum

SI(Q, d) =
⊕

W∈Z|Q0|

SIW (Q, d)

carries a ring structure, called the ring of semi-invariants. Moreover, SI(Q, d) = k[Rep(Q, d)]SL(Q,d)
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for SL(Q, d) = ∏
i∈Q0 SL(di) is the ring of polynomials in k[Rep(Q, d)] which is stable under the

action of SL(d). Let X, Y be two representations of a quiver Q of An-type with dimension vectors
dX , dY respectively, the Euler inner product is given by

〈dX , dY 〉 = dimk HomQ(X, Y )− dimk ExtQ(X, Y )
=
∑
i∈Q0

(dX)i(dY )i −
∑
a∈Q1

(dX)s(a)(dY )t(a)

=
∑

i,i+1∈Q0

((dX)i(dY )i − (d̂X)i(d̂Y )i+1),

where i+ 1 stands for the next vertex of i along the reference direction, and

(d̂X)i =

 (dX)i, i is a vertex of type I or III,
(dX)i+1, i is a vertex of type II or IV;

(d̂Y )i =

 (dY )i, i is a vertex of type II or III,
(dY )i−1, i is a vertex of type I or IV.

Define a map fYX : ⊕i∈Q0 Hom(Xi, Yi)!
⊕

a∈Q1 Hom(Xs(a), Yt(a)) by

(fi)i∈Q0 7! (ft(a)Xa − Yafs(a))a∈Q1 .

If 〈dX , dY 〉 = 0, the matrix of fXY is a square matrix, then one can define a semi-invariant c(X, Y ) =
det fYX of the action GL(Q, dX)×GL(Q, dY ) on Rep(Q, dX)×Rep(Q, dY ). For a fixed representa-
tion X (or Y ), the restriction c(X, Y ) to {X}×Rep(Q, dY ) (or Rep(Q, dX)×{Y }) defines a semi-
invariant cX(Y ) (or cY (X)) in SI(Q, dY ) with respect to the weight system WX = {(WX)i}i∈Q0 ,
where

(WX)i = 〈dX , di〉 =


(dX)i, i is a vertex of type I;
(dX)i − (dX)i−1 − (dX)i+1, i is a vertex of type II;
(dX)i − (dX)i−1, i is a vertex of type III;
(dX)i − (dX)i+1, i is a vertex of type IV,

for (di)j = δij (or SI(Q, dX) with respect to the weight system W Y = {(W Y )i}i∈Q0 , where

(W Y )i = −〈di, dY 〉 =


−(dY )i + (dY )i−1 + (dX)i+1, i is a vertex of type I;
−(dY )i, i is a vertex of type II;
−(dY )i + (dY )i+1, i is a vertex of type III;
−(dY )i + (dY )i−1, i is a vertex of type IV

).

Derksen and Weyman’s remarkable theorem [DW00] asserts that the semi-invariants of type cX(Y )
(or cY (X)) span all the weight spaces in the rings SI(Q, dY ) (or SI(Q, dX)). One can easily check

WIp,q = Θ(Ip,q), W Ip,q = Θ′(Ip,q).

on the other hand, I1,n is stable with respect to the intrinsic weight function, thus for each sub-
representations R ⊆ Ip,q we have w(R) < 0, then by King’s result, there exists an m > 0 and
f ∈ SI(Q,−!n )mΘ such that f(I1,n) 6= 0, where −!n = (1, · · · , 1) denotes for the dimension vector of
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I1,n. Derksen–Weyman theorem implies that the set Σ(Q, d) = {W : SI(Q, d)W 6= 0} is saturated,
therefore SI(Q,−!n )Θ 6= 0. The ring SI(Q,−!n ) is generated by all cIp,q ’s with 〈dIp,q ,−!n 〉 = 0 (or cIp,q ’s
with 〈−!n , dIp,q〉 = 0).

All these facts combined together lead to the final conclusion.

Remark 5.3.11. We write Θ = Θ+ − Θ−, where Θ+ = {Θ+
i } with Θ+

i = max{θi, 0} and Θ− =
{Θ−i } with Θ−i = max{−θi, 0}. For a dimension vector d, if ∑i∈Q0 diΘi 6= 0, then there is only
trivial Θ-semi-invariant. Therefore, we assume ∑i∈Q0 diΘi = 0, i.e, ∑i∈Q0 diΘ

+
i = ∑

i∈Q0 diΘ
−
i = l,

then for a representation X ∈ Rep(Q, d), one can define an l × l matrix

A :
⊕
i∈Q0

X
Θ+
i

i −!
⊕
i∈Q0

X
Θ−i
i ,

where each block Aij ∈ Hom(Xi, Xj) has a form

Aij =

 X(pi,j), if there exists a path pi,j from i to j,
0, otherwise,

with X(pi,j) denoting the composition of the morphisms Va for the arrows a’s consisting of the
path pi,j. Then detA is a semi-invariant in SI(Q, d)Θ, and such semi-invariants generate the space
SI(Q, d)Θ.





Chapter 6

Kobayashi–Hitchin Correspondence for
Quiver Bundles over Generalized
Manifolds

The non-Abelian Hodge theory begins from the study of the existence of Hermitian–Einstein
metrics on holomorphic bundles that satisfy some special stability conditions. This is exactly
what we call the Kobayashi–Hitchin correspondence.

This theory has a vast development since 1980s, many people work on this field from different
points of view, and many interesting results are obtained. Usually, the study of this kind of problem
can be generalized in the following directions:

(1) Consider more general base manifolds: for example, general Hermitian manifolds with Gaudu-
chon metric, or non-compact Kähler manifolds satisfying some analytic conditions [LY87,
Moc20];

(2) Consider more general bundles: for example, generalized vector bundles, or quiver bundles
[ACGP03b, HMS16];

(3) Consider more general stability conditions: for example, relax to semistability or to α-stability
parametrized by some weight system α [LZ15, NZ18];

(4) Consider singularities for Hermitian—Einstein connections and parabolic structure on vector
bundles [Sim90, Moc06, Moc09, Biq97, Li00].

In this chapter, our considerations focus on generalized Kähler manifold as the base manifold
and quiver bundle as the gauge theoretic system. This is mainly based on the paper [HH20a].

Generalized Kähler manifold was first discovered by Gates, Hull, and Roček as the target
space of N = (2, 2) sigma model [GHR84], and then reformulated under the context of Hitchin’s
generalized complex geometry [Hit03, Gua11] by Gualtieri [Gua14]. There are abundant candidates
for generalized Kähler manifold, for example, any degenerate del Pezzo surface and all Hirzebruch
surface admits non-trivial generalized Kähler structures [Hit07]. On the other hand, quiver bundle
coming from quiver gauge theory consists of a set of vector bundles and a set of morphisms between
these bundles [ACGP03b, ACGP03a].

In this chapter, we first introduce the notion of holomorphic quiver bundles over a generalized
Kähler manifold, and introduce suitable stability and good metric for them. We should be faced
with some new features in our setting: such stability depends on several real parameters reflecting

159
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the generalized Kähler structure on base manifold and quiver structure on gauge theoretic system,
and such metric satisfies a series of mutually coupled equations. Then we prove certain set-theoretic
Kobayashi–Hitchin correspondence, namely we have the following main theorem which generalizes
the results in [ACGP03b, HMS16].

Theorem 6.0.1 (= Theorem 6.3.1). Let Q = (Q0, Q1) be a quiver, and E = (E, φ) be an I±-
holomorphic Q-bundle over an n-dimensional compact generalized Kähler manifold (X, I+, I−, g, b)
such that g is Gauduchon with respect to both I+ and I−, then E is (α, σ, τ)-polystable if and only
if E admits an (α, σ, τ)-Hermitian–Einstein metric.

More related questions (generalizations) are proposed. On one hand, since a type of interesting
generalized Kähler manifolds, so-called generalized Calabi–Yau manifolds appear in compactifi-
cation of Type II string theory, must be non-compact, we can generalize such correspondence to
the non-compact case. On the other hand, the parameters appeared in the definition of stability
form a parameter space of stability conditions which is partitioned into chambers, studying the
wall-crossing phenomenon on this space is also an interesting topic, maybe the Kobayashi–Hitchin
correspondence can play some role.

6.1 Generalized Kähler Manifolds and Quiver Bundles

6.1.1 Generalized Kähler Manifolds

Let X be a manifold, we introduce the following definitions from generalized complex geometry
based on [Hit03, Gua11, Gua14].

Definition 6.1.1. A generalised complex structure on X is an endomorphism J ∈ End(TX⊕T ∗X)
such that

(1) J2 = −Id;

(2) 〈Ju, v〉 = −〈u, Jv〉, where the inner product 〈·, ·〉 on TX ⊗ T ∗X is the natural inner product
defined by

〈X + ξ, Y + η〉 := 1
2
(
iXη + iY ξ

)
.

(3) Let V 1,0 be the subbundle of the complexified bundle (TX ⊕ T ∗X)⊗C defined by the
√
−1-

eigenspaces of J , then V 1,0 is Courant involutive, that is, it is closed under the Courant
bracket on TX ⊕ T ∗X defined as follows:

[[X + ξ, Y + η]] := [X, Y ] + LXη − LY ξ −
1
2d
(
iXη − iY ξ

)
A generalized Kähler manifold refers to the geometric object defined by the following two

equivalent approaches.

Definition 6.1.2 ([Gua11]). A manifold X is called a generalized Kähler manifold if it carries two
generalized complex structures J1, J2 ∈ End(TX ⊕ T ∗X) satisfying

(1) J1J2 = J2J1,

(2) the symmetric pairing G(A,B) := 〈J1(A), J2(B)〉 is positive-definite for any non-zero smooth
sections A,B ∈ Γ(TX ⊕ T ∗X), where 〈·, ·〉 denotes the inner product on TX ⊕ T ∗X defined
as above.
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G is called a generalized Kähler metric.

Definition 6.1.3 ([Gua14]). A manifold X is called a generalized Kähler manifold if it carries the
data (I+, I−, g, b), where

• I± are two complex structures on X,

• g is a Riemannian metric on X,

• b is a two-form on X,

• I± are parallel with respect to the connections ∇± = ∇ ± 1
2g
−1H, respectively, where ∇ is

the Levi-Civita connection of g and H = db.

The generalized Calabi–Yau manifold is an important kind of generalized Kähler manifold.

Definition 6.1.4 ([Hit03]). A generalized Calabi–Yau manifold is a generalized Kähler manifold
(X, J1, J2) such that both nowhere vanishing pure spinors ψ1, ψ2 corresponding to J1, J2, respec-
tively satisfy the following conditions

• dψ1 = dψ2 = 0,

• (ψ1, ψ̄1) = (ψ2, ψ̄2),

where (•, •) is the Mukai pairing.

Remark 6.1.5. More generally, one defines the twisted generalized Kähler manifold as the mani-
fold X with 4-tuple (I+, I−, g,H), where I±, g is the same as above, and H is a closed 3-form such
that I± are parallel with respect to the connections ∇± = ∇± 1

2g
−1H, respectively. Similarly, one

can also introduce the twisted generalized Calabi–Yau manifold by replacing the first condition on
pure spinors by dHψ1 = dHψ2 = 0 for dH = d + H∧. When H is an exact 3-form, they reduce to
the generalized Kähler manifold and generalized Calabi–Yau manifold defined as above.

Definition 6.1.6 ([HMS16]). Let (X, I+, I−, g, b) be a generalized Kähler manifold, and E be
a complex vector bundle over X. E is called I±-holomorphic if there are two operators ∂̄± :
C∞(E)! C∞(E ⊗ T 0,1

I± X) such that they define a holomorphic structure on E with respect to I±
respectively.

Given an I±-holomorphic vector bundle (E, ∂̄+, ∂̄−), denote by ι the natural isomorphisms
between L̄± and T 0,1

I± X, one defines D̄±,s(v) := ∂̄±,ι(s)(v) for s ∈ C∞(L̄±) and v ∈ C∞(E), where
L+ = L1∩L2, L− = L1∩ L̄2 with L1, L2 be

√
−1-eigensubbundles of (TX⊕T ∗X)⊗C with respect

to the generalized complex structure J1,2 determined by

J1,2 = 1
2

 I+ ± I− −(ω−1
+ ∓ ω−1

− )
ω+ ∓ ω− −(I∗+ ± I∗−)


for Kähler forms ω± = g(I±·, ·). Then D̄ = D̄+ +D̄− : C∞(E)! C∞(E⊗ L̄1) defines a generalized
holomorphic bundle with respect to J1 if and only if ∂̄+∂̄− + ∂̄−∂̄+ = 0 [HMS16].

Moreover, we make the following assumptions on the n-dimensional generalized Kähler manifold
(X, I+, I−, g, b) in this paper:

• g is Gauduchon, i.e., ddc±ωn−1
± = 0 and dVolg = 1

n!ω
n
±, where dc± = I± ◦ d ◦ I±;

• X is compact.
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The first assumption is not too restrictive. It can be satisfied for generalized Kähler 4-manifolds
automatically, and for real compact Lie groups. On the second assumption, we have the following
no-go type theorem.

Proposition 6.1.7. (1) A compact twisted generalized Kähler surface has even first Betti number
if H is exact, and has odd first Betti number if H is not exact.

(2) A compact twisted generalized Calabi–Yau manifold must be a usual Calabi–Yau manifold.

Proof. (Sketch) The first result has been proved by the authors of [ACGP03b]. We only prove the
second claim. The structure of generalized Calabi–Yau reduces the structure group O(2n, 2n) of
TX ⊕T ∗X to SU+(n)×SU−(n), then there are two globally defined SU±(n)-invariant spinors ξ±.
The constraints on pure spinors can be rewritten in terms of ξ± [Wit06]

(∇M ±
1
4MyH) · ξ± =0,

(df ± 1
2H) · ξ± =0

for ∀M ∈ C∞(TX), exact three-form H = db and smooth function f = log 1
(ψ1,ψ̄1) , where ∇ denotes

the spin connection with respect to g, and · stands for the Clifford multiplication. We only need
to show if X is compact then H vanishes. Indeed, the following equations are derived from the
above conditions

R(g)
µν −

1
4HµαβHνγδg

αδgβδ + 2∇µ∇νf = 0,

gµα∇µ(e−2fHαβγ) = 0,

R(g) + 4gµν∇µ∇νf − 4gµν∇µ∇νf −
1
12g

µαgνβgλγHµνλHαβγ = 0.

After taking trace we get gµν∇µ∇νe
−2f − 1

6e
−2fgµαgνβgλγHµνλHαβγ = 0, then integrating over X

implies the vanishing of H if X is compact.

Now let (E, ∂̄+, ∂̄−) be an I±-holomorphic bundle over a generalized Kähler manifold X, fix a
Hermitian metric H on E, then there is a unique Chern-connection compatible with the complex
structures I± respectively, given by D±H := ∂±H +∂±, whose curvature form is denoted by F±H . Then
we define the degrees associated to the two Chern connections as follows:

deg±(E) :=
√
−1

2π

∫
X

Tr(F±H) ∧ ωn−1
± ,

which are independent of the choice of Hermitian metric H on E, since for any two Hermitian
metrics H and H ′ on E, we have Tr(F±H) = Tr(F±H′) + ∂±∂±(log det((H ′)−1H)).

6.1.2 Quiver Bundles and Stability

We give the following definitions of quiver bundles.

Definition 6.1.8. (1) A quiver Q = (Q0, Q1, h, t : Q1 ! Q0) is a 4-tuple, where

• Q0 and Q1 are finite sets of vertices and arrows, respectively,
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• h, t : Q1 ! Q0 map each arrow a ∈ Q1 to its head h(a) and tail t(a), respectively.

(2) A Q-sheaf on a complex manifold X is a pair E = (E, φ), where E = {Ei}i∈Q0 is a collection
of sheaves of OX-modules and φ = {φa}a∈Q1 a collection of morphisms φa : Et(a) ! Eh(a). In
particular, if each Ei is locally free, E is called a Q-bundle. A Q-subsheaf of E = (E, φ) is a
Q-sheaf E ′ = (E ′, φ′) such that E ′i is a subsheaf of Ei for each vertex i and φ′a = φa|Eh(a) for
each arrow a.

(3) A morphism f : E ! F between two Q-sheaves E = (E, φ) and F = (F, ϕ) is a collection of
morphisms fi : Ei ! Fi such that for each arrow a ∈ Q1, the following diagram commutes:

Et(a)
φa−−−! Eh(a)

ft(a)

y fh(a)

y
Ft(a)

ϕa−−−! Fh(a).

(4) A Hermitian metric on a Q-bundle E = (E, φ) is a collection H = {Hi}i∈Q0 of Hermitian
metrics Hi on Ei. For each arrow a ∈ Q1, by virtue of the Hermitian metrics at tail and head,
the morphism φa has a smooth adjoint φ∗Ha : Eh(a) ! Et(a) with respect to the Hermitian
metrics at tail and head, that is, Hh(a)(φa(u), v) = Ht(a)(u, φ∗Ha (v)) for any sections u, v of
Eh(a), Et(a).

(5) AQ-bundle E = (E, φ) on a generalized Kähler manifold (X, I+, I−, g, b) is called I±-holomorphic
if

• each Ei, i ∈ Q0, is an I±-holomorphic bundle, i.e., Ei carries two holomorphic structures
∂̄+i, ∂̄−i with respect to I±, respectively,
• each φa, a ∈ Q1, is I±-holomorphic, namelyφa ◦ ∂̄+t(a) = ∂̄+h(a) ◦ φa,

φa ◦ ∂̄−t(a) = ∂̄−h(a) ◦ φa.

(6) A morphism f : E ! F between two I±-holomorphic Q-bundles E = (E, φ) and F = (F, ϕ)
is a collection of I±-holomorphic morphisms fi : (Ei, ∂̄i+, ∂̄i−) ! (Fi, ∂̄′+i, ∂̄′−i), such that for
each arrow a ∈ Q1, the following diagram commutes:

(Et(a), ∂̄+t(a), ∂̄−t(a))
φa−−−! (Eh(a), ∂̄+h(a), ∂̄−h(a))

ft(a)

y fh(a)

y
(Ft(a), ∂̄

′
+t(a), ∂̄

′
−t(a))

ϕa−−−! (Fh(a), ∂
′
+t(a), ∂̄

′
−t(a)).

(7) An I±-holomorphic Q-bundle E = (E, φ) is said to be simple if any endomorphism f : E ! E
must have the form f = {ciIdEi}i∈Q0 for constants ci ∈ C.

Similarly, we can naturally introduce the stability for Q-bundles.

Definition 6.1.9 ([ACGP03b, HMS16]). Let E = (E, φ) be an I±-holomorphic Q-bundle.

(1) A coherent Q-subsheaf F of E is a 4-tuple F = (F+,F−, S+,S−), where
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• F± = (F±, ϕ) are Q-subsheaves of the Q-sheaves E±, where E± = (E± = {E±i =
(Ei, ∂̄±i)}i∈Q0 , φ = {φa}a∈Q1), respectively,
• S± = {S±i}i∈Q0 are collections of analytic subsets of (X, I±),respectively, such that for
each i ∈ Q0

– Si = S+i ∪ S−i has codimension at least 2,
– F±i|X\S±i are locally free and F+i|X\Si = F−i|X\Si := Fi as smooth vector bundles.

(2) For any coherent subsheaf F of E , we define (α, σ, τ)-degree and (α, σ, τ)-slope as follows:

degα,σ,τ (F) :=
∑
i∈Q0

αiσi deg+(F+i) +
∑
i∈Q0

(1− αi)σi deg−(F−i)−
∑
i∈Q0

τirk(Fi),

µα,σ,τ (F) :=

∑
i∈Q0

αiσi deg+(F+i)∑
i∈Q0

σirk(Fi)
+

∑
i∈Q0

(1− αi)σi deg−(F−i)∑
i∈Q0

σirk(Fi)
−

∑
i∈Q0

τirk(Fi)∑
i∈Q0

σirk(Fi)
,

where αi ∈ (0, 1), σi ∈ R+, τi ∈ R, and rk(Fi) = rk(F+i) = rk(F−i) denotes the rank of the
corresponding sheaves.

(3) A Q-bundle E is called (α, σ, τ)-stable (resp. (α, σ, τ)-semistable) if for any proper coherent
Q-subsheaf F , we have

µα,σ,τ (F) < (resp. ≤)µα,σ,τ (E),

and E is called (α, σ, τ)-polystable if it is the direct sum of (α, σ, τ)-stable Q-subsheaves of
the same (α, σ, τ)-slope with E .

Due to the classical extension theorem [BH99], we have the following extension theorem for the
coherent Q-subsheaves.

Proposition 6.1.10. For each i ∈ Q0, there are unique holomorphic bundles F̂±i over (X, I±)
extending the bundles F±i|X\S±i, respectively, hence there is a unique I±-bundle (F̂i, ˆ̄∂+,

ˆ̄∂−) over
(X, I±) extending the I±-bundle (Fi, ∂̄+, ∂̄−) over X\Si.

As in the classical case, stability implies simpleness in our case.

Proposition 6.1.11. Let f : E ! F be a morphism between two I±-holomorphic Q-bundles
E = (E, φ) and F = (F, ϕ).

(1) If E and F are (α, σ, τ)-semistable, then µα,σ,τ (E) ≤ µα,σ,τ (F).

(2) If E and F are stable of the same (α, σ, τ)-slope, then f is an isomorphism.

(3) If E is (α, σ, τ)-stable, then it is simple.

Proof. For any morphism f : E ! F , it is a collection of morphisms {fi : Ei ! Fi}i∈Q0 , so we can
define the kernel, image, cokernel of f as collection of kernels {Ker(fi)}i∈Q0 , images {Im(fi)}i∈Q0

and cokernels {Coker(fi)}i∈Q0 . Therefore, we have the short exact sequence of I±-holomorphic
Q-bundles

0 −! F −! E −!W −! 0,

as in the natural case.
Rewrite

degα,σ,τ (E) = degσ,τ,+(E) + degσ,τ,−(E)
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and
µα,σ,τ (E) = αµσ,τ,+(E) + (1− α)µσ,τ,−(E),

where

degσ,τ,+(E) =
∑
i∈Q0

αi

(
σi deg+(Ei+)− τirk(Ei)

)
,

degσ,τ,−(E) =
∑
i∈Q0

(1− α1)
(
σi deg−(Ei−)− τirk(Ei)

)

and

µσ,τ,+(E) =

∑
i∈Q0

αi

(
σi deg+(Ei+)− τirk(Ei)

)
∑
i∈Q0

σirk(Ei)
=

degσ,τ,+(E)∑
i∈Q0

σirk(Ei)
,

µσ,τ,−(E) =

∑
i∈Q0

(1− αi)
(
σi deg−(Ei−)− τirk(Ei)

)
∑
i∈Q0

σirk(Ei)
=

degσ,τ,−(E)∑
i∈Q0

σirk(Ei)
.

We can find that µα,σ,τ (F) ≤ µα,σ,τ (E) if and only if µα,σ,τ (E) ≤ µα,σ,τ (W). Then (1)− (3) hold,
as in the usual case.

6.2 Hermitian–Einstein Metrics

Definition 6.2.1. A Hermitian metric H on an I±-holomorphic Q-bundle E = (E, φ) is called an
(α, σ, τ)-Hermitian–Einstein metric if for each vertex i ∈ Q0 it satisfies the following equations

√
−1(αiσiF+

Hi
∧ ωn−1

+ + (1− αi)σiF−Hi ∧ ω
n−1
− )

+ (n− 1)!
 ∑
a∈h−1(i)

φa ◦ φ∗Ha −
∑

a∈t−1(i)
φ∗Ha ◦ φa

Volg

=(n− 1)!λ(τi + γσi)IdEiVolg

with constants λ = 2π
(n−1)!

∫
X
dVolg

and γ.

Remark 6.2.2. Taking trace and the sum over all vertices and then doing integral over X on
both sides, we see that γ is exactly the slope µ(α,σ,τ)(E).

We employ the following notations:

• S(Ei, Hi) is the space of smooth Hi-Hermitian endomorphisms of Ei, S+(Ei, Hi) ⊂ S(Ei, Hi)
is the open subset of positive-definite ones;

• S(E , H) = ∏
i∈Q0

S(Ei, Hi), S+(E , H) = ∏
i∈Q0

S+(Ei, Hi). The metric H induces a metric on

S(E , H), also denoted by H, namely 〈f, g〉H = ∑
i∈Q0〈fi, gi〉Hi for f = (fi)i∈Q0 , g = (gi)i∈Q0 ∈

S(E , H).

• Lpk(S) denotes the corresponding Sobolev space.
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• The pointwise or global norms and inner products | • |, 〈•, •〉, || • ||, 〈〈•, •〉〉L2 are defined with
respect to the metrics Hi or induced metric induced metrics on Eh(a) ⊗ (Et(a))∗ from the
metrics Hh(a) and Ht(a) unambiguously depending on the contexts.

Proposition 6.2.3. Let H be an (α, σ, τ)-Hermitian–Einstein metric on an I±-holomorphic Q-
bundle E = (E, φ) over X, then we define

C1(Ei) =
∫
X

Tr(
√
−1(αiΛ+F+

Hi
+ (1− αi)Λ−F−Hi))dVolg,

C2(Ei) =
∫
X

(
Tr((αiF+

Hi
)2) ∧ ωn−2

+

(n− 2)! + Tr(((1− αi)F−Hi)
2) ∧ ωn−2

−
(n− 2)!

)
,

C ′2(Ei) =〈〈αiΛ+F+
Hi
, (1− αi)Λ−F−Hi〉〉L2 ,

where Λ± is the adjoint of the operator of the wedge by ω± with respect to the metric g. When
αi = αj = α for ∀i, j ∈ Q0, the following inequality holds

∑
i∈Q0

σi(C2(Ei)− C ′2(Ei)) + 2λ
∑
i∈Q0

(τi + µ(α,σ,τ)(E)σi)C1(Ei) ≥ 0.

Proof. By assumption we have

0 =
∑
i∈Q0

1
σi

∣∣∣∣∣∣∣∣√−1(ασiΛ+F+
Hi

+ (1− α)σiΛ−F−Hi) +
∑

a∈h−1(i)
φa ◦ φ∗Ha −

∑
a∈t−1(i)

φ∗Ha ◦ φa

− λ(τi + µα,σ,τ (E)σi)IdEi
∣∣∣∣∣∣∣∣2
L2

=
∑
i∈Q0

α2σi||Λ+F+
Hi
||2L2 + (1− α)2σi||Λ−F−Hi ||

2
L2 + 2α(1− α)σi〈〈Λ+F+

Hi
,Λ−F−Hi〉〉L2

+ 1
σi

∣∣∣∣∣
∣∣∣∣∣ ∑
a∈h−1(i)

φa ◦ φ∗Ha −
∑

a∈t−1(i)
φ∗Ha ◦ φa − λ(τi + µα,σ,τ (E)σi)IdEi

∣∣∣∣∣
∣∣∣∣∣
2

L2


− 2λ

∑
i∈Q0

(τi + µ(α,σ,τ)(E)σi)
∫
X

Tr(
√
−1(αΛ+F+

Hi
+ (1− α)Λ−F−Hi))dVolg

+ 2
∑
a∈Q1

Re〈〈φa, [
√
−1(αΛ+F+

H + (1− α)Λ−F−H), φ]a〉〉L2 ,

where [A, φ]a = Ah(a) ◦ φa − φa ◦ At(a) for A ∈ End(E). Then we find the desired inequality by
virtue of the following identities

||Λ±F±Hi ||
2
L2 = ||F±Hi ||

2
L2 −

∫
X

Tr((F±Hi)
2) ∧ ωn−2

±
(n− 2)! ,
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〈〈φa, [
√
−1Λ±F±H , φ]a〉〉L2 =〈〈φa, 2

√
−1Λ±∂̄±∂±Hφa − (∂±H)∗H,g∂±Hφa〉〉L2

+ 〈〈φa,
√
−1

(n− 1)! ?g (∂̄±(ωn−1
± ) ∧ ∂±Hφa)〉〉L2

=||∂±Hφa||2L2 −
√
−1

(n− 1)!

∫
X
∂̄±|φa|2H ∧ ∂±(ωn−1

± )

=||∂±Hφa||2L2 ,

where ?g denotes the Hodge star with respect to g, the connections acting on φa are the induced
connections on Eh(a)⊗ (Et(a))∗, and the I±-holomorphicity of φa’s plays a crucial roal in the second
identity.

We end this section with some examples.

Example 6.2.4. 1. We first consider X = P1 with the standard Kähler structure (I, ω), it can
be retreated as a generalized Kähler manifold by taking I = I+ = I−, ω = ω+ = ω−. Let
Q = (Q0, Q1, h, t) be a quiver with Q0 = {i, j}, Q1 = {a} and t(a) = i, h(a) = j, then we
consider the I±-holomorphic Q-bundle E = (E, φ) over P1 given by Ei = O(mi), Ej = O(mj)
for mj ≥ mi, and 0 6= φa ∈ H0(P1,O(mj −mi)). Obviously, deg±O(m) = m, hence for the
stability parameters αi, αj; σi, σj and τi, τj, E is (α, σ, τ)-stable if and only if the following
inequality holds

σiσj(mj −mi) < σiτj − σjτi.

In particular, the parameters σ, τ are subject to the condition

σiτj − σjτi > 0,

which gives the constraints on these parameters as follows:

• if τi = 0, then τj > 0;
• if τj = 0, then τi < 0;
• if τi, τj 6= 0, then σi

σj
> τi

τj
.

2. Now we consider the example of Hopf surfaces, which can be found in [Gua14] (Example
1.21) and [HMS16] (Section 4 for details). Let X be a standard Hopf surface, namely X =
C2\{(0, 0)}/(2(z1, z2) ∼ (z1, z2)), then X is diffeomorphic to S3 × S1. Denote by I+ the
induced complex structure from C2, the Hermitian metric is given by

g = 1
4π|z|2 (dz1dz̄1 + dz2dz̄2),

for |z|2 = z1z̄1 + z2z̄2, and the associated 2-form ω+ = gI+ is

ω+ =
√
−1

4π|z|2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2).

One can specify another complex structure I− by providing a generator

Ω = 1
|z|4

(z̄1dz1 + z2dz̄2) ∧ (z̄1dz2 − z2dz̄1)
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for Ω2,0((X, I+)). It is easy to check that (g, I−) is also Hermitian, and the associated 2-form
is given by

ω− =
√
−1

4π|z|4 ((z̄1dz1 + z2dz̄2) ∧ (z1dz̄1 + z̄2dz2) + (z̄1dz2 − z2dz̄1) ∧ (z1dz̄2 − z̄2dz1)).

Then (I+, I−, g,H) defines a twisted generalized Kähler structure on X, where H = dc+ω+ =
−dc−ω− [Gua14, HMS16]. Actually, the torsion of twisted generalized Kähler structures on X
cannot be exact [Gua14]. There is a natural projection pr : X ! P1 onto P1 via (z1, z2) 7! [z1 :
z2], and this projection is holomorphic with respect to I+. We set O+(m) := pr∗OP1(m) for all
m ∈ Z, where OP1(m) denotes the holomorphic line bundle on P1 of degree m. Consider the
inverse map % : X ! X, (z1, z2) 7! (z1, z2)−1 := 1

|z|2 (z̄1,−z2), which is a biholomorphic map
from (X, I−) to (X, I+), and we introduce O−(m) := %∗O+(m) for all m ∈ Z. For simplicity,
we denote O±(0) by O±. By Proposition 4.5 of [HMS16], O+(m) can be made into an I±-
holomorphic line bundle L+(m) := (O, ∂̄m,+, ∂̄m,−) on (X, g, I+, I−,H) such that (O, ∂̄m,+) '
O+(m) and (O, ∂̄m,−) ' O−(−m), where O denotes the topologically trivial line bundle
X × C on X. Similarly, the I±-holomorphic line bundle associated to O−(m) is denoted by
L−(m) := (O, ∂̄′m,+, ∂̄′m,−) with isomorphisms (O, ∂̄′m,+) ' O+(−m) and (O, ∂̄′m,−) ' O−(m).
Moreover, one can show that [HMS16]

deg+ L+(m) = m, deg− L+(m) = −m,
deg+ L−(m) = −m, deg− L−(m) = m.

Next we take the quiver Q be the same as in (1), and an I±-holomorphic Q-bundle E = (E, φ)
which is given by Ei = L+(mi), Ej = L+(mj) and φa, where φa must vanish if mi 6= mj.
Assume mi = mj = m and φa is non-zero, then E is (α, σ, τ)-stable if and only if

2mσiσj(αj − αi) < σiτj − σjτi.

Finally, as the Example 4.11 in [HMS16], let V be a fixed smooth complex vector bundle of
rank 2, we choose I±-holomorphic structures ∂̄V± on V as follows:

• ∂̄V+ is I+-holomorphic structure such that V+ := (V, ∂̄V+ ) is not isomorphic to a sum of
two line bundles and is given by the non-trivial extension

0! O+
χ+
−! V+ ! O+(−m+)! 0

for m+ ∈ Z>0,
• ∂̄V− is I−-holomorphic structure such that V− := (V, ∂̄V− ) is given by the non-trivial
extension

0! O−
χ−
−! V− ! O−(m−)! 0

for m− ∈ Z≥2.

We assume the images of O± in V± coincide as smooth line subbundles of V . Then L̃ :=
(O, ∂̄0,+, ∂̄

′
0,−) is the only I±-holomorphic line subbundle of (V, ∂̄V+ , ∂̄V− ) [HMS16]. The I±-

holomorphic Q-bundle E ′ = (E ′, φ′) is given by E ′i = L̃, E ′j = (V, ∂̄V+ , ∂̄V− ) and φ′a is determined
by the inclusions χ±. To find the constraints on stability parameters, note that E ′ has 3 proper
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Q-subbundles:

(i) F = (F, φ), where Fi = L̃, Fj = L̃ and φa is induced by φ′a, which is identity;
(ii) F = (F, φ), where Fi = 0, Fj = L̃ and φa = 0;
(iii) F = (F, φ), where Fi = 0, Fj = (V, ∂̄V+ , ∂̄V− ) and φa = 0,

therefore, E ′ is (α, σ, τ)-stable if and only if the following inequalities are satisfied

(σi + σj)σj(αjm+ − (1− αj)m−) < σjτi − σiτj,

σ2
j (αjm+ − (1− αj)m−) < −σjτi + σiτj,

σiσj(αjm+ − (1− αj)m−) > 2(σjτi − σiτj).

6.3 Kobayashi–Hitchin Correspondence

After introducing the stability for Q-bundles and Hermitian–Einstein metrics, our main issue is to
show the following Kobayashi–Hitchin correspondence:

Theorem 6.3.1. Let Q = (Q0, Q1) be a quiver, and E = (E, φ) be an I±-holomorphic Q-bundle
over an n-dimensional compact generalized Kähler manifold (X, I+, I−, g, b) such that g is Gaudu-
chon with respect to both I+ and I−, then E is (α, σ, τ)-polystable if and only if E admits an
(α, σ, τ)-Hermitian–Einstein metric.

One direction is quite easy:

Lemma 6.3.2. If there exists an (α, σ, τ)-Hermitian–Einstein metric on an I±-holomorphic Q-
bundle E = (E, φ) over an n-dimensional generalized Kähler manifold (X, I+, I−, g, b), then E is
(α, σ, τ)-polystable.

Proof. Let E ′ be a proper coherent Q-subsheaf of E . At each vertex i ∈ Q0, one defines the
orthogonal projections p±i : E±i ! E ′±i, which are defined outside S±i, respectively, via the metric
Hi, then we have

deg±(E ′±i) = (n− 1)!
2π

∫
X\S±i

[Tr(
√
−1p±i ◦ Λ±F±Hi)− |ξ

±
i |2Hi ]dVolg,

where ξ±i = ∂̄±ip±i denote the second fundamental forms which are of class L2. Hence, by assump-
tion that H is a Hermitian–Einstein metric on E , the degree is calculated as

degα,σ,τ (E ′) =µα,σ,τ (E)
∑
i∈Q0

σirk(E ′i)

− (n− 1)!
2π

∑
i∈Q0

∫
X\S

(αiσi|ξ+
i |2Hi,g + (1− αi)σi|ξ−i |2Hi,g)dVolg

− (n− 1)!
2π

∑
a∈Q1

∫
X\S
|φ⊥a |2H ,

where S = ⋃
i∈Q0

Si, φ⊥a is the composition (E ′t(a))⊥
φa−! Eh(a)

ph(a)
−−−! E ′h(a) for the orthogonal comple-

ment (E ′t(a))⊥ of E ′t(a) in Et(a) defined outside Sh(a)
⋃
St(a), and |φ⊥a |2H is defined via the induced
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metric H on Eh(a)⊗(Et(a))∗. It follows that E is semistable. Assume E = (E, φ) is indecomposable,
i.e. E cannot be written as a direct sum of two Q-bundles, then either ξi 6= 0 for some i ∈ Q0 or
φ⊥a 6= 0 for some a ∈ Q1, therefore µα,σ,τ (E ′) < µα,σ,τ (E), thus E is stable.

Finally, we find that E is (α, σ, τ)-polystable.

The existence of Hermitian–Einstein metrics on Q-bundles is hard to show. We use the conti-
nuity method to show this direction, thus to show that if an I±-holomorphic Q-bundle E = (E, φ)
is (α, σ, τ)-stable, then there exist an (α, σ, τ)-Hermitian–Einstein metric H on it. The approach
of proof we employed in [HH20a] mainly follows from [HMS16, LT95].

We fix a Hermitian metric H on an I±-holomorphic Q-bundle E = (E, φ). If H̃ = Hf =
{Hifi}i∈Q0 is an (α, σ, τ)-Hermitian–Einstein metric for f ∈ S+(H, E), then at each vertex i we
have

L(α,σ,τ)i(f) :=K(α,σ,τ)(Hi) +
√
−1(αiσiΛ+∂̄+(f−1

i ∂+
Hi
fi) + (1− αi)σiΛ−∂̄−(f−1

i ∂−Hifi))

+
∑

a∈h−1(i)
φa ◦ (φa)∗H̃ −

∑
a∈t−1(i)

(φa)∗H̃ ◦ φa

=K(α,σ,τ)(H̃i) +
∑

a∈h−1(i)
φa ◦ (φa)∗H̃ −

∑
a∈t−1(i)

(φa)∗H̃ ◦ φa

= 0,

where

K(α,σ,τ)(Hi) =
√
−1(αiσiΛ+F+

Hi
+ (1− αi)σiΛ−F−Hi)− λ(τi + µα,σ,τ (E)σi)IdEi

(φa)∗H̃ =f−1
t(a) ◦ (φa)∗H ◦ fh(a).

The perturbed equation is given by

Lε(α,σ,τ)i(f) := L(α,σ,τ)i(f) + ε log fi = 0

for ε ∈ (0, 1]. Consider the set

J =
{
ε ∈ (0, 1] : there exists f (ε) ∈ S+(E , H) such that Lε(α,σ,τ)i(f (ε)) = 0 holds for each vertex i ∈ Q0.

}
.

We will not plan to give a detailed proof here, since our method is an ingredient of [LT95]. Our
method can be sketched as follows:

• First step: show J is non-empty by finding a solution to the simultaneous equations {L1
(α,σ,τ)i(f) =

0}i∈Q0 has a solution, so 1 ∈ J ;

• Second step: show J ⊆ (0, 1] is open by Implicit Function Theorem for Banach spaces;

• Third step: show J ⊆ (0, 1] is closed by the stability of Q-bundle (in fact, we only need the
simpleness property) and elliptic regularity theory;

• Last step: show the limit limε!0 f
(ε) exists and H̃ = H · limε!0 f

(ε) is in fact the Hermitian–
Einstein metric.



Bibliography

[ABC+96] J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo. Fundamental groups
of compact Kähler manifolds, volume 44 of Mathematical Surveys and Monographs.
American Mathematical Society, 1996.

[ACGP03a] L. Álvarez-Cónsul and O. García-Prada. Dimensional reduction and quiver bundles.
J. Reine Angew. Math., 556:1–46, 2003.

[ACGP03b] L. Álvarez-Cónsul and O. García-Prada. Hitchin–Kobayashi correspondence, quivers,
and vortices. Comm. Math. Phys., 238:1–33, 2003.

[ACGPS06] L. Álvarez-Cónsul, O. García-Prada, and A. Schmitt. On the geometry of moduli
spaces of holomorphic chains over compact Riemann surfaces. Int. Math. Res. Pap.,
pages 1–82, 2006.

[AGT16] A. Abbes, M. Gros, and T. Tsuji. The p-adic Simpson correspondence, volume 193
of Ann. of Math. Studies. Princeton University Press, 2016.

[AI19] P. Apruzzese and K. Igusa. Stability conditions for affine type A. Alg. and Repre.
Theory, 2019.

[BB04] O. Biquard and P. Boalch. Wild non-abelian Hodge theory on curves. Compos. Math.,
140:179–204, 2004.

[BGG97] I. Biswas, P. Gastesi, and S. Govindarajan. Parabolic Higgs bundles and Teichmüller
spaces for punctured surfaces. Trans. Amer. Math. Soc., 349:1551–1560, 1997.

[BGHL09] I. Biswas, T. Gómez, N. Hoffman, and M. Logares. Torelli theorem for the Deligne–
Hitchin moduli space. Comm. Math. Phys., 290:357–369, 2009.

[BGL11] I. Biswas, P. Gothen, and M. Logares. On moduli spaces of Hitchin pairs. Math.
Proc. Camb. Phil. Soc., 151:441–457, 2011.

[BGPG04] S. Bradlow, O. García-Prada, and P. Gothen. Moduli spaces of holomorphic triples
over compact Riemann surfaces. Math. Ann., 328:299–351, 2004.

[BGPGH18] S. Bradlow, O. García-Prada, P. Gothen, and J. Heinloth. Irreducibility of moduli
of semistable chains and applications to U(p, q)-Higgs bundles. In Geometry and
Physics: A Festschrift in Honor of Nigel Hitchin, volume 2, pages 455–470, 2018.

[BGPiR03] S. Bradlow, O. García-Prada, and I. Mundet i Riera. Relative Hitchin–Kobayashi
correspondence for principal pairs. Quat. J. Math., 54:171–208, 2003.

[BH99] N. Buchdahl and A. Harris. Holomorphic connections and extensions of complex
vector bundles. Math. Nachr., 201:29–39, 1999.

171



172 BIBLIOGRAPHY

[BH17] I. Biswas and S. Heller. On the automorphisms of a rank one Deligne–Hitchin moduli
space. SIGMA, 13(072), 2017.

[BHR19] I. Biswas, S. Heller, and M. Röser. Real holomorphic sections of the Deligne–Hitchin
twistor space. Comm. Math. Phys., 290:1099–1133, 2019.

[Biq97] O. Biquard. Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur
lisse). Ann. Sci. École Norm. Sup., 30:41–96, 1997.

[Bis97] I. Biswas. Parabolic bundles as orbifold bundles. Duke. Math. J., 88(2):305–325,
1997.

[Bis03] I. Biswas. On the principal bundles with parabolic structure. J. Math. Kyoto Univ.,
43-2:305–332, 2003.
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