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UNIVERSITÉ CÔTE D’AZUR

Abstract
Information Technology Doctoral School

Doctor of Philosophy

QoS-Aware Resource and Energy Management for Autonomous Mobile Robotic
Systems

by Dinh-Khanh HO

Mobile robotic systems are becoming more and more complex with the integration of
advanced sensing and acting components and functionalities to perform the real re-
quired missions. For these technical systems, the requirements are divided into two
categories: functional and non-functional requirements. While functional require-
ments represent what the robot must do to accomplish the mission, non-functional
requirements represent how the robot performs the mission. Thus, the quality of ser-
vice and energy efficiency of a robotic mission are classified in this category. The au-
tonomy of these systems is fully achieved when both functional and non-functional
requirements are guaranteed without any human intervention or any external con-
trol. However, these mobile systems are naturally confronted with resource avail-
ability and energy capacity constraints, particularly in the context of long-term mis-
sions, these constraints become more critical. In addition, the performance of these
systems is also influenced by unexpected and unstructured environmental condi-
tions in which they interact. The management of resources and energy during oper-
ation is therefore a challenge for autonomous mobile robots in order to guarantee the
desired performance objectives while respecting constraints. In this context, the abil-
ity of the robotic system to become aware of its own internal behaviors and physical
environment and to adapt to these dynamic circumstances becomes important.

This thesis focuses on the quality of service and energy efficiency of mobile
robotic systems and proposes a hierarchical run-time management in order to guar-
antee these non-functional objectives of each robotic mission. At the local man-
agement level of each robotic mission, a MISSION MANAGER employs a reinforce-
ment learning-based decision-making mechanism to automatically reconfigure cer-
tain key mission-specific parameters to minimize the level of violation of required
performance and energy objectives. At the global management level of the whole
system, a MULTI-MISSION MANAGER leveraged rule-based decision-making and
case-based reasoning techniques monitors the system’s resources and the responses
of Mission Managers in order to decide to reallocate the energy budget, regulate the
quality of service and trigger the online learning for each robotic mission.

The proposed methodology has been successfully prototyped and validated in a
simulation environment and the run-time management framework is also integrated
into our real mobile robotic system based on a Pioneer-3DX mobile base equipped
with an embedded NVIDIA Jetson Xavier platform.

Keywords: robotic run-time adaptation, multi-objective decision-making, reinforce-
ment learning, case-based reasoning, artificial intelligence, quality of service, energy
management, non-functional requirements, mobile robotics.
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Résumé

Gestion des ressources et de l’énergie orientée qualité de service pour les
systèmes robotiques mobiles autonomes

Les systèmes robotiques mobiles autonomes deviennent de plus en plus complexes
avec l’intégration de composants de capteurs et d’actionneurs et de fonctionnalités
avancées pour effectuer les missions réelles. Pour ces systèmes techniques, les ex-
igences sont divisées en deux catégories : les exigences fonctionnelles et les exi-
gences non-fonctionnelles. Alors que les exigences fonctionnelles représentent ce
que le robot doit faire pour accomplir la mission, les exigences non-fonctionnelles
représentent la façon dont le robot exécute la mission. Ainsi, la qualité de service
et l’efficacité énergétique d’une mission robotique sont classées dans cette catégorie.
L’autonomie de ces systèmes est pleinement atteinte lorsque les exigences fonction-
nelles et non-fonctionnelles sont garanties sans aucune intervention humaine ni au-
cun contrôle externe. Cependant, ces systèmes mobiles sont naturellement confron-
tés à des contraintes de disponibilité des ressources et de capacité énergétique, no-
tamment dans le cadre de mission à longue durée, ces contraintes deviennent plus
critiques. De plus, la performance de ces systèmes est également influencée par des
conditions environnementales inattendues et non structurées dans lesquelles ils in-
teragissent. La gestion des ressources et de l’énergie en cours de mission est donc un
défi pour les robots mobiles autonomes afin de garantir les objectifs de performance
souhaités tout en respectant les contraintes. Dans ce contexte, la capacité du sys-
tème robotique à prendre conscience de ses propres comportements internes et de
son environnement physique et à s’adapter à ces circonstances dynamiques devient
importante.

Cette thèse porte sur la qualité de service et l’efficacité énergétique des systèmes
robotiques mobiles et propose une gestion hiérarchique en cours d’exécution afin de
garantir ces objectifs non-fonctionnels de chaque mission robotique. Au niveau de
la gestion locale de chaque mission, un MISSION MANAGER utilise un mécanisme
de prise de décision fondé sur l’apprentissage par renforcement pour reconfigurer
automatiquement certains paramètres clés propres à la mission afin de minimiser le
niveau de violation des objectifs de performance et des objectifs énergétiques req-
uis. Au niveau de la gestion globale de l’ensemble du système, un MULTI-MISSION

MANAGER s’appuie sur des règles de prise de décision et des techniques de raison-
nement par cas pour suivre les ressources du système et les réponses des MISSION

MANAGERs afin de décider de réallouer le budget énergétique, de régler la qualité
du service et de déclencher l’apprentissage en ligne pour chaque mission robotique.

La méthodologie proposée a été prototypée et validée avec succès dans un en-
vironnement de simulation et le cadre de gestion est également intégré dans notre
système robotique mobile réel basé sur une base mobile de Pioneer-3DX équipée
d’une plate-forme embarquée de NVIDIA Jetson Xavier.

Mots clés : robotique mobile, auto-adaptation, prise de décision, apprentissage par
renforcement, raisonnement par cas, intelligence artificielle, qualité de service, man-
agement d’énergie, exigences non-fonctionnelles.
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The first chapter of our thesis is organized as follows. The general context of our
research is presented in Section 1.1. In Section 1.2, the research problem is stated
with the necessary terminologies and three main research questions. The overview
of our approach and contributions is then described in Section 1.3. Section 1.4 ends
this chapter by introducing the structure of our thesis.

1.1 General Context

Autonomous mobile robotic systems are continually developing and growing. To-
day they are applied to a broad range of real life missions such as security surveil-
lance, environmental monitoring, delivery, search and rescue missions, etc. These
autonomous mobile systems can be deployed in many domains such as service,
road, field, air, marine and space [Kunze et al., 2018] (Figure 1.1):

• Service robotics: relate to the robots that work in a house, in an office, in a
hospital, in a museum, etc to help or provide people the information in their
daily tasks. Some examples of these robots are PR2 robot1, NAO humanoid
robot2 and STRANDS robot3;

• Autonomous vehicles: are deployed on the road with a known example of
self-driving cars such as Waymo car4 and EZ10 shuttle5;

1See http://www.willowgarage.com/pages/pr2/overview
2See https://www.softbankrobotics.com/emea/en/nao?q=emea/fr/nao
3See http://strands.acin.tuwien.ac.at/
4See https://waymo.com/
5See https://easymile.com/application-map-easymile/

http://www.willowgarage.com/pages/pr2/overview
https://www.softbankrobotics.com/emea/en/nao?q=emea/fr/nao
http://strands.acin.tuwien.ac.at/
https://waymo.com/
https://easymile.com/application-map-easymile/
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FIGURE 1.1: Example of mobile robotic systems in the domains of service (PR2 and
STRANDS robot), road (WAYMO self-driving car), field (RIPPA robot),
air (delivery drone), marine (AUTOSUB robot) and space (SPIRIT
robot).

• Field robotics: are the robotic systems working in construction, agriculture,
mining, etc such as RIPPA robot6;

• Aerial robotics: mean the robots that can fly in the air such as Parrot drones7;

• Marine robotics: are underwater or surface vehicles such as Autosub robot8;

• Space robotics: mean the robotic systems used to explore the space such as
Spirit robots9.

For each robotic domain, the level of autonomy required is different due to the
different functionalities and operational environments. For example, for marine and
space robotics, the communication requirement, operating time and capability of au-
tonomously returning to the docking station to be recharged should be prioritized,
while for self-driving cars, the safety requirement should first be emphasized to
avoid accidents with surrounding vehicles and pedestrians. Indeed, a vast amount
of research and effort of the robotics community has concentrated on developing the
robotic functionalities, the application algorithms such as visual perception, map-
ping, path planning, path following, etc for guaranteeing the autonomy of these sys-
tems [Sprunk, 2015; Chikurtev, 2015; Abdulmajeed and Mansoor, 2014]. However,
in the context of mobile robotics, two important aspects such as resource constraints

6See https://sydney.edu.au/news-opinion/news/2015/10/21/rippa-robot...
7See https://www.parrot.com/fr/drones
8See https://noc.ac.uk/facilities/marine-autonomous-robotic-systems/autosubs
9See https://www.nasa.gov/mission_pages/mer/index.html

https://sydney.edu.au/news-opinion/news/2015/10/21/rippa-robot...
https://www.parrot.com/fr/drones
https://noc.ac.uk/facilities/marine-autonomous-robotic-systems/autosubs
https://www.nasa.gov/mission_pages/mer/index.html
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FIGURE 1.2: Resource constraints in mobile robotics: limited capacity of computing
and energy resources, resource contention between robotic missions,
and device failure such as sensors, actuators’ failure.

FIGURE 1.3: Environment dynamics in mobile robotics: appearance dynamics such
as changing lighting condition or texture, geometry dynamics such as
changing position of static structures, and moving obstacles.

and environment dynamics can unexpectedly influence the robotic functional au-
tonomy:

• Resource constraints in mobile robotics. The first aspect relates to the fact
that the mobile systems can carry on limited and/or unreliable resources and
energy capacity (Figure 1.2). The inefficient utilization of these resources can
significantly degrade the system performance even to the point that the au-
tonomous functionalities cannot be completed. The limited onboard comput-
ing resources may also require the installation of a remote computing work-
station or require research on cloud robotics where the robots use the comput-
ing services of cloud platforms when the onboard computing resources cannot
meet the heavy computing demands [Li et al., 2016; Hu et al., 2017]. Another
approach tackling the limitation of resources of a single robot is to deploy robot
swarms and resolve the multi-robot collaboration problem for accomplishing
the missions [Yan, Jouandeau, and Cherif, 2013; Lee, Tarokh, and Cross, 2010].
In addition, in the context of multiple tasks or missions on the same robot,
these limited resources are shared and the resource conflicts between them can
occur. Device failure is another important issue for robotic resources, sensors
and actuators. This issue leads to another research branch to guarantee the
fault tolerance or to make the robotic system more dependable [Gspandl et al.,



4 Chapter 1. Introduction

2012; Cui et al., 2014; Guiochet, Machin, and Waeselynck, 2017; Hireche et al.,
2018];

• Environment dynamics in mobile robotics. The second aspect influencing the
robotic autonomy is that the mobile robots operate mostly in unstructured and
unknown a priori environments (Figure 1.3). The environment dynamics can
be divided into three main categories as proposed by the work in [Sprunk et al.,
2014]: appearance dynamics such as lighting conditions and texture, geometry
dynamics such as position of (static) objects, and moving obstacles such as
moving people and other moving objects. These variations of the environment
can lead to unpredictable behaviors of the robotic systems [Brugali, Capilla,
and Hinchey, 2015].

Consequently, a question arises in the mobile robotic context: How are these
robotic functionalities performed? This is another aspect of technical systems called
non-functional properties or quality models that are defined by the standard ISO
2501010. Two main models are defined by this standard:

• Product quality model: means the intrinsic quality characteristics of the prod-
uct (software or system). Eight product quality properties proposed by the
ISO 25010 such as functional suitability, performance efficiency, reliability, se-
curity, usability, maintainability, compatibility and portability are shown in
Figure 1.4;

• Quality in use model: means the quality characteristics of the product (soft-
ware or system) when it is used under a specific context. Five quality in use
properties such as effectiveness, efficiency, satisfaction, freedom from risk and
context coverage are depicted in Figure 1.5.

While the product quality model is generally used to characterize and evaluate
the quality of the software or system at the design time before using it in real life,
the quality in use model is used to characterize and evaluate at the execution time.
In this case, the system may face contexts that were not anticipated at the design

FIGURE 1.4: Product quality model proposed by the ISO 25010. It evaluates the
intrinsic quality characteristics of the software or system.

10See https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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FIGURE 1.5: Quality in use model proposed by the ISO 25010. It evaluates the qual-
ity characteristics of the system or software when it is used under a
specific context.

time. This quality model is therefore really our concern when we consider the run-
time execution of mobile robotic missions. The definition of each characteristic in
the quality in use model can be explained as follows:

• Effectiveness: evaluates the ability of a system or software to produce the in-
tended or expected result. This property generally concerns the functionalities
of the system or software;

• Efficiency: evaluates the time behavior and the resource utilization such as
computing power and energy of a system or software to produce the expected
result;

• Satisfaction: represents the user’s experiences when using a system or soft-
ware such as a graphical user interface and easy interaction;

• Freedom from risk: indicates the ability of a system or software to mitigate
potential risks to financial status, people and environment;

• Context coverage: represents the extent to which a system or software can be
used with effectiveness, efficiency, freedom from risk and satisfaction in both
intended and unintended contexts of use.

In our research, we focus on the effectiveness, efficiency and context coverage
of these quality characteristics to deploy the run-time adaptation (RTA) of mobile
robotic missions. As with functional requirements, a set of non-functional require-
ments (NFRs) can be applied to the robotic missions. The two dynamic factors men-
tioned above such as resource constraints and environment dynamics also have an
impact on these requirements.

Thus, the dynamic circumstances in the context of mobile robotics require the
adaptive capabilities of robots to successfully accomplish missions taking into ac-
count desired performance objectives and constraints while minimizing human in-
tervention (inversely proportional to the level of autonomy), particularly in restricted
access environments, as well as in long-term operation. The ability of robotic sys-
tems to adapt their configuration and behavior at the execution time is therefore
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called robotic run-time adaptation and can be considered as a subfield of self-
adaptive systems [Macías-Escrivá et al., 2013]. Indeed, self-adaptive systems are
a promising approach for systems that have capability of:

• Self-awareness: being aware of their internal and external contexts;

• Self-optimization: reasoning and making decisions based on their current op-
erational conditions;

• Self-reconfiguration: interpreting given decisions to reconfigure themselves.

The prefix "self" means that the system can do itself without any human inter-
vention or external control, and this is also how the robotic autonomy is defined.
Based on this general context, we will then state our research problem in the next
section.

1.2 Problem Statement

1.2.1 Terminologies

We provide in this section some important terminologies to facilitate the problem
statement. Figure 1.6 indicates the main concepts and their relationships in a robotic
system. We have a mobile robot that interacts with its physical environment. A
robot user identifies functional requirements and deploys the mission to fulfill
them. Based on these functional requirements, the robotic mission will determine
what to do and use the robot’s resources such as processing applications (or soft-
ware), sensors, actuators and energy to perform the required functionalities. In ad-
dition to functional requirements, the robot user can also identify non-functional
requirements applied to the robotic mission to determine how the robotic mission
should perform functionalities. These requirements can also be identified by the

FIGURE 1.6: Relationships and roles of the concepts of robotic mission, robot user
and robot. The full autonomy is acquired when the robotic mission
can complete all the functional requirements while guaranteeing the
non-functional requirements.
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robot’s constraints such as current battery state of charge or current state of com-
puting resources. In our research, we consider the mission’s quality of service and
energy efficiency as non-functional requirements. The full autonomy is achieved
when the robotic mission can complete all functional requirements while guarantee-
ing the non-functional requirements. And a multi-mission context means that there
are several robotic missions deployed in the same time with different functional re-
quirements and priorities on the same robotic platform.

1.2.2 Research Questions

This thesis focuses on the quality of service and energy management to enhance
the autonomy of mobile robotic systems. The problem is stated by three following
research questions (RQ):

• RQ1: How does a robotic mission control its configuration and/or its be-
havior in order to guarantee explicitly a desired set of non-functional re-
quirements under dynamic operational conditions? A robotic mission is an
abstract concept in our framework. It is deployed to achieve certain desired
functional objectives. For each mission, a set of non-functional objectives such
as performance and energy efficiency can be applied and the robotic mission
must guarantee them in order to reinforce the autonomy. However, the op-
erational conditions of mobile robotics, such as environmental conditions and
resource availability, which are inherently dynamic and unstructured, make
management more difficult;

• RQ2: How does a robotic mission adapt to changing non-functional require-
ments? While the robotic mission must face dynamic operational conditions
to ensure the desired non-functional requirements, these requirements can be
dynamically modified by the robot user or by the robot itself. For example,
depending on the current level of the robot’s battery, the mission’s energy con-
sumption target may be dynamically modified. This question therefore poses
another challenge for the robotic mission;

• RQ3: How does a robotic system guarantee the mission’s quality of service
and system energy constraints in a multi-mission context? In a robotic sys-
tem equipped with many advanced sensing, acting and computing compo-
nents, not a single mission will be deployed, but several missions with differ-
ent functionalities and priorities can be performed at the same time. Hence, the
multi-mission context is another research issue with the challenge of ensuring
the quality of service of each mission under system-level constraints.

1.3 Overview of Our Approach and Contributions

In addition to the research questions mentioned above, this section summarizes our
approach and scientific contributions. Our approach is based on three main points.
The first is the characterization of mobile robotic missions, which helps to under-
stand the dynamic characteristics of mobile robotic missions and to be considered
as a preliminary step towards solving the research questions. The second is consid-
ered as a local management level to each mission based on a reinforcement learning
to solve the RQ1 and RQ2 research questions. And the last is a system-level man-
agement with a rule-based decision-making mechanism and a case-based reasoning
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FIGURE 1.7: Overview of our approach and contributions.

technique to resolve the RQ2 and RQ3 research questions. Figure 1.7 summarizes
the overview of our approach and contributions, and our scientific publications re-
sulting from this research work are presented in Appendix E.

1.3.1 Robotic Mission Characterization

This point proposes our unified concepts to characterize mobile robotic missions.
Among the concepts proposed, we highlight the one of the robotic mission’s qual-
ity of service (QoS), energy consumption and dynamic configuration knobs. In the
literature, a unified concept for mobile robotic missions has not been defined. We
also propose a systematic approach to generalize the characterization for different
robotic missions. The results of the characterization process of a robotic mission are
known as a knowledge base of this mission. These concepts also support the run-
time adaptation framework we propose.

1.3.2 QoS and Energy-Aware Self-Adaptive Mission Manager

The Mission Manager represents the local management at the mission level and
strives to ensure a set of desired non-functional requirements (NFRs) with an em-
phasis on quality of service and energy efficiency objectives. The Mission Manager’s
run-time decision-making problem is modelled by Markov Decision Processes (MDPs).
A reinforcement learning based approach is then proposed to resolve these MDPs.
Two algorithms called Q-Learning and Deep Q-Learning have been implemented
and validated. The results show that the Mission Manager is able to guarantee de-
sired non-functional requirements under dynamic operational conditions. The abil-
ity of online learning to address more dynamic and unpredictable factors is also a
highlight of our proposed approach.

1.3.3 Adaptive and Hierarchical Multi-Mission Manager

In the context of multiple robotic missions, many missions are performed at the
same time and share system resources with limited capabilities. We propose a rule-
based decision-making approach and a case-based reasoning technique to guarantee
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the quality of service of each robotic mission while respecting global system con-
straints. Moreover, by evaluating the adaptation response of each Mission Manager,
the Multi-Mission Manager can decide to launch the online learning to evolve the
adaptation model or to generate a new adaptation model for each robotic mission.

1.4 Thesis Structure

The sections above provided the general context for our research. The problem is
also outlined in the three research questions and the three main contributions have
been identified to answer these questions. The rest of the thesis is organized as
follows:

• Chapter 2 provides certain theoretical background as well as the state of the
art underlying our research. The background is articulated around three main
axes: mobile robotic systems, self-adaptive systems and artificial intelligence
decision-making. Finally, a discussion on the relationship with this thesis is
presented;

• Chapter 3 presents the methodology for characterization and monitoring of
mobile robotic missions. Some related work is first mentioned. Next, we
present the concept and systematic approach we propose to characterize the
missions. The monitoring methodology is also discussed. To validate our pro-
posed methodology, we also describe our simulation and real frameworks.
Some examples of mobile robotic missions are presented at the end of this
chapter and the motivation for run-time adaptation is also highlighted;

• The reinforcement learning approach for the Mission Manager is presented in
Chapter 4. The problem of quality of service and energy management for mo-
bile robotic missions is formally defined, and two learning algorithms called
Q-Learning and Deep Q-Learning have been applied to this problem. The val-
idation is realized with some case studies in the simulation framework. We
then give an in-depth analysis based on the obtained results;

• Chapter 5 addresses the context of multiple robotic missions. The method-
ology based on rule-based decision-making and case-based reasoning tech-
niques is presented and discussed. A simulated scenario is implemented and
the efficiency of our proposed methodology is rigorously analyzed;

• Chapter 6 describes the implementation and validation of the methodology
presented in this thesis in our real robotic framework. The performance of Mis-
sion Manager and Multi-Mission Manager is evaluated and discussed. And we
discuss also our contribution to long-term robotic autonomy in real life;

• Chapter 7 presents the general conclusions of this thesis as well as some per-
spectives;

• Finally, Appendices A, B, C, D and E will provide some additional information
for our thesis.
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This chapter discusses the basic background that underlies our research. The top-
ics presented are multidisciplinary and span from mobile robotics, self-adaptive sys-
tems to artificial intelligence with an emphasis on the decision-making techniques.
The overview and autonomy requirements of mobile robotic systems are mentioned
in Section 2.1. The definition of self-adaptive systems and their taxonomy are pre-
sented in Section 2.2. The engineering approaches for planning and decision-making
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in self-adaptive systems are also discussed in this section. Sections 2.3, 2.4, 2.5 de-
tail some specific planning and decision-making techniques and they are also the
core of our methodology. In Section 2.6, some previous work on performance and
energy aware run-time adaptation for mobile robotic systems will be presented and
discussed. Finally, we conclude this chapter in Section 2.7.

2.1 Mobile Robotic Systems

Mobile robotic systems are defined as systems capable of locomotion. They can be-
come autonomous in unstructured environments by integrating a feedback loop of
perception, control and action [Veres et al., 2011]. Some examples of autonomous
mobile robotic systems are presented in Section 1.1. This section aims to provide
an overview of the generic structure of mobile robotic systems and their autonomy
requirements. The role of artificial intelligence for the robotic autonomy is also dis-
cussed.

2.1.1 Overview

Generic Architecture of Mobile Robotic Systems

Figure 2.1 describes the generic structure of an autonomous mobile robotic system.
We divide it into three subsystems as follows:

• The first one is named the sensing and acting subsystem, and is composed of
actuators, sensors and low-level embedded controllers that control and com-
municate with sensors and actuators;

• The second one is the computing subsystem, which includes high-level com-
puting resources such as computing core, memory, and software;

• The last one is the power supply subsystem, which is considered to be an
energy resource, and powers the two above subsystems.

FIGURE 2.1: Generic structure of mobile robotic systems. A mobile robotic system
is composed of three main subsystems: sensing and acting, computing
and power supply subsystems.
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FIGURE 2.2: Abstraction level of mobile robotic systems in which the mission is
at the highest level and the sensors and actuators are at the lowest
one. All the system interacts directly with the surrounding physical
environment.

These are the three preliminary components that make a mobile robotic system
functional. The abstraction level of the robotic system is proposed in Figure 2.2 in
which the robotic mission is at the highest level and it encapsulates the complex
details of the robotic systems. The complexity of these systems is scaled depending
on the number of components in each subsystem, from miniature mobile robots with
some sensors and motors, and an embedded microcontroller-based board such as
Khepera mobile robots with a diameter of 55mm [Floreano et al., 1999], or nano/pico
aerial vehicles in Navion project1 to autonomous cars with dozens of sensors and
actuators, and onboard heterogeneous computing resources [Kato et al., 2015].

Robotic Software Systems

The survey in [Ahmad and Babar, 2016] proposed a reference model for the robotic
software systems as shown in Figure 2.3. In this model, two main layers are defined:

• The control layer is composed of a set of drivers to interact with robotic com-
ponents such as sensors and actuators. Refer to our generic structure presented
in Figure 2.1, this layer is really included in the sensing and acting subsystem;

• The application layer takes care of the more complex functions of a robot and
uses the control layer to support robotic operations. This layer is therefore
included in the computing subsystem of our generic structure.

Ahmad and Babar also surveyed three main research themes on this application
layer or the software architecture for robotics:

• Robotic Modeling, Design and Programming: This theme is known as how
to design, model and program a robotic system, and this problem is still dom-
inant in the robotics research community;

1See http://navion.mit.edu/

http://navion.mit.edu/
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FIGURE 2.3: A reference model for robotic software systems (adapted from [Ah-
mad and Babar, 2016]). The three main research themes are identified:
robotic modeling, design and programming, robotic adaptation and
re-engineering, and robotic coordination.

• Robotic Adaptation and Re-engineering: This theme includes three sub-themes
such as reconfiguration, fault tolerance and re-engineering. Reconfiguration ca-
pability means how to reconfigure the structure or behaviour of a robot so that
it can adapt to many dynamic operating conditions. Fault tolerance capability
allows the robot to continue its operations despite the presence of a failure. Re-
engineering capability makes an existing robot evolve into a new version that
better meets new requirements;

• Robotic Coordination: This theme relates to the problem of distributed re-
source access of a robotic system or the problem of coordinating a team of
robots.

In fact, the second theme (robotic adaptation and re-engineering) guides our re-
search. The objective is to allow a mobile robotic system to monitor and analyze
itself its current operational conditions and dynamically modify its configuration
and behavior to meet certain non-functional requirements.

Robot Operating System

Mobile robotics are systems-of-systems with many hardware and software compo-
nents that communicate with each other. This complexity poses the question of
system-level integration. The Robot Operating System (ROS) [Quigley et al., 2009]
has a strong community support2 and provides a common open-source framework

2See http://www.ros.org/

http://www.ros.org/
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FIGURE 2.4: ROS system architecture (reprinted from [Hellmund et al., 2016]).
Each hardware and software component in the system is managed by
ROS nodes and all the nodes are managed by a central ROS master.
After registering with ROS master, the communication between ROS
nodes is direct.

dealing with this integration question in a component-based, modularized and dis-
tributed manner. In this framework, the components can be implemented or man-
aged in the form of ROS nodes. These nodes can be launched in a distributed net-
work of computing machines and communicate via a message-passing mechanism
such as topics and services. Indeed, this publish-subscribe communication mecha-
nism really facilitates the reusability of the robotic components.

The ROS-based system architecture is presented in Figure 2.4 with the connection
between a central ROS master and many slave ROS nodes. The ROS nodes are usu-
ally configurable with a rich set of parameters, among which, some parameters can
be dynamically reconfigured with the support of a dynamic_reconfigure3 ROS pack-
age, and this dynamic reconfiguration of the parameters does not normally lead to
service interruption.

2.1.2 Autonomy of Robotic Systems

The mobile robotic systems with the autonomy capability can act in real world envi-
ronments, usually complex and changing environments for a prolonged time with-
out any form of external control [Bekey, 2005; Tessier, 2017; Veres, 2011]. These
systems must perceive their surrounding environment and their own internal be-
haviors, then with a decision-making or planning phase, give the appropriate reac-
tions in order to keep the robotic system in a feasible context until the required mis-
sions are accomplished. By default, the autonomy of mobile robotic systems usually
implies the autonomous functionalities, where their generic control pattern can be
presented in Figure 2.5. The work in [Veres et al., 2011] surveyed and discussed
the intelligent decision-making and control techniques for guaranteeing the func-
tional autonomy. The recent innovations in sensors technology, as well as in percep-
tion technology such as computer vision, data fusion capabilities permit the mobile
robots representing and understanding any dynamic and complex environments.
This contributes also to the functional autonomy of these systems. Nevertheless the
dynamic circumstances of onboard resources such as computing power and energy

3See http://wiki.ros.org/dynamic_reconfigure

http://wiki.ros.org/dynamic_reconfigure
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FIGURE 2.5: Autonomy for functional goals with the capability of perception and
intelligent decision-making & control.

source, and unknown a priori environmental conditions can influence significantly
these autonomous functionalities, even they cannot be correctly completed.

For example, the mobile robot needs a recognition task for analyzing and avoid-
ing possible front obstacles during a specific period, but, at this moment, the on-
board computing platform cannot meet this workload because of the heavy com-
puting demands of other functionalities or other software modules, so the recogni-
tion task cannot finish before colliding with obstacles. Otherwise, if the robot is in
a free space without obstacles, this recognition task should only be allocated lim-
ited computing resources and energy in order to guarantee the efficient utilization
of these resources. Guaranteeing performance and energy is therefore an important
challenge for enhancing the autonomy of robotic systems.

2.1.3 Artificial Intelligence for Robotic Autonomy

Artificial Intelligence (AI) is defined as the science and engineering of making in-
telligent machines. These machines can perceive the environment around them, in
some cases behave as humans and take actions to maximize their chances of achiev-
ing their goals. AI has many applications in the field of healthcare, automotive,
robotics, finance and economics, art, etc. For robotics, Kunze et al. [Kunze et al.,
2018] indicate that some sub-disciplines of AI can help improve the robotic auton-
omy, including navigation & mapping, perception, knowledge representation & rea-
soning, planning, interaction and learning (Figure 2.6):

• Navigation and Mapping allow the mobility of mobile robots to work effi-
ciently in unstructured and dynamic environments;

• Perception enables the robot to perceive and understand the scene. The per-
ceived information is then used for robot navigation and mapping on the one
hand and for semantic understanding of the scene, for example, object detec-
tion and recognition on the other hand;

• Knowledge Representation and Reasoning allow the robot to represent vari-
ous aspects of the world and reason about them;
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FIGURE 2.6: Some sub-disciplines of Artificial Intelligence improve the robotic au-
tonomy.

• Planning concerns the execution of strategies or sequences of actions for the
robot. AI planning normally focuses on the decision-making problem to de-
cide, at a given robot’s state, which action will be executed in order to achieve
desired goals;

• Interaction allows the robot to communicate with other agents in its world
such as humans or other robots;

• Learning allows the robot to make predictions or decisions based on sample
data or experiments without being explicitly programmed. In fact, the learning
technique can be used for the five topics above.

Our thesis focuses on the quality of service and energy management for the
robotic systems and we identify the planning, decision-making and learning tech-
niques in artificial intelligence that are at the heart of the methodology of system
management we propose.

2.2 Self-Adaptive Systems

We seek to highlight some basic concepts of self-adaptive systems (SAS) that will be
applied to discuss the state of the art robotic run-time adaptation. We mainly present
the definition, taxonomy and planning strategy of these systems.
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FIGURE 2.7: An illustration of self-adaptive systems (AL = Adaptation Logic, MR
= Managed Resources, U = User(s), C = Context, M = Monitoring, A
= Analyzing, P = Planning, E = Executing), adapted from [Krupitzer
et al., 2015]. Its applications can be found in the mobile, embedded,
pervasive computing systems, or in the robotic domain, etc.

2.2.1 Definition

The work in [Macías-Escrivá et al., 2013] defines self-adaptivity as the capability of
the system to adjust its behavior in response to the operational environment. The
"self" prefix means that the decision-making process is autonomous with minimal
or without any form of external interventions. Figure 2.7 illustrates the concept of a
self-adaptive system with connections between four main elements:

• Users (U) can be end-users or system operators;

• Managed Resources (MR) are the systems under consideration;

• Context (C) implies the surrounding operational environment;

• Adaptation Logic (AL) representing adaptivity processes.

The adaptation logic is usually represented by a known architecture composed
of Monitoring, Analyzing, Planning and Executing elements (MAPE paradigm) with
the following roles:

• Monitoring element collects the information from the environment and sys-
tem through a (physical and/or virtual) sensors network, as well as goals spec-
ification and system requirements;

• Analyzing & Planning elements, also considered as decision-making phase,
analyze the monitored metrics to identify the current state, reason and plan
the adaptation decisions adaptive to this state;

• Executing elements receive the adaptation decisions from Planning element
and reconfigure the managed system.
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2.2.2 Taxonomy of Self-Adaptation

The work in [Krupitzer et al., 2015] introduces a generic taxonomy of self-adaptation
for surveying the engineering approaches in the SAS domain. Figure 2.8 indicates
the proposed taxonomy with the following main concepts:

• Reason: Why do we have to adapt? Basically, the self-adaptation deals with
the changing circumstances caused by the change in the environmental condi-
tions, dynamic resource availability and change caused by the users;

• Level: Where do we have to implement change? In a multi-layer system like
robotic systems or cyber-physical systems, the adaptation can occur in a single
layer, many layers or cross-layer;

• Time: When should we adapt? We can adapt before the change occurs follow-
ing a prediction phase by the proactive approach, or adapt after the change
occurs by the reactive one;

• Technique: What kind of change is needed? The adaptation decision can be
to reconfigure the parameters of applications, hardwares, peripheral devices,
etc, the system structure to combine hardware and software, or even in some
cases, to reconfigure the system context;

• Adaptation control: How to adapt? Two approaches can be used for the adap-
tation logic. The internal approach intertwines the adaptation logic with the
system resources and the external one isolates the adaptation logic and the
managed resources. The adaptation decision can be based on the criteria such
as models, rules, goals or utility. The decision plans can be determined in an
offline, online or hybrid manner. More details on this concept will be pre-
sented in the following part. Finally, the adaptation control can be deployed in
a centralized, decentralized or hybrid manner.

FIGURE 2.8: Taxonomy of self-adaptation (adapted from [Krupitzer et al., 2015]
with an addition of Decision Plan).
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2.2.3 Planning Strategy

Another concept associated with self-adaptive engineering that we would like to
highlight is the planning strategy. This refers to the way in which the decision or
adaptation plans are determined. There are three approaches: offline planning, on-
line planning and hybrid planning. We summarize the qualitative assessment of these
approaches in three dimensions: the inverse of costs such as time and computing
overhead, reliability such as the probability of convergence of algorithms and the
optimal response to dynamic run-time effects, as shown in Figure 2.9:

FIGURE 2.9: Planning strategy in self-adaptive systems. The three strategies are
evaluated in terms of optimality, reliability and computing cost.

• The offline planning means that the adaptation plans are determined in the
design time and are kept static during run-time. This approach has the advan-
tage of reliability, it is easily understood and easy to implement in terms of time
and computing overhead [Zhao et al., 2017]. However, some unforeseen run-
time operational circumstances can be undefined in the predetermined adap-
tation plans, which causes a question of optimality and of handling run-time
effects;

• Inversely, the adaptation plans in the online planning are determined at run-
time based on the past experiences or events of the system, and usually by
the optimization and online learning process [Kim and Park, 2009]. The on-
line approach can give the optimal adaptation plans that efficiently deal with
uncertainty and unforeseen contexts, but the main issues associated with this
approach are the time constraints and the computing overhead, as well as the
risk of divergence;

• For combining the advantages of two above approaches while reducing the
constraints, the hybrid planning is proposed by predetermining an adapta-
tion plan at the design time and evolving this plan at run-time with an online
learning process [Pandey et al., 2016].

2.2.4 Decision-Making Technique

In this section, we will discuss some general categories of decision-making approaches
in the state of the art self-adaptive systems (Figure 2.10) and explore the qualitative
properties of these approaches:
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FIGURE 2.10: Decision-making techniques in self-adaptive systems.

• Rule-based approach: This technique seems traditional and popular in the
field of self-adaptive systems with a set of rules defining the relationship be-
tween events and actions. It is represented by the event-condition-action (ECA)
paradigm and by the IF - THEN clauses [Georgas and Taylor, 2009]. The set of
rules is predetermined at the design time. By monitoring the current event, the
adaptation decision can be chosen from the set of rules. An example of rules
based on thresholds can be found in [Maggio et al., 2012]. This technique has
the advantage of being easily understood and implemented. However, many
dynamic factors at run-time of mobile robotic systems will lead to events or
conditions that are undefined in the adaptation rule set;

• Model-based approach: In this approach, a set of analytical models of the
managed system, the environment, as well as the quality/performance model
is built during design. At the time of execution, depending on the adaptation
decision criteria such as rules, objectives or utility of the system, the system
architecture is chosen to work. Model construction generally begins with a
few simple assumptions and goes through many trial and error calibration
processes. It cannot therefore take into account all the uncertainties and the
accuracy of the model becomes critical. A discussion on a roadmap of these
approaches for complex software systems can be found in [France and Rumpe,
2007; Morin et al., 2009];

• Control theory-based approach: The engineering approach based on control
strategies for self-adaptive systems has been studied by the work of [Filieri et
al., 2017]. An example of this approach can be found in [Shevtsov and Weyns,
2016]. This approach is advantageous thanks to a solid mathematical basis
and the ability to formally guarantee the behaviour of the controlled systems.
But the system identification and controller synthesis phase in this approach
is not trivial, and the accuracy of the model will define the performance of the
adaptation process. In addition, the stability of the controller must be carefully
considered;

• Learning-based approach: This approach uses a decision-making mechanism
that allows the system’s behaviour to be learned and adapted online on the ba-
sis of empirical data or past experiences with the system. The work of [Singh
et al., 2017] has also explored this approach to managing the runtime execu-
tion of computing systems. Despite the time and high overhead costs of cal-
culation, this approach is considered to be the most autonomous and intelli-
gent decision-making mechanism. The recent works of [Sadighi et al., 2018]
mentioned also this methodological innovation in their context of self-aware
autonomous systems;
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• Hybrid approach: In order to leverage the advantages of some decision-making
approaches while reducing their disadvantages, some studies combine these
approaches in the decision-making framework such as the work in [Zhao et
al., 2017] combining rule-based and learning-based approach, and [Mishra et
al., 2018] combining control theory and learning-based approach for their self-
adaptive systems.

2.3 Case-Based Reasoning

Case-Based Reasoning (CBR) is a problem-solving paradigm that uses cases solved
in the past to solve a new case whose solution is unknown. It is also an approach that
supports the decision-making process in symbolic AI [Aamodt and Plaza, 1994].
A solved case includes a context describing the problem and a solution to success-
fully solve it. A new case means that the context is known but its solution is un-
known. CBR uses a four-step process to propose a new case solution as denoted in
Figure 2.11:

• Retrieve. When a new case arrives, this step seeks to find the most similar case
in the case database based on certain measures of similarity;

• Reuse. The solution of the most similar case is then proposed to the new case.
It can be reused directly or requires some transformations before being used;

• Revise. This step assesses the outcome of the proposed solution applied to the
new case to confirm whether the new case has been successfully resolved or
not;

FIGURE 2.11: Case-Based Reasoning cycle uses a four-step process: Retrieve,
Reuse, Revise and Retain (reprinted from [Aamodt and Plaza, 1994]).
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• Retain. If the solution is confirmed, the new case and its confirmed solution
will be updated in the case database.

Case-Based Reasoning is only a paradigm, not an implementation. Depending
on the type of problem, the implementation of CBR may be different. The implemen-
tation of CBR faces some general challenges such as case representation, measure-
ment of similarity, case base organization and solution refining. Case representation
means how to describe a case, by feature vectors, or by texts, etc. Measurement of
similarity calculates the similarity between cases that is required in the retrieve step.
Case database organization is about how the case database is organized to effec-
tively manage memory and facilitate case indexing. Solution refining is important
to evolve the case database. All challenges require a domain-specific implementa-
tion. Recently, CBR has been widely applied in many domains such as dynamic goal
management in self-adaptive systems [Zhao et al., 2017], quality of service predic-
tion in cloud manufacturing [Liu and Chen, 2019], recommender systems [Pinto et
al., 2019], etc.

2.4 Markov Decision Process

The Markov Decision Process (MDP) is a mathematical framework for modelling the
problem of sequential decision-making under uncertainty [Pandey et al., 2016] and
is generally solved by dynamic programming and reinforcement learning [Sutton
and Barto, 2014]. A MDP is defined as a 5-tuple (S, A, T, R, γ), where:

• S is a finite set of states;

• A is a finite set of actions;

• T is a transition matrix representing the probability that at the given state s,
taking the action a leads to the next state s′, so T(s, a, s′) = P(s′|s, a);

• R is the immediate reward received after transitioning from state s to state s′

when taking action a;

• γ is the discount rate that determine the importance weight of future rewards.

The solution of MDPs is to find an optimal policy π that maps between state
space S and action space A, π : S → A , in order to maximize the accumulative
reward.

2.5 Reinforcement Learning

The reinforcement learning (RL) is one of the machine learning approaches, where
the main idea is the trial-and-error process. An agent observes the environment
state, makes some decisions and receives a reward or a reinforcement signal as an
evaluation of the pair of current state and chosen action (Figure 2.12). The process
is iterated until a good policy π for mapping between state and action is found.
Generally, this approach is used to optimize the long-term goal as the accumulative
reward, not immediate reward Rt, so the optimal policy maximizes the expected
total discounted reward E{∑T

t=0 γtRt}. The reinforcement learning is also known
as a solution to resolve Markov Decision Processes, and the RL problem is usually
modelled by MDPs. It can be said that the reinforcement learning is an automated
process of learning a control policy between agent and environment with less prior
knowledge.
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FIGURE 2.12: Agent-environment sequential interaction in a reinforcement learn-
ing: (current state, action, reward, next state) (reprinted from [Sutton
and Barto, 2014]).

2.5.1 Q-Learning

Q-Learning is one of the algorithms resolving the model-free RL problem, of which
the core is to find a Q-Table (Figure 2.13) representing the state-action value Q(s, a).
The iterating process is defined by

δt = Rt+1 + γ max
A

Q(St+1, A)−Q(St, At) (2.1)

Q(St, At)← Q(St, At) + αδt (2.2)

Where,

• t is the time step. It is also called as decision epoch or adaptation time step. At
the time step t, the agent observes the state St and makes the action At. Con-
sequently, at the next time step (t + 1), the agent will obtain the reward Rt+1
and receive the state St+1. Thus, a sequence of interaction between agent and
environment is defined by (St, At, Rt+1, St+1) or (state, action, reward, next state);

• δt is defined as the temporal difference;

• Rt+1 is the immediate reward received at the instant (t + 1);

• 0 ≤ γ ≤ 1 is called the discount rate that defines the importance weight of
future rewards;

• 0 ≤ α ≤ 1 is called the learning rate that defines the rate of changing Q-value.

After finding Q-Table by the learning process, a mapping policy can be directly
derived from Q-Table. At a given state si, the action aj that makes Q(si, aj) maximum
will be chosen to execute:

aj = arg max
aj∈A

Q(si, aj) (2.3)

FIGURE 2.13: Q-Table approach of M states S = {s0, s1, ..., sM−1} and N actions
A = {a0, a1, ..., aN−1}.
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Q-Table approach is only practical with finite state space and action space. When
the number of states or actions is large, or in case of continuous state and action
space, the Q-value should be represented by a linear approximation function or a
neural network as the case of Deep Q-Learning.

2.5.2 Deep Q-Learning

As described above, the Q-Table approach has finite state space limits and may not
be practical when dealing with massive state spaces. The article [Mnih et al., 2015]
proposes to combine Q-Learning with deep neural networks (DNN) to address this
limitation and achieve control at the human level. Now, the state that the agent per-
ceives is continuous and is the entry of neural networks. The output of neural net-
works is a Q-value for each action in a finite action space (Figure 2.14). Q-Network is
represented by a weight matrix θ. Thus, the learning process tries to find an optimal
weight matrix θ∗ that maximizes the accumulative reward. The loss function L for
the training process of a Q-Network is defined by

L(θ) = [(Rt+1 + γ max
A

Q(St+1, A, θ))−Q(St, At, θ)]2 (2.4)

Where (Rt+1 + γ maxA Q(St+1, A, θ)) is considered as target. We can realize that un-
like supervised learning where the target is static, this target is dynamic.

The use of neural networks as function approximators for Q-Learning was ap-
plied a long time ago, but the real success is only achieved in 2015 with Mnih’s article
with two important contributions:

• Experience replay: experiences are stored in a memory and used for the mini-
batch training of neural networks. This is an approach to obtain data efficiency
while training neural networks;

• Target network: a target Q-Network with the weight matrix θ− is kept static
for a certain time and gradually copied from the current Q-Network with the
weight matrix θ. This makes the learning process more stable. Thus, the loss
function is now defined by

L(θ) = [(Rt+1 + γ max
A

Q(St+1, A, θ−))−Q(St, At, θ)]2 (2.5)

FIGURE 2.14: Deep Q-Network approach. In this approach, the state space is con-
tinuous, the action space is still discrete, and the Q-values are esti-
mated by a Q-Network.
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2.5.3 Decision Epoch and Episode

Most reinforcement learning problems can be broken down into sequences in which
an agent interacts with its environment from an initial state until it reaches a certain
terminal state. The initial state can be identified at the beginning of the interaction
between agent and environment. The terminal states can be real or virtual. For
example, in the case an agent plays a game, the terminal state can be defined when
the agent wins or loses the game. Or more simply, the terminal state is reached
when a waiting time has elapsed. Each sequence of agent-environment interactions
between the initial and terminal states is therefore called an episode.

FIGURE 2.15: Illustration of episodes and decision epochs in the reinforcement
learning. An episode is composed of many decision epochs.

In an episode, the decision is made at each time step, or at each decision epoch,
or at each adaptation time step. We can use these terms interchangeably. Thus, an
episode includes a number of decision epochs as depicted in Figure 2.15. The Q-
Learning or Deep Q-Learning training process strives to maximize the accumulative
reward E{∑Teps

t=0 γtRt} in each episode, where Teps is the number of decision epochs
in this episode. And the training process is generally carried out through multiple
episodes.

2.5.4 Exploration vs. Exploitation

The use of exploration and exploitation is an important factor that determines the
success of reinforcement learning. While exploitation means that the agent always
chooses the best decision based on current observations, exploration helps it to ac-
quire new knowledge by sometimes using random decisions. This avoids local or
short-term optimality and can lead to better decisions for the future. One of the tech-
niques known to implement exploration and exploitation is the ε-greedy algorithm.
This means that with a probability of (1− ε), the agent will choose the best decisions
(exploitation), but with a low probability of ε, it will choose random decisions (ex-
ploration). For example, for the Q-Learning approach with the ε-greedy algorithm,
at the time step t, the agent observes the state St, the action At is chosen by

At =

a random action in the action space A with probability ε

arg max
A

Q(St, A) with probability (1− ε)
(2.6)
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2.6 Previous Work on Performance and Energy-Aware Robotic
Run-Time Adaptation

In this section, we apply the general concepts of self-adaptive systems for describing
the previous approaches of self-adaptation in autonomous mobile robotic systems.
While the functional requirements are normally mandatory for a robotic mission, we
focus on self-adaptation for guaranteeing the non-functional requirements with a
special emphasis on performance and energy goals. The aforementioned taxonomy-
based analysis of previous approaches is synthesized in Table 2.1. The adaptation
processes and the non-functional properties guarantee of each approach are detailed
in Table 2.2. These previous work will be discussed in details and we will highlight
the motivation for our research.

TABLE 2.1: Previous approaches for performance and energy aware run-time adap-
tation in autonomous mobile robotic systems.

Project Reason Technique Time Adaptation Control

Approach Criteria Plan DoD

[Hernandez-
Sosa et al.,
2005]

res, ctx prm (app) re ext rules off hyb

[Zhang, Lu,
and Hu, 2009]

ctx prm
(app,res)

re ext rules off cen

[Inglés-
Romero et
al., 2013]

res,
ctx, u

prm
(app,res)

re ext rules,
models

off cen

[Gherardi and
Hochgeschwen-
der, 2015]

res, ctx str re ext rules,
models

off cen

[Ondrúška et
al., 2015]

res str pro int rules off cen

[Jaiem et al.,
2016b]

res, ctx prm (res),
str

pro int goals,
models

off cen

[Brugali et al.,
2018]

ctx str re ext rules,
models

off cen

[Pandey et al.,
2018]

ctx prm(app) re ext non-
functional
goals

off cen

our research
objectives

res,
ctx, u

prm (app,
res)

pro ext non-
functional
goals

hyb hyb

ACRONYMS: DoD - degree of decentralization, res - resources, ctx - context, u
- users, prm - parameters, str - structure, app - applications, re - reactive, pro -
proactive, ext - external, int - internal, off - offline, hyb - hybrid, cen - centralized.
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2.6.1 Self-Adaptation in CoolBOT, Hernandez-Sosa et al., 2005

FIGURE 2.16: Component-based run-time self-adaptation: hybrid control hierar-
chy at local and compound robotic components (reprinted from
[Hernandez-Sosa et al., 2005]).

Hernandez-Sosa et al. [Hernandez-Sosa et al., 2005] propose the self-adaptation
in a component-based robotic framework named CoolBOT. The dynamic adapta-
tion is conducted at the component level for trading off between the computational
resource consumption and the quality of results. This trade-off is then used to de-
termine the system performance level. Each component is considered as execution
units and executed as threads in the underlying operating system. Based on the
component level observation such as period, elapsed time or CPU time, and on the
system level measures such as computational load, battery level or load profile, the
adaptation decisions can be to degrade a component to the lower level of perfor-
mance, or to promote a component to the upper level of performance, or to bring a
component to a specific level of performance. Two rule-based adaptation decisions
have been utilized: timeout control at the component level and CPU load control at the
system level. The control hierarchy is depicted in Figure 2.16. The methodology has
been demonstrated in two different robotic missions: a tracking system and a mobile
searching system. This research considers only computational context and comput-
ing resources, CPU in particular, but does not consider energy resources. The NFR
defined as computing system balance is identified by the system.

2.6.2 Optimal Solution for Power Management, Zhang et al., 2009

Zhang, Lu and Hu [Zhang, Lu, and Hu, 2009] introduce the optimal solutions to a
class of power management problems in mobile robots. The work deals with a navi-
gation mission in which the navigating guideline is guaranteed by a recognition task
that must be completed before the robot reaches next turning point in order to guar-
antee the safety (Figure 2.17). An optimal control problem of both robot velocity and
processor frequency is proposed for accomplishing the mission with the least energy
consumption. The optimal solution is resolved at the design time. At run-time, the
current circumstance is defined by the recognition task computing workload in the
form of CPU cycles, and the robot velocity and the processor frequency are calcu-
lated from the predetermined optimal solution adapting to this circumstance. This
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FIGURE 2.17: Motivational robotic mission example (reprinted from [Zhang, Lu,
and Hu, 2009]). The robot must finish correctly some recognition
tasks while navigating to determine the navigation directions at the
waypoints B, C, D and E.

approach tackles both computing level and sensing and acting level with two power
consumption models: computing power is a function of processor frequency, and
sensing and acting power is a function of robot velocity. The analytical solutions
are reserved for a class of power problems that ask the question of generalization.
Moreover, the predetermined solutions at the design time cannot deal with the un-
certainties and the unforeseen contexts at run-time.

2.6.3 Variability Modelling Language, Inglés-Romero et al., 2013

Inglés-Romero et al. [Inglés-Romero et al., 2013] present a Variability Modeling Lan-
guage (VML) as depicted in Figure 2.18 to express run-time variability in service
robotics with regard to the execution quality of the robot, or non-functional proper-
ties. The variability is modeled by variation points (or configuration knobs), current
contexts, QoS properties and predetermined adaptation rules mapping between con-
texts and variation points. The adaptation logic is implemented in an external and
centralized manner. The methodology is then applied for a coffee delivery mission
in which the adaptation decisions are max robot velocity, type of coffee machine and
other parameters while respecting the battery level, the safety and the user-defined
QoS such as coffee temperature. In this approach, they do not consider the comput-
ing resources and do not model the power consumption of the system. The adap-
tation rules are determined at the design time and the constraint solver at run-time
is also based on predetermined empirical equations. Thus, when dealing with the
dynamics of the mobile robotic systems, this approach has its limitations.

FIGURE 2.18: Modeling run-time variability: VML models and the interaction with
the robotic system (reprinted from [Inglés-Romero et al., 2013]).
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2.6.4 Model-Based Self-Adaptation, Gherardi and Hochgeschwender, 2015

FIGURE 2.19: An overview of the model-based variability management approach
(reprinted from [Gherardi and Hochgeschwender, 2015]). A set of
models representing the system architecture, its variability, and the
state of the context is defined at the design time and is used at run-
time to implement the run-time adaptation.

Gherardi and Hochgeschwender [Gherardi and Hochgeschwender, 2015] develop
a model-based approach for run-time adaptation of robotic systems as depicted in
Figure 2.19. In this approach, a set of models representing the system architecture,
its variability, and the state of the context is defined. Based on the current context,
the framework will reason and adapt appropriate models for the system, so that the
best QoS of the system can be obtained. The notion of QoS is still vague in this
study. The run-time variability is resolved by a set of predetermined adaptation
rules. This approach also does not consider the computing resources , nor is the
power consumption model mentioned. It concentrates on the adaptation for com-
pleting the functional requirements, but the non-functional goals are not explicitly
implemented.

2.6.5 Energy-Aware Perception Scheduling, Ondrús̆ka et al., 2015

The work in [Ondrúška et al., 2015] explores the idea of reducing the energy con-
sumption of the robotic system by scheduling the specific component, localization
in this study, in the navigation mission. The scheduling decision is based on safety
criteria known as "safe corridor" in order to switch the localization component on

FIGURE 2.20: Scheduling perception for energy efficiency: scheduling decisions
based on belief state in the safe corridor (reprinted from [Ondrúška
et al., 2015]).
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or off during some periods (Figure 2.20) for reducing the energy consumption of the
localization component, and thus also of the robotic system. The problem of per-
ception scheduling is framed as a belief Markov Decision Process and the dynamic
programming is used to provide the optimal schedules. However, the application
of this methodology to the other robotic components is not trivial and was not dis-
cussed. Thus, the generalization of the scheduling framework is an issue.

2.6.6 Performance-Aware Hardware and Software Adaptation, Jaiem et
al., 2016

FIGURE 2.21: Mission decomposition (reprinted from [Jaiem et al., 2016b]). The
mission is divided into several objectives. For each objective, there
are a number of alternative implementations (nalt) that can be chosen
for deployment.

Jaiem et al. [Jaiem et al., 2016b] propose an approach to reconfigure the system
architecture composed of algorithm implementations and sensors at run-time in or-
der to guarantee the performance and energy goals while respecting constraints. The
framework begins with an offline performance estimation and then it is used for on-
line performance evaluation and for adaptation decisions. This approach proposes
both power consumption models and explicitly indicates the non-functional require-
ments for mobile robots. However, the adaptation at the computing level is not yet
implemented. Moreover, the mission decomposition as denoted in Figure 2.21 with
many phases limits the generalization for other robotic missions.

2.6.7 Model-Based Reconfigurable Robotic Systems, Brugali et al., 2018

The recent work in [Brugali et al., 2018] also addresses model-based engineering
with a set of models of the system architecture and a QoS model built offline in order
to reconfigure the robotic system architecture at run-time. They did not consider
the computing and energy resources, but only considered some navigation system-
specific non-functional properties. The model-based adaptation is based on event
triggers with a set of pre-determined scenarios (context model). The architecture
of the reconfiguration system is shown in Figure 2.22 with three main components
such as monitoring engine, adaptation manager and reconfiguration engine.
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FIGURE 2.22: Model-based reconfigurable robotic systems: the architecture of the
reconfiguration system (reprinted from [Brugali et al., 2018]).

2.6.8 Parameter Adaptation for Robotic Vision Algorithms, Pandey et al.,
2018

This research [Pandey et al., 2018] addresses the problem of adapting the parameters
of computer vision-based robotic missions to achieve real-time performance while
respecting the accuracy in resource-constrained mobile robots. The motivation is
illustrated in Figure 2.23 where the dynamics of the environment is analyzed and
the relationship between input data, algorithmic parameters and execution time is
also discussed. They then formulated the decision-making problem as a Markov De-
cision Process to adapt the algorithmic parameters depending on the input data in
order to tradeoff detection accuracy and execution time. This approach is innovative
and indicates that the dynamic adaptation of parameters according to incoming data
is more effective than fixing them a priori in terms of resource consumption. How-
ever, the generalization of the methodology for different types of robotic missions
has not yet been discussed.

FIGURE 2.23: Motivation figures to illustrate that parameters of the object detec-
tion algorithms can be adapted to input data to achieve savings in
time and energy. Figures (a, b, c) show variation in the amount of
background clutter; (d and e) show variation in illumination, and
(f) shows variation in camera viewpoint. These variations lead to
differences in the minimum number of bounding boxes parameter
(detection proposals) required for object detection. Lower detection
proposals translate to lower execution time (reprinted from [Pandey
et al., 2018]).
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2.6.9 Remarks on Previous Work

The previous efforts that we mention above again highlight the important role of
run-time adaptation or self-adaptation for enhancing the autonomy of mobile robotic
systems because of shortage of onboard robot resources such as processing power
and energy, and of the uncertain, dynamic circumstances that can occur at the robotic
run-time. Although each approach has its advantages and provides the success in
some case studies, most of the previous works does not meet our expectations for a
robotic run-time adaptation framework that:

• Explicitly takes into account user- and/or system-defined performance and
energy goals. This point means that these non-functional goals are defined as
setpoints or thresholds for reconfiguring or not the structure and behaviour of
the robotic system. Most of the previous work tend to reconfigure the robotic
system and reassess these resulting non-functional properties;

• Deals with the mobile robotic dynamics and uncertainties with run-time in-
telligent decision-making mechanisms. The decision-making process is con-
sidered an important factor in deciding on the effectiveness of the adaptation
framework. Decision-making algorithms based on rules and models are dom-
inant in previous work that cannot cope with many unexpected dynamics and
uncertainties in the context of mobile robotics;

• Ensures the generalization of the management methodology. This means
that the methodology can be easily applied to the other robotic missions. In-
deed, we see the difficulties of reusing the methodologies proposed by pre-
vious work. In addition, the context in which several robotic missions are de-
ployed simultaneously in the same robotic system has not yet been considered.

Indeed, the three remarks above underline our motivation for a run-time adap-
tation framework in the context of mobile robotics and guide our research. The last
line of Table 2.1 also reveals our expectation by highlighting the characteristics nec-
essary for the targeted robotic run-time adaptation framework that is not yet fully
achieved by the previous approaches.

2.7 Summary

In this chapter, we have provided the background for our research. The main con-
cepts of two domains of mobile robotic systems and self-adaptive systems have been
mentioned to understand the concept of the robotic run-time adaptation. The ba-
sis of decision-making techniques, reinforcement learning and case-based reasoning
was provided to clarify the methodology that we will present in the next chapters. In
addition, some related work was introduced and analyzed to position our research
in the state of the art performance and energy-aware robotic run-time adaptation.

The characterization of the robotic mission is considered as the preliminary phase
to the design of our run-time adaptation framework. In the next chapter, we will
present unified concepts to characterize a robotic mission and then provide some
case studies to prove these concepts and highlight the motivation for run-time adap-
tation.
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As we presented in the previous chapter, we propose the level of abstraction of
a robotic system where the robotic mission is at the highest level and it hides the
complex details of the robotic system. It uses the robot’s necessary components and
resources to meet its functional needs. The characterization of robotic missions is an
important task in our thesis. This will provide the basic knowledge of the mission
under consideration and will be the preliminary step in the framework for run-time
adaptation of the mission. The characterization is considered under two aspects:
offline characterization and online monitoring. While the offline characterization
provides in-depth knowledge of the mission and helps to formulate the management
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problem, the online monitoring provides real-time observation for the adaptation
part of our framework.

In Section 3.1, we will present some related work of characterizing the robotic
performance and energy consumption. Then, our concepts for the mobile robotic
mission characterization and a systematic approach for characterization are pro-
posed in Sections 3.2 and 3.3. Section 3.4 presents the concepts of self-aware mobile
robotic mission. It is important to define the framework in simulation and in real
robotic platform for implementation and validation of our proposed methodology
as presented in Section 3.5. Some motivational examples of mobile robotic missions
are also described in Section 3.6 and followed by some insightful discussions. Fi-
nally, Section 3.7 concludes this chapter.

3.1 Related Work

3.1.1 Energy Consumption Characterization

Energy is the survival problem of mobile robotic systems because of their limited
energy capacity. Thus, in the literature, there is a great deal of effort to model and
estimate the energy consumption of robotic systems in order to facilitate efficient
energy management. The researches such as [Mei et al., 2006; Parasuraman et al.,
2014; Jaiem et al., 2016a; Rappaport, 2016] break down the robotic systems into many
components such as motion, sensing and embedded computers and estimate the
energy consumption of these components. The consumption of the motion part is
generally modelled according to the speed of the robot. The one of the sensing part is
modelled by the sampling frequency of the sensors. The energy consumption of the
embedded computer is reserved for high-level processing applications and many
studies consider it to be constant or fairly constant depending on the application.
The energy consumption model of the applications can be found in the work of
[Noureddine, Rouvoy, and Seinturier, 2015] and it should be variable. In this work,
the power consumption of an application or a software (Pso f tware) is defined as:

Pso f tware = Pcomp + Pcomm (3.1)

Where Pcomp is equal to the CPU power consumed by software, and Pcomm is equal
to the consumed power for transmitting software’s data. Other efforts such as the
work of [Dressler and Fuchs, 2005; Berenz, Tanaka, and Suzuki, 2011; Zhang et al.,
2014; Hamza and Ayanian, 2017] directly estimate the remaining capacity of robotic
batteries to effectively plan the mission.

Based on these principles, our characterization aims to propose unified concepts
to understand the energy consumption characteristic of a robotic mission.

3.1.2 Performance Characterization

Although performance characterization is popular in many areas such as computer
architecture, computer vision, machine learning, etc. [Clemons et al., 2011; Thomas
et al., 2014], this type of characterization for mobile robotics systems is still vague, or
only the characterization of individual components but not the overall performance
of the robotics system, due to the lack of reference data and many dynamic factors
in the operational context that limits repeatability and reproducibility. The work of
[Holz, Iocchi, and Zant, 2013; Sprunk et al., 2014; Twigg, Gregory, and Fink, 2016]
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aim to propose a methodology to characterize the performance of the entire naviga-
tion system, and the work of [Weisz, 2016] tends to propose a benchmark facilitating
the sustainable robotic characterization. The characterization of offline performance
of robotic systems is also mentioned in the work of [Cano et al., 2016] where the ex-
perts’ experiences were used to estimate the performance of each component (ROS
node) and the overall performance is the weighted sum of these components. In the
work of [Jaiem et al., 2016b], they explicitly represent the concept of performance in
robotic systems such as safety, localization, stability and duration. The performance
model and the performance margin are determined at the design time and are used
at the execution time to estimate the performance level. We then leverage these con-
cepts to propose the robotic mission-specific performance or the mission’s quality of
service.

3.2 Mobile Robotic Mission Characterization

3.2.1 Mission Definition

Each robotic mission is deployed in order to satisfy specific objectives and require-
ments. The objectives can be functional or non-functional, and typically are defined
by either the end user or the robot operator, who we will refer to as the robot users
(see Figure 1.6). The functional objectives specify what the robotic system should do
in the form of functional tasks and they are usually sequenced by the mission’s task
graph. For example, an autonomous navigation mission can be deployed for visit-
ing a set of user-defined waypoints known as functional goals in the robot working
environment. Each functional task can in this case be considered as a navigating task
between two waypoints and a simple task sequencing algorithm can be depicted in
Figure 3.1.

FIGURE 3.1: Example of an autonomous navigation mission: task sequencing algo-
rithm (adapted from [Brutzman et al., 2018] for a navigation mission).
Note: WP - waypoint.
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FIGURE 3.2: Mobile robotic mission model with components of sensors, actuators
and computing applications, and connection with computing plat-
form, power supply and surrounding environment.

The non-functional objectives specify how the system performs the mission, eval-
uation of performance, quality of service, etc. Each mission must interface with some
necessary robot sensors and actuators and call some processing applications on the
computing subsystem for executing functional tasks. All the robotic systems usu-
ally interact with their surrounding environment for accomplishing the mission as
described in Figure 3.2.

At the highest level of abstraction in the autonomous mobile robotic system, a
robotic mission Mission is formally defined as a 4-tuple:

Mission = {Objs, Apps, Sens, Acts} (3.2)

Where,

• Objs represents the mission’s functional and non-functional objectives;

• Apps = {appi}
NApps
i=1 is the set of processing applications that carry out the mis-

sion and the connection between these applications formulates the mission’s
computing graph;

• Sens = {seni}NSens
i=1 is the set of sensors;

• Acts = {acti}NActs
i=1 is the set of actuators.

The definition we propose helps the robotic mission characterization to be gener-
alized and applied for many different robotic systems. It indicates not only mission
performance and constraints, but also the way that the mission uses the robotic re-
sources and energy. Some previous works such as [Weisz, 2016; Jaiem et al., 2016b]
also proposed the concepts for the robotic missions but mainly concentrates on the
mission applicative tasks, and did not really indicate the mission characteristics in
term of performance, constraints and resource utilization. Based on the Level concept
in the taxonomy of self-adaptation (Figure 2.8), the adaptation at the mission level
will involve the application level with an ensemble of applications and the technical
resource level of sensors and actuators.
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3.2.2 Mission from a Computing Platform Point of View

On the computing platform including the underlying operating system, we can con-
sider a robotic mission as a multi-process computing workload. Each process will
be responsible for some robotic functionalities. Many threads can be launched in
a process, therefore each process is also a multi-thread computing workload (Fig-
ure 3.3). The mission computing workload is also dynamic because of the changing
functional behavior of the mission, resource availability, as well as surrounding cir-
cumstances [Brugali et al., 2018], as characterized by the work in [Zhang, Lu, and
Hu, 2009; Ho et al., 2018]. The robotic systems must also cope with this computing
variation by a run-time adaptation identified at the computing platform level. In
fact, the adaptation at this level has attracted one of the known research branches of
SAS called autonomic computing systems [Kephart and Chess, 2003]. However, in
order to apply the autonomic computing approaches to the mobile robotic systems,
we need adequate modifications for coping with the robotic dynamics, as well as to
make it coherent with different adaptation levels.

FIGURE 3.3: Mission computing workload. On the computing platform, a robotic
mission is a multi-process workload. Each mission process is also a
multi-thread workload. (Note: t1, ..., tN is thread)

3.2.3 Mission Power Consumption

Based on our mission definition and depending on its required components, two
power consumption models of a robotic mission can be built: sensing and acting
power consumption model, and computing power consumption model:

PMission = Psensing & acting + Pcomputing (3.3)

Psensing & acting = PSens + PActs + PController (3.4)

Pcomputing = PApps + PComm_Sens_Acts (3.5)

Where,

• PMission is the power consumption of the mission;
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FIGURE 3.4: Mission power consumption model.

• Psensing & acting is the power consumption of sensors PSens, of actuators PActs and
occasionally of low-level controller PController;

• Pcomputing is the power consumption of computing processor reserved for appli-
cations PApps and PComm_Sens_Acts for communication with sensors and actuators
part.

In fact, for each power consumption model Psensing & acting and Pcomputing, we can
consider two parts such as static and dynamic parts. The static part means that
its energy consumption is fairly constant during mission operation or for reasons
of simplicity, we estimate a constant value for this part. And the dynamic part
means that its energy consumption is variable and depends on the operating con-
ditions. In the Psensing & acting model, if we assume that the sensors operate at a
constant frequency, their energy consumption PSens can be considered static. Oth-
erwise, actuators and their controllers, such as wheel motors, depend on speed and
environmental conditions, so their power consumption (PActs + PController) should be
dynamic. Similarly, in the model of Pcomputing, we can consider that the static part
is PComm_Sens_Acts and the dynamic one is PApps. The power consumption model of
the mission is depicted in Figure 3.4. A complete power consumption model is use-
ful if we consider allocating accurately the power budget for the robotic mission.
For our run-time adaptation framework, our primary concern is the dynamic part
of the power consumption and the adaptation mechanism strives to guarantee this
dynamic part. The integration or not of the static part into the power consumption
model of the robotic mission is an option.

The energy consumption of the mission EMission is finally calculated by integrat-
ing the power consumption PMission(t) over the mission duration dt as follows:

EMission =
∫ mission_duration

t=0
PMission(t)dt (3.6)

3.2.4 Mission Non-Functional Requirements

Based on the quality in use model defined by the standard ISO 25010 as presented
in Section 1.1, in the mobile robotic context, we classify the non-functional require-
ments (NFRs) of a robotic mission into three subcategories (Figure 3.5):

• Mission-specific performance (M-Perf) is strongly related to the mission func-
tionalities, and is usually user-defined. For example, the navigation time or
the robot’s mean speed can be considered as one of the autonomous naviga-
tion mission-specific performances [Jaiem et al., 2016b; Ceballos, Valencia, and
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FIGURE 3.5: Three subcategories of the robotic mission non-functional require-
ments: mission-specific performance, power consumption, and others
such as safety, security, etc.

J. Londoño Ospina, 2010; Cano et al., 2016]. The way in which the robotic sys-
tem responds to these performance requirements will determine the quality of
service (QoS) of the robotic mission;

• Power/Energy consumption (Energy) is concerned because of the limitation
of energy resources on the mobile robots. As mentioned above, the energy
consumption of the robotic mission is composed of sensing and acting, and
computing consumption parts [Jaiem et al., 2016b; Weisz, 2016; Zhang, Lu,
and Hu, 2009];

• Other system requirements (Others) such as safety, security, reliability or avail-
ability of robotic system are also non-functional requirements that can be con-
sidered while deploying the mission [Brugali et al., 2018; Jaiem et al., 2016b;
Hernandez-Sosa et al., 2005; Zhang, Lu, and Hu, 2009; Ondrúška et al., 2015;
Gherardi and Hochgeschwender, 2015]. These requirements are considered
optional in our work and depend on the type of mission.

3.2.5 Robotic Configuration Knobs

A configuration knob is defined as the configuration that can be tuned to cope with
the non-functional requirements. There are many configuration knobs in the differ-
ent levels of mobile robotic systems. We divide them into two main levels: mission-
level and computing platform-level. Figure 3.6 summarizes the possible configura-
tion knobs of a mobile robotic system.

• At the mission-level, the mission is composed of a set of applications, sen-
sors and actuators, therefore we can configure the compositional structure
of these components [Jaiem et al., 2016b; Brugali et al., 2018; Gherardi and
Hochgeschwender, 2015; Ondrúška et al., 2015] for not only accomplishing
the functional requirements of the mission, but also contributing to the non-
functional requirement guarantees. Furthermore, each component possesses
a rich set of internal configurable parameters that can be tuned by the con-
figuration knob [Cano et al., 2016; Hernandez-Sosa et al., 2005; Zhang, Lu,
and Hu, 2009; Inglés-Romero et al., 2013]. Determining the key parameters is
non-trivial, but it needs a rigorous characterization phase with a good under-
standing of the mission domain. In fact, changing the composition of robotic
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FIGURE 3.6: Robotic configuration knobs define the configurations that can be
tuned to cope with the robotic non-functional requirements.

systems during execution may lead to a service interruption, while reconfigur-
ing parameters in the parameter space of sensors, actuators and applications
is easier and safer;

• At the computing platform-level, we can reallocate the number of computing
resources such as core, memory or computing power budget [Cano et al., 2016].
Or we can reconfigure the operating point of the computing resources such as
core voltage and frequency, power mode, etc [Zhang, Lu, and Hu, 2009]. For
truly effective computing resource management, we need an approach to the
granularity of application’s tasks or threads. Thus, the adaptation at this level
is not part of our thesis.

3.2.6 Autonomy Enhancement by Guaranteeing NFRs

In the paradigm denoted in Figure 1.6, the robot user deploys the robotic mission
while identifying both functional and non-functional requirements. The functional
requirements are dependent on the robot’s functionalities and normally mandatory.
The NFRs can be also identified by the robot’s constraints. All these requirements
will be applied to the robotic mission. The robot performs the mission by allocating
all necessary components such as processing applications, sensors, actuators and
energy to the mission. The full autonomy is obtained when the robotic mission can
accomplish successfully all the functional requirements while guaranteeing the non-
functional requirements. Figure 2.5 shows a generic control structure to meet the
functional goals. With the addition of non-functional goals, two approaches are de-
scribed in Figure 3.7:

• The first approach in Figure 3.7a means that the same control and decision
loop for robotic systems must take into account both functional and non-
functional goals. Thus, in the development phase of a robotic system, the
robotic engineers and developers must model, design and program their soft-
ware while regarding the non-functional goals. Guaranteeing these goals is
considered as the intrinsic quality of the robotic software or system (see Sec-
tion 1.1 for the product quality model);
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(A) In the same control and decision loop.

(B) In two different control and decision loops: one for executing the functional goals and
another for guaranteeing the non-functional goals.

FIGURE 3.7: Autonomy enhancement by guaranteeing both functional and non-
functional goals.

• The second approach in Figure 3.7b adds another closed loop of perception,
decision and control to ensure non-functional goals. The loop of the guaran-
tee of non-functional goals can be considered to be on top of the loop of func-
tional autonomy. The integration of this loop is generally independent of the
robotic system development phase and the guarantee of non-functional goals
is considered as guaranteeing the quality in use of the robotic system during
the deployment phase (see Section 1.1 for the quality in use model). However,
it is important to merge after these two control loops to avoid conflicts between
actions.
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Indeed, these two approaches are equivalent to the internal and external adapta-
tion approaches of self-adaptive systems presented in Section 2.2. The work in [Sale-
hie and Tahvildari, 2009] has indicated that the main advantage of the first approach
is the ability to handle local adaptations. However, it has some notable drawbacks
in terms of maintainability and scalability. While the second approach offers a sig-
nificant advantage of flexibility, maintainability and scalability. Our thesis focuses
on the quality in use of the robotic missions and the second approach is really our
concern.

3.2.7 Multi-Mission Context

When the complexity of the modern mobile robotic systems increases in terms of
number of components, such as in the case of autonomous cars [Kato et al., 2015],
the robot user or operator can demand many robotic missions deployed in the same
time. This leads to multi-mission context as defined in Figure 3.8, where many mis-
sions can share the same resources for executing the functional requirements of each
mission. These shared resources can be considered to be mutex locked or super-
posed. Many missions can use the superposed resources in the same time such as
computing resources, sensors and energy resources, but must exclusively use the
mutex locked resources such as actuators like motors, because they cannot receive
and execute two different commands simultaneously. As a consequence, the auton-
omy challenge becomes more demanding in order to cope with more complex and
dynamic operational circumstances, as well as to guarantee the NFRs of each mis-
sion. In this case, the adaptation approach needs to coordinate between missions
with different priorities, as well as to make these coherent between adaptation lev-
els.

FIGURE 3.8: Multi-Mission context. Here, two example missions i and j can share
resources (sensors, actuators, computing resources) and energy in a
mutex locked (blue contour) or superposed manner (red contour).

3.3 Systematic Approach for Characterizing Robotic Missions

We intend to propose a systematic approach to find the key mission configuration
knobs and to clarify how these knobs can influence mission non-functional require-
ments. The characterization process is described in 6 steps (Figure 3.9):

• Step 1: Identify mission functional objectives. As described above, the func-
tional objectives represent the functionalities of the robotic mission. All robotic
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FIGURE 3.9: Systematic approach of 6 steps for characterizing robotic missions.

functionalities must be implemented at the design time and we do not focus
on these objectives in our run-time adaptation framework. But it is important
to identify these objectives in order to identify the components of the mission
in the next step;

• Step 2: Identify mission components. In this step, we will identify all sensors,
actuators and processing applications in the robotic mission. Then, the mis-
sion’s energy consumption model can be formulated as in Equations (3.3), (3.4)
and (3.5);

• Step 3: Identify mission non-functional objectives. We must then identify
the non-functional objectives of the mission. While energy consumption con-
straints are general for all missions, performance and some other constraints
may be mission-specific. It is therefore necessary to have a clear understand-
ing of the mission. This step is important because our run-time adaptation
framework will focus on these non-functional objectives. Of course, we do not
need to identify all the non-functional requirements, but the requirements we
would like to manage;

• Step 4: Identify mission configuration knobs. This step identifies the configu-
ration knobs of the mission. Figure 3.6 summarizes the possible configuration
knobs. We must have the ability to dynamically tune these knobs. We do not
limit the number of configuration knobs, but mission-specific knowledge can
help reduce the number of configurations considered, and then limit the num-
ber of experiments in the next step;

• Step 5: Conduct experiments with configuration variations. In this step, we
can deploy the mission either in simulation or on the real robotics platform.
In both cases, different environmental scenarios must be generated in order
to take into account the impact of environmental dynamics in the context of
mobile robotics. For each configuration change, we deploy the mission and
record the measured results of the non-functional objectives. These results will
be processed and analyzed in the next step;
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• Step 6: Evaluate and confirm the key configuration knobs. In this last step,
by analyzing the results of the experiments for each configuration, we can con-
clude on the qualitative relationship between the configuration knobs and the
non-functional objectives. Quantitative models can also be formulated, for ex-
ample, by regression analysis, but the accuracy of these models is a problem
due to many dynamics during the mission that we cannot anticipate in the
experiments performed. From these qualitative relationships, we can confirm
the key configuration knobs that contribute significantly to non-functional ob-
jectives.

These steps are proposed to help characterize the robotic missions in a system-
atic and orderly manner. A generalized tool or automated characterization does not
seem possible for this characterization at the mission level.

3.4 Self-Aware Mobile Robotic Mission

The characterization described above can be considered as an offline characteriza-
tion that provides unified concepts of mobile robotic missions as well as a qualitative
understanding of their dynamic characteristics. However, the run-time adaptation
will be deployed during mission operation and requires the observation at run-time
for the decisions to be taken. The self-awareness of mobile robotic mission will there-
fore be responsible for this task.

In the literature, there are some work that develop the framework for the data
and event collection in robotic systems. These observations can be stored in memory
to facilitate the offline analysis such as the work in [Shrewsbury et al., 2013] or the
run-time management framework can use them directly as real-time observations
such as the work in [Bihlmaier and Wörn, 2014; Forouher, Hartmann, and Maehle,
2014; Huang et al., 2014; Twigg, Gregory, and Fink, 2016].

In our framework, the self-aware mobile robotic mission is equipped with a mon-
itoring service that provides online metrics that represent the internal and external
situation of the robotic mission:

FIGURE 3.10: Self-aware mobile robotic mission: monitoring methodology. A mon-
itoring service of the mission monitors both internal and external sit-
uation. The internal situation relates to the current state of quality of
service and energy consumption. The external situation relates to the
users, the rest of system and the environment.
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• The internal situation indicates the current quality of service and energy effi-
ciency of the robotic mission;

• The external situation represents the context surrounding the mission, such as
the user’s needs, the environment and the rest of the robotic system.

The characterization process can help to identify the necessary metrics in each mon-
itoring group. All metrics will be grouped into a monitoring service with the role of
a service provider. The monitoring diagram is depicted in Figure 3.10. By proposing
this monitoring methodology, we also indicate that our management framework will
be based on the data or monitored metrics. We will monitor the necessary metrics,
but not the system’s events. We can predict how an event will influence certain met-
rics, but it is difficult to deduce which events occurred with monitored data. Briefly,
our management framework will be data-driven.

3.5 Mobile Robotic Framework for Implementation and Val-
idation

The purpose of this section is to present the simulation and the real framework
used in our thesis to test and validate the methodology we propose. The simulation
framework means that the robotic mission is deployed in a simulator such as Gazebo
and the real framework means that the mission is deployed in a real robotic platform.
The simulation framework is used throughout our work to progressively evaluate
our methodology while the real framework is used in the final step to validate the
feasibility of the run-time management proposed in the real robotic platform.

3.5.1 Real Framework

The real framework means that the robotic mission is deployed in a real robotic plat-
form and in the real environment. We do not intend to target any specific robotic
platforms or environments. However, for sake of simplicity and availability in our
laboratory, we have chosen the robotic platform based on the Pioneer-3DX1 mo-
bile base and powered by an NVIDIA Jetson AGX Xavier2 embedded platform and
this mobile robotic platform will operate in an indoor environment such as inside a
building floor. The full system and its components are shown in Figure 3.11. The
three main subsystems (see the generic structure of mobile robotic systems in Sec-
tion 2.1.1) of the real framework are described as follows.

Computing Subsystem

Our mobile robotic platform is equipped with a NVIDIA Jetson Xavier embedded
platform. This platform runs a Linux operating system and its robotic applications
are developed and executed in ROS. The characteristics of the Xavier board are de-
tailed in Appendix A. Small in size and low in power consumption, this embedded
system harnesses the computing power of 8-core ARM processor and 512-core Volta
GPU to execute efficiently and in real time many robotic applications such as object
detection, people detection, scene segmentation, etc.

1See https://www.generationrobots.com/fr/402395-robot-mobile-pioneer-3-dx.html
2See https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit

https://www.generationrobots.com/fr/402395-robot-mobile-pioneer-3-dx.html
https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit
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Sensing and Acting Subsystem

The sensing and acting subsystem is based on a Pioneer-3DX mobile base and two
external sensors such as a Kinect3 sensor and a Hokuyo4 laser scanner. The details of
Pioneer-3DX can be found in Appendix B. Some sensors such as the odometer, sonar
and bumper are integrated into the mobile base. The Kinect sensor provides depth
and color information of the scene in front of the robot. The Hokuyo laser scanner
provides the distance between the robot and surrounding obstacles.

Power Supply Subsystem

All the system is powered by a module of three batteries embedded in the Pioneer-
3DX mobile base. Unfortunately, this module do not provide the information of
power consumption and battery state of charge. Thus, we propose two measure-
ment tools to obtain the measurements of power consumption. A software tool
named PowerAPI [Noureddine, Rouvoy, and Seinturier, 2015] is in charge of esti-
mating the power consumption of robotic applications on the computing hardware.
And a hardware tool called Yocto-Watt5 is used to measure and estimate the power
consumption of the sensing and acting part. The details how to use these tools will
be found in Appendix C and D.

FIGURE 3.11: Our real robotic platform for experimentation: a) NVIDIA Jetson
Xavier, b) Linux-based operating system, c) Robot Operating System,
d) Process-level power estimation by PowerAPI, e) Kinect sensor, f)
Hokuyo laser scanner, g) Pioneer-3DX mobile base and h) Power con-
sumption measurement by Yocto-Watt.

3See https://www.generationrobots.com/en/401430-microsoft-kinect-sensor.html
4See https://www.generationrobots.com/en/401755-hokuyo-...
5See http://www.yoctopuce.com/FR/products/capteurs-electriques-usb/yocto-watt

https://www.generationrobots.com/en/401430-microsoft-kinect-sensor.html
https://www.generationrobots.com/en/401755-hokuyo-...
http://www.yoctopuce.com/FR/products/capteurs-electriques-usb/yocto-watt
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3.5.2 Simulation Framework

The objective of the simulation framework is to reflect the real robotic framework
and help us to have a quick prototype and validate our proposed methodology. The
simulation framework is described in Figure 3.12. The three main subsystems are
described as follows.

Computing Subsystem

The computing hardware is now an Intel core i7 desktop that launches the simula-
tion framework including a Gazebo simulator6 and robotic missions. It runs also a
Linux operating system and ROS.

Sensing and Acting Subsystem

Gazebo is in charge of simulating the behavior of sensors and actuators necessary
as described in the real framework. Figure 3.13 describes the data flow of simulated
sensors and actuators subscribed and published by a Gazebo simulator.

Power Supply Subsystem

While the computing power consumption can be measured by PowerAPI as in the
real framework, the sensing and acting power consumption needs an estimation
model. The power estimation model proposed by the work of [Jaiem et al., 2016a]

FIGURE 3.12: Simulation framework: a) Intel Core i7 desktop, b) Linux-based op-
erating system, c) Robot Operating System, d) PowerAPI, e) Gazebo
simulator and f) Sensing & acting power estimation model.

6See http://gazebosim.org/

http://gazebosim.org/
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FIGURE 3.13: Simulating robot’s sensors and actuators in Gazebo. The robot sim-
ulated in Gazebo receives the velocity command from the naviga-
tion’s applications for controlling simulated actuators (motors), and
publishes the data from simulated sensors such as depth and color
images of RGBD camera, LIDAR scanner, odometry, etc.

TABLE 3.1: Energy estimation models used in the simulation framework [Jaiem et
al., 2016a].

Pmotors 6.25v2 + 9.79v + 3.66W
PLIDAR 2.34W
PKinect 2.82W
PController 2.67W

is leveraged for our simulation framework. In this model, the power consumption
of robot’s motion is defined as a quadratic function of robot velocity and the power
consumption of sensors such as Kinect and Hokuyo laser is considered static. Ta-
ble 3.1 summarizes the energy estimation of the components used in our simulation
framework.

Of course, the power estimation in the simulation framework cannot represent
the real values of the power consumption in the real framework. These models only
represent relatively the way how the power consumption will change depending on
the changing configuration. Thus, the adaptation model that is found in the simu-
lation framework needs to be tuned in order to apply into the real framework. This
point will be mentioned in the next chapters.

3.6 Mobile Robotic Missions: Case Studies

In this section, we present three motivational mobile robotic missions with the con-
cepts proposed above. We develop these missions mainly from the open-source ROS
software packages and integrate them into our simulation and real frameworks. It
is also important to note that the configuration of robotic missions is not always
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reconfigurable. Thus, we need to extend the reconfiguration capability of these mis-
sions by using the dynamic_reconfigure7 ROS package. These missions then serve as
case studies to validate our Mission Manager and Multi-Mission Manager methodol-
ogy proposal. The characteristics of these missions are finally resumed in Tables 3.6
and 3.7.

3.6.1 Autonomous Navigation Mission

The autonomous navigation mission takes advantage of a ROS Navigation Stack8 which
allows the robot to navigate autonomously between two predefined target points
based on an existing environment map (usually a 2D laser-based map generated by
a previous mapping process) and to receive information from certain range sensors
such as LIDAR and/or Kinect (Figure 3.14). This ROS-based mission can be broken
down into several ROS nodes, each node performs one or more functional tasks as
detailed in Table 3.2. In the real robotic framework, three ROS nodes sensor_sources,
odometry_source, base_controller are represented by real sensors and actuators such as
LIDAR, Kinect and Pioneer-3DX mobile base. In the simulation framework, Gazebo
with virtual sensors and actuators will play the roles of these three nodes.

FIGURE 3.14: Autonomous Navigation Mission based on a ROS Navigation Stack.
Its functional requirement is to visit a user-defined set of waypoints
in the working environment based on a global map.

TABLE 3.2: Autonomous Navigation Mission: ROS nodes and their functional
tasks.

ROS Node Functional Tasks
map_server providing an existing map for navigation
amcl keeping robot localized in the map

move_base
updating the environment informations from sensors
and controlling robot moving

sensor_sources capturing the environment informations
odometry_source capturing the robot odometry information

base_controller
receiving the velocity command from move_base node
and controlling robot actuators

7See http://wiki.ros.org/dynamic_reconfigure
8See http://wiki.ros.org/navigation

http://wiki.ros.org/dynamic_reconfigure
http://wiki.ros.org/navigation
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Motivation for Run-Time Adaptation

In this mission, its functional requirement is represented by the navigating task
to visit a user-defined set of waypoints in the working environment. The non-
functional requirements can be applied to this mission such as navigation time,
energy consumption and safety to obstacles. A quantified characterization of the
navigation mission has been realized and the results are shown in Figure 3.15. The
objective is to clarify the impact of two key parameters of the navigation mission:
max robot velocity (vmax) and control frequency ( fcontrol) as chosen in Table 3.3 on
the performance and the energy consumption of the navigation mission. The results
are averaged over 10 deployment trials for each configuration and the standard de-
viation is also calculated. Two different environmental contexts are also simulated
for characterization, one without dynamic obstacles and the other with dynamic ob-
stacles. The dynamic obstacles mean some objects that do not appear in the static
map of the environment but only while navigating.

The characterization results give us two important qualifications. The first one
relates to the fact that one configuration can give good results at some objectives but
bad results for the others. For example, the C9 configuration can give the best result
for the navigation time objective, but increases the collision risk as evaluated by the

TABLE 3.3: Navigation configurations {vmaxm/s, fcontrol Hz} used for characteriza-
tion.

C1 C2 C3 C4 C5 C6 C7 C8 C9
0.65, 5 0.65, 10 0.65, 20 0.8, 5 0.8, 10 0.8, 20 1.0, 5 1.0, 10 1.0, 20

(A) Navigation time. The lower is the
better.

(B) Minimum distance to obstacles.
The higher is the better.

(C) Sensing&Acting energy consump-
tion. The lower is the better.

(D) Computing energy consumption.
The lower is the better.

FIGURE 3.15: Characterization results of a navigation mission in terms of perfor-
mance and energy consumption. The results are also compared be-
tween two different environmental contexts: without and with dy-
namic obstacles.



3.6. Mobile Robotic Missions: Case Studies 53

minimal distance to obstacles and also consumes more computing energy. Hence,
for a multi-objective or multi-criteria problem, choosing a configuration satisfying
all objectives is non-trivial. The second qualification relates to the operational con-
text changes such as the appearance of dynamic obstacles that will change the be-
havior of each configuration and give different results in term of performance and
energy consumption. The larger variation is also realized in this case.

3.6.2 Video Server Mission

The second mission is a video server mission using some modules of Robot Web Tools9

to provide the Kinect-based information in the form of an encoded depthcloud of the
robot environment that can be viewed on a remote web browser or used for post-
processing. Now, the robot can be considered as a server that provides the visual
information surrounding the robot. This will be useful for security surveillance, for
example. There are three nodes in this application as detailed in Figure 3.16 and
Table 3.4. Similar to the navigation mission, this mission can be deployed both in
the simulation and real framework.

FIGURE 3.16: Video Server Mission. Its functional requirement is to provide the vi-
sual information of the working environment in the form of encoded
depthclouds for the users.

TABLE 3.4: Video Server Mission: ROS nodes and their functional tasks

ROS Node Functional Tasks
kinect_source capturing the depth and color images

depthcloud_encoder
encoding the depth and color image into a single im-
age stream

web_video_server
opening a local port and waiting for http requests from
user web browsers

Motivation for Run-Time Adaptation

The functional requirement of this mission is to provide the visual information of
the robot’s surrounding environment in the form of encoded depthcloud. The non-
functional requirements can be taken into account such as target resolution (equal
to 2 × crop_size), energy consumption and frame rate. Figure 3.17 denotes some

9See http://robotwebtools.org/

http://robotwebtools.org/
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(A) crop_size vs. power consumption with 1 visualization request.

(B) visualization requests vs. power consumption with
crop_size=400.

FIGURE 3.17: Characterization results of Video Server Mission in terms of perfor-
mance and energy consumption.

characterization results of the video server mission. We can realize the dynamic
behavior of power consumption when we change the crop_size parameter or the
number of visualization requests. Figure 3.17a indicates that when the crop_size
is increased, the target resolution and the power consumption of the mission are
also increased because the mission must encode (by depthcloud_encoder) and trans-
mit (by web_video_server) more information. When the number of visualization re-
quests is increased, while the crop_size is kept static, the mission must transmit (by
web_video_server) more information, the power consumption is therefore increased
as depicted in Figure 3.17b. In addition to the number of visualization requests, the
user can require different visualization parameters10 such as visualization quality,
resolution, etc. These variabilities then influence also the non-functional properties
of the video server mission.

3.6.3 Semantic Environment Understanding Mission

To enrich our mission database, we have chosen to add a semantic environment
understanding mission. The idea is to detect and recognize a certain amount of

10See http://wiki.ros.org/web_video_server

http://wiki.ros.org/web_video_server
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FIGURE 3.18: Semantic Environment Understanding Mission. Its functional re-
quirement is to understand the scene by detecting and recognizing
the objects and people in the robot’s working environment.

TABLE 3.5: Semantic Environment Understanding Mission: ROS nodes and their
functional tasks.

ROS Node Functional Tasks
input image capturing images
object detection detecting and recognizing objects in input image
face recognition detecting and recognizing faces in person ROIs

object classes and give the mission manager the ability to balance between the de-
tection accuracy, the power consumption and the throughput (frame rate or number
of processed frames per second) of the algorithm. To do that, we have considered
a convolutional neural network (CNN) based algorithm implementing the object
detection and recognition called YOLO [Redmon et al., 2016]. YOLO is a state-of-
the-art real-time object detection system that is suitable for a resource-constrained
environment such as mobile robotic systems. However, the most important reason
we choose YOLO is that we can easily change the size of the inference model to
make a compromise between speed and accuracy without the need for retraining.
YOLO discriminates 80 object classes by taking as input the visual information (the
640x480 RGB image given by the Kinect sensor in our case) and returns a resulting
image with bounding boxes around the detected objects as well as labels with their
names.

To add some extra computation complexity depending on the scene, we have
added a face recognition algorithm activated whenever a person was detected by
YOLO. Indeed, we send the person’s region of interest (ROI) to the facial recogni-
tion module named EigenFaceRecognizer based on OpenCV11. The result of the face
recognition is displayed on the console output and may be used to verify the au-
thenticity of the person. Thus, the final result of the mission is the resulting image
with the bounding boxes and the names of the detected objects and the names of the
detected persons in the scene. The mission is depicted in Figure 3.18. The ROS nodes
and their functional tasks are shown in Table 3.5. Due to the complexity of simulat-
ing people and their faces in Gazebo, we only propose this mission for deployment
in the real framework.
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FIGURE 3.19: The non-functional properties of the semantic mission depend on the
scene. In this case, 15 scenes with a different number of objects and
people detected give different execution times (inverse of the frame
rate) and therefore the power consumption of the semantic mission.

Motivation for Run-Time Adaptation

The efficiency of this semantic mission is very dependent on the scene. Indeed, Fig-
ure 3.19 shows the impact of scenes on non-functional properties such as the exe-
cution time (inverse of the frame rate) and therefore the power consumption of the
semantic mission. The execution time of a scene or frame is divided into two parts:
one for the YOLO algorithm to detect objects (including people), and another for
the EigenFaceRecognizer algorithm to detect and recognize faces. We can easily see
that the EigenFaceRecognizer algorithm only takes the execution time when there
are people in the scene, and this processing time is relatively stable, for example
from the scene 4 to 12. While the execution time of the YOLO algorithm depends
on the number of objects and their size in the scene. In short, 15 different scenes in
Figure 3.19 give different non-functional properties of the semantic mission. And
the different YOLO inference models also have different impacts on this mission as
explained below.

FIGURE 3.20: Detection accuracy of four Yolov3 models.

11See https://docs.opencv.org/3.4/dd/d7c/classcv_1_1face_1_1EigenFaceRecognizer.html

https://docs.opencv.org/3.4/dd/d7c/classcv_1_1face_1_1EigenFaceRecognizer.html
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(A) Yolov3 model vs. frame rate and power consumption

(B) Yolov3 model vs. frame rate and power consumption in case of
person appearance

FIGURE 3.21: Characterization results of Semantic Environment Understanding
Mission in terms of performance and energy consumption.

Taking into account the memory and power constraints of the Xavier board, we
deploy four small and medium inference models as shown in Figure 3.20. Indeed,
the postfixes such as -tiny, -160, -288, -416 determine the size of the inference model.
The -tiny version is the smallest one. As above mentioned, we can change the size of
the model without the need for retraining. To optimize the switching time from one
YOLO model to another, we preload all the four models into memory and simply
change the pointer’s memory address when switching to another model. The detec-
tion accuracy of the YOLO model is calculated by a common metric for evaluating
the object detection system called the mean average precision (mAP)12. In fact, the
authors of YOLO give the mAP for some models like Yolov3-tiny, Yolov3-320, Yolov3-
416, Yolov3-608 and Yolov3-spp13. We make then a linear estimation to obtain the
detection accuracy of the others. Figure 3.20 indicates that the detection accuracy
increases when the size of the model increases. Meanwhile, the frame rate decreases
significantly with the accuracy while the power consumption increases as depicted
in Figure 3.21a.

The impact of the appearance of a person in the scene is shown in Figure 3.21b.
When a person is detected by the Yolo algorithm, the facial recognition module will

12See http://cocodataset.org/#detection-eval
13See https://pjreddie.com/darknet/yolo/

http://cocodataset.org/#detection-eval
https://pjreddie.com/darknet/yolo/
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be called and takes its time to detect and recognize the person’s face. We can see
clearly in Figure 3.21b the reduction of the frame rate when a person is detected as
marked in the yellow eclipses. The variation is also realized with the power con-
sumption. For different Yolo models, the variations are also different. Thus, the
adaptation of inference models as well as number of processed persons is important
to tradeoff between detection accuracy, frame rate and power consumption of the
mission.

TABLE 3.6: Example of mobile robotic missions: components of sensors, actuators
and applications.

Mission Sensors Actuators Applications
Navigation LIDAR,

odometer
motors mapping, localizing, navigating apps, and

LIDAR, mobile base communicating apps
Server Kinect encoding, transmitting apps, and Kinect

communicating apps
Semantic Kinect /

Camera
detecting and recognizing objects, detect-
ing and recognizing faces

TABLE 3.7: Example of mobile robotic missions: requirements and key parameters.

Mission Requirements Key Parameters
FRs NFRs

Navigation visiting a user-defined
set of 2D map-based
waypoints

navigation time, en-
ergy consumption,
safety to obstacles

robot veloc-
ity, control
frequency

Server providing encoded
depthcloud of user-
defined working
area

target resolution, en-
ergy consumption,
frame rate

crop size

Semantic recognizing objects
and person identity

detection accuracy,
energy consumption,
frame rate

type of network,
number of per-
son ROIs

3.6.4 Discussion

The results of the characterization of the three independent robotic missions above
indicate that many dynamic operational conditions at run-time can have a signif-
icant impact on the mission’s quality. A fixed configuration, a fixed set of mis-
sion parameters in our case, cannot adapt to all dynamic factors while meeting
non-functional requirements. In some scenarios, a configuration that meets all non-
functional requirements may exist, but the difficulty of finding this configuration is
also a challenge, usually through an off-line optimization process such as the work
in [Cano et al., 2016; Kabir et al., 2017; Berkenkamp, Krause, and Schoellig, 2016].
Therefore, the one-fit-all strategy seems ineffective in the context of mobile robotics.

Our vision targets the run-time adaptation at the mission level in the robotic sys-
tem. This means that the mission parameters should be reconfigurable to adapt to
the current operational conditions of the robotic mission. By observing the inter-
nal context such as the current level of quality of service, energy consumption and
the external context that influences the mission behavior, a sequence of actions or
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configurations can be chosen dynamically to meet the mission’s non-functional re-
quirements.

3.7 Summary

In this chapter, we have proposed concepts to characterize robotic missions. These
concepts are unified in order to generalize the characterization of the different types
of robotic missions. Many aspects of the mission are studied in order to understand
its structure and in particular the quality of service and resource consumption. A
systematic approach is also proposed to characterize the mission. This characteriza-
tion phase is a premise for implementing our run-time management framework in
future chapters.

For prototyping and validating our proposed methodology, two frameworks are
presented. The real framework is based on Pioneer-3DX mobile robot and NVIDIA
Jetson Xavier embedded platform and the simulation framework is deployed in
Gazebo simulator. Moreover, three examples of mobile robotic missions are also de-
scribed and analyzed to understand their dynamic characteristics. These missions
will be then used as case studies to validate our run-time management framework.

By studying the three different mobile robotic missions, we see the dynamic
characteristics of these missions and the preference for the run-time adaptation over
the one-fit-all strategy is also highlighted. In the next chapter, we will present the
methodology for designing a self-adaptive mission manager, aware of quality of ser-
vice and energy, based on the reinforcement learning.
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Mobile robots can cover a large range of real life missions such as security surveil-
lance, environmental monitoring, delivery, search and rescue missions. Such mis-
sions require different levels of autonomy in order to react to the dynamic factors
during robot operation such as environmental condition change, computing de-
mand fluctuation and system resource availability in respect to the mission perfor-
mance requirements. These reactions should be taken at run-time and adaptively
because the off-line configuration cannot anticipate all the dynamic, unforeseen and
uncertain events.

The demand for the run-time adaptation and the fact that the mobile robot behav-
ior is strongly dependent on the interaction between the robot and its surrounding
environment make us think on the machine learning-based technique for decision-
making, specifically reinforcement learning (RL). In this technique, an agent (a mo-
bile robot here) observes its environment, makes some trial-and-error steps of decision-
making and finally finds the policy mapping a suitable action at a given state. An
agent can know or not the model of its environment. This is one of the advantages
of RL for the autonomous context because the dynamic factors are stochastic and
difficult to predict and model [Brugali, Capilla, and Hinchey, 2015].

In this chapter, we propose a reinforcement learning based approach for the de-
sign of a quality of service (QoS) and energy-aware robotic mission manager. The
manager takes into account the metrics related to the performance and the resource
consumption of the mission and generates the adaptive mission-specific parameter
configuration. To the best of our knowledge, our study is the first one that applies
the machine learning based technique, specifically reinforcement learning technique,
for managing dynamically the mission’s QoS and energy consumption on an au-
tonomous mobile robot.

The chapter is organized as follows. Firstly, some related work are mentioned in
Section 4.1. The problem of Mission Manager is then formally stated in Section 4.2.
Sections 4.3, 4.4 and 4.5 present our methodology and two approaches based on Q-
Learning and Deep Q-Learning. The methodology is then detailed in Section 4.6.
We then prototype and validate our proposed methodology with some case studies
and their results are presented in Sections 4.7 and 4.8. Finally, Section 4.9 concludes
the chapter.

4.1 Related Work

Our methodology is based on the reinforcement learning technique for managing at
run-time the non-functional goals such as performance and energy consumption for
the mobile robotic missions. In the literature, the (Deep) Q-Learning technique has
been applied to the run-time resource, performance and energy management from
small scale such as embedded systems like the work in [Shen, 2013; Islam, 2015;
Biswas et al., 2017; Zhao et al., 2018] to large scale such as data centers like the work
in [Farahnakian, 2014; Chasparis, 2015; Mao et al., 2016; Liu et al., 2017; Cheng,
Li, and Nazarian, 2018]. For the mobile robotic domain, RL techniques have been
employed for reactive navigation or optimal low-level control such as the work in
[Papierok, 2008; Tai, 2017; Chen et al., 2017]. Bringing the RL-based methodology
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from other domains to mobile robotic domain is non-trivial, but needs a rigorous
consideration of the robotic context with many dynamic, uncertain and unforeseen
operational circumstances.

Most of mobile robotic missions are deployed without taking into account the
run-time circumstances and the configuration is usually chosen by an offline opti-
mization process. The work of [Cano et al., 2016] can be considered as a significant
contribution to the offline optimization of a set of mobile robotics system parame-
ters. With the same research objective, the previous efforts in the works presented in
Chapter 2 [Jaiem et al., 2016b; Brugali et al., 2018; Zhang, Lu, and Hu, 2009; Inglés-
Romero et al., 2013] tend to reconfigure the system in order to cope with run-time
variations while respecting some non-functional requirements. Nevertheless, most
of them are model-based approaches, where a set of analytical models of the robotic
system, the environment, as well as the non-functional goal models needs to be built
at the design time. The modeling process is non-trivial and the model accuracy is
critical for guaranteeing the efficiency of run-time adaptation. Our learning-based
methodology reduces the burden and the complexity of the modeling process at the
design time by a data-driven approach. The important metrics are monitored ac-
tively and the learning-based decision-making phase is based on these metrics in
order to make adaptation decisions. Moreover, the online learning phase can deal
with uncertain and unforeseen operational circumstances at run-time.

4.2 Problem Statement

We focus on the non-functional requirements/goals of the robotic missions with the
three main categories as presented in Section 3.2.4:

• Performance goals are represented by a set of n goals:

Gper f = {gp1, gp2, ..., gpn} (4.1)

• Energy goals are divided into sensing and acting energy consumption goal,
and computing energy consumption goal:

Genergy = {gesens&acts, gecomp} (4.2)

• Other non-functional goals are represented by a set of m goals:

Gothers = {go1, go2, ..., gom} (4.3)

Finally, the non-functional goals applied to the robotic mission are modeled by

GMission = {Gper f , Genergy, Gothers} (4.4)

Moreover, the robotic mission possesses also a set of parameters that can be
tuned dynamically in order to change the performance level, the energy consump-
tion as well as the other non-functional properties. The set of l mission-specific
parameters is represented by

KMission = {k1, k2, ..., kl} (4.5)

The problem is now stated by how to configure dynamically the set of parameters
KMission to take into account the dynamic operational circumstances of mobile robotic
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systems at run-time for guaranteeing the set of non-functional requirements GMission.
Indeed, the considered requirements are often contradictory (such as performance
and energy consumption for example), our objective is to propose an approximately
good solution with the best compromise between these requirements in all possible
contexts, in other words, a solution that minimizes the level of violation of these
requirements.

4.3 Proposed Methodology

4.3.1 Overview of Self-Adaptive Mission Manager

Figure 4.1 aims to describe our general methodology for the design of a self-adaptive
mission manager. Our methodology is based on the MAPE-K (Monitor, Analyze,
Plan, Execute - Knowledge) paradigm known in the autonomic computing and self-
adaptive system domain, where the system under consideration is abstracted by the
robotic mission. The objective of a self-adaptive mission manager is to guarantee
the performance and energy goals applied to the robotic mission by reconfiguring
the mission-specific parameters during mission operation. The Knowledge element
possesses the information and the characteristics of the robotic mission and will be
shared with the other elements of the MAPE process:

• Knowledge for Monitoring: defines a set of important metrics that need to be
monitored in order to represent the current observation of performance level
and energy consumption of the robotic mission, as well as of the overall robotic
system;

• Knowledge for Analyzing & Planning: possesses the required performance and
energy goals of the robotic mission, the trade-off weights of these goals, as well
as the configuration knobs of the mission;

FIGURE 4.1: Overview of the structure of our Self-Adaptive Mission Manager.
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• Knowledge for Executing: provides the configuration knobs (key mission-specific
parameters) needed to be reconfigured in order to react to the current opera-
tional circumstances.

Normally, the knowledge is acquired through an off-line characterization phase of
the robotic mission for figuring out the concepts mentioned in Chapter 3.

The closed loop of adaptation is then deployed at run-time with a MAPE adap-
tivity process. The Monitoring element collects at run-time the important metrics that
represent the current observation of performance level and energy consumption of
the mission, as well as of the overall robotic system. Then, the Analyzing & Planning
elements, also considered as decision-making phase, analyze the monitored metrics,
evaluate the current state of performance level and energy consumption, and make
the suitable adaptation decisions. Finally, the Executing element receives the adap-
tation decisions from the decision-making phase and reconfigures correspondingly
the parameters of the robotic mission.

Indeed, the structure of the self-adaptive mission manager reflects the external
approach while addressing the non-functional requirements of robotic systems (see
Section 3.2.6). The mission manager’s control loop is considered independent and
does not influence the control loop of the mission’s functionalities. To do this, the
mission’s configuration knobs found in the characterization phase must not influ-
ence the normal functionality or stability of the mission. For example, for an au-
tonomous navigation mission, the choice of the maximum speed of the robot vmax
and the control frequency fcontrol must be correlated to guarantee the reactive be-
haviour of the navigation, we cannot operate the robot at a high speed of 1.0m/s
with a low control frequency of 1.0Hz. In brief, the actions of the mission manager
are constrained in such a way that there is no interference with the functional control
loop.

In this paradigm, the three elements of Knowledge, Monitoring and Executing re-
flect directly the mission and are normally implemented in a mission-specific man-
ner. We propose a generalization of the decision-making phase (Analyzing & Plan-
ning) to cover many types of robotic missions. The following section will present the
motivation for a decision-making approach based on reinforcement learning.

4.3.2 Motivation for Applying Reinforcement Learning

In the context of autonomous and intelligent robotics, systems can act in real world
environments for a long time without any form of external control or human inter-
vention, and must have capacity to perceive, think and act. The performance of
these systems depends heavily on their interaction with the working environment.
In these systems, many levels of intelligence coexist as well as many perception, de-
cision and action loops. For example, in an autonomous mobile robot, the lowest
level of intelligence is the reactive navigation. It means that the navigation takes
place in a sensory-motor loop to control the motion while detecting and avoiding
the dynamic obstacles. Some higher levels can be deployed such as path planning,
task allocation in multi-robot collaboration, etc. Our robotic mission manager is
at such high level of intelligence where the mission manager is considered as an au-
tonomous agent, and the rest of the robotic system and its surrounding environment
as working environment (see Section 3.2 for the mission definition and granularity).

The objective of our robotic mission manager is to fulfill the mission performance
requirements taking into account the resource constraints. For that, the manager
must monitor actively the actual state of mission performance and resource utiliza-
tion, then give an adaptive decision about the internal parameter configuration via
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a run-time decision-making mechanism, and finally reconfigure the concerned pa-
rameters. In fact, during the mission operation, there are many dynamic, unfore-
seen factors such as environmental conditions, computing demand fluctuation and
resource availability that contribute to the difficulty and the challenge to anticipate
or model the working environment. This model-free decision-making problem can
be well formulated and resolved by a reinforcement learning approach, more specif-
ically by Q-Learning and Deep Q-Learning that we will present in the following
paragraphs.

4.3.3 Generic Pattern for Formulating RL-Based Mission Managers

FIGURE 4.2: Generic pattern for formulating a RL-based Mission Manager.

As presented in Section 2.5, formulating a sequential decision-making problem
based on the reinforcement learning approach is normally realized by determining
three mandatory points (Figure 4.2):

• State space formulation: The state space is a set of possible states of the mis-
sion’s internal and external contexts observed by the mission manager. The
state is normally deduced from the monitored metrics provided by the mis-
sion’s monitoring service (see Section 3.4);

• Action space formulation: The action space is a set of possible actions that the
mission manager can take to reconfigure the mission (see Section 3.2.5);

• Reward function formulation: The reward can be considered as an important
indicator to find the policy mapping between states and actions. For example,
at a given state, an action that gives a better reward should be reinforced. For
the problem of goal management, this reward can evaluate the level of goal
guarantee.

Based on this generic pattern, we will develop the methodology based on the
Q-Learning and Deep Q-Learning for the self-adaptive mission manager.

4.4 Q-Learning based Approach

4.4.1 State Space Formulation

The state identified by the mission manager reflects the current level of performance,
energy consumption as well as other non-functional properties of the robotic mission
represented by the corresponding set of run-time metrics:
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• n1 monitored metrics related to the performance goals:

Mper f = {mp1, mp2, ..., mpn1} (4.6)

• n2 monitored metrics related to the energy goals:

Menergy = {me1, me2, ..., men2} (4.7)

• n3 monitored metrics related to the other non-functional properties:

Mothers = {mo1, mo2, ..., mon3} (4.8)

In total, we have a set of monitored metrics:

Mmonitored = {Mper f , Menergy, Mothers} = {mi}n1+n2+n3
i=1 (4.9)

These metrics are continuous, so we need to discretize them for a finite state space
of Q-Learning. However, the discretization of a large number of metrics can lead to
a very large number of states that increases the complexity of the Q-Learning algo-
rithm. We choose to binarize these metrics into 0 and 1 by proposing the expected
metrics m∗i that are available in the knowledge for analyzing and planning (see Sec-
tion 4.3.1):

M∗monitored = {M∗per f , M∗energy, M∗others} = {m∗i }
n1+n2+n3
i=1 (4.10)

and correspondingly comparing with the monitored metrics mi. For each monitored
metric mi in the set of metrics and its corresponding expected metrics m∗i , a binary
indicator Ii is defined as follows

Ii =

{
1 if mi ≤ m∗i ,
0 otherwise

(4.11)

Where,

• Ii = 1 means the non-functional goal is currently satisfied;

• Ii = 0 means the non-functional goal is currently violated.

A state s is therefore defined by s = [I1, I2, ..., In1+n2+n3 ] as illustrated in Figure 4.3.
Thus, we have in total 2n1+n2+n3 states in the state space.

FIGURE 4.3: State formulation for the Q-Learning approach. A state space of
2n1+n2+n3 states is formulated.



68 Chapter 4. QoS and Energy-Aware Self-Adaptive Mission Manager

4.4.2 Action Space Formulation

The action given by the mission manager represents a configuration of mission-
specific parameters KMission. We need also a finite action space for Q-Learning, so
each element ki in KMission should be discretized into nki values. Thus, we have
Πl

i=1nki actions. Figure 4.4 illustrates the action space of the Q-Learning approach.

FIGURE 4.4: Action formulation for Q-Learning approach. An action space of
Πl

i=1nki
actions is formulated.

Finally, with a finite state of 2n1+n2+n3 states and a finite action space of Πl
i=1nki

actions, our Q-Table has (2n1+n2+n3 ×Πl
i=1nki ) Q-values in total.

4.4.3 Reward Function Formulation

The reward that the mission manager receives in this problem is the quantifiable
evaluation of the current level of non-functional goal guarantees. This current goal
guarantee level L can be calculated as a function ( f1, f2, f3) of the monitored metrics
Mper f , Menergy and Mothers and their respecting expected metrics M∗per f , M∗energy and
M∗others also known as reference values:

Lper f = f1(Mper f , M∗per f ) (4.12)

Lenergy = f2(Menergy, M∗energy) (4.13)

Lothers = f3(Mothers, M∗others) (4.14)

The non-functional goal of metric mi is satisfied if L(mi) ≥ 0. In fact, the reward
formulation is specific to each mission and depends on the optimization requirement
and the relative importance of the different goals. For example, if the optimization
requirement is to trade-off all non-functional goals in order to minimize the violation
level of each goal, the reward can be defined by the following weighted sum:

R = Wp × Lper f + We × Lenergy + Wo × Lothers (4.15)

Where Wp, We, Wo are the corresponding trade-off weights of performance, energy
and other non-functional goals.

The work in [Edwards and Bencomo, 2018] proposes many operators or func-
tions to evaluate the extent of non-functional goal satisfaction in self-adaptive sys-
tems. In our work and as described above, if the monitored metric mi is less than or
equal to its expected metric m∗i , the corresponding non-functional goal is currently
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FIGURE 4.5: An example of a mapping between three monitored metrics
(m1, m2, m3) of three respective NFRs (NFR1, NFR2, NFR3) and the ob-
tained reward. The reward is clipped in a range of [−1.0, 1.0], where
the best reward is 1.0 and the worst reward is −1.0.

satisfied, and we choose to minimize the level of violation of all non-functional goals
by defining the following reward function:

L(mi) =

{
0 if mi ≤ m∗i ,
1− mi

m∗i
otherwise

(4.16)

R =

{
1.0 if ∀i, mi ≤ m∗i ,

∑n1+n2+n3
i=1 wi × L(mi) otherwise,

(4.17)

Where L(mi) is the level of violation of non-functional goal mi and wi is the corre-
sponding importance weight. The reward can be interpreted as follows:

• R = 1.0 means that all non-functional goals are currently satisfied;

• R < 0.0 means at least one of non-functional goals is violated.

In our work, R is also limited at the negative part to −1.0 in order to ensure
the stability of the obtained reward. Figure 4.5 illustrates an example of a mapping
between three monitored metrics of three non-functional requirements and the ob-
tained reward.

4.5 Deep Q-Learning based Approach

Similarly to the problem formulation based on Q-Learning, we also need to define
a state space, an action space and a reward function for the Deep Q-Learning ap-
proach. However, the only difference in the formulation of the problem between
these two approaches is on the formulation of the state space. The action space
and the reward function are the same as those described above (see Sections 4.4.2
and 4.4.3).
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4.5.1 State Space Formulation

The state is also defined by all the measured metrics {Mper f , Menergy, Mother} and
their expected metrics {M∗per f , M∗energy, M∗others}. However, we do not binarize these
metrics because the input of Q-Network can be continuous. In this case, we propose
to integrate into the state space n4 metrics representing the external context denoted
as Mext and their corresponding expected metrics M∗ext. This integration is complex
in case of a Q-Learning formulation because of the discretization. It is also important
to note that the reward formulation is the same as in the case of Q-Learning, Mext is
not considered in this formulation. The expected metrics are used to normalize the
measured metrics. The indicateur Ii of the metric mi is now continuous and defined
as Ii =

mi
m∗i

. Thus, a state s is an 1-D vector of (n1 + n2 + n3 + n4) continuous elements:
s = [I1, I2, ..., In1+n2+n3+n4 ] and is the input of the Q-Network.

FIGURE 4.6: State formulation for the Deep Q-Learning approach. A state is an 1D
vector of (n1 + n2 + n3 + n4) continuous elements. The state space is
therefore infinite.

The state space is therefore infinite. These continuous values give more insightful
information about the variation than a simple binary indicator as defined above. As
a good practice of clipping the input of neural networks, we also limit the range of
Ii into [0.0, 2.0]:

• Ii ∈ [0.0, 1.0] means that the non-functional goal is currently satisfied;

• Ii ∈ (1.0, 2.0] means that the non-functional goal is violated.

Figure 4.6 illustrates the state formulation for the Deep Q-Learning approach.

4.6 Methodology Details

4.6.1 Learning Phase of Mission Manager based on Q-Learning

Figure 4.7 shows the details of the implementation at each step of the Q-Learning
training. The robotic mission can be deployed in the simulation framework or in the
real framework. At the time step t, the monitoring service (see Section 3.4) provides
a set of monitored measurements Mmonitored. The current state St is then calculated
from these metrics by the block defining the state. The Q-Table takes the current
state St as input and outputs the Q values from this state. The ε-greedy exploration
and exploitation block (see Section 2.5.4) chooses the suitable action At. Then, the
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FIGURE 4.7: Q-Learning implementation details.

robotic mission is reconfigured by the chosen action At. Through this reconfigu-
ration, at the next step (t + 1), the mission manager receives the reward Rt+1 and
the next state St+1. A complete sequential interaction (St, At, Rt+1, St+1) is known at
this time. The Q-Table update block then calculates the temporal difference δt and
updates the Q value Q(St, At) in the Q-Table. Similarly, the Q-Table update pro-
cess occurs at each time step until a terminal state is reached. The time between the
beginning of adaptation and reaching a terminal state is called an episode. The ter-
minal state can be real or virtual and defines the end of an episode. For example,
the navigation mission consists on visiting in order a set of user-defined waypoints
in the environment, so the real terminal state can be attained when reaching the fi-
nal waypoint. Whereas, a virtual terminal state can be defined as the end of a fixed
navigation time. The Q-Learning training process continues until the convergence
of Q values is reached or until the end of a desired number of episodes. Indeed,
the convergence of a Q-Learning training process is achieved when there is a fairly
constant trend in the Q-values and reward.

4.6.2 Learning Phase of Mission Manager based on Deep Q-Learning

The training process of the Mission Manager based on Deep Q-Learning is described
in Figure 4.8. The iterating process is similar to the one in the Q-Learning training.
The difference is in the blocks of experience replay memory, target Q-Network and
method updating the weight matrix θ of Q-Network.

Q-Network

As formulated above, the input of Q-Network is an 1-D vector of (n1 + n2 + n3 + n4)
continuous elements and the output is Q values of Πl

i=1nki actions. The Multi-Layer
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FIGURE 4.8: Deep Q-Learning implementation details.

Perceptron (MLP) with an input layer of (n1 + n2 + n3 + n4) neurons, a number of
hidden layers and an output layer of Πl

i=1nki neurons is therefore chosen for rep-
resenting the Q-Network. The structure of the Q-Network is shown in Figure 4.9.
In this structure, the number of hidden layers and the number of neurons in each
hidden layer are empirical and manually tuned parameters. In fact, the higher the
number of hidden layers, the deeper the neural network is and the better the rep-
resentation and extraction of information is. However, the increase in the number

FIGURE 4.9: Q-Network structure: a Multi-Layer Perceptron (MLP) with an input
layer of (n1 + n2 + n3 + n4) neurons, a number of hidden layers and
an output layer of Πl

i=1nki
neurons.
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of hidden layers will lead to a greater consumption of computing resources such
as CPU, memory and energy. This is very important if we consider deploying the
management framework in an embedded platform.

Experience Replay Memory

Unlike Q-Learning where the state transition between time steps t and (t+ 1) is used
directly to update Q-Table, the state transition (current state, chosen action, received
reward, next state) is stored in a finite memory called experience replay memory as
illustrated in Figure 4.10. At time step (t + 1), a mini batch B over T experiences
is extracted from this memory to train the Q-Network. Similarity to the number of
hidden layers and the number of neurons in the Q network, the choice of the batch
size B and the number of stored experiments T must be appropriate to be deployed
on an embedded platform.

FIGURE 4.10: Experience replay memory of T transitions.

Target Q-Network

Target Q-Network is another idea proposed by [Mnih et al., 2015] to keep the Q-
Network training stable. The weight matrix θ− of target Q-Network is updated
gradually from Q-Network. In the litterature of Deep Q-Learning, there are two
methods to update target Q-Network from Q-Network:

• Hard update as originally proposed by [Mnih et al., 2015] means after a num-
ber of learning steps, θ− is assigned to θ, or θ− ← θ;

• Soft update means θ− is gradually updated from θ with a very small coefficient
τ (as a moving average of θ) [Lillicrap et al., 2015]:

θ− ← (1− τ)θ− + τθ (4.18)

The work in [Lillicrap et al., 2015] indicates that with soft update, the target net-
work is constrained to change slowly and therefore greatly improves the stability of
learning. Our work implements also the soft update for the target Q-Network.

Stochastic Gradient Descent

The Q-Network is now updated by an optimization technique named Stochastic
Gradient Descent (SGD). The loss function L(θ) is calculated as Mean Squared Error
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(MSE) between target Q-value and current Q-value of all transitions in mini-batch.
The gradient of loss is then calculated and the Q-Network is updated by an opti-
mizer known in deep learning such as Adam, AdaGrad, RMSProp, etc. Among these
optimizers, Adam is the most commonly used in the state of the art deep learning
deployment.

4.6.3 Planning Phase of Mission Manager

After the training process is finished, a Q-Table or Q-Network mapping between
state space and action space is found depending on whether it is a Q-Learning or
a Deep Q-Learning implementation.. Then, the learned model is used for the plan-
ning or control phase of the Mission Manager in different operational scenarios (Fig-
ure 4.11). This process is also described in Figures 4.7 and 4.8 with ε = 0 in the
ε-greedy exploration and exploitation block and without update block. We distin-
guish three cases:

• Learning and planning in the simulation framework. In this case, both learn-
ing and planning phases are deployed in the simulation framework. The ob-
jective is therefore to validate our proposed methodology in simulation before
launching the methodology in the real framework;

• Learning and planning in the real framework. After the methodology is suc-
cessfully validated in simulation, we deploy both the learning and planning
phases in the real framework. It means that the learned model in simulation is
not reused for the real framework;

• Learning in the simulation framework and planning in the real framework.
This case is our target where the methodology is successfully validated in sim-
ulation and the learned model is reused for planning in the real framework.
However, the shift between simulation and real framework is an inherent fact.
The online learning in the planning phase is therefore important in this case.

FIGURE 4.11: Learning and planning phase of a self-adaptive mission manager.

4.6.4 Online Learning

If in the planning phase, we also want to update the adaptation model (update the
Q values in Q-Table or update the weight matrix θ in Q-Network), we call it an on-
line learning. Online learning is necessary because in the learning phase, we cannot
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anticipate all dynamic operational conditions. The adaptation model is therefore up-
dated to deal with more unexpected and unforeseen scenarios. Indeed, the deploy-
ment of online learning in the planning phase is known as hybrid planning which
we discussed in the planning strategy of self-adaptive systems in Section 2.2.3.

4.6.5 Transfer Learning

Transfer learning is a popular technique in deep learning, where the model learned
for one task is reused as a starting point for learning another similar task. A learn-
ing task in our problem is to learn an adaptation policy for a desired set of non-
functional requirements. The learning process of a new set of NFRs can use the
adaptation policy of an old set of NFRs as a starting point.

4.7 Q-Learning based Mission Manager: A Case Study

In this section, we use a navigation mission presented in Chapter 3 as a case study in
order to validate our proposed methodology of a Q-Learning based Self-Adaptive
Mission Manager. The implementation and validation are realized in the simulation
framework.

4.7.1 Problem Statement

The mission’s functional objective is to visit in order a set of user-defined waypoints
in the robot working environment whose global static map is given a priori. The
non-functional goals applied to this mission GMission are defined as follows:

• Gper f = {Vmean_min}, where Vmean_min is the minimum mean velocity that the
robot should achieve;

• Genergy = {Ps&a_mean_max, Pc_mean_max}, where Ps&a_mean_max and Pc_mean_max are
the respecting maximum mean power consumption for sensing&acting and
computing parts;

• Gothers = {Dobs_min}, where Dobs_min defines the minimum distance to obstacles
during navigation.

The configuration knobs of the navigation mission are defined by a set of two
key parameters: KMission = {vmax, fcontrol}, where vmax is the max robot velocity and
fcontrol is the control loop frequency of the path following process. The impact of
these two parameters on the non-functional properties of the navigation mission
has been also analyzed in Section 3.6.

4.7.2 Problem Formulation

State Space Formulation

In this problem, there are four non-functional objectives applied to the mission. We
monitor directly these four objectives: mean robot velocity, mean sensing and acting
power consumption, mean computing power consumption over the passed trajectory and
minimum distance to obstacles in front of robot. As presented in Section 4.4.1, for repre-
senting the current guarantee level of non-functional goals, we define four run-time
metrics:
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• mp1 = inverse of mean robot velocity;

• me1 = mean sensing and acting power consumption;

• me2 = mean computing power consumption;

• mo1 = obstacle collision risk (inverse of minimum distance to obstacles).

And their expected metrics {mp∗1 , me∗1 , me∗2 , mo∗1} are directly derived from GMission.
The smaller these metrics are, the better their non-functional goals are guaranteed.
Thus, the navigation mission manager has 21+2+1 = 16 normal states in its state
space. Furthermore, for defining the end of a navigation mission, we add an ex-
tended binary indicator (1 - end of mission, 0 - during mission) to the 16 normal
states. This indicator is then used to define a terminal state in the Q-Learning prob-
lem (see the definition of decision epoch and episode in Section 2.5.3). Finally, the
state space of the navigation mission manager possesses 21+2+1+1 = 32 states.

Action Space Formulation

We choose in this study an action space including 11 configuration knobs of KMission =
{vmaxm/s, fcontrol Hz} as detailed in Table 4.1. This choice leverages the knowledge
that when the robot moves at high speed, the frequency of detecting and avoiding
obstacles should be higher [Cano et al., 2016; Ho et al., 2018].

TABLE 4.1: Action space: configuration knobs KMission = {vmax, fcontrol}.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11
0.5, 5 0.5, 10 0.65, 5 0.65, 10 0.65, 15 0.8, 10 0.8, 15 0.8, 20 1.0, 20 1.0, 25 1.0, 30

Reward Function Formulation

In this case study, we consider all non-functional goals as constraints and the reward
function is defined as a trade-off between the mission’s functional progress and the
constraints penalty. In fact, this formulation is only taken into account for the par-
ticular case study of the navigation mission where the functional progress can be
defined as the number of waypoints visited over the number of waypoints required.
This formulation is then replaced by the reward function formulation presented in
Section 4.4.3 to guarantee the methodology generalization.

The mission’s functional progress P ≥ 0 is calculated as the ratio of number of
visited waypoints and total required waypoints:

P =
number o f visited waypoints

total required waypoints
(4.19)

The constraints penalty C < 0 evaluates the level of non-functional goal guar-
antees in case of violation: Lper f _1, Lenergy_1, Lenergy_2 and Lothers_1. Each level L is
calculated based on the corresponding metrics m and m∗ as follows:

L =

{
0 if goal satisfied (m ≤ m∗),
1.0− m

m∗ otherwise
(4.20)

And the global constraint penalty C is then computed as:

C = Wp_1 × Lper f _1 + We_1 × Lenergy_1 + We_2 × Lenergy_2 + Wo_1 × Lothers_1 (4.21)
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Where Wp_1, We_1, We_2 and Wo_1 are corresponding trade-off weights of four non-
functional goals.

Finally, the reward R is positive as mission’s functional progress if all non-functional
goals are satisfied, and negative as constraints penalty if one of non-functional goals
is violated:

R =

{
WP × P if all constraints satisfied,
WC × C otherwise

(4.22)

Where WP and WC are the trade-off weights of mission progress and constraints
penalty. Moreover, for the stability of the reward feedback, the reward is clipped in
the range of [−1.0, 1.0]. An action that guarantees all non-functional goals will be
reinforced (positive reward).

4.7.3 Implementation

Our objective is to demonstrate the results obtained by the offline learning phase
in Gazebo-based simulations. In this study, we implement a classic Q-Learning al-
gorithm that balances the exploration and exploitation phase by using the ε-greedy
algorithm [Sutton and Barto, 2014] in order to find a Q-Table, and then the mission
manager uses this look-up table to map an adaptive action corresponding to the ac-
tual state. The exploration probability ε is determined by max probability εmax, min
probability εmin and decay factor εdecay as follows:

ε = εmin + (εmax − εmin)× e−εdecay∗learning_steps (4.23)

The parameters that we consider are:

• Q-Learning parameters with discount rate (γ), learning rate (α), exploration-
exploitation parameters (εmax, εmin, εdecay) and time step (τ);

TABLE 4.2: Q-Learning parameters

τ γ α εmax εmin εdecay

5s 0.9 1
N(s,a) 1.0 0.01 0.0001

• Reward function parameters with trade-off weights between non-functional
goals (Wp_1, We_1, We_2, Wo_1), trade-off weights between mission progress and
constraint penalty (WP, WC).

TABLE 4.3: Reward function parameters

Wp_1 We_1 We_2 Wo_1 WP WC

2.5 2.5 2.5 2.5 1 1

The parameter values that we have chosen empirically for this implementation
are detailed in Table 4.2 and 4.3. The learning rate α is specially chosen for ensuring
the convergence of the learning algorithm as mentioned in the work of [Watkins,
1992] with N(s, a) the number of times the pair state-action (s, a) has been visited.
The time step τ is chosen as 5s in this case study and this choice is guided by con-
sidering the latency that a new configuration is taken into account and modifies the
mission’s behavior. Other Q-Learning parameters are chosen from a commonly used
range that gives the relatively optimal performance in the state of the art Q-Learning
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FIGURE 4.12: Example of a simulation environment in Gazebo with 7 dynamic ob-
stacles: single box or cylinder in red models dynamic obstacles, blue
area represents laser scan. The flags represent the examples of navi-
gation waypoints.

problem. These parameters have some impact on the convergence rate as well as the
time of the learning process, but our experiments indicate that they do not affect
considerably the final mapping policy.

4.7.4 Learning Phase Deployment

The simulation environment in Gazebo is shown in Figure 4.12. The dynamic ob-
stacles can be randomly generated in the environment (red boxes and cylinders in
Figure 4.12). A learning episode of Q-Learning is a completed mission. The desired
non-functional goals of the navigation mission given in Table 4.4 are the averaged
results of mission deployments with a set of static configurations in a simulated en-
vironment without any dynamic obstacles.

TABLE 4.4: Non-functional goals for navigation missions

Vmean_min Ps&a_mean_max Pc_mean_max Dobs_min

0.56m/s 17.05W 2.75W 0.7m

We deployed 400 learning episodes in simulation. The first 200 episodes are to
visit a set of waypoints with the total optimal trajectory length of 204m and the last
200 ones for a different set of waypoints with the total path length of 166m. More-
over, a different set of dynamic obstacles (max 8 obstacles) is randomly generated
at each 10 episodes. Hence, 40 different environment scenarios are randomly gen-
erated during the learning phase. This enhances the generalization of the learned
policy.

Figure 4.13 depicts the total reward obtained over 400 learning episodes. De-
spite of many fluctuations due to the variable complexity of environments and the
efficiency of existing navigation algorithms, the trend line also indicates the growth
of the total reward during the learning phase. This figure shows that the policy map-
ping between states and actions has evolved aiming to guarantee the non-functional
goals of the navigation mission. The changing of 4 desired non-functional goals dur-
ing learning phase is described in Figure 4.14. The increasing trend of velocity and
distance to obstacles and the decreasing trend of computing power can be easily re-
alized, while the trend of sensing&acting power is correlated to the velocity. In fact,
the wheel motor power consumption estimation model that we use is a quadratic
equation of velocity and if the velocity is increased, this power consumption is also
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FIGURE 4.13: Total reward of the learning phase over 400 episodes of Q-Learning
based Navigation Mission Manager with the trend line in green. The
growth of total reward during learning indicates the evolution of the
adaptation policy.

(A) Mean robot velocity. (B) Minimum distance to obstacles.

(C) Mean sensing&acting power con-
sumption.

(D) Mean computing power con-
sumption.

FIGURE 4.14: Non-functional requirements over 400 learning episodes of Q-
Learning based Navigation Mission Manager.

increased. So, even if the objective of increasing velocity is conflicting with the
objective of decreasing sensing&acting power consumption, our Q-Learning based
decision-making has managed to balance both objectives.

4.7.5 Validation of Resulting Adaptation Policy

We intend to compare our run-time adaptation (RTA) based on the mission manager
with 9 static configuration cases (chosen before the mission deployment and fixed
during mission execution as indicated in Table 4.5) in terms of non-functional goal
guarantees. In fact, static configurations are usually used in state of the art mobile
robotic mission deployment. We generated randomly 24 simulated environments
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TABLE 4.5: 9 static configurations KMission = {vmax, fcontrol} chosen for validation.

S1 S2 S3 S4 S5 S6 S7 S8 S9
0.5, 5 0.65, 5 0.8, 10 1.0, 20 0.65, 10 0.8, 15 1.0, 25 0.8, 20 1.0, 30

(A) Mean robot velocity. (B) Mean minimum distance to obsta-
cles.

(C) Mean sensing&acting power con-
sumption.

(D) Mean computing power con-
sumption.

FIGURE 4.15: First validation of resulting adaptation policy. The red points indicate
the same goals for both dynamic and static cases. Our run-time adap-
tation (RTA) trades off all non-functional goals and give the most fea-
sible solution for guaranteeing the goals.

with max 8 dynamic obstacles. We run our RTA and the 9 static configurations of
the navigation mission on a map with a total path length of 194m on these 24 en-
vironment scenarios. The same non-functional goals in Table 4.4 are also applied
to these missions. For each dynamic or static case, the results, averaged over 24
episodes, and their standard deviation are depicted in Figure 4.15.

We can see that the run-time navigation mission manager achieves a good bal-
ance between the four non-functional goals, while the static configurations can just
guarantee some among these goals but violate significantly the others. Further-
more, our validation results also indicate that with RTA in 2 over 24 validation
episodes we perfectly guarantee all the non-functional goals (Vmean ≥ 0.56m/s,
Ps&a_mean ≤ 17.05W, Pc_mean ≤ 2.75W, Dobs ≥ 0.7m), while none of the validation
episodes of the 9 static configurations gives the same performance.

After the comparison with static configurations, we deploy a second validation
for comparing our RTA with three other policies:

• A random policy where the configuration is randomly chosen in the action
space (Table 4.1) during mission with the same adaptation period of 5s as RTA;

• The best static case S3 = {0.8m/s, 10Hz};
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(A) Mean robot velocity. (B) Mean minimum distance to obsta-
cles.

(C) Mean sensing&acting power con-
sumption.

(D) Mean computing power con-
sumption.

FIGURE 4.16: Second validation of resulting adaptation policy. The red points in-
dicate the same goals for all the policies.

• An oracle where all dynamic obstacles are known a priori (the path planners
have taken into account these obstacles) and the mission is configured by the
best static case S3.

The results are averaged over 10 deployment episodes in the same environmental
context with dynamic obstacles as shown in Figure 4.16.

We can realize that the best static case and the oracle can give good results for
the goals of velocity and computing power, but they cannot deal with the natural
conflict between the velocity and the sensing&acting power objectives as analyzed
above. For the random policy, the adaptation behavior is not controlled and the ob-
jective function is not defined, so the results are also random. Our RTA is based
on an objective function determined by a trade-off between all non-functional goals.
It may not give the best results for all objectives, but it can handle multi-objective

(A) First validation. (B) Second validation.

FIGURE 4.17: Mean squared error (Note: the environmental context between two
validations is different).
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problem where the conflicts between objectives can occur, and its adaptation behav-
ior evolves in a controlled manner.

The mean squared error (MSE) is also calculated for evaluating the ability of
meeting closely the non-functional goals in each dynamic or static case as depicted
in Figure 4.17a:

MSE =
1
4

4

∑
j=1

(
1
24

24

∑
i=1

(gj
i − gj)2), (4.24)

where gj is the required goal (Vmean_mean, Ps&a_mean_max, Pc_mean_max, Dobs_min) and gj
i is

the respecting result of the validation episode i over 24. The results indicate that our
RTA gives the lowest error compared to the static configurations. Similar to the first
validation, the MSE results for the second one have also been calculated as shown
in Figure 4.17b and the lowest error for our RTA is also found.

(A) Navigation mission of visiting 6 waypoints.

(B) Mission progress and run-time adaptation.

FIGURE 4.18: Example of run-time adaptation during a navigation mission of vis-
iting a set of 6 waypoints. The max robot velocity vmax and control
frequency fcontrol are dynamically reconfigured by our proposed mis-
sion manager whilst targeting the four required non-functional goals.
The vcmd is the actual velocity sent by the navigation mission in order
to command directly the mobile base.
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4.7.6 Adaptation Interpretation

Figure 4.18 describes an example of applying the resulting adaptation policy to a
navigation mission. The max robot velocity (vmax) and the control frequency ( fcontrol)
are dynamically reconfigured by our mission manager in order to reach the four re-
quired non-functional goals. The real velocity (vcmd) sent to the mobile base is given
by the navigation mission. There are many dynamic behaviors during the mission
progress. The run-time adaptation (RTA) takes into account the consequences of
these behaviors and gives the adaptive decisions in order to meet the non-functional
goals in a feasible situation.

Figure 4.19 depicts the run-time adaptation policy decisions and environmental
changes in a navigation portion between two waypoints (0 and 1). On the robot’s
trajectory, the state of performance and energy consumption is actively monitored
and the corresponding configuration is chosen based on the found Q-Table. For
example, the state 7 corresponds to the violation of the velocity goal, so the RTA
takes the decision at time 17s to increase the robot max velocity from 0.8 to 1.0m/s
and the control loop frequency is also increased to 25Hz for guaranteeing the safety
criteria at high speed. At the transition to state 9 corresponding to the violation of
the sensing&acting and computing power goal, the RTA takes the decision at time
27s to decrease the robot max velocity and the control loop frequency so that the
energy consumption is guaranteed.

FIGURE 4.19: Adaptation interpretation while the robot visits the first waypoint.
The state of performance and energy consumption is actively moni-
tored on the robot’s trajectory, states 5, 7, 9 and 11 in this case, and the
corresponding configuration is chosen based on the found Q-Table.
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4.7.7 Discussion

The proposed method shows that the mission manager is able to be aware of changes
in operational circumstances such as dynamic obstacles, and then to choose the suit-
able mission-specific parameter configuration. All decisions are made dynamically
and sequentially, so that a sequence of actions chosen during operation will con-
tribute to meet the final mission non-functional goals.

The Q-Learning approach is our first study of the application of reinforcement
learning into our run-time adaptation framework. However, we complain about the
possibility of extending the state space as well as the possibility of generalization.
For example, if we have 10 input metrics and with a simple binarization, we would
have 210 = 1024 states. If we want to discretize each metric into n bins (n > 2)
to keep more information, the state space would be now composed of n10 states
(ex. n = 3, 310 = 59049 states). Addressing this problem is really a challenge for
Q-Learning and we do not want to limit the generalization of our methodology be-
cause of this problem. Thus, for the rest of our thesis, we focus only on the Deep
Q-Learning approach.

4.8 Validation of Deep Q-Learning based Mission Manager

In this section, we implement and validate the Deep Q-Learning based run-time
adaptation for two robotic missions such as a navigation mission and a video server
mission in the simulation framework.

4.8.1 Problem Statement

Navigation Mission

The problem statement of the navigation mission is the same as the case of Q-Learning
described above. The functional objective is to visit a set of user-defined waypoints
in the robot working environment whose global static map is given a priori. A set of
four non-functional goals GNav_Mission is also applied to this mission:

GNav_Mission = {Vmean_min, Ps&a_mean_max, Pc_mean_max, Dobs_min} (4.25)

Where,

• Vmean_min is the minimum mean velocity;

• Ps&a_mean_max and Pc_mean_max are the respective maximum mean power con-
sumption for sensing&acting and computing parts;

• Dobs_min defines the minimum distance to obstacles during navigation.

The configuration knobs of the navigation mission are also defined by the set
of two key parameters: KNav_Mission = {vmax, fcontrol}, where vmax is the max robot
velocity and fcontrol is the control loop frequency of the path following process during
navigation.

Video Server Mission

The functional objective of the video server mission is to provide the visual informa-
tion in the form of encoded depthcloud of the robot working environment that can
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be visualized on a remote web browser or used for post-processing. A set of three
non-functional goals GSer_Mission can be applied to this mission:

GSer_Mission = {RESmean_min, Pc_mean_max, FPSmean_min} (4.26)

Where,

• RESmean_min is the minimum mean target resolution (2× crop_size);

• Pc_mean_max is the maximum mean computing power consumption;

• FPSmean_min is the minimum mean frame rate of the image stream.

The configuration knobs of the video server mission are defined by a key param-
eter known as crop_size (see Section 3.6.2): KSer_Mission = {crop_size}.

4.8.2 Problem Formulation

State Space Formulation

The state space formulation methodology presented in Section 4.5.1 is applied to
both missions. We present in details the set of metrics for each robotic mission.

Navigation Mission. In this case, we define 12 run-time metrics representing
the state space. Three metrics mp1, me1 and me2 are the same as defined in the Q-
Learning approach (see Section 4.7.2), mp1 = inverse of mean robot velocity, me1 = mean
sensing and acting power consumption, and me2 = mean computing power consumption.
And we add 9 metrics as inverse of distances measured by the laser sensor for having
a wider view of obstacles in front of the robot. They represent also the external
context of the navigation mission. With these 12 metrics, if we use Q-Learning, there
are 212 = 4096 states in the state space. Hence, we see once again the infeasibility of
Q-Learning in this case.

Video Server Mission. In this mission, there are three non-functional goals and
we observe directly these goals: mean target resolution, mean computing power
consumption and mean frame rate. The external context such as visualization re-
quests is not monitored because of its complexity. Thus, the state space of this mis-
sion is defined by three run-time metrics representing the internal context of the
mission: mp1 = inverse of mean target resolution, me2 = mean computing power consump-
tion, and mo1 = inverse of mean frame rate.

Action Space Formulation

The action space of the Deep Q-Learning based Navigation Mission Manager and
Server Mission Manager is shown in Tables 4.6 and 4.7. For the video server mission,
it gets the color and depth images from a Kinect sensor with an image resolution of
640× 480, we propose therefore a range for crop_size from 100 to 650 with an interval
of 50. The choice of a larger range of crop_size or a finer interval makes the action
space of the mission manager bigger, but does not have any impact on the mission’s
functionality.

TABLE 4.6: Action space of Deep Q-Learning based Navigation Mission Manager:
configuration knobs KNav_Mission = {vmax, fcontrol}.

K1 K2 K3 K4 K5 K6 K7 K8 K9
0.5, 5 0.65, 5 0.65, 10 0.8, 10 0.8, 15 0.8, 20 1.0, 20 1.0, 25 1.0, 30
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TABLE 4.7: Action space of Deep Q-Learning based Server Mission Manager: con-
figuration knobs KSer_Mission = {crop_size}.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12
100 150 200 250 300 350 400 450 500 550 600 650

Reward Function Formulation

In the reward function formulation, we use the equations 4.16 and 4.17 for all mis-
sions. In the case of the navigation mission, we use 9 distance metrics to define the
state space, the minimum value is used to calculate the reward by comparing with
the corresponding goal Dobs_min. We aim to trade-off all non-functional goals with
the same importance weights. Thus, these weights are set to 1.0.

4.8.3 Implementation

Q-Network

The Q-Network based on Multi-Layer Perceptron structure is shown in Figure 4.9. In
this network, the input and output layers are different for each mission and depend
on the number of input metrics and the number of configuration knobs, and we
implement the same hidden layers for all missions. We implement 3 hidden layers
as fully connected layers, each hidden layer has 64 neurons.

Navigation Mission. Q-Network of the navigation mission has 12 inputs and 9
outputs. So, the weight matrix θnav has

(12× 64 + 64) + (64× 64 + 64) + (64× 64 + 64) + (64× 9 + 9) = 9737

weights.
Video Server Mission: Q-Network of the video server mission has 3 inputs and

12 outputs. So, the weight matrix θser has

(3× 64 + 64) + (64× 64 + 64) + (64× 64 + 64) + (64× 12 + 12) = 9356

weights.
In fact, these weights are floating-point numbers and typically occupy 8 bytes in

terms of memory footprint. Thus, a Q-Network of 9737 weights of the navigation
mission will occupy approximately 9737× 8 bytes = 76 kBytes, and a Q-Network of
the video server mission will occupy approximately 9356× 8 bytes = 73 kBytes.

Target Q-Network

The structure of target Q-Networks is the same as the one of Q-Networks. We im-
plement the soft update as indicated in Equation 4.18 with τ = 0.001.

Experience Replay Memory

We implement an experience replay memory for each mission manager with maxi-
mum size max_size = 4096 and batch size batch_size = 32.
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Stochastic Gradient Descent

In the literature, the Adam optimizer can be considered as the most used optimizer
for the gradient descent based optimization. So, we implement also this optimizer
for our Q-Networks. We choose also a learning rate of 0.0001 for this optimizer.

TABLE 4.8: Parameters of Q-Network for each mission manager.

Structure of Q-Network
Hidden layers: 3
Neurons in each hidden layer: 64

Soft update of Target Q-Network τ = 0.001

Experience Replay Memory
Max size: 4096
Batch size: 32

Stochastic Gradient Descent
Optimizer: Adam
Learning rate: 0.0001

Table 4.8 summarizes the aforementioned parameters. It is important to note that
the choice of these parameters is orthogonal to the effectiveness of our methodology.
We consider to choose the values in the range that have been proposed in the state
of the art training Deep Q-Networks and provided the best results [Mnih et al., 2015;
Lillicrap et al., 2015] to prove the performance of our run-time adaptation proposal.
Tuning these parameters and choosing the best may be reserved for the future work.

4.8.4 Learning Phase Deployment

For a generalization purpose, we define an episode of any mission as a function of
time. This means that each episode occurs during a specific period of time. In an
episode, the adaptation is performed at each time step. The choice of the adaptation
time step is dependent on the latency of reconfiguration and the fact that a new
configuration will be taken into account to generate the new behavior of the robotic
mission. We choose an episode of 1 minute for both missions. For the navigation
mission, the adaptation time step is set to 2 seconds, so there are 60/2 = 30 time
steps in an episode. For the video server mission, the adaptation time step is set to 1
second, so there are 60/1 = 60 time steps in an episode.

We deploy these missions in the same time and the learning phase is executed
for each mission. The learning phase is deployed in 1500 episodes, equivalently 25
hours. During the simulation, we randomly generate obstacles in the robot simu-
lated environment. The desired non-functional goals of the navigation mission and
the video server mission are given in Table 4.9. The ε-greedy algorithm (described in
Equation 4.23) is also implemented for balancing between exploration and exploita-
tion. Its parameters are given in Table 4.10.

TABLE 4.9: Non-functional goals for Navigation Mission and Server Mission.

NFRs Navigation Mission Server Mission
Gper f _1 Vmean_min = 0.60m/s RESmean_min = 800.0pixels
Genergy_1 Ps&a_mean_max = 18.5W
Genergy_2 Pc_mean_max = 4.0W Pc_mean_max = 8.0W
Gothers_1 Dobs_min = 0.7m FPSmean_min = 25.0Hz

The learning results of the two missions are shown in Figure 4.20. The average
max Q-value and the average reward per time step are calculated for each learning
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TABLE 4.10: Parameters for exploration and exploitation in the learning phase of
DQN-based Mission Managers.

εmax εmin εdecay

1.0 0.01 0.0001

(A) Average max Q-value of Naviga-
tion Mission.

(B) Average max Q-value of Server
Mission.

(C) Average reward per time step of
Navigation Mission.

(D) Average reward per time step of
Server Mission.

FIGURE 4.20: Learning phase results of DQN-based Mission Managers.

episode by the following equations:

Average max Q− value =
∑

Tepisode
t=1 maxa Q(St, a)

Tepisode
(4.27)

Average reward per time step =
∑

Tepisode
t=1 Rt

Tepisode
(4.28)

Where Tepisode is the number of time steps in each episode. The increasing trend of the
average max Q-value and the average reward per time step indicates the evolution
of the adaptation policy and the constant trend then indicates the convergence of the
learning algorithm.

We can also realize the difference of average max Q-value and average reward
per time step between two missions. The video server mission has the Q-value and
the reward higher than the ones of the navigation mission. This indicates that the ca-
pability of guaranteeing non-functional requirements of the video server mission is
more feasible than the navigation mission. In fact, the navigation mission is heavily
impacted by the external environment such as dynamic obstacles, while the video
server mission is less impacted by the external environment, but influenced signif-
icantly by its own internal dynamics and the computing environment. The adap-
tation policies therefore tend to automatically search in the action space to give the
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best trade-off between non-functional goals.

4.8.5 Validation of Resulting Adaptation Policy

Figures 4.21 and 4.22 present the comparison between the best static case and the
run-time adaptation controlled by the mission managers of the two considered robotic
missions. The best static case for the navigation mission is the knob K4 = {0.8, 10}
as chosen in the section of the Q-Learning validation and the one for the video
server mission is the knob K7 = {400} as the desired performance RESmean_min =
800.0pixels (Table 4.9). In fact, it is not evident to identify the best static case for each
robotic mission because of dynamic non-functional goals and dynamic operational
conditions. Thus, our proposed mission manager will make the run-time adaptation
in a self-adaptive manner to take into account these difficulties.

To compare our RTA policy with the best static configuration we propose to use
a quantizition of the degree of NFRs violation (corresponding to the negative part of
our reward function). The validation phase is deployed within three hours, equiv-
alently 180 episodes for each case. We can see that for the best static case of the
navigation mission, in 59.44% of the validation period, the non-functional require-
ments are violated, while the violation ratio is reduced to 41.11% by the run-time
adaptation. For the video server mission, the violation ratio is reduced from 56.11%
for the best static case to 14.44% for the run-time adaptation. These results show that
our RTA policy can efficiently balance between several non-functional objectives to
keep the violation rates as low as possible. The evaluation has been carried on two
very different missions in terms of complexity and sensitivity to external events. In

(A) Best Static Case. (B) Run-Time Adaptation.

FIGURE 4.21: Validation of the navigation mission.

(A) Best Static Case. (B) Run-Time Adaptation.

FIGURE 4.22: Validation of the video server mission.
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the next paragraph, we intend to integrate the intrinsic dynamic adaptation cost in
the final evaluation.

4.8.6 Efficiency of Deep Q-Learning based Mission Manager

In this paragraph, we also characterize the efficiency of the DQN-based Self-Adaptive
Mission Manager in terms of computing power consumption in the learning phase
(Figure 4.23) and in the planning phase (Figure 4.24). The navigation mission man-
ager consumes an average power of 566mW in the learning phase and of 505mW
in the planning phase, and for the video server mission, an average consumption
of 597mW in the learning phase and of 510mW in the planning phase is found. We
can also point out that the monitoring part of each mission manager takes approxi-
mately 250mW. The rest of the total power consumption is dedicated to the learning
or planning part.

(A) Power consumption of Naviga-
tion Mission Manager: 566mW in
average.

(B) Power consumption of Server Mis-
sion Manager: 597mW in average.

FIGURE 4.23: Power consumption of DQN-based Mission Managers in the learning
phase.

(A) Power consumption of Naviga-
tion Mission Manager: 505mW in
average.

(B) Power consumption of Server Mis-
sion Manager: 510mW in average.

FIGURE 4.24: Power consumption of DQN-based Mission Managers in the plan-
ning phase.
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4.8.7 Validation of Transfer Learning

In the context of a continuously learning system, we want to evaluate the online
adaptation feasibility to handle changes on the non-functional objectives (tighter
power budgets for example). Now we are considering another learning task for
two missions. The set of non-functional objectives for each mission is presented in
Table 4.11. In fact, the computing power requirement (Genergy_2) for each mission has
changed and is tighter. We have implemented and compared two types of learning:

• Learning from scratch. In this case, the learning process is implemented from
scratch as the above section without any initialization of the adaptation model
and the parameters for exploration and exploitation are shown in Table 4.10;

• Transfer learning. The learned adaptation models in the previous section have
been reused as a starting point for these learning tasks. The parameters for
exploration and exploitation are also modified as indicated in Table 4.12 with
a reduction in the maximum probability of the exploration.

TABLE 4.11: Non-functional goals for Navigation Mission and Server Mission in
the transfer learning. In this case, the constraints on the computing
power Genergy_2 are tighter than the ones in Table 4.9

NFRs Navigation Mission Server Mission
Gper f _1 Vmean_min = 0.60m/s RESmean_min = 800.0pixels
Genergy_1 Ps&a_mean_max = 18.5W
Genergy_2 Pc_mean_max = 3.0W Pc_mean_max = 7.0W
Gothers_1 Dobs_min = 0.7m FPSmean_min = 25.0Hz

TABLE 4.12: Parameters for exploration and exploitation in the transfer learning of
DQN-based Mission Managers.

εmax εmin εdecay

0.5 0.01 0.0001

The performances of the transfer learning and the learning from scratch are com-
pared in Figure 4.25. We can realize a significant amelioration between the transfer
learning indicated by the green curves and the learning from scratch indicated by the
blue curves. The transfer learning is initialized with a high jumping start. For exam-
ple, for the navigation mission, the average max Q-value of the learning from scratch
is initialized from 0.0 while the transfer learning is started from a value around 5.0
and similar for the average max Q-value of the video server mission. In terms of
average reward per time step, the transfer learning also gives a higher performance.
Thus, the transfer learning accelerates the learning process of the adaptation pol-
icy and it can play an important role in the online learning (see Section 4.6.4) when
considering to deploy the learning during the planning phase.
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(A) Average max Q-value of Naviga-
tion Mission.

(B) Average max Q-value of Server
Mission.

(C) Average reward per time step of
Navigation Mission.

(D) Average reward per time step of
Server Mission.

FIGURE 4.25: Transfer learning results: lines in blue indicate learning from scratch
and lines in green indicate transfer learning.

4.9 Summary

This chapter introduces the self-adaptive mission manager. The objective of a self-
adaptive mission manager is to minimize the level of violation of a desired set of
non-functional requirements during mission operation by automatically reconfigur-
ing mission parameters. Two approaches based on Q-Learning and Deep Q-Learning
were presented and validated with two different examples of robotic missions. While
the Q-Learning approach is our first effort to formulate and solve the problem of se-
quential decision-making as a Markov Decision Process, Deep Q-Learning is the core
technology we would like to target to improve the generalization of the self-adaptive
mission manager. Good opportunities for online learning were explored by consid-
ering the intrinsic power and timing costs of the learning phase through the power
caracterization and the use of transfer learning.

The mission manager presented in this chapter is responsible for a local manage-
ment at the robotic mission level. In the next chapter, the multi-mission context will
be solved by an adaptive hierarchical multi-mission manager.



93

Chapter 5

Adaptive and Hierarchical
Multi-Mission Manager

Contents
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.1 Hierarchical Management . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Adaptation of Changing NFRs with Case-Based Reasoning 101

5.4 Decision-Making of Multi-Mission Manager . . . . . . . . . . . . 103
5.4.1 Reallocating Computing Power Budget . . . . . . . . . . . . 103
5.4.2 Throttling Quality of Service . . . . . . . . . . . . . . . . . . 105
5.4.3 Triggering Online Learning . . . . . . . . . . . . . . . . . . . 106

5.5 Implementation and Validation . . . . . . . . . . . . . . . . . . . . 107
5.5.1 Simulated Scenario . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 109

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

In Chapter 4, we have presented the methodology based on the reinforcement
learning for a QoS and energy-aware Mission Manager. This manager defined at the
mission level takes into account a desired set of non-functional requirements and
reconfigures the considered robotic mission under dynamic operational conditions.

Nowadays, a mobile robotic system can be equipped with many types of sensors
or actuators and an advanced computing subsystem. There are therefore many mis-
sions that can be deployed at the same time on the same platform. These missions
have their own characteristics and priorities, and share the resources of the robotic
system. The management in a multi-mission context is a challenge to guarantee a set
of requirements of each mission while respecting the whole system constraints. We
propose in this chapter a rule-based decision-making methodology and a case-based
reasoning technique addressing the problem. While the Mission Manager performs
a local adaptation at the mission level, our proposed Multi-Mission Manager op-
erates at the system level with a global adaptation. The Multi-Mission Manager is
implemented and validated in the simulation framework and the results are dis-
cussed.
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This chapter is organized as follows. The context of adaptive multi-mission man-
agement as well as some related work are presented in Section 5.1. Section 5.2 then
defines formally the problem of multi-mission management. The overview of the
methodology that we propose is described in Section 5.3 and the implementation
details of the decision-making mechanism are given in Section 5.4. The validation
results are presented and discussed in Section 5.5. Finally, this chapter ends with a
summary in Section 5.6.

5.1 Related Work

As presented in Section 3.2.7, mobile robotic systems now face the context of mul-
tiple missions being deployed simultaneously and sharing robotic resources such
as sensors, actuators, applications, computing hardware (CPU, memory, etc) and
energy resources. These resources can be shared in a mutex locked or superposed
manner. In our thesis, we consider these robotic missions as independent entities
that can operate in parallel and share robotic resources in a superposed way. In-
deed, three missions presented in Section 3.6 can operate independently and use the
robotic resources in their own way. Thanks to the publish-subscribe communication
mechanism of a ROS-based robotic system (see Section 2.1.1), sharing sensors and
applications does not really cause conflict, a sensor or an application can broadcast
the information for all missions. Therefore, the robotic resources such as computing
hardware and energy are really our concern because of their limited capacity and
of conflicts that can occur between missions. And an adaptive management of this
context is crucial to effectively use robotic resources and ensure the quality of service
of robotic missions. We review the researches that address the problem of multiple
independent entities operating at the same time and sharing the same resources and
propose a hierarchical resource management for these systems. These can be multi-
ple applications sharing the same embedded architecture, multiple servers sharing
the same data center’s energy budget, or multiple services requiring the computing
resources of the same cloud system, etc. We note the lack of research in the field of
mobile robotics for this problem.

In embedded systems, we focus on the work enabling multiples applications
on the same multicore platform with their own performance requirements. The
work in [Abeni and Buttazzo, 2001] proposes a hierarchical QoS management for
time sensitive applications on the same computing system. This hierarchical control
scheme integrates an adaptive reservation mechanism at the system level to allocate
the computational resources for multiple applications, and a QoS adaptation at the
application level to manage the allocated resources and the QoS of the applications.
With the same context of multiple applications on the same computing platform, the
work in [Cucinotta et al., 2010; Chasparis et al., 2013] proposes also the integration of
application level and resource level QoS control for guaranteeing the QoS of each ap-
plication while respecting the system-level constraints. Hoffmann et al. [Hoffmann
et al., 2011] propose SEEC, a framework for self-aware management of multicore re-
sources. By managing both application and system level, SEEC can resolve shared
resource conflicts and meet applications’ performance goals.

In large-scale systems such as cloud computing systems or data centers, the work
in [Lim, Kansal, and Liu, 2011] presents a hierarchical management for power bud-
geting for virtualized data centers that enable multiple distributed applications to
share the same servers but operate with their individual quality of service guaran-
tees. In this approach, a data center level controller receives the total power capacity
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FIGURE 5.1: Hierarchical management in data center (adapted from [Lim, Kansal,
and Liu, 2011]). The adaptive management is defined at three levels:
data center, application and tier level.

as input and decides the power budget distribution among the application level
controllers. The application level controller then monitors and controls the tier level
controllers within the application. Thus, there are three hierarchy levels of man-
agement in order to guarantee total power capacity and the quality of service of
applications. The management structure is depicted in Figure 5.1.

In the mobile robotic systems, the work in [Hernandez-Sosa et al., 2005] pro-
poses a hierarchical management for the component-based robotic systems (see Sec-
tion 2.6.1). The local management at the component level decides to trade off be-
tween the computational resource consumption and the quality of results of this
component. The global management at the system level monitors the execution of
components and the system level state such as CPU availability and decides to pro-
mote or degrade the quality of these components. We consider this study as the
first and the only one in the domain of mobile robotic systems that proposes the
hierarchical management at many system levels. In the following sections, we will
formally present the problem of the multi-mission context and propose our adaptive
management methodology.

5.2 Problem Statement

As mentioned above, the sharing of computing hardware and energy resources can
cause conflicts between robotic missions due to their limited capacity and dynamic
availability. In fact, the problem of sharing computing hardware is defined at the
level of the computing platform (Figure 3.6) and the adaptation is usually achieved
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FIGURE 5.2: Problem of determining the power budgets for the robotic missions in
a multi-mission context.

by reassigning computing resources (CPU, memory, etc.) or by reconfiguring hard-
ware operating points such as dynamic voltage and frequency scaling (DVFS) of the
processors [Kephart and Chess, 2003]. We do not intend to propose an adaptation at
this level, but we focus on the total power budget reserved for the robotic missions
in a multi-mission context. Indeed, the availability of this total power budget varies
according to the operating time of the robotic system due to a decrease in battery
capacity or temperature constraints. We aim to guarantee the total power budget by
assigning adaptively the power budget for each robotic mission (Figure 5.2). This
allocation of the power budget must also take into account the criticality level of the
robotic mission among others. In addition, the allocation of a new power budget to
the mission will also have an impact on the quality of service of this mission. For
example, with a lower power budget, the mission’s desired level of quality of ser-
vice should be reduced. To propose an adaptive management in this multi-mission
context, our problem is based on the assumptions presented below.

5.2.1 Assumptions

A1: Computing Power Budget as Dynamic System-Level Constraint

For each robotic mission, the power consumption is divided into sensing and act-
ing, and computing consumption (see Section 3.2.3). In these models, the sensing
power consumption of each mission is considered static, while the acting power
consumption is not apparent for all robotic missions. For example, a video server
mission and a semantic environment understanding mission presented in Section 3.6
do not use any actuators, so the acting power consumption is zero. We focus only on
the dynamic part of the power consumption of the robotic mission to provide run-
time adaptation. Thus, we limit our problem to cope with the maximum computing
power budget reserved to the robotic missions. This budget is dynamic during robot
operation, for example, because of battery state of charge or temperature constraint
as mentioned above. At the time t, the maximum computing power budget reserved
to all the robotic missions is denoted by P∑

c_max(t). We assume that we have n robotic
missions denoted respectively by M1, M2, ..., Mn and the computing power budgets
allocated to these missions are represented by PM1

c_re f (t), PM2
c_re f (t), ..., PMn

c_re f (t). Thus,
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at the time t, we have the following system-level constraint:

P∑
c_re f (t) =

n

∑
i=1

PMi
c_re f (t) = PM1

c_re f (t) + PM2
c_re f (t) + ... + PMn

c_re f (t) ≤ P∑
c_max(t) (5.1)

A2: Power Mode and Priority of Robotic Missions

We assume that each robotic mission has some computing power consumption modes.
These modes are in fact the constraints of computing power consumption of each
mission. We propose three active modes denoted by High, Medium and Low, and one
non-active mode denoted by Off :

• In the High mode, the computing power consumption constraint is light and
easy to guarantee, so the run-time adaptation strives to optimize other non-
functional requirements, such as promoting the mission’s quality of service;

• The power constraint in the Medium mode is tighter than the High mode, but
the desired quality of service is still easy to achieve;

• The Low mode is the strictest mode and the desired quality of service should
be degraded to guarantee the constraint of computing power consumption;

• The Off mode means that the mission is not actually active.

We propose the number of power modes in a subjective way. Our objective is to
demonstrate that with different power budgets or limits, the quality of service of the
robotic mission would be different and regulating the desired quality of service of
the mission can contribute to the guarantee of the computing power consumption
constraint. Table 5.1 describes the definition of computing power modes of n robotic
missions. Hence, at the time t, we have the following constraint:

∀Mi, PMi
c_re f (t) ∈ {PMi

c_re f _h, PMi
c_re f _m, PMi

c_re f _l , 0} (5.2)

TABLE 5.1: Definition of the computing power consumption modes of the robotic
missions.

Mode Mission M1 ... Mission Mi ... Mission Mn
High PM1

c_re f _h ... PMi
c_re f _h ... PMn

c_re f _h
Medium PM1

c_re f _m ... PMi
c_re f _m ... PMn

c_re f _m
Low PM1

c_re f _l ... PMi
c_re f _l ... PMn

c_re f _l
Off 0 ... 0 ... 0

The priority is also assigned to each robotic mission denoted as PrMi(t). In a
multi-mission context, the mission with a higher priority should have a higher com-
puting power consumption mode. These priorities can be dynamic due to changes
in the users requests or to internal changes. Each mission should run at the high-
est power mode as long as possible in order to facilitate the guarantee of the non-
functional requirements, but the decision can be made to degrade the power mode
or even stop the mission (change to power mode Off ). The objective remains to keep
the maximum number of missions at active modes.



98 Chapter 5. Adaptive and Hierarchical Multi-Mission Manager

FIGURE 5.3: Quality of service knob of the mission Mi. A normal level of quality of
service QoSMi,norm

re f is defined for the mission. The current level of QoS

QoSMi
re f (t) then can be regulated.

A3: Quality of Service of Robotic Missions as a Configuration Knob

As defined in Section 3.2.4, the mission-specific performance (M-Perf) can be consid-
ered as a quality of service. We assume in this chapter that this desired quality of ser-
vice of the mission Mi at the time t denoted by QoSMi

re f (t) can be regulated. It means
that the quality of service of each robotic mission can be degraded or promoted. We
define also a normal level of quality of service of the mission Mi represented by
QoSMi,norm

re f (Figure 5.3). This normal QoS can be obtained via an offline characteri-
zation as presented in Chapter 3 and it is usually included in the knowledge of the
robotic mission. The quality of service requirement less constrained should facilitate
the guarantee of other non-functional requirements. For example, in the context of a
tight computing power budget, a lower level of quality of service would be appreci-
ated so that this power budget is not exceeded.

5.2.2 Problem Definition

Based on the above assumptions, the problem is now stated as how to configure the
appropriate computing power consumption mode and the desired quality of ser-
vice for each mission within the context of dynamic system-level constraints and
dynamic mission priorities. This global run-time management leads to the modifi-
cation of non-functional requirements for each robotic mission. Thus, the Mission
Manager at the mission level must adapt to these changing non-functional goals.
We propose in the next section an adaptive hierarchical management of the multi-
mission context and a reasoning technique based on case-based reasoning to cope
with the problem of changing NFRs.

5.3 Methodology Overview

5.3.1 Hierarchical Management

Our management methodology is depicted in Figure 5.4. The adaptive management
is divided into two hierarchical levels as follows:

• At the local management of each robotic mission, a Mission Manager observes
the current state related to the mission in order to adapt dynamically some
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FIGURE 5.4: Overview of the adaptive management methodology in a multi-
mission context. The management is divided into two hierarchies: the
Mission Managers at the mission levels and a Multi-Mission Manager
at the system level.

interesting configuration while respecting the desired non-functional require-
ments;

• At the global management, a Multi-Mission Manager observes the current
state of system constraints, the current priorities of robotic missions, and the
current level of guarantee of non-functional requirements of the different mis-
sions in order to choose the appropriate power mode, regulate the quality of
service and trigger the online learning (see the definition of the online learning
in Section 4.6.4) for each robotic mission.

We can say that each Mission Manager receives the adaptation request from the
users and the Multi-Mission Manager and gives the adaptation response for the
Multi-Mission Manager:

• Adaptation request: is a set of non-functional requirements applied to the
robotic mission. The Mission Manager is responsible for guaranteeing these
requirements;

• Adaptation response: can be considered as the adaptation results of the Mis-
sion Manager. The information that will be provided for the Multi-Mission
Manager includes the obtained quality of service, the computing power con-
sumption and the level of NFRs violation.

The adaptation of the Multi-Mission Manager and Mission Managers is executed
in a time-synchronized manner as depicted in Figure 5.5. At a larger period denoted
as Tglobal , the Multi-Mission Manager makes its decisions. Within this global period,
each Mission Manager makes its decisions with a finer period denoted as Tlocal_i for
the mission Mi and Tlocal_j for Mj. The episode concept of the missions is therefore
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FIGURE 5.5: Timing synchronization between Multi-Mission Manager and Mission
Managers. Each Mission Manager has its local adaptation period. The
episode of each Mission Manager is then synchronized with the global
adaptation period of the Multi-Mission Manager.

defined by the global period and the episode of all missions has the same duration
Tglobal . Thus, the adaptation at the mission level is independent from each other and
is coordinated at the global level. The conflict of the adaptation decisions between
local levels, as well as between the local and global level is therefore avoided.

The algorithm of the hierarchical management in a multi-mission context is de-
scribed in Algorithm 1. For each decision epoch identified by Tglobal , the Multi-
Mission Manager checks whether the maximum computing power budget P∑

c_max(t)
or mission priorities change to reallocate the computing power budget for each
active mission. Then, for each mission Mi, if a new active power mode (High,
Medium, Low) is determined, the Multi-Mission Manager will decide to deactivate
the mission’s online learning if it is in progress and initialize the normal QoS level
QoSMi,norm

re f for the mission. Otherwise, if the new power mode is Off, the mission
is completely closed. If the mission power mode is not changed, the Multi-Mission
Manager will check the adaptation response of the mission to decide to trigger the
online learning and/or adjust the quality of service QoSMi

re f (t) for the mission. Fi-
nally, a new adaptation request will be applied to the mission Mi. The details of
these three decisions will be presented in the next section.
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Algorithm 1: Hierarchical management in a multi-mission context.
1: for each decision epoch of Multi-Mission Manager do
2: if maximum computing power budget or mission’s priorities change then
3: reallocate computing power budget for each active mission (Section 5.4.1)
4: end if
5: for each active mission Mi do
6: if power mode changes then
7: if still in active mode (High, Medium, Low) then
8: deactivate online learning of mission if in progress
9: initialize normal mission’s quality of service

10: else
11: shutdown completely mission
12: continue
13: end if
14: else
15: check condition to throttle quality of service of mission (Section 5.4.2)
16: check condition to trigger online learning for mission (Section 5.4.3)
17: end if
18: apply new adaptation request (NFRs) to mission Mi
19: end for
20: end for

5.3.2 Adaptation of Changing NFRs with Case-Based Reasoning

As explained above, the adaptation of the Multi-Mission Manager leads to the mod-
ification of the non-functional requirements (a new adaptation request) applied to
each robotic mission. Thus, the adaptation model (Q-Table or Q-Network) of each
robotic mission should be modified to better meet the new requirements. We pro-
pose a reasoning technique called Case-Based Reasoning (see Section 2.3) as a solu-
tion to this problem.

In this problem, a case includes its context and solution. Its context represents
a set of NFRs applied to the robotic mission and the solution is the run-time adap-
tation model such as Q-Table or Q-Network. Figure 5.6 represents the case base
organization for each robotic mission. The computing power consumption mode is
the first criteria in order to index the case. In each group of power mode, there are
many cases that have other changing requirements. A new case means a new set of
requirements (new adaptation request) and its adaptation model is unknown. Thus,
the idea of Case-Based Reasoning is to use the most similar case in a case database
to resolve a new case and then update the new case into the database.

The case similarity is defined by Euclidean distance. Assume that we have two
cases a and b with their contexts of m non-functional requirements denoted by ca
and cb as follows:

ca = {n f ra
k}m

k=1 (5.3)

cb = {n f rb
k}m

k=1 (5.4)

The Euclidean distance defines the similarity between two cases sim(ca, cb) as fol-
lows:

sim(ca, cb) =

√
m

∑
k=1

(n f ra
k − n f rb

k)
2 (5.5)
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FIGURE 5.6: Case-Based Reasoning for adapting to changing NFRs. For the case
base of each mission, the case is first indexed by the computing power
mode (High, Medium, and Low) and then by other non-functional re-
quirements.

The smaller the metric sim(ca, cb) is, the more similar the two cases are. Therefore,
the case in database most similar to a new case is the case that has the smallest
distance to this new case.

The cycle of Case-Based Reasoning for each robotic mission is illustrated in Fig-
ure 5.7. There are four main steps:

• Retrieve: searches the most similar case in case database following the simi-
larity metric in Equation 5.5;

• Reuse: applies the adaptation model (Q-Table, Q-Network) of the most similar
case to the Mission Manager. Then, the Mission Manager uses this model for
local run-time adaptation;

• Revise: equipped with an online learning capability strives to evolve the pro-
posed adaptation model if the case is existing in the case database or to gener-
ate a new adaptation model from the proposed model if the case is not existing
in the case database;

• Retain: adds the new case composed of context and refined solution into case
database.

Based on the CBR paradigm, transfer learning and online learning capability, the
adaptation capability of the robotic missions will evolve over time to deal with more
dynamic non-functional requirements as well as dynamic operational conditions.
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FIGURE 5.7: Case-Based Reasoning cycle for each robotic mission: Retrieve, Reuse,
Revise and Retain. The online learning capability is included in the
revise step.

5.4 Decision-Making of Multi-Mission Manager

5.4.1 Reallocating Computing Power Budget

The problem of reallocating the computing power budget for each robotic mission
is mainly based on the two assumptions A1 and A2 (Section 5.2.1). We propose
a priority-based reservation algorithm to choose the appropriate power mode for
each robotic mission under the dynamic constraints of maximum power budget and
dynamic mission priorities. The MAPE paradigm as presented in Chapter 2 is also
applied for explaining this decision-making problem.

Monitoring

The first metric to be monitored is the maximum computing power budget reserved
to all robotic missions P∑

c_max(t). In fact, we consider that this metric is derived di-
rectly from the current battery state of charge level SoCh(t). It means that there is a
mapping rule between the two quantities. We assume that this rule is available for
our Multi-Mission Manager. In the future, we can obtain this rule by considering
exactly the power consumption of all components in the robotic platform.

The other metrics are the priorities of the robotic missions: {PrM1(t), ..., PrMn(t)}.
These priorities can be internally modified or can be reconfigured by the robot users.

Analyzing and Planning

In this phase, a priority-based reservation algorithm is implemented to choose the
appropriate power mode for each robotic mission with the current observation. In
this priority-based search, we sort the missions by ascending priority order and the
mission with the least priority will be firstly impacted. The power mode of each mis-
sion in this ascending priority order is searched in the set of {High, Medium, Low}.
When all missions are at the Low power mode but Equation 5.1 is not still satisfied,
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we will choose the Off mode for the mission with the smallest priority. The search
process is iterated until the constraint in Equation 5.1 is guaranteed.

The power mode search algorithm can be found in Algorithm 2. This algorithm is
generalized for any number of robotic missions (n_active_missions) and any number
of power modes (n_power_modes). For example, in the assumption A2, we assume
4 computing power modes, so n_power_modes = 4. The possible power budgets
of a mission are saved into an array as presented in Equation 5.2, where the in-
dex 0 indicates the High mode and the index (n_power_modes − 1) means the Off
mode. Then, the power budgets of all active missions are organized into an 2D ar-
ray power_missions in that order descending priority, where the index 0 indicates
the mission with the highest priority and the index (n_active_missions− 1) indicates
the mission with the lowest priority. The output of the search process is an array
f ound_modes indicating the power mode of each mission.

Algorithm 2: Power mode search algorithm of the Multi-Mission Manager.

Input: P∑
c_max(t)

Input: n_active_missions, n_power_modes
Input: power_missions[n_active_missions][n_power_modes]
Output: f ound_modes[n_active_missions]

1: f ound_modes[n_active_missions]← {0}
2: n← 0
3: f ound← False
4: while n < n_active_missions do
5: m← 0
6: while m < n_active_missions− n do
7: sum← 0
8: for i = 0 to n_active_missions− 1− n do
9: sum← sum + power_missions[i][ f ound_modes[i]]

10: end for
11: if sum ≤ P∑

c_max(t) then
12: f ound← True
13: return f ound_modes[n_active_missions]
14: end if
15: if f ound_modes[n_active_missions− 1− n−m] < n_power_modes− 2 then
16: f ound_modes[n_active_missions− 1− n−m]←

f ound_modes[n_active_missions− 1− n−m] + 1
17: else
18: m← m + 1
19: end if
20: end while
21: f ound_modes[n_active_missions− 1− n]← n_power_modes− 1
22: for i = 0 to n_active_missions− 1− n− 1 do
23: f ound_modes[i]← 0
24: end for
25: n← n + 1
26: end while
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Executing

When the power mode of each mission is reconfigured by the Multi-Mission Man-
ager, the case-based reasoning technique will use the power mode as the first in-
dicator in order to retrieve the most appropriate adaptation model for the robotic
mission (see Retrieve step in Section 5.3.2).

5.4.2 Throttling Quality of Service

The desired quality of service of the robotic mission can be user-defined or set as
a default value acknowledged by the Mission Manager. While the Mission Man-
ager strives to trade off all the non-functional requirements, the computing power
budget is considered as a hard constraint and should not be surpassed. We propose
a run-time adaptation that throttles the desired quality of service to guarantee the
computing power budget reserved to each robotic mission.

Monitoring

The computing power consumption of each mission is monitored in m successive
episodes. It means that at the episode t of the mission Mi we have collected a set of
metrics {PMi

c (t−m+ 1), ..., PMi
c (t− 1), PMi

c (t)} as well as their corresponding power
budgets.

Analyzing and Planning

By evaluating the level of violation or satisfaction of the computing power require-
ment, this run-time adaptation will decide to degrade or promote the desired quality
of service level compared to the current desired quality of service. The level of vio-
lation or satisfaction of computing power requirement ∆PMi

c (t) is defined by

∆PMi
c (t) = 1− PMi

c (t)
PMi

c_re f (t)
(5.6)

∆PMi
c (t) ≥ 0 means the power requirement at the time t is satisfied and ∆PMi

c (t) < 0
means that it is currently violated. The averaged level of violation or satisfaction
within m episodes ∆PMi,avg

c (t) is calculated by

∆PMi,avg
c (t) =

∑m
j=1 ∆PMi

c (t− j + 1)

m
(5.7)

We propose now a set of rules for determining the adaptation of desired quality
of service for the mission Mi:

• If the power requirement is satisfied within m successive episodes, we will
promote the desired quality of service with a coefficient of ∆PMi,avg

c (t) > 0;

• If the power requirement is violated within m successive episodes, we will
degrade the desired quality of service with a coefficient of ∆PMi,avg

c (t) < 0.

The desired quality of service of the mission Mi at the time t is therefore regu-
lated as follows

QoSMi
re f (t) = (1 + ∆PMi,avg

c (t))×QoSMi
re f (t− 1) (5.8)
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To avoid that the quality of service can be degraded to 0, we propose an arbitrary
lower limit of QoSMi

re f (t) such as 10%×QoSMi,norm
re f , so we have the following relation:

10%×QoSMi,norm
re f ≤ QoSMi

re f (t) ≤ QoSMi,norm
re f (5.9)

In fact, the choice of m, number of successive episodes, as well as the calculation
method of ∆PMi,avg

c (t) will influence the reactivity of this decision. In this study,
we strive to propose a simple (nearly linear) calculation and a simple rule set to
demonstrate the role of this decision. Choosing a really optimal calculation method
needs a further study and it is currently out of scope of this thesis.

Executing

Once the desired quality of service of the robotic mission is changed, the case-based
reasoning uses it now as the second indicator to choose the most appropriate adap-
tation model in the current case database for the corresponding Mission Manager
(see Retrieve step in Section 5.3.2).

5.4.3 Triggering Online Learning

With the two above decisions given by the Multi-Mission Manager, an adaptation re-
quest or a set of desired non-functional requirements applied to each Mission Man-
ager is divided into two situations:

• The request is existing in the case database of this mission. The adaptation
model (Q-Table or Q-Network) is already learned and can be directly reused to
control the robotic mission. However, in order to cope with more scenarios that
are unanticipated in the learning phase, the online learning can be deployed to
improve the adaptation model;

• The request is not existing in the case database of this mission. In this situa-
tion, we have a new case and the optimal adaptation model is unknown. Thus,
the adaptation model of the most similar case can be used as an initialization
point for the online learning and the objective is to find the new adaptation
model for this new case.

In this decision-making problem, the Multi-Mission Manager will decide when
to start and stop the online learning for each Mission Manager:

• Start criteria. For each mission, the Multi-Mission Manager will monitor the
level of NFRs violation within m successive episodes (for sake of simplicity, the
same m as the decision of throttling QoS is used). In fact, this level is the neg-
ative part of the reward function obtained at the end of each episode. If these
consecutive values are lower than a (negative) threshold, the Mission Man-
ager’s current adaptation model does not seem to adapt to the new scenarios.
Thus, the Multi-Mission Manager will decide to start the online learning for
tuning the adaptation model of the mission;

• Stop criteria. There are three criteria to stop the online learning in this case:
(1) new power mode, (2) new QoS case or (3) end of permitted timeout for the
online learning. The criteria (1) and (2) will require the case-based reasoning to
choose new appropriate adaptation model, the online learning must therefore
be stopped. The criteria (3) relates the fact that we define a timeout (number
of learning episodes for example) for the online learning.
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At the end of each online learning process, the case with its adaptation model
must be stored in the case database of the mission. Thus, the number of adaptation
models of each robotic mission will be gradually increased upon the mission deploy-
ment. However, the number of adaptation models should be limited to guarantee
the memory efficiency. We will detail this in the next section of implementation and
validation.

5.5 Implementation and Validation

5.5.1 Simulated Scenario

In this chapter, we deploy two robotic missions in parallel: an autonomous naviga-
tion mission denoted as M1 and a video server mission denoted as M2 as presented
for validating the mission managers in the previous chapter. The computing power
consumption modes of these missions are defined in Table 5.2. In fact, the choice
of these modes is based on the characterization results in Chapter 3 and the inter-
pretation of power modes in the assumption A2 (see Section 5.2.1). We consider
also in this scenario that the priority of the navigation mission is higher than the
one of the video server mission. The normal level of QoS of the navigation mis-
sion is defined as QoSM1,norm

re f = 0.6m/s and the one of the video server mission is

QoSM2,norm
re f = 800pixels (an image resolution of 800× 800). The other non-functional

goals for the two missions are kept the same as presented in Table 4.9.

TABLE 5.2: Computing power consumption modes of the navigation mission and
the video server mission.

Mode Mission M1 Mission M2
High PM1

c_re f _h = 4W PM2
c_re f _h = 8W

Medium PM1
c_re f _m = 3W PM2

c_re f _m = 7W
Low PM1

c_re f _l = 2W PM2
c_re f _l = 6W

Off 0 0

The system-level constraint such as the maximum computing power capacity
allocated to the robotic missions P∑

c_max(t) is also simulated. It is decreasing 1W each
60 minutes from 12W to 8W within 300 minutes as shown in Table 5.3.

TABLE 5.3: Simulated maximum computing power capacity allocated to the
robotic missions.

Time t 1 - 60 61 - 120 121 - 180 181 - 240 241 - 300

P∑
c_max(t) 12W 11W 10W 9W 8W

5.5.2 Implementation

Initializing Case Database

We build off-line the case database for each mission. We assume that the case is de-
fined only by the computing power mode and the desired level of quality of service
and the other non-functional requirements are kept unchanged. The case database is
initialized as shown in Figure 5.8. The adaptation models are found by applying the
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FIGURE 5.8: An initialization of the case database for the navigation mission and
the server mission.

transfer learning technique as presented in Section 4.8.7. In fact, for each computing
power mode, we limit the number of desired quality of service to 4 levels:

QoSM1
re f ∈ {0.6, 0.5, 0.4, 0.3}m/s (5.10)

QoSM2
re f ∈ {800, 760, 720, 680}pixels (5.11)

This will reduce the memory requirement to save the case database as well as sim-
plify the organization and the access to the case database. A complete case database
of each robotic mission would be composed of 12 adaptation models (Q-Networks).
In fact, a memory footprint of 2.2MB is used to save a Q-Network in the file sys-
tem. Thus, a case database of 12 Q-Networks of a robotic mission will occupy
12 × 2.2MB = 26.4MB. In a context of n robotic missions, the memory footprint
in the file system is n× 26.4MB.

Reallocating Computing Power Budget

Based on the current maximum power capacity of the system (Table 5.3) and the
priority of each mission (the priority of the navigation mission is higher than the one
of the video server mission in this scenario), the reservation algorithm (Algorithm 2)
will decide to reallocate the computing power budget for each mission. The resulting
power mode for each mission is presented in Table 5.4. The allocation algorithm
guarantees that the total power budget reserved to the two missions is less than or
equal to the maximum computing power capacity (Equation 5.1).
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TABLE 5.4: Computing power budget allocated dynamically to each robotic mis-
sion (H: High mode, M: Medium mode, L: Low mode).

Time t 1 - 60 61 - 120 121 - 180 181 - 240 241 - 300
PM1

c_re f (t) H, 4W H, 4W H, 4W M, 3W L, 2W
PM2

c_re f (t) H, 8W M, 7W L, 6W L, 6W L, 6W

Throttling Quality of Service

For this decision-making problem, the Multi-Mission Manager monitors the com-
puting power consumption of each robotic mission within m = 3 successive episodes
to decide to degrade or promote the desired level of quality of service as presented
in Section 5.4.2. In fact, the number of successive episodes, m = 3 in this case, is
empirically chosen and it has an impact on the reactivity of this decision as men-
tioned in Section 5.4.2. Once the computing power mode or the level of QoS has
been changed, the Multi-Mission Manager uses the case-based reasoning technique
to choose the most appropriate adaptation model for each robotic mission.

5.5.3 Results and Discussions

Figure 5.9 presents the characteristic of computing power consumption of the two
mentioned robotic missions controlled by the Multi-Mission Manager. We can real-
ize that this characteristic is adapted corresponding to the current maximum com-
puting power capacity (Table 5.3). When the power capacity is high such as the case
of 12W, 11W or 10W, the power constraint is lighter and the adaptation is therefore
more feasible. Whereas, the case of 8W is extremely low, the adaptation is more
difficult and it is sometimes found that the actual power consumption exceeds the
reference value.

The characteristics of computing power consumption and quality of service of
two missions are presented in Figure 5.10, 5.10a and 5.10c for the navigation mission,
and 5.10b and 5.10d for the video server mission. The computing power budget of

FIGURE 5.9: System-level computing power consumption controlled by the Multi-
Mission Manager. The red points indicate the maximum computing
power allocated to two missions and the green points are the mea-
sured values or the actual computing power (averaged during an
episode or a decision epoch of 1 minute of the Multi-Mission Man-
ager) consumed by two missions.
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(A) Computing power consumption
of Navigation Mission.

(B) Computing power consumption
of Server Mission.

(C) Quality of service of Navigation
Mission.

(D) Quality of service of Server Mis-
sion.

FIGURE 5.10: Computing power consumption and quality of service of each mis-
sion controlled by the Multi-Mission Manager. The red points indi-
cate the reference values or the adaptation request (computing power
budget, desired quality of service) of each mission. The green points
are respectively the measured values (averaged during an episode of
1 minute of each Mission Manager) of each mission.

each mission is allocated by the priority-based reservation algorithm as shown in Ta-
ble 5.4. Under each computing power mode, by observing the power consumption
of each mission over m = 3 successive episodes, the level of quality of service of each
mission is throttled by the decision of throttling QoS of the Multi-Mission Manager.
Based on the computing power mode as the first indicator and the desired quality
of service as the second indicator, the adaptation model of each Mission Manager is
respectively retrieved in the case database by the CBR technique.

For the two missions, we can see that under each different power mode, the
mission gives different characteristics of quality of service. For example, in the High
mode of the navigation mission, the QoS can reach a maximum value of 0.7m/s,
while the value for the Medium mode is 0.68m/s and for the Low mode is 0.48m/s
(Figure 5.10c). The same characteristic is found for the video server mission when in
the High mode, the QoS can reach a level of 900, a lower level for the Medium mode is
seen and a degradation of the QoS is clearly visible in the Low mode (Figure 5.10d).
In fact, the actual mission’s quality of service is also influenced by other dynamic
factors. Our run-time adaptation strives to guarantee the desired quality of service
or to maximize it if possible within the permitted computing power budget.

In addition to the run-time adaptation of the mission manager, the decision to
throttle the mission’s quality of service of the Multi-Mission Manager can be consid-
ered reactive in the event of a violation of the computing power budget. Indeed, the
computing power consumption of each mission is monitored over m = 3 successive
episodes. If the consumption of all 3 episodes exceeds the budget, the desired QoS
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will be degraded. For example, for the navigation mission, when the computing
power budget decreases from 3W to 2W at the episode 241, the computing power
consumption of three episodes: 241, 242 and 243 exceeds 2W (Figure 5.10a), the de-
sired quality of service is therefore reduced to 0.5m/s (Figure 5.10c). Whereas, if the
consumption of all 3 episodes is less than or equal to the budget, the desired QoS
will be promoted (at the episode 280 of the navigation mission or the episode 262 of
the video server mission for example).

In this simulated scenario, we have built offline the case database for the two
robotic missions. The validation shows the expected results and the online learning
is not necessary to be triggered in this scenario. Thus, we tend to apply the on-
line learning technique when considering the experimentation deployed on the real
robot and more validation results will be presented in the next chapter.

5.6 Summary

In this chapter, we present the Multi-Mission Manager that deals with the context of
multiple missions with different functional, non-functional requirements and shared
resources in the same robotic system. The Multi-Mission Manager takes the dynamic
system-level constraints and the dynamic priorities of missions as inputs and de-
cides to reallocate the computing power budgets for the robotic missions, to throttle
the quality of service of missions or to trigger the online learning for evolving or
generating the adaptation models. A simulated scenario with two missions and a
global computing power budget decreasing in time validates the power budget re-
allocation and quality of service throttling methodology.

As the last step in validating our methodology, the next chapter will present
the experimentation on a real mobile robotic platform. The DQN-based mission
managers and the multi-mission manager will be deployed in the real framework
and their performance and efficiency will be evaluated.
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Validation on A Real Environment
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Our proposed methodology for the DQN-based Mission Managers and the Multi-
Mission Manager has been implemented and validated for a navigation mission and
a video server mission in the simulation framework in the previous chapters. In this
chapter, we apply our methodology and implement a prototype for the real mo-
bile robotic system as presented in Section 3.5.1 with all three motivational missions
composed of the two above missions and a semantic environment understanding
mission (see Section 3.6) in real environmental conditions.

This chapter is organized as follows. Section 6.1 describes the experimentation
setup. Our experimentation is then divided into two main parts. The first exper-
imentation in Section 6.2 aims to validate the effectiveness and robustness of our
proposed methodology by applying the obtained results of the navigation mission
and the video server mission in the simulation framework to the real robotic frame-
work. The second experimentation in Section 6.3 tends to demonstrate the scability
of our management framework by proposing a more complex multi-mission context,
with the integration of all the three missions mentioned above. Finally, Section 6.4
concludes the chapter.
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(A) A corner of our real environment.

(B) Global view of our real environment. The red boxes and people in the environment can
be considered as dynamic obstacles for the robot.

(C) Static occupancy grid map of the real environment built by our robot using move_base
and gmapping ROS packages.

FIGURE 6.1: An area of 20.5m× 6.5m used as the real environment for our experi-
mentation.
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6.1 Experimentation Setup

6.1.1 Real Environment Setup

Figures 6.1a and 6.1b present our installation for an area of 20.5m× 6.5m as the real
environment in the experimentation. Its static occupancy grid map shown in Fig-
ure 6.1c is built by using two ROS packages move_base1 and slam_gmapping2. This
static map is then used for the autonomous navigation mission. The structures such
as the walls or the bulkheads are kept static and taken into account in the static map.
At run-time, we can add some obstacles such as carton boxes or people that can
move around in the environment, and we call them as dynamic obstacles. The other
conditions of the environment such as lighting or texture can be changed during
robot operation. Briefly, the three factors of the environment dynamics as shown in
Figure 1.3 can occur.

6.1.2 Robotic System Setup

The real robotic framework is the one presented in Section 3.5.1 with two main sen-
sors (a LIDAR laser scanner and a Kinect sensor) and a NVIDIA Jetson AGX Xavier
embedded platform. The Xavier as well as the robot motors and low level controller
electronics are powered by the same battery system. The power consumption model
of the platform components is also validated with the results measured by a Yocto-
Watt wattmeter (Appendix D). We deploy on this platform the three robotic mis-
sions presented and characterized in Section 3.6: an autonomous navigation mission,
a video server mission and a semantic environment understanding mission. The
DQN-based Mission Managers and the Multi-Mission Manager are also deployed
on this embedded platform.

We also set up a remote PC station that connects with the Xavier board via a
local wifi network as depicted in Figure 6.2. Thanks to the distributed characteristic
of the Robot Operating System, the information exchange between the robot and the
remote station is convenient with the robot as ROS Master and the remote station

FIGURE 6.2: Robot setup in the real experimentation. The robot is the ROS Master
and a remote PC station set as a ROS Client. The connection between
two systems is realized via a local Wifi network.

1See http://wiki.ros.org/move_base
2See http://wiki.ros.org/gmapping

http://wiki.ros.org/move_base
http://wiki.ros.org/gmapping
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as ROS Client3. Indeed, the operation of the robot is independent of the remote PC
station.

6.2 From Simulation to Real Experimentation

The objective of this experimentation is to validate the effectiveness and robustness
of our proposed DQN-based mission managers and the multi-mission manager by
applying the obtained results of the navigation mission and the video server mis-
sion in the simulation framework to the real robotic framework. The presentation
of this experimentation is organized as follows. Section 6.2.1 introduces the exper-
imentation methodology and followed by the obtained results and discussions in
Section 6.2.2. Finally, the efficiency of DQN-based mission managers in terms of
power consumption on the embedded platform is also evaluated in Section 6.2.3.

6.2.1 Experimentation Methodology

Reusing Learned Adaptation Models From the Simulation Framework

As in the simulation framework, we assume that the robotic system is in a long
time continuous operation. With the same characterization procedure presented in
Chapter 3, we propose the non-functional goals for a navigation mission and a video
server mission in Tables 6.1 and 6.2. The computing power mode for each mission
is also defined in four modes: High (H), Medium (M), Low (L) and Off (O) (see the
interpretation of power modes in the assumption A2 in Section 5.2.1).

TABLE 6.1: Non-functional goals for Navigation Mission in the real experimenta-
tion.

NFRs Navigation Mission
Gper f _1 Vmean_min = 0.5m/s
Genergy_1 Ps&a_mean_max = 17.0W
Genergy_2 Pc_mean_max = 1.25W(H)− 1.1W(M)− 0.95W(L)− 0W(O)
Gothers_1 Dobs_min = 0.7m

TABLE 6.2: Non-functional goals for Server Mission in the real experimentation.

NFRs Server Mission
Gper f _1 RESmean_min = 800.0pixels
Genergy_1
Genergy_2 Pc_mean_max = 3.25W(H)− 3.0W(M)− 2.75W(L)− 0W(O)
Gothers_1 FPSmean_min = 24.5Hz

Chapters 4 and 5 have introduced and validated our methodology in the simu-
lation framework for these two robotic missions. We leverage the obtained learning
results in simulation (as depicted in Figure 5.8) to apply them to these missions in the
real robotic framework with a 1-1 mapping presented in Figure 6.3. The considered
QoS in the case of the navigation mission is the mean robot speed (in m/s) whereas
the considered QoS of the video server mission is the mean resolution of the encoded
images (in pixels). Thus, we do not need a pure learning phase as in simulation, we

3See http://wiki.ros.org/ROS/Tutorials/MultipleMachines

http://wiki.ros.org/ROS/Tutorials/MultipleMachines
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FIGURE 6.3: An initialization of the case database for the navigation mission and
the server mission in the real experimentation. The learned adaptation
models in the simulation framework are reused in the real experimen-
tation.

use the pre-learned models of the mission managers and we add the online learning
capability to help evolving the adaptation policy over the deployment time in case
the models do not fit the new contexts.

Moreover, the online learning capability has been activated in our real experi-
mentation, which depends on the level of NFRs violation to refine and evolve the
adaptation policy so that more unexpected dynamic real-world scenarios can be
taken into account (see Section 5.4.3). The level of NFRs violation is monitored
within m = 3 successive episodes (this value is empirically choosen as mentioned
in the simulated scenario in Section 5.5) and if it is less than or equal to a certain
threshold (set in this case to −0.05), the online learning will be activated. The three
conditions such as new computing power mode, new case of QoS and end of time-
out (see Section 5.4.3 for more details about these criterias) are also applied to deac-
tivate the online learning. The timeout determines that the online learning must be
stopped after a fixed number of episodes that we assume sufficient (after conducting
the experimentation) to adapt and enhance the adaptation policy. This timeout is set
to 60 episodes (equivalent to 60 minutes).

Robotic Autonomy Under Real Battery Constraints

Taking into account the real condition of the robot’s battery, the robot can be au-
tonomous for 3 or 4 hours and we should recharge the battery if the battery voltage
is lower than 11.5V (Appendix B). Thus, we will monitor the battery voltage. If the
low battery threshold is reached, we will force the robot to return to the docking
station (the root of the map in our scenario) to be recharged. Currently, we lack
an autonomous recharging solution for our robotic platform that requires a manual
recharging and limits the flexibility of the deployment.
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Based on the current battery voltage, we also establish a rule between the battery
voltage and the maximum power capacity allowed for all the robotic missions (see
the assumption A1 in Section 5.2.1). The robot operates under the battery voltage
between 12.5V and 11.5V. Thus, we propose to divide the battery into 5 states as
shown in Table 6.3 depending on the battery voltage. Consequently, the maximum
power capacity is also defined at 5 levels. The maximum power capacity for the
scenarios of a navigation mission and a video server mission is defined in Table 6.4.

TABLE 6.3: Real battery voltage conditions divided into 5 states.

State 0 1 2 3 4
Voltage > 12.3V > 12.1V > 11.9V > 11.7V Others

TABLE 6.4: Maximum power capacity vs. battery state in case of two missions: a
navigation mission and a video server mission.

Battery State 0 1 2 3 4

P∑
c_max 4.5W 4.25W 4.00W 3.85W 3.70W

Experimental Scenarios and Expectations

We deploy a navigation mission denoted as M1 and a video server mission denoted
as M2 at the same time and apply our management methodology such as DQN-
based Mission Managers and Multi-Mission Manager to the robotic system. In this
experimentation part, we propose to deploy five scenarios. The objective of this
proposition is to demonstrate different functionalities of the Multi-Mission Manager
as well as the adaptation capability of the Mission Managers. The five experimental
scenarios and their objectives are described as follows:

• Scenario 1: Static Mission Priorities. In this scenario, we deploy a navigation
mission and a video server mission at the same time. Thus, we have a multi-
mission context of two missions. We assume also in this scenario that the prior-
ity of the navigation mission is always higher than the one of the video server
mission. The dynamic system-level constraint such as the maximum power ca-
pacity as shown in Table 6.4 is also applied. The objective of this scenario is to
demonstrate the dynamic characteristic of robotic operational conditions and
the adaptive management of our mission managers and multi-mission man-
ager;

• Scenario 2: Dynamic Mission Priorities. In this case, we demonstrate a sce-
nario where the mission’s priorities are dynamic. At some moments during
operation, we will exchange the priority level between the navigation mission
and the video server mission. This scenario will demonstrate the way how
the multi-mission manager copes with the dynamic mission’s priorities in a
multi-mission context;

• Scenario 3: Power Budget Are Not Enough For Two Missions. With an as-
sumption that the maximum power capacity is not enough to operate both two
missions, we aim to demonstrate the adaptive decision of the multi-mission
manager to guarantee this modest budget;
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• Scenario 4: Variability Management of A Video Server Mission. This is a
scenario specific to the video server mission. The objective is to assess the
performance of our proposed run-time adaptation in comparison with a static
configuration;

• Scenario 5: Run-Time Adaptation vs. Static Configuration. In this case, we
strive to compare the obtained performance of the two robotic missions as well
as the autonomy duration or the battery duration between our run-time adap-
tation and the static configurations of the missions.

The next section will present the obtained results of these scenarios and we will
also provide some insightful discussions.

6.2.2 Experimentation Results

The implementation details and results of each experimental scenario will be pre-
sented in this section. We provide below the description of the measures or the met-
rics that will be used to evaluate the experimentation. These measures are classified
into two main groups: system-level measures and mission-level measures.

• System-level measures/metrics:

– Battery voltage: the current robot’s battery voltage given by the RosAria
ROS node (Appendix B);

– Total power budget: the maximum computing power capacity reserved for
all the robotic missions that are currently active on the robotic system. It
is defined depending on the battery voltage;

– Total consumed power: the total computing power consumption of all the
robotic missions.

• Mission-level measures/metrics:

– Ref. Power: the computing power budget (reference value) reserved to
the mission. This metric is regulated by the decision of reallocating the
budget of the multi-mission manager;

– Mea. Power: the computing power consumption (measured value) of the
mission;

– QoS: the quality of service of the mission, mean robot velocity for the
navigation mission, and mean resolution of the encoded images for the
video server mission;

– Ref. QoS: the desired quality of service (reference value) applied to the
mission. This metric is regulated by the decision of throttling QoS of the
multi-mission manager;

– Mea. QoS: the measured quality of service of the mission;

– Level of NFRs violation: the level of non-functional requirements violation;

– Violation threshold: the level of NFRs violation is compared with this thresh-
old to check the condition of activating the online learning. It is a param-
eter of the multi-mission manager;

– Triggering online learning: the metric indicating whether the online learn-
ing is activated (1) or not (0).
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In general, in the following experimentation, the reference (or objective) values (for
QoS or Power) will be depicted in red in the figures and the actual measured values
will be in green.

Scenario 1: Static Mission Priorities

- Hypothesis: The two robotic missions, a navigation mission and a video server mis-
sion, are deployed in the same time, and we assume that the priority of the naviga-
tion mission is higher than the one of the video server mission and these priorities
are kept unchanged during operation. In this scenario, we deploy three different
runs at the three different times and analyze their obtained results. The duration
of each run is counted from the beginning of the robot operation until the battery
recharging requirement. Hence, the deployment is strongly dependent on the charg-
ing level of the robot’s batteries. Each deployment is also subject to different opera-
tional conditions at random. For example, we change randomly the appearance of
the dynamic obstacles in the environment. Thus, we can realize the different behav-
iors of the mission managers and the multi-mission manager in these three runs.
- Analysis: The results of the three different runs are sequentially presented in Fig-
ures 6.4, 6.5 and 6.6. The system-level and mission-level characteristics of each run
are presented in the following paragraphs.

Analysis of Run 1. The deployment results of this run are presented in Figure 6.4
with the system-level measures and the mission-level measures of the two missions.
The dynamic system-level constraint and the computing power budget allocated
dynamically to each robotic mission during operation are shown in Table 6.5. The
autonomy duration of this run is 132 minutes until the battery recharging.

TABLE 6.5: Run 1: dynamic system-level constraint and computing power budget
allocated dynamically to each robotic mission.

Time t 1 - 13 14 - 34 35 - 71 72 - 99 100 - 132
Voltage(t) > 12.3V > 12.1V > 11.9V > 11.7V Others
P∑

c_max(t) 4.5W 4.25W 4.00W 3.85W 3.70W
PM1

c_re f (t) H, 1.25W H, 1.25W H, 1.25W M, 1.10W L, 0.95W
PM2

c_re f (t) H, 3.25W M, 3.00W L, 2.75W L, 2.75W L, 2.75W

We can realize that for each robotic mission, under different computing power
budgets, the obtained quality of service is also different. For example, the QoS of
the navigation mission can achieve 0.6m/s in the high and medium power modes
(Figure 6.4d), and the QoS of the server mission can achieve 840pixels (Figure 6.4e),
but they are significantly reduced in the low modes. The desired QoS of the nav-
igation mission is not throttled in this run because the condition of m = 3 succes-
sive episodes of computing power consumption objective violation is not fulfilled.
Whereas, the desired QoS of the server mission is throttled to guarantee the low
computing power budget. For example, when the power mode of the server mis-
sion changes from high, medium to low mode (from the episode 35), keeping the
desired QoS of 800 leads to a computing power consumption surpassing the power
budget of 2.75W. Thus, the desired QoS is reduced according to the equation 5.8. In-
versely, if the computing power consumption remains lower than the power budget
for m = 3 successive episodes, the desired QoS can be increased to give a better QoS
level (for example at episode 57). Figures 6.4b and 6.4c indicate that in almost all
the episodes, the computing power consumption of each mission follows well the



6.2. From Simulation to Real Experimentation 121

reference value. Consequently, the total power consumption is guaranteed and do
not surpass the total power budget (Figure 6.4a). By observing Figures 6.4f and 6.4g,
we can see that the level of NFRs violation is always greater than the negative vio-
lation threshold that we set and the online learning is therefore not activated during
the operating time, except one triggering for the navigation mission at the end of the
run (episode 130) due to consecutive violations. The learning was stopped because
of the end of the robot autonomy.
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(A) System-level computing power
consumption controlled by the
Multi-Mission Manager

(B) Computing power consumption
of Navigation Mission.

(C) Computing power consumption
of Server Mission.

(D) Quality of service of Navigation
Mission.

(E) Quality of service of Server Mis-
sion.

(F) NFRs violation and online learn-
ing triggering of Navigation Mis-
sion.

(G) NFRs violation and online learn-
ing triggering of Server Mission.

FIGURE 6.4: Run 1: computing power consumption, quality of service and online
learning of each mission controlled by the Multi-Mission Manager.
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Analysis of Run 2. The deployment results of this run are presented in Figure 6.5,
and the dynamic system-level constraint and the computing power budget allocated
to each robotic mission during operation are shown in Table 6.6. The autonomy
duration of this run is 184 minutes.

TABLE 6.6: Run 2: dynamic system-level constraint and computing power budget
allocated dynamically to each robotic mission.

Time t 1 - 37 38 - 90 91 - 136 137 - 174 175 - 184
Voltage(t) > 12.3V > 12.1V > 11.9V > 11.7V Others
P∑

c_max(t) 4.5W 4.25W 4.00W 3.85W 3.70W
PM1

c_re f (t) H, 1.25W H, 1.25W H, 1.25W M, 1.10W L, 0.95W
PM2

c_re f (t) H, 3.25W M, 3.00W L, 2.75W L, 2.75W L, 2.75W

For the navigation mission, Figures 6.5d and 6.5b indicate the same character-
istics of quality of service and computing power consumption as the run 1 in the
high and medium power modes. At episode 111, we can see in (Figure 6.5d) that the
multi-mission manager decides to throttle the QoS from 0.5m/s to 0.48m/s reacting
to a power reference violation for three consecutive episodes (see figure 6.5b) and
then at episode 114 it decides to raise back the QoS to 0.5m/s. In the low power
mode, the desired QoS of this mission is reduced to 0.45m/s from the episode 179 to
the end of the navigation mission (Figure 6.5d). For the video server mission, in the
low power mode, we can realize that the desired quality of service is regularly throt-
tled and the computing power consumption is very sensitive to the changing of the
desired QoS. Once the computing power consumption in m = 3 successive episodes
surpasses the budget, the desired QoS is reduced to a lower value. With this new
QoS reference value, the power consumption of the mission returns to be less than
the budget and this leads to a new higher desired QoS for the next decision epoch
(see decision-making of throttling QoS in Section 5.4.2 for more details). Thus, the
characteristic of computing power consumption and quality of service of the video
server mission in this low power mode is very oscillatory (Figures 6.5e and 6.5c).
In fact, the decision of throttling the quality of service can be considered reactive
to respect the constraint of computing power budget. However, in some cases, this
reactive decision can lead to an oscillating characteristic as we realized. The choice
of m and ∆PMi,avg

c (t) as mentioned in Section 5.4.2 can be a reason for this oscillation
and we need a further study to find the optimal calculation method. At the system
level, the total power consumption is maintained to be less than or equal to the total
budget in almost all the episodes of the operating time (Figure 6.5a). In this run, the
condition of activating the online learning is triggered for the navigation mission at
the interval between episodes 88 and 178 (Figure 6.5f). The condition of a timeout
of 60 minutes has been triggered to stop the first online learning, while the chang-
ing of power mode from medium to low mode stops the second online learning that
started at the episode 178. For the video server mission, the level of NFRs violation
is less than the violation threshold during many times (Figure 6.5g). However, the
online learning is not triggered because of regularly throttling the desired quality of
service.
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(A) System-level computing power
consumption controlled by the
Multi-Mission Manager

(B) Computing power consumption
of Navigation Mission.

(C) Computing power consumption
of Server Mission.

(D) Quality of service of Navigation
Mission.

(E) Quality of service of Server Mis-
sion.

(F) NFRs violation and online learn-
ing triggering of Navigation Mis-
sion.

(G) NFRs violation and online learn-
ing triggering of Server Mission.

FIGURE 6.5: Run 2: computing power consumption, quality of service and online
learning of each mission controlled by the Multi-Mission Manager.
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Analysis of Run 3. The deployment results of this run are presented in Figure 6.6,
and the dynamic system-level constraint and the computing power budget allocated
to each robotic mission during operation are shown in Table 6.7. The autonomy
duration of this run is 199 minutes.

TABLE 6.7: Run 3: dynamic system-level constraint and computing power budget
allocated dynamically to each robotic mission.

Time t 1 - 43 44 - 86 87 - 127 128 - 157 158 - 199
Voltage(t) > 12.3V > 12.1V > 11.9V > 11.7V Others
P∑

c_max(t) 4.5W 4.25W 4.00W 3.85W 3.70W
PM1

c_re f (t) H, 1.25W H, 1.25W H, 1.25W M, 1.10W L, 0.95W
PM2

c_re f (t) H, 3.25W M, 3.00W L, 2.75W L, 2.75W L, 2.75W

The characteristics of the navigation mission (Figures 6.6d, 6.6b and 6.6f) are an-
alyzed the same way as in the runs 1 and 2. Of course, the different environmental
conditions such as dynamic obstacles in the three runs lead to different behaviors of
the navigation mission. For the video server mission (Figures 6.6e, 6.6c and 6.6g),
since the moment of 45 minutes, the user’s visualization request4 has been changed
as presented in Table 6.8 and this makes the learned adaptation model difficult to
adapt. Thus, the combination of throttling the desired QoS and online learning
makes the adaptation more feasible and stable from the episode 162. More dis-
cussions specific to the video server mission will be presented in Scenario 4. The
system-level measures are depicted in Figure 6.6a. We can see that the total power
consumption surpasses the total budget on the time interval between episodes 128
and 141 because of the difficulty of managing the computing power consumption of
the video server mission.

TABLE 6.8: Variability in user requests of the video server mission.

Time t 1 - 44 45 - 199
User requests 1 of (512× 512) 1 of (800× 800)

4See image parameters (width x height) on http://wiki.ros.org/web_video_server

http://wiki.ros.org/web_video_server
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(A) System-level computing power
consumption controlled by the
Multi-Mission Manager

(B) Computing power consumption
of Navigation Mission.

(C) Computing power consumption
of Server Mission.

(D) Quality of service of Navigation
Mission.

(E) Quality of service of Server Mis-
sion.

(F) NFRs violation and online learn-
ing triggering of Navigation Mis-
sion.

(G) NFRs violation and online learn-
ing triggering of Server Mission.

FIGURE 6.6: Run 3: computing power consumption, quality of service and online
learning of each mission controlled by the Multi-Mission Manager.
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- Conclusion: Firstly, we can realize that the results obtained in the three different
runs of this scenario are consistent with the results obtained in simulation (see Sec-
tion 5.5), which indicate the robustness of the methodology that we propose. Sec-
ondly, the three decisions of the Multi-Mission Manager (reallocating the comput-
ing power budget, throttling the desired QoS and triggering the online learning)
are validated in our real experimentation. If the first two decisions to reallocate the
mission’s computing power budget and to regulate the QoS can be considered reac-
tive to the system-level constraint (the maximum computing power capacity in this
case), so that this constraint is strictly guaranteed, the third decision to trigger the
online learning is considered as a catalyst to evolve the adaptation policy in a long-
term operation. It is not obvious to see the good performance of the online learning
after a certain learning time, but it needs an evaluating methodology for a long-term
operation.

Scenario 2: Dynamic Mission Priorities

- Hypothesis: While the three runs in the first scenario are deployed with static mis-
sion priorities where the priority of the navigation mission is always higher than
that of the server mission, we now present a scenario of dynamic mission priorities
where the user reacts at run-time with the system by explicitly modifying them as
presented in Table 6.9.

TABLE 6.9: Dynamic mission’s priorities during operation.

Time t 1 - 10 11 - 15 16 - 30
Priority of navigation 1 0 1
Priority of server 0 1 0

- Analysis: In this scenario of 30 minutes (Figure 6.7), the navigation mission starts
with the highest priority and then the priorities of the two missions are reversed
in the interval from 11 to 15 minutes. From 16 minutes on, the priorities of the
two missions return to their initial levels. We can see that our multi-mission man-
ager dynamically takes this change into account to reallocate the appropriate com-
puting power budget for each mission. The decision of the multi-mission manager
must guarantee that the mission with a higher priority will have a higher computing
power consumption mode and that the constraint in Equation 5.1 is satisfied. Thus,
from 11 to 15 minutes, the video server mission is operating at the high computing
power mode while the power mode of the navigation mission is reduced to the low
mode. We can also see that the characteristic of the computing power consumption
of each mission is controlled to respect the reserved power budget.
- Conclusion: In a multi-mission context, the priority level of each mission can be
different and it can even be changed during operation by some internal or external
events. Our multi-mission manager has taken into account the dynamic priorities of
the missions to reallocate the appropriate power budget for each mission and then
contribute to the guarantee of the system-level constraints: the maximum computing
power capacity in this case.
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(A) System-level computing power
consumption controlled by the
Multi-Mission Manager

(B) Computing power consumption
of Navigation Mission.

(C) Computing power consumption
of Server Mission.

FIGURE 6.7: Multi-Mission Management in a scenario of dynamic mission priori-
ties. The priority of the navigation mission is higher than that of the
server mission from 1 to 10 minutes. Then, from 11 to 15 minutes, the
mission priorities are reversed and the computing power budget for
each mission is therefore reallocated. Similarly, from 16 minutes to the
end, the mission priorities are changed and the power budget is also
reallocated for each mission.

Scenario 3: Power Budget Are Not Enough For Two Missions

- Hypothesis: In this scenario, we would like to demonstrate that our multi-mission
manager can handle extremely low computing power budget even by turning some
missions to non-active modes. To do that, we assume that the total computing power
budget that can be shared between the robotic missions when the battery voltage
level reaches 11.7V (Table 6.3) is set to 3W and the priority of the navigation mission
is higher than the one of the video server mission.
- Analysis: The results of this scenario are depicted in Figure 6.8. We can see that the
two missions are active within the interval between 1 and 31 minutes and the com-
puting power budget for each mission is reallocated by the decision of the multi-
mission manager depending on the total power budget. From the episode 32, the
total power budget of 3W is not enough to deploy the two missions, even in their
low modes. In this case, the multi-mission manager decides to shutdown the video
server mission according to the equation 5.1 and to reallocate the entire power bud-
get to the navigation mission that changes its computing power mode to the high
mode.
- Conclusion: This scenario demonstrates the capability of our multi-mission man-
ager to be aware of the system-level constraints as well as the priority level of each
mission in the multi-mission context to prioritize the more important mission while
respecting the constraint.
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(A) System-level computing power
consumption controlled by the
Multi-Mission Manager

(B) Computing power consumption
of Navigation Mission.

(C) Computing power consumption
of Server Mission.

FIGURE 6.8: Multi-Mission Manager in a scenario of a deactivated mission. When
the battery voltage is greater than 11.7V, two missions are in normal
operation. When the battery voltage is less than or equal to 11.7V
from 32 minutes, the power budget of 3.00W is not enough for two
missions. Thus, the server mission is deactivated by the multi-mission
manager and the navigation mission returns to the high computing
power mode because the priority of the navigation mission is higher
than that of the server mission.

Scenario 4: Variability Management of A Video Server Mission

- Hypothesis: We aim to evaluate the performance of our run-time adaptation frame-
work to manage the variability of the robotic mission, a video server mission in this
case, in comparison to the static configuration. In this scenario, a video server mis-
sion is deployed for 60 minutes. From 1 to 5 minutes, there is only one visualization
request of a resolution 512× 5125. From 6 to 35 minutes, there are two requests of
a resolution 512× 512. From 36 to 60 minutes, there are also two requests, but one
of resolution 512 × 512 and one of resolution 1024 × 1024. These variabilities are
summarized in Table 6.10.

TABLE 6.10: Variability in user requests of a video server mission.

Time t 1 - 5 6 - 35 36 - 60
User re-
quests

1 of (512× 512) 2 of (512× 512) 1 of (512× 512), 1 of (1024× 1024)

The static configuration here is defined by crop_size = 400 and our run-time
adaptation includes the video server mission manager and the multi-mission man-
ager with the non-functional objectives determined in the high computing power

5See image parameters (width x height) on http://wiki.ros.org/web_video_server

http://wiki.ros.org/web_video_server
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(A) Level of NFRs violation and on-
line learning

(B) Computing power consumption. (C) Quality of service.

FIGURE 6.9: A comparison between run-time adaptation and static configuration
of the video server mission. From 1 to 5 minutes: 1 visualization re-
quest of 512 × 512. From 6 to 35 minutes: 2 visualization requests
of 512× 512. From 36 to 60 minutes: 2 visualization requests, one of
512× 512 and another of 1024× 1024.

mode as described in Table 6.2.
- Analysis: Figure 6.9 shows the results of the static configuration and the run-time
adaptation. With the static configuration, the quality of service as average resolution
is always 800, however the power consumption increases from 3.10W to 3.60W and
4.30W corresponding to the three mentioned changes of the mission. Our RTA takes
these changes into account while respecting the non-functional objectives to regulate
the desired level of QoS (Figure 6.9c) and/or to trigger the online learning to mini-
mize the level of NFR violations (Figure 6.9a). We also see that the mission’s power
consumption is controlled to respect the high computing power mode of 3.25W (Fig-
ure 6.9b).
- Conclusion: This scenario highlights again the advantage of our run-time adapta-
tion methodology by trading off the computing power consumption and the qual-
ity of service. Under different power budgets, the desired quality of service of the
robotic mission should be regulated to guarantee that the consumption does not sur-
pass the budget. In the case where the power budget is defined as a strict constraint,
using the run-time adaptation is indispensable.

Scenario 5: Run-Time Adaptation vs. Static Configuration

- Hypothesis: In this scenario, we aim to compare our proposed run-time adaptation
(RTA) methodology including DQN-based mission managers and the adaptive hier-
archical multi-mission manager (the same implementation as in the scenario 1) with
two static configurations of the two robotic missions. Indeed, these static configura-
tions are chosen in Section 4.8.5 while validating the DQN-based mission managers,
a configuration of {0.8m/s, 10Hz} for the navigation mission and a configuration
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of {400pixels} for the video server mission. For each case, static or RTA, we strive
to keep the same operational conditions such as dynamic obstacles, initial battery
capacity, etc. In each case, the two missions are also deployed in parallel and the
robotic system is operating until the battery recharging. No variability in the user
requests for the video server mission has been made. We will evaluate the auton-
omy duration of each case (static and RTA) as well as the obtained performance of
the two robotic missions.

FIGURE 6.10: System-level computing power consumption.

- Analysis: Figure 6.10 indicates the autonomy duration and the total computing
power consumption of each case. Indeed, the autonomy duration of the static case is
194 minutes while the one of the RTA case is a bit longer with 200 minutes. In terms
of the total computing power consumption of each case, we can see two different
characteristics: a fairly constant line (in blue) for the static case and a controlled line
(in green) respecting the total power budget for the RTA case. In fact, the total power
budget of the two cases is defined as the rule in Table 6.4. If the total power budget is
considered as a hard constraint, our proposed RTA guarantees well this constraint,
while the static configurations may never achieve this objective. As we can see in
terms of total consumed power, our RTA methodology can achieve a maximum gain
of 4.5W/3.7W ≈ 1.22 in comparison with the static configurations.

Figure 6.11 presents the computing power consumption and the quality of ser-
vice of the navigation mission in the two cases, static and RTA. For the static case, we
can see that the computing power consumption is fairly constant and the obtained
quality of service is mostly higher than the desired value. For the RTA case, the
characteristic of the power consumption and the quality of service is controlled to
minimize the violation of non-functional requirements. It is also important to note
that in this scenario we set only a simple configuration of dynamic obstacles in the
environment, the static case therefore can give the stable characteristic of power and
QoS. If we choose another configuration of dynamic obstacles, the obtained results
of the static case will be different. Hence, a controlled characteristic respecting non-
functional requirements given by our run-time adaptation will be appreciated.

Similar to the navigation mission, the characteristic of the computing power con-
sumption and the quality of service of the video server mission is shown in Fig-
ure 6.12. The constant characteristic is also found for the static case and the RTA
case gives the controlled characteristic to guarantee the changing of reserved com-
puting power budget.
- Conclusion: For concluding this scenario, we can realize that the static configuration
can give the better characteristic in some situations, but the controlled characteristic
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(A) Computing power consumption
(Static).

(B) Computing power consumption
(RTA).

(C) Quality of service (Static). (D) Quality of service (RTA).

FIGURE 6.11: Computing power consumption and quality of service of the naviga-
tion mission

(A) Computing power consumption
of (Static).

(B) Computing power consumption
(RTA).

(C) Quality of service (Static). (D) Quality of service (RTA).

FIGURE 6.12: Computing power consumption and quality of service of the video
server mission

given by our run-time adaptation framework is necessary to react to more dynamic
operational conditions while guaranteeing the non-functional requirements applied
to the robotic missions.
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6.2.3 Efficiency of Mission Managers and Multi-Mission Manager

Figures 6.13 and 6.14 characterize the power consumption of the DQN-based mis-
sion managers in the learning and planning phase in the real NVIDIA Jetson Xavier
embedded platform. In the learning phase, an average of 100mW and 120mW is the
corresponding power consumption of the navigation and server mission managers.
These values are respectively reduced to 70mW and 75mW in the planning phase of
the two mission managers without Q-Network updating process. In fact, the power
consumption is depending on the monitoring and adaptation period. The moni-
toring period of the two missions is chosen as 200ms, so we can see that the same
power consumption is found for the two missions both in the learning and planning
phase. The adaptation period of the navigation mission is 2s and the one of the video
server mission is 1s. Hence, we can realize that the power consumption of the video

(A) Power consumption of Naviga-
tion Mission Manager: 100mW in
average.

(B) Power consumption of Server Mis-
sion Manager: 120mW in average.

FIGURE 6.13: Power consumption of Mission Managers in the learning phase.

(A) Power consumption of Naviga-
tion Mission Manager: 70mW in
average.

(B) Power consumption of Server Mis-
sion Manager: 75mW in average.

FIGURE 6.14: Power consumption of Mission Managers in the planning phase.

FIGURE 6.15: Power consumption of Multi-Mission Manager: 25mW in average.
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server mission manager is higher than the one of the navigation mission manager.
Figure 6.15 indicates the power consumption of the multi-mission manager. We can
realize that this multi-mission manager consumes approximately 25mW in average.
These energy overhead costs can be considered low enough to be deployed in the
embedded context.

6.3 Towards A More Complex Multi-Mission Context

In this experimentation, we would like to propose a more complex multi-mission
context with the addition of a semantic environment understanding mission. Fig-
ure 6.16 illustrates an example of the functionality of this third mission while the
robot is navigating. To integrate this mission into the multi-mission manager, we
need firstly to deploy the learning phase to find the adaptation models for the se-
mantic mission manager in Section 6.3.1. The experimentation methodology and
our expectations are finally presented in Sections 6.3.2.

6.3.1 Semantic Environment Understanding Mission Manager

In this section, we present the experimental results of a DQN-based semantic envi-
ronment understanding mission manager that was not deployed in our simulation
framework because of the complexity of adding realistic objects and persons in the

FIGURE 6.16: Integration of a semantic environment understanding mission into
the multi-mission context on the real robotic platform. The robot is
navigating from A to B and the semantic mission is in charge of de-
tecting and recognizing the objects including people in the environ-
ment.
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simulation environment. The characterization of this mission was presented in Sec-
tion 3.6.3. We will state and formulate the problem for this mission manager and
then implement and deploy the learning phase in the Xavier platform. The adapta-
tion models (Q-Networks) learned during this learning phase will be then used as
an initialization for the online learning process.

Problem Statement

The functional objective of the semantic environment understanding mission is to
detect and recognize the objects including people in front of the robot (Figure 6.16).
A set of three non-functional goals GSem_Mission can be applied to this mission:

GSem_Mission = {mAPmean_min, Pc_mean_maxFPSmean_min} (6.1)

Where,

• mAPmean_min means the miminum mean detection accuracy;

• Pc_mean_max is the maximum mean computing power consumption;

• FPSmean_min is the minimum mean frame rate.

The configuration knobs of the semantic mission are defined by the type of YOLO
models used for the inference: KSem_Mission = {type_net}, where type_net ∈ {Yolov3−
tiny, Yolov3− 160, Yolov3− 288, Yolov3− 416} (see Section 3.6 for more details about
these YOLO models).

Problem Formulation

Following the generic pattern in Section 4.3.3, we will formulate the problem of the
DQN-based semantic mission manager with three main steps below.

State Space Formulation. In this mission, three internal observations related to
the three non-functional requirements will be monitored: mean detection accuracy,
mean computing power consumption and mean frame rate. Then, the external situation
is evaluated by the number of persons detected in the scene. We now propose 4 run-time
metrics representing the state space of the DQN-based semantic mission manager:

• mp1 =inverse of mean detection accuracy;

• me2 =mean computing power consumption;

• mo1 =inverse of mean frame rate;

• mext =mean number of persons detected by YOLO.

Action Space Formulation. The action space is also defined as the configuration
knobs KSem_Mission = {type_net} as shown in Table 6.11.

TABLE 6.11: Action space of Deep Q-Learning based Semantic Mission Manager:
configuration knobs KSem_Mission = {type_net}.

K1 K2 K3 K4
Yolov3-tiny Yolov3-160 Yolov3-288 Yolov3-416

Reward Function Formulation. The reward function determines the level of
non-functional goal violation of the mission. Therefore, three run-time metrics mp1,
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me2 and mo1 are used to calculate the reward as mentioned in two equations 4.16
and 4.17. These goals are considered with the same importance weights and these
weights are set to 1.0.

Implementation

As a capability of generalization of our methodology, the same architecture and tech-
nique of Q-Network as shown in Table 4.8 are used for this third mission by only
changing the size of the input and output layers. The Q-Network of the semantic
mission manager has 4 inputs and 4 outputs. Thus, the weight matrix θsem has

(4× 64 + 64) + (64× 64 + 64) + (64× 64 + 64) + (64× 4 + 4) = 8900

weights. These weights are also floating-point numbers of 8 bytes, the Q-Network of
the semantic mission will therefore occupy approximately 8900× 8 bytes = 70 kBytes.

Learning Phase Deployment. The management of the mission is also realized
within episodes of 1 minute like the other missions. The adaptation time step is set
to 4 seconds for this mission, so there are 60/4 = 15 time steps or decision epochs
within an episode.

TABLE 6.12: Non-functional goals for Semantic Mission in the real experimenta-
tion.

NFRs Semantic Mission
Gper f _1 mAPmean_min = 50.0
Genergy_1
Genergy_2 Pc_mean_max = 21.0W(H)− 20.5W(M)− 20.0W(L)− 0W(O)
Gothers_1 FPSmean_min = 25.0Hz

Based on the real characterization results presented in Chapter 3, the NFRs de-
fined for the semantic mission are shown in Table 6.12. Three computing power con-
sumption modes are also defined. We deploy the learning phase for the high mode
and then apply the transfer learning technique (see Section 4.8.7) for the medium
and low modes. Due to the high power consumption of this mission, to have long
enough learning phases, we have recorded a set of navigation scenes (with objects
and persons) and their timestamped sensor data using rosbag6 and proceeded to
the learning on the Xavier board (plugged to the AC power) replaying the scene
databases.

TABLE 6.13: Parameters for exploration and exploitation for the learning phase of
a DQN-based Semantic Mission Manager.

εmax εmin εdecay

0.5 0.01 0.001

Learning Results. Figure 6.17 and 6.18 show the results of the learning phase for
the semantic mission manager at the high computing power mode during 300 learn-
ing episodes with the exploration-exploitation parameters defined in Table 6.13.
We can realize the evolution of the average max Q-value and the average reward

6See http://wiki.ros.org/rosbag

http://wiki.ros.org/rosbag
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(A) Average max Q-value of Semantic
Mission.

(B) Average reward per time step of
Semantic Mission.

(C) Level of NFRs violation of Seman-
tic Mission.

FIGURE 6.17: Learning phase results of a DQN-based semantic mission manager at
the High computing power mode.

(A) Average detection accuracy mea-
sured by mAP.

(B) Average computing power con-
sumption.

(C) Average frame rate.

FIGURE 6.18: Learning phase results of a semantic mission manager at the High
computing power mode: non-functional requirements.

per time step as well as the reduction of the level of NFRs violation over learn-
ing episodes in Figure 6.17. If we increase the number of learning episodes, the Q-
values can continue increasing. However, we accept the current performance with
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a constant trend of the obtained reward and the level of NFRs violation. Figure 6.18
shows the characteristic of the three non-functional goals of the mission over learn-
ing episodes with the red lines indicating the reference values and the green lines in-
dicating the measured values. At this high computing power mode, the constraints
of the computing power and the frame rate are quite light, so they can be satisfied
throughout the learning time. While the detection accuracy as a desired quality of
service requires the entire learning time to be satisfied.

Discussion

Unlike DQN-based mission managers of the navigation mission and the video server
mission whose learning phase can be deployed in the simulation framework and
reused in the real framework, the learning phase of the DQN-based semantic mis-
sion manager is deployed in the real framework using the recorded scene databases.
The generic pattern of the problem formulation and the architecture of Q-Network
can be easily applied to this mission. The Q-value and reward features are similar to
those of the navigation and video server mission managers presented in Chapter 4.
Thus, the effectiveness of our proposed mission manager based on DQN is validated
once again. The learned adaptation models of this mission are then integrated into
the multi-mission context. The next sections will present the methodology of the
second experimentation.

6.3.2 Experimentation Methodology

A Context of Three Robotic Missions in Parallel

Section 6.2 presents the experimentation of a navigation mission and a video server
mission in parallel. The functionalities of our multi-mission manager have been suc-
cessfully validated by the five different scenarios. In this experimentation, with the

FIGURE 6.19: An initialization of the case database for the navigation mission, the
server mission and the semantic mission in the real experimentation.
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addition of the third mission such as a semantic environment understanding mis-
sion, we propose a more complex scenario where three missions including a nav-
igation mission, a server mission and a semantic mission are deployed in parallel.
An initialization of the case database in this scenario is presented in Figure 6.19.
This case database can evolve at run-time using the online learning capability of our
methodology as presented in the previous chapter. The system-level constraint such
as maximum computing power capacity is also simulated as shown in Table 6.14.
Indeed, these values are chosen in a subjective way in order to demonstrate the dif-
ferent behaviours of the multi-mission context. Based on this power capacity as well
as the current mission priorities, our multi-mission manager will decide to reallo-
cate the computing power budget or change the computing power mode for each
mission.

TABLE 6.14: Maximum power capacity vs. battery state in case of three missions: a
navigation mission, a video server mission and a semantic mission.

Battery State 0 1 2 3 4

P∑
c_max 26.0W 24.0W 22.0W 10.0W 5.0W

Perspective

The objective of this experimentation is to further demonstrate the generalization of
our management methodology in the multi-mission context. We have successfully
integrated the semantic mission into the mutli-mission context and our robotic sys-
tem has been available for this demonstration. However, at the time of writing this
manuscript, the results of this experimentation are not available and they are not
documented in this manuscript, and we hope to complete this demonstration and
present it at the time of the thesis defense.

6.4 Summary

This chapter presents a set of experimentations of a mobile robotics platform in a real
environment aiming to validate the proposed QoS and power management method-
ology. The validation scenarii demonstrate the reactivity to internal events (battery
decreasing power budget) or external ones (user changes in mission’s priorities, in
mission’s requests) with the objective of guaranteeing the total system power bud-
get. The robustness of our methodology is proven by the coherency between sim-
ulation and real-world results. In addition, through the ability to learn online, our
mission managers can deal with many real unforeseen scenarios and evolve their
adaptation policy over time. These managers therefore contribute to the long-term
autonomy of mobile robotic systems. Indeed, a maximum gain of 1.22 (equivalent
to an efficiency gain of 22%) in terms of system-level computing power consump-
tion is achieved while comparing our run-time adaptation methodology with the
static configurations. In a context of three robotic missions including a navigation
mission, a server mission and a semantic mission, an extra control subsystem power
consumption (with three mission managers and a multi-mission manager) is esti-
mated as 245mW representing 0.94% of the 26W total power budget reserved to all
the three missions. Finally, a perspective of a more complex multi-mission context
is opened up, which will constitute an interesting demonstration during the thesis
defense.
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The last chapter will conclude our thesis with a general discussion in Section 7.1.
In Section 7.2, we provide an evaluation on the maintainability of our management
framework including the modularity, the reusability and the extendability, and on
the generalization of our proposed methodology. Finally, we will discuss the current
limitations of our methodology and propose future directions for the research in
Section 7.3.

7.1 General Conclusions

The objective of this thesis is to contribute to the autonomy of mobile robotic systems
by guaranteeing the non-functional requirements such as quality of service and en-
ergy efficiency. The fundamental problem is how to reconfigure dynamically some
key parameters of the robotic missions under dynamic operational conditions while
respecting the non-functional requirements. Our research is realized via three main
steps as well as three main contributions: Robotic Mission Characterization, NFR-
Aware Self-Adaptive Mission Manager and Multi-Mission Manager.

• Robotic Mission Characterization. In our thesis, we approach a robotic mis-
sion from a new perspective where the mission is at the highest level of abstrac-
tion in a robotic system. At this level, we focus on the overall performance and
resource consumption of all mission components such as sensors, actuators
and high-level applications. For a robotic mission, the functional and non-
functional requirements can be applied. The non-functional requirements we
consider for a robotic mission are mission-specific performance such as qual-
ity of service, energy consumption for sensing, acting and computing parts
and other requirements such as safety, security, etc. In fact, many dynamic fac-
tors in the operational conditions of the robotic systems can have an impact on
these non-functional requirements. A reconfiguration capability is therefore
required to ensure these requirements. In a robotic system, the reconfiguration
techniques can be applied at the mission level, such as adapting appropriate
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components and their parameters. At the computing system level, the mis-
sion’s computing resources can be reallocated or the operating point can also
be adjusted. In general, the result of the robotic mission characterization is a
set of reconfiguration techniques used to modify the non-functional properties
of the mission. As case studies, we characterized three robotic missions: an au-
tonomous navigation mission, a video server mission and a semantic environ-
ment understanding mission. These characterization results highlighted the
motivation for the adaptation at run-time with the NFR-Aware Self-Adaptive
Mission Manager;

• NFR-Aware Self-Adaptive Mission Manager. Our second contribution ad-
dresses the Self-Adaptive Mission Manager. With a set of non-functional re-
quirements such as quality of service and energy consumption applied to the
mission, the self-adaptive mission manager determines how to reconfigure the
mission under dynamic operational conditions to ensure these requirements.
This manager is composed of three main elements: a monitoring element, a
decision-making element and a reconfiguring element. The monitoring ele-
ment is responsible for perceiving the internal and external context of the mis-
sion and the reconfiguring element changes dynamically the mission configu-
ration. The decision-making element that has the adaptation policy mapping
states and actions is the core of the mission manager. In our thesis, we formu-
lated the decision-making problems as Markov Decision Processes and pro-
posed the algorithms based on Q-Learning and Deep Q-Learning to resolve
these problems. The methodology was validated both in simulation and real
frameworks and the results proved the robustness of our methodology. The
energy consumption costs of the mission managers have been characterized
and they have also proven the feasibility of deployment in an embedded con-
text such as a NVIDIA Jetson Xavier embedded platform;

• Adaptive and Hierarchical Multi-Mission Manager. Finally, we also pro-
posed a hierarchical management for managing the multi-mission context with
shared resources and different priorities. At the global level, a multi-mission
manager monitors the state of the shared resources, the state of the missions
and their priorities to decide whether to reallocate resources to missions, pro-
mote or degrade their quality of service or to trigger the online learning ca-
pability of the mission managers. The problem of changing non-functional
requirements is also resolved by the case-based reasoning technique. We have
successfully validated the multi-mission manager for both simulated and real
scenarios of a navigation mission and a video server mission in parallel.

7.2 Maintainability and Generalization of Our Framework

7.2.1 Maintainability

Our methodology has been prototyped both in the simulation and in the real robotic
framework. In this section, we provide a discussion on the maintainability of our
management framework with three main axis including the modularity, the reusabil-
ity and the extendability as follows:

• Modularity. Our framework is developed with the aids of the robotic firmware
ROS that is component-based, modularized and distributed. Thus, our system
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is modularized and organized in the form of ROS nodes. For example, a mis-
sion manager employs three ROS nodes: a node for the monitoring part, a
node for the decision-making part and a node for the executing part, while
the multi-mission manager employs a single ROS node where the monitoring,
decision-making and executing parts are realized inside this node. The com-
munication between these nodes is realized via the message-passing mecha-
nism. Changing the algorithm in a node do not influence the others as long as
the message format is the same between publishers and subscribers;

• Reusability. Our ROS-based framework also facilitates the reusability. Indeed,
for the mission managers, while the monitoring and executing parts are spe-
cific to the missions with different monitored metrics and key parameters, the
decision-making parts can be reused. For example, the algorithm and the ar-
chitecture of Q-Networks have been the same for the three mentioned robotic
missions;

• Extendability. This point discusses the extendability as well as the scalability
of the multi-mission manager when we have to integrate a new robotic mis-
sion. To consider the run-time adaptation capability for a new mission, we
must follow a generic workflow including mission characterization to find the
mission knowledge such as the characteristic of quality of service, energy con-
sumption, configuration knobs, reinforcement learning based problem formu-
lation according to the generic pattern as described in Figure 4.2 and learning
phase deployment to find its adaptation models. Once the mission’s adapta-
tion models are found, we will integrate this mission into the multi-mission
context. This generic workflow is described in Figure 7.1. Currently, our pro-
posed multi-mission manager is not a plug-and-play mechanism. It means that
we need to add some extra codes related to the new mission such as integrat-
ing the case database of this mission, monitoring of the adaptation response
and sending the adaptation request to this new mission manager. However,
the algorithms (Algorithms 1 and 2) and the principles of the three decisions
(reallocating the power budget, throttling the desired quality of service and
triggering the online learning) of the multi-mission manager would not be
changed. Moreover, we tried to provide some generic functions to make the
implementation more efficient. To reduce this current limitation and increase
the scalability of our multi-mission manager, the ROS pluginlib1 that supports
the dynamic loading of software modules is one of our perspective.

FIGURE 7.1: A generic workflow to integrate a new robotic mission into the adap-
tive and hierarchical multi-mission context management.

1http://wiki.ros.org/pluginlib

http://wiki.ros.org/pluginlib
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7.2.2 Generalization

The three above points (modularity, reusability and extendability) discuss the aspect
of the software implementation of our management framework. In this section, we
aim to discuss the generalization of our proposed methodology with the following
points:

• Mission Characterization. The characterization process may be different for
each mission. For example, for a navigation mission and a video server mis-
sion, we can deploy the characterization process in the simulation framework,
while for a semantic environment understanding mission, we must record a
scene database and deploy the characterization on the real robot computing
platform (NVIDIA Xavier). This difference is due to the fact that it is easy to
simulate a mission in a simulator or not, for example, adding real objects and
people detected by the semantic mission in a Gazebo simulator is not trivial.
In addition, if a mission requires the calculation on a GPU hardware (or a spe-
cialized computing hardware in general) such as the semantic mission and the
simulation framework does not have this type of hardware, we must deploy
the characterization process on the real robot’s computing platform. Thus, un-
derstanding the domain of a new robotic mission is necessary to choose the
best way to characterize the mission;

• Mission Knowledge. As presented in Section 4.3, the mission knowledge is
obtained through an offline characterization process and is used for the run-
time adaptation algorithm (Figure 7.2). Knowledge of the mission is obviously
specific to each mission. When considering the mission quality of service as-
pect (or mission-specific performance), the average robot speed is chosen to
imply the quality of service of a navigation mission, while the average res-
olution of encoded output images is chosen for a video server mission and
the neural network detection accuracy is defined as the quality of service of
a semantic environment understanding mission. These metrics depend a lot
on the mission, sometimes on the wishes of the system designer, and we also
need a mission-specific way to monitor them. For example, we need the in-
formation provided by odometers to estimate the average speed of the robot
for the navigation mission, or we need to probe the application codes to obtain
the average resolution of the encoded images of the video server mission, or
a linear estimation model of the detection accuracy can be useful for the se-
mantic mission. Thus, for a new robotic mission, we may not understand the
application algorithm, but we need to know its concept of quality of service

FIGURE 7.2: Mission knowledge used for the run-time adaptation algorithm.
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and how we can monitor it. There is no common tool or probe to monitor this
type of mission-specific metric. This is similar to other mission-specific met-
rics, such as the distance to obstacles for a navigation mission, the number of
people detected by a semantic mission, etc. For metrics related to the energy
consumption of a robotic mission, the sensing and acting part is specific to the
type of sensors and actuators. For the computing power part, with the help
of PowerAPI (Appendix C), we tried to provide a common tool to monitor the
computing power consumption of a mission as long as the mission processes
are identified. The other mission specific knowledge parameters are the config-
uration knobs that have real impact on the main non-functional requirements.
Once we have set the performance, energy and extra goals of the new mission
to integrate along with its configuration knobs, the Monitoring, Analyzing and
Planning and Executing blocks of Figure 7.2 can be simply adapted to target
this new mission;

• Multi-Mission Context. In the multi-mission context where multiple robotic
missions can be deployed simultaneously and on the same robotic platform,
we have assumed that each mission is independent of each other, and it can be
characterized in isolation of the others. The generalization of this procedure
is viable while this assumption is verified and the interference between the
missions can be ignored. The interference occurs mainly in the computing
platform of the robotic system where a robotic mission is deployed in the form
of a multi-process computing workload. An interference management at the
computing platform level is currently outside the scope of our thesis. Thus,
to minimize this type of interference, we must ensure that the total computing
workload of all the robotic missions does not cause an overload (for example
CPU or memory overload) for the computing platform;

• Online Planning. In our thesis, we target a hybrid planning strategy (see Sec-
tion 2.2.3) where the adaptation plan/policy is found via an offline learning
phase in simulation (such as for the navigation mission and the video server
mission), or on a real platform with a recorded scene database (such as the se-
mantic environment understanding mission), and this policy can then evolve
during mission operation on the real robotic platform thanks to the online
training capability. However, if we cannot deploy the offline learning phase
to find the adaptation policy (for example, a recorded scene database is not
available for the semantic mission), we can deploy the learning phase (with the
online learning) during mission operation on the real robotic platform thanks
to our proposed approach base on the reinforcement learning. This planning
strategy is therefore known as online planning. However, in this case, we must
accept an additional cost in terms of energy and time for the learning algorithm
to converge.

7.3 Limitations and Future Work

Although our methodology has been successfully validated in both simulation and
real-world experimentation, our first original study on the problem of quality of ser-
vice and energy management in robotic systems still has some drawbacks as follows:

• Firstly, our perspective on the characterization of a robotic mission is different
from traditional approaches, which are usually based on robotic tasks, con-
trol architecture or robotic planner. With this approach, we strive to hide the
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complex details of a robotic system and improve the generalization of the man-
agement framework. However, this perspective is not always consistent with
the approaches of other robotics researchers. Thus, a quantifiable assessment
with the state of the art is our current difficulty. In addition, the characteriza-
tion process is currently not automated. A systematic approach is proposed
for this process. However, it is a non-trivial problem. Therefore, one of the fu-
ture work is to propose an automated characterization process that facilitates
the quantifiable evaluation with the state of the art and better convinces the
robotics community about our proposed terminologies;

• Secondly, our management methodology is data-driven, not event-driven as
mentioned in Section 3.4. This means that the necessary metrics are monitored,
not events. We can predict which metrics to be changed by an event, but we
cannot use the monitored metrics to determine which events have occurred.
Thus, reasoning on the decisions given by the mission managers is difficult,
even impossible. Another future work on combining data-event and root cause
analysis to resolve this difficulty is also planned;

• Thirdly, as we can see in Figure 3.6, many configuration knobs can be used to
handle the problem of guaranteeing non-functional requirements. We limit the
scope of this thesis to the adaptation in the parameter space of mission’s ap-
plications. However, the adaptation at the level of sensors such as acquisition
frequency and operating mode, and the adaptation at the computing platform
level such as computing core allocation, power modes, etc can contribute sig-
nificantly to the energy efficiency of the whole robotic system;

• Finally, as mentioned in Chapter 4, the choice of hyper-parameters of the Deep
Q-Learning algorithm deserves a careful effort to ensure the learning perfor-
mance and convergence speed. In addition, a methodology to assess the per-
formance of the online learning on the long-term adaptation will be welcomed;

Our thesis focuses on two properties of autonomous systems such as the mis-
sion’s quality of service and energy efficiency. Our methodology assumes the nor-
mal operation of these systems and the management framework dynamically recon-
figures some key mission parameters to address the dynamic operational conditions
that influence non-functional requirements. These dynamic conditions did not take
into account critical events such as possible failures of sensors, actuators, computing
hardware, or unreliability of high-level applications. These critical events can lead to
accidents or serious damage, for example in the case of self-driving cars. Making an
autonomous system safer and more reliable is really a big concern in the robotics re-
search community. The run-time adaptation is also necessary in these scenarios due
to many dynamic operational conditions. However, the safety constraint is now a
critical and harsh constraint. The improvement of our run-time management frame-
work to guarantee safety constraints is therefore one of our research perspectives.
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Appendix A

Characteristics of NVIDIA Jetson
AGX Xavier

Main Characteristics

Launched in 2018, Jetson AGX Xavier is a high-performance embedded platform
designed by NVIDIA (Figure A.1). This platform, equipped with an 8-core 64-bit
ARM processor, a 512-core Volta GPU and deep learning and vision accelerators, as
well as its development kit, allows us to develop and deploy end-to-end AI robotics
applications with real-time performance and low power consumption. Its main tech
specifications are found in Table A.1.

FIGURE A.1: NVIDIA Jetson AGX Xavier (reprinted from NVIDIA).

TABLE A.1: Tech specifications of NVIDIA Jetson Xavier (collected from NVIDIA).

AI Performance 32 TOPs
GPU 512-core Volta GPU with Tensor Cores
CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3
Memory 16GB 256-bit LPDDR4x | 137GB/s
Storage 32GB eMMC 5.1
DL Accelerator (2x) NVDLA Engines
Vision Accelerator 7-way VLIW Vision Processor
Encoder/Decoder (2x) 4Kp60 | HEVC/(2x) 4Kp60 | 12-Bit Support
Size 105 mm x 105 mm
TDP 30W (typical 20W)
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System-Level Monitor

The Jetpack in the Jetson AGX Xavier development kit (in its version 4.2) provides
a utility called tegrastats that reports memory usage, processor usage and power
consumption. The main statistics provided by this utility are presented in Table A.2.

TABLE A.2: Main statistics provided by tegrastats utility.

Component Statistics

RAM
use of RAM, total amount of RAM available, largest size of free
block, amount of free blocks of largest size

CPU
load statistics of each core, frequency of each core, temperature,
current power consumption, average power consumption

GPU
temperature, current power consumption, average power con-
sumption

DLA & VA current power consumption, average power consumption
DDR current power consumption, average power consumption
SOC current power consumption, average power consumption
SYS5V current power consumtpion, average power consumption

The power consumption of the Xavier can then be estimated by summing the
power consumption of components such as CPU, GPU, DLA&VA, DDR, SOC and
SYS5V as the following equation:

PXavier = PCPU + PGPU + PDLA&VA + PDDR + PSOC + PSYS5V (A.1)

However, this power model does not take into account external devices con-
nected to the Xavier such as LIDAR, Kinect sensors, etc. In fact, the communication
between Xavier and external devices consumes a lot of energy. Thus, a more precise
model would be defined as follows:

PXavier = PCPU + PGPU + PDLA&VA + PDDR + PSOC + PSYS5V + PComm_Ext_Devices (A.2)

Where PComm_Ext_Devices is the power consumption reserved for communicating with
the external devices. We can use a Yocto-Watt wattmeter to estimate this power
consumption (Appendix D).

FIGURE A.2: Tegra statistics published in a ROS message.
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Publish System Statistics in a ROS Message

For the objective of run-time monitoring, we develop a ROS node named tegras-
tats_ros_node and publish periodically some necessary statistics provided by tegras-
tats in a ROS message as described in Figure A.2. The default monitoring period of
the tegrastats is 1000ms. However, we provide a finer monitoring period of 200ms.
Thus, the system statistics are periodically published every 200ms.
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Appendix B

Characteristics of Pioneer-3DX

Main Characteristics

Pioneer-3DX designed by Adept Mobile Robots is a small lightweight two-wheel
two-motor differential drive robot ideal for the research and the education [MobileR-
obots, 2006]. This mobile base is equipped with sonars, bumpers, wheel encoders, a
microcontroller for low-level control, and battery modules. Its main characteristics
are presented in Table B.1.

TABLE B.1: Main characteristics of Pioneer-3DX.

Operation
Robot Weight: 9kg
Operating Payload: 17kg

Diff. Drive Movement
Max. Forward/Backward Speed: 1.2m/s
Rotation Speed: 300o/s

Power

Run Time: 8-10 hours w/3 batteries without ac-
cessories, 3-4 hours with accessories and onboard
computer
Charge Time: 12 hours
Available Power Supplies: 5V @ 1.5A, 12V @ 2.5A

Batteries
Supports up to 3 at a time
Voltage: 12V
Capacity: 7.2Ah (each)

Battery Voltage State
Full charge: ≥ 12.5V
Low battery threshold: 11.5V
Shutdown threshold: 11.0V

ROSARIA

ARIA provides a software framework for controlling as well as receiving data from
all MobileRobots platforms. And ROSARIA1 is a wrapper of ARIA for interfacing
with the ROS system. A ROS node named RosAria will subscribe the velocity com-
mands to control motors and publish the information related to all embedded sen-
sors and the state of motors. For the batteries, it publishes the battery voltage and
the state of battery recharge (recharging or not), but the remaining state of charge is
not given. We need therefore a watt-meter to measure the power consumption from
the robot’s batteries.

1See http://wiki.ros.org/ROSARIA

http://wiki.ros.org/ROSARIA
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Appendix C

Process-Level Power Estimation
with PowerAPI

Overview of PowerAPI

PowerAPI1 is a system library providing a programming interface (API) to monitor
at run-time the power consumption of software at the granularity of system pro-
cesses [Noureddine, Rouvoy, and Seinturier, 2015]. Each process is considered as
an independent entity. Thus, if an application or a software has two processes, the
power consumption of this application is the sum of power consumption of these
two processes. The power consumption of a software Pso f tware is estimated from two
sources as defined follows

Pso f tware = Pcomp + Pcomm, (C.1)

where, Pcomp means the CPU power consumed by software and Pcomm is equal to the
power consumed by the network card for transmitting software’s data.

Process-Level Power Monitor ROS Node

We develop a ROS node named powerapi_ros_node to monitor and publish the power
consumption of a specific process to the ROS system. This ROS node takes two
parameters, one for the PID of process that we want to monitor and other for the
monitor interval.

Mission’s Computing Power Consumption

Mission Not Using GPU

As mentioned in Section 3.2.2, a robotic mission includes many application pro-
cesses. In this case, these applications do not use the GPU. By determining the PIDs
of these processes, we can monitor the power consumption of these processes with
the powerapi_ros_node and then, the power consumption of the robotic mission is the
sum of power consumption of these processes.

Mission Using GPU

In this case, the mission’s applications are executed both in the CPU and GPU. Pow-
erAPI provides only the computing power consumption on the CPU. So, we need

1See https://github.com/powerapi-ng/powerapi-scala

https://github.com/powerapi-ng/powerapi-scala
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another tool for estimating the power consumption on the GPU. In our thesis, we
assume that there is only a mission executed in the GPU, so the total power con-
sumption of GPU is reserved for this mission. This GPU power consumption can be
measured by the tegrastats utility as presented in Appendix A. Finally, the mission’s
computing power consumption is the sum of CPU power consumption estimated
by PowerAPI and GPU power consumption estimated by tegrastats.
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Appendix D

Power Measurement with
Yocto-Watt

Yocto-Watt1 is a digital wattmeter that allows us to monitor the power consumption
of electrical devices. The energy consumption information can then be transferred
to the computer via USB.

Measuring Overall Power Consumption

Figure D.1 indicates the installation of Yocto-Watt in the Pioneer-3DX mobile base to
measure the power consumption of the robot batteries. The battery output is con-
nected to the Yocto-Watt input and the Yocto-Watt output is connected to the power
board that powers the entire robotic system. We then connect the Yocto-Watt with
the Xavier via a USB cable and use the C++ API to obtain the Yocto-Watt measure-
ments.

FIGURE D.1: Install Yocto-Watt in Pioneer-3DX mobile base.

Yocto-Watt measures the overall power consumption of the components pow-
ered by the robot’s batteries (PBatt):

PBatt = Pmotors + Pembedded_processor + PKinect + PLIDAR + PXavier (D.1)

1See http://www.yoctopuce.com/EN/products/capteurs-electriques-usb/yocto-watt

http://www.yoctopuce.com/EN/products/capteurs-electriques-usb/yocto-watt


156 Appendix D. Power Measurement with Yocto-Watt

Where Pmotors is the power consumption of motors, Pembedded_processor is the power
consumption of embedded microcontroller inside the mobile base for low-level con-
troller, PKinect, PLIDAR and PXavier are correspondingly the power consumption of
Kinect, LIDAR sensors and Xavier board.

Estimating Each Component’s Power Consumption

By using Yocto-Watt, we would like also to estimate the power consumption of the
components such as Kinect sensor, LIDAR scanner as well as the power consump-
tion reserved for the communication between these components and the Xavier
board (PComm_Ext_Devices as mentioned in Equation A.2). For sake of simplicity, the
power consumption of these components are then considered as static (see Sec-
tion 3.2.3). The power consumption of the robot motors and their embedded proces-
sor is considered in an unified part and it represents the acting power consumption
of the navigation mission Pnavigation

acting :

Pnavigation
acting = Pmotors + Pembedded_processor (D.2)

For measuring the power consumption of a component such as Kinect sensor or
LIDAR scanner, the Yocto-Watt is intertwined between the component and its power
supply. The measured results of the two components are shown in Figure D.2. We
can realize that the power consumption of the two components is almost unchanged.

(A) Power consumption of Kinect sen-
sor: 3.00± 0.02W.

(B) Power consumption of LIDAR
scanner: 3.06± 0.00W.

FIGURE D.2: Estimated power consumption of Kinect and LIDAR sensors using
Yocto-Watt.

To estimate the power consumption reserved for the communication between the
Xavier board and its external devices such as Kinect, LIDAR and robot’s embedded
processor, we place the Yocto-Watt between the Xavier board and its power supply.
Then, we connect each external device in turn to the Xavier board and calculate the
difference in power consumption between without and with the external device. We
determine four cases:

• Init: This case indicates the initial configuration of the Xavier board with the
external devices such as USB hub, USB wifi and Yocto-Watt;

• Init + Kinect: This case includes the initial configuration and a Kinect sensor
connecting to the Xavier board;

• Init + LIDAR: This case includes the initial configuration and a LIDAR scanner
connecting to the Xavier board;
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• Init + Robot’s Processor: This case includes the initial configuration and a
robot’s embedded processor connecting to the Xavier board.

The measurement results of the four cases are presented in Figure D.3. Finally, the
power consumption reserved for the communication between the Xavier board and
each individual component is calculated by the difference in power consumption of
these cases and is shown in Table D.1.

FIGURE D.3: Power consumption reserved for the communication between the
Xavier board and its external devices.

TABLE D.1: Power consumption for the communication between the Xavier board
and its external devices.

PComm_Init PComm_Kinect PComm_LIDAR PComm_RobotProcessor

3.35W 1.23W 0.18W 0.17W

Validation of Sensing and Acting Power Consumption Model
of Navigation Mission

We aim to provide an assessment on the model of sensing and acting power con-
sumption of the navigation mission that we used for the simulation framework as
presented in Table 3.1. In fact, this model is defined as

Pnavigation
sensing&acting = Pmotors + PController + PLIDAR = 6.25v2 + 9.79v + 8.67W (D.3)

Where Pnavigation
sensing&acting is the estimated sensing and acting power consumption of the

navigation mission (in Watts), Pmotors is the estimated robot motors power consump-
tion, PController is the estimated robot controller power consumption (in Watts), PLIDAR
is the estimated LIDAR laser scanner power consumption (in Watts), and v is the
robot speed (in m/s). And we now use the measurement by a Yocto-Watt wattmeter
to compare with this power model.

In Figure D.4, we present three cases of the maximum robot speed (vmax), 0.5,
0.65 and 0.8m/s. We can see that at the different robot speeds, the sensing and
acting power consumption of the navigation mission is also different and we can
say that the robot speed is a knob to change the characteristic of the power con-
sumption. When comparing with the power estimation model, we can realize that
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(A) At the robot speed of 0.5m/s. (B) At the robot speed of 0.65m/s.

(C) At the robot speed of 0.80m/s.

FIGURE D.4: Validation of sensing and acting power consumption model of a nav-
igation mission: speed indicates the current speed of the robot in m/s
(blue points), est_sa_nav_power is the estimated value according to the
equation D.3 (red points) and mea_sa_nav_power indicates the mea-
sured value (green points).

the estimated values are fairly constant when the robot speeds are less variable.
Whereas, the measured values are quite variable even the robot speeds are less vari-
able. However, if we consider the average values of the estimation model and the
measurement, we can obtain two nearly equal values. Indeed, in our management
framework, we consider the average values, not the instant values. Thus, the power
estimation model is verified and we can use this model both in the simulation frame-
work and in the real framework.
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Appendix E

List of Publications

The following is a list of publications resulting from the research work of this thesis.
Some of them have been published in national and international conferences and
another is accepted to appear in an international journal.

International Journal

• Dinh-Khanh HO, Karim BEN CHEHIDA, Benoit MIRAMOND, and Michel
AUGUIN, Learning-Based Adaptive Management of QoS and Energy for Mobile
Robotic Missions, International Journal of Semantic Computing, vol. 13, no.
4, 2019.

International Conference

• Dinh-Khanh HO, Karim BEN CHEHIDA, Benoit MIRAMOND, and Michel
AUGUIN, QoS and Energy-Aware Run-time Adaptation for Mobile Robotic Mis-
sions: A Learning Approach, 2019 IEEE International Conference on Robotic
Computing, 10.1109/IRC.2019.00039;

• Dinh-Khanh HO, Karim BEN CHEHIDA, Benoit MIRAMOND, and Michel
AUGUIN, Towards A Multi-Mission QoS and Energy Manager for Autonomous
Mobile Robots, 2018 IEEE International Conference on Robotic Computing, 10.
1109/IRC.2018.00057.

National Conference

• Dinh-Khanh HO, Karim BEN CHEHIDA, Benoit MIRAMOND, and Michel
AUGUIN, Towards A Multi-Mission QoS and Energy Manager for Autonomous
Mobile Robotic Systems, 13th National Conference on Software and Hardware
Architectures for Robots Control, sharc2018.sciencesconf.org.

We are currently working on the publication of our original materials of the
DQN-based Mission Manager, the Multi-Mission Manager and the real experimen-
tation results in IEEE Transactions on Robotics (T-RO).

10.1109/IRC.2019.00039
10.1109/IRC.2018.00057
10.1109/IRC.2018.00057
sharc2018.sciencesconf.org
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