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Summary

Ambient-noise interferometry is an approach to estimate the transient response be-

tween two receivers without an active source. Because it has the remarkable advan-

tage of functioning even in the absence of controlled sources, this method has found

applications in many fields, including ultrasonics, medical imaging, structural health

monitoring, civil engineering, etc. More specifically, it has received a special atten-

tion in seismology. The method consists of cross-correlating recordings of ambient

vibrations at a pair of passive instruments that act only as receivers. The resulting

waveform resembles the one we would observe if there was a pulsed source at the

location of one of the receivers. In seismology, ambient noise results mostly from

the interactions between the solid Earth and ocean waves and most of its energy

propagates in the form of seismic surface waves. Passive surface-wave estimation

has been successfully used for tomographic and monitoring purposes. This method

is based on the fundamental requirement that the wave-field be ’diffuse’: i.e., it is

the superposition of waves that travel in all directions with equal probability. The

diffuse-field condition is only approximately met in real-world applications, and the

limits of applicability of ambient-noise interferometry in this context have not been

rigorously defined.

This dissertation contributes to evaluating the robustness and accuracy of Green’s

function reconstruction by cross-correlation of noise, disentangling the respective

roles of ballistic and reverberated (’coda’) signals. We focus our study on a strongly

reverberating medium. We conduct a suite of experiments on a highly reverber-

ating thin duralumin plate, where we generate an approximately diffuse flexural

wave-field. We validate ambient-noise theory by comparing cross-correlation to the

directly-measured Green’s function for two different distribution of sources namely
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as uniform (referred to the case where a set of point sources is homogeneously dis-

tributed all over the medium with regular spacing) and circular (referred to the case

where point sources are distributed on a circle surrounding the receivers). We de-

velop an analytical model, that predicts the dependence of the symmetry of the cross-

correlations on the number of sources and the signal-to-noise ratio, which explains

experimental results. We next study the effects of cross-correlating our data over

time windows of variable length, possibly very short, and taken at different points in

the coda of recordings. We find that, even so, a relatively dense/uniform source dis-

tribution could result in a good estimate of the Green’s function; we demonstrated

that the cross-correlation window does not have to include direct arrival part of

the signals for the estimated Green’s function to be a good approximation of the

exact one. Afterwards, we explicitly study the role of non-deterministic noise on

cross-correlations and establish a model which confirms that the relative effect of

noise is stronger when the late coda is cross-correlated.

In the second part of the manuscript, we focus on a reverberating medium with

a scatterer. Our objective is to passively estimate the scattering strength of the

scatterer by implementing ambient-noise interferometry. We conduct experiments

on a thin elastic plate and retrieve the Green’s function through cross-correlation

before and after the appearance of a scatterer. We also perform experiments for the

case where the scatterer is always present in the medium but is displaced from one

acquisition to the other. The variations in the coda of the Green’s function are then

tracked in time and quantified through similarity coefficient. Temporal variations of

the similarity decay exponentially. We relate this decay to the appearance/removal

or displacement of the scatterer within the medium of propagation and propose

a formalism to find the scattering strength of the scatterer from this decay. Our

approach which is based on the information carried by the coda of the passively

recovered Green’s function is then validated through a conventional method for the

measurement of the scattering strength that is based on direct arrivals.

In the last part, we focus on a reverberating medium with locally resonant scat-

terers which acts as a metamaterial. Metamaterials are man-made materials and
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have properties that cannot be found with natural materials. These materials are

useful in manipulating the wave propagation for different purposes. For instance,

these materials have the capability to prohibit the propagation of waves at certain

frequency bands. This striking behavior has nothing to do with the order in the

structure but with the presence of sub-wavelength resonators. These forbidden fre-

quency bands that are generated as a result of the coupling between the resonators

and the propagating incident wave are known as ’bandgap’ while other permitted

frequency ranges are considered as the ’propagation band’. These materials have

recently started to gain interest among seismologists for their potential application

in seismic hazard. We build an example of such materials in the laboratory by at-

taching an array of rods, arranged in a sub-wavelength order, to the surface of a

thin elastic plate. Our objective is to assess the behavior of the cross-correlation in

such a medium. We find different behaviors which are consistent with the regimes

that correspond to propagation band, bandgap and edges of the bandgap. We ex-

plain the related regimes by introducing evanescent wave formalism. We also take

advantage of the auto-correlation of the recordings to provide spatial maps of en-

ergy distribution on the plate. We find that the spatial maps provided based on

auto-correlation and cross-correlation of recordings are helpful to locate the meta-

material region, i.e., the area covered by resonators. Locating the bandgap and the

position of the locally resonant metamaterial embedded in a medium are necessary

steps for further manipulations and hence applications of a metamaterial within a

given structure. We next apply the cross-correlation technique to the real data ob-

tained in METAFORET experiment. This experiment is a seismic survey that is

conducted in a 120 m by 120 m flat area, partly occupied by a relatively regular

grid of tall pine trees, and partly by a canola field. We study the scattering effects

of trees on cross-correlations of ambient signal. Our findings are in consistent with

the resonating behavior of trees at the corresponding frequency bands.
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Résumé

L’interférométrie de bruit ambiant est une approche pour estimer la réponse impul-

sionnelle entre deux récepteurs sans source active. Cette technique, qui a l’avantage

de fonctionner même en l’absence de sources contrôlées, a été appliquée avec succès

dans différents domaines comme les ultrasons, l’imagerie médicale, le contrôle non

destructif des structures ou l’ingénierie civile. Cependant, c’est en sismologie qu’elle

a connue le plus grand essort. La méthode consiste à corréler les signaux vibratoires

ambiants enregistrés à une paire de capteurs. Le front d’onde résultant ressemble à

celui que l’on pourrait observer s’il y avait une source ponctuelle à la place d’un des

récepteurs. En sismologie, le bruit ambiant est généré principalement par les interac-

tions entre la Terre solide et la houle océanique. La plupart de l’énergie ainsi libérée

se propage sous forme d’ondes sismiques de surface. La méthode d’estimation pas-

sive des ondes de surface a permis de réaliser des tomographies avec une résolution

inégalée. La condition fondamentale pour que la méthode fonctionne bien est d’avoir

un champ d’ondes ’diffus’; c’est-à-dire qu’il est statistiquement isotrope. Dans les

applications réelles, la condition de champ d’ondes diffus n’est pas complétement

satisfaite, ce qui induit une erreur sur l’estimation de la réponse. Cet effet a été

quantifié en milieu libre, mais pas en milieu complexe.

Cette thèse contribue à l’évaluation de la robustesse et de la précision de la

reconstruction de la fonction de Green par la corrélation du bruit ambiant dans

les milieux réverbérants. Plus précisément, on distingue les rôles respectifs de la

partie balistique et coda des signaux dans les corrélations. Nous présentons une

série d’expériences réalisées sur une plaque mince de duralumin, où est généré un

champ d’ondes de flexion diffus. Nous validons la théorie du bruit ambiant par

comparaison de la corrélation obtenue pour deux distributions de sources différentes
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(soit uniforme, soit circulaire) avec la fonction de Green directement mesurée. Nous

développons également un modèle analytique, qui prévoit la dépendance de la symétrie

de la corrélation en fonction du nombre de sources et du rapport de signal sur

bruit. Ce modèle explique bien des résultats expérimentaux. Ensuite, nous avons

corrélé des données sur des fenêtres de temps de différentes durées, et prises sur

les différentes parties de la coda. Nous avons montré que la fenêtre choisie pour la

corrélation ne doit pas nécessairement inclure la partie qui correspond aux ondes

directes pour que la fonction de Green estimée soit une bonne approximation de la

fonction de Green exacte. Nous trouvons même dans le cas d’une distribution de

sources relativement uniforme la corrélation d’une petite partie de la coda entrâıne

une bonne estimation de la fonction de Green. Enfin, nous étudions explicitement

le rôle du bruit non-déterministe sur les corrélations.

Dans la seconde partie de ce manuscrit, nous nous concentrons sur un milieu

réverbérant incluant un diffuseur. Notre objectif est d’estimer de manière passive

la force du diffuseur en utilisant l’interférométrie du bruit ambiant. Nous réalisons

des expériences sur une plaque mince élastique et retrouvons la fonction de Green

par corrélation avant et après l’apparition du diffuseur. Nous faisons aussi des

expériences dans un cas où le diffuseur est toujours présent dans milieu, mais est

déplacé d’une acquisition à l’autre. Les variations de la coda reconstruite aug-

mentent avec le temps de propagation. La quantification de ces variations permet

d’estimer la section efficace de diffusion du ou des diffuseurs. Notre approche est

fondée sur l’information contenue dans la coda obtenue passivement. Cette ap-

proche est ensuite validée par une méthode classique fondée sur les ondes directes

pour mesurer la puissance du diffuseur.

Dans la dernière partie de ce travail, nous nous concentrons sur un milieu

réverbérant contenant les inclusions résonantes. Celui-ci se comporte comme un

métamatériau qui possède des propriétés que l’on ne peut pas trouver dans les

matériaux naturels. Certains de ces matériaux ont la capacité d’interdire la prop-

agation des ondes dans certaines gammes de fréquence. Ce comportement impres-

sionant n’a rien à voir avec l’ordre ou la périodicité de la structure. Il est lié à la
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présence de résonateurs sub-longueur d’onde. Ces gammes interdites de propaga-

tion, intitulées ’bandgap’ sont générées en raison du couplage entre l’onde incidente

et les résonateurs. Les autres gammes de fréquence sont, par contre, considérées

comme des ’bandes de propagation’. Comme ce type de matériaux a de potentielles

d’applications dans le domaine des risques sismiques, il a récemment éveillé l’intérêt

de la communauté des sismologues. Nous avons construit un de ces matériaux au

laboratoire qui est constitué des tiges verticales à la surface d’une plaque mince

élastique. L’espacement entre les tiges est inférieur à une longueur d’onde. Notre

but est d’évaluer le comportement de la corrélation dans ce type de milieu. Nous

trouvons que les différents comportements sont bien cohérents avec les régimes qui

correspondent à la bande de propagation ou à la bande interdite. Nous expliquons

ces régimes grâce au formalisme des ondes évanescentes. Nous faisons aussi une

auto-corrélation et montrons comment l’énergie est distribuée dans la plaque. Nous

trouvons que ces cartes spatiales obtenues par corrélation et auto-corrélation sont

utiles pour localiser la surface couverte par des résonateurs. Déterminer la gamme

de fréquence qui correspond au bandgap, ainsi que la localisation de la surface

couverte dans le milieu par les résonateurs, sont des étapes nécessaires pour les

futures expériences de propagation des ondes dans des structures sismiques. En-

fin, nous appliquons la technique de corrélation aux données réelles récupérées lors

de l’expérience METAFORET. Cette expérience a été réalisée sur une zone de 120

m par 120 m couverte de pins distribués sur une grille de manière relativement

régulière et un champ de colza. Lors de cette étude sismique, les arbres jouent le

rôle des résonateurs. Nous étudions l’influence du caractère diffusant des arbres sur

la corrélation de bruit. Nos résultats sont en accord avec le comportement diffusant

des arbres dans les gammes de fréquence correspondantes.
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Chapter 1

Fundamentals of Waves in Plates

1.1 Introduction

Lamb waves are guided elastic waves that propagate between the two boundaries

in the plane of a plate. They are very useful while handling 2D propagation of

guided waves. For instance, since many structures are flat and plate-like, Lamb

waves propagate in them. Hence, these waves are used in SHM (Structural Health

Monitoring) for inspection of structures like buildings, bridges and etc., because they

can propagate over long distances [1]. Structural health monitoring is referred to all

the methods that seek the safety and reliability of a structure and helps in finding

the possible defects in the structure and hence is of use for maintenance goals. There

have also been some fundamental studies on these waves in the laboratory scale.

The main purpose of this chapter is to give a brief introduction to the physics

of propagation of waves in plates specifically Lamb waves. We present here the

fundamental equations and concepts as well as assumptions and notations that will

be used in the following chapters. Plate motion includes internal shear and bending

resistance. We elaborate these concepts in the case of thin plates and introduce

the two existing models for describing the motion of the plate each with different

assumptions. For our study, we are particularly interested in the propagation of

these waves in the low frequency regime. We then explain the modal decomposition

approach and implement it for a finite reverberating plate and close the chapter

with derivation of an expression for modal density is such a system.
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1.2 Surface Elastic Waves in Plates

Suppose an isotropic homogeneous plate with a constant thickness of e = 2h and

infinite lateral dimension (Fig. 1.1). We consider the plate as a free plate. A free

plate is defined as a plate whose outside medium is vacuum. For such a plate the

two boundaries are stress-free.

  

+h

­h

x

z

y

Figure 1.1: Homogeneous plate with infinite lateral dimensions and thickness of 2h.

If this plate is excited with a bulk wave, the wave will be repeatedly reflected

back from the boundary into the medium. As a result of these multiple reflections,

the trapped waves start to interfere with themselves. At specific frequencies and

angles, the resulting superposition of these waves will lead to the vibration of the

whole sample at particular modes. The latter known as Lamb wave was introduced

by the English mathematician Horace Lamb [2]. Symmetry of the structure defines

two families of deformation for Lamb waves known as symmetric (S) and antisym-

metric (A). It should be noted that the symmetric or antisymmetric modes are

distinguished with respect to the mid plane of plate (dashed line in Fig. 1.1). As

can be seen in Fig. 1.1, the coordinate system (x,y) corresponds to this mid plane.

Assuming the x axis as the direction of propagation, two different categories of

deformation are distinguished as the following:

I) Symmetric mode of propagation: For these modes, the longitudinal compo-

nents of displacement (ux) are equal on either side of the plate, while the transverse

components (uz) are opposite (see Fig. 1.2). As a result of the propagation of this

mode, the plate stretches or compresses in the direction of wave propagation. That

is why this mode is sometimes known as extensional mode.
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Figure 1.2: Fundamental symmetric mode of Lamb wave (Figure from [3]).

II) Antisymmetric mode of propagation: These modes have opposite longitudinal

components on either side of the median plate while the transverse components are

equal. The movement of the mid plane is flexion without compression and the plate

bends as these modes propagate (see Fig. 1.3).

Figure 1.3: Fundamental antisymmetric Lamb wave (Figure from [3]).

Beside the symmetric and antisymmetric modes of Lamb wave, there exists another

wave which is a horizontal transversal wave known as SH. These waves are polarized

in the y direction and propagate at the speed given by VT =
√

µ
ρ

where µ is the

shear modulus and ρ is the mass density of the plate.

The main characteristic of SH and Lamb waves is that they both have mul-

timodal guided propagation, hence the modes are numbered. They are ordered

according to their cut-off frequency. Higher modes have higher cut-off frequency.

Cut-off frequency for the nth mode is defined as the lowest frequency at which this

mode exists. Dispersion is another characteristic of these waves and is the focus

of the following figure where the frequency-wavenumber representation for the first

eight modes (n = 0, ..., 3) of Lamb waves (symmetric (Sn) and antisymmetric (An))

as well as phase and group velocity dispersion curves are shown (see Fig. 1.4).
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a

b

c

Figure 1.4: a) Frequency-wavenumber representation b) phase velocity dispersion

curve c) group velocity dispersion curve for the first four modes of symmetric (dashed

lines) and antisymmetric (solid lines) Lamb waves. The plate is infinite and made

of aluminum. Poisson ratio and speed of transverse waves are 0.34 and 3140 m/s,

respectively (Figures from [4]).
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Dispersion means that waves with different frequencies travel with different phase

speeds. The relation between ω and k is known as the dispersion relation and is

given as the following for Lamb waves:

ω4

VT
4 = 4k2q2

[
1− p

q

tan(ph+ α)

tan(qh+ α)

]
. (1.1)

α can be 0 or π/2 for symmetric and antisymmetric modes, respectively. p and q

are defined as p2 = ω2

VL
2 − k2 and q2 = ω2

VT
2 − k2 where VL and VT are the phase

velocity of the bulk longitudinal and transverse waves, respectively and h is half of

the thickness of the plate. This dispersion relation between ω and k is known as

Rayleigh-Lamb equation. Curves in Fig. 1.4a are obtained based on Eq. 1.1 for an

infinite homogeneous isotropic aluminum plate of thickness e = 2h, Poisson ratio

of ν = 0.34, transverse wave speed of VT = 3140 m/s and longitudinal wave speed

of VL = 2512 m/s. We observe that fundamental symmetric and antisymmetric

Lamb waves (S0 and A0) do not have a cut-off frequency meaning that they exist

at all frequencies. In general, these two modes are always generated regardless of

the frequency bandwidth of the excitation source. Fig 1.4b and c are the phase and

group velocity dispersion curves. Phase velocity is given by Vφ = ω/k and group

velocity by Vg = ∂ω/∂k. The strong dispersive behavior of these waves is clearly

observed.

For SH waves, the dispersion relation is given by

f(k) =
VT
2π

[
k2 + (

nπ

2h
)2
]1/2

. (1.2)

The frequency-wavenumber representation for the first six modes of SH waves (n =

0, ..., 5) is shown in Fig. 1.5. As can be seen, SH0 is the only mode that does

not show a dispersive behavior. Besides, similar to S0 and A0 modes, this mode

also exists at all frequencies. As we will see in the following chapters, throughout

our study, we are working in a frequency band where the only propagating modes

are fundamental modes of Lamb waves (i.e., S0 and A0) as well as SH0. In our

experiments, we mostly deal with A0 mode which is known as flexural mode in

vibroacoustics community.
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Figure 1.5: Frequency-wavenumber representation for SH waves based on Eq. 1.2.

The plate is infinite and made of aluminum. Poisson coefficient and speed of trans-

verse waves are 0.34 and 3140 m/s, respectively (Figure from [4]).

Next section describes the governing equations of the displacement of the plate

for this specific mode as well as the dispersion relation.

1.3 Governing Equations for a Plate Under Flex-

ural Vibration

Taking into account the experiments that we run on thin plates, we mostly deal

with the fundamental mode of antisymmetric Lamb waves (A0). For this reason, in

the following we study the equation of motion and dispersion relation of this mode

in the low frequency regime (in the order of tens of kHz). This range of frequency

is our frequency band of interest in the experiments. Low frequency approximation

corresponds to the case where the wavelength of the flexural modes is large compared

to the thickness of the plate (λ > e). There are two different models with different

assumptions that allow to describe flexion of the plates: model of Kirchhoff or

classical theory of the plates ([5]) and Mindlin ([6], [7]).
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1.3.1 Kirchhoff-Love Model

Theory of Kirchhoff is based on the following hypotheses ([5]):

- The material is elastic, homogeneous and isotropic.

- The plate is flat at t = 0.

- The plate is thin in the sense that the thickness of the plate is small compared to

the other dimensions but is comparable or larger than the transverse displacement

(w) of the mid plane.

- We neglect the transverse shear deformations. It means that the deformation is

pure flexion and a segment of the plate that is initially perpendicular to the mid

plane will stay the same in the deformation. This is known as the Kirchhoff-Love

hypothesis.

- We neglect the rotation inertia and consider only uz = w(x, y, t).

In the frame of Kirchhoff-Love hypothesis, it can be shown that the normal com-

ponent of the displacement uz = w(x, y, t) obeys the following equation of motion

D∆2w(x, y, t) + ρe

[
∂2w(x, y, t)

∂t2

]
= −q(xs, ys, t) (1.3)

where ∆2 is the biLaplacian operator defined as the squared Laplacian (i.e., ∆2u =

∇2(∇2u)), ρ is the volume density, e is the thickness of the plate, q(xs, ys, t) is the

transverse component of the force per unit area and D is the flexural rigidity of the

plate given by

D =
Ee3

12(1− ν2)
(1.4)

where E and ν are the Young’s modulus and Poisson ratio, respectively [8].

A possible solution for displacement w(x, y, t) in the case of a harmonic flexural

wave has the form

w(x, y, t) = w0e
i[ωt−(kxx+kyy)] (1.5)

where w0 is the amplitude of the harmonic wave, ω is the angular frequency and kx

and ky are the wavenumber in x and y directions and are related to the wavenumber

k through k2 = k2
x + k2

y = ω2

V 2
φ (ω)

where Vφ is the phase speed of the flexural waves.

Substituting Eq. 1.5 in Eq. 1.3 without the source term, gives the following relation

between k and ω known as dispersion relation for mode A0 which is valid at low

20



frequencies:

k4 =
ρe

D
ω2. (1.6)

From Eq. 1.6, we find phase velocity (Vφ) and group velocity (Vg) of the flexural

waves as

Vφ =
ω

k
=
√
ω(
D

ρe
)
1
4 , vg =

∂ω

∂k
= 2
√
ω(
D

ρe
)
1
4 . (1.7)

We infer from Eq. 1.7 that phase velocity depends on the frequency which implies

the dispersive nature of flexural waves in isotropic thin plates. Fig. 1.6 shows the

dispersion curves of the group and phase velocity for an aluminum plate of thickness

of e = 3 mm versus frequency obtained by Eq. 1.7. The elastic parameters of the

plate are: ρ = 2690 kg/m3, ν = 0.346 and E = 69 GPa, similar to plates used in

our experimental study.
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Figure 1.6: Dispersion curve for A0 Lamb mode as a function of frequency. The

thickness of the plate is 3 mm. The curves are obtained according to Eq. 1.7 for

phase (blue curve) and group (red curve) velocity.

Taking into account the attenuation and absorption effects, it follows from Eq.

1.3 that

D∆2w(x, y, t) + ρe

[
∂2w(x, y, t)

∂t2
+

1

τa

∂w(x, y, t)

∂t

]
= −q(xs, ys, t) (1.8)

where τa indicates the attenuation time.
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1.3.2 Reissner-Mindlin Model

An enhanced version of Kirchhoff-Love model is the Reissner-Mindlin model where

despite Kirchhoff-Love model the shear effects and rotational inertia are taken into

account ([6], [7]). Kirchhoff-Love model does not work very well when the product

(wavenumber× thickness) is high. In such a case, the assumptions behind Kirchhoff-

Love model are not satisfied. In that model, we assumed that the segments of the

plate that were initially perpendicular to the median plane of the plate stay the

same when the deformation is occurring. Such an assumption does not hold here

since the effects of rotation and transverse shear of the plate are not neglected. For

such a case, the displacement field in cylindrical coordinates is given by [9]

ur = −zΠr(r, θ) (1.9)

uθ = −zΠθ(r, θ) (1.10)

uz = w(r, θ) (1.11)

The transverse displacement w is decomposed into a propagative w1 and evanescent

w2 part. The rotations Πr and Πθ are expressed by three potentials w1, w2 and V :

w(r, θ) = w1(r, θ) + w2(r, θ) (1.12)

Πr = A1
∂w1

∂r
+ A2

∂w2

∂r
+

1

r

∂V

∂θ
(1.13)

Πθ = A1
1

r

∂w1

∂θ
+ A2

1

r

∂w2

∂θ
+
∂V

∂r
(1.14)

with Ai = −1 +
k2P
k2i

.

Each of these potentials obey one Helmholtz equation:

∆w1 + k2
1w1 = 0 (1.15)

∆w2 + k2
2w2 = 0 (1.16)

∆V + k2
3V = 0 (1.17)

The wavenumbers are found by the following equations:

k2
1,2 =

1

2
(k2
P + k2

T ′)±
√
k4
f +

1

4
(k2
P − k2

T ′)
2 and k2

3 = κ2k
2
1k

2
2

k2
P

(1.18)
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where kf is the wavenumber that we obtain by Kirchhoff in Eq. 1.6, kP is the

wavenumber of longitudinal wave, kT ′ is the wavenumber of shear waves which in-

cludes a correction term κ = π√
12

such that cT ′ = κcT [10].

For frequencies smaller than the cut-off frequency of mode A1, only the wavenum-

ber k1 is real which is associated to the propagation of the mode A0. The wavenum-

bers k2 and k3 are imaginary and correspond to evanescent waves. So, Mindlin

model explains the evanescent modes which are not explained by Kirchhoff model.

In our numerical simulations for modeling the flexural mode A0, we use the

ELMER software 1 which implements the Mindlin model for solving the propagation

of Lamb waves in thin plates.

As an example, Fig. 1.7 summarizes the three different approaches for finding

the dispersion relation. The material is a duralumin plate with the thickness of 3

µm. The elastic parameters of the plate are E = 69 GPa, ν = 0.346 and ρ = 2.69

kg/m3.
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Figure 1.7: Frequency-wavenumber representation for A0 mode obtained from three

different approaches: exact theory of Rayleigh-Lamb (blue curve), theory of Kirch-

hoff (black curve) and theory of Mindlin (red curve) for a duralumin plate of thick-

ness of 3 mm.

1https://www.csc.fi/web/elmer
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We observe that at low frequencies the three models bring about very close re-

sults but as the frequency increases the distinction between the Kirchhoff model

and the two other models becomes more and more significant indicating that the

assumptions taken in Kirchhoff-Love model are not valid anymore at high frequen-

cies. This verifies the fact that as long as we are in the low frequency regime, the

implementation of Kirchhoff model is a reasonable choice. As we will see in the

following chapters, our calculations are all based on the fact that the equation of

motion based on Kirchhoff-Love model governs the regime under study. Consid-

ering the frequency regime we are dealing in our experiments (f < 40 kHz), this

assumption seems to be acceptable.

1.4 Modal Representation of the Vibrations in

the Plate

In a closed medium, the wave-field can be represented in terms of all the possible

characteristic forms of vibration known as ’modes’. Modal decomposition of the

wave-field is a common approach in physical problems dealing with closed media.

In the case of a finite rectangular thin plate, these modes are the solutions of Eq.

1.3 and can be expressed as the product of a function of time and a function of

space [11]. From a mathematical point of view, these functions are the eigen vectors

for the Laplacian operator in case of a membrane and biLaplacian in case of a thin

plate and they satisfy the boundary conditions.

For the case of a symmetric homogeneous isotropic thin plate with simply sup-

ported boundary conditions, vibrating under flexural modes the displacement w(x, y, t)

can be expressed as a linear combination of modes of the plate:

w(x, y, t) =
∞∑
m=1

∞∑
n=1

eiωtφmn(x, y) (1.19)

where φmn(x, y) is the modal displacement. m and n are positive integers and

indicate the excited mode number. For the case of an irregular chaotic shaped plate

these two indices cannot be separated. As Eq. 1.19 implies there exists a large

number of modes in plates. Next section introduces a new quantity for dealing with

modal nature of the vibrations in a plate known as ’modal density’.
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1.4.1 Modal Density

As explained in the previous section, for a plate-like structure an infinite number of

resonance frequencies exists. Each of these frequencies correspond to an eigenmode

and the plate may vibrate at each of these frequencies. Similar physics governs the

vibrations of beams and shells.

When we study the dynamic problems of such systems for the cases where the

input force has a broad spectral content, many modes will contribute to the overall

motion of the vibrating body. For statistical characterization of the reverberations,

it is effective to introduce the concept of modal density.

For a given structure, modal density is defined as the asymptotic expression for

the density of the frequency distribution obtainable from the frequency equation

of the structure [12], [13]. In simple words, modal density is an estimation of the

number of modes per unit frequency.

Modal density has the dimension of time and is sometimes known as Heisenberg

time in literature. It characterizes the recording time needed for separating two

modes after calculating the spectrum by Fourier transform. In other words, the

inverse of modal density is an indication of the spacing of the resonant frequencies

in the frequency domain [12]. For example, a low modal density is interpreted as

low number of resonant frequencies in a short bandwidth, and the distance between

the resonances in frequency domain is not small. In the following we derive the

expression of the modal density for vibrations of a rectangular plate. We follow the

approach adopted by [12].

For simplicity, we consider a rectangular plate with simply supported edges. Fol-

lowing Eq. 1.3, the source-free equation of motion for free vibration of a rectangular

plate in 2D is given by

D

[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

]
+ ρe

∂2w

∂t2
= 0 (1.20)

where D, ρ and e are flexural rigidity, density and thickness of the plate, respectively.

As a solution to this equation, we can assume that w(x, y, t) has the form of

w(x, y, t) = W (x, y)eiωt (1.21)

where the spatial (W (x, y)) and temporal (eiωt) terms are separated.
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Figure 1.8: Supported rectangular plate with dimensions a and b along x and y

directions.

By substituting Eq. 1.21 into Eq. 1.20, we find

D∆2w(x, y)− k4w(x, y) = 0 (1.22)

where k4 = ρe
D
ω2, which is known as dispersion relation.

The boundary conditions for a plate with dimensions a and b and simply sup-

ported edges (see Fig. 1.8) are

W (0, y) = W ′′(0, y) = W (a, y) = W ′′(a, y) = 0 (1.23)

W (x, 0) = W ′′(x, 0) = W (x, b) = W ′′(x, b) = 0. (1.24)

A plate with simply supported edges is a plate whose boundaries are prevented

from deflection but they can rotate about a line along the boundary edge (such as a

hinge). For a plate whose edges are simply supported, deflection and moment along

the boundaries are zero. These conditions translate Eqs. 1.23 and 1.24.

It can be verified by direct substitution that the function

W (x, y) = sin(
mπx

a
) sin(

nπy

b
) (1.25)

where m and n are arbitrary integers, satisfies all boundary conditions (1.23) and

(1.24). Substituting Eq. 1.25 into Eq. 4.10, we find a condition on ω for W (x, y)

to be solution, i.e., for each pair of values of m and n, only one value of k (or ω) is

allowed,

k4
mn = (

mπ

a
)4 + 2(

mπ

a
)2(
nπ

b
)2 + (

nπ

b
)4 (1.26)
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which can be rewritten as

k4
mn =

[
(
mπ

a
)2 + (

nπ

b
)2
]2

. (1.27)

Eq. 4.18 can be expressed in terms of ωmn as

ω2
mn = (

m2π2

a2
+
n2π2

b2
)V 2

φ . (1.28)

Next, we define

k1 =
mπ

a
, k2 =

nπ

b
(1.29)

and hence the difference between the two wavenumbers from one mode to the fol-

lowing one is

∆k1 =
π

a
, ∆k2 =

π

b
. (1.30)

The wavenumber has two components corresponding to the propagation of waves

along the length and width of the plate. In order to find the modal density, we

should first find the number of modes in a given frequency band (N(ω)) which is

expressed as

N(ω) =
1

∆k1∆k2

ˆ ˆ
s

dk1dk2. (1.31)

For the integration over the surface of k-space, we change to cylindrical coordinates:

k1 = rcosθ, k2 = rsinθ. (1.32)

So, Eq. 1.31 in the cylindrical coordinates becomes

N(ω) =
ab

π2

ˆ π/2

0

[ˆ r

0

rdr

]
dθ. (1.33)

Fig. 1.9 illustrates the rectangular plate in k-space and clarifies the limits of the

integration both for r and θ. Taking the integrals, Eq. 1.33 equals to

N(ω) =
ab

4π
r2. (1.34)

Keeping Fig. 1.9 in mind, r2 is found by combining Eqs. 1.28 and 1.29:

r2 =
ω2

V 2
φ

. (1.35)

We previously showed that in the regime that corresponds to our experimental set-

up the phase velocity for A0 Lamb waves is given by Eq. 1.7. Substituting the

expression for Vφ

N(ω) =
ab

4π
(
ω√
D
ρe

). (1.36)
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Figure 1.9: Supported rectangular plate with dimensions a and b in k-space.

Modal density (Dm) according to its definition is found by taking the derivative of

N(ω) with respect to ω:

Dm =
∂N(ω)

∂ω
=
ab

4π
(

√
ρe

D
). (1.37)

According to Eq. 1.37, the modal density of a plate is independent of the frequency

and independent of the geometry of the plate. One may prefer to rewrite Eq. 1.37

in a more general form as

Dm =
∂N(ω)

∂ω
=

S

4π
(

√
ρe

D
) (1.38)

where S is the surface of the plate with an arbitrary shape [14].

To summarize, we found the expression for the modal density of a rectangular

plate. In general, the procedure for finding the modal density of a structure is: First,

we find the frequency equation for the structure under study. We then determine

an expression for the number of resonant frequencies up to an arbitrary frequency

and finally differentiate this expression with respect to frequency. We followed this

approach and found the modal density for a simply supported rectangular plate.
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Chapter 2

Coda Reconstruction by Interferometry

on Thin Elastic Plates

2.1 Introduction

Ambient-noise interferometry is a technique for passive estimation of the transient

response of the medium between two receivers, also improperly called Green’s func-

tion 1. Here, we focus on the field of seismology where ambient noise interferom-

etry has been shown to be a reliable method for retrieving the Green’s function

between two receivers without the need for an active source (such as man-made

explosions, earthquake or volcanic eruptions). Back to 1957, Aki suggested using

seismic noise for retrieving the dispersion properties of the subsoil [15]. This was the

first step of using the information carried by ambient seismic noise. The interfer-

ometry method takes advantage of the seismic noise as well. This method is based

on cross-correlation of the recordings of ambient vibrations at two receivers for re-

covering the coherent information i.e., waves propagating between the two receivers.

In seismology, this technique has a few advantages over the conventional methods

based on an active source (e.g., an earthquake): 1) Since this method is based on

ambient noise which is always present, it can be applied to study the Earth structure

in aseismic regions and also makes seismologists independent from waiting for an

earthquake to occur in seismic regions. 2) By interferometry method, surface waves

1The reason why we consider the ‘Green’s function’ as an improper name is that mathematically

it is the response of the medium to a source of Dirac delta type, while in practice we never have

such a source.
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in the period of ∼ 5 s to ∼ 30 s can be recovered. Surface waves at this range of

period are not easy to be recovered at the near field of an earthquake and they are

almost completely attenuated in the far field. So, interferometry technique allows

for studying the shallower structures of the Earth [16].

Green’s functions obtained by cross-correlation have been used for tomographic

and monitoring purposes in the past 20 years (e.g., [17], [18]).

After all, although the reliability of the interferometry technique has been proved

through its application in seismic studies but there are some details and assumptions

that must be fulfilled to ensure an acceptable retrieval of the Green’s function. An

imperfect Green’s function will cause uncertainties in all further analyses based on

the Green’s functions. This imperfection can be due to different reasons such as

an uneven distribution of sources. Therefore, we focus our study on finding out

the role of source distribution in retrieval of the Green’s function from correlation

in a reverberating medium. We also study the contribution of different parts of

the recordings in reconstruction of the Green’s function for the case of impulsive

sources. To do so, we implement physical acoustic experiments in the laboratory on

thin plates and verify the theory by focusing on reverberating media.

In this chapter, we first explain in more detail the theory of ambient noise inter-

ferometry and then describe the experiments and set-ups and end with the obtained

results and conclusion.

2.2 Basics of Ambient Noise Interferometry

Noise (seismic, acoustic, ...) had been always considered as some random undesired

signal that superposes the desired signals. Several studies in 50s and 60s proposed a

new interpretation to this noise and hence revealed application by using noise [15],

[19]. Cross-correlation of recorded ambient waves to retrieve the Green’s function is

known as a passive method since there is no need for an active source. The pioneers

in the experimental domain, were Weaver and Lobkis who showed the reliability of

the method by considering the fluctuations in temperature as a source that excites

the acoustic modes randomly in a block of aluminum and hence allows to recover

the Green’s function between two points on the surface of block by cross-correlating
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the displacements measured at these two points [20]. From a theoretical point of

view, they explain their observations by the principle of equipartition of energy over

different modes. They do a similar study when the medium is reverberating and

the source is an impulsive one. Thanks to the reverberation in the medium, there

is an equipartition of the energy over different modes of vibration [21]. Before that

in 1993, [22] measured the speed of waves from temporal cross-correlation of the

intensity fluctuations on the surface of the sun. Later on, [23] and [24] used the

stationary phase principle to generalize the theory to open spaces. This approach

is explained later in the chapter. We start by a schematic illustration of the basics

of interferometry in Fig. 2.1.

  

A
B

receiver

B

source

C
AB(t) G

AB(t)

Diffuse wave field

medium
a b

Figure 2.1: Schematic reconstruction of Green’s function by cross-correlation of

recordings of diffuse field.

If we have two receivers located at xA and xB in the medium that are illuminated

by a wave-field from all directions (Fig. 2.1a), then the cross-correlation of the

recordings at these two receivers (CAB(t)) (or its time derivative) gives the Green’s

function between xA and xB (GAB(t)) as if there was an active source at xA (Fig.

2.1b).

In the following section, we derive the relation between the cross-correlation and

the Green’s function for acoustic waves.
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2.2.1 Derivation of the Interferometry Relation for Acoustic

Waves

In this section, we do the exercise for deriving the relation between the Green’s

function and cross-correlation for acoustic wave equation. The approach is the one

explained in [25] and [26]. This approach is based on Green-Kirchhoff theorem some-

times called reciprocity theorem. A reciprocity theorem is a relation between two

independent physical (in this case acoustic) states in a common domain (e.g., [27]).

The governing equations for waves propagating in a lossless non-flowing acoustic

media in time domain are the following equations

ρ∂tvi + ∂ip = fi (2.1)

known as linearized momentum equation and

κ∂tp+ ∂ivi = q (2.2)

where κ = 1/ρc2 is the compressibility. This is known as the stress-strain relation

in an acoustic medium. In these equations, ρ(x) is the mass density of the medium,

κ(x) is its compressibility, fi(x, t) the external volume force density and q(x, t) is

a source distribution in terms of volume injection rate density. p(x, t) and vi(x, t)

are the acoustic pressure and particle velocity in the medium where subscript i

indicates the xi direction. We adopt the following convention for Fourier transform

of a quantity that is a function of time (t) and space (x) like p as

p̂(x, ω) =

ˆ +∞

−∞
exp(−jωt)p(x, t)dt (2.3)

where ω is the angular frequency. Eqs. 2.1 and 2.2 in frequency domain take the

form

jωρv̂i + ∂ip̂ = f̂i (2.4)

and

jωκp̂+ ∂iv̂i = q̂. (2.5)
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The hat denotes the Fourier transform and Einstein’s summation convention 2 ap-

plies for repeated subscripts. We consider the ’interaction quantity’ ([27]) as

∂i {p̂Av̂i,B − v̂i,Ap̂B} . (2.6)

A and B indicate two independent acoustic states. In other words, p and v in either

of the states A and B are the solutions to the same set of equations (Eqs. 2.4,

2.5). We assume here that the medium parameters do not vary from state A to

B. [28] explain the concepts of reciprocity theorem and interaction quantity from

the point of view of conservation law. They define a ’conserved current’. According

to conservation law, the sum of partial derivatives of the conserved current called

’interaction quantity’ is equal to the source of the current. The ’conserved current’

does not necessarily have an obvious physical existence. In the case of linear wave-

fields, the conserved current is always a bilinear form in the field variable and its

first-order derivative.

We integrate the interaction quantity over an arbitrary domain V whose bound-

ary is S and use Eqs. 2.4 and 2.5 to substitute for the parameters in states A and

B. Applying the divergence theorem to the resulting integral gives
ˆ
V

{
p̂Aq̂B − v̂i,Af̂i,B − q̂Ap̂B + f̂i,Av̂i,B

}
d3x =

˛
S

{p̂Av̂i,B − v̂i,Ap̂B}nid2x (2.7)

where ni are the components of normal vector n pointing outward the boundary S.

As products in the frequency domain correspond to convolution in the time domain,

we call this a Green-Kirchhoff theorem of convolution type.

Here, we assume that the medium is lossless and hence take advantage of the

time-reversal invariance of the acoustic wave equation [29]. Time reversal in the time

domain translates to complex conjugate in the frequency domain as FT [u(x,−t)] =

û∗(x, ω). In time-reversed domain, p̂∗ and −v̂∗i satisfy Eqs. 2.4 and 2.5 with source

terms f̂ ∗i and −q̂∗i . Substituting these parameters in Eq. 2.6 for state A gives
ˆ
V

{
p̂∗Aq̂B + v̂∗i,Af̂i,B + q̂∗Ap̂B + f̂ ∗i,Av̂i,B

}
d3x =

˛
S

{
p̂∗Av̂i,B + v̂∗i,Ap̂B

}
nid

2x. (2.8)

In the frequency domain, the products like p̂∗Aq̂B correspond to correlation in time

domain and so this relation is known as the Green-Kirchhoff theorem of the corre-

lation type. We now introduce the Green’s functions and substitute them in both

2∂ivi =
3∑

i=1

∂ivi
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reciprocity theorems. The Green’s function is obtained when the source term is an

impulsive one. Mathematically speaking, Green’s function in the time domain is the

response to a Dirac delta function in time and space. This function in the frequency

domain for both states is given as

q̂A(x, ω) = δ(x− xA) (2.9)

q̂B(x, ω) = δ(x− xB) (2.10)

xA and xB are inside the domain V . We set the external forces to zero and volume

injection rate densities as Eqs. 2.9 and 2.10. Then the wave-fields can be expressed

in terms of acoustic Green’s functions as

p̂A(x, ω) , Ĝ(x,xA, ω), (2.11)

v̂i,A(x, ω) = −(jωρ(x))−1∂iĜ(x,xA, ω) (2.12)

p̂B(x, ω) , Ĝ(x,xB, ω), (2.13)

v̂i,B(x, ω) = −(jωρ(x))−1∂iĜ(x,xB, ω). (2.14)

Ĝ(x,xA, ω) is the Fourier transform of the causal Green’s function between a source

at xA and a receiver at x known as G(x,xA, t). We substitute Eqs. 2.9, 2.11 and

2.12 in the Eq. 2.5 and find out that Ĝ(x,xA, ω) satisfies the wave equation

∂i(ρ
−1∂iĜ) + (ω2/ρc2)Ĝ = −jωδ(x− xA) (2.15)

The propagation velocity is c(x) = {κ(x)ρ(x)}−1/2. Ĝ(x,xB, ω) follows a similar

equation.

Substituting Eqs. 2.9-2.14 into Eq. 2.7, we find

Ĝ(xB,xA, ω)− Ĝ(xA,xB, ω) =˛
S

−1

jωρ(x)
(Ĝ(x,xA, ω)∂iĜ(x,xB, ω)− ∂iĜ(x,xA, ω)Ĝ(x,xB, ω))nid

2x. (2.16)

We choose S as a spherical surface with infinite radius and assume that there is no

sources at infinity. As Ĝ(x,xA, ω) and Ĝ(x,xB, ω) in the integrand are the Fourier

transform of the causal part of the Green’s functions in time domain, the integral

on the right hand side of Eq. 2.16 vanishes due to radiation conditions. We take

advantage of the fact that the right hand side of this equation is independent of how
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boundary S is chosen, so it vanishes for any S. The boundary S should only enclose

xA and xB. Consequently,

Ĝ(xB,xA, ω) = Ĝ(xA,xB, ω). (2.17)

This is source-receiver reciprocity relation for the acoustic Green’s function. We will

use this relation later in our study.

We follow the same procedure for the reciprocity of correlation type. By substi-

tuting Eqs. 2.9-2.14 into Eq. 2.8, we find

Ĝ∗(xB,xA, ω) + Ĝ(xA,xB, ω) =˛
S

−1

jωρ(x)
(Ĝ∗(x,xA, ω)∂iĜ(x,xB, ω)− ∂iĜ(x,xA, ω)Ĝ(x,xB, ω))nid

2x. (2.18)

We have the same condition as the previous case for S as it should enclose xA and

xB. In contrast to the previous case, the right hand side does not vanish. The reason

is that Ĝ∗(x,xA, ω) is the Fourier transform of the anticausal Green’s function in

the time domain G(x,xA,−t) and thus the radiation conditions are not fulfilled.

Using Eq. 2.17, Eq. 2.18 takes the form

2<
{
Ĝ(xA,xB, ω)

}
=˛

S

−1

jωρ(x)
(Ĝ∗(xA,x, ω)∂iĜ(xB,x, ω)− ∂iĜ∗(xA,x, ω)Ĝ(xB,x, ω))nid

2x. (2.19)

< denotes the real part. Ĝ and ∂iĜni in the right hand side are responses to

monopole and dipole sources. The products like Ĝ∗∂iĜni translate to cross-correlation

in time domain. So, right hand side is the integral of the Fourier transform of the

cross-correlations of recordings at xA and xB due to an impulsive source at x. Left

hand side is the Fourier transform of G(xA,xB, t) + G(xA,xB,−t) which is the su-

perposition of the response at xA due to a source at xB and its time-reversed version.

Eq. 2.18 applies to any lossless arbitrary inhomogeneous fluid medium. More-

over, integration boundary S is an arbitrary boundary enclosing xA and xB. Inside

and outside this boundary, the medium can be inhomogeneous. In the literature

on Green’s function retrieval by interferometry, we may see a similar equation to

Eq. 2.19 but instead of the real part on the left hand side, there is the imaginary

part of the Green’s function. The difference lies in the definition of the source. Let

us define the source term in terms of volume injection instead of volume injection
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rate. In this case, the source term in Eq. 2.9 is defined −δ(x−xA) and the Green’s

function in the frequency domain is denoted by ĝ(x,xA, ω). This Green’s function

obeys a wave equation similar to Eq. 2.15, but the source on the right hand side is

replaced by −δ(x− xA) as following:

∂i(ρ
−1∂iĝ) + (ω2/ρc2)ĝ = −δ(x− xA). (2.20)

ĝ(x,xB, ω) satisfies a similar wave equation. ĝ and Ĝ are related via ĝ = (1/jω̂)Ĝ.

Following a similar approach for deriving Eq. 2.19, we obtain

2j={ĝ(xA,xB, ω)} =

˛
S

−1

ρ(x)
(ĝ∗(xA,x, ω)∂iĝ(xB,x, ω)−∂iĝ∗(xA,x, ω)ĝ(xB,x, ω))nid

2x.

(2.21)

= denotes the imaginary part. The left hand side of this equation is the Fourier

transform of g(xA,xB, t)− g(xA,xB,−t). g(xA,xB, t) is causal and can be obtained

by taking the causal part of the difference. Since 2j={ĝ} = 1
jω

2<
{
Ĝ
}

, Eq. 2.21

does not provide new information compared to Eq. 2.19.

The reconstructed Green’s function by interferometry includes direct wave travel-

ing between xA and xB as well as all the scattering contributions from heterogeneities

inside and outside boundary S.

Eq. 2.19 is the basic equation for acoustic seismic interferometry but it is not

very suitable from an application point of view since it needs the evaluation of two

correlation products separately. To simplify this equation, we assume that the most

contribution comes from stationary points on S. These regions are those where the

changes in the phase are zero (This concept is explained in the following section).

This assumption simplifies Eq. 2.19 into

2<
{
Ĝ(xA,xB, ω)

}
'
˛
S

2

jωρ(x)
∂iĜ

∗(xA,x, ω)Ĝ(xB,x, ω)nid
2x (2.22)

where the approximation is to include all the spurious events that deteriorate the

reconstructed Green’s function Ĝ(xA,xB, ω). We see that now the right hand side

includes a single cross-correlation instead of two [16], [25].

In the following, we address the interferometry technique in the domain of seis-

mology and introduce the stationary phase regions.
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2.2.2 Direct-Wave Interferometry: An Introduction to Sta-

tionary Phase Regions

In the domain of seismology, Eq. 2.22 translates to as

dCAB(t)

dt
≈ G(rA, rB, t)−G(rA, rB,−t) (2.23)

where (CAB(t)) is the cross-correlation of the recordings of ambient seismic noise

at two seismic stations A and B averaged over long times and G(rA, rB, t) is the

causal Green’s function of the medium between these two receivers. As you see,

there is a time derivation of the cross-correlation involved, here. Depending on how

mathematically we define the source term, the cross-correlation itself or its time

derivative gives the Green’s function.

Since generation of ambient seismic noise at some periods (around 7 s) is as

a result of the interaction of ocean waves, it is therefore dependent on the storm

activity in the oceans. Storm activity occurs typically in winter season in either of

the hemispheres. In other words, in the Earth, the noise is generated in preferential

positions. If the Green’s function of the medium is to be reconstructed using inter-

ferometry method, then the ambient wave-field should be diffuse. Here, we assume

the definition of diffuse given by [30]: A wave-field is diffuse if all of the propagation

directions have equal probability. As we saw in the derivation of the interferometry,

by cross-correlation one retrieves both the causal and anticausal part of the Green’s

function, thus in a perfect case, we expect to retrieve a symmetric cross-correlation.

Fig. 2.2 shows schematically how the retrieved cross-correlation is influenced by

the source distribution. A symmetric cross-correlation in time and amplitude is

obtained when the noise sources are distributed randomly and isotropically (Fig.

2.2a). The cross-correlation loses its symmetry in amplitude as the distribution of

sources becomes non isotropic and waves arrive from a dominant direction (Fig.

2.2b). So, we find that the source distribution plays a crucial role in retrieving a

symmetric cross-correlation. Moreover, it has been shown in direct wave interfer-

ometry that not all the sources contribute to the retrieval of the Green’s function.

Direct wave interferometry is a term corresponding to the case where only the direct

waves propagating between two stations (receivers) are of interest to be retrieved
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Figure 2.2: Schematic representation of the influence of distribution of noise sources

on symmetry of the cross-correlation. a) Symmetric cross-correlation for the homo-

geneous distribution of sources. b) Asymmetric cross-correlations for the inhomoge-

neous and non isotropic distribution of sources. The asymmetry is in the amplitude

while there is symmetry in time (Figure from [31]).

by interferometry and not the later (coda) arrivals. To illustrate the contribution

of different sources, we consider a 2D case where the receivers A and B located at

xA and xB are surrounded by point sources distributed on a circle enclosing the

two receivers (black dots in Fig. 2.3a). We assume a lossless medium where the

propagation velocity is 2000 m/s and the distance between the receivers is 1200 m.

The position of sources is given in polar coordinates as (rs, φs). Each source emits

an impulse that travels in the medium and is received at the two receivers. The

responses at each receiver are plotted in Fig. 2.3b,c as a function of the source
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Figure 2.3: Demonstration of 2D direct-wave interferometry. a) Configuration of

two stations at xA and xB enclosed by sources distributed on a circle. Dashed lines

marks the Fresnel zones. b) Recorded signals at xA as a function of azimuth φs. c)

Recorded signals at xB as a function of azimuth φs. d) Cross-correlation of recordings

at xA and xB. Dashed lines mark Fresnel zones. e) Sum of cross-correlations in (d)

f) Single cross-correlation of the recordings of simultaneously acting uncorrelated

noise sources at xA and xB (Figure from [32]).
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coordinate (φs). These two sets of signals are then cross-correlated and the result is

shown in Fig. 2.3d as a function of φs. Next, the cross-correlations are summed over

all possible azimuths and the outcome is shown in Fig. 2.3e. We clearly observe the

emergence of coherence arrivals at ± 0.6 s. These wavefronts are associated with

the Green’s function of the medium between xA and xB and indicate the waves that

travel in the opposite directions between the two stations. The arrival time is well in

accordance with the expected arrivals considering the distance between the receivers

and the wave speed. Note that since the source wavelet is not a Dirac delta function

the cross correlation of recordings is in fact the Green’s function convolved with the

autocorrelation of the source signal according to

{G(xB, xA, t) +G(xB, xA,−t)} ∗ Ss(t) = ΣN
i=1u(xB, x

(i)
S , t) ∗ u(xA, x

(i)
S ,−t) (2.24)

where Ss(t) is the autocorrelation of the source function, i is the index of each point

source located at xS, u is the recordings and ∗ denotes the convolution operator.

Fig. 2.3f is a single cross-correlation for the case where the sources are noise sources

acting simultaneously. Another important observation in Figs. 2.3e and 2.3f is

that when we sum the cross-correlations from sources in different azimuths, the

contribution of sources that are not aligned with the station pair cancels out and only

the point sources that are inside the zones marked by dashed line have a contribution

in building the cross-correlation. These areas where the noise sources contribute

constructively to the Green’s function reconstruction are known as ’Fresnel zones’

or ’stationary phase regions’ ([23] and [32]). Sources that act outside these zones

result in a destructive interference and hence no coherent contribution comes from

these points. Size of these Fresnel zones that have a hyperbola shape depends

on the period of the source signal and thus increases with increasing period. The

direct-wave interferometry in the context of seismology refers to reconstruction of

the seismic surface waves for further tomographic or monitoring purposes.

So far, we explained the basics of the interferometry method and the necessary

assumption for the theory to work well. As we saw, source distribution plays an

important role in passive reconstruction of the Green’s function. Different studies

in literature prove the reliability of the method in various domains by applying

it to different datasets. But in terms of the theory there are still open questions

that need to be addressed. We saw that the stationary phase regions have been
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recovered for the case of open media in order to retrieve the direct waves propagating

between two points. We are interested to recover these regions for the case of a close

reverberating medium. In our study, we focus on the role of source distribution and

also the contribution of different parts of the correlated signals in passive retrieval

of the Green’s function where not only the direct arrivals but also the coda arrivals

are to be recovered. We focus our study on reverberating media and start by an

experimental study and then we develop theories to explain our experimental results.

The rest of this chapter is dedicated to our work and most of it is published in [33].

2.3 Interferometry with Lamb Waves

In practical applications, the necessary conditions for interferometry method (men-

tioned earlier) are only partially fulfilled. The mismatch between the cross-correlation

and the Green’s function for a real noise source distribution is a measure of the accu-

racy of the method. The mismatch in homogeneous open media can be straightfor-

wardly deduced from geometrical considerations of the source distribution [24]. In

complex random media, only statistical quantities can be inferred, and a mismatch

appears as a fluctuation of the cross-correlation. In the case of multiple scattering

media, these fluctuations can be relatively well predicted from a shot-noise model

[34]. However, only the use of multiple scattering wave theory leads to fully consis-

tent results [35], [36].

Only a few studies have been devoted to the interferometric reconstruction of

Green’s functions in bounded media. The related theory is, however, relevant to

room acoustics [37] and passive structural health monitoring [38], [39]. In thin

plates, the dispersion relation for noise generated by an air jet has been recovered

[40]. More recently, an experimental and numerical study was also conducted to

determine the role of the ballistic and coda part on the cross-correlation when the

source distribution was circular and uniform [41]. Our study here follows Duroux

et al. [42], who investigated the convergence of the cross-correlation of vibrational

waves in a thin aluminum plate. A heuristic shot-noise model introduced by Larose

et al. was used to interpret the results.

Here, similar to [42], the use of a Doppler vibrometer and the source-receiver reci-
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procity theorem allows a very flexible study of the effects of the source distribution

on the cross-correlation. The set-up allows the comparison of the cross-correlation

result with the transient response that is estimated with an active source. We also

study the symmetry of the correlation, because this is often an experimental proxy

for the convergence toward the Green’s function.

In the second part of our study, we cross-correlate a part of the multiply re-

flected wave (’coda’) instead of the entire reverberating time. Then the results are

analyzed through modal decomposition of the cross-correlation over the eigen vibra-

tional modes of the plate.

We run our experiments on thin plates and hence record the guided plate waves,

which are known as Lamb waves. The physics of propagation of these waves is

explained in chapter 1. At low frequency, the fundamental antisymmetric and dis-

persive Lamb mode (A0) dominates the vertical plate displacements. According to

the Kirchhoff-Love hypothesis the Green’s function (G) of the A0 or flexural mode

is the solution to the equation of motion associated with an impulsive point source,

D∆2G(r− r0, t) + ρs(
∂2G(r− r0, t)

∂t2
+

1

τa

∂G(r− r0, t)

∂t
) = −δ(r− r0)δ(t), (2.25)

where ∆2 is the biLaplacian operator that is defined as the squared Laplacian, ρs is

the surface density of the plate, τa is the attenuation time, r is the position vector,

t is the time, and D = e3E/12(1 − ν2) is the bending stiffness, where E and ν are

the Young’s modulus and Poisson’s ratio, respectively, and e is the thickness of the

plate [43]. If the signal is generated by N point sources of identical power spectral

density S(ω), the Fourier transform of the cross-correlation estimated from a record

of duration ∆T is given by

C(rRl , r
R
l′ , ω) = ∆T

N∑
k=1

G(rRl , r
S
k , ω)G∗(rRl′ , r

S
k , ω)S(ω), (2.26)

where G∗ is the complex conjugate of G, rRl and rSk are the l-th receiver position

and the k-th source position, respectively. According to [1], the cross-correlation is

related to the imaginary part of the Green’s function by

C(rRl , r
R
l′ , ω) =

∆TS(ω)Nτa
ρsωA

ImG(rRl , r
R
l′ , ω) +Q(ω) (2.27)
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where A is the plate area, and the deviation Q(ω) can be caused, in particular,

by non-uniformities in the source distribution, as well as by instrumental error.

Eq. 2.27 shows that the Green’s function associated with two locations rRl and rRl′

where sensors are deployed can be reconstructed by cross-correlation of the ambient

recordings made by the two sensors, provided that the ambient noise is diffuse [1].

2.4 Plate Experiments Set-up

The experimental set-up consists of a homogeneous duralumin plate of 50 × 60 ×

0.3 cm, with five piezoelectric transducers attached to the plate using instant glue

(Fig. 2.4). There are neither significant material heterogeneities within the plate,

nor scattering obstacles attached to it. The temperature of the room is controlled

by an air conditioning system. We measured the room temperature continuously

during the experiment and no significant variation was observed.

  

Figure 2.4: Experimental set-up, consisting of a duralumin plate and five piezoelec-

tric transducers. The normal displacement of the plate is measured using a laser

vibrometer placed on a two-dimensional motor.

All of the transducers are located at a minimum distance of 10 cm from the sides

of the plate. Instead of a short pulse, a linear ’chirp’ in the frequency band of 100

Hz to 40,000 Hz with the rate of frequency change of 39900 Hz/s is sent via these
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transducers. The transducers are made of a 200µm-thick ceramic piezoelectric disk

adhered to a thin 20mm-diameter and 200µm-thick metallic disk. Effect of such a

transducer on the propagation is limited because total thickness of the transducer

is only 13% of the plate thickness (the mass of the transducer equals 0.5 g). On

the other side of the plate, the vertical displacement induced by the vibration (i.e.,

Lamb waves) is scanned with a laser vibrometer. Since the higher Lamb modes (A1,

S1, A2, S2, ...) have a minimum cut-off frequency of 500 kHz, within our frequency

band of interest, we can only generate the fundamental modes A0, S0 and SH

Lamb modes. Moreover, because we are working at less than a tenth of the cut-off

frequency, the displacements recorded by the vibrometer are dominated by the A0

mode. The latter, dubbed ’flexural-plate mode’ in the field of structural acoustics

is very dispersive. Indeed, between 100 Hz to 40000 Hz, the phase velocity ranges

between 17 m/s to 1000 m/s (i.e., wavelength between 170 to 25 mm). The group

velocity has almost twice the value of the phase velocity. At such low frequency

range, propagation of the A0 mode is well described by Eq. 2.25. Note that in this

frequency range, Kirchhoff-Love model holds. With this set-up, we scan the surface

of the plate over two different distributions of laser points. Doing so allows us to

study the role of source distribution. The procedure for doing so and the results are

described in the following section.

2.5 Role of Source Distribution in Convergence of

Cross-Correlation towards the Green’s Func-

tion

Laser vibrometer scans are performed on two different geometries as shown in Fig.

2.5. In this analysis, we use the well-known source-receiver reciprocity theorem given

by Eq. 2.17 [25]. This equation in the time domain translates to

G(xB,xA, t) = G(xA,xB, t). (2.28)

In other words source and receiver can be interchanged with no difference in the

recorded wave-field.
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a b

Figure 2.5: Two different distributions for the scanning points on the plate: (a)

uniform (b) circular. The red stars denote the location of transducers and blue

circles show schematically the position of points scanned by vibrometer.

We use this theorem to define two different virtual source distributions (uniform

and circular) according to the geometry of the scanned points.

2.5.1 Uniform Source Distribution

First, we focus on the uniform source distribution. We do the scan on a grid of 2773

regularly spaced locations with a uniform distance of 1 cm between two points along

the x and y plate directions (Fig. 2.5a). In this experiment, the transducers are

acting as sources and the scanned points are the receivers but from now on we think

of our readings as virtually emitted at the locations scanned by the vibrometer,

and virtually recorded at transducer locations. This justifies why we refer to this

distribution as a uniform source distribution. An example of the recorded signals

after chirp pulse compression is shown in Fig. 2.6.

The envelope of the multi-reverberated impulse response shows exponential de-

cay. By fitting an exponential function to the squared signal (intensity), an attenu-

ation time (time that it takes for the amplitude to decrease by 1/e of the maximum

amplitude) of 9 ms is found. At 10 kHz, this time corresponds to about 18 reflections

off the boundaries. For a single pair of receivers separated by 12 cm and placed at

minimum distance of about 19 cm from the borders of the plate, we cross-correlate

the recordings from all virtual noise sources. The cross-correlation results are plot-

ted as a shot gather in Fig. 2.7 top panel for all 2773 virtual point sources. Then
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A

B

Figure 2.6: (A) Example of the Lamb waves recorded by a transducer after pulse

compression of the emitted chirp signal. The source-receiver distance is about 21

cm. The inset illustrates the envelope of the intensity of the signal (solid line) and

the exponential fit according to exp(−t/τa) (dashed line), as a semilog scale. The

attenuation time (τa) is 9 ms. Data at negative time gives a sense of the noise level.

(B) Power spectrum of the raw signal (black) and bandpass filtered one (gray). The

data is filtered between 15 kHz and 30 kHz using a Butterworth filter of 4th order.

we take the average of all these cross-correlations and normalize it by the maximum

energy according to

l12(t) =
C12(t)√

C11(0)C22(0)
(2.29)

where C12(t) is the cross-correlation of the signals between receivers 1 and 2 and

C11 and C22 denote the auto-correlation signals [44]. The normalized average cross-

correlation is shown in Fig. 2.7 bottom panel. We infer from both panels that the

resulting cross-correlations are remarkably symmetric with respect to time t = 0,

including several reverberated arrivals after the direct wave. The arrival time of

vertical stripes appearing in the shot gather coincide with the arrivals in the averaged

signals. This averaged signal is representative of the Green’s function between the

two transducers.

As transducers are reciprocal devices, they can also be efficiently used as emitters.

What we measure is the convolution of the electro-elastic response of the transducer

that acts as the source, the Green’s function, the electro-elastic response of the
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Figure 2.7: Top: Cross-correlation gather for all of the available virtual point sources

(2,773 points) distributed uniformly on the plate. Bottom: Normalized cross-

correlation averaged over all of the source positions. All of the cross-correlations

in this plot are bandpass filtered by a Butterworth filter of 4th order between 15

kHz and 30 kHz, and normalization is performed with respect to the maximum

energy of the correlated signals.

transducer that acts as the receiver, and the emitted signal. Note that this G(t)

is the vertical-vertical component of the Green’s function. We assume that within

the frequency band of interest, the frequency responses of the transducers are flat,

and hence the impulse response is obtained by applying pulse compression of the

emitted signals on the recordings. Hence, the impulse response can be measured

directly between the pair of transducers. The time-integration result of this directly

measured response after pulse compression (G(t)) of the emitted signal is compared

with the cross-correlation, to validate the theoretical result (Eq. 2.27), as discussed

in section 2.3. There is excellent agreement between the two, even for multiply

reflected contributions, as shown in Fig. 2.8 (similar to the results of [45]). This

impulse response corresponds to the vertical component of the Green’s function.

We conclude here that the cross-correlation of full-time recorded signals in case
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Figure 2.8: Comparison of the normalized cross-correlation averaged over all of the

source positions when the sources are distributed uniformly all over the plate (black),

and direct measurement of the source-to-receiver ’time-integrated’ impulse response

(blue) in the frequency band of 15 kHz to 30 kHz.

of a uniform source distribution converges to the Green’s function of the medium.

2.5.2 Circular Source Distribution

To study the cross-correlation results for a circular source distribution, we scan the

field according to Fig. 2.5b. The scan is performed on a circle of radius of 12 cm

and the points are separated by 2.27 degrees. The recordings at a given pair of

transducers are then cross-correlated and the shot gather for the 158 points and

the averaged cross-correlation over all possible virtual source positions are shown in

Fig. 2.9. The averaged cross-correlation is normalized by the maximum energy of

individual signals. The results are for the frequency band of 15 to 30 kHz.

The number of point sources here are much smaller compared to the uniform

case and this is why in Fig. 2.9 top, looks less clear than Fig. 2.7 top.
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Figure 2.9: Top: Cross-correlation gather for all of the available virtual point sources

(158 points) distributed in a circular form on the plate. Bottom: Normalized cross-

correlation averaged over all of the source positions. All of the cross-correlations in

this plot are bandpass filtered by a Butterworth filter of 4th order between 15 kHz

and 30 kHz, and normalization is performed with respect to the maximum energy

of the correlated signals.

Similar to the previous case, we compare the averaged cross-correlation with the

time-integration of what we measure directly by using one transducer as a source

and the other one as a receiver. The result is plotted in Fig. 2.10. We observe that

the match between the two is quite close although the number of sources is smaller

compared to the uniform case. This close match between the time-integration of

directly measured Green’s function and the cross-correlation for both uniform and

circular source distributions highlights the importance of reverberation. We conclude

here that in a reverberating medium, cross-correlation of recordings from sources

that are distributed uniformly or on a circle, converges very well towards the Green’s

function.

Furthermore, with the data that we obtain in the case of circular source distribu-

tion, we can reconstruct the stationary phase regions. For a given pair of transducers,
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Figure 2.10: Comparison of the normalized cross-correlation averaged over all of

the source positions when the sources are distributed on a circle (black), and direct

measurement of the source-to-receiver ’time-integrated’ impulse response (blue) in

the frequency band of 15 kHz to 30 kHz.

we cross-correlate only the part of the recordings that correspond to direct arrivals.

We plot each cross-correlation in time and for each angle (Fig. 2.11). We observe

the emergence of the S-shaped shot gather (similar to Fig. 2.3d). Bottom panel in

Fig. 2.11 is the average of all the cross-correlations plotted in the top panel. We

see that retrieval of direct part of the Green’s function is achieved and these arrivals

are mostly constructed by the cross-correlation of the signals that are coming from

the sources located at angles of π/2 and 3π/2. These angles correspond to points

that are approximately aligned with the line that connects the two transducers. On

the other hand, arrivals coming from sources located at π and 2π radians do not

contribute to the retrieval of the Green’s function. This experimental observation is

well in consistence with the theoretical demonstration explained in section 2.2.2.
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Figure 2.11: Stationary phase regions retrieval by experimental data. Top: Gather

of cross-correlation of the direct arrivals for circular distribution of sources. Bottom:

average of the cross-correlations shown in top panel.

2.6 Symmetry of the Cross-correlation of the Ob-

served Data

Symmetry of the averaged cross-correlation in time is often used as a signature

of its convergence toward the Green’s function (e.g., [24]). Symmetric behavior

of the resulting cross-correlation is observed in Fig. 2.7 bottom panel. Fig. 2.12

demonstrates the anticausal part of this averaged cross-correlation that is flipped in

time and superimposed on the causal part. We infer that to a good approximation,

the cross-correlation is symmetric with respect to time when averaged over all of

the available sources in the two-dimensional plate.

In this section, we quantitatively study the dependence of the time symmetry

of the cross-correlation on the number of sources. As for the experimental data, we

work with the data that we obtained in the case of uniform source distribution.
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Figure 2.12: Causal (black) and anticausal (red) parts of the averaged cross-

correlation over 2773 point sources when they are distributed uniformly. Note that

the anticausal part is flipped in time.

To this end, CN(t) (i.e., the cross-correlation averaged over N sources) can be

written as the sum of two terms:

CN(t) = C+
N(t) + C−N(t), (2.30)

where

C+
N(t) =

CN(t) + CN(−t)
2

and C−N(t) =
CN(t)− CN(−t)

2
, (2.31)

where for the sake of simplicity, rRl and rRl′ have been dropped from the argument

of CN .

By definition, C+
N(t) (resp. C−N(t)) is symmetric (resp. antisymmetric) with

respect to time.

We then compute the ratio of the integrated squared C+
N(t) and C−N(t); i.e.,

rN ,

´ +∞
−∞ C+

N(t)2dt´ +∞
−∞ C−N(t)2dt

. (2.32)

In Fig. 2.13, the experimental estimation of this symmetry ratio is plotted with

respect to the number of sources used in the averaging process. This curve is deter-

mined by repeatedly implementing Eq. 2.32, based on a growing number of randomly
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distributed sources, until all of the available sources are taken into account.

10 0 10 1 10 2 10 3 10 4

Number of point sources (N)

10 0

10 1
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10 3

r N

Experimental result
Theoretical model

Figure 2.13: rN as a function of the number of sources N picked randomly, derived

from the experimental data (blue line) using Eq. (2.32), and modeled (dashed red

line) based on the theory developed and summarized by Eq. (2.40). A 4th order

Butterworth filter between 5000 Hz and 15000 Hz is applied to experimental data.

From Fig. 2.13, it appears that the cross-correlation is far from symmetric if

only a limited number of sources are used in the averaging process. In this case,

the assumptions that allowed the derivation of Eq. 2.27 do not hold. Nevertheless,

as the number of sources grows, the averaged cross-correlation becomes more and

more symmetric in time. This behavior is directly related to the convergence of the

Green’s function reconstruction. Let us first write the cross-correlation obtained for

a subset N of all of the point sources as

CN(t) = C∞(t) + δCN(t), (2.33)

where C∞(t) is the cross-correlation obtained when all of the recordings from all of

the available sources in this experimental set-up are taken into account.

While C∞(t) is the best possible approximation of the Green’s function, given the

experimental set-up, there is no such thing as a perfectly uniform source distribution

and infinite source density in practical applications. It follows that C∞(t) does

not exactly coincide with ImG (see Eq. 2.27), and should in principle be slightly

asymmetric with respect to time. After defining the symmetric and antisymmetric

components of C∞(t), similar to Eq. 2.31, and substituting Eq. 2.33 into Eq. 2.31

and Eq. 2.32, we find that

rN =
4
´ +∞
−∞ C2

∞(t)dt+ 2
´ +∞
−∞ δC2

N(t)dt

4
´ +∞
−∞ (C−∞(t))2dt+ 2

´ +∞
−∞ δC2

N(t)dt
, (2.34)

53



where C−∞(t) is the antisymmetric component of C∞(t). Eq. 2.34 is directly related

to the ratio of the noise level (L), which is a measure of the quality of the recon-

structed Green’s function from a finite number N of sources compared to the one

obtained over an infinite number of sources introduced in [46]. This can be expressed

in terms of C∞(t) and δCN(t)

L =

´ +∞
−∞ δC2

N(t)dt´ +∞
−∞ C2

∞(t)dt
. (2.35)

Thus, Eq. 2.34 can now be rewritten as

rN =
2 + L

2ζ + L
(2.36)

where ζ =
´

(C−∞(t))2dt/
´
C2
∞(t)dt is the relative degree of asymmetry of the cross-

correlation function when N → ∞. For a rectangular plate, L is given by ([47],

pages 35-39)

L ≈ πn0

Nτa
, (2.37)

where τa is the attenuation time and n0 is the plate modal density (modes per unit of

frequency ω), which in turn depends on the area of the plate surface A, the surface

density ρs, and the bending stiffness D, through the relationship [43]

n0 =
A

4π

√
ρs
D
. (2.38)

Then, defining k as the ratio of the attenuation time to the modal density,

k =
τa
n0

, (2.39)

Eq. 2.36 finally becomes

rN =
1 + 2Nk/π

1 + 2ζNk/π
. (2.40)

By finding adequate values of k and ζ, the best-fit is obtained at 1.9 and 0.0035,

respectively, which results in the dashed red curve in Fig. 2.13. On the other hand,

the experimental values for τa and n0 are 0.009 s and 0.005 s/rad, respectively, which

leads to k = 1.8, according to Eq. 2.39. This experimental value for k and that

obtained from the fitting are consistent. The relative degree of asymmetry ζ can be
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explained as a consequence of the fact that the laser vibrometer is only sensitive to

vertical displacement (mainly A0 mode). However, to some extent, the transducer

also excites in-plane components (mainly S0 and SH mode). As a result, the in-

plane components modes do not contribute to the reconstruction of the Green’s

function.

2.7 Similarity between Impulse Response and Cross-

correlation

The Pearson similarity coefficient between the two signals G(t) and CN(t) is defined

as (e.g., [48]),

S(G,CN) =

〈∣∣´
∆θ
G(t)CN(t)dt

∣∣〉√〈´
∆θ
G(t)2dt

〉 〈´
∆θ
CN(t)2dt

〉 , (2.41)

where ∆θ is the time-integration window to compute the similarity coefficient, and

〈. . .〉 is the averaging over the different sets of point sources that are picked randomly.

The latter is required for S(G,CN) to be independent of the measurement positions.

While the word ’similarity’ is preferred here for clarity, S is more often referred to in

the literature as the ’correlation’ coefficient [48]. Fig. 2.14 shows S(G,CN); i.e., the

similarity coefficient between the time-integrated impulse response and the cross-

correlation of signals recorded at transducers #3 and #4 for increasing number of

sources (The coordinates of the transducers on the plate are given in the Supple-

mental Material part IV). The similarity coefficient S(G,CN) is computed over a

time window with a length (∆θ) equal to the decay time τa (see Fig. 2.14).

To discriminate the contribution of the direct arrival, we have also plotted

S(G,CN) where only direct arrivals are cross-correlated to get CN . We clearly

observe a lower similarity unless there exists a very large number of sources. How-

ever, this contribution is negligible because when we cross-correlate the coda i.e.,

all the reverberated signal without direct arrival, the same value of the similarity

coefficient is obtained as when all the signal is cross-correlated.

First, for a large number of sources (N > 100), S(G,CN) reaches a plateau

(S ≈ 0.82) that is less than 1.0. From the analysis of the symmetry of the correlation,
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Figure 2.14: Similarity coefficient S(G,CN) between the CN(t) and G(t) versus the

number of point sources (picked randomly) when the whole time signal is cross-

correlated (solid line), and when only a part of the coda signal (dT = 0.2 s; see Eq.

2.42) is cross-correlated (dashed line). A 4th order Butterworth filter between 15

kHz and 30 kHz is applied on CN(t) and G(t). ∆θ is equal to the attenuation time.

Curve with the star symbols is S(G,CN) where CN(t) is the result of the averaged

cross-correlation of only direct-arrival window. In this case, ∆θ is 0.7 ms.

we measured that the latter is asymmetric with ζ = 0.0035. Assuming that the

deviation to the perfectly reconstructed Green’s function is as much symmetric as

anti-symmetric, the total deviation reaches 0.0070. Consequently, the difference

with the 18% mismatch observed in Fig. 2.14 cannot be explained by the missing

of in-plane components to the reconstructed Green’s functions. We interpret this

increase of discrepancy by the fact that when considering the directly-measured

Green’s function, the effect of the transducer response appears as the convolution

of the two transducer responses, while when the recordings are cross-correlated,

we deal with the cross-correlation of the transducer responses. A probably weaker

effect comes from the absorption by the transducers that induces a deviation from

the Green’s function estimation as shown in [49].

Second, somewhat surprisingly, even with only one or very few sources the cross-

correlation matches the time-integrated Green’s function relatively well (S ≈ 0.4),

even when only a part of the coda is correlated.

In the next two sections, we propose models to explain these behaviors. This

begins with a study of the impact of the number of noise sources and the length of

the correlated coda on the emergence of the Green’s function. Then, the effects of
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uncorrelated noise are taken into account.

2.8 Correlation of Windowed Coda

We next study the contribution of different parts of the coda signal to the recon-

struction of the Green’s function. In practice, rather than cross-correlating the entire

signal, as above, the cross-correlation is now limited to a time interval of variable

length, where the variable start-point and end-point are denoted as T0 and T0 + dT ,

respectively. This is expressed by

CdT
N (rRl , r

R
l′ , t) =

N∑
k=1

ˆ T0+dT

T0

G(rRl , r
S
k , τ)G(rRl′ , r

S
k , τ − t)dτ . (2.42)

Note that there is a distinction between the two time windows dT and ∆θ defined in

Eq. 2.41; the former is the cross-correlation window, while the latter is the time win-

dow over which the similarity coefficient is computed. In Fig. 2.15, cross-correlations

are compared when the time window includes: only the ballistic wavefront, only the

multi-reverberated waves, and the whole wave-field.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Time(ms)

-0.1

0.1

Figure 2.15: Comparison of the cross-correlation results for three different time

windows when the sources are distributed over all of the plate, considering the

whole length of the signal (black line), only the ballistic part of the signal [dT = 0.7

ms] (blue line), and only a part of the coda arrivals [T0 = 0.4 ms, dT = 0.02 s] (red

line). All the cross-correlations are bandpass filtered between 15 kHz and 30 kHz

by a 4th order Butterworth filter.

We observe that cross-correlation of only the ballistic part of the signals builds

only the ballistic part of the Green’s function, while cross-correlation of the coda part
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reconstructs both the ballistic and coda parts of the Green’s function. Moreover, the

contribution due to the ballistic path is negligible, and the recovery of the Green’s

function is dominated by the coda part.

To study the convergence process, the similarity coefficient is computed be-

tween a reference cross-correlation Cref (r
R
l , r

R
l′ , t) and the cross-correlation func-

tion obtained for different time windows, averaged over randomly-picked sources

CdT
N (rRl , r

R
l′ , t). We recall that Cref (r

R
l , r

R
l′ , t) is obtained when all of the sources are

emitting and all of the signals are cross-correlated (in the case of uniform source

distribution). In this section and the next one, the reference to obtain the sim-

ilarity coefficient is not the empirical Green’s function (G(t)), but Cref (rRl , r
R
l′ , t).

The reason for this is that according to Fig. 2.14, G(t) never perfectly converges

to Cref (r
R
l , r

R
l′ , t), and they are not perfectly similar, which avoids reaching 1.0 for

the similarity coefficient even when all of the sources are considered and the cross-

correlation is over the whole signal. Also, as explained before, this new choice for

reference circumvents any influence on the results by the difference in the frequency

response of the transducers and the vibrometer.

The similarity coefficient S(Cref , C
dT
N ) is computed in a window that contains the

direct arrivals and that lasts as long as the attenuation time, following Eq. 2.41. Fig.

2.16 shows the values of S(Cref , C
dT
N ) versus the number of point sources (N) for the

three different correlation window lengths (dT ). It can be seen that all of the curves

have a similar trend. The values of the similarity coefficient (S(Cref , C
dT
N )) increase

with the number of sources (N), and the resulting cross-correlation converges toward

the reference one after a certain number of sources, which indicates that the cross-

correlation of a short time window (compared to the decay time τa = 9 ms) leads

to a reasonable impulse response.

See Supplemental Material (part I) for our proposed model based on the modal

decomposition of the plate Green’s function solution of Eq. 2.25 to derive S(Cref , C
dT
N ).

Note that in the theoretical approach, we refer to the reference cross-correlation or

the ’perfect’ cross-correlation by C∞. This difference in the notation between the

theoretical (C∞) and experimental (Cref ) approach is a reminder for the fact that

in the experimental case we cannot have an infinite number of sources and hence a
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Figure 2.16: Similarity coefficient S(C∞, C
dT
N ) between C∞ and CdT

N (cross-

correlation obtained by windowing one signal before the cross-correlation, and then

averaged over a subset of available sources picked at random). Symbols and lines

show the experimental results and theoretical model, respectively, for the various

window lengths (dT ). The starting time (T0) in all three cases is 2.3 ms, i.e., no

ballistic signal is cross-correlated.

perfect cross-correlation. S(C∞, C
dT
N ) is finally given by

S(C∞, C
dT
N ) =

[
1 +

2

N
(1 + Z)

]−0.5

, (2.43)

with

Z =

´
κ(δω, ω)

∣∣∣M̃(δω)
∣∣∣2dδω∣∣∣M̃(0)

∣∣∣2 (1 + F (δr))
, (2.44)

where F (δr) accounts for the spatial correlation of the squared eigen-modes, N is

the number of point sources, κ(δω, ω) is the two-level correlation and M̃ is the

Fourier transform of the time windowed (the window duration being dT ) squared

mean intensity (see Supplemental Material for more details).

The two-level correlation function, that has been formally introduced in quan-

tum chaos theory, is defined in terms of the modal density (n0(ω)) as

κ(δω, ω) =
〈n0(ω)n0(ω + δω)〉

〈n0(ω)〉
. (2.45)

Lyon [50] also introduced it when analyzing the statistical properties of sound power

in structures.
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In a chaotic-shaped plate, due to repulsion between the modes, κ is null when

δω = 0 and is close to n0 when δω is larger than the modal density. The expression

of κ can be found in [51, 52]. But here, as the plate geometry is regular, the eigen-

frequency statistics follow a Poisson’s distribution [50, 53]. As a consequence, there

are no correlations between the eigenfrequencies, κ(δω, ω) is equal to the modal

density and Z can be simplified into

Z =
πn0

τa (1 + F (δr))
coth

(
dT

τa

)
. (2.46)

The coefficient Z can be interpreted as the average number of overlapping modes of

the plate within the windowed cross-correlation at angular frequency ω.

See Supplemental Material (part III) on derivation of the expressions for the

spatial correlation of the squared eigenmodes and F for chaotic and rectangular

cavities. In the case of a chaotic cavity, based on the Berry conjecture [54], F (δr)

is given by 2J0(kδr)2, where J0 is the zero-th order Bessel function of the first kind.

In the case of a rectangular cavity, using the same methodology as the one that led

to the spatial correlation of the eigenmodes in a rectangular plate [55], we find

F (δr) =
J0(2k |δx|) + J0(2k |δy|)

2
+
J0(2kδr)

4
. (2.47)

Note that now the correlation of squared eigenmodes is anisotropic because it not

only depends on modulus of δr, but also on the projection dx (respect. dy) of δr

along the x-axis (respect. y-axis).

The continuous curves in Fig. 2.16 result from the model described by Eq. 2.43,

where F (δr) ∼ 1/2 for δr � λ and 1+F (δr) is set to 1.5. We believe that this long-

range correlation is due to strong periodic orbits that are not taken into account by

our correlation models.

The convergence toward the Green’s function is driven by three characteristic

times: the modal density (n0), the attenuation time of the plate (τa); and the time

window selected for the cross-correlation (dT ). Schematically, three asymptotic cases

can be identified:

1. When τa � n0 and dT � n0, the modes of the plate are resolved because
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the attenuation is low (see Fig. 2.17a). Moreover, the integration time dT is

sufficiently large to include a sufficient amount of coda to not induce modal

overlapping by a windowing effect. In such a case, the similarity coefficient

S(C∞, C
dT
N ) is high, and therefore the ’best’ correlation is obtained. In the

case of a single source S(C∞, C
dT
N ) is 1/

√
3.

2. When τa . n0 and dT � τa, Z ≈ πn0/τa, the overlapping due to the at-

tenuation is not negligible anymore (see Fig. 2.17b). The convergence of

the cross-correlation toward the Green’s function is slower. Hence, at least Z

sources are required to obtain a good estimation of the Green’s function from

the cross-correlation.

3. Finally when, dT � τa and dT . n0, the mode overlapping is dominated

by the effects of the coda truncation, and is given by Z ≈ πn0/dT (see Fig.

2.17c). Again, to get a good estimation of the Green’s function, at least Z

sources have to be used.

Hence, when N is large compared to 1 + Z, S(C∞, C
dT
N ) converges toward 1.0,

independent of the window length dT . In other words, even with a very short

integration time in Eq. 2.42, the Green’s function can be completely recovered.
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Figure 2.17: Three schematic representations of a small part of the Fourier transform

of the window cross-correlations for different values of the characteristic times of

the system, namely as: modal density (n0), attenuation time (τa), and selected time

window for cross-correlation (dT ). The vertical arrows mark the eigen-modes that

are separated on average by 1
n0

. The dashed curves represent Lorentzian spectra of

the width 1/τa, which is the inverse Fourier transform of the exponential attenuation.

Finally, the solid continuous curves show the sinc functions of the width 1/dT,

which is the Fourier transform of the window. The regimes and the corresponding

approximate values of Z are denoted at the top right-hand corner of each plot.

Fig. 2.16 shows that the experimental results approximately confirm this model;

the similarity coefficient S(C∞, C
dT
N ) does not converge to 1.0 exactly, which we

ascribe to the presence of a small amount of random noise in the measurements.
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2.9 Effects of Random Noise

A comparison between the model and the experimental results (Fig. 2.16) suggests

that uncorrelated noise (e.g., electronic noise) degrades the Green’s function. We

next analyze this effect by performing the cross-correlation over time windows that

start between T0 = 0 and T0 = 57 ms after the beginning of the transient response,

and end at time T0 +dT = 250 ms (see inset in Fig. 2.18). Time T0 +dT is chosen to

be a lot larger than τa, to increase the relative contribution of noise in the correlation

process. The similarity coefficient S(Cref , C
dT
ref ) is then retrieved according to Eq.

2.41 and from the direct path and primary coda signal (∆θ = 2 ms). As for the

previous section, the reference of the similarity coefficient is the one obtained when

the number of sources is large and the effects of noise are negligible. Note that, in

this case, all of the sources N are considered in the computation of S(Cref , C
dT
ref ),

and the similarity coefficient is plotted in Fig. 2.18 as a function of T0.

  

T
0

T
0
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Figure 2.18: S(C∞, C
dT
∞ ) between C∞(rRl , r

R
l′ , t) and CdT

∞ (rRl , r
R
l′ , t). The end of the

time windows (T0+dT ) is fixed at 250 ms. S(C∞, C
dT
∞ ) is then evaluated in a window

that includes direct path and primary coda (∆θ = 2 ms).

We observe that the effects of noise becomes significant only when T0 is >15 ms.

The decay of the S(Cref , C
dT
ref ) can be explained by assuming that the field measure-

ment is perturbed by a constant amount of uncorrelated noise at each transducer,

according to Eq. 2.48. See Supplemental Material (part II) for the complete deriva-

tion of S(C∞, C
dT
∞ ). Similar to the previous section, we discriminate the experimen-

tal case from the theoretical one by changing Cref to C∞. After some algebra, we
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find

S(C∞, C
dT
∞ ) ≈

(
1 +

βB(dT )

N [e−T0/τa(1− e−dT/τa)]

)−0.5

, (2.48)

where B is the bandwidth of the system, and the dimensionless value β is an indi-

cation of the noise-to-signal ratio.

The experimental data were fitted to Eq. 2.48. We observe that the model ex-

plains the decay in S(Cref , C
dT
ref ) and as we go further in time, it is the noise content

that dominates, which consequently causes degradation of the reconstructed Green’s

function. Note that unlike the experimental curve, the theoretical one does not start

from the value of 1.0. This is due to a different reference in the similarity coefficient

in these two cases. On the one hand, for T0 = 0, the correlation and the reference

correlation are identical because we chose the best correlation possible for the ref-

erence cross-correlation (i.e., at T0 = 0). Consequently, S(Cref , C
dT
ref ) is exactly 1.0.

On the other hand, from a theoretical point of view S(C∞, C
dT
∞ ) is smaller than 1.0

because the reference correlation is the ideal one, i.e., the difference between the

advanced and delayed Green’s function, while the noise slightly contaminates the

cross-correlation.

2.10 Discussion

As explained by [56], the process of reconstructing a Green’s function by diffuse-field

cross-correlation is closely related to that of acoustic time reversal [57]. Accordingly,

this study has some implications in the context of time reversal. To illustrate this

point, let us assume that a pulse is sent at position rA and the N transient responses

are recorded by N receivers at positions ri. Each response is then flipped in time and

sent back into the medium by the N emitters located at the same positions as the N

receivers. In a reciprocal medium, it can be formally shown that the time-dependent

amplitude of the time-reversed field at position rB is proportional to the correlation

CN(t) between positions rA and rB. When only a part of the transient responses

between times T0 and T0 + dT are flipped and sent back, the time-reversed field is

then given by CdT
N (t). This formal equivalence between the cross-correlation and

64



the time reversal provides new insights [57]. First, when there is only one source,

the cross-correlation behaves approximately as the one-channel time-reversal signal

of flexural waves obtained by Draeger and Fink [58]. In particular, it has been

shown that in a lossless cavity, the time reversed field at position r1 is equal to

G(r1, r1, t) ⊗ G(rA, rB,−t) [59]. For this set-up, we infer from Eqs. 2.43 and 2.46

that when dT � τa � n0, the similarity coefficient S(C∞, C
dT
1 ) for one single source

is equal to 1/
√

3. Hence, the mismatch is due to G(r1, r1, t), i.e., fluctuations induced

by alternation of nodes and antinodes at r1. Secondly, the case where the sources

are uniformly distributed over the surface corresponds to the instantaneous time

reversal [60], which is also called the Loschmidt echo [61]. In this case, a field can

be perfectly time reversed at time t0 by imposing the initial condition ψ(r, t0) and

its negative time derivative −∂ψ(r, t0)/∂t. Consequently, by time reversing a very

small window around time t0 of the transient responses by many sources over all of

the surface, the time-reversed field is perfectly recovered for t < t0. This result is in

agreement with our finding that S(C∞, C
dT
N>>1) converges to 1.0 as N grows.

A popular technique used in order to improve the estimation of the Green’s func-

tion consists of correcting the exponential attenuation decay to artificially increase

the attenuation time. In such a case, because τa is larger (see Eq. 2.40), the symme-

try ratio rN increases faster with the number of sources. The similarity coefficient is

also improved because τa can be larger than the modal density (also called Heisen-

berg time and explained in details in Chapter one, section 1.4.1) and the system

behaves as if the plate modes are resolved (see Eq. 2.43). However, this correction

also increases exponentially noise-to-signal (β) and therefore limits the efficiency of

the method (see Eq. 2.48).

In the case of continuous incoherent noise sources, the cross-correlation converges

toward the windowed cross-correlation, but with a window that includes all of the

transient signal. The present study provides new insights into the understanding

of the relative contributions of the different parts of the transient response (e.g.,

ballistic and early coda, late coda) for building the cross-correlation. Considering

the transient recorded signals that consist of direct and later arrivals, and cross-

correlating these parts of the signals separately, we show that exclusion of the direct

arrivals and cross-correlation of only the coda arrivals is very close to the case where
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we cross-correlate the full-time signals.

2.11 Conclusion

Given any receiver pair, the signal that would be obtained at either one from a

source at the other can be reconstructed experimentally by cross-correlation of the

recordings provided that the field is diffuse. The field can be diffuse as a result of a

dense, homogeneous source distribution throughout the medium, and/or of scatter-

ing or reverberation: this study was aimed at the disentangling of these two effects.

We conducted experiments with a thin plate where the surface was densely scanned

by a laser vibrometer, and where an array of transducers was deployed. This set-up

provides almost perfect control of the spatial distribution of the transient sources.

We first validated the theory through comparison of the averaged cross-correlations

and the directly observed Green’s function for two different distribution of sources.

We also experimentally studied the symmetry (with respect to time) of the cross-

correlations, as well as their similarity to the Green’s function, as a function of the

number of uniformly distributed point sources. To explain these observations quan-

titatively, an analytical model was developed that predicts the observed asymmetry

of the averaged cross-correlation. We next studied the convergence of the averaged

cross-correlation for time windows of variable lengths, which might be very short,

and taken at different points in the coda of the recordings. Here, a relatively dense/

uniform source distribution can result in good estimation of the Green’s function.

We demonstrated that this time window does not have to include the direct-arrival

part of the signals for the estimated Green’s function to be a good approximation

of the exact one. Through statistical modal analysis, the respective contributions of

attenuation time, modal density, and number of sources to the convergence of the

cross-correlation toward the Green’s function were identified. Finally, we demon-

strated both theoretically and experimentally that this convergence strongly depends

on the position of the correlation time window only when additive random noise is

taken into account. The relative effects of the noise are stronger when the late coda

is cross-correlated.
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Chapter 3

Retrieving the Scattering Cross-Section

using Noise Correlation in a Reverberant

Medium: A Theoretical and

Experimental Approach

3.1 Introduction

The phenomenon of scattering is defined as redirection of the incident wave due

to a local inhomogeneity in the medium. In complex media, waves are scattered

or reflected many times before their extinction, producing random-like and time-

dispersed wave-fields. However, the late parts of the echo arrivals remain strongly

imprinted upon by the propagation medium. Long/infinite-range correlations [62]

and back-scattering enhancement are several of the expressions of this property.

With a complex medium that changes with time, the dynamics of the fluctuation

of the scattered field is directly related to the medium dynamics. For instance,

coda wave interferometry (CWI) [63] focuses on the coda evolution when a global

modification of a complex medium occurs, such as changes in velocity associated with

changes in temperature. The coda is the part of the transient response (i.e., Green’s

function) that results from multiple scattering interferences. Temporal variations

in the elastic behavior of the Earth’s crust are an indicator of the changes in the

stress transfer with time. Changes in the stress, modify the elastic behavior of

the Earth’s crust. Therefore, by analysing the Earth’s seismic response and its

temporal evolution, these variations can be recovered. This is particularly true
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when earthquake codas, microtremors or microseismic noise are considered, as these

are very sensitive to the effects of the often small perturbations in the Earth’s elastic

properties as they sample it both randomly and repeatedly ([64]). For understanding

the dynamic behavior of the crust, tectonically and volcanically active regions are

of particular interest since in these regions stress changes are frequent and may

precede earthquakes and volcanic eruptions. Deformations at the Earth’s surface

associated with plate movements, earthquakes and volcanoes can be observed with

GPS and InSAR techniques. To measure the dynamic evolution inside the Earth

and in time, we need to have repeated measurements in which we use the same

seismic source and receiver position several times to have identical seismic ray path.

Poupinet et al., [65] pointed out that a few number of similar earthquakes which

are called ’microearthquake doublet’ or ’multiplet’ are a very convenient source for

seismic velocity monitoring that allows very accurate timing measurements. Despite

the numerous advantages of using multiplets instead of explosives as sources, this

method still has the disadvantage of being dependent on earthquake occurrence. To

find the temporal variations in the shear waves speed due to local variations in the

Earth’s crust, the decorrelation between the coda of these multiplets is measured.

This decorrelation is highlighted as a time shift in the part corresponding to coda

arrivals and from that, the relative velocity changes are found. In parallel to the

application of CWI for real data, there have been some studies in the laboratory

as well and the reliability of the method has been confirmed. One of the studies is

the one of [66] where the thermally-induced velocity changes in a granite sample are

measured. With this experimental data, we can clearly observe (as shown in Fig.

3.1) that the variations in the temperature appear as a time shift in the coda of

the recordings at two different temperatures (bottom inset) while the direct arrivals

stay unchanged (top inset).

To locate a weak and local modification in a multiple-scattering medium, the

LOCADIFF algorithm was proposed by [67], which is based on diffusion theory [68].

LOCADIFF involves an inversion procedure that consists of the spatial sensitivity

map of the wave-field with respect to local changes in the medium. Diffusive-wave

spectroscopy [69] is another method based on analysis of light intensity fluctuations

when all of the scatterers are moving randomly. This idea was originally developed
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Figure 3.1: Recorded waveforms in a sample of granite for two different tempera-

tures, 45◦C (gray) and 50◦C (black). The top inset shows the waveforms at these

two temperatures around the direct arrivals and the bottom one shows the one for

the part of coda arrivals (Figure from [66]).

in the context of optics, but has since been applied to acoustics [70], [71]. Con-

trary to diffusive-wave spectroscopy, which works in the frequency domain, diffusive

acoustic-wave spectroscopy is based on temporal analysis of the late time fluctua-

tions of the coda. More recently, the coda generated in a reverberant cavity when

one or several scatterers are moving was analyzed [72], [73]. This method, known

as diffuse reverberant acoustic-wave spectroscopy (DRAWS), has been shown to be

promising for finding scattering cross-sections [72] and the displacement magnitudes

[74] of a discrete set of moving scatterers. The scattering cross-section is a property

of a scatterer that quantifies its strength averaged over all of the incident angles.

All of these techniques, from coda wave interferometry to DRAWS, are based on

the measurement of the two-point Green’s functions between a set of sources and

receivers, either in the frequency domain or in the time domain. However, when

dealing with time-domain techniques, it might not be possible to have access to

point-like and transient sources to directly measure the Green’s function. Through

the advent of noise interferometry, the Green’s function between two points in a

medium can be retrieved by cross-correlation of the noise recorded at these loca-

tions; i.e., without the need for an active source. The first, pioneering, validation of

this theoretical result in the experimental domain was carried out by [20], who prop-
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agated elastic waves through a block of aluminum, and explained their observations

by the principle of equipartition of energy over different modes. Later, this method

found applications in different domains, such as ocean acoustics (e.g., [75]), seismol-

ogy (e.g., [76], [16]), and medical imaging (e.g., [77]). A number of studies have

shown that this method can be used to estimate the coda in a multiple-scattering

medium or in a reverberant cavity ([34], [78], [33]). Following these studies, pas-

sive coda wave interferometry was successfully applied in seismology, based on the

analysis of coda estimated from noise correlations (e.g., [18], [79]). In reverberating

media, several studies have shown that it is possible to passively localize a scatterer

on a thin elastic plate from the analysis of the direct path recovered by noise corre-

lation (e.g., [1]). However, the sensitivity of the method is poor, and does not yet

provide the cross-section of the scatterer.

The present study is based on the DRAWS approach, and we show that the

scattering cross-section can be estimated in reverberant media without controlled

sources. This study demonstrates the reliability of DRAWS based on passive re-

trieval of the Green’s function for monitoring of the variations in the medium, with

possible applications to acoustic or seismic waves. We carry out experiments on

a thin duralumin plate and recover the Green’s function through cross-correlation.

In the first test, we repeat our experiment with and without a single scatterer. In

the second test, we repeat the experiment before and after changing the position

of the scatterer. In both cases, the decorrelation in the coda of these passively re-

covered Green’s functions is tracked by computing the similarity coefficient between

the Green’s functions. We next develop a formalism that is similar to that proposed

by [73], and the scattering cross-section is estimated. The possibility to track the

temporal fluctuations in a coda caused by the appearance of a scatterer, and not

only by a change in its position, is an extension, first attempted here, of classical

DRAWS. Moreover, DRAWS is applied to highly dispersive plate waves for the first

time here.

The passive estimation of the scattering cross-section is also double checked: first

by the use of active DRAWS, and then by classical estimation of the cross-section

based on the measurement of the scattering phase function from direct plane-wave

illumination. There is a close match between the passive measurements and the two
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active measurements.

This chapter first introduces a numerical test for finding the scattering cross-

section of a defect. In the second part, our theoretical model is elaborated. Next,

the experimental set-up that used for the passive/ active scattering cross-section

estimations is presented and then the experimental results are presented and dis-

cussed, before the final conclusion.

3.2 Evaluating the Scattering Cross-Section in the

Far Field

3.2.1 General Overview

A scatterer in the medium is usually characterized by the local changes of elastic

parameters. In other words, when the incident wave faces a region in the medium

of propagation where the elastic parameters are different from the ones in the back-

ground medium, it becomes scattered and continues propagating in random direc-

tions. The elastic parameters can be the density, Young’s modulus, poisson ratio,

etc. One parameter to characterize the strength of the scatterer (defect) is the scat-

tering cross-section. The scattering cross-section represents the capability of the

scatterer to intercept the incident wave and scatter it. In 2D, it has the dimension

of the length. A schematic demonstration of the history of a plane incident wave in

the presence of a local heterogeneity is shown in Fig. 3.2.

  

Incident plane wave scatterer

scattered wave

θ

d

Figure 3.2: Scattering of a plane wavefront by a rigid heterogeneity.

To calculate the scattering cross-section we need a measure of the scattered wave-

field. In the frequency domain, the scattered wave-field in 2D, in the far field, and

for all the directions in space is given by
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Wdiff (θ, ω) = f(θ, ω)
Winc(ω)e−jk(ω)d

√
d

(3.1)

where k is the wavenumber, Winc(ω) is the incident wavefront, d is the distance

between the measurement point and the scatterer and ω is the angular frequency

[68]. f(θ, ω) is a measure of the scattered wave as a function of frequency and for

different angles and is known as ’scattering phase function’ or ’far-field radiation

pattern’. In other words, f is a record of relative amplitude and phase of the

scattered components along the direction of θ relative to the direction of the incident

wave. The total scattering cross-section is then found through

σ(ω) =

ˆ 2π

0

|f(θ, ω)|2dθ. (3.2)

In the following, we implement this formalism on a numerical experiment to find

the scattering cross-section.

3.2.2 Special Case of a 2D Inclusion in the Plate: Analytical

and Numerical Solution

We start this study by a numerical test. We are interested in finding the scattering

cross-section of a rigid inclusion in a plate. To solve this problem numerically, we use

a free software of finite element method called ELMER 1 and build a numerical set-up

as close to the theoretical case as possible. As explained in the previous section, the

scattering cross-section is calculated in the far field with a plane incident beam which

requires an infinite background medium (in our case, plate). In order to approach

these requirements, we run our numerical experiment on a large rectangular plate

whose dimensions are 1 m by 1 m and the thickness is 3 mm. We place the receivers

on a circle of radius of 5 cm whose center is the center of the plate. The emitted

source signal is one period of a sine with the central frequency of 40 kHz. The

displacement wave-field is measured on a circle of radius of 5 cm when there is no

inhomogeneity on the plate and then a cylindrical inclusion is added right at the

center of the circle and the displacement measurements are repeated. The inclusion

is defined as the local variation in the elastic parameters of the plate. We keep the

1https://www.csc.fi/web/elmer
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thickness unchanged and define the inclusion as a rigid one whose Young’s modulus

and poisson ratio are 10 times larger than the one of the surrounding aluminium

plate and the diameter is 1 cm. The sampling frequency in both cases is 500 kHz

with a temporal step of 2 µs. The numerical set-up in these two cases is shown in

Fig. 3.3. Having measured the displacement field on a circle for the homogeneous

 

receiver

Impulsive 
source

θ

receiver

Impulsive 
source

θ

(a) (b)

R

Rigid inclusion
1 m

1 m

Figure 3.3: Numerical set-up for calculating the total scattering cross-section of a

defect of diameter of 1 cm. a) plate without the inclusion, b) plate with the inclusion

at its center.

plate (Ww/o) and for the case where the inclusion is added (Ww/), we subtract these

two wave-fields and find the scattered wave-field (Ww/ −Ww/o).

It should be noted that the measurements on the circle are done for 120 points

separated every π/60 radians. The subtraction is applied only on the direct wave

packets. The incident wave-field (Winc) is the average of the recordings on points

corresponding to zero and π degree on the circle when there is no inclusion in the

plate. Next, by having all of this, we find the far-field radiation pattern given by [68]

|f(θ, ω)| =
Ww/(θ, ω)−Ww/o(θ, ω)

|Winc(ω)|
√
R (3.3)

where R is the radius of the circle of the scan. The amplitude of the phase function

for three different frequencies is shown in Fig. 3.4 in polar coordinates. As we

can see, at frequency f = 250 Hz, the amplitude of scattered wave-field is almost

73



f=250 Hz

  100000

  200000

  300000

  400000

30

210

60

240

90

270

120

300

150

330

180 0

f=1500 Hz

  200000

  400000

  600000

  800000

  1000000

30

210

60

240

90

270

120

300

150

330

180 0

f=15000 Hz

  1000000

  2000000

  3000000

  4000000

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3.4: Amplitude of the phase function for a defect of diameter of 1 cm at three

different frequencies. The incident wave-field illuminates the medium from the angle

of 180◦.

the same in all directions. In other words, the radiation pattern of the defect is

isotropic. This can be explained by the fact that at this frequency the wavelength

is about 35 cm which is large compared to the size (diameter) of the inclusion

and so the scatterer behaves as a point-like one. On the other hand, at slightly

higher frequencies (e.g., f= 1500 Hz), the wavelength decreases and an anisotropic

radiation pattern shows up. At higher frequencies, we observe the appearance of a

lobe toward the direction of the incident wave which corresponds to backscattered

waves.

By having the phase function, we can calculate the total scattering cross-section

(σ) versus frequency according to Eq. 3.2. We compare the σ obtained by the

numerical simulation with the σ obtained from the analytical study of Norris and

Vemula ([80]). The comparison of the two is shown in Fig. 3.5.

As we observe, the numerical and analytical solution for the scattering cross-

section of a rigid cylindrical inclusion are in agreement with one another. We note

that this close match is obtained although in the case of numerical simulations, there

a few assumptions that are not completely satisfied. For example, the analytical so-

lution of Norris and Vemula is obtained for an infinite plate and a plane incident

wave which are not satisfied in our numerical set-up. In our numerical experiment,

the medium is finite. Moreover, ELMER is based on the Mindlin-Reissener model

(see chapter one, section 1.3.2) for the Lamb waves while Norris and Vemula cal-

culations are based on Kirchhoff-Love model (see chapter one, section 1.3.1). But
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Figure 3.5: Comparison of the values of total scattering cross-section obtained with

the numerical modeling using ELMER code (blue curve) and the one obtained

through the analytical study of Norris and Vemula (black curve). The defect is

a rigid cylindrical inclusion with the diameter of 1 cm.

despite all these differences, we still can have very similar results for the scattering

cross-section. We propose and derive a formalism in the following section based on

the coda of the arrivals and then validate it experimentally.

3.3 Theoretical Analysis for Estimation of the Scat-

tering Cross-Section of a 3D Inclusion on a

Plate

In contrast to coda wave interferometry, where nonlocal distributed variations in

wave speed are of interest, in the present study, we focus on the effects of very sharp

and localized heterogeneities, which we refer to as scatterers.

In this section, we discuss two slightly different cases for estimation of the scat-

tering cross-section of a scatterer based on the coda of the source-to-receiver Green’s

function. As demonstrated by [73], the basic assumption in this formalism is that

the scattering mean free path (ls) is much larger compared to the dimension of the

cavity. First, we study the case where the Green’s function of the medium in the
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presence of the scatterer is compared to that obtained in its absence. This will be

referred to as case I in the following.

In a strongly reverberating medium, the time-domain Green’s function (i.e., im-

pulse response) between a source at x1 and a receiver at x2 (G(x1, x2, t)) can be

described as:

Gw/,i(x1, x2, t) = G0i(x1, x2, t) exp(−t/2τ) + si(t), (3.4)

where i is an integer index that indicates a certain source-receiver within a database.

The subscript w/ serves to remind us that one scatterer is present somewhere in the

medium. G0i(x1, x2, t) is the impulse response in the absence of the scatterer, which

is known to introduce an exponential decay with a decay time of τ [73]. si(t) is a

term due to the presence of the scatterer [73].

In the second set of experiments, the scatterer is removed. For such a situation,

the exponential decay due to the presence of the scatterer will disappear, and hence

Gw/o,i(x1, x2, t) can be written as:

Gw/o,i(x1, x2, t) = G0i(x1, x2, t), (3.5)

where the subscript w/o indicates ’without scatterer’. We are interested in measur-

ing the similarity between the Green’s functions given by Eqs. (3.4) and (3.5). We

repeat the measurements of Gw/ and Gw/o, and take their mean (<>) over all of

the available source-receiver pairs, to find the time-dependent Pearson correlation

coefficient (hereafter referred to as ’similarity’),

S(t) =
< Gw/,i(x1, x2, t)Gw/o,i(x1, x2, t) >√

< (Gw/,i(x1, x2, t))2 >
√
< (Gw/o,i(x1, x2, t))2 >

. (3.6)

Substituting Eqs. (3.4) and (3.5) into Eq. (3.6) and defining the residual terms as

uncorrelated, it turns out that

S(t) = exp (−t/2τ) . (3.7)

In a diluted scattering medium where the density of scatterers is not high, the

scattering mean free path (ls) that is defined as the mean distance between two

scatterers can be expressed as [68]:

ls =
1

nσ
(3.8)
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where n is the density of scatterers and σ is the scattering cross-section of the

scatterer. The scattering mean free path is one of the parameters that describes the

propagation of waves in a multiple scattering medium (e.g., [81]). In the present case,

we deal with an unusual scattering regime, because as in the DRAWS technique, an

important number of reverberations occur between two scattering events. Following

that, the decay time is found by dividing Eq. 3.8 by group velocity Vg(ω),

τ =
1

Vg(ω)nσ
. (3.9)

Eq. (3.7) can be rewritten as:

S(t) = exp (−tVg(ω)nσ/2) . (3.10)

The reason why we consider the group velocity of the waves is that we perform our

experiments on a duralumin plate. In such a medium, the energy propagates in the

form of Lamb waves, which are highly dispersive; i.e., the wave speed changes with

the frequency. In the low-frequency regime, the phase speed (Vφ) of the fundamental

mode of antisymmetric Lamb waves at a given angular frequency (ω) and for a plate

of thickness e, density ρ, and flexural rigidity D is given by [3]

Vφ(ω) =
√
ω

(
D

ρe

) 1
4

. (3.11)

In the measurements here, we are interested in the velocity of the propagation of

wave packets and not of a single phase. So, we apply the group velocity (Vg(ω)) in

our formalism, which in the low-frequency regime is twice the phase speed given by

Eq. (3.11). Substituting for Vg(ω) leads to

S(t) = exp

(
−
(
D

ρe

) 1
4

t
√
ω0nσ

)
(3.12)

where ω0 is the mean angular frequency in the bandwidth of interest.

For case II, the Green’s functions are compared when the position of the scatterer

has changed between successive acquisitions. To avoid repetition, we only describe

here the differences with respect to case I. Here, as the scatterer is always present

in the medium, the Green’s function between the same source and receiver in the

second experiment is

Gw/,i′(x1, x2, t) = G0i′(x1, x2, t) exp(−t/2τ) + si′(t). (3.13)
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Similar to case I, i indicates the source-receiver pair and the change in the position

of the scatterer is indicated by the prime sign.

Replacing Gw/o,i(x1, x2, t) with Gw/,i′(x1, x2, t) in Eq. (3.6), and following the

same procedure as above, the similarity coefficient is written as:

S(t) = exp

(
−2

(
D

ρe

) 1
4

t
√
ω0nσ

)
. (3.14)

Eqs. (3.12) and (3.14) suggest that the scattering cross-section can be determined

based on experimental or field observations of S. In other words, if a single or a

set of unknown scatterers are added to the plate, the measures of the Green’s func-

tion carried out before and after the introduction of the scatterers can recover the

strength of the scatterers. This is also true where the Green’s functions are measured

following the displacement of the scatterer. In the following, we experimentally ver-

ify this theoretical analysis, and we confirm its validity through comparison with a

conventional method.

3.4 Experimental Validation

To validate the proposed formulae for cases I and II, acoustic experiments are carried

out on plates. The experimental set-up is as shown in Fig. 3.6, and consists of a

quarter Sinai billiard [82] shaped duralumin plate of 75 × 75 × 0.3 cm. The plate

is suspended using two thin vertical supports to provide free boundary conditions.

There are five piezoelectric transducers attached to the plate surface. A pair of

cylindrical magnets of 12 mm diameter and 5 mm height are attached to the plate

at the exact same location on both sides of the plate. This pair of magnets acts as a

single scatterer that is symmetrical with respect to the mid-plane of the plate, and

redirects the propagating Lamb waves without mode conversion. To retrieve the

Green’s function between each pair of transducers, ambient-noise interferometry is

used, which is valid provided that the propagating waves travel along all directions

with equal probability. This condition is what is referred to as a ’diffuse wave-

field’ (see [30], section 12.1; see also [16], [76] for reviews of seismic applications of

noise interferometry). In a reverberating or strongly scattering medium, whatever

the source, the coda tends to be at least approximately diffuse after a sufficient
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Figure 3.6: Sinai billiard-shaped plate used in the experimental set-up to find the

scattering cross-section by interferometry. The plate is suspended horizontally and

transducers are connected to an audio card.

number of reverberations and/or scattering events have occurred. In this set-up,

the geometry of the plate is selected so as to eliminate any preferential direction of

the propagation. This has been shown to result in the condition of diffusivity being

more easily met [83]. We showed in chapter 2 of this manuscript the reliability

of ambient-noise interferometry technique in retrieval of the Green’s function in

duralumin plates using point sources [33]. Here, we implement a continuous noise

source. Pseudo-random noise is emitted by a loudspeaker (Ryght). The loudspeaker

is moved erratically at 10 cm above the surface during the acquisition. At the same

time, the propagating waves are recorded at all of the deployed transducers. The

Green’s function between each pair of transducers is determined by cross-correlation

of the corresponding pair of long-duration recordings. The retrieved Green’s function

includes the direct and coda waves that propagate between the transducers, which

coincides with the signal that one transducer would record if the other were an

impulsive source. The Green’s function obtained by this method will be referred to

here as the ’passive’ Green’s function, as there is no active source involved. The

advantage of using transducers attached to the plate is that they can be used both

as sources and receivers. This allows the direct measurement of the Green’s function

between each pair of transducers. The Green’s functions so obtained will be referred

to here as ’direct’ or ’active’, because in this case each transducer has the role of
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an active source. We use the active Green’s functions as reference to determine

the reliability of the Green’s functions obtained by cross-correlation. The source

signal is a linearly varying frequency chirp between 1500 Hz and 90000 Hz. We

record the response of the medium to this source while Green’s function is defined

as the response of the medium to a source of Dirac-delta type. In order to find

the response to a source as close as possible to a Dirac delta distribution, we apply

a technique to our recordings known as ’pulse compression’ in signal processing.

When we emit a chirp as the source, the response we record is the convolution

of the Green’s function with source function (which is a chirp). Pulse compression

consists of cross-correlating this recording with the source function which mimics the

response of the medium to a source that is pulse-like. Pulse compression technique

improves the signal-to-noise ratio as well.

An example of the comparison between active and passive Green’s functions is

shown in Fig. 3.7 in the frequency band of 5 kHz to 10 kHz.

Figure 3.7: Comparison between actively (gray solid line) and passively (black

dashed line) retrieved Green’s functions bandpass filtered from 5 kHz to 10 kHz

and normalized by maximum amplitude. The inset shows the zoom from 6 ms to

10 ms that corresponds to ∼4 m of propagation in the reverberating plate.

Fig. 3.7 shows a close match between these two Green’s functions. Once the

high-quality Green’s functions are retrieved passively, we apply them to Eq. 3.6 to

find the similarity S(t), and then Eqs. 3.12 or 3.14 are implemented to determine

the scattering cross-section. The corresponding procedure to find the scattering

cross-section after the retrieval of the Green’s function is explained in the following.
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3.4.1 Reconstruction of Scattering Cross-Section by Inter-

ferometry When a Scatterer Appears in the Propaga-

tion Medium (Case I)

Given a discrete set of five transducers, we deal with Green’s function between 10

combinations of two receivers. Following the passive estimation of the Green’s func-

tions in the presence of the magnets, we next remove the magnets and repeat the

same measurement. For each of 10 pairs of transducers, we calculate the similar-

ity coefficient between the Green’s function in the presence versus absence of the

scatterer. We then take the mean of the similarity coefficients over all of the 10

possibilities according to Eq. 3.6. These measurements are repeated for different

magnet positions, and show that the similarity coefficients in the presence versus

absence of the scatterer are independent of the position of the magnet. To take

into account the dispersion effect with the plate waves, the similarity coefficient is

calculated for Green’s functions that are filtered over a limited frequency band of 5

kHz, with the central frequency varying from 5 kHz to 17.5 kHz. The group velocity

for the central frequency in each bandwidth is substituted in the calculation, and

σ(ω) is determined by fitting the exponential decay according to Eq. 3.12. Approxi-

mating the velocity by the group velocity of the central frequency in the bandwidth,

imposes a condition on the maximum time considered in the fitting to the similarity

coefficient curve. This time depends on the central frequency, bandwidth, group

velocity of the central frequency and scattering mean free path (See Supplemental

Material part V for the detailed derivation of the condition on the maximum time of

the similarity coefficient curve considered in fitting). Substituting the values consid-

ering the set-up and the frequency band of interest, this time should be smaller than

∼ 0.027 s. We set this maximum time to 0.01 s in all fittings. An example of the

decay of the similarity coefficient with time for one pair of transducers at 10 kHz is

shown in Fig. 3.8, along with the fit according to Eq. 3.12. All of the experiments

that are performed for the interferometry method are then repeated with active

signals, to determine the scattering cross-section based on these actively recovered

Green’s functions. A comparison of the values of the scattering cross-sections based

on the active and passive Green’s functions in case I is shown in Fig. 3.9.

81



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time(s)

0.5

0.6

0.7

0.8

0.9

S
im

ila
rit

y 
co

ef
fic

ie
nt

Figure 3.8: Similarity coefficient between the ’passive’ Green’s functions ’with’ and

’without’ the magnets, filtered between 7.5 kHz and 12.5 kHz (blue), and the fitting

based on Eq. 3.12 (black).

3.4.2 Reconstruction of the Scattering Cross-Section by In-

terferometry for Displacement of a Scatterer (Case II)

As opposed to case I, where the variations in the Green’s function were tracked

in the presence and absence of the magnets, here the scatterer is always present

in the medium and the similarity coefficient is calculated when the position of the

scatterer (magnets) has changed from one acquisition to the other. We follow an

experimental measurement approach similar to that described in the previous section

for case I. The mean of the similarity coefficient over different pairs of transducers

is calculated in the same way, over the different frequency bands. The exponential

decay according to Eq. 3.14 is then fitted, and finally, the scattering cross-section is

obtained as a function of the frequency. The σ(ω) for the actively measured Green’s

functions are also measured (see Fig. 3.9). In the following subsection, the scattering

cross-section of the magnet is measured with an entirely different approach that is

based on the direct arrivals.
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Figure 3.9: Values of σ obtained by fitting according to model I and model II to the

actively- and passively- reterieved Green’s functions vs frequency.

3.4.3 Reference Measurement of the Scattering Cross-Section

According to a Conventional Method Based on Direct

Arrivals

In order to evaluate the values for scattering cross-section that are obtained by taking

into account the information that is carried by the coda part of the wave-field, we

now use another approach to measure the scattering cross-section of a cylindrical

steel magnet by focusing on the wave-field corresponding to direct waves. The set-

up for this experiment is very similar to the one we tested in our numerical study at

the beginning of this chapter. We remind that in this section we intend to measure

the scattered wave-field from direct waves in the far field. The difference with the

numerical study is that here we have a 3D inhomogeneity. In other words, at the

location of the defect not only the elastic parameters are different from the ones of the

background medium but also the thickness is different. To approach the assumption

of plane incident wave and far field approximation, we run the experiment on a large

duralumin plate whose dimensions are 1.5 m by 1 m by 0.003 m (see Fig. 3.10).

The defect here is the same couple of magnets used in the previous experiment.

The source is a piezoelectric transducer placed at the edge of the plate along with

the center of the circle. The source signal is a linear chirp with frequency varying

from 1500 Hz to 90 kHz and duration of 2 s. We then use the same approach as

the numerical test. In the first step, we scan the velocity field on a circle of radius
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Figure 3.10: Experimental set-up for estimating the scattering cross-section from

analysis of the direct arrivals.

of 15.3 cm whose center is the center of the plate. The measurement points on the

circle are separated by an angular distance of π/60 radians which gives rise to 120

measurement points. We use a Laser Doppler Vibrometer (LDV) to scan the field.

Next, we add the magnets to each side of the plate, on the center of the scanning

circle and repeat the measurements. The pulse-compressed recorded wave-fields for

all measurement points in the absence and presence of the magnet are shown in Fig.

3.11.

By comparing the two panels, we observe the scattered wave-field in the right

panel corresponding to the presence of the magnet. By subtracting the wave-field

in the presence and absence of the defect, we can find the scattered wave-field. But

before doing the subtraction, there is an issue that should be corrected. In the

following we address this issue.

As we run our experiments on a thin plate, we are dealing with dispersive waves.

Dispersion and reflections from the boundaries as well as finite size of the plate

complicate the recorded wave-field in a way that separating the direct waves (which

are of interest here) from later (coda) arrivals becomes less obvious.

The dispersion effect is observed in Fig. 3.11 as higher frequencies arrive earlier

in time than the lower frequencies indicating that different frequencies travel with
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Figure 3.11: Recorded wave-field after pulse compression in the absence (left panel)

and presence (right panel) of magnets. Note that the vertical time axis is oriented

downward.

different speeds. Fig. 3.12 left is the pulse-compressed recorded waves in the absence

of magnet in a time interval longer than the one shown in Fig. 3.11. We observe

the mixing between the direct arrivals and reflections that arrive later. In order

to handle this issue, we design a filter that compensates for the dispersion effect.

Dispersion marks itself as a phase term, S(x, ω) of the form

S(x, ω) = e−ik(ω)x (3.15)

where x is the distance between the source and receiver and k is the wavenumber

that depends on the frequency. We calculate the corresponding k of each frequency

through Rayleigh-Lamb dispersion relation given by

ω4

VT
4 = 4k2q2

[
1− p

q

tan(ph+ α)

tan(qh+ α)

]
(3.16)

where α is 0 or π/2 for symmetric and antisymmetric modes, respectively. p and

q are defined as p2 = ω2

VL
2 − k2 and q2 = ω2

VT
2 − k2 where VL and VT are the phase

velocity of the bulk longitudinal and transverse waves, respectively. h is half of the

thickness of the plate.

We convolve our recordings with the inverse of this filter (eik(ω)x) where we replace

x with the distance of the farthest point from the source (x = 0.5 + 0.153 m).

The resulting wave is the response we get from a source whose dispersion effects
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Figure 3.12: Raw recorded wave-field after pulse compression in the absence of

magnet (left panel). Same data of left panel after compensation for the dispersion

of Lamb waves (right panel).

are compensated. The outcome is plotted on Fig. 3.12, right panel. We observe

the effect of filter as it mitigates the dispersion effect and hence we can separate

the direct wave packet from later arrivals. We apply the same correcting filter to

the recordings where the magnets are present in the medium. Doing so, we next

take the difference of the direct arrivals in the case of presence and absence of the

magnets. From this data and using Eqs. 3.1 and 3.2, we compute the scattering

cross-section for this pair of magnets. We consider the values of σ obtained by this

conventional method as a reference for evaluating the values of σ that we obtained

in the previous section based on coda of the arrivals. Fig. 3.13 shows the values of

scattering cross-section obtained by different methods and set-ups.

We plot the results as a function of ka where k and a are the wavenumber and

the radius of the defect, respectively. This normalized axis helps in defining the

scattering regime we are dealing. Scattering regimes are classified according to the

product of the characteristic dimension of the scatterer (i.e., radius in case of a

circular scatterer (a)) and the wavenumber. According to this classification, the

following regimes can be defined: 1) ka << 1 known as Rayleigh regime and occurs

when the characteristic size of the scatterer is much smaller than the propagating

wavelength. 2) ka ∼ 1 known as Mie scattering and 3) ka >> 1 know as geometric
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scattering. Fig. 3.13 indicates that we are in the Rayleigh regime.
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Figure 3.13: Total scattering cross-sections obtained for the cylindrical magnet of 12

mm diameter and 5 mm height for the different methods and different data. Solid

line with stars, reference curve obtained by the conventional method based on direct

arrivals; solid blue line, case I for the active Green’s function; dashed blue line, case

II for the active Green’s function; solid black line, case I for the passive Green’s

function; dashed black line, case II for the passive Green’s function.

In general, the proposed formulae for cases I and II give slightly higher values

for σ(ω). We explain this on the basis that these formulae result from an ensemble

average, and that these experiments are limited to a relatively small number of

receiver-receiver pairs (i.e., five receivers, providing 10 pairs). Also, the strong

dispersion in the plate and the finite size of the plate result in the mixing of the

direct and reverberated wavefronts. This complicates the separation of the direct

waves in the reference measurement of the scattering cross-section. The dispersion is

compensated for by applying a filter based on the source-receiver distance. However,

this compensation does not work correctly for all frequency bands. Moreover, in the

measurements based on the coda of the Green’s functions, as for the group velocity,

we substitute the group velocity of the central frequency in a bandwidth. These

approximations give rise to a small bias between the different methods of measuring

the scattering cross-section. Another observation is that the passive and active

Green’s functions do not provide similar values, with a small average bias of about

0.3 percent. We speculate that this is mostly because the cross-correlation of the

diffuse wave-field has still not fully converged to the Green’s function. Moreover, the
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ratio of the antisymmetric to symmetric excited modes decreases with the frequency,

which leads to larger bias between the results obtained from the reference and the

model at higher frequencies. Limitations such as using a loudspeaker as a noise

source prevent the extension of these investigations to higher frequencies, at this

stage.

We do not compare our results with the analytical solution of Norris and Vemula

since they solve the problem of the rigid inclusion in 2D. Also the type of the

inclusion in their study is not exactly the one we use in our experiments. We attach

the magnets to either sides of the plate, so in the location of magnets we have two

different materials (magnet, plate, magnet) which is not the case for the study of

Norris and Vemula.

3.5 Conclusion

The study in this chapter was oriented toward a reverberating medium with the

main objective to find the scattering cross-section of a scatterer in a reverberating

medium from coda part of the Green’s function. We started by a numerical test to

study the possible effects that a non-perfect plane incident wave and finite medium

can impose on the values of the scattering cross-section we obtain based on direct

arrivals. We found a close match between the numerical results and theoretical ones

confirming that a semi-plane incident wave is sufficient for this type of measurement.

Next, we provided two theoretical models based on the temporal variations of the

Green’s function due to the appearance or movement of a scatterer. In these models,

we take advantage of the coda of the Green’s functions which are sensitive to the

variations of the elastic parameters in the medium. We next validate the models by

performing experiments on a thin irregular-shaped duralumin plate. We use noise

interferometry technique to find the Green’s function of the medium without an ac-

tive source and then track the temporal changes in the Green’s function. We find the

scattering cross-section values based on this data and our models. We next apply the

same models to the Green’s function that we measure directly using an active source.

In the final part, we find the scattering cross-section of the scatterers (cylindri-
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cal magnets) through a conventional method based on direct part of the arrivals.

We verify the values of the scattering cross-section obtained from our models by this

conventional one which is based on the direct arrivals. Validation of our models con-

firms that the coda of Green’s function contain useful information on the scatterer

in the medium and by temporally tracking the Green’s function in the absence and

presence of the scatterer, one can find the property of the scatterer. More impor-

tantly, we validate the reliability of this method in a more complex medium (i.e.,

thin plates) where we deal with strongly dispersive waves.
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Chapter 4

Noise Correlation in a Metamaterial:

from Laboratory to Field Data

4.1 Introduction

In chapter 2, we focused on cross-correlation of the recordings of impulsive-like

sources on a homogeneous plate, as there was no scatterer or inhomogeneity in the

medium. In this chapter, by implementing source-receiver reciprocity, we study

the cross-correlation of the wave-field propagating in a medium of locally resonant

elements. For this purpose, we use both laboratory and field data. For the lab-

oratory part, we conduct an experiment on a thin elastic plate, to which are at-

tached an array of vertical rods with sub-wavelength distance that have the role of

the locally resonant elements. As well as cross-correlation, we also auto-correlate

recordings that correspond to each virtual source-receiver pair, and visualize the

auto-correlation maximum as a function of the virtual-source location: this pro-

vides a map of the energy contribution of each virtual source, inside and outside the

region of resonators.

As for the field data, we process the recordings obtained in the experiment con-

ducted at the seismic scale that is known as ’METAFORET’. In this experiment,

the medium consists of a field and a forest of tall pine trees, where the trees act as

resonators. A series of point-like sources were activated within this medium, and

the responses to each source were collected using geophones. We use these data

to perform the cross-correlations between virtual receivers for different frequency

bands. In the experimental case, we deal with Lamb waves, while in the field data,
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the surface Rayleigh waves are of interest. Both of these waves are two-dimensional

(2D) dispersive waves, and they can couple with resonators in the medium.

We start this chapter by an introduction to the concept and nature of meta-

materials. We next elaborate on the concept of bandgap, which is a remarkable

characteristic that is related to the propagation of waves in materials with order

in the structure, or materials that consist of resonant scatterers arranged at sub-

wavelength scales. Afterwards, we recap on the state of the art of metamaterials

in seismology, and review some related experiments that have been conducted at

different scales. Finally, we focus on the experiments that we used for this study

(i.e., plate and METAFORET), and elaborate the results we obtain based on the

cross-correlation and auto-correlation of the wave-field at different frequency bands.

4.2 Metamaterials: Definition, History and Ap-

plication

Metamaterials are a kind of unconventional materials with unusual properties that

are not found in natural materials. For instance, in electromagnetism, this unusual

property is negative electrical permittivity, magnetic permeability, or refraction in-

dex.

The theoretical demonstration of the properties of a material with simultaneous

negative values for electric permittivity and magnetic permeability was first provided

by the Russian physicist, Victor Veselago in 1968 [84]. However, this did not receive

much attention until the late 1990s, when Pendry showed experimental verification

of such a material [85]. As one of the first applications of metamaterial in the

domain of optics, there was the ’super lens’ [86]. In a conventional lens, due to

the diffraction limit, we are always limited by the wavelength of the light used

for focusing. Taking advantage of a lens made of a metamaterial with negative

refractive index, a super lens that can focus on features smaller than the wavelength

of light might be possible. Apart from optical purposes, these materials have found

applications in various wave-related domains, such as building antennas, as well as

strong absorbers [87], in acoustics and seismology.
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4.3 Physics of Bandgaps

Apart from negative effective parameters, metamaterials show a characteristic fea-

ture that is known as the ’bandgap’. A bandgap is defined as a frequency band

where the propagation of wave is forbidden. These forbidden bands for the prop-

agation of wave have the potential to be implemented for controlling and filtering

the vibrations. In talking about bandgaps, the first mechanism for generating them

that might come to mind is Bragg diffraction. This is based on the periodicity in

the lattice or distribution of the scatterers, but as we will see, this is not the only

possible mechanism for generating bandgaps. Indeed, bandgaps have been observed

in media with locally resonant scatterers as well, regardless of the periodicity in the

system. In the following, we elaborate in more detail on the bandgap phenomenon

for these two cases.

4.3.1 Origin of Bandgap of Bragg Diffraction

Assume a one-dimensional atomic chain where the interatomic distance is a. The

atoms and the elastic forces between them can be considered as a mass-spring sys-

tem. We assume a longitudinal plane wave that is incident to this layer of atoms. If

one of the atoms is displaced, then propagation occurs. If we assume that displace-

ments from the equilibrium are small and the interactions mostly occur between

neighboring points, the equation of motion for the system described in Fig. 4.1 for

the nth atom with mass M can be written as:

M
∂2un
∂t2

= K(un+1 + un−1 − 2un) (4.1)

where K is the spring constant, and un is the displacement of the nth atom from

its equilibrium position at xn.

Assuming that each atom undergoes sinusoidal motion and that there is no at-

tenuation, it turns out that for such a system the dispersion relation obeys the

following:

ω = 2

√
K

M

∣∣∣∣sin ka2
∣∣∣∣ (4.2)

where k the wavenumber. This periodic dispersion relation is plotted in Fig. 4.2.

The interval −π/a < k < π/a that is shown in Fig. 4.2 is known as the first
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Figure 4.1: Demonstration of a set of atoms in one dimension. The propagation of

the disturbance is represented by mass and spring (Figure from [3]).

  
Figure 4.2: Dispersion curve for the waves that propagate in a one-dimensional array

of atoms (as shown in Fig. 4.1). ωc is the cut-off frequency, below which two modes

can propagate in opposite directions (Figure from [3]).

Brillouin zone. It is at the boundary of this zone that the incident wave gets Bragg-

diffracted. Next Brillouin zones occur at integer multiples of π/a. We observe

that for the wavelengths that are large compared to the periodic distances between

atoms (i.e., ka << 1), the frequency-wavenumber relation is a straight line which

is that of a homogeneous medium. As the wavelength becomes comparable with

respect to a so that ka is close to π, the dispersion shows up. This is the regime

where the waves can propagate in a crystal only when the frequency is smaller than

fc = 1
π

√
K
M

, which is known as the cut-off frequency. We observe that at the cut-off

frequency, group velocity defined as Vg = dω/dk is zero, because the slope of the

frequency-wavenumber representation is zero. The cut-off frequency where the zero
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group velocity occurs is an indication of a bandgap where there is no transmission

of energy [88].

This effect can be explained by considering the ratio of the displacement at two

neighboring atoms. Assuming the displacements as un = eiωt and un+1 = eiωt−ika,

the ratio of the two is given by e−ika. At k = π/a, this ratio takes the value of

−1, which is why the displacements of consecutive atoms are opposite in phase, and

hence the appearance of the bandgap is a result of destructive interference, as the

two neighboring atoms vibrate with opposite phase. This type of bandgap is called

Bragg bandgap. We emphasize here that the appearance of this type of bandgap

depends only on the periodicity of the structure and once the periodic structure

is broken, we will no more observe this bandgap. For electromagnetic or acoustic

waves, the materials that have bandgaps due to the periodicity in the system are

known as photonic (e.g., [89]) or phononic (e.g., [90]) crystals, respectively.

In the following, we explain another possible structure that shows bandgaps

without the need for periodicity in the system.

4.3.2 Origin of Bandgap in the Presence of Resonant Scat-

terers

Several studies have shown that the existence of frequency bands where wave prop-

agation is forbidden is not only a result of the periodicity in the structure, known

as Bragg diffraction, but it can also be due to the resonance of the elementary cells

[91]. These bandgaps are called ’hybridization bandgaps’. The choice of this name

is to emphasize that these bandgaps appear as a result of a phenomenon called

hybridization and not the periodicity in the system.

Hybridization was initially introduced in quantum chemistry to explain the for-

mation of chemical bonds. When two atoms approach each other, the coupling

between the atomic orbitals of these atoms occurs. This coupling leads to a repul-

sion of the energy levels of the initial orbitals which, results in hybrid orbitals. So,

from atomic orbitals a single molecular support is formed which is displaced and

has lower global energy.

The phenomenon of hybridization is not only restricted to atomic orbitals. In-

deed, all coupling phenomena can be interpreted as hybridization. In the community
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of wave physics, hybridization is used for explaining the coupling between the res-

onators or nano-particles [92], [93]. In the framework of our study, this phenomenon

explains the emergence of what is known as hybridization bandgap [94], [95], [96] .

Hybridization usually leads to exotic dispersion behavior, as shown schemati-

cally in Fig. 4.3. At a certain frequency (around the resonance frequency of the

scatterer), the interaction between the propagation in the medium and the resonant

scatterer causes a repulsion in the energy. This is known as ’anti-crossing’. This re-

pulsion results in the bending of the curves before and after the anti-crossing point,

and hence a discontinuity in the dispersion relation. Consequently, an ’S’ shape

comes out in the frequency-wavenumber representation. At frequencies far from the

resonance frequency (ω0), the frequency-wavenumber relation, which is also known

as the dispersion relation, is the one of free space.

  

ω

k

ω0

I

II

Figure 4.3: Schematic frequency-wavenumber representation showing anti-crossing.

Solid/dashed black lines depict the dispersion relation in free space and for the

resonator, respectively. Red curves are the dispersion curves after anti-crossing,

which show an ’S’ shape.

The dispersion relation in free space represents a single possible type of prop-

agation. This behavior changes to a dispersion relation that shows two types of

propagation, which cannot coexist. We observe that in the anti-crossing region,

a dispersive behavior shows up which imposes two regimes. One of these is the

propagation mode that becomes more and more sub-wavelength as we approach the

resonance frequency from low frequencies (this is observed in the branch of the curve

in Fig. 4.3 that is marked as I). Furthermore, we have a propagation mode that gets

more and more supra-wavelength as we approach the resonance frequency from high

95



frequencies (see branch II in Fig. 4.3). In the vicinity of the resonance frequency, for

branches I and II, we find that the wave speed is smaller or larger than the one in

the free space, respectively. A similar curve was extracted experimentally by [97] for

the interactions of light and phonons; the process that produces the quasi-particle

called ’polariton’.

The case discussed here included a single scatterer in the medium. In the fol-

lowing section, we study a system consisting of a set of scatterers, and we extract

the dispersion relation that explains the collective behavior of such a system in the

presence of resonant elementary units.

4.4 Dispersion Relation for a System Consisting

of a Set of Resonators

Let us assume a system that is made of an array of equally spaced resonators. Our

demonstration is developed in terms of impedance in electrical engineering. The

impedance associated to each resonator consists of two terms: (1) the impedance

that corresponds to the resonance of each single resonator (Zc); and (2) the impedance

due to interactions between the resonator and its neighbors through propagation

(Zlm). Based on impedance theory, we can describe the system as:∑
m

(Zcδlm + Zlm) Im = 0 (4.3)

where Im is the current passing through each resonator m, and δlm is the Kronecker

Delta that is defined as:

δlm =

0, for l 6= m

1, for l = m

. (4.4)

For a resonator, Zc is given by

Zc = iωL− i

ωC
(4.5)

where L is the inductance and C is the capacitance.

It has been shown that Zlm ∝ −iG(xl, xm) where G is the Green’s function

between the resonators l and m [98]. According to Eq. 4.5, Zc can be considered as
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Zc = −iA, where A = −ωL+ 1
ωC

. Consequently, Eq. 4.3 is rewritten as∑
m

(Aδlm +G(xl − xm)) Im = 0. (4.6)

The reason why the right hand side of the equation is set to zero is that we are

looking for a condition where the propagation can continue without the presence of

a source. We look for the solutions as discrete plane waves due to the periodicity of

the system, as:

Im = I(k) exp (ikxm) (4.7)

where k is a complex wavenumber. The real part of k is related to propagating

waves, and its imaginary part is associated with evanescent waves or attenuation.

Substituting Eq. 4.7 in Eq. 4.6, we get:

I(k)
∑
m

(Aδlm +G(xl − xm)) exp(ikxm) = 0. (4.8)

Multiplying both sides of Eq. 4.8 by
∑

l exp(−ikxl) gives:

I(k)
∑
l

∑
m

Aδlm exp(ikxm) exp(−ikxl)+I(k)
∑
l

∑
m

G(xl−xm) exp(ikxm) exp(−ikxl) = 0.

(4.9)

Using Eq. 4.4, Eq. 4.9 simplifies to

I(k)A+ I(k)
∑
l,m

G(xm − xl) exp(ik(xm − xl)) = 0. (4.10)

Now, let us focus on the second term on the left hand side of Eq. 4.10. Defining

xr = xm − xl, this can be rewritten as I(k)
∑

l,mG(xm − xl) exp(ik(xm − xl)) =

I(k)
∑

rG(xr) exp(ik(xr)). We see the emergence of the Fourier series of G, which

can be described in terms of Fourier transform as:∑
r

G(xr) exp(ik(xr)) = C1/d(k) ∗ G̃(k) (4.11)

where C is the Dirac Comb distribution and assuming that d is the periodicity of the

system and G̃(k) is the spatial Fourier transform of G. ∗ indicates the convolution

operator. We remind that Dirac Comb consists of an infinite sum of Dirac deltas

with a given period. It is particularly helpful in replicating a function to get its

periodic version. A Dirac Comb with spatial periodicity of d translates to a Dirac
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Comb with the periodicity of 1/d in spatial frequency domain. So, Eq. 4.10 simplifies

to

A+ C1/d(k) ∗ G̃(k) = 0. (4.12)

Assuming that the resonators are very close, 1/d is very large and hence Eq. 4.12

simplifies to

A+ G̃(k) = 0. (4.13)

We note that the spatial-dependent solution of the Green’s function was obtained

from the Helmholtz equation, with a source type of dirac Delta as:

O2G(x) + k2
0G(x) = δ(x) (4.14)

where k0 = ω2/c2, with c as the propagation speed. So, G̃(k) is found by applying

the spatial Fourier transform to this equation, to give:

− k2G̃(k) + k2
0G̃(k) = 1 (4.15)

and hence:

G̃(k) =
1

k2
0 − k2

. (4.16)

Now, let us focus on A. Considering Eq. 4.5 and going back to the definition of A,

this can be written in terms of a resonance angular frequency (ω0) as:

A = B

(
ω0

ω
− ω

ω0

)
(4.17)

where Bω0 = 1/C and B/ω0 = L. B is a real and positive number that is represen-

tative of the strength of the resonance. We now substitute for A and G̃(k) according

to Eq. 4.17 and Eq. 4.16, into Eq. 4.13. Rearranging the resulting equation gives:

k2 − k0
2 =

1

B
(
ω0

ω
− ω

ω0

) (4.18)

and eventually the wavenumber (k) is found in terms of the angular frequency, as:

k =

√√√√k2
0 +

1

B
(
ω0

ω
− ω

ω0

) . (4.19)

To have an idea of the frequency-wavenumber representation of such a system, we
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Figure 4.4: Frequency-wavenumber representation of the real (a) and imaginary (b)

parts of the wavenumber for a system consisting of a set of resonators. The resonance

frequency of each single element is 1 rad/s and the wave propagation speed is 1 m/s.

Horizontal red lines mark the frequencies of start and end of the bandgap.

plot the imaginary and real parts of the wavenumber according to Eq. 4.19, assuming

ω0 (resonance frequency) as 1 rad/s, c = 1 m/s, and B = 5 (see Fig. 4.4).

This classical representation is consistent with the fundamentals of the hybridiza-

tion phenomenon explained previously. As we expect, the hybridization effect occurs

at the angular frequency that coincides with the resonant frequency of each single

element. The imaginary part of the wavenumber has a non-zero value starting at the

resonance frequency. An imaginary wavenumber is associated with purely evanes-

cent waves. In Fig. 4.4, a small attenuation factor is added to A. Along with the
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attenuation, B defines the width of the bandgap.

Now let us find the corresponding two ωs where the hybridization occurs. As at

this interval the waves are purely evanescent, we look for the values of ω where k is

purely imaginary. This condition translates to:

k0
2 +

1

B
(
ω0

ω
− ω

ω0

) < 0. (4.20)

The hybridization starts at resonance frequency ω = ω0, as observed in Fig. 4.4.

The other real root occurs at:

ω =


√

27
(
ω0c2

B

)2 − 4ω6
0

2(3)
3
2

+
ω0c

2

2B


1
3

+
ω2

0

3

√
27
(
ω0c

2

B

)2
−4ω6

0

2(3)
3
2

+ ω0c2

2B

 1
3

. (4.21)

Substituting for ω0, c and B, ω is found to be 1.0880 rad/s. The values of ω where

the hybridization occurs are superimposed as horizontal red dashed lines in Fig. 4.4a.

In summary, to have bandgaps of hybridization type, the medium should consist

of locally resonant scatterers that are arranged at the sub-wavelength scale; i.e.,

there are many of these resonators within a wavelength. This spatial organization

implies that the response of such a system cannot be explained by Bragg scattering.

Moreover, the small distance between the resonators allows coupling and interactions

between the single resonators. The idea of generating bandgaps through hybridiza-

tion processes has been studied for cases of acoustic, electromagnetic, elastic, and

seismic waves. For instance, [99] used a series of narrow and long pipes to build a

super lens. The idea of the super lens was first proposed by [86], where he proposed

using a slab of glass with negative refractive index to focus both propagating and

evanescent waves, and hence to break the limit of the focus imposed by the diffrac-

tion limit. In the present study, we are mainly interested in studies that focused on

elastic and seismic waves.
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4.5 Examples of Previous Studies on Acoustic and

Seismic Metamaterials

The idea of locally resonant metamaterials has found particular interest in the do-

main of seismology. In that context, several laboratory experiments as well as one

large-scale field experiment have been conducted. Some numerical studies have also

been performed to support these experiments. The main objective of all these efforts

is to better understand the coupling between the propagating waves and the res-

onators. This can be used to manipulate the propagation of seismic surface waves,

and to specifically forbid their propagation in the frequency bands where they are

the most hazardous and destructive. In this section, we will review the experiments

that are relevant to the present study.

4.5.1 Laboratory Experiment

In this section, we focus on a study carried out by [100], involving the construction

and deployment of an uniaxial metamaterial on a thin elastic plate. In 2D, the

resonators have small dimensions compared to the wavelength, but there is no limit

on the third dimension. The idea of uniaxial metamaterials has already been imple-

mented in electromagnetism in the wire medium (e.g., [101]), as well as in acoustics

with a series of narrow long pipes (e.g., [99]). [100] specifically study the propa-

gation of Lamb waves. The experimental set-up consists of a Bunimovich-shaped

aluminum plate. A total of 100 cylindrical aluminum rods (length, 61 cm; diameter

6.35 mm) are attached to the surface of the plate in two different configurations

(random versus periodic). For both cases, the region of the plate where rods are

attached is a rectangle with an area of 400 cm2. The average distance between the

rods is around 2 cm for the periodic configuration, and 5 mm for the random one.

The 2-cm inter-rod distance implies a sub-wavelength arrangement of the resonators

(2 cm distance is equivalent to λ/9 and λ/4 at 2 kHz and 10 kHz for A0 mode of

Lamb waves). Wave motion is generated in the plate via a shaker. The full set-up

is shown in Fig. 4.5. The vertical displacement of the plate is measured using a

laser vibrometer: an example of the resulting data is shown, after transformation

to the Fourier domain, in Fig. 4.6a. The Fourier transform is spatially averaged.
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Figure 4.5: Experimental set-up in the study of [100], consisting of: (1) a shaker to

excite the A0 mode of the Lamb waves in the aluminum plate; (2) a laser Doppler

velocimeter to measure the wave-field on the plate; (3) a computer to control the

set-up; and (4) a motorized mirror. The scan of the surface of the plate is performed

over rectangle 5, and the metamaterial region is constructed by attaching the vertical

aluminum rods, marked as 6 (Figure from [100]).

According to Fig. 4.6a, once we are outside the metamaterial region, the average

amplitude spectrum decreases continuously (albeit slightly) as frequency grows up

to 2 kHz, and then it is flat up to 11 kHz. This drop is explained by the speed of the

antisymmetric mode of Lamb waves (A0) at 2 kHz (∼ 340 m/s), which is close to

the speed of sound in the air, and hence there is some energy that is radiated from

the plate to the air. However, our interest is the two other curves, which show three

bandgaps that start at frequencies of 2, 6, and 10 kHz. Fig. 4.6b shows the mea-

sured signals inside and outside the metamaterial region, filtered in the frequency

band that corresponds to the first bandgap. This panel provides a direct illustration

of the effects of the bandgap on propagation. A wave packet where the frequency

content fits the bandgap is emitted on the plate. We observe that the amplitude
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a b

Figure 4.6: (a) Average amplitude spectrum of the signals measured outside the

metamaterial region (blue curve) and inside the region for periodic (green curve)

and random (red curve) distributions of the rods (resonators). The averaging areas

are marked by the yellow dashed rectangles in Fig. 4.5. (b) Measured signals inside

(black solid line) and outside (dashed gray line) the metamaterial filtered in the first

bandgap. Outside the metamaterial, multiplied reverberated signals are obtained,

while inside metamaterial, there is no energy propagation (Figure from [100]).

of the displacements is much smaller inside the rod forest than outside of it. We

also observe that the effects of bandgap are not restricted to direct waves, but are

also seen for the late reverberated waves. Also, due to the shape of the plate, which

randomizes wave propagation in all directions, we can conclude that the bandgaps

appear for all angles of incidence. The specific geometry of the plate guarantees

that after a few reverberations, the propagating waves cover all of the angles, or in

other words, the wave-field is diffuse.

This can be confirmed from another point of view; e.g., by following the spa-

tiotemporal map of the field in the frequency band that corresponds to the bandgap

at different times (see Fig. 4.7 for the data filtered within the first bandgap). Dif-

ferent snapshots show maps of the wave-field at different times, starting from the

time corresponding to the first arrivals, and continuing until multiply reverberated

waves. These maps demonstrate the efficiency of the bandgap over all of the incident

angles, which continue until late times.

It is also useful to recover the bandgaps by focusing on the dispersion curves
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Figure 4.7: Field maps inside and outside the metamaterial region (rectangle

marked by dashed line) at different times. The signals are all filtered in the frequency

band of 2100 Hz to 2800 Hz (i.e., inside the first bandgap). After 100 ms, we

can assume an omni-directional incident field to the metamaterial, since this time

corresponds to 40 m of propagation inside the plate (Figure from chapter 6 of [102]).

inside the metamaterial region. This is achieved by applying a 2D spatial Fourier

transform to the measured signals. The frequency-wavenumber representation for

the waves inside the metamaterial is shown in Fig. 4.8a. In this panel, the dispersion

relation for the modes of A0 and S0 for the free plate (i.e., plate without any rods) are

also plotted. We observe three frequency bandgaps for a plate with metamaterial.

To check the relationship between the frequencies where the bandgaps start and

the resonance frequency of the scattering elements, they measured the response of

individual rods.

Fig. 4.8c shows the frequencies where the compressional and flexural resonances

of the rods occurred. There is a close match between the frequencies where the

compressional resonances of the rods occur and the start of the bandgap. This ob-
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Figure 4.8: (a) Frequency-wavenumber representation of the wave-field inside the

metamaterial when the resonators are distributed randomly, as well as the theoretical

dispersion curves for a free plate (i.e., plate without any rods). The black curve is

for S0 mode, and the gray curve is for A0. Red dashed curves are the results of

a numerical simulation for a periodic metamaterial based on the Bloch theorem.

(b) Imaginary part of the wave vector for random and periodic arrangements in

gray and black, respectively, and measured inside the metamaterial. (c) Frequency

spectrum of the vertical (black) and horizontal (gray) displacements measured for

an individual rod, to define the compressional and flexural resonance frequencies

(Figure from [100]).

servation confirms the hybridization effect between the compressional resonances of

the rods and A0 mode. The wide compressional resonance and the dense distribution

of the resonators finally lead to wide bandgaps. Fig. 4.8b shows the attenuation

in the bandgap based on the imaginary part of the wavenumber. The attenuation

pattern is very similar for periodically and randomly arranged resonators.

Another interesting feature, also related to the presence of resonators, is appar-

ent from Fig. 4.8a. As well as the hybridization effect, comparison of the dispersion

curves inside the metamaterial with those obtained for a plate without rods, we see
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that the metamaterial allows the propagation of some sub-wavelength and supra-

wavelength modes that are not possible for a free plate. This significant effect can

be used, for instance, to modify the wave velocity, and thus mold the propagation

of Lamb waves. The sub-wavelength modes can be used in focusing applications, to

overcome the diffraction limit. These sub-wavelength and supra-wavelength modes

can also be observed through the spatiotemporal wave-field. If we pick the fre-

quencies of 5805 Hz and 7512 Hz, we see from the dispersion curve that the first

one is located in the sub-wavelength region, while the second one is in the supra-

wavelength region. Fig. 4.9, top and bottom panels, show these sub-wavelength and

supra-wavelength modes, respectively, inside the metamaterial region. In the next

  

Figure 4.9: Demonstration of the wave-field inside and outside the metamaterial

region in the frequency domain at frequencies that are located before and after the

bandgap. The rectangle with red dashed lines marks the metamaterial region on

the plate. Sub-wavelength and supra-wavelength modes inside the metamaterial are

observed in the top and bottom panels, respectively (Figure from [100]).

sections, we will come back to this experiment.

These experiments were complemented by numerical simulations; the unit cell

in the numerical set-up consisted of one rod attached to the center of an elastic

plate with dimensions of 2 cm by 2 cm. Numerical results are shown as the red

dashed curves in Fig. 4.8a. The interesting features of these curves are the following:

First, they confirm the experimental results, as the frequency interval corresponding

106



to the bandgap and propagation band predicted numerically match those found

experimentally. Second, they mark a behavior that is not seen in the experimental

case. The numerical dispersion curves for A0 show two bends: one matching the

frequency where the hybridization, and hence bandgap, takes place, and the other

occurring at a lower wavenumber. This implies that the A0 mode not only couples

with the compressional resonances, but also with the flexural ones. The asymmetry

of the plate + rods system allows some conversion of the A0 mode to S0. The

S0 modes can then couple with the flexural resonances. It was inferred from the

results presented in this section that vertical resonators and propagating waves are

coupled at the laboratory scale. An experiment was next implemented in the field, to

determine whether similar behavior was observed with tress as the vertical resonators

in the medium.

4.5.2 Small Scale Seismic Experiment

The hypothesis that trees act as resonators where their resonating nature affects the

propagation of Rayleigh surface waves through coupling was the focus of a study by

[103]. This study was supported by numerical simulations, and it is considered as

a preliminary study to implement the concept of locally resonant metamaterials for

seismic purposes. The experiment in this study was conducted in a pine tree forest

within the campus of the University of Grenoble Alpes. The ambient noise was

recorded continuously over 1 h with two three-component seismometers (S1 and S2),

inside and outside the forest, as shown in Fig. 4.10. Fig. 4.11 (blue curve) shows the

averaged spectral ratio over windows of 10 min between the two seismometers and

for the horizontal component. We observe two frequency bands that have a striking

decrease in the spectral ratio. The first one is between 30 Hz and 45 Hz, and the

second one between 90 Hz and 110 Hz. In other words, the energy penetrating

into the forest gets attenuated at these frequency intervals. This observation is

interpreted by the coupling between the trees that act as local resonators and the

propagation of Rayleigh waves at the subsurface. The geophysical surveys in this

region imply a surface velocity of between 300 m/s and 500 m/s. The heights of

the trees in this forest varied between 10 m and 20 m. Spacing between the trees is

variable between 2 m and 4 m. The effects of the roots were neglected because their
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  Figure 4.10: Forest location where the experiment was conducted. S1 and S2 are the

two seismometers located inside and outside the forest, respectively (Figure from

[103]).

scattering effect is of lower order compared to the resonance effect of the trees.

While using ambient noise data, we should keep in mind that most of the energy

of the ambient vibrations propagate as surface waves (i.e., Rayleigh and Love waves),

although here we are mostly interested in Rayleigh waves.

  

Figure 4.11: Experimentally measured (blue curve) and numerically simulated (red

curves) spectral ratios. Solid and dashed red lines correspond to the configurations

C1 and C2 (Figure from [103]).
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In parallel to this experiment, 2D simulations were performed to model the

propagation of Rayleigh waves in a halfspace. The medium was considered to be

a linear, isotropic, and homogeneous elastic medium, and a linear array of 30 trees

was added to the surface. The average height of the trees was set to 14 m ± 2.5 m.

Trees are considered to be equivalent to vertical resonators. The numerical set-up is

shown in Fig. 4.12. The source is a vertical force where the source time function is a

  
Figure 4.12: Two-dimensional numerical set-up. The elastic parameters of the

ground and forest are also indicated. The red-blue color scale shows the vertical

displacement uz (Figure from [103]).

Ricker with a peak frequency at 60 Hz. Considering a shear-wave speed of 500 m/s,

the wavelength of the surface waves varied between 4 m and 40 m for the frequency

range of 10 Hz to 130 Hz. The spectral ratios for the horizontal displacement

component is plotted in red (solid, dashed lines) for two different configurations. C1

is configuration 1, where the height, thickness, and spacing of the trees were set to

12 m to 16 m, 0.2 m to 0.4 m and 1.5 m to 4 m, respectively. C2 is configuration 2

where these parameters were set to 14 m, 0.2 m to 0.4 m, and 1.5 m to 4.0 m. In

other words, C1 focuses on the random sizes of the trees and the spacing between

them, while C2 corresponds to the case where the height of the trees is fixed. Fig.

4.11 shows that the bandgaps found by numerical experiments match those retrieved

experimentally. The C1 configuration explains better the experimental results (solid

red curve). We note that this configuration corresponds to the case of trees with

variable height (this case is more likely to be found in a natural forest than fixed-
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height trees). Also, we observe that this configuration gives rise to a wider frequency

bandgap compared to the C2 configuration. This can be resolved by the physical

explanation for such phenomena based on the coupling between the longitudinal

resonance of the trees with the vertical component of the propagating Rayleigh

waves. The compressional resonance frequency of the vertical structures is inversely

proportional to the length of the resonator. So, the taller the tree (resonator), the

lower its compressional resonance frequency. Trees with different heights will have

different resonance frequencies, and the bandgap that corresponds to each of the

trees will overlap and result in a wider bandgap.

To clarify the nature of Rayleigh wave propagation in the ground, the simulation

results for the frequencies that lie within the first bandgap are compared for two

different cases: first, in the absence, and second, in the presence, of trees on the

ground. The results are shown in Fig. 4.13 over time. From Fig. 4.13b, we see that

no Rayleigh waves propagate in the ground where the trees are. In this case, shear

  

Figure 4.13: Results of the numerical simulations for the uz component of the record-

ings at different times, and for two different set-ups: (a) half space without trees;

(b) half space with trees. The recordings are filtered in the first bandgap. R and S

indicate Rayleigh and S waves (Figure from [103]).

waves that are generated by the conversion of the Rayleigh waves into S waves,
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occasionally propagate beneath the trees. As the polarization of these waves is

horizontal, they do not interact with the compressional resonance of the trees, and

hence they can propagate. This study confirms that trees in a forest form a locally

resonant metamaterial that can interact with seismic surface waves. These results

led to an experiment that was performed at the seismic scale, and is described in

more detail in the following.

4.5.3 The METAFORET Experiment

The experiment conducted in the field is known as the ’METAFORET’ experi-

ment1. This unique experiment was aimed at investigating the potential efficiency

of trees that are organized in a sub-wavelength configuration, in coupling with sur-

face Rayleigh waves. This study is a pioneering one that might open up applications

to seismic hazard. The resonance of the trees and their coupling with the surface

waves can then be generalized to buildings and tall structures from the point of view

of earthquake engineering and urban design.

The METAFORET experiment was implemented in October 2016 over 2 weeks

in southwest France, in the Landes forest. It covers a surface of 120 m by 120 m,

from which 90 m is a state-managed pine forest, and 30 m is an agricultural canola

field (see Fig. 4.14).

  

Figure 4.14: Aerial view of the METAFORET experiment with the forest and field.

Yellow dots indicate the positions of the geophones deployed. Red circle in the inset

marks the location of the experiment (Figure from [104]).

1A detailed description of the METAFORET project can be found at https://metaforet.osug.fr/.
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The 2D Cartesian system is defined so that the x direction is parallel to the border

between the field and the forest, and the y direction is perpendicular to this. The

average distance between the trees is ∼ 2.5 m in the x direction, and 4 m in the

y direction (see Fig. 4.15). Seismic receivers are geophones that were deployed on

Figure 4.15: Distribution of trees (red dots) in the forest and lines of the GPR

array (blue lines). The black circle marks the trees used to install the 3-component

velocimeters. Nodes of the black background grid indicate the positions of seismic

arrays deployed within the field and forest (Figure from [104]).

the nodes of the grid shown in Fig. 4.15. The inter-station distance was 4 m, which

indicates deployment of 961 geophones within the area. The experiment includes

both active and passive measurements. In the passive experiments, the geophones

recorded the ambient noise over 2 weeks. In the active experiment, a shaker was

used as an active source, and the responses were recorded at all 961 geophones.

In the active experiments, two geophones were installed in two nodes close to the

shaker, to record the emitted signal for further signal processing. The geophones
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have a sampling frequency of 400 Hz and a lower corner frequency of 5 Hz. Apart

from these one-component (vertical) geophones (Z-land instruments), there were

also 100 3-component geophones (GIPP instruments) implemented in two different

configurations: an array of 10 × 10 that was installed between the other geophone

array, with an inter station distance of 4 m and the other one along a vertical line

crossing the edge between the forest and the field, with 1-m inter-station distance.

The source in the active experiments was a shaker of 70 kg that emitted a frequency-

modulated sweep, where the frequency varied from 10 Hz to 100 Hz over 1 min. Each

geophone recorded the waves excited by the emission of the source signal. The two

geophones deployed in the vicinity of the shaker are of use here. The signals recorded

by these geophones were considered as the emitted signal. The recordings at each

sensor were cross-correlated with this emitted signal. The active source experiment
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Figure 4.16: Distribution of the sensors and active shots in the METAFORET

experiment. Circles mark the positions of vertical-component geophones. Pink

crosses show the four active shots arrays. The ’+’ symbols (either black or green)

mark the position of two configurations of 3-component geophones. The active shot

arrays are numbered for further references (Figure modified after [104]).

was conducted along four lines, which are indicated as 1 to 4 in Fig. 4.16. Three
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of these were located parallel to the boundary between the field and the forest,

and the distance between the shots was 4 m. Each line of sources included 21 to

25 sources. The fourth configuration was arranged perpendicular to the boundary

between the field and the forest, with 51 sources and 2 m distance between the shots.

This configuration consists of sources both in the forest and the field. This line is

the same line where the 3-component geophones were deployed. This configuration

achieves an equivalent survey to the conventional ones in seismic surveys. As along

this line the distance between the sensors was 1 m and the sources and receivers

covered a straight line from the field to the forest, we can follow the propagation of

waves traveling into the forest from the field (see Fig. 4.17).

Figure 4.17: Time-space representation of the seismic field that was recorded along

the dense array of three-component receivers implemented along a vertical line cross-

ing the field-forest boundary. The source was a shaker located at x = 60 m and y

= 120 m. The receivers extend from x = 60 m, y = 120 m to x = 60 m, y = 20

m. Different panels demonstrated this wave-field in terms of (a) raw data, (b) data

filtered between 20 Hz and 50 Hz, and (c) data filtered between 50 Hz and 80 Hz

(Figure from [104]).

From Fig. 4.17a, we can observe the emergence of three main wavefronts. The

first is the P waves that have low amplitude and travel with a speed of ∼ 1000 m/s.

Then the S waves arrive with slightly higher amplitudes, traveling with a speed

of ∼ 400 m/s and finally Rayleigh waves arrive with a speed of about 350 m/s.

The dispersive nature of these waves is observed. If we filter this raw data in two

frequency bands, as below and above 50 Hz, we observe that waves with frequencies

lower than 50 Hz penetrate into the forest, while at frequencies above 50 Hz, most
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of the propagating Rayleigh waves are reflected at the boundary between the field

and forest.

Fig. 4.18 is another representation of this observation, where the vertical wave-

fields filtered below and above 50 Hz are shown at different times. The active source

emits from inside the forest, and different snapshots show the propagation of the

wave-field recorded by Z-land sensors.

  

Figure 4.18: Measured seismic wave-field inside the forest on a 2D array of one-

component Z-land receivers, with the excitation source at x = 60 m and y = 30 m

(i.e., inside the forest). The temporal evolution of the wave-field filtered between 20

Hz and 50 Hz (a-d) and between 50 Hz and 80 Hz (e-h) are shown. The horizontal

red line indicates the field-forest boundary (Figure from [104]).

Considering the trees as resonators that are distributed at sub-wavelength dis-

tances, and taking into account the possible metamaterial behavior of the forest, the

coupling between the propagating waves and the resonances of the trees is the first

scenario that comes to mind to explain the observed wave propagation. This is where

the velocimeters came into play. In the METAFORET experiment, a series of three-

component velocimeters were attached to the trunks of a few trees to investigate

the interactions of the seismic wave-field with the trees. Velocimeters can provide
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recordings below ∼5 Hz, which is the cut off frequency of one-component (Z-land)

and three-component (GIPP) geophones. The measurements were done using both

the ambient vibrations and the active sources. Two temporary experiments were

performed: (1) A series of six velocimeters were installed in a tree located at the

center of the METAFORET structure (Fig. 4.19). (2) A velocimeter was attached

to six neighboring trees at 2.5 m above the ground (Fig. 4.15). These velocimeters

recorded continuous 1-h data during experiments with the active source as well as

during night time. Fig. 4.20a-c shows the normalized average frequency spectrum

over a period of 12 h at night-time for two horizontal components (H1 and H2),

which correspond to north and east directions, as well as the vertical component.

  

Figure 4.19: A tree with six three-component velocimeters attached to its trunk at

different heights (Figure from [104]).

Gray curves are the result of averaging of Fourier spectrum over 12 hours of

recording and the red curves correspond to averaging on trees. As we see from
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Figure 4.20: (a-c) Normalized Fourier spectra of the ambient recordings during a

night with the instruments on the trees. H1 and H2 correspond to the radial and

tangential directions with respect to the trunks of the trees; i.e., horizontal directions

as well as vertical direction. Each gray curve is the result of averaging over 12 h

of recordings, and the red curve is the average of the responses over the trees. (d)

Vertical impulse response of 10 instrumented trees (in gray) during active shots, and

the average of the responses over the trees (in black) (Figure from [104]).
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Fig. 4.20a-b, three flexural resonances at frequencies of about 0.3, 0.9 and 2.0 Hz

occur. Fig. 4.20c shows non-zero values for the Z component at frequencies that

correspond to flexural modes. These are the modes that are present due to coupling

with horizontal modes. At frequencies > 10 Hz, the dominating contribution in the

spectra is the vertical motion. To zoom more on this behavior, we consider the ver-

tical component of trees responses during an active source acquisition. This vertical

response was obtained by deconvolving the responses recorded by the velocimeter

according to the response recorded by a Z-land geophone deployed at the bottom

of the tree. Ten responses and their averages are depicted in Fig. 4.20d. We ob-

serve that the frequency responses of the trees are between 40 Hz and 80 Hz, with a

maximum at 50 Hz. So, the observed behavior above 50 Hz in Figs. 4.17 and 4.18

can be explained as: around 50 Hz, the trees compressional resonances couple with

the vertical component of the Rayleigh surface waves, to result in a frequency band

where the energy cannot propagate.

So far, we have seen the striking behaviors due to hybridization in a metamaterial

that consisted of locally resonant elements at various scales and different set-ups.

We saw the emergence of bandgaps, which can be explained through the coupling

between the resonators and the corresponding component of the surface waves. In

the following section, we describe the present study, which is closely related to what

has been discussed so far in this chapter, and which will refer to or confirm some of

these results through a different approach.

118



4.6 Cross-Correlation in a Metamaterial

In this section, we describe the present study. The objective was to determine the

behavior of the cross-correlations in a medium of resonators. We also examined the

potential of the cross-correlation process in the extraction of information related to

the presence of a metamaterial in the medium. To do so, we used both laboratory

and seismic data. The processing steps and the results are shown in the following.

4.6.1 Laboratory Experiment

We conducted an experiment on a thin plate in the ISTerre Laboratory in Grenoble.

The experimental set-up (as shown in Fig. 4.21), was similar to that of [100]. This

Laser vibrometer

Laser beam

Robot

Rods

Scan area

Robot controller

Figure 4.21: The experimental set-up, which consisted of an aluminum plate with

100 rods attached to its surface. There were five piezoelectric transducers glued to

the surface of the plate. The field was scanned by a laser vibrometer.

set-up was based on an aluminum plate with the shape of Bunimovich stadium. The
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dimensions of the 6-mm-thick plate were 2.0 m by 1.5 m. The plate was positioned

horizontally, and five piezoelectric transducers were attached to its surface. These

transducers acted as sources in these experiments and excited mostly the fundamen-

tal antisymmetric mode of Lamb waves (A0) in the plate. The metamaterial region

was built using 100 aluminum rods of 61 cm in length and 6.35 mm in diameter

that were glued to the lower side of the plate, where the transducers were attached.

The rods were attached so that they formed an ordered periodic structure. They

covered a surface of approximately 324 cm2 (square: 18 cm by 18 cm). The distance

between the resonators was about 1.8 cm. The A0 mode of Lamb waves has a typical

speed of about 340 m/s at 2 kHz, which corresponds to a wavelength of 17.5 cm.

Accordingly, the distance between the rods was ∼ λ/12 and ∼ λ/4 for A0 mode at

frequencies of 1 kHz and 9 kHz, respectively, which implies that this arrangement

forms a structure of sub-wavelength order. As shown by [100] and explained in the

previous section, this structure behaves as a locally resonant metamaterial.

Each transducer emits a linear chirp in the frequency band of 1000 Hz to 9000

Hz. The wave-field is scanned using a laser Doppler vibrometer positioned on the

upper side of the plate, inside the area marked in Fig. 4.21. The scanning was

performed on this area over a grid with 8 mm between consecutive scanned points

in the x and y directions, leading to the total of 5888 scanned points. This scanned

area was defined by taking into account the experimental limitations imposed by

the robot that controlled the displacement of the laser vibrometer. The map of the

scanned points and transducer positions are shown in Fig. 4.22.
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1

3

4

2

5

Figure 4.22: Map of the scanned points on the plate (blue dots) and the positions of

five transducers (red circles), numbered from 1 to 5. Note that the plate itself is not

shown here and the rectangle frame is plotted to give the coordinate of the points.

The x and y directions are defined according to the movement of the robot for the

scan. The black square marks the area where the locally resonant metamaterial is

located.

4.6.1.1 Amplitude Spectrum of the Cross-Correlations of the Record-

ings

Our objective here is to study the behavior of the cross-correlations of the recordings

at different frequency bands. In the following, we use the source-receiver reciprocity

theorem (derived in chapter 2, section 2.2.1). In carrying out cross-correlations

based on the source-receiver reciprocity, the transducers are considered as virtual

receivers, and the scanned points as virtual sources. Thus, including five transduc-

ers in the set-up allows us to study the dependence of the results on the position of

the virtual receivers with respect to the metamaterial region. We cross-correlate the

recordings at a given pair of transducers (virtual receivers) and average the resulting

cross-correlations over all possible virtual point sources. Examples of the amplitude

spectra of the averaged cross-correlation (C(t)) obtained between the virtual re-

ceivers located in different positions with respect to the metamaterial region are

shown in Fig. 4.23. Globally, we observe two drops in these spectra that correspond

to two separate bandgaps, one between 2000 Hz and 3500 Hz, and the other between

121



1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180
|C

(!
)|

(d
B

)
receivers 1 and 2

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 1 and 3

(b)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 1 and 4

(c)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 1 and 5

First
Bandgap

Second
Bandgap

(d)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 2 and 3

(e)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180
|C

(!
)|

(d
B

)

receivers 2 and 4

(f)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 2 and 5

(g)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 3 and 4

(h)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 3 and 5

(i)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Frequency(Hz)

60

80

100

120

140

160

180

|C
(!

)|
(d

B
)

receivers 4 and 5

(j)

Figure 4.23: Amplitude spectra of the averaged cross-correlation (dB) over all of

the possible virtual sources. Different panels correspond to different pairs of virtual

receivers. Red circles mark the position of these virtual receivers.
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6100 Hz and 7400 Hz (Fig. 4.23d, vertical dashed lines). These frequency bands

match the frequencies of compressional resonances of an individual rod (Fig. 4.8c).

As we saw in the previous section, the bandgaps in [100] were found by analyzing the

field inside the metamaterial when the source was located outside. Since the analysis

here is based on the amplitude spectrum of the averaged cross-correlations over all of

virtual point sources and not on the individual recorded signals, we observe slightly

different behaviors for the virtual receivers located in different positions with respect

to the metamaterial. For example, once one of the virtual receivers is located inside

the metamaterial region, the bandgaps at the above-mentioned frequency bands are

more obvious (e.g., Fig. 4.23i). However, when both virtual receivers are located

outside the metamaterial region, the bandgaps are not clear (e.g., Fig. 4.23e). The

best configuration for recovering the bandgap is the one where the two transducers

are located inside the metamaterial, as can be seen, for instance, in Fig. 4.23j. In

general, we can see from all of the panels in Fig. 4.23 that the second bandgap

is weaker than the first one, and hence it is less obvious to see in cases such as

Fig. 4.23e. Adopting the cross-correlation technique, which involves an averaging

over all of virtual point sources, motivated us to investigate the contributions of

each virtual point source (both inside and outside the metamaterial region) in the

cross-correlation within different frequency bands.
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4.6.1.2 Spatial Map of the Virtual Source Contributions Based on Cross-

Correlations

For a given pair of virtual receivers, we cross-correlate the recordings at these two re-

ceivers from each individual virtual point source, and normalize the cross-correlation

function according to the energy of the individual signals involved in the cross-

correlation, as for Eq. 2.29 in chapter 2. We keep the maximum value of this

normalized cross-correlation and map it as a function of the virtual source position.

This gives a measure of the contribution of each virtual source located at different

positions with respect to the metamaterial in the final averaged cross-correlations.

We start by considering the spatial map of the maximum of the normalized cross-

correlation for the case where the two transducers are outside the metamaterial

region. We filter the data before the cross-correlation in the frequency band of 6100

Hz to 6500 Hz, which is within the second bandgap (see Fig. 4.24).

Figure 4.24: Spatial distribution of the maximum of the normalized cross-correlation

of recordings at two virtual receivers (marked by red circles) from each virtual point

source for data filtered within the second bandgap (between 6100 Hz and 6500 Hz)

prior to cross-correlation. The black square marks the metamaterial region. Both

of the virtual receivers are located outside the metamaterial.

We observe from Fig. 4.24 that the virtual point sources that contribute to

the reconstruction of the Green’s function in the bandgap between the two vir-

tual receivers located outside the metamaterial are not the ones located inside the

metamaterial region, while if we consider the same map for the frequencies corre-
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Figure 4.25: Similar to Fig. 4.24 for the frequencies within the propagation band

(between 4000 Hz and 6000 Hz).

sponding to the propagation band, the contributions of the virtual point sources in

the cross-correlations are approximately homogeneous throughout the plate, with

the maximum contribution from the virtual sources that are close to the virtual

receivers (see Fig. 4.25). We see that in the propagation band , it is not possible

to distinguish any signs of the metamaterial. In other words, once the waves in

the frequency band of 6100 Hz to 6500 Hz are excited inside the metamaterial re-

gion, they cannot propagate outside this region, and consequently their contribution

in the reconstruction of the Green’s function is almost null. However, the virtual

sources outside this region contribute well to the retrieval of the Green’s function.

To validate this interpretation, we next move to the case where one of the virtual

receivers is inside the metamaterial, and we repeat the analysis. The source con-

tribution in the cross-correlation of the recordings is shown for different frequency

bands (including first and second bandgaps, as well as the propagation band) in Fig.

4.26a-c for the case where one of the virtual receivers is inside the metamaterial area.

Interestingly, we observe that for both bandgaps, most of the contribution is from

the virtual sources that are close to the virtual receiver inside the metamaterial, and

as we approach the borders of the metamaterial, the contribution of the virtual point

sources decreases. Again, this means that at these frequency bands, if waves are

excited outside the metamaterial, they cannot propagate inside the metamaterial

region, and if they are excited inside this region, they are only received by very close
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(a)

(b)

(c)

Figure 4.26: Spatial distribution of the maximum of the normalized cross-correlation

of the recordings at two virtual receivers (marked by red circles) from each point

source. The black square marks the metamaterial region. One of the virtual receivers

is located inside the metamaterial, and the other one outside. (a) Propagation band.

(b), (c) Within the first and second bandgaps, respectively.
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receivers. As shown by [100], the wave-field measured within bandgaps received by

receivers inside the metamaterial is not propagating waves, but evanescent waves.

These waves have a non-negligible imaginary wavenumber, and their amplitude de-

cays with distance. We checked this for another configuration of virtual receivers

where one is inside and the other is outside the metamaterial region (see Fig. 4.27).

Figure 4.27: Similar to Fig. 4.24, but for a different pair of virtual receivers.

From Figs. 4.26b-c and 4.27, we see that once one of the virtual receivers is

inside the metamaterial region, the spatial map of the highest contribution in the

cross-correlation inside the bandgap has a more or less uniform pattern around the

virtual receiver that is located inside the metamaterial, which is not the case as for

the other virtual receiver that is outside the metamaterial region. We interpret this

observation as evidence of the presence of evanescent waves. A detailed description

of our interpretation based on the presence of the evanescent waves is given in

Appendix A.

It is also helpful to look at the cross-correlation averaged over all of the possible

virtual sources in each of the frequency bands and for each pair of virtual receivers.

In the following, we show examples of the cross-correlations for the same pair of

virtual receivers and at similar frequency bands to those shown in Figs. 4.24, 4.25,

and 4.26.

The normalization of the cross-correlations is performed with respect to the

maximum energy of each signal in the propagation band. This provides a better
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Figure 4.28: Cross-correlations of the data filtered between 4000 Hz and 6000 Hz

in the propagation band (blue), and between 6100 Hz and 6500 Hz in the bandgap

(orange), and averaged over all of the possible virtual point sources. Note that both

transducers are outside the metamaterial region.

comparison of the respective amplitudes of the averaged cross-correlations for dif-

ferent frequency bands. From Fig. 4.28, we see the emergence of waves in both the

propagation band and the bandgap. If we look at the same plot for the case where

one of the virtual receivers is inside the metamaterial (same pair as Fig. 4.26), in the

frequency bands that match Figs. 4.26a and 4.26c, we observe that in the bandgap

the amplitude of the resulting averaged cross-correlation is very small compared to

that obtained in the propagation band (see Fig. 4.29). Also, similar to the study of

[100], we observe that the null amplitude of the signals in the bandgap is not only

true for the direct arrivals, but is also true for the multiply reverberated part of the

wave-field, known as the coda.
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Figure 4.29: Cross-correlation of the data filtered between 4000 Hz and 6000 Hz

in the propagation band (blue), and between 6100 Hz and 6500 Hz in the bandgap

(orange), and averaged over all of the possible virtual point sources. Note that one

virtual receiver is inside the metamaterial region, while the other is outside it.

4.6.1.3 Spatial Map of the Energy Distribution Based on Auto-Correlation

(Virtual Receiver Inside the Metamaterial)

In this section, we base our analysis on the auto-correlation of the recordings. Similar

to the previous section, we use the source-receiver reciprocity theorem, which means

that we consider the transducers as virtual receivers and the scanned points as

virtual sources. Applying the auto-correlation of the recordings corresponding to

each virtual point source is a useful measure of the energy of the signals. We pick

the transducer (virtual receiver) that is located inside the metamaterial, and auto-

correlate the recordings from each virtual point source. We then keep the maximum

value of the auto-correlation. This maximum is representative of the energy of the

signal received at the virtual receiver location from each virtual source. We then

map this value as a function of the position of the virtual source. In the following, we

show these maps at different frequency bands for a virtual receiver that is inside the

metamaterial area, and refer to this as the spatial energy distribution map (see Fig.

4.30). The frequency band of the filter is 200 Hz, and the consecutive panels in Fig.

4.30 show the transition in the received energy, starting from the propagation band,

then entering the bandgap, and then entering the propagation band again. The data

used in this analysis are obtained by scanning the surface of the plate over a smaller
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Figure 4.30: Spatial map of energy distribution at different frequency intervals,

including the propagation band and the bandgap, for a virtual receiver located

inside the metamaterial region.
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area, but with a finer mesh grid (i.e., 4 mm in the x and y directions). That is why

we only see part of the plate surface in Fig. 4.30, and not a large area as in Figs. 4.24

to 4.27. We observe from Fig. 4.30a-c that as we are in the propagation band, the

maximum energy arrives from the neighboring points, although there is always some

energy contribution from the points located outside the metamaterial. As we start

to enter the bandgap at a frequency of about 6000 Hz (Fig. 4.30d), the contribution

of the virtual sources located outside the metamaterial decreases drastically, until

we enter the bandgap. Between 6200 Hz and 7400 Hz, no energy can be received

from the virtual sources outside the metamaterial at this virtual receiver anymore,

and only the surrounding points inside the metamaterial have a role (Fig. 4.30e-j).

Once we enter the propagation band again, more points contribute to the energy

distribution (Fig. 4.30k-l). At frequencies below the bandgap, the radius of this

maximum energy region is much smaller compared to the radius in the frequencies

above the bandgap. We interpret this observation as the sub-wavelength and supra-

wavelength modes that can propagate due to the locally resonant metamaterial. In

other words, these different patterns of the energy spots that are closely related to

the wavelengths of the waves can be explained by hybridization effects. For the

frequency band of 7200 Hz to 7400 Hz, we are approximately at the edge of the

bandgap that corresponds to a smaller wavenumber compared to a free plate (i.e.,

the plate without rods). Consequently, a larger wavelength is observed. Another

edge of the bandgap that corresponds to waves with larger wavenumber and hence

smaller wavelength occurs at frequencies around 6000 Hz. This explains why the

radius of the spot around the virtual receiver is smaller at frequencies below ∼

6000 Hz, compared to those above ∼ 7200 Hz. The amplitude spectrum for the

averaged auto-correlation over all of the virtual sources (A(t)) is shown in Fig. 4.31

for determining the bandgap and the propagation band. This is in agreement with

what was demonstrated in the study of [100], which is shown here in Figs. 4.6a and

4.8a.

The propagation band and the bandgap are clearly observed here. If we focus

on the frequency intervals corresponding to the bandgaps, we see that at certain

frequencies within the first bandgap (around 2400 Hz, and close to 3000 Hz), there

is transmission even though we are in the bandgap. Similar behavior is observed
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Figure 4.31: Amplitude spectrum of the averaged auto-correlations (dB) over all

of the virtual point sources for a virtual receiver located inside the metamaterial

region.

in the second bandgap around the frequency of 6800 Hz. We can also see this

behavior in Fig. 4.23 although less clearly. This observation can be explained using

Fig. 4.8c. We see that frequencies of 2400 Hz, 3000 Hz, and 6800 Hz match the

flexural resonance frequency of the rods. We postulate that due to asymmetry in

the geometry (i.e., the rods are attached to only one side of the plate), A0 modes of

the plate waves also contain a flexural component that couples with these flexural

resonances, and hence leads to the transmission of these waves at these frequencies.

In the following section, we extract more information on the metamaterial, still

based on the spatial energy distribution.

4.6.1.4 Spatial Map of the Energy Distribution Based on Auto-Correlation

(Virtual Receiver Outside the Metamaterial)

Similar to the previous section, here we are still interested in the energy of the

signals extracted from the auto-correlation of the recordings. In contrast to the

previous section, here we focus on a virtual source located outside the metamaterial

region. To do so, we choose a transducer outside the metamaterial region, and plot

the map of the energy distribution based on the maximum of the auto-correlation of

the recordings filtered in consecutive frequency intervals of bandwidths of 200 Hz,

starting at 5400 Hz, and ending at 7600 Hz. As we observe in Fig. 4.32, starting

from the propagation band, the map is approximately homogeneous (Fig. 4.32a-
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c). Once the bandgap starts, the contribution of energy from virtual point sources

located inside the metamaterial region becomes almost zero (Fig. 4.32d-j). The

region that corresponds to the minimum of energy matches the area covered by the

rods very well. When the bandgap finishes and the propagation band starts again,

some energy is received from all of the virtual sources on the plate (Fig. 4.32k-l).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.32: Spatial map of the energy distribution at different frequency intervals,

including the propagation band and the bandgap, for a virtual receiver outside the

metamaterial region. The black square marks the region of the metamaterial.

We conclude that by mapping the spatial energy distribution for a receiver that

is outside the metamaterial, the bandgap and the metamaterial position on the plate

can be retrieved. In the following, we apply a similar approach to the data collected

from the METAFORET experiment.
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4.6.2 METAFORET Experiment

In this section, we show the results obtained by processing data collected during

the experiment explained in detail in section 4.5.3, known as the METAFORET

experiment. We adopt an approach similar to that of the plate, where we provide

the spatial map of the maximum of the normalized cross-correlations, referred to as

the ’coherence’. We compute the coherence (Cxy(t)) between two given time signals

x(t) and y(t) with energy E(x(t)) and E(y(t)) as:

Cxy(t) =
x(t) ? y(t)√
E(x(t))E(y(t))

(4.22)

where ? denotes the cross-correlation operator. In other words, we look for the cross-

correlation of the signals normalized by the energy of each of the signals considered

in the cross-correlation. We remind that the energy is obtained through time integral

of the squared signal. Applying this normalization, we remove the biasing effects

that can arise from the coupling between the shaker and the ground during the

seismic experiment. Hence, we lose the information related to the amplitude, but

we show that coherency provides useful information on the time dispersion of the

signals. We use the source-receiver reciprocity (explained in detail in chapter two,

section 2.2.1). We note that according to this theorem, the sources and receivers

can be interchanged. Implementing this theorem, the points along the shot lines

at this experiment are considered as virtual receivers, and the geophones as virtual

sources. As shown in Fig. 4.16, there are four lines (1 to 4) along which the active

shots were implemented. The distance between the geophones was 4 m in both the

x and y directions. The distance between the sources was 4 m and 2 m along the

horizontal and vertical lines of the active shots, respectively.

The difference between the METAFORET configuration and that of the labora-

tory plate is that we benefit from several ’receiver’ pairs along each active shot line.

This provides the opportunity to consider the averaged behavior of the coherency,

where the averaging is applied over various pairs of virtual receivers.

4.6.2.1 Preliminary Results

For a given distance between a pair of virtual receivers along a given shot line,

we compute the maximum of the coherence corresponding to each of the virtual
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sources according to Eq. 4.22. We repeat this for the consecutive pair of virtual

receivers that are separated by the same distance along the active shot line. In

doing so, we finally take the average of all of the coherence values and plot the

averaged maximum coherence values as a function of the virtual source position.

We carry out this procedure for different frequency bands within the propagation

band and the bandgap. The filter applied to the data is a bandpass 4th-order, of

the Butterworth type with the bandwidth of 10 Hz. As the shot lines are located

at different positions with respect to the area of study (i.e., inside the forest, along

horizontal and vertical lines, and also outside the forest), we have the possibility

to study various configurations depending on where the active shot line is located.

In the following, we show some of the coherency maps along different lines and in

different frequency bands. We start with shot line # 1 in Fig. 4.16, which includes

21 virtual receivers. In these maps, the positions of the virtual receivers are marked

by red circles, and the red horizontal line highlights the end of the forest area. Each

colored point on the coherency maps shows the average of the maximum value of

the normalized correlation coefficient from a virtual source located at that point and

averaged over all of the available virtual receivers separated by 20 m.
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Figure 4.33: Spatial map of the average of the maximum of coherency received

along a line of virtual receivers located horizontally inside the forest from the virtual

sources distributed homogeneously in the field and the forest. The averaging over

the maximum of coherency is performed for all of the possible virtual receiver pairs

separated by 20 m. Panels (a) to (f) show these maps for the different frequency

bands.
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Fig. 4.33 shows the spatial distribution of the maximum of the coherence for the

signals received from each virtual point source at two virtual receivers along the line

shown by the red circles. The distance between two virtual receivers is kept fixed

at 20 m, and these plots show the averaged value of the maximum coherency over

all of the possible virtual receiver pairs at 20 m distance along the shot line at each

frequency band.

We observe that the coherency of the received signals from a given virtual source

is spatially homogeneous between 20 Hz and 30 Hz, with a high value of coherency.

At 30 Hz to 40 Hz, the coherency is still high, with smaller values from the virtual

sources located in the field. Between 40 Hz and 50 Hz, there is a remarkable drop

in the coherency. We can note from Fig. 4.20 that this frequency band is very close

to the band where there is a peak in the compressional resonance of the trees. So,

this band can be considered as the edge of the bandgap where velocity varies rapidly

according to the dispersion curve, which results in a decrease in the coherency of

the waves. This decrease becomes even sharper between 50 Hz and 60 Hz. Between

60 Hz and 80 Hz, the maximum coherence increases again and the maximum of the

coherency comes from the virtual sources that are near the virtual receivers. This

can be interpreted as the presence of evanescent waves, which die rapidly due to their

exponential decay, and can hence be captured only by the virtual receivers close to

the virtual sources. Following the interpretation presented for these spatial maps

of the maximum coherence, we can consider them as indirect measurements of the

spreading of the signals. In the frequency bands where the scattering effects of the

trees is significant, a longer and more dispersed signal is expected, compared to the

frequency bands where there is no strong scattering. The stronger the scattering,

the longer the waveforms. As we compute the coherency of the signals in a limited

frequency band, there might be a less-scattered or more-scattered (and hence shorter

or longer, respectively) signal compared to the inverse of the bandwidth of the

applied filter. In other words, if the inverse of the bandwidth of the filter is larger

than the dispersion of the signals (which itself is an indicator of the scattering in the

medium), the resulting coherency is high. Since we keep the bandwidth fixed, the

maps of the maximum coherency provide insight into the amount of dispersion of

the signals, which is referred to as τ hereafter. To confirm this concept, we compute
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the standard deviation of the signals based on their intensity in each frequency band

averaged over all of the possible sources according to:

τ 2 =

´
I(t)t2dt´
I(t)dt

−
(´

I(t)tdt´
I(t)dt

)2

(4.23)

where I is the intensity of the signal. τ is a measure of the spreading of the signal

intensity. In the following, we show the spatial maps of τ for different frequency

bands averaged over all of the possible virtual receivers along the shot line.

Comparing the corresponding panels between Fig. 4.34 and Fig. 4.33, we ob-

serve that for a given frequency band, the virtual sources for which the maximum

coherency is large match those for which the spreading time of the signals is smaller

than the inverse of the bandwidth applied to the data (i.e., 0.1 s). For example,

for the frequency interval between 50 Hz and 60 Hz, where the trees act as strong

scatterers, more spread signals are expected due to the scattering. Virtual sources

with a resulting τ < 0.1 s (which is the width of the frequency filter in the time

domain) are marked as dark blue to dark green. These points match the points

of higher maximum coherency, which indicates that these points are less scattered

than the points marked from dark green to yellow in Fig. 4.34. The yellow points

in this map show a spreading time of around 0.2 s, which is interpreted to occur as

a result of the scattering effects of the trees for the frequency band between 50 Hz

and 60 Hz, for example. This longer spreading time is obviously observed more at

points that are further from the virtual receivers, as they propagate for longer in

the medium.
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Figure 4.34: Spatial map of the spreading time of the signals (τ ; in seconds) com-

puted according to Eq. 4.23 along a horizontal line of virtual receivers inside the

forest and from virtual sources that are arranged with regular spacing in the field

and the forest and in different frequency bands. τ is averaged over all of the possible

virtual receivers. Black circles mark the positions of the virtual receivers.
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These observations are consistent, but we should also take into account the

quality of the data, to determine whether a low coherence is due to a weak signal.

To do so, we compute the signal-to-noise ratios (SNRs) of the signals for the different

frequency bands, and average these over all of the virtual receivers. We observe that

for all frequency bands, the SNR is above 30 dB even for the points that showed low

coherence. This last confirms our interpretation of the observed coherency based

on the spreading of the signal intensity. The spatial map of the SNR is shown in

Appendix B.

We infer from the maps of maximum coherency that we can disentangle the

propagation band and the bandgap based on the information provided by these

maps. We clearly observed the effects of the trees and their scattering role for the

case where the virtual receivers are inside the metamaterial region. As we have

another line of virtual receivers in the forest (Fig. 4.16, shot line # 4), we repeat

the measurements of the maximum of the coherency along this vertical line, to

check whether the observations along line # 1 are confirmed. The spatial maps of

coherency and time dispersion of the signals are shown in Appendix C.

Along the vertical line of virtual receivers in the forest, we observe a very similar

pattern for the maximum of the coherency to that observed along the horizontal line

in the forest, shown in Fig. 4.33. A spatially homogeneous maximum of coherency

at frequencies between 20 Hz and 40 Hz that is followed by a drop in the coherency

that marks the beginning of the bandgap and the low coherency remains with an

inhomogeneous pattern at frequencies between 50 Hz and 60 Hz, which is an indi-

cator of the bandgap. At higher frequencies (i.e., between 60 Hz and 80 Hz), we see

high coherency coming from the virtual sources near the virtual receivers, which we

interpret as the presence of evanescent waves.

The interpretations of the results obtained from the horizontal and vertical lines

of the virtual receivers inside the forest are very similar to one another. We relate

the observed drop in the coherency as a sign of the start of the bandgap, which is

the result of the strong scattering effects of the trees. The trees in this experiment

behave in a similar manner to the rods attached to the plate. In parallel, we relate

these coherency values to the spreading of the signals, which is again an indicator

of the scattering effect in the medium.
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Our observations are confirmed by considering the map of maximum coherency

along the active shot line that is in the canola field and outside the forest (Fig. 4.16,

shot line # 3). The maps are shown in Appendix D.

As we are outside the forest, we do not expect to see the effects of the trees as

clearly as in the case where the virtual receivers were inside the forest. We still

observe high coherency coming from the forest at frequencies between 20 Hz and

30 Hz. The virtual sources that are in the forest and far from the virtual receivers

give low coherence, which is due to a lower SNR. The maximum coherency then

decreases, with lower coherence from the forest as we enter the bandgap around 50

Hz. Between 60 Hz and 80 Hz, the maximum coherency for this frequency range is

lower than where the virtual receivers are inside the forest.

In summary, we have shown that cross-correlation and auto-correlation of the

recordings are potentially useful to extract information for wave propagation in a

metamaterial. We have applied this approach to data from laboratory experiments

and to field data, with results that are consistent across both cases.

4.7 Conclusion

In this chapter, we addressed the problem of wave propagation inside a medium that

includes locally resonant elements arranged at a sub-wavelength scale. The resulting

structure, known as a metamaterial, shows particular features for the propagation

of waves, which makes these structures potentially useful for different applications,

including seismic hazard studies and earthquake engineering. The most highlighted

feature related to the propagation of waves in such media occurs near the resonance

frequency of the individual scattering elements, which can interact with one another

and result in a frequency band where there is no propagation inside the region cov-

ered by these elements. These prohibited frequency bands of propagation are known

as bandgaps, and they provide the opportunity to manipulate the wave propagation

for different purposes. The sub-wavelength arrangement in such structures makes

them more applicable at different scales compared to the bandgaps that occur due to

Bragg scattering in ordered structures. We carried out various experiments similar

to those previously implemented to better understand the behavior of such materials
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and the coupling effects between the acoustic/seismic waves and the resonators.

For the present study, we conducted an experiment on a plate with a set of

vertical rods that mimics a forest of resonators inside the medium. We adopted an

approach based on the analysis of the cross-correlations of the recordings, to analyze

the propagation of the waves. We also mapped the spatial distributions of the energy

based on the auto-correlations of the recordings. The maps obtained based on both

of these approaches were useful for localizing the metamaterial region as well as for

defining the propagation bands and bandgaps. As for the seismic data, we used the

data from the experiment conducted in 2016 in a region that consisted of a forest

and a field (i.e., the METAFORET experiment). As our approach worked well

for the laboratory data, we next applied it to the seismic data. We visualized the

maximum values of the normalized cross-correlations (called the ’coherency’) for the

signals received at shot lines inside and outside the forest, and we averaged these over

virtual receiver pairs separated by a given distance. We found a match between the

behavior of these maps in the different frequency bands and the resonance frequency

of the trees. We interpret our findings based on the scattering role of the trees and

the spreading of the time signals, which is a mark of the presence of strong scattering

in the medium. Our approach demonstrates the potential of trees for coupling with

propagating waves, which can be used for manipulation of seismic wave propagation.

As one would expect, the results we obtain from the seismic data are not as

clean as those obtained with the laboratory experiments. Processing the data of the

METAFORET experiment is still an ongoing project, and it requires further studies,

as there are still features and details that need to be more deeply understood.
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Conclusion

Here, we recap the findings achieved in this dissertation and discuss the possible

applications in seismology. In our work, the focus was on the problems linked to the

retrieval of the transient response of the medium by cross-correlating the ambient

recordings, a technique known as ambient-noise interferometry.

In the first part of our study (discussed in chapter 2), through conducting ex-

periments on thin duralumin plates we showed that in reverberating media, the

cross-correlation of recordings from spatially homogeneous and circular source dis-

tributions result in a very close convergence toward the transient response (also

called the Green’s function). This finding highlights the dominant role of reverber-

ation in making the propagating wave-field diffuse so that the strong requirement

of homogeneous source distribution can be relaxed. Focusing on the coda of the

multiply-reverberated signals, first, we cross-correlated only the coda and quanti-

fied the similarity between the outcome of this cross-correlation and the Green’s

function. We found a very high similarity between the two. We observed that

both the direct and coda parts of the Green’s function can be retrieved by cross-

correlating only the coda of the recordings. Second, zooming more on the coda,

we cross-correlated a window in the coda and quantified the similarity between the

resulting cross-correlation and the Green’s function. We related the similarity to

the statistical properties of the plate and the number of noise sources as well as the

window length. On one side, when we cross-correlate a large window in the coda,

similarity reaches to about 1/
√

3 with a single source. On the other side, a perfect

reconstruction can be obtained with a very small window but a uniform distribu-

tion of sources. Also, based on the modal decomposition, we showed the effect of a
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non-deterministic noise (e.g., electronic noise) in the reconstruction of the Green’s

function.

In seismology, taking advantage of the diffusive character of coda of earthquakes,

the cross-correlation has been applied to these multiply-reverberated waves. Scatter-

ers in a multiple-scattering medium like the Earth, can be considered as secondary

sources. These secondary sources result in the diffusivity of the wave-field and make

the coda of earthquakes eligible to be cross-correlated in order to retrieve the Green’s

function. This part of our study is useful in such cases, as we evaluated the respec-

tive contribution of the direct arrivals and the coda in reconstruction of the Green’s

function.

In the second part of our study (described in chapter 3), we focused on a reverber-

ating medium that includes scatterers. Our objective was to estimate the strength

of the scatterer taking advantage of the high sensitivity of the coda to the variations

in the medium. We focused on the coda of the Green’s function that is retrieved

passively, i.e., through cross-correlation of ambient recordings. The variations in the

coda of the Green’s function before and after the appearance of a scatterer and also

before and after the displacement of the scatterer are tracked in time. We proposed

a formalism to find the strength of the scatterer by fitting to this temporal varia-

tion which shows an exponential decay. Tracking temporal variations in the coda

of the recordings or Green’s function and extracting information taking advantage

of the sensitivity of the coda to small changes in the medium, is what is done for

monitoring purposes in seismology in volcanically and/or tectonically active regions.

In this approach which is known as Coda Wave Interferometry (CWI), travel time

variations are known to be the reason for changes in the coda. Our method which

aims to find the scattering strength of the scatterer embedded in a reverberating

medium is an intermediate step between CWI where dynamics of the medium is of

interest and LOCADIFF where information on the scatterer itself is probed in a

multiple scattering medium. Coda in a reverberant medium has already been used

in Diffuse Reverberant Acoustic-Wave Spectroscopy (DRAWS) to find the proper-

ties of the moving scatterers. Here, for the first time we used DRAWS for dispersive
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waves and followed the variations in the coda of the Green’s function due to the

appearance of the scatterer in the medium and not only due to its displacement.

Our results suggest the applicability of passive Diffusive Wave Spectroscopy in the

Earth sciences.

In the last part of this dissertation (discussed in chapter 4), we extended the

case of the medium with scatterers to the case where there are several resonating

scatterers introduced in the medium and organized at a sub-wavelength order. We

studied for the first time the behavior of the cross-correlation of the recordings in dif-

ferent frequency bands in such materials. We started with a small-scale laboratory

experiment. The configuration built in the laboratory consisted of a set of verti-

cal steel rods attached to a thin plate with sub-wavelength distance between them.

We analyzed the cross-correlation and auto-correlation of the recordings in different

frequency bands and caught some behaviors that are well explained based on the

regimes corresponding to propagation band and forbidden band. We also processed

seismic data adopting the same approach (i.e., cross-correlation of the signals). In

the experiment known as ’METAFORET’, the influence of the resonance of trees on

propagation of Rayleigh waves is studied. This experiment paves the way for bet-

ter understanding of metamaterials behavior for their further application in seismic

hazard domain. We found out that both laboratory and METAFORET experiments

showed typical behaviors of bandgap metamaterials where some frequencies corre-

sponding to the compressional resonance of trees/rods are attenuated and cannot

propagate in the area covered by resonators. The observed behavior of spatial maps

of energy (based on auto-correlation of signals) and maximum of coherence (based

on cross-correlation of the signals) provided information on the propagation of waves

in these media at different frequency bands. Our results were consistent with the

ones obtained through different approaches in previous studies. This proves the reli-

ability of cross-correlation of recordings in carrying information that can be used for

locating the region within the medium that is consisted of locally resonant scatterers

as well as identifying different regimes of propagation. Determining the position of

metamaterial region and frequency intervals corresponding to bandgap are essential
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for further manipulation of the waves depending on the application. Processing the

METAFORET data is still ongoing and deeper understanding of the structure of

the area and velocity profiles of the region have to be taken into account in order to

interpret some of the observations.
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Supplemental Material

Abstract

This manuscript contains the calculations of the similarity coefficients for

the two cases discussed in chapter 2. The detailed derivation of the similarity

to the best-obtained cross-correlation is provided for two different cases: first,

when one signal is cut in time prior to the cross-correlation; and secondly,

when the effect of instrumental noise is considered in the cross-correlation.

We also compute in details the spatial correlation of the squared eigenmodes

for two different geometries which appear in the first two sections. Next,

we added a table to show the position of the transducers on the plate used

for conducting the experiments described in chapter 2. The last part of this

material demonstrates the computation of the maximum time that needs to

be considered when fitting to the decay of the similarity coefficient curves

in time. This fitting step is a necessary step in finding the scattering cross

section of a scatterer.

I Time-Limited Cross-Correlation and Convergence

toward the Best Cross-Correlation

I.I Relationship between Similarity Coefficient and Vari-

ance

We look for the similarity coefficient between the cross-correlation that is obtained

by cross-correlation of the two full-time signals averaged over all of the possible point

sources (C∞(rRl , r
R
l′ , t)), and the one that is obtained by cross-correlation of a full

signal with a windowed one and averaged over a subset of sources (CdT
N (rRl , r

R
l′ , t)).

Here, the subscript and superscript denote the number of sources and the length of
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the window considered in the cross-correlation, respectively. We write the similarity

coefficient between C∞(rRl , r
R
l′ , t) and CdT

N (rRl , r
R
l′ , t) according to the definition of

the Pearson correlation coefficient,

S(C∞, C
dT
N ) =

´ 〈
CdT
N (rRl , r

R
l′ , t)C∞(rRl , r

R
l′ , t)

〉
dt√´ 〈

(CdT
N (rRl , r

R
l′ , t))

2
〉
dt
√´
〈(C∞(rRl , r

R
l′ , t))

2〉 dt
. (I.1)

We measure S(C∞, C
dT
N ). However, on the other hand, as an intermediate step, to

analytically estimate S(C∞, C
dT
N ), we introduce the fluctuation of CdT

N as

CdT
N (rRl , r

R
l′ , t) , C (rRl , r

R
l′ , t) + δCdT

N (rRl , r
R
l′ , t) (I.2)

where C (rRl , r
R
l′ , t) is the cross-correlation obtained by windowing one signal and

averaging over a large number of sources and δCdT
N is the fluctuation around this

value. As both C (rRl , r
R
l′ , t) and C∞(rRl , r

R
l′ , t) are proportional to the same function

ImG(rRl , r
R
l′ , t), it is straightforward to show that

S(C∞, C
dT
N ) = S(C , CdT

N ) (I.3)

Substituting Eq. I.2 into Eq. I.1, the similarity coefficient S(C , CdT
N ) can be

expressed as:

S(C , CdT
N ) =

1√
1 +

´
<δCdTN (rRl ,r

R
l′ ,t)

2>dt´
<C (rRl ,r

R
l′ ,t)

2>dt

=
1√

1 + Y
(I.4)

where Y is
´
<δCdTN (rRl ,r

R
l′ ,t)

2>dt´
<C (rRl ,r

R
l′ ,t)

2>dt
. As a consequence, the estimation of C (rRl , r

R
l′ , t) and

δCdT
N (rRl , r

R
l′ , t) leads to S(C∞, C

dT
N ).

I.II Modal Expression of the Correlation Function

The Green’s function (G(rRl , r
S
k , t)) expanded in terms of eigen modes (φn(r)) and

eigen frequencies (ωn) is written as follows in the frequency domain:

G(rRl , r
S
k , ω) =

1

ρs

∑
n

φn(rSk )φn(rRl )

(ω2 − ω2
n)− 2jωαn

. (I.5)

where αn is half of the inverse of the decay time of each mode, ρs is the surface

density, and rSk and rRl are the kth source position and the lth receiver position,

respectively.
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This modal representation in the time domain is expressed as

G(rRl , r
S
k , t) =

1

ρs

∑
n

φn(rSk )φn(rRl )

ωn
exp(−tαn) sin(ωnt). (I.6)

What we use as data for the cross-correlation associated to a specific receiver rRl is

d(rRl , r
S
k , t) = G(rRl , r

S
k , t)⊗ f(t) (I.7)

where f(t) is the convolution of the source signal (fc(t)) with its time reversed:

f(t) = fc(t) ⊗ fc(−t). We will have similar data for the second receiver rRl′ , but

what we use as the input for computation of the cross-correlation associated to this

receiver is this data cut in time, i.e.,

d(rRl′ , r
S
k , t) =

[
G(rRl′ , r

S
k , t)⊗ f(t)

]
W (t) (I.8)

where W (t) is the window function. The cross-correlation of these two reads as:

C(rRl , r
R
l′ , t) =

N∑
k=1

G(rRl , r
S
k ,−t)⊗ f(−t)⊗ d(rRl′ , r

S
k , t) (I.9)

where ⊗ is the convolution operator.

Substituting d(rRl′ , r
S
k , t) gives

C(rRl , r
R
l′ , t) =

N∑
k=1

G(rRl , r
S
k ,−t)⊗ f(−t)⊗

([
G(rRl′ , r

S
k , t)⊗ f(t)

]
W (t)

)
(I.10)

When the duration of f(t) is much smaller than the length of the window, it is

possible to commute f(t) and W (t).

C(rRl , r
R
l′ , t) ≈

N∑
k=1

G(rRl , r
S
k ,−t)⊗ f(−t)⊗

(
G(rRl′ , r

S
k , t)W (t)

)
⊗ f(t) (I.11)

We denote f(−t)⊗ f(t) as f ′(t). Using the definition of convolution

C(rRl , r
R
l′ , t) ≈

[
N∑
k=1

ˆ
G(rRl , r

S
k , τ − t)G(rRl′ , r

S
k , τ)W (τ)dτ

]
⊗ f ′(t) (I.12)

From now on, we concentrate on what we have between the brackets, and we repre-

sent this as CdT
N (rRl , r

R
l′ , t).

CdT
N (rRl , r

R
l′ , t) =

N∑
k=1

ˆ
G(rRl , r

S
k , τ − t)G(rRl′ , r

S
k , τ)W (τ)dτ (I.13)
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By substituting G from Eq. I.6

CdT
N (rRl , r

R
l′ , t) =

1

ρ2

∑
k,n,n′

etαn′
ˆ
φn′(r

S
k )φn′(r

R
l )

ωn′

φn(rSk )φn(rRl′ )

ωn

·e−τ(αn+αn′ ) sin(ωnτ)W (τ) sin(ωn′ [τ − t])H(τ − t)dτ

(I.14)

Then we use a trigonometry identity. Hence, Eq. I.14 becomes

CdT
N (rRl , r

R
l′ , t) =

1

2ρ2

∑
k,n,n′

etαn′
ˆ
φn′(r

S
k )φn′(r

R
l )

ωn′

φn(rSk )φn(rRl′ )

ωn
e−τ(αn+αn′ )

·W (τ)H(τ − t) [cos(ωn′t+ (ωn − ωn′)τ)− cos((ωn + ωn′)τ − ωn′t)] dτ

(I.15)

We now divide this Equation into the separate summations, where n = n′ and

n 6= n′.

CdT
N (rRl , r

R
l′ , t) =

1

2ρ2
etαn
ˆ
W (τ)H(τ − t)e−2ταndτ

∑
k,n

cos(ωnt)
φ2
n(rSk )φn(rRl )φn(rRl′ )

ω2
n

− 1

2ρ2
etαn

∑
k,n

ˆ
W (τ)H(τ − t)e−2ταn

φ2
n(rSk )φn(rRl )φn(rRl′ )

ω2
n

cos(2ωnτ − ωnt)dτ

+
1

2ρ2

∑
k,n6=n′

etαn′
ˆ
W (τ)H(τ − t)φn

′(rSk )φn′(r
R
l )

ωn′

φn(rSk )φn(rRl′ )

ωn
e−τ(αn+αn′ )

· [cos(ωn′t+ (ωn − ωn′)τ)− cos((ωn + ωn′)τ − ωn′t)] dτ
(I.16)

If we assume that the integration time window is long compared to the minimum

period, then we can neglect the second term on the right-hand side, and also the

term including cos((ωn + ωn′)τ − ωn′t) in the last term, due to the rapid oscillation

with respect to the other terms. We also assume that the attenuation time is not

dependent on n. So, Eq. I.16 simplifies to

CdT
N (rRl , r

R
l′ , t) =

1

2ρ2
etαn
ˆ
W (τ)H(τ − t)e−2ταndτ

∑
k,n

cos(ωnt)
φ2
n(rSk )φn(rRl )φn(rRl′ )

ω2
n

+
1

2ρ2

∑
k,n6=n′

etαn′
ˆ
φn′(r

S
k )φn′(r

R
l )

ωn′

φn(rSk )φn(rRl′ )

ωn
W (τ)H(τ − t)e−τ(αn+αn′ )

· cos(ωn′t+ (ωn − ωn′)τ)dτ

(I.17)

Next, we define C (rRl , r
R
l′ , t). This cross-correlation is obtained when there are

enough noise sources for CdT
N (rRl , r

R
l′ , t); i.e.,

∑
k φn(rSk )φn′(r

S
k ) = δn,n′N < φ2 >2.

C (rRl , r
R
l′ , t) =

N < φ2 >

2ρ2
etαn

(ˆ
W (τ)H(τ − t)e−2ταndτ

)∑
n

cos(ωnt)
φn(rRl )φn(rRl′ )

ω2
n

(I.18)

2Note that as a consequence of the orthogonality of modes:
´
< φ2 > dS = 1, < φ2 >= 1/S.
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I.III Estimation of δCdT
N (rRl , r

R
l′ , t)

We define the variance in CdT
N (rRl , r

R
l′ , t) due to the limited number of sources as:

δCdT
N (rRl , r

R
l′ , t) = CdT

N (rRl , r
R
l′ , t)− C (rRl , r

R
l′ , t) (I.19)

Substituting Eq. (I.17) and Eq. (I.18) in Eq. (I.19)

δCdT
N (rRl , r

R
l′ , t) =

1

2ρ2
etαn
ˆ
W (τ)H(τ − t)e−2ταndτ

∑
k,n

cos(ωnt)

(
φ2
n(rSk )− 〈φ2〉

)
φn(rRl )φn(rRl′ )

ω2
n

+
1

2ρ2

∑
k,n6=n′

etαn′
ˆ
φn′(r

S
k )φn′(r

R
l )

ωn′

φn(rSk )φn(rRl′ )

ωn
W (τ)H(τ − t)e−τ(αn+αn′ )

· cos(ωn′t+ (ωn − ωn′)τ)dτ

(I.20)

We define M̃(ωn′ − ωn) as the Fourier transform of W (τ)H(τ − t)e−τ(αn+αn′ ). So,

Eq. (I.20) reads

δCdT
N (rRl , r

R
l′ , t) =

1

2ρ2
etαnM̃(0)

∑
k,n

Reejωnt
(
φ2
n(rSk )− 〈φ2〉

)
φn(rRl )φn(rRl′ )

ω2
n

+
1

2ρ2

∑
k,n6=n′

etαn′
φn′(r

S
k )φn′(r

R
l )

ωn′

φn(rSk )φn(rRl′ )

ωn
Re[M̃(ωn′ − ωn)ejωn′ t]

(I.21)

where we assumed that αn is frequency independent.

Next, we consider the average value of δCdT
N (rRl , r

R
l′ , t)

2.

〈
δCdT

N (rRl , r
R
l′ , t)

2
〉

=
1

4ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2
∑

n

〈(
(
∑
k

φ2
n(rSk ))−N

〈
φ2
〉)2〉

·< φ2
n(rRl )φ2

n(rRl′ ) >

2ω4
n

]
+

1

8ρ4
e2tαn′

∑
n6=n′

∣∣∣M̃(ωn′ − ωn)
∣∣∣2

ω2
nω

2
n′

〈(∑
k

φn(rSk )φn′(r
S
k )

)

·

(∑
k′

φn(rSk′)φn′(r
S
k′)

)〉〈
φ2
n(rRl′ )

〉 〈
φ2
n′(r

R
l )
〉

(I.22)

where we neglected the cross term, as the average of the product of the two modes at

different locations goes to zero. Let us first look at the first term on the right-hand
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side of Eq. I.22 and rewrite this as:

1

4ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2
∑

n

〈(
(
∑
k

φ2
n(rSk ))−N

〈
φ2
〉)2〉

< φ2
n(rRl )φ2

n(rRl′ ) >

2ω4
n

 =

1

4ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2N2 < φ2 >2

∑
n

〈(
(
∑
k

φ2
n(rSk ))/N < φ2 > −1)

)2〉
· 1

2

ˆ ∑
n δ(ω − ωn) < φ2

n(rRl )φ2
n(rRl′ ) >

ω4
dω

(I.23)

where we used the property of the dirac delta function to replace the sum over n

with an integral over a sum of dirac functions.

We next use the definition of modal density (n0) as n0(ω) =
∑∞

n=0 δ(ω−ωn). Taking

all of this into account, Eq. I.23 reads

1

4ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2
∑

n

〈(
(
∑
k

φ2
n(rSk ))−N

〈
φ2
〉)2〉

< φ2
n(rRl )φ2

n(rRl′ ) >

2ω4
n

 =

1

4ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2N2 < φ2 >2

∑
n

〈(
(
∑
k

φ2
n(rSk ))/N < φ2 > −1)

)2〉
· 1

2

ˆ
n0(ω)

ω4
dω[< φ2

n(rRl )φ2
n(rRl′ ) >]

(I.24)

We next evaluate < φ2
n(rRl )φ2

n(rRl′ ) >. Assuming φn(rRl ) and φn(rRl′ ) as Gaussian

random variables, we can write

< φ2
n(rRl )φ2

n(rRl′ ) >=< φn(rRl )φn(rRl ) >< φn(rRl′ )φn(rRl′ ) >

+ < φn(rRl )φn(rRl′ ) >< φn(rRl )φn(rRl′ ) >

+ < φn(rRl )φn(rRl′ ) >< φn(rRl )φn(rRl′ ) >=

< φ2 >2 (1 +
2 < φn(rRl )φn(rRl′ ) >

2

< φ2 >2
) =< φ2 >2 (1 + F (δr)).

(I.25)

Finally, the first term on the right-hand side of Eq. I.22 becomes

1

4ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2
∑

n

〈(∑
k

φ2
n(rSk )−N

〈
φ2
〉)2〉 〈

φ2
n(rRl )φ2

n(rRl′ )
〉

2ω4
n

 =

1

8ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2 〈φ2

〉4
(ˆ

n0(ω)

ω4
dω

)
N2

〈(∑
k φ

2
n(rSk )

N 〈φ2〉
− 1

)2
〉

[1 + F (δr)]

=
C2

0´
n0(ω)dω

〈(∑
k φ

2
n(rSk )

N 〈φ2〉
− 1

)2
〉

[1 + F (δr)]

(I.26)
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where C2
0 = 1

8ρ4
e2tαn

∣∣∣M̃(0)
∣∣∣2N2 < φ2 >4 1

ω4 (
´
n0(ω)dω)2. We assumed that the

bandwidth is small enough to take 1
ω4 out of the integral.

We next consider the second term on the right-hand side of Eq. I.22. Let us first

simplify
∑

n 6=n′

∣∣∣M̃(ωn′ − ωn)
∣∣∣2, and write it as

∑
n6=n′

∣∣∣M̃(ωn′ − ωn)
∣∣∣2 =

ˆ
ω

ˆ
ω′

∑
n6=n′

∣∣∣M̃(ω′ − ω)
∣∣∣2 ∞∑
n′=0

δ(ω′ − ωn′)
∞∑
n=0

δ(ω − ωn)dω′dω

(I.27)

We see that the definition of modal density appears. We now define κ(δω, ω) =

<n0(ω)n0(ω+δω)>
n0(ω) ∑

n6=n′

∣∣∣M̃(ωn′ − ωn)
∣∣∣2 =

ˆ ˆ
n0(ω)κ(δω, ω))

∣∣∣M̃(δω)
∣∣∣2 dδωdω (I.28)

And hence the second term on the right-hand side of Eq. I.22 reads

1

8ρ4
e2tαn′

∑
n 6=n′

∣∣∣M̃(ωn′ − ωn)
∣∣∣2

ω2
nω

2
n′

〈(∑
k

φn(rSk )φn′(r
S
k )

)(∑
k′

φn(rSk′)φn′(r
S
k′)

)〉

·
〈
φ2
n(rRl )

〉 〈
φ2
n′(r

R
l′ )
〉

=
1

8ρ4
e2tαn′

∣∣∣M̃(0)
∣∣∣2N2

ˆ
n0(ω)

ω4
dω
〈
φ2
〉4

·

ˆ κ(δω, ω)

∣∣∣M̃(δω)
∣∣∣2∣∣∣M̃(0)
∣∣∣2 dδω


〈(∑

k φn(rSk )φn′(r
S
k )
)2
〉

N2 〈φ2〉2
=

C2
0´

n0(ω)dω

ˆ κ(δω, ω)

∣∣∣M̃(δω)
∣∣∣2∣∣∣M̃(0)
∣∣∣2 dδω


〈(∑

k φn(rSk )φn′(r
S
k )
)2
〉

N2 〈φ2〉2

(I.29)

So, finally, Eq. I.22 becomes〈
δCdT

N (rRl , r
R
l′ , t)

2
〉

=
C2

0´
n0(ω)dω

[〈(∑
φ2
n(rSk )/N

〈
φ2
〉
− 1
)2
〉

· [1 + F (δr)] +

ˆ κ(δω, ω)

∣∣∣M̃(δω)
∣∣∣2∣∣∣M̃(0)
∣∣∣2 d δω


·

〈(∑
k φn(rSk )φn′(r

S
k )
)2
〉

N2 〈φ2〉2


(I.30)

I.IV Estimation of
〈
C (rRl , r

R
l′ , t)

2
〉

From Eq. (I.18),
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〈
C (rRl , r

R
l′ , t)

2
〉

=
N2 < φ2 >2

4ρ4
e2tαn

(ˆ
W (τ)H(τ − t)e−2ταndτ

)2

(∑
n

cos2(ωnt)

〈
φ2
n(rRl )φ2

n(rRl′ )
〉

ω4
n

+
∑
n6=n′

cos(ωnt) cos(ωn′t)

〈
φn(rRl )φn′(r

R
l′ )
〉2

ω2
nω

2
n′

)
.

(I.31)

Taking the integral and neglecting the rapidly oscillating terms,

〈ˆ
C (rRl , r

R
l′ , t)

2dt

〉
=
N2 < φ2 >2

4ρ4

ˆ
(e2tαn

(ˆ
W (τ)H(τ − t)e−2ταndτ

)2

∑
n

〈
φ2
n(rRl )φ2

n(rRl′ )
〉

2ω4
n

+
∑
n6=n′

cos((ωn − ωn′) t)
〈
φn(rRl )φn′(r

R
l′ )
〉2

2ω4
n

)dt

(I.32)

As for the previous section, the introduction of the modal density and the modal

density correlation function leads to

〈ˆ
C (rRl , r

R
l′ , t)

2dt

〉
=
N2 < φ2 >2

8ρ4

ˆ
n0(ω)dω

ω4

ˆ
(e2tαn

(ˆ
W (τ)H(τ − t)e−2ταndτ

)2

(〈
φ2
n(rRl )φ2

n(rRl′ )
〉

+ κ(t)
〈
φn(rRl )φn(rRl′ )

〉2
)

)dt

(I.33)

where κ(t) is the inverse Fourier transform of κ(δω). As κ(δω) = n0 for a regular

cavity, κ(t) = n0δ(t). The second term can thus be neglected because it is only

significant when t=0 and rRl = rRl′ . Then,

〈ˆ
C (rRl , r

R
l′ , t)

2dt

〉
≈ (1 + F (δr))´

n0(ω)dω

ˆ
C2

0dt. (I.34)

I.V Estimation of the Similarity Coefficient S(C∞, C
dT
N )

Substituting Eq. I.30 and Eq. I.34, Y reads

Y =

〈(∑
k

φ2
n(rSk )/N

〈
φ2
〉
− 1

)2〉

+

(´
κ(δω, ω)

|M̃(δω)|2

|M̃(0)|2 dδω
) 〈

(
∑
k φn(rSk )φn′ (r

S
k ))

2
〉

N2〈φ2〉2

1 + F (δr)

(I.35)

Before going further, we simplify this Equation.

First, we consider
〈(∑

k φ
2
n(rSk )/N 〈φ2〉 − 1

)2
〉

and rewrite it as
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〈(
1
N

∑
k a

2
k − 1

)2
〉

, where a2
k =

φ2n(rSk )

〈φ2〉 .〈(
1

N

∑
k

a2
k − 1

)2〉
=

1

N2

N∑
k,k′=1

〈
a2
ka

2
k′

〉
+ 1− 2

N

〈
N∑
k=1

a2
k

〉
=

1

N2

[
3N
〈
a2
k

〉2
+N(N − 1)

〈
a2
k

〉2
]
− 1 =

2

N

〈
a2
k

〉2
+
〈
a2
k

〉2 − 1 =
2

N

(I.36)

Next, we consider
〈(∑

k φn(rSk )φn′(r
S
k )
)2
〉

.〈(∑
k

φn(rSk )φn′(r
S
k )

)2〉
=

N∑
k,k′=1

〈
φn(rSk )φn(rSk′)φn′(r

S
k )φn′(r

S
k′)
〉

=

N∑
k,k′=1

〈
φn(rSk )φn(rSk′)

〉 〈
φn′(r

S
k )φn′(r

S
k′)
〉

= N
〈
φ2
〉2

(I.37)

Using Eq. I.36 and Eq. I.37, Y simplifies to

Y =

2
N

[1 + F (δr)] +

(´
κ(δω, ω))

|M̃(δω)|2

|M̃(0)|2 dδω
)

1
N

1 + F (δr)
(I.38)

Substituting Eq. I.38 in Eq. I.4, the similarity coefficient S(C∞, C
dT
N ) reads

S(C∞, C
dT
N ) =

1√√√√
1 +

2
N

[1+F (δr)]+

´ κ(δω,ω))
|M̃(δω)|2

|M̃(0)|2
dδω

 1
N

1+F (δr)

(I.39)

We assume that κ(δω, ω) is equal to the average value of the modal density. We

next simplify
´ |M̃(δω)|2

|M̃(0)|2 dδω. If we replace ω′ − ω = ω and αn = αn′ , then according

to the definition of the Fourier transform

M̃(ω) =

ˆ Tmax

Tmin

e−2ατe−jωτdτ =
e−iωTmin−2αTmin

iω + 2α
− e−iωTmax−2αTmax

iω + 2α
, (I.40)

and

M̃(0) =

ˆ Tmax

Tmin

e−2ατdτ =
e−2αTmin

2α
− e−2αTmax

2α
. (I.41)

Using Eq. (I.40) and Eq. (I.41),

ˆ ∣∣∣M̃(ω)
∣∣∣2∣∣∣M̃(0)
∣∣∣2 dω =

2πα(e2αTmax + e2αTmin)

(eαTmax − eαTmin)(eαTmax + eαTmin)
= 2πα coth(α(Tmax − Tmin)).

(I.42)

And finally S(C∞, C
dT
N ) reads

S(C∞, C
dT
N ) =

1√
1 +

2
N

[1+F (δr)]+(n0(ω)2πα coth(α(Tmax−Tmin))) 1
N

1+F (δr)

. (I.43)
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II Instrumental-Noise Affected Recordings and Con-

vergence toward the Best Cross-Correlation

In this part, we quantify the contribution of the noise. In other words, we only

consider the effects of variations in the cross-correlation induced by noise and not

by the insufficient number of sources (the latter case is studied in part I in detail).

To this end, we cross-correlate two time-windowed signals in the coda part of the

recordings. The reason why we do not cross-correlate a windowed signal with the

full-time signal is that in this case the effects of the noise will not be finite. Here, we

look for the similarity coefficient between the cross-correlation obtained between the

two windowed signals considering all of the available sources (CdT
∞ ) and the reference

source (C∞). We write the similarity coefficient S(C∞, C
dT
∞ ) as:

S(C∞, C
dT
∞ ) =

´ 〈
CdT
∞ (rRl , r

R
l′ , t)C∞(rRl , r

R
l′ , t)

〉
dt√´

〈(CdT
∞ (rRl , r

R
l′ , t))

2〉 dt
√´
〈(C∞(rRl , r

R
l′ , t))

2〉 dt
(II.1)

Similar to the previous section, we introduce the fluctuation of CdT
∞ as:

CdT
∞ (rRl , r

R
l′ , t) , C ′(rRl , r

R
l′ , t) + δn(t) (II.2)

where δn(t) is the variance in the obtained cross-correlation due to the instrumental

noise, and C ′(rRl , r
R
l′ , t) is the ideal cross-correlation obtained by cross-correlation of

two time-limited windows when there are sufficient noise sources.

Substituting Eq. II.2 into Eq. II.1, the simplified S(C∞, C
dT
∞ ) is written as:

S(C∞, C
dT
∞ ) =

1√
1 +

´
<δn(rRl ,r

R
l′ ,t)

2>dt´
<C∞(rRl ,r

R
l′ ,t)

2>dt

=
1√

1 + Z
(II.3)

where Z is
´
<δn(rRl ,r

R
l′ ,t)

2>dt´
<C∞(rRl ,r

R
l′ ,t)

2>dt
. Similar to the previous section, and because C ′(rRl , r

R
l′ , t)

and C∞(rRl , r
R
l′ , t) are proportional to ImG(rRl , r

R
l′ , t),

S(C∞, C
dT
∞ ) = S(C ′, CdT

∞ ) (II.4)

and hence Z can be rewritten as
´
<δn(rRl ,r

R
l′ ,t)

2>dt´
<C ′(rRl ,r

R
l′ ,t)

2>dt
.

The goal here is to consider the effects of electronic noise on the cross-correlations,

and hence on the similarity coefficient.
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We assume that the estimated Green’s function (Gm(rRl , r
S
k , t)) coincides with

the sum of the exact Green’s function G(rRl , r
S
k , t), and the instrument-related error

n

Gm(rRl , r
S
k , t) = G(rRl , r

S
k , t) + n(t) (II.5)

In the experimental case, we cross-correlate the two windowed recordings and call

this CdT
∞ (rRl , r

S
k , t). Here, we temporarily, and from a theoretical point of view, call

CdT
∞ (rRl , r

S
k , t) as CdT

N,n(rRl , r
S
k , t) to emphasize that the cross-correlations are affected

by the noise (n). Applying the definition of cross-correlation, CdT
N,n(rRl , r

S
k , t) reads

CdT
N,n(rRl , r

R
l′ , t) =∑

k

ˆ [
G(rSk , r

R
l , τ − t) + nl,k(τ − t)

]
W (τ − t)

[
G(rSk , r

R
l′ , τ) + nl′,k(τ)

]
W (τ)dτ

(II.6)

The cross-correlations are summed over all of the available sources located at rSk .

To get Z, we first calculate

〈
CdT
N,n(rRl , r

R
l′ , t)

2
〉

=〈
C
′2
0 (rRl , r

R
l′ , t)

〉
+

ˆ 〈
G2(rSk , r

R
l , τ − t)

〉
H(τ − t)W (τ)dτ

ˆ
n2
l′,k(τ)W (τ ′)dτ ′+

ˆ 〈
G2(rSk , r

R
l , τ)

〉
W (τ)dτ

ˆ
n2
l′,k(τ

′)W (τ ′ − t)dτ ′ +
(ˆ

n2
l′,kW (τ ′ − t)dτ ′

)2

(II.7)

where C
′
0(rRl , r

R
l′ , t) is the product of the Gs that are not disturbed by the noise

(indicated by subscript 0).

We first compute
〈
G2(rSk , r

R
l , τ)

〉
. Using the modal expansion of the Green’s

function,

G(rSk , r
R
l , t) =

1

ρs

∑
n

φn(rSk )φn(rRl )

ωn
exp(−tαn) sin(ωnt). (II.8)

G2(rSk , r
R
l , τ) reads
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G2(rSk , r
R
l , τ) =

1

2ρ2
s

∑
n,n′

φn(rSk )φn(rRl )φn′(r
S
k )φn′(r

R
l )

ωnωn′
exp(−t(αn+αn′)) [cos(ωn − ωn′)t− cos(ωn + ωn′)t]

(II.9)

where we used the trigonometry identity.

Neglecting the rapidly oscillating terms and rewriting G2(rSk , r
R
l , τ) as the sum

of two terms for n 6= n′ and n = n′, gives

G2(rSk , r
R
l , τ) =

1

2ρ2
s

∑
n6=n′

exp(−t(αn + αn′))φn(rSk )φn(rRl )φn′(r
S
k )φn′(r

R
l )

ωnωn′
(cos(ωn − ωn′)t)

+
1

2ρ2
s

∑
n

exp(−2tαn)φ2
n(rSk )φ2

n(rRl )

ω2
n

(II.10)

Using Eq. I.25 and considering < φn(rSk )φn(rRl ) >= 0,
〈
G2(rSk , r

R
l , τ)

〉
becomes

〈
G2(rSk , r

R
l , τ)

〉
=
e−2ταn

2ρs2

∑ 〈φ2〉2 (1 + F (δr))

ω2
n

=
〈φ2〉2 e−2ταn(1 + F (δr))

2ρ2
s

ˆ
n0(ω)

ω2
dω

(II.11)

and subsequently

ˆ 〈
G2(rSk , r

R
l , τ − t)

〉
H(τ − t)W (τ)dτ =

〈φ2〉2 (1 + F (δr))
´
e−2(τ−t)αnH(τ − t)W (τ)dτ

2ρs2

ˆ
n0(ω)

ω2
dω (II.12)

Assuming n to be white noise, n2 is equal to ΠnB, where Πn and B are the noise

level and the bandwidth, respectively. Hence, Eq. II.7 becomes

〈
CdT
N,n(rRl , r

R
l′ , t)

2
〉

=
〈
C
′

0(rRl , r
R
l′ , t)

2
〉

+

C
′
(rRl , r

R
l′ , t = 0) [1 + F (δr)]

N

[´
e−2(t−τ)αnH(τ − t)W (τ)dτ´

e−2ταnW (τ)dτ
+ 1

]
ΠnB[Tmax − Tmin]

+ (ΠnB[Tmax − Tmin])2 (II.13)

C
′
(rRl , r

R
l′ , t) is obtained by cross-correlation of two time-limited windows when

there are enough noise sources. On the other hand, using Eq. I.18, we can write

C ′(rRl , r
R
l′ , t) as
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C ′(rRl , r
R
l′ , t) =

N < φ2 >

2ρ2
s

etαn
(ˆ

W (τ)W (τ − t)e−2ταdτ

)∑
n

cos(ωnt)
φn(rRl )φn(rRl′ )

ω2
n

(II.14)

So,

C ′(rRl , r
R
l′ , t = 0) =

N < φ2 >

2ρ2
s

(ˆ Tmax

Tmin

W (τ)e−2ταdτ

) ˆ
n0(ω)

ω2
dω (II.15)

and

C ′(rRl , r
R
l′ , t = 0) =

N < φ2 >

4αρ2
s

(

ˆ
n0(ω)

ω2
dω)(e−2αTmin − e−2αTmax) (II.16)

And we can write

< (C ′(rRl , r
R
l′ , t))

2 >= C ′(rRl , r
R
l′ , t = 0)2

[
e−2αTmin − e−2α(Tmax−t)

e−2αTmin − e−2αTmax

]2
(1 + F (δr))

2
´
n0(ω)dω

(II.17)

and the variations in the cross-correlation due to the noise are

〈
CdT
N,n(rRl , r

R
l′ , t)

2
〉
−
〈
C ′(rRl , r

R
l′ , t)

2
〉

=

C ′(rRl , r
R
l′ , t = 0) [1 + F (δr)]

N

[´
e−2(t−τ)αnH(τ − t)W (τ)dτ´

e−2ταnW (τ)dτ
+ 1

]
ΠnB[Tmax − Tmin]

+ (ΠnB[Tmax − Tmin])2 (II.18)

Substituting for Z, gives,

1 + Z =

1+

´
C ′(rRl , r

R
l′ , t = 0) [1 + F (δr)] dt

N
´
< (C ′(rRl , r

R
l′ , t))

2 > dt

[ˆ
(

´
e−2(t−τ)αnH(τ − t)W (τ)dτ´

e−2ταnW (τ)dτ
+ 1)dt

]
ΠnB[Tmax−Tmin]

+

´
(ΠnB[Tmax − Tmin])2 dt´
< (C ′(rRl , r

R
l′ , t))

2 > dt
(II.19)

or,
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1 + Z =

1+

´
n0(ω)dω

NC ′(rRl , r
R
l′ , t = 0)

´ (
´
e−2(t−τ)αnH(τ−t)W (τ)dτ´

e−2ταnW (τ)dτ
+ 1)dt

´ [
e−2αTmin−e−2α(Tmax−t)

e−2αTmin−e−2αTmax

]2

dt

 ΠnB[Tmax − Tmin]

αn
´
W (τ)e−2ταndτ(1 + F (δr))

+

´
(ΠnB[Tmax − Tmin])2 dt´
< (C ′(rRl , r

R
l′ , t))

2 > dt

We next apply a simplification and neglect the last term, as it is of the second order.

Assuming a small t (t ≈ 0), the term in the brackets simplifies to 2, and the

similarity coefficient can be finally expressed as:

S(C∞, C
dT
∞ ) ≈

(
1 +

βB[Tmax − Tmin]

N(e−Tmin/τa − e−Tmax/τa)

)−0.5

(II.20)

where

β =
2Πn

C ′(rRl , r
R
l′ , t = 0)(1 + F (δr))

. (II.21)

The dimensionless value β indicates the noise-to-signal ratio.

III Spatial Correlation of the Squared Eigen-Modes

In the last section of this material, we derive the expression for the spatial correlation

of the squared eigen modes < φ2
n(r)φ2

n(r′) > and the expression of F (that appeared

in the calculus of the similarity coefficient in both previous sections) for two different

cases: Chaotic geometry and integrable cavity. Here, r and r′ can be considered as

the generalized form for (rRl ) and (rRl′ ).

• Chaotic geometry

In case of a chaotic geometry, Berry stated that the eigenmodes behave as Gaus-

sian variables with a spatial correlation given by

〈φn(r)φn(r′)〉 = 〈φ〉2 J0(kδr). (III.1)

The relationship between the fourth order moment of a Gaussian variable in

terms of second order moments (similar to Eq. (I.25)) yields
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〈
φ2
n(r)φ2

n(r′)
〉

=
〈
φ2
n(r)

〉 〈
φ2
n(r′)

〉
+ 2 〈φn(r)φn(r′)〉2 . (III.2)

Using Eq. (III.1), it comes

〈
φ2
n(r)φ2

n(r′)
〉

=
〈
φ2
〉2 [

1 + 2J0(kδr)2
]
, (III.3)

and therefore

F (δr) = 2J0(kδr)2 (III.4)

• Integrable cavity

For a clamped rectangular plate, the expression of the eigenmode separated in

two dimensions (x and y) is given by

φ(x, y) =
2 sin(kxx) sin(kyy)√

A
, (III.5)

where A is the plate area (e.g.[55]). For simplicity in this section, we drop n (which

normally appears as the subscript for φ and the coefficient for k in the argument of

sin).

We compute 〈φ2(x, y)φ2(x′, y′)〉 in a similar manner to the one used in [55] to

estimate the spatial correlation of the eigenmodes. Strictly speaking, the averaging

has to be performed by integrating over a quarter of a ring of radius k and thick-

ness dk (positive kx and ky). However here, to facilitate the calculus and without

amending the result, the integration is done over the full ring,

〈
φ2(x, y)φ2(x′, y′)

〉
=

16

A22πkδk

ˆ 2π

0

ˆ k+δk

k

〈
sin2(kxx) sin2(kyy) sin2(kxx

′) sin2(kyy
′)
〉
kdkdθ,

(III.6)

with kx = k cos θ and ky = k sin θ.

This integral can be estimated using the following trigonometric identity

sin2(kxx) sin2(kxx
′) =

(1− cos(2kxx)− cos(2kxx
′))

4
+

cos(2kx[x− x′]) + cos(2kx[x+ x′])

8
.

(III.7)
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Similar to [55], an expression that is valid for all x and x′ can be worked out.

However, for the sake of simplicity, we assume here that the position coordinates x

and x′ are sufficiently far (farther than a couple of wavelengths) from the plate bor-

ders. In such a case, only the terms 1/4 and cos(2kx[x−x′]) significantly contribute

to the integral because the other terms oscillate much faster with respect to kx. The

same goes for ky terms in Eq. (III.6).

Finally, it comes

〈
φ2(x, y)φ2(x′, y′)

〉
=

1

A22π

ˆ 2π

0

[
1 +

cos(2kx[x− x′]) + cos(2ky[y − y′])
2

+
cos(2kx[x− x′]) cos(2ky[y − y′])

4

]
dθ.

(III.8)

The 2 next integral identities,

ˆ 2π

0

cos(A cos θ)dθ =

ˆ 2π

0

cos(A sin θ)dθ = 2πJ0(A) (III.9)

and

ˆ 2π

0

cos(A cos θ) cos(A sin θ)dθ = 2πJ0(
√
A2 +B2), (III.10)

yield an analytical expression in terms of 0-th order first kind Bessel functions

〈
φ2(x, y)φ2(x′, y′)

〉
∝ 1

A2

[
1 +

J0(2k |δx|) + J0(2k |δy|)
2

+
J0(2kδr)

4

]
, (III.11)

where δx = x′ − x, δy = y′ − y and δr = r′ − r. Using the same procedure, it

can be easily deduced that

〈
φ2(x, y)

〉
=

1

A
(III.12)

So, finally we obtain the expression of the spatial correlation of the squared eigen

modes as

〈
φ2(x, y)φ2(x′, y′)

〉
=
〈
φ2
〉2
[
1 +

J0(2k |δx|) + J0(2k |δy|)
2

+
J0(2kδr)

4

]
. (III.13)
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When x = x′ and y = y′, we find the already known relationship between

the fourth order moment and the second order moment of the eigenmodes in a

rectangular plate ([105], P.101)

〈
φ4
〉

=
〈
φ2
〉2
(

3

2

)2

. (III.14)

From Eq. (III.13), we easily deduce that in case of a rectangular plate,

F (δx, δy) =
J0(2k |δx|) + J0(2k |δy|)

2
+
J0(2kδr)

4
. (III.15)

IV Horizontal Coordinates of the Transducers on

the Plate

In this section, the coordinates of the transducers are displayed. The origin is the

left lower corner of the plate on the same side where the transducers are attached.

Table 4.1: Coordinates of the transducers

Transducer x(cm) y(cm)

1 20.5 39

2 17.5 25.5

3 30.5 34.5

4 29 23

5 23 18

V Derivation of the Condition on the Maximum

Time Considered in the Fitting to the Similar-

ity Coefficient Decay

We showed that the similarity coefficient in both cases I and II decays exponentially

in time as proportional to exp(−t/τ). In terms of mean free path, we rewrite the

exponential term as

e−L/ls = e−VgT/ls (V.1)
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where ls is the scattering mean free path, Vg is the group velocity. For a broadband

signal, the similarity coefficient S(t) can be written as

S(t) ∝ 1

∆B

ˆ
∆B

e−Vg(ω)T/lsdω (V.2)

where Vg(ω) reminds the dispersion of waves in plates i.e., the wave speed depends

on the frequency. We perform Taylor expansion of Vg(ω) around a fixed frequency

ω0:

Vg(ω) = Vg(ω0) +
∂Vg
∂ω

(ω − ω0) (V.3)

We remind that at low frequency regime, group velocity (Vg) of A0 mode of Lamb

waves is given by

Vg(ω) = 2
√
ω

(
D

ρe

) 1
4

(V.4)

which is twice the phase speed at this regime. Deriving Eq. V.4 with respect to ω

gives

∂Vg
∂ω

=

(
D

ρe

) 1
4 1√

ω
=
Vg
2ω

(V.5)

Substituting Eq. V.5 in Eq. V.3 and multiplying both sides by T/l gives

Vg(ω)T

ls
= Vg(ω0)

T

ls
+
Vg(ω0)

2ω0

∆ωT

ls
(V.6)

In our fitting process based on the formulae that we provided in the manuscript, we

substitute the group velocity in a given frequency band by the group velocity of the

central frequency. Adopting this approximation implies that the second term on the

RHS of Eq. V.6 should be much smaller than one in order to be neglected. So, the

condition is: Vg(ω0)

2ω0

∆ωT
ls

<< 1. This means that the condition we have on T is given

by

T <<
2ω0τ

∆ω
(V.7)

where τ = ls/Vg.
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Appendix A

In this Appendix, we explain the approximately uniform pattern that is observed

for the contribution of each virtual source in the cross-correlation in the bandgap

when one of the virtual receivers is located inside the metamaterial region.

We define this explanation following a simple schema. Assuming that for fre-

quency bands that lie within the bandgaps, there are evanescent waves, we de-

scribe these as exp (−αd), where d is the distance and α is the decaying length

of the evanescent waves. Let us assume two separate cases: (1) The two vir-

tual receivers are separated by a distance L and a virtual source is between these

two. This case is schematically shown in Fig. A.1. We define the corresponding

  

SourceReceiver 1 Receiver 2

x L­x

Figure A.1: Schematic illustration of a source located between two receivers.

amplitude of the cross-correlation of the recordings as proportional to the prod-

uct of the two evanescent waves that decay exponentially according to the dis-

tance between the source and the receiver. So, in this case, they will decay as

exp (−xα). exp (−(L− x)α) = exp (−Lα). This relation indicates that while in the

bandgap, where a source is between the two receivers, the amplitude of the cross-

correlations will decay by a constant that does not depend on the distance between

the source and the receiver. This explains the approximately homogeneous pattern

observed around the virtual receiver located inside the metamaterial in the maps

of the contribution of virtual point sources in the cross-correlation. (2) This case
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explains the configuration where the source is not between the two virtual receivers

(see Fig. A.2). In this case, the amplitude of the cross-correlation will decay as

  

Source Receiver 1 Receiver 2

x

L+x

Figure A.2: Schematic illustration of a source not located between two receivers.

exp (−xα). exp (−(L+ x)α) = exp (−(2x+ L)α). Consequently, the maximum of

the cross-correlation will depend on the distance between the virtual source and

each virtual receiver.
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Appendix B

In this Appendix, we show spatial maps of signal-to-noise ratio (in dB) at different

frequency bands for the signals received by virtual receivers located inside the for-

est and averaged over all these receivers. Black circles mark the virtual receivers

position.
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Appendix C

In this Appendix, we show spatial map of average of maximum of coherency received

along a line of virtual receivers inside the forest arranged vertically with respect to

the border between the field and the forest from virtual sources distributed homoge-

neously in the field and the forest. The distance between the virtual receivers along

this line is 2 m. The averaging over maximum of coherency is performed over all

possible virtual receiver pairs separated by 20 m. Panels (a) to (f) show these maps

in different frequency bands. We also show the averaged value of time dispersion

of signals at different frequency bands averaged over all virtual receivers along the

line.
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Figure C.1: Spatial map of average of maximum of coherency received along a line

of virtual receivers.

170



0 50 100
x(m)

-20

0

20

40

60

80

100

120

140

y(
m

)

20 Hz - 30 Hz

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
=

(a)

0 50 100
x(m)

-20

0

20

40

60

80

100

120

140

y(
m

)

30 Hz - 40 Hz

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
=

(b)

0 50 100
x(m)

-20

0

20

40

60

80

100

120

140

y(
m

)

40 Hz - 50 Hz

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
=

(c)

0 50 100
x(m)

-20

0

20

40

60

80

100

120

140

y(
m

)

50 Hz - 60 Hz

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
=

(d)

0 50 100
x(m)

-20

0

20

40

60

80

100

120

140

y(
m

)

60 Hz - 70 Hz

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
=

(e)

0 50 100
x(m)

-20

0

20

40

60

80

100

120

140

y(
m

)

70 Hz - 80 Hz

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
=

(f)

Figure C.2: Spatial map of spreading time of signals (τ) in seconds.
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Appendix D

In this Appendix, we show spatial maps of average of maximum of coherency along

a line of virtual receivers located along a horizontal line in the field and outside the

forest from virtual sources distributed homogeneously in the field and the forest.

The averaging over maximum of coherency is performed over all possible virtual

receiver pairs separated by 20 m.
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