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RÉSUMÉ EN FRANÇAIS

Depuis le déploiement de la première génération de communication mobile (1G) dans les
années 80, les réseaux mobiles sont en constante mutation. Réagissant à l’augmentation du
trafic et à la multiplication des applications, les opérateurs ont fait évoluer leurs architectures
et les technologies utilisées pour augmenter leurs performances. Aujourd’hui, le trafic réseau
continue à croître de manière soutenue. À titre d’exemple, Cisco prévoit une augmentation du
trafic IP de 26% par an sur la période 2017-2022 [37]. Afin d’absorber cette augmentation, les
opérateurs se tournent vers la nouvelle génération de communication mobile : la 5G.

Au-delà d’une augmentation globale du trafic supporté, cette nouvelle génération doit égale-
ment permettre de proposer un nouvel ensemble de services de communication, dont cer-
tains requièrent des contraintes très fortes en termes de qualité de service. La nature de ces
contraintes permet de diviser ces nouveaux services en trois grandes catégories [138] : les
services nécessitant une bande passante élevée, telle que la vidéo 3D, ceux ayant besoin
de communications très fiables à très faible latence, tels que les services liés aux opérations
chirurgicales à distances dans le cadre de la santé connectée, et enfin ceux requérant de très
nombreuses connexions au réseau, dans le cadre de l’Internet des objets.

Ces différents types de services ont tous des besoins forts en termes de qualité de ser-
vice, mais ces différentes contraintes ne s’appliquent pas nécessairement simultanément à
chaque service : un service de vidéo 3D pourra s’accommoder d’une latence relativement im-
portante, alors qu’un objet connecté va émettre peu de données. Plutôt que de s’appuyer sur
un réseau unique et monolithique pour mettre en place tous ces services, il pourrait donc être
plus approprié d’avoir plusieurs réseaux, chacun optimisé pour supporter une catégorie de
service réseau exposant un certain ensemble de contraintes. Des réseaux physiques dédiés
seraient trop coûteux, peu flexibles, et complexes à maintenir. La 5G mise donc sur des réseaux
virtuels, obtenus à partir d’un réseau physique unique. Ces différents réseaux virtuels sont ap-
pelés slices [56]. Le slicing se fonde sur l’isolation des ressources, assurant que les actions des
différents utilisateurs du réseau ne s’impactent pas mutuellement. Pour comprendre comment
ces réseaux virtuels flexibles sont obtenus à partir d’un réseau physique unique, il faut détailler
l’élément de base qui compose chaque slice : le service réseau.

Le service réseau est formé de trois types d’éléments : deux points de terminaison (une
entrée et une sortie), un ensemble de fonctions réseau nécessaires au bon fonctionnement du
service, et des connexions réseau reliant les différentes fonctions ainsi que les terminaisons. Le
slicing doit donc à la fois prendre en compte les connexions et les fonctions réseau. Deux con-
cepts sont utilisés pour cela, respectivement les réseaux définis par programmation (SDN) [46]
et la virtualisation des fonctions réseau (NFV) [114].

SDN est une nouvelle architecture de gestion des ressources réseau qui consiste à sé-
parer le plan de contrôle, qui établit les règles de routage, du plan de données, qui les exécute
et transfert effectivement le trafic. Ces deux plans sont habituellement colocalisés dans les
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routeurs. Avec SDN, le plan de données reste distribué et se compose d’un ensemble de com-
mutateurs. Le plan de contrôle, quant à lui, est logiquement centralisé en un nouvel élément : le
contrôleur. Ce dernier abstrait la complexité du réseau et offre aux applications clientes des ser-
vices de connectivité via son interface nord. SDN permet l’accélération du développement, de
la mise en place et de la mise à jour de ces services de connectivité, ainsi qu’une utilisation des
ressources optimisée via sa gestion centralisée. Alliant automatisation et vision globale, SDN
permet également le passage à l’échelle réactif des connexions en fonction de la charge de
trafic.

Alors que SDN se charge des connexions dans le réseau, NFV va se concentrer sur les
fonctions réseau. Traditionnellement, ces fonctions sont des éléments physiques spécialisés,
ce qui rigidifie le réseau et limite les avantages attendus de SDN. NFV propose de remplacer
ces éléments par des serveurs génériques. Les fonctions réseau sont alors implémentées sous
forme de logiciels, et appelées fonctions réseau virtualisées (Virtual Network Function (VNF)),
déployables sur ces serveurs. Ceci permet une plus grande agilité dans la gestion des fonc-
tions en autorisant un déploiement et un passage à l’échelle automatisés, ainsi qu’une grande
facilité de mise à jour et d’implémentation de nouvelles fonctions. Pour profiter pleinement de
ces avantages, un système de gestion et d’orchestration automatisé du cycle de vie des VNFs
est nécessaire. Dans ce domaine, l’European Telecommunications Standards Institute (ETSI)
a proposé une architecture dédiée : ETSI NFV MANO [66]. Un orchestrateur, le Network Func-
tions Virtualisation Orchestrator (NFVO), ordonne le déploiement des services réseau, com-
posés de graphes de VNFs. Afin de les déployer, il s’appuie sur les informations topologiques
remontées par les gestionnaires d’infrastructures (Virtualized Infrastructure Managers (VIMs)),
qui proposent une vision des ressources disponibles. Une fois les ressources sélectionnées,
le NFVO délègue aux gestionnaires de fonctions virtualisées (Virtual Network Function Man-
agers (VNFMs)) le soin de gérer le cycle de vie des VNFs, alors que lui-même se charge de la
gestion des cycles de vie des services réseau dans leur ensemble. La gestion du cycle de vie
inclus nécessairement l’instanciation et la terminaison de l’élément, ainsi que la mise à jour ou
le passage à l’échelle si besoin. En tant que gestionnaire des services réseau, le NFVO a pour
clients les gestionnaires de slices.

Afin de tirer le meilleur parti de la virtualisation et de l’automatisation, SDN et NFV peu-
vent être appliqués conjointement : les VIMs de ETSI NFV MANO peuvent être pourvus de
contrôleurs SDN pour gérer les ressources des liens de leurs domaines. Cette virtualisation
complète des ressources du réseau permet de mettre en œuvre le slicing de façon efficace.

Bien que SDN et NFV présentent de multiples avantages, plusieurs difficultés subsistent
pour pouvoir pleinement les exploiter. Dans cette thèse, nous nous intéressons à la mise en
place d’un service réseau de bout en bout. Ce processus débute lorsqu’un gestionnaire de
slices émet une requête de création de service réseau vers le NFVO, et s’achève lorsque
le service est effectivement installé dans le réseau. Nous pouvons distinguer trois étapes
importantes lors de ce processus. Tout d’abord, si le propriétaire du NFVO ne possède pas
suffisamment de ressources via ses propres VIMs pour installer le service, alors il doit acheter
des ressources supplémentaires auprès de fournisseurs tiers, typiquement des opérateurs
cloud publics. La difficulté consiste à obtenir les ressources nécessaires au prix le plus bas
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possible, en choisissant la combinaison d’offres la plus avantageuse. Afin d’optimiser le coût
global, le propriétaire du NFVO peut considérer ses besoins en ressources sur une période
donnée, plutôt qu’acheter des ressources pour chaque service réseau séparément. Une fois
les ressources obtenues, la deuxième étape consiste à placer la chaîne de fonctions constitu-
ant le service réseau sur ces ressources. Ici se pose une double difficulté : au niveau du NFVO
tout d’abord, le placement des services réseau doit être effectué à la volée, sans connaissance
des requêtes à venir. Dans un contexte de ressources limitées, le NFVO doit donc être muni
d’une stratégie visant à maximiser la quantité de services réseau admis sur le long terme.
Au niveau des VIMs ensuite, ceux n’appartenant pas au même propriétaire que le NFVO
peuvent refuser de transmettre au NFVO la représentation exacte de leur infrastructure,
sur laquelle se fonde les méthodes de placement habituelles. Une autre représentation des
ressources doit donc être envisagée. Finalement, une fois le placement décidé par le NFVO
et communiqué aux VIMs, ces derniers doivent configurer le réseau pour installer le nouveau
service. S’appuyant sur les capacités offertes par l’architecture SDN, ils doivent être capables
d’offrir aux services une bande passante et une latence garanties. Nous proposons ici une
contribution pour chacune de ces trois étapes de la mise en place d’un service réseau.

Tout d’abord, considérons un aspect fondamental de l’établissement d’un service réseau : la
mise en place d’une connectivité avec une qualité de service garantie, sans fonction réseau
supplémentaire. Elle est nécessaire pour deux raisons : elle permet à l’opérateur réseau de
respecter les engagements de qualité de service pris auprès de son client, et elle permet
également l’isolation du trafic des différents utilisateurs, ce qui est fondamental dans le slicing.
La mise en place de cette connexion passe par trois étapes : déterminer dans le réseau un
chemin compatible avec les besoins exprimés, mettre en place ce chemin, et s’assurer du
maintien des garanties au cours du temps.

Les protocoles traditionnels permettant de gérer la qualité de service dans un réseau, tel
que DiffServ, sont soit complexes à mettre en œuvre, soit basé sur l’overprovisionning, une
stratégie coûteuse en ressources. SDN permet d’envisager de nouvelles approches. Dans
cette architecture, il est aisé pour le contrôleur centralisé de déterminer un chemin satisfaisant
et de le mettre en place. C’est la troisième étape, le maintien de la qualité de service au cours
du temps, qui constitue une difficulté. Les propositions avancées dans la littérature peuvent
majoritairement se diviser en deux catégories : réactives et proactives. Une fois le chemin mis
en place, les solutions réactives [15] surveillent en permanence le réseau pour s’assurer que
les contraintes des différents chemins sont toujours respectées. Si ce n’est pas le cas, le con-
trôleur doit réagir, typiquement en déplaçant un ou plusieurs chemins. Cette méthode souffre de
plusieurs inconvénients. Tout d’abord, la qualité de service n’est pas garantie à tout instant. En-
suite, la quantité de données de surveillance est importante, ce qui impacte les ressources de
calcul des commutateurs chargés de les générer, ainsi que les ressources de bande passante
des liens chargés de les transporter. Enfin, les chemins peuvent être modifiés fréquemment,
ce qui peut mener à des pertes de paquets et à une surcharge du contrôleur chargé de les
calculer. Inversement, les solutions proactives se basent sur les files d’attente pour garantir le
partage des ressources. Bien que le contrôleur soit toujours en charge de diriger les flux au
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travers du réseau, et de leur assigner des files d’attentes spécifiques, il n’est donc plus respon-
sable du maintien de la qualité de service au cours du temps. La mise en œuvre des stratégies
proactives peut être soit statique, soit dynamique. Dans le cas statique [50], un certain nombre
de files d’attente sont prédéfinies dans chaque commutateur, et les flux sont redirigés vers la
file correcte en fonction de leur importance. Deux flux de même importance peuvent cependant
interférer entre eux. Ce problème ne se pose pas dans le cas dynamique, où les files d’attente
sont créées à la volée, en fonction des besoins (jusqu’à une file d’attente par flux [73]. Bien
que cela permette une gestion beaucoup plus fine de la qualité de service, le nombre de files
d’attente limité au sein des commutateurs empêche le passage à l’échelle de cette stratégie.

L’objectif est ici de conserver les avantages des deux catégories de solutions, en évitant
leurs inconvénients : il faut que la solution soit proactive, flexible et peu génératrice de données
de surveillance. C’est l’objet de notre première contribution architecturale [113]. Constatant que
les limitations des solutions proactives proviennent du rôle proéminent joué par le contrôleur,
notre solution va viser à le décharger d’une partie de ses fonctions. La première étape con-
siste à déporter le calcul des chemins. Pour ce faire, un nouveau module est ajouté au plan
de contrôle : SDN Traffic Engineering Management (STEM). Celui-ci est chargé d’orchestrer le
traitement d’une requête de connexion émise par une application. Lors de la réception d’une
telle requête, STEM la redirige vers un élément de calcul de chemin dédié : le Path Compu-
tation Element (PCE). La communication entre les deux modules est assurée par le protocole
standard Path Computation Element Protocol (PCEP), ce qui permet de connecter tout type
de PCE de façon transparente.

Le PCE reçoit des informations sur la topologie et les ressources totales du réseau en inter-
rogeant le contrôleur, qui les obtient via une surveillance régulière. Il faut noter que cette surveil-
lance concerne uniquement la topologie, et non les flux utilisateurs comme dans les solutions
de mise en place de la qualité de service citées plus haut. Les évènements topologiques, tels
que l’ajout d’un commutateur ou la rupture d’un lien, sont très rares comparés aux fluctuations
de trafic, et génèrent très peu de trafic de surveillance. Afin de déterminer un chemin répondant
aux contraintes d’une requête, le PCE peut utiliser un algorithme de chemin multi-contraint. Ici,
nous avons choisi d’implémenter un algorithme proposé dans la littérature : SAMCRA [152].
Lorsqu’un chemin valide est sélectionné, le PCE le transmet au module STEM, et garde en
mémoire les ressources utilisées dans la topologie. Cela assure qu’il n’utilisera pas deux fois
les mêmes ressources : la qualité de services est ainsi garantie au niveau du plan de contrôle.

Reste maintenant à appliquer ce chemin au niveau du plan de données. Pour cela, STEM
va générer un ensemble de règles qui seront ensuite transmises au contrôleur, pour être ap-
pliquées dans le réseau. Ces règles vont d’abord viser à établir un tunnel MPLS entre les
deux extrémités de la connexion souhaitée. En entrée de ce tunnel, un mécanisme de contrôle
d’admission est installé dans le commutateur, et paramétré par le contrôleur. Ce mécanisme
classe le trafic en fonction de sa priorité, paquet par paquet, et note cette classification dans
l’en-tête MPLS. Par exemple, on peut définir trois niveaux de priorité : élevé pour le trafic
faisant partie d’une connexion à bande passante garantie, normal pour un trafic sans garantie
(type Best Effort), et bas pour un trafic ayant dépassé le débit qui lui était alloué. Ce système
de classification peut être affiné pour inclure plus de niveaux de priorité. Enfin, le paquet est
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envoyé dans le tunnel, et sera pris en charge au niveau de chaque commutateur par la file
d’attente correspondant à sa priorité. Pour ce faire, les commutateurs doivent mettre en œuvre
une file d’attente par niveau de priorité (trois dans notre exemple). Cette solution offre plusieurs
avantages : aucun trafic de surveillance n’est requis car le contrôle du trafic est déporté dans le
réseau sous la forme des files d’attente et du contrôle d’accès, la solution est proactive grâce
aux files d’attente, et la solution est flexible grâce au contrôle d’accès, qui peut finement classi-
fier la priorité de chaque paquet. Enfin, il est possible de n’utiliser qu’un nombre réduit de files
d’attente sans crainte que les flux prioritaires n’interfèrent entre eux, grâce à la gestion efficace
des ressources au niveau du plan de contrôle. En effet, le PCE prend garde à ne pas attribuer
aux liens plus de trafic prioritaire qu’ils ne peuvent en écouler.

Pour valider cette contribution architecturale nous avons mis en place une expérimentation
en utilisant un switch physique PICA8 compatible avec le protocole OpenFlow souvent utilisé
en SDN pour assurer les communications entre le plan de données et le plan de contrôle.
Nous avons pu valider le respect de la qualité de service promise pour chaque flux, et ce
sans qu’aucune donnée de surveillance propre à la gestion de la qualité de service ne soit
échangée entre le plan de contrôle et le plan de données.

Après avoir proposé une solution au problème de garantie de qualité de service sur les con-
nexions, abordons la prochaine étape pour obtenir un service réseau complet : l’ajout de VNFs.
Le NFVO doit choisir comment placer chaque service réseau dans les ressources mises à sa
disposition, en fonction des contraintes de ces services.

Le problème de placement de chaînes de VNFs est un sujet ayant fait l’objet de nombreuses
contributions dans la littérature scientifique [72], qu’il est possible de classer en catégories,
selon le type de placement et l’objectif d’optimisation. Il existe deux types de placement : of-
fline et online. Le placement offline suppose que toutes les requêtes devant être placées sont
connues en avance, et sont toutes placées simultanément. Le placement obtenu peut ainsi être
optimal, car il n’existe aucune inconnue. Cependant, il faut au préalable avoir une connaissance
totale des requêtes. Le placement online, au contraire, consiste à placer les requêtes une à une
dans le réseau, sans connaissance préalable des requêtes futures. Ce placement a l’avantage
de représenter la situation réelle à laquelle est confronté un opérateur devant satisfaire les re-
quêtes de ses clients. Cependant, le placement final reste sous-optimal, car l’algorithme n’a
jamais accès à toutes les informations. Une fois la famille de placement choisie, les possibilités
d’optimisation sont multiples. On peut ici détailler deux grandes catégories d’objectifs souvent
étudiés : économiser les ressources des nœuds d’une part, et des liens d’autres parts. Ces
deux objectifs peuvent souvent être déclinés en minimisation des coûts et de la consomma-
tion énergétique. Le principe permettant l’économie de ressources au niveau des nœuds est
la consolidation : lorsqu’un service réseau est installé, il est possible qu’il n’utilise pas entière-
ment les ressources qui lui sont allouées. Afin d’augmenter ce taux d’utilisation, il est possi-
ble de mettre en commun ces ressources avec d’autres services. Les ressources des liens,
quant à elles, sont économisées en réalisant des chaînes plus courtes. Les deux objectifs
sont donc souvent en conflit, le premier incitant à aller chercher des ressources spécifiques, le
second encourageant à utiliser les ressources les plus proches. Dans un contexte virtualisé,
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la consolidation souffre de plus de deux limitations dont l’impact sur la qualité du placement
reste peu étudié. D’une part, au niveau du NFVO et des VNFMs, les services réseau peuvent
passer à l’échelle s’ils sont peu utilisés, réduisant au passage les ressources mobilisées pour
eux. D’autre part, au niveau des VIMs, l’infrastructure présentée au NFVO peut être adaptée
en fonction de l’usage constaté des ressources : si les ressources réservées sont rarement
entièrement utilisées, le VIM peut décider de pratiquer du surbooking. Ainsi, les ressources
perçues comme étant perdues au niveau du NFVO sont en fait purement fictives.

Dans cette contribution nous avons choisi de nous intéresser au cas du placement on-
line, car il représente la réalité du problème rencontré par le NFVO. Si le placement offline
est également intéressant, par exemple pour réoptimiser le placement à intervalle de temps
régulier, le placement online reste donc indispensable. Sur cette base, nous avons choisi notre
objectif d’optimisation spécifiquement pour pallier à la principale faiblesse du placement on-
line : le fait que les requêtes futures lui sont inconnues. L’objectif va donc être de parvenir à
placer un maximum de requêtes dans le réseau sur le long terme, sans pouvoir planifier exacte-
ment l’usage des ressources. Pour effectuer notre placement nous considérons deux éléments
: d’une part, comme nous l’avons évoqué, la 5G doit être adaptée à un ensemble de services,
et notamment à des services à très faible latence. Un tel service ne peut pas être placé li-
brement dans le réseau : ses contraintes de latence nous imposent de placer les VNFs qui le
composent proches des points de terminaison. D’autre part, les ressources dans le réseau ne
sont pas réparties de façon homogène : chaque nœud du réseau n’est pas directement con-
necté à un vaste datacenter. Schématiquement, on peut considérer que les nœuds centraux
ont davantage de ressources que les nœuds de bordure, mais ces derniers, plus nombreux,
sont en moyenne plus proches des utilisateurs finaux. Partant de ces deux constats, nous pro-
posons un modèle visant à placer les chaînes de VNFs formant les services réseau de façon à
épargner au maximum les ressources là où elles sont rares, afin de mieux les préserver pour
des services dont les contraintes seraient plus fortes, et qui n’auraient pas d’autre choix que
d’utiliser ces ressources de proximité pour satisfaire leurs contraintes [112].

Afin de valider l’efficacité de notre approche, nous comparons la quantité de services
réseau acceptés par notre modèle avec celle obtenue par un modèle ne cherchant à opti-
miser que la consommation de bande passante, tout en respectant toujours les contraintes
exprimées. La mesure est effectuée lorsque la quantité totale de services réseau installés
se stabilise, ce qui correspond à un régime en charge du réseau. Pour effectuer nos tests,
nous nous intéressons à quatre paramètres : la structure de la topologie, la concentration des
ressources dans cette topologie, la force des contraintes de délai exprimées par les requêtes,
et la durée de vie des services (qui impacte directement le taux d’occupation du réseau).

Nous mesurons tout d’abord l’influence des deux premiers paramètres, liés à la topolo-
gie. On distingue deux types de structures pour les topologies : les topologies flat, où tous les
nœuds ont une centralité comparable, et qui correspondent à des réseaux vastes, d’échelle na-
tionale par exemple, et les topologies edge, représentant les réseaux à une échelle plus locale,
où les nœuds ont des centralités bien distinctes. Typiquement, les topologies edge présen-
tent trois catégories de nœuds, des plus centraux aux moins centraux : nœuds de cœur,
d’agrégation et d’accès. Le paramètre de concentration traduit quant à lui la répartition des
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ressources dans le réseau : dans un scénario à concentration faible, tous les nœuds présentent
les mêmes ressources. Avec une concentration moyenne, la quantité de ressource augmente
avec la centralité. Cette hétérogénéité est encore accentuée dans les scénarios à concentration
forte. Les résultats montrent que la structure de la topologie n’influence pas les performances
du modèle. En revanche, la concentration des ressources a un impact important. Quelle que
soit la concentration, on note tout d’abord que notre modèle affiche une performance au moins
aussi bonne que le modèle de comparaison. Ensuite, pour les scénarios à concentration faible,
la quantité de requêtes acceptées peut aller de +5% à +7%, et de +15% à +22% dans les scé-
narios à concentration forte. Comme nous l’avons détaillé, notre modèle cherche à économiser
les ressources là où elles sont rares. Cette notion de rareté est peu présente dans les scénar-
ios à faible concentration, puisqu’initialement tous les nœuds ont les mêmes ressources. Des
disparités locales peuvent toutefois apparaître au cours du temps, expliquant la performance
obtenue par notre modèle. Dans les scénarios à forte concentration, les plus proches de la
réalité, la disparité des ressources est forte, ce qui explique les meilleures performances.

Cependant, dans tous les scénarios on observe que, dans le pire cas, notre modèle
présente des performances comparables à celle du modèle de référence. Pour expliquer cela
il nous faut analyser l’influence des deux autres paramètres : la force des contraintes de la-
tence et la durée de vie des services dans le réseau. On observe que les performances les
plus élevées sont obtenues lorsque les contraintes de latence sont en moyenne fortes ou mod-
érées, et que la durée de vie des services dans le réseau entraîne moins de 70% de saturation.
Lorsque les contraintes de latence sont faibles, les requêtes peuvent être placées en tout point
du réseau, et économiser les ressources localement ne présente pas d’intérêt. Cependant, en
réalité, on s’attend à ce qu’une part des services présente des contraintes de latences fortes,
notamment dans le cadre de la 5G. Concernant la durée de vie des services, si le réseau est
entièrement saturé alors aucun modèle de placement ne peut présenter de meilleure perfor-
mance qu’un autre, dans la mesure où la consolidation des ressources n’entre pas en jeu. Mais
cette situation serait le résultat d’un mauvais dimensionnement du réseau en amont.

En conclusion, notre stratégie de placement présente des performances bien supérieures à
celle du modèle de référence dans les scénarios les plus fidèles à la réalité. Cependant, notre
système, comme tous les systèmes proposés dans la littérature, repose sur le fait que les VIMs
transmettent au NFVO une vision exacte de leurs ressources. Cela n’est pas nécessairement
vrai si le NFVO et les VIMs n’appartiennent pas à la même entité.

Le contexte multi-propriétaires, où les entités qui interagissent n’appartiennent pas toutes
au même propriétaire, commence à être abordé dans la normalisation [54] (travaux en cours) et
dans certains projets menés par des industriels [69], car il correspond à une situation concrète
à laquelle les acteurs seront de plus en plus confrontés avec le déploiement généralisé de
réseaux virtualisés : les VIMs doivent pouvoir garder les détails de leurs topologies secrets,
tout en fournissant assez d’informations au NFVO pour vendre leurs ressources, ce qui reste
leur but premier.

Dans les réseaux traditionnels, une telle situation se résout généralement en effectuant
une abstraction du réseau et de ses ressources. En raison de son importance en pratique,
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cette thématique est le sujet de nombreuses contributions scientifiques [151]. On distingue
trois grandes méthodes d’abstraction : la compaction, qui rassemble l’intégralité de la topolo-
gie en un nœud unique, le full mesh, qui consiste à connecter directement entre eux tous les
nœuds de bordure du réseau, et l’étoile, qui connecte tous les nœuds de bordure du réseau
à un nœud central virtuel, le nucleus. Parmi ces trois méthodes permettant de cacher effi-
cacement les détails internes d’une topologie, la plus étudiée est le full mesh, car elle peut
offrir l’avantage majeur de ne pas perdre d’informations utiles pour le routage. Il faut cepen-
dant noter qu’aucune des solutions proposées ne prend en compte les ressources des nœuds,
puisque leur intérêt dans le contexte des réseaux n’est apparu qu’avec l’avènement, relative-
ment récent, de NFV. Lorsque ces ressources sont intégrées, le full mesh perd son avantage,
et d’autres pistes doivent être explorées pour représenter efficacement les ressources.

Pour apporter une réponse à ce problème nous proposons une abstraction en étoile. Grâce
à son nœud central, celle-ci nous semble adaptée pour représenter les ressources des nœuds.
Dans notre méthode, les ressources des nœuds de bordures de l’étoile sont fixées égales à
celles des nœuds de bordure de la topologie réelle. Le nucleus, quant à lui, rassemble les
ressources de tous les autres nœuds. En ce qui concerne les liens, nous avons procédé comme
suit : le nucleus est tout d’abord identifié au nœud de la topologie réelle ayant la plus grande
centralité. Ensuite, pour un nœud de bordure donné et une métrique donnée, le chemin le plus
court reliant le nœud central à ce nœud de bordure est déterminé, via un algorithme de Dijkstra
pondéré. Le score obtenu détermine la valeur de la métrique pour la branche de l’étoile reliant
le nœud central à ce nœud de bordure. La procédure est répétée pour chaque métrique et pour
chaque nœud de bordure.

Afin d’évaluer l’efficacité de notre abstraction, nous avons conduit une série de tests
comparant la performance du modèle holistique contre le même modèle avec un niveau
d’abstraction. Cette performance est mesurée en termes de nombre cumulé de requêtes
admises dans le réseau au cours du temps. Les résultats montrent que notre stratégie
d’abstraction présente de très bonnes performances, plaçant entre 92% et 98% de requêtes
dans le réseau comparé au même modèle sans abstraction [112]. De plus, cette stratégie peut
également être utilisée par le NFVO lorsque les VIMs lui fournissent des topologies détaillées
afin de réduire le temps de calcul, car nous constatons expérimentalement que cette stratégie
réduit très fortement l’impact de la taille de la topologie sur le temps d’exécution.

Dans la précédente contribution, nous nous sommes donc intéressés au cas multi-
propriétaires, où les VIMs n’appartiennent pas nécessairement au même acteur que le NFVO.
Avant de placer ses services sur les ressources gérées par ces VIMs, le propriétaire du NFVO
a donc dû les acquérir, en payant pour cela un certain coût. Les VIMs réels, que sont les opéra-
teurs de cloud publics tels qu’Azure ou AWS, présentent de vastes choix d’offres pour obtenir
ces ressources, et il peut être difficile de trouver la meilleure combinaison en termes de coût.

Bien que plusieurs contributions scientifiques aient abordé l’optimisation des coûts et des
prix dans le contexte NFV-MANO, aucune, à notre connaissance, n’a considéré ce problème
particulier. Parmi les contributions dans ce domaine, on peut notamment citer l’optimisation des
offres proposées par les VIMs au NFVO [144] ou l’optimisation du gain obtenu par le NFVO
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lors de la vente de ses services réseau [83].

Notre troisième contribution porte sur la création d’un modèle visant à déterminer la
combinaison d’offres commerciales permettant d’obtenir une quantité minimale donnée de
ressources au cours d’une période définie, et ce au coût le plus faible [111]. Pour cela,
nous développons une représentation générique des offres commerciales des différents clouds
publics, en distinguant un prix fixe payé en avance, et un prix variable payé uniquement si la
ressource est utilisée. En plus de ces offres publiques, nous considérons aussi le cas où le
propriétaire du NFVO possède également son propre datacenter, typiquement de taille limitée.
La quantité de ressources à réserver à tout instant doit être déduite à partir de prédictions de
trafic.

Afin de mesurer l’intérêt d’appliquer notre modèle, nous l’évaluons en nous basant sur des
données de charge de trafic réelles de la ville de Milan [16], courant de novembre 2013 au
1er janvier 2014. Ce trafic présente une double périodicité : quotidienne, avec un trafic élevé
le jour et bas la nuit, et hebdomadaire, avec un trafic plus élevé en semaine que le week-end.
Il présente également un pic important au 1er janvier. Les offres commerciales envisagées
pour réserver les ressources nécessaires sont celles proposées par AWS, l’un des acteurs
majeurs des services de cloud public. On en distingue trois types : réservées (la ressources
est prépayée sur toute la période), à la demande (la ressource n’est payée que lorsqu’elle est
réellement utilisée), et planifiées (la ressource est prépayée, mais seulement sur une plage
horaire quotidienne définie, identique pour chaque journée. Ici on choisit la plage horaire 8h00-
20h00, qui concentre la grande majorité du trafic.). Le coût horaire d’une offre réservée est
égal à celui d’une offre planifiée, et inférieur au coût horaire d’une offre à la demande. L’objectif
de notre modèle étant de combiner plusieurs offres pour obtenir le prix le plus bas possible,
nous l’évaluons en lui proposant un panel de plus en plus large d’offres à exploiter. Notre
prix de référence (100%) sera le prix obtenu en combinant les trois offres publiques. Nous
considérons tout d’abord un cas simple, ou seules les offres réservées sont disponibles. Cela
correspond à la situation traditionnelle des opérateurs réseaux, qui doivent dimensionner leur
infrastructure pour faire face au pic de trafic, ici le pic du 1er janvier. En conséquence, la grande
majorité des ressources, prépayées, sont la plupart du temps inutilisées, ce qui conduit à un
prix élevé (291%). Nous passons ensuite à une deuxième stratégie naïve : se limiter aux offres
à la demande. Cette stratégie est l’exact opposé de la première : cette fois, l’opérateur suit
entièrement le paradigme du cloud stipulant que les ressources sont accessibles à la volée,
de façon totalement dynamique et sans planification. Le coût total est nettement inférieur à
celui obtenu avec la première stratégie (128%), car aucune ressource n’est perdue, ce qui
compense le coût horaire supérieur. Cependant le coût total peut être réduit en combinant
ces deux offres, et c’est ici qu’intervient notre modèle. On constate cependant que le gain est
assez faible (121%), car l’offre réservée reste peu attractive, du fait de la quantité de ressources
perdues. En ajoutant l’offre planifiée, beaucoup plus adaptée au profil du trafic, le coût diminue
cette fois significativement (100%).

Après avoir démontré l’intérêt de comparer les offres entre elles, nous nous intéressons à
l’opportunité pour l’opérateur réseau de construire son propre datacenter, afin d’obtenir des
ressources privées. Du point de vue de notre modèle, cela correspond à une nouvelle offre,
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l’offre privée, qui a les mêmes caractéristiques que l’offre à la demande, mais avec un coût
horaire bien plus faible. De plus, les ressources proposées par cette offre sont en quantité
limitée. L’exécution du modèle permet effectivement d’obtenir un coût plus faible qu’avec les
seules offres publiques (81%). Ce résultat est indicatif, et dépend fortement de la quantité
de ressources privées disponibles. Cependant, ce résultat ne prend pas en compte les in-
vestissements consentis par l’opérateur pour acquérir ces ressources. Pour évaluer l’intérêt
réel d’obtenir ces ressources, nous analysons le taux d’utilisation des ressources privées. Sur
le mois de novembre, celui-ci s’établit à 57% en moyenne. Ce score faible ne s’explique pas
uniquement avec l’absence de trafic la nuit, puisque la moyenne en semaine est de 75%. C’est
le week-end que les ressources sont sous utilisées (moyenne : 40%) : les ressources obtenues
via la réservation planifiée, très utiles en semaine, sont toujours prépayées le week-end, et util-
isées préférentiellement par rapport aux ressources privées, dont le coût horaire est très faible
mais non nul.

Les résultats obtenus dans cette contribution montrent que notre modèle permet des
économies substantielles, comparé à des stratégies naïves. Il montre également que la
construction d’un datacenter privé peut se révéler moins rentable qu’espéré, une fois prises
en considération les différentes offres publiques concurrentes. Lors de futurs travaux il serait
intéressant de se pencher sur la réduction du temps de calcul induit par notre modèle. Ce
temps de calcul nous a notamment poussé à sélectionner une seule offre planifiée parmi
toutes celles possibles. Prendre en compte toutes ces offres permettrait des réductions de
coûts plus importantes encore.

Pour conclure, cette thèse nous a permis d’appréhender les opportunités et les défis que
représentent les nouvelles architectures liées à la 5G en abordant les différentes étapes du
processus de déploiement d’un service réseau, de la requête par le gestionnaire de slices à
son installation dans l’infrastructure, en passant par le problème de l’acquisition des ressources
nécessaires à son déploiement.

D’autres défis restent cependant d’actualité. Nous pouvons par exemple citer l’isolation
du trafic des différentes VNFs au niveau des hyperviseurs, qui est particulièrement com-
plexe lorsque des interférences entre les ressources physiques se produisent. Alors que notre
deuxième contribution met en avant l’importance des ressources de bordure aux yeux de
l’opérateur, il pourrait également être intéressant de se placer du point de vue des gestion-
naires d’infrastructures, et de se demander en quel emplacement du réseau la construction
de datacenters supplémentaires serait la plus judicieuse, notamment pour faire face à la mon-
tée des services requérant une très faible latence, ou une très forte bande passante. Enfin,
le processus de migration du réseau d’accès radio traditionnel vers une version virtualisée,
à l’instar de ce qui est aujourd’hui proposé pour le cœur de réseau, fait aujourd’hui l’objet de
nombreuses recherches et analyses. En effet, ce segment du réseau comporte des spécificités
: très faibles latences, très forts besoins en bande passante, mais également bénéfices addi-
tionnels obtenus via la centralisation des fonctions de planification de l’usage de la ressource
radio, tel que la réduction des interférences, qui sont plus difficilement modélisables via les
modèles de placement de VNFs traditionnels.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Incoming fifth generation of mobile networks, or 5G, is expected to support the develop-
ment of a variety of new services, such as massive Internet of Things (IoT), tactile Internet, 3D
video streaming, to cite a few. Official organizations tried to establish lists of those potential use
case, such as Next Generation Mobile Networks (NGMN) in [115]. However, those new ser-
vices impose increasing pressure on the network, requesting strong Quality of Service (QoS)
guarantees. According to the ITU [138] those requirements fall into three main categories: En-
hanced Mobile Broadband, Massive Machine Type Communication and Ultra-reliable and Low
Latency Communications. The need for additional broadband is not only due to additional ser-
vices, but also to the steady increase of devices connected to the network observed year after
year by major companies such as Cisco [37].

In this context, network operators have to look toward new paradigms to radically change
the way they operate their networks in order to provide the expected performances. To address
the wide variety of services that display very strong - sometimes contradictory - needs, fore-
seen solution is to rely on virtualization, or abstraction, of the resources. This technique allows
operators to slice their unique, monolithic, physical network into several virtual ones, each ded-
icated to serve a given category of services or a given client, with adapted QoS capacities.
Each virtual network is called a slice, and this concept is known as slicing. Besides, in order to
optimize the usage of the resources, network management should be centralized. Centraliza-
tion would also help network operators to implement an increasing number of complex services
in an automated way.

Networks perform two types of operations: packet transmission and packet treatment.
Packet transmission involves links, switches, and routers. It requires “network resources” such
as bandwidth, latency or switch Input/Output. Packet treatment is done via middleboxes such
as firewalls or encoders that provide specific network functions by analyzing or modifying the
packets, and requires “node resources” such as compute, storage or Random Access Memory
(RAM). Network operators have to virtualize both of those operations to achieve full virtualiza-
tion of the network.

Although many solutions may be imagined, two main frameworks emerged today to allow
this virtualization: Software Defined Network, which abstracts the network resources, and Net-
work Functions Virtualisation, which abstracts node resources. Software Defined Network
(SDN) consists in centralizing the traditionally distributed control plane of the network into a
logically centralized controller. Routers are turned into switches that report to the controller
whenever they are unable to handle a packet. The controller hides the network complexity from
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northbound applications and offer them connectivity services. Network Functions Virtualisa-
tion (NFV), on the other hand, is based on the virtualization of network functions. Traditional
middleboxes are turned into software applications, called Virtual Network Functions (VNFs),
designed to run over multi-purpose servers. In order to perform the deployment and manage-
ment of the VNFs, NFV needs a dedicated framework: the NFV Management and Orchestration
(MANO). It allows the network operator to deploy VNFs wherever they are needed. In addition,
it can scale those VNFs to adapt to the load, making them very flexible.

However, the objective of a network operator is neither to provide simple connectivity nor
isolated VNFs: both must be combined to form VNF graphs able to deliver full Network Ser-
vices (NSs). This can be achieved by extending the NFV MANO framework to handle not only
node resources, but also network ones. This additional management can rely, for example, on
traditional routers and routing protocols. However, in order to fully benefit from the flexibility
that NFV promises, the network resource management should be highly flexible too. This can
be obtained by implementing the SDN logic into the NFV MANO framework. In this sense, al-
though NFV and SDN are independent concepts, it can be highly effective to use them together.

Resource abstraction and control centralization can help network operators to address the
increasing complexity of their networks and the use cases brought by 5G. However, they come
with their own challenges. Regarding virtualization, one of the major issue is resource isolation:
a slice must not influence the behaviour of other ones. The SDN architecture, envisioned to
manage network resources, is still relatively new. Few large scale deployments exist, and re-
search is still ongoing to solve different shortcomings that can be encountered. When it comes
to network resources, especially in the relatively new SDN context, improvements still have to
be made. Regarding control centralization, algorithms dedicated to finely manage the resources
in a timely manner are necessary to benefit from the promise of better resource usage through
centralization. Also, to bring end to end services, network operators may have to request re-
sources out of their own pools. This inter domain scenario is a complex problem that has to
be taken into account by the new frameworks, as it raises questions in terms of security and
pricing.

1.2 Contributions of the thesis

The objective of this thesis is to address some of the difficulties related to resource man-
agement in abstracted networks. To articulate our work we consider the challenges raised by
the establishment of a Network Service, a graph of VNFs, in an NFV MANO framework working
in conjunction with an SDN orchestrator. The contributions of this thesis can be summarized as
follow:

— We first focus on the network resource isolation using SDN in order to establish a con-
nectivity service without any additional network function. This contribution has been pub-
lished in [113]. In this work we develop an architecture based on the SDN framework to
guarantee the QoS of the different flows in the network. This effectively divides the net-
work resources, and especially the bandwidth, between the different flows. In addition,
other QoS metrics, such as latency, can be guaranteed too. Existing solutions in this
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field either overload the central controller with monitoring messages or allow the QoS
constraint to be violated from time to time. Our proposition solves these issues by dele-
gating the admission control to the entry switch. This way, the controller keeps full control
over the global management of the network, but local packet filtering is realized by the
switch. Generally speaking, the idea of delegating local tasks to local equipment while
relying on the centralized control for global decisions can greatly improve the flexibility
and efficiency of SDN. Our results show that, using no specific monitoring, the QoS is
strictly enforced.

— Once connectivity is established we can add network functions along the path. To do
so we consider the problem of the placement of a VNF chain in the network, having
secured the network resource isolation and relying on existing hypervisors to perform
node resource isolation. This contribution, published in [112], is twofold:
— We first design a placement algorithm whose objective is to place a maximum num-

ber of NSs in the network, at runtime. In the 5G context, we consider the placement
of both regular and strongly constrained NSs. For the latter, relying only on cen-
tral datacenters may not be enough, as reaching them may take too much time or
consume too much bandwidth. As a consequence, small edge datacenters must be
considered too. The strategy we use is to place VNFs in datacenters with abundant
resources first, if possible, in order to preserve resources where they are scarce to
serve NSs that need them. Extensive tests demonstrate that our algorithm performs
much better than an algorithm which only focus on bandwidth fairness and ignore
the node resources.

— We then focus on the multi-tenant scenario. In this document, a tenant refers to an
independent entity that manages a set of resources and propose them to its clients.
Examples of resources in our context may be: virtual CPUs, virtual machines, full net-
work services ... In this scenario a network operator then has to buy resources from
other tenants that own parts of the infrastructure resources to complete its NSs. Ten-
ants are willing to display useful information about their resources, because they want
to sell them. However, they may be reluctant to display the full details of their topol-
ogy. Our idea is to propose an abstraction method to solve this dilemma. Although
abstraction techniques have been extensively studied over the years the novelty here
is to include node resources in the abstraction. We leverage this abstraction strategy
to improve the performances in terms of runtime of our algorithm in the mono-tenant
scenario. Experimental results show that our technique is efficient both in terms of
placement performances and runtime.

— Finally, we examine the process of node resource reservation a network operator has to
go through to actually implement the VNF chain. This contribution has been published
in [111]. When the network operator does not own enough resources to host its VNFs it
has to buy them from other tenants, typically public clouds. Those tenants display public
offers for their resources. To benefit from long term offers, more interesting financially,
the network operator has to derive from its past experience a forecast of its needs and of
resource prices. Based on those inputs we designed an algorithm able to determine the
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best combination of offers, in terms of prices, to match all the network operator needs.
We demonstrate through simulation based on real data that using our algorithm leads
to important cost savings compared to straightforward approaches. We also extend our
tests to estimate the opportunity for a network operator to build its own datacenter, or
private cloud.

1.3 Organization of the manuscript

Chapter 2 presents a general introduction of the context of the thesis and a detailed de-
scription of the main concepts used in the rest of the manuscript. We first present the different
challenges that 5G is expected to bring for network operators. We then described the three
concepts that are expected to be used to face these challenges: SDN, NFV, and slicing. We
detail their respective features, and how they can be used in conjunction. Finally, we introduce
the general use case that will be used as a main thread in the rest of the document.

Chapter 3 presents our first contribution: the enforcement of service QoS through SDN.
After a brief introduction we summarize the contributions that already exist in this field, and
detail the improvement that can be made. We then expose our proposed architecture, along
with its evaluation.

Chapter 4 introduces our second contribution. This chapter first presents an overview of
the scientific publications in VNF placement domain, and highlights that few has been done to
cover the case in which several actors are involved in the creation of the VNF graph, which
constitutes the multi-tenant scenario. We describe first our holistic model to place VNFs, and
then, the details of the heuristic used to solve the problems raised by the multi-tenant scenario
and the runtime problem of the mono-tenant scenario. After extensive tests of both the holistic
model and the heuristic, we present our conclusions and perspectives for further improvements.

Chapter 5 details our third contribution. We first analyse some of the main proposals related
to cost savings in the NFV MANO process, and we point out that the resource reservation
has not been discussed much in the community. We then describe our algorithm to optimize
reservation costs, and we present a series of tests to demonstrate its efficiency against trivial
approaches. Lastly, we discuss the opportunity for a network operator to build its own facility to
obtain access private resources in a context of concurrence with public offers.

Finally, Chapter 6 presents our conclusions and opens new research axes.

28



CHAPTER 2

CONTEXT

In this chapter we detail the new performances that 5G is going to require from operator
networks, in terms of data rate, latency or connexion rate. Limitations of current network archi-
tectures may prevent them from delivering those performances, and the use cases that rely on
them. To address those limitations, new paradigms have emerged, or gained renewed attention.
These alternatives to traditional architectures include SDN, NFV, and network slicing. SDN is
an architecture that separates network control and data planes, and centralizes the control to
allow automated, programmable, and optimized management of the network. NFV framework
proposes to turn traditional physical network functions, running over dedicated hardware, into
virtual network functions running over generic servers, in order to gain flexibility, scalability, and
cost reduction. Using SDN and NFV, network slicing is a strategy consisting in providing net-
work services to several clients using multiple specialized virtual networks instead of a unique
physical network, aiming at simplifying resource management and QoS enforcement. After in-
troducing those concepts, we present a use case that will drive the explanations of our different
contributions through the thesis.

2.1 5G

Mobile networks are in constant evolution. Since the deployment of the first generation (1G)
in the 1980s, needs and technologies have continuously evolved, resulting in the development
and deployment of new generations of networks. However, current 4G is reaching its limits,
confronted with a global increase of the traffic and the apparition of new use cases requiring
higher QoS guarantees from the network, leading to the emergence of the next generation: the
5G.

Global Internet Protocol (IP) traffic is growing at a fast pace. According to Cisco projections
for the 2017-2022 period it should increase from 122 Exabytes per month in 2017 to 396 Ex-
abytes per month in 2022 (+26% per year) [37]. This augmentation has several causes, but
we can highlight two of them: video traffic, as the highest contributor, and Machine to Machine
(M2M) communications, as the fastest growing category. Regarding video traffic, and mobile
data in general, two factors seem to drive the data consumption: first, devices are more and
more high end, hosting an increasing number of data consuming services. Second, the more
bandwidth is made available by the network, the more applications tend to consume it, propos-
ing services with higher data consumption such as videos with higher definition. The impact
of these factors can be measured by the average amount of data exchanged during a single
connection: a 4G connection involves three times more data than a 3G one in average, and is
expected to involve three times less than a 5G one.
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Figure 2.1 – 5G usage scenarios [138]

In addition to this steady increase of traffic the network has to face the arrival of new use
cases, some of which are depicted in Figure 2.1. The particularity of those new services is to
have very strong requirements in terms of reliability, latency, broadband or amount of connec-
tions per second per area.

In order to serve those use cases, 5G will have to display performances radically above 4G
ones [11]:

— in normal conditions, the data rate should be 1000 times higher
— minimal latency should drop from 10ms to 1ms
— in spite of the multiplication of devices and the raise of performances, energy consump-

tion and costs should at least not increase, and decrease if possible
— cells should be able to accept tens of thousands of additional connections from low rate

devices due to emerging IoT

Those requirements, except for the cost and energy, are designed for extreme situations, and
corresponding use cases may require zero, one or eventually two of these capabilities, but not
all at once, as depicted Figure 2.1.

To comply with those requirements network operators cannot settle for incremental improve-
ment of 4G technologies, but rather have to rely on new solutions to radically change the way
networks are designed and operated, from the air interface [11] to the core. Two of the main
paradigm shifts envisioned to build 5G architecture are the virtualization of the resources and
the decoupling of data and control planes. Based on those two ideas came two concepts to
build future networks architectures: SDN and NFV. Based on those two frameworks, network
operators will be able to divide their physical networks into several logical ones, each of them
being specialized into one kind of services.
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2.2 SDN

In traditional networks, packet routing is handled by specialized hardware: the routers. They
work in a distributed fashion, each individual router being responsible for discovering enough
information over its neighbours to build and keep up to date its inner routing table, and route the
incoming packets accordingly. This is a fully distributed system, with a tight coupling between
control and data planes, as both are located in the same physical equipment. This architecture
has many advantages, on top of which the scalability, as any new router is responsible for itself.
But it also has drawbacks: the distribution may lead to sub optimal exploitation of the resources,
the deployment of a new service may require manual intervention on the physical equipment,
or even a replacement of the hardware, the variety of routers may lead to different protocols
supported, the manual establishment of the services is error prone, and so on.

To face these issues the SDN [46] approach gained momentum over the years. It has three
defining characteristics. First, it separates the control plane from the data plane. Second, it
consolidates the control plane, logically centralizing it into a single entity called SDN controller.
Third, it exposes abstracted network capabilities to northbound applications, hiding the com-
plexity of the network. This concept is not actually new, and the debate over a centralized
network versus a distributed one has been going on since the early days of Internet [68]. To-
day, SDN is pushed by the increasing capacity of network links, the continuous extension and
complexification of the networks, the multiplication of service requests, and the apparition of
datacenters that bring cheap and nearly infinite compute capacities across the network (pri-
marily on core locations, but gradually gaining the edge), far more abundant than routers ones.
Moreover, the incoming of 5G and the new QoS intensive services that it brings encourages an
evolution toward a more flexible, programmable way to orchestrate the network.

Authors in [46] provide a quite detailed view of the SDN architecture. However, the Open
Networking Foundation (ONF) representation [135] presented in Figure 2.2 is broader and gen-
erally preferred. It is composed of three layers. The infrastructure layer handles all data plane
operations and is composed of interconnected switches that communicate with the control layer
via a dedicated protocol. The application layer contains all the applications that may require
network services. They can express their needs through dedicated APIs. The control layer
centralizes all control plane operations. It receives applications’ requests and translates them
into rules applied in the infrastructure layer. To do so, it has to gather the topology information
from the switches, and send them the rules they have to apply to manage incoming packets.
In practice, the default behaviour of an SDN architecture can be described as follows: when
the first packet of a flow enters the network the switch has no specific rule to handle it, as a
consequence it matches the last rule of the switch, which consists in wrapping the packet into a
specific protocol and sending it to the controller. Based on its view of the network topology, and
the various policies that may apply, the controller determines a path for this packet, and issues
a set of rules to all switches on this path to actually establish it. Then, subsequent packets will
follow the path without any further interaction with the controller.

One of the major challenges of SDN, as any emerging standard, is to be able to interconnect
with legacy equipment. Authors in [99] tackle this issue. They postulate that SDN-controlled
area should interconnect with legacy area using legacy protocols. To do so they developed an
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Figure 2.2 – SDN architecture

application running on top of an Open Network Operating System (ONOS) controller able to
interpret Border Gateway Protocol (BGP) messages, and keep an updated Routing Information
Base (RIB). The controller then creates a full mesh between border switches, and incoming
packets are routed to the right direction according to the RIB.

SDN promises many advantages, some of which are common with NFV:

— vendor neutrality: the ONF advocates for the use of open standards for all interfaces
of SDN. This openness would allow new vendors to propose their products, and break
the traditional vendor dependence in operator networks. The barrier for new actors is
even lowered by the simplification of the dataplane equipment, that do not have to im-
plement complex routing protocols.

— programmability: new applications can be deployed in the network via centralized, au-
tomated mechanisms relying on SDN programs. It makes the implementation of new
services faster, and less prone to errors. Thanks to openness, SDN programs can be
written by network managers themselves: operator companies do not have to rely on
dedicated teams specialized on each brand of hardware and software. Such automa-
tion, however, must be accompanied with many validation and troubleshooting tests.
Morover, the SDN automation is also done to hide lower level heterogeneity and com-
plexity. It should however be kept in mind to avoid or understand side effects of the SDN
programs [22].

— centralization: the network view and the routing decisions are logically centralized, which
allows better use of network resources. This is especially useful for managing large
amount of bandwidth, or dealing with ultra low latency applications through optimized,
pre-provisioned routes.

— security: although the softwarization raises new threats, the centralized network view
allows faster dataplane attacks detection. Equipment failures are also easier to identify.
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— scalability: thanks to the multiplication of datacenters, centralized controllers have ac-
cess to a vast pool of resources, and can manage large networks. Moreover, centralized
management allows dynamic load balancing across the network, to relieve highly so-
licited areas, without violating SLAs.

— reduced costs: both CAPEX and OPEX can be reduced, the first thanks to the vendor
neutrality that fosters competition among vendors, and the second thanks to simplified
switches and eased management.

From an implementation point of view, SDN landscape has first been dominated by open
software and protocols coming from academia or industry research groups. Regarding carrier
grade controllers we can cite OpenDaylight (ODL) [104] and ONOS [118]. ODL was initially
used for concept demonstration purposes. However, backed by a vast community of develop-
ers and industry supports, it reached production-ready state. ONOS, on the other hand, was
designed from the beginning for industrial use. It is called “Operating System” because, just
as a computer OS, it has a build in finite resource management, isolation between users, ca-
pacity to abstract complex resources from the user and security. Back in the time of early SDN
controllers all those features were usually optional. Moreover, ONOS is able to manage large
scale networks thanks to its distributed core mechanism (see Annex 7.2 for more details). To-
day, although many controllers emerged, ODL and ONOS are still predominant among SDN
users [148], and many other controllers are based on them.

Although SDN implies a centralization of the control plane, it is important to note that this
centralization is logical, and not necessarily physical. Early controllers, mainly designed for test
and demonstration purposes, were not affected by this distinction as they were composed of
a single piece of software, running on a single machine, and then were both physically and
logically centralized. Carrier grade controllers cannot afford such simplicity, as physical cen-
tralization induces several drawbacks in a carrier-grade applications context, such as a lack of
responsiveness, limited scalability and low reliability. To overcome those challenges the control
has to be physically distributed, while remaining logically centralized, i.e., the controller may
be split into several physical locations while being seen as a single entity by both its clients
and its resources. Such distribution implies to maintain the consistency, availability, and parti-
tion tolerance of the distributed controller. To address those challenges two main architectures
are envisioned: flat and hierarchical. In flat architectures all separated controller instances are
identical and have the same level of responsibility. The synchronisation process is carried out
in a peer to peer fashion. Hierarchical architectures, on the other hand, propose that higher
level controllers manage the synchronisation for lower layer ones. SDN control distribution in-
centives, challenges, and proposed solutions are described in greater details in Annex 7.2.

SDN controllers require two interfaces, northbound and southbound, and one additional
optional east-west interface. The northbound interface connects the controller to its clients,
allowing them to request network services via dedicated Application Programming Interfaces
(APIs). No standardization exists, but two trends emerge. First, the direct communication with
the controller using for example REST APIs. This is the solution chosen by ODL. Second, using
an abstraction layer to allow intend-based programming of the network. This solution brings the
modelling language closer to application natural language, while solutions like REST stay very
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close to network specific terminologies. NeMo project 1, supported by Huawei, explores this
strategy. The east-west interface is used by the controller to communicate with its peers. It is
not standardized neither. The implementation of this interface is required in case of distribution
or replication of the control plane. This aspect will be detailed Section 7.2. The southbound
interface connects the controller with its switches. One important goal of SDN is to achieve
vendor independence. This implies that any controller from any vendor should be able to oper-
ate with any switch of any other vendor. To do so controllers and switches must communicate
via an open protocol, and the southbound interface must be standardized.

Although alternatives exist, the OpenFlow [103] protocol is the most popular solution to
connect switches with controllers. It was first intended for academic purposes, hence, has many
performance shortcomings, such as static header field, which size may become a problem as
the number of fields grows [21]. We will explain this protocol in greater details in Section 3.3.1.2.
In the infrastructure layer, the most famous switch implementing OpenFlow is the Open vSwitch
(OVS) [123]. It suits well to SDN philosophy as it is open, programmable and multi-platform,
thus, free from any vendor specific hardware. Through its various versions OVS benefited from
many improvements that increased its performances. Internal tests realized in b<>com showed
that authors’ claim about OVS high performances was justified.

2.3 NFV

Among other improvements, SDN allows an automated, programmable way to handle the
connectivity across the network. However, in most of the cases a network service is not a
simple connectivity service, but involves also network functions. The multiple benefits expected
from SDN cannot be fully exploited unless the network functions management implements
equivalent advantages. The NFV concept has been developed to fulfil this objective.

2.3.1 Concept

Today’s networks heavily rely on multiple middleboxes, such as firewalls, proxies or load
balancers, in order to provide a wide range of services [26]. Those devices are mainly hard-
ware black boxes provided by several vendors, highly specialized and optimized, disseminated
across the network. The importance of those elements is reflected in their abundance: in an
enterprise network there are present in the same proportion as routers [139]. Despite this cen-
tral role, middleboxes turn out to be difficult to upgrade, costly to install, and hard to manage.
Those drawbacks mainly come from the fact that they consist in proprietary hardware. Installing
and upgrading a middlebox then is very costly, since it has to be physically plugged into the net-
work and manually configured. The maintenance also requires both manpower and equipment
investment. Moreover, physical specialized boxes cannot be quickly scaled up/down, as a con-
sequence most of those functions are over-provisioned, and still can be overloaded when the
traffic reaches unexpected peaks.

To face those problems some approaches have been proposed in the past years, such as

1. NeMo project, http://www.nemo-project.net/
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in [137] where authors propose to consolidate pools of middleboxes by decoupling control and
data planes. The control centralization authorizes partial de-specialization and load balancing
to face peak activities. Although this solution acknowledges and addresses middleboxes limita-
tions by introducing additional flexibility, it is mainly an adaptation of the existing system and it
does not allow to reach all the capabilities that are expected for 5G networks.

In order to address those issues, a group of industries launched a call for action around a
new paradigm in 2012: the NFV [114]. This concept consists in turning the traditional physical
middelboxes running over specialized hardware, also referred to as Physical Network Functions
(PNFs), into software VNFs running over generic computing devices located either in large
central servers (public cloud), edge servers, or even user premises. The NFV call for action has
attracted a lot of attention from the research community which analyses the benefits promised
by NFV, and identifies the challenges that remain to be solved [158] [109] [114].

A 2016 report on Network Virtualization technologies issued by SDX Central [148] identifies
the following points as the main advantages of NFV, ranked by importance according to a
survey realized among users and constructors:

— flexibility: this advantage has multiple aspects. First, NFV enables multi-tenancy by al-
lowing several parties to share VNFs. Second, networks can be reconfigured, modified
without actually changing any hardware. In the same spirit, new services or equipment
updates can be realized without any physical intervention, and with almost no delay. This
strongly reduces the time to market for new offers. In addition, a wise management of
the resources may also lead to energy savings, ultimately resulting in lower costs.

— Operational Expense (OPEX) cost savings: this advantage mainly results from a highly
simplified management relying on centralized orchestration systems that hides complex-
ity and automates service deployments (see Section 2.3.3).

— scalability: resources dedicated to a task can be adapted depending on the workload
through automated scaling processes (see Section 2.3.5).

— Capital Expense (CAPEX) cost savings: NFV advocates for breaking vendor depen-
dence and promotes openness by using standardized software over generic servers
instead of proprietary software on proprietary hardware. This strategy is likely to open
up the concurrence between VNF providers and lower the purchase costs. In the mean-
time, using multi-purpose servers that can survive NFV updates will be cheaper than
running specialized, costly hardware that may soon be outdated.

However, being a new technology NFV still has many challenges to overcome:

— compensate the loss of performances due to the migration from specialized to multi-
purpose hardware

— maintain a compatibility with traditional PNFs
— enable the management system to efficiently discover available resources, and allocate

these resources optimally
— develop standards to foster the use of open interfaces and software
— solve any security, privacy and isolation issues that may arise from softwarization and

multi-tenancy
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— present a unified and normalized license model, adapted to NFV use cases [55]

In this section we analyse in details some major aspects of NFV, starting with the key
element NFV is meant to provide: Network Services.

2.3.2 Network service

Network Services (NS) represent services that the network operator is supposed to provide
to its customer, either using NFV or any traditional system. In NFV those services have a
specific structure and, although the functions that compose them are virtualized, they have to
be embedded at some point.

2.3.2.1 Network service structure

The exact structure of Network Services may vary depending on the source. In this doc-
ument we base our works and descriptions on the structure proposed by European Telecom-
munications Standards Institute (ETSI), which is one of the most detailed to date. The general
structure of a NS is described in [66]

Traditional NSs are made of sets of PNFs connected together. Similarly, in NFV a NS is
decomposed into a set of VNFs connected together with Virtual Links (VLs). This decomposi-
tion is referred to as Virtual Network Function Forwarding Graph (VNFFG). Each VNF provides
the services corresponding to a single Network Function (NF). A representation of a Network
Service decomposition is depicted in Figure 2.3. While the VNF represents the smallest compo-
nent from a network point of view, it is further divided into several sub-components called Virtual
Network Function Components (VNFCs), which are the smallest components from a resource
point of view. Each VNFC runs over one single Virtual Deployment Unit (VDU), and each VDU
can host at most one VNFC [64]. A VDU is an object composed of a set of resources required to
run software, such as storage and compute. Just as VNFs are chained to form an NS, VNFCs
are chained to form a VNF.

Further VNFCs implementation details are out of ETSI’s scope, however we may explore
some of them to better understand the different VDU offers that can be encountered. There are
many different ways to implement software, but some specific designs emerged over time, to
avoid the drawbacks of a monolithic application. We can cite for example Model View Controller
or Multi-Tier patterns. More recently, the microservices pattern [48] raised a lot of interest in
the development community in general, and in b<>com in particular. It consists in dividing an
application into a set of microservices, each one focused on a specific task, with a specific
context, oblivious of the internal details of the other microservices. They communicate together
via APIs agnostic from the programming language, such as Representational State Transfer
(REST). Microservices allow any application to be highly available, as they can be replicated,
and easy to update, as each one can be modified independently. In this pattern we can ei-
ther consider VNFCs as microservices, if the structure of the VNF is simple, or we can divide
the VNFCs themselves into microservices, if the structure is more complex.
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Figure 2.3 – Representation of a network service decomposition

2.3.2.2 Network service embedding

VNFCs must then be installed on VDUs. Although VDUs are often represented as a sim-
ple set of raw resources, they must also implement a system to allow the entity responsible
for VNFC installation and management to remotely access and use those resources: an Op-
erating System (OS). There are three main ways considered by ETSI to provide such environ-
ments [65], that correspond to current virtualization technologies. The first option is to install
directly the OS on bare metal. Note that this strategy is sometimes omitted in ETSI architec-
ture representations, as depicted in Figure 2.5, as NFV is mostly envisioned to run on virtual
environments. However this first option offers advantages in terms of application runtime. The
second option consists in using hypervisors to create Virtual Machines (VMs) from underlying
resources, each VM coming with its own OS. Finally, the third option consists in using contain-
ers. Containers are built from underlying resources using a Container Infrastructure Service
(CIS) that contains a single OS, shared by all the containers.

Some major architecture options are presented in Figure 2.4. Note that the bare metal
option is not represented, as it is very close to the VM option, minus the hypervisor. Neither
are the VNFs encompassing the VNFCs, for clarity reasons. Figures 2.4a and 2.4b represent
respectively VM and container options, with no particular details on the internal implementation
of the VNFCs. In those options the VDUs are respectively the VMs and the container.

Figures 2.4c and 2.4d represent the same options, but with microservices implemented.
On Figure 2.4d it may seem that the VNFC runs over multiple VDUs. Actually this architecture
is inspired by a major container-based virtualization solution called Kubernetes. Kubernetes
does not deliver containers directly: it wraps them into pods. The pod is the smallest entity that
can be reserved with dedicated resources in Kubernetes, hence it represents here our VDU.
The pod may then contain one or several containers. This solution is particularly adapted to
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(a) VM based (b) Container based

(c) VM based with microservices

(d) Container based with microservices

Figure 2.4 – Some envisioned architectures for NFV (derived from [65])

microservices, as containers in the same pod are tightly related to each other. For example,
they can communicate over a network internal to the pod. Regarding VMs, such process does
not exist, so a VNFC cannot be split over multiple VMs. A solution to implement microservices
in this case consists in installing a system of containers within the VM itself, as depicted in
Figure 2.4c. This option is not possible for containers, as one container cannot host other
containers (or it is at least highly discouraged).

Note that those different architectures can coexist on the same datacenter. Moreover, some
alternatives are not represented here. For example, containers in Figure 2.4b can themselves
be hosted in VMs.

In order to be deployed and managed in a flexible and automated way, Network Services
and VNFs require a dedicated management and orchestration framework, which is a core com-
ponent of the NFV paradigm. It is responsible for many advantages advertised by NFV, such
as flexibility, automation or scaling.
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Figure 2.5 – ETSI MANO framework [66]

2.3.3 Management and orchestration

The orchestration and management of VNFs motivated some early research works,
such as [39] where authors propose a framework dedicated to the placement of
virtual networks. However a consensus emerged toward ETSI framework proposition,
namely ETSI NFV MANO [66], presented Figure 2.5.

The ETSI architecture is composed of three main elements: the Network Functions Virtual-
isation Infrastructure (NFVI), the Operations Support System (OSS)/Business Support System
(BSS) and NFV MANO itself. The OSS/BSS issue NF creation requests to MANO, formal-
ized in an Network Service Descriptor (NSD) composed of Virtual Network Function Descrip-
tors (VNFDs), Virtual Network Function Forwarding Graph Descriptors (VNFFGDs) and details
about the lifecycle management such as monitoring parameters or scaling policy. Combined
together VNFDs and VNFFGDs form VNF graphs (themselves composed of VNFC graphs),
and contain all necessary information regarding QoS requirements of the VNFs and the links
between them. The NFVI, on the other side, represents the pool of resources on which VNF
graphs will be installed. The physical, hardware resources may be abstracted through a virtu-
alization layer - whose main component is usually an hypervisor - and presented to MANO.
The role of MANO is to use NFVI resources to fulfill OSS/BSS NS requests, and manage the
lifecycle of those NSs, which includes creation, destruction, monitoring, and scaling.

The MANO framework is composed of three entities: the Network Functions Virtualisation
Orchestrator (NFVO), the Virtual Network Function Managers (VNFMs) and the Virtualized In-
frastructure Managers (VIMs). Upon reception of an NS request from the OSS/BSS, the NFVO
has to decide where to place and how to connect the different VNFCs using the resources
presented by the different VIMs. Regarding this placement problem, the literature (see Sec-
tion 4.1) implicitly considers that all the VNFCs that compose a VNF are automatically placed
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on the same VIM, so the VNFC placement problem is turned into a VNF placement problem.
From an algorithmic point of view it is equivalent. Once the placement is decided the NFVO
solicits the VNFMs to create the corresponding VNFs. To do so it provides them the necessary
resources that have been obtained from the VIM. VNFMs are then responsible for the lifecy-
cle management of their respective VNFs. When a VNFM needs to access VIM resources,
for VNF creation or any other lifecycle management action, it either accesses it directly via
the VNFM-VIM interface (direct mode) or indirectly via the NFVO (indirect mode) [63]. In both
cases the VNFM first has to obtain the authorization from the NFVO to access those resources
through a granting process. VIMs manage underlying NFVIs, and provide the NFVO with up-
dated vision of their resources. They consist either in network capacities (virtual links) or node
capacities. When a VIM only manages network resources it is actually called a Wide Area Net-
work (WAN) Infrastructure Manager (WIM) and can then be implemented as an SDN controller
compliant with VIM-NFVO and VIM-VNFM interfaces as defined by MANO.

According to ETSI [61] [63], the NFVO obtains resources (VDUs) from the VIM through
reservation. A reservation request issued by the NFVO contains either raw resources, VMs,
or both. In addition it defines a period of time during which the reservation is active. If the re-
sources are available the VIM responds with a reservation ID. It is this ID that the NFVO may
grant to the VNFM when it requests resources during the life cycle management of the VNF,
more precisely during the installation and scaling steps. A reservation guarantees the avail-
ability of the resource. However, reservations may also be done on the fly, in reaction to an NS
installation request. In this case the NFVO is not certain to obtain resources in time. To manage
the the resource granting process MANO uses the permitted allowance mechanism. Permitted
allowance is an internal NFVO process. Following the network operator policy, the NFVO may
define for any resource-consuming entity (depending on the granularity: NS, VNF, consumer,
group of consumer...) a maximum amount of resource that this entity can consume. The current
maximal consumption is deduced from the resources granted in the past. Whenever a resource
granting request would result in a violation of the permitted allowance, the NFVO rejects it.

From an implementation point of view, ETSI MANO has motivated several projects, each
one using a different combination of software to implement the three entities [108].

2.3.4 Mono-tenancy, multi-tenancy, and federation

The different blocks that compose ETSI MANO framework may not all be owned by the
same administrative entity. For example, the NFVO may be controlled by a network operator,
along with a set of VIMs that manage this operator’s network, but the NFVO may also be
connected to VIMs of other operators, willing to sell part of their capacity, or public clouds
operators, acting as VIMs and selling compute and storage resources. In this document, we
refer to an entity owning one or several blocks of the MANO system as a tenant. We call the
architecture mono-tenant when the NFVO and the VIMs are operated by the same operator,
and multi-tenant when the NFVO solicits VIMs belonging to other operators to implement a part
or all of the NSs on their infrastructure.

The multi-tenancy is a specific case of a broader concept: the federation. MANO federation
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Figure 2.6 – MANO federations

has been studied by many projects, such as 5G-TRANSFORMER 2 or 5G-EXCHANGE 3, in
which b<>com was involved. We can distinguish two possibilities of federation, possibly occur-
ring at the same time [58]:

— NFVO-NFVO: the NFVO turns the NS into a composite NS, divided into nested NSs.
Each nested NS may then be deployed either by the NFVO itself, or delegated to an-
other NFVO.

— NFVO-VIM: the NFVO requests resources of VIMs belonging to other tenants to im-
plement its NS. ETSI defined two functions to differentiate two cases: Single Logical
Point Of Contact (SLPOC) and Multiple Logical Points Of Contact (MLPOC).The former
refers to the case where multiple VIMs are aggregated to offer a single resource view to
the NFVO. The latter refers to the case where each VIM is connected independently to
the NFVO.

In this thesis we focus on the NFVO-VIM federation, or multi-tenancy, where VIMs
and NFVO do not necessarily belong to the same tenant. Such situation generates specific
problematic that will be developed in Sections 4 and 5. The federation possibilities are repre-
sented together Figure 2.6. The MLPOC function is not represented as it is the default case
where multiple VIMs are connected to the NFVO. Additional federations can be formed at
OSS/BSS level. This aspect will be detailed in Section 2.4.

2.3.5 Scaling

Among all the possibilities offered by NFV automated scaling is very promising in terms of
peak traffic handling and resource savings. The general concept consists in identifying Key Per-
formance Indicators (KPIs) in the different VNFs composing an NS. VNFMs are then charged
with monitoring those KPIs and, when a given threshold is crossed, they can perform a scaling
of the VNFs. They can inform the NFVO. It can then decide to perform scaling in order to adapt
the reserved resources to the workload [3]. The scaling may be horizontal (scale out / scale in)

2. 5g-transformer, http://5g-transformer.eu/
3. 5GEx, https://5g-ppp.eu/5gex/
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or vertical (scale up / scale down).
When the decision is made the NFVO reserves resources if it is a scale out, and dele-

gates the scaling itself to the VNFM. Freed resources can be reallocated for other purposes,
or servers can be shut down to save energy. This is a major advantage compared to tradi-
tional physical middleboxes, that have to be sized to handle peak traffic and cannot serve other
purposes, leaving resources idle most of the time.

As explained in Section 2.3.1, ETSI specifications stipulate that NSs are composed of VNFs
chained together via VLs, themselves composed of VNFCs also chained together via VLs. VN-
FCs are hosted on VDUs that represent physical resources. Consequently, the capacity of
an NS ultimately depends on the VDUs its components are instantiated on. Based on this idea,
the scaling system acts at two levels: NSs and VNFs.

At NS level, each VNFD presents several profiles, each one allowing a specific minimum
and maximum number of VNF instances to be created. A given set of exact number of instances
for each profile is called an instantiation level. The NFVO may collect KPI measurement from
the VNFMs, and potentially from other sources, to monitor the performances and the resource
consumption of the NS. When the NFVO considers that the current instantiation level is no
longer optimal to support the Network Service, it can move to another instantiation level through
scaling. These automatic scaling procedures are driven by the auto-scaling rules provided in
the NSD. Note that the KPI analysis and scaling decision may be outsourced to a specialized
component connected to the NFVO, as proposed in [3]. Once the scaling is decided, the scaling
enforcement of each individual VNF is delegated to the corresponding VNFM.

At VNF level the pattern is similar. Within a VNFD each VNFC presents a list of of VDUs pro-
files. A VDU profile is defined by the resource it provides, namely compute resources defined by
the Virtual Compute Descriptor (VCD) and the storage resources defined by the Virtual Storage
Descriptor (VSD). For each profile the maximum and minimum number of VDU instances that
can be used simultaneously is defined, and a combination of specific number of instances for
each profile of VDU forms an instantiation level for the VNF. At runtime, the VNFM may decide
to move from the current instantiation level to another one, based on its auto scale parameter
and the KPI measurements. Although the VNFM does not require the assistance of the NFVO
to perform this scaling, it may optionally request its services to reserve/release the resources
needed for/freed by the scaling process. The VNFM should also notify the NFVO of scaling
events. Typically, when the VNFM reaches the maximum instantiation level for a given VNF
(i.e., the one offering the largest amount of resources), the NFVO may decide to start a scaling
procedure at NS level. The scaling system at VNF level is summarized Figure 2.7 using the
example of a virtual Mobility Management Entity (vMME) scaling possibilities. The VNF here is
composed of a unique load balancer that distributes the workload over several workers backed
by one or two databases. Note that the scaling also includes the possibility to scale the VLs
using various flavours corresponding to different QoS levels, such as bandwidth capacities.

2.3.6 SDN and NFV

While SDN virtualizes network resources NFV virtualizes the node ones. Although the two
concepts are separated and can work without each other they share many similarities both
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Figure 2.7 – VNF scaling possibilities example
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Figure 2.8 – Architectural framework combining SDN and NFV

in terms of objective and characteristics. Both promote centralized, programmable, automated
control plane and open, virtualized, adaptable data plane. Without NFV, SDN enhances net-
work operators routing management, but paths have to go through the fixed locations of the
requested PNFs to complete the network service. Without SDN, NFV can deploy VNFs on de-
mand wherever resources are available and manage automatically their whole life cycles, but
path establishments would remain subject to routers own decisions.

As a consequence, merging SDN and NFV into a single architecture seems natural to fully
benefit from their capacities. The most common design patterns to integrate them both within an
architectural framework have been studied by ETSI and summarized in [60]. They are based
on NFV MANO framework in which SDN is incorporated. The question is then to identify in
which of the NFV MANO components the three SDN layers are located (plus an orchestration
component which gather monitoring information from either the controller or the application
layers). ETSI makes an exhaustive list of the possibilities, however many of them are highly
unlikely in practice, either requiring specific prerequisites or relying on interfaces that do not
exist in the NFV MANO framework. In Figure 2.8 we represent one of the most likely organiza-
tion of an SDN-NFV framework that fully takes advantage of the two systems without specific
modifications.

In this framework SDN controller is a tool used by the VIM to control parts of the NFVI:
the physical switches (network hardware), the virtual switches installed on computers (com-
pute hardware) and the switches of virtual networks, seen as physical ones. Several distinct
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controllers can be part of the same VIM, for example to segment the management of different
technologies within the resource pool managed by the VIM. The metrics provided by the con-
troller or the application are used both internally by the VIM and externally by the NFVO, which
obtains them via its legacy interface with the VIM. In the remaining of this thesis we will use
this framework as a reference when merging SDN and NFV concepts. From an implementation
point of view, this framework is also the one that Telefonica is planning to use in its SDN-NFV
based solution UNICA [41].

2.4 Network slicing

5G is expected to bring new use cases with strong QoS needs. The requirements can vary
a lot depending on the use case, possibly involving very low latency, very high throughput or
massive amount of connections. To face this diversity the traditional monolithic network is ill-
adapted. Resource management, already challenging today, will become unbearable with tradi-
tional QoS management systems, especially with the expected evolution of the traffic load [37].
SDN and NFV, through their abstraction abilities, present an unique opportunity for network
operators to abstract their unique, monolithic networks into several virtual networks, each one
specialized into one category of services and isolated from the others. This concept is called
network slicing, and virtual networks are referred to as slices. A slice may be installed over
various administrative or technical domains, but presents a unified end to end service to its
customer.

Network slicing has been subject to various attempts of normalization, and the definition
may vary depending on the source. In 2017, ETSI issued a report [56] listing major contributions
in this domain. Although details may vary, all propositions are very similar. In this document
we describe and use the 3GPP proposal [1]. This approach is well documented, has already
covered many technical aspects of the slicing and fits well within ETSI NFV MANO architectural
framework.

A network slice is based on one or several network slice subnets. While the network slice
offers end to end network services, such as a full mobile network, slice subnets may provide
more specialized services, such as a RAN, a transport network or an Evolved Packet Core
(EPC). The slice selects the slice subnets that suits its needs. For example, a slice dedicated
to IoT use cases will probably be built over slice subnets offering LoRa or Sigfox access. Slice
subnets are nested: one subnet may be the aggregation of several others. On top of the slices,
communication services exploit slice abilities to deliver services to final user, such as a given
amount of VoIP connections over a given area. An overview of the slicing system is presented
in Figure 2.9 (for sake of clarity slice subnet nesting is not represented). To summarize, from
the client point of view a slice represents a high level virtual network able to deliver a set of
end to end services, while from the network point of view slicing involves a resource isolation
challenge.

To gather network services, slice subnets have to rely on some network orchestration frame-
work, typically the NFV MANO framework enhanced with SDN capabilities. Such combination
is, for example, proposed in [121]. Figure 2.10 represents 3GPP slice management system
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Figure 2.9 – Example of slicing for mobile network VoIP, data and video services
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Figure 2.10 – Network slice management in an NFV framework [56]

interfaced with NFV MANO. Slicing does not imply any major modification to the MANO frame-
work, however it emphasizes the need for a strong isolation of the NSs in terms of performance,
resiliency, security, privacy, and management.

The main challenges that network slicing is confronted with today are isolation and re-
sponsiveness [121]. Those objectives are challenged respectively by the sharing of a common
underlying infrastructure and the multiplication of orchestration and abstraction levels. Regard-
ing the first point, our first contribution presented in Chapter 3 focuses on traffic performance
isolation. Regarding the second point, efficient algorithms for resource allocation are part of the
solution. A proposition on this topic is made in Chapter 4.

In addition to those challenges some questions remain open regarding the exact character-
istics of the slices. For example, although it is certain that the core should be sliced, it is still
not fully clear whether the slice should go down to the User Equipment (UE) or if it should be
interrupted at some point in the Radio Access Network (RAN), considering that full slicing will
have a negative impact on the rare radio resources and the stringent timings that characterize
this part of the network [32].
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Figure 2.11 – Studied use case

2.5 Use case

Our work follows one main thread: the establishment of an end to end network service
between two entities. It could be, for example, two servers for a data transfer, or one event loca-
tion streaming a video to a remote server for further usage. The main idea is that the network
operator’s client should be able, through a dedicated API, to request the desired network ser-
vice, and this service should then be handled automatically and rapidly delivered. This request
also includes a Service Level Agreement (SLA) that specifies the expected QoS or Quality of
Experience (QoE). This process is illustrated in Figure 2.11.

In this thesis, we suppose that the client expresses its needs with a very low level language,
defining, for example, the required latency between two points, the minimal amount of required
bandwidth or the quantity of CPUs necessary to run a VNF. As we evoked earlier, this might not
be the case: the client may formalize its requests with a higher language involving, for example,
a guaranteed number of connections within a given geographical area, an average availability
of the service or QoE metrics. In this case, we suppose that the network operator possesses
dedicated tools to convert those high level requests into low level ones.

In the remaining of the thesis, we will first focus on the design of a customized SDN ar-
chitecture that delegates local policy enforcement to the switch in order to establish a simple
connectivity service with guaranteed QoS that does not require constant monitoring from the
controller (Chapter 3). Then, we will move to the realization of a VNF chain placement algorithm
in order to enrich this simple service with network functions to turn it into a full network service.
This algorithm will focus on optimizing the placement on edge resource, scarce but well-suited
to host latency-constrained services. A heuristic will be introduced to tackle the placement prob-
lem over multiple domains (Chapter 4). Having decided where to place the network functions
we will focus on the process of resource acquisition run by the network operator to be able to
actually install the network services into the network. The core of this problem resides in the
design of an algorithm able to satisfy the resource needs at the lowest cost, based on public
and private cloud commercial offers (Chapter 5).
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CHAPTER 3

QOS ENFORCEMENT MECHANISM IN AN

SDN ARCHITECTURE

In this first contribution we explore the bandwidth reservation scenario raised by network
service providers such as Telediffusion de France (TDF). Clients request a given amount of
bandwidth for a restricted period of time to connect two locations. This situation may occur
when a client wants to organize a punctual massive data transfer between two data centers,
or when a client such as a stadium, a theatre or any actor of the events industry requires a
temporary connection between its location and a data center. As implemented by TDF, clients
must precise a Committed Information Rate (CIR), which will be their guaranteed amount of
available bandwidth at any time (in the rest of the Chapter we use CIR or Guaranteed Bit Rate
(GBR) without distinction). They also indicate a Peak Information Rate (PIR) that represents
the maximum bandwidth they may reach (typically the size of the physical link), but which may
not be guaranteed any time. They can also express latency constraints. The establishment of
this simple connectivity service is our first step toward a full network service. It is represented
Figure 3.1. However, guaranteeing a constant QoS with an SDN centralized control represents
a challenge. Either the enforcement has to be loose, leading to potential QoS violations, or the
controller must constantly pool traffic metrics to monitor resource consumption, and apply cor-
rections if necessary, generating an important traffic load in the control channel and additional
computations at controller’s level.

To provide such a service, we introduce our solution: the SDN Traffic Engineering Manage-
ment (STEM) module. In an SDN network, this module provides on the fly bandwidth allocation
for users. The process is automated and does not require an operator’s direct intervention.
Network resources are managed by a Path Computation Element (PCE) located in the con-
trol plane. The PCE memorizes allocated resources, and does not have to poll the network
equipment to gather information. To enforce the bandwidth allocation policy, STEM uses a fixed
number of queues and the meter tool. IP packet headers are not modified. The rest of the chap-
ter is organized as follows. Section 3.1 presents the related works on QoS solutions in SDN
networks. Section 3.2 details our solution based on Multi-protocol Label Switching (MPLS). Its
implementation and its validation through experimentation are reported in Section 3.3. Finally,
Section 3.4 draws a general conclusion.
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Figure 3.1 – Establishment of a connectivity service

3.1 Existing QoS enforcement methods

New 5G standards such as high peak data rate, high user experienced data rate or very
low latency will impose a fine and dynamic control of QoS parameters (bandwidth, latency, loss
or jitter). Legacy networks rely on protocols such as DiffServ to apply QoS management in
the network. However, those protocols are either fine grained but require complex implemen-
tations, or simple to deploy but coarse grained, and are not adapted to the new requirements.
Consequently, industry and research started to focus on SDN to handle this problem [85].

The QoS enforcement can be divided into three actions: a request reception (the network
service indicates the QoS parameters required by the new flow), the path selection (the control
layer determines the most suitable path for the flow) and the path enforcement (the switches or
routers are configured to handle packets with respect to their priority and latency constraints).

The selection of a path satisfying QoS constraints forces the control plane to maintain an
accurate representation of the network available resources. This is true both to place a new
flow into the network, but also to check that existing flows still receive the QoS they need. In-
deed, upon traffic changes (e.g., the apparition of concurrent flows), the respect of the QoS
guarantees might result in flow re-routing to take into account the variation of the available
resources, as detailed in [15]. The proposed approaches are either reactive or proactive. Re-
active approaches are based on monitoring to adapt the flow distribution to QoS shortage
detection. In [38], authors consider that QoS packets must not be dropped at all, and force net-
work equipment to send a warning when such event occurs: this is an approach based on event
triggering, which avoids periodic monitoring. This approach is efficient, but we have to wait to
loose a packet to react, although the QoS is potentially already violated and will continue to
be so until the controller finds a new path. To reduce this duration, [160] uses path diversity:
several paths are pre-calculated for a given flow, so that it can quickly switch from one to an-
other when QoS is no longer respected. However this strategy leads either to over-provisioning
or to non guaranteed QoS. Proactive approaches can be implemented by resource reserva-
tion. Casellas et al. [29] use this technique to allocate optical wavelengths in optical networks,
which cannot be done using statistics. This method can be extended to other QoS parameters.
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Although the QoS is always respected, provided that the affected wavelengths deliver enough
bandwidth, the unused reserved resources are lost.

Reactive solutions are highly volatile since traffic may vary a lot and provoke constant rerout-
ing. To protect path with guaranteed QoS several solutions propose to use queuing mecha-
nisms to prioritize traffic. Queues allow to shape and prioritize traffic, to share the bandwidth
and control the latency. The most straightforward option is to directly map priority flows to a
high priority queue, and best effort traffic to a lower priority one [50] [136] [154]. [7] refines the
process by creating four queues: one for best effort and three for QoS flows, with different levels
of priority depending on the status of the flow. Priority queues may be dimensioned to match
the quantity of traffic announced by the priority flows, or left un-dimensioned. However, if one
flow emits more traffic either the others in the queue or all flows with equal or lower priority are
left with no bandwidth, depending whether the queue is dimensioned or not.

To adapt to flow workloads and avoid unexpected congestion, many solutions rely on net-
work statistic gathering techniques to build, and periodically update, their knowledge on both
the current network traffic and consumed resources [89] [149] [25] [159]. However, the con-
stant fluctuation of the traffic load implies frequent updates of the statistics. First, this leads
to an important augmentation of control traffic. Second, it generates a heavy workload for the
controller and requires a lot of computational power. Such aspects are not taken into account,
as most of the experiments in the literature consider only small topologies, with reduced num-
ber of flows. However, in [43] the authors point out that, in a production network, an excess of
statistic polling could dramatically overload the control plane (both switch CPU and controller),
and increase the response time of the switch. Third, the reaction time of the system does not
guarantee that QoS contracts will be respected anytime, especially between two polls (in par-
ticular if the controller is overloaded). To mitigate this issue [102] implements a threshold in the
switch. When a link occupancy exceeds this threshold an alarm is sent to the controller which
in reaction adapts some of the routes. Although it efficiently solves the statistic pooling problem
the controller may still have to recompute large numbers of routes and the solution may still
suffer either over-provisioning if the threshold is too low or QoS violations if it is too high.

Presented solutions use pre-defined queues: they are pushed once and for all in the net-
work equipment, and are not modified afterwards. This reduces the flexibility of the QoS offer,
since the number of queues is limited. To solve this, some solutions dynamically create queues
depending on the needs [73] [149]. Although it enables to control the QoS with a very fine grain,
it includes two major drawbacks. First, in real switches the number of available queues is lim-
ited. For instance, the PICA8 P-3295 1 has only 8 priority queues per port, which is not enough
to handle all the flows going through a port of a production network equipment. Second, the
queue creation mechanism is associated to switch configuration, not to flow rules configuration.
For this reason the timescales to create a flow rule and a queue are different, as specified for
example in the OpenFlow (OF) documentation [116]. Adding queue creation to flow establish-
ment time will considerably slow down the process.

Monitoring traffic and delays are induced by the SDN concept itself, and the separation of
the control and data plane. To address these issues authors in [161] propose DIFANE. They

1. http://www.pica8.com/documents/ pica8-datasheet-48x1gbe-p3290-p3295-v1.9.pdf
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design an algorithm to choose in the data plane authoritative switches to store pre-computed
rules. Those rules are updated by the controller when a new host enters or exits the network.
Regular switches query authoritative ones when they need information to handle a flow. Al-
though this approach is very efficient to handle micro flows, it partially breaks the SDN concept
as the management of the network is not fully handled by the controller anymore: although
the rules are pre-computed at control plane level the controller does not know which rule will
be used or not, hence, the resource consumption is not regulated. To mitigate this problem
DEVOFLOW [43] proposes an intermediate approach: the data plane is responsible for the
management of small flows, that have limited impact on the resource consumption, while larger
flows (also called elephant flows) are managed by the controller. Statistics are aggregated to
limit monitoring traffic. Although the impact is mitigated, this solution still implies that the con-
troller abandons part of its authority over the data plane.

To bring flexibility without having to create a lot of queues and to reduce monitoring traffic
without giving up the control over the network [93] proposes a solution based on the meter tool.
A meter is a switch element that can measure and control the rate of packets 2. For each flow,
one meter is placed in the entry point of the network. The meter counts the IP packets, and
alters the Differentiated Service Code Point (DSCP) field in their IP header. The new DSCP
can take 3 values: a priority value (if the flow respects its allocated bandwidth), a non-priority
value (if the flow exceeds its allocated bandwidth), or a default value (if the flow did not require
any specific bandwidth, e.g., Best Effort flows). The main drawback is that the original DSCP
value is lost during the transfer, which may impact the treatment of the packet after it exits the
network.

We propose a solution to guarantee QoS anytime and provide bandwidth allocation across
an SDN network involving the cooperation of the control plane with a PCE to identify suitable
paths and reserving the resources in the data plane. To address scalability issues, we use a
predefined number of queues, and avoid the constant polling required by statistics gathering
thanks to the memorization of allocated resources. Flexibility is provided by traffic classification
using the meter tool, as in [93]. In order to preserve all the fields of the transported IP packet,
the QoS information will be stored in a MPLS header, not in the IP header itself. This solution
effectively moves a local enforcement of a global policy into a local element, the switch, allowing
the controller to save its resource for the management of global policies.

3.2 Delegation of the local policy enforcement to the switch

We aim at enforcing QoS policies with the following objectives. The northbound application
specifies the constraints and bandwidth value it requests. QoS must be guaranteed anytime.
Network resources should be fully exploited, reducing wasted bandwidth to the minimum. The
control plane must not be flooded by information. Queues are not dynamically created: they are
a feature of the equipment connected to the network. Their number depends on the precision
requested by the QoS policy and is limited by the equipment capabilities.

2. https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-
spec-v1.3.1.pdf
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To meet these objectives the solution must address resource management and packet han-
dling. We propose the architecture depicted in Figure 3.2. It mostly impacts the control plane
and the data plane denoted as the infrastructure layer.

Figure 3.2 – Architecture overview

In the application layer, a northbound application emits tunnel creation requests. These
requests include all the necessary information to identify a flow, typically the five-tuple given by
the source IP address, the destination IP address, the source port, the destination port, and
the upper layer protocol. However, other information (e.g., the DSCP, the Ethernet address
or Virtual Local Area Network (VLAN) identifiers) can be used. The request also specifies the
desired QoS parameters. Currently the supported parameters are the bandwidth, the hop count
or the cost, but bounds on latency or packet losses may be added afterwards.

The requests are handled by the control layer, composed of three modules: an SDN con-
troller, a PCE and our STEM that materializes our strategy of policy enforcement offloading from
the control plane to the data plane by designing the appropriate rules for the switches. STEM
receives tunnel creation requests, interprets them, and sends them to the PCE. The PCE cal-
culates a suitable path across the network to satisfy the request, and returns it to the STEM
module. STEM translates the path into flow rules transmitted to the controller. The SDN con-
troller gathers the network topology information and enforces the flow rules in the data plane
switches, two basic features provided by any major SDN controller solution. These commands
are received and interpreted by the network equipment, such as switches or routers.

3.2.1 The PCE

Widely studied and standardized [95] in its stateless version, the PCE is used in production
networks to calculate routes, possibly under multiple constraints. A PCE receives path com-
putation requests from a Path Computation Client (PCC) through Path Computation Element
Protocol (PCEP). To be able to compute paths, the PCE must know the topology and the cur-
rent load on each links of the network and populates its Traffic Engineering Database (TED)
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accordingly. In SDN, the best way to acquire the network topology is to interconnect the PCE
and the controller. There are several ways to achieve this goal, depending on the architecture
in which the PCE is inserted. The PCE and the controller interconnection can be performed in
three ways [28]: either integrated, or external to the controller, or the PCE is seen as an appli-
cation. As shown in Figure 3.2 the PCE here is used as an application, from the legacy SDN
controller perspective. The STEM module plays the role of PCC, and also interacts with the
legacy SDN controller as an application (Still, both the PCE and the STEM module are part of
the control layer, as they are purely devoted to the control of the network). This configuration
has been chosen for various reasons:

— Simplicity: the controller does not have to implement PCEP.
— Encapsulation: since the controller does not implement new modules (e.g., PCE

or PCC) the application can use almost any controller out of the box, with only small ad-
justments at northbound interface level. For the same reason the PCE can be changed
or updated very easily.

— Security: as a consequence of a better isolation, separating the different components of
the control layer is a good practice to enhance system security [133].

— Maintainability: the separation of the possibly complex controller from STEM simplifies
maintenance and reduces potential interference or update problems.

Instead of using flow statistic polling, the control layer relies on a stateful PCE [42] to secure
flow reserved resources. A stateless PCE populates its TED and, then, performs path compu-
tations based on it, without recording the resource changes. As a consequence, resources in
use can be reallocated several times, thus, QoS may no longer be ensured. On the contrary, a
stateful PCE keeps track of the allocated resources by recording the computed routes and the
associated QoS requirements. This mechanism guarantees that the same resource will not be
allocated twice at control plane level (unless over-booking is explicitly allowed).

The PCE does not rely on a specific algorithm to perform its path calculation. The choice
is determined by the number of additive QoS constraints, e.g., cost, hop count, latency or
loss (which can be reduced to an additive constraint through a logarithmic transformation). We
implemented in the PCE the SAMCRA algorithm [152], used when multiple constraints are
involved, and a Dijkstra shortest path routing otherwise.

The SAMCRA algorithm can be seen as a Dijkstra with multiple metrics. Its principle can be
summarized as follows:

— SAMCRA starts from the source node of the path.
— It explores one random neighbouring node of the source node, making the first sub-

path. This first subpath P has a length L. There are many different ways to define
the path length, here we chose the one proposed by SAMCRA authors: L(P ) =

max1≤i≤m[wi(P )
Li

], where wi(P ) is the value of metric i for the subpath P , and Li is

the maximum acceptable value for this metric.
— The algorithm keep exploring the graph. In each iteration, it explores one random neigh-

bouring node of the subpath that has the lowest length.
— When the destination node is reached by the path with the lowest length, the algorithm

stops.
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— The algorithm also includes two mechanisms to reduce the complexity of the search:
path dominance and look ahead.

3.2.2 The SDN Traffic Engineering Management (STEM) module

The STEM module exposes a northbound interface to the applications that want to reserve
bandwidth. When a request is received, the module turns it into an appropriate PCEP request
and submits it to the PCE. Once the path is computed, it creates the appropriate set of flow
rules and sends it to the controller. STEM module does not only creates the direct IP path from
source to destination: it also handles the way back and the corresponding Address Resolution
Protocol (ARP) tunnels, required for IP communication. Other automatic services can be added,
depending on the needs.

The STEM module creates tunnels called Label Switched Paths (LSP) between two points
in the network using MPLS, a protocol widely used to forward traffic in legacy networks and
offering a traffic engineering functionality. Due to the reduced size of its header, MPLS packets
can be treated very rapidly in switches and routers. The MPLS header is formed by a stack of
labels. Each entry is composed by a label (L) field (20 bits), a Traffic Control (TC) field (3 bits),
a bottom-of-stack field (1 bit) and a time to live field (8 bits). This header is placed between the
level 2 and 3 headers (Ethernet and IP in this case). MPLS encapsulates the IP packets, which
allows to transport them without alteration. In particular, the TC field can be used to store the
packet priority, the DSCP field doesn’t have to be modified.

STEM designs rules to enforce the QoS policy using priority queues and meters. First, we
set the packet priority (in the TC field) of each QoS flow. To do so, a meter is created in the
network entry equipment to count the corresponding packets. When the bit rate exceeds the
defined GBR, the meter triggers an action to increment the MPLS packet TC field, reducing it’s
priority. Best Effort packets have a medium priority. Then, we assign to the packets a label that
identifies the flow they belong to. Label and TC settings only occurs in the entry switch. Other
switches simply match the label and TC fields to select the output port and queue respectively.
We fixed the number of priority values (High, medium and low), requiring only 3 queues in each
port. However, additional priority levels might be added if more queues are available, for further
latency and loss management. It is to be noted that, as opposed to queues, meters can be
created on the fly at the same timescale as flow rules. Moreover, only one meter per flow is
requested, not one per flow and per switch.

An example of this strategy is represented in Figure 3.3. Here we use 3 queues, associated
with three TC values where TC values for high, medium, and low priorities respectively are 1, 2
and 3. We feature 3 flows entering the network: F1 (1 Gbps reserved, 2 Gbps input), F2 (Best
Effort, 2 Gbps input) and F3 (2 Gbps reserved, 2 Gbps input). At the input none are labelled,
as they are still IP flows. Entry switches apply them correct labels and TC fields, following the
rules previously pushed by the SDN controller: F1 reserved traffic receives high priority, while its
exceeding traffic receives low priority. F2 best effort traffic receives medium priority. As F3 stays
within its reservation boundaries, all its traffic receives high priority. When they all reach an inner
switch that does not have enough output to transmit all of the traffic, the lowest priority traffic;
which falls in the lowest priority queue, is dropped. Here, it is the 1 Gbps out-of-reservation F1
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traffic. Note that, for sake of clarity, the figure represents two layers of switches. However, the
same situation may occur with only one switch, the three flows entering via different ports and
trying to exit by a single one.

Considering PIR, the solution to ensure that the connection can, under ideal conditions (i.e.,
no other traffic), reach a given bandwidth, is to create our MPLS tunnel using exclusively links
exposing a total bandwidth at least equal to the requested PIR.

Figure 3.3 – Example of local QoS policy enforcement using the meter tool

Using our strategy, QoS flows are ensured to always receive their GBR, and unused band-
width is dynamically redistributed to flows that could make use of it. It is relevant with one of our
goals: avoid to waste resources. However, this strategy may be harmful from an isolation and
security point of view. Regarding isolation, it implies that the workload of a client may impact
another one, as it influences the amount of additional bandwidth available (although GBR is
always respected). This breach in isolation may create a security problem: a malicious user
may analyse the amount of additional bandwidth available through time to deduce the workload
pattern of the global network, and of specific tenants, provided it manages to obtain additional
information about the nature of the concurrent flows. To solve both the isolation and security
issues, the network operator may decide to drop the packets when they exceed the GBR in-
stead of decreasing their priority. Changing this policy doesn’t require any modification of our
architecture or implementation besides changing the action in the controller flow rules. This is
a classical dilemma between strong isolation and optimal resource usage, and it is up to the
network operator to define its own policy.

Regarding Best Effort, we cannot apply such dropping strategy to strictly enforce isolation,
as Best Effort traffic is, by nature, not isolated from other Best Effort flows. In order to mitigate
the security issue caused by this lack of isolation, other strategies such as obfuscation of the
sharing technique should be implemented, but this is out of scope of this contribution.
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3.3 Implementation and experimentation

3.3.1 Implementation

We implemented a platform to evaluate our bandwidth management solution for SDN net-
works based on MPLS tunneling and the meter tool. The application layer is simply imple-
mented by a REST client. The implementation of other layers requires the support of Open-
Flow, MPLS, queues, and meter. It turned out to be complicated, especially regarding the meter
tool.

3.3.1.1 Control plane

In the control layer, the SDN controller is an unmodified ODL controller Lithium SR4 using
OpenFlow 1.3 (OF13) to communicate with the data plane 3. The ODL controller is open source,
production-ready and offers features such as rule persistence and dynamic topology update
that are promising for further development.

The PCE is based on Netphony PCE 4. We modified the original software to fully support
resource reservation (stateful PCE). The PCEP protocol has been extended to request several
different metrics such as cost or latency.The PCE is not stateful active yet: it cannot propose
general network optimization.

For our experimentations we do not take into account the requested PIR, as it does not raise
any technical challenge. Enforcing this parameter would only require to change the SAMCRA
algorithm used in the PCE, so that the path research process discards the links having a total
bandwidth lower than the requested PIR.

3.3.1.2 OpenFlow

The protocol we use to carry the communications between data and control planes is Open-
flow [103]. We chose this protocol because it is widely spread in the scientific community. For
this reason it is already built in most of the SDN controllers, including ODL, and in the main
software switches used to test SDN architectures, such as OVS 5 and CPqD 6. We here pro-
vide a brief description of OpenFlow rule mechanism, specified in [120]. Advanced features,
such as learning rules (rules that automatically generate other rules), are not detailed in this
manuscript.

The OpenFlow system is based on tables, each one containing a set of flow rules. Flow
rules are composed of three main fields: match, priority, and instructions. The match field
contains assertions that a packet has to match in order to be treated by the flow rules, such
as IP source or destination. A packet can only match flow rules of the table it is currently in
(packets all start in Table 0). If a packet matches several flow rules, then, the flow rule with
higher priority field prevails. Once the packet is assigned to the correct flow rule, actions
contained in the instructions field can be performed. It may, for example, include modifications

3. https://www.opendaylight.org/
4. https://github.com/telefonicaid/netphony-pce
5. http://openvswitch.org/
6. https://github.com/CPqD/ofsoftswitch13
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to a given field of the packet header or the assignment of the packet to a given queue. Finally
the output action is applied: the packet can either be dropped, sent to the controller, sent to an
exit port of the switch or to another table.

Among all the possible actions that can be performed via the instruction field one possibility
is to apply a meter. A meter is an object that can be explicitly created within the switch. When
called by an instruction, its purpose is to count the packets that match the flow rule per unit of
time. It may then apply specific actions on those packets when they cross defined thresholds.
Meter can only apply two types of actions: drop and DSCP-remark. Drop results in dropping
all packets that cross the defined threshold, effectively implementing a traffic shaper. DSCP-
remark increments the Precedence bits of the IP DSCP field, which indicates that the packet
priority decreases. As several thresholds can be specified, packets can lose several levels of
priority.

3.3.1.3 Data plane

In the literature, the data plane usually integrates a network of OVS. Although these virtual
switches are very efficient, they do not implement meter yet, which excludes them from our
platform implementation. The OpenFlow SoftSwitch (also named CPqD) implements meter and
presents two advantages. First, it is implemented in Mininet, allowing to test the solution on
different topologies. Second, it implements all the rules needed for our solution to encapsulate
IP packets in MPLS packets and to set the label and TC fields in the MPLS header. The main
difficulty is that a meter can only increment the IP DSCP field. The solution used by STEM is
presented in Figure 3.4a. The tables that contains the higher number of rules (the ones that
have to match the 64 possible values of DSCP) are static: they are pushed once and for all
when the switch is connected to the network, and do not have to be pushed for each flow
afterwards. Unfortunately, the CPqD switch is not able to push the MPLS header and to set
the MPLS fields value in the same rule. If it was possible (as in OVS), Tables 4/7, 5/8 and 6/9
presented in Figure 3.4a could be merged. These rules have been tested. The MPLS headers
were successfully set. However, CpqD’s queuing mechanism does not perform well, and it is
impossible to carry experimentation on bandwidth reservation.

For this reason we used a Pica8 switch P-3295 with Linux System Version 2.6.4
and OVS/OF Version 2.6.4. Pica8 is a traditional material L2/L3 switch that implements Open-
Flow protocol, to act as an OVS, and both meter and queues. However, OpenFlow is only
implemented at software level, and hardly reflected at hardware level, where all packets are
processed. In particular, the switch only has one physical Ternary Content Addressable Mem-
ory (TCAM) and cannot implement more than one table. To overcome this limitation, the switch
merges the rules to fit in the unique hardware table when multiple tables are used at the soft-
ware level. Such operation is impossible if a rule updates flow parameters matched by another
rule. In this case the resulting hardware rule is erratic, and most of the time results in dropping
the packet. For the same reason, Pica8 does not implement the bridge system: bridges de-
clared at software level are ignored at hardware level. In [93], authors dealt with these issues
by using multiple switches, each switch playing the role of one table. Moreover, P-3295 does
not implements MPLS treatment at hardware level, but only at software level, which strongly im-
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(a) CPqD (b) Pica

Figure 3.4 – OpenFlow rules implemented in CPqD switch and Pica switch
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pacts performances over 10Mb of traffic. Last, having no tables implies having no metadatas,
which are necessary in our implementation, as shown in Figure 3.4.

To overcome these limitations, we emulated multiple tables by encapsulating the IP packet.
MPLS encapsulation cannot be used for this purpose because, when a packet is encapsulated
in MPLS, it cannot be matched based on its IP fields anymore. We envisioned to carry out the
experiment using VLANs: the IP packet is encapsulated in a VLAN when entering the switch.
The VLAN ID field represents the metadata, while the VLAN Priority Code Point (PCP) field
represents the table. Once the packet is treated, the VLAN PCP is incremented and the packet
is resubmitted to its entry port to be treated again as a new packet. In addition to their "normal"
matching options, all the rules will also match the PCP field. The advantage of this solution is
that it uses only one port and provides an equivalent to the missing metadata mechanism. The
drawback is that VLAN cannot be used by the incoming flows.

Due to the Pica8 limitations regarding resubmit action, the VLAN solution couldn’t be used
to replace all the tables: "Table 3" couldn’t match the new Type of Service (ToS) field resulting
of the meter action. We tried to bypass this by using several ports to act as different tables.
The input port acts as a table identifier. The main drawback of this solution is that multiple
ports are used to perform a single set of actions. However, this solution works well on Pica8
and was used to carry out the experiment, in parallel with the VLAN encapsulation to emulate
metadata retention. Eventually, MPLS was replaced by VLAN in the experiment due to MPLS
lack of efficiency evoked above. This has two main drawbacks in real applications: the encap-
sulated traffic cannot be a VLAN itself, and the number of tunnels is reduced as there are less
available VLAN IDs than possible MPLS Labels.

3.3.2 Experimentation

We implemented a platform with one Pica8 P-3295 switch, three clients (C1, C2, and C3)
and one server. From one physical switch we created the equivalent of a 3 switch topology, as
shown in Figure 3.5. The corresponding rules are presented Figure 3.4b. In order to assess
the efficiency of our bandwidth management mechanism, we designed the following scenario.
We generated traffic with the Iperf tool according to the following pattern: between time t=0s to
60s, C1 generates 100Mb of Best Effort traffic; between t=20s and 80s, C2 generates 100Mb
of priority 2 traffic with a requested bandwidth of 30Mb; between t=40s and t=100s, C3 gen-
erates 100Mb of priority 1 traffic, with a requested bandwidth of 15Mb. The ARP messages
corresponding to these traffics are carried in separated tunnels, with priority 3 (the highest).

Results are presented in Figure 3.6 and demonstrate the efficiency of the STEM module.
We observe that, at the beginning, only the Best Effort traffic is present and occupies the entire
link bandwidth. But, upon the C2 traffic arrival, 30Mb of priority traffic are transmitted, while
the remaining 70Mb are blocked. This is normal since they have lower priority than the best
effort. The same situation occurs when C3 starts emitting. At t=60, when C1’s traffic stops, the
exceeding traffics of C2 and C3 compete for the extra bandwidth (55Mbit/s), with equal priority,
which results in fair division of the resource(27.5Mbit/s each). In the end, only C3 remains, and
uses the whole link capacity.

The flows behave accordingly to the QoS policy. In particular, the link is always used at full
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Figure 3.5 – Test platform
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capacity, even if the bandwidth is never fully reserved: no capacity is lost.

3.4 Conclusion

We presented a full solution to provide guaranteed bandwidth to flows in an SDN network
that respects the integrity of the transported packets. The combined use of a stateful PCE and
of the meter tool allows network clients to reserve flexible amounts of bandwidth, guaranteed
anytime, without constantly polling the network to gather flow statistics. We implemented our
solution in a platform and conducted experiments to show that the solution can be deployed in
an SDN network. We exposed our difficulty to find a proper equipment to support the different
flow rules required by this solution. This shows that improvement are needed at hardware and
software levels for OpenFlow-capable devices. Although meter is a known tool in OpenFlow,
it is not widely supported yet, and it would be interesting to fully integrate it in OVS in order
to enforce QoS requirements in SDN networks. Since the end of our work the drop action has
been implemented in the meter tool. However, the DSCP-remark one is still missing in OVS
version 2.12.90. At the control plane level, we introduced the module STEM to manage the
northbound application requests to forward flows with QoS requirements by delegating traffic
engineering decisions to a PCE and the path enforcement to the SDN controller.

This contribution has been published in the 13th International Conference on Network and
Service Management (CNSM 2017) [113]. In addition, our architecture has been used as im-
plementation support for two other contributions regarding the placement of VNFs [12] [125].

To go further, an improvement to our system would consist in turning the stateful passive
PCE into a stateful active one. Besides accomplishing the same actions as a passive PCE, a
stateful PCE is able to suggest global re-optimization of network paths when appropriate (for
example, when the rejection rate crosses a given threshold, or periodically). Such improve-
ment would require the development of a re-optimization algorithm, along with extensions to
the current implementation of the PCEP protocol. It would improve the resource utilization of
the network over time, preventing it from degrading excessively due to successive globally sub-
optimal placements.

In this first contribution we provided a solution to efficiently enforce QoS policies along paths
connecting endpoints of the network. To move one step further and place full network services
we now have to take into account the placement of virtual network functions together with the
network paths connecting them.
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CHAPTER 4

VNF GRAPH PLACEMENT IN MONO- AND

MULTI-TENANT ARCHITECTURES

In the previous chapter, we described an architecture and an algorithm to efficiently use
the SDN concept to establish a connectivity service between two end points of the network,
providing isolation through guaranteed quality of service. Our objective is now to build a full Net-
work Service based on this first approach. As detailed Section 2.3, in the NFV concept a
full Network Service is composed of a VNF graph with specific QoS constraints, both between
the VNFs and between the end points. In order to provide such Network Service we have to
deploy and maintain the related VNF graph into the network. In the example presented in Sec-
tion 2.5 in which we want to connect two end points, one streaming a video and the other
receiving it, we can expect that the actual Network Service would at least require an encoder,
a decoder, and a firewall across the data path. This problem is represented in Figure 4.1.

To efficiently manage this graph we can use the NFV MANO framework enriched with SDN
capacities, as presented in Section 2.3.6. In this framework the Virtual Network Function Graph
Placement Problem (VNFGPP) is under the responsibility of the NFVO, while the actual instan-
tiation of the graph is delegated to the VIMs. As a consequence, controllers located in the VIMs
can use our solution presented in the previous chapter, ignoring the PCE step. This allows
the VIMs to finely manage the QoS required by the VNF graph.

Placement algorithms rely on topology information to perform their task. It was the case for
SAMCRA in the precedent section, whose TED was populated by the SDN controller. Here,
the NFVO relies on the information provided by the VIMs to make a decision. In Section 2.3.4
we introduced the notion of mono- and multi-tenancy, and we precise that an architecture is
considered mono-tenant when all its components belong to the same entity (or tenant), and
multi-tenant otherwise. Due to its NP-completeness [101] [5] the VNFGPP problem is difficult to
solve efficiently in mono-tenant architecture, and multi-tenant architectures introduce additional
obstacles as the different actors are not willing to fully share their information. In particular, VIMs
may be reluctant to expose the details of their internal topologies to the NFVO. This restriction
will have consequences on the VNFG placement.

In addition, in 5G some Network Services are expected to express strong QoS require-
ments, such as very low latency or high bandwidth. In order to meet those needs, operators
cannot only rely on traditional cloud resources, that may be located far away from users [36].
They must also exploit local edge resources. Those scarce and expensive resources call for a
wise and adapted management in order to serve a maximum of services.

In this chapter we propose an optimization strategy to maximize the acceptation of new Net-
work Services by reserving in priority resources on links and nodes where they are abundant,
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Figure 4.1 – Illustration of a Virtual Network Function Graph (VNFG) implementation in the data
plane, orchestrated by the control plane

saving low capacity elements for requests with stronger requirements. We formalize this strat-
egy as an Integer Linear Programming (ILP) problem, and propose an extensive analysis of
its performances depending on requests and topology characteristics in a mono-tenant envi-
ronment. Then, we propose a heuristic based on network abstraction to handle both compu-
tational complexity and multi-tenant context challenges. Section 4.1 presents different exist-
ing approaches related to the VNFGPP, introducing different optimization objectives and the
heuristics used to reach them. We divided our own contribution into two parts: we detail our op-
timization strategy in a mono-tenant scenario in Section 4.2, and, then, we detail how to adapt
this strategy to the multi-tenant case in Section 4.3. Both sections include extensive simulation
results to evaluate the efficiency of our approach for different parameters. We conclude and
present some perspective in Section 4.4.

4.1 Overview of existing optimization strategies

The first approaches regarding placement of virtualized components in an architecture
aimed at efficiently placing VMs in a datacenter. Although this problem may seem close to
the VNFGPP, the constraints faced in a closed datacenter and in a telecommunication network
are different. In a datacenter, network resources are usually considered infinite: since physi-
cal distances between the different elements are very short, and network equipment is highly
efficient, latency and loss are ignored most of the time, and bandwidth is considered unlim-
ited. On the contrary, the attention is focused on the nodes of the network, the servers: how
to avoid congestion, how to minimize energy consumption, and so on. For example, authors
in [157] aim at mitigating the creation of hotspots (overloaded servers) by migrating some of
the VMs installed on these machines to less loaded ones. In order to optimize their action,
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they migrate in priority the VMs that consume a lot of resources while being the least heavy
possible. This way they alleviate the hotspot and do not overload any node. [142] tackles the
same problem, additionally considering that switches can become hotspots too, but this is the
only network-related consideration they have. [107] tries to reduce the latency between VMs by
locating VMs that communicate frequently close to each other. They do not evaluate the impact
on the consumed bandwidth.

Generally speaking, due to the extremely low latency and loss within a datacenter, VM
placement does not take into account network related QoS metrics, which are crucial when it
comes to VNF chains placement in geographically extended networks. However, VM placement
and VNF chain placement are complementary: the VNFGPP (and all its variations that can be
found in the literature) selects a node - that may represent, for example, a datacenter - on
which the VNFs are to be installed. However, since the node is abstracted by the VIM, the
algorithm does not have precise information about this node, and the exact placement within
the node is under the responsibility of a VM placement algorithm, such as [157], [142] or [107].
Consequently both VNFGPP and VM placement algorithms are both used by different entities
to provide the final exact placement.

The emergence of the NFV concept has brought a lot of interest in the VNFGPP [72].
Although the global concept remains the same, each different contribution has focused on
a different aspect of the problem. We can first divide the solutions into two distinct families:
online and offline. Online solutions place the chains one by one, following the reception of the
requests, while offline solutions place the full request set at once. The placement strategy must
then choose one objective, i.e., which aspect of he problem should be optimized. Finally, as the
VNF placement problem has been proven NP-complete [101] [5] most of the contributions in
this domain propose either an heuristic or an exact method to reduce the computational cost of
the placement.

The choices made by the different contributions we analysed - regarding family, optimiza-
tion, computational time reduction - are summarized in Table 4.1. It can be noted that these
choices are not always independent: the optimization choice often drives the heuristic. The dif-
ferent entries of the table are explained into details in the rest of the section, along with some
of the references.

4.1.1 Family of problems

We distinguish two families of placement strategies: online and offline.
Online strategies consist in placing each service as soon as the related request arrives,

which corresponds to the real situation faced by a network operator. The waiting time of the
request is thus minimized. However, as future request details are unknown, and past requests
already instantiated in the network are usually never modified, the placement is always sub-
optimal. Hence, future requests risk to be rejected, due to inadequate placement choices for
earlier services.

Offline solutions, on the other hand, suppose that the whole set of requests is known, and
services can be placed all at once. They provide better results than online strategies, because
they have more data to perform their optimization. However, they all have a major drawback:
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Table 4.1 – VNF chain placement contributions

Family

Online [143] [51] [130] [128] [105] [34]

Offline
[4] [33] [94] [14] [80] [101] [131]

[124] [23] [110] [81] [14] [10]

Objective

VNF consolidation [33] [145] [101] [124] [147] [98] [40] [81]

Links metrics [80] [51]

Costs minimization [14] [94] [128]

Problem-specific [23] [131] [27] [9] [110]

Spare rare resources [34] [143] [14] [17]

Joint [105] [130]

Computation
time

reduction
method

VNFs first [33] [94] [147] [128] [34] [162] [94] [140]

Paths first [51] [9]

ILP-specific methods [80] [98] [100] [10]

Problem-specific [5] [145] [14]

they require a method to obtain the set of requests, and few papers explicit how they manage
to do it. The few ones who provide an explanation rely on batch processes: requests are stored
during a given time (e.g., one hour) and, then, served all at once [100] [162]. This system suffers
two weaknesses. First, the storing process induces an additional delay (as service establish-
ment is much less sensitive to delay than the service itself the impact is actually reduced).
Second, since batches do not gather all the requests submitted to the network the placement
remains suboptimal, it is a mitigation process. Authors of [100] and [162] do not compare the
performances of different batch sizes to support their choice.

Authors of [147] design their algorithm so that it can adapt to both situations. They first de-
sign a classical ILP for the offline situation, and then propose an heuritic than can easily be
adapted to handle requests one at a time. In order to reduce the blocking probability, the place-
ment is assisted by a forecast mechanism based on Fourier-Series. At regular time intervals
(called maintenance times), the forecast algorithm is executed, and preallocates some VNFs
according to the expected request arrival.

We estimate that the additional delay in the establishment of a service induced by the of-
fline placement strategy, due to the batching process, goes against the dynamicity promised
by NFV. Moreover, the lack of clear analysis regarding the benefits of batching the requests,
together with the additional computing complexity it incurs, encourages us to consider an online
approach. To be valid, such approach must focus on optimizing the placement for maximizing
to probability to accept unknown future requests. We however consider offline strategies use-
ful in the context of re-optimization: they could be applied over a network with already installed
chains of VNFs (installed through an online process), in order to optimize the overall placement.

66



4.1. Overview of existing optimization strategies

4.1.2 Optimization options

The VNF chain placement problem can be considered from several points of view. Being
either online or offline, each contribution focus on a specific aspect of this problem, and a
particular optimization objective.

Many contributions aim at consolidating the VNF usage. This strategy consists in serv-
ing multiple Network Services with the same VNFs, in order to use VNFs at full capacity and
waste a minimum amount of resources. This objective is usually a tradeoff between node re-
sources and network resources. If few VNFs are instantiated the consolidation is very strong
as each VNF will serve many flows, however the flows are likely to make longer detours to
reach those rare VNFs. This impacts bandwidth consumption and latency. As opposed, offering
many VNFs would increase the chances for the flow to find a suitable VNF around the optimal
path between its end points, but the average load of each VNF will be lower, and resources
could be wasted. In [81], authors also consider the consolidation of link usage. The reason is
that the energy cost of a link can be divided into two parts: a fix cost due to the link being on,
and a variable cost proportional to the bandwidth transmitted over that link. The fix cost can be
saved if the link is not used at all, and switched off. Through minimizing the amount of VNFs in
the network, the final objective of consolidation is either to reduce the costs, the energy con-
sumption or both. This objective is entirely valid when it comes to PNFs: those functions are
specialized to do a specific task, and have a fix amount of resources. Consequently, any un-
used resource cannot be reallocated to another task and is wasted. On the other hand, VNFs
can scale with the workload, as detailed in Section 2.3.5. Consequently, unused resources can
be released, and potentially used for another task. Although consolidation would still save re-
sources, as scaling does not allow to exactly fit the load due to the granular nature of the VMs
hosting the VNFs, the impact is likely to be reduced. This aspect is not analysed in the different
contributions listed here, although in [81] authors consider VNFs small enough to be viewed as
single levels of scaling. Besides allowing VNF sharing, authors of [10] tackles two other inter-
esting aspects of the placement problem: anti-affinity rules and partial orders. Anti-affinity rules
stipulates that two VNFs (resp. virtual links) must not be located in the same compute node
(resp. must not share the same links). Affinity has been designed mainly to allow resiliency
enforcement. In this contributions, authors only consider VNF affinity, which is a first step for
resiliency. Partial order suggests that flow packets have to go through a given set of VNFs, but
that the crossing order may or may not be important. When order constraint is used only when
needed, the overall placement quality increases.

As we mentioned, consolidating VNFs creates a tradeoff between node and edge resource
consumption, and most of the contributions aiming at VNF consolidation also consider band-
width consumption. However, if VNFs consolidation is not part of the objective, then the problem
may focus on optimizing link-related metrics exclusively. [80], for example, aims at minimizing
the total bandwidth used by the services. Authors of [51], on the other hand, try to minimize
the delay of each service. This last approach is not common, as delay is usually seen as a
constraint, and not as an objective. Indeed, some services do not require reduced delay, and
providing them with low latency connections may induced additional costs.

Both VNF consolidation and link usage optimization ultimately aim at reduce the cost of

67



Chapter 4 – VNF graph placement in mono- and multi-tenant architectures

the service (eventually through energy savings). While those papers reduce the cost by limiting
the resource waste, other pursue the same objective by trying to minimize directly the instal-
lation cost. They consider that resource prices may vary depending on which node or link is
considered. Their objective is then to find the best tradeoff between the amount of resources
used to offer a service and the price of these resources, as reaching resources that exhibit the
best tariffs may induce additional travel or reduced consolidation, hence additional link or node
resource consumption.

Besides those classical objectives, some other contributions tackled very specific versions
of the problem. [23] and [131] focus on security VNFs (e.g., firewall, deep packet inspection ...)
required not by the client, but by the network owner itself, either to protect its own network or
to provide basic security to its clients. Consequently, those VNFs can be placed anywhere in
the network, because they are not related to a specific flow. Their objective it to use a minimum
of VNFs to inspect all the packets. [23] first places a VNF on the node with highest centrality,
and repeats the process until all flows cross a VNF. [131] has a similar approach, except that
it first places the VNF on nodes that are crossed by a maximum number of flows. [9] focuses
on multicast, each packet having to go through the same VNF chain, with the same source, but
multiple destination. It ends up with the same dilemma as consolidation papers, opposing node
and link resources, and uses a tree to solve it. Authors in [27] propose a load balancer system
to share the workload between VNFs. Authors of [110] focus especially on the cohabitation
of PNFs and VNFs. In their model, a Network Service does not consume directly CPU or RAM
to fulfil its needs, but units of service instead. On a given node, these units of service can
either be obtained by consuming generic CPU and RAM resources (this corresponds to the
installation of a VNF), or by consuming directly units of this specific service provided by the
node (which means that a PNF is installed here). Although this type of consideration for hybrid
deployment is uncommon in the literature, the problem of cohabitation between traditional PNFs
and new VNFs is a key challenge for NFV deployment.

Some contributions pursue an objective similar to ours, sparing resources where they are
scarce and using them where they are abundant, but using different heuristics. [34] tackles
an issue that is very close to VNF chain placement Virtual Network Embedding (VNE), and
can be seen as an early version of the VNF placement problem. This problem consists in
mapping a requested abstract network over a substrate network, taking into consideration both
node and link resources. To accelerate the problem resolution, authors separate node and link
placement. [143] places the VNFs as close as possible to the source as long as the datacenter
resources are below an evolutive threshold. They do not consider that a VNF chain may have a
destination, and their solution tends to over-utilize border datacenters as long as they are above
the threshold. [14] aims at the same objective, but in the RAN, where delay constraints are very
strong. Authors in [17] consider a much more abstract approach. They use a 2-tier architecture,
where clouds are labelled either as edge (small) or public (large). Then, all the similar clouds
are merged together, and the VNFs are placed in one of the two abstractions. This approach
cannot be applied to large networks, where clouds cannot be considered as collocated.

Taking a step behind, some contributions propose to merge the chain creation with the chain
placement, which can be referred to as the joint optimization problem. In MANO such algorithm
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is not straightforward to implement, as chain creation is handled by the OSS/BSS (or, more
precisely, the slice manager, if this architecture is implemented) while the chain placement is
performed by the NFVO, and those two entities are not designed to work together regarding
resource optimization. Taking into consideration all the possible chains that offer a service
leads to intractable complexity, so [105] ends up splitting the problem: the algorithm first selects
the chain that induces the lowest data rate, and, then, places it into the network. Similarly, in
their heuristic of the joint optimization problem authors in [130] separate the decomposition
and the placement. They associate a cost to each decomposition computed depending on the
characteristics of the chain. The algorithm chooses the chain with the lowest cost. In the end
for both papers the problem is not actually a joint optimization when it comes to the heuristic,
which has a positive side effect: it is easier to implement in MANO.

4.1.3 Reduction of computational time

Due to the NP-completeness of this problem [101] [5], most of the contributions related to
the VNF chain placement probem propose a heuristic adapted to their specific situations. We
detail some of the most recent contributions in this section.

A first strategy consists in prioritizing the VNF placement over the path placement. Authors
of [94] base their approach on a simplified model which separates the different steps : first they
determine the instances location, second they allocate the request, third they trace the routes.
A first set of solutions is generated through a fast greedy process. Then, they apply a variant
of the simulated annealing technique to perform an optimization. They create neighbours to
each solution, found by randomly modifying current allocations. To increase the convergence,
the process does not rely on pure randomness: the instances are removed by pack and the
relocation takes into account the impact on the objectives (weighted randomness). In [147],
authors use an affiliation-aware VNF placement: VNF chains are merged together based on
their source-destination tuple. This provides a new chain that includes all the VNFs requested
by the merged chains. Identical VNFs can then be merged together. This strategy efficiently
enforces their node consolidation objective, and reduces the computational time. In [128], the
resolution is separated into three steps. First, for each VNF a set of nodes able to support it
is computed (candidate nodes). Then, VNFs are sorted based on their number of candidate
nodes. Finally, they are placed, starting by the ones having the less candidate nodes. More
radically, [140] ignores network constraints.

On the contrary, [9] places the path first, and, then, instantiates the VNFs over it. Similarly,
in [4] authors perform a two step optimization using ILP hierarchical objectives. The path op-
timization objective is prioritized, and the VNF placement comes second. On an alternative
version of the problem, [51] considers that the VNFs are already placed, and represent con-
straints. They focus on the path placement.

When the proposed ILP is compatible, the reduction of computational time can be obtained
through ILP specific methods. For example, [80] [98] and [100] are based on techniques re-
lated to linear programming to speed up the resolution: [80] blends all the metrics into one
(bandwidth), and applies column generation to strongly reduce the amount of variables of the
problem. [98] applies simulated annealing to obtain the same result. In an extension of their
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work that also considers link consolidation [81], the authors of [80] refine their algorithm. The
heuristic first splits the problem into three parts: a routing module, that computes the best route
for each request at a time using a weighted Dijkstra that consolidates link usage, a service
chain placement module that places all the VNFs at once over the computed paths, and an
energy saving module. This last module calls the two others, deleting the least used link at
each iteration, hence forcing the placement to let it free. Authors further accelerate the chain
placement through column generation technique. [100] iterates over the problem by strengthen-
ing/loosening the constraints in order to manipulate the solution space. In [10], authors perform
a four steps heuristic. First, they solve the Linear Programming (LP) relaxation of their ILP. Sec-
ond, they round the path variables to obtain the likely optimal paths for their placement. Third,
they optimally place the VNFs over those paths. Finally, they perform an online placement for
the requests that couldn’t be placed using the first three steps.

Finally, some other contributions rely on strategies that do not fall into any of the categories
listed above. In these cases, authors often tackle a specific version of the placement problem,
and exploit this specificity to reduce computational time. [5] considers that each demand re-
quires a single network function (or that all VNFs of the chain can be merged into one), thus,
strongly reducing the amount of variables. [145] uses a tree search to find the best placement.
Because the construction of the tree is intractable they rely on a Monte Carlo search tree to
explore only the more promising nodes. [14] perform a classical placement, but in the RAN,
where delay constraints are very strong. Leveraging on those constraints, the authors design
an heuristic that defines, for each VNF of the chain, the reachable area where it can be placed.
Because delays are strong those areas are tight, which allows them to scale. To spare scarce
resources they suppose that large datacenters are far from the antennas, and force the VNFs to
be placed in the farthest possible reachable area. Their approach is efficient, but only because
the RAN is strongly constrained, else the areas defined by delay boundaries would be too large
to be useful, eventually encompassing the whole network.

4.1.4 The multi-tenancy scenario

All the contributions listed in this section implicitly make the hypothesis that their algorithms
have access to exact information related to the infrastructure (topology, resources) to perform
their placement. This assumption is probably correct in a mono-tenant architecture, as defined
in Section 2.3.4, but not in the multi-tenant scenario. We found no contribution tackling this
case.

4.2 VNFG placement in a mono-tenant architecture

In this chapter we propose an online algorithm to solve the VNFGPP problem. The objective
of our algorithm is to place a maximum number of requests over time. To do so, for each
placement we try to spare resources where they are scarce. This strategy tends to maintain
resources all across the network, which enables us to serve strongly constrained requests that
can only reach a small subset of the network nodes. In order to address large topologies we
develop a heuristic based on network division and abstraction. We leverage this heuristic to
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tackle an essential aspect that has been ignored by contributions cited above: the VNFGPP
in a multi-tenant environment (see Section 2.3.4). Finally, we perform extensive evaluations to
study the behaviour of our algorithms for various types of requests and topologies.

4.2.1 Problem description

Upon a client’s request, the NFVO must place a NS, decomposed in a VNFG, in the net-
work at runtime. This decomposition is done by the OSS/BSS, before being sent to the NFVO.
In this contribution the graph is supposed to be a chain, which is consistent with the assumption
made by most of the works presented in Section 4.1. Tackling graphs would not affect our gen-
eral scenario, and would require some minor modifications in our model. The chain is specified
by its physical entry and exit points (that can eventually be identical), a succession of VNFs
and two types of constraints: on nodes capacities and on links capacities. For constraints on
nodes, we consider both Central Processing Unit (CPU) and storage (RAM). Regarding links,
we consider two parameters: an additive delay and a min-max bandwidth. Some VNFs (e.g.
firewalls, encoders and decoders) may change the QoS requirements on the link (e.g. band-
width required between VNFs), so the constraints on the link may vary along the VNFG. The
required latency may be different between VNFs, as specific timers may exist to complete some
local sub-functions. Hence, bandwidth and delay requirements are considered from end-to-end
(for the whole service) and locally (between VNFs). This section considers a mono-tenant ar-
chitecture where the NFVO has a full view over the infrastructure topology to place the VNFs.
The NFVO places requests one by one as they arrive without any prior knowledge of future
requests.

In this context, our optimization focuses on maximizing the acceptation of new VNFGs.
Therefore, we reserve resources in priority on links and nodes where they are abundant, saving
them where they are scarce for further requests with potentially stronger requirements. Note
that this strategy tends to preserve free resources on most of the nodes of the network. This
can be an advantage in the NFV context, since it allows the VNFs to scale up/out with the
workload using those resources.

4.2.2 ILP optimization model

In order to find a method to solve the VNFGPP we first note that this problem displays sim-
ilarities with classical routing problems, so we consider methods that are known to work for
these problems. We first tried to adapt the SAMCRA algorithm [152] that we already success-
fully used in the PCE in the previous Chapter. However, the placement of the VNFs prevented
us from implementing an efficient pruning mechanism of the solution space, which is a manda-
tory element to solve the problem within a reasonable time.

We then considered another option: to use an ILP. It consists in formalizing the problem
as a linear objective associated with a set of linear constraints. This method is already used
to solve many variations of classical routing problems [127], as well as most of the VNFGPP
variations listed in Section 4.1. To formalize the VNFGPP as an ILP we use the notations
summarized in Table 4.2. The constraints used in this model are equivalent to those already
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Table 4.2 – ILP notations

Name Description
V Set of VNFs to be placed
N Set of nodes of the network

Succ(v ∈ V ) Outgoing neighboring VNF of v ∈ V
Succ(i ∈ N) Outgoing neighboring nodes of i ∈ N

Bv,w Bandwidth requested to connect
v ∈ V and w ∈ Succ(v)

Bi,j Bandwidth available on the directed link
from i ∈ N to j ∈ Succ(i)

Sv RAM requested by v ∈ V
Si RAM available at i ∈ N
Cv CPU requested by v ∈ V
Ci CPU available at i ∈ N

Dv,w Maximum delay between v ∈ V and w ∈ Succ(v)
Di,j Delay of the directed link from i ∈ N to j ∈ Succ(i)
T v Processing delay of v ∈ V
∆ Maximum VNFC end-to-end delay

P (X) Price of the resource X

used in the literature, with minor variations coming from the exact definition of the problem. The
key difference resides in the objective.

4.2.2.1 Variables

In our situation network conditions and VNFG requirements are known. We are looking for
two sets of elements: the set of nodes in which we are going to install our VNFs and the set of
links we will use to connect those nodes together. As a VNF is either installed on a given node
or not, and a link is either used to connect to VNFs or not, the variables are binary. We define
link-related and node-related variables respectively as x (4.1) and y (4.2):

xv,w
i,j =



1 if the traffic sent from
v ∈ V to w ∈ Succ(v)
uses the link between
i ∈ N and j ∈ Succ(i)

0 otherwise

(4.1)

yv
i =

1 if v ∈ V is hosted i ∈ N

0 0 otherwise
(4.2)

4.2.2.2 Objectives

In this problem we consider three consumable resources: bandwidth, RAM, and CPU. A
given placement has a global price that takes into account the consumption of each of these
three resources. The sub-price related to a given resource is defined by the amount of this
resource used on each element involved in the placement (node or link), and multiplied by
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the price of this resource on this specific element. This translates into (4.3), (4.4) and (4.5)
respectively for bandwidth, RAM, and CPU:

∑
(v,w)∈V

∑
(i,j)∈N

xv,w
i,j B

v,wP (Bi,j) (4.3)

∑
i

∑
v

yv
i S

vP (Si) (4.4)

∑
i

∑
v

yv
i C

v ∗ P (Ci) (4.5)

We want to place in priority VNFs on nodes/links with abundant resources and to preserve
nodes/links with scarce resources for future and more demanding requests. To make it costly
to install a VNF/path on a node/link with few remaining resources, we associate a price corre-
sponding to the inverse of the available resources:

P (Bi,j) = 1
Bi,j

;P (Si) = 1
Si

;P (Ci) = 1
Ci

(4.6)

As we consider an online approach, it is important to highlight that the “available resources”
of the nth request are the remaining resources left after the placement of the (n− 1)th request.

The optimization of a problem that displays multiple, often contradictory, objectives is a
difficult task. An exact solution of such problem consists in finding the Pareto front of the solution
space, that gathers all the solutions that are non dominated by other solutions. Finding a good
approximation of the Pareto front is the subject of many researches, such as [88] [45] [84] [156].

However in our case having the Pareto front is not really useful, as we still would have to
chose one solution among all the ones proposed. Moreover, computing several points of the
front would induce additional computing delays, which we would like to avoid. Another approach
consists in merging all the objectives into a weighted sum. This process is called scalarization.
Here, we perform a scalarization of our costs with custom coefficients α, β, and γ and minimize
the result:

minα
∑

(v,w)∈V

∑
(i,j)∈N

xv,w
i,j

Bv,w

Bi,j
+ β

∑
i

∑
v

yv
i

Sv

Si
+ γ

∑
i

∑
v

yv
i

Cv

Ci
(4.7)

4.2.2.3 Constraints

The VNFG may specify given entry and/or exit to the chain, for example in order to connect
two specific locations. If so we have to force the problem to include those locations at the
beginning/end of the path. To do so the entry and exit nodes of the chain are represented by
two fictive VNFs (entryV NF and exitV NF ) without any resource needs. We set the entry and
exit point with Equations (4.8) and (4.9):

yentryV NF
entryNode = 1 (4.8)

yexitV NF
exitNode = 1 (4.9)
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Path continuity is enforced by (4.10) while (4.11) ensures that there are no loops along the
path between two consecutive VNFs :

∑
j∈N

xv,w
j,i −

∑
j∈N

xv,w
i,j + yv

i − yw
i = 0,∀i ∈ N, ∀(v, w) ∈ V (4.10)

∑
j∈N

xv,w
j,i + yv

i ≤ 1,∀i ∈ N, ∀(v, w) ∈ V (4.11)

Each VNF must be placed exactly once:

∑
i∈N

yv
i = 1, ∀v ∈ V (4.12)

Embedding must respect VNF constraints regarding link bandwidth capacity (4.13) and de-
lay between each VNF (4.14):

∑
(v,w)∈V

xv,w
i,j B

v,w ≤ Bi,j ,∀(i, j) ∈ N (4.13)

∑
(i,j)∈N

xv,w
i,j Di,j ≤ Dv,w,∀(v, w) ∈ V (4.14)

Node CPU (4.15) and RAM (4.16) resources must not be exceeded:

∑
v∈V

yv
i C

v ≤ Ci, ∀i ∈ N (4.15)

∑
v∈V

yv
i S

v ≤ Si,∀i ∈ N (4.16)

VNFC embedding must respect the maximum end-to-end delay acceptable for the whole
NS:

∑
(v,w)∈V

∑
(i,j)∈N

xv,w
i,j Di,j +

∑
v∈V

∑
i∈N

yv
i T

v ≤ ∆ (4.17)

We now have to evaluate the efficiency of our algorithm against different parameters in order
to obtain a representative performance evaluation under different situations and scenario.

4.2.3 Performance analysis

We evaluate the efficiency of our algorithms using the Gurobi solver [74] on a 12 logical
cores Intel Xeon E5-2630.

The parameters we can modify to analyse the performances and robustness of our solution
fall into two main categories: topology-related parameters, that refer to the structure of the
topology, and the resource distribution pattern within this topology, and network service-related
parameters, that embrace the various needs a network service can express.
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CORE

AGGREGATION

ACCESS

(a) Edge39 (edge topology) (b) Giul39 (flat topology)

Figure 4.2 – Topologies

4.2.3.1 Topology-related parameters

The VNFG placement is primarily constrained by the total amount of resources made avail-
able by the network: if the needs expressed by the VNFs exceed the total offer then the service
cannot be embedded. However, when we consider strong latency constraints, the localisation
of the resources across the topology may also influence the success of the placement. Indeed,
if reaching available resources implies to violate the latency budget then the service cannot be
implemented neither. We measure the impact of two parameters that may influence resource
reachability: the structure of the topology and the resource distribution pattern.

4.2.3.1.1 Topology structure We consider two topology structures: flat and edge. An ex-
ample of each architecture is presented in Figure 4.2.

Flat topologies are representative of the backbone of large scale networks. They contain
only one level of nodes, as all nodes have the same importance, although some are more
central than others.

On the other hand, edge topologies represent local or regional network organizations. They
are usually modelled using three hierarchical levels of node [4] [17] [41], and are referred to as
3-tier architectures. Core nodes are central nodes, that connect the different parts of the net-
work, thus, having the highest centrality. Aggregation nodes establish a connection between
core nodes and access nodes, which are the closest to the end user, but display the lowest
centrality, being located at the edge of the network. Note that some publications are also based
on a simplified 2-tier architecture, without aggregation layer [17].

To conduct our tests we choose seven topologies, whose characteristics are depicted in
Table 4.3. Atlanta, Brain, Cost, Germany50, and Giul39 are available on SDNLib 1 and repre-
sent flat topologies, while Edge39 (depicted in Figure 4.2a) and Edge51 are custom topologies
that aim to represent a typical edge topology. A graphical representation of those topology is
available in Section 7.3. They are similar to the ones used in [143] and [4].

1. http://sndlib.zib.de
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Table 4.3 – Topologies characteristics

Topology Type #Nodes #Links Diameter

Atlanta Flat 15 22 5

Brain Edge 161 332 5

Cost Flat 37 114 8

Edge39 Edge 39 90 6

Edge51 Edge 51 126 6

Germany50 Flat 50 176 9

Giul39 Flat 39 172 6

4.2.3.1.2 Resource distribution When it comes to the placement of VNFs with very strong
latency requirement, the location of the resources may be an important factor. In edge topolo-
gies, datacenters located on central nodes will typically have much more capacity than those
located on access nodes, consequently in our model central nodes will have more resources
than edge nodes. In flat topologies the resource distribution will depend on the physical distri-
bution of the datacenters across the area, which can be more random.

We study the impact of resource distribution with three scenarios: low, medium or high con-
centration. As an example, the resources explicitly set for each scenario for Edge39 topology
are represented in red in Table 4.4. Other figures are computed based on explicit ones. “Total”
represent the total amount of resources attributed to a category of node, while “Node” indicates
the resources of one individual node in each category.

In the Low concentration (L) scenario, the nodes and links of all topologies have exactly the
same resources: the nodes have 80 CPU units and 100 storage units and the links have 1000
bandwidth units. The total amount of resources in the network is the same for all scenarios.
Although this is unlikely to happen in real life, it provides a base to evaluate the importance of
the distribution on the performances of the algorithm. The other scenarios focus on the topolo-
gies with comparable number of nodes and links: Edge39, Edge51, Giul39 and Germany50.
The total amount of resources in the network is the same as in the first scenario but the node
resource distribution changes. Nodes are categorized as access, aggregation, and core nodes.
This classification is straightforward for Edge39 and Edge51. We classify Giul39 nodes (resp.
Germany50) by selecting the same amount of nodes in each category as with Edge39 (resp.
Edge51). The nodes with highest betweenness correspond to core nodes as large datacenters
are likely to be placed at strategic location in the network. In the Medium concentration (M)
scenario, each node category has 33% of the network total amount of resources whereas in
the High concentration (H) scenario core, aggregation, and access nodes detain respectively
60%, 30% and 10% of the total amount of resources.

The percentages exposed in Table 4.4 represent the resource distributions we want to apply
in theory to our network, for the different concentration scenarios. They are computed based
on the total amount of resources of the Low Concentration scenario. However, as resources at
node level can only be integer, the actual resources used for the experiments (CPU and RAM
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Table 4.4 – Edge39 resource distribution details

Distribution Low Medium High

% CPU RAM % CPU RAM % CPU RAM

Core Total 7.69% 240 300 33% 1029 1287 60% 1872 2340

(3 nodes) Node 2.56% 80 100 11% 343 429 20% 624 780

Aggreg Total 23.04% 720 900 33% 1035 1296 30% 936 1170

(9 nodes) Node 2.56% 80 100 3.67% 115 144 3.33% 104 130

Access Total 69.12% 2160 2700 33% 1080 1323 10% 324 405

(27 nodes) Node 2.56% 80 100 1.22% 40 49 0.37% 12 15

columns) may differ slightly from the theoretical resource percentage. For the same reason, the
total amount of resources for each scenario is not strictly identical.

The variation of link resource concentration is not analyzed in these experiments, as a
multiplication of the experimental parameters may be detrimental to the analyze of the impact
of those parameters. Here we focus on the node resources, which distinguish the VNFGPP
from traditional routing problems.

4.2.3.2 Network service-related parameters

4.2.3.2.1 VNF delay tolerance The exact end-to-end latency constraint of the Network Ser-
vice and the latency constraints between consecutive VNFs are likely to influence the global
placement of the chains and the exhaustion of edge resources. Since we are not sure of the
delays that will be requested by the NS, or the proportion of strongly delay-constrained Network
Service in the future, we tested a large range of delay bounds in order to analyze the impact of
these constraints on the placement.

Each VNF has an inner processing delay that is randomly chosen between 0 and 100 units
(100 units being denoted maxProcessingDelay)

We set each link delay to 100 units. Since the studied topologies have different diameters,
using the same bounds for each topology may provide results that would be difficult to analyse:
a given bound could have no effect on Atlanta but may strongly impact Germany50. To mitigate
this issue we determine the delay bounds by introducing a variable that we call delay factor.
A delay bound takes into account the topology diameter in order to obtain comparable results
between topologies. The delay factor takes the values 50, 100, 150, 200, 300, 400, and 800.
For each network service, we randomly select the end-to-end latency constraint ∆ and the
latencies between VNFs Dv,w using respectively (4.18) and (4.19).

scaleDelay = delayFactor ∗ networkDiameter
2
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scaleDelay

2 ≤ ∆ ≤

numberOfV nfs ∗ (4 ∗ scaleDelay +maxProcessingDelay) (4.18)

0 ≤ Dv,w ≤ scaleDelay (4.19)

The values of the delay factor along with equations (4.18) and (4.19) allow to cover a wide
range of cases in terms of maximal number of hops in the topology. For example, a delay factor
of 50 corresponds to an average delay between VNFs of one hop, while for a delay factor of
400, it is equivalent to the diameter of the network. Examples of detailed delays and hop counts
for topologies Cost and Edge51 are provided in Annex 7.1.

4.2.3.2.2 NS lifespans Network Service lifespans represent the time a Network Service is
present in the network. For convenience, the measure of time in our experiment is based on
the reception of requests. For example, the first Network Service may indicate a lifespan of 200
requests. When the 200th request is received, the Network Service expires and the reserved
resources are released. Similarly to delay tolerance, lifespan values depend on the topology.
Indeed, in our model, the resources of the topology are directly proportional to its size. For
the same lifespan a small topology such as Atlanta could be saturated while a large one like
Brain would have barely dent its resources. Consequently, we need a normalized parameter to
measure the influence of lifespan.

For each topology we define the inflexion pointas the number of requests from which the
acceptance rates of both our ILP and the baseline algorithm (see 4.2.3.3) become very low,
marking the beginning of the saturation of the network, plus 100 requests in order to be sure to
reach saturation at this point. We analyse eleven lifespan values for each topology (from 10% to
100% of the inflexion point, plus the infinite lifespan). For each set of parameters we determine
the value of the inflexion pointexperimentally. This method is sufficient since the purpose of
the inflexion pointis only to allow a good distribution of the lifespan measurements, from low
occupation of the network to saturation. A graphical example of the inflexion pointlocation is
presented in Figure 4.3.

4.2.3.2.3 Other parameters The value of the following parameters are chosen randomly
in consistency with [145], [4], [51], [27] and [124]. Chains comprise between 2 and 5 VNFs.
Any VNF consumes between 0 and 10 CPU and storage units, and the link between two con-
secutive VNFs requests between 1 and 10 bandwidth units. We choose arbitrarily a delay of
treatment for each VNF between 0 and 100. Entry and exit points of the chain are randomly
chosen in the network, and may eventually be the same. As requests are generated randomly,
and potentially with strong delay constraints, some of them may be infeasible, even with the full
resources of the network available. As any algorithm would fail to place those requests, they
are not adapted to evaluate our model. Consequently, in order to improve the readability of the
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results, each generated request is first evaluated to check whether it can be placed in the empty
network, and discarded if it is not the case.

4.2.3.3 Baseline algorithm

We evaluate the performance of our ILP by comparing it with a baseline solution that only
considers the bandwidth optimisation.

Many computationally optimized solution exist for this problem, some of them especially tai-
lored to increase the computational efficiency of a bandwidth-optimized placement. However,
here we do not compare the runtime between the baseline algorithm and our model. Conse-
quently, for convenience we took our ILP with the following coefficients in (4.7): α = 1, β = 0
and γ = 0. The resulting objective function is:

min
∑

(v,w)∈V

∑
(i,j)∈N

xv,w
i,j

Bv,w

Bi,j

Another advantage to use a modified version of our model to make the comparisons is
that the constraints on the VNF placement are identical. this is important, as those constraints
define the exact version of the VNFGPP we are trying to solve.

Measures in this section were obtained as follows: for a given algorithm and set of pa-
rameters (topology, lifespan, delay factor) the performance is the averaged number of embed-
ded NSs computed over 2.000 requests after the inflexion point, where the occupancy of the
network is stabilized (behaviour at regime).

4.2.3.4 determination of the objective function coefficients

As detailed in Section 4.2.2.2, we scalarize our different objectives into one objective func-
tion. When it comes to the experiments, the difficulty lies in the definition of the weights.

Unlike offline approaches, our algorithm solutions quality cannot be measured after one
resolution of the problem, as our final objective is to embed a maximum number of requests
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in the long run. Intuitively, the weights of the sum have to reflect the resource consumption
rate, so that they would focus on saving resources that are consumed faster. Since we cannot
predict how resources will be consumed, we first tried to design a flexible system where weights
would automatically adjust themselves after each request placement. Unfortunately, we failed
at finding useful correlation between optimal weights and resource consumption rates.

Consequently we opted for a static approach. For each topology we set the bandwidth
weight to 1, and we vary the other weights independently from 0.1 to 10, and we measure the
number of embedded requests after 1000 requests. We repeat this operation ten times for each
topology.

We observed that, as long as CPU and RAM weights are not too small compared to band-
width weight (if they are not below 1) the final results for the different weights are close, and the
best combination depends on the topology. We chose the coefficients α = 1, β = 4 and γ = 7
as they display good performances for all topologies studied.

4.2.3.5 Performances overview

Figure 4.4 provides an overview per topology of the improvement obtained with the ILP
compared to the baseline in terms of number of embedded NSs. Each boxplot is composed of
77 results obtained with the 7 values of the delay parameter and the 11 values of the lifespan
parameter. In the Low Concentration cases, we observe that our model offers performances
similar to the baseline one. As the resources are equally distributed, there is no local scarcity.
As our model is designed to optimize the placement to spare resources where they are scarce,
but, encountering no such resources, it resumes to the same placement logic as the baseline
algorithm, hence leading to similar results. We observe that the higher the concentration the
better the improvement. The explanation is identical: the more scarce resources are present
in the topology, the more our model’s behaviour diverges from the baseline one, the better the
placement.

In practice, the High distribution seems more likely to happen as access nodes may be
composed of one cabinet, or even one computer, whereas central datacenter resources are
often considered as infinite. This confirms our hypothesis: it is crucial to spare nodes with few
resources so as not to reject future NSs with strong latency requirements due to a lack of nodes
with resources close enough to meet them. The lack of impact of the topology type (flat or edge)
can be explained by their small size: the path length from an access node to a central node
is quite similar. Lastly, we can see that even for High concentration the median improvement
remains under 5%, while the mean improvement lies between 5% and 10%. Top performance
can reach 15% to 23%. In order to explain those disparities we will take a closer look to the
best performing topology - Edge51 - in Figure 4.5.

4.2.3.6 Detailed performances analysis

Figure 4.5 provides an overview of the improvement obtained with the ILP compared to the
baseline in terms of number of embedded NSs for topology Edge51, with the three levels of
resource concentration, according to the lifespan of the services in the network and the delay
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Figure 4.4 – Performance of the ILP compared to a bandwidth-only optimization strategy

factor applied to those services. This figure has the same general aspect for each topology,
although scales change. Detailed results for each topology and each resource concentration
are provided in Annex 7.4. The best improvement is obtained for delay factors of 50, 100,
150. Higher delay factors lead to very weak latency constraints and the VNFG can involve
long detours to take resources in the core nodes when other options are exhausted, reducing
the benefit of sparing resources in the access. On the contrary, requests with strong latency
constraints benefit from good resource management because they could no longer be accepted
in the event of resource depletion in an area.

The improvement is maximized for lifespans between 30% and 40% of the number of re-
quests compared to the inflexion point. With lower lifespans the network is underused, and
a wise placement is useless since there are much more resources than needed. Higher lifes-
pans saturate the network and only the requests that require small resources are accepted,
regardless the placement.

4.3 VNFG placement in a multi-tenant architecture

The VNFGPP version presented in Section 4.2.2 requires a detailed knowledge of the net-
work topology and resources, which is impossible in a multi-tenant architecture. When the in-
frastructure and the orchestration services are owned by different actors, VIMs will be reluctant
to disclose confidential network organisation details and will rather present an abstraction of the
network to the NFVO. For example, this is the case with UNICA’s Virtual Data Center (VDC)
concept [41]. Clients that want to use UNICA as an infrastructure platform are provided with
one or several VDCs, which are parts of one or several datacenters, logically centralized to
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Figure 4.5 – Performance of ILP vs baseline in Edge51 topology
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be presented as one datacenter to the client. Thus, clients obtain an abstracted network of
datacenters.

Therefore, we introduce a two step computation. First, the NFVO performs the placement
over abstracted topologies proposed by the VIMs, resulting in a first placement of the VNFs.
Then, each concerned VIM must in turn run the algorithm to determine the final placement
within its infrastructure and update its abstracted graph based on resource consumption.

If the VIM is actually a Wide Area Network (WAN), with no resources to place VNFs, it
can actually be reduced to an SDN controller and fully use our solution proposed Chapter 3 to
compute both the best path through the network using the PCE and, as the SDN controllers
in VIMs would do, use the STEM strategy to implement their path.

4.3.1 Clustering

In a multi-tenant architecture, each VIM represents a part of the global NFVO view of the
topology, called cluster. Independently, each one of them abstracts its own topology. Note that,
rather than performing directly the abstraction process over its topology, a VIM may decide to
artificially divide its own network into separated sub-clusters. This choice results from a tradeoff
between the confidentiality of the topology and the exactitude of the information provided, en-
forced respectively by a small and large number of clusters. Exactitude of the information is im-
portant because approximative information may result either in missed transactions (the NFVO
does not find any way to fulfill the request in the abstracted topology although one exists in
the real topology) or failure to comply with SLAs (the abstracted topology advertises capacities
that cannot actually be fulfilled). In this contribution the number of clusters is fixed manually by
defining the maximum number of nodes in a cluster.

We divide the network into clusters using an algorithm based on the link betweenness
centrality metric, that will be referred to as betweenness in the remainder of this document. For
each link, betweenness is defined as the number of shortest paths this link is part of, among
all shortest paths connecting each pair of nodes of the network [70]. We use this technique
because it seemed appropriate to divide the edge networks that we are studying whose links
betweennesses fall into clearly separated ranges of values. However other techniques may
be applied depending on the topology. For example, for very large graphs, techniques based
on nodes spatial localisation (geometric algorithms) such as the one presented in [49] may
be more suitable than the ones based on structural properties (betweenness in our case) for
complexity reasons.

The algorithm we use to divide the network works as follows. First, we manually define a
maximum number of nodes in each cluster. Then, as long as the largest cluster has strictly more
nodes than this limit, we recompute edge betweennesses in the largest cluster and we delete
the edge with higher score. This process is represented Figure 4.6, with a maximum number
of nodes set to five. Once the clustering step is over we obtain a set of separated networks, or
clusters, and we can start to abstract each one of them.
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Figure 4.6 – Clustering algorithm

4.3.2 Topology abstraction

Over the years, network topology abstraction has motivated a lot of research works [151].
Those works (such as [96], [91] or [153]) mostly focus on QoS routing over several independent
networks in Asynchronous Transfer Mode (ATM) Private Network-to-Network Interface (PNNI)
networks [134]. PNNI does not take into account node resources, and the solutions that use it
are not intended to place VNFs: they are related to traditional routing problems.

In order to be efficient, the abstraction must display a tradeoff between the accuracy of the
information (to allow the NFVO to compute a correct path) and the confidentiality of internal
details. The main abstractions for a network topology are the single node, the star and the
full mesh [96], represented Figure 4.7. The single node approach efficiently hides internal de-
tails, but fails to provide enough information for the placement decision. The full mesh is a very
common abstraction in traditional problems as it allows to keep topology details secrets while
providing reliable information for routing [151]. This abstraction can even avoid any loss of in-
formation by displaying the full Pareto front between any pair of nodes, using multiple abstract
links, at the cost of reduced scaling capacity [67]. However traditional problems focus only on
link resources, and do not consider node ones. Problems that consider nodes are very differ-
ent. When we tried to adapt SAMCRA to VNFG placement we found out that Pareto front was
computationally intractable when node resources are involved, mainly due to the impossibility
to reduce the search space via subpath domination. Without Pareto front available, the main
advantage of the full mesh abstraction does not hold any more. Moreover, representing node
resources efficiently using this abstraction is not trivial. Based on those observations, we con-
clude that the full mesh abstraction is not as adapted to represent node resources as it is in
traditional problems. Thus, we opted for the asymmetric weighed star abstraction, as it seems
intuitively adapted to represent both node and link resources.
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Figure 4.7 – Classical abstractions

Usually star abstractions are derived from full meshes using various techniques [151]. Since
we cannot compute a representative full mesh those techniques do not apply here, so we
propose a new way to create the star. Each cluster is abstracted into a star topology that
includes an abstracted central node (nucleus) connected via abstracted links (spokes) to the
cluster border nodes, themselves connected to neighbouring clusters via real links. To define
the nucleus we chose a real node of the cluster, the one with the highest betweenness. It is
likely to be, in average, the easiest one to access from any other node in the cluster since it
is the one that takes part to the highest number of shortest paths. We then created spokes to
connect this node to all the border nodes. In addition to those minimal stars we added some
bypasses. Bypasses are extra virtual links that may be added to a star in addition to spokes to
reflect a specificity of the network, such as remarkable QoS capacities. In our case, we want
to emphasize the fact that a path does not necessarily have to reach the center of a cluster
in order to cross it. Typically, in an edge topology, the connection between two neighbouring
clusters of aggregation nodes may only require to go through two border nodes of a central
cluster. So we keep existing edges between border nodes as bypasses in the star to ease the
transition from one cluster to another. The star transformation is illustrated in Figure 4.8a.

Once this topology abstraction is fulfilled, we have to assign resources and QoS parameters
to all the elements. Border nodes and bypasses are not modified during the abstraction process,
so the values of their resources are identical in the abstracted and original topologies. The
central node aggregates the resources of all non-border nodes. We set the parameters of each
spoke with the best possible value, determined by running multiple Dijkstra algorithms between
the border node of the spoke and the nucleus focusing on one parameter at a time. Delay and
bandwidth consumption are minimized, and the path bandwidth is maximized (i.e., we maximize
the minimal bandwidth along the path). Despite its simplicity, this aggressive approach has been
proved quite effective in [92]. The node and link resource abstraction processes are illustrated
respectively in Figures 4.8b and 4.8c.

In the mono-tenant problem scenario, resource price is defined as the inverse of this re-
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(a) Star creation

(b) Node CPU resource computation

(c) Edge delay metric computation

(d) Final result

Figure 4.8 – Abstraction steps
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source, as formalised in Equation 4.6. In the abstracted topology, the nucleus aggregates the
resources of all inner nodes, and will typically have more resources than any other node in
the star, as in our example in Figure 4.8d. Consequently, VNFs would mainly be placed on the
nucleus (and finally in the inner nodes), leaving border nodes underused. However, in our ex-
ample, at least two border nodes should be more appealing than any inner ones. We mitigate
this problem by redefining the price of each resource as the lower price for this resource among
the nodes the nucleus represents. In the example Figure 4.8d the price of the resource of the

nucleus would be
1
3 , as the inner node with most CPU - hence lower CPU price - has 3 units of

this resource, thus, the nucleus will propose 8 units of CPU at a price of
1
3 , instead of

1
8 in the

initial ILP.

Once this process is completed the heuristic can receive placement requests.

4.3.3 Heuristic mechanism

When a placement request is received the NFVO runs the ILP over the abstracted topol-
ogy, made of abstracted clusters presented by the VIMs. Once the placement is completed it is
transmitted to the VIMs that perform a second placement in order to attribute real resources to
the services. The combination of those second placements provides the final resource alloca-
tion. This process is illustrated in Figure 4.9.

Once the request is embedded VIMs recompute the abstracted resources, as presented
in Section 4.3.2, and update the information they expose to the NFVO. The structure of the
clusters is not modified, unless new nodes or links are added to the network.

4.3.4 Heuristic performance analysis

4.3.4.1 Heuristic evaluation

To evaluate the performance of our heuristic we compare it to the holistic ILP. The perfor-
mance reflects the capacity of the heuristic to place a maximum number of NSs in the network.

We ran our evaluation considering a wide range of sizes for edge topologies (based on the
Edge39 scheme). We generated topologies, referred to as edgeNCore, composed of N core
nodes, N clusters of aggregation nodes interconnected by the core with 2 ∗N + 1 aggregation
nodes divided into two layers in each cluster, and 4 ∗ N access nodes connected to each
aggregation node. The total number of nodes for Edge2Core to Edge8Core is indicated in
Figure 4.10.

We also study the impact of the number of VNFs in the chain on the runtime. We indicated
in Section 4.2.3.2.3 that many publications consider VNF chains of 0 - 10 or 0 - 3 VNFs for their
tests. However the number of VNFs in a chain can be much larger, depending on the use case.
A full virtual redundant EPC serving a large area would require much more VNFs, for example.
Consequently, it is interesting to increase the number of VNFs in our NSs, and check that the
algorithm still solves the problem within a reasonable amount of time.
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Figure 4.9 – Heuristic example

4.3.4.2 Performance

We first analyse the performance of the heuristic against the holistic ILP. The network is
divided into clusters composed of a maximum of 100 elements (nodes and links) and each
request tries to place 10 VNFs. Each node has 80 CPU units and 60 storage units, and each
link has 800 bandwidth units. The delay factor is 100.

We developed our algorithm in Java, which offers an implementation of the betweenness
computation, but only for nodes, not for links. For convenience we used this implementation,
and during the cluster creation process we determine the next link to be deleted as follows:

1. We select the node with highest betweenness N1,

2. Among the neighbours of N1 we select the one with highest betweenness N2,

3. The next link to be deleted is the one connecting N1 and N2.

Two effects linked to the abstraction technique can influence the heuristic performance. The
first is the capacity of the algorithm to find a feasible path when one exists. In our case, this ef-
fect is very important when the network is almost empty. In this situation, it is almost certain that
a solution exists, but our heuristic may miss it. The reason is that our abstraction are “utopian”:
for each metric separately it computes the best possible score, and merges all those scores
into a single link. However, there is no guarantee that any real path could provide all those
scores at once. Hence, the NFVO may find a suitable path based on the abstracted topologies
that cannot be instantiated in reality, while another suitable path may have been successfully
implemented. The second effect is the overall quality of the placement over time. This effect is
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more important in the end, when many NSs are placed. If the placement is poorly done then
the acceptation rate will lower. In the beginning this effect has no impact since few NSs are
placed, so the placement quality has limited importance.

To analyse those effects we measure the cumulative acceptation ratio of the heuristic during
three phases:

— when the network is empty (the request is the first request received)
— when the network is saturated
— between the first request and the inflexion point (“normal” situation).

The results are presented Figure 4.10. This figure displays the performance of the heuristic
compared to the direct application of the model with no abstraction for different topologies.
Those results show the efficiency of the heuristic since we achieve a performance ratio between
93% and 96% between the first request and the inflexion point.

When the network is empty, the first request is accepted only 96% of the time due to our
aggressive abstraction method that may propose paths that are more appealing than feasible
paths but that do not fit in the physical infrastructure. It would be interesting to adapt other
abstraction methods presented in Section 4.3.2 to our algorithm and compare their efficiency
and reduce the cranckback effect.

Regarding saturation performance, we note that the heuristic performs very well. This tends
to show that the overall placement is not perturbed too much by the heuristic, which can be
explained since the abstraction method is designed to propose very good paths, sometimes
too good to actually exist. We note that for Edge2Core the heuristic performs even better than
the ILP. This is actually due to the comparatively very small size of Edge2Core (92 nodes).
Because requests are randomly generated, and Edge2Core can only host a few of them, it is
possible that, when the network reaches saturation, the request happened to fall right were the
heuristic left some resources and the ILP did not. The total number of accepted requests for
this topology on saturation when using the ILP is 108, so the difference between the ILP and
the heuristic is less fewer than two requests.

4.3.5 Heuristic in a Mono-tenant architecture

4.3.5.1 Motivation

The VNFGPP is NP-complete [33], so computing times can become unbearable when the
size of the network or of the VNFG increases. For this reason, all the works presented Sec-
tion 4.1 propose heuristics to fasten the resolution. However, most of those heuristics are tightly
linked to one specific version of the VNFGPP. As we detailed Section 4.1, many different vari-
ations of the VNFGPP exist, with their own optimization objectives and constraint specificities.
For example, prohibiting to split flows between multiple paths, or to share VNFs between mul-
tiple services, potentially makes some heuristics inoperable. Using a heuristic that is highly
dependent on some specificities of the constraints of a given situation may be too restrictive in
practice. We propose to extend the abstraction technique used in the multi-tenant scenario to
define a heuristic that performs well with any form of VNFGPP.

When the topology is too large to apply the ILP, the NFVO artificially divides its topology
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Figure 4.10 – Heuristic cumulative acceptation ratio vs. holistic solution

view into several clusters of limited sizes, using for example the algorithm presented in Sec-
tion 4.3.1. Note that the abstraction process can be done offline if the topology is not expected
to vary quickly over time. The NFVO then internally executes all the steps presented in Sec-
tion 4.3.1. The execution of the ILP on abstracted topologies gives a first placement solution
that associates each cluster with a sub-chain of VNFs to host. The algorithm transforms these
results into parameters and executes the ILP a second time on each cluster of the abstract
topology. Since the initial ILP is not modified, this heuristic can be applied to any variant of
the VNFGPP.

4.3.6 Runtime evaluation

We analyse the computational time of our heuristic versus the holistic ILP. We take into
account the time required by the heuristic to reserve and release the resources, as it implies
additional computations to keep abstracted graphs up to date. Although the heuristic can run
the second step depicted Figure 4.9 in parallel, we use only one thread in all our experiments
(note that the solver itself runs in parallel, both for the ILP and the heuristic). Figure 4.11a
shows that although runtimes are comparable on small instances, heuristic runtime increases
at lower rate while network size grows. In order to emphasize the results we increased the sizes
of the networks, we doubled the number of VNFs to be placed and allowed the heuristic to form
clusters of up to 3000 nodes. The results, presented in Figure 4.11b, are very similar to the
previous ones, pointing out that our heuristic can handle large-scale problems without facing
rapidly increasing computation times.
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4.4 Perspective and conclusion

In this contribution we propose an algorithm that solves the Virtual Network Function Chain
Placement Problem allowing a fine management of the resources in order to satisfy the greatest
number of requests. We show how network resource concentration and request constraints in-
fluence the Virtual Network Function Chain placement, unlike the topology structure. For multi-
tenant architectures, we propose a method allowing the Virtualized Infrastructure Manager to
expose an abstract view of the infrastructure topology. Leveraging on this approach we propose
a heuristic to solves the Virtual Network Function Chain Placement Problem in multi-tenant ar-
chitectures and deal with the computational complexity of the placement, both for mono- and
multi-tenant architectures.

This work has been presented in the 8th IEEE International Conference on Cloud Network-
ing (IEEE CloudNet 2019) [112].

To extend this work it would be interesting to explore other abstraction options and compare
the efficiency. Another track would be to design the abstraction recursively and quantify the
impact of the size of the clusters to manage very large numbers of VNFs. Being able to place
a lot of VNFs at once would allow both offline VNF placement and offline re-optimization of the
placement.

Another important aspect of the VNF placement that has not been tackled in this contribu-
tion is the placement cost. In this contribution we focused mainly on NSs and VNFs with very
strong QoS requirement, and how to manage edge resources to accept a maximum of requests.
In this context, it is hard to optimize placement cost as VNFs do not have many placement op-
tions. However, for NSs or VNFs with lower constraints - typically, those which are able to reach
core nodes - the number of options can be much more important. Thus, optimizing the resource
reservation contracts can lead to significant savings. We are going to focus in this topic in the
next section.
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CHAPTER 5

PUBLIC AND PRIVATE CLOUD RESOURCE

ACQUISITION FOR VNF EMBEDDING

In the previous chapter we detailed our solution to solve the VNFGPP, especially in the
context of strongly constrained NSs relying on both cloud and edge computing, in mono- and
multi-tenant scenarios. The placement choice is driven both by the resource capacities adver-
tised to the NFVO by the VIMs in charge of the management of virtual infrastructures composed
of servers and datacenters and by the QoS metrics of the networks that interconnect them.

The next step consists in actually reserving the resources to deploy the Network Services.
If the VIM and the NFVO belong to the same tenant, this step can be done directly: the NFVO
requests the resources and the VIM grants them, following the mechanism detailed in Sec-
tion 2.3.3. In the multi-tenant scenario however, the resources are unlikely to be provided for
free. While the NFVO can access a view of the resources proposed by other tenants and in-
ternally choose where to place its VNF graphs, the network operator would still have to pay
(through a dedicated API) so that the NFVO can actually gain access to those resources. ETSI
does not detail any negotiation process to buy resources, so we may envision two scenarios
: either the buying process is done exclusively offline, and the resources seen by the NFVO
are limited to those actually bought by its owner, or the process is done online by a specialized
subcomponent of the NFVO, and the reservation process described Section 2.3.3 is adapted
to support a payment system. In the rest of this chapter we suppose, for simplicity and without
loss of generality, that the resource payment process is entirely managed by the NFVO itself
via a dedicated API, although this could be done via other entities managed by the network
operator that has access to exactly the same information as the NFVO.

The NFVO must select commercial offers to access resources and embed the Virtual Net-
work Function Components that compose the VNFs. Note that, from the NFVO point of view,
VDUs are indivisible. However, the operator that owns the NFVO may decide to position its
own VIM between the NFVO and third party VIMs in order to divide the VDUs bought from those
third party VIMs into smaller VDUs. For example, a system of containers may be installed on a
bought VM, as we detailed in Section 2.3.2. Here we suppose that the NFVO owner is provided
with VDUs that will not be further divided, either because they can’t be (pods, containers) or
because the NFVO owner does not want to perform such division, to spare time, resources or
to avoid additional latency for example. For clarity we will suppose in this part that VDUs consist
solely in VMs. One VNFC corresponds to exactly one VM running on a server. Each VIM may
announce multiple offers from the cloud operator, or from several cloud operators when the VIM
is an SLPOC (see Section 2.3.4). The substantial number of offers makes the selection prob-
lem more complex. Although the NFVO may reserve the resources on the fly, as a reaction to
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an Network Service request, it may be more interesting to secure those resources in advance
in order to benefit from lower long-term reservation rates, and to avoid unexpected resource
shortage from the cloud provider.

Main cloud operators include Amazon Web Service (AWS), Microsoft Azure or Google
Cloud. Although the details of their offers may vary, two main systems can be observed: guar-
anteed and spot. Clients choosing guaranteed offers have to pay a fix known price to use the
resources. Once the price is paid the resources are granted. Regarding spot offers, a vary-
ing hidden reserve price is defined for each type of resource by the cloud operator. This price
can be higher or lower than the guaranteed price for the same resource. Clients must bid on
the price they are willing to pay for the resources, those who make an offer higher than the
reserve are granted the resource for the time period, the others have to wait. Since running
instances may be interrupted, spot instances are recommended for delay tolerant jobs only,
which excludes most of the 5G use cases. Consequently in this contribution we only consider
guaranteed offers (detailed in Section 5.2).

In this contribution, we propose an algorithm designed to help a network operator’s NFVO
to select the best combination of offers (in terms of price) to reserve the VMs needed to sup-
port a set of Network Services. The algorithm inputs consist in public offers from different cloud
computing providers, as well as traffic load forecasts per VIM and price estimates for the fol-
lowing year from the network operator. To the best of our knowledge, this is the first attempt
to address this issue in this context. Such an algorithm allows a network operator to plan its
expenses over the next period and pay resource reservations in advance to lower the costs. In
addition, we show that it can be used by a network operator to evaluate the utilization rate of a
possible future private datacenter.

The chapter is organized as follows: Section 5.1 provides an overview of different works
related to cost optimization at different levels of the MANO framework. Section 5.2 introduces
our model while Section 5.3 presents both its evaluation in terms of runtime and cost, and how
it can be used to assess the relevance for a network operator to invest in a private cloud. We
conclude in Section 5.4.

5.1 Cloud resources cost and pricing optimization related prob-
lems

Reserving and buying resources from different tenants is a problem that network operators
are likely to face with the deployment of an increasing number of virtual networks. Inter-tenant
interactions start to be taken into account in the norms [54] (work in progress), including for
resource pool sharing. In the same time, projects lead by industrials propose an analyse of
the cost of deploying a service over a virtualized infrastructure, considering both the cost of
a private infrastructure and the cost of public cloud operator offers [69]. However [69] does
not propose any model or algorithm to select the best solution to obtain a given amount of
resources for the lowest cost.

To analyse the scope of the different contributions proposed in the scientific literature, we
recall the definition of the three actors involved. The cloud provider, represented by the VIM
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Figure 5.1 – Costs and prices optimization opportunities

in the MANO framework, sells virtual resources, such as VMs. The NFVO uses those VMs to
build consistent network services with given features, guaranteed capacity and QoS. The slice
provider consumes those Network Services to create a slice, a virtual network with a set of
embedded Network Services that can address a family of use cases. The different optimization
strategies are summarized Figure 5.1 and detailed in the remaining of the section.

Several papers are analyzing the best pricing scheme to maximize profits from the cloud
provider perspective (1). These contributions mainly consider the spot offer, because this type
of offer consist in selling resources through a bidding mechanism which can be subject to var-
ious optimization strategies. [144] focuses exclusively on spot instances, and aims to optimize
cloud provider revenues. Authors in [2] have a similar objective. They are interested in hybrid
pricing schemes that present both spot and guaranteed offers. Using game theory and queuing
theory, they demonstrate that, in most of the cases, spot offers should not be proposed. More-
over, they show that only a waiting cost threshold determines whether or not a job will try to bid
on the spot instance market. In our context of a network operator, a network function that is not
started in due time potentially looses all its value (if the service request is cancelled due to the
response delay), and potentially discontents many customers. Consequently, this property sup-
ports our choice to ignore spot instances. In the context of public clouds with apparent infinite
resources, authors in [87] show that a provider may artificially simulate a shortage to maximize
their profit. They briefly point out that, for long term jobs, cloud consumers (like NFVOs) should
consider reserved options, or even buying their own hardware, but they do not perform any
additional analysis.

From the NFVO perspective, the most explored way to reduce costs is through VNFGPP [6,
94, 145, 101, 131]. Although the techniques, context and side objectives may differ, the strate-
gies of those papers follow a similar pattern: in order to reduce the resource cost they consoli-
date the placement, using each instantiated VNF at the maximum of its capacity. This process
is purely internal to the NFVO and does not involve any other actor (2). Authors in [83] adopt
another strategy that does not follow MANO architecture, so it is difficult to apply their approach
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to our situation. However, if we map what they refer to as a “chunk of network” onto a Network
Service, we can use their proposal to address the case where the slice provider has a set of
slices to instantiate, and the NFVO disposes of a limited set of Network Services (3). The ob-
jective is to maximize the profit of the NFVO using successively price competition, auction and
optimisation.

All of those approaches consider interesting and complementary solutions to lower the costs
or optimize the revenue for the different actors of the architecture. However, to the best of our
knowledge no publication so far investigated the choice that the NFVO has to make when facing
different types of commercial offers to buy resources in order to actually deploy the VNFCs
requested to run the Network Services (4).

In this paper we propose an ILP that addresses this challenge. We evaluate its computa-
tion time against various parameters and we provide cost comparisons of our algorithm with
baseline solutions. Finally we suggest that this system can assist the network operator in de-
termining the opportunity to build its own private datacenter.

5.2 Model and problem description

The Network Service provider has a prevision of the traffic that it will have to manage for a
given period of time in the future, such as one year, based on past experience. From this esti-
mation, it can deduce the Network Services needed to handle the traffic from its inner network
service catalogue, and place them into the network using any version of the VNFGPP, as the
ones presented in Section 5.1. This placement takes into account all QoS related constraints,
such as delay, loss or amount of available bandwidth along the path. Once every VNFC is as-
signed to a VIM for any time of the foreseen period, the NFVO can start to evaluate which offers
should be selected from each VIM individually. It is this last step that we handle in this chapter.
An overview of the inputs and outputs of our model is presented in Figure 5.2.

5.2.1 Offers description

VIM offers can take many different forms and it would be impossible to consider all of them.
We first describe the most generic offer possible. Then, we detail how to express the offers
of AWS, one of the leaders of the cloud business, with this template. An offer proposed by a
cloud operator represents the pricing of a specific VM template, referred to as flavor, over a
given time interval (i.e. one or more time slots). Once an offer is paid, the VM of the corre-
sponding flavor can be instantiated during the given time slots. A flavor may have a variety of
attributes. Without loss of generality we consider only CPU and RAM . Similarly, we suppose
that VNFCs only require CPU and RAM to run. Each flavor may be instantiated using different
reservation offers. As evoked in Section 5.1, we only consider guaranteed offers. The most
generic form of reservation is composed of a fixed cost paid in advance, a variable cost paid
on a per-use basis and a set of time slots that defines when the reservation can be used. The
variable cost might be subject to market fluctuations, and we suppose that the network operator
keeps a record of those prices to be able to predict their future variations. We emphasize that
an offer is bounded to a specific flavor and, once paid, cannot be used for another one. The
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Figure 5.2 – Offer selection model overview
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flavor is bounded to a cloud operator (although different cloud operators can happen to deliver
the same type of flavors). Our model is designed to handle such a generic reservation offer, but
we can easily derive more specific cloud operator related offers. As an example we introduce
some AWS tariffs translated in our framework 1:

— On demand offers are purely “pay per use”: no time slot restriction and no fixed cost.
— Reserved offers have a limited duration (1 or 3 years) and an upfront cost, but the

variable cost is null.
— Scheduled offers are similar to reserved offers, except that they apply only on given

hours within the day. The equivalent hour rate is the same as for reserved offers.

Our algorithm outputs the amount of each offer that should be used at each time slot of the
future period.

5.2.2 Notations

Typically a VNFC is running during multiple time slots. From the Network Service consumer
point of view it represents one unique VNFC. In our model however, a VNFC is bounded to
one unique time slot. Consequently, one VNFC running during N time slots is represented by
N VNFCs, each one running during one of the N considered time slots. Moreover, our model
does not decide which VNFC should be installed on a specific VM instance. This mapping
should be done by a dedicated algorithm, which would typically aim at minimizing the number
of migrations (i.e., the number of time a VNFC will be moved from one VM to another).

We remind that, following ETSI MANO framework, a VNFC can be hosted by one VM only
(it cannot be splitted over multiple VMs), and one VM can host at most one VNFC at a time
even if this VNFC does not consume all the resources.

Notations used in the model are summarized in Table 5.1. In the whole model “operator”
refers to a cloud operator.

1. AWS pricing, https://aws.amazon.com/ec2/pricing/

98

https://aws.amazon.com/ec2/pricing/


5.2. Model and problem description

Table 5.1 – Notations

Name Description
V Set of VNFCs to be placed
T Set of time slots (of equal length)
Vt Set of VNFCs to be placed during time slot t
tv Time slot t ∈ T during which VNFC v ∈ V has to run
Cv CPU requested by the VNFC v ∈ V
Sv Storage (RAM) requested by the VNFC v ∈ V
O Set of operators
F Set of flavors
Fo Set of flavors proposed by o ∈ O, Fo ⊆ F
R Set of reservations
Rf Set of reservations aiming flavor f ∈ F , Rf ⊆ R
Rfo Available reservations for flavor fo ∈ Fo, Rfo ⊆ Rf ⊆ R
τr Set of time slots during which r ∈ R is active, τr ⊆ T
Cf CPU of flavor f ∈ F
Sf Storage (RAM) of flavor f ∈ F
Co Total amount of CPU that operator o ∈ O can provide
So Total amount of storage that operator o ∈ O can provide

po,f,r,t Variable price for reservation r ∈ Rfo for time slot t ∈ T
Po,f,r Fixed price for reservation r ∈ Rfo

In order to clarify the notation τr, we give here some examples of the its value for the
different types of reservation we consider :

— On demand : τr is composed of only one time slot.
— Reserved : τr is composed of all the adjacent time slots of the period covered by the

reservation. Typically, if we are running our model over a 1 year period, and the Reserved
offer is AWS 1 year reservation offer, then τr = T .

— Scheduled : in the AWS case, τr is composed of sets of adjacent time slots, which rep-
resents all the same period of a day, e.g., from 1am to 6am. In the special case where
the sets are adjacent, we are in the Reserved case.

We also emphasize that, in the specific context of this model, the term reservation, used to
refer to the elements of R, is synonym of offer. The term offer is actually more accurate, but
would have induced some confusion is the notation with the term “operator”. Consequently, On
demand offers are also included in the reservation pool, although they are technically never
reserved by the NFVO owner, but rather bought when needed. For these specific offers the
fixed price is always 0.
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5.2.3 ILP model

5.2.3.1 Variables

We introduce three types of variables representing the VM instances (5.1), the VNFC em-
bedding on these instances (5.2) and the fixed costs that have to be paid (5.3). A triplet [o, f, r]
defines a reservation of flavor f provided by operator o under reservation tariff r.

φo,f,r,t =

0..|Vt| Number of VMs reserved using r ∈ Rfo
at time t ∈ τr

0 if t /∈ τr
(5.1)

xvo,f,r,t =



1 IF VNFC v ∈ V is installed on a VM obtained
through reservation r ∈ Rfo at time slot t ∈ Tv

AND Cv ≤ Cf
AND Sv ≤ Sf

0 otherwise
(5.2)

Φo,f,r = 0..max
t∈τr

(|Vt|) Number of reservation r ∈ Rfo
to pay in advance (5.3)

5.2.3.2 Objective

The objective of the problem is to minimize the expected cost over the full period. The total
cost includes the payment of variable prices only when a VM is actually running, and of fixed
prices for the long-term reservations.

min
∑
o∈O

∑
f∈Fo

∑
r∈Rfo

(∑
t∈T

φo,f,r,tpo,f,r,t + Φo,f,rPo,f,r

)
(5.4)

5.2.3.3 Constraints

Each VNFC must be instantiated during its time slot (5.5)

∑
o∈O

∑
f∈Fo

∑
r∈Rfo

xv
o,f,r,tv

= 1, ∀ v ∈ V (5.5)

Since each VNFC has to get its own VM their should be at least as much instances as VN-
FCs (5.6) : ∑

v∈Vt

xv
o,f,r,tv

≤ φo,f,r,t, ∀ (t, o, f, r, v) ∈ (T,O, Fo, Rf , V ) (5.6)

An operator cannot offer more CPU (5.7) or RAM (5.8) than its capacity.

∑
f∈Fo

∑
r∈Rf

φo,f,r,tCf ≤ Co, ∀ (t, o) ∈ (T,O) (5.7)
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∑
f∈Fo

∑
r∈Rf

φo,f,r,tSf ≤ So, ∀ (t, o) ∈ (T,O) (5.8)

At any time there must be at least as many fixed costs paid as reservations used (5.9)

φo,f,r,t ≤ Φo,f,r, ∀ (o, f, r, t) ∈ (O,Fo, Rf , τr) (5.9)

5.2.4 The licence problem

In addition to the VMs, the cost of the VNF licences is another important aspect that must
be taken into account when evaluating the total cost of a service. Reducing it implies to know
the licence billing method. This is actually non trivial, since many systems exist and are not
standardized [55].

The papers presented in Section 5.1 that tackle this issue use the VNFGPP to try to mini-
mize licence cost and the resource cost all together using consolidation. This logic is directly in-
spired from traditional networks with physical middleboxes. Middleboxes, just as their licences,
should be used at full potential, else they are partially wasted. VNFs, however, have a major
property: they can scale up or down, depending on the traffic load, which may reduce consider-
ably the interest of consolidation. Just as licence billing system followed traditional middelboxes
logic of exploitation, we may suggest that VNF licences could gradually embrace VNF work
flows. Some major actors already issued “pay per use” licences similar to AWS on demand of-
fers [13], and in the future they may produce more complex offers to mirror the ones proposed
today for VM reservations. If so, our model could be used to handle licence reservations as
well.

5.3 Experimentations and results

We used the Gurobi solver [74], 4 logical cores Intel i5-6200U and 2GB of RAM to evaluate
our algorithm.

5.3.1 Parameters

5.3.1.1 Incoming traffic

To simulate the traffic we use the dataset of the City of Milano provided in [16]. For the
sake of the example we decided to focus on the deployment of one specific VNF representing
a Mobility Management Entity (MME). In 4G networks the MME is a management entity that
plays an important role for UE registration and mobility through the network. We extract and
aggregate the callIn and callOut activities from the dataset: they correspond to actions that
would trigger the MMEs, as they signal the beginning of a communication, initiated respectively
by a remote UE and by the current UE. This activity is represented Figure 5.3a. As detailed
by the authors of the dataset, the activity correspond to the number of events (such as callIn)
that occur in the network, multiplied by an unknown factor to keep network operator real data
secret. Figure 5.3b represents in greater details the activity of the first week of November, and
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shows that the traffic is cyclic and follows day/night shifts. In addition, the activity over two
months (which represents the full dataset) denotes a weekly periodicity. We convert this activity
into a number of MMEs that must be provisioned to support the amount of UE registrations
directly related to this activity, based on the work presented in [8]: one MME of 2 CPU and 2
GB of RAM to handle 40 requests. As a result, we obtain the required number of MMEs by time
slot of 10 minutes for November 2013 (represented in the graphics of Figure 5.5), December
2013 and the 1st of January 2014. Here we suppose that the MME VNF is composed of only
one VNFC, which may not be the case in practice but it clarifies our analysis. We also consider
that the MME only scales out and does not scale in. This is a strategic choice that has to be
made beforehand by the NFVO, our algorithm adapts to the choice by selecting different flavors.
We consider that all the MMEs are allocated to the same VIM for the whole city, otherwise the
algorithm should be run separately for each VIM.

5.3.1.2 Offers

Regarding cloud offers, we consider two operators: AWS public cloud and a private cloud
operated by the network operator itself. Since we only have one type of VNFC to host, only one
flavor will be proposed. For this example we chose AWS m5.large (2 CPU 8 RAM) instances,
adapted to general purpose computing.

We assume here that, from a client point of view, public cloud resources are infinite.
This assumption is consistent with other approaches on the subject [2][87][13]. As a conse-
quence, AWS has enough resources to host all our VNFCs at anytime. We then selected the 3
main AWS offers and their respective tariffs taken from AWS website on the 22/05/2019:

— on Demand (OD): 0.096$ per hour, no fixed cost,
— reserved 1 year (R): 0$ per hour, 501$ fixed cost,
— scheduled daily (S): from 8h00 to 20h00 (daytime) : 0$ per hour, 250.5$ fixed cost.

The private cloud, on the contrary, has limited resources. In our scenario we consider the
deployment of only one VNF among all the VNFs that a network operator should deploy to pro-
vide complete services. Consequently, we attribute to the private datacenter reduced amount of
resources, reflecting this idea that only a fraction of the necessary functions has to be deployed.
We consider it has 20 CPUs and 80 GB of RAMs. Since it belongs to the network operator, the
hourly cost should be marginal, corresponding only to the extra electricity consumption. How-
ever, to better estimate the real cost of using the datacenter, we estimated the OPEX cost
taking into consideration hardware, staff, and electricity costs. We obtained an approximated
hourly rate of 0.012$ (P offer).

5.3.2 Runtime

We analyse the ILP runtime regarding the number of available offers, the length of the
foreseen period, and the number of VNFCs to place. Results are presented in Figure 5.4.
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Figure 5.4 – Comparison of ILP runtime with different parameters

5.3.2.1 Length of the period

To produce different period lengths we take one, two, and three weeks of November, the
full month, and finally we concatenated from two to twelve times the traffic of the month of
November to obtain the equivalent of a year. We propose two offers in the algorithm: R and
OD. In Figure 5.4a, we observe that the computation time grows linearly with the length of
the period. While other parameters can increase a lot, the length of the period is bounded.
Indeed, even if AWS proposes 3 years offers, the precision of the traffic prediction and offer
price variation will decrease over time, making long term commitments hazardous.

5.3.2.2 Number of available offers

From a complexity point of view, introducing more cloud operators, more flavors or more
offers is equivalent. Therefore, we choose to simply focus on the multiplication of offers in
this section. Because R and OD offers have very distinct characteristics we analyze them
separately and display the results in Figure 5.4b. Regarding OD offers, we build an offer by
randomly taking, for each time slot, a price between 0.060$/h and 0.180$/h, and we propose
from 1 to 20 offers. For R offers, we propose the classical OD and R offers, plus between 1
and 20 S offers. S offers have a duration of 4 hours, and start every hour: with 20 of them
the full day is covered. We observe that the computation time is linear with the number of OD
offers, but exponential with S ones. For the first S offers we observe that the computation is
constant. Indeed, first S offers propose to reserve resources during the night (from 0h00 to
4h00 for the fist one, 1h00 to 5h00 for the second one ...), which corresponds to periods with
little to no traffic. Consequently reserving resources over those specific periods less interesting
than taking R and OD offers, and the ILP quickly discards those nightly reservation offers.

The exponential complexity sets a limit to the capabilities of our model: all possible S offers
cannot be considered, a choice has to be made. In our use case, the daily periodicity of the work
load makes this task relatively easy, and selecting simply one S offers out of all the possible
ones greatly improves the overall cost (see next section).
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5.3. Experimentations and results

5.3.2.3 Average number of VNFCs by time slot

We also study the behavior of the ILP over the month of November proposing only R and
OD offers, and we multiply the number of VNFCs to place at each time slot by 1 (initial situation)
up to 20. We observe in Figure 5.4c that the computational time grows linearly with the number
of VNFCs, which allows our ILP to be used in large size datacenters on which the network
operator may have several VNFCs to embed.

5.3.3 Cost

We evaluate the interest for a network operator to use our algorithm by comparing different
reservation strategies. We first suppose that the network operator does not have a private
datacenter. When operating their own systems, network operators tend to dimension them
not to absorb the average traffic load, but rather to handle peak loads [13], which leads to
overprovisioning. Translated directly into AWS language, it would mean taking only R offers.
We refer to it as the R strategy. Even if this strategy doesn’t seem complicated, choosing an
optimal set of reservations when multiple sizes of VNFCs are present already requires some
planning. Taking advantage of the flexibility of the cloud, the network operator may decide to
buy only OD offers to face the traffic as it comes, using a straightforward OD strategy without
any further planning. It could also decide to mix R and OD offers (the OD+R strategy). Lastly,
noticing that the traffic strongly follows the night and day cycle, it could opt for a scheduled
daytime offer (the OD + R + S strategy). This strategy produces the optimal cost provided by
the public cloud, given the offer we chose to focus on, and we base the comparison with all other
costs on it (see Figure 5.6). The network operator may wonder what would be the final cost if
he was owning its own private datacenter. To give an answer, we introduce an OD+R+S+P

strategy considering OD, R, S offers plus a P offer corresponding to the placement in its private
datacenter. The results of the strategies involving several types of reservations are displayed in
Figure 5.5. In this figure we represent the total cost the NFVO will have to pay over the period
depending on the offers considered, as determined by our model. To ease the comparison
between the different results, the costs are expressed as a percentage of the case where all
the considered public offers are taken into account, but not the private resources. We can note
that the R offer is not much used when the S offer is available, as S offer fits much better the
workload needs for the same hourly cost. In the OD+R+S+P strategy R offer is actually not
used at all because the reduced nightly traffic is absorbed by the P offer.

The comparison of the different strategies’ costs is provided in Figure 5.6. First of all, we
can note that the R strategy performs very bad. This is due to the 1st of January traffic peak
that forces the network operator to book a handful of resources that will stay idle the rest of
the time. This reflects well the default of the classical over-provisioning strategy. Second, the
difference between OD and OD + R is quite small due to the very low traffic at night, which
makes reservations quite unattractive. The OD + R + S strategy performs very well because
S focuses precisely on peak hours. Thus, using our algorithm to plan in advance the offer
selection can bring significant advantages compared to R and OD strategies.
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Figure 5.5 – Selected offers through time
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5.3. Experimentations and results
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Figure 5.6 – Cost performance using different offers
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Figure 5.7 – Private cloud CPU utilization through time

5.3.4 Private datacenter utilization

In this section we focus on the situation where a network operator has to decide whether or
not to build its own datacenter to absorb a portion of the traffic. In Section 5.3.3 we estimated
the benefits in term of costs, however, this does not take into account the global investment
required to build the infrastructure. Since such a facility is costly to build, we suppose that a
network operator will be interested in knowing whether it will be used at the maximum of its
capacity or not, and maybe in predicting the periods when it can sell the unused resources. To
analyse this, we take the results of Section 5.3.3 provided by strategy OD+R+S+P , and we
measure the amount of CPU used at any moment. Results over the month of November are
presented in Figure 5.7.

As expected, the average utilization rate is not 100% since the traffic at night is very low: the
utilization rate is only around 70% - 80% during the week days. It is even lower during the week-
end: although the traffic is lower, we could expect the datacenter to be fully used during the day.
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However, since scheduled offers are reserved for the full week and cannot be cancelled for the
week-end, it turns out to be more economic to use the already-paid resources rather than the
private datacenter ones. This effect is especially important during Sundays, when the traffic is
at its lowest level (see Figure 5.5c). This affects the global utilization rate that drops at 56%.
We conclude that taking into consideration available commercial offers, especially regarding
periodic traffic, can modify a lot the actual benefit a network operator can expect from building
its own facilities.

5.4 Perspective and conclusion

In this contribution we proposed a model to assist the NFVO in the process of selecting
cloud provider offers, in order for it to buy enough resources to embed all the required VNFCs
at the best possible price in due time. Based on NFVO’s workload predictions, our model allows
to plan in advance long-term reservations, which come with reduced hourly prices. We applied
this technique to a network operator use-case using a real dataset. We showed that the model
keeps doing well when the amount of VNFCs, On Demand offers and length of the prediction
increase. The long-term scheduled reservation offers however induce exponential complexity.
We mitigated this shortcoming by taking advantage of the periodicity of the traffic, showing that
selecting only one well-chosen scheduled offer already fairly reduces the overall placement
cost. Finally, we stressed the fact that taking into account existing commercial offers is really
important for a network operator when it comes to decide whether or not to build its own private
cloud. Although the OPEX is reduced, the CAPEX may not be as worthy as expected since the
projected utilization rate might be lower than anticipated.

This contribution has been published in the 34th International Conference on Information
Networking (ICOIN 2020) [111].

For future work, we plan to develop a heuristic to handle the exponential complexity induced
by reserved offers. We would also like to propose an algorithm dedicated to actually assign a
specific VM to each VNFC, minimizing the migrations between VMs, which is the next and last
step the NFVO has to perform to fully embed a network service.
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CHAPTER 6

CONCLUSION

The global increase of traffic and the incoming of 5G are pushing traditional networks to
their limits. New 5G service requirements such as ultra low latency, high number of connec-
tions or massive data transfers require new solutions to operate the network. To address those
challenges new paradigms emerged. The most successful today are SDN, NFV, and the slic-
ing. Those concepts are based on an abstraction and an isolation of the resources in order to
better serve every specific use case while relying on a single shared physical infrastructure.
While this strategy is very promising it also generates new challenges, especially in terms of
management. Indeed, most of the implementations rely on a logically centralized control plane.
To fully benefit from this type of architecture solutions must be developed to limit its drawbacks,
especially regarding the difficulties of communication between the distributed data plane and
the centralized control plane, and to maximize its benefits, such as the optimal management of
the resources through dedicated algorithms.

In this thesis we organized our work to follow a main thread: the establishment of a network
service using SDN/NFV capabilities. We focused on the resolution of different challenges that
this operation induces. We tackled both architectural issues and algorithmic optimization.

6.1 Summary of the contributions of the thesis

The contributions of this thesis can be separated in three parts:
— Establishment of a connection with guaranteed QoS using an SDN framework: in

this first contribution we focused on the base of a network service: the connectivity. Our
objective was to establish a connection between two points of the network with a guar-
anteed QoS. Such capability allows the network operator to enforce SLA engagements,
but it also implements the mandatory isolation between users in the context of slicing.
Therefore, strict QoS management is critical. The difficulty here lied in the centralization
of the control plane: QoS monitoring was reactive, allowing QoS violations, and gener-
ative of massive amount of control traffic. To solve this issue we maintained the QoS
policy design in the control plane, to fully benefit from centralized resource manage-
ment, but we relocated the policy enforcement into the dataplane, to avoid control traffic
and potential QoS violations. Results showed a very effective enforcement of the QoS
policy while no dedicated monitoring traffic was exchanged between control and data
planes. Once ensured that the QoS of the virtual links between the VNFs was secured,
we started to develop an algorithm to place full chains of VNFs.

— Development of an algorithm to optimally use network resources: in this second
contribution we tackled the Virtual Network Function Graph Placement Problem. This
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contribution can be decomposed into two aspects. First, we developed an algorithm that
focuses on maximizing the number of Network Services that we could embed at runtime.
Since those Network Services may have very strict QoS needs, especially in terms of
latency, we couldn’t rely only on central datacenters, but we also had to consider smaller
edge facilities. We evaluated our algorithm against multiple topologies, various resource
distribution patterns and different Network Service requirements. We demonstrated that
it performs equal or better than a bandwidth-focused one. The best performances were
observed for topologies with concentrated resources trying to host Network Services
with latency constraints, which represents the likely scenario in practice. Second, we
focused on a situation mostly ignored in current literature: the multi-tenant scenario,
where VIMs may not disclose all their topology details to the NFVO, hence impacting
the quality of the Virtual Network Function Graph Placement Problem resolution. We
proposed an abstraction method to let the VIMs expose their resources to the NFVO
while maintaining a certain confidentiality level. The difficulty here was to design an
abstraction method that took into account node resources, while traditional methods only
consider link resources. We demonstrated the performance of our strategy by comparing
the holistic algorithm to the heuristic. We then proposed an adaptation of this method to
allow its usage to the mono-tenant scenario, in order to reduce computation time. We
showed that the heuristic was much less sensitive to the increase of the network size
than its holistic counterpart. While the VNF chain was virtually placed into the network
by the NFVO one problem remained: we had to buy the resources necessary to actually
embed it.

— Development of an algorithm to find optimal commercial offers to buy necessary
resources: in this last contribution we get interested in the selection of public clouds
(VIMs) commercial offers by the NFVO to embed the Network Services into the network.
Based on traffic forecasts, the NFVO may decide to buy in advance resources from
public cloud in order to cover its estimated needs. Such anticipation may allow it to
benefit from advantageous prices. However, the multiplicity of offers makes the choice
of an optimal solution difficult. This choice is the objective of the algorithm we designed
in this contribution. While many researches has been carried out to optimize the costs
and/or profits of the different actors in and around the MANO framework, to the best of
our knowledge this was the first attempt to optimize the VIM offer selection problem. Our
results demonstrated that using our optimization strategy could be greatly beneficial in
terms of costs compared to more straightforward or less planned options. In addition,
we provided an insight of the opportunity for an operator to build its own cloud facility.
We highlighted that, in a context of competition among resource providers, such facility
may be unexpectedly underused.

We tackled in this thesis several key aspects required for the implementation of a Network
Service in an SDN-NFV framework, from resource reservation to the NFV chain placement to
the final embedding. The summary of our contributions projected into the ETSI MANO frame-
work is represented in Figure 6.1.
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Figure 6.1 – Summary of the contributions
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6.2 Perspectives

Regarding the different contributions of this thesis some perspectives have been detailed in
their respective conclusions. In this section we provide some higher level research perspectives.

— Node resource isolation: while our first contribution focused on edge resource isolation
it is important to emphasize that node resources must be isolated as well. This isolation
is necessary to prevent Network Services from influencing each other when operating.
It must be implemented at two levels: firstly, Virtual Deployment Units (two VMs for ex-
ample) must be isolated so that independent VNFs do not interfere. Secondly, in case of
shared VNFs, the load balancing process must be designed to fairly serve all services,
according to their respective contracts. Regarding VDU isolation, the process might be
very complex, in particular when it comes to memory sharing. Indeed, concurrent access
requests to a common physical disk may induce performance drops. Those drops the
result of multiple factors, that may not be known in advance, thus making them difficult to
predict and manage through traditional analytical tools. To solve this issue, researchers
propose to use machine learning, in order to make accurate predictions of application
interactions when sharing a common memory [44].

— The densification of edge resources: as we evoked in Section 4 network operators
will have to rely not only on vast central datacenters to get their resources, but also on
edge facilities, smaller but necessary to address some use cases and relieve the core.
In Section 5 we detailed how a network operator may buy resources from public cloud to
instantiate their VNFs. However, this solution may only apply to services with loose delay
constraints, as public cloud actors do not operate edge datacenters, and their solutions
do not guarantee strict QoS in terms, for example, of latency. As a consequence, the
network operator may have to build its own edge facilities. As it represents a slow and
costly process, it would be very interesting to evaluate the optimal location and size of
those edge points of presence. One possibility to estimate optimal location would be to
modify the VNFGPP, allowing the algorithm to generate new points of presence in order
to embed the VNFs, instead of being constrained by the exiting ones.

— From RAN to Cloud RAN (CRAN): the research presented in this work, and especially
the VNF placement, was primarily directed to core networks. However, RAN also faces
challenges raised by new use cases. The efficiency of an SDN-NFV based sliced core
network would be strongly undermined if the access remained monolithic. Although core
and access share a lot of similarities, they also display fundamental differences. The
virtualization and the centralization into the cloud of the RAN functions to turn the RAN
into a CRAN provides specific benefits, such as softer handover, better management of
cell interference or load balancing between cells sharing a same area [53]. On the other
hand, CRAN presents its own challenges: the radio resource is difficult to isolate, data
volumes exchanged between the lower layers may be very large, and delays imposed
by attachment protocols are very tight. All those challenges and benefits advocate for
a specific management of the RAN. CRAN algorithms must be specifically designed to
take advantage of large cloud computing resources to perform massive parallelism, in
order to complete critical radio treatment operations in due time [129]. From a function
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placement perspective, centralizing all functionalities in the cloud may be impossible due
to fronthaul performance constraints, both in terms of latency and bandwidth. To solve
this issue a flexible CRAN may be envisioned, leaving some functionalities close to the
antenna [31]. The choice of the split may be partly done via placement algorithm based
on network capacities, as the one presented in Chapter 4.

— Network Service scaling: as detailed in Section 2.3.5, scaling is one of the advan-
tage of NFV, being part of its flexibility. However, implementing this functionality is not
straightforward. First of all, scaling must be fully automated in order to keep up with the
dynamicity expected from the NFV concept. Dedicated workflows are already proposed
to tackle this challenge [3], but it also implies to develop efficient sensors, and elements
to gather this monitoring information and turn it into scaling decision. As many proposal
suggests to add artificial intelligence into network management [59], scaling process
could fall under under machine learning attributions.
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CHAPTER 7

ANNEX

7.1 Inter-VNFs delay bounds

The acceptable delay between two VNFs, denoted Dv,w, depends on the delay factor and
the network diameter. Its bounds are determined using the following formulas:

scaleDelay = delayFactor ∗ networkDiameter
2

0 ≤ Dv,w ≤ scaleDelay (7.1)

All values between those two bounds are equally probable. Table 7.1 shows the delay
bounds, as well as the average and maximum hops allowed to connect two VNFs in Cost
and Edge51 topologies, according to different delay factors. Note that the minimum number of
hops is always zero.

Table 7.1 – Consecutive VNFs delay bounds details for Cost and Edge51

Topology Cost Edge51

Delay factor Delay bounds Average hops Max hops Delay bounds Average hops Max hops

50 0 - 200 1 2 0 - 150 0.75 1.5

100 0 - 400 2 4 0 - 300 1.5 3

150 0 - 600 3 6 0 - 450 2.25 4.5

200 0 - 800 4 8 0 - 600 3 6

300 0 - 1200 6 12 0 - 900 4.5 9

400 0 - 1600 8 16 0 - 1200 6 12

800 0 - 3200 16 32 0 - 2400 12 24
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7.2 SDN - Control distribution

SDN offers many advantages and opportunities for network management. Early controllers,
such as the first versions of ODL [104], Ryu 1, Beacon [52] or Floodlight [77], were implemented
as single pieces of software running on a single physical machine. This was not a problem
back then, as those controllers were primarily used for demonstration purposes over very small
networks without any industrial-level quality requested. However, centralization also brings sig-
nificant drawbacks that make such controllers unsuitable for carrier-grade deployments:

— responsiveness: as opposed to traditional distributed systems, a centralized one may
suffer from delays between edge switches and central controller

— scalability: one controller can only process a limited amount of events. Moreover, apply-
ing complex routing algorithms over a large topology may be computationally intractable.
In addition, the control plane may not be able to provide enough bandwidth in the vicinity
of the controller as all control traffic of the network will end up in this bottleneck.

— reliability: a unique controller represents a Single Point Of Failure (SPOF). If the con-
troller fails, either accidentally or as a result of an attack, the network falls.

Those drawbacks have been studied in various surveys [22] [97] [20] [117]. Proposed solutions
consist in augmenting the number of controllers, leading to distributed architectures.

7.2.1 Definitions and terminology

Before detailing the main solutions proposed to distribute the control plane, we first have to
define the terminology associated with distribution, as all authors do not use exactly the same.

When a controller is installed on a single machine we call it physically centralized. On the
contrary, when several instances working as part of a global architecture are installed on several
machines we call it physically distributed. In the rest of this section all controllers have the ability
to be physically distributed.

As we explained in the previous section, one of the defining aspect of SDN is to present a
single, unified interface to northbound applications. This property is straightforward when the
controller is physically centralized, as it is often pictured, but it has to be maintained when
the controller is distributed. Such distributed but seemingly unique controller is called logically
centralized. However, in [20] and [18] authors define logical centralization as the fact that each
controller has the same view of the network and the same responsibilities, it is then mostly a
load balancing process. As opposed, they define logical distribution as a situation were each
controller has its own view of the network, and its own switches to manage. We believe that
this distinction introduces confusion: logical centralization in SDN should only refer - as it is the
case in the vast majority of publications - to the appearance of unicity toward the northbound
interface, not toward inner controllers in the topology. All the controller architectures that are
presented in the remaining of this section are logically centralized, according to our definition.

We however distinguish two types of distributed architectures: flat and hierarchical. In flat
architectures all controllers have the same level of responsibility, and they communicate with

1. Ryu github, https://osrg.github.io/ryu/
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each other through east/west interfaces. In practice, they are either implemented using tradi-
tional network protocols such as BGP or PCEP [76], database synchronization protocols, or
custom protocols [117]. Authors in [18] propose a dedicated protocol for controller East/West
interfaces called Communication Interface for Distributed Control plane (CIDC). Their system
can be used on three different modes depending on the situation: notification about events only,
advertisement and requests to implement full services, and both. In hierarchical architectures,
controllers are layered: the lower layer is responsible for managing the infrastructure layer, and
upper layers manage lower layers via controllers’ north/south interfaces.

7.2.2 Distribution challenges

Distributed SDN, such as any distributed system, faces the challenge formalized by the CAP
theorem [24], which states that controllers cannot archive simultaneously the three following
goals:

— consistency (all of them have the same information)
— availability (address requests in a timely manner)
— partition tolerance (ability to recover from temporary partition, and maintain functionality

in the meantime)
This means that solutions have to focus on two of those aspects, usually consistency and
availability. Indeed, consistency is mandatory to avoid errors in the network, and availability is
necessary to meet SLA engagements and avoid dropping packets (when the controller does
not respond to switche instruction requests). Consistency gathers special attention, as the CAP
theorem ignores one important aspect that must be taken into account in large topologies:
latency. SDN architectures have to work around this problem, that may cause two controllers
to be inconsistent because the synchronization takes time. To deal with this issue two types of
consistency are used:

— strong consistency: controllers wait to be fully consistent before taking a decision re-
garding any event

— weak / eventual consistency: controllers take decisions based on potentially stale infor-
mation, but implement mechanisms to converge toward consistency.

In the SDN context, consistency almost always refers to consistency between controller views.
However, it is also essential to keep a consistency between the controller view and the actual
state of the switches. Ravana [86] proposes to slightly modify the OpenFlow protocol to solve
this issue. By implementing acknowledgement messages, allowing buffering, and adding an ID
field into OpenFlow messages to identify the controller they originated from, they manage to
ensure that switch events and controller commands are processed exactly once. Moreover, a
shared log system ensures that events are processed in the same order by controller replicas.
Regarding the dilemma between weak and strong consistency, authors in [122] proposed the
Simple Coordination Layer (SCL). They point out that strong consistency is difficult to achieve,
prone to failures and has a negative impact on availability. However, they note that it is not
always useful to reach such level of consistency: indeed, the network is not affected by it, as
long as it does not induce errors in the rules. The idea is then to run two levels of consistency
in parallel. Weak consistency is used for liveness policies, and strong one is reserved for se-
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curity policies. Their application, SCL, runs on top of a classical controller and turns it into a
replicated one: each switch is controlled by multiple instances, and a quorum must be reached
to perform an action. The objective here is to improve the resiliency, not the scalability. In their
example, liveness policies include traffic engineering or shortest path routing, while security
policies include isolation or waypointing (ensure that a flow goes through the specified list of
middleboxes).

According to [20], flat architectures are more adapted to datacenters, as controllers and
switches are very close to each other and can reach strong consistency. On the opposite, a
hierarchical architecture is more adapted to wider networks, with numerous switches scattered
across a large geographical area that requires abstraction and several levels of management
relying on weak consistency. This last architecture is more complex, and in studied solutions it
does not exceed two hierarchical levels. We detail some of the most important contributions for
both flat and hierarchical architectures.

7.2.3 Flat architectures

B4 [82] was published in 2013 and describes the SDN Openflow architecture implemented
by Google to manage the interconnection traffic between their data centers. The main objective
of this architecture is to provide fine engineering traffic functions to optimize inter-datacenter
flow distribution along the time and to reduce link over-provisioning between them. Parts of
the flows are managed with traditional routing distributed functions, but large data transfers are
managed using the traffic engineering module hosted in a server on the north of the Open-
Flow controllers. They claimed very impressive results with a strong reduction of link over-
provisioning. Switches are designed using commodity hardware and controllers are organized
in clusters at the edge of each datacenters with a mechanism of election to select a new master
controller in case of controller failure. Although implementation and technical aspects are not
deeply detailed, this first contribution demonstrated back in 2013 the feasability and the advan-
tages of SDN in an actual, production network. Part of the implementation is based on ONIX,
presented below.

In [90] authors present ONIX, a distributed controller whose objectives are:
— generality (wide range of applications accepted),
— scalability, reliability (must handle both its own failures and network equipment failures),
— simplicity (building applications must be easy)
— control plane performance (it should not impede the application, e.g., by introducing too

much latency)
To achieve these goals, ONIX is made of two components: the ONIX controller itself, with even-
tually multiple instances, and on top of them the control logic, that defines the desired behaviour
of the network and sends requests to ONIX instances in order to implement this behaviour. The
major task of ONIX controllers is to collect, synchronize, and present to the control logic a Net-
work Information Base (NIB) that contains all physical entities (switches) and network entities
(tunnels). If the network grows, a single controller instance could run out of memory because
of the NIB size, or out of CPU because of the amount of events to process. To avoid this, the
control logic partitions the network, and configures each instance of ONIX to be responsible
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for one partition, and in particular to maintain the NIB related to this partition updated. To solve
scalability issues in terms of both memory shortage and amount of traffic requested for NIB
synchronization, each controller presents its own part of the network as a single switch. This is
called the aggregation. Lastly, ONIX presents two databases: one strongly consistent, the other
weakly consistent. It uses one or the other, depending on the application needs. The problem
is that ONIX relies on the application itself to solve potential problems raising from inconsis-
tencies, which partially breaks the logical centralization. ONIX proposes various mechanisms
to face failures. In case of controller failure, other controllers are responsible for detecting the
problem and sharing the responsibility of the switches. To prevent connectivity failures between
controllers multiple paths are established.

While in ONIX all controllers are aware of being part of a distributed architecture, authors
in [150] propose another approach. Their application, Hyperflow, can run on top of classi-
cal SDN controllers, here NOX, and turn them into a distributed controller without further mod-
ification. Each controller believes that it is alone and that it manages the whole network, while
it actually controls only a local network. To achieve this, Hyperflow application follows a three
step process. First, it discovers other controllers by subscription / advertisement to all Hyperflow
applications through a dedicated channel. Second, it captures any incoming local event, such
as topology modifications. When those events are considered to have a global impact they are
advertised to the other controllers, which believe they were addressed directly to them by the
network. This is done by WheelFS, a publish/subscribe mechanism that handles network parti-
tioning. Third, when the local controller emits an OpenFlow order that targets a switch outside
of its local network, Hyperflow captures it and redirects it to the correct controller. Tests show
that Hyperflow has some difficulties in handling more than 1000 events per second, and that
controller synchronization induces delays that may be problematic for the system responsive-
ness.

The ODL controller was first designed as a standalone one [104] used to perform early
demonstrations on SDN benefits. Later releases provided new features to allow distribu-
tion [146]. The ODL cluster is based on a distributed datastore, synchronized using the RAFT
protocol which guarantees strong consistency. This datastore allows each controller to propose
the same network services, and to have the same view of the topology. The controllers in a
cluster use heart-beat messages to check if their peers are still up. To load-balance the work-
load, namely the management of the switches, ODL relies on the master-slave system built in
OpenFlow: each switch has one unique master controller that can read and write its state, and
several slaves who are read-only. If the master-switch connection fails, or if the master wants
to delegate the switch control for load balancing reasons, one of the slave can take over.

The other main open source controller, ONOS [19], was designed with distribution in mind.
Similarly to ODL, in ONOS clusters each controller instance is responsible for a set of switches
(master). Some other controllers may also be connected to these switches, as slaves. if the
master fails, the slaves elect a new master for each one of the switches. Additionally, the clus-
ter can adapt to the workload by scaling in/out, switching off/on instances. One of the main
differences with ODL is the management of the shared database: ONOS has multiple stores,
linked to the different services it offers. Depending on the nature of the store the consistency is

121



either strong (realized by Atomix 2, based on RAFT [119]), or weak (based on gossip protocol:
every few second a controller picks up randomly another and compares their views, eventually
leading to an update). For example, the switch mastership information is strongly consistent.

ODL, ONOS, and many other controllers based on OpenFlow, rely on the build-in mas-
ter/slave mechanism described above to make connections between the control and infrastruc-
ture planes reliable and to archive switch migration for load balancing. The main advantage of
this system is to be already functional and easy to implement, however the resulting migration
is not disruption free. Authors in [47] propose Elasticon, a controller that focuses on dynamicity
and switch migration. Its key features consist in monitoring the controller activity in terms of CPU
usage, migrating switches, and eventually growing or shrinking the pool of controllers. When a
controller is overloaded, Elasticon first determines which switches send the larger amount of
messages. Those switches are the ones which are the more likely to cause the largest amount
of processing. It then determines one or several controllers able to receive them. If none can
be found a new one is created. Then, Elasticon proceeds to the migration. A disruption-free
operation should guarantee the three following properties:

— liveness: at least one controller for each switch at all time and the current controller must
end all pending transactions before migration,

— safety: exactly one controller to process every asynchronous message form the switch,
— serializability: the controller processes the events in the order in which they are sent by

the switch.

OpenFlow master/slave system violates liveness. Authors propose instead a four step process,
which adds additional features to OpenFlow. Elasticon switch migration mechanism is one of
the few described in detail in the literature, as most proposed architectures tend to be static.

Dynamicity is also the topic of BalCon [30], an algorithm designed to create clusters of
switches to be controlled by the same SDN controller. Their idea is to keep strongly connected
switches together, as treating a flow over multiple controller domains increases the overhead.
They develop a controller to run their experiments, whose actions can be divided into three
steps: controller overload detection, clustering evaluation and modification, switch migration.
Through their algorithm they manage to reduce and balance the global charge. However, they
do not consider augmenting/shrinking their pool of controllers.

Most of the work studied before tends to focus on datacenter network management, as
it could be expected from flat architectures. DISCO [126], on the other side, tackles explicitly
wide networks. Like Hyperflow, DISCO is an application installed on traditional controllers, here
Floodlight. In intra-domain, each controller is in charge of its own part of the network, using
the abilities of the traditional SDN controller DISCO is running on. Regarding inter-domain,
DISCO implements four agents in charge of discovering new domains, sending periodic up-
dates of abstracted network status, advertising the connection of a new host to the network
and checking the status of inter-domain connections. To communicate together, controllers use
a lightweight channel based on Advanced Message Queuing Protocol (AMQP). The reduced
bandwidth requested by those communications allows DISCO to operate over wide networks.
However, WAN management is mostly addressed by hierarchical architectures.

2. Atomix framework, https://atomix.io/
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7.2.4 Hierarchical architectures

KANDOO [78] is a hierarchical architecture designed to run over a datacenter. The main
concern of the authors is that a lot of local applications report information to the controller,
creating delays, overhead, and exhausting controller’s capacities. To solve this issue, they in-
troduce a layer of local controllers between the infrastructure and the controller, now referred
to as root controller. Those local controllers are able to manage local applications, such as the
detection of “elephant flows”. The root controller can subscribe to specific notifications that are
considered useful for the global network management. Authors present impressive results in
terms of amount of data sent to the root controller (compared to a standalone scenario) in a
datacenter environment, where many events are local.

In [71], authors introduce ORION. Their architecture is similar to KANDOO’s one, except
that the layer two controller, called here domain controller, can communicate with other do-
main controllers in order to address inter-domain scenarios and wide networks. This solution
is referred to by the authors as hybrid, as it combines a hierarchical organization between the
domain controller and its area controllers, and a flat one between domain controllers. Area
controllers are responsible for collecting, abstracting, and transmitting to the domain controller
the network topologies they manage. These topologies are aggregated and shared between
domain controllers. They are also responsible for managing local events, such as a connection
request between two hosts within their network. If a connection requires connecting two hosts
from the same domain but different areas, the area controller reports to the domain one, which
performs a first path computation based on the abstracted topologies, and delegates the exact
implementation to concerned area controllers. If the connection involves several domains the
domain controller delegates parts of the path establishment to corresponding peers. This archi-
tecture offers both the precision and the abstraction needed to manage large scale networks.

The idea of a controller responsible of the management of a sub-domain in the network and
interacting with a master controller is also the base of the Distributed-SDN (D-SDN) architec-
ture proposed in [132]. Although the paper is a general overview of D-SDN, it focuses on the
security issues for the control delegation between the main controller and a secondary con-
troller. Authors addressed the security concerns regarding the communications between the
two layers of control, and studied the fault tolerance.

The propositions exposed in Sections 7.2.3 and 7.2.4 detail multi-controller architectures,
and some of them further explicit the dynamic adaptation to the workload. However when it
comes to geographically extended networks another concern must be solved: the physical lo-
cation of the different controllers.

7.2.5 Controller placement

In order to be scalable, distributed systems have to allow their pool of controllers to scale
in/out depending on the workload. For controllers managing networks deployed over small ar-
eas, new controllers placement does not really matter, as they will be all close to their switches
anyway. For controllers over WANs, however, delays and extra bandwidth consumption induced
by a poorly chosen placement may have a strong impact on the performances.
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One of the first paper on this issue was published by Heller et al. in [79]. In this paper authors
focus solely on latency in WANs. They try to minimize either the average or the worst latency.
They show that, for any number of controllers, the latency obtained with K controllers is equal
to the latency obtained with one controller divided by K. Consequently, the more controllers are
added to the network, the less important is the improvement. Authors end up concluding that,
for most of the cases, one well placed controller is actually enough. However, their study does
not take into account resiliency, controller workload or bandwidth consumption, which advocate
for a better distribution of the control.

Based on this work many other publications have been dedicated to this problem in the past
years. Some of them are summarized in [155].
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(a) Atlanta (b) Giul

(c) Cost (d) Edge39

Figure 7.1 – Topologies (1/2)

7.3 Topologies

Figures 7.1 and 7.2 represent the different topologies used in the evaluation of the algorithm
used to solve the VNFGPP in the mono-tenant scenario, as detailed in Section 4.2.3.1.1. They
are all taken from the SDNLib database 3, except for Edge39 and Edge51, that we designed
ourselves, following classical designs of edge topologies.

3. http://sndlib.zib.de
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(a) Edge51 (b) Germany

(c) Brain

Figure 7.2 – Topologies (2/2)
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7.4 Mono-tenant performances - complete results

This Section presents the extensive results obtained through the experimental procedure
detailed Section 4.2.3.6. The Figures represent the performance of our algorithm, in terms of
number of embedded Network Services, compared to a baseline algorithm. The evolution of
this performance is tested against two NS-related parameters: the lifespan and the strength of
the latency constraints, represented by the delay factor (the smallest the factor, the strongest
the constraint). Across the Figure two other parameters are evaluated: resource concentration
and topology architecture type.
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Titre : Algorithmes pour la mise en œuvre de services réseau avec une qualité de service garantie dans
un environnement SDN-NFV

Mot clés : SDN, NFV, MANO, ingénierie de trafic, QoS

Résumé : Le trafic réseau ne cesse de croître
et de nouveaux besoins font aujourd’hui leur ap-
parition avec de très fortes contraintes en termes
de ressources et de qualité de service. Pour y
faire face la 5G propose une centralisation du
contrôle et une abstraction des ressources basées
sur SDN et NFV ce qui permet une automatisa-
tion du déploiement des services, une optimisa-
tion de l’usage des ressources et une réduction
des coûts. SDN centralise le plan de contrôle du
réseau et gère les ressources des liens tandis
que NFV virtualise les ressources des nœuds et
transforme les fonctions réseau en VNFs. Dans
cette thèse, nous analysons et proposons de ré-
soudre certaines difficultés que pose la mise en
place de services réseau dans cet écosystème.
Nous abordons d’abord la mise en place d’un ser-
vice de connectivité à qualité de service garantie.

Afin d’éviter un afflux de messages vers le contrô-
leur et un délai dans l’application de la politique
d’accès nous transférons son exécution dans le
plan de données. Nous proposons ensuite de ra-
jouter des fonctions réseau à nos services. Nous
formulons un algorithme de placement visant à
épargner les ressources là où elles sont rares pour
placer un maximum de services. Nous doublons
cet algorithme d’une technique d’abstraction de la
topologie du réseau afin de permettre aux entités
tierces d’exposer et vendre leurs ressources sans
divulguer les détails de leurs infrastructures. En-
fin, pour permette à l’opérateur réseau d’acheter
les ressources nécessaires à l’établissement de
ses services pour un coût minimal nous proposons
un algorithme d’optimisation des réservations basé
sur les offres des opérateurs de datacenters ainsi
que sur des prévisions de trafic.
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Abstract: Network traffic keep growing and new
needs are emerging today with strong require-
ments in terms of resources and quality of service.
To face them 5G relies on control plane centraliza-
tion and abstraction of resources based on SDN
and NFV which allow network services deployment
automation, resources utilization optimization and
cost reductions. SDN centralizes the network con-
trol plane and manages link resources while NFV
virtualizes node resources and turns network func-
tions into VNFs. In this thesis we analyze some of
the difficulties raised by the establishment of a net-
work service in this context and we propose so-
lutions to solve them. We first tackle the setup of
a connectivity service with guaranteed quality of
service. To avoid a massive flow of monitoring in-

formation to the controller and a delay in the en-
forcement of the policy we transfer the policy’s ex-
ecution to the data plane. Then our goal is to add
network functions to our services. We design a
placement algorithm that spare resources where
they are scarce to save them for services that need
them to place a maximum of services. We develop
a topology abstraction technique to allow other ten-
ants to expose and sell their resources without dis-
closing the details of their infrastructures. Finally,
to help the network operator to buy the resources
required to instantiate its network services at a
minimal cost we propose an algorithm that opti-
mizes resource reservations based on cloud op-
erators’ commercial offers and network operator’s
traffic predictions.
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