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Abstract (français)

Pour obtenir des observations à haute résolution angulaire précises (que ce
soit en interférométrie ou en imagerie), il faut systématiquement passer par
une quantité complexe qui correspond à la transformée de Fourier de la distri-
bution spatiale d’intensité de l’objet. Pour toutes les techniques d’observation
à haute résolution angulaire, la mesure de la phase de cette quantité complexe
est limitée par la différence de marche introduites par l’instrument, notam-
ment au sol, où la turbulence atmosphérique introduit des erreurs impor-
tantes. Ici, nous examinons des kernel phases, des observables peu sensibles
à ces perturbations.

Dans ce cas, je me suis concentré sur la détection de binaires dans les ker-
nel phases extraites à partir d’images, en utilisant des méthodes statistiques
robustes. En théorie de la détection, la procédure la plus efficace pour détecter
un signal dans des données bruitées est le rapport de vraisemblance. Ici, je
propose trois tests, tous basés sur cette procédure optimale pour effectuer des
détection systématiques de binaires dans des images. Ces procédures sont
applicables aux kernels phases extraites à partir de n’importe quelle image.

Nous nous sommes concentrés sur des images de naines brunes froides
du télescope spatial James Webb (JWST), afin de prédire les performances en
détection de compagnons de ces objets. Jusqu’à maintenant, l’observation de
ces naines, dites de type Y a été compliquée par leur faible température et
luminosité, qui rend leur observation très difficile dans le proche infrarouge,
le domaine de prédilection des observatoires au sol. Grâce à sa grande
sensibilité et stabilité, JWST pourra observer ces objets avec une précision
jusque là jamais atteinte. Grâce à cette stabilité, les images produites par
JWST sont des candidates idéales pour des observations kernel.

Pour ces données, nous montrons que des détections de binaires sont pos-
sible à des contrastes pouvant atteindre 10−3 à des séparations correspondant
à 1λ/D, qui est communément admise comme la "limite de résolution“ d’un
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télescope formant des images. Ces performances font de l’interférométrie
kernel une méthode performante pour la détection de binaires de faible in-
tensité. Ces limites dépendent fortement du flux disponible, qui détermine
l’erreur sur les valeurs de flux mesurées au niveau de chaque pixel, et, par ex-
tension les erreurs qui affectent les kernel phases. Pour JWST NIRISS, dans le
cas le plus favorable, c’est à dire la cible avec le plus haut flux pour laquelle il
est possible de former des images sans saturation du détecteur, les contrastes
auxquels il est possible de détecter un compagnon atteignent 10−4 à 1 λ/D
avec un taux de faux positif inférieur à 1%.

Finalement, en annexe, je montre que la dégradation des limites de détec-
tion aux faibles séparation peuvent être attribuées à une dégénérescence entre
la signature d’une binaire et une erreur de tip-tilt sur la phase en plan pupille,
qui elle même correspond à un déplacement de l’image sur le plan focal.
Comme cette signature est tuée par la transformation kernel, et correspond
à un décalage de l’image, elle peut être considérée comme une limite fonda-
mentale à la détection de compagnons à très faibles séparations (> 0.25λ/D).
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Abstract (english)

High angular resolution observations (both in interferometry and imaging)
are obtained by measuring a complex quantity, corresponding to the Fourier
transform of the spatial intensity distribution of the observed object. For
every high angular resolution observation technique, the measurement of the
phase of this quantity is limited by the optical path difference introduced by
the instrument, especially on the ground, where atmospheric turbulence leads
to large errors. This thesis work is built around kernel phases, observables
that are largely insensitive to these perturbations.

In this thesis work, I focused on the detection of binaries from kernel
phases extracted in images, using robust statistical methods. In detection
theory, the most efficient procedure to detect a signal in noisy data is the like-
lihood ratio. Here, I proposed three tests, all based on this optimal procedure
to perform systematic detections of binaries in images. These procedures can
be used on kernel phases extracted from any image.

The use case we chose to evaluate these techniques was images of cold
brown dwarfs produced by he James Webb Space Telescope (JWST), to predict
the detection performances of companions around them. Currently, observa-
tion of these cold, Y type dwarfs has been made difficult by their very weak
luminosity and temperature, which make observing them very difficult in the
near infrared, the preferred domain of AO corrected ground based observato-
ries. Thanks to its great sensitivity and stability, JWST will be able to observe
these objects with the greatest precision achieved yet. This stability makes
images produced by this telescope ideal candidates for kernel analysis.

For these images, we show that binary detections are possible a contrasts
that can reach 10−3 at separations corresponding to 1λ/D, often considered
to be the resolution limit of a telescope. These contrast detection limits
make kernel interferometry a powerful method for the detection of low flux
binaries. These detection limits strongly depend on the available flux, which
determines the error level on each pixel, and therefore the noise that affects
the kernel phases. For JWST NIRISS, in the most favourable case, that is,
the target with the highest flux for which the detector does not saturate, it is
possible to detect companions at a contrast of 10−4 at 1λ/D.

Finally, in appendix, I show that the degradation of the contrast detection
performance at low separation can be attributed to a degeneracy between the
signature of a binary and a tip-tilt error on the pupil plane phase. Such an
error corresponds to a displacement of the image on the focal plane. Because
this signature is killed by the kernel transformation, and corresponds to a shift
of the image, it can be considered to be a fundamental limit tot he detection
of companions at very low separations (> 0.25λ/D).
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Introduction

The birth date of modern astronomy could be set at the first use of a tele-
scope for night sky observations by Galileo around 1609. For the first time,
astronomical observations where not limited to the power of the unaided
eye. Although telescope design and performance evolved for the next two
and a half centuries, these telescopes were still very much an extension of the
human eye, and required an observer to peer at the sky through an eyepiece.
This changed with the apparition of photography in the mid 19th century,
which enabled observers to store and share objective reproductions of their
observations. More recently, photographic plates were replaced by digital
detectors, allowing for an advanced mathematical treatment of images. Al-
though many other observing techniques have emerged, images remain a
staple of observational astronomy to this day, and for good reasons: they are
extremely information rich, and, as a direct extension of our sense of sight,
are very easy to interpret and understand.

To analyse images, one can consider them to be a "perfect" representation
of a scene, meaning the telescope itself is assumed to be a perfect image form-
ing device, that merely projects a scene of the sky on a focal plane, where it
is captured by a detector. This approximation can be valid in some circum-
stances, for instance if the field of view is very large, the size of the resolution
elements can be neglected, and the scene dominates the obtained image.
However, for high angular resolution observations, this approximation falls
apart, as the effects imposed by the observatory come to dominate the image.

These effects can be broken into two main components: diffraction, and
effects of optical defaults. Diffraction is inherent to the telescope, and is a
function of the geometry (the shape and the size) of the entrance aperture.
Any system is subjected to diffraction, which determine the highest image
quality possible. The diffraction limit can only be improved upon by ob-
serving at shorter wavelengths, or by increasing the size of telescopes. As
it is improved, the relative importance of other factors that limit the image
quality, such as optical defaults increases.

For big ground based telescopes, the resolution attainable is limited not
by diffraction, but by atmospheric effects. The atmosphere is in constant
movement, with eddies forming at different scales. This movement can be
easily observed in smoke of steam: a column of smoke, be it produced by a
lit cigarette or a camp fire always ends up being broken up and dissipated
by this turbulence. In astronomy, the fact the atmosphere limits resolution
has been known for a long time, and limiting the amount of turbulence
has been a major concern in siting observatories for centuries. Concepts of
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Figure 1: What Tintin notices here is the absence of twinkling
of the stars seen from the surface of the Moon, which is an effect

of atmospheric turbulence.

Figure 2: Images of NGC 2261 taken with the Hale telescope in
1949, and by the Hubble Space Telescope in 1999. Even though
the Hale telescope is twice the size of Hubble, it produces less
sharp images. The atmosphere explains this difference: the 1949
image is limited by atmospheric effects, while the 1999 Hubble

image is diffraction limited.

space telescopes, for instance have been proposed as soon as leaving Earth’s
atmosphere has been possible, in the 1940s. In 1953, Hergé had Tintin note
how stars seen from the surface of the Moon do not twinkle in the Explorers
on the Moon album quoted in Fig. 1.

To overcome this limit, three approaches are commonly employed. The
first one is to overcome the atmosphere by avoiding it altogether, using a
space based observatory. This approach, employed for example by the space
telescope Hubble have enabled a spectacular leap in resolution, as illustrated
in Fig. 2. Other, less costly methods have also be employed. Historically,
the first one to be employed may have been interferometry, which consists
in simplifying the image so that the effects caused by an observed object can
be separated by those caused by optical defaults. This term encompasses
a family of techniques, which can enable to the recovery of more or less
information on the observed object, with different degrees of robustness to
optical defaults. Most recently, a technique have emerged that can correct
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the atmospheric turbulence, adaptive optics, or AO. Although it has been
experimented with since the 1980s, the past decades have seen the first time
AO systems have become able to correct images well enough to restore the
diffraction limit on images acquired with large, ground based telescopes.

With AO and space based observations, it becomes possible to adapt
some techniques carried over from interferometry to analyse images, and to
produce a set of interferometric observables that are robust to small optical
defaults, called kernel phases. Kernel phases rely on modelling the propaga-
tion of optical defaults in a pupil plane to the phase of the complex visibility
of the image.

My work during this thesis has focused on the extraction, and, most im-
portantly on the statistical treatment of these observables. In this text, I
focus on statistical detection of binaries using unsaturated images obtained
in non-coronagraphic mode. This is especially useful at very close separa-
tions, where light leakage from coronagraphs become important, and the
bright diffraction pattern of the central source tends to drown the image of
surrounding structures.

Being quite new, the kernel method produces observables that have to be
understood, and treated appropriately to produce useful scientific results. For
once, the distribution of the errors that affect kernel phases must be known.
Once this is done, systematic detection procedures can be employed to both
determine whether an object is a binary, and its parameters.

I then show a practical application of these tests on kernel phases for
the detection of companions to Y type brown dwarfs. Y dwarfs are little
known object (with a small population of a few dozen objects detected to
date). Determining their multiplicity rates could help better understand
the physics of star formation to probe the bottom of the mass distribution.
Observing them from the ground is however difficult because of their very
low flux, especially in the near infrared. The James Webb Space telescope
should alleviate these difficulties, and allow for much better observations
of these objects. These detection procedures have proven to be an effective
complement to the JWST coronagraphs, as they can reveal companions at a
fraction of the separations accessible to them.

One of the techniques that exemplify this approach is interferometry. In-
terferometry is able to recover information about the spatial structure of
objects, but does not use images per see. It relies on a combination of the
light of several telescopes to recover very specific spatial information, not in
the form of images, but of visibilities. The aspects of the spatial structure of
the object, or visibilities the method recovers is set by the aperture configura-
tion. This technique therefore comes with a degree of robustness by design.
Furthermore, interferometry and imaging can be described with a common
mathematical framework, enabling the adaptation of interferometry-specific
methods to images.

This dissertation comports three chapters. Chapter 1 presents the problem
of high resolution in Section 1.1 and introduces the interferometric concepts
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and the kernel method in Section 1.2. Chapter 2 introduces the mathematical
framework allowing the construction of kernel phases in the small aberration
regime in Section 2.1, presents kernel phases in Section 2.2, and the errors
that can affect them in Section 2.3. Chapter 3 presents the statistical tools I
have developed to detect features using kernel phases, with an introduction
to statistical detection in Section 3.1, Section 3.2 then introduces hypothesis
testing, and present three different tests adapted to the detection of binaries.
Section 3.3 examines a practical use case: the detection of binaries in JWST
images of cool brown dwarfs, and Section 3.4 gives the expected detection
performance for each of the proposed tests, taking real world Y dwarfs.
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Chapter 1

Image formation, interferometry
and the limits to resolution.

Modern astrophysics is a diverse and rich scientific discipline which attempts
to understand the Universe by combining observations, experiments and
models, and has been in many ways driven by technological progress. For
thousands of years, the only direct observation tool available to astronomers
was their own sense of sight. Compared to the tools available to astronomers
in the twenty-first century, the unaided eye is a limited instrument: it can only
detect a few thousand stars out of the hundred billion in the galaxy, is sensitive
to only a tiny slice of the electromagnetic spectrum, and its resolution is too
low to resolve the nearest planets, and distinguish them from distant stars.
In this chapter, I present a brief overview of the physical processes that limit
angular resolution and of the techniques that can improve it, with Section
1.1 explaining the concepts of resolution and how images are formed in
Section 1.1.1 and how the wave nature of light naturally limits the resolution
attainable by a telescope in Section 1.1.2. Section 1.2 shows how the problem
of resolution can be reframed in the Fourier domain, and presents techniques
exploiting the Fourier domain information: speckle interferometry, seen in
Section 1.2.1, aperture masking interferometry, see in Section 1.2.2, kernel
phase interferometry (the method we focus on in this dissertation) in Section
1.2.3, and long baseline interferometry in Section 1.2.4.

1.1 Image-forming telescopes and angular resolu-
tion

Four hundred years ago the invention of the telescope suddenly enhanced
our observing capabilities. The first recorded use of this instrument for
astronomical observations, by Galileo Galilei sparked a scientific revolution.
In the span of a few weeks, Galileo discovered the phases of Venus, Sun spots,
the rotation of the Sun and the satellites of Jupiter. These discoveries upturned
cosmological models dating back to Antiquity, and propelled astronomy into
the modern era. Since then, progress in astronomy have been closely linked
with improvement of telescope design, and the worldwide community of
astronomers is now looking forward to the completion of 30-metre class
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Figure 1.1: TOp: reproduction of the two-lens telescope used by
Galileo in his observations of the moons of Jupiter, the phases
of Venus and sun spots in 1609, image courtesy of the Museum
of Applied Arts & Sciences, Sidney, Australia. Bottom: rendering
of the Extremely Large Telescope(ELT), under construction at
Cerro Armazones, Chile. Image courtesy of Swinburne Astronomy

Productions/ESO

telescopes, such as the European Extremely Large Telescope (E-ELT) with its
39 metres wide primary mirror in Chile (McPherson et al., 2012), or the Thirty
Meter Telescope (TMT) in Hawaii (Usuda et al., 2014). From the first aid to
human vision to these next generation observatories, the collecting area has
been multiplied by two million and the maximum angular resolution by 1400.

1.1.1 Image formation

Telescopes are image-forming devices: the information they provide is an
estimation of the brightness distribution of the sky. Prior to the second part
of the nineteenth century, images would ultimately be formed in the eye of
the observer, who would be an integral part of the observing chain. With
the advent of photography, images could be formed on photosensitive plates
for later interpretation, allowing for the separation of the observation and
the interpretation of its results. After being used for a century, these plates
were replaced with electronic detectors, that dematerialise the information
and allow for its near instantaneous sharing, and digital processing.
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An essential property for an image is its angular resolution, or the smallest
details it can help discerning, which governs the amount of spatial informa-
tion that can be obtained while observing a given field of view. The resolution
is expressed as the angular size of this smallest discernible feature. It is linked
to the size of the image of a luminous point on the focal plane. In practice,
this spot is never a point, and forms a pattern of a given size and shape,
called the point spread function, or PSF. The size of the PSF in relation with
the plate scale1 can be used to approximate the maximum angular resolution
afforded by a given telescope using Rayleigh’s criterion, which states that the
maximum angular resolution afforded by a telescope is determined by the
diameter of the core of the PSF (Rayleigh, 1879). This principle is illustrated
in Fig. 1.2, where it is apparent that the two point sources can be easily
distinguished if they separated by more than a diameter of the core of the
PSF.

For the most part, the design of telescopes relies on geometric optics, where
light is described as a collection of rays propagating in straight lines, which
are deviated either by reflection, where a ray hits a mirror and is reflected
in a direction which depends on the orientation and shape of the mirror,
or by refraction, where a ray crosses a boundary between two mediums of
different refraction indices, with the shape of the surface and the refractive
indices of the medium controlling the deflection of the ray. Lenses, mirrors
or a combination of the two are arranged and shaped to guide the light from
the pupil to a focal plane, where an image is formed.

Figure 1.2: Rayleigh’s resolution criterion states that two
sources are resolved if their separations are at least equal to
the distance between the maximum and the first minimum of
the PSF, as is the case on the central image. Here, d,the angu-
lar distance between the two source points is expressed in half

diameters of the core of the PSF.

1The plate scale links the angular size of a given feature on the sky to the physical size of
this feature on an image formed on the focal plane.
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In the geometric optics description, the resolving power is limited by the
ability of the optics to focus the light from a point of a scene on a single
point of the focal plane. This description does not exclude the possibility of a
punctual PSF, and thus of infinite resolution, as long as magnification is high
enough and the placement and construction of the optical system perfect. In
reality, the extent of the PSF is constrained by the undulatory nature of light
through diffraction.

1.1.2 Diffraction: a fundamental limit created by the wave
nature of light

In the context of astronomical observations, diffraction was predicted by
Fresnel (1823), and first observed by Herschel (1828), who conducted a series
of experiments where he would observe a bright star with a telescope, and
change the diameter of the entrance aperture. In the purely geometrical optics
description, reducing the size of the aperture improves the optical quality of
the instrument, as it diminishes the impact of optical defects. On the contrary,
Herschel observed that:

When the aperture was much reduced (as to one inch, for a telescope
of 7 feet focal length) the spurious disc was enlarged to a planetary
appearance, being well defined, and surrounded by one ring only, strong
enough to be clearly perceived, and faintly tinged with colour.

Two things are of note there: firstly, the size of the diffraction pattern
(called the "spurious disk“ in the quoted passage) increases as the diameter
of the telescope aperture is decreased. Secondly, the coloration of the rings
indicates that diffraction is wavelength dependent.

Diffraction can be explained using the Huygens-Fresnel principle, where
each point of the entrance aperture of the telescope is treated as a coherent
emitter. Aberrations, and other optical defaults can be described as affecting
the phase and amplitude of these emitters, mainly by imposing phase delays
on these virtual emitters, depending on their position on the pupil. An
optical apparatus that can form an image works by placing the focal plane at
the optical infinity of the aperture. In this case, the complex amplitude of the
light on the focal plane is the coherent summations of the complex amplitudes
across the whole entrance aperture, as the light originating from each point
in the aperture interferes with the light originating from every other point.
The phenomenon of interference is illustrated in Fig. 1.3, for two emitters
producing waves in water. The same fundamental principles apply for every
other wave, including the electromagnetic fluctuations making up light.

Summing the complex amplitudes of the electric field across the entrance
aperture is equivalent to taking the Fourier transform of the complex intensity
across the aperture: the electric field at each point of the aperture is considered
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to oscillate at a given frequency, amplitude and phase.2 During an exposure
to form an image, this amplitude is averaged over a long timescale compared
to the typical oscillation period of the electric field that makes up light. Thus,
the image on a focal plane placed at infinity compared to the pupil can be
written

I = |F (P)|2 (1.1)

with P the complex amplitude across the pupil.
The diffraction pattern produced by light after passing through a circu-

lar, unobstructed aperture is called an Airy disk. After being observed by
Herschel, its shape was mathematically determined for a telescope with a
circular aperture by Airy (1835). The Airy disk comports rings of decreasing
intensity as the distance from the brightest part of the image increases. For
monochromatic light, the intensity of the darker parts of the rings goes down
to zero. The size of the central patch, defined as the radius of the ring formed
by the first zero of Airy’s function is given by the relation

R = 1.22
λ
D
, (1.2)

where D is the diameter of the entrance aperture, and λ the wavelength at
which the observation is made. The description of rings tinged with colour
made by Herschel corresponds to a superposition of the diffraction patterns
created for all the wavelengths that constitute white light.

Although daily life is replete with overlapping light sources, we do not
usually observe interference fringes. The ability of two fields to interfere is
estimated by a quantity called the mutual coherence: to produce sustained
interference patterns, two light sources need to be mutually coherent. If the
waveform of either of both source changes rapidly, the interference pattern
they produce also changes at a speed similar to the frequency of the incoming
waves. All light sources, except for very high quality lasers are mutually
incoherent, because light is emitted by semi random processes at the atomic
level. Since there is not physical process synchronising the emission of two
point on the filament of a light bulb or in the photosphere of a star, every point
in any given light source emits light that is mutually incoherent with the light
emitted at any other point. The only way to produce interference with light is
therefore to have it interfere with itself, by splitting it into different beams that
are later recombined, with path difference within the coherence length. The
coherence depends strongly on the nature of the source. with lasers achieving
several centimetres in the optical domain. For natural, polychromatic sources,
the coherence length is governed by the width of the considered spectral band
δλ, and is given by λ2/δλ.

2Polarisation is another property of light, stemming from the directionality of the electric
field. It has many relevant applications in astrophysics, since it can help constrain some
physical and chemical properties of sources, but is not discussed in this manuscript, where
all light is considered to be non-polarised.
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Figure 1.3: Photography illustrating the phenomenon of inter-
ference on the surface of water. Two sources of excitation pro-
duce two systems of waves. When waves meet, they interfere,
either constructively (amplifying oscillation) or destructively
(the waves cancel each other). In this case, the interference re-
sults in the formation of calmer zones, which seem to radiate
outward from the sources of the oscillation. Berenice Abbott,

Interference of Waves, 1958-61, image courtesy of MoMA

As a result of diffraction, a point on a scene produces one PSF, centred on
a position a focal plane, linearly dependent on the position of the said point
on the scene.3 Mathematically, this translates as the image being the result of
the convolution of the spatial intensity distribution making up the scene and
of the PSF

I = O ~ PSF. (1.3)

This relation means the resolution attainable with a telescope is limited by
the knowledge of the PSF, as well as by its size (a smaller PSF yields a
higher resolution). The extent of a PSF dominated by diffraction is directly
proportional to the inverse of the size of the entrance aperture, but the shape
of said aperture also plays a crucial role.

1.2 Resolution in the Fourier domain

The way the PSF and the object combine to form an image can be made more
explicit by considering the Fourier transform of the image, as the Fourier
transform of the convolution of two functions is the product of the Fourier
transforms of each function. Thus, the relation Eq.

3This thesis will not get into the cases where the PSF changes depending on the position of
source of light, such as for fields of view greater than the isoplanatism angle, or coronagraphic
observations.
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eqrefeq:convol can be transformed into

F (I) = F (O) × F (PSF). (1.4)

F (I) is the complex visibility measured by the telescope, and is also noted
V. F (O) is the complex visibility of the object, the information an observer
attempts to recover, also notedV0. F (PSF) is the optical transfer function, or
OTF of the telescope, and encapsulates all the effects caused by the telescope
and by the atmosphere.

In the Fourier domain, spatial information is described not in terms of
geometrical position, but as a collection of spatial frequencies. Higher spatial
frequencies are associated with finer details, and lower spatial frequencies
with larger structures.

The amplitude of the OTF of a telescope is a gain on the complex visibility
of the object, for each spatial frequency. For spatial frequencies higher than
D/λ, the gain is zero: all spatial frequencies higher than this limit are filtered.
This is the true limit to spatial resolution. This limit does not necessarily
preclude the observation of features smaller than λ/D, provided they are
associated with a complex visibility that exists at spatial frequencies smaller
than D/λ. This recovery is easiest for objects with a structure that can be easily
parameterised, such as a disk or binary. Thus, in the Fourier domain, there is
no hard resolution limit per se, but the recovery of spatial information for very
small features becomes more and more limited by the noise on the complex
visibility associated with the image, as the amplitude of the complex visibility
of a smaller spatial feature becomes smaller at smaller spatial frequencies. The
practical resolution is limited by the signal to noise ratio for the measurement
of the complex visibility at the spatial frequencies sampled by the aperture.

For centuries, the resolution attainable with telescopes was not limited by
diffraction, but by the atmosphere. It is in a state of constant agitation, as it
constantly seeks thermal equilibrium. This creates pockets of air at slightly
different temperatures, and therefore different refraction indices. Thus, the
light reaching different points of the entrance aperture is affected by different
delays, causing the PSF to deviate from what it would be in the absence of
atmospheric effects. These delays are random, but they exhibit correlations
at small spatial scales. The distance over which two points in the aperture
experience similar delays is approximated by the Fried parameter r0 (Fried,
1966).

1.2.1 Speckle Interferometry

The atmosphere evolves on timescales typically much shorter than the ex-
posure time usually required for useful observations, with the coherence
time of the atmosphere being measured in milliseconds, and most astronom-
ical observations relying on exposures seconds or longer. For instance, at
λ = 500nm, Lawrence et al. (2004) reports coherence time values ranging
from 2.9 ms at Mauna Kea to 7.9 ms on Dome C in Antarctica. Because of
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Figure 1.4: The optical transfer functions for the Subaru tele-
scope, the Very Large Telescope, The Hubble Space telescope
and the James Webb Space Telescope. The diameters of all of
these apertures is arbitrarily taken at 1. At spatial frequencies
larger than D/λ, the OTF drops to zero, giving a resolution limit
close to Rayleigh’s criterion (although spatial information can
be recovered beyond this limit). For a aperture made up of a pair
of holes, or pupils, there is a gap in the coverage of some spatial
frequencies, while the OTFs for full pupil telescopes allow the

sampling of every spatial frequency up to the cutoff.
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the long exposures compared to the coherence time, the typical observation
through the turbulent atmosphere is an incoherent superposition involving
all the fluctuation of the turbulence throughout the exposure. On the focal
plane, the long exposure PSF is a seeing spot, of a size λ/r0, with a loss of the
spatial information for smaller features.

This loss can be explained in the Fourier domain. Phase delays in the
aperture affect mostly the phase of the OTF, and Fig. 1.4 shows how a spatial
frequency can be linked to a pair of points in the pupil. For spatial frequencies
corresponding to an ensemble of points farther apart than the Fried parameter,
the phases differences are uncorrelated, and thus the modulus of OTF for these
spatial frequencies tends towards zero for long exposures. For smaller spatial
frequencies, the OTF is non zero thanks to the correlation in the fluctuations
of the phase. For long exposures, atmospheric turbulence therefore causes
higher spatial frequencies to be irremediably lost. On the focal plane, this
loss translates into the formation of a seeing spot. The size of the seeing spot
depends on the weather, the wavelength and the observation site, but rarely
dips under the arcsecond in the visible. This means that resolution wise, in the
visible, increasing the diameter of the primary mirror of a telescope beyond
30cm or so bears no advantage resolution-wise if no technique is employed
to deal with the effects of atmospheric turbulence.

One way to counter the adverse effects of atmospheric turbulence is to
use exposure times shorter than the time of coherence. The short exposure
images obtained in this case contain features of a size λ/D, called speckles
(Goodman, 1986): small angular features are not so much lost as they are
scrambled. These speckles are dispersed in the focal plane, and are the
brightest in a region of the size of the seeing spot. The evolution of the
atmospheric turbulence causes these speckles to move around randomly on
the timescale of the coherence time of the atmosphere. In terms of Fourier
domain information, for short exposures, the averaging of the OTF does not
occur. Instead, the random phase fluctuations are frozen in time, and the
amplitude of the OTF does not average to zero for spatial frequencies higher
than r0/λ. By summing the squares of the observed complex visibilities of
many short exposure images, the modulus of the complex visibility of an
observed object can be recovered at spatial frequencies higher than the long
exposure limit of r0λ, although at the cost of an attenuation of the modulus
of the recovered complex visibilities for high spatial frequencies compared to
the turbulence free case. This technique is known as speckle interferometry
(Labeyrie, 1970), and was the first one to allow recovery of spatial information
beyond the seeing limit for full pupil telescopes.

if speckle interferometry allows for the reconstruction of the amplitude
of the complex visibility of an object, squaring the Fourier transforms of the
short exposure images intrinsically destroys the phase information of the
complex visibility. The phase fluctuations created by atmospheric turbulence
also badly scramble the phase of the measured complex visibility, as these
fluctuations are very important (the optical path differences, or OPDs across
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a large pupil can be several wavelengths). In some circumstances, this phase
noise can be limited by understanding how the phase noise propagates from
random OPDs across the pupil to the phase of the measured complex visibility.
As shown in the rightmost pupil in Fig. 1.4, a pupil composed of two holes
can be considered to sample only one spatial frequency, which depends on
the relative positions of the holes. The vector that links the two holes in the
plane of the aperture, and by extension the unique spatial frequency this pair
can be said to sample is called a baseline. The phase of the OTF for this spatial
frequency is determined by the OPD between the two holes. In the case of
a full pupil, this description also holds, but then the OTF for given spatial
frequency is the result of the sums of the OTFs of every possible pair of points
in the aperture that sample said spatial frequency. For this reason, a full pupil
is called redundant: each spatial frequency is sampled by a large number of
pairs of points across the entrance aperture. Indirect measurements of the
phase of the complex visibility are also possible by using the correlations of
the Fourier transforms of images (Lohmann, Weigelt, and Wirnitzer, 1983;
Ghez et al., 1990).

1.2.2 Aperture masking interferometry: turbulence-proofing
a telescope

Redundancy makes the phase information of the complex visibility of an
object difficult to recover, since the phase of the OTF for a redundant aper-
ture at a given spatial frequency is a non linear combination of the phases
shifts imposed by turbulence for every pair of points making up the entrance
aperture. In the absence of corrections for the effects of turbulence, the mea-
surement of complex visibilities can be improved by mitigating redundancy
in the aperture. This is done through a technique called aperture masking
interferometry, where a non-redundant mask (NRM) composed of an array
of holes such as each pair of holes samples a single spatial frequency, with
each hole smaller than r0 is placed in a pupil plane, to alter the aperture’s
geometry. This technique was originally developed in the early 19th century
(see Tuthill (2012) for an overview of the history of the technique) and used
by Stephan (1874), and to make the first stellar diameters measurements.

The non-redundant nature of the aperture affects the recovery of both the
modulus and the phase of the complex visibility of the observed object. The
amplitude of the OTF of a non-redundant aperture is independent from its
phase, thus the amplitude of the complex visibility of an object can in principle
be recovered from a single short (below the coherence time of the atmospheric
turbulence) exposure image, as shown in Fig. 1.5. The phase information can
also be recovered using the closure phases technique, which exploits the fact
there exists a linear relation between the phase of the OTF for each spatial
frequency and the phase shifts imposed by turbulence for each of the holes
making up the non-redundant aperture (Jennison, 1958). Therefore, non-
redundant interferometry enables the recovery of the full complex visibility
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Pupil shape Image Phase of mesured visibility Modulus of mesured visibility

Figure 1.5: The image and the associated complex visibility
obtained using a non-redundant aperture mask (NRM) and the
full pupil of a telescope, in the absence of aberrations (first and
third rows), and through atmospheric turbulence (second and
fourth rows). In both cases, the observed object is a double
star. For a redundant pupil, the object visibility ends up badly
scrambled by aberration, both in phase and in modulus, while a
non-redundant configuration preserves the modulus better. On
the downside,the non-redundant configuration occludes most

of the area of the pupil, severely limiting transmission.
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information (Nakajima et al., 1989) by combining closure phases, with the
measurements of amplitudes.

1.2.3 Kernel phase interferometry

The issue of atmospheric perturbations the techniques of speckle interferome-
try, non-redundant aperture interferometry and bispectral analysis originally
set out to solve have been largely overcome by technical progress in the
correction, or even avoidance altogether of atmospheric effects via adaptive
optics and space telescopes. For high angular resolution imaging, it is now
possible to obtain "diffraction limited" (images close to the diffractive theo-
retical resolution limit) from 8 meter class telescopes thanks to adaptive optic
(AO) systems, such as the Gemini Planet Imager on the Gemini South Tele-
scope (Macintosh et al., 2006), SPHERE on the Very Large telescope (Dohlen
et al., 2006) or SCExAO on the Subaru Telescope (Lozi et al., 2018). In space,
the upcoming James Webb Space Telescope (JWST) will rival current ground
based 8 metre class telescopes with a 6.2 metres primary mirror. However,
although telescopes and corrections systems have progressed to the point
that the OPD is smaller than a wavelength across the aperture, these errors
have not been brought down to zero, and the uncertainty these residual OPD
bring are still significant to the recovery of high angular resolution informa-
tion. In particular, residuals are still a large component of the error budget
for high contrast imaging, where the object is dominated by a central star,
and thus its complex visibility has a amplitude and close to 1 and a phase
close to 0, and even a small noise from the OPD can be significant. Aper-
ture masking interferometry thus remains a popular observation method in
the age of extreme adaptive optics and space telescopes, thanks to the self
calibration of the phases of the visibilities made possible by closure phases.4

Gauchet et al. (2016) shows how NRM observations on SPHERE can com-
plement coronagraphic observations to probe separations below λ/D while
providing contrasts of the order 10−3 on a variety of stellar disks, JWST will
also be capable of making NRM observations (Sivaramakrishnan et al., 2012)
to probe small separations, although, as I will show in the latter part of Chap-
ter 3, it is also possible to obtain compelling performance without the use of
a mask.

For AO corrected of space telescope images, the OPDs across the aperture
are generally less than a wavelength. In this regime, redundant configurations
no longer suffer the loss of a linear relation between the phase of the OTF and

4In the case of adaptive optics, correction residuals can reach several hundreds of nanome-
tres of OPD (Kooten, Doelman, and Kenworthy, 2020), which corresponds to a significant
fraction of the wavelength for observations in the near infrared. In the image, these residuals
create faint speckles, which are still significant compared to the typical flux of many com-
panions, especially behind a coronagraph which filters out most of the on-axis light of the
star, but do not affect the speckles. For high contrast applications, the contribution of high
performance AO is invaluable, but self calibration, such as provided by closure phases with
NRM interferometry is still desirable.
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Figure 1.6: Top: entrance pupil, composed of either a collection
of holes, or of a continuous entrance pupil. Bottom: interfer-
ence patterns for these arrangements. As the number of holes,
arranged on a disk increase, the interference pattern they form
gets closer and closer to the diffraction pattern of a circular
aperture. This is an ideal case, shown for monochromatic light
with a coherence length much greater than the maximum path

difference.

the OPDs. Furthermore, this linear relation can be used on full pupil images.
This is done thanks to a discrete model as the aperture, as the image produced
by a a telescope with a given aperture geometry can be approximated as
the interference figure produced by an array of pupils places in a way that
emulates the aperture’s geometry, as shown in Fig. 1.6. The phase of the
OPD can then be modelled by a set of linear relations between the OPDs
over each of the virtual pupils used to represent the aperture, and linear
combinations of the phases of the complex visibilities sampled by the array
of virtual pupils can be constructed from these relation to produce observables
that are robust to the OPD over the aperture. These observables are called
kernel phases (Martinache, 2010), the main subject of this dissertation. Kernel
phases do not require the introduction of a non-redundant mask, allowing
for more flux to reach the detector (a NRM typically cuts over 80% of the
incoming flux). They also permit the exploitation of the full Fourier domain.
Their construction is explained in more details in the first part of the next
chapter, and Chapter 3 presents methods for the statistical treatment of these
observables, and constitutes the core of my contribution to the development
of this method.

1.2.4 Long baseline optical interferometry

On another front, optical interferometry has also emerged as a technique able
to provide even higher resolution than either imaging or NRM interferome-
try. This approach has been used for scientific observation as early as 1813
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with Thomas Young’s measurement of the diameter of human red blood cells
(Young, 1823). In astronomy, the first attempt at an interferometric obser-
vation was made by Édouard Stephan (Stephan, 1874), who, drawing from
the work of Fizeau (1868) masked the aperture of a telescope to overcome
the effects of atmospheric turbulence, performing the first documented astro-
nomical NRM interferometry observation. The potential of interferometry in
the improvement of the maximum attainable resolution lies however in the
possibility of extending the lengths of baselines beyond the limit of the diam-
eter of the aperture of a single telescope. The first step in this direction was
taken by Michelson and Pease (1921), who used a beam across the entrance
of a telescope on which two small mirrors would slide to augment its effec-
tive diameters. Over half a century later, Labeyrie (1975) achieved the first
successful recombination of the light of several telescopes,5 and opened the
way for long baseline optical interferometry, which provides resolutions well
beyond what current single mirror telescopes can achieve. Current optical
interferometric arrays can sample baselines hundreds of metres long. Matisse
for instance (Lagarde et al., 2006) can recombine the light collected by the four
8 metre telescopes at the VLTI, offering a simultaneous measurement of the
visibilities at 12 distinct spatial frequencies. The CHARA array (McAlister
et al., 1995) can form baselines up to 330m long. These arrays provide angular
resolutions in the optical domain way greater than any individual telescopes,
but at the price of a sparse coverage of the Fourier domain, which does not
preclude the reconstruction of images from their observations (e.g Zhao et al.
(2008)). The Hypertelescope concept aims at alleviating these issues by si-
multaneously recombining the light collected by a multitude of mirrors, to
make up a massive diluted telescope (Labeyrie et al., 2001).

5I leave aside the early experiments in intensity interferometry (Hanbury Brown and
Twiss, 1956) in this overview.
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Chapter 2

Kernel-phases: aberration robust
observables

The previous chapter presented an overview of different techniques aiming
at improving the resolution of astronomical observation. This thesis concerns
itself with the statistical treatment of kernel phases, constructed using images
acquired with apertures of an arbitrary geometry with small OPDs, such as are
obtained from ground based telescopes behind AO or space telescopes. In this
chapter, I explain the mathematical foundations that enable the construction
of kernel phases from such images.

I start by explaining the relationship between OPDs across pupils and
the complex visibilities they sample when placed to form various arrays in
Sec. 2.1, going up from a simple two pupils array in Sec. 2.1.1 to show how
the phase of the complex visibility of an object suffers from a fundamental
degeneracy with the shifts across each pupils. In Sec. 2.1.2, I explain how a
third pupil can help lit this degeneracy by allowing for the construction of
closure phases, and in Sec. 2.1.3, I show how for an array comprising four
pupils that sample the Fourier domain redundantly, there exists a regime in
which observables analogue to closure phases can be constructed from such
an array. Sec. 2.2 introduces kernel phases proper, where linear algebra is
used to construct observables robust to small OPDs across the aperture from
any redundant pupils array, and Sec. 2.2.2 briefly touches on the fact such
observables can also be obtained from the amplitudes of complex visibilities
extracted from an image. The final section, Sec. 2.3 presents the errors that
affect kernel phases, with Sec. 2.3.1 focusing on systematic errors, that stem
from kernel phase residuals, and Sec. 2.3.2 focusing on how noises at the
pixel level in the image propagate to kernel phases and on their modelling.

2.1 Interferometric visibilities and the impact of
OPDs

The fundamental relation the constriction of kernel phases stems from the
rearrangement of the convolution relation linking the PSF, the image and the
intensity distribution of an observed object via a Fourier transform, such as,
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as already written in Eq. (1.4), (1.4):

F (I) = F (O) × F (PSF). (2.1)

This allows to draw a direct equivalence between the object and it’s complex
visibility, with

V0 := F (O), (2.2)

the PSF and the optical transfer function or OTF of the optical system,

OTF := F (PSF), (2.3)

and finally the image and a measured complex visibility

V := F (I). (2.4)

Thus, as long as the convolution relation holds (i.e.for small enough fields of
view and distant objects), the formation of an image on the focal plane can
be considered equivalent to the measurement of a complex visibility. This
relation is quite direct for sparse interferometers, where the "PSF" is a set of
fringes. The amplitude and phase of the complex visibility is accessible as
the contrast and positions of these fringes respectively, but it also holds in the
general case, with PSFs resulting from the diffraction through a continuous
aperture rather than from the interference of light from a pair of holes.

The OTF decomposes into its phase and amplitude; called the modula-
tion transfer function (MTF) and the phase transfer function (PTF), which
modulate the phase and amplitude of the measured visibility, such as

OTF := MTFeiPTF. (2.5)

For ideal observing conditions, if the OPD across the aperture are zero, the
PTF is zero, and the MTF is the autocorrelation of the aperture. In the presence
of an non zero OPD, the PTF is non zero, and the MTF is lower for high spatial
frequencies for a redundant aperture.

2.1.1 Two pupil array

From an interferometric standpoint, the simplest aperture comports two dis-
tinct holes, or pupils of the same size. In this case, at the condition that the
variations in OPD across each of the pupil is small, and that the size of the
pupils is small relative to their separation, the aperture can be considered to
sample a unique spatial frequency, which correspond to the relative positions
of the holes. The longer the distance between the holes, the higher the spatial
frequency sampled, and hence the spatial resolution (keeping the SNR on the
measured complex visibility constant).

In Fig. 2.1, I show the Fourier plane sampling of the most basic inter-
ferometer, composed of two distinct pupils. This interferometer samples a
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Figure 2.1: This aperture composed of two pupils can be con-
sidered to sample a single spatial frequency, which depends on

the positions of the two pupils.

single baseline a, which corresponds to the vector linking the two pupils. The
interferogram produced by this disposition is a system of fringes, seen here
modulated by the diffraction pattern created by the circular pupils.

Throughout this dissertation, vectors and matrices will be used exten-
sively. Here is the notation convention I use: a lowercase of upper case letter
in regular typeface, such as a or A represents a real or a complex scalar. A
lowercase letter in a bold typeface, such as “a" represents a vector. Finally, a
bold, uppercase letter, like A represents a matrix.

The visibility V(a) measured by this interferometer is obtained from Eq.
(2.1). Thus,

V(a) =V0(a).OTF(a). (2.6)

The OTF for a is a result of the surface area of the two pupils and of the
OPD across them. By convention, MTF(a) can be set to 1 (in practice, the
amplitudes of observed visibilities are calibrated from a measurement of
the MTF, obtained by observing a point source). PTF(a) is the result of the
difference of the phase shifts on each pupil,

PTF(a) = ϕ1 − ϕ2. (2.7)

Thus, the complex visibility measured by this interferometer can be written

V(a) =V0(a)ei(ϕ1−ϕ2). (2.8)

By separating the complex visibility into its phase and amplitude,V := aeiφ,
we can independently link the phase and amplitude of the measured complex
visibility to those of the complex visibility of the observed object:

a(b) = a0(b)
φ(b) = φ0(b) + ϕ1 − ϕ2

(2.9)

Therefore, the amplitude of the complex visibility of the observed object is
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Figure 2.2: Example of the diffraction pattern and the Fourier
domain coverage of a three holes interferometer. Here, we can
see how each spatial frequency sampled by this interferometer

corresponds to a baseline, or a pair of pupils.

directly accessible, but its phase is directly linked to the OPD, or phase shifts
across each of the two pupils. Theoretically, this effect on the phase could
be calibrated, but is rendered very difficult in practice because of the fast
evolution of the OPDs. For a ground based observation, one would have to
switch every few milliseconds to a calibration source and the scientific source,
without relying on the position of the fringes formed by the observed object
to produce a reliable measurement of the phase of a complex visibility from
a two pupils interferometer.1

The phase noise corresponds to the differential phase shift between the
pupils. Thus, having the phase shift ϕ1 on the left hand side pupil in Fig. 2.1
and ϕ2 on the right hand side pupil is, from the standpoint of the complex
visibility measured by the baseline a, strictly equivalent to having the phase
shift ϕ1 −ϕ2 on the left hand side pupil, and no phase shift on the right hand
side pupil. This property generalises to any interferometric array: it is always
possible to define a reference pupil with no phase shift.

To obtain a reliable measurement of the phase, it is necessary to self
calibrate it, by using only the visibilities measured from the observation itself
rather than relying on calibration made using a separate source. This can be
done using closure phases, which involve three or more separate baselines.

2.1.2 Closure phases from a three pupil array

By adding a pupil to the two pupil interferometer, one can sample up to three
baselines. Since only the relative optical path difference governs the error on
the phase of the complex visibility, only two parameters govern the measured
phases of the complex visibilities. This is what makes the construction of a

1Current ground based interferometers do rely on the position of the fringes to stabilise
them and obtain reliable interferometric measurements, using a fringe tracker. This system
is the interferometric equivalent of adaptive optics. It improves dramatically the quality of
these observations, but destroys the absolute phase signal.
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single observable that depends in principle solely on the phase of the complex
visibility of the observed object possible.

Let us consider the array composed of three pupils represented in Fig.
2.2. Each spatial frequency corresponds to a vector linking two pupils, or
baseline: a, b and c. The phases of the complex visibilities sampled by this
array are written:

φa = φ0(a) + ϕ1 − ϕ2

φb = φ0(b) + ϕ2 − ϕ3

φc = φ0(c) + ϕ3 − ϕ1.

(2.10)

with ϕ1, ϕ2 and ϕ3 the phase shifts caused by the OPDs for each of the pupils.
Since a global phase shift that affects all of the pupils has neither an influ-

ence on the PSF nor on the complex visibilities measured, only the relative
optical path difference between the pupils counts. We can therefore arbitrarily
set ϕ1 := 0, and thus get

φa = φ0(a) + −ϕ2

φb = φ0(b) + ϕ2 − ϕ3

φc = φ0(c) + ϕ3.

(2.11)

Then, there is a linear combination of φa,φb and φc that cancels out the terms
due to the optical path difference:

φb + φa + φc = φ0(b) + ϕ2 − ϕ3 + φ0(a) + −ϕ2 + φ0(c) + ϕ3

= φ0(a) + φ0(b) + φ0(c).
(2.12)

This quantity is called a closure phase. One closure phase can be constructed
for every triangle linking 3 sub-apertures. Practical uses employ pupil ge-
ometries with more that 3 sub-apertures (typical numbers range from 9 to
17), to maximise the number of closure phases that can be constructed and
the coverage of the Fourier domain. On telescopes, the desired aperture ge-
ometry is obtained thanks to a non redundant mask, or NRM, placed on an
intermediary pupil plane. The technique that consists in recovering complex
visibility information, including closure phases from images obtained with
such masked apertures is called NRM interferometry.

Since closure phases are obtained from the phases of the complex visibilities
extracted from an image acquired behind a NRM, only the features that create
such a phase signature are evident in these observables. This means only
certain aspects of the structure of the observed object are revealed. Indeed,
the phase of the Fourier transform of on sky flux distribution is insensitive
to symmetrical features, which are encoded in its modulus. For instance,
the phase of the complex visibility of a centrosymmetric disk is zero: the
asymmetrical structures are made evident by the phase of complex visibilities.
Any centrosymmetric object has a null phase signature.
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Together with the visibility modulus, the closure phase makes it possible
to build a rich description of astrophysical sources. However, the Fourier
coverage remains sparse. The best solution to this sparsity problem is to
use a parametric model of the observed object. To avoid sparsity altogether,
one would need to use a denser disposition, such as a regular grid of sub
apertures. Such a geometry introduces redundancy, and it is not possible to
build closure phases from it in the general case. For small optical default
however, there exists a linear relation between small OPDs and the noise on
the phases of the visibilities they create.

2.1.3 "Closure phases“ from a redundant array

The kernel method relies on modelling a continuous aperture as an array of
regularly spaced pupils. This modelling approach is akin to considering a
discrete version of the Huygens Fresnel principle, where each point of the
aperture is considered to be an independent emitter. In the context of the
kernel method, the spacing of these virtual sub pupils is related to the quality
of the modelling, as a denser model gives a better description.

For most discrete aperture models, each baseline, or spatial frequency is
sampled several times, by many different pairs of pupils. This redundancy
places us in a regime where the method of closure phases cannot be ported
directly, since it relies on a non redundant sampling of the Fourier domain.
There is however a small OPD regime in which observables akin to closure
phases can be constructed from the phases of the complex visibilities.

Let us take a simple array of four distinct pupils disposed in a square,
shown in Fig. 2.3, where 4 distinct baselines are realised by 4 pupils. The
baselines a and b are realised two times in this case. If a baseline is realised by
several pairs of pupils, the resulting interference pattern on the focal plane is
the incoherent sum of the interference patterns produced by each pair. Since
the Fourier transform is a linear transformation 2, the complex visibility for
the corresponding baseline is the sum of the complex visibilities that would
be obtained by each of the pairs. For a given baseline l, the complex visibility
at the corresponding spatial frequency is thus

V(l) =

N∑
k=1

Vk(l), (2.13)

with the index k corresponding to each of the pupil pairs. This decomposes
into the contributions of the object and of the OTF written in Eq. (1.4)

V(l) =

N∑
k=1

OTFk(l)V0
k(l). (2.14)

2i.e. F
(

f (x) + g(x)
)

= F
(

f (x)
)

+ F
(
g(x)

)
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Since the visibility of the object is the same for every realisation of the same
baseline,

V(l) =V0(l)
N∑

k=1

OTFk(l). (2.15)

As seen in Eq. (2.7), the PTF for each pair of pupils is the phase shift imposed
by each pupil. The MTF is the autocorrelation of the pupils, but can be
arbitrarily set to one if all the pupils are identical. Noting δϕk the phase shifts
for each pair of pupils realising the baseline l, and using the decomposition
of the OTF in Eq. (2.5), we then get

V(l) =V0(l)
N∑

k=1

eiδϕk . (2.16)

The phase φ(l) of the measured complex visibility is affected by an additive
phase noise

φ(l) = φ0(l) + ∠
N∑

k=1

eiδϕk , (2.17)

where the symbol ∠ denotes the argument of the complex number it is placed
in front of. This additive noise is a non linear combination of the phase shifts
in the general case. If the phase shifts are small, it is dominated by the first
order of its polynomial expansion, and approximation

∠
N∑

k=1

eiδϕk ≈
1
N

N∑
k=1

δϕk (2.18)

can be made. The coefficient 1/N reflects the redundancy of the baseline. For
N = 1, the relation is exact.

Thanks to this approximation, observables akin to closure phases can be
constructed if the phase shifts are small enough, i.e. if the OPDs across
the pupils are small compared to the observation wavelength. This regime
is reached with observations made using high performance AO or space
telescopes.

Let us consider the simple 4 pupils configuration represented in Fig. 2.3.
The phases of the complex visibilities measured by the baselines a and b, c
and d are, taking ϕ1 := 0:

φ(a) = φ0(a) + ∠(ei(−ϕ2) + ei(ϕ4−ϕ3))

φ(b) ≈ φ0(b) + ∠(ei(−ϕ4) + ei(ϕ2−ϕ3))

φ(c) = φ0(c) + +∠ei(ϕ4+ϕ3)

φ(d) = φ0(d) + ∠ei(−ϕ3).

(2.19)



26 Chapter 2. Kernel-phases: aberration robust observables

ϕ1

ϕ2ϕ3

ϕ4

aa

b

b

c

d

Entrance aperture Interferogram

a

b

c

d

Aperture MTF

Figure 2.3: A redundant, 4 holes interferometer that realises 4
independent baselines. In this case, the baselines a and b are
sampled twice. Thus, the complex visibilities sampled at the
corresponding spatial frequencies are the sum of the complex

visibilities from each pair.

If the phase shifts ϕ2, ϕ3 and ϕ4 are small, the approximation Eq. (2.18) can
be used, and the observed phases can be approximated as

φ(a) ≈ φ0(a) +
1
2

(−ϕ2 + ϕ4 − ϕ3)

φ(b) ≈ φ0(b) +
1
2

(−ϕ4 + ϕ2 − ϕ3)

φ(c) = φ0(c) + ϕ4 − ϕ2

φ(d) = φ0(d) − ϕ3.

(2.20)

Using this now linear relation, it is possible to find combinations of the phases
of the complex visibilities for which the aberration terms cancel each other
out. The combinations

k1 = 2φ(a) + 2φ(b) + φ(d)
k2 = 2φ(b) + φ(c) − 2φ(d)
k3 = 2φ(a) − 2φ(b) − φ(c)

(2.21)

are independent from the error terms ϕ2, ϕ3 and ϕ4 at the first order. These
observables, which depend on the linear approximation of the phase of the
sum of complex numbers are called kernel phases.

In this example, the relation that yields a kernel phase can be arrived at
"by hand“, but in practice a redundant array is a pupil model, that comprises
hundreds or even thousands of pupils and of redundant baselines. To derive
kernel phase using such a model, a more systematic approach is needed.
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2.2 Kernel phases

2.2.1 Construction of kernel phases from an arbitrary array
using linear algebra

The construction of kernel phases relies on the determination of the linear
relations that approximate the propagation of the OPD (that causes phase
shifts across the apertures), to the phase noise on the visibility. Rather than
write a full system of equations, linear algebra can be employed to condense
these relations into a single one.

Looking at the example in the previous section, the relation Eq. (2.20) can
be rewritten by defining the measured phases vector

φ =


φ(a)
φ(b)
φ(c)
φ(d)

 (2.22)

while the phase shifts on each pupil are collected in the vector

ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 . (2.23)

The linear approximations linking the phase shifts on each pupil to the phases
of the complex visibilities Eq. (2.20) can then be written

φ ≈ φ0 + Aϕ, (2.24)

with A the transfer matrix

A =


−

1
2 + 1

2 −
1
2

+1
2 −

1
2 −

1
2

−1 0 1
0 −1 0

 . (2.25)

A set of kernel phases for this particular configuration can be found using an
algebraic kernel of the transfer matrix A, which us a base of the null space of
this matrix. Martinache (2010) uses the singular value decomposition of A,

AT = UWVT. (2.26)

The kernels matrix K is constructed by taking the columns of VT that corre-
spond to singular values (the diagonal terms of W) equal to zero, and for an
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orthogonal base of A.3.
For the purpose of creating a set of observables independent from OPDs

across the aperture, the important property of K is that it is the largest matrix
with linear independent rows such as

KA = 0, (2.27)

and therefore, the set of kernel phases defined as

k := Kφ (2.28)

is independent from the first order effects of the OPDs across the aperture,
giving, in the absence of noise in the image,

k ≈ Kφ0. (2.29)

Kernel phases can be easily constructed from an image with the appropriate
pixel sampling (more than two pixels per λ/D element) and the geometry
of the entrance aperture using the xara Python package4, which handles the
construction of the aperture model, of the transfer matrix and of the kernels
matrix. In the past years, the modelling of the aperture has been improved to
include pupils with different transmissions to better describe the edges and
fine details of the aperture (Martinache et al., 2020).

Since its emergence ten years ago, the kernel method has been used on
images from multiple large ground based telescopes, as well as from the
Hubble Space Telescope (Pope, Martinache, and Tuthill, 2013; Laugier et al.,
2019a; Kammerer et al., 2019; Pope, 2016). These practical uses have revealed
the presence of multiple stellar and substellar binaries, and allowed a precise
measurement of their parameters. So far, the method has focused on the
detection of stellar and substellar companions: a binary can be modelled with
three parameters, making the inverse problem less difficult to solve than for
more complex structures, such as protoplanetary disks. These objects are also
of scientific interest: the multiplicity of brown dwarfs for instance is not well
know (Leggett et al., 2017; Fontanive et al., 2018). Furthermore, measurement
of the relative positions of two objects enables the reconstruction of their
orbits and therefore the determination of their dynamical masses. This is
of particular interest for the determination of mass luminosity relations, to
constrain evolution models (Burrows et al., 2001). So far, the method has
focused on the detection of companions at contrasts typically below 102.
More ambitious programs push toward detection at higher contrast.

3Martinache (2010) separates the transfer matrix into a diagonal redundancy matrix and a
transfer matrix filled with values that are -1, 0 or 1. This approach has numerical advantages
for the computation of K, but the simplified approach presented here leads to a kernels
matrix K that lies in the same subspace, and is therefore equivalent.

4available at https://github.com/fmartinache/xara.
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2.2.2 Kernel amplitudes

A linear model of the propagation of the OPDs from an array of pupils to the
amplitudes of the complex visibilities can be constructed using the dispositions
of the pupils, as shown by Pope (2016). This approach enables the recovery
of all of the complex visibility information that can be separated from the
OPDs across a telescope’s entrance aperture. This approach relies on the
transformation of the multiplicative relation between the complex visibility
and the OTF into a sum, by taking the logarithm of the measured complex
visibility.

This approach does work in practice, and produces kernel amplitudes
largely independent from the phase shifts across the entrance aperture. How-
ever, the use of a logarithm means the relation between the pixel values across
the images and the kernel amplitudes is largely non linear, which complicates
the statistical analysis of these observables. This dissertation focuses on the
treatment of kernel phases, but adding amplitudes to the observables is an
exciting avenue for improving the method and obtain richer observables,
from which it may in principle be possible to reconstruct images that have
been "cleaned“ from the contributions of OPDs across the aperture.

2.3 Kernel phases errors

Since kernel and closure phases are constructed to be robust to optical de-
faults, one would expect the kernel phases extracted from the image of a single
star with a very small angular diameter to be zero. In practice however, this is
not what is observed, and kernel phases are never perfectly null. The origin
of this residual signal can be broken down into two categories. Firstly, pixel
level noise in the image, which also affects its Fourier transform, and thus the
complex visibilities extracted from said image. The other sources of residuals
are not as easy to pinpoint, as they result from a combination of many factors,
from atmospheric dispersion to aberration residuals.

Here, I provide an overview of these error sources, drawing from previ-
ous work by Ireland (2013), and how they can be estimated, and ultimately
mitigated.

2.3.1 Systematic errors

Although the kernel transformation does greatly reduce the contribution of
the OPDs in the kernel phases observables, it does not completely eliminate
them. Some optical defaults in particular can be considered systematic, and
consist of effects such as dispersion, low order residual aberrations in the
optical systems, or stray light due to unwanted reflections that create a weak
parasitic signal in the kernel phases. These effects make up systematic errors.
Some on these effects remain constant throughout the observation, and thus
the biases they introduce can be corrected via calibration: subtracting an



30 Chapter 2. Kernel-phases: aberration robust observables

estimation of the bias from the measured kernel phases allows it to be greatly
reduced, or even virtually eliminated if the defaults in the optical path do not
change too greatly between the acquisition of the calibration frames and of
the on-target frames. A typical estimation method is to use the kernel phases
obtained from an unresolved source (Pope et al., 2016).

Calibration does not necessarily provide a perfect correction of systematic
errors. Calibration frames also comprise pixel level noises, adding to the
noise affecting the science frames, and the biases are not necessarily stable
through time. For instance, aberrations evolve, as thermal effects lead to
deformation of the structure of the telescope, and the elevation of the target
may change over time, leading to a variation in atmospheric dispersion. A
possible solution to this issue is to commute as quickly as possible between
the object of interest and a calibration target, offering very frequently updated
estimates for the bias, at timescales smaller than those over which it evolves.
This is the approach of chopping employed in the NEAR instrument, were
the image commutes rapidly between a calibrator and a scientific source, such
as Käufl et al. (2018) for α Centauri. However, this technique is only usable
in a narrow range of observing conditions, as it requires the scientific target
and the calibrator to be extremely close from each other.

The field rotation during an observation can also be used to obtain self
calibrating kernel observables (Laugier et al., 2019a). In this case, it is knowing
how the object of interest rotates in the sky, while the bias remains unaffected
by this rotation that enables the measurement of the bias signal, without the
need for a calibrator. This angular differential methods in inspired by angular
differential imaging (Marois et al., 2006), which employs field rotation to
remove coronagraphic residuals.

Other methods can be employed to estimate the bias, with linear combi-
nations of different calibration signals, as suggested by Ireland (2013), and
recently applied to observations by Kammerer et al. (2019). There, the bias
is considered to be a linear combination of several components, and esti-
mating it is equivalent to estimating the relative importance of each of those
components.

In practice, kernel biases are always present. If they are small enough
compared to the contribution of the noise, they can be neglected safely. How-
ever, if their contribution is more important, they must be taken into account
statistically. This entails an estimation of the distribution of the unknown bi-
ases. This no easy task: since the phenomena that contribute to them evolve
simultaneously on a variety of timescales, making any estimation of their
distribution at a given time difficult. This is especially true for conditions
that can vary greatly during an observing run. For instance, atmospheric
turbulence can evolve a lot during a single night of observation, and the
distribution of the bias it causes at one time it not necessarily representative
of what it can become a few hours, or even minutes later. This problem,
compounded by the number of phenomena that can lead to biases make the
estimation of their distributions very hard.
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Residual optical defaults are mostly corrected thanks to calibration. Since
these residuals are closely tied to the pupil model, alterations of this discrete
model to make it more representative of the discrete reality can help in re-
ducing their contribution. The way this has been done is by taking the partial
obstruction of some of the subapertures that make up the model by structures
in the apertures into account. as presented in Martinache et al. (2020).

2.3.2 Noisy observables from noisy images: statistical errors.

The errors that result from the noise in the image cannot be reduced by im-
proving the extraction of kernel phases, contrary to systematic errors. On the
flip side, they are easier to estimate, as the noise produced for one given expo-
sure is largely independent from the noise produced in any other exposure,
assuming the aberration remains the same over the exposure.

The noise in the image is caused both by the natural fluctuation in the
number of photons that hit each pixel in a given time, and by the accuracy
with which the detector can measure this quantity. The distributions of these
errors are determined by the inherent characteristics of the detector, as well
as by the flux received by each pixel. Pixel level errors can be broken down
into the following categories:

• Photon noise: Poisson distributed, and caused by the discrete nature of
light. With many photons, the Poisson distribution becomes similar to
a normal distribution. (Station, 1957).

• Read noise: Normally distributed, and caused by errors in the reading
process of each pixel’s voltage (Mccord and Bosel, 1975).

• Dark current noise: photodetectors accumulate electrical charge, even
in the absence of light. This creates a bias, that can be corrected by
subtracting a dark frame, but also introduces an additional Poisson
distributed dark current noise, since the electrons accumulate in each
well following a Poisson process.

• Quantization noise: Most detectors used in astronomy employ 16 bits
registers, meaning each pixel value for the detector can take only 216 =
65536 discrete values.

Although noise is pixel independent (excluding bad pixels, for which the
measured flux is interpolated from the measurements at the level of nearby
pixels), the measured complex visibilities, and thus kernel phases are not.

At the level of each pixel, the measured flux follows a mix of Poisson
and normal distributions (the distribution function of the sum two random
variables is the convolution of the distribution functions of each). However,
kernel phases are the result of the combination of the values of all of the pixels
in the image. Complex visibilities are obtained via a matrix multiplication
that performs the discrete Fourier transform of the image (see Martinache
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Figure 2.4: A linear combination of many random variables
with distributions of finite variance and mean tends to follow a

normal distribution.

(2018), pp 197-199). The arctangent of the ratio between the imaginary part
and the real part of the visibility then serves to measure its phase:

∠(a + ib) = arctan
b
a
. (2.30)

For small fluctuations of the phase, this operation can be approximated as
linear. Then, the measured phases vector is multiplied by the kernels matrix:
each kernel phases is a linear combination of the complex phases measured
for each spatial frequency sampled by the discrete pupil model.

The central limit theorem states that a linear combination of a high number
of independent random variables with distributions of finite variances and
means tends towards being normally distributed, as illustrated in Fig. 2.4.
Since kernel phases are the result of a linear combination of random variables,
and since a pupil model typically samples a large number of spatial frequen-
cies, one can therefore expect kernel phases to be normally distributed. If
each kernel phase is normally distributed, then the kernel phases vector can
be described as following a multivariate, normal distribution:

k ∼ N(k0,Σ), (2.31)

with k0 the expected kernel phase value (including the object signature and
any possible residual bias), and Σ the covariance matrix of the noise propa-
gated to the kernel phases, which encodes both the variance and the covari-
ance of the kernel phases. Since the noise is normal, the distribution of the
noise is fully described by this covariance matrix.

Knowing the distribution of the kernel phases (or of any other measured
quantity for that matter) is important when it comes to their statistical treat-
ment: this knowledge is fundamental to determining how likely a given
object signature is for a particular set of measured kernel phases. It is also
important to determine the likelihood one would obtain a given set of ker-
nel phases from random fluctuations in the noise, rather than from an object
signal. This latter aspect is crucial to the reliability of detection. To detect a
signature, it is necessary to know how likely one can obtain a similar signal
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from random fluctuations of the noise.
The detection procedures outlined in the next chapter of this thesis rely on

the distribution of the kernel phases to construct detection tests that can be
applied to kernel phases, and help detect either arbitrary signatures, unspec-
ified signatures, or binaries. To be able to perform detections on any sets of
kernel phases, the noise is whitened, i.e.kernel phases are normalised using
the covariance of the nose, allowing all possible kernel phases to have the
same distribution.

From images taken with any telescope that can reach a regime where
aberrations are low enough, it is possible to construct observables that are
largely unaffected by the residual aberrations. This enables the detection
of faint features around star or substellar objects at very close separations.
Attempting detections at more and more ambitious separations and contrasts
does however mean the statistical treatment of kernel observables must take
errors into account with care, as the chance of making a detection wrongfully
increases when the signals one attempts to measure become weaker, such as
for companions at close separations and high contrasts. By estimating both
the distribution of each kernel phase, and the correlations that exist between
them, it is possible to devise statistical detection tests, which can offer both
guarantees of optimality (being the most powerful detection test that can be
devised for a given signal and noise level), as well as guarantees over the
likelihood of a companion or structure being present.

2.4 Conclusion

In the age of space telescopes and extreme adaptive optics, the minimisation
of the contribution of optical defaults via post acquisition treatment remain
important to probe small angular separations, as well as faint structures.
For instance, high contrast imaging combines advanced coronagraphs and
post treatment to minimise the impact of speckles on the final image (e.g
Cantalloube et al. (2015)).

Kernel phases also permit the use of full aperture images, but without
using a coronagraph, which enables the probing of regions very close to a
star. Their extraction does not require a non redundant mask, which improves
the available flux, and thus reduces the contribution of photon noise.

Knowing the distributions of kernel phases enables the determination of
the likelihood of an object having a given signature from an image. This is the
key to making detections and estimating the signature of an observed object.
The statistical treatment of kernel phases is the core of the work I present in
this manuscript, and the focus of the next chapter.
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Chapter 3

Statistical detection of binaries

To be able to draw conclusions from a measurement affected by random
errors, one must use statistical methods. In the case that concerns us here, I
focus on the detection of companions from the kernel phases extracted from
images.

In this chapter, I first present, in Sec. 3.1 an introduction to the field
of statistical detection, and the essential notions and terminology that will
be employed throughout Sec. 3.2. In this section, I show how systematic,
likelihood ratios approaches can be employed to design statistical tests, first
explaining how the distribution of the test statistic is linked to its perfor-
mances in Sec. 3.2.1, and then going on to formalise three tests. The first one,
introduced in Sec. 3.2.2, is tuned to detect a specific signal (an object with
an already known structure). It is the most specific possible test, which is
also the performance benchmark, since it has the highest possible power as
demonstrated in Appendix A. Sec. 3.2.3 and Sec. 3.2.4 presents two other
tests, that aim to detect signatures of an unspecified structure for the former,
and of a binary for the latter. Sec. 3.2.5 presents a brief discussion of the rela-
tion between these tests and "goodness of fit" evaluations used on normally
distributed data.

The following part of this chapter is dedicated to a practical use case for
these detection tests for the statistical treatment of kernel phases obtained
with the NIRISS instrument on JWST in Sec. 3.3. I present the scientific use
case of Y-type brown dwarfs in Sec. 3.3.1, the errors one can expect on kernel
phases extracted from JWST NIRISS images in Sec. 3.3.2, the way parameters
of binaries can be measured from these kernel phases in Sec. 3.3.4, with the
Appendix B proposing an alternative method to obtain these parameters.

The following Section, Sec. 3.4 dives into the predicted performances of
the aforementioned test for the purpose of detection companions of faint Y
type brown dwarfs using JWST NIRISS images. Sec. 3.4.1 directly compares
the three tests’ power, Sec. 3.4.2 translates those detection limits into mass
and absolute separation limits for a known Y dwarf, and Sec. 3.4.3 gives the
ultimate possible contrast limits for a kernel phases based detection using
JWST NIRISS images with the F480M filter.

In the conclusion, I remark how detection can be made well below the λ/D
"diffraction limit“, and follow up on this observation in Appendix C, where
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L30 G. Chauvin et al.: A giant planet candidate near a young brown dwarf
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Fig. 1. Composite image of brown dwarf 2M1207 and its GPCC in H
(blue), Ks (green) and L′ (red). The companion appears clearly distin-
guishable in comparison to the color of the brown dwarf 2M1207.

Table 1. Night Log of the observations. S27 and L27 correspond re-
spectively to a platescale of 27.03 and 27.12 mas. DIT and NDIT cor-
respond respectively to an individual integration time and the number
of integrations. Sr and FWHM correspond to the strehl ratio and the
full width at half maximum intensity.

Filt. Obj. DIT NDIT Seeing Airm. Sr FWHM
(s) (′′) (%) (mas)

Imaging
J S27 30 8 0.59 1.07 6 122
H S27 30 16 0.46 1.10 15 91
Ks S27 30 16 0.52 1.08 23 89
L′ L27 0.175 1300 0.43 1.14 30 107

Spectroscopy
SH S54 300 6 0.45 1.15

close vicinity a faint and red object at 778 mas and a position
angle of 125.8◦ in H, K and L′. The faint object was not de-
tected down to 3σ of 18.5 in J-band. In Figs. 1 and 2, we dis-
play an H, Ks and L′ composite image and the detection limits
obtained in each band during our observations. After cosmetic
reductions using eclipse (Devillar 1997), we used the myopic
deconvolution algorithm MISTRAL (Conan et al. 2000) to ob-
tain H, K and L′ photometry and astrometry of the GPCC. The
results are reported in Table 2. The transformations between the
filters Ks and K were found to be smaller than the measuring
errors.

On 19 June 2004, 2M1207 and its GPCC were simultane-
ously observed using the NACO spectroscopic mode. The low
resolution (Rλ = 700) grism was used with the 86 mas slit, the
S54 camera (54 mas/pixel) and the SH filter (1.37−1.84 µm).
The spectra of 2M1207 and its GPCC were extracted and cali-
brated in wavelength with IRAF/DOSLIT. To calibrate the rel-
ative throughput of the atmosphere and the instrument, we di-
vided the extracted spectra by the spectra of a standard star
(HIP 062522, B9III) and then multiplied by a blackbody to re-
store the shape of the continuum.

Fig. 2. Detection limits at 3σ achieved during our observations in
J-band (dotted black line), H-band (dashed blue line), Ks-band
(dashed-dotted green line) and L′-band (solid red line). The contrasts
between 2M1207 and its GPCC are reported for H (filled triangle),
Ks (filled box) and L′ (filled circle) (the GPCC was not detected in
J band).

3. Discussion

3.1. Membership in the TW Hydrae association

Gizis (2002) undertook a 2MASS-based search for isolated low
mass brown dwarfs in the area covered by stellar members
of TWA and found two late M-type objects which he identi-
fied as brown dwarfs. The one of interest in the present paper,
2M1207, showed impressively strong Hα emission in addition
to signs of low surface gravity, which both are characteristic
of very young objects. Gizis (2002) noted also that the proper
motion of 2M1207 is consistent with membership in the TWA.

Subsequently, Mohanty et al. (2003) obtained echelle spec-
tra of 2M1207. The radial velocity is also consistent with
TWA membership. They detected a narrow Na I (8200 Å) ab-
sorption line indicating low surface gravity. Finally, the spec-
trum displays various He I and H I emission lines (Mohanty
et al. 2003; Gizis 2002) and the Hα line is asymmetric and
broad. Taken together, these characteristics led Mohanty et al.
(2003) to suggest the occurrence of ongoing accretion onto
(a young) brown dwarf. Although L′-band observations of
Jayawardhana et al. (2003) did not reveal significant IR excess
at 3.8 µm, recent mid-IR observations of Sterzik et al. (2004,
accepted) found excess emission at 8.7 µm and 10.4 µm and
confirm disk accretion as the likely cause of the strong activ-
ity. New Chandra observations of Gizis & Bharat (2004) cor-
roborates this disk-accretion scenario as they suggest that less
than 20% of the Hα emission can be due to chromospheric ac-
tivity. All in all, multiple lines of evidence point toward mem-
bership of 2M1207 in the TWA.

3.2. Age and distance of the system

The age of the TWA can be established by comparison with
the somewhat older β Pictoris moving group’s space motions
(UVW; Zuckerman et al. 2001) and HR diagrams. Ortega et al.
(2002) and Song et al. (2003) have traced members back to
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Figure 3.1: Left: VLT/NACO image of the 2M1207 system (taken
from Chauvin et al. (2004)). Right: Synthetic JWST NIRISS im-
age, with a companion injected at a separation of 147 mas. De-
tecting 2M1207b does not require advanced signal processing,
as its presence is very obvious in the image. In more challenging
cases however, a visual confirmation is not sufficient, although,
as we will show at the end of this chapter, in Sec. 3.5, detect-
ing a companion at a separation of 147 mas and a contrast of
50 becomes easy using kernel interferometry and the proper

statistical tools.

I show how the phase signature of a binary becoming degenerate with a tip
tilt aberration limits the separations that an be probed using kernel phases.

The theoretical framework, as well as the predicted detection limits for
JWST NIRISS images presented in this chapter have been the object of a
publication in Astronomy & Astrophysics: Ceau et al. (2019), reproduced at
the end of this manuscript.

3.1 Statistical detection

The less obvious the presence of a signal, the more crucial the statistical
treatment of the data to reveal it must be. In the case of images, some features
can for instance be detected by a visual inspection, but kernel phases can be
used to detect features that are completely invisible when looking at images.
As an example, the simulated JWST NIRISS image on the right hand side of
Fig. 3.1 features a companion in the first diffraction ring, at a contrast of 50,
which can be detected with ease using the tests I present in Sec. 3.2.
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Statistical detection aims at distinguishing between hypotheses (typically,
"signal present" and "signal absent") in noisy data. It is a fundamental prob-
lem of signal processing, with many ramifications, ranging from military
applications (e.g. radar signatures Marcum (1947)), healthcare (e.g. the early
diagnosis of conditions such as cancer or HIV infection), and many other top-
ics. Here, we most specifically use binary hypothesis tests, where data serves
to decide between two competing hypotheses: a null hypothesis, noted H0

and an alternative hypothesis, notedH1.
For a given measurement, a hypothesis test returns a test statistic, which

is a real number here. The test statistic is compared to a threshold, which
sets the significance level. Knowing the distribution of the test statistic under
H0 is necessary to determine the threshold, needed to obtain a targeted false
alarm rate. The false alarm rate is the probability that the test returns a
detection (i.e, that it choosesH1 whileH0 is true).

In this chapter, I focus on the conception and use of binary hypothesis tests
for kernel-phases extracted from images. More specifically, I show how the
kernel phases obtained from the image of a single source (which are expected
to be distributed around zero, as discussed in Sec. 2.1.2), such as a star can be
distinguished from the kernel phases originating from a more complex object
(a binary in this case). This exploits the fact that the phase of the complex
visibility of any centrosymmetric object is zero, while asymmetrical features
break this symmetry, and create a phase signal in the complex visibility, as
explained in Sec. 2.1.2. Kernel phases, being largely immune to the phase
errors caused by aberrations are thus distributed around zero if the imaged
object is a single source, and around non zero kernel phases if the object has
some asymmetrical features.

The statistical tests that enable the detection of such features involve a
mathematical transformation which turns the data into a test statistic. Know-
ing the distribution of the test statistic under H0 necessitates knowing the
distribution of the noise that affects the data. In the case of kernel phases,
it means determining the distribution of the different noises that affect these
observables. As seen in Chapter 2, Kernel phases can be assumed to be cor-
related with each other, and normally distributed. Their distribution can be
described using a multivariate, normal distribution, which is characterised
by its mean and its covariance matrix.

The detection procedures used here are based on likelihood ratios. To
determine which of two hypotheses must be decided, the likelihoods of ob-
taining the observed data given each hypothesis are compared using the ratio
of the two, and it is this ratio that provides the test statistic. We propose three
tests, each corresponding to a given degree of knowledge about the object
underH1. Two of these tests are specific to the detection of stellar or substellar
companions (they correspond to the cases where the position and contrast of
a companion are known, or unknown). The other test makes no assumption
on the target.
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3.2 Hypothesis tests

Hypothesis testing is the framework from which we build our detection
procedures. From the kernel phases vector k, the whitened kernel phases
vector y is obtained using the whitening transformation

y := Σ−
1
2 k, (3.1)

given the normal distribution of the kernel phases (2.31). We consider the null
hypothesis to be the absence of asymmetrical features, which create no kernel
phase signal (in which case the data is only comprised of noise), and the
alternative hypothesis the presence of such features which creates a signature
k0 = Kφ0, as seen in Eq. (2.28) in the kernel phases, whitened into

x := Σ−
1
2 k0. (3.2)

The two cases for the whitened measure kernel phases are then noted:H0 : y = ε

H1 : y = x + ε
ε ∼ N(0, I) (3.3)

with ε the noise and N(0, I) the standard, multivariate normal distribu-
tion. Using whitened observables allows us to use the generic description in
Eq. (3.3) for the noise for any possible covariance, as long as the noise that
affects the observables vector is normally distributed and its covariance is
known.

A detection is a rejection of the null hypothesis. In the case of kernel
phases analysis, this corresponds to the detection of the whitened kernel
phase signature x from the data y.

As outlined above, a detection test is a function that, from some input
data returns a test statistic, i.e. a single, real number. The false alarm rate
is given by the distribution of the test statistic under the null hypothesis. To
control the false alarm rate, the distribution of the test statistic under the null
hypothesis therefore needs to be known. The decision betweenH0 andH1 is
then made by comparing the test statistic T(y) to a threshold ξ, which is the
minimum value the test statistic must take to reject the null hypothesis.

T(y)
H1
≷
H0

ξ (3.4)

The test thus choosesH0 if the test statistic is smaller than ξ andH1 otherwise.
The false alarm rate PFA and the detection rate PDET are linked to the test
statistic and to the thresholds by the relations

PFA(ξ) := P(T(y) > ξ;H0)
PDET(ξ) := P(T(y) > ξ;H1)

(3.5)
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Figure 3.2: Illustration of the detection and false alarm rates
for a given test. The distributions of the test statistic under H0
andH1 are fixed. The two solid lines represent the distributions
of the test statistic under H0 and H1, while the filled areas

represent PFA and PDET.

The false alarm rate and detection rate are graphically illustrated in Fig. 3.2. In
practice, detections are made at a given significance level, which is related to
the false alarm rate: the lower the false alarm rate, the higher the significance
level.

The power of a test is given by its detection rate, or PDET at a given PFA: the
higher the probability to make a detection at a given signal and false alarm
rate, the more powerful the test. The power of a test can be captured by its
ROC, for receiver operating characteristic, which is the function that links PFA

to PDET for a given test.
In the illustration in Fig. 3.2, this means the more separated the two

distributions of the test statistic under H0 and H1, the more powerful the
test. Looking at the distributions on a plot is not the most effective way to
compare the powers of tests. The distribution in Fig. 3.2 can be condensed
as a relation between PFA and PDET as the threshold varies in the form of the
receiver operating characteristic, or ROC: the more powerful a test, the higher
its PDET for a given PFA. ROC curves allow to compare tests at a glance, and
to condense the power information to a single curve per test. An example of
ROC curves for three tests with different powers is shown in Fig. 3.3.



40 Chapter 3. Statistical detection of binaries

0.0 0.2 0.4 0.6 0.8 1.0
PFA

0.0

0.2

0.4

0.6

0.8

1.0

P
D
E
T

ξ → +∞

ξ → −∞

Inneffective test

Effective test

A more effective test

Figure 3.3: A ROC curve can be used to compare the perfor-
mances of several tests. It consists in plotting, for a given test
and signature the PFA and the PDET as the threshold ξ changes.
The power of a test is its PDET for a given PFA. Visually, a higher
power translates as the ROC curve being "pulled“ into the upper
left corner of the plot. If a curve is on the diagonal, this indicates
that PFA = PDET for every threshold: such a test is equivalent to
making decisions at random, and has the worst possible power.
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3.2.1 Distribution function and ROC

If the distribution of a test can be analytically described by a distribution
function under bothH0 andH1, then the ROC that describes the performance
of the corresponding test also has an analytical form.

The continuous distribution function (CDF) of a random variable R is
defined as

FR(ξ) := P(R ≤ ξ), (3.6)

For a hypothesis test

T(y)
H1
≷
H0

ξ (3.7)

if the distributions functions for the test statistic underH0 andH1 areFT,0 := P
(
T(y) < ξ;H0

)
FT,1 := P(T

(
y) < ξ;H1

) (3.8)

then, recalling the definitions of PFA and PDET from Eq. (3.5), the false alarm
and detection rates can be rewritten in terms of these distribution functions,
with

PT
FA = P

(
T(y) > ξ;H0

)
= 1 − P

(
T(y) < ξ;H0

)
= 1 − FT,0(ξ)

(3.9)

and

PT
DET = P

(
T(y) ≥ ξ;H1

)
= 1 − FT,1(ξ).

(3.10)

The ROC of a test is defined as PDET(PFA). The threshold can be expressed as
a function of the false alarm rate using Eq. (3.9), giving

ξ = F −1
T,0 (1 − PT

FA). (3.11)

Thus, replacing ξ with this expression in Eq. (3.10) gives

PT
DET(PFA) = 1 − FT,1

(
F
−1

T,0 (1 − PT
FA)

)
(3.12)

which is the analytical relation that links the ROC, or the performance of the
test to the distribution of the test statistic T(y) underH0 andH1.

In the context of kernel-based object detection, different tests can be de-
ployed for different sets of hypotheses. I propose detection tests for three
different cases: a fully known signature, a fully unknown signature, and a
signature of a known structure (a binary system) with the relative positions
of the two objects and their contrasts unknown. For the first of theses cases



42 Chapter 3. Statistical detection of binaries

(known signature), there is a test that has the highest possible power, the like-
lihood ratio (LR) test. This test gives us the maximum theoretical detection
limits for a given signature at any given noise level. The two other tests rely
on an estimation of the signature x.

3.2.2 Known signature

This case corresponds to the detection of a signature that is known in advance.
In this case, there exists an optimal detection test, with the highest power
theoretically attainable. It is also the mathematically simplest test to devise,
since the signature doesn’t have to be estimated from the measured data.
Here, we examine a test between the two hypotheses:H0 : y = ε

H1 : y = x + ε
ε ∼ N(0, I), (3.13)

with x known.
In this situation, the most powerful detection test is a likelihood ratio, or

Neyman-Pearson test, where the test statistic is the ratio of the likelihoods of
the null and alternate hypotheses given the data under test. The optimality
of the likelihood ratio detection test is guaranteed by the Neyman-Pearson
lemma (Neyman and Pearson, 1933), a proof of which is given in Appendix A.

To obtain the Neyman-Pearson test statistic, it is necessary to compute the
likelihoods `(0; y) and `(x; y). Since the noise ε follows a standard normal
multivariate distribution with p dimensions, (p corresponds to the number of
measured ker-phases), we have the likelihoods:

`(0; y) = (2π)−
p
2 exp

(
−

1
2

yT y
)

`(x; y) = (2π)−
p
2 exp

(
−

1
2

(x − y)T(x − y)
)
.

(3.14)

The Neyman-Pearson test is:

TNP(y, x) :=
`(x; y)
`(0; y)

H1
≷
H0

ξ. (3.15)

With the likelihoods in Eq. (3.14), this gives

TNP(y, x) =
exp

(
−

1
2 (x − y)T(x − y)

)
exp

(
−

1
2 yT y

) H1
≷
H0

ξ. (3.16)

A strictly increasing function, (say f (x)) applied to the test statistic does not
affect the power of the test, as the rejection region is the same for T and f (T).
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Since the logarithm is strictly increasing, and defined for every possible
value of (x − y)T(x − y) and of yT y, it is possible to turn the Neyman-Person
test in Eq. (3.16) into the test

TNP(y, x) = −(x − y)T(x − y) + yT y

= 2xT y − xTx.
(3.17)

Taking the threshold η := 2(ln ξ + xTx) since x is known, the test becomes

TNP(y, x) = yTx
H1
≷
H0

η. (3.18)

Since the distribution of y is known, one can derive the distribution of the
statistic of TNP(y, x). This enables us to find the theoretical relation link-
ing PFA and PDET, which in turn enables the analytical determination of the
performance of the test.

Under the null hypothesis, the data vector only contains noise, thus,

TNP(y, x;H0) = εTx. (3.19)

Sinceε ∼ N(0, I), xTε is normally distributed, with a zero mean, and a variance
equal to xTx. The resulting distribution is

yTx = εTx ∼ N(0, xTx). (3.20)

UnderH1, the test statistic becomes

TNP(y, x;H1) = (x + ε)Tx

= εTx + xTx.
(3.21)

This test statistic follows a normal distribution of the same variance as under
H0, but with mean xTx. Hence:H0 : TNP(y) ∼ N(0, xTx

)
,

H1 : TNP(y, x) ∼ N
(
xTx, xTx

)
.

(3.22)

Noting FN the distribution function of the normal, standard distribution, the
false alarm and detection rates PFA and PDET for this test can be derived from
their definitions in Eq. (3.5)

PTNP
FA (η) = 1 − FN

( η
√

xTx

)
,

PTNP
DET(η) = 1 − FN

(η − xTx
√

xTx

)
,

(3.23)
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which, by expressing the threshold ξ as a function of PFA gives

η =
√

xTx FN
−1(1 − PFA), (3.24)

and yields the ROC:

PTNP
DET(PTNP

FA ) = 1 − FN
(
F
−1
N

(1 − PTNP
FA ) −

√

xTx
)
. (3.25)

This analytical relation gives the ROC of the most powerful detection
test possible. Other tests, that do not benefit from a priori knowledge of the
signature x are expected to have a lower power, meaning that the values for
PDET at a given PFA will be lower than for the likelihood ratio.

3.2.3 Completely unknown signature

After examining the case where the signature one is searching for is perfectly
known (which provides the upper performance bound thanks to the Neyman-
Pearson lemma), we now focus on the case where the object’s kernel phase
signature is perfectly unknown, meaning any element of the vector x can
take any value. This case provides the lower bound for power of detection.
This can be useful in practice, to detect unspecified features around luminous
objects.

For this case, using a likelihood ratio requires the estimation of the object
signature, x. This can be done by finding the signature which is the maximum
likelihood estimate (MLE) x̂. The determination of the MLE is an optimisation
problem which consists in determining the signature that maximises `(x; y).

The generalised likelihood ratio test, or GLR (Solomon, 1975) is a likelihood
ratio, where the unknown likelihood `(x, y) is replaced by the likelihood
`(x̂; y), where x̂ is the MLE

x̂ := argmax
x

`(x; y). (3.26)

Contrary to the likelihood ratio, or Neyman-Pearson test, the GLR does not
carry any proven guarantee of optimality in the general case. However, in
some specific cases (Scharf and Friedlander, 1994). .

In the case of an observable affected by an additive, normal multivariate
noise of covariance I, the likelihood is:

`(x; y) = (2π)−
p
2 exp

(
−

1
2

(x − y)T(x − y)
)
. (3.27)

The likelihood `(x; y) is maximal when (x− y)T(x− y) is minimal. Since there
is no constraint on the value x is allowed to take (the signature is assumed
completely unknown), the quantity in the exponential can reach a value of zero
for x̂ = y, which is the MLE in this case.
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This MLE is then injected into the likelihood ratio in Eq. (3.15), with x̂
substituting x:

T(y) =
`(x̂; y)
`(0; y)

H1
≷
H0

ξ. (3.28)

The maximum likelihood is

`(x̂; y) = `(y; y) = (2π)−
p
2 , (3.29)

and the likelihood of the null hypothesis given the data is

`(0; y) = (2π)−
p
2 exp

(
−

1
2

(yT y)
)
. (3.30)

These likelihoods, injected into Eq. (3.28) give the test

T(y) =
1

exp
(
−

1
2 (yT y)

) H1
≷
H0

ξ

= exp
(1
2

(yT y)
)
H1
≷
H0

ξ

= yT y
H1
≷
H0

2 ln ξ.

(3.31)

defining the new threshold η := 2 ln ξ. The test then becomes

TE(y, x) = yT y
H1
≷
H0

η. (3.32)

This particular test is an energy detector (hence the notation TE). Its test
statistic is the squared norm, or "energy“ of the whitened observable.

Since the distribution of y is known, the distribution of the test statistic
of TE has an easily determined analytical form under bothH0 and underH1.
UnderH0, since y = ε ∼ N(0, I) the test statistic of TE is

TE(y, 0) = εTε (3.33)

which follows aχ2 distribution, with p degrees of freedom (p being the number
of kernel phases). Thus,

TE(y, 0) ∼ χ2
p(0). (3.34)

UnderH1, the test statistic is equal to

TE(y, x) = (x + ε)T(x + ε), (3.35)

and the test statistic therefore follows a non-central χ2 distribution

TE(y, x) ∼ χ2
p(xTx). (3.36)
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Noting Fχ2
p(λ) the distribution function of a χ2

p(λ) distribution with a non
centrality parameter λ, the false alarm and detection rates associated with
TE, we can follow a similar reasoning as the one used to obtain Eq. (3.22).
Using the definition of the distribution function (Eq. (3.6)) and of the relation
Eq. (3.12), the theoretical false alarm and detection rate for the energy detector
Eq. (3.32) are: PTE

FA(η) = 1 − Fχ2
p(0)(η)

PTE
DET(η) = 1 − Fχ2

p(xTx)(η).
(3.37)

The first equation transforms into

η = F −1
χ2

p(0)(1 − PTE
FA), (3.38)

which, injected into the expression of PTE
DET(ξ) gives the ROC:

PTE
DET(PTE

FA) = 1 − Fχ2
p(xTx)

(
F
−1
χ2

p(0)(1 − PTE
FA)

)
. (3.39)

The energy detector can be used on any data set, without any assumption
being made on the structure of the researched signature. This makes it very
versatile. Applied to kernel phases, it enables the detection of any asymmet-
rical structure around a star or substellar object. While the Neyman-Pearson
test is the most specific test possible, as it is set to detect a single known
signature, the energy detector is the least specific test possible. As we will
see, placing additional constraints on the signature x improves on the perfor-
mance over TE.

3.2.4 Signature of a binary

For this particular application, I consider the object to be a binary: a pair of
"compact“1 objects of mismatched brightness. This corresponds to a com-
mon case in astronomy, since most evolved stellar systems do not present
extended features such as disks or rings of a brightness comparable to stellar
companions such as large planets or other stars. Each luminous source is
assumed to be unresolved, in the sense that each object making up the pair
can be modelled as a point source.

For a pair of point sources of different intensities, the 2D, on-sky intensity
can be modelled as a pair of Dirac functions:

O(x, y) = δ(x, y) + c−1δ(x − α, y − β). (3.40)

The position of the companion is decomposed into its x and y components,
and its coordinates are α and β. The contrast c is defined as the flux of the
central object divided by the flux of the companion.

1Here, "compact“ refers to self contained, gravitationally bound objects, such as stars or
planets, rather than to white dwarfs of black holes.
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The complex visibility V0(u, v) associated to this object is the 2D Fourier
transform of Eq. (3.40) (Cittert, 1934; Zernike, 1938) at the spatial frequency
(u,v). Since the Fourier transform is linear, the complex visibility of a binary
can be written as the sum of the Fourier transforms of each Dirac function.

The Fourier transform of a two dimensional function f (x, y) at the spatial
frequency (u, v), F( f )( u

λ ,
v
λ )2 is given by

F( f )(
v
λ
,

v
λ

) =

∫ ∫
f (x, y)e−2πi(x u

λ+y v
λ )dxdy, (3.41)

where the normalisation is neglected. This normalisation factor only affects
the amplitude of the Fourier transform, not its phase. For the central object,
since δ(x, y) = 0 for x , 0 and y , 0, and

∫
∞

−∞
δ(x)dx = 1, its Fourier transform

is

F
(
δ(x, y)

)
(u, v) =

∫ ∫
δ(x, y)e−2πi(x u

λ+y v
λ )dxdy

= e−
2π
λ i(0u+0v)

= 1,

(3.42)

and for the companion,

F
(
c−1δ(x − α, y − β)

)
(u, v) =

c−1
∫ ∫

δ(x − α, y − β)e−
2π
λ ((x−α)u+(y−β)v)dxdy

= c−1e−
2π
λ i(αu+βv).

(3.43)

The sum of these two Fourier transforms gives the complex visibility vector:

V(u,v) = 1 + c−1exp
(
−i

2π
λ

(αu + βv)
)
. (3.44)

The resulting visibility depends on three parameters: two of them define the
position of the companion relative to the brighter object, while the last one
defines the contrast, or flux ratio between the two objects. Compared to the
previous case, where there are as many degrees of freedom as the number
of elements comprised in the kernel phase vector (typically a few hundreds),
having only three parameters. Recalling that the kernel phases vector is
defined as k := Kφ (Eq. (3.1)), and that the whitened kernel phases vector
is given by the whitening of k, y := Σ−

1
2 k (Eq. (3.1)), since, in the absence

of errors, k = Kφ0, we can deduce the expected value for the phase of the

2The "kernelific“ way of managing spatial frequencies is to treat them as distances, and to
normalise by the observation wavelength when modelling the object to get back to dimen-
sionless quantities. This is different from the usual approach in interferometry, where the
spatial frequencies are given as distance divided by the observation wavelength. This allows
the same pupil model to be used at several wavelengths.
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object’s visibility
φ0 := ∠V0, (3.45)

and therefore for the object’s whitened kernel phase signature

x := Σ−
1
2 Kφ0. (3.46)

This is the same signal as the one detected by the Neyman-Pearson test in
Eq. (3.13), which corresponds here to knowing ρ, θ and c. The observed,
whitened ker-phases are therefore given by:

y = Σ−
1
2 K∠

(
1 + c−1exp

(
−i

2π
λ

(αu + βv)
))

+ ε. (3.47)

In this case, the MLE is defined as:

x̂ : = argmax
α,β,c

`(c, α, β; y)

=argmax
α,β,c

exp−
1
2
‖y − Σ−

1
2 K∠(1 + c−1e

−i
2π
λ

(αu + βv)
)‖2.

(3.48)

Barring any linear approximation of the binary’s signature (which will be
examined in the final part of this chapter), there is no relation that enable the
direct estimation of the MLE from the data vector y. The maximisation has
to be performed numerically, by exploring the parameter space to find the
value of the signature that maximises the likelihood `(x̂; y). This is a process
detailed in Sec. 3.3.4.

Once the MLE has been determined, the GLR, introduced in Eq. (3.28)
gives the test:

TB(y) =
exp

(
−

1
2 (x̂ − y)T(x̂ − y)

)
exp

(
−

1
2 yT y

) H1
≷
H0

ξ. (3.49)

Taking the logarithm of this expression and developing the content of each
exponential gives the test:

TB(y) := 2yTx̂ − x̂Tx̂
H1
≷
H0

η . (3.50)

Determining the distribution of TB underH0 andH1 requires the knowl-
edge of the distribution of the MLE x̂. In many cases, there is no analytical
solution for the expression of x̂ as a function of y. For this reason, the deter-
mination of the false alarm and detection rates for TB necessitates the use of
numerical simulations.
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3.2.5 χ2 "goodness of fit" and TB

The test statistic TB can be interpreted in terms of χ2-derived intervals. Let x̂
be some model obtained by some fit on data y. The χ2 score corresponding
to this fit is

Tχ2(x̂, y) :=
N∑

k=1

(x̂k − yk)
2 = (x̂ − y)T(x̂ − y). (3.51)

Considering the likelihood in Eq. (3.14), this shows that if y is Gaussian with
mean x̂, the score in Eq. (3.51) is indeed a χ2

p random variable. Now, the test
statistics TB can be rewritten as

TB(y) = 2yTx̂ − x̂Tx̂ = yT y −
(
(x̂ − y)T(x̂ − y)

)
(3.52)

= Tχ2(0, y) − Tχ2(x̂, y), (3.53)

which shows that TB can be interpreted as the reduction in the sum of squared
residuals when comparing the null hypothesis to the considered model.

For the sake of accurately controlling the false-alarm rate, we note however
that Tχ2 in Eq. (3.51) may not be distributed as a χ2

p variable because x̂ is a
random variable. Actually, the true distribution of Tχ2 may not be known
analytically, and a Monte Carlo procedure (such as that mentioned in Sect.
3.2.4 for the estimation of the correspondence between the PFA and threshold
for TB) is required.

3.3 Practical case: Parameters estimation, error mar-
gins, numerical methods an detection of faint
brown dwarf companions

In this section, I evaluate the performance of the three detection tests pre-
sented in Eq. (3.18), (3.32) and (3.50) for the detection of companions to faint,
cool brown dwarfs in the solar neighbourhood (at distances smaller than
20pc) with images from JWST. I also present a prediction of the error mar-
gins that can be expected for the measurement of the parameters of possible
companions to Y type, ultracool brown dwarfs.

As long as kernel phases can be extracted from an image (which requires
optical path differences smaller than a fraction of the wavelength, as seen
in Sec. 2.1.3, and a field of view smaller that the isoplanetism angle), the
statistical detection procedures introduced in the previous sections can be
used. Here, I present a practical application on JWST images. At the time
of writing, the telescope has not been launched yet, but the optical systems
and detectors have been thoroughly characterised, allowing for the estima-
tion of the performance (see for instance Oliveira et al. (2018), Greenbaum,
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Sivaramakrishnan, and Pueyo (2013), Greenbaum et al. (2014), Howard and
Feinberg (2009)).

The sensitivity and stability of JWST make it ideal to observe very faint
sources at sensitivities inaccessible to current observatories. Among these
objects, Y-type brown dwarfs are very challenging targets for high angular
resolution, high contrast observations. The coronagraphs aboard JWST are
not able to probe separations bellow a few λ/D (Perrin et al., 2018), and,
although one imager is capable of non redundant aperture masking inter-
ferometry, this technique requires long exposure times because of the low
throughput of the mask.

For these reasons, kernel phases have an important scientific potential
for JWST observations, in conjunction with the statistical methods detailed
above. For the study of the multiplicity of faint objects, the operational test
TB is particularly well suited, and we will explore its implementation and
performance on simulated images.

3.3.1 Y type brown dwarfs and JWST observations

The scientific use case we focus on is the study of the multiplicity of Y-type
brown dwarfs. Brown dwarfs are objects which are thought to have formed
in a similar fashion to stars, i.e. from an interstellar cloud of gas and dust, but
with far lower masses. This translates into lower pressure and temperature
at their core, and either a partial ignition of nuclear fusion, or no ignition at
all (Burrows et al., 2001).

Y type brown dwarfs belong to the latter type: they represent the lower tail
of the mass distribution of brown dwarfs, with surface temperatures ranging
from 600 to 300 K. These low surface temperatures, together with their small
size make those objects very difficult to detect: the first of these objects was
discovered in 2009 (Subasavage et al., 2009), and less than thirty of them are
known in total (Cushing, 2019), most of them having been discovered thanks
to the Wide-Field Infrared Survey Explorer, or WISE mission (Cushing et al.,
2011).

Attempts were made to detect close companions around some of these
dwarfs (Fontanive et al., 2018) but their very low luminosity severely limit
the contrasts achievable from the ground, because of background infrared
radiation from the atmosphere, and the need to resort to laser guide star AO,
which provides imperfect tip-tilt correction.

These observational difficulties will however be greatly alleviated by
JWST, which will provide high angular resolution imaging in the mid-infrared,
where Y-type brown dwarfs are the brightest. For this use case, kernel phases
are an interesting set of observables. Furthermore, the mechanical stability
of places the complex visibilities extracted from its images well within the
linear regime the kernel method takes advantage of.

Using simulated JWST images, we evaluate the statistical tests introduced
in the previous sections, as to provide both the demonstration of a real world
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Figure 3.4: The spectrum of a black body at Te f f = 450K, over-
laid with the transmission curves of some filters available for
imaging with JWST. Even though observing in the close infrared
provides a higher resolution, Y dwarfs are very faint in these
wavelengths. Filter transmissions retrieved from NIRCam Fil-
ters (2019), NIRISS Filters (2019) and MIRI Filters and Dispersers.

use case for these tests, and contrast detection performance estimates for the
study of Y-type brown dwarfs, opening the way for future observations.

JWST has three instruments capable of imaging: the near infrared camera
(NIRCAM), the fine guidance sensor / near infrared imagers and slitless spec-
trograph (NIRISS), and the mid-infrared imager (MIRI). Thanks to an array
of overlapping filters, these three instrument provide continuous wavelength
coverage from 600 nm to 28.8 µm, with NIRCAM providing imaging between
600 nm and 5 µm, MIRI between 5 µm and 28.8 µm, and NIRISS between
600 nm and 5 µm. In Fig. 3.4, we present the transmission curves of filters
that provide imaging with a sampling sufficient for kernel analysis, overlaid
with the spectrum of a black body at T=450K, a typical temperature for a Y
type dwarf. As we can see, these objects are very faint in the near infrared,
and using wavelengths shorter that around 2.5µm would yield an extremely
low flux.

For the detection of companions near Y dwarfs, we investigate a case
where images are taken using NIRISS with the F480M filter. This is motivated
by the fact this wavelength domain offers a compromise between maximising
the flux and the resolution. The filter’s bandwidth is also narrow enough not
to create important chromatic mismodellings. Using the longest wavelength
available with this camera also alleviates sampling constraints: for shorter
observing wavelengths, the images do not fulfils the sampling requirements,
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since the pixel pitch is greater than λ/2D.3 This constraint means that, given
the platescale of the instruments, the wavelengths covered by the various
filters and the diameter of the entrance aperture, the images exploitable for
kernel analysis are:

• for NIRCam in the short wavelength channel (0.6 − 2.3 µm), with a
platescale of 31 mas/pixel: F212N

• for NIRCam in the long wavelength channel (2.4 − 5.0 µm), with a
platescale of 63 mas/pixel: F430M, F460M, F466N, F470N and F480M.

• for NIRISS, with a platescale of 65 mas/pixel (STSCI, 2018): F430M and
F480M.

• for MIRI, with a platescale of 110 mas/pixel: all filters but F770W and
F780W.

In the F480M band, images are simulated for 80 minutes exposures,
equally split between a calibrator and the observed object of equal brightness.
The package ami_sim, itself based on webbpsf4 was used for the simulation,
with a first run including no drift in the optical path difference between the
calibration frame and the on target frame. The exposures are simulated for
targets of luminosities corresponding to WISE 1405+5534 (W2 mag = 14.1)
and WISE 0359+5401 (W2 mag = 15.4): the levels and distribution of the noises
are adjusted to match those that would be experienced for actual images of
these targets (Cutri et al., 2015).

The entrance aperture, together with the pupil model used for the ex-
traction of kernels are shown in Fig. 3.5. The array of 18 hexagonal mirrors
making up the segmented primary mirror which is to be folded to fit into the
launcher’s fairing is visible, and leads to the distinctive shape of the outer
edge of the aperture. Looking closely, the small gaps between the segments
are also visible. Two of the three thin struts that hold the secondary mirror in
place can be seen on top. The CLEARP mask is also visible, creating a round
central obstruction as well as three thick spider arms. This mask serves to
obstruct the primary focus of the telescope for mid infrared observations,
in order to avoid the contamination of images with stray light that would
degrade the sensitivity of the instrument.

The covariance of the statistical errors affecting the calibrated kernel
phases extracted from these images is obtained thanks to our knowledge
of the characteristics of the detector, as listed in Table 3.1. It is estimated
without considering possible variations of systematic errors, and only takes
the pixel-independent noises discussed in the previous chapter into account.
Calibration errors are discussed later in Sec. 3.3.2. Once the covariance has

3If this criterion is not fulfilled, the larger spatial frequencies suffer from aliasing, and
become unexploitable.

4ami_sim is available at https://github.com/agreenbaum/ami_sim
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Figure 3.5: From left to right: The entrance pupil for JWST
NIRISS using the F480M band (centred on 4.8 µm), the pupil
model used to describe this pupil, and the PSF created by the
pupil, together with the directions corresponding to position
angles θ = 0◦, θ = 315◦ and θ = 270◦ considered for the simula-

tions.

Read noise (e−) 14.849
Flat field error 0.01%

Dark current (e−/s) 0.04
Total integration time (s) 2400

Number of frames 15
Gain (e−/ADU) 1.00

Jitter value (mas) 7.0
Number of photons (W2 mag = 15.4) 3.723 × 106

Number of photons (W2 mag = 14.1) 1.1181 × 107

Table 3.1: Detector and targets characteristics used to com-
pute the covariance of the ker-phases extracted from our JWST

NIRISS simulated dataset.
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been estimated, and a whitening matrix computed, the statistical tools pre-
sented in the beginning of this chapter can be deployed.

3.3.2 Kernel phases errors estimation on JWST NIRISS

Kernel phases extracted from JWST NIRISS images are affected by errors, as
discussed in the previous chapter (see Sec. 2.3). The estimation of statistical,
detector errors is rather straightforward: using the exposure parameters listed
in Table 3.1, it is possible to determine the distribution of the errors that affect
each pixel from the image by knowing the characteristics of the detector,
which have been characterised (Doyon et al., 2012). Using the obtained
image as a basis, it is then possible to deduce the covariance of the noise that
affects the kernel phases using Monte Carlo simulations of as many frames
as necessary. Systematic, calibration errors are more difficult to predict.
They are expected to stem mostly from calibration drifts, where change in
the aberrations between the calibration frame and the science frame create
unknown kernel phase residuals.

On JWST, wavefront drift is limited by the extreme stability of the instru-
ment (on top of its effects being strongly reduced by the inherent robustness
of kernel phases). In the past decades, stability has emerged as a primordial
requirement for high resolution instruments, instead of considering having
reached the diffraction limit5 to be "good enough“. As an example of old
attitudes towards calibration, the calibration and target frames on the 1997
HST observations analysed by Laugier et al. (2019b) using kernel phases were
acquired weeks apart. Over this interval, significant optical drifts introduce
important calibration residuals. As a result, the ker-phases extracted for
Gliese 494 are dominated by calibration residuals, even after kernel treat-
ment6.

With a proper calibration approach, the wavefront drift between the ac-
quisitions of the calibration frame and of the science frame can be very low.
The main origin of wavefront drift is thermal: since JWST is an infrared
telescope, and will work at wavelengths of up to 28.8 µ m, it needs to stay
cold. This is achieved by the large sunscreen which shields the primary and
secondary mirrors, as well as some of the instruments. This creates a steep
temperature gradient between the cold and warm side. When the slew angle
of the telescope changes, the angle of incidence of the sun on the sunshield
changes, leading to a variation in the total flux received. This in turns affects
the thermal equilibrium. Since the telescope is in space, thermal equilibrium

5This limit is in turn a somewhat arbitrary limit, usually defined as the Strehl ratio being
higher than a set threshold.

6This does not in any way mean that kernel is worthless in this case; On the contrary,
kernel treatment in Laugier et al. (2019b) have revealed a companion to Gl 494 that had not
been previously detected in the 1997 archival data, and it is indeed the oldest dataset in
which the companion could be resolved
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is reached purely radiatively. This leads to very long thermal relaxation times,
of the order of weeks (Johnston et al., 2004).

Thermal wavefront drifts have been modelled by Perrin et al. (2018). Ta-
ble 1 in this paper summarises the worst-case wavefront drifts on different
timescales. Over 2 hours, a timescale we can hope to reach for pairs of 40 min-
utes exposures, the worst-case wavefront drift is expected to be on the order
of 16 nm. Translating this error value into ker-phase residuals is difficult
without access to advanced simulation tools, but the residual can nonethe-
less be estimated: the simulation tool webbpsf comes with 10 "standard" OPD
maps of the pupils (or phasecreens). These phasescreens are normalised, and
are used to simulate the images that serve to estimate the ker-phase residuals.
The standard deviation thus estimated is then used to "load" the diagonal of
the covariance matrix.7

3.3.3 Errors on the measured parameters

With a covariance estimated, it is possible to determine the MLE expected
from a dataset acquired under certain observing conditions. Here, we show
the errors on the measured parameters of binaries observed under the con-
ditions listed in Table 3.1, where the errors on measured kernel phases are
dominated by image noise. I demonstrate how simply reporting error bars
may not be sufficient, as their exist complex correlations between the mea-
sured contrast and separation of a companion.

The most adapted to the detection of companions of the three tests TNP,
TE and TB is TB, since it offers a performance improvement over TE, but does
not require prior knowledge of the parameters of the researched binary like
TNP. To implement the test TB, it is necessary to determine the MLE for a
given dataset y (cf Eq. (3.48)). This is equivalent to estimating the parameters
(α, β, c) of the binary. Since the data is noisy, the estimations of these
parameters are affected by errors, which directly impact the performance
of TB: here, we present a set of methods to estimate them, and report the
predicted error margins for JWST NIRISS observation of faint targets. As
a first step, let us focus on the errors affecting the measured position and
contrast for a detected companion’s parameters. We assume the numerical
estimate of the MLE x̂ unbiased and exact.

Using TB first requires estimating the MLE x̂, i.e. the parameters of the
binary which "best explain“ the observed ker-phase y. Any data vector
leads to a MLE, whether a detection occurs or not. The uncertainty on the
measured parameters is worth knowing, as the determination of the position

7The non diagonal terms are hard to estimate from this few realisations, and a p × p
with p ≈ 1000 covariance matrix obtained with only ten images cannot be inverted. In the
following, we use either the covariance estimated in the absence of significant wavefront
drift cased errors (in which case, no wavefront drift is specified), or with a covariance that is
estimated by taking into account both the contributions of the noise and of the drift.



56 Chapter 3. Statistical detection of binaries

and contrast of a companion is as precious an information as the detection
itself.

While in Sec. 3.2.4, the position of the companion was expressed in Carte-
sian coordinates to make the visibility computation easier, as uv coordinates
are also expressed in a Cartesian frame of reference, here, we adopt polar
coordinates, expressing the position in terms of separation from the primary
and of position angle form the North axis to match the manner in which
binary parameters are usually expressed. Here, we take the North axis to
correspond to the direction of the coordinate β, and the East direction to the
direction of the coordinate α. As a convention, let us assume the North direc-
tion corresponds to the vertical in the image. Then, the polar coordinates of
a binary, consisting of a position angle θ and of a separation ρ can be found
from the coordinates α and β using the relations:

ρ =
√
α2 + β2

θ = arctan
β

α
.

(3.54)

I describe two methods to estimate errors, one that is adapted to the
prediction of the distribution of parameters for a given noise covariance, and
another one that is adapted to the estimation of confidence intervals from a
dataset composed of a single realisation of y

• A possible approach to predict the distribution of the measured param-
eters is a Monte Carlo simulation, involving the estimations of MLEs
for a vast number of simulated realisations of y. This provides a pre-
diction of the probability that the estimated parameters under a given
set of conditions fall into a given region in the parameter space. Since
we are working with simulations, we estimate the error on the MLE
using this method, by considering a vast number of realisations of y,
while keeping the signature x the same. Many realisations of the noise
are then simulated to obtain a population of data vectors y. For every
realisation, the MLE x̂ is computed, giving the MLEs ρ̂, θ̂ and ĉ for each
noise realisation.

The results of this approach are show in Fig. 3.6, where it is made
evident that the estimated separations and contrasts are linked: the
plot of one as a function of the other has a banana shape, especially
for relatively high contrasts and low separations, where the power of
the signal x becomes small relative to the power of the noise ε. Even if
the contrast and the separations are not well determined, the position
angle can be determined with a good accuracy. Also note that, if the
contrast is known from previous observations, accuracy on the error in
the contrast can be greatly improved. For instance, if the contrast has
been determined from previous observations (for instance, at a point
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Figure 3.6: Error on the recovered parameters, determined by
drawing many realisations of y. Top panels: the circles rep-
resent the separation and contrasts of the injected signature,
and each column represent one flux regime. The bottom panels
represent the error on the estimated position angle θ. The pa-
rameters ρ and c of each injected signature are represented as
coloured circles on the top panels, while θ is fixed at 315◦ for all
signatures. The same colour code is used for every panel, with
each colour corresponding to an individual injected signature.
Each dot on the top panel represents the parameters estimated

for a single realisation of the noise.
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Figure 3.7: Isocontour map of the likelihood `(ρ, θ, c; y) with
binary signatures z computed for a 3D grid of values taken by
ρ, θ and c. The image from which y is determined has a binary
signature at ρ = 74 mas, θ = 315◦ and c = 50. The flux is 1.1 107

photons.

in an orbit where the companion is farther from the main source) to be
equal to say, 50, then the uncertainty on the separation in much reduced.

• If observers only have access to a single realisation, as would be the
case in practice, another method can be used to determine the errors
on the measured parameters, using a map of the likelihood `(ρ, θ, c; y)
over the parameter space. By computing likelihoods over a grid of
values of ρ, θ and c, if this likelihood is normalised so that its sum
over all the considered parameters is 1 (this corresponds to assuming
any companion would exist in the interval of parameters for which the
likelihoods are calculated), confidence intervals can be drawn using the
sum of the likelihood inside a given region of the parameter space. For
instance, the region over which the sum of the likelihood is equal to 0.99
corresponds to the estimated 99% confidence interval.

Fig. 3.7 shows the probability mass distribution for a binary at ρ = 74
mas, θ = 315◦ and c = 50, in the flux regime shown on the left had side
of Fig. 3.6, at 1.1 107 photons reaching the detector during a 40 minutes
exposure. The errors obtained using a the MC simulations are also
shown, and match the confidence intervals. This sort of representation
is more appropriate for reporting error bars in practice, since it can do
so from a single measurement, and also provides numerical estimates
for the confidence intervals.

Whatever the method to estimate the errors may be, the representation
of the error bars is crucial: simply giving error values on the recovered pa-
rameters of a binary does not show the full picture, as it often assumes the
region in which the parameters lie has the shape of an ellipsoid. In reality,
these regions can take complex shapes, which are not necessarily captured
by simple errors bars.
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For the three parameters that determine the signature of a binary, a grid
search is not computationally prohibitive for the determination of a single
likelihood map: it consists of Nρ×Nθ×Nc products of vectors of length p, with
N the grid size, and p the number of ker-phases. However, the determination
of the distribution of the test statistic of TB under the null hypothesis and,
more importantly under H1 for all the parameters one wishes to include in
the detection limits map requires the computations of many MLEs, for many
realisations of y. This means a systematic exploration of the parameter space
is not ideal in those circumstances, and that faster numerical methods are
required.

3.3.4 Numerical MLE estimation.

Since estimating the MLE with a grid search is not feasible for a big number of
realisations in a reasonable time, determining the detection probability and
the false alarm rate for a given signature x requires an efficient and reliable
way of determining x̂ under bothH0 andH1.

The one we ended up using in practice consists in using the injected
signature as a starting point for a gradient descent procedure.8 This method
presents the advantage of being very quick: only a handfuls of likelihoods
need to be computed to find the MLE for a given realisation. Although it
works very well at favourable signal to noise ratios,in which case the valley
of global minimum is very wide and deep, it is sensitive to local minima,
and to producing spurious MLEs if the signal-to-noise ration is bad enough.
The application of this method becomes more complicated underH0, where
it is difficult to find a starting point in the parameter space. In practice,
one could therefore use either a starting point at zero separation and at an
arbitrary contrast, or a random starting point, in the bounds of the separations
accessible to the aperture model.

Alternatively, one can use an exhaustive search over a grid, where a likeli-
hood is computed at each point of a grid in the parameter space. Depending
on the definition of the grid, a gradient descent method can then be employed
to hone in on the exact MLE. This method runs little risk of giving the wrong
MLE due to a local minimum, but it is computationally expensive. We have
found that in practice, when it comes to separations, the grid step cannot
be smaller than around one half λ/D. With an aperture model that enables
the measurement of kernel phases of binary at up to 10 λ/D, the grid for
the positions must be at least 40 × 40. On top of this, the contrast needs to
be determined. A 40 × 40 × 40 grid search necessitates the computation of
64,000 distinct likelihoods. For a single measured kernel phases, it is not an
extreme cost. But for the purpose of finding detection limits, which involves

8Although the estimation of x̂ relies on maximising the likelihood, the equivalent approach
of minimising the opposite of the term in the exponential in Eq. (3.27) is more practical to
implement.
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Figure 3.8: For contrasts above the detection limits (see Fig. 3.11
in the higher flux case), the MLE estimated by gradient descent
(represented with a cross) closely matches the likelihood esti-
mated with an exhaustive search (represented by a circle). This
means that the estimation of the distribution of the test statistic
under H1 is unbiased by the use of a simple gradient descent.
As the separation increases, the width of the valley in which the
minimum is situated decrease, however, using a gradient de-
scent with the parameters of the injected signature as a starting

point remains reliable.

hundreds or thousands of evaluations at each point of a grid, this high cost
makes the method prohibitive.

However, for the purpose of determining the MLE from a single, real
observation, a grid search is tractable, and poses no risk of falling into a local
maximum. For these reasons, it is the preferred method in this case. For
the purpose of determining detection limits however, speed is much more of
concern, and a gradient descent with the parameters of the injected signature
as a starting point would be preferred. This choice is further validated by
the fact that the regime in which the multimodal nature of the likelihood
becomes an obstacle to the determination of the MLE falls outside of the
detection limits. This is shown in Fig. 3.8.

3.4 Performance

The contrast detection limit for binaries in images depend on the perfor-
mances of the detection tests introduced before. In this section, we compare
the general performances of the three tests in Sec. 3.4, predict the mass de-
tection limits for a known Y type brown dwarf in Sec. 3.4.2, and look at the
maximum attainable contrast performance in Sec. 3.4.3.

3.4.1 Detection and contrast performance

Firstly, we validate the theoretical relations predicting the performance of
the NP test TNP (Eq. (3.25)) and of the energy detector TE (Eq. (3.39)), and
determine the actual performance of TB (Eq. (3.50)). For that purpose, we
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Figure 3.9: ROC curves of TE (green), TNP (blue), and TB (or-
ange). Theoretical ROC curves for TNP and TE plotted using
Eq. (3.25) and Eq. (3.39), for a companion at ρ = 200 mas,
c = 1200, and θ = 45◦ off the vertical. Dashed lines correspond
to theoretical ROCs, while solid lines represent ROCs obtained
by Monte-Carlo simulations. The closer a curve is to the black
line on the diagonal, the less powerful the corresponding test.
The higher flux regime is represented in the top panel, and the
lower flux regime in the bottom panel. The performance of TNP
and TE are accurately described by the theoretical expressions
in Eq. (3.25) and Eq. (3.39). The test TNP presents the highest
performance. TB is the next-best-performing test and TE has the
lowest performance of the three. We see a clear improvement
of the power of all tests as the flux (and thus the S/N) increases.
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Figure 3.10: Detection limits at a fixed position angle θ = 315◦

(the isocontours below which the PDET falls below 68% for a
fixed PFA of 1%), represented as a function of the separation
and contrast of the companions, for TE (green), TB (blue), and
TNP (orange) The dashed lines represent theoretical detection
limits for TE and TNP (Eq. (3.25) and Eq. (3.39)) and the dotted
lines present the limits achieved in the MC simulations. TNP
(orange) provides ideal detection limits for a Kernel treatment
of a JWST-NIRISS image and the practical test TB (dotted blue)
has contrast detection limits within a factor 2.5 of the theoretical
maximum. The solid lines represent the detection limits for TB
(blue) and TNP (red) with a calibration residual corresponding

to a 16 nm RMS wavefront drift.
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Figure 3.11: Detection limits for test TB (Eq. (3.50)), in the
higher flux regime (top panel) and the lower flux regime (bottom
panel). The solid lines correspond to contours of PDET = 68% at
a fixed PFA = 1%. Detection limits are represented at three dif-
ferent position angles for the companion: 0, 45, and 90 degrees
off the vertical, as orientated in the PSF shown in Fig. 3.5. The
relative S/N (see text) are indicated by dashed lines. The shot

(photon) noise is the main limiting noise in most cases.
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perform Monte Carlo simulations consisting of 2000 realisations9 of y under
H0 and underH1 for a given signature x (cf Eq. (3.44)).

All of the detection limits are shown for PFA = 1% and PDET = 68%. In
terms more frequently encountered in astronomy publications, this is equiv-
alent to having a 68% chance of making a ≈ 2.3σ detection, as the distribution
function of the one dimensional, normal distributionFN(0,σ)(ξ) is equal to 0.01
for ξ ≈ 2.3σ.

On each realisation of y, we perform each of the three tests using the
kernels operator K and the covariance matrix Σ. Figure 3.9 presents our re-
sults in the form of ROC curves, which provide a graphical representation
of the power of each test. It can be seen that the dashed curves represent-
ing the theoretical ROCs accurately match the solid lines corresponding to
the performance achieved in practice. As expected, TNP appears to be the
most powerful of the three tests (this test corresponds to the upper perfor-
mance bound) and TE the least powerful of the three (this test uses no prior
information on the target signature and can be seen as a lower bound). The
performance of TB logically lies in between, but much closer to the upper than
to the lower bound.

The detection limits for the three tests TNP, TE, and TB are represented
in Fig. 3.10 across a range of contrasts and separations, for a fixed position
angle θ = 315◦. The dashed lines correspond to no wavefront error while
the solid lines correspond to 16 ñm RMS of wavefront error. We can see that
the theoretical performance, validated for a single companion signature in
Fig. 3.9, hold true over a large range of contrasts and separations, and that
the detection limit of TB remains close to the bound provided by TNP. The
dashed and dotted lines correspond to a perfectly stable JWST leading to a
perfect calibration of the systematic errors.

The detection limits further depend on θ, because the PSF of JWST NIRISS
is not centrosymmetric (as visible in Fig. 3.5). Fluctuations of these limits
are shown in Fig. 3.11 for three position angles. Figure 9 also indicates
the S/N level at the corresponding positions in the image (computed here
as the maximal pixel value of a noiseless image with only the companion,
divided by the standard deviation of the considered noise), showing that the
detection limits follow the overall noise level in the image. Performance wise,
the detectable contrast ratios are of the order of 103 at 200 mas, with some
variations between the two flux levels considered.

3.4.2 Mass limits for WISE 1405+5534

WISE 1405+5534 is a Y-type brown dwarf with a W2 magnitude of 14.1
that was used as a reference target to produce the contrast detection limits
featured in Fig. 3.10. The raw observational detection limit curve of contrast

9The number of realisations is dictated by the target PFA and PDET. For the considered
PFA = 1% and PDET = 68%, 2000 realisations correctly sample the distributions of the test
statistic of TB underH0 andH1.
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Figure 3.12: Detection limits of a possible companion to WISE
1405+5534 at PFA = 1% and PDET = 68%, as a function of contrast
(right ordinate axis) or mass (left ordinate axis) and absolute
separation in AU. A one-Jupiter-mass object is detectable down

to 1.5 AU from the primary.

as a function of angular separation can be converted into an astrophysical
detection limit curve of companion mass as a function of orbital separation.

Whereas the 129± 19 mas parallax measured by Dupuy and Kraus (2013)
directly allows for the conversion of the angular separation into a projected
orbital distance, the contrast to mass conversion requires a model. We use the
mass–luminosity relations given by the AMES-Cond model of Baraffe et al.
(2003) for an age of 1 Gyr and a mass estimate of 30 MJ for the primary given
by Cushing et al. (2011).

The detection limits obtained for WISE 1405+5534 are shown in Fig. 3.12.
At PFA = 1%, and PDET = 68%, a 1MJ can be detected at separations greater that
1.5 AU. An orbit with this semi major axis would have a period of 40 years,
thus a quarter of an orbit could be captured with repeated observations over
the expected service life of JWST.

3.4.3 Bright limits

For the faint Y-dwarf targets considered thus far, it may have occurred to the
reader that the contrast detection limits are dominated by the effect of the
dark current and the readout noise and not by the photon noise of the central
object. We wish here to complete the description of the properties of our
approach with a bright target scenario that will feature a different behaviour,
thus exhibiting the contribution of the photon noise.

The saturation limit for full-pupil JWST NIRISS using the F480M filter
and a 64×64 pixels subarray size is 7.6 mag. We consider a shorter observa-
tion sequence, with a total of 20 minutes spent on the target of interest and
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Figure 3.13: Detection limits for the brightest target observable
without saturation with JWST NIRISS. Solid lines show detec-
tion limits for TB at PFA = 1% and PDET = 68% applied to the
image with the greatest possible dynamic range, with 20 min-
utes total integration time. For the brightest images, the kernel
method with the test TB ideally allows detection of contrasts
up to 105 beyond 500 mas. The dashed orange line represents
the more realistic detection limits in the presence of a 16 nm

wavefront drift.
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20 minutes on a calibrator of similar brightness. The detection limits for this
observation using the operational test TB are shown in Fig. 3.13, at PFA = 1%,
and PDET = 68%.

Unlike the contrast detection limits obtained on the faint targets, the curves
now clearly reveal two different regimes. Up to an angular separation of
≈500 mas, where the photon noise is expected to dominate, the contrast
detection decreases as a function of the angular separation. Beyond this
point, it reaches a plateau, as the detection is once again dominated by the
homogeneous properties of the dark current and the readout noise.

In this bright scenario, calibration errors induced by a drift comparable to
what was described in Sect. 3.4 will have a stronger impact on the weak signal
of a high-contrast companion. Sallum and Skemer (2019) feature contrast
detection limits for NIRCam in a similar scenario that takes calibration errors
into account. Under the hypothesis introduced in Sect. 3.3.3, the calibration
error accounts here for 85% of the total noise variance of the kernels and
therefore results in a degraded performance by a factor of approximately 10,
as shown by the dashed curve in Fig. 3.13.

In Fig. 3.6 and Fig. 3.7, it is apparent that ker-phases become less sensitive
at resolutions smaller than λ/D: even if the contrast remains the same, the
errors on the parameters of the binary increase at small separations. This
is corroborated by a quick degradation of contrast detection limits at close
separations, seen in Fig. 3.10 and all other detection maps. This does not seem
to be a pure signal-to-noise ratio issue in the raw phase: even signatures with
small contrasts are affected. Binary signatures seem to present a fundamental
resolution limit. Poor detection performances at very small separations are
not particular to JWST kernel phases either: they have been observed on other
telescopes, with both ker-phases and NRM closure phases. The limits can be
explained as the apparition of a fundamental degeneracy between the tip-tilt
aberration mode and a companion signature at very close separations. The
degeneracy appears in the first elements of the Taylor series expansion of the
phase of the complex visibility of a binary, which correspond to a component
identical to a “slope“ in the Fourier domain, as shown in Appendix C.

3.5 Conclusion

In this chapter, we have shown how the presence or absence of an asymmet-
rical structure around a star or, in this case a brown dwarf can be expressed
as a set of hypotheses on the distribution of the kernel phase extracted from
its image. These hypotheses can be used to design a detection test. If the
signature one attempts to detect is known in advance, there exists an optimal
detection test, the likelihood ratio. If it is not the case, the likelihood ratio
can be generalised to the case where the signature is estimated using the
measured signal, to create a generalised likelihood ratio test, or GLR.

To better illustrate the performance of of the operational test TB, let us go
back to the example in Fig. 3.1, the Fig. 3.14 shows how a companion can
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Figure 3.14: Going back to the example in Fig. 3.1, and more
specifically to the example on the right, the likelihood ratios
for different companion positions, and a contrast of 50 (on a
non linear scale). The maximum of the ratio corresponds to the
test statistic for TB(y). In this case, the value of this statistic
enables us to guarantee PFA < 10−7, given the estimations of the

distribution of the test statistic of TB underH0

be detected on the image on the left using kernel analysis and the statistical
methods introduced in this chapter, we can now detect the companion, which
is located at ρ = 73.5 mas, at θ = 315◦ with a contrast c = 50, as shown in
Fig. 3.14, with PFA > 10−7. Therefore, for this use case, kernel phase analysis
combined with detection tests, and the great stability of JWST allows for the
detection of very close binaries that would not be detectable otherwise, pro-
viding an additional significance level for the kernel detection. This achieved
by exploiting both our physical understanding of how errors propagate to
an image and minimising them thanks to the kernel method a subspace pro-
jection method that cancels the nuisance signal, and to the way errors in the
image affect these observables by treating them statistically.

We have determined the test statistics of both the likelihood ratio and
the GLR for two possible structure of the object subject to detection. Then,
we saw how these tests perform for the detection of structures around a
cold, faint brown dwarf observed with JWST. Focusing on the test tuned to
detect companions of unknown position and contrasts, we saw how it could
reach contrasts of around 103 well inside of the inner working angles of the
coronagraphs expected to fly on JWST, with PFA < 10−2.

Kernel phase observations are therefore a compelling observing method
for the study of the multiplicity of faint, cold brown dwarfs, especially cou-
pled with statistical detection tests able to guarantee a false alarm rate. It is
also worth noting that the statistical procedures detailed in this chapter can
also be deployed for any pupil geometry.
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The main limitation of these statistical techniques remain the characteri-
sation of the distribution of calibration errors, which still dominate ground
based observations. Without a good estimation of their distributions, it is
difficult to establish the nature of the observed object, and badly estimated
errors can lead to false detections, or detection of the wrong signature, like
a disk asymmetry being confused with a companion. This is not on an issue
for low flux targets observed with a stable platform, but it can become a limit,
even with the very stable JWST, where calibration errors come to dominate
for brighter targets. A possible answer to this issue could be better aberration
propagation models, that can lower the residual for a given aberration, as
shown by Martinache et al. (2020).

The work presented in this chapter have been the object of Ceau et al.
(2019), published in Astronomy & Astrophysics. A proposal is currently
being written for Y dwarf direct imaging using kernel phases, leveraging the
power of these methods.
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Conclusion

Throughout this thesis, we have explored the Kernel method, and the con-
struction of aberration robust observables from the Fourier transform of im-
ages, using the methods introduced by Martinache (2010). This method
relies on the modelling of image formation as the acquisition of interfero-
metric observables from an array of regularly spaced pupils matching the
shape of the entrance aperture. Contrary to a classical interferometer, this
arrangement is highly redundant: for most spatial frequencies, the observed
complex visibility is typically the result not of the combination of the light
sampled by a single pair of subpupils, but of many pairs. This redundancy
can be eliminated with a non redundant mask, which enables the formation
of images from which closure phases, observables not affected by aberrations
can be formed. These observables rely in a linear relation that mediates the
propagation of aberration from the subpupils to the observed visibilities.

Non redundant aperture masking is a successful technique, that can be
deployed on large, uncorrected ground based telescopes. In recent years,
extreme adaptive optics has emerged, and has proven able to eliminate most
of the atmospheric aberrations for 8 metre class telescopes: images are now
dominated by diffraction rather than aberrations, with optical path differ-
ences across the entrance aperture much smaller than typical close infrared
wavelengths. In this regime, a linear relation can approximate the combina-
tion of the contributions of many subpupils to form the complex visibility for
a single spatial frequency. A relation similar to the one that is used to pro-
duce kernel phases can be used to construct aberration-robust observables
from images obtained with a pupil of any shape: kernel phases. The key to
this description is a matrix relation that links the phase shift imposed at each
point of the aperture corresponding to the phase of the complex visibilities
for each of the spatial frequencies sampled by the array of virtual subpupils.
Linear algebra then gives us the tools to eliminate this contribution by pro-
jecting the phase of the complex visibilities in a subspace unaffected by this
linear component.

In the low aberration regimes unlocked by AO and space-based observato-
ries, kernel phases can eliminate most of the aberration signal from the phase
of the complex visibility. The method is however not perfect: even when
the linear approximation on which the method relies is verified, a residual
aberration signal is generated. We examined different possible candidates to
explain this residual: the improper modelling of the entrance aperture of the
telescope, by a discrete array of virtual subpupils, aberration internal to the
virtual subpupils and the non monochromatic nature of light. Of these three
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factor, only the non monochromatic nature of light was found not to have
any impact, and, for a "simple“ circular aperture with a central obstruction,
we found that a better model of the pupil with an incorporation of subpupil
transmissions and the filtering of the spatial frequencies that can be attributed
to aberration inside of the subpupils can reduce the residual aberrations dra-
matically, as reported in Martinache et al. (2020), where we show how the
aperture modelling can be improved to reduce the aberration residuals.

Some errors that are not aberrations also affect kernel phases: on the focal
plane, detector and photon noises propagate to the kernel phases and limit
their sensitivity to faint signatures. The distribution of this error needs to be
understood for the kernel phases to be exploited. Even though the photon
noise follows a Poisson distribution, the fact that kernel phases are the re-
sult of the combination of the pixel values of all pixels guarantees that their
distribution is a multivariate normal. The covariance of this distribution can
be estimated either by a Monte Carlo simulation, taking the realisations of
many images at a given noise level; or by a linear approximation, using the
individual variance or each pixel. The former option is what we used, since
the computational overhead to simulate a few hundred thousand frames and
to compute the Fourier transform for each of these frames is not a big hin-
drance. Once the covariance has been estimated, it serves either to compute
the likelihood of an object’s parameters given a data vector, or to construct
a set of observables of covariance identity, meaning they are uncorrelated
and of variance 1. This last option enables the computation of likelihoods to
be simpler, and the kernel matrix can be altered to produce these whitened
observables, so this is the one we adopted.

This determination of the distribution of the kernel phases enables the
computation of the likelihood of obtaining a given kernel phase vector for a
given object signature. The likelihood then serves as a basis for detection:
by comparing the likelihood of the signature corresponding to a single star
to the likelihood of it corresponding to some other structure, it becomes
possible to detect the presence of a structure around a star. The optimal
of close-to-optimal detection procedure changes whether the structure of
interest is known in advance, unknown, or corresponds to a specific feature.
We focused on the detection of a stellar or substellar companion, with an
application to JWST NIRISS images of faint, cool brown dwarfs known as
spectral class Y brown dwarfs, and demonstrate that it is possible to devise a
detection procedure capable of detection at contrasts of 103 at separations of
200 mas with false detection probability smaller than 1%, a performance that
can be matched neither by current ground based telescopes for these objects,
nor by the coronagraphs available for JWST observations. These detection
procedures and their application were the object of Ceau et al. (2019).

These procedures have also been included in the python kernel phase
analysis package xara, thanks to the work of Romain Laugier, which enables
users to perform detections on images using the same suite of tools that allows
from the extraction of kernel phases.
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Although the detection procedures presented in Chapter 3 are either op-
timal or close to optimal, there are many cases where their application is not
very clear cut, as the distribution of the errors in the kernel phases are not
necessarily known, and the method would greatly benefit of a better mod-
elling of the distribution of aberration residuals: the current best practice is
to be overly conservative with the detection thresholds to account for these
poorly constrained errors, with a negative impact on performance.

The detection performances of these detection methods are currently being
applied to outline a proposal for a survey of Y type dwarfs, led by Loïc Albert
at iREx in Montreal.

In parallel, the kernel method has been expanded to include more use
cases. Laugier et al. (2019b) has shown how saturation in images can be
corrected to make the kernel treatment possible on images with regions out-
side of the linear range of CCDs. Martinache (2010) demonstrated a proof of
concept for aberration robust observables from interferometric nulls.

The statistical methods presented here are not bound to binaries: any
object signature that can be described as a function of a set of parameters
can be detected. Such object may include, disks, star with jets, or systems
composed of more than two unresolved sources. Provided calibration frames
are available, and the errors on kernel phases are known, archive images can
be exploited using these methods.

The kernel method, as applied to images (including those obtained with
NRM interferometry) can also be extended, by measuring the subspace in
which errors lie. This can be done by acquiring a great number of frames
(which is possible with a fast camera and bright calibration source), and then
using principal component analysis to build a response matrix that serves as
the transfer matrix A, from which a kernels matrix can be build, by taking the
left null space of this thus determined structure matrix.
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Appendix A

Demonstration of the
Neyman-Pearson lemma

The Neyman Pearson Lemma (Neyman and Pearson, 1933) states that the
most powerful test that discriminates between two hypotheses is he likeli-
hood ratio. Here, we consider the case where the hypotheses are of presence
or absence of a signature x, with a noise ε of known distribution. The demon-
stration that follows is largely inspired by Lehmann and Romano (1959).1H0 : y = ε

H1 : y = x + ε,
(A.1)

is a likelihood ratio, giving the Neyman-Pearson test:

TNP(y) =
`(y|H1)
`(y|H0)

H1
≷
H0

ξ. (A.2)

The power of a test is defined by its detection rate PDET for a given PFA: the
higher PDET, the most powerful the test.

We define the rejection region of the null hypothesisH0 of a detection test
TT(y) as the collection of data vectors y that trigger a detection, i.e. a rejection
of the null hypothesis:

RT =
{
y : TT(y) ≥ ξ

}
. (A.3)

The collection of data vectors that are not in the region RT are in its comple-
mentary Rc

T, so that RT ∩ Rc
T = ∅ and RT ∩ Rc

T =
{
y
}
, the set containing all the

possible values for y. The false alarm rate for the test TT can thus be rewritten
as the probability of the test statistic falling into the rejection region under the
null hypothesis:

PFA(TT) = P(RT; H0). (A.4)
1The noise has not to be normal in this case. The only condition on the distribution if the

noise is that the likelihoods `(y|H1) and `(y|H0) can be determined.
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For a given signature x, the likelihood that this signal gives rise to a data
vector y, falling into the rejection region R, is

P(R, x) :
∫

RT

`(x; y). (A.5)

This is akin to counting the number of times the data y falls into the rejection
region for a given x. The false alarm rate for a test TT with the rejection region
RT is therefore

PFA(TT) = P(RT; 0). (A.6)

Proving that the Neyman Pearson test is uniformly most powerful is equiva-
lent to proving it offers the lowest possible false alarm rate, while offering the
largest rejection region of the null hypothesis in the presence of a signature
x. From Eq. A.6, this is equivalent to proving that every test TA has, at an
equivalent PFA than TNP

P(RNP; 0) = P(RA; 0), (A.7)

a lower or equal PDET than TNP,

P(RA; x) ≤ P(RNP; x). (A.8)

The probabilities in Eq. A.8 can be broken down into

P(RNP; x) = P(RNP ∩ RA) + P(RNP ∩ Rc
A; x)

P(RA; x) = P(RA ∩ RNP) + P(RA ∩ Rc
NP; x).

(A.9)

Eq. A.8 is therefore equivalent to

P(RNP ∩ Rc
A; x) ≥ P(RA ∩ Rc

NP; x), (A.10)

and Eq. A.7 to
P(RNP ∩ Rc

A; 0) = P(RA ∩ Rc
NP; 0). (A.11)

If Eq. A.8 is true whenever Eq. A.7 is verified, then the Neyman-Pearson
detection test is the single most powerful test possible.

From Eq. A.5, we get

P(RNP ∩ Rc
A; x) =

∫
RNP∩Rc

A

`(y; x)dy, (A.12)

and likewise for the other term of Eq. A.8

P(Rc
NP ∩ RA; x) =

∫
Rc

NP∩RA

`(y; x)dy. (A.13)
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Recalling Eq. A.2 and Eq A.3, the rejection region for the Neyman Pearson
test is given by

RNP =
{
y :

`(x; y)
`(0; y)

≥ ξ
}
, (A.14)

and its complement by

Rc
NP =

{
y :

`(y; x)
`(y; x)

< ξ
}
, (A.15)

giving us ∫
RNP∩Rc

A

`(y; x)dy ≥ ξ
∫

RNP∩Rc
A

`(y; 0)dy (A.16)

and ∫
RNP∩Rc

A

`(y; x)dy < ξ
∫

RNP∩Rc
A

`(y; 0)dy. (A.17)

The relation Eq. A.5, together with the equal significance levels assumed for
TA and TNP (Eq. A.11) give∫

RNP∩Rc
A

`(y; 0)dy =

∫
Rc

NP∩RAc
`(y; 0)dy. (A.18)

Therefore, from Eq. A.18, Eq. A.16 and Eq. A.17, we have∫
RNP∩Rc

A

`(y; x)dy >
∫

Rc
NP∩RA

`(y; x)dy, (A.19)

which is equivalent to

P(RNP ∩ Rc
A; x) > P(RA ∩ Rc

NP; x). (A.20)

Therefore, the only test TA that verifies Eq. A.11 and Eq. A.10 is TNP itself.
Any other test, i.e with any other rejection region than the one of TNP must
verify Eq. A.20 at any given PFA, and is therefore less powerful than the
Neyman-Pearson, or likelihood ratio test.
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Appendix B

A hybrid method to find the MLE

To determine the MLE from a measured kernel phase, one can solve the min-
imisation problem for the likelihood by performing an exhaustive search of
the parameter space (which is costly), or use a gradient descent algorithm to
find the local maximum for the likelihood, but with a risk it does not corre-
spond to the global one. Here, I present an approach that helps simplifying
the exhaustive search method to make it less costly, and enable a fast, reliable
estimation of the MLE.

Fig. 3.8 shows the position of the position of the companion, determined
both by a gradient descent algorithm and by a search on a grid of positions. A
systematic exploration of the parameter space can be used, but it takes time,
as it requires many likelihood computations. An alternative is an hybrid
method, where a systematic exploration is performed to give a rough estimate
of the parameters of the binary, placing it in the appropriate region to get
the gradient descent algorithm to fall into the valley of the correct global
minimum. We call this method an altered grid search, or AGS, since it still
relies on the location of some of the parameters of the binary on a grid, but
with a reduced number of dimensions (2 instead of 3), which is beneficial
to the speed with which the MLE, ans thus the test statistic of TB under H0

can be determined. This is a crucial part in the use of this test, as knowing
this distribution is a requirement for the determination of PFA for any given
detection. Furthermore, this distribution is affected by the covariance of the
the errors on the kernel phases, it is therefore not possible to determine this
distribution once and for all, it needs to be recomputed for every possible
covariance.

The AGS is based on an approximation of the phase of the complex visi-
bility of a binary. Recall the expression Eq. (3.44):

V0(u,v) = 1 + c−1exp
(
−i

2π
λ

(αu + βv)
)
. (B.1)

The visibility can be decomposed into its real and imaginary parts:

V0(u,v) = 1 + c−1. cos
(
−

2π
λ

(αu + βv
)

+ ic−1. sin
(
−

2π
λ

(αu + βv)
)
, (B.2)
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The argument of a complex number a + ib is given by

∠(a + ib) = arctan
b
a
, (B.3)

which can be approximated to the first order, if a >> b with

∠(a + ib) ≈
b
a
. (B.4)

This gives the phase of the object visibility:

∠V0(u,v) = arctan
c−1. sin

(
−

2π
λ (αu + βv)

)
1 + c−1. cos

(
−

2π
λ (αu + βv

) . (B.5)

For large values of c, c−1. sin
(
−

2π
λ (αu+βv)

)
<< 1 and 1+c−1. cos

(
−

2π
λ (αu+βv

)
≈

1. The phase of the visibility can therefore be approximated as

∠V0(u,v) ≈ c−1. sin
(
−

2π
λ

(αu + βv)
)
, (B.6)

therefore,

Σ−
1
2 K∠V0 ≈ c−1Σ−

1
2 K sin

(
−

2π
λ

(αu + βv)
)
. (B.7)

Defining the contrast independent component as

s := Σ−
1
2 K sin

(
−

2π
λ

(αu + βv)
)
, (B.8)

Eq. (3.1), gives the approximate whitened kernel phase x for the observed
object

x ≈ c−1.s. (B.9)

The value of the MLE for s, ŝ := s(α̂, β̂) can be found by a grid search over α
and β. From there, finding the MLE ĉ−1 is equivalent to finding the value for
c−1 that minimises the quantity

(x̂ − y)T(x̂ − y) ≈ (c−1ŝ − y)T(ĉ−1ŝ − y)

≈ 2(ĉ−1)2sTs − 2ĉ−1sT y + yT y.
(B.10)

The MLE on the contrast can then be found by finding the value of ĉ−1 that
brings the derivative over ĉ−1 of this last quantity to zero, and therefore by
solving

d

d(ĉ−1)
(ĉ−1)2ŝTs − 2ĉ−1sT y + yT y = 0. (B.11)
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Since this derivative is
d

d(ĉ−1)
2(ĉ−1)ŝTŝ − 2ŝT y, (B.12)

The MLE for the inverse contrast is

ĉ−1 ≈
ŝT ŷ

ŝTŝ
, (B.13)

and so,

ĉ ≈
ŝTŝ
ŝT y

. (B.14)

The values of s can be precomputed, allowing for a quick grid search over α
and β, and the analytical expression for the MLE over the contrast allows for
quickly determining an approximate MLE ĉ−1ĉ ≈ x̂. The results can also be
subsequently refined by using the MLE from the grid search as the starting
point of a gradient descent. It is however still too slow to constrain PFA

down to a very low level, say 10−6, due to the time necessary to obtain the
few million realisations necessary to reach such high levels of confidence,
unless one has access to many processor cores. Determining a single MLE,
using a combined AGS and gradient descent method takes about one second
on a current generation Intel Xeon CPU (on a single core), with a discrete
pupil model that yields around 1,000 kernel phases. Such a CPU is capable
of simultaneously treating 48 threads, 106 realisations can thus be treated in
under 60 hours.

The AGS presents a notable advantage compared to a classical grid search,
since it only requires a search on a Nα × Nβ sized grid, rather than on a
Nα ×Nβ ×Nc one, greatly reducing the number of estimations that need to be
made to obtain the MLE. It still requires more steps than a gradient descent
with either a pre-set or a random starting point.

With this hybrid method, a grid search method becomes less computa-
tionally expensive. The AGS can therefore serve to determine how robust
to local maximums other MLE determination methods are. This of special
importance to the determination of the distribution of the test statistic of TB

under H0: to guarantee a given PFA, it is necessary to determine the test
statistic of TB for more than P−1

FA realisations. Thus, being able to examine
the behaviour of faster methods that are more sensitive to local maximums
can be very useful. In this case, I compared the distribution of TB under H0

using MLEs determined with the AGS, to the distribution estimated using a
gradient descent with a random starting point, to estimate the bias produced
by the use of a fast, albeit imperfect MLE determination method.

This bias on the estimated distribution under H0 only goes in one direc-
tion: it can only lead to an underestimation of PFA, making detection seem
more certain than they really are. This is because, by definition of the MLE,
any signature z , x̂ that is used to compute the test statistic TB(y) yields a
likelihood `(z; y that is strictly lower than `(x̂; y). Thus, a bad estimation of
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Figure B.1: The distribution of the test statistic of TB under
the null hypothesis H0 for a MLE x̂ estimated by a gradient
descent, either with a starting point set randomly (red), or with
a starting point obtained by a grid search (black). The values
of y are the same random sample for both distribution, and the
vertical bars represent the mean value of either distribution. The
two methods yield distributions close enough for the random

starting point not to be considered an issue.

the MLE will lead to an underestimation of the test statistic TB(y). Therefore,
if the errors on the MLE are significant, the estimated distribution of TB(y) is
biased underH0, leading to an underestimation of PFA. It is therefore impor-
tant to ensure than the MLE determination method used in each case does
not produce a significant bias on the distribution of TB(y).

Fig. B.1 shows the distributions of the test statistic of TB underH0 obtained
by the AGS, and gradient descent with a random starting point (GDSP). The
distribution obtained using the GDSP exhibits the slightest skew, but not
enough to create an important error on the determination of PFA. Thus, the
fast GDSP is a valid method to estimate the distribution of the test statistic of
TB underH0.
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Appendix C

Fundamental resolution limit:
linear decomposition of a binary’s
signal and aberration degeneracy.

Around a given value, a function can be approximated as the sum of the first
terms of its Taylor expansion. This decomposition of the signal of a binary as
a series of Taylor polynomials was spurred by the possibility of developing
detection methods that use the linear structure of a signal to detect it using a
subspace detector proposed by Scharf and Friedlander (1994) which employs
a GLR for which the MLE is obtained by a projection into the subspace
spanned by the expected signature. The fact that the approximation breaks
down at larger separations, and the relatively high number of dimensions
of the basis that described the subspace spanned by the Taylor expansion of
the phase of the visibility of a binary led us to employ an MLE obtained by
a straightforward likelihood maximisation, which presents the advantage of
offering an exact expression for this phase at every separation low enough
for the signature to be captured by the discrete pupil model.

The case that concerns us here is the phase of the complex visibility of
a binary. The Taylor coefficients are given by successive derivations of the
phase of the complex visibility of a binary in Eq. (3.44), and the development
up to the third order gives:

∠V0(u, v) = −u
cα

1 + 1
c

− v
cβ

1 + 1
c

+
u3

6c
α3

(
1 −

6c2

(c + 1)

)
+

u2v
2c
α2β

(
1 −

6c2

(c + 1)

)
+

uv2

2c
αβ2

(
1 −

6c2

(c + 1)

)
+

v3

6c
β3

(
1 −

6c2

(c + 1)

)
.

(C.1)

A linear basis can be associated with each of the term of the Taylor series.
Since the phase signal is odd, only the odd order contribute to it. The basis
spanned by the polynomials up to the fists order is

[u,v], (C.2)
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up to the third order, it is

[u,v, [u2v,v2u,u3,v3]], (C.3)

with the power notation an denoting a vector that contain all of the terms
of a elevated to the power n, and the notation ab the vector containing the
element-wise product of a and b. The terms up to the fifth order live in the
basis

[u,v, [u2v,v2u,u3,v3],uv4,u2v3,u3v2,u4v,u5,v5]. (C.4)

The two first-order terms are of particular interest: in the Fourier plane, a
phase linearly dependent with the u and v coordinates is degenerate with a
tip-tilt on the phase screen, which creates a shift on the image on the focal
plane. Since tip-tilt in the Fourier plane is the consequence of a phase screen
in the pupil plane, it is killed off by a kernels matrix.

At small separations, most of the signal of the binary is contained withing
the tip-tilt term, i.e the Fourier phase can be approximated as a linear function
of the u and v coordinates. The kernel matrix removes this linear components,
which it "sees" as a tip-tilt aberration. Thus, the energy (or the squared norm
of the vector) in the ker-phase of a binary signatures drops extremely fast
as the separation decreases. For the JWST pupil discretised with the model
shown in Fig. 3.5, at 0.4λ/D, only 1% of the energy of the signal at 1 λ/D is
left. This drops off to 0.05% at 0.2λ/D, and 10−6 at 0.1λ/D. If one equates
the energy (the squared norm of the vector) of the ker-phase signal with the
ease of detection, this means that a signal corresponding to a companion with
contrast of 10 at a separation of 0.1λ/D is as difficult to detect as a companion
of contrast 10−7 at a separation of 1λ/D.

This is a fundamental limit, not only of kernel phase, but of any phase-
based aberration robust detection methods at very small separations: when
the sampling of the signature of interest is poor enough, the accessible signal
(which is not tip-tilt degenerate) becomes extremely low. This meshes with
experience regarding the resolution attainable using the phase of the Fourier
visibility, be it by nulling, NRM or full pupil kernel-phase.1

1The amplitude of the signal of a binary follows a similar relation, and is therefore also
sensitive to this effect.
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Figure C.1: Top panel: comparison of the squared norm of the
phase of a binary and of the squared norm of its Taylor expan-
sion to the 1st, 3rd and 5th orders, computed by projection of the
bases from Eq. (C.2), Eq. (C.3) and Eq. (C.4). Bottom panel: ker-
nel phase of the binary (solid black line), and projection of the
phase outside of the subspace spanned by the aforementioned
bases. The top panel indicates how well each basis can describe
the phase signal, while the bottom panel compares the square
norm of the phase signal projected either in the kernels space,
or outside of the basis spanned by the approximation up to the
first, third and fifth order. The bottom panel indicates that the
loss in power of the kernel phase signal as the separation de-
creases is faster than the loss of power int he raw phase signal,
and also that it matches closely the loss experienced by a signal
with simplify the global tip-tilt component removed. this indi-
cates that the bulk of the drop in detection performance at small

separations is attributable to the loss of the tip-tilt signal.
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ABSTRACT

Context. The James Webb Space Telescope (JWST) will offer high angular resolution observing capability in the near-infrared with
masking interferometry on the Near-Infrared Imager and Slitless Spectrograph (NIRISS), and coronagraphic imaging on the Near-
Infrared Camera (NIRCam) and the Mid-Infrared Instrument (MIRI). Full-aperture kernel-phase-based interferometry complements
these observing modes by allowing us to probe for companions at small angular resolution while preserving the telescope throughput.
Aims. Our goal is to derive both theoretical and operational contrast-detection limits for the kernel-phase analysis of JWST NIRISS
full-pupil observations using tools from hypothesis testing theory. The study is immediately applied to observations of faint brown
dwarfs with this instrument, but the tools and methods introduced here are applicable in a wide variety of contexts.
Methods. We construct a statistically independent set of observable quantities from a collection of aberration-robust kernel phases.
Three detection tests based on these observable quantities are designed and analysed, all having the property of guaranteeing a constant
false-alarm rate for phase aberrations smaller than about one radian. One of these tests, the likelihood ratio or Neyman-Pearson test,
provides a theoretical performance bound for any detection test.
Results. The operational detection method considered here is shown to exhibit only marginal power loss with respect to the theoretical
bound. In principle, for the test set to a false-alarm probability of 1%, companions at contrasts reaching 103 and separations of 200 mas
around objects of magnitude 14.1 are detectable with a probability of 68%. For the brightest objects observable using the full pupil of
JWST and NIRISS, contrasts of up to 104 at separations of 200 mas could ultimately be achieved, barring significant wavefront drift.
We also provide a statistical analysis of the uncertainties affecting the contrasts and separations that are estimated for the detected
companions.
Conclusions. The proposed detection method is close to the ultimate bound and offers guarantees on the probability of making a false
detection for binaries, as well as on the error bars for the estimated parameters of the binaries that will be detected by JWST NIRISS.
This method is not only applicable to JWST NIRISS but to any imaging system with adequate sampling.

Key words. instrumentation: high angular resolution – methods: data analysis – stars: low-mass – binaries: close –
techniques: image processing – methods: statistical

1. Introduction

In the past few years, many nearby brown dwarfs have been
discovered thanks to the Wide-field Infrared Survey Explorer
(WISE) sky survey (Wright et al. 2010; Cushing et al. 2011;
Schneider et al. 2015). These newly discovered objects present
an observational challenge due to their intrinsically low lumi-
nosities. Some of them have been observed by the Hubble Space
Telescope (HST), mostly for proper motion and parallax mea-
surements (e.g. Marsh et al. 2013). While previous studies have
searched for companions, they lacked the sensitivity in the opti-
cal and the near infrared to achieve high enough contrasts to
detect very low-mass companions (e.g. Fontanive et al. 2018).
High angular resolution observations are also possible from the
ground using either adaptive optics or optical interferometry.
Cool dwarfs are however intrinsically faint objects and therefore
fall short of the requirements of either technique, unless assisted
by laser guide stars (Bernat et al. 2010).

Issues limiting the quality of ground-based observations,
such as sky background or atmospheric perturbations, can be

alleviated by observing from space. When launched, the James
Webb Space Telescope (JWST, Gardner et al. 2006) will be the
largest ever space telescope, and will provide unparalleled sen-
sitivity for studying faint, cool dwarfs. With a 6.5 m primary
mirror, and an instrument suite covering the 0.6−25.5 µm wave-
length range, the theoretical angular resolution of this telescope
ranges from 20 to 800 mas. For a nearby object located less
than 20 pc away, this translates to the ability to resolve struc-
tures present within a few astronomical units (AU) of the central
source.

However, even for instruments capable of very high angu-
lar resolution, the glare from an object can drown out the light
from faint surrounding structures. This issue is usually addressed
by using coronagraphy and the instrumentation of the JWST
offers several coronagraphs inside the Near-Infrared Camera
(NIRCam) and the Mid-Infrared instrument (MIRI), with inner
working angles ranging from 300 to 800 mas. To probe the
innermost parts of nearby systems, inside the inner working
angles of the coronagraphs, interferometry offers a viable alter-
native. In that scope, onboard JWST, the Near-Infrared Imager

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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and Slitless Spectrograph (NIRISS) offers the aperture masking
interferometer (AMI) observing mode (Sivaramakrishnan et al.
2012) with a non-redundant mask (NRM) located in the instru-
ment pupil wheel. The AMI enables the detection of objects
with lower contrasts, but at narrower separations compared to
what can be achieved by the JWST coronagraphs. The AMI is
expected to have sufficient performance to address yet unan-
swered questions in the fields of active galaxy nuclei (AGNs;
Ford et al. 2014), planetary formation, exoplanets (Artigau et al.
2014), and to facilitate follow-ups on astrometry measurements
from the Gaia mission, or on ground-based extreme adaptive
optics (AO) surveys. In the case of binary point sources in non-
coronagraphic modes, contrast ratios as high as 10 mag (104) for
the brightest companions at 130 mas can be attained using AMI
(Sivaramakrishnan et al. 2012; Greenbaum et al. 2015, 2018).

The AMI achieves its best performance by taking advantage
of self-calibrating observable quantities called closure phases
(Jennison 1958). This technique, first developed for radio inter-
ferometry and later adapted to the optical regime (Baldwin et al.
1986) was adapted to single-dish telescopes using a non-
redundant aperture mask. Initially used in seeing-limited observ-
ing conditions (Nakajima 1989), the technique eventually took
advantage of the development of AO (Tuthill et al. 2006) allow-
ing stabilised longer-exposure modes and providing the ability
to observe fainter objects. Non-redundant mask interferometry
is now routinely used and has led to a variety of studies (e.g.
Sallum et al. 2015; Kraus et al. 2008, 2011).

Kernel phase generalises the idea of closure phase to aper-
tures of arbitrary shapes, and can be reliably used when aber-
rations are smaller than about one radian (Martinache 2010).
This method can therefore be used on images acquired using
any instrument onboard JWST, provided that the instrument
pupil geometry is accurately modelled. It is therefore useable on
full-pupil images as well as on AMI/NRM closure phases. The
Kernel method has already been used successfully to uncover
new brown dwarf binaries with HST observations, as reported
by Pope et al. (2013). Full-aperture kernel phase and AMI clo-
sure phase cover the same parameter space but with its lower
throughput (∼15%), AMI is suited to the observation of bright
targets that would otherwise saturate the instrument, as well as
to observations where aberrations are too important to fall into
the linear regime covered by the kernel method.

Kernel- and closure phase rely on exploiting the phase of
the Fourier transform (also referred to as the complex visibil-
ity) of the image. The image must satisfy the Nyquist-sampling
requirement (platescale smaller than 0.5 λ/D), although small-
grid dithering allows observers to reconstruct a Nyquist-sampled
image for other filters. Saturation should be avoided, although
recovery is still possible (Laugier et al. 2019). For a filter to be
fully exploitable, its shortest wavelength must respect the sam-
pling criterion. For the 6.5 m diameter of the primary mirror of
JWST, this means that the filters compatible with a Kernel-phase
analysis are:

– NIRCam in the short wavelength channel (0.6−2.3 µm), with
a platescale of 31 mas pixel−1: F212N

– NIRCam in the long wavelength channel (2.4−5.0 µm), with
a platescale of 63 mas pixel−1: F430M, F460M, F466N,
F470N and F480M.

– NIRISS, with a platescale of 65 mas pixel−1 (STSCI 2018):
F430M and F480M.

– MIRI, with a platescale of 110 mas pixel−1: all filters but
F770W and F780W.

Kernel detection limits for NIRCam have been computed by
Sallum & Skemer (2019) for the F430M and F480M filters, as

Pupil

1 m

Pupil model
θ = 0◦ θ = 315◦

θ = 270◦

PSF

1”

Fig. 1. Left: entrance pupil for JWST. Centre: discrete model of
the pupil. The pupil is modelled by an array of subpupils, enabling the
use of the kernel method. Right: simulated PSF for NIRISS using the
480M filter, represented using a non-linear colour scale. The coloured
arrows represent the directions along which the simulated companions
are placed.

well a for NIRISS AMI in those same bands. The present work
aims at setting a general statistical framework for the theoret-
ical and operational detection limits of the Kernel approach,
with focus on guarantees for the actual false-alarm rate of the
implemented detection method. As for the practical results, we
investigate various aspects of the detection limits achievable for
full-aperture NIRISS observations in the F480M filter.

Section 2 describes how kernel phases are constructed,
presents the corresponding statistical model, and introduces
three statistical tests that are later used to determine contrast
detection limits. Section 3 shows how the method is applied
to simulated images by JWST NIRISS. For several objects
representative of the Y dwarfs discovered by WISE, this part
highlights the need for estimating the noise covariance matrix,
compares the performance of proposed detection tests, and anal-
yses the statistical uncertainty resulting in the estimation of the
parameters of the detected binaries. For the remainder of this
paper, an italicised lowercase letter such as a denotes a real or
complex number, a bold lowercase italicised letter such as a
denotes a vector, a bold italicised uppercase letter such as A
denotes a matrix, and a hat such as b̂ denotes the maximum like-
lihood estimate (MLE) of an unknown parameter b.

2. Kernel approach and statistical models

2.1. Kernel approach

The kernel framework introduced by Martinache (2010)
describes diffraction-dominated images produced by the mostly
continuous aperture of a telescope as if they were the interfer-
ence pattern formed by a discrete array of virtual subapertures
laid out on a regular grid of finite step. Although any pupil model
can in principle yield kernel phases, using a regularly spaced grid
allows the redundancy of the filled aperture to be encoded sim-
ply and effectively. The fidelity of the discrete representation of
the continuous aperture increases with the density the grid. In
practice however, the size of the grid step (s) translates into a
cut-off frequency λ/s that is matched to the field of view over
which the diffractive signal is recorded. The example of the dis-
crete representation of the JWST entrance aperture along with an
image of the theoretical point spread function (PSF) of the orig-
inal aperture are shown in Fig. 1. The entrance pupil is a com-
bination of the entrance pupil and of an additional pupil-plane
mask, CLEARP.

Kernel phases are formed from a linear combination of the
phase measured in the Fourier transform of the image. For a
given wavelength, the discrete grid describing the original aper-
ture also defines the sampling of the Fourier space via the
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coordinates and redundancies of the different baselines. The val-
ues of the Fourier transform of an image for the selected spatial
frequencies are collected in the complex visibility vector u. The
phase vector φ is defined as the argument of the complex visibil-
ity,

φ := ∠u. (1)

In the optical path of a diffraction-limited instrument, unknown
and potentially evolving aberrations result in a variable PSF
that degrades the image quality. According to Martinache
(2010), in the small aberration regime and for simple (i.e. non-
coronagraphic) images, a linear model relates the phase φ mea-
sured in the Fourier space to the true phase of the observed object
φ0 and to the aberration phase ϕ present across the aperture:

φ = φ0 + Aϕ, (2)

where A is a phase transfer matrix, encoding how the aberrations
in each subaperture will propagate to the Fourier phase of the
image. Its properties depend on the discrete representation of the
aperture. The discrete model of the aperture of JWST featured in
Fig. 1 is made of m = 452 virtual subapertures, placed on a grid
with a step size of 20 cm that form n = 1363 distinct baselines,
resulting in a full rank phase transfer matrix A of dimensions
1363×452. The kernel matrix K is defined as a p×n matrix that
verifies

KA = 0. (3)

The kernel matrix cancels phase perturbation to the first order
(Ireland 2013). With the chosen model, this matrix makes it pos-
sible to form a vector of kernel phases k of size (p × 1), with
p = 887, defined as:

k := Kφ. (4)

The kernel matrix K represents the left-nullspace of the transfer
matrix A, and is computed from its singular value decomposi-
tion. The discrete representation of the aperture, the associated
phase transfer matrix A, and the kernel matrix K can be gen-
erated using a specially designed Python package called XARA1,
which also offers the basic tools to extract kernel phases from
images.

2.2. Statistical modelling and hypothesis tests

Given a data image, how likely is it that a companion is present?
The present study proposes to tackle this question through statis-
tical hypothesis testing. A hypothesis test compares a test statis-
tic (noted T ) to a threshold (ξ), and has the general form

T (y)
H1
≷
H0

ξ, (5)

where y is the data under test (obtained from the image) and
the test statistic T (y) is a real random variable. In (5), the null
hypothesisH0 (noise only) is accepted if T (y) < ξ and the alter-
native hypothesisH1 (noise + companion) is accepted otherwise.
If the distribution of T can be known, the probability of false
alarm can be controlled by the value of the test threshold ξ.

The performance of a detection test is given by its probability
of false alarm (PFA, the probability that a detection occurs under

1 XARA is available at http://github.com/fmartinache/xara

H0) and its probability of detection (PDET, the probability that a
detection occurs underH1):

PFA := Pr
(
T (y) > ξ ; H0

)
,

PDET := Pr
(
T (y) > ξ ; H1

)
. (6)

The power of a test is its PDET at a given PFA: the higher
the PDET for a given PFA, the more powerful the test. It can be
conveniently represented as a receiver operating characteristic
(ROC) curve, PDET as a function of PFA.

Turning back to our detection problem, in the absence of
noise the kernel phases can take the values
{

k = 0, if the target is centrosymmetric or
k = Kφ0, if the target presents asymmetries.

(7)

The noises affecting the images propagate into the Fourier
phases and consequently into the kernel phases. As we see in the
following section, the noise on the kernels can be modelled by a
correlated Gaussian distribution with a covariance denoted Σ. If
this matrix is known, we can construct a vector y of “whitened”
kernel phases which are decorrelated (hence independent), and
similarly a vector x of whitened theoretical kernel phases corre-
sponding to the signature of the target:

y := Σ−
1
2 k, (8)

x := Σ−
1
2 Kφ0. (9)

This leads to the following statistical hypotheses:
{H0 : y = ε

H1 : y = x + ε
, ε ∼ N(0, I), (10)

where ε is a p × 1 noise vector with independent and identi-
cally distributed Gaussian entries (thanks to the whitening), and
N(0, I) denotes the standard normal distribution (the covariance
of ε is the identity matrix, I).

2.2.1. Known signature in white Gaussian noise

For the problem defined in (10), the most powerful test
is the likelihood ratio (LR), or Neyman-Pearson (NP) test
(Neyman & Pearson 1933). For this test, the companion signa-
ture x must be known. The NP test is defined as

`(x; y)
`(0; y)

H1
≷
H0

η, (11)

where `(x; y) is the likelihood of the signature x given the data
y and η is an adjustable threshold. For the Gaussian white noise
considered here, the likelihood is (Scharf & Friedlander 1994)

`(x; y) = (2π)
− p

2 exp
(
−1

2
(x − y)T (x − y)

)
, (12)

with p being the length of the kernel phase vector. The likeli-
hood under H0 can be obtained from Eq. (12) by taking x = 0.
Combining Eqs. (12) and (11) underH0 andH1 gives the test

exp
(
−1

2
(xT x − 2yT x)

) H1
≷
H0

η. (13)

Taking the logarithm of Eq. (13) and noting ξ := η + 1
2 xT x

leads to the test

TNP(y, x) = yT x
H1
≷
H0

ξ. (14)
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Hence, the NP test amounts to comparing the dot product of the
data with the signature to a threshold. The distribution of TNP
can be analytically determined underH0 andH1:
{H0 : TNP(y) ∼ N(0, xT x

)
,

H1 : TNP(y, x) ∼ N(
xT x, xT x

)
.

(15)

Using N(0, 1) to denote a standard normal variable and FN its
cumulative distribution function (CDF), PFA and PDET for TNP
can be derived using their definitions in Eq. (6) and the distribu-
tions in Eq. (15)


PTNP
FA (ξ) = 1 − FN

(
ξ√
xT x

)
,

PTNP
DET(ξ) = 1 − FN

(
ξ − xT x√

xT x

)
,

(16)

which, for the purpose of plotting ROC curves, combine to

PTNP
DET

(
PTNP

FA

)
= 1 − FN

(
F −1
N (1 − PTNP

FA ) −
√

xT x
)
. (17)

This test is the most powerful for the considered model, and
serves as the benchmark against which any other detection test
can be evaluated.

Implementing the NP test (Eq. (14)) requires knowledge of
the target signature x (namely, contrast and position if x cor-
responds to a companion). In practical situations however, x is
often partially or even fully unknown. This leads us to consider
the statistical model
{H0 : y = ε,

H1 : y = x + ε, x ∈ X , (18)

where X is a space describing some prior information about x.
Below, we consider two cases: a completely unknown signature
(X = Rp) and the signature of a binary with unknown contrast and
separation (X is then the space spanned by all possible binary sig-
natures). A classical approach when some parameters describing
the target x are unknown is to inject its MLE (denoted x̂) in place
of x in the LR of Eq. (11). The MLE is defined by

x̂ := argmax
z∈X

`(z; y), (19)

and injecting the MLE in the LR leads to the so-called gener-
alised likelihood ratio (GLR) defined as

max
z∈X

`(z; y)

`(0; y)
H1
≷
H0

η ⇔ `(x̂; y)
`(0; y)

H1
≷
H0

η. (20)

2.2.2. Completely unknown x signature

If we assume as a worst-case situation that nothing is known
about the signature x, we have X = Rp. The likelihood in (12) is
maximised for x̂ = y, and injecting this value in Eq. (20) yields

exp
(
−1

2
(y − y)T (y − y)

)

exp
(
−1

2
(y − 0)T (y − 0)

)
H1
≷
H0

ξ′ , (21)

with ξ′ being a threshold. Taking the logarithm of Eq. (21), we
obtain the test:

TE(y) := ‖y‖2 H1
≷
H0

ξ. (22)

This test uses the measured squared norm of the signal as a test
statistic and is called an energy detector (hence TE). Its statistic
is distributed as:
{H0 : TE(y) ∼ χ2

p(λ2 = 0),
H1 : TE(y) ∼ χ2

p(λ2 = xT x).
(23)

Using Fχ2
p(λ2) to denote the CDF of a χ2

p(λ2) random variable
with p degrees of freedom and non-centrality parameter λ, we
obtain

PTE
FA(ξ) = 1 − Fχ2

p(0)(ξ),
PTE

DET(ξ) = 1 − Fχ2
p(xT x)(ξ).

(24)

We note that test TE in Eq. (22) was previously used in the lit-
erature, for example by Zwieback et al. and Le Bouquin & Absil
(2016; 2012) (although not identified as a GLR), with the PFA
reported in Eq. (24).

The expressions above combine into

PTE
DET

(
PTE

FA

)
= 1 − Fχ2

p(xT x)

(
F −1
χ2

p(0)

(
1 − PTE

FA

))
. (25)

Indeed, this test does not exploit any prior knowledge of the
structure of the object to be detected and can thus be seen as
providing a lower bound for the detection performance.

2.2.3. Signature of a binary

Repeated observations of gravitationally interacting multiple
systems is the only means by which unambiguous dynamical
masses can be determined. Because they make it possible to
resolve asymmetries near or even slightly below the diffraction
limit, which translates into small orbital distances, NRM clo-
sure or kernel phase (Kraus et al. 2008; Huélamo et al. 2011;
Lacour et al. 2011) and full-aperture kernel phase (Pope et al.
2013; Laugier et al. 2019) are particularly suited to the obser-
vation of unequal-brightness, low-mass binary systems.

At any instant, a binary system is characterised by three
parameters: the angular separation ρ of the companion relative to
the primary, its position angle θ, and a contrast c, defined here as
the luminosity ratio of the primary over the secondary. Our sim-
ulations assume that the position angle is measured in the image
relative to the axis pointing up (represented by a blue arrow in
the right hand panel of Fig. 1), and increases counterclockwise.
Actual observations also have to take into account the orienta-
tion of the telescope to project the apparent position angle onto
the celestial sphere to combine observations at multiple epochs.

As an intermediate step, it is also convenient to use a
Cartesian coordinate system in which the location of the sec-
ondary is given by (α, β). If the binary system is made of two
individually unresolved point sources, its intensity distribution
O can be modelled as a pair of Dirac distributions:

O(x, y) = δ(x, y) + c−1δ(x − α, y − β). (26)

The complex visibility u associated to this object is the 2D
Fourier transform of Eq. (26) (van Cittert 1934; Zernike 1938),
that is,

u(u, u) = 1 + c−1exp
(
−i

2π
λ

(αu + βu)
)
. (27)

We reiterate that in the alternative hypothesis defined in
Eq. (18), x = Σ−

1
2 Kφ0, where φ0 = ∠u. This leads to the para-

metric hypothesis:

H1 : y = Σ−
1
2 K∠

(
1 + c−1exp

(
−i

2π
λ

(αu + βu)
))

+ ε. (28)
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Fig. 2. Map of the likelihood that is maximised in Eq. (29) for a
data vector y accounting for a realistic covariance matrix Σ for JWST
NIRISS. The companion signature has parameters α = β = 104 mas
(red cross) and c = 100.

UnderH1, there are three free parameters: α, β, and c, so the
MLE is now

x̂ := argmax
α,β,c

`(c, α, β; y),

= argmax
α,β,c

e

−1
2

∥∥∥∥∥∥∥∥∥
y − Σ− 1

2 K∠

1 + c−1e
−i

2π
λ

(αu + βu)


∥∥∥∥∥∥∥∥∥

2

. (29)

Finding the MLE is equivalent to minimising the argument of
the exponential. This minimisation cannot be done analytically
but numerical methods can be used to compute x̂, as explained
below. Injecting (29) in (20) gives the test

exp
(
−1

2
(y − x̂)T (y − x̂)

)

exp
(
−1

2
yTy

)
H1
≷
H0

η, (30)

equivalent to

TB(y) := 2yT x̂ − x̂T x̂
H1
≷
H0

ξ. (31)

We note that this detection problem is similar to “case VII” of
Scharf & Friedlander (1994), where the detection procedure also
relies on the ML estimation of the signal of interest. In this latter
study, however, the signature x is assumed to reside in a linear
subspace (independent from the nuisance subspace), which is not
the case here.

As mentioned above, the MLE x̂ must be found numerically.
Figure 2 illustrates, for one realisation of ε, an example of the
value of the likelihood for a fixed contrast as a function of posi-
tion angles α and β. It is apparent that the likelihood function is
multimodal, so the minimisation strategy must be able to avoid
local minima. A brute force search on a finely discretised grid of
the parameter space is possible but comes at a large computation
cost. Efficient numerical methods for solving multimodal prob-
lems exist, such as for instance the Monte Carlo Markov chains
method with simulated annealing (Andrieu et al. 2003) or nested
sampling (Skilling 2004).

Because the distribution of TB involves the unknown distri-
bution of the MLE estimate x̂, it cannot be characterised analyt-
ically. However, as we see in the following section, this distribu-
tion can be estimated by Monte Carlo simulations, allowing us
to accurately establish the relationship between the false-alarm
probability PTB

FA of this test and the threshold ξ in Eq. (31).
As an important final remark, we underline that the false-

alarm probabilities of the considered tests are independent of the
power of the phase perturbations ϕ (at least as long as the linear
model in Eq. (2) holds, that is, for phase perturbation below ≈1
radian). This is clear from expressions (16) and (24) for tests
TNP and TE; this is also the case for test TB because the phase
perturbation is cancelled by the operator K and does not affect
the test statistic. This means that the false-alarm rate of these
tests remains constant in case of fluctuating aberrations, which
is a desirable feature in practice.

2.2.4. Likelihoods, likelihood ratios, and χ2 intervals

The test statistic TB can be interpreted in terms of χ2-derived
intervals as follows. Let x̂ be some model obtained by some fit
on data y. The χ2 score corresponding to this fit is

Tχ2 (x̂, y) :=
N∑

k=1

(x̂k − yk)2 = (x̂ − y)T (x̂ − y). (32)

Considering the likelihood in Eq. (12), this shows that if y is
Gaussian with mean x̂, the score in Eq. (32) is indeed a χ2

p ran-
dom variable. Now, the test statistics TB can be rewritten as

TB = 2yT x̂ − x̂T x̂ = yTy −
(
(x̂ − y)T (x̂ − y)

)
(33)

= Tχ2 (0, y) − Tχ2 (x̂, y), (34)

which shows that TB can be interpreted as the reduction in the
sum of squared residuals when comparing the null hypothesis to
the considered model.

For the sake of accurately controlling the false-alarm rate,
we note however that Tχ2 in Eq. (32) may not be distributed as
a χ2

p variable because x̂ is a random variable. Actually, the true
distribution of Tχ2 may not be known analytically, and a Monte
Carlo procedure (such as that mentioned in Sect. 2.2.3 for the
estimation of the correspondence between the PFA and threshold
for TB) is required.

3. Results

The tests with the performance analyses presented in Sect. 2 are
very general: considering a different aperture and instrumental
noise simply amounts to replacing A, K, and Σ in the equations.
We focus now on their specific application to JWST NIRISS full-
pupil images (see Table 1).

3.1. Dataset and considered targets

We applied the three detection tests previously introduced to
a series of simulated JWST/NIRISS datasets, replicating the
observing scenario of archetypal ultracool Y-type brown dwarfs.
While their multiplicity rate is currently unknown, more than 25
such objects have been discovered less than 20 pc away, mostly
by the WISE mission (Kirkpatrick et al. 2011). At 20 pc, the the-
oretical angular resolution of JWST for λ = 4.8 µm translates
into an orbital distance of 3 AU: interferometric observations
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Table 1. Detector and targets characteristics used to compute the covari-
ance of the kernel phases extracted from our JWST NIRISS simulated
dataset.

Read noise (e−) 14.849
Flat field error 0.01%

Dark current (e− s−1) 0.04
Total integration time (s) 2400

Number of frames 15
Gain (e−/ADU) 1.00

Jitter value (mas) 7.0
Integration time 40 min

Number of photons (W2 mag = 15.4) 3.723 × 106

Number of photons (W2 mag = 14.1) 1.1181 × 107

will make it possible to probe within the first few AU of most
known Y dwarfs.

JWST NIRISS images of Y dwarfs are simulated to evaluate
the performance of the detection tests, using the ami_sim2 pack-
age (Greenbaum et al. 2016), corresponding to a 40 min integra-
tion on target and a 40 min integration on a perfect calibrator.
Frames are simulated in full-pupil mode, using the F480M filter,
for two different “W2” magnitudes: 15.4 and 14.1. The W2 mag-
nitude is the apparent magnitude in the band selected by the W2
(λ = 4.6 µm) WISE filter (Wright et al. 2010). For these objects,
companions are placed at a single position angle θ = 315◦ (mate-
rialised by the orange arrow in the PSF shown in Fig. 1). The
simulated companions lie at separations of ρ = 73 mas (≈0.5λ/D
@ λ = 4.8 µm) or ρ = 147 mas (≈λ/D @ λ = 4.8 µm), and have
contrasts c = 10, c = 20, c = 50, or c = 100, leading to a total of
eight possible signatures.

For any given target, a calibration frame is simulated and we
assume no calibration error (stable wavefront, calibrator with the
same spectrum and brightness as the Y dwarf). To comply with
a real situation, kernel phases are not extracted directly from
the simulated image: the frames are recentred, cropped to a size
of 64 × 64 pixels and apodized by a super-Gaussian mask (see
Eq. (2) of Laugier et al. 2019) of 30 pixels in radius to weigh
down the edges of the image.

3.2. Modelling the errors

Two types of errors affect kernel phases and the outcome of the
statistical tests described in Sect. 2. First are statistical errors
induced by random noises whose overall impact can be cap-
tured in the acquisition or the synthesis of a global covariance
matrix. Second are systematic errors resulting from the imper-
fect modelling by the kernel framework of the broadband, long-
exposure, and diffractive nature of images. The subtraction of
kernel phases acquired on a point source theoretically accounts
for this systematic error. However, in practice, wavefront drifts
between observations will result in unaccounted-for residual
errors referred to as systematic errors (Ireland 2013).

To estimate the potential impact of systematic errors induced
by wavefront drift, we rely on Perrin et al. (2018) who predict
that over a timescale of two hours, JWST drifts will result at
most in a 16 nm rms wavefront across the entire pupil3. We used

2 ami_sim is available at https://github.com/agreenbaum/ami_
sim
3 Perrin et al. (2018) predict that large variations in slew angle will
result in the most important variations, as the primary mirror regains
thermal equilibrium over the course of days.
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Fig. 3. Histogram of the values of the whitened kernel phases for the
calibration images (orange). Standard, normal distribution (blue). Left-
panel: higher flux regime. Right panel: lower flux regime. The dis-
tribution of whitened kernel phases obtained in practice is accurately
described by the theoretical normal distribution considered in Eq. (10).
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Fig. 4. Isocontours of the joint PDF of the 668th and 669th elements of
the kernel-phase vector k, k668 and k669, before (left) and after (right)
whitening. The PDFs are estimated using 105 noise realisations.

the ten OPD maps distributed with the webbpsf package, scaled
down to correspond to the predicted rms to produce images
resulting in ten distinct kernel-phase realisations. The dispersion
of kernel phases across these realisations was used to estimate
the magnitude of the calibration residual. In the bright target sce-
nario (W2 mag = 14.1) introduced in Sect. 3.1, this calibration
residual accounts for about 14 % of the total noise variance. As
is shown further below, this systematic error has a small impact
when observing faint targets.

3.3. Covariance estimation

Whereas simulated images used in the analysis include all the
previously listed noises, experience has shown us that, apart
from calibration residuals, the covariance matrix can accurately
be estimated using the three dominant noises: photon, readout,
and dark current. Figure 3 indeed shows that after whitening by
this simpler covariance, the distribution of kernel-phases is indis-
tinguishable from a normal distribution of standard deviation 1.

The effect of the whitening is further illustrated in Fig. 4,
which shows how previously noise-correlated kernel phases (left
panel) are indeed made statistically independent (right panel).
The thus-whitened observables can indeed be reliably used as
input for the different statistical tests introduced in Sect. 2.2.

In practice, the covariance Σ is estimated using Monte
Carlo simulations. An accurate estimation requires a number of
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Fig. 5. Kernel phases of the recovered signature (x axis) against the
true kernel phases of the injected binary (y axis). Left panel: high flux
regime. Right panel: low flux regime. The worst S/N situation (ρ =
73.5 mas, c = 100) is in orange, and the best S/N (ρ = 147 mas, c = 10)
is in blue.

simulated frames much greater than the total number of kernels;
we used 105 frames for 887 kernels in our case.

Calibrated kernel phases are obtained by subtracting the ker-
nel phases of a calibrator from those of the target in order
to remove kernel model imperfections. Since the same flux is
assumed for both observations, they share the same covariance.
The covariance of the calibrated kernel-phase vector is therefore
twice the covariance Σest estimated from the MC simulations.

To account for unknown calibration errors reported in NRM-
interferometry as well as in full aperture kernel phases that result
in a kernel-phase bias, one commonly used solution has been
to artificially inflate the experimental variance by adding an
additional term whose overall magnitude is adjusted during the
model fit (e.g. Martinache et al. 2009). The OPD maps intro-
duced in Sect. 3.2 make it possible to estimate the magnitude
of this bias a priori. Proper treatment of the calibration would
require the subtraction of an estimate of the calibration term,
using either the POISE algorithm of Ireland (2013) or the KL
decomposition approach described by Kammerer et al. (2019)
that relies on the observation of multiple calibration sources.
Here we estimate the impact of an unaccounted-for calibration
error on the contrast detection limits by adding the residual deter-
mined after analysis of the simulation that included the OPD
maps to the diagonal of the covariance. To pursue the possibly
covariated effects would require the computation of a distinct
covariance matrix from a large number of distinct realisations of
telescope drifts. For the faint brown dwarf case that motivates
this study, the impact of the calibration error is small, and there-
fore we chose not to pursue the non-diagonal terms.

3.4. Parameter estimation

Detecting a companion using the operational binary test TB
requires the determination of the MLE x̂. This requires esti-
mation of the parameters ρ, θ, and c from the whitened kernel
phases y in Eq. (28). The distribution of the parameters can be
estimated by generating, for each considered signature, a large
number of noisy kernel phases and estimating the parameters.
In practice, a global optimisation algorithm can be used. For the
purpose of making a large number of simulations, we assume
that the algorithm has localised the region in which the global
minimum is situated (the darkest region in Fig. 2). In this setting,
the minimum can be found by a gradient descent algorithm.

In the following, we use the algorithm described by
Branch et al. (1999), as implemented in scipy.optimize.
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Fig. 6. Error on the recovered parameters. Top panels: circles represent
the separation and contrasts of the injected signature, and each column
represents one flux regime. Bottom panels: error on the estimated angle
θ. The parameters ρ and c of each injected signature are represented
as coloured circles on the top panels, while θ is fixed at 315◦ for all
signatures. The same colour code is used for every panel, with each
colour corresponding to an injected signature. Each dot on the top panel
represents the parameters estimated for a single realisation of the noise.

leastsquares, which uses the local gradient and optimises for
the direction descent and step size. The initialisation of the algo-
rithm corresponds to the parameters of the injected companion.
This method is suited for the determination of contrast limits
thanks to its speed. We checked that we obtained very similar
results with a (computationally more expensive) systematic grid
search that would typically be used in practice4.

Figure 5 shows the recovered kernel phases as a function of
the kernel phases of simulated images for different separation,
contrast, and flux regimes. The fit remains relatively consistent
for each case, with scatter becoming predictably more important
as the S/N decreases (the S/N is affected by the contrast, the
separation, and the total flux in the image).

All of the signatures presented in Fig. 6 are detectable by
the TB with PFA < 10−3. The shape of the 2D distribution of
the estimated separation ρ and contrast c reproduces what was
for instance reported by Pravdo et al. (2006) in the context of
NRM observations: at angular separations smaller than λ/D,
estimates for the contrast and the angular separation are strongly
correlated.

Figure 6 also shows that two regimes can be distinguished.
For a companion at ρ ≈ λ/D (for JWST λ/D = 152 mas @
λ4.80 µm), all parameters are well constrained, while for a com-
panion at ρ < λ/D, the contrast and the angular separation can-
not be well constrained simultaneously. In practice, this means
that the estimation of the position of a companion using kernel-
phases when the expected angular separation is smaller than λ/D
can be further constrained by an independent measurement of the

4 The gradient descent procedure is indeed only applicable in the con-
text of the determination of detection limits by a Monte Carlo method.
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luminosity of the companion at a different epoch, when ρ > λ/D.
This property can be particularly useful in the case of objects
with high eccentricities or inclinations.

A study of the consequences of the uncertainties on param-
eters and correlations on the orbit that can be fitted using the
Kernel method on NIRISS images is out of the scope of this
paper; this should be the object of future work, along with rec-
ommendations of optimum observing strategies in regards to the
uncertainties on measured orbital parameters.

3.5. Detection and contrast performance

Firstly, we validate the theoretical relations predicting the per-
formance of the NP test TNP (Eq. (17)) and of the energy detec-
tor TE (Eq. (24)), and determine the actual performance of TB
(Eq. (31)). For that purpose, we perform Monte Carlo simula-
tions consisting of 2000 realisations5 of y under H0 and under
H1 for a given signature x (cf. Eq. (27)).

All of the detection limits are shown for PFA = 1% and
PDET = 68%. In terms more frequently encountered in astron-
omy publications, this is equivalent to having a 68% chance of
making a ≈2.3σ detection.

On each realisation, we perform each of the three tests using
the kernels operator K and the covariance matrix Σ estimated as
in Sect. 3.3.

Figure 7 presents our results in the form of ROC curves,
which provide a graphical representation of the power of each
test. It can be seen that the dashed curves representing the the-
oretical ROCs accurately match the solid lines corresponding to
the performance achieved in practice. As expected, TNP appears
to be the most powerful of the three tests (this test corresponds to
the upper performance bound) and TE the least powerful of the
three (this test uses no prior information on the target signature
and can be seen as a lower bound). The performance of TB log-
ically lies in between, but much closer to the upper than to the
lower bound.

The detection limits for the three tests TNP, TE, and TB are
represented in Fig. 8 across a range of contrasts and separations,
for a fixed position angle θ = 315◦. The dashed lines correspond
to no wavefront error while the solid lines correspond to 16 nm
rms of wavefront error. We can see that the theoretical perfor-
mance, validated for a single companion signature in Fig. 7, hold
true over a large range of contrasts and separations, and that
the detection limit of TB remains close to the bound provided
by TNP. The dashed and dotted lines correspond to a perfectly
stable JWST leading to a perfect calibration of the systematic
errors.

The detection limits further depend on θ, because the PSF
of JWST NIRISS is not centrosymmetric (as visible in Fig. 1).
Fluctuations of these limits are shown in Fig. 9 for three position
angles. Figure 9 also indicates the S/N level at the correspond-
ing positions in the image (computed here as the maximal pixel
value of a noiseless image with only the companion, divided by
the standard deviation of the considered noise), showing that the
detection limits follow the overall noise level in the image. Per-
formance wise, the detectable contrast ratios are of the order of
103 at 200 mas, with some variations between the two flux levels
considered.

5 The number of realisations is dictated by the target PFA and PDET.
For the considered PFA = 1% and PDET = 68%, 2000 realisations
correctly sample the distributions of the test statistic of TB under H0
andH1.
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Fig. 7. ROC curves of TE (green), TNP (blue), and TB (orange). Theo-
retical ROC curves for TNP and TE plotted using Eqs. (17) and (24), for
a companion at ρ = 200 mas, c = 1200, and θ = 45◦ off the vertical.
Dashed lines correspond to theoretical ROCs, while solid lines repre-
sent ROCs obtained by Monte-Carlo simulations. The closer a curve
is to the black line on the diagonal, the less powerful the correspond-
ing test. The higher flux regime is represented in the top panel, and the
lower flux regime in the bottom panel. The performance of TNP and
TE are accurately described by the theoretical expressions in Eqs. (17)
and (24). The test TNP presents the highest performance. TB is the next-
best-performing test and TE has the lowest performance of the three. We
see a clear improvement of the power of all tests as the flux (and thus
the S/N) increases.

3.6. Mass limits for WISE 1405+5534

WISE 1405+5534 is a Y-type brown dwarf with a W2 magnitude
of 14.1 that was used as a reference target to produce the contrast
detection limits featured in Fig. 8. The raw observational detec-
tion limit curve of contrast as a function of angular separation
can be converted into an astrophysical detection limit curve of
companion mass as a function of orbital separation.

Whereas the 129 ± 19 mas parallax measured by
Dupuy & Kraus (2013) directly allows for the conversion
of the angular separation into a projected orbital distance,
the contrast to mass conversion requires a model. We use the
mass–luminosity relations given by the AMES-Cond model of
Baraffe et al. (2003) for an age of 1 Gyr and a mass estimate of
30 MJ for the primary given by Cushing et al. (2011).

The detection limits obtained for WISE 1405+5534 are
shown in Fig. 10. At PFA = 1%, and PDET = 68%, a 1 MJ can
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sent theoretical detection limits for TE and TNP (Eqs. (17) and (24))
and the dotted lines present the limits achieved in the MC simulations.
TNP (orange) provides ideal detection limits for a Kernel treatment of a
JWST-NIRISS image and the practical test TB (dotted blue) has contrast
detection limits within a factor of 2.5 of the theoretical maximum. The
solid lines represent the detection limits for TB (blue) and TNP (red)
with a calibration residual corresponding to a 16 nm rms wavefront
drift.
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Fig. 9. Detection limits for test TB (Eq. (31)), in the higher flux regime
(top panel) and the lower flux regime (bottom panel). The solid lines
correspond to contours of PDET = 68% at a fixed PFA = 1%. Detec-
tion limits are represented at three different position angles for the
companion: 0, 45, and 90◦ off the vertical, as orientated in the PSF
shown in Fig. 1. The relative S/Ns (see text) are indicated by dashed
lines. The shot (photon) noise is the main limiting noise in most
cases.

be detected at separations greater that 1.5 AU. An orbit with this
semi major axis would have a period of 40 years, thus a quarter
of an orbit could be captured with repeated observations over the
expected service life of JWST.
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axis) or mass (left ordinate axis) and absolute separation in AU. A one-
Jupiter-mass object is detectable down to 1.5 AU from the primary.
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Fig. 11. Detection limits for the brightest target observable without sat-
uration with JWST NIRISS. Solid lines show detection limits for TB at
PFA = 1% and PDET = 68% applied to the image with the greatest possi-
ble dynamic range, with 20 min total integration time. For the brightest
images, the kernel method with the test TB ideally allows detection of
contrasts up to 105 beyond 500 mas. The dashed orange line represents
detection limits in the presence of a 16 nm wavefront drift.

3.7. Bright limits

For the faint Y-dwarf targets considered thus far, it may have
occurred to the reader that the contrast detection limits are dom-
inated by the effect of the dark current and the readout noise and
not by the photon noise of the central object. We wish here to
complete the description of the properties of our approach with
a bright target scenario that will feature a different behaviour,
thus exhibiting the contribution of the photon noise.

The saturation limit for full-pupil JWST NIRISS using the
F480M filter and a 64× 64 pixels subarray size is 7.6 mag. We
consider a shorter observation sequence, with a total of 20 min
spent on the target of interest and 20 min on a calibrator of sim-
ilar brightness. The detection limits for this observation using
the operational test TB are shown in Fig. 11, at PFA = 1%, and
PDET = 68%.

Unlike the contrast detection limits obtained on the faint
targets, the curves now clearly reveal two different regimes.
Up to an angular separation of ≈500 mas, where the photon
noise is expected to dominate, the contrast detection decreases
as a function of the angular separation. Beyond this point, it
reaches a plateau, as the detection is once again dominated by
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the homogeneous properties of the dark current and the readout
noise.

In this bright scenario, calibration errors induced by a drift
comparable to what was described in Sect. 3.5 will have a
stronger impact on the weak signal of a high-contrast compan-
ion. Sallum & Skemer (2019) feature contrast detection limits
for NIRCam in a similar scenario that takes calibration errors
into account. Under the hypothesis introduced in Sect. 3.2, the
calibration error accounts here for 85% of the total noise vari-
ance of the kernels and therefore results in a degraded perfor-
mance by a factor of approximately 10, as shown by the dashed
curve in Fig. 11.

4. Conclusion

This paper provides a theoretical and numerical analysis of
the performance of various detection tests based on the Kernel
method. The approach provides an upper bound for the achiev-
able detection limits, and an operational detection test whose
performances are close to the upper bound. Furthermore, the
false-alarm rate of these tests is not affected by fluctuating aber-
rations and can be tuned a priori.

The kernel-based detection approach presented in this paper
is not specific to either NIRISS, the 480M band, the full-pupil
imaging mode, or to JWST itself. The method only requires
weak wavefront perturbations and appropriate sampling (i.e. a
small-enough plate scale as compared to λ/D). In particular, the
statistical treatment proposed in this study can also be used for
NRM data.

For JWST-NIRISS in the F480M band, we have shown that
medium-(≈102) to high-(≈103)contrast detections can realisti-
cally be achieved for separations down to half of λ/D on ultra-
cool brown dwarf primary targets. In practice, this means that
a 80 min observation sequence can allow for the detection of a
1 MJ situated 1.5 AU away from a 30 MJ Y-type brown dwarf
at a distance of 8 pc. On brighter targets, kernel-phase analysis
combined with the methods presented in this paper can reveal
companions at contrasts ≈103 down to 0.3 λ/D.

Detection results presented in this paper rely on up-to-date
simulations of JWST-NIRISS frames that take into account all
the noises expected to contribute to kernel-phase uncertainties.
These results can be affected by several factors that are not yet
accounted for, the most critical being probably calibration errors.
Instrumental drifts in the range of a few tens of nanometres,
as predicted by Perrin et al. (2018), are not expected to signif-
icantly degrade performances for Y dwarfs. Another limitation
may come from the algorithmic efficiency in determining the
MLE x̂ in Eq. (29) for the test TB. Overly coarse grid searches
or algorithms too sensitive to local minima will lead to a loss in
detection power and to an increased uncertainty for the estimated
parameters.

The performance reported in this work can therefore be seen
as ideal contrast performance achievable using kernel phases for
JWST NIRISS images. The method can in principle be improved
upon by exploiting the full information available in the image
(present not only in the phase but also, to a lesser extent, in the
amplitude of the complex visibility). Even working solely with
the phase, the calibration problem can be mitigated by using
a more accurate and less idealised representation of the instru-
ment. A significant fraction of the calibration error comes from
the use of a necessarily approximate discrete model to represent
the continuous phenomenon of diffraction. The results reported
in this work were achieved using a dense aperture model to mit-
igate this discretisation error; however, the representation is not

yet optimal. One avenue to improve the overall fidelity for exam-
ple seems to be to take into account a variable local transmission
function to more accurately describe the aperture with the same
grid density. The study of the general aperture modelling pre-
scription will be the object of future work.

The XARA package is regularly updated in the context of the
KERNEL project.
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