Notre analyse de cet espace conduit à trois applications: La première est un algorithme qui, étant donné un maillage, produit une surface lisse qui s'en rapproche. Cet algorithme est basé sur la projection de la surface approximative catmull-clark sur l'espace des splines que nous produisons. Les deux autres tests portent sur la reconstruction de surfaces lisses et l'analyse IsoGeoemtric.
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Résumé

Dans les systèmes de CAO, une fonction polynomiale par morceaux se trouve derrière toute représentation de courbe, de surface ou de champ scalaire. Ainsi, il est important d'analyser les propriétés des espaces des fonctions polynomiales par morceaux. Dans cette thèse, nous étudions des outils d'algèbre commutative qui peuvent être utilisés pour analyser la dimension d'espaces polynomiaux par morceaux et pour en construire des bases. Nous testons les méthodes que nous produisons pour modéliser des surfaces de forme libre et pour des calculs d'analyse numérique.

La principale motivation du concept de continuité géométrique est la construction de surfaces multi-patchs et de champs scalaires. Le principal défi dans ce type de surfaces est de gérer les zones de la surface autour des sommets avec un certain nombre de patchs voisins différents de 4 (que nous appelons sommets extraordinaires). Dans ces régions, les méthodes de collage habituelles provoqueront l'apparition de singularités. La continuité géométrique est un moyen spécial de coller deux patchs de surface 3D le long de leur bord commun dans une surface multi-patchs, et qui produit des surfaces lisses même autour de sommets extraordinaires.

La condition de collage de continuité géométrique est exprimée en termes de relations linéaires entre les paramétrisations des surfaces le long des bords de jonction. Les coefficients de ces relations sont appelés les données de collage, et le choix est crucial pour la régularité de la surface résultante. Les données de collage que nous proposons sont des fonctions splines qui respectent la contrainte de lissage telle que la contrainte d'enceinte de sommet. Nous expliquons notre choix en fournissant une formule que les données de collage doivent respecter à chaque sommet extraordinaire.

Nous exigeons que la spline géométriquement continue (Nous appelons Gsplines les splines géométriquement continues) que nous produisons pour pouvoir interpoler n'importe quelle position donnée des sommets de son maillage correspondant. C'est ce que nous appelons la condition de séparabilité. Nous décrivons les conditions sur les données de collage qui permettent à l'espace d'être séparable, et donnons une liste d'exemples de telles données de collage. Le manuscrit décrit également un «schéma d'assemblage» qui permet de produire une base pour l'espace des Gsplines.

Nous avons abordé la possibilité d'étendre les méthodes d'homologie existantes pour analyser la dimension de l'espace spline avec des conditions de continuité géométrique. Ces extensions fournissent de nombreuses formules qui expriment les dimensions de nos espaces splines au moyen d'autres groupes d'homologie.

Chapter 1 Introduction

In CAD systems, a piecewise polynomial function is behind any curve, surface, or scalar field representation. Thus, it is important to analyse the properties of the spaces of piecewise polynomial functions. In this thesis, we study commutative algebra tools that can be used to analyse the dimension of piecewise polynomial spaces, and to construct bases for them. We particularly focus on the concept of geometric continuity, by adapting to it the homological techniques used before in parametric continuity.

Presentation

Spline spaces

Standard CAD framework proposes to use piecewise polynomial functions to model smooth surfaces and scalar fields. We do that by choosing a subdivision of a polygonal region of the plane and define a basis for the space of piecewise polynomial functions defined over it, that have a fixed maximal degree, and a fixed minimal order of regularity. This is what we call the space of bivariate splines.

One of the most commonly used models are the tensor product splines, that are defined over a rectangular domain of the plane, subdivided using horizontal and vertical lines through that rectangle, with the possibility of reducing the regularity of the space functions along those lines. A special instance of this basis is the Bézier-Bernstein1 tensor product functions that form a basis for the space of polynomials with fixed maximal degree. More generally, tensor product bsplines form a basis for the space of piecewise polynomials with respect to the chosen subdivision of the plane using horizontal and vertical lines, with a fixed maximal degree, and minimal regularity.

Thanks to the good properties of these functions, one can model efficiently any surface that is diffeomorphic to a region from the plan. In CAD software, a 3d spline surface is controlled using points that corresponds to the coefficients the geometry of the complex. It can even give some dimension formulas that are valid for any polynomial degree, but only for particular geometries.

Surfaces with complex topologies

CAD models have often complex topologies and require the use of more than a single spline patch. Nowdays, CAD software offer the possibility of creating multi-patch surfaces with useful properties that are suitable for applications in architecture, computer aided manufacturing, medical animation, game development tools, surface reconstruction... State of the art includes many models generation processes with different input/output. We mention for instance: algorithms that interpolate the vertices of a given mesh [START_REF] Karčiauskas | Refinable bi-quartics for design and analysis[END_REF][START_REF] Bonneau | Flexible G 1 interpolation of quad meshes[END_REF], algorithms for interpolating a network of curves (eg. [START_REF] Peters | Smooth interpolation of a mesh of curves[END_REF][START_REF] Tong | High-order approximation of implicit surfaces by triangular spline surfaces[END_REF]), algorithms for reproducing a surface given a sampling cloud of points of it [START_REF] Chandrajit | Higher-order level-set method and its application in Biomolecular surfaces construction[END_REF][START_REF] Abbas | Generating Bspline curves with points, normals and curvature constraints: A constructive approach[END_REF].

Subdivision surfaces

A subdivision scheme is an iterative algorithm that can be applied to a coarse mesh with complex topology and that converges "at infinity" to a C 0 , C 1 or higher regularity surface, depending on some parameters of the scheme. The resulting surface is called a subdivision surface.

One goal of studying the subdivision surfaces is to analyse the behaviour of the surface around extraordinary vertices (EVs) 2 . We know for instance that for a regular meshes (ie. meshes without EVs), the Catmull-Clark surface is a standard b-spline surface continuous in tangent and curvature [START_REF] Catmull | Recursivly generated B-spline surfaceson arbitrary topological mesh[END_REF]. If the mesh contains an EV, then a subdivision surface can be represented locally using an infinite number of b-spline patches. In the other hand, the degree of smoothness around an EV of a subdivision surface is related to the values of the eigenvalues of the subdivision matrix [START_REF] Jorg | Subdivision surfaces[END_REF].

The algorithm in [START_REF] Karčiauskas | Fair free-form surfaces that are almost everywhere parametrically C2[END_REF] combines fast contract subdivision algorithms with Geometric continuity around EV. This allows have a finite number of patches around an EV, and good smoothness properties in the same time.

Multi-patch 3d shapes

Our manuscript studies multi-patches surfaces and scalar fields with smoothness conditions along the junctions between the spline patches. A major bottleneck in multi-patch constructions is to find an efficient way to stitch patches around an EV. For instance gluing 5 Bézier surfaces around a single vertex by using standard junctions 3 will enforce all the partial derivatives at the vertex to vanish (see Chapter 3), and thus will produce a cuspidal singularity.

Several constructions are used to solve this problem, for instance T-splines are NURBS [START_REF] Sederberg | T-splines and T-NURCCs[END_REF] surfaces with an extra row of control points that doesn't traverse the entire surface. This allows us to have local refinement around extraordinary vertices.

In this thesis we focus on the Geometric continuity for multi-patches surfaces and scalar fields. It is a special way to glue two patches along their common edge in a multi-patch surface, that produces smooth surfaces around EV. In G kjunction (Geometrically continuous junction of order k), the two glued patches have the same partial derivatives of order at most k along the junction edges after a smooth change of coordinates. More intuitively, in the G 1 -junction case, the partial derivatives of the two glued patches are enforced to be coplanar, and thus will generate the same tangent space to the surface along the gluing edge. The standard gluing between patches is different since it requires that the partial derivatives are exactly the same 4 . Using this approach we will create a special space of splines that we call Gsplines of order G k that is used to parametrise smooth surface and define smooth scalar fields on them.

Splines for Isogeometric analysis

Finite element method (FEM) is a numerical method that is used to find approximate solutions for linear differential equations over physical domains. Spline spaces are often used to represent these approximate solutions. The more regular are the spline, the more accurate is the solution.

In the early stage, the physical domains in FEM were approximated using polygonal geometries. The use of inaccurate domain representations necessarily induce errors on FEM solutions. Although geometry processing systems are able to improve the representations by a remeshing process, the computational cost is relatively high. Isogeometric Analysis (IgA) was created to address this shortage. The idea of IgA is to use the same spline space to parametrise the physical domain and to represent the PDE solution, and thus, the error of domain approximation is eliminated [START_REF] Thomas | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF].

G k -spline spaces offers an advantage in that context. Indeed, if the test functions and the surface parametrisations are from the same G k -splines space, then the composition of the first with the inverse of the second is a C k -function [START_REF] Groisser | Matched G k -constructions always yield Ckcontinuous isogeometric elements[END_REF].

Overview

The goal of the thesis is to explore commutative algebra techniques that can be used to analyse the Gspline space by counting its dimension and describing a basis for it.

We start this manuscript by a chapter on computing the dimension of spline spaces. In this chapter, we consider only parametric continuity. Most of the techniques that we mention are based on the homology theory.

In the third Chapter we define the geometric continuity and give an example of basis construction based on the Syzygies modules µ-basis. Indeed, the construction of a G 1 -spline basis requires first to determine the degrees of freedom of simple topologies composed of only two patches. The G 1 gluing conditions in that case (see equation (3.4)) are given by a syzygy equation of a module. It has been proposed in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF] to use that fact to determine all the possible degrees of freedom of the G 1 -spline space that can be generated. The method described in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF] is applicable only for G 1 -splines with polynomial elements. We show in this manuscript how to generalise this method for bspline patches with knots. In particular, we define exact sequences that allows to compute the dimension of a Syzygy module over the ring of piecewise polynomial functions, and show how to compute a basis of it as a vector space.

Next we describe a general new piecing scheme for generating G 1 -splines over quad meshes. Compared with other piecing schemes such as [START_REF] Kapl | Isogeometric analysis with geometrically continuous functions on planar multipatch geometries[END_REF][START_REF] Kapl | Isogeometric analysis with geometrically continuous functions on planar multipatch geometries[END_REF] which extract the gluing data from an existing bilinear parametrisation, our scheme use predefined gluing data that depend only on the topology of the mesh. We use this algorithm to produce base for many gluing data fun. They will be tested on solving fitting problems and IgA in chapter [START_REF] Peter | The dimension of bivariate spline space of smoothness r and degree d 4r + 1[END_REF].

In Sections 8 and 9 of Chapter 3 we give a new algebraic characterisation of a G k -junction. Based on that characterisation we provide several homological constructions that lead to define the space of G k -splines as a homology space of an chain complex as in (3.45), or a term of an exact sequence as in (3.50). This allows to express the dimension of the space of G k splines in terms of dimension of other spaces.

In the Fourth chapter, we give an example of how to construct a multi-patch 3d shape that approximate a given mesh, this is what we call a mesh smoothing algorithm. We explain in particular the vertex enclosure problem. One way of looking at this problem is to write the constraints of the G k -junctions in terms of the bspline coefficient of the patches. This generates a series of equations for each junction. When the system is solved for each edge apart, some bspline coefficients may interfer in the equations of two different junctions, and induce overlaping of solutions. This happens for instance with the first layer of coefficients around a vertex in the G 1 constrains. This kind of overlapping makes it impossible to solve the constraints of each junctions independently of the other, and makes it necessary to consider a new order while resolving the G 1 -constrains. In the G 1junction case, we do that by regrouping together all the equations that include the bspline coefficients of the first layer around a given vertex in the same system. This system will be called the vertex enclosure system. Most of the Gspline multipatches shapes generators start by solving this vertex enclosure system at each vertex and then move to the others equations. The algorithm we are proposing in the fourth chapter follows the same scheme, and the resulting surface will be an approximation of the Catmull-Clark surface. The scheme that we present is described using explicit formulas for the bsplines coefficients that determine the final G 1 -surface.

The same smoothing scheme can be used also to generate basis for a space of G 1 -splines as we will see in Section 3.3 of the Chapter 4. More precisely, we fix the topology of the mesh, then we apply the smoothing scheme to the canonical base of the space of one dimensional meshes of the same topology as the initial one. The resulting set of splines will span a space of splines that is suitable for fitting. We have tested that base for a medical data fitting in lung model reconstruction (Chap. 5).

In the Chapter 5 we test the Gspline basis constructions in data fitting and IgA problems. We test in the first section of Chapter 5 a method of 3d smooth surface reconstruction, based on the G 1 -spline basis that we have constructed. The input is a cloud of points with their normals, and the output is a smooth surface representing the initial surface. The method is performed in two main steps. First we apply a marching Triangles algorithm to produce a mesh that approximates the cloud. We have chosen the algorithm [START_REF] Fausto | The Ball-pivoting algorithm for surface reconstruction[END_REF] to do that. Then a simplification process is applied to generate a quad mesh with less number of patches by combining the Catmull-Clark subdivision and a progressive edge collapse decimation algorithm. The second step is the regression step, where we minimise a quadratic expression using a least squares method. The expression is composed of a distance term and a fairness term that minimises the value of the partial derivatives. Multiple basis are tested in that section, and a comparison between some of them is given.

In the second part of the application chapter, we test a bi-quintic basis in IgA computations. 

Computing the dimension of the space of splines 1 Parametric Splines

In this chapter we explain the homology tools used to compute the dimension of the spline space. We begin by giving basic definitions.

Let ∆ be a polyhedral complex in the euclidean space of dimension d, this means that there is a region Ω from that space and ∆ is a subdivision of it using polyhedrons. The polyhedrons of ∆ are called maximal faces or the set of faces of dimension d, the vertices of ∆ are called the minimal faces or the faces of dimension 0, any sub face of a polyhedron from ∆ who's linear span is of dimension k is called a k dimension sub face of ∆. We will denote by: • ∆ k the set of sub faces of dimension k.

• we denote by

• ∆ k ⊂ ∆ k the set of k-dimensional internal faces, ie. the faces σ ∈ ∆ k such that σ ⊂ ∂∆.
• By S(∆) the space of splines over ∆. In other words, S(∆) is the set of real functions who's restriction to any polyhedron of ∆ is polynomial.

• S(∆) m := { f ∈ S(∆)|degree( f |σ ) m for any σ ∈ ∆ d } • S(∆) m := { f ∈ S(∆)| degree( f |σ ) = m for any σ ∈ ∆ d } • S(∆) r := { f ∈ S(∆)| f ∈ C r } • S(∆) r m := S(∆) r ∩ S(∆) m • S(∆) r m := S(∆) r ∩ S(∆) m
For each d -1-face τ the linear form whose affine space supports τ is denoted by l τ , the ideal generated by this form is denoted I τ .

For each d-dimensional polyhedral complex ∆, we define the homogenisation ∆ of ∆, to be the complex build from ∆ in the following way: we embed ∆ in the hyperplane x using the map p : (x 0 , x 1 , . . . , x d ) → (1, x 1 , . . . , x d ), and for each face σ ∈ ∆ d we consider the cone σ formed by p(σ) and the point (0, . . . , 0), the set of all polyhedrons σ will form the complex ∆, the utility of this complex consist in the fact that the two spaces S( ∆) r m and S(∆) r m are isopmorphic through the dis-homogenisation map p * : S( ∆) r m → S(∆) r m , with p * ( f (x)) = f (p(x)) for any x = (x 0 , x 1 , . . . , x d ), so if we compute the Hilbert polynomial of S( ∆) r the we get the dimension of S(∆) r m for each m. The Homogenisation map (the inverse of p * ) is given by p

* -1 ( f (x)) = x deg( f ) 0 f ( x 1
x 0 , . . . , x d x 0 ). Now we state an important characterisation of the C r continuity over piecewise polynomial functions. Proposition 1.1 ([25]). Let ∆ be a polyhedral complex. Then for any f ∈ S r (∆) we have: f ∈ S(∆) r if and only if for each σ 1 , σ 2 ∈ ∆ n such that there exists

τ = σ 1 ∩ σ 2 , τ ∈ ∆ n-1 and l τ devides f |σ 1 -f |σ 2 .

A chain complex for computing the dimension of S(∆) r m

The main method used in this chapter to compute the dimension of S(∆) r m is to build a chain complex such that one of his homology groups is S(∆) r m , then use the Euler characteristic to form a formula for the dimension, in this section we explain how to build the chain complex. There are two types of complexes that we use, one of them uses the ideals I τ generated by the linear equation of the hyperplane supporting the subface τ in ∆. The other type uses the ideal I τ, generated by the linear equation of the hyperplane supporting the subface τ in ∆.

Let ∆ be a

d-dimensional complex, R[x] = R[x 1 , . . . , x d ] and R[x] = R[x 0 , . . . , x d ].
For any ring R, an R-complex C consists of the following data:

• An R-module C(σ) for each σ ∈ ∆. • An R-module morphism ∂ k : ∑ σ∈∆ k C(σ) → ∑ τ∈∆ k-1 C(τ) for each k ∈ d . . . 1, such that ∂ k-1 • ∂ k .
The complexes can be written in the following way:

C : C d ∂ d -→ C d-1 ∂ d-1 --→ . . . ∂ 2 -→ C 1 ∂ 1 -→ C 0 with C i = ⊕ σ∈∆ i C(σ) for i ∈ d . . . , 0.
Two types of complexes are going to be used in this chapter, we denote them by C, Ĉ and define them in the following way:

with:

C(σ) = R[x] f or σ ∈ ∆ d C(σ) = R[x]/I(σ) f or σ ∈ ∆ i , i < d -1 Ĉ(σ) = R[x] f or σ ∈ ∆ d Ĉ(σ) = R[x]/J( σ) f or σ ∈ ∆ i , i < d -1 J(τ) = I r+1 τ f or τ ∈ ∆ d-1 I(τ) = I r+1 τ f or τ ∈ ∆ d-1 J(γ) = ∑ γ∈τ I r+1 τ f or τ ∈ ∆ i , i < d -1 I(γ) = ( ∑ γ∈τ I τ ) r+1 f or τ ∈ ∆ i , i < d -1
with ∂ i , in both of the two complexes, a differential map similar to the one we use in relative homology of a simplicial complex ∆/∂∆. In the complex Ĉ, since we are quotiening by homogeneous ideals, all the terms of the complex are graded, and more over all the maps of this complex are graded maps, so it is convenient to denote by Ĉm the sub complex of Ĉ of elements of degree m. In the same times we will use C m to denote the the sub complex of elements in C of degree at most m.

The complex Ĉ have been studied in [START_REF] Schenck | A Spectral Sequence for Splines[END_REF], earlier works such as [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF] used the ideal

I(γ) = (∑ γ∈ τ I τ ) r+1 instead of J( γ) = ∑ γ∈τ I r+1 τ
the difference is that we use the power of the sum instead of the sum of powers. The main use of this complex is that it allows to compute the dimension of the space of splines because we know that for m 0 and r 0 we have from [START_REF] Schenck | A Spectral Sequence for Splines[END_REF] and [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF]:

H d (C m ) ≃ S(∆) r m ≃ S( ∆) r m ≃ H d ( Ĉm )
This property besides of the Euler formula allows us to "approximate" the dimension of the space of splines. Let C m be the complex obtained from C after bounding the degree of the polynomials, then the Euler formula can be written:

dim(H d (C m )) = χ(C m ) -∑ i=0,..,d-1 (-1) i dim(H i (C m )) (2.1)
where χ(C m ) is the Euler characteristic. Both of the ideals I(σ) and J(σ) have been used in approximation theory to prove interesting results, however they don't have the same properties. Lemma 2.2 illustrates the difference between them, but before stating it we need to define the Krull dimension. For example, in algebraic geometry, if an ideal I is generated by a set of polynomials f 1 , . . . , f n in the ring of polynomials R, then the Krull dimension of R/I is the dimension of the algebraic set defined by f 1 , . . . , f n . Lemma 2.2. [START_REF] Schenck | A Spectral Sequence for Splines[END_REF] If ∆ corresponds to the embedding of a d-dimensional ball in the ddimensional euclidean space then for all i < d, H i ( Ĉ) has the Krull dimension i -1.

It means in particular that for a planar simplicial complex isomorphic to a disk, the two homology groups H i ( Ĉ) for i = 1, 0 have dimension zero. As illustrated in the example 3.5 of [START_REF] Schenck | Local cohomology of bivariate splines[END_REF], this property doesn't hold for I(σ).

In the following sections we will show some interesting results on dimension using both of the two constructions.

A dimension formula for generic embeddings

The following result is a formula of dimension for S(∆) 1 in the case of a planar simplicial complex embedded generically in the two dimensional euclidean space. By generic embedding we mean that the set of vertex positions for which the formula is valid is given by the complement of some algebraic set. The ideal I(σ) is used in this construction. Theorem 3.1 ([25]). For a generic embedding ∆ of a planar simplicial complex in R 2 , we have:

dim S(∆) 1 m = m + 2 2 |∆ 2 | -(2m + 1)| • ∆ 1 | -3| • ∆ 0 |
the word generic comes from the rank of a matrix that is called "spline matrix" and that has full rank if the vertices positions are generic.

The proof will follow from the formula (2.1) if we show that H i (C m ) = 0 for i = 0, 1.

To show that H 0 (C m ) = 0 we define the following exact sequence of complexes:

0 → I → R → C → 0
that is given by: 20 

I : 0 ⊕ τ∈∆ 1 I ( τ) ⊕ γ∈∆ 0 I(γ) R : ⊕ σ∈∆ 2 R[x] ⊕ τ∈ • ∆ 1 R[x] ⊕ γ∈∆ 0 R[x] C : ⊕ σ∈∆ 2 R[x] ⊕ τ∈ • ∆ 1 R[x]/I(τ) ⊕ γ∈ • ∆ 0 R[x]/I(γ) 0 0 0
By the zigzag lemma [START_REF] Munkres | Elements of Algebraic Topology[END_REF], the following sequence:

. . . → H 0 (I) → H 0 (R) → H 0 (C) → 0
We know from the universal-coefficient theorem [START_REF] Spanier | Algebraic Topology[END_REF] that

H 0 (R) = 0, thus H 0 (C) = 0.
The vanishing of H 1 (C m ) is shown using another construction based on the quotient of the two complexes C m+1 and C m , after simplifications of the quotient complex, we get the following complex when r = 1:

C m+1 /C m : ⊕ σ∈∆ 2 R m+1 /R m → ⊕ σ∈ • ∆ 1 R m+1 /R m → 0 (2.2)
where R m is the set of bivariate polynomials of degree less or equal to m. The form of the terms of the complex follows from the three isomorphism theorems [START_REF] Antoine | Abstract Algebra (Graduate Texts in Mathematics)[END_REF] , the last term of that complex vanish only because we are using the I(σ) ideal, the same doesn't hold for the ideal J(σ)( [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF] . At the same time by considering the exact sequence of complexes:

0 → C m → C m+1 → C m+1 /C m → 0
taking into account the fact that H 0 (C m ) = 0, we deduce, again by the zigzag lemma, the long exact sequence of homologies:

. . . → H 1 (C m ) → H 1 (C m+1 ) → H 1 (C m+1 /C m ) → 0
From this, We have the two homological properties (cf. [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF]):

A) H 1 (C m ) = 0 implies H 1 (C m+1 ) ≃ H 1 (C m+1 /C m ). B) If H 1 (C m+1 /C m ) = 0 then dim H 1 (C m+1 ) dim H 1 (C m ).
It is shown in [START_REF] Whiteley | A matrix for splines[END_REF] that the matrix of the map in the complex 2.2 has full rank when the positions of the vertices are generic. Thus for a generic embedding of a simplicial complex in the plan we have H 1 (C m+1 /C m ) = 0 for m 2. If ∆ is a disk then by proposition 4.8 in [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF] we have that H 1 (C r ) = 0 when the degree m is the same as the regularity r, and by applying the properties A) and B) several times we get that H 1 (C m ) = 0 when ∆ is a disk. The result for general complexes follows from the the following proposition proved in [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF] by recursion on the genus of ∆. Proposition 3.2. If H 1 (C 2 ) = 0 for generic embeddings of 2-disks in the plane, then it holds also for generic embeddings of any 2-manifold 4 About the freeness of S( ∆) r

The freeness of the space of splines is a question that has been addressed in several works before ( [START_REF] Billera | The algebra of continuous piecewise polynomials[END_REF], [START_REF] Billera | Modules of piecewise polynomials and their freeness[END_REF], [START_REF] Schenck | A Spectral Sequence for Splines[END_REF], [START_REF] Michael | Shellability and freeness of continuous splines[END_REF], [START_REF] Schenck | Local cohomology of bivariate splines[END_REF]). In most of this works, the freeness of the space S( ∆) r d is analysed instead of S(∆) r d since this two spaces are isomorphic. In this section we will see that free spline space gives, in some cases, facilities in computing the dimension.

Freeness for bivariate case

We mention in this section results on the freeness of the space S( ∆) r in the bivariate case. For the beginning, we will use the ring of polynomials R[x] = R[x, y, z] to study the bivariate case. The results of this section are from [START_REF] Schenck | Local cohomology of bivariate splines[END_REF].

We consider the following chain complex:

Ĉ : ⊕ σ∈∆ 2 R[x] → ⊕ τ∈ • ∆ 1 R[x]/J(τ) → ⊕ γ∈ • ∆ 0 R[x]/J(γ) → 0 (2.
3)

The ideal J τ ⊂ R[x] is generated using the linear form corresponding to τ in ∆, and J(γ) r = ∑ γ∈τ J r τ . In the same way we define the two complexes:

R : ⊕ σ∈∆ 2 R[x] → ⊕ τ∈ • ∆ 1 R[x] → ⊕ γ∈ • ∆ 0 R[x] → 0, Ĵ : 0 → ⊕ τ∈ • ∆ 1 R[x]/J(τ) → ⊕ γ∈ • ∆ 0 R[x]/J(γ) → 0.
We get the following exact sequence of complexes:

0 → Ĵ → R → Ĉ → 0
and by using the zig-zag lemma and the fact that H 0 ( R) = 0 we deduce the following exact sequence of graded maps:

0 → H 2 ( R) → H 2 ( Ĉ) → H 1 ( Ĵ ) → H 1 ( R) d 1 -→ H 1 ( Ĉ) d 2 -→ H 0 ( Ĵ ) → 0 (2.4)
and that

H 0 ( Ĉ) = 0.
This sequence has the property of being graded. At the same time we have that

H 1 ( Ĵ ) ⊂ ⊕ τ∈ • ∆ 1 J ( τ).
It means that the elements of Im(d 1 ) = ker(d 2 ) are of degree at least r + 1. Besides of that, according to the universal-coefficient theorem, if H 1 ( R) = 0 then H 1 ( R) contains degree zero elements, this says that:

H 1 ( R) = 0 implies ∂ 1 = 0 implies H 1 ( Ĉ) = 0 (2.5)
On the other hand, we know from standard results of algebraic topology (see for example [START_REF] Hatcher | Algebraic topology[END_REF]) that a planar simplicial complex has first homology group equal to zero if and only if the genus (that is the number of holes in the complex δ) is equal to zero, by the universal coefficient theorem we get that genus = 0 implies H 1 ( R) = 0. By collecting all the arguments we have:

genus = 0 implies H 1 ( Ĉ) = 0 (2.6) Theorem 4.1 ([27] ). S r ( ∆) is free if and only if H 1 ( Ĉ) = 0.
This theorem and the previous discussion imply that the only planar topology ∆ that can produce a free module S r ( ∆) is the simply connected one. So in the remainder of the section we focus on the simply connected cases, we will relate in particular the freeness of the module with the generic dimension of S r ( ∆) that we will define in the following.

Since the topology is equivalent to the disk, then H 1 ( R) = 0, this produce the sequence:

0 → H 2 ( R) → H 2 ( Ĉ) → H 1 ( Ĵ ) → 0 (2.7)
and the isomorphism:

H 1 ( Ĉ) ≃ H 0 ( Ĵ ) (2.8) 
the short exact sequence above induces the isomorphism:

S r ( ∆) = H 2 ( Ĉ) ≃ H 2 ( R) ⊕ H 1 (J ) = R[x] ⊕ H 1 (J ) (2.9)
where the last equality comes from the universal-coefficient theorem. Furthermore, the complex Ĵ induces the exact sequence:

0 → H 1 ( Ĵ ) → ⊕ τ∈ • ∆ 1 J(τ) → ⊕ γ∈ • ∆ 0 J(γ) → H 0 ( Ĵ ) → 0
We gather all the formulas and sequences below in the following:

dim S( ∆) r m = dim R[x] m + dim H 1 ( Ĵ ) m (2.10) = dim R[x] m + ∑ τ∈ • ∆ 1 dim (J r+1 τ ) m -∑ γ∈ • ∆ 0 dim (J(γ)) m + dim H 0 ( Ĵ ) m (2.11) = dim R[x] m + ∑ τ∈ • ∆ 1 dim (J r+1 τ ) m -∑ γ∈ • ∆ 0 dim (J(γ)) m + dim H 1 ( Ĉ) m (2.12) (2.13)
It is proved in [START_REF] Schenck | Local cohomology of bivariate splines[END_REF] that the modules H 1 ( Ĉ) and H 0 ( Ĵ ) has finite length for any topology ∆. Since these modules are graded we deduce that they have finite dimension, in particular for a degree m that is sufficiently high, the dimension of the Splines module is exactly the generic dimension that is defined by :

g(∆, r, m) := dim R[x] m + ∑ τ∈ • ∆ 1 dim (J(τ)) m -∑ γ∈ • ∆ 0 dim (J(γ)) m (2.14)
It's shown in [START_REF] Peter | The dimension of bivariate spline space of smoothness r and degree d 4r + 1[END_REF] that this quantity is the exact dimension for m 4r + 1.

Freeness and generic embedding

Another important aspect that the formula (2.12) reveals is that for a simply connected planar simplicial complex we have that S( ∆) r is free if and only if dim S( ∆) r m = g(∆, r, m) for all m. On the other hand, by using the the formula (2.11) we deduce a simpler formulation:

S( ∆) r is f ree i f and only i f dim(S ( ∆) r r+1 ) = g(∆, r, r + 1) (2.15)
Indeed the first implication is deduced from Theorem 4.1, and the reverse implication holds since H 0 ( Ĵ ) is generated by elements of degree r + 1, so H 0 ( Ĵ ) r+1 = 0 implies H 0 ( Ĵ ) m = 0 for all m. Now we want to compare g(∆, 1, m) with the formula in Theorem 3.1. The terms of g(∆, 1, m) can be computed in the following way:

dim R[x] m = m + 2 2 , dim J r+1 τ = dimR[x] m-r-1 (2.16) 
(2.17)

For the dimension of J(γ) 1 we distinguish two cases, the first one is when there is exactly two slopes supporting the edges around the vertex γ, in that case by a linear and homogeneous change of coordinates J(γ) = (x, y) 2 , the dimension of that ideal is computed by using the exact sequence:

0 → J(γ) → R[x] → R[x]/J(γ) → 0 (2.18)
and we get: dim J(γ) 1 = ( m+2 2 ) -3. Otherwise, by a linear change of coordinates we have the ideal J(γ) 1 = (x 2 , y 2 ), and we get: dim J(γ) 1 = ( m+2 2 ) -4. This distinction is mentioned in [START_REF] Schenck | Local cohomology of bivariate splines[END_REF]page 538, we will adopt the same terminology of that paper by saying that the vertex γ is singular if J(γ)/I(γ) = 0. By replacing all that in Formula 2.14 and by using the Euler characteristic formula:

|∆ 2 | -| • ∆ 1 | + | • ∆ 0 | = 1 we get : g(∆, 1, m) = m + 2 2 + | • ∆ 1 | m 2 -∑ γ∈ • ∆ 0 [ m + 2 2 -3 -s(γ)] = m + 2 2 + | • ∆ 1 | m 2 -| • ∆ 0 | m + 2 2 + | • ∆ 0 |3 + ∑ γ∈ • ∆ 0 s(γ) = |∆ 2 | m + 2 2 -| • ∆ 1 |(2m + 1) + 3| • ∆ 0 | + s where s = ∑ γ∈ • ∆ 0
s(γ) and s(γ) is 1 if the vertex is singular, and 0 otherwise. If we have no singular vertex, the generic dimension g(∆, 1, m) is the same as the one mentioned in Theorem 3.1, this means that if the embedding is generic then S 1 ( ∆) is free. Now we want to give a geometric condition that induce freeness. We say that an edge τ in a planar simplicial complex ∆ is pseudo boundary if there exists a set of interior edges τ 1 , . . . , τ n such that the union (∪ i=1...,n τ i ) ∪ τ is a line segment [a, b] such that a ∈ ∂∆ or b ∈ ∂∆, this line segment will be denoted L τ , denote by: s τ the maximal number of slopes of a vertex lying on L τ , and by s(∆) := ([27] ). Let ∆ be a simply connected planar simplical complex, then we have:

min{s τ , τ ∈ • ∆ 1 }. Theorem 4.2
• If every edge of ∆ is pseudo boundary, then S( ∆) r is free for each r.

• If ∆ has at least one edge that is not pseudo boundary, then for r s(∆) -2, S( ∆) r is not free.

The bound in the second point is not sharp, see example [START_REF] Schenck | Local cohomology of bivariate splines[END_REF] . The following theorem proved in [START_REF] John | On a conjecture of Rose[END_REF] helps to understand more the freeness of our space. Theorem 4.3. Let ∆ be a simply connected simplicial complex. If S( ∆) r is free then S( ∆) r-1 is also free.

Example 4.4. The complex in Fig. 2.1 is an example of simplicial complex in which all the edges are pseudo boundary. According to the Theorem 4.2, the dimension is equal to the generic dimension given by the expression (2.14). In particular, the generic dimension for a degree 2 for the polynomials, and regularity r = 1, will be equal to 6.

In the same time it have been proved in [START_REF] Morgan | A Nodal Basis for C 1 Piecewise Polynomials of Degree n 5[END_REF] that the dimension of the same space over the Morgan-Scott simplicial complex (see Fig. 2.2) is equal to 7.

This example shows that the homology in fact depend on the geometry of the complex.

It is shown in [START_REF] Billera | The algebra of continuous piecewise polynomials[END_REF] that the space S(∆) 0 for ∆ a simplicial complex, is isomorphic to the face ring of the complex ∆. This property has been used in the same reference to show that S(∆) 0 is free if and only if ∆ is simply connected. The same is not true for general polyhedral complexes, as the example provided in [START_REF] Michael | Shellability and freeness of continuous splines[END_REF] shows that the freeness in polyhedral complexes depends on the embedding.

Freeness for higher dimensional complexes

The constructions above have been generalised to higher dimensional complexes. We will see that freeness of the space of splines make easier to compute the dimension of the space of the splines in some cases, indeed, it implies that the homology groups of Ĉ are equal to zero as we will see. For a simplicial complex of dimension d we define the following chain complex:

Ĉ : ⊕ σ∈∆ d R[x] ∂ d -→ . . . → ⊕ τ∈ • ∆ 1 R[x]/J(τ) ∂ 1 -→ ⊕ γ∈ • ∆ 0 R[x]/J(γ) → 0 for R[x] = R[x 0 , . . . , x d ].
We define in the same way the two complexes: Ĵ , R and get the exact sequence:

0 → Ĵ → R → Ĉ → 0
The main results mentioned in [START_REF] Schenck | A Spectral Sequence for Splines[END_REF] are the following: Theorem 4.5. If ∆ is a d-dimensional simplicial complex with H i (R) = 0 for each i < d then S(∆) r is free if and only if H i (J) = 0 for all i < d -1.

Theorem 4.6. For all i < d, H i (C) has Krull dimension less or equal to i -1.

Unlike the bivariate case, having a generic embedding of the simplicial complex of dimension > 2 doesn't mean that the spline space is free according to examples given in [START_REF] Schenck | A Spectral Sequence for Splines[END_REF] 5 The Hilbert polynomial of the space of splines

The Hilbert function h M of a graded module ⊕ n∈N M n associate to each n ∈ N the dimension of the space of M n . We know that there exists a polynomial p M such that for a sufficiently large n ∈ N we have that h M (n) = p M (n), the degree of that polynomial is equal to the Krull dimension of M. Now we want to define an exact sequence to compute the Hilbert polynomial of a spline space. The dual graph G(∆) of a d-dimensional polyhedral complex is a graph whose vertices correspond to maximal faces of ∆, and whose edges corresponds to d -1-dimensional faces of ∆. The (signed) incidence matrix ∂ = ∂(G) of an oriented graph G = (V, E) where V is the set of vertices and E is the set of edges is a matrix of dimension |V| × |E|, indexed in rows by the edges and in columns by vertices, such that at the coefficient c e,v corresponding to the edge e and the vertex v is equal to 1 (resp. -1) if e emanates from (resp. head to) v and 0 otherwise. In the following we choose a random orientation of the dual graph of the complex ∆. Suppose we are given a polyhedral complex ∆, then for any codimension 2-linear subspace s of R d we denote by G s (∆) the subgraph of G(∆) where we consider only the vertices corresponding to a maximal face σ containing a d -1-sub-face whose linear span contain s.

The star of a face σ in ∆ is the union of all the faces of ∆ containing σ. We will say that ∆ is hereditary if the dual graph of the star of any face of ∆ is connected.

THE HILBERT POLYNOMIAL OF THE SPACE OF SPLINES

Let ∆ be a d-dimensional polyhedral complex, r ∈ N and R = R[x 0 , . . . , x d ].

We define the following map:

L : R |∆ d |+| • ∆ d-1 | → R | • ∆ d-1 |
given by the left multiplication by the matrix:

   l r 1 ∂ . . . l r |∆ d-1 |   
l i is the linear form whose vanishing set is supporting the d -1 face of the i th row of ∂. This induce the following exact sequence:

0 → M → R |∆ d |+| • ∆ d-1 | L -→ R | • ∆ d-1 | → N → 0 (2.19)
where L is the map defined above, M = ker(L) and N = coker(L). The star of a face σ in ∆ is the union of all the faces of ∆ containing σ. We will say that ∆ is hereditary if the dual graph of the star of any face of ∆ is connected.

Proposition 5.1 ([7] ). For any hereditary polyhedral complex we have ker(L) ≃ S(∆) r .

So to describe the Hilbert polynomial of the space of splines, we need to find the Hilbert polynomial of N. It is shown in [START_REF] Billera | A dimension series for multivariate splines[END_REF] that for d 2 the codimension of N is larger than 2, thus the degree of the Hilbert polynomial of N is at most d -2.

We need some definition before stating the formula of the Hilbert polynomial. An R-module E is called prime if for any sub-module E ′ of E we have that Ann(E) = Ann(E ′ ), the annihilator of a module is always prime. An ideal P ∈ R is said to be associated to the module E if there exists a sub-module F of E such that P = Ann(F). Let P be the set of all minimal associated primes of N, and

N(Q) = {n ∈ N|Ann(n) ⊂ Q}.
Theorem 5.2 ([38]). The two Hilbert polynomials of the modules N and Q∈P N(Q) have the same degree and the same leading monomial coefficient.

For any graph G, let C(G) denote the set of cycles of G. Theorem 5.3 ([38]). For any codimension 2 associated prime of N whose vanishing set is denoted by s, we have:

N(Q) ≃ c∈C(G s (∆)) R/I c where I c := {l r+1 τ |τ ∈ ∆ d -1, τ ∈ e(c)
} and e(c) is the set of edges of c. It is shown [START_REF] Mcdonald | Piecewise polynomials on polyhedral complexes[END_REF] that any codimension two ideal I c for c ∈ C that is minimally generated by I r+1 1 , . . . , I r+1 n admits an exact sequence of the form:

0 → R(-r -1 -α(c)) s 1 ⊕ R(-r -2 -α(c)) s 2 → R(-r -1) → R → R/I c → 0 (2.20) where α(c) = ⌊ r+1 k+1 ⌋, s 1 = (n -1)α(c) + n -r -2, s 2 = r + 1 -(n -1)α(c
). R(t) denote the same module R with shifted grading: R(t) m = R t+m . By applying all this to the bivariate case we get the following: 

Dim(S r d (∆)) = (d + 1)(d + 2) 2 + (d -r)(d -r + 1) 2 | • ∆ 1 | - d 2 + 3d -r 2 -3r 2 | • ∆ 0 | + s (2.21
) where s = ∑ i=1...V I σ i and s i = ∑ j=1...,d-r (r + j + 1je i ) + .

It was shown in [START_REF]Multivariate Approximation Theory: Proceedings of the Conference held at the Mathematical Research Institute at Oberwolfach Black Forest[END_REF] that the above mentioned formula is a lower bound of the dimension, while in [START_REF] Peter | The dimension of bivariate spline space of smoothness r and degree d 4r + 1[END_REF] the proof is completed by showing that there exists a minimal determining set of the space of splines who's number of elements is equal to the above mentioned formula. The minimal determining set that is chosen in this proof is described by:

• (2r+1)(2r+2)
2

+ E i r(r+1) 2
domain point from the disk of radius 2r about each boundary vertex.

• (r+1)(r+2)
2

+ E i r(r+1) 2 
+ σ i domain point chosen from the disk of radius 2r about each interior vertex.

• For each triangle we take the domain points {c i,j,k : i > r, j > r, k > r} • For each edge e i r, j < d -2r, k d -2r} ;

The formula of Theorem. 6.1 can be deduced from the one in Theorem. 5.4 applied on the simplicial case. This can be shown by using the formulas:

| • ∆ 0 | = | • ∆ 1 | -|∆ 2 | + 1 (2.22)
7 Upper and lower bound for the dimension of S r d (∆)

In [START_REF] Mourrain | Bounds on the Dimension of Trivariate Spline Spaces: A Homological Approach[END_REF], an upper and lower bound for the dimension of S r d (∆) have been established using 2.12. This Bound are useful since they can be used fro any value of d.

For each vertex v i we denote by Ω i := E i r E i -r , A i := E i (r + 1) + (1 -E i )Ω i , and B i := E i -1 -A i . We denote also by ω i := e i r e i -r , a i := e i (r + 1) + (1e i )ω i , and b i := e i -1a i . Theorem 7.1 ([8]). We have the two following bounds for the dimension of S r k (δ) 30 

k + 2 2 + | • ∆ 0 | k + 2 -(r + 1) 2 - | • ∆ 0 | ∑ i=1 t i k + 2 -(r + 1) 2 -b i k + 2 -Ω i 2 + a i k + 2 -(Ω i + 1) 2 
Dim(S ( ∆) r k ) k + 2 2 + | • ∆ 0 | k + 2 -(r + 1) 2 - | • ∆ 0 | ∑ i=1 ti k + 2 -(r + 1) 2 -bi k + 2 -Ωi 2 + ãi k + 2 -( Ωi + 1) 2 
The first inequality can be proved by using (2.12) and the fact that dim H 1 ( Ĉ) m 0, we use also the sequence (2.20) to compute Dim J r+1 τ and the Euler formula (2.22). The second inequality is proved in [START_REF] Mourrain | Homological techniques for the analysis of the dimension of triangular spline spaces[END_REF] by using an ordering of the vertices. It is shown in the same paper that for a space of splines over a planar simplicial complex that admits a special vertex ordering, the upper bound of Theorem. 7.1 becomes sharper.

Theorem 7.2 ([8]

). Suppose that the vertices of a planar simplicial complex ∆ are numbered in such a way that each pair of consecutive vertices are corners of the same triangle. For each γ i define ti as the number of edges with different slopes joining the vertex γ i to a vertex in the boundary of ∆ or to one of the first i -1 vertices. Then:

Dim(S ( ∆) r k ) k + 2 2 + | • ∆ 1 | k + r + 1 2 - | • ∆ 1 | k + 2 2 - r + 2 2 + | • ∆ 0 | ∑ i=1 k-r ∑ j=1 (r + j + 1 -j ti ) +

Conclusion

The objective of this chapter was to give an overview of the algebraic geometry and commutative algebra tools used in spline theory, to compute the dimension of the space S(∆) r m . It turns out that the tools are very efficient in analysing the dimension of the space of splines.

The bivariate case on simplicial complexes is well understood through the existing works, indeed, the formula (2.12) expresses the dimension of the space of splines over a two dimensional simplicial complex using four terms: two of them are straightforward to compute using the formulas (2.16), one way to compute the term Dim (J(γ) m ) is by using simultaneously an exact sequence such as (2.18) and (2.20), the resulting formula depend only on m and r. Since the homology 8. CONCLUSION space H 1 ( Ĉ) has Krull dimension equal to zero 2.2, dim H 1 ( Ĉ) m vanish for m sufficiently high, we know that H 1 ( Ĉ) = 0 if and only if the module S( ∆) r is free, and H 1 ( Ĉ) can vanish only if ∆ is simply connected; we have in the simply connected case S( ∆) r is free implies S( ∆) r-1 is free as well. The freeness of S( ∆) r can be characterised using the geometry of ∆, for instance if each edge e ∈ ∆ belongs to a line segment L ∆ that is a union of interior edge from ∆, such that ∂∆ ∪ L e = ∅, then the space S(∆) r is free for any r. If the previous geometric property of ∆ is not true, then there is an r 0 such that S(∆) r is free if and only if r r 0 , we have r 0 0, and an upper bound r 0 (see Theorem 4.2 and in [START_REF] Billera | The algebra of continuous piecewise polynomials[END_REF] it is shown that S 0 is free), both of them are not sharp according to the existing examples.

In higher dimensional complexes it is less obvious how to find the dimension. We know that the homology of the complex Ĉ vanish if S( ∆) r is free. In that case the dimension can be written by means of the the quotients

γ∈ • ∆ i R[x]/J(γ) for i < d.
By the discussion preceding Theorem 5.4 we know how to compute a resolution of R[x]/J(γ) if the codimension of γ in R d+1 is equal to two, however, it is less clear how to compute the dimension of such a module of greater codimensions.

The Hilbert polynomial p S(∆) r is a way to approximate the dimension of S(∆) r . In this chapter we have explained how to compute the three coefficients of highest degree in that polynomial, and thus, in the bivariate case we have the exact formula of p S(∆) r .

An important extension that haven't been detailed in this manuscript is the mixed smoothness splines. In [START_REF] Anthony | Fat Points, Inverse Systems, and Piecewise Polynomial Functions[END_REF] the notion of inverse system is used to generalise the exact sequence (2.20), and give the Hilbert polynomial of a mixed smoothness spline space. 

Basis Computation

To describe and analyse shapes with complex topologies, one often starts with a coarse representation M that captures the topology and the principal geometric features of the shape. This representation can then be refined and tuned to describe more accurately the actual shape. If the coarse model is a mesh, a classical strategy to obtain a better approximation of the shape is to refine the mesh, by splitting some of its faces. This approach yields piecewise linear representations of the shape, which may require several level of subdivisions in regions with high curvatures, in order to obtain a good approximation of the shape.

In this chapter, we investigate a different strategy to compute accurate shape representations. Instead of splitting the coarse piecewise linear model, we increase the degree of the representation on each face of M with the aim to obtain better approximation performances with higher order of convergence.

In application, different kind of shapes are approximated, including closed surfaces, like spheres, that cannot be parametrised simply by using one planar domain. This is why we use a mathematical object similar to manifolds and that we call topological surfaces, defined in our context by using parametrisations or transition maps (Definitions 1.1 and 8.1). This topological surfaces are going to be used to parametrise the smooth shapes, and to define differentiable functions on them.

For functions defined over a planar mesh, the usual C k continuity is sufficient to produce smooth functions, and good quality shapes, while in topological surfaces cuspidal singularities may arise in vertices with valence different from 4 if we use C k continuity. This is due to the fact that we cannot embed, for instance, 5 squares in the plane and form a fan around one shared vertex between them without changing the angles of the quads, this kind of phenomenons are called vertex enclosure problems, and will be explained in more details in this chapter.

We will use mostly quadrangular faces in M, and tensor product b-spline functions of the same degree and the same knot distributions are used on each face of M. The regularity that we impose across the edges shared by two faces is the continuity of the tangent planes of the parameterizations. This corresponds to geometrically smooth spline functions (as opposed to parametrically smooth spline functions), also called G 1 spline functions. Our aim is to analyse in details the space of G 1 splines on an arbitrary quad mesh and to compute efficiently bases which are suitable for fitting and numerical simulation problems.

The content of this chapter are mainly coming from [START_REF] Blidia | G 1 -smooth splines on quad meshes with 4-split macro-patch elements[END_REF] and [START_REF] Ahmed | Geometrically smooth spline bases for data fitting and simulation[END_REF].

With this transition map form, the G1 continuity is equivalent to:

f (u, 0) = g(u, 0) (3.2) ∂ f ∂u (u, 0) = ∂g ∂u (u, 0) (3.3) ∂ f ∂v (u, 0) = b τ,γ (u) ∂g ∂v (u, 0) + a τ,γ (u) ∂g ∂u (u, 0) (3.4) (3.5)
for u ∈ [0, 1]. We can write the two formulas (3.3) and (3.4) in the matrix form as follows:

∂ f ∂u (u, 0) ∂ f ∂v (u, 0) = 1 0 a τ,γ (u) b τ,γ (u) ∂g ∂u (u, 0) ∂g ∂v (u, 0) (3.6)
In general the geometric continuity is used to glue several patches together according to a given mesh structure. The geometrically continuous functions are defined over spaces that are quite similar to manifolds and that we call topological surfaces.

Definition 1.2.

A topological surface M is given by:

• a collection M 2 of polygons (also called faces of M) in the plane.

• a collection of G k -junctions given by φ i,j : τ i → τ j between polygonal edges from different polygons σ i and

σ j of M 2 ,
where a polygonal edge can be glued with at most one other polygonal edge, and it cannot be glued with itself. The shared edges (resp. the points of the shared edges) are identified with their image by the corresponding homeomorphism. The collection of edges (resp. vertices) is denoted M 1 (resp. M 0 ).

Over topological surfaces, we will define functions that respect differentiability constraints in the following way. Definition 1.3. Let M be a topological surface defined using the set of polygons (σ i ) i∈M 2 and the set of transitions

(φ i ) j∈M 1 . A G k -function on M is a collection f = ( f σ ) σ∈M 2 of C k -
functions such that for each two faces σ 0 and σ 1 sharing an edge τ with φ as transition map, the two functions f σ 1 and f σ 0 • φ 0,1 have the same Taylor expansion of order 1 (it means that they have a G k -junction). The function f σ is called the restriction of f on the face σ.

In the following sections we will put some restrictions on the type of functions we use on each face, and study the resulting space. The study will focus mainly on determining the degrees of freedom that a space can afford, we will see in particular that we have a special behavior of the degrees of freedom when the gluing function a τ,γ vanish. Definition 1.4. An edge τ ∈ M which contains the vertex γ ∈ M is called a crossing edge at γ if a τ,γ (0) = 0 where [a τ,γ , b τ,γ ] is the gluing data at γ along τ. We define c τ (γ) = 1 if τ is a crossing edge at γ and c τ (γ) = 0 otherwise. By convention, c τ (γ) = 0 for a boundary edge. If γ ∈ M 0 is an interior vertex where all adjacent edges are crossing edges at γ, then it is called a crossing vertex. Similarly, we define c + (γ) = 1 if γ is a crossing vertex and c + (γ) = 0 otherwise.

∂ u 1 f 1 ∂ v 1 f 1 = ∏ i=1..l D γ φ i ∂ u 1 f 1 ∂ v 1 f 1 (3.8)
In order to get a tangent space T γ f of full dimension (ie. dimension 2) we require that ∏ i=1..l D γ φ i = Id. By using transition maps of the form mentioned in (3.1) we get the following condition: Condition 2.1 ([44]). If γ ∈ M 0 is an interior vertex and belongs to the faces σ 1 , . . . , σ l that are glued cyclically around γ, then the gluing data [a i , b i ] at γ on the edges τ i between σ i-1 and σ i satisfies

l ∏ i=1 0 1 b i (0) a i (0) = 1 0 0 1 . (3.9)
This gives algebraic restrictions on the values a i (0), b i (0). In addition to Condition 2.1, we also consider the following condition around a crossing vertex:

Condition 2.2. If the vertex γ is a crossing vertex with 4 edges τ 1 , . . . , τ 4 , the gluing data [a i , b i ] i = 1 . . . 4 on these edges at γ satisfy a ′ 1 (0) + b ′ 4 (0) b 4 (0) = -b 1 (0) a ′ 3 (0) + b ′ 2 (0) b 2 (0) , (3.10) 
a ′ 2 (0) + b ′ 1 (0) b 1 (0) = -b 2 (0) a ′ 4 (0) + b ′ 3 (0) b 3 (0) . ( 3.11) 
Let us notice that we can write the previous conditions on the gluing data (which in our setting is given by spline functions) as in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF] since they depend on the value of the functions defining the gluing data and are independent of the type of functions. The conditions (3.10) and (3.11) were introduced in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF] in the context of gluing data defined from polynomial functions. They generalize the conditions of [START_REF] Peters | On the complexity of smooth spline surfaces from quad meshes[END_REF], where b i (0) = -1. The conditions come from the relations between the derivatives and the cross-derivatives of the face functions across the edges at a crossing vertex.

Example of transition maps

One way to define transition maps which satisfy these conditions, is to compute the values of the transition functions a τ , b τ of an edge τ at its end points and then interpolate the values:

1. For all the vertices γ ∈ M 0 and for all the edges τ 1 , . . . , τ l of M 1 that contain γ, choose vectors u 1 , . . . , u F ∈ R2 such that the cones in R 2 generated by u i , u i+1 form a fan in R 2 and such that the union of these cones is R 2 when γ is an interior vertex. The vector u i is associated to the edge τ i , so that the sectors u i-1 , u i and u i , u i+1 define the gluing across the edge τ i at γ.

The transition map φ i-1,i at γ = (0, 0) on the edge τ i is constructed as:

J (0,0) (φ i-1,i ) t = S • [u i , u i+1 ] -1 • [u i-1 , u i ] • S = 0 b i (0) 1 a i (0) γ γ ′ τ u 0 u 1 u 1 - u 1 + u 0 + u 0 - Figure 3.3:
The edge τ = (γ, γ ′ ) is associated to the vectors u 0 and u 1 at the points γ and γ ′ , respectively.

where S = 0 1 1 0 , [u i , u j ] is the matrix which columns are the vectors u i and u j , and |u i , u j | is the determinant of the vectors u i , u j . Thus,

a i (0) = |u i+1 , u i-1 | |u i+1 , u i | , b i (0) = - |u i , u i-1 | |u i+1 , u i | , (3.12) so that u i-1 = a i (0)u i + b i (0)u i+1 . This implies that Condition 2.1 is satis- fied.
2. For all the shared edges τ ∈ M 1 , we define the functions

a τ = a τ c τ , b τ = b τ
c τ on the edges τ by interpolation as follows. Assume that the edge τ is associated to the vectors u 0 and u 1 , respectively at the end point γ and γ ′ corresponding to the parameters u = 0 and u = 1. Let u s -, u s + ∈ R 2 , s = 0, 1 be the vectors which define respectively the previous and next sectors adjacent to u s i at the point γ and γ ′ , see Figure 3.3. We define the gluing data so that it interpolates the corresponding value (3.12) at u = 0 and u = 1 as:

a τ (u) = u 0 + , u 0 -d 0 (u) + u 1 + , u 1 -d 1 (u) b τ (u) = -u 0 , u 0 -d 0 (u) -u 1 , u 1 -d 1 (u) (3.13) c τ (u) = u 0 + , u 0 d 0 (u) + u 1 + , u 1 d 1 (u)
where d 0 (u), d 1 (u) are two Hermite interpolation functions at u = 0 and u = 1.

Since the derivatives of a τ , b τ , c τ vanish at u = 0 and u = 1, the conditions (3.10) and (3.11) are automatically satisfied at an end point if it is a crossing vertex.

Another possible construction, with a constant denominator c τ (u) = 1 is:

a τ (u) = u 0 + , u 0 - u 0 + , u 0 d 0 (u) - u 1 + , u 1 - u 1 + , u 1 d 1 (u) b τ (u) = - u 0 , u 0 - u 0 + , u 0 d 0 (u) + u 1 , u 1 - u 1 + , u 1 d 1 (u) (3.14) c τ (u) = 1
The construction (3.14) specializes to the symmetric gluing used for instance in [44, §8.2], [START_REF] Hahmann | Bicubic G 1 interpolation of arbitrary quad meshes using a 4-split[END_REF], [START_REF] Bonneau | Flexible G 1 interpolation of quad meshes[END_REF]:

a τ = d 0 (u) 2 cos 2π n 0 -d 1 (u) 2 cos 2π n 1 b τ = -1 (3.15) c τ = 1
where n 0 (resp. n 1 ) is the number of edges at the vertex γ 0 (resp. γ 1 ). It corresponds to a symmetric gluing, where the angle of two consecutive edges at γ i is

2π n i
, and the norms of all the vector u i are equal. It is shown in [START_REF] Peters | A characterisation of connecting maps as nonlinear roots of the identity[END_REF] that under the form of the transition maps that we have chosen, the condition 2.1 hold if and only if a τ (0) = 2 cos 2π n 0 .

Construction of G 1 -spline basis

The basis that we want to produce for our space is locally supported. We show in this section how we can split the G1 -splines vector space into three components, and provide a basis for each one of them:

• One component is vertex supported. It means that each basis element of this component has a support around a xgiven vertex.

• The second component is edges supported, ie. each basis element has support along a given edge, and vanish at each vertex.

• One component is faces supported, ie. each basis elements of this component is supported over one given face, and vanish along all the edges.

The approach of splitting the space into the three components have been subject to several works before in geometric continuity [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF][START_REF] Kapl | Isogeometric analysis with geometrically continuous functions on planar multipatch geometries[END_REF][START_REF] Kapl | Space of C 2 -smooth geometrically continuous isogeometric functions on planar multi-patch geometries: Dimension and numerical experiments[END_REF][START_REF] Collin | Analysis-suitable G 1 multi-patch parametrizations for C 1 isogeometric spaces[END_REF] as well as in parametric continuity [START_REF] Peter | The dimension of bivariate spline space of smoothness r and degree d 4r + 1[END_REF][START_REF] Kh | Super Spline Spaces of Smoothness r and Degree d 3r + 2. Constructive Approximation[END_REF]. One strategy for building such a basis is to determine first, the G-spline space that corresponds to gluing two patches together along an edge. This basis is chosen in such a way that it can be pieced together with other basis elements corresponding to another edge sharing a vertex with the first edges. Thus we can form a basis element defined over all the surface, see for instance [START_REF] Kapl | Isogeometric analysis with geometrically continuous functions on planar multipatch geometries[END_REF]. In this section we will describe two examples of standard algorithms that can be used to generate basis for the space of G-splines, with different kind of gluing data (See sections 3.1 and 4).

The second strategy is to find a minimal determining set, then set the other bspline coefficients according to the G 1 constraints chosen before.

Basis construction by piecing patches

To define the space of G 1 -splines on M, we will choose each face restriction f σ to be an element of the space R d,t (M) of tensor product b-spline with knots t = [t 1 , . . . , t s ] ⊂ R and of degree d in each variables u and v. An element f σ ∈ R d,t is of the form 

f σ := ∑ where c σ i,j ( f σ ) ∈ R
i,j = b i (u σ )b j (v σ ).
The functions are represented by a vector R m 2 ×|M 2 | with 1 at the position corresponding to the coefficient c σ i,j and 0 elsewhere. We will consider hereafter gluing data [a τ , b τ ], which are spline functions ∈ U d ′ ,t ′ of degree d ′ and knots

t ′ = [t ′ 1 , . . . , t ′ s ′ ] ⊂ R, such that t ′ 1 = . . . = t ′ d ′ and t ′ s ′ -d ′ = . . . = t ′ s ′ .
Definition 3.1. We denote by S d,t (M, g) ( or S d,t (M) for simplicity) the vector space of G 1 -functions on M for the gluing data g, with face restrictions f σ in R d,t .

An element in S d,t (M, g) is in the space R d,t (M) of b-spline functions on each face. It will be represented by its b-spline coefficients on each face, that is, by a vector in

R m 2 ×|M 2 | . For two vectors f , f ′ ∈ R d,t (M) ≡ R m 2 ×|M 2 |
, we denote by f , f ′ the usual scalar product of their b-spline coefficients.

For a vertex γ of a face σ, we denote by T σ γ the map T σ γ : S d,t (M, g) → R 4 that associates to each differentiable function f ∈ S d,t (M, g) the following vector:

T σ γ ( f ) = c σ 0,0 ( f ), c σ 1,0 ( f ), c σ 0,1 ( f ), c σ 1,1 ( f )
where c 0,0 , c 1,0 , c 0,1 , c 1,1 are the corner b-spline coefficients of f ∈ R d,t corresponding to γ. We call these coefficients, the (first) Taylor coefficients of f around γ. For γ ∈ M 0 an end point of an edge τ shared by the faces σ 0 , σ 1 , let T τ γ :

( f 0 , f 1 ) → T σ 0 γ ( f 0 ) ⊕ T σ 1 γ ( f 1 )
. A desired property for the space of G 1 -splines is the possibility to arbitrarily fix the Taylor coefficients at a vertex on a face. This means that at each vertex, we should be able to fix the values, derivatives and cross derivatives and construct a G 1 -spline function that interpolates these values and derivatives. This leads to the following definition: Definition 3.2. The space S d,t (M, g) of G 1 -spline space is ample if for every vertex γ ∈ M 0 and every face σ ∈ M 2 adjacent to γ, the map T σ γ is surjective.

Taylor maps

An important tool that we are going to use intensively is the Taylor map associated to a vertex or to an edge of M. For each face σ the space of spline functions over a subdivision into 4 parts as in the figure above will be denoted R r (σ). Let γ ∈ M 0 be a vertex on a face σ ∈ M 2 belonging to two edges τ, τ ′ ∈ M 1 of σ. We define the ring of

γ on σ by R σ (γ) = R(σ)/(ℓ 2 τ , ℓ 2 τ ′ ) where (ℓ 2 τ , ℓ 2 τ ′ )
is the ideal generated by the squares of ℓ τ and ℓ τ ′ . The equations ℓ τ (u, v) = 0 and ℓ τ ′ (u, v) = 0 are respectively the equations of τ and τ ′ in R r (σ) = S r .

The Taylor expansion at γ on σ is the map

T σ γ : f ∈ R r (σ) → f mod (ℓ 2 τ , ℓ 2 τ ′ ) in R σ (γ). 40
Choosing an adapted basis of R σ (γ), one can define T σ γ by

T σ γ ( f ) = f (γ), ∂ u f (γ), ∂ v f (γ), ∂ u ∂ v f (γ) .
The map T σ γ can also be defined in another basis of R σ (γ) in terms of the b-spline coefficients by

T σ γ ( f ) = c σ 0,0 ( f ), c σ 1,0 ( f ), c σ 0,1 ( f ), c σ 1,1 ( f )
where c 0,0 , c 1,0 , c 0,1 , c 1,1 are the first b-spline coefficients associated to f on σ at γ = (0, 0).

We define the Taylor map T γ on all the faces σ that contain γ,

T γ : f = ( f σ ) ∈ ⊕ σ R r (σ) → (T σ γ ( f σ )) ∈ ⊕ σ⊃γ R σ (γ).
Similarly, we define T as the Taylor map at all the vertices on all the faces of M.

If τ ∈ M 1 is the edge of the face σ(u σ , v σ ) ∈ M 2 associated to v σ = 0, we define the restriction along τ on σ as

D σ τ : R k,r (σ) → R k,r (σ) f = ∑ 0 i,j m c σ i,j ( f )b i (u σ )b j (v σ ) → ∑ 0 i m,0 j 1 c σ i,j ( f )b i (u σ )b j (v σ ).
The restrictions along the edges v σ = 1, u σ = 0, u σ = 1 are defined similarly by symmetry. By convention if τ is not an edge of σ, D σ τ = 0. For a face σ ∈ M 2 , we define the restriction along the edges of σ as

D σ : R k,r (σ) → R k,r (σ) f = ∑ 0 i, j m c σ i,j ( f )b i (u σ )b j (v σ ) → ∑ i>1, or i<m-1, j>1, or j<m-1 c σ i,j ( f )b i (u σ )b j (v σ ).
The edge restriction map along all edges of M is given by

D : f = ( f σ ) ∈ ⊕ σ R k,r (σ) → (D σ ( f σ )) ∈ ⊕ σ R k,r (σ) 
.

G 1 -splines along an edge

We consider first a topological mesh M τ with two faces σ 0 , σ 1 sharing an edge τ, with the gluing data

g τ = (a, b). The G 1 -spline functions of S d,t (M τ , g τ ) are the pairs f = ( f 0 , f 1 ) of b-spline functions f 0 , f 1 ∈ R d,t
, which satisfies the relations (3.2) and (3.5). If τ is defined by v 1 = 0 on σ 1 and u 0 = 0 on σ 0 , these relations involve only the b-spline coefficients c σ 1 i,j ( f ), c σ 0 j,i ( f ) for 0 i m -1 and 0 j 1. The other coefficients can be chosen arbitrarily. Let us denote by S τ the space of b-spline functions ( f 0 , f 1 ) in S d,t (M τ , g τ ) with all these other coefficients equal to 0. The elements of S τ are the G 1 -spline functions supported along the edge τ.

Let γ, γ ′ ∈ M 0 be the end vertices of τ. We denote E τ = S τ ∩ ker T γ ∩ ker T γ ′ . It is the vector space of G 1 -spline in S τ supported along τ, with zero b-spline coefficients at γ and γ ′ .

Let E ⊥

τ be the b-splines in S d,t (M τ ) which are orthogonal to all the elements in E τ for the scalar product on the b-spline coefficients. We denote S γ,τ = S τ ∩ E ⊥ τ ∩ ker T τ γ ′ and similarly S γ ′ ,τ = S τ ∩ E ⊥ τ ∩ ker T τ γ . By construction, we have

S τ ⊃ S γ,τ ⊕ E τ ⊕ S γ ′ ,τ . Definition 3.3. The space S τ is separable if S τ = S γ,τ ⊕ E τ ⊕ S γ ′ ,τ .
If S τ is separable, then any G 1 -spline function ∈ S τ can be uniquely decomposed as a sum of a G 1 -spline function f with

T σ 0 γ ( f ) = T σ 1 γ ( f ) = T σ 0 γ ′ ( f ) = T σ 1 γ ′ ( f ) = 0 , a function g determined by its coefficients T σ 0 γ (g), T σ 1 γ (g)
, and a function h determined by its coefficients

T σ 0 γ ′ (h), T σ 1 γ ′ (h).
This implies that the Bézier coefficients of a G 1 -spline at a vertex are linearly independent of the Bézier coefficients at the other vertex.

If S τ is not separable, there exists an element in S τ with non-zero Bézier coefficients at the two vertices, linearly independent of the G 1 -spline functions with zero coefficients at one of the vertices. If the mesh has more that one edge, this will induce the existence of G 1 -spline basis functions attached to vertices, whose support is not included in the neighborhood of cells adjacent to the vertex. Since we are interested in G 1 -spline spaces that admit a basis of functions with a local support, hereafter we only consider and construct separable G 1 -spline spaces.

We construct now explicit spaces of G 1 -spline functions along an edge. We consider b-spline spaces R d,t with a small degree d (d = 2, . . . , 7) and a small number m 2 of control points per face (m 8). The knots t of the b-spline functions are between 0 and 1. The set of distinct knots is a uniform subdivision of the interval [0, 1], so that the b-spline functions share the same knots on the common edges. The gluing data on the edge are of the form a(u) = a Θ 0 (u)b Θ 1 (u), b(u) = -1 with a, b two parameters and Θ 0 (u), Θ 1 (u) two functions interpolating 1 at 0 and 1.

Translating the equations (3.2) and (3.5) into linear equations in the 4 m coefficients c σ 1 i,j ( f ), c σ 0 j,i ( f ) for 0 i m -1 and 0 j 1, we compute bases of the spaces S τ , S γ,τ , E τ , S γ ′ ,τ depending on the values of a, b for a given edge τ. This can be precomputed for given degree and knot distribution of b-spline patches and for given type of gluing data (e.g. using a computer algebra system such as Maple).

Basis of E τ

We compute a basis e τ 1 , . . . , e τ l of E τ defined by the equations (3.2), (3.5), T τ γ ( f ) = 0 and T τ γ ′ ( f ) = 0. Notice that the functions e τ i are G 1 splines on the whole topological space M, since they are G 1 along the edge τ and T τ γ (e τ i ) = T τ γ ′ (e τ i ) = 0. These will be called the edge basis functions of the edge τ.

We denote by B 1 τ = {b

σ k 1 i 1 ,j 1 , . . . , b σ k l i l ,j l } a set of free coefficients in the linear sys- tem of equations (3.2), (3.5), T τ γ ( f ) = 0, T τ γ ′ ( f ) = 0. This is a Minimal Determin- ing Set of coefficients for E τ .

Basis of S γ,τ

By definition of the space S γ,τ , when the G 1 -spline space S τ is separable and ample, the map T σ γ is injective on S γ,τ and its image is at least of dimension 4. This implies that the dimension of S γ,τ is at least 4. Since there are 3 independent relations between the 8 Taylor coefficients at a vertex γ on the two faces σ, σ ′ (the coefficients on the common edge are equal and the derivatives along the edges adjacent to γ are dependent), the dimension of S γ,τ is at most 8 -3 = 5.

We define δ(γ, τ) = 0 if dim(S γ,τ ) = 5 and δ(γ, τ) = 1 otherwise. If τ is a boundary edge, we let δ(γ, τ) = 0. By definition dim S γ,τ = 5δ(γ, τ) We says that τ is a crossing edge at γ if δ(γ, τ) = 1 and a non-crossing edge otherwise. We define

δ(γ) = min{δ(γ, τ) | τ ∋ γ}. • If δ(γ, τ) = 1 (crossing edge), dim(S γ,τ ) = 4 and a Minimal Determining Set of coefficients is associated to the b-spline functions B 0 γ,τ = {b σ 0 0,0 , b σ 0 1,0 , b σ 0 0,1 , b σ 0 1,1 }. • If δ(γ, τ) = 0 (non-crossing edge), dim(S γ,τ ) = 5 and a minimal determin- ing set of S γ,τ is associated to the b-spline functions B γ,τ = {b σ 0 0,0 , b σ 0 1,0 , b σ 0 0,1 , b σ 0 1,1 , b σ 1 1,1 }.
These sets are maximal sets of free coefficients in the linear system defining S γ,τ . They are Minimal Determining Sets for S γ,τ . The space S γ,τ = S τ ∩ E ⊥ τ ∩ ker T τ γ ′ is defined by the equations (3.2), (3.5), f , e τ i = 0, i = 1, . . . , l, and T τ γ ′ ( f ) = 0. As B γ,τ is a maximal set of free coefficients in this system, it can be transformed by linear combinations of these equations, into a system of the form

A γ,τ Id • c( f ) = 0 (3.16)
where the columns of A γ,τ are indexed by the coefficients B γ,τ and the last identity block indexed by the set C γ,τ of remaining coefficients among all coefficients of b-splines functions supported along τ. The vector c( f ) is the vector of all the coefficients of functions supported along τ. Notice that this matrix A γ,τ can be precomputed for each edge τ, independently of the structure of the mesh. It depends only on the gluing data on τ.

Examples of ample separable spaces

Hereafter, we describe cases of ample separable spaces of G 1 -splines for low d and m. In these tables, we give the degree d, the knots t, the number m of control points along the edge, the gluing function a(u) and the dimensions of S τ , S γ,τ , E τ , S γ ′ ,τ for different values of a and b.

• d = 2, t = [0 3 , 1 4 , 1 2 , 3 4 , 1 3 ], m = 6, a(u) = a (1 -4u)1 [0, 1 4 ] -b (4u -3)1 [ 3 4 ,1] a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 10 4 2 4 = 0 = 0 11 4 3 4 = 0 = 0 12 4 4 4
This construction is closely related to the construction described in [START_REF] Reif | Biquadratic G-spline surfaces[END_REF] with C 1 biquadratic polynomials on each patch and the extraordinary vertices separated by 4 biquadratic patches.

A construction of G 1 -splines which are C 1 bicubic b-splines on each patch with linear gluing data has been proposed in [START_REF] Hahmann | Bicubic G 1 interpolation of arbitrary quad meshes using a 4-split[END_REF]. It applies under some genericity conditions on M. Each face has 6 × 6 = 36 b-spline coefficients (m = 6). An explicit computation shows that the dimensions of S τ , S γ,τ , E τ , S γ ′ ,τ are respectively 11, 4, 2, 4 for a = 0, b = 0. Thus the space is not separable.

• d = 3, t = [0 4 , 1 3 , 2 3 , 1 4 ], m = 6, a(u) = a (1 -3u)1 [0, 1 3 ] -b (3u -2)1 [ 2 3 ,1] . a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 10 4 2 4 = 0 = 0 12 4 4 4
An explicit computation shows that when a = 0, b = 0, i.e. when none of the end points of the edge is a crossing vertex, the space S τ is not separable.

• d = 3, t = [0 4 , 1 3 , 1 3 , 2 3 , 2 3 , 1 4 ], m = 8, a(u) = a (1 -3u)1 [0, 1 3 ] -b (3u -2)1 [ 2 3 ,1] or a(u) = a (3u -1) 2 1 [0, 1 3 ] -b (3u -2) 2 1 [ 2 3 ,1] . a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 14 5 4 5 = 0 = 0 15 5 6 4 = 0 = 0 16 4 8 4
The case where a is of degree 1 corresponds to the construction in [START_REF] Fan | On smooth bicubic surfaces from quad meshes[END_REF] and [START_REF] Peters | On the complexity of smooth spline surfaces from quad meshes[END_REF], where the linear function a is replaced by a piecewise linear function.

In this case, the transition map is not necessarily C 1 .

The second case where a is of degree 2 is a new construction. The gluing data a is C 1 for any value of a and b.

• d = 3, t = [0 4 , 1 5 , 2 5 , 3 5 , 4 5 , 1 4 ], m = 8, a(u) = a (1 -5u)1 [0, 1 5 ] -b (5u -4)1 [ 4 5 ,1] or a(u) = a (1 -5u) 2 1 [0, 1 5 ] -b (5u -4) 2 1 [ 4 5 ,1] a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 12 4 4 4 = 0 = 0 14 4 6 4 = 0 = 0 16 4 8 4 
These two cases are also new constructions of G 1 -splines. The functions are C 2 on each faces and the gluing data is C 1 for any value of a and b when a is of degree 2.

• d = 4, t = [0 5 , 1 2 , 1 2 , 1 2 , 1 5 ], m = 8, a(u) = a (1 -2u) 2 1 [0, 1 2 ] -b (2u -1) 2 1 [ 1 2 ,1] a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 14 5 4 5 = 0 = 0 15 5 6 4 = 0 = 0 16 4 8 4 44 3. CONSTRUCTION OF G 1 -SPLINE BASIS
This corresponds to the construction described in [START_REF] Bonneau | Flexible G 1 interpolation of quad meshes[END_REF] with C 1 biquartic bsplines on each patch. It is also related to the construction in [START_REF] Peters | Biquartic C1-surface splines over irregular meshes[END_REF] where biquartic patches with quadratic transition maps are involved.

• d = 5, t = [0 6 , 1 6 ], m = 6, For this degree, we consider gluing data of degree 1 when the vertices are not crossing vertices (i.e. a = 0, b = 0):

a(u) = a (1 -u) -b u. a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 12 5 2 5
When one of the vertices is a crossing vertex (i.e. a = 0 or b = 0, we use gluing data of degree 2:

a(u) = a (1 -u) 2 . a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 11 5 2 4 = 0 = 0 12 4 4 4
This corresponds to the G 1 -space used for the IsoGeometric Analysis application in Section 2.

• d = 7, t = [0 8 , 1 8 ], m = 8, a(u) = a (1 -u) 2 -b u 2 a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 15 5 5 5 = 0 = 0 15 5 6 4 = 0 = 0 16 4 8 4 
This is a new construction, which falls in the separable cases studied in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF].

The gluing data is C 1 for any value of a and b.

G 1 -splines around a vertex

We present now a new method to construct G 1 -spline basis functions around a vertex γ ∈ M 0 from the analysis of S γ,τ for τ ∋ γ, assuming S τ is ample and separable. Let σ 1 , . . . , σ v be the faces of M adjacent to the vertex γ, where v is the valence of γ. We denote by M γ the sub-topological surface induced by these faces and by g γ the corresponding gluing data. We assume that γ is an interior point (the treatment of a boundary point will be similar). The edge between the faces σ i and σ i+1 is τ i = (γ, γ i ) for i = 1, . . . , v (with the convention that σ v+1 = σ 1 ). The gluing data along the edge τ i are denoted a i , b i . Let S γ ⊂ S(M γ , g γ ) be the space of G 1 -splines around the vertex γ, with support along the edges τ i and with zero Taylor coefficients at the exterior vertices γ i . Since the elements of S γ have a support along the edges τ i and zero Taylor coefficients at the exterior vertices γ i , they define G 1 -splines on the global mesh: S γ ⊂ S(M, g).

The space E γ ⊂ S γ of G 1 -splines in S γ supported along the edges τ i with zero Taylor coefficients at γ and at the exterior vertices γ i decomposes as

E γ = ⊕ f i=1 E τ i
where E τ i is the space of G 1 -splines defined in Section 3.3. Any element in E γ is a 3. CONSTRUCTION OF G 1 -SPLINE BASIS sum of elements with support along the edges τ i and zero Taylor coefficients at γ and γ i , that is an element of E τ i . A basis of E τ i has been computed in Section 3.3.

The space S γ decomposes as S γ = E γ ⊕ V γ where V γ = E ⊥ γ ∩ S γ is the space orthogonal (and thus supplementary) to E γ in S γ (for the classical inner-product on their b-spline coefficients). We are going to construct a basis of V γ , that we will call the vertex basis functions of the vertex γ.

We assume for simplicity that either v = 4 and δ(γ, τ i ) = 1 for i = 1, . . . , 4 (crossing vertex) or δ(γ, τ i ) = 0 for i = 1, . . . , v (non-crossing vertex).

Vertex basis algorithm

Let γ ∈ M 0 be a vertex with adjacent edges τ 1 , . . . , τ v and adjacent faces σ 1 , . . . , σ v .

• If δ(γ, τ i ) = 1 (crossing vertex), then let G γ = [b σ 1 0,0 , b σ 1 1,0 , b σ 1 0,1 , b σ 1 1,1 ]
be the coefficient matrix of the canonical basis elements b

σ 1 0,0 , b σ 1 1,0 , b σ 1 0,1 , b σ 1 1,1 . • If δ(γ, τ i ) = 0, let G γ = [b σ 1 0,0 , b σ 1 1,0 , b σ 1 0,1 , b σ 1 1,1 , , . . . , b σ v 1,1 ]
be the coefficient matrix of the corresponding canonical basis elements.

For i = 1, . . . , v, we define the coefficients along the edge τ i as follows

G γ [C τ i , :] := -A γ,τ i G γ [B τ i , :]
where B τ i are the b-spline basis functions indexing the columns of A τ i and C τ i are indexing the identity block in (3.16).

Proposition 3.4. The spline functions G γ constructed by this algorithm form a basis of V γ .

Proof. For each edge τ i , the restriction of the elements of G γ to M τ i are in S γ,τ i since, by construction, we have

A γ,τ i Id G γ [B τ i , :] G γ [C τ i , :] = A γ,τ i Id G γ [B τ i , :] -A γ,τ i G γ [B τ i , :] = 0.
so that they satisfy the linear relations defining S γ,τ i . As this is true for all the edges τ i containing γ, they are in V γ .

If δ(γ, τ i ) = 0 (non-crossing vertex), the coefficients c σ i 0,0 , c

σ i 1,0 , c σ i 0,1 , i = 1, . . . , v are linked by the relations c σ i 0,0 = c σ i+1 0,0 , c σ i 0,1 = c σ i+1 1,0 and c σ i+1 0,1 -c σ i+1 0,0 = b i (0)(c σ i 1,0 - c σ i 0,0 ) + a i (0)(c σ i 0,1 -c σ i 0,0
). As the gluing data satisfies the cocyle condition 2.2, this system defines a linear space of dimension 3. The coefficients c σ 1 1,1 , . . . , c σ v 1,1 are free and the coefficients in C τ i are determined by the relations (3.16). Thus the space V γ defined by all these equations is of dimension 3 + v, which is also the number of elements in G γ .

Let us show that the elements in G γ are linearly independent. By the linear transformation of the algorithm and the cocyle condition, the matrix G γ [B γ , :] is not changed and is the identity. Thus the elements G γ are independent and, therefore, form a basis of V γ .

If δ(γ, τ i ) = 1 (crossing vertex), a similar argument on the coefficients c σ i 0,0 , c

σ i 1,0 , c σ i 0,1 , c σ i 1,1 , i = 1, . . . , v and the cocyle condition 2.2 show that V γ is of dimension 4.
Similarly, G γ [B γ , :] is the identity matrix and G γ is a basis of V γ .

Dimension formula for S d,t (M, g)

We consider here a degree d, a knot distribution t which gives a separable and ample space of G 1 -splines S d,t (M, g). Theorem 3.5. Assume that S d,t (M, g) is separable and ample then

dim S d,t (M, g) = ((m -4) 2 + 4) f 2 + ∑ τ∈M 1 ǫ(τ) -∑ (γ,τ)|γ∈τ δ(γ, τ) + 3 f 0 + f 0,δ (3.17) where • f 2 = |M 2 | is the number of faces of M, • f 0 = |M 0 | is the number of vertices of M, • f 0,δ is the number of vertices γ ∈ M such that δ(γ) = 1, • ǫ(τ) = dim(E τ ),
• δ(γ, τ) = 5 -dim(S γ,τ ) for an interior edge, δ(γ, τ) = 0 for a boundary edge.

Proof. The dimension is obtained by counting the number of basis functions attached to faces, edges, and vertices using the construction of the previous section.

For each face σ, the b-spline basis function with interior control points are basis elements. There are (m -4) 2 such elements per face.

For each edge τ, a basis of the space E τ are also basis elements of S γ,τ .

For each vertex γ, the number of basis functions attached to it is 3 + f γ -∑ τ∋γ δ(γ, τ) + δ(γ), where f γ is the number of faces adjacent to γ. Since each face has 4 vertices,

∑ γ∈M 0 f γ = 4 f 2 .
Summing up all these terms gives formula (3.17).

Example

We consider the knot sequence t = [0 4 , 1 2 , 1 2 , 1 4 ] defining bicubic C 1 splines with m = 6 control points per edge. We take gluing data of the form a

(u) = a (1 - 3u)1 [0, 1 3 ] -b (3u -2)1 [ 2 3 ,1] .
Let τ be an interior edge of M and let σ 0 , σ 1 be the adjacent faces to τ. We have the separability property for b = 0:

a b S τ S γ,τ E τ S γ ′ ,τ = 0 = 0 11 5 2 4 = 0 = 0 12 4 4 4
The computation of a basis of E τ for a = 0, b = 0 yields

B τ = [-b σ 0 1,2 + b σ 1 2,1 , -b σ 0 1,3 + b σ 1 3,1 ]
The relations defining S γ,τ are of the form 

                             c σ 1 0,0 c σ 1 1,0 c σ 1 0,1 c σ 0 0,2 c σ 0 0,3 c σ 0 1,2 c σ 0 1,3 c σ 1 2,0 c σ 1 2,1 c σ 1 3,0 c σ 1 3,1                              =                             1 0 0 0 0 0 1 0 0 0 2 -a a -1 0 0 0 a-3 a 0 3 2a 3 
0 3 2a 3 2a                                    c σ 0 0,0 c σ 0 0,1 c σ 0 1,0 c σ 0 1,1 c σ 1 1,1       
where -A γ,τ is the matrix appearing in this system. For a vertex γ of valence 3 (with a = 2 cos( 2π 3 ) = -1) adjacent to the faces σ 0 , σ 1 , σ 2 , the 6 spline basis functions of S γ are:

b σ 0 0,0 + b σ 2 0,0 + 3 b σ 2 1,0 + 24 b σ 2 2,1 + 12 b σ 2 2,0 + 12 b σ 2 3,0 + b σ 1 0,0 + 3 b σ 1 0,1 + 12 b σ 1 0,2 + 12 b σ 1 0,3 + 24 b σ 1 1,3 , b σ 0 0,1 + 4 b σ 0 0,2 + 4 b σ 0 0,3 + 8 b σ 0 1,3 -b σ 2 1,0 -8 b σ 2 2,1 -4 b σ 2 2,0 -4 b σ 2 3,0 + b σ 1 1,0 + 4 b σ 1 2,0 + 4 b σ 1 3,0 -b σ 1 0,1 + 8 b σ 1 2,1 -4 b σ 1 0,2 -4 b σ 1 0,3 -8 b σ 1 1,3 , b σ 0 1,0 + 4 b σ 0 2,0 + 4 b σ 0 3,0 + 8 b σ 0 2,1 + 4 b σ 2 0,3 + 4 b σ 2 0,2 + b σ 2 0,1 + 8 b σ 2 1,3 -b σ 2 1,0 -8 b σ 2 2,1 -4 b σ 2 2,0 -4 b σ 2 3,0 -b σ 1 0,1 -4 b σ 1 0,2 -4 b σ 1 0,3 -8 b σ 1 1,3 , -2 b σ 0 2,0 -2 b σ 0 3,0 + b σ 0 1,1 -3 b σ 0 2,1 -2 b σ 0 0,2 -2 b σ 0 0,3 -3 b σ 0 1,3 -2 b σ 2 0,3 -2 b σ 2 0,2 -3 b σ 2 1,3 -2 b σ 1 2,0 -2 b σ 1 3,0 -b σ 1 2,1 , -2 b σ 0 0,2 -2 b σ 0 0,3 -3 b σ 0 1,3 -3 b σ 2 2,1 -2 b σ 2 2,0 -2 b σ 2 3,0 -2 b σ 1 2,0 -2 b σ 1 3,0 + b σ 1 1,1 -3 b σ 1 2,1 -2 b σ 1 0,2 -2 b σ 1 0,3 -b σ 1 1,3 , -2 b σ 0 2,0 -2 b σ 0 3,0 -3 b σ 0 2,1 -2 b σ 2 0,3 -2 b σ 2 0,2 -3 b σ 2 1,3 + b σ 2 1,1 -3 b σ 2 2,1 -2 b σ 2 2,0 -2 b σ 2 3,0 -2 b σ 1 0,2 -2 b σ 1 0,3 -b σ 1 1,3 .

Dimension computations using syzygies

The basis construction in the section above is based on the representation of the G 1 -splines by using bspline coefficients. This approach is the most used on the literature due to the simplicity of representation, and the adaptivity with CAD systems representation. However considering the bspline functions as piecewise polynomials may give some advantages. Indeed, we will explain in this section that the equation (3.4) makes the partial derivatives of the element functions, coordinates of a well understood object from commutative algebra, that is called a module of syzygies. The syzygies module is the space of solutions of a linear equation who's coefficients and unknowns are polynomials. In this section we space of splines, and U r to denote the union of all the spaces U l,r for l ∈ N. We assume that the dimension of U l,t is bigger than 4, that is, 2l + 1r 4 and r 0 so that l 1 2 (3 + r), which implies that l 2. We choose the two Hermite interpolation functions d 0 (u),

d 1 (u) ∈ U l,t such that d 0 (0) = 1, d 0 (1) = 0, d 1 (0) = 0, d 1 (1) = 1 and d ′ 0 (0) = d ′ 0 (1) = d ′ 1 (0) = d ′
1 (1) = 0. These functions are going to be used to produce the gluing data as we explained in Section 2.1. We can take, for instance,

d 0 (u) = b 0 (u) + b 1 (u) (3.18) d 1 (u) = b m-1 (u) + b m (u)
where m = 2lr. For l = 2, r = 1, these functions are

d 0 (u) = 1 -2u 2 0 u 1 2 2(1 -u) 2 1 2 u 1 d 1 (u) = 2u 2 0 u 1 2 1 -2 (1 -u) 2 1 2 u 1.
For l = 2, r = 0, these functions are

d 0 (u) = 1 -4u 2 0 u 1 2 0 1 2 u 1 d 1 (u) = 0 0 u 1 2 1 -4 (1 -u) 2 1 2
u 1.

Splines along an edge

The space S k,t (M) of splines over the mesh M can be splitted into three linearly independent components: E k , H k , F k (see Section 7) attached respectively to vertices, edges and faces. The objective of this section is to give an alternative way for analysing the component E (τ) that corresponds to splines supported along the interior edge τ, shared by two faces σ 1 , σ 2 ∈ M 2 . We will produce a basis for it and provide a dimension formula. We denote by M τ the sub-mesh of M composed of the two faces σ 1 , σ 2 that share the edge τ. An important step is to analyse the space Syz r,r,r k (a, b, c) of syzygies over the base ring U d,t . The relation of this space with E (τ) k and a basis of Syz r,r,r k (a, b, c) are presented in Sections 4.4 and 4.5.

Next in Section 4.6, we study the effect, on E (τ) k , of the Taylor map at the two end points of τ and we determine when they can be separated by the Taylor map.

The Section 4.7 shows how to decompose the space S k,t (M) for the simple mesh M τ , using this Taylor maps at the end points of τ. The same technique will be used to decompose the space S k,r (M), for a general mesh M.

Relation with syzygies

Suppose we want to glue two functions f 1 and f 2 defined over domains with the coordinates (u 1 , v 1 ) and (u 2 , v 2 ) respectively (see the figure 3.2). If we choose the gluing data to be a = a c and b = b c , with a, b, c ∈ U s,l defining the gluing data across the edge τ ∈ M, and ( f 1 , f 2 ) ∈ S k,t (M τ ), from (3.5) we have that:

A(u 1 )a(u 1 ) + B(u 1 )b(u 1 ) + C(u 1 )c(u 1 ) = 0 where A(u 1 ) = ∂ f 2 ∂v 2 (0, u 1 ) ∈ U k-1,0 , B(u 1 ) = ∂ f 2 ∂u 2 (0, u 1 ) ∈ U k,1 , C(u 1 ) = - ∂ f 1 ∂v 1 (u 1 , 0) ∈ U k,1 .
These are the conditions imposed by the transition map across τ. According to such data, and if the topological surface M τ contains two faces with one transition map along the shared edge τ, then any differentiable spline functions f = ( f 1 , f 2 ) over M τ of bi-degree (k, k) is given by the formula:

f 1 (u 1 , v 1 ) = b 1 (v 1 ) + b 0 (v 1 ) a 0 + u 1 0 A(t)dt (3.19) - 1 2k b 1 (v 1 )C(u 1 ) + E 1 (u 1 , v 1 ) f 2 (u 2 , v 2 ) = b 1 (u 2 ) + b 0 (u 2 ) a 0 + v 2 0 A(t)dt (3.20) 
+ 1 2k b 1 (u 2 )B(v 2 ) + E 2 (u 2 , v 2 ), since b 0 (0) = 1, b 1 (0) = 0, b ′ 0 (0) = -2k, and b ′ 1 (0) = 2k.
Here a 0 ∈ R, the functions E i ∈ ker D σ i τ for i = 0, 1, and A, B, C are spline functions of degree at most k -1, k, k and class C 0 , C 1 , C 1 , respectively.

For r 1 , r 2 , r 3 , k ∈ N and a, b, c ∈ U s l , we denote Syz

r 1 ,r 2 ,r 3 k (a, b, c) = (A, B, C) ∈ U k-1,r 1 × U k,r 2 × U k,r 3 | A a + B b + C c = 0 .
We denote this vector space simply by Syz r 1 ,r 2 ,r 3 k when a, b, c are implicitly given. By (3.19) and (3.20), the splines in S l,r (M τ ) with a support along the edge τ are in the image of the map:

Θ τ : R × Syz 0,1,1 k → S k,r (M τ ) (3.21) (a 0 , (A, B, C)) → a 0 + u 1 0 A(t)dt b 0 (v 1 ) + a 0 + u 1 0 A(t)dt - 1 2k C(u 1 ) b 1 (u 1 ), b 0 (u 2 ) a 0 + v 2 0 A(t)dt +b 1 (u 2 ) a 0 + v 2 0 A(t)dt + 1 2k B(v 2 ) .
The classical results on the module of syzygies on polynomial rings described in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF] (see Proposition 4.3 in the reference), will be used in order to prove the corresponding statements in the context of syzygies on spline functions. First, we recall the notation and results concerning the polynomial case. Lemma 4.1. Using the notation above we have:

1. Z is a free R[u]-module of rank 2.
2. If µ and ν are the degree of the two free generators of Syz(a, b, c) with µ minimal, then µ + ν = n.

3. dim Z k = (kµ + 1) + + (kn + µ + e) + where t + = max(0, t) for any t ∈ Z.

The generators

(A 1 , B 1 , C 1 ), (A 2 , B 2 , C 2 ) of Z can be chosen so that (a, b, c) = (B 1 C 2 -B 2 C 1 , C 1 A 2 -C 2 A 1 , A 1 B 2 -A 2 B 1 ).
A basis with minimal degree corresponds to what is called a µ-basis in the literature.

Proof. We study the syzygy module Z = Syz(a, b, c) using results on graded resolutions. For this purpose, we homogenize a, b and c in degree

d a = n + 1, d b = d c = n.
Let u 0 , u 1 be the homogeneous coordinates, and ā, b, c the corresponding homogenizations of a, b, and c. We consider the module of homogeneous syzygies Syz( ā, b, c) over the polynomial ring S = R[u 0 , u 1 ].

Claim 4.2. For any k 0, the elements in Z k are exactly the syzygies of degree n + k in Syz( ā, b, c) after dehomogenization by setting u 0 = 1.

Proof. It is clear that if Ā ā + Bb + C c = 0, then by dehomogenization taking u 0 = 1, we get a syzygy (A, B, C) of (a, b, c). Moreover, if deg( Ā ā) = deg( Bb ) = deg( C c) = n + k, then deg( Ā) = k -1, deg( B) = k and deg( C) = k. It follows that (A, B, C) ∈ Z k .
On the other hand, any syzygy (A, B, C) ∈ Z k is given by polynomials of degree at most max{deg A, deg B, deg C} k, and since n = max{deg a, deg b, deg c} then we may consider the homogenization of the polynomial Aa + Bb + Cc in degree n + k. These polynomials satisfy 0 = u k+n 0 (Aa

+ Bb + Cc)(u 1 /u 0 = u k-1 0 • u n+1 0 Aa u 1 /u 0 + u k 0 • u n+ 0 Bb u 1 /u 0 + u k 0 • u n 0 Cc u 1 /u 0 .
It is easy to check that Let I = ( ā, b, c) be the ideal generated by ā, b, c in S. If gcd( ā, b, c) = 1 then there exists t 0 ∈ N such that ∀t t 0 , I t = (u 0 , u 1 ) t and in that case, dim R (S/I) t = 0 for t sufficiently large. It follows that the Hilbert polynomial HP S/I of S/I is the zero polynomial.

Ā = u k-1 0 A(u 1 /u 0 ), B = u k 0 B(u 1 /u 0 ), C = u k 0 C(u 1 /u 0 ) are all polynomials in R[u 1 , u 0 ],
For the second case, namely if gcd( ā, b, c) = u 0 , since gcd(a, b, c) = 1 then the polynomials ā/u 0 , b/u 0 and c/u 0 have gcd equal to 1. Hence there exists t 0 ∈ N such that ∀t t 0 , I t = u 0 (u 0 , u 1 ) t-1 . In this case dim R (S/I) t = 1 for t sufficiently large, and it follows that the Hilbert polynomial HP S/I is the constant polynomial equal to 1.

Then the exact sequence 0 → I → S → S/I → 0 implies that

HP I (t) = HP S (t) -HP S/I (t) = t + 1 1 -e, (3.22) 
where HP M is the Hilbert polynomial of the module M. By the Graded Hilbert Syzygy Theorem, we get a resolution of the form

0 -→ S(-d 1 ) ⊕ • • • ⊕ S(-d L ) λ -→ S(-d a ) ⊕ S(-d b ) ⊕ S(-d c ) -→ I -→ 0.
Notice that this resolution is not necessarily minimal. Since this is an exact sequence, then the Hilbert polynomial of the middle term is the sum of the other two Hilbert polynomials, and applying (3.22) we get 3t -

(d a + d b + d c ) + 3 = (t -d 1 + 1) + • • • + (t -d L + 1) + (t + 1) -e.
It follows that L = 2 which proves (i). Furthermore, we have that the degrees d 

= n -µ + 1 -e.
By exactness, the two columns of Λ generate Syz( ā, b, c). The dehomogenization (by setting u 0 = 1) of the syzygies in Syz( ā, b, c) leads to syzygies of (a, b, c) over R[u 1 ]. In particular, it is straightforward to show that the dehomogenization (A i , B i , C i ) of ( Āi , Bi , Ci ) for i = 1, 2 generate Z = Syz(a, b, c) as a module over R[u 1 ]. This proves [START_REF] Forrest | Interactive interpolation and approximation by Bézier polynomials[END_REF].

By Claim 4.2, the space Z k is in correspondence with the space of homogeneous syzygies of degree n + k, which is spanned by the multiples of degree n + k of ( Ā1 , B1 , C1 ) and ( Ā2 , B2 , C2 ). Therefore,

dim Z k = (n + k -d 1 + 1) + + (n + k -d 2 + 1) + = (k -µ + 1) + + (k -ν + 1) + with ν = n -µ + 1 -e. This proves (3).
The point (4) is a consequence of Hilbert-Burch theorem. More details on this proof can be found in [53, Chapter 6, § 4.17].

In the following we state the analogous to Lemma 4.1 in the context of syzygies on spline functions. We consider Syz r,r,r k as defined above. It is the set of spline functions (A,

B, C) ∈ U k-1,r × U k,r × U r,k such that A a + B b + C c = 0. An element of Syz r,r,r k is a triple of pairs of polynomials ((A 1 , A 2 ), (B 1 , B 2 ), (C 1 , C 2 )). Let R = R[u], R k = {p ∈ R | deg(p) k}, Q r = R/((2u -1) r+1 ) and Q r k = R k /((2u -1) r+1 ). The elements f = ( f 1 , f 2 ) of U k,r+1 are pairs of polynomials f 1 , f 2 ∈ R k such that f 1 -f 2 ≡ 0 mod (2u -1) r+1 . Let a = (a 1 , a 2 ), b = (b 1 , b 2 ), c = (c 1 , c 2 ) ∈ U r with gcd(a 1 , c 1 ) = gcd(a 2 , c 2 ) = gcd(b 1 , c 1 ) = gcd(b 2 , c 2 ) = 1.
We consider the following sequence: 

0 -→ Syz r,r,r k -→ Syz 1,k × Syz 2,k φ -→ Q r k-1 × Q r k × Q r k ψ -→ Q r n 1 +k -→ 0 (3.23) where Syz 1,k = Syz k (a 1 , b 1 , c 1 ), Syz 2,k = Syz k (a 2 , b 2 , c 2 ), and • ψ( f , g, h) = a 1 f + b 1 g + c 1 h, • φ(A, B, C) = (A 1 -A 2 , B 1 -B 2 , C 1 -C 2 ) (mod (2u -1) r+1 ).
( f , g, h) ∈ R k-1 × R k × R k → a 1 f + b 1 g + c 1 h ∈ R n 1 +k is surjective for k n 1 -1.
The map φ, obtained by working modulo (2u -1) r+1 , remains surjective.

We have to prove that ker(ψ

) = Im(φ). If (A, B, C) ∈ Syz 1 × Syz 2 then ψ • φ(A, B, C) = (A 1 a 1 + B 1 b 1 + C 1 c 1 ) -(A 2 a 1 + B 2 b 1 + C 2 c 1 ) = -(A 2 a 1 + B 2 b 1 + C 2 c 1 ). Because a, b, c ∈ U r , we have a 1 ≡ a 2 (mod (2u -1) r+1 ), b 1 ≡ b 2 (mod (2u - 1) r+1 ) and c 1 ≡ c 2 (mod (2u -1) r+1 ), so that ψ • φ(A, B, C) ≡ -(A 2 a 2 + B 2 b 2 + C 2 c 2 ) ≡ 0 (mod (2u -1) r+1 ). This implies that Im(φ) ⊂ ker(ψ). Conversely, if ψ( f , g, h) = 0 with deg( f ) r, deg(g) r, deg(h) r then f a 1 + gb 1 + hc 1 = d (2u -1) r+1 for some polynomial d ∈ R of degree n 1 -1.
Since gcd(b 1 , c 1 ) = 1, there exists p, q ∈ R n 1 -1 such that d = p b 1 + q c 1 , we deduce that:

(2u -1) r+1 d = (2u -1) r+1 (p b 1 + q c 1 ) = f a 1 + g b 1 + h c 1 ,
with deg((2u -1) r+1 p) n 1 + r. This yields

f a 1 + (g -p(2u -1) r+1 ) b 1 + (h -(2u -1) r+1 q) c 1 = 0. (3.24) Since k n 1 + r, this implies that (( f , 0), (g -(2u -1) r+1 p, 0), (h -(2u -1) r+1 q, 0)) ∈ Syz 1,k × Syz 2
,k and its image by φ is ( f , g, h). This shows that ker(ψ) ⊂ Im(φ) and implies the equality of the two vector spaces. By construction, the kernel of φ is the pair of triples

((A 1 , B 1 , C 1 ), (A 2 , B 2 , C 2 )) in Syz 1,k × Syz 2,k such that A 1 -A 2 ≡ B 1 -B 2 ≡ C 1 -C 2 ≡ 0 (mod (2u -1) r+1 ), that is, the set Syz r,r,r k of triples (A, B, C) ∈ U r k-1 × U r k × U r k such that A a + B b + C c = 0.
This show that the sequence (3.23) is exact.

We deduce the dimension formula:

Proposition 4.4. Let (p 1 , q 1 ) (resp. (p 2 , q 2 )) be a basis of Syz 1 (resp. Syz 2 ) of minimal degree (µ 1 , ν 1 ) (resp. (µ 2 , ν 2 )) and e 1 , e 2 defined as above for (a 1 , b 1 , c 1 ) and (a 2 , b 2 , c 2 ).

For k min(n 1 , n 2 ) + r,

dim(Syz r,r,r k ) = (k -µ 1 + 1) + + (k -n 1 + µ 1 + e 1 ) + + (k -µ 2 + 1) + + (k -n 2 + µ 2 + e 2 ) + -min(r + 1, k) -(r + 1).
This dimension is denoted d τ (k, r).

Proof. By symmetry, we may assume that n 1 = min(n 1 , n 2 ). For k n 1 + r, the sequence (3.23) is exact and we have dim Syz r,r,r k

= dim Syz 1,k + dim Syz 2,k -dim Q r k-1 -2 dim Q r k + dim Q r n 1 +k . We have dim Q r k-1 = min(r + 1, k) and dim Q r k = dim Q r n 1 +k = r + 1, since k n 1 + r.
This leads to the formula, using Lemma 4.1.

Basis of the syzygy module

The diagram (3.23) allows us to construct a basis for the space of syzygies Syz r,r,r k associated to the gluing data a, b, c ∈ U r . In the rest of this section we will show how to construct such a basis. Lemma 4.5. Assume that k n 1 + r. Using the notation of Proposition 4.4, we have the following assertions:

• For any p 2 ∈ Syz 2,k , there exists p 1 ∈ Syz 1,k such that (p 1 , p 2 ) ∈ ker(φ).

DIMENSION COMPUTATIONS USING SYZYGIES

• There exist t, s ∈ N such that if G = {(p 1 (2u -1) i , 0) : 0 i t} {(q 1 (2u -1) j , 0) : 0 j l} then φ(G) is a basis of the vector space ker(ψ).

• ker(φ)

G = Syz 1,k × Syz 2,k . Proof. Let p 2 = (A 2 , B 2 , C 2 ) ∈ Syz 2,k . As φ((0, p 2 )) = ( f , g, h) is in ker(ψ) (since ψ • φ = 0), we can construct p 1 ∈ Syz 1,k such that φ((p 1 , 0)) = φ((0, p 2 
)) as we did in the proof of Lemma 4.3 for ( f , g, h) ∈ ker(ψ) using relation (3.24). This gives an element of the form (p 1 , 0) ∈ Syz 1,k × {0}, and finally (p 1 , p 2 ) ∈ ker(φ), this proves the first point.

The second point follows from the fact that φ(Syz 1,k × {0}) = ker(ψ) (since by Lemma 4.3, the sequence (3.23) is exact) and that {(p 1 (2u -1) i , 0) : i kµ 1 } {(q 1 (2u -1) j , 0) : j kν 1 } is a basis of Syz 1,k × {0} as a vector space, thus the image of this basis is a generating set for ker(ψ). Since it is a R-module, it has a basis as described in the second point of this lemma.

The third point is a direct consequence of the second one.

Considering the map in (3.22), the first point of the lemma has an intuitive meaning: any function defined on a part of M τ and that satisfies the gluing conditions imposed by a 1 , b 1 , c 1 can be extended to a function over M τ that satisfies the gluing conditions a, b, c. The third point allows us to define the projection π r 1 of an element on ker(φ) along G .

Let ( p2 , p 2 ), ( q2 , q 2 ) be the two projections of (0, p 2 ) and (0, q 2 ) by π r 1 respectively. We denote:

• Z r 1 = {(0, (2u -1) i p 2 ) : r + 1 i k -µ 2 } • Z r 2 = {(0, (2u -1) i q 2 ) : r + 1 i k -ν 2 } • Z r 3 = {((2u -1) i q 1 , 0) : r + 1 i k -µ 1 } • Z r 4 = {((2u -1) i p 1 , 0) : r + 1 i k -ν 2 } • Z r 5 = {(2u -1) i ( p2 , p 2 ) : 0 i r} • Z r 6 = {(2u -1) i ( q2 , q 2 ) : 0 i r} • Z r = Z r 1 Z r 2 Z r 3 Z r 4 Z r 5 Z r 6 
Proposition 4.6. Using the notation above we have the following:

• The set Z r is a basis of the vector space Syz r,r,r k .

• The set Y = {(0, (2u -1) r+1 p 2 ), (0, (2u -1) r+1 q 2 ), ( p2 , p 2 ), ( q2 , q 2 ), ((2u -1) r+1 q 1 , 0), ((2u -1) r+1 p 1 , 0)} is a generating set of the R-module Syz r,r,r .

Proof. The cardinal of Z r is equal to the dimension of Syz r,r,r k , we have to prove that it is a free set. Let a = (a i ), b = (b i ), c = (c i ), d = (d i ), e = (e i ), f = (f i ) for i ∈ {0, . . . , k} a set of coefficients. Suppose that:

r ∑ i=0 a i (2u -1) i ( p2 , p 2 ) + r ∑ i=0 b i (2u -1) i ( q2 , q 2 ) + k-r-ν 1 ∑ i=0 c i ((2u -1) i+r+1 q 1 , 0) + k-r-µ 1 ∑ i=0 e i ((2u -1) i+r+1 p 1 , 0) + k-r-µ 2 ∑ i=0 d i (0, (2u -1) r+i+1 p 2 ) + k-r-ν 2 ∑ i=0 f i (0, (2u -1) i+r+1 q 2 ).
Then we have the following equations,

0 = r ∑ i=0 a i (2u -1) i p2 + r ∑ i=0 b i (2u -1) i q2 + k-r-ν 1 ∑ i=0 c i (2u -1) r+1+i q 1 + k-r-µ 1 ∑ i=0 e i (2u -1) r+1+i p 1 (3.25) 0 = r ∑ i=0 a i (2u -1) i p 2 + r ∑ i=0 b i (2u -1) i q 2 + k-r-µ 2 ∑ i=0 d i (2u -1) r+1+i p 2 + k-r-ν 2 ∑ i=0 f i (2u -1) r+1+i q 2 (3.26)
We know that p 2 and q 2 are free generators of Syz 2 , by (3.26) this means that all the coefficients a i , b i , d i , f i that are used in the equation are zero. Replacing in the equation(3.25) we get in the same way that the other coefficients c i , e i are zero, so the set is free. Finally since the set Y does not change when k changes, then Y generates Syz r,r,r .

We have similar results if we proceed in a symmetric way exchanging the role of the first and second polynomial components of the spline functions. The corresponding basis of Syz r,r,r k is denoted Z ′r and the generating set of the Rmodule is Y ′ = 0, (2u -1) r+1 p 2 , 0, (2u -1) r+1 q 2 , p 1 , p1 , q 1 , q1 , (2u -1) r q 1 , 0 , (2u -1) r p 1 , 0 .

It remains to compute the dimension and a basis for Syz r-1,r,r k . We deduce them from those of Syz r-1,r-1,r-1 k and Syz r,r,r k . They depend on the gluing data as we explain hereafter. Proposition 4.7.

• If a(1/2) = 0 then Syz r,r,r k = Syz r-1,r,r k , otherwise we have that dim(Syz r-1,r,r k ) = dim(Syz r,r,r k ) + 1.
• For the second case, an element in Syz r-1,r,r k \ Syz r,r,r k is of the form: α(2u -1) r (0, p 2 ) + β(2u -1) r (0, q 2 ), with α, β ∈ R.

DIMENSION COMPUTATIONS USING SYZYGIES

For the proof of this proposition we need the following lemma that can be proved exactly in the same way as Proposition 4.6 above.

Lemma 4.8. The set Zr-1 = Z ′r {(2u -1) r (0, p 2 ), (2u -1) r (0, q 2 )} is a basis of Syz r-1,r-1,r-1 k .

Proof of Proposition 4.7. We denote p 1 = (p 1 1 , p 2 1 , p 3 1 ), and q 1 = (q 1 1 , q 2 1 , q 3 1 ), where p j i and q j i are polynomials. Suppose that there exists (A, B, C) ∈ Syz r-1,r,r k \ Syz r,r,r k , then by the previous lemma we can choose (A, B, C) = α(2u -1) r (0, p 2 ) + β(2u -1) r (0, q 2 ) with α, β ∈ R, that is:

   A = α(0, (2u -1) r p 1 2 ) + β(0, (2u -1) r q 1 2 ) B = α(0, (2u -1) r p 2 2 ) + β(0, (2u -1) r q 2 2 ) C = α(0, (2u -1) r p 3
2 ) + β(0, (2u -1) r q 3 2 ) But since B, C ∈ U r , we deduce:

(2u -1) r+1 divides B 2 -B 1 = (2u -1) r (αp 2 2 + βq 2 2 ) (2u -1) r+1 divides C 2 -C 1 = (2u -1) r (αp 3 2 + βq 3 2 ) This means that αp 2 2 ( 1 2 ) + βq 2 2 ( 1 2 ) = 0 αp 3 2 ( 1 2 ) + βq 3 2 ( 1 2 ) = 0 As the determinant of this system is exactly p 2 2 ( 1 2 )q 3 2 ( 1 2 ) -p 3 2 ( 1 2 )q 2 2 ( 1 2 ) = a( 1 
2 ), we deduce the two points of the proposition. Lemma 4.8 implies the following proposition: Proposition 4.9. The dimension of Syz r-1,r,r k is dτ (k, r) = d τ (k, r) + δ τ with δ τ = 1 if a( 12 ) = 0 and 0 otherwise.

Separation of vertices

We analyze now the separability of the spline functions on an edge, that is when the Taylor map at the vertices separate the spline functions.

Let f = ( f 1 , f 2 ) ∈ R(σ 1 ) ⊕ R(σ 2 ) of the form f i (u i , v i ) = p i + q i u i + qi v i + s i u i v i + r i u 2 i + ri v 2 i + • • • . Then T γ ( f ) = [p 1 , q 1 , q1 , s 1 , p 2 , q 2 , q2 , s 2 ]. If f = ( f 1 , f 2 ) ∈ S k,r (M τ )
, then taking the Taylor expansion of the gluing condition (3.5) centered at u 1 = 0 yields

q 2 + s 1 u 1 = (a(0) + a ′ (0)u 1 + • • • ) ( q2 + 2 r2 u 1 + • • • ) (3.27) +(b(0) + b ′ (0)u 1 + • • • ) (q 2 + s 2 u 1 + • • • ) Combining (3.27) with (3.2) yields p 1 = p 2 q 1 = q2 r 1 = r2 q1 = a(0) q2 + b(0) q 2 s 1 = 2 a(0) r2 + b(0) s 2 + a ′ (0) q2 + b ′ (0) q 2 .
Let H(γ) be the linear space spanned by the vectors [p 1 , q 1 , q1 , s 1 , p 2 , q 2 , q2 , s 2 ], which are solution of these equations. If a(0) = 0, it is a space of dimension 5 otherwise its dimension is 4. Thus dim H(γ) = 5c τ (γ).

In the next proposition we use the notation of the previous section.

Proposition 4.10. For k

ν 1 + 1 we have T γ (S k,r (M τ )) = H(γ). In particular dim(T γ (S k,r (M τ ))) = 5 -c τ (γ).
Proof. By construction we have T γ (S k,r (M τ )) ⊂ H(γ). Let us prove that they have the same dimension. (A,B,C)) (see (3.21)), then it is easy to see that:

If (A, B, C) ∈ Syz r,r,r k with A = (A 1 , A 2 ),B = (B 1 , B 2 ),C = (C 1 , C 2 ), then (A 1 , B 1 , C 1 ) is an element of the R-module spanned by p 1 = (p 1 1 , p 2 1 , p 3 1 ), q 1 = (q 1 1 , q 2 1 , q 3 1 ), ie (A, B, C) = a 1 ((1 -2u) r+1 p 1 , 0) + P(p 1 , p1 ) + Q(q 1 , q1 ). Let f = ( f 1 , f 2 ) = Θ τ (a 0 ,
T γ ( f ) =         f 1 (γ) ∂ u 1 f 1 (γ) ∂ u 2 f 2 (γ) -∂ v 1 f 1 (γ) ∂ u 2 ∂ v 2 f 2 (γ) -∂ u 1 ∂ v 1 f 1 (γ)         (3.28) =          1 0 0 0 0 0 0 p 1 1 (0) p 1 1 (0) q 1 1 (0) 0 0 0 p 2 1 (0) p 2 1 (0) q 2 1 (0) 0 0 0 p 3 1 (0) p 3 1 (0) q 3 1 (0) 0 0 0 p 2 1 ′ (0) -2(r + 1)p 2 1 (0) p 2 1 ′ (0) q 2 1 ′ (0) p 2 1 (0) q 2 1 (0) 0 p 3 1 ′ (0) -2(r + 1)p 3 1 (0) p 3 1 ′ (0) q 3 1 ′ (0) p 3 1 (0) q 3 1 (0)                  a 0 a 1 P(0) Q(0) P ′ (0) Q ′ (0)        
The second column of the matrix is linearly dependent on the third and fifth columns. Using the same argument as in the proof of [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF]Proposition 4.7] on the first and 4 last columns of this matrix, we prove that its rank is 5c γ τ . By taking P, Q ∈ R 1 of degree 1, which implies that k max(deg(P p 1 ), deg(Q q 1 )) = ν 1 + 1, the vector [a 0 , P(0), Q(0), P ′ (0), Q ′ (0)] can take all the values of R 5 and we have T γ (S k,r (M τ )) = H(γ). This ends the proof.

We consider now the separability of the Taylor map at the two end points γ, γ ′ . Proposition 4.11. Assume that k max(ν 1

+ 2, ν 2 + 2, µ 1 + r + 1, µ 2 + r + 1). Then T γ,γ ′ (S k,r (M τ )) = (H(γ), H(γ ′ )) and dim T γ,γ ′ (S k,r (M τ )) = 10 -c τ (γ) -c τ (γ ′ ). Proof. The inclusion T γ,γ ′ (S k,r (M τ )) ⊆ (H(γ), H(γ ′ )) is clear by construction.
For the converse, we show that the image of T γ,γ ′ • Θ τ contains (H(γ), 0) and then by symmetry we have that (0,

H(γ)) is in the image of T γ,γ ′ • Θ τ . Let f = ( f 1 , f 2 ) = Θ τ (a 0 , (A, B, C)) ∈ S k,r (M τ ) with (A, B, C) = a 1 ((1 -2u) r+1 p 1 , 0) + P(p 1 , p1 ) + Q(q 1 ,
q1 ) and P, Q ∈ U 2,r . The image of f by T γ is of the form (3.28).

The image of f by T γ ′ is of the form

T γ ′ ( f ) =         f 1 (γ ′ ) ∂ u 1 f 1 (γ ′ ) ∂ u 2 f 2 (γ ′ ) -∂ v 1 f 1 (γ ′ ) ∂ u 2 ∂ v 2 f 2 (γ ′ ) -∂ u 1 ∂ v 1 f 1 (γ ′ )         =         1 t 1 0 0 0 0 0 0 p1 1 (1) q1 1 (1) 0 0 0 0 p2 1 (1) q2 1 (1) 0 0 0 0 p3 1 (1) q3 1 (1) 0 0 0 0 p2 1 ′ (1) q2 1 ′ (1) p2 1 (1) q2 1 (1) 0 0 p3 1 ′ (1) q3 1 ′ (1) p3 1 (1) q3 1 (1)                 a 0 a 1 P(1) Q(1) P ′ (1) Q ′ (1)         +         L 1 (P) + L 2 (Q) 0 0 0 0 0         with t 1 = 1/2 0 (1 -2u) r+1 p 1 1 du, L 1 (P) = 1 0 P p1 1 du, L 2 (Q) = 1 0 Q q1 1 du. By choosing P(1) = P ′ (1) = Q(1) = Q ′ (1)
= 0 and a 0 + t 1 a 1 = 0, we have an element in the kernel of this matrix. By choosing a 0 , P(0), P ′ (0), Q(0), Q ′ (0) and a 1 such that a 0 + t 1 a 1 + L 1 (P) + L 2 (Q) = 0, we can find a solution to the system (3.28) for any f ∈ S k (M τ ). Therefore, constructing spline coefficients P, Q ∈ U r 2 which interpolate prescribed values and derivatives at 0, 1, we can construct spline functions f ∈ S k (M τ ) such that T γ ( f ) span H(γ) and T γ ′ ( f ) = 0. The degree of the spline is k max(ν 1 + 2, µ 1 + r + 1). By symmetry, for k max(ν 2 + 2, µ 2 + r + 1), we have (0, H(γ ′ )) ⊂ T γ,γ ′ (S k,1 (M τ ), which concludes the proof. Definition 4.12. The separability s(τ) of the edge τ is the minimal k such that

T γ,γ ′ (S k,r (M τ )) = (T γ (S k,r (M τ )), T γ ′ (S k,r (M τ )))
.

The previous proposition shows that s(τ) max(ν 1 + 2, ν 2 + 2, µ 1 + r + 1, µ 2 + r + 1).

Decomposition and dimension

Let τ ∈ M 1 be an interior edge τ shared by the cells σ 0 , σ 1 ∈ M 2 . The Taylor map along the edge τ of M τ is

D τ : R k (σ 0 ) ⊕ R k (σ 1 ) → R k (σ 0 ) ⊕ R k (σ 1 ) ( f 0 , f 1 ) → (D σ 0 τ ( f 0 ), D σ 1 τ ( f 1 ) . Its image is the set of splines of R k,r (σ 1 ) ⊕ R k,r (σ 2 )
with support along τ. The kernel is the set of splines of R k,r (σ 1 ) ⊕ R k,r (σ 2 ) with vanishing b-spline coefficients along the edge τ. The elements of ker(D τ ) are smooth splines in S k,r (M τ ). Let W k (τ) = D τ (S k,r (M τ )). It is the set of splines in S k,r (M τ ) with a support along τ. As D τ is a projector, we have the decomposition 

S k,r (M τ ) = ker(D τ ) ⊕ W k (τ). ( 3 
(τ) = Im Θ τ . Since Θ τ is injective, thus dim(W k (τ)) = dim Syz r,r,r k-1 + 1 = d τ (k, r) + 1 and W k (τ) = {0} when k µ 1 and k µ 2 (Lemma (4.1) (iii)).
The map T γ,γ ′ defined in Section 3.2 induces the exact sequence

0 → K k (τ) → S k,r (M τ ) T γ,γ ′ -→ H(τ) → 0 (3.30)
where K k (τ) = ker(T γ,γ ′ ) and H(τ) = T γ,γ ′ (S k,r (M τ )). 

∈ M o 1 , let E k (τ) = ker(T γ,γ ′ ) ∩ W k (τ) = ker(T γ,γ ′ ) ∩ Im D τ
be the set of splines in S k,r (M τ ) with their support along τ and with vanishing Taylor expansions at γ and γ ′ . For a boundary edge τ ′ = (γ, γ ′ ), which belongs to a face σ, we also define E k (τ ′ ) as the set of elements of R k,r (σ) with their support along τ ′ and with vanishing Taylor expansions at γ and γ ′ .

Notice that the elements of E k (τ) have their support along τ and that their Taylor expansion at γ and γ ′ vanish. Therefore, their Taylor expansion along all (boundary) edges of M τ distinct from τ also vanish.

As ker(D τ ) ⊂ K k (τ), we have the decomposition

K k (τ) = ker(D τ ) ⊕ E k (τ). (3.31)
We deduce the following result Lemma 4.14. For an interior edge τ ∈ M o 1 and for k s(τ),

the dimension of E k (τ) is dim E k (τ) = dτ (k, r) -9 + c τ (γ) + c τ (γ ′ ).
Proof. From the relations (3.29), (3.30) and (3.31), we have

dim E k (τ) = dim K k (τ) -dim ker(D τ ) = dim S k,r (M τ ) -dim H k (τ) -dim S k,r (M τ ) + dim W k (τ) = dim W k (τ) -dim H k (τ),
which gives the formula using Proposition 4.11.

Remark 4.15. When τ is a boundary edge, which belongs to the face σ ∈ M 2 , we have

S k,r (M τ ) = R k,r (σ) and dim E k (τ) = 2(m + 1) -8 = 4k -2r -6.

Basis functions associated to an edge

Suppose that B r k = {β i } i=0...l with l = dim Syz r-1,r,r k-1

and r,r k-1 }, but we have:

β i = (β 1 i , β 2 i , β 3 i ), is a basis of Syz r-1,r,r k-1 . We know also that E k = { f = Θ τ (a 0 , (A, B, C)) : T γ,γ ′ ( f ) = 0, (A, B, C) ∈ Syz r-1,
T γ,γ ′ ( f ) = T γ T γ ′ = c 0 , A(0), -C(0), -C ′ (0), c 0 , B(0), A(0), B ′ (0) c 0 + 1 0 A(u)du, A(1), -C(1), C ′ (1), c 0 + 1 0 A(u)du, B(1), A(1), B ′ (1) 4. DIMENSION COMPUTATIONS USING SYZYGIES Suppose that (A, B, C) = ∑ b i β 1 i , ∑ b i β 2 i , ∑ b i β 3 i with b i ∈ R, then T γ,γ ′ ( f ) = 0 is equivalent to the system:                      a 0 = 0 ∑ b i β 1 i (0) = 0 ∑ b i β 2 i (0) = 0 ∑ b i β 3 i (0) = 0 ∑ b i β 2 ′ i (0) = 0 ∑ b i β 3 ′ i (0) = 0 ∑ b i 1 0 β i (t)dt = -a 0            ∑ b i β 1 i (1) = 0 ∑ b i β 2 i (1) = 0 ∑ b i β 3 i (1) = 0 ∑ b i β 2 ′ i (1) = 0 ∑ b i β 3 ′ i (1) = 0 (3.32)
The system (3.32) directly depends on the gluing data (3.1) along the edge via equations (3.19) and (3.20), see Section 4.4 above. An explicit solution requires the computation of a basis for the syzygy module, which is constructed in Section 4.5. The image by Θ τ (defined in (3.21)) of a basis of the solutions of this system yields a basis of E k .

Splines around a vertex

In this section, we analyse the spline functions, attached to a vertex, that is, the spline functions which Taylor expansions along the edges around the vertex vanish. We analyse the image of this space by the Taylor map at the vertex, and construct a set of linearly independent spline functions, which images span the image of the Taylor map. These form the set of basis functions, attached to the vertex.

Let us consider a topological surface M γ composed by quadrilateral faces σ 1 , . . . , σ F(γ) sharing a single vertex γ, and such that the faces σ i and σ i-1 have a common edge τ i = (γ, δ i ), for i = 2, . . . , F(γ). If γ is an interior vertex then we identify the indices modulo F(γ) and τ 1 is the common edge of σ F(γ) and σ 1 , see Fig. 3.5. The gluing data attached to each of the edges τ i will be denoted by

γ σ 1 σ 2 σ 3 σ 4 σ 5 τ 1 τ 2 τ 3 τ 4 τ 5 δ 4 δ 5 δ 1 δ 2 δ 3
a i = a i c i , b i = b i c i
. By a change of coordinates we may assume that γ is at the origin (0, 0), and the edge τ i is on the line v i = 0, where (u i-1 , v i-1 ) and (u i , v i ) are the coordinate 62 5. SPLINES AROUND A VERTEX CHAPTER 3. BASIS COMPUTATION systems associated to σ i-1 and σ i , respectively. Then the transition map at γ across τ i from σ i to σ i-1 is as given by

φ τ i : (u i , v i ) → v i b i (u i ) u i + v i a i (u i ) ;
following the notation in (3.1), we have

φ τ i = φ i-1,i .
The restriction along the boundary edges of M γ is defined by

D γ : F(γ) i=1 R(σ i ) → τ∈∂M γ τ ∋γ R σ i (τ) ( f i ) F(γ) i=1 → D σ i τ ( f i ) τ ∋γ
where D

σ i
τ is the Taylor expansion along τ on σ i , see Section 3.2. Let V k (γ) be the set of spline functions of degree k on M γ that vanish at the first order derivatives along the boundary edges:

V k (γ) = ker D γ ∩ S k,r (M γ ). (3.33)
The gluing data and the differentiability conditions in (3.5) lead to conditions on the coefficients of the Taylor expansion of f i , namely

f i (u i , v i ) = p + q i u i + q i+1 v i + s i u i v i + r i u 2 i + r i+1 v 2 i + • • • (3.34)
with p, q i , s i , r i ∈ R, and for i = 2, . . . , F the following two conditions are satisfied q i+1 = a i (0)q i + b i (0)q i-1 (3.35)

s i = 2a i (0)r i + b i (0)s i-1 + a ′ i (0)q i + b ′ i (0)q i-1 . (3.36) 
Let H(γ) be the space spanned by the vectors h = [p, q 1 , . . . , q F(γ) , s 1 , . . . , s F(γ) ] such that p, q 1 , . . . , q F(γ) , s 1 , . . . , s F(γ) , r 1 , . . . , r F(γ) ∈ R give a solution for (3.35) and (3.36). The following result was proved in [21, Proposition 5.1] in the case of polynomial splines.

Proposition 5.1. For a topological surface M γ consisting of F(γ) quadrangles glued around an interior vertex γ,

dim H(γ) = 3 + F(γ) -∑ τ∋γ c τ (γ) + c + (γ),
where c τ (γ), c + (γ) are as in Definition 1.4.

Since the vectors in H(γ) only depend on the Taylor expansion of f at γ, and f can be seen as a polynomial spline in a neighborhood of γ, then the proof of Proposition 5.1 follows the same argument as the one in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF]. Proposition 5.2. For a topological surface M γ as before, if s(τ i ) denotes the separability of the edge τ i as in Definition 4.12, then

T γ V k (γ) = H(γ),
for every k max{s(τ i ) : i = 1, . . . , F(γ)}.

SPLINES AROUND A VERTEX

Proof. By definition (see (3.33)), the elements of V k (γ) satisfy the conditions (3.35) and (3.36) on the Taylor expansion of f , then

T γ V k (γ) ⊆ H(γ).
Let us consider a vector h = [p, q 1 , . . . , q F(γ) , s 1 , . . . , s F(γ) ] ∈ H(γ), we need to prove that this vector is in the image T γ V k (γ) . In fact, by Proposition 4.11 applied to τ i = [γ, δ i ], there exists ( f τ i i , f

τ i i-1 ) ∈ S k,r (M τ i ) such that T γ ( f τ i i , f τ i i-1 ) = [p, q i , q i+1 , s i , p, q i-1 , q i , s i-1 ] and T δ i ( f τ i i , f τ i i-1 ) = 0 for k s(τ i ), for i = 2, . . . , F. Let us notice that in such case, T σ i γ ( f τ i i ) = T σ i γ ( f τ i+1 i
). Thus, it follows that there exists

g i ∈ R k (σ i ) such that T σ i τ i (g i ) = f τ i i and T σ i τ i+1 (g i ) = f τ i+1 i
. The spline g i is constructed by taking the coefficients of f

τ i i and f τ i+1 i in R σ i (τ i ) and R σ i (τ i+1 ), respectively (see Section 3.2). Since T σ i δ i ( f τ i i ) = T σ i δ i (g i ) = 0 and T σ i δ i+1 ( f τ i+1 i ) = T σ i δ i+1 (g i ) = 0 then T σ i τ (g i ) = 0 for every edge τ ∈ σ i such that γ / ∈ τ. Let g = [g 1 , g 2 , . . . , g F(γ) ] where g i ∈ R k (σ i ) is as previously constructed.
Then g and their first derivatives vanish on the edges in ∂M γ , and g satisfies the gluing conditions along all the interior edges τ i of M γ , i.e. g ∈ S k,r (M γ ) ∩ ker D γ . Hence g ∈ V k (γ), and by construction T γ (g) = h.

Given a topological surface M, let T be the Taylor map at all the vertices of M, as defined in Section 3.2. We have the following exact sequence

0 → K k (M) → S k,r (M) T -→ H k (M) → 0 (3.37) 
where

H k (M) = T S k,r ](M) and K k (M) = ker T ∩ S k,r (M). Let us define s * = max{s(τ) : τ ∈ M 1 }. From Proposition 4
.11, we know that s * 2 + max{v τ i : for i = 1, 2 and τ ∈ M 1 } + min(3, r), where (u τ i , v τ i ) for i = 1, 2 are the degrees of the generators of Syz 1 and Syz 2 , respectively, with u τ i v τ i .

Proposition 5.3. Let F(γ) and H(γ) be as defined above for each vertex γ ∈ M 0 , then for every k s * we have T(S k,r (M)) = ∏ γ H(γ) and

dim T(S k,r (M)) = ∑ γ∈M 0 (F(γ) + 3) -∑ γ∈M 0 ∑ τ∋γ c τ (γ) + ∑ γ∈M 0 c + (γ).
Proof. The statement follows directly applying Propositions 5.2 and 5.1 to each vertex γ ∈ M 0 , with M γ the sub-mesh of M which consists of the quadrangles in M containing the vertex γ.

Basis functions associated to a vertex

Given a topological surface M, for each vertex γ ∈ M 0 , let us consider the submesh M γ consisting of all the faces σ ∈ M such that γ ∈ σ, as before, we denote this number of such faces by F(γ). From Proposition 5.3 we know the dimension of T(S k,r (M)) for k s * . In the following, we construct a set of linearly independent splines B 0 ⊆ S k,r (M) such that span{T( f

) : f ∈ B 0 } = T(S k,r (M)).
Let us take a vertex γ ∈ M 0 and consider the b-spline representation of the elements f σ ∈ R k (σ) for σ ∈ M γ . We construct a set B 0 (γ) ⊂ S k,r (M γ ) of linearly independent spline function as follows:

• First we add one basis function f attached to the value at γ, such that T σ γ ( f σ )(γ) = 1 for every σ ∈ M γ . Let us notice that if we define g σ = ∑ 0 i,j 1 N i (u σ )N j (v σ ) for every σ ∈ M γ , and g on M γ such that g| σ = g σ , then g(γ) = 1. We lift g to a spline f on M γ such that f is in the image of the map Θ τ defined in (3.21), for every τ ∈ M 1 attached to γ.

• We add two basis functions g, h supported on M γ and attached to the first derivatives at γ. Namely, let us consider

g σ 1 = (1/2k) N 0 (u σ 1 ) + N 1 (u σ 1 ) N 1 (v σ 1 ), and h σ 1 = (1/2k)N 1 (u σ 1 ) N 0 (v σ 1 ) + N 1 (v σ 1
) . The conditions (3.35) and (3.36) allow us to find g σ i and h σ i , for i = 2, . . . , F(γ) from g σ 1 and h σ 1 , respectively. Thus, we define g and h on M γ by taking g| σ = g σ and h| σ = h σ . Since g and h by construction satisfy the gluing conditions (3.2) and (3.5) along the edges, then they are splines in the image S k,r (M γ ) of Θ τ for every interior edge τ ∈ M γ .

• For each edge τ i for i = 1, . . . , F(γ), let us define the function

g σ i = c σ i 1,1 (g σ i )N 1 (u σ i )N 1 (v σ i ), where c σ i 1,1 (g σ i ) = 1/4k 2 if τ i
is not a crossing edge, and equal to zero otherwise. Then, for every fix edge τ i ∈ M γ attached to γ we construct a spline g on M γ such that g| σ i = g σ i , and g| σ j for j = i are determined by g σ i and the gluing data at γ, according to (3.35) and (3.36). The previous construction produces F(γ) -∑ τ∋γ c τ (γ) (non-zero) spline functions. These splines, by construction, are in the image of Θ τ (3.21) along all the edges τ ∈ M 1 attached to γ.

• If γ is a crossing vertex, by definition all the edges attached to γ are crossing edges. In this case, we define g σ 1 = (1/4k 2 )N 1 (u σ 1 )N 1 (v σ 1 ), and determine g σ i for i = 2, . . . , F(γ) using the gluing data at γ and conditions (3.35) and (3.36). Defining g on M γ by g| σ i = g σ i we obtain a spline in S k,r (M γ ).

Let us notice that if τ i is a crossing edge then, following the notation in the Taylor expansion of g i (u i , v i ) in (3.34), the coefficient

s i = ∂ u σ i ∂ v σ i g i (u i , v i )| γ becomes
dependent on s i-1 , q i and q i-1 and therefore there is no additional basis function associated to the edge τ i . Applying the previous construction to every γ ∈ M 0 , we obtain a collection of splines B 0 (γ) ⊆ S k,r (M γ ) for each γ ∈ M 0 . We lift the splines f ∈ S k,r (M γ ) to functions on M by defining f σ = 0 for every σ / ∈ M γ . To simplify the exposition, we abuse the notation, and will also call f the lifted spline on M, and B 0 (γ) the collection of those splines. Definition 5.4. For a topological surface M, let B 0 ⊆ S k,r (M) be the set of linearly independent functions defined by

B 0 = γ∈M 0 B 0 (γ), (3.38) 
where B 0 (γ) ⊆ S k,r (M γ ), for each vertex γ ∈ M.

By construction, the collection of splines in B 0 (γ), for each vertex γ ∈ M 0 , and B 0 , are linearly independent. Moreover, the number of elements in B 0 coincides with the dimension of H k (M) and hence they constitute a basis for the spline space S k,r (M) whose Taylor map T (3.37) is not zero.

SPLINES AROUND A VERTEX

Let F k (M) be the spline functions in S k,r (M) with vanishing Taylor expansion along all the edges of M, that is,

F k (M) = S k,r (M) ∩ ker D. An element f is in F k (M) if and only if c σ i,j ( f ) = 0 for i 1 or i m -1, j 1 or j m -1 for all σ ∈ M 2 . Let F k (σ) be the elements in F k (M) with c σ ′ i,j ( f ) = 0 for 0 i, j m and σ ′ = σ. • The dimension of F k (σ) is (2 k -r -3) 2 + . • A basis of F k (σ) is b i (u σ )b j (v σ ) for 1 < i, j < m -1.
We easily check that F k (M) = ⊕ σ F k (σ), which implies the following result:

Lemma 6.1. The dimension of F k (M) is (2k -r -3) 2 + F 2
, where F 2 is the number of (quadrangular) faces of M.

Basis functions associated to a face. The set F k (M) of basis functions associated to faces is obtained by taking the union of the bases of F k (σ) for all faces σ ∈ M 2 , that is,

B 2 := {b i (u σ )b j (v σ ), 1 < i, j < m -1, σ ∈ M 2 }. (3.39) 

Dimension and basis of Splines on M

We have now all the ingredients to determine the dimension of S k,r (M) and a basis.

Theorem 7.1. Let s * = max{s(τ) | τ ∈ M 1 }. Then, for k s * , dim S k,r (M) = (2k -r -3) 2 F 2 + ∑ τ∈M 1 dτ (k, r) + 4F 2 -9F 1 + 3F 0 + F + where • dτ (k)
is the dimension of the syzygies of the gluing data along τ in degree k,

• F 2 is the number of rectangular faces,

• F 1 is the number of edges,

• F 0 (resp. F + ) is the number of (resp. crossing) vertices, Proof. By construction, K k (M) = S k,r (M) ∩ ker T is the set of splines in S k,r (M), which Taylor expansion at all the vertices vanish and H k (M) is the image of S k,r (M) by the Taylor map T. Thus we have the following exact sequence:

0 → K k (M) → S k,r (M) T -→ H k (M) → 0. ( 3.40) 
The degrees of the µ-bases of the different components are respectively µ 1 = 0, ν 1 = 2, µ 2 = 0, ν 2 = 0. Thus the separability is reached from the degree k 4.

We are going to analyze the spline space S 1,1 4 (M) for specific gluing data. An element f ∈ S 1,1 4 (M) is represented on each cell σ i (i = 1, 2, 3) by a tensor product b-spline of class C 1 with 8 × 8 b-spline coefficients:

f k := ∑ 0 i,j 7 c k i,j ( f )N i,j (u k , v k ),
where N i,j (u, v) = N i (u)N j (v) and {N 0 (u), . . . , N 7 (u)} is the basis of U k,1 . We describe an element f ∈ S 1,1 4 (M) as a triple of b-spline functions

∑ 0 i,j 7 c 1 i,j N i,j , ∑ 0 i,j 7 c 2 i,j N i,j , ∑ 0 i,j 7 c 3 i,j N i,j .
The separability is reached at degree 4 and we have the following basis elements, described by a triple of functions which are decomposed in the b-spline bases of each face:

• The number of basis functions attached to γ is 6 = 1 + 2 + 3.

-The basis function associated to the value at γ is

N 0,0 + 1 3 N 0,2 + N 0,3 + N 0,4 + 2 N 1,3 + 2 N 1,4 + 1 3 N 2,0 + N 3,0 + N 4,0 , N 0,0 + 1 3 N 2,0 + N 3,0 + N 4,0 + 3 N 0,1 + 31 3 N 0,2 + 17 N 0,3 + 17 N 0,4 + 14 N 1,2 + 34 N 1,3 + 34 N 1,4 , N 0,0 + 3 N 1,0 + 31 3 N 2,0 + 17 N 3,0 + 17 N 4,0 + 1 3 N 0,2 + N 0,3 + N 0,4 + 2 N 1,3 + 2 N 1,4 .
-The two basis functions associated to the derivatives at γ are 

N 0,1 + 10 3 N 0,2 + 16 3 N 0,3 + 16 3 N 0,4 + 14 3 N 1,2 + 32 3 N 1,3 + 32 3 N 1,4 , N 1,0 + 10 3 N 2,0 + 16 3 N 3,0 + 16 3 N 4,0 , -N 0,1 - 10 3 N 0,2 - 16 3 N 0,3 - 16 3 N 0,4 - 16 3 N 1,2 - 32 3 N 1,3 - 32 3 N 1,4 -N 1,0 - 10 3 N 2,0 - 16 3 N 3,0 - 16 3 N 4,0 , N 1,0 + 10 3 N 2,0 + 16 3 N 3,0 + 16 3 N 4,0 , -N 0,1 - 10 3 N 0,2 - 16 3 N 0,3 - 16 3 N 0,4 - 14 3 N 1,2 - 32 3 N 1,3 - 32 3 N 1,4 , -N 1,0 - 10 3 N 2,0 - 16 3 N 3,0 - 16 3 N 4,0 + N 0,1 + 10 3 N 0,2 + 16 3 N 0,3 + 16 3 N 0,4 + 14 3 N 1,2 + 32 3 N 1,3 + 32 3 N 1,4 .
- 4 3 N 0,2 - 8 3 N 0,3 - 8 3 N 0,4 + N 1,1 - 4 3 N 1,2 - 16 3 N 1,3 - 16 3 N 1,4 , - 4 3 N 2,0 - 8 3 N 3,0 - 8 3 N 4,0 , 0 , - 4 3 N 2,0 - 8 3 N 3,0 - 8 3 N 4,0 , - 4 3 N 0,2 - 8 3 N 0,3 - 8 3 N 0,4 - 4 3 N 1,2 - 16 3 N 1,3 - 16 3 N 1,4 , - 4 3 N 2,0 - 8 3 N 3,0 - 8 3 N 4,0 + N 1,1 - 4 3 N 0,2 - 8 3 N 0,3 - 8 3 N 0,4 - 4 3 N 1,2 - 16 3 N 1,3 - 16 3 N 1,4 , - 4 3 N 2,0 - 8 3 N 3,0 - 8 3 N 4,0 , 0 , - 4 3 N 0,2 - 8 3 N 0,3 - 8 3 N 0,4 - 4 3 N 1,2 - 16 3 N 1,3 - 16 3 N 1,4 .
• There are 4 = 1 + 2 + 2 -1 basis functions attached to δ i :

[N 0,7 , N 7,0 + 2 N 7,1 , 0], [N 0,6 , N 6,0 + 2 N 6, 1 , 0 ], [N 1,7 , -N 7,1 , 0 ], [N 1,6 , -N 6,1 , 0 ]. 
The basis functions associated to the other boundary points δ 2 , δ 3 are obtained by cyclic permutation.

• There are 5 = 14 -5 -4 basis functions attached to edge τ 1 :

[ -N 1,2 , N 2,1 , 0 ], [ -N 1,3 , N 3,1 , 0 ], [ -N 1,4 , N 4,1 , 0 ], [ -N 1,5 , N 5,1 , 0 ], [N 0,5 + 2 N 1,5 , N 5,0 , 0 ].
The basis functions associated to the other edges τ 2 , τ 3 are obtained by cyclic permutation.

• For the remaining boundary points, boundary edges and faces, we have the following 36 × 3 basis functions

[N i,j , 0 , 0 ], [0 , N i,j , 0 ], [0 , 0 , N i,j ], for 2 i, j 7.
The dimension of the space S 1,1 4 (M) is 6 + 3 × (4 + 5 + 36) = 141. A similar construction applies for an edge of a general mesh connecting an interior vertex γ of any valency = 4 to another vertex γ ′ . If γ ′ is a crossing vertex, the numbers of basis functions attached to the vertices and the edge do not change. If γ ′ is not a crossing vertex, the number of basis functions attached to the non-crossing vertex γ ′ becomes 5 and there are 4 basis functions attached to the edges. In the case, where the edge connects two crossing vertices, there are 4 basis functions attached to each crossing vertex and 8 basis functions attached to the edge.

The gluing data used in this construction require a degree 4 for the separability. For the mesh of Figure 3.6, it is possible to use linear gluing data and bi-cubic • There exists a sequence of maps φ 0 , . . . , φ n with φ i : O i → σ i such that for each G k -connection (φ, ψ, O) ∈ C along an edge e from M shared by the two faces σ i , σ j , the reparametrisation given by (φ i , φ j , O i ∩ O j ) is equivalent to (φ, ψ, O).

• The sets φ -1 i (σ • i ) are two by two disjoint. 1 In this case the union of all the sets φ -1 i (σ i ) will form a polyhedral complex, that we will denote ∆. M 2 , M 1 and M 0 will denote the sets of faces, edges and vertices of M respectively, an interior edge is an edge that belongs to at least two faces, the set of all interior edges is denoted by M • 1 , and the set of all the interior vertices is denoted by M • 0 .

Chain complex methods for G k -continuity

If a topological surface has a planar based reparametrisation then we can construct a chain complex in the following way: let

C 2 = σ∈M 2 R[x], C 1 = τ∈M • 1 R[x] I k τ , C 0 = γ∈M • 0 R[x] I k γ
, where I τ is the junction line along the edge τ and I γ = ∑ γ∈ τ I τ .

We define the boundary complex by:

C : C 2 ∂ 2 -→ C 1 ∂ 1 -→ C 0 (3.42)
where

∂ 2 (⊕ σ f σ ) = τ∈σ i ∩σ j ε τ (φ * i ( f σ i ) -φ * j ( f σ j )) (3.43)
the sign ε τ is induced from the first map in the complex of the relative homology of the polyhydral mesh of M over its boundary M / ∂M as in chapter 2. The map ∂ 1 is exactly the second map in the complex of the relative homology.

Homogenisation of the boundary complex

The goal of the study is to find the dimension of the space of G k -Splines up to a given degree. This is why we will bound the degree in the first term of the boundary complex C. In order to have graded maps in the double complex we will consider the homogeneous version of the complex C (as done in Section 2 ). By using the notation of Definition 8.4, we will embed the domains σ i of the topological surface M in R 3 using the homogenization map h that maps each point (x, y) ∈ R 2 to the point (x, y, 1) ∈ R 3 . We get the new 3-dimensional conical domains σi formed of the base h(σ i ) and the vertex (0, 0, 0) ∈ R 3 . We embed the complex ∆ in the same way so that we form the cone of ∆, that is the polyhedral complex ∆ who's faces are the cones formed of the base h(φ i (σ i ))

and the vertex (0, 0, 0). The homogenisation of the reparametrisation maps is done in the following way: for each reparametrisation φ i let s i be the maximal polynomial degree over the three components of φ i , and let s = max i=1...m (s i ), 1 We use ). An element f of R is going to be homogenized by the formula f (x, y, z) = z d f ( x z , y z ) where d is the degree at which we want to homogenise.

By considering the set of all domains Î = ( σi ) i with their reparametrizations φi , and their induced connection:

T = {( φi , φj , O i ∩ O j )|σ 1 , σ 2 ∈ I admiting a G k connection}
we construct a 3 dimensional G k -topology that we will denote ( M, Î, T ). The boundary complex corresponding to this topology is denoted by: Ĝ :

σ∈M 2 R[x] ∂ 2 -→ τ∈M • 1 R[x]/ Îk τ ∂ 1 -→ γ∈M • 0 R[x]/ Îk γ (3.44)
where x denotes the three variables x 1 , x 2 , x 3 .

Under this setting, all the differential maps of the double complex d j i and ∂ i for any i, j are graded for the polynomial grading:

• ∂ 2 is of degree t(s -1) over the set σ∈ M2 R[x] t of elements of degree equal to t.

• ∂ 1 is of degree 0.

According to t we will consider the complex GC t with the following form:

Ĝt :

σ∈M 2 R[x] t ∂ 2 -→ τ∈M • 1 (R[x]/ Îk τ ) ts ∂ 1 -→ γ∈M • 0 (R[x]/ Îk γ ) ts (3.45) 
that we use to compute the space of splines of degree t. The homology group in the first term is the space of splines, while in the last term the homology is the same as the last term homology group in the complex (2.3), so it is equal to zero. By comparing the image of the map ∂ 2 in the two complexes G t , and C ts we see that Im(∂ 2 ) in G t , is a subset of Im(∂ 2 ) in C ts , while the kernel of ∂ 1 in the two complexes is the same, we deduce that dim(H 1 (C t )) dim(H 1 (G t )). In Theorem 4.6 it is stated that the codimension of H 1 (C) as an R[x]-module is equal to 0, that means that the Hilbert polynomial of that module has degree zero. In the other hand, the module structure on the graded vector space of G-splines is not well defined, so we cannot define the Krull dimension on this spaces.

Multi-uv coordinates complex

Let M τ be a topological surface made of two polygons σ 1 , σ 2 that share the edge τ, and suppose that for each one of the two faces we have a local uv-coordinates system (u 1 , v 1 ) and (u 2 , v 2 ). The following is a way to define G r -junction equivalent to Definition 1.1. This definition will be used only with polynomial patches, so all the maps φ, f , g are supposed to be polynomial.

Definition 9.1. Let σ 1 (σ 2 resp.) a polygonal domain in R 2 and τ 1 (τ 2 resp. ) an edge in σ 1 (resp.σ 2 ). Two polynomial maps f : σ 1 → R, g : σ 2 → R admits a G r -junction along the two edges τ 1 , τ 2 if and only if there exists a polynomial C r -diffeomorphism φ : U 1 → U 2 between two neighbourhoods U 1 , U 2 of the two edges τ 1 , τ 2 such that:

9. MULTI-UV COORDINATES COMPLEX

• φ maps τ 1 to τ 2 .

• φ maps the interior points of σ 1 to the exterior point of σ 2 .

• f (u 1 , v 1 )g(u 2 , v 2 ) ∈ I r+1 , where I r is an ideal of generated by the polynomials:

u 2 -φ 1 (u 1 , v 1 ), v 2 -φ 2 (u 1 , v 1 )
, and l r τ 2 , here φ 1 and φ 2 are the two coordinates of φ, and the polynomial l τ 2 is the linear equation defining the hyperplane that supports the edge τ 2 . Before defining the complex, point out that Definitions 1.1 and 9.1 are equivalent to the Definition 8.1 when one of the two parametrisations is the identity. Moreover the homogenisation is possible in the definition of the G r -continuity above exactly as we have done in Section 8.2. So now we will speak about the homogenized version where the ideal I r in the definition above is replaced by its homogenisation in

R[u σ , v σ , w σ ]. Let ∆ be a d-dimensional complex, R σ = R[u σ , v σ , w σ ],
and for S ⊂ M let R S = ⊗ σ∈S R σ be the ring of polynomials with the variables (u σ ) σ∈S , (v σ ) σ∈S , (w σ ) σ∈S . If an edge τ is shared by the two faces σ 1 and σ 2 then we denote R τ the ring of polynomials R σ 1 ⊗ R σ 2 , and if a vertex γ is shared by the faces σ 1 , . . . , σ F then R γ = ⊕ i=1...F R i . We define the complex:

C : C 2 ∂ 2 -→ C 1 ∂ 1 -→ C 0 with: C d = ⊕ σ∈M d R σ (3.46) C i = ⊕ σ∈M i R σ /J(σ) f or i ∈ {1, 0} (3.47) 
J(τ) = I r+1 τ f or τ ∈ M 1 (3.48) J(γ) = ∑ γ∈τ I r+1 τ f or τ ∈ M i , i < d -1 (3.49)
with ∂ i a differential map similar to the one we use in relative homology simplicial complex ∆/∂∆(see Section 2). Another possible construction is to define the equivalent exact sequence to 2.19, again by using the homogenisation of all the polynomials. We define it in the following way: Let ∂ be the incidence matrix of the dual graph of a given topological surface, with columns indexed by maximal faces. for each vector of polynomials V = (p 1 , . . . , p n ) we denote by Diag(V) the diagonal matrix who's diagonal components are the coefficients of V. For each two faces σ 1 and σ 2 in M sharing the edge τ with a transition φ τ from σ 1 to σ 2 , we define by ψ 1 , ψ 2 the homogenisation of the two polynomials

u σ 2 -φ 1 τ (u σ 1 , v σ 1 ) and v σ 2 -φ 2 τ (u σ 1 , v σ 1 ). Let L 1 = [τ 1 , . . . , τ n
] be the list of edges ordered in the same way we did for the lines of the incidence matrix, and V 1 = (l r i ) i∈L 1 V 2 = (ψ i ) i∈L 1 the two vector of polynomials. We denote also by L 2 = [σ 1 , . . . , σ m ] a list with an ordering of the faces similar to the columns of ∂. Then we define the following map:

P : ( σ∈L 2 R σ ) ⊕ ( τ∈L 1 R τ ) ⊕ ( τ∈L 1 R τ ) → τ∈L 1 R τ that
consists on multiplying by the matrix (∂|Diag(V 1 )|Diag(V 2 )). This map induces the following exact sequence:

0 → S r,l (M) → ( σ∈L 2 R σ ) ⊕ ( τ∈L 1 R τ ) ⊕ ( τ∈L 1 R τ ) → τ∈L 1 R τ → coker(P) → 0 (3.50) 74 9. MULTI-UV COORDINATES COMPLEX
The advantage of this construction comparing to the one in section 8.1 is that the maps are graded vector spaces homomorphism.

The complex proposed in the previous sections has an important drawback: the differential maps of the complexes are not module homomorphisms. Thus it is not possible to speak about the Krull dimension of the homology, so it is not possible to deduce the degree of the Hilbert polynomial of that spaces in the way we did in the Chapter 2. However it is still possible to speak about the Hilbert functions of graded vector spaces. This make the constructions above possibly useful for computing the dimension.

Conclusion

We have investigated in this chapter how to construct a basis for the space of G 1splines. We started the chapter by giving some of the constraints that one has to impose on the gluing data so that the space of G-splines is ample (ie has enough degrees of freedom), and we avoid the appearance of singularities at the vertices.

This chapter includes two methods of construction of basis, both of them uses the piecing strategy (see introduction of Section 3). The first one describe the G 1 -constraints along the edges using the bspline coefficients of the G 1 -functions, constructs a bases for two patches topologies, and peace them to form a global basis.

The second method is different in two main things, one is that the splines along the edges are considered as solution for the syzygy space. Another point is that the basis construction algorithm describes systems to solve, who's variables are the values and derivatives of the G 1 -functions, and not the bspline coefficients.

Chapter 4

Shape modelling 1 Shape Smoothing 1.1 Introduction

Subdivision schemes such as Catmull-Clark scheme are powerfull tools to produce smooth surfaces that can be easily controlled from a coarse mesh. They became very popular in graphics and animation for their capacities to control easily shapes. However from a geometric modelling point of view, they have some drawbacks: At extraordinary vertices, they are composed of infinitely many rings of piecewise polynomial surfaces and have no explicit analytic representation. Though the limit subdivision surface is smooth, it may not be curvature continuous around an extraordinary vertex [START_REF] Prautzsch | Smoothness of subdivision surfaces at extraordinary points[END_REF].

In this chapter, we describe a new explicit scheme to compute a smooth piecewise polynomial surface from a quadrangular mesh. The constructed surface is geometrically smooth everywhere and C 2 except in the neighbourhood of extraordinary vertices. The polynomial patches associated to the faces of the quadrangular mesh are bi-quintic Bézier parameterisations. The Catmull-Clark subdivision scheme is used to compute the control points of b-spline patches associated to the faces of the quadrangular mesh. The nearest geometrically smooth bi-quintic spline surface is then explicitly computed by projection on the space of G 1 splines after a degree elevation of the patches. Therefore, it is a G 1 approximation of the Catmull-Clark subdivision surface. These constructions are described explicitly by masks and do not required the solution of linear systems or to solve any optimisation problem.

We also present a new scheme to compute a basis of the space of geometrically smooth functions on the quadrangular mesh. G 0 basis elements are first constructed. The G 1 basis is obtained by a smoothing step. We describe explicit masks to compute these elements from the G 0 elements.

The chapter is organized as follows. The next section presents related prior works. Section 2 provides the notation and definitions of geometric continuity. In Section 3, we present the masks for the construction of G 1 surfaces made of biquintic faces and the scheme for the construction of basis functions of the space of G 1 bi-quintic b-spline surfaces. In Section 4, experimentation results are presented.

Prior works

Many methods have been proposed to construct geometrically smooth surfaces from quadrangular meshes. This started with the initial work of Catmull-Clark on subdivision surfaces [START_REF] Catmull | Recursivly generated B-spline surfaceson arbitrary topological mesh[END_REF]. The subdivision surface cannot be represented by a finite collection of b-spline patches.

Several works focused on the construction G 1 surfaces, with b-spline faces, using different types of b-spline patches on the faces of the topological surface [START_REF] Fan | On smooth bicubic surfaces from quad meshes[END_REF], [START_REF] Hahmann | Bicubic G1 interpolation of irregular quad meshes using a 4-split[END_REF], [START_REF] Peters | On the complexity of smooth spline surfaces from quad meshes[END_REF], [START_REF] Vittoria Beccari | RAGS: Rational geometric splines for surfaces of arbitrary topology[END_REF], [START_REF] Bonneau | Flexible G 1 interpolation of quad meshes[END_REF], [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF], [START_REF] Wang | Construction of Manifolds via Compatible Sparse Representations[END_REF], [START_REF] Bercovier | Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes[END_REF], [START_REF] Blidia | G 1 -smooth splines on quad meshes with 4-split macro-patch elements[END_REF]. These works addressed the solution of the G 1 constraints, but focussed less on their use for the construction of high quality G 1 surfaces from quadrangular control meshes.

Constructions of G 1 surfaces based on quadrangular mesh subdivision schemes have been investigated for instance in [START_REF] Loop | Smooth spline surfaces over irregular meshes[END_REF] using 4 triangular cubic patches on each face, or inserting nodes in b-splines patches in [START_REF] Peters | Patching catmull-clark meshes[END_REF]. In [START_REF] Loop | Approximating Catmull-Clark subdivision surfaces with bicubic patches[END_REF] an approximately G 1 surface construction based on Catmull-Clark subdivision scheme is presented.

Some recent works propose methods to compute high quality geometrically smooth surfaces over quadrangular meshes. The construction of G2 surfaces is investigated by solving a constraint minimization problem, using bi-septic patches in [START_REF] Loop | G 2 Tensor Product Splines over Extraordinary Vertices[END_REF] or using bi-quintic patches in [START_REF] Karčiauskas | Biquintic G 2 surfaces via functionals[END_REF]. In [START_REF] Karčiauskas | Improved shape for refinable surfaces with singularly parameterized irregularities[END_REF], [START_REF] Karčiauskas | Refinable bi-quartics for design and analysis[END_REF], the G 1 surface construction is guided by bi-quintic or rings of bi-quartic b-spline surfaces that minimize some energy. Thus, these constructions involve complex and non-explicit schemes for producing the G 1 surfaces. In our smoothing method, instead of computing smooth guide surfaces, we use the Approximate Catmull-Clark surface as a guide and project it explicitly on the space of G 1 spline surfaces. This direct and simpler approach provides surfaces of good quality as we will see in the experimentation section.

The construction of basis functions of the space of G 1 splines on a quadrangular mesh have been investigated for instance in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF], [START_REF] Blidia | G 1 -smooth splines on quad meshes with 4-split macro-patch elements[END_REF], [START_REF] Bercovier | Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes[END_REF], [START_REF] Kapl | Isogeometric analysis with geometrically continuous functions on planar multipatch geometries[END_REF], [START_REF] Collin | Analysis-suitable G 1 multi-patch parametrizations for C 1 isogeometric spaces[END_REF], [START_REF] Chan | Isogeometric analysis with strong multipatch C 1 -coupling[END_REF]. These methods involved the solution of linear systems depending on the topology of the mesh or the way patches are glued along edges. They require some pre-computation and some case analysis. Other alternative basis constructions involving singular b-spline functions are studied and exploited, for instance, in [START_REF] Toshniwal | Polynomial splines of nonuniform degree on triangulations: Combinatorial bounds on the dimension[END_REF] for design and analysis on quadrangular planar meshes that satisfy some topological conditions. None of these approaches provide an explicit and systematic scheme to compute regular basis functions.

Definitions

Topological surface

We denote by M the topological surface which supports the spline functions. In this paper, M will be a quadrangular mesh given by • a collection M 0 of points in R 3 ,

• a collection M 2 of quadrangular faces,

• a collection M 1 of edges which are either shared by two faces or on the boundary.

For each quadrangular face σ ∈ M 2 , we have a parameter domain D σ = [0, 1] 2 and parameters u σ , v σ . The number of elements of M

i (i = 0, 1, 2) is denoted M i . The valence v(γ) of a vertex γ ∈ M 0 is the number of faces σ ∈ M 2 s.t. γ ∈ σ. Let c(γ) = cos( 2 π v(γ) ). A vertex is called singular if it is an interior vertex with valence v = 4.

Surface representation

A spline function f on M will be represented by a collection f = ( f σ ) σ∈M 2 of b-spline functions, one for each face: The function f σ associated to the face σ is represented by

f σ := ∑ 1 i,j m b σ i,j ( f )N i (u σ )N j (v σ ),
where b σ i,j ( f ) ∈ R and N 1 , . . . , N m are the b-spline basis functions of the space U d,t of splines of degree d and knots t. Hereafter, we will represent a spline function

f by its coefficient vector [ f ] = (b σ i,j ( f )) ∈ R m 2 M 2 .
In this paper, we consider d = 5 and the knots t = {0 6 , 1 6 } so that m = 6. The basis functions N 1 (u), . . . , N 6 (u) are the Bernstein polynomials of degree 5 on the interval [0, 1]. Each function f σ is a bi-quintic polynomial in the variables (u σ , v σ ).

Geometric continuity

For an edge τ shared by two polygons σ 0 , σ 1 ∈ M 2 , we consider transition maps φ σ 0 ,σ 1 between the two faces which are, in suitable frames, of the form:

(u 1 , v 1 ) → (u 0 , v 0 ) = v 1 a 1 (u 1 ) a 0 (u 1 ) + v 2 1 ρ 1 (u 1 , v 1 ) u 1 + v 1 a 2 (u 1 ) a 0 (u 1 ) + v 2 1 ρ 2 (u 1 , v 1 )
where a 0 (u 1 ), a 1 (u 1 ), a 2 (u 1 ), ρ 1 (u 1 , v 1 ), ρ 2 (u 1 , v 1 ) are C 1 functions. The shared edge is defined by v 1 = 0 on σ 1 and by u 0 = 0 on σ 0 . The functions [a 0 (u 1 ), a 1 (u 1 ), a 2 (u 1 )] are called the gluing data at γ along τ on σ 1 .

The geometrically smooth constraint corresponds to the following relations:

∀u 1 ∈ [0, 1], f 1 (u 1 , 0) = f 0 (0, u 1 ) a 0 (u 1 ) ∂ f 1 ∂v 1 (u 1 , 0) = a 1 (u 1 ) ∂ f 0 ∂u 0 (0, u 1 ) + a 2 (u 1 ) ∂ f 0 ∂v 0 (0, u 1 )
where f 1 = f σ 1 , f 0 = f σ 0 are the restrictions of f on the faces σ 0 , σ 1 .

In the following, we will suppose that each singular vertex is isolated from the other singular vertices by at least one layer of ordinary vertices, and we will use the following gluing data along an edge τ = (γ 0 , γ 1 ): a 0 (u) = 1, a 1 (u) = -1 and

• if v(γ 0 ) = 4 and v(γ 1 ) = 4, a 2 (u) = c(γ 0 )(1 -u) 2 , • if v(γ 0 ) = 4 and v(γ 1 ) = 4, a 2 (u) = 0.
They satisfy the compatibility conditions around a vertex, required to define ample spline spaces on M (see e.g. [START_REF] Peters | On the complexity of smooth spline surfaces from quad meshes[END_REF], [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF], [START_REF] Blidia | G 1 -smooth splines on quad meshes with 4-split macro-patch elements[END_REF]). The relations between the control points of two faces sharing an edge are given in • Valence 1 boundary vertex: The remaining coefficients h k i,j are obtained by symmetry. The relative simple form of these relations is due to the use of the formula e k 1,0 =

h k 0,0 = e k 0,0 h k 1,0 = 3/5 e k 1,0 + 2/5 e k 0,0 h k 1,1 = 4 
e k 1,1 +e k-1 1,1 2 
. These relations correspond to the degree elevation to compute the control coefficients h k i,j of the bi-5 patches from the bi-3 patches associated to the ACC construction.

Generation of smooth surfaces

The second step of the construction is to smooth the surface, that is to satisfy the G 1 constraints. We use the coefficients h k i,j and compute new control points b k i,j of the b-spline patch surface which has geometrically smooth junctions between the neighbouring patches. The coefficients b k i,j are computed by orthogonal projection of the coefficients h k i,j on the solution space of the G 1 equations. The equations (4.1), (4.6) and (4.7) are already satisfied by the output of the ACC algorithm, so we don't change the corresponding coefficients.

• For each edge τ with non singular vertex, we compute:

π k 2,1 = -π k+1 2,1 + 2π k 2,0 π k 3,1 = -π k+1 3,1 + 2π k 3,0
As these operations on the columns of G are the one induced by the relations (4.1)-(4.7), we immediately see that the rows of G represent functions that satisfy these G 1 -conditions.

Algorithm

We summarize the construction of G 1 Catmull-Clark Spline surface in Algorithm 1 (this algorithm will be called GCCS). The main difference with the basis smoothing algorithm is the computation of the second order derivatives. The GCCS method projects the ACC positions onto the G 1 constraints, while the basis smoothing algorithm computes directly some specific coefficients by means of the other coefficients, using the equation in Fig. 4.14.

Experimentation

We present now the results of the GCCS algorithm 1 on some quadrangular meshes and analyze graphically the computed surfaces. The meshes used in Fig. 4.16, 4.17, 4.18 are taken from the web page ( 1 ). The mesh used in Fig. 4.19, 4.20 have been produced using the scaffolding algorithm of [START_REF] Fuentes Suárez | Scaffolding skeletons using spherical Voronoi diagrams: Feasibility, regularity and symmetry[END_REF]. The model in Fig. 4.20 is coming from [START_REF] Razafindrazaka | The 6-ring[END_REF]. In Fig. 4.15, 4.16, the isophotes reveal the good quality of the surface constructed by the GCCS algorithm. In Fig. 4.17, we compare the output of GCCS method with the output of the ACC algorithm and the output of the basis smoothing algorithm described in the section 3. The Gauss curvature of the basis smoothing surface Fig. 4.17 (e) has more fluctuation than the Gauss curvature of the GCCS surface Fig. 4.17 (c). We notice that the same gluing data are used for the GCCS and the basis smoothing algorithm. The quality advantage that GCCS exhibits is due to the use of the ACC surface as guiding surface. More precisely, the b-spline coefficients obtained in the GCCS algorithm by projecting the output of the ACC method onto the G 1 constraints are closer to the ACC surface than the coefficients obtained by the basis smoothing algorithm.

Conclusion

We have presented a new mesh smoothing method using the ACC surface as a guiding surface, which projects it onto the space of G 1 surfaces. The use of this guide plays a major role in constructing high quality surfaces. The explicit formulas that we provide make the algorithm straightforward to implement. We present also an explicit scheme to construct basis functions of the G 1 spline space. 

Application

We present in this chapter two applications of the space of geometrically continuous functions: In the first part we will test the G 1 basis generated earlier in this chapter on 3d point cloud approximation. Different bases are going to be compared in terms of quality using an error that we will describe later.

In the second part we use the G 1 basis to solve the diffusion equation with boundary conditions following on isogeometric approach. The tests are made using a biquintic basis.

Application to point cloud fitting

surface reconstruction is a major step in the digitalisation of the 3d physical objects. It consists of transforming a scanned 3d point cloud to a 3d model such as mesh or a multi-patches spline surface. A large variety of algorithms exists for that purpose, depending on the properties of the point cloud and the wanted output, the modeller have to choose which type of algorithm will give better results. What we mean by properties of the point cloud can be the type and level of imperfections driven by the 3d scan such as: noise, non uniform distribution of the sampling, missing data, density of the sampling. It can be also properties of the physical shape it self, such as global/local smoothness and piecewise smoothness constraint. Moreover, different 3d scan technologies provide additional informations besides the point clouds, such as normals or confidence of a point (that can be used to reduce noise). This additional inputs are used in some reconstruction algorithms. The paper [START_REF] Berger | State of the Art in Surface Reconstruction from Point Clouds[END_REF] provides a detailed categorisation of the techniques in surface reconstruction field, according to the point cloud properties of the scan mentioned above as well as the wanted reconstruction output.

We distinguish two main families of surface reconstruction algorithms. The first ones are the Delaunay based methods [START_REF] Amenta | A new voronoibased surface reconstruction algorithm[END_REF][START_REF] Boissonnat | Smooth surface reconstruction via natural neighbour interpolation of distance functions[END_REF], where the output mesh is a subcomplex of the Delaunay triangulation. These algorithms are suitable for a modellers who wish to produce for a given cloud of points an interpolating mesh. However, these methods have very high requirement and cannot support point clouds with too many imperfections, that makes it impossible to be used for real applications. The second family of algorithms represent the surface as the zero level set of some implicit equation [START_REF] Curless | A volumetric method for building complex models from range images[END_REF][START_REF] Mercat | Discrete Riemann surfaces and the Ising model[END_REF], then using for instance a marching cube method for polygonization [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF].

We will not give more details about this methods since it is not the subject of the thesis. In the following section we will assume that we have quad mesh that approximate the point cloud surface, issued from a polygonization pre-processing step, and see how we can use this mesh to produce a smooth approximation.

Gspline basis representation

Let P = {p 1 , . . . , p n } be a cloud of points in R 3 and N = {v 1 , . . . , v n } their corresponding normals, representing a smooth surface that has the same topology as the topological complex M. The goal of this section is to produce a smooth surface that is as close as possible to the cloud of points using the G 1 -basis constructed from M.

Denote by (g i ) i∈I , I = {1, .., r}, r ∈ N the finite basis of the space S d,t (M, g) of G 1 splines over M of degree d and with knots sequence t.

The preprocessing step consists of polygonizing the cloud of points, by producing a quad mesh that approximates the cloud of points. In this chapter we will not speak about this step since it is not the objective of the work. The functions g i are used to parametrise 3d-surfaces, by taking linear combinations:

s = ∑ i∈I si g i (5.1) 
with coefficients si ∈ R 3 for i ∈ I.

Over each face σ of the mesh M, the functions g i are represented as linear combination of the b-spline basis functions with coefficients that we denote c σ k,l (s). Hereafter, we will also use g i to denote the vector of all coefficients c σ k,l (g i ) for all faces σ ∈ M 2 and Ḡ = [g i ] i∈I the matrix, which columns are the vectors g i . The N × 3 matrix C = [c σ k,l (s)] which rows are the b-spline coefficients c σ k,l (s) of the surface h will be written by means of the l × 3 matrix s which rows are the points si :

C = Ḡ    s1 . . . sl    = Ḡ s. ( 5.2) 
For simplicity, we will use the following notation:

s =   s[:, 1] s[:, 2] s[:, 3]   , C =   C[:, 1] C[:, 2] C[:, 3]   , G = diag( Ḡ, Ḡ, Ḡ),
where, for a matrix M, M[:, i] indicates the i th column of M. With this notation, we have C = G s.

In order to obtain the most accurate representation of P by G 1 splines, we compute s by minimizing a weighted combination of square distance and fairing energies. We recall briefly these standard energy terms (see e.g. [START_REF] Greiner | Variational design and fairing of spline surfaces[END_REF][START_REF] Wang | Fitting B-spline Curves to Point Clouds by Curvature-based Squared Distance Minimization[END_REF]) and give their matrix formulation in terms of the coefficients in the G 1 basis. The final formula that we minimize is of the form: T tot (s) = w 1 E P (s) + w 2 E T (s) + w 3 F1 (G s) + w 4 F2 (G s) where w i are weights, which are chosen manually depending on the type of the point cloud; the more the point cloud is noisy, the more the fairing energy weights must be large. The total energy T tot (s) is a quadratic function of s, and its minimum(s) can be obtained by solving ∇T tot (s) = 0, leading to the following linear system (w 1 D T D + w 2 DT D + w 3 G T A 1 G + w 4 G T A 2 G) sw 1 PT Dw 2 P T D = 0

Illustrations

As we said in previous sections the basis (g i ) i∈I is precomputed. They are represented by the sparse vectors of G. This yields sparse matrices D, D and vectors P, P. The matrices A i for i = 1, 2 are diagonal by blocks of size at most 16, this can be proved by a combinatorial argument. This implies in particular that the total system is sparse. We present in Figure 5.1 some results of fitting surfaces, the computations were made with the Julia programming language, the visualization is done with the software Axl 1 , and MeshLab.

The cloud of points in Fig. 5.1 is taken from a smooth surface, made by building a scaffolding of a skeleton from [START_REF] Fuentes Suárez | Scaffolding skeletons using spherical voronoi diagrams[END_REF], then by applying a Catmull-Clark subdivision algorithm for smoothing.

In Fig. 1.2 we test our basis on a lung medical scan. The input is a point cloud of 300000 point. We extract a sampling using a Poisson method [START_REF] Corsini | Efficient and flexible sampling with blue noise properties of triangular meshes[END_REF] and an approximating mesh using the ball pivoting algorithm [START_REF] Fausto | The Ball-pivoting algorithm for surface reconstruction[END_REF]. The basis that we use is described in Section 3 made with bi-5 Bézier patches, and the gluing data are quadratic. We notice that the approximation is smooth and has captured most of the shape, except the highly curved bottom regions where the error can be seen to be high .

Application in IsoGeometrics analysis

In this section 2 , the proposed geometrically smooth spline bases will be applied in Isogeometric analysis (IgA) with complex geometry. IgA was created to recover some of the accuracy problems encountered in other finite element methods. We start this section by introducing finite element method and Isogeometric analysis. Then we give an example by providing a solution of the diffusion equation using IgA.

Finite element analysis

The finite element method (FEM) is a numerical method that is used to find the approximate solution of linear differential equation over a given domain Ω, that 1 axl.inria.fr 2 This section is a part of a forthcoming paper [START_REF] Ahmed | Geometrically smooth spline bases for data fitting and simulation[END_REF] • First we form a subdivision ∆ of the domain using a mesh. See [START_REF] Alliez | Recent advances in remeshing of surfaces[END_REF] for a survey about this subject.

• The second step is to describe the space that will be used for the approximation. It is in general a space of piecewise polynomial functions S(∆) defined on the subdivision ∆. We also choose a locally supported basis B = {B i } i=1..n for it. The chapter 2 was an overview of the analyse of the dimension of such spaces. See [START_REF] John | A nodal basis for c 1 piecewise polynomials of degree n 5[END_REF] for an example of an algorithm that produces this kind of basis.

• Next we describe the weak formulation of the differential equation. We do that by multiplying the equation by "test functions" v, and integrate both sides of the equality: In general we choose the test space (ie. the space where v belongs) to be the same as the trial space.

• Then we apply the divergence theorem to reduce the maximal differential order used in the equation. The result of this operation is an equation (the weak formulation of (5.3)) with lower order differentials, it means that the space of functions S r (∆) is used with an r as low as possible. The formulation of the problem at this level is: a(u, v) = L(v) (5.5) besides of the boundary constraints P(u), here a is a bilinear form, and L is a linear form on S(∆).

• The final step is to find a function u = ∑ i=1...n c i B i that verifies the equation(5.5) for any v ∈ S(∆) as well as the boundary conditions. We do that by solving the system given by: ∑ i=1..n c i a(B i , B j ) = L(B j ) for j ∈ {1, . . . n}. The solution of this system is an approximation of the exact solution of (5.3).

Isogeometric analysis

The main drawback of the FEM is that it is not always possible to use the output of CAD (Computer Aided Design) system, instead of that it takes a polygonal approximation of the geometry. This inherent accuracy problems [START_REF] Thomas | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF].

In Isogeometric analysis we use a CAD piecewise polynomial geometry to represent exactly the domains. This will avoid the use of automatic remeshing algorithms that can be costly. The same space of functions used for representing the geometry will be used as a test/trial space. It is shown in [START_REF] Groisser | Matched G k -constructions always yield Ckcontinuous isogeometric elements[END_REF] that the composition of a basis function from the test/trial space with the inverse of the parametrisation that are all G k functions with respect to the same topological surface, will produce a C k function on Ω.

In the following section we will present an example of solution of the diffusion equation using a G 1 -space and IgA.

Chapter 6 Conclusion

The subject of this thesis was to study Geometrically Continuous splines. The main questions addressed in this manuscript are related to: basis constructions, dimension computation and shape generation. Similar to ordinary splines, Gspline functions can be seen as splines over a manifold-like topology that we called topological surface. In practice, the restrictions of our Gsplines to the patches of the topological surfaces are tensor splines or Bézier patches.

Gluing data

The choice of gluing data is crucial to guaranty that the space of G 1 -splines that we produce have good smoothness properties around the vertices. The question of compatibility around the vertices is addressed in the Section 2 of Chapter 3. We have explained that a vertex from a topological surface is compatible if the product of the transition maps jacobians around that vertex is equal to the identity. This result corresponds exactly to the G 1 case of Theorem 7.1 in [START_REF] Jörg | Geometric continuous patch complexes[END_REF]. Any G 1spline function that do not respect this condition will have a vanishing tangent space at that vertex.

Basis construction

A standard method of basis construction performs that task by a piecing process. This requires to know a basis of the space of Gsplines over a simple topology composed of two patches, then we choose linear combinations of that basis that can be pieced together according to the wanted topology. We keep piecing the parts of the topology until we form one base element of the space of Gsplines. By applying this piecing process on different choices of linear combinations, we end up with a base of a G 1 -splines space that is suitable for Fitting and IgA.

We analyse the space of G 1 -splines over a two patches topology in two different ways. The first way, by considering the G 1 -continuity relation as syzygy equation as in [START_REF] Mourrain | Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology[END_REF]. In that context, the existing literature offers the possibility to analyse these spaces with polynomial patches. We provide a generalisation of this study by adding new homological techniques that allows to analyse the basis and the dimension of that space when the spline patches have one inserted knot on each direction of our quads. A generalisation of the method to multiple inserted knots can be subject of future works.

A second way of analysing the space of G 1 -splines over two patches is by using the tensor product spline representation of the patches. Here we will have a system of equations between the bspline coefficients of the two patches. We define the notion of separability of the space, that characterises the spaces of G 1splines that admit a base with local support. If the chosen space doesn't admit a locally supported base, then we produce a base that span a smaller space with locally supported base elements.

Many algorithms are suitable only for a particular polynomial degree and particular gluing data type (for instance [START_REF] Kapl | An isogeometric C1 subspace on unstructured multi-patch planar domains[END_REF] construct basis for linear gluing data). We describe in this manuscript a general new piecing scheme for G 1 -splines over quad meshes, that we use to produce base for many gluing data functions types.

Dimension computation

The commutative algebra tools that Billera have described in [START_REF] Billera | Homology of smooth splines: Generic triangulations and a conjecture of strang[END_REF] have played a major role in understanding the impact of the geometry of a complex on the dimension of the spline space. Chapter 2 was an outline of the most important results in that direction. One of the goals of this manuscript was to show that we can use similar tools to have more precise results on the dimension of the space of Gsplines. The key ingredient of all this construction was to write an algebraic characterisation of the geometric continuity (see proposition 8.2). We succeed for instance to express the space of Gsplines as an homology group of a chain complex. Thus we can write the dimension of the space of splines by means of the dimension of other spaces.

The major obstacle of these constructions is the fact that we cannot define the space of Gsplines as graded module (at least not for the usual product by polynomials). All we can say about that space is that it is a graded vector space, so we cannot reproduce a Gspline version of the results of the Chapter 2.

Shape smoothing

We present in chapter 4 of the manuscript, an algorithm to generate a smooth multi-patch surface that approximate a given 3d-mesh. For this problem, the notion of guided surfaces seems to give good results ( see for instance [START_REF] Karčiauskas | Guided spline surfaces[END_REF]). We have chosen to use approximate Catmull-Clark surface [START_REF] Loop | Approximating Catmull-Clark subdivision surfaces with bicubic patches[END_REF] as a guide for our smoothing. More precisely, after producing the approximate Catmull-Clark surface, we compute the closest G 1 -surface to it by projecting onto the space of G 1 -surfaces.

The vertex enclosure problem has been discussed in this chapter. We provide a solution of that problem by using explicit formulas. The two cases of odd and even valence are distinguished since the co-rank of the incidence matrix in the two cases are different.

We have explained that the same algorithm, when applied to a base of the space of one dimensional meshes will produce a set of G 1 -spline functions that are 110 3. DIMENSION COMPUTATION suitable for approximation. The work of [START_REF] Karčiauskas | Guided spline surfaces[END_REF] has used a similar basis to compute the solution of an IgA problem. We test this basis for fitting problems.

Fitting and IsoGeometric analysis

The base that we have produced have been tested for Fitting and isogeometric analysis. The algorithm that we have used for fitting uses a pre-processing step called ball pivoting method, that produces a coarse mesh approximating our point cloud. After that a G 1 -spline space is produced using the topology of the coarse mesh. Then a regression is applied. We have tested this algorithm for many types of gluing data including Bézier bi-5 patches and bi-3 splines patches with knots. We have tested as well the basis produced in chapter 4 for medical data fitting in lung model reconstruction.

For the IgA tests, we have computed an approximation of the solution of a diffusion problem with boundary conditions using a Bi-5 Bézier patches base. We found out that the proposed IGA framework with geometrically smooth splines can achieve a similar accuracy with the C 0 multi-patch method, and with less base elements.

Future Works

In the continuation of this work, we see two main directions to be explored:

• Advanced Homological technics for Geometric continuity: After proposing the algebraic characterisation of the G k -junctions, we have explained how to generalize some exact sequences. The next step is to compute bounds on the dimension of the co-kernel mentioned in the sequence (3.50).

• Extension to three-variate G 1 -splines: As the reader has seen in this manuscript, to solve the vertex enclosure system at each vertex v, we consider the dual graph of the mesh formed by the patches containing v and write its incidence matrix ∂. The vertex enclosure system is written by means of the matrix ∂ and the incidence matrix has a corank that depends on the parity of the vertex valence, and more generally the corank of the incidence matrix for a random graph is equal to: nc 0 where n is the number of vertices and c 0 is the number of bipartite (bicolorabel) components of the graph.

In a planar mesh vertex enclosure problem all the incidence matrices corresponds to a cyclique graph, and these matrices have a corank equal at most to 1. A possible extension is to provide a solution of the 3d G 1 continuity problem with a scheme of solution similar to the one we have described in Chapter 4. Around an extraordinary vertex in a volumetric 3d mesh, the vertex enclosure problem takes a similar form since the incidence matrix is used to express the local system. However the corank may take different values depending on the local dual graph form, that is not a fortiori cyclic. The rest of the solution scheme is not yet clear for us.

FITTING AND ISOGEOMETRIC ANALYSIS
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 21 The Krull dimension of a ring R is the length n of the longest possible chain of primes in R: P 0 P 1 . . . P n If M is an R-module then the Krull dimension of M is by definition the Krull dimension of the ring: R/Ann(M) where Ann(M) = {a ∈ R |am = 0 f or all m ∈ M} is the annihilator of M.
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 7 UPPER AND LOWER BOUND FOR THE DIMENSION OF S R D (∆)

  and b 1 , . . . , b m are the b-spline basis functions of the space U d,t of splines of degree d and knots t in one variable u. We denote by (b σ i,j ) 0 i,j m-1 the b-spline basis functions on the face σ. With the previous notation, b σ

  Let a, b, c be polynomials in R = R[u], such that gcd(a, c) = gcd(b, c) = 1, then Z = Syz(a, b, c) is the R-module defined by Syz(a, b, c) = {(A, B, C) ∈ R[u] 3 : Aa + Bb + Cc = 0}. The degree of an element in Syz(a, b, c) is defined as deg(A, B, C) = max{deg(A), deg(B), deg(C)}, and we are interested in studying the subspace Z k ⊂ Syz(a, b, c) of elements of degree less than or equal to k -1. Let us denote n = max{deg(a), deg(b), deg(c)}, and e = 0 , if min n + 1 -deg(a), n -deg(b), n -deg(c) = 0 and 1 , otherwise.

  and define a syzygy of ā, b, c of degree n + k. Let us also notice that the polynomials ā = u n+1 0 a(u 1 /u 0 ), b = u n 0 b(u 1 /u 0 ), and c = u n 0 c(u 1 /u 0 ) are precisely the homogenization of a, b, c in degree d a , d b , d c , respectively. As gcd(a, b, c) = 1, we have gcd( ā, b, c) = u 0 if e = 1, and gcd( ā, b, c) = 1 otherwise.

1 and d 2

 2 of the syzygies satisfy d 1 + d 2 = d a + d b + d ce. The matrix Λ representing λ is a 3 × 2 matrix column corresponding to the generator of degree d 1 and the second of degree d 2 . These two syzygies correspond to vectors of polynomial coefficients of degree µ = d 1 -min(d a , d b , d c ) and ν = d 2 -min(d a , d b , d c ). By Definition, min(d a , d b , d c ) = n, and also d a + d b + d c = 3n + 1. Let us assume that d 1 d 2 , then µ is the smallest degree of the coefficient vector of a syzygy of ( ā, b, c), and ν
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 43 The sequence (3.23) is exact for k n 1 + r where n 1 = max{deg(a 1 ), deg(b 1 ), deg(c 1 )}.

Proof. Since b 1 ,

 1 c 1 are coprime, the map ψ :
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 413 For an interior edge τ
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 35 Figure 3.5: Topological surface M γ composed by F(γ) = 5 quadrilateral faces glued around the vertex γ.
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 7 DIMENSION AND BASIS OF SPLINES ON M CHAPTER 3. BASIS COMPUTATION -The three basis functions associated to the cross derivatives at γ are
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  https : //www.cise.u f l.edu/research/Sur f Lab/shape_gallery.shtml 90 4. EXPERIMENTATION Algorithm 1: G 1 Catmull-Clark Spline construction Input: Quadrilateral Mesh M Output: Bi-5 G 1 surface foreach v ∈ M 0 do Compute the e 0,0 using the mask; end foreach E ∈ HE(M) do Compute e 1,1 using the mask; if E is a boundary edge then Compute e 1,0 and e 2,0 using the masks; end Compute h[0..2, 0..2] the degree elevation of e using the formulas in section 3.1; end foreach v ∈ M 0 do foreach k ∈ [3..v] do Compute b k 1,0 around the vertex v, using the formula in section 3.2; end if The valence is odd then foreach k ∈ [3..v] do Compute the coefficients b k 1,1 around the vertex using the formulas of Fig. 4.8 else foreach k ∈ [3..v] do Compute b k 2,0 using the formula in Fig 4.9 ; foreach k ∈ [3..v] do Compute b k 1,1 around the vertex using the formula in Fig. 4.10; foreach k ∈ [3..v] do Compute b k 3,0 using the formula in Fig 4
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Figure 5 . 3 :

 53 Figure 5.3: Approximation of a lung medical scan. The top left and top middle pictures represent the approximation from two different sides. The bottom left is the point cloud medical scan of the lung (we use MeshLab for visualisation), the centre bottom picture represents the sampling of the scan. The right bottom picture is an 840 face mesh approximating the point cloud, produced by a ball pivoting algorithm [24].

Find a function

  u, defined over Ω, verifyingΩ vA(u)vdx = Ω f dx(5.4) 

  .29) From the relations (3.19) and (3.20), we deduce that W k

  A • to denote the interior of a set A 72 8. GEOMETRIC CONTINUITY USING REPARAMETRISATION the homogenization of φ i is φi (x, y, z) = z s φ( x z ,

y z
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The polynomials ( n i )x i (1x) n-i are called Bézier-Bernstein polynomials. Indeed, these polynomials have been used the first time to prove the Weierstass theorem by Sergei Natanovich Bernstein[START_REF] Sn Berstein | Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities[END_REF]. Then Forrest showed that the Bézier curves, who where initially defined as the intersection of two elliptical cylinders, can be expressed using Bernstein polynomials[START_REF] Forrest | Interactive interpolation and approximation by Bézier polynomials[END_REF].

An extraordinary vertex is an internal vertex with a number of neighbouring patches different from 4, or a boundary vertex with a number of neighbouring patches different from 2

Equality along any junction edge of the partial derivative of the two neighbouring patches 1. PRESENTATION

We call the space of splines with standard gluing the "parametric splines space"
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APPLICATION IN ISOGEOMETRICS ANALYSIS

Proposition 8.2. We keep the notations of 8.1, and suppose that φ and ψ are polynomials.

Two C k maps f 1 : σ 1 → R, f 2 : σ 2 → R admits a G k -junction along the two edges e 1 , e 2 given by the triple (φ, ψ, O) if and only if the polynomial f 1 • φf 2 • ψ is divisible by the k + 1 th power of the junction line l of (φ, ψ, O), ie. f 1 • φf 2 • ψ ≡ 0 mod l k+1 .

Proof. direct consequence of the proposition 1.2 in [START_REF] Billera | A dimension series for multivariate splines[END_REF] In the following we will take the notation φ * ( f ) := f • φ for the pull back of a map f using another map φ. Definition 8.3. We keep the same notation as in Definition 8. 1. We say that two reparametrisations (φ 1 , ψ 1 , O 1 ) (φ 2 , ψ 2 , O 2 ) are equivalent if the following two sets are the same:

along the two edges e 1 , e 2 given by the triple (φ 1 , ψ 1 , O 1 ).

along the two edges e 1 , e 2 given by the triple (φ 2 , ψ 2 , O 2 ).

Definition 8.4 (Topological Surface). Let I = (σ i ) i=1,...,m be a collection of square domains and T = ((φ j , ψ j , O)) j=1...r be a set of G k connections between edges of the domains σ i . We assume that an edge can only be connected to at most one other edge from another domain. We consider the equivalence relation over the disjoint union of all the domains M = ∐ i σ i that is defined by: x ∼ y if and only if there exists (φ, ψ, O) ∈ T and z ∈ O such that φ(z) = x and ψ(z) = y. The quotient M = M / ∼ is called the topological surface of the couple (I, T ).

Definition 8.5 (The space of G k -Splines). We keep the notations of Definition 8.4. We say that a map f : M → R is G k over the topological surfaces M if there exists a set of maps f 1 , . . . , f n , with f i : σ i → R and f |σ i = f i for i ∈ 1 . . . n, such that for each G k connection (φ, ψ, O) ∈ T between σ i , σ j along e i ∈ σ i , e j ∈ σ j the corresponding maps f i , f j admits a G k -junction between σ i , σ j along e i , e j given by (φ, ψ, O). The space of G k -Splines over M is denoted by S k (M).

Let (M, I, T ) be a topological surfaces and γ a vertex from M, the star topology M γ of γ in M is the topological surface formed by all the faces σ ∈ I that are neighbors to γ, and all the connections c ∈ T along edges containing γ. We will denote by I γ and T γ the set of face and connections of M γ respectively.

Suppose that the domains of M γ are σ 0 , . . . , σ m , and that σ i , σ i+1 share the edge e i in M γ ( the index is taken modulo m). Let φ = (φ i ) i=0...m be the sequence of

) form a connection along the edge e i that is equivalent to the one given by M γ , we will say then that φ is a vertex based reparametrisation of M γ .

A topological surface (M, I, C) with I = (σ i ) i=0...m is said to have a planar based reparametrisation if the two following conditions are satisfied (the same notations of Definition 8.1 are used):

GEOMETRIC CONTINUITY USING REPARAMETRISATION

Point-wise distance

Given a (uniform) distribution U = {u 1 , ..., u n } of parameters in M, we define classically the point-wise distance energy as

where the pairing between the parameters u ∈ U and points p u ∈ P is obtained from an initial parameterisation s 0 , by associating to u ∈ U the closest point p u ∈ P to s 0 (u) (we use a kd tree algorithm to compute closest points [START_REF] Louis | Multidimensional Binary Search Trees Used for Associative Searching[END_REF]). Here D = diag(K, K, K) is the block diagonal matrix formed by the matrix K which coefficients are K i,j = g j (u i ), and P = (P 1 , P 2 , P 3 ) where

where p j i is the j th coordinate of the vector

Distance to points with normals

The energy term of the sum of square distances between the planes at the point p i ∈ P normal to v i ∈ N and the point s(u i ) is:

for s ∈ S(M, g), where the matrix D and P are such that the

)) with g(u i ) = (g 1 (u i ), g 2 (u i ), ..., g l (u i )), and P = (v T 1 p 1 , . . . , v T n p n ). Other distance minimizations can be used, such as the so-called Squared Distance Minimization [START_REF] Wang | Fitting B-spline Curves to Point Clouds by Curvature-based Squared Distance Minimization[END_REF], which involves the principal curvatures.

Fairing energy

To reduce oscillations in the computed surface, we use a regularization term (see e.g. [START_REF] Greiner | Variational design and fairing of spline surfaces[END_REF])

In the experimentation, we use the regularization terms F 1 and F 2 . To avoid an explicit computation of the integrals, we further simplify them into the following expressions involving directly the b-spline coefficients:

. As the b-spline coefficients C of h are such that C = G s, these energy terms are of the form s T G T A i G s where A i is the coefficient matrix of Fi in the b-spline basis (for i = 1, 2).

1. APPLICATION TO POINT CLOUD FITTING

Model problem and technique details

Consider the following two-dimensional heat diffusion example as an illustrative model problem:

where ∆ is the Laplacian operator, Ω is the computational domain parameterized by the proposed geometrically smooth spline bases , T(x) is the unknown heat field, and f (x) is the heat source function. The trial and test spaces are defined as:

where T D Expresses the Dirichlet conditions. The variation problem can be stated as: find the solution T h ∈ U h ⊂ U such that:

which can be written as

where

(5.10)

In the isogeometric analysis framework, the solution field T h will be represented in the proposed geometrically smooth spline bases, that is,

where T i are unknown variables to be solved, g i (u) are geometrically smooth spline basis functions defined on each face σ from its b-spline coefficients c σ k,l (g i ), u σ = (ξ σ , η σ ) are the domain parameters associated to the face σ of the parametric domain P, N is the number of basis functions. The test function ψ h is also defined as follows :

ψ h = g i (u). 

where σ(u) = (x(ξ, η), y(ξ, η)) is the parametrisation defined as in Eq. (5.1), J(u) is the Jacobian of the transformation,

) is the transposed of the inverse of the Jacobian matrix.

Examples

In this subsection, a numerical example is presented to demonstrate the effectiveness of the proposed simulation method with geometrically smooth spline bases. We consider a heat diffusion problem with the following exact solution [-30, 30] × [-30, 30], which is parameterized by a quintic G 1 splines. The parametric mesh is shown in Fig. 5.4(a), and the corresponding parameterization with 52 patches is presented in Fig 5.4(b) and (c). The corresponding IGA numerical solution is shown in Fig. 5.4(d) and (e), and the corresponding error colormap is shown in Fig. 5.4(f). We can find that the proposed IGA framework with geometrically smooth splines can achieve a similar accuracy with the C 0 multi-patch method.

It should be mentioned that the IGA solution surface is also G 1 according to the property of geometrically smooth splines. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675789.