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Résumé

Dans les systèmes de CAO, une fonction polynomiale par morceaux se trouve
derrière toute représentation de courbe, de surface ou de champ scalaire. Ainsi,
il est important d’analyser les propriétés des espaces des fonctions polynomiales
par morceaux. Dans cette thèse, nous étudions des outils d’algèbre commuta-
tive qui peuvent être utilisés pour analyser la dimension d’espaces polynomiaux
par morceaux et pour en construire des bases. Nous testons les méthodes que
nous produisons pour modéliser des surfaces de forme libre et pour des calculs
d’analyse numérique.

La principale motivation du concept de continuité géométrique est la con-
struction de surfaces multi-patchs et de champs scalaires. Le principal défi dans
ce type de surfaces est de gérer les zones de la surface autour des sommets avec
un certain nombre de patchs voisins différents de 4 (que nous appelons sommets
extraordinaires). Dans ces régions, les méthodes de collage habituelles provo-
queront l’apparition de singularités. La continuité géométrique est un moyen
spécial de coller deux patchs de surface 3D le long de leur bord commun dans
une surface multi-patchs, et qui produit des surfaces lisses même autour de som-
mets extraordinaires.

La condition de collage de continuité géométrique est exprimée en termes de
relations linéaires entre les paramétrisations des surfaces le long des bords de
jonction. Les coefficients de ces relations sont appelés les données de collage,
et le choix est crucial pour la régularité de la surface résultante. Les données de
collage que nous proposons sont des fonctions splines qui respectent la contrainte
de lissage telle que la contrainte d’enceinte de sommet. Nous expliquons notre
choix en fournissant une formule que les données de collage doivent respecter à
chaque sommet extraordinaire.

Nous exigeons que la spline géométriquement continue (Nous appelons Gsplines
les splines géométriquement continues) que nous produisons pour pouvoir inter-
poler n’importe quelle position donnée des sommets de son maillage correspon-
dant. C’est ce que nous appelons la condition de séparabilité. Nous décrivons
les conditions sur les données de collage qui permettent à l’espace d’être sépara-
ble, et donnons une liste d’exemples de telles données de collage. Le manuscrit
décrit également un «schéma d’assemblage» qui permet de produire une base
pour l’espace des Gsplines.

Nous avons abordé la possibilité d’étendre les méthodes d’homologie exis-
tantes pour analyser la dimension de l’espace spline avec des conditions de con-
tinuité géométrique. Ces extensions fournissent de nombreuses formules qui
expriment les dimensions de nos espaces splines au moyen d’autres groupes
d’homologie.
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RÉSUMÉ

Notre analyse de cet espace conduit à trois applications: La première est un
algorithme qui, étant donné un maillage, produit une surface lisse qui s’en rap-
proche. Cet algorithme est basé sur la projection de la surface approximative
catmull-clark sur l’espace des splines que nous produisons. Les deux autres tests
portent sur la reconstruction de surfaces lisses et l’analyse IsoGeoemtric.
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Abstract

In CAD systems, a piecewise polynomial function is behind any curve, surface or
scalar field representation. Thus, it is important to analyse the properties of the
spaces of piecewise polynomial functions. In this thesis, we study commutative
algebra tools that can be used to analyze the dimension of piecewise polynomial
spaces, and to construct bases for them. We test the methods that we produce
to model free form surfaces and for numerical analysis computations. The main
motivation for the concept of geometric continuity is the construction of multi-
patches surfaces and scalar fields. The main challenge in this kind of surfaces
is to handle areas of the surface around vertices with a number of neighboring
patches different from 4 (that we call Extraordinary vertices). In this regions,
the usual gluing methods will cause the appearance of singularities. Geometric
continuity is a special way to glue two 3d surface patches along their common
edge in a multi-patch surface, and that produces smooth surfaces even around
extraordinary vertices.

The geometric continuity gluing condition is expressed in terms of linear re-
lations between the parametrizations of the surfaces along there junction edges.
The coefficients of those relations are called the gluing data, and there choice is
crucial for the smoothness of the resulting surface. The gluing data that we pro-
pose are spline functions that respect smoothness constraint such as the vertex
enclosure constraint. We explain our choice by providing a formula that the glu-
ing data have to respect at each extraordinary vertex.

We require that the Geometrically continuous spline(We call Gsplines the Ge-
ometrically continuous splines) spaces that we produce to be able to interpolate
any given positions of the vertices of its corresponding mesh. This is what we call
the separability condition. We describe conditions on the gluing data that allows
the space to be separable, and give a list of examples of such a gluing data. The
manuscript also describe a “piecing scheme” that allows to produce basis for the
space of Gsplines.

We have addressed the possibility of extending the existing homology meth-
ods to analyse the dimension of spline space with geometric continuity condi-
tions. These extensions provide many formulas that expresses the dimensions of
our spline spaces by means of other homology groups.

Our analyse of this space leads to three applications: The first one is an algo-
rithm that given a mesh, produces a smooth surface that approximates it. This
algorithm is based on the projection of the Approximate catmull-clark surface on
the space of splines that we produce. The two other tests are on smooth surfaces
reconstruction and IsoGeometric analysis.
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Chapter 1

Introduction

In CAD systems, a piecewise polynomial function is behind any curve, surface,
or scalar field representation. Thus, it is important to analyse the properties of the
spaces of piecewise polynomial functions. In this thesis, we study commutative
algebra tools that can be used to analyse the dimension of piecewise polynomial
spaces, and to construct bases for them. We particularly focus on the concept of
geometric continuity, by adapting to it the homological techniques used before in
parametric continuity.

1 Presentation

1.1 Spline spaces

Standard CAD framework proposes to use piecewise polynomial functions to
model smooth surfaces and scalar fields. We do that by choosing a subdivision
of a polygonal region of the plane and define a basis for the space of piecewise
polynomial functions defined over it, that have a fixed maximal degree, and a
fixed minimal order of regularity. This is what we call the space of bivariate
splines.

One of the most commonly used models are the tensor product splines, that
are defined over a rectangular domain of the plane, subdivided using horizontal
and vertical lines through that rectangle, with the possibility of reducing the reg-
ularity of the space functions along those lines. A special instance of this basis is
the Bézier-Bernstein 1 tensor product functions that form a basis for the space of
polynomials with fixed maximal degree. More generally, tensor product bsplines
form a basis for the space of piecewise polynomials with respect to the chosen
subdivision of the plane using horizontal and vertical lines, with a fixed maximal
degree, and minimal regularity.

Thanks to the good properties of these functions, one can model efficiently
any surface that is diffeomorphic to a region from the plan. In CAD software, a
3d spline surface is controlled using points that corresponds to the coefficients

1The polynomials (n
i )xi(1− x)n−i are called Bézier-Bernstein polynomials. Indeed, these poly-

nomials have been used the first time to prove the Weierstass theorem by Sergei Natanovich
Bernstein [1]. Then Forrest showed that the Bézier curves, who where initially defined as the
intersection of two elliptical cylinders, can be expressed using Bernstein polynomials [2].
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CHAPTER 1. INTRODUCTION

the geometry of the complex. It can even give some dimension formulas that are
valid for any polynomial degree, but only for particular geometries.

1.2 Surfaces with complex topologies

CAD models have often complex topologies and require the use of more than
a single spline patch. Nowdays, CAD software offer the possibility of creating
multi-patch surfaces with useful properties that are suitable for applications in
architecture, computer aided manufacturing, medical animation, game develop-
ment tools, surface reconstruction...

State of the art includes many models generation processes with different in-
put/output. We mention for instance: algorithms that interpolate the vertices
of a given mesh [9, 10], algorithms for interpolating a network of curves (eg.
[11, 12]), algorithms for reproducing a surface given a sampling cloud of points
of it [13, 14].

Subdivision surfaces

A subdivision scheme is an iterative algorithm that can be applied to a coarse
mesh with complex topology and that converges "at infinity" to a C0, C1 or higher
regularity surface, depending on some parameters of the scheme. The resulting
surface is called a subdivision surface.

One goal of studying the subdivision surfaces is to analyse the behaviour of
the surface around extraordinary vertices (EVs)2. We know for instance that for a
regular meshes (ie. meshes without EVs), the Catmull-Clark surface is a standard
b-spline surface continuous in tangent and curvature[15]. If the mesh contains an
EV, then a subdivision surface can be represented locally using an infinite number
of b-spline patches. In the other hand, the degree of smoothness around an EV of
a subdivision surface is related to the values of the eigenvalues of the subdivision
matrix[16].

The algorithm in [17] combines fast contract subdivision algorithms with Geo-
metric continuity around EV. This allows have a finite number of patches around
an EV, and good smoothness properties in the same time.

Multi-patch 3d shapes

Our manuscript studies multi-patches surfaces and scalar fields with smoothness
conditions along the junctions between the spline patches. A major bottleneck in
multi-patch constructions is to find an efficient way to stitch patches around an
EV. For instance gluing 5 Bézier surfaces around a single vertex by using stan-
dard junctions 3 will enforce all the partial derivatives at the vertex to vanish (see
Chapter 3), and thus will produce a cuspidal singularity.

Several constructions are used to solve this problem, for instance T-splines are
NURBS [18] surfaces with an extra row of control points that doesn’t traverse

2An extraordinary vertex is an internal vertex with a number of neighbouring patches different
from 4, or a boundary vertex with a number of neighbouring patches different from 2

3Equality along any junction edge of the partial derivative of the two neighbouring patches
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CHAPTER 1. INTRODUCTION

the entire surface. This allows us to have local refinement around extraordinary
vertices.

In this thesis we focus on the Geometric continuity for multi-patches surfaces
and scalar fields. It is a special way to glue two patches along their common
edge in a multi-patch surface, that produces smooth surfaces around EV. In Gk-
junction (Geometrically continuous junction of order k), the two glued patches
have the same partial derivatives of order at most k along the junction edges
after a smooth change of coordinates. More intuitively, in the G1-junction case,
the partial derivatives of the two glued patches are enforced to be coplanar, and
thus will generate the same tangent space to the surface along the gluing edge.
The standard gluing between patches is different since it requires that the partial
derivatives are exactly the same 4. Using this approach we will create a special
space of splines that we call Gsplines of order Gk that is used to parametrise
smooth surface and define smooth scalar fields on them.

1.3 Splines for Isogeometric analysis

Finite element method (FEM) is a numerical method that is used to find approx-
imate solutions for linear differential equations over physical domains. Spline
spaces are often used to represent these approximate solutions. The more regular
are the spline, the more accurate is the solution.

In the early stage, the physical domains in FEM were approximated using
polygonal geometries. The use of inaccurate domain representations necessarily
induce errors on FEM solutions. Although geometry processing systems are able
to improve the representations by a remeshing process, the computational cost is
relatively high. Isogeometric Analysis (IgA) was created to address this shortage.
The idea of IgA is to use the same spline space to parametrise the physical domain
and to represent the PDE solution, and thus, the error of domain approximation
is eliminated [19].

Gk-spline spaces offers an advantage in that context. Indeed, if the test func-
tions and the surface parametrisations are from the same Gk- splines space, then
the composition of the first with the inverse of the second is a Ck-function [20].

2 Overview

The goal of the thesis is to explore commutative algebra techniques that can be
used to analyse the Gspline space by counting its dimension and describing a
basis for it.

We start this manuscript by a chapter on computing the dimension of spline
spaces. In this chapter, we consider only parametric continuity. Most of the tech-
niques that we mention are based on the homology theory.

In the third Chapter we define the geometric continuity and give an example
of basis construction based on the Syzygies modules µ-basis. Indeed, the con-
struction of a G1-spline basis requires first to determine the degrees of freedom
of simple topologies composed of only two patches. The G1 gluing conditions

4We call the space of splines with standard gluing the "parametric splines space"
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CHAPTER 1. INTRODUCTION

in that case (see equation (3.4)) are given by a syzygy equation of a module. It
has been proposed in [21] to use that fact to determine all the possible degrees
of freedom of the G1-spline space that can be generated. The method described
in [21] is applicable only for G1-splines with polynomial elements. We show in
this manuscript how to generalise this method for bspline patches with knots. In
particular, we define exact sequences that allows to compute the dimension of a
Syzygy module over the ring of piecewise polynomial functions, and show how
to compute a basis of it as a vector space.

Next we describe a general new piecing scheme for generating G1-splines over
quad meshes. Compared with other piecing schemes such as [22, 23] which ex-
tract the gluing data from an existing bilinear parametrisation, our scheme use
predefined gluing data that depend only on the topology of the mesh. We use
this algorithm to produce base for many gluing data fun. They will be tested on
solving fitting problems and IgA in chapter 5.

In Sections 8 and 9 of Chapter 3 we give a new algebraic characterisation of
a Gk-junction. Based on that characterisation we provide several homological
constructions that lead to define the space of Gk-splines as a homology space of
an chain complex as in (3.45), or a term of an exact sequence as in (3.50). This
allows to express the dimension of the space of Gk splines in terms of dimension
of other spaces.

In the Fourth chapter, we give an example of how to construct a multi-patch
3d shape that approximate a given mesh, this is what we call a mesh smoothing
algorithm. We explain in particular the vertex enclosure problem. One way of
looking at this problem is to write the constraints of the Gk-junctions in terms of
the bspline coefficient of the patches. This generates a series of equations for each
junction. When the system is solved for each edge apart, some bspline coefficients
may interfer in the equations of two different junctions, and induce overlaping of
solutions. This happens for instance with the first layer of coefficients around
a vertex in the G1 constrains. This kind of overlapping makes it impossible to
solve the constraints of each junctions independently of the other, and makes it
necessary to consider a new order while resolving the G1-constrains. In the G1-
junction case, we do that by regrouping together all the equations that include
the bspline coefficients of the first layer around a given vertex in the same system.
This system will be called the vertex enclosure system. Most of the Gspline multi-
patches shapes generators start by solving this vertex enclosure system at each
vertex and then move to the others equations. The algorithm we are proposing
in the fourth chapter follows the same scheme, and the resulting surface will be
an approximation of the Catmull-Clark surface. The scheme that we present is
described using explicit formulas for the bsplines coefficients that determine the
final G1-surface.

The same smoothing scheme can be used also to generate basis for a space of
G1-splines as we will see in Section 3.3 of the Chapter 4. More precisely, we fix the
topology of the mesh, then we apply the smoothing scheme to the canonical base
of the space of one dimensional meshes of the same topology as the initial one.
The resulting set of splines will span a space of splines that is suitable for fitting.
We have tested that base for a medical data fitting in lung model reconstruction
(Chap. 5).

2. OVERVIEW 15



CHAPTER 1. INTRODUCTION

In the Chapter 5 we test the Gspline basis constructions in data fitting and
IgA problems. We test in the first section of Chapter 5 a method of 3d smooth
surface reconstruction, based on the G1-spline basis that we have constructed.
The input is a cloud of points with their normals, and the output is a smooth
surface representing the initial surface. The method is performed in two main
steps. First we apply a marching Triangles algorithm to produce a mesh that
approximates the cloud. We have chosen the algorithm [24] to do that. Then
a simplification process is applied to generate a quad mesh with less number
of patches by combining the Catmull-Clark subdivision and a progressive edge
collapse decimation algorithm. The second step is the regression step, where we
minimise a quadratic expression using a least squares method. The expression is
composed of a distance term and a fairness term that minimises the value of the
partial derivatives. Multiple basis are tested in that section, and a comparison
between some of them is given.

In the second part of the application chapter, we test a bi-quintic basis in IgA
computations.

16 2. OVERVIEW



Chapter 2

Computing the dimension of the
space of splines

1 Parametric Splines

In this chapter we explain the homology tools used to compute the dimension of
the spline space. We begin by giving basic definitions.

Let ∆ be a polyhedral complex in the euclidean space of dimension d, this
means that there is a region Ω from that space and ∆ is a subdivision of it using
polyhedrons. The polyhedrons of ∆ are called maximal faces or the set of faces of
dimension d, the vertices of ∆ are called the minimal faces or the faces of dimen-
sion 0, any sub face of a polyhedron from ∆ who’s linear span is of dimension k
is called a k dimension sub face of ∆. We will denote by:

• ∆k the set of sub faces of dimension k.

• we denote by
◦
∆k ⊂ ∆k the set of k-dimensional internal faces, ie. the faces

σ ∈ ∆k such that σ 6⊂ ∂∆.

• By S(∆) the space of splines over ∆. In other words, S(∆) is the set of real
functions who’s restriction to any polyhedron of ∆ is polynomial.

• S(∆)6m := { f ∈ S(∆)|degree( f|σ) 6 m for any σ ∈ ∆d}

• S(∆)m := { f ∈ S(∆)| degree( f|σ) = m for any σ ∈ ∆d}

• S(∆)r := { f ∈ S(∆)| f ∈ Cr}

• S(∆)r
m := S(∆)r ∩ S(∆)m

• S(∆)r
6m := S(∆)r ∩ S(∆)6m

For each d − 1-face τ the linear form whose affine space supports τ is denoted
by lτ, the ideal generated by this form is denoted Iτ.

For each d-dimensional polyhedral complex ∆, we define the homogenisation
∆̂ of ∆, to be the complex build from ∆ in the following way: we embed ∆ in the
hyperplane x using the map p : (x0, x1, . . . , xd) 7→ (1, x1, . . . , xd), and for each face

17
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σ ∈ ∆d we consider the cone σ̂ formed by p(σ) and the point (0, . . . , 0), the set
of all polyhedrons σ̂ will form the complex ∆̂, the utility of this complex consist
in the fact that the two spaces S(∆̂)r

m and S(∆)r
6m are isopmorphic through the

dis-homogenisation map p∗ : S(∆̂)r
m → S(∆)r

6m, with p∗( f (x)) = f (p(x)) for
any x = (x0, x1, . . . , xd), so if we compute the Hilbert polynomial of S(∆̂)r the we
get the dimension of S(∆)r

6m for each m. The Homogenisation map (the inverse

of p∗) is given by p∗−1( f (x)) = x
deg( f )
0 f ( x1

x0
, . . . , xd

x0
).

Now we state an important characterisation of the Cr continuity over piece-
wise polynomial functions.

Proposition 1.1 ([25]). Let ∆ be a polyhedral complex. Then for any f ∈ S r(∆) we
have: f ∈ S(∆)r if and only if for each σ1, σ2 ∈ ∆n such that there exists τ = σ1 ∩ σ2,
τ ∈ ∆n−1 and lτ devides f|σ1

− f|σ2
.

2 A chain complex for computing the dimension of

S(∆)r
m

The main method used in this chapter to compute the dimension of S(∆)r
m is

to build a chain complex such that one of his homology groups is S(∆)r
m, then

use the Euler characteristic to form a formula for the dimension, in this section
we explain how to build the chain complex. There are two types of complexes
that we use, one of them uses the ideals Iτ generated by the linear equation of
the hyperplane supporting the subface τ in ∆. The other type uses the ideal Iτ̂,
generated by the linear equation of the hyperplane supporting the subface τ̂ in
∆̂.

Let ∆ be a d-dimensional complex, R[x] = R[x1, . . . , xd] and R[x̂] = R[x0, . . . , xd].
For any ring R, an R-complex C consists of the following data:

• An R-module C(σ) for each σ ∈ ∆.

• An R-module morphism ∂k : ∑σ∈∆k
C(σ) → ∑τ∈∆k−1

C(τ) for each k ∈
d . . . 1, such that ∂k−1 ◦ ∂k.

The complexes can be written in the following way:

C : Cd ∂d−→ Cd−1 ∂d−1
−−→ . . .

∂2−→ C1 ∂1−→ C0

with C i = ⊕σ∈∆i
C(σ) for i ∈ d . . . , 0. Two types of complexes are going to be used

in this chapter, we denote them by C, Ĉ and define them in the following way:

18 2. A CHAIN COMPLEX FOR COMPUTING THE DIMENSION OF S(∆)R
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with:

C(σ) = R[x] f or σ ∈ ∆d

C(σ) = R[x]/I(σ) f or σ ∈ ∆i, i < d − 1

Ĉ(σ) = R[x̂] f or σ ∈ ∆d

Ĉ(σ) = R[x̂]/J(σ̂) f or σ ∈ ∆i, i < d − 1

J(τ) = Ir+1
τ̂ f or τ ∈ ∆d−1

I(τ) = Ir+1
τ f or τ ∈ ∆d−1

J(γ) = ∑
γ∈τ

Ir+1
τ̂ f or τ ∈ ∆i, i < d − 1

I(γ) = (∑
γ∈τ

Iτ)
r+1 f or τ ∈ ∆i, i < d − 1

with ∂i, in both of the two complexes, a differential map similar to the one we use
in relative homology of a simplicial complex ∆/∂∆.

In the complex Ĉ, since we are quotiening by homogeneous ideals, all the
terms of the complex are graded, and more over all the maps of this complex are
graded maps, so it is convenient to denote by Ĉm the sub complex of Ĉ of elements
of degree m. In the same times we will use Cm to denote the the sub complex of
elements in C of degree at most m.

The complex Ĉ have been studied in [26], earlier works such as [25] used the
ideal I(γ) = (∑γ∈τ̂ Iτ)r+1 instead of J(γ̂) = ∑γ∈τ Ir+1

τ the difference is that we
use the power of the sum instead of the sum of powers. The main use of this
complex is that it allows to compute the dimension of the space of splines because
we know that for m > 0 and r > 0 we have from [26] and [25]:

Hd(Cm) ≃ S(∆)r
6m ≃ S(∆̂)r

m ≃ Hd(Ĉm)

This property besides of the Euler formula allows us to "approximate" the di-
mension of the space of splines. Let Cm be the complex obtained from C after
bounding the degree of the polynomials, then the Euler formula can be written:

dim(Hd(Cm)) = χ(Cm)− ∑
i=0,..,d−1

(−1)idim(Hi(Cm)) (2.1)

where χ(Cm) is the Euler characteristic.
Both of the ideals I(σ) and J(σ) have been used in approximation theory to

prove interesting results, however they don’t have the same properties. Lemma
2.2 illustrates the difference between them, but before stating it we need to define
the Krull dimension.

Definition 2.1. The Krull dimension of a ring R is the length n of the longest possible
chain of primes in R:

P0 * P1 * . . . * Pn

If M is an R-module then the Krull dimension of M is by definition the Krull dimen-
sion of the ring:

R/Ann(M)

2. A CHAIN COMPLEX FOR COMPUTING THE DIMENSION OF S(∆)R
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where

Ann(M) = {a ∈ R |am = 0 f or all m ∈ M}

is the annihilator of M.

For example, in algebraic geometry, if an ideal I is generated by a set of poly-
nomials f1, . . . , fn in the ring of polynomials R, then the Krull dimension of R/I
is the dimension of the algebraic set defined by f1, . . . , fn.

Lemma 2.2. [26] If ∆ corresponds to the embedding of a d-dimensional ball in the d-
dimensional euclidean space then for all i < d, Hi(Ĉ) has the Krull dimension 6 i − 1.

It means in particular that for a planar simplicial complex isomorphic to a
disk, the two homology groups Hi(Ĉ) for i = 1, 0 have dimension zero. As illus-
trated in the example 3.5 of [27], this property doesn’t hold for I(σ).

In the following sections we will show some interesting results on dimension
using both of the two constructions.

3 A dimension formula for generic embeddings

The following result is a formula of dimension for S(∆)1 in the case of a pla-
nar simplicial complex embedded generically in the two dimensional euclidean
space. By generic embedding we mean that the set of vertex positions for which
the formula is valid is given by the complement of some algebraic set. The ideal
I(σ) is used in this construction.

Theorem 3.1 ([25]). For a generic embedding ∆ of a planar simplicial complex in R
2,

we have:

dim S(∆)1
m =

(

m + 2
2

)

|∆2| − (2m + 1)|
◦
∆1| − 3|

◦
∆0|

the word generic comes from the rank of a matrix that is called "spline matrix"
and that has full rank if the vertices positions are generic.

The proof will follow from the formula (2.1) if we show that Hi(Cm) = 0 for
i = 0, 1.

To show that H0(Cm) = 0 we define the following exact sequence of com-
plexes:

0 → I → R → C → 0

that is given by:

20 3. A DIMENSION FORMULA FOR GENERIC EMBEDDINGS
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0 0 0

I : 0 ⊕τ∈∆1 I(τ) ⊕γ∈∆0 I(γ)

R : ⊕σ∈∆2R[x] ⊕
τ∈

◦
∆1

R[x] ⊕γ∈∆0R[x]

C : ⊕σ∈∆2R[x] ⊕
τ∈

◦
∆1

R[x]/I(τ) ⊕
γ∈

◦
∆0

R[x]/I(γ)

0 0 0

By the zigzag lemma [28], the following sequence:

. . . → H0(I) → H0(R) → H0(C) → 0

We know from the universal-coefficient theorem [29] that H0(R) = 0, thus H0(C) =
0.

The vanishing of H1(Cm) is shown using another construction based on the
quotient of the two complexes Cm+1 and Cm, after simplifications of the quotient
complex, we get the following complex when r = 1:

Cm+1/Cm : ⊕σ∈∆2 Rm+1/Rm → ⊕
σ∈

◦
∆1

Rm+1/Rm → 0 (2.2)

where Rm is the set of bivariate polynomials of degree less or equal to m. The
form of the terms of the complex follows from the three isomorphism theorems
[30] , the last term of that complex vanish only because we are using the I(σ)
ideal, the same doesn’t hold for the ideal J(σ)([25] .

At the same time by considering the exact sequence of complexes:

0 → Cm → Cm+1 → Cm+1/Cm → 0

taking into account the fact that H0(Cm) = 0, we deduce, again by the zigzag
lemma, the long exact sequence of homologies:

. . . → H1(Cm) → H1(Cm+1) → H1(Cm+1/Cm) → 0

From this, We have the two homological properties (cf. [25]):

A) H1(Cm) = 0 implies H1(Cm+1) ≃ H1(Cm+1/Cm).

B) If H1(Cm+1/Cm) = 0 then dim H1(Cm+1) 6 dim H1(Cm).

It is shown in [31] that the matrix of the map in the complex 2.2 has full rank
when the positions of the vertices are generic. Thus for a generic embedding of
a simplicial complex in the plan we have H1(Cm+1/Cm) = 0 for m > 2. If ∆ is a
disk then by proposition 4.8 in [25] we have that H1(Cr) = 0 when the degree m
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is the same as the regularity r, and by applying the properties A) and B) several
times we get that H1(Cm) = 0 when ∆ is a disk. The result for general complexes
follows from the the following proposition proved in [25] by recursion on the
genus of ∆.

Proposition 3.2. If H1(C2) = 0 for generic embeddings of 2-disks in the plane, then it
holds also for generic embeddings of any 2-manifold

4 About the freeness of S(∆̂)r

The freeness of the space of splines is a question that has been addressed in sev-
eral works before ([32], [33], [26], [34], [27]). In most of this works, the freeness
of the space S(∆̂)r

d is analysed instead of S(∆)r
6d since this two spaces are iso-

morphic. In this section we will see that free spline space gives, in some cases,
facilities in computing the dimension.

4.1 Freeness for bivariate case

We mention in this section results on the freeness of the space S(∆̂)r in the bivari-
ate case. For the beginning, we will use the ring of polynomials R[x] = R[x, y, z]
to study the bivariate case. The results of this section are from [27].

We consider the following chain complex:

Ĉ : ⊕σ∈∆2R[x] → ⊕
τ∈

◦
∆1

R[x]/J(τ) → ⊕
γ∈

◦
∆0

R[x]/J(γ) → 0 (2.3)

The ideal Jτ ⊂ R[x] is generated using the linear form corresponding to τ in
∆̂, and J(γ)r = ∑γ∈τ Jr

τ. In the same way we define the two complexes:

R̂ : ⊕σ∈∆2R[x] → ⊕
τ∈

◦
∆1

R[x] → ⊕
γ∈

◦
∆0

R[x] → 0,

Ĵ : 0 → ⊕
τ∈

◦
∆1

R[x]/J(τ) → ⊕
γ∈

◦
∆0

R[x]/J(γ) → 0.

We get the following exact sequence of complexes:

0 → Ĵ → R̂ → Ĉ → 0

and by using the zig-zag lemma and the fact that H0(R̂) = 0 we deduce the
following exact sequence of graded maps:

0 → H2(R̂) → H2(Ĉ) → H1(Ĵ ) → H1(R̂)
d1−→ H1(Ĉ)

d2−→ H0(Ĵ ) → 0 (2.4)

and that
H0(Ĉ) = 0.

This sequence has the property of being graded. At the same time we have that
H1(Ĵ ) ⊂ ⊕

τ∈
◦
∆1

J(τ). It means that the elements of Im(d1) = ker(d2) are of degree
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at least r + 1. Besides of that, according to the universal-coefficient theorem, if
H1(R̂) 6= 0 then H1(R̂) contains degree zero elements, this says that:

H1(R̂) 6= 0 implies ∂1 6= 0 implies H1(Ĉ) 6= 0 (2.5)

On the other hand, we know from standard results of algebraic topology (see
for example [35]) that a planar simplicial complex has first homology group equal
to zero if and only if the genus (that is the number of holes in the complex δ) is
equal to zero, by the universal coefficient theorem we get that genus 6= 0 implies
H1(R̂) 6= 0. By collecting all the arguments we have:

genus 6= 0 implies H1(Ĉ) 6= 0 (2.6)

Theorem 4.1 ([27] ). Sr(∆̂) is free if and only if H1(Ĉ) = 0.

This theorem and the previous discussion imply that the only planar topology
∆ that can produce a free module Sr(∆̂) is the simply connected one. So in the
remainder of the section we focus on the simply connected cases, we will relate
in particular the freeness of the module with the generic dimension of Sr(∆̂) that
we will define in the following.

Since the topology is equivalent to the disk, then H1(R̂) = 0, this produce the
sequence:

0 → H2(R̂) → H2(Ĉ) → H1(Ĵ ) → 0 (2.7)

and the isomorphism:
H1(Ĉ) ≃ H0(Ĵ ) (2.8)

the short exact sequence above induces the isomorphism:

Sr(∆̂) = H2(Ĉ) ≃ H2(R̂)⊕ H1(J ) = R[x]⊕ H1(J ) (2.9)

where the last equality comes from the universal-coefficient theorem. Further-
more, the complex Ĵ induces the exact sequence:

0 → H1(Ĵ ) → ⊕
τ∈

◦
∆1

J(τ) → ⊕
γ∈

◦
∆0

J(γ) → H0(Ĵ ) → 0

We gather all the formulas and sequences below in the following:

dim S(∆̂)r
m = dim R[x]m + dim H1(Ĵ )m (2.10)

= dim R[x]m + ∑
τ∈

◦
∆1

dim (Jr+1
τ )m − ∑

γ∈
◦
∆0

dim (J(γ))m + dim H0(Ĵ )m

(2.11)

= dim R[x]m + ∑
τ∈

◦
∆1

dim (Jr+1
τ )m − ∑

γ∈
◦
∆0

dim (J(γ))m + dim H1(Ĉ)m

(2.12)

(2.13)

It is proved in [27] that the modules H1(Ĉ) and H0(Ĵ ) has finite length for any
topology ∆. Since these modules are graded we deduce that they have finite
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dimension, in particular for a degree m that is sufficiently high, the dimension of
the Splines module is exactly the generic dimension that is defined by :

g(∆, r, m) := dim R[x]m + ∑
τ∈

◦
∆1

dim (J(τ))m − ∑
γ∈

◦
∆0

dim (J(γ))m (2.14)

It’s shown in [5] that this quantity is the exact dimension for m > 4r + 1.

4.2 Freeness and generic embedding

Another important aspect that the formula (2.12) reveals is that for a simply
connected planar simplicial complex we have that S(∆̂)r is free if and only if
dim S(∆̂)r

m = g(∆, r, m) for all m. On the other hand, by using the the formula
(2.11) we deduce a simpler formulation:

S(∆̂)r is f ree i f and only i f dim(S(∆̂)r
r+1) = g(∆, r, r + 1) (2.15)

Indeed the first implication is deduced from Theorem 4.1, and the reverse im-
plication holds since H0(Ĵ ) is generated by elements of degree r+ 1, so H0(Ĵ )r+1 =
0 implies H0(Ĵ )m = 0 for all m.

Now we want to compare g(∆, 1, m) with the formula in Theorem 3.1. The
terms of g(∆, 1, m) can be computed in the following way:

dim R[x]m =

(

m + 2
2

)

, dim Jr+1
τ = dimR[x]m−r−1 (2.16)

(2.17)

For the dimension of J(γ)1 we distinguish two cases, the first one is when there
is exactly two slopes supporting the edges around the vertex γ, in that case by a
linear and homogeneous change of coordinates J(γ) = (x, y)2, the dimension of
that ideal is computed by using the exact sequence:

0 → J(γ) → R[x] → R[x]/J(γ) → 0 (2.18)

and we get: dim J(γ)1 = (m+2
2 )− 3. Otherwise, by a linear change of coordinates

we have the ideal J(γ)1 = (x2, y2), and we get: dim J(γ)1 = (m+2
2 ) − 4. This

distinction is mentioned in [27]page 538, we will adopt the same terminology of
that paper by saying that the vertex γ is singular if J(γ)/I(γ) 6= 0. By replacing
all that in Formula 2.14 and by using the Euler characteristic formula:

|∆2| − |
◦
∆1|+ |

◦
∆0| = 1
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we get :

g(∆, 1, m) =

(

m + 2
2

)

+ |
◦
∆1|

(

m

2

)

− ∑
γ∈

◦
∆0

[

(

m + 2
2

)

− 3 − s(γ)]

=

(

m + 2
2

)

+ |
◦
∆1|

(

m

2

)

− |
◦
∆0|

(

m + 2
2

)

+ |
◦
∆0|3 + ∑

γ∈
◦
∆0

s(γ)

= |∆2|

(

m + 2
2

)

− |
◦
∆1|(2m + 1) + 3|

◦
∆0|+ s

where s = ∑
γ∈

◦
∆0

s(γ) and s(γ) is 1 if the vertex is singular, and 0 otherwise. If

we have no singular vertex, the generic dimension g(∆, 1, m) is the same as the
one mentioned in Theorem 3.1, this means that if the embedding is generic then
S1(∆̂) is free.

Now we want to give a geometric condition that induce freeness. We say that
an edge τ in a planar simplicial complex ∆ is pseudo boundary if there exists a
set of interior edges τ1, . . . , τn such that the union (∪i=1...,nτi)∪ τ is a line segment
[a, b] such that a ∈ ∂∆ or b ∈ ∂∆, this line segment will be denoted Lτ, denote
by: sτ the maximal number of slopes of a vertex lying on Lτ, and by s(∆) :=

min{sτ, τ ∈
◦
∆1}.

Theorem 4.2 ([27] ). Let ∆ be a simply connected planar simplical complex, then we
have:

• If every edge of ∆ is pseudo boundary, then S(∆̂)r is free for each r.

• If ∆ has at least one edge that is not pseudo boundary, then for r > s(∆) − 2,
S(∆̂)r is not free.

The bound in the second point is not sharp, see example [27] . The following
theorem proved in [36] helps to understand more the freeness of our space.

Theorem 4.3. Let ∆ be a simply connected simplicial complex. If S(∆̂)r is free then
S(∆̂)r−1 is also free.

Example 4.4. The complex in Fig. 2.1 is an example of simplicial complex in which all
the edges are pseudo boundary. According to the Theorem 4.2, the dimension is equal to
the generic dimension given by the expression (2.14). In particular, the generic dimension
for a degree 2 for the polynomials, and regularity r = 1, will be equal to 6.

In the same time it have been proved in [37] that the dimension of the same space over
the Morgan-Scott simplicial complex (see Fig. 2.2) is equal to 7.

This example shows that the homology in fact depend on the geometry of the complex.

It is shown in [32] that the space S(∆)0 for ∆ a simplicial complex, is iso-
morphic to the face ring of the complex ∆. This property has been used in the
same reference to show that S(∆)0 is free if and only if ∆ is simply connected.
The same is not true for general polyhedral complexes, as the example provided
in [34] shows that the freeness in polyhedral complexes depends on the embed-
ding.
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4.3 Freeness for higher dimensional complexes

The constructions above have been generalised to higher dimensional complexes.
We will see that freeness of the space of splines make easier to compute the di-
mension of the space of the splines in some cases, indeed, it implies that the ho-
mology groups of Ĉ are equal to zero as we will see. For a simplicial complex of
dimension d we define the following chain complex:

Ĉ : ⊕σ∈∆d
R[x]

∂d−→ . . . → ⊕
τ∈

◦
∆1

R[x]/J(τ)
∂1−→ ⊕

γ∈
◦
∆0

R[x]/J(γ) → 0

for R[x] = R[x0, . . . , xd]. We define in the same way the two complexes: Ĵ , R̂
and get the exact sequence:

0 → Ĵ → R̂ → Ĉ → 0

The main results mentioned in [26] are the following:

Theorem 4.5. If ∆ is a d-dimensional simplicial complex with Hi(R) = 0 for each i < d
then S(∆)r is free if and only if Hi(J) = 0 for all i < d − 1.

Theorem 4.6. For all i < d, Hi(C) has Krull dimension less or equal to i − 1.

Unlike the bivariate case, having a generic embedding of the simplicial com-
plex of dimension > 2 doesn’t mean that the spline space is free according to
examples given in [26]

5 The Hilbert polynomial of the space of splines

The Hilbert function hM of a graded module ⊕n∈N Mn associate to each n ∈ N

the dimension of the space of Mn. We know that there exists a polynomial pM

such that for a sufficiently large n ∈ N we have that hM(n) = pM(n), the degree
of that polynomial is equal to the Krull dimension of M.

Now we want to define an exact sequence to compute the Hilbert polynomial
of a spline space. The dual graph G(∆) of a d-dimensional polyhedral complex
is a graph whose vertices correspond to maximal faces of ∆, and whose edges
corresponds to d − 1-dimensional faces of ∆. The (signed) incidence matrix ∂ =
∂(G) of an oriented graph G = (V, E) where V is the set of vertices and E is the
set of edges is a matrix of dimension |V| × |E|, indexed in rows by the edges and
in columns by vertices, such that at the coefficient ce,v corresponding to the edge
e and the vertex v is equal to 1 (resp. -1) if e emanates from (resp. head to) v
and 0 otherwise. In the following we choose a random orientation of the dual
graph of the complex ∆. Suppose we are given a polyhedral complex ∆, then
for any codimension 2-linear subspace s of R

d we denote by Gs(∆) the subgraph
of G(∆) where we consider only the vertices corresponding to a maximal face σ
containing a d − 1-sub-face whose linear span contain s.

The star of a face σ in ∆ is the union of all the faces of ∆ containing σ. We will
say that ∆ is hereditary if the dual graph of the star of any face of ∆ is connected.
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Let ∆ be a d-dimensional polyhedral complex, r ∈ N and R = R[x0, . . . , xd].
We define the following map:

L : R|∆d|+|
◦
∆d−1| → R|

◦
∆d−1|

given by the left multiplication by the matrix:






lr
1

∂
. . .

lr
|∆d−1|







li is the linear form whose vanishing set is supporting the d − 1 face of the ith row
of ∂. This induce the following exact sequence:

0 → M → R|∆d|+|
◦
∆d−1| L

−→ R|
◦
∆d−1| → N → 0 (2.19)

where L is the map defined above, M = ker(L) and N = coker(L). The star of a
face σ in ∆ is the union of all the faces of ∆ containing σ. We will say that ∆ is
hereditary if the dual graph of the star of any face of ∆ is connected.

Proposition 5.1 ([7] ). For any hereditary polyhedral complex we have ker(L) ≃ S(∆)r.

So to describe the Hilbert polynomial of the space of splines, we need to find
the Hilbert polynomial of N. It is shown in [7] that for d 6 2 the codimension of
N is larger than 2, thus the degree of the Hilbert polynomial of N is at most d − 2.

We need some definition before stating the formula of the Hilbert polyno-
mial. An R-module E is called prime if for any sub-module E′ of E we have that
Ann(E) = Ann(E′), the annihilator of a module is always prime. An ideal P ∈ R
is said to be associated to the module E if there exists a sub-module F of E such
that P = Ann(F). Let P be the set of all minimal associated primes of N, and
N(Q) = {n ∈ N|Ann(n) ⊂ Q}.

Theorem 5.2 ([38]). The two Hilbert polynomials of the modules N and
⊕

Q∈P N(Q)
have the same degree and the same leading monomial coefficient.

For any graph G, let C(G) denote the set of cycles of G.

Theorem 5.3 ([38]). For any codimension 2 associated prime of N whose vanishing set
is denoted by s, we have:

N(Q) ≃
⊕

c∈C(Gs(∆))

R/Ic

where Ic := {lr+1
τ |τ ∈ ∆d − 1, τ ∈ e(c)} and e(c) is the set of edges of c.

It is shown [38] that any codimension two ideal Ic for c ∈ C that is minimally
generated by Ir+1

1 , . . . , Ir+1
n admits an exact sequence of the form:

0 → R(−r − 1 − α(c))s1 ⊕ R(−r − 2 − α(c))s2 → R(−r − 1) → R → R/Ic → 0
(2.20)

where α(c) = ⌊ r+1
k+1⌋, s1 = (n − 1)α(c) + n − r − 2, s2 = r + 1 − (n − 1)α(c).

R(t) denote the same module R with shifted grading: R(t)m = Rt+m. By applying
all this to the bivariate case we get the following:
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gulation of a polygonal region of the plane. Then :

Dim(S r
d(∆)) =

(d + 1)(d + 2)
2

+
(d − r)(d − r + 1)

2
|
◦
∆1|−

d2 + 3d − r2 − 3r

2
|
◦
∆0|+ s

(2.21)
where s = ∑i=1...VI

σi and si = ∑j=1...,d−r(r + j + 1 − jei)+.

It was shown in [39] that the above mentioned formula is a lower bound of the
dimension, while in [5] the proof is completed by showing that there exists a min-
imal determining set of the space of splines who’s number of elements is equal to
the above mentioned formula. The minimal determining set that is chosen in this
proof is described by:

• (2r+1)(2r+2)
2 + Ei

r(r+1)
2 domain point from the disk of radius 2r about each

boundary vertex.

• (r+1)(r+2)
2 + Ei

r(r+1)
2 + σi domain point chosen from the disk of radius 2r

about each interior vertex.

• For each triangle we take the domain points {ci,j,k : i > r, j > r, k > r}

• For each edge e 6 i 6 r, j < d − 2r, k 6 d − 2r} ;

The formula of Theorem. 6.1 can be deduced from the one in Theorem. 5.4 ap-
plied on the simplicial case. This can be shown by using the formulas:

|
◦
∆0| = |

◦
∆1| − |∆2|+ 1 (2.22)

7 Upper and lower bound for the dimension of S r
d(∆)

In [40], an upper and lower bound for the dimension of S r
d(∆) have been estab-

lished using 2.12. This Bound are useful since they can be used fro any value of
d.

For each vertex vi we denote by Ωi :=
⌊

Eir
Ei−r

⌋

, Ai := Ei(r + 1) + (1 − Ei)Ωi,

and Bi := Ei − 1− Ai. We denote also by ωi :=
⌊

eir
ei−r

⌋

, ai := ei(r + 1) + (1− ei)ωi,
and bi := ei − 1 − ai.

Theorem 7.1 ([8]). We have the two following bounds for the dimension of S r
k(δ)
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(

k + 2
2

)

+ |
◦
∆0|

(

k + 2 − (r + 1)
2

)

−
|
◦
∆0|

∑
i=1

[

ti

(

k + 2 − (r + 1)
2

)

− bi

(

k + 2 − Ωi

2

)

+ ai

(

k + 2 − (Ωi + 1)
2

)]

6 Dim(S(∆̂)r
k) 6

(

k + 2
2

)

+ |
◦
∆0|

(

k + 2 − (r + 1)
2

)

−
|
◦
∆0|

∑
i=1

[

t̃i

(

k + 2 − (r + 1)
2

)

− b̃i

(

k + 2 − Ω̃i

2

)

+ ãi

(

k + 2 − (Ω̃i + 1)
2

)]

The first inequality can be proved by using (2.12) and the fact that dim H1(Ĉ)m >

0, we use also the sequence (2.20) to compute Dim Jr+1
τ and the Euler formula

(2.22). The second inequality is proved in [8] by using an ordering of the vertices.
It is shown in the same paper that for a space of splines over a planar simplicial
complex that admits a special vertex ordering, the upper bound of Theorem. 7.1
becomes sharper.

Theorem 7.2 ([8]). Suppose that the vertices of a planar simplicial complex ∆ are num-
bered in such a way that each pair of consecutive vertices are corners of the same triangle.
For each γi define t̃i as the number of edges with different slopes joining the vertex γi to
a vertex in the boundary of ∆ or to one of the first i − 1 vertices. Then:

Dim(S(∆̂)r
k) 6

(

k + 2
2

)

+ |
◦
∆1|

(

k + r + 1
2

)

−

|
◦
∆1|

[(

k + 2
2

)

−

(

r + 2
2

)]

+
|
◦
∆0|

∑
i=1

k−r

∑
j=1

(r + j + 1 − jt̃i)+

8 Conclusion

The objective of this chapter was to give an overview of the algebraic geometry
and commutative algebra tools used in spline theory, to compute the dimension
of the space S(∆)r

m. It turns out that the tools are very efficient in analysing the
dimension of the space of splines.

The bivariate case on simplicial complexes is well understood through the ex-
isting works, indeed, the formula (2.12) expresses the dimension of the space of
splines over a two dimensional simplicial complex using four terms: two of them
are straightforward to compute using the formulas (2.16), one way to compute
the term Dim (J(γ)m) is by using simultaneously an exact sequence such as (2.18)
and (2.20), the resulting formula depend only on m and r. Since the homology
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space H1(Ĉ) has Krull dimension equal to zero 2.2, dim H1(Ĉ)m vanish for m suf-
ficiently high, we know that H1(Ĉ) = 0 if and only if the module S(∆̂)r is free,
and H1(Ĉ) can vanish only if ∆ is simply connected; we have in the simply con-
nected case S(∆̂)r is free implies S(∆̂)r−1 is free as well. The freeness of S(∆̂)r

can be characterised using the geometry of ∆, for instance if each edge e ∈ ∆

belongs to a line segment L∆ that is a union of interior edge from ∆, such that
∂∆ ∪ Le 6= ∅, then the space S(∆)r is free for any r. If the previous geometric
property of ∆ is not true, then there is an r0 such that S(∆)r is free if and only
if r 6 r0, we have r0 > 0, and an upper bound r0(see Theorem 4.2 and in [32]
it is shown that S0 is free), both of them are not sharp according to the existing
examples.

In higher dimensional complexes it is less obvious how to find the dimension.
We know that the homology of the complex Ĉ vanish if S(∆̂)r is free. In that case
the dimension can be written by means of the the quotients

⊕

γ∈
◦
∆i

R[x]/J(γ) for

i < d. By the discussion preceding Theorem 5.4 we know how to compute a
resolution of R[x]/J(γ) if the codimension of γ in R

d+1 is equal to two, how-
ever, it is less clear how to compute the dimension of such a module of greater
codimensions.

The Hilbert polynomial pS(∆)r is a way to approximate the dimension of S(∆)r.
In this chapter we have explained how to compute the three coefficients of high-
est degree in that polynomial, and thus, in the bivariate case we have the exact
formula of pS(∆)r .

An important extension that haven’t been detailed in this manuscript is the
mixed smoothness splines. In [41] the notion of inverse system is used to gen-
eralise the exact sequence (2.20), and give the Hilbert polynomial of a mixed
smoothness spline space.
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Chapter 3

Basis Computation

To describe and analyse shapes with complex topologies, one often starts with a
coarse representation M that captures the topology and the principal geometric
features of the shape. This representation can then be refined and tuned to de-
scribe more accurately the actual shape. If the coarse model is a mesh, a classical
strategy to obtain a better approximation of the shape is to refine the mesh, by
splitting some of its faces. This approach yields piecewise linear representations
of the shape, which may require several level of subdivisions in regions with high
curvatures, in order to obtain a good approximation of the shape.

In this chapter, we investigate a different strategy to compute accurate shape
representations. Instead of splitting the coarse piecewise linear model, we in-
crease the degree of the representation on each face of M with the aim to obtain
better approximation performances with higher order of convergence.

In application, different kind of shapes are approximated, including closed
surfaces, like spheres, that cannot be parametrised simply by using one planar
domain. This is why we use a mathematical object similar to manifolds and that
we call topological surfaces, defined in our context by using parametrisations or
transition maps (Definitions 1.1 and 8.1). This topological surfaces are going to
be used to parametrise the smooth shapes, and to define differentiable functions
on them.

For functions defined over a planar mesh, the usual Ck continuity is sufficient
to produce smooth functions, and good quality shapes, while in topological sur-
faces cuspidal singularities may arise in vertices with valence different from 4 if
we use Ck continuity. This is due to the fact that we cannot embed, for instance,
5 squares in the plane and form a fan around one shared vertex between them
without changing the angles of the quads, this kind of phenomenons are called
vertex enclosure problems, and will be explained in more details in this chapter.

We will use mostly quadrangular faces in M, and tensor product b-spline
functions of the same degree and the same knot distributions are used on each
face of M. The regularity that we impose across the edges shared by two faces is
the continuity of the tangent planes of the parameterizations. This corresponds
to geometrically smooth spline functions (as opposed to parametrically smooth
spline functions), also called G1 spline functions. Our aim is to analyse in details
the space of G1 splines on an arbitrary quad mesh and to compute efficiently
bases which are suitable for fitting and numerical simulation problems.

The content of this chapter are mainly coming from [42] and [43].
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With this transition map form, the G1 continuity is equivalent to:

f (u, 0) = g(u, 0) (3.2)
∂ f

∂u
(u, 0) =

∂g

∂u
(u, 0) (3.3)

∂ f

∂v
(u, 0) = bτ,γ(u)

∂g

∂v
(u, 0) + aτ,γ(u)

∂g

∂u
(u, 0) (3.4)

(3.5)

for u ∈ [0, 1]. We can write the two formulas (3.3) and (3.4) in the matrix form as
follows:

(

∂ f
∂u (u, 0)
∂ f
∂v (u, 0)

)

=

(

1 0
aτ,γ(u) bτ,γ(u)

)

(

∂g
∂u (u, 0)
∂g
∂v (u, 0)

)

(3.6)

In general the geometric continuity is used to glue several patches together
according to a given mesh structure. The geometrically continuous functions are
defined over spaces that are quite similar to manifolds and that we call topologi-
cal surfaces.

Definition 1.2. A topological surface M is given by:

• a collection M2 of polygons (also called faces of M) in the plane.

• a collection of Gk-junctions given by φi,j : τi 7→ τj between polygonal edges from
different polygons σi and σj of M2,

where a polygonal edge can be glued with at most one other polygonal edge, and it cannot
be glued with itself. The shared edges (resp. the points of the shared edges) are identified
with their image by the corresponding homeomorphism. The collection of edges (resp.
vertices) is denoted M1 (resp. M0).

Over topological surfaces, we will define functions that respect differentiabil-
ity constraints in the following way.

Definition 1.3. Let M be a topological surface defined using the set of polygons (σi)i∈M2

and the set of transitions (φi)j∈M1 . A Gk-function on M is a collection f = ( fσ)σ∈M2

of Ck-functions such that for each two faces σ0 and σ1 sharing an edge τ with φ as transi-
tion map, the two functions fσ1 and fσ0 ◦ φ0,1 have the same Taylor expansion of order 1

(it means that they have a Gk-junction). The function fσ is called the restriction of f on
the face σ.

In the following sections we will put some restrictions on the type of functions
we use on each face, and study the resulting space. The study will focus mainly
on determining the degrees of freedom that a space can afford, we will see in
particular that we have a special behavior of the degrees of freedom when the
gluing function aτ,γ vanish.

Definition 1.4. An edge τ ∈ M which contains the vertex γ ∈ M is called a crossing
edge at γ if aτ,γ(0) = 0 where [aτ,γ, bτ,γ] is the gluing data at γ along τ. We define
cτ(γ) = 1 if τ is a crossing edge at γ and cτ(γ) = 0 otherwise. By convention, cτ(γ) =
0 for a boundary edge. If γ ∈ M0 is an interior vertex where all adjacent edges are
crossing edges at γ, then it is called a crossing vertex. Similarly, we define c+(γ) = 1
if γ is a crossing vertex and c+(γ) = 0 otherwise.
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(

∂u1 f1
∂v1 f1

)

=
[

∏i=1..l Dγφi

]

(

∂u1 f1
∂v1 f1

)

(3.8)

In order to get a tangent space Tγ f of full dimension (ie. dimension 2) we
require that ∏i=1..l Dγφi = Id. By using transition maps of the form mentioned
in (3.1) we get the following condition:

Condition 2.1 ([44]). If γ ∈ M0 is an interior vertex and belongs to the faces σ1, . . . , σl

that are glued cyclically around γ, then the gluing data [ai, bi] at γ on the edges τi be-
tween σi−1 and σi satisfies

l

∏
i=1

(

0 1
bi(0) ai(0)

)

=

(

1 0
0 1

)

. (3.9)

This gives algebraic restrictions on the values ai(0), bi(0). In addition to Con-
dition 2.1, we also consider the following condition around a crossing vertex:

Condition 2.2. If the vertex γ is a crossing vertex with 4 edges τ1, . . . , τ4, the gluing
data [ai, bi] i = 1 . . . 4 on these edges at γ satisfy

a′1(0) +
b′4(0)
b4(0)

= −b1(0)
(

a′3(0) +
b′2(0)
b2(0)

)

, (3.10)

a′2(0) +
b′1(0)
b1(0)

= −b2(0)
(

a′4(0) +
b′3(0)
b3(0)

)

. (3.11)

Let us notice that we can write the previous conditions on the gluing data
(which in our setting is given by spline functions) as in [21] since they depend
on the value of the functions defining the gluing data and are independent of the
type of functions. The conditions (3.10) and (3.11) were introduced in [21] in the
context of gluing data defined from polynomial functions. They generalize the
conditions of [45], where bi(0) = −1. The conditions come from the relations
between the derivatives and the cross-derivatives of the face functions across the
edges at a crossing vertex.

2.1 Example of transition maps

One way to define transition maps which satisfy these conditions, is to compute
the values of the transition functions aτ, bτ of an edge τ at its end points and then
interpolate the values:

1. For all the vertices γ ∈ M0 and for all the edges τ1, . . . , τl of M1 that contain
γ, choose vectors u1, . . . , uF ∈ R

2 such that the cones in R
2 generated by

ui, ui+1 form a fan in R
2 and such that the union of these cones is R

2 when
γ is an interior vertex. The vector ui is associated to the edge τi, so that the
sectors ui−1, ui and ui, ui+1 define the gluing across the edge τi at γ.

The transition map φi−1,i at γ = (0, 0) on the edge τi is constructed as:

J(0,0)(φi−1,i)
t = S ◦ [ui, ui+1]

−1 ◦ [ui−1, ui] ◦ S =

[

0 bi(0)
1 ai(0)

]
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b bγ γ′τu
0

u
1

u
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u
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Figure 3.3: The edge τ = (γ, γ′) is associated to the vectors u0 and u1 at the points
γ and γ′, respectively.

where S =

[

0 1
1 0

]

, [ui, uj] is the matrix which columns are the vectors ui

and uj, and |ui, uj| is the determinant of the vectors ui, uj. Thus,

ai(0) =
|ui+1, ui−1|

|ui+1, ui|
, bi(0) = −

|ui, ui−1|

|ui+1, ui|
, (3.12)

so that ui−1 = ai(0)ui + bi(0)ui+1. This implies that Condition 2.1 is satis-
fied.

2. For all the shared edges τ ∈ M1, we define the functions aτ = aτ
cτ

, bτ =
bτ
cτ

on the edges τ by interpolation as follows. Assume that the edge τ is
associated to the vectors u0 and u1, respectively at the end point γ and γ′

corresponding to the parameters u = 0 and u = 1. Let us
−, us

+ ∈ R
2, s =

0, 1 be the vectors which define respectively the previous and next sectors
adjacent to us

i at the point γ and γ′, see Figure 3.3. We define the gluing data
so that it interpolates the corresponding value (3.12) at u = 0 and u = 1 as:

aτ(u) =
∣

∣u0
+, u0

−

∣

∣d0(u) +
∣

∣u1
+, u1

−

∣

∣d1(u)

bτ(u) = −
∣

∣u0, u0
−

∣

∣d0(u)−
∣

∣u1, u1
−

∣

∣d1(u) (3.13)

cτ(u) =
∣

∣u0
+, u0∣

∣d0(u) +
∣

∣u1
+, u1∣

∣d1(u)

where d0(u), d1(u) are two Hermite interpolation functions at u = 0 and
u = 1.

Since the derivatives of aτ, bτ, cτ vanish at u = 0 and u = 1, the conditions
(3.10) and (3.11) are automatically satisfied at an end point if it is a crossing
vertex.

Another possible construction, with a constant denominator cτ(u) = 1 is:

aτ(u) =

∣

∣u0
+, u0

−

∣

∣

∣

∣u0
+, u0

∣

∣

d0(u)−

∣

∣u1
+, u1

−

∣

∣

∣

∣u1
+, u1

∣

∣

d1(u)

bτ(u) = −

∣

∣u0, u0
−

∣

∣

∣

∣u0
+, u0

∣

∣

d0(u) +

∣

∣u1, u1
−

∣

∣

∣

∣u1
+, u1

∣

∣

d1(u) (3.14)

cτ(u) = 1
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The construction (3.14) specializes to the symmetric gluing used for instance in
[44, §8.2], [46], [10]:

aτ = d0(u) 2 cos
2π

n0
− d1(u) 2 cos

2π

n1

bτ = −1 (3.15)
cτ = 1

where n0 (resp. n1) is the number of edges at the vertex γ0 (resp. γ1). It corre-
sponds to a symmetric gluing, where the angle of two consecutive edges at γi is
2π
ni

, and the norms of all the vector ui are equal. It is shown in [47] that under
the form of the transition maps that we have chosen, the condition 2.1 hold if and
only if aτ(0) = 2 cos 2π

n0
.

3 Construction of G1-spline basis

The basis that we want to produce for our space is locally supported. We show in
this section how we can split the G1-splines vector space into three components,
and provide a basis for each one of them:

• One component is vertex supported. It means that each basis element of
this component has a support around a xgiven vertex.

• The second component is edges supported, ie. each basis element has sup-
port along a given edge, and vanish at each vertex.

• One component is faces supported, ie. each basis elements of this compo-
nent is supported over one given face, and vanish along all the edges.

The approach of splitting the space into the three components have been sub-
ject to several works before in geometric continuity [21, 23, 48, 49] as well as in
parametric continuity [5, 6]. One strategy for building such a basis is to deter-
mine first, the G-spline space that corresponds to gluing two patches together
along an edge. This basis is chosen in such a way that it can be pieced together
with other basis elements corresponding to another edge sharing a vertex with
the first edges. Thus we can form a basis element defined over all the surface, see
for instance [22]. In this section we will describe two examples of standard algo-
rithms that can be used to generate basis for the space of G-splines, with different
kind of gluing data (See sections 3.1 and 4).

The second strategy is to find a minimal determining set, then set the other
bspline coefficients according to the G1 constraints chosen before.

3.1 Basis construction by piecing patches

To define the space of G1-splines on M, we will choose each face restriction fσ

to be an element of the space Rd,t(M) of tensor product b-spline with knots t =
[t1, . . . , ts] ⊂ R and of degree d in each variables u and v. An element fσ ∈ Rd,t is
of the form

fσ := ∑
16i,j6m

cσ
i,j( fσ)bi(uσ)bj(vσ),
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where cσ
i,j( fσ) ∈ R and b1, . . . , bm are the b-spline basis functions of the space Ud,t

of splines of degree d and knots t in one variable u. We denote by (bσ
i,j)06i,j6m−1

the b-spline basis functions on the face σ. With the previous notation, bσ
i,j =

bi(uσ)bj(vσ). The functions are represented by a vector R
m2×|M2| with 1 at the

position corresponding to the coefficient cσ
i,j and 0 elsewhere.

We will consider hereafter gluing data [aτ, bτ], which are spline functions ∈
Ud′,t′ of degree d′ and knots t′ = [t′1, . . . , t′s′ ] ⊂ R, such that t′1 = . . . = t′d′ and
t′s′−d′ = . . . = t′s′ .

Definition 3.1. We denote by Sd,t(M, g) ( or Sd,t(M) for simplicity) the vector space
of G1-functions on M for the gluing data g, with face restrictions fσ in Rd,t.

An element in Sd,t(M, g) is in the space Rd,t(M) of b-spline functions on each
face. It will be represented by its b-spline coefficients on each face, that is, by a
vector in R

m2×|M2|.
For two vectors f , f ′ ∈ Rd,t(M) ≡ R

m2×|M2|, we denote by 〈 f , f ′ 〉 the usual
scalar product of their b-spline coefficients.

For a vertex γ of a face σ, we denote by Tσ
γ the map Tσ

γ : Sd,t(M, g) → R
4 that

associates to each differentiable function f ∈ Sd,t(M, g) the following vector:

Tσ
γ ( f ) =

[

cσ
0,0( f ), cσ

1,0( f ), cσ
0,1( f ), cσ

1,1( f )
]

where c0,0, c1,0, c0,1, c1,1 are the corner b-spline coefficients of f ∈ Rd,t correspond-
ing to γ. We call these coefficients, the (first) Taylor coefficients of f around γ. For
γ ∈ M0 an end point of an edge τ shared by the faces σ0, σ1, let Tτ

γ : ( f0, f1) 7→

Tσ0
γ ( f0)⊕ Tσ1

γ ( f1).
A desired property for the space of G1-splines is the possibility to arbitrarily

fix the Taylor coefficients at a vertex on a face. This means that at each vertex, we
should be able to fix the values, derivatives and cross derivatives and construct
a G1-spline function that interpolates these values and derivatives. This leads to
the following definition:

Definition 3.2. The space Sd,t(M, g) of G1-spline space is ample if for every vertex
γ ∈ M0 and every face σ ∈ M2 adjacent to γ, the map Tσ

γ is surjective.

3.2 Taylor maps

An important tool that we are going to use intensively is the Taylor map associ-
ated to a vertex or to an edge of M. For each face σ the space of spline functions
over a subdivision into 4 parts as in the figure above will be denoted Rr(σ). Let
γ ∈ M0 be a vertex on a face σ ∈ M2 belonging to two edges τ, τ′ ∈ M1 of
σ. We define the ring of γ on σ by Rσ(γ) = R(σ)/(ℓ2

τ, ℓ2
τ′) where (ℓ2

τ, ℓ2
τ′) is the

ideal generated by the squares of ℓτ and ℓτ′ . The equations ℓτ(u, v) = 0 and
ℓτ′(u, v) = 0 are respectively the equations of τ and τ′ in Rr(σ) = S r.

The Taylor expansion at γ on σ is the map

Tσ
γ : f ∈ Rr(σ) 7→ f mod (ℓ2

τ, ℓ2
τ′) in Rσ(γ).
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Choosing an adapted basis of Rσ(γ), one can define Tσ
γ by

Tσ
γ ( f ) =

[

f (γ), ∂u f (γ), ∂v f (γ), ∂u∂v f (γ)
]

.

The map Tσ
γ can also be defined in another basis of Rσ(γ) in terms of the b-spline

coefficients by
Tσ

γ ( f ) =
[

cσ
0,0( f ), cσ

1,0( f ), cσ
0,1( f ), cσ

1,1( f )
]

where c0,0, c1,0, c0,1, c1,1 are the first b-spline coefficients associated to f on σ at
γ = (0, 0).

We define the Taylor map Tγ on all the faces σ that contain γ,

Tγ : f = ( fσ) ∈ ⊕σR
r(σ) → (Tσ

γ ( fσ)) ∈ ⊕σ⊃γR
σ(γ).

Similarly, we define T as the Taylor map at all the vertices on all the faces of M.
If τ ∈ M1 is the edge of the face σ(uσ, vσ) ∈ M2 associated to vσ = 0, we

define the restriction along τ on σ as

Dσ
τ : Rk,r(σ) → Rk,r(σ)

f = ∑
06i,j6m

cσ
i,j( f )bi(uσ)bj(vσ) 7→ ∑

06i6m,06j61
cσ

i,j( f )bi(uσ)bj(vσ).

The restrictions along the edges vσ = 1, uσ = 0, uσ = 1 are defined similarly by
symmetry. By convention if τ is not an edge of σ, Dσ

τ = 0.
For a face σ ∈ M2, we define the restriction along the edges of σ as

Dσ : Rk,r(σ) → Rk,r(σ)

f = ∑
06i, j6m

cσ
i,j( f )bi(uσ)bj(vσ) 7→ ∑

i>1, or
i<m−1, j>1,

or j<m−1

cσ
i,j( f )bi(uσ)bj(vσ).

The edge restriction map along all edges of M is given by

D : f = ( fσ) ∈ ⊕σRk,r(σ) → (Dσ( fσ)) ∈ ⊕σRk,r(σ).

3.3 G1-splines along an edge

We consider first a topological mesh Mτ with two faces σ0, σ1 sharing an edge τ,
with the gluing data gτ = (a, b).

The G1-spline functions of Sd,t(Mτ, gτ) are the pairs f = ( f0, f1) of b-spline
functions f0, f1 ∈ Rd,t, which satisfies the relations (3.2) and (3.5). If τ is defined
by v1 = 0 on σ1 and u0 = 0 on σ0, these relations involve only the b-spline
coefficients cσ1

i,j( f ), cσ0
j,i( f ) for 0 6 i 6 m − 1 and 0 6 j 6 1. The other coefficients

can be chosen arbitrarily. Let us denote by Sτ the space of b-spline functions
( f0, f1) in Sd,t(Mτ, gτ) with all these other coefficients equal to 0. The elements
of Sτ are the G1-spline functions supported along the edge τ.

Let γ, γ′ ∈ M0 be the end vertices of τ. We denote Eτ = Sτ ∩ ker Tγ ∩ ker Tγ′ .
It is the vector space of G1-spline in Sτ supported along τ, with zero b-spline
coefficients at γ and γ′.
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Let E⊥
τ be the b-splines in Sd,t(Mτ) which are orthogonal to all the elements

in Eτ for the scalar product on the b-spline coefficients. We denote Sγ,τ = Sτ ∩
E⊥

τ ∩ ker Tτ
γ′ and similarly Sγ′,τ = Sτ ∩ E⊥

τ ∩ ker Tτ
γ . By construction, we have

Sτ ⊃ Sγ,τ ⊕ Eτ ⊕ Sγ′,τ.

Definition 3.3. The space Sτ is separable if Sτ = Sγ,τ ⊕ Eτ ⊕ Sγ′,τ.

If Sτ is separable, then any G1-spline function ∈ Sτ can be uniquely decom-
posed as a sum of a G1-spline function f with Tσ0

γ ( f ) = Tσ1
γ ( f ) = Tσ0

γ′ ( f ) =

Tσ1
γ′ ( f ) = 0 , a function g determined by its coefficients Tσ0

γ (g), Tσ1
γ (g), and a func-

tion h determined by its coefficients Tσ0
γ′ (h), Tσ1

γ′ (h). This implies that the Bézier

coefficients of a G1-spline at a vertex are linearly independent of the Bézier coef-
ficients at the other vertex.

If Sτ is not separable, there exists an element in Sτ with non-zero Bézier coef-
ficients at the two vertices, linearly independent of the G1-spline functions with
zero coefficients at one of the vertices. If the mesh has more that one edge, this
will induce the existence of G1-spline basis functions attached to vertices, whose
support is not included in the neighborhood of cells adjacent to the vertex. Since
we are interested in G1-spline spaces that admit a basis of functions with a local
support, hereafter we only consider and construct separable G1-spline spaces.

We construct now explicit spaces of G1-spline functions along an edge. We
consider b-spline spaces Rd,t with a small degree d (d = 2, . . . , 7) and a small
number m2 of control points per face (m 6 8). The knots t of the b-spline func-
tions are between 0 and 1. The set of distinct knots is a uniform subdivision of the
interval [0, 1], so that the b-spline functions share the same knots on the common
edges. The gluing data on the edge are of the form a(u) = a Θ0(u) − b Θ1(u),
b(u) = −1 with a, b two parameters and Θ0(u), Θ1(u) two functions interpolat-
ing 1 at 0 and 1.

Translating the equations (3.2) and (3.5) into linear equations in the 4 m coef-
ficients cσ1

i,j( f ), cσ0
j,i( f ) for 0 6 i 6 m − 1 and 0 6 j 6 1, we compute bases of the

spaces Sτ,Sγ,τ, Eτ,Sγ′,τ depending on the values of a, b for a given edge τ. This
can be precomputed for given degree and knot distribution of b-spline patches
and for given type of gluing data (e.g. using a computer algebra system such as
Maple).

Basis of Eτ

We compute a basis eτ
1 , . . . , eτ

l of Eτ defined by the equations (3.2), (3.5), Tτ
γ( f ) = 0

and Tτ
γ′( f ) = 0. Notice that the functions eτ

i are G1 splines on the whole topolog-

ical space M, since they are G1 along the edge τ and Tτ
γ(e

τ
i ) = Tτ

γ′(eτ
i ) = 0. These

will be called the edge basis functions of the edge τ.

We denote by B1
τ = {b

σk1
i1,j1

, . . . , b
σkl
il ,jl

} a set of free coefficients in the linear sys-
tem of equations (3.2), (3.5), Tτ

γ( f ) = 0, Tτ
γ′( f ) = 0. This is a Minimal Determin-

ing Set of coefficients for Eτ.
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Basis of Sγ,τ

By definition of the space Sγ,τ, when the G1-spline space Sτ is separable and
ample, the map Tσ

γ is injective on Sγ,τ and its image is at least of dimension 4.
This implies that the dimension of Sγ,τ is at least 4. Since there are 3 independent
relations between the 8 Taylor coefficients at a vertex γ on the two faces σ, σ′ (the
coefficients on the common edge are equal and the derivatives along the edges
adjacent to γ are dependent), the dimension of Sγ,τ is at most 8 − 3 = 5.

We define δ(γ, τ) = 0 if dim(Sγ,τ) = 5 and δ(γ, τ) = 1 otherwise. If τ is a
boundary edge, we let δ(γ, τ) = 0. By definition dim Sγ,τ = 5 − δ(γ, τ) We says
that τ is a crossing edge at γ if δ(γ, τ) = 1 and a non-crossing edge otherwise.
We define δ(γ) = min{δ(γ, τ) | τ ∋ γ}.

• If δ(γ, τ) = 1 (crossing edge), dim(Sγ,τ) = 4 and a Minimal Determining
Set of coefficients is associated to the b-spline functions B0

γ,τ = {bσ0
0,0, bσ0

1,0, bσ0
0,1, bσ0

1,1}.

• If δ(γ, τ) = 0 (non-crossing edge), dim(Sγ,τ) = 5 and a minimal determin-
ing set of Sγ,τ is associated to the b-spline functions Bγ,τ = {bσ0

0,0, bσ0
1,0, bσ0

0,1, bσ0
1,1, bσ1

1,1}.

These sets are maximal sets of free coefficients in the linear system defining Sγ,τ.
They are Minimal Determining Sets for Sγ,τ.

The space Sγ,τ = Sτ ∩ E⊥
τ ∩ ker Tτ

γ′ is defined by the equations (3.2), (3.5),
〈 f , eτ

i 〉 = 0, i = 1, . . . , l, and Tτ
γ′( f ) = 0.

As Bγ,τ is a maximal set of free coefficients in this system, it can be trans-
formed by linear combinations of these equations, into a system of the form

[

Aγ,τ Id
]

· c( f ) = 0 (3.16)

where the columns of Aγ,τ are indexed by the coefficients Bγ,τ and the last iden-
tity block indexed by the set Cγ,τ of remaining coefficients among all coefficients
of b-splines functions supported along τ. The vector c( f ) is the vector of all the
coefficients of functions supported along τ.

Notice that this matrix Aγ,τ can be precomputed for each edge τ, indepen-
dently of the structure of the mesh. It depends only on the gluing data on τ.

Examples of ample separable spaces

Hereafter, we describe cases of ample separable spaces of G1-splines for low d
and m. In these tables, we give the degree d, the knots t, the number m of
control points along the edge, the gluing function a(u) and the dimensions of
Sτ,Sγ,τ, Eτ,Sγ′,τ for different values of a and b.

• d = 2, t = [03, 1
4 , 1

2 , 3
4 , 13], m = 6, a(u) = a (1 − 4u)1[0, 1

4 ]
− b (4u − 3)1[ 3

4 ,1]

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 10 4 2 4
= 0 6= 0 11 4 3 4
= 0 = 0 12 4 4 4
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This construction is closely related to the construction described in [50] with
C1 biquadratic polynomials on each patch and the extraordinary vertices
separated by 4 biquadratic patches.

A construction of G1-splines which are C1 bicubic b-splines on each patch
with linear gluing data has been proposed in [46]. It applies under some
genericity conditions on M. Each face has 6 × 6 = 36 b-spline coefficients
(m = 6). An explicit computation shows that the dimensions of Sτ, Sγ,τ,
Eτ, Sγ′,τ are respectively 11, 4, 2, 4 for a 6= 0, b 6= 0. Thus the space is not
separable.

• d = 3, t = [04, 1
3 , 2

3 , 14], m = 6, a(u) = a (1 − 3u)1[0, 1
3 ]
− b (3u − 2)1[ 2

3 ,1].

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 = 0 10 4 2 4
= 0 = 0 12 4 4 4

An explicit computation shows that when a 6= 0, b 6= 0, i.e. when none of
the end points of the edge is a crossing vertex, the space Sτ is not separable.

• d = 3, t = [04, 1
3 , 1

3 , 2
3 , 2

3 , 14], m = 8, a(u) = a (1 − 3u)1[0, 1
3 ]
− b (3u − 2)1[ 2

3 ,1]

or a(u) = a (3u − 1)21[0, 1
3 ]
− b (3u − 2)21[ 2

3 ,1].

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 14 5 4 5
6= 0 = 0 15 5 6 4
= 0 = 0 16 4 8 4

The case where a is of degree 1 corresponds to the construction in [51] and
[45], where the linear function a is replaced by a piecewise linear function.
In this case, the transition map is not necessarily C1.

The second case where a is of degree 2 is a new construction. The gluing
data a is C1 for any value of a and b.

• d = 3, t = [04, 1
5 , 2

5 , 3
5 , 4

5 , 14], m = 8, a(u) = a (1 − 5u)1[0, 1
5 ]
− b (5u − 4)1[ 4

5 ,1]

or a(u) = a (1 − 5u)21[0, 1
5 ]
− b (5u − 4)21[ 4

5 ,1]

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 12 4 4 4
6= 0 = 0 14 4 6 4
= 0 = 0 16 4 8 4

These two cases are also new constructions of G1-splines. The functions are
C2 on each faces and the gluing data is C1 for any value of a and b when a

is of degree 2.

• d = 4, t = [05, 1
2 , 1

2 , 1
2 , 15], m = 8, a(u) = a (1 − 2u)21[0, 1

2 ]
− b (2u − 1)21[ 1

2 ,1]

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 14 5 4 5
6= 0 = 0 15 5 6 4
= 0 = 0 16 4 8 4
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This corresponds to the construction described in [10] with C1 biquartic b-
splines on each patch. It is also related to the construction in [52] where
biquartic patches with quadratic transition maps are involved.

• d = 5, t = [06, 16], m = 6,

For this degree, we consider gluing data of degree 1 when the vertices are
not crossing vertices (i.e. a 6= 0, b 6= 0): a(u) = a (1 − u)− b u.

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 12 5 2 5

When one of the vertices is a crossing vertex (i.e. a = 0 or b = 0, we use
gluing data of degree 2: a(u) = a (1 − u)2.

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 = 0 11 5 2 4
= 0 = 0 12 4 4 4

This corresponds to the G1-space used for the IsoGeometric Analysis appli-
cation in Section 2.

• d = 7, t = [08, 18], m = 8, a(u) = a (1 − u)2 − b u2

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 6= 0 15 5 5 5
6= 0 = 0 15 5 6 4
= 0 = 0 16 4 8 4

This is a new construction, which falls in the separable cases studied in [21].
The gluing data is C1 for any value of a and b.

3.4 G1-splines around a vertex

We present now a new method to construct G1-spline basis functions around a
vertex γ ∈ M0 from the analysis of Sγ,τ for τ ∋ γ, assuming Sτ is ample and
separable. Let σ1, . . . , σv be the faces of M adjacent to the vertex γ, where v is
the valence of γ. We denote by Mγ the sub-topological surface induced by these
faces and by gγ the corresponding gluing data. We assume that γ is an interior
point (the treatment of a boundary point will be similar). The edge between the
faces σi and σi+1 is τi = (γ, γi) for i = 1, . . . , v (with the convention that σv+1 =
σ1). The gluing data along the edge τi are denoted ai, bi. Let Sγ ⊂ S(Mγ, gγ)
be the space of G1-splines around the vertex γ, with support along the edges τi

and with zero Taylor coefficients at the exterior vertices γi. Since the elements of
Sγ have a support along the edges τi and zero Taylor coefficients at the exterior
vertices γi, they define G1-splines on the global mesh: Sγ ⊂ S(M, g).

The space Eγ ⊂ Sγ of G1-splines in Sγ supported along the edges τi with zero

Taylor coefficients at γ and at the exterior vertices γi decomposes as Eγ = ⊕
f
i=1Eτi

where Eτi
is the space of G1-splines defined in Section 3.3. Any element in Eγ is a
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sum of elements with support along the edges τi and zero Taylor coefficients at γ
and γi, that is an element of Eτi

. A basis of Eτi
has been computed in Section 3.3.

The space Sγ decomposes as Sγ = Eγ ⊕ Vγ where Vγ = E⊥
γ ∩ Sγ is the space

orthogonal (and thus supplementary) to Eγ in Sγ (for the classical inner-product
on their b-spline coefficients). We are going to construct a basis of Vγ, that we will
call the vertex basis functions of the vertex γ.

We assume for simplicity that either v = 4 and δ(γ, τi) = 1 for i = 1, . . . , 4
(crossing vertex) or δ(γ, τi) = 0 for i = 1, . . . , v (non-crossing vertex).

Vertex basis algorithm Let γ ∈ M0 be a vertex with adjacent edges τ1, . . . , τv

and adjacent faces σ1, . . . , σv.

• If δ(γ, τi) = 1 (crossing vertex), then let

Gγ = [bσ1
0,0, bσ1

1,0, bσ1
0,1, bσ1

1,1]

be the coefficient matrix of the canonical basis elements bσ1
0,0, bσ1

1,0, bσ1
0,1, bσ1

1,1.

• If δ(γ, τi) = 0, let

Gγ = [bσ1
0,0, bσ1

1,0, bσ1
0,1, bσ1

1,1, , . . . , bσv
1,1]

be the coefficient matrix of the corresponding canonical basis elements.

For i = 1, . . . , v, we define the coefficients along the edge τi as follows

Gγ[Cτi
, :] := −Aγ,τi

Gγ[Bτi
, :]

where Bτi
are the b-spline basis functions indexing the columns of Aτi

and Cτi
are

indexing the identity block in (3.16).

Proposition 3.4. The spline functions Gγ constructed by this algorithm form a basis of
Vγ.

Proof. For each edge τi, the restriction of the elements of Gγ to Mτi
are in Sγ,τi

since, by construction, we have

[

Aγ,τi
Id
]

[

Gγ[Bτi
, :]

Gγ[Cτi
, :]

]

=
[

Aγ,τi
Id
]

[

Gγ[Bτi
, :]

−Aγ,τi
Gγ[Bτi

, :]

]

= 0.

so that they satisfy the linear relations defining Sγ,τi
. As this is true for all the

edges τi containing γ, they are in Vγ.
If δ(γ, τi) = 0 (non-crossing vertex), the coefficients c

σi
0,0, c

σi
1,0, c

σi
0,1, i = 1, . . . , v

are linked by the relations c
σi
0,0 = c

σi+1
0,0 , c

σi
0,1 = c

σi+1
1,0 and c

σi+1
0,1 − c

σi+1
0,0 = bi(0)(c

σi
1,0 −

c
σi
0,0) + ai(0)(c

σi
0,1 − c

σi
0,0). As the gluing data satisfies the cocyle condition 2.2, this

system defines a linear space of dimension 3. The coefficients cσ1
1,1, . . . , cσv

1,1 are free
and the coefficients in Cτi

are determined by the relations (3.16). Thus the space
Vγ defined by all these equations is of dimension 3 + v, which is also the number
of elements in Gγ.
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Let us show that the elements in Gγ are linearly independent. By the linear
transformation of the algorithm and the cocyle condition, the matrix Gγ[Bγ, :]
is not changed and is the identity. Thus the elements Gγ are independent and,
therefore, form a basis of Vγ.

If δ(γ, τi) = 1 (crossing vertex), a similar argument on the coefficients c
σi
0,0, c

σi
1,0,

c
σi
0,1, c

σi
1,1, i = 1, . . . , v and the cocyle condition 2.2 show that Vγ is of dimension 4.

Similarly, Gγ[Bγ, :] is the identity matrix and Gγ is a basis of Vγ.

3.5 Dimension formula for Sd,t(M, g)

We consider here a degree d, a knot distribution t which gives a separable and
ample space of G1-splines Sd,t(M, g).

Theorem 3.5. Assume that Sd,t(M, g) is separable and ample then

dimSd,t(M, g) = ((m − 4)2 + 4) f2 + ∑
τ∈M1

ǫ(τ)− ∑
(γ,τ)|γ∈τ

δ(γ, τ) + 3 f0 + f0,δ

(3.17)
where

• f2 = |M2| is the number of faces of M,

• f0 = |M0| is the number of vertices of M,

• f0,δ is the number of vertices γ ∈ M such that δ(γ) = 1,

• ǫ(τ) = dim(Eτ),

• δ(γ, τ) = 5 − dim(Sγ,τ) for an interior edge, δ(γ, τ) = 0 for a boundary edge.

Proof. The dimension is obtained by counting the number of basis functions at-
tached to faces, edges, and vertices using the construction of the previous section.

For each face σ, the b-spline basis function with interior control points are
basis elements. There are (m − 4)2 such elements per face.

For each edge τ, a basis of the space Eτ are also basis elements of Sγ,τ.
For each vertex γ, the number of basis functions attached to it is 3 + fγ −

∑τ∋γ δ(γ, τ) + δ(γ), where fγ is the number of faces adjacent to γ. Since each
face has 4 vertices, ∑γ∈M0

fγ = 4 f2.
Summing up all these terms gives formula (3.17).

3.6 Example

We consider the knot sequence t = [04, 1
2 , 1

2 , 14] defining bicubic C1 splines with
m = 6 control points per edge. We take gluing data of the form a(u) = a (1 −
3u)1[0, 1

3 ]
− b (3u − 2)1[ 2

3 ,1]. Let τ be an interior edge of M and let σ0, σ1 be the
adjacent faces to τ. We have the separability property for b = 0:

a b Sτ Sγ,τ Eτ Sγ′,τ
6= 0 = 0 11 5 2 4
= 0 = 0 12 4 4 4
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The computation of a basis of Eτ for a 6= 0, b = 0 yields

Bτ = [−bσ0
1,2 + bσ1

2,1,−bσ0
1,3 + bσ1

3,1]

The relations defining Sγ,τ are of the form
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where −Aγ,τ is the matrix appearing in this system.
For a vertex γ of valence 3 (with a = 2 cos(2π

3 ) = −1) adjacent to the faces
σ0, σ1, σ2, the 6 spline basis functions of Sγ are:

bσ0
0,0 + bσ2

0,0 + 3 bσ2
1,0 + 24 bσ2

2,1 + 12 bσ2
2,0 + 12 bσ2

3,0 + bσ1
0,0 + 3 bσ1

0,1 + 12 bσ1
0,2 + 12 bσ1

0,3 + 24 bσ1
1,3,

bσ0
0,1 + 4 bσ0

0,2 + 4 bσ0
0,3 + 8 bσ0

1,3 − bσ2
1,0 − 8 bσ2

2,1 − 4 bσ2
2,0 − 4 bσ2

3,0 + bσ1
1,0 + 4 bσ1

2,0 + 4 bσ1
3,0 − bσ1

0,1 + 8 bσ1
2,1

−4 bσ1
0,2 − 4 bσ1

0,3 − 8 bσ1
1,3,

bσ0
1,0 + 4 bσ0

2,0 + 4 bσ0
3,0 + 8 bσ0

2,1 + 4 bσ2
0,3 + 4 bσ2

0,2 + bσ2
0,1 + 8 bσ2

1,3 − bσ2
1,0 − 8 bσ2

2,1 − 4 bσ2
2,0 − 4 bσ2

3,0 − bσ1
0,1

−4 bσ1
0,2 − 4 bσ1

0,3 − 8 bσ1
1,3,

−2 bσ0
2,0 − 2 bσ0

3,0 + bσ0
1,1 − 3 bσ0

2,1 − 2 bσ0
0,2 − 2 bσ0

0,3 − 3 bσ0
1,3 − 2 bσ2

0,3 − 2 bσ2
0,2 − 3 bσ2

1,3 − 2 bσ1
2,0 − 2 bσ1

3,0 − 3 bσ1
2,1,

−2 bσ0
0,2 − 2 bσ0

0,3 − 3 bσ0
1,3 − 3 bσ2

2,1 − 2 bσ2
2,0 − 2 bσ2

3,0 − 2 bσ1
2,0 − 2 bσ1

3,0 + bσ1
1,1 − 3 bσ1

2,1 − 2 bσ1
0,2 − 2 bσ1

0,3 − 3 bσ1
1,3,

−2 bσ0
2,0 − 2 bσ0

3,0 − 3 bσ0
2,1 − 2 bσ2

0,3 − 2 bσ2
0,2 − 3 bσ2

1,3 + bσ2
1,1 − 3 bσ2

2,1 − 2 bσ2
2,0 − 2 bσ2

3,0 − 2 bσ1
0,2 − 2 bσ1

0,3 − 3 bσ1
1,3.

4 Dimension computations using syzygies

The basis construction in the section above is based on the representation of the
G1-splines by using bspline coefficients. This approach is the most used on the
literature due to the simplicity of representation, and the adaptivity with CAD
systems representation. However considering the bspline functions as piecewise
polynomials may give some advantages. Indeed, we will explain in this section
that the equation (3.4) makes the partial derivatives of the element functions, co-
ordinates of a well understood object from commutative algebra, that is called
a module of syzygies. The syzygies module is the space of solutions of a linear
equation who’s coefficients and unknowns are polynomials. In this section we
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space of splines, and Ur to denote the union of all the spaces Ul,r for l ∈ N. We
assume that the dimension of Ul,t is bigger than 4, that is, 2l + 1− r > 4 and r > 0
so that l > 1

2(3 + r), which implies that l > 2.
We choose the two Hermite interpolation functions d0(u), d1(u) ∈ Ul,t such

that d0(0) = 1, d0(1) = 0, d1(0) = 0, d1(1) = 1 and d′0(0) = d′0(1) = d′1(0) =
d′1(1) = 0. These functions are going to be used to produce the gluing data as we
explained in Section 2.1. We can take, for instance,

d0(u) = b0(u) + b1(u) (3.18)
d1(u) = bm−1(u) + bm(u)

where m = 2l − r. For l = 2, r = 1, these functions are

d0(u) =

{

1 − 2u2 0 6 u 6 1
2

2(1 − u)2 1
2 6 u 6 1

d1(u) =

{

2u2 0 6 u 6 1
2

1 − 2 (1 − u)2 1
2 6 u 6 1.

For l = 2, r = 0, these functions are

d0(u) =

{

1 − 4u2 0 6 u 6 1
2

0 1
2 6 u 6 1

d1(u) =

{

0 0 6 u 6 1
2

1 − 4 (1 − u)2 1
2 6 u 6 1.

4.3 Splines along an edge

The space Sk,t(M) of splines over the mesh M can be splitted into three linearly
independent components: Ek, Hk, Fk (see Section 7) attached respectively to ver-
tices, edges and faces. The objective of this section is to give an alternative way
for analysing the component E(τ) that corresponds to splines supported along
the interior edge τ, shared by two faces σ1, σ2 ∈ M2. We will produce a basis
for it and provide a dimension formula. We denote by Mτ the sub-mesh of M
composed of the two faces σ1, σ2 that share the edge τ.

An important step is to analyse the space Syzr,r,r
k (a, b, c) of syzygies over the

base ring Ud,t. The relation of this space with E(τ)k and a basis of Syzr,r,r
k (a, b, c)

are presented in Sections 4.4 and 4.5.
Next in Section 4.6, we study the effect, on E(τ)k, of the Taylor map at the two

end points of τ and we determine when they can be separated by the Taylor map.
The Section 4.7 shows how to decompose the space Sk,t(M) for the simple

mesh Mτ, using this Taylor maps at the end points of τ. The same technique will
be used to decompose the space Sk,r(M), for a general mesh M.

4.4 Relation with syzygies

Suppose we want to glue two functions f1 and f2 defined over domains with the
coordinates (u1, v1) and (u2, v2) respectively (see the figure 3.2). If we choose the
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gluing data to be a = a
c and b = b

c , with a, b, c ∈ Us,l defining the gluing data
across the edge τ ∈ M, and ( f1, f2) ∈ Sk,t(Mτ), from (3.5) we have that:

A(u1)a(u1) + B(u1)b(u1) + C(u1)c(u1) = 0

where

A(u1) =
∂ f2

∂v2
(0, u1) ∈ Uk−1,0,

B(u1) =
∂ f2

∂u2
(0, u1) ∈ Uk,1,

C(u1) = −
∂ f1

∂v1
(u1, 0) ∈ Uk,1.

These are the conditions imposed by the transition map across τ. According
to such data, and if the topological surface Mτ contains two faces with one
transition map along the shared edge τ, then any differentiable spline functions
f = ( f1, f2) over Mτ of bi-degree 6 (k, k) is given by the formula:

f1(u1, v1) =
(

b1(v1) + b0(v1)
)

(

a0 +
∫ u1

0
A(t)dt

)

(3.19)

−
1
2k

b1(v1)C(u1) + E1(u1, v1)

f2(u2, v2) =
(

b1(u2) + b0(u2)
)

(

a0 +
∫ v2

0
A(t)dt

)

(3.20)

+
1
2k

b1(u2)B(v2) + E2(u2, v2),

since b0(0) = 1, b1(0) = 0, b′0(0) = −2k, and b′1(0) = 2k.
Here a0 ∈ R, the functions Ei ∈ ker D

σi
τ for i = 0, 1, and A, B, C are spline

functions of degree at most k − 1, k, k and class C0, C1, C1, respectively.
For r1, r2, r3, k ∈ N and a, b, c ∈ U s

l , we denote

Syzr1,r2,r3
k (a, b, c) =

{

(A, B, C) ∈ Uk−1,r1
× Uk,r2 × Uk,r3 | A a + B b + C c = 0

}

.

We denote this vector space simply by Syzr1,r2,r3
k when a, b, c are implicitly given.

By (3.19) and (3.20), the splines in Sl,r(Mτ) with a support along the edge τ
are in the image of the map:

Θτ : R × Syz0,1,1
k → Sk,r(Mτ) (3.21)

(a0, (A, B, C)) 7→

((

a0 +
∫ u1

0
A(t)dt

)

b0(v1)

+

(

a0 +
∫ u1

0
A(t)dt −

1
2k

C(u1)

)

b1(u1),

b0(u2)

(

a0 +
∫ v2

0
A(t)dt

)

+b1(u2)

(

a0 +
∫ v2

0
A(t)dt +

1
2k

B(v2)

))

.
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The classical results on the module of syzygies on polynomial rings described
in [21] (see Proposition 4.3 in the reference), will be used in order to prove the
corresponding statements in the context of syzygies on spline functions. First,
we recall the notation and results concerning the polynomial case. Let a, b, c
be polynomials in R = R[u], such that gcd(a, c) = gcd(b, c) = 1, then Z =
Syz(a, b, c) is the R-module defined by Syz(a, b, c) = {(A, B, C) ∈ R[u]3 : Aa +
Bb+Cc = 0}. The degree of an element in Syz(a, b, c) is defined as deg(A, B, C) =
max{deg(A), deg(B), deg(C)}, and we are interested in studying the subspace
Zk ⊂ Syz(a, b, c) of elements of degree less than or equal to k − 1. Let us denote
n = max{deg(a), deg(b), deg(c)}, and

e =

{

0 , if min
(

n + 1 − deg(a), n − deg(b), n − deg(c)
)

= 0 and
1 , otherwise.

Lemma 4.1. Using the notation above we have:

1. Z is a free R[u]-module of rank 2.

2. If µ and ν are the degree of the two free generators of Syz(a, b, c) with µ minimal,
then µ + ν = n.

3. dim Zk = (k− µ+ 1)++(k− n+ µ+ e)+ where t+ = max(0, t) for any t ∈ Z.

4. The generators (A1, B1, C1), (A2, B2, C2) of Z can be chosen so that

(a, b, c) = (B1C2 − B2C1, C1A2 − C2A1, A1B2 − A2B1).

A basis with minimal degree corresponds to what is called a µ-basis in the literature.

Proof. We study the syzygy module Z = Syz(a, b, c) using results on graded res-
olutions. For this purpose, we homogenize a, b and c in degree da = n + 1,
db = dc = n. Let u0, u1 be the homogeneous coordinates, and ā, b̄, c̄ the corre-
sponding homogenizations of a, b, and c. We consider the module of homoge-
neous syzygies Syz(ā, b̄, c̄) over the polynomial ring S = R[u0, u1].

Claim 4.2. For any k > 0, the elements in Zk are exactly the syzygies of degree n + k in
Syz(ā, b̄, c̄) after dehomogenization by setting u0 = 1.

Proof. It is clear that if Āā + B̄b̄ + C̄c̄ = 0, then by dehomogenization taking
u0 = 1, we get a syzygy (A, B, C) of (a, b, c). Moreover, if deg(Āā) = deg(B̄b̄) =
deg(C̄c̄) = n + k, then deg(Ā) = k − 1, deg(B̄) = k and deg(C̄) = k. It follows
that (A, B, C) ∈ Zk.

On the other hand, any syzygy (A, B, C) ∈ Zk is given by polynomials of de-
gree at most max{deg A, deg B, deg C} 6 k, and since n = max{deg a, deg b, deg c}
then we may consider the homogenization of the polynomial Aa+ Bb+Cc in de-
gree n + k. These polynomials satisfy

0 = uk+n
0 (Aa + Bb + Cc)(u1/u0

)

= uk−1
0 · un+1

0 Aa
(

u1/u0
)

+ uk
0 · un+

0 Bb
(

u1/u0
)

+ uk
0 · un

0 Cc
(

u1/u0
)

.
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It is easy to check that

Ā = uk−1
0 A(u1/u0), B̄ = uk

0B(u1/u0), C̄ = uk
0C(u1/u0)

are all polynomials in R[u1, u0], and define a syzygy of ā, b̄, c̄ of degree n + k. Let
us also notice that the polynomials

ā = un+1
0 a(u1/u0), b̄ = un

0 b(u1/u0), and c̄ = un
0 c(u1/u0)

are precisely the homogenization of a, b, c in degree da, db, dc, respectively.

As gcd(a, b, c) = 1, we have gcd(ā, b̄, c̄) = u0 if e = 1, and gcd(ā, b̄, c̄) = 1
otherwise.

Let I = (ā, b̄, c̄) be the ideal generated by ā, b̄, c̄ in S. If gcd(ā, b̄, c̄) = 1 then
there exists t0 ∈ N such that ∀t > t0, It = (u0, u1)

t and in that case, dimR(S/I)t =
0 for t sufficiently large. It follows that the Hilbert polynomial HPS/I of S/I is the
zero polynomial.

For the second case, namely if gcd(ā, b̄, c̄) = u0, since gcd(a, b, c) = 1 then the
polynomials ā/u0, b̄/u0 and c̄/u0 have gcd equal to 1. Hence there exists t0 ∈ N

such that ∀t > t0, It = u0 (u0, u1)
t−1. In this case dimR(S/I)t = 1 for t sufficiently

large, and it follows that the Hilbert polynomial HPS/I is the constant polynomial
equal to 1.

Then the exact sequence

0 → I → S → S/I → 0

implies that

HPI(t) = HPS(t)− HPS/I(t) =

(

t + 1
1

)

− e, (3.22)

where HPM is the Hilbert polynomial of the module M.
By the Graded Hilbert Syzygy Theorem, we get a resolution of the form

0 −→ S(−d1)⊕ · · · ⊕ S(−dL)
λ

−→ S(−da)⊕ S(−db)⊕ S(−dc) −→ I −→ 0.

Notice that this resolution is not necessarily minimal. Since this is an exact se-
quence, then the Hilbert polynomial of the middle term is the sum of the other
two Hilbert polynomials, and applying (3.22) we get

3t − (da + db + dc) + 3 = (t − d1 + 1) + · · ·+ (t − dL + 1) + (t + 1)− e.

It follows that L = 2 which proves (i). Furthermore, we have that the degrees d1
and d2 of the syzygies satisfy d1 + d2 = da + db + dc − e.

The matrix Λ representing λ is a 3 × 2 matrix




Ā1 Ā2
B̄1 B̄2
C̄1 C̄2





the first column corresponding to the generator of degree d1 and the second of
degree d2. These two syzygies correspond to vectors of polynomial coefficients
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of degree µ = d1 − min(da, db, dc) and ν = d2 − min(da, db, dc). By Definition,
min(da, db, dc) = n, and also da + db + dc = 3n + 1. Let us assume that d1 6 d2,
then µ is the smallest degree of the coefficient vector of a syzygy of (ā, b̄, c̄), and
ν = n − µ + 1 − e.

By exactness, the two columns of Λ generate Syz(ā, b̄, c̄). The dehomogeniza-
tion (by setting u0 = 1) of the syzygies in Syz(ā, b̄, c̄) leads to syzygies of (a, b, c)
over R[u1]. In particular, it is straightforward to show that the dehomogenization
(Ai, Bi, Ci) of (Āi, B̄i, C̄i) for i = 1, 2 generate Z = Syz(a, b, c) as a module over
R[u1]. This proves (2).

By Claim 4.2, the space Zk is in correspondence with the space of homoge-
neous syzygies of degree n+ k, which is spanned by the multiples of degree n+ k
of (Ā1, B̄1, C̄1) and (Ā2, B̄2, C̄2). Therefore,

dim Zk = (n + k − d1 + 1)+ + (n + k − d2 + 1)+
= (k − µ + 1)+ + (k − ν + 1)+

with ν = n − µ + 1 − e. This proves (3).
The point (4) is a consequence of Hilbert-Burch theorem. More details on this

proof can be found in [53, Chapter 6, § 4.17].

In the following we state the analogous to Lemma 4.1 in the context of syzy-
gies on spline functions. We consider Syzr,r,r

k as defined above. It is the set of
spline functions (A, B, C) ∈ Uk−1,r × Uk,r × Ur,k such that A a + B b + C c = 0. An
element of Syzr,r,r

k is a triple of pairs of polynomials ((A1, A2), (B1, B2), (C1, C2)).
Let R = R[u], Rk = {p ∈ R | deg(p) 6 k}, Qr = R/((2u − 1)r+1) and
Qr

k = Rk/((2u − 1)r+1).
The elements f = ( f1, f2) of Uk,r+1 are pairs of polynomials f1, f2 ∈ Rk such

that f1 − f2 ≡ 0 mod (2u − 1)r+1. Let a = (a1, a2), b = (b1, b2), c = (c1, c2) ∈ Ur

with gcd(a1, c1) = gcd(a2, c2) = gcd(b1, c1) = gcd(b2, c2) = 1. We consider the
following sequence:

0 −→ Syzr,r,r
k −→ Syz1,k × Syz2,k

φ
−→ Qr

k−1 ×Qr
k ×Qr

k

ψ
−→ Qr

n1+k −→ 0 (3.23)

where Syz1,k = Syzk(a1, b1, c1), Syz2,k = Syzk(a2, b2, c2), and

• ψ( f , g, h) = a1 f + b1g + c1h,

• φ(A, B, C) = (A1 − A2, B1 − B2, C1 − C2) (mod (2u − 1)r+1).

Lemma 4.3. The sequence (3.23) is exact for k > n1 + r where n1 = max{deg(a1),
deg(b1), deg(c1)}.

Proof. Since b1, c1 are coprime, the map ψ : ( f , g, h) ∈ Rk−1 × Rk × Rk 7→ a1 f +
b1g + c1h ∈ Rn1+k is surjective for k > n1 − 1. The map φ, obtained by working
modulo (2u − 1)r+1, remains surjective.

We have to prove that ker(ψ) = Im(φ). If (A, B, C) ∈ Syz1 × Syz2 then
ψ ◦φ(A, B, C) = (A1a1 + B1b1 +C1c1)− (A2a1 + B2b1 +C2c1) = −(A2a1 + B2b1 +
C2c1). Because a, b, c ∈ Ur, we have a1 ≡ a2 (mod (2u− 1)r+1), b1 ≡ b2 (mod (2u−
1)r+1) and c1 ≡ c2 (mod (2u − 1)r+1), so that

ψ ◦ φ(A, B, C) ≡ −(A2a2 + B2b2 + C2c2) ≡ 0 (mod (2u − 1)r+1).
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This implies that Im(φ) ⊂ ker(ψ).
Conversely, if ψ( f , g, h) = 0 with deg( f ) 6 r, deg(g) 6 r, deg(h) 6 r then

f a1 + gb1 + hc1 = d (2u − 1)r+1 for some polynomial d ∈ R of degree 6 n1 − 1.
Since gcd(b1, c1) = 1, there exists p, q ∈ Rn1−1 such that d = p b1 + q c1, we
deduce that:

(2u − 1)r+1d = (2u − 1)r+1 (p b1 + q c1) = f a1 + g b1 + h c1,

with deg((2u − 1)r+1p) 6 n1 + r. This yields

f a1 + (g − p(2u − 1)r+1) b1 + (h − (2u − 1)r+1q) c1 = 0. (3.24)

Since k > n1 + r, this implies that (( f , 0), (g− (2u− 1)r+1p, 0), (h− (2u− 1)r+1q, 0)) ∈
Syz1,k × Syz2,k and its image by φ is ( f , g, h). This shows that ker(ψ) ⊂ Im(φ) and
implies the equality of the two vector spaces.
By construction, the kernel of φ is the pair of triples ((A1, B1, C1), (A2, B2, C2)) in
Syz1,k × Syz2,k such that A1 − A2 ≡ B1 − B2 ≡ C1 − C2 ≡ 0 (mod (2u − 1)r+1),
that is, the set Syzr,r,r

k of triples (A, B, C) ∈ U r
k−1 × U r

k × U r
k such that A a + B b +

C c = 0.
This show that the sequence (3.23) is exact.

We deduce the dimension formula:

Proposition 4.4. Let (p1, q1) (resp. (p2, q2)) be a basis of Syz1 (resp. Syz2) of minimal
degree (µ1, ν1) (resp. (µ2, ν2)) and e1, e2 defined as above for (a1, b1, c1) and (a2, b2, c2).
For k > min(n1, n2) + r,

dim(Syzr,r,r
k ) = (k − µ1 + 1)+ + (k − n1 + µ1 + e1)+ + (k − µ2 + 1)+

+ (k − n2 + µ2 + e2)+ − min(r + 1, k)− (r + 1).

This dimension is denoted dτ(k, r).

Proof. By symmetry, we may assume that n1 = min(n1, n2). For k > n1 + r, the
sequence (3.23) is exact and we have

dim Syzr,r,r
k = dim Syz1,k + dim Syz2,k − dimQr

k−1 − 2 dimQr
k + dimQr

n1+k.

We have dimQr
k−1 = min(r + 1, k) and dimQr

k = dimQr
n1+k = r + 1, since

k > n1 + r. This leads to the formula, using Lemma 4.1.

4.5 Basis of the syzygy module

The diagram (3.23) allows us to construct a basis for the space of syzygies Syzr,r,r
k

associated to the gluing data a, b, c ∈ Ur. In the rest of this section we will show
how to construct such a basis.

Lemma 4.5. Assume that k > n1 + r. Using the notation of Proposition 4.4, we have
the following assertions:

• For any p2 ∈ Syz2,k, there exists p1 ∈ Syz1,k such that (p1, p2) ∈ ker(φ).
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• There exist t, s ∈ N such that if G = {(p1(2u − 1)i, 0) : 0 6 i 6 t}
⋃

{(q1(2u −
1)j, 0) : 0 6 j 6 l} then φ(G) is a basis of the vector space ker(ψ).

• ker(φ)
⊕

〈G〉 = Syz1,k × Syz2,k.

Proof. Let p2 = (A2, B2, C2) ∈ Syz2,k. As φ((0, p2)) = ( f , g, h) is in ker(ψ) (since
ψ ◦ φ = 0), we can construct p1 ∈ Syz1,k such that φ((p1, 0)) = φ((0, p2)) as we
did in the proof of Lemma 4.3 for ( f , g, h) ∈ ker(ψ) using relation (3.24). This
gives an element of the form (p1, 0) ∈ Syz1,k × {0}, and finally (p1, p2) ∈ ker(φ),
this proves the first point.

The second point follows from the fact that φ(Syz1,k × {0}) = ker(ψ) (since
by Lemma 4.3, the sequence (3.23) is exact) and that {(p1(2u − 1)i, 0) : i 6

k − µ1}
⋃

{(q1(2u − 1)j, 0) : j 6 k − ν1} is a basis of Syz1,k × {0} as a vector space,
thus the image of this basis is a generating set for ker(ψ). Since it is a R-module,
it has a basis as described in the second point of this lemma.

The third point is a direct consequence of the second one.

Considering the map in (3.22), the first point of the lemma has an intuitive
meaning: any function defined on a part of Mτ and that satisfies the gluing con-
ditions imposed by a1, b1, c1 can be extended to a function over Mτ that satisfies
the gluing conditions a, b, c. The third point allows us to define the projection πr

1
of an element on ker(φ) along 〈G〉.

Let ( p̃2, p2), (q̃2, q2) be the two projections of (0, p2) and (0, q2) by πr
1 respec-

tively. We denote:

• Z r
1 = {(0, (2u − 1)i p2) : r + 1 6 i 6 k − µ2}

• Z r
2 = {(0, (2u − 1)iq2) : r + 1 6 i 6 k − ν2}

• Z r
3 = {((2u − 1)iq1, 0) : r + 1 6 i 6 k − µ1}

• Z r
4 = {((2u − 1)i p1, 0) : r + 1 6 i 6 k − ν2}

• Z r
5 = {(2u − 1)i( p̃2, p2) : 0 6 i 6 r}

• Z r
6 = {(2u − 1)i(q̃2, q2) : 0 6 i 6 r}

• Z r = Z r
1
⋃

Z r
2
⋃

Z r
3
⋃

Z r
4
⋃

Z r
5
⋃

Z r
6

Proposition 4.6. Using the notation above we have the following:

• The set Z r is a basis of the vector space Syzr,r,r
k .

• The set Y = {(0, (2u − 1)r+1p2), (0, (2u − 1)r+1q2), ( p̃2, p2), (q̃2, q2), ((2u −
1)r+1q1, 0), ((2u − 1)r+1p1, 0)} is a generating set of the R-module Syzr,r,r.

Proof. The cardinal of Z r is equal to the dimension of Syzr,r,r
k , we have to prove

that it is a free set. Let a = (ai), b = (bi), c = (ci), d = (di), e = (ei), f = (fi) for
i ∈ {0, . . . , k} a set of coefficients. Suppose that:
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0 =
r

∑
i=0

ai(2u − 1)i( p̃2, p2) +
r

∑
i=0

bi(2u − 1)i(q̃2, q2)

+
k−r−ν1

∑
i=0

ci((2u − 1)i+r+1q1, 0) +
k−r−µ1

∑
i=0

ei((2u − 1)i+r+1p1, 0)

+
k−r−µ2

∑
i=0

di(0, (2u − 1)r+i+1p2) +
k−r−ν2

∑
i=0

fi(0, (2u − 1)i+r+1q2).

Then we have the following equations,

0 =
r

∑
i=0

ai(2u − 1)i p̃2 +
r

∑
i=0

bi(2u − 1)iq̃2 +
k−r−ν1

∑
i=0

ci(2u − 1)r+1+iq1

+
k−r−µ1

∑
i=0

ei(2u − 1)r+1+i p1 (3.25)

0 =
r

∑
i=0

ai(2u − 1)i p2 +
r

∑
i=0

bi(2u − 1)iq2 +
k−r−µ2

∑
i=0

di(2u − 1)r+1+i p2

+
k−r−ν2

∑
i=0

fi(2u − 1)r+1+iq2 (3.26)

We know that p2 and q2 are free generators of Syz2, by (3.26) this means that all
the coefficients ai, bi, di, fi that are used in the equation are zero. Replacing in the
equation(3.25) we get in the same way that the other coefficients ci, ei are zero, so
the set is free. Finally since the set Y does not change when k changes, then Y
generates Syzr,r,r.

We have similar results if we proceed in a symmetric way exchanging the
role of the first and second polynomial components of the spline functions. The
corresponding basis of Syzr,r,r

k is denoted Z ′r and the generating set of the R-
module is

Y ′ =
{(

0, (2u − 1)r+1p2
)

,
(

0, (2u − 1)r+1q2
)

,
(

p1, p̃1
)

,
(

q1, q̃1
)

,
(

(2u − 1)rq1, 0
)

,
(

(2u − 1)r p1, 0
)}

.

It remains to compute the dimension and a basis for Syzr−1,r,r
k . We deduce them

from those of Syzr−1,r−1,r−1
k and Syzr,r,r

k . They depend on the gluing data as we
explain hereafter.

Proposition 4.7.

• If a(1/2) 6= 0 then Syzr,r,r
k = Syzr−1,r,r

k , otherwise we have that dim(Syzr−1,r,r
k ) =

dim(Syzr,r,r
k ) + 1.

• For the second case, an element in Syzr−1,r,r
k \ Syzr,r,r

k is of the form: α(2u −
1)r(0, p2) + β(2u − 1)r(0, q2), with α, β ∈ R.
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For the proof of this proposition we need the following lemma that can be
proved exactly in the same way as Proposition 4.6 above.

Lemma 4.8. The set Z̃ r−1 = Z ′r ⋃{(2u − 1)r(0, p2), (2u − 1)r(0, q2)} is a basis of

Syzr−1,r−1,r−1
k .

Proof of Proposition 4.7. We denote p1 = (p1
1, p2

1, p3
1), and q1 = (q1

1, q2
1, q3

1), where p
j
i

and q
j
i are polynomials. Suppose that there exists (A, B, C) ∈ Syzr−1,r,r

k \ Syzr,r,r
k ,

then by the previous lemma we can choose (A, B, C) = α(2u− 1)r(0, p2)+ β(2u−
1)r(0, q2) with α, β ∈ R, that is:







A = α(0, (2u − 1)r p1
2) + β(0, (2u − 1)rq1

2)
B = α(0, (2u − 1)r p2

2) + β(0, (2u − 1)rq2
2)

C = α(0, (2u − 1)r p3
2) + β(0, (2u − 1)rq3

2)

But since B, C ∈ Ur, we deduce:
{

(2u − 1)r+1 divides B2 − B1 = (2u − 1)r(αp2
2 + βq2

2)
(2u − 1)r+1 divides C2 − C1 = (2u − 1)r(αp3

2 + βq3
2)

This means that
{

αp2
2(

1
2) + βq2

2(
1
2) = 0

αp3
2(

1
2) + βq3

2(
1
2) = 0

As the determinant of this system is exactly p2
2(

1
2)q

3
2(

1
2)− p3

2(
1
2)q

2
2(

1
2) = a(1

2), we
deduce the two points of the proposition.

Lemma 4.8 implies the following proposition:

Proposition 4.9. The dimension of Syzr−1,r,r
k is d̃τ(k, r) = dτ(k, r) + δτ with δτ = 1 if

a(1
2) = 0 and 0 otherwise.

4.6 Separation of vertices

We analyze now the separability of the spline functions on an edge, that is when
the Taylor map at the vertices separate the spline functions.

Let f = ( f1, f2) ∈ R(σ1) ⊕R(σ2) of the form fi(ui, vi) = pi + qi ui + q̃i vi +
si uivi + ri u2

i + r̃i v2
i + · · · . Then

Tγ( f ) = [p1, q1, q̃1, s1, p2, q2, q̃2, s2].

If f = ( f1, f2) ∈ Sk,r(Mτ), then taking the Taylor expansion of the gluing condi-
tion (3.5) centered at u1 = 0 yields

q2 + s1 u1 = (a(0) + a′(0)u1 + · · · ) (q̃2 + 2 r̃2 u1 + · · · ) (3.27)
+(b(0) + b′(0)u1 + · · · ) (q2 + s2 u1 + · · · )

Combining (3.27) with (3.2) yields

p1 = p2

q1 = q̃2

r1 = r̃2

q̃1 = a(0) q̃2 + b(0) q2

s1 = 2 a(0) r̃2 + b(0) s2 + a′(0) q̃2 + b′(0) q2.
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Let H(γ) be the linear space spanned by the vectors [p1, q1, q̃1, s1, p2, q2, q̃2, s2],
which are solution of these equations.

If a(0) 6= 0, it is a space of dimension 5 otherwise its dimension is 4. Thus
dimH(γ) = 5 − cτ(γ).

In the next proposition we use the notation of the previous section.

Proposition 4.10. For k > ν1 + 1 we have Tγ(Sk,r(Mτ)) = H(γ). In particular
dim(Tγ(Sk,r(Mτ))) = 5 − cτ(γ).

Proof. By construction we have Tγ(Sk,r(Mτ)) ⊂ H(γ). Let us prove that they
have the same dimension. If (A, B, C) ∈ Syzr,r,r

k with A = (A1, A2),B = (B1, B2),C =

(C1, C2), then (A1, B1, C1) is an element of the R-module spanned by p1 = (p1
1, p2

1, p3
1),

q1 = (q1
1, q2

1, q3
1), ie (A, B, C) = a1((1 − 2u)r+1p1, 0) + P(p1, p̃1) + Q(q1, q̃1). Let

f = ( f1, f2) = Θτ(a0, (A, B, C)) (see (3.21)), then it is easy to see that:

Tγ( f ) =

















f1(γ)
∂u1 f1(γ)
∂u2 f2(γ)
−∂v1 f1(γ)
∂u2∂v2 f2(γ)
−∂u1∂v1 f1(γ)

















(3.28)

=



















1 0 0 0 0 0
0 p1

1(0) p1
1(0) q1

1(0) 0 0
0 p2

1(0) p2
1(0) q2

1(0) 0 0
0 p3

1(0) p3
1(0) q3

1(0) 0 0
0 p2

1
′
(0)− 2(r + 1)p2

1(0) p2
1
′
(0) q2

1
′
(0) p2

1(0) q2
1(0)

0 p3
1
′
(0)− 2(r + 1)p3

1(0) p3
1
′
(0) q3

1
′
(0) p3

1(0) q3
1(0)



































a0
a1

P(0)
Q(0)
P′(0)
Q′(0)

















The second column of the matrix is linearly dependent on the third and fifth
columns. Using the same argument as in the proof of [21, Proposition 4.7] on the
first and 4 last columns of this matrix, we prove that its rank is 5 − c

γ
τ . By taking

P, Q ∈ R1 of degree 6 1, which implies that k > max(deg(P p1), deg(Q q1)) =
ν1 + 1, the vector [a0, P(0), Q(0), P′(0), Q′(0)] can take all the values of R

5 and we
have Tγ(Sk,r(Mτ)) = H(γ). This ends the proof.

We consider now the separability of the Taylor map at the two end points
γ, γ′.

Proposition 4.11. Assume that k > max(ν1 + 2, ν2 + 2, µ1 + r + 1, µ2 + r + 1). Then
Tγ,γ′(Sk,r(Mτ)) = (H(γ),H(γ′)) and dim Tγ,γ′(Sk,r(Mτ)) = 10− cτ(γ)− cτ(γ′).

Proof. The inclusion Tγ,γ′(Sk,r(Mτ)) ⊆ (H(γ),H(γ′)) is clear by construction.
For the converse, we show that the image of Tγ,γ′ ◦ Θτ contains (H(γ), 0) and
then by symmetry we have that (0,H(γ)) is in the image of Tγ,γ′ ◦ Θτ. Let f =

( f1, f2) = Θτ(a0, (A, B, C)) ∈ Sk,r(Mτ) with (A, B, C) = a1((1 − 2u)r+1p1, 0) +
P(p1, p̃1) + Q(q1, q̃1) and P, Q ∈ U2,r. The image of f by Tγ is of the form (3.28).
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The image of f by Tγ′ is of the form

Tγ′( f ) =

















f1(γ
′)

∂u1 f1(γ
′)

∂u2 f2(γ
′)

−∂v1 f1(γ
′)

∂u2∂v2 f2(γ
′)

−∂u1∂v1 f1(γ
′)

















=

















1 t1 0 0 0 0
0 0 p̃1

1(1) q̃1
1(1) 0 0

0 0 p̃2
1(1) q̃2

1(1) 0 0
0 0 p̃3

1(1) q̃3
1(1) 0 0

0 0 p̃2
1
′(1) q̃2

1
′(1) p̃2

1(1) q̃2
1(1)

0 0 p̃3
1
′(1) q̃3

1
′(1) p̃3

1(1) q̃3
1(1)

































a0
a1

P(1)
Q(1)
P′(1)
Q′(1)

















+

















L1(P) + L2(Q)
0
0
0
0
0

















with t1 =
∫ 1/2

0 (1 − 2u)r+1p1
1du, L1(P) =

∫ 1
0 P p̃1

1du, L2(Q) =
∫ 1

0 Q q̃1
1du. By

choosing P(1) = P′(1) = Q(1) = Q′(1) = 0 and a0 + t1a1 = 0, we have an
element in the kernel of this matrix. By choosing a0, P(0), P′(0), Q(0), Q′(0) and
a1 such that a0 + t1a1 + L1(P) + L2(Q) = 0, we can find a solution to the system
(3.28) for any f ∈ Sk(Mτ). Therefore, constructing spline coefficients P, Q ∈
U r

2 which interpolate prescribed values and derivatives at 0, 1, we can construct
spline functions f ∈ Sk(Mτ) such that Tγ( f ) span H(γ) and Tγ′( f ) = 0. The
degree of the spline is k > max(ν1 + 2, µ1 + r+ 1). By symmetry, for k > max(ν2 +
2, µ2 + r + 1), we have (0,H(γ′)) ⊂ Tγ,γ′(Sk,1(Mτ), which concludes the proof.

Definition 4.12. The separability s(τ) of the edge τ is the minimal k such that

Tγ,γ′(Sk,r(Mτ)) = (Tγ(Sk,r(Mτ)), Tγ′(Sk,r(Mτ)))

.

The previous proposition shows that s(τ) 6 max(ν1 + 2, ν2 + 2, µ1 + r+ 1, µ2 +
r + 1).

4.7 Decomposition and dimension

Let τ ∈ M1 be an interior edge τ shared by the cells σ0, σ1 ∈ M2. The Taylor map
along the edge τ of Mτ is

Dτ : Rk(σ0)⊕Rk(σ1) → Rk(σ0)⊕Rk(σ1)

( f0, f1) 7→ (Dσ0
τ ( f0), Dσ1

τ ( f1)
)

.

Its image is the set of splines of Rk,r(σ1)⊕Rk,r(σ2) with support along τ. The ker-
nel is the set of splines of Rk,r(σ1)⊕Rk,r(σ2) with vanishing b-spline coefficients
along the edge τ. The elements of ker(Dτ) are smooth splines in Sk,r(Mτ). Let
Wk(τ) = Dτ(Sk,r(Mτ)). It is the set of splines in Sk,r(Mτ) with a support along
τ. As Dτ is a projector, we have the decomposition

Sk,r(Mτ) = ker(Dτ)⊕ Wk(τ). (3.29)
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From the relations (3.19) and (3.20), we deduce that Wk(τ) = Im Θτ. Since Θτ

is injective, thus dim(Wk(τ)) = dim Syzr,r,r
k−1 + 1 = dτ(k, r) + 1 and Wk(τ) 6= {0}

when k > µ1 and k > µ2 (Lemma (4.1) (iii)).
The map Tγ,γ′ defined in Section 3.2 induces the exact sequence

0 → Kk(τ) → Sk,r(Mτ)
Tγ,γ′
−→ H(τ) → 0 (3.30)

where Kk(τ) = ker(Tγ,γ′) and H(τ) = Tγ,γ′(Sk,r(Mτ)).

Definition 4.13. For an interior edge τ ∈ Mo
1, let Ek(τ) = ker(Tγ,γ′) ∩ Wk(τ) =

ker(Tγ,γ′) ∩ Im Dτ be the set of splines in Sk,r(Mτ) with their support along τ and
with vanishing Taylor expansions at γ and γ′. For a boundary edge τ′ = (γ, γ′), which
belongs to a face σ, we also define Ek(τ

′) as the set of elements of Rk,r(σ) with their
support along τ′ and with vanishing Taylor expansions at γ and γ′.

Notice that the elements of Ek(τ) have their support along τ and that their
Taylor expansion at γ and γ′ vanish. Therefore, their Taylor expansion along all
(boundary) edges of Mτ distinct from τ also vanish.

As ker(Dτ) ⊂ Kk(τ), we have the decomposition

Kk(τ) = ker(Dτ)⊕ Ek(τ). (3.31)

We deduce the following result

Lemma 4.14. For an interior edge τ ∈ Mo
1 and for k > s(τ), the dimension of Ek(τ) is

dim Ek(τ) = d̃τ(k, r)− 9 + cτ(γ) + cτ(γ
′).

Proof. From the relations (3.29), (3.30) and (3.31), we have

dim Ek(τ) = dimKk(τ)− dim ker(Dτ)

= dimSk,r(Mτ)− dimHk(τ)− dimSk,r(Mτ) + dim Wk(τ)

= dim Wk(τ)− dimHk(τ),

which gives the formula using Proposition 4.11.

Remark 4.15. When τ is a boundary edge, which belongs to the face σ ∈ M2, we have
Sk,r(Mτ) = Rk,r(σ) and dim Ek(τ) = 2(m + 1)− 8 = 4k − 2r − 6.

4.8 Basis functions associated to an edge

Suppose that Br
k = {βi}i=0...l with l = dim Syzr−1,r,r

k−1 and βi = (β1
i , β2

i , β3
i ), is a

basis of Syzr−1,r,r
k−1 . We know also that Ek = { f = Θτ(a0, (A, B, C)) : Tγ,γ′( f ) =

0, (A, B, C) ∈ Syzr−1,r,r
k−1 }, but we have:

Tγ,γ′( f ) =

(

Tγ

Tγ′

)

=

(

c0, A(0),−C(0),−C′(0), c0, B(0), A(0), B′(0)
c0 +

∫ 1
0 A(u)du, A(1),−C(1), C′(1), c0 +

∫ 1
0 A(u)du, B(1), A(1), B′(1)

)
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Suppose that (A, B, C) =
(

∑ biβ
1
i , ∑ biβ

2
i , ∑ biβ

3
i

)

with bi ∈ R, then Tγ,γ′( f ) = 0 is
equivalent to the system:











































a0 = 0
∑ biβ

1
i (0) = 0

∑ biβ
2
i (0) = 0

∑ biβ
3
i (0) = 0

∑ biβ
2′
i (0) = 0

∑ biβ
3′
i (0) = 0

∑ bi

∫ 1
0 βi(t)dt = −a0























∑ biβ
1
i (1) = 0

∑ biβ
2
i (1) = 0

∑ biβ
3
i (1) = 0

∑ biβ
2′
i (1) = 0

∑ biβ
3′
i (1) = 0

(3.32)

The system (3.32) directly depends on the gluing data (3.1) along the edge via
equations (3.19) and (3.20), see Section 4.4 above. An explicit solution requires
the computation of a basis for the syzygy module, which is constructed in Section
4.5. The image by Θτ (defined in (3.21)) of a basis of the solutions of this system
yields a basis of Ek.

5 Splines around a vertex

In this section, we analyse the spline functions, attached to a vertex, that is, the
spline functions which Taylor expansions along the edges around the vertex van-
ish. We analyse the image of this space by the Taylor map at the vertex, and
construct a set of linearly independent spline functions, which images span the
image of the Taylor map. These form the set of basis functions, attached to the
vertex.

Let us consider a topological surface Mγ composed by quadrilateral faces
σ1, . . . , σF(γ) sharing a single vertex γ, and such that the faces σi and σi−1 have a
common edge τi = (γ, δi), for i = 2, . . . , F(γ). If γ is an interior vertex then we
identify the indices modulo F(γ) and τ1 is the common edge of σF(γ) and σ1, see
Fig. 3.5.

b γ

σ1

σ2

σ3 σ4

σ5

τ1
τ2

τ3

τ4

τ5

b

b

bb

b

δ4

δ5

δ1δ2

δ3

Figure 3.5: Topological surface Mγ composed by F(γ) = 5 quadrilateral faces
glued around the vertex γ.

The gluing data attached to each of the edges τi will be denoted by ai =
ai
ci

, bi =
bi
ci

. By a change of coordinates we may assume that γ is at the origin (0, 0), and
the edge τi is on the line vi = 0, where (ui−1, vi−1) and (ui, vi) are the coordinate
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systems associated to σi−1 and σi, respectively. Then the transition map at γ across
τi from σi to σi−1 is as given by

φτi
: (ui, vi) →

(

vibi(ui)
ui + viai(ui)

)

;

following the notation in (3.1), we have φτi
= φi−1,i.

The restriction along the boundary edges of Mγ is defined by

Dγ :
F(γ)
⊕

i=1

R(σi) →
⊕

τ∈∂Mγ

τ 6∋γ

Rσi(τ)

( fi)
F(γ)
i=1 7→

(

D
σi
τ ( fi)

)

τ 6∋γ

where D
σi
τ is the Taylor expansion along τ on σi, see Section 3.2.

Let Vk(γ) be the set of spline functions of degree 6 k on Mγ that vanish at the
first order derivatives along the boundary edges:

Vk(γ) = ker Dγ ∩ Sk,r(Mγ). (3.33)

The gluing data and the differentiability conditions in (3.5) lead to conditions on
the coefficients of the Taylor expansion of fi, namely

fi(ui, vi) = p + qiui + qi+1vi + siuivi + riu
2
i + ri+1v2

i + · · · (3.34)

with p, qi, si, ri ∈ R, and for i = 2, . . . , F the following two conditions are satisfied

qi+1 = ai(0)qi + bi(0)qi−1 (3.35)

si = 2ai(0)ri + bi(0)si−1 + a′i(0)qi + b′i(0)qi−1. (3.36)

Let H(γ) be the space spanned by the vectors h = [p, q1, . . . , qF(γ), s1, . . . , sF(γ)]
such that p, q1, . . . , qF(γ), s1, . . . , sF(γ), r1, . . . , rF(γ) ∈ R give a solution for (3.35)
and (3.36). The following result was proved in [21, Proposition 5.1] in the case of
polynomial splines.

Proposition 5.1. For a topological surface Mγ consisting of F(γ) quadrangles glued
around an interior vertex γ,

dimH(γ) = 3 + F(γ)− ∑
τ∋γ

cτ(γ) + c+(γ),

where cτ(γ), c+(γ) are as in Definition 1.4.

Since the vectors in H(γ) only depend on the Taylor expansion of f at γ, and
f can be seen as a polynomial spline in a neighborhood of γ, then the proof of
Proposition 5.1 follows the same argument as the one in [21].

Proposition 5.2. For a topological surface Mγ as before, if s(τi) denotes the separability
of the edge τi as in Definition 4.12, then

Tγ

(

Vk(γ)
)

= H(γ),

for every k > max{s(τi) : i = 1, . . . , F(γ)}.
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Proof. By definition (see (3.33)), the elements of Vk(γ) satisfy the conditions (3.35)
and (3.36) on the Taylor expansion of f , then Tγ

(

Vk(γ)
)

⊆ H(γ).
Let us consider a vector h = [p, q1, . . . , qF(γ), s1, . . . , sF(γ)] ∈ H(γ), we need

to prove that this vector is in the image Tγ

(

Vk(γ)
)

. In fact, by Proposition 4.11
applied to τi = [γ, δi], there exists ( f

τi
i , f

τi
i−1) ∈ Sk,r(Mτi

) such that Tγ( f
τi
i , f

τi
i−1) =

[p, qi, qi+1, si, p, qi−1, qi, si−1] and Tδi
( f

τi
i , f

τi
i−1) = 0 for k > s(τi), for i = 2, . . . , F.

Let us notice that in such case, T
σi
γ ( f

τi
i ) = T

σi
γ ( f

τi+1
i ). Thus, it follows that there

exists gi ∈ Rk(σi) such that T
σi
τi
(gi) = f

τi
i and T

σi
τi+1(gi) = f

τi+1
i . The spline gi

is constructed by taking the coefficients of f
τi
i and f

τi+1
i in Rσi(τi) and Rσi(τi+1),

respectively (see Section 3.2). Since T
σi
δi
( f

τi
i ) = T

σi
δi
(gi) = 0 and T

σi
δi+1

( f
τi+1
i ) =

T
σi
δi+1

(gi) = 0 then T
σi
τ (gi) = 0 for every edge τ ∈ σi such that γ /∈ τ. Let g =

[g1, g2, . . . , gF(γ)] where gi ∈ Rk(σi) is as previously constructed. Then g and their
first derivatives vanish on the edges in ∂Mγ, and g satisfies the gluing conditions
along all the interior edges τi of Mγ, i.e. g ∈ Sk,r(Mγ) ∩ ker Dγ. Hence g ∈
Vk(γ), and by construction Tγ(g) = h.

Given a topological surface M, let T be the Taylor map at all the vertices of
M, as defined in Section 3.2. We have the following exact sequence

0 → Kk(M) → Sk,r(M)
T
−→ Hk(M) → 0 (3.37)

where Hk(M) = T
(

Sk,r](M)
)

and Kk(M) = ker T ∩ Sk,r(M). Let us define
s∗ = max{s(τ) : τ ∈ M1}. From Proposition 4.11, we know that s∗ 6 2 +
max{vτ

i : for i = 1, 2 and τ ∈ M1} + min(3, r), where (uτ
i , vτ

i ) for i = 1, 2 are
the degrees of the generators of Syz1 and Syz2, respectively, with uτ

i 6 vτ
i .

Proposition 5.3. Let F(γ) and H(γ) be as defined above for each vertex γ ∈ M0, then
for every k > s∗ we have T(Sk,r(M)) = ∏γ H(γ) and

dim T(Sk,r(M)) = ∑
γ∈M0

(F(γ) + 3)− ∑
γ∈M0

∑
τ∋γ

cτ(γ) + ∑
γ∈M0

c+(γ).

Proof. The statement follows directly applying Propositions 5.2 and 5.1 to each
vertex γ ∈ M0, with Mγ the sub-mesh of M which consists of the quadrangles
in M containing the vertex γ.

5.1 Basis functions associated to a vertex

Given a topological surface M, for each vertex γ ∈ M0, let us consider the sub-
mesh Mγ consisting of all the faces σ ∈ M such that γ ∈ σ, as before, we denote
this number of such faces by F(γ). From Proposition 5.3 we know the dimension
of T(Sk,r(M)) for k > s∗. In the following, we construct a set of linearly indepen-
dent splines B0 ⊆ Sk,r(M) such that span{T( f ) : f ∈ B0} = T(Sk,r(M)).

Let us take a vertex γ ∈ M0 and consider the b-spline representation of the
elements fσ ∈ Rk(σ) for σ ∈ Mγ. We construct a set B0(γ) ⊂ Sk,r(Mγ) of
linearly independent spline function as follows:
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• First we add one basis function f attached to the value at γ, such that
Tσ

γ ( fσ)(γ) = 1 for every σ ∈ Mγ. Let us notice that if we define gσ =
∑06i,j61 Ni(uσ)Nj(vσ) for every σ ∈ Mγ, and g on Mγ such that g|σ = gσ,
then g(γ) = 1. We lift g to a spline f on Mγ such that f is in the image of
the map Θτ defined in (3.21), for every τ ∈ M1 attached to γ.

• We add two basis functions g, h supported on Mγ and attached to the
first derivatives at γ. Namely, let us consider gσ1 = (1/2k)

(

N0(uσ1) +

N1(uσ1)
)

N1(vσ1), and hσ1 = (1/2k)N1(uσ1)
(

N0(vσ1) + N1(vσ1)
)

. The con-
ditions (3.35) and (3.36) allow us to find gσi

and hσi
, for i = 2, . . . , F(γ) from

gσ1 and hσ1 , respectively. Thus, we define g and h on Mγ by taking g|σ = gσ

and h|σ = hσ. Since g and h by construction satisfy the gluing conditions
(3.2) and (3.5) along the edges, then they are splines in the image Sk,r(Mγ)
of Θτ for every interior edge τ ∈ Mγ.

• For each edge τi for i = 1, . . . , F(γ), let us define the function gσi
= c

σi
1,1

(gσi
)N1(uσi

)N1(vσi
), where c

σi
1,1(gσi

) = 1/4k2 if τi is not a crossing edge,
and equal to zero otherwise. Then, for every fix edge τi ∈ Mγ attached
to γ we construct a spline g on Mγ such that g|σi

= gσi
, and g|σj

for j 6=
i are determined by gσi

and the gluing data at γ, according to (3.35) and
(3.36). The previous construction produces F(γ) − ∑τ∋γ cτ(γ) (non-zero)
spline functions. These splines, by construction, are in the image of Θτ

(3.21) along all the edges τ ∈ M1 attached to γ.

• If γ is a crossing vertex, by definition all the edges attached to γ are crossing
edges. In this case, we define gσ1 = (1/4k2)N1(uσ1)N1(vσ1), and determine
gσi

for i = 2, . . . , F(γ) using the gluing data at γ and conditions (3.35) and
(3.36). Defining g on Mγ by g|σi

= gσi
we obtain a spline in Sk,r(Mγ).

Let us notice that if τi is a crossing edge then, following the notation in the Taylor
expansion of gi(ui, vi) in (3.34), the coefficient si = ∂uσi

∂vσi
gi(ui, vi)|γ becomes

dependent on si−1, qi and qi−1 and therefore there is no additional basis function
associated to the edge τi.

Applying the previous construction to every γ ∈ M0, we obtain a collection
of splines B0(γ) ⊆ Sk,r(Mγ) for each γ ∈ M0. We lift the splines f ∈ Sk,r(Mγ) to
functions on M by defining fσ = 0 for every σ /∈ Mγ. To simplify the exposition,
we abuse the notation, and will also call f the lifted spline on M, and B0(γ) the
collection of those splines.

Definition 5.4. For a topological surface M, let B0 ⊆ Sk,r(M) be the set of linearly
independent functions defined by

B0 =
⋃

γ∈M0

B0(γ), (3.38)

where B0(γ) ⊆ Sk,r(Mγ), for each vertex γ ∈ M.

By construction, the collection of splines in B0(γ), for each vertex γ ∈ M0,
and B0, are linearly independent. Moreover, the number of elements in B0 co-
incides with the dimension of Hk(M) and hence they constitute a basis for the
spline space Sk,r(M) whose Taylor map T (3.37) is not zero.
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6 Splines on a face

Let Fk(M) be the spline functions in Sk,r(M) with vanishing Taylor expansion
along all the edges of M, that is, Fk(M) = Sk,r(M) ∩ ker D.

An element f is in Fk(M) if and only if cσ
i,j( f ) = 0 for i 6 1 or i > m − 1, j 6 1

or j > m − 1 for all σ ∈ M2.
Let Fk(σ) be the elements in Fk(M) with cσ′

i,j( f ) = 0 for 0 6 i, j 6 m and
σ′ 6= σ.

• The dimension of Fk(σ) is (2 k − r − 3)2
+.

• A basis of Fk(σ) is bi(uσ)bj(vσ) for 1 < i, j < m − 1.

We easily check that Fk(M) = ⊕σFk(σ), which implies the following result:

Lemma 6.1. The dimension of Fk(M) is (2k − r − 3)2
+F2, where F2 is the number of

(quadrangular) faces of M.

Basis functions associated to a face. The set Fk(M) of basis functions associ-
ated to faces is obtained by taking the union of the bases of Fk(σ) for all faces
σ ∈ M2, that is,

B2 := {bi(uσ)bj(vσ), 1 < i, j < m − 1, σ ∈ M2}. (3.39)

7 Dimension and basis of Splines on M

We have now all the ingredients to determine the dimension of Sk,r(M) and a
basis.

Theorem 7.1. Let s∗ = max{s(τ) | τ ∈ M1}. Then, for k > s∗,

dimSk,r(M) = (2k − r − 3)2F2 + ∑τ∈M1
d̃τ(k, r) + 4F2 − 9F1 + 3F0 + F+

where

• d̃τ(k) is the dimension of the syzygies of the gluing data along τ in degree 6 k,

• F2 is the number of rectangular faces,

• F1 is the number of edges,

• F0 (resp. F+) is the number of (resp. crossing) vertices,

Proof. By construction, Kk(M) = Sk,r(M)∩ ker T is the set of splines in Sk,r(M),
which Taylor expansion at all the vertices vanish and Hk(M) is the image of
Sk,r(M) by the Taylor map T. Thus we have the following exact sequence:

0 → Kk(M) → Sk,r(M)
T

−→ Hk(M) → 0. (3.40)
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The degrees of the µ-bases of the different components are respectively µ1 =
0, ν1 = 2, µ2 = 0, ν2 = 0. Thus the separability is reached from the degree k > 4.

We are going to analyze the spline space S1,1
4 (M) for specific gluing data. An

element f ∈ S1,1
4 (M) is represented on each cell σi (i = 1, 2, 3) by a tensor product

b-spline of class C1 with 8 × 8 b-spline coefficients:

fk := ∑
06i,j67

ck
i,j( f )Ni,j(uk, vk),

where Ni,j(u, v) = Ni(u)Nj(v) and {N0(u), . . . , N7(u)} is the basis of Uk,1. We
describe an element f ∈ S1,1

4 (M) as a triple of b-spline functions
[

∑
06i,j67

c1
i,jNi,j , ∑

06i,j67
c2

i,jNi,j , ∑
06i,j67

c3
i,jNi,j

]

.

The separability is reached at degree 4 and we have the following basis elements,
described by a triple of functions which are decomposed in the b-spline bases of
each face:
• The number of basis functions attached to γ is 6 = 1 + 2 + 3.

– The basis function associated to the value at γ is
[

N0,0 +
1
3

N0,2 + N0,3 + N0,4 + 2 N1,3 + 2 N1,4 +
1
3

N2,0 + N3,0 + N4,0,

N0,0 +
1
3

N2,0 + N3,0 + N4,0 + 3 N0,1 +
31
3

N0,2 + 17 N0,3 + 17 N0,4

+ 14 N1,2 + 34 N1,3 + 34 N1,4,

N0,0 + 3 N1,0 +
31
3

N2,0 + 17 N3,0 + 17 N4,0 +
1
3

N0,2 + N0,3 + N0,4

+ 2 N1,3 + 2 N1,4

]

.

– The two basis functions associated to the derivatives at γ are
[

N0,1 +
10
3

N0,2 +
16
3

N0,3 +
16
3

N0,4 +
14
3

N1,2 +
32
3

N1,3 +
32
3

N1,4 ,

N1,0 +
10
3

N2,0 +
16
3

N3,0 +
16
3

N4,0 ,

− N0,1 −
10
3

N0,2 −
16
3

N0,3 −
16
3

N0,4 −
16
3

N1,2 −
32
3

N1,3 −
32
3

N1,4

− N1,0 −
10
3

N2,0 −
16
3

N3,0 −
16
3

N4,0

]

,
[

N1,0 +
10
3

N2,0 +
16
3

N3,0 +
16
3

N4,0 ,

− N0,1 −
10
3

N0,2 −
16
3

N0,3 −
16
3

N0,4 −
14
3

N1,2 −
32
3

N1,3 −
32
3

N1,4 ,

− N1,0 −
10
3

N2,0 −
16
3

N3,0 −
16
3

N4,0 + N0,1 +
10
3

N0,2 +
16
3

N0,3

+
16
3

N0,4 +
14
3

N1,2 +
32
3

N1,3 +
32
3

N1,4

]

.
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– The three basis functions associated to the cross derivatives at γ are
[

−
4
3

N0,2 −
8
3

N0,3 −
8
3

N0,4 + N1,1 −
4
3

N1,2 −
16
3

N1,3 −
16
3

N1,4 ,

−
4
3

N2,0 −
8
3

N3,0 −
8
3

N4,0 , 0
]

,
[

−
4
3

N2,0 −
8
3

N3,0 −
8
3

N4,0 ,

−
4
3

N0,2 −
8
3

N0,3 −
8
3

N0,4 −
4
3

N1,2 −
16
3

N1,3 −
16
3

N1,4 ,

−
4
3

N2,0 −
8
3

N3,0 −
8
3

N4,0 + N1,1 −
4
3

N0,2 −
8
3

N0,3 −
8
3

N0,4

−
4
3

N1,2 −
16
3

N1,3 −
16
3

N1,4

]

,
[

−
4
3

N2,0 −
8
3

N3,0 −
8
3

N4,0 , 0 ,

−
4
3

N0,2 −
8
3

N0,3 −
8
3

N0,4 −
4
3

N1,2 −
16
3

N1,3 −
16
3

N1,4

]

.

• There are 4 = 1 + 2 + 2 − 1 basis functions attached to δi:

[N0,7 , N7,0 + 2 N7,1 , 0], [N0,6 , N6,0 + 2 N6,1 , 0 ], [N1,7 , −N7,1 , 0 ], [N1,6 ,−N6,1 , 0 ].

The basis functions associated to the other boundary points δ2, δ3 are obtained
by cyclic permutation.

• There are 5 = 14 − 5 − 4 basis functions attached to edge τ1:

[− N1,2 , N2,1 , 0 ], [− N1,3 , N3,1 , 0 ], [− N1,4 , N4,1 , 0 ],

[− N1,5 , N5,1 , 0 ], [N0,5 + 2 N1,5 , N5,0 , 0 ].

The basis functions associated to the other edges τ2, τ3 are obtained by cyclic
permutation.

• For the remaining boundary points, boundary edges and faces, we have the
following 36 × 3 basis functions

[Ni,j , 0 , 0 ], [0 , Ni,j , 0 ], [0 , 0 , Ni,j ], for 2 6 i, j 6 7.

The dimension of the space S1,1
4 (M) is 6 + 3 × (4 + 5 + 36) = 141.

A similar construction applies for an edge of a general mesh connecting an
interior vertex γ of any valency 6= 4 to another vertex γ′. If γ′ is a crossing ver-
tex, the numbers of basis functions attached to the vertices and the edge do not
change. If γ′ is not a crossing vertex, the number of basis functions attached to
the non-crossing vertex γ′ becomes 5 and there are 4 basis functions attached to
the edges. In the case, where the edge connects two crossing vertices, there are 4
basis functions attached to each crossing vertex and 8 basis functions attached to
the edge.

The gluing data used in this construction require a degree 4 for the separabil-
ity. For the mesh of Figure 3.6, it is possible to use linear gluing data and bi-cubic
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Proposition 8.2. We keep the notations of 8.1, and suppose that φ and ψ are polynomials.
Two Ck maps f1 : σ1 → R, f2 : σ2 → R admits a Gk-junction along the two edges e1,

e2 given by the triple (φ, ψ,O) if and only if the polynomial f1 ◦ φ − f2 ◦ ψ is divisible
by the k + 1th power of the junction line l of (φ, ψ,O), ie. f1 ◦ φ − f2 ◦ ψ ≡ 0 mod lk+1.

Proof. direct consequence of the proposition 1.2 in [7]

In the following we will take the notation φ∗( f ) := f ◦ φ for the pull back of a
map f using another map φ.

Definition 8.3. We keep the same notation as in Definition 8.1.
We say that two reparametrisations (φ1, ψ1,O1) (φ2, ψ2,O2) are equivalent if the

following two sets are the same:

• The set of couple ( f1, f2), f1 : σ1 → R, f2 : σ2 → R, admitting a Gk junction
along the two edges e1, e2 given by the triple (φ1, ψ1,O1).

• The set of couple ( f1, f2), f1 : σ1 → R, f2 : σ2 → R, admitting a Gk junction
along the two edges e1, e2 given by the triple (φ2, ψ2,O2).

Definition 8.4 (Topological Surface). Let I = (σi)i=1,...,m be a collection of square

domains and T = ((φj, ψj,O))j=1...r be a set of Gk connections between edges of the
domains σi. We assume that an edge can only be connected to at most one other edge from
another domain. We consider the equivalence relation over the disjoint union of all the
domains M = ∐iσi that is defined by: x ∼ y if and only if there exists (φ, ψ,O) ∈ T
and z ∈ O such that φ(z) = x and ψ(z) = y. The quotient M = M /∼ is called the
topological surface of the couple (I , T ).

Definition 8.5 (The space of Gk-Splines). We keep the notations of Definition 8.4. We
say that a map f : M → R is Gk over the topological surfaces M if there exists a set
of maps f1, . . . , fn, with fi : σi → R and f|σi

= fi for i ∈ 1 . . . n, such that for each Gk

connection (φ, ψ,O) ∈ T between σi, σj along ei ∈ σi, ej ∈ σj the corresponding maps

fi, f j admits a Gk-junction between σi, σj along ei, ej given by (φ, ψ,O). The space of

Gk-Splines over M is denoted by Sk(M).

Let (M, I , T ) be a topological surfaces and γ a vertex from M, the star topol-
ogy Mγ of γ in M is the topological surface formed by all the faces σ ∈ I that
are neighbors to γ, and all the connections c ∈ T along edges containing γ. We
will denote by Iγ and Tγ the set of face and connections of Mγ respectively.

Suppose that the domains of Mγ are σ0, . . . , σm, and that σi, σi+1 share the edge
ei in Mγ ( the index is taken modulo m). Let φ = (φi)i=0...m be the sequence of Ck

diffeomorphisms φi : Oi → Õi with σi ⊂ Õi, such that for any i ∈ 0 . . . m the ob-
ject (φi, φi+1,Oi ∩Oi+1) form a connection along the edge ei that is equivalent to
the one given by Mγ, we will say then that φ is a vertex based reparametrisation
of Mγ.

A topological surface (M, I , C) with I = (σi)i=0...m is said to have a planar
based reparametrisation if the two following conditions are satisfied (the same
notations of Definition 8.1 are used):
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• There exists a sequence of maps φ0, . . . , φn with φi : Oi → σi such that for
each Gk-connection (φ, ψ,O) ∈ C along an edge e from M shared by the two
faces σi, σj, the reparametrisation given by (φi, φj,Oi ∩ Oj) is equivalent to
(φ, ψ,O).

• The sets φ−1
i (σ◦

i ) are two by two disjoint.1

In this case the union of all the sets φ−1
i (σi) will form a polyhedral complex, that

we will denote ∆. M2, M1 and M0 will denote the sets of faces, edges and
vertices of M respectively, an interior edge is an edge that belongs to at least two
faces, the set of all interior edges is denoted by M◦

1 , and the set of all the interior
vertices is denoted by M◦

0 .

8.1 Chain complex methods for Gk-continuity

If a topological surface has a planar based reparametrisation then we can con-
struct a chain complex in the following way: let C2 =

⊕

σ∈M2
R[x], C1 =

⊕

τ∈M◦
1

R[x]
/

Ik
τ

, C0 =
⊕

γ∈M◦
0

R[x]
/

Ik
γ

, where Iτ is the junction line along the edge τ

and Iγ = ∑γ∈τ
Iτ.

We define the boundary complex by:

C : C2
∂2−→ C1

∂1−→ C0 (3.42)

where
∂2(⊕σ fσ) =

⊕

τ∈σi∩σj

ετ(φ
∗
i ( fσi

)− φ∗
j ( fσj

)) (3.43)

the sign ετ is induced from the first map in the complex of the relative homology
of the polyhydral mesh of M over its boundary M /∂M as in chapter 2. The
map ∂1 is exactly the second map in the complex of the relative homology.

8.2 Homogenisation of the boundary complex

The goal of the study is to find the dimension of the space of Gk-Splines up to
a given degree. This is why we will bound the degree in the first term of the
boundary complex C. In order to have graded maps in the double complex we
will consider the homogeneous version of the complex C (as done in Section 2
). By using the notation of Definition 8.4, we will embed the domains σi of the
topological surface M in R

3 using the homogenization map h that maps each
point (x, y) ∈ R

2 to the point (x, y, 1) ∈ R
3. We get the new 3-dimensional

conical domains σ̂i formed of the base h(σi) and the vertex (0, 0, 0) ∈ R
3. We

embed the complex ∆ in the same way so that we form the cone of ∆, that is
the polyhedral complex ∆̂ who’s faces are the cones formed of the base h(φi(σi))
and the vertex (0, 0, 0). The homogenisation of the reparametrisation maps is
done in the following way: for each reparametrisation φi let si be the maximal
polynomial degree over the three components of φi, and let s = maxi=1...m(si),

1We use A◦ to denote the interior of a set A
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the homogenization of φi is φ̂i(x, y, z) = zsφ( x
z , y

z ). An element f of R is going
to be homogenized by the formula f̂ (x, y, z) = zd f ( x

z , y
z ) where d is the degree at

which we want to homogenise.
By considering the set of all domains Î = (σ̂i)i with their reparametrizations

φ̂i, and their induced connection:

T̂ = {(φ̂i, φ̂j,Oi ∩Oj)|σ1, σ2 ∈ I admiting a Gk connection}

we construct a 3 dimensional Gk-topology that we will denote (M̂, Î , T̂ ). The
boundary complex corresponding to this topology is denoted by:

Ĝ :
⊕

σ∈M2

R[x]
∂2−→

⊕

τ∈M◦
1

R[x]/ Îk
τ

∂1−→
⊕

γ∈M◦
0

R[x]/ Îk
γ (3.44)

where x denotes the three variables x1, x2, x3.
Under this setting, all the differential maps of the double complex d

j
i and ∂i

for any i, j are graded for the polynomial grading:

• ∂2 is of degree t(s− 1) over the set
⊕

σ∈M̂2
R[x]t of elements of degree equal

to t.

• ∂1 is of degree 0.

According to t we will consider the complex GC t with the following form:

Ĝt :
⊕

σ∈M2

R[x]t
∂2−→

⊕

τ∈M◦
1

(R[x]/ Îk
τ)ts

∂1−→
⊕

γ∈M◦
0

(R[x]/ Îk
γ)ts (3.45)

that we use to compute the space of splines of degree t. The homology group in
the first term is the space of splines, while in the last term the homology is the
same as the last term homology group in the complex (2.3), so it is equal to zero.
By comparing the image of the map ∂2 in the two complexes Gt, and Cts we see
that Im(∂2) in Gt, is a subset of Im(∂2) in Cts, while the kernel of ∂1 in the two
complexes is the same, we deduce that dim(H1(Ct)) 6 dim(H1(Gt)). In Theorem
4.6 it is stated that the codimension of H1(C) as an R[x]-module is equal to 0, that
means that the Hilbert polynomial of that module has degree zero. In the other
hand, the module structure on the graded vector space of G-splines is not well
defined, so we cannot define the Krull dimension on this spaces.

9 Multi-uv coordinates complex

Let Mτ be a topological surface made of two polygons σ1, σ2 that share the edge
τ, and suppose that for each one of the two faces we have a local uv-coordinates
system (u1, v1) and (u2, v2). The following is a way to define Gr-junction equiva-
lent to Definition 1.1. This definition will be used only with polynomial patches,
so all the maps φ, f , g are supposed to be polynomial.

Definition 9.1. Let σ1(σ2 resp.) a polygonal domain in R
2 and τ1 (τ2 resp. ) an edge

in σ1 (resp.σ2). Two polynomial maps f : σ1 → R, g : σ2 → R admits a Gr-junction
along the two edges τ1, τ2 if and only if there exists a polynomial Cr-diffeomorphism
φ : U1 → U2 between two neighbourhoods U1, U2 of the two edges τ1, τ2 such that:
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• φ maps τ1 to τ2.

• φ maps the interior points of σ1 to the exterior point of σ2.

• f (u1, v1)− g(u2, v2) ∈ Ir+1, where Ir is an ideal of generated by the polynomials:
u2 − φ1(u1, v1), v2 − φ2(u1, v1), and lr

τ2
, here φ1 and φ2 are the two coordinates

of φ, and the polynomial lτ2 is the linear equation defining the hyperplane that
supports the edge τ2.

Before defining the complex, point out that Definitions 1.1 and 9.1 are equiv-
alent to the Definition 8.1 when one of the two parametrisations is the identity.
Moreover the homogenisation is possible in the definition of the Gr-continuity
above exactly as we have done in Section 8.2. So now we will speak about the
homogenized version where the ideal Ir in the definition above is replaced by
its homogenisation in R[uσ, vσ, wσ]. Let ∆ be a d-dimensional complex, Rσ =
R[uσ, vσ, wσ], and for S ⊂ M let RS = ⊗σ∈SRσ be the ring of polynomials with
the variables (uσ)σ∈S, (vσ)σ∈S, (wσ)σ∈S. If an edge τ is shared by the two faces σ1
and σ2 then we denote Rτ the ring of polynomials Rσ1 ⊗Rσ2 , and if a vertex γ is
shared by the faces σ1, . . . , σF then Rγ = ⊕i=1...FRi. We define the complex:

C : C2 ∂2−→ C1 ∂1−→ C0

with:

Cd = ⊕σ∈Md
Rσ (3.46)

C i = ⊕σ∈Mi
Rσ/J(σ) f or i ∈ {1, 0} (3.47)

J(τ) = Ir+1
τ f or τ ∈ M1 (3.48)

J(γ) = ∑
γ∈τ

Ir+1
τ f or τ ∈ Mi, i < d − 1 (3.49)

with ∂i a differential map similar to the one we use in relative homology simpli-
cial complex ∆/∂∆(see Section 2).

Another possible construction is to define the equivalent exact sequence to
2.19, again by using the homogenisation of all the polynomials. We define it in
the following way: Let ∂ be the incidence matrix of the dual graph of a given
topological surface, with columns indexed by maximal faces. for each vector of
polynomials V = (p1, . . . , pn) we denote by Diag(V) the diagonal matrix who’s
diagonal components are the coefficients of V. For each two faces σ1 and σ2 in
M sharing the edge τ with a transition φτ from σ1 to σ2, we define by ψ1, ψ2 the
homogenisation of the two polynomials uσ2 − φ1

τ(uσ1 , vσ1) and vσ2 − φ2
τ(uσ1 , vσ1).

Let L1 = [τ1, . . . , τn] be the list of edges ordered in the same way we did for
the lines of the incidence matrix, and V1 = (lr

i )i∈L1 V2 = (ψi)i∈L1 the two vec-
tor of polynomials. We denote also by L2 = [σ1, . . . , σm] a list with an order-
ing of the faces similar to the columns of ∂. Then we define the following map:
P : (

⊕

σ∈L2
Rσ)⊕ (

⊕

τ∈L1
Rτ)⊕ (

⊕

τ∈L1
Rτ) →

⊕

τ∈L1
Rτ that consists on mul-

tiplying by the matrix (∂|Diag(V1)|Diag(V2)). This map induces the following
exact sequence:

0 → Sr,l(M) → (
⊕

σ∈L2

Rσ)⊕ (
⊕

τ∈L1

Rτ)⊕ (
⊕

τ∈L1

Rτ) →
⊕

τ∈L1

Rτ → coker(P) → 0

(3.50)
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The advantage of this construction comparing to the one in section 8.1 is that
the maps are graded vector spaces homomorphism.

The complex proposed in the previous sections has an important drawback:
the differential maps of the complexes are not module homomorphisms. Thus it
is not possible to speak about the Krull dimension of the homology, so it is not
possible to deduce the degree of the Hilbert polynomial of that spaces in the way
we did in the Chapter 2. However it is still possible to speak about the Hilbert
functions of graded vector spaces. This make the constructions above possibly
useful for computing the dimension.

10 Conclusion

We have investigated in this chapter how to construct a basis for the space of G1-
splines. We started the chapter by giving some of the constraints that one has to
impose on the gluing data so that the space of G-splines is ample (ie has enough
degrees of freedom), and we avoid the appearance of singularities at the vertices.

This chapter includes two methods of construction of basis, both of them uses
the piecing strategy (see introduction of Section 3). The first one describe the
G1-constraints along the edges using the bspline coefficients of the G1-functions,
constructs a bases for two patches topologies, and peace them to form a global
basis.

The second method is different in two main things, one is that the splines
along the edges are considered as solution for the syzygy space. Another point is
that the basis construction algorithm describes systems to solve, who’s variables
are the values and derivatives of the G1-functions, and not the bspline coeffi-
cients.
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Chapter 4

Shape modelling

1 Shape Smoothing

1.1 Introduction

Subdivision schemes such as Catmull-Clark scheme are powerfull tools to pro-
duce smooth surfaces that can be easily controlled from a coarse mesh. They
became very popular in graphics and animation for their capacities to control
easily shapes. However from a geometric modelling point of view, they have
some drawbacks: At extraordinary vertices, they are composed of infinitely many
rings of piecewise polynomial surfaces and have no explicit analytic representa-
tion. Though the limit subdivision surface is smooth, it may not be curvature
continuous around an extraordinary vertex [54].

In this chapter, we describe a new explicit scheme to compute a smooth piece-
wise polynomial surface from a quadrangular mesh. The constructed surface
is geometrically smooth everywhere and C2 except in the neighbourhood of ex-
traordinary vertices. The polynomial patches associated to the faces of the quad-
rangular mesh are bi-quintic Bézier parameterisations. The Catmull-Clark sub-
division scheme is used to compute the control points of b-spline patches asso-
ciated to the faces of the quadrangular mesh. The nearest geometrically smooth
bi-quintic spline surface is then explicitly computed by projection on the space of
G1 splines after a degree elevation of the patches. Therefore, it is a G1 approxima-
tion of the Catmull-Clark subdivision surface. These constructions are described
explicitly by masks and do not required the solution of linear systems or to solve
any optimisation problem.

We also present a new scheme to compute a basis of the space of geometri-
cally smooth functions on the quadrangular mesh. G0 basis elements are first
constructed. The G1 basis is obtained by a smoothing step. We describe explicit
masks to compute these elements from the G0 elements.

The chapter is organized as follows. The next section presents related prior
works. Section 2 provides the notation and definitions of geometric continuity.
In Section 3, we present the masks for the construction of G1 surfaces made of bi-
quintic faces and the scheme for the construction of basis functions of the space
of G1 bi-quintic b-spline surfaces. In Section 4, experimentation results are pre-
sented.
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1.2 Prior works

Many methods have been proposed to construct geometrically smooth surfaces
from quadrangular meshes. This started with the initial work of Catmull-Clark
on subdivision surfaces [15]. The subdivision surface cannot be represented by a
finite collection of b-spline patches.

Several works focused on the construction G1 surfaces, with b-spline faces,
using different types of b-spline patches on the faces of the topological surface
[55], [56], [45], [57], [58], [21], [59], [60], [42]. These works addressed the solution
of the G1 constraints, but focussed less on their use for the construction of high
quality G1 surfaces from quadrangular control meshes.

Constructions of G1 surfaces based on quadrangular mesh subdivision schemes
have been investigated for instance in [61] using 4 triangular cubic patches on
each face, or inserting nodes in b-splines patches in [62]. In [63] an approximately
G1 surface construction based on Catmull-Clark subdivision scheme is presented.

Some recent works propose methods to compute high quality geometrically
smooth surfaces over quadrangular meshes. The construction of G2 surfaces is in-
vestigated by solving a constraint minimization problem, using bi-septic patches
in [64] or using bi-quintic patches in [65]. In [66], [9], the G1 surface construc-
tion is guided by bi-quintic or rings of bi-quartic b-spline surfaces that mini-
mize some energy. Thus, these constructions involve complex and non-explicit
schemes for producing the G1 surfaces. In our smoothing method, instead of
computing smooth guide surfaces, we use the Approximate Catmull-Clark sur-
face as a guide and project it explicitly on the space of G1 spline surfaces. This
direct and simpler approach provides surfaces of good quality as we will see in
the experimentation section.

The construction of basis functions of the space of G1 splines on a quadran-
gular mesh have been investigated for instance in [21], [42], [60], [23], [49], [67].
These methods involved the solution of linear systems depending on the topol-
ogy of the mesh or the way patches are glued along edges. They require some
pre-computation and some case analysis. Other alternative basis constructions
involving singular b-spline functions are studied and exploited, for instance, in
[68] for design and analysis on quadrangular planar meshes that satisfy some
topological conditions. None of these approaches provide an explicit and sys-
tematic scheme to compute regular basis functions.

2 Definitions

2.1 Topological surface

We denote by M the topological surface which supports the spline functions. In
this paper, M will be a quadrangular mesh given by

• a collection M0 of points in R
3,

• a collection M2 of quadrangular faces,

• a collection M1 of edges which are either shared by two faces or on the
boundary.
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For each quadrangular face σ ∈ M2, we have a parameter domain Dσ = [0, 1]2

and parameters uσ, vσ. The number of elements of Mi (i = 0, 1, 2) is denoted Mi.
The valence v(γ) of a vertex γ ∈ M0 is the number of faces σ ∈ M2 s.t. γ ∈ σ.
Let c(γ) = cos( 2 π

v(γ)
). A vertex is called singular if it is an interior vertex with

valence v 6= 4.

2.2 Surface representation

A spline function f on M will be represented by a collection f = ( fσ)σ∈M2 of
b-spline functions, one for each face: The function fσ associated to the face σ is
represented by

fσ := ∑
16i,j6m

bσ
i,j( f )Ni(uσ)Nj(vσ),

where bσ
i,j( f ) ∈ R and N1, . . . , Nm are the b-spline basis functions of the space Ud,t

of splines of degree d and knots t. Hereafter, we will represent a spline function
f by its coefficient vector [ f ] = (bσ

i,j( f )) ∈ R
m2 M2 .

In this paper, we consider d = 5 and the knots t = {06, 16} so that m = 6. The
basis functions N1(u), . . . , N6(u) are the Bernstein polynomials of degree 5 on the
interval [0, 1]. Each function fσ is a bi-quintic polynomial in the variables (uσ, vσ).

2.3 Geometric continuity

For an edge τ shared by two polygons σ0, σ1 ∈ M2, we consider transition maps
φσ0,σ1 between the two faces which are, in suitable frames, of the form:

(u1, v1) 7→ (u0, v0) =

(

v1
a1(u1)
a0(u1)

+ v2
1 ρ1(u1, v1)

u1 + v1
a2(u1)
a0(u1)

+ v2
1 ρ2(u1, v1)

)

where a0(u1), a1(u1), a2(u1), ρ1(u1, v1), ρ2(u1, v1) are C1 functions. The shared
edge is defined by v1 = 0 on σ1 and by u0 = 0 on σ0. The functions [a0(u1), a1(u1), a2(u1)]
are called the gluing data at γ along τ on σ1.

The geometrically smooth constraint corresponds to the following relations:
∀u1 ∈ [0, 1],

f1(u1, 0) = f0(0, u1)

a0(u1)
∂ f1
∂v1

(u1, 0) = a1(u1)
∂ f0
∂u0

(0, u1) + a2(u1)
∂ f0
∂v0

(0, u1)

where f1 = fσ1 , f0 = fσ0 are the restrictions of f on the faces σ0, σ1.
In the following, we will suppose that each singular vertex is isolated from

the other singular vertices by at least one layer of ordinary vertices, and we will
use the following gluing data along an edge τ = (γ0, γ1): a0(u) = 1, a1(u) = −1
and

• if v(γ0) 6= 4 and v(γ1) = 4, a2(u) = c(γ0)(1 − u)2,

• if v(γ0) = 4 and v(γ1) = 4, a2(u) = 0.

They satisfy the compatibility conditions around a vertex, required to define am-
ple spline spaces on M (see e.g. [45], [21], [42]). The relations between the control
points of two faces sharing an edge are given in Fig 4.2.
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hk+1
0,0 = ek+1

0,0

hk+1
0,1 = 3/5 ek+1

0,1 + 2/5 ek+1
0,0

hk+1
0,2 = 3

10 ek+1
0,2 + 3/5 ek+1

0,1 + 1
10 ek+1

0,0

hk+1
1,0 = 3

10 ek+1
1,1 + 3

10 ek
1,1 + 2/5 ek+1

0,0

hk+1
1,1 =

4 ek+1
0,0

25 +
12 ek+1

1,1
25 +

6 ek+1
0,1

25 +
3 ek

1,1
25

hk+1
1,2 =

6 ek+1
0,1

25 + 1
25 ek+1

0,0 +
9 ek+1

1,2
50 +

3 ek+1
0,2

25 +
39 ek+1

1,1
100 +

3 ek
1,1

100

hk+1
2,0 =

3 ek+1
2,1

20 +
3 ek

1,2
20 + 3

10 ek+1
1,1 + 3

10 ek
1,1 +

1
10 ek+1

0,0

hk+1
2,1 =

12 ek+1
1,1

25 +
3 ek

1,1
25 + 1

25 ek+1
0,0 +

6 ek+1
2,1

25 +
3 ek

1,2
50 +

3 ek+1
0,1

50

hk+1
2,2 =

ek+1
0,0
100 +

39 ek+1
1,1

100 +
3 ek+1

0,1
50 +

3 ek
1,1

100 +
9 ek+1

2,2
100

+
9 ek+1

1,2
50 +

39 ek+1
2,1

200 +
3 ek+1

0,2
100 +

3 ek
1,2

200

• Valence 1 boundary vertex:

hk
0,0 = ek

0,0

hk
1,0 = 3/5 ek

1,0 + 2/5 ek
0,0

hk
1,1 =

4 ek
0,0

25 +
9 ek

1,1
25 +

6 ek
0,1

25 +
6 ek

1,0
25

hk
2,0 = 3

10 ek
2,0 + 3/5 ek

1,0 +
1

10 ek
0,0

hk
2,1 =

6 ek
1,0

25 + 1
25 ek

0,0 +
9 ek

2,1
50 +

9 ek
1,1

25 +
3 ek

2,0
25 +

3 ek
0,1

50

hk
2,2 =

ek
0,0

100 +
9 ek

1,1
25 +

3 ek
0,1

50 +
3 ek

1,0
50 +

9 ek
2,2

100 +
9 ek

1,2
50

+
9 ek

2,1
50 +

3 ek
0,2

100 +
3 ek

2,0
100

The remaining coefficients hk
i,j are obtained by symmetry. The relative simple

form of these relations is due to the use of the formula ek
1,0 =

ek
1,1+ek−1

1,1
2 .

These relations correspond to the degree elevation to compute the control co-
efficients hk

i,j of the bi-5 patches from the bi-3 patches associated to the ACC con-
struction.

3.2 Generation of smooth surfaces

The second step of the construction is to smooth the surface, that is to satisfy the
G1 constraints. We use the coefficients hk

i,j and compute new control points bk
i,j of

the b-spline patch surface which has geometrically smooth junctions between the
neighbouring patches. The coefficients bk

i,j are computed by orthogonal projection

of the coefficients hk
i,j on the solution space of the G1 equations. The equations

(4.1), (4.6) and (4.7) are already satisfied by the output of the ACC algorithm, so we
don’t change the corresponding coefficients.
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• For each edge τ with non singular vertex, we compute:

πk
2,1 = −πk+1

2,1 + 2πk
2,0

πk
3,1 = −πk+1

3,1 + 2πk
3,0

As these operations on the columns of G are the one induced by the relations
(4.1)-(4.7), we immediately see that the rows of G represent functions that satisfy
these G1-conditions.

3.4 Algorithm

We summarize the construction of G1 Catmull-Clark Spline surface in Algorithm
1 (this algorithm will be called GCCS). The main difference with the basis smooth-
ing algorithm is the computation of the second order derivatives. The GCCS
method projects the ACC positions onto the G1 constraints, while the basis smooth-
ing algorithm computes directly some specific coefficients by means of the other
coefficients, using the equation in Fig. 4.14.

4 Experimentation

We present now the results of the GCCS algorithm 1 on some quadrangular
meshes and analyze graphically the computed surfaces. The meshes used in Fig.
4.16, 4.17, 4.18 are taken from the web page (1). The mesh used in Fig. 4.19, 4.20
have been produced using the scaffolding algorithm of [71]. The model in Fig.
4.20 is coming from [72].

In Fig. 4.15, 4.16, the isophotes reveal the good quality of the surface con-
structed by the GCCS algorithm. In Fig. 4.17, we compare the output of GCCS
method with the output of the ACC algorithm and the output of the basis smooth-
ing algorithm described in the section 3. The Gauss curvature of the basis smooth-
ing surface Fig. 4.17 (e) has more fluctuation than the Gauss curvature of the
GCCS surface Fig. 4.17 (c). We notice that the same gluing data are used for
the GCCS and the basis smoothing algorithm. The quality advantage that GCCS
exhibits is due to the use of the ACC surface as guiding surface. More precisely,
the b-spline coefficients obtained in the GCCS algorithm by projecting the output
of the ACC method onto the G1 constraints are closer to the ACC surface than the
coefficients obtained by the basis smoothing algorithm.

5 Conclusion

We have presented a new mesh smoothing method using the ACC surface as a
guiding surface, which projects it onto the space of G1 surfaces. The use of this
guide plays a major role in constructing high quality surfaces. The explicit for-
mulas that we provide make the algorithm straightforward to implement. We
present also an explicit scheme to construct basis functions of the G1 spline space.

1https : //www.cise.u f l.edu/research/Sur f Lab/shape_gallery.shtml
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Algorithm 1: G1 Catmull-Clark Spline construction
Input: Quadrilateral Mesh M
Output: Bi-5 G1 surface
foreach v ∈ M0 do

Compute the e0,0 using the mask;
end
foreach E ∈ HE(M) do

Compute e1,1 using the mask;
if E is a boundary edge then

Compute e1,0 and e2,0 using the masks;
end
Compute h[0..2, 0..2] the degree elevation of e using the formulas in
section 3.1;

end
foreach v ∈ M0 do

foreach k ∈ [3..v] do

Compute bk
1,0 around the vertex v, using the formula in section 3.2;

end
if The valence is odd then

foreach k ∈ [3..v] do

Compute the coefficients bk
1,1 around the vertex using the

formulas of Fig. 4.8

else
foreach k ∈ [3..v] do

Compute bk
2,0 using the formula in Fig 4.9 ;

foreach k ∈ [3..v] do

Compute bk
1,1 around the vertex using the formula in Fig. 4.10;

foreach k ∈ [3..v] do

Compute bk
3,0 using the formula in Fig 4.11;

Compute bk
2,1 , bk−1

1,2 , bk
3,1 and bk−1

1,3 using the formulas in Fig. 4.12;

end
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Chapter 5

Application

We present in this chapter two applications of the space of geometrically con-
tinuous functions: In the first part we will test the G1 basis generated earlier in
this chapter on 3d point cloud approximation. Different bases are going to be
compared in terms of quality using an error that we will describe later.

In the second part we use the G1 basis to solve the diffusion equation with
boundary conditions following on isogeometric approach. The tests are made
using a biquintic basis.

1 Application to point cloud fitting

surface reconstruction is a major step in the digitalisation of the 3d physical ob-
jects. It consists of transforming a scanned 3d point cloud to a 3d model such as
mesh or a multi-patches spline surface. A large variety of algorithms exists for
that purpose, depending on the properties of the point cloud and the wanted out-
put, the modeller have to choose which type of algorithm will give better results.
What we mean by properties of the point cloud can be the type and level of im-
perfections driven by the 3d scan such as: noise, non uniform distribution of the
sampling, missing data, density of the sampling. It can be also properties of the
physical shape it self, such as global/local smoothness and piecewise smoothness
constraint. Moreover, different 3d scan technologies provide additional informa-
tions besides the point clouds, such as normals or confidence of a point (that can
be used to reduce noise). This additional inputs are used in some reconstruction
algorithms. The paper [73] provides a detailed categorisation of the techniques
in surface reconstruction field, according to the point cloud properties of the scan
mentioned above as well as the wanted reconstruction output.

We distinguish two main families of surface reconstruction algorithms. The
first ones are the Delaunay based methods [74, 75], where the output mesh is
a subcomplex of the Delaunay triangulation. These algorithms are suitable for a
modellers who wish to produce for a given cloud of points an interpolating mesh.
However, these methods have very high requirement and cannot support point
clouds with too many imperfections, that makes it impossible to be used for real
applications. The second family of algorithms represent the surface as the zero
level set of some implicit equation [76, 77], then using for instance a marching
cube method for polygonization [78].
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We will not give more details about this methods since it is not the sub-
ject of the thesis. In the following section we will assume that we have quad
mesh that approximate the point cloud surface, issued from a polygonization
pre-processing step, and see how we can use this mesh to produce a smooth ap-
proximation.

1.1 Gspline basis representation

Let P = {p1, . . . , pn} be a cloud of points in R
3 and N = {v1, . . . , vn} their cor-

responding normals, representing a smooth surface that has the same topology
as the topological complex M. The goal of this section is to produce a smooth
surface that is as close as possible to the cloud of points using the G1-basis con-
structed from M.

Denote by (gi)i∈I , I = {1, .., r}, r ∈ N the finite basis of the space Sd,t(M, g)
of G1 splines over M of degree d and with knots sequence t.

The preprocessing step consists of polygonizing the cloud of points, by pro-
ducing a quad mesh that approximates the cloud of points. In this chapter we will
not speak about this step since it is not the objective of the work. The functions gi

are used to parametrise 3d-surfaces, by taking linear combinations:

s = ∑
i∈I

s̄igi (5.1)

with coefficients s̄i ∈ R
3 for i ∈ I.

Over each face σ of the mesh M, the functions gi are represented as lin-
ear combination of the b-spline basis functions with coefficients that we denote
cσ

k,l(s). Hereafter, we will also use gi to denote the vector of all coefficients cσ
k,l(gi)

for all faces σ ∈ M2 and Ḡ = [gi]i∈I the matrix, which columns are the vectors
gi. The N × 3 matrix C̄ = [cσ

k,l(s)] which rows are the b-spline coefficients cσ
k,l(s)

of the surface h will be written by means of the l × 3 matrix s̄ which rows are the
points s̄i:

C̄ = Ḡ







s̄1
...
s̄l






= Ḡ s̄. (5.2)

For simplicity, we will use the following notation:

s =





s̄[:, 1]
s̄[:, 2]
s̄[:, 3]



 , C =





C̄[:, 1]
C̄[:, 2]
C̄[:, 3]



 , G = diag(Ḡ, Ḡ, Ḡ),

where, for a matrix M, M[:, i] indicates the ith column of M. With this notation,
we have C = G s.

In order to obtain the most accurate representation of P by G1 splines, we
compute s by minimizing a weighted combination of square distance and fairing
energies. We recall briefly these standard energy terms (see e.g. [79, 80]) and give
their matrix formulation in terms of the coefficients in the G1 basis.
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Point-wise distance

Given a (uniform) distribution U = {u1, ..., un} of parameters in M, we define
classically the point-wise distance energy as

EP(s) = ∑
u∈U

||pu − s(u)||2 = ||D s − P||2

where the pairing between the parameters u ∈ U and points pu ∈ P is obtained
from an initial parameterisation s0, by associating to u ∈ U the closest point
pu ∈ P to s0(u) (we use a kd tree algorithm to compute closest points [81]).
Here D = diag(K, K, K) is the block diagonal matrix formed by the matrix K
which coefficients are Ki,j = gj(ui), and P = (P1, P2, P3) where P1 = (p1

1, ..., p1
n),

P2 = (p2
1, ..., p2

n), P3 = (p2
1, ..., p2

n) where p
j
i is the jth coordinate of the vector

pui
= pi = (p1

i , p2
i , p3

i ) ∈ P associated to ui ∈ U .

Distance to points with normals

The energy term of the sum of square distances between the planes at the point
pi ∈ P normal to vi ∈ N and the point s(ui) is:

ET(s) = ∑
i=1,..,l

[vi.(pi − s(ui))
t]2 = ||D̃ s − P̃||2

for s ∈ S(M, g), where the matrix D̃ and P̃ are such that the kth row of D̃ is D̃[k, :
] = (v1

kg(uk), v2
kg(uk), v3

kg(uk)) with g(ui) = (g1(ui), g2(ui), ..., gl(ui)), and P̃ =

(vT
1 p1, . . . , vT

n pn). Other distance minimizations can be used, such as the so-called
Squared Distance Minimization [80], which involves the principal curvatures.

Fairing energy

To reduce oscillations in the computed surface, we use a regularization term (see
e.g. [79])

Fk(g) =
∫ 1

0

∫ 1

0
(∂k

s g(s, t))2 + (∂k
t g(s, t))2dsdt.

In the experimentation, we use the regularization terms F1 and F2. To avoid an
explicit computation of the integrals, we further simplify them into the following
expressions involving directly the b-spline coefficients:

F̃1(g) = ∑
06i,j6n−1

||(∆1c)i,j||
2 + ||(∆2c)i,j||

2

F̃2(g) = ∑
16i,j6n−1

||(∆2
1c)i,j||

2 + ||(∆2
2c)i,j||

2

with (∆1c)i,j = ci+1,j − ci,j, and (∆2c)i,j = ci,j+1 − ci,j, (∆2
1c)i,j = ci,j −

(ci+1,j+ci−1,j)
2

and (∆2
2c)i,j = ci,j −

(ci,j+1+ci,j−1)
2 . As the b-spline coefficients C of h are such that

C = G s, these energy terms are of the form sTGT AiG s where Ai is the coefficient
matrix of F̃i in the b-spline basis (for i = 1, 2).
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The final formula that we minimize is of the form:

Ttot(s) = w1EP(s) + w2ET(s) + w3F̃1(G s) + w4F̃2(G s)

where wi are weights, which are chosen manually depending on the type of the
point cloud; the more the point cloud is noisy, the more the fairing energy weights
must be large. The total energy Ttot(s) is a quadratic function of s, and its mini-
mum(s) can be obtained by solving ∇Ttot(s) = 0, leading to the following linear
system

(w1DTD + w2D̃TD̃ + w3GT A1G + w4GT A2G) s − w1P̃TD̃ − w2PTD = 0

1.2 Illustrations

As we said in previous sections the basis (gi)i∈I is precomputed. They are repre-
sented by the sparse vectors of G. This yields sparse matrices D, D̃ and vectors
P, P̃. The matrices Ai for i = 1, 2 are diagonal by blocks of size at most 16, this
can be proved by a combinatorial argument. This implies in particular that the
total system is sparse.

We present in Figure 5.1 some results of fitting surfaces, the computations
were made with the Julia programming language, the visualization is done with
the software Axl 1, and MeshLab.

The cloud of points in Fig. 5.1 is taken from a smooth surface, made by build-
ing a scaffolding of a skeleton from [82], then by applying a Catmull-Clark sub-
division algorithm for smoothing.

In Fig. 1.2 we test our basis on a lung medical scan. The input is a point
cloud of 300000 point. We extract a sampling using a Poisson method [83] and an
approximating mesh using the ball pivoting algorithm [24]. The basis that we use
is described in Section 3 made with bi-5 Bézier patches, and the gluing data are
quadratic. We notice that the approximation is smooth and has captured most of
the shape, except the highly curved bottom regions where the error can be seen
to be high .

2 Application in IsoGeometrics analysis

In this section2, the proposed geometrically smooth spline bases will be applied in
Isogeometric analysis (IgA) with complex geometry. IgA was created to recover
some of the accuracy problems encountered in other finite element methods. We
start this section by introducing finite element method and Isogeometric analysis.
Then we give an example by providing a solution of the diffusion equation using
IgA.

2.1 Finite element analysis

The finite element method (FEM) is a numerical method that is used to find the
approximate solution of linear differential equation over a given domain Ω, that

1axl.inria.fr
2This section is a part of a forthcoming paper [43]
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Figure 5.3: Approximation of a lung medical scan. The top left and top middle
pictures represent the approximation from two different sides. The bottom left
is the point cloud medical scan of the lung (we use MeshLab for visualisation),
the centre bottom picture represents the sampling of the scan. The right bottom
picture is an 840 face mesh approximating the point cloud, produced by a ball
pivoting algorithm [24].
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• First we form a subdivision ∆ of the domain using a mesh. See [85] for a
survey about this subject.

• The second step is to describe the space that will be used for the approx-
imation. It is in general a space of piecewise polynomial functions S(∆)
defined on the subdivision ∆. We also choose a locally supported basis
B = {Bi}i=1..n for it. The chapter 2 was an overview of the analyse of the
dimension of such spaces. See [86] for an example of an algorithm that pro-
duces this kind of basis.

• Next we describe the weak formulation of the differential equation. We do
that by multiplying the equation by "test functions" v, and integrate both
sides of the equality:

Find a function u, defined over Ω, verifying
∫

Ω
vA(u)vdx =

∫

Ω
f dx (5.4)

In general we choose the test space (ie. the space where v belongs) to be the
same as the trial space.

• Then we apply the divergence theorem to reduce the maximal differential
order used in the equation. The result of this operation is an equation (the
weak formulation of (5.3)) with lower order differentials, it means that the
space of functions S r(∆) is used with an r as low as possible. The formula-
tion of the problem at this level is:

a(u, v) = L(v) (5.5)

besides of the boundary constraints P(u), here a is a bilinear form, and L is
a linear form on S(∆).

• The final step is to find a function u = ∑i=1...n ciBi that verifies the equa-
tion(5.5) for any v ∈ S(∆) as well as the boundary conditions. We do that
by solving the system given by: ∑i=1..n cia(Bi,Bj) = L(Bj) for j ∈ {1, . . . n}.
The solution of this system is an approximation of the exact solution of (5.3).

2.2 Isogeometric analysis

The main drawback of the FEM is that it is not always possible to use the output
of CAD (Computer Aided Design) system, instead of that it takes a polygonal
approximation of the geometry. This inherent accuracy problems [19].

In Isogeometric analysis we use a CAD piecewise polynomial geometry to
represent exactly the domains. This will avoid the use of automatic remeshing
algorithms that can be costly. The same space of functions used for represent-
ing the geometry will be used as a test/trial space. It is shown in [20] that the
composition of a basis function from the test/trial space with the inverse of the
parametrisation that are all Gk functions with respect to the same topological sur-
face, will produce a Ck function on Ω.

In the following section we will present an example of solution of the diffusion
equation using a G1-space and IgA.
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2.3 Model problem and technique details

Consider the following two-dimensional heat diffusion example as an illustrative
model problem:

−∆T(x) = f (x) in Ω ⊂ R
2

T(x) = 0 on ∂Ω
(5.6)

where ∆ is the Laplacian operator, Ω is the computational domain parameterized
by the proposed geometrically smooth spline bases , T(x) is the unknown heat
field, and f (x) is the heat source function. The trial and test spaces are defined
as:

U = {T ∈ H1(Ω) : T = TD on ∂Ω},

V = {ψ ∈ H1(Ω) : ψ = 0 on ∂Ω}.
(5.7)

where TD Expresses the Dirichlet conditions.
The variation problem can be stated as: find the solution Th ∈ U h ⊂ U such

that:
∫

Ω
∇Th(x) · ∇ψh(x) dΩ =

∫

Ω
f (x) · ψh(x) dΩ ∀ψh ∈ Vh ⊂ V . (5.8)

which can be written as

a(Th, ψh) = 〈 f , ψh〉 ∀ψh ∈ Vh, (5.9)

where
a(Th, ψh) =

∫

Ω
∇Th(x) · ∇ψh(x) dΩ,

〈 f , ψh〉 =
∫

Ω
f (x) · ψh(x) dΩ.

(5.10)

In the isogeometric analysis framework, the solution field Th will be repre-
sented in the proposed geometrically smooth spline bases, that is,

Th =
N

∑
i=1

gi(u) Ti, (5.11)

where Ti are unknown variables to be solved, gi(u) are geometrically smooth
spline basis functions defined on each face σ from its b-spline coefficients cσ

k,l(gi),
uσ = (ξσ, ησ) are the domain parameters associated to the face σ of the parametric
domain P , N is the number of basis functions. The test function ψh is also defined
as follows :

ψh = gi(u). (5.12)

Then a linear system can be obtained from Eq. (5.10),

AT = b

in which T = [Ti] are unknown variables. The entries in the stiffness matrix
A = [Ai,k] and right-hand side b = [bi] can be computed as follows,
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Ai,k =
∫

P
∇ugk(u)B(u)TB(u) ∇ugk(u)J(u) dP

bi =
∫

P
f (σ(u)) · gk(u)J(u) dP .

where σ(u) = (x(ξ, η), y(ξ, η)) is the parametrisation defined as in Eq. (5.1),
J(u) is the Jacobian of the transformation,

J(u) =

∣

∣

∣

∣

xξ yξ

xη yη

∣

∣

∣

∣

,

B(u) is the transposed of the inverse of the Jacobian matrix.

2.4 Examples

In this subsection, a numerical example is presented to demonstrate the effective-
ness of the proposed simulation method with geometrically smooth spline bases.

We consider a heat diffusion problem with the following exact solution

T(x) = 10 sin(
π

30
(x+ y+ 30)) sin(

π

30
(x+ y− 30)) sin(

π

30
(x− y− 30)) sin(

π

30
(x− y+ 30)).

(5.13)
The computational domain is a square [−30, 30]× [−30, 30], which is parameter-
ized by a quintic G1 splines. The parametric mesh is shown in Fig. 5.4(a), and the
corresponding parameterization with 52 patches is presented in Fig 5.4(b) and
(c). The corresponding IGA numerical solution is shown in Fig. 5.4(d) and (e),
and the corresponding error colormap is shown in Fig. 5.4(f). We can find that
the proposed IGA framework with geometrically smooth splines can achieve a
similar accuracy with the C0 multi-patch method.

It should be mentioned that the IGA solution surface is also G1 according to
the property of geometrically smooth splines.
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Conclusion

The subject of this thesis was to study Geometrically Continuous splines. The
main questions addressed in this manuscript are related to: basis constructions,
dimension computation and shape generation. Similar to ordinary splines, G-
spline functions can be seen as splines over a manifold-like topology that we
called topological surface. In practice, the restrictions of our Gsplines to the
patches of the topological surfaces are tensor splines or Bézier patches.

1 Gluing data

The choice of gluing data is crucial to guaranty that the space of G1-splines that
we produce have good smoothness properties around the vertices. The question
of compatibility around the vertices is addressed in the Section 2 of Chapter 3. We
have explained that a vertex from a topological surface is compatible if the prod-
uct of the transition maps jacobians around that vertex is equal to the identity.
This result corresponds exactly to the G1 case of Theorem 7.1 in [87]. Any G1-
spline function that do not respect this condition will have a vanishing tangent
space at that vertex.

2 Basis construction

A standard method of basis construction performs that task by a piecing process.
This requires to know a basis of the space of Gsplines over a simple topology
composed of two patches, then we choose linear combinations of that basis that
can be pieced together according to the wanted topology. We keep piecing the
parts of the topology until we form one base element of the space of Gsplines. By
applying this piecing process on different choices of linear combinations, we end
up with a base of a G1-splines space that is suitable for Fitting and IgA.

We analyse the space of G1-splines over a two patches topology in two dif-
ferent ways. The first way, by considering the G1-continuity relation as syzygy
equation as in [21]. In that context, the existing literature offers the possibility
to analyse these spaces with polynomial patches. We provide a generalisation
of this study by adding new homological techniques that allows to analyse the
basis and the dimension of that space when the spline patches have one inserted

109



CHAPTER 6. CONCLUSION

knot on each direction of our quads. A generalisation of the method to multiple
inserted knots can be subject of future works.

A second way of analysing the space of G1-splines over two patches is by
using the tensor product spline representation of the patches. Here we will have
a system of equations between the bspline coefficients of the two patches. We
define the notion of separability of the space, that characterises the spaces of G1-
splines that admit a base with local support. If the chosen space doesn’t admit
a locally supported base, then we produce a base that span a smaller space with
locally supported base elements.

Many algorithms are suitable only for a particular polynomial degree and par-
ticular gluing data type (for instance [88] construct basis for linear gluing data).
We describe in this manuscript a general new piecing scheme for G1-splines over
quad meshes, that we use to produce base for many gluing data functions types.

3 Dimension computation

The commutative algebra tools that Billera have described in [25] have played
a major role in understanding the impact of the geometry of a complex on the
dimension of the spline space. Chapter 2 was an outline of the most important
results in that direction. One of the goals of this manuscript was to show that we
can use similar tools to have more precise results on the dimension of the space
of Gsplines. The key ingredient of all this construction was to write an algebraic
characterisation of the geometric continuity (see proposition 8.2). We succeed
for instance to express the space of Gsplines as an homology group of a chain
complex. Thus we can write the dimension of the space of splines by means of
the dimension of other spaces.

The major obstacle of these constructions is the fact that we cannot define
the space of Gsplines as graded module (at least not for the usual product by
polynomials). All we can say about that space is that it is a graded vector space,
so we cannot reproduce a Gspline version of the results of the Chapter 2.

4 Shape smoothing

We present in chapter 4 of the manuscript, an algorithm to generate a smooth
multi-patch surface that approximate a given 3d-mesh. For this problem, the no-
tion of guided surfaces seems to give good results ( see for instance [89]). We have
chosen to use approximate Catmull-Clark surface [63] as a guide for our smooth-
ing. More precisely, after producing the approximate Catmull-Clark surface, we
compute the closest G1-surface to it by projecting onto the space of G1-surfaces.

The vertex enclosure problem has been discussed in this chapter. We provide
a solution of that problem by using explicit formulas. The two cases of odd and
even valence are distinguished since the co-rank of the incidence matrix in the
two cases are different.

We have explained that the same algorithm, when applied to a base of the
space of one dimensional meshes will produce a set of G1-spline functions that are
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suitable for approximation. The work of [89] has used a similar basis to compute
the solution of an IgA problem. We test this basis for fitting problems.

5 Fitting and IsoGeometric analysis

The base that we have produced have been tested for Fitting and isogeomet-
ric analysis. The algorithm that we have used for fitting uses a pre-processing
step called ball pivoting method, that produces a coarse mesh approximating our
point cloud. After that a G1-spline space is produced using the topology of the
coarse mesh. Then a regression is applied. We have tested this algorithm for
many types of gluing data including Bézier bi-5 patches and bi-3 splines patches
with knots. We have tested as well the basis produced in chapter 4 for medical
data fitting in lung model reconstruction.

For the IgA tests, we have computed an approximation of the solution of a
diffusion problem with boundary conditions using a Bi-5 Bézier patches base. We
found out that the proposed IGA framework with geometrically smooth splines
can achieve a similar accuracy with the C0 multi-patch method, and with less
base elements.

6 Future Works

In the continuation of this work, we see two main directions to be explored:

• Advanced Homological technics for Geometric continuity: After propos-
ing the algebraic characterisation of the Gk-junctions, we have explained
how to generalize some exact sequences. The next step is to compute bounds
on the dimension of the co-kernel mentioned in the sequence (3.50).

• Extension to three-variate G1-splines: As the reader has seen in this manuscript,
to solve the vertex enclosure system at each vertex v, we consider the dual
graph of the mesh formed by the patches containing v and write its inci-
dence matrix ∂. The vertex enclosure system is written by means of the
matrix ∂ and the incidence matrix has a corank that depends on the parity
of the vertex valence, and more generally the corank of the incidence matrix
for a random graph is equal to: n − c0 where n is the number of vertices and
c0 is the number of bipartite (bicolorabel) components of the graph.

In a planar mesh vertex enclosure problem all the incidence matrices corre-
sponds to a cyclique graph, and these matrices have a corank equal at most
to 1. A possible extension is to provide a solution of the 3d G1 continuity
problem with a scheme of solution similar to the one we have described in
Chapter 4. Around an extraordinary vertex in a volumetric 3d mesh, the
vertex enclosure problem takes a similar form since the incidence matrix is
used to express the local system. However the corank may take different
values depending on the local dual graph form, that is not a fortiori cyclic.
The rest of the solution scheme is not yet clear for us.
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