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Titre

Estimation de la pose 3D d’objets dans un environment industriel

Résumé

La détection d’objets 3D et l’estimation de leur pose à partir d’images sont très im-
portantes pour des tâches comme la robotique et la réalité augmentée et font l’objet
d’intenses recherches depuis le début de la vision par ordinateur. D’importants pro-
grès ont été réalisés récemment grâce au développement des méthodes basées sur
l’apprentissage profond. Ce type d’approche fait néanmoins face à plusieurs obsta-
cles majeurs qui se révèlent en milieu industriel, notamment la gestion des objets
contenant des symétries et la généralisation à de nouveaux objets jamais vus par les
réseaux lors de l’apprentissage.

Dans cette thèse, nous montrons d’abord le lien entre les symétries d’un objet 3D
et son apparence dans les images de manière analytique expliquant pourquoi les ob-
jets symétriques représentent un défi. Nous proposons alors une solution efficace et
simple qui repose sur la normalisation de la rotation de la pose. Cette approche est
générale et peut être utilisée avec n’importe quel algorithme d’estimation de pose 3D.

Ensuite, nous abordons le deuxième défi: la géneralisation aux objets jamais vus
pendant l’apprentissage. De nombreuses méthodes récentes d’estimation de la pose
3D sont très efficaces mais leur succès peut être attribué à l’utilisation d’approches
d’apprentissage automatique supervisé. Pour chaque nouvel objet, ces méthodes
doivent être re-entrainées sur de nombreuses images différentes de cet objet, ces im-
ages n’étant pas toujours disponibles. Même si les méthodes de transfert de domaine
permettent de réaliser l’entrainement sur des images synthétiques plutôt que sur des
images réelles, ces sessions d’entrainement prennent du temps, et il est fortement
souhaitable de les éviter dans la pratique.

Nous proposons deux méthodes pour traiter ce problème. La première méth-
ode s’appuie uniquement sur la géométrie des objets et se concentre sur les objets
avec des coins proéminents, ce qui est le cas pour un grand nombre d’objets in-
dustriels. Nous apprenons dans un premier temps à détecter les coins des objets de
différentes formes dans les images et à prédire leurs poses 3D, en utilisant des images
d’apprentissage d’un petit ensemble d’objets. Pour détecter un nouvel objet dans
une image donnée, on identifie ses coins à partir de son modèle CAD, on détecte
également les coins visibles sur l’image et on prédit leurs poses 3D. Nous introduisons
ensuite un algorithme de type RANSAC qui détecte et estime de manière robuste
et efficace la pose 3D de l’objet en faisant correspondre ses coins sur le modèle CAO
avec leurs correspondants détectés dans l’image.
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La deuxième méthode surmonte les limites de la première et ne nécessite pas
que les objets aient des coins spécifiques et la sélection hors ligne des coins sur le
modèle CAO. Elle combine l’apprentissage profond et la géométrie 3D, et repose
sur une représentation réduite de la géométrie 3D locale pour faire correspondre les
modèles CAO aux images d’entrée. Pour les points sur la surface des objets, cette
représentation peut être calculée directement à partir du modèle CAO; pour les
points de l’image, nous apprenons à la prédire à partir de l’image elle-même. Cela
établit des correspondances entre les points 3D sur le modèle CAO et les points
2D des images. Cependant, beaucoup de ces correspondances sont ambiguës car
de nombreux points peuvent avoir des géométries locales similaires. Nous utilisons
alors Mask-RCNN sans l’information de la classe des objets pour détecter les nou-
veaux objets sans ré-entraîner le réseau et ainsi limiter drastiquement le nombre de
correspondances possibles. La pose 3D est estimée à partir de ces correspondances
discriminantes en utilisant un algorithme de type RANSAC.

Mots-clés

Vision artificielle, Détection d’objets 3D, Estimation de la pose d’objets 3D, Ap-
prentissage profond
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Title

3D Object Pose Estimation in Industrial Context

Abstract

3D object detection and pose estimation are of primary importance for tasks such
as robotic manipulation, augmented reality and they have been the focus of intense
research in recent years. Methods relying on depth data acquired by depth cameras
are robust. Unfortunately, active depth sensors are power-hungry or sometimes it
is not possible to use them. It is therefore often desirable to rely on color images.
When training machine learning algorithms that aim to estimate objects’ 6D poses
from images, many challenges arise, especially in an industrial context that requires
handling objects with symmetries and generalizing to unseen objects, that means
objects never seen by the networks during training.

In this thesis, we first analyze the link between the symmetries of a 3D object
and its appearance in images. Our analysis explains why symmetrical objects can
be challenging when training machine learning algorithms to predict their 6D pose
from images. We then propose an efficient and simple solution that relies on the
normalization of the pose rotation. This approach is general and can be used with
any 6D pose estimation algorithm.

Then, we address the second main challenge: the generalization to unseen ob-
jects. Many recent methods for 6D pose estimation are robust and accurate but
their success can be attributed to supervised Machine Learning approaches. For
each new object, these methods have to be retrained on many different images of
this object, and those images are not always available.Even if domain transfer meth-
ods allow for training such methods with synthetic images instead of real ones—at
least to some extent—such training sessions take time, and it is highly desirable to
avoid them in practice. We propose two methods to handle this problem. The first
method relies only on the objects’ geometries and focuses on objects with promi-
nent corners, which covers a large number of industrial objects. We first learn to
detect object corners of various shapes in images and also to predict their 3D poses
using training images of a small set of objects. To detect a new object in a given
image, we first identify its corners from its CAD model; we also detect the corners
visible in the image and predict their 3D poses. We then introduce a RANSAC-like
algorithm that robustly and efficiently detects and estimates the object’s 3D pose
by matching its corners on the CAD model with their detected counterparts in the
image. The second method overcomes the limitations of the first one as it does
not require objects to have specific corners and the offline selection of the corners
on the CAD model. It combines Deep Learning and 3D geometry and relies on an



embedding of the local 3D geometry to match the CAD models to the input images.
For points at the objects’ surface, this embedding can be computed directly from
the CAD model; for image locations, we learn to predict it directly from the image
itself. This establishes correspondences between 3D points on the CAD model and
2D locations of the input images. However, many of these correspondences are am-
biguous as many points may have similar local geometries. We also show that we
can use Mask-RCNN in a class-agnostic way to detect the new objects without re-
training and thus drastically limit the number of possible correspondences. We can
then robustly estimate a 3D pose from these discriminative correspondences using
a RANSAC-like algorithm.

Keywords

Computer Vision, 3D Object Detection, 3D Pose Estimation, Deep Learning
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Résumé en Français

La vision par ordinateur est en train de faire des pas de géant pour faciliter notre vie
quotidienne et la rendre beaucoup plus sûre. Les chercheurs et ingénieurs dévelop-
pent des robots capables d’effectuer des tâches difficiles, des voitures avec des sys-
tèmes de vision intégrés pour aider les gens à conduire prudemment, des algorithmes
pour aider les médecins à diagnostiquer les maladies à partir d’images médicales,
etc. La gamme d’applications qui bénéficient des progrès de la vision par ordinateur
est vaste. Cependant, il existe encore de nombreux défis à relever lors du développe-
ment d’applications de vision par ordinateur. Par exemple, comprendre le monde
en 3D à partir d’images ou de vidéos, c’est-à-dire identifier les objets présents dans
une image, estimer où ils se trouvent en dans l’espace, à quelle distance ils sont de
la caméra, etc. semble naturel et facile pour les humains, mais reste extrêmement
difficile dans le cas général pour un système informatique.

Un premier grand pas vers une plus grande performance pour des tâches de
vision par ordinateur a été fait grâce au développement des réseaux de neurones
artificiels, des modèles inspirés des réseaux de neurones biologiques qui constituent
le cerveau humain, en particulier avec l’avènement de puissants GPU qui ont rendu
leur entraînement plusieurs fois plus rapide, beaucoup moins cher et plus précis.
Les réseaux de neurones profonds ou les réseaux de neurones convolutifs sont des
réseaux artificiels qui, contrairement aux techniques classiques de vision par ordina-
teur, peuvent apprendre à extraire automatiquement de meilleures caractéristiques
d’image sans nécessiter d’étape de prétraitement. Cependant, ces réseaux nécessi-
tent une grande quantité de données de formation pour apprendre à résoudre des
tâches visuelles.

L’apprentissage profond a été appliqué aussi à l’estimation de la pose d’objets
3D à partir des images avec un grand succès. Ce problème a de nombreuses appli-
cations mais il reste difficile car il est affecté par les défis majeurs de la vision par
ordinateur tels que les conditions d’éclairage, les occlusions et les encombrements,
les changements de point de vue et la disponibilité limitée des quantités de données
d’entraînement annotées.

Estimation de la pose 3D des objets

L’estimation de la pose d’un objet 3D est une tâche de vision par ordinateur qui
déduit la pose 3D d’un objet dans une image ou une vidéo, ou de manière équivalente,
le problème de la détermination de la position et de l’orientation d’une caméra
par rapport à un objet donné. Cette pose 3D a 6 degrés de liberté : 3 pour la
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translation 3D et 3 pour la rotation 3D qui peuvent être représentées par différentes
représentations de pose comme une matrice de rotation 3D ou un quaternion.

Il est important de souligner que dans le problème d’estimation de pose 3D,
les caméras sont souvent supposées calibrées. Cela signifie que les paramètres in-
trinsèques de la caméra (la distance focale, les points principaux de la caméra et
la distorsion de l’objectif) sont connus tandis que les paramètres extrinsèques de
la caméra (la translation et la rotation) doivent être estimés. Enfin, les méthodes
d’estimation de pose 3D considèrent souvent une seule image. Cependant, les algo-
rithmes d’estimation de pose 3D peuvent initialiser ou réinitialiser les méthodes de
suivi d’objets 3D.

Ce problème a différentes variantes en fonction du type d’objet dont nous voulons
prédire la pose, du type de capteur utilisé pour acquérir les données d’entrée et de
l’objectif final de l’algorithme. Dans cette thèse nous traiterons l’estimation de la
pose 3D des objets rigides quand plusieurs instances de plusieurs objets sont présent
dans l’image. Nous utiliserons comme données d’entrée uniquement une simple
image couleur, sans information de profondeur, ainsi qu’un modèle CAO des objets
sans information de texture. Disposer de la profondeur rend le problème beaucoup
plus facile, mais les capteurs ont des défauts : ils ont gourmands en énergie, et
peuvent échouer sur les objets spéculaires.

Une autre façon possible de capturer des informations de profondeur serait
d’utiliser plusieurs systèmes de caméras. Cependant, cela devient impossible en
raison du coût et des efforts nécessaires pour mettre en place un système calibré et
synchrone de plusieurs caméras, en particulier pour les applications de suivi d’objets
3D. Pour ces limitations des capteurs de profondeur, la communauté de recherche
se concentre davantage sur le problème de l’estimation de pose 3D à partir d’images
RGB uniquement et c’est ce que nous considérons également dans cette thèse.

Même si d’importants progrès ont été réalisés récemment grâce au développement
des méthodes basées sur l’apprentissage profond, ce type d’approche fait néanmoins
face à plusieurs obstacles majeurs qui se révèlent en milieu industriel, notamment la
gestion des objets contenant des symétries et la généralisation à de nouveaux objets
jamais vus par les réseaux lors de l’apprentissage.

Gestion des objets symétriques

De nombreux objets de notre vie quotidienne ou dans des contextes industriels
présentent des symétries, ou du moins des « quasi-symétries » quand un petit détail
empêche l’objet d’avoir une symétrie parfaite. Ces symétries créent des ambiguïtés
lorsque l’on cherche à estimer la pose 3D de l’objet à partir d’images, comme nous
l’expliquerons. Pendant longtemps, ce problème n’a pas été pris en compte par les
chercheurs et le problème de l’estimation de la pose d’objets 3D n’a été résolu que
sur des scénarios simples. Pour mieux comprendre le problème posé par les symétries
d’un objet, nous pouvons considérer la figure 1. L’objet bleu a une symétrie de rota-
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180°

Figure 1: Deux vues de la même scène avant et après rotation de 180◦ autour de l’axe
vertical de l’objet bleu.

tion autour de l’axe vertical. Si nous appliquons une rotation de 180◦ autour cet axe,
cet objet a la même apparence. Plus généralement, lorsqu’un objet O a une certaine
symétrie, il existe un ou plusieurs mouvements rigides tels que, si nous appliquons
ces mouvements rigides à la pose de l’objet, l’apparence de l’objet est préservée. En
autres termes, deux images d’un objet symétrique peuvent être identiques mais pas
correspondent à la même pose. Si on considère une image I d’un objet O sous la
pose p, il n’existe pas de fonction F telle que

F(I) = p , (1)

et il est donc impossible de l’apprendre avec un réseau de neurones. Par exemple,
si un réseaux des neurones est entrainé pour prédire la pose avec une fonction de
coût carré entre la vérité terrain et la prédiction, ce réseau apprendrait à prédire la
moyenne des pose possibles. Ce résultat n’aurait pas de sens.

Nous expliquons dans le chapitre 5 le lien entre les symétries d’un objet 3D et
ses apparences dans les images en détail et nous montrons pourquoi il ne suffit pas
de restreindre les poses dans certaines intervalles.

Nous proposons en suite une solution simple et analytique pour gérer ce problème
basée sur la normalisation de la rotation de la pose problème. Cette solution est
générale et peut être introduite dans n’importe quel algorithme d’estimation de pose
3D.

Généralisation à de nouveaux objets

Nous avons déjà fait remarqué que l’avènement de l’Apprentissage Profond a amélioré
les performances de l’estimation de pose 3D à partir des images. Cependant,
ces approches permettent d’obtenir d’excellentes performances dans l’estimation de
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la pose d’objet 3D, au moins lorsque suffisamment d’images d’entraînement sont
disponibles sous différentes poses. Un modèle entraîné sur certains objets ne fonc-
tionnera pas aussi bien sur d’autres objets, qui ne faisaient pas partie des échantillons
d’apprentissage. C’est une grosse limitation surtout dans les contextes industriels où
les nouveaux objets sont courants et il n’est pas facile d’en avoir beaucoup d’images
de formation.

Même si les méthodes de transfert de domaine permettent d’entrainer les réseaux
profonds avec des images synthétiques au lieu de vraies au moins dans une cer-
taine mesure, ces sessions de’entrainement prennent du temps, et il est hautement
souhaitable de les éviter dans la pratique, en particulier dans les contextes indus-
triels. Nous proposons dans cette thèse une méthode capable de prédire la pose
3D d’un objet jamais vu par le réseau profond pendant son entrainement, sans
avoir besoin des plusieurs images de ce nouveau objet et ni de nouvelle sessions
d’entrainement.

Utilisation de coins 3D générique

Dans le chapitre 6, nous proposons une première approche pour estimer la pose 3D de
nouveaux objets. Cette méthode ne nécessite pas d’apprentissage supplémentaire ni
d’images d’entrainement pour les nouveaux objets et nous considérons un scénario
où des modèles CAO pour les nouveaux objets existent, mais pas nécessairement
des images d’entrainement. C’est souvent le cas dans les contexte industriels, où
un objet est construit à partir de son modèle CAO. Nous nous appuyons sur les
coins que nous apprenons pour détecter et estimer les poses 3D lors d’une étape
hors ligne. Notre approche se concentre sur les objets industriels qui ont souvent
des coins comme partie commune.

Détecter ces coins et déterminer leurs poses 3D est la base de notre approche.
Nous utilisons l’apprentissage profond et nous entrainons l’architecture Faster R-
CNN sur un petit ensemble d’objets pour détecter les coins et prédire leurs poses 3D.
Nous utilisons la représentation des poses 3D introduite par Crivellaro et al. (2018):
La pose 3D d’un coin est prédite sous la forme d’un ensemble de reprojections 2D
de 3D points virtuels. Cette représentation est pratique pour notre objectif car
plusieurs coins peuvent être facilement combiné pour calculer la pose de l’objet. En
plus, cette approche est robuste aux occlusions. Grâce à cette représentation de
pose, il suffit d’avoir 1 ou 2 coins pour prédire la pose de l’objet.

Cependant, nous devons relever un défi qui se pose avec les coins, et que a été
ignoré dans Crivellaro et al. (2018): en raison de ses symétries, la pose 3D d’un
coin est souvent ambigu et défini uniquement par un ensemble de rotations rigides.
Nous, par conséquent, introduisez un algorithme robuste et efficace qui considère
toutes les possibles poses 3D des coins détectés, pour enfin estimer les poses 3D de
les nouveaux objets.

Cette méthode a, toutefois, des limitations : elle se limite seulement a des objets
avec des coins et elle nécessite qu’un expert sélectionne hors ligne les coins sur les
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modèles CAO des nouveaux objets. Pour supprimer cette exigence et rendre notre
solution plus générale, nous avons introduit une nouvelle méthode.

Utilisation de descripteurs locaux de la surface des objets

Dans le chapitre 7, nous considérons toujours le même probleme mais proposons
une nouvelle méthode basée sur des correspondances denses entre l’image couleur
d’entrée et le modèle CAO, au lieu de correspondances de coin.

Étant donné que nous voullons une approche capable de fonctionner dans le con-
texte industriel, nous voulons gérer les objets symétriques, sans texture, ambigus ou
partiellement occultés. De plus, nous ne voulons plus sélectionner manuellement les
points 3D virtuels sur les coins. Notre nouvelle approche combine l’apprentissage
automatique et la géométrie 3D : comme des travaux précédents (Brachmann et al.,
2016; Zakharov et al., 2019; Park et al., 2019), nous établissons des correspondances
denses entre les pixels de l’image et les points 3D sur la modèle CAO, car ils ont
montré que cela donne des poses précises. Cependant, il existe une différence fonda-
mentale entre ces travaux et le nôtre : ils prédisent les cordonnes 3D des points de
l’objet car ils peuvent entraîner un modèle d’apprentissage automatique à l’avance
pour prédire ces coordonnées 3D des pixels dans une image donnée. Dans notre cas,
nous souhaitons éviter toute les phases d’apprentissage de nouveaux objets et donc
pour nost predire els cordonnes 3D des points de l’objet est impossible.

Nous utilisons donc sur une stratégie différente et nous introduisons un descrip-
teur capturant la géométrie locale des points 3D qui se trouvant sur la surface de
l’objet. Nous entrainons un réseau profond à prédire ces descripteur par pixel en
utilisant un petit nombre d’objets, et nous utilisons le modèle entrainée sur les im-
ages de nouveaux objets. En mettant en correspondance ces descripteur prédits sur
l’image avec les descripteur calculés pour les points 3D sur la surface de l’objet, nous
obtenons des correspondances 2D-3D à partir desquelles nous estimons la pose 3D
de l’objet avec une algorithme de RANSAC et d’un solveur PnP.

Cette approche est conceptuellement simple, robuste aux occlusions et fournit
une pose 3D précise. Cependant, pour réussir, une attention particulière est néces-
saire. Premièrement, les descripteurs doivent être invariants de rotation. Deux-
ièmement, à cause des symétries et de cette invariance de rotation, de nombreuses
correspondances entre pixels et points 3D sont possibles a priori et la complexité
de trouver un ensemble de correspondances correctes peut devenir exponentielle.
Nous contrôlons cette complexité de deux manières. Nous nous concentrons sur les
descripteurs d’image qui sont les plus discriminants car ils ont moins de correspon-
dances potentielles. Nous observons également que l’architecture Mask R-CNN (He
et al., 2017) peut prédire les masques de nouveaux objets lorsqu’ils sont entraînés
sans aucune information de classe, et ainsi segmenter de nouveaux objets sans ré-
entraînement. Nous l’utilisons pour contraindre les ensembles de correspondances
dans RANSAC à se trouver sur le même masque, et ainsi réduire considérablement
le nombre d’échantillons à considérer dans RANSAC.
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In 1966 a famous computer scientist, Marvin Minsky, instructed a graduate stu-
dent to connect a camera to a computer and have it describe what it sees. More than
50 years later, we are still working on it.

Computer vision is taking giant steps nowadays, facilitating our daily life and
making it much safer. Researchers and engineers have developed robots able to
perform complicated tasks, cars with integrated vision systems to help people drive
carefully, algorithms to help doctors to diagnose diseases from medical images, to
highlight only a few examples. The range of applications that benefit from advances
in computer vision is huge. However, there are many challenges to face when devel-
oping computer vision applications. For example, understanding the real 3D world
from images or videos, which objects are in the image, how they are located in 3D,
how far they are from the camera seems natural and easy for humans but it is not
so easy for computers systems. Early approaches to solving visual tasks consisted
of representing the objects with patterns, like edges or corners, and then imple-
mented methods to search for these features in the images. These features need to
describe each object. However, object appearance can change a lot depending on
the viewpoint, the lighting conditions and occlusions. Therefore, there is the need
to represent each object from all possible views and under all imaging conditions.
This process is highly time-consuming, and researchers have soon started studying
how to automatically extract those features.

Machine learning helped researchers make computers learn these patterns to
solve visual tasks by considering a lot of examples, called training data, without the
necessity to be preprogrammed. Early machine learning-based approaches require a
first step of preprocessing where image features are extracted and a second learning
step where these features are fed into a classifier, such as a support vector machine,
which makes decisions about how to solve the visual task.

A first big step towards higher accuracy in computer vision tasks was made by
Neural Networks (NNs), models inspired by the biological neural networks that con-
stitute the human brain, especially with the advent of powerful GPUs that made
training them multiple times faster, much cheaper and more accurate. A subcate-
gory of NNs is the Deep Neural Networks (DNNs) or Convolutional Neural Networks
(CNNs). Unlike classical computer vision techniques or NNs, DNNs can learn to ex-
tract better image features automatically without requiring any preprocessing step.
By learning features from the entire input image, DNNs do not suffer from any loss
of information and learn better features than the hardcoded ones. However, these
networks require a large amount of training data to solve visual tasks. The concept
of DNNs has been around for some time but it was not considered a successful and
reliable tool by the research community. This conception changed in 2012, when
the Deep Neural Network (DNN) AlexNet, developed by Krizhevsky et al. (2012),
won the image recognition ImageNet challenge by a large margin. Since that, more
and more computer scientists are using CNNs to successfully solve many tasks of
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computer vision, making it one of the most remarkable breakthroughs over the last
decade. Thanks to computers with more computational power and the availability
of much more training data such as videos and pictures, essential for deep machine
learning, that was much more possible.

One field of computer vision that benefited a lot of the advent of Deep Learning
(DL) is 3D object pose estimation. This problem has plenty of applications and
it is interesting as well as difficult because it is affected by the major challenges
of computer vision such as lighting conditions, occlusions and clutters, viewpoint
changes and limited annotated training data as we will see in Sections 1.2 and 1.3.

1.1 3D Object Pose Estimation

3D object pose estimation is a computer vision task that infers the 3D pose of an
object in an image or video, or equivalently, the problem of determining the position
and orientation of a camera relative to a given object. This 3D pose has 6 degrees
of freedom (DoF): 3 for the 3D translation and 3 for the 3D rotation that can
be represented by different pose representations such as a 3D rotation matrix or a
quaternion. Because of these 6 DoF the terms 3D pose and 6D pose refer to the
same concept and the research community often refers to this problem also as 6D
pose estimation.

It is important to underline that 3D pose estimation differs from 2D object pose
estimation (or 2D detection) where the objective is to localize the object in 2D space
relative to an image or video frame. Indeed, it is much more challenging since it
transforms an object in a 2D image into a 3D object by adding a z-dimension to
the prediction. It is important to underline that in the 3D pose estimation prob-
lem, the cameras are supposed to be calibrated. It means that the camera intrinsic
parameters (the focal lengths, the camera principal points and the lens distortion)
are known while the camera extrinsic parameters (the translation and the rotation
components) have to be predicted. Finally, the 3D pose estimation problem is in-
tended from a single frame. However, 3D pose estimation algorithms can initialize
or re-initialize 3D object tracking methods.

3D pose estimation has different variants based on the type of the object of which
we want to predict the pose, the type of sensor used to acquire the input data and
the final goal of the algorithm.

Rigid vs non-rigid objects: a non-rigid object is made of moving parts or defor-
mation parameters. Their positions and shapes have many more DoF and specific
pose representations have been developed. On the contrary, a rigid object is fixed
and, in this case, a rigid body transformation is a correct representation of an ob-
ject’s pose.
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RGB cameras vs depth-sensors: 3D pose estimation methods can be classified
into two big categories depending on if they exploit both the color and the depth
information or only the color.

Relying on depth data make algorithms more robust. Depth information con-
tains many insights about the shape of the object and it is independent of lighting
conditions that, as we will see in Section 1.3, is one of the major challenges in com-
puter vision tasks from RGB images. Furthermore, discontinuities in depth are a
strong indicator of object boundaries which make algorithms able to detect objects
in the image even with a cluttered background and the depth values constraints
the z-component of the unknown object translation. When depth is available, the
initial 3D pose estimate can be coarse since it can be refined later by aligning a 3D
model of the object with the local depth at the estimated position, like for example
with the Iterative Closest Point (ICP) algorithm ( Chen and Medioni (1991), Zhang
(2017)). On the contrary, methods relying on RGB inputs are less robust since they
are affected by illumination changes and clutter background since object boundaries
are less prominent. Refinement algorithms that exploit the depth information can-
not be used here and it means the pose estimates should be very accurate. This
high accuracy is very complicated to obtain especially the translation value along
the z-axis because the distance of the object from the camera changes only slightly
in the image compared to the distance in 3D.

At a first glance, it appears that using RGB data with depth information is
the right choice to make. Unfortunately, active depth sensors are power-hungry or
sometimes it is not possible to use them. We can think of Time-of-Flight (ToF)
or RGB-D cameras for example. The former type of camera uses infrared light to
capture depth information in this way: the sensor emits a light signal, which hits the
object and returns to the sensor. The time it takes to bounce back is then measured
and provides depth-mapping values. The latter adds per-pixel depth information to
the RGB image by first projecting Infra-Red light dots on the scene, and capturing
images in the Infra-Red range. It then computes the depth by measuring the dis-
placement of the dots. Both these cameras lack performance in the outdoor scenes
because of the interference of sunlight. Another possible way to capture depth in-
formation would be to use multiple camera systems to solve some ambiguities that
raise when using RGB inputs. However, this becomes impractical due to the cost
and effort in setting up a calibrated and synchronous system of multiple cameras,
especially for 3D tracking applications. The depth information can be also provided
by LiDAR sensors. However LiDAR sensors can not be easily adapted in industrial
context and have mostly been used in outdoor localization, for example for mobile
robotics ( Delobel et al. (2015)) and autonomous driving ( Geiger et al. (2012)).

For these limitations of depth sensors, the research community is focusing more
on the problem of 3D pose estimation from RGB images only and it is what we
consider in this thesis as well.
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Single object vs Multi Objects pose estimation: In the single object pose
estimation, the objective is to predict the 3D pose of a unique object instance, where
an object instance means a specific object of the real word different from others in
terms of shape and material. This is different from the concept of object class or
category which includes all objects of a particular class. In this task, the object is
often considered visible in the image. In multi objects pose estimation the DNNs
are trained with multiple objects simultaneously and, given an image, the system
should estimate the poses of all the objects in it. This is more challenging since some
objects can be not visible and/or occluded by other objects and an object detector
is often required and added to the pipeline to know which objects are visible. A
particular case of multi objects pose estimation is multi instances pose estimation.
In this case, multiple instances of the same object can appear in the scene.

1.1.1 Problem statement

Early methods for 3D pose estimation focus on simple scenarios where a single object
lies on a uniformly planar surface that is not en entirely realistic scenario. To bridge
the gap between pure research and industrial applications, more difficult scenarios
with high clutter, occlusion and all the limitations that real applications imply need
to be considered.

For this reason, in this thesis, we consider the most difficult scenario, and we
focus on the problem of multiple object instances pose estimation in a single RGB
image, also defined as Vivo (vary number of instances of a varying number of
objects) task in the BOP challenge 1 (Hodaň et al., 2018). The methods we will
discuss in this thesis exploit the power of Deep Learning and so they belong to the
learning-based methods category. According to the BOP challenge instructions, the
general set-up for these approaches is:

Firstly, at training time, a method is given a training set T = {To}no=1, where o is
an object identifier. Training data To may have different forms, such as a 3D mesh
model of the object or a set of RGB-D images showing object instances in known
3D poses. Secondly, at test time, the method is provided with the image I and a list
L = [(o1, n1), ..., (om, nm)], where ni is the number of instances of object oi present
in the image I. The goal is to estimate the 3D pose of all the instances of object oi
visible enough in image I. Each estimate is given by a 3×3 rotation matrix R and
a 3×1 translation vector t.

In this set-up, DNNs can successfully work with objects that have previously
been seen during the training phase. If this does not happen, DNNs cannot predict
the pose of a new object. In an industrial context, this is a substantial limitation
since often happens the need to estimate the 3D pose of new objects when only their
CADmodels are available but not training images. On the contrary, a learning-based

1https://bop.felk.cvut.cz/home/
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Figure 1.1: Representation of our extended problem statement.

3D pose estimation algorithm able to work with unseen objects would be a powerful
tool in the industry since the need for a large number of images for training learning-
based methods make them often unsuitable for industrial applications (Section 1.2).

This problem is not solved yet, and only recently, the research community real-
ized its importance and started tackling it. We, therefore, take this direction and in
this thesis, in Chapters 6 and 7, we will propose two approaches towards a possible
solution for 3D pose estimation of unseen objects problem. The set-up for these
methods, shown in Figure 1.1, is as follows:

The training set T = {To}no=1 is still used at training time but at test time the
method is provided with another list Lunseen = [(u1, n1), ..., (um, nm)], where ui 6∈ T
is an object present in the image I that has not been seen during training and where
ni is the number of instances of object ui in the image I.

To summarize, our objective is to solve the 3D pose estimation of objects that are
typical in industrial contexts, which means considering all the challenges it implies
(as we will discuss in Section 1.3) without doing any simplification. Our methods
should deal with:

• Symmetrical, ambiguous, texture-less objects that are often similar to others.

• Unavailability depth sensors. The input of the algorithms should be an RGB
image.

• Images have a cluttered background and objects in the image can be occluded
by others.

• Multiple instances of the same object can be in the image.
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Figure 1.2: Robotics applications. Left: A robotic arm grasping an object a. Right:
Robotic platforms navigating in an outdoor environment b.

ahttps://www.therobotreport.com/grasp-sight-picking-evolve-robots/
bhttps://robohub.org/robot-teams-create-supply-chain-to-deliver-energy-to-explorer-robots/

1.2 Applications

The recovery of the 3D pose of an object is an important problem in the computer
vision field since it has great impact to many rapidly evolving technology areas.
Here we will detail these applications.

Robotics: Two applications in robotics can benefit from the advances of 3D ob-
ject pose estimation: object grasping, for example in assembly lines or automated
warehouses and navigation (Figure 1.2). If a robot wants to grasp an object, it must
detect it and estimate its 3D pose. Similarly, a mobile robot needs a representation
of the environment and a representation of its belief regarding its pose in this en-
vironment. For this reason, the robots must detect the objects around themselves
and estimate their 3D poses. Once the objects are localized in the scene, the robot
could navigate to the objects’ positions in the 3D space avoiding obstacles.

Augmented Reality: Augmented reality (AR) allows us to seamlessly insert vir-
tual objects in an image sequence. To accomplish this goal, synthetic elements must
be rendered and aligned in the scene in an accurate and visually acceptable way.
The solution to this problem can be related to a pose estimation or, equivalently, a
camera localization process. Two examples of AR are shown in Figure 1.3.

Autonomous driving: A self-driving car benefits from advances in 3D object
pose estimation since it requires accurate object detection and pose estimation for
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Figure 1.3: Augmented reality applications. Left: AR can provide operators with visual
instructions and enhance remote support and communicationsa. Right: A mobile app
using AR technology to scan a room and design the space by placing objects in the digital
image of the room to create a new environment with the new products b.

ahttps://www.i-scoop.eu/industry-40-virtual-reality-vr-augmented-reality-ar-trends/
bhttps://www.ikea.com/au/en/customer-service/mobile-apps

Figure 1.4: Example of an autonomous navigation system a that exploits a 3D pose esti-
mation algorithm to detect the cars in the streets and their 3D pose (Geiger et al., 2012).

ahttps://www.tesla.com/videos/autopilot-self-driving-hardware-neighborhood-short

a vehicle to navigate in the 3D space without human assistance avoiding collisions
with pedestrians, cyclists and cars. Figure 1.4 shows an example of a self-driving car
and the output of a 3D object pose estimation algorithm applied to cars. However,
autonomous driving is not only limited to cars, and it can be used for different types
of vehicles such as trains and drones as well.

1.3 Challenges

Many challenges need to be tackled in practice when estimating the 3D poses of
objects from RGB images and that is the reason why the 3D pose estimation problem
is not yet solved, except for simple scenarios. We detail the most critical challenges
below:
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Illumination changes, Figure 1.5(a): The object appearance can largely change
under different illuminating conditions. Illumination parameters can change the
overall magnitude of light intensity reflected from an object, as well as the shadows
visible in an image. Also, the color of the light can produce changes in the image.
Methods for 3D object pose estimation that rely on the appearance of the objects
are highly affected by this problem. Indeed to be robust to light changes these al-
gorithms need to be trained with a large set of images of the objects under varying
illumination and these images are not always available or they are not easy to create
synthetically.

Viewpoint changes: Appearance-based methods also suffer from viewpoint changes
since object appearance varies when the object is viewed from different angles. To be
robust to these changes these methods need to see objects under a lot of viewpoints
during the training phase.

Clutter background and Occlusions, Figure 1.5(b): 3D pose estimation al-
gorithms tend to fail when there are cluttered backgrounds and objects partially
occlude each other. This happens mostly because of two factors: the first is that
these methods often rely on components representing the entire objects globally and
second because random objects in the background might be similar or have similar
parts to the target objects and act as distractors. To deal with the problem of oc-
clusions some methods look only locally at some parts of the objects while others
try to train DNNs on images with a lot of occluded objects.

Texture-less objects, Figure 1.5(c)(d)(e): Early approaches to pose estima-
tion relied on the presence of texture or pattern on the objects’ surfaces because
stable features can be detected and matched relatively easily and efficiently on pat-
terns. These approaches fail on texture-less objects since they lack discriminative
parts. Dealing with these objects is essential since they are very common in the
industry.

Ambiguity, Figure 1.5(e): Repetitive patterns, multiple instances of the same
object, symmetrical or quasi-symmetrical objects are very common in practice espe-
cially in industrial contexts. These symmetries create ambiguities when aiming to
estimate the 3D pose of the object from images with machine learning algorithms
that confuse the networks during the training phase preventing them from learning.
We will address this problem in Chapter 5.

Training data: To train supervised methods for 3D object pose estimation a lot
of ground truth 3D object pose data are required. Annotating 3D poses of the
objects in the images requires a great effort and the publicly available datasets for
this task are limited. On the contrary, to solve the challenges described above these
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(a)

(b)

(c) (d) (e)

Figure 1.5: Some challenges that occur when estimating the 3D poses of the objects from
RGB images. (a) Different lighting conditions can induce strong variations in appearance
of objects. The images have been taken from the ALCN dataset (Rad et al., 2017). (b)
Partial occlusions. (c) (d) (e) Ambiguities that arise because of symmetries (c) or quasi-
symmetries (d) of the objects, or because some objects (e) are composed of smaller objects
(d) repeated multiple times. These images have been taken from the T-LESS dataset
(Hodaň et al., 2017).

algorithms need to see a lot of variations in light, viewpoints and occlusions during
the training. One common approach to gain robustness against this problem is to
augment the training set and this can be done online during training by chang-
ing the brightness of the image, the color, simulating occlusions or adding noise.
Unfortunately, this is often not enough. To simulate different light sources, high
occlusions or heavy cluttered random background like real scenes research scien-
tists often need to generate synthetic training images, and that leads to another
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challenge: the domain gap between synthetic training images and real test images
makes methods trained on synthetic images do not generalize well. Researchers are
doing a significant effort even in this direction to overcome this limitation.

Scalability: AR applications and robotics should work with a large set of objects.
The latest 3D pose estimation datasets have up to 33 objects. A question then
arises: how many objects can the deep learning-based algorithms handle? Adding
more and more objects, are these algorithms still going to perform well? That is the
problem of scalability.

Generalization to unseen objects: Since learning-based methods are trained
on images of specific objects, they are not able to generalize to new objects at test
time. This means that every time a new object appears, these methods need to be
retrained on many different images of the new objects. Unfortunately, these images
are not always available, especially in the industry. A possible solution would be
training these methods on synthetic images but sometimes it is highly desirable to
avoid training sessions since they take time. Time is precious in industry and it is
rather preferred to have a method able to generalize to unseen objects without any
retraining. This aspect is also implicitly linked to the problem of scalability.
Generalization to unseen objects is the main challenge that the work described in
this thesis deal with, and we will discuss in Chapters 6 and 7 two approaches to
solve this core problem.

1.4 Contributions

This thesis covers the following peer-reviewed accepted publications:

• On Object Symmetries and 3D Pose Estimation from Images
Giorgia Pitteri, Michaël Ramamonjisoa, Slobodan Ilic and Vincent Lepetit
International Conference on 3D Vision, 2019

• CorNet: Generic 3D Corners for 3D Pose Estimation of New Objects without
Retraining
Giorgia Pitteri, Slobodan Ilic and Vincent Lepetit
International Conference on Computer Vision Workshops, 2019

• 3D Object Detection and Pose Estimation of Unseen Objects in Color Images
with Local Surface Embeddings
Giorgia Pitteri, Aurélie Bugeau, Slobodan Ilic and Vincent Lepetit
Asian Conference on Computer Vision, 2020
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1.5 Outline

The remainder of this thesis is structured as follows:

• In Chapter 2, we introduce some notions and background on computer vision
and deep learning necessary to understand the thesis.

• In Chapter 3 we present an overview of the state-of-the-art methods in the
field of 3D object detection and pose estimation. In particular, we focus on
recent works that handle symmetrical objects and unseen objects.

• In Chapter 4, we detail the open-source datasets most used to train and eval-
uate the 3D pose estimation methods. We will explain which dataset we chose
to evaluate our methods and all the reasons behind our choice. We also present
our synthetic photo-realistic dataset.

• Chapter 5 presents a general approach based on the normalization of the pose
rotation to handle symmetrical objects that can be integrated into any 3D
pose estimation pipelines.

• Chapter 6 presents our first approach to estimate the 3D pose of unseen ob-
jects by learning to detect corners in the image and estimate the 3D poses of
the corners during an offline stage.

• Chapter 7 presents our second approach to estimate the 3D pose of unseen
objects by using an embedding of local 3D geometry to match the CAD model
and 2D locations of the input images.

• Finally, in Chapter 8, we conclude this thesis discussing some limitations and
possible future directions to solve them.
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2.1. Perspective Camera Model

When discussing 3D object pose estimation, it is essential to review the rela-
tionship of the 3D world and its depiction in 2D images, that means how a camera
projects 3D structures onto the image plane. In this chapter, we define the necessary
geometry background.

2.1 Perspective Camera Model

A camera provides a mapping between the 3D world and a 2D image. Different
approaches to model the transformation of a 3D point in world coordinates to a 2D
point in image coordinates exist. In this thesis, we use the perspective projection
model by assuming a pinhole model of the camera. In this model, the image plane
is located between the camera and the scene plane, and the camera axis, called the
focal axis, is orthogonal to the image plane. The camera can be described in matrix
form as:

P = K [R|t] (2.1)

where K is a matrix of the intrinsic parameters, R ∈ SO(3) is the camera rotation
matrix, t ∈ R3 is the camera translation. The intrinsic matrix K is described as:

K =

fu 0 cu
0 fv cv
0 0 1

 (2.2)

where f = (fu, fv)
T is the focal length of the camera in pixels and c = (cu, cv)

T is
the principal point offset.

Given a 3D point in the world P = [X, Y, Z, 1]T , in a homogeneous coordinates
system, the coordinates of the pixel in the image are obtained as:

x =

λuλv
λ

 = K [R|t]


X
Y
Z
1

 (2.3)

By dividing the first two coordinates of x = [λu, λv, λ]T by the third coordinates,
it is possible to obtain the pixel coordinates (u, v).

2.2 Perspective-n-Point

The definition of Perspective-n-Point (PnP) is as follows:

Given a set of n 3D points in the world coordinate system and their correspond-
ing 2D projections in the image, assuming the camera intrinsic parameters and the
camera distortion coefficients are known, find the 3D rotation and 3D translation of
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the object with respect to the camera.

Because a rigid body transformation has 6 DoF, it is necessary to get information
of at least three pairs of corresponding points to solve a PnP problem. Principally
to avoid the impact of noise, it is better if more points are observed. It is also
important that these points are further away from being coplanar. Most of the
available solutions are applicable for the typical case in which n > 3 but solutions
applicable for n = 3 exist. Most of these methods assume the correspondences are
noisy-free. We will discuss in the next section a method to get rid of outlier points.

P3P: If we observed 3 points, we end up with a system of polynomial equations
that generally has 8 solutions. 4 solutions are behind the camera. Only 4 solutions
are physically possible, and they can be obtained via computation algebra methods
classified into iterative, non-iterative, linear, and non-linear ones (R. Haralick and
Nolle, 1991).

EPnP: In most cases, it is better to have four or more correspondences problem
in PnP. Redundancy in a larger set of points decreases the interference of noise.
However, having a large set of points increase the complexity of the procedure to
get the rigid body transformation, and it is necessary to increase the efficiency of the
PnP algorithms in order to run in real-time. EPnP, proposed by Lepetit et al. (2009),
achieves a complexity of O(n) with a reasonable accuracy in the transformation
estimation. The central idea of this method is to express the n 3D points as a
weighted sum of four non-coplanar virtual points.

Iterative PnP: The Iterative PnP method is based on a Levenberg-Marquardt
optimization. In this case, the function finds such a pose that minimizes the repro-
jection error, that is the sum of squared distances between the observed projections
in the image and the observed points in the object coordinates system.

Choosing the method depends on the type of applications. For example, EPnP
and P3P are faster than Iterative PnP at finding an optimal solution. However,
EPnP and P3P are not incredibly robust in front of planar surfaces.

2.3 RANSAC

The methods proposed above to solve the PnP problem are susceptible to outliers in
the correspondences set. For example, if we learn the 2D locations in the image of
3D points with a regressor, they are likely to be noisy. For this reason, PnP is often
used in conjunction with a more robust estimator. The Random Sample Consensus
(RANSAC), proposed by Fischler and Bolles (1981), is an iterative method to find
a mathematical model from a set of observed noisy data that contains outliers.
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This robust estimator starts with a minimal random selected subset from the entire
observed data, and it computes a fitting model using only the elements of this
subset. Then it checks if the other data fit the estimated model. Data that fit
the model, also called inliers, are used to form the consensus set while others, the
outliers, are discarded. The RANSAC algorithm iteratively repeats these steps until
the consensus set has enough inliers. In the case of 3D object pose estimation, the
set of 2D-3D correspondences can have some outliers, especially if these matches are
predicted with a regressor. These outliers are the cause of wrong pose estimation.
That is why RANSAC and PnP are often used together to remove outliers from the
set of correspondences and to have a more accurate pose estimation.

2.4 Deep Learning

In Chapter 1 and 3 we show how Deep Learning boosts the performances of many
computer vision tasks including 3D pose estimation and say that CNNs are becoming
the first choice for many computer vision scientist. In this thesis we will present
methods that exploit the CNNs. We, therefore, review the fundamental blocks of a
CNN and how we can train this network.

Convolutional Layer: A CNN is composed of convolutional layers, hence the
name, and thanks to this convolutional operator it extracts features from the input
image automatically. A convolution unit has a receptive field with given weights
(also called filter) that is shifted step by step across a 2-dimensional array of input
values, such as the pixels of an image (usually there are several such filters). By
sliding these learned filters over the input image, we obtain activation maps that give
responses to that filter at every spatial position. These activation maps represent
the extracted features from the image and they can be used in the higher levels of
the network.

Activation Function: If we use only convolutions we end up with a linear regres-
sion model that it is not enough to represent complex functions that map an image
input to an output. To bring non-linearity to the network, we add some activation
functions. Their aim is to bound the values of the neurons and decide if they should
activate or not. The most common activation functions used are:

• Tanh: f(x) = tanh(x) = 1−e−2x

1+e−2x

• Sigmoid: f(x) = 1
1+e−x

• ReLu: f(x) = max(0, x)
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Pooling layer: A pooling layer is needed to reduce the dimensionality of each
feature maps by downsampling them. There are different pooling types such as
Max Pooling, Average Pooling and Sum Pooling. A spatial neighborhood of size
n × m is selected in the feature map and the max, the average or the sum of the
elements in the neighborhood are taken.

Fully Connected Layer: The fully connected layer takes the feature maps ob-
tained with the set of convolutional and pooling layers to perform the final classi-
fication or regression task. The term “fully connected” means that every neuron in
the previous layer is connected to every neuron on the next layer, as in regular NNs.

Cost function: A CNN learns to map a set of inputs to a set of outputs from
training data. This map is equivalent to a set of weights the model can use in
order to make good predictions. The best set candidate of weights is chosen with an
optimization algorithm, in which a cost function is minimized. This cost function,
often referred as loss, is a function error between the predicted outputs of the CNN
and the correct ground truth. There are different types of loss functions and which
one to use depends on the task we want to solve.

Optimizer: Receptive field weights in convolutional layers start from an initial-
ization value, and then they are learnt during a training phase. In this phase, an op-
timization algorithm updates the values of these weights to minimize a cost function
or objective function. Since Deep Learning requires a large amount of training data,
it is important to have a fast and scalable optimization algorithm. Some researches
are working on this optimization process, providing fast and accurate solutions. In
our methods we use the Momentum or the Adam optimization algorithms.

2.5 Conclusion

In this chapter, we reviewed some fundamental concepts in computer vision and
Deep Learning that are essential to understand the work of this thesis. In the next
chapter, we present an overview of the state-of-the-art methods in the field of 3D
object detection and pose estimation.
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3.1. Early Approaches to 3D object pose estimation

In this chapter, we present an overview of 3D pose estimation methods of rigid
objects. 3D pose estimation has a long history in computer vision with a large
variety of proposed methods and collecting all methods in a structured review is
not easy. There are interesting and well-structured reviews on 3D pose estimation
in the literature: Marchand et al. (2016) with a survey on pose estimation for AR
applications, Sahin et al. (2020) with a mathematical-model-based categorization of
the methods and Lepetit (2020) with a survey on recent advances in 3D object pose
estimation through several milestone methods.

3D pose estimation methods can be divided into two categories based on the
information they exploit, that means if they use or not the depth information.
We already discussed the limitation of depth sensors showing that the research
community currently focuses more on methods based on RGB-only techniques and,
for this reason, we will focus on them. Inspired by Lepetit (2020), we separate deep
learning-based methods from early approaches since the advent of DL marked a
turning point in the history of 3D pose estimation from RGB images. We, therefore,
briefly review “traditional” methods that are not using DL to then focus on learning-
based approaches explained why Machine Learning helped to improve the results.

We will finally detail methods that tackle some specific challenges in 3D pose
estimation discussed in Section 1.3: handling unseen objects, symmetrical objects
and the lack of training data.

3.1 Early Approaches to 3D object pose estimation

Early approaches focused more on 3D tracking problems and they have been sum-
marized in different survey such as Marchand et al. (2016) and Lepetit and Fua
(2005). To estimate the 3D pose of an object they were based on matching local
simple features extracted from an image like corners or edges to features in a 3D
model of the object and most of them relied on some prior knowledge about the 3D
pose.

A first family of these approaches is the edge-based methods. Some of them try
to match the projections of the target object 3D edges with some extracted image
contours while others look at strong gradients in the image. In this last case, a
first estimate of the object’s pose is required. Harris and Stennett (1990), with
their video rate object tracker RAPID, Lowe (1991) and Armstrong and Zisserman
(1995) propose to describe the object of interest as a set of 3D geometric primitives
such as lines and conics. By taking edges or control points on edges, they find the
3D pose by matching the contours in the image with the reprojected 3D geometric
primitives with pose hypotheses. Despite being very fast at run-time, these meth-
ods lack robustness. If the edges are not very well detected, the object’s pose is
not accurate. These errors are frequent since they arise from occlusions, different
lighting conditions and background clutter. For these reasons, some methods have
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been proposed to make RAPID more robust such as Marchand et al. (1999) and
Drummond and Cipolla (2002).

These methods rely on prior knowledge on the object’s pose. Usually, they try to
estimate the pose at the time instant t+1 knowing the pose at time t. Methods able
to estimate the pose without relying on prior knowledge on it exploit features points
often called keypoints. These methods propose to match keypoints between the
input image with a reference image of the target object previously captured during
an offline stage. The 3D pose of the object associated with this reference image is
known, and by matching images, it is possible to get the final 3D pose. Different
methods were successful for detecting and matching keypoints via descriptors such
as SIFT (Lowe, 2004) and the faster methods, including SURF (Bay et al., 2008) and
ORB (Rublee et al., 2011). Unfortunately, these approaches work well on textured
objects but tend to fail with texture-less objects since only a few local features can
be reliably extracted.

To deal with this problem, some methods relied on template matching, such as
Hinterstoisser et al. (2012). In these methods, the 3D space is discretized and the
object’s appearance is represented for each discretized pose with a template robust
to lighting conditions. Then the methods search the right template that matches up
with the input image to estimate the pose. The main drawback of these approaches
is that they need to create many templates and they are not strongly robust to
occlusions.

3.2 Recent Approaches to 3D object pose estima-
tion

To understand why Machine Learning became successful also in 3D object pose
estimation from images, we can reformulate this problem as finding a mapping from
the input image to the pose representation. The input space of this mapping is thus
the images space that can be very large while the output space is smaller since it
counts only 6 parameters. This difference in the space dimensions makes a purely
algorithmic mapping hard to find. On the contrary, Machine learning techniques
allow machines to find this mapping automatically by only looking at data during a
training phase. These techniques learn a mapping from a features space to the poses
space. This features space has a lower dimension than images space and features
need to be extracted from input images with some image processing techniques.
This phase is very delicate: if the features are not of good quality, there is no hope
the pose estimation would be sufficiently accurate and a risk of losing information
is always present in the feature extraction phase.

Deep Learning allows us to avoid this pre-processing phase to extract features
and, in the last years, has been successfully applied to the problem of finding a
mapping directly from the image to the 3D objects’ poses. The literature on deep
learning-based methods is growing faster and faster and here we present some mile-
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Figure 3.1: The pose representation developed in BB8 and Crivellaro et al. (2018) is now
a common approach to predict the pose, by first predicting the 2D reprojections of some
3D points and then using a PnP algorithm on these 2D-3D correspondences. The image
has been taken from Lepetit (2020).

stone methods that, at the time they have been published, beat the state-of-the-art
results or introduced innovative solutions.

Two of the first methods that exploit the power of Deep Learning are BB8 (Rad
and Lepetit, 2017) and SSD-6D (Kehl et al., 2017). Instead of directly regressing
the full 3D pose of the object, BB8 regresses local 2D-3D correspondences and
then computes the 3D pose from them. More specifically, it first learns to segment
the objects in the image with a two-level coarse-to-fine object segmentation. Then
it applies a Deep Network on the image window centered on the detected object
to predict the 2D reprojections of the corners of the 3D object’s bounding box.
Figure 3.1 shows the corners of the 3D object’s bounding box (Mi) and how they
reproject into the image (mi).Thanks to these 2D-3D correspondences, it predicts the
3D pose with a PnP algorithm (see Section 2.2). The last step in BB8 is a refinement
of the first pose estimate. To improve the predictions of the 2D reprojections and
the pose estimate, both the input image and the rendering of the object with the
estimated pose are fed to another network to improve the pose estimate.

The idea of representing the 3D pose with the 2D reprojections of 3D points,
introduced in BB8 and Crivellaro et al. (2018) is now often used since it makes
the network optimization easier. Regressing the pose directly in the form of a 3D
rotation and 3D translation is more difficult because pose ambiguities can introduce
convergences issues. To train a deep network, an optimization algorithm on a cost
function is then required. This loss function is basically an error between the ground
truth pose and the estimated one. If we represent the pose with a 3D translation
and a 3D rotation, we need to evaluate both translation and rotation errors that
have different order of magnitude. To get rid of this unbalance in the loss, a meta
parameter is needed and it is not always easy to find the correct value. On the
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contrary, by representing the pose with the 2D reprojections, only a simple Euclidean
distance between 2D coordinates has to be considered.

In SSD-6D, the 3D pose estimation problem is addressed as a classification prob-
lem instead of a regression one. SSD-6D extends the Single Shot Multibox Detec-
tor (SSD) architecture (Liu et al., 2016), developed originally for 2D object detection,
also to predict the 3D poses of the objects with a single architecture. It proposes to
discretize the pose based on the 3D pose decomposition into the direction of view
over a half-sphere and in-plane rotation. They use the same paradigm of SSD, and
they compute 6 feature maps at multiple scales. Each feature map is convolved with
prediction kernels to provide, from each feature map location, the scores for object
class identity, the discrete viewpoint and in-plane rotation. Given the viewpoint
and the in-plane rotation it is easy to get the 3D rotation and from the 2D detected
bounding box it is possible to infer the 3D translation. Two main advantages are
that a single network is needed to perform 2D object detection and 3D pose pre-
diction at the same time and that the training of the network can be done on only
synthetic data without requiring a labeled data, differently from BB8. However, to
perform this multi-task training, a single loss function made of a weighted sum of
different terms is needed and tuning these weights can be difficult.

Both SSD-6D and BB8 need a refinement step to achieve accurate poses, and
this takes time. YOLO-6D (Tekin et al., 2018) proposes a method, end-to-end train-
able, that does not require additional post-processing and so it is much faster than
the previous ones. YOLO-6D relies on YOLO (Redmon et al., 2016) for 2D object
detection and it predicts the object poses in the form of the 2D projections of the
corners of the 3D bounding boxes as BB8 plus the reprojection of the 3D objects’
centroid. The model in YOLO-6D takes as input a single-color image, process it
with the CNN and divides the image into a 2D regular grid containing SxS cells.
For each cell of the grid, the model outputs the 2D locations of the 9 control points,
the class probabilities and a confidence value.

PoseCNN (Xiang et al., 2018) claims that the pose representation as 2D locations
of 3D control points is not able to handle heavy occlusions and symmetrical objects.
It, therefore, regresses the objects’ poses directly in the form of a 3D translation and
3D rotation. The key idea behind PoseCNN is to decouple the pose estimation task
into different components. Specifically, PoseCNN performs 3 sub-tasks: semantic
segmentation, 3D translation estimation and 3D rotation regression. The architec-
ture has a shared backbone network and 3 different branches: (1) the first branch
predicts for each pixel of the image the object label, (2) the second branch predicts a
unit vector towards the 2D object center and the 3D distance between the object and
the camera center, (3) the third branch regresses the 3D rotation for each bounding
box in the form of a quaternion by taking as input only the features extracted inside
the bounding boxes. From the predicted unit vectors and the semantic labels, a
Hough voting layer computes the voting score to select the object center and obtain
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the 3D translation for each object. Thanks to these multiple united vectors and this
voting strategy, PoseCNN can work even when the objects are occluded. To train
the architecture it uses the ADD metric and the ADD-S metric to deal with symmet-
rical objects. As we will see in Section 6.3, the ADD metric computes the average
distance between two transformed model points using the ground truth pose and
the estimated pose and the ADD-S metric is its variation for symmetrical objects.
Deep-6DPose (Do et al., 2018) relies on Mask R-CNN to jointly detect, segment and
recover 3D poses of object instances from a single RGB image. They propose to
add a new branch to Mask R-CNN to directly regress the 3D pose without any pose
refinement. Their main contribution is the decoupling of the pose parameters into
a translation and a rotation terms so the latter can be regressed via a Lie algebra
representation. The pose branch is parallel with the detection and segmentation
branches and the architecture is entirely end-to-end trainable.

Handling occlusions: Some methods focus on the problem of objects under large
partial occlusions, such as Oberweger et al. (2018), Hu et al. (2019) and Peng et
al. (2019b). They use similar pose representations as in BB8 but combine multiple
predictions or obtain predictions by looking only at some local image information.
In this way, local image information not disturbed by occlusions provides good
pose predictions while poses predicted with local image information disturbed by
occlusions can be filtered out with a robust estimation. In particular, Oberweger
et al. (2018) use the same pose representation of BB8 but they predict the 2D
reprojections of the 3D points in the form of heatmaps. To deal with occlusions,
instead of looking at the entire input image, they predict these heatmaps from
multiple small patches independently and accumulate the results to obtain accurate
and robust predictions.

Hu et al. (2019) claim that looking at the object as a full entity is not robust
to occlusions, and they propose a method where each visible part of the object con-
tributes a local pose prediction. To do that, they propose a two-streams architecture
made of a shared encoder and two decoders. They superimpose an S×S grid on the
input image and for each cell of the grid, they predict the label of the object that
belongs to the image patch related to the cell and the 2D locations of 3D control
points selected on the 3D object model. In practice, instead of predicting the 2D
location in image coordinates, they predict the 2D displacement from the center of
the corresponding grid cell. This technique allows a better and faster convergence.
In this way, each visible part of the objects contributes a local pose prediction and
with a RANSAC algorithm, they retrieve the best pose among the many possible
hypotheses. This method is faster than Oberweger et al. (2018) since it does not
require an expensive sliding windows strategy.

Peng et al. (2019b) select 3D control points on the objects’ surfaces, and they
introduce a Pixel-wise Voting Network (PVNet) to regress pixel-wise unit vectors
pointing to the 2D reprojections of the 3D control points and use these vectors to
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Figure 3.2: PVNet: an example of looking “locally” to be robust to partial occlusions and
truncation. The image has been taken from Peng et al. (2019b).

vote for the final reprojections using RANSAC, as shown in Figure 3.2. In this
way, the location of an invisible part can be inferred from the visible parts. This
vector-field representation is useful to represent even keypoints outside of the image
borders. Furthermore, the RANSAC voting scheme allows to get rid of outliers and
to associate a confidence score for each keypoints. In this way, PnP can identify
consistent correspondences to obtain the final 3D pose.

A more recent work, HybridPose (Song et al., 2020) was inspired by PVNet and
proposes to use an hybrid pose representation made of keypoints, edge vectors and
symmetry correspondences. In this way, they can handle occlusions: When some
features are a bad prediction, they rely on others to obtain the right 3D poses.

Dense correspondences: Instead of predicting sparse 2D-3D correspondences,
some recent methods propose to predict dense correspondences thanks to the encoder-
decoder architectures. DPOD (Zakharov et al., 2019) and Pix2Pose (Park et al.,
2019) propose to predict for each pixel of a target image its 3D coordinates in the
object’s coordinate system. From these correspondences, it is possible to predict
the pose using RANSAC and PnP. DPOD represents the 3D object coordinates via
a correspondence UV map that is a textured 2-channels image with values ranging
from 0 to 255. In this way, instead of regressing the 3D object coordinates, they
address the problem as a discrete color class classification problem. They claim this
allows faster convergence and superior quality of 2D-3D matches. DPOD has been
demonstrated to be capable to run in real-time. Pix2Pose together with the 3D ob-
ject coordinates regresses a confidence value (based on the error of the prediction),
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Figure 3.3: Pix2Pose architecture to regress the 3D object coordinates from a color image.
The image has been taken from Park et al. (2019).

as shown in Figure 3.3, that allows to filter out a lot of 2D-3D matches at inference
time to speed up the pose estimation algorithm. It also introduces a novel loss to
deal with symmetrical objects.

Li et al. (2019) propose Coordinates-Based Disentangled Pose Network (CDPN)
at the same time of DPOD and Pix2Pose. They noticed that regressing the 3D
object’s pose from dense 2D-3D correspondences is effective for the 3D rotation but
not for 3D translation. They argue that rotation and translation should be treated
differently for their significant difference and so they propose CDPN, which dis-
entangles the pose to predict rotation and translation separately. Their proposed
pipeline starts with a zoom on the image window around the object and then two
different networks are trained to predict the translation and the rotation respec-
tively. The rotation is obtained with PnP on the estimated dense 3D coordinates
while the translation is regressed directly from the input image.

All the methods presented so far aim to explicitly learn a mapping from the
input image to the 3D poses. Almost at the same time as these methods, a com-
pletely different approach has been proposed by Sundermeyer et al. (2020b), shown
in Figure 3.4. They do not try to learn the mapping from 3D pose annotations
during training explicitly, but they implicitly learn an embedding from an image
of the object with an augmented auto-encoder (AAE). At run time, to predict the
pose, they compare this embedding with a codebook that can be previously created
offline by sampling views around the target objects and associating the embeddings
of these views to the corresponding rotations. The orientation associated with the
embedding of the codebook with the highest cosine similarity with the predicted
embedding is the predicted orientation. The translation can be recovered from the
object bounding box 2D location and scale. The architecture is made of an encoder,
that aims to learn the embedding from the image, and a decoder that reconstructs
the input image from the embedding. A Domain Randomization Technique is pro-
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Figure 3.4: AAE is trained to learn an image embedding. A codebook is created offline
from the encodings of discrete synthetic object views. Online, at test time, the AAE
estimates the embeddings and the 3D pose relative to the most similar embeddings in the
codebook. The image has been taken from Sundermeyer et al. (2020b).

posed together with the AAE framework to make the encodings invariant to noise,
environment and sensors variation. Since the AAE does not learn any 1-to-1 map-
ping from the image of an object and the 3D pose, it is capable to work well with
symmetrical objects, which are common in industrial contexts. AAE has been re-
cently developed in its new version in Sundermeyer et al. (2020a) which we will
discuss later in Section 3.2.3.

Recently, Hodan et al. (2020b) propose EPOS, a new method where the objects
are represented by compact surface fragments. A surface fragment j of the object
i is a portion of the object surface defined as follows: Sij = {x|x ∈ S ∧ d(x, gij) <
d((x, gik)}, ∀k ∈ J, k 6= j, where d(.) is the Euclidean distance of two 3D points
and {gij}nj=1 are preselected fragment centers. This representation is also able to
handle symmetrical objects. An encoder-decoder network is trained to predict at
each pixel: (1) the object label this pixel belongs to, (2) the fragment label, (3)
the 3D location of the pixel on the predicted fragment, as shown in Figure 3.5. To
handle all these many to many 2D-3D correspondences they propose a new robust
estimator that performs better than the standard PnP-RANSAC variants.

Labbé et al. (2020) proposes an approach to estimate the pose of multiple objects
from multiple views that also works with symmetrical objects. It exploits a set of
RGB images to obtain a single consistent scene interpretation. It also shows an
approach for 3D pose estimation from a single view who won the last BOP challenge.
They train a deep network similar to Li et al. (2018), explained in Section 3.2.3,
and they use a rotation parametrization introduced in Zhou et al. (2019) instead

3D Object Pose Estimation in Industrial Context 37



3.2. Recent Approaches to 3D object pose estimation

Figure 3.5: Pipeline of EPOS (Hodan et al., 2020b). Given an image, the network predicts
at each pixel the object label, the fragment label and the 3D location on the fragment.
The image has been taken from Hodan et al. (2020b).

of using quaternions for a more stable training. Finally they disentangle depth and
translation prediction in the loss following Simonelli et al. (2019).

Hu et al. (2020) proposes a method to boost the performances of correspondences-
based methods allowing them to be end-to-end trainable. We already discussed these
methods that are composed of two stages: a first stage to establish 2D-3D correspon-
dences between 3D points and 2D predicted image locations and a second stage to
estimate the pose with RANSAC that cannot be trainable. The method presented
in Hu et al. (2020) can be added to any correspondences-based method, right after
the network that predicts the 2D locations of the 3D points. The proposed deep
architecture takes as input clusters of 2D locations and it regresses the 3D pose.

3.2.1 3D pose estimation of symmetrical objects

Although all recent learning-based works have been very successful at predicting the
3D pose of objects, most of them do not consider objects with symmetry. Only re-
cently proposed methods aim to tackle objects with pose ambiguities, and we detail
them in this section. BB8 is probably the first work that mentioned the difficulty
of predicting the 3D pose of objects with symmetries using Deep Networks. BB8,
when naively applied to symmetrical objects, fails because symmetrical objects have
a similar appearance but different 2D locations of the 3D points. This happens also
to all methods that learn 2D-3D correspondences from images. The authors pro-
pose to use images of the object under rotation in a restricted range, such that the
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Figure 3.6: Left: The method of Manhardt et al. (2019) can detect and predict the
ambiguities that arise because of intrinsic symmetries or occlusions automatically. Right:
They predict M hypotheses for the 3D pose p. Each hypothesis is visually identical from
the current viewpoint. The images have been taken from Manhardt et al. (2019).

training set does not contain ambiguous images. To recover the object pose under a
larger range of rotation, BB8 train a classifier to predict the actual range where the
rotation is. They tested their approaches on some objects from the T-LESS dataset
(Section 4.5). Although the solution is not general, it inspired us for our method to
tackle object symmetries explained in Chapter 5.

Sundermeyer et al. (2018), which we have already mentioned in Section 3.2,
show that their learned embedding is ambiguity agnostic, in the sense that visu-
ally ambiguous poses will map to the same code in the latent space. They perform
pose estimation by matching the code obtained from an image of the object with
a precomputed code table covering the 6D pose space. While this approach is very
fascinating, it does not provide an analytical study of the ambiguities. Corona et
al. (2018) learns to compare an input image with a set of renderings of the object
under many views, to predict the most similar view and the rotational symmetries
of the object. This also requires to discretize the possible rotations, while we pre-
dict a continuous 3D pose. Manhardt et al. (2019) also consider a learning-based
approach, tackle ambiguities raised by partial occlusions in addition to rotational
symmetries, that is when an occluder hides a part of an object, so that it is not
possible to estimate the pose exactly anymore (Figure 3.6). This is done by training
a network to predict multiple poses so that only one has to correspond to the actual
pose. At test time, the network predicts multiple poses, which are expected to rep-
resent the distribution over the possible poses. By contrast with this learning-based
approach, we explicitly consider the ambiguities that can raise under symmetries in
the method proposed in Chapter 5.

Brégier et al. (2018) does not consider pose prediction using regression or machine
learning but they introduce the concept of proper symmetries group in a survey that
aims to cover ambiguities and a pose representation specific to a metric on 3D poses,
as a finite set of vectors R(P) of at most 12 dimensions, depending on the proper
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Figure 3.7: Classification of the potential groups of proper symmetries. The image has
been taken from Brégier et al. (2018).

symmetry class of the object. As shown in Figure 3.7, they propose three pose
representations: A pose of an object without proper symmetries is represented by
a 12D point (the 3D position of the object’s centroid, t and the rotation matrix R
plus a matrix Λ to scale the rotation to account for the object’s geometry), a pose
of an object with finit non-trivial proper symmetry group is represented by several
of those 12D points and a pose of revolution objects is represented by 6D vectors
consisting in the centroid’s position and the direction of the revolution axis, scaled
to account for the object’s geometry. Our method to solve the ambiguities created
by symmetrical objects is based on this concept of proper symmetry group.

Henderson and Ferrari (2018) notices that symmetries produce multiple modes
in the distribution Q(θ|I) over 3D poses θ. They, therefore, enforce a uniform prior
P (θ) over symmetrical poses to successfully approximate Q. However, they do not
explicitly report results on (quasi)-symmetrical objects such as those of T-LESS
(Hodaň et al., 2017).

3.2.2 3D object pose estimation by training on synthetic im-
ages

Relying on synthetic images for training 3D pose estimation algorithms is an im-
portant research direction to overcome the challenge of the limited number of real
training images. These images can be generated by rendering the CAD models of
the objects when they are available, as we assume in this thesis. 3D models can
be created very quickly and, for industrial applications, a detailed 3D model often
exists before the real object is even created. There is however a domain gap between
real and synthetic images, which has to be considered to make sure the method gen-
eralizes well to real images.
A straightforward approach is to train a convolutional network for some problems
such as 2D detection on real images and use the first part of the network for extract-
ing image features Hinterstoisser et al.; Kehl et al. (2017). Then, a network taking
these features as input can be trained on synthetic images. This is easy to do, but
it is not clear how many layers should be used exactly.
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Generative Adversarial Networks (GANs, Goodfellow et al. (2014)) and Domain
Transfer have been used to make synthetic images more realistic ( Bousmalis et al.
(2016); Müller et al. (2018); Bousmalis et al. (2017); Zhu et al. (2017); Ganin et
al. (2016); Long et al. (2015); Tzeng et al. (2015); Lee et al. (2018); Zakharov et
al. (2018)). Zakharov et al. (2018) chose to make real depth images closer to clean
synthetic depth images. It requires however careful augmentation to create realistic
synthetic depth maps. Because synthetic depth maps are easier to render than color
images, Rad et al. (2018a) propose to learn a mapping between features for depth
maps and features for color images using an RGB-D camera. Another interesting
approach is domain randomization (Tobin et al., 2017), which generates synthetic
training images with a random appearance by applying drastic variations to the ob-
ject textures and the rendering parameters to improve generalization. Sundermeyer
et al. (2018) present another domain randomization approach based on autoencoders
to train a pose estimation network from CAD models and deal with pose ambiguities.

Recently, Park et al. (2020) claim it is difficult to obtain textured 3D models and
annotate the poses of the objects in real scenarios. They, therefore, propose NOL, a
Neural Object Learning, that takes as input few observations from cluttered images
and texture-less 3D models of the objects in the images to learn to associate the
right texture to the model’s vertices and then generate synthetic images for training
a 3D pose estimation method.

These works can exploit synthetic images to work with unseen objects when the
CAD models or few images are available (Park et al., 2020). However, they also
require a training phase for new objects that is what it is preferable to avoid in
industrial applications. We therefore review the few and recent works who handle
unseen objects at test time without retraining.

3.2.3 3D object pose estimation of unseen objects

Methods presented in Section 3.2 fail at predicting the 3D poses of new target ob-
jects, or, in other words, objects that the networks do not see during the training
phase. AR and robotics applications, especially in industrial contexts, have to deal
with new targets objects whose CAD model is available but not training images.
Only recently the problem of predicting the 3D pose of unseen objects with Ma-
chine Learning has been tackled. The first possible solution is to generate synthetic
training images of new objects and train the networks on them. We discussed these
methods in Section 3.2.2. However, training sessions are still required and they take
time. When time is precious, there is the need to completely avoid new training
sessions and directly having methods capable to generalize to unseen objects. One
early approach targeting texture-less objects is to rely on templates Hinterstoisser
et al. (2012). They learn to match the templates of an object under different view-
points with the input image with a similarity score by looking at some color gradient
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features and surface normal features. To deal with texture-less objects, they keep
only the main color gradient features located on the contour of the object silhouette.

Deep Learning has also been applied to such problems, by learning to compute
a descriptor from pairs or triplets of object images ( Wohlhart and Lepetit (2015);
Balntas et al. (2017); Zakharov et al. (2017); Bui et al. (2018)) that efficiently cap-
ture both the object identity and the 3D pose. These approaches do not require
re-training, as they only require to compute the descriptors for images of the new
objects. However, it requires many images from points of view sampled around the
object. It may be possible to use synthetic images, but then, some domain transfer
has to be performed. Nevertheless, the main drawback of these approaches is the
lack of robustness to partial occlusions, as the descriptor is computed for whole im-
ages of objects. It is also not clear how it would handle ambiguities, as it is based
on metric learning on images.

Wang et al. (2019) tackle the problem of unseen instances of seen categories. In
their scenario, CAD models of unseen object instances are not available at test time.
They proposed a method similar to the concept of predicting “object coordinates”
based on finding correspondences between object pixels to normalized coordinates
in a shared object description space. This approach can generalize well to unseen
object instances of seen categories but not to unseen categories and they do not
rely only on RGB images but they exploit depth map to obtain the 3D poses. Li
et al. (2018), motivated by the fact that the difference in performances between
RGB and RGB-D methods is the lack of an effective RGB based refinement step,
propose DeepIM, a pose refiner able to refine a given initial pose even of unseen
objects. DeepIM is a network that, taken an input image and the rendered one
generated with the CAD model of the object and the pose estimate, predicts a
relative SE(3) transformation that matches the rendered view with the observed
image. They predict the rotation and the translation separately. They also remark
that predicting the rotation in the camera coordinate system also translates the
object. They thus set the center of rotation to the object center. For the axes of the
coordinate system, the authors remark that using those of the object’s 3D model is
not a good option since the network should learn them for each object and it would
not generalize to unseen objects. They, therefore, propose to use the axes parallel
to the axes of the camera coordinate system, which makes the network generalize
much better. The translation update is predicted as a 2D translation on the image
plane, plus a delta along the z-axis of the camera on a log-scale. Although this idea
is very promising DeepIM has also been tested on unseen objects, but only on very
simple synthetic images with constant lighting. Therefore, it is not clear how this
method can work on real images of unseen objects with different lighting and noise
conditions. Even more recently, Sundermeyer et al. (2020a) propose an extension
of Sundermeyer et al. (2018) able to generalize to new objects. Thanks to the
single-encoder-multi-decoder architecture, they can learn an interleaved encoding
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where general features can be shared across multiple instances of novel categories.
However, to achieve competitive results, they need to use depth information and
refine the pose with an ICP algorithm.

3.3 Conclusion

In this chapter, we reviewed traditional and current 3D pose estimation approaches
with a focus on RGB-only methods because of the limitations of depth sensors
discussed in Chapter 1.1. In particular, we gave a review of methods from 2017
where the exploitation of the power of Deep Learning for 3D object pose estimation
started. This literature review shows that these recent methods based on CNNs
are very promising to solve the task of 3D pose estimation from RGB images. As
shown in the report of the BOP challenge 2020 (Hodan et al., 2020a), some RGB-
only methods based on CNNs finally outperform the methods that exploit the depth
information.

However, these approaches require large amounts of data or long training sessions
for each object and they are, therefore, not able to generalize to new objects. We
also showed that there are a few works that try to handle complex objects such
as texture-less, ambiguous and symmetrical objects. In the next chapter, before
presenting our approaches inherent to the 3D pose estimation problem, we will
present the different datasets available and the one we choose to train and evaluate
our methods.
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6D Pose Estimation Datasets
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4.1. LineMOD Dataset

Data are one of the most critical aspects of all applications using DL, for training,
evaluating and comparing the methods. Researchers have put a lot of effort in
annotating images for 3D pose estimation in recent years. Different datasets are
publicly available nowadays such as LineMOD (Hinterstoisser et al., 2012), Occluded
LineMOD (Brachmann et al., 2014), YCB-Video (Xiang et al., 2018) and TLESS
(Hodaň et al., 2017). All these datasets have different features and different levels
of difficulty. In this chapter we will detail these datasets, the ones most used in
literature.

Contribution: We developed a Blender based pipeline to generate the Synthetic
T-LESS dataset, a dataset made of photorealistic synthetic images, to train the deep
networks.
The code is available at https://github.com/MichaelRamamonjisoa/SyntheT-Less.
Note that, at the time we created Synthetic T-LESS, the BlenderProc (Denninger
et al., 2019) tool was not released yet.

4.1 LineMOD Dataset

This dataset was created to evaluate the method proposed in Hinterstoisser et al.
(2012). They captured 15 video sequences of 15 3D objects mainly of different
geometry (ape, bench vise, bowl, can, cat, cup, driller, duck, glue, hole-puncher,
iron, lamp, phone, cam and eggbox) as shown in Figure 4.1. Each object was placed
on the center of a planar board with markers attached to it and for each object,
more than 1100 real RGB-D images are recorded with the corresponding 3D pose
annotations. The sequence provides views from 0-360 ◦ around the object, 0-90 ◦
tilt rotation, ±45 ◦ in-plane rotation and 650 − 150 mm object distance. The goal
of the method proposed in Hinterstoisser et al. (2012) is to estimate the pose of a
single object in the image, which is known to be present. That is why only the object
centered in the image has the corresponding pose ground truth but other 3D objects
are placed on the planar board and the background of the scenes is cluttered. The
advent of DL was not already started when this dataset was created and therefore
there is not a division between training and test images.

4.2 Occluded-LineMOD Dataset

The Occluded-LineMOD dataset (Brachmann et al., 2014) is an extended version of
the LineMOD dataset, created for the goal of 3D pose estimation of multiple objects
especially in the case of occlusions. In this dataset, it can be observed up to 70-80
% occluded objects. The images are the same as LineMOD but the ground truths
are extended. In Occluded-LineMOD all 3D objects in the scene have the annotated
ground truth pose and not only the one at the center of the image as in LineMOD.

46 Giorgia Pitteri

https://github.com/MichaelRamamonjisoa/SyntheT-Less


4. 6D Pose Estimation Datasets

(a) (b)

Figure 4.1: Left: LineMOD and Occluded-LineMOD objects. Right: (a) LineMOD RGB
image with the corresponding ground truth only for the object placed at the center. (b)
Occluded LineMOD RGB image with the ground truths for all the objects.

This makes the dataset count 10k images of 20 objects (both textured and texture-
less) captured each under three different lighting conditions: bright artificial light,
darker natural light, and directional spotlight.

4.3 YCB-Video Dataset

The YCB-Video dataset (Xiang et al., 2018) is a large-scale RGB-D dataset which
contains 3D poses of 21 objects from the YCB object set (Calli et al., 2017), as
shown in Figure 4.2, in 92 video sequences with a total of more than 100K frames.
In particular 12 sequences are used for testing and the remaining 80 sequences for
training. Besides, the dataset contains 80k synthetically rendered images, which
can be used for training as well. The dataset has been designed for benchmarking
robotic manipulation research in real daily life applications. The objects are textured
and they vary from cereal boxes, plates, scissors, drills, etc. The test images are
challenging due to the presence of significant image noise, different illumination
levels, and large occlusions.
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Figure 4.2: Left: YCB-Video dataset objects. Right: Examples of test images of the
YCB-Video dataset.

4.4 HomebrewedDB Dataset

The HomebrewedDB dataset (Kaskman et al., 2019) features 33 objects, more spe-
cific 17 toys, 8 household and 8 industry-relevant objects, as shown in Figure 4.3.
This dataset is the one with the highest number of objects. It is mainly intended to
deal with the problem of scalability of the 3D pose estimation methods. The dataset
features 13 scenes of more than 1300 images that span a range of complexity from
simple, such as 3 objects on a plain background, to complex like highly occluded
scenes with 8 objects and extensive clutter.

4.5 T-LESS Dataset

The T-LESS (Hodaň et al., 2017) dataset features thirty industrial objects (such as
commodity electrical parts) which have no significant texture, discriminative color
or distinctive reflectance properties. Figure 4.4 shows the reconstructed 3D mod-
els of these objects. They often have similarities in both shape and size and some
objects are composed of other smaller objects. It is not easy to select discrimi-
native shape features on these objects because of the presence of similar-looking
object classes, along with the presence of similar-looking distractors (such as planar
surfaces) and out-of-training objects (such as books, scissors). The dataset has 20
different test scenes, each of which consists of 504 test images. This dataset has
significant variability in complexity and it is still very challenging since it was built
to test 3D pose estimation algorithms in a very complicated situation: texture-less
objects in different viewpoints, clutter background, occlusion, multi instances of the
same object class in the image and similar-looking distractors. This is the reason
behind the fact this dataset was not very famous at the time it was released. Only
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Figure 4.3: Top: HomebrewedDB objects. Bottom: HomebrewedDB test images from
a simple scene with a uniform background to a difficult one with clutter background and
high level of occlusions.

Figure 4.4: Reconstructed 3D models of the 30 objects from T-LESS.

recently researchers, motivated by the will to develop algorithms robust to all the
challenges of the real words, started to test their method on this dataset.
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4.6 Our choice

These mentioned datasets are the most frequently used to test performances of 3D
pose estimation, but other datasets are available: ITODD (Drost et al., 2017), RU-
APC (Rennie et al.), IC-BIN (Doumanoglou et al., 2016), IC-MI (Tejani et al.,
2014) and TUD-L/TYO-L (Hodaň et al., 2018).

These datasets have different levels of difficulty depending on the type of objects
and test images. For example, evaluating the algorithms on LineMOD is relatively
easy since only one target object in the images has the annotated 3D pose and it is
visible most of the time, while in Occluded LineMOD the difficulty increases because
of the occlusions between the objects. Also, the type of 3D objects is different and it
can make the dataset more or less challenging. LineMOD, Occluded-LineMOD and
YCB-Video have both texture and texture-less objects and only a few of them are
symmetrical. On the contrary, objects from T-LESS are texture-less, symmetrical
and have similarities between them.

Ideally, a 3D object pose estimation algorithm should be robust to the type of
data and sensors used to capture them to be suitable for real industrial applications.
Research scientists are making a significant effort to reduce the gap between research
and industrial applications and recently the BOP challenge has been proposed to
test the methods on different benchmarks. The results of this challenge show that
methods that beat state-of-the-art methods on a particular dataset are not always
able to generalize and work well on other datasets because learning-based algorithms
are very susceptible to the data they are trained on. For example, a network trained
on textured objects would hardly work with texture-less ones and vice versa, or a
network trained on images where no occluded objects appear is not going to work
with an occluded object. For this reason, 3D pose estimation from RGB images is
a not yet general solved problem.

The industrial applications of 3D pose estimation are the focus of this thesis
with all the challenges that this scenario implies. For this reason, we need to handle
symmetrical, texture-less and ambiguous objects with no discriminative parts on
cluttered images with occlusions and distractors. Therefore, we decided to evaluate
all the proposed methods on the T-LESS dataset, since it is one of the most challeng-
ing dataset nowadays and the one that represents better an industrial application.

4.6.1 Synthetic T-LESS

One difficulty in the T-LESS dataset is the big gap between training and testing
images. As shown in Figure 4.5, training images are captured under controlled con-
ditions, they depict individual objects against a black background and they have a
limited range of poses and illuminations condition. On the other hand, test images
have massive viewpoint changes and objects in multiple instances affected by clutter
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Figure 4.5: Training and test images from T-LESS showing the gap between them. Top:
A single training image for each object. The object is always located in the center over
a black background. Bottom: some test images from different test scenes. Some images
have a black background but others have more cluttered ones. Objects often occlude each
others and some “distractors” appear.

and occlusions. Furthermore, as mentioned above, other unlabeled objects are in
the test scenes acting as distractors for the deep networks.

A network trained on the training images of T-LESS is not going to perform well
on the test images. A general approach in Deep Learning applications to overcome
the problem is data augmentation. It can be done online by changing the brightness
of an image, adding different types of noise, adding patches to the image to simulate
occlusions, adding a random background to increase the complexity of a uniform
background. Also, 2D transformations can be applied, such as 2D translation and
2D rotation. Unfortunately, we soon realized that even applying data augmentation
techniques our learning-based approaches could not generalize to these test images
because of a lack of pose viewpoints and occlusions. We decided to tackle this
problem by generating synthetic images. A first approach would be to render the
object’s CAD models on a random image with a random pose but images generated
in this way lack realism because of the presence of flying objects. We, therefore,
put some effort into generating photorealistic synthetic images with T-LESS objects
and we create the Synthetic T-LESS dataset. For all the approaches we will present
in this thesis, we use this Synthetic T-LESS to train and validate the networks. To
solve the problem of the domain gap between training and test images, the synthetic
generated images have partial occlusions and illumination variations. Synthetic T-
LESS is made of 30K samples, generated using the CAD models provided in the
original T-LESS dataset with Cycles, a photorealistic rendering engine of the open-
source software Blender. Each sample of our dataset is generated using a random
set S of objects taken from the T-LESS dataset, using random grayscale color (from
dark-gray to white) for each of them. Each object of S is initially set up with
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Light

Strength ∼ U(30, 90)

Position
θ ∼ U(0, 360)
φ ∼ U(1, 80)

Color ∼ U(0, 0.65)

Pose
Rotation

θ ∼ U(0, 360)
φ ∼ U(1, 80)

Translation
Tx ∼ U(-0.075, 0.075)
Ty ∼ U(-0.075, 0.075)

Tz = max(−4, (−4 · objectidx
nobjects

))

Objects ∼ U(1, 9)

Table 4.1: Distribution of random values used for generating the synthetic images.

Dataset
T-LESS (primesense)

Synthetic T-LESS
Train Test

Number of samples 38K 10K 30K
Illumination variation None Small Strong

Occlusion No Yes Yes
Multi-objects images No Yes Yes
Object color variation None Small Small
Background variation None Small Strong

Table 4.2: Comparison between the T-LESS dataset and our Synthetic T-LESS dataset.

a random pose, and we let the objects fall on a randomly textured plane, using
Blender’s physics simulator. Because the objects can collide together, their final pose
on the table is also random. Illumination randomization is performed by varying
the level of ambient light and randomizing a point light source in terms of position,
strength, and color. This often results in strong cast shadows, as can be seen in
Figure 4.6 and Figure 4.7. Table 4.1 shows how we select the values randomly.

A comparison with the original T-LESS (primesense) dataset is given in Table
4.2. Although we are working only with RGB images, for all samples of our dataset,
we also generate normals, depth, contours and object instances maps as shown
in Figure 4.6. This can help train Deep Networks for the different tasks such as
semantic segmentation and 3D scene understanding.
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Figure 4.6: A sample of our Synthetic T-LESS Dataset. From left to right: RGB, normals,
depth and object instance masks.

Figure 4.7: Sample images from our Synthetic T-LESS dataset. All objects in each image
are annotated with their classes and 3D poses.

4.7 Conclusion

In this chapter, we presented the available 3D pose estimation datasets most used
in the literature for training and evaluation purposes. We discussed the differences
between them in term of difficulty of the test images and the type of the objects.
We finally explained why we chose the T-LESS dataset and described our Synthetic
T-LESS dataset that extends it. In the next chapter, we will present an approach
to handle symmetrical objects with the aim of estimating the 3D poses of objects
with Machine Learning techniques.
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Chapter 5

6D Pose Estimation of Symmetrical
Objects
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5.1. Overview

  

180°

Figure 5.1: Two views of the same scene before and after a rotation of 180◦ around the
vertical axis of the blue object. Since this object is symmetrical, it has the same appearance
but its pose is different. The same happens for the green object, which has a continuous
symmetry around its vertical axis.

In this chapter, we first address one of the main challenges in 3D object pose esti-
mation discussed in Section 1.3: the ambiguities that raise with symmetrical objects.
We explain the link between the symmetries of a 3D object and its appearances in
images and we provide a simple and analytical solution to handle the problem based
on the normalization of the pose rotations. The method we propose can handle
texture-less, symmetrical and ambiguous objects in cluttered images. Furthermore,
it is general and can be integrated into any 6D pose estimation framework that
learns a mapping from a RGB image to a pose representation.

5.1 Overview

Many objects of our daily life or from industrial contexts exhibit symmetries, or
at least “quasi-symmetries” when only a small detail prevents the object to have a
perfect symmetry. These symmetries create ambiguities when aiming to estimate
the 3D pose of the object from images. For a long time, this problem has not been
considered by researchers and the problem of 3D object pose estimation has been
solved only on simple case scenarios.

In this chapter, we explain why exactly symmetries can be a problem for 3D
pose estimation algorithms and we then provide a simple solution that is general
and can be introduced in any 3D pose estimation algorithm.

To better understand the problem raised by the symmetries of an object, let’s first
consider Figure 5.1. The blue object has rotational symmetry around the vertical
axis. If we apply a rotation of 180◦ around this axis, this object has the very same
appearance. More generally, when an object O has some symmetry, there exist one
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or more rigid motions such that, if we apply these rigid motions to the object pose,
the appearance of the object is preserved. Formally, we consider the set

M(O) = {m ∈ SE(3) such that ∀p ∈ SE(3), R(O,p) = R(O,m.p)} , (5.1)

where R(O,p) is the image of Object O under pose p (ignoring lighting effects),
m is a rigid motion related to the symmetry, and m.p is the pose after applying
motion m. M(O) is thus the set of rigid motions m that preserve the visual aspect
of a given object. It is easy to see that it forms a subgroup of SE(3). Brégier et al.
(2018) call the elements ofM(O) proper symmetries.

In other words, two images of a symmetrical object can be identical but not
correspond to the same pose. If we consider an image I1 = R(O,p) of an object O
under pose p and a motion m ∈M(O), then, the image I2 of object O under pose
m.p is equal to image I1, that means I2 = R(O,m.p) = R(O,p) = I1. There is
therefore no function

F(I) = p (5.2)
that can provide the pose p of object O given an image I. Any attempt to learn
such a function, for example with a Deep Network, would fail. For example, if a
network is trained to predict the pose using the squared loss between the ground
truth poses and the predicted poses, it would converge to a model predicting the
average of the possible poses for an input image, which is of course meaningless.

Only a few works, presented in Chapter 3, consider the problem of symmetrical
objects. Sundermeyer et al. (2018) solves this problem by learning a mapping to a
latent representation of the pose; Brégier et al. (2018) introduced a representation
of the pose that differs from rigid motions and suitable for their similarity metric
between two poses; Manhardt et al. (2018) learns to predict several poses so that
at least one pose corresponds to the ground truth; Rad and Lepetit (2017) rely on
image mirroring to deal with some symmetries. Recent published works can handle
symmetrical objects by representing the object surface via fragments such as Hodan
et al. (2020b) or by optimizing the networks over losses that handle ambiguities (
Wang et al. (2019), Labbé et al. (2020)). While these works propose interesting
solutions, in this chapter, we present a general analytic approach to the problem.
It will give insights on the learning-based methods and yields a simple way to solve
the ambiguities due to symmetries.

Contributions. The contributions of this chapter are:

• We explain the link between the symmetries of a 3D object and its appearance
in images and we show why restricting the poses within some ranges is not
enough.

• We propose a simple and analytical solution to handle the problem based on
the normalization of the pose rotation.
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The work presented in this chapter was presented at the International Conference
on 3D Vision, 2019 (Pitteri et al.).

5.2 Method

In this section, we study the effect of symmetries on algorithms aiming to learn
the mapping between an image of an object and its 6D pose, and we show how we
can derive a simple method for handling these symmetries. The proposed method
is general and can be integrated into any 3D pose estimation algorithm. We will
describe in Section 5.3 how this method can be integrated within a Faster R-CNN
framework. In the remainder of this chapter we will refer to our method also as
normalization procedure.

5.2.1 Mapping Ambiguous Rotations

Let’s consider the setM(O) already introduced in Eq. (5.1). In practice, the motions
inM are usually in the form m = [R,0] with R ∈ SO(3), that means objects have
mostly rotational symmetries. A translation component different from 0 would
correspond to an object with translation symmetries, for example, a long building
with windows of similar appearances.

We thus first define the notion of ambiguous rotations: We say that two rotations
R1 and R2 are ambiguous if they result in the same object appearance, that is if
R(O, [R1, T1]) = R(O, [R2, T2]). This defines an equivalence relationship R1 ∼ R2.
If R1 ∼ R2, then it is not possible from an image to distinguish between rotation R1

and R2 when predicting the pose. Predicting R1, or R2, or any rotation R ∼ R1 is
equally good. This is the idea behind the ADI metric (Hinterstoisser et al., 2012).

As illustrated in Figure 5.2, a natural idea to aim at preventing trouble during
learning is, therefore, to first map equivalent rotations to a unique rotation, which
we call a canonical rotation. This means that during training, training images with
the same object appearance will be assigned the same rotation after mapping. The
transformation F : I 7→ p of Eq. 5.2 will thus become a function and we will be
able to learn it with a Deep Network for example. This implies that at inference,
the network will predict the canonical rotation for a given input image, which is the
best that can be done in the presence of symmetries.

Given the setM(O) of the object’s proper symmetries, we are therefore looking
for an operator Map(·) on SO(3) that can map ambiguous 3D rotations to a single
rotation such that Map(R1) = Map(R2) ⇐⇒ R1 ∼ R2 (?) holds.

Proposition 1. Given a proper symmetry groupM(O), let us define Map operator
as:

Map(R) = Ŝ−1R, ∀R ∈ SO(3), (5.3)
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90°
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Figure 5.2: Mapping of 3 ambiguous poses to the same pose. We consider here a uniform
object and the colors and dots on the faces are only to visualize the different poses. The
left and right poses are remapped to the reference pose in the middle.

with

Ŝ = arg min
S∈M(O)

|S−1R− I3|F , (5.4)

where | · |F is the Froebenius norm. Then Map verifies the mapping property (?).

Proof. To simplify the notations, let us consider thatM(O) is made only of the
rotation components. By definition of R1 ∼ R2 andM(O):

R1 ∼ R2 ⇔ ∃! S12 ∈M(O) such that R1 = S12R2 . (5.5)

Let us consider the solution of the optimization problem in Eq. (5.4) for R1:

Ŝ1 = arg min
S∈M(O)

|S−1R1 − I3|F . (5.6)

then, by replacing R1 with the expression in Eq. (5.5)

Ŝ1 = arg min
S∈M(O)

|S−1S12R2 − I3|F . (5.7)

We introduce the variable T such that S = S12T . Since S and S12 belong toM(O)
and M(O) is a group, T also belongs to M(O). We can therefore perform the
following change of variable:

Ŝ1 = S12 arg min
T∈M(O)

|T−1R2 − I3|F , (5.8)
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which is equal to:
Ŝ1 = S12Ŝ2, (5.9)

with
Ŝ2 = arg min

S∈M(O)

|S−1R2 − I3|F . (5.10)

Therefore

R1 ∼ R2 ⇔ Map(R1) = Ŝ−1
1 R1 = Ŝ−1

2 S−1
12 S12R2 = Ŝ−1

2 R2 = Map(R2) . (5.11)

5.2.2 Implementation of the Map operator

If M is discrete, implementing the operator Map is trivial, as it is only a matter
of iterating over the elements of M to find the minimum. However, M can be
continuous for some objects. This is the case for generalized cylinders and spheres
(Brégier et al., 2018). For spheres, Map is also trivial as it can always return the
identity transformation, for example.

For generalized cylinders, implementing the operator Map is more complex. In
this case,M can be written as:

M(O) = {Ru
α : α ∈ [0, 2π)} , (5.12)

where Ru
α is the rotation around axis u of amount α.

The Froebenius norm in Eq. (5.4) can be rewritten as

|S−1R− I3|F = |D|F = Trace(DTD) , (5.13)

with D = S−1R− I3. After some derivations:

|S−1R− I3|F = 6− 2 · Trace(STR) . (5.14)

Proof. Let:

Ŝ = arg min
S∈M(O)

|S−1R− I3|2F = arg minTrace(DTD), (5.15)

with D = S−1R− I3.
We have:

DTD = RTSSTR−RTS − STR + I3 = 2I3 − (RTS + STR) , (5.16)

and thus

Trace(DTD) = 6− Trace(RTS)− Trace(STR) = 6− 2 · Trace(STR) , (5.17)
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where we used the fact that Trace(I3) = 3 and Trace(AT ) = Trace(A).
We note:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 . (5.18)

In the object’s coordinate system, S writes as:

S =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 . (5.19)

Then:

Trace(DTD) = 6− 2

 cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1

R11 R12 R13

R21 R22 R23

R31 R32 R33


= 6− (R11 +R22) cos(α) + (R12 −R21) sin(α) .

(5.20)

Since Ŝ = arg min
S∈M(O)

Trace(DTD) and S is parameterized by α, Equation (5.15)

can be rewritten as a minimization over α such that:

α̂ = arg min
α∈[0,2π)

Trace(DTD)

= arg max
α∈[0,2π)

(R11 +R22) cos(α)− (R12 −R21) sin(α) .
(5.21)

This is solved analytically by solving ∂Trace(DTD)
∂α

= 0 for α. The solution of Equa-
tion (5.15) is then:

Ŝ =

cos(α̂) − sin(α̂) 0

sin(α̂) cos(α̂) 0

0 0 1

 with α̂ = arctan
(
R21 −R12

R11 +R22

)
. (5.22)

5.2.3 Discontinuities of F After Mapping

After applying the Map operator, there are no pose ambiguities anymore, that is
two similar images are assigned the same rotation. However, a new difficulty arises:
The transformation F(I)→ p is now discontinuous around some rotations and this
is problematic when using Deep Networks to learn F , as Deep Networks can only
approximate continuous functions (Cybenko, 1989; Hornik, 1991; Hanin, 2017).

To understand why these discontinuities happen, let us consider an example,
more exactly the rectangular object seen from the top as in Figure 5.3. M(O) is

3D Object Pose Estimation in Industrial Context 61



5.2. Method
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R270° R90°+

Figure 5.3: Discontinuities of F after applying the Map operator, for an object with one
axis of symmetry and a π-symmetry. All poses are mapped to a pose in the hashed region
by operator Map introduced in Section 5.2.1. Since Map(Rzπ/2+ε) = Rzε−π/2 (visualized
by the green arrow) and Map(Rzπ/2−ε) = Rzπ/2−ε, there exists a hazardous region (in red)
where F is discontinuous.

made of two rotations around the z-axis: The identity matrix, and the rotation
of angle π, and M(O) = {I3, R

u
π}. If a training image is annotated with rotation

Rz
π/2+ε, this rotation will be mapped by operator Map to rotationRz

ε−π/2; If a training
image is annotated with pose Rz

π/2−ε, this rotation will be mapped to itself that is
Rz
π/2−ε. By making ε converge to 0, it can be seen that there is a discontinuity of F

around images annotated with rotations π before mapping.
Another way of looking at the problem is to notice that images of the object

annotated with rotations Rz
ε−π/2 and R

z
π/2−ε look very similar, but with very different

rotations. A Deep Network would have to learn to predict very different poses for
very similar images.

5.2.4 Solving the Discontinuities

The discontinuities only occur whenM is discrete: It can be seen from Eq. (5.22)
that in the case of a generalized cylinder, the Map operator is continuous. Otherwise,
we avoid these discontinuities by introducing a partition of SO(3) made of two
subsets Ω1 and Ω2. For each subset, we train a different regressor to predict the
pose. We will therefore have two regressors F1 and F2 instead of only one. In this
way, both F1 and F2 will be continuous over their respective domains.

We describe below our method on an example and then extend it to the general
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case.

• One Symmetry Axis, M = 2

Let us consider again the rectangular object pictured in Figure 5.3, and already
discussed in Section 5.2.3. For this object, we haveM(O) = {I3, R

u
π}. We can

notice thatM and Map generate a partition of SO(3) made of two subsets:

Ω1 = {R : Ŝ(R) = I3} and Ω2 = {R : Ŝ(R) = Ru
π}, (5.23)

where Ŝ(R) is the rotation of Eq. (5.4) when applying Map to R.

However, this partition will not solve our problem: We already know that F is
not continuous on Ω1. We must therefore introduce a new partition of SO(3).
For this partition, we consider the new set:

√
M(O) = {(Ru

kπ/2) : k ∈ Z}
= {I3, R

u
π/2, R

u
π , R

u
3π/2},

(5.24)

and the partition it generates with Map:

Ω(k) = {R : Ŝ(R) = Ru
kπ/2}. (5.25)

As shown in Figure 5.4, no part Ω(k) includes any discontinuity. Moreover, for
a rotation in Ω(2), there is another rotation in Ω(0) that generates the same
object appearance. The same yields for Ω(3) and Ω(1).

We, therefore, take Ω1 = Ω(0) for the domain of regressor F1, and Ω2 = Ω(1) for
the domain of regressor F2. F1 and F2 thus do not suffer from discontinuities
nor ambiguity. They are sufficient enough to estimate the object pose under
any rotation since we can map this rotation to a rotation either in Ω1 or Ω2

corresponding to the same appearance. To do so, we introduce a new mapping
Map′ derived from Map such that:

∀R ∈ SO(3), Map′(R) = (Ŝ−1R, δ) such that

(Ŝ, δ) =


(arg min
S∈M(O)

|S−1R− I3|F , 1) if Map(R) ∈ Ω1 ,

(arg min
S∈M(O)

|S−1R−Ru
π/2|F , 2) otherwise ,

(5.26)

During training, given a training image I annotated with rotation R, we com-
pute (Ŝ−1R, δ) ← Map′(R) and train regressor Fδ to predict rotation Ŝ−1R
from I.

During inference, given a test image I of an object, we need to know which
regressor we should invoke to predict the pose. To do so, during training, we
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Figure 5.4: Partitions for an object with one axis of symmetry with M = 2 (left) and
M = 4 (right) as defined in Section 5.2.4. Rotations in areas filled with one color should
be mapped to a rotation in the hashed region of the same color to avoid discontinuities.
Two different regressors F1 and F2, one for each color, are used to predict poses for each
hashed region.

train a classifier C to predict which regressor we should invoke to compute
the pose, that is we train C to predict δ from I. For rotations close to the
boundary between Ω1 and Ω2, the prediction for C can become ambiguous.
However, in this case, the ambiguity is not a problem in practice: Even if the
classifier predicts the wrong regressor to use close to the boundary between
Ω1 and Ω2, both regressors can correctly predict poses close to this boundary.

• One Symmetry Axis, Arbitrary M

Let us now generalize to an object O with an arbitrary amount of symmetries
around a single axis u. These symmetries are necessarily periodic around u
with angular period fα = 2π/M : Rotating O around u by any angle multiple
of fα does not change its appearance. The proper symmetry groupM(O) for
such an object is:

M(O) =
{(
Ru

2π/M

)m}
m∈N

= {Ru
2mπ/M}m∈N. (5.27)

√
M(O) of Eq. (5.24)) becomes:

√
M(O) =

{(
Ru
π/M

)m}
k∈N

= {Ru
mπ/M}m∈N, (5.28)
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and mapping Map′ of Eq. (5.26) becomes:

∀R ∈ SO(3), Map′(R) = (Ŝ−1R, δ) such that

(Ŝ, δ) =


(arg min
S∈M(O)

|S−1R− I3|F , 1) if Map(R) ∈ Ω1 ,

(arg min
S∈M(O)

|S−1R−Ru
π/M |F , 2) otherwise ,

(5.29)

where Ω1 = {R : Ŝ(R) = I3}.

We can use Map′ the same way as in the previous subsection to train and use
to regressors F1 and F2.

• General Case

In the general case, each rotation R inM can be written in the form:

R = Ru
2π/M .R

v
2π/N .... with M,N, .. ∈ N, (5.30)

where u, v, etc. are rotation axes. Most common objects have at most 2 axes
of symmetries, but it is possible to imagine objects with more, for example,
a golf ball. To keep the notations as simple as possible, we will stick to only
two axes, as it is easy to extend to more axes from there.
√
M(O) becomes:

√
M(O) = {Ru

mπ/M .R
u
nπ/N}(m,n)∈N2 , (5.31)

and mapping Map′ becomes:

∀R ∈ SO(3),Map′(R) = (Ŝ−1R, δ1, δ2)s.t. (Ŝ, δ1, δ2) =

(arg min
S∈M(O)

|S−1R− I3|F , 1, 1) if Map(R) ∈ Ω1,1 ,

(arg min
S∈M(O)

|S−1R−Ru
π/M |F , 2, 1) if Map(R) ∈ Ω2,1 ,

(arg min
S∈M(O)

|S−1R−Rv
π/N |F , 1, 2) if Map(R) ∈ Ω1,2 ,

(arg min
S∈M(O)

|S−1R−Ru
π/MR

v
π/N |F , 2, 2) otherwise

(5.32)
where Ω1,1 = {R : Ŝ(R) = I3}, Ω2,1 = {R : Ŝ(R) = Ru

π/M}, and Ω1,2 =

{R : Ŝ(R) = Rv
π/N}. It means that in this case, we have to train 4 different

regressors F1,1, F2,1, F1,2, and F2,2 according to δ1 and δ2, and the classifier C
to predict a class index in [0; 3].
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5.2.5 Method Summary

We can summarize our method developed above as follow. We distinguish between
generalized cylinders and objects with discrete symmetries.

• Generalized cylinders: Given a training image I annotated with rotation
R, we train a single regressor F to predict Map(R) using Eq. 5.3 from I. At
inference time, given a test image I, we simply have to invoke F to predict
the object pose from I.

• Objects with discrete symmetries: Given a training image I annotated
with rotation R, we apply Map′ to R using Eq. (5.29) or Eq. (5.32) depending
on the number of symmetry axes. Map′ provides the rotation to be associated
with I for training, as well as the index of the regressor Fi to train. In ad-
dition to training the regressors, we need to train classifier C to predict the
index of the regressor to use. At inference time, we first invoke classifier C to
predict which regressor we should use from I, and then, invoke this regressor
to predict the object pose from I.

5.3 Framework: a Faster-RCNN based architecture

Our proposed method is general and it can be integrated into any 6D pose estimation
algorithm to improve the performances on symmetrical objects. As we discussed in
Chapter 3, there are plenty of deep learning-based 6D pose estimation pipelines
proposed in recent years and a lot of different modalities. We decide to integrate
our method into a correspondence-based approach. We, therefore, rely on a Deep
Network to predict the 2D reprojections of some 3D points on the CAD models of
the objects. In particular, we use the same setting as in Rad and Lepetit (2017);
Tekin et al. (2018); Tremblay et al. (2018); Peng et al. (2019a) for simplicity and we
predict the objects’ 6D poses in the form of the 2D reprojections of the 8 corners of
the 3D bounding boxes. From these 2D reprojections, it is possible to estimate a 6D
pose using a PnP. However, our approach to handle symmetries is general, and using
any other representation of the pose, with quaternions for example, is also possible.
As a Deep Network to predict the 2D reprojections we rely on Faster R-CNN Ren
et al. (2015), a powerful object detector. To explain our framework, it is essential
to give a brief overview of Faster R-CNN since its architecture is very complex, as
shown in Figure 5.5.

5.3.1 Faster R-CNN

The Faster R-CNN architecture was developed to solve the task of object detection,
that can be explained in the following way:

66 Giorgia Pitteri



5. 6D Pose Estimation of Symmetrical Objects

Figure 5.5: Overview of Faster R-CNN architecture. The image has been taken from Ren
et al. (2015).

Given a color image, the network outputs a list of object classes and where these
objects are located in the image in the form of the coordinates of the objects bound-
ing boxes.

The input image is passed through a pre-trained CNN up until an intermedi-
ate layer, ending up with a convolutional feature map. This CNN acts as a feature
extractor. This is a common practice used in the context of Transfer Learning, espe-
cially when the network is trained on a small dataset using the weights of a network
pre-trained on a larger one. This feature map is fed into a Region Proposal Net-
works (RPN) which finds a predefined number of region proposals that may contain
objects using the concept of anchors. Anchors are offline configured bounding boxes
of a fixed size which are placed uniformly throughout the original image, as shown
in Figure 5.5. The RPN outputs the probability of each anchor to contain an object
and, in that case, it refines the bounding box location around the object. Using
the features extracted by the CNN and the bounding boxes with relevant objects,
a layer called Region of Interest (ROI) Pooling extracts those features inside the
bounding boxes. These features are then fed into the last step of Faster R-CNN, the
Region-based Convolutional Neural Network (R-CNN), where a classifier predicts
the label of the object (or classify it as background if there is not an object), and
a regressor adjusts the bounding box of the proposal and localize the object more
accurately according to the predicted class.

The complete model is trained in a multi-task way. The loss is a weighted sum
of 4 different loss terms: a classification and a regression loss for both the RPN and
R-CNN steps. The first term is the RPN classification loss, a binary cross-entropy,
to say if an anchor contains an object or not. The second term is the RPN regression
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Figure 5.6: Our architecture for implementing our approach. It is built on top of the Faster
R-CNN architecture, to which we add specific branches: One for each regressor Fi, and
one for classifier C to learn to choose between the regressors. In this example, the object
has only one angle of symmetry around one axis. For this reason, only two regressors F1

and F2 are needed and the aim of the classifier C is to choose which regressor to use.

loss to adjust the anchor bounding box. This proposed loss is a smoothed L1-norm,
which is a L1 loss when the error is under a certain threshold σ. To compute this
loss only positive anchors, that means anchors that contain an object, are used.
An anchor contains an object if its Intersection over Union (IoU) with its relative
ground truth is higher than a threshold. The smooth L1 loss is also used as R-CNN
regression loss, while cross-entropy is used for the R-CNN classification.

5.3.2 Faster R-CNN based framework

We integrate our normalization method into the Faster R-CNN architecture. We
add some branches in the R-CNN part after the ROI Pooling, as shown in Figure
5.6 and detailed below.
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Pose regressor F branch. We add a specific branch to the Faster R-CNN ar-
chitecture to predict the 2D coordinates of each 3D corner for each regressor. This
branch is implemented as a fully connected multi-layer perceptron and takes as in-
put the output shared single-channel feature-map extracted with the ROI Pooling.
Without taking into account any symmetry, the output of this branch would have
size npoints × 2 × nclasses, where npoints is the number of 3D points whose 2D re-
projections we want to predict and nclasses corresponds to the number of objects in
the dataset we use for training and evaluating the method. In our case npoints = 8
(the 3D corners of the 3D object’s bounding box) and nclasses = 30 (the number of
the objects in T-LESS). In our method, to handle the symmetries, the branch has
size npoints × 2× nclasses × nregressors where nregressors corresponds to the number of
regressors Fi is used.

Classifier C branch. We also add a specific multi-layer perceptron branch to
Faster R-CNN to implement the classifier C. The output size of this branch is
nclasses × nregressors. Training data for this branch is obtained using Eq. (5.26).

We train our method in a multi-task learning way by adding the new task-
attached loss, with a respective weight, to the global loss term of Faster R-CNN.
More precisely, we include in the global loss term the loss functions L1 used for
training the two regressors F1 and F2 respectively, and the classifier loss Lδ for the
regressor classifier C. For L1 we used smoothed L1-norm, while for the C we took
the logistic regression function:

Lδ = −(p∗ · log(p) + (1− p∗) · log(1− p)) (5.33)

where p is the output of the last sigmoid layer of classifier C and p∗ its associated
ground truth. Regressors 1 and 2 are taken as classes 0 and 1 respectively, hence
p∗ = 1 corresponds to using regressor 2 for pose estimation. At training time, for
each iteration, we used the ground truth value of the classifier C, thus knowing which
regressor should be trained. We implemented this choice with the help of a binary
mask applied to the outputs of the two regressors.

5.3.3 Ground truth generation

To generate ground truth data, we use prior knowledge on the symmetries of the
objects, reported in Table 5.1. We compute the partition of SO(3) space based
on the object’s symmetry type and we get the corresponding number of regressors
Fi. We apply the mapping Map′ to the object’s rotation. We then project the 3D
corners of the object bounding boxes with the normalized object’s pose to get the
2D locations in the image as shown in Figure 5.7.
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No symmetries 21, 22, 24, 25, 26
Continuous symmetry 1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 24, 30

Discrete symmetries
180◦, z-axis 5, 6, 7, 8, 9, 10, 11, 12, 29
180◦, y-axis 19, 20, 23
90◦, z-axis 27, 28

Table 5.1: Prior knowledge of symmetries of the T-LESS objects.

(a) (b) (c)

Figure 5.7: Ground truths generation for training the network for a different type of
symmetrical objects. (a) Input RGB image. The pink object has not symmetries, the
green one is symmetrical along the z-axis of 90◦ and the yellow ones have a continuous
symmetry of 2π along the z-axis. (b) Ground truths of the 2D locations of the 3D bounding
box corners without any normalization. (c) Ground truths after applying the normalization
procedure.

5.4 Evaluation

In this section, we detail how we evaluated our approach, and show its effectiveness
on objects with various types of symmetries. As mentioned in Section 4.6, the
evaluation is done on the T-LESS dataset while the training of the network has
been done using images of Synthetic T-LESS.

Firstly, we show the impact of our normalization procedure and our simultane-
ous learning of ambiguous poses and analyze how they helped stabilize the learning
process. As shown in Figure 5.8, the loss of our Faster R-CNN-based implemen-
tation converges only when the rotations are normalized using our normalization
procedure, indicating that something is incorrect in the loss function in absence of
normalization. In this case, the loss continues to oscillate around the average value
of all possible poses.
In Figure 5.9, we show what happens in practice for three possible types of objects:
Two generalized cylinders (objects 30 and 3), an object with an axis of symmetry
(object 29), and an object without any symmetry (object 26). When dealing with
non-symmetrical objects, the network can learn the 6D pose with and without the
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2D-coordinates loss (L1)

Train
Val

Val
Train

without 
normalization

with 
normalization

Figure 5.8: Learning curves on the training and validation sets of our Faster R-CNN based
implementation. Without our normalization described in Section 5.2, the network fails to
converge to a satisfying solution. More exactly, it converges to a local minimum where all
keypoints collapse at the center of the object—see Figure 5.9.

normalization procedure. On the opposite, when the objects are symmetrical, with-
out our normalization, the network learns the average between all the possible poses
ending up predicting a pose collapsed to the center of the object.

We now evaluate our method using the Visible Surface Discrepancy (VSD) error
function introduced by Hodaň et al. (2018).

The VSD metric evaluates the pose error in a way that is invariant to the pose
ambiguities due to object symmetries. It is computed from the distance between
the estimated and ground truth visible object surfaces in the following way:

errVSD(Ŝ, S̄, SI , V̂ , V̄ , τ) = Mean
p∈V̂

⋃
V̄

{
0, if p ∈ V̂

⋂
V̄ ∧ |Ŝ(p)− S̄(p)| < τ

1, otherwise
(5.34)

where Ŝ and S̄ are distance maps obtained by rendering the object model in the
estimated and ground truth poses respectively. The distance maps are compared
with the distance map SI of the test image I to obtain the visibility masks V̂ and
V̄ , that are the sets of pixels where the object model is visible in image I, as shown
in Figure 5.10. In Table 5.2, we report the mean VSD recall of 6D object poses at
errVSD < 0.3 with tolerance τ = 20mm and > 10% object visibility and we compare
our method to the method of Sundermeyer et al. (2018).

The object 3D orientation and translation along the x-and y-axes are typically
well estimated. Although most of the translation error is along the z-axis, it is
unsurprising since we do not use or regress the depth information. To have a mean-
ingful evaluation of our results in terms of VSD, we keep the ground truth of the
translation along the z-axis in our pose predictions.

Finally, in Figure 5.11 we show some qualitative results on T-LESS test scenes.
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(a) (b) (c) (d)

Figure 5.9: Pose estimation results with (first and second rows) and without (third
and fourth row) our normalization approach for (a) generalized cylinders, (b) an object
with an axis of symmetry, (c) an object without any symmetry, and (d) a typical scene
from our Synthetic T-LESS dataset. The first and third rows show the 2D reprojections
of the 3D control points prediction while the second and fourth rows the pose estimation
results. The green and blue bounding boxes correspond to the ground truth and estimated
poses respectively. Without our normalization, the network learns to predict the average
between all the possible poses for symmetrical objects, which is of course meaningless.

5.5 Conclusion

In this chapter, we studied the subtle problems that arise when training a machine
learning method to predict the 6D pose of an object with symmetries from color
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Figure 5.10: Quantities used in the calculation of VSD when no depth information is used.
Left: Input RGB image. Center: Distance map Ŝ and visibility mask V̂ obtained by
rendering the object with the estimated pose. Right: S̄ and visibility mask V̄ obtained
by rendering the object with the ground truth pose. The images have been taken from
Hodaň et al. (2018).

Figure 5.11: Some qualitative results on test scenes of the T-LESS dataset. Green and
blue bounding boxes are the ground truth and estimated poses respectively while the red
bounding boxes correspond to missed detections.

images. We presented a simple and analytic method based on the normalization
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Sundermeyer et al. Sundermeyer et al. (2018) Ours

Object SSD Retina GT BBox Faster R-CNN
1 5.65 8.87 12.33 26.35
2 5.46 13.22 11.23 56.14
3 7.05 12.47 13.11 83.33
4 4.61 6.56 12.71 32.98
5 36.45 34.80 66.70 44.54
6 23.15 20.24 52.30 98.33
7 15.97 16.21 36.58 87.74
8 10.86 19.74 22.05 17.09
9 19.59 36.21 46.49 52.54

10 10.47 11.55 14.31 5.43
11 4.35 6.31 15.01 27.97
12 7.80 8.15 31.34 43.08
13 3.30 4.91 13.60 48.54
14 2.85 4.61 45.32 42.19
15 7.90 26.71 50.00 47.10
16 13.06 21.73 36.09 42.18
17 41.70 64.84 81.11 56.83
18 47.17 14.30 52.62 19.31
19 15.95 22.46 50.75 27.53
20 2.17 5.27 37.75 32.16
21 19.77 17.93 50.89 41.19
22 11.01 18.63 47.60 49.10
23 7.98 18.63 35.18 26.08
24 4.74 4.23 11.24 41.34
25 21.91 18.76 37.12 44.37
26 10.04 12.62 28.33 23.80
27 7.42 21.13 21.86 33.78
28 21.78 23.07 42.58 35.10
29 15.33 26.65 57.01 15.92
30 34.63 29.58 70.42 36.17

Mean 14.67 18.35 36.79 41.27

Table 5.2: T-LESS: Object recall for errvsd < 0.3 on all Primesense test scenes (the higher
the better).

of the pose rotation that is agnostic to the exact pose representation and the pose
prediction model. Our method can therefore be included in current and future
developments for properly handling objects with symmetries.

One main limitation of the system is that the prior knowledge of the object
symmetries is needed. A direct extension of our work could be to automatically
detect the object symmetries. We will discuss it in Section 8.2. In the next chapter,
we will present an approach able to face another challenge in 3D pose estimation:
the generalization to unseen objects.
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Chapter 6

CorNet:
6D Pose Estimation of Unseen Objects
using Generic 3D Corners
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6.1. Overview

In this chapter, we address another main challenge in 3D object pose estimation
discussed in Section 1.3: the generalization of deep learning-based methods to unseen
objects, that means objects never seen during the training, that is also linked to the
problem of scalability of these methods. In this chapter, we develop a first approach
to estimate the 3D pose of new target unseen objects that does not require additional
learning nor training images for new objects but only the CAD models for the target
objects. We first give an overview of the problem tackled and then we explain our
method. We detail the 3D object pose representation we use and how we can
exploit single parts of the object to obtain the full 3D pose, by tacking care of all
the ambiguities that raise because of the symmetries of the object’s parts. We finally
evaluate our approach on some scenes of T-LESS.

6.1 Overview

DL approaches achieve great performance in 3D object pose estimation, at least
when enough training images are available under different poses. A model trained
on some objects is not going to perform as well on other objects, which were not
part of the training samples. This is a significant limitation especially in industrial
contexts where new target objects are often present and it is not easy to have a lot
of training images of them. Even if domain transfer methods allow for training such
methods with synthetic images (Hinterstoisser et al.; Kehl et al., 2017; Sundermeyer
et al., 2018) instead of real ones (Bousmalis et al., 2017; Zhu et al., 2017; Ganin et
al., 2016; Long et al., 2015; Tzeng et al., 2015; Lee et al., 2018; Rad et al., 2018a;
Zakharov et al., 2018) at least to some extent, such training sessions take time, and
it is highly desirable to avoid them in practice, especially in industrial contexts.

In this chapter, we develop a first approach to estimate the 3D pose of new
target unseen objects. The proposed method does not require additional learning
nor training images for new objects and we consider a scenario where CAD models
for the target objects exist, but not necessarily training images. This is often the
case in industrial settings, where an object is built from its CAD model. We rely on
corners that we learn to detect and estimate the 3D poses during an offline stage.
Our approach focuses on industrial objects. Industrial objects are often made of
similar parts, and corners are a dominant common part, as shown in Figure 6.1.

Detecting these corners and determining their 3D poses is the basis for our
approach. We follow a deep learning approach and train Faster R-CNN on a small
set of objects to detect corners and predict their 3D poses. We use the representation
of 3D poses introduced by Crivellaro et al. (2018): The 3D pose of a corner is
predicted in the form of a set of 2D reprojections of 3D virtual points, and this is
convenient for our purpose since multiple corners can be easily combined to compute
the object pose when using this representation. Furthermore, this approach is robust
to occlusions and in fact, thanks to this pose representation we only need 1 or 2
corners to predict the pose of the object.
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Figure 6.1: Example of industrial CAD models with similar corners.

However, we need to take care of a challenge that arises with corners, and that
was ignored in Crivellaro et al. (2018): Because of its symmetries, the 3D pose of a
corner is often ambiguous and defined only up a set of rigid rotations. We, there-
fore, introduce a robust and efficient algorithm that considers the multiple possible
3D poses of the detected corners, to estimate the 3D poses of the new objects finally.

Contributions. The contributions of this chapter are:

• We exploit the 3D pose representation of Crivellaro et al. (2018) and extend
it in the case of multiple corners by handling the ambiguities caused by their
intrinsic symmetries.

• We propose a new approach to estimate the 3D poses of unseen objects with
prominent corners from RGB images.

The work presented in this chapter was presented at the 6th International Work-
shop on Recovering 6D Object Pose of the International Conference on Computer
Vision, 2019 (Pitteri et al., 2019).

6.2 Method

In this section, we will describe our approach. We first describe how we learn
to detect corners and predict their 3D poses. We then present our algorithm to
estimate the 3D poses of new objects in an input image, from the corners detected
in this image. Our pipeline, made of a corner detection block and a pose block, is
represented in Figure 6.3.

3D Object Pose Estimation in Industrial Context 77



6.2. Method

(a) (b)

Figure 6.2: Given a small set of objects from the T-LESS dataset Hodaň et al. (2017),
we learn to detect corners of various appearances and shapes and to estimate their 3D
poses using synthetic renderings (a). Then, given only the CAD model of new objects with
corners, we can detect these objects and estimate their 3D poses, without any new training
phase (b). The green bounding boxes correspond to the ground truth poses and the blue
bounding boxes to the poses estimated with our method.

Figure 6.3: Overview of our approach. We modified Faster R-CNN to detect generic
corners in images and predict their 3D poses. Our pose estimation algorithm, which is an
extension of RANSAC, estimates the 3D poses of full objects from these detections.

6.2.1 Corner Detection and 3D Pose Estimation

We use the representation of the 3D pose of a part introduced in Crivellaro et al.
(2018) to represent the 3D pose of our corners. This representation is made of the
2D reprojections of a set of 3D control points. Its main advantage is that it is easy
to combine the 3D poses of multiple parts to compute the 3D pose of the object by
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(a) (b)

Figure 6.4: 3D pose representation of an object part from Crivellaro et al. (2018). (a)
Seven 3D control points arranged to span 3 orthogonal directions are assigned to each
part. (b) Given an image patch of the part, Crivellaro et al. (2018) predicts the 2D
reprojections of these control points and computes the 3D pose of the objects from these
3D-2D correspondences.

Figure 6.5: The difference with Crivellaro et al. (2018) is that our corners are generic in the
sense that they can correspond to corners of various shapes and appearances, as corners
from different objects can be different, while Crivellaro et al. (2018) considers parts from
object instances. This allows us to consider new objects without retraining. The other
difference is that we handle pose ambiguities, which occur in the case of corners because
of their symmetries.

solving a PnP problem. These control points are only “virtual”, in the sense that
they do not have to correspond to specific image features. As shown in Figure 6.4,
we consider seven 3D control points for each part, arranged to span 3 orthogonal
directions and the center of the part, as in Crivellaro et al. (2018).

While Crivellaro et al. (2018) performed detection and pose prediction with
two separate networks, we rely on the Faster R-CNN framework as it is common
practice now for various problems: We kept the original architecture to obtain region
proposals that correspond to parts and added a specific branch to predict the 2D
coordinates of each control point. This branch is implemented as a fully connected
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Figure 6.6: The same corner can look the same under different 3D poses. This implies that
it is possible to predict the 3D pose of a corner only up to some rigid motions.

two-layer perceptron. The size of its output is 2 × Nv, where Nv is the number of
control points for a detected corner, and with Nv = 7 in practice. For training,
we used the default hyperparameters used in Ren et al. (2015) and the same loss
function to predict the object class (corner vs background). We also added to
the global loss term of Faster R-CNN a squared loss for learning to predict the
reprojections of the control points. Because of the symmetries of corners, this part
requires some care and we discuss it in the next subsection.

To train Faster R-CNN, we used a small number of objects exhibiting different
types of corners, shown in Figure 6.5, and created synthetic images of these objects
for training. Two examples of these images are shown in the first row of Figure 6.2.
These images are created by randomly placing the training objects in a simple scene
made of a plane randomly textured, and randomly lighted, similar to what we did
for our Synthetic T-LESS in section 4.6.1. The only difference with our Synthetic
T-LESS is that we select only the objects with prominent corners from T-LESS. In
practice, we noticed that we did not need to apply transfer learning to take care of
the domain gap between our synthetic images and the real test images of T-LESS.
This is probably because we consider only local parts of the images, and because
the test images of T-LESS are relatively noise-free. Given the CAD models of these
objects, we can select the control points in 3D and project them in the synthetic
images using their ground truth poses. In this way, we obtain the 2D ground truth
reprojections of the control points needed to train the network.

6.2.2 Ambiguities between Corner Poses and How to Handle
Them

As shown in Figure 6.6, many ambiguities happen when trying to predict the 3D pose
of a corner from its appearance. Such ambiguities do not happen in the problems
considered by Crivellaro et al. (2018) and are due to the symmetries of corners.
Figure 6.7 shows that, given the image of a corner, there are in general 3 possible
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Figure 6.7: Given the image of a corner, there are in general 3 possible 3D poses that
correspond to this image. Therefore, three arrangements of 3D virtual points are possible.

3D poses that correspond to this image. A standard squared loss would focus on
the annotated pose, and penalize the two other possible poses.

More exactly, from one possible 3D pose p, it is possible to generate the two
other poses by applying rotations around the corner. In our case, since we represent
the pose with the 2D reprojections of the virtual points, this can also be done by
permuting the 2D reprojections properly. We, therefore, introduce two permuta-
tions Σ1 and Σ2 which operate on the 2D reprojections and train Faster R-CNN to
predict the virtual point reprojections by introducing for each training image a term
motivated by Xiang et al. (2018):

Lp = min
p∈{pann,Σ1(pann),Σ2(pann)}

|ppred − p|2 , (6.1)

where pann and ppred are the annotated and predicted poses respectively for the
training image.

Given a pose predicted by Faster R-CNN, we can generate the 2 other possible
poses by applying Σ1 and Σ2. This is used in our pose estimation algorithm described
in the next subsection.

6.2.3 Pose Estimation Algorithm

We represent a new object to detect as a set C = {C1, .., CNC
} of NC 3D corners.

This can be done using only the CAD model of the object. Each corner is made
of Nv 3D virtual points: Ci = {Mi,1, ..,Mi,Nv} expressed in the object coordinate
system.

From our Faster R-CNN framework, given an input image, we obtain a set D =
{d1, . . . , dNd

} of ND detected corners dj. Each detected corner dj is made of Nv

predicted 2D reprojections: dj = [mj,1, . . . ,mj,Nv ].

3D Object Pose Estimation in Industrial Context 81



6.3. Evaluation

Figure 6.8: A detected corner in 2D can be matched to multiple 3D corners on the CAD
model. The RANSAC-based pose estimation algorithm will retrieve the good pose hypoth-
esis among all.

The pseudocode for our detection and pose estimation algorithm is given as
Alg. 1. To deal with the erroneously detected parts, we use the same strategy as
RANSAC. By matching the detected corners dj with their 3D counterparts Ci, it
is possible to compute the 3D pose of the object using a PnP algorithm, followed
by a Levenberg-Marquardt optimization to refine the pose. Since each corner is
represented by Nv = 7 points, it is possible to compute the pose from a single match.
As explained in Section 6.2.2, each detected corner can correspond to 3 possible
arrangements of virtual points, and we apply Σ1 and Σ2 to the mj,k reprojections
to generate the 3D possible poses for the detected corners. Furthermore one object
can have similar corners and each detected corner can be matched to different 3D
corners, as shown in Figure 6.8.
To find the best pose among all these 3D possible poses, we compute a similarity
score as the cross-correlation between the gradients of the image and the image
gradients of the CAD model rendered under the 3D pose. We finally keep the pose
with the largest similarity score as the estimated pose.

6.3 Evaluation

In this section, we present and discuss the results of our pose estimation algorithm.
We first describe the metrics we use, and then we show a quantitative analysis of
object detection and pose estimation as well as qualitative results. All the results
are computed on the challenging T-LESS dataset.
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Algorithm 1 Pose estimation algorithm
1: C ← {Ci}i, the set of 3D corners on the new object. Each 3D corner Ci is made

of 7 3D control points, expressed in the coordinate system of the new object.
2: D ← {dj}j, the set of 2D detected corners in the input image. Each 2D corner
dj is made of 7 2D image locations.

3:
4: procedure Pose_Estimation(C, D)
5: poses← [] . Set of possible poses and their scores
6: for C ∈ C do
7: for d ∈ D do
8: for Σ ∈ {I,Σ1,Σ2} do
9: corr← (C,Σ(d)) . 2D-3D correspondence

10: pose← PnP(corr) . 3D pose estimate

11: nbinliers ← Compute_Inliers(pose, C,D)
12: if nbinliers > τinliers then
13: Refine(pose, C,D) . Compute pose using all the inliers

14: spose ← Score(pose, C,D)
15: Add (pose, spose) to poses
16: return pose with best spose in poses
17:
18: procedure Score(pose, C, D)
19: s← 0
20: template← ImageGradients(rendering(model, pose)
21: edgesinput ← ImageGradients(inputimage)
22: s← Cross_Correlation(edgesinput, template)
23: return s

6.3.1 Metrics

To evaluate our method, we use the percentage of correctly predicted poses for each
sequence and each object of interest, where a pose is considered correct based on
the ADD metric:

ADD =
1

V
∑
M∈V

||Tr(R̂,t̂)(M)− Tr(R̄,t̄)(M)||2 . (6.2)

This metric is based on the average distance in 3D between the model points after
applying the ground truth pose and the estimated one. A pose is considered correct
if the distance is less than 10% of the object’s diameter. V is the set of object’s
vertices, (R̂, t̂) the estimated pose and (R̄, t̄) the ground truth pose, and TrR,t(·) a
rigid transformation by rotation R and translation t.

For objects with ambiguous poses due to symmetries, we consider the ADI metric:

ADI =
1

V
∑

M1∈V

min
M2∈V

||Tr(R̂,t̂)(M1)− Tr(R̄,t̄)(M2)||2 , (6.3)

where the error is calculated as the average distance to the closest model point
instead of the corresponding one. If an object is symmetric, both its pose (R̄, t̄) and
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its symmetrical one are correct because it is not possible to distinguish them from
the input image.

6.3.2 Results

The complexity of the test scenes varies from several isolated objects on a clean
background to very challenging ones with multiple instances of several objects with
a high amount of occlusions and clutters. Only a few previous works present results
on the challenging T-LESS dataset. To the best of our knowledge, when this method
was proposed, the problem of pose estimation of new objects not seen at training
time had not been addressed yet and no comparison was possible.

To evaluate our method, we split the objects from T-LESS into two sets: One set
of objects seen by the network during the training and one set of objects never seen
and used for evaluation at testing time. More specifically, we train our network on
corners extracted from Objects #6, #19, #25, #27 and #28 and test it on Objects
#7, #8, #20, #26 and #29 on T-LESS test scenes #02, #03, #04, #06, #08, #10,
#11, #12, #13, #14 and #15. Figure 6.9 shows the T-LESS objects of this setup.

6.3.3 Dataset

We use synthetic images for training the network. These images are generated as
explained in Section 4.6.1 with a slight difference: instead of rendering the CAD
models of all the objects from T-LESS, we render only the training objects we use
in this set-up. For each synthetic image, we generate the ground truths for the 2D
locations of the 3D control points.

We previously select, for each corner of the object, the 3D control points. Then,
given the ground truth pose of the object, we project each set of 3D control points in
2D and we associate a bounding box to each corner to train the points regressor and
the corner classifier respectively. We associate these ground truths only to corners
that are visible enough in the image. In the previous chapter, we looked at the object
globally, and we consider also objects partially occluded. In this method, we are
looking locally at the corners of the objects. For this reason, we need to pay attention
to the visibility of the corners not to train a network with ambiguous information.
To train the network with the loss in Eq. 6.1, we apply the two permutations we
introduced, Σ1 and Σ2, to the ground truths of the 2D locations.

2D Detection: We first evaluate our method in terms of 2D detection. Even this
task is challenging on the T-LESS dataset given our setting, as the objects are very
similar to each other.

Most of previous works separate the detection task from the pose estimation.
For example, in Rad and Lepetit (2017), the authors present a method that first
detects objects through a segmentation approach and then use the corresponding
crop of the image to estimate the pose. Some works only focus on pose estimation:
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Figure 6.9: T-LESS Objects used in our evaluation set-up. Left: Objects seen by the
network during the training. Right: Unseen objects used to evaluate our method.

Scene: Obj AD{D|I}10% AD{D|I}20% AD{D|I}30% detection [%]

02: 7 68.3 80.1 83.7 67.3
03: 8 57.9 72.5 78.7 76.3
04: 26 28.1 47.2 56.2 48.3
04: 8 21.2 53.0 68.2 35.7
06: 7 36.8 61.7 78.7 73.7
08: 20 10.0 40.4 56.1 34.1
10: 20 27.8 47.2 58.3 30.0
11: 8 58.8 74.9 85.3 74.3
12: 7 23.1 44.6 47.7 54.6
13: 20 26.6 57.3 69.0 52.9
15: 29 48.0 59.1 76.7 38.3
14: 20 10.0 24.6 31.6 44.0

Average 34.7(±18.5) 55.2(±15.2) 65.9(±15.6) 52.5(±16.2)

Table 6.1: Our quantitative results on T-Less test Scenes #02, #03, #04, #06, #08, #10,
#11, #12, #13, #14, #15. The last column reports the detection accuracy. AD{D|I}∗%
refers to the ADD/ADI metric value and ∗ stands for the percentage of the diameter used
to compute this value. We consider the object to be detected if the IoU between the
rendering of the object with the pose estimate and with the ground truth is higher then
0.4.

Sundermeyer et al. (2018) use the ground-truth crops of each object of the scene to
avoid the detection step.

In this work, we cannot access images of objects on which the pose estimation
is done. Thus, it is not possible to train a separate object detection network or
segmentation network to solve this problem. Our method returns the 3D poses of
the objects directly. To evaluate the detection accuracy, we therefore use the 2D
bounding boxes computed from the reprojections of the CAD models under the
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Figure 6.10: Some qualitative results on Object #8 in Scene #03 of the T-LESS dataset.
First row: 2D detection results. Second row: 3D Pose Estimation results. Green and
blue bounding boxes are the ground truth and estimated poses respectively.

estimated 3D pose.
We report our detection accuracy in the last column of Table 6.1. The accuracy

is measured in terms of Intersection over Union (IoU) between the rendering of
the object with the estimated pose and the rendering of the object with the ground
truth pose. An object is considered correctly detected in the frame if IoU > 0.4.
Our method succeeds an average of 52.5% of good detection without any detection
or segmentation priors.

3D Pose Estimation We evaluate the pose estimation on images where the object
of interest has been detected. For each object of our experiments, we compute the
ADD metric in Eq. (6.2). Table 6.1 reports the scores for three percentages of object
diameters. For symmetrical objects, we report the ADI in Eq. (6.3) metric instead of
ADD. The object 3D orientation and translation along the x-and y-axes are typically
well estimated. Most of the translation error is along the z-axis, as it is usually the
case of other algorithms for 3D pose estimation from color images.

To conclude the evaluation of our method, we present several qualitative results
obtained on the tested scenes of the T-LESS dataset in Figures 6.10-6.15. Each
top row shows the results of the corners detection part with the unseen objects
colored in green while each bottom row shows the estimated 3D poses. Green
boxes are ground truth 3D bounding boxes while blue boxes are bounding boxes
we predicted using our pose estimation pipeline. Some scenes are very challenging.
Here, the background is highly textured compared to the objects, and the scenes are
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Figure 6.11: Some qualitative results on Object #7 in Scene #06 of the T-LESS dataset.

Figure 6.12: Some qualitative results on Object #20 in Scene #10 of the T-LESS dataset.

crowded with unwanted and close objects. Moreover, objects seen by our network
during training appear near the objects on which we wanted to test our algorithm.
Despite that, we can see that our method succeeds in estimating the pose correctly.
Moreover, Figures 6.11, 6.14 and 6.15 show that detecting corners of the objects is
a good direction when dealing with "crowded" scenes where partial occlusions often
occur.
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Figure 6.13: Some qualitative results on Object #20 in Scene #13 of the T-LESS dataset.

Figure 6.14: Some qualitative results on Object #20 in Scene #14 of the T-LESS dataset.

Computation Times: We implemented our method on an Intel Xeon CPU E5-
2609 v4 1.70GHz desktop with a GPU Quadro P5000. Our current implementation
takes 300ms for the 3D part detection and 2s for the pose estimation, where most
of the time is spent in rendering and cross-correlation. We believe this part could
be significantly optimized.
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Figure 6.15: Some qualitative results on Object #26 and Object #29 in Scene #15 of the
T-LESS dataset.

6.4 Conclusion

In this chapter, we introduced our first approach to the detection and 3D pose
estimation of industrial objects in color images that only requires the CAD models of
the objects, and no retraining is needed for new objects. We showed that estimating
the 3D poses of the corners makes our method able to solve typical ambiguities that
raise with industrial objects.

The main disadvantage of this method is that it requires a skilled user to select
the 3D control points on the CAD model making the method not fully automatic
and that it considers only corners and not other parts, such as edges or quadric
surfaces. In the next chapter, we will discuss these limitations and we will propose
another approach to predict the 3D poses of unseen objects that is not only limited
to objects with prominent corners.
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6D Pose Estimation of Unseen Objects
using Local Surface Embeddings
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7.1. Overview

In this capter, we propose another approach for detecting and estimating the
3D poses of objects in images that requires only an untextured CAD model and
no training phase for new objects and that overcomes the limitation of the method
explained in Chapter 6. After a brief overview of the problem tackled, we explain
our method that combines Deep Learning and 3D geometry and how we obtain the
final 3D poses of the objects. We evaluate our method on T-LESS and we compare
it with our previous method in Chapter 6 and with Sundermeyer et al. (2020a) to
show its effectiveness.

7.1 Overview

In Chapter 6 we introduced a novel 3D pose estimation method based on objects’
parts to estimate the pose of unseen objects, which is suited to some classes of
objects that can be defined by specific sets of parts. In particular, we demonstrated
it only on objects with prominent corners, which is quite restrictive. Furthermore,
this approach requires an expert to offline select parts on the CAD models of the new
objects. To relax this requirement and make our solution more general we introduce
a novel method for 3D object detection and pose estimation from color images only
based on dense correspondences between the input color image and the CAD model,
instead of sparse corner correspondences.

We, again, investigate 3D object pose estimation in an industrial scenario with
the challenges this implies: we want to handle symmetrical, textureless, ambiguous,
and unseen objects, given only their CAD models. No offline selection of 3D points
nor the presence of corners is required this time. By contrast with some previous
works, we also do not assume that the ground truth 2D bounding boxes for the
objects are available. As shown in Figure 7.1, our approach combines machine
learning and 3D geometry: Like previous works (Brachmann et al., 2016; Zakharov
et al., 2019; Park et al., 2019), we establish dense correspondences between the
image locations and 3D points on the CAD model, as they showed that this yields
to accurate poses. However, there is a fundamental difference between these works
and ours: they do not generalize to unseen objects and they assume they can train
a machine learning model in advance for each object. For these reasons, they can
predict directly the 3D coordinates of the pixels of the seen objects in new images.

In our case, we want to avoid any training phase for new objects. Thus, we
cannot predict the 3D coordinates of the pixels since this would be an information
strictly related to the object. We therefore rely on a different strategy: we introduce
an embedding capturing the local geometry of the 3D points lying on the object
surface. Given a training set for a small number of objects, we learn to predict these
embeddings per pixel for images of new objects. By matching these embeddings
with the embeddings computed for 3D points on the object surface, we get 2D-3D
correspondences from which we estimate the object’s 3D pose using RANSAC and
a PnP solver.
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Figure 7.1: Overview of our method. We detect and estimate the 3D poses of objects,
given only an untextured CAD model, without having to retrain a deep model for these
objects. Given an input RGB image, we predict local surface embeddings (LSEs) for each
pixel that we match with the LSEs of 3D points on the CAD models. We then use a PnP
algorithm and RANSAC to estimate the 3D poses from these correspondences. We use the
predicted masks to constrain the correspondences in a RANSAC sample to lie on the same
object, to control the complexity. The LSE prediction network is trained on known objects
but generalizes well to new objects. Similarly, we train Mask-RCNN on known objects and
use mask R-CNN to segment the objects in the image. Because we train Mask-RCNN in
a class-agnostic way, it also generalizes to new objects without retraining. Note that we
use masks of different colors for visualization only.

This approach is conceptually simple, robust to occlusions, and provides an ac-
curate 3D pose. However, to be successful, some special care is needed. First, the
embeddings need to be rotation invariant. Second, because of the symmetries and
this rotation invariance, many correspondences between pixels and 3D points are
possible a priori and the complexity of finding a set of correct correspondences can
become exponential. We control this complexity in two ways. We focus on image
locations with the most discriminative embeddings as they have less potential cor-
respondences. We also observe that Mask R-CNN (He et al., 2017) can predict the
masks of new objects when trained without any class information, and thus can
segment new objects without re-training. We use this to constrain the sets of corre-
spondences in RANSAC to lie on the same mask, and thus drastically decrease the
number of samples to consider in RANSAC.

In the remainder of the chapter, we describe our method in detail and evaluate
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it on the T-LESS dataset, comparing it with our approach proposed in Chapter 6
and a recently published work that address the difficult task of dealing with unseen
objects.

Contributions. The contributions of this chapter are:

• We introduce the concept of local embedding of the objects’ 3D geometry;

• We propose a new approach to estimate the 3D poses of unseen objects from
RGB images;

• We compare with our previous method proposed in Chapter 6 and a recent
published work (Sundermeyer et al., 2020a) showing better performances.

The work presented in this chapter will be present at the Asian Conference on
Computer Vision, 2020 (Pitteri et al., 2020).

7.2 Method

In this section, we will describe our approach. We first explain how we compute
the local surface embeddings and how we obtain correspondences between the CAD
models and the images. We then describe our pose estimation algorithm.

7.2.1 Local Surface Embeddings

To match new images with CAD models, we rely on embeddings of the local sur-
faces of the objects. To be able to match these embeddings under unknown poses,
they need to be translation invariant and rotation invariant. Achieving translation
invariance is straightforward since we consider the local geometry centered on 3D
points. Achieving rotation invariance is more subtle, especially because of ambigui-
ties arising in practice with symmetrical objects. This is illustrated in Figure 7.2(b):
We need to compute the same embeddings for local geometries that are similar up
to a 3D rotation. In this way we can handle ambiguous and symmetrical objects
and our method can be more robust to occlusions than the one proposed in Chapter
5.

More exactly, given a 3D point P on the surface of an object, we define the
local geometry as the set of 3D points Mn in a spherical neighborhood centered
on P and of radius r. In practice, on T-LESS, we use r = 3cm. To compute a
rotation-invariant embedding, we transform these points from the object coordinate
system to a local patch coordinate system using a rotation matrix computed from
the decomposition of the covariance matrix of the 3D points Mn after centering on
P (Eggert et al., 1997):

C =
∑
n

vn · v>n , (7.1)
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(a) (b)

Figure 7.2: (a): Computation of the LSEs for a given point P on a CAD model. We
transform the 3D points in the neighborhood of P into a rotation-invariant local system
and weight them before computing their moments. (b): Visualization of the rotation-
invariance property on different parts of the same object. Similar local geometries yield
similar LSEs. Through this paper, we represent the LSEs using only their average value
mapped to the red, green, blue channels with a color map except for Figures 7.3 and 7.4
that shows all the values.

where vn = (Mn −P) using a Singular Value Decomposition (SVD):

C = L>ΣR . (7.2)

R is an orthogonal matrix, but not necessarily a rotation matrix, and small differ-
ences in the local geometry can result in very different values for R. We, therefore,
apply a transformation to R to obtain a new matrix R̄ so that R̄ is a suitable rotation
matrix. It can be checked that applying R̄ to the vi vectors will achieve rotation
invariance for the local surface embeddings.

Let’s denote by r1, r2, and r3 the rows of R, and by r̄1, r̄2, and r̄3 the rows of R̄.
Applying R to the normal n of the object’s surface at P yields a 3-vector R ·n close
to either [0, 0, 1]> or [0, 0,−1]>, depending on the orientation of R selected for the
SVD. For normalization, we choose that R̄ · n should always be closer to [0, 0, 1]>.
We therefore compute o = r>3 ·n. If o is positive, we take r̄3 = r3, otherwise, we take
r̄3 = −r3. As a result, R̄ · n is always closer to [0, 0, 1]> that to [0, 0,−1]>. Finally,
we take r̄1 = r1 and r̄2 = −r̄1∧ r̄3, where ∧ denotes the cross-product, which ensures
that R̄ is a rotation matrix.

We explain now how we define the local surface embeddings. For our experi-
ments, we use the local moments of the local 3D points for simplicity but any other
embeddings such as Deng et al. (2018) could also work. Let us denote by [xn, yn, zn]
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the vectors R̄vn, then local surface embeddings can be computed as:

LSEi,j,k(P) =
∑
n

wnx
i
ny

j
nz

k
n , (7.3)

where wn = exp(−|vn|2/σ2) is a weight associated to each point based on its distance
from P (we use σ = 5 in practice) and i, j, k are exponents in the range [0, 1, 2].
Theoretically it is possible to take all the combinations of exponents but we em-
pirically found that the most discriminative values are computed using: i ∈ {0, 2},
j ∈ {0, 2}, k ∈ {0, 1, 2}, which gives 11 values for the full vector LSE(P) as taking
i = j = k = 0 gives a constant value and is not useful. Finally, we normalize
the values of LSE(P) to zero mean and unit variance so they have similar ranges.
Figure 7.3 displays the embeddings for an example image. In this example case,
most of the objects have corners, very discriminative parts. In Figure 7.4 we show
an example of LSEs for cylindrical and rounded shape objects. These objects have
continuous symmetry and normally we handle these ambiguities during the train-
ing of a CNN. Thanks to our rotation-invariant LSEs, any ambiguity raises during
training and that makes our method robust to any type of symmetries.

7.2.2 Predicting the local surface embeddings for new images

Given a new CAD model, it is trivial to compute the local surface embeddings on
points on its surface. Given a new input image, we would like to also compute the
embeddings for the object points visible in this image. We use a Deep Network to
perform this task. To do so, we create a training set by generating many synthetic
images of known objects under various poses. We also compute the LSEs for all the
pixels corresponding to a 3D point of one of the objects. We then train a U-Net-like
architecture (Ronneberger et al., 2015) to predict the LSEs given a color image.
The U-Net architecture has been proved to preserve the structural integrity of the
image reducing the distortion. More details on the architecture and its training are
provided in the experimental section.

This training is done once, on known objects, but because the embeddings depend
only on the local geometry, the network generalizes well to new objects, as shown
in Figure 7.5. Furthermore, the network can predict the LSEs for rounded shape
objects and not only for objects with prominent corners as shown in Figure 7.6.

7.2.3 Pose Estimation Algorithm

The pseudocode for our detection and pose estimation algorithm is given in Algo-
rithm 2. Given a new image, we compute the LSEs for each of its pixels using
the network described in Section 7.2.2 and establish correspondences between image
pixels and object 3D points. However, the number of possible correspondences can
quickly become very large, which would yield a combinatorial explosion in the num-
ber of the sets of correspondences needed in RANSAC. We control the complexity
in two different ways.
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Input image i=0, j=2, k=1 i=0, j=2 , k=0

i= 0, j=2, k = 2 i=2, j=0, k=1 i=2, j=0, k=0

i=0, j=0, k=2 i=2, j=0, k=2 i=0, j=0, k=1

i=2, j=2, k=2 i=2, j=2 , k=1 i=2, j=2, k=0

Figure 7.3: Visualization of the 11 coordinates of the LSEs for an example image.

First, we focus on the most discriminative embeddings. Points on planar regions
are very common and would generate many correspondences. We discard them by
thresholding the embedding values: Points with very low absolute embedding values
for the LSEs are removed. Figure 7.7 shows how pixels are selected.

Second, we force the correspondences in each sample considered by RANSAC
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Input image i=0, j=2, k=1 i=0, j=2 , k=0

i=0, j=2, k=2 i=2, j=0, k=1 i=2, j=0, k=0

i=0, j=0, k=2 i=2, j=0, k=2 i=0, j=0, k=1

i=2, j=2, k=2 i=2, j=2 , k=1 i=2, j=2, k=0

Figure 7.4: Visualization of the 11 coordinates of the LSEs for an example image with a
focus on cylindrical and rounded shape objects.

to belong to the same object. Even when objects are not known in advance, it
is possible to segment them. To do so, we use Mask R-CNN (He et al., 2017) to
predict the masks of the objects. Mask R-CNN architecture is an extension of Faster
R-CNN explained in Section 5.3. For a given image, Mask R-CNN, in addition to
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(a) (b) (c)

Figure 7.5: Generalization of the LSE prediction network to new objects. (a) Input RGB
image with objects seen during the training of the network (blue boundaries) and new
objects (red boundaries). The LSE predictions (c) are close to the LSE Ground truth (b)
for both the known and new objects.

Figure 7.6: LSE prediction network results in the case of rounded shape objects. Left:
input RGB image. Center: LSEs ground truth. Right: LSEs prediction.

the class label and bounding box coordinates for each object, will also return the
object mask. To do so, a new branch is added to the Faster R-CNN architecture.
For each Region of Interest (ROI) that contains an object, this mask branch returns
the segmentation mask of size 28×28 which is then scaled up for inference. Another
minor detail that differs from Faster R-CNN is the addition of a ROI alignment step
that aims to locate the relevant areas of feature map to boost the accuracy.

We fine-tuned it on our synthetic images already used for training the LSE
predictor, as described in Section 7.2.2 in a class-agnostic way since we want to
generalize to new objects. We found out that it works very well with new objects
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Figure 7.7: Focusing on the most discriminative pixels. In green, pixels with discriminative
LSEs. We only consider them for correspondences with the CAD models

Figure 7.8: Generalization of Mask-RCNN to unknown objects. We train Mask-RCNN in
a class-agnostic way on a set of known objects. It generalizes well to new objects, and
we use these masks to constrain the pose estimation. Note that we use masks of different
colors for visualization only. Mask-RCNN cannot identify the new objects individually as
it was not trained on them, it can only detect objects in a class-agnostic way.

even for cluttered backgrounds, as shown in Figure 7.8. This also allows us to easily
discard pixels on the background from the possible correspondences.

We match the embeddings predicted for the pixels of the input image against the
embeddings computed for the 3D points on the CAD model based on their Euclidean
distances. In our implementation, we use the FLANN library (Muja and Lowe, 2009)
to efficiently get the k nearest neighbors of a query embedding. In practice, we use
k = 100. This usually returns points in several clusters, as close points tend to have
similar embeddings. We, therefore, go through the list of nearest neighbors sorted
by increasing distances. We keep the first 3D point and remove from the list the
other points that are also close to this point, and we iterate. This provides for each
pixel a list of potential corresponding 3D points separated from each other.

When working on industrial objects like the ones in T-LESS, some pixels can
be matched with several 3D points, as shown in Figure 7.9, because of the rotation
invariance property of the local LSEs and the similarities between local parts of
different objects.
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Figure 7.9: A pixel can be matched with multiple 3D points on symmetrical objects because
of the rotation invariance property of the LSEs.

We finally use LO-RANSAC (Locally Optimized RANSAC, Chum et al. (2003))
with a PnP algorithm (more specifically, we use Lepetit et al. (2009) followed by a
Levenberg-Marquardt optimization) to compute the poses of the visible objects. We
take random n ∈ [6; 10] for each RANSAC sample, where n is the number of 2D-3D
correspondences. At each iteration, we compute a score for the predicted pose as a
weighted sum of the Intersection over Union between the mask from Mask-RCNN
and the mask obtained by rendering the model under the estimated pose, and the
Euclidean distances between the predicted LSEs and the LSEs for the CAD model
after reprojection. We keep the pose with the largest score and refine it using all
the inlier correspondences to obtain the final 3D pose.

7.3 Evaluation

In this section, we present and discuss the results of our pose estimation algorithm
on the challenging T-LESS dataset.

7.3.1 Dataset

To train our LSE prediction network, we generate synthetic images as in Section
4.6.1 with a slight difference: instead of rendering the CAD models of all the objects
from T-LESS, we render only a subset of objects we use for training the network.
The exact subset depends on the experiment, and we will detail them below. We
used both these synthetic and real images for training the network combined with
data augmentation to take care of the domain gap between our synthetic images
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Algorithm 2 Pose estimation algorithm.
1: C ← CAD models for the new objects
2: E(C)← LSECAD(C), the LSEs of 3D points for each CAD model C
3: I ← input image
4: F ← LSEpred(I), the predicted LSEs for the input image
5: O ← Mask-RCNN(I), the masks predicted by Mask-RCNN
6: M ← {mi}i, the set of 2D-3D matches based on E(C) and F . Each match
mi is made of an image location p and 3D points on the CAD models:
(p, [P1,P2, ...,Pmi

])
7:
8: procedure Pose_Estimation_O_C(O, C)
9: sbest ← 0
10: for iter ∈ [0;Niter] do
11: n← random integer in [6; 10]
12: M ← n random correspondences (p,P),
13: where p ∈ O and P is matched to p inM
14: pose← PnP(M)
15: s← Score(pose, C, E(C),F , O)
16: if s > sbest then
17: posebest ← pose
18: sbest ← s

19: Refine posebest
20: return posebest, Score(posebest, E(C),F , O, C)

21:
22: procedure Pose_Estimation
23: for each mask O ∈ O do
24: B smin is the minimum score for a match with a CAD model:
25: sbest(O)← smin

26: for each CAD model C do
27: pose, s← Pose_Estimation_O_C(O, C)
28: if s > sbest then
29: sbest ← s
30: posebest(O)← pose
31: Cbest(O)← C

and the real test images. More specifically, we use 15K synthetic images and ∼ 7K
real images—all the training images provided by T-LESS for the objects that are
used for training the LSE prediction and Mask-RCNN. To create the ground truth
embeddings, for each training image, we back project the pixels lying on the objects
to obtain their corresponding 3D points and their LSEs. Neither the embedding
prediction network nor Mask-RCNN sees the test objects during training.
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Figure 7.10: U-Net architecture used as LSE prediction network.

7.3.2 LSE prediction network architecture and training

The architecture of the network predicting the LSEs for a given input image is a
standard U-Net-like (Ronneberger et al., 2015) encoder-decoder convolutional neural
network taking a 720 × 540 RGB image as input. The U-Net architecture was
originally developed for biomedical image segmentation but then it has been used
for different tasks. It contains two paths: the first part is an encoder which is used to
capture the context of the image. This encoder is a stack of convolutional and max-
pooling layers and it is a common practice to take a network pretrained on a bigger
dataset. Indeed, as the encoder part we use a 12-layer ResNet-like (He et al., 2016)
architecture with the weights pretrained on the ImageNet dataset. After the encoder
the image size is reduced while the depth is increased. The encoder function is
basically learn “what” the information is rather than “where” it is. The second path,
the decoder, is the symmetric expanding path and it upsamples the feature maps
up to the original size using bilinear interpolations followed by convolutional layers.
The decoder recovers “where” the information is. To get better precise locations,
at every step of the decoder there are some skip connections. These connections
concatenate the output of the transposed convolution layers in the decoder with the
feature maps from the encoder at the same level. U-net is thus an end-to-end fully
convolutional network (FCN) and so it does not contain any dense layer and it can
accept an image of any size as input.
We train the network with the Adam optimizer and a learning rate set to 10−4. We
also use batch normalization to ensure good convergence of the model. Finally, the
batch size is set to 8 and we train the network for 150 epochs.

7.3.3 Metrics

We evaluate our method using both the metrics explained in Chapter 5 and 6:
the VSD metric (Eq. (5.34)), and the ADD metric (Eq. (6.2)) with its version for
symmetrical objects, ADI (Eq. (6.3)). For the ADD metric a pose is considered
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correct if the distance is less than 10% of the object’s diameter, as reported in the
instructions of the BOP challenge.

7.3.4 Results

We compare our method against CorNet, the method we proposed in Chapter 6
and the MP-Encoder (Sundermeyer et al., 2020a), the recent work that considers
3D object detection and pose estimation for unknown objects. We use the same
protocols as in these works and report the results from the papers.

Comparison with CorNet (Chapter 6): We use here the same protocol as in
CorNet: We split the objects from T-LESS into two sets: One set of known objects
(#6, #19, #25, #27, and #28) and one set of unknown objects (#7, #8, #20, #26,
and #29), and we compare the 3D detection and pose estimation performance of
our method and CorNet for the unknown objects in T-LESS test scenes #02, #03,
#04, #06, #08, #10, #11, #12, #13, #14, and #15. We use synthetic and real
images of the known objects for training the LSE prediction network. The results
are reported in Table 7.1. We outperform CorNet on most of the objects, except on
objects #7 and #8 (Figure 7.12). This is because these objects have some 3D points
with local geometry very different from the training objects (at the connections of
the different parts). As a result, the predicted LSEs for these parts are not very
accurate, generating wrong matches. Figure 7.11 shows some qualitative results for
the unknown objects in the test images.

Comparison with MP-Encoder Sundermeyer et al. (2020a): We use here
the same protocol as in Sundermeyer et al. (2020a): The objects from T-LESS are
split into a set of known objects (#1-#18) and one set of unknown objects (#19-
#30), and we compare the 3D detection and pose estimation performance of our
method and MP-Encoder for the unknown objects in T-LESS test scenes following
the BOP benchmark. We use synthetic and real images of the known objects for
training the LSE prediction network. Note that we report here the numbers from
Table 3 from the Sundermeyer et al. (2020a) paper as the other reported results in
this article assume that the ground truth bounding boxes, the ground truth masks,
or depth information are provided. The results are reported in Table 7.2. While
our method performs slightly better, the performances are close and tell us that
both methods are promising. The main difference is that the MP-Encoder relies
on an embedding completely learnt by a network while our method incorporates
some geometrical meaning that makes our approach more appealing for industrial
purposes.
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Scene: Obj AD{D|I}10%

CorNet (Chapter 6) Ours
02: 7 68.3 61.0
03: 8 57.9 44.1
04: 26 28.1 55.6
04: 8 21.2 39.1
06: 7 36.8 44.8
08: 20 10.0 38.2
10: 20 27.8 38.3
11: 8 58.8 40.8
11: 9 - 46.1
12: 7 23.1 41.2
12: 9 - 45.8
13: 20 26.6 39.5
15: 29 48.0 77.0
15: 26 - 63.6
14: 20 10.0 24.9
Average 34.7(±18.5) 46.7(±12.4)

Table 7.1: Our quantitative results on T-LESS test Scenes #02, #03, #04, #06, #08,
#10, #11, #12, #13, #14, #15 as used in CorNet. We report results also for Objects #9
in Scenes #11 and #12 and for Object #26 in Scene #15 even though we did not do that
in Chapter 6. See the text for details.

VSD recall
MP-Encoder Sundermeyer et al. (2020a) 20.53

Ours 23.27

Table 7.2: Mean Visible Surface Discrepancy (VSD) recall using the protocol of Sunder-
meyer et al. (2020a). This metric evaluates the pose error in a way that is invariant to the
pose ambiguities due to object symmetries. It is computed from the distance between the
estimated and ground truth visible object surfaces.

7.3.5 Textured objects case

We already discussed the difficulty to deal with texture-less objects and our purpose
to find solutions for industrial applications where these kinds of objects are very
common. However, we are interested to see if our LSEs prediction network can
generalize to textured objects as well. Since our LSEs are representations of local
geometries of the object, one may think that texture can act like noise or a distractor.
To show the robustness of LSEs we made a minor experiment and we generate
synthetic images as explained in Section 4.6.1 and, besides, we render the T-LESS
objects with random textures. Figure 7.13 shows some examples of the synthetic
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Figure 7.11: Qualitative results on the unknown objects of the test scenes from T-LESS.
The green bounding boxes denote ground truth poses, while the blue ones correspond to
our predicted poses. Our method is robust to partial occlusions.
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Figure 7.12: Some failure cases. They are due to inaccurate predictions of the LSEs or to
large occlusions of the discriminative parts of the object.

Figure 7.13: Synthetic training images use to show the robustness of LSEs to textured
objects. We generate synthetic images as explained in Section 4.6.1 and we render the
T-LESS objects with random textures.

training images. We kept the same train and test objects sets as in CorNet (Chapter
6) and we test the network trained on synthetic images. The LSEs prediction for
some images are shown in Figure 7.14. Not only the network can generalize to new
objects but it also able to deal with both texture-less and textured objects.
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(a) (b) (c)

Figure 7.14: Our LSE prediction network can generalize to unseen textured objects. (a)
Synthetic input images. (b) LSEs ground truths. (c) LSEs predictions.
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7.4 Conclusion

In this chapter, we introduced another approach for the detection and the 3D pose
estimation of industrial objects in color images. It only requires the CAD models of
the objects and no retraining is needed for new objects. We introduce a new type
of embedding capturing the local geometry of the 3D points lying on the object
surface and we train a network to predict these embeddings per pixel for images of
new objects. From these local surface embeddings, we establish correspondences and
obtain the pose with a PnP+RANSAC algorithm. Describing the local geometries
of the objects allows to generalize to new categories and the rotation invariance
of our embeddings makes the method able to solve typical ambiguities that raise
with industrial and symmetrical objects. We believe that using local and rotation
invariance descriptors is the key to solve the 6D pose of new texture-less objects
from color images. In the next chapter, we discuss possible future work to improve
the performances of this approach.
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8.1 Conclusion

In this thesis, we focused on the problem of estimating the 3D objects’ poses from
color images in challenging situations typical of the industrial contexts. Thanks to
the advent of Deep Learning, the research community made much progress in 3D
pose estimation, but there is still a gap between research scenarios and real indus-
trial applications because of many cited challenges. Only recently more attention
has been paid on reducing this gap, and this was the aim of this thesis.

We first proposed a method to handle symmetrical objects that are typical in
industrial applications. We explained why symmetrical objects cause ambiguities
when aiming to estimate the 3D objects’ poses from color images with Machine
Learning techniques. We showed what happens if we naively train a Deep Network
to learn a mapping from the image (the object appearance) to a pose representation
to prove why recent powerful algorithms for 3D pose estimation would fail. We
then proposed an analytical solution to handle these objects that can be integrated
into any of these 3D pose estimation frameworks that can learn this mapping. We
demonstrated the effectiveness of our solution by integrating it in a Faster R-CNN
based architecture.

We then moved on to another challenge: make deep learning-based algorithms
able to generalize to unseen objects. We underlined why it is an important aspect,
especially in the industry. Most of the learning-based methods rely on Supervised
Machine Learning techniques that means, for each new object, they need to be re-
trained on many images of this object. These images are often not available and,
even if it is possible to create synthetic images, it is often desirable to avoid these
training sessions that require time. The first approach we proposed focused on ob-
jects with prominent corners, that are common in industrial applications. We learnt
to detect corners in the images and predict their 3D poses in the form of a set of 2D
reprojections of 3D virtual points previously selected on the CAD models of the ob-
jects. We then combined multiple corners to compute the object pose. This method
generalizes well to objects with similar corners and it is robust to occlusion. In fact,
thanks to the pose representation we used, detecting only 1 or 2 corners is sufficient
to estimate the pose of the object. However, this method has some limitations: it re-
quires objects to have specific corners and to offline select corners on the CAD model.

To overcome these limitations, we proposed another method that combines Deep
Learning and 3D geometry. We established dense correspondences between the
image locations and 3D points on the CAD model. However, we could not predict
directly the 3D coordinates of the pixels in the image. This would not generalize
to unseen objects. We, therefore, relied on LSEs, embeddings capturing the local
geometry of the objects. We computed offline these embeddings for the points of
the 3D objects surfaces and we trained a Deep Network to learn to predict them for
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each pixel of a color image. We then get 2D-3D correspondences to obtain the 3D
object pose. We believe this approach can be a promising starting point for further
development to achieve better performances in 3D pose estimation of unseen objects.

8.2 Future Work

The methods we proposed have some limitations, and many different adaptations
and experiments can further improve them. In this section we briefly describe some
limitations of our proposed methods, and we give some idea of future works that
can be exciting research directions to investigate.

Learning Objects Symmetries

The method to handle symmetrical objects exposed in Chapter 5 requires to have
prior knowledge on the objects symmetries, that means the axes and the angles
of symmetries. An interesting future direction would be to learn the symmetries
automatically without having to rely on some prior knowledge. It would be a signif-
icant improvement, and it would allow us to apply the method to new objects or to
objects which are not symmetrical, but they appear symmetrical only in some par-
ticular situations, for example when some occlusions occur. The computer graphics
research community has been studying this problem for years and a challenge took
place to evaluate different proposed methods (Funk et al., 2017). Recently, Shi et
al. (2020) proposes SymmetryNet, a end-to-end deep neural network able to predict
both reflectional and rotational symmetries of 3D objects. However, to achieve good
performances they need to use an RGB-D input to train the network in a multi-task
way and predict, for each 3D point its symmetric counterpart corresponding to a
specific predicted symmetry.

Real-Time Performance

All methods that estimate 3D objects’ poses through 2D-3D correspondences need
to integrate the PnP algorithm with RANSAC to avoid outliers, and it takes time
depending on the number of the correspondences that must to be evaluated. In
both the approaches proposed in Chapter 6 and 7, we end up with a large number
of correspondences that results in a large number of RANSAC iterations to achieve
enough good accuracy of the poses that slows down the algorithm. Most of the
time is spent in the pose verification part, where the object is rendered with the
estimated pose and a score is computed by comparing it with the input image.
In particular, the method presented in Chapter 7 is slowed down because of two
aspects: its complexity and the time spent in the RANSAC loop. The complexity
is due to the nested loops in the pose estimation algorithm. We need to iterate
over all the objects in the database associated with their pre-computed LSEs and,
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given the most discriminative LSEs of a mask prediction, we need to look for all the
possible 2D-3D matches that arise because of the ambiguities and the symmetries
of the objects, as discussed in Section 7.2.3.

The RANSAC loop is needed to deal with outliers in the set of 2D-3D correspon-
dences. In particular, we have two types of outliers. The first one happens because
of some wrong LSEs predictions while the other because of the ambiguities that raise
when objects are symmetrical or when they share some similar local geometries, as
already mentioned.

To speed up the pose estimation algorithm we could work on these two aspects.
A possible solution to reduce the complexity would be to have less correspondences
to evaluate by train a Deep Network to tell us where to look in the image to find
the good ones. Finally, to reduce the number of outliers in the RANSAC loop, we
need to improve the robustness of our LSE prediction network in order to avoid bad
LSEs predictions.

Training on synthetic images

We already discussed the importance of training data in Deep Learning applications
and at the same time the difficulty to annotate large datasets for the 3D pose
estimation task that cover a lot of different viewpoints. For these reasons, it is
necessary to generate synthetic images. However, a network trained on synthetic
images is not going to generalize and perform well on real images. Researchers are
working to bridge this gap by implementing different techniques. We report here
the two techniques we could exploit to improve the performances of our methods.

Domain Randomization Using data augmentation and domain randomization
on the RGB images has been demostrated to be crucial to achieve good performances
in T-LESS ( Sundermeyer et al. (2018), Labbé et al. (2020)). Domain randomization
tries to adapt the training domain to another, that in this case would be adapting the
synthetic domain to the real one, by applying different data augmentation techniques
such as randomize shadow, translation, color tones and texture.

Domain adaptation Another possible way would be using the domain adaptation
or feature mapping technique, similar to Rad et al. (2018b) and shown in Fig 8.1.
In this case, instead of adapting the training domain, we adapt the features from
the network. The idea is that the network F and H are composed of the same layer
of our LSE prediction network. We can, for example, create the network F with the
encoder and the first layers of the decoder of our LSE network, while the network
H with the remaining layers of the decoder. The model weights are the same and
they have been trained as explained in Section 7.3.2.

The upper stream shows what happens at inference time. The network F takes
a RGB image as input and it acts as a feature extractor. These features, instead of
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Figure 8.1: Feature mapping pipeline. The upper stream shows what happens at inference
time, while the lower stream shows how the network G is trained.

passing directly to the network H to predict the LSEs are previously transformed
through the feature mapping network G.

The lower stream shows how the network G is trained. For each real image, we
generate a synthetic one by rendering the same objects with the same poses as the
real one. We then pass both these images to the network F . The features coming
from the real image are mapped to the synthetic ones through the network G. These
real mapped features are compared with the synthetic one and the similarity error
is used as a loss function for the optimization step during the training.

Pose refiner

A natural extension of our work proposed in Chapter 7 would be implementing a
pose refiner to improve the accuracy of the pose estimate. This pose refiner should
work with color images and no depth information can be used. Recently some pose
refiners have been proposed but they were mostly object-dependent and they cannot
work with unseen objects. Only DeepIM shows some preliminary results of unseen
objects.

A possible way to do that would be as shown in Figure 8.2(a). Our LSE net-
work outputs the LSEs predictions with class-agnostic object mask. Given the pose
estimate for an object, we can project its LSEs in 2D and compare them with the
predicted pixel-wise and masked LSEs. We train a network with these two inputs
to learn the offsets in 2D between the pixels, also referred to as optical flow in the
literature.
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(a)

(b)

Figure 8.2: (a): Pose Refiner pipeline. The network takes as input the LSEs predictions
and the LSEs reprojected with the estimated pose P∗ and it outputs the pixel-wise offset
(dx, dy). (b): These offset predictions are applied to 2D-3D correspondences to improve
the 2D locations accuracy and refine the pose.

Given the 2D-3D correspondences we used to estimate the pose, we improve the
accuracy of the 2D locations by applying the predicted offsets (δx, δy), as shown in
Figure 8.2(b). We finally can run a RANSAC-like algorithm again on these refined
correspondences and refine the pose.
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