La marche aléatoire branchante est un système de particules sur la droite réelle où partant au temps 0 d'une particule initiale en position 0, chaque particule vivante au temps n meurt au temps n + 1 en donnant indépendemment naissance à un nombre aléatoire de particules se dispersant aléatoirement autour de la position de la particule parente. Dans un premier chapitre introductif, nous définissons en détails le modèle de la marche aléatoire branchante ainsi que certains des enjeux de la recherche autour de ce modèle, notamment l'étude de la martingale additive. Cette martingale peut-être étudiée au travers de sa convergence vers une limite triviale ou non ainsi que l'étude d'une renormalisation appropriée, dite de Seneta-Heyde, lorsque cette limite est triviale. Elle peut aussi être étudiée au travers d'équations récursives stochastiques menant à des équations de points fixes en loi. Cette dernière question correspond à des travaux non-publiés effectués en première année de thèse en continuité avec ceux effectués en mémoire de master. Le second chapitre est une traduction en anglais de certaines sections du précédent chapitre pour faciliter la compréhension des lecteurs non-francophones sur les points importants de cette thèse.

Dans un troisième chapitre nous présentons une nouvelle méthode de preuve développée avec Pascal Maillard pour le théorème d'Aïdékon et Shi sur la renormalisation de Seneta-Heyde de la martingale additive critique dans le cas où la marche de l'épine admet une variance finie. Cette nouvelle preuve se passe du recours à un lemme d'épluchage et à des calculs de seconds moments pour lui préférer une étude de la transformée de Laplace conditionnée. Les propriétés des fonctions de renouvellement permettent une approche plus générale qui ne demande pas de s'attarder en particulier sur la martingale dérivée. Ceci est d'ailleurs illustré dans le quatrième chapitre où dans de nouveaux travaux avec Pascal Maillard, nous trouvons la renormalisation de Seneta-Heyde de la martingale additive critique dans le cas où la marche de l'épine est dans le domaine d'attraction d'une loi stable. On voit alors que les fonctions de renouvellement nous fournissent un candidat mieux adapté à cette étude que la martingale dérivée, qui n'est plus toujours une martingale dans ce nouveau contexte.

Enfin, le cinquième chapitre étudie la question de l'optimalité des hypothèses faites dans le chapitre précédent quant à la trivialité ou non de la limite obtenue après renormalisation de Seneta-Heyde.

LA MARCHE ALÉATOIRE BRANCHANTE

Chapitre 4

Seneta-Heyde norming for branching random walks with α-stable spine

Abstract

The branching random walk is a particle system on the real line starting at time 0 with an initial particle at position 0, then each particle living at time n proceeds to die at time n + 1 and give birth, independently from the other particles of generation n, to a random number of particles at random positions. In a first chapter, we define in details the branching random walk model and some key elements of the scientific research on this model, including the study of the additive martingale. This martingale can be studied through its convergence towards a limit that may be trivial, raising the question of an appropriate scaling, called Seneta-Heyde scaling, in the case the limit is trivial. The additive martingale can also be studied with stochastic recursive equations leading to fixed points equations in law. This latter question is adressed in some unpublished works from the first year of PhD, in continuity with works from the masters thesis. The second chapter is a translation in english of some sections of the previous chapter so that every reader can grasp the key elements and goals of this manuscript.

In a third chapter, we present a new proof developed with Pascal Maillard for Aïdékon and Shi's theorem on the Seneta-Heyde scaling of the critical additive martingale in the finite variance case. This new proof no longer need a peeling lemma and the use of second moment arguments and prefers studying the conditional Laplace transform. The properties of some renewal functions allow a much more general approach without the need to focus to much on the derivative martingale. This is also illustrated in a fourth chapter where in new works with Pascal Maillard, we find the Seneta-Heyde scaling for the critical additive martingale in the case where the spinal random walk is in the attraction domain of a stable law. We then observe that the renewal functions provide us with a better suited candidate for this study than the derivative martingale, which is no longer always a martingale in this context.

Finally, the fifth chapter focus on the question of the optimality of the assumptions made in the previous chapter concerning the non-triviality of the limit obtained with the Seneta-Heyde scaling.
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Chapitre 1 Introduction

Le thème de cette thèse s'inscrit dans la prolofique lignée des recherches sur les processus de branchement. La thématique du branchement apparaît en effet dans bien des modèles aléatoires, dès lors qu'il s'en dégage une forme de hiérarchie ou structure généalogique. Ces processus servent à décrire l'évolution aléatoire d'une population au cours du temps. Comme dans toute population, les individus naissent et meurent, créant ainsi une structure généalogique. Le mécanisme de reproduction est alors régit par la propriété de branchement qui suppose que chaque individu se reproduit de manière indépendante de ses contemporains. L'exemple le plus fameux de tels processus est probablement celui développé par Bienaymé [START_REF] Bienaymé | De la loi de multiplication et de la durée des familles[END_REF] puis par Galton et Watson [START_REF] Galton | On the probability of the extinction of families[END_REF] quelques trentes ans plus tard. Leur modèle avait pour but de répondre à la question de la survie des patronymes nobles au sein d'une lignée : on démarre avec un seul individu à la génération 0, puis chaque individu vivant à une génération n donnée a un nombre aléatoire d'enfants, indépendemment des autres et suivant une même loi de reproduction fixée, les enfants formant alors la génération n + 1. Ils vérifient alors la propriété assez intuitive que chaque individu doit faire naître en moyenne strictement plus d'un enfant pour que la lignée survive avec une probabilité strictement positive. Ce premier modèle a alors donné naissance à une multitude d'autres, gagnant en complexité, comme par exemple une durée de vie aléatoire pour les individus comme c'est le cas dans les travaux de Bellman et Harris [START_REF] Bellman | On the theory of agedependent stochastic branching processes[END_REF]. La version la plus proche de la réalité pour la question de la survie d'un patronyme étant le processus de Crump-Mode-Jagers [START_REF] Kenny | A general age-dependent branching process. i[END_REF][Jag69] où les individus ont des enfants tout au long de leur vie et non plus exclusivement à l'instant de leur mort (ce qui rappelerait plutôt une forme de division cellulaire).

Le modèle de la marche aléatoire branchante qui nous intéresse dans cette thèse est une autre extension possible des processus de Bienaymé-Galton-Watson. Ce modèle fait partie de la grande famille des processus de Markov branchants 12 CHAPITRE 1. INTRODUCTION où on associe à chaque individu d'un processus de branchement markovien une certaine quantité (localisation géographique, valeur sélective, taille, taux d'infection, ...) qui peut potentiellement varier au cours de la vie de l'individu voire influer sa loi de reproduction. Les enfants d'un individu héritent alors une modification aléatoire de la valeur associé à leur parent. Ces divers processus de Markov branchants ont été introduits entre autres dans [START_REF] Kolmogorov | Branching stochastic processes[END_REF][Moy62] [START_REF] Ikeda | Branching markov processes i[END_REF]. Parmi ces processus de Markov branchants, la marche aléatoire branchante est l'un des plus simples à définir même si son étude précise révèle de nombreuses subtilités. Dans une marche aléatoire branchante, on démarre avec un seul individu au temps 0 en position 0, puis à chaque instant n tous les individus vivants meurent et donnent naissance, indépendemment de leurs contemporains, à un nombre aléatoire d'enfants qui forment la génération n + 1 et se dispersent autour de la position de leurs parents respectifs suivant un même processus ponctuel. On peut visualiser un tel processus sur la Figure 1.1. Une définition précise, accompagné du formalisme adéquat, se trouve en Section 1.1.1. Parmi les premiers travaux majeurs sur la marche aléatoire branchante, nous pouvons citer Hammersley [START_REF] John | Postulates for subadditive processes[END_REF], Kingman [Kin75] et Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF] qui ont étudié le minimum d'une marche aléatoire branchante dans le but de trouver l'instant de la première naissance dans la n-ième génération d'un processus de Crump-Mode-Jagers. Notons aussi que le modèle discret de la marche aléatoire branchante a un analogue continu, le mouvement brownien branchant, où la position de chaque individu suit un mouvement brownien jusqu'à sa mort au bout d'une durée de loi exponentielle et donne naissance à un nombre aléatoire d'enfants qui reparte de la position de leur parent en évoluant de la même manière. Nous aborderons les liens qui existent entre ces deux modèles ainsi qu'avec d'autres modèles dans la Section 1.2.2, de manière non-exhaustive.

Ce premier chapitre introductif est divisé en cinq parties. La Section 1.1 comprend la définition formelle de la marche aléatoire branchante avec quelques simulations permettant de visualiser ce processus. On y trouve aussi quelques principes de grandes déviations qui nous permettent de nous familiariser avec des hypothèses classiques pour travailler avec la marche aléatoire branchante. Puis, dans la Section 1.1.3 apparaît le personnage principal de cette thèse : la martingale additive, ainsi que la question de sa convergence et d'une éventuelle renormalisation à lui appliquer, la fameuse renormalisation de Seneta-Heyde (d'après [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] et [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF]). Cette première section se conclut alors avec le changement de mesure de l'épine, lié à la martingale additive, et avec un bref historique de la recherche autour des marches aléatoires branchantes. Deuxièmement, nous présentons nos motivations ainsi que les liens existants entre la marche aléatoire branchante et d'autres modèles, parfois en interface avec la physique statistique, dans la Section 1.2. La Section 1.3 est la section la plus importante de ce premier chapitre car elle contient des rappels sur l'état de la recherche autour du minimum de la marche aléatoire branchante ainsi que la question de la renormalisation de Seneta-Heyde de la martingale additive critique dans le cas à variance finie et dans le cas α-stable. Cette section étant la plus importante, elle se trouve traduite en anglais dans le Chapitre 2. On trouve notamment dans cette section, la présentation des méthodes développées et des résutats obtenus dans les articles [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] (présenté dans le Chapitre 3), [START_REF] Boutaud | Seneta-Heyde norming for branching random walks with α-stable spine[END_REF] (présenté dans le Chapitre 4), co-écrits avec Pascal Maillard, ainsi que dans un travail en cours avec Pascal Maillard (présenté dans le Chapitre 5). La quatrième Section 1.4 présente des travaux effectués lors de la première année de cette thèse dans la continuité de travaux fait en mémoire de master, où la martingale additive était étudiée du point de vue d'équations de point fixe en loi en voulant d'une part étudier la queue de sa limite et d'autre part expliciter la suite renormalisante de Seneta-Heyde grâce à cette queue. Enfin, la Section 1.5 présente des rappels sur les lois stables ainsi que quelques résultats techniques permettant la définition et l'étude de marches aléatoires conditionnées à rester positives durant toute leur trajectoire.

La marche aléatoire branchante

Notations. Nous noterons dans toute la suite de ce manuscrit, pour tous réels x et y, x ∧ y = min{x, y}, x ∨ y = max{x, y} et x + = x + = x ∨ 0.

Dans tout ce manuscrit nous nous plaçons dans un espace probabilisé (Ω, F , P) sauf changement de mesure explicite.

Définition

De manière informelle, la marche aléatoire branchante est un processus de particules sur la droite réelle, indexé par les entiers positifs. Plus précisément, on considère qu'au temps n = 0, on démarre avec un individu initial ou une particule initiale en position 0. Cet individu meurt au temps n = 1 et donne naissance à un nombre aléatoire de particules (qui peut être infini) qui se dispersent autour de la position de leur particule parente aléatoirement. C'est ce qu'on appelle le branchement. Plus précisément, une particule en position x voit sa progéniture située aux positions x + X 1 , x + X 2 , etc. où le vecteur (X 1 , X 2 , ...) suit la loi d'un processus ponctuel Θ, appelée loi de reproduction. Chacune de ces particules branche alors suivant ce même mécanisme, indépendamment de leurs particules contemporaines. Une réalisation d'un tel processus est visible avec la Figure 1.1, où les déplacements des particules sont des variables iid (indépendantes et identiquement distribuées) de loi N (0, 1) et le nombre d'enfants Plus formellement, introduisons les notations de Neveu [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF] pour les arbres et notons U = n≥0 (N * ) n l'arbre d'Ulam où N * désigne l'ensemble des entiers strictement positifs et où l'on convient que (N * ) 0 = {∅}. Un élément u ∈ U sera appelé individu ou particule et s'écrira comme un mot u = u 1 u 2 ...u n sur l'alphabet N * , les u i étant dans N * et la longueur de u valant |u| = n. On parlera de génération pour la longueur de u. On notera uv pour la concaténation des mots u et v. La structure de U le muni naturellement de la relation d'ordre partiel lexicographique : u ≤ v si u est un ancêtre de v, c'est-à-dire s'il existe w ∈ U tel que v = uw.

La position d'une particule u sera notée X u avec la convention que si cette particule n'existe pas (car la lignée correspondante s'est éteinte) X u = †, signifiant ainsi de manière imagée que la particule est au cimetière. La marche aléatoire branchante décrite plus haut définit ainsi un processus (X u ) u∈U prenant ses valeurs dans R = R ∪ { †} et la loi de reproduction Θ est une mesure de probabilité sur ( R)

N *
. Notons en particulier que la suite des positions prises le long d'une branche partant de la racine est une marche aléatoire. Dans toute la suite de ce manuscrit, nous utiliserons la convention que les sommes ou produits sur l'ensemble de particules de la n-ième génération, {u : |u| = n}, ne considèrent que les particules pour lesquels X u = †, c'est-à-dire seules les particules vivantes au temps n et apparaissant donc dans l'arbre généalogique de Galton-Watson sous-jacent. Nous prendrons également les conventions suivantes : ∑ ∅ = 0, ∏ ∅ = 1, max ∅ = -∞ et min ∅ = +∞.

Afin d'étudier le comportement en temps long de la marche aléatoire branchante, nous devons nous assurer que le branchement est sur-critique, c'està-dire que l'arbre de Galton-Watson sous-jacent survive avec une probabilité strictement positive. Pour cela on suppose naturellement que le nombre moyen d'enfants d'un individu est strictement plus grand que 1 :

E   ∑ |u|=1 1   > 1.
(1.1)

Principes de grandes déviations

Comme nous avons maintenant supposé que le branchement était sur-critique, nous aurons un nombre exponentiellement grand de particules vivantes au temps n sur l'événement de la survie du processus. Se pose alors la question du comportement de ces particules, des positions extrêmes, du nombre de particules dans un ensemble donné, pour n fixé ou lorsque n tend vers l'infini. Le nombre de particules étant exponentiellement grand, la particule à la position maximale (ou minimale) à un temps fixé est une particule très spéciale comparée à la multitude d'autres particules vivantes à cette génération et la trajectoire de cette particule maximale aura donc une probabilité exponentiellement faible : il nous faut alors introduire des outils de la théorie des grandes déviations afin de pouvoir énoncer quelques résultats.

Les outils essentiels de la théorie des grandes déviations des marches aléatoires sont la log-transformée de Laplace de la marche, aussi appelée fonction génératrice des cumulants, et sa transformée de Fenchel-Legendre. Les quantités correspondantes pour la marche aléatoire branchante sont ainsi définies :

∀θ, ϕ(θ) = log E   ∑ |u|=1 e θX u   , (1.2) ∀x, ϕ * (x) = sup θ∈R {θx -ϕ(θ)}. (1.3)
Observons dès à présent que ces fonctions sont toutes deux convexes et peuvent valoir +∞. On cherchera donc à travailler dans un cadre où le domaine de définition de ϕ n'est pas vide, c'est-à-dire qu'il existe des θ = 0 tels que ϕ(θ) < ∞.

CHAPITRE 1. INTRODUCTION

Dans le cas contraire, le comportement de la marche aléatoire branchante est bien différent et n'a pas été étudié dans le cadre de cette thèse. De nombreux théorèmes de grandes déviations de processus de branchements font intervenir des conditions de moments dites de type L log L, cela revient à faire des hypothèses sur la dérivabilité de ϕ sur certains voisinages ouverts de points d'intérêts. Avant d'énoncer un principe de grandes déviations pour la marche aléatoire branchante, prenons le temps de rappeler le théorème de Cramér pour les marches aléatoires classiques : Théorème 1.1 (Cramér). Soit (X n ) n une famille de variables aléatoires indépendantes et identiquement distribuées et définissons S n = X 1 + ... + X n . Alors pour tout Γ ⊂ R mesurable,

-inf x∈ • Γ I(x) ≤ lim inf n→∞ 1 n log P S n n ∈ Γ ≤ lim sup n→∞ 1 n log P S n n ∈ Γ ≤ -inf x∈Γ I(x),
(1.4) où la fonction de taux I est la transformée de Fenchel-Legendre de la log-transformée de Laplace de X 1 .

Son analogue est alors un théorème tiré du cours de M2 de marches aléatoires branchantes de Pascal Maillard, obtenu grâce à des résultats dûs à Biggins [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF] : Théorème 1.2. Supposons qu'il existe θ ∈ R tel que ϕ(θ) < ∞. Définissons alors pour tout n ∈ N et pour toute partie A mesurable de R la variable aléatoire

N n (A) = #{X u ∈ A : |u| = n}. 1. Soit F un fermé de R, alors lim sup n→∞ 1 n log N n (nF) ≤ -inf x∈F ϕ * (x), presque sûrement. En particulier, si inf x∈F ϕ * (x) > 0 alors N n (nF) = 0 pour n assez grand presque sûrement. 2. Soit O un ouvert de R. Si inf x∈O ϕ * (x) < 0, alors lim inf n→∞ 1 n log N n (nG) ≥ -inf x∈G ϕ * (x),
presque sûrement sur l'événement de la survie de l'arbre.

De plus, Biggins obtient un résultat sur la convergence du minimum et du maximum de la marche aléatoire branchante qui montre l'importance de la fonction ϕ * dans la compréhension des positions possibles pour la marche aléatoire branchante dont la majorité des particules finissent par se trouver dans un cône délimité par deux droites de pentes directement déterminées par ϕ * . Théorème 1.3 (Biggins [Big76]). Presque sûrement quand n tend vers l'infini, on a

max |u|=n X u n -→ x + := sup{x ∈ R : ϕ * (x) < 0} = inf θ>0 ϕ(θ) θ et min |u|=n X u n -→ x -:= inf{x ∈ R : ϕ * (x) < 0} = sup θ<0 ϕ(θ) θ .
Notons qu'il est possible que x + ou x -soient nuls en fonction des hypothèses que l'on fait sur le modèle, et ainsi n n'est pas toujours le bon ordre de grandeur pour le minimum et le maximum. Par exemple, sous les hypothèses dites du boundary case (voir Biggins et Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF]), à savoir ϕ(-1) = 0 = ϕ (-1),

(1.5) on a alors x -= 0 (voir Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF]), ce qui demande de trouver une autre suite que n pour renormaliser le minimum et espérer avoir une limite nontriviale. Nous aborderons un peu plus précisément le comportement du minimum dans la Section 1.3.1.

Martingales additives

Les martingales additives sont un sujet de recherche riche quant à leurs propriétés asymptotiques sous diverses hypothèses mais aussi un outil extrêment utile pour étudier de nombreuses propriétés de la marche aléatoire branchante. Ces martingales apparaissent dès [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire[END_REF] et [START_REF] Kingman | The First Birth Problem for an Age-dependent Branching Process[END_REF], et sont parfois appelées martingales de Biggins en référence à [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] et sont définies comme suit pour tout paramètre θ dans le domaine de définition de ϕ,

∀n ≥ 0, W (θ) n = ∑ |u|=n e θX u -nϕ(θ) .
(1.6) Si l'on note F n = σ (X u , |u| ≤ n) la filtration canonique de la marche aléatoire branchante, la propriété de branchement assure que W (θ)

n est une martingale pour la filtration (F n ) n .

Nous pouvons constater dès à présent que ces martingales additives sont toutes positives et qu'elles admettent donc pour tout θ dans le domaine de définition de ϕ une limite positive W (θ) ∞ pour la convergence presque sûre. L'étude CHAPITRE 1. INTRODUCTION de cette limite, la question de sa trivialité et la vitesse de convergence vers celleci sont des thèmes de recherche actifs. Remarquons aussi qu'un simple changement d'échelle permet de passer de n'importe quelle W (θ)

n à n'importe quelle W (θ )
n , où θ = θ sont non-nuls et dans le domaine de définition de ϕ. Il sera donc fréquent dans la suite de ce manuscrit que l'on fixe une valeur de θ dans le domaine de définition de ϕ et que l'on travaille uniquement avec celle-ci et que l'on énonce donc nos hypothèses en fonction de ce choix de θ. Nous choisirons souvent de fixer θ = -1 et nous noterons W n = W (-1) n la martingale additive associée afin d'alléger les notations.

Une première leçon à tirer de cette convergence concerne le maximum ou le minimum des positions des particules à la génération n. En effet, si θ > 0 est tel que ϕ(θ) = 0, nous avons ∞ vaut 0 presque sûrement, on obtient dans le premier cas que le maximum tend vers -∞ presque sûrement et dans le second cas que le minimum tend vers +∞ presque sûrement (voir [START_REF] Biggins | Lindley-type equations in the branching random walk[END_REF]).

W (θ) n = ∑ |u|=n e θX u ≥ exp θ max |u|=n X u , et donc, W (θ) n convergeant
La question de la trivialité de la limite a été résolue par Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] (voir aussi Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]), sous couvert d'une condition de moment de type L log L, et peut être obtenue en raffinant le théorème de Biggins et en observant que l'on peut voir la martingale additive comme la transformée de Cramer renormalisée de la mesure empirique des particules vivantes à la génération n. En vertu du théorème de Cramer classique, on s'attend donc à ce que les particules contribuant le plus à W (θ) n soient les particules proches de nx où x = ϕ (θ), ce qui équivaut à θ = (ϕ * ) (x), sous réserve d'existence de ces particules, i-e sous la condition ϕ * (x) < 0. Tout ceci nous amène à un autre théorème de Biggins donnant une raison supplémentaire de s'intéresser au comportement de la limite de la martingale additive : Théorème 1.4 (Biggins [Big77b][Big79]). Soit x ∈ R tel que ϕ * soit finie et de classe C 1 dans un voisinage de x. Posons θ = (ϕ * ) (x).

Alors la martingale additive W (θ) n est uniformément intégrable si et seulement si ϕ * (x) < 0. Si elle ne l'est pas, sa limite vaut 0 presque sûrement.

De plus, si ϕ * (x) < 0, W

n converge p.s. et dans L 1 vers une limite positive nontriviale W (θ)

∞ qui vérifie #{u : |u| = n, X u ≤ xn} E [#{u : |u| = n, X u ≤ xn}] p.s. -→ n→∞ W (θ) ∞ .
(1.9)

Il apparaît ici que la mesure empirique de la position des particules converge en un certain sens vers W (θ) ∞ et donc que le comportement macroscopique (i-e à une échelle correspondant à l'échelle de temps, ici n) de la marche aléatoire branchante au temps n est gouverné par la martingale additive W (θ) n . Une des conséquences de ce théorème est également l'apparition d'une transition de phase suivant le signe de ϕ * (x), la transition ayant lieu à la valeur critique ϕ * (x) = 0. La majeure partie de cette thèse a été dédiée à l'étude du comportement de W n = W (-1) n dans le cas critique, c'est-à-dire ϕ * (x -1 ) = 0 où x -1 est tel que (ϕ * ) (x -1 ) = -1. Dans ce cadre critique, la limite de W n étant 0 presque sûrement, la question de la vitesse de convergence vers cette limite se pose. On souhaite alors l'existence d'une suite (c n ) n∈N de réels strictements positifs telle que c n W n converge, au moins en loi si ce n'est plus, vers une limite non-triviale et dans la mesure du possible une forme explicite de cette suite. Cette transition de phase peut aussi être étudiée du point de vue de la physique statistique, où le paramètre θ joue le rôle de l'inverse d'une température et la martingale additive est vue comme la fonction de partition du système de particules, l'étude tourne alors autour des propriétés de la mesure de Gibbs associée.

La question de l'existence d'une telle suite renormalisant la martingale additive porte le nom de renormalisation de Seneta-Heyde. Ce nom vient d'un premier temps d'un article de Seneta [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] puis de l'extension des résultats de cet article par Heyde [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF]. Seneta et Heyde s'intéressaient à l'existence d'une suite renormalisante pour le nombre d'individus vivants au temps n d'un processus de Galton-Watson avec branchement sur-critique de sorte que cette quantité renormalisée converge toujours vers une limite non-triviale, au moins en loi. Ils obtiennent d'ailleurs une expression de cette suite en fonction de l'inverse de la log-transformée de Laplace du nombre d'individus vivants à la n-ième génération. Passant du processus de Galton-Watson à la marche aléatoire branchante, de nouvelles martingales émergent, comme la martingale additive, et la question de leur renormalisation avec.
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Nous discuterons en détails la question de la renormalisation de Seneta-Heyde de W n sous diverses hypothèses dans la Section 1.3.

Changement de mesure

L'étude des propriétés de la marche aléatoire branchante passe bien souvent par des hypothèses ou calculs sur des moments de quantités telles que des sommes indexées par les particules d'une génération donnée. Compte tenu que sur l'événement de la survie le nombre de particules à la génération n croit exponentiellement avec n, de tels calculs deviendrait vite pénibles à gérer si nous n'avions pas à notre disposition une formule "tout-en-un", ou many-to-one comme il est d'usage dans la littérature, dûe en premier lieu à Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]. L'intérêt de cette formule étant de se ramener de toute une génération à une seule particule spéciale dont la description précise vient ci-après.

Marche aléatoire branchante avec épine. Comme décrit plus haut, il serait intéressant de pouvoir réexprimer une expression de la forme E[∑ |u|=n H n (u)], où les (H n (u)) u∈U sont une famille de variables aléatoires positives F n -mesurables. Et de manière plus générale, nous souhaiterions le faire pour des marches issues d'une position précise X ∅ = x presque sûrement pour un certain x ∈ R. Nous noterons alors P x et E x pour la mesure de probabilité et l'espérance correspondantes. Sous cette nouvelle mesure de probabilité, W x sur F ∞ telle que pour chaque génération n ≥ 0, on ait dP

* x dP x F n = e -θx W (θ) 
n .

(1.10) Notons ici que ce changement de mesure peut être motivé, entre autres, par le constat fait suite au Théorème 1.4 : sous des hypothèses raisonnables, le comportement de la marche aléatoire branchante étant gouverné par la martingale additive, il est intéressant de considérer une nouvelle mesure exploitant ce biais. D'après Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF], la probabilité P * x peut être vue comme une projection sur F ∞ (notée également P *

x ) d'une probabilité définie sur un espace probabilisé plus grand, ayant un rayon distingué dans l'arbre que l'on appelera l'épine. L'épine à la génération n, sera notée ξ n et sa position X ξ n . Comme il apparaît ici que le processus (X u ) u∈U sous P *

x n'est plus une simple marche aléatoire branchante mais bien une marche aléatoire branchante avec épine, décrivons maintenant son évolution :
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-A la génération 0, nous avons une particule en position X ∅ = x et on prend ξ 0 = ∅. -Puis à la n-ième génération, toutes les particules autres que ξ n se reproduisent suivant le processus ponctuel Θ (comme dans la marche aléatoire classique), tandis que ξ n se reproduit suivant la loi de reproduction biaisée par la taille Θ * définie par

dΘ * dΘ (x 1 , x 2 , . . .) = ∑ i≥1 e θx i .
-L'épine à la génération n + 1 est alors choisie parmi les enfants u de ξ n avec un poids proportionnel à e θX u .

Formule Many-to-one. La formule many-to-one peut alors s'écrire comme suit :

Proposition 1.5 (Formule Many-to-one). Soit θ dans le domaine de définition de ϕ, x ≥ 0, n ∈ N et une famille (H n (u)) u∈U de variables aléatoires positives F nmesurables. Nous avons alors

E x   ∑ |u|=n e θX u -ϕ(θ)n H n (u)   = e θx E * x [H n (ξ n )] .
De part sa construction, et vue la formule many-to-one, le processus (X ξ n ) n∈N suit la loi d'une marche aléatoire sous P *

x (dont les incréments ne dépendent pas de x) que nous appelerons la marche de l'épine. Nombre d'hypothèses que nous serons amenés à formuler, notamment sur la régularité de ϕ au voisinage de certains points, pourront se réexprimer en terme de conditions sur les moments de la marche de l'épine ou sur ses queues.

Par exemple, si l'on suppose que ϕ(-1) = 0 = ϕ (-1), on obtient que la marche de l'épine est d'espérance nulle.

Cette formule many-to-one permet également de simuler efficacement des marches aléatoires branchantes dont l'épine vérifie certaines propriétés en faisant le lien avec les positions des autres particules qui sont effectivement utilisées dans la simulation. Ainsi, une manière simple de simuler une marche aléatoire branchante dont l'épine suit une loi donnée, est alors de simuler des déplacements dont la loi est la loi de l'épine biaisée par son exponentielle, pour peu que la transformée de Laplace soit définie sur un ouvert de ]0, ∞[, et de prendre un nombre d'enfants indépendant des positions, voire même un nombre d'enfants fixe. Par exemple, la Figure 1.2 illustre la réalisation d'une marche aléatoire FIGURE 1.2 -Réalisation d'une MAB avec épine d'incréments gaussiens standards branchante avec un nombre d'enfants de loi de Poisson de paramètre e 1/2 et déplacements gaussiens N (1, 1) indépendants de sorte que la marche de l'épine soit une marche aléatoire d'incréments gaussiens standards indépendants.

Comme nous l'avons énoncé précédemment, la martingale additive nous donne des informations sur le comportement macroscopique de la marche aléatoire branchante. Or la loi de la marche de l'épine est justement définie via la martingale additive par le changement de mesure (1.10) et grâce à la formule many-to-one, la marche de l'épine nous permet d'étudier de nombreuses fonctions de la marche aléatoire branchante. Nous verrons donc que les hypothèses majeures des résultats sur le comportement général de la marche aléatoire branchante et sur le comportement de ses extrêmes pourront à la fois s'exprimer avec la totalité des particules mais aussi exclusivement avec la marche de l'épine.

Un bref historique non-exhaustif.

La marche aléatoire branchante en tant que thématique de recherche s'inscrit dans la prolifique lignée des modèles aléatoires ayant une structure généalogique. Avant d'aborder un peu plus précisément les liens de ce modèle avec d'autres thématiques de recherche, nous dressons un bref historique des études ayant mené à celle de la marche aléatoire branchante.

De 1950 à 1970, Sevast'yanov, Ikeda, Nagasawa, Skorokhod et Watanabe s'intéressent aux processus de Markov branchants, citons par exemple [START_REF] Ikeda | Branching markov processes i[END_REF]. Entre 1970et 1980, Hammersley [Ham74], Kingman [Kin75] et Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF] généralisent les processus de branchement avec âge. Au même moment et indépendamment, Mandelbrot [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire[END_REF], Kahane et Peyrière [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF] He [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF], se consacrent à étudier le comportement précis des particules extrémales de la marche aléatoire branchante, motivés par le lien entre la marche aléatoire branchante et les marches aléatoires en milieu aléatoire sur un arbre.

Motivations et modèles liés

Motivations

La plupart des hypothèses dans les résultats classiques sur les marches aléatoires branchantes sont généralement restrictives pour des raisons techniques : conditions de type L log L, hypothèses de moments d'ordres relativement élevés, queues avec des comportements précis, etc. L'objectif principal de cette thèse était alors d'essayer de s'affranchir de certaines de ces hypothèses en les remplaçant par d'autres moins contraignantes et d'observer de nouveaux phénomènes.
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Comme décrit dans la section précédente, la martingale additive est une quantité importante pour la compréhension du comportement de la marche aléatoire branchante, c'est donc naturellement que notre attention s'est tournée vers des résultats portant précisément sur cette martingale additive. Son étude est certes intéressante pour la marche aléatoire branchante mais également pour faire le lien avec d'autres modèles liés comme décrit dans la Sous-Section 1.2.2.

La direction initiale de nos recherches, effectuées en première année de thèse dans la continuité de travaux fait lors du mémoire de master, était d'étudier la queue de la limite de la martingale additive sous-critique en voyant sa loi comme un point fixe de la transformée régularisante, ou smoothing transform, définie en Section 1.4. L'une des questions essentielles autour de cette approche était de comprendre ce que les résultats sur la queue de W ∞ obtenus par la théorie du renouvellement implicite devenaient quand on se passait de condition de type L log L, ou quand les hypothèses sur les coefficients A et B de l'équation X (d) = AX + B variaient pour que la queue de l'un domine celle de l'autre. Ces premières recherches nous ont également menés à considérer le cas critique du point de vue des équations récursives stochastiques X n = A n X n-1 + B n où la chaîne de Markov ainsi définie n'admet pas de mesure de probabilité invariante, mais des résultats existent sur une unique mesure de Radon invariante de masse infinie comme ceux obtenus par Babillot, Bougerol et Elie [START_REF] Babillot | The random difference equation Xn=AnXn-1+Bn in the critical case[END_REF], puis plus tard Buraczewski [START_REF] Buraczewski | On invariant measures of stochastic recursions in a critical case[END_REF], Brofferio [START_REF] Brofferio | On unbounded invariant measures of stochastic dynamical systems[END_REF] et Damek [START_REF] Brofferio | On the invariant measure of the random difference equation X n = A n X n-1 + B n in the critical case[END_REF].

La compréhension du comportement de la queue de W ∞ dans le cas souscritique et celle du comportement de la mesure de Radon invariante de masse infinie dans le cas critique nous intéressait pour des raisons liées à ce qui devint la thématique principale de cette thèse : l'étude de la renormalisation de Seneta-Heyde de la martingale additive, notamment dans l'espoir d'avoir une expression plus explicite des coefficients de cette renormalisation. En effet, il est possible par des théorèmes taubériens comme ceux énoncés dans [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF] de relier le comportement de la queue de W ∞ avec le comportement de sa transformée de Laplace. Or on observe dès les travaux de Seneta [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] et Heyde [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF], puis plus tard pour la marche aléatoire branchante dans les travaux de Biggins et Kyprianou [START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF], que la suite de coefficients de la renormalisation de Seneta-Heyde se définit en inversant les transformées de Laplace des (W n ) n . Malheureusement, comme il s'agit des transformées de Laplace des (W n ) n et non de celle de W ∞ , nous n'avons pas à ce jour obtenu de résultats permettant d'expliciter les coefficients de la renormalisation de Seneta-Heyde.

Dans la seconde partie de cette thèse, nous avons donc choisi de nous concentrer sur un résultats où la renormalisation de Seneta-Heyde est déjà connue explicitement (voir Sous-Section 1.3.2) : le théorème d'Aïdékon et Shi [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF] dans le cas à variance finie avec pour objectif d'en refaire une preuve suffisam-ment robuste (voir Chapitre 3) pour l'adapter une fois l'hypothèse de variance finie supprimée pour une hypothèse de type α-stable la plus générale possible, généralisant au passage les résultats de He, Liu et Zhang dans [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] (voir Chapitre 4). Enfin se pose alors la question de l'optimalité de ces hypothèses vis-à-vis de la trivialité ou non de la limite obtenue après cette renormalisation de Seneta-Heyde. Si cette question est déjà claire grâce aux travaux d'Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] et Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] dans le cas à variance finie, nous nous efforçons d'y répondre pour notre cas α-stable.

Liens avec d'autres modèles

La marche aléatoire branchante est un modèle qui bénéficie de nombreuses interactions avec d'autres sujets de probabilités, de mathématiques, voire même avec d'autres sciences. Ces intercations agissent comme des vases communicants et la recherche sur les marches aléatoires branchantes se nourrit et nourrit à la fois la recherche dans les domaines qui lui sont liés. Ainsi des questions prenant leur origine en biologie ou en mécanique statistique ont pu amener des questions propres à la marche aléatoire branchante. Dans la suite de cette section, nous présentons un panorama non-exhaustif des modèles liés à la marche aléatoire branchante.

Le mouvement brownien branchant. Comme pour bon nombre de modèles probabilistes discrets, la définition de la marche aléatoire branchante nous invite à considérer un passage au continu, dans l'espérance de l'universalité et de pouvoir déduire des propriétés du discret vers le continu et du continue vers le discret. C'est alors que vient assez naturellement l'envie de définir le mouvement brownien branchant. Une particule démarre en 0 et évolue pendant une durée aléatoire en se déplaçant suivant un mouvement brownien puis meurt et donne naissance à un nombre aléatoire d'enfants qui évoluent de la même manière.

Plus formellement, tout commence comme pour la marche aléatoire branchante avec une particule au temps t = 0 en position 0. Le comportement de chaque particule est alors décrit via trois quantités aléatoires : son temps de vie, sa trajectoire et son nombre d'enfants. Ainsi, on se donne une loi de reproduction L sur N, un paramètre de drift d ∈ R, une variance σ 2 > 0 et un taux de branchement λ > 0. On se donne alors une famille (L u , e u , Y u ) u∈U de variables aléatoires indépendantes où L u suit la loi L, e u suit la loi exponentielle de paramètre λ et Y u = (Y u (t)) t≥0 est un mouvement brownien de variance σ 2 et de drift d. Chaque particule u vivante aura ainsi un nombre d'enfants L u . Une particule u naît à l'instant ∑ v<u e v et meurt au bout d'un temps e u après sa CHAPITRE 1. INTRODUCTION naissance. La position d'une particule u vivante à l'instant t est donc

X u (t) = ∑ v<u Y v (e v ) + Y u t -∑ v<u e v .
Certaines méthodes d'étude du mouvement brownien branchant sont similaires à celles développées pour la marche aléatoire branchante. Il existe notamment une famille de martingales additives introduites par McKean [START_REF] Henry P Mckean | Application of brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov[END_REF], et un lemme many-to-one. Bien évidemment l'un des atouts majeurs du mouvement brownien branchant est la possibilité d'utiliser le calcul stochastique et de toujours se placer dans un cadre gaussien. Il est donc souvent plus difficile de travailler avec la marche aléatoire branchante qu'avec le mouvement brownien branchant, et si certains résultats discrets se transfèrent agréablement vers le continu la réciproque a rarement lieu.

L'équation F-KPP. Un des autres avantages du mouvement brownien branchant par rapport à la marche aléatoire branchante est son lien fort avec l'équation F-KPP dûe à Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], Kolmogorov, Petrovsky et Piskunov [START_REF] Kolmogorov | Etude de l équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] qui motive d'ailleurs à elle seule une partie de la recherche autour du mouvement brownien branchant. L'équation F-KPP est une équation de type réactiondiffusion d'inconnue u : Neveu [START_REF] Neveu | Multiplicative martingales for spatial branching processes[END_REF] fait également le lien entre la transformée de Laplace de la martingale additive du mouvement brownien branchant diadique (exactement deux enfants par individus) et l'équation F-KPP avec des conditions initiales adaptées, même s'il préfère s'intéresser à des martingales multiplicatives définies via des solutions de l'équation F-KPP. Ceci permet entre autre d'observer la renormalisation de Seneta-Heyde de la martingale additive dans le cadre de l'équation F-KPP.

(t, x) ∈ R + × R → u(t, x) ∈ [0, 1] sous la forme ∂u ∂t = σ 2 2 ∂ 2 u ∂x 2 + λu(1 -u), ( 
f (0) = f (1) = 0, f (u) > 0 pour 0 < u < 1 et f (0) = 1, f (u) ≤ 1 pour 0 < u ≤ 1. L'
Plus récemment, Webb [START_REF] Webb | Exact asymptotics of the freezing transition of a logarithmically correlated random energy model[END_REF] a réussi à exploiter une version discrète de l'équation F-KPP en lien avec la marche aléatoire branchante et notamment le maximum d'une marche aléatoire branchante.

L'équation X = AX + B et la smoothing transform. D'après la propriété de branchement, la martingale additive vérifie la relation de récurrence en loi suivante ∀n ∈ N, W

= ∑ i e θX i -ϕ(θ) W (θ) n (i), où les (W (θ) n (i)) i sont indépendantes, de même loi que W (θ) (θ) n+1 loi 
n et indépendantes du vecteur (e θX i -ϕ(θ) ) i . Comme la martingale additive converge presque sûrement vers W (θ) ∞ , cette limite est alors solution de l'équation de point fixe en loi

X loi = ∑ i A i X i ,
(1.12) où A i = e θX i -ϕ(θ) et où les X i sont des copies iid de X et indépendantes du vecteur (A i ) i . Cette équation de point fixe en loi peut être vue comme une transformation particulière de la loi de W

∞ , appelée transformation régularisante ou, dans la littérature, smoothing transform (d'après [START_REF] Holley | Generalized potlatch and smoothing processes[END_REF][DL83]). Cette transformation a de nombreuses applications comme on peut le voir par exemple dans [START_REF] Liu | Fixed points of a generalized smoothing transformation and applications to the branching random walk[END_REF] [START_REF] Buraczewski | Stochastic Models with Power-Law Tails : the equation X=AX+B[END_REF]. L'étude de l'existence, de l'unicité et des propriétés générales des points fixes de la smoothing transform a donné lieu à de nombreux articles et est globalement comprise même si certaines questions persistent encore de nos jours. Une des méthodes permettant notamment d'étudier l'équation de point fixe de la smoothing transform est son lien avec la simple équation affine

X loi = AX + B, (1.13) CHAPITRE 1. INTRODUCTION
où X est indépendante de (A, B). En effet, il est possible de passer de l'équation (1.12) à (1.13) en faisant un biais par la taille. C'est-à-dire, dans le cas de la marche aléatoire branchante, qu'on ne regarde plus W (θ)

∞ mais une variable aléatoire W dont la loi est telle que pour toute fonction mesurable bornée f ,

E[ f ( W)] = E[W (θ) ∞ f (W (θ) ∞ )]/E[W (θ) ∞ ].
Il est alors aisé de vérifier que la loi de W est solution de (1.13) pour un certain couple (A, B) (avec une expression explicite) [START_REF] Durrett | Maxima of branching random walks[END_REF][Gui90] [START_REF] Liu | On generalized multiplicative cascades[END_REF].

L'équation (1.13) est appelée équation de perpétuités et a elle aussi fait l'objet d'études détaillées, comme en témoigne par exemple le livre [START_REF] Buraczewski | Stochastic Models with Power-Law Tails : the equation X=AX+B[END_REF]. La question du comportement de la queue de la loi solution de (1.13) est notamment résolue sous certaines hypothèses par le théorème de Kesten-Grinčevicius-Goldie [START_REF] Grincevićius | One limit distribution for a random walk on the line[END_REF][Gol91] par des techniques de renouvellement implicite. Citons aussi les résultats de Kevei [START_REF] Kevei | A note on the Kesten-Grincevičius-Goldie theorem[END_REF] avec des hypothèses moins contraignantes que celles de Goldie et les résultats de Jelenković et Olvera-Cravioto [START_REF] Predrag | Implicit renewal theory and power tails on trees[END_REF] pour l'équation (1.12) (où l'on peut alors retrouver ceux de Goldie). L'application de ces résultats à la marche aléatoire branchante sera détaillé dans la Section 1.4.

Cascades multiplicatives. Indépendamment des recherches autour de la marche aléatoire branchante, Mandelbrot [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire[END_REF] introduit les cascades multiplicatives pour étudier plus précisément des propriétés du modèle statistique de turbulences de Kolmogorov. Contrairement au modèle de la marche aléatoire branchante, les cascades multiplicatives font intervenir une collection de poids aléatoire où les poids à la génération n + 1 sont obtenus en multipliant les poids de la génération précédente par des facteurs aléatoires. Ainsi une cascade multiplicative peut être interprétée comme l'exponentielle d'une marche aléatoire branchante. Sous certaines hypothèses, il est possible de construire une mesure aléatoire sur le bord de l'arbre comme limite d'une suite de mesure sur le processus pris jusqu'à une certaine génération. Mandelbrot s'intéressait alors à la dimension de Hausdorff de cette mesure aléatoire limite, et plus généralement à ses propriétés fractales. Dans le célèbre article [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF], Kahane et Peyrière répondent à ces questions en donnant une construction de la mesure limite et en déterminant sa dimension de Hausdorff. Notons qu'en gardant en tête le lien entre cascades multiplicatives et marches aléatoires branchantes, on peut également faire le lien entre la question de la convergence vers la mesure limite sur le bord de l'arbre avec la question de la convergence de la martingale additive. Dans cet esprit, on retombe alors sur la question de la loi de la limite de la martingale additive vue comme solution de l'équation de point fixe en loi (1.12) et construite par itération de la smoothing transform.

Les méthodes d'analyse multifractale ont depuis permis l'étude complète des propriétés fractales de la mesure limite, par exemple en se posant la ques-tion de la continuité de son spectre multifractal comme illustré dans [START_REF] Barral | Continuity of the multifractal spectrum of a random statistically self-similar measure[END_REF]. Ainsi même si les cascades multiplicatives et les marches aléatoires branchantes sont liées par un simple passage à l'exponentielle, les domaines de recherches qui leurs sont propres se posent des questions bien différentes : la construction d'une mesure limite porteuse de la géométrie de l'arbre et l'étude de ses propriétés pour les cascades multiplicatives contre l'étude des trajectoires des particules à temps fixé (mais ayant vocation à tendre vers l'infini) sans considérations géométriques pour la marche aléatoire branchante.

Nous pouvons également mentionner les champs gaussiens log-corrélés qui sont en lien avec les cascades multiplicatives et les marches aléatoires branchantes. On retrouve notamment dans l'étude du champ libre gaussien discret en dimension deux la question du comportement des particules extrêmales ainsi que des enjeux similaires à celui de la renormalisation de Seneta-Heyde de la martingale additive de la marche aléatoire branchante, comme illustré entre autres par Aru, Powell et Sepulveda dans [START_REF] Aru | Liouville measure as a multiplicative cascade via level sets of the Gaussian free field[END_REF].

Comportement des marches aléatoires branchantes et de leurs extrêmes 1.3.1 Comportement du minimum de la marche aléatoire branchante

Comme nous l'avons abordé brièvement dans la Section 1.1.2, la question du comportement de la particule minimale quand le branchement est surcritique est une question intéressante car cette particule joue un rôle unique, avec une trajectoire de probabilité exponentiellement faible. La compréhension du comportement asymptotique du minimum, voire l'étude du minimum global, de la marche aléatoire branchante est donc un enjeu majeur pour comprendre les grandes déviations de la marche aléatoire branchante. La question de la concentration du minimum autour de sa médiane ou de ses quantiles a également été étudiée en détails (voir par exemple, [START_REF] Bachmann | Limit theorems for the minimal position in a branching random walk with independent logconcave displacements[END_REF] ou [START_REF] Bramson | Tightness for a family of recursion equations[END_REF]). Cette étude se place dans divers cadres, que l'on peut bien souvent exprimer en fonction de la marche de l'épine.

Commençons par rappeler que, selon Biggins [START_REF] Biggins | Lindley-type equations in the branching random walk[END_REF] [START_REF] Liu | The Minimal Position of a Stable Branching Random Walk[END_REF]. Se situant toujours dans le boundary case, Liu et Zhang supposent que pour α ∈]1, 2[, ε > 0 et c > 0, la queue à gauche de la marche de l'épine est un O(y -(α+ε) ), que la queue à droite équivaut à cy -α et enfin que la condition L log L suivante est vérifiée :

E W 1 log + W 1 2 + Y 1 log + Y 1 < ∞, (1.19) où log + x = min{log x, 0} et Y 1 = ∑ |u|=1 X + u e -X
E W 1 log + W 1 α + Y 1 log + Y 1 α-1 < ∞. (1.22)
Ainsi, ils établissent notamment le régime suivant pour le minimum min |u|=n X u , où presque sûrement sur l'événement de la survie du processus :

lim inf n→∞ min |u|=n X u -1 α log n log log n = -1 lim sup n→∞ min |u|=n X u -1 + 1 α log n log log log n ≥ 1.
Cette dernière équation est donc ce qu'il reste du résultat de Hu dans [START_REF] Hu | How big is the minimum of a branching random walk ?[END_REF] quand on ne suppose plus que la marche de l'épine admet un troisième moment.

Hors du boundary case. Des résultats sur la tension du minimum hors du boundary case ont été obtenus par Barral, Hu et Madaule dans [START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF], où ils supposent uniquement que la transition de phase pour l'énergie libre est de premier ordre, c'est-à-dire : ϕ(-1) = 0.

(1.23)

En supposant de plus qu'il existe des constantes γ > 3 et α > 1, une fonction à variations lentes et un x 0 < 0 tels que

E * X ξ 1 > 0, E * (X + ) γ < ∞ et ∀x ≥ x 0 , P * X ξ 1 ≤ x = x -∞
|y| -(α+1) (y)dy,

(1.24) Barral, Hu et Madaule obtiennent la borne suivante sur la queue à gauche du minimum :

∀n ≥ 2, x ≥ 0, P min |u|=n X u ≤ (α + 1) log n -log (n) -x ≤ Ke -x , (1.25) 
où K > 0 est une constante. L'asymptotique de l'autre queue est obtenue sous l'hypothèse classique que E W 1 log + W 1 < ∞ (ce qui implique que W ∞ est non-triviale), et des hypothèses techniques :

∀x ∈ R, lim n→∞ P min |u|=n X u ≥ (α + 1) log n -log (n) + x = E [exp(-ce x W ∞ )] ,
(1.26) où la constante c > 0 à une expression peu digeste mais explicite.

Martingale additive et renormalisation de Seneta-Heyde

Nous avons vu précédemment dans le Théorème 1.4, une transition de phase a lieu avec la fonction ϕ * pour la question de la limite de la martingale additive. Dans ce qui suivra, nous supposerons que x est un réel tel que ϕ * soit finie et C 1 au voisinage de x et nous supposerons que (ϕ * ) (x) = -1. Ainsi, dans le cas sous-critique où ϕ * (x) < 0, la martingale additive W n := W (-1) n converge vers une limite non-triviale presque sûrement et dans L 1 tandis que dans le cas critique où ϕ * (x) = 0 (et dans le cas sur-critique), la limite vaut 0 presque sûrement. Une question bien naturelle est donc de se demander à quelle vitesse cette convergence a lieu, ce qui revient à chercher une suite (c n ) qui mise en facteur à W n donnerait une limite non-triviale. Seneta [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] et Heyde [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF] ont abordés cette question pour le cas des processus de Galton-Watson sur-critiques et montrent l'existence d'une telle suite et également qu'elle peut être définie en inversant la log-transformée de Laplace du processus de Galton-Watson. Depuis lors, la recherche de l'existence d'une telle suite renormalisante pour une martingale liée à une structure branchante porte le nom de renormalisation de Seneta-Heyde. Si la question de la renormalisation de Seneta-Heyde se pose dans le cas critique, notons tout de même qu'il existe également une suite (c n ) telle que c n W n ait une limite non-triviale dans le cas sous-critique : il suffit de prendre une suite c n convergeant vers une constante, W n ayant déjà une limite non-triviale.

Ce sont Biggins et Kyprianou qui résolvent la question pour la martingale additive critique dans un premier cadre assez général dans l'article [START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF]. Mentionnons cependant que dans cet article, Biggins et Kyprianou supposent que le nombre d'individu d'une génération donnée est fini presque sûrement, ce que nous ne supposons pas. Biggins et Kyprianou montrent aussi dans ce même article que la suite renormalisante en question s'obtient également en inversant la transformée de Laplace de W n . Cette manière d'obtenir la suite (c n ) n'est a priori pas très explicite mais nous allons voir que dans certains cas, la suite (c n ) prend une expression bien plus lisible. Citons aussi l'article de Hu et Shi [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] qui s'affranchit, entre autres, de l'hypothèse demandant un nombre fini d'individus presque sûrement à chaque génération. Ils obtiennent l'existence d'une suite (c n ) de l'ordre de √ n pour la renormalisation de Seneta-Heyde sous les mêmes hypothèses qui leur ont fourni les asymptotiques du minimum (voir Section 1.3.1).

Cas à variance finie. Le premier cas que nous considérons est celui dit "à variance finie" car sous ses hypothèses, la marche aléatoire de l'épine aura une variance finie. Plus précisément, les hypothèses sont les suivantes : ϕ(-1) = 0 = ϕ (-1)

(1.27) D n (a) sous la mesure biaisée par D n (a). L'obtention de ces équivalents nécessite alors une décomposition en une somme de deux termes : un terme où les particules ont un "bon" comportement permettant le calcul d'un second moment, et un autre terme où les particules ont un "mauvais" comportement nécessitant l'usage d'un lemme d'épluchage (peeling lemma dans la littérature, comme par exemple le Théorème 5.14 dans [START_REF] Shi | Branching random walks[END_REF]) permettant de contrôler le premier moment de ce terme. La notion de lemme d'épluchage consiste en effet à identifier, en fonction du problème étudié, quelles particules gênantes pour les calculs contribuent peu à la marche aléatoire branchante en terme de probabilité. On cherche donc à majorer les probabilités de trajectoires particulières, considérées comme atypiques pour la situation étudiée. Le principal problème avec cette méthode est qu'il y a autant de lemmes d'épluchages à concevoir que de cadres d'hypothèses à considérer or ces lemmes sont très techniques et demande un contrôle assez fin des bornes. Ceci implique donc que la preuve d'Aïdékon et Shi ne pourrait pas s'adapter facilement à un autre cadre, par exemple sans l'hypothèse (1.28) de variance finie, car les lemmes d'épluchages seraient alors obsolètes.

σ 2 := E   ∑ |u|=1 X 2 u e -X u   ∈]0, ∞[ (1.28) E W 1 log 2 + W 1 + Y 1 log + Y 1 < ∞, (1.29) où Y 1 = ∑ |u|=1 X + u e -X
≥ 0 W n (a) = ∑ |u|=n e -X u 1 ∀v≤u,X v ≥-a (1.31) D n (a) = ∑ |u|=n R(X u + a)e -X u 1 ∀v≤u,X v ≥-a , ( 1 
C'est notamment pour cette raison que le premier article [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] rédigé avec Pascal Maillard lors de cette thèse (voir Chapitre 3) a vu le jour. Dans cet article, nous avons présenté une nouvelle preuve du théorème d'Aïdékon et Shi sur la renormalisation de Seneta-Heyde de la martingale additive critique, ne nécessitant pas de calcul de second moments et n'utilisant pas le quotient W n (a)/D n (a). A la place, nous fournissons des estimées de premiers moments tronqués qui permettent de borner précisément la transformée de Laplace conditionnée par la tribu canonique de la marche aléatoire branchante, ce qui fournit ainsi la convergence en probabilité en vertu d'un lemme établi dans ce but précis. Plus prosaïquement, nous nous concentrons sur la variable tronquée W n := W n (0) et introduisons aussi une variable W n,k définie par

W n,k = ∑ |u|=n e -X u 1 min v≤u,|v|≥k X v ≥0 .
(1.33)

Avec cette variable W n,k nous avons donc un peu plus de souplesse car nous n'introduisons la barrière qu'à partir d'une génération k fixée, ce qui nous laisse bien plus de particules qu'avec la barrière introduite dès le début par W n . Comme le min |u|=n X u → ∞ presque sûrement sur l'événement de la survie du proces-sus, nous obtenons que W n,k peut être arbitrairement proche de W n au sens où ∀ε > 0, ∃k : P ∀n,

W n,k = W n > 1 -ε. (1.34)
Ainsi, nous cherchons à obtenir la convergence de la transformée de Laplace de √ nW n,k conditionnée par F k = σ (X u , |u| ≤ k) vers la transformée de Laplace de √ 2/πσ 2 D ∞ quand n puis k tend vers l'infini, ce qui permet de conclure en vertu du Lemme 3.16 dans le Chapitre 3. Cette convergence de la transformée de Laplace conditionnelle est alors établie en l'encadrant grâce à des estimées sur le premier moment de W n ou sur un premier moment tronqué de la forme

E √ nW n 1 √ nW n <ε . Nous montrons notamment la proposition suivante Proposition 1.7. Pour tout ε > 0, il existe une fonction h : R → R * + telle que h(x) = o(R(x))(x → ∞), et telle que pour tout x ≥ 0, lim sup n→∞ E x √ nW n 1 √ nW n ≥ε ≤ h(x)e -x .
Cette proposition garantit donc que √ nW n reste concentré autour de son espérance sous P x , qui équivaut à cR(x)e -x pour une certaine constante c > 0 d'après un résultat classique sur les marches aléatoires (voir Lemme 1.21) combiné à la Proposition 1.5, quand x est assez grand. La présence de la fonction de renouvellement R et ses asymptotiques font donc naturellement apparaître la martingale dérivée et la limite souhaitée à l'arrivée. Afin d'établir cette proposition, nous avons notamment recours au changement de mesure P + défini en (1.98) permettant de conditionner la marche de l'épine à rester positive pendant toute sa trajectoire. Les Lemmes 3.11 et 3.12 dans le Chapitre 3 de ce manuscrit jouent alors un rôle clef pour conclure. Le premier de ces deux lemmes permet de préserver la convergence de variables aléatoires en conditionnant la marche de l'épine à rester positive jusqu'au temps n, donnant une limite sous P + , tandis que le second lemme donne une condition intégrale assurant la convergence de la fonction de Green de l'épine sous P + .

Non-trivialité de la limite dans le cas à variance finie. La raison même de la renormalisation de Seneta-Heyde est d'obtenir une limite non-triviale pour la martingale additive renormalisée. Il est donc important de pouvoir caractériser quand la limite obtenue est triviale ou non, et c'est l'hypothèse (1.29) qui nous apporte la réponse. Cette hypothèse est en effet optimale quant à la nontrivialité de la limite : Aïdékon montre que cette condition est suffisante dans [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], puis Chen montre dans [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] que cette condition est en fait nécessaire et suffisante.

CHAPITRE 1. INTRODUCTION

La clef pour obtenir cette condition nécessaire et suffisante est une application d'un théorème dû à Biggins et Kyprianou (Théorème 2.1 dans [START_REF] Biggins | Measure change in multitype branching[END_REF]) au cas de l'uniforme intégrabilité de la martingale tronquée D n , définie en (1.32). Cette martingale étant positive, elle converge presque sûrement vers une variable aléatoire positive D ∞ . Les asymptotiques de R détaillées en Section 1.5.2, couplées au fait que le min |u|=n X u → ∞ presque sûrement quand n → ∞ sous ces hypothèses, nous permettent d'obtenir que la trivialité de D ∞ équivaut à celle de D ∞ . Le théorème de Biggins et Kyprianou nous permet alors de conclure sur la trivialité ou non de D ∞ en observant la divergence ou la convergence de certaines séries aléatoires.

Plus précisément, notons (X ξ n ) la marche de l'épine, et définissons une variable aléatoire Q telle que pour tout x ≥ 0, sous P x ,

Q = ∑ |u|=1 R(X u )e -X u 1 X u >0 R(x)e -x ,
et rappelons nous la définition de la mesure P + x (définie dans la Section 1.5.2, en (1.98)) qui permet de conditionner (X ξ n ) à rester positive pendant toute la trajectoire. Le résultat de Biggins et Kyprianou nous indique qu'il suffit que

∑ n≥1 E X ξ n Q R(X ξ n )e -X ξ n Q ∧ 1 < ∞, presque sûrement sous P + , pour que E[D ∞ ] = 1 et qu'ainsi la limite ne soit pas triviale. Tandis que si pour tout y > 0, ∑ n≥1 E X ξ n Q1 R(X ξ n )e -X ξ n Q≥y = ∞, presque sûrement sous P + , alors E [D ∞ ] = 0 et ainsi la limite est triviale.
Cas α-stable. Dans le cas précédemment étudié, la marche aléatoire de l'épine était centrée et de variance finie. Il est donc naturel de se demander ce qu'il advient de la renormalisation de Seneta-Heyde de la martingale additive critique quand la variance n'est plus finie. Des premiers résultats dans ce sens sont établis par He, Liu et Zhang dans [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] où l'hypothèse de variance finie (1.28) est abandonnée, et l'hypothèse (1.29) est adaptée au cas étudié. Ainsi He, Liu et Zhang supposent à la place qu'il existe 

α ∈]1, 2[ et une constante c > 0 tels que E   ∑ |u|=1 e -X u 1 X u ≤-y   = o(y -α ) (y → ∞) (1.35) E   ∑ |u|=1 e -X u 1 X u ≥y   ∼ cy -α (y → ∞) (1.36) E W 1 log + W 1 α + Y 1 log + Y 1 α-1 < ∞ (1.37) où Y 1 a
. Alors n 1/α W n -→ n→∞ C Γ(1 -1/α) D ∞ en probabilité, où D ∞ est la limite non-triviale de la martingale dérivée D n et C = lim x→∞ R(x)
x > 0. La méthode utilisée dans [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] C'est dans ce contexte que s'inscrivent les travaux effectués avec Pascal Maillard présentés dans le Chapitre 4 de ce manuscrit. Notre premier objectif était de rajouter les fonctions à variations lentes dans les asymptotiques des queues de la marche de l'épine, et également d'étendre quelque peu les valeurs possibles pour l'indice α. Nous souhaitions également autoriser les sauts négatifs pour le processus de Lévy limite.

Nos hypothèses supposent bien sûr que le branchement est sur-critique, et nous supposons que E[W 1 ] = 1. Ensuite nous supposons que la marche de l'épine est telle qu'il existe une suite (a n ) et un indice α ∈]0, 2[\{1} de sorte que, sous P * , X ξ n /a n converge vers une loi α-stable dont la fonction caractéristique a la forme

φ(t) = exp -|t| α exp -i πθα 2 sgn(t) , (1.38) où |θ| ≤ 1 ∧ 2 α -1 , |θ| = 1.
Notons qu'un facteur λ > 0 se trouve en général en facteur du |t| α mais qu'il suffit de changer la suite (a n ) pour fixer λ = 1. Nous noterons ρ ∈ [0, 1], respectivement ρ = 1ρ, le paramètre de positivité, respectivement de négativité, du processus de Lévy X limite et nous renvoyons à la Section 1.5.1 pour un rappel des autres modélisations possibles ainsi que pour la définition précise de ρ et ρ. Rappelons nous que αρ ≤ 1, respectivement α ρ ≤ 1, et que αρ = 1, respectivement α ρ = 1, si et seulement si X ne fait pas de sauts positifs, respectivement pas de sauts négatifs.

Nous pouvons également supposer sans pertes de généralités que la suite (a n ) est strictement croissante et qu'il existe une fonction strictement croissante a, à variations régulières d'indice 1/α, telle que ∀n ∈ N, a(n) = a n . On notera a -1 sa bijection réciproque, qui est une fonction strictement croissante et à variations régulières d'indice α.

Observons maintenant qu'avec le jeu de paramètres et les contraintes que nous nous sommes fixées en (1.38), nous pouvons décomposer notre cadre de travail en plusieurs cas que voici :

(a) le cas où X ξ 1 est à variance finie, α = 2, (b) α ∈ (1, 2) et X ne fait pas de sauts positifs, (b') α ∈ (1, 2) et X ne fait pas de sauts négatifs,
(c) α ∈ (0, 2)\{1} et X faits des sauts positifs et négatifs. Chacun de ces quatres cas correspond à une allure différente pour la logtransformée de Laplace de X ξ 1 comme illustré dans les Figures 1.4, 1.5, 1.6 et 1.7.

0 FIGURE 1.4 -Cas (a) 0 ∞ FIGURE 1.5 -Cas (b)
Ainsi, les cas où la marche de l'épine dérive vers +∞ ou -∞ sont écartés. Ces cas surviennent quand α < 1 et X ne fait que des sauts positifs ou que des sauts négatifs, ou encore quand α ∈]1, 2] et E * X ξ 1 = 0. L'allure de la logtransformée de Laplace de X ξ 1 dans ces deux cas apparaît dans les Figures 1.8 et 1.9. Le cas α = 1 est lui aussi écarté car il nécessite une approche spécifique, même si des travaux récents de Berger [START_REF] Berger | Notes on random walks in the Cauchy domain of attraction[END_REF] permettraient de généraliser nos résultats.

COMPORTEMENT DES MAB ET DE LEURS EXTRÊMES

41 0 ∞ FIGURE 1.6 -Cas (b') 0 ∞ FIGURE 1.7 -Cas (c) 1 ∞ FIGURE 1.8 -α < 1, pas de sauts né- gatifs (cas écarté) 1 ∞ FIGURE 1.9 -α > 1 et E * X ξ 1 = 0 (cas écarté)
Nous ne faisons pas d'hypothèses particulières quant au comportement de D n mais introduisons une nouvelle quantité Z n au travers du résultat suivant démontré dans [START_REF] Boutaud | Seneta-Heyde norming for branching random walks with α-stable spine[END_REF] (voir le Chapitre 4 de ce manuscrit) : Théorème 1.9. Sous les hypothèses précédemment énoncées, définissons

Z n = ∑ |u|=n R(X u )e -X u 1 X u ≥0 .
(1.39)

Alors Z n converge presque sûrement vers une limite positive Z ∞ . De plus, si R est la fonction de renouvellement associée aux hauteurs d'échelle ascendantes strictes de la marche de l'épine, la condition

E W 1 a -1 log + W 1 + Z 1 R log + Z 1 < ∞ (1.40)
implique que Z ∞ est strictement positive sur l'événement de la survie du processus.

Rappelons que a -1 et R sont des fonctions à variations régulières d'indices respectifs α et αρ(voir Section 1.5.2). Ainsi l'hypothèse (1.40) est une généralisation "naturelle" de l'hypothèse (1.37) faite dans [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF].

Enfin, nous montrons dans ces mêmes travaux [START_REF] Boutaud | Seneta-Heyde norming for branching random walks with α-stable spine[END_REF] (cf Chapitre 4), que Z n est le bon candidat pour remplacer D n dans l'étude de la renormalisation de Seneta-Heyde de W n comme en témoigne le résultat suivant : Théorème 1.10. Sous les mêmes hypothèses que dans le Théorème 1.9, nous avons

R(a n )W n -→ n→∞ κZ ∞ en probabilité,
(1.41) où κ > 0 est une constante dépendant de α et ρ uniquement.

Remarquons qu'il est également possible d'exprimer cette renormalisation de Seneta-Heyde en termes de la queue du minimum de la marche de l'épine sous la forme suivante :

W n P * min k≤n X ξ k ≥ 0 -→ n→∞ Z ∞ en probabilité, (1.42)
ce qui permet en fonction du contexte de choisir une suite renormalisante plus ou moins explicite. La raison principale pour laquelle nous ne travaillons plus avec D n est que cette quantité tend vers ∞ presque sûrement lorsque α ρ < 1. En fait, il est surtout important que le terme en facteur de e -X u soit un équivalent de la fonction de renouvellement R associée aux hauteurs d'échelle descendantes strictes de la marche de l'épine, et nous rappelons en Section 1.5.2 que R est à variations régulières d'indice α ρ dans ce contexte.

Précisons que κ admet une expression en termes du méandre de longueur 1 associé au processus de Lévy limite X . Plus précisément, si P est la loi de X et si P (m) est la loi du méandre, c'est-à-dire :

P (m) (X t ) t∈[0,1] ∈ A = lim x→0 P (X t + x) t∈[0,1] ∈ A inf t∈[0,1] X t + x ≥ 0 , (1.43) alors κ = 1 E (m) X α ρ 1
.

(1.44)

Cette expression se simplifie alors grandement quand α > 1 et X ne fait pas de sauts positifs, donc dans le cas αρ = 1, pour donner

κ = 1 Γ(α)Γ(1/α) . (1.45)
La preuve du Théorème 1.9 montre dans un premier temps que Z n converge en utilisant des barrières au-dessus desquelles les particules doivent rester, comme dans l'équation (1.32). Ensuite, la trivialité de la limite est réglée en comparaison avec celle de D ∞ via le théorème de Biggins et Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] déjà employé dans le cas à variance finie. Là aussi il apparaît comme utile d'avoir un lemme permettant de traduire l'hypothèse (1.40) en une condition intégrale qui implique la convergence de la fonction de Green de la marche de l'épine sous P + (voir Lemme 4.8 dans le Chapitre 4 de ce manuscrit).

La preuve de la renormalisation de Seneta-Heyde énoncée dans le Théorème 1.10 repose, elle, pleinement sur la méthodologie développée dans [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] (voir Chapitre 3), la différence étant que les équivalents sur la queue du minimum de la marche de l'épine ne proviennent plus d'un résultat de Kozlov, mais d'une combinaison de théorèmes de Bingham, Goldie et Teugels [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF] avec des résultats de Caravenna et Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] ou encore Vatutin et Dyakonova [START_REF] Vatutin | Path to survival for the critical branching processes in a random environment[END_REF]. On évite notamment avec ces équivalents sur la queue du minimum l'apparition d'une fonction à variations lente peu parlante, comme c'est le cas dans [START_REF] Bingham | Maxima of sums of random variables and suprema of stable processes[END_REF] et [START_REF] Emery | Limiting behaviour of the distributions of the maxima of partial sums of certain random walks[END_REF].

Non-trivialité de la limite dans le cas α-stable. Au même titre que dans le cas à variance finie, nous nous posons la question de l'optimalité de l'hypothèse (1.40) quant à la non-trivialité de la limite Z ∞ qui apparaît dans le Théorème 1.10 sur la renormalisation de Seneta-Heyde de la martingale additive critique. C'est l'objet d'un travail en cours avec Pascal Maillard et exposé dans le Chapitre 5 de ce manuscrit.

Malheureusement pour des raisons techniques exposées au Chapitre 5, nous ne sommes plus persuadés que la condition (1.40) soit une condition nécessaire à la non-trivialité de Z ∞ .

Nous suivons dans ce travail la même méthode générale que Chen [Che15] dans le cas à variance finie, au sens où nous cherchons à utiliser le Théorème 2.1 de Biggins et Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF]. Pour énoncer ce théorème, nous rappelons que le changement de mesure P + qui permet de conditionner la marche de l'épine à rester positive sur toute sa trajectoire se trouve en Section 1.5.3 : Théorème 1.11 (Biggins et Kyprianou [BK04]). Definissons une variable aléatoire Q telle que pour tout x ≥ 0, sous P x ,

Q = ∑ |u|=1 R(X u )e -X u 1 X u ≥0 R(x)e -x . 1. Si ∞ ∑ n=1 E X ξ n Q (R(X ξ n )e -X ξ n Q) ∧ 1 < ∞ P + -p.s. (1.46) alors E[D ∞ ] = R(0) = 1. CHAPITRE 1. INTRODUCTION 2. Si pour tout y > 0, ∞ ∑ n=1 E X ξ n Q1 R(X ξ n )e -X ξ n Q≥y = ∞ P + -p.s. (1.47) alors E[D ∞ ] = 0.
Ainsi, la non-trivialité de D ∞ permet de conclure sur celle de Z ∞ et le reste de la preuve consiste à montrer la divergence de séries de la forme E + ∑ n≥1 F(X ξ n ) qui minorent la série apparaissant en (1.47). Pour ce faire, nous avons établi un critère de divergence sous P + dans le même esprit que la Proposition 2.1 de [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF]. Ce critère en question est énoncé en Proposition 1.23 du Chapitre 1 de ce manuscrit et prouvé dans le Chapitre 5.

Malheureusement à ce jour, la preuve de l'optimalité de la condition (1.40) qui consiste à minorer correctement le terme Q du théorème de Biggins et Kyprianou nécessite des précautions toutes particulières qui n'apparaissent pas dans la preuve de Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF]. En effet, nous nous retrouvons à un moment confronté au moment d'ordre α de X ξ 1 sous P * : si dans le cas à variance finie, ce moment est fini, ça n'est pas toujours le cas dans le cadre α-stable que nous considérons. Il en découle une liberté amoindrie sur le choix du minorant de Q, nous contraignant à utiliser les variables aléatoires

∀s ∈ R, W + (s) = ∑ |u|=1 e -∆X u 1 ∆X u >-s , (1.48) à la place de W 1 , où pour tout u = vi ∈ U , avec v, i ∈ U tel que |i| = 1, on note ∆X u = X u -X v .
Ainsi, là où les calculs d'intégrales de certains moments comportant W 1 étaient accessibles, ceux-ci deviennent ardus car W + (s) est alors fonction de l'intégrande et demande alors une compréhension très précise de sa loi.

Ceci nous a mené à chercher une alternative équivalente à la condition de moments (1.40) sous la forme d'une condition intégrale, dans l'espoir de contourner ces difficultés.

La martingale additive et l'équation X = AX + B

La direction initiale de cette thèse consistait à étudier la martingale additive et sa limite par le biais d'une équation de point fixe en loi, en usant de théorèmes de renouvellement implicite ainsi que des résultats de systèmes dynamiques stochastiques. Nous avions bon espoir que la connaissance de l'asymptotique de la queue de la loi solution puisse nous donner des informations sur la suite intervenant dans la renormalisation de Seneta-Heyde. En effet, cette suite peutêtre définie comme dans [START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF] à l'aide de l'inverse de la log-transformée de Laplace de W n dont l'asymptotique est liée à celle de sa queue par des théorèmes taubériens (voir notamment [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF]). Même si, hélas, la connaissance du comportement de la queue de la limite W ∞ ne nous a pas permi de savoir ce qu'il en est pour celle de W n , nous avons obtenu au passage quelques reformulations de résultats classiques de la théorie du renouvellement implicite dans le cadre des marches aléatoires branchantes.

Equations de point fixe en loi

Commençons par rappeler que nous notons ϕ(θ) pour le logarithme de la transformée de Laplace de la loi de reproduction de la marche aléatoire bran-

chante. C'est-à-dire ∀θ, ϕ(θ) = log E   ∑ |u|=1 e θX u   .
Dans la Section 1.3, nous nous étions concentrés sur la martingale additive pour la convergence presque sûre. Rappelons que le choix de θ et les hypothèses portant sur ϕ * influe sur la trivialité ou non de cette limite en vertu du Théorème 1.4 : nous supposons dans cette section que θ = ϕ (x) est pris de sorte que ϕ * (x) ≤ 0 afin de couvrir à la fois le cas de la martingale additive critique et sous-critique.

W n = W (-1) n quand ϕ(-1) = 0 et
Maintenant, nous pouvons observer que la proriété de branchement implique la relation de récurrence suivante

∀n ≥ 0, W (θ) n+1 loi = ∑ |u|=1 e θX u -ϕ(θ) W (θ) n,u sous P, où les W (θ) n,u sont des copies iid de W (θ) n . Cette transformation appliquée aux W (θ)
n,u est la transformation régularisante, la fameuse smoothing transform (voir par exemple [START_REF] Buraczewski | Stochastic Models with Power-Law Tails : the equation X=AX+B[END_REF]). En passant à la limite presque sûre dans la précédente équation et en notant pour 

i ∈ N * , C i = e θX i -ϕ(θ) , on obtient que W (θ) ∞ est CHAPITRE 1. INTRODUCTION solution de l'équation de point fixe W (θ) ∞ loi = ∞ ∑ i=1 C i W (θ)
W (θ) loi = ∞ ∑ i=1 C i W (θ) i sous P, (1.50) où les W (θ) i
sont des copies iid de la loi de W (θ) . Cette équation est valable à la fois dans le cas sous-critique et dans le cas critique : dans ce dernier cas, la suite (c n ) converge alors vers une constante.

Ainsi les lois de W (θ)

∞ et W (θ) sont solutions de la même équation de point fixe et nous pourrons donc énoncer les résultats en termes de W (θ) ∞ uniquement. La description de la limite de la martingale additive se fait donc ici en étudiant la loi point fixe de la smoothing transform, ce qui nous amène dans le domaine des équations de renouvellement implicite. Les techniques alors employées sont donc propre à l'étude des équations de points fixes en loi et des équations récursives stochastiques, ainsi elles diffèrent des techniques habituelles, propres aux marches aléatoires branchantes.

Une référence incontournable est Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], qui donna, entre autres, une preuve alternative d'un résultat de Kesten [START_REF] Kesten | Random difference equations and Renewal theory for products of random matrices[END_REF] Plus prosaïquement, ce changement de mesure permettant de réduire l'équation est introduit comme la définition de la mesure de Peyrière (en référence à [START_REF] Peyrière | Calculs de dimensions de Hausdorff[END_REF]) sur Ω × ∂U où ∂U désigne le bord de l'arbre d'Ulam constitué des mots de longueur infinie. On peut alors définir pour tout

ω et u = u 1 u 2 ... ∈ ∂U , les quantités suivantes W(ω, u) = W (θ) ∞ (ω), Ã(ω, u) = e θX u 1 -ϕ(θ) W1 (ω, u) = W (θ) ∞,u 1 = lim n→∞ W (θ) n,u 1 B(ω, u) = ∞ ∑ i=1 e θX i -ϕ(θ) 1 u 1 =i W (θ) ∞,i , où W (θ)
n,i désigne la martingale additive associée à la marche aléatoire branchante issue de X i . Toutes ces quantités sont des applications mesurables sur Ω × ∂U muni de la tribu F × B(∂U ), où B(∂U ) est la tribu borélienne de ∂U pour la métrique utilisée dans [START_REF] Liu | On generalized multiplicative cascades[END_REF]. Par construction, on peut déjà observer que W = Ã W1 + B.

(1.52) Si l'on note µ ω l'unique mesure de Borel aléatoire sur le bord ∂T (ω) de l'arbre aléatoire engendré par la marche aléatoire branchante, puis prolongée à ∂U par restriction à T (ω), telle que pour tout u ∈ T (ω)

µ ω ({v ∈ T (ω) : u ≤ v}) = e θX u -|u|ϕ(θ) W (θ) ∞,u ,
on peut alors introduire la mesure de Peyrière sur Ω × ∂U :

∀U ∈ F × B(∂U ), Q(U) = E ∂U 1 (ω,u)∈U µ ω (du) . (1.53)
Le lemme 4.1 de Liu [START_REF] Liu | On generalized multiplicative cascades[END_REF] permet alors de décrire la loi des variables W, Ã, W1 et B en terme de la probabilité de départ P, d'observer que W1 a la loi de W et est indépendant sous Q du couple ( Ã, B) et donc que l'on s'est bien ramené à une équation de point fixe en loi de la forme (1.51).

Existence et unicité de la solution. Comme nous nous intéressons au comportement de la limite de la martingale additive et notamment au comportement asymptotique de sa queue, il est important de s'assurer que les équations de points fixes en loi décrites plus haut admettent une unique solution. Fort heureusement, le principe de Letac (voir [START_REF] Letac | A contraction principle for certain Markov chains and its applications[END_REF] et [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF]) donne une condition suffisante pour que l'équation de point fixe en loi (1.51) aie une unique solution : Théorème 1.12 (Principe de Letac dans le cas affine). Notons ψ : t → At + B la transformation aléatoire apparaissant dans (1.51) et soit (ψ i ) i≥1 des copies iid de la loi de ψ. Si la limite X = lim n→∞ X n (t) = lim n→∞ ψ 1 • ψ 2 • ... • ψ n (t) existe presque sûrement et ne dépend pas de t, alors la loi de X est l'unique loi solution de (1.51). De plus, la variable aléatoire Y n (t) = ψ n • ... • ψ 1 (t) admet cette unique loi pour loi limite pour toute valeur de t.

L'étude de X n (t) et Y n (t), et la preuve que la condition du principe de Letac est vérifiée dans les cas que nous considérons peut notamment se trouver dans [START_REF] Buraczewski | Stochastic Models with Power-Law Tails : the equation X=AX+B[END_REF] qui traite en détails l'équation (1.51) à la fois d'un point de vue probabiliste et d'un point de vue issu des systèmes dynamiques, ou encore dans l'article [START_REF] Charles | Stability of perpetuities[END_REF].

Queue de la solution

Hypothèses avec condition L log L. Si Goldie obtient dans [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] des résultats sur des équations de point fixe en loi plus générales, de la forme X loi = ψ(X) où ψ est asymptotiquement linéaire au sens où ψ(t) ∼ At quand t → ∞, nous allons nous concentrer sur ses résultats appliqués à l'équation (1.51). Le théorème principal de l'article de Goldie est bien plus puissant qu'un simple résultat sur la queue de la solution de cette équation car Goldie fait des hypothèses de moments sur le terme A, notamment une condition de type L log L, et ne suppose pas que X est solution mais seulement qu'il dispose d'un critère d'intégrabilité sur les queues de X et AX. Quand X est supposé solution, ces conditions peuvent alors être remplacées par des conditions de moments et les constantes apparaissant en facteur du monôme de l'équivalent de la queue ont alors une expression en terme de moments. Pour le cas de l'équation (1.51), on peut également régler d'un coup l'existence d'une solution grâce à une conséquence du principe de Letac énoncé plus haut. Tout ceci donne lieu au théorème suivant de Goldie : Théorème 1.13 (Goldie). Supposons que la loi de A est non-arithmétique, c'est-à-dire qu'elle n'est pas supportée par un ensemble de la forme λZ pour un certain réel λ. Supposons également qu'il existe η > 0 tel que

E [|A| η ] = 1 (1.54) E |A| η log + |A| < ∞ (1.55) E [|B| η ] < ∞.
(1.56)

Alors il existe une unique loi pour X solution de (1.51) et celle-ci vérifie

P(X > x) ∼ C + x -η (x → ∞) (1.57)
où C + est une constante positive qui admet une expression explicite en termes des moments de A et B.

Ainsi, si l'on applique la réduction d'équation aboutissant à (1.52), on peut décrire l'asymptotique de la queue de W sous la mesure de Peyrière Q, puis récupérer en changeant de nouveau de mesure l'asymptotique de la queue de W (θ) ∞ . Malheureusement cette méthode a pour inconvénient que les hypothèses ne sont pas formulées directement sous la probabilité de départ et que l'expression des constantes n'est pas très explicite à moins de se ramener sous la probabilité de départ. Pour pallier celà, nous pouvons nous appuyer sur des résultats de Jelenković et Olvera-Cravioto [START_REF] Predrag | Implicit renewal theory and power tails on trees[END_REF] qui travaillent directement avec l'équation (1.49). En appliquant leurs résultats dans le cas homogène, on aboutit au théorème suivant pour le cas de la marche aléatoire branchante : Théorème 1.14. Supposons que la loi de déplacement des particules de la marche aléatoire branchante est non-arithmétique et supposons qu'il existe η > 1 tel que

E (W (θ) 1 ) η < ∞ (1.58) E   ∑ |u|=1 e ηθX u -η ϕ(θ) (θX u -ϕ(θ)) +   < ∞ (1.59) ϕ(ηθ) = η ϕ(θ). (1.60) 50 CHAPITRE 1. INTRODUCTION Alors P(W (θ) ∞ > x) ∼ Hx -η (x → ∞), (1.61) où H ∈]0, ∞[ admet les expressions suivantes H = ∞ 0 t η-1 P(W (θ) ∞ > t) -E ∑ |u|=1 1 e θX u -ϕ(θ) W (θ) ∞ >t dt E ∑ |u|=1 e ηθX u -ϕ(ηθ) (θX u -ϕ(θ)) (1.62) = E ∑ |u|=1 e θX u -ϕ(θ) W (θ) ∞,u η -∑ |u|=1 e ηθX u -ϕ(ηθ) (W (θ) ∞,u ) η ηE ∑ |u|=1 e ηθX u -ϕ(ηθ) (θX u -ϕ(θ))
.

(1.63)

Reconnaissons dans la condition (1.59) une condition de type L log L qui peut sembler contraignante et dont nous chercherons à nous débarasser par la suite quitte à demander un peu plus des autres conditions de ce théorème. Observons aussi que nous avons cette fois demandé η > 1 au lieu de η > 0 comme dans le théorème précédent, ce qui finalement était prévisible car pour passer d'une équation à l'autre, la réduction fait intervenir un biais par la taille d'où ce changement de puissance.

Hypothèses sans condition L log L. Les résultats de Goldie, comme ceux de Jelenković et Olvera-Cravioto utilisent une hypothèse de type L log L dont il est possible de se passer tout en obtenant tout de même des résultats sur l'asymptotique de la queue de la solution, comme en témoigne entre autres les résultats de Kevei [START_REF] Kevei | A note on the Kesten-Grincevičius-Goldie theorem[END_REF]. Kevei considère dans cet article deux cas de figure : un cas où log A est dans le domaine d'attraction d'une loi α-stable sous une probabilité de biais par la taille, et un autre cas où log A est à queue lourde. Ceci dit, dans l'optique d'appliquer ses résultats à la martingale additive, on peut en fait se ramener seulement dans le premier cas par une renormalisation de la marche aléatoire branchante.

Il s'agit donc maintenant d'utiliser l'équation réduite (1.52) pour exprimer le théorème de Kevei (Théorème 1.1 dans [START_REF] Kevei | A note on the Kesten-Grincevičius-Goldie theorem[END_REF]) en termes de la martingale additive. On aboutit alors au théorème suivant : Théorème 1.15. Supposons que la loi de déplacement des particules de la marche aléatoire branchante est non-arithmétique et supposons qu'il existe η > 1, α ∈]0, 1[, ν > η -1 et une fonction à variations lentes tels que les conditions (1.58) et (1.60)

1.4. LA MARTINGALE ADDITIVE ET L'ÉQUATION X = AX + B 51 soient vérifiées ainsi que les conditions suivantes ∀x, F η (x) := E   ∑ |u|=1 e ηθX u -η ϕ(θ) 1 θX u -ϕ(θ)>x   = (x)x -α (1.64) lim δ→0 lim sup x→0 x(1 -F η (x)) δx 1 1 y 1 -F η (y) 2 F η (x -dy) = 0 (1.65) E     ∑ |u|=1 e θX u -ϕ(θ)     ∑ |v|=1 v =u e θX v -ϕ(θ) W (θ) ∞,v     ν     < ∞.
(1.66)

Alors P W (θ) ∞ > x ∼ (1 -α)H x η (log x) 1-α (log(x)) (x → ∞), (1.67) où H ∈]0, ∞[ admet l'expression suivante H = E ∑ |u|=1 e θX u -ϕ(θ) W (θ) ∞,u η -∑ |u|=1 e ηθX u -ϕ(ηθ) W (θ) ∞,u η ηΓ(α)Γ(2 -α) (1.68)
et Γ est la fonction gamma d'Euler.

Notons que si α > 1 2 la condition (1.65) n'est plus nécessaire au fonctionnement du théorème. En effet, elle sert uniquement à se placer, avec la condition (1.64), dans un cas où le théorème de renouvellement fort de Caravenna et Doney (en référence à [START_REF] Caravenna | The strong renewal theorem[END_REF] et [START_REF] Doney | The strong renewal theorem with infinite mean via local large deviations[END_REF], aujourd'hui remplacés par [START_REF] Caravenna | Local large deviations and the strong renewal theorem[END_REF]), étendu par Kevei (Théorème 3.1 dans [START_REF] Kevei | A note on the Kesten-Grincevičius-Goldie theorem[END_REF]), est valide.

Les hypothèses de ce précédent théorème portent principalement sur le terme à de l'équation réduite (1.52) en supposant que son logarithme à une fonction de répartition à variations régulières sous la probabilité biaisée par Ãη , et on complète alors avec l'hypothèse (1.66) sur B afin d'obtenir un résultat. Cependant, on peut tout aussi bien supposer que c'est le terme B qui a des queues à variations régulières et adapter les hypothèses portant sur à en appliquant le théorème de Grincevičius-Grey (d'après [START_REF] Grey | Regular variation in the tail behaviour of solutions of random difference equations[END_REF] et [START_REF] Grincevicius | Random difference equations and renewal theory for products of random matrices[END_REF], voir Théorème 2.4.3 dans [START_REF] Buraczewski | Stochastic Models with Power-Law Tails : the equation X=AX+B[END_REF]). On obtient alors le résultat suivant pour la martingale additive grâce à la réduction de l'équation de point fixe :

Théorème 1.16. Supposons qu'il existe α ∈]0, 2], δ > 0 et une fonction à variations CHAPITRE 1. INTRODUCTION lentes tels que E   ∑ |u|=1 e (θX u -ϕ(θ))(α+1)   < 1 (1.69) E   ∑ |u|=1 e (θX u -ϕ(θ))(α+δ+1)   < ∞ (1.70) E   ∑ |u|=1 e θX u -ϕ(θ) 1 ∑ |v|=1,v =u e θX v -ϕ(θ) W (θ) ∞,v >x   ∼ (x) x α (x → ∞).
(1.71)

Alors la loi de W (θ) ∞ vérifie P W (θ) ∞ > x ∼   1 -E   ∑ |u|=1 e (θX u -ϕ(θ))(α+1)     -1 α (x) (α + 1)x α+1 (x → ∞).
(1.72)

Lien avec la renormalisation de Seneta-Heyde

Comme nous l'avons brièvement mentionné au début de cette Section 1.4, tous ces résultats adaptés à la martingale additive de la marche aléatoire branchante avaient pour but de tenter d'expliciter la suite (c n ) n de la renormalisation de Seneta-Heyde.

Dès les articles de Seneta [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] et Heyde [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF] sur les processus de Galton-Watson, la suite renormalisante est définie par inversion de la transformée de Laplace du processus de Galton-Watson. Puis Biggins et Kyprianou étudient précisément la log-transformée de Laplace de la martingale additive en exploitant notamment l'équation (1.49) et définissent alors la suite (c n ) en inversant cette log-transformée de Laplace. Tenter d'expliciter les (c n ), ou tout du moins leur comportement asymptotique, revient donc à l'étude de la transformée de Laplace de W n . Or celle-ci est intimement liée à celle de sa queue d'après le théorème taubérien de Bingham et Doney (théorème 8.1.6 dans [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF]).

Le principal problème que nous n'avons su résoudre reste cependant que tous les résultats de la sous-section précédente portent sur la queue de la limite de W n et non pas sur W n , rendant donc impossible toute conclusion quand à la suite de Seneta-Heyde.

Un autre problème survient également lorsque qu'on se rend compte que ce n'est pas tant W ∞ qui nous intéresse mais plutôt W qui a le mérite de ne pas être trivial. Or nous n'avons pas de garantie sur les moments de W et il n'est donc pas aussi simple d'envisager une réduction de l'équation (1.50) permettant d'appliquer les résultats de renouvellement implicite de Kevei et nous forçant à nous confiner au cadre du Théorème 1.14. Ainsi dans le cadre des résultats de Kevei, c'est à dire sans condition de type L log L, la réduction de l'équation pour W ne fait plus intervenir une mesure de probabilité et il nous a donc fallu chercher des résultats sur le comportement des mesures de Radon invariantes de masse infinie qui servent alors dans le cas sous-critique sans condition L log L et dans le cas critique.

En effet, dans le cas critique, comme le théorème de Lyons ne s'applique pas, la chaine de Markov définie par le système dynamique stochastique affine X n = A n X n-1 + B n et X 0 = x n'a pas de probabilité invariante mais une unique mesure de Radon invariante de masse totale infinie comme prouvé dans [START_REF] Babillot | The random difference equation Xn=AnXn-1+Bn in the critical case[END_REF]. Toujours dans cet article, Babillot, Bougerol et Elie décrivent le comportement de la queue de la mesure invariante en dimension 1. L'asymptotique de cette queue fait alors intervenir un terme à variations lentes que Buraczewski parvient à supprimer dans [START_REF] Buraczewski | On invariant measures of stochastic recursions in a critical case[END_REF] au prix de quelques hypothèses supplémentaires sur les moments de A et B. Plus tard, il obtient avec Broferrio et Damek [START_REF] Brofferio | On the invariant measure of the random difference equation X n = A n X n-1 + B n in the critical case[END_REF][BB13] des résultats similaires en dimensions supérieures.

Marches aléatoires et lois α-stables

Dans cette section annexe, nous énonçons quelques propriétés et résultats sur les marches aléatoires dans le domaine d'attraction d'une loi α-stable et sur les fonctions de renouvellement qui leurs sont associées. Nous rappelons également un changement de mesure permettant de conditionner une marche aléatoire à rester positive durant toute sa trajectoire ainsi qu'un principe d'invariance associé à ce changement de mesure. Toutes ces propriétés pourront en autres s'appliquer à la marche de l'épine d'une marche aléatoire branchante sous la mesure P * .

Quelques rappels sur les lois stables

Fonctions à variations lentes, régulières. On dit qu'une fonction définie sur un voisinage de l'infini est à variations lentes (au sens de Karamata) si pour tout λ > 0, on a (λx) (x) -→ x→∞ 1.

(1.73)

On dit qu'une fonction f définie sur un voisinage de l'infini est à variations régulières d'indice α ∈ R si pour tout λ > 0, on a

f (λx) f (x) -→ x→∞ λ α . (1.74)
Cette définition équivaut à ce qu'il existe une fonction à variations lentes et un réel α tel que ∀x, f (x) = (x)x α . Remarquons que l'on peut aussi définir la notion de fonction à variations lentes, respectivement régulières, au voisinage de n'importe quel réel (par exemple 0) mais que l'usage le plus courant, et que nous emploierons sauf mention explicite du contraire, est celui des fonctions à variations lentes, respectivement régulières, au voisinage de +∞.

Les fonctions à variations régulières et leurs nombreuses propriétés énoncées par exemple dans [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF] 

∞ 0 ψ(y) f (y) dy < ∞ E (log + Y) f (log + Y) < ∞.
Lois stables et domaines d'attractions. On dit que deux variables aléatoires X et Y sont du même type s'il existe a et b tels que X a la loi de aY + b. On dira également que la loi de X est stable si pour Y indépendant de X et du même type, X + Y est du même type que X.

Ces lois stables apparaissent naturellement dans des résultats de convergence généralisant le théorème central limite. Si on étudie une marche aléatoire S n , on dira que S 1 , et plus généralement S n , est dans le domaine d'attraction d'une loi stable s'il existe une suite (a n ) de réels strictement positifs et une suite (b n ) de réels telles que (S nb n )/a n converge en loi vers une loi stable quand n → ∞. La loi gaussienne standard étant une loi stable, le théorème central limite rentre donc dans ce cadre. De manière plus générale, on peut déterminer si une variable aléatoire est dans le domaine d'attraction d'une loi stable en observant le comportement de ses queues comme décrit dans le théorème suivant (Théorème 8.3.1 [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF], cf Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], XVII.5, IX.8) :
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Théorème 1.18. Soit X une variable aléatoire de loi µ, et notons sa fonction de répartition F(t) = µ(] -∞, t]).

1. X est dans le domaine d'attraction d'une loi normale si et seulement si la variance tronquée V(x) =

x -x t 2 µ(dt) est à variations lentes, ou encore si et seulement si

x 

2 (1 -F(x) + F(-x)) V(x) -→ x→∞ 0. ( 1 
∈]0, 2[ tel que x → 1 -F(x) + F(-x) est à variations régulières d'indice -α et il existe p, q ∈ [0, 1] tels que p + q = 1 et F(-x) 1 -F(x) + F(-x) -→ x→∞ q et 1 -F(x) 1 -F(x) + F(-x) -→ x→∞ p. ( 1 
= 2, α ∈]0, 2[\{1} et α = 1.
Théorème 1.19. Toute loi stable admet une fonction caractéristique φ(t) = E e itX ayant l'une des trois formes suivantes paramétrées par l'indice α, le paramètre d'asymétrie β et un paramètre d'échelle λ > 0, quitte à effectuer une transformation affine de la loi (préservant le type donc) :

1. φ(t) = exp -λt 2 dans le cas normal α = 2, 2. φ(t) = exp -λ|t| α 1 -iβ sgn(t) tan πα 2 pour α ∈]0, 2[\{1} et pour β ∈ [-1, 1], 3. φ(t) = exp -λ|t| 1 + iβ sgn(t) 2 π log |t| pour α = 1 et β ∈ [-1, 1].
Il est toujours possible de se ramener au cas où λ = 1 en préservant le type via une simple transformation affine.

Dans cette thèse, mis à part le cas à variance finie où α = 2, nous considérons exclusivement le cas où α ∈]0, 2[\{1}, β ∈ [-1, 1] et |β| < 1 quand α < 1. Une fois placé dans ce cadre, on peut choisir de décrire la fonction caractéristique avec un autre jeu de paramètres, comme décrit par exemple dans [START_REF] Zolotarev | One-dimensional stable distributions[END_REF], en l'écrivant sous la forme 

φ(t) = exp -λ |t| α exp -i παθ 2 sgn(t) , (1.77) où λ > 0, |θ| ≤ 1 ∧ 2 α -1 , |θ| = 1,
∈ [0, 1] et le paramètre de négativité ρ = 1 -ρ ∈ [0, 1], comme suit ρ = 1 + θ 2 = 1 2 + 1 πα arctan β tan πα 2 (1.80) ρ = 1 -θ 2 = 1 2 - 1 πα arctan β tan πα 2 . (1.81) D'après le Théorème 2 de [GK49], quand α > 1 et E[S 1 ] = 0, ou quand α < 1, les paramètres ρ et ρ apparaissent naturellement via 1 n n ∑ k=0 P(S k ≥ 0) -→ n→∞ ρ (1.82) 1 n n ∑ k=0 P(S k ≤ 0) -→ n→∞ ρ.
(1.83)

Au travers de la définition de ρ et ρ, on vérifie facilement que αρ ≤ 1 et α ρ ≤ 1. Mieux, si X est le processus de Lévy α-stable issu de 0 tel que X 1 ait la fonction caractéristique décrite en (1.77) alors on est capable de déduire que αρ = 1 si et seulement si le processus de Lévy X ne fait pas de sauts positifs, tandis que α ρ = 1 si et seulement si X ne fait pas de sauts négatifs.

Fonctions de renouvellement

Généralités

Nous serons amenés dans les sections suivantes à énoncer des résultats faisant intervenir des conditions portant sur la totalité de la trajectoire de la marche aléatoire branchante, qui se réexpriment en terme de la totalité de la trajectoire de la marche de l'épine. De telles considérations nous amènent naturellement à introduire les mesures de renouvellement associées aux divers temps d'échelle d'une marche aléatoire (S n ) n≥0 oscillante et telle que S 0 = 0 presque sûrement sous une probabilité P.

Nous noterons les hauteurs et temps d'échelle de la marche aléatoire (S n ) n≥0 comme suit :
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Plus précisément, ces quantités sont définies récursivement par la relation :

τ 0 = 0 τ n+1 = min{k > τ n : S k < S τ n } H n = S τ n
Les autres quantités d'échelle sont définies de la même manière en substituant le symbole < par ≤, > ou ≥ respectivement.

A chacun de ces processus

(|H n |) n≥0 , (|H = n |) n≥0 , (| Ĥn |) n≥0 , (| Ĥ= n |) n≥0
nous associons une mesure de renouvellement µ, µ = , μ, μ= respectivement définies de manière analogue comme

µ(dx) = ∑ n≥0 P(|H n | ∈ dx).
(1.84)

Notons qu'il existe une constante c = ∈]0, ∞[ telle que µ = c = µ = et μ = c = μ=
(voir [START_REF] Feller | An introduction to probability theory and its applications[END_REF] (1.13) XII-1), ainsi nous utiliserons essentiellement les mesures de renouvellement associées aux hauteurs d'échelle descendantes strictes et ascendantes strictes.

A partir de ces mesures, définissons deux fonctions R, R :

R + → R + par R(0) = 1 = R(0) ∀x > 0, R(x) = µ([0, x]) ∀x > 0, R(x) = μ([0, x]).
Les fonctions R et R sont appelées fonctions de renouvellement associées aux hauteurs d'échelle descendantes strictes de (S n ), respectivement descendantes faibles. On définit de la même manière les fonctions de renouvellement R et R associées respectivement aux hauteurs d'échelle ascendantes strictes et ascendantes faibles de (S n ).

Comme nous avons supposé dans la Section 1.2.1 que θ = -1 et ϕ(-1) = 0, nous sommes dans le cadre où l'équation (1.8) est vérifiée, il est ainsi intéressant de considérer des barrières en dessous desquelles nous ne souhaitons pas voir notre marche aléatoire branchante descendre, et de même pour la marche de l'épine. Gardant cette idée en tête, nous allons donc chercher à étudier des quantités où on ne regarde que les trajectoires où la (S n ) reste positive sur les n premiers pas de la marche (dans un premier temps).

Cette manipulation trouve tout son intérêt dans le Théorème 3.15 du Chapitre 3 qui permet de passer d'un calcul d'espérance à un calcul d'intégrale contre la mesure de renouvellement. Plus prosaïquement, nous démontrons dans le Chapitre 3 que pour toute fonction f mesurable positive, les opérateurs de Green définis par

∀x ≥ 0, G f (x) = ∞ ∑ n=0 E f (x + S n )1 min k≤n x+S k ≥0 et Ḡ f (x) = ∞ ∑ n=0 E f (x + S n )1 min k≤n x+S k >0
ont l'expression suivante : Théorème 1.20. Pour toute fonction f mesurable positive, on a pour tout x ≥ 0

G f (x) = c = [0,x]×[0,∞[ f (x -y + z)(µ ⊗ μ)(dy, dz), Ḡ f (x) = c = [0,x[×[0,∞[ f (x -y + z)(µ ⊗ μ)(dy, dz).

Bornes et équivalents

Nous allons maintenant énoncer dans cette sous-section des bornes et équivalents faisant intervenir les fonctions de renouvellement définies précédemment ou portant carrément sur celles-ci. Pour ce faire, nous allons nous placer dans deux cadres d'hypothèses pour la marche aléatoire (S n ) qui correspondent aux hypothèses que nous faisons sur la marche de l'épine de la marche aléatoire branchante.

Le cas à variance finie. Dans ce premier cadre, nous supposons que (S n ) est une marche aléatoire réelle centrée et de variance finie σ 2 . Les hauteurs d'échelle descendantes strictes admettent alors un premier moment fini (voir par exemple Rogozin [START_REF] Ba Rogozin | On the Distribution of the First Jump[END_REF]), et nous pouvons donner un équivalent et une borne de la queue du minimum de la marche grâce à un résultat de Kozlov [Koz76] : (1.87)

Lemme 1.21. Pour tout x ≥ 0 et quand n → ∞, on a P(min k≤n S k ≥ -x) ∼ c 0 R(x) √ n , (1.85) et pour tout x ≥ 0, n ≥ 1, P(min k≤n S k ≥ -x) ≤ c 0 R(x) √ n , ( 1 
Cette dernière équation peut être vue comme une conséquence du théorème de renouvellement de Feller et des identités de Sparre Andersen (voir [START_REF] Kersting | Discrete Time Branching Processes in Random Environment[END_REF]) et peut être trouvée dans [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. Notons que la constante √ 2/π peut s'interpréter comme l'espérance de l'inverse d'un processus de Bessel 3-dimensionnel issu de 0 au temps 1 d'après un principe d'invariance utilisé par Madaule [START_REF] Madaule | First order transition for the branching random walk at the critical parameter[END_REF]. Une des conséquences de cette dernière équation est donc qu'il existe une constante

c 1 = 2 πσ 2 1 c 0 telle que R(x) ∼ c 1 x (x → ∞).
Toujours grâce au théorème de renouvellement de Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], on peut voir que pour tout y réel, la quantité R(x + y) -R(x) est uniformément bornée en x et ainsi qu'il existe une constante c 1 telle que ∀x ∈ R : R(x) ≤ c 1 (1 + x + ).

(1.88)

Les résultats correspondants sont aussi vrais pour R. 

R(x) ∼ (1 + x) α ρ (x) (x → ∞), (1.90) et il existe donc deux constantes C 0 > 0 et C 1 > 0 telles que pour tout x ≥ 0, C 0 (1 + x) α ρ (x) ≤ R(x) ≤ C 1 (1 + x) α ρ (x).
(1.91) Des résultats similaires s'obtiennent pour R en remplaçant ρ par ρ, par ˆ ,

C 0 et C 1 par Ĉ0 et Ĉ1 .
Comme dans le cas à variance finie, nous pouvons relier R à la queue du minimum de (S n ) dans un résultat similaire à celui de Kozlov, en exploitant des résultats tels que le Théorème 8.9.12 de Bingham, Goldie et Teugels [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF]. Nous pouvons également identifier les constantes qui apparaissent dans cet énoncé en couplant des résultats de Caravenna et Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] et Vatutin et Dyakonova [START_REF] Vatutin | Path to survival for the critical branching processes in a random environment[END_REF]. Tout ceci est résumé dans l'énoncé du Théorème 4.3 dans le Chapitre 4 du manuscrit. Nous en tirons notamment comme conséquence que pour tout x ≥ 0,

P x min k≤n S k ≥ 0 ∼ κ R(a n ) R(x) (n → ∞), (1.92) 
pour une constante κ > 0 qui peut s'exprimer en termes du méandre de longueur 1 associé au processus de Lévy limite X . En effet, si on note P la loi de X et P (m) la loi du méandre, c'est-à-dire

P (m) (X t ) t∈[0,1] ∈ A = lim x→0 P (X t + x) t∈[0,1] ∈ A| inf t∈[0,1] X t + x ≥ 0 , (1.93) alors κ = 1 E (m) X α ρ 1
.

(1.94)

Enfin, mentionnons aussi comme autre conséquence du Théorème 4.3 du Chapitre 4 que la bijection réciproque a -1 de la fonction a strictement décroissante et à variations régulières d'indice 1/α telle que ∀n ∈ N, a(n) = a n intervient dans l'asymptotique de R R. En effet, il existe une constante c a > 0 telle que

R(x) R(x) ∼ c a a -1 (x) (x → ∞).
(1.95)
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Marches conditionnées à rester positives

Nous avons vu précédemment comment manipuler des quantités où la marche aléatoire est contrainte de rester positive jusqu'à un temps fixé, nous allons maintenant chercher à tuer la marche aléatoire (S n ) quand elle rentre dans l'intervalle ] -∞, 0] ou ] -∞, 0[, et donc trouver un moyen de la forcer à rester positive sur l'intégralité de sa trajectoire.

D'après un résultat de Tanaka [START_REF] Tanaka | Time reversal of random walks in one dimension[END_REF] et une reformulation de Kersting et Vatutin [START_REF] Kersting | Discrete Time Branching Processes in Random Environment[END_REF], les fonctions R et R sont harmoniques pour la marche tuée quand elle entre dans ] -

∞, 0[ et ] -∞, 0] respectivement. C'est-à-dire que pour tout x ≥ 0, R(x) = E R(x + S 1 )1 x+S 1 ≥0 (1.96) R(x) = E R(x + S 1 )1 x+S 1 >0 .
(1.97)

Cette harmonicité va nous permettre d'introduire une nouvelle mesure de probabilité P + . Pour plus de généralité rappelons que pour x ≥ 0 nous notons P x pour signifier que S 0 = x presque sûrement. Nous définissons alors P

+ x comme dP + x dP x σ(S k ,k≤n) = R(S n ) R(x) 1 min k≤n S k ≥0 , (1.98) 
et notons E + x l'espérance associée. Sous cette nouvelle mesure de probabilité, la marche aléatoire (S n ) est conditionnée à rester positive tout le temps.

Ainsi muni de ce nouvel outil, nous sommes en mesure de transformer tout calcul de moment faisant intervenir la totalité de la trajectoire de la marche de l'épine (qui est une marche aléatoire sous P * ) en un calcul de moment où on conditionne la marche de l'épine à rester positive en tout temps, et inversement.

Ce changement de mesure trouve tout son intérêt dans le principe d'invariance dû à Caravenna et Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF]. En effet, dans les deux cadres de travails dans lesquels nous nous sommes placés dans cette thèse pour l'étude de la renormalisation de Seneta-Heyde de la martingale additive (variance finie, cf Chapitre 3, et α-stable, cf Chapitre 4), la marche de l'épine vérifie un théorème limite sous P * car (S n ) est dans le domaine d'attraction d'une loi α-stable (α = 2 seulement dans le cas à variance finie), et le principe d'invariance assure qu'une convergence similaire à lieu sous P + . Plus précisément, nous allons supposer qu'il existe α ∈]0, 2], ρ ∈]0, 1[, X un processus de Lévy α-stable de paramètre de positivité ρ, défini sur l'univers Ω cadlag des trajectoires réelles càdlàg indexées par [0, ∞[, et une suite (a n ) tels que (S n /a n ) converge en loi vers X 1 . On définit ensuite pour tout n ∈ N l'application φ n qui transforme (S n ) en (S nt /a n ) t≥0 . Définissons aussi l'analogue de la mesure P + pour le processus de Lévy, que 62 CHAPITRE 1. INTRODUCTION nous noterons P + : pour tout x > 0, t ≥ 0 et A ensemble σ(X s , s ≤ t)-mesurable,

P + x = E x X α ρ t 1 A 1 inf 0≤s≤t X s ≥0 x α ρ .
(1.99)

On peut alors construire P + = P + 0 comme la limite en loi des P + x lorsque x → 0 (voir [START_REF] Chaumont | Excursion normalisée, méandre et pont pour les processus de Lévy stables[END_REF]). Le principe d'invariance de Caravenna et Chaumont s'énonce alors comme suit Théorème 1.22 (Caravenna,Chaumont [CC08]). Supposons qu'il existe une suite (x n ) de réels positifs telle que x n → x ≥ 0 quand n → ∞. Alors on a la convergence faible suivante sur Ω cadlag :

P + x n • (φ n ) -1 f aible -→ n→∞ P + x .
(1.100)

Mentionnons maitenant que la convergence de certaines séries aléatoires sous la loi P + peut être vérifiée grâce à une condition intégrale contre la mesure de Lebesgue. En effet, nous sommes amenés dans nos calculs de moments à rencontrer des quantités de la forme E + ∑ n≥0 F(X ξ n ) et à vouloir vérifier leur convergence. Nous disposons alors de résultats tels que le Lemme 3.12 du Chapitre 3, la Proposition 2.1 de [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] ou encore le Lemme 4.8 du Chapitre 4. Enonçons par exemple cette proposition prouvée dans le Chapitre 5 du manuscrit dans le cas α-stable : Proposition 1.23. Soit F : [0, ∞) → [0, ∞) une fonction décroissante et a une fonction strictement décroissante et à variations régulières telle que pour tout n, a(n) = a n . Alors la dichotomie suivante a lieu

1. Si ∞ 1 F(y)a -1 (y) dy y < ∞ alors E + ∑ n≥0 F(X ξ n ) < ∞. 2. Si ∞ 1 F(y)a -1 (y) dy y = ∞ alors ∑ n≥0 F(X ξ n ) = ∞, P + -p.s.
Chapitre 2

Behaviour of branching random walks and their extremal values

This chapter is a translation in English of Section 1.3 in Chapter 1 of this manuscript.

The minimum of the branching random walk

As we discussed briefly in Section 1.1.2, the question of the behaviour of the lowest particle when the branching is supercritical is an interesting question for this particle plays a unique role, as its trajectory has an exponentially small probability. The understanding of the asymptotic behaviour of the minimum, and even the global minimum, of the branching random walk is essential to fully grasp the large deviations in the branching random walk. The question of the concentration of the minimum around its median or quantiles was thoroughly studied (see for instance [START_REF] Bachmann | Limit theorems for the minimal position in a branching random walk with independent logconcave displacements[END_REF] or [START_REF] Bramson | Tightness for a family of recursion equations[END_REF]). This study is set in a variety of settings, that can often be expressed in terms of the spinal random walk and its moments.

We start by recalling that, according to Biggins [START_REF] Biggins | Lindley-type equations in the branching random walk[END_REF], min |u|=n X u tends to ∞ as n → ∞ almost surely as soon as E ∑ |u|=1 e -X u = 1. This assumption is a classical one in the study of the branching random walk, and it is a natural question to ask at which speed the minimum tends to infinity.

The boundary case

The most famous and used setting for the study of the branching random walk is the so-called boundary case, in reference to Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF], which correspond to a limit case in the study of the asymptotic behaviour of the branching random walk. The corresponding as-sumptions are as follows :

ϕ(-1) = 0 = ϕ (-1).

(2.1)

In the words of Barral, Hu and Madaule [START_REF] Barral | Continuity of the multifractal spectrum of a random statistically self-similar measure[END_REF], this boundary case is critical in the study of the additive martingale and corresponds to a second order transition for the free energy, while a first order transition would not ask of ϕ (-1 -) to exist. The boundary case is, as a matter of fact, a quite reasonable setting for the study of the branching random walk since it is more often than not possible to rescale the branching random walk to fit this setting as discussed by Jaffuel in the arXiv version of [START_REF] Jaffuel | The critical barrier for the survival of the branching random walk with absorption[END_REF]. Moreover this a classical assumption in the study of the Seneta-Heyde norming of the additive martingale, since it implies, amongst other things, that for all n ∈ N,

D n = ∑ |u|=n X u e -X u , (2.2)
is a martingale with respect to the canonical filtration of the branching random walk, called the derivative martingale. This martingale appears in the study of the minimum of the branching random walk and also in the study of the additive martingale as a useful tool, but it is also in itself an interesting quantity whose convergence has been studied, notably in [START_REF] Biggins | Measure change in multitype branching[END_REF] in the case where the spinal random walk has finite variance. We will see in what follows that depending on the assumptions and, thus, depending on the convergence or not of D n and its nature as a martingale or not, it will sometimes be necessary to study the convergence of the additive martingale through the use of another quantity than D n which will be defined using the renewal function described in Section 1.5. Amongst one of the most well-known result concerning the behaviour of the minimum of the branching random walk, are the results of Hu and Shi in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF]. They set themselves in the boundary case and suppose the existence of a positive triplet (δ 1 , δ 2 , δ 3 ) such that the number of living individuals at the first generation has a finite moment of order 1 + δ 1 , and that W (-1-δ 2 ) 1 and W (δ 3 ) 1 have finite first moments. Under these conditions, they obtain, on the event of survival of the process, the following regime for the minimum :

lim sup n→∞ 1 log n min |u|=n X u = 3 2 p.s., (2.3) lim inf n→∞ 1 log n min |u|=n X u = 1 2 p.s., (2.4) lim n→∞ 1 log n min |u|=n X u = 3 2 in probability.
(2.5)
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One can see this logarithmic order on Figure 2.1, where the branching random walk was simulated with N (1, 1) gaussian displacements and a Poisson branching of parameter e 1/2 , so that the spinal random walk has standard gaussians increments and so that Hu and Shi assumptions hold. In red is the probability equivalent of the minimum, that is 3 2 log n.

FIGURE 2.1 -Realization of a BRW whose spine has standard gaussian increments and the probability equivalent of its minimum Later, under different assumptions, Aïdékon obtained the convergence of the minimum centered around 3 2 log n for a quite general class of branching random walks. Aïdékon also remained in the boundary case, and assumed that the law of the displacements of the particles was non-lattice (that is, not supported by λZ for some λ > 0), that the spinal random walk has finite variance and that the following L log L-type condition holds :

E W 1 log + W 1 2 + Y 1 log + Y 1 < ∞, (2.6) 
where log + x = min{log x, 0} and Y 1 = ∑ |u|=1 X + u e -X u . Under these assumptions, according to [START_REF] Biggins | Measure change in multitype branching[END_REF], the derivative martingale D n converges to a random variable D ∞ that is positive on the event of the survival of the process, and 66 CHAPITRE 2. BEHAVIOUR OF BRWS AND THEIR EXTREMAL VALUES this limit appears in Aïdékon's result on the minimum together with a constant C > 0 such that for all x :

lim n→∞ P min |u|=n X u ≥ 3 2 log n + x = E e -Ce x D ∞ .
(2.7)

Under the same assumptions, Madaule showed in [START_REF] Madaule | The tail distribution of the derivative martingale and the global minimum of the branching random walk[END_REF] that the tail of the global minimum of the branching random walk, that is the random variable

M = min{X u , u ∈ U } verifies lim x→∞ e x P(M ≥ -x) = c M , (2.8)
where c M > 0 is a constant. This result is of great interest of Madaule who aimed to obtain an asymptotic for the tail of D ∞ of order x -1 , leaving aside assumption 2.6, the two quantities M and D ∞ behind connected via a decomposition of the derivative martingale following the genealogical line associated to the particle reaching the global minimum. Finally, we mention the results obtained by Liu and Zhang in [START_REF] Liu | The Minimal Position of a Stable Branching Random Walk[END_REF]. Still in the boundary case, Liu and Zhang assume that for some α ∈ (1, 2), ε > 0 and c > 0, the left tail of the spinal random walk is O y -(α+ε) , that the right tail is equivalent o cy -α and finally that the following L log L-type condition holds :

E W 1 log + W 1 α + Y 1 log + Y 1 α-1 < ∞.
(2.9)

In this context, they obtain on the set of survival of the process the following regime for the minimum min |u|=n X u :

lim inf n→∞ min |u|=n X u -1 α log n log log n = -1 lim sup n→∞ min |u|=n X u -1 + 1 α log n log log log n ≥ 1.
This last equation is what remains of Hu's result in [START_REF] Hu | How big is the minimum of a branching random walk ?[END_REF] when we put aside the assumption on a finite third moment for the spinal random walk.

Outside the boundary case Results on the tension of the minimum outside the boundary case were obtained by Barral, Hu and Madaule in [START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF], where they only suppose that the phase transition for the free energy is of first order, that is : ϕ(-1) = 0.

(2.10)
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Assuming in addition that there is some constants γ > 3 and α > 1, a slowly varying function and x 0 < 0 such that

E * X ξ 1 > 0, E * (X + ) γ < ∞ et ∀x ≥ x 0 , P * (X ξ 1 ≤ x) = x -∞
|y| -(α+1) (y)dy,

(2.11) Barral, Hu and Madaule obtain the following bound on the left tail of the minimum :

∀n ≥ 2, x ≥ 0, P min |u|=n X u ≤ (α + 1) log n -log (n) -x ≤ Ke -x ,
(2.12)

for some constant K > 0.

The asymptotics on the other tail are obtained assuming the classical condition E W 1 log + W 1 < ∞ holds (which implies the non-triviality of W ∞ ) and some technical assumptions :

∀x ∈ R, lim n→∞ P min |u|=n X u ≥ (α + 1) log n -n log (n) + x = E [exp(-ce x W ∞ )] ,
(2.13) where c > 0 is a constant with a complicated yet explicit expression.

The Seneta-Heyde norming for the additive martingale

We saw previously in Theorem 1.4, that a phase transition happens with the function ϕ * for the question of the limit of the additive martingale. From now on, we will assume that x ∈ R is such that ϕ * is finite and of class C 1 in a neighbourhood of x and we assume that (ϕ * ) (x) = -1. Thus, in the subcritical case where ϕ * (x) < 0, the additive martingale W n := W (-1) n converges towards a non-trivial limit almost surely and in L 1 while in the critical case where ϕ * (x) = 0 (as well as in the supercritical case), the limit is 0 almost surely. A natural question to ask oneself is to ask at which rate this convergence happen, leading to the search of a scaling sequence (c n ) n such that c n W n converges to a non-trivial limit. Seneta [START_REF] Seneta | On Recent Theorems Concerning the Supercritical Galton-Watson Process[END_REF] and Heyde [START_REF] Heyde | Extension of a Result of Seneta for the Super-Critical Galton-Watson Process[END_REF] answered this question in the context of supercritical Galton-Watson processes and showed the existence of such a sequence that can be defined by inverting the log-Laplace transform of the Galton-Watson process. Since then, research on the existence of such a scaling sequence for any martingale linked to a branching structure is called the Seneta-Heyde norming. If the question of the Seneta-Heyde scaling arise in the critical case, let us note that there also exist a sequence (c n ) such that c n W n has a non-trivial limit in the subcritical case : it suffices to take a converging sequence (c n ) since W n already has a non-trivial limit.

The Seneta-Heyde norming for the critical additive martingale in the branching random walk was solved by Biggins and Kyprianou [START_REF] Biggins | Seneta-Heyde norming in the branching random walk[END_REF]. However, let us mention that in this article, Biggins and Kyprianou assumed that the number of individual at any given generation is a.s. finite, which we will not assume. Biggins and Kyprianou also showed in the same article that the scaling sequence is obtained in a similar style that for Galton-Watson process by inverting the log-Laplace transform of W n . This procedure to obtain the sequence (c n ) does not make this sequence very explicit but we will see that in some settings it will take a much more readable expression. Let us not forget about the article [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] by Hu and Shi that manages to get rid off, amongst other things, of the assumption of having a finite number of individuals at each generation. they obtain the existence of a scaling sequence (c n ) of order √ n for the Seneta-Heyde norming under the same assumptions they made to obtain the asymptotics of the minimum of the branching random walk (see Section 2.1).

The finite variance case

The first case we shall consider is the so-called finite variance case as under its assumptions, the spinal random walk will be of finite variance. More precisely, the corresponding assumptions are as follows :

ϕ(-1) = 0 = ϕ (-1)
(2.14)

σ 2 := E   ∑ |u|=1 X 2 u e -X u   ∈]0, ∞[ (2.15) E W 1 log 2 + W 1 + Y 1 log + Y 1 < ∞, (2.16) 
where Y 1 = ∑ |u|=1 X + u e -X u and we recall the notations log + (x) = max{log(x), 0}, x + = max{x, 0} and log 2 + x = log + x 2 . Assumptions (2.14) is here to ensure that the derivative martingale D n defined in (2.2) is, in fact, a martingale. This assumption, combined with (2.15), ensures that the spinal random walk is centered and has finite variance, using the many-to-one formula (Proposition 1.5). Finally, assumption (2.16) is a L log L-type condition that guarantees the nontriviality of the limit. As discussed previously, Biggins and Kyprianou show in [START_REF] Biggins | Measure change in multitype branching[END_REF] under these assumptions that the derivative martingale D n converges almost surely towards a non-negative limit D ∞ which is almost surely positive on the set of survival of the process and whose law is the same one obtained in the Seneta-Heyde norming for the additive martingale obtained by Hu and Shi in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF]. This limit also appears in the following theorem by Aïdékon and Shi [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF] regarding the scaling of the additive martingale :
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Theorem 2.1 (Aïdékon-Shi). Assume (2.14),(2.15) and (2.16) hold. Conditionally on the set of the survival of the process, we have

√ nW n -→ n→∞ 2 πσ 2 D ∞ in probability, (2.17)
where D ∞ > 0 is the limit obtained by Biggins and Kyprianou in [START_REF] Biggins | Measure change in multitype branching[END_REF].

In this same article, Aïdékon and Shi show that the convergence in probability is optimal for their assumptions, as lim sup n→∞ √ nW n is +∞ almost surely on the set of survival of the process, taking away all hopes of having an almost sure convergence.

The method used by Aïdékon and Shi relies on the introduction of a family of truncated martingales W n (a) and D n (a) defined as follows for a ≥ 0 :

W n (a) = ∑ |u|=n e -X u 1 ∀v≤u,X v ≥-a
(2.18)

D n (a) = ∑ |u|=n R(X u + a)e -X u 1 ∀v≤u,X v ≥-a , (2.19)
where R is the renewal function associated with the strictly descending ladder heights of the spinal random walk (see Section 1.5.2 for the definition). We will also note D n = D n (0) which is a martingale thanks to the harmonicity of R for the spinal random walk killed when entering (-∞, 0). The fact that under these assumptions, the minimum converges to infinity, and the asymptotics of R described in Section 1.5.2 allow to establish a strong connection between D n and D n . The behaviour of the minimum also allows us to study exclusively W n (a) and D n (a) rather than W n and D n . With this in mind, Aïdékon and Shi proceed to show that √ n W n (a)

D n (a) converges in probability towards a constant. We can note that the random variable studied here is in the form of a quotient which is quite a delicate quantity to handle. In their article, Aïdékon and Shi then introduce for every a ≥ 0 a change of measure using D n (a) as a bias (in the same fashion as the spinal change of measure described in Section 1.5.2 using W n as a bias) and show the convergence under this new measure. To do so, they compute an equivalent of the first and second moments of

√ n W n (a)
D n (a) under the new measure. In order to obtain such equivalents, they decompose the quantities involved in two terms : one in which the particles involved have a 'good' behaviour allowing the computation of the second moment, and another term containing 'bad' particles which creates the need for the use of a peeling lemma (a type of lemma similar to Theorem 5.14 in [START_REF] Shi | Branching random walks[END_REF]) allowing to control the first moment of this term. The idea behind a peeling lemma is to identify, according to the problem 70 CHAPITRE 2. BEHAVIOUR OF BRWS AND THEIR EXTREMAL VALUES at hand, which particles with an annoying behaviour have a really small probability and thus a brings a small contribution to the branching random walk. The goal is then to bound the probabilities of certain trajectories, considered as atypical regarding the situation at hand. The main issue with such a method is that there are as many peeling lemmas to carefully craft as there are assumptions settings to consider, yet these lemmas have a tendency to be quite technical and require a fine control over the bounds that appear in them. This implies that Aïdékon and Shi's proof in the finite variance case would not translate easily to a different setting, say without assumption (2.15), since the peeling lemmas would all become obsolete. This last remark is the main reason behind the existence of our first article [BM19], a joint work with Pascal Maillard, during this PhD (see Chapter 3). In this article, we present a new proof to Aïdékon and Shi's theorem for the Seneta-Heyde scaling of the critical additive martingale, which does not require the use of a second moment method and does not use the quantity W n (a)/D n (a). Instead, we provide estimates of truncated first moments that allow us to precisely bound the Laplace transform conditioned with respect to the canonical filtration of the branching random walk, which gives us the desired convergence in probability thanks to a lemma crafted for this very purpose. More precisely, we focus on the truncated quantity W n := W n (0) and introduce yet another random variable W n,k defined as

W n,k = ∑ |u|=n e -X u 1 min v≤u,|v|≥k X v ≥0 .
(2.20)

With this W n,k , we have a bit more room in our computations, since we introduce a barrier only after a fixed generation k, leaving us with much more particles than with the barrier used right at the beginning in the definition of W n . As min |u|=n X u → ∞ almost surely on the set of survival of the process, we obtain that W n,k can be as close as we want to W n : ∀ε > 0, ∃k : P ∀n, W n,k = W n > 1ε.

(2.21) Thus, we aim to obtain convergence of the Laplace transform of √ nW n,k conditioned by F l = σ (X u , |u| ≤ k) to the Laplace transform of √ 2/πσ 2 D ∞ when n then k tend to infinity, which allow us to conclude via the use of Lemma 3.16 in Chapter 3 of the manuscript. This convergence of conditional Laplace-transform is then established bounding it from above and below using estimates on the first moment of W n or on first truncated moments of the form E √ nW n 1 √ nW n <ε . Amongst other things, we obtain the following proposition :
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Proposition 2.2. For all ε > 0, there exists a positive function h : R → R * + such that h(x) = o(R(x))(x → ∞), and such that for all x ≥ 0,

lim sup n→∞ E x √ nW n 1 √ nW n ≥ε ≤ h(x)e -x .
This proposition guarantees that √ nW n stays concentrated around its expectation under P x , which is equivalent to cR(x)e -x for some constant c > 0 according to a classical result on random walks (see Lemma 1.21) combined with Proposition 1.5 for x large enough. The presence of renewal function R and its asymptotics lead naturally to the appearance of the derivative martingale and, in the end, of the desired limit. In order to establish this proposition, we used the change of measure P + defined in (1.98) to condition the spinal random walk to remain non-negative during all its trajectory. Lemmas 3.11 and 3.12 in Chapter 3 play a decisive role to end the proof. The first of these two lemmas allows us to preserve the convergence of random variables by conditioning the spinal random walk to remain positive up till time n, obtaining a limit under P + , while the second lemma gives us an integral condition that ensures the convergence of the Green function of the spinal random walk under P + .

Non-triviality of the limit in the finite variance case

The very reason behind the Seneta-Heyde norming is to obtain a non-trivial limit for the rescaled additive martingale. It is thus important to identify when the limit is trivial or not, and it is assumption (2.16) that provides the answer. This assumption is indeed optimal regarding the non-triviality of the limit : Aïdékon showed that this condition is sufficient in [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], then Chen show in [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] that it is in fact necessary and sufficient.

The key to obtain that this condition is indeed necessary and sufficient is to use a theorem due do Biggins and Kyprianou (Theorem 2.1 in [START_REF] Biggins | Measure change in multitype branching[END_REF]) and to apply it to the question of the uniform integrability of the truncated martingale D n , defined in (2.19). Since this martingale is non-negative, it converges almost surely towards a non-negative random variable D ∞ . The asymptotics of R described in Section 1.5.2 together with the fact that min |u|=n X u → ∞ a.s. as n → ∞ in this setting allow us to obtain that the non-triviality of D ∞ is equivalent to the non-triviality of D ∞ . Biggins and Kyprianou's theorem then allow us to identify whether or not D ∞ is trivial by checking the convergence or divergence of some random series.

More precisely, let us note (X ξ n ) n the spinal random walk and define a random variable Q such that for all x ≥ 0, under P x ,

Q = ∑ |u|=1 R(X u )e -X u 1 X u >0 R(x)e -x ,
and recall the definition of the measure P + in Section 1.5.2 that condition (X ξ n ) n to remain non-negative all the time. The non-triviality of the limit is then obtained with Biggins and Kyprianou's result that state that if ∑ n≥1 E ξ n Q(R(X ξ n )e -X ξ n Q ∧ 1) < ∞, P + -almost surely, then E[D ∞ ] = 1 and the limit is non-trivial. While if for all y > 0,

∑ n≥1 E X ξ n Q1 R(X ξ n )e -X ξ
n Q≥y = ∞, P + -almost surely, then E[D ∞ ] = 0 and the limit is trivial.

The α-stable case In the previous case, the spinal random walk was centered and of finite variance. It is then natural to ask ourselves what would happen of the Seneta-Heyde norming of the critical additive martingale without assuming that the variance is finite. First results in this directions were established by He, Liu and Zhang in [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] where assumption (2.15) is cast aside and assumption (2.16) take a different form. Thus He, Liu and Zhang assume in stead that there exist α ∈ (1, 2) and c > 0 such that :

E   ∑ |u|=1 e -X u 1 X u ≤-y   = o(y -α ) (y → ∞) (2.22) E   ∑ |u|=1 e -X u 1 X u ≥y   ∼ cy -α (y → ∞) (2.23) E W 1 log + W 1 α + Y 1 log + Y 1 α-1 < ∞ (2.24)
where Y 1 as the same definition that in (2.16). Under assumptions (2.22) and (2.23), the spinal random walk is no longer of finite variance but its tail behaviour ensure that it is in the attraction domain of stable distribution of index α (see Section 1.5.1). Please note that, as He, Liu and Zhang mention, that the case considered by the three authors does not cover all random walks in the attraction domain of a stable distribution of index α ∈ (1, 2) as it is also possible to have a slowly varying term appearing in the tails asymptotics, while they cast this possibility aside for technical reasons in their article. Also, note that taking α ∈ (1, 2) disqualify all stable distributions of index in (0, 1]. Under assumptions (2.22), (2.23) and (2.24), He, Liu and Zhang still obtain the almost sure convergence of the derivative martingale D n to a limit D ∞ that is almost surely positive on the set of survival of the process. Moreover, the obtain the Seneta-Heyde norming for the critical additive martingale :
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Theorem 2.3 (He, Liu, Zhang [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF]). Assume (1.27), (1.35), (1.36) and (1.37).

Then n 1/α W n -→ n→∞ C Γ(1 -1/α) D ∞ in probability,
where D ∞ is the non-trivial limit of D n and C = lim x→∞ R(x)/x > 0.

The method used in [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] to get this result relies on the same techniques used by Aïdékon and Shi in [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF], that is to study W n (a)/D n (a) and to obtain estimates of first and second moments under the biased measure obtained with D n (a). They also need to craft and use peeling lemmas that suit the setting considered here in order to control the aforementioned moments. This is in this context that our joint work with Pascal Maillard presented in Chapter 4 of this manuscript arise. Our first goal was to add slowly varying functions in the tails asymptotics of the spinal random walk, and also to expand the possible values for α. We also wished to allow negative jumps for the limiting Lévy process.

Our assumptions obviously ask that the branching is supercritical, and we assume E[W 1 ] = 1. Then, we assume that the spinal random walk is such that there exists a scaling sequence (a n ) and an index α ∈ (0, 2)\{1} such that under P * , X ξ n /a n converges to an α-stable distribution whose characteristic function take the form :

φ(t) = exp -|t| α exp -i πθα 2 sgn(t) , (2.25) 
where |θ| ≤ 1 ∧ 2 α -1 , |θ| = 1. Note that a factor λ > 0 can be found in general in front of |t| α but one can always change the sequence (a n ) to fix λ = 1. We will note ρ ∈ [0, 1], respectively ρ = 1ρ, for the positivity parameter, respectively negativity parameter, of the limiting Lévy process X and we recall that other possible modelizations as well as the precise definitions of ρ and ρ can be found in Section 1.5.1. Please recall that αρ ≤ 1, respectively α ρ ≤ 1, and that αρ = 1, respectively α ρ = 1, if and only if X has no positive jumps, respectively no negative jumps.

We will also assume without loss of generality that the sequence (a n ) is increasing and that there exists an increasing function a that varies regularly with index 1/α such that for all n ∈ N, a(n) = a n . We will note a -1 for its inverse function, that is itself an increasing, regularly varying function of index α. Now looking at the diverse possible values for our parameters set in equation (2.25), we can split our setting up in several cases : (a) the case where X ξ 1 has finite variance, α = 2, (b) α ∈ (1, 2) and X has no positive jumps, (b') α ∈ (1, 2) and X has no negative jumps, (c) α ∈ (0, 2)\{1} and X can do both positive and negative jumps. Each of these four cases corresponds to a different profile for the log-Laplacetransform of X ξ 1 as illustrated in Figures 2.2, 2.3, 2.4 and 2.5.

0 FIGURE 2.2 -Case (a) 0 ∞ FIGURE 2.3 -Case (b) 0 ∞ FIGURE 2.4 -Case (b') 0 ∞ FIGURE 2.5 -Case (c)
Thus, the cases where the spinal random walk drifts towards +∞ or -∞ are cast aside. These cases appear when α < 1 and X has only positive jumps or only negative jumps, or when α ∈ (1, 2) and E * X ξ1 = 0. The corresponding profile for the log-Laplace-transform of X ξ 1 in those two cases in represented in Figures 2.6 and 2.7. We also discard the case where α = 1 since it requires its own specific approach, even if some recent works of Berger [START_REF] Berger | Notes on random walks in the Cauchy domain of attraction[END_REF] would allow to generalize our results.

We do not make any specific assumption regarding the behaviour of D n but rather introduce a new quantity Z n via the following result proved in [START_REF] Boutaud | Seneta-Heyde norming for branching random walks with α-stable spine[END_REF] (see Chapter 4 of this manuscript) :

Theorem 2.4. Under the previously stated assumptions, let us define

Z n = ∑ |u|=n R X + u e -X u 1 X u ≥0 .
(2.26)

Then Z n converges almost surely towards a non-negative limit Z ∞ . Moreover, if R is the renewal function associated with the strictly ascending ladder heights of the spinal
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1

∞ FIGURE 2.6 -α < 1, no negative jumps (not considered here) 1 ∞ FIGURE 2.7 -α > 1, E * X ξ 1 = 0 (not considered here)
random walk, then the condition

E W 1 a -1 log + W 1 + Z 1 R log + Z 1 < ∞, (2.27)
implies that Z ∞ is positive almost surely on the set of survival of the process.

Note that since a -1 and R are regularly varying functions of respective indexes α and αρ (see Section 1.5.2 in Chapter 1), condition (2.27) is a 'natural' generalization of condition (2.24) from [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF].

Finally, we show in the same article [START_REF] Boutaud | Seneta-Heyde norming for branching random walks with α-stable spine[END_REF] (cf Chapter 4) that Z n is the right candidate to replace D n in the study of the Seneta-Heyde norming for W n as one can see in the following result : Theorem 2.5. Under the same assumptions as in Theorem 2.4, we have

R(a n )W n -→ n→∞ κZ ∞ in probability,
(2.28)

where κ > 0 is a constant that depends only of α and ρ.

Note that it is also possible the state this Seneta-Heyde norming in terms of the minimum of the spinal random walk in the following way :

W n P * min k≤n X ξ k ≥ 0 -→ n→∞ Z ∞ in probability, (2.29)
which allows, depending on the context, for a more or less explicit scaling sequence.

The main reason we do not work with D n is that this quantity almost surely tends to ∞ when α ρ < 1. As a matter of fact, it is most important that the term that multiply e -X u is equivalent to the renewal function R associated with the strictly descending ladder heights of the spinal random walk, and we recall in Section 1.5.2 that R is a regularly varying function of order α ρ is this context.

Let us also add that the constant κ has an expression in terms of the meander of length 1 associated with the limiting Lévy process X . More precisely, if P is the law of X and P (m) is the law of the meander, meaning that :

P (m) (X t ) t∈[0,1] ∈ A = lim x→0 P (X t + x) t∈[0,1] ∈ A inf t∈[0,1] X t + x ≥ 0 , (2.30) then κ = 1 E (m) X α ρ 1 .
(2.31)

This expression can be greatly simplified when α > 1 and X has no positive jumps, so in the case αρ = 1, to become

κ = 1 Γ(α)Γ(1/α) . (2.32)
The proof of Theorem 2.4 show in a first time that Z n converges using barriers above which particles must stay, as in equation (2.19). Then, the question of the triviality of the limit is dealt with by comparison with D ∞ using the same theorem from Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] that was already used for the finite variance case. There it also comes in handy to have a lemma that translates assumption (2.27) in term of an integral condition that will imply convergence of the Green function of the spinal random walk under P + (see Lemma 4.8 in Chapter 4 of this manuscript).

The proof of the Seneta-Heyde norming stated in Theorem 2.5 relies heavily on the methodology developed in Chapter 3, the difference being that the equivalents on the tail of the minimum of the spinal random walk are no longer provided by Kozlov's result but rather via a combination of results from Bingham, Goldie and Teugels [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF] with results from Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] or Vatutin and Dyakonova [START_REF] Vatutin | Path to survival for the critical branching processes in a random environment[END_REF]. The asymptotics we obtain thus avoid the use of a slowly varying function that is not that explicit, as it is the case in [START_REF] Bingham | Maxima of sums of random variables and suprema of stable processes[END_REF] and [START_REF] Emery | Limiting behaviour of the distributions of the maxima of partial sums of certain random walks[END_REF]. Non-triviality of the limit in the α-stable case As in the finite variance case, we ask ourselves the question of optimality of assumption (2.27) regarding the non-triviality of the limit Z ∞ appearing in Theorem 2.5 on the Seneta-Heyde norming of the critical additive martingale. This is the subject of an ongoing work with Pascal Maillard that is presented in Chapter 5 of this manuscript.

Unfortunately, we are no longer persuaded that condition (2.27) is necessary to obtain that Z ∞ is non-trivial because of technical reasons discussed in Chapter 5.
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In this work, we follow the same general methodology that Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] used in the finite variance case, meaning we aim to use Theorem 2.1 from Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF]. Before stating this theorem, recall the change of measure P + in Section 1.5.3 of Chapter 1 that condition the spinal random walk to remain non-negative at all times : Theorem 2.6 (See Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF]). Define a random variable Q such that for all x ≥ 0, under P x ,

Q = ∑ |u|=1 R(X u )e -X u 1 X u ≥0 R(x)e -x . 1. If ∞ ∑ n=1 E X ξ n Q (R(X ξ n )e -X ξ n Q) ∧ 1 < ∞ P + -a.s. (2.33) then E[D ∞ ] = R(0) = 1. 2. If for all y > 0, ∞ ∑ n=1 E X ξ n Q1 R(X ξ n )e -X ξ n Q≥y = ∞ P + -a.s. (2.34) then E[D ∞ ] = 0.
Thus, the non-triviality of D ∞ allow us to conclude on that of Z ∞ and the remainder of the proof consists in showing the divergence of series of the form E + ∑ n≥1 F(X ξ n ) that appear in lower bounds of the quantity in (2.34). In order to do so, we establish a criterion for P + -a.s. divergence in the spirit of Proposition 2.1 in [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF]. This criterion is stated in Proposition 1.23 in Chapter 1 of this manuscript and proved in Chapter 5

Unfortunately, to this day, the proof of the optimality of condition (2.27) where we have to bound from below the r.v. Q from Biggins and Kyprianou's theorem requires specific precautions that are not needed in Chen's proof [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF]. Indeed, at some point in the computations, the moment of order α of X ξ 1 under P appears : while this moment converges in the finite variance case, it is not always true in the α-stable case. This implies a diminished freedom in the choice of a lower bound for Q, that forces us to use the following random variables instead of W 1 :

∀s ∈ R, W + (s) = ∑ |u|=1 e -∆X u 1 ∆X u >-s , (2.35)
where ∀u = vi ∈ U , with v, i ∈ U , |i| = 1, ∆X u = X u -X v . Thus, computations of integrals involving some expectation containing W 1 are now transformed in much harder to compute integrals, since W + (s) is now a function of the variable of integration while remaining in the expectation. This would require a large and precise understanding of the distribution of W + (s). This lead us to search an equivalent formulation of the moment condition (2.27) in terms of an integral condition, hoping to avoid these technical difficulties.

Chapitre 3 A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions

Abstract This chapter contains the results of the joint work with Pascal Maillard [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] published in the Electronic Journal of Probability. We introduce a set of tools which simplify and streamline the proofs of limit theorems concerning near-critical particles in branching random walks under optimal assumptions. We exemplify our method by giving another proof of the Seneta-Heyde norming for the critical additive martingale, initially due to Aïdékon and Shi. The method involves in particular the replacement of certain second moment estimates by truncated first moment bounds, and the replacement of ballot-type theorems for random walks by estimates coming from an explicit expression for the potential kernel of random walks killed below the origin. Of independent interest might be a short, self-contained proof of this expression, as well as a criterion for convergence in probability of non-negative random variables in terms of conditional Laplace transforms.

Introduction

In the theory of branching processes, many limit theorems hold under socalled L log L-type moment conditions which are both sufficient and necessary. The most famous and historically first is the Kesten-Stigum theorem [START_REF] Kesten | A limit theorem for multidimensional Galton-Watson processes[END_REF], which states in particular that a supercritical Galton-Watson process (Z n ) n≥0 80 CHAPITRE 3. SENETA-HEYDE NORMING FOR BRW REVISITED grows asymptotically like Wm n as n → ∞, where m is the mean of the offspring distribution and W is a random variable which is non-degenerate if and only if E[L log L] < ∞, where L is a random variable equal in law to the number of offspring of an individual. In fact, W is the limit of the non-negative martingale W n = m -n Z n and another statement of the theorem says that the martingale (W n ) n≥0 is uniformly integrable if and only if E[L log L] < ∞.

In the context of branching random walks, Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF] has shown an analogous theorem for the so-called additive martingales arising naturally in this context. His theorem pertains mostly to those additive martingales whose parameter is in the so-called subcritical, or, using statistical physics terminology, high-temperature regime. The martingales in this regime describe the asymptotic growth of the particles in the bulk, i.e. in regions where the number of particles grows exponentially with time. In contrast, the last decade has seen considerable interest in the extremal particles in branching random walks, as well as in related models such as the two-dimensional Gaussian Free Field, Gaussian multiplicative chaos and characteristic polynomials of certain random matrices, see e.g. [START_REF] Shi | Branching random walks[END_REF][START_REF] Zeitouni | Branching random walks and Gaussian fields[END_REF][START_REF] Rhodes | Gaussian multiplicative chaos and applications : A review[END_REF][START_REF] Bovier | Gaussian processes on trees[END_REF] for fairly recent reviews. In these models and in the branching random walk in particular, it is well-known that the asymptotics of the extremal or near-extremal particles are strongly related to the so-called derivative martingale, which is the derivative of the additive martingale with respect to its parameter at its critical value. It is therefore natural to ask for sufficient and necessary L log L-type conditions for the convergence of the derivative martingale to a non-degenerate limit. Such a condition, together with proof of sufficiency, has been given by Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], with necessity subsequently established by Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF]. We will refer to it as Aïdékon's condition.

Aïdékon's condition arises generically in limit theorems concerning critical or near-critical particles in branching random walk. A prime example is the convergence in law of the recentered minimum [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]. Another important example is the so-called Seneta-Heyde norming of the additive martingale at critical parameter : it has been shown by Aïdékon and Shi [AS14] that this martingale, properly renormalized, converges in probability to the same limit as the derivative martingale, under Aïdékon's condition. Their proof has been adapted by He, Liu and Zhang [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] to cases where a certain variance σ 2 (defined in Equation (3.2) below) is infinite and by Aru, Powell and Sepúlveda [START_REF] Aru | Liouville measure as a multiplicative cascade via level sets of the Gaussian free field[END_REF] to an analogous result for Gaussian multiplicative chaos. The proofs of such limit theorems are often quite involved and technical. At their heart lies the so-called spine decomposition introduced by Lyons, Pemantle and Peres [START_REF] Lyons | Conceptual Proofs of LlogL Criteria For Mean Behavior of Branching Processes[END_REF] for Galton-Watson processes and adapted by Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF] to the branching random walk. However, in order to cope with the extremal or near-extremal particles, quite involved truncation techniques have been introduced. A self-contained treatment of these techniques appears in Shi [START_REF] Shi | Branching random walks[END_REF]. These include the following :

-Second moment estimates for quantities restricted to a certain subset of the particles and first moment bounds on the remainder by so-called peeling lemmas -ballot-type theorems for random walks conditioned to stay above certain space-time curves.

We emphasize that these techniques are not only quite technical, but also require the ad-hoc construction of certain quantities and sets of particles specifically tailored to the problem at hand. Other techniques using L p estimates can be used, but they require more restrictive assumptions, see e.g. Kyprianou and Madaule [START_REF] Kyprianou | The Seneta-Heyde scaling for homogeneous fragmentations[END_REF].

In the present article, we give a new proof of the Seneta-Heyde norming for the critical additive martingale in branching random walks, valid under optimal assumptions. We find this proof to be simpler and more streamlined than the original one by Aïdékon and Shi due to several technical improvements, amongst others :

-the second moment estimates and peeling lemmas are replaced by certain truncated first moment estimates -the use of ballot-type theorems is replaced by other, softer methods, in particular bounds on the potential kernel of random walks killed below the origin.

We believe that our methods not only make the proof simpler, but that they are also more versatile in that they can be used as a general toolbox for proving limit theorems involving extremal or near-extremal particles of the branching random walk under optimal assumptions. In fact, the present article is part of a program that aims to establish limit theorems for branching random walks under non-standard assumptions and the tools developed here will be of use later in the program.

The methods from this article can of course be adapted for analogous continuoustime processes, such as certain branching Lévy processes with possibly nonlocal branching. Local branching simplifies some arguments -mostly in the proof of Lemma 3.10 in Section 3.5. In the special case of branching Brownian motion with local branching further simplifications arise, due to the fact that key quantities related to Brownian motion killed at 0 (harmonic function, potential kernel, survival probability, . . . ) admit simple explicit expressions.

Definitions and results

We consider discrete-time real-valued branching random walks (BRWs), which can be informally described as follows. At time n = 0, we start with one initial particle at the origin. Then, at each time step n ≥ 1, every particle dies and gives birth to a random, possibly infinite number of particles distributed randomly on the real line. More precisely, the children of a particle at position x ∈ R are positioned at x + X 1 , x + X 2 , . . ., where the vector (X 1 , X 2 , . . .) follows a given law Θ, called the offspring distribution of the branching random walk. At each generation, the reproduction events are independent. Also, it is possible for several particles to share the same position. We further assume that the Galton-Watson process formed by the number of particles at each generation is super-critical, so that the system survives with positive probability.

Formally, the branching random walk can be constructed as a stochastic process indexed by the Ulam-Harris tree U = n≥0 (N * ) n , where N * = {1, 2, . . .}. Particles are identified with vertices u ∈ U , i.e. words over the alphabet N * . The length of the word u, i.e. the generation of the particle, is denoted by |u|. The position of the particle u is denoted by X u . If the particle indexed by u does not exist, we set X u = +∞. The branching random walk described above then defines a process (X u ) u∈U taking values in R = R ∪ {+∞} and the offspring distribution Θ is a probability distribution on ( R) N * . We further convene that mathematical expressions such as sums or products over the set {|u| = n} of particles at generation n are meant to ignore those u for which X u = +∞.

As mentioned above, we assume that the branching is super-critical, i.e.

E   ∑ |u|=1 1   > 1.
Furthermore, we work in the so-called boundary case, meaning we suppose that

E   ∑ |u|=1 e -X u   = 1 and E   ∑ |u|=1 X u e -X u   = 0. (3.1)
The second equality in (3.1) implicitly assumes that the expectation is welldefined, which is automatically the case under the next assumption :

σ 2 = E   ∑ |u|=1 X 2 u e -X u   ∈ (0, ∞). (3.2)
Note that σ 2 < ∞ holds for example if E[e -θX u ] < ∞ for θ in a neighborhood of 1, and σ 2 > 0 holds as soon as the X u are not all equal to 0 or +∞, almost surely.
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It is a well-known consequence of (3.1) and the branching property that the processes (W n ) n≥0 and (D n ) n≥0 , defined by

W n = ∑ |u|=n e -X u , D n = ∑ |u|=n X u e -X u ,
are martingales with respect to the canonical filtration (F n ) n≥0 of the BRW, defined by F n = σ(X u , |u| ≤ n), see for example [START_REF] Biggins | Measure change in multitype branching[END_REF]. We will refer to (W n ) n≥0 as the additive martingale or Biggins' martingale, in reference to Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] and to (D n ) n≥0 as the derivative martingale. The second equality in (3.1) implies that W n converges almost surely to 0 [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]. In particular we have min |u|=n X u -→ ∞ a.s., as n → ∞. As for the derivative martingale, under assumptions (3.1) and (3.2), Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] showed that D n converges a.s. to a finite nonnegative limit D ∞ .

We introduce the following moment conditions :

E W 1 log 2 + W 1 < ∞, (3.3) E Z 1 log + Z 1 < ∞, where Z 1 = ∑ |u|=1 X + u e -X u . (3.4)
Here, and throughout the article, we use the notations log + (x) = log(x) ∨ 0, x + = x ∨ 0, where x ∨ y = max(x, y) and x ∧ y = min(x, y). Under the additional assumptions (3.3) and (3.4), Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] proved that D ∞ > 0 a.s. on the event of survival of the branching random walk. Later, Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] showed the converse result in the sense that if (3.1) and (3.2) hold then the limit is non-trivial if and only if conditions (3.3) and (3.4) hold.

As mentioned in the introduction, the main result of this paper is a new proof of the following result by Aïdékon and Shi [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. We believe this proof to be simpler and more streamlined and the tools established in proving it will be useful to work with in other settings. Theorem 3.1 (Aïdékon,Shi [AS14]). Assume (3.1), (3.2), (3.3) and (3.4) hold. We have

√ nW n -→ n→∞ 2 πσ 2 D ∞ in probability. (3.5)
The remainder of the article is organized as follows. Section 3.2 contains some preliminaries, namely the spinal decomposition and the many-to-one formula (Section 3.2.1) and some properties of a certain renewal function associated to this decomposition (Section 3.2.2). Section 3.3 contains the proof of Theorem 3.1, as well as a comparison with previous proofs of the same result. In particular, we present in this section the new technical tools going into our CHAPITRE 3. SENETA-HEYDE NORMING FOR BRW REVISITED proof. The proof of one key ingredient (Proposition 3.7) is deferred to Section 3.4, where most of the work is done. Appendix 3.6.1 contains a formula for the potential kernel of random walks on a half-line in terms of associated renewal measures. Appendix 3.6.2 contains a criterion for convergence in probability of non-negative random variables using Laplace transforms. Appendix 3.6.3 contains a certain Tauberian-type lemma involving truncated first moments of a non-negative random variable.

Spinal decomposition and renewal functions

The spinal decomposition

In this section, we recall a change of measure and an associated spinal decomposition of the BRW due to Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]. It will be helpful to allow the initial particle of the BRW to sit at an arbitrary position x ∈ R, this will be denoted by adding the subscript x as in P x and E x (if x = 0, the subscript is ignored). Then (W n ) n≥0 is still a non-negative martingale with W 0 = e -x . Define F ∞ = n≥0 F n . Using Kolmogorov's extension theorem, for every x ∈ R, there exists a probability measure P *

x on F ∞ such that for every generation n ≥ 0,

dP * x dP x F n = e x W n . (3.6)
Following Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF] we see P * x as the projection to F ∞ of a probability (also denoted P *

x ) defined on a bigger probability space equipped with a socalled spine, a distinguished ray in the tree. We will denote the vertex on the spine at generation n by ξ n and its position by X ξ n . The spinal BRW evolves as follows under P *

x : -Start at generation 0 with one particle ξ 0 at position x.

-At generation n, all particles except ξ n reproduce according to the point process Θ and ξ n reproduces according to the size-biased reproduction law Θ * defined by dΘ * dΘ

(x 1 , x 2 , . . .) = ∑ i≥1 e -x i .
-The spine at generation n + 1 is chosen amongst the children u of ξ n with probability proportional to e -X u . The following many-to-one formula can be deduced from Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF], see also Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF].
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Proposition 3.2 (Many-to-one formula). For any x ≥ 0, n ∈ N = {0, 1, . . .} and every uniformly bounded family (H n (u)) u∈U of F n -measurable random variables, one has

E x   ∑ |u|=n e -X u H n (u)   = e -x E * x [H n (ξ n )] . (3.7)
The spinal decomposition implies that the process (X ξ n ) n∈N follows the law of a random walk under P *

x (whose increments do not depend on x). Furthermore, Proposition 3.2 together with assumptions (3.1) and (3.2) shows that this random walk is centered and has finite positive variance :

E * [X ξ 1 ] = 0, E * [X 2 ξ 1 ] = σ 2 ∈ (0, ∞), (3.8)
where σ 2 is the same as in (3.2). The many-to-one formula is a powerful tool which allows to express many quantities of the branching random walk in terms of the random walk (X ξ n ).

The renewal function R

Throughout the article, we denote by R the renewal function associated to the strictly descending ladder heights of the random walk (X ξ n ) n≥0 , as defined in Appendix 3.6.1. Explicitly, one may express R by

R(x) = ∑ n≥0 P * X ξ n ≥ -x, X ξ n < min 0≤k≤n X ξ k .
Note that R(0) = 1 and that for all x < 0, R(x) = 0. We recall the following fact (see Lemma 3.14 in the appendix) :

Proposition 3.3. The renewal function R is harmonic for the random walk killed when entering (-∞, 0) :

∀x ≥ 0, R(x) = E * x R(X ξ 1 )1 X ξ 1 ≥0 .
Recall from the previous section that the random walk (X ξ n ) n≥0 is centered and of finite variance σ 2 . In particular, the strictly descending ladder heights have finite expectation, see e.g. Rogozin [START_REF] Ba Rogozin | On the Distribution of the First Jump[END_REF]. The following lemma recalls some well-known quantitative results concerning the function R and the probability that the random walk (X ξ n ) n≥0 stays non-negative in terms of R.
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Lemma 3.4. For all x ≥ 0, as n → ∞, we have

P * x min k≤n X ξ k ≥ 0 ∼ θR(x) √ n , (3.9)
and for all x ≥ 0, n ≥ 1,

P * x min k≤n X ξ k ≥ 0 ≤ θ R(x) √ n , (3.10)
where θ and θ are positive constants. Furthermore,

θR(x) x -→ x→∞ 2 πσ 2 , (3.11)
where σ 2 is defined in (3.2).

Equations (3.9) and (3.10) in Lemma 3.4 are due to Kozlov [START_REF] Kozlov | On the asymptotic behavior of the probability of nonextinction for critical branching processes in a random environment[END_REF]. Equation (3.11) can be found for example in Aïdékon and Shi [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF] and is derived there as a consequence of Feller's renewal theorem and Sparre Andersen's identities for random walks (see for example [START_REF] Kersting | Discrete Time Branching Processes in Random Environment[END_REF], section 4.2). A different approach, in the spirit of Madaule [START_REF] Madaule | First order transition for the branching random walk at the critical parameter[END_REF], is to use an invariance principle for the Doob R-transform of the random walk killed below the origin, see Section 3.4 for a precise definition of this process. This allows to identify the constant √ 2/π as the expectation of 1/Z 1 , where Z 1 is a 3-dimensional Bessel process at time 1, starting from 0.

Another consequence of Feller's renewal theorem [START_REF] Feller | An introduction to probability theory and its applications[END_REF] is that for every y ∈ R, the difference R(x + y) -R(x) is uniformly bounded in x. In particular (this also follows from (3.11) in Lemma 3.4), there exists a finite c 1 such that ∀x ∈ R : R(x) ≤ c 1 (1 + x + ).

(3.12)

The following lemma is an easy consequence of (3.12) and will be used in Section 3.4. Lemma 3.5. For all x, y ∈ R, we have

R(x + y) ≤ c 1 (1 + x + )(1 + y + ).

Outline of the proof of Theorem 4.2

We define the following quantities, for n, k 0 ≥ 0 :

W n = ∑ |u|=n e -X u 1 min v≤u X v ≥0 (3.13) W n,k 0 = ∑ |u|=n e -X u 1 min v≤u,|v|≥k 0 X v ≥0 (3.14)
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In other words, W n and W n,k 0 are obtained from W n by removing from the sum the contribution of the particles going below the origin at some time k ≤ n or k 0 ≤ k ≤ n, respectively. Remember that min |u|=n X u → ∞ almost surely on the event of survival. Thus ∀ε > 0, ∃k 0 :

P(∀n, W n,k 0 = W n ) > 1 -ε. (3.15)
Proposition 3.6. Let x ≥ 0. Then, as n → ∞,

E x W n ∼ θR(x)e -x √ n ,
and for all n ≥ 0,

E x W n ≤ θ R(x)e -x √ n + 1 ,
where θ and θ are the constants from Lemma 3.4.

Proof.

We have :

E x W n = E x   ∑ |u|=n e -X u 1 min v≤u X v ≥0   = e -x P * x min
i≤n X ξ i ≥ 0 , by the many-to-one formula.

Using Lemma 3.4 ends the proof.

In addition to the first moment estimate, we will need to show that the quantity √ nW n concentrates sufficiently well around its expectation when x is large. Typically, one decomposes W n into a sum of two terms, involving "good" and "bad" particles, respectively. One then calculates the second moments of the first term and bounds the first moment of the second term by a so-called peeling lemma, tailored to the problem at hand (see e.g. Theorem 5.14 in [START_REF] Shi | Branching random walks[END_REF]).

One key novel idea from this article, which greatly simplifies the calculations, is to replace this by estimates of truncated first moments. With these, one can then obtain precise bounds on conditional Laplace transforms which yield the convergence in probability by virtue of Lemma 3.16 in the appendix1 .

The first moment estimate we will use is the following : CHAPITRE 3. SENETA-HEYDE NORMING FOR BRW REVISITED Proposition 3.7. For every ε > 0, there exists a positive function h : R → R + * , such that h(x) R(x) → 0 as x → ∞ and such that the following holds : for every x ≥ 0, we have

lim sup n→∞ E x √ nW n 1 √ nW n ≥ε ≤ h(x)e -x .
Proposition 3.7 will be proven in the next section. Its proof relies on the spinal decomposition from Section 3.2.1 as well as on two ingredients the use of which we believe to be new in this context :

-a lemma by Kersting and Vatutin [START_REF] Kersting | Discrete Time Branching Processes in Random Environment[END_REF] on the convergence of functions of random walks conditioned to stay above the origin until a finite time n to analogous functions of random walks conditioned to stay above the origin for all time. -an explicit formula for the potential kernel of random walks killed below the origin. We now have all the tools we need in order to prove Theorem 3.1.

Proof of Theorem 3.1. We start by giving the outline of the proof.

We first show that for any λ > 0, E exp -λ √ nW n,k 0 F k 0 converges in probability to exp -λ 2 πσ 2 D ∞ , as first n, then k 0 , tend to infinity. To do so we prove a lower and an upper bound, the latter relying crucially on Proposition 3.7. By Lemma 3.16 in the appendix and a Cantor diagonal extraction argument, this yields convergence in probability of √ nW n,k 0 (n) to 2 πσ 2 D ∞ . We then use (3.15) to conclude the proof.

We now get to the details. First we show a lower bound on the conditional Laplace transform. For any λ > 0, we have

E exp -λ √ nW n,k 0 F k 0 = ∏ |u|=k 0 E X u exp -λ √ nW n-k 0 ≥ exp   -λ √ n ∑ |u|=k 0 E X u W n-k 0 
 , by Jensen's inequality.

(3.16) By Proposition 3.6, for every x ∈ R, √ nE x [W n-k 0 ] converges to θR(x)e -x as n → ∞ and is bounded from above by θ R(x)e -x , with θ and θ as in the statement of that proposition. Furthermore, using Proposition 3.2, one easily checks that ∑ |u|=k 0 R(X u )e -X u is finite in expectation and therefore almost surely. By 

n ∑ |u|=k 0 E X u W n-k 0 -→ n→∞ ∑ |u|=k 0 θR(X u )e -X u .
(3.17)

By Equations (3.16) and (3.17), we get almost surely,

lim inf n→∞ E exp -λ √ nW n,k 0 F k 0 ≥ exp   -λ ∑ |u|=k 0 θR(X u )e -X u   . (3.18)
We now deal with the upper bound. We notice that for λ > 0 fixed and for any λ ∈ (0, λ), there exists ε > 0 such that ∀x ∈ [0, ε), e -λx ≤ 1λ x.

(3.19)

Fix λ > 0 and λ ∈ (0, λ) (that will later tend to λ), and take ε satisfying (3.19).

We compute

E exp -λ √ nW n,k 0 F k 0 = ∏ |u|=k 0 E X u exp -λ √ nW n-k 0 ≤ ∏ |u|=k 0 E X u exp -λ √ nW n-k 0 1 √ nW n-k 0 <ε .
In the calculations that follow, we first apply inequality (3.19) to the non-negative r.v. W n-k 0 , then use linearity of expectation and finally the bound 1x ≤ e -x :

E exp -λ √ nW n,k 0 F k 0 ≤ ∏ |u|=k 0 E X u 1 -λ √ nW n-k 0 1 √ nW n-k 0 <ε ≤ ∏ |u|=k 0 1 -λ E X u √ nW n-k 0 1 √ nW n-k 0 <ε ≤ exp   -∑ |u|=k 0 λ E X u √ nW n-k 0 1 √ nW n-k 0 <ε   .
Using Fatou's lemma, we obtain :

lim sup n→∞ E exp(-λ √ nW n,k 0 ) F k 0 ≤ exp   -∑ |u|=k 0 λ lim inf n→∞ E X u √ nW n-k 0 1 √ nW n-k 0 <ε   = exp   λ ∑ |u|=k 0 -lim inf n→∞ E X u √ nW n-k 0 + lim sup n→∞ E X u √ nW n-k 0 1 √ nW n-k 0 ≥ε   .
As seen above, by Proposition 3.6, the first term inside the summation on the right-hand side converges towards θR(X u )e -X u as n → ∞, almost surely. Furthermore, by Proposition 3.7, there exists a positive function h, depending on ε, such that h(x) R(x) → 0 as x → ∞ and such that for every k 0 ∈ N,

lim sup n→∞ E X u √ nW n-k 0 1 √ nW n-k 0 ≥ε ≤ h(X u )e -X u .
Altogether this gives almost surely, for every k 0 ∈ N,

lim sup n→∞ E exp -λ √ nW n,k 0 F k 0 ≤ exp   λ ∑ |u|=k 0 (-θR(X u ) + h(X u ))e -X u   . (3.20) Since min |u|=k 0 X u → ∞ almost surely, we get lim k 0 →∞ ∑ |u|=k 0 θR(X u )e -X u = lim k 0 →∞ 2 πσ 2 D k 0 = 2 πσ 2 D ∞ , a.s., (3.21) 
and, as a consequence, again since min |u|=k 0 X u → ∞ almost surely, lim

k 0 →∞ ∑ |u|=k 0 h(X u )e -X u = 0, a.s..
Together with (3.20), this shows that lim sup

k 0 →∞ lim sup n→∞ E exp -λ √ nW n,k 0 F k 0 ≤ exp -λ 2 πσ 2 D ∞ , a.s.
(3.22) Letting λ → λ in (3.22) and using (3.18) together with (3.21), we finally get for any λ > 0, lim

k 0 →∞ lim inf n→∞ E exp -λ √ nW n,k 0 F k 0 = lim k 0 →∞ lim sup n→∞ E exp -λ √ nW n,k 0 F k 0 = exp -λ 2 πσ 2 D ∞ , a.s.
By Cantor diagonal extraction, there exists a sequence (k

0 (n)) n≥0 (that tends to ∞ as n → ∞) such that for any λ ∈ Q ∩ (0, ∞), E exp -λ √ nW n,k 0 (n) F k 0 (n)
converges to exp -λ 2 πσ 2 D ∞ , almost surely as n → ∞. We now apply Lemma 3.16 in Appendix 3.6.2 with Y n = √ nW n,k 0 (n) and G n = F k 0 (n) to get :

√ nW n,k 0 (n) -→ n→∞ 2 πσ 2 D ∞ in probability.
Finally, we use (3.15) to see that

√ nW n converges to 2 πσ 2 D ∞ in probability as n → ∞.

Proof of Proposition 3.7

This section contains the proof of Proposition 3.7. As is customary in this context, the main idea is to use a decomposition of the particles along the children of the spine. More precisely, let G = σ ξ k , X ξ k i , k ∈ N, i ∈ N * {∅} be the σ-algebra containing information about the spine and its children. Applying first the many-to-one formula (Proposition 3.2) and then Markov's inequality, we have :

E x √ nW n 1 √ nW n /ε≥1 = √ ne -x E * x 1 min k≤n X ξ k ≥0 1 √ nW n /ε≥1 , = √ ne -x E * x 1 min k≤n X ξ k ≥0 E * x 1 √ nW n /ε≥1 G ≤ √ ne -x E * x 1 min k≤n X ξ k ≥0 E * x √ nW n ε ∧ 1 G , = √ ne -x P * x min k≤n X ξ k ≥ 0 E * x E * x √ nW n ε ∧ 1 G min k≤n X ξ k ≥ 0 .
Using Lemma 3.4, we obtain

E x √ nW n 1 √ nW n ε ≥1 ≤ θ R(x)e -x E * x E * x √ nW n ε ∧ 1 G min k≤n X ξ k ≥ 0 ,
where θ is the constant from Lemma 3.4.

Lemma 3.8 (Decomposition of W n along the spine).

We have, P * x a.s., that

E * x √ nW n ε ∧ 1 G ≤ √ n ε e -X ξ n ∧ 1 +     √ n ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i [W n-k-1 ]     ∧ 1 Proof of Lemma 3.8.
Remember the definition of W n in Equation (3.13). We decompose this expression using the spine and its children, along with the branching property in order to get the following identity :

W n = 1 min k≤n X ξ k ≥0 e -X ξ n + n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 1 ∀v≤ξ k i,X v ≥0 W n-k-1 (k, i), (3.23) 
where W n-k-1 (k, i) has the law of W n-k-1 under P X ξ k i conditioned on G. We will use the fact that for any random variables X and X , by subadditivity of x ∧ 1 and Jensen's inequality for concave functions,

E X + X ∧ 1 ≤ E X ∧ 1 + X ∧ 1 ≤ E[X] ∧ 1 + E[X ] ∧ 1. (3.24)
Now we condition on G, and using inequality (3.24), we get :

E * x √ nW n ε ∧ 1 G ≤ E * x √ n ε e -X ξ n 1 min k≤n X ξ k ≥0 G ∧ 1 + E * x     √ n ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 1 ∀v≤ξ k i,X v ≥0 W n-k-1 (k, i) G     ∧ 1 ≤ √ n ε e -X ξ n 1 min k≤n X ξ k ≥0 ∧ 1 +     √ n ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 1 ∀v≤ξ k i,X v ≥0 E X ξ k i W n-k-1     ∧ 1.
We end the proof by bounding the indicator functions by 1.
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Applying Lemma 3.8, we obtain the following bound :

E x √ nW n 1 √ nW n ε ≥1 ≤ θ R(x)e -x (T 1 (x, ε, n) + T 2 (x, ε, n)) , (3.25) 
where

T 1 (x, ε, n) = E * x √ n ε e -X ξ n ∧ 1 min k≤n X ξ k ≥ 0 , T 2 (x, ε, n) = E * x         √ n ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i W n-k-1     ∧ 1 min k≤n X ξ k ≥ 0     .
We state two lemmas to control those terms : Lemma 3.9. For any fixed ε > 0 and x ≥ 0,

T 1 (x, ε, n) -→ n→∞ 0.
(3.26)

Proof of Lemma 3.9.

By Iglehart [START_REF] Iglehart | Functional central limit theorems for random walks conditioned to stay positive[END_REF] and Bolthausen [START_REF] Bolthausen | On a Functional Central Limit Theorem for Random Walks Conditioned to Stay Positive[END_REF], we know that

X ξ n √ n converges in distri-
bution to a positive random variable under the conditioned probability

P * x • min k≤n X ξ k ≥ 0 , so √ ne -X ξ n
converges in distribution to 0 under the same conditioning. Moreover, the random variables √ n ε e -X ξ n ∧ 1 are trivially bounded by 1. Hence

E * x √ n ε e -X ξ n ∧ 1 min k≤n X ξ k ≥ 0 -→ n→∞ 0, (3.27) 
which gives us that T 1 (x, ε, n) -→ n→∞ 0.

Lemma 3.10. For every ε > 0, there exists a positive function h, such that h(x) → 0 as x → ∞ and such that the following holds : for every x ≥ 0, we have

lim sup n→∞ T 2 (x, ε, n) ≤ h(x). (3.28)
The proof of Lemma 3.10 is delayed to the next section.

We can now finish the proof of Proposition 3.7.

Proof of Proposition 3.7. Applying Lemmas 3.9 and 3.10 to Equation (3.25), we get that for every ε > 0 and x ≥ 0,

lim sup n→∞ E x √ nW n 1 √ nW n ε ≥1 ≤ θ R(x) h(x)e -x ,
which implies the proposition.

Proof of Lemma 3.10

In order to prove Lemma 3.10, we introduce in Lemma 3.11 a result on convergence of functionals of the branching random walk conditioned on the spine staying above the origin until time n to corresponding functionals of the process conditioned on the spine staying above the origin for all time. It is inspired by a analogous result for random walks by Kersting and Vatutin [KV17, Lemma 5.2]. We recall that R is harmonic for the sub-Markov process obtained by killing (X ξ n ) n≥0 when entering (-∞, 0) (Proposition 3.3). For x ≥ 0, define the probability measure P +

x by

dP + x dP * x F n = 1 R(x) R(X ξ n )1 min k≤n X ξ k ≥0 , (3.29) 
and denote the associated expectation by E + x . Heuristically, under P + x , the motion of the spine is conditioned to stay non-negative at all times. Lemma 3.11. With the above definitions, let (Y n ) n≥0 be a uniformly bounded sequence of random variables, adapted to

(F n ) n≥0 . Let x ≥ 0. If Y ∞ is a random variable such that Y n -→ n→∞ Y ∞ in probability under P + x , then lim n→∞ E * x Y n min k≤n X ξ k ≥ 0 = E + x [Y ∞ ] . (3.30)
Proof of Lemma 3.11. We give the proof for completeness, which follows almost exactly along the lines of Lemma 5.2 in Kersting and Vatutin [START_REF] Kersting | Discrete Time Branching Processes in Random Environment[END_REF]. Throughout the proof, fix x ≥ 0. Define

m n (x) = P * x min 0≤k≤n X ξ k ≥ 0 .
Then, for every l ≤ n, conditioning on F l gives

E * x Y l min k≤n X ξ k ≥ 0 = E * x Y l 1 m n (x) 1 min k≤n X ξ k ≥0 = E * x Y l m n-l (X ξ l ) m n (x) 1 min k≤l X ξ k ≥0 .
Now fix l ∈ N for the moment. By Lemma 3.4, the ratio m n-l (X ξ l )/m n (x) converges to R(X ξ l )/R(x) as n → ∞ and is bounded by a constant multiple 3.5. PROOF OF LEMMA 3.10 95 of this quantity. By dominated convergence, we get

lim n→∞ E * x Y l min k≤n X ξ k ≥ 0 = E * x Y l lim n→∞ m n-l (X ξ l ) m n (x) 1 min k≤l X ξ k ≥0 = E * x Y l R(X ξ l ) R(x) 1 min k≤l X ξ k ≥0 = E + x [Y l ], (3.31) 
where the last equality follows from the definition of P + x in Equation (3.29). Now let a > 1. Using again Lemma 3.4, we get that for some constant K, for every 1 ≤ l ≤ n,

E * x Y n -Y l min k≤ an X ξ k ≥ 0 ≤ E * x |Y n -Y l | m (a-1)n (X ξ n ) m an (x) 1 min k≤n X ξ k ≥0 ≤ K a a -1 E * x |Y n -Y l | R(X ξ n ) R(x) 1 min k≤n X ξ k ≥0 = K a a -1 E + x [|Y n -Y l |] . (3.32) 
Now recall that by assumption, (Y n ) n≥0 is uniformly bounded and converges to a limit Y ∞ in probability, under P + x . Hence, the following holds : and-E + x [|Y n -Y l |] → 0, as n then l tends to infinity. Combining these two facts with (3.31) and (3.32) and letting first n then l go to infinity, we obtain

-E + x [Y l ] → E + x [Y ∞ ] as l → ∞,
lim n→∞ E * x Y n min k≤ an X ξ k ≥ 0 = E + x [Y ∞ ]. (3.33) Now set M = sup n Y n ∞ and note that |Y ∞ | ≤ M almost surely. Then, E * x Y n 1 min k≤n X ξ k ≥0 -E + x [Y ∞ ]m n (x) ≤ E * x Y n 1 min k≤ an X ξ k ≥0 -E + x [Y ∞ ]m an (x) + 2M m n (x) -m an (x) .
and dividing by m n (x), we get

E * x Y n min k≤n X ξ k ≥ 0 -E + x [Y ∞ ] ≤ m an (x) m n (x) E * x Y n min k≤ an X ξ k ≥ 0 -E + x [Y ∞ ] + 2M 1 - m an (x) m n (x) .
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Note that m an (x)/m n (x) → 1/ √ a as n → ∞ by Lemma 3.4. Hence, using (3.33), we get

lim sup n→∞ E * x Y n min k≤n X ξ k ≥ 0 -E + x [Y ∞ ] ≤ 2M 1 - 1 √ a .
Letting a → 1 gives

lim n→∞ E * x Y n min k≤n X ξ k ≥ 0 = E + x [Y ∞ ],
which was to be proven.

We will furthermore need the following estimate on the potential kernel of the spine under the law P +

x :

Lemma 3.12. Let f : R + → R + be a bounded, non-increasing function satisfying

∞ 0 y f (y) dy < ∞. Then E + x ∞ ∑ k=0 f (X ξ k ) → 0, as x → ∞.
Furthermore, the above expectation is finite for every x ≥ 0.

Proof of Lemma 3.12. By the definition of the law P + x , we have

E + x ∞ ∑ k=0 f (X ξ k ) = 1 R(x) E * x ∞ ∑ k=0 R(X ξ k ) f (X ξ k )1 ∀l≤k,X ξ l ≥0 . (3.34) 
Let µ and μ be the renewal measures associated to the (absolute values of the) strictly descending and strictly ascending ladder heights of the random walk (X ξ n ) n≥0 , respectively, see Appendix 3.6.1. Since the random walk has finite variance by (3.8), the ladder heights have finite expectation, see e.g. Rogozin [START_REF] Ba Rogozin | On the Distribution of the First Jump[END_REF].

Recall that R(x) = µ([0, x]) and define R(x) = μ([0, x]). Also recall the constant c = from Appendix 3.6.1. Using Theorem 3.15 we get

E * x ∞ ∑ k=0 R(X ξ k ) f (X ξ k )1 ∀l≤k,X ξ l ≥0 = c = ∞ z=0 x y=0 R(x -y + z) f (x -y + z)µ(dy) μ(dz) =: I(x). (3.35)
Define the function f : y → (1 + y) f (y), y ≥ 0. By (3.12), there exists a constant C ∈ (0, ∞), such that

I(x) ≤ C ∞ z=0 x y=0 f (x -y + z)µ(dy) μ(dz).
(3.36)

In order to bound this double integral, we first integrate over z, then over y. For w ≥ 0, put g(w) = ∞ 0 f (w + z) μ(dz). Then (3.36) implies

I(x) ≤ C x 0 g(x -y)µ(dy). (3.37) 
We first bound g. For simplicity, suppose μ is non-arithmetic or that its span is equal to 1, the general case can be treated by a scaling argument. We then have for every w ≥ 0, since f is non-increasing,

g(w) = ∞ ∑ k=0 k+1 k f (w + z) μ(dz) ≤ ∞ ∑ k=0 (w + k + 2) f (w + k) R(k + 1) -R(k) . By Feller's renewal theorem, R(k + 1) -R(k) is uniformly bounded in k, hence, g(w) ≤ C ∞ ∑ k=0 (w + k + 2) f (w + k) ≤ ∞ w-1 (z + 3) f (z ∨ 0) dz,
using again that f is non-increasing. The hypotheses on f now readily imply that g is bounded and g(w) → 0, w → ∞.

(3.38) By (3.34), (3.35) and (3.37), it remains to show that

1 R(x) x 0 g(x -y)µ(dy) → 0, x → ∞.
(3.39)

Let δ > 0. By (3.38), there exists y 0 ≥ 0 such that ∀y ≥ y 0 , g(y) ≤ δ. Then,

x 0 g(x -y)µ(dy) ≤ δµ([0, x]) + x x-y 0 g(x -y)µ(dy).
The first term on the right-hand side equals δR(x) by definition and the second term converges to a constant as x → ∞, by the key renewal theorem (see Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF]p. 363]). As a consequence, lim sup

x→∞ 1 R(x) x 0 g(x -y)µ(dy) ≤ δ.
Since δ was arbitrary, this proves (3.39) and thus finishes the proof.

We now have all the tools we need to prove the main lemma of this section.

Proof of Lemma 3.10. Throughout the proof, we fix ε > 0.

As mentioned above, our goal is to apply Lemma 3.11 to a suitable sequence of random variables (Y n ) n≥0 . Recall that

T 2 (x, ε, n) = E * x         √ n ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i W n-k-1     ∧ 1 min k≤n X ξ k ≥ 0     .
Using Proposition 3.6, we get the following bound :

√ n ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i W n-k-1 ≤ θ ε n-1 ∑ k=0 n n -k ∑ i∈N ξ k i =ξ k+1 R(X ξ k i )e -X ξ k i , (3.40)
with θ the constant from Proposition 3.6.

In order to bound the contribution of the children of the spine to the righthand side of Equation (3.40), define a sequence of random variables for k ≥ 0 :

V k = ∑ i∈N ξ k i =ξ k+1 1 + (X ξ k i -X ξ k ) + e -(X ξ k i -X ξ k ) .
(3.41) Using Lemma 3.5, we have for every k ≥ 0 :

∑ i∈N ξ k i =ξ k+1 R(X ξ k i )e -X ξ k i = ∑ i∈N ξ k i =ξ k+1 R X ξ k + (X ξ k i -X ξ k ) e -X ξ k -(X ξ k i -X ξ k ) ≤ c 1 1 + X + ξ k e -X ξ k ∑ i∈N ξ k i =ξ k+1 1 + (X ξ k i -X ξ k ) + e -(X ξ k i -X ξ k ) , ≤ c 1 1 + X + ξ k e -X ξ k V k , ≤ Ce -X ξ k /2 V k , where C > 0 is such that c 1 (1 + x + )e -x ≤ Ce -x/2 for all x ≥ 0. Put Y n = ∑ n-1 k=0 n n-k e -X ξ k /2 V k ε ∧ 1 ∧ 1.
Using the previous inequalities and equivalents, and plugging it in the expression of T 2 (x, ε, n), we obtain :

T 2 (x, ε, n) ≤ θ CE * x Y n min k≤n X ξ k ≥ 0 . (3.42)
In order to bound the expectation on the right-hand side of (3.42), we first bound

Y n by Y n ≤ √ 2Y n + Y n , (3.43) 
where

Y n = n/2 ∑ k=0 e -X ξ k /4 V k ε ∧ 1 ∧ 1, Y n =   n-1 ∑ k= n/2 +1 √ n e -X ξ k /2 V k ε ∧ 1   ∧ 1,
(the 4 in the exponent in the definition of Y n is unimportant and serves to make notation simpler later on). Note that both sequences of random variables (Y n ) n≥0 and (Y n ) n≥0 are adapted to the canonical filtration (F n ) n≥0 of the branching random walk and uniformly bounded by 1. By monotonicity, Y n converges

P + x -almost surely as n → ∞ to Y ∞ defined by Y ∞ = ∞ ∑ k=0 e -X ξ k /4 V k ε ∧ 1 ∧ 1. (3.44)
We now claim the following :

a) E + x [Y ∞ ] → 0 as x → ∞. b) Y n → 0 as n → ∞, in P +
x -probability. Let us see how these two claims imply the statement of the lemma. First, applying Lemma 3.11 to the r.v.'s (Y n ) n≥0 and Y ∞ , we have

lim n→∞ E * x Y n min k≤n X ξ k ≥ 0 = E + x Y ∞ .
Second, applying again Lemma 3.11 the r.v.'s (Y n ) n≥0 and using claim b) above, we get

lim n→∞ E * x Y n min k≤n X ξ k ≥ 0 = 0.
Plugging these two equalities into (3.43) and (3.42) yields (with some C > 0),

lim sup n→∞ T 2 (x, ε, n) ≤ CE + x [Y ∞ ].
Together with Claim a) this yields the lemma. It now remains to prove Claims a) and b) above. We start with Claim a). Recall that under P +

x , the offspring distribution is biased by

∑ |u|=1 R(X u )e -X u R(x)e -x ≤ C ∑ |u|=1 (R(x) + (X u -x) + )e -(X u -x) R(x) = C W 1 + Z 1 R(x) ,
where the inequality is an easy consequence of (3.11) in Lemma 3.4. Hence, for every k ≥ 0,

E + x e -X ξ k /4 V k ε ∧ 1 F k ≤ C f (X ξ k ), where f (y) = E W 1 + Z 1 R(y) e -y/4 (W 1 + Z 1 ) ε ∧ 1 .
We decompose f :

f (y) = f 1 (y) + f 2 (y) R(y) , with f 1 (y) = E W 1 ε -1 e -y/4 (W 1 + Z 1 ) ∧ 1 , f 2 (y) = E Z 1 ε -1 e -y/4 (W 1 + Z 1 ) ∧ 1 .
We now use Assumptions (3.3) and (3.4) and a Tauberian-type result (Lemma 3.17 in the appendix) to bound certain integrals of f 1 and f 2 . First note that it can be obtained from Lemma B.1 (i) in Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] (and is implicit in the proof of part (ii) of that lemma) that Assumptions (3.3) and (3.4) imply that

E W 1 log + (W 1 + Z 1 ) 2 < ∞ and E Z 1 log + (W 1 + Z 1 ) < ∞.
We then apply Lemma 3.17 twice to the r.v. W 1 + Z 1 , once under the law E[W 1 •] and with ρ(x) = x, and once under the law

E[(Z 1 /E[Z 1 ]) •] and with ρ ≡ 1. We then obtain ∞ 0 f 1 (y)y dy < ∞ and ∞ 0 f 2 (y) dy < ∞,
hence, by the bound (3.12) on R, ∞ 0 f (y)y dy < ∞.

(3.45)
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Now we may compute :

E + x [Y ∞ ] ≤ ∞ ∑ k=0 E + x e -X ξ k /4 V k ε ∧ 1 ≤ C ∞ ∑ k=0 E + x f (X ξ k ) . (3.46)
Note that f is bounded and non-increasing by definition. Equations (3.45) and (3.46) together with Lemma 3.12 then imply Claim a).

To prove Claim b) we use the following invariance principle by Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] : the rescaled process (n -1/2 X ξ nt ) t≥0 converges in distribution under P +

x to a three-dimensional Bessel process as n → ∞. As a consequence, for every η ∈ (0, 1) there exists δ > 0, such that for large n, with probability at least 1η, we have

X ξ k > δ √ n for every k ∈ [[ n/2 + 1, n]].
So there is some positive constant c such that, with probability at least 1η,

Y n ≤ c n-1 ∑ k= n/2 +1 e -X ξ k /4 V k ε ∧ 1 ,
which converges to 0 in P + x -probability as n → ∞ since for every x ≥ 0, as shown above,

E + x ∞ ∑ k=0 e -X ξ k /4 V k ε ∧ 1 < ∞.
This proves Claim b) and finishes the proof of the Lemma.

Appendices

Random walks on the half-line

In this section, we recall some properties of random walks on the positive half-line, including a representation of their Green operators (Theorem 3.15). This allows to prove Lemma 3.12 from the main text.

Let (S n ) n≥0 be a random walk of oscillating type started at S 0 = 0. Denote its Markov dual by Ŝn = -S n . Associated to the random walk are four ladder height processes with associated ladder times :

-Strictly descending :

(H n ) n≥0 , (L n ) n≥0 -Weakly descending : (H = n ) n≥0 , (L = n ) n≥0 -Strictly ascending : ( Ĥn ) n≥0 , ( Ln ) n≥0 -Weakly ascending : ( Ĥ= n ) n≥0 , ( L= n ) n≥0
We are interested in the random walk killed when it enters the negative halfline. Define two functions R, R : R + → R + by

R(x) = µ([0, x]) (3.48) R(x) = µ = ([0, x)), x > 0 1, x = 0 (3.49)
The function R is also called the renewal function associated to the strictly descending ladder heights of the random walk (S n ) n≥0 . The following lemma is originally due to Tanaka [START_REF] Tanaka | Time reversal of random walks in one dimension[END_REF], a good reference is [KV17, Lemma 4.2, p78]

Lemma 3.14. The functions R and R are harmonic for the random walk killed when it enters (-∞, 0) and (-∞, 0], respectively, i.e. for all x ≥ 0,

R(x) = E[R(x + S 1 )1 x+S 1 ≥0 ] R(x) = E[ R(x + S 1 )1 x+S 1 >0 ]
Finally, define two Green operators by

G f (x) = ∞ ∑ n=0 E[ f (x + S n )1 x+S k ≥0, 1≤k≤n ] Ḡ f (x) = ∞ ∑ n=0 E[ f (x + S n )1 x+S k >0, 1≤k≤n ].
For x = 0, Equation (3.47) (with μ instead of µ) gives

G f (0) = [0,∞) μ= (dz) f (z) = c = [0,∞) μ(dz) f (z) = c = Ḡ f (0)
In general, the Green operators have the following expressions :

Theorem 3.15. For every measurable, non-negative function f : R + → R + , we have

G f (x) = c = [0,x]×[0,∞) (µ ⊗ μ)(dy, dz) f (x -y + z) ∀x ≥ 0 Ḡ f (x) = c = [0,x)×[0,∞) (µ ⊗ μ)(dy, dz) f (x -y + z) ∀x > 0.
We were not able to find this result in the literature in this generality. For random walks on the integers, it was proven by Spitzer [Spi76, P19.3, p209]. The general result can, with some effort 2 , be deduced from a corresponding result for Lévy processes [START_REF] Tanaka | Lévy processes conditioned to stay positive and diffusions in random environments[END_REF], using the fact that the Green operators and the renewal measures defined above are equal to the corresponding ones for the compound Poisson process associated to the random walk. However, all of these proofs make use of Sparre Andersen's identities (see e.g. [KV17, Section 4.2]) or their continuous analogue. Instead, we give here a direct proof, based on Spitzer's original idea3 .

Proof of Theorem 3.15.

Define M n = min 0≤k≤n S k , n = 0, 1, . . .
The following identity is well-known and can be easily obtained by decomposing the random walk at the first time it hits M n (see e.g. [PR69, (2.2)] or the proof of [KV17, Theorem 4.4]) : for every λ, µ > 0, we have

∞ ∑ n=0 E[e λM n -µ(S n -M n ) ] = ∞ ∑ n=0 E[e λS n 1 S k <0, 1≤k≤n ] ∞ ∑ n=0 E[e -µS n 1 S k ≥0, 1≤k≤n ] .
Equivalently, by (3.47) and Lemma 3.13, for every measurable, non-negative function g, we have

∞ ∑ n=0 E[g(M n , S n -M n )] = c = [0,∞) 2 (µ ⊗ μ)(dy, dz)g(-y, z)
The expressions for G f (x) and Ḡ f (x) then follow by setting in the above equation g(y, z) = f (x + y + z)1 y≥-x and g(y, z) = f (x + y + z)1 y>-x , respectively.

Laplace transform criterion for convergence in probability

Lemma 3.16. Consider a probability space (Ω, A, P). Let (G n ) n≥0 be a filtration. Let Y, Y 0 , Y 1 , ... be non-negative r.v.s defined on that probability space. Suppose Y is measurable with respect to G ∞ = k≥0 G k . Suppose that for every λ For all s > 0, put l(s) = ρ(log(s)), which is slowly varying by Proposition 1.5.7 (ii) of [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF]. Following the notations in [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF], we put for all s ≥ 0,

∈ Q + = Q ∩ (0, ∞), E e -λY n G n -→
f 0 (s) = 1 -E[exp(-sY)]. Using the inequalities ∀x ≥ 0, (1 -e -1 )(x ∧ 1) ≤ 1 -e -x ≤ x ∧ 1,
we get ∀y ≥ 0, (1e -1 )ϕ(y) ≤ f 0 (e -y ) ≤ ϕ(y).

Using this, we see that

∞ 0 ϕ(y)ρ(y) dy < ∞ ⇔ ∞ 0 f 0 (e -y )l(e y ) dy < ∞.
Changing variables, we have Changing again variables, we have for every y ≥ 0,

y∨1 1 l(t) dt t = log + y 0 ρ(z) dz.
Since ρ is regularly varying with some index ν > -1, we have the following asymptotic (see for example Theorem 1.5.11 from [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF])

log + y 0 ρ(z) dz ∼ 1 ν + 1 (log + y)ρ(log + y), y → ∞.
The two previous displays give,

E Y∨1 1 l(t) dt t < ∞ ⇔ E (log + Y)ρ(log + Y) < ∞.
Collecting the above identities yields the statement of the lemma.

Introduction

Definitions and results

We consider discrete-time real-valued branching random walks (BRWs), which can be informally described as follows. At time n = 0, we start with one initial particle at the origin. Then, at each time step n ≥ 1, every particle dies and gives birth to a random, possibly infinite number of particles distributed randomly on the real line. More precisely, the children of a particle at position x ∈ R are positioned at x + X 1 , x + X 2 , . . ., where the vector (X 1 , X 2 , . . .) follows a given law Θ, called the offspring distribution of the branching random walk. At each gene-108CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE ration, the reproduction events are independent. Also, it is possible for several particles to share the same position. We further assume that the Galton-Watson process formed by the number of particles at each generation is super-critical, so that the system survives with positive probability.

The last decade has seen considerable interest in the extremal particles in branching random walks, as well as in related models such as the two-dimensional Gaussian Free Field, Gaussian multiplicative chaos and characteristic polynomials of certain random matrices, see e.g. [START_REF] Shi | Branching random walks[END_REF][START_REF] Zeitouni | Branching random walks and Gaussian fields[END_REF][START_REF] Rhodes | Gaussian multiplicative chaos and applications : A review[END_REF][START_REF] Bovier | Gaussian processes on trees[END_REF] for fairly recent reviews. A fundamental tool in the study of the extremes of the branching random walk is the so-called spine decomposition which allows to represent the branching random walk after a change of measure as another branching process involving a special particle called the spine evolving as a certain random walk. Almost all results in the literature have been obtained under the assumption that this "spinal" random walk has finite variance. It is natural to wonder what happens when this condition is not satisfied, which is the goal of the present article.

Formally, the branching random walk can be constructed as a stochastic process indexed by the Ulam-Harris tree U = n≥0 (N * ) n , where N * = {1, 2, . . .}. Particles are identified with vertices u ∈ U , i.e. words over the alphabet N * . The length of the word u, i.e. the generation of the particle, is denoted by |u|. The position of the particle u is denoted by X u . If the particle indexed by u does not exist, we set X u = +∞. The branching random walk described above then defines a process (X u ) u∈U taking values in R = R ∪ {+∞} and the offspring distribution Θ is a probability distribution on ( R) N * . We further convene that mathematical expressions such as sums or products over the set {|u| = n} of particles at generation n are meant to ignore those u for which X u = +∞. Furthermore, we use the convention ∑ ∅ = 0 and ∏ ∅ = 1.

As mentioned above, we assume that the branching is super-critical, i.e.

E   ∑ |u|=1 1   > 1. (4.1)
We recall the definition of the so-called boundary case [START_REF] Biggins | Fixed Points of the Smoothing Transform : the Boundary Case[END_REF] :

E   ∑ |u|=1 e -X u   = 1 and E   ∑ |u|=1 X u e -X u   = 0, (4.2)
where it is implicitly assumed that the second expectation is well-defined.

It is well known that under (4.2)

W n = ∑ |u|=n e -X u , D n = ∑ |u|=n X u e -X u , 4.1. INTRODUCTION
109 are martingales with respect to the canonical filtration of the branching random walk F n = σ(X u , |u| ≤ n). We will refer to (W n ) n≥0 as the additive martingale or Biggins' martingale, in reference to Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] and to (D n ) n≥0 as the derivative martingale. Since (W n ) is a non-negative martingale it converges almost surely and the second equality in (4.2) implies that the limit is 0 (see Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] and Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]). The discussion over the rate at which W n converges to 0 is referred to in the literature as the Seneta-Heyde norming for the branching random walk.

Under the additional assumption

σ 2 := E   ∑ |u|=1 X 2 u e -X u   ∈ (0, ∞), (4.3) 
Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] showed that D n converges a.s. to a finite nonnegative limit D ∞ . We will refer to this setting as the finite variance case.

Aïdékon and Shi [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF] proved under (4.3) and

E W 1 log 2 + W 1 < ∞, (4.4) 
E W1 log + W1 < ∞, (4.5) 
where W1 = ∑ |u|=1 X + u e -X u , x + = x ∨ 0 and log + (x) = log(x ∨ 1), that √ nW n converges in probability to 2 πσ 2 D ∞ . Moreover, Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] showed that assumptions (4.4) and (4.5) are necessary and sufficient for the limit to not be trivial. Aïdékon and Shi also obtained that lim sup n→∞ √ nW n = ∞ almost surely on the event of survival and conjectured that lim inf n→∞ √ nW n = 2 πσ 2 D ∞ almost surely on the event of survival of the process. This conjecture was then proved by Hu in [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] under a slightly stronger assumption than (4.4) and (4.5). In this article, Hu also fully described lim sup n→∞ √ n f (n) W n for any nondecreasing function f such that f (x) → ∞ as x → ∞ based on the convergence or divergence of the integral dt t f (t) , under assumptions (4.3), (4.4) and (4.5). He, Liu and Zhang [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF] then considered a different setting, using the 110CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE following assumptions instead of (4.3)-(4.5) :

E   ∑ |u|=1 e -X u 1 X u ≤-x   = o(x -α ) (x → ∞) (4.6) E   ∑ |u|=1 e -X u 1 X u ≥x   ∼ c x α (x → ∞) (4.7) E W 1 log + W 1 α + W1 log + W1 α-1 < ∞, (4.8) 
where α ∈ (1, 2) and c > 0. Under assumptions (4.1)-(4.2) and (4.6)-(4.8), they proved that D n still converges almost surely to D ∞ and n 1/α W n converges in probability to c D ∞ with an explicit constant c > 0, thus extending Aïdékon and Shi's result [START_REF] Aidékon | The Seneta-Heyde scaling for the branching random walk[END_REF].

Our goal in this article is to significantly generalize the above results by using and developing the toolbox introduced in Boutaud and Maillard [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] (Chapter 3 of this manuscript) for the finite variance case.

Assumptions.

In what follows, we assume (4.1) and E ∑ |u|=1 e -X u = 1. Let (S n ) n∈N denote a real-valued random walk with S 0 = 0 and the law of its increments given by ∀A ∈ B(R), P(S

1 ∈ A) = E   ∑ |u|=1 e -X u 1 X u ∈A   .
We suppose that there exists α ∈ (0, 2)\{1} and a sequence (a n ) n , such that S n a n converges in law to an α-stable distribution as n → ∞, with characteristic function

t → exp -λ|t| α exp -i πθα 2 sgn(t) , λ > 0, |θ| ≤ 1 ∧ 2 α -1 , |θ| = 1.
(4.9) Under these assumptions, (W n ) n≥0 is still a martingale for the canonical filtration of the branching random walk and converges almost surely to 0. However (D n ) n≥0 is not always a martingale, which creates the need to replace it with another quantity, defined in Theorem 4.4 below.

One consequence of the assumption E ∑ |u|=1 e -X u = 1 is that the minimum min |u|=n X u tends to ∞ as n → ∞ almost surely on the event of survival of the branching random walk [Big98, Theorem 3]. We will use this fact without further mention during the remainder of the article.

The assumptions on the parameters have been chosen such as to match those of Heyde [START_REF] Heyde | On the maximum of sums of random variables and the supremum functional for stable processes[END_REF], Bingham [START_REF] Bingham | Limit Theorems in Fluctuation Theory[END_REF] and Emery [START_REF] Emery | Limiting behaviour of the distributions of the maxima of partial sums of certain random walks[END_REF]. Note that, under these assumptions, the random walk (S n ) n oscillates. One could extend our results to more general parameters, for example to α = 1 using recent results by Berger [START_REF] Berger | Notes on random walks in the Cauchy domain of attraction[END_REF], but we will not do so here for the sake of simplicity.

The parametrization in (4.9) corresponds to the form (C) from Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF] and has been chosen here such as to simplify the constant κ that appears in our result. See below for its relation to other parametrizations of stable laws.

Define the negativity parameter ρ = 1θ 2 ∈ (0, 1), (4.10) and the positivity parameter ρ = 1ρ. Notice that with our choices of parameters, α ρ ≤ 1 and αρ ≤ 1. We will also assume without loss of generality that the sequence a n is increasing and that there exists an increasing and regularly varying function a of index 1/α such that for all n ∈ N, a(n) = a n . The inverse function a -1 of a is then an increasing regularly varying function of index α.

Another parametrization of stable laws. In the literature one usually parametrizes the stable laws defined above such that the characteristic function is of the form t → exp -λ |t| α (1i sgn(t)β tan(πα/2) , (A)

with α ∈ (0, 2)\{1}, β ∈ [-1, 1], λ > 0, and |β| < 1 if α < 1. This corresponds to form (A) in Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF]. The parameters are related in the following way : 

β = cot
ϕ(t) = log E   ∑ |u|=1 e -tX u   , t ∈ R
Note that the function t → ϕ(t + 1) is the log-Laplace transform of S 1 . In this section, we illustrate the assumptions from this article in terms of this function.

Recall that, under the assumptions stated above, we only consider the cases where the random walk (S n ) n oscillates and we exclude the case α = 1 which would require a specific treatment. To be more precise, we consider the following cases :

(a) the finite variance case α = 2, (b) α ∈ (1, 2) and X has no positive jumps, (b') α ∈ (1, 2) and X has no negative jumps, (c) α ∈ (0, 2)\{1} and X has positive and negative jumps. point t = 1 -however, in all cases it may not be finite at points at which the function is infinite as plotted. Indeed, if ϕ(t) < ∞ for some t < 1 (t > 1), then the law of S 1 must have exponentially decaying right (left) tails, which implies that the stable process has no positive (negative) jumps.

While cases (b) and (b') are natural cases to consider, the case (c) might seem degenerate. Indeed, the growth of the branching random walk at exponential scale is entirely determined by the function ϕ through its Fenchel-Legendre transform [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF], which is here simply a linear function. However, such branching random walks might arise naturally as limits of certain sequences of branching random walks, though we are not aware of any specific example. In all cases (b),(b') and (c), the finer asymptotic behavior of such BRWs has not been considered before to our knowledge and is therefore open for investigation.

We exclude in this article the cases where (S n ) drifts towards +∞ or -∞, which is left open for investigation. This can happen either when α < 1 and X has only positive or only negative jumps or when α ∈ (1, 2] and E[S 1 ] = 0. The behavior of the function ϕ in these two cases is schematically depicted in Figures 5 and6, respectively. The asymptotic of the minimum in the latter case has been studied in [START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF].

Overview of the article. Throughout the remainder of the article, we suppose λ = 1 which can be obtained by replacing a n by a n λ 1/α . The article is organized as follows. Section 4.2 contains preliminaries about the spinal decomposition and the associated many-to-one formula. Section 4.3 contains the definition of a renewal function, description of its behaviour and how it impacts the tail of the minimum of the random walk (S n ) n as well as a truncated first moment. Section 4.4 contains the statement of our two main results and a comment on the explicit expression of a constant in a specific case. Section 4.5 contains the proof of Theorem 4.4. Section 4.6 contains the proof of our main result (Theorem 4.5) and the proof of two lemmas are deferred to Section 4.7. Finally, Section 4.8 114CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE contains the calculations to obtain the explicit expression of κ in (4.22).

The spinal decomposition

In this section, we recall a change of measure and an associated spinal decomposition of the BRW due to Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]. It will be helpful to allow the initial particle of the BRW to sit at an arbitrary position x ∈ R, this will be denoted by adding the subscript x as in P x and E x (if x = 0, the subscript is ignored). Then (W n ) n≥0 is still a non-negative martingale with W 0 = e -x . Denote by F n = σ(X u , |u| ≤ n) the canonical filtration of the BRW and define F ∞ = n≥0 F n . Using Kolmogorov's extension theorem, for every x ∈ R, there exists a probability measure P *

x on F ∞ such that for every generation n ≥ 0, dP *

x dP x F n = e x W n . (4.14)

Following Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF] we see P * x as the projection to F ∞ of a probability (also denoted P *

x ) defined on a bigger probability space equipped with a socalled spine, a distinguished ray in the tree. We will denote the vertex on the spine at generation n by ξ n and its position by X ξ n . The spinal BRW evolves as follows under P *

x : -Start at generation 0 with one particle ξ 0 at position x.

-At generation n, all particles except ξ n reproduce independently according to the point process Θ and ξ n reproduces according to the sizebiased reproduction law Θ * defined by dΘ * dΘ (x 1 , x 2 , . . .) = ∑ i≥1 e -x i .

-The spine at generation n + 1 is chosen amongst the children u of ξ n with probability proportional to e -X u . The following many-to-one formula can be deduced from Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF], see e.g. Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF].

Proposition 4.1 (Many-to-one formula). For any x ≥ 0, n ∈ N = {0, 1, . . .} and every family (H n (u)) u∈U of F n -measurable non-negative random variables, one has

E x   ∑ |u|=n e -X u H n (u)   = e -x E * x [H n (ξ n )] . (4.15)
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The spinal decomposition implies that the process (X ξ n ) n∈N follows the law of a random walk under P *

x (whose increments do not depend on x), which we will refer to as the spinal random walk. It has the same law as the random walk (S n ) n from the introduction (with S 0 = x). In particular, by assumption, (X ξ n ) n is in the domain of attraction of an α-stable process.

Renewal function and the tail of the minimum

Let R be the renewal function associated with the strictly descending ladder heights of the oscillating random walk (S n ). Then R is harmonic for the sub-Markov process obtained by killing (S n ) when entering (-∞, 0) [START_REF] Tanaka | Time reversal of random walks in one dimension[END_REF], i.e. ∀x ≥ 0, R(x) = E x R(S 1 )1 S 1 ≥0 , (4.16) and ∀x < 0, R(x) = 0. We proceed by giving asymptotical results and bounds on the renewal function R. From our assumptions, we deduce using Caravenna and Chaumont's Lemma 2.1 in [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] that R is a regularly varying function with index α ρ ≤ 1 and so there exists a slowly varying function such that

R(x) ∼ (1 + x) α ρ (x) (x → ∞), (4.17) 
and thus there exists constants c 0 > 0 and c 1 > 0 such that for all x ≥ 0

c 0 (1 + x) α ρ (x) ≤ R(x) ≤ c 1 (1 + x) α ρ (x). (4.18)
From this, we easily obtain the following lemma :

Lemma 4.2. For all x, y ∈ R, we have

R(x + y) ≤ c 1 R(x)R(y),
for a certain constant c 1 > 0.

Proof of Lemma 4.2. Let x, y ∈ R. First, since α ρ ∈ (0, 1], there is a positive constant c α ρ such that

(1 + x + y) α ρ ≤ c α ρ(1 + x) α ρ(1 + y) α ρ.
Now, since R is non-decreasing, we can assume without loss of generality that so does and that is positive. Then, using the slow variation of , we obtain that there exists a constant C > 0 such that 

(x + y) ≤ (2x ∨ y) ≤ C (x ∨ y) ≤ C 2 (x) (y).
R(x + y) ≤ c 1 c α ρC 2 (1 + x) α ρ (x)(1 + y) α ρ (y) ≤ c 1 c α ρC 2 c 2 0 R(x)R(y),
which was to be proved.

Note that R is also a subadditive function.

The corresponding results hold for R, the renewal function associated with the strictly ascending ladder heights, by replacing ρ by ρ, by ˆ , c 0 by ĉ0 , c 1 by ĉ1 , and c 1 by ĉ 1 .

We now turn to the tail of the minimum min k≤n S k . We have the following theorem :

Theorem 4.3. Let (S n ) satisfy the assumptions stated in the introduction.

1. Then p n = P 0 (min k≤n S k ≥ 0) is regularly varying with indexρ, more precisely,

p n = 1 n ρ L(n)Γ(ρ) ,
with L a slowly varying function satisfying

L(n) ∼ exp      ∞ ∑ n=1 1 -1 n n n [P(S n < 0) -ρ]      .
2. For every x ≥ 0, we have

lim n→∞ P x (min k≤n S k ≥ 0) p n = R(x).
3. We have

p n ∼ κ R(a n ) , n → ∞,
where κ > 0 is a constant given in equation (4.21) below. 4. We have for some constant c a > 0,

R(x) R(x) ∼ c a a -1 (x), x → ∞,
and thus there exists a constant c a > 0 such that ∀x ≥ 0, 1 c a a -1 (x) ≤ R(x) R(x) ≤ c a a -1 (x).
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A direct consequence of Theorem 4.3 is the existence of a constant c 2 > 0 such that for all x ≥ 0 and n ≥ 1,

P x min k≤n S k ≥ 0 ≤ c 2 κ R(a n ) R(x). (4.19)
Proof of Theorem 4.3.

The first and second part of the theorem are classical and can be found for example in Theorem 8.9.12 of Bingham, Goldie and Teugels [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF], at least for every x ≥ 0 which is a continuity point of R. This also holds for every x ≥ 0 by applying the same method as in Kozlov [START_REF] Kozlov | On the asymptotic behavior of the probability of nonextinction for critical branching processes in a random environment[END_REF].

The third part can be deduced from equations (3.5), (3.6) and (3.11) in Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF], see also Vatutin and Dyakonova [VD17, equations (13),( 14)].

For the last part, we note that by the third part, it is enough to show that

p n pn ∼ C n , n → ∞,
for some constant C > 0, and where pn = P 0 (max 1≤k≤n S k < 0). Note that the inequality in pn is strict and that it is not a problem since the renewal function R= associated with the weakly ascending ladder heights verifies R= = c = R (see for instance Lemma 3.13 in Chapter 3). But applying the first part to the r.w. (-S n ), we have

pn = c = n ρ L(n)Γ( ρ) ,
with L a slowly varying function satisfying

L(n) ∼ exp      ∞ ∑ n=1 1 -1 n n n [P(S n > 0) -ρ]      . Since ρ + ρ = 1, it follows that the product satisfies L(n) L(n) → c = as n → ∞ and that p n pn ∼ 1 nΓ(ρ)Γ( ρ)
, n → ∞, which was to be proven.

Comments on the expression of κ. Let X = (X t ) t≥0 be the α-stable Lévy process starting at 0 and such that X 1 has characteristic function given by (4.9), with λ = 1, and note P for its law. One can give an expression of κ in terms of X . Let 118CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE P (m) be the law of the meander of length 1, associated with X (which is well defined according to [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] and [START_REF] Chaumont | Excursion normalisée, méandre et pont pour les processus de Lévy stables[END_REF]). That is

P (m) (X t ) t∈[0,1] ∈ A = lim x→0 P (X t + x) t∈[0,1] ∈ A | inf t∈[0,1] X t + x ≥ 0 .
(4.20) Then, we have

κ = 1 E (m) X α ρ 1 . (4.21)
We show in Section 4.8 that κ has a simple explicit expression when α ∈ (1, 2] and the Lévy process (X t ) t≥0 has no positive jumps, i.e. when αρ = 1 :

κ = 1 Γ(α)Γ(1/α) . (4.22)

Main results

The first theorem introduces the right candidate to replace the derivative martingale D n defined above in the finite variance case. Recall that we use the notation x + = x + = x ∨ 0. Theorem 4.4. Under the assumptions stated above, define

Z n = ∑ |u|=n R(X u )e -X u 1 X u ≥0 .
(4.23)

Then Z n converges almost surely to a non-negative limit Z ∞ . Moreover, if a is the function in Theorem 4.3 and R is the renewal function associated with the strictly ascending ladder heights of the spinal random walk, and if the following assumption holds :

E W 1 a -1 log + W 1 + Z 1 R log + Z 1 < ∞, (4.24) 
then Z ∞ is (strictly) positive almost surely on the event of survival of the branching random walk.

We believe the assumption (4.24) to be nearly optimal for the non-triviality of Z ∞ . Note that it is optimal in the finite variance case α = 2 (see Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF]).

We can now state our main result, the Seneta-Heyde norming of the additive martingale : Theorem 4.5. Under the same assumptions as in Theorem 4.4, we have :

R(a n )W n -→ n→∞ κZ ∞ in probability, (4.25)
where κ is the positive constant defined in (4.21).
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Comments on the derivative martingale. Note that in the case where α ρ = 1 and R is equivalent to a polynomial function, since min |u|=n X u → ∞ as n → ∞, Z n and D n have the same limit. So in that case, D n is the right quantity to study the Seneta-Heyde norming of W n , as illustrated in [START_REF] He | On Seneta-Heyde Scaling for a stable branching random walk[END_REF]. However, when α ρ < 1, D n is no longer the right quantity and will in fact tend to ∞ almost surely.

Proof of Theorem 4.4

In this section, we prove Theorem 4.4. We first show that Z n , defined in (4.23), converges almost surely to a non-negative limit Z ∞ . The key to this will be the following martingale. Define

D n = ∑ |u|=n R(X u )e -X u 1 min v≤u X u ≥0 (4.26)
Using the fact that R is harmonic for the spinal random walk killed below zero (4.16) and the many-to-one lemma (Proposition 4.1), one easily shows that (D n ) n is a martingale with respect to the canonical filtration of the branching random walk. Following Kyprianou [START_REF] Kyprianou | Travelling wave solutions to the {K-P-P} equation : Alternatives to {S}imon {H}arris' probabilistic analysis[END_REF], we introduce a "barrier" by defining for every a ≥ 0 the quantities 

Z (a) n = ∑ |u|=n R(X u )e -X u 1 ∀v≤u,X v ≥-a (4.27) D (a) n = ∑ |u|=n R(X u + a)e -X u 1 ∀v≤u,X v ≥-a . ( 4 
n and D We now show that the limit Z ∞ is non-trivial under the additional assumption (4.24). To do so we use the martingale D n defined in (4.26).

By definition, we have for all n, D n ≤ Z n a.s., so P(D ∞ > 0) ≤ P(Z ∞ > 0) and it suffices to prove that P(D ∞ > 0) > 0.

First note that E[D 0 ] = R(0) = 1 > 0. We will prove that D n is uniformly integrable which will give that E[D ∞ ] = 1, P(D ∞ > 0) > 0 and so Z ∞ will not be trivial. Furthermore, by standard arguments for branching processes, one shows that P(Z ∞ = 0) is a fixed point of the generating function of the number of offspring of a branching random walk particle and therefore is equal to the extinction probability of the branching random walk.

Following Chen [Che15], we will state a specific case of Theorem 2.1(i) by Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] that provides a sufficient condition for the nontriviality of D ∞ . First we need to make a change of measure to condition the walk (X ξ n ) to stay non-negative at all times : recalling the harmonicity of R for the spinal random walk killed below 0 under P * , namely equation (4.16), we can define for all x ≥ 0 a probability measure P +

x by

dP + x dP * x F n = 1 R(x) R(X ξ n )1 min k≤n X ξ k ≥0 . (4.29) 
Under P + x , the random walk (X ξ n ) n can be seen as being conditioned to stay non-negative at all times, see Bertoin and Doney [START_REF] Bertoin | On conditioning a random walk to stay nonnegative[END_REF]. We will denote by E + x the associated expectation.

We can now state the theorem :

Theorem 4.6 (See Theorem 2.1(i) in Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF]). Define a random variable Q such that for all x ≥ 0, under P

x , Q = ∑ |u|=1 R(X u )e -X u 1 X u ≥0 R(x)e -x . Suppose ∞ ∑ n=1 E X ξ n Q (R(X ξ n )e -X ξ n Q) ∧ 1 < ∞ P + -a.s. (4.30) Then E[D ∞ ] = R(0) = 1. (4.31)
We will now check that condition (4.30) holds in order to conclude that D ∞ is non-trivial.
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Since R is subadditive, there exists c 3 > 0, such that under P

x Q ≤ ∑ |u|=1 R(X u )e -X u R(x)e -x = ∑ |u|=1 R(X u -x + x)e -(X u -x+x) R(x)e -x ≤ c 3 ∑ |u|=1 (R(x) + R(X u -x)1 X u -x≥0 ) e -(X u -x) R(x) = c 3 W 1 + Z 1 R(x) , ( 4.32) 
where we recall that under P 0

Z 1 = ∑ |u|=1 R(X u )e -X u 1 X u ≥0 .
Using (4.32), we have for all n ≥ 1,

E X ξ n Q (R(X ξ n )e -X ξ n Q) ∧ 1 ≤ (c 3 ) 2 E X ξ n W 1 + Z 1 R(X ξ n ) (W 1 R(X ξ n )e -X ξ n + Z 1 e -X ξ n ) ∧ 1 ≤ (c 3 ) 2 g(X ξ n ), (4.33) 
where g(y) = E W 1 + Z 1 R(y) ((W 1 R(y)e -y + Z 1 e -y ) ∧ 1) . Using again (4.18), there exists c 4 > 0, such that ∀y ≥ 0, R(y)e -y ≤ c 1 (1 + y) α ρ (y)e -y ≤ c 4 e -y/2 .

We then obtain the following bound on g : define f 1 and f 2 as

∀y ≥ 0, f 1 (y) = E W 1 e -y/4 (W 1 + Z 1 ) ∧ 1 (4.34) and f 2 (y) = E Z 1 e -y/4 (W 1 + Z 1 ) ∧ 1 (4.35)
(the exponent y/4 is chosen for later convenience). Then, for some c 5 > 0, 

∀y ≥ 0, g(y) ≤ c 5 f 1 (2y) + f 2 (2y) R(y) . ( 4 
W 1 a -1 log + W 1 + Z 1 R log + Z 1 < ∞, then E W 1 a -1 log + (W 1 + Z 1 ) + Z 1 R log + (W 1 + Z 1 ) < ∞.
The proof of this lemma is delayed at the end of this section. Using Lemma 4.7, we obtain with assumption (4.24) that

E W 1 a -1 log + (W 1 + Z 1 ) < ∞ and E Z 1 R log + (W 1 + Z 1 ) < ∞.
We then apply Lemma 3.17 from Chapter 3 twice to the r.v. W 1 + Z 1 , once under the law E[W 1 •] and with the regularly varying function x → a -1 (x)

x of index α -1 > -1, and once under the law E[(Z 1 /E[Z 1 ])•] and with the regularly varying function x → R(x)

x of index αρ -1 > -1. We then obtain Such an integral condition is all we need in order to conclude thanks to the following lemma : Lemma 4.8. Let a be the regularly varying function from Theorem 4.3 and let f : R + → R + be a bounded, non-increasing function satisfying

∞ 0 f 1 (y) a -1 (y) y dy < ∞ and ∞ 0 f 2 (y) R(y) y dy < ∞. ( 4 
∞ 0 a -1 (y) y f (y)dy < ∞.
Then,

E + x ∞ ∑ n=0 f (X ξ n ) → 0, as x → ∞.
Furthermore, the above expectation is finite for every x ≥ 0.
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The proof of this lemma is postponed to the end of this section. Noticing that y ∈ R + → f 1 (2y) + f 2 (2y) R(y) ∈ R + is bounded and non-increasing, we obtain by Lemma 4.8 and the bound (4.37) that

∀x ≥ 0, E + x ∞ ∑ n=0 g(X ξ n ) < ∞.
(4.39)

So finally, going back to equation (4.33), summing over n and taking expectations, we obtain :

E + ∞ ∑ n=1 E X ξ n Q (R(X ξ n )e -X ξ n Q) ∧ 1 ≤ (c 3 ) 2 E + ∞ ∑ n=1 g(X ξ n ) < ∞.
This proves that condition (4.30) holds so, using Theorem 4.6, D ∞ is non-trivial.

Proof of Lemma 4.7. Let x, y ≥ 0. We want to bound xa -1 log + y by xa -1 log + x and y R log + y . We can assume that y > 1, otherwise the bound is trivial. If y < x 2 , we have xa -1 log + y ≤ xa -1 2 log + x ≤ C a xa -1 log + x for a certain constant C a > 0 since a -1 is an increasing regularly varying function of index α.

On the other hand, if y ≥ x 2 (and y > 1), we have ≤ 2c 1 c c a y R log + y , using the inequalities log + z ≤ z and z 1/2 (log + z) + 3α ρy 5/6 (log + z) ≤ c z for some positive constant c , since slowly varies. Using these two bounds, we obtain that

xa -1 log + y ≤ y 1/2 a -1 log + y ≤ 1 c a y 1/2 R
E W 1 a -1 log + Z 1 ≤ C a E W 1 a -1 log + W 1 + 2c 1 c c a E Z 1 R log + Z 1 < ∞. 124CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE Then, using the inequalities ∀x, y ≥ 0, y R log + x ≤ max x R log + x , y R log + y ≤ max c a xa -1 log + x , y R log + y ,
where we used Theorem 4.3 and the fact that R(log + x) ≥ 1, we obtain that

E Z 1 R log + W 1 < ∞.
The rest of the proof is in the exact same spirit as the proof of Lemma B.1 (ii) in Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], using the subadditivity of the functions R, R and a -1 .

Proof of Lemma 4.8. We adapt the proof of Lemma 3.12 in Chapter 3, using a different decomposition of the integral. From the definition of P +

x , we have

E + x ∞ ∑ n=0 f (X ξ n ) = 1 R(x) E * x ∞ ∑ n=0 R(X ξ n ) f (X ξ n )1 ∀k≤n,X ξ k ≥0 . (4.40)
Let µ and μ be the renewal measures associated to (the absolute values of) the strictly descending and strictly ascending ladder heights of (X ξ n ) n≥0 , respectively. Recall that R(x) = µ([0, x]) and R(x) = μ([0, x]). Using Theorem 3.15 from Chapter 3, we obtain

E * x ∞ ∑ n=0 R(X ξ n ) f (X ξ n )1 ∀k≤n,X ξ k ≥0 = c = ∞ z=0 x y=0 R(x -y + z) f (x -y + z)µ(dy) μ(dz) =: I(x), (4.41) 
where c = = exp ∑ ∞ n=1 1 n P(X ξ n = 0) > 0. We will integrate first over z and then over y in order to bound I(x). For w ≥ 0, define

F(w) = ∞ 0 R(w + z) f (w + z) μ(dz). Then I(x) = c = x 0 F(x -y)µ(dy).
(4.42)

We decompose F using a geometric pattern. We have for every w ≥ 0, using that f is non-increasing,

F(w) = ∞ ∑ k=-∞ (2 k ,2 k+1 ] R(w + z) f (w + z) μ(dz) ≤ ∞ ∑ k=-∞ R w + 2 k+1 f w + 2 k R(2 k+1 ) -R(2 k ) ,
since f is non-increasing. Then using the fact that R is positive, the inequalities R(x) ≤ c 1 (1 + x) α ρ (x) and R(x) ≤ ĉ1 (1 + x) αρ ˆ (x), we have

F(w) ≤ ∞ ∑ k=-∞ R w + 2 k+1 f w + 2 k R(2 k+1 + w) ≤ c 1 ĉ1 ∞ ∑ k=-∞ (1 + 2 k+1 + w) α ρ (2 k+1 + w)(1 + 2 k+1 + w) αρ ˆ (2 k+1 + w) f (w + 2 k ) ≤ 4 α c 1 ĉ1 c 6 ∞ ∑ k=-∞ (1 + 2 k-1 + w) α ρ (2 k-1 + w)(1 + 2 k-1 + w) αρ ˆ (2 k-1 + w) f (w + 2 k )
since w ≥ 0 and since and ˆ are slowly varying, where c 6 > 0 is a constant. Then, we use the fact that R(x) ≥ c 0 (1 + x) α ρ (x) and R ≥ ĉ0 (1 + x) αρ ˆ (x) :

F(w) ≤ 4 α c 0 c 1 ĉ0 ĉ1 c 6 ∞ ∑ k=-∞ R 2 k-1 + w R 2 k-1 + w f (w + 2 k ) ≤ 4 α c 0 c 1 ĉ0 ĉ1 c 6 ∞ ∑ k=-∞ 2 k 2 k-1 R (z + w) R (z + w) 2 k-1 f (w + z)dz ≤ 4 α+1/2 c 0 c 1 ĉ0 ĉ1 c 6 ∞ ∑ k=-∞ 2 k 2 k-1 R (z + w) R (z + w) z f (w + z)dz,
since f is non-increasing. Then using Theorem 4.3, we obtain

F(w) ≤ 4 α+1/2 c 0 c 1 ĉ0 ĉ1 c 6 c a ∞ 0 a -1 (z + w) z f (w + z)dz = 4 α+1/2 c 0 c 1 ĉ0 ĉ1 c 6 c a ∞ w a -1 (z) z -w f (z)dz.
The integral condition on f ensures that this last quantity is bounded and convergences to 0 as w → ∞. This yields The first term on the right-hand side is δR(x) by definition and the second term is uniformly bounded by a constant, as a consequence of the key renewal theorem (Feller [Fel71] p363, note that it applies even if R(x) grows sublinearly), and the boundedness of F. As a consequence, lim sup

F(w) → 0, w → ∞. ( 4 
x→∞ 1 R(x) x 0 F(x -y)µ(dy) ≤ δ.
Since δ was arbitrary, this proves (4.44) and thus finishes the proof.

Proof of Theorem 4.5

We define the following quantities that will appear in the proof of Theorem 4.5, for n, k 0 ≥ 0 :

W n = ∑ |u|=n e -X u 1 min v≤u X v ≥0 (4.45) W n,k 0 = ∑ |u|=n e -X u 1 min v≤u,|v|≥k 0 X v ≥0 (4.46) We have min |u|=n X u → ∞ a.s., thus ∀ε > 0, ∃k 0 : P ∀n, W n,k 0 = W n > 1 -ε. (4.47)
From Theorem 4.3 and Equation (4.19), we can deduce the asymptotics for E x [W n ] : Proposition 4.9. Let x ≥ 0. Then, as n → ∞,

E x [W n ] ∼ κ R(a n ) R(x)e -x , (4.48) 
and for all n ≥ 0,

E x [W n ] ≤ c 2 κ R(a n ) R(x)e -x , (4.49) 
where κ and c 2 are the constants from Theorem 4.3 and Equation (4.19) and R is the renewal function associated with the strictly descending ladder heights of the random walk (X ξ n ) n .

Proof of Proposition 4.9. Proof of Theorem 4.5.

E x [W n ] = E x   ∑ |u|=n e -X u 1 min v≤u X v ≥0   = e -x P * x min k≤n X ξ k ≥ 0 ,
Remember that we assume λ = 1 which can be obtained by replacing a n by a n λ 1/α . We will now apply the method from Boutaud and Maillard [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] to our setting and make slight changes when needed.

We will start by proving that for any s > 0, E[exp(-sR(a n )W n,k 0 )|F k 0 ] converges almost surely to exp(-sκZ ∞ ) as first n, then k 0 , tend to infinity. We do so by proving a lower and upper bound. We then use Cantor diagonal extraction and apply a lemma from [START_REF] Boutaud | A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions[END_REF] translating the convergence of conditional Laplace transform in term of convergence in probability. We then use Equation (4.47) to conclude.

We start by the lower bound on the conditional Laplace transform. For any s > 0, we have By Proposition 4.9, for every x ∈ R, R(a n )E x [W n-k 0 ] converges to κR(x)e -x as n → ∞ and is bounded from above by c 2 κR(x)e -x . Furthermore, using the many-to-one formula, one easily checks that ∑ |u|=k 0 R(X u )e -X u is finite in ex- pectation and therefore almost surely. By dominated convergence, we get almost surely 

E exp -sR(a n )W n,k 0 F k 0 = ∏ |u|=k 0 E X u exp -sR(a n )W n-k 0 ≥ exp   -sR(a n ) ∑ |u|=k 0 E X u W n-k 0   , (
R(a n ) ∑ |u|=k 0 E X u W n-k 0 -→ n→∞ κ ∑ |u|=k 0 R(X u )e -X u . ( 4 
E exp -sR(a n )W n,k 0 F k 0 ≥ exp   -sκ ∑ |u|=k 0 R(X u )e -X u   . (4.52)
Since min |u|=k 0 X u → ∞ almost surely as k 0 → ∞, using Theorem 4.4, we get, almost surely, lim 

k 0 →∞ ∑ |u|=k 0 κR(X u )e -X u = κZ ∞ , ( 4 
k 0 →∞ lim inf n→∞ E exp -sR(a n )W n,k 0 F k 0 ≥ e -sκZ ∞ . (4.54)
We now deal with the upper bound. For s > 0 fixed, and any s ∈ (0, s) there exists ε > 0 such that ∀x ∈ [0, ε), e -sx ≤ 1s x.

(4.55)

Fix s > 0 and s ∈ (0, s) (that will tend to s), and take ε satisfying (4.55). We compute

E exp -sR(a n )W n,k 0 F k 0 = ∏ |u|=k 0 E X u exp -sR(a n )W n-k 0 ≤ ∏ |u|=k 0 E X u exp -sR(a n )W n-k 0 1 R(a n )W n-k 0 <ε , since W n-k 0 is non-negative.
Using inequality (4.55), the linearity of expectation and finally the inequality 1x ≤ e -x , we compute :

E exp -sR(a n )W n,k 0 F k 0 ≤ ∏ |u|=k 0 E X u 1 -s R(a n )W n-k 0 1 R(a n )W n-k 0 <ε ≤ ∏ |u|=k 0 1 -s E X u R(a n )W n-k 0 1 R(a n )W n-k 0 <ε ≤ exp   -∑ |u|=k 0 s E X u R(a n )W n-k 0 1 R(a n )W n-k 0 <ε   . Using Fatou's lemma, we obtain lim sup n→∞ E exp(-sR(a n )W n,k 0 ) F k 0 ≤ exp   -∑ |u|=k 0 s lim inf n→∞ E X u R(a n )W n-k 0 1 R(a n )W n-k 0 <ε   = exp   s ∑ |u|=k 0 -lim inf n→∞ E X u R(a n )W n-k 0 + lim sup n→∞ E X u R(a n )W n-k 0 1 R(a n )W n-k 0 ≥ε   . (4.56)
As seen above in Proposition 4.9, the first term inside the summation on the right-hand side converges towards -κR(X u )e -X u as n → ∞, almost surely.
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We now need to control lim sup n→∞ E

X u R(a n )W n-k 0 1 R(a n )W n-k 0 ≥ε . Let G = σ ξ k , X ξ k i , k ∈ N, i ∈ N *
{∅} be the σ-algebra containing information about the spine and its children. Applying first the many-to-one formula, then Markov's inequality and finally Equation (4.19) we have :

E x R(a n )W n 1 R(a n )W n ≥ε = R(a n )e -x E * x 1 min k≤n X ξ k ≥0 1 R(a n )W n ≥ε = R(a n )e -x E * x 1 min k≤n X ξ k ≥0 E * x 1 R(a n )W n ≥ε |G ≤ R(a n )e -x P * x min k≤n X ξ k ≥ 0 E * x E * x R(a n )W n ε ∧ 1|G | min k≤n X ξ k ≥ 0 ≤ c 2 κR(x)e -x E * x E * x R(a n )W n ε ∧ 1|G | min k≤n X ξ k ≥ 0 .
Decomposing the particles according to their ancestor on the spine (see Lemma 3.8 in Chapter 3), we obtain

E x R(a n )W n 1 R(a n )W n ≥ε ≤ c 2 κR(x)e -x (T 1 (x, ε, n) + T 2 (x, ε, n)) , (4.57) 
where

T 1 (x, ε, n) = E * x R(a n )e -X ξ n ε ∧ 1 min k≤n X ξ k ≥ 0 (4.58) and T 2 (x, ε, n) = E * x         R(a n ) ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i W n-k-1     ∧ 1 min k≤n X ξ k ≥ 0     . (4.59)
This two terms are controlled by the following lemmas, whose proofs are postponed to Section 4.7.

Lemma 4.10. For any fixed ε > 0 and x ≥ 0,

T 1 (x, ε, n) -→ n→∞ 0.
Lemma 4.11. For every ε > 0, there exists a positive function h, such that h(x) → 0 as x → ∞ and such that the following holds : for every x ≥ 0, we have 

lim sup n→∞ T 2 (x, ε, n) ≤ h(x).
E x R(a n )W n 1 R(a n )W n ≥ε ≤ c 2 κR(x)e -x h(x).
(4.60)

As seen before, by Proposition 4.9, the first term inside the summation of (4.56) converges towards -κR(X u )e -X u as n → ∞, almost surely. Altogether we obtain from this, (4.56) and (4.60), that almost surely for every k 0 ∈ N,

lim sup n→∞ E exp -sR(a n )W n,k 0 F k 0 ≤ exp   s ∑ |u|=k 0 κ(c 2 h(X u ) -1)R(X u )e -X u   . (4.61) Since min |u|=k 0 X u → ∞ almost surely as k 0 → ∞ and h(x) → 0 as x → ∞, we get almost surely, lim k 0 →∞ ∑ |u|=k 0 κ(c 2 h(X u ) -1)R(X u )e -X u = lim k 0 →∞ -∑ |u|=k 0 κR(X u )e -X u = -κZ ∞ ,
(4.62) by (4.53). Together with (4.61), this shows that lim sup

k 0 →∞ lim sup n→∞ E exp(-sR(a n )W n,k 0 ) F k 0 ≤ exp -s κZ ∞ , a.s. (4.63)
Letting s → s in (4.63), and using (4.54), we finally get for any s > 0, lim

k 0 →∞ lim inf n→∞ E exp(-sR(a n )W n,k 0 ) F k 0 = lim k 0 →∞ lim sup n→∞ E exp(-sR(a n )W n,k 0 ) F k 0 = exp (-sκZ ∞ ) , a.s.
By Cantor diagonal extraction, there exists a sequence (k 0

(n)) n≥0 (that tends to ∞ as n → ∞) such that for any s ∈ Q ∩ (0, ∞), E exp(-sR(a n )W n,k 0 (n) ) F k 0 (n) converges to exp (-sκZ ∞ ) almost surely as n → ∞. Then applying Lemma 3.16 in Chapter 3 with Y n = R(a n )W n,k 0 (n) and G n = F k 0 (n) we obtain R(a n )W n,k 0 (n) -→ n→∞ κZ ∞ in probability.
We conclude by using Equation (4.47) to see that R(a n )W n converges in probability to κZ ∞ as n → ∞.

Proofs of Lemma 4.10 and Lemma 4.11

We know that (X ξ nt /a n ) t converges in distribution towards an α-stable process under P *

x as n → ∞ and we will need to discuss what happens to the convergence of this process if we condition the walk (X ξ n ) n to stay non-negative up to some time n or forever. The proof of Lemma 4.10 relies on the behaviour of the rescaled process conditioned to stay non-negative up to time n.

Proof of Lemma 4.10. From equation (3.3) in Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF], we know that the rescaled process (X ξ nt /a n ) t under P * (•| min k≤n X ξ k ≥ 0), i.e. conditioned to stay non-negative up to time n, converges in distribution to the law P (m) of the meander of length 1. Remembering that R is a regularly varying function with index 0 ≤ α ρ ≤ 1, we obtain that R(a n )e -X ξ n converges in law to 0, and thus in probability, under the same conditioning. Moreover, the random variables R(a n ) ε e -X ξ n ∧ 1 are trivially bounded by 1. Hence, using the dominated convergence theorem and recalling the definition of T 1 (x, ε, n) in (4.58),

T 1 (x, ε, n) -→ n→∞ 0.
Proof of Lemma 4.11. Let ε > 0 and suppose, without loss of generality, that ε < 1. By Proposition 4.9, we have

R(a n ) ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i [W n-k-1 ] ≤ c 2 κ ε n-1 ∑ k=0 R(a n ) R(a n-k-1 ) ∑ i∈N ξ k i =ξ k+1 R(X ξ k i )e -X ξ k i ≤ c 2 κ ε n-1 ∑ k=0 R(a n ) R(a n-k-1 ) ∑ i∈N ξ k i =ξ k+1 R(X ξ k + X ξ k i -X ξ k )e -X ξ k -(X ξ k i -X ξ k ) . Define for every k ∈ N, V k = ∑ i∈N ξ k i =ξ k+1 R (X ξ k i -X ξ k ) + e -(X ξ k i -X ξ k ) . 132CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE Then by Lemma 4.2, we get R(a n ) ε n-1 ∑ k=0 ∑ i∈N ξ k i =ξ k+1 E X ξ k i [W n-k-1 ] ≤ c 2 c 1 κ ε n-1 ∑ k=0 R(a n ) R(a n-k-1 ) R(X + ξ k )e -X ξ k V k ≤ c 7 ε n-1 ∑ k=0 R(a n ) R(a n-k-1 ) e -X ξ k /2 V k , where c 7 > 0 is such that for all x ∈ R, c 2 c 1 κR(x + )e -x ≤ c 7 e -x/2 . Putting Y n = ∑ n-1 k=0 R(a n ) R(a n-k-1 ) e -X ξ k /2 V k ε ∧ 1
∧ 1, while recalling the definition of T 2 in (4.59), and using the previous inequalities yields for some constant c 8 > 0

T 2 (x, ε, n) ≤ c 8 E * x Y n min k≤n X ξ k ≥ 0 . (4.64)
In order to bound this expectation, we first bound Y n .

For any k ∈ [[0, n/2 -1]], there exists s k ∈ [1/2, 1] such that nk -1 = s k n. We recall that, by assumption on the sequence (a n ) n , there exists a decreasing and regularly varying function a with index 1/α such that a n = a(n). Also recall that R is regularly varying with index α ρ, thus R • a is also regularly varying with index ρ. By Karamata's uniform convergence theorem for regularly varying functions, we have ∀s > 0, R(a(x)) R(a(sx)) -→ x→∞ s -ρ, uniformly for s in compact sets.

This implies that for n large enough, R(a n ) R(a n-k-1 ) ≤ 2 ρ + 1 ≤ 3, and therefore,

n/2 ∑ k=0 R(a n ) R(a n-k-1 ) e -X ξ k /2 V k ε ∧ 1 ∧ 1 ≤ 3Y n ,
where where

Y n = n/2 ∑ k=0 e -X ξ k /4 V k ε ∧ 1 ∧ 1 4.
Y n =   n-1 ∑ k= n/2 R(a n )e -X ξ k /2 V k ε ∧ 1   ∧ 1.
By monotone convergence, we have for every x ≥ 0 that Y n converges P + xalmost surely as n → ∞ to Y ∞ defined as 

Y ∞ = ∞ ∑ k=0 e -X ξ k /4 V k ε ∧ 1 ∧ 1. ( 4 
≤ c 9 E + x Y ∞ .
Together with Claim a), this yields the lemma. We now prove Claims a) and b), starting with Claim a). Using the bound (4.32), for every k ≥ 0, we get 

E + x e -X ξ k /4 V k ε ∧ 1 F k ≤ c 3 ε f (X ξ k ), where f (y) = E W 1 + Z 1 R ( 
E + x Y ∞ ≤ ∞ ∑ k=0 E + x e -X ξ k /4 V k ε ∧ 1 ≤ c 3 ε E + x ∞ ∑ k=0 f X ξ k .
Using Lemma 4.8, we obtain that

E + x ∞ ∑ k=0 f X ξ k → 0,
and the expectation on the left-hand side is finite for every x ≥ 0. This implies Claim a).

To prove Claim b) we use an invariance principle by Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] : for every x ≥ 0, as n → ∞, the rescaled process

X ξ nt a n t≥0
converges in distribution under P + x to a non-degenerate limit, independent of x, and which is strictly positive at all times t > 0 (this limit can be interpreted as the process X conditioned to stay positive for all times). As a consequence, for every η ∈ (0, 1), there exists δ > 0 such that for large n, with probability at least 1η, we have X ξ k > δa n for every k ∈ { n/2 , . . . , n -1}. So there is some positive constant c 10 such that, with probability at least 1η,

Y n ≤   n-1 ∑ k= n/2 R(a n )e -X ξ k /2 V k ε ∧ 1   ∧ 1 ≤ c 10 n-1 ∑ k= n/2 e -X ξ k /4 V k ε ∧ 1 ,
which converges to 0 in P + x probability as n → ∞ since for every x ≥ 0, as shown above,

E + x ∞ ∑ k=0 e -X ξ k /4 V k ε ∧ 1 < ∞.
This ends the proof of Claim b) and thus of the lemma. This section is devoted to the proof of Equation (4.22). Recall the α-stable process X defined in the introduction. We assume λ = 1, where λ is the parameter in (4.9). Following Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF], one can define for every x > 0 a probability measure P +

x such that for all t ≥ 0,

dP + x dP x F t = X α ρ t x α ρ 1 inf s≤t X s ≥0 ,
where (F t ) t≥0 denotes here the canonical filtration of the process X . Furthermore, the weak limit P + = P + 0 = lim x↓0 P + x exists. This probability law is related to the law of the meander at time 1 by :

dP + dP (m) F 1 = κX α ρ 1 .
(4.68)

From this we deduce that

κ = E + 1 X α ρ 1 .
(4.69)

Now we suppose that α ∈ (1, 2] and αρ = 1, so that the Lévy process X has no positive jumps. For all s ≥ 0, put We proceed by computing E X 1 1 X 1 >0 . Using Theorem 2.6.2 from Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF], we have for all s ≥ 0 :

E X 1 e -sX 1 1 X 1 >0 = 1 π ∞ 0
αs α-1 u α e -(su) α sin(πρ) u 2 + 2u cos(πρ) + 1 du

= α sin(πρ) π ∞ 0 v α e -v α 1 v 2 + 2sv cos(πρ) + s 2 dv,
where we used the change of variables v = su. We then make s → 0 using dominated convergence and get, changing again variables,

E X 1 1 X 1 >0 = α sin(πρ) π ∞ 0 v α-2 e -v α dv = sin(πρ) π ∞ 0 t -1/α e -t dt = sin(πρ) π Γ 1 - 1 α = sin π α π Γ 1 - 1 α (since αρ = 1) = 1 Γ(1/α)
(by Euler's reflection formula).

Finally, this yields together with equation (4.74) :

κ = 1 Γ(α)Γ(1/α) ,
which is Equation (4.22).

Chapitre 5

An optimal condition for non-triviality in the Seneta-Heyde norming for branching random walks with α-stable spine Abstract This chapter is based on an ongoing joint work with Pascal Maillard . We consider branching random walks with a spine in the domain of attraction of an α-stable Lévy process. For this process, the classical derivative martingale in general degenerates in the limit. Boutaud and Maillard [START_REF] Boutaud | Seneta-Heyde norming for branching random walks with α-stable spine[END_REF] (see Chapter 4) proved that the quantity replacing the derivative martingale converges to a non-degenerate limit under a L log L-type condition and this limit appears in the Seneta-Heyde norming for the critical additive martingale. In this paper, we aim to prove that this L log L condition is necessary and sufficient for the non-triviality of the limit.

Definitions and assumptions

We consider discrete-time branching random walks (BRW), which can be informally described as follows. At time n = 0, we start with one initial particle at the origin. Then, at each time step n ≥ 1, every particle dies and gives birth to a random, possibly infinite number of particles distributed randomly on the real line. More precisely, the children of a particle at position x ∈ R are positioned at x + X 1 , x + X 2 ,..., where the vector (X 1 , X 2 , ...) follows a given law Θ, called the offspring distribution of the branching random walk. At each generation, the reproduction events are independent. Also, it is possible for several particles 138CHAPITRE 5. OPTIMALITY IN SH NORMING FOR BRW WITH STABLE SPINE to share the same position. We further assume that the Galton-Watson process formed by the number of particles at each generation is super-critical, so that the system survives with positive probability.

Formally, the branching random walk can be constructed as a stochastic process indexed by the Ulam-Harris tree U = n≥0 (N * ) n where N * = {1, 2, ...}. Particles are identified with vertices u ∈ U , i.e. words over the alphabet N * . The generation of particle u, i.e. the length of the word u, will be denoted by |u|. The position of a given particle u is denoted by X u . If the particle indexed by u does not exist, we set X u = +∞. The branching random walk described above then defines a process (X u ) u∈U taking values in R = R ∪ {+∞} and the offspring distribution is a probability distribution on ( R)

N *
. We use the convention that mathematical expressions such as sums over the set {|u| = n} of particles at generation n are meant to ignore those u for which X u = +∞. Furthermore, we use the convention ∑ ∅ = 0.

Assumptions.

In what follows, we assume the branching to be supercritical, i-e E ∑ |u|=1 1 > 1, and E ∑ |u|=1 e -X u = 1. Let (S n ) n∈N be a real-valued random walk whose law is given by ∀A measurable set, P(S

1 ∈ A) = E   ∑ |u|=1 e -X u 1 X u ∈A   .
We suppose that there exists α ∈ (0, 2)\{1} and a sequence (a n ) n , such that S n a n converges to an α-stable distribution as n → ∞, with characteristic function t → exp -λ|t| α exp -i πθα 2 sgn(t) , λ > 0, |θ| ≤ 1 ∧ 2 α -1 , |θ| = 1.

(5.1) One consequence of the assumption E ∑ |u|=1 e -X u = 1 is that the minimum min |u|=n X u tends to ∞ as n → ∞ almost surely on the event of survival of the branching random walk [Big98, Theorem 3]. We will use this fact without further mention during the remainder of the article.

Define the negativity parameter ρ = 1θ 2 ∈ (0, 1), (5.2) and the positivity parameter ρ = 1ρ. Note that with the constraints on the parameter we have α ρ ≤ 1 and αρ ≤ 1. Also define a decreasing, regularly varying function a of index 1/α such that for all n ∈ N, a(n) = a n .

The spinal decomposition

In this section, we recall a change of measure and an associated spinal decomposition of the BRW due to Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF]. It will be helpful to allow the initial particle of the BRW to sit at an arbitrary position x ∈ R, this will be denoted by adding the subscript x as in P x and E x (if x = 0, the subscript is ignored). Then (W n ) n≥0 is still a non-negative martingale with W 0 = e -x . Recall that F n = σ(X u , |u| ≤ n) is the canonical filtration of the BRW and define F ∞ = n≥0 F n . Using Kolmogorov's extension theorem, for every x ∈ R, there exists a probability measure P *

x on F ∞ such that for every generation n ≥ 0, dP *

x dP x F n = e x W n .

(5.3)

Following Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF] we see P * x as the projection to F ∞ of a probability (also denoted P *

x ) defined on a bigger probability space equipped with a socalled spine, a distinguished ray in the tree. We will denote the vertex on the spine at generation n by ξ n and its position by X ξ n . The spinal BRW evolves as follows under P *

x : -Start at generation 0 with one particle ξ 0 at position x.

-At generation n, all particles except ξ n reproduce according to the point process Θ and ξ n reproduces according to the size-biased reproduction law Θ * defined by dΘ * dΘ (x 1 , x 2 , . . .) = ∑ i≥1 e -x i .

-The spine at generation n + 1 is chosen amongst the children u of ξ n with probability proportional to e -X u . The following many-to-one formula can be deduced from Lyons [START_REF] Lyons | A Simple Path to Biggins' Martingale Convergence for Branching Random Walk[END_REF], see also Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF].

Proposition 5.1 (Many-to-one formula). For any x ≥ 0, n ∈ N = {0, 1, . . .} and every uniformly bounded family (H n (u)) u∈U of F n -measurable random variables, one has

E x   ∑ |u|=n e -X u H n (u)   = e -x E * x [H n (ξ n )] .
(5.4)

The spinal decomposition implies that the process (X ξ n ) n∈N follows the law of a random walk under P *

x (whose increments do not depend on x), which we will refer to as the spinal random walk. From the assumptions on (S n ) n we notice that (S n ) n under P and (X ξ n ) n under P * have the same law. Therefore the theorems involving (S n ) under P could all be restated in terms of (X ξ n ) n 140CHAPITRE 5. OPTIMALITY IN SH NORMING FOR BRW WITH STABLE SPINE under P * . All the assumptions made on (S n ) under P are true for (X ξ n ) under P * so in particular we suppose that (X ξ n ) n is in the domain of attraction of an αstable distribution. Note that the computation of expectation involving particles at generation n with n large will be eased by the many-to-one formula and the asymptotics on the spinal random walk.

Renewal functions and random walk conditioned to stay positive

Let µ be the renewal measure associated with the strictly descending ladder heights (H n ) n of the random walk (X ξ n ) n under P * . Define the renewal function R such that R(0) = 1 and ∀x > 0, R(x) = µ([0, x)). As stated in [START_REF] Tanaka | Time reversal of random walks in one dimension[END_REF], R is harmonic for the sub-Markov process obtained by killing (X ξ n ) n when entering (-∞, 0), that is ∀x ≥ 0, R(x) = E * x R(X ξ 1 )1 X ξ 1 ≥0 .

(5.5)

In the same way, we will note μ for the renewal measure associated with the strictly ascending ladder heights of (X ξ n ) n under P * , R(0) = 1 and for all x < 0, R(x) = μ([0, x)).

The same equivalents and bounds as in Section 4.3 of this manuscript hold. Moreover, we obtain that there exists two positive constants c µ and c μ such that for all x, y ≥ 0, 0 ≤µ ([x, x + y]) ≤ c µ (1 + y) α ρ (y)

(5.6) 0 ≤ μ ([x, x + y]) ≤ c μ(1 + y) αρ ˆ (y) (5.7)

Ideas on the proof

Define Z n = ∑ |u|=n R(X u )e -X u 1 X u ≥0 . Boutaud and Maillard proved in [BM20] (see Chapter 4) that Z n converges almost surely to a non-negative limit Z ∞ under the assumptions made above. Moreover, Z ∞ is positive almost surely on the event of survival if the following moment condition is met :

E W 1 a -1 log + (W 1 ) + Z 1 R log + (Z 1 ) < ∞.
(5.8)

We used to believe that condition (5.8) was also necessary for the non-triviality of Z ∞ , but technical difficulties in the adaptation of Chen's proof in the finite variance case [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] appear in the α-stable case so this question remains open for now.

IDEAS ON THE PROOF

Our method follows the lines of Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] in the sense that the key ingredient will be to use Theorem 2.1 from Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] on appropriate quantities that will ensure the triviality or non-triviality of Z ∞ .

First, we show that the non-negative martingale D n = ∑ |u|=n R(X u )e -X u 1 ∀v≤u,X v ≥0 converges in mean, and thus has a non-trivial limit. From there, D n ≤ Z n implies that P(D ∞ > 0) ≤ P(Z ∞ ≥ 0) which ensure Z ∞ is non-trivial. To do so, we will state a version of Theorem 2.1 from Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF] that provides a sufficient condition for triviality of the limit, but first we need to recall the change of measure P + that will condition the spinal random walk to remain positive at all times :

dP + x dP * x σ(X ξ k ,k≤n) = R(X ξ n ) R(x)
1 min k≤n X ξ k ≥0 .

(5.9) Theorem 5.2 (See Biggins and Kyprianou [START_REF] Biggins | Measure change in multitype branching[END_REF]). Define a random variable Q such that for all x ≥ 0, under P x , The divergence or convergence of the random series under P + that appear in this theorem will be obtained using a criterion for a.s. divergence similar to Proposition 2.1 in [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] stated as Proposition 5.3 in the following section.

Q = ∑ |u|=1 R(X u )e -X u 1 X u ≥0 R(x)e -x . 1. If ∞ ∑ n=1 E X ξ n Q (R(X ξ n )e -X ξ n Q) ∧ 1 < ∞ P + -a.
As in [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF], our criterion for divergence is used to prove the divergence in (5.11) in each case where (5.8) does not hold. To do so, a specific lower bound for Q is designed in each case, that leads to the study of a quantity of the form E + ∑ n≥0 F(X ξ n ) . However, we do not have the same freedom that Chen has regarding the choice of the lower bound as we encounter moments of order α 142CHAPITRE 5. OPTIMALITY IN SH NORMING FOR BRW WITH STABLE SPINE of the spinal random walk which are not guaranteed to converge. To avoid this problem, we worked with a family (W + (s)) s of truncated versions of W 1 instead of W 1 itself, but it created another difficulty in the computation of integrals of moments of W + (s), s being the integration variable and thus requiring a deep understanding of the law of the (W + (s)) s .

These difficulties lead us to consider other conditions than (5.8) in the form of integral conditions instead of moments, which are still being worked upon as of now. Résumé : La marche aléatoire branchante est un système de particules sur la droite réelle où partant au temps 0 d'une particule initiale en position 0, chaque particule vivante au temps n meurt au temps n + 1 en donnant indépendemment naissance à un nombre aléatoire de particules se dispersant aléatoirement autour de la position de la particule parente. Dans un premier chapitre introductif, nous dénissons en détails le modèle de la marche aléatoire branchante ainsi que certains des enjeux de la recherche autour de ce modèle, notamment l'étude de la martingale additive. Cette martingale peut-être étudié au travers de sa convergence vers une limite triviale ou non ainsi que l'étude d'une renormalisation appropriée, dite de Seneta-Heyde, lorsque cette limite est triviale. Elle peut aussi être étudiée au travers d'équations récursives stochastiques menant à des équations de points xes en loi. Cette dernière question correspond à des travaux non-publiés eectués en première année de thèse en continuité avec ceux eectués en mémoire de master. Le second chapitre est une traduction en anglais de certaines sections du précédent chapitre pour faciliter la compréhension de certains lecteurs sur les points importants de cette thèse.

Dans Enn, le cinquième chapitre étudie la question de l'optimalité des hypothèses faites dans le chapitre précédent quant à la trivialité ou non de la limite obtenue après renormalisation de Seneta-Heyde.

Title : Branching random walks : limit cases and minimal hypothesis Keywords : Branching random walk, Branching process, Fixed points, Asymptotics, Renewal theory Abstract : The branching random walk is a particle system on the real line starting at time 0 with an initial particle at position 0, then each particle living at time n proceeds to die at time n + 1 and give birth, independently from the other particles of generation n, to a random number of particles at random positions. In a rst chapter, we dene in details the branching random walk model and some key elements of the scientic research on this model, including the study of the additive martingale. This martingale can be studied through its convergence towards a limit that may be trivial, raising the question of an appropriate scaling, called Seneta-Heyde scaling, in the case the limit is trivial. The additive martingale can also be studied with stochastic recursive equations leading to xed points equations in law. This latter question is adressed in some unpublished works from the rst year of PhD, in continuity with works from the masters thesis. The second chapter is a translation in english of some sections of the previous chapter so that every reader can grasp the key elements and goals of this manuscript.

In a third chapter, we present a new proof developed with Pascal Maillard for Aïdékon and Shi's theorem on the Seneta-Heyde scaling of the critical additive martingale in the nite variance case. This new proof no longer need a peeling lemma and the use of second moment arguments and prefers studying the conditional Laplace transform. The properties of some renewal functions allow a much more general approach without the need to focus to much on the derivative martingale. This is also illustrated in a fourth chapter where in new works with Pascal Maillard, we nd the Seneta-Heyde scaling for the critical additive martingale in the case where the spinal random walk is in the attraction domain of a stable law. We then observe that the renewal functions provide us with a better suited candidate for this study than the derivative martingale, which is no longer always a martingale in this context.

Finally, the fth chapter focus on the question of the optimality of the assumptions made in the previous chapter concerning the nontriviality of the limit obtained with the Seneta-Heyde scaling.
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  FIGURE 1.1 -Réalisation d'une marche aléatoire branchante avec déplacements gaussiens standards et branchement uniforme sur [[0, 3]]

=

  e θx . Définissons alors F ∞ = n≥0 F n et utilisons le théorème d'extension de Kolmogorov pour obtenir l'existence pour tout x ∈ R d'une mesure de probabilité P *

  travaillent sur les cascades multiplicatives : l'exponentielle d'une marche aléatoire branchante. Toujours indépendamment, au milieu des années 1970, McKean [McK75] s'intéresse à la dualité entre un mouvement brownien branchant -la version continue de la marche aléatoire branchante où les individus se déplacent en suivant des mouvements browniens -et l'équation aux dérivées partielles FKPP. De 1980 à 1990, Bramson [Bra83], Neveu [Nev88], Chauvin et Rouault [CR88] exploitent le lien entre le mouvement brownien branchant et l'équation FKPP. Entre 1995 et 2005, Biggins et Kyprianou ([BK97], [BK04], [BK05]) s'appuyent sur la décomposition avec épine pour les processus de branchement de Lyons, Pemantle et Peres [LPP95] pour faire le lien entre les cascades multiplicatives, la marche aléatoire branchante et le mouvement brownien branchant. De nos jours, les acteurs principaux de la recherche autour de la marche aléatoire branchante, citons, entre autres, Hu, Shi [HS09][Shi15], Aïdékon [Aïd13][AS14], Chen [Che15],

  .32) où R est la fonction de renouvellement associée aux hauteurs d'échelle descendantes strictes de la marche de l'épine (voir la Section 1.5.2 pour la définition). Nous noterons aussi D n = D n (0) qui est une martingale en vertu de l'harmonicité de R pour la marche tuée en ] -∞, 0[. Le fait que sous ces hypothèses, le minimum tende vers l'infini, et les asymptotiques de R décrites en Section 1.5.2 permettent d'établir un lien fort entre D n et la martingale dérivée D n . Le comportement du minimum permet d'ailleurs d'étudier exclusivement W n (a) et D n (a) plutôt que W n et D n . Aïdékon et Shi s'emploient donc à montrer que √ n W n (a) D n (a) converge en probabilité vers une constante. Observons donc que la variable aléatoire que l'on étudie est sous forme d'un quotient, ce qui demande des précautions. Dans leur article, Aïdékon et Shi introduisent alors pour chaque a ≥ 0 un changement de mesure obtenu en biaisant par D n (a) (de la même manière que le changement de mesure de l'épine fait en Section 1.1.4 use d'un biais par W n ) et montrent la convergence sous cette nouvelle mesure. Pour ce faire, ils calculent un équivalent pour le premier et le second moment de √ n W n (a)

  pour aboutir à ce théorème repose sur les mêmes techniques que celles employées par Aïdékon et Shi dans [AS14], c'est à dire l'étude du quotient de martingales tronquées W n (a)/D n (a) et l'obtention d'estimées de son premier et second moment sous la loi biaisée par D n (a). La conception et l'usage de lemmes d'épluchage est donc là encore nécessaire pour contrôler correctement les moments.

  nous revenons dans cette section aux martingales additives plus générales W (θ) n pour θ fixé dans le domaine de définition de ϕ, sauf mention explicite du contraire. Comme nous l'avons déjà remarqué précédemment, la martingale W (θ) n est positive et admet donc une limite W (θ) ∞

  .86) 1.5. MARCHES ALÉATOIRES ET LOIS α-STABLES 59 où c 0 et c 0 sont des constantes strictement positives. De plus,

3. 3 .

 3 OUTLINE OF THE PROOF OF THEOREM 4.2 89 dominated convergence, we get almost surely √

n→∞e

  -λY almost surely. (3.50) Then Y n converges in probability to Y as n → ∞. CHAPITRE 3. SENETA-HEYDE NORMING FOR BRW REVISITED following statements are equivalent : ∞ 0 ϕ(y)ρ(y) dy < ∞ E (log + Y)ρ(log + Y) < ∞ Proof.

∞ 0 f 0

 00 (e -y )l(e y ) dy = Using a Tauberian theorem from Bingham and Doney (see Theorem 8.1.8 in[START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of mathematics and its applications[END_REF] with parameters n = 0, β = 0), we have ∞ 0 f 0 (e -y )l(e y )dy < ∞ ⇔ E

  1
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  FIGURE 4.1 -Case (a)
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 4 SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINEThis yields

  limit almost surely. Finally we have for all a > 0 P(Z n converges) ≥ P(Z n converges and ∀k, Z k = Z SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE which tends to 1 as a → ∞, again by the fact that min |u|=n X u → ∞ almost surely as n → ∞. So Z n converges almost surely to a non-negative random variable Z ∞ .

F 0 Fx-y 0 F

 00 (xy)µ(dy) → 0, x → ∞. (4.44)Let δ > 0. By (4.43), there exists y 0 ≥ 0 such that ∀y ≥ y 0 , F(y) ≤ δ. Then,x (xy)µ(dy) ≤ δµ([0, x]) +x (xy)µ(dy).
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  4.50) by Jensen's inequality.
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 4 SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE Applying Lemma 4.10 and Lemma 4.11, we obtain that lim sup n→∞

  ψ(s) = log E e sX 1 . (4.70) Using Theorem 2.6.1 from Zolotarev [Zol86], we have the following explicit expression of ψ : ψ(s) = s α . (4.71) In particular, 0 is the only solution to ψ(s) = 0. Then following Bertoin [Ber96, Chapter VII], define w : [0, ∞) → [0, ∞) the scale function with the following characterization : w is the unique absolutely continuous increasing function with Laplace transform ∀s > 0, 72) and the fact that when αρ = 1 we have α -1 = α ρSENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE Using Corollary 16 from Bertoin [Ber96, Chapter VII] together with equation (4.69), we get κ = E X 1 w (X 1 )

E

  X ξ n Q1 R(X ξ n )e -X ξ n Q≥y = ∞ P + -a.s. (5.11) then E[D ∞ ] = 0.

Titre:

  Marches aléatoires branchantes : Cas limites et hypothèses minimales Mots clés : Marche aléatoire branchante, Processus de branchement, Points xes, Asymptotiques, Théorie du renouvellement

  

  

  

  , le minimum min |u|=n X u logarithmique peut se visualiser sur la Figure1.3, où la marche aléatoire branchante est simulée avec des déplacements gaussiens N (1, 1) et un branchement de loi de Poisson de paramètre e 1/2 , de sorte que la marche de l'épine ait des incréments gaussiens standards et de sorte que les hypothèses de Hu et Shi soient vérifiées. L'équivalent en probabilité du minimum, à savoir

	CHAPITRE 1. INTRODUCTION 1.3. COMPORTEMENT DES MAB ET DE LEURS EXTRÊMES 31 32 CHAPITRE 1. INTRODUCTION
	Le boundary case. Le cadre le plus fréquent pour l'étude de la marche aléa-le minimum est dans le régime suivant : assez générale. Il suppose ainsi toujours être dans le boundary case, que la loi du
	toire branchante est probablement le cas dit du boundary case, en référence à Biggins et Kyprianou [BK04], qui correspond à un cas limite dans l'étude du comportement asymptotique de la marche aléatoire branchante. Les hypothèses lim sup n→∞ 1 log n min |u|=n X u = déplacement des particules n'est pas arithmétique (i-e qu'elle n'est pas suppor-3 p.s., (1.16) tée par λZ pour un certain λ > 0), que la marche de l'épine admet une variance 2 finie et que la condition de type L log L suivante est vérifiée :
	correspondantes sont les suivantes : lim inf n→∞ 1 log n min |u|=n X u =	1 2	p.s.,	(1.17)
	lim n→∞	1 log n	ϕ(-1) = 0 = ϕ (-1). min |u|=n X u = 3 2 en probabilité.	(1.18)	(1.14)
	Pour reprendre le vocabulaire de Barral, Hu et Madaule dans [BHM18], ce boun-dary case est un cas critique dans l'étude de la martingale additive et correspond à une transition de phase de second ordre pour l'énergie libre, tandis qu'une transition de premier ordre ne supposerait pas que ϕ soit dérivable à droite en -1. Le boundary case est un cadre d'étude très raisonnable pour l'étude de la marche aléatoire branchante car il est très souvent possible de s'y ramener comme L'ordre 3 2 log n, est représenté en rouge.
	Jaffuel le montre de manière détaillée dans [Jaf09] (version arXiv exclusive-
	ment). De plus, c'est une hypothèse classique pour l'étude de la renormalisation
	de Seneta-Heyde de la martingale additive, notamment car elle implique que la
	quantité définie pour tout n ∈ N par	
			D n = ∑	X u e -X u ,	(1.15)
				|u|=n
	est une martingale pour la filtration canonique de la marche aléatoire bran-
	chante, appelée martingale dérivée. Cette martingale intervient notamment dans
	l'étude du minimum de la marche aléatoire branchante ou encore l'étude de la
	martingale additive, mais sa convergence elle-même a été étudiée, notamment
	dans [BK04] qui se placent dans le cas où l'épine a une variance finie. Nous
	verrons par la suite qu'en fonction des hypothèses, et donc en fonction de la
	convergence ou non de D n et de son éventuelle nature de martingale, il sera
	parfois nécessaire d'étudier la convergence de la martingale additive en utili-
	sant une autre quantité que D n définie à l'aide des fonctions de renouvellement
	décrites dans la Section 1.5.		
	Parmi les résultats les plus fameux sur le comportement du minimum, fi-
	tend vers ∞ quand n → ∞ presque sûrement dès que E ∑ |u|=1 e -X u = 1. Cette gurent ceux de Hu et Shi dans [HS09]. En se plaçant dans le cadre du boundary FIGURE 1.3 -Réalisation d'une MAB avec épine d'incréments gaussiens stan-case, et en supposant également qu'il existe un triplet de réels strictements posi-dards et l'équivalent en probabilité de son minimum tifs (δ 1 , δ 2 , δ 3 ) tel que le nombre d'individus vivants à la première génération ait hypothèse est donc une hypothèse classique pour l'étude de la marche aléatoire branchante, et l'enjeu est donc de savoir à quelle vitesse le minimum tend vers l'infini. un moment d'ordre 1 + δ 1 fini, et que W (-1-δ 2 ) 1 et W (δ 3 ) admettent un premier Plus tard, sous d'autres hypothèses, Aïdékon obtient une converge du mini-1 moment fini, ils démontrent que, conditionnellement à la survie du processus, mum centré autour de 3 2 log n pour une classe de marches aléatoires branchantes

  la même définition qu'en (1.29). Sous les hypothèses (1.35) et (1.36), la marche de l'épine n'est donc plus à variance finie, mais le comportement de ses queues assurent qu'elle est dans le domaine d'attraction d'une loi stable d'indice α (voir Section 1.5.1 pour un rappel sur les lois stables). Remarquons dès maintenant, comme le font He, Liu et Zhang, que le cas considéré par les auteurs ne couvre pas toutes les marches aléatoires dans le domaine d'attraction d'une loi stable d'indice α ∈]1, 2[ car il est normalement possible d'avoir un terme à variations lentes en facteur dans l'asymptotique des queues mais cette possibilité est écartée de leurs hypothèses pour des raisons techniques. Notons aussi que prendre α dans ]1, 2[ écarte d'office les lois stables d'indices dans ]0, 1]. Sous les hypothèses (1.35), (1.36) et (1.37), He, Liu et Zhang obtiennent toujours la convergence presque sûre de la martingale dérivée D n vers une limite D ∞ strictement positive presque sûrement sur l'événement de la survie du processus. De plus, ils obtiennent la renormalisation de Seneta-Heyde pour la martingale additive critique :

	Théorème

1.8 (He, Liu, Zhang [HLZ18]). Supposons (1.27), (1.35), (1.36) et (1.37)

  , indépendantes du vecteur (C i ) i . Observons au passage que E [∑ i C i ] = 1 par définition des C i . Remarquons maintenant que l'équation de point fixe en loi (1.49) n'est réellement intéressante que dans le cas sous-critique où la limite W par la suite (c n ) de la renormalisation de Seneta-Heyde, sous réserve que c n /c n+1 → 1, on aboutit à la même équation pour la limite non-triviale W (θ) de c n W

			∞,i sous P,	(1.49)
	où les W ∞,i sont des copies i.i.d. de W (θ)	(θ)
		(θ) ∞ est non-triviale. Cependant nous pou-
	vons observer, comme le font Biggins et Kyprianou dans [BK97], qu'en multi-
	pliant W	(θ)
	(θ)

∞ n n :

  |A|] < 0. Dans cet article, Goldie utilise des techniques de renouvellement implicite en se basant sur des idées de Grincevičius[START_REF] Grincevićius | One limit distribution for a random walk on the line[END_REF] pour obtenir l'asymptotique des queues à droite et à gauche de la solution de l'équation de point fixe, ainsi que l'unicité de la solution en mettant une condition de type L log L sur A et une condition de moment sur B. Citons aussi les travaux de Kevei[START_REF] Kevei | A note on the Kesten-Grincevičius-Goldie theorem[END_REF], qui obtient également l'asymptotique des queues de la solution en relaxant les hypothèses de Goldie sur A dans 1.4. LA MARTINGALE ADDITIVE ET L'ÉQUATION X = AX + B 47 le cas où log(A) est dans le domaine d'attraction d'une loi stable, et ceux de Jelenković et Olvera-Cravioto[START_REF] Predrag | Implicit renewal theory and power tails on trees[END_REF] qui généralise les résultats de Goldie aux arbres pondérés en étudiant l'équation de point fixe de la smoothing transform (homogène si B = 0 p.s., inhomogène sinon) : Alors on vérifie sans peine (voir[START_REF] Durrett | Maxima of branching random walks[END_REF],[START_REF] Guivarc | h. Sur une extension de la notion de loi semi-stable[END_REF] et[START_REF] Liu | On generalized multiplicative cascades[END_REF]) que W est solution de (1.51) pour un certain couple (A, B).

	sur l'équation (1.49) dans (1.51) Réduction de l'équation. Il est possible d'unifier les deux approches en effec-sa version affine, à savoir X loi = AX + B, loi = ∑ i A i X i + B. tuant un changement de mesure afin de réduire l'équation (1.49) sous la forme (1.51) et ainsi tout résultat pour une des deux équations pourra s'exprimer en termes de l'autre. Pour cela on utilise une transformation de biais par la taille en considérant non plus la variable W (θ) ∞ mais une variable aléatoire W dont dans le cas contractant où E[log X la loi est biaisée par W (θ)

∞ .

  permettent d'aboutir à un résultat inspiré d'un théorème dû à Bingham et Doney (Théorème 8.1.8 dans [BGT87]) qui relient une hypothèse portant sur les moments d'une variable aléatoire positive faisant intervenir une fonction à variations régulières à une hypothèses d'intégrabilité contre la mesure de Lebesgue. Ce résultat est démontré dans le Chapitre 3, Lemme 3.17 : Lemme 1.17. Soit Y une variable aléatoire positive, f une fonction à variations régulières au voisinage de +∞, d'indice strictement plus grand que -1 et définissons ∀y ≥ 0, ψ(y) = E[e -y Y ∧ 1]. Alors les assertions suivantes sont équivalentes :

  .76) Il suffit donc d'étudier les queues d'une variable aléatoire pour savoir si celle-ci est dans le domaine d'attraction d'une loi stable. Ensuite, pour déterminer plus précisément quelle est la loi stable limite, nous avons le théorème suivant (Théorème 8.3.2 dans [BGT87]) qui distingue trois cas : α

  et où on peut se ramener à λ = 1 par une transformation affine qui préserve le type.
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	Les différents paramètres sont alors reliés comme suit	
	β = cot	πα 2	tan	παθ 2	(1.78)
	λ = λ cos	παθ 2	.	(1.79)
	On définit également deux paramètres, le paramètre de positivité ρ	

  Notons qu'en faisant ces hypothèses, la marche (S n ) est de type oscillante et peut se comporter de trois manières différentes : soit α ∈]1, 2[ et le processus limite n'a pas de sauts positifs, soit α ∈]1, 2[ et le processus limite n'a pas de sauts négatifs, soit α ∈]0, 2[\{1} et le processus limite a des sauts positifs et négatifs. Dans tous les cas, nous excluons dans ce cadre les cas où (S n ) dériverait vers +∞ ou -∞. Dans ce cadre d'hypothèses, nous pouvons fournir des équivalents et bornes pour les fonctions de renouvellement R et R. Tout d'abord, d'après le Lemme 2.1 de Caravenna et Chaumont [CC08], nous savons que R est une fonction 60 CHAPITRE 1. INTRODUCTION à variations régulières d'indice α ρ ≤ 1 et donc qu'il existe une fonction à variations lentes telle que

	πθα 2	sgn(t)	, |θ| ≤ 1 ∧	2

Le cas α-stable. Dans ce second cadre, nous supposons que (S n ) est une marche aléatoire réelle telle qu'il existe α ∈]0, 2[\{1} et une suite (a n ) n telle que S n /a n converge en loi quand n → ∞ vers une loi α-stable dont la fonction caractéristique à la forme

t → exp -|t| α exp -i α -1 , |θ| = 1. (1.89)

En fait, on peut autoriser une forme plus générale avec un facteur λ > 0 devant le terme |t| α mais comme il suffit d'un simple changement d'échelle pour se ramener au cas λ = 1, nous nous restreindrons à celui-ci.

  Many aspects of the asymptotic behavior of branching random walks are encoded in the following function[START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF] :
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	Illustration of the assumptions.		
						πα 2	tan	πθα 2	(4.11)
		λ = λ cos	πθα 2	.	(4.12)
	This gives an expression of the negativity parameter in terms of the parameters
	of form (A) :							
	ρ =	1 2	-	1 πα	arctan β tan	πα 2	.	(4.13)

  has the same law as e a D n under P a . Since (D n ) n is a non-negative martingale under P a , it follows that D

			.28)
	Note that for fixed a, D	(a)
		(a) n	converges
	almost surely to some non-negative random variable.
	Moreover, since min |u|=n X

n under P u → ∞ almost surely as n → ∞ (see introduction), Z

  by the many-to-one formula. .3 and Equation (4.19) to the random walk (X ξ n ) n ends the proof.
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	Applying Theorem 4	

  7. PROOFS OF LEMMA 4.10 AND LEMMA 4.11 133 (the factor 1/4 is chosen for later convenience). Thus we obtain for n large enough, using furthermore that R(a n ) ≥ 1 for large n, Y n ≤ 3Y n + Y n , (4.65)

  .66)We now claim the following :a) E + x [Y ∞ ] is finite for every x ≥ 0 and E + x [Y ∞ ] → 0 as x → ∞. b) Y n → 0 as n → ∞, in P +x -probability. These two claims imply the statement of the lemma. Indeed, first applying Lemma 3.11 from Chapter 3 to the r.v.'s (Y n ) n≥0 and Y ∞ , we have for every x ≥ 0, lim

	Now plugging these two equalities into (4.64) and (4.65) gives us with some
	c 9 > 0,
	lim sup

n→∞ E * x Y n | min k≤n X ξ k ≥ 0 = E + x Y ∞ .

Second, applying again Lemma 3.11 from Chapter 3 to the r.v.'s (Y n ) n≥0 and using Claim b), we get

lim n→∞ E * x Y n | min k≤n X ξ k ≥ 0 = 0. n→∞ T 2 (x, ε, n)

  y) e -y/4 (W 1 + Z 1 ) ∧ 1 . (4.67) 134CHAPITRE 4. SENETA-HEYDE NORMING FOR BRW WITH STABLE SPINE

	We decompose f :					
		f (y) = f 1 (y) +	f 2 (y) R(y)	,
	with f 1 and f 2 defined in (4.34) and (4.35). Using (4.37) and Theorem 4.3, we
	obtain	0	∞	f (y)	a -1 (y) y	dy < ∞.
	Now we compute :					

  un troisième chapitre nous présentons une nouvelle méthode de preuve développée avec Pascal Maillard pour le théorème d'Aïdékon et Shi sur la renormalisation de Seneta-Heyde de la martingale additive critique dans le cas où la marche de l'épine admet une variance nie. Cette nouvelle preuve se passe du recours à un lemme d'épluchage et à des calculs de seconds moments pour lui préférer une étude de la transformée de Laplace conditionnée. Les propriétés des fonctions de renouvellements permettent une approche plus générale qui ne demande pas de s'attarder en particulier sur la martingale dérivée. Ceci est d'ailleurs illustré dans le quatrième chapitre où dans de nouveaux travaux avec Pascal Maillard, nous trouvons la renormalisation de Seneta-Heyde de la martingale additive critique dans le cas où la marche de l'épine est dans le domaine d'attraction d'une loi stable. On voit alors que les fonctions de renouvellement nous fournissent un candidat mieux adapté à cette étude que la martingale dérivée, qui n'est plus toujours une martingale dans ce nouveau contexte.

This idea has already appeared in [MZ16, Theorem B.1] without the justification provided by Lemma 3.16.

The effort consists in identifying the measures µ and μ appearing there with the renewal measures associated to the compound Poisson process : this can be done for example by inspecting and adapting the treatment in [Ber96, Chapter VI].

In fact, close inspection of Spitzer's proof shows that his use of Sparre Andersen's identities can be easily avoided and is purely due to his choice of notation. This results in the proof we give here.
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Explicitly, H n = S L n , where L 0 = 0 and

The other processes are defined analogously, with the "<" above replaced by, respectively, ≤, >, ≥.

Let µ, µ = , μ, μ= be the renewal measures of the processes (|H n |) n≥0 , (|H = n |) n≥0 , ( Ĥn ) n≥0 , ( Ĥ= n ) n≥0 , respectively, i.e.,

with the other measures defined analogously. We first note the following fact :

Lemma 3.13. There exists a constant c = ∈ (0, ∞), such that

Furthermore, c = admits the following equivalent expressions

Proof.

The first statement (with c = equal to its first, respectively, second expression given in the statement) is (1.13) in [Fel71, Section XII.1]. The equivalence of the first two expressions for c = follows by considering for each n the time-reversed walk (S * k ) 0≤k≤n , where S * k = S n -S n-k , which has the same law as (S k ) 0≤k≤n (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]Section XII.2]). Finally, the last expression for c = follows from setting s = 1 in Lemma 2 in [Fel71, Section XVIII.3].

From the "duality lemma" [Fel71, Section XII.2], we have the following equivalent representation of µ :

(3.47)

The other measures have analogous representations with the "<" above replaced by, respectively, ≤, >, ≥.

Proof of Lemma 3.16. The proof proceeds in three steps.

First step : Fix a representative µ n of the law of Y n conditioned on G n . We may see µ n as a random measure on the compact space [0, ∞]. Hence, the sequence (µ n (ω)) n≥0 is tight for every ω ∈ Ω. We wish to show that µ n weakly converges to δ Y almost surely as n → ∞.

By (3.50), there exists an event E ⊂ Ω of probability 1, such that for every ω ∈ E, for every λ ∈ Q, λ > 0, with e -∞ := 0,

In particular, for every ω ∈ E, every subsequential limit µ of µ n (ω) satisfies for

and by continuity, this can be extended to every λ > 0. Since the Laplace transform characterizes a probability measure on [0, ∞], this shows that µ = δ Y . We have thus shown :

Second step : We wish to show that the law of Y conditioned on G n weakly converges to δ Y as well, almost surely as n → ∞. Note that, for all λ ∈ Q + , E[e -λY |G n ] n is a bounded G n -martingale, so it converges almost surely towards E[e -λY |G ∞ ] = e -λY . We can then use the same argument as above to obtain that the law of Y conditioned on G n converges a.s. towards δ Y .

Third step : Denote by μn the law of the pair (Y n , Y) conditioned on G n . By the steps 1 and 2 above and Slutsky's lemma, μn converges a.s. towards δ (Y,Y) . Hence, putting g(x, y) = |x -y| ∧ 1, which is a bounded and continuous function, we get

Using the dominated convergence theorem, we conclude that E[|Y n -Y| ∧ 1] converges to 0, i.e. that Y n converges in probability to Y. This concludes the proof.

A Tauberian-type lemma

Lemma 3.17. Let Y be a positive random variable, ρ a regularly varying function at ∞ of index strictly greater than -1 and define ∀y ≥ 0, ϕ(y) = E[e -y Y ∧ 1]. Then the

A criterion for a.s. divergence

In this section we state and prove a criterion for divergence of series of a certain function of spinal random walk under P + .

The first part follows directly from Lemma 4.8 in Chapter 4 so we only need to prove the second part.

The proof of the second part will rely on a version of Jeulin's lemma :

Lemma 5.4 (Jeulin's lemma, see Proposition 3.2 in Matsumoto and Yano [START_REF] Matsumoto | On a zero-one law for the norm process of transient random walk[END_REF]). Let (V k : k ≥ 1) be a sequence of non-negative random variables and (ρ k ) a sequence of positive numbers. Suppose that there exists a (strictly) positive random variable X, such that

Then, for any non-negative function f

Define S n = X ξ n . We will apply Lemma 5.4 with the following quantities (k = 1, 2, . . .) :

Since a -1 is regularly varying, there exists a constant
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Together with the fact that F is non-increasing, this easily gives that

(5.12) Furthermore, using the fact that F is non-increasing, we get

The second part of the proposition therefore follows from Lemma 5.4, once we know that V k /ρ k converges in law as k → ∞.

Let us now prove this fact. We define for N ∈ N the process (X (N)

Caravenna and Chaumont [START_REF] Caravenna | Invariance principles for random walks conditioned to stay positive[END_REF] have shown that the process X (N) under P + converges in law as N → ∞ w.r.t. Skorohod's topology to a limiting process (X t ) t≥0 , called a Lévy process conditioned to stay positive. We define

and note that V < ∞ a.s. because the process X drifts off to +∞. Now set N = N(k) = a -1 (e k ) = ρ k . We then have,

dt.

Note that e k /a N = e k /a( a -1 (e k ) ) → 1 as k → ∞. We now claim that V k /N converges in law to V as k → ∞. Indeed, as a consequence of the convergence in law of X (N) to X and the absolute continuity of the marginals of X, we have that for every T ≥ 0, under

(5.13) Furthermore, we claim that for every ε > 0, there exists T ≥ 0, such that for all N sufficiently large, 

It thus remains to show (5.14). Fix δ > 0. From the (one-dimensional) convergence in law of X (N) t to X t as N → ∞ and the fact that X t drifts off to +∞ as t → ∞, we get that there exists T ≥ 0, such that for k sufficiently large,

(5.15)

Now recall that the function 1/R, where R is the renewal function from Section 5.3, is superharmonic for (S n ) n≥0 under P + , hence M t = 1/R(a N X (N)

t ) is a supermartingale under P + . It follows, using the fact that R is non-decreasing together with Doob's maximal inequality, that

≥ 1 -R(e k )/R(a N /δ) → 1δ α ρ, (5.16) as k → ∞, since R is regularly varying of index α ρ and using the uniform convergence theorem for regularly varying functions. Hence, choosing δ such that (1δ)(1δ α ρ) > 1ε, we get from (5.15) and (5.16) that (5.14) holds for sufficiently large k. This finishes the proof.