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ABSTRACT

Force m’est de constater qu’il me devient de plus en
plus difficile de faire coïncider mes levers tardifs avec
mes couchers prématurés par le biais de mes siestes

prolongées !

Basile Landouye (1992). Léonard, Tome 22 : Cadeau
de génie, par Turk et Bob de Groot.

Résumé. Le point de départ de cette thèse est les réseaux de capteurs, et comment
les rendre résilients. Notre approche utilise le langage de la théorie des catégories.

Nous abordons en premier lieu l’usage de systèmes dynamiques, et leur compo-
sition. Il s’avère que chaque système dynamique peut être décomposé en systèmes
plus simples, dits réactifs, qui pourraient être des capteurs.

Dans une deuxième partie, nous cherchons à utiliser un langage catégorique util-
isé pour la description de systèmes biologiques, naturellement résilients. Les systèmes
biologiques présentent une forme de redondance fonctionnelle et non-structurelle.
Cette propriété s’appelle degeneracy, et sa traduction catégorique, le principe de
multiplicité (PM). Le PM nous semble donc être à la base de la résilience. Cepen-
dant, le PM requiert la notion de cluster, qui est en fait le nom des flèches dans
les ind-catégories. Nous étudions donc la notion de cluster, exhibant de nouvelles
propriétés et définitions (utilisant les composantes connexes de comma-catégories)
que nous utiliserons pour trouver une caractérisation non-catégorique du PM dans
le cas simple, mais important, des préordres.

Mots-clés : résilience, théorie des catégories, cluster, multiplicité, composantes
connexes

Abstract. The starting point of this thesis is sensor networks, and how to instigate
resilience in them. Our approach relies on category theory.

We first tackle the use of dynamical systems and their composition. We prove
that every dynamical system may be decomposed into simpler, reactive systems,
that could be seen as sensors.

In a second part, we use a categorical language first meant for biological systems,
that are resilient by nature. Biological systems enjoy a form of functional, non-
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structural redundancy that biologists call degeneracy. Category theorists translate
it into the multiplicity principle (MP). MP seems to constitute a fertile ground for
resilience. However, MP relies on the notion of cluster, which are the arrows of ind-
categories. We thus study that notion of a cluster, exhibit some new properties and
definitions, which use the connected components of the comma-cateogry, and that
we use to find a non-categorical characterisation of MP in the special, simpler, but
important case of preorders.

Keywords : resilience, category theory, cluster, multiplicity, connected compo-
nents
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RÉSUMÉ LONG

En fait, quand vous avez commencé votre thèse il y a
trois ans, vous ne saviez pas ce qui vous attendait.
Ça aurait pu être du courage. C’est dommage que

dans votre cas, ce soit de l’inconscience.

Arthur (2005). Kaamelott, saison 2, épisode 68
(enfin, à peu près)

Contexte

Les systèmes biologiques sont des systèmes complexes, avec nombre de propriétés
et de fonctions. Pourtant, un animal, une plante, un insecte, le blobfish et le rat-taupe
nu ne sont constitués que d’éléments simples, qui opèrent de manière asynchrone,
pour faire fonctionner un organisme complet, alors que chaque cellule n’a accès qu’à
une information restreinte (son environnement proche).

Parmi toutes les propriétés du vivant, l’une en particulier attire notre attention,
tant elle semble propre aux entités naturelles : la résilience. Il s’agit de la capacité
des systèmes naturels à continuer de fonctionner alors que certaines parties du corps
pourraient ne plus répondre normalement, ne plus être fiables. Le fonctionnement
se fait éventuellement en mode dégradé. Le monde vivant regorge d’exemples de
résilience. Lorsque l’on est malade, par exemple, d’un rhume, l’organisme continue
de fonctionner malgré les symptômes (nez qui coule, fatigue, toux). La résilience
permet à l’organisme de survivre en attendant une réparation.

Le système immunitaire, d’ailleurs, est un bon exemple de système résilient. Les
constituants, de nouveau, sont des cellules qui communiquent entre elles via des
molécules appelées interleukines. Il réagit continuellement à de l’inconnu, les agents
pathogènes, et est capable de garder en mémoire les anticorps qu’il produit (c’est le
principe de la vaccination).

A contrario, les systèmes créés par des humains peuvent présenter de la mémoire
(ordinateurs), mais la résilience ne semble pas être une propriété atteignable.

Peut-on s’inspirer du comportement des systèmes biologiques pour concevoir des
systèmes artificiels résilients ?

L’objectif de cette thèse est de proposer une approche mathématique de la
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résilience, dans l’optique de présenter des fondements pour une mathématique de
la résilience.

Notre traitement se base particulièrement sur la théorie des catégories. Cette
branche des mathématiques réputée pour son caractère abstrait, présente néanmoins
de plus en plus d’applications concrètes, que ce soit en biologie, en ingénierie, en
informatique, en géométrie algébrique, en statistiques. De plus, la théorie des caté-
gories semble être un langage adéquat pour modéliser et formaliser les systèmes.
Cette thèse s’inscrit dans cette volonté d’application, voire d’interface entre la théorie
des catégories appliquée à la biologie, les statistiques, et les systèmes complexes (le
but était d’ailleurs d’aboutir à des réseaux de capteurs résilients).

Le premier chapitre est une introduction à la théorie des catégories. Nous pro-
posons donc une introduction succincte et ciblée. On définit les notions de base
: catégorie, foncteur (qui peut être défini comme un morphisme entre catégories),
transformation naturelle. Les différentes propriétés de morphismes: isomorphisme,
monomorphisme, épimorphisme. Le foncteur Hom-set. Les tailles de catégories. Nous
introduisons ensuite les catégories monoidales et les foncteurs monoidaux. Ensuite,
nous nous étendons un peu plus sur les notions de diagramme, cône, cocône, limite et
colimite, catégories filtrées et cofiltrées, complètes et cocomplètes. Nous introduisons
ensuite les limites et colimites standards : objets initial et terminal, produit et co-
produit, égaliseur et coégaliseur, produit fibré et somme amalgamée. Ces notions
seront illustrées à chaque fois par leur application dans la catégorie des ensembles,
et dans une catégorie de type "préordre". Cette introduction se termine par le calcul
explicite des limites et colimites dans le cas particulier de la catégorie des ensembles,
en utilisant la construction des limites à partir des produits et égaliseurs (et colim-
ites à partir des coproduits et coégaliseurs). On obtient deux formules générales qui
seront utilisées plus loin dans la thèse.

Systèmes dynamiques

Nous nous sommes d’abord intéressés à l’émergence de la mémoire. La commu-
nication entre les cellules du système immunitaire, mentionnée plus haut, semble
être la source de la capacité de mémoire. Notre premier résultat confirme cette hy-
pothèse. Nous introduisons un formalisme existant, issu de la théorie des catégories,
pour présenter les systèmes dynamiques, ici, une variante des automates. Un sys-
tème dynamique est présenté comme un triplet constitué d’un ensemble d’états, une
fonction de changement d’états en fonction des entrées et de l’état courant, et une
fonction de production de sortie, en fonction de l’état courant. Ces automates dé-
passent le cadre de la calculabilité car l’espace des états peut être aussi grand que
l’on veut, donc éventuellement infini, e.g. avec la puissance du continu.

Les automates sont placés dans un cadre, qu’on nomme "boîte". Les boîtes im-
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posent les entrées et sorties des systèmes dynamiques qui sont placés dedans. Une
de leurs composantes importantes, est leur capacité à se composer, en série ou en
parallèle, et à s’imbriquer pour former des systèmes de plus en plus complexes. On
a alors une algèbre, ou plutôt, une catégorie monoidale (pour la mise en parallèle),
constituée des boîtes et des branchements qu’elles peuvent subir.

Cette catégorie vient avec un foncteur "naturel". Ce foncteur associe à une boîte,
l’ensemble des systèmes dynamiques qui peuvent habiter dedans. Les opérations de
parallélisation de boîtes se traduisent alors en un produit de systèmes dynamiques.
En d’autres termes, ce foncteur est monoidal.

Bien sûr, toutes ces notions sont expliquées au moyen d’exemples, afin que le
lecteur non familier puisse visualiser les objets manipulés.

Profitant de ce cadre, nous définissons des systèmes dynamiques sans mémoire.
En effet, l’espace des états des systèmes dynamiques est vu comme la mémoire des
évènements passés qui s’accumule, et l’état courant est en fait compris comme le
contenu de la mémoire à un instant donné. Donc, on peut définir une classe de
systèmes dynamiques dont la fonction de transition ne prend pas en compte l’état
courant. C’est ce que nous appelons un système sans mémoire.

De tels systèmes deviennent alors réactifs, dans le sens où ils ne stockent aucune
information, ils ne font que réagir à leurs entrées. Dans le cadre de cette thèse, les
systèmes sans mémoire pourraient être de simples capteurs. Nous prouvons alors
que de tels systèmes, avec les bons branchements, peuvent être rendus équivalents à
des systèmes dynamiques généraux, avec mémoire. Nous retrouvons ici l’hypothèse
que la mémoire réside dans les connexions.

Ce travail ouvre de nouveaux problèmes : en effet, si un système avec mémoire
est équivalent à un système sans mémoire avec les bons branchements, le système
sans mémoire n’est pas forcément "plus simple". Une telle décomposition pourrait se
faire de manière plus optimale, par exemple en limitant le nombre d’états possibles,
ou en limitant le nombre de branchements. Cette question n’est pas traitée dans
cette thèse.

Multiplicité et clusters

Si la partie précédente s’attelait à imiter la gestion de la mémoire dans le système
immunitaire, soulignant l’importance des connexions entre diverses entités, cette
partie s’occupe plutôt de la résilience plus générale.

Comme mentionné plus haut, la théorie des catégories a été très tôt appliquée
à de la modélisation des systèmes biologiques, notamment chez Rosen, dans The
Representation of biological systems from the standpoint of the theory of categories
(1958). Dans cette partie, nous nous inscrivons dans cette démarche. Le but est
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d’extraire de cette étude une marche à suivre à appliquer à des réseaux de capteurs.
La vision catégorique de cette seconde partie est différente de celle de la première

partie. En effet, au lieu de définir une catégorie de boîtes et un foncteur qui définit un
ensemble de systèmes dynamiques, ici, les catégories ont une autre signification. Une
catégorie représente la configuration d’un système quelconque à un instant donné
(dans l’idéal, un système biologique ou complexe de quelque nature que ce soit). Un
élément du système est un objet de la catégorie, une flèche entre deux objets dénote
une interaction, et un diagramme représente un sous-système.

On peut dès lors tenter de définir des conditions qui mènent à la résilience. Celle
explorée ici repose sur le principe biologique de degeneracy. Le nom est trompeur car
désigne la capacité d’un système à proposer plusieurs solutions pour accomplir une
même fonction. Il s’agit d’une redondance fonctionnelle, et non pas matérielle et/ou
structurelle, contrairement à ce que l’on retrouve en ingénierie. Un sous-système peut
arrêter de fonctionner, mais sa fonction principale sera assurée (peut-être de manière
non-optimale) par un autre sous-système dont ce n’est pas la fonction principale. Le
remplacement dure suffisamment longtemps pour que le système ait le temps de se
réparer, afin que le premier sous-système récupère sa fonction.

On doit alors introduire de nouvelles notions catégoriques, la principale étant
celle de cluster 1. Si un diagramme représente un sous-système du système principal,
un cluster représente les interactions entre deux sous-systèmes. Les chapitres suivants
se basent partiellement sur un livre d’audience multidisciplinaire intitulé Memory
Evolutive Systems (2007) par Andrée Ehresman et Jean-Paul Vanbremeersch. Nous
entamons alors le premier chapitre avec une exploration, voire une étude, de la
définition de cluster.

Nous introduisons la notion d’ind-catégorie (c’est-à-dire, une cocomplétion d’une
catégorie). Mathématiquement, un cluster entre deux sous-systèmes est une variante
des flèches dans la ind-catégorie du système. Par le calcul, nous obtenons une pre-
mière version de définition d’un cluster : il s’agit d’un ensemble de flèches, union
disjointe d’un tuple de classes d’équivalence de flèches.

Mais nous ne nous arrêtons pas là. Le but est d’extraire plusieurs définitions
équivalentes de cluster. Nous trouvons deux nouvelles définitions, plus descriptives.
Un cluster est alors un ensemble de flèches vérifiant certaines propriétés, au choix
parmi deux listes ayant certains critères en commun.

Pour finir, étudions deux nouvelles propriétés des clusters. En effet, un cluster
peut aussi être compris comme un certain type de préfaisceau, qui associe un élément

1. En français, le terme "cluster" est utilisé principalement pour de la classification de données,
ou en intelligence artificielle. Ici, ce n’est pas le cas. Le mot "cluster" est le terme anglais. Le terme
utilisé par Ehresmann et Vanbremeersch est plutôt "gerbe" (comme une "gerbe de flèches"), ce qui
se traduit en "sheaf" en anglais, ce qui est malheureusement un terme réservé. J’ai donc choisi de
garder le terme de "cluster", puisque je ne parle jamais d’intelligence artificielle dans ce manuscrit.
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du domaine du premier diagramme, à un ensemble de composantes connexes. Le
nombre et la qualité des composantes connexes sont intimement liés aux définitions
descriptives mentionnées plus haut. Nous terminons ce chapitre avec une conjecture
sur le cardinal de l’ensemble des clusters.

La notion de cluster semble être intimement liée à la structure de graphe des
catégories concernées.

Pour le chapitre suivant, la définition descriptive de cluster sous forme d’ensemble
de flèches semble être plus appropriée. En effet, dans le-dit chapitre, nous voyons
comment construire un cluster en tant qu’ensemble de flèches. Nous introduisons la
notion de protocluster (qui peut être vu comme un ensemble de flèches entre deux
diagrammes, éventuellement avec quelques propriétés) ainsi que la notion de proto-
cluster plein (ensemble de toutes les flèches possibles entre deux diagrammes). Un
tel protocluster possède des propriétés intéressantes : en effet, un cluster est forcé-
ment inclus dedans. Nous proposons alors un théorème permettant de déterminer,
à l’aide du protocluster plein, s’il y a des clusters entre deux diagrammes. On peut
déjà dire que s’il manque des flèches dans le protocluster plein, il n’y aura pas de
cluster. Par exemple, si un objet du premier diagramme n’a pas de flèche allant dans
le deuxième diagramme, alors il ne peut pas y avoir de cluster entre le deuxième
diagramme. Ceci peut se déduire en observant le protocluster plein. Enfin, nous
réutilisons la notion de cluster comme foncteur vue au chapitre précédent, et dé-
duisons une condition nécessaire et suffisante pour qu’un cluster existe, en fonction
des propriétés du protocluster plein.

Cette étude concernait les clusters dans les catégories générales et sert de pré-
requis au chapitre suivant. En effet, l’étude sur les clusters était nécessaire afin de
bien aborder le problème de la degeneracy. Son équivalent catégorique est le Principe
de Multiplicité (PM). Catégoriquement, on dit que deux diagrammes vérifient le PM
lorsque les deux propriétés suivantes s’appliquent :

1. Les diagrammes ont des cocones isomorphes
2. Soit il n’y a pas de clusters entre ces deux diagrammes, soit les clusters ne

définissent pas d’isomorphisme entre les cocones

La deuxième condition est formalisée de la manière suivante. Un cluster définit
un foncteur de composition. En prenant un cocône du second diagramme, on peut
le composer avec un cluster, et cela donne un foncteur de composition. Pour qu’une
catégorie vérifie le PM, il faut que ce foncteur de composition ne définisse pas un
isomorphisme.

L’étude du cas général nous semblait hors de portée. Nous nous concentrons sur
le cas du PM dans les préordres. Dans de telles catégories, l’isomorphisme de cocônes
induit par les clusters est plus facile à étudier. On obtient alors une caractérisation
du PM dans les préordres.
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Deux diagrammes dans un préordre vérifient le PM lorsque l’une des propriétés
suivantes est vraie :

1. Soit il n’y a pas de cluster entre les deux diagrammes, ce qui peut se vérifier
en utilisant les résultats du chapitre précédent, notamment en vérifiant les
propriétés du full protocluster

2. Soit en vérifiant que les cocônes des deux diagrammes sont isomorphes, mais
différents

Nous utilisons ce résultat pour repérer le MP dans diverses catégories.
Le chapitre suivant, par exemple, introduit un préordre comparant les capacités

de différents tests statistiques : les tests de Neyman-Pearson (NP), et les test RDT
(Random Distorsion Testing), qui bien que structurellement différents, accomplissent
la même fonction. Les tests NP sont optimaux en termes de probabilité de détection,
mais très sensibles aux interférences. Les tests RDT, quant à eux, sont optimaux dans
un sens un peu moins fort, mais très robustes vis-à-vis des interférences. Ce résultat
suggère donc de combiner des tests NP et RDT dans des systèmes de capteurs, car
les deux se complètent bien, au sens de la degeneracy.

Contributions

Nous listons ici les résultats nouveaux présentés dans cette thèse.
Le chapitre 2 est une introduction à la théorie des catégories ; aucun résultat

présenté ici n’est nouveau.
Le chapitre 3 contient une longue partie consacrée à la présentation du formal-

isme catégorique des systèmes dynamiques. La section 3.4 contient uniquement des
résultats nouveaux.

Les deux chapitres suivants sont consacrés aux clusters, ce que c’est, et comment
on juge de leur présence ou absence. Le chapitre 4 contient des résultats connus (le
lien avec les ind-catégories, la description de cluster comme dual des flèches de la pro-
catégorie) et des résultats nouveaux : les deux définitions sous forme d’ensembles
de flèches vérifiant certaines conditions, ainsi que les liens avec les foncteurs de
composantes connexes.

Tout le chapitre 5 sur la construction de clusters est nouveau en termes de
résultats. Enfin, le chapitre 6, sur le MP dans les préordres, est aussi nouveau.
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Perspectives

En l’état, cette thèse présente des travaux très abstraits, ainsi qu’un résultat
presque applicable. En effet, dans la deuxième partie de cette thèse, nous nous
sommes concentrés sur l’un des outils principaux de la théorie, à savoir, les clus-
ters. Bien que le résultat de multiplicité des tests statistiques soit assez proche de
l’applicabilité, il serait souhaitable de présenter un exemple concret d’architecture
de réseau de capteurs utilisant cette propriété.

Par ailleurs, ce résultat, démontré pour les tests "en bloc", devrait pouvoir être
étendu aux tests séquentiels. En effet, nous émettons la conjecture que l’équivalent
séquentiel des tests de Neymann-Pearson, ainsi que l’équivalent séquentiel des tests
RDT, vérifient eux aussi une multiplicité. Cette question n’est pas traitée dans cette
thèse.

Enfin, l’étude pourrait être poursuivie pour des systèmes plus généraux, car la
résilience est une propriété souhaitable à n’importe quel système complexe. Le réseau
de capteurs résilient évoqué plus haut pourrait alors faire partie du système com-
plexe, par exemple sous la forme d’un système de surveillance interne (un système
immunitaire, en somme), vérifiant à chaque instant le maintien des variables dans
les seuils voulus.

De la même manière, un réseau de capteurs résilient pourrait être particulière-
ment utile dans toutes les applications liées à la cyber-sécurité, remplaçant alors les
capteurs par des antivirus, tout en conservant la propriété de résilience.

L’ambition de cette thèse était aussi de poser les fondations d’une mathématique
de la résilience, qui étudierait mathématiquement les moyens de doter les systèmes
industriels de résilience.
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Chapter 1

INTRODUCTION

Il y a des gens qui ont pris la peine de faire une
thèse, la moindre des choses, c’est de rester pour la

lire !

Dame Séli (2005). Kaamelott, saison 1, épisode 2
(enfin, à peu près)

1.1 Context

Biological systems are complex systems, achieving a number of properties and
functions. And yet, an animal, a plant, an insect, a blobfish or a fly amanita are
made only of simpler elements, cells. They work together asynchronously in order
to make a whole organism work, while each cell only has partial information at each
instant (its close environment).

Among all the properties of the living, we focus on one in particular, one that
seem inherent to natural entities: resilience. Resilience is the ability of natural sys-
tems to keep working at an acceptable level, even while some of its parts could be
non functioning (due to an injury for example) or non reliable. The natural entity
may keep working in a degraded mode. Nature is overflowed with examples of re-
silience. For instance, when one is sick, for example with a cold, the organism keeps
functioning in spite of the symptoms (running nose, cough, fatigue, fever). Resilience
lets the organism survive while it is being repaired.

The immune system is a great example of resilient system. Its constituents again
are cells. Those cells communicate together via molecules, called interleukines. The
immune system is constantly facing both internal and external threats, both known
and unknown pathogens, and has the capability to store and remember the antibod-
ies it produces in order to deal with them. This is how inoculation works.

On the contrary, systems created by humans may have memory (computers),
discover and adapt to the world (artificial intelligence), however resilience does not
seem attainable just yet. So, can we adapt the behaviour of biological systems in
order to design resilient artificial systems?
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The goal of this thesis is to propose a mathematical approach of resilience, with
the will to develop the fundaments of the mathematics of resilience.

Our approach is based on category theory (CT). This branch of mathematics
was created (or discovered) by Eilenberg and MacLane [1] between 1942-1945. Al-
though being very abstract and potentially a part of foundations of mathematics
[2], category theory may be applied to several branches of mathematics (topology,
homotopy theory, algebraic geometry, logic) and also to broader, more applicative
sciences: engineering [3][4], many areas of computer science [5][6][7][8], quantum
physics, neuroscience [9] and biology [10][11][12]. See [13] for a longer list of appli-
cations of category theory. These applications rely on the high capability of CT for
modelling and designing patterns:

[I intend to show that] category theory is incredibly efficient as a language
for experimental design patterns, introducing formality while remaining
flexible. ([14, Chapter 1, Section 1.2])

This thesis is within the scope of applied category theory, and maybe more in the
will to promote and develop and interface between biology, statistics and complex
systems. Our goal is to provide a framework allowing to endow sensor networks with
resilience, taking inspiration from natural resilience.

In this context, we target at a multidisciplinary audience with little to no back-
ground on category theory. Thus, the first chapter of this thesis is a concise and
self-sufficient introduction to category theory. We define the most basic notions: cat-
egory, functor (morphism between categories), natural transformations (morphisms
between functors). The different properties of morphisms: isomorphism, monomor-
phisms, epimorphisms. The Hom-set functor. Sizes of categories. We then introduce
the less basic notions of monoidal categories and monoidal functors. Finally, we
spend some time on the notions of diagrams, cones and cocones, limits and colim-
its, filtered and cofiltered categories, complete and cocomplete categories. We give
examples of standard limits and colimits: initial and terminal objects, product and
coproduct, equaliser and coequaliser, pullback and pushout. Throughout this whole
chapter, we give examples for two basic examples of categories: that of sets, and a
preorder. We conclude this chapter constructing general formulas for limits and col-
imits in the category of sets, using the proof of a weel-known lemma, seeing limits as
an equaliser between two product arrows. These formulas will be used in Chapter 4
as the starting point of the definition of clusters (see below).

1.2 Dynamical systems

We first worked on the emergence of memory. Communication is key in the
immune system, as memory seems to be a consequence of the way cells communicate.
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One of the strengths of the immune system is its memory. The immune system
contains naive T-cells that have a whole set of specific receptors. When a given or-
ganism meets an antigen, the naive T-cells "try" to react to the antigen. Those that
do react begin a self-promoted division, creating the first specific immune response.
Then some of the dividing T-cells become "quiescent", i.e. waiting for the next oc-
currence of the antigen. The next time the organism meets the antigen, it will react
much faster. This is the principle of inoculation.

The previous paradigm was that memory is maintained by T-cells created during
the first contact of the organism with a pathogen. In [15], memory is shown to
also depend on dividing T-cells. In fact, dividing T-cells constitute a network of
communicating cells, promoting their own division. The protocol is as follows:

1. First, create the memory. The immune system of mice encounters a pathogen
(here, transplants and virus antigens). Dividing T-cells are created, some be-
come quiescent T-cells.

2. Secondly, remove the dividing T-cells. This is done by injecting a certain toxin
promoting cell suicide. Note that the quiescent T-cells are still present. Ac-
cording to the previous paradigm, the mice should still be "vaccinated".

3. Thirdly, expose again the mice to the pathogens (transplants or virus). It is
observed that the immune response is that of a naive immune system, rather
than that of an experienced (vaccinated) immune system.

As the dividing T-cells act in a communicating network of similar cells, and seem
to be necessary for memory to be attained, one might conclude that memory relies
in the communication.

Our first result confirms this hypothesis. In Chapter 3, we introduce an existing
formalism, based on category theory, to describe dynamical systems, here a variant
of automata. A dynamical system is seen as a tuple consisting of a state space, a
state-changing function that depends on the inputs and current state, and a function
producing an output from the current state. These automata are more general than
the standard automata, including Turing machines, because their state spaces may
be as big as we want, including bigger than the continuum.

Automata are set into a frame, called a "box". Boxes impose input and output
types of the dynamical systems that are inside. One their important properties is
that they can be composed at will, in series or in parallel, allowing for a fractal-like
intertwining of boxes and systems, making more and more complex systems. Thus,
we obtain an algebra, or rather, a monoidal category, as introduced in Chapter 2,
consisting of boxes and their wirings.

This category comes with a "natural" functor that sends a box to the set of
all dynamical systems that fit inside. The parallelisation operations on boxes then
becomes a "product" of dynamical systems. In other words, this functor is monoidal.
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Of course, all these notions come with several examples to illustrate and ex-
plain visually what is happening at each step, for the reader non-familiar with this
framework.

The state space of the dynamical system is seen as its memory, as a stacking
sequence of past events. This naturally induces the definition of a memoryless sys-
tem: a system whose transition function ignores the current state of the system. As
a consequence, its output only relies on the input. Such a system could be called
"simple-reflex", we call them "memoryless". Another word could be "reactive", in the
sense that memoryless systems do not store any information, and thus, only always
react to their perception of the world.

We prove that memoryless systems, with the right wirings, can be made equiva-
lent to any general dynamical system. We thus recover the hypothesis that memory
is a consequence of connections.

This work open new perspectives. If a dynamical system is equivalent to a mem-
oryless system with the right wirings, the latter is not necessarily "simpler". Such a
decomposition would be done in a more optimal way, for example with a limit of
size on the state space, or a limit in the number of wirings. This question is left
untreated.

1.3 Multiplicity and clusters

This part of the thesis aims at studying resilience in the most general sense.
As mentioned above, category theory was soon applied to biological systems

modelling, first promoted by Robert Rosen [10] [11], pursued by Andrée Ehresmann
and Jean-Paul Vanbremeersch [16] [12].

In this part, we follow this work. The goal is to study and extract a procedure
to use when designing sensor networks.

The categorical vision of this section is quite different to that of the previous
part. In fact, instead of defining a category of boxes and a functor that associates
a set of dynamical systems to a box, here, categories bare another meaning. A
category represents the configuration of system at a given time (ideally, a biological
system, or any complex system of any kind). An element of the system is an object of
that category, and an arrow between two objects denotes an interaction. A diagram
represents a subsystem of the whole system. Colimits are used in order to introduce
a hierarchy in a complex system, the hierarchy being different levels of zooms (for
example, a biological system is made of organs, made of tissues, made of cells,
made of proteins, made of molecules, made of atoms). Then, that system (that
category) evolves through time, and each configuration is linked to another via a
partial functor. It is then possible to model the evolution of a component of the
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system through time. This approach is fully developed in [12], on which we base this
part.

We can then define the conditions that may lead to resilience. The one explored
here is based on the biological principle of degeneracy [17]. The term may read
misleading, but it actually conveys the idea of a system presenting two or more
solutions in order to carry a given function. It is a functional redundancy, rather than
a structural and/or material redundancy, of the kind we often see in engineering.
In other words, a subsystem could stop working, but its principal function may be
fulfilled by another subsystem, whose principal function is generally different. The
replacement may last until the system can recover (for example, from an injury).
[17, Table 1, page 13764] gives many examples. We give here a selection:

1. Protein folds. A protein is a sequence of aminoacids that fold several times to
yield a certain spacial shape, which determines part of its function. Several
sequences of aminoacids may lead to similar folds, yielding similar functions.

2. Metabolism. Cells, tissues, organs may have different, parallel metabolic path-
ways. For instance, cells may consume ATP, sugar (glycogen) or fat as energy.

3. Body movements. The body of humans, and most vertebrates, is filled with
different muscles. Subsets of muscles work together. For example, in the human
arm, the biceps, brachialis and brachioradialis are all responsible for the flexion
of the elbow. Athletes that tear their biceps (this may happen while deadlifting
heavy weights with the alternate grip for example) may still perform flexion
of the elbow thanks to the other two muscles.

Degeneracy then occurs at every level of the organism.
In order to continue the thesis, we have to introduce several more notions of

category theory, the principal being that of a cluster. If a diagram represents a
subsystem of the whole system (at a given instant), then a cluster represents all
the interactions between two subsystems. As [12] is intended for multidisciplinary
audience, the description of clusters can lead to confusion. The first chapter of this
part, Chapter 4, explores the definition of a cluster.

To this end, we introduce the notion of ind-category (that is, a kind of cocom-
pletion of a category). Mathematically speaking, a cluster between two subsystems
is a variant of the arrows in the ind-category of the system. Through computation,
we obtain a first version of a cluster: it is a disjoint union of equivalence classes of
arrows.

This is not all. We aim at finding several definitions of clusters. We find two new
definitions, more descriptive. A cluster becomes a set of arrows verifying certain
properties, in a choice of two lists having common criteria.

Finally, we conclude with two new properties of clusters. In fact, a cluster may be
seen as a certain presheaf, sending an object to a connected component of a certain
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comma-category. The number and nature of the connected components are closely
linked to the two descriptions given above.

A cluster then seems to be linked to the graph structure of the categories under
study.

In Chapter 5, we continue with clusters. One of the two descriptive definitions
seems more useful than the rest in this chapter. Indeed, we see how to construct a
cluster as a st of arrows. We introduce the notion of protocluster (which is a generic
term for a subset of arrows between two diagrams, possibly with more properties),
together with that of full protocluster (the set of all arrows between two diagrams).
Such a protocluster has interesting and useful properties for our purpose; the first
of them being that any cluster is a specific subset of them. We prove a theorem
linking the properties of the full protocluster with the existence or non-existence of
clusters. For example, if some object of the domain diagram has no arrow to the other
diagram, then there will be no cluster at all. Then, using the functorial properties
of clusters seen in Chapter 4, we deduce a necessary and sufficent condition for a
cluster to exist, based on the observation of the full protocluster.

This study in two chapters tackles the subject of clusters in general categories. It
is a prerequisite for Chapter 6. The study of clusters was necessary in order to deal
with the problem of degeneracy (the property of a system to have several subsystems
achieving the same function). Its categorical description is called the Multiplicity
Principle (MP). Categorically, we say that two diagrams verify the MP when the
following two statements hold:

1. The two diagrams have isomorphic cocone categories
2. Either there is no cluster between the two diagrams, or none of them defines

an isomorphism

In order to make the second condition formal, we define a functor between the
two cocone categories of the two diagrams. This functor sends a cocone from a
category to the composite of the cocone and the cluster. We call this functor the
cluster-composition functor. The second condition imposes that such a functor never
is an isomorphism.

The general case seemed out of our reach. We thus reduces the study to the case
of a preorder category. In such a category, the isomorphism induced by clusters is
easier to study. We thus obtain a characterisation of MP in preorders.

Two diagrams in a preorder verify the MP when one of the following properties
holds:

1. Either there is no cluster between the diagrams, which translates into proper-
ties that the full protocluster may have or not

2. Either the cocone categories are isomorphic, but the cocones have different
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peaks.

We then use this result in order to detect the MP in several categories.
Chapter 7 uses this result to find multiplicity between Neymann-Pearson (NP)

tests and RDT tests, obtained in an article coauthored by the author of this thesis.
Here, the multiplicity suggests aa functional equivalence between the two classes of
statistical tests, although being designed for different statistical problems and having
different properties. The NP tests are optimal among tests, however they need to be
closely adapted to the signal they are searching for. RDT tests are optimal, but for a
different property, and they are robust. Thus, this result suggests that a combination
of RDT and NP tests should lead to a resilient detection.

1.4 Contributions

We list here all the results that are new in this thesis.
Chapter 2 is a basic introduction to category theory; no result introduced here

is new.
Chapter 3 is based on an article we published [18]. The categorical framework

for dynamical systems is based on a previous work from one of the coauthors [19].
Section 3.4 only contains new results.

The following chapters tackle the topic of clusters: their definitions, their exis-
tence. Chapter 4 is a compilation of existing work from renown categoricists (the
link with ind-categories, the description of arrows of pro-categories). The two de-
scriptive definitions of clusters as sets of arrows, and the link with the presheaf of
connected components are new. The conjecture on the cardinal of clusters has, as
far as I know, never been tackled yet.

Chapters 5 and 6 mainly consist of new results.
Chapter 7 consists of a brief introduction to statistical decision testing, and the

results presented here are from our conference article [20].
Other work related to the PhD, but not relevant for this manuscript, will be

mentioned in the conclusion (Chapter 8).

27





Chapter 2

A MERE CRASH COURSE ON
CATEGORY THEORY

We will need to use some very simple notions of
category theory, an esoteric subject noted for its

difficulty and irrelevance

Moore, Seiberg (1989) [21]
J’avoue, c’est peu original, parce que tous les

catégoriciens citent cette phrase !

2.1 Introduction

This thesis is intended to readers with signal processing background, as this
PhD initiated in this domain. The use of category theory became necessary, first
when dealing with dynamical systems (see Chapter 3) and secondly, when studying
resilience in a more general context (see [12] and Chapters 4, 5 and 6).

In this chapter, we introduce all the categorical background that signal proces-
sors need to understand this thesis. Most of the notions will be illustrated with
mathematical examples, using mainly background from set theory and the theory of
preorders. We focus here on the bare essential, which consists in categories, functors,
natural transformations, types of morphisms, limits/colimits and their usual special
cases, a bit of monoidal categories. Most other basic notions will not be described
in these pages (monads, adjoints, presheaves, topoi...).

2.2 Basic notions

This section will introduce some basic notions about category theory: categories,
functors, opposite categories, natural transformations, monomorphisms and epimor-
phisms.

The following constitute the basic knowledge of a category-theorist. Renown
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Part I, Chapter 2 – A mere crash course on category theory

resources on category theory include [22], [14], [23], [24], [25] and [26] (ordered
by personal, perceived difficulty). The definitions and lemmas we give here are a
synthesis of such references.

Definition 2.2.1 (Category)

A category C consists of the following data:
— A collection of objects, denoted ObC

— A collection of morphisms, or arrows, denoted MorC

— A map dom ∶ MorC → ObC ; for each morphism c, dom(c) is called the
domain of c

— A map cod ∶ MorC → ObC ; for each morphism c, cod(c) is called the
codomain of c

— For each morphism c ∈ MorC , we write c ∶ C → C ′ if C = dom(c) and
C ′ = cod(c)

— A composition law ○ such that, for all c ∶ C → C ′ and c′ ∶ C ′ → C ′′, there
is a chosen morphism c′ ○ c ∶ C → C ′′

— For each object C ∈ ObC , there is a chosen morphism idC ∶ C → C called
identity morphism of C

The composition law is required to be associative: ∀C1,C2,C3,C4 ∈ ObC , ∀c1 ∶
C1 → C2 and c2 ∶ C2 → C3 and c3 ∶ C3 → C4, (c3 ○ c2)○ c1 = c3 ○ (c2 ○ c1). Identity
morphisms are required to act like identities: ∀C,C ′ ∈ ObC , ∀c ∶ C → C ′,
c ○ idC = idC′ ○ c = c.

In the rest of the course, a category C will be described according to the following
presentation:

Objects: An object in C is...
Morphisms: A morphism in C is...
Identities: An identity morphism is...
Composition: The composition law for morphisms is...

Usually, the description of morphisms suffices to implicitly define dom and cod,
as in the following examples.
Example 2.2.2 (Category of Sets). One of the easiest categories is the category of
sets. We define the category Sets as the following:

Objects: An object in Sets is any set X
Morphisms: A morphism in Sets is any function f ∶X →X ′
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Identities: An identity morphism is an identity function idX ∶X →X

Composition: The composition law for morphisms is the usual composition of
functions

Example 2.2.3 (Preorder category). Another different but useful example of category
is the category based on a preorder. If (P,⩽) is a preordered set (we will refer to
this as a proset), then we can define the following category:

Objects: The objects are the elements of the set P
Morphisms: There is an arrow p→ q if and only if p ⩽ q
Identities: An identity morphism is an arrow p → p representing the trivial

equality p = p
Composition: The composition law for morphisms is the transitivity of the

preorder ⩽: if p0 → p1 and p1 → p2 then the transitivity of ⩽ implies that
p0 → p2

Note that here, the arrows have a very different meaning to the ones in Sets.
Arrows are not at all similar to functions, but rather the representation of the
preorder. Note that there is at most one arrow between two objects in the proset.

This example will be useful not to base our intuition only on the category of Sets;
Sets is a very nice category with lots of properties and examples, however, it does
not represent the "generic" category. There are categories that behave differently
and we need examples of them.
Notation 2.2.4. As stated in Definition 2.2.1, a category is mainly composed of two
pieces of data: objects and arrows. For the sake of readability, for a category C , we
write C ∈ C instead of C ∈ ObC and c ∶ C → C ′ ∈ C instead of c ∶ C → C ′ ∈ MorC . In
other words, a variable C or c ∶ C → C ′ implicitly states its type (object or arrow).
This allows for more compact notation.

Definition 2.2.5 (Hom-set)

Let C be a category, and let C and C ′ be two objects of C . We denote by
HomC (C,C ′) the collection of arrows C → C ′ in the category C .

Example 2.2.6 (Hom-sets in Sets). In the category Sets, X and X ′ are two sets,
and HomSets (X,X ′) is the set of functions f ∶X →X ′.
Example 2.2.7 (Hom-sets in a proset). In a proset (P,⩽), the hom-set is defined by:
HomP (p, q) = {(p, q)}⇔ p ⩽ q; otherwise, HomP (p, q) = ∅.

Let us study some properties of the arrows of a category. We start by considering
isomorphisms and will then study weaker properties (the categorical equivalents of
surjective and injective functions).
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Definition 2.2.8 (Isomorphism)

Let C be a category. A morphism c ∶ C → C ′ ∈ C is an isomorphism when
there exists c′ ∶ C ′ → C ∈ C such that c′ ○ c = idC and c ○ c′ = idC′ . Such a c′ is
denoted c−1.

Example 2.2.9 (Isomorphisms in Sets). An isomorphism in Sets is a function that
is invertible. Thus, an isomorphism in Sets is a bijection.
Example 2.2.10 (Isomorphisms in a proset). In a proset category, there is at most
one arrow p → q. Thus, an arrow is an isomorphism whenever we have two arrows
p→ q → p.
Remark 2.2.11 (Isomorphisms in other categories). Sets and preorders are the
canonical examples of categories. There are lots of other categories. Some of them
are refered to categories of structured sets:

1. VectF: the category of vector spaces over a field F, with linear mappings
2. Groups the category of groups, with group homomorphisms
3. Rings the category of rings, with ring homomorphisms
4. Fields the category of fields, with ring homomorphisms (this one has inter-

esting properties)

In most structured sets categories, a bijective morphism is an isomorphism, just
like in Sets. However, there exist bijective morphisms that are not isomorphisms
(in Top, the category of topological spaces), and in more complicated categories,
there exist isomorphisms that are not bijective (see the homotopy category of CW
complexes). This is because bijectivity is a set-theoretic notion that does not make
sense in terms of categories.

We have just introduced the notion of an isomorphism, and we saw that in Sets,
they were exactly the bijections (Example 2.2.9). Thus, isomorphisms generalise the
concept of bijection to other categories. Now, one could ask: how to generalise the
concept of injections and surjections?

Definition 2.2.12 (Epimorphisms and monomorphisms)

Let C be a category and let c ∶ C → C ′ be an arrow in C .
The arrow c is a monomorphism, or is monic, if, for all f, g ∶ A → C, c ○ f =
c ○ g⇒ f = g:

A C C ′
f

g

c

The arrow c is an epimorphism, or is epic, if, for all f, g ∶ C ′ → B, f ○c = g○c⇒
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f = g:

C C ′ Bc
f

g

Example 2.2.13 (Epis and monos in Sets). In Sets, suppose f ∶ X → X ′ is monic.
Let x, y ∈X such that f(x) = f(y). Let fx and fy be the functions:

fx ∶ {
1 Ð→ X
i z→ x

and fy ∶ {
1 Ð→ X
i z→ y

As f is monic, we have f ○ fx = f ○ fy ⇒ fx = fy ⇒ x = y. In other words, f is
injective.

Conversely, if f is injective, then for all g, h ∶ Y →X, if f ○ g = f ○ h, then for all
y ∈ Y , f ○ g(y) = f ○ h(y) which by injectivity means g(y) = h(y) and then g = h. In
other words, f is monic.

Now, if f ∶ X → X ′ is epic, let χf(X) ∶ X ′ → 2 be the characteristic function
of f(X) (the image of f), and let cst1 ∶ x ↦ 1 be the constant function. We have
χf(X) ○ f = cst1 ○ f , which by epicity gives χf(X) = cst1, and thus X ′ = f(X), from
which we deduce the surjectivity.

If f ∶X →X ′ is surjective, let g, h ∶X ′ → Y such that g ○f = h○f . For all x′ ∈X ′,
there exists an x such that x′ = f(x) and g(x′) = g ○ f(x) = h ○ f(x) = h(x′), which
gives g = h, and f is epic.

In summary, in Sets, monomorphisms are exactly injective functions, and epi-
morphisms are exactly surjective functions.
Example 2.2.14 (Epis and monos in a proset). In a proset category (P,⩽), every
arrow is monic and epic. This is due to the unicity of the arrow between two ob-
jects. Note that, here, the arrows that are both monic and epic, are not necessarily
isomorphisms.
Remark 2.2.15 (Epis and monos in other categories). In most "structured sets" cat-
egories, for example, in Monoids, in Groups, in VectF, the monomorphisms are
exactly the injective morphisms. However, the epimorphisms are not exactly the
surjective morphisms. For more information, see [22, Section 2.1, pp30-31].

Proposition 2.2.16

Let c ∶ C → C ′ and c′ ∶ C ′ → C such that c′ ○ c = idC . Then c is monic while c′
is epic.

Proof. Let a, a′ ∶ C ′ → A such that c ○ a = c ○ a′, then c′ ○ c ○ a = c′ ○ c ○ a′⇒ a = a′, so
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c is monic.
Let b, b′ ∶ C → B such that b ○ c′ = b′ ○ c′, then b ○ c′ ○ c = b′ ○ c′ ○ c⇒ b = b′, so c′ is

epic.

From Remark 2.2.13, we deduce that a function in Sets is an isomorphism if
and only if it is both monic and epic. However, the "if and only if" does not hold for
most categories (see Example 2.2.14 or [22, Section 2.1.1, pp32-33] for an example).
What does hold is the following:

Corollary 2.2.17

If c ∶ C → C ′ is an isomorphism, then c is both a monomorphism and an
epimorphism.

A final important notion regarding arrows is the following:

Definition 2.2.18 (Factor through)

Let f ∶ B → C ′ be an arrow in a category C . Assume that there is C, b ∶ B → C
and c ∶ C → C ′ such that f = c○b. In this context, we say that f factors through
C, b and c.

This definition is very practical. For example, if we have f = c ○ b but we do
not care what b ∶ B → C and c ∶ C → C ′ actually are, we simply say that f factors
through C.

We now go back to studying a bit more about categories. We consider here the
size of categories, which might be a concern of a reader with set-theoretic back-
ground.

Nothing in Definition 2.2.1 implies that ObC or MorC should be sets (nor should
be HomC (C,C ′)). In fact, ObSets is not a set. In that sense, categories can be as big
as possible. However, in the scope of this course, we will only use somewhat small
categories, in the following sense.

Definition 2.2.19 (Small, locally small and large categories)

A category C is small if both ObC and MorC are sets; otherwise, it is large.
A category C is locally small if, for all objects C,C ′ ∈ C , the Hom-set
HomC (C,C ′) is a set.

Example 2.2.20. Sets is large but locally small.
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Example 2.2.21. If (P,⩽) is a proset, then it is a small (thus locally small) category.
Example 2.2.22. The following example is inspired from set-theory. If Vα is the α-th
set of the von Neumann hierarchy [27, Definition 2.1, p. 95], and if λ is a limit
ordinal, then we define the category Vλ by:

Objects: An object in Vλ is any set X ∈ Vλ
Morphisms: A morphism in Vλ is any function f ∶X →X ′ for X,X ′ ∈ Vλ
Identities: An identity morphism is an identity function idX ∶X →X ′

Composition: The composition law for morphisms is the usual composition of
functions

We can see Vλ as a truncated Sets category. The category Vλ is a small category.
Example 2.2.23. For an example of a large, non-locally small category, see [28].
Remark 2.2.24. Small categories are locally small (because "sets contain sets").

In this course, we will consider locally-small categories, for a reason explained
later. For now, we continue with a few more basic notions.

We also define mappings somewhat similar to functions, or homomorphisms,
between categories.

Definition 2.2.25 (Functor)

Let C and X be categories.
A functor F ∶ C →X is a mapping from C to X such that:
— ∀C ∈ ObC , F (C) ∈ ObX

— ∀c ∶ C → C ′ ∈ MorC , F (c) ∶ F (C)→ F (C ′) ∈ MorX

— ∀C ∈ ObC , F (idC) = idF (C)

— ∀c ∶ C → C ′, c′ ∶ C ′ → C ′′ ∈ MorC , F (c′ ○ c) = F (c′) ○ F (c)

In other words, a functor F ∶ C →X sends the objects (resp. morphisms) in
C to objects (resp. morphisms) in X , preserving domains and codomains of
morphisms, as well as identities and composition.

Example 2.2.26 (Functors between prosets). If (P1,⩽1) and (P2,⩽2) are prosets, then
a functor between those two categories is a monotone function such that p ⩽1 q ⇒
F (p) ⩽2 F (q).
Example 2.2.27 (Forgetful functors). Every category of structured sets C , for ex-
ample C = VectF or C = Fields, comes with a functor F ∶ C → Sets that "takes
away the structure". For example, if C = VectF, then it sends a vector space to its
underlying set. Such a functor generally has interesting properties as well (i.e. it may
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have a left adjoint, however, despite being a captivating topic, this is far beyond the
scope of this thesis).

One can interpret a functor C → X as a way to have the picture- perhaps
distorted of the category C into the category X ([22, section 1.4, page 9]). It is the
idea behind diagrams as we will see in Section 2.4.
Remark 2.2.28. It is important to note here that the image of a category by a functor
is not necessarily a category. Consider the following functor:

C1 F (C1)

C ′
1

Fz→ F (C ′
1) = F (C2)

C2

C ′
2 F (C ′

2)

c1

F (c1)

F (c2)

c2

In the domain category, there is no composite c2 ○ c1 because the domain of c2
is not the codomain of c1. However, in the image of the functor, we have an arrow
F (c2) whose domain coincides with the codomain of F (c1). If it were a category, it
would need a composite arrow F (?) = F (c2) ○F (c1), which doesn’t exist in the first
category.

Of course, we can complete the image of a functor and make it a category.

In the special case of functors C → Sets, we can define the pretty straightforward
notion of subfunctor:

Definition 2.2.29 (Subfunctor)

Let F ∶ C → Sets be a functor.
A subfunctor of F is a functor G ∶ C → Sets such that:

1. for all C, G(C) ⊂ F (C)
2. for all c ∶ C → C ′, G(c) = F (c) G(C) (restriction of F (c) to G(C))

Sometimes, we come across some functors that behave strangely. Namely, some-
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times a functor F ∶ C →X may send c ∶ C → C ′ to F (c) ∶ F (C ′) → F (C) (note the
inversion). We will give an example of such a functor. What is happening, is that F
is actually not a functor C →X but somehow defined on a similar, but "reversed"
category of C .

Definition 2.2.30 (Opposite category)

Let C be any category. We call opposite, or dual category of C , denoted by
C

op , the following category:
Objects: An object in C

op is an object in C

Morphisms: An arrow c ∶ C ′ → C in C
op is an arrow c ∶ C → C ′ in C

Identities: An identity in C
op is an identity in C

Composition: The composition law in C
op is the same as in C

Basically, the opposite category C
op is the same category as C , with inverted

arrows.
If a functor F ∶ C →X sends c ∶ C → C ′ to F (c) ∶ F (C ′)→ F (C), then F is not

actually defined on C but rather on C
op : F ∶ C op →X . However, it is often simpler

to consider only functors on C , hence the following notions:

Definition 2.2.31 (Covariant and contravariant functor)

A functor F ∶ C → X is called covariant if it sends c ∶ C → C ′ to F (c) ∶
F (C)→ F (C ′) (for all c ∈ C ).
A functor G ∶ C → X is called contravariant if it sends c ∶ C → C ′ to G(c) ∶
G(C ′)→ G(C), or equivalently, if G ∶ C op →X is a covariant functor.

Two examples of such functors are the following:

Definition 2.2.32 (Covariant Hom-set functor)

Let C be a (locally small) category, and let C ∈ C be an object.
The mapping

HomC (C,−) ∶ { C Ð→ Sets
C ′ z→ HomC (C,C ′)

defines the covariant Hom-set functor. It sends an object C ′
0 ∈ C to the set

HomC (C,C ′
0) of arrows from C to C ′

0, and an arrow c′0 ∶ C ′
0 → C ′′

0 to the arrow
HomC (C, c′0) ∶ c↦ c′0 ○ c in Sets.
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Definition 2.2.33 (Contravariant Hom-set functor)

Let C be a (locally small) category, and let C ′ ∈ C be an object.
The mapping

HomC (−,C ′) ∶ { C
op Ð→ Sets
C z→ HomC (C,C ′)

defines the contravariant Hom-set functor. It sends an object C0 ∈ C
op to the

set HomC (C0,C ′) of arrows from C0 to C ′, and an arrow c0 ∶ C0 → C ′
0 to the

arrow HomC (c0,C ′) ∶ c↦ c ○ c0 in Sets.

Remark 2.2.34. Their names are not stolen: C ′ → HomC (C,C ′) is a covariant functor
and C → HomC (C,C ′) is a contravariant functor.

Note that both Hom-set functors assume C to be locally small. As stated a few
paragraphs before, all the categories we will encounter in this course are locally
small, unless stated otherwise, because we will often need this functor to be defined.

Also note that along this course, we will encounter lots of examples of contravari-
ant functors. This notion may look confusing. With a bit of practice, it is no more
a problem.

We continue and end this section with a final basic notion of category theory,
namely, natural transformations, which are a kind of mappings between functors.

Definition 2.2.35 (Natural transformation)

Let C and X be two categories, and let F,G ∶ C → X be functors. A nat-
ural transformation α ∶ F → G consists of a collection of morphisms in X
(αC ∶ F (C)→ G(C))C∈ObC

such that, for all C,C ′ ∈ C , and for all c ∶ C → C ′,
the following square commutes:

C F (C) G(C)

↝ ✓

C ′ F (C ′) G(C ′)

c F (c)

αC

G(c)

αC′

(2.1)

For each object C ∈ C , the morphism αC is called the C-component of α.
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The natural transformation α ∶ F → G can be written in the following diagram:

C X

F

G

α

We denote by Nat (F,G) the collection of all natural transformations between
F and G.

Depending on the context, and for the sake of readability, the C-component of
a natural transformation α can be written αC as above (C as an index) or α(C) (C
as a parameter).

Natural transformations can be seen as a way to extract the parameters C, C ′

and c from F (C), F (C ′) and F (c) and input them into G, while preserving arrows.
It’s a variable substitution.
Remark 2.2.36. Consider two functors F,G ∶ C →X , and their respective (categori-
fied) images Im (F ) and Im (G). A natural transformation α ∶ F → G may be seen
as a functor α̂ ∶ Im (F )→ Im (G) such that:

1. for all object C ∈ C , α̂(F (C)) = G(C) (α̂ preserves the objects)
2. for all arrow c ∶ C → C ′ ∈ C , α̂(F (c)) = G(c) with F (c) ∶ F (C) → F (C ′) and
G(c) ∶ G(C)→ G(C ′) (α̂ preserves the arrows)

3. α̂ makes the natural transformation diagram (Diagram 2.1) commute

Note that this view of natural transformations is not standard, but it might help
the reader to grasp this notion.

Before introducing the notion of natural isomorphism, we need to make some-
thing clear on the nature of natural transformations.

Definition 2.2.37 (Composition of natural transformations)

Let C , X be categories, and let F , G and H be functors C →X .
If α ∶ F → G is the natural transformation α = (F (C) αCÐ→ G(C))

C∈C
and η ∶

G→H is the natural transformation η = (G(C) ηCÐ→H(C))
C∈C

then the com-

position of α by η is η ○α ∶ F →H, defined by η ○α = (F (C) ηC○αCÐ→ H(C))
C∈C

.

39



Part I, Chapter 2 – A mere crash course on category theory

Definition 2.2.38 (Functor category)

Let C and X be two categories. The functor category, denoted by X C , or by
Func (C ,X ), is the following category:
Objects: The objects are the functors F ∶ C →X

Morphisms: A morphism between two functors F and G is a natural
transformation α ∶ F → G = (F (C) αCÐ→ G(C))

C∈C
Identities: An identity on a functor F is the identity natural transforma-

tion idF = (F (C)
idF (C)Ð→ F (C))

C∈C

Composition: The composition law in Func (C ,X ) is defined in Defini-
tion 2.2.37.

Natural transformations are morphisms between functors. Besides, if F and G
are two functors C →X , then the notation Nat (F,G) actually stands for:

Nat (F,G) = HomFunc(C ,X ) (F,G)

however Nat (F,G) is usually more convenient.
Using Definition 2.2.38 (functor category), and Definition 2.2.8 (isomorphism),

we deduce the definition of a natural isomorphism:

Definition 2.2.39 (Natural isomorphism)

Let F,G ∶ C →X be functors. A natural isomorphism α ∶ F → G is a natural
transformation that is an isomorphism in the functor category Func (C ,X ).

It is easy to see that:

Lemma 2.2.40

A natural transformation α ∶ F → G is a natural isomorphism whenever the
C-components αC ∶ F (C)→ G(C) are isomorphisms.

This lemma gives a useful description of what a natural isomorphism is. It makes
it easier to look for an inverse. We will use this lemma in the following section.

This lemma does not exactly hold for monic or epic natural transformations. In
fact, we have only one implication.
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Proposition 2.2.41

Let C and X any categories. Let F,G ∶ C → X be two functors and let
α ∶ F → G be a natural transformation between those two functors.
If for all C ∈ C , αC ∶ F (C)→ G(C) is monic (resp. epic), then so is α ∶ F → G.

Proof. Suppose that each C-component is monic. The proof is similar when we are
considering epic components.

Consider β, β′ ∶H → F such that α ○ β = α ○ β′.

H F G ⇔ H(C) F (C) G(C)
β

β′
α

βC

β′C

αC

In terms of components, this means that for all C ∈ C , we have αC ○βC = αC ○β′C .
As every component is monic, this gives βC = β′C , and then β = β′. Thus, α is
monic.

Surprisingly, the converse does not hold in general. In fact, it needs some more
properties about the codomain category, but this is far beyond the scope of this
crash course.

We have now introduced the basic notions of category theory: categories, hom-
sets, isomorphisms, monomorphisms, epimorphisms, opposite categories, (covariant
or contravariant) functors, natural transformations. We can now move on to the
next section, in which we introduce the very first important result about category
theory.

2.3 Monoidal categories

In Chapter 3, we work with a certain type of categories that we introduce here.
This is a short section because we do not need much more than the following basic
notions.

In terms of monoidal categories, the references are [25] and [29].

Definition 2.3.1 (Monoidal category)

A monoidal category is a 6-tuple (C ,⊗, I, a, r, l), consisting of a category C ,
a functor ⊗ ∶ C ×C → C , an object I ∈ C , and three natural isomorphisms a,
r, and l of the following form
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1. a(A,B,C) ∶ A⊗ (B ⊗C)→ (A⊗B)⊗C
2. r(A) ∶ A⊗ I → A

3. l(A) ∶ I ⊗A→ A

such that, for all objects A, B, C andD of C , the following diagrams commute:

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

a(A,I,B)

A⊗l(B) r(A)⊗B
(2.2)

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗C)⊗D) (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗C))⊗D ((A⊗B)⊗C)⊗D

A⊗a(B,C,D) a(A,B,C⊗D)

a(A,B⊗C,D) a(A⊗B,C,D)

a(A,B,C)⊗D

(2.3)

We also say that (⊗, I, a, r, l) forms a monoidal structure on C .

Roughly, a monoidal category is a category with an operation ⊗ which can be
seen as associative (Diagram 2.3), and a distinguished element I that behaves like
a unit for the operation (Diagram 2.2).
Example 2.3.2. The category (Sets,×,1, a, r, l) is monoidal for the usual product of
sets, where a, r, l are the obvious isomorphisms and 1 is the singleton 1 = {0}.
Remark 2.3.3. Readers not familiar with category theory may wonder what functors
were used to define the natural transformations a, r and l.

The natural transformation a is defined in item 1 by its (A,B,C)-component.
Define the two functors:

F ∶ { C ×C ×C Ð→ C
(A,B,C) z→ A⊗ (B ⊗C) G ∶ { C ×C ×C Ð→ C

(A,B,C) z→ (A⊗B)⊗C

then a is defined as the natural transformation a ∶ F → G. The same holds for r
and l.
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Define:

R ∶ { C Ð→ C
A z→ A⊗ I L ∶ { C Ð→ C

A z→ I ⊗A idC ∶ { C Ð→ C
A z→ A

then r is the natural transformation r ∶ R → idC and l is the natural transforma-
tion l ∶ L→ idC .

Definition 2.3.4 (Symmetric monoidal category)

A symmetric monoidal category is a 7-tuple (C ,⊗, I, a, r, l, s) such that:
1. (C ,⊗, I, a, r, l) is a monoidal category
2. s is a natural isomorphism s(A,B) ∶ A⊗B → B⊗A such that, for all A,
B and C of C , the following diagrams commute:

A⊗B B ⊗A

A⊗B

s(A,B)

1A⊗B s(B,A)

A⊗ I I ⊗A

A

s(A,I)

r(A) l(A)

A⊗ (B ⊗C) (A⊗B)⊗C

A⊗ (C ⊗B) C ⊗ (A⊗B)

(A⊗C)⊗B (C ⊗A)⊗B

a(A,B,C)

A⊗s(B,C) s(A⊗B,C)

a(A,C,B) a(C,A,B)

s(A,C)⊗B

(2.4)

A symmetric monoidal category has an associative and commutative law, with
a unit object. Again, Sets is a symmetric monoidal category.

Definition 2.3.5 (Lax monoidal functor)

Let (C ,⊞, I, aC , rC , lC ) and (X ,⊗, J, aX , rX , lX ) be monoidal categories.
A monoidal functor between C and X is a 3-tuple (F,σ, σ′) where:
— F ∶ C →X is a functor
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— σ is a natural transformation

σ = (σA,B ∶ F (A)⊗ F (B)→ F (A ⊞B))A,B∈C
between two C ×C →X functors

— σ′ is a morphism σ′ ∶ J → F (I)

such that, for all A,B,C ∈ C , the following three diagrams commute:

(F (A)⊗ F (B))⊗ F (C) F (A)⊗ (F (B)⊗ F (C))

F (A ⊞B)⊗ F (C) F (A)⊗ F (B ⊞C)

F ((A ⊞B) ⊞C) F (A ⊞ (B ⊞C))

aX (F (A),F (B),F (C))

σA,B⊗1F (C) 1F (A)⊗σB,C

σA⊞B,C σA,B⊞C

F (aC (A,B,C))

F (A)⊗ F (I) F (A)⊗ J

F (A ⊞ I) F (A)

σA,I

1F (A)⊗σ′

rX (F (A))

F (rC (A))

F (I)⊗ F (A) J ⊗ F (A)

F (I ⊞A) F (A)

σI,A

σ′⊗1F (A)

lX (F (A))

F (lC (A))

The pair (σ,σ′) is called the coherence maps of F . We sometimes refer to σ
as the first coherence map of F .

Remark 2.3.6. Just like we call R a field without clarifying its two laws and its
two units, we often write (C ,⊗, I), omitting the natural isomorphisms a, r and
l, because they are only a matter of "bookkeeping". We may even write C for a
monoidal category when the context makes it clear what the unit and monoidal
product are.
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2.4 Your only colimit is yourself

2.4.1 Basics

In category theory, there are a few constructions that are refered to as "universal
constructions". These are [30]:

1. Representable functor
2. Adjunctions
3. Limits and colimits
4. End and coends
5. Kan extensions

These structures are universal in the sense that, whenever another object has
the same properties than them, then that objects is linked (in a way or another)
to the corresponding structure. An intriguing property is that there is a way to see
each of them as a special case of the others.

All five structures were given for the sake of completeness. However, in the con-
text of this thesis, we will only introduce limits and colimits. The interested reader
may refer to [24], [22], [25] or any other great introductory read on category theory
for the remaining universal structures.

Roughly, a functor P ∶ P → C (with P small) will be seen as a (small) subcate-
gory of C . If C has a rich enough structure, there may exist objects that "react", or
"behave", particularly well to these subcategories. If C has an even richer structure,
then one object among these will "represent" the other objects. Such functors will be
called diagrams, the objects will be cones to that diagram, and the representative
will be the limit of the diagram.

Let us give the formal definitions for all these notions.

Definition 2.4.1 (Diagram)

Let C and P be categories. A diagram in C of shape P is a functor P → C .
The category P is called the index category. If P is finite, then the diagram
is said finite.

In the rest of this thesis, we only consider small diagrams, that is, diagrams whose
index categories are small (Definition 2.2.19). This is usual in category theory and
justifies the use of a different name: a functor comes from any category and goes to
any category, while diagrams are functors from a small category.
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In Chapters 4, 5 and 6, diagrams will be denoted by the letters P andQ, following
the convention from [12], where diagrams are called patterns.

Among all possible diagrams, we need to discriminate the following one:

Definition 2.4.2 (Diagonal functor)

Let C and P be categories.
The diagonal functor ∆ is the functor ∆ ∶ C → C P defined as:

1. For all object C ∈ C , ∆ (C) is the diagram:

∆ (C) ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

P Ð→ C
p z→ C

p→ p′ z→ idC

2. For all arrow c ∶ C → C ′ ∈ C , ∆ (c) ∶ ∆ (C) → ∆ (C ′) is the natural
transformation ∆ (c) = (C cÐ→ C ′)

p∈P
(each component ∆ (c)p is a copy

of c).

In summary, the functor ∆ (C) "collapses" the category P into one element C.
One can also see ∆ (C) as a sequence of copies of C, indexed by the objects of P.

Here, the arrows of P do not matter, as they always become idC . A complementary
view of the action of ∆ (C) is the following diagram:

0 1 C C

2 C

3 4 C C

∆(C)

where all the arrows in the right diagram are identity arrows.
Formally, there is exactly one diagonal functor per pair (P,C ), so these cate-

gories should appear in the notation. It is not rare to see notation like ∆P
C . In most

cases, C is fixed, and P does not really matter, as the image of ∆ has only one
object and one arrow. Unlike what we said under the definition of functor, ∆ does
not exactly give a picture of P inside C . This allows for a flexible notation and the
following formal definition:
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Definition 2.4.3 (Cone, cocone)

Let P ∶ P → C be a diagram to C , and let C ∈ C .
A cone from C to P is an arrow ∆ (C) → P in the functor category
Func (P,C ).
A cocone from P to C is an arrow P → ∆ (C) in the functor category
Func (P,C ).

In other words, a cone from C to P is a natural transformation α ∶ ∆ (C) → P
such that, for all a ∶ p→ p′ ∈ P, the following triangle commutes:

P (p)

∆ (C) (p) = C

P (p′)

P (a)

αp

αp′

Similarly, a cocone from P to C is a natural transformation β ∶ P →∆ (C) such
that, for all a ∶ p→ p′ ∈ P, the following triangle commutes:

P (p)

∆ (C) (p) = C

P (p′)

P (a)

βp

βp′

We cannot help ourselves making categories out of nothing:

Definition 2.4.4 (Category of cones, category of cocones)

Let P ∶ P → C .
The category of cones to P , denoted Cones (P ), is the following category:
Objects: Objects are cones α ∶ ∆ (C)→ P

Morphisms: An arrow u ∶ α → α′, where α ∶ ∆ (C)→ P and α′ ∶ ∆ (C ′)→
P are cones, is an arrow u ∶ C → C ′ ∈ C such that, for all p ∈ P, we have
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αp = α′p ○ u, just as in the following diagram:

C

P (p)

C ′

αp

u

α′p

Identities: The identity of α ∶ ∆ (C)→ P is the identity of C in C

Composition: The composition of arrows is that of C

Dually, the category of cocones from P , denoted Cocones (P ), is the following
category:
Objects: Objects are cocones β ∶ P →∆ (C)
Morphisms: An arrow u ∶ β → β′, where β ∶ P → ∆ (C) and β′ ∶ P →

∆ (C ′) are cocones, is an arrow u ∶ C → C ′ ∈ C such that, for all p ∈ P,
we have β′p = βp ○ u, just as in the following diagram:

C

P (p)

C ′

u

βp

β′p

Identities: The identity of β ∶ P →∆ (C) is the identity of C in C

Composition: The composition of arrows is that of C

It is important to distinguish between a cone α ∶ ∆ (C) → P and its "peak" C.
In fact, in the category of cones, there may be several cones ∆ (C) → P , so that C
may appear as the peak of different cones. However, most of the time, the confusion
causes no harm.

Finally, limits and colimits are specific cones and cocones:
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Definition 2.4.5 (Limit, colimit)

Let P ∶ P → C be a diagram to C .
The limit of P , if it exists, is the cone Lim (P ) ∶ ∆ (lP )→ P with the property
that, for all cone α ∶ ∆ (C) → P , there exists a unique arrow u ∶ C → lP such
that for all p ∈ P, we have αp = Lim (P )p ○ u:

C

P (p)

lP

αp

u

Lim(P )p

Dually, the colimit of P , if it exists, is the cocone Colim (P ) ∶ P → ∆ (cP )
with the property that, for all cocone β ∶ P → ∆ (C), there exists a unique
arrow u ∶ cP → C such that for all p ∈ P, we have βp = u ○Colim (P )p:

cP

P (p)

C

u

Colim(P )p

βp

In other words:

Fact 2.4.6

A limit is a cone Lim (P ) such that, for each α ∈ Cones (P ), there is a unique
arrow u ∶ α → Lim (P ) ∈ Cones (P ).
Dually, a colimit is a cocone Colim (P ) such that, for each α ∈ Cocones (P ),
there is a unique arrow u ∶ Colim (P )→ α ∈ Cocones (P ).

Keep this in mind for Section 2.4.2.
The unique arrow is often called the universal arrow 1, and the existence of such

arrow is often referred to as the Universal Mapping Property, or UMP for short.

1. Note: this is an extremely ambiguous name for such an arrow, because the expression "uni-
versal arrow" does have a specific meaning (see [26, chapter III, section 1, page 62]). However, I use
this footnote in order to insist on the fact that what we call universal arrow in this thesis is not
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Just like cones and cocones, a limit/colimit is said finite, or small, if the corre-
sponding diagram is finite, or small, respectively.

Note that limits and colimits, just like cones and cocones, do not always exist in
every category.

Definition 2.4.7 (Cofiltered category, filtered category)

A category is called cofiltered when every finite diagram has at least one cone.
Dually, a category is called filtered when every finite diagram has at least one
cocone.

Note the inversion: a category is filtered when it has cocones, and cofiltered when
it has cones.

Proposition 2.4.8

Let P be a category. The following two statements are equivalent:
1. P is non-empty, for all p, p′ ∈ P there exist a ∶ p → p0 and a′ ∶ p′ → p0

targeting the same p0, and for all a1, a2 ∶ p → p′, there exists an arrow
a0 ∶ p′ → p′0 such that a0 ○ a1 = a0 ○ a2

2. Every finite diagram D ∶ X →P admits a cocone in P

Proof. (2) ⇒ (1) is obvious, as (1) describes special cases of diagrams (the first one
is the two-object diagram serving as base for coproducts, and the second one is the
two-arrow diagram serving as base for coequalisers).

The proof of (1)⇒ (2) is a simpler version of that of Lemma 2.4.40 (if a category
has products and equalisers, then it has limits), because we are considering cocones,
instead of limits, but the idea remains the same.

Also note that the notion refers only to finite diagrams. However, we introduce
it just for Chapter 4, in which we do not need any "small" filtered-ness.

A similar notion exists for limits and colimits:

Definition 2.4.9 (Complete category, cocomplete category)

A category is called complete (respectively, finitely complete) when every small
diagram (resp. finite diagram) has a limit. We also say that the category has

the one described in [26]!
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small (resp. finite) limits.
Dually, a category is called cocomplete (respectively, finitely cocomplete) when
every small diagram (resp. finite diagram) has a colimit. We also say that the
category has small (resp. finite) colimits.

It is easy to see that:

Fact 2.4.10

Let C be a category.
1. C is complete ⇒ C is cofiltered
2. C is cocomplete ⇒ C is filtered

Example 2.4.11. The usual categories of mathematical structures are complete and
cocomplete: Sets the category of sets and functions, Groups the category of groups
and group morphisms, VectF the category of vector spaces and linear maps, Rings
the category of rings and ring morphisms, are complete. However, Fields the cate-
gory of fields and field morphisms is neither filtered nor cofiltered, let alone complete
nor cocomplete. This is because the category of fields is "divided", and not connected;
for example there is no morphism between fields with characteristic 7 and fields with
characteristic 11.

As we will see in Chapter 4, given a category C , it is possible to "plunge" it
into a bigger category that will contain all the limits or all the colimits of C , and
these are called the completion, or cocompletion of C . We see a partial cocompletion
in Section 4.3 (meaning: a cocompletion only for a certain kind of diagrams). The
completion is beyond the scope of this thesis, but is mentioned in Sections 4.3.1
and 4.5. References for further reading are given in these sections.

Another important result is the following:

Proposition 2.4.12

Let P ∶ P → C be a diagram.
If P has a limit, then it is unique up to isomorphism.
Dually, if P has a colimit, then it is unique up to isomorphism.

Proof. We consider the case of limits; the case with colimits derives dually.
Let Lim (P ) and λ be two limits of P . Both are cones to P . By Fact 2.4.6, as

Lim (P ) is a limit, there is only one arrow u ∶ λ→ Lim (P ) in Cones (P ). Similarly,
as λ is a limit, there is only one arrow v ∶ Lim (P )→ λ in Cones (P ).
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Also, there is only one arrow Lim (P ) → Lim (P ) and one arrow λ → λ: the
identity. We thus deduce u ○ v = idLim(P ) and v ○ u = idλ, which means that u and v
are inverses of each other.

In category theory, we distinguish four limits and their dual colimits. These are
the basic bricks for building any limits and colimits. We dedicate each of them a
subsection.

2.4.2 Initial object, terminal object

Consider the simplest category P = 0, that is, the empty category, with no object
nor arrow.

The empty diagram P ∶ 0 → C is a functor that takes nothing and turns it
into nothing. A cone α ∶ ∆ (C) → P is the empty natural transformation α =
(αp ∶ C → P (p))p∈P = ∅. There is exactly one cone (because there is exactly one
empty natural transformation) per object C ∈ C , and every arrow of C is an arrow
between cones. The category of cones to P is thus isomorphic to C .

If the empty diagram has a limit Lim (P ) in C , then it has exactly one arrow from
any cone to P to that limit. Isomorphically, there is exactly one arrow C → Lim (P )
for each C ∈ C . This limit has a name:

Definition 2.4.13 (Initial object, terminal object)

An object T is called terminal in C when, for all C ∈ C , there is exactly one
arrow tC ∶ C → T .
Dually, an object I is called initial in C when, for all C ∈ C , there is exactly
one arrow iC ∶ I → C.

The following statement will be useful in Section 6.2:

Proposition 2.4.14

Let P ∶ P → C .
Lim (P ) is the terminal element of Cones (P ). Dually, Colim (P ) is the initial
element of Cocones (P ).

Proof. Combine Definition 2.4.13 with Fact 2.4.6.

Example 2.4.15. In Sets, any singleton {a} is a terminal object, because there is
only one function A → {a} for every set A (the constant function x ↦ a). Besides,
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the empty set ∅ is the unique initial object; for set-theoretic reasons, there is only
one function ∅→ A (the empty function).
Example 2.4.16. If (P,⩽) is a preorder, then the initial object is the minimal object
min (P ) (if it exists) and the terminal object is the maximum max (P ) (if it exists).

2.4.3 Products and coproducts

We need the following definition:

Definition 2.4.17 (Discrete category)

A category C is called discrete when, for all c ∶ C → C ′ ∈ C , we have C = C ′

and c = idC .

That is, the only morphisms in a discrete category are the identities.

Let P be a discrete category. A diagram P ∶ P → C does not have any arrow
of the form P (a) ∶ P (p)→ P (p′) other than the identity. Thus, a cone from C to P
is any set of arrows of the form C → P (p). The limit Lim (P ) of this diagram is a
cone such that each arrow C → P (p) factors through the peak of Lim (P ).

It may be tricky to see what limit this actually is, so we spoil the suspense and
reveal its name:

Definition 2.4.18 (Product, coproduct)

The limit of a diagram whose domain is discrete is called a product. Dually,
the colimit of a diagram whose domain is discrete is called a coproduct.

We give below the equivalent, but more frequent definition of a product and
coproduct.

Fact 2.4.19

Let (Cp)p∈P be an indexed set of objects of C .
The product of (Cp)p∈P consists of an object of C denoted ∏

p∈P
Cp and a set

of arrows π = (πp0 ∶ ∏
p∈P

Cp → Cp0)
p0∈P

such that, for all object C ∈ C and all

set of arrows (cp ∶ C → Cp)p∈P , there is a unique arrow u ∶ C → ∏
p∈P

Cp such

that for all p ∈ P, πp ○ u = cp. The arrows πp are often called the projection
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maps.
The coproduct of (Cp)p∈P consists of an object of C denoted ∑

p∈P
Cp and a set

of arrows ι = (ιp ∶ Cp → ∑
p∈P

Cp)
p∈P

such that, for all object C ∈ C and all set

of arrows (cp ∶ Cp → C)p∈P , there is a unique arrow u ∶ ∑
p∈P

Cp → C such that

for all p ∈ P, u ○ ιp = cp. The arrows ιp are often called the inclusion maps.

With only two objects A and B, the product A ×B can be described with the
following diagram:

C

A A ×B B

cA cB
u

πA πB

For all pair of arrows (cA ∶ C → A, cB ∶ C → B), there is a unique arrow u ∶ C →
A ×B such that each triangle commutes.

Dually, the coproduct A +B is summarised in the following diagram:

C

A A +B BιA

cA
u

ιB

cB

For all pair of arrows (cA ∶ A→ C, cB ∶ B → C), there is a unique arrow u ∶ A+B →
C such that each triangle commutes.
Example 2.4.20. In Sets, the product is the usual Cartesian product, and the co-
product is their disjoint union. As we need arrows in order to make a cone (or
cocone), we need to specify what those are. The arrows of the product cone are the
projections, and the arrows of the coproduct cocones are the inclusion maps. (So
these have a meaningful name, fortunately).
Example 2.4.21. In a preorder, the product (if it exists) is the greatest lower bound
and the coproduct (if it exists) is the least upper bound.

We complete the section with a couple definitions.
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Definition 2.4.22 (Small and finite product)

We say a category C has finite products when, for all finite set of objects
(Ci)i∈n of C , the product, denoted ∏

i∈n
Ci, exists.

We say a category C has small products when, for all set of objects (Ci)i∈I of
C , the product, denoted ∏

i∈I
Ci, exists.

2.4.4 Equalisers and coequalisers

Consider the following category P:

0 1a

a′

Let P ∶ P → C be a diagram. A cone to P is a pair of arrows (c0, c1) such that
the following diagram commutes:

P (0) P (1)

C

P (a)

P (a′)

c1

c0

In summary, we have:

c1 = P (a) ○ c0 = P (a′) ○ c0

So, a cone to P is characterised, here, by the arrow c0 ∶ C → P (0). The limit of P
consists then of an object E and an arrow e ∶ E → P (0) such that P (a)○e = P (a′)○e
and every arrow c ∶ C → P (0) that verifies P (a) ○ c = P (a′) ○ c factors uniquely
through e:

E P (0) P (1)

C

e
P (a)

P (a′)

c
u

Such a limit is called an equaliser:
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Definition 2.4.23 (Equaliser, coequaliser)

Let f, g ∶ A→ B be two arrows of C .
The equaliser of f and g is a pair (E, e ∶ E → A) with the property that
f ○ e = g ○ e, and for all pair (C, c ∶ C → A) such that f ○ c = g ○ c, there is a
unique arrow u ∶ C → E such that e ○ u = c:

E A B

C

e
f

g

c
u

Dually, coequaliser of f and g is a pair (Q, q ∶ B → Q) with the property that
q ○ f = q ○ g, and for all pair (C, c ∶ B → C) such that c ○ f = c ○ g, there is a
unique arrow u ∶ Q→ B such that u ○ q = c:

A B Q

C

f

g

q

c u

Example 2.4.24. In Sets, given two functions f, g ∶ A → B, their equaliser is (E, e)
where E = {x ∈ A ∣ f(x) = g(x)} ⊂ A and e ∶ E → A is the canonic inclusion.
Example 2.4.25. In a preorder category (P,⩽), there is at most one arrow p → q.
Thus, the equaliser of f, g ∶ p → q, with f = g is their domain together with its
identity (p, idp).

Equalisers and coequalisers intervene when considering isomorphisms.

Proposition 2.4.26

Let (E, e) be the equaliser of f, g ∶ A→ B.
Then e is monic.

Proof. Let c, c′ ∶ C → E such that e ○ c = e ○ c′.

C

E A B

cc′ e○c=e○c′

e

f

g

By definition of an equaliser, we have f ○ e ○ c = g ○ e ○ c, so there exists a unique
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u ∶ C → E such that e ○ u = e ○ c = e ○ c′. By unicity of u, we have u = c = c′, hence e
is monic.

Proposition 2.4.27

Let (E, e) be the equaliser of f, g ∶ A→ B.
If e is an epimorphism then e is an isomorphism.

Proof. Suppose e is epic. As an equaliser, we have the following diagram:

E A Be
f

g

and as an epimorphism, we deduce that f ○ e = g ○ e⇒ f = g.
Thus, the identity idA ∶ A→ A verifies f ○ idA = g ○ idA. Consequently, there exists

a unique u ∶ A→ E such that the following diagram commutes:

E A B

A

e
f

g

idA
u

from which we deduce e ○ u = idA.
The same occurs with e ∶ E → A:

E A B

A

E

e
f

g

idA

u

e=e○u○e
idE

e

We know that e = e ○ idE = e ○ (u ○ e) = (e ○ u) ○ e = idA ○ e. As an equaliser, e is
monic, so u ○ e = idE; e is an isomorphism and e−1 = u.

We deduce from this proposition what a monic epimorphism/epic monomor-
phism (or simply monic/epic) lacks to be an isomorphism:
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Corollary 2.4.28

Let c ∶ C → C ′ be any arrow.
The arrow c is an isomorphism ⇔ c is an epic equaliser.

These results dualise:

Proposition 2.4.29

Let (Q, q) be the coequaliser of f, g ∶ A→ B.
1. q is epic
2. if q is monic then q is an isomorphism
3. an arrow c is an isomorphism iff it is a monic coequaliser

Example 2.4.30. In Sets, take f, g ∶ A → B. Let R be the relation such that ∀a ∈
A, (f(a), g(a)) ∈ R, and let R̄ be the smallest equivalence relation containing R.
Consider (B/R, b), where B/R is the quotient of B by the equivalence relation R,
and b is the function that sends an element of B to its equivalence class. Then,
(B/R, b) is the coequaliser of f and g.

For more details, see [25, Section 9.4.1, pp 278-279].
Example 2.4.31. Just as in Remark 2.4.25, as there is only one arrow between any
two objects, the coequaliser of f, g ∶ p→ q is their codomain: (q, idq).

2.4.5 Pullbacks and pushouts

Consider the following category P:

1

2 0

a1

a2

Let P ∶ P → C be a diagram 2to C .
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A cone to P is a set of three arrows (αp ∶ C → P (p))p∈P such that:

P (a1) ○ α1 = α0 = P (a2) ○ α2

C

P (1)

P (2) P (0)

α1

α0
α2

P (a1)

P (a2)

So, a cone to P is characterised by the two arrows α1 and α2. The limit of such
a diagram is called a pullback:

Definition 2.4.32 (Pullback)

Let C be a category. Let f ∶ A → C and g ∶ B → C be arrows with same
codomain.
The pullback of f and g is a 3-tuple (A ×C B,pA, pB) such that the following
diagram commutes:

A ×C B A

✓

B C

pA

pB f

g

and such that, for all (X,xA, xB) such that the following diagram commutes:

X A

✓

B C

xA

xB f

g

there is a unique arrow u ∶X → A×C B such that xA = pA ○ u and xB = pB ○ u,

2. A diagram from such a category is often called a cospan, but this is out of the scope of this
thesis.
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that is, such that the triangles and squares commute:

P

A ×C B A

B C

xA

xB

u

pA

pB f

g

Example 2.4.33 (Pullbacks in Sets). In Sets, let f ∶ A → C and g ∶ B → C be two
functions. Their pullback (A ×C B,pA, pB) is:

A ×C B = {z ∈ P (P (A ∪B)) ∣ f ○ pA(z) = g ○ pB(z)}
≅ {(x, y) ∈ A ×B ∣ f(x) = g(y)}

with projections pA ∶ A ×C B → A and pB ∶ A ×C B → B.
Note that there is the idea of "equalising" two functions. As we will see in a fol-

lowing proposition, there is a link between equalisers and pullbacks, and the explicit
construction is based on this idea.

Consider the special case where f and g are inclusion mappings (that is: functions

of the form f ∶ { A Ð→ C
x z→ x

for A ⊂ C and g ∶ { B Ð→ C
x z→ x

for B ⊂ C). The

pullback of f and g is then:

A ×C B = {(a, b) ∈ A ×B ∣ a = b}
= {(a, a) ∈ A ×B}
≅ {a ∈ A ∣ a ∈ B}
= A ∩B

The intersection of sets consists in a pullback of inclusion mappings in Sets.
It is interesting to notice that the pullback is a subset of the product.

Example 2.4.34 (Pullbacks in a preorder). In a preorder category (P,⩽), as there is
at most one arrow between two objects, we don’t need to check that any diagram
commutes. In fact, the pullback is exactly the same as a product; that is, a pullback
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between p→ q and p′ → q is p ×q p′ = p × p′ = inf(p, p′).

Definition 2.4.35 (Pushout)

Let C be a category. Let f ∶ A → B and g ∶ A → C be arrows with same
domain.
The pushout of f and g is a 3-tuple (B +A C,pB, pC) such that the following
diagram commutes:

A B

✓

C B +A C

f

g pB

pC

and such that, for all (X,xA, xB) such that the following diagram commutes:

A B

✓

C X

f

g xB

xC

there is a unique arrow u ∶ B +AC →X such that xB = pB ○u and xC = pC ○u,
that is, such that the triangles and squares commute:

A B

C B +A C

X

f

g pB

xBpC

xC

u

The arrows pB ∶ B → B +A C and pC ∶ C → B +A C are often called the inclusion
mappings, just like in the coproduct.
Example 2.4.36 (Pushout in Sets). In Sets, consider the functions f ∶ A → B and
g ∶ A → C. Then their pushout B +A C is identified with a subset of B +C; in fact,
it is:
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B +A C = (B +C) / ≡

where ≡ is the smallest equivalence relation on B + C such that for all a ∈ A,
f(a) ≡ g(a).

Another interesting special case is the following. In Example 2.4.33, we defined
the intersection A ∩ B of two sets A and B. This intersection comes with trivial
inclusion mappings iA ∶ { A ∩B Ð→ A

x z→ x
and iB ∶ { A ∩B Ð→ B

x z→ x
, so we can

compute its pushout.

A ∩B A

✓

B A +A∩B B

iA

iB pA

pB

We have A+A∩BB = (A +B) / ≡ where ≡ is the smallest equivalence relation such
that for all a ∈ A, iA(a) ≡ iB(a). In our case, iA(a) = iB(a) = a, so ≡ is simply the
equality =. This means that, in the coproduct, which is a disjoint union in Sets, the
pushout doesn’t contain duplicates of the same element a if a is in both A and B.
Thus, the pushout A +A∩B B is simply the union A ∪B.
Example 2.4.37 (Pushout in a preorder). Just as pointed in Example 2.4.34 about
pullbacks, in a preorder, the pushout is exactly the same as a coproduct.

2.4.6 Links between limits and their special cases

All four of them are crucial in category theory, and in the study of limits and
colimits, because they are the basic bricks with which we build limits and colimits.

Theorem 2.4.38

Let C be any category. The following propositions are equivalent:
1. C has finite products and equalisers
2. C has pullbacks and a terminal object
3. C has finite limits

Of course, the dual theorem is also true:
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Theorem 2.4.39

Let C be any category. The following propositions are equivalent:
1. C has finite coproducts and coequalisers
2. C has pushouts and an initial object
3. C has finite colimits

The proof of this theorem is a long, long run, and most lemmas it requires will
not be used afterwards. Here, we give the proof of only one of them, because it
will be used to build limits and colimits in Sets in the next section and use that
expression in Chapter 4.

Lemma 2.4.40

Let C be any category.
If C has small products and equalisers, then C has small limits.

This lemma is about small products/limits, but the same lemma with small
replaced by finite also holds and may be used as a lemma to Theorem 2.4.38. However
we need this lemma for small limits.

Proof. (The proof written here is a resolution of [25, Exercise 3, Section 2.13, Chap-
ter 9])

We will start the proof with one special case of index category. We then give a
hint for a second special case. Those two proofs are given just as an exemplification
of the general case that we detail right after.

Suppose P is any small category with only one non-identity arrow a ∶ p→ p′. It
will then look like this category:

∗ ∗ ∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗

Now let P ∶ P → C be any diagram.
As C has small products, the product ∏

p∈P
P (p) with arrows πp ∶ ∏

p∈P
P (p)→ P (p)
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exists. As C has equalisers, consider the equaliser (E, e) of P (a) ○ πp and πp′ .

E ∏
p∈P

P (p) P (p′)e
P (a)○πp

πp′

Define ε = (ep = πp ○ e)p∈P . By definition of (E, e), we have:

P (a) ○ πp ○ e = πp′ ○ e

which proves that ε is a natural transformation ∆ (Lim (P )) → P (there is only
one arrow to check).

We now prove that (E, ε) is the limit of the diagram P ∶ P → C . Let α ∶ ∆(C)→
P be a cone to P ; we have P (a) ○ αp = αp′ .

Consider the function Πα ∶ C → ∏
p∈P

P (p) such that ∀p ∈ P, πp ○ Πα = αp. We

have:

P (a) ○ αp = αp′
P (a) ○ πp ○Πα = πp ○Πα

As (E, e) is an equaliser of P (a) ○ πp and πp, there exists a unique u ∶ C → E
such that e ○ u = Πα, from which we infer, for all p ∈ P:

e ○ u = Πα
πp ○ e ○ u = πp ○Πα

ep ○ u = αp
⇒ ε ○∆(u) = α

So (E, ε) is the limit of P .
In short, we have built a limit as the equaliser of (two arrows from) a product.

Now suppose P is any small category with only two non-identity arrow a0 ∶ p0 →
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p′0 and a1 ∶ p1 → p′1. It will then look like this category:

∗ ∗ ∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗

Note that no assumption is made about a0 and a1 being distinct; we only suppose
that p′0 ≠ p1 and p0 ≠ p′1; otherwise they would compose and give birth to a third
arrow.

For a diagram P ∶ P → C , we also build the product ∏
p∈P

P (p) with its projections

πp ∶ ∏
p∈P

P (p)→ P (p).

We also define the following arrows:

r0 = P (a0) ○ πp0

r1 = P (a1) ○ πp1

s0 = πp′0
s1 = πp′1
r = (r0, r1)
s = (s0, s1)

E

∏
p∈P

P (p) P (p′0) × P (p′1)

P (p0) P (p′0)

e

r

s

πp0

πp′0 πa0

P (a0)

As C has equalisers, consider the equaliser (E, e) of r ∶ ∏
p∈P

P (p)→ P (p′0)×P (p′1)

and s ∶ ∏
p∈P

P (p)→ P (p′0)×P (p′1). The proof is very similar to the previous one. The
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reader may follow the proof while referring the following diagram:

E

C ∏
p∈P

P (p) P (p′0) × P (p′1)

P (p0) P (p′0)

e

Πα

αp0 αp′0

r

s

πp0

πp′0 πa0

P (a0)

If α ∶ ∆(C) → P is a cone to P , then we define Πα to be the concatenation of
the components of α: ∀p ∈ P, αp = πp ○ Πα. We check that s ○ Πα = r ○ Πα using
the fact that α is a natural transformation. As (E, e) is an equaliser, there exists a
unique u ∶ C → E such that e ○ u = Πα, and we conclude that ε ○∆(u) = Πα, with
ε = (ep = πp ○ e)p∈P (which is a natural transformation ∆(E)→ P ). Finally, (E, ε) is
the limit of P .

Again, the limit of P is built as the equaliser of (two arrows from) a product.

As the final case, let P be any small category. Again, C has small products, so
we define ∏

p∈P
P (p) and its projections πp. As the set of arrows in P is also small,

we can consider all arrows a ∶ p→ p′ ∈ P and define the product ∏
a∶p→p′∈P

P (p′), that

is, the product of all codomains of all arrows in P. For a0 ∶ p0 → p′0, the projection
of index a0 will be denoted πa0 ∶ ∏

a∶p→p′∈P
P (p′)→ P (p′0).

We now define:

r, s ∶ ∏
p∈P

P (p)→ ∏
a∶p→p′∈P

P (p′)

such that, for all a ∶ p→ p′ ∈ P, we have:

πa ○ r = P (a) ○ πp = P (a) ○ πdoma

πa ○ s = πp′ = πcoda

So roughly, r is the concatenation of all the P (a)’s, and s is simply a concate-
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nation of identities:

r =
roughly

(P (a) ○ πp)a∶p→p′∈P
s =
roughly

(idp′ ○ πp′)a∶p→p′∈P

E

∏
p∈P

P (p) ∏
a∶p→p′∈P

P (p′)

P (p0) P (p′0)

e

r

s

πp0

πp′0 πa0

P (a0)

(2.5)

These two arrows r and s both exist due to the UMP of ∏
a∶p→p′∈P

P (p′): r is the

unique arrow of the UMP due to the cone (P (a0) ○ πp0 ∶ ∏
p∈P

P (p)→ P (p′0)), and s

is the unique arrow of the UMP due to the cone (πp′0 ∶ ∏
p∈P

P (p)→ P (p′0)).

Let (E, e) be an equaliser of r and s. the rest of the proof is very similar to the
previous two ones, and we deduce that (E, e) is the limit of P .

Lemma 2.4.41

Let C be any category.
If C has small coproducts and coequalisers, then C has small colimits.

2.4.7 Explicit computation in Sets

The reason why we proved Lemma 2.4.40 while introducing Theorems 2.4.38
and 2.4.39 without proof, is that we wanted to make explicit the construction of
limits and colimits in Sets. The proof of Lemma 2.4.40 makes it possible to decom-
pose a limit into products and equalisers. Besides, in Sets, we know what products
and equalisers are! (cf. Examples 2.4.20 and 2.4.24)

In this Section, we use the proof of Lemma 2.4.40 in order to explicitly write
what limits and colimits (by duality) are in Sets.

Let P ∶ P → Sets. The product of sets is the usual Cartesian product and
we consider the following products ∏

p∈P
P (p) and ∏

a∶p→p′∈P
P (p′). Here, the product

67



Part I, Chapter 2 – A mere crash course on category theory

∏
p∈P

P (p) is the product of all the P (p)’s for each object p ∈ P. The other product

∏
a∶p→p′∈P

P (p′) has indices in all the arrows a ∶ p→ p′ of P (as in Notation 2.2.4) and

makes the product of all P (p′) = P (cod(a)).
For p0 ∈ P, the projection of index p0 will be denoted by πp0 ∶ ∏

p∈P
P (p)→ P (p0).

For a0 ∶ p0 → p′0, the projection of index a0 will be denoted by πa0 ∶ ∏
a∶p→p′∈P

P (p′)→

P (p′0).
We can now define:

r, s ∶ ∏
p∈P

P (p)→ ∏
a∶p→p′∈P

P (p′)

such that, for all a ∶ p→ p′ ∈ P, we have:

πa ○ r = P (a) ○ πp = P (a) ○ πdoma

πa ○ s = πp′ = πcoda

Just as in the proof of Lemma 2.4.40, the arrows r and s exist both as the UMP
of ∏

a∶p→p′∈P
P (p′):

1. r is the UMP arrow to the cone (P (a0) ○ πp0 ∶ ∏
p∈P

P (p)→ P (p′0))

2. s is the UMP arrow to the cone (πp′0 ∶ ∏
p∈P

P (p)→ P (p′0))

The limit of P is the equaliser of r and s (just as in the proof of Lemma 2.4.40).
According to Example 2.4.24, it is:
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Lim (P ) =
⎧⎪⎪⎨⎪⎪⎩
x̄ ∈ ∏

p∈P
P (p)

RRRRRRRRRRR
r (x̄) = s (x̄)

⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩
x̄ ∈ ∏

p∈P
P (p)

RRRRRRRRRRR
∀a ∶ p→ p′ ∈ P, πa ○ r (x̄) = πa ○ s (x̄)

⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩
x̄ ∈ ∏

p∈P
P (p)

RRRRRRRRRRR
∀a ∶ p→ p′ ∈ P, P (a) ○ πp (x̄) = πp′ (x̄)

⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩
x̄ ∈ ∏

p∈P
P (p)

RRRRRRRRRRR
∀a ∶ p→ p′ ∈ P, P (a)(xp) = xp′

⎫⎪⎪⎬⎪⎪⎭

Dually, we construct a colimit as the coequaliser of a coproduct.
Explicitly, in Sets, the coproduct is the disjoint union. We consider the sets

∑
p∈P

P (p) and ∑
a∶p→p′∈P

P (p′).

For p0 ∈ P, the inclusion of index p0 will be denoted ιp0 ∶ P (p0)→ ∑
p∈P

P (p).

For a0 ∶ p0 → p′0, the inclusion of index a0 will be denoted ιa0 ∶ P (p′0) →
∑

a∶p→p′∈P
P (p′).

We now define:

r, s ∶ ∑
a∶p→p′∈P

P (p′)→ ∑
p∈P

P (p)

such that, for all a0 ∶ p0 → p′0 ∈ P, we have:

r ○ ιa0 = ιp0 ○ P (a0) = ιdoma0 ○ P (a0)
s ○ ιa0 = ιp′0 = ιcoda0

We obtain the following diagram, which is basically Diagram 2.5 with inverted
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arrows:

Q

∑
a∶p→p′∈P

P (p′) ∑
p∈P

P (p)

P (p′0) P (p0)

r

s

q

P (a0)

ιp′0ιa0 ιp0

The colimit of P is then the coequaliser of r and s. According to Example 2.4.30,
we need to define the equivalence relation ∼ on ∑

p∈P
P (p) generated by: for all x ∈

∑
a∶p→p′∈P

P (p′), r(x) ∼ s(x).

Then x must be in one of the P (p′0) (because x is in the disjoint union of them).
So we have:

x = ιa0(x)
s(x) = s ○ ιa0(x) = ιp′0(x) = x
r(x) = r ○ ιa0(x) = ιp0 ○ P (a0)(x) = P (a0)(x)

Basically, the equivalence relation is generated by: for all a0 ∶ p′0 → p0, for all
x ∈ P (p′0), P (a0)(x) ∼ x, and the colimit of P is then the quotient set ∑

p∈P
P (p) / ∼.

Theorem 2.4.42 (Limits and colimits in Sets)

Let P ∶ P → Sets be a diagram.
Its limit exists and is written:

Lim (P ) =
⎧⎪⎪⎨⎪⎪⎩
x̄ ∈ ∏

p∈P
P (p)

RRRRRRRRRRR
∀a ∶ p→ p′ ∈ P, P (a)(xp) = xp′

⎫⎪⎪⎬⎪⎪⎭
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Its colimit exists and is written:

Colim (P ) = ∑
p∈P

P (p) / ∼

where ∼ is the equivalence relation generated by: for all a ∶ p → p′, for all
x ∈ P (p), P (a)(x) ∼ x.
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Chapter 3

DYNAMICAL SYSTEMS

[...] In mathematics you don’t understand things.
You just get used to them.

John Von Neumann.

3.1 Introduction

The following chapter is a detailed version of our published work [18].
Automata represent systems that receive inputs, alter their internal states, and

produce outputs. The state set of the automaton is to be interpreted as the set
of all potential memories, or storable experiences. In automata theory, the state
set is typically finite. In this case, one can view this memory capacity as limited.
On the contrary, when the memory of the automaton is not assumed to be limited
(human brain), or its capacity can always be extended (RAM-machines or Turing
machines as models of computers in computation theory), the automaton should
have an infinite state set.

In the theory of dynamical systems, we use a generalisation of automata in which
the size of the state space is not restricted to finiteness, or even to countability.
Dynamical systems with the behaviour of an automaton, that is, taking inputs in
discrete time, are called discrete systems. The state space of such a system acts
as a sort of memory of the inputs. Each input influences the current state of the
automaton, and the current state is the result of the system’s own form—how it
deals with inputs—together with the system’s history.

One can imagine a dynamical system whose state space is that of all possible
input-histories; a new input simply appends to the existing history to become a
new history. On the other hand, one can imagine the "opposite" kind of system: one
that completely forgets the previous inputs. These systems are referred to as "simple-
reflex" in [31, p. 49], reactive, or memoryless in this chapter. The transitions of these
automata depend only on the input, as no experience is stored. The system decides
according to the current perception of the world, rather than current perception

73



Part II, Chapter 3 – Dynamical systems

together with past perception. In fact, these memoryless systems could act by making
a single distinction in the input—a yes/no Boolean response—and nothing more; we
call these Boolean reactive systems.

In this chapter, we will study the links between systems that have memory
and those that do not. More precisely, we prove that systems with memory can
be simulated by wiring together systems without memory. Our result provides a
theoretical framework that supports artificial neural network approaches. Memory is
carried by connections, and not only by individuals, within a compositional hierarchy
of parts. In particular, feedback generates memory. This result is already known by
electronicians and computer scientists (transistors), but this chapter formally proves
and generalises this intuitive result to any kind of automaton in discrete time, which
takes any kind of inputs and returns any kind of outputs. As a special case, when
the automata are boolean (which can compare to transistors), we generate the class
of finite automata (which can compare to computers).

This chapter lies between two fields of mathematics: category theory and dy-
namical systems. In Section 2, we introduce all the background related to category
theory and its use in the study of discrete systems. Readers already familiar with
the study of boxes and discrete systems from a category-theoretic point of view (as
in [19]) can skip Section 3.2. Here again, we only need the basic understanding of
C -typed-finite sets, C -boxes, wiring diagrams and discrete systems inside a C -box.

In Section 3.3, we introduce discrete systems and a specific mapping that will
serve our purposes (Section 3.3.1). We then introduce two equivalence relations be-
tween discrete systems. Both are bigger than the usual bisimulation used in automata
theory (in the sense of set inclusion). One corresponds to an external point of view;
two systems are equivalent if they transform input streams into output streams in
the same way (Section 3.3.2). The other relation corresponds to an internal point of
view: two systems are equivalent if they have "the same structure" (in a sense that
is defined in Section 3.3.3). We prove that these are just two perspectives on the
same relation.

This equivalence relations play a crucial role in the two results we show in Sec-
tion 3.4. First, we show that any discrete system is equivalent to some wiring-
together of memoryless systems (Section 3.4.2). Second, we show that any discrete
system with a finite state set is equivalent to a combination of finitely many Boolean
reactive systems (Section 3.4.3).

3.2 Background on boxes and wiring diagrams

We will now apply the categorical framework to build discrete systems. Our
approach is different from the one in [32]. The dynamical systems presented here
are defined as a generalisation of automata whose input and output spaces are
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predetermined. We will define a category of lists, a category of boxes, and diverse
operations on them.

In this section, C will be any category with finite products (typically Sets). Most
of the following notions were already defined in [19]; we only recall them without
proving their properties. We also give examples in order to help for comprehension.

3.2.1 The category of typed finite sets

Before defining proper boxes, we need to define the notion of input and output
ports. These will eventually be the sides of our boxes.

Definition 3.2.1 (Category of C -typed finite sets [19])

The category TFSC of C -typed finite sets is defined as follows:
Objects: An object is any pair (P, τ) such that P is a finite set and

τ ∶ P → ObC is a function
Morphisms: A morphism from (P, τ) to (P ′, τ ′) is a function γ ∶ P → P ′

such that τ = τ ′ ○ γ
Identities: The identity morphism on (P, τ) is the identity function of the

set P
Composition: The composition of morphisms is the usual composition of

functions
An object in TFSC is called a C -typed finite set; a morphism in TFSC is
called a C -typed function.

We can rewrite a C -typed finite set (P, τ) as the finite sequence

⟨τ(p0), . . . , τ(pn−1)⟩

where P = {p0, . . . , pn−1}. A C -typed finite set is simply a list of objects in C , indexed
by a finite set P . If C = Sets, a Sets-typed finite set is a list of sets.

A C -typed function γ ∶ (P, τ) → (P ′, τ ′) can be then seen as a means to ob-
tain the former list ⟨τ(p0), . . . , τ(pn−1)⟩ from the latter list ⟨τ ′(p0), . . . , τ ′(pn−1)⟩,
by reordering, duplicating or even ignoring its elements. As τ = τ ′ ○ γ, the list
⟨τ(p0), . . . , τ(pn−1)⟩ can be rewritten ⟨τ ′ (γ(p0)) , . . . , τ ′ (γ(pn−1))⟩. Beware of the
inversion: γ goes from (P, τ) to (P ′, τ ′) and we see it as a transformation of the list
(P ′, τ ′) into the list (P, τ).
Example 3.2.2. Let A, B and C be objects of C and consider the following three
C -typed finite sets:
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— (2, τ2) such that τ2(0) = A and τ2(1) = B; thus (2, τ2) is the list ⟨A,B⟩
— (3, τ3) such that τ3(0) = B, τ3(1) = C and τ3(2) = A; thus (3, τ3) is the list

⟨B,C,A⟩
— (4, τ4) such that τ4(0) = τ4(1) = τ4(2) = A and τ4(3) = B; thus (4, τ4) is the list

⟨A,A,A,B⟩

(Remember our set-theoretic notation: 2 = {0,1}, 3 = {0,1,2} and 4 = {0,1,2,3}.)
The list ⟨A,B⟩ can be obtained from the list ⟨B,C,A⟩ by taking its third and first

elements in this order. A C -typed function from (2, τ2) to (3, τ3) could be γ ∶ 2→ 3
such that γ(0) = 2 and γ(1) = 0.

Similarly, the morphisms γ′ ∶ 2 → 4 that convert the list ⟨A,A,A,B⟩ to ⟨A,B⟩
are such that γ′(0) = 0 and γ′(1) = 3, or γ′(0) = 1 and γ′(1) = 3, or γ′(0) = 2 and
γ′(1) = 3.

We let the reader find the morphism (4, τ4) → (3, τ3) that transforms the list
⟨B,C,A⟩ into the list ⟨A,A,A,B⟩, and the (unique) morphism (4, τ4)→ (2, τ2) that
transforms the list ⟨A,B⟩ into the list ⟨A,A,A,B⟩.

What about the morphisms from (3, τ3) to (2, τ2)? The list ⟨A,B⟩ does not
contain the object C. There is simply no morphism (3, τ3) → (2, τ2). The same
argument applies to morphisms from (3, τ3) to (4, τ4).

Definition 3.2.3 (Sum of typed finite sets [19])

Let (P0, τ0) , (P1, τ1) ∈ TFSC be two C -typed finite sets.
We define their sum by (P0, τ0) + (P1, τ1) = (P0 + P1, τ0 + τ1) as the usual dis-
joint union of sets P0 + P1 and τ0 + τ1 as τi on Pi for i ∈ 2.

Definition 3.2.4 (Sum of typed functions [19])

Let γi ∶ (Pi, τi)→ (P ′
i , τ

′
i) (i ∈ 2) be two C -typed functions.

We define their sum as the C -typed function γ0 + γ1 ∶ (P0, τ0) + (P1, τ1) →
(P ′

0, τ
′
0) + (P ′

1, τ
′
1) such that ∀x ∈ P0 + P1, (γ0 + γ1) (x) = γi(x) if x ∈ Pi (i ∈ 2).

We can view the sum (P, τ)+ (P ′, τ ′) as the usual concatenation of the two lists

⟨τ(p0), . . . , τ(pn)⟩ and ⟨τ ′(p′0), . . . , τ ′(p′n′)⟩

that is, the list

⟨τ(p0), . . . , τ(pn), τ ′(p′0), . . . , τ ′(p′n′)⟩
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and the sum of C -typed functions as a action on each part of the concatenated list.

Proposition 3.2.5

The category TFSC has the following properties:
— The sum of C -typed finite sets is a coproduct.
— There is only one C -typed finite set (P, τ) where P = ∅. We denote it

by 0.
— TFSC has a symmetric monoidal structure for the sum +, with 0 as the

unit.

Proof. See [19].

3.2.2 Dependent products

In this subsection, we define the dependent product functor. If a C -typed finite
set can be viewed as a list of objects of C , then the dependent product of this list
is simply the product of its elements.

Definition 3.2.6 (Dependent product [19])

We define the dependent product as the functor −⋀ ∶ TFSop
C → C such that:

Action on objects: (P ,τ)
⋀

=∏p∈P τ(p)

Action on morphisms: If γ ∶ (P, τ) → (P ′, τ ′), then γ⋀ ∶ (P ′, τ ′)
⋀

→ (P, τ)
⋀

is defined as the function γ
⋀ ∶ ∏p′∈P ′ τ

′(p′) → ∏p∈P τ(p) such that
∀ (ap′)p′∈P ′ ∈ (P ′, τ ′)
⋀

, γ⋀((ap′)p′∈P ′) = (aγ(p))p∈P .

The interpretation of the dependent product is actually quite straightforward:
the dependent product of a C -typed finite set, viewed as a list, is the product of the
elements of the list in the same order as they appear in the list.

We remind that C has finite products; as a consequence, the dependent product
always exists.
Example 3.2.7. Consider the same A, B and C objects of C and C -typed finite sets
as in Example 3.2.2:

— (2, τ2) = ⟨A,B⟩
— (3, τ3) = ⟨B,C,A⟩
— (4, τ4) = ⟨A,A,A,B⟩
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The dependent products of these C -typed finite sets are:

— (2, τ2)
⋀

= A ×B

— (3, τ3)
⋀

= B ×C ×A

— (4, τ4)
⋀

= A ×A ×A ×B

In order to see what the dependent product does to morphisms, take a morphism
γ ∶ 2 → 4 that converts the list ⟨A,A,A,B⟩ to ⟨A,B⟩, for example the morphism
defined by γ(0) = 0 and γ(1) = 3. Its dependent product γ⋀ will be the function
(4, τ4)
⋀

→ (2, τ2)
⋀

= A ×A ×A ×B → A ×B such that γ⋀(x0, x1, x2, x3) = (xγ(0), xγ(1)) =
(x0, x3).

We let the reader find the other dependent products as an exercise.

The dependent product is thus a functor that packages the usual operations of
diagonal A→ A ×A, projection A ×B → A, and swapping A ×B → B ×A.

Proposition 3.2.8

There is a natural isomorphism (P0, τ0) + (P1, τ1)
⋀

≅ (P0, τ0)
⋀

× (P1, τ1)
⋀

; in other
words, the dependent product functor sends coproducts in TFSC to products
in C .

Proof. See [19].

This property is also quite intuitive: if one views the coproduct in TFSC as the
concatenation of lists, and the dependent product as the product of the elements of
the list, then the dependent product of the concatenation of two lists is the product
of the dependent products of each lists.

3.2.3 The category of boxes and wiring diagrams

The category TFSC is not the main purpose of this chapter; however its prop-
erties will be useful for the rest of it.

In the following, by abuse of notation, we will write X ∈ TFSC for (X,τ), and
X
⋀

for (X,τ)
⋀

.

Definition 3.2.9 (C -box [19])

We call C -box any pair X = (X in,Xout) ∈ TFSC ×TFSC .
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A C -box is a pair of C -typed finite sets (X in,Xout), where X in represent the list
of inputs ports, and Xout represent the list of outputs ports.
Example 3.2.10. From the typed finite sets in Example 3.2.2, we can build the
following C -boxes:

— B2,2 = ((2, τ2) , (2, τ2)) = (⟨A,B⟩ , ⟨A,B⟩)
— B2,4 = ((2, τ2) , (4, τ4)) = (⟨A,B⟩ , ⟨A,A,A,B⟩)
— B4,3 = ((4, τ4) , (3, τ3)) = (⟨A,A,A,B⟩ , ⟨B,C,A⟩)

These C -boxes are represented here:

B2,2
A

B

A

B
B2,4

A

B

A

A

A

B

B4,3

A

A

A

B

B

C

A

In the rest of the chapter, the ports will no longer be labelled, for the sake of
readability.

Definition 3.2.11 (Wiring diagram [19])

Let X = (X in,Xout) and Y = (Y in, Y out) be C -boxes.
A wiring diagam ϕ ∶ X → Y is a pair of C -typed functions (ϕin, ϕout) such
that:
— ϕin ∶X in → Y in +Xout

— ϕout ∶ Y out →Xout

The C -typed function ϕin tells what feeds the input ports of the box X: each
input port of X is either connected to an input port of Y or to an output port of X
(in case of feedback); the C -typed function ϕout tells what feeds the output ports of
Y : each output port of Y is connected to some output port of X.
Example 3.2.12. Given B2,2 and B2,4 defined in Example 3.2.10, the wiring diagrams
ϕ ∶ B2,2 → B2,4 will have the following form:

— ϕin ∶ (2, τ2)→ (2, τ2) + (2, τ2) = ⟨A,B⟩→ ⟨A,B,A,B⟩
— ϕout ∶ (4, τ4)→ (2, τ2) = ⟨A,A,A,B⟩→ ⟨A,B⟩

We can build specific wiring diagrams such as:
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ϕin
0 (0) = 0

ϕin
0 (1) = 1 B2,2

B2,4 ϕout
0 (0) = 0

ϕout
0 (1) = 0

ϕout
0 (2) = 0

ϕout
0 (3) = 1

ϕin
1 (0) = 0

ϕin
1 (1) = 3 B2,2

B2,4 ϕout
1 (0) = 0

ϕout
1 (1) = 0

ϕout
1 (2) = 0

ϕout
1 (3) = 1

Let us consider a wiring diagram ψ ∶ B4,3 → B2,2 (defined in Example 3.2.10). It
will look like:

— ψin ∶ (4, τ4)→ (2, τ2) + (3, τ3) = ⟨A,A,A,B⟩→ ⟨A,B,B,C,A⟩
— ψout ∶ (2, τ2)→ (3, τ3) = ⟨A,B⟩→ ⟨B,C,A⟩

We can build specific wiring diagrams:

ψin
0 (0) = 0

ψin
0 (1) = 0

ψin
0 (2) = 0

ψin
0 (3) = 1

B4,3

B2,2

ψout
0 (0) = 2

ψout
0 (1) = 0

ψin
1 (0) = 0
ψin

1 (1) = 0
ψin

1 (2) = 4
ψin

1 (3) = 1
B4,3

B2,2

ψout
1 (0) = 2

ψout
1 (1) = 0

What about the reverse wiring diagram ρ ∶ B2,2 → B4,3? It will look like:

— ρin ∶ (2, τ2)→ (4, τ4) + (2, τ2) = ⟨A,B⟩→ ⟨A,A,A,B,A,B⟩
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— ρout ∶ (3, τ3)→ (2, τ2) = ⟨B,C,A⟩→ ⟨A,B⟩

There is no problem with the first C -typed function, but we already know that
there is no C -typed function (3, τ3)→ (2, τ2) (cf. Example 3.2.2).

We can now compose the wiring diagrams:

Definition 3.2.13 (Composition of wiring diagrams [19])

Let ϕ ∶ X → Y and ψ ∶ Y → Z be two wiring diagrams. We define their
composition, denoted ψ ○ φ, as the pair ((ψ ○ φ)in, (ψ ○ φ)out), where (ψ ○ φ)in
is defined such that the following diagram commutes:

X in Z in +Xout

Y in +Xout

Z in + Y out +Xout Z in +Xout +Xout

ϕin

(ψ○ϕ)in

ψin+idXout

idZin+ϕout+idXout

Zin+∇Xout

and (ψ ○ φ)out is defined such that the following diagram commutes:

Zout Xout

Y out

(ψ○ϕ)out

ψout ϕout

Example 3.2.14. We can compose ψi ∶ B4,3 → B2,2 with ϕj ∶ B2,2 → B2,4 (i, j ∈ 2)
(defined in Example 3.2.12).

ϕ0 ○ ψ0 ϕ0 ○ ψ1

B4,3

B2,2

B2,4

B4,3

B2,2

B2,4
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ϕ1 ○ ψ0 ϕ1 ○ ψ1

B4,3

B2,2

B2,4

B4,3

B2,2

B2,4

Definition 3.2.15 (Category of C -boxes and wiring diagrams [19])

The category WC of C -boxes and wiring diagrams is defined as follows:
Objects: An object in WC is a C -box
Morphisms: A morphism between two C -boxes X and Y is a wiring di-

agram φ ∶X → Y

Identities: An identity morphism on X is the identity wiring diagram
Composition: The composition of wiring diagrams is the composition de-

fined in definition 3.2.13

3.2.4 Monoidal structure of the category of boxes

The category WC has a monoidal structure for the parallel composition of boxes,
that corresponds to the intuitive idea of parallelising boxes.

Definition 3.2.16 (Parallel composition of boxes [19])

Let X = (X in,Xout) and Y = (Y in, Y out) be two C -boxes.
The parallel composition, or sum, of X and Y , denoted X ⊞ Y , is the box
X ⊞Y = (X in + Y in,Xout + Y out), where + is the sum of C -typed finite sets (cf.
Definition 3.2.3).

The parallel composition of two C -boxes summarises to the concatenation of
both input ports, and both output ports.
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3.2. Background on boxes and wiring diagrams

Example 3.2.17. Any two C -boxes can be put in parallel. For example:

B2,2

B4,3

B2,2 ⊞ B4,3

B2,4

B2,2

B2,4 ⊞ B2,2

Definition 3.2.18 (Parallel composition of wiring diagrams [19])

Let ϕ ∶ X → Y = (ϕin, ϕout) and ψ ∶ Y → Z = (ψin, ψout) be two wiring
diagrams.
The parallel composition, or sum, of ϕ and ψ, denoted ϕ⊞ψ , is the wiring di-
agram ϕ⊞ψ = (ϕin + ψin, ϕout + ψout), where + is the sum of C -typed functions
(cf. Definition 3.2.4).

Example 3.2.19. Using the notations of Example 3.2.12, we can build ϕi ⊞ψi ∶ B2,2 ⊞
B4,3 → B2,4 ⊞ B2,2 (i ∈ 2) :

ϕ0 ⊞ ψ0 ϕ1 ⊞ ψ1

B2,2

B4,3

B2,2 ⊞ B4,3

B2,4 ⊞ B2,2

B2,2

B4,3

B2,2 ⊞ B4,3

B2,4 ⊞ B2,2

Proposition 3.2.20

The category WC has the following properties:
— The closed box ◻, defined as ◻ = (0,0), where 0 is C -typed finite set
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(∅,∅→ C ) defined in 3.2.5, is the unit for the sum of boxes ⊞.
— WC has a symmetric monoidal structure for the sum of boxes ⊞, with ◻

as the unit.

Proof. See [19].

3.2.5 Dependent product of boxes

The aim of this section is to extend the notion of dependent product (Defini-
tion 3.2.6) to C -boxes and wiring diagrams.

Definition 3.2.21 (Dependent product of a C -box [19])

The dependent product X
⋀

of the C -box X = (X in,Xout) is the pair X
⋀

=
(X in
⋀

,Xout
⋀

).

Remark 3.2.22. The dependent product of X0 ⊞X1 is simply the C -box:

X0 ⊞X1
⋀

= (X in
0
⋀

×X in
1
⋀

,Xout
0
⋀

×Xout
1
⋀

)

Definition 3.2.23 (Dependent product of wiring diagrams [19])

The dependent product X
⋀

of the wiring diagram ϕ ∶ X → Y is the pair ϕ⋀ =
(ϕin
⋀

, ϕout
⋀

).

Remark 3.2.24. The dependent product ϕ0 ⊞ ϕ1 is ϕ0 ⊞ ϕ1
⋀= (ϕin

0
⋀

× ϕin
1
⋀

, ϕout
0
⋀

× ϕout
1
⋀

).

Proposition 3.2.25

Let ϕ ∶ X → Y and ψ ∶ Y → Z. The dependent product of ψ ○ ϕ is the pair
ψ ○ ϕ
⋀

= ((ψ ○ ϕ)in
⋀

, (ψ ○ ϕ)out
⋀

) where:

— (ψ ○ ϕ)in
⋀

(x, z) = ϕin
⋀

(ψin
⋀

(z,ϕout
⋀

(x)) , x)

— (ψ ○ ϕ)out
⋀

(x) = ψout
⋀

(ϕout
⋀

(x))

Proof. See [19].

84



3.3. Discrete systems and their equivalences

Remark 3.2.26. The dependent product of C -boxes and wiring diagrams could be
described in terms of monoidal functors; however the codomain of this functor is not
C ×C as expected, but a category that has the same objects (pairs of objects (A,B)
of C ) but whose morphisms are pairs of morphisms (f in

⋀

, f out
⋀

) ∶ (A0,B0)→ (A1,B1)
such that f in

⋀

is the morphism f in
⋀

∶ A1 × B0 → A0 in C and f out
⋀

is the morphism
f out
⋀

∶ B0 → B1 in C . The composition law is the one given in Proposition 3.2.25.

Until now, we have only defined a category of C -boxes, with interesting proper-
ties. These C -boxes are exactly as their name suggests: empty boxes. The extension
of the dependent product to C -boxes is a necessary step in order to define the
"inhabitants" of C -boxes.

3.3 Discrete systems and their equivalences

In this section and for the rest of the chapter, we will consider the special case
where C = Sets. Thus, in general, we will simply call "boxes" what we introduced
as "Sets-boxes". We denote the symmetric monoidal category of boxes as WSets.

3.3.1 Definition and basic properties

The notions introduced in this section come from [19]. The properties stated here
are proven in the same article.

Definition 3.3.1 (Discrete systems [19])

Let X = (X in,Xout) ∈ WSets be a box.
A discrete system for the box X, or discrete system for short, is a 4-tuple

F = (SF , f rdt, fupd, sF,0)

where:
— SF ∈ Sets is the state set of F
— f rdt ∶ SF →Xout

⋀

is its readout function
— fupd ∶X in

⋀

× SF → SF is its update function
— s0 ∈ SF is its initial state

We denote by DS (X) the set of all discrete systems for the box X.

Remark 3.3.2. In Proposition 3.2.20, we defined the closed box ◻ = (0,0), where
0 denotes (∅, τ ∶ ∅→ Sets). Its dependent product is ◻⋀ = (∏p∈∅ τ(p),∏p∈∅ τ(p)) ≅
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(1′,1′), where 1′ is any typed finite set of the form (1, τ ∶ 1→ Sets). As a conse-
quence, we have:

DS (◻) ≅ {(SF , f rdt, fupd, sF,0) ∣ SF ∈ Sets, f rdt ∶ SF → 1, fupd ∶ 1 × SF → SF ,
sF,0 ∈ SF

}

(3.1)
In other words, an inhabitant of a closed box is a dynamical system with no

inputs and no outputs, just a set S and a function S → S.
Remark 3.3.3. From a set-theoretic point of view, DS (X) is too big to be a set. A
potential solution is to define the DS (X) within a set big enough for our purposes;
for example, the set Vω1 from the von Neumann hierarchy of sets, which contains
the usual sets, vector spaces, measurable spaces, Hausdorff spaces, fields, etc. used
in mathematics (Vω×2 suffices [27, Lemma 2.9]).

In the following, we will continue to write DS (X) (and similarly for mappings)
with the state set in SF ∈ Sets for the sake of understandability, but in case set-
theoretic problems emerge, we should not write SF ∈ Sets but SF ∈ Vω1 .

Note that discrete systems can be viewed as a generalisation of automata. They
have no final states, the transition function is always a function, i.e. all discrete
systems are deterministic, the input alphabet can be infinite, and the transition
function is always defined on every input and every state. Discrete systems are
not automata that recognize a language, but rather, automata that take any input
stream and return an output stream based on the states it transitioned to; that is,
discrete systems are a generalisation of transducers as defined in [33]. Alternatively,
discrete systems exactly correspond to the sequential automata in [34].
Example 3.3.4. For this example, we generalise the notation seen in Definition 3.2.1
to the set TFSR of R-typed finite sets, seen as lists of real numbers, that is, finite
sequences of real numbers:

TFSR = {(n, τ) ∣ n ∈ N, τ ∶ n→ R}

Here, this is a set, not a category; besides, we use n ∈ N instead of P ∈ FinSets so
that we define a set. As a discrete category (having only identity morphisms), it is
equivalent to TFSR obtained by also considering R as a discrete category.

We also generalise the sum of finite sequences, seen as the concatenation.
Consider the boxX0 = (⟨R⟩ , ⟨R⟩) ∈ WSets. We define the following discrete system

F0 ∈ DS (X0):

— SF0 = TFSR

— fupd0 ∶ { R ×TFSR → TFSR
(a, ⟨a0, . . . , an−1⟩) ↦ ⟨a0, . . . , an−1, a⟩
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— f rdt0 ∶ { TFSR → R
⟨a0, . . . , an−1⟩ ↦ max (⟨a0, . . . , an−1⟩)

— sF0,0 = 0 (where 0 is the empty list as defined in Proposition 3.2.5)

In this example, the state set SF0 = TFSR is uncountably infinite and clearly
works as a memory. This discrete system F0 takes a real number as an input, appends
it to its memory, and computes the maximum value of the stored list.

A more complicated discrete system could return several results; for example, in
the box X1 = (⟨R⟩ , ⟨R,R,R,R⟩) ∈ WSets, we can define F1 ∈ DS (X1) such that:

— SF1 = SF0 = TFSR, fupd1 = fupd0 and sF1,0 = 0 (same state set, update function
and initial state as F0)

— f rdt1 ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

TFSR → R ×R ×R ×R
⟨a0, . . . , an−1⟩ ↦ (max (⟨a0, . . . , an−1⟩) ,min (⟨a0, . . . , an−1⟩) ,

mean (⟨a0, . . . , an−1⟩) ,var (⟨a0, . . . , an−1⟩))

Or we could add a switch so that we can decide what output we want; in the
box X2 = (⟨R,4⟩ , ⟨R⟩), we define F2 as:

— SF2 = TFSR × 4 (here we see 4 as its set-theoretic counterpart: 4 = {0,1,2,3})

— fupd2 ∶ { R × 4 ×TFSR × 4 → TFSR × 4
(a, b, ⟨a0, . . . , an−1⟩ , c) ↦ (⟨a0, . . . , an−1, a⟩ , b)

— f rdt2 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

TFSR × 4 → R

(⟨a0, . . . , an−1⟩ , b) ↦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max (⟨a0, . . . , an−1⟩) if b = 0
min (⟨a0, . . . , an−1⟩) if b = 1
mean (⟨a0, . . . , an−1⟩) if b = 2
var (⟨a0, . . . , an−1⟩) otherwise

— sF2,0 = (0,0)

We could even add a reset button; in the box X3 = (⟨R,4,2⟩ , ⟨R⟩), we define F3
as:

— SF3 = SF2 = TFSR×4, f rdt3 = f rdt2 and sF3,0 = sF2,0 = (0,0) (same state set, same
readout function and same initial state as F2)

— fupd3 ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R × 4 × 2 ×TFSR × 4 → TFSR × 4

(a, b, r, ⟨a0, . . . , an−1⟩ , c) ↦ { sF3,0 if r = 0
(⟨a0, . . . , an−1, a⟩ , b) otherwise

We previously viewed general boxes (objects in WSets) as empty frames. Discrete
systems are the objects that "live" inside. One can draw a parallel with programming:
a C -box is the signature of the function, that is, its accepted types of inputs and
outputs, and the discrete system is the actual code of the function.
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In the rest of this chapter, a discrete system F = (SF , f rdt, fupd, sF,0) will often
be represented as the following two-arrow graph:

F ∶ X in
⋀

× SF SF Xout
⋀fupd f rdt

The first function describes how a state and an input are transformed into a new
state; the second describes how the state is output, or "read out”. In general, the
initial state sF,0 ∈ SF will not be represented in these diagrams, though it is implicitly
there.

Discrete systems are part of the more general class of dynamical systems. We
can define other types of dynamical systems depending on the category C that we
are interested in. If C is the category Euc of Euclidean spaces, then we will refer to
continuous systems. For more examples, see [19].

Definition 3.3.5 (DS-application of a wiring diagram [19])

Let ϕ ∶X → Y be a wiring diagram. Let F = (SF , f rdt, fupd, sF,0) ∈ DS (X).
The DS-application of ϕ to F , denoted DS (ϕ) (F ), is the discrete system:

DS (ϕ) (F ) = (SG, grdt, gupd, sG,0) ∈ DS (Y )

such that:
— SG = SF
— grdt ∶ s↦ ϕout

⋀

(f rdt(s))

— gupd ∶ (y, s)↦ fupd (ϕin
⋀

(y, f rdt(s)) , s)
— sG,0 = sF,0

We can view DS (ϕ) (F ) as the discrete system we obtain from F by implement-
ing the wiring diagram ϕ.

Definition 3.3.6 (Parallel composition of discrete systems [19])

Let X0, X1 be boxes and let Fi = (SFi , f rdti , fupdi , sFi,0) ∈ DS (Xi) (i ∈ 2) be
discrete systems.
The parallel composition of F0 and F1, denoted F0 ⊠ F1, is the discrete system

(SG, grdt, gupd, sG,0) ∈ DS (X0 ⊞X1)

such that:
— SG = SF0 × SF1

88



3.3. Discrete systems and their equivalences

— sG,0 = (sF0,0, sF1,0)

— grdt = f rdt0 × f rdt1 ∶ SF0 × SF1 →Xout
0
⋀

×Xout
1
⋀

— gupd ∶ X in
0
⋀

× X in
1
⋀

× SF0 × SF1 → SF0 × SF1 makes the following diagram
commute:

X in
0
⋀

×X in
1
⋀

× SF0 × SF1 SF0 × SF1

X in
0
⋀

× SF0 ×X in
1
⋀

× SF1 SF0 × SF1

gupd

≅ =

fupd
0 ×fupd

1

We also define the parallel composition of DS (X0) and DS (X1), denoted
DS (X0) ⊠DS (X1), by:

DS (X0) ⊠DS (X1) = {F0 ⊠ F1 ∣ F0 ∈ DS (X0) , F1 ∈ DS (X1)} .

Proposition 3.3.7

Parallel composition (F0, F1) ↦ F0 ⊠ F1 provides a natural map DS (X0) ×
DS (X1)→ DS (X0 ⊞X1).

Proof. See [19].

Theorem 3.3.8

DS∶WSets → Sets as defined is a lax monoidal functor.

Proof. See [19]

3.3.2 An external equivalence relation on dynamical sys-
tems

Via the monoidal functor DS, a box contains a specified sort of discrete system
(depending on the ports of the box). For an exterior spectator, the content of the
box does not matter; what matters is the way it transforms input streams to output
streams. Thus, even if two boxes contain different discrete systems, for example
one with an infinite state set, and the other with a finite state set, as long as they
both give the same output in response to the same input, then they are viewed as
"equivalent" from an external point of view.

The following definitions formalise this idea.
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Definition 3.3.9 (Input and output streams)

Let F = (SF , f rdt, fupd, sF,0) ∈ DS (X).
An input stream (for X) is a finite sequence xin = (xini )i∈n ∈ (X in

⋀

)
n
, where

n ∈ N.
The output stream produced by F when given xin, denoted F (xin), is the
stream xout defined by the following recursive system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0 = sF,0
si+1 = fupd (xini , si)
xouti = f rdt (si+1)

We refer to the state s that F reaches after having processed the input stream
xin as resulting state of F , and denote it Fres(xin). Formally, if xin = (xini )i∈n,
then according to the previous recursive system, the resulting state of F is
Fres(xin) = sn.

Remark 3.3.10. According to the notation proposed in the Notation section, xin =
(xini )i∈n ∈ (X in

⋀

)
n
will be written xin ∈X in

⋀

.

Remark 3.3.11. Definition 3.3.9 is a continuation of the definitions of run maps and
behaviours in [34], which are functions that assign respectively the resulting state
and the last output of the automaton given an input stream. The results we obtain
with our notations are similar to those in [34].

Definition 3.3.12 (Equivalence as stream transducers)

Let F = (SF , f rdt, fupd, sF,0) and G = (SG, grdt, gupd, sG,0) be two discrete sys-
tems.
We say that F and G are equivalent as stream transducers, and we write
F ≡ G, when, ∀xin ∈X in

⋀

, F (xin) = G (xin).

It is easy to see that:

Proposition 3.3.13

The relation ≡ is an equivalence relation on the set DS (X), for any box X.
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3.3.3 An internal equivalence relation on dynamical systems

The relation ≡ defined above does not give any information on the links between
two discrete systems that are equivalent as stream transducers. In this subsection,
we define another equivalence relation that provides an internal point of view. We
then prove that the two equivalence relations are the same.

In the following, X = (X in,Xout) is any box.

Definition 3.3.14 (Simulation relation)

Suppose given F = (SF , f rdt, fupd, sF,0) andG = (SG, grdt, gupd, sG,0) in DS (X).
We say that F simulates G, and we write F ⊢ G, if there exists α ∶ SF →
SG such that sG,0 = α (sF,0) and such that α ○ fupd = gupd ○ (id

X in
⋀, α), and

f rdt = grdt ○ α; that is, preserving the initial state and making the following
two diagrams commute:

F ∶ X in
⋀

× SF SF Xout
⋀

G ∶ X in
⋀

× SG SG Xout
⋀

(id
Xin
⋀, α)

fupd

α

f rdt

=

gupd grdt

(3.2)

We refer to α as a simulation function: it witnesses the simulation F ⊢ G.

A priori, the simulation relation does not relate the output of the two discrete
systems F and G (though this does follow; see Lemma 3.3.19); it only declares a
correspondence between both their state sets and update and readout functions.
Both discrete systems can work in parallel; their state sets need not be the same,
nor even of the same cardinality, but they somehow coordinate via the map α. The
function α draws the parallel between the internal machinery of F and that of G.

For the rest of the chapter, we will be more interested in the simulation relation
F ⊢ G than any particular simulation function witnessing it: any one will do.
Remark 3.3.15. Definition 3.3.14 refers to the existence of morphisms between two
automata as described in the automata theory litterature [34]. The existence of
such morphisms suffices for our purposes. We are a bit more restrictive here, as
the outputs need to be the same in both automata, while in the usual definition
of morphisms, automata can have different output alphabets, as long as there is a
function to convert one output into the other.

The simulation relation is not necessarily an equivalence relation and is not
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enough for our purpose, but we can use it to generate the equivalence relation we
actually need.

Definition 3.3.16 (Internal equivalence relation on DS (X))

Let F,G ∈ DS (X).
We say that F and G are simulation-equivalent, and we write F ∼ G, if there
exists a finite sequence (Hi)i∈N ∈ DS (X) such that:

F H2 . . . H2n G

H1 . . . . . . H2n+1

It is not hard to check that:

Theorem 3.3.17

The equivalence relation ∼ is the equivalence relation generated by ⊢, that is,
∼ is the smallest equivalence relation R such that ⊢ ⊆ R.

Finally, we need to show that the equivalence relation ∼ actually groups dis-
crete systems that have the same behaviour as a stream transducer, in the sense of
Definition 3.3.12; that is, the external and the internal equivalence relation are the
same.

Lemma 3.3.18

Let F,G ∈ DS (X). If F ≡ G then ∃H ∈ DS (X) such that H ⊢ F and H ⊢ G.

Proof. Let F = (SF , f rdt, fupd, sF,0) and G = (SG, grdt, gupd, sG,0).
Take H = (SH , hrdt, hupd, sH,0) such that:

— SH = {(s, s′) ∈ SF × SG ∣ ∃xin such that Fres(xin) = s and Gres(xin) = s′ }
— hupd (x, (s, s′)) = (fupd (x, s) , gupd (x, s′))
— hrdt (s, s′) = f rdt(s)
— sH,0 = (sF,0, sG,0)

Take as simulation functions the respective projections πSF and πSG .
It is easy to see that the required diagrams in Definition 3.3.14 do commute.

For all (s, s′) ∈ SH , we have hrdt ○ πSF (s, s′) = f rdt(s) by defintion of hrdt. Also,
for all (s, s′) ∈ SH , hrdt ○ πSG (s, s′) = f rdt(s) = grdt(s′) because there exists some
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stream xin such that F results in s and G results in s′; besides, as F ≡ G, we
have F (xin) = G (xin), which implies f rdt(s) = grdt(s′). Consequently, the diagrams
commute and H simulates both F and G.

Lemma 3.3.19

Let F,G ∈ DS (X). If F ⊢ G then F ≡ G.

Proof. Follows by induction on the length of an input stream (xini )i∈n ∈X in
⋀

.

Theorem 3.3.20

∀F,G ∈ DS (X) , F ≡ G ⇔ F ∼ G; or equivalently: ≡ = ∼.

Proof. To prove ≡ = ∼, we need ≡ ⊆ ∼ and ∼ ⊆ ≡.
Suppose first that F,G ∈ DS (X) are dynamical systems such that F ≡ G. Ac-

cording to Lemma 3.3.18, there exists a H ∈ DS (X) such that H ⊢ F and H ⊢ G,
and hence F ∼ G by Definition 3.3.16. This establishes ≡ ⊆ ∼.

We now show that ∼ ⊆ ≡. According to Proposition 3.3.13, ≡ is an equivalence
relation, and according to Lemma 3.3.19, ≡ contains ⊢. Theorem 3.3.17 states that
∼ is the smallest equivalence relation that contains ⊢; necessarily, we have ∼ ⊆ ≡.

The goal of this chapter is to show that the behaviour of a general discrete system
can be emulated by some specific wiring of some other discrete system, chosen with
constraints (for example, on its internal structure). As far as we know, this result
cannot be obtained with a pure equality. However, we have a description of what it
means to be equivalent, both from an internal and from an external point of view,
with the assurance that, seen as a blackbox, the "inhabited" box remains unchanged.

As we are not using real equalities, we need to define relations between sets that
correspond to the usual inclusion and equality.

Definition 3.3.21 (Inclusion/equality up to equivalence)

Let D,E ⊆ DS (X). We consider the equivalence relation ∼ from Defini-
tion 3.3.16 (or, equivalently, in Definition 3.3.12).
We say that D is a subset of E up to equivalence, and we write D ⊑ E, when
∀d ∈D,∃e ∈ E,d ∼ e.
We say that D is equal to E up to equivalence, or D is equivalent to E, and
we write D ≈ E, when D ⊑ E and D ⊒ E.
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If A,B ∶ WSets → Sets are functors, then we write A ⊑ B when, for all box X,
we have A(X) ⊑ B(X). We write A ≈ B, when A ⊑ B and A ⊒ B.
If M,N ∶ WSets → Sets are mappings (not necessarily functors), then we
write M ⊆ N when, for all boxes X and Y , we have M(X) ⊆ N(X) and
MorSets (M(X),M(Y )) ⊆ MorSets (N(X),N(Y )).

3.4 Main results

Before we introduce the actual results of the chapter, we need a few more notions.

3.4.1 Algebras and closures

Definition 3.4.1 (Algebra)

Given a monoidal category C , a functor F ∶ C → Sets is called an algebra
over C when it is a lax monoidal functor.

In our case, C = WSets, and DS is an algebra by Theorem 3.3.8.

Definition 3.4.2 (Subalgebra)

Let A ∶ WSets → Sets be an algebra over WSets. Let σX,Y ∶ A(X) × A(Y ) →
A (X ⊞ Y ) denote its first coherence map (we recall that ⊞ is the parallel
composition of boxes (cf. Definition 3.2.16)).
A functor B ∶ WSets → Sets is called a subalgebra of A when:
— ∀X ∈ WSets, B(X) ⊆ A(X)
— ∀X,Y ∈ WSets,∀F ∈ B(X),∀G ∈ B(Y ), σX,Y (F,G) ∈ B(X ⊞ Y )
— ∀ϕ ∶X → Y ∈ WSets,∀F ∈ B(X),A(ϕ)(F ) ∈ B(Y )

Here, A and B are functors that transform boxes into sets. In our setting, the
conditions can be interpreted as follows:

— (First item) Discrete systems generated by B are included in those generated
by A;

— (Second item) The parallel composition of two discrete systems F and G gen-
erated by B is also generated by B.

— (Third item) B is stable through wiring diagrams: wiring a discrete system
generated by B gives another discrete system generated by B.
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Note that a subalgebra is itself an algebra.

Definition 3.4.3 (Closure)

Let A ∶ WSets → Sets be an algebra over WSets.
Let B ∶ ObWSets → ObSets be any map such that ∀X ∈ WSets, B(X) ⊆ A(X).
The closure of B, denoted Clos (B), is the intersection of all subalgebras of
A that contain B(X) for all X ∈ WSets. (Any intersection of subalgebras is a
subalgebra.)

The closure of a map B can be understood as the minimal lax monoidal functor
(or algebra) containing B.

3.4.2 Memoryless systems

Our first main result concerns the subclass of discrete systems that we call mem-
oryless. We show that wiring together memoryless systems can lead to systems that
have memory.

Definition 3.4.4 (Memoryless discrete systems)

Let X = (X in,Xout) be a box.
A memoryless discrete system for the box X, or memoryless discrete system
for short, is a discrete system F = (SF , f rdt, fupd, sF,0) ∈ DS (X) such that fupd
immediately discards the previous state and uses only the current input; more
precisely, such that fupd factors as

fupd =X in
⋀

× SF
π
X in
⋀

ÐÐÐ→X in
⋀ fuÐ→ SF

for some fu ∶X in
⋀

→ SF .
We denote by DSML (X) the set of all memoryless discrete systems for the
box X:

DSML (X) =
⎧⎪⎪⎨⎪⎪⎩
(SF , f rdt, fupd, sF,0) ∈ DS (X)

RRRRRRRRRRR

∃fu ∶X in
⋀

→ SF ,
fupd = fu ○ π

X in
⋀

⎫⎪⎪⎬⎪⎪⎭

We call these discrete systems memoryless because we see the states as a kind of
memory (as in Example 3.3.4). The discrete systems defined above transition from
one state to another without checking their current state, i.e. without checking their
memory.
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The following definition is a natural restriction of memoryless discrete systems;
as these systems are memoryless, the only goal of their states is to produce the
output via their readout function. The simplest case is when the readout function
is the identity.

Definition 3.4.5 (Direct-output discrete systems)

Let X = (X in,Xout) be a box.
A direct-output memoryless discrete system for the box X, or direct-output dis-
crete system for short, is a discrete system F = (SF , f rdt, fupd, sF,0) ∈ DS (X)
such that:
— SF =Xout
⋀

— f rdt = id
Xout
⋀

— fupd = fu ○ π
X in
⋀ for some fu ∶X in

⋀

→Xout
⋀

We denote by DSML
out (X) the set of all direct-output discrete systems for the

box X:

DSML
out (X) = {(SF , f rdt, fupd, sF,0) ∈ DSML (X) ∣ S =Xout

⋀

, f rdt = id
Xout
⋀}

= {(Xout
⋀

, id
Xout
⋀, fupd, S0) ∈ DS (X) ∣ ∃fu ∶X in

⋀

→Xout
⋀

, fupd = fu ○ π
X in
⋀}

Remark 3.4.6. The maps DSML ∶ WSets → Sets and DSML
out ∶ WSets → Sets are not

functors, because they are not closed under wiring. Indeed, the whole point is that
the result of wiring together memoryless systems is not necessarily memoryless.

We can now prove one of the main results of this chapter, which is that every
discrete system can be obtained (up to equivalence) by a memoryless system and
a feedback loop. The feedback loop is responsible for holding the state that was
originally in the discrete system.

Here is the formal statement.

Theorem 3.4.7

Clos (DSML
out) ≈ DS.

Proof. We have DSML
out ⊆ DSML ⊆ DS, so Clos (DSML

out) ⊆ DS, thus Clos (DSML
out) ⊑ DS.

We need the opposite inclusion (up to equivalence) Clos (DSML
out) ⊒ DS.

Let Y = (Y in, Y out) ∈ WSets, and let G = (SG, grdt, gupd, sG,0) ∈ DS (Y ). We will
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find X ∈ WSets, F ∈ DSML
out (X) and ϕ ∶X → Y such that DS (ϕ) (F ) ∼ G.

Let δSG = ⟨SG⟩ ∈ TFSSets be the list with one element, SG, and consider the box
(δSG , δSG) with only that port on the left and the right. We define X as the parallel
composition of this box (δSG , δSG) and Y , that is:

X = (X in,Xout)
= (δSG , δSG) ⊞ Y
= (δSG + Y in, δSG + Y out)

Note that X in
⋀

= SG × Y in
⋀

and Xout
⋀

= SG × Y out
⋀

. Thus, if xin ∈ X in
⋀

, then xin =
(s, yin). Similarly, if xout ∈Xout

⋀

, then xout = (s, yout).
We choose ϕ ∶X → Y as the pair (ϕin, ϕout) of coproduct inclusions:

— ϕin ∶ { δSG + Y in Ð→ Y in + δSG + Y out

x z→ x

— ϕout ∶ { Y out Ð→ δSG + Y out

x z→ x

It follows from 3.2.23 that their dependent products ϕin
⋀

∶ Y in
⋀

×SG ×Y out
⋀

→ SG ×Y in
⋀

and ϕout
⋀

∶ SG × Y out
⋀

→ Y out
⋀

are projections.
Recall that the goal is to find a discrete system F = (SF , f rdt, fupd, sF,0) ∈

DSML
out (X) such that DS (ϕ) (F ) ∼ G. So define F as follows:

— SF =Xout
⋀

= SG × Y out
⋀

— f rdt = id
Xout
⋀

— fupd (xin, xout) = fupd (s, yin, s′, yout) = (gupd (yin, s) , grdt (gupd (yin, s)))
— sF,0 = (sG,0, grdt (sG,0))

It is easy to see that F is in DSML
out (X) because f rdt and fupd have the correct form.

So let (SH , hrdt, hupd, sH,0) = DS (ϕ) (F ); we need to show it is equivalent to G. We
compute each part of DS (ϕ) (F ) according to Definition 3.3.5.

Its state set is as follows:

SH = SF =Xout
⋀

= SG × Y out
⋀
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Its readout function is defined on an arbitrary xout as follows:

hrdt (xout) = hrdt (s, yout)

= ϕout
⋀

(f rdt (s, yout))

= π
Y out
⋀(id

Xout
⋀(s, yout))

= yout

Its update function is defined on an arbitrary (yin, s, yout) as follows:

hupd (yin, s, yout) = fupd (ϕin
⋀

(yin, f rdt (s, yout)) , (s, yout))

= fupd (s, yin, s, yout)
= (gupd (yin, s) , grdt (gupd (yin, s)))

Finally, its start state is as follows:

sF,0 = (sG,0, grdt (sG,0))

Consequently, the following diagram commutes:

G ∶ Y in
⋀

× SG SG Y out
⋀

DS (ϕ) (F ) ∶ Y in
⋀

× SG × Y out
⋀

SG × Y out
⋀

Y out
⋀

id
Xin
⋀×α

gupd

α

grdt

=

hupd hrdt

where α = (idSG , grdt). This yields G ⊢ DS (ϕ) (F ) and hence DS (ϕ) (F ) ∼ G, which
concludes the proof.

Corollary 3.4.8

Clos (DSML) ≈ DS.

Corollary 3.4.9

For all G ∈ DS (Y ), if G has finite state set, then there exists H ∈
Clos (DSML) (Y ) with finite state set such that H ∼ G.
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Proof. In the proof of Theorem 3.4.7, take H = DS (ϕ) (F ), but instead of SF =
SG × Y out
⋀

, take SF = SG × grdt (SG) ⊆ SG × Y out
⋀

. If SG is finite, so is SF .
In that case, H is no more in Clos (DSML

out) (Y ) but in Clos (DSML) (Y ).

Corollary 3.4.10

(Assuming the axiom of choice) For all G ∈ DS (Y ), if G has an infinite state
set, then there exists H ∈ Clos (DSML) (Y ) with a state set of the same cardi-
nality as G, such that H ∼ G.

Proof. In the proof of Theorem 3.4.7, take H = DS (ϕ) (F ), but instead of SF =
SG×Y out
⋀

, take SF = SG×grdt (SG) ⊆ SG×Y out
⋀

. The axiom of choice gives card (SF ) =
card (SG) × card (grdt (SG)) = card (SG).

In that case, H is no more in Clos (DSML
out) (Y ) but in Clos (DSML) (Y ).

Theorem 3.4.7 states that systems without memory can be wired together to
form systems with memory. In fact, the result is more subtle. It states that for
any discrete system, we can find (or build) a memoryless discrete system with the
certain wiring such that both systems are equivalent as stream transducers. The
internal equivalence relation described in Theorem 3.3.20 is instrumental to prove
Theorem 3.4.7, while the result is stated with regard to the external equivalence
relation.

3.4.3 Finite-state systems

The second result is a refinement of Theorem 3.4.7, and is somewhat similar to it.
We show that wiring together two-state discrete systems can generate a finite-state
system with memory.

We can view the result as the generalisation of transistors being wired together
in order to build a computer, or a system of neurons wired together to form a brain
with finite memory.

Definition 3.4.11 (Finite-state systems)

Let X = (X in,Xout) be a box.
A finite-state discrete system for the box X, or finite-state system for short,
is a discrete system F = (SF , f rdt, fupd, sF,0) ∈ DS (X) such that SF is a finite
set.
We denote by DSFin (X) the set of all finite-state discrete systems for the box
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X : DSFin (X) = {(SF , f rdt, fupd, sF,0) ∈ DS (X) ∣ card (SF ) ∈ N}. For a wiring
diagram φ, we set DSFin (ϕ) = DS (ϕ).

It is easy to see that:

Proposition 3.4.12

The map DSFin ∶ WSets → Sets is a subalgebra of DS.

Proof. Follows from Definition 3.4.2.

Definition 3.4.13 (Boolean systems)

Let X = (X in,Xout) be a box.
A boolean memoryless discrete system for the box X, or boolean system for
short, is a discrete system F = (SF , f rdt, fupd, sF,0) ∈ DSFin (X) such that F is
memoryless and SF = 2n = {0,1}n.
We denote by DSML

Bool (X) the set of all boolean memoryless discrete systems
for the boxX : DSML

Bool (X) = {(SF , f rdt, fupd, sF,0) ∈ DSML (X) ∣ SF = {0,1}n}.

Remark 3.4.14. The map DSML
Bool ∶ WSets → Sets is not a functor, for the same reason

as in Remark 3.4.6.

Lemma 3.4.15

DSML
Bool ≈ DSML ∩DSFin.

Proof. By construction, DSML
Bool ⊆ DSML ∩DSFin, so DSML

Bool ⊑ DSML ∩DSFin. We need
to show the other inclusion, so let G = (SG, grdt, gupd, sG,0) ∈ DSML (X) ∩DSFin (X),
and it suffices to show that there is F ∈ DSML

Bool (X) with G ∼ F .
We have gupd = gu ○ π

X in
⋀ and SG finite. Let N = ⌈log2 (card (SG))⌉. There exists

an injection i ∶ SG → 2N and a surjection p ∶ 2N → SG such that p ○ i = idSG . This is
just a binary encoding of SG.

Define F = (SF , f rdt, fupd, sF,0) such that:
— SF = 2N

— f rdt = grdt ○ p
— fupd = gupd ○ p
— sF,0 = i (sG,0)
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Then the following diagram commutes:

G ∶ Y in
⋀

× SG SG Xout
⋀

F ∶ X in
⋀

× 2N 2N Xout
⋀

id
Xin
⋀×i

gupd

i

grdt

=

fupd f rdt

We have F ∈ DSML
Bool (X) and G ⊢ F (with i as simulation function), so F ∼ G,

hence the result.

Lemma 3.4.16

DSFin ≈ Clos (DSML) ∩DSFin.

Proof. Observe that DSFin = DS ∩DSFin. By Corollary 3.4.8, we have:

DS ≈ Clos (DSML)

In particular, Clos (DSML) ⊆ DS, so Clos (DSML)∩DSFin ⊆ DS∩DSFin. This gives
one inclusion, Clos (DSML) ∩DSFin ⊑ DS ∩DSFin.

As for the reverse inclusion (up to equivalence), let X be a box and let F be a dis-
crete system in (DS ∩DSFin) (X). By Corollary 3.4.8, there exists G ∈ Clos (DSML)
such that G ∼ F . By Corollary 3.4.9, we can choose G so that G ∈ DSFin (X), hence
the result.

Theorem 3.4.17

Clos (DSML
Bool) ≈ DSFin.

Proof. Clearly, Clos (DSML
Bool) ⊑ DSFin. By Lemma 3.4.15, in order to prove the reverse

inclusion, it suffices to prove DSFin ⊑ Clos (DSML ∩DSFin).

Furthermore, since DSFin ≈ Clos (DSML) ∩DSFin (Lemma 3.4.16), we reduce to
proving that: Clos (DSML) ∩DSFin ⊑ Clos (DSML ∩DSFin).

Let Y ∈ WSets be a box, and let G ∈ (Clos (DSML) ∩DSFin) (Y ). We have G ∈
Clos (DSML) (Y ), so according to Corollary 3.4.8, there exist a box X ∈ WSets, a
wiring diagram ϕ ∶ X → Y , and a F ∈ DSML (X) such that DS (ϕ) (F ) ∼ G.
Furthermore, according to Corollary 3.4.9, we can choose F with finite state set.
Finally, F ∈ (DSML ∩DSFin) (X), and DS (ϕ) (F ) ∼ G, so Clos (DSML) ∩ DSFin ⊑
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Clos (DSML ∩DSFin), hence the result.

3.5 Conclusion

Boxes are empty frames that condition the inputs and outputs of their content, a
generalisation of automata called discrete systems. Such systems come with a state
set that represents their memory of previous inputs. In a sense, discrete systems can
learn. However, we can define a subclass of discrete systems that do not store any
experience of their past. We see these as reactive, in the sense that they still react to
any input, but their past experience does not influence that reaction. Unlike typical
discrete systems, they do not keep a memory of the previous inputs.

In this chapter, we use a category-theoretic framework to give a constructive
proof that any discrete system with memory can be simulated by some correctly-
wired memoryless system. This result can be understood as a phenomenon of emer-
gence in a complex system.

This construction opens a number of new questions. A possible question might
consist in finding the "best" memoryless system, where "best" could depend on the
definition of some valuation function, e.g. the most parsimonious in terms of state
set. A similar question could be asked with respect to wiring diagrams, whose number
of feedback loops could be bounded by a cost function.

Possible extensions of this work could concern dynamical systems other than DS.
For instance, can we establish the same kind of results when considering measurable
or continuous dynamical systems?
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Chapter 4

MAIS DIS-MOI JAMY, C’EST QUOI UN
CLUSTER ?

Eh bien Fred, c’est très simple...

Jamy, dans à peu près tous les épisodes de C’est Pas
Sorcier.

4.1 Introduction

In Ehresmann and Vanbremeersch’s theory [12], a system, be it biological, neuro-
cognitive, social or mechanical, is described as an Evolutive System, that is, a family
of categories indexed by time, related by partial functors. The configuration of the
system at time t is represented by a category. A component of the system at t
corresponds to an object of this category, and the arrows from a given object to
another are seen as its interactions. A subsystem at t is then seen as a diagram in
the configuration at t, and the interactions between subsystems are transcribed as
a set of arrows called clusters. All this framework sets a language whose goal is to
describe and predict possible properties of the whole system, e.g. its resilience.

The book, written by a mathematician and a physician, is intended for multidis-
ciplinary audience, resulting sometimes in somehow informal definitions that may
leave a mathematician in doubt, but generally followed by their strict mathematical
formulation.

Definition 4.1.1 (Cluster [12, Chapter 3, Section 2.1, page 81])

Given two patterns P and Q in a category, a cluster from Q to P is a maximal
set G of links between components of these patterns satisfying the following
conditions:

1. For each index k of Q, the component Qk of Q has at least one link to a
component of P ; and if there are several such links, they are correlated
by a zigzag of distinguished links of P .
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2. The composite of a link of the cluster with a distinguished link of P , or
of a distinguished link of Q with a link of the cluster, also belongs to
the cluster.

This definition is a rewording of the first mention of clusters in [16, Appendix,
page 47]:

Definition 4.1.2 (Cluster [16, Appendix, page 47])

We consider a category K , and diagrams A ∶ SA→K and B ∶ SB →K
A cluster from B to A consists of links in K between (indexed) components
of B and of A satisfying conditions (S1), (S2), (S3).
(S1) For each vertex u of B: there exists at least one link h in the cluster

from B, to a component Ai of A; and if h∗ is another one (to Aj), there
exists a zig-zag of commutative triangles in K , from h to h∗, whose
bases are the images of a zigzag from i to j in the [domain] SA.

(S2) If b is an arrow from v to u in SB and h a link from B, to Ai in the
cluster, then the link B(b) ○ h from By to Ai is in the cluster.

(S3) Maximality: it is not possible to add more links to the cluster so that
(S1) and (S2) still be satisfied.

[In fact, if a family of links satisfies (S1) and (S2), we may construct a unique
cluster which contains it.]

In [12, Chapter 3, Section 2.2, page 83], the authors define a category, which they
call Ind (C ), whose objects are all diagrams to C , and whose arrows are the clusters
defined above. They explain that, though called Ind (C ), this category extends the
standard definition of ind-categories. In fact, most of the litterature focuses on a
restriction to a certain kind of diagrams, called filtered, which we will define later.

This chapter aims at bringing clarification and formalism to the notion of cluster.
We first need to introduce the notions of connected components in categories (Sec-
tion 4.2). In Section 4.3, we go back to the basics and introduce the ind-category,
as introduced by Grothendieck. We give a natural isomorphism between arrows of
an ind-category and what we believe are the formal clusters described in Defini-
tion 4.1.1. Section 4.4 explicits the formal clusters as sets of arrows verifying certain
conditions, correcting the definition given in [20]. We give two new definitions with
different sets of conditions, and we prove their equivalence. From here, the next
two sections are independent. In Section 4.5, we convert a definition of arrows of
pro-categories, adapt it to ind-categories, and find a natural isomorphism between
the result and clusters. Finally, in Section 4.6, we give two new characterisations of
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clusters: first, in terms of functions between connected components of certain cate-
gories, and secondly, in terms of a certain type of functor. We then conclude with
an overview and a diagram summarizing the main isomorphisms.
Remark 4.1.3. Let us give a preliminary remark. The work "cluster" is often used
in artificial intelligence, more precisely in clustering of data. The original term,
in French, is gerbe, which translates to sheaf, which already has a widely-spread
meaning in category theory. The proposed alternative translation is that of cluster.
However, these clusters have nothing to do with the clusters from artificial intelli-
gence!

The French term of gerbe is also the reason why the usual symbol for clusters is
a G and not a C.

4.2 Detour by connected components

In the following, we introduce some background required for this section and
Section 4.6. We will often refer to connected components of comma-categories. We
introduce here connected components, and comma-categories.

Definition 4.2.1 (Zigzag, connected components)

Let C be a category.
We define the zigzag equivalence relation on C as the equivalence relation on
objects of C generated by: C ∼ C ′ iff there is an arrow C → C ′.
A connected component of C is an equivalence class of objects of C under the
zigzag equivalence relation.

The name "zigzag" is not random. In fact, the equivalence relation generated
by some other relation often takes the form of a zigzag, and it is the case here for
C → C ′. Visually, C and C ′ are equivalent under zigzag whenever there is a zigzag
of arrows between them:

C C1 . . . Cn−2 C ′

C0 . . . . . . Cn−1

We sketch the proof of this statement. First, if C → C ′, then C ∼ C ′. As an
equivalence relation is symmetric, we also have C ′ ∼ C. If C → C0 and C ′ → C0,
then C ∼ C0 ∼ C ′, because an equivalence relation is transitive. If there is a zigzag
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C → C0 ← C1 → ⋅ ⋅ ⋅ ← Cn−2 → Cn−1 ← C ′, then by transitivity, C ∼ C ′. We thus
have zigzag ⊂∼. Then, ∼ is the smallest equivalence relation containing C → C ′, and
zigzag is an equivalence relation containing C → C ′, so ∼⊂ zigzag, and ∼= zigzag.

We will also refer to the comma-category. A comma-category is a common con-
struction often used in category theory.

Definition 4.2.2 (Comma-category)

Let P ∶ P → C and Q ∶ Q → C be two functors to C .
The comma-category (P ∣ Q) is the following category:
Objects: Objects are triples (p, g, q) such that p ∈ P, q ∈ Q and g ∶ P (p)→

Q(q) ∈ C

Morphisms: Morphisms (p, g, q) → (p′, g′, q′) are pairs (a, b), where a ∶
p→ p′ ∈ P and b ∶ q → q′ ∈ Q, and the following square commutes:

P (p) P (p′)

✓

Q (q) Q (q′)

P (a)

g g′

Q(b)

Identities: Identities are pairs (idp, idq)
Composition: The composition law is pairwise: (a′, b′)○(a, b) = (a′ ○a, b′ ○

b)

Comma-categories are the placeholder for sets of "correlated" arrows, in the sense
that those arrows are linked by commuting squares.

For the sake of conciseness, the objects (p, g, q) of (P ∣ Q) will be denoted by
their arrow g ∶ P (p) → Q(q), where p and q are implicitly given in the description
of g.

In the present chapter, we will often consider the connected components of a
comma-category (P ∣ Q). A zigzag of arrows between two objects P (p)→ Q(q) and
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P (p′)→ Q(q′) takes the following form:

P (p) P (p1) P (p2) . . . P (pn−2) P (pn−1) P (p′)

Q (q) Q (q1) Q (q2) . . . Q (qn−2) Q (qn−1) Q (q′)

where each square commutes.

In the following, the most useful restriction of (P ∣ Q) is (P (p) ∣ Q), which we
describe as:

Objects: Objects are pairs (g, q) such that q ∈ Q and g ∶ P (p)→ Q(q) ∈ C

Morphisms: Morphisms (g, q)→ (g′, q′) are arrows b ∶ q → q′ ∈ Q, such that the
following triangle commutes:

P (p)

✓

Q (q) Q (q′)

g g′

Q(b)

Identities: Identities are the identities of Q: idq
Composition: The composition law is that of Q

In short, (P (p) ∣ Q) is a shortcut for (∆ (P (p)) ∣ Q). It is also the subcategory
of (P ∣ Q), with only the objects (p, g, q) and pairs of arrows of the form (idp, b).

A zigzag of arrows in (P (p) ∣ Q) takes the following form:

P (p)

Q (q) Q (q2) Q (qn−2) Q (q′)

Q (q1) . . . Q (qn−1)

where each triangle commutes.
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An important remark that we will use in Sections 4.4 and 4.6. Consider two
arrows g ∶ P (p′)→ Q(q) and g′ ∶ P (p′)→ Q(q) in the same connected component of
(P (p′) ∣ Q). For the sake of readability, we do not draw the entire zigzag:

Q (q)

P (p′)

Q (q′)

g

g′

Here we assume that we have a zigzag of commuting triangles, just like above.
The crucial remark is the following. Consider the arrow a ∶ p → p′ ∈ P. Observe

the following diagram:

P (p)

Q (q)

P (p′)

Q (q′)

g○P (a)

g′○P (a)P (a)

g

g′

We observe that the existing zigzag between g and g′ in (P (p′) ∣ Q) also exists
between g ○ P (a) and g′ ○ P (a). We deduce that if g ∼ g′ in (P (p′) ∣ Q), then
g ○ P (a) ∼ g′ ○ P (a) in (P (p) ∣ Q).

In a sense, we "compose" the connected component of g and g′ to obtain (part
of) the connected component of g ○ P (a) and g′ ○ P (a).

In the same vein, if we have a natural transformation α ∶ P ′ → P and g ∼ g′ in
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(P (p′) ∣ Q), then g ○ αp′ ∼ g′ ○ αp′ in (P ′(p′) ∣ Q):

P ′ (p′)

Q (q)

P (p′)

Q (q′)

g○αp′

g′○αp′
αp′

g

g′

From these observations, we derive the following two lemmas, where [g]p is the
connected component of g ∶ P (p)→ Q(q) in (P (p) ∣ Q(q))

Lemma 4.2.3 (Composition does not alter connected components)

Let P ∶ P → C and Q ∶ Q → C be two diagrams. Let g, g′ ∈ (P (p) ∣ Q) such
that [g]p = [g′]p.

1. If a ∶ p′ → p ∈ P, then [g ○ P (a)]p′ = [g′ ○ P (a)]p′ .
2. If α ∶ P ′ → P is a natural transformation, then [g ○ αp]p = [g′ ○ αp]p,

where we consider the equivalence classes in (P ′(p) ∣ Q).

Lemma 4.2.4 (Composition does not alter connected components
(dual))

Let P ∶ P → C and Q ∶ Q → C be two diagrams. Let g ∶ P (p) → Q(q), g′ ∶
P (p)→ Q(q′) ∈ (P (p) ∣ Q) such that [g]p = [g′]p.

1. If b ∶ q → q′′ ∈ Q, then [g]p = [Q(b) ○ g]p.
2. If β ∶ Q→ Q′ is a natural transformation, then [βq ○ g]p = [βq′ ○ g]p′ .

4.3 Grothendieck’s legacy

In this section, we derive the definition of an arrow in the ind-category in order
to find a formal definition of a cluster. Ind-objects are first introduced in [35, Exposé
1, section 8.2, page 67]. We give here a brief overview of this notion and see how it
relates to our clusters.
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4.3.1 Introduction to ind-categories

First, ind-categories have a certain kind of diagrams as objects. Here, we remind
Definition 2.4.7 and add some more terminology.

Definition 4.3.1 (Filtered category, filtered diagram)

A filtered category P is a category such that every finite diagram D → P
has at least one cocone in P. A filtered diagram is a diagram P → C whose
domain category P is filtered.

Ind-categories were introduced in [35, Exposé 1, section 8.2, page 67], using the
notion of filtered diagrams.

To each filtered diagram P ∶ P → C , we associate the following presheaf [35,
Exposé 1, section 8.2, page 68, equations (8.2.2.1) and (8.2.2.2)]:

L(P ) ∶
⎧⎪⎪⎨⎪⎪⎩

C op Ð→ Sets
X z→ Colim

p∈P
HomC (X,P (p))

This is a presheaf C op → Sets, so it is a functor, so there may be natural
transformations α ∶ L(P )→ L(Q). We then define the ind-category using this fact:

Definition 4.3.2 (Ind-category)

Let C be a small category.
The ind-category of C , denoted by Ind (C ), is the following category:
Objects: Objects are filtered diagrams P ∶ P → C

Morphisms: An arrow P → Q is a natural transformation L(P )→ L(Q)
Identities: The identities are the identities of presheaves.
Composition: The composition of arrows is the composition of natural

transformations

Remark 4.3.3. The choice of filtered categories may sound restrictive. In fact, nothing
from the definition of ind-categories actually requires those categories to be filtered.

The first point to notice is that it is not a restriction, but rather, a generalisation.
In fact, Grothendieck remarks in [35, Exposé 1, section 8.1, paragraph 8.1.5] that
the initial use of preorders is more a constraint than anything:

Classiquement, on se bornait même à des catégories associées à des en-
sembles préordonnés i.e. dans lesquelles il existe au plus une flèche de
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source et de but donnés). II apparaît cependant que cette restriction
est gênante dans les applications, les catégories filtrantes "naturelles" qui
s’introduisent dans de nombreuses applications n’étant pas des catégories
ordonnées. ([35, Exposé 1, section 8.1, paragraph 8.1.5])

Besides, in [35, Exposé 1, section 8.3, théorème 8.3.3], a functor of the form
L(P ) can be characterised in terms of a specific filtered comma-category. Finally,
accessible categories rely on the notion of filtered categories, and are of the form
Ind (C ) for some C [36].

As said in the Introduction, in [12, Chapter 3, Section 2.2, page 83], the authors
never mentioned filtered diagrams. In fact, they call Ind (C ) the category of clusters
which contains the clusters between all filtered and non-filtered diagrams. This idea
comes from [37, Section 0, definition 0.1, page 475], where the authors study a
generalised version of the dual of the ind-category, called pro-category. Also, it was
proven in [38, Proposition, paragraph 199.1, comments on /102/, page 371] that
such a pro-category is the free completion of C (and dually, the corresponding ind-
category is the free cocompletion of C ). See also Section 4.5 for more discussion on
pro-categories and clusters.

Let us calculate the equivalents of the arrows of Ind (C ).

HomInd(C ) (P,Q) = HomPSh(C ) (L(P ), L(Q)) (4.1)

= HomPSh(C ) (Colim
p∈P

HomC (−, P (p)) ,Colim
q∈Q

HomC (−,Q(q)))

(4.2)

≅ Lim
p∈P

HomPSh(C ) (HomC (−, P (p)) ,Colim
q∈Q

HomC (−,Q(q)))

(4.3)
≅ Lim

p∈P
Colim
q∈Q

HomC (P (p),Q(q)) (4.4)

Equations 4.1 and 4.2 follow directly from the definition; Equation 4.3 is due to
the cocontinuity of the Hom-set functor in its first variable; Equation 4.4 is simply
the Yoneda Lemma [22, Lemma 8.2, section 8.3, pages 188-189] applied to the functor
X ↦ Colim

q∈Q
HomC (X,Q(q)).

The last equality is often used as the definition of arrows in Ind (C ) (for example
in [39, Definition as diagrams, section 2]).
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Lemma 4.3.4 (Cluster - Arrows in Ind (C ))

Define LCC (P,Q) = Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q)) for the sake of concise-
ness.
An arrow G ∶ P → Q is equivalent to an element of LCC (P,Q).

4.3.2 Explicit computation

Our goal is to relate clusters with arrows of the ind-category. Let us see if we can
retrieve a set of arrows from the formula given in Equation 4.4. For this purpose,
we use the explicit formula from Theorem 2.4.42. The explicit formula is obtained
by routine algebra, but we give here the explicit computation.

We first consider the functor:

M ∶ p↦ Colim
q∈Q

HomC (P (p),Q(q))

Following Theorem 2.4.42, we consider the relation on ∑
q∈Q

HomC (P (p),Q(q))

defined by: g ∼ g′ iff there exists a b ∈ Q such that g′ = Q(b) ○ g. This relation
generates the "zigzag" equivalence relation: g ∼ g′ iff there exists a sequence (bi)i∈2k
and a sequence (gi ∶ P (p)→ Q (bi))i∈2k such that:

g0 = Q(b0) ○ g
g0 = Q(b1) ○ g1

g2 = Q(b2) ○ g3

. . .

g2i−2 = Q (b2i−1) ○ g2i−1

g2i = Q (b2i) ○ g2i+1

g2i = Q (b2i+1) ○ g2i+1

g2i+2 = Q (b2i+2) ○ g2i+3

. . .

g2k−2 = Q (b2k−2) ○ g2k−2

g2k−2 = Q (b2k−1) ○ g′
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Diagrammatically, this is represented:

P (p)

Q (q) Q (q1) Q (q2k−1) Q (q′)

Q (q0) . . . Q (q2k−2)

g g′

Q(b0) Q(b2k+1)

For the sake of readability, we do not label all the arrows. Also note that formally,
the elements of the coproduct ∑

q∈Q
HomC (P (p),Q(q)) are pairs (q, g ∶ P (p)→ Q(q)),

that is, a labelled arrow.

In short, M is the functor:

M ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pop Ð→ Sets
p z→ ∑

q∈Q
HomC (P (p),Q(q)) / ∼

a ∶ p→ p′ z→ M(a) ∶ [g]↦ [g ○ P (a)]
(4.5)

where ∼ is the zigzag equivalence relation, that is, the equivalence relation on
∑
q∈Q

HomC (P (p),Q(q)) generated by g ∼ g′ iff ∃b ∶ q → q′ ∈ Q, g = Q(b) ○ g′ (see

Section 4.2).
Besides,M(a) takes an equivalence class of ∑

q∈Q
HomC (P (p),Q(q)) under zigzag,

"extracts" a representative g, compose it with P (a), and returns the equivalence class
of g ○ P (a).

Then, we have to compute Lim
p∈P

(M(p)) = Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q)). By
Theorem2.4.42, it is a subset:

Lim
p∈P

(M(p)) = LCC (P,Q) ⊂ ∏
p∈P

M(p)

such that, for each sequence ([gp])p∈P , and for all a ∶ p′ → p, we have: M(a)([gp]) =
[gp ○ P (a)] [gp′]. Thus, each equivalent class [gp] in the tuple is correlated to the
others by P (a).

In summary, we obtain:
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LCC (P,Q) = Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q))

=
⎧⎪⎪⎨⎪⎪⎩
([gp])p∈P ∈ ∏

p∈P
M(p)

RRRRRRRRRRR
∀a ∶ p′ → p,M(a)([gp]) = [gp′]

⎫⎪⎪⎬⎪⎪⎭
(4.6)

= Lim
p∈P

M(p)

where M is defined in Equation 4.5.

The computation gives a functor:

LCC (−,−) ∶ (C P)op ×C Q → Sets

If α ∶ P → P ′ is a natural transformation between functors P → C , then
LCC (α,Q) is the function:

LCC (α,Q) ∶ { LCC (P ′,Q) Ð→ LCC (P,Q)
([gp])p∈P z→ ([gp ○ αp])p∈P

Similarly, if β ∶ Q → Q′ is a natural transformation between functors Q → C ,
then LCC (P,β) is:

LCC (P,β) ∶ {
LCC (P,Q) Ð→ LCC (P,Q′)
([gp])p∈P z→ ([βcod gp ○ gp])p∈P

So, roughly, LCC (P,Q) is a set of sets of arrows of C . As the different equivalence
classes are disjoint or equal, we can define the following function:

UP,Q ∶ (mp)p∈P ↦ G = ⊎
p∈P

mp (4.7)

Definition 4.3.5

We define Clstr (P,Q) to be the image of LCC (P,Q) by UP,Q.

The mapping Clstr (−,−) thus defined is a functor; its actions on arrows α ∶ P →
P ′ and β ∶ Q→ Q′ are:
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Clstr (α,Q) ∶
⎧⎪⎪⎨⎪⎪⎩

Clstr (P ′,Q) Ð→ Clstr (P,Q)
⊎
p∈P

[gp] z→ ⊎
p∈P

[gp ○ αp]

Clstr (P,β) ∶
⎧⎪⎪⎨⎪⎪⎩

Clstr (P,Q) Ð→ Clstr (P,Q′)
⊎
p∈P

[gp] z→ ⊎
p∈P

[βcod gp ○ gp]

4.3.3 A natural isomorphism

Now that everything is explicitly defined, we can prove the main theorem of
this section. The following proposition is a step forward to making Definition 4.1.1
formal:

Theorem 4.3.6

The family of arrows U = (UP,Q)P,Q with components:

UP,Q ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q)) Ð→ Clstr (P,Q)
([gp])p∈P z→ ⊎

p∈P
[gp]

form a natural isomorphism U ∶ Lim
p∈P

Colim
q∈Q

HomC (−,−)→ Clstr (−,−).

Proof. By construction, UP,Q is definitely surjective.
Let ([gp])p∈P and ([g′p])p∈P such that G = ⊎

p∈P
[gp] = G′ = ⊎

p∈P
[g′p]. For all p ∈ P,

G(p) = [gp] is non-empty, so there exists g ∶ P (p) → Q(q) ∈ G. We have g ∈ [gp] and
also, g ∈ G′, because G = G′. As the union is disjoint, g ∈ [g′p]. As [gp] and [g′p] are
equivalence classes, we have g ∈ [gp] ∩ [g′p], and then [gp] = [g′p]. Therefore, UP,Q is
bijective.

Let us check its naturality. We check the naturality in P ; the naturality in Q is
similar but easier due to the covariant-ness.

Let α ∶ P → P ′ be a natural transformation. We want the following diagram to
commute:

P LCC (P ′,Q) Clstr (P ′,Q)

↝ ?

P ′ LCC (P,Q) Clstr (P,Q)

α LCC (α,Q)

UP ′,Q

Clstr(α,Q)

UP,Q
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Now, take a tuple ([g′p])p∈P ∈ LCC (P ′,Q); we use

Clstr (α,Q) ○UP ′,Q (([g′p])p∈P) = Clstr (α,Q)(⊎
p∈P

[gp])

= ⊎
p∈P

([gp ○ αp])

= UP,Q (([gp ○ αp])p∈P)

= UP,Q ○ LCC (α,Q) (([g′p])p∈P)

So the diagram commutes, hence the naturality of UP,Q in P . The naturality in
Q is similar.

We define clusters as follows:

Definition 4.3.7 (Cluster - formal)

A cluster G ∶ P → Q is an element of Clstr (P,Q) = UP,Q (LCC (P,Q)), that
is, G = ⊎

p∈P
[gp] where ([gp])p∈P ∈ LCC (P,Q).

From here, the reader may follow on the next section, which explores a bit further
another definition of arrows based on the dual of ind-categories, or skip to the section
after the next one, that gives explicit definitions of clusters in terms of sets of arrows.

4.4 Descriptive definitions of clusters

In this section, we introduce two equivalent descriptions of clusters, seen as sets
of arrows verifying certain properties. Some of these properties rely on notions of
connected components of comma-categories, which we introduced in Section 4.2.

As stated before, Definition 4.3.7 seems to make our base definition formal. In
this section, we exhibit two equivalent definitions of clusters.

First of all, we introduce the following notation.
If G is a subset of ∑

p∈P
⊎
q∈Q

HomC (P (p),Q(q)), we define G(p) as the set:

G(p) = G ∩ (⋃
q∈Q

HomC (P (p),Q(q))) (4.8)

In other words, G(p) is the subset of G consisting of all the arrows labelled with
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p.
We need the following definition:

Definition 4.4.1 (Precluster)

A set

G ⊂ ∑
p∈P

⋃
q∈Q

HomC (P (p),Q(q))

of arrows is called a precluster G ∶ P → Q if it verifies:
(CLU-1) for all p ∈ P, G(p) ≠ ∅
(CLU-2) for all p ∈ P, G(p) is included in exactly one connected

component of the comma-category (P (p) ∣ Q)
(CLU-3) if g ∶ P (p)→ Q(q) ∈ G(p) and b ∶ q → q′ ∈ Q, then Q(b) ○ g ∈ G(p)
(CLU-4) if a ∶ p′ → p ∈ P and g ∶ P (p)→ Q(q) ∈ G(p), then g ○ P (a) ∈ G(p′)

Using this definition as a base, we introduce a fixed definition of cluster:

Proposition 4.4.2

Let G be a set of arrows P (p)→ Q(q).
G is a cluster in the sense of Definition 4.3.7⇔ G is a precluster that verifies:

(CLU-5) G is maximal for ⊂ among the preclusters P → Q

Proof. [Proof of ⇒] Let G = ⊎
p∈P

mp ∈ Clstr (P,Q). For each p ∈ P, we have a

(non-empty!) equivalence class of arrows P (p) → Q(q), so G verifies (CLU-1). As
for (CLU-2), G(p) is exactly mp (due to the disjoint union in Proposition 4.3.6),
which is an equivalence class under zigzag, so it is exactly a connected component of
the comma-category (P (p) ∣ Q). (CLU-3) comes from the fact that G(p) = mp is a
connected component, and if g ∈mp, then Q(b) ○ g ∈mp = G(p). (CLU-4) translates
the fact that mp = mp′ ○ P (a), which is a condition imposed by the "limit" part of
Lemma 4.3.4. As a first conclusion, G is a precluster.

Let G′ ⊃ G be another precluster. Let p ∈ P, let g′ ∶ P (p) → Q(q) ∈ G′(p) and
g ∶ P (p) → Q(q) ∈ G(p) ⊂ G′(p). As G′ verifies (CLU-2), there is a zigzag between
g and g′. Besides, as G(p) =mp is an equivalence class, if there is a zigzag between
g and g′, then g′ is in the equivalence class, and thus G′(p) ⊂ G(p) ⊂ G′(p), from
which we deduce G(p) = G′(p) and G = G′. Thus, G is maximal.

[Proof of ⇐] Let G be a precluster verifying (CLU-5). Let p ∈ P. Let us
prove that G(p) is an equivalence class under zigzag (i.e., that it is an mp). Let
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g0 ∶ P (p)→ Q(q). Either there is a g ∈ G(p) such that g ∼ g0, or there is none.
If g0 ∼ g, then g0 is in the same connected component of (P (p) ∣ Q) as g. Consider

G0 to be the set of arrows that contains G and g0, and all the arrows of the form
g′ ○ P (a) and Q(b) ○ g′ so that (CLU-3) and (CLU-4) hold. By construction, G0
also verifies (CLU-1) (because G does and G0 ⊃ G). We need to check if G0 verifies
(CLU-2).

We let the reader check that if g0 ∼ g, then g0 ○ P (a) ∼ g ○ P (a) and Q(b) ○ g0 ∼
Q(b)○g ∼ g ∼ g0. If other words, ifG(p) is contained in a unique connected component
of (P (p) ∣ Q), by construction, G0(p) also is.

We deduce that G0 is a precluster. It contains G, which is maximal, thus G0 = G,
and g0 ∈ G(p).

If there is no g ∈ G such that g0 ∼ g, then g0 ∉ G(p), otherwise (CLU-2) would
not hold.

So, we have: for all g0 ∶ P (p) → Q(q), ∃g ∈ G(p), g ∼ g0 ⇔ g0 ∈ G(p), so G(p) is
an equivalence class under ∼ (zigzag).

The problem with Proposition 4.4.2 is that it refers explicitly to other preclus-
ters. As we wish for a minimal, self-sufficient definition, we introduce the following
proposition.

Proposition 4.4.3

Let G be a set of arrows P (p)→ Q(q).
G is a cluster in the sense of Definition 4.3.7⇔ G is a precluster that verifies:

(CLU-2b) G(p) is a connected component of (P (p) ∣ Q)

So, in fact, (CLU-2b) contains (CLU-2). Instead of being included in a connected
component of the comma-category (P (p) ∣ Q), G(p) is a connected component.

Proof. By Proposition 4.4.2, a cluster in the sense of Definition 4.3.7 is equivalently
a maximal precluster.

[Proof of ⇒] Let G be a maximal precluster. G verifies (CLU-1) to (CLU-5).
Let g ∶ P (p)→ Q(q) ∈ G, and let g′ ∶ P (p)→ Q(q′) ∈ C such that g and g′ are in the
same connected component of (P (p) ∣ Q). Let G′ be the set of arrows containing G,
g′ and all the missing arrows so that (CLU-3) and (CLU-4) are verified. Then G′ is
a precluster, containing G, which is maximal. Thus, G = G′, and g′ is necessarily in
G, hence the result.

[Proof of ⇐] Let G be a precluster that verifies (CLU-2b). Let G′ ⊃ G be a
bigger precluster. Suppose that G ⊊ G′, then let g′ ∶ P (p) → Q(q′) ∈ G′/G. As G
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verifies (CLU-1), there is a g ∶ P (p) → Q(q) with the same domain as g′. Also,
by (CLU-2b), G(p) is a connected component of (P (p) ∣ Q). However, g′ ∉ G, so
g′ ∈ G′(p)/G(p). This means that g′ and g are not in the same connected component
of (P (p) ∣ Q), and G′(p) is inside at least two connected components of (P (p) ∣ Q).
Therefore, G′ does not verify (CLU-2), which contradicts the assumption that G′ is
a precluster. G′ cannot strictly contain G, which makes G maximal.

We can give a concise version of the definition of cluster.

Proposition 4.4.4

Let G be a subset of ∑
p∈P

⋃
q∈Q

HomC (P (p),Q(q)).

G is a cluster ⇔ G verifies (CLU-2b) and (CLU-4).

Proof. The sense ⇒ follows from Proposition 4.4.3.
The converse derives from the fact that (CLU-2b) implies (CLU-1) (as a con-

nected component is necessarily non-empty), (CLU-2), (CLU-3) and (CLU-5).

Although simpler, this definition will not be used in the next chapter, because
it does not split the problem enough.

However, it is then obvious that this definition is a rewording of Definition 4.1.2
from [16, Appendix, page 47]. We have then retrieved the original definition.

4.5 Pro-categories and ind-categories

This section is not essential for the rest of this manuscript. The reader may skip
it with no loss of understanding of the whole approach.

We mentioned the pro-category as a dual of the ind-category in Section 4.3. Let
us give brief overview of how those two relate.

4.5.1 Pro-categories as dual to ind-categories

In [37, Section 0, definition 0.1, page 475], the pro-category of a category C is
the following category:
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Definition 4.5.1 (Pro-category)

Let C be a small category.
The pro-category of C , denoted by Pro (C ), is the category whose objects
are diagrams P ∶ P → C and whose hom-sets are defined as:

HomPro(C ) (P,Q) = Colim
q∈Q

Lim
p∈P

HomC (P (p),Q(q))

The definition of a pro-category looks like the definition of an ind-category. In
fact, both are linked.

Theorem 4.5.2 ([35, Equation 8.10.2, section 8.10, page 119])

Pro (C ) ≅ (Ind (C op))op.

Equivalently, Ind (C ) ≅ (Pro (C op))op.
Remark 4.5.3. In [40, Remark at the end of section 2], which cites [41, Proposi-
tion 6.1.12, chapter 6, page 134], Pro (C ) and (Ind (C op))op are only said to be
equivalent; this is because , as stated in [42, very first line]:

The concept of equivalence of categories is the correct category theoretic
notion of “sameness” of categories. (nLab authors, [42])

So, for most usages, being equivalent is strong enough. However, we prefer here the
notion of being isomorphic.

Note that Definition 4.5.1 doesn’t require the notion of cofiltered diagrams. In
fact, in [37, Section 0, definition 0.1, page 475], the pro-category is defined for general
diagrams, just as in [12, Chapter 3, Section 2.2, page 83] for the ind-category. As
said in Section 4.3, it was stated in [38, Note 2, section 199.1, page 369] that the pro-
category of C is the free completion of C ; thus, from Theorem 4.5.2, we deduce that
the ind-category is its free cocompletion. This fact is also obtained as a consequence
of [12, Part (ii) of Theorem 1, page 83].

In [37, Equations (0.2), (0.3), (0.4̄), (0.5), (0.6) and (0.7), pages 473-475] or [43,
section 1, pages 10-12], the authors give an explicit description of the arrows of the
pro-category. In this section, using Theorem 4.5.2, we will use this description to
describe the arrows of the ind-category, and thus, make parallel with clusters. We
relate here the description in a non-verbatim way.

Description of the arrows of Pro (C ). Let P ∶ P → C and Q ∶ Q → C be
diagrams. We define PA (Q,P ) ("partial arrows", for reasons that will be obvious in
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the following) as the subset of the set:

{(ϕ, (fp)p∈P) ∣ ϕ ∶ Ob (P)→ Ob (Q) , ∀p ∈ P, fp ∶ Q (ϕ(p))→ P (p) ∈ C }

⊊Ob (Q)Ob(P) ×∏
p∈P

∑
q∈Q

HomC (Q(q), P (p))

such that each element (ϕ, (fp)p∈P) ∈ PA (Q,P ) verifies the following condition:
for all finite set of arrows (ai ∶ p→ pi)i∈n ∈ P, there exists q ∈ Q, b ∶ q → ϕ(p) ∈ Q
and (bi ∶ q → ϕ (pi))i∈n ∈ Q, such that for all i ∈ n, the following diagram commutes:

Q (ϕ (p)) P (p)

Q (q) ✓

Q (ϕ (pi)) P (pi)

fp

P (ai)

Q(b)

Q(bi)

fpi

(,)

A morphism f ∶ Q→ P in Pro (C ) is an equivalence class on PA (Q,P ) under the
equivalence relation ≃ generated by: (ϕ, (fp)p∈P) ∼ (ϕ′, (f ′p)p∈P) iff for all p ∈ P,
there exist b ∶ q → ϕ(p) and b′ ∶ q → ϕ′(p) in Q such that the following diagram
commutes:

Q(ϕ(p))

Q(q) ✓ P (p)

Q(ϕ′(p))

fpQ(b)

Q(b′) f ′p

Then, HomPro(C ) (Q,P ) = PA (Q,P ) / ≃.

Let’s make a few steps back to see what we are actually manipulating. An element
(ϕ, (fp)p∈P) ∈ PA (Q,P ) is a pair consisting of a function ϕ ∶ Ob (P)→ Ob (Q) and
a set of arrows fp ∶ Q (ϕ(p)) → P (p) that make a certain diagram commute. Note
that the set of arrows look like a natural transformation, due to the fact that ϕ sends
an object of P to an object of Q. In fact, if Q = P, pairs (idQ, α) with α ∶ Q → P
being a natural transformation, are elements of PA (Q,P ), but they may not be the
only ones. Besides, PA (Q,P ) may be non-empty, with none of its elements being a
natural transformation.
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One may see the arrows in Pro (C ) as an equivalence class of generalisations of
natural transformations.
Question 4.5.4. Is there any case where natural transformations are the only ele-
ments of PA (Q,P )? At first thought, they are most probably not the only ones,
natural transformations are too specific.

Then, using Theorem 4.5.2, we deduce the form of arrows in Ind (C ).

Description of the arrows of Ind (C ). Let us spend some time describing the
arrows and adding more terminology.

Definition 4.5.5 (Partial arrow)

A partial arrow P → Q is a pair f = (ϕ, (fp)p∈P) where:
1. ϕ ∶ Ob (P)→ Ob (Q) is a function
2. for all p ∈ P, fp is an arrow fp ∶ P (p)→ Q (ϕ(p)) ∈ C

3. the following condition holds: for all finite set of arrows (ai ∶ pi → p)i∈n ∈
P, there exists q ∈ Q, b ∶ ϕ(p)→ q ∈ Q and (bi ∶ ϕ (pi)→ q)i∈n ∈ Q, such
that for all i ∈ n, the following diagram commutes in C :

P (pi) Q(ϕ(pi))

✓ Q(q)

P (p) Q(ϕ(p))

fpi

P (ai)

bi

fp

b

Denote by PAop (P,Q) the set of these pairs.

For the sake of both simplicity and readability, we shorten the pair (ϕ, (fp)p∈P)
into f .

We then define the equivalence relation ≃ generated by:

(ϕ, (fp)p∈P) ∼ (ϕ′, (f ′p)p∈P) iff for all p ∈ P, there exist b ∶ ϕ(p) → q and b′ ∶
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ϕ′(p)→ q in Q such that the following diagram commutes:

Q(ϕ(p))

P (p) ✓ Q(q)

Q(ϕ′(p))

Q(b)fp

f ′p Q(b′)

(4.9)

Note that the relation ∼ described in Diagram 4.9 is reflexive and symmetric. It
only misses the transitivity. To see what the generated equivalence relation ≃ adds
to ∼, assume we have (ϕ0, (f0,p)) ∼ (ϕ1, (f1,p)) and (ϕ1, (f1,p)) ∼ (ϕ2, (f2,p)), that is,
for all p ∈ P, the following two diagrams commute:

Q (ϕ (p0))

P (p) ✓ Q (q0,1)

Q (ϕ (p1))

Q (ϕ (p1))

P (p) ✓ Q (q1,2)

Q (ϕ (p2))

Q(b0)f0,p

f1,p Q(b1)

Q(b′1)f1,p

f2,p Q(b2)

(4.10)

The obvious way to introduce transitivity here, would be to glue both diagrams
on the common arrow f1,p, just like this:

Q (ϕ (p0))

Q (q0,1)

P (p) Q (ϕ (p1))

Q (q1,2)

Q (ϕ (p2))

Q(b0)

f0,p

f1,p

Q(b1)

Q(b′1)

Q(b2)
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It is immediate to prove:

Proposition 4.5.6

The equivalence relation ≃ generated by ∼, is such that (ϕ, (fp)) ≃ (ϕ′, (f ′p))
iff there exists a finite sequence (ϕi, (fi,p))i∈n+1 ∈ PAop (P,Q) such that:

1. (ϕ0, (f0,p)) = (ϕ, (fp))
2. (ϕn, (fn,p)) = (ϕ′, (f ′p))
3. for all i ∈ n, (ϕi, (fi,p)) ∼ (ϕi+1, (fi+1,p))

Note that the third condition exactly translates the fact that, for all p ∈ P, fp
and f ′p are in the same connected component of (P (p)∣Q).

Definition 4.5.7 (DH-arrow)

An arrow of Deleanu-Hilton P → Q, or DH-arrow P → Q for short, is an
equivalence class of elements of PAop (P,Q) under the relation ≃ defined above.
We define DH (P,Q) = PAop (P,Q) / ≃.

In [37] and [43], the duals of these arrows are used as the arrows of Pro (C ).
Therefore, we have another definition of the arrows in Ind (C ): HomInd(C ) (P,Q) =
DH (P,Q). As we will see in Proposition 4.5.11, this does not overwrite the previ-
ous definition of arrows in Ind (C ) seen in Definition 4.3.2, as both definitions are
isomorphic.

4.5.2 A natural isomorphism

We can now compare this official definition of clusters, with the ones we gave
before. It seems easier for us to compare this definition with Proposition 4.4.2; the
main idea is that, gathering all the arrows of a given equivalence class, we should
find similar sets of arrows. This is what we are going to prove through the following
lemmas and theorem.

An element of DH (P,Q) is an equivalence class [ϕ, (fp)] of specific arrows (see
the description above). Just as we did to define Clstr (P,Q) (Definition 4.3.7), we
will gather these arrows and see what happens.
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Define:

ΦP,Q ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

DH (P,Q) Ð→ P ( ⊎
p∈P

⋃
q∈Q

HomC (P (p),Q(q)))

[ϕr, (fr,p)] z→ {(p, fp) ∣ p ∈ P, (ϕ, (fp)) ∈ [ϕr, (fr,p)]}

Lemma 4.5.8

If Q(b) ○ g ∈ ΦP,Q ([fr]), then g ∈ ΦP,Q ([fr]).

Proof. In fact, if fp0 is in any diagram, then replacing it by Q(b0)○g0 does not change
anything related to commutativity. Moreover, it is easy to see that f ′, defined by
f ′p = fp if p ≠ p0 and f ′p0 = g0 otherwise, is a partial arrow equivalent to f . The detail
is left to the reader.

Lemma 4.5.9

If Q is filtered, ΦP,Q is a function DH (P,Q)→ Clstr (P,Q).

Proof. We have to prove that ΦP,Q([fr]) verifies the five conditions of a cluster.
ΦP,Q ([fr]) obviously verifies (CLU-1) due to the definition of an element f ∈ [fr].

The rest is not trivial.
For (CLU-2), define:

ΦP,Q ([fr]) (p) = {fp ∣ (p, fp) ∈ ΦP,Q ([fr])}

Let g ∶ P (p) → Q(q) and g′ ∶ P (p) → Q(q′) ∈ ΦP,Q ([fr]) (p). Those two arrows
are some fp = g and f ′p = g′ for some f, f ′ ∈ [fr]. As they are in the same equivalence
class, we know that f ≃ f ′ for the equivalence relation ≃ defined in Proposition 4.5.6.
Thus, for all p, fp and f ′p are in the same connected component of (P (p)∣Q). So,
ΦP,Q ([fr]) verifies (CLU-2).

Now, let a0 ∶ p0 → p′0 ∈ P and fp′0 ∶ P (p′0)→ Q(q) ∈ ΦP,Q ([fr]). We want to see if
fp′0 ○ P (a0) ∈ ΦP,Q ([fr]). For that, we define a new partial arrow f ′ = (ϕ′, (f ′p)p∈P)
such that:

ϕ′(p) = { ϕ(p′0) if p = p0
ϕ(p) otherwise

f ′p = { fp0 ○ P (a0) if p = p0
fp otherwise
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Before anything, we have to check that f ′ actually is a partial arrow.
Let (ai ∶ pi → p)i∈n be a finite set of arrows in P. We want to find q and a set of

arrows (bi ∶ ϕ′(pi)→ q)i∈n such that, for all i ∈ n, the following diagram commutes:

P (pi) Q (ϕ′ (pi))

Q (q)

P (p) Q (ϕ′ (p))

f ′pi

P (ai)

Q(bi)

f ′p

Q(b)

(4.11)

Let us consider three cases:

1. If none of the pi and p is p0, then take the same q and (bi)i∈n as for f
2. If p = p0, Diagram 4.11 becomes:

P (pi) Q (ϕ′ (pi))

Q (q)

P (p0) Q (ϕ′ (p0))

P (p′0)

f ′pi

P (ai)

Q(bi)

f ′p0
P (a0)

Q(b)

fp′0

Consider the finite set of arrows (a0 ○ ai ∶ pi → p′0) ∈ P. We then have the
following diagram:

P (pi) Q (ϕ′ (pi))

Q (q)

P (p′0) Q (ϕ (p′0))

f ′pi

P (a0○ai)

Q(bi)

fp′0

Q(b)

If none of the pi is p0, as f is a partial arrow, there exist such q, b, and bi’s
such that the previous diagram commutes. If some of the pi’s are p0, then go
to the next case.
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3. If any of the pi’s are p0 but p ≠ p0, Diagram 4.11 becomes:

P (pi) Q (ϕ (pi))

P (p) Q (ϕ (p))

Q (q)

P (p′0) Q (ϕ (p′0))

P (p0) Q (ϕ (p0))

fpi

P (ai) Q(bi)
fp

Q(b)

fp0

P (a0
i )

Q(b′0)

P (a0)

fp′0

f ′p0

Q(b0)

(4.12)

Consider now the finite set of arrows:

(a′i)i∈n′ = (ai ∶ pi → p)pi≠p0
∪ (a0

i ∶ p′0 → p)
pi=p0

∪ (a0
i ○ a0 ∶ pi → p)

pi=p0

As f is a partial arrow, there are q, b and bi’s such that Diagram 4.11 commutes,
with (a′i) instead of (ai), and f instead of f ′. Then, depending on the case,
the commutativity here translates to the commutativity in Diagram 4.12. In
more detail; if a′i = ai, then the following diagram commutes, because f ′p = fp:

P (pi) Q (ϕ′ (pi))

Q (q)

P (p) Q (ϕ′ (p))

f ′pi

P (a′i)

Q(bi)

f ′p

Q(b)

If a′i = a0
i ∶ p′0 → p, then the following diagram commutes, because fp = f ′p and

f ′p′0
= fp′0 :

P (p′0) Q (ϕ′ (p′0))

Q (q)

P (p) Q (ϕ′ (p))

f ′
p′0

P (a0
i )

Q(bi)

f ′p

Q(b)
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Finally, if a′i = a0
i ○ a0 ∶ p0 → p, then the following diagram commutes:

P (p0) Q (ϕ′ (p0))

P (p′0) Q (ϕ′ (p′0)) Q (q)

P (p) Q (ϕ′ (p))

fp0

P (a0)
Q(b0)

f ′
p′0

P (a0
i )

Q(bi)

f ′p

Q(b)

The bottom diagram commutes due to the previous case: because f ′p′0 = fp′0
and f ′p = fp. The top diagram commutes because f ′p′0 = fp′0 , which leads us to
the following diagram:

P (p0) Q (ϕ′ (p0))

P (p′0) Q (ϕ′ (p′0)) Q (q)

P (p) Q (ϕ′ (p))

fp0

P (a0)
f ′p0 Q(b0)

f ′
p′0

P (a0
i )

Q(bi)

f ′p

Q(b)

Putting all diagrams together, we finally deduce that Diagram 4.12 commutes.

Therefore, f ′ defined as equal to f , except for p0 where f ′p0 = fp′0 ○ P (a0), is also
a partial arrow. It is trivial to verify that f ′ ≃ f , and thus f ′ ∈ [fr]. Therefore,
f ′p0 = fp′0 ○ P (a0) ∈ ΦP,Q ([fr]), and ΦP,Q ([fr]) verifies (CLU-4).

As for (CLU-3), consider fp0 ∶ P (p0) → Q(ϕ(p0)) ∈ ΦP,Q ([fr]) and b0 ∶ ϕ(p0) →
q0 ∈ Q; consider f ′ defined by:

ϕ′(p) = { q0 if p = p0
ϕ(p) otherwise

f ′p = { Q(b0) ○ fp0 if p = p0
fp otherwise

Just as for (CLU-4), we have to check that this actually defines a partial arrow.
Let (ai ∶ pi → p)i∈n be a finite set of arrows, we want to check if there exist q and
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bi’s such that the following diagram commutes for all i:

P (pi) Q (ϕ′ (pi))

Q (q)

P (p) Q (ϕ′ (p))

f ′pi

P (ai)

Q(bi)

f ′p

Q(b)

There are two subcases:

1. if p0 is neither any of the pi’s nor p
2. if p = p0 or pi = p0 for some i

Case 1 is obvious, as it amounts to verifying that f is a partial arrow (which it
is by assumption). Due to the assumption that Q is filtered, case 2 becomes trivial:
as Q is filtered, there are q, b ∶ ϕ′(p) → q and arrows (bi ∶ ϕ(pi)→ q)i∈n, and the
diagram necessarily commutes by composition.

Finally, we have to check that ΦP,Q ([fr]) is maximal. Let fp ∈ ΦP,Q ([fr]) and
g ∶ P (p) → Q(q) are in the same connected component of (P (p) ∣ Q). We will use
the previous observation and (CLU-3) to prove that g ∈ ΦP,Q ([fr]).

There is a zigzag between fp and g in (P (p) ∣ Q). Consider the simple zigzag
below:

Q (ϕ (p))

P (p) Q (q1)

Q (q)

Q(b1)fp

g Q(b′1)

We know that fp ∈ ΦP,Q ([fr]). By (CLU-3), Q(b1)○fp ∈ ΦP,Q ([fr]). But Q(b1)○
fp = Q(b′1)○g, and asQ(b1)○fp ∈ ΦP,Q ([fr]), by Lemma 4.5.8, we have g ∈ ΦP,Q ([fr]).
If the zigzag is longer, then each transitional arrow is in ΦP,Q ([fr]) as well.

Lemma 4.5.10

Let f = (ϕ, (fp)p∈P) ∈ PAop (P,Q) be a partial arrow.
There is at most one cluster containing f .

Proof. Let G1 and G2 be two clusters containing f . For each p, we have fp ∈ G1(p)
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and fp ∈ G2(p). By Proposition 4.4.3, G1(p) and G2(p) are connected components of
(P (p) ∣ Q). Thus, they are equivalence classes, and they share one element, which
means that G1(p) = G2(p) and thus, G1 = G2.

Theorem 4.5.11

If Q is filtered, Clstr (P,Q) ≅ DH (P,Q), naturally in P and Q.

Proof. [Proof of bijectivity] Let fr,1 and fr,2 be two partial arrows such that:

ΦP,Q ([fr,1]) = ΦP,Q ([fr,2])

Let f1 ∈ [fr,1]; all its arrows are in both ΦP,Q ([fr,1]) and ΦP,Q ([fr,2]). Thus, for
all p ∈ P, the arrow f1,p is in the same connected component of (P (p) ∣ Q) as both
fr,1,p and fr,2,p. We deduce that fr,1,p and fr,2,p are in the same connected component
of (P (p) ∣ Q), which means that they are representatives of the same equivalence
class. Thus, [fr,1] = [fr,2] and ΦP,Q is injective.

Let G be a cluster. For all p ∈ P, take one arrow fp ∶ P (p) → Q(q) in G. Then
for each chosen fp ∶ P (p) → Q(q), define ϕ(p) = q. We have to check that the pair
(ϕ, (fp)p∈P) is partial arrow.

Let (ai ∶ pi → p)i∈n ∈ P be a finite set of arrows. We want a q, an arrow b ∶ ϕ(p)→
q, and a finite set of arrows (bi ∶ ϕ(pi)→ q)i∈n such that for all i ∈ n, the following
diagram commutes:

P (pi) Q (ϕ (pi))

Q (q)

P (p) Q (ϕ (p))

fpi

P (ai)

Q(bi)

fp

Q(b)

For all i ∈ n, the arrow fp ○ P (ai) is in G as well. As G(pi) is a connected
component of (P (pi) ∣ Q), we deduce that, fpi and fp ○P (ai) are in that connected
component, and thus, there is a zigzag between them. Then, as Q is filtered, for
all i, there is a cocone from that zigzag to qi in Q. As cocones are preserved by
functors, this gives a cocone from a zigzag to Q(qi). Similarly, as Q is filtered, there
is also a cocone to the whole (finite) diagram containing the zigzags and the qi’s,
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hence the result.

P (pi) Q (ϕ (pi))

Q (qi)

P (p) Q (ϕ (p)) Q (q)

Q (qj)

P (pj) Q (ϕ (pj))

fpi

P (a)
f
p ○P (a

i )

fp

P (aj)

fpj

fp
○P

(a j
)

So, the pair f is a partial arrow. Also note that a partial arrow is a (1)-
protocluster. By Lemma 4.5.10, there is at most one cluster containing f . As we
know from Lemma4.5.9 that ΦP,Q ([f]) is a cluster, and G also is, and both contain
all the arrows of f , we deduce that G = ΦP,Q ([f]). Therefore, ΦP,Q is surjective, and
thus bijective.

[Proof of naturality in Q] The naturality in P will be similar but reversed,
as both functors are contravariant in P .

Let β ∶ Q → Q′ be a natural transformation. Let us first describe the action of
DH (P,−) on β.

Let f = (ϕ, (fp)p∈P) be a partial arrow. Define β ○ f to be the pair:

β ○ f = (ϕ, (βϕ(p) ○ fp)p∈P) (4.13)

As the following diagram commutes:

P (pi) Q (ϕ (pi)) Q′ (ϕ (pi))

Q (q) Q′ (q)

P (p) Q (ϕ (p)) Q′ (ϕ (p))

fpi

P (ai)

Q(bi)

βϕ(pi)

Q′(bi)

βq

fp

Q(b)

βϕ(p)

Q′(b)

we can say that β ○ f actually is a partial arrow. It represents an equivalence class
[β ○ f].
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Therefore, DH (P,β) is the following function:

DH (P,β) ∶ { DH (P,Q) Ð→ DH (P,Q′)
[f] z→ [β ○ f]

We want the following diagram to commute:

DH (P,Q) Clstr (P,Q)

?

DH (P,Q′) Clstr (P,Q′)

DH(P ,β)

ΦP,Q

Clstr(P ,β)

ΦP,Q′

Let [f] ∈ DH (P,Q):

Clstr (P,β) ○ΦP,Q ([f]) = ⊎
p∈P

β ○ΦP,Q ([f]) (p) (4.14)

where β ○ΦP,Q ([f]) (p) is the connected component of (P (p) ∣ Q) that contains the
arrows βϕ(p) ○ f ′p, for f ′p the arrow with index p of a partial arrow f ′ ∈ [f].

Also:

ΦP,Q′ ○DH (P,β) ([f]) = ΦP,Q′ ([β ○ f])
= ⊎
p∈P

ΦP,Q′ ([β ○ f]) (p)

where [β○f] is the equivalence class containing the partial arrow (ϕ, (βϕ(p) ○ fp)p∈P)
described above. It is easy to see that it is the same cluster as in Equation 4.14.

Discussion. We could not achieve a result in the general case, which leads us to the
conclusion that the generalised pro-category described in [37, Section 0, Definition
0.1, page 475] might be different to what a generalised pro-category would be.

Specifically, the authors say:

Of course, in the extended context of Definition 0.1 we no longer claim
that our explicit description may be summarized by (0.1); [...] ([37])
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Here, (0.1) is the usual definition of the arrows of Pro (C ):

Lim
p∈P

Colim
q∈Q

HomC (Q(q), P (p))

which of course holds for cofiltered diagrams. The remark of the authors stresses
out that the arrows they describe (and we dualize here) may not coincide as the
extension of this set to general diagrams.

What this says, is that the generalised pro-category from [37] might not coincide
with the dual of our generalised ind-category. That pro-category might not even
have a completion property (dual of the cocompletion).

4.6 Clusters as functors, clusters as functions

In this section, we give a new characterisation of clusters, together with a new
natural isomorphism. The later result also allows us to give an upper bound to the
number of clusters between any two diagrams. We also give a conjecture on a tighter
upper bound and disprove another.

This section relies on the notions introduced in Section 4.2 (comma-categories
and connected components).

4.6.1 Clusters as functors

The following definition will be useful throughout this section.

Definition 4.6.1 (Presheaf of connected components)

Consider two diagrams P ∶ P → C and Q ∶ Q → C .
The presheaf of connected components of P and Q, denoted CCP,Q, or simply
CC if there is no ambiguity, is the following functor:

CCP,Q ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pop Ð→ Sets
p z→ {C ⊂ (P (p) ∣ Q) ∣ C is a connected component}

a ∶ p→ p′ z→ CCP,Q (a) ∶ { CCP,Q (p′) Ð→ CCP,Q (p)
[g] z→ [g ○ P (a)]

Above, the notation [g] refers to the connected component of (P (p) ∣ Q) of
which g is an element; g is equivalently refered to as the representative of
its connected component [g]. Thus, CCP,Q (a) is the function that sends the

135



Part III, Chapter 4 – Mais dis-moi Jamy, c’est quoi un cluster ?

connected component with representative g to the connected component with
representative g ○ P (a).

Here, P and Q are assumed small, so each connected component is a set, and
the CC (p)’s are sets.

In the following, we will refer to CC instead of CCP,Q. Also note that CC is
contravariant.

Now consider Definition 4.4.1 (precluster); let us give a weaker version.

Definition 4.6.2 (Protocluster)

Let P and Q be two diagrams in C .
A protocluster P → Q is a subset of the objects of (P ∣ Q).
If n̄ is a tuple of integers between 1 and 5 (both included), then a n̄-protocluster
P → Q is a protocluster P → Q that verifies (CLU-n) of Proposition 4.4.2 for
all n ∈ n̄.

For example, a (3,4)-protocluster P → Q is a set of arrows P (p) → Q(q)
that verifies (CLU-3) and (CLU-4). A (1,2,3,4)-protocluster is a precluster and
a (1,2,3,4,5)-protocluster is a cluster.

Fact 4.6.3

If G is a protocluster, then G = ∑
p∈P

G(p).

Definition 4.6.4 (Target of an object)

Let G ∶ P → Q be a protocluster, and let p ∈ P.
The target of p in G, denoted by TgtG (p), is the following set:

TgtG (p) = {C ∈ CC (p) ∣ G ∩C ≠ ∅}

In other words, the target of p is the set of connected components of (P (p) ∣ Q)
that have elements in G (roughly, the connected components "targeted" by p ∈ P).

As a proof-of-concept use of these notions, we have:
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Proposition 4.6.5

Let G ∶ P → Q be a protocluster.
1. G verifies (CLU-1) ⇔ for all p ∈ P, card (TgtG (p)) ⩾ 1
2. G verifies (CLU-2) ⇔ for all p ∈ P, card (TgtG (p)) ⩽ 1
3. G verifies (CLU-4) ⇒ for all a ∶ p→ p′, CC (a) (TgtG (p′)) ⊂ TgtG (p)

In the third item, the set CC (a) (TgtG (p′)) is the image of TgtG (p′) by CC (a),
that is, the set of elements of the form CC (a) (C) for C ∈ TgtG (p′).

Proof. Actually, the first two items are obvious. As for the third item, let a ∶ p→ p′

and let C ∈ CC (a) (TgtG (p′)). There is an arrow g ∶ P (p′) → Q(q) ∈ G such that
C = [g ○ P (a)]. As G verifies (CLU-4) and g ∈ G, we have g ○ P (a) ∈ G, and thus
[g ○ P (a)] ∈ TgtG (p).

Note that the third item is not an equivalence. This is because [g ○ P (a)] ∈
TgtG (p) does not imply that g ○ P (a) ∈ G.
Remark 4.6.6. It is worth noticing that Item 3 implies some kind of compatibility
between the connected components targeted by G. This is a direct application of
Remark 4.2.3. This remark is translated in Item 3 using CC (−) and TgtG (−).

We immediately have:

Corollary 4.6.7

Let G be a (1,2,4)-protocluster.
For all a ∶ p→ p′, we have CC (a) (TgtG (p′)) = TgtG (p).

This gives a hint that we may define a functor based on TgtG whenever G is a
(1,2,4)-protocluster:

TgtG ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pop Ð→ Sets
p z→ TgtG (p)

a ∶ p→ p′ z→ CC (a) TgtG(p′)

(4.15)

In other words, TgtG becomes a subfunctor of CC (Definition 2.2.29).

Proposition 4.6.8

Let G ∶ P → Q be protocluster.
G is a cluster ⇔ TgtG is a functor and for all p ∈ P, TgtG (p) = {G(p)}.
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Proof. Let G be a cluster. Then TgtG is a functor by Corollary 4.6.7. Using Propo-
sition 4.4.3, G verifies (CLU-2b). For all p, G(p) is a connected component, and
necessarily, G(p) ∈ TgtG (p).

Assume that G is a protocluster. For all p ∈ P, G(p) ∈ TgtG (p), so G(p) is a
connected component of (P (p) ∣ Q), which means that:

1. G verifies (CLU-2b)
2. Each G(p) is non-empty, so G verifies (CLU-1)
3. If g ∶ P (p) → Q(q) ∈ G and b ∶ q → q′ ∈ Q, then Q(b) ○ g ∈ G(p), so G verifies

(CLU-3)

Finally, (CLU-4) is induced by the functoriality of TgtG. In fact, if g ∶ P (p′) →
Q(q) and a ∶ p → p′, then g ∈ G(p′) and [g] = G(p′). We derive TgtG (a) (G(p′)) =
CC (a) (G(p′)) = CC (a) ([g]) = [g ○ P (a)] = G(p), which is a connected component
that contains g ○ P (a). By Proposition 4.4.3, G is a cluster.

Proposition 4.6.8 is a huge step towards the next main result. Let us introduce
a few definitions before proving it.

Definition 4.6.9 (Mono-subfunctors of CC)

A mono-subfunctor of CCP,Q is a subfunctor T ∶ Pop → Sets of CCP,Q with
T (p) ≅ 1 for all p ∈ P. We denote by MSf (P,Q) the set of mono-subfunctors
of CCP,Q.

Proposition 4.6.8 states that if G is a cluster, then TgtG is a mono-subfunctor of
CC.

Theorem 4.6.10

MSf (P,Q) ≅ Clstr (P,Q), naturally in both P and Q.

Proof. [Proof of bijectivity] Define the following functions:

Tgt⋆ ∶ {
Clstr (P,Q) Ð→ MSf (P,Q)

G z→ TgtG

G⋆ ∶
⎧⎪⎪⎨⎪⎪⎩

MSf (P,Q) Ð→ Clstr (P,Q)
T z→ GT = ⊎

p∈P
(⋃T (p))

In the definition of G⋆, the notation ⋃T (p) is set-theoretic. In fact, if tp (a

138



4.6. Clusters as functors, clusters as functions

connected component of (P (p) ∣ Q)) is the unique element of T (p), in other words,
if T (p) = {tp}, then ⋃T (p) = tp (this is a connected component of (P (p) ∣ Q)).

Proposition 4.6.8 makes it easy to see that Tgt⋆ is well-defined. We let the reader
check that, for T ∈ MSf (P,Q), GT satisfies the axioms of Proposition 4.4.3. On the
one hand, by Proposition 4.6.8:

G⋆ ○Tgt⋆(G) = GTgtG = ⊎
p∈P

(⋃TgtG (p)) = ⊎
p∈P

G(p) = G

On the other hand, for any p and a ∶ p→ p′ in P:

TgtGT (p) = {GT (p)} = {⋃T (p)} = T (p)
TgtGT (a) = CC (a) T (p′) = T (a)

hence Tgt⋆ ○G⋆(T ) = T . It follows that G⋆ = Tgt⋆−1 because T is a subfunctor of
CC.

[Proof of naturality in Q] Here we treat the naturality in Q. The naturality
in P is similar, but contravariant. For β ∶ Q → Q′ any natural transformation and
T ∈ MSf (P,Q), we define:

”β ○ T” ∶ { Pop Ð→ Sets
p z→ {β ○ tp}

where tp is the unique element of T (p), and β ○ tp is defined as the connected
component of (P (p) ∣ Q′) that contains the arrows of the form βq ○ g, for g ∶ P (p)→
Q(q) ∈ tp. By routine algebra, in the same vein as that of Section 4.3.2, we deduce
that MSf (P,β) is written as:

MSf (P,β) ∶ { MSf (P,Q) Ð→ MSf (P,Q′)
T z→ ”β ○ T”

Using the definition of Clstr (P,β), it is very easy to see, after some calculation
left to the reader, that the following diagram commutes:

MSf (P,Q) Clstr (P,Q)

✓

MSf (P,Q′) Clstr (P,Q′)

MSf(P ,β)

GP,Q⋆

Clstr(P ,β)

GP,Q
′

⋆
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4.6.2 Discussion about the cardinality of clusters

It is easy to derive a first upper bound to the cardinal of clusters, using Theo-
rem 4.6.10:

Corollary 4.6.11

card (Clstr (P,Q)) ⩽ ∏
p∈P

card (CC ((P (p) ∣ Q)))

This estimation is rough. We conjecture that the study of the connected compo-
nents of (P ∣ Q) ant those of P can make this estimation more precise.

Let us explain.
As stated in Remark 4.6.6, and as a consequence of Remark 4.2.3, (CLU-4)

is a condition that forces a cluster to be "coherent", or "compatible" in terms of
connected components, in the sense of a functor. In this respect, Proposition 4.6.8
roughly states that G is a cluster if and only if, whenever p and p′ are in the same
connected component of P, then the connected components G(p) and G(p′) should
be "compatible", in the sense of the functoriality of TgtG. Or, in other words, in the
sense that, if we have a zigzag of objects in P:

p0 p2 pn−2 pn

p1 . . . pn−1

and an arrow g ∶ P (p1)→ Q(q) ∈ G:

P (p0) P (p2) P (pn−2) P (pn)

P (p1) . . . P (pn−1)

Q (q)

g

140



4.6. Clusters as functors, clusters as functions

then all the other objects should have an arrow to this Q(q):

P (p0) P (p2) P (pn−2) P (pn)

P (p1) . . . P (pn−1)

Q (q)

g

(4.16)
which defines, imposes the connected component targetted by all the objects con-
nected to p1. In other words, the connected components targetted by P (p1) is (al-
most) the "same" as the connected component targetted by P (p0), P (p2), ... and
P (pn).
Remark 4.6.12. Note that, above, all the triangles do not necessarily commute.

Let us "extract" the following square from Diagram 4.16:

P (p2)

P (p1) P (p3)

Q(q)

g○P (a1) g3○P (a2)

P (a1) P (a2)

g g3

Let us consider p3, which was not represented in Diagram 4.16. Let us give labels
to the arrows: a1 ∶ p2 → p1, a2 ∶ p2 → p3, g3 ∶ P (p3)→ Q(q).

Then we do not necessarily have g ○P (a1) = g3 ○P (a2), because nothing implies
that g ○P (a1) factors through g3. However, g ○P (a1) and g3 ○P (a2) are necessarily
in the same connected component of (P (p2) ∣ Q).

In summary, if one arrow P (p) → Q(q) exists, then that arrow "contaminates"
every object in the connected component of p in P. We already observed that
clusters P → Q had something to do with the connected components of the categories
(P (p) ∣ Q) (Proposition 4.6.5), but the previous consideration gives a hint that they
may also have some link with those of P.

Remark 4.6.13. It is worth noticing that the connected components of (P ∣ Q) may
be totally unrelated with those of the (P (p) ∣ Q)’s. Two objects g and g′ might be
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disconnected in (P (p) ∣ Q) but connected in (P ∣ Q).
Let P and Q be diagrams to C such that C is:

P (p)

P (p′)

Q(q1) Q(q2)

Q(q0)

P (a)

g1○P (a) g2○P (a)

g1 g2

Q
(b

1
)○
g
1

Q
(b2 )○

g2

Q(b1) Q(b2)

where the two arrows Q(b1) ○ g1 and Q(b2) ○ g2 are different, but at the same time,
Q(b1) ○ g1 ○P (a) = Q(b2) ○ g2 ○P (a). This may happen if P (a) "equalises" Q(b1) ○ g1
and Q(b2) ○ g2 just like an equaliser would.

The comma-category (P ∣ Q) is:

P (p′) P (p′)

P (p′) P (p′)

Q(q1) Q(q2)

Q(q0) Q(q0)

P (p) P (p)

P (p)

Q(q1) Q(q2)

Q(q0)

g1 g2

Q(b1)

Q(b1)○g1 Q(b2)○g2

Q(b2)

g1○P (a)

P (a)

g2○P (a)

P (a)

Q(b1)

Q(b1)○g1○P (a) Q(b2)○g2○P (a)

P (a) P (a)

Q(b2)
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while the comma-categories (P (p) ∣ Q) and (P (p′) ∣ Q) are respectively:

P (p) P (p) P (p)

Q(q1) Q(q0) Q(q2)

g1○P (a)
Q(b1)○g1○P (a) Q(b2)○g2○P (a)

g2○P (a)
Q(b1) Q(b2)

and:

P (p′) P (p′)

P (p′) P (p′)

Q(q1) Q(q2)

Q(q0) Q(q0)

g1 g2

Q(b1)

Q(b1)○g1

Q(b2)○g2

Q(b2)

We have g1 and g2 connected in (P ∣ Q), but disconnected in (P (p′) ∣ Q).

In this subsection, we did not achieve any consistent result on the cardinality of
clusters. However, the analysis given seem to point out the key role played by the
connected components of P (cf. the contamination of arrows).

We have the following conjecture:

Conjecture 4.6.14. card (Clstr (P,Q)) ⩽ (max
p∈P

card (CC (P (p) ∣ Q)))
card(CC(P))

.

This conjecture is left for further work.

4.7 Conclusion

We saw the following equivalent definitions of clusters. A cluster P → Q is,
equivalently, any of the following:

1. An element of LCC (P,Q) = Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q)) (Lemma 4.3.4)

2. An element of Clstr (P,Q) (Equation 4.7, Definition 4.3.7)
3. A maximal precluster (Definition 4.4.1 and Proposition 4.4.4)
4. A disjoint union of connected components (Proposition 4.4.3)
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5. An arrow of Deleanu-Hilton, element of DH (P,Q) (Definition 4.5.7, if Q is
filtered)

6. A mono-subfunctor of the CC-functor, element of MSf (P,Q) (Definition 4.6.9)

These equivalences are summarized in the following diagram:

HomInd(C ) (P,Q)

Nat (L (P ) , L (Q))

Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q))

MSf (P,Q) Clstr (P,Q) (CLU-1) to (CLU-5)

(CLU-2b) + (CLU-4)

DH (P,Q)

Definition 4.3.2

Equation 4.4

Theorem 4.3.6

Theorem 4.5.11

Theorem 4.6.10 Proposition 4.4.2

Proposition 4.4.3

Among these definitions, the equivalence between the first three was known since
their creation [35, Exposé 1, section 8.2, page 67]. To the best of our knowledge,
our formalisation of the definition of clusters seen in [12, Chapter 3, Section 2.1,
page 81], is new, as well as the two other equivalent definitions, and both character-
isations in terms of connected-component-aware functions and mono-subfunctors of
the connected-component functor.

In the context of the study of interactions between subsystems, the best defini-
tions to use are, in our opinion, either Proposition 4.4.2 or Proposition 4.4.3. The
former introduces clusters as maximal preclusters, leading to a total of five condi-
tions to verify, while the latter prefers four conditions, among which (CLU-2b) may
turn difficult to verify in practice.

Although this chapter’s goal was to be exhaustive, we could not find a natural
isomorphism between Deleanu-Hilton arrows and clusters in the general case, i.e.
when Q is not assumed filtered.
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Chapter 5

CONSTRUCTION OF CLUSTERS

If you tell a categorist that you co-constructed a
theory, they will understand that you destroyed it.

Erwan Beurier.

5.1 Introduction

In the theory of Memory Evolutive Systems by Ehresmann and Vanbremeersch
[44] [12] [45], systems, be they biological, social or artificial, are seen as hierarchical
categories evolving through time. Those categories become more and more complex
in their structure, due to a property called the Multiplicity Principle (MP for short)
[12, chapter 4, section 4.3, page 92]. The MP is a property of categories that present
two diagrams with isomorphic cocones, such that no cluster verifies a certain prop-
erty. The purpose of the next chapter is the study of the MP in the context of thin
categories, so we will not develop here the property. However, the MP may occur
under two circumstances: when there is no cluster between the two diagrams, or
there are clusters but they do not verify the given property.

It turns out that the case when two diagrams do not have a cluster can be
addressed very generally, i.e. the results stated below hold for all categories. The
property to be verified appears to be too complicated for the general case, so in the
next chapter, we limits ourselves to the special case of preorders.

In the last chapter, we proved several equivalences between definitions of clusters.
In this chapter, we focus on the definition given in Proposition 4.4.2 in order to study
when clusters cannot be constructed.

5.2 Generating clusters from the full protocluster

The notion of protocluster was already introduced before (Definition 4.6.2). It is
a weaker version of cluster, that is, a set of arrows that verify only certain conditions
of a cluster. We remind it here:
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Definition 5.2.1 (Protocluster)

Let P and Q be two diagrams in C .
A protocluster P → Q is a subset of the objects of (P ∣ Q).
If n̄ is a tuple of integers between 1 and 5 (both included), then a n̄-protocluster
P → Q is a protocluster P → Q that verifies (CLU-n) of Proposition 4.4.2 for
all n ∈ n̄.

For example, a (3,4)-protocluster P → Q is a set of arrows P (p) → Q(q)
that verifies (CLU-3) and (CLU-4). A (1,2,3,4)-protocluster is a precluster and
a (1,2,3,4,5)-protocluster is a cluster.

Just like clusters and preclusters, if G ∶ P → Q is a protocluster, we define G(p)

to be the subset G ∩ ( ⋃
q∈Q

HomC (P (p),Q(q))). We remind here a tiny result that

will prove helpful:

Fact 5.2.2

If G is a protocluster, then G = ∑
p∈P

G(p).

Among all the protoclusters P → Q, one seems to stand out. As we will see soon,
the following protocluster is key to the study of clusters:

Definition 5.2.3 (Full protocluster)

Let P , Q be two diagrams. The full protocluster F ∶ P → Q is the following
protocluster:

F = {g ∶ P (p)→ Q(q) ∣ p ∈ P, q ∈ Q}

That is, F is the set of all arrows of the ambiant category of the form P (p)→
Q(q).

We straightforwardly deduce from the definition that:

Proposition 5.2.4

Let P and Q be two diagrams.
1. There is exactly one full protocluster P → Q

2. The full protocluster verifies (CLU-3) and (CLU-4)
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3. The full protocluster is the set ∑
p∈P

⋃
q∈Q

HomC (P (p),Q(q))

4. Every protocluster P → Q is a subset of the full protocluster P → Q

A full protocluster might still not be a cluster. In fact, it may fail to verify
(CLU-1) or (CLU-2). By the way:

Proposition 5.2.5 (No-target condition)

No protocluster G ∶ P → Q verifies (CLU-1)⇔ the full protocluster F ∶ P → Q
does not verify (CLU-1).

Proof. [Proof of ⇒] By Proposition 5.2.4, F is itself a protocluster.
[Proof of ⇐] Assume there is no arrow with domain P (p) in F . By Proposi-

tion 5.2.4, every protocluster G is a subset of F ; thus G does not contain any arrow
with domain P (p).

Proposition 5.2.5 is a first example of the importance of the full protocluster
in this chapter. When looking at the full protocluster, we may be able to deduce
properties of all the protoclusters, and why not, clusters. In fact, if no protocluster
verifies (CLU-1), then there is no cluster at all between the two diagrams.

While we are at it, let us continue. The fact that every protocluster is a subset
of the full protocluster, together with the fact that the full protocluster contains all
possible arrows between two diagrams, give us a hint that clusters must be special
subsets. In fact, they are, but we will need to introduce and study a few more notions
before.

The problem of the full protocluster, is its "full-ness". Let us explain. As it con-
tains all the arrows between two diagrams, it contains probably "too many" arrows,
in the sense that F (p) might be bigger than a connected component of (P (p) ∣ Q);
it may contain several of them. The natural thought is then to delete some of these
arrows, in order to select only one connected component per p, and make a clus-
ter. However, as stated in Section 4.6.1, this needs to be done in such a way that
the connected components should be compatible. For a given full protocluster, this
might not happen easily.

In the following, we assume that we are given two diagrams P and Q such that
the full protocluster F ∶ P → Q is a (1,3,4)-protocluster. If (CLU-1) does not hold,
then Proposition 5.2.5 states that there is no need to look for clusters. Here, we
want to find the clusters inside the full protocluster.

In order to ease the reading of this section, we remind here some notions seen in
Section 4.6.1.
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Definition 5.2.6 (Presheaf of connected components)

Consider two diagrams P ∶ P → C and Q ∶ Q → C .
The presheaf of connected components of P and Q, denoted CCP,Q, or simply
CC if there is no ambiguity, is the following functor:

CCP,Q ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pop Ð→ Sets
p z→ {C ⊂ (P (p) ∣ Q) ∣ C is a connected component}

a ∶ p→ p′ z→ CCP,Q (a) ∶ { CCP,Q (p′) Ð→ CCP,Q (p)
[g] z→ [g ○ P (a)]

Above, the notation [g] refers to the connected component of (P (p) ∣ Q) that
contains g; g is equivalently referred to as the representative of its connected
component [g]. Thus, CCP,Q (a) is the function that sends the connected com-
ponent with representative g to the connected component with representative
g ○ P (a).

In the following, we will get rid of the indices and refer to CC instead of CCP,Q,
as P and Q are fixed.

Also note that CC is a presheaf; e.g. it is contravariant.

The notion of Target was introduced before (Definition 4.6.4); we remind it here
for convenience:

Definition 5.2.7 (Target of an object)

Let G ∶ P → Q be a protocluster, and let p ∈ P.
The target of p in G, denoted by TgtG (p), is the following set:

TgtG (p) = {C ∈ CC (p) ∣ ∃g ∈ G such that g ∈ C }

In the rest of this section, we will focus on how to pick connected components
from a given target.

Definition 5.2.8 (Choice of connected components)

Let G ∶ P → Q be a (1)-protocluster. A choice of connected components for
G, or choice function for short if there is no ambiguity, is a function f of the
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form:

f ∶
⎧⎪⎪⎨⎪⎪⎩

Ob (P) Ð→ ⋃
p∈P

TgtG (p)

p z→ C ∈ TgtG (p)

A choice of connected component takes an object p ∈ P and returns some con-
nected component of TgtG (p).

The choice function will be used in order to "fix" protoclusters; the goal is to
alter a protocluster so that it verifies (CLU-2).

Definition 5.2.9 (Fixes of a protocluster)

Let G ∶ P → Q be a (1,3,4)-protocluster. Let f be a choice of connected
components.
The f -fix for G is the following protocluster:

Gfix = ∑
p∈P

(G(p) ∩ f(p))

A fix of G is a protocluster Gfix ∶ P → Q defined as the f -fix of G for some
choice of connected components f .

In short, a fix of G is a protocluster that will be proved to verify (CLU-2). As
we will see in Lemma 5.3.2 in the next section, "fixing" a protocluster might not
happen easily - that is, without sacrificing (CLU-4).

But for now, we are looking for clusters inside the full protocluster.

Lemma 5.2.10

Every cluster is a fix of the full protocluster.

Proof. Let F ∶ P → Q be a full protocluster, and let G ∶ P → Q be a cluster. For
all p ∈ P, G(p) is a connected component of (P (p) ∣ Q) (Proposition 4.4.3). We
thus have TgtG (p) = {G(p)}. Define f to be the choice function that assigns to each
p ∈ P this unique connected component G(p) ∈ TgtG (p) ⊂ TgtF (p), because G ⊂ F .
This choice function f comes with its f -fix Ffix and by construction:

Ffix = ∑
p∈P

(F (p) ∩ f(p)) = ∑
p∈P

(F (p) ∩G(p)) = ∑
p∈P

G(p) = G
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Note that the notion of fix only exists if the full protocluster verifies (CLU-1).
Thus, Lemma 5.2.10 and Proposition 5.2.5 are perfectly compatible and complement
each other.

5.3 When is there no cluster at all?

This section explores conditions for the existence of clusters. From the formula
Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q)), it is a hard task to determine whether the set of
clusters is empty or not. This chapter aims at finding a more direct way to answer
this question.

5.3.1 A quest of compatibility

From Proposition 5.2.5 and Lemma 5.2.10, we directly derive:

Proposition 5.3.1

There is no cluster P → Q ⇔ the full protocluster P → Q does not verify
(CLU-1) or no fix of it is a cluster.

We may agree that the second condition of the right-hand part of the equivalence
is not actually enlightening, as it does not say anything about the "form" of the full
protocluster. In this section, we study how to turn this condition into a test that we
can run.

Again, we assume that we are given two diagrams P and Q such that the full pro-
tocluster F ∶ P → Q is a (1,3,4)-protocluster. Allowing a tiny bit of generalisation,
the rest of this study focuses on (1,3,4)-protoclusters.

Lemma 5.3.2 (Duality of (CLU-2) and (CLU-4))

Let G ∶ P → Q be a protocluster and Gfix be a fix of G.
If G is a (1,3,4)-protocluster then Gfix is a (1,2,3)-protocluster.

Proof. Let f be the choice of connected components of G associated with Gfix. By
construction, Gfix verifies:

1. (CLU-1): for all p ∈ P, we have an arrow P (p)→ Q(q) ∈ Gfix ∩ f(p)
2. (CLU-2): for each p ∈ P, TgtGfix

(p) = {f(p)} so p targets only one connected
component f(p) via Gfix
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3. (CLU-3): for each g ∶ P (p) → Q(q) ∈ Gfix, for each Q(b) ∶ Q(q) → Q(q′), we
have g ∈ f(p) ⊂ G. As G verifies (CLU-3), we have Q(b) ○ g ∈ G. As Q(b) ○ g
has domain P (p), we have Q(b) ○ g ∈ f(p), and thus, by Definition 5.2.9,
Q(b) ○ g ∈ Gfix.

The following result is a direct consequence of Lemma 5.3.2 and the assumption
that no cluster exists between P and Q.

Corollary 5.3.3

Let P and Q be two diagrams with no clusters between them.
If G is a (1,3,4)-protocluster that does not verify (CLU-2) then Gfix is a
(1,2,3)-protocluster that does not verify (CLU-4).

Proof. We assumed that there was no cluster between P and Q, so Gfix is still not
a cluster. As it verifies the first three conditions (Lemma 5.3.2), we deduce that the
last one, (CLU-4), fails.

One may interpret Corollary 5.3.3 as follows: if (CLU-2) fails for a hopeful cluster
G, it is because there are too many arrows in G, and this "excess" of arrows is due
to (CLU-4).

On the other hand, as fixing basically removes arrows from G, the failure of
(CLU-4) in the fix means that too many arrows of G were removed.

Another way to look at things is that (CLU-4) imposes some "compatibility" be-
tween the connected components targetted by G, in the sense that if the connected
component of g is targeted by G, then the connected component of g ○P (a) should
also be targeted. In a sense, (CLU-4) makes sure that there is no "conflict" of con-
nected components. This compatibility is discussed in Section 4.6, as illustrated by
Theorem 4.6.10 (clusters are seen as a kind of functor).

One last remark. Lemma 5.3.2 also makes it clear why we are using Proposi-
tion 4.4.2 (clusters verify (CLU-1) to (CLU-5)) instead of Proposition 4.4.4 (clus-
ters verify (CLU-2b) and (CLU-4)). This is because the absence of clusters depends
on (CLU-1), (CLU-2) and (CLU-4), and those conditions are easier to verify than
(CLU-2b).

In the following sections, we give a few theorems resulting for this quest of com-
patibility. We give them all the name of "Compatible Connected Component The-
orem" (abbreviated in CCCT), because they follow the same idea of compatibility
between connected components.
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5.3.2 A first attempt - Very Weak CCCT

In this section, we introduce a first attempt of a CCCT. The previous sections
make this attempt obvious, as it is in the continuity of them; however, its proof
requires a tiny lemma that we prove rightaway.

Lemma 5.3.4 (Tiny lemma)

Let (Xi)i∈I be a non-empty set of non-empty sets, such that ⋂
i∈I
Xi = ∅. Then,

there exists X1 and X2, such that there exists x1 ∈ X1/X2 and x2 ∈ X2. In
particular, card(⋃

i∈I
Xi) ⩾ 2.

Proof. There are two cases.

1. Either there exist X1 and X2 such that X1 ∩X2 = ∅; as X1 and X2 are non
empty, we obtain the wanted result;

2. Or, for all pairs X1 ≠ X2, we have X1 ∩X2 ≠ ∅. If we had X1 ∩X2 = X2 for
all pairs X1,X2, then we would also have X1 ∩X2 = X1 and ⋂

i∈I
Xi would be

non-empty and equal to X1. Thus, there necessarily exist X1 and X2 such that
X1 ∩X2 ⊊X1.
Therefore, X1 ∪X2 = (X1/X2) +X2 ⊂ ⋃

i∈I
Xi. As X1 ∩X2 ⊊ X1, we know that

(X1/X2) ≠ ∅, hence the result.

The first attempt of stating a CCCT is the following, that we call "Very Weak":

Theorem 5.3.5 (Very Weak CCCT)

Let G be a (1,3,4)-protocluster.
There exists p0 ∈ P such that ⋂

a∶p0→p
CC (a) (TgtG (p)) = ∅⇒ G does not verify

(CLU-2) and none of its fixes verifies (CLU-4).

Proof. We assume that there is a p0 such that:

⋂
a∶p0→p

CC (a) (TgtG (p)) = ∅
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By Proposition 4.6.5, as G verifies (CLU-1), for all p ∈ P, we have:

card (TgtG (p)) ⩾ 1

Therefore, card (CC (a) (TgtG (p))) ⩾ 1; in particular, each CC (a) (TgtG (p)) is
non-empty (for any a ∶ p0 → p ∈ P).

Using Lemma 5.3.4, we find that card( ⋃
a∶p0→p

CC (a) (TgtG (p))) ⩾ 2.

By assumption, G verifies (CLU-4). Also by Proposition 4.6.5, for all a ∶ p0 → p,
CC (a) (TgtG (p)) ⊂ TgtG (p0). We deduce that ⋃

a∶p0→p
CC (a) (TgtG (p)) ⊂ TgtG (p0),

which gives card (TgtG (p0)) ⩾ 2. Therefore, by Proposition 4.6.5, G does not verify
(CLU-2).

Now, let Gfix be any fix of G.
As Gfix verifies (CLU-1) and (CLU-2) (Lemma 5.3.2), it follows from Proposi-

tion 4.6.5 that for all p ∈ P, we have card (TgtG (p)) = 1. We deduce that for all a ∶
p0 → p, card (CC (a)TgtGfix

(p)) = 1. Also, we assumed that ⋂
a∶p0→p

CC (a)TgtGfix
(p) =

∅. By Lemma 5.3.4 again, we have:

card( ⋃
a∶p0→p

CC (a)TgtGfix
(p)) ⩾ 2

In addition, by Proposition 4.6.5, if Gfix verified (CLU-4), we would have, for all
a ∶ p0 → p, CC (a) (TgtGfix

(p)) ⊂ TgtGfix
(p0), which can be rewritten as:

⋃
a∶p0→p

CC (a)TgtGfix
(p) ⊂ TgtGfix

(p0)

which contradicts card (TgtGfix
(p0)) = 1. Therefore, Gfix does not verify (CLU-4).

Remark 5.3.6 (The converse of the Very Weak CCCT probably does not hold). As
stated in the title of this remark, there is no reason for the converse to hold. In
order to see why, let us try to construct a cluster from a protocluster G that verifies
∀p0 ∈ P, ⋂

a∶p0→p
CC (a) (TgtG (p)) ≠ ∅.

We tried to make an algorithm for constructing a fix of G, however, in our few
attempts, we could not ensure that the connected components were compatible. We
always faced the same problem. Assume that f(p0) was chosen in CC (p0) and f(p1)
and f(p′1) were chosen to be compatible with f(p0), such that CC (a0) (f(p1)) =
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f(p0) = CC (a′0) (f(p′1)).

f (p1)

f (p0)

f (p′1)

a0

a′0

a1

We could not find a way to choose f(p1) and f(p′1) so that they were also
compatible, in the sense that CC (a1) (f(p1)) = f(p1).

The problem is more visible in the case of two parallel arrows:

f (p0) f (p1)
a0

a′0

The condition stated in the Very Weak CCCT is not enough to tackle this case;
in fact, nothing ensures that:

CC (a0)−1 (f(p0)) ∩CC (a′0)
−1 (f(p0)) ≠ ∅

and thus, nothing ensures that f(p1) can be chosen to be compatible with f(p0)
along both arrows a0 and a′0.

Thus, the compatibility needs to be stepped up.

5.3.3 Second attempt - Weak CCCT

In this section, we introduce a new functor which will allow for a new weak con-
dition for the non-existence of clusters. This definition uses a transfinite recursion.
Briefly, a transfinite recursion is a recursion in three steps instead of two:

1. Step 0: define the starting point S0 (just like a normal recursion)
2. Step 1: for an ordinal α, if Sα is defined, define Sα+1 = f (Sα) for a certain

function f (just like a normal recursion)
3. Step 2: for a limit ordinal λ, define Sλ as a kind of "limit" of all the Sα with
α < λ. Typically, Sλ will be the intersection or the union of all the Sα’s.

For more information on transfinite recursion, on the uniqueness of the thus
defined function, see [27, Chapter 1, $9, pages 23-27].

We keep working with P ∶ P → C and Q ∶ Q → C , and the connected component
functor CCP,Q, written as CC.
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We define two functions S and T by transfinite recursion:

1. S0 = CC
2. If Sα is defined for an ordinal α, then for all p0 ∈ P, we set:

Tα(p0) = ⋂
a∶p→p0∈P

CC (a)−1 (Sα(p))

3. If Tα is defined for an ordinal α, then for all p0 ∈ P, we set:

Sα+1(p0) = ⋂
a∶p0→p∈P

CC (Tα(p))

4. If λ is a limit ordinal, define Sλ = ⋂
α<λ

Sα

5. Define S = ⋂
α
Sα

6. Define T = ⋂
α
Tα

The recursion continues at most until all the Sα(p)’s and Tα(p)’s are empty, so
it stops at most after sup

p∈P
(card (CC (p))) steps (the argument is that we cannot

remove infinitely many elements). This ensures that the definition of S and T are
sound, because they are intersections over a set (and not a class) of ordinals.

Before drawing the links between S, T and clusters, let us study those functions
and their recursion.

Lemma 5.3.7

For all α, Sα+1 ⊂ Tα ⊂ Sα.

Proof. Let α be an ordinal. By definition:

Sα+1(p0) = ⋂
a∶p0→p∈P

CC (a) (Tα(p)) ⊂ CC (idp0) (Tα(p0)) ⊂ Tα(p0)

Similarly:

Tα(p0) = ⋂
a∶p→p0∈P

CC (a)−1 (Sα(p)) ⊂ CC (idp0)
−1 (Sα(p0)) ⊂ Sα(p0)

By a "squeeze argument", we obtain:
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Lemma 5.3.8

S = T .

Proof. Define κ = sup
p∈P

(card (CC (p))); κ is the least upper bound of the cardinalities

of all CC (p)’s. We already discussed that Sκ = S and Tκ = T (just below the
definition of S and T ).

From Lemma 5.3.7, we derive that S = Sκ+1 ⊂ Tκ = T ⊂ Sκ = S.

We can then rewrite S as:

S(p0) = ⋂
a∶p0→p∈P

CC (a) (S(p)) = ⋂
a∶p→p0∈P

CC (a)−1 (S(p)) (5.1)

Lemma 5.3.9

S is a subfunctor of CC.

Proof. By Lemma 5.3.7, we have S ⊂ S0 = CC.
We have to prove that for all a0 ∶ p′0 → p0, S(p′0) = CC (a0) (S(p0)). From Equa-

tion (5.1), we already derive S(p′0) ⊂ CC (a0) (S(p0)) (if a set is a subset of an
intersection of sets, then it is a subset of any st in the intersection).

Again, by Equation (5.1), S(p0) = ⋂
a∶p→p0∈P

CC (a)−1 (S(p)) ⊂ CC (a0)−1 (S(p′0))

so CC (a0) (S(p0)) ⊂ S(p′0).

In short, S is the biggest subfunctor of CC whose components are "always com-
patible" together. In fact, the definition of Tα in terms of CC (a)−1 (Sα(p)) forces
the elements of Tα(p0) (which are connected components of (P (p0) ∣ Q)) to be the
antecedents of elements of Sα(p). The intersection, again, ensures that these an-
tecedents are always compatible. The same reasoning applies for Sα+1 in terms of
CC (a) (Tα(p)): it forces the elements of Sα+1(p0) to be images of the Tα+1(p) in a
compatible way.

Lemma 5.3.10

If G is a cluster, then for all p, G(p) ∈ S(p).

Proof. By Theorem 4.6.10, we can identify a cluster with its target TgtG, which is
a mono-subfunctor of CC. Then, we observe that, for all a ∶ p0 → p, TgtG (p0) =
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CC (a) (TgtG (p)), which ensures that:

TgtG (p0) = ⋂
a∶p0→p

CC (a) (TgtG (p))

and also:

TgtG (p0) ⊂ ⋂
a∶p→p0

CC (a)−1 (TgtG (p))

When we relate TgtG with S, we have:

1. TgtG ⊂ S0

2. If TgtG ⊂ Sα, then CC (a)−1 (TgtG (p)) ⊂ CC (a)−1 (Sα(p)) and thus we have
the inclusion: TgtG (p0) ⊂ Tα(p0)

3. Similarly, if TgtG ⊂ Tα, then CC (a) (TgtG (p)) ⊂ CC (a) (Tα(p)) and thus
TgtG (p0) ⊂ Sα+1(p0)

4. Finally, if for all α < λ, TgtG ⊂ Sα, then TgtG ⊂ Sλ

As a consequence, TgtG ⊂ S, hence the result.

Theorem 5.3.11 (Weak CCCT)

Let G ∶ P → Q be a (1,3,4)-protocluster, define S as in this section.
There exists p0 ∈ P such that S(p0) = ∅ ⇒ G does not verify (CLU-2) and
none of its fixes verifies (CLU-4).

Proof. If a fix of G verified (CLU-4), then it would be a precluster (Lemma 5.3.2)
and generate a cluster Gfix. By Lemma 5.3.10, Gfix(p0) ∈ S(p0), which contradicts
S(p0) = ∅.

Remark 5.3.12. From Remark 5.3.6, we deduced that CC was not enough to char-
acterise the existence, or inexistence of clusters. The new functor S was thought
to be a stronger condition, but it seems like it is still not strong enough. In fact,
the goal of the recursion was to define S, whose components S(p) only contains
connected components of (P (p) ∣ Q) that are compatible, not only in the sense that
CC (a) ([g]) = [g ○P (a)], but in the stronger sense that, if there is a zigzag of length
n between p0 and pn, then if we choose a connected component [g0] for p0, then
there is necessarily a choice [gn] that is compatible with it. We could then write an
algorithm 1which would run like this:

1. This algorithm is "rough", because we could not find a way to make it work. The exact
algorithm does not seem to matter here, as the main idea never solves the problem that we describe
later.
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1. Choose a p0 in P

2. Choose a connected component [g0] ∈ S(p0). Define U (p0) = {[g0]}.
3. If U(p) is defined:

3.1. For all a1 ∶ p1 → p, define U(p1) = CC (a1) (U(p))
3.2. For all a1 ∶ p0 → p1, define U(p1) = CC (a1)−1 (U(p)) if U(p1) is undefined,

else U(p1) = U(p1) ∩CC (a1)−1 (U(p))

Intuitively, this defines U as the target of a cluster; however we did not manage
to prove it. In fact, this algorithm does not seem does not solve the problem of
"gluing" different zigzags together; for example again, it does not solve the case of
two parallel arrows:

[g0] [g1]
a0

a′0

If [g0] is chosen in S(p0), then we know that:

S(p1) = ⋂
a∶p→p1

CC (a)−1 (S(p)) ⊂ CC (a0)−1 (S(p0)) ∩CC (a′0)
−1 (S(p0))

However, we cannot (again) ensure that CC (a0)−1 ({[g0]}) ∩CC (a′0)
−1 ({[g0]})

is non-empty.

The functor S was created as a way to enforce compatibility between connected
components; however, Remark 5.3.12 suggests that this compatibility is not enough.
S only ensures a compatibility between sets of connected components, but this com-
patibility does not seem to reduce to connected components alone (or singletons of
them). We conjecture that this is because S ensures a "first order"-like compatibil-
ity, that is, a compatibility "in zigzags". Clusters seem to need a "second order"-like
compatibility, that is, a compatibility in "squares", that ensures that if there exists
two zigzags between two objects of P, then the resulting choices are compatible
all the way down the zigzags. This question is out of the scope of this thesis, as no
answer was given within the expected time limits.

5.3.4 Third attempt - Transfinite recursion in a transfinite
algorithm

In the previous section, S was thought to be a "purified", a "compatibilized"
version of CC, removing all the connected components of (P (p) ∣ Q) that will fail
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to be compatible at some point with another connected component. In other words,
S is a smooth version of CC.

The idea of smoothening CC can be used in order to get closer to a third version
of the CCCT.

In this section, we consider a function U ∶ Ob (P)→ Sets where U(p) ⊂ CC (p).
Now we will try to "smoothen" U , in the same way that we smoothened CC in the
previous section:

Definition 5.3.13 (Smoothening procedure)

Given a function U such that U ⊂ CC, the smoothening of U is the function
V defined by the following transfinite recursion:

1. V0 = U
2. If Vα is defined for an ordinal α, then for all p0 ∈ P, we set:

Wα(p0) = ⋂
a∶p→p0∈P

CC (a)−1 (Vα(p))

3. If Wα is defined for an ordinal α, then for all p0 ∈ P, we set:

Vα+1(p0) = ⋂
a∶p0→p∈P

CC (Wα(p))

4. If λ is a limit ordinal, define Vλ = ⋂
α<λ

Vα

5. Define V = ⋂
α
Vα

6. Define W = ⋂
α
Wα

Remark 5.3.14. The functor S defined in the previous section is obviously the
smoothening of CC.

By similarity with the definition of S in the previous section, we deduce:

Lemma 5.3.15

With the same notation as Definition 5.3.13:
1. For all ordinal α, Vα+1 ⊂Wα ⊂ Vα
2. V ⊂ U
3. W = V
4. V is a functor
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Proof. The proof of Item 1 is the same as Lemma 5.3.7, and Item 2 derives from it.
The proof of Item 3 is the same as Lemma 5.3.8 and the proof of Item 4 is the same
as Lemma 5.3.9.

Lemma 5.3.16

With the same notation as Definition 5.3.13, if G is a cluster such that TgtG ⊂
U , then TgtG ⊂ V .

Proof. Let G be a cluster such that TgtG ⊂ U .
For all p0, we have at the same time:

TgtG (p0) = ⋂
a∶p0→p∈P

CC (TgtG (p))

TgtG (p0) ⊂ ⋂
a∶p→p0∈P

CC (a)−1 (TgtG (p))

If we assume TgtG ⊂ U . Then, following the description of the transfinite recur-
sion, we have:

1. TgtG ⊂ V0 = U
2. Assuming TgtG ⊂ Vα for some ordinal α, then we have:

CC (a)−1 (TgtG (p)) ⊂ CC (a)−1 (Vα(p))

and thus:

TgtG(p0) ⊂ ⋂
a∶p→p0

CC (a)−1 (TgtG (p)) ⊂ ⋂
a∶p→p0

CC (a)−1 (Vα(p)) =Wα(p0)

3. Assuming TgtG ⊂Wα for some ordinal α, we have:

CC (a) (TgtG (p)) ⊂ CC (a) (Wα(p))

and thus:

TgtG(p0) ⊂ ⋂
a∶p0→p

CC (a) (TgtG (p)) ⊂ ⋂
a∶p0→p

CC (a) (Wα(p)) = Vα+1(p0)

4. Assuming TgtG ⊂ Vα and TgtG ⊂ Wα for all α < λ, where λ is a limit ordinal,
then we derive TgtG ⊂ Vλ and TgtG ⊂Wλ.
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Corollary 5.3.17

With the same notation as Definition 5.3.13, if there exists p such that V (p) =
∅, then there is no cluster G such that TgtG ⊂ U .

The idea behind the smoothening is to construct clusters from CC, by replacing
some CC (p0) with a given singleton consisting of a connected component. Let us
describe the complete procedure. We will then explain it informally, and finally, we
will prove its properties.

For p0 ∈ P, define S(p0,1) = {p ∈ P ∣ HomC (p, p0) ≠ ∅ or HomC (p0, p) ≠ ∅}. In
short, S(p0,1) a sphere with radius 1, centered on p0.

The idea behind this procedure is choose a p0, and then a connected component
in CC (p0), written U(p0) = {[g0]}, and then we try to spread this singleton like
this:

{[g0 ○ P (a0)]}

{[g1] , . . . , [g1]}

{[g0 ○ P (a′0)]} {[g0]}

{[g2] , . . . , [g2]}

{[g0 ○ P (a′′0)]}

a0

a′0

a1

a2

a′′0

If [g0] is chosen for p0, then for each arrow a0 ∶ p→ p0, the only compatible choice
is U(p) = {[g0 ○ a0]}. Then, if a1 ∶ p0 → p1, then there might be several connected
components [g1] ∈ CC (p1) such that [g1 ○ P (a1)] = [g0]. Instead of choosing among
them, we just keep them all: U(p1) = {[g] ∈ CC (p1) ∣ [g ○ P (a1)] = [g0]}. Then, we
spread again this new choice, along every zigzag starting or finishing with p0. This
spread is formally described by the use of the smoothening function.

If this spread results in an empty set for some p, then there is no cluster G
with G(p0) = [g0]. If the spread finishes with a function U whose components have
cardinality 1, then it is a cluster. If the spread stops but the resulting function has
some components with cardinality > 1, then we try again. For some p′0 such that
card (U(p′0)) > 1, we try and set U(p0) = {[g0]} but also U(p′0) = {[g′0]}. We then
have two connected components to spread. If the resulting smoothening is empty,
then there is no cluster G with G(p0) = [g0] and G(p′0) = [g′0]. If the resulting
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Input: A function U ⊂ CCP,Q, a set A of pairs (p, [g] ∈ CC (p))
Output: The set of clusters P → Q

1 foreach p ∈ P do
2 if there is a pair (p, [g]) ∈ A then
3 Set V (p) = {[g]};
4 else
5 Set V (p) = U(p) ;
6 end
7 end
8 Replace V with its smoothening (Definition 5.3.13)
9 if there is a p such that V (p) = ∅ then

/* There will be no cluster */
10 Return ∅ ;
11 end
12 if for all p ∈ P, V (p) ≅ 1 then

/* There is only one cluster that corresponds to the choice
of connected components given in A */

13 Return {V } ;
14 end
15 if there is a p ∈ P such that V (p) > 1 then

/* The smoothening might yield many clusters, the choice of
A was not enough, there might be several clusters with
those connected components */

16 Let Res = ∅ ;
17 foreach p1 such that V (p1) > 1, for each [g1] ∈ V (p1) do
18 Add EnumerateClusters(V,A ∪ {(p1, [g1])}) to Res
19 end
20 Return Res
21 end

Procedure EnumerateClusters(U, A)
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function has all U(p) with cardinality 1, then U is (the target of) a cluster. If again
the resulting U has some components U(p) with cardinality greater than 1, then we
repeat the algorithm, this time with three choices of connected components, and so
on.

We now prove the stated properties of the algorithm.

Definition 5.3.18 (Cluster complying with partial choice)

A partial choice A is a partial function Ob (P) →∏p∈P CC (p) such that for
each p with an image, A(p) ∈ CC (p).
A cluster G complies with a partial choice A when for each p for which A(p)
exists, A(p) = G(p).
Denote by ClstrA (P,Q) the set of clusters P → Q that comply with A.

In the algorithm, A is thought as the partial version of the choice of connected
components (Definition 5.2.8). Just like a choice function may or may not yield a
cluster (its fix), a partial choice may or may not be completed to make a cluster;
that is what the algorithm is about.

For convenience, in the description of the algorithm, we write A as a set of
pairs. The use of the notion of partial function makes implicit the fact that only one
connected component is chosen per p.

Lemma 5.3.19

Let V be the smoothening of a subfunction U ⊂ CC.
For all G ∈ ClstrA (P,Q), TgtG ⊂ U ⇒ for all G ∈ ClstrA (P,Q), TgtG ⊂ V .

Proof. Direct consequence of Lemma 5.3.16.

Lemma 5.3.20

ClstrA (P,Q) = ⋃
A⊂A′

ClstrA′ (P,Q).

Proof. If G ∈ ClstrA (P,Q), then G ∈ ClstrTgtG (P,Q) ⊂ ⋃
A⊂A′

ClstrA′ (P,Q).

As for the converse, it is clear that if G complies with A′ ⊃ A, then G complies
with A.
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Lemma 5.3.21

Let A be a partial choice, and consider A′ = A ∪ {(p′, [g′])} such that A′ is
also a partial choice (p′ is such that A(p′) is undefined).
Then EnumerateClusters(U,A′) ⊂ EnumerateClusters(U,A).

Proof. This is clear from the algorithm.

Lemma 5.3.22

If A ⊂ A′ then EnumerateClusters(U,A′) ⊂ EnumerateClusters(U,A).

Proof. Follows directly from Lemma 5.3.21.

Lemma 5.3.23

EnumerateClusters(U,A) = ⋃
A⊂A′

EnumerateClusters(U,A′).

Proof. The inclusion ⊃ follows directly from Lemma 5.3.22.
Let G ∈ EnumerateClusters(U,A). Then TgtG can be seen as a partial choice,

and A ⊂ TgtG. Thus G ∈ EnumerateClusters (U,TgtG).

Lemma 5.3.24

EnumerateClusters(CC,A) = {G} ⇔ ClstrA (P,Q) = {G}.

Proof. The algorithm clearly gives: EnumerateClusters(CC,A) ⊂ ClstrA (P,Q).
Assume that ClstrA (P,Q) = {G}. Then either EnumerateClusters(CC,A) is

empty, or equal to {G}. However, we know that:

EnumerateClusters(CC,A) = ⋃
A⊂A′

EnumerateClusters(U,A′)

and as A ⊂ TgtG as a partial choice, we have {G} ⊂ EnumerateClusters (U,TgtG) ⊂
EnumerateClusters(CC,A) = {G}.

Assume that EnumerateClusters(CC,A) = {G}. Then let G′ ∈ ClstrA (P,Q). We
have A ⊂ TgtG′ , and thus:

EnumerateClusters(CC,TgtG) ⊂ EnumerateClusters(CC,A)

by Lemma 5.3.22, and thus G = G′.
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Theorem 5.3.25

For any partial choice A, EnumerateClusters(CC,A) = ClstrA (P,Q).

Proof. The algorithm clearly gives: EnumerateClusters(CC,A) ⊂ ClstrA (P,Q).
By Lemma 5.3.24, EnumerateClusters(CC,A) = ClstrA (P,Q) whenever either

has cardinal 1.
Then, by Lemma 5.3.23, we have:

EnumerateClusters(CC,A) = ⋃
A⊂A′

EnumerateClusters(CC,A′)

⊃ ⋃
G∈ClstrA(P,Q)

EnumerateClusters (CC,TgtG)

= ⋃
G∈ClstrA(P,Q)

ClstrTgtG (P,Q)

= ClstrA (P,Q)

hence the result.

We thus obtain an algorithm allowing us to enumerate all the clusters. This
algorithm essentially "filters out" the connected components to try, and then tries
every combination of connected components.

We would have preferred a condition, rather than an algorithm, but the following
theorem will be our last attempt (in this thesis) of finding a CCCT:

Theorem 5.3.26 (Expensive CCCT)

Let G ∶ P → Q be a (1,3,4)-protocluster.
EnumerateClusters(CC,∅) = ∅⇔ G does not verify (CLU-2) and none of its
fixes verifies (CLU-4).

5.3.5 More properties and an example

In this section, we give several results related to protoclusters and clusters. Some
of these results will be useful in justifying later remarks or examples. I thought it
would be too bad not to have them, because I spent some time proving them anyway.

165



Part III, Chapter 5 – Construction of clusters

Lemma 5.3.27

Let G be any protocluster.
There exists a (3,4)-protocluster G∗ containing G, such that:

1. If G verifies (CLU-1) then G∗ also does
2. If G does not verify (CLU-2) then G∗ does not either

Proof. For n ∈ N, consider:

G0 = G
Gn+1 = {(p′, g ○ P (a)) ∈ P ×C ∣ g ∶ P (p)→ Q(q) ∈ Gn, a ∶ p′ → p ∈ P}

∪ {(p,Q(b) ○ g) ∈ P ×C ∣ g ∶ P (p)→ Q(q) ∈ Gn, b ∶ q → q′ ∈ Q}

Then, G∗ = ⋃
n∈N

Gn is a (3,4)-protocluster containing G.

The stated properties of G∗ straightforwardly derive from the fact that, for all
p, G(p) ⊂ G∗(p).

Lemma 5.3.28

If G is a cluster, then each G(p) is a connected component of (P (p) ∣ Q).

Proof. This directly derives from Proposition 4.4.3. Let us give another proof.
Assume the contrary. Let p be such that G(p) is not a connected component.

Let C ⊂ (P (p) ∣ Q) be the connected component that strictly contains G(p). Let
g ∶ P (p) → Q(q) ∈ C/G(p), and define G0 = G + {g}. By Lemma 5.3.27, let G∗

0 be
the (3,4)-protocluster that contains G0. G∗

0 verifies (CLU-1) because G ⊂ G0 ⊂ G∗
0.

We have to check that G∗
0 still verifies (CLU-2) despite having added arrows to

verify (CLU-3) and (CLU-4).
Let a ∶ p′ → p ∈ P. There is a g′ ∶ P (p) → Q(q) ∈ G(p) such that [g] = [g′] = C ⊋

G(p). Then, [g○P (a)] = [g′○P (a)] ⊃ G(p′): it is still a unique connected component
of (P (p′) ∣ Q). Similarly, if b ∶ q → q′ ∈ Q, then [g] = [Q(b) ○ g] ⊃ G(p) and it is also
a unique connected component of (P (p) ∣ Q).

Then, G ⊊ G∗
0, and G∗

0 is a precluster by construction, which contradicts the
maximality of G.

The following lemma is a generalisation of Lemma 4.5.10:
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Lemma 5.3.29

Let G ∶ P → Q be a (1)-protocluster.
There is at most one cluster G∗ containing G.

Proof. Let G∗
1 and G∗

2 be two clusters containing G. For each p, there is a g ∶ P (p)→
Q(q) ∈ G such that g ∈ G∗

1(p) and g ∈ G∗
2(p). By Lemma 5.3.28, G∗

1(p) and G∗
2(p)

are connected components of (P (p) ∣ Q). Thus, they are equivalence classes, and
they share one element, which means that G∗

1(p) = G∗
2(p) and thus, G∗

1 = G∗
2.

A protocluster that does not verify (CLU-1), may be included in more than one
cluster or no cluster at all. However:

Lemma 5.3.30

Let G ∶ P → Q be a precluster.
There is exactly one cluster G∗ ∶ P → Q containing G.

Proof. For each p ∈ P, consider the connected component Cp of (P (p) ∣ Q) such
that G(p) ⊂ Cp (Cp exists by (CLU-2)). Then, define G∗ = ∑

p∈P
Cp (as suggested by

Fact 5.2.2). Defined as such, we have G∗(p) = Cp. We trivially have G ⊂ G∗. As G
verifies (CLU-1) and (CLU-2), by construction, G∗ also does. As G∗ contains whole
connected components, G∗ trivially verifies (CLU-3). Now, if a ∶ p → p′ ∈ P and
g ∶ P (p′) → Q(q) ∈ G∗, then g ○ P (a) is an object of (P (p) ∣ Q). Besides, g ∈ G∗ is
in Cp′ . By definition of Cp′ , there exists some g′ ∶ P (p′) → Q(q′) ∈ G(p′) ⊂ Cp′ . As
G is a precluster, g′ ○ P (a) ∈ G(p) ⊂ Cp. By composition, g ○ P (a) is in the same
connected component as g′ ○ P (a), which is Cp, as shown in the diagram below:

P (p)

Q (q)

P (p′)

Q (q′)

g○P (a)

g′○P (a)P (a)

g

g′

(5.2)
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Finally, for G∗ contains the whole connected component, we have g ○P (a) ∈ G∗,
and thus G∗ verifies (CLU-4).

G∗ is trivially maximal by being a union of connected components, and it is
unique by Lemma 5.3.29.

Proposition 5.3.31

There is no precluster P → Q ⇔ there is no cluster P → Q.

Proof. The sense ⇒ is obvious, as a cluster is a precluster. The reciprocal derives
from Lemma 5.3.30.

Proposition 5.3.31 is an invitation to consider preclusters instead of clusters
whenever useful. The constraint of maximality makes most proofs harder and trick-
ier.

We finish the section with an example of usage of Theorem 5.3.5.
Example 5.3.32 (Clusters in Sets). Consider the category Sets, and two diagrams P ∶
P → Sets and Q ∶ Q → Sets. As usual, denote by F ∶ P → Q the full protocluster.

Sets has a terminal object 1 = {0}, so there is a cocone α1 ∶ P → ∆ (1). Then,
if for some q ∈ Q, Q(q) is a non-empty set, the hom-set HomSets (1,Q(q)) is non-
empty. Let u ∶ 1→ Q(q). The composite ∆ (u) ○ α1 ∶ P →∆ (Q(q)) is a cocone from
P to Q(q).

This means that, for all p0, not only is F (p0) non-empty, because it contains
u ○α1

p0 , but also, ⋂
a∶p0→p

CC (a) (TgtF (p)) contains at least the connected component
of that arrow u ○ α1

p0 .
Finally, note that in Sets, there are always functions between any two sets

X → Y , except if X is non-empty and Y is empty. Thus, if there is a q ∈ Q such
that Q(q) has a non-empty set, there is always a cocone from P to that Q(q). In
particular, the full protocluster P → Q always verifies (CLU-1).

If P and Q are diagrams to Sets and at least one of the Q(q) is a non-empty
set, by Theorem 5.3.5, then there may always be clusters between P and Q.

5.4 The special case of preorders

To be fair, the CCCT, be it very weak (Theorem 5.3.5) or weak (Theorem 5.3.11)
are most probably intractable in general categories, because it requires knowledge
about the comma-category, which is generally not easy to grasp. In this section, we
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study the special case of preorders and give a necessary (but not sufficient) condition
that will simplify the use of the CCCT.

The next definition will be helpful:

Definition 5.4.1 (Protocluster subcategory)

Let G ∶ P → Q be a protocluster between two diagrams P and Q in C .
The G-subcategory, denoted by SubC (G) , is the subcategory of C defined by:
Objects: The objects are the P (p)’s and Q(q)’s for p ∈ P and q ∈ Q

Morphisms: The arrows are the arrows of the form P (a) ∶ P (p) → P (p′)
for a ∶ p → p′ ∈ P, of the form Q(b) ∶ Q(q) → Q(q′) for b ∶ q → q′ ∈ Q, of
the form g ∶ P (p) → Q(q) for g ∈ G, and every composite g ○ P (a) and
Q(b) ○ g when the composition law of C allows it

Identities: The identities are P (idp) and Q (idq)
Composition: The composition law is the composition law in C

Let us add some more terminology.
If P ∶ P → C is a diagram, we call image of P and denote by Im (P ) the

category consisting of objects of the form P (p) for p ∈ P, and of arrows P (a) where
a ∶ p→ p′ ∈ P, and, if necessary, the missing compositions of arrows.

If G is a protocluster, then Im (P ) and Im (Q) embed into SubC (G).
The G-subcategory is simply the image of the diagrams P and Q (as subcat-

egories of C ) together with the arrows of G between these diagrams. Thus, the
G-subcategory may, or may not be a full subcategory of C . Its intent is to merge
the structure of P (domain of P ), the structure of Q (domain of Q) and the pro-
tocluster.

Definition 5.4.2 (Clawitzer diagram)

Let G ∶ P → Q be a protocluster.
A Clawitzer 2diagram, if it exists, is the subcategory of SubC (G) of the follow-
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ing form:

P (p1) Q (q1)

×

P (p0) ×

×

P (p2) Q (q2)

g1

P (a1)
g1○P (a1)

P (a2)
g2○P (a2)

g2

We say that the Clawitzer diagram includes into G when:
1. g1, g1 ○ P (a1), g2 and g2 ○ P (a2) are in G
2. The two triangles commute
3. g1 ○ P (a1) and g2 ○ P (a2) are in different connected components of

(P (p0) ∣ Q)
4. There is no arrow P (p1)→ Q(q2) nor P (p2)→ Q(q1) in SubC (G)

Clawitzer is a Pokémon inspired from a shrimp with a big, big, right-hand pincer.

The Clawitzer diagram is a first clue that a (1,3,4)-protocluster cannot be fixed,
but it is not a proof. We will give an example below the following proposition:

Proposition 5.4.3 (CCCT implies Clawitzer diagram)

Let G be a (1,3,4)-protocluster in a preorder C .
There is a p0 ∈ P such that ⋂

a∶p0→p
CC (a) (TgtG (p)) = ∅ ⇒ the Clawitzer

diagram includes into G.

Proof. By Lemma 5.3.4, there are two distinct elements C1 ∈ CC (a1) (TgtG (p1))
and C2 ∈ CC (a2) (TgtG (p2)) /CC (a1) (TgtG (p1)), for some arrows a1 ∶ p0 → p1 and
a2 ∶ p0 → p2.

For i = 1,2, Ci is in the image of TgtG (pi) by CC (ai), so there exists gi ∶ P (pi)→
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Q(qi) such that Ci is of the form Ci = [gi ○ P (ai)]. We then have the diagram:

P (p1) Q (q1)

P (p0)

P (p2) Q (q2)

g1

P (a1)

P (a2)

g2

Assume there is an arrow g′2 ∶ P (p1)→ Q(q2):

P (p1) Q (q1)

P (p0)

P (p2) Q (q2)

g1

g′2

P (a1)

P (a2)

g2

In a preorder, as every diagram commutes, we would have g′2○P (a1) = g2○P (a2).
We derive C2 = [g2 ○ P (a2)] = [g′2 ○ P (a1)] and thus C2 ∈ CC (a1) (TgtG (p1)), leading
to a contradiction. The same reasoning proves that there is no arrow P (p2)→ Q(q1),
and thus, the Clawitzer diagram embeds into G.

Example 5.4.4 (Example of the non-sufficiency of the Clawitzer diagram). Consider
the following protocluster G:

P (p1) Q (q1)

×

P (p0) Q (q3)

×

P (p2) Q (q2)
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There is a Clawitzer diagram included in G (consider the arrows P (p1)→ Q(q1)
and P (p2) → Q(q2)). Assuming that every diagram commutes, the protocluster
consisting of the arrows to Q(q3) is in fact a cluster.

Unfortunately, we could not find an equivalence using the Clawitzer diagram.
We however have the following conjecture:

Conjecture 5.4.5 (Informal). ⋂
a∶p0→p

CC (a) (TgtG (p)) = ∅ ⇔ there is a Clawitzer
diagram "every time".

Our intuition is that the Clawitzer diagram should be the typical case stating the
absence of clusters. The problem with that conjecture is that we could not determine
what formal words could translate the expression "every time".

However, we infer that the Clawitzer diagram, even if it is "typical" in some sense,
will probably never be more than a sufficient condition for the absence of clusters.

5.5 Conclusion

In this chapter, we proved a theorem helpful for our purpose. In fact, the absence
of cluster can lead to a subcase of Multiplicity Principle, that we study in the next
chapter. It is thus crucial to have a tool to (more or less) easily test the existence
or absence of clusters between two given diagrams.

We combine the results of this chapter: the results from Sections 5.3.2, 5.3.3,
5.3.4 and 5.4, we have the following graph:

⋂
a∶p0→p

CC (a) (TgtG (p)) = ∅

S (p0) = ∅ Clawitzer

EnumerateClusters (CC,∅)

Clstr (P,Q) = ∅

if preorder

if preorder

In the next chapter, we study the other subcase of Multiplicity Principle, this
time in the subcase of preorders.
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Chapter 6

DAS MULTIPLIZITÄTSPRINZIP IN
QUASIORDNUNGEN

Ne t’inquiète pas, ça va bien se passer. Bien s’passer.
Ne t’inquiète pas.

Maître Yoda (201X?) Maître Yoda CLASH Lorenzo
BECKER (Menaces et Révélations), vidéo re-postée

par Axel le 1er avril 2016, version originale
introuvable.

6.1 Introduction

Edelman and Gally define degeneracy as "the ability of elements that are struc-
turally different to perform the same function or yield the same output" [17]. Degen-
eracy is not the same as redundancy, in that redundancy involves identical elements
while degeneracy involves structurally different elements. The term might read mis-
leading while it suggests the idea of a certain robustness of the system. This is
because one biological element of the system may replace another one that was
more appropriate for the concerned function. The replacement is not supposed to
be perfect though, leading to a function somewhat accomplished, but not as well as
with the appropriate element.

This ambiguity disappears in the categorical translation of degeneracy. In order
to provide a categorical framework for describing systems, and in particular biologi-
cal systems and emergence, Ehresmann and Vanbremeersch incorporated degeneracy
in their theory of Memory Evolutive Systems [12, 45]. In this work, a system be-
comes a category (or rather, a family of categories indexed by time), a subsystem
becomes a diagram in that category (in that family of categories), and degeneracy
is called the Multiplicity Principle. The Multiplicity Principle (MP) becomes the
property of a category to have two (or more) diagrams that have the same cocones
(a cocone being seen as a functionality) while being structurally different in a certain
sense that calls on the tricky notion of cluster. Besides, the MP is presented as the
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backbone of the notion of complexity, which highlights its importance in the theory
of Memory Evolutive Systems.

The MP appeared in [20] to account for a specific relation between two classes of
statistical tests. Namely, Neyman-Pearson tests [46] and Random Distorsion Tests
[47] are shown to share the same functionality (they both tend to perfect tests,
called oracles) while being structurally different in a certain sense. The preorder
representing tests thus verifies the MP due to these two classes of tests.

The goal of [20] was to find an instance of MP in a preorder, but not study the
MP as such. Thus, a sufficient condition for a preorder to verify MP was enough for
its purpose.

In the present work, we study the Multiplicity Principle in the special case of thin
categories (preorders). Section 6.2 introduces the categorical background originally
used to describe the MP in general categories. We introduce first the notions sur-
rounding that of clusters, and the formal notion of MP. We then study the occurrence
of MP in categories. In Chapter 5, we give sufficient conditions for two diagrams
not to have any clusters from one to the other. It turns out that these conditions
concern all categories, not only thin ones. However, the case when two diagrams
have clusters between them needs to then be restricted to preorders, leading to two
other necessary and sufficient conditions, and finally to the main theorem of this
chapter (Section 6.3). We then put the theorem into practice in a few examples of
orders, in Section 6.4.

6.2 Background

Let us recall the definition of the notions needed by the Multiplicity Principle.
In the following, we consider a (locally-small) category C and two diagrams (or

patterns) P ∶ P → C and Q ∶ Q → C . The definitions are adapted from [12].

Definition 6.2.1 (Homologous diagrams)

Two diagrams P and Q are (lax-)homologous when their categories of cocones
are isomorphic: Cocones (P ) ≅ Cocones (Q). P and Q are strictly homol-
ogous when there is an isomorphism I ∶ Cocones (P ) → Cocones (Q) that
preserves peaks: for all α ∈ Cocones (P ), peak (I(α)) = peak (α).

The notion of strictly homologous diagrams is defined in [12]. That of lax ho-
mologous diagrams is neither novel nor difficult, but this terminology will prove
useful.

Considering that colimits are the initial elements of the categories of cocones
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(Proposition 2.4.14), we easily derive:

Proposition 6.2.2

The following holds:
1. If two diagrams are strictly homologous then they are lax-homologous
2. If two diagrams are lax-homologous and one has a colimit, then they

both have a colimit whose peaks need not be isomorphic
3. If two diagrams are strictly homologous and one has a colimit, then they

both have the same colimit, with the same peak

If diagrams represent subsystems of the whole system (the whole category), then
a colimit represents the "synthetic information" of the diagram. In the case of bio-
logical systems, a diagram represents the cells of an organ, and the colimit represent
their joint action, that is, the organ itself. Then, the diagram can be seen as a
"decomposition", a "detailed view" of the organ.

Again in the study of systems, a cluster between two diagrams represents the
interaction between the corresponding two subsystems. In this chapter, we focus on
the characterisation by Proposition 4.4.2, that is, the definition of clusters with five
conditions (maximal precluster). See Chapter 4 for other definitions.

Definition 6.2.3 (Composition of a cluster with a cocone)

Let G ∶ P → Q be a cluster and let α ∶ Q → ∆ (A) be a cocone from Q (the
codomain of the cluster).
The composition of α with G, denoted by α○G, is the cocone α○G ∶ P →∆ (A)
consisting of all arrows αq○g such that g ∶ P (p)→ Q(q) ∈ G and αq ∶ Q(q)→ A.

Note that this definition is a special case of the composition of clusters (Fig-
ure 6.1). In fact, a cocone is exactly a cluster between a diagram and some diagram
of the form ∆ (A). Also note that the result of the composition of a cluster with a
cocone is also a cocone.
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𝑃 𝑄 𝐶 

𝐺 

𝛼 

Figure 6.1 – Note that such a composition yields a cocone: a cocone Q → ∆ (C)
composed with a cluster P → Q yields a cocone P →∆ (C).

Consider now two diagrams P and Q with colimits Colim (P ) and Colim (Q),
respectively with cocones αP ∶ P →∆ (Colim (P )) and αQ ∶ Q→∆ (Colim (Q)). Also
assume that there is a cluster P → Q. The composite αQ ○G is a cluster between
P and the diagonal functor ∆ (Colim (Q)); equivalently, it is a cocone from P to
Colim (Q) (cf Figure 6.1). Thus, there is a unique arrow g ∶ Colim (P )→ Colim (Q)
due to the UMP of Colim (P ). Hence the following notion:

Definition 6.2.4 (Binding of a cluster)

Let G ∶ P → Q be a cluster between two diagrams P and Q that both have a
colimit (hereafter denoted by Colim (P ) and Colim (Q)). Denote by αP ∶ P →
∆ (Colim (P )) and αQ ∶ Q→∆ (Colim (Q)) the cocones from the diagrams to
their respective colimits.
The binding of G is the unique arrow g ∶ Colim (P )→ Colim (Q) ∈ C such that
∆ (g) ○ αP = αQ ○G; that is, the following square commutes (in Clstr (C )):

∆ (Colim (P )) ∆ (Colim (Q))

✓

P Q

∆(g)

αP

G

αQ

We equivalently say that G binds to g. We say that G binds to an isomorphism
when g is an isomorphism.

With the terminology introduced just above, whenever two diagrams have a
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colimit, if there is a cluster between those two diagrams, then the binding of the
cluster always exists.
Remark 6.2.5. Note that ∆ (g) is a cluster ∆ (Colim (P )) → ∆ (Colim (Q)), so the
previous diagram really is a diagram in Clstr (C ).

The following functor is introduced in [12, discussion below definition, Chapter
3, section 1.4, page 79] but is left unnamed.

Definition 6.2.6 (Cluster-composition functor)

Let G ∶ P → Q be a cluster. We define the cluster-composition functor ΩG as:

ΩG ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cocones (Q) Ð→ Cocones (P )
α z→ α ○G
u z→ u

Definition 6.2.7 (Connected diagrams [12, Definition, Chapter 3,
section 4.1, page 90])

Two diagrams P and Q are connected when there is a cluster G ∶ P → Q such
that ΩG is an isomorphism.

As we will see later, ΩG may be an isomorphism even if the cluster itself is not
invertible (invertible as an arrow in the strict cocompletion of C .

It is easy to see that:

Lemma 6.2.8

If two diagrams are connected, then they are lax-homologous.

Proof. If two diagrams are connected, then there is a cluster G such that ΩG is an
isomorphism between their cocone categories.

The Multiplicity Principle is exactly the complement of this lemma, in the sense
described in Figure 6.2.
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Connected diagrams MP 

Lax homologous diagrams 

Figure 6.2 – The Multiplicity Principle happens exactly when two diagrams are lax
homologous but not connected. Thus, the MP is the complement of Lemma 6.2.8.

Definition 6.2.9 (Multiplicity Principle)

A category C verifies the lax (resp. strict) Multiplicity Principle (MP for
short) when there are two diagrams P and Q that are lax-homologous (resp.
strictly homologous) but not connected.
If P and Q are homologous but not connected, we say, by misuse of language,
that P and Q verify the MP.

In other words: C verifies the Multiplicity Principle when there are two diagrams
P and Q whose cocone categories are isomorphic, but such that for all cluster G ∶
P → Q, the composition of cocones by G does not define an isomorphism (there may
also be no cluster at all). One may also say: the cocone categories are isomorphic,
but ΩG is not the witnessing isomorphism.

The Multiplicity Principle was first introduced in [44] in its strict form, and
only for diagrams with the same colimit. The cluster-composition functor was first
introduced in [12, Chapter 3, section 4.3, page 91] in order to generalise the original
MP to all diagrams. Thus, the MP introduced in [12, Chapter 3, section 4.3, page 92]
corresponds to our strict MP. Also, although the MP introduced in [20] was meant
to be lax, it resulted strict in the preorder of tests. In the present work, we focus on
the lax MP, so by default, we will drop the "lax" mention.

The following proposition is necessary for the rest of this chapter, and it makes
things clearer.
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Proposition 6.2.10

Let G ∶ P → Q be a cluster and assume that P and Q have colimits Colim (P )
and Colim (Q).
Then, ΩG is an isomorphism ⇔ G binds to an isomorphism.

This proposition is probably not new, although it is not found in [12], on which
we base this work. We give here a proof.

Proof. [Proof of ⇒] Suppose ΩG is an isomorphism. Let g ∶ Colim (P )→ Colim (Q)
be the binding of G; we want to show that g is an isomorphism. Denote by αP ∶ P →
∆ (Colim (P )) (resp. αQ ∶ Q → ∆ (Colim (Q))) the cocone from P (resp. Q) to its
colimit Colim (P ) (resp. Colim (Q)). Denote by F ∶ Cocones (P ) → Cocones (Q)
the inverse of ΩG.

By definition, we have ΩG (αQ) = αQ ○ G. According to Definition 6.2.4, the
following diagram commutes:

∆ (Colim (P )) ∆ (Colim (Q))

P Q

∆(g)

αP

G

αQ

Consider F (αP ). It is a cocone from Q to some object X = peak (F (αP )). We
do not have the expression of F , but using the UMP of Colim (Q), there exists a
similar arrow h ∶ Colim (Q)→X, such that the following diagram commutes:

∆ (Colim (P )) ∆ (Colim (Q))

∆ (X)

P Q

∆(g)

∆(h)

αP

G

αQ

F (αP )

We are going to find this X.
Note that the functor ΩG "preserves the peaks": for a cocone β ∈ Cocones (Q),

peak (ΩG (β)) = peak (β). So, for a cocone α ∈ Cocones (P ), peak (ΩG(F (α))) =
peak (F (α)). But also, ΩG○F (α) = α, so peak (F (α)) = peak (α) (which means that
F also "preserves peaks"). In particular, X = peak (F (αP )) = peak (αP ) = Colim (P )
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and h ∈ HomC (Colim (Q) ,Colim (P )). The previous diagram thus reduces to:

∆ (Colim (P )) ∆ (Colim (Q))

P Q

∆(g)

∆(h)

αP

G

αQ
F (αP )

By unicity of the arrow from the UMP, and using the fact that all triangles in
the above diagram commute, we have: g ○ h = idColim(Q) and h ○ g = idColim(P ). Thus,
the binding of cluster G to g is actually an isomorphism.

[Proof of ⇐] Suppose G binds to an isomorphism. The existence of a cluster
entails the existence of functor ΩG. We have to prove that it is an isomorphism.

Denote by g ∶ Colim (P ) → Colim (Q) the binding of G. For now, the following
square commutes:

∆ (Colim (P )) ∆ (Colim (Q))

P Q

∆(g)

αP

G

αQ

Diagram (6.1) below is explained by the following construction:

∆ (Colim (P )) ∆ (Colim (Q))

∆ (A)

P Q

∆(g)

∆(pα)
∆(q)=∆(pα○

g
−1 )

αP

G

α

αQ

∆(q)○αQ

(6.1)

Let α ∶ P →∆ (A) be a cocone to P . There is a unique arrow pα ∶ Colim (P )→ A
due to the UMP of Colim (P ), such that ∆ (pα)○αP = α. As Colim (Q) ≅ Colim (P ).
This induces the arrow q = pα ○ g−1 ∶ Colim (Q) → A. Then, ∆ (q) ○ αQ ∶ Q → ∆ (A)
is a cocone from Q.

This gives a pyramid with top ∆ (A). In Diagram (6.1), the left-hand, upper and
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right-hand triangles commute, as well as the base square. Therefore, the last, lower
triangle commutes too.

Thus:

α = ∆ (q) ○ αQ ○G
= ∆ (pα ○ g−1) ○ αQ ○G
= ΩG (∆ (pα ○ g−1) ○ αQ)

Define F to be:

F ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cocones (P ) Ð→ Cocones (Q)
α z→ ∆ (pα ○ g−1) ○ αQ
u z→ u

where pα is the unique arrow pα ∶ Colim (P )→ A due to the UMP of Colim (P ).
We already have ΩG ○ F = IdCocones(P ). We now want to prove F ○ ΩG =

IdCocones(Q). The reader may refer to the following diagram in order to follow the
proof:

∆ (Colim (P )) ∆ (Colim (Q))

∆ (B)

P Q

∆(g)

∆(p)=∆(q○g)
∆(q)

αP

G

∆(p)○αP
=β○G

αQ

β

Let β ∈ Cocones (Q) where β ∶ Q → ∆ (B). There is a unique arrow q ∶
Colim (Q) → B (by UMP) such that ∆ (q) ○ αQ = β. Also, this q gives rise to
p = q ○ g. Thus:
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p = q ○ g
∆ (p) ○ αP = ∆ (q ○ g) ○ αP

= ∆ (q) ○∆ (g) ○ αP
= ∆ (q) ○ αQ ○G
= β ○G
= ΩG(β)

The last but one equation also brings that p = pβ○G (where pβ○G is pα for α = β○G,
cf. above; that is, p is the unique arrow from the UMP of Colim (P ) to β ○G).

In summary:

F ○ΩG(β) = F (β ○G)
= ∆ (pβ○G ○ g−1) ○ αQ
= ∆ (p ○ g−1) ○ αQ
= ∆ (q ○ g ○ g−1) ○ αQ
= ∆ (q) ○ αQ
= β

Thus, F is the inverse of ΩG and ΩG is an isomorphism.

Note that P and Q need to have colimits for this theorem to hold (also note
that, under MP, if one has a colimit, the other also does). Otherwise, the notion of
binding does not have any sense.

Also note that, if a cluster G binds to an isomorphism, or more generally, if ΩG
is an isomorphism, then it says nothing about the invertibility of G in the cluster
category. The functor ΩG may be an isomorphism, independently on whether G is,
or is not invertible (of course, if G is invertible, then ΩG is an isomorphism).
Example 6.2.11. Consider the preorder Z × Z such that (m1,m2) ⩽ (n1, n2) iff m1
divides n1 and m2 divides n2. Then, consider the following two diagrams, together
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with their colimits:

(n, p) (n, p)

(n2 ,
p

2) (n2 , p)

(n6 ,
p

3) (n3 , p)

(n3 ,
p

2)

(1,1)

(1,2)

colim colim

(2,3)

(3,3)

(1,2)

Clearly, the arrow between the colimits is the identity, and thus it is an isomor-
phism. Also clearly, there are two clusters between those two diagrams: the cluster
{(1,2), (1,2), (3,3)} and the cluster {(1,2), (1,2), (2,3)}. They both bind to an iso-
morphism. However, the clusters are clearly not invertible here, because there are no
arrow in the category Z ×Z from the right-hand diagram to the left-hand diagram.

6.3 A characterisation of preorders with Multi-
plicity

In this section, we study the structural properties of preorders that give rise
to MP. This has been started in [20]. As proven in this section, Proposition 1 in
[20, Section 2.2, page 4] is just a particular case of MP in a preorder. However, no
equivalence, and no characterisation was given. This section will fulfill this wish.

The goal is to get rid of the tricky notion of cluster in order to define the Mul-
tiplicity Principle in the special case of preorders. This characterisation turns the
MP in preorders into some structural properties that may, or may not, hold in a
preorder.

Note that the categories we consider may be small or large, in which case we
should call them thin categories, and not preorders. The "set-ness" (the size) of
preorders does not intervene in the following, so we allow the use an inaccurracy.
However, when we mention diagrams, we always mean small diagrams.

We enter now the realm of preorders. In this wonderful and peaceful world,
categories become simpler, and the following applies:
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1. A full diagram is a sub-preorder of the whole preorder
2. Colimits are the same as coproducts (if either exists)
3. The colimit of a diagram is the supremum of its objects (if it exists)
4. Every diagram commutes
5. The peak of a cocone from a diagram is an upper bound of the set of objects

of this diagram (if it exists)
6. For a given upper bound, there can be only one cocone from a given diagram

to that upper bound
7. Two diagrams P and Q are homologous when their sets of upper bounds are

isomorphic

Given a preorder C and two diagrams P ∶ P → C andQ ∶ Q → C (seen as subsets
of the preorder in the following), we want to analyse when those two diagrams verify
the MP and when they do not. Suppose P and Q verify the MP. We want to know
what that means for P and Q.

They verify the lax MP when they are homologous (their upper bounds are
isomorphic), and the two diagrams have no clusterG such that ΩG is an isomorphism
(Definition 6.2.6). Being homologous does not require any categorical notion, so we
do not need a characterisation of that. We are interested in converting the condition
about clusters without categorical notions. There is no cluster G such that ΩG is
an isomorphism when (1) there is no cluster G at all, or when (2) there are clusters
G but ΩG is never an isomorphism. This gives us two branches to climb, the first of
which we have already climbed in the preceding chapter.

Unfortunately, the Expensive CCCT (Theorem 5.3.26) does not seem to have
a specific behaviour in preorders. Thus, the non-existence of clusters, in preorders,
simply becomes:

Theorem 6.3.1

Let C be a preorder. Let P and Q be two (small) diagrams to C , and consider
their full protocluster F ∶ P → Q.
There is no cluster P → Q ⇔ either there is a p such that Upper (P (p)) ∩
Im (Q) = ∅, or EnumerateClusters (CCP,Q,∅).

In the sequel, we always assume that the two diagrams P and Q are homologous
(isomorphic upper bounds). Under the hypothesis that P and Q have clusters, we
analyse what it means for them to be not connected, meaning that for all cluster G,
ΩG is not an isomorphism.

Note that, under MP, either P and Q have sup, or none of them do (Proposi-
tion 6.2.2). This means that the exclusive subcases are: either both have colimits,
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or both do not; under MP, there cannot be one diagram having a colimit while the
other does not.

We start with the case when both diagrams have a colimit.

Proposition 6.3.2 (Isomorphic-colimits condition)

Let G be a cluster P → Q in a preorder category. Assume P and Q have a
sup.
ΩG is not an isomorphism ⇔ supP ≇ supQ.

Proof. If P and Q have each one a sup, then Proposition 6.2.10 states that ΩG is
not an isomorphism iff G does not bind to an isomorphism. The binding of a cluster
always exists when P and Q have a sup (cf. the remark introducing Definition 6.2.4).
Therefore, G does not bind to an isomorphism iff the unique arrow Colim (P ) →
Colim (Q) is not invertible. In a preorder, there is at most one arrow Colim (P ) →
Colim (Q), and that unique arrow is not an isomorphism.

We now consider the case when P and Q do not have a sup, but still have a
cluster P → Q. P and Q are still assumed homologous.

We begin with this very helpful lemma:

Lemma 6.3.3

Let C be a preorder category, and let G ∶ P → Q be a cluster.
ΩG is an isomorphism ⇔ ΩG is a bijection on objects.

Proof. The direct sense is obvious.
Suppose ΩG defines a bijection between the objects of Cocones (P ) and those

of Cocones (Q).
Let u ∶ α → α′ ∈ Cocones (P ), where α and α′ are cocones from P to A and A′,

respectively. Thus, u is also an arrow u ∶ A→ A′ in C .
As ΩG defines a bijection on objects, there are unique β and β′ ∈ Cocones (Q)

such that α = β ○ G and α′ = β′ ○ G. Thus, u is an arrow u ∶ β ○ G → β′ ○
G ∈ Cocones (P ). We have to check whether u is also an arrow u ∶ β → β′ ∈
Cocones (Q). Of course, β and β′ are cocones from Q to A and A′ respectively, so
the question amounts to finding whether u ○ β = β′, or equivalently, whether for all
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q ∈ Q, the following triangle commutes:

A

Q (q)

A′

u

β′q

βq

In a preorder category, every diagram commutes. So this diagram commutes, and
thus u is also in Cocones (Q). It follows that F defined as:

F ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Cocones (P ) Ð→ Cocones (Q)
α z→ (ΩG)−1(α)

u ∶ α → α′ z→ u ∶ (ΩG)−1(α)→ (ΩG)−1(α′)

is the inverse of ΩG, which concludes the proof.

Remark 6.3.4. Lemma 6.3.3 implies that, in a preorder, the lax MP is a strict MP.

Let us add something more to the previous lemma. In a preorder, there can be
only one cocone from a diagram to a given object / peak. For example, if α ∶ P →
∆ (A), then there is no other α′ ∶ P →∆ (A) such that α ≠ α′. So, instead of refering
to cocones, we may just refer to the peak of these cocones, which are upper bounds
(and we identify Cocones (P ) with the full subcategory of C consisting of all the
upper bounds of P ). Then, by the previous lemma, we may also ignore the relations
(i.e. arrows) between those upper bounds and just consider sets of them.

In the following, we denote by Upper (P ) the class of the peaks of the objects
of Cocones (P ). If Cocones (P ) is seen as the sub-preorder of C consisting of all
the (cocones to) upper bounds of the diagram P , then Upper (P ) is simply the
class (or set) of upper bounds, without the inner relations (arrows) between them.
Note that ΩG then becomes a bijection Upper (Q) → Upper (P ). The reduction of
Cocones (P ) and Cocones (Q) to Upper (P ) and Upper (Q) also implies that the
sets Upper (P ) and Upper (Q) may contain the same elements.

Proposition 6.3.5 (Same-upper-bounds condition)

Let G be a cluster P → Q in a preorder category. Assume P and Q do not
have a sup.
ΩG is not an isomorphism ⇔ Upper (P ) ≠ Upper (Q).

Proof. Suppose ΩG is an isomorphism Cocones (Q) → Cocones (P ), or equiva-
lently, a bijection Upper (Q) → Upper (P ) (Lemma 6.3.3). Then, ΩG(B) = B (the
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composition by a cluster does not change the peak of the cocone, cf. Definition 6.2.3),
and ΩG−1(A) = A. So, for all A ∈ Upper (P ), we have A ∈ Upper (Q) and for all
B ∈ Upper (Q), we have B ∈ Upper (P ). This means that the upper bounds are not
only isomorphic, but also equal: Upper (P ) = Upper (Q).

Conversely, if Upper (P ) = Upper (Q), then for all B ∈ Upper (Q), we have
ΩG(B) = B, so ΩG is injective. And, for all A ∈ Upper (P ), we have A ∈ Upper (Q),
so ΩG(A) = A as well; and that means that ΩG is also surjective, so ΩG is bijective,
and an isomorphism by Lemma 6.3.3.

Even if we proved that whenever P and Q do not have a sup, then ΩG is an
isomorphism ⇔ Upper (P ) = Upper (Q), we prefer to state the lemma in the form
used here. In fact, we are looking for necessary and sufficient conditions for ΩG not
to be an isomorphism.

Compiling the previous propositions with Theorem 5.3.26, we finally obtain the
wanted characterisation.

Theorem 6.3.6 (Characterisation of MP in preorders)

Let P and Q be two diagrams in a preorder category.
P and Q verify MP iff Upper (Q) ≅ Upper (P ) and exactly one of the following
occurs:

1. Both full protoclusters F ∶ P → Q and F ′ ∶ Q→ P verify at least (MP-1)
or (MP-2) below 1:

(MP-1) (Incomparable) there is a P (p) that has no upper bound in
Im (Q) or there is a Q(q) that has no upper bound in Im (P )
(MP-2) (Compatible connected component) The algorithms
EnumerateClusters (CCP,Q,∅) or EnumerateClusters (CCQ,P ,∅)
yield an empty set

2. Or, at least one of the following holds:

(MP-3) (Same colimits) if P and Q have sups, then supP ≇ supQ
(MP-4) (Same upper bounds) if P and Q have no sup, then Upper (P ) ≠
Upper (Q)

What this means is the following: F should verify at least one between (MP-1) or (MP-
2), and F ′ should verify at least one between (MP-1) or (MP-2). Note that F and F ′ do
not need to verify the same condition.

Proof. (MP-1) and (MP-2) correspond to Theorem 5.3.26; (MP-3) corresponds to
Proposition 6.3.2 and (MP-4) corresponds to Proposition 6.3.5.
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(MP-1) and (MP-2) translate the fact that there is no cluster between P and Q.
We can tell there is no cluster at all by analysing the full protocluster and trying to
construct cluster from it (Theorem 5.3.26). (MP-3) and (MP-4) translate the fact
that no cluster G is such that ΩG is an isomorphism between cocones.

So, a preorder verifies MP when there are two subsets of objects P and Q, such
that their upper bounds are isomorphic and, depending on the case, one condition
in the table in Figure 6.3.

If P and Q have colimits If P and Q have no colimit
If no cluster No-upper-bounds condition No-upper-bounds condition
(ΩG does or compatible connected or compatible connected
not exist) components condition components condition
If clusters The colimits are not The sets of upper bounds are
(ΩG exists) isomorphic isomorphic but different

Figure 6.3 – A summary of the conditions on P and Q for them to verify MP or
not. First, they need to have isomorphic upper bounds. Then, depending on the
case (whether P and Q have colimits or not, and whether there are clusters between
them), they need to verify the condition in the corresponding cell.

As remarked at the end of Section 5.3.4, the algorithm describing the enumeration
of clusters requires heavy calculation. In most practical cases, it is probably sufficient
to find a weaker condition, based on Theorem 5.3.5 or Theorem 5.3.11. In the special
case of preorders, we will even use the Clawitzer diagram (Proposition 5.4.3), which
is the typical case for the absence of clusters:

Theorem 6.3.7 (Simpler characterisation of MP in preorders)

Let P and Q be two diagrams in a preorder category.
If Upper (Q) ≅ Upper (P ) and exactly one of the following occurs:

1. Both full protoclusters F ∶ P → Q and F ′ ∶ Q→ P verify at least (MP-1)
or (sMP-2) below 2:
(MP-1) (Incomparable) there is a P (p) that has no upper bound in
Im (Q) or there is a Q(q) that has no upper bound in Im (P )
(sMP-2) (Clawitzer condition) The Clawitzer diagram embeds into F
or the Clawitzer diagram embeds into F ′

2. Or, at least one of the following holds:
(MP-3) (Same colimits) if P and Q have sups, then supP ≇ supQ
(MP-4) (Same upper bounds) if P and Q have no sup, then Upper (P ) ≠
Upper (Q)
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then P and Q verify MP.

As in Theorem 6.3.6, what this means is the following: F should verify at least one
between (MP-1) or (sMP-2), and F ′ should verify at least one between (MP-1) or (sMP-2).
Note that F and F ′ do not need to verify the same condition.

A word on strict MP Now that we have a characterisation for the lax MP,
let us consider the case of the strict MP. For preorders, two patterns are strictly
homologous when the isomorphism between their cocone categories preserves peaks.

Lemma 6.3.8

Let P and Q be diagrams to a preorder C .
If P and Q verify the strict MP, then there is no cluster P → Q or Q→ P .

Proof. This is direct application of Theorem 6.3.6.
If P and Q verify the strict MP, then they verify the lax MP. Suppose there are

clusters between P and Q. By Theorem 6.3.6, at least one between (MP-3) and (MP-
4) holds. (MP-3) states that the colimits should be non-isomorphic, which cannot
happen if the diagrams are strictly homologous. (MP-4) that the cocones should be
isomorphic but different, which cannot happen either if the diagrams are strictly
homologous.

In conclusion, assuming there are clusters between P and Q leads to a contra-
diction; thus, there cannot be clusters between P and Q.

It should also be noted that this example is in fact an instance of strict-MP.

6.4 Other examples of multiplicity

In this section, we want to appply Theorem 6.3.6 in preorders.

6.4.1 Example of MP by (sMP-2)

In this section, we introduce an example of MP by (sMP-2). Consider the same
category as 6.2.11, that is, the partial order Z × Z, ordered by pairwise divisibility:
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(m1, n1) ⩽ (m2, n2) iff m1 divides m2 and n1 divides n2.

(n, p) (n, p)

(n2 ,
p

2) (n2 , p)

(n6 ,
p

6)

(n3 ,
p

3) (n3 , p)

(1,2)

co
lim colim

(3,6)

(2,6)

(3,3)

(2,2)

(1,3)

Why can’t there be any cluster between the left and right-hand diagrams?
Let’s answer by trying to construct a cluster G.
As always, a cluster needs to have at least one arrow from each object of its

domain. There is only one arrow from (n2 ,
p

2) and from (n3 ,
p

3), so these arrows are
in G; (1,2), (1,3) ∈ G. Then, we need to pick at least one arrow between (3,6) and
(2,6). We observe that (3,3) belongs to the right-hand diagram, and (1,2) belongs
to the cluster. Thus, the composite (1,2) ○ (3,3) = (3,6) needs to be in the cluster
(CLU-4). By the same reasonning, (2,6) also needs to be in the cluster, so that the
cluster needs to contain every arrow shown in the figure. However, whenever there
are two arrows coming from the same object, their targets have to have a zigzag
between them, which is not the same for the arrows (3,6) and (2,6). Because of
this, the set of arrows G is not a cluster.

There is no cluster between those two diagrams, and these diagrams have the
same colimits, so these diagrams verify the Multiplicity Principle (not in an inter-
esting way, though). It is however a case where the Clawitzer diagram is sufficient
(Definition 5.4.2).

6.4.2 Preorder on the ordinals

The current section aims at giving an example of MP based in set-theory. Readers
non-familiar with set-theory may refer to [27] for definitions of ordinals and cardinals.

Consider a cardinal that is "big enough", for example, a ℵα for α ⩾ 1. We see it
as a well-ordered set (total order such that every subset has a least element).
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Proposition 6.4.1

For α ⩾ 1, the cardinal ℵα verifies the lax MP.

Proof. Consider the category N = ω seen as a well-ordered set as well. The diagrams:

P ∶ { ω Ð→ ℵα
n z→ n

Q ∶ { ω × 2 Ð→ ℵα
m z→ m

define functors between well-ordered classes. There is one cluster G ∶ P → Q, defined
by all the arrows from n ∈ ω to all m ∈ ω × 2 with n ⩽m.

The colimits (least upper bounds) of P and Q are respectively ω and ω×2, which
are not isomorphic in terms of the well-ordering of ℵα. Thus, G defined above does
not bind to an isomorphism.

We have:

Upper (P ) = {β ∈ ℵα ∣ β ⩾ ω} Upper (Q) = {β ∈ ℵα ∣ β ⩾ ω × 2}

The following functors:

U ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Upper (P ) Ð→ Upper (D)

β z→ { ω + β if β < ω × ω
β if β ⩾ ω × ω

V ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Upper (D) Ð→ Upper (P )

β z→
⎧⎪⎪⎨⎪⎪⎩

min
ω+γ=β

(γ) if β < ω × ω
β if β ⩾ ω × ω

are inverses of each other, thus they constitute an isomorphism between Upper (P )
and Upper (D). Note that they are not ΩG, because G does not bind to an isomor-
phism and thus, ΩG cannot be an isomorphism Proposition 6.2.10.

Hitherto, we have two diagrams with a cluster, with non-isomorphic colimits and
isomorphic upper bounds; we then have an instance of MP due to (MP-3).

Remark 6.4.2. This example also works with On, the well-ordered class of ordinals,
instead of ℵα.

So we have an instance of lax MP in a total order. Whence, the next question.
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6.4.3 Can a total order verify strict MP?

The previous example was a total order, and it verified the lax MP due to
isomorphic, but different, upper bounds. This cannot happen in the first intended
meaning of the MP: MP was supposed to be strict. Here, we investigate whether
total orders can verify the strict MP.

By Lemma 6.3.8, we already know that if two diagrams verify the strict MP in
a preorder, then there cannot be any cluster between them.

Lemma 6.4.3

Let C be a total order, and P and Q be diagrams to C .
If P and Q verify the strict MP, then both full protoclusters P → Q and
Q→ P verify (CLU-1).

Proof. Otherwise, if for example the full protocluster P → Q does not verify (CLU-
1), then there is a P (p) that has no arrow to any Q(q). Thus, since the order is
total, there is necessarily an arrow Q(q) → P (p) for each Q(q), which induces a
cluster Q→ P (it defines a cocone that we can extend to make a cluster), and thus
contradicts Lemma 6.3.8.

We finally deduce:

Theorem 6.4.4

There is no strict MP in a total order.

Proof. By Lemma 6.4.3, the functor CCP,Q is non-empty.
In a total order, every comma-category (P (p) ∣ Q) contains only one connected

component. Indeed, let g ∶ P (p)→ Q(q) and g′ ∶ P (p)→ Q(q′); as C is a total order,
there is an arrow Q(q) → Q(q′) or Q(q′) → Q(q); as C is a preorder, the triangle
necessarily commutes. The same is true about (Q(q) ∣ P ).

Thus, CCP,Q has only components with cardinality 1: for all p, CCP,Q(p) ≅ 1. As
it is a functor, it defines a cluster (Theorem 4.6.10), which contradicts Lemma 6.3.8,
hence the absence of strict MP in total orders.

While the (lax) MP seems to be common among preorders, its strict version
appears to be less common.
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6.4.4 Non-standard models of Peano

In this section, we give an example of preorder verifying the lax MP as a conse-
quence of the fourth condition of Theorem 6.3.6: two diagrams without colimit, and
with isomorphic but different sets of upper bounds. This example is again a total
order.

First, let us remind a theorem from model theory and the study of models of
Peano arithmetic.

Definition 6.4.5 (DLO)

Let C be a preorder.
C is called a dense, linear order without endpoints (DLO for short) when it
is a total order that is dense, unbounded upwards and downwards; that is, a
total order that verifies:

1. Dense: ∀x, y ∈ C , x < y⇒ ∃z ∈ C , x < z < y
2. Unbounded upwards: ∀x ∈ C ,∃z ∈ C , x < z
3. Unbounded downwards: ∀x ∈ C ,∃z ∈ C , z < x

The theory of DLO’s is a textbook case because of the following:

Proposition 6.4.6 ([48, Section 2.4, page 48])

DLO is ω-categorical.

What that means, is that all countable models of DLO are order-isomorphic,
which we often rephrase by saying that the only countable model of DLO is Q.

For example, R is also a model of DLO but it is not the only one of its cardinality
(Shelah’s classification theorem [49, Theorem 0.3, §0, Chapter VIII, page 441] implies
that there are 2c non-isomorphic models of DLO with cardinality c = 2ℵ0).

Let us introduce on a specific order. Consider A to be a DLO.
Elements of ω +A×Z are either natural integers n ∈ ω or pairs (a, z) ∈ A×Z. Its

order can be described as follows:

1. ∀n ∈ ω, ∀(a, z) ∈ A ×Z, n < (a, z)
2. The restriction of the order to ω is isomorphic to the usual order on ω
3. The restriction of the order to A×Z is isomorphic to the lexicographical order 3:

(a0, z0) < (a1, z1) ⇔ (a0 < a1) ∨ (a0 = a1 ∧ z0 < z1)
3. Beware, in some books, the order type is ω + Z × A with the anti-lexicographical order on
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This total order can be seen as follows: we start with a copy of ω. After that ω,
we associate to each element a ∈ A a copy of the integers Z. We then order those
slices {a} ×Z by the order on A. All those slices are then put after ω.

We discuss why orders ω+A×Z are of importance after the following proposition.

Proposition 6.4.7

Let A = Q or R. Then ω +A ×Z verifies the MP.

Proof. This total order ω +A ×Z will verify (MP-4).
We need two subsets of that order, that will play the role of diagrams. For x ∈ A,

consider the following subset:

P (x) = ω +A<x ×Z

where A<x = {a ∈ A ∣ a < x}.
The set of upper bounds of P (x) is:

Upper (P (x)) = A⩾x ×Z

There is no least element in Upper (P (x)) due to the structure of Z, but for
x,x′ ∈ A, A⩾x ≅ A⩾x′ .

For x ≠ x′, P (x) and P (x′) have isomorphic but different upper bounds, and no
sup: that is, P (x) and P (x′) verify (MP-4), and thus, the MP.

Note that we have a whole set of diagrams that witness the MP (one per x ∈ Q
or R).
Remark 6.4.8. The proof of Proposition 6.4.7 does not work for general DLO’s.
Consider A = ]−∞,0]∪([0,+∞[ ∩Q). Then A is a model of DLO; however, using the
notation of the proof of Proposition 6.4.7, the sets Upper (P (−π)) and Upper (P (0))
are obviously not order-isomorphic (one is countable while the other is not).

This order may seem surprising at first. However, it is not a random order.
It arises in the study of models of Peano arithmetic (PA for short). For readers
not familiar with Peano Arithmetic and its models, the rest of this section may be
skipped. We only recall here the bare minimum in order to justify the order ω+A×Z.
Z ×A.
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Theorem 6.4.9 ([50, Theorem 6.4, section 6.2, page 75])

Nonstandard models of Peano Arithmetic (PA) have order type ω + A × Z,
where A is a DLO.

Corollary 6.4.10

In particular, ω + Q × Z is the unique (up to isomorphism) order type of
countable nonstandard models of PA.

Remark 6.4.11. This is beyond the scope of this thesis, but for the reader non-
familiar with Peano models, we feel the need to clarify one point: any ω + A × Z
(with A some DLO) is not necessarily the order type of a model of Peano. For
instance, no model of PA has order type ω +R×Z. [51, Fact 2, section 1.2, page 13]

Following Proposition 6.4.7, we obtain:

Corollary 6.4.12

Let M be a countable nonstandard model of PA. Then the reduct of M to its
order verifies the Multiplicity Principle.

This fact is most likely not provable in PA directly, because the MP is a "global"
property of models.

6.5 Conclusion

The biological property of degeneracy led to the categorical notion of Multiplicity
Principle (MP). In a first work [20], the goal was to find the MP in a certain preorder
category, that really tells something about the involved objects: RDT tests and NP
tests are made for different problems and they shouldn’t be compared.

In this chapter, we gave a characterisation of preorders that does not rely on
categorical notions (and above all, the tricky one of clusters), and illustrated it in
several other preorders, suggesting that the MP may occur quite often in preorders.

The point however, is not that the MP carries no information for being a common
occurrence, at least in preorders. The MP may carry information, just as in [20],
when the diagrams witnessing the MP also make sense.

This chapter also had the purpose of simplifying the topic of MP in preorders,
allowing for more occurrences to be found without the need for a detour through
category theory.
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Chapter 7

MULTIPLICITY IN TESTS

I’ve seen your kind, time and time again.
Every fleeing man must be caught.

Every secret must be unearthed.
Such is the conceit of the self-proclaimed seeker of

truth.
But in the end, you lack the stomach.

For the agony you’ll bring upon yourself.

Sir Vilhelm (2016). In Ashes of Ariandel, first DLC
of Dark Souls III (2016).

7.1 Introduction

In [17], Edelman & Gally pointed out degeneracy as the fundamental property
allowing for living systems to evolve through natural selection towards more com-
plexity in fluctuating environments. Degeneracy is defined [17] as “ . . . the ability
of elements that are structurally different to perform the same function or yield the
same output”. Degeneracy differs from redundancy since the latter “. . . occurs when
the same function is performed by identical elements” [17].

Degeneracy is an ubiquitous and crucial feature of biological systems, e.g. im-
mune systems and neural networks, at all organization levels. The key point put
forward by Edelman and Gally is [17] that “. . . degeneracy is not a property simply
selected by evolution, but rather is a prerequisite for and an inescapable product of
the process of natural selection itself.”

The Multiplicity Principle (MP) [12, 45], introduced by Ehresmann & Vanbre-
meersch, is a mathematical formalization of degeneracy in categorical terms. A thor-
ough study of MP can be found in Chapter 6. The consequences of this principle,
as treated in [12, 45], underpin Edelman & Gally’s conjecture according to which
“complexity and degeneracy go hand in hand” [17].

Another property of many biological and social systems is their resilience: (i) they
can perform in degraded mode, with some performance loss, but without collapsing;
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(ii) they can recover their initial performance level when nominal conditions are sat-
isfied again; (iii) they can perform corrections and auto-adaption so as to maintain
essential tasks for their survival. In addition, resilience of social or biological systems
is achieved via agents with different skills. For instance, cells are simply reactive or-
ganisms, whereas social agents have some cognitive properties. Thence the idea that
resilience may derive from fundamental properties satisfied by agents, interactions
and organizations. Could this fundamental property be a possible consequence of
degeneracy [45, Section 3.1, p. 15]?

The notion of resilience remains, however, somewhat elusive, mathematically
speaking. In contrast, the notion of robustness has a long history and track record
in mathematical statistics [52]. By and large, a statistical method is robust if its
performance is not unduly altered in case of outliers or fluctuations around the
model for which it is designed. Can we fathom the links between resilience and
robustness?

As an attempt to embrace the questions raised above from a comprehensive out-
look, the original question addressed in this work-in-progress is the possible connec-
tion between MP and robustness to account for emergence of resilience in complex
systems. As a first step in our study aimed at casting the notions of robustness,
resilience and degeneracy within the same theoretical framework based on MP, we
hereafter establish that statistical tests do satisfy MP. The task to perform by the
tests is the fundamental problem of detecting a signal in noise. However, to ease
the reading of a chapter at the interface between category theory and mathematical
statistics, we consider a simplified version of this problem.

The chapter is organized as follows. We begin by specifying notation and notions
in mathematical statistics. In Section 7.2, we state MP in categorical words on the
basis of [12] and consider the particular case of preorders, which will be sufficient at
the present time to establish that statistical tests satisfy MP for detecting signals
in noise. In Section 7.3, we set out the statistical detection problem. We will then
introduce a preorder that makes it possible to exhibit two types of "structurally
different" tests, namely, the Neyman-Pearson tests (Section 7.5) and the RDT tests
(Section 7.6). Section 7.7 concludes the chapter by establishing that these two types
of tests achieve the MP for the detection problem under consideration. For space
considerations, we limit proofs to the minimum making it possible to follow the
approach without too much undue effort.

Notation

Before anything, we remind here that we are using the set-theoretic notation for
integers. E.g., 2 is exactly the set 2 = {0,1}.
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7.1. Introduction

Random variables. Given two measurable spaces E and F , M (E ,F) denotes
the set of all measurable functions defined on E and valued in F . The two σ-algebra
involved are omitted in the notation because, in the sequel, they will always be
obvious from the context. In particular, we will throughout consider a probability
space (Ω,B,P) and systematically endow R with the Borel σ-algebra, which will
not be recalled. Therefore,M (Ω,R) designates the set of all real random variables.
Given q ∈ [0,∞[, B∞(q) is the set of all real random variables ∆ ∈M (Ω,R) such that
∣∆∣∞ ⩽ q. As usual, we write X ∼ N (0,1) to mean that X ∈M (Ω,R) is standard
normal.

The cumulative distributive function (cdf) of any X ∼ N (0,1) is denoted by Φ.
Given a sequence (Xn)n∈N ∈M (Ω,R)N of real random variables, we write

X1,X2, . . .
iid∼ N (0,1)

to mean that the random variables X1,X2, . . . are independent and identically dis-
tributed with common distribution N (0,1). For any n ∈ N, the Generalized Mar-
cum function Qn/2 is defined for all ρ ⩾ 0 and all λ ⩾ 0 by setting: Qn/2(ρ, λ) =
1−Fχ2

n(ρ2)(λ2), where Fχ2
n(ρ2) is the cdf of the χ2 law with n degrees of freedom and

non-centrality parameter ρ2.

Decisions et Observations. Throughout, M (2 ×Ω,2) designates the set of all
measurable functions D ∶ 2×Ω→ 2. Any element ofM (2 ×Ω,2) is called a decision
for obvious reasons given below. If D ∈M (2 ×Ω,2) then, for any ε ∈ 2, D(ε) denotes
the Bernoulli-distributed random variable D(ε) ∶ Ω → 2 defined for any given ω ∈ Ω
by D(ε)(ω) = D(ε,ω). An n-dimensional test is hereafter any measurable function
f ∶ Rn → 2 andM (Rn,2) stands for the set of all n-dimensional tests. A measurable
function X ∶ 2×Ω→ Rn is hereafter called an observation andM (2 ×Ω,Rn) denotes
the set of all these observations. Given a test f ∈M (Rn,2) and X ∈M (2 ×Ω,Rn),
D = f(X) is trivially a decision: D ∈ M (2 ×Ω,2). If X ∈ M (2 ×Ω,Rn) then, for
any ε ∈ 2, X(ε) = X(ε, ⋅) ∈ X(ε) ∈M (Ω,Rn) is defined for every ω ∈ Ω by X(ε)(ω) =
X(ε,ω).

Empirical means. We define the empirical mean of a given sequence y = (yn)n∈N
of real values as the sequence (⟨y⟩n)n∈N of real values such that, ∀n ∈ N, ⟨y⟩n =
1
n ∑

n
i=1 yi. By extension, the empirical mean of a sequence Y = (Yn)n∈N of random

variables where each Yn ∈M (Ω,R) is the sequence (⟨Y ⟩n)n∈N of random variables
where, for each n ∈ N, ⟨Y ⟩n ∈M (Ω,R) is defined by ⟨Y ⟩n = 1

n ∑
n
i=1 Yi. Therefore, for

any ω ∈ Ω, ⟨Y ⟩n(ω) = ⟨Y (ω)⟩n with Y (ω) = (Yn(ω))n∈N. If Y = (Yn)n∈N is a sequence
of observations (∀n ∈ N, Yn ∈M (2 ×Ω,R)), we define the empirical mean of Y as
the sequence (⟨Y ⟩n)n∈N of observations such that, for ε ∈ 2, ⟨Y ⟩n ∈ M (2 ×Ω,R)
with⟨Y ⟩n(ε) = ⟨Y (ε)⟩n and Y (ε) = (Yn(ε))n∈N.
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7.2 Multiplicity Principle

The multiplicity principle (MP) comes from [12] and was thoroughly studied in
Chapter 6.

The reader should refer to Definition 6.2.6 for the cluster-composition functor
ΩG and to Definition 6.2.9 for the Multiplicity Principle.

In the biological model described in [12, Chapter 3, Section 4], MP translates
"the robustness and the adaptability of a complex system", and is interpreted that
way. P and Q having the same cocones translates the property of both systems to
accomplish the same function. The absence of clusters between P and Q that define
an isomorphism, reflects the structural difference between them, which is key to
robustness and adaptability: if the system described by P fails, then Q may replace
it.

The main purpose of this chapter is to find a meaningful instance of the mul-
tiplicity principle in some preorder. Just as in Chapter 6, we do not distinguish
between a preorder and its category.

Proposition 7.2.1 (Simplified MP in a preorder)

Let (E,⩽) be a preorder. If there are two disjoint subsets A,B ⊂ E such that
the following conditions hold, then E verifies the multiplicity principle:
(i) A and B have the same sets of upper bounds
(ii) There is an a ∈ A with no upper bounds in B
(iii) There is a b ∈ B with no upper bounds in A

Proof. Condition (i) ensures that A and B have isomorphic categories of cocones
(in a preorder, cocones are the upper bounds). Conditions (ii) and (iii) respectively
ensure that there is no cluster iA → iB nor iB → iA where iA ∶ A↪ E and iB ∶ B ↪ E
are the inclusion functors. Overall, this is an easy application of Theorem 6.3.6.

Albeit trivial, the following corollary will be helpful.

Corollary 7.2.2

Given a preordered set (E,⪯), if A and B are two subsets of E such that
sup (A, (E,⩽)) = sup (B, (E,⩽)) and if A ×B∩ ⩽= ∅, then E satisfies MP.
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7.3 Statistical detection of a signal in noise

In this section, we introduce the tools from statistical decision testing.

7.3.1 Problem statement

Let ε ∈ 2 be the unknown indicator value on whether a certain physical phe-
nomenon has occurred (ε = 1) or not (ε = 0). We aim at determining this value. It
is desirable to resort to something more evolved than tossing a coin to estimate ε.
However, whatever D, the decision is erroneous for any ω ∈ Ω such that D(ε,ω) ≠ ε.
We thus have two distinct cases.

False alarm probability. If ε = 0 and D(0, ω) = 1, we commit an error of the first
kind false or false alarm, since we have erroneously decided that the phenomenon has
occurred while nothing actually happened. We thus define the false alarm probability
(aka size, aka error probability of the first kind) of D as:

Pfa [D] def= P [D(0) = 1] (7.1)

Detection probability. If ε = 1 and D(1, ω) = 0, we commit an error of the
second kind, also called missed detection since, in this case, we have missed the
occurrence of the phenomenon. As often in the literature on the topic, we prefer
using the probability of correctly detecting the phenomenon by defining the detection
probability:

Pdet [D] def= P [D(1) = 1] (7.2)

7.3.2 Decision with level γ ∈ [0,1] and oracles

Among all the possible decisions, the omniscient oracle D∗ ∈ M (2 ×Ω,2) is
defined for any pair (ε,ω) ∈ 2 × Ω by setting D∗(ε,ω) = ε. Its probability of false
alarm is 0 and its probability of detection is 1: Pfa [D∗] = 0 et Pdet [D∗] = 1. This
omniscient oracle has no practical interest since it knows ε, which is pretty unfair
and unrealistic. Since it is not possible in practice to guarantee a null false alarm
probability, we focus on decisions whose false alarm probabilities are upper-bounded
by a real number γ ∈ [0,1] called level. We state the following definition.
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Definition 7.3.1 (Level of a decision)

Given a decision D ∈M (2 ×Ω,2), D has level γ when γ is an upper bound of
its probability of false alarm:

Pfa [D] ⩽ γ

The set of decisions of level γ is denoted by Decγ.

We can easily prove the existence of an infinite number of elements in Decγ that
all have a detection probability equal to 1. Whence the following definition.

Definition 7.3.2 (Oracle)

Given γ ∈ [0,1], an oracle with level γ is any decision D ∈ Decγ such that
Pdet [D] = 1.
The set of all the oracles with level γ is denoted by Oγ.

Oracles with level γ have no practical interest either since they require prior
knowledge of ε! Therefore, we restrict our attention to decisions in Decγ that "ap-
proximate" at best the oracles with level γ, without prior knowledge of ε, of course.
To this end, we must preorder decisions.

Definition 7.3.3 (Total preorder (Decγ,⪯))

For any given γ ∈ [0,1] and any pair (D,D′) ∈ Decγ × Decγ, we define a
preorder (Decγ,⪯) by setting:

D ⪯D′ if Pdet [D] ⩽ Pdet [D′] .

We write D ≅D′ if D ⪯D′ and D′ ⪯D.

7.3.3 Observations

In practice, observations help us decide whether the phenomenon has occurred
or not. By collecting a certain number of them, we can expect to make a decision.
Hereafter, observations are assumed to be elements of M (2 ×Ω,R) and corrupted
versions of ε. We suppose to have a sequence (Yn)n∈N of such random variables. As
a first standard model, we could assume that, for any n ∈ N and any (ε,ω) ∈ 2 ×Ω,
Yn(ε,ω) = ε +Xn(ω) with X1,X2, . . . ,Xn, . . .

iid∼ N (0,1). In this additive model, Xn

models noise on the nth observation. We could make this model more complicated
and realistic by considering random vectors instead of variables. However, with re-
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spect to our purpose, the significant improvement we can bring to the model is
elsewhere. Indeed, we have assumed above that the signal, regardless of noise, is ε.
However, from a practical point of view, it is more realistic to assume that the nth
observation Yn captures ε in presence of some interference ∆n, independent of Xn.
In practice, the probability distribution of ∆n will hardly be known and, as a means
to compensate for this lack of knowledge, we assume the existence of a uniform
bound on the amplitude of all possible interferences. Therefore, we assume that, for
all (ε,ω) ∈ 2 ×Ω, Yn(ε,ω) = ε +Xn(ω) +∆n(ω) and the existence of q ∈ [0,∞) such
that ∆n ∈ B∞(q). After all, this model is standard in time series analysis: ε plays
the role of a trend, ∆n is the seasonal variation and Xn is the measurement noise.

For each q ∈ [0,∞), Seq[q] is hereafter the set of all the sequences Y [q] = (Y [q]
n )

n∈N
where, ∀n ∈ N and ∀(ε,ω) ∈ 2×Ω, Y [q]

n (ε,ω) = ε+∆n(ω)+Xn(ω), where ∆n ∈ B∞(q)
and Xn ∼ N (0,1) are independant. Therefore, for all n ∈ N and all ε ∈ 2, Y [q]

n (ε) =
ε +∆n +Xn, with X1,X2, . . . ,Xn, . . .

iid∼ N (0,1).

7.4 Selectivity, landscapes of tests and preorder-
ing

For any q ∈ [0, 1
2[, any n ∈ N and any Y [q] = (Y [q]

n )
n∈N

∈ Seq[q], we set:

Y[q]
n = (Y [q]

1 , Y
[q]

2 , . . . , Y
[q]
n ) (7.3)

Definition 7.4.1 (Selectivity of a test)

Given any n ∈ N and any test f ∈M (Rn,2), the selectivity of f at given level
γ ∈ [0,1] is defined as the set:

Selγ (f) = {q ∈ [0, 1
2[ ∣ ∀Y [q] ∈ Seq[q], f (Y [q]

n ) has level γ}

Definition 7.4.2 (Landscape of a test)

Given any n ∈ N and any test f ∈M (Rn,2), the landscape of f at given level
γ ∈ [0,1] is the subset of Decγ defined by:

Lndγ (f) = ⋃
q∈Selγ(f)

{f (Y[q]
n ) ∣ Y [q] ∈ Seq[q]}
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This notion of landscape makes it possible to compare tests via landscapes via
the following preorder. More precisely, if f and f ′ are two elements ofM (Rn,2), it is
natural to compare them in a uniform sense, according to which the former performs
better than the latter if f (Y[q]

n ) outperforms f ′ (Y[q]
n ) for any Y [q] ∈ Seq[q]. This

leads us to introduce a preorder on landscapes, with respect to which it will be
possible to find the landscapes of Lndscpsγ that best approximate landscapes of
oracles with given level γ. The proofs that the following definition is consistent and
that the next lemma holds true are left to the reader.

Definition 7.4.3 (Preorder (P (Decγ) , ⩽∗ ))

Given any level γ ∈ [0,1], we define the preorder (P (Decγ) , ⩽∗ ) via the three
following properties:
(P1) ∀n ∈ N, ∀(f, f ′) ∈M (Rn,2) ×M (Rn,2), Lndγ (f) ⩽∗ Lndγ (f ′) iff they

have the same selectivity Selγ (f) = Selγ (f ′) and:

∀q ∈ Selγ (f) ,∀Y [q] ∈ Seq[q], f (Y[q]
n ) ⪯ f ′ (Y[q]

n )

(P2) ∀(L,L′) ∈ (Lndscpsγ ∪ LndOγ)× LndOγ, L ⩽∗ L′ with:

Lndscpsγ = ⋃
n∈N

{Lndγ (f) ∶ f ∈M (Rn,2) } and LndOγ = P (Oγ)

(P3) ∀L ∈ P (Decγ) ∖ (Lndscpsγ ∪ LndOγ), L ⩽∗ L

We directly derive from the definition:

Lemma 7.4.4

For all landscapes L,L′ ∈ Lndscpsγ ∪ LndOγ, we have L ⩽∗ L′⇒ L ×L′ ⊂⪯.

Henceforth, given a preordered set (E,⩽) and A ⊂ E, the set of maximal ele-
ments of A is denoted by max (A, (E,⩽)), the set of upper bounds is denoted by
Upper (A, (E,⩽)) and the set of least upper bounds of A in (E,⩽) is denoted by
sup (A, (E,⩽)).
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Theorem 7.4.5 (Approximation of oracles in (P (Decγ) , ⩽∗ ))

Given γ ∈ [0,1], let a set Ξγ and a family of tests (fξ,n)ξ∈Ξγ ,n∈N such that:

(i) ∀(ξ, n) ∈ Ξγ ×N, fξ,n ∈M (Rn,2);
(ii) ∃Qγ ⊂ [0,∞), ∀(ξ, n) ∈ Ξγ ×N, Selγ (fξ,n) = Qγ;

(iii) ∀(ξ, q) ∈ Ξγ ×Qγ, ∀Y [q] ∈ Seq[q], lim
n→∞

Pdet [fξ,n (Y[q]
n )] = 1;

then, by setting Lndscpsγ ′ = {Lndγ (fξ,n) ∶ n ∈ N, ξ ∈ Ξγ}, we have:

LndOγ = Upper (Lndscpsγ ′, (P (Decγ) , ⩽∗ ))
= sup (Lndscpsγ ′, (P (Decγ) , ⩽∗ )) (7.4)

Proof. For any (ξ, n) ∈ Ξγ ×N and any L ∈ LndOγ, (P2) in Definition 7.8.2 straight-
forwardly implies that Lndγ (fξ,n) ⩽∗ L. As a consequence:

LndOγ ⊂ Upper (Lndscpsγ ′, (P (Decγ) , ⩽∗ )) (7.5)

To prove the reverse inclusion, let L ∈ Upper (Lndscpsγ ′, (P (Decγ) , ⩽∗ )). We
thus have ∀(ξ, n) ∈ N ×Ξγ, Lndγ (fξ,n) ⩽∗ L.

According to Lemma 7.4.4, we have ∀(ξ, n) ∈ Ξγ×N, Lndγ (fξ,n)×L ⊂⪯. Therefore,
∀(ξ, n) ∈ N ×Ξγ, ∀q ∈ Selγ (fξ,n), ∀Y [q] ∈ Seq[q] and ∀D ∈ L, fξ,n (Y[q]

n ) ⪯ L.

It follows from the definition of ⪯ and assumption (ii) above that:

∀(ξ, n) ∈ N ×Ξγ,∀q ∈ Qγ,∀Y [q] ∈ Seq[q],∀D ∈ L,Pdet [fξ,n (Y[q]
n )] ⩽ Pdet [D]

We derive from assumption (iii) that Pdet [D] = 1 and thus thatD ∈ Oγ. It follows
that L ∈ LndOγ. We thus obtain that Upper (Lndscpsγ ′, (P (Decγ) , ⩽∗ )) ⊂ LndOγ

and therefore, from (7.5), LndOγ = Upper (Lndscpsγ ′, (P (Decγ) , ⩽∗ )). The second
inequality in (7.4) is straightforward since the elements of LndOγ are isomorphic in
the sense of ⩽∗ .

For later use, given J ⊂ [0,∞), n ∈ N and C ⊂M (Rn,2), we hereafter set:

LndscpsJγ(C) = {Lndγ (f) ∈ Lndscpsγ ∶ f ∈ C,Selγ (f) = J} (7.6)
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7.5 The Neyman-Pearson (NP) solution

When n spans N, the Neyman-Pearson (NP) Lemma makes it possible to pinpoint
a maximal element in each (Lndscps{0}

γ (C),⪯) with C =M (Rn,2). These maximal
elements are hereafter called NP decisions. Specifically, we have the following result.

Lemma 7.5.1 (Maximality of the NP decisions)

For any γ ∈ [0,1] and any n ∈ N,

Lndγ (fnp(γ)
n ) = max (Lndscps{0}

γ (M (Rn,2)) , ⩽∗ ) (7.7)

where fnp(γ)
n ∈M (Rn,2) is the n-dimensional NP test with size γ defined by:

∀(y1, y2, . . . , yn) ∈ Rn, f
np(γ)
n (y1, y2, . . . , yn) = { 1 if ∑n

i=1yi >
√
nΦ−1(1 − γ)

0 otherwise

and satisfies, ∀Y [0] ∈ Seq[0],

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pfa [fnp(γ)
n (Y[0]

n )] = γ

Pdet [fnp(γ)
n (Y[0]

n )] = 1 −Φ (Φ−1(1 − γ) −
√
n)

Proof. A direct application of the Neyman-Pearson Lemma [53, Theorem 3.2.1, page
60], followed by some standard algebra to obtain Pdet [fnp(γ)

n (Y[0]
n )].

The next result states that it suffices to increase the number of observations to
approximate oracles with level γ by NP decisions.

Theorem 7.5.2 (Approximation of oracles by NP tests)

Setting LndNP(γ) = {Lndγ (fnp(γ)
n ) ∶ n ∈ N} for any γ ∈ [0,1], we have:

LndOγ = Upper (LndNP(γ), (P (Decγ) , ⩽∗ ))
= sup (LndNP(γ), (P (Decγ) , ⩽∗ ))

Proof. According to Lemma 7.5.1, lim
n→∞

Pdet [fnp(γ)
n Y[0]

n ] = 1. The set LndNP(γ) ⊂
Lndscpsγ satisfies the conditions of Theorem 7.4.5 for any γ ∈ [0,1] and Ξγ = ∅.
Thence the result.
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7.6 The RDT solution

7.6.1 An elementary RDT problem

Problem statement. The RDT theoretical framework is exposed in full details
in [47, 54]. To ease the reading of the present chapter, we directly focus on the
particular RDT problem that can be used in connection with the detection problem
at stake.

In this respect, suppose that Y = Θ + X ∈ M (Ω,Rn), where Θ and X are
independent elements ofM (Ω,Rn). In the sequel, we assume that X ∼ N (0, In), In
being the n×n identity matrix, and consider the mean testing problem of deciding on
whether ∣⟨Θ⟩n(ω)∣ ⩽ τ (null hypothesis H0) or ∣⟨Θ⟩n(ω)∣ > τ (alternative hypothesis
H1), when we are given Y(ω) = Θ(ω)+X(ω), for ω ∈ Ω. The idea is that Θ oscillates
uncontrollably around 0 and that only sufficient large deviations of the norm should
be detected. This is a particular Block-RDT problem, following the terminology and
definition given in [54]. This problem is summarized by discarding ω and writing:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Observation:Y = Θ +X ∈M (Ω,Rn)with {Θ ∈M (Ω,Rn) ,X ∼ N (0, IN) ,
Θ and X are independent,

H0 ∶ ∣⟨Θ⟩n∣ ⩽ τ,
H1 ∶ ∣⟨Θ⟩n∣ > τ.

(7.8)
Standard likelihood theory [53, 55, 56] does not make it possible to solve this

problem. Fortunately, this problem can be solved as follows via the Random Distor-
tion Testing (RDT) framework.

Size and power of tests for mean testing. We seek tests with guaranteed size
and optimal power, in the sense specified below.

Definition 7.6.1 (Size for the mean testing problem)

The size of f ∈ M (Rn,2) for testing the empirical mean of the signals Θ ∈
M (Ω,Rn) such that P [∣⟨Θ⟩n∣ ⩽ τ] ≠ 0, given the processes Θ+X ∈M (Ω,Rn)
with X independent of Θ, is defined by:

α[n](f) = sup
Θ∈M(Ω,Rn)∶P[∣⟨Θ⟩n∣⩽τ]≠0

P [f(Θ +X) = 1 ∣ ∣⟨Θ⟩n∣ ⩽ τ] (7.9)
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We say that f ∈M (Rn,2) has level (resp. size) γ if α[n](f) ⩽ γ (resp. α[n](f) =
γ). The class of all the tests with level γ is denoted by Tests[n]γ :

Tests[n]γ = {f ∈M (Rn,2) ∶ α[n](f) ⩽ γ}

Definition 7.6.2 (Power for the mean testing problem)

The power of f ∈M (Rn,2) for testing the empirical mean of Θ ∈M (Ω,Rn)
such that P [∣⟨Θ⟩n∣ > τ] ≠ 0 when we are given Y = Θ + X ∈M (Ω,Rn), with
X independent of Θ, is defined by:

β
[n]
Θ (f) = P [f(Θ +X) = 1∣∣⟨Θ⟩n∣ > τ] (7.10)

The RDT solution. We can easily construct a preorder (Tests[n]γ , ⩽◇ ) by setting,
for all (f, f ′) ∈ Tests[n]γ ×Tests[n]γ :

f ⩽◇ f ′ iff ∀Θ ∈M (Ω,Rn) ,P [∣⟨Θ⟩n∣ > τ] ≠ 0⇒ β
[n]
Θ (f) ⩽ β[n]

Θ (f ′)

No maximal element exists in (Tests[n]γ , ⩽◇ ). However, we can exhibit C[n]
γ ⊂

Tests[n]γ whose elements satisfy suitable invariance properties with respect to the
mean testing problem and prove the existence of a maximal element in (C[n]

γ , ⩽◇ ).

Set S = {id,−id} where id is the identity of R. Endowed with the usual composi-
tion law ○ of functions, (S, ○) is a group. Let A be the group action that associates
to each given s ∈ S the map As ∶ Rn → Rn defined for every x = (x1, x2, . . . , xn) ∈ Rn

by As(x) = (s(x1), s(x2), . . . , s(xn)). Readily, the mean testing problem is invariant
under the action of A in that As(Y) = As(Θ) + X′ where X′ = (X′

1,X′
2, . . . ,X′

n) ∼
N (0, In) is independent of As(Θ). Therefore, As(Y) satisfies the same hypotheses
as Y. We also have ∣⟨As(Θ)⟩n∣ = ∣⟨Θ⟩n∣. Hence, the mean testing problem remains
unchanged by substituting As(Θ) for Θ and X′ for X. It is thus natural to seek
A-invariant tests, that is, tests f ∈ M (Rn,2) such that f(As(x)) = f(x) for any
s ∈ S and any x ∈ Rn.

On the other hand, since we can reduce the noise variance by averaging ob-
servations, we consider A-invariant integrator tests, that is, A-invariant tests f ∈
M (Rn,2) for which exists f ∈ M (R1,2), henceforth called the reduced form of
f , such that f(x) = f(⟨x⟩n) for any x ∈ Rn. Reduced forms of A-invariant inte-
grator tests are also A-invariant: ∀x ∈ R, ∀s ∈ A, f(s(x)) = f(x). We thus define
C[n]
γ ⊂ Tests[n]γ of all A-invariant integrator tests. We thus have f ∈ C[n]

γ if:
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1. [Size]: α[n](f) ⩽ γ;
2. [A-invariance]: ∀(s,x) ∈ S ×Rn, f (As(x)) = f(x);
3. [Integration]: ∃f ∈M (R1,2), ∀x ∈ Rn, f(x) = f(⟨x⟩n).

The following result derives from the foregoing and [47, 54]. The maximal element
put forward in this proposition is called the Block-RDT test for the following reasons:
it is basically an RDT test in the sense given to this term in [47, 54] and the adjective
“block” reminds that this test exploits the "block" of n components of observation
Y. However, for the sake of shortening notation, we limit the notation of this test
to remind that it is basically an RDT test.

Proposition 7.6.3 (Maximal element of (C[n]
γ , ⩽◇ ))

For any γ ∈ [0,1] and any n ∈ N,

{frdt(γ)
n,τ } = max (C[n]

γ , ⩽◇ ) (7.11)

where frdt(γ)
n,τ ∈M (Rn,2) is defined by setting:

∀(y1, y2, . . . , yn) ∈ Rn, f
rdt(γ)
n,τ (y1, y2, . . . , yn) =

⎧⎪⎪⎨⎪⎪⎩

1 if ∣∑n
i=1 yi∣ ⩽

√
nλγ(τ

√
n)

0 otherwise

and λγ(τ
√
n) is the unique solution in x to the equation Q1/2(τ

√
n,x) = γ.

RDT and NP tests are structurally different because dedicated to two different
testing problems and optimal with respect to two different criteria. This structural
difference will be enhanced by coming back to our initial detection problem.

7.6.2 Application to detection

Consider again the problem of estimating ε ∈ 2, when we have a sequence Y [q] ∈
Seq[q] of observations. We thus have:

∀n ∈ N,∀(ε,ω) ∈ 2 ×Ω, Y [q]
n (ε,ω) = ε +∆n(ω) +Xn(ω) (7.12)

where X1,X2, . . .
iid∼ N (0,1) and ∀n ∈ N, ∆n ∈ B∞(q) with q ∈ [0,∞). The

empirical mean of Y [q] satisfies: ∀n ∈ N, ⟨Y [q]⟩n(ε) = ⟨Y [q](ε)⟩n = ε + ⟨∆⟩n + ⟨X⟩n.
We thus have ∣⟨∆⟩n∣ ⩽ q (a-s). Set Θn = ε +∆n for every n ∈ N. In the sequel, we
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assume q < 1/2 because, in this case, we straightforwardly verify that:

{ ε = 0 ⇔ ∣⟨Θ⟩n∣ ⩽ q
ε = 1 ⇔ ∣⟨Θ⟩n∣ ⩾ 1 − q (7.13)

Therefore, when q ∈ [0, 1
2[, deciding on whether ε is zero or not when we are

given Y[q]
n (ω) amounts to testing whether ∣⟨Θ⟩n(ω)∣ ⩽ τ or not for τ ∈ [q,1 − q]. We

thus can use the decision frdt(γ)
n,τ (Y[q]

n ), where frdt(γ)
n,τ is given by Proposition 7.6.3.

We can calculate the false alarm probability of frdt(γ)
n,τ (Y[q]

n ) defined by (7.1)
and the theoretical results in [47] yield that ∀τ ∈ [q,1 − q],Pfa [frdt(γ)

n,τ (Y[q]
n )] ⩽ γ.

In the sequel, for the sake of simplifying notation, we assume that both τ and q
are in [0, 1

2[. In this case, we have:

∀τ ∈ [0, 1
2[ ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Selγ (frdt(γ)
n,τ ) = [0, τ]

Lndγ (frdt(γ)
n,τ ) = ⋃

q∈[0,τ]
{frdt(γ)

n,τ (Y[q]
n ) ∶ Y [q] ∈ Seq[q]}

We can then state the following lemma, which is the counterpart to Lemma 7.5.1.

Theorem 7.6.4 (Maximality of RDT decisions)

For any γ ∈ [0,1], any n ∈ N and any 0 ⩽ q ⩽ τ < 1/2, Lndγ (frdt(γ)
n,τ ) =

max (Lndscps[0,τ]γ (C[n]
γ ) , ⩽∗ ).

Proof. It results from Definition 7.4.2 that Lndγ (f) = {f (Y[q]
n ) ∶ Y [q] ∈ Seq[q], q ∈

[0, τ]}.

According to (7.6), we also have Lndscps[0,τ]γ (C[n]
γ ) = {Lndγ (f) ∈ Lndscpsγ ∶ f ∈

C[n]
γ ,Selγ (f) = [0, τ]}.

Given q ∈ [0, τ] and Y [q] ∈ Seq[q], set:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y = Y[q]
n = (Y [q]

1 , Y
[q]

2 , . . . , Y
[q]
n ) (see (7.3))

X = (X1,X2, . . . ,Xn) ∼ N (0, In)
Θ = (1 +∆1,1 +∆2, . . . ,1 +∆n)

We basically have Y = Θ+X. Consider now the mean testing problem (7.8) with
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7.6. The RDT solution

Θ, X and Y defined as above. For any f ∈M (Rn,2), it follows from Eqs. (7.12) ,
(7.13), (7.2) and (7.9) that:

β
[n]
Θ (f) = Pdet [f (Y[q]

n )] (7.14)

Suppose now that f ∈ C[n]
γ with Selγ (f) = [0, τ]. We derive from Proposition

7.6.3, Equation (7.14) and its application to frdt(γ)
n,τ , that:

Pdet [f (Y[q]
n )] ⩽ Pdet [frdt(γ)

n,τ (Y[q]
n )]

Since q ⩽ τ < 1/2 implies that q ∈ Selγ (f) and since Selγ (f) = Selγ (frdt(γ)
n,τ ) =

[0, τ], we can rewrite the foregoing equality as f (Y[q]
n ) ⪯ frdt(γ)

n,τ (Y[q]
n ).

This holding true for any q ∈ Selγ (f), any Y [q] ∈ Seq[q] and since f and frdt(γ)
q,n

have same selectivity [0, τ], we derive from the foregoing and Definition 7.8.2 that
Lndγ (f) ⩽∗ Lndγ (frdt(γ)

n,τ ) .

We now prove that the oracles with level γ are approximated by RDT decisions.

Lemma 7.6.5 (Approximation of oracles with γ by RDT)

Setting LndRDT(γ)
τ = {Lndγ (frdt(γ)

n,τ ) ∶ n ∈ N} for any given γ ∈ [0,1], we have:

LndOγ = Upper (LndRDT(γ)
τ , (P (Decγ) , ⩽∗ ))

= sup (LndRDT(γ)
τ , (P (Decγ) , ⩽∗ ))

Proof. According to (7.2) and [47, Theorem 2], we obtain:

∀(q, τ) ∈ [0, 1
2[ × [0, 1

2[ ,∀n ∈ N,Pdet [frdt(γ)
n,τ (Y[q]

n )] ⩾ Q1/2((1 − q)
√
n,λγ(τ

√
n))

In [57], we proved that lim
σ→0

Q1/2(ρ/σ,λγ (τ/σ)) = 1]τ,∞[(ρ). Therefore, since τ <

1−q, we have lim
n→∞

Q1/2(
√
n(1−q), λγ (τ

√
n) ) = 1. Thus, lim

n→∞
Pdet [frdt(γ)

n,τ (Y[q]
n )] = 1.

The set LndRDT(γ)
τ ⊂ Lndscpsγ satisfies Theorem 7.4.5 conditions for any γ ∈ [0,1]

and Ξγ = {τ}.

211



Part III, Chapter 7 – Multiplicity in tests

7.7 Multiplicity Principle in (P (Decγ) , ⩽∗ )

To state the MP in (P (Decγ) , ⩽∗ ), we need the following lemma.

Lemma 7.7.1 (Selectivity of NP tests)

∀n ∈ N, Selγ (fnp(γ)
n ) = {0}

Proof. A consequence of [47, Section B., p. 6.].

We have now all the material to state the main result.

Theorem 7.7.2 (Multiplicity Principle in (P (Decγ) , ⩽∗ ))

For any given τ ∈ [0, 1
2[, the MP is satisfied in (P (Decγ) , ⩽∗ ) by the pair

(LndNP(γ),LndRDT(γ)
τ ).

Proof. According to Theorems 7.5.2 and 7.6.4, the subsets LndNP(γ) and LndRDT(γ)
τ

of P (Decγ) are such that

sup (LndNP(γ), (P (Decγ) , ⩽∗ )) = sup (LndRDT(γ)
, (P (Decγ) , ⩽∗ )) = LndOγ

In addition, Lemma 7.7.1 implies that LndNP(γ) × LndRDT(γ)
τ ∩ ⩽∗ = ∅. The

conclusion follows from Corollary 7.2.2.

7.8 MP in a slightly different preorder

The preorder ⩽∗ may seem very hard to grasp. This is because, by essence, tests
are functions Rn → 2, while oracles are decisions, that is, functions 2 ×Ω→ 2.

Thus, we need to use a trick in order to compare what is comparable: the land-
scape of a test f is the set of all its decisions of level γ. And oracles are decisions of
level γ. This is where the trick lies.

In this section, we introduce an equivalent preorder that gets rid of this trick,
and compares tests and oracles together.

Definition 7.8.1 (SEL)

We denote by SELγ the set of tests f such that Selγ (f) ≠ ∅.
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7.8. MP in a slightly different preorder

We then redefine the preorder ⩽∗ :

Definition 7.8.2 (Preorder on landscapes)

Let P (Decγ) be the power set of Decγ (set of decisions). We define the preorder
⩽∗ over P (Decγ) as: D ⩽∗ D′ iff one of the following occurs:

1. D =D′

2. ∃f ∈M (Rn,2), D = Lndγ (f) and D′ = Oγ

3. ∃f, f ′ ∈ M (Rn,2) D = Lndγ (f), D′ = Lndγ (f ′) such that Selγ (f) =
Selγ (f ′) and Pfa [f] ⩽ Pfa [f ′]

The preorder introduced there makes sense. The goal is to compare tests in a
meaningful way (i.e. tests must have the same selectivity before being compared by
their probability of detection, meaning that they are made for the same problem).

Note that, in this preorder, the only sets that are comparable are landscapes, and
the set of oracles. The other subsets of Decγ are not comparable (e.g. intersections
or unions of landscapes, sets that contain both oracles and decisions), so it feels like
this preorder considers only a small part of the whole set. This might reveal the idea
behind this preorder: find a trick to compare tests and oracles.

Denote by Coreγ = {D ∈ P (Decγ) ∣ D ⩽∗ Oγ }. This is basically the main con-
nected component of the preorder P (Decγ). Note that Coreγ can be thought as a
kind of fiber over all the oracles (if ⩽∗ was a function instead of a preorder).

Proposition 7.8.3

Let D ∈ P (Decγ).
If D ∉ Coreγ, then the set {D′ ∣ D ⩽∗ D′ or D′ ⩽∗ D} is reduced to the single-
ton {D}.

Proof. Let D′ such that D ⩽∗ D′. By Definition 7.8.2, one of the three conditions
happen. 2 and 3 imply thatD ∈ Coreγ, which contradicts the assumption. Necessarily
D′ =D.

In the following, we give simpler preorder that is equivalent (in terms of cate-
gories) to Coreγ.

Consider the set SELγ +Oγ (disjoint union of tests and oracles), together with
the following preorder ⊲:

1. for all tests f, f ′ ∈M (Rn,2), f ⊲ f ′ ⇔ Selγ (f) = Selγ (f ′) and for all Y [q] ∈
Seq[q], Pfa [f (Y [q]

[n] )] ⩽ Pfa [f ′ (Y [q]
[n] )].
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Part III, Chapter 7 – Multiplicity in tests

2. for all test or oracle g ∈ SELγ +Oγ, for all oracle O ∈ Oγ, g ⊲ O

It is easy to see that f ⊲ f ′ ⇔ Lndγ (f) ⩽∗ Lndγ (f ′). Therefore, the following
functor is full and faithful:

I ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

SELγ +Oγ Ð→ P (Decγ)
f ∈ SELγ z→ Lndγ (f)
o ∈ Oγ z→ Oγ

(7.15)

Besides, considering that the image of I is Coreγ, I seen as a functor SELγ+Oγ →
Coreγ becomes surjective. Thus, I is part of an equivalence of categories .

Theorem 7.8.4

(SELγ +Oγ, ⩽∗ ) and (Coreγ,⊲) are equivalent.

This says that the two preorders have the same "structure": parallel branches of
tests of the same selectivity that meet at their extremum, the oracles. Except that
⊲ uses only probabilities of detection and selectivity, while ⩽∗ also uses the obscure
notion of landscape.

Then, the subpreorder consisting of RDT tests and that of NP tests are homol-
ogous (in fact, the cocones are, here, exactly the colimits) and there is no cluster
between them because RDT tests and NP tests are on disjoint chains of the preorder,
hence:

Theorem 7.8.5

SELγ +Oγ verifies the MP.

Note that, in general, the MP does not transfer to equivalent categories. Ho-
mologous diagrams in a category do not need to be homologous in an equivalent
category. It is the case for the equivalence SELγ +Oγ ∼ Coreγ, because the cocones
of the diagrams made by the subpreorder consisting of RDT tests, and NP tests, are
exactly the colimits. In other words, in both preorders, the upper bounds are the
suprema.

7.9 Conclusions and Perspectives

In this chapter, via the framework provided by the Multiple Principle (MP),
which is motivated by the concept of degeneracy in biology, and by introducing the
notions of test landscapes and selectivity, we have established that this principle
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7.9. Conclusions and Perspectives

is satisfied when we consider the standard NP tests and the RDT tests applied to
a detection problem. One interest of this result is that it opens prospects on the
construction of Memory Evolutive Systems [12, 45] via tests.

Here, the multiplicity suggests a functional equivalence between the two classes of
statistical tests, although being designed for different statistical problems and having
different properties. The NP tests are optimal among all tests, however they need
to be closely adapted to the signal they are searching for. RDT tests are optimal,
but for a different property, and they are robust. Thus, this result suggests that a
combination of RDT and NP tests should lead to a resilient detection system.

More elaborated statistical decision problems should be considered beyond this
preliminary work. Sequential tests are particularly appealing because they collect
information till they can decide with guaranteed performance bounds. On the one
hand, the Sequential Probability Ratio Test (SPRT) established in [58] is proved to
be optimal; on the other hand, in [57], we have exhibited non-optimal tests with
performance guarantees in presence of interferences. In the same way as NP and
RDT tests satisfy PM, we conjecture that these two types of sequential tests satisfy
MP as well.
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Chapter 8

CONCLUSION

I am released from this world of servile obligation

Nile (2012) Supreme humanism of megalomania, At
the Gate of Sethu.

8.1 Summary

This manuscript aimed at presenting my work during the last three years towards
the resilience of sensor networks.

This work is mainly based on category theory. As the expected audience of this
thesis is multidisciplinary, or from signal processing, we dedicated Chapter 2 to the
introduction of all the necessary material from category theory. This chapter can
serve as a base for any student or interested reader as a very brief and general tuto-
rial for category theory, as most of the basics were introduced: categories, functors,
natural transformations, limits/colimits and common examples. However, this chap-
ter is far from exhaustive, as many notions, such as adjoints, monads, presheaves,
topoi, and so on, are not mentioned in these pages, because they were not relevant
for this work.

As observed in [15], communication is key in the memory of the immune sys-
tem. Chapter 3 retrieves this result in the theory of dynamical systems, here seen
as automata. Using a categorical framework developed in [19], we prove that any
dynamical system is equivalent to a system without memory (without consideration
of the current state) with the right connections.

The following three chapters then use a different approach of category theory,
following Andrée Ehresmann and Jean-Paul Vanbremeersch’s work [12] on the mod-
elling of the complexity of systems. A system is viewed as a set of categories.

This modelling relies on the notion of clusters, which are the arrows of the ind-
category, which we remind in Chapter 4. We then give a few equivalent definitions
of clusters, one of which we use in the next chapter. Chapter 5 checks how we
can construct a cluster. Given two diagrams and the structure of the category,
Theorems 5.3.5 and 5.3.11 give us some conditions to determine whether there is

217



a cluster between those diagrams. This result is interesting by itself, but we also
use it in the next chapter. It constitutes a subcase of the Multiplicity Principle,
the categorical counterpart of degeneracy, the functional redundancy that occurs at
every level in biological systems, and that induces resilience in the whole system.
Theorem 5.3.26 and Proposition 5.4.3 are used as part of the main theorems of
Chapter 6. That theorem provides a characterisation preorder categories that verify
the Multiplicity Principle.

Chapter 7 uses this result to find multiplicity between Neymann-Pearson (NP)
tests and RDT tests. Here, the multiplicity shows a functional equivalence between
the two classes of statistical tests, although being designed for different statistical
problems and having different properties. The NP tests are optimal among tests,
however they need to be closely adapted to the signal they are searching for. RDT
tests are optimal, but for a different property, and they are robust. Thus, this result
suggests that a combination of RDT and NP tests should lead to a resilient detection.

8.2 Contributions

My contributions were already listed in Section 1.4 in the Introduction chapter.
We remind them here too. We also mention related work produced during this PhD
that lead to drafts published on the HAL platform.

Chapter 2 is a basic introduction to category theory; no result introduced here
is new.

Chapter 3 is based on an article we published [18]. The categorical framework
for dynamical systems is based on a previous work from one of the coauthors [19].
Section 3.4 only contains new results.

The following chapters tackle the topic of clusters: their definitions, their exis-
tence. Chapter 4 is a compilation of existing work from renown categoricists (the
link with ind-categories, the description of arrows of pro-categories). The two de-
scriptive definitions of clusters as sets of arrows, and the link with the presheaf of
connected components are new. The conjecture on the cardinal of clusters has, as
far as I know, never been tackled yet.

Chapters 5 and 6 mainly consist of new results.
Chapter 7 consists of a brief introduction to statistical decision testing, and the

results presented here are from our conference article [20].
Furthermore, the new results introduced in Chapters 4, 5 and 6 are summarized

in an article to be submitted to the journal Theory and Applications of Categories.

My work on the thesis also includes the following.
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Chapter 2 is an excerpt of a crash course on category theory that Dominique
Pastor and myself started, as a part of my training on the topic. A draft of this
crash course can be found online on the HAL platform [59]. This crash course,
though incomplete due to being a draft, covers most basics on category theory,
including topics we did not tackle in this manuscript: adjoints, monads, topoi. None
of the proofs are eluded, and an effort is made on pedagogy: proofs are as explicit as
possible, and numerous examples are given. As such, this crash course is suitable for
students or scientists willing to discover category theory without prior knowledge.

As we mentioned, the crash course introduced topoi, while topos theory is com-
pletely unrelated to the work presented in this manuscript. Topoi ware a former trail
of ours due to the logical aspects they induced, and we thought about describing the
resilience of a system using logical formulas. This work has not come to a successful
conclusion (yet...), but it lead, once again, to a first draft on this topic [60]. In this
draft, we study the logic behind the presheaves induced by p-values.

Here are all my publications:
E. Beurier, D. Pastor, D. I. Spivak , “Memoryless Systems Generate the Class of

all Discrete Systems ,” International Journal of Mathematics and Mathematical Sci-
ences , 2019. Available online: https://www.hindawi.com/journals/ijmms/2019/
6803526/

D. Pastor, E. Beurier, A. C. Ehresmann, R. Waldeck , “ Interfacing biology,
category theory and mathematical statistics ,” ACT 2019: Applied Category Theory
Conference , Oxford, United Kingdom, July, 2019. Available online: http://eptcs.
web.cse.unsw.edu.au/paper.cgi?ACT2019.9.pdf

E. Beurier, D. Pastor, D. I. Spivak, R. Waldeck , “Memoryless systems generate
the class of all discrete systems - Extended abstract ,” ACT 2019: Applied Category
Theory Conference , Oxford, United Kingdom, July, 2019. Preprint available online:
https://hal-imt-atlantique.archives-ouvertes.fr/hal-02173177

D. Pastor, E. Beurier, A. Ehresmann, R. Waldeck , “A mathematical approach to
resilience ,” iTWIST’20 (international Traveling Workshop on Interactions between
low-complexity data models and Sensing Techniques) , Jun 2020, Nantes, France.
Available online: https://arxiv.org/abs/2009.09666v1

E. Beurier, D. Pastor, A. Ehresmann, R. Waldeck , “On the definition and
existence of clusters, and their application to the Multiplicity Principle ,” To be
submitted to Theory and Applications of Categories , Not available yet.
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8.3 Perspectives

A good part of this thesis was dedicated to the study of clusters and the Multi-
plicity Principle. Although the results in Chapters 4 and 5 hold in general categories,
the results of Chapter 6 focus only on preorder categories. A characterisation of MP
in the same vein could be given for other classes of categories, among which: filtered
categories, finite categories, free categories over graphs.

Although minor, in Chapter 4, we give a conjecture on the cardinal of clusters
between two diagrams, depending on the cardinal of connected components of two
categories. This conjecture seems fairly accessible.

In Chapter 5, we give a conjecture on the equivalence between the Clawitzer
diagram and the absence of clusters. This result would make it very easy to check
for clusters between two diagrams. However, the conjecture needs a a further study,
not only to prove or disprove it, but also, on the formalisation.

A few conjectures are left unanswered too; there remains to find an easier char-
acterisation of the existence of clusters (in the same vein of the so called CCCT’s
- Theorems 5.3.5, 5.3.11). The algorithm described in Theorem 5.3.26 is requires
heavy calculations and is impractical.

This work originated from the intention of providing multidisciplinary theoretical
tools for the study and design of resilient systems. The study of clusters and MP
provided here should serve as a base for future work on the study of resilience,
furthermore for our first goal, the resilience of sensor networks. More generally, our
work could be used in the design and study of more general resilient systems, be
they immune, social, or biological in a broad sense. The resilience of sensor networks
could also be adapted to the study of resilient systems for cybersecurity. In other
words, and if the reader allows me the temerity of the following words, the goal of
this thesis was to explore and bring the foundations of a new branch of mathematics
we may call the mathematics of resilience.
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INDEX

Algebra, 94
closure, 95
subalgebra, 94

Arrow of Delenanu-Hilton, 126

Boolean system, 100
Box, 78

Category of boxes and wiring diagrams,
82

dependent product, 84
parallel composition, 82
wiring diagram, 79

Category, 30
cocomplete, 50
cofiltered, 50
comma-category, 108
complete, 50
discrete, 53
filtered, 50, 112
finitely cocomplete, 50
finitely complete, 50
functor category, 40
ind-category, 112
index category, 45
monoidal category, 41
symmetric monoidal category, 43

of C -typed finite sets, 75
of boxes and wiring diagrams, 82
of cocones, 47
of cones, 47
of sets Sets, 30
opposite category, 37
preorder category, 31
pro-category, 122
proset category, 31
sizes, 34
large, 34
locally small, 34
small, 34

symmetric monoidal category, 43
with finite colimits, 50
with finite limits, 50
with finite products, 55
with small colimits, 50
with small limits, 50
with small products, 55

CCCT
expensive, 165
very weak, 152
weak, 157

Choice function, 148
Choice of connected components, 148

partial choice, 163
Clawitzer diagram, 169
Cluster

as arrows in Ind (C ), 114
as arrows of Deleanu-Hilton, 126
base definition, 105
binding of a cluster, 176
cluster-composition functor, 177
complying with partial choice, 163
composition of a cluster with a co-

cone, 175
first definition, 106
formal definition, 118
full protocluster, 146
partial choice, 163
precluster, 119
protocluster, 136, 146
set of clusters, 116

Cocone, 47
category of cocones, 47
colimit, 49
composition of a cluster with a co-

cone, 175
Coequaliser, 56
Cofiltered

category, 50
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Colimit, 49
coequaliser, 56
coproduct, 53
initial object, 52
pushout, 61

Comma-category, 108
Compatible connected component theo-

rem
expensive, 165
very weak, 152
weak, 157

Cone, 47
category of cones, 47
limit, 49

Connected component, 107
choice of connected components, 148
mono-subfunctor of CC, 138
presheaf of connected components, 135

Coproduct, 53
inclusion maps, 53

Decision
level of a decision, 202
oracle, 202

Dense Linear Order without endpoints,
193

Dependent product
of boxes, 84
of typed finite sets, 77
of wiring diagrams, 84

DH-arrow, 126
Diagonal functor, 46
Diagram, 45

Clawitzer diagram, 169
connected diagrams, 177
filtered, 112
homologous diagrams, 174

Direct-output discrete system, 96
Discrete system, 85

boolean system, 100
direct-output discrete system, 96
equality up to equivalence, 93
equivalence as stream transducers, 90

finite-state systems, 99
inclusion up to equivalence, 93
internal equivalence relation, 92
memoryless system, 95
parallel composition, 88
simulation relation, 91

DLO, 193

Epimorphisms, 32
Equaliser, 56

Filtered
category, 50, 112
diagram, 112

Finite-state systems, 99
Fix of a protocluster, 149
Functor, 35

cluster-composition functor, 177
contravariant functor, 37
covariant functor, 37
diagonal functor, 46
diagram, 45
functor category, 40
hom-set functor, 37
contravariant, 38
covariant, 37

monoidal functor, 43
subfunctor, 36

Ginette, see Direct-output discrete sys-
tem

Hom-set, 31
hom-set functor, 37
contravariant, 38
covariant, 37

Ind-category, 112
Initial object, 52
Input and output streams, 90
Isomorphism, 32

general, 32
natural isomorphism, 40

Jeannette, see Memoryless system
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Landscape, 203
preorder on landscapes, 213

Level of a decision, 202
Limit, 49

equaliser, 56
product, 53
pullback, 59
terminal object, 52

Mean testing problem, 207
Memoryless system, 95
Mono-subfunctor of CC, 138
Monoidal category, 41

monoidal functor, 43
symmetric monoidal category, 43

Monomorphisms, 32
Morphism

epimorphism, 32
factor through, 34
isomorphism, 32
monomorphism, 32

Multiplicity Principle, 178
characterisation in ordinals, 191
characterisation in preorders, 187
general, 178
lax and strict MP, 178
MP in order types of non-standard

models of Peano, 194
No MP in total orders, 192
simpler characterisation, 188

Natural transformation, 38
cocone, 47
composition, 39
cone, 47
natural isomorphism, 40

Oracle, 202

Partial arrow, 124
Precluster, 119
Preorder, 31

preorder on landscapes, 213
total preorder, 202

Presheaf
of connected components, 135, 148

Pro-category, 122
Product, 53

category with finite products, 55
category with small products, 55
projection maps, 53

Protocluster, 136, 146
fix of a protocluster, 149
full protocluster, 146
protocluster subcategory, 169
target of an object, 136, 148

Pullback, 59
Pushout, 61

RDT, 207
Relation

equality up to equivalence, 93
inclusion up to equivalence, 93
internal equivalence relation, 92
simulation relation, 91
zigzag equivalence, 107

Selectivity, 203, 212
Smoothening procedure, 159
Stream transducer, 90
Subfunctor, 36

Target of an object, 136, 148
Terminal object, 52
Test

landscape, 203
power of RDT, 208
selectivity, 203
size of RDT, 207

Tiny lemma, 152
Typed finite sets, 75

dependent product, 77
sum, 76
sum of typed functions, 76

Typed function, 75

UMP, 49
Universal Mapping Property, 49

223



Von Neumann hierarchy, 35

Wiring diagram, 79
composition, 81
dependent product, 84
parallel composition, 83

Zigzag, 107
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Nomenclature
A ×C B pullback of f ∶ A→ C and g ∶ B → C p. 59
B +A C pushout of f ∶ A→ B and g ∶ A→ C p. 61
X ⊞ Y parallel composition of C -boxes X and Y p. 82
ϕ ⊞ ψ parallel composition of wiring diagrams ϕ and ψ p. 83
◻ closed box with no input nor output ports p. 83
F0 ⊠ F1 parallel composition of the discrete systems F0 and F1 p. 88
DS (X0) ⊠DS (X1) parallel composition of the sets of discrete systems DS (X0) and

DS (X1) p. 88
F ≡ G transducer equivalence between F and G (equivalence in output streams)

p. 90
F ⊢ G simulation relation between F and G; F simulates G p. 91
F ∼ G internal equivalence relation between F and G; F simulates G and conversely

p. 92
A ⊑ B inclusion of A into B up to equivalence (functors or mappings) p. 93
A ≈ B equality of A and B up to equivalence (functors or mappings) p. 93
D ⊑ E inclusion of D into E up to equivalence (subset) p. 93
D ≈ E equality of D and E up to equivalence (subset) p. 93
C ∼ C ′ zigzag equivalence between C and C ′ p. 107
(a, b) tuple representing an arrow of the comma-category (P ∣ Q) p. 108
C the general category pp. 30, 107
cod codomain function p. 30
C

op opposite category p. 37
Cocones (P ) category of cocones from P pp. 47, 174
Cones (P ) category of cones from P p. 47
Colim (P ) colimit cocone of the diagram P p. 48
cP peak of the colimit cocone of the diagram P p. 48
Clos (B) closure of B: the smallest subalgebra cointaining B p. 94
dom domain function p. 30
∆ diagonal functor p. 46
DS functor associating to a box all the discrete systems that fit in p. 85
DSML (X) set of memoryless systems that fit in the box X p. 95
DSML

out (X) set of direct-output systems that fit in the box X p. 96
DSFin (X) set of finite-state systems that fit in the box X p. 99
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DSML
Bool (X) set of boolean systems that fit in the box X p. 100

F the general functor p. 35
Func (C ,X ) category of functors F ∶ C →X p. 39
f rdt readout function of the general discrete system F p. 85
fupd update function of the general discrete system F p. 85
F general discrete system F = (SF , f rdt, fupd, sF,0) p. 85
Gfix a fix for G p. 149
HomC (C,C ′) hom-set of C and C ′ (set of arrows between them in C ) p. 31
HomC (C,−) covariant Hom-set functor p. 37
HomC (−,C ′) contravariant Hom-set functor p. 37
Ind (C ) the ind-category of C p. 112
L(P ) presheaf associated with diagram P p. 112
LCC (P,Q) shortcut for Lim

p∈P
Colim
q∈Q

HomC (P (p),Q(q)) p. 113

Lim (P ) limit cocone of the diagram P p. 48
lP peak of the limit cone of the diagram P p. 48
MorC class of arrows of the category C p. 30
M the M functor M(p) = S(p)/R(p) p. 115
Nat (F,G) set of natural transformations F → G p. 38
ΩG the cluster-composition functor of G pp. 177, 200
ObC class of objects of the category C p. 30
(P,⩽) preorder P , identified with its preorder category p. 31
∏
p∈P

Cp product of the set of objects (Cp)p∈P p. 53

(P, τ) the general C -typed finite set p. 75
(P ,τ)
⋀

dependent product of de C -typed finite set (P ,τ) p. 77
ϕ the general wiring diagram (simple) p. 79
(ϕin, ϕout) the general wiring diagram (double) p. 79
P the general diagram P ∶ P → C p. 108
P domain of the general diagram P ∶ P → C p. 108
(P ∣ Q) comma-category of the diagrams P and Q p. 108
(p, g, q) triple representing an object of the comma-category (P ∣ Q) p. 108
Q the general diagram Q ∶ Q → C p. 108
Q domain of the general diagram Q ∶ Q → C p. 108
Sets category of sets and functions p. 30
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∑
p∈P

Cp coproduct of the set of objects (Cp)p∈P p. 53

SF state set of the general discrete system F p. 85
s0 initial state of the general discrete system F p. 85
SubC (G) the G-subcategory p. 169
TFSC category of C -typed finite sets p. 75
UP,Q component in P and Q of the natural isomorphism between Clstr (P,Q) and

Lim
p∈P

Colim
q∈Q

HomC (P (p),Q(q)) p. 116

Vλ λ-th set from the Von Neumann hierarchy p. 35
WC category of C -boxes and wiring diagrams p. 82
X the general category (other) p. 35
(X in,Xout) the general C -box p. 78
X in input ports of the C -box X = ((X in,Xout)) p. 78
Xout output ports of the C -box X = ((X in,Xout)) p. 78

(X in
⋀

,Xout
⋀

) dependent product of de C -box (X in,Xout) p. 84
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Titre : Caractérisation des organisations pour la détection résiliente de menaces

Mot clés : Résilience, théorie des catégories, cluster, multiplicité, composantes connexes

Résumé : Le point de départ de cette thèse
est les réseaux de capteurs, et comment les
rendre résilients. Notre approche utilise le lan-
gage de la théorie des catégories.

Nous abordons en premier lieu l’usage de
systèmes dynamiques, et leur composition. Il
s’avère que chaque système dynamique peut
être décomposé en systèmes plus simples,
dits réactifs, qui pourraient être des capteurs.

Dans une deuxième partie, nous cher-
chons à utiliser un langage catégorique utilisé
pour la description de systèmes biologiques,
naturellement résilients. Les systèmes biolo-

giques présentent une forme de redondance
fonctionnelle et non-structurelle. Cette pro-
priété s’appelle degeneracy, et sa traduction
catégorique, le principe de multiplicité (PM).
Le PM nous semble donc être à la base de la
résilience. Cependant, le PM requiert la notion
de cluster, qui est en fait le nom des flèches
dans les ind-catégories. Nous étudions donc
la notion de cluster, exhibant de nouvelles
propriétés et définitions (utilisant les compo-
santes connexes de comma-catégories) que
nous utiliserons pour trouver une caractéri-
sation non-catégorique du PM dans le cas
simple, mais important, des préordres.

Title: Characterisation of organisations for resilient detection of threats

Keywords: Resilience, category theory, cluster, multiplicity, connected components

Abstract: The starting point of this thesis
is sensor networks, and how to instigate re-
silience in them. Our approach relies on cate-
gory theory.

We first tackle the use of dynamical sys-
tems and their composition. We prove that ev-
ery dynamical system may be decomposed
into simpler, reactive systems, that could be
seen as sensors.

In a second part, we use a categorical lan-
guage first meant for biological systems, that
are resilient by nature. Biological systems en-

joy a form of functional, non-structural redun-
dancy that biologists call degeneracy. Cate-
gory theorists translate it into the multiplicity
principle (MP). MP seems to constitute a fer-
tile ground for resilience. However, MP relies
on the notion of cluster, which are the arrows
of ind-categories. We thus study that notion of
a cluster, exhibit some new properties and def-
initions, which use the connected components
of the comma-cateogry, and that we use to
find a non-categorical characterisation of MP
in the special, simpler, but important case of
preorders.
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