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Abstract

We revisit the renormalisation group equations (RGE) for general renormalisable gauge
theories at one- and two-loop accuracy. We identify and correct various mistakes in
the literature for the [-functions for both dimensionless and dimensionful Lagrangian
parameters. The discrepancies arise form the assumption of a diagonal wave-function
renormalisation in the literature, which is not appropriate for models with mixing in the
scalar sector, and due to inaccurate use of the dummy field method employed in the
literature for the derivation of the g-functions for dimensionful parameters. We perform
an independent cross-check using well-tested supersymmetric RGEs which confirms our
results. The numerical impact of the changes in the g-function for the fermion mass
terms is illustrated using a toy model with a heavy vector-like fermion pair coupled to a
scalar gauge singlet. Unsurprisingly, the correction to the running of the fermion mass
becomes sizeable for large Yukawa couplings of the order of O(1). Furthermore, we
demonstrate the importance of the correction to the [-functions of the scalar quartic
couplings using a general type-11I Two-Higgs-Doublet-Model. We also provide a detailed
pedagogic discussion of the dummy field method and summarize all the correct expressions
for the S-functions in one place.

As an independent part of the reserach, we study the BSM Higgs physics in the
Randall-Sundrum (RS) model with one extra dimension, predicting a new scalar parti-
cle, the radion, the remarkable similarity of which to the Higgs boson has been noticed
[73, 74]. The model is implemented in the FeynRules package for the derivation of the
Feynman rules, which is helpful for the future study of the collider phenomenology of the
RS model with MadGraph, in particular, the scalar pair production and Higgs coupling

modifications.






Résumé

Nous revisitons les équations de groupe de renormalisation (RGE) pour les théories de
jauge générales renormalisables avec une précision a une et deux boucles. Nous identifions
et corrigeons les diverses fautes dans la littérature pour les fonctions 8 pour les parameétres
du lagrangien avec et sans dimension de masse. Les contradictions résultent de I'hypothése
d’une renormalisation diagonale de la fonction d’onde, qui n’est pas appropriée pour les
modeéles avec mélange dans le secteur scalaire, et de 1'utilisation inexacte de la méthode
du ’'champ fictif’, employée dans la littérature pour la dérivation de [-fonctions pour
les parameétres dimensionnels. Nous effectuons une contre-vérification indépendante en
utilisant des RGE supersymétriques bien testées, qui confirme nos résultats. L’impact
numérique des changements dans la fonction S pour les masses de fermions est illustré
a l'aide d’un toy-model avec une paire de fermions massifs de type vecteur, couplée a
un scalaire singlet de jauge. Sans surprise, la correction pour la fonction g pour les
masses de fermions devient importante pour les gros couplages de Yukawa de l'ordre de
O(1). De plus, nous démontrons I'importance de la correction des fonctions 8 pour les
couplages scalaires quartiques en utilisant un modele général a deux Higgs-Doublet de
type III. Nous fournissons également une discussion pédagogique détaillée de la méthode
du ’champ factice’ et résumons toutes les expressions correctes pour les fonctions S en un
seul endroit.

En tant que partie indépendante de la recherche, nous étudions la physique du Higgs
au-deld du modéle standard, dans le modeéle Randall-Sundrum (RS) avec une dimension
supplémentaire, prédisant une nouvelle particule scalaire, le radion, dont la remarquable
similitude avec le boson de Higgs a été remarquée [73, 74]. Le modéle RS est implémenté
dans le package FeynRules pour la dérivation des régles de Feynman, ce qui est utile
pour I’étude de la phénoménologie des collisionneurs du modele RS avec madgraph, en

particulier, la production de paires scalaires et les modifications de couplage du Higgs.
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Preface

This thesis contains two independent parts of research. Part I represents a complete study
of the renormalization group equations (RGEs) for general gauge theories, correcting
certain well known expressions of 1- and 2-loop beta functions that are of interest in
various models for physics Beyond the Standard Model (BSM) where the running of
parameters across different energy scales is relevant. This study also contains a thorough
explanation of the "dummy" field method, used for the derivation of beta functions for
dimensionful parameters of the Lagrangian, which had never been properly addressed in
the literature before. It has been published in Nuclear Phusics B (2019) [22]. In this
manuscript, this large study is extended by some examples of calculations, as well as
a detailed introduction to regularization, renormalization, RGEs and examples of their
derivation useful for the understanding of the rest of this first part of the thesis.

Part II of the thesis is dedicated to the BSM Higgs physics in the Randall-Sundrum
(RS) model with one extra dimension. The model has been implemented in the FeynRules
package (from scratch) for the derivation of the Feynman rules, and has been successfully
tested. FeynRules has an interface to MadGraph, which can be applied for the RS model
file (the work on it is still in progress). Certain phenomenological results have been
compared with the literature |72] and confirmed. Part II of the manuscript contains
all the relevant expressions and conventions that define and describe the RS model. The
possibility to obtain constraints for the new physics from Higgs measurements with Lilith
tool has also been considered, in particular, the "reduced couplings" required as an input
have been introduced in an appropriate form, and working examples have been obtained.
The main goal of this research remains the study of scalar pair production in models with

extra dimensions, and we aim at a publication in the future.






Part 1

Revisiting RGEs in General Gauge

Theories



Part I of this thesis is devoted to Renormalization Group Equations (RGEs) for general
gauge theories. RGEs are an important tool that allows to describe physics throughout

different energy scales:

e In many cases the parameters of a model are fixed at a hight scale, and the RGEs

are needed to obtain the values of these parameters at the electroweak scale.

e Conversely, in some applications the parameters are fixed at the electroweak scale
using experimental results, and the RGEs are used to obtain these parameters at
high energies. For example, this is the case in analyses of the stability of the effective

Higgs potential, see, e.g., [34].

e The running parameters are used for improving the predictions for observables (RGE
improved observables), since they effectively resum the dominant terms of the per-

turbation series to all orders.

The expressions for RGEs at two-loop level for all dimensionless parameters in general
gauge theories have been known for more than 30 years [6, 7, 8, 9, 10, 11]. These results
were later re-derived and completed in a paper by Luo et al. [12]|, where the entire
set of S-functions of parameters with and without a mass dimension was presented. The
results for the dimensionful parameters, such as fermion masses, scalar masses and trilinear
scalar couplings, were obtained from the S-functions of dimensionless parameters (Yukawa
couplings and quartic scalar couplings) by applying a so called “dummy field” method
[13]. However, no independent direct calculation of the two-loop S-functions for scalar
and fermion masses and scalar trilinear couplings exists so far in the literature.

In this part we perform a detailed reassessment of the 2-loop RGEs for general gauge
theories, employing a diagrammatic approach. Particular attention is paid to the RGEs
for the dimensionful parameters, calculated by dint of the dummy field method, which has
been proposed and used before in the literature. We provide a detailed and pedagogical
discussion of this procedure, showing that it is valid to all orders (due to relations at the
level of the Lagrangian). As a result, the RGEs for the dimensionful parameters are criti-
cally examined and the S-functions for the fermion masses are corrected at 1- and 2-loop
level. We also identify an issue for the purely scalar couplings that emerges in certain
models with respect to the literature. This issue is related to not always justified assump-
tion about the properties of the wave-function renormalization. The corrected expressions
are independently cross-checked and confirmed using well tested supersymmetric RGEs
and the numerical estimation of the changes is provided.

Our results are implemented in the Mathematica package SARAH [15, 16, 17, 18, 19|
and in the Python package PyROTE |20, 21|, both of which have been updated with respect

4



to the provided corrections. The results of this study are published in Nuclear Physics B
in 2019 [22].

Taking into account the importance and the wide use of the running in various models,
this summary of all the corrected expressions along with the detailed pedagogic discussion

should be a valuable addition to the literature on RGEs.

The outline of Part I of this thesis is as follows:

e Chapter 1 provides a basic theoretical introduction to renormalization and the renor-
malization group that will be helpful for understanding the further material. In
particular, the method of dimensional regularization is introduced using QED as an
example. This is followed by a discussion of the renormalization of the fields and
coupling constants. The definitions of beta- and gamma-functions are given and we

exemplify how to calculate them in QED.

e Chapter 2 is devoted to RGEs in general gauge theories. After introducing the La-
grangian for a general gauge theory, defining group theoretical quantities and fixing
the notations, we summarise the derivation of the beta functions for dimensionless
parameters following the seminal papers by M. E. Machacek and M. T. Vaughn
[6, 7, 8]. In these papers a number of tables can be found exhibiting the residues of
the single and double poles of all contributions to the renormalization of the wave
functions and vertices. This information can then readily be used to obtain the beta
functions. Here, we hope to make the tables for the wave function renormalization
and the Yukawa vertex much more accessible by including all the relevant Feynman
diagrams. In passing, we correct a typo in the expression for the Yukawa beta func-
tion which has propagated through all the literature so far. We also address the
issue of off-diagonal wave function renormalization in the scalar sector which leads
to corrections of the beta functions for the scalar quartic couplings with respect to

the literature.

e In Chapter 3 the derivation of the beta functions for dimensionful parameters by
dint of the dummy method is demonstrated using a diagrammatic approach. We
start by a detailed pedagogic discussion of the dummy field method which has so
far been missing in the literature. We then apply this method to derive all the beta
functions for the dimensionful parameters. We correct mistakes in the literature
due to an improper use of the dummy field method. Our expressions are verified in
comparison with supersymmetric RGEs and the estimated numerical impact in the

frameworks of two different models is discussed.

e Finally, in Conclusions and Outlook we summarize our main results and provide an



outlook on possible future work.

Some lengthy material has been relegated to the appendices. In Appendix A we list
all two-loop vertex corrections which are needed to derive the beta functions for the
dimensionful parameters. In all cases we provide the mapping of the corresponding
group theoretical structures due to the dummy method. In some cases this mapping
is non-trivial due to symmetry factors of identical particles and we provide a detailed
example of how the calculation has been done. In Appendix B we list the full two-
loop RGEs for the supersymmetric toy model introduced in Sec. 3.3 which we have

used to validate our general results for the RGEs derived in this thesis.



Chapter 1

A basic introduction to
Renormalization and the

Renormalization Group Equations

In this chapter we give a basic introduction to renormalization and renormalization group
equations (RGEs) which will be helpful for the understanding of the following chapters
2 and 3, where we discuss the two-loop RGEs of general gauge theories. The material
discussed in this chapter is covered in many textbooks on Quantum Field Theory (QFT),
for example the one by M. Peskin and D. Schroeder [1] or the more recent one by Matthew
D. Schwartz [2|. Here we follow closely L. H. Ryder 3] for the introduction to renormal-
ization and S. Pokorski [4] for the renormalization group equations. We have also found
the lecture notes by D. Soper useful [5]. We first discuss dimensional regularization in
Sec. 1.1 before we turn to renormalization at the example of QED in Sec. 1.2. Finally,
Sec. 1.3 is devoted to renormalization group equations, in particular, the calculation of

beta- and gamma-functions.

1.1 Regularization

It is well known that the integration over internal loops in Feynman diagrams can give
divergent results. It is therefore necessary to introduce a consistent procedure of regular-
ization in order to mathematically control the divergences. Different ways to regularize
a QFT are known (Cut-off, Pauli-Villars, Dimensional regularization/reduction, ...). In
the following we will focus on the most widely used dimensional regularization which is
particularly simple and elegant. In particular, it allows to treat all possible types of di-
vergences (UV, IR, Collinear) at the same time and it preserves Lorentz symmetry and
gauge symmetry.

The idea of this method is to consider the whole theory in d space-time dimensions,



where d = 4 — 2¢, d € N. The theory will be further analytically continued to arbitrary
complex d, d € C. The divergences will then appear as poles in d — 4 in the complex
d-plane:
1 -1
FEiaic — 0. (1.1)
Later, after removing the UV divergences by the renormalization procedure (see Sec. 1.2),
the limit € — 0 (d — 4) will be recovered.
Let us demonstrate this for QED as a simple example. We consider the 4-dimensional

QED Lagrangian in the following form:

7 — 1 y

»CQED = @@MD@D —mp — ZFWF”
= ilﬁ’w@ﬂﬂ - mlzlﬂ - 614“@%#?
1
@A - 0.4 12
Here A, is the photon field, F,, = 0,A, —0, A, the field strength tensor, and 1 describes a
free electron field with mass m. Furthermore, ) = D, 7" where 4" are the Dirac matrices
and D, = 0, + ieA, is the covariant derivative leading to an interaction between the

electron and the photon with coupling e (—eA*4v,1).

The Lagrangian (1.2) will be generalised to the case of d dimensions, which will change
the dimensions of all its parameters. We keep in mind that the mass dimension of Lqgp is
then equal to d, i.e. [Lqrp] = d, such that the action is dimensionless (in natural units).
Thus, one can see that the mass dimensions of the electron and electromagnetic fields

become, respectively,

and all terms in this Lagrangian have the correct mass dimension, except for the third

one, assuming that the coupling constant e is dimensionless:

d—2 d—1 3d—-4

[BAM@Z’YMZ’]: 9 +2 5 = 9

In order to compensate this and to get the correct dimension for this term, we introduce
an arbitrary parameter x4 with dimension of mass (called 't Hooft mass), and multiply the
constant e by /ﬁ%7 so that

4—d 3d—4

e A — —




k

S

p p-k P

Figure 1.1: 1-loop electron self energy —iX(p, m).

Thus, the d-dimensional Lagrangian takes the following form:

Lgp = MM Dty — my — ep® % APy, b
~1 (8HA,, —9,A,)° + (gauge fixing term) . (1.3)

Now the divergent QED graphs can be calculated. In the framework of this QED
example we will demonstrate only one of them - the electron self-energy (Fig. 1.1) - that
is usually denoted as X(p).

The electron self-energy can be generalized to the case of d dimensions in the following

way:

d*k 1 gt d%k 1 gt
» 52 S = — 24— d/ L
(p) e / ( )4’yﬂ¢ %, ’y k,g ie H (QW)d’YMp _ % _ m,y k‘2 )
(1.4)
with the commonly used notations p = p,7* and k= k"

We introduce the Feynman parametrization by combining the denominators according

to the well known formula

1 ! dz
ab /0 laz +b(1 —2)]2° (1.5)

Now we can rewrite Eq. (1.4) as follows:

d m)vH
N(p) = —ip? 2/ dz/ dk %(}7) f+m) , (1.6)

22 —m2z + k2(1 — 2)]?

and further, performing a shift & = k& — pz, one gets

s wwa/@/dwkﬁpp%%+m

m2z + p2z(1 — 2)]?
a2 e [ A 1
s / d2ulp = pzm)t / (2m)4 [k2 — m22 + p22(1 — 2)]* (L.7)

The integral can be evaluated using the standard formula

ddl _ Z-,n_d/ZF (Oé _ %l) 1 (1 8)
(& + 20q — M) M) =@ =Mo" |




where I'(«) is the Euler gamma function (I'(2) = 1), and the parameters in our case are
I=FK,q=0, M>=m?2 — p?2(1 — 2) and a = 2.
This yields!

_d 1 p
X(p) = u4de2%/o dz’yﬂ[p(l —2) +mly* x m?z — p*z(1 — 2)|272. (1.9)

The gamma function I'(2 — g) has a pole in d = 4. Assuming that e =2 — %l and using

the expansion I'(2—£) = I'(¢) = 1 —yp+O(e) with the Euler constant vz = 0.577, as well

as the relations y*v, = d and v,7,7* = (2 — d),, we perform the following calculation

62

1672

62

= o © /01 dz{2p(1 = 2) = 4m = 2€[p(1 = z) + ml} {1 e (

S(p) = worelo )y

A7 p?

F(e)/o dz{2p(1 — z) — 4m — 2¢[p(1 — 2) +m]} (

m? — (1 —z))]

4 p?

= - (% —vE) {p—4m — e(p+2m)}
_ (1 - ny> e/ol dz{2p(1 — 2) — 4m — 2€[p(1 — 2) +m]} In (mg o U z))

4712

- 1(;26 (=p +4m) + 71— {f?(l +75) = 2m(1 + 2y5) + e3ipt)
+/0 dz{2p(1 — z) —4m} In (m _fl)ﬂigl — Z)) }
= %;e (—p + 4m) + (finite part) . (1.10)

We have obtained the result for the electron self-energy in the regularized theory. This
expression will diverge for ¢ — 0. In the next section we will discuss how to treat this

divergence in a consistent manner.

1.2 Renormalization

To make expression Eq. (1.10) finite, one has to complement the Lagrangian with com-
pensating terms — the so called counter terms. The electron self energy modifies the

inverse effective electron propagator [S5(p)]~! (Fig. 1.2) to

[Sp(p)] ™" = [Sr(p)] ™ — 2(p), (1.11)

where Sg(p) = 1/(p —m + ie).

1To be strict, the fermion and the photon propagators in Eq. (1.4) should, respectively, have the forms
p—}é—lm+v:e and kgiie, and thus, M? = |M?|e’® with the phase ¢ = 0 or +7. However, here we neglect the

potential imaginary part, being interested only in the pole structure of X(p).

10



Figure 1.2: Perturbative expansion of the inverse effective electron propagator
i[Sk)] ! =ilSr(p)] ™" — iX(p, m).

Inserting the expression for the electron self-energy Eq. (1.10), we get

[SE(P)] ! = (p—m) — (p)

2

=p—m-— 6% (—p + 4m) + (finite part)
e? e? _
= (1 + 167T26> —m <1 + 47T2€> + (finite part) . (1.12)

Two counter terms are needed: one for the full propagator value (which will contribute
to the electron wave function normalization) and one for the electron mass, which leads

to the following Lagrangian (expressed in terms of the renormalized quantities)
L =iy — mnp + iBYPY — Ay = i(1 + B)pdyp — (m + Ay, (1.13)

where the choice of the constants A and B guarantees that the electron propagator is

finite to the order of 2. This is diagrammatically represented in Fig. 1.3.

O e
Figure 1.3: Perturbative expansion of the inverse electron propagator up to the order
O(€?) including the counter term: i[Sk(p)]~' = i[Sr(p)]™' — iX(p,m) — iX%(p,m), with
¥¢= A - Bp.

Thus, the renormalized electron self-energy takes the form

2

~

Y(p) =X(p) + X(p) =

= 672 (—p +4m) + A — Bp + (finite part) . (1.14)

In the minimal subtraction scheme (MS) A and B are chosen so that only the pole terms

are compensated:

me? e?

Tam2e T T T 16m2e

Now we can define the wave function renormalization constant Z, in the MS scheme:

A= (1.15)

62

1672¢’

and the bare electron wave function 1 can be related to the renormalized electron wave

Zy=1+B=1- (1.16)

11



function ¢ in the following way
Vg =2y . (1.17)
Thus, the Lagrangian takes the form

L =i — mppip, (1.18)

where the bare mass is defined by

Z Hm+A) 1 ¢ 1+ ¢ 1 3¢’ Z +6
mp = m =m(1— =m|(1l-— = Zpm =m+om,
B ¥ 4m2e 1672¢e 1672¢e

(1.19)

with the mass renormalization constant Z,,,

3e?

I = 1 — .
1672e

(1.20)

There are two more UV divergent graphs shown in Fig. 1.4.

P
SORA
p-k

Figure 1.4: Vacuum polarization II,, (left) and vertex correction A, (right) diagrams at
one-loop.

Similarly, as for the electron self-energy, it can be shown that corresponding expressions
for the vacuum polarisation II,, and the vertex correction A, in the regularized theory

have the following form, respectively:

62

- 1272¢

I, (k) (kuk, — g, k%) + (finite part), (1.21)

2
1 € :

Af)(p, q,p) = Tor2c e + (finite part) (1.22)
and the divergent terms can be eliminated by adding the necessary counterterms. One
obtains the following Lagrangian that gives a finite photon propagator to order e* (as II,,
in Eq. (1.21) contributes to the renormalized photon propagator)

Za

L4 = _TFWFW + (gauge terms), (1.23)
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and the definition of the bare electromagnetic field

Al = 722 Ar (1.24)
with
¢ 1.25
Zi=1-— . .
A 1272¢ ( )

The divergent part of AE}) (in Eq. (1.22)) can be treated by writing the Lagrangian in the

following way

(Eint) - _ZintelueAul/_}’yudja (126>
with
¢’ 1.27
it = 1 — ) )
¢ 1672e ( )

Now the full Lagrangian of QED, as it follows from Eqs. (1.18), (1.23) and (1.26), has

the form

L=iZypy" ) — (m+ A)bp — Zin ept" A'epya)

— % (0,4, — 9,A,)° + (gauge terms) (1.28)

where the renormalization constants are

e? 1 aem 1
g = Zy =1 — =1--== 2,
‘ v 1672€ 4 7 € (%)
e? 1 oem 1
Za=1- =1- -4+ 0(a?
A 1272 3 7T € + Oen)
2
me
A=— . 1.29
4m2e ( )

This is known as multiplicative renormalization.

We can also define the bare charge ep (which is a dimensionful parameter in d dimen-

sions):
Zin _
ep = e/f—bz = e/fZAl/2 = uZ.e, (1.30)
ZyZ 4
with )
_ 1aem 1
Zo=Z P = = 1422 L 0. 1.31
A + 2472 * 6 T € +Ol0en) ( )

Using relations Eqgs. (1.17), (1.19), (1.24) and (1.30), we finally obtain the Lagrangian

in terms of the bare parameters in the following form

L = ipy"bp — mppibp — epAbpy,08
1
= 5 OuAp, — D, Ap)” . (1.32)
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As we can see, all the infinite quantities have been absorbed into the definitions of
bare quantities. The fact that we were able to do this, keeping the Lagrangian (1.32) of
the same form as the original Eq. (1.3) means, that, to this order, QED is renormalizable.
(Commonly, one starts to discuss renormalization with a Lagrangian in terms of bare
quantities (1.32) and then defines the renormalized quantities. However, in this thesis we
have chosen the inverse way, following the book by L. H. Ryder [3]. This approach, in our
opinion, more gradually leads the reader to the understanding of the idea, in particular,

of the need for bare parameters and counter terms.)

1.3 Renormalization Group Equations

In this section we will only discuss the RGEs for parameters of the Lagrangian (coupling e,
mass m), but not the RGEs for physical observables and Green’s functions, the solution of
which would depend on the running parameters and would give renormalization improved
observables. For the renormalization of Green’s functions see, e.g., chapter 4 in the book

by S. Pokorski [4].

1.3.1 The running of the coupling

Let us now consider the coupling e as a function of the renormalization scale p and the
parameter €. In order to see how e scales with u, we define its beta function as

de(f, €) d

Ble,e) = o u@e(,u, €). (1.33)

The final result for the beta function is then obtained in the limit € — 0, which therefore

must be finite:

B(e) = lim f(e.c). (1.34)

Therefore, we can calculate (e, €) using Eq. (1.30):

ep = Zeept = e(u,e) =epZ tuc, (1.35)
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such that

d
Ble.o) =ngy lepZ: ]

:_66_6<‘“nz€>5e, (1.36)

from where we can write the equation

dln Z,
de

Ble, €) +ee+e( ) Ble,e) =0, (1.37)

and, consequently,

Z,
Z.Be,e)+eeZ, +e ddee Ble,e) =0. (1.38)

We are looking for a solution for (e, €) in the form of a series B(e,e) = > B.€”

which is regular at € = 0 since our theory is renormalizable and there exist a finite limit

Be, €)] -

Expanding Z. in terms of poles:

Ze=1+ Z &Ve—ge), with a,(e) = Za%p e’ (1.39)
v=1

p=1

and taking the solution for §(e, €) in the following form:
Ble,e) :ZBVEV=50+B1€+--~ ; (1.40)
v=0

we write (1.38) explicitly as

. a, dZ, o a
(ﬁo+651+6252+...)(1+Z%+ede>+ee<l+22—y> —0.  (141)
v=1 v=1
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Defining the following notations

dZ. <=d da,
I L
€

i /
c, =a, tea,,

de = ¢ ’ de ’
we obtain
A A 25 - ay41
. 1 v =0.
(Bo+ebi+€Pa+ .. +Z a+ea +66+6VZ:0 -
We now group the terms by the order of € and find the coefficients:
O<€2): Bo+Bsci+ Paco+---=0 = B;=0 for i >2,

0(6)3 Bl+6201+5302+"~+6:0 = 51:—@,
O<1): BO+6101+66L1:0 = 602_5101_6%26(61—@1)

—62a3—6 —ﬁ()

O<1/€) : 5001 +Blc2+ ea; =0 = Bo = 62@1; 51 = —
Therefore, Eq. (1.48) can be written as

e’d)(ar + eal) —e(a2+ea’2) +eay =0,

& efayay +é? al —e*ay, =0,

2 3 12
@ea2—6a1a1+e a,

= e’d) (a1 +ed))
~~
=Bo=p(e)

= B(e)(a +eay),
N——

:%(eal)
and, finally, p p p
202 @ _ 2%
de _6(6)d6<6a1)7 B<€> de )
sda,
e? d+1__ﬁ() (eay).

Thus, we arrive at two important conclusions:

e [(e) is totally determined by the residue a; of the simple pole in € of Z..

e The residua of the higher order poles of Z, are totally determined by a4(e).
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An important feature in the analysis of a beta function is its fixed points. As illustrated
in Fig. 1.5, fixed points are the points in which the beta function turns to zero. They
are classified as ultra-violet fixed points (UV-FP) and infra-red fixed points (IR-FP)
depending on the behaviour of the parameters when approaching the fixed point. For

example:

ple) Ple)
UV-FP IR-FP

N P
N

Figure 1.5: A general example of the UV stable fixed point (on the left) and the IR stable
fixed point (on the right) for a beta function S3(e).

e Approaching the fixed point in Fig. 1.5 (left graph) from both the left-hand side and
the right-hand side, while increasing the energy scale u, the value of the coupling e
approaches the fixed point (first, for 5 > 0 the coupling e is increasing, and then,
for < 0 the coupling e is decreasing). Such a fixed point is called an UV stable

fixed point and acts as an ’attractor’.

e Approaching the fixed point in Fig. 1.5 (right graph) from both the left-hand side
and the right-hand side, while increasing the energy scale i, the value of the coupling
e goes away from the fixed point (first, for 5 < 0 the coupling e is decreasing, and
then, for § > 0 the coupling e is increasing). Such a fixed point is called an IR

stable fixed point and acts as a 'repulser’.

Returning to the real QED case in 4 dimensions, € = 0, and using Eqgs. (1.31), (1.42),
(1.52), we get

dZ., a} 2¢ 1
TR - 1.54
de € 2472 ¢’ (1.54)
and, finally, we obtain the function f(e) in the following form
8(e) = €%, + .. =~ + O(eY) (159
e)=ea+..= o e’), .
and the approximate (1-loop) RGE:
de(p) 3
= 1.
L) — el (1.56)
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with 8y = 1/(1272).

The solution of this equation has the form?

. e(po)”
G(M)Q - 1 - 60 6(/,60)2 1n<,u2/:u(%) ’ (157)
or, in terms of ey,
O-/em(:u) = aem(luO) (158)

1 — cemliodin(p2/p3)
There is an IR stable fixed point at e = 0, and e(u) slowly goes to zero with decreasing
w, like 1/In(u?).

The perturbatively calculated QED beta function would predict a pole (the so-called
Landau pole) at some scale p > Mp; (where Mp; is the Planck mass). However, when the

coupling gets large, the perturbative calculation of the beta function becomes unreliable.

1.3.2 The running mass and the field strength renormalization

As we have seen in Eq. (1.19), the mass parameter also depends on the scale pu:

m(u,€) = Zm(e(u,€), €)' mp, (1.59)

where mp is the bare mass.

We define the gamma function, also called the anomalous dimension, as

dlnm(u,e) OlnjmpZ,! d
_ ml_ Yz, 1.60
Olnp Olnp Mdu " (1.60)

Ym(€,€) =

from where, by analogy with (1.36), we get

~0InZ,(e(p),€)

Ym (€, €) = 9 Ble,e€). (1.61)

Again, the final result for the gamma function is obtained in the limit ¢ — 0, which has
to be finite.

Similarly to the previous section, we express Z,, as an expansion in terms of poles:
o n 62n
_ (m)
Zmle,e)=14+> > 7" - (1.62)
n=1 j=1

Then
> 1
InZ, — m ) 72 01/ 1.63
n ;:16 {n,1€+ (1/€%) ¢, (1.63)

2Note that there is only one flavour of fermions in the current example.
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and
Ve €) == 2n 7! {Zf:})% + o<1/e2)} [—ce+ B(e)]
= i?n 62"{255'}) +(9(1/e)} : (1.64)

Since v, (e, €) has a finite € — 0 limit, the 1/e terms cancel, and ~,,(e, €) becomes inde-

pendent of € and is given at each order of perturbation theory by the 1/¢ term in Z,,:

Y€, )l p = Ym(€) = Y 2n € 2. (1.65)
n=1

In our QED case, using (1.20), we get
Ym(€) = —=—— + O(e?). (1.66)

Running mass Coming back to equation Eq. (1.60) (where, as we have just seen, the
e-dependence can be ommited), let us analyse the behaviour of the mass m(u) in the
case when the coupling has an UV-FP at e = e,. With increasing p the function e(u)
approaches e, like a power, and for e near e, the equation for the evolution of m can be

approximated by
Olnm(u)

9 = Ym(€s), (1.67)

the solution of which has the form

) = o) (1) (1.68)

Ho

Depending on the sign of +,,, the function m(u) approaches either zero or infinity like a
power.

In the real QED, the physical coupling is near to an IR stable fixed point at e = 0. In
this case 7, approaches zero as e approaches the fixed point.

Using Egs. (1.65) and (1.57), we get

dlnm(p)
Olnp

0
-

1 )
o — 2P ln <uo>

If we introduce A as a very large mass scale for QED, much bigger than any u of practical

12

(1.69)
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interest, we can write
Olnm(p)

dlnp — 28,In (&)’

(1.70)

where In (%) is negative.

The solution of this equation is

" (2&))) - ‘2%2 o (1%//?\))) ’ 7

from where we get

_(0)

m(p) = m(po) (m

or

e —"/7(7?)/50
(1) = m (o) ( ““”) . (1.73)

e(n)
We can see that m(u) varies slowly as p changes, like a power of e(u) which itself does
not change very quickly (the latter is due to the fact that the derivative of e with respect
to In p is proportional to e x e (Eq. (1.56)) and ¢? is small).

Field strength renormalization In order to see how the field strengths change with
a change of the parameter p, we recall the relations between the bare and renormalized
fields from the previous section (Egs. (1.17), (1.24))

1
_ , 1.74
V= o’ ” a7
1
-t g (1.75)

" Zale(n,),6)
First of all, we write the + function of ¢ by definition:
O (Zy(e(n, ), &) 12)
Yole, €) = — 31
n g

_ 10 Zy(e(p)¢)
2 Oe

Ble,e). (1.76)

We take again Z, in the form of an expansion in 1/e and the coupling e:

Zy(e,€) ~ 1+ZZZ,%)?. (1.77)

n=1 j=1
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Then

— i” e2n {Zg;) + 0<1/e)} : (1.78)

Similarly to the previous example, the 1/e terms cancel since v, (e, €) has to have a finite
e — 0 limit, so it is independent of € and is given at each order of perturbation theory by
the 1/€ term in Zy:

Yp(e) = — Zn 62”21%) . (1.79)
n=1

In the same way, for the electromagnetic field A we find the anomalous dimension

va(e) = — Zn 62”27(:‘1) : (1.80)
n=1

Therefore, for QED, using (1.29) we get

2 62

(&

= 1572 +0O(et). (1.81)

Yy (€)
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Chapter 2
RGE’s for a general gauge theory

In this chapter we summarise the derivation of the beta functions for dimensionless pa-
rameters following the papers by M. E. Machacek and M. T. Vaughn [6, 7, 8]. Sections
2.1 and 2.2 contain the Lagrangian for a general gauge theory along with some necessary
notations and definitions. In Sec. 2.3, we discuss the wave function renormalization and
the Yukawa vertex renormalization and provide the tables with all the relevant Feynman
diagrams in an attempt to illustrate the coupling structure of the contributions and to
make it easier to follow the diagrammatic approach used in Chapter 3. We correct a
mistake in the beta functions for the Yukawa couplings already present in the work of
M. E. Machacek and M. T. Vaughn. This error has propagated through all the relevant
literature and was only very recently uncovered. We also address the issue of off-diagonal
wave function renormalization in the scalar sector which leads to corrections of the beta
functions for the scalar quartic couplings with respect to the literature. The full list
of corrected beta functions for dimensionless parameters is provided at the end of this

chapter.

2.1 The Lagrangian for a general gauge theory

Let us consider a general renormalizable field theory with the following particle content:

° VMA(x) (A=1,...,d) are gauge fields of a compact simple! group G' where d is the

dimension of G.

e ¢.(r) (@ =1,...,N,) denote real scalar fields transforming under a (in general)
reducible representation of G. The Hermitian generators of GG in this representation
will be denoted ©4 (A=1,...,d; a,b=1,...,N4). The assumption of real scalars

LAll results of this work can be extended to the case of semi-simple groups. The corresponding
substitution rules are provided in Ref. [12] and not affected by the corrections discussed in the current
study.
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comes out of the fact that any complex scalars can be decomposed in terms of real

scalars. The generators ©4 are consequently purely imaginary and antisymmetric.

e Y;(z) (j=1,...,Ny) are left-handed complex two-component fermion fields trans-
forming under a representation of G which is in general reducible as well. The

Hermitian generators are denoted by tj‘k (A=1,...,d; j,k=1,...,Ny).

For convenience, the general Lagrangian of this theory can be decomposed into three parts
[12],
L = Ly+ Ly + (gauge fixing + ghost terms), (2.1)

where L is free of dimensional parameters and £; contains all terms with dimensional
parameters. Explicitly, £, reads
1 L1

Lo =~ Fi Fy + 5 D"6u Dyt + it)]0" Dyt

1 1
- § (Yﬂ;%CW% + j'f:@ﬁk@b;i%) - Z/\abcdqbaqbbqbcgbda (22)

where F lﬁ,(x) is the gauge field strength tensor defined in the usual way in terms of the

fABC

structure constants of the gauge group and the gauge coupling constant g:

Fo =0V =0,V +gf*Pvrive. (2.3)
The covariant derivatives of the scalar and fermion fields are given by

Du¢a = ,u¢a - ig@fquA¢ba (24)
Dby = 9,15 — igt V. by . (2.5)

The matrices Y} (a=1,...,Ny;j,k =1,...,Ny,) are complex Yukawa couplings and
¢ = i0y is the two-component spinor metric (o3 is the second Pauli matrix). Finally, Agpeq
denotes quartic scalar couplings which are real and invariant under permutations of the
set of indices {a, b, c,d}.

Another part of the Lagrangian that includes the dimensionful parameters has the

following form

habc

bgbaqbb - ?gbaﬁsbgbc’ (26)

2
a

Ly = _% [(mf)jk@/)j@/)k + (my)jiCuk| — n;!

2 is a real matrix of scalar masses

where my is a complex matrix of fermion masses, m
squared, and hg,. are real cubic scalar couplings.
The one- and two-loop S-functions for these dimensionful couplings were addressed in

Ref. [12] where the authors introduced an indirect way of their derivation: the so-called
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“dummy field” method which has been initially proposed in Ref. [13].

2.2 Definitions and notations

2.2.1 p[-functions and anomalous dimensions

Let us get familiar with the general algorithm for the calculation of renomalization con-
stants at 2-loop order in dimensional regularisation with modified minimal subtraction
(MS scheme). In this scheme, the renormalized Lagrangian parameters in d = 4 — 2¢
dimensions, ©;, are related to the corresponding bare parameters, ©,5, by the following

expansion:

> 1
O,pu " = 0,7, = O, (=) 2.7
BH + ;az ( )gn (2.7)

with p = 1 for gauge and Yukawa couplings and p = 2 for scalar quartic couplings. The
coefficients aﬁ")(@) (where © denotes the list/vector of all parameters ©,0,,...) are to
be calculated in perturbation theory.

As discussed in Sec. 1.3.1, the bare couplings are independent of the renormalization
scale, whereas the renormalized couplings depend on the choice of the scale parameter p,

and their logarithmic derivatives define the S-functions

do,

Bi(©) = p 0

(2.8)

e=0
Inserting Eq. (2.7) in Eq. (2.8) and collecting coefficients of like powers of ¢ (see the
derivation of eqs. (1.52), (1.53)), one can show that

daV
00,

Bi(©) = 6y — pial’(0), (2.9)
1
i.e. the pg-functions are completely determined by the coefficients of the single order
pole in the expansion Eq. (2.7).

The p-functions can be expanded in a perturbative series:

1
1672

b= 5l + e+ = L e (2.10)

(1672) 1672)"

where 3/ and 3! are the one- and two-loop contributions to the running which we
consider in the current study.

The wave function renormalization constant Z; of the i-th field is associated with an
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irreducible self-energy part and can be written as the following expansion

Z; = 1+ZC§”)(@)§”. (2.11)
n=1

The following derivative, as we showed in Sec. 1.3.2, is the the anomalous dimension for
the i-th field

1 d 1 ac
%= gl mdi= Zl:pl@l (2.12)

and is also determined from the the single order pole term in Eq. (2.11).

Similarly to the g-functions, 7; can be expanded perturbatively:

I 1 II 1 (n)
j ] R A 2.13

Vi =
where v/ and ~/! are the one- and two-loop contributions, respectively.

2.2.2 Useful group invariants and coupling combinations

Let us list notations for group invariants and definitions for certain combinations of cou-
pling constants commonly found throughout all this study. These definitions allow one to

write the expressions for the S-functions in a more compact form.

Group invariants C(F) is the quadratic Casimir operator for the (in general) re-

ducible fermion representation:

d Ny

ZtAtA (Co(P)]iy = CY(F) =3 >ty (2.14)
A=1 k=1
where ¢,7 = 1,..., Ny. Due to Schur’s lemma, Cy(F') is a diagonal Ny x Ny matrix with
the same eigenvalues for each irreducible part of the representation. Similarly, Cs(S) is
the quadratic Casimir operator for the (in general) reducible scalar representation:
d N
Z 040" ie. [Co(S)]aw = C5"(S) =D > 0404, (2.15)

A=1 c=1

where a,b = 1,...,N,. Again due to Schur’s lemma, C5(S) is a diagonal Ny x N
matrix. Furthermore, S5(S) and S»(F) denote the Dynkin index of the scalar and fermion

representations, respectively,

Tr[0405] =: So(9)642 ,  Tr[tP] =: Sy(F)64% (2.16)
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and C3(G) is the quadratic Casimir operator of the (irreducible) adjoint representation

O (G 6AB Z fACD BCD (217)

C,D=1

Coupling combinations We start with two IV, X IV, matrices formed out of the Yukawa

matrices Y;;‘

Ny Ny
F):=) Yy, Yi(F):=) v, (2.18)
a=1 a=1

where the sum includes all ‘active’ (propagating) scalar indices but not the dummy in-
dex. It should be noted that Y (F) # [Ya(F)]'; instead it represents the quantity Ya(F)
where the Yukawa coupling Y has been replaced by its conjugate Y®. Furthermore, the

following N4 x N, matrices are needed below:

1
Y4 (9) =3 Tr[YTY? + YY), (2.19)
N¢
H2,(S) Z Te[yeyyeyte 4 yioybyfeye], (2.20)
c=1
N¢
H,,(S) Z Te[y Yy ieybyte 4+ yioyeyye] (2.21)
Aib Z Aacde)\bcde ; (222)
c,d,e=1
1
Y2E(9) =3 Tr[Co(F)(YoY T 4 YY), (2.23)

There is one crucial comment in order concerning the properties of these objects: in
previous works [6, 7, 8, 12] it is assumed that Y*(S) = Y5(5)da and A2,(S) = A%(S)da
holds. These properties are derived from group theoretical arguments. We agree with
them as long as the considered model does not contain several scalar particles with iden-
tical quantum numbers. However, if this is the case than these relations are no longer
valid. Or, in other words, the matrices Y3 and A%, are diagonal in the space of irreducible
representations but not necessarily in the space of particles in the considered model. The
consequence is that contributions from off-diagonal wave-function corrections may arise
which are not included in Refs. [6, 7, 8, 12|. This is one source for the discrepancies be-
tween our results and previous ones. This does not only affect the dimensionful parameters

but also the quartic scalar couplings.
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2.3 [-functions of dimensionless parameters

In this section we present an overview of the derivation of the beta functions for the
Yukawa couplings, following the works by M.E. Machacek and M.T. Vaughn, Refs. [6, 7].
For this purpose we first discuss the wave function renormalization for scalar, fermion
and vector fields, and then we turn to the renormalization of the fermion-fermion-scalar
vertex. These ingredients are further used to derive the Yukawa coupling beta functions,

which explicitly have the following structure:

Y F F S b
B = e + AE YT 4y + va Y (2.24)
~~~ ~~~ ~~ ~~~
anomalous anomalous anomalous anomalous
dimensions  of dimension of dimension of dimensions
the operators the fermion the fermion of the scalar
Pjdrda field ¢ field v field ¢

2.3.1 Scalar wave function renormalization

In order to calculate the anomalous dimensions of the fields to the desired order, one has
to evaluate the dimensionally regularized Feynman diagrams to this order, extract the
coefficients of the single pole terms and use Eq. (2.12).

Let us demonstrate it on the example of the (diagonal) scalar wave function renor-
malization, conducted by M.E. Machacek and M.T. Vaughn in Ref. [6]. The contribution
of a diagram to the singular part of the scalar wave function renormalization matrix at
2-loop has the following form

oy 1 g (ALB
(Zg )ab = (47)45(11, (772 + 77) : (2.25)

where S, is a group theoretic factor associated with the diagram, and 7 is the MS

expansion parameter defined as

1 1
—=—+1Indnr — g, (2.26)
n €

with the Euler constant vg.

The relevant singular parts along with the corresponding diagrams are collected in
Table (2.1) below.

The diagonal wave-function renormalization in this example assumes that S, = S0,
which, however, would be valid only for models with no mixing in the scalar sector. This
problem is discussed further, and the relevant expressions are generalized according to

the non-diagonal wave-function renormalization in Sec. 2.3.5.
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Table 2.1: Scalar wave function renormalization diagrams and corresponding singular
parts of the renormalization matrix Zgl defined by (2.25) (with the appropriate 1-loop
counterterms subtracted).

Order Diagram Sab = Sdab A B
gt L é _______ é__ g*C2(8)C2(G) %(5 4 %a) = (% = %a 4 %oﬁ)
gt g _______ é__ Hg4CQ(S)SQ(F) —2 g
t’—\‘
g __éif_::_“fi_ g*02(8)S2(S) -1 u
g m g* [C2(9))2 12+a)? —12+a)?

0

g*Ca(8) [Ca(8) — 3C2(G)] 2+a)(1-a)

)

39" C2(5)C2(@) d2+a)(l-a) -1 -

'S
+

g*Ca2(S) [2C2(S) — 5C2(G)] —3(2+a)

g* # g1C:(8) [2C2(S) — 5C2(G)] 0 1-la+1a?

el ccnde
\ P

22 S éAacdeAbcde 0 i

y4 LeTr[ybyfeyeyte 4 yttyayfeye] 1 -3

y+4 L Tr[ybyfeyayte 4 ytbyeyfeye] 2 =i
g2Y? ) "Q" ) Lkg?02(8) Te[y ey T 4 YOy te] —(2+a) 1+ 35a
g2Y? @ Lkg? Tr[Co(F)(YoY Tl + YPyTa)) 2(1 — ) —1+a
g2Y? @ Lkg? Tr[Co(F)(YoYTh + YPyTay) —2(4 —a) 23— 1a)

—3C2(S) Tr[y eyt 4 ybyfe]
2

g2Y? ‘)fb """" {3&’ 1kg2Ca(S) Tr[y oy Tt + Ybyia) 2(1+ 2a) 21— 2a)

Here « is a gauge parameter and the factor kK = % for two-component fermions and
k = 1 for four-component fermions. The notations Co(F'), Cs(S), Co(G) and Sy(S5),
Sy(F') for quadratic Casimir operators for the fermion /scalar/adjoint representations and
Dynkin indices of the scalar/fermion representations, respectively, have been listed in
Sec. 2.2.2 of the current chapter.

From the contributions above, one can obtain the following result for the 2-loop anoma-
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lous dimension matrix for the scalar fields

2
’Y(fb = (477')4 Z BSaba (227)
diagrams
and explicitly,
1 1 by tavy cy fe tby av feyc
(4m)*ya|, loop = Hxacdexbcde—%amy yleyeyte p ytbyayteye

1

— 25 Tr[YPYteyeyte 4 yibyeyteye)
1

+ 10Kg? - 3 Tr[Cy(F)(YoY T 4 Yoy

g U3, o, 1p 10

) - gcw)} by (2.28)

The anomalous dimension of the scalar field remains dependent on the gauge parameter
«, however, this gauge dependence cancels out in the explicit expression of the Yukawa
and scalar quartic coupling beta functions by the gauge dependence of the proper vertex
parts.

Using notations (2.20)-(2.23), which have been introduced in Refs. [8, 12|, one can

rewrite the result (2.28) as follows

1 _
(4m) %bb loop §A2(S)5ab — 36H?*(S)0a — 26H?(S)6ap + 1066°Y*F(S)0up

A 13 5 1, _ 10
gCg(S){<12+2a 4oz Cy(G) 3/@'52()

a5 - ;02@)} bub. (2.29)

This diagonal anomalous dimension of the scalar field enters the 2-loop beta function

for the scalar quartic couplings as shown in Refs. [8, 12]:
5bdzui)\bd:7bd+275(k))\bd (2.30)
aobca — d,u a0C aoc - aoca » .

where 7°(k) is the anomalous dimension of the scalar field &, given by (2.29), and Yapea
is the anomalous dimension of the operator ¢,¢p¢.04, the derivation of which is provided
in Ref. [8] and will not be demonstrated here due to the large number of diagrams.

Such an assumption of a diagonal wave-function renormalization is reasonable only

2Note that the notations are not exactly the same in these two papers: they have been modified in
Ref. [12] in order to be hermitian for complex fermions. We follow the same notations as in Ref. [12],
which are repeated in Sec. 2.2.2.
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for models which do not contain scalar mixing. The same must be taken into account for
the one-loop result, mentioned in Refs. 8, 12]. We provide more general expressions that

include the contributions from off-diagonal wave-function corrections in Sec. 2.3.5.

2.3.2 Fermion wave function renormalization

Let us now turn to the fermion wave function renormalization at 2-loop level, the con-
tributing diagrams for which are shown in Table (2.2). The contribution of a diagram to
the singular part of the fermion wave function renormalization matrix can be expressed

in the following form

y_ L (A B
(Zp )__(4W)45'(n2_%77> : (2.31)

where, similarly to the previous subsection, S is a group theoretic factor associated with
the diagram and 7 is defined as before in (2.26).
Table 2.2: Fermion wave function renormalization diagrams and corresponding singular

parts of the renormalization matrix Z' (with the gauge parameter o and the factor x = %
or 1 for two- or four-component fermions, respectively).

Order Diagram S A B

g ﬂ g*C2(F)C2(G) 0 1(5+2a)
94 & 59402(}7)32(}7) 0 _1
o — g*Ca(F)5a(S) 0 1
94 _iﬁl_ g4 [02(F)]2 —%(1—&)2 1 1-@)2

g* % 9*Ca(F) [C2(F) = 5C2(G)] -1-a)? —3(1l+a—-3a%)
gt _&_ Lt Co(F)Ca(G) —32-a)1-a) L -1Ba+la?

=
=

v4 , AU Yayfbyby‘i‘a % _%

yi4 /r \ %Hyay‘rb Tr[YTaYb + YTbya] % _%

Y4 S’ Yayfbyayfb % 0
§2Y?2 §2Ca(F)Yayta 1-a) ~2(1-a)

/,’-;~\\\
92y2 4 \ gQY‘lCQ(F)YTa i(l - OC) é(l - a)
2y il PYUY e, le+a) 13- da)
g2Y?2 R BN g2ybiAytaga la-a) —16+a)
It BN P(Vryiangl l-a) La-a)
+tAybytagh)
T

g?Y? Wy A vreriyie —1(5—2a) -z(3+a)
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Order Diagram S A B
+YatAy'l‘atA

The 2-loop fermion anomalous dimension matrix is given by

2
F_
"= G >, BS, (2.32)
diagrams
and explicitly,
4 F 1aTbbTa31 av/Tb by talvtay b
(47T> v ‘2—l00p: _gy YooYy —§I€'§TI‘[Y YU+ Y'Y ]Y Y

1
+ ¢ [gCg(S)Y“YT“ - ZZOQ(F)Y“YT“ - ZY“OQ(F)YT“}
. 1 1, 1
—f-g CQ(F) 5 17-50[—}-5& CQ(G)_QK/SQ(F)_ZSQ(S)
3

- 594[02(F>]2 : (2.33)

Here the gauge dependence also remains and will be cancelled out later on in the

calculation of the Yukawa and scalar quartic coupling constants.

2.3.3 Vector wave function renormalization

The anomalous dimension for the gauge field is defined as

1 d
=-—pu—m”z 2.34

with the vector wave function renormalization constant Z4.

This is not needed for the derivation of the beta functions for the Yukawa and scalar
quartic couplings, however, let us include the corresponding equations and diagrams for
completeness. The contribution of a diagram to the singular part of the vector wave

function renormalization constant is given by

1 A B
7z = 4= 2.
4 (47r)48 (772 * 77) ’ (2.35)

where S is a group theoretic factor and 7 is defined by (2.26).

The 2-loop vector field anomalous dimension has the following form

2
= i > BS. (2.36)

diagrams

It is useful to know the contributions for diagrams with external (background) gauge
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field lines both in the usual R¢ gauge and in the corresponding background field gauge
B¢ with modified Feynman rules. This simplifies the derivation of the beta function f,

for the gauge coupling to the short relation [14]

By =974 (2.37)

The relevant singular parts along with the corresponding diagrams are shown in Ta-
ble (2.3).

Table 2.3: Vector wave function renormalization diagrams and corresponding singular
parts of the renormalization matrix Z;*. The additional contributions from the extra
vertex terms present in the B¢ gauge are noted explicitly.

Order Diagram SAB =SdaB A B
g2Y? W@W\ rkg? Tr[y @y fazA¢B] 2 -
l”“‘\\
«/\/\J\ ’NW
g°Y? O kg204 08 Tr[y by Te] 1 .

g2Y? Kg? Tr[Y“tAYTatB] —% Bis
92y2 Q’W ‘N“O, '{92911)40, TT[YbYTatA} 7% %

gt 7y g4C5(5)S2(S) ~l2+a) Lli-oa)
g' 9'Ca(G)S:(5) —h - o B+ B
(Be) -3 2
g4 """'{:\\_/’ AN, 9402(G)52(S) é + %a 7458 %a
(Be) 5~ 1@ —1
| § ‘M
g e g* [C2(8) — 5C2(@)] S2(5)  —§(1—a) % - s
’V\I\l’\ll\/\l\l\;:}\/\l\/
\\ ’l
g* g* [203(8) — 1C2(G)] 8a(S) 0 1_14
'\/\/\NJJ\M o T annd k\'\"«m
g* - g* [2C2(8) — LC2(G)] 52(85) L 1yl
g* W\@N rg*C2(F)S2(F) - -R0-w
gt ; ; kg1C2(G)S2(F) o 184 25,
(Be) -1 3
g* C O kg*Co (@) S2(F) Sq Cop
(Be) 2(4-a) 2
g g kgt [Ca(F) — 1Co(@)] Sa(F)  —3(1—a) 2104
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With the pure gauge theory contributions from [14], one can obtain

(1)l =~ 9 ICHCN 4 v [1Ca(F) + ()| ()
4 |264(5) + 36:6) | 5u(9) - 2rgPV(F), (239

where Y;(F) = ﬁ Tr[Cy(F)Y*Y 1] with the dimension of the group d(G).
The result (2.38) for the anomalous dimension of the background gauge field is pro-

portional to the beta function for the gauge coupling (2.37) and is gauge independent.

2.3.4 Renormalization of the proper Yukawa vertex

The last necessary step for computing the beta functions for the Yukawa couplings is the
renormalization of the proper Yukawa vertex [7].

The singular part of each contributing proper vertex diagram can be expressed as

1 A B
Y 7a __ a
Z% = —(47r)4S (—772 + _77) , (2.39)

where S is a group theoretic factor associated with the diagram and 7 is the MS expansion
parameter defined by (2.26).

The two-loop diagrams which modify the proper Yukawa vertex along with correspond-
ing singular parts of the vertex renormalization Z* are listed below. They are collected in
three tables: one-loop diagrams with one-loop propagator insertions (Tab. 2.4), one-loop
diagrams with one-loop vertex insertions (Tab. 2.5), and diagrams with crossed ladder
topology (Tab. 2.6).

Table 2.4: 1-loop vertex diagrams with 1-loop propagator insertions and corresponding
singular parts of the vertex renormalization Z“. The one-loop insertions include the
appropriate MS counterterms.

Diagram Insertion type S A B

__O__ -»-»Q»-- HY2bC(S)YbYTaYC -1 1
ﬁ Ch(S)Y e ey 1+ o -1+ 1a

/D\ /G\ —— YOy tay S (F)Y? + YoYa(F)ytey? i i
{}_ Yo {Co(F),YTa}y? -1(1-a) 0

/@ 'V\er\l\/\N A A 1 7

t4Y 2t4.S5(.S) b — 13

() tAY 94 Sy (F) 2K —%l’i
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Diagram Insertion type sa A B

“%“ tAY 444 C(G) —1(10 + 3q) B _Tatda?
/4\9\ /gx —— tAY “AY (F) + Yy (F)tAY oA 1-1a -3+ %0
—O— {Ca(F), tAY 24} li-a)d-a) —-(1-a)

\\\ + /,I N
A{)—\ /—SH—I\ - oA tAYS (F)Y? — 0A YO Y, (F)tA -

02, [C2(F)tA,Y?] ~l1-a)? .
e - O
e on o

KOA VI (S)[EA, V) ~(1-a) 1-a

04 Che(S)[t4, Y 1l-a)@2+a) -3(1-a)(2-a)

/ N/ \ = = 0 0

Table 2.5: 1-loop vertex diagrams with 1-loop vertex insertions and corresponding singular
parts of the vertex renormalization Z¢. The one-loop insertions include the appropriate
MS counterterms.

Diagram Insertion type S2 A B

/O\ i yeyibyayibye -3 3
E YP{Co(F), YTl y? 1- 1o -1(2-a)
:} Ccge(S)ylytey? -1(2+a) le-a)
A /k()\ ybyteybytaye
4yceytaybyteyb _% 0
: {Ca(F),Ybytay?y 1-to s
; Yo {Cy(F),YTa}y? 1- jo -1
* cEEYPrIeye ~(1+3a) ~(3+a)
/63553::\ i tAytyfaybia 1—-ja -3+ 3a
i tA{Co(F), Yo }tA —1(4-a)? la—a)?
:}) C5P(S)tAy oA id-a)2+a)  —3(12-da+a?)
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Diagram Insertion type S A B

@\ M \é/ Y (F)tAY A + tAY 2 tAY, (F) ~(1-3a) 3 (3= 30)
y tAyeytbidyd 4 ybidytoyaga 0 -3
*%/ {Co(F), tAYetA} —11l-)(d-a) -2+ )
g Co(Q)tAY *A —1(4—a)? 12+a)(7T—a)
J(_): o % holpg
- - : KOA YPe(S)[tA, Y] 1—a —(1-a)

i

04 Che(SH[tA, Y —11-a)2+a) 11l-a)(2-a)

Ca(G)OA [t4, Y]

0AYS (F)tAY? — 04 YotAYs(F)

04 Co(F)tAY® — 9A YP1AC,(F)

C2(G)04,[t4, Y]

é(l —a)(4—a)

—é 1-a)(2—a)

~i1-a

~l1l-a)2-a

04, [t4, Yoy oy el ~li-a) 0
04 Co(IAYY — 04 Y HACH(F) L1 -a)d—a) —1(1-a)
OALAY CH(F) — 04, Co(F)YoA L1 —a)d—a) 2(1—a)

04 Che(S)H[tA, Y —11-a)2+a) —-i(1-a)@B+20)

Note that the not-1-particle-irreducible graphs and corresponding coupling structures

appear here only effectively, due to the gauge invariance relations in Appendix A in [7] !

The diagrams with crossed ladder topology in Tab. 2.6 have at most a single pole in
€, since the integration over the first loop momentum is convergent for any routing of the
loop momenta, and the coefficient A = 0 in each case.

Table 2.6: Crossed ladder topology 2-loop diagrams and corresponding singular parts of
the vertex renormalization Z¢.

Diagram sa B
A
RARTRN )\abchbYTCYd %
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Diagram sa B

chTbyachyb _%
PN AN
N A YbAyTeybid 4 tAyby oyt -(1+3a)
A tBrAY @ BA - (2-40+ 1a?)
A A pAvyb d
02,65 Yy tdye 0
A ; FABC gC 1By brA
if 055yt 0
S,
:l\S‘NV'. !'\N‘\’z"l. (OAGB)abetAtB + tAtByb(eAeB)ba 7% (1 _ a)

Lo
ﬁj?!‘- Mi:ll% {64,08},,YOtALE + tA¢BY? {0498}, 1- o+ 1a?
_‘&_ {64,685} ,ptAYtB -(2-a+3a?)

The 2-loop anomalous dimension Yy® of the operators ﬁjwkqﬁa is given by

Y_ a 4 a
7= > Bs*. (2.40)

diagrams

After writing down the explicit sum of the single-pole contributions, collected in Tab. 2.4—
2.6, one can see that the result is gauge dependent. This gauge dependence will be
cancelled out in the expression of the beta function for the Yukawa couplings (2.24) by
the gauge dependence of anomalous dimensions of the scalar (2.28) and fermion (2.33)
fields.

The explicit 2-loop result for the beta function for the Yukawa couplings is provided

in the following subsection.

2.3.5 A full list of S-functions of dimensionless parameters

In this section, we provide a complete list of the beta functions for the dimensionless
parameters at one- and two-loop in order to have all the expressions in one place. We
highlight differences with respect to the literature by underlining the corresponding terms.
These expressions provide the starting point for the derivation of the beta functions for the

dimensionful parameters in the next Chapter 3 using the so-called dummy field method.

RGEs for dimensionless parameters

The Yukawa couplings. The one- and two-loop expressions for the running of the
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Yukawa couplings are given by

1
Bl = 3 [YVSH(F)Y* + YY(F)] +2Y Y Y + 2k Y0V (S) — 39 {Co(F), Y}, (2.41)

BT =2y ey Ty (Y eyt — YHY©) — YO [Yo(F)Y T + YV, (F)] Y*

1 _
-3 YV (F)Y Y + VY PV (F)Y?] — 4rYy“(S)YPY Y — 2kYPHZ, (S)

3
— SRYPUS) (Y'Y TV YOV YY) — 3kYPH? (S) — 2MapeqYOY TV

2
+ %Aib(S)Yb + 3% {Co(F), YPY TV} 4+ 56V { Oy (F), Y T Y?
— IOV ()Y + Y Ya(F)C(F)]
— i P Co(F)Y Y+ YV POy (F)Y?] + 692 H, + 105g°Y Y 3 (S)
+ 6g%[CL(S)YPY ey e — 2084(S)Y Y Y] + ggQC;’C(S)(wacw + Yy Tey?)
— SGHICF Y} + 66 CR(S){Co(F), Y*)
ot |-GG + RSalF) + 1558) | (). V) - Fateps)cE sy
1 g*Ceh(S) {%@(G) Sy(F) — 252(5)} vt (2.42)

where the definition of H$, can be found in App. A.1 and the factor k = 1/2 for 2-
component fermions and x = 1 for 4-component fermions.

The underlined term differs from the literature by a swapped index: due to a typo, the
term —4kY°YYT¢Y? was included in 2-loop beta function for the Yukawa couplings in
[7], which would correspond to a not-1-particle-irreducible diagram as depicted in Fig. 2.1.
It should be replaced by —4xY, Y'Y 1@y This typo has also propagated in [12]|, where

it caused a mistake in the fermion mass beta function (see more in detail in Sec. 3.2.1).

___O__

Figure 2.1: The two-loop diagram corresponding to the term —4xY°YYTY?" which
should not contribute to the S-function for the Yukawa couplings.
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The scalar quartic couplings. For the quartic coupling, we are going to use the

following expressions:

gbcd :AZbcd 8k Huped + ZKAabcd Bngfbcd + 394Aabcd ) (2.43)

1
rbed = B ZAaf)\fbcd Adpeq — 46AZ s + K | 8H gy — 6 Z [3Hp +2H ] Afoea

per per

+ AK(HYyoq + 2H 2poq + 2HD00)

- )
+ g% | 2025, — 6Ny + Ak (Hyyy — Hipg) + 3" Z Yor Afbed

per
35 10 11 | 3 5 1 -
- 94{ 5 C2(G) — T 85(F) — 55(5) Adbed = 5 Nabea = 5 Abea = 5 Adbea
+ 4H(Bc}z/bcd 1OBcla/bcd>}
[161 32 7 |
+4° { 702((;) - gﬁSQ(F) - §S2(S) Adbed — Agbcd + 27Agbcd} - (244)
The following quantities are used in (2.43):
abcd Z )\abef)\efcd ) (245)
per
1
Huper = 7 ) Tr(YY"YY™), (2.46)
per
1 a
Adbea = EZYQJC(S))\fbcda (2.47)
per
Adpea = Z Co(4) Aabed » (2.48)
1
Aabcd = g Z{QAv HB}ab{9A7 QB}cd ) (249)
per

(the mapping to the case with one dummy scalar for these quantities is discussed in Sec.
3.2.2).
The definitions for the quantities A3, ;. ..., A%, . in Eq. (2.44) can be found in App. A.2.

Here, ) denotes a sum over all permutations of uncontracted scalar indices. Unlike the
per

approach employed in Refs. [8, 12|, we include the off-diagonal renormalization, and our
equations (2.43) and (2.44) differ from the results in those papers in the terms which are

underlined.

39



The gauge coupling. Finally, let us list here the S-functions for the gauge coupling:

- {%@(G) ~ SRS (F) - %&(S)} , (2.50)
7 = = 2kl F) - ¢ | 067 — e (1Ga(F) + FulC) ) su(F)
_ (2@(5) + %CQ(G)) 52(5)1 | (2.51)
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Chapter 3
p-tfunctions for dimensionful parameters

In this chapter we derive the beta functions for dimensionful parameters using the dummy
field method. The dummy field method was developed to obtain the S-functions for the
dimensionful parameters from those of the dimensionless parameters. We start by a
detailed pedagogic discussion of the method in Sec. 3.1. In the further sections we apply
the method, using the generic results for the dimensionless parameters given in Chapter 2.
The result for the fermion mass term is derived in Sec. 3.2.1 from the [-functions of
the Yukawa couplings; for the derivation of the running of the trilinear scalar couplings
(Sec. 3.2.2) and for the scalar mass terms (Sec. 3.2.3), the S-functions for the scalar
quartic couplings are used. We correct mistakes in the literature due to an improper use
of the dummy field method and verify our expressions in comparison with supersymmetric
RGEs in Sec. 3.3 and estimate the numerical impact in the frameworks of two different

models in Sec. 3.4.

3.1 The dummy field method

The calculation of the renormalization constants for the dimensionful couplings (the
fermion masses (m;);x, the squared scalar masses m?,, and the cubic scalar couplings
hape) with the following derivation of the S-functions can be carried out directly, however,
most of the authors agree that this would be rather tedious. So far it has not been at-
tempted in the literature, whereas in the most known and cited work [12| addressing these
B-functions, another approach is used. This approach is called a “dummy field” method
and applies an idea, to our knowledge, first briefly mentioned in Ref. [13] and used for
the derivation of RGEs of supersymmetric theories. However, there has never appeared
any detailed description of this method in the literature, so we found it useful to have a
close look into it and to provide a careful discussion.

The idea of this method is to introduce a scalar “dummy field”, i.e. a non-propagating

real scalar field with no gauge interactions. The dummy field will be denoted by an index
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with a hat, ¢;, and satisfies the condition D, ¢; = 0. As a consequence, expressions with
two identical internal dummy indices (corresponding to a propagating dummy field) have
to vanish. Furthermore, since D,¢; = 0, all gauge boson - dummy scalar vertices vanish
as well: Fv%% = Fv%% = Fvv%% = Fvv%% =0.

Let us now consider the Lagrangian Ly (2.2) in the presence of the same particle
content plus one extra scalar dummy field (¢;) and separate the terms with the dummy
field. Using Dudj = 0. Aupig T Aadvd + Adavd + Aadds T Adado + Nddap = OAapdds Aaved T Aavde T

Aadve T Adave = Fapeds A Aygid + Nadd + Mddad T Nddda = 4Padda one easily finds (writing

abc

the sums over the scalar indices explicitly):

Ng
1 1
Lo = —FAEL + ) 5D uDyn+ 0" Dy
a=1

4
1 N N, .
— 5OV Cdu the) = D0 Shaadududeda
a=1 abc,d=1
1 . No 1 N, 1
_ §<Yﬂg¢jcwk¢d +hec)—6 Z EAadegba@bbﬁbdﬁbcz —4 Z ZAabchgbaﬁbb%%
ab=1 " abe=1 "
Ny . .
—4) | adii®abibiba — i Nidiidabididi (3.1)
a=1 "' :

A few comments are in order:

e The first two lines reproduce the Lagrangian L, (2.2) with the original particle
content without the dummy field.

e The terms in the third line reproduce the Lagrangian £; (2.6) if one makes the

following identifications:

Yi0q=(mp)ik:  Apia®i®i = 2miy s Aapei®d = have - (3.2)

Note that we believe these are the correct relations while the notation below Eq.
(21) in [12] is rather sloppy:

Y}d - (mf>jk ) )\abcftf = szb, )‘abcd = habc ' (33>

e The terms in the fourth line of Eq. (3.1) do not spoil the relations in Eq. (3.2) or

(3.3). First of all, the second last term is only gauge invariant if ¢, is a gauge

singlet. Furthermore, it is an effective tadpole term which can be removed by a

shift of the field ¢.! The last term is just a constant. In any case, contributions

'For the same reason such a term is not included in £; in Eq. (2.6).
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from the interactions in the fourth line to the S-functions of the other dimensionful
parameters would involve at least one internal dummy line which gives a vanishing

result.

The relations (3.3) have been used in Ref. [12] to derive the S-functions for the fermion
masses from the known ones for the Yukawa interactions. Likewise, the S-functions for
the scalar masses and the trilinear scalar couplings were obtained from the scalar quartic
B-functions. This was achieved by removing contributions with a summation of d-type
indices and terms with d indices appearing on the generators ©. However, a subtlety
arises due to the wave-function renormalization of external dummy scalar lines which
leads to effective tadpole contributions. Such contributions should be removed from the
[f-functions for the Yukawa interactions and quartic couplings but are not necessarily
eliminated by just suppressing the summation over d-indices and associated gauge cou-
plings. For this reason, we re-examine in the current chapter all the S-functions for the

dimensionful parameters by verifying the dummy method on a diagram by diagram basis.

3.2 Derivation of S-functions for dimensionful parame-

ters with the dummy field method

3.2.1 Fermion mass

The S-function of the fermion mass term can be obtained from the expressions of the
Yukawa coupling by considering the external scalar as dummy field. We follow a dia-
grammatic approach; for each class of diagrams we provide the coupling structure and
show the resulting diagram together with its expression after applying the dummy field

method. In accord with the discussion in Sec. 3.1, the following mappings are performed:
a—d, Y'Y smy, YOyt mh, Aabea = Aiyog — Mbed -

The fermion mass insertions will be represented by black dots in the Feynman diagrams.
We recall that dummy scalars do neither couple to gauge bosons nor propagate. There are
two generically different wave function correction diagrams contributing to the running
of the Yukawa couplings: those stemming from either external fermions or scalars. For
external fermions, the transition between the Yukawa coupling (with a dummy scalar)

and the fermion mass term is represented in detail by Tab. 3.1 and looks as follows, where
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the grey blob depicts all loop corrections to the external line:

—©

(3.4)

Table 3.1: The transition between the Yukawa coupling (with a dummy scalar) and the
fermion mass term with all types of one- and two-loop corrections.

Blob Original coupling structure New coupling structure
_/ Y (F)Y® 4+ YoYy(F) — Y, (FYms +m;Ya(F)
j {02(F))Ya} - {CQ(F)ﬂmf}
TN Y Y, (F)Ythye + Yaytoy) (F)y® - Y Y2 (F)Ytoms + mpytov] (F)y®
O
A W YPe(S)(Ylyteye 4 yeytey?) — Y2e(S)(YPYtemy + mpyiey?)
92(Co(F)YJ (F)Y® + YoY5(F)Ca(F)) = 92(Co(F)YS (Fyms 4+ m;Ya(F)Ca(F))
T RYVPCH(F)YTPYe 4 yeytboy(F)y?) = G2 (Y Co(F)Y Py + mp Y 1Oy (F)Y?)
K s‘\z\r? N g2clzyc(s)(yby1'cya + Yayfcyb) N g2cgc(s)(yby1‘cmf L mfyfcyb)
—ﬁk— gH{IC2(F)?, Y} — gH{|C2(F)[?,my}
_&_ g1Co(G){Ca(F), Y} = gACo(G){Ca(F), mys}
_M_ g4(m102(G)+x252(F)+1‘3SQ(S)){CQ(F),Y‘1} — g4($1CQ(G)+x252(F)+x3SQ(S)){CQ(F),mf}

Here, 1, 25 and x3 are real numbers (cf. Eq. (2.42)).

The wave-function renormalization part stemming from the external scalar is com-

pletely different: after applying the replacement with dummy fields, we find only tadpole

contributions. However, those are usually absorbed into a re-definition of the vacuum,

i.e., they don’t contribute to the f-function of the fermion mass term, and the correct
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replacements are

Y”Y“b(S)

ib )

()

Agb(s y?

2YVvaaQbF S)

g (S)HCH(F), Y}

g4cab< )CbC(S)YC

g4C§b(5)[x102(G) + 17252( ) + l‘gSQ(S)]Yb

(
Ha,
)
(

N

o O o o o o o o

However, we find differences compared to the results of Ref. [12], where the following

replacements have been made:

1
VP (S) — 5Y” Tr[m

}Yb + YTbmf] s

772 1 c c c c
YPH,,(S) — 5Y” Te[mYVYY™ + mlyy ™y,

1
YPHZ,(S) — 5Yb Trlm Y YY) (F) + mbY Yo (F)]

1
AZ(S)Y? — éhcdeAbcdeYb

1
FYIYG(S) = Sg°Y T Co(F) (my YT + YPmyp)],

GO (S){Co(F), Y*Y = 0,
g'Cs*(S)C5(S)YC =0,
GO9S, JYP > 0.

(3.13)

(3.14)

Thus, there is a disagreement between contributions (3.5) and (3.13) entering the one-loop

beta function for my. Furthermore, there are differences between contributions (3.6)—(3.9)

and (3.14)—(3.17) affecting the two-loop beta function.

We now turn to the vertex corrections. At one-loop level, there is only one diagram
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which needs to be considered:

ytyfay? Yimly? (3.21)

At the two-loop level, there are many more contributions. The explicit diagrams are
given in Appendix A.1. While we completely agree with Ref. [12] for the one-loop vertex
corrections, we also found differences at the two-loop level. Those stem from diagrams
involving both, wave-function corrections of scalars as well as vertex corrections.

As we have mentioned in Sec. 2.3.5, there is a typo in the term —4rxY Y'Y 1Y’ of
the 2-loop beta function for the Yukawa couplings in Refs. |7, 12|, which then caused a
mistake in the fermion mass beta function. Such a term would correspond to a diagram
as depicted in Fig. 3.1, which is not one-particle-irreducible, and should be replaced by
—4RrYPY YTy see (2.42). Applying the replacement Y1¢ — m} due to the dummy
field method it then gives —4/<¢Y2bc(S)me}Yc (see (A.3)).

Figure 3.1: Two-loop diagram which does not contribute to the S-function for the Yukawa
couplings (on the left) and, consequently, for the fermion mass when replacing the external
scalar by a dummy field (on the right). A (non-zero) contribution corresponding to the
tadpole diagram on the right hand side was included in Ref. [12]. It should be replaced
by (A.3).

Summarising our results, we find that the one-loop S-functions of fermion masses have
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one term less than the expression given in Ref. [12] and are given by the following form:

= % Vi (Fymy 4+ mg¥o(F)] + 2V miy? = 32{Co(F)my}. (3.22)

At the two-loop level, we obtain

B = 2YeY P (YieY? - yy©) — v [YQ(F)m} +mly (F)] v

1 C C
-5 [YbYQ(F)Y“’m o+ my YT bYJ(F)Y”] — 4RYPE(S)Y mlY

— ;mYQbC(S)(Y"YTCm F+mpYiey?)

— QoY Y Y 4 3G Co(F), Yomh Y} 4 587V {Co(F), mf 1Y
7 2

-39 [C’Q(F)YJ (F)my +mYa(F)Co( F >]

1
— g [YPCo(F)Y ™y + mpY P Co(F)Y?]
+ 697 [tMmp Y Y + YO Y Pmpt ] + 692030(5)1/%}1/0
3 9
= 50H{ICo(F) g} + Sg*C3(S)(YPY Ty + m Y 1Y)
10

+* |- CalG) + P RSalF) + 15508 | ()} (3.23)

Here, we disagree with the literature in several places, having removed the terms as
discussed above and added one missing term, which is underlined. The numerical impact

of these differences compared to earlier results is briefly discussed at the example of a

specific model in Sec. 3.4.

3.2.2 Trilinear coupling

We now turn to the purely scalar interactions. The [-functions of the cubic interactions
are obtained from the expressions for the quartic couplings by replacing one external scalar
by a dummy field. The translation of the wave-function contributions between both cases

is straightforward and can be summarized as follows:
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S)A fbed

abcd Z Y f

per

Afbcd = Z 02 (i)Aade

1
6 Z Azf(s))‘fbcd
per
Z BHZH(S) + 2H ,;(S)) N foed
per
1
6 > Y2 (S)Afbe
per
XAfbcd

Agl;gcd = Z ’02<i>’2>\abcd

)

In this notation, the index 7 is summed over all uncontracted scalar indices.

Abe = ZY ()P e (3.24)

Aoy = Zpe(rb habe (3.25)

5> A (), (3.26)
o

© Y (BH2(S) + 21y ()hse, (327)
o

% > Y2 (S)hge (3.28)

X /I;Sb (3.29)

Agie =D 1O () Pape (3.30)

Further-

more, 'X’ denotes the combination of group invariants multiplying A%, , in Eq. (2.44). As

discussed above, we have modified the parts which involve Yukawa or quartic couplings

compared to Ref. [12]. The reason is that in these cases new contributions can be present

due to off-diagonal wave-function renormalization corrections.

There are three generi-

cally different vertex corrections which contribute to the RGE of the quartic interaction.

However, since the dummy field does not interact with the gauge sector, those kind of

contributions do not appear in the case of the cubic interaction. Therefore, the translation

at the one-loop level becomes:

,:’\'\ ,)/:\ B i | /){\
1
Aibcd g Z /\abef>\efcd abc Z Aabefhefc (331)
per per
—
1 Hyp =1 Tr(m,Yieybyte
Habcd — Z Z Tr(YaYTbYCYTd) abc 3 Z?w (b f
per +mhyayttye)
(3.32)
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1
Asbed = 3 ;{GA, 0%} {64,607} 4 0 (3.33)

The explicit form of the two-loop diagrams as well as their expressions before and after
the mapping are given in Appendix A.2. We find agreement between our results and
those of Ref. [12] at the one- and two-loop level up to the differences from off-diagonal

wave-function renormalizations. Thus, the g-functions at the one- and two-loop levels are

By, =Ny — 8kHape + 26AY,, — 39°AL,. . (3.34)
1 _ _
hone =1 D AL (S)hppe — Ad — kAL
per
8HA™ + 8H" L 3H?,(S)+2H?,(S)| h
+tK abe T abc_§Z[ af( )+ af( )] Joc
per
+4k(H),, +2H),. +2H3,))
+g° |22, — 6AL), + AR(HS, — HY) +55) Y;%ﬂS)hfbc]
per
35 10 11
— g { {gcz(G) - g“sz(p) - 552(5)] AS.
3 SS b A 1 AN Y nY
_§Aabc - §Aabc - §Aabc + 4H(Babc - 10Babc) ) (335>

where the invariants are defined in Eqs. (3.31)—(3.32) and (A.10)—(A.26).

3.2.3 Scalar mass

Finally, we turn to the terms involving two scalar couplings. The procedure is very

similar to the case of the cubic scalar coupling, and we find the following relations for the
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wave-function corrections to the terms appearing for the quartic scalar coupling;:

1 ae
Aﬁcd = 6 Z Y5(5) Acbed

per

abcd - Z CQ abcd
6 Z A?Le (S) )‘ebcd

per

Z (3HZ;(S) + 2H 0 ;(5))A soea

per
1
6 D Y () ppea

per

X Aabcd
abcd - Z |02 | )\abcd

Again, X’ denotes the combination of group invariants multiplying A

B S

= AL =2 YP(S)m]

per

— ab =2 Z CQ
= 2> AL(S)m?,

per

2 (BH(S) +2H, 4 (S))m,

per

— 22}/;2;‘(5)7”3% )
per

— X Aab ,

ab *

= AR =2 |Ca(i)Pm

abc

(3.36)

(3.37)
(3.38)
(3.39)

(3.40)

(3.41)
(3.42)

, in Eq. (2.44).

As before, we need to consider the three generically different diagrams which contribute

to the running of the quartic functions. The one with vector bosons in the loop vanishes

due to inserting dummy fields, while for the other two diagrams additional terms arise.

1
Adbea = 3 Z AabefAefed

per

) N s
N s
/
\ 7
+ e
™
\ Vi \\

2m3f)\abef + 2haefhbef

(3.43)
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Hop = 30, Te(YoY rmpml + Y1V Pl

‘ver +%YTamebTmf + %Y“m}me})
(3.44)
//\/Q\/\\ %
_ 1 A B A pB
Aabcd — g Z{e ) 9 }ab{e ) 6 }cd O (345)

per

The two-loop diagrams are given in Appendix A.3. We also find agreement between our
results here and the ones given in Ref. [12| up to the wave-function renormalization. One
needs to be careful about some factor of l due to 3, 2 = % B, .0 Which we have included

here explicitly into the definition of the ﬂ function for m?2,, while it has been partially

ab’

absorbed into other definitions in Ref. [12]. Thus, with our conventions the one- and

two-loop [-functions read

anib :mg FAaves + Paeghvey — 4 Hay + kAL, — 2A§b : (3.46)

1_ _
@ggb = ZA ymi, — A ab — 260G

per

+ K

V) = 3 [ )+ 25

per

+26(H)Y, + 2H), + 2H?,)

A2y = BAZ + 26(Hy, — Hiy) + 105 ) ijF(S)mi,,]

per
35 5) 11
-t [—@(G) - 2esu(F) - 11u(5) A5

5 1 _
—ZAff — ZAQb - ZAgb + 2k(BY, — 103};,)} : (3.47)

where we used the objects defined in Eqgs. (3.43)—(3.44) and (A.27)—(A.43).
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3.3 Comparison with supersymmetric RGEs

We have now re-derived the full one- and two-loop RGEs for the dimensionful parame-
ters. While we agree with Ref. [12] concerning the bilinear and cubic scalar interactions
(up to wave-function renormalization), we find differences in the fermion mass terms.
Therefore, we want to double-check our results by comparing to those obtained using
supersymmetric (SUSY) RGEs. The general RGEs for a softly broken SUSY model have
been independently calculated in Refs. [13, 26, 27| and the general agreement between all
results has been discussed in Ref. [28]. Thus, there is hardly any doubt that these RGEs
are absolutely correct. Therefore, we want to test our results with a model in which we
enforce SUSY relations among parameters. After a translation from the MS to the DR

scheme one should recover the SUSY results.

Since a supersymmetric extension of the SM yields many couplings which are generi-
cally all of the same form, we opt a theory with a U(1) gauge symmetry. Our toy model

contains one vector superfield B and three chiral superfields

Hy: Q= —%, (3.48)
H,: Q= % (3.49)
S:Q=0, (3.50)

where ) denotes the electric charge. The superpotential consists of two terms?

W = \H,H;S + 1H,H, (3.51)
and the soft-breaking terms are
—Lsp = (BMHdHu + ThHyH,S + %MBBQ + h.c.) +
my | Hal? +m3y, | Hu|? + m3|S|*. (3.52)

This model contains all of the relevant generic structure we need to test. Making use of
the results of Ref. [13], which are also implemented in the package SARAH, we find the

following expressions for the one- and two-loop RGEs for the different parts of the model:

1. Gauge Couplings

1
B = g (3.53)

2We neglect terms ~ $2, §3 which are not essential for our argument.
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1
B = Sg* (=20 + 7). (3.54)
. Gaugino Mass Parameters
Bi = ¢* M, (3.55)
B2 = 22 (gQMB + /\*< ~ Mg+ TA)) . (3.56)
. Trilinear Superpotential Parameters
1 _ 2 2
By =ABAT=97), (3.57)
BY = A(— 6N+ AR+ gt (3.58)
. Bilinear Superpotential Parameters
BY = (= 2P+ g). (3.59)
B2 = =4+ g'). (3.60)
. Trilinear Soft-Breaking Parameters
B = 262 MpA — (=9I + ¢T3, (3.61)
B = —30|A1'Ty, + g2|)\]2( — M\ + 3TA) + g4< —AMpA + TA) L (3.62)
. Bilinear Soft-Breaking Parameters
By) = 20°Mpj+ AN2B,, + 4uNTh — ¢* B, (3.63)

85 = (207012 = SIAI" + ¢*) B, — 20 (W0]APA Ty + 29" M + 2 Mp|AP) . (3.64)

. Soft-Breaking Scalar Masses

1 1
By = = 20" 1Mol + 2(miy, +mty, +m3) AP + 2T = Sg*( = miy, +md, ).

B = 69" |Msl? — 8(mby, + miy, + m3)|N|* — 16AP (T

+ g*miy, + g A (md, —md,)

u

93

1
B0 = —26"Mal? +2( iy, +miy, +m) NP + 2T + 5¢°

(3.65)

(3.66)

(= mb, +mi,).
(3.67)



B = 69" [Mp|? = 8(mi, +mb, +m ) A = 161213

gt miy + NP (= mi, +mi, ) (3.68)
@2:2(—4Qﬁu+n%,+m@MF+A%fM§@M@A_TQ+
(=8I + g2 (mdy, + miy, +md))) + T (- MpA+ ). (3.70)

As before, we have suppressed the pre-factors 161%2 and (16 5 for the one- and two-loop
B-functions. With these functions, the running of all parameters at the one- and two-loop
level is fixed. However, for later comparison, it will be convenient to know the S-functions

for some products of parameters as well. That is done by applying the chain rule:

1 1
1 _ 1) _ 4
5gg2-—ggﬁﬁ) =39 (3.71)
@ _1 a@ _ 1
5&L=MQ@Y+**S)=2MF@MF—gﬁ, (3.73)
8%k =AY + A8 = 20— 6N+ A + ) (374

(1) o 1 a0 2 2 4 1

B0y o =200 — ZgB = —2\G + 6N - 14 (3.75)

1

6ﬁLﬁQiM@”—§W§) 12\ - 76° + gmﬁ+2guﬁ (3.76)
ﬁ(l) :A(ﬁil))*ﬂLM*ﬁ,(\l) :M*/\<_292+5|)\|2), <377>
5(2) :A(ﬂl(;))*_'_u*ﬁg?) :;L*)\<—1O’)\’4+294+92’)\’2), (378)
Bk =n(BY) + 1B = 20— 2A” + 47) (379)
Bl =n(B)" + w2 —2WP(—MM4+f). (3.80)

We now consider the same model written as non-supersymmetric version. In this case,

we have one gauge boson B, four fermions

}:Q:—; (3.81)
Q:Q:%, (3.82)
S:Q=0, 3.83
B: Q=0, (3.84)



and three scalars

Hy: Q= _%, (3.85)
m:@:%, (3.86)
S Q=0. (3.87)

The full potential for this models involves a substantial amount of different couplings

V = (I1S|H4” + ToS|H,|* + TsH4H,S + h.c.)
+mi| Hal? + m3|H,[* +mj|S]?
+ M| SPHal? + Xo| S| Hy|? + Xs|Ha* | Hy|? + M| Hgl* + \s|H,|*
+ <M1BB + MyHyH, + BHyH, + h.c.)

- . - - 1 - 1 ..
+ |\ Y1SH;H, + YsSH;H, + Y3SH;H, — — BHH*—l——uBHuH:—i—h.c. )
(1 d 2 d 3 d \/ﬁgd dl1g \/59 )
(3.88)

We think that this rather lengthy form justifies our approach to consider only a toy model,
but not a realistic SUSY theory. We have neglected couplings that would be allowed by the
symmetry of this theory, but vanish as we match to the SUSY model. In particular, the
CP even and odd parts of the complex field S will run differently unless specific (SUSY)
relations among the parameters exist. Therefore, one would need to decompose S into
its real components and write down all possible potential terms involving these fields.
However, we are only interested in the § functions in the SUSY limit where no splitting
between these fields is introduced. Therefore, we retain the more compact notation in
(3.88). We can now make use of our revised expressions to calculate the RGEs up to
two-loop. For this purpose, we modified the packages SARAH and PyROTE accordingly.
The lengthy expressions in the general case are given in Appendix B. In order to make
connection to the SUSY case, we can make the following associations between parameters

of these models:

Yi=Y,=Ys= A, (3.90)
)\1 = )\2 == |)\’2, (391)
1
Y= AP - 16 (392
1
M= D5 = §92> (3.93)
T1 = T2 == ,u*)\, (394)
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Ty = Ty, (3.95)
M, = %MB | (3.96)
My = p, (3.97)
m = iy, 4, (3.98)
my = miy, + |, (3.99)
m?= md, (3.100)
B= B,. (3.101)
By doing that, we obtain the following RGEs:
1. Gauge Couplings
B = %g?’, (3.102)
8D = %g?’( oA+ gQ> . (3.103)
2. Quartic scalar couplings
B = 8 =2 (30 - ¢). (3.104)
Y =% = 2])\|2< — 6A[* + 292])\|2 + gg“) , (3.105)
5 = ~2g? AP + 6 — 1, (3.106)
52 = 190 — g0+ SR + Al (3.107)
Bl = A = 5o, (3.108)
B = 62 = Lo - N + 1o (3109
(3.110)
3. Yukawa Couplings
B = g = Ls. (3.111)
v
R = P (3112)
By = A<3M|2 - 92> , (3.113)
By = A<—6|A|4+ig2lkl2+%g4>, (3.114)
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B = B = A(3F - ¢?). (3.115)

11 13
B =Y :)\(—6|)\]4+§92|)\\2+E94>- (3.116)

4. Fermion Mass Terms

1
9
6]&2 :gz<§92MB+)\*<—MB)\+T)\)> ; (3.118)
= (2P + ). 9
11 1
8 = (= A+ gt = 1PINE). (3.120)

5. Trilinear Scalar couplings

o) = 5 = e (= 2% + 5IAP) (3.121)
1

32 = B2 =t (— 10+ g+ 2077) (3.122)

BY = 2g2Mp) — ( 92+ g2) Ty, (3.123)

7
% = “30IA'Ty + ¢ ]A12( — 2MpA+ 313 ) + g — AMpA+ ZTA> L (3.124)

6. Scalar Mass Terms

) 7
5 =(= 81"+ Do+ 59") B — 20 (10PN T + 29" Mo + 6| \* M)
(3.126)

50 = — 207 | M+ 2|2 (i, + iy, +m3) + AT + 50 (i, — )

+ (41712 = 26°) |uP, (3.127)
52 =T g Maf? — 8(mi, + ¥, +m3) I\ — 16173 PIAP

+ %|)\|2g2 <2m?{u — m?id) + %g4< +2m3 + Qm%d)

3 17
+ 1l (S0P = 8T + gt (3.128)

1
5(% = — 2¢%|Mg|* + 2|)\|2<m?{d +my + m%) + 2|Th|? + 592 (m?{u — m%,d)

+ (4171 = 20%) Juf?, (3.129)

o7



11
By = 9" |Maf? = 8(miy, + miy, + m3) I\~ 16173 |AP

1 1
+ §|)\|2g2 (Qm%[d — quu) + 194( + Qm%d + Qm%u)

3 17
1P (SR — 8+ ') 8.130)
5752 :2((m§,d +miy, +m25)!)\|2 + yTAF) , (3.131)
/31(55), = 2<4(m§{d +my, + m?g>/\2 + 92,})/\*2 _ 94 <>\2/~L*2 LT (MB/\ B T,\>>

N <g2A<2m§{d +2m2 + A Mg+ 8|p)® + mg) - 2(8AT; + gzMg>TA> .
(3.132)

We see that all one-loop expressions as well as the two-loop [-function of the gauge
coupling agree with the SUSY expressions. The remaining discrepancies at two-loop are
due to the differences between the MS and DR scheme. In order to translate the non-SUSY
expressions to the DR-scheme, we need to apply the following shifts [29]

Jiu — gd,u(l— 1617r2-é92), (3.133)
v i1+ 1617T2&g2), (3.134)
Yoz — Y2,3< - 1617r2 : %92> ; (3.135)
A3 = Ay — 1617T2&g4, (3.136)
Ay = Aas— 1617T2 : ég4, (3.137)
My — M2(1+1617r2592), (3.138)

which have to be applied to the expressions of the one-loop [ functions to obtain the
corresponding two-loop shifts. In addition, one must take into account that for the quartic
couplings and the Yukawa couplings an additional shift appears ‘on the left hand side’ of

the expression, e.g.

7 d.pr d Nl c a c g C
DR DR MS 2 MS 2 MS
= SYPR = S (VIS (14 %)) = 8 (14 —50°) + 29 3.139
YT @ dt * Ton2? VLY g ) F 20V gt (3139)
with some coefficient ¢ depending on the charges of the involved fields.
We find the following shifts for the different couplings:
Logva 9 442
A= =5 A = 19717, (3.140)
15 21
AX; = §96 - ZQ4’)\|2 + g\, (3.141)
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1 9
A —— 6 _ 4 2 2 4 142
A= 169" = 0 AP+ g7 AR, (3.142)
3 3
Agyg = ——g¢° + Zg3|\]? 14
9a=—169 + g0 (3.143)
3 3
AY, = Zg2)\\)\]2 — §g4)\, (3.144)
3 3
AYy = —g*' X — —g* A\ 3.145
2= 159 A g AR, (3.145)
1 4
1 3
AM, = Zgz,u\)\|2 - 594% (3.147)
1 2 2 2 *
AT = —19 )\(4\)\| +9g )u , (3.148)
3
ATy = —ng, (3.149)
1
AB =~ By’ (2|)\]2 + 3g2> , (3.150)

1
Ams = =262 = 26*Msl? + 272 (3|uf? + mdy, ) + * (2md, + 5md, +9lul?) )
(3.151)

1

Am3 = —26*( = 26°|M? + 2P (3|l + miy, ) + 6* (2miF, + 5mdy, +9Juf?))
(3.152)

Am? = ¢ (2A2u*2 (V)2 + |>\|2< — 8l + mg)) . (3.153)

This gives a complete agreement between the two-loop [-functions of both calculations.

Thus, our revised results for the RGEs of a general quantum field theory are confirmed.

3.4 Numerical impact

3.4.1 Running of fermion mass terms

We briefly want to discuss the numerical impact on the changes in the S-function for the
fermion mass term. Differences in the running will only appear in models in which the

Lagrangian contains fermionic terms
LDOYSfifa+ pfife+he. (3.154)

with a Yukawa-like coupling Y between two Weyl fermions f;, fo and a scalar S as well
as a fermion mass term p. Both terms can only be present if S is a gauge singlet and if

f1, fo form a vector-like fermion pair. As concrete example, we consider the case of heavy
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top-like states and a real singlet, i.e.

T (3,1)_1, (3.155)
T (3,1, (3.156)
S (1,1), (3.157)
and the potential reads
V =Vsunr + iAss‘l + %)\SH|H|QS2 + ksu|H|*S + %@53 + %m‘gs?
+ (YpST'T' + prT'T" + hoc.) (3.158)

The one- and two-loop [-functions are computed using our corrected expression and read

2
B = 2YT2uT - (2093, + g?)uT + pr|Yr|?, (3.159)
4
B2 = 15 (66791 — 2404793 — 4660093);@ + 3 (2g%uT +40g2pr — 15@@) Y|
37 .
= Zper|Yr|t + 15YT ( —105Va|? + 8(20g§ + g%)>uT , (3.160)

while the differences compared to the old results are

ABY = —6urY?, (3.161)
ABY ) — Y (=265 s — KksAs 4+ prYr(27Y2 — 297 — 40¢2) — 125 Y7|Y7?) . (3.162)

The numerical impact of this difference is depicted in Fig. 3.2 where we assumed a value
of 1 TeV for ur at the scale Q = 1 TeV and used different values Y. As expected from
Eq. (3.161), the discrepancy between the old and new results rapidly grows with increasing
Yr. Thus, the correction in the RGEs is crucial for instance to study grand unified theories
which also predict additional vector-like fermions with large Yukawa couplings to a gauge

singlet.
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Figure 3.2: The running mass ur of the vector-like top partners at one- and two-loop level
for two different choices of the Yukawa coupling Y. Here, we show the results using the
incorrect (‘old’) expressions in literature as well as our derived expressions (‘new’). The
other parameters are set to A\gs =0, A\s = 1, kyg =k =1 TeV.

3.4.2 Off-diagonal wave-function renormalization

We now turn to the numerical impact of the off-diagonal wave-function renormalization
which is not included in the previous works. For this purpose, we consider the general
Two-Higgs-Doublet-Model type-IIT with the following scalar potential:

\% :m%|H1|2 + m§|HQ|2 + )\1|H1’4 + )\2|H2|4 + )\3|H1|2|H2|2 + )\4|H;H1|2

1
+<§%U§HJHJWH$UﬂHg+Aﬂ&f@ﬂHg—A@Hﬂh+h@>.(3%&

Here the parameters M%, \s¢7 are complex whereas all the other parameters have to be
real in order to yield a real potential.

Furthermore, the Yukawa interactions can be written as

Ly =— <QLYdH1TdR + LY. Hlep — QrY.Houp
—FQLGdH;rdR + ELEBngR - QLequuR + hC) . (3164)
Due to the presence of all Yukawa interactions allowed by gauge invariance, the anomalous
dimensions of the Higgs doublets H; and H, are no longer diagonal, but a mixing is

induced proportional to Tr(Y;e;) with ¢« = e,d, u. If we neglect for the moment all terms

involving either the electroweak gauge couplings (g1, g2), a lepton or down-quark Yukawa
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coupling (Yg, Ye, €4, €), the one-loop S-functions for the quartic coupling read

W = 2402 4 202 4+ 200 + A2+ [As[? + 12] A2
4120 Tr (eue;g) + 6Re(\g) T (euYuT) 6Ty <eueLeueT) , (3.165)

u

U = 2402 4 202 + 200 + A2+ [As[? + 12] A2
1220, Tr (YUYJ> + 6Re(A)Tx (EUYJ) _6Tr (YUYJYUYJ) , (3.166)

() = 200l 4+ 223 + 003 + 6Re (g + A2 ) Tr (Y] ) + 4IM[ + 4|26l + 16Re(A ;)

+ 6T <eueL + YUYJ> + 4()\1 + /\2> <3>\3 + >\4> — 12Ty <EUELYUYJ) . (3.167)

= a0 (20 A+ Do + )+ 86l 4+ 6Re(X 4+ Ar ) Tr (€] ) + 245 (53 + A

oA (5)\7 + >\6> +60Tr <eueL + YUYJ> 12Ty (equYueL) , (3.168)

5

AL = 2(2 (2)\3 3N A+ AQ)AE) + 5067 4 2050 + 507 + 3(AZ + A?) Tr (GuYJ )

+ 35 <Tr (euei) + Tr (YUYJ> > —6Tr (euYuTeuYJ> ) , (3.169)
BY = 240X + 6 (AG + )\7) vy (2)\6 + )\7> AL (10)\2 + 2A;) + 3A§Tr<euYJ>

+ 3(2>\1 gt >\4) Tr (Yueg) + 3¢ Tr (3%61 + YUYJ) 12Ty (gueLYueL) . (3.170)

0 = 402+ 8(3h + Au) Ae 63 (g + Ac ) + A3 (103 4+ 22 ) + 37 Tx ()

+ 3(2/\2 s+ )\4> Tv (m;) + 3\ Tr (3Yuyj + eueL) — 12Ty (YUELYUYJ) . (3.171)

The underlined terms stem from the off-diagonal wave-function renormalization and are
missing in the results of Refs. 6, 7, 8, 12]. In Fig. 3.3 we show the numerical impact of the
additional one-loop contributions on the running of the quartic couplings for two different
points. The chosen sets of the quartic couplings, tan 8 and My result in a tree-level
Higgs mass of 125 GeV?. We see that the additional terms can lead to sizeable differences
already for €, 33 = 0.5 and small tan 8 = 2. This is due to Tr(¢,Y,’). When increasing e, 33
to 1 and tan 8 = 50, one obtains Tr(e,Y,)) ~ 1 and the impact on the running couplings
is tremendous.

Of course, there are also differences at the two-loop level. Those read within the same

approximation:

1
ABE = ZENAG2 + 6A6((2Xa + Ag + M)A + A5 (A + Ar))

+ A€ Yy (—27¢2 — 27Y2 4+ 8092) + Mg (12XM0A7 + 24N N6 — 27€3Y; — 27¢,Y

3While it is in principle possible to renormalise the Higgs sector of the THDM-III on-shell, large
radiative corrections can occur when extracting the MS parameters which enter the RGEs [30]. Therefore,
the given example is meant as an illustration on the difference in the running, but the input parameters
in the running will change when including those corrections.
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Figure 3.3: The running of different quartic couplings in the THDM-III with and without
the contributions of off-diagonal wave-function renormalization to the S-functions of the
quartic couplings. Here, we have used the input parameters \y = A\3 = \y = 0.5, \5 =

—0.05, \g = Ay = —0.45, tan § = 2 and M5 = 500% GeV? at Q = m,. On the left, we have

used €33 = 0.5, Ay = 0.5, tan 3 = 2, and on the right €y33 = 1, Ay = 0.15, tan 8 = 50.
All other ¢; are zero.

+6(X3 + A1) (206 + A7) + AN + 806,93Y7)) (3.172)
ABY = i()\7(6/\5(/\6 + A7) + €Yy (—27€2 — 27TY2 4+ 80¢2 )

+ 605 ((2M1 + A3+ M)Az + NEAD) + N(120 X + 240007 — 27€3Y; — 27¢,Y,2

+6(X3 + A1) (2A7 + Ag) + 6AENS + 806,93Y7)) (3.173)

1
ABY) = 2((6 + A0 (635 (A + Ar) + erYi(=27el — 27V + 80g3)) + 6N + GALA

+ 120NN + (222 4+ A3 + A) (A7 + [A6]?) + 2(A1 4+ Aa + A3 + A)Re(AiXg))
+ (A5 + X5 (=27€Y, — 276,Y.? + 80€,93Y;) (3.174)

1
B = (6 + A7) (BAs(N + M) + @Yi(=27€2 — 277 + 80g3)) + 6AA;” + 6X ;7

+ 120NN + (222 4+ A3 + A) (A7 + [A6]?) + 2(A1 4+ Aa + A3 + A)Re(AiAg))
+ (X + ) (—27€0Y; — 276Y,) + +806g3Y7) (3.175)

1
AR = 5 (6 FAD(6(21 + As + A5 +6(2)2 + As + A A7 + 6s(As + A7)

+ €Yy (=272 — 27V 4 80g2)), (3.176)
1
ABY = (@0 4 3+ A (120A A + Aadr) - 27(E2Y; + €Y2) + 6(\s + M) (g + A7)
+6X5 (X6 + A7) + &Yi(—27(e +Y,7) + 80g3))) , (3.177)

1 . .
ABY = Z(GAEAGQ + X6(6(2X0 4 As + M)A+ 6X5(Ng + A7) + €Y (=27(e2 + Y2)
+8093)) + A5(12X0A7 4 24\ Ae — 27(6,Y; + €Y,)) + 6(A3 + Ag)(2X6 + A7)

+ 6AENE + 806,95Y5)) - (3.178)
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Chapter 4
Conclusions and Outlook

In Part I of this thesis, we have revisited the RGEs for general renormalizable gauge
theories with the goal to present the current state-of-the-art and to correct some mistakes
in the literature. In particular, the known expressions for the scalar quartic couplings
[8, 12] assume a diagonal wave-function renormalization which is not appropriate for
models with mixing in the scalar sector. We therefore have corrected/generalized the
expressions for the S-functions of the quartic couplings in (2.43) and (2.44). Very recently,
a related paper appeared on the arxiv [31] which confirms our findings concerning the
couplings in the scalar sector. Furthermore, we have carefully re-examined the dummy
field method and have provided a detailed description of it, which has so far been missing
in the literature. We then have used this method to re-derive the [-functions for the
dimensionful parameters (fermion masses, scalar masses, and the cubic scalar couplings).
For cubic scalar couplings and scalar masses, the only differences to Ref. [12]| are due to
the aforementioned off-diagonal wave-function renormalization. However, discrepancies
for the fermion mass S-functions in [12] have been found and reconciled in (3.22) and
(3.23). We have also performed an independent cross-check of our results using well-
tested supersymmetric RGEs and we have found complete agreement.

We have illustrated the numerical impact on the changes in the S-function for the
fermion mass terms using a toy model with a heavy vector-like fermion pair coupled to
a scalar gauge singlet. Unsurprisingly, the correction to the running of the fermion mass
rapidly grows with increasing Yukawa coupling. Thus it is crucial to use the corrected
RGEs if one wants to study for instance grand unified theories which predict additional
vector-like fermions with large Yukawa couplings to a gauge singlet. In addition, we have
demonstrated the importance of the correction to the f-functions of the scalar quartic
couplings using a general type-III Two-Higgs-Doublet-Model. As can be seen in Fig. 3.3,
the corrections to the running couplings are non-negligible and can become very large in
certain regions of the parameter space.

All the corrected expressions have been implemented in updated versions of the Math-

65



ematica package SARAH and the Python package PyRQTE. We hope that this study will be
a useful resource in which all the relevant information on the two-loop f-functions is at
hand in one place.

Recently, a paper by C. Poole and A. E. Thomsen [32]| has appeared which also presents
the general beta functions for the dimensionless couplings. The derivation and organiza-
tion of these results is different from the approach in the papers by Machacek and Vaughn.
Moreover, the results presented in the paper by Poole and Thomsen automatically satisfy
certain consistency conditions (so-called Weyl consistency conditions) which provide rela-
tions between the beta functions for the gauge couplings, Yukawa couplings and quartic
scalar couplings. Therefore, we plan to perform a detailed comparison between those
results and our results. In addition, we intend to use the dummy field method in order

to obtain the full set of beta functions available in this formalism.
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Part 11

Some aspects of BSM Higgs

phenomenology
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Part II of this thesis is devoted to the Higgs boson phenomenology beyond the Stan-
dard Model (SM). It is crucial to understand the mechanism of electroweak symmetry
breaking (EWSB) which is an essential ingredient of the SM and its extensions. Thus,
an important task is to investigate the Higgs potential, in particular, the triple Higgs
vertex where some large deviations from the SM may arise in Beyond Standard Model
(BSM) scenarios. The key process for this study is the Higgs boson pair production
that is sensitive to deviations in the trilinear Higgs vertex and to the presence of new
scalar particles with Higgs-like properties. We consider the class of models with extra
dimensions (such as the Randall-Sundrum scenario) which predicts the existence of an
additional scalar (the radion) that can take part in the Higgs boson pair production and
enhance the cross section as well as mimic deviations in the trilinear Higgs coupling. In
order to study the processes that occur in the framework of the RS model, it has been
implemented in the FeynRules package for the derivation of the Feynman rules, and has
been successfully tested. The possibility to obtain constraints for the new physics from
Higgs measurements with the Lilith tool has also been considered, in particular, the
"reduced couplings" have been introduced, and working examples have been obtained.

The main goal of this research in progress remains the study of scalar pair production.

The outline of Part II of this thesis is as follows:

e In Chapter 5 we discuss the EWSB mechanism in the Standard Model (SM) and

the reasons of the search for extensions of the SM.

e In Chapter 6 we provide the description of the Randall-Sundrum (RS) model as one
of the attractive extensions of the SM, being spared from the hierarchy problem and

predicting a new scalar particle, very similar to the Higgs boson.

e Chapter 7 summarizes the work with such tools as FeynRules and Lilith. FeynRules
is a package for the derivation of the Feynman rules, in which the RS model has been
successfully implemented and the automated calculation of the underlying Feynman
rules has been achieved, opening the opportunity to study various processes in the
RS model, in particular, the scalar pair production, using the interface to Mad-
Graph (the work on it is in progress). Lilith is engaged as a tool for constraining
the parameters of the RS model from Higgs measurements at the LHC. The reduced
couplings have been introduced in an appropriate form and working examples have

been obtained.

e In Conclusions and Outlook we provide a discussion and give an outlook on the
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future work.

e The interaction Lagrangian, Feynman rules, widths and branching ratios in the RS

model are provided in Appendix C.

e The created FeynRules model-file for the RS model is included in Appendix D.
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Chapter 5

The Standard Model — our current

understanding of nature and reasons
for BSM

In this chapter we give some background on the Standard Model and Electroweak Sym-
metry Breaking (EWSB) mechanism, following mostly lectures by E. Boos [33] (Sec. 5.1).
In Sec. 5.2 we discuss the flaws of the SM, in particular, the hierarchy problem.

5.1 The Standard Model and Electroweak Symmetry
Breaking

The Standard Model (SM) of particle physics is the modern theory that classifies all
known elementary particles and describes three of the four known fundamental forces. It
has been tested in a wide class of experiments, including a very large number of precision
measurements, and has shown a full compatibility with the experimental data. The SM
is rightfully considered to be the best-tested theory in the history of science.

The SM is a renormalizable gauge quantum field theory with spontaneously broken
electroweak symmetry. It is based on a symmetry group SU(3).x SU(2), x U(1)y, where
the color group SU(3). represents the QCD, SU(2),, describes the weak interaction, and
U(1)y — the so-called hypercharge interaction. The symmetry SU(2), x U(1)y is broken
to U(1)em by the EWSB mechanism, which we describe below.

Let us first consider the following Lagrangian of a scalar model as a simple example,
L=0,0'0"0 — 10’0 — N¢'9)?, (5.1)

where ¢ is a complex scalar field, the second term is a mass term, and the third term

71



Re(d) Vv

Figure 5.1: The Higgs ("Mexican hat") potential. A small perturbation transfers the
system from the higher energy symmetric local maximum (v = 0, ¢y = 0) to the lower

. . . _ ‘/”L2| _ v
energy asymmetric local minimum <v = 5, ¢ = i7§ .

describes the self-coupling of the scalar fields with a constant A.
We recall that Lagrangians of a gauge theory must be invariant under the global phase
shift

b — €%, (5.2)

where « is a constant. Postulating an z-dependence of o, we introduce a local gauge

transformation:

d(z) = e @ep(z) . (5.3)

Let us focus on the case of negative p? in (5.1): u? — —|u?| < 0. The potential

V(¢) = 1”¢'o + MoT¢)? (5.4)
has a non trivial minimum
dVv
Bl =Wt e =0 =l = =20 69

where v is the ground state of the potential, which is called the vacuum expectation value
(VEV).

A concrete value for the vacuum solution, for example ¢g = \/Li or ¢g = \/5, violates
the phase transformation symmetry (Fig. 5.1).

A complex scalar field can be parametrized by two real fields h(z) and ((z) as follows:

1 i@
O = 7 (v+h(z))e " . (5.6)

Then the Lagrangian (5.1) has the form

1 1
L= —5’ ho*h — M*h? — Mvh?® — Z)\h‘l

+ QA&%+ «90@%@h+ (agxafwﬂ+ A@ (5.7)
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and now describes a system of a massive scalar h with mass m} = 2\v? interacting with
a massless scalar field {(z), which is called the Nambu-Goldstone boson field.

According to the Goldstone’s theorem, if the theory is invariant under a global group

with m generators, but the vacuum is invariant under transformations generated only by
[ generators (I < m), then there exist m — [ massless Nambu-Goldstone bosons.

Let us consider a system described by the Lagrangian

1
L= 30,60" ~ V(6), (53)
which is invariant under ¢ = 1, ..., m transformations:
o= ¢ =¢+0¢, O¢;=i0Oal0;. (5.9)

The invariance of the potential V' means

Qzﬁ¢-:¢5@AaviA

5V = ;
0o O

¢; =0. (5.10)

Let us assume that the potential V' has a minimum (vacuum) at some field value

¢i = Y :
oV

a¢l di=¢?

and consider the case where the vacuum is invariant under transformations generated by

—0, (5.11)

only [ generators from all m generators corresponding to the symmetry, i.e.
A0 _ -
ti;0; =0 only fori=1,...,1, (I <m). (5.12)

The second derivative of the invariance condition (5.10) at the minimun leads to

0 due to (5.11)

o*V 4.0 oV A
ti.p: + th. =0, 5.13
00k0%i|y—gp " j%?A;j:;,k 19
and therefore o
0=0. 5.14
a¢ka¢l ¢ ¢0 Z]¢ ( )

This equality holds due to the condition tf} ? = 0 for fields with ¢ = 1,...,1, (5.12),
however, for the other m — [ fields (with ¢ = (I + 1),...,m) the following equality has to

be valid:
o?V

0¢r0b;

The second derivative of the potential in (5.15) is nothing but the mass term for these

=0. (5.15)
¢i=¢?

73



m — [ fields. Therefore, the masses of these fields are equal to zero.

We have shown that in such a situation, when the vacuum of a system is not invariant
under all the symmetry transformations of the Lagrangian, there exist m — [ massless
fields (Nambu-Goldstone bosons), corresponding to the number of generators violating

the symmetry.

Let us finally consider the SM gauge group SU(2), x U(1)y, where we introduce one
complex scalar field ®(z), which is an SU(2),, doublet and carries a hypercharge Yy, with

the following gauge invariant Lagrangian
Lo =D, ®'D'd — 20T — \(TD)* (5.16)
where the covariant derivative D, has the form
Dy =8, —igsW,T" — igl%Bu : (5.17)

As before, we consider the case of a negative u?, i.e. u> — —|u?| < 0, so that the field

potential has a non-trivial minimum at || = —-.

V2
The complex field doublet ® can be parametrized by four real scalar fields (¢

i
72_

1,2,3 and h) in the following generic way

Ci(fﬂ)ti] 0
Y (v+h(2))/V2

O = exp {—i (5.18)

where t = ¢%/2 are the generators of the SU(2); gauge group (¢ are the Pauli spin
matrices).

The Lagrangian (5.16) is invariant under the SU(2), transformation
(z) — ' (z) = 2 P(x) . (5.19)

Comparing (5.18) and (5.19), we notice that the unitary factor exp [—z%] can be
removed by choosing a special gauge — igoa’(x) = (*(x)/v — the unitary gauge. In the

unitary gauge the field ¢ takes the form

1 0
d = 7o) (5.20)

The field ® is called the Higgs field and has a non-zero VEV, which leads to the violation
of the symmetry of the system.
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Let us now rewrite Lagrangian (5.16), using (5.20) and the explicit form of the covari-
ant derivative (5.17) (i.e. after EWSB):

1 1 A
L= 5(8Mh)2 - 5(2)\vz)h2 — \vh® — Zh4
+ mi, WIWH 1+ﬁ 2—}—1m2ZZ“ 1+ﬁ 2 (5.21)
wWrru v 2 ZAp v ) .
with
1 1 )
mp, = V2\2, my = S92V, Mz = 5(92 cosOw + g1 Yy sin Oy v, (5.22)

which are, respectively, the masses of the scalar field h (the Higgs boson) and vector fields
W Z,

After adding the kinetic terms and self-interactions of the gauge fields Wj, A,, and

s
Z, (which appear from the terms (—3W., W"* — 1B, B") of the SM Lagrangian), the
Lagrangian (5.21) describes the massive Higgs boson field h, massive vector fields W/j,
Z,, and the massless vector field A,. The three Nambu-Goldstone bosons ({;, i = 1,2, 3)
are "eaten" by the three longitudinal components of the fields W, le and Z,. This is
known as the Brout-Englert-Higgs mechanism of spontaneous symmetry breaking. The
Higgs-like boson of a mass 125.09 4+ 0.21(stat) £ 0.11(syst) GeV was discovered by the
ATLAS and CMS experiments at the LHC in 2012 [35]. The value of the VEV of the

Higgs field has been found experimentally |36, 37| and is equal approximately to 246 GeV

in the given normalization conventions.

It can be shown [33], that the photon field A, remains massless and has correct
electromagnetic interactions only under the following condition: the hypercharge Yy of
the Higgs field has to be equal to the hypercharge Y] of the charged lepton with the
opposite sign

Yy =Y. (5.23)

If the vacuum &, = \/LE (S) is invariant under a group transformation with the gener-

ator of the group 7;
TP . = Dy, (5.24)

then
7j'L'(I)vac = 07 (525>

which leads to the following form of the (hermitian) generator of the unbroken symmetry:
TO — 1 ail a2 0 — T = (o 0
Vac_ﬁ(amm) . =0 = =(%9). (5.26)
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For SU(2);, x U(1)y such a generator is

(30) £ 2vu(30) = (39) oulyif Yy=+1.  (527)

1 1
T3+—YH: 2

2 2
This means that the vacuum is neutral, and the physical vacuum is broken from an
SU(2)r, x U(1)y-invariant vacuum in the absence of a Higgs field to a U(1)en symmetry

in the presence of a non-zero Higgs VEV:

SU(Q)L X U(l)Y — U(Dema
1 1 1

Qu st olu=5+5 0, (5.28)

and, besides,

gosinby = grcosby = my = mycosby . (5.29)

The value of the Higgs hypercharge (Y = 1) fixes the lepton hypercharge: Y} = —1,
and we find the values for the hypercharges of the left and right leptons and quarks:
l q l q U d 1 u d 2
Y; =-3Y) = Yp=-2 YL:YL:YL:§, Yy = ’YR:_g’ (5.30)
which confirms the Gelmann-Nishijima relation for all leptons and quarks of both chiral-
ities: v
I3 + 5= Q. (5.31)
Let us now demonstrate how the SM leptons and quarks obtain their masses after the
EWSB, without violating the gauge invariance.

The SM left-handed quarks and leptons are SU(2) doublets (@, = (i) and Ly = (),

er
and the right-handed fermions are SU(2) singlets (ug and eg). There are only two options

how to write a gauge invariant dimension 4 operator of the Yukawa type:
QrPdr and Qpd%up, (5.32)

where

1 0 1 /fv+h
d=—— d Y =ig?dl = — .
ﬁ(v—kh) an io \/ﬁ( 0 ) (5.33)

are, respectively, the Higgs and the conjugated Higgs SU(2),, doublet fields in the unitary

gauge. After spontaneous symmetry breaking,
_ _ /0 _ _ _ _
QL(I)dR +h.c. = (ﬂL dL) (U) dR + dR(O U) <ZL) = U(deR + deL) = Udd, (534)
L

which is the Dirac mass term for the down-type fermion.
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Similarly, for the up-type fermions:
Q19%up +h.c. = vau. (5.35)

The SM Yukawa Lagrangian in the general form, including the mixing of the fermions

from different generations with generic mixing coefficients I',, 4., can be expressed as
Lyuawa = —T7Q" ®d + h.c. — T9Q", U + h.e. — YL/, ®e’} + hec. (5.36)

where the states with (/) are the interaction eigenstates.
After the EWSB, Eq. (5.36) takes the form

o h
EYukawa = — M;]dlLdIIJ% + M;]U/LU% + M;Je’Le;]% + hC] . (1 + —) , (537)
v

with M%7 = Fijv/\/i.
After diagonalization, which is usually done in order to get the physical states for
quarks and leptons with definite masses, the Yukawa Lagrangian contains masses of the

fermions and describes their interaction with the Higgs boson:
L o o A
Lyuawa = — [mydid’ + miuwiu’ +milidl’] - (14— ) . (5.38)
v

The experimental detection of a Higgs particle completes the SM in the sense that
all predicted SM particles have been observed. However, this discovery, as a messenger
of the underlying scalar field, is only the first step in our quest of understanding the
mechanism of EWSB. The ultimate goal is to reconstruct the entire Higgs potential. For
this purpose it is necessary to get information on the trilinear Higgs vertex, for example
via a measurement of Higgs pair production at the LHC. In the SM, the scalar sector takes
a minimal form by introducing a single Higgs doublet field which implies, after expanding
this field around the EWSB vacuum, that the trilinear Higgs coupling A7 is related to
the Higgs mass and vacuum expectation value in a specific way (A3Mh3 = Avh? in (5.21),
so m2 = 2 \? = 20\, and thus, \§M = m—i) Clearly an experimental verification of

2v
this relation will be crucial. At the same time, any deviation would signal new physics

beyond the SM.

5.2 Open questions of the SM

Despite the remarkable success of the SM, there are still facts that can not be explained

in its minimal setup. Among these open questions are:
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e Why gravity is so weak compared to other interactions (hierarchy problem)?

e The SM Higgs mechanism is not stable with respect to quantum corrections (natu-

ralness problem).

e Why do fermion masses vary in such a wide range (M, = 0.5MeV, M; = 173GeV),

though they appear from the same mechanism?
e There are no Dark Matter candidates in the SM.
e There is no explanation for neutrino masses and oscillations in the SM.

Let us focus on the hierarchy problem, namely, the large gap between the energy scales

of various fundamental interactions (Fig. 5.2).

Solar System

Gravity Weak Scale GUT Planck Energy
10'18 103 1016 1019 (Gew’
All known physics Gauge desert

Figure 5.2: The hierarchy of scales of gauge interactions.

This problem is deeply connected to the problem of the naturalness of the Higgs
mass [38] and becomes visible when assuming the SM to be valid up to very hight scales

and considering the radiative corrections to the Higgs mass
miyobs = mi + 5mi , (5.39)

where my, o1 is the observable Higgs mass, my, is the tree-level Higgs mass, and dm3 stands

for the some of contributions from various loop corrections (e.g. Fig. 5.3).

Figure 5.3: One-loop correction to the Higgs squared mass parameter m? with a massive
fermion loop.

Such corrections appear to be quadratically dependent on the scale and extremely
large, in particular, if we consider the SM valid up to the reduced Planck scale (Mp; ~
2.4 x 10'™GeV), where gravity becomes comparable with other interactions, the Higgs
squared mass gets the correction of order M2, and has to be fine-tuned in order to match

the observable value mj, . ~ (125 GeV)?.
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An elegant solution of this problem was proposed by L. Randall and R. Sundrum in
1999 [39] as a multidimensional extension of the SM — the so-called Randall-Sundrum

model, which is discussed in Chapter 6.

79



80



Chapter 6
Scenarios with extra dimensions

Multidimensional "brane-world" models based on the Randall-Sundrum (RS) model with
two branes stabilized by a bulk scalar field [39, 40, 41] are quite attractive extensions
of the SM since they suggest a way of unification of the gravity and electromagnetic
interaction, considering the comparably strong gravity that propagates in the entire 5-
dimensional space-time and becomes weak only on the 4-dimensional brane, where our
world is localized. The additional predicted scalar boson, the radion, interacting with
the SM particles in the experimentally accessible range of energies, makes the hypothesis
of extra dimensions testable at the LHC. It is reasonable to probe modifications of the
Higgs boson properties that arise due to the presence of this new scalar that has the same
quantum numbers.

This chapter is devoted to the description of the Randall-Sundrum model including
the Higgs-radion mixing (Sec. 6.1) and a discussion of the possible forms of the scalar

potential in this model (Sec. 6.2).

6.1 The Randall-Sundrum model

Let us consider a five-dimensional (5D) space-time E = M, x S'/Z, with two four-
dimensional (4D) surfaces containing matter, which are called "branes".

The coordinates system is defined as follows:
{2M} = {z#,y}, M =0,1,2,3,4, where {2#}, u = 0,1,2,3 are the coordinates in the 4D
space-time and z? = y — the coordinate corresponding to the 5th dimension, which is
limited by —L <y < L.
The 5th dimension forms an orbifold S*/Z,, which represents a circle of circumference 2L
with the points y and —y identified. The 4D branes are placed at y =0 and y = L.

All the SM particles and forces are assumed to be localized on one of the branes (the
"infra-red" (IR), "TeV" or "visible" brane), whereas gravity and a stabilizing scalar field
live on both the IR brane and the other (the "ultra-violet" (UV), "Planck" or "hidden")
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brane, and can also propagate in the space between the branes, defined by the 5th coor-
dinate and called the "bulk".
All mass scales in the 5D theory are of the order of the Planck mass and are rescaled
on the IR brane by an exponential suppression factor (the "warp factor") e #%/2 which
reduces them down to the weak scale O(1TeV). The 5D non-flat metric is usually written
in the following form

ds* = e Hbolvly  datdz” — bidy? (6.1)

where £ is the curvature of the 5D geometry, by is a length parameter for the 5th dimension,
and —1/2<y <1/2 (L=1/2).

In such a model, a ratio 1 TeV/Mp; between the weak energy scale and the reduced
Planck mass (Mp; ~ 2.4 x 10'8GeV) is significantly smaller than in the original scenario

and corresponds to the parameter kby/2 ~ 35.

One of the characteristic features of the RS model with a stabilization of the extra
space dimension is the existence of the massive radion [40, 59, 42] — the lowest Kaluza-
Klein (KK) mode of the five-dimensional scalar field appearing from the fluctuations
of the metric component corresponding to the extra dimension. The radion might be
significantly lighter than the other KK modes [66]. Moreover, the radion has the same
quantum numbers as the neutral Higgs field, which opens up the possibility of the radion-
Higgs mixing. Therefore, such a model is of a special interest for collider phenomenology
(see, e.g., [43] — [57]).

Due to its origin the radion interacts with the trace of the energy-momentum tensor of

the SM
o(x)

£:—A—¢

™, (6.2)

where ¢ is the radion field (sometimes can be denoted as ), Ay is a dimensional scale
parameter that can be interpreted as the VEV of the radion, and T is the trace of the

SM energy-momentum tensor:

Ble)

e

e

N ; % ((Duf) 7" f = F* (Duf)) + 4my f f (1 g %)}

Go, G+ Sy P

2
— (9,h) (O"h) + 2m; h* (1 + %)

h 2
— (2myHWIWH ™ +m32,2") (1 + 5) : (6.3)

where the first two terms correspond to the conformal anomaly of massless gluon and
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photon fields, 3(g,), 5(e) are the QCD and QED S-functions respectively, h, W= and
Z are the SM Higgs, W- and Z-boson fields, D, is the SM covariant derivative and the
summation here is taken over all the SM fermions.

Remarkably, despite the differences in the Higgs boson and radion origin and the
structure of the interactions with the SM particles, it was shown earlier [73, 74] that there
exists an incredible Higgs-radion similarity for certain classes of processes at the level
of the amplitudes (even for the rather complicated case of off-shell fermions involving

additional non-SM diagrams):

e Single radion and single Higgs boson production processes in association with an

arbitrary number of SM gauge bosons (V;, i = 1,..., N) are similar
Ff=oVi.. . Vy < [f—=hVi.. Vg

up to a replacement of masses and coupling constants my — m;, and Ay — v ;

e Associated Higgs boson-radion and Higgs boson pair production including processes
with an arbitrary number of SM Higgs (h;, i = 1,..., N) and gauge bosons (V;, i =

1,..., M) are similar

gg — ¢h <= gg — hh,

up to a replacement of masses and coupling constants my, — my, A, — v and a

32 ) A5, where my is the

radion mass and my, ~ 125 GeV is the Higgs boson mass.

rescaling of the trilinear Higgs coupling A3 — (1 +

Whereas in those earlier works |73, 74] the contributions from the radion anomalous
interaction as well as the possibility of the Higgs-radion mixing were deliberately not

taken into account, in the current study we are interested in the more general case.

6.1.1 The Higgs-radion Lagrangian before mixing

In this section, we discuss the mixing between gravity and the Higgs sector following
Ref. [71]. The simplest example of an action for the mixing between gravity and the

electroweak sector is given by (see e.g. [71], [68, 67]):

Se=¢ [ oy R(g.) B, (6.4
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where H is the Higgs field in the 5D context before rescaling to canonincal normalization

on the brane, and R(g,,,) is the Ricci scalar for the metric induced on the IR brane:
Gere = Qp(x) (" + b)) (6.5)

Using Hy = Qo H and Q,(x) = Qo2(z) one can obtain [66]:

€3/ Goia R(gyis) HT H = 66Q(2) (—0Q(z) + ehy, 00" Qz) + ... ) H} Hy, (6.6)
with! 5 5 .
1y o Po -
Q(:c)_1+A¢_1+yv , H0—>\/§(+ho). (6.7)

Above we have introduced the ratio of vacuum expectation values

’y:Aid)SO.l. (6.8)
The hy,-term in Eq. (6.6) does not contribute to the kinetic energy since a partial
integration would lead to hy,, 0"0"Q)(z) = —0"h,,,,0"Q2 = 0 due to the gauge choice 0*h,, =
0.
This leads to the following 4D effective Lagrangian for the scalar sector (see Eq. (2.1)
in [72], and [69]):

1 1
L:eff = 5(8“ 9250)2 - 5 m2¢0 925(2) — 6£Q($)DQ(ZE) Hg HO + ‘DIJ ]’.[()l2 — Q4VH( H0> (69)

where
Vir( Hy) = Vo — p? HY Hy + MN(H} Hy)?, (6.10)

with the constant V = Av?/4.

The term Q*Vg( Hy) is model-dependent and could be generalized (see Sec. 6.2). Note
that if the constant term V; is omitted, Vy = 0, the Q*Vy( Hy) term would give a contri-
bution to the radion mass term 2 *m3, ¢2:

1,2 42 1,2 42, 3.2,.2 /2 2 2 3.2.2
—§m¢0¢0—>—§m¢0¢0+1’y mh0¢0 so that Mg —> Mg, — 577 M,

Using p* = v?A = mj /2 and A = m7j /(2v°), equation (6.9) leads to the following
Higgs-Radion Lagrangian at the quadratic level:
6] 1

1 1
L7y = =5 60060 — 5 mi, 6 — 696 60 ho — 5 oD ho — 5 i, ho? (6.11)

Note that in [72], Q(z) is defined as Q(z) =1 — %Z.
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1 1 1
= Ba‘u Qboa# QZ50 - 5 m2¢0 ng + 6758“ (boau h(] + 58“ hOa,u ho - 5 m2ho h02 + 8#[ . ] s

2
(6.12)

where ¢g(x), ho(z) are the radion and the Higgs fields before the Higgs-radion mixing,
and =1+ 6£~% Eq. (6.11) is in agreement with Eq. (29) in [71]. Eq. (2.3) in Ref. [72]
can be recovered from Eq. (6.11) by replacing ¢g — — ¢o. Similarly, the sign convention
for ¢¢ is opposite to that in Ref. [66]. Eq. (6.12) agrees with Eq. (12) in [70].

6.1.2 Higgs-radion mixing

The term —6~v& ¢ hy that mixes the Higgs and the radion in Lagrangian (6.11) can be

removed by rotating the scalar fields into the mass eigenstate basis:

w) (4B (¢ (6.13)
ho ¢ pJ \n

where the coefficients are given by

1 1 . 67§ B 6+¢ .
A= Zcos&, B—Zsm@7 C =sinf + 7 cosf, D =cosf 7 sinf (6.14)

with
Z* = —(67€) =1+ 667*(1 — 6¢) (6.15)
and the mixing angle 6 defined by

126vZ m3,
m2¢ — mZhO(Z2 —36£242)

0

tan 20 =

(6.16)

Note that in |72], the coeflicient a is equal to our A (and to that in [71]) but enters the
mixing matrix with the opposite sign.

The mixing parameter ¢ is constrained by the requirement Z? > 0 in order to get a
real mixing angle.

The mass eigenvalues of the radion dominated ( ¢) and Higgs dominated ( h) physical

eigenstates are given by

1

M = g | M B, (B 2= aZ2md md | (617)
1

M= g | T AmY, /(G 2 a2 | (618)

Alternatively, the physical masses can be used as external input parameters (see, e.g.,
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Sec. 7.1) and the unphysical mass parameters m g, and mp, can be calculated as

72 4B8m? mgh

m2¢D =5 m2¢ + m3 + \/( m2¢ + m%)? — —Z(g , (6.19)
72 48 m?% m3

mh, = 25 m2¢ + m3 — \/( m% + m3)? — Z(g (6.20)

The parts of the Lagrangian responsible for the different radion and Higgs interactions
in the RS model, as well as the Feynman rules and the re-derived amplitudes, widths and
branching ratios for certain processes involving the radion dominated and Higgs dominated

states are collected in Appendix C.

6.2 Some notes on the scalar potential

The scalar potential in Ref. [72] is of the form

1
V(o ho) = §m2¢0 o2+ QWi (Hy), (6.21)
where 5
Q=1--2, (6.22)
Ay

and Vg ( Hp) is given in Eq. (6.10):
Vi( Hy) = Vo — p? HY Hy + M(H} Hy)?.

Note the different sign convention for the radion field ¢ in [72] compared to [71]. Using
the replacement Hy — (0 (v + hg)/+v/2)" (unitary gauge) and a) % = M? or b) p? =
A X = m7, /(2v*) one finds:

4
1
Vi —=Vo + A —Uz+v2h3+vh8+zh§ (6.23)
1 1 mzh m2h
—V, - < m? v? + 3 m? 2 + 21;0 h3 + 87}20 hd (6.24)

The scalar potential is then given in the broken phase by

V (o, ho) _>1m20¢?)+ [1_4/A¢¢0+6/A?¢¢(2)_4/AZ¢3+1/A$¢3] X

2
Vo vt 1
A —0——+v2h8—|—vhg+z

T hg (6.25)
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4
=" i oh (6.26)

i,j=0
with
Vi Avt —4 M, I 6 —4 1
Coo = — ——,Clo=Coo——, Cag = Co0—= , C3.0 = Co.0—= , Ca0 = Co.0——r
0,0 0 1 1,0 0,0 A¢ » €2,0 5 0,0 Agb y €30 0,0 Az y €40 0,0 A;ﬁ )
cM:O (i:O,1,2,3,4),
o2 —4 6 —4 1
Co2 = AU, C12 = Co2——, C22 = Co2—35 , €32 = Co2—r3 5, C4,2 = C02— 71
Ag A2 A3 Al
\ —4 6 —4 1
Co,3 = AV, C13 =Co3—» C23 = C0335, C33 = C03 33, C43 = C033 71>
Ay A¢ A¢ A¢
A —4 6 —4 1
Co4 = 1 C14 = COAT , C24 = COAF , €34 = COAF , C44 = COAF . (6.27)
¢ é ¢ @
m2¢0 ‘2

The choice Vy = Mv*/4 then leads to a vanishing Co,0 80 that c39 = —

Considering only operators up to a mass dimension 4, the potential takes the form:

1 1
V (o, ho) = 3 m’%, ¢ + A(v> hg + v hi + 1 hg) + c12 o b + Cao @2 h3 + 13 o B -
(6.28)
In particular, there is no term proportional to ¢} (unless the constant term c3q is kept in

the Higgs potential).
The scalar potential considered in Ref. [71] (see Egs. (54) and (59)) is of the form:

1 m’ 1
V (o, ho) = §m2¢0 o5 + X3 2A¢¢ dp + ...+ N(H} Hy — §v2)2 (6.29)
1 m? 1
:§m2¢0¢8+X32A¢:¢3+...+A(v2h3+vh8+1hé), (6.30)

where X3 is a constant.
Note that A(v?h3 + vh3 + 1 hg) agrees with Vy( Hy) in Eq. (6.23) with the constant

Vo = Av? /4. This potential doesn’t contain any mixed terms proportional to ¢q h3, ¢2 hi.

There are a few possible generalizations of the scalar potential. For example, one could
replace Vi by the potential for a 2HDM, or consider the most general renormalizable
potential for an SU(2) Higgs doublet and a real scalar SM singlet, an SU(2) Higgs doublet
and a complex scalar SM singlet, two SU(2) Higgs doublets plus a real /complex scalar SM

singlet. One could also add more scalar singlets or consider higher-dimensional operators

20f course, a shift of the full scalar potential by a constant term has no observable consequences. How-
ever, shifting the "Higgs potential" Vy by modifying the value of V) would lead to observable differences.
In particular, a contribution to the radion mass and a triple radion vertex would be generated.
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(impacting vacuum stability considerations).
Let us explicitly provide the two following examples: the SM scalar potential comple-

mented by a real or a complex scalar singlet.

SM-real scalar singlet: The most general renormalizable scalar potential containing
the SM SU(2) doublet ® and a real scalar SM singlet S with a vanishing vev is given by
[60]
2 A 1 1
V(®,8) = %@T<1>+ S 0) 4 55, @1 05 + 26, 81 85

1 1 1
+ /‘ilS + 5/‘%252 + gl{gSB -+ ZKJ4S4 s (631)

where x; = §;m?/(2)) so that the field S doesn’t acquire a vev. (Note: m? = —p?.) After

spontaneous symmetry breaking, in unitary gauge, we have
o = ., S =vs+50. (6.32)

This leads to the following scalar potential in the broken phase

4
V(so, ho) = > _ cigsi i (6.33)
i,j=0
with
o ! —4 m, PP —4 1
Co0=Vo— — 5, Clo=Co0—H» C20= —5 TC,0 3330 =Co0 733 C40 = C0,07 7 »
4 Ay 2 A2 A3 AL
CZ‘71:0 (i:O,1,2,3,4),
A —4 6 —4 1
Co2 = AV, C12 = Co2——, C22 = Co2—35 , €32 = Co2—r3, C4,2 = C0273 71
Ay A2 A3 Al
\ —4 6 —4 1
Cp3 = AU, Cl3 =Cy3——, Ca3 =Cp3—5 , C33 =Co3—=5, C43 = Co3— ,
0,3 1,3 0,3 A¢ 2,3 0,3 AZ) 3,3 0,3 Ai 4,3 0,3 A;‘,
A —4 6 —4 1
Coa = 75 C4=C4a7C4=C4d5,C34=Coda3, C44=Cod—yg - (6-34)
4 A A2 A3 Al

SM+-complex scalar singlet: The most general renormalizable scalar potential con-
taining the SM SU(2) doublet ® and a complex scalar SM singlet S. reads [61, 62]

2 A 1 1
V(®, S,) :m?cpfcp+z(q>*q>)2+ (151®T<DSC+Z<53<I>T<I>SC?+CL15€

1 1 1 1 1
+ Zbl Scz + 601 Sél + 602 SC’ 50‘2 -+ gdl Sél + gdg 502’ SC‘2 -+ hC)
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1 1 1
+ (| S2N)* + 502 OT B[ Sef* + Shol Sef? (6.35)

where ay, by, ¢, o, dy,ds, d1 and d3 are complex. After spontaneous symmetry breaking,

in unitary gauge, we have

0 1 .
o = % , Se= %(vs%—S%—z(z}A%—A)) (6.36)
2

A few comments are in order:

e Since all allowed terms have been included in Eq. (6.35) the coefficients can always
be redefined such that vg = v4 = 0. This makes the potential of Eq. (6.35) identical
to that obtained by adding two real scalar singlets to the SM and there is no CP

violation.

e If a global U(1) symmetry or a Z; symmetry is imposed to eliminate some of the

terms in the potential, making the shift to vg = v4 = 0 in general is not possible.
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Chapter 7

Collider phenomenology of the RS

model

In this chapter we summarize the efforts that have been made to implement the RS model
in such HEP tools as FeynRules (Sec. 7.1) and Lilith (Sec. 7.1) and to perform a first

phenomenological analysis of the RS model.

7.1 RS model with FeynRules package

FeynRules [78| is a Mathematica-based package designed for the calculation of the un-
derlying Feynman rules of any implemented QFT model with a possibility of making an
output in a form appropriate for various HEP tools such as MadGraph, CalcHep, FeynArts,
Sherpa and Whizard in order to get the observables to be further compared with experi-
mental data.

The implementation of a new model implies the creation of a new model-file from scratch
with description of all fields, parameters, symmetries and Lagrangians of the model.

The RS model has been implemented in FeynRules and the the automated calculation
of the relevant Feynman rules has been achieved, the obtained vertices were verified on
examples from literature. The structure of the created model-file for the RS model is
discussed below, and the full code is provided in Appendix D.

Since we are interested in a scenario that includes the SM and one additional scalar
particle with possible mixing with the Higgs boson, it is convenient to use the SM model-
file (SM.fr) already included into the distribution of the FeynRules package (or available
in the FeynRules model database on the FeynRules homepage), i.e. the full SM im-
plementation. Thus, it is sufficient to describe only the scalar fields and relevant RS
parameters in the new file (say, Radion Higgs Model.fr).

Both files should be included together when running FeynRules in the Mathematica
notebook, using the command LoadModel ["SM.fr","Radion Higgs Model.fr"] [78].
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The model-file contains a few essential blocks (that must be written in a valid Math-

ematica syntax):

e Information. This block is used for defining the name of the model as well as the

names and addresses of the authors, date of creation, references, etc.

e Particle Classes. In this block all fields are implemented.
In the RS model, there are five classes corresponding to unphysical and physical

scalars.

The unphysical scalars are the Higgs doublet (® in the code) and the radion ¢y (R0
in the code) fields before mixing, as well as the parameter (2 that is considered as a

field being proportional to ¢ (6.22).

The physical scalars are the Higgs-dominated state (H) with the mass 125 GeV and
the radion-dominated state (R).

All necessary information on the fields (such as — whether the particle has an
antiparticle or not, is physical or unphysical; symmetry groups under which the field
transforms, quantum numbers, physical masses, decay widths, etc.) is introduced in
the options of the classes, including, in particular, the EWSB and the Higgs-radion
mixing — by using the corresponding ’Definitions’ options, which consist of sets of
replacement rules that are applied to the Lagrangian before the computation of the

Feynman rules.

According to (6.13), for the unphysical Higgs:

1] =0,
P[2] — % = % (v+ (Sin9+67%cosﬁ> R+ (Cos€—67%sin9> H) ;

for the unphysical radion:

1 1
RO — ZCOSQR—ESiDQH.

e Model Parameters. In this block, all the model parameters (such as coupling
constants, mixing angles, VEVs, etc.) are implemented. The parameters are clas-
sified as external (independent) and internal (depending on one or several of the
other internal and/or external parameters of the model). For example, the masses
of the unphysical radion and Higgs (6.19), (6.19) and the mixing angle (6.16) are

defined as internal parameters.
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e Lagrangian. The relevant Lagrangian should be defined in terms of the names of
the particle classes, specifying the indices and eventually using ’Special symbols for
Lagrangians’ (see the rules in [78]). A Lagrangian can be defined as a full expression
or as additive pieces.

The parts of the Lagrangian responsible for different radion and Higgs interactions

in the RS model are collected in Appendix C.

The Feynman rules that had been obtained after running the FeynRules package with
the RS model-file were verified on examples from the literature [71]. Thereby, the auto-
mated calculation of all the underlying Feynman rules of the RS model has been achieved
with a possibility of easy variation of the parameters and the Lagrangian structure, which

significantly simplifies the study of the Higgs and radion phenomenology.

7.2 Constraints on the RS model parameters with Lilith

The possible presence of BSM physics around the electroweak scale can be tested in
the study of the properties of the Higgs boson with mass around 125 GeV observed at
the LHC. Indeed, the parameter spaces of the BSM scenarios affecting the properties of
the Higgs boson can be constrained from the measurements presented in terms of signal
strengths.

Following this idea, we have employed Lilith |79, 80] — a public tool developed for
constraining a wide class of new physics scenarios from signal strength measurements
performed at the LHC and the Tevatron. It is a Python library that can also be used in
C and C++/ROOT programs. The Higgs likelihood is based on numerous experimental
results stored in XML database and is evaluated from the user input given in XML format
in terms of reduced couplings or signal strengths.

Deviations from the SM can be parametrized by introducing the reduced couplings,
which can be demonstrated by rewriting the usual expression for the signal strength p in
the following way [79]

o(X)B(H = Y)
= ZeffX,YUSM(X)BSM(H —Y)

XY

= ZGHXY X C)%O_SM(X) X CS%F?/M X F%M
XY 7 USM(X) F%‘/M ZY CXQ/F?/M
1
= ffy yC%C? 7.1
EYC@BSM(H%W;Q xyLxby, (7.1)

where X and Y stand for various production and decay modes of the SM Higgs boson, re-
spectively, X € (ggH, VBF, VH, ttH) and Y € (vy, ZZ*, WW*, bb, 77,...); the effxy
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are "reduced efficiencies" corresponding to relative contribution of each combination for
the production and decay of a Higgs boson to the signal; I'; is the total decay width of
the SM Higgs boson, and the cross section (partial width) for each process X (Y') is scaled
with a factor C% (C2) compared to the SM expectation. The term Y, C2BM(H — Y)
accounts for the scaling of the total width of the Higgs boson (in the assumption of the
narrow-width approximation for the BSM scenarios).

Thus, a BSM Higgs interaction Lagrangian can be expressed in terms of bosonic (Cy z)

and fermionic (Cip..,) reduced couplings as

L=g {CWmWW“WMnLCZ N2 _gug,| H
cos Oy
+g[—Ct T tF — Oy b — oot — Crs T | H (7.2)
2mw mw mw 2myy

which recovers the SM case in the limit Cyw.z4p. . — 1.
At leading order in perturbation theory, the scaling factors C'xy from (7.1) can be
directly identified with the reduced couplings Cw,z .- from (7.2) for processes involving

just one coupling to the Higgs boson,
CI%VH = CI%V? C%H = C%’ Ct2tH = CtQ? Cj%f = 0?7 C\Q/V = C\z/’ (7'3)

with f =b,c,7and V =W, Z.

There is no direct identification for ggH and VBF production and loop-induced decays
H — gg, vy, Zv in the general case, and the reduced couplings for these processes are
given by a combination of reduced couplings C;, weighted according to the contribution

of the particle ¢ to the process:

_ Zi,j:t,b,c CiC’jaij(ggH) ZM:W’Z C’Z-C’jaij(VBF)

C - ) 02 = s (74)
9ot Zi,j:t,b,c UszM (99H) vEr Zz‘,j:VV,Z Uzst (VBF)
6‘12 — Zi,j:t,b,c O’LOJFij(H — gg) 02 _ Zi,j:W,t,b,C,’T CZCJFZM(H — Y, Z’y)
v Yijine L (H = gg) 7 T D ijmwiper Lo (H =7, Zy)
(7.5)

SM
ij
it corresponds to the cross section from the particle ¢ alone, and for i # j — to that

where the o7 are the different contributions to the cross section in the SM (for i = j
from interference between the particles i and j); F;S;»M are the SM partial widths of the
considered processes.

Note that such a parametrization is possible only in case if the BSM couplings of our
interest have the same tensor structure as the SM ones.
This is not the case for the HWW and HZZ couplings in the RS model (the full list is
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provided in Appendix C):

Viww = igmw (gn — ghrw) [ = 297 (0" p1 - p2 — PiPh)] (7.6)

Vizz = ig (9n — ghkz) [0 — 297 (01 - p2 — PYDL)] (7.7)

cos Oy
where g, = (D+~B), g; = 7B with coefficients B, D and 7 from the Higgs-radion mixing
matrix (6.13) in Sec. 6.1.2 (for all notations see Sec. C.2 in Appendix C).

As we can see, these couplings differ from the SM-like ones by the tensor contribu-
tions —QQ}VLV’Z (" py - p2 — pYph) (or just QQZV’Zplfpg if we extract the SM-like part n*¥(1 —
29;?/’2;01 - p2)). However, the numeric estimation of either of these terms gives a negligi-

ble result (see Fig. 7.1) and, therefore, these contributions can be omitted in the further

analysis.
(a) g ->0, (b) kY k§->0, my"'=3Tev, £=0.3, Ar=3000 GeV (a) gf->0, (b) k{k->0, mg"=3Tev, £=0.3, Ag=3000 GeV
THWWa, b/THWW MHzza,b/THzz
10004[‘ 1.00001
1.0003 1.00000 [
0.99999 |
1.0002
a
0.99998
1.0001
b 0.99997 |
1.0000 + 0.99996 |1
0.9999 bt g (GeV) 0.99995 : : : : : : meg(GeV)
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

Figure 7.1: Ratio of the width without the contribution —QgZV’Z (n"py - pa — PYpY) (a)
and without the contribution QgZV’Zp{ ph (b) to the full widths expression, for the precesses
H — WW (on the left) and H — ZZ (on the right). As we can see, for all cases this
ratio is very close to 1.

Thereby, the reduced couplings for the RS model are defined as

Cw=gn—gpkw, Cz=gn—gpkz, (7.8)

<b2+by+ 4—”)

Fl(TW) + Fl/Q(Tt> ’

<b3 + a:;crb0>
F1/2<Tt) ’

Cy = gn — 29, Cy = gn — gy, (7.9)

OF:Ct:Cb:CC:CT:gh, (710)

where the loop functions Fi, Fj/, are defined in Sec.C.2 in Appendix C and include only
the contribution from the top quark in the fermion loop.

The reduced couplings (7.8)-(7.10) are used as an input for Lilith via the XML user
input file and depend on the four parameters of the RS model: the mass of the radion
dominated state my, the radion VEV Ag, the £ parameter related to the mixing angle
(6.16), and the first KK-gluon mass m{ related to Ay and k/Mp; (see [72, 76, 77]). As a
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result, the likelihood L (—2log(L) = x?) is obtained. The scan of the parameter space
(mg, Ay, £, mf) can give the best-fit values of the reduced couplings. For this purpose,
minimization of —2log L can be performed using iminuit (a Python interface to the Minuit
2 package).

An example of such a minimization of the log-likelihood for the radion mass and the
mixing parameter £ in ranges 130 GeV < my < 300 GeV, —0.6 < ¢ < 0.6, and with fixed
Ay =2.5TeV, m{ =3 TeV (see Fig. 7.2) gave the following best fit:

Mg min = 130.0 GeV, & = 0.00808080808081, —2log L,,;, = 51.0467887402
Cw = 1.00336932206, Cz = 1.00323429515, Cr = 1.003812078, C, = 0.989982773203,
Cy = 1.07344612964.

Lilith-2.0, DB 19.09

0-6 IIIIIIIIIIIIIIIIIIIIIIII

0.4

0.2

wr 0.0
-0.2

-0.4

IIIIIIIIIIIIIIIIIIIIIII
140 160 180 200 220 240 260 280 300

mg [GeV]

-0.6

Figure 7.2: Constraints on the radion mass and parameter { in the (£, my) plane for
Ay = 2.5 TeV and m{ = 3 TeV. The red, orange and yellow filled surfaces correspond to
the allowed 68%, 95% and 99.7% CL regions, respectively.

As can be seen, the constraints from the Higgs signal strength measurements impose
only mild constraints on the RS model. In a next step, it would therefore be necessary to
include limits from direct BSM searches before studying the scalar pair production (hh,
¢h, ¢¢) in the RS model at the LHC. While working on the LHC Higgs constraints on
the RS model a paper appeared [81] which, unfortunately, covers to a good degree what

we wanted to do.
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Chapter 8
Conclusions and Outlook

We have considered the Randall-Sundrum model with one extra dimension which is one of
the possible extensions of the SM. The model solves the hierarchy problem and predicts
the existence of an additional scalar particle, the radion, and allows mixing between
the radion and the SM Higgs boson. The processes of our main interest are the pair
radion-radion, Higgs-Higgs and radion-Higgs production, which involve the trilinear Higgs
coupling, being sensitive to deviations from the SM. In order to study the scalar pair
production, we have implemented the RS model in the FeynRules package and achieved
the automatic calculation of the Feynman rules with a possibility to vary the model
parameters and the Lagrangian and to obtain the results rather quickly. In order to
identify the relevant parameter space we have used Lilith 2.0 to derive limits from the
LHC Higgs measurements, which are however weak. Therefore, it would be necessary to
obtain more limits from direct BSM searches. This has been realized in the recent study by
A. Ahmed, A. Mariotti and S. Najjari [81] which turned out to be quite similar to what we
wanted to do. Once the allowed parameter space has been identified, our plan was to use
the FeynRules interface to MadGraph in order to get the relevant observables and to study
the collider phenomenology of the RS model, in particular, the radion-radion, Higgs-Higgs
and radion-Higgs production at loop level and the Higgs coupling modifications.

Apart from the original RS model discussed here, it would be interesting to consider
more general scalar sectors discussed in Sec. 6.2, which is possible due to the created

FeynRules model-file that can be easily adapted to such cases.
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Appendix A

The dummy field method at two-loop

In this appendix, we list all two-loop vertex corrections which are needed to obtain the

functions for dimensionful parameters.

A.1 Fermion mass

yeytye(yteyt — yibye) Y Y om(Yiey? — yitye) (A1)
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vie(S)ytytaye Y3e(S) Y mhye (A.3)
_________ 6__ __ N {-:E __
AapeaY VY 1Y RapY Y 10V (A.4)
_________ ; L <
g {Cy(F), Y'Y TeY?} gH{Ca(F), Yomy Y} (A.5)

Y {Cy(F), Yie}y? GV Co(F), mh}y? (A.6)
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QQHézt — g2 (tA*YayTbtA*Yb g2 (tA*meTbtA*Yb—i-

+Y oAy 1Py apd) YOrAY om 1)
(A7)
(A.8)
o
g2Cseytytey® 0 (A.9)
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A.2 Cubic scalar coupling

1. Scalar-only contributions:

TN
________ <271 \
N\ Pid o
\\ /// \\
AY g ~N
AN ///’/"\‘
,’\<‘~\\‘ ! —
,/’ \\\ N
d \\ \\
7 ~ N
AN _rN
~<” 1 \
’, \\\\\ /I
/, \\
d \\
d ~
d ~
—3 1 —3 1
Aabcd - Z E /\abef)\cegh/\dfgh Aabc = 5 E [haef)\begh/\cfgh + )\abef/\ceghhfgh]
per per

Let us show explicitly how this calculation, involving the permutations over indices

a, b, c, OZ, has been conducted:

—3 1
Aabczf = Z Z /\abef)\CEQh/\cifgh

per

1

hf/{h hfgh
= Z_l )\abef)\ceghM_'_ baef)\ceghM

+)\caef)\beghhfgh + )\acef)\beghhfgh
+)\bcef)\aeghhfgh + )\cbef)\aeghhfgh

+

hegh hegh
+ )\abef)\ fegh”\cfgh + Abaechfgh

+ Acaefhegh)\bfgh + )\acefhegh)\bfgh
+ )\bcefhegh/\afgh + )\cbefhegh/\afgh

+

haef haef
+ A def begh/\cfgh _'_Wbegh)\cfgh

+ hfaef)\cegh)\bfgh + hfaef)\cegh)\bfgh
+ hbefAcegh/\afgh + hbefAcegh/\afgh

+ hbef)\aegh)\cfgh + hbef)\aegh)\cfgh
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+ h’cef)\begh)\afgh + h’cef)\begh)\afgh

+ hcef )\aegh >\bfgh + hcef )\aegh Abfgh]

1
= Z [Z )\abef)\ceghhfgh + Z )‘abefhegh/\cfgh

per per

+ 2 Z h’aef/\beghAcfgh

per

1
- Z [2 Z >\abef)\ceghhfgh +2 Z hfaef/\begh)\cfgh

per per

1
- 5 Z[haef)\begh)\cfgh + )\abef/\ceghhfgh] . (AlO)

per

Here we took into account that

Z )\abef/\ceghhfgh = Z )\abefhegh)\cfgh

per per

due to the symmetry of the corresponding diagrams:

///*\\ /’\\\ % ______ l\\ /’\\\
—-—2Y
A = 1
abed ~2Y fg
1 fq Aabc = 5 E }/2 (S)Aabefhceg (A]'l)
] Zper }/2 (S))\abef/\cdeg per
\ ~ /- """ \ s %%
\ / ‘\
\ / \
\ /7 N\ /N N
\N 7/
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-5h —=Am
Habc + Habc =
Fibcd = : > per Baey Te(YOYTEY YT/
% Zper AabefTr(YCYTeYdY” _|_YTbyechyf)_|_
+YTCY5YTde> % Zper /\abefTr<meTeYCYJ[f
+YteyemiyY)
(A.12)
%
y Y, = 5y T (Ya(F) i}y ey Py e
H =
abed +YTameTbYC + YTaymefYc <A13)
D per Tr(Ya(F)YToYPY ey d)
+ytaybyten f])
AN -
Hy =
ﬁzcd = % Zper Tl”(Yem}YBYTaYbYTC—{—
e a e C e a e T c
> per 3 Tr(YOY oY ey iy ey id yevteyemlytyt
+Y Ty ey teytyteyd) Lyeytayeythy, yte
YeYTayeyTbch;fc + hC)
(A.14)
| -
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HE, =357 Tr(myYlyeyfyeyte
H3, , = +Y emlyeyttyeyte
13 Tr(Yey Tty ey ey dyte) +Y ey ttyemlyeyte
+Y ey Py ey tem yie)
(A.15)
_>
S
Hiyo =30 Tr({Co(F), my YTy PY T
Hibea = +H{Co(F), Y ymlyPyte
S per TH({Co(F), YOV oY ey i) +{Cy(F), Y)Y oy te
+{C,(F), Ya}yfbwm})
(A.16)
_>
- N R I W R
Hjpey =Y Co(i) Hapea Hjo =Y Co(i) Hape (A.17)
3. Scalar-Vector contributions
\/\/11\1 \\_/I \) \/\ % ______ (I\I \\_/I \) \/\/
—25 1 —28 1
Aabcd = g Z ng(S))‘abef >‘cdeg Aabc = 5 Z ng(S) hzzef >‘bceg
per per

(A.18)
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-2 1
Aatgcd = g Z )‘abef)‘cdgheéqe?h

A

29
abc —

Z haef Abcgheﬁqe?}l

per

(A.19)

per
N 7
A ’
N ’
\ = Vi
A4 7
/‘( \
/7 No_~- \
4 \
4 \
4 \
4 N

% Zper haef{eAa QB}ef{gAv HB}bc

(A.20)

—X 1
Aabcd = Z Z Aabef{eAa GB}ce{eA, QB}df

per

% Zper haef{eA’ 93}66{9A7 QB}cf

(A.21)

g _
Aabcd -

%fACEfBDE Eper{eA? HB}ab{eca eD}cd

0 (A.22)

XAabcd - X{0A7 QB}ab{eAv QB}cd

0 (A.23)
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g_,\:@ — X
s _
Aabet = 0 (A.24)
Zi CQ<Z){9A7 GB}ab{9A> QB}cd

4. Scalar-Fermion-Vector contributions

\
A L [
\ N N
\ \ N
\
\ AN \
/ — / ;
/ ’ ’
’ ’
4 ’
; P/ | S P

Bipe = lll Zper{9A7 eB}abTr(tA*tB*meTc

B;/bcd = abc
T 2pert07, 08 Yoy Tr (e Y ey T +mptMPY e 4 A By e
+Y tAtBy td) +Y tAtBml)
(A.25)
/\/ \\ — /\/\’@\\ :}@
B, = B, =1 64,05 o Tr(t4*m ;tBY e
abed — abe T 4 Zper{ ’ }ab I'(t my
T 2operl04, 08 Tr(t Y 7Y 1) Ay tBmt)
(A.26)
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A.3 Bilinear scalar

1. Scalar-only contributions:

-3
Aabcd =

i Zper AabefAcegh)\dfgh

AY
N //
\\ 7z
7
~ S 727N
YT \ -7 \
<2 «_
, ~a_ ~\_ L/
, ~ - -~ -
’ ~
~
7 N
7 ~
7 ~
/4 AY
________ <=1 \
. )
As -

-3

Aab = )\abefheglhfgl + 27/ngf)\aegl)\bfgl

(A.27)
+23 2 er haesPrgi Nveg

2. Scalar-Fermion contributions:

AT K ¢ TR e [
—2Y 1 2y
Aade - g Z }/éfg<S)Aab€fACd69 A b — Q}Qfg(s)(mgg)‘abef + haefhbeg)
per
H pea = Hy, = I \apes Tr(mpYm Y/ 4 hic.)
§ 2per Aabef TH(YY Y4y H +m2 Tr(YY Yy 4+ hee.)
pyteyeytdy ) + 5 e TE(YPY e Y 1)
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Y
Habcd -

Tr(Yy(F)YTeybyteyd
per

H;; = 22])67’ Tr({YrQ(F)a m}mf}YTaYb)‘F
Te(Ya(F)Y my (Y Py + m}y?)+
S

(A.30)
FY - FZ; = ZpeT [TI" (YeYTaYeYTbmfm}—k
abed YemT YemT YaYTb—l—
S ATr(Yeyteyey ey ey td sy
2 (YeyTayemT + YemT YeyTa) %
+YTey ey tey by teyd) f I
(Yol + mpv1) + h.c.)}
(A.31)
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3 _ 1
Habcd ) Zper

HY, = 5y [T (VY Y el
+mypmlYeyteytyte

Tr(Yey by ey teydyte) Yombye(ym, + mly?)yte
Y ieye(ytm, + m}Yb)YTBH
(A.32)
_)
oS
HE =2% . Te[{Co(F),ms}Y ot (YPml + h.c.)
Hapoq = 3 per +H{Co(F), Yymi(YPm} + h.c.)
Tr({Cy(F), Yo}y toyeytd) +H{Co(F), Y3y o pml
+{Co(F), mysym Y Y ™|
(A.33)
%
= W I N = W I N
H;S;)Cd - Z Cg(i)Habcd H(;S;) - Z CQ(’i)Hab (A34)
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3. Scalar-Vector contributions

I\
*’ AN
v
~
RN
\ VRS
~ - AN - AN
N s -- N
N s N
N s N
~ 7 " 4
~ N s
\\1 ~=-7 Vs
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PRy LN
s / N
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’ S~ ~ (‘J\'\z
s N
s N
s N
N
AN ™
(’ ~—7
\ )
N s
~ -

—28 1 —28
Adbea = g > CI(S) Aabes Acdeg Ay = 2C57(S) (Navesmiy + Pacylineg)
per

(A.35)

/, ’
A% ’
’ N ’
’ \ ’
’ Ny
\
( 7
\ /N
VAN
\ 7, ’ AN 4 N
’ \
\ AN ’ S, \
\ ’ N ’ N
\ ’ N
N ’
X .
N /N —
N VAN
’ N ’ \
/7 \ /7 \ &
’ ’ \ AN
’ \ 4 \

—2 1 —2
Apea = 3 > NabesAedgnBig07 Ay = 2(Nabermep, + Pacshign) 0207
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N\ /7 /
\ /7 /
N\ /7 4
ST ,/ PERS J/
A \ — + p
/7 No_~- \ — \
/7 \
/7 N\ \\
/7 \ \
/7 N\ \
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abed —

A 2 A pB A nB
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4 per 7 abe ) e 3 c
(A.37)
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—A
Aabcd =

—A
Aab = 2mgf{0A7 QB}GB{0A7 QB}bf
411 Zper )‘abef{eA> QB}ce{eAa eB}df

(A.38)
A =
: abed 0 (A.39)
ngCEfBDE ZPW{QA7 QB}ab{‘907 QD}cd
//\/@:\\ — X
XAabcd = X{9A> QB}ab{6A7 QB}cd 0 (A40)
K- X
AS =
abed 0 (A.41)
> Ca(i){64, 0%} {04, 65 } e
4. Scalar-Fermion-Vector contributions
/\/ — /\/
Blyea = 1 2oper 107, 07 by Tr (#4415 ey 1 BY, = {04, 07 } o Te(t4*t % mpm’;
Y Ay 1) +mptAtPml)
(A.42)
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\/ \ % //
o 1 xy c By td B _ (pA pB fA* 0 4B
Bszcd = Z Z{eAa HB}abTr(tA \ YT ) Babc {0 ; 0 }abTr< my f)

per

(A.43)
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Appendix B

Full two-loop RGEs without SUSY

relations

In this appendix, the full S-functions for all parameters of the non-supersymmetric toy

model in Sec. 3.3 of Part I are listed up to two-loop order.

B.1 Gauge couplings

1
1
B = Sg* (= 2¥al? = 23> — 413 + 69 = [gal” — [g.]?) (B.2)

B.2 Quartic scalar couplings

1 3
B = 2003 + 2\ gal” — 21Va[* = 3g° M + AaYa|” — Sloal + 20"+ AT+ (B.3)
25 5 63
BY = —EQG — AN+ "N+ 20°05 — 4N + §g4A4 — 10A2X; — 10A2)\; + 28¢%A2

1 5
= 24005 = 2X{Y1[* = 26Vl + S Ma[Val? — A0MT[Y5[* — 2X5V5[7 + 20| Vo[

+ 2PVl + 25Vl + giga® — 3MYa V1Y + 8YYy

1 * * *
+ 20495 (2( = 20,5355 + gaha + gV + galal?) + galgal?) = BAYaIRY;

4
1

— 5902008 = 20ulYal" + 4ga( = M+ 2 ) V2V + [Vl (39,0 + 4aY2Y5 ) )
1

- g9 <g4gd — 109%gaAs + 160ga)] + 12ga)a|Ya|* + 169, A3Y3Y5" — 169, A\ Y5Yy

+169.Y2Y5Y5 2 + 4gali[2 (31 — 4Y3Y5 ) — 16045 %32V
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+ 20497 (39,0 + 4921255 — 49,V ) (B.A)

3
B = 4268 4 20000 — 307 As + 4X2 4 8Ag ) + 8Ag s + 2Xs|Val? + 2)|V3[

1
93 (= 203 + 20,55 = galgul> + 9k ) — Y5 |Val?V5

+ 9 (20025 = 20u1Y3[% + guo) (B.5)
(2) 25 2 2, 43 4 2 2 22 3
ﬁ)\;), = —gg — 4)\1>\2 — 4)\1)\2 -+ gg )\3 — )\1)\3 — 8)\1)\2)\3 — )\2)\3 + 2g )\3 — 10)\3

8

B

(1
A1

(2
A1

+ 594)\4 + 1692)\3)\4 — 48)\%)\4 — 40)\3)\i + 594)\5 + 1692)\3)\5 — 48)\%)\5 — 40)\3)\%

1 5 1
— AV = 20" Vol + 20725 Val* — ANVa[? — 160504 Y5 [* — S g"[V5[?
5

+ 19Nl YVal? — ANG[Y5]F — 162X Vo ]* — 3As[Val* + 10[Y[* Yo" — Bs[Yil*

3 * 1 *
+ 0]V Y5l = ShaYalVi[?Yy — 70803 (3% — 101%3 % = 5lau?)
3
~ 30,9093 °YaY5 — SAVAVIPYS + BAY3ValYS + 129 Y5 iV Yy

1 * *
— 79002 ( = 100Vl + 120725 + 30,

1 5 5 5
+ gd( — 594% + ggdiA?, — 29aN; — 8Gads s + §gdA3|Y3|2 + nglgu|4 + 5ga| V3|

+ 20, A3Y3Y5 — 89, A Y3Y5 — 89, As Y35 — 69, YaY3Y5

* * 3 * * *
+ Y7 (203 — 49,105 = JaahaVi ) + 69aY5V2 Yy — 60,V Y3

* * * 5
+ 9 (349 [Vi® = 363V2Y5 + 309 Val? + 39 (942 — 9u%3) Y5 + 70u9s) )

1
— ggi <g4gu — 50°GuA3 + 169, 3 + 649, A305 — 409, |Ya|* — 16g4\3Y2 Y5

6400\ YY5 + AsYaYy) + 48aY2Y3Y5 2 + 161V 2 (204215 + g

— %25 ) + 413 (12942 — 073) Y — 59.0s ) ) (B.6)
)= 20 |Yal? + 200N + 2|Y1|2()\1 . 2Y2Y2*) FANZ 4 8A N — ;g2)\1
+lgal* (M — 2117 (B.7)

~

39 )
= 1—694)\1 -+ 92)\% - 10)\:13 + Zg4)\2 - )\1)\% + 492)\2>\3 — 8)\1)\2)\3 — 4)\%)\3 — )\1)\%

— AN A} + 16g° M Ay — 48T Ay — 400 \] — 3¢ V1] + 292/\1|Y1|2 — ANV )?

+ Zg%!YzP — ANV = 16 A5 [* — Ado s V5] — i( — 10912 + 3 ) gl
= 3\ Y[+ 10[Y2 Vi [" = B [Ya|" + 101 [*[Ya]" — 2¢°Ya|Vi[*Yy
FEMBIPYS — DAY - AV 4 1YWY Yy

— 105 (80.000 + B0V — AgaARY; + SgaAaYay

Vil (2490555 + 3.0 — 80,1575 ) )
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1
+ =9y (5929d>\1 — 16g4\] — 64gghi g — 6ga\ | V3] + 4094 V2 |*

8
= 3galgul* (M — 8YIYT) + 80, M Y3Y5 — 169, )0Y5Y5
412 (12(gaY — 0uY5) Y5 + ga( — 207 + 4%3¥5 +511) )) (B.8)
BLY = 2002 + 2X5]g,]? — 21¥3]* — g2 \s + 4| V5[ — %|guy4 + 294 L2402 (BY)
B = —?—296 — 4N+ 294/\3 + 29702 — 4N} + %94/\5 — 10A2)5 — 10A2)5 + 28¢°\?2

1 5
= 24073 = 25 Y1 = 2X|Yal” — 20" VAl 4 SN Vsl — 0AT[V5[ + 20|V [*
+ 2PV + 255 + gagn® — BAsY3[VA[YS — BAsY3|Yal'YS + 8YYS

1
+ 59002 (= 200525 + 9uds + il + gulVal?)

1
— 59 (9%9u — 1097905 + 160g,32 + 169.0Y2Y; — 160,05 Y2Y5 + 16g,Y2Y3Y;

+ 4g,|Vi[? (3)\5 - 41@,1/;) + 4g,|Val? <3)\5 - 4}@,}/;))

1
— 191(200(2X3 = 215" + 3361V 7) — galgal’ + 89uYa (= A + A + V3 ?) 5

+ l9ul? (3940 — 49aY5Y5 + 40,575 ) ) (B.10)
5(1)_2>\)\ 2\ | Va2 2( * 2 _§2
Ay = 1A3 + 2| 3| —|—2|Y1| QYEgYE)) —|—)\2 —|—4)\2+8)\2)\5 29 )\2
+ Igu|2( —2Y7 + Az) (B.11)
5 39
B = g (T + Tohe) — A+ 923 — 10X — 40X + XD — gAiks) — 8Aikas

— X2+ 16¢% Mo hs — 48N2N5 — 40002 — 3¢M Y1) + 292)\2]}/1\2 — 4NV

— DI + 2Pl — ARV — 160 ¥ — (32 — 101l
—BMI TP — BNVl + 10V IVt = DAYalviY;
S2PVVPYS +BAYINYS — DAYV + 125V Yy

+ %g;ﬁ (592%)\2 — 16gu,A3 — 649, \0\5 — 6g,Aa|Ya|* + 40g,|Y1|* — 1694\ Yo Y5
+ 89a0Yy + AV (= 1200555 +12,%5Y5 — 20%0, + 40,1215 + 50,0 ) )
— <0 (Badlau P (= 8127 + %)

+2 (89d)\1/\3 + 3gada| Va2 + 8guM VoY — dguoYaYs

+ Vi (240.Y355 + 3900 — 89475 ) ) ) (B.12)
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B.3 Yukawa couplings

1
By

By, =

(2

B =

5(2)

~—

~

1 * *
Bl = (2gd|Y1|2 + 294|Ys|? — 39290 + 49295 + 494 Yo)? — 89, Y5Yy + gdlgu|2) (B.13)

1
BR = < T9algul* — 10g39: + g5 (289dgu|Y1!2 + 2gu( — TgaYs + 24guY3)Y2*

4
32
+ 9(16022Y5 320,00 — 569,[V3l" — T9%0.) ) — laal? (2(120aY275
— 89, Y3, — 31g°gq + 64gada + TgaV1Y;" + 7ng3Y3*> + 7gdgugii)
— 2(1gail* = 2(160,0%; + (24,5 — T9a2 ) Va2 + * (59072 — 4923 ) ) Yo
+ 873 (3005 — 49,73 )Y 2 + 2V (g4 (401 + 6%) + (TaY2 — 80.%3 )75 )
+ga( (= 11675 +320%5) 5+ 14v5) + 2= 4(803 4 03+ 28) +¢1))))
(B.14)

1
7 (201 + 202 ? = 399, + 49297 + 49, |Val? = 89.YY5 + gulgal®)  (B.15)

4

312 ( Tgulgal*

— 94 (79 9a9u + 329agus — 289agu|V1|? + 5694gu|Ya|* + 14gag. Y5> + 794929,

— 1692Y5Y5 — 486335 )

—2(20"gu — 89,23 — 89,73 — 649,02 — 1170 [Val? + 320, |Y3[? — 1099, Y3

+ 14g,[Yi[* + 14g,[Ya|* + 249, [Y3|* + 5g50,% + 89°gaYaYy — 32ga03YaY5

+ 149, Y3|Ya|?Ys" — 4894Y5 Y5 Y5 — 324Y5 Y5,

gl (120.Y5Y5 — 8g23Y5 — 316%0, + 649, + T9. YT + 70, 12Y5)

2112 (49 (42 + %) + (T9uYs — 804%2) Y5 ) )) (B.16)

1
T4 ((29”3 - 49%)93; + Y3<2IY1|2 +2|Va* = 3¢° + 8|Y3|2> - Yg,|gd|2) (B.17)

1
25 (= Tslgal" + i (g0 — T9uYs + 24902) 1 + Y - 8( 20,73

+ 7ng2)Y2* n gd<11g2 4|2 - 32)\3)>) - 2<29u (3%1/3 - 4ng2>9;;2

+ 93 (10202 — 16000sYs — 50,5 + (79,5 — 24902 ) [Vaf? — Sqa¥alYs P
+ (Tg.01Ys = 8201V ) VY 4+ 120,72V ) + Y3 (1493 + 1413

+ 2\Y1|2( — 14Y,Y5 + 4(4>\2 + g2) + 73@,1@*) + [Ya|? <14Y3Y3* + 32Xz + 7g2)

+2(10/v5]" + (= 819%Y + 600Y )7 —4(32 + X3+ 48) +4'))))  (B1S)

1
By = —(2( — 20,V + gaY2 ) g+ Ya (212 4+ 2% — 397 + 8%+ gul?) ) (B.19)

ﬁyz = < 494 (39de 4guY3)gZ§2 + 94 (( —79qYs + 24guY3> |gu|?

118



+ 2(5929de — 46°9,Y3 + 16g,A3Y3 — 12( - gguYs + ng2> |Ya|* — 7gaYa|Yal®

+ (80,715 — Tgaia )7 + 240,777y ) )

—Y3(Tlgul" + g2 = 119%9u + 149u[Y2[? + 3200 — 82042 = 79.%: ) Y5 )

- 2(294 — 82 — 82 — 64N2 4 Tg?|Ya|? + 32X3| Vs |2 4 14| Y1 |* + 20|Ya|* + 14]Y5]*

FAVP (160 — 1YY 449 + YY) + 212 (640 — 3197 + 77375 ) ) )
(B.20)
By = in (219212 + 21Y3[ = 66 + SYi [ + [gal? + |9 [?) (B.21)
B = —S%Yl (7|gd\4 + 700l + g3 (329dA1 —11g%gs — 14g4|gul? + 14ga|V3|?
— 320, Y5Y; + 56gdle\2) + g <l4gu|Y1|2 + (32X — 11¢g%) g, — 8<4ng2
~79%3) Y ) + 2(20% 1" + 14(1[ + [VaI*) — 80N + AF) = 11g%(g* + Yal?)

26
+ 32| V3| + |Y2|2<32)\1 —11¢° — 28Y3Y3*> + 14|Y1|2(Y2Y2* FYSYS - _g2>>)

7
(B.22)
B.4 Fermion mass terms
O _ L (o2 2 B3
5M1—2 1( 194" + [9ul (B.23)
1
By, = 6 <Ml|9d|4 + Ju (169dT3Y1* + guMg,? + M1< —12|Y;* + 1747

—2Vi[2 = 2%l ) gy ) + Milgal? (- 12%2¥5 + 1797 — 2017 2%5Y5 ) ) (B.24)

1
Bl = M2 <2|Y2|2 +2Vs + 4|1 * = 69° + |gal® + |gu|2> (B.25)

B\ = 3% (2294M2 + 649° M| Y1 | + 2297 Mo | Ya|? + 229° Mo |Ys]? — TM,|ga|*
— TMa|gu|" + 8Ma|Y1|" — 28Ma|Ya|* — 28 My |Ya|* — 64Y3[Yo* T} — 64Y1|Y5|*T5
+9; (149dM2!gu|2 — 329,117 + M2<11929d — 2g4|V1|* + 329, Y3Y5
= 560u[Yal?) ) = AMLYAVIPY; — AMLYSVAPY5 + S60LYS|YalYy
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B.5 Trilinear scalar couplings

o4 = 2 (ga(8MYig; + 9Ty
(213/1|2 2032+ 2052 — 397 + 41 + g + 4% + |gul?)) (B.27)
582 = (203 (3037 + 400, M Vg, — G40 YY)

+ gd< 809, M, Yigi? + 2ng< 320 MY,

— 32MLYPY] — 4SMYA|Ya[? — 48MYA|Ya[? + 5yagu Th + 8° MY )

+ Tg( 1204 Vi[? + 169, Y5 Y5 + gd( C12|va? — 16()\1 + Ag) + 592)>>

+ ng;( 129, |Yi]? — 120, |Ya]? + 16g0Y5 Y5 — 169,00 — 16guAs + 5g2gu>

4 g2 (128M1Y1Y2Y* _ 6guT3> Ty (199 +8g%\,

— 16A7 + 8g% Xy — 96 A1 Ay — 16)3 + 649° X3 — 96A1 A3 — 96 03 — 16A3

— 64(2M1 A1 + 2037 — AT + 2005 + 2A3)5 — AZ) + 1097 V3]* — 32X Y3)?

= 32|V = 24|+ Vol 4+ YalY) + Y (10025 + Y3Y5) + 52

— 80+ Az)) + 2|Y2|2< — 16 ()\1 + /\3> L 20Y,YS + 592>>> (B.28)
B = 20Ty + 2T0[YVa > + 4N Ty — 43| Y22 M + 8\T) — ;gQTl

+lgal? (- 2viM3 + Tl) + T2 (B.29)
B = 9 &) + ANT — —/\2T1 + /\2T1 ATy — N2Ty + 16g° M T4

AN AT, — 40T + Zg‘*T2 — N NT + 492N Ts — 4N ATy — AdoNsTh

5 5
—4N3Ty + Z—LgQT1|Y1|2 —4ANTIY? + ZgQT1|§/2|2 —ANT|Ya]? — 16Ty | Y5

3 . x *

— ANTo|Y5[* — §T1|Y1’4 = 3N[Yal" = 3¢"Yi My — 2g°V1[Ya|* My + 4N Yi|Ys 2 M,
1 7

+ 10V Vel My — Zlgal* (= 10VM; +3T1) + 10V2Va MYy + {TiValYa Yy

1
+ <93 (59°94T1 = 16001 — 64gu\Th + TgaT |V [? — 69T Yol

— 3galgul* (= SVIM; + Ty ) + 89, TyYaYs — 16, T5Y3Y5

+ 8ViM5 (2000 + 204|V3l + 5gal Vil + 691Vl — 69,%3Y5 — gau ) )
3 3 3
- STV - STV Y + YV PMGY - Sgia iVl
1
— <03 (2(490%2 (2T + 6% 05 — 1) Y5 + 89,0, + 0, Vol (3T; — 8315 ) ) )

8
(B.30)

3
B, = 20Ty + 2LIVs + 40Ty — AVi|Val*M; + 85 Ts — S9°T
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+ Igul2( — 2Y1 M +T2> + TofYi|” (B.31)
39 1

ﬁ = —g4T1 — 20 N1 + 47 A3T) — AM ATy — 4Xo 3Ty — ANST) + Eg‘*T2 + QAQTQ
+ qg )\QTQ — 7)\ng - 4)\1)\3T2 - )\%TQ + 1692/\5T2 - 48/\2>\5T2 - 40)\§T2
5) 5)
+ 192T2’Y1’2 - 4)\2T2|Yl’2 - 4)\3T1|Y2|2 + 192T2|3/é|2 - 4>\2T2|Y:?.|2

3 * *
— 16A5T|Y3|* — §T2|Y1|4 — 3D|Ys|* — 3¢'Y1 My — 2¢°Y1 |52 M
1

+ DV VAPMS + 10V Y3 M; — lguf* (= 10Y1M; +3T2) + 10V2[¥a M5 Y7

3 * 1 * *
DYy - i (30BlVA + Bgalgl? (- 8ViM; + T3)
+2(49.%3 (213 + 6V M5 — 1) 5 + ga(3\Ts + Y3 (37 — 8105 ) ) ) )

7 2\ * 3 PAVES 2 *\, % 1 * 2
+ BYIVPY; - SHYYLPYS + 1YV ALY + 2 (59°. T
— 169, Ty — 649, 5T + Tg To|Y1|* — 69, T2|Ya|* — 16941 YaYs + 894ToYoYs

+ 8YiM; (2000 + 20uVal + 59 Vi [* — 604%2Y5 + 69,V — g% ) ) (B.32)

B.6 Scalar mass terms

1
By = 2 <2B|Yz|2 +2B|Ys|* = 3Bg® + 4Bs + AT Ty + 4T5T5 + Blg. |’

+ 94 <8M1M292 + Bgd)) (B.33)
19 1 1
BY = +EBg4 + 5 BN = 2BM + 5 BAS +4Bg*As — BA; — 8B\ + 4B

) ) 3
—8BAsds +4BA + S Bo*Vl” — 2BXs|Val” + B |Vi[* — 2B |V5[* — S BIYL[!

- §B|Y3|4 + %gQTng —2NTSTE — 20N TsTy — 6ASTsTy — SANTSTy — 25|V |2 T
_OTYVaPTE + %g2T3T2* CONTHTY — 20Ty — 6NTHTS — SATYTS
O PT; — 2T + LT Y, + AMLTY[Y; — SB[y
+ 922( — 5g9q My Mag,, + 8MiMyY3Yy — ngfz>

116 ((64)\3M1M2 - 6AM, M| Y3 |2 + 96 M, Ms(|Ya]? + |Y3]?) — 10Bgage
169 M1M2>g; 4 809y My Mag:2 + 16g4T T + B<12gd|Y3|2 4 16(gaNs — guYaYy)
— 50700+ 6aVi?) ) — BY GV — DYy + 62 (8MALY:Y; — 2 Bg)

8
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42 (5B (160275 — 129Vl — 160, + 500 — 69, il7) — 0. TiT5) (B34
B2 = —gngf + 8\gmd + 2X3m3 + 203 + 4|T | + 2| T3] + 2m3| Yo |?
+ |9d|2< — 2My My — 8My My + m%) — AY,| Mo |?Yy (B.35)
52 = (%f A2 A2+ 16g20 — 4OAZ) m? + (Zg4 4 dgPh — 4)\§)m§ A2
— 3¢* | Mo |* + ¢*|T1|? — 10\ |T1|? — 48X4|T1|* — 2M\1|To|? — 45| T
F ST — 0TS — XT3 — ST — Vil + 2 g
1AV — g ¥if? — 1 (3m7 — 10[MJ? — 64| Mgl — 3
+ 10| My 2| Ya|* — 4XsToTS + A1 Yo P MG Ty — ANsTV Ty — 4Y4 | Ty |2V
— V4| T5?YY + AMLTY Yo ?YY — 29°Ya | Mo PYS — 4Y5| Ty [PYS — gmeg|Y1|2Y2*
+10Y3Ya | Ma2Y7Ys — 2Y3| oYy — gmmwx@f +12YaY3| Mo 2Y5 Y
+ %92 <5929dm% — 64gahgm; — 16ga|Th|* — 6gami|Yi[* — 6gami|Ys|?
- 3gdygu\2< —16M M} — 8MyM; + mf) + 169, My Ty Y + 3293 | My 2Yy
+ 8gumiYsYy — 16g,m3Y3Yy — 64g,Ys| My |*Yy
+ 805 (20201 T} + Mo (20uY? + 594l Vil + 60ulYal® — 69.Y3Y5 — g%a) )

1
n 329d}{»,|M1|2Y;> - 19 (49u|T3|2 + gu|Va]? (3m§ — 39M, M — 8M2M§>

+ 4(2g,09m3 + ga¥a (2m3 + 6| M + 8My 2 — m?) Yy ) ) (B.36)
3
Bq(i%) = 2\3m? — §g2m§ + 8\sm3 + 2)\2m§ + 4Ty |* + 2| T3] + 2m3|Ya|?
gl (= 2MaM; — SMyM; +m3 ) — 4V3| My Y (B.37)

5 39
6(2% = (194 + 492)\3 — 4>\§>mf + (1—6
—403m32 — 3g* | My |* — 2Xo|T1 > — 4Xs|T1 | + g2 |To|? — 10Ao|To|* — 48)5|T5|?

g' = X3 = 23 +169°A5 — 40)2 )m3

1
+ 592|T3|2 — 6)\2|T3‘2 — 6)\3‘T3‘2 — 8)\5‘T3|2 — 4)\2m§|Y1|2 — 4)\3mf|Y2|2

5 1
+ 2 3Vl — 162sm3[Yal? — 7 (= 10[0a + 3m3 — 64|02 g, |
— 3m3|Ys|* + 10| My 2| Ys|* — 4XsToTy — ANsTV Ty 4 4Y1|Ya|* My Ty

— LYY = 2V TPYT + AMTo|Ya Yy — 2Y5 | T3 Yy
1

— <0 (3adgul? (m3 — 161 M7 = 8MaM; ) +2 (44l T

+ g4 (SAgmf +[va? (3m§ — 32M, M — 8M2M2*>>

+49,Ys (2m} + 6)5f2 + 8|02 — m3 ) Y5 ) ) — 20°Va MYy — 4Y5| DY
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SV — SmAVAIVaYS 0V MPYYS 4 12 WYYy
+ ég;; (5g2gum§ — G (64A5m§ + 16|32 + 6m2| Vi |2 + 6m2|Va? — 16M2T2Y1*)

+ 320, (Vi PYY + V2 MY ) — g4 (16m3YY5 — 8m3Yay' + 643 MY )

805 (20,175 + Mo (20,[Val? + 50uI1[ = 69aY2Y5 + 69u[Yal* — 9%.) ) ) (B.38)
853 =20 mi + 2hemi — T} = T3 + 2|T4]* + 2| + 2T + 2m3 Y |* + 2Y M5

— 72 = T3 = 84| My Y + 2M3 Y, (B.39)
ﬁfjg = 4g° m? — AN M2 + 4g* Aam2 — AN2mE — N2m2 — N2m? — 2¢°T2 + A\ T?

—20%T5 + 4\ T2 + 4g*|Th | — 1201| T + 46°|Ta|? — 12X0| To|* + 4¢%|T5|?

OIS — ATy ZgPmiIYi — ANVl + 2TVl — Adam Vil

+ 2TEV; 2 = B3Vl + B2DA LIV + 207V My 2 - 2V R (Yol + Va2 ) M2

— 20° T2+ AT 4 2V, 2T — 267 Ty 2 + 40Ty 2 + 2|Ys|* Ty 2

—8PVIIMLPY; — Agag ToMIY; — 8YPM5PYY + 207 M3Y;? — 2M3|VaY;

— 2M3| Y52V = SMIV Y,

. l| 2 2 2 20 r%2 x g2 . 2 .

119 (8)\2m2 AT + AYEME? + 8ToTS — AT + AT TS + 3m2Y,Y;
—32MY MYy — 160MaY MY, + 4M22Y1*2>

* 3 . )
+ gd( — 29d)\177l% + ngf — 29d|T1|2 _ gd!T3|2 _ —gdm§|Y1|2 B ngEM2 ) N ngl )

4
— AMY1gT; + SgaVil MY + AgaVi MY — guM3Y )
3
— AVBITIPYS = MT5PYy = SmiYalViPPYs + 8YYa[Mo'YYYy — V3| ToY
* 3 * * *
= G| T Yy — SmiYalYi Yy + 8Yi V5[ MLV (B.40)
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Appendix C

Feynman rules, Widths and Branching
ratios for the RS model

In this appendix we discuss interactions of the radion-dominant (¢) and the higgs-dominant
(h) states in the RS model and provide the relevant Feynman rules: for the couplings of

¢ and h to the SM fermions and gauge bosons, as well as the trilinear self-couplings ¢hh,

hoo, oo, hhh .

C.1 Radion Interaction Lagrangian

Interaction with fermions
The interaction of the radion with two SM fermions is described by the following part of
the trace of the SM stress tensor |73]

=3 [ﬁ (D) 1 F — T4 (D)) + 4y f (1)

2
Most of the authors consider the case of on-shell fermions, thus the effective La-
grangian (including the SM Yukawa contribution due to the Higgs-radion mixing) takes

the following form

L¢ff - % mef_f+ LYukawa (02)
"o

Interaction with massive vector bosons
Similarly, the interaction of the radion with two SM massive gauge bosons includes a
contribution from the the trace of the SM stress tensor and the SM Higgs kinetic term,

respectively:

Lovw = 50 [ WWe = 2,24] + |D, 0 ©3

r
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Anomalous couplings
The effective vertex for the radion-gluon-gluon interaction (at momentum transfer ¢ along
the scalar line) appears from the following Lagrangian [43]
(bO 1 (,b(] Qg v
L¢gg = [ A, —bs — 5 _A_r + v F1/2(Tf) QGWGM (C-4)

with 77 = 4m7/q* and the form factor Fy5(77) = =277 [1 + (1 — 74) f(75)], where

4

o= e e

1y [_H_ﬂ—r _

The first term here describes the QCD trace anomaly (with the SM QCD S-function
coefficient b3 = 7), the second term represents the effective contribution of 1-loop diagrams
with virtual fermions circulating in the loop.

Similarly, the radion-photon-photon interaction is given by

L¢w=[ Dt by) - (g )<F1<Tw>+ze?NzFl/2<n>>]‘“;—WMFWFW

(C.6)
where the first term describes the QED trace anomaly |75] with the SM SU(2) x U(1)y
p-function coefficients by = 19/6 and by = —41/6, the second term comes from 1-loop
diagrams with virtual fermions and virtual W-bosons in the loop with the form factors
Fi)5(m;) and Fi(tw) = 2 + 31w + 37w (2 — 7w ) f(Tw) respectively. The summation ), is
taken over all SM fermions with an electric charge e; and a color N!. (For the observations

on conformal anomalies see [58].)

C.2 Vertices, Widths and branching ratios

The following notations are used |71, 72|:

gn=(D+B), gs=(C+~A4), g,=7B, gsz=74,

K o 3m12/V,Zk:b0 gW,Z . g;nl(ﬁ ( 1 + ganom)
Z ) - )
W 2Ai(l€/Mpl)2 h.¢ (gh¢> - IiWZgh (b)mWZ ka w.z
(0] b2 « b2 2
anom __ anom __ by t 0
W 8msin? by, 77 8 (tan2 Ow Tovtantbw )

where by = 19/6, by = —41/6, by = 7 are the SU(3) x SU(2) x U(1) beta function
coefficients, Ay, is the Weinberg angle, and A, B, C, D are the parameters of the Higgs-
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radion mixing matrix (6.13) in Sec. 6.1.2 of Part II.

Vertices V,zz and Vi,zz

_ mz r v Z v v
Vozz =9 - 5 (90 — gikz) [ — 295 (1""p1 - p2 — PYPE)] (C.7)

Vertex Vi, zz

. mz r v v v
Vizz = ig (9n — ghkz) [0 — 297 (0" p1 - p2 — PYDY)] (C.8)
cos Oy

Squared amplitudes Myzz and Mz

1 g2 ,
| Myzz |? = 5—27712 (96 — ghkz)?
[ — 297 (Muwpr - D2 — PI05)] [1pe — 297 (Mpop1 - p2 — PT15)]
Wot Y (e
mZ p m2 vo
(C.9)
1 g2 ,
| Mhzz |2 = 5—2 2z(gh - ghﬁz)Q
(D — 297 (Muwpr - P2 — PI05)] [Mpe — 297 (Mpep1 - P2 — DIDS)]
il . Prs
m2 o m2 vo
(C.10)

Squared amplitudes Myzz and M}z, (simplified)

2

r 2 2
| Myzz |* = S2m? (90 — gikz) [12m‘§ (1+2g7m%)" + mi (148 g7 | my)
—4m (m + 6ggmyz +8 | g5 |* m%)] (C.11)
2
r 2 2
[ Mizz [* = g (n = gz |12 (1 297im3) "+ oo, (148 | off P 1)
—4m’, (my + 6g7my + 8| g7 > m)] (C.12)

Partial widths FqSZZ and FhZZ

1 ) 4m?,
| Myzz |7 |1 - —

1
16mm my (C 3)

Pyzz =
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1 4m?

Thzz = Muzz |2 4]1— C.14
hZZ 16w my, | Myzz | mQh ( )
Vertices Vyww and Viww
V. =1 ( —q" [’“’—2W(‘“’ o ”“)} (C.15)
oWww = 1gMw (Ge gqg/‘iw) n 9o " P1-P2 — P1Do :
Viww = igmw (gn — grrw) [ — 29 (0" p1 - p2 — PYPh)] (C.16)

Squared amplitudes Myww and Mpyww

| Myww > = g*miy (96 — ghrw)?

[ — 295" (w1 - p2 — DYDY)] (00 — 298 (o1 - P2 — DIDS)]

il Pops
m%/[/ — Nup m12/V Uz

(C.17)

| Myww |* = g°miy (9n — grkw)”

[ = 298 (w1 - P2 — PI5)] [Mpe — 298 (Mpep1 - P2 — DID5)]

PPl PPy
wiy ) g e

Squared amplitudes Myww and Myww (simplified)

(C.18)

2

g r 2 2
| Maww [ = 2 (g0 = ghpew)” [ 1203y (1420 miy)” + mady (148 | g3 [* maiy)
W
—Am?, (miy + 69 my, +8 | g [ miy)] (C.19)
2
r 2
| Myww |* = T2 (gn — gprw)? [12m§14, (1+2g)myy)" + m) (L+8] g > my)
W

—4m3 (m%,v + 69 miy +81 g |? m?,v)] (C.20)

Partial widths I'gyw and 'y

1
| Myww > 4[1—
7rm¢ m¢

= C.21
Lsww 16 ( )
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1

Chww = Tom

Vertices V., and Vj,.,

4m?
| Myww |2\/1— 3
mp my,

agw [ |

Virw =i—— |g. | b b — o * Stoop.r

v L Y PR S
=l - * 00;

hyy 270q _gh 2 Y o kby gh Ol p,h_

or (if only the top-quark is circulating in the loop)

22

> eINIFip+ B

Sloop,r,h = <
A

(0" p1 - p2 — pYDh)

(" p1 - p2 — piDh)

)

Stfloop,r,h = § -3 Fl/Z(Mt7 mr,h) + Fl (mW7 mr,h)a

Fijo(ton) = =210 [L+ (1 = 70) f(Tr0)]

Fl (Tr,h) =2 + 3Tr,h + 37—r,h(2 - Tr,h)f(ﬂ”,h)a

Ton = 4m?/ mfvh, m; - fermion mass.

Squared amplitudes M., and M,

o, mt
Mg, 2= 252 g5 by + b
| My | 167202 9o | 02 + by + p—
oz mi 47
M 2 EW h r b b
| My | 167203 G\ P2 bv agw kb
Partial widths 'y, and I'y,,
1
Dypy = ——— | My |2
oalet 167rm¢ | olel |
1
I'yr = M, 2
hyy 167 m ), | hyy |
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) —G¢ - Sloop,r

) —9h - Sloop,h

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)



Vertices Vy,z and V2

b
Vi = i [29;; ( 2

270 tan Oy

— by tan ew) — go(Ap + Aw)] (n"p1 - p2 — pipy) (C.33)

b
292 2 — by tan 0W — gh(AF + AW) (77Wp1 P2 — plfpg) (034)
tan Oy

For Ap and Ay see [82] or “The Higgs Hunter’s Guide” [83].

Squared amplitudes Mg,z and My, z

,  Ohw m%b my i by ?
M = - —= 24q, — by tan —g4(A A C.35
| ¢7Z| 87?21)3 m%, 94 (tanHW y tall W) g¢( Ft W) ( )
v, M m2\ b 2
Myz |P==V "0 (1 - —2) |2g7 [ —2— — by tanby )| — gu(Ap + A C.36
| Mpyz | 8202 m2 9h tan Oy y tan vy gn(Ar + Aw)| ( )
Partial widths Fqﬁ’yZ and Fh’yZ
T L M, m (C.37)
"z = vz T2 :
167 me
Ty = —— | My |2 41 m (C.38)
M2 16 m, vz m2 ’
Vertices Vygq and Vi,gq
. Qg [ 47 ]
Vigg = 16 295 ( b - F "y py — DYph C.39
bgg = 1 - 9o ( 3+ aSkbo) g¢; 1/2 ("1 - p2 — PIDh) ( )
. ag [ 47 ]
Vigg = 10" —— 1297 b - F Mp1 - pa — PPl C.40
hgg = 1 - gh<3+a5kbg) ghzi: 1/2 (0" p1 - p2 — PIDh) ( )
Squared amplitudes My,, and My,
My, P = S5 g (4T SF 2 (C.41)
‘ bg9 = 87T2U3 9p | 03 + sk —9¢ i 1/2 .
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2.4
Qg My

2 __
|thg| _87r—2v§

2
47
297 (b3 + ——— | — F
gh(3+a5kbg) gh; 1/2

Partial widths I'ygq and I'g,

1
Loy = ——— | Mygy |
g9 167rm¢ | g9 ’
1
thg = 167 mp ’ hgg ’2

Vertices V, ;7 and V,, ;7 (for f =1¢,b,¢c,7)

g My
Vorp = =05 99

Squared (on-shell) amplitudes M, ;7 and M, ;7

2 Ne o 2M2
| Mysr I° = =599 W(4Mf_m¢)

where n,. is the number of colors, n. = 3 for quarks and n. = 1 for leptons.

3, Mg,
| M ez |2 = —592% m2, (4Mbc - mh)
1, o, M?
| Myez |? = —59 Qh m2, o (4M2 — m7)
Partial widths I'y;7 and I';¢7
1 AM?
Typp=——— | My;7 |2 !
1= T, SW\ oi7 | T
T —11|M— |214Mb2‘
nbbhee = g | Vb hee m2
R S SRy LT
htT — 2m 87'(' htT m2h
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(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)



Vertices V¢hh and thh [71]
i
Voun = - [{60¢ (v(ad + be) + cd) + ad®} (p] + p)
+d{12aby& + 2bc + ad(6€ — 1)}p3 — 4d(ad + 2bc) m7,,
=3y~ ted® m3,, — 3X3ab®> m?, | (C.53)

i

thh = A¢

[bd{[12b7€ + d(6¢ + 1)] (p} + p3 + p3) — 12dm7, }

=3y~ dPm7, — 3Xsb® m? | (C.54)
Squared amplitudes My, and Mppy,

1
| My |*= §V¢2hh (C.55)

2 2,2 2,2 2
Py M7, MY,p3—= My

1
| Munn "= 5 Vi (C.56)

1 1 4m?2
I =——| M 2.1 = h C.57
o = S B | Mo 74 | ) (C.57)

Partial width gy,
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Appendix D

FeynRules model-file for the RS model

(3t otk sk o o s Kok ok ok ok ok 3 KKK KoK oK 3K K S KKK K K oK SR K S KKK KoK SR K SR KKK KK SR KK SRR KKK RO R % )
(% Hkkokk sk k)
(% ***%% FeynRules model file: SM + radion sokokkk k)
[ERETTE T EEEE TS|

)

(* sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskosk sk sk sk sk sk sk ok ok ok sk ok ki ki kkk

(st koot ok ok sk ok ook ok ok sk sk kol ok Rk ok ok ok ok k)
(x *xxxx Change log sokkokk k)

(* EEEEEEEEEEEEEEEEEEEEEEEEE S *)

(¥ 2017.10.10 v1.0 — Release of version 1

(ks sk koot ok ok sk ok ook ok ok ok ok ok ok Rk ok ok ok ok k)
(% *xx%x Information Kokokkk k)

(3 sktokok sk ok s otk ok ok ok KRR KRR KRR )
M$ModelName = "Radion Higgs Model v1.3.5";

MS$Information = {
Authors —> {"K. Svirina", "I. Schienbein", "B. Fuks"},
Institutions —> {"LPSC Grenoble", "LPSC Grenoble", "LPTHE / Sorbonne Universite"},
n

Emails —> {"svirinal@lpsc.in2p3. fr
"fuks@lpthe. jussieu.fr"},

"schien@Ilpsc.in2p3.fr",

Date —> "2018.04.03",
Version —> "1.3.5",
References — {"..."}

s

(3 ktokok sk ok s otk ok ok ok KRR KRR KRR K )
[EREE T Fields Kokokkk %)
(3 sk sk sk ok ok oK KKK KKK KKK KKK KRR R R R K )

M$ClassesDescription = {

(x Higgs and radion: unphysical scalars x)

s[11] — {
ClassName —> Phi,
Unphysical —> True,
Indices —> {Index [SU2D|},
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FlavorIndex —> SU2D,

SelfConjugate —> False,

QuantumNumbers —> {Y —> 1/2},

Definitions —> { Phi[l]—>0, Phi[2]—>(vev + (Sin[th] 4+ 6 gam xi/ZZ Cos[th]) RR +

(Cos[th] — 6 gam xi/ZZ Sin[th]) H)/Sqrt[2] }
I
s[12] — {
ClassName —> RO,
Unphysical —> True,
SelfConjugate —> False,
Definitions —> { RO —> 1/ZZ Cos|[th] RR — 1/ZZ Sin[th] H }
I
(* Omega *)
S[13] = {
ClassName —> Omega,
Unphysical —> True,
SelfConjugate —> False,
Definitions —> { Omega —> 1 — gam RO/vev }
I
(x Higgs and radion: physical scalars x)
S[1] = A
ClassName — H,
SelfConjugate —> True,
Mass — {MH,125.0},
Width — {WH,0.00407},
PDG — 25
b
S[2] = A
ClassName —> RR,
SelfConjugate —> True,
Mass — {MR,5000.},
Width — {WR,1.1},
PDG — 35
}

(* EEEEEEEEEEEEEEEEEEEEEEEESEES *)

(% ko

Parameters

sk k)

(ks sk koot ok ok sk ok ook ok ok sk ok ok ok Rk ok ok ok ok k)

MS$Parameters = {

(* External parameters x)

gam — {
ParameterType
Value
Description
TeX

ParameterType
Value
Description
TeX

b
X3 = {

External ,
0.1,
"Higgs vev/Radion vev",

\ [Gammal|

External ,
0.15,

"dimless parameter

\[Xi]

in the Higgs—gravity coupling",
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ParameterType —> External,

Value — 3,
Description —> "radion self—coupling constant",
TeX —> Subscript [X, 3]

}
LambdaR — {

ParameterType —> External,

Value —> 2500,
Description —> "radion vev",
TeX —> Subscript [\ [ CapitalLambda] ,R|

}

(* Internal parameters x)

lam — {
ParameterType —> Internal ,
Value —> mh0~2/(2xvev"2),
InteractionOrder —> {QED, 2},
Description —> "Higgs quartic coupling",
TeX —> \[Lambda |
b
muH — {
ParameterType —> Internal ,
Value —> Sqrt[vev~2 lam],
TeX — \ [Mu],
Description —> "Coefficient of the quadratic piece of the Higgs potential"
b
beta =— {
ParameterType —> Internal ,
Value —> 1 4+ 6 gam™2 xi,
TeX —> \[Beta]
b
77 — {
ParameterType —> Internal ,
Value —> Sqrt[beta — 36 gam~2 xi "~ 2],
TeX — 7
I
mh0 — {
ParameterType —> Internal ,
TeX —> Subscript [M,h0],
Value —> Sqrt[ZZ~2/(2 beta) (MR"2 + MH"2 —Sqrt [(MR"24+ MH"2)"2 —4 beta MR"2
MH~2/222]) ],
Description —> "mass of the unphysical higgs"
I
mr0 — {
ParameterType —> Internal ,
TeX —> Subscript [M,r0],
Value —> Sqrt[ZZ~2/2 (MR"2 + MH"2 + Sqrt[(MR"2+ MH"2)"2 —4 beta MR"2 MH"2/ZZ"2])],
Description —> "mass of the unphysical radion"
b
tan2th =— {
ParameterType —> Internal ,
Value —> 12 gam xi ZZ mh0~2/(mr0°2 — mh0~2 (ZZ"2— 36 gam"~2 xi~2)),
Description —> "tan of 2 % the mixing angle"
b
th =— {
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ParameterType —> Internal ,

Value —> ArcTan[tan2th]/2,
TeX —> \[Theta]
}
s
(ks sk skoskok ok sk ok ook ok ok sk ok ok ok Rk ok ok ok ok k)
[EREETEE Lagrangian Kokokkk k)

(* EEEEEEEEEEEEEEEEEEEEEEEEEE I

~

LRadion := Block|[{ii,]jj ,mu},
1/2 del[RO, mu] del[RO, mu] — 1/2 mr0"2 R0"2 —
6 xi Omega del[del [Omega,mu|,mu] Phibar[ii] Phi[ii] +
DC[Phibar [ ii],mu] DC[Phi[ii],mu] —
Omega~4 (lam vev~4/4 — muH"2 Phibar[ii| Phi[ii] + lam Phibar[ii] Phi[ii] Phibar[jj]
Philjj])

TmumuH:= RO / LambdaR ( Block[{mu}, —del[HO, mu| del[HO, mu]] + 2 mh0~2 HO"2
(1+HO/2/vev)"2 );

TmumuF:= RO / LambdaR (Block|[{mu,s,f,i}, Mu[f]ugbar|s,f,i].uq[s,f,i]
+ Md[f] dqbar|s,f,i].dq[s,f,i]

+ MI[f] lbar[s,f].1[s,f]

s

TmumuV:= RO / LambdaR (Block[{mu}, —2 MW"2

W[mu| Wbar|mu|— MZ~2 Z[mu| Z|[mu]

s

LHR := LRadion + TmumuH +TmumuF';

LanomG := (—RO / LambdaR b3 — 1/2(—R0 / LambdaR + HO/vev) F12) aS/8/Pi (Block|[{mu,nu,
aa}, FS[G,mu,nu,aa] FS[G,mu,nu,aal]|);

LanomA:=(—R0 / LambdaR (b2+bY) — (—R0 / LambdaR + HO/vev) (FIW + 4/3 Fl12up + 1/3 Fl2down
+ Fl12lept)) aEW/8/Pi (Block|[{mu,nu}, FS[A,mu,nu| FS[A,mu,nu]l]) ;
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