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Abstract

Le QUB est une méthode d'essai de caractérisation thermique in situ dynamique qui a le potentiel d'être menée sur une courte durée d'une à deux nuits. La méthode a été testée sur des bâtiments à petite échelle, sur une maison à grande échelle avec un environnement contrôlé et une maison à grande échelle avec des conditions météorologiques réelles. La valeur globale du coefficient de transfert de chaleur (H) mesurée à l'aide de la méthode QUB se situe généralement à ± 15% de la valeur mesurée à l'état d'équilibre. Avec une telle variance, il est important de comprendre comment les résultats QUB varient avec les conditions aux limites (radiations solaires, température extérieure, température extérieure pendant la nuit de test QUB) et les conditions initiales (puissance initiale avant l'expérience QUB). L'expérience QUB, c'est-à-dire la puissance de chauffage et la durée, sont optimisées en utilisant une connaissance a priori (c'est-à-dire une valeur supposée) du coefficient de transfert global du bâtiment, 𝐻 𝑟𝑒𝑓 . La robustesse de la méthode QUB avec l'incertitude du niveau de puissance (pendant la phase de chauffage QUB), l'incertitude du coefficient de transfert de chaleur global à l'état d'équilibre, 𝐻 𝑟𝑒𝑓 , et les températures extérieures en fonction des saisons doivent être établies pour les bâtiments réels.

Il est coûteux d'effectuer des expériences QUB sur une vraie maison pendant une longue période avec des conditions limites et initiales variables, différents niveaux d'isolation et des saisons. Afin de faire des expériences numériques, un modèle dynamique d'état-espace est développé et testé dans cette thèse. La modélisation espace-état consiste à générer un circuit thermique pour chaque composant du bâtiment (murs, fenestration, système de ventilation, etc.). Les circuits thermiques sont ensuite assemblés pour générer un seul circuit pour l'ensemble du bâtiment. Le modèle de l'espace d'état est validé en utilisant les caractéristiques thermiques et les données mesurées d'une maison à grande échelle (la maison jumelle) fournies par l'Annexe 58 de IEA EBC Caractérisation fiable de la performance énergétique du bâtiment basée sur des mesures dynamiques à grande échelle. L'erreur de la température intérieure simulée de toute la maison (sept zones thermiques) pour un pas de temps de 10 min. est de l'ordre de ± 2 ℃, avec trois quartiles des erreurs se situant à ± 1 ℃.

Le modèle espace-état développé dans ce travail nous aide à analyser les valeurs propres et les constantes de temps du bâtiment. Ils sont utilisés pour optimiser le maillage utilisé dans la modélisation, pour attribuer les conditions initiales, pour concevoir une expérience QUB optimale et pour expliquer pourquoi des expériences à temps relativement court peuvent être utilisées pour déterminer la valeur globale du coefficient de transfert de chaleur, qui est une caractéristique en régime permanent.

Des expériences QUB ont également été menées sur la maison mentionnée ci-dessus. Les différences entre les mesures et les simulations numériques étaient de ± 1 ℃. En utilisant le modèle numérique, les expériences QUB montrent que la méthode ne présente que de légères variations avec une incertitude de puissance; par exemple, une erreur de 30% de la puissance optimale peut provoquer une erreur à moins de 3% de la valeur de référence. Par conséquent, la méthode QUB peut être considérée comme robuste avec la variation de puissance. Une analyse d'erreur a posteriori est effectuée en prenant soin des expériences QUB dans des situations où l'enveloppe réelle a des caractéristiques différentes de celles supposées dans la conception de l'expérience pour la méthode QUB. Ces résultats sont ensuite comparés à des erreurs a priori, une situation dans laquelle des expériences QUB sont effectuées avec la connaissance de l'enveloppe réelle. L'analyse d'erreur montre qu'avec une erreur de 50% du coefficient de transfert de chaleur global (c'est-à-dire une situation d'isolation de paroi manquante), la méthode QUB entraîne une erreur accrue de seulement 3%.

La précision de la méthode QUB a également été testée avec la variation du rayonnement solaire. Les résultats QUB les jours nuageux montrent une variation moindre par rapport aux jours ensoleillés. Il a été démontré que le transfert de chaleur des radiations solaires retardées entrant à travers les murs du bâtiment a un effet sur l'évolution de la température au cours de l'expérience QUB. Cela peut entraîner une augmentation de l'erreur dans la méthode QUB.

Une méthode est proposée dans cette thèse pour estimer la contribution du rayonnement solaire et du facteur correctif solaire pouvant réduire l'erreur de la méthode QUB. L'impact du facteur correctif dépend du rayonnement solaire pendant la veille de l'expérience QUB et de la diffusivité de l'enveloppe du bâtiment.

Les expériences QUB sont simulées en été et en hiver pour déterminer l'impact des saisons sur la précision de la méthode. La saison d'hiver montre des résultats plus robustes que les mois d'été. Les mois d'été montrent une plus grande variation des résultats. Il est vérifié que la grande variation est due à une petite différence de température entre les conditions intérieures et extérieures pendant certaines nuits d'été. Les expériences en saison estivale peuvent être améliorées en augmentant la température de consigne avant l'expérience QUB.

Abstract

QUB is a dynamic in-situ thermal characterization test method that has the potential to be conducted in a short duration of one to two nights. The method was tested on small scale buildings, on a full-scale house with controlled environment and a full-scale house with real weather conditions. The overall heat transfer coefficient value (𝐻) measured using QUB method usually lies within ±15 % of the value measured in steady state. With such a variance, it is important to understand how the QUB results vary with the boundary conditions (solar radiations, outdoor temperature, outdoor temperature during QUB test night) and the initial conditions (initial power before QUB experiment). The QUB experiment, i.e. the heating power and time duration, are optimized by using a priori knowledge (i.e. a supposed value) of the overall transfer coefficient of the building, 𝐻 𝑟𝑒𝑓 . The robustness of QUB method with uncertainty in power level (during QUB heating phase), uncertainty in overall heat transfer coefficient at steady state, 𝐻 𝑟𝑒𝑓 , and the outdoor temperatures a function of seasons needs to be established for real buildings.

It is expensive to perform QUB experiments on a real house for a long time with varying boundary and initial conditions, different levels of insulation and seasons. In order to make numerical experiments, a dynamic state-space model is developed and tested in this thesis.

The state-space modelling involves generating a thermal circuit for each component of the building (walls, fenestration, ventilation system, etc.). The thermal circuits are then assembled to generate a single circuit for the entire building. The state-space model is validated using thermal characteristics and measured data of a full-scale house (the twin house) provided by IEA EBC Annex 58 Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements. The error of the simulated indoor temperature of the entire house (seven thermal zones) for a time-step of 10 min. is in the range of ±2℃, with three quartiles of the errors being within ±1℃. The state-space model developed in this work helps us to analyse the eigen values and the time constants of the building. They are used to optimize the meshing used in modelling, to assign the initial conditions, to design an optimal QUB experiment and to explain why relatively short time experiments can be used for determining the overall heat transfer coefficient value, which is a steady-state characteristic.

QUB experiments were also conducted on the house mentioned above. The differences between the measurements and the numerical simulations were within ±1℃. By using the numerical model, the QUB experiments show that the method has only slight variation with uncertainty in power; for example, 30% error in optimum power can cause an error within 3 % of the reference value. Therefore, QUB method can be considered as robust with the variation in power. A posteriori error analysis is performed by caring on QUB experiments in situations in which the real envelope has different characteristics than those assumed in the design of the experiment for QUB method. These results are then compared with a priori errors, a situation in which QUB experiments are performed with the knowledge of the real envelope. The error analysis shows that with 50 % error in the overall heat transfer coefficient (i.e. missing wall insulation situation), the QUB method results in an increased error of only 3 %.

The precision of QUB method was tested also with the variation of solar radiation. QUB results on cloudy days show lesser variation as compared to sunny days. It was shown that the heat transfer from the delayed solar radiations entering through the walls of the building has an effect on the temperature evolution during the QUB experiment. This can lead to an increased error in QUB method. A method is proposed in this thesis to estimate the contribution of solar radiation and of the solar corrective factor that can reduce the error of QUB method. The impact of the corrective factor depends on the solar radiation during the day before the QUB experiment and the diffusivity of the building envelope.

The QUB experiments are simulated during summer and winter to determine the impact of seasons on the accuracy of the method. The winter season shows more robust results as compared to summer months. The summer months show larger variation of results. It is verified that the large variation are due to small temperature difference between indoor and outdoor conditions during some of the summer nights. The experiments in summer season can be improved by increasing the set point temperature before the QUB experiment. Table 2- The projected increase in building energy consumption is due to improvement in living standards, changing lifestyles, population growth and rapid urbanization. United Nation's
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World Urbanization Prospects reports that presently 54 % of the total world population is living in urban centers, that is expected to grow to 66 % by 2050 [START_REF]Population 2030: Demographic challenges and opportunities for sustainable development planning[END_REF]. Increasing number of commercial and residential buildings in developing countries will increase energy consumption and associated emissions.

In absence of mitigation strategies and policies, it is expected that building energy consumption will increase two to three folds, by 2050 [START_REF] Lucon | Climate Change: Climate Change Mitigiation Contribution of Working Group III to Fifth Assess[END_REF]. With 32 % of the total world GHG emissions, buildings offer an immense opportunity of improvement. This is the reason why building energy consumption sector is receiving significant attention for improvement in energy efficiency. Paris Agreement on climate change (COP21) and Montreal protocol have included buildings as important resources to reduce greenhouse gas emissions [START_REF]Energy Efficiency 2017[END_REF]. The IPCC (UN Intergovernmental Panel on Climate Change) working group III works on GHG mitigation strategies in different sectors, including buildings (IPCC, 2018).

The increase in building GHG emissions, by two to three folds as projected, can be stabilized at its 2005 level and can even be reduced further. Energy efficiency policies, mitigation strategies, awareness campaigns and efficient technologies will play key role to reduce energy consumption in buildings. GEA [6] has projected that with broad based application of existing energy policies and technologies, 45 % reduction in heating and cooling loads is achievable in buildings.

Significant savings can be achieved in both new and existing buildings. Depending on the level and type of retrofit (deep or shallow) and the type of building, the potential savings achieved can range from 25 % to 90 % [START_REF] Lucon | Climate Change: Climate Change Mitigiation Contribution of Working Group III to Fifth Assess[END_REF]. Due to this potential, building energy efficiency sector received highest percentage (58 %) of investments in energy efficiency, in IEA member countries (including six major emerging economies Brazil, China, India, Indonesia, Russian Federation and Mexico) [START_REF]Energy Efficiency 2017[END_REF].

Monetary benefits from savings are coupled with other benefits, referred as co-benefits. If the impacts of co-benefits are counted, then the actual benefits from retrofit are double the indicated economic benefits. Common co-benefits include:

1. health benefits from improved indoor and outdoor conditions, 2. ecological benefits due to reduce carbon footprint, 3. employment creation, 4. service provision benefits (reduction of transmission and distribution losses, 5. social effects (e.g. reduction in energy poverty, improved control on indoor environment) [START_REF]Energy Efficiency 2017[END_REF].

To meet the GHG mitigation goals using potential savings from buildings, some barriers are yet to be overcome. These include improvements on availability of direct data from buildings, gaps in knowledge to understand the buildings behavior, lack of comprehensive measured data from real occupied buildings, difficulty to predict occupants' behavior and life styles, inclusion of energy efficiency in building decisions, continuous and dissemination of available resources, knowledge and policies to the public [START_REF]Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF].

Variation and uncertainties in building energy consumption at building level, and consequently at the aggregated level of cities and regions, make it difficult to forecast the future of building energy consumption (and hence GHG emissions) within narrow confidence interval. Reason for such variations and uncertainty are the uncertainties in accurate determination of envelope properties of building, changing operating schedules, stochastic occupant behavior, changing weather patterns and discrepancies in understanding/modelling accurate relations between inputs and corresponding output building energy consumption [7].

Thermal regulations 1.2.1 Introduction

Building thermal regulations provide the basic description of how buildings should be constructed in order to save energy. Some building regulations are specifications of different building components, such as minimum heat transfer coefficient value (U-value), thermal resistance (R), solar transmittance for windows (g-value) and roof insulation level [8]. Building regulations are not strict in terms of specifications, but define overall minimum energy efficiency or maximum level of energy consumption that must be maintained in new and existing buildings. An illustrative figure representing buildings heat transfer with environment is presented in Figure 1.1. The steady-state energy balance for heating the air inside a building is:

𝑄 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 𝑄 𝑐𝑜𝑛𝑑 -𝑄 𝑣𝑒𝑛𝑡 + 𝑄 𝑔𝑎𝑖𝑛𝑠 -𝑄 𝑠𝑜𝑙𝑎𝑟 (1.1)
where 𝑄 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 is the amount of heat supply required to maintain the maintain the temperature inside;

𝑄 𝑐𝑜𝑛𝑑 -heat conduction fom the walls;

𝑄 𝑣𝑒𝑛𝑡 -heat exchange due to ventilation;

𝑄 𝑠𝑜𝑙𝑎𝑟 -solar radiation;

𝑄 𝑔𝑎𝑖𝑛𝑠 -internal heat gains due to occupancy and electrical loads.

The indoor temperature 𝑇 𝑖 is kept at desired level against the fluctuations of outdoor temperature 𝑇 𝑎 . In absence of an external heating or cooling, the indoor temperature variation (at steady state) from equation (1.1) is given as [START_REF] Forgotten | Building Thermal Regulations : Why Has Summer Been Forgotten?[END_REF]:

𝑇 𝑖 = 𝑇 𝑎 + 𝑄 𝑔𝑎𝑖𝑛𝑠 + 𝑄 𝑠𝑜𝑙𝑎𝑟 𝑈𝐴 + 𝑚̇𝑐 (1.2)
where 𝑈 is the conduction heat transfer coefficient; 𝑚̇ -mass low rate of ventilation/infiltration air; 𝑐 -specific heat capacity of air.

The building regulations aim to maintain comfortable conditions inside building with least possible input energy i.e. 𝑄 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 or 𝑄 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (mechanical or electrical) in equation (1.1) by manipulating the second term in equation (1.2), i.e. by regulating losses through envelope and ventilation/infiltration etc. [START_REF] Forgotten | Building Thermal Regulations : Why Has Summer Been Forgotten?[END_REF].

Regulations provide a framework or path under which building codes are implemented [START_REF] Bartlett | Understanding Building Energy Codes and Standards[END_REF].

Most regulations are now defined in line with international, regional or national goals of greenhouse gas (GHG) reductions; for example, EU target of reduction of GHG emissions by 20 % by 2020 is reflected in energy performance of building directives (EBPD). In such case, building regulations define maximum allowable CO2 per square meter. This provides designers and constructers sufficient freedom to work within the regulatory framework to achieve this target. Building energy codes cover lighting, insulation, glazing, heating and cooling equipment and other energy efficiency measures.

History of building thermal regulations

Building energy regulations were developed during the 1970s oil embargo when developed countries realized the need to reduce their dependence on foreign oil [START_REF] Jacobsen | ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA[END_REF] [START_REF] Eu | [END_REF]. This legislation provides a framework for EU countries to adopt different mitigation strategies relevant to building energy consumption. Under the energy performance directive, the member countries need to take steps to the set targets, such as target for all new buildings to be zero energy by 31 st December 2020, setting minimum energy standards for retrofits, inspection schemes for heating and cooling systems [START_REF] Eu | [END_REF].

Performance and prescriptive building regulations

Building regulations have two philosophies:

1. performance based,

prescriptive based.

Performance based regulations set maximum target for either energy consumption per square meter in heating and/or cooling and range of allowable internal temperature in freerunning. They leave the designer the freedom to choose between different sets of parameters.

Prescriptive based regulations set minimum values of building material properties like minimum U-value, infiltration level, glazing values etc. They are easy to follow. Performance based regulations directly target emissions or energy consumption and are usually preferred over prescriptive based regulations [START_REF] Forgotten | Building Thermal Regulations : Why Has Summer Been Forgotten?[END_REF]. A combination of two approaches are also used in building regulations.

Building regulations are set based on the dominant climatic conditions (summer or winter) of a country or region. This provides a challenge to set specifications that operate with optimal energy in every season. For example, in EU countries the building regulations are based on winter conditions; the summer or the mid-season conditions are ignored for optimal performance [START_REF] Forgotten | Building Thermal Regulations : Why Has Summer Been Forgotten?[END_REF]. However, regardless of the designed weather conditions for building regulations, they bring reduction in energy consumption and therefore should be implemented despite imperfections, with continuous search for improvement.

Standard for comfort conditions inside buildings are usually set and regulated by bodies like ASHRAE, ISO and CEN. These standards categorize or evaluate buildings based on the closeness with which internal building conditions are maintained and controlled. The buildings are labelled accordingly, for example category A building is the building with best comfort control. Some authors argue that following comfort standards closely leads to high energy consumption [START_REF] Roaf | Twentieth century standards for thermal comfort: promoting high energy buildings[END_REF]. These standards, on one hand, control indoor environment through mechanical or electrical heating and cooling but also set minimum standards on energy consumption (building fabric and ventilation). These goals are at times in conflict in the sense that following the set point temperature strictly results in high consumption.

One of the criticisms on thermal regulations is the declaration of universal set point temperature. The thermal comfort conditions for different people are different based on their age, activity level and regional climate. Therefore, the thermal comfort conditions should not follow a universal set point temperature. It should vary based on localized comfort conditions at the level of personal comfort. Substantial savings can be achieved by giving to the occupants control over their comfort [START_REF] Roaf | Twentieth century standards for thermal comfort: promoting high energy buildings[END_REF]. In this way, satisfaction level of occupants is enhanced and the energy consumption is reduced, allowing occupants to use fresh or free cooling and heating as available from natural environment. [START_REF] Doris | Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government[END_REF]. The question of whether building energy regulations bring substantial reduction in reality is addressed in different research works. A comparison study between billing data of Florida state for buildings constructed before and after implementation of newbuilding energy codes (2002), was conducted [START_REF] Jacobsen | ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA[END_REF]. It was found that electricity consumption per year was reduced by 4 % and gas consumption per year was reduced by 6 % after codes were implemented. As code changes are implemented with substantial investments, the payback period for the investments were 6.4 years for private buildings and between 3.5 to 5.4 years for public buildings. The conclusion that building regulations bring similar reductions in other regions needs further investigation [START_REF] Jacobsen | ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA[END_REF].

Performance measurement (certificate of performance)

The building performance measurement or certificate provides information on "the thermal characterization of a building that is measured using set procedures. The certificate provides information on the energy used for different purposes (heating, cooling, lighting etc.); on how well (efficiently) the building is using energy; and the opportunities to improve energy efficiency" [START_REF] Pérez-Lombard | A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes[END_REF]. A typical energy performance certificate is a shown in (Figure 1.2).

Figure 1.2: An Energy Performance Certificate (EPC), UK [19]

Energy performance of buildings is assessed based on energy and water consumption required to meet the typical operational demands of a building [START_REF] Wang | Quantitative energy performance assessment methods for existing buildings[END_REF]. Energy performance is expressed in terms of performance index such as normalized energy consumed per square meter per year, also called Energy Utilization Index (EUI) or CO2 emissions per unit area per year.

Energy performance certificate are awarded based on the energy consumption of a building and its relative position in comparison to consumption of buildings at national, state, or regional level. The building performance is assessed and expressed using any or the combination of the three terms or methodologies known as [START_REF] Pérez-Lombard | A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes[END_REF]:

 energy rating,  benchmarking process,  energy labelling.

Energy rating is the specific method of performance assessment of a building that presents the energy performance with an index or number. Home Energy Rating System (HERS) etc., present different rating systems based on slightly different methodologies [START_REF] Pérez-Lombard | A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes[END_REF]. The rating system is categorized into asset rating and tailored rating. The asset rating evaluates building performance based on climate and energy consumption, irrespective of occupant's behavior or other factors that may affect building energy consumption. The tailored rating systems take into account all the factors that affect the energy consumption, such as changes in occupancy, operation schedule etc., [START_REF] Pérez-Lombard | A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes[END_REF].

Benchmarking process is based on comparison of building energy performance indicator (EPI)

with a sample of similar buildings. The similarity is based on type of use, climate, location, shape, etc. Benchmarking of buildings involves four steps that are [START_REF] Pérez-Lombard | A review of benchmarking, rating and labelling concepts within the framework of building energy certification schemes[END_REF]: 1) development of database of similar buildings; 2) performance evaluation of building (Energy Performance Indicator, EPI); 3) comparison analysis with database of similar buildings; and 4) recommendations for efficiency improvements. Figure 1.3 presents the steps for benchmarking.

Figure 1.3: Benchmarking process [21]

Energy labelling is based on points achieved by building against a set of criteria set by certifications such as LEED and BREAM etc. For example, LEED labels a building as Silver, Gold or Platinum, if the building achieves sufficient points to be eligible for labelling. The criteria for LEED are based on energy and environmental sustainability. The labelling can also be developed based on the bell curve distribution of energy consumption of a similar stock of buildings. Building labelling identify the position of building in the bell curve of similar buildings [START_REF] Rajagopalan | Progress on building energy labelling techniques[END_REF]. According to performance of the building, a certificate is awarded such as A to G (EU) or score of 1-100 depending on the score of the building and the rating system being used (EPA, 2000).

.

Figure 1.4:

A typical labelling system procedure [START_REF] Rajagopalan | Progress on building energy labelling techniques[END_REF] Figure 1.5:Building energy labelling system [START_REF] Rajagopalan | Progress on building energy labelling techniques[END_REF] Figure 1.4 presents a general flow of building labelling system. The performance assessment can be done online using billing data and building specifications. Alternatively, performance assessment is performed by certified auditors using measurement surveys at building level.

After the building is assessed and the score is achieved, it is compared with either similar buildings (percentile score) or with a standard score set in certification criteria.

The comparison score based on Energy Utilization Index is shown in Figure 1.5. The score achieved by the building places it in a range of percentile score. Accordingly, the building will be eligible for a label. A label of 'A' achieved by building (based on EUI) means that building is in top 25 % buildings [START_REF] Rajagopalan | Progress on building energy labelling techniques[END_REF].

Performance certificates in US, EU and UK

Building performance certificates have gained prominence within the last 15 to 20 years.

Majority of the developed countries are now using building rating systems [START_REF] Wang | Quantitative energy performance assessment methods for existing buildings[END_REF]. In some countries, it is mandatory to have an energy performance certificate (European Union) whereas in other countries, it is voluntary or a combination of voluntary and enforced (United States).

In US, different performance or building rating systems exist. and sustainable land use, materials, management, pollution, transport and waste. A certified BREAM assessor evaluates each category for a given building and gives credits; these credits are multiplied with environmental weights given for each category. The accumulated credits provide a score for the building that categorizes it as unclassified, pass, good, excellent and outstanding building [START_REF]How BREEAM Certification Works -BREEAM[END_REF].

Performance gap 1.3.1 Energy quantification methods

Significant difference exists between the predicted energy consumption of buildings and the actual or measured energy consumption; this is known as performance gap [START_REF] Gao | A new methodology for building energy performance benchmarking: An approach based on intelligent clustering algorithm[END_REF]. Predicted energy consumption is the estimation or simulation of future energy consumption of building over a specific time horizon (day, month or year). However, simulation can also be used to assign the measured energy consumption to different uses/sources such as heating, cooling and lighting etc. Simulation methods used for energy prediction are calculation based methods, measurement based methods and a combination of calculation and measurement approaches that is hybrid methods [START_REF] Wang | Quantitative energy performance assessment methods for existing buildings[END_REF]. Different methods of quantification are as shown in 

Magnitude of performance gap

The magnitude of the gap between predicted and actual consumption can be significant. Some authors estimated a performance gap of 2.5 times of predicted energy consumption [START_REF] De Wilde | The gap between predicted and measured energy performance of buildings: A framework for investigation[END_REF]. A study of 600 buildings carried out by Carbon-buzz in UK indicates that actual energy consumption was 1.48 to 1.9 times higher than the simulated energy consumption [START_REF] Burman | Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings[END_REF]. Figure 1.8 shows the results of a study that highlights the difference between predicted and actual energy consumption in schools, offices and campus buildings. Figure 1.9: Difference between measured and predicted EUI [START_REF] Turner | Energy performance of LEED for New Construction Buildings[END_REF] The performance gap becomes important when forecasting payback period for investments based on Energy Conservation Measures (ECM). The ECM savings are always either underpredicted or over-predicted. Empirical evidences in UK, Austria, Norway, US and Canada show that actual energy savings from heating retrofits were 68 % less than predicted savings [START_REF] Burman | Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings[END_REF].

A study of German dwellings indicates an over estimation of energy consumption by 30 % as predicted by Energy Performance Rating (EPR) [START_REF] Sunikka-Blank | Building Research & Information Introducing the prebound effect: the gap between performance and actual energy consumption[END_REF].

The Efficiency Valuation Organization (EVO) has developed the International Performance

Measurement and Verification Protocol (IPMVP) to standardize the quantification of energy savings and manage the risks and associated benefits with energy efficiency projects in buildings [START_REF] Ipmvp | Measurement and Verification[END_REF].

Savings predicted from energy conservation measures (ECM) can be misleading if the savings are based on post ECM billing data only (Figure 1.7). The increase or decrease in energy can be attributed to many reasons other than ECM, for example the increased or reduced level of activity, change of weather, change of occupant's behavior, etc. IPMVP recommends adjustments to original baseline in case of any change in the conditions of the original baseline.

Causes for performance gap

The gap between predicted or simulated energy consumption of building and actual energy consumption for buildings is called performance gap. The three categories of root causes for performance gap are design, construction and operation [START_REF] De Wilde | The gap between predicted and measured energy performance of buildings: A framework for investigation[END_REF]. Study for a school in revealed that operational issues were responsible for 75 % of the performance gap and procurement issues (construction and equipment malfunction) were responsible for 25% of the performance gap [START_REF] Burman | Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings[END_REF].

The design stage causes include miss-communications about performance targets of building, inability to accurately predict the future operations and condition of buildings, over specification of building equipment, lack of thermal concepts at design stage and assumptions due to lack of data [START_REF]A MAPPING OF NATIONAL APPROACHES ENERGY PERFORMANCE CERTIFICATES ACROSS THE EU[END_REF].

The construction causes include inability to construct as per design specifications of building and non-uniform properties of building materials due to manufacturing defects. Building materials specification are generally quoted for standard conditions and may change behaviour due to change in climate conditions. A detailed inspection is required to confirm the building construction as per design specifications [START_REF] Galvin | Making the 'rebound effect' more useful for performance evaluation of thermal retrofits of existing homes: Defining the 'energy savings deficit' and the 'energy performance gap[END_REF].

The operational causes for performance gap come into play once the building is commissioned for use. The operational causes include difference in occupants' behavior, which is always difficult to predict. Occupant behavior is considered as one of the main reasons of the performance gap [START_REF] Sunikka-Blank | Building Research & Information Introducing the prebound effect: the gap between performance and actual energy consumption[END_REF]. Simulation is based on standard operating conditions, i.e. standard heating and cooling set points, ventilation rates and operation schedules. The control and operation of building HVAC equipment, different from the simulation values, lead to significant performance gap [START_REF] Demanuele | Bridging the gap between predicted and actual energy performance in schools[END_REF]. The building staff responsible of running the equipment may not run it according to the designed control values.

Most of the simulations consider constant internal temperature which is misleading as indoor condition differ over the year. The weather conditions can change significantly from the data used for predictions. This will result in significant gap in case of building with significant weather-based loads. Acquisition of accurate weather data poses a problem and suffers from uncertainties even if data from dedicated weather stations is used. In contrast to weather based loads, the uncertainties in electrical loads, especially the ICT based loads, may cause performance gap [START_REF] Burman | Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings[END_REF]. With rising living standards, the electrical loads (ICT) will factor significantly in building energy use in future.

One of the reasons for performance gap is the inability of simulation process to fully understand the relationships between various inputs and output energy consumption of buildings. Building physics is complex process whereas most of the simulation programs are based on equations that are the approximate representation of actual process. The operation and control of an HVAC system is not fully understood with significant performance deviations from modelling equations [START_REF] Lee | Regulatory and voluntary approaches for enhancing building energy efficeincy[END_REF]. This is the reason current research focus also on data-based analysis, like black box and grey box modelling. The output of any simulation also depends on the skills and the knowledge of the expert. Two experts using the same simulation tool may produce different results. This leads to the conclusion that it is extremely difficult to model building energy consumption accurately.

The measurements of inputs and outputs that are used to find the performance gap may be erroneous due to uncertainty of data from sensors. Figure 1.10 shows the sources and the possibility of errors with each source that can lead to performance gap. The most revealing fact from the figure is that dwellings with similar ratings differ significantly in energy consumption with a difference of more than 13 times between the least and the most consuming dwelling [START_REF] Jamison | Encyclopedia of Energy Engineering and Technology[END_REF]. Sources of difference are inability to mark space heating and water heating, variations in weather conditions, occupant behavior, model simplifications, performance gaps of installations and modelling faults.

Figure 1.10: Sources of error between measurements and predictions [START_REF] Consulting | 20120314_1400_Ad van der Aa Simurex April 14 2012 definitief[END_REF] The technical reasons of performance gap may be exacerbated by the effects known as prebound and rebound effects. The pre-bound presents a situation before retrofit meaning that in inefficient houses with higher energy bills people tend to use less energy than expected or modelled; for example, people may choose to live in comparatively colder conditions. The rebound effect represents a situation where the savings are overconsumed by the increased energy use after retrofits. Both present an important source of performance gap in EU countries as mentioned in [START_REF] Sunikka-Blank | Building Research & Information Introducing the prebound effect: the gap between performance and actual energy consumption[END_REF].

One of the issues with benchmarking is to classify buildings based on single parameter, i.e. type of use (e.g. school, hospital or single home), as practiced in benchmarking programs like Energy Star Portfolio Manager. Studies suggest that this can be misleading as a school with less amenities and services might score higher then another school using more energy efficient technologies [START_REF] Gao | A new methodology for building energy performance benchmarking: An approach based on intelligent clustering algorithm[END_REF]. A single floor commercial building will be always rated lower than a commercial building with multiple floors but the same per floor area. It is recommended to search for similarities other than type of use only, like height and shape, age, equipment and operation schedule, internal loads and other features of the building. It is recommended to take into account multiple features for realistic a realistic topology, e.g. the building typology using 'data based unsupervised' clustering techniques generate better results [START_REF] Gao | A new methodology for building energy performance benchmarking: An approach based on intelligent clustering algorithm[END_REF].

Intrinsic performance measurement

The main causes of performance gap, as discussed in section 1.3, are constructional and operational. The operational causes constitute the equipment efficiency and the operational schedule of equipment. It is relatively easy to measure the equipment efficiency; however, the operational schedule depends on occupant behavior, changing weather conditions and thermal performance of building.

The thermal performance of building, also known as the intrinsic performance of building, is the ability of the building to maintain the comfort conditions without energy or as low energy as possible. The thermal performance is important for energy consumption of the building as it affects both the occupant behavior and the operational hours of heating and cooling equipment.

A common parameter that quantifies the thermal performance of building is overall heat transfer coefficient (𝐻). It represents the amount of heat required to maintain the indoor environment at a given set point temperature against the varying outdoor temperature. The overall heat transfer coefficient can be determined using the stated values of building envelope. However, the material properties deteriorate with time and does not give the correct estimation of the overall heat transfer coefficient. The parameters, such as overall heat transfer coefficient, can be determined using parameter identification and onsite test methods.

The parameter identification models, like energy signature, PRISM methods, RC-identification etc., are based on energy consumption as a function of outdoor temperature, solar radiation, wind speed, occupants, etc. These parameters can be determined as coefficients of regression 

Thesis outline

The thesis begins by presenting the importance of building consumption and the potential savings, building energy regulations, the performance gap analysis, causes of performance gap and need for the performance measurement.

The parameter identification models can be used to determine the intrinsic performance In chapter 6, the short term thermal characterization methods are discussed. The focus is on the analysis of QUB method, its theoretical background, analysis of QUB experiments performed, shortcomings of this method and the need for future work.

In chapter 5, a state space model for analysis of the QUB method is developed. The chapter discuss the assembling of individual thermal circuits and the extraction of state space from thermal circuit of the building components. The model is validated using data from the house as discussed in IEA, EBC annex-58.

In chapter 6, the model developed is used to design QUB experiments using different values of initial (power during heating phase) and boundary conditions (solar radiation). The impact of solar radiation on QUB method is analyzed. The impact of time duration on QUB experiments is also analyzed.

In chapter 7, the a-posteriori error analysis of the QUB method is performed. The ideal conditions for QUB method are discussed. The QUB experiments for non-ideal conditions are performed and analyzed. The QUB experiments are performed for two seasons i.e. summer and winter. The errors are analyzed by observing the evolution of temperature during heating and cooling phases of QUB experiment.

In chapter 8, the conclusions for the entire thesis are summarized and directions for future work are given. Chapter 9 forms the annexure of the thesis and is composed of discussion on effective capacity and model order reduction.

State of the art for intrinsic building energy performance measurement

In the first chapter, the main causes of performance gap were identified as uncertainty in input data, inability to correctly measure/identify the building parameters, changes in building operations and the occupant's behavior. The building parameters, such as overall heat transfer coefficient, time constant, solar aperture etc. also known as the intrinsic building performance measurements, provide efficiency measures that do not change with occupant's behavior and weather patterns.

This chapter discusses different modelling methods used for parameter identification (intrinsic performance measurement). There are number of methods used for this purpose.

Each one has its own application, advantages and disadvantages. From the point of view of parameter identification, it is important to know the methodology for characterization of models, the data pre-processing steps, the interpretation of results, identification and removal of modelling errors. A discussion of different methods of modelling, their advantages, disadvantages and necessary data analysis steps is given below.

Classification of modelling methods

Due to complexity of building energy consumption, there is a continuous search to improve the performance of existing simulation methods and introduce new techniques. Different modelling methods and approaches currently exist. Some of the common methods are:

engineering methods, statistical methods (black box), intelligent methods such as genetic algorithms (GA), artificial neural networks (ANN), support vector machine (SVM) and hybrid methods (grey box). The classification is not strict; different researchers provide different techniques of classification [START_REF] Foucquier | State of the art in building modelling and energy performances prediction: A review[END_REF]- [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF] A brief categorization of modelling methods into forward approach (classical) and inverse approach (data driven) is [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF]:

 Forward approach (classical method): The objective of these methods is to predict an output variable based on specified model structure and known input variables [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF]. An interesting explanation in case of forward modelling is that the modeller has the complete description of building to model the peak demand and operational energy required [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF]. These methods use engineering and thermodynamic principles to model energy consumption. They require complete description of buildings, including geometrical shape, location, properties of building fabric, HVAC equipment and plug loads, occupancy data and operating schedules. They can be used to predict the peak demand, annual energy consumption and savings from retrofits. The effectiveness of these methods depends on details added to model that are inclusion of different heat transfer phenomenon and their quantification that affects building energy consumption. This adds complexity to the model and is the reason why a number of sophisticated software tools, like BLAST, ENERGY PLUS, EQUEST, TREAT and ESP-r etc., are used for forward modelling. When interactions between inputs, outputs and parameters get complex, results of forward modelling method may divert from actual energy consumption. Physical models have the advantage that they can be extrapolated beyond the data, i.e. based on first principles they can model for a set of completely unobserved conditions [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF].

 Data driven (inverse approach): In data driven approach, the output (that is the energy consumption or indoor temperature) and inputs (such as outdoor conditions)

are known by measurements. The model of the building is built based on input-output relation. An interesting definition for data driven model is: "Given a set of input and output vectors of measurements, a supervised learning generates a function that builds an input-output relation" [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF]. The method is used to estimate system parameters, such as building thermal mass, thermal resistance, effects of occupancy behaviour etc. It can also be used to determine energy consumption with reference to single variable, such as outdoor temperature, or multiple variables, such as wind, solar radiation and occupancy [START_REF] Zhao | A review on the prediction of building energy consumption[END_REF]. The objectives of an inverse model are to answer the questions concerned with existing building energy use, such as how much energy a building is consuming compared to design predictions, how parameters (such as change of thermostat settings or ventilation rate) will effect energy consumption and, in case of retrofit settings, the question that whether the savings were due to weather conditions or due to retrofit [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF]. They require a minimal set of input variables for modelling [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. The inverse models help identify building parameters with improved accuracy, as they are deduced from actual building data. The system parameters thus obtained can be used for better energy modelling in future. The data for modelling can be intrusive data, i.e. obtained through controlled experiments, or non-intrusive data,

i.e. data from normal building operation. The model is built with fewer parameters in aggregated form, such as overall heat transfer co-efficient and time constants etc. The inverse modelling is data intensive and the uncertainty and quality of data affects the modelling accuracy. They help us to understand better the effects of different parameters on energy consumption and can be used to build a better building energy baseline against which the savings from retrofits can be evaluated. However, no extrapolation can be made beyond the valid data range; only interpolation is allowed with data-based models.

Both the forward and data-based approaches can be static or dynamic depending on the time domain and the analysis approach. The steady state methods are based on degree-days and bin temperatures [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF], whereas dynamic methods are based on transfer functions and solution of differential equations. In general, the steady state methods are based on monthly, weekly and daily data, whereas dynamic models are based on hourly or sub hourly measurements [START_REF] Zhao | A review on the prediction of building energy consumption[END_REF]. The dynamic models consider the transients effects due to thermal mass of the building that influences the duration of building warm up or cool down. They are appropriate for peak load determination and building load control. In contrast, the steady state models do not have any time lagged terms and are used for overall monthly or annual energy consumption.

The data driven approach can further be classified into three categories: [START_REF] Fumo | A review on the basics of building energy estimation[END_REF].


A comparison between two modelling approaches can be observed in Figure 2.2. It shows that the aim of the inverse approach is to estimate model parameters. Since the subject of the thesis is the measurement of intrinsic performance, parameter identification for buildings is discussed in more detail in the next section.

Figure 2.2: A comparison of modelling approaches (forward and inverse methods)

Parameter identification

Parameter identification is the establishment or correction of mathematical models with real world data [START_REF] Ljung | DEVELOPMENT OF[END_REF]. It has applications in versatile fields of science and engineering, such as statistics, econometrics, health science, biological sciences, geophysics and thermal sciences.

The system identification theory has been developed independently and therefore finds applications equally in all fields [START_REF] Balakrishnan | System identification: theory for the user (second edition)[END_REF]. For any system of interest, parameter identification can be used for dynamic or static modelling aimed at prediction, control, simulation, reconstruction of measurement data etc. [START_REF] Crassidis | Optimal estimation of dynamic systems[END_REF].

Parameter Identification is based on relationships generated with historical set of input and output observations, also known as regression analysis. Regression analysis can be used for two purposes: 1) determination of output energy in relation to a single or multiple variables and 2) estimation of system parameters, such as total heat loss coefficient, total heat capacity, gain factor etc. [START_REF] Zhao | A review on the prediction of building energy consumption[END_REF]. Data acquisition and analysis are essential components of parameter estimation and the quality of the results from parameter estimation are highly dependent on the performance of these two steps.

Since the subject of this research is measurement of energy efficiency in buildings the next section discusses the applications of Parameter Identification methods as applied to thermal characterization of buildings. In case of buildings, parameter identification is used for improved estimation of parameters, for finding the impacts of different parameters on building energy consumption, for improved estimation of building energy consumption with changing inputs such as weather, occupancy and for optimal control of HVAC equipment.

Principles of parameter identification

Various methods of parameter identification are based on choice of independent variables, applied constraints, criterion for goodness of fit and choice of linear or nonlinear algorithms [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF]. Parameter identification is done in more step: data measurement and acquisition, selection of model structure, optimization algorithm and estimation of parameters, and model validation.

The steps for parameter identification are:

Data measurement and acquisition depends on the nature of analysis and involves steps such as:

 Design of Experiment (DOE) procedure indicating the necessary instrumentation, measurements, accuracy, type of experiments. For example, the standard ISO 9869:2014 (on measurement the overall conductance of a wall in steady state)

provides complete details for the measurement equipment, installation, calibration and measurement procedure and analysis of data [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

 Sampling rate for data acquisition that defines the time between two measurements.

 Data filtering for removing noise to receive the desired signal only (preliminary data analysis).

 Segregation of data into training data, test data and validation data.

Selection of model structure determines the type of model as applied/fitted to data for the purpose of identification. Selection of model is a complex decision because of the large number of available models, the lack of a single criteria for the best model selection and the conflicting criteria between the simplicity of the model and its capability of explaining the observed data. The model structure can be black box that is purely based on data that do not require any description of physical nature of system or parameters, or grey box, that uses physical description of system. The grey or black box model selected can be dynamic or static.

The models range from simple linear regression to complex models such as artificial neural networks (ANN), genetic algorithms (GA), etc.

Parameter estimation is an inverse problem and is said to be well posed if the following conditions are fulfilled:

Existence: For all data, solution exists for the problem posed.

Uniqueness: For all data, there exists a unique solution.

Stability:

The solution depends on continuously available data.

Parameters are estimated against criteria that optimize the solution. A common criterion used is the least square minimisation criteria that minimizes the gap between observations and estimated model [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Model validation is done on data which was not used for model training. Cross validation is achieved by comparing with the known or expected values or with results of other models.

Based on validation results, the model is rejected, accepted or further improved [START_REF] Jiménez | Estimation of UA and gA values of building components from outdoor tests in warm and moderate weather conditions[END_REF].

Performance of parameter estimation or system identification depends on how well these steps are applied and how well the principles governing the system are understood and incorporated. Crassidis and Junkins summarized these steps as [START_REF] Crassidis | Optimal estimation of dynamic systems[END_REF]: decisions regarding which variables need to be measured, the frequency of data acquisition, accuracy of measurements and selection of the best mathematical models. Principles of estimation theory are developed separately from consideration of any particular physical system and the success of the method lies in understanding of estimation theory and principles governing system.

A variable of interest can be quantified in terms of three values i.e., true value say 𝑦(𝑡), measured value 𝑦 ̃(𝑡) and estimated value 𝑦 ̂(𝑡). True value is the actual value that is known either via measurement with some measurement error or via estimation with some estimation error such that the true value is never known with hundred percent accuracy [START_REF] Crassidis | Optimal estimation of dynamic systems[END_REF].

The errors arise due to errors in measurement, wrong selection of parameters and modelling errors (inadequate presentation of actual phenomenon). Mathematically, the measured value is:

𝑦 ̃(𝑡) = 𝑦(𝑡) + 𝜈, (2.1a) 
where 𝜈 represents the measurement errors, and the estimated value is:

𝑦 ̂(𝑡) = 𝑦 ̃(𝑡) + 𝑒, (2.1b) 
where 𝑒 represents the modelling or the estimation errors. impulse response and transfer function models are some of the most common black model structures for dynamic systems [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF].

As an example, consider simple black box linear auto regressive with exogenous (ARX) models that can be used to estimate thermal load. The ARX models are recommended for linear time invariant dynamic systems (stationary). ARX models are used for estimation of over-all heat transfer co-efficient 𝐻, solar radiations 𝑔𝐴, and the time constants 𝜏 of the system. It consists of outputs that are related to inputs in linear form using coefficients. A general equation of an ARX model is given as:

𝑦(𝑡) + 𝑎 1 𝑦(𝑡 -∆𝑡) + ⋯ + 𝑎 𝑟 𝑦(𝑡 -𝑟∆𝑡) = 𝑏 0 𝑢(𝑡 -𝑏∆𝑡) + ⋯ + 𝑏 𝑠 𝑢(𝑡 -(𝑏 + 𝑠)∆𝑡) + 𝑒(𝑡) (2.11)
where 𝑦(𝑡) represent the model output related linearly to number '𝑠' of the past inputs via coefficients '𝑏' and to the past output readings '𝑦' via coefficients '𝑎'. A parametrized form of the ARX model to building thermal load can be of the form: 12) where 𝐿𝑜𝑎𝑑 is the building thermal load, 𝑇 is the dry bulb temperature 𝐻 is the outdoor humidity, 𝑊𝑖𝑛𝑑 is the wind speed, 𝑅𝑎𝑑 is the direct radiation, 𝑂𝑐𝑐 is the occupancy and 𝑊 1-6

𝐿𝑜𝑎𝑑 𝑡 = 𝑊 1 𝑇 𝑡 + 𝑊 2 𝐻 𝑡 + 𝑊 3 𝑊𝑖𝑛𝑑 𝑡 + 𝑊 4 𝑅𝑎𝑑 𝑡 + 𝑊 5 𝑂𝑐𝑐 𝑡 + 𝑊 6 𝐿𝑜𝑎𝑑 𝑡-1 (2.
represents estimated parameters.

The black box models are also called external models. They are based on external relation between input and output and hence can be used for external properties of buildings, such as 𝐻 and gA values [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. They cannot estimate internal properties, such as internal resistance and heat capacities, although they can be inferred using dynamics of actual system.

Sampling time, for any black box model, depends on whether it is dynamic estimation or steady state estimation. For 𝐻 and gA, estimation of the sampling time ranges between 1 and 6 hours for normal buildings. However, sampling can be longer for heavily insulated buildings.

For the purpose of control, the sampling time usually ranges from four minutes to an hour [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Model Parametrization.

The output for the model can be either heating power or Internal temperature [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. In case of heating power as output, the temperature is thermostatically controlled by supplying heat. The parametric form of the time series model is:

𝜙(𝐵)Φ 𝑡 ℎ = 𝜔 𝑖 (𝐵)𝑇 𝑡 𝑖 + 𝜔 𝑒 (𝐵)𝑇 𝑡 𝑒 + 𝜔 𝑠𝑜𝑙 (𝐵)𝐼 𝑡 𝑠𝑜𝑙 + 𝜀 𝑡 (2.13)
where 𝜙(𝐵) is an output polynomial of order 𝑝 in the backshift operator 𝐵; 𝑇 𝑡 𝑖 , 𝑇 𝑡 𝑒 are internal and external temperatures respectively;

𝜔 𝑖 (𝐵), 𝜔 𝑒 (𝐵), 𝜔 𝑠𝑜𝑙 (𝐵) are polynomials co-efficients of order 𝑆 𝑖 , 𝑆 𝑒 and 𝑆 𝑠𝑜𝑙 respectively.

In ARX modelling, where heating power is considered as output, the internal temperature is kept constant and hence the order of the internal temperature polynomial is set to zero. In case of change in internal temperature, the linear ARX model with heating power as output is not valid. The order of input polynomials 𝑆 𝑒 = 𝑆 𝑠𝑜𝑙 is set equal to 𝑝 -1, where 𝑝 is the model order. In case of model order 𝑝 = 0, the order of all input polynomials is set equal to p which is a special case of linear steady state condition. In complex cases, different models are considered [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF].

Model order selection. The model order 𝑝 (of output) is selected by the following criteria;

(a) The model order is set to zero initially (𝑝 = 0).

(b) Estimate model parameters. (c) Evaluate noise residuals using autocorrelation function (ACF) and partial autocorrelation function (PACF) functions

The model order is increased until both ACF and PACF show white noise only [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Calculation of H, 𝒈𝑨-vaues and time constants. In case of heating power as output, the heat transfer coefficients 𝐻 𝑖 , 𝐻 𝑒 and 𝑔𝐴 𝑠𝑜𝑙 (solar aperture) are calculated using the equation (2.13) [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]:

𝐻 𝑖 = 𝜔 𝑖 (1) 𝜙(1) 𝐻 𝑒 = - 𝜔 𝑒 (1) 𝜙(1) (2.14) 𝑔𝐴 𝑠𝑜𝑙 = 𝜔 𝑠𝑜𝑙 (1) 𝜙(1) (2.15)
Time constant. Time constant of the system is calculated as [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]:

𝜏 𝑖 = -Δ𝑡 𝑠𝑚𝑝 1 ln (𝑝 𝑖 ) ′ (2.16) (
where 𝑝 𝑖 is the i'th non-negative real pole determined as roots in charactersitic equation and Δ𝑡 𝑠𝑚𝑝 is the sampling time.

Advanced model forms can be considered with the objective to improve model accuracy.

These include separate model orders (for each input in contrast to output), including Moving Average (MA) term in the model, i.e. historical values of residuals, additional input variables other than 𝑇 𝑖 ,𝑇 𝑒 and 𝐼 𝑠𝑜𝑙 like the long wave radiation, wind speed, wind speed multiplied with temperature differences, precipitation, transformed input variables like 𝑇 4 for radiative heat transfer, methods like pre-whitening and ridge regression, and adding cross-correlation functions between residuals and various candidate variables [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Improvements in solar radiations modelling can also be added. Some of the improved modelling effects are adding a parametrized gA-curve that is function of solar elevation and azimuthal angle (as gA is not constant) or simply as function of time of day (for short periods), splitting total solar radiations into direct and diffuse radiations, transformation of solar radiations on the surface of buildings and use of semiparametric functions such as modelling gA-curve using spline function [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Box-Jenkins transfer function model. In transfer function form, the input series 𝑈 𝑡 can be related to the output series 𝑌 𝑡 as

Υ 𝑖 = ℎ 𝑘 𝑇 . 𝑈 𝑡-𝑘 + 𝑁 𝑡 , where ℎ 𝑘 = [ℎ 1 , ℎ 2 , … . ℎ 𝑘 ] (2.17)
where 𝑁 𝑡 , is correlated noise process. The parametrized form in Box-Jenkins form can be written as

𝜙(𝐵)Υ 𝑡 = 𝜔(𝐵)𝑈 𝑡 + 𝜖 𝑡 (2.18)
where 𝜙, 𝜔 and 𝜃 are polynomials in 𝐵. The effect of other inputs can be included, such as solar radiation and heat supply. The assumption of the Box-Jenkin models is that output process does not influence the inputs [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

State space model in discrete time is used to model input_output relations but also focus on

the internal states of the system. A linear state space equation relating the state vector 𝑋 𝑡 (mdimentional, latent and random in case of black box modelling), input vector 𝑈 𝑡 , via known matrices 𝐵 and 𝐶, can be expressed as:

𝑋 𝑡 = 𝐴𝑋 𝑡-1 + 𝐵𝑈 𝑡-1 + 𝑒 1,𝑡 𝜖 𝑡 (2.19)
The measurement equation can be given as

Υ 𝑡 = 𝐶𝑋 𝑡 + 𝑒 2,𝑡 (2.20) 
Kalman filter (Kalman smoother) can be used to estimate the state vector. The two elements of the output state vector defined in case of building modelling can be the temperature of indoor air and heat accumulating concrete floor. The input vector consists of ambient air temperature, solar radiation and heat input. When only indoor temperature is observed, Υ 𝑡 it consists only on indoor temperature.

Black box models are easy to build and are computationally savvy. However, they require extensive training data and long training period. They are applicable to specific building conditions, for which they were developed and can generate prediction errors if the training data do not cover all the conditions that building undergoes [START_REF] Li | Review of building energy modeling for control and operation[END_REF]. One issue with black box modelling is the parameter interpretation. The model in itself does not offer any explanation; physical interpretation is not transparent and can change drastically as the model order increases [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF]. Grey box models are used as improvement of black box model and are further explained in the next section.

Grey box model structure

Grey Box models are empirical models based on simplified physical description to simulate building energy behaviour [START_REF] Li | Review of building energy modeling for control and operation[END_REF]. They are combination of physical and empirical models and potentially compensate for the deficiencies in both approaches [START_REF] Lu | Past, present and future mathematical models for buildings[END_REF]. These are semi-physical or semi-statistical approaches for identifying internal parameters or internal dynamic characteristics of buildings. Unlike black box, the grey box parameters have direct physical interpretation [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. This enables us to add prior physical knowledge in addition to the statistical model to identify parameters of building. The simple semi physical models reduce the requirement of training data set (up to two weeks) and computation time [START_REF] Li | Review of building energy modeling for control and operation[END_REF].

The steps for implementation of grey box model are [START_REF] Li | Review of building energy modeling for control and operation[END_REF] :

 Development of model based on simplified physical expression.

 Putting rough bounds on physical parameters from prior description of building.

 Application of identification algorithm for identification of parameters.

 Validation of model with test data and external validation.

A simple explanation of these steps can be given in terms of resistance capacitance network 𝑅𝐶. The 𝑅𝐶 network represents a highly simplified form of physical/thermal behaviour of the building with a high computational efficiency. The 𝑅𝐶 network is able to simulate the thermal dynamics of building via two elements, i.e. thermal mass represented by the capacity 𝐶 and building envelope presented by resistance 𝑅. The resistances and the capacities are then identified using different statistical techniques.

Grey box models can take into consideration both linear, non-linear, stationary and nonstationary effects. The nonlinear and time varying approaches provide better explanation of complex phenomenon at the cost of high computation time. The linear methods are easy to implement. However, they leave much of the scatter in the data unexplained. An example of the effectiveness of grey box models is that they can model the variation in thermal capacity of building with change in moisture (a time varying phenomenon) where building moisture show high variation with temperature, radiation and season of the year [START_REF] Agency | Reliable building energy performance characterisation based on full scale dynamic measurements[END_REF].

There are different methods for presenting the physical grey box model expression such as Thermal Netwrok Models of resistances and capacities, Auto Regressive Moving Averages (ARMA), differential equation and modal analysis [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF]. The thermal network models are easy to understand and construct. However, a systematic decision regarding the number of resistors and capacitors in model, presents a problem [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF]. The differential equation or ARMA model are recommended as in both methods the ease of implentation is coupled with systematic addition of parameters. The ARMA is solved via numerical methods but differntial equation offer the ease of analysis with analytical methods and therfeore some authors recommend to use differential equation to ARMA [START_REF] Rabl | Parameter Estimation in Buildings: Methods for Dynamic Analysis of Measured Energy Use[END_REF].

A differential equation in state space form is used to parametrize physical system described by linear differential equation lumped form (limited number of parameters). A deterministic linear model in continuous time of the states 𝑋 of the system:

𝑑𝑋 𝑑𝑡 = 𝐴𝑋 + 𝐵𝑈 (2.21)
where matrices 𝐴 and 𝐵 presents how parameters transform the state and inputs respectively.

The matrices 𝐴 and 𝐵 are described by physical equations such as 𝑅𝐶 formulation.

Since the deterministic linear equation cannot predict exactly the future states of the system, the deviation is usually dealt with by introducing a noise term in the differential equation. The stochastic linear state space model can be given as:

𝑑𝑋 = 𝐴𝑋𝑑𝑡 + 𝐵𝑈𝑑𝑡 + 𝑑𝜔(𝑡) (2.22)
where 𝜔(𝑡) is 𝑛 dimensional stochastic process. Reason for introducing 𝜔(𝑡) are:

 inability of matrix 𝐴 to present the dynamics of system due to approximations,  some inputs may not be measured but have impact on dynamics of system,  measurements are noisy due to measurement errors.

Since practically all systems are non-linear and a non-linear presentation is a better approximation of the system, in non-linear form the equation can be written as ordinary differential equation (ODE) as

𝑑𝑋 𝑡 = 𝑓(𝑋 𝑡 , 𝑈 𝑡 , 𝑡)𝑑𝑡 𝑡 ≥ 0 (2.23)
where 𝑓 is a deterministic function of time 𝑡. The equation is deterministic and parameters can be estimated.

Stochastic differential equations, as continuous description of physical phenomenon such as dynamics of heat transfer, are coupled with a set of discrete data measurement equations.

These models are called continuous-discrete stochastic (SDE) state space model. A general non-linear (continuous) SDE for stochastic process is given as:

𝑑𝑋 𝑡 = 𝑓(𝑋 𝑡 , 𝑈 𝑡 , 𝑡)𝑑𝑡 + 𝐺(𝑋 𝑡 , 𝑈 𝑡 )𝑑𝑊 𝑡 (2.24)
where 𝑋 𝑡 𝜖 𝑅 𝑛 is the 𝑛-dimensional state vector, 𝑈 𝑡 𝜖 𝑅 𝑚 is 𝑚-dimensional input vector, 𝐺 is the stochastic drift term and 𝑊 𝑡 is the Wiener process of dimension 𝑛 with incremental covariance 𝑄 𝑡 .

And the discrete set of measurements are given as:

𝑌 𝑡 𝑘 = ℎ(𝑋 𝑡 𝑘 , 𝑈 𝑡 𝑘 ) + 𝑒 𝑡 𝑘 (2.25)
where 𝑌 𝑡 𝑘 𝜖 𝑅 𝑚 is the 𝑚-dimensional vector of measurements at time 𝑡 𝑘 , ℎ is the measurement function and 𝑒 𝑡 𝑘 𝜖 𝑅 𝑚 is a Gaussian white noise with covariance ∑ 𝑡 𝑘 [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Depending on study objectives, grey box can be steady state and dynamic state where dynamic state models are characterized by differential equations. The dynamic grey box modelling is explained with reference to [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF] who used 6 days data of a single story test building (Flex House) to test the performance of grey box models of increasing complexity.

Thermal networks were used as physical model for building. These models can be presented as stochastic linear state space model with dynamic states written as

𝑑𝑻 = 𝑨𝑻𝑑𝑡 + 𝑩𝑼𝑑𝑡 + 𝑑𝜔 (2.26)
where 𝑻 represents the state vector, 𝑼 the input vector, and matrices 𝑨 and 𝑩 consist of combinations of parameters such as 𝐶 𝑖 and 𝑅 𝑖 . Depending on the complexity of the model, the number of 𝐶 𝑠 and 𝑅 𝑠 may change accordingly. For example, in the simplest model there will be a single 𝑅 and 𝐶 representing thermal resistance and heat capacity of the entire building. 𝜔 is the standard Wiener process. Input vector 𝑼 can be represented as:

𝑼 = [𝑇 𝒂 , Φ 𝒔 , 𝜙 ℎ ] 𝑻 (2.27)
where 𝑇 𝒂 is the ambient temperature, Φ 𝒔 are solar radiations and 𝜙 ℎ is the heat input from building heat source. Parameters were estimated using maximum likelihood function where observations are presented by

𝑦 𝒏 = [𝑌 𝑁 , 𝑌 𝑁-1 , … . . , 𝑌 1 , 𝑌 0 ] (2.28)
The likelihood function is given by the joint probability density:

𝐿(𝜃; 𝑦 𝒏 ) ∏ 𝑝(𝑌 𝑘 /𝑦 𝑘-1 , 𝜃)𝑝(𝑌 0 /𝜃) 𝑁 𝑘=1 (2.29)
where:

𝐿(𝜃; 𝑦 𝒏 )
is the Likelihood function of parameter 𝜃 given the observations 𝑦 𝑛 𝑝(𝑌 𝑘 /𝑦 𝑘-1 , 𝜃) is the probability density of observations given the parameter 𝜃

The maximum likely estimate of the parameters is then:

𝜃 ̂=𝑎𝑟𝑔 max 𝜃 {𝐿(𝜃; 𝑦 𝒏 )} (2.30)
Likelihood ratio test was used to evaluate the performance of different combination of models of same order. The model with highest log-likelihood is chosen. After this stage, the extended models are compared with lower order (subset) models using likelihood ratio test and improvement with increasing order is estimated from 𝑝 value (where 𝑝 is a significance of test, a lower value of 𝑝 indicates the hypothesis that both full order and reduce order are the same should be rejected) [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF]. A lower 𝑝 value indicates improvement with increasing model order.

The iteration is repeated until no more improvement is visible. The models are evaluated by data fitting and evaluating residuals using auto correlation function (ACF) and the cumulated periodogram (CP). Any pattern in residuals indicate that the model does not fit the data and it should be further extended [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF]. The analyses initiated with simplest building model consisting of single state 𝑇 𝑖 (indoor air temperature only). The order was increased and in each order the performance of every sequence was evaluated. The model with highest order was 𝑇 𝑖 𝑇 𝑚 𝑇 𝑒 𝑇 ℎ 𝑇 𝑠 𝐴 𝑒 , where 𝑇 𝑖 is the temperature of the indoor air, 𝑇 ℎ is the temperature of heater 𝑇 𝑚 is the temperature of the walls and furniture (Indoor medium)

𝑇 𝑒 is the temperature of building envelope 𝑇 𝑠 is the temperature of the sensor.

Based on the result of the fitted data, parameter estimation (using CSTM-R) and the autocorrelation and cumulated periodogram plots, it was inferred that a third order or three state model order 𝑇 𝑖 𝑇 𝑒 𝑇 ℎ generated acceptable results. A similar estimation procedure was applied to data from smart grid experimental facility SYSLAB at DTU Elektro, Denmark, and the third order model 𝑇 𝑖 𝑇 𝑒 𝑇 ℎ was found suitable [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

The following measurements were done for the identification of the grey box modelling as discussed in the previous paragraph [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]: The typical parameters estimated using grey box models are the overall heat transfer coefficient or thermal resistance, effective heat capacities of parts of building, effective solar aperture (effective area for solar radiations), parameters representing effects of wind such as wind induced infiltration [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The parameters are estimated using maximum likelihood with Kalman filter. Kalman filter reduces the impact of noisy measurements that are included in model on the estimation of parameters.



Steady state models

Steady state methods assume that both the system and the variables are constant in time.

The measurement time considered is sufficiently long to average out indoor and outdoor variations, i.e. constant during duration of observation [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF]. This is called down sampling, where data is averaged over longer periods of time so that auto-correlated noise/residuals are filtered out (becoming white noise).

These methods are used for describing linear and stationary steady state relations between the input and the output. They do not consider thermal storage in building or the transient skin behavior of the building that can cause temperature transients. ISO (9251:1987) gives description of steady state methods [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. These methods are less suitable to represent real experimental conditions and utilize data on sub-optimal level. These methods can be used for estimation of overall heat transfer co-efficient (𝐻) and gA-values (product of solar transmittance and effective solar aperture).

Single variate models are steady state models where only a single variable is considered as driving agent. For example, in case of buildings, it is common to consider outdoor dry bulb temperature as a variable. A number of parameters (P), ranging from single parameter (1-P)

to 5-P are used. Number of parameters considered vary with type of study, building i.e.

commercial, residential and weather based or non-weather based [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. Single variable models are applicable to buildings where single variable, such as outdoor temperature, is the dominant driving force for energy consumption (e.g. residential buildings). In case of commercial buildings with multiple driving factors, the model may not truly represent or relate energy consumption to single variable. Their advantage of use is to single out weather based loads, compare pre-and post-retrofit normalized (weather) energy consumption in buildings and provide an overall easy visualization of energy consumption [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF]. These models ignore effects of variables such as solar radiation, thermal mass and effects of humidity.

Multivariate models are extension of single-variate models and take into consideration other variables such as internal loads (heat given by people and electrical devices), solar radiation and humidity effects. They can take the form of Fourier series models (for seasonal diurnal effects) and standard multiple-linear or change point regression models. Parameters that are difficult to estimate or measure, such as internal heat given by occupants, are usually lumped.

The problem of linear correlation of some variables i.e., multi collinearity, can lead to poor model predictions. Multi collinearity may be overcome by principal component analysis (PCA).

However, it should be used with caution [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

A simple steady state energy balance equation for a building is given as:

Φ ℎ = 𝐻(𝑇 𝑖 -𝑇 𝑒 ) -𝑔𝐴 𝑠𝑜𝑙 𝐼 𝑠𝑜𝑙 (2.31)
where Φ ℎ is heating power supplied, 𝐻 is the parameter representing overall heat transfer coefficient (both transmission heat coefficient and ventilation heat transfer coefficient) and 𝑔𝐴 𝑠𝑜𝑙 is the parameter that is the product of solar transmittance 𝑔 and affective solar collecting area(solar aperture) representing is the heat transfer coefficient, 𝑇 𝑖 and 𝑇 𝑒 are external and internal temperatures 𝐼 𝑠𝑜𝑙 is the solar radiation received by the building [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. This equation is used to parametrize the linear regression model

Φ 𝑡 ℎ = 𝜔 𝑖 𝑇 𝑡 𝑖 + 𝜔 𝑒 𝑇 𝑡 𝑒 + 𝜔 𝑠𝑜𝑙 𝐼 𝑡 𝑠𝑜𝑙 + 𝜀 𝑡 (2.32)
where  𝜀 𝑡 is independently and identically distributed white noise with zero mean and variance 𝜎 2 , expressed as (0, 𝜎 2 ), called white noise;

 𝜔 𝑖 and 𝜔 𝑒 represent the 𝐻, from the two estimates of 𝐻 the best estimation is obtained using a linear minimum variance method;

 𝜔 𝑠𝑜𝑙 is the estimate of 𝑔𝐴 𝑠𝑜𝑙 , it should be noted that this estimate is obtained from the available solar radiations measurements such as global solar radiations and since the incoming solar radiations are different from the measurements care must be taken while estimating 𝑔𝐴 𝑠𝑜𝑙 [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

All the estimates must be stated with the standard error of estimates for better comparison with physically judged results.

Sampling time for steady state. In case of buildings where data is available as time series, it is important to consider proper sampling time for measurements. The sampled data is usually averaged out and is denoted as function of time indicating the hour at which it is averaged out. A sampling time of one or two hours is taken in case of standard insulated buildings whereas for heavy insulated buildings the averaging time may be increased. For small buildings, 6 hours average time is considered as appropriate. An Auto Correlation Function (ACF) method is used to select appropriate time that will avoid significant cross-correlation between different inputs, such as solar radiation [START_REF] Agency | Reliable building energy performance characterisation based on full scale dynamic measurements[END_REF].

A steady state method that can be used for estimation of long-term energy consumption of buildings is the energy signature method. This method is based on determination of overall heat transfer coefficient (𝐻) of buildings from the measured energy consumption (bills) and mean outdoor temperature. The overall heat transfer coefficient (𝐻) appears as regression coefficient in relationship between outdoor temperature and energy use [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The overall heat transfer coefficient determined by using steady state (energy signature method) is also known as the building heat loss coefficient and includes envelope transmission losses, ventilation losses and infiltration losses [START_REF] Rosa | Historical trends and current state of heating and cooling degree days in Italy[END_REF]. The general expression of the heat transfer between building and environment can be presented approximately as:

𝐻(𝑇 𝑖 -𝑇 0 ) = 𝑄 ℎ𝑠 + 𝑄 𝑒𝑙 + 𝑄 𝑃 + 𝑄 𝑠𝑜𝑙 -𝑄 𝑑𝑦𝑛 (2.33)
where 𝑄 ℎ𝑠 is the heat supplied from heating system, 𝑄 𝑒𝑙 represents the heat gains from electricity, 𝑄 𝑃 is heat gain from people, 𝑄 𝑠𝑜𝑙 are solar gains and 𝑄 𝑑𝑦𝑛 presents heat storage corrective factor. For steady state methods, heat transfer due to solar radiations, intermittent building operation, occupancy behavior and the dynamic storage (building envelope) are ignored. 𝐻 is estimated using the first three terms of equation (2.33) only. As a result, overall heat transfer coefficient 𝐻 is estimated with low determination constant leading to low precision [START_REF] Danov | Approaches to evaluate building energy performance from daily consumption data considering dynamic and solar gain effects[END_REF].

In order to improve steady state methods, the dynamic effects are incorporated using correction factors. Danov et al., introduced a methodology to include both the dynamic effects (effective capacitance) and the solar gain effects as correction factors for improved estimation of 𝐻 [START_REF] Danov | Approaches to evaluate building energy performance from daily consumption data considering dynamic and solar gain effects[END_REF]. Results indicated that considering both dynamic and solar effects as correction factor improved linear relationship resulting in an increased value of determination constant.

The estimation of overall heat transfer coefficient is based on linear regression. The results of linear regression are valid if temperature follows the normal distribution and the residuals follow a normal distribution with zero mean [START_REF] Ghiaus | Experimental estimation of building energy performance by robust regression[END_REF]. Both the outdoor temperature and energy load should follow an identical distribution. Temperature is usually normally distributed.

However, energy load does not follow the distribution of the outdoor temperature at tails.

The model from this simple linear regression may generate acceptable results for the data for which it was generated, but it is much less precise when used for other set of outdoor temperatures. A new method was proposed that uses a regression model based on quantile q-q plot. The model based on q-q regression can be used with equal precision for a data set different from the data for which the original model was developed [START_REF] Ghiaus | Experimental estimation of building energy performance by robust regression[END_REF].

Energy signature and degree-day

One of the simplest ways to measure the energy performance of the building is to evaluate energy consumption against the outdoor weather conditions. A correlation between the energy bills (electricity or gas) and outdoor temperature, is used to predict energy demand.

This method is known as energy signature method. It has the capability to predict within 90 percent confidence interval of the actual demand [START_REF] Ghiaus | Experimental estimation of building energy performance by robust regression[END_REF]. Degree day method is simpler as compared to dynamic method and is used in energy management of buildings. This method simplifies the weather conditions by expressing them as a single variable: outdoor temperature. The energy performance system are based on degree day method for assessments [START_REF] Meng | Degree-day based non-domestic building energy analytics and modelling should use building and type specific base temperatures[END_REF]. It provides a simple and cost-effective method of benchmarking similar buildings by comparing the energy bills and weather data only.

Heating degree days is the summation of temperature difference between the outdoor air and indoor air (base temperature) over a period (year, day or season), where base temperature is defined as maximum or minimum outdoor temperature for which no internal heating is required. The base temperature can be expressed as:

𝑞 𝑔𝑎𝑖𝑛 = 𝐾 𝑡𝑜𝑡 (𝑇 𝑖 -𝑇 𝑏𝑎𝑙 ) (2.34)
where 𝑞 𝑔𝑎𝑖𝑛 are the total heat gains (internal and external)

𝐾 𝑡𝑜𝑡 -overall heat transfer coefficient (ventilation and conduction)

𝑇 𝑖 -indoor temperature 𝑇 𝑏𝑎𝑙 -temperature for which no heating or cooling is required 𝑇 𝑒 -temperature of building envelope 𝑇 𝑠 -temperature of the sensor

The base or balance temperature can be given by:

𝑇 𝑏𝑎𝑙 = 𝑇 𝑖 - 𝑞 𝑔𝑎𝑖𝑛 𝐾 𝑡𝑜𝑡 (2.35)
The energy loss or heating energy required can be given as:

𝑞 ℎ = 𝐾 𝑡𝑜𝑡 𝜂 ℎ [𝑇 𝑏𝑎𝑙 -𝑇 𝑜 ] + (2.36) 
where 𝑇 𝑜 is the outdoor temperature

This can be integrated over a time t to determine/predict energy consumption provided that the overall heat transfer coefficient and thermal efficiency of the heating system 𝜂 𝑡ℎ are known as

𝑞 ℎ,𝑦𝑟 = 𝐾 𝑡𝑜𝑡 𝜂 ℎ ∫[𝑇 𝑏𝑎𝑙 -𝑇 𝑜 ] + 𝑑𝑡 (2.37)
Depending on how the integral is approximated by summing over average values of daily or hourly temperatures, the method is termed as degree day or degree hour. The base temperature in majority of the cases is taken as 18.3℃ [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF] in US and 15℃ in UK [START_REF] Meng | Degree-day based non-domestic building energy analytics and modelling should use building and type specific base temperatures[END_REF]. The base temperature can be adjusted to include solar, ventilation and losses to ground as well.

The overall heat transfer coefficient and the balance temperature varies with occupancy, internal heat gains, time of day (activity level) and outdoor temperature. In order to improve estimation using energy signature method, the base or balance temperature is calculated based on bin hour where average temperature and periods of interval are stated simultaneously to account for activity level and efficiency of heating equipment [START_REF] Ipmvp | Measurement and Verification[END_REF]:

𝑞 𝑏𝑖𝑛 = 𝑁 𝑏𝑖𝑛 𝐾 𝑡𝑜𝑡 𝜂 ℎ [𝑡 𝑏𝑎𝑙 -𝑡 𝑜 ] + (2.38)
where 𝑁 𝑏𝑖𝑛 presents number of hours in a bin. The bins are usually measured and stated in interval of 2.8 K and eight hours shift [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF].

The energy signature method is based on number of heating degree days that are based on base temperature. The consideration of fixed base temperature is misleading as it varies with type, age, size, operational schedule and percentage of heated space [START_REF] Meng | Degree-day based non-domestic building energy analytics and modelling should use building and type specific base temperatures[END_REF]. For further improvement the measurement of indoor set temperature is required [START_REF] Bouche | Methodologies for the Assessment of Intrinsic Energy Performance of Buildings Envelope[END_REF]. The base temperature is determined by energy signature method or performance line method where performance line method requires small sampling periods as compared to energy signature method.

Different regression methods used for energy signature are change point (CP), Gaussian process regression (GPR), Gaussian mixture regression (GMR) and artificial neural network (ANN). GMR offers a slightly better statistical performance compared to rest of the three methods. However, CP is preferred because of its simplicity and less computational requirements to predict energy consumption [START_REF] Zhang | Comparisons of inverse modeling approaches for predicting building energy performance[END_REF].

Meng and Mourshed analyzed energy consumption of 199 non-domestic buildings in UK using change point regression analysis [START_REF] Meng | Degree-day based non-domestic building energy analytics and modelling should use building and type specific base temperatures[END_REF]. The variation of base temperature was analyzed with respect to building type, age, location and operational schedule. It was concluded that the actual base temperature was 1.2 ℃ higher than the value used for UK regulations (15.5℃). Lakatos discussed the variation of balance temperature with difference in location of the city, solar gains, apartment house or standalone house, level of refurbishment, level of insulation and heat island effect for a city in Hungary [START_REF] Verbai | Prediction of energy demand for heating of residential buildings using variable degree day[END_REF]. The assumption of base temperature of 12℃

(Hungary) can mislead to over estimation or under estimation of heating energy demand. The number of degree days vary depending on the assumed balance point temperature [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF].

Anjomshoaa used daily consumption data of Kerman city to estimate the change over time and the base temperature for heating and cooling. Gas consumption was analyzed for heating and electricity consumption for cooling [START_REF] Anjomshoaa | Estimation of the changeover times and degreedays balance point temperatures of a city using energy signatures[END_REF]. The base temperature estimated was 15.42 ℃ for cooling and 21.18 ℃ for heating. A linear relationship between base temperature and heating energy consumption was inferred based on sensitivity analysis. It was found that changing the base temperature by 1℃ changes heating energy by 5 MJ.

Energy performance estimation using degree day methods is based on steady state analysis.

They have the advantage of simplicity and can provide long term scenario analysis for different energy efficiency measures [START_REF] Rosa | Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach[END_REF]. One of the limitations with steady state method is that they neglect the effects of inertia as the method is based on building envelope characteristics only (steady state). This leads to prediction errors and inability to correctly model short term variations. Several methods have been suggested that add corrective terms to the original steady state methods.

Transient thermal models can be used to overcome the shortcomings (inertia) of steady state degree day methods. De Rosa used lumped RC model for a building energy simulation using MATLAB the tool Building Energy Performance Simulator (BEPS) [START_REF] Rosa | Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach[END_REF]. Building energy consumption was then analyzed for different climate zones and several cities in Europe. The model was able to predict energy demand for all cities and climates. It was found that for heating degree days HDD, the heating demand was linearly related to difference between external and internal temperature. For cooling demand, the relationship is not linear for cooling degree days (CDD< 200 ) as the data scatter cannot be explained [START_REF] Rosa | Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach[END_REF]. This is due to inertia of building related to solar radiations. A correction factor added was used to improve the linear relationship between cooling energy demand and temperature difference between internal and external environment [START_REF] Rosa | Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach[END_REF].

The degree day and degree hour methods cannot model dynamic effects (thermal inertia, solar radiations etc.) on building energy consumption. This leads to poor estimation. However, these methods have their advantages. They are based on utility billing data (electricity and gas consumption) and weather data that are easily available. They do not require any experimentation or detailed input data as required in case of forward models. They can predict long term energy consumption for buildings and cities with weather variations [START_REF] Park | Estimating thermal performance and energy saving potential of residential buildings using utility bills[END_REF].

Physical parameters can be estimated using degree day method and the fitted parameters are then able to predict energy consumption.

Calibrated simulation

In building energy modelling, considerable discrepancies exist between the predicted energy consumption and the actual energy consumption. The reasons for such discrepancies are modelling simplifications and assumptions (also called model inadequacies), uncertainties in indoor conditions and operating schedules, weather conditions and building material properties. Calibration of simulation model is used to remove the errors between predictions and observations [7]. Calibration is the process of tuning the simulation model so that the gap or error between the predicted and actual energy consumption can be reduced [START_REF] Fumo | A review on the basics of building energy estimation[END_REF].

Building energy simulation is an integral part of energy audits required by country or state laws for energy performance assessment of buildings. Building simulation is used to develop a baseline energy for buildings, i.e. average annual energy consumed by the building in absence of any energy conservation measures (ECM). The baseline helps to determine the contribution of heating/cooling loads, water heating, lighting, plug loads, building fabric (thermal performance), solar radiation, ventilation and occupancy on the total building energy consumption.

Savings from any energy conservation measures are estimated against the simulated baseline.

It is difficult to simulate a representative baseline that can take into account the impact of all parameters. Discrepancies in baseline are more pronounced in existing buildings because of deterioration of building thermal properties, reduction in efficiency of equipment, operation off the designed values, changing weather pattern, changes in operation schedule and occupancy [START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF]. Majority of energy conservation measures are adapted to existing buildings.

They require investment by building owners that have to be guaranteed against predicted savings by Energy Service Companies (ESCOS). Uncertainty in predicted savings make it difficult to gain the confidence of investors in savings from energy conservation measures.

Due to discrepancies in modelled energy, different energy performance certificates have set minimum acceptable error between simulated and actual energy consumption [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. ASHRAE Guideline 14 [START_REF] Webster | M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4[END_REF], International performance measurement and verification protocol (IPMVP) [START_REF] Ipmvp | Measurement and Verification[END_REF], US Department of Energy's (DOE) Performance Measurement and Evaluation Plan (PMEP) and Guideline and Uniform Methods Project (UMP) provide the procedures for ECM saving calculations, measurement verification of savings from energy conservation measure, and minimum criteria for simulation/model fitness [START_REF] Webster | M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4[END_REF]. Calibration is therefore a requirement for energy auditors to bring simulated energy consumption close to actual energy consumption. In absence of calibration, the discrepancies can be in the range of ± 30% for an entire building whereas for components, such as HVAC equipment, the discrepancies can rise up to ± 90 % [START_REF] Zhao | A review on the prediction of building energy consumption[END_REF][START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF].

Calibration is considered as an overdetermined problem i.e. too many parameters to support with observed data [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF]. This can result in non-unique solutions [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. One of the major issues with calibration guidelines, such as IPMVP, is the criterion for estimating prediction errors without specifying procedure or methodology of calibration [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF]. There are many published methods for calibration. However, there is a lack of standardized, uniform method for calibration. The following paragraphs explains the principles of calibration along with the issues and advancements in this field.

Principles

Calibration for building energy models is carried using the following steps:

 Collect data
 Enter data and run simulation  Find error between simulation and actual data  Tune the parameters until the desired accuracy is achieved [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF].

The method of error determination and tuning can be used to further classify the calibration techniques. For example, a broad classification is a) Manual calibration, where tuning of parameters is performed manually by the user utilizing their knowledge and experience. b) Automatic calibration, which is performed by automated process or tools that assist in calibration, e.g. using mathematical and statistical techniques.

A more detailed classification is given by [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF], [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF].

i. Calibration based on manual, iterative and expert-based intervention.

ii. Calibration based on suite of graphical or visualization techniques.

iii. Calibration based on empirical tests and analysis.

iv. Calibration based on analytical and mathematical techniques.

It may be noted that a single method of calibration cannot work alone. Therefore, a combination of two or more techniques is used. A brief description of error criteria between simulated and actual energy consumption is explained in the following paragraphs.

Error criteria for calibration (objective function)

In order to reduce the gap between simulation output and measured energy consumption (billing data), it is necessary to quantify the error between simulation and measured data.

Different terms are used in literature for this purpose.

A simple method to calculate the simulation error is to find percent difference between actual energy consumption and simulated energy consumption also known as Mean Bias Error [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF]:

𝑀𝐵𝐸(%) = ∑ (𝑀 𝑖 -𝑆 𝑖 ) 𝑁 𝑃 𝑖=1 ∑ 𝑀 𝑖 𝑁 𝑃 𝑖=1 (2.39)
where 𝑀 𝑖 and 𝑆 𝑖 are measured and simulated data at instance i; P is the period of interval (e.g., monthly, weekly, daily and hourly); 𝑁 𝑃 is the number of values at interval period P (i.e., Nmonth = 12, Nday = 365, Nhour = 8760). This is practiced in energy audits of multi residential buildings. However, error computed using this method gives a false perception of reduced error due to compensation from over and under estimation over an year [START_REF] Ashrae | Energy Estimating and Modeling Methods[END_REF].

To overcome the under estimation of error, Root Mean Square Error (RMS) is used making all the (𝑀 𝑖 -𝑆 𝑖 ) terms positive before addition thereby cancelling the effect of over and under estimation in estimated error [START_REF] Ipmvp | Measurement and Verification[END_REF]. The RMS is indexed by introducing an error term called coefficient of variance of Root Mean Squared Error (CVRMSE):

𝐶𝑉𝑅𝑀𝑆𝐸 (𝑃) = √∑ ((𝑀 𝑖 -𝑆 𝑖 ) 2 /𝑁 𝑃 ) 𝑁 𝑃 𝑖=1 𝑀 𝑃 (2.40)
where

𝑀 𝑝 = ∑ 𝑀 𝑖 𝑁 𝑝 𝑖=1 𝑁 𝑃 (2.41)
In contrast to error coefficients (MBE, CVRMSE), Index of agreement 𝑑 gives a direct measure of the fitness or agreement. The value of 𝑑 varies between 0 and 1, with higher value indicating good fit [START_REF] Taylor | Encyclopedia of Energy Engineering and Technology LEED-EB : Leadership in Energy and Environmental Design for Existing Buildings[END_REF]:

𝑑 = 1 - ∑ (𝑂 𝑖 -𝑃 𝑖 ) 2 𝑛 𝑖=1 ∑ (|𝑃 𝑖 -𝑂| + |𝑂 𝑖 -𝑂|) 2 𝑛 𝑖=1 (2.42)
where 𝑂 is the observation and P is the prediction value for the corresponding instances.

The acceptance criteria for simulation error is based on CVRMSE and RMS with models achieving minimum values for CVRMSE and MBE are considered as 'fit'. The fitness shows the acceptance criteria as per ASHRAE Guideline 14, IPMVP and FEMP. CVRMSE is used as a cost function or objective function criteria against which parameters are optimized during calibration [7]. As the minimum error criteria can be achieved through many non-unique solutions, constrain on parameter values can be used as an additional criteria to reduce number of possible solutions [7].

In case of model output with a specific distribution, the closeness with measured distributions is calculated using Continuous Rank Probability Score (CSPR) [7]. If distributions are obtained using Monte Carlo Simulation, then CSRP is given as:

𝐶𝑅𝑃𝑆(𝐹, 𝑌) = 𝐸 𝐹 |𝑌 -𝑦| - 1 2 𝐸 𝐹 |𝑌 -𝑌 ′ | (2.43)
where 𝐹 is the predictive distribution of random variable 𝑌, 𝑦 is the observation, 𝐸 𝐹 is the expectation over 𝐹 and 𝑌′ is an independent random variable with identical distribution as 𝑌.

A larger distribution means a larger discrepancy between predicted and observed distribution. 

Calibration methods

The methods of calibration require building construction and operation details. The details are either provided by owner or obtained by a detailed survey of the building for which the simulation is developed, known as characterization technique, to know the physical and operational characteristics of buildings. Standardized methods of characterization have been developed that are known as energy audits or energy surveys [START_REF] Fabrizio | Methodologies and advancements in the calibration of building energy models[END_REF]. According to the level of detailed survey, they may be characterized as:

Level 1-walkthrough audit. It involves a visual inspection of the facility to know the building and its operations. It usually does not involve extensive data collection.

Level 2-standard audit. It involves extensive inspection and data collection. All energy consumption equipment is noted in detail and is broken down as per type of energy consumption such as heating, cooling, lighting loads etc. building geometry, shape, structure, fenestration and roof etc. are inspected [START_REF] Webster | M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4[END_REF].

Level 3-investment audit. It involves measurements of energy consumption equipment along

with extensive detailed inspection of facility, detailed interviews with facility managers to know the building operations. These audits serve the purpose of providing guaranteed ECM savings for investments [START_REF] Webster | M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4[END_REF].

Depending on the level of audits, simulations are carried out by using data from facility.

Simulation ranges from simple excel macros to detailed software analysis using market software such as BLAST, EnergyPlus, ESP-r, Equest etc. After simulation, the results are compared with actual billed data of building to find any prediction or simulation errors.

Simulations are calibrated to remove the errors based on any or combination of the following methods explained [START_REF] Raftery | Calibrating whole building energy models: Detailed case study using hourly measured data[END_REF].

Calibration based on manual, iterative and expert-based Intervention

Field calibration is performed manually by experts through steps such as selection of significant parameters and tuning or "fudging" the values of significant parameters (parameter estimation). The process is repeated by iteratively changing values of set of parameters and running simulation until the desired closeness of gap between the simulated energy consumption and actual energy consumption is achieved [START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF]. This method of calibration is labor intensive, time consuming and subjective, depending on the skills and experience of the expert. This can result in unrealistic values of parameters, different values of parameters leading to the same results (identification issue), poor optimization of parameter and unrealistic fitting between actual data and simulation [START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF]. The unrealistic closeness between simulation and actual energy consumption can lead to saving predictions that are never achieved. Some of the discrepancies in manual calibration can be resolved by assisting it with mathematical/analytical and advanced graphical techniques.

Advanced graphical techniques for calibration

A simple form of graphical analysis is to compare the simulation time series of energy consumption versus the measured energy consumption using time series graphs. The scale of time can be months, days or hours; parameters are tuned to reduce the difference between measurements and simulation results. Advancement in graphical data presentation has improved the comparisons. Some of the advanced graphical comparisons are: One way to use graphical analysis is using signature method, i.e. Calibration Signature and Characteristic Signature in which a normalized plot of difference between simulated versus actual energy consumption is plotted as a function of outdoor temperature. This graphic signature can then be tuned by changing different parameters. A characteristic signature for each building can be generated for heating and cooling loads. These signature graphs serve the purpose of baseline for evaluating any energy conservation measure [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF]. 

Calibration based on tests

The total building energy consumption can be modelled as the summation of energy consumption from heating, cooling, domestic hot water, lighting and electronic equipment consumption. The energy bills do not provide the segregation of different loads. Simulation uses operation schedules and energy relations to find the impact of each load on overall energy consumption. One of the simple ways is to perform on site tests for this purpose. The different test methods explained in this section are used for calibration and parameter identification.

Intrusive blink tests: These tests include turning on and off load equipment for a short interval of time usually one to five minutes. This help to identify the impact of selected parameters effect on hourly energy consumption that can be averaged over longer period. Usually loads are turned on and off sequentially for a short interval of time. The incremental energy consumption can accurately quantify the impact of these loads. Two to four weeks of testing is considered enough for calibration purposes [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF].

STEM tests:

The short-term energy monitoring (STEM) test is a calibration test to segregate energy consumption into end use profile such as cooling energy, heating energy, lighting energy and plug loads. STEM test involve intrusive and non-intrusive controlled heating and cooling tests for a period of two to four weeks. The method was developed by Subbarco (1988) [START_REF] Subbarao | PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring[END_REF]. The test protocol consists a period when temperature is kept constant by application of heating or cooling followed by a period where temperature is allowed to float freely. The coheating is usually carried at night time and is used to determine the overall heat transfer coefficient in case of buildings where heat loss through building shell is significant. The cool down/free floating time is used to determine building time constant. Building heat transfer coefficient 'U' is a significant parameter influencing building energy simulation, the calibrated value determined effectively reduces discrepancy between simulated and actual energy consumption.

Calibration based on analytical and mathematical techniques (automatic calibration)

The mathematical and analytical calibration can be defined as an optimization process with an objective function to reduce the gap between the simulated and actual energy consumption for buildings [START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF]. These methods find the important parameter to tune and decide on how much to tune. An analytic framework for automatic calibration using tools (steps) such as Sensitivity Analysis (to determine the most significant parameters), Identifiability Analysis (to find parameters that can be tuned), numerical optimization (to find the best parameter sets that can reduce discrepancies) and uncertainty analysis (variation space of parameters) is provided in [START_REF] Sun | Calibration of Building Energy Simulation Programs Using the Analytic Optimization Approach (RP-1051)[END_REF]. An exhaustive literature is available on each of these tools. This section provides an overview of important issues relevant to the work of this thesis.

Uncertainty in inputs

Simulation output depends on the quality of the data (measured and calculated) used for simulation. The quality of input data varies largely due to many reasons. Uncertainty in data is due to stated values based on laboratory tests (standard conditions only), manufacturing defects and errors during measurement process. For example, in real working conditions the properties such as thermal transmittance, density and specific heat are reported to have a standard deviation of 1 %, 5 %, and 25 % as compared to stated values [START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF]. The area weighted thermal capacity C (kJ/m 2 K) of concrete can have variation between 160 to 257 (kJ/m 2 K). Simulation model may fit actual data even with incorrect inputs or parameters. This is misleading as is evident in many projects where savings were either over estimated or under estimated, despite initial simulation agreement [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. Confidence in simulation output depends on the quality of input data. It is therefore important to perform uncertainty analysis to reflect the impacts of uncertainty in inputs on output simulation. One way is to express uncertainty of each input as statistical distribution and run simulations to generate an output with statistical distribution [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF].

Significant variations occur in actual ventilation

Simulation involves large number of parameters and running simulations for every input parameter with its statistical distribution is time consuming. It is therefore important to select parameters with significant importance using Sensitivity Analysis techniques.

Sensitivity analysis (parameter selection)

Any calibration process involves a number of parameters that need to be tuned to match technique for generating samples was used in [7]. The advantage of this method is that it reduces sample size and all desirable properties of input are retained as it.

The global sensitivity analysis can classified into regression based, Morris design (screening based), variance based and meta-modelling [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF]. A brief explanation of each method is given in below.

Regression based is one of the fastest methods that has low computational costs and is easy to interpret. However, the effects of some parameters may be left unexplained when using Coefficient (PRRC) [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF]. The SRRC and PRRC methods, also called rank transformation methods, are used when there is a nonlinear relationship between input and output. The SRC and PRC methods are used in case of linear relationships between inputs and outputs, with the difference that SRC do not consider interrelation effects between inputs. The statistics used for selection of important parameters are t-statics, F-statics and R determination coefficient (R 2 ) [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF].

Morris design (screening based) is a global sensitivity analysis method that changes one input at a time whereas the other inputs are kept constant at initial value and the variation in output with respect to output is calculated. The process is repeated, and the inputs are ranked according to their variation impact on output. Input factors are selected from levels rather than distributions [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF]. The sensitivity index µ is used to present direct effects of input on output, another index δ indicates the correlation effects between various inputs, and another index µ * indicates the total effect. This method requires lesser simulations and is recommended for projects with small number of significant parameters and large number of insignificant parameters. The disadvantage of this method is that it is qualitative and cannot quantify the impacts of input variations on output [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF].

Variance based methods decompose the effects of input on output into easily interpretable fractions such as main effects of an input on output (first order) and the total effects due to both main effects and non-linear effects such as correlation between the inputs. The difference between main and total effects give fraction of correlation effects due to interrelation between two or more inputs. Two common methods used in variance-based methods are Fast Amplitude Sensitivity Test (FAST) and Sobol. The FAST method considers the nonlinear effects only, whereas the Sobol method fractions variations of output into nonlinear and correlation effects. The methods are recommended for complex nonlinear systems.

However, they are computational expensive, e.g., a model with 6 input factors will require minimum 608 simulation runs [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF]. Choice of sensitivity analysis methods depend on the intended purpose of research, computation time and cost and number of input variables [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF]. The sensitivity analysis take much lower time as compared to energy simulation time required for multiple runs with different input sets [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF]. Linear regression-based methods are first choice based on their simplicity and computational cost. However, they can leave variation in output unexplained.

Meta-modelling

A meta-model can be better solution in this case. In case of large number of inputs, Morris method is preferred based on smaller number of simulations required, especially for qualitative analysis. Variance-based method is more reliable. However, it has high computational cost [START_REF] Yang | ScienceDirect Comparison of Sensitivity Analysis Methods in Building Energy Assessment[END_REF].

Meta modelling (linear regression)

Model calibration is essentially an optimization problem. Building simulation calibration has a number of parameters to tune by using observations. However, it is a problem with multiple non-unique solutions [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. The first step therefore is to put constraints on the number of solutions by reducing the number of parameters, as explained in the previous section. The next step is to calibrate it with significant parameters using automated optimization criteria.

Let us assume that 𝐺(•) represents a model with 𝑥 as observable inputs and 𝜃 as numerical parameters and unobservable inputs. The model output 𝑦 can be given as:

𝑦 = 𝐺(𝑥, 𝜃) (2.44)
Suppose the number of experimental observations 𝑑 𝑖 are obtained representing the actual output:

𝑑 = 𝑑 1, 𝑑 2 … … … , 𝑑 𝑛 (2.45)
Discrepancy 𝜀 𝑖 between model output 𝑦 and observations 𝑑 can be represented as:

𝑑 = 𝐺(𝑥, 𝜃) + 𝜀 𝑖 (2.46)
One way to calibrate this model is to perform non-linear regression between model output and observation and then optimize parameters in a way that minimizes the squared difference between model output and observation. The Root Mean Square Error (RMS) is given as:

𝑅𝑀𝑆 = √ 1 𝑛 ∑ (𝑑 𝑖 -𝐺(𝜃, 𝑥 𝑖 )) 2 𝑛 𝑖=1 (2.47)
Using this calibration method has some drawbacks as calibration requires multiple simulation runs, sometime running into thousands. Using detailed energy models for this purpose is time consuming and computationally expensive [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. The meta models, also known "model of the model", of reduced order can be used as a short cut to long, detailed simulations. It is simple and computationally fast generated based on input/output data relationship, also called supervised learning. The simplest way of modelling based on supervised learning is linear regression with equation:

ℎ(𝑥) = ∑ 𝜃 𝑖 𝑥 𝑖 = 𝜃 𝑇 𝑥 𝑚 𝑖=0 (2.48)
where 𝑚 is the number of input variables, 𝑥 the observations and 𝜃 parameters. Linear regression calibration minimizes the difference between modelled ℎ(𝑥 𝑖 ) and output observation 𝑦 𝑖 using least square as cost function:

𝐽(𝜃) = ∑(ℎ(𝑥 𝑖 -𝑦 𝑖 ) 2 𝑛 𝑖=1 (2.49)
The cost function 𝐽(𝜃) is minimized by: 𝜃 = (𝑋 𝑇 𝑋) -1 𝑋 𝑇 𝑦 (2.50) where 𝑋 represent training input data and 𝑦 represents training output data in matrix form.

Fitness criteria used for this purpose is RMSE and/or coefficient of determination 𝑅 2 given as:

𝑅 2 = 1 - ∑ (𝑦 -𝑦 𝑖 ) 𝑛 𝑖=1 ∑ (𝑦 -𝑦 𝑚𝑒𝑎𝑛 ) 𝑛 𝑖=1 (2.51)
Distribution of residuals is analyzed for any pattern which is an indication of imperfect modelling. T-test and F-test are used to verify that residuals are identically identified and independently distributed (i. i. d.). Further details can be introduced to linear regression to improve the model and its calibration [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF]:

 Expressing linear relationship in probabilistic form.

 Introducing relation/interaction terms i.e., 𝑥 = 𝑥 1 𝑥 2 or in polynomial form i.e., 𝑥 2 = 𝑥 1 2 .

 Using nonlinear functions that are linear in their parameters.

 Using kernel functions.

Some advanced meta models are MARS (Multiple Adaptive Regression Splines), ACOSSO (Adaptive Component Selection and Smoothing Operator), Support vector machine (SVM), Gaussian Process(GP) and Treed Gaussian Process (TGP) [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF]. These models can be used within Bayesian frame work. The Bayesian calibration is explained in next section.

Bayesian calibration

It is a well-established fact that energy conservation measures (ECM) for buildings are either under estimated or overestimated due to discrepancies in modelling, uncertainties in inputs and variation in parameter values. ECMs are potential investment risks and that is the reason why ESCOs usually down grade the potentials savings. One way to overcome this issue is to express the energy conservation measures savings with uncertainties or confidence interval by taking into account all the uncertainties of the inputs and model outputs. Bayesian statistical inference provides a systematic way to consider uncertainties in inputs and their propagation in model output [START_REF] Fabrizio | Methodologies and advancements in the calibration of building energy models[END_REF].

Bayesian inference collects and generates the uncertainty in parameters in the form of probability distribution. This distribution is then mapped into the output by generating probability distribution for model output. These model output and prior parameter distributions are updated by using Bayes rules to generate posterior distributions [START_REF] Fabrizio | Methodologies and advancements in the calibration of building energy models[END_REF].

Bayesian calibration incorporates three sources of uncertainty that are parameter uncertainty 𝜃 in model output 𝜂(𝑥, 𝜃) [START_REF] Allesina | A calibration methodology for building dynamic models based on data collected through survey and billings[END_REF]:

𝑦(𝑥) = 𝜂(𝑥, 𝜃) + 𝛿(𝑥) + 𝜀(𝑥) (2.52)
where 𝑥 is input, 𝛿(𝑥) is the discrepancy between model output and observations where 𝑦(𝑥)

are the observations, and 𝜀(𝑥) is the observation error.

An emulator, such as Gaussian process, is used to model the simulation output (𝜂(𝑥, 𝜃) + 𝛿(𝑥)), as a reduced order model. Probability distribution function for parameters is generated by using Markov Chain Monte Carlo algorithm. As models are always based on approximations, they will never be able to match the observations. Bayesian calibration avoids the problem of over estimation by keeping the discrepancy term 𝛿(𝑥) [START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF].

Under Bayesian framework, different modelling techniques have been used for calibration purposes. Normative modelling [START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF] and Artificial Neural Networks (ANN) [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF] were used to calibrate a building model for retrofit analysis to quantify risks associated with retrofits. Data from a building at University of Sao Paulo were used for simulation of building energy consumption using ANN and EnergyPlus [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. It was found that ANN generated building energy model with 10 % error compared to 13 % error by EnergyPlus. The ANN requires less manual inputs but requires extensive data for training. The ANN models, however, do not provide any physical understanding of the process. The author suggested that the use of this method should be further investigated for air conditioned buildings [START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF].

Three models, i.e. piecewise linear regression, Gaussian process (GP) meta modelling and detailed simulation are used to simulate energy consumption for office building using

Bayesian calibrantion [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF]. All these models were found in agreement with observation data, with the reduced order GP providing additional benefits of ease of use and computational cost reduction in all three steps: optimization, uncertainty and sensitivity analysis. GP method has the potential to provide promising results in terms of continuous commissioning, model predictive control, monitoring of energy consumption and detection of faults, and power peaks, especially in the field of smart grid and district energy systems [START_REF] Manfren | Calibration and uncertainty analysis for computer models" A meta-model based approach for integrated building energy simulation[END_REF].

Four linear emulators using Bayesian calibration were tested on building energy data from Georgia Tech University [7]. The corresponding four linear emulators were GP emulator, Linear-main (LM) emulator, that includes only main effects, Linear-interaction emulator (LI), that includes main effects and the interaction effects, and Linear-quadratic (LA) emulator, that takes into consideration main effects, interaction effects and quadratic effects. The emulators were used for calibration of physical model and for generating calibrated meta-model. The emulators LI or LQ showed a promising result in parameter estimation when used for physical model calibration and provide accurate predictions when used as meta-model. Use of emulators saved time and computational cost without compromising accuracy.

An important point mentioned by is that emulators can fit the building data and generate an acceptable model [7]. However, different emulators generate agreeably similar results, even with different parameter sets. In case of ECM predictions with changes in parameter values, an emulator may not be flexible enough to consider the sole effects of parameter change. This can result in wrong predictions. The author therefore prefers the calibration of physical model by modeler as compared to relying on emulators.

Data pre-processing

Parameter identification (both black and grey box) are based on data. The estimated results depend largely on the quality of measurements, sampling and analysis of data. A well-known term used in modelling literature with reference to input data is "GIGO" that is garbage in garbage out. In order to ensure the acquisition and utilization of quality data, International Energy Agency (IEA), EBC (energy in buildings and communities) Annex-58 has recommended necessary pre-processing steps [START_REF] Agency | Reliable building energy performance characterisation based on full scale dynamic measurements[END_REF].

Pre-processing. It is important to analyze data for any abnormalities and errors before using it for modelling. This process is known as data pre-processing. Understanding the data requires knowledge of measurement system and principles of phenomena to be measured. It is important to plot data on different time scales such as time of day, week, month and yearl.

These plots help find any abnormal tendencies, missing sensor data, outliers, irregularities.

Averages or quantiles that may be calculated to single out unusual phenomena, Box plots and time series plots can also be useful in this regard [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. Pre-processing can lead to rejection of measurements, correction of experimental setup or repetition of experiments [START_REF] Jiménez | Energy performance assessment of buildings and building components. Guidelines for data analysis from dynamic experimental campaigns part 1: physical aspects[END_REF]. Time synchronization of data acquired from different measurement systems should be dealt with care.

Sampling. An important question regarding data acquisition is the sampling rate of data, i.e.

the time interval between acquisitions of two data samples. Measurement is a continuous process but is registered at discrete time interval. This is known as sampling the signal or simply sampling [START_REF] Matalas | Time Series Analysis[END_REF]. Discrete sampling for a continuous measurement can be represented as shown in Figure 2.6 Sampling rate depends on the time constant or dynamic response of instrument, i.e. time required by instrument for stable readings, dynamics of the measured process (frequency of analog signal) and sampling requirement of modelling or interest. The frequency with which a sample is measured at time interval 𝛿𝑡 is given by:

𝑓 𝑠 = 1 𝛿𝑡 ⁄ (2.53)
Sampling theory states that the signal should be sampled at a rate more than twice the highest frequency (𝑓 𝑚 ) in input signal i.e.

𝑓 𝑠 > 2𝑓 𝑚 or 𝛿𝑡 < 1 2𝑓 𝑚 ⁄ . ( 2 

.54)

Aliasing. When a signal is measured or sampled at a rate 𝑓 𝑠 < 2𝑓 𝑚 , this can cause removal of high frequency signal/data and the resulting sample will show false lower frequency, a misinterpretation of the original signal. This is called aliasing and the sampled frequency as alias frequency [START_REF] Edition | Theory and Design for Mechanical Measurements[END_REF]. Nyquist frequency 𝑓 𝑁 is a term used with alias frequency 𝑓 𝑎 is given by:

𝑓 𝑁 = 𝑓 𝑠 2 ⁄ = 1 2𝛿𝑡 ⁄ (2.55)
It shows that all the frequencies in the input signal above the Nyquist frequency will appear as signals of lower frequency equal to alias frequency 𝑓 𝑎 less than 𝑓 𝑁 . A folding diagram can be used to predict the alias frequency. In order to overcome the problem of aliasing, the sampling rate should be based on the maximum frequency of interest and the signal should be passed through a low pass filter (anti-aliasing filter) to remove signal content at or above the 𝑓 𝑁 [START_REF] Edition | Theory and Design for Mechanical Measurements[END_REF]. One way to overcome the issue of aliasing is to select a sampling frequency such that the majority of the frequency content is lower than the Nyquist frequency, 𝑓 𝑁 . There is a trade-off between accurately depicting a signal using as high frequency as possible but at the same time reducing the measurement noise. Filtering. Filters are used to remove undesirable frequencies/information form an input signal.

A filter allows the desired range of frequencies to pass through, known as the pass band and blocks the undesirable frequencies known as the stopband. Depending on the requirement, a filter can be low-pass, high-pass and band-pass. In case of high frequency in input data, the measurement system cannot respond with the frequency of input data and becomes a filter by itself. This is the case of undesirable filtering. In certain cases, the input signal comes with noises and disturbances and the filter has to be used to obtain the desired data only. A moving average or smoothing filter is used for removing noise or trends. A self-correcting filter can remove the current faulty data point based on the average or weighted average of the previous data points: 𝑦i = (𝑦 𝑖-𝑛 + ⋯ . . +𝑦 𝑖-1 + 𝑦 𝑖 + 𝑦 𝑖+1 + ⋯ + 𝑦 𝑛+1 )/2(𝑛 + 1)

(2.56)
where 𝑦i is the average value used. The average smoothing can be both forward-moving and backward-moving.

In advanced form, various Kalman filtering techniques are used directly for state estimation by filtering noisy measurements. Kalman filtering can be used for decisions regarding the type, location and orientation of sensors, pre-filtering methods for smoothing sensor noise and data sampling rates for sensors. Kalman filter achieves a better estimate of variables by estimating a joint probability distribution, using series of measurements that may be corrupted by statistical noise and other inaccuracies [START_REF] Myers | KALMAN FILTERING Theory:Theory and Practice Using MATLAB[END_REF]. Extended Kalman filter, colored noise Kalman filtering and adaptive filtering are the advanced forms of the original Kalman filtering [START_REF] Crassidis | Optimal estimation of dynamic systems[END_REF]. Averaging and filtering. Averaging is sometimes required to obtain a consistent sample whereas filtering is used to remove any unwanted information from the input signal. Both can be used in case they do not hide any useful information from the signal. These techniques may be used to remove information that is not relevant to the phenomenon being studied.

However, care must be used not to wipe relevant information while using these methods.

Special care should be practiced in case of averaging signals with extreme low and high values [START_REF] Agency | Reliable building energy performance characterisation based on full scale dynamic measurements[END_REF]. In case of two measurement systems with different data sampling rates, the data for one instrument must be averaged out. This can create the issue of aliasing or weaning out of the relevant information from one of the signals [START_REF] Jiménez | Energy performance assessment of buildings and building components. Guidelines for data analysis from dynamic experimental campaigns part 1: physical aspects[END_REF]. In case of down sampling (longer sampling), the same method should be used for all inputs.

A relevant example of the advantages and disadvantages of averaging can be seen in Figure 

Conclusions

This chapter details the theory for parameter identification, simulation models used and the statistical analysis techniques. Since the subject of current thesis is the analysis of models used for parameter identification, this chapter forms the theoretical foundation for the analysis of results. The models are broadly classified as classical (forward approach) and data driven (inverse approach). These types are further discussed in detail. The chapter discussed the calibration principles and techniques used to reduce the gap between predicted and measured energy consumption. The sensitivity analysis and a discussion on the advantages and disadvantages of each method were presented.

A detailed study on the parameter identification includes the different type of model structures, sampling time, model order selection, application of identification methods. The data analysis techniques and effect of data sampling, filtering and aliasing are discussed. The material in the chapter can be used as a guideline for building modelling, parameter identification and data analysis.

In 

Long-term identification test methods

Two common approaches to reduce building energy consumption are: to improve energy efficiency of the equipment inside the building, such as lighting and HVAC etc., and to improve the performance of the building envelope, such as adding insulations, reducing infiltration etc.

It is relatively easy to measure the equipment efficiency in comparison to the performance measurement of building envelope [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF].

Some of the common indicators of envelope performance measurement are: overall heat transfer coefficient (𝐻), thermal inertia, thermal resistance, solar factor, time constant etc.

The overall heat transfer coefficient (𝐻) is considered as the most popular indicator of energy efficiency of building envelope. It represents the heat flow rate due to temperature difference between building and environment and is expressed as W/K. The overall heat transfer coefficient includes losses due to transmission (transmission losses through building physical surfaces) and infiltration losses (due to ventilation and infiltration) [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF].

The overall heat transfer coefficient of building with a steady state heat rate of 𝑄 ̇ that maintains a steady state temperature difference ∆𝑇 between inside of the building and surroundings is:

𝐻 = 𝑄 Ȧ∆𝑇 (3.1) 
A number of methods are used to measure the over-all heat transfer coefficient:  Methods that are short enough to limit the effects of occupancy and weather conditions (tests carried with no occupants inside)

 Calculations based
For long term identification methods, it is difficult to dissociate the impact of occupant's behavior, energy efficiency of systems, hot water consumption, infiltration rate, impact of solar radiations etc., from envelope performance.

The short-term parameter identification methods are dynamic methods based on lumped parameters and can be used to identify suitable models that can describe thermal characteristics of building structure and its systems (HVAC equipment etc.). These methods are useful for grid optimization that can respond to changing energy needs of buildings (based on dynamic model of buildings) [START_REF] Brun | Short methodologies for in-situ assessment of the intrisinc thermal performance of the building envelope[END_REF].

The calculated or designed 𝐻 value of building is validated using different tests. Long term methods, such as co-heating tests, are zero occupancy steady state method and measure the 𝐻 value as a function of the daily energy consumption and average outdoor temperature.

Linear regression is used to identify U-value.

The long term test methods are aimed at thermal performance verification of building envelope using measurements and estimation techniques (as discussed in chapter 2) [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. A simple explanation of how these methods work can be given by the equation presenting estimation of overall heat loss coefficient [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]:  experiments based on building components such as walls, roofs etc.

𝐻 = ∑
 experiments based on entire buildings.

Depending on the available data and purpose of measurement, the parameter identification can be based on:

 steady state analysis

 dynamic analysis

This chapter discuss long term test methods discussed in literature.

Long-term methods for building components (walls)

The heat flow meter test method (ISO 9869) is used to measure the thermal properties, such as thermal resistance and conductance, of building components, such as opaque walls [START_REF]:2014 -Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF].

The measurements involve heat flux measurement across wall surface using heat flow meter and the temperature measurement of the two surfaces using thermocouples [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. Thermal resistance is evaluated by dividing the mean temperature difference by the heat flux:  measured value should be within 5 % of the value estimated at the end of the test period;

R
 the value estimated during first period (up to 2/3 rd of the time from the beginning) should be within 5 % of the value estimated during last period of the test (up to 2/3 rd from the end)

 internal energy in wall/component should not increase by more than 5 % of the initial value.

It is usually difficult to achieve these steps during the tests, especially for unknown components. However, they are recommended as a first estimation. For light components, this method can achieve reasonable accuracy. In a simple case, for a wall with insulation of 20 cm, U-value was averaged over eight days to arrive at value, consistent with reference value [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

The dynamic analysis requires less testing time and is used for estimation of both static and dynamic properties with reasonable accuracy [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. A lumped RC model is used for dynamic analysis of the wall. The standard form of energy balance equation for any node inside the wall can be written as:

C 2 . 𝑑𝑇 2 𝑑𝑡 = (𝑇 1 -𝑇 2 )𝐻 1-2 + (𝑇 3 -𝑇 2 )𝐻 2-3 + 𝑞 2 (3.5)
Where The flow meter method was applied to a triple glazing and an insulated concrete wall to validate the claims of manufacture about the U values. Both the wall and the glazing were oriented towards North [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The data obtained every five minutes was averaged over 5 hours.

Interesting results for glazing and wall can be observed as shown in Figure 3.2. However, in the case of insulated heavy wall, the data is scattered and U-value cannot be determined from the measurement. An increased averaging time of up to 72 hours or dynamic relationship can be used to determine U-value in this case [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

A light wall with strong insulations (high resistance) on two sides was tested using heat flow meter method. Both static and dynamic methods were used for estimation of thermal properties. For steady state estimation, the observation length was increased to one day per sampling. The period necessary to obtain an accurate U-value was between 5 to 6 days. In total, observations for 8 days were used. other [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

An interesting comparison of steady state and dynamic analysis methods is provided by [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF] for a cavity wall located in Belgian climate. The thermal resistance calculated from thermos physical properties of walls is 4.002 m 2 KW -1 . The weather conditions, temperature variation of wall and heat flow through wall is modelled for a period of one year and simulation step of one minute. The methods tested with data were steady state methods; the simple ISO 9869 (average method), ISO 9869 method with rectification/correction for storage (also known as semi stationary method) and dynamic methods; using Anderlind's regression (regression with correction for dynamic effects), ARX and the stochastic state space GREY BOX methods. The ARX model of order 18 and grey box model of order 3 were found suitable [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF].

The dynamic methods generated an improved performance compared to the stationary methods. Different dynamic methods performed more or less equally well. The anderlind's regression (improved black box) method converged quickly to accurate estimates as compared to ARX and grey box methods. The state space grey-box modelling was more labor intensive as compared to ARX and Anderlind's regression method. In winters, both semi stationary and dynamic methods performed equally well. In summers, only dynamic methods generated reliable results. Dynamic models are more versatile. However, they are complex to use in contrast to semi-stationary methods, which provide reliable results in winters only [START_REF] Deconinck | Comparison of characterisation methods determining the thermal resistance of building components from onsite measurements[END_REF].

The flow meter (ISO 9869) testing for thermal characterization can take from 3 days to a week, depending on the thermal mass of the wall and the weather conditions [START_REF]:2014 -Thermal insulation -Building elements -In-situ measurement of thermal resistance and thermal transmittance -Part 1: Heat flow meter method[END_REF]. The value estimated using this method is used as a reference value and is considered as accurate.

However, the long-time duration of this method makes it impractical to be employed at a large scale. A new transient short term method called Excitation Pulse method was proposed, based on the theory of the response factors (RFs) [START_REF] Rasooli | A response factor-based method for the rapid insitu determination of wall's thermal resistance in existing buildings[END_REF].

This method involves the application of triangular excitation pulse to a wall for a short duration and the measurement of heat flow and temperature on both sides of wall. The The response factors 𝑋 and 𝑌 are calculated as

X 𝑖 = 𝑞 1 𝛿 , Y 𝑖 = 𝑞 2 𝛿 (3.6)
where 𝑞 1 and 𝑞 2 are the heat fluxes measured at inner and outer surfaces of the wall, respectively and 𝛿 is the magnitude of triangular pulse. The resistance value of the wall can be measured as:

𝑅 𝑐 = 2 × (∑(𝑋 𝑖 + 𝑌 𝑖 ) 𝑛 𝑖=0 ) -1 (3.7)
The Excitation Pulse Method (EPM) method was applied for different case studies (walls) [START_REF] Rasooli | A response factor-based method for the rapid insitu determination of wall's thermal resistance in existing buildings[END_REF].

It was found that the measured 𝑅 𝑐 values were close to the values obtained by ISO-9869 during the same experiment. A difference of less than 2 % was found between ISO-9869 and EPM. It was recommended to test EPM method for different constructions and to standardize the testing method using automatic controls [START_REF] Rasooli | A response factor-based method for the rapid insitu determination of wall's thermal resistance in existing buildings[END_REF].

Calorimetric methods are used to determine both thermal and solar characteristics of building components [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. Calorimetric method is based on the principle that heat flow through any component is based on its thermal properties and boundary conditions (internal temperature, global radiations, wind speed direction etc.). Hence, if the time series of heat flow and boundary conditions are measured, the thermal properties can be estimated [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The test cell for calorimetric method is a rectangular box (PASLINK Test cell) with front surface used to test wall specimens (Figure 3.5).

Figure 3.5: A view of calorimetric test cell and heat transfer surfaces [46]

A general form of heat transfer equation for the test cell can be given as:

Φ 𝑛𝑒𝑡,𝑐 = 𝑃 𝑎𝑢𝑥 -Φ 𝑡𝑐 -Φ 𝑠𝑟 (3.8)
where Φ 𝑛𝑒𝑡,𝑐 is the net heat flow through the test component, 𝑃 𝑎𝑢𝑥 is the net heat supplied, Φ 𝑡𝑐 is the heat transfer to the exterior across the boundaries/walls of the cell and the Φ 𝑠𝑟 is the heat transfer with service room. The measured Φ 𝑛𝑒𝑡,𝑐 from the experiment is used to estimate the thermal properties by using equation: The above equation can be used for steady state analysis. The steady state methods require a long testing time, sometimes more than 10 days, and is unable to provide information on dynamic properties of the building. In order to overcome these issues, dynamic analysis are used using software tools such as LORD or Continuous time linear stochastic modelling (CSTM). CSTM considers uncertainties in both measurements and calculations during estimation. This software tool can be used for identification and performance assessment of the entire building, building components and heat exchangers, etc. However, there are two issues with this method: the correct assignment of variables as inputs and outputs and its dependence on user experience, as with same data, different users can generate different results [START_REF] Jiménez | Application of multi-output ARX models to estimate the U and g values of building components from outdoors testing[END_REF]. One week of measurement is recommended for majority of the tests.

Φ 𝑛𝑒𝑡,𝑐 = 𝐻(𝑇 𝑖 -𝑇 𝑒 ) -𝐴 𝑠𝑜𝑙 𝐼 𝑠𝑜𝑙,𝑣 (3.9 
Jimenez and Madsen applied different models of varying complexity for estimating characteristics of building components such as UA and gA values [START_REF] Jiménez | Models for describing the thermal characteristics of building components[END_REF]. A wall with double glazed window was used as a sample in PASLINK test cell and data was collected during tests for two orientations of wall, i.e. towards South and North. The test cell was excited using randomly ordered logarithmically distributed binary sequence (ROLBS). Different mathematical models were used for data fitting and validation [START_REF] Jiménez | Estimation of UA and gA values of building components from outdoor tests in warm and moderate weather conditions[END_REF]: Linear Model 0: with assumption of no infiltration air and no heat transfer via test cell boundaries. Naveros conducted further studies on calorimetric method on real sized building components to analyze the limitations of average linear regression, such as minimum data integration time required and minimum number of terms required in energy balance equation for steady state methods. It was observed that the results were improved significantly if the average period of data integration is increased from one to five days and the wind speed is included as variable (Naveros, 2012). Jimenez performed statistical analysis for calorimetric test using RC network, transfer functions and state space modelling. It was concluded that better results can be obtained by using state space model with inclusion of non-linear long wave radiations [START_REF] Jiménez | Estimation of UA and gA values of building components from outdoor tests in warm and moderate weather conditions[END_REF].

Linear transfer function

The overall heat transfer coefficient and heat capacity for a building with integrated solar panels was estimated using one and two state grey box model [START_REF] Lodi | Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations[END_REF]. Evaluation of one state and two state showed that two-state model was able to model the system dynamics very well and further improvement to the model can be made by adding terms for solar radiation and PV module temperature to the noise term. The statistical evaluation of the two-state model shows that this model describes the dynamics of the system very well. A possible model improvement could be the introduction of a dependency of the solar radiation and the PV module temperature in the noise term.

Co-heating method

Co-heating method is used for measuring heat transfer coefficient 𝐻( 𝑊 𝐾 ) and solar aperture 𝐴 𝑠𝑜𝑙 (𝑚 2 ) for an entire building. It is a quasi-static method in which a building is heated to a uniform and constant temperature of 25 °C, with the varying external weather conditions [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF].

Electric heaters and fans are used to achieve uniform temperature. Heat input, indoor and outdoor temperatures, solar radiations, wind speed and direction and relative humidity are observed during the experiment. The experiment timing and data averaging is selected in a way to reduce the effect of charging and discharging of building.

The data is collected over five-minute interval with the advantage that data can be utilized to analyze the dynamic effects. The data is aggregated over long time span such as 1 day, 2 days or one week. The data aggregation methods include averaging, resampling and decimating [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF]. The controlled indoor temperature and appropriate sampling of data help to reduce the effects of dynamic effects [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF].

The total heat loss coefficient is the combination of both fabric and ventilation losses. The ventilation loss coefficient can be segregated from envelope heat loss coefficient using common tests such as pressurization tests, tracer gas decay method and constant concentration test method. For co-heating test, at least 10 K temperature difference is recommended. This is the reason why it is preferred to conduct the co-heating tests during winters when temperature difference between indoor and outdoor temperature is sufficient.

A recommended duration of the test is from two to four weeks [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

The energy consumption of building is analyzed against the indoor and outdoor conditions using regression analysis. The coefficients of regression give the building thermal characteristics such as total heat loss coefficient and solar aperture [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF]. Steady state conditions are achieved by keeping the indoor temperature constant during analysis when the outdoor temperature can be considered as constant. The heat balance equation used for regression analysis of the data is:

Φ 𝑝 + 𝐴 𝑠𝑜𝑙 𝐼 𝑠𝑜𝑙 = 𝐻(𝑇 𝑖 -𝑇 𝑎 ) (3.11)
where Φ 𝑝 is the power supplied for keeping the indoor temperature constant (W)

𝐴 𝑠𝑜𝑙 is the solar aperture (𝑚 2 );

𝐼 𝑠𝑜𝑙,𝑣 is the solar radiations (W/𝑚 2 );

𝐻

Overall heat transfer coefficient (W/K);

𝑇 𝑖 is the internal box temperature (K);

𝑇 𝑎 is the external temperature (K);

The solar aperture 𝐴 𝑠𝑜𝑙 can be calculated from the building geometry, orientation, properties of walls and fenestration and solar measurements. Alternatively, it can be estimated by using linear regression analysis. Different methods of analysis to estimate 𝐻 and 𝐴 𝑠𝑜𝑙 are:

 Calculating 𝐴 𝑠𝑜𝑙 from building features and average measured 𝐼 𝑠𝑜𝑙 and use equation to estimate 𝐻 value only. However, it is recommended not to calculate 𝐴 𝑠𝑜𝑙 on the basis of orientation and shape as this term includes complicated terms not presented by geometrical dimensions only [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF].

 Multiple regression analysis where 𝐻 and 𝐴 𝑠𝑜𝑙 are considered as independent variables and Φ 𝑝 (heating power) as dependent variable.

 Rearranging equation so that in regression analysis 𝐻 appears as intercept and 𝐴 𝑠𝑜𝑙 as the slope of linear regression line (Figure 3.6).

Φ 𝑝 ΔT = 𝐻 + 𝐴 𝑠𝑜𝑙 . 𝐼 𝑠𝑜𝑙 /ΔT (3.12)

The graph shows determination of heat loss coefficient based on calculation of 𝐴 𝑠𝑜𝑙 , where the equation is forced through zero intercept and heat loss coefficient is determined as slope of the regression line (Figure 3.6). The plot on right of Figure 3.6 is based on 𝐴 𝑠𝑜𝑙 and 𝐻 as independent variables and determined as intercept and slope of the graph respectively.

The validity of results from co-heating experiments depend on three factors that are repeatability of results, systematic errors due to neglecting solar radiation and thermal lags [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF]. The errors can be further reduced by observing separately thermal bridging and local infiltration losses.

Figure 3.6: Estimation of H and Solar aperture, using simple linear regression [46]

A regression analysis on three axis is recommended for co-heating data analysis as it helps visualize the estimates under the influence of different boundary conditions (weather), as shown in Figure 3.7 [START_REF] Bauwens | Co-heating test: A state-of-the-art[END_REF].

Figure 3.7: Three dimensional presentation of linear regression of co-heating data [89]

One of the issues with co-heating method is the measurement of solar radiation, i.e. whether vertical measured radiations should be considered or horizontal radiations [START_REF] Stamp | Assessing the Relationship between Measurement Length and Accuracy within Steady State Co-Heating Tests[END_REF]. Majority of the tests have reported horizontally measured radiation. The heat lost through adjoining buildings or spaces is another issue and usually requires heating the adjoining building or space to equal temperatures. These issues, together with the long periods of testing and with testing periods specifically limited to the cold seasons of the year have reduced the popularity of co-heating methods [START_REF] Stamp | Assessing the Relationship between Measurement Length and Accuracy within Steady State Co-Heating Tests[END_REF].

The normal period for coheating test ranges recommended testing duration can be reduced up to 3 days. Within 72 hours of testing period, the value of 𝐻 can reach within ± 10 % of the reference value, as demonstrated for 12 out of 16 cases [START_REF] Stamp | Assessing the Relationship between Measurement Length and Accuracy within Steady State Co-Heating Tests[END_REF]. Monitoring beyond this period improves results to a smaller extent. The range of suitable testing period depends on dwelling type. The suitable testing period is 2/3 of the year for buildings built as per UK 2012 regulations, 40% of the year for buildings built to national standards, 20 % for Passivhaus and 12% for apartments [START_REF] Stamp | Assessing the Relationship between Measurement Length and Accuracy within Steady State Co-Heating Tests[END_REF].

Conclusions

The long term test methods, such as co-heating, calorimetric and flow metric tests (ISO 9869) are utilized for in-situ thermal characterization of buildings. The thermal values estimated using these tests are precise compared to raw model values (based on simulations or calculations only) and can be effectively used to reduce performance gap. However, certain shortcomings make these methods impractical to be employed in field tests at large scale.

These methods require a long testing period, that can range from two to four weeks, with the shortest reported period being 3 days [START_REF] Rasooli | A response factor-based method for the rapid insitu determination of wall's thermal resistance in existing buildings[END_REF].

There are many reasons why the long-term methods cannot be applied on a large scale in field tests. The season of the year during which the tests can be conducted is limited to heating season only, when external temperatures are low and effects of solar radiations are minimal [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF]. The range of suitable testing duration depends on type of dwellings. The methods also require a long testing period with no occupancy. It is usually difficult to obtain a facility for such a long period.

The long-term test methods, as discussed in this chapter, have a shortcoming: they are too long to be employed on commercial scale. To overcome this shortcoming, short term thermal characterization test methods were developed. The short-term test methods, with focus on QUB method is discussed in the next chapter.

Short-term test method: QUB method Short term methods were developed to overcome the shortcomings of long term methods, i.e. the long testing time. PSTAR, ISABELE (In Situ Assessment of Building EnveLope pErformance) and QUB (Quick U-value of Buildings) are some of the short test methods.

PSTAR is a dynamic testing method that uses system identification techniques to estimate building parameters. The test is performed in three nights and four days: the first night is to achieve steady state conditions; the second night is to let the temperature decay and the third night is to calibrate the heating system. One or more solar days are included to account for solar aperture. Overall heat transfer coefficient is estimated in last two nights. The method requires strict experimental conditions and has repeatable accurate results. The errors result from the inability to achieve steady state conditions and the sensitivity to solar radiations. The methods also require building to be modelled as single zone.

ISABELE (In-Situ Assessment of the Building envelope performancEs) is a dynamic thermal characterization method based on the response of building temperature to controlled heating input. This method is based on French Thermal Regulation RT2012 and identifies thermal transmission and thermal inertia. The identification process involves fitting a thermal model to the observed temperature response. ISABELE method models uses five resistances and one capacitance and identifies the parameters from the response curve [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]. The experiment involves the observation of the building temperature when no power is injected, followed by power injection and finally no power is supplied. The required measurements are internal temperature, heating power injected, air infiltration rate and external climate conditions. The test takes 5 to 15 days to be completed, depending on thermal inertia of building [START_REF] Brun | Short methodologies for in-situ assessment of the intrisinc thermal performance of the building envelope[END_REF]. The method is sensitive to air infiltration rate and solar radiation.

QUB is a short term testing method that measures the heat loss co-efficient in one to two nights. It has the shortest duration among the short term methods, with results of the test ranging in ±15 to ±20% of the reference value. As the focus of the thesis is on QUB method, its development, basic principles and experimental validation is discussed in details in the next sections.

Introduction to QUB method QUB is quick method for testing, introduced by Saint-Gobain, to measure the heat loss coefficient (H) within a single night. The method has the potential to reduce the testing time from 8 hours to 1 hour in some cases [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF], [START_REF] Stamp | Assessing the Relationship between Measurement Length and Accuracy within Steady State Co-Heating Tests[END_REF], [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF], [START_REF] Meulemans | QUB/e: A novel transient experimental method for in situ measurements of the thermal performance of building fabrics[END_REF].This method involves application of two levels of excitations, i.e. different levels of power. Usually, a high power period is followed by low level or no power period, as shown in Figure 4.1. The duration for both excitations is the same. The experiment is performed at night without any occupants to avoid external gains [START_REF] Bouche | Methodologies for the Assessment of Intrinsic Energy Performance of Buildings Envelope[END_REF]. The response of building is estimated by measuring indoor and outdoor temperatures and the power levels. The building is represented by a RC network (Figure 4.2). The temperature inside the building is considered as homogeneous and represented by a single node. The evolution of the internal temperature with input power is modelled with respect to indoor and outdoor temperatures, over-all heat transfer coefficient and the capacitance of building. The power injected is:

𝑄 ̇ℎ = 𝐻(𝑇 𝑖𝑛 -𝑇 𝑜𝑢𝑡 ) + 𝐶 𝑑𝑇 𝑖𝑛 𝑑𝑡 (4.1)
where 𝑄 ̇ℎ is the power supplied, 𝐻 is the over all heat transfer coefficient, 𝑇 𝑖𝑛 and 𝑇 𝑜𝑢𝑡 are the indoor and outdoor temperatures respectively, and 𝐶 is the capacitance. The temperature evolution is expressed as time constant with product of resistance and capacitance as exponents of decay. The overall heat transfer coefficient is estimated by

𝐻 𝑄𝑈𝐵 = 𝛼 2 𝑃 1 -𝛼 1 𝑃 2 𝛼 2 ∆𝑇 1 -𝛼 1 ∆𝑇 2 (4.2)
where 𝛼 1 slope of the measured indoor temperature at the end of heating phase;

𝛼 2 slope of measured indoor temperature at the end of cooling phase;

𝑃 1 input power during heating phase; Taylor series method for uncertainty is used for estimate uncertainty with estimation of 𝐻 𝑄𝑈𝐵 . It is recommended to carry out the test when the building is empty and there is no power in the second period of the test [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF]. This one night testing method has the potential to be an effective tool for energy measurement. Since the method is relatively new, it requires further validation by repeating method on virtual buildings, test buildings and actual buildings.

The QUB test requires instruments for measuring zone air temperatures, external air temperature and power input. The power measurement requires special care during QUB test.

To estimate the influence of weather parameters, such as wind speed, solar radiations etc., a weather station may also be used [START_REF] Meulemans | QUB/e: A novel transient experimental method for in situ measurements of the thermal performance of building fabrics[END_REF]. Heat flux meters may be used to measure the U-value for building components, such as walls, during the QUB test.

QUB method is sensitive to the homogeneity of the input temperature in the measurement zone and care must be taken to ensure that uniform temperature is maintained. Saint-Gobain recommends to use mat heaters for this purpose. The duration of heating and cooling should be the same. The data analysis period must be the same. For example, when heating duration starts at 7 PM and ends at 1 AM and two hour analysis period is selected between 11 AM and 1 AM, then the same data analysis period must be selected for the cooling period, that is from 4 AM to 6 AM [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. To avoid effects of solar radiation, the test is conducted during the night in empty building with power measurements (electric heating).

A dimensionless parameter 𝛼 is used as a check on the estimated value of overall heat transfer coefficient, known as 𝛼-criterion:

𝛼 = 1 - 𝐻 𝑟𝑒𝑓 ∆𝑇 0 𝑃 1 (4.3)
where 𝐻 𝑟𝑒𝑓 is the reference heat loss coefficient determined earlier using co-heating test method or the stated/assumed value available [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF], ∆𝑇 0 is the initial temperature difference between indoor and outdoor temperature at the start of the test and 𝑃 1 is the power supplied during the first phase of test. The value of 𝛼 is an indirect measure of certainty on the estimated value of 𝐻 𝑄𝑈𝐵 . An 𝐻 𝑄𝑈𝐵 value for which 𝛼 lies between 0.4 and 0.7 is considered within the limits of reference value. Any 𝛼 greater than 0.7 indicates that 𝐻 𝑄𝑈𝐵 value is overestimated. A value smaller than 0.3 indicates an underestimation. In case of overestimation, the test period is increased. where 𝐶, is the heat capacity of the building representing the amount of heat required to bring 1 K temperature difference, Φ 𝑃 is the heat supplied, 𝐻 is the overall heat transfer coefficient and ∆𝑇 is the temperature difference between internal and external temperature. The assumptions of this model are uniform/homogeneous internal temperature and constant external temperature.

The QUB test results can be expected to show a maximum standard deviation of 20 % compared to the co-heating tests, numerical studies showed a deviation of 11 % (for specific study), experiment in a controlled climate chamber a deviation of 4% and a real building showed a deviation of 11%. The method is tested successfully for few buildings and the results obtained were verified with reference values. The experimental tests and simulation tests show a variation in QUB results for the same house under relatively identical conditions [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF].

The variation of the method with varying levels of insulation in not verified. The impact of changing weather conditions on QUB tests needs to investigated. The QUB method do not take into consideration heat losses to building ground floor losses , this can be a source of error that warrants experiments with and without the consideration of losses through ground floor.

State of the art on QUB method

In order to understand the QUB method, it is useful to discuss a previous work concerning the estimation of overall heat transfer coefficient of complex house [START_REF] Mangematin | Author ' s personal copy Comptes Rendus Physique Quick measurements of energy e ffi ciency of buildings Mesures rapides de l ' e ffi cacité énergétique des bâtiments[END_REF]. The overall heat transfer coefficient is determined via three methods i.e.

 Thermo physical properties only;

 Free cooling and heating experiments in a house (short term);

 using energy signature method.

This work provides a good opportunity to understand the theoretical framework of QUB method.

The overall heat transfer coefficient 𝐾 𝑜 value using thermos physical properties for building envelope is calculated as a sum of heat loss coefficients via building surfaces/envelope and heat loss via transmission/infiltration and ventilation losses using:

𝐾 𝑜 = 𝐾 01 + 𝑓𝐶 𝑎 (4.6)
where 𝐾 01 is the building envelope loss, 𝑓 is the mass flow rate of air and 𝐶 𝑎 is the total air capacity. The conductance of the building is calculated as: ) is the linear coefficient for thermal bridge junction 𝑗, 𝑙 𝑗 is the length of the thermal bridge and 𝜒 𝑘 is the punctual coefficient of 3D thermal bridge (W/K). The calculated 𝐻 value was 497 (W/K) [START_REF] Mangematin | Author ' s personal copy Comptes Rendus Physique Quick measurements of energy e ffi ciency of buildings Mesures rapides de l ' e ffi cacité énergétique des bâtiments[END_REF].

𝐾 01 = (∑
For a heating or free cooling experiment, assuming no occupancy, homogeneous internal temperature and no internal power generation, the behavior of building with the active heating source such can be described by equation:

𝐶𝑑𝑇 = (𝑃 -𝐾 𝑜 𝑇)𝑑𝑡 (4.8)
Where 𝐶 is the apparent heat capacity, 𝑃 is the heating power and 𝑇 is the temperature difference between outside and inside building.

Taking the Laplace transform of equation (4.8) (free cooling) we get :

∆𝑇 𝑐 = ∆𝑇 𝑜 𝑐 (exp (-𝑡/𝜏)) (4.9)
Linearization of this equation generates:

∆𝑇 𝑐 = ∆𝑇 𝑜 𝑐 (1 -𝑡/𝜏) (4.10)
where 𝜏 = 𝐶/𝐾 𝑜 , is the characteristic time of the building. In "heating case", with constant power 𝑃, the temperature evolution obtained by using Laplace transform is: The experiments for free cooling and heating as explained are conducted during the months of February and April. The experimental curves used for derivation of equations are shown in From the slopes of the fitted curves, the values of 𝛼 𝑐 and 𝛼 ℎ are measured. They are inserted in equations (4.17 The 𝐻 value estimated in this case using using regression analysis:

∆𝑇 ℎ = (
𝐸 = 503(20 -𝑇 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 ) -453𝑊 (4.19)
where 453 Watts, is the corrective factor for solar gains and heat generated due to occupancy.

The three values for overall heat transfer coefficient estimated using the three methods i.e.

based on thermos physical properties, short term heating and cooling experiments and energy signature/annual energy consumption are shown in Table 4-1. The three values for overall heat transfer coefficient estimated using three methods are in relative agreement with each other as shown in Table 4-1. The overall heat transfer coefficient during short term heating and cooling experiments is slightly underestimated, this may be attributed to zero occupancy and no solar radiations due to closed shutters, however this needs further investigation [START_REF] Mangematin | Author ' s personal copy Comptes Rendus Physique Quick measurements of energy e ffi ciency of buildings Mesures rapides de l ' e ffi cacité énergétique des bâtiments[END_REF].

The short term method as explained in this section can be considered as precursor to more sophiticated QUB method. Influence of time constants of building for QUB method QUB method assumes homogeneous internal temperature, constant external temperature and equal heating and cooling duration. The assumption of single RC network is too simplistic and the number of resistances and capacitances can be increased to 𝑛 nodes to present the real behavior of the building [START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments Bases théoriques[END_REF]. In such a case, the temperature decay can be presented as The above equation holds true when we consider the temperature evolution: as a function of single time constant i.e. 𝑛 = 1, this happens when the time duration for two phases 𝑡 (1) and 𝑡 [START_REF]Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF] increase to such extent that all the time constants except the highest time constant decays This is considered as sufficient time for QUB experiment and if this time is shorter than single night, than QUB experiment can be performed during a night without the influence of solar radiations [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF].

𝑛
The accuracy of the QUB method as a function of longest/highest time is discussed in [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF].

The time constants are determined as eigen values of state space matrix 𝐴 of the building. The response of the building temperature is exponential due to the cumulative effect of all time constants. However, the matrix 𝐴 has a number of time constants (negative inverse of eigen values) categorized as short, medium or long time constants (significant or non-significant time constants) [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]. The coefficient of time constants determines whether they are dominant or insignificant time constant.

The medium time constants with large coefficients determine the exponential response of the building [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]. The response of the building is exponential after the small time constants (insignificant) have decayed and before the effect of large time constants have set in. The slope of the response curve should be determined at this stage.

The QUB experiment is performed without any occupancy at night so that influence of solar radiation and any other power input (due to occupants) can be eliminated. The thermal power has strong influence on the result of QUB experiment and should be applied as a constant value known with accuracy. To ensure accuracy, it is advisable to use two electric heaters with low inertia. Any other sources of heat, such as wood, boiler, gas etc., require conversion and efficiency factors. This can lead to errors. A small deviation such as 5% deviation in voltage measurement, can lead to larger deviation in power measurement and a 10% deviation in measured 𝐻 𝑄𝑈𝐵 [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF].

It is important to keep temperature homogeneous across the buildings. This can be a problem in case of buildings with multiple rooms. Heaters with small power (100 W) designed to maximize convection can be used to ensure this. This problem can also be resolved by using heaters according to the thermal parameters of the room. G. Pandraud recommended to use heating mats of 112.5 W placed in vertical position over floor to ensure homogeneous temperature distribution. Vertical position results in lesser heat transfer to the ground and generates a smoother temperature curve [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF]. The analysis period must be long enough to average out the measurement noise but still be representative of the dynamic conditions.

It should be mentioned here that the formulas for 𝐻 𝑄𝑈𝐵 are derived using single RC network, which is a crude approximation of the actual temperature evolution. The exact evolution of temperature during a QUB experiment can be modelled by considered the wall with 𝑛 layers (an RC network with 𝑛 nodes). The temperature evolution during QUB experiment can then be presented as The model (3R2C) can be solved both numerically and analytically and can be presented by the equation

[𝑇 * ] = ∑ 𝑐 𝑖 [𝑋 𝑖 ] 𝑛 𝑖=1 𝑒 - 𝑡 𝜏 𝑖 ,
𝑇 𝐼 * (𝑡) -𝑞/𝐾 𝑜 𝑇 𝐼 * (0) -𝑞/𝐾 𝑜 = (𝐴 1 - 1 𝜏 1 ) 𝑒 - 𝑡 𝜏 1 -(𝐴 1 - 1 𝜏 2 ) 𝑒 - 𝑡 𝜏 2 1 𝜏 2 - 1 𝜏 1 (4.24)
where the values of 𝐴 1 ,𝜏 1 and 𝜏 1 are given as functions of capacitance, resistance and different temperatures of the circuit [START_REF] Pandraud | QUB: Validation of a Rapid Energy Diagnosis Method for Buildings[END_REF]. The influence of the exponential exp (-𝑡/𝜏 1 ) disappears quickly, leaving temperature evolution as a function of single time constant 𝜏 2 , that leads to the simple QUB equation for 𝐻. The method can thus be applied to complex buildings.

Experiments conducted in Energy House in Salford were used to validate both QUB method (single RC), and the 3R2C model. The 3R2C fits the temperature evolution curve with two-time constants, as shown in Figure 4.8. The temperature evolution after four hours becomes a simple exponential decay. The 𝐻 values from the four methods, i.e. steady state experiments, QUB method, 3R2C and estimation via basic energy modelling software SAP are compared in [START_REF] Pandraud | QUB: Validation of a Rapid Energy Diagnosis Method for Buildings[END_REF]. The estimates of 𝐻 from different methods given in table are close to each other.

Table 4-2: Comparison of three method of overall heat transfer estimation [99])

Results of these estimations validate QUB method. There are two sources of uncertainty: the uncertainty underlying the model due to the simplicity that is difficult to estimate; the choice of time period during which data is analyzed, especially the time for slope determination. The change in slope period during different test periods causes the dispersion in 𝐻 value (± 10 W/K). The suggested direction for future work is that the range of uncertainty of QUB method under different test conditions needs to be established (though it is in range of ±10 -15%) [START_REF] Pandraud | QUB: Validation of a Rapid Energy Diagnosis Method for Buildings[END_REF].

The heating power should be high enough to ensure the significant temperature difference between interior and exterior. The required power levels can be obtained by optimizing the value of power ratios 𝛼 given be equation (4.3). The QUB method involves application of two levels of power: a heating power followed by no power. There are two ways to conduct these experiments: either applying both levels of power in a single night (8-12h) or applying two stages separately in two nights (36-48h). The experiment should be as long as possible. If initial conditions are similar, i.e. the two constants 𝛼 𝑖.

(1)= 𝑎 𝑖. [START_REF]Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF] in equation (4.21) then overall heat transfer coefficient estimated by QUB method (𝐻 𝑄𝑈𝐵 ) will be equal to steady state heat transfer coefficient provided that the time for heating and cooling durations is equal i.e.

𝑡 (1)= 𝑡 [START_REF]Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF] ,. The values are calculated at the end of each test period [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF].

Validation experiments for QUB An experiment to validate the measurement of 𝐻 by QUB method was conducted at energy house of Salford University [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. In this experiment, H value was measured first by conducting a steady state experiment where H was estimated using 𝐻 𝑡𝑜𝑡 = 𝜑/(𝑇 2 -𝑇 1 ) from Figure 4.7

where values are averaged over a period of 12 hours. 𝐻 𝑡𝑜𝑡 is used as a reference value. It should be noted that these conclusions were obtained for a reference test house and may not represent the real conditions of a living house in a community.

A number of in situ tests were conducted for a detached uninsulated house in UK with heating duration of 5, 6 and 7 hours [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF]. The tests were conducted starting from end of September till end of April. The tests were conducted for two different configurations of air tightness. It was concluded that:

 QUB method provides reasonable results within 10 % error, provided that 𝛼 lies between 0.4 and 0.7;

 tests with 5, 6 and 7 hours generated similar results, though for 5 hours heating duration results were at the lower limit;

 no significant relation was found with wind speed, with a possible explanation that the building was sheltered from wind from three directions;

 with tests extending from October to late September, a relation between H and external temperature was found.

Test duration and power levels for QUB test

The test duration for QUB experiment should be as long as practical and for identical initial conditions i.e. 𝑎 𝑖(1) ≈ 𝑎 𝑖(1) , the heating and cooling test durations should be equal. There is no optimal duration and for each experiment the test duration should be dealt on case to case basis [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. However, the period should be long enough to average out measurement noise but short enough to be representative of dynamic conditions.

In order for 𝐻 𝑄𝑈𝐵 ≈ 𝐻 𝑟𝑒𝑓 , it is important that 𝑡 ℎ = 𝑡 𝑐 > 𝑡 𝑙 where 𝑡 𝑙 is the sufficient time for all the small time constants to become zero, except the highest one. The quadrupole analysis shows the relationship between 𝐻 𝑄𝑈𝐵 and 𝐻 𝑟𝑒𝑓 (steady state) [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]: -If 𝑡 ℎ is increased such that its value is higher than the second largest time constant, then all the 𝛽 𝑖 terms except one are zero and the second term in the denominator of equation (4.25) tends to 0.

𝐻 𝑄𝑈𝐵 = 𝐻 𝑡𝑜𝑡 1 1 -𝛼 2 ∑
-It is possible to make 𝛼 = 0. This can be achieved by 𝑝 ℎ = 𝑝 𝑜 , that is the building stays at steady state, the temperature slope is zero and and 𝐻 𝑄𝑈𝐵 = 𝜑/𝑇 [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. However, it is practically not possible to make 𝛼 = 0, although its value can be reduced. As the value of 𝛼 increase, the corrective factor in denominator increases as well.

Using Quadrupole numerical analysis, the error in 𝐻 𝑄𝑈𝐵 was analyzed as a function of 𝛼, using time durations of 1,6 and 12 hours respectively [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. As shown in Figure 4.9, for a given 𝛼, the error reduces as test duration increases. 

𝐻 𝑄𝑈𝐵 = 𝛼 1 𝑞 2 -𝛼 2 𝑞 1 𝛼 1 𝑇 2 -𝛼 2 𝑇 1 (4.26)
The uncertainty of QUB test therefore increases with decrease in duration of the test.

However, it is important to understand the relationship between the length of the test and the uncertainty in strict terms (numerical or analytical) in order to optimize the test duration, i.e. to reduce the test duration with minimal loss of accuracy.

QUB tests were simulated with different durations of test, a 3D surface as function of all heating and cooling times was generated [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF] as shown in Figure 4.11: Figure 4.12 shows that accurate results can be achieved even with small durations, such as an hour. The accurate result for test lesser than an hour (0.5h) may be sheer luck as it is not supported by theoretical evidence.

A special case for quadrupole analysis is considered where the precise value of initial conditions, initial power 𝑃 𝑜 and temperature, are known, external temperature is constant, heating and cooling durations are equal and power dissipated during cooling phase in nil [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF].

These assumptions lead to a semi analytical expression of 𝐻 𝑄𝑈𝐵 as a function of theoretical value 𝐾 𝑜 , heating duration 𝑡 ℎ and the resistance 𝑅 𝑖 and 𝐶 𝑖 of the network as:

𝐻 𝑄𝑈𝐵 = 𝐾 𝑜 1 1 -(1 - 𝑃 𝑜 𝑃 ℎ ) 2 . 𝑓 ((1 - 𝑃 𝑜 𝑃 ℎ ) , exp(-𝑡 ℎ ) , 𝑅 𝑖 , 𝐶 𝑖 ) (4.27)
where 𝑓 is a function of infinite sums of different products of resistances and capacitances and exponentials of time duration and ratios of power levels (during heating and cooling).

Although 𝑓 cannot be expressed analytically, it decreases exponentially with time and hence the denominator gets closer to 1 and the 𝐾 𝑄𝑈𝐵 value gets closer to reference value 𝐾 𝑜 . As it is evident from the equation, the second way to optimize the 𝐻 𝑄𝑈𝐵 independent of time duration is to keep the ratio

𝑃 𝑜 𝑃 ℎ
in equation (4.27) close to 1, i.e. to keep the low thermal load during heating phase relative to initial conditions [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF], [START_REF] Pandraud | QUB: Validation of a Rapid Energy Diagnosis Method for Buildings[END_REF].

The initial conditions during QUB test refer to the steady state conditions before the experiment. The power required to keep initial conditions in steady state is given as

𝑃 𝑜 = 𝐻 𝑜 ∆𝑇 𝑜 (4.28)
where ∆𝑇 𝑜 = (𝑇 𝑖𝑜 -𝑇 𝑒,ℎ ), i.e. the difference between initial indoor and external temperature.

The ratio of powers can be presented as 𝛼 = 1 -𝐾 𝑜 ∆𝑇 𝑜 /𝑃 ℎ . For a fixed duration of time, we can write the equation: It can be a delicate task to control 𝛼 in practical situations. However, simulation results show that satisfactory results (𝐻 𝑄𝑈𝐵 ) can be obtained with 𝛼 values (4.3) between 0.2 and 0.8; 𝛼 values between 0.3 and 0.7 generate best results. This help us identify the optimized value of 𝛼. The value of 𝛼 = 1 -𝐻 𝑜 ∆𝑇 𝑜 /𝑃 ℎ is based on 𝐻 𝑜 which might not be known in advance. This requires the prior estimation of 𝐻 𝑜 that can be estimated using thermophysical values or some software such as SAP [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF].

𝐻 𝑄𝑈𝐵 = 𝐻 𝑜 1 1 -𝛼 2 𝜑(𝛼) (4.29)
It is highly probable that the estimated value of 𝐾 𝑜 will always be known with error. G.

Pandraud showed that as long as the error in 𝐾 𝑜 ∆𝑇 𝑜 stays within 40 % , the value of 𝛼 can be kept in range of 0.3 to 0.7, as shown in Figure 4.15 To quantify, for a targeted value of 𝛼 = 0.5, an error of 10% on 𝑃 ℎ leads to an error of 5% on 𝛼, which leads to an error of 2 to 5% on 𝐾 𝑄𝑈𝐵 .

The QUB method can also be used to find out the apparent capacitance 𝐶 𝑄𝑈𝐵 as is evident from equation 𝑞 = 𝐶 𝑄𝑈𝐵 𝑑𝑇 𝑖𝑛𝑡,𝑖 𝑑𝑡 + 𝐾 𝑄𝑈𝐵 (𝑇 𝑖𝑛𝑡,𝑖 -𝑇 𝑖𝑛𝑡,𝑒 ) (4.30)

This equation can be used to determine 𝐶 𝑄𝑈𝐵 during as 

𝐶 𝑄𝑈𝐵 = 𝑞 1 𝑇 2 * -𝑞 2 𝑇 1 * 𝑇 1 ′ 𝑇 2 * -𝑇 2 ′ 𝑇 1 * (4.

Results of QUB Experiments

Three test houses were used to validate the numerical results, as shown in numerical simulation section. The three test houses were: small scale building in real climate (Saint-Gobain), real scale building in controlled climate (energy house at Salford University) and real scale building in real climate (Twin houses at Fraunhofer Institute of Building Physics IBP). In all the tests, the steady state 𝐻 was measured using the standard co-heating test method followed by QUB test. Reliable QUB results are therefore obtained with increased time duration for QUB test; the optimized value of 𝛼 for QUB test is between 0.4 and 0.7 [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. The nonconformity of some QUB experimental results with numerical simulation can be attributed to the following reasons:

 non-homogeneous temperature due to stratification, stack effects (a temperature difference of 2 K is observed between ground floor and attic space);

 changed air infiltration rate and wind pressure conditions between the two tests, i.e.

QUB test and steady state test;

 inability to control 𝐻 𝑄𝑈𝐵 𝛼-value in practice.

Reliable results for QUB test can be obtained provided that good air tightness is maintained.

During the tests, the conditions of airtightness and infiltration must be considered. It is important to use more sophisticated techniques (tracer gas measurements) for air infiltration measurement and its impact on heat transfer coefficient [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. The error depends on 𝛼, building structure and test duration, that can be reduced by choosing 𝛼 carefully. A low value of 𝛼 leads to an underestimated 𝐻 𝑄𝑈𝐵 whereas high value leads to an overestimation of 𝐻 𝑄𝑈𝐵 .

An optimal value of 𝛼 (between 0.4 and 0.7) can lead to a reliable H value.

With short duration of QUB test it is possible to conduct as many as 20 QUB tests in comparison to single co-heating test that can take two to three weeks. Due to short duration and dynamic nature of the QUB test, it offers an opportunity to find the impact of weather conditions, such as wind velocity, on the value of the H-value of the building H [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF].

QUB method is relatively new and needs further validation, both theoretically and empirically.

It is important to know the nature of uncertainty of QUB value, variations in uncertainty with test duration, building/wall type and experimental conditions. The information provided by QUB test are not diagnostic and should be further added with additional infiltration tests, thermal bridges, window types etc. [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF].

Conclusions

The QUB method can be used as a tool to quickly estimate U-value of building. This U-value can be used for labelling, certification, control or research purposes. However, QUB results are based on interpretation of data that can be user dependent. This can result in erroneous values that cannot be used with certainty (for certifications or research purposes).

There are two sources of uncertainty:

1. model complexity (single RC or 3R2C due to simplicity of the model) that is difficult to estimate;

2. choice of time period during which data is analyzed, especially the time for slope determination.

The change in slope period during different test periods causes the dispersion in 𝐻 value (± 10 W/K). Determination of temperature slope is a serious problem and should be determined with mathematical and experimental precautions that leads to reproducible results. It is advisable to analyze temperature evolution for a long period and determine temperature slop at or near the end of test (end of heating or cooling period). Aother technique is to determine the slope for a set of points along the temperature evolution curve.

It is also possible to model temperature evolution by a model function such as exponential, polynomial or spline, and then calculate the temperature slope once again at or near the end of the period.

The direction for future work is that range of uncertainty of QUB method under different test conditions needs to be established [START_REF] Pandraud | QUB: Validation of a Rapid Energy Diagnosis Method for Buildings[END_REF]. The limitations of QUB method (due to simplicity and short duration) need to be quantified. Measurements under different conditions, such as weather, type of constructions and variation in 𝐻 𝑄𝑈𝐵 and the determination of time when the temperature evolution become a simple exponential decay. These experiments should be coupled with numerical simulations as well.

It is important to understand the variation of error when the QUB experiments are repeated in succession for a number of days. The variation in QUB value with power level and time duration has been already explored [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]. However, the variation in 𝐻 𝑄𝑈𝐵 value with real boundary conditions (solar radiation, outdoor temperature) and initial conditions (initial power and initial conditions of building) with experimental data needs to be further investigated.

There are two possibilities to perform the detailed analysis of QUB under different set of weather conditions, construction types etc. One is to perform real experiments at different sites, with different construction types, under different set of weather conditions. This can be both expensive and time consuming. Several experimental setups are presented in Chapter 0.

The second possibility is to design simulation experiments with different condition sets. This is less expensive and can be performed in relatively short time but needs adapted models. To simulate and design QUB experiments, it is important to have a modelling tool that has the ability to generate the evolution of indoor temperature under different set of power, time duration and weather conditions. A state space modelling technique with its developed is presented in Chapter 6. The techniques for generating thermal circuits for individual components of buildings, assembling of thermal circuits, generating state space model from the assembled circuits and the advantages for using this modelling technique are discussed in next chapter.

Experimental setups for testing the measurement methods

Building thermal characterization or building energy models need to be validated before their general application. It is important to obtain a data set with known conditions and accuracy that can be used to validate and calibrate building energy models. This section explains the experiments, experimental setups and data analysis techniques that are documented as part of IEA, EBC Annex 58 'Reliable building energy performance characterisation based on full scale dynamic measurements' [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF].

Round-robin box

A round-robin test is an experimental methodology aimed to repeat a single test (or group of tests) on a specimen in multiple laboratories or in multiple conditions with different sets of instruments, assumptions and experts. The purpose of the test method is to verify the repeatability of results, validity of new methods, analyze the effect of varying conditions and varying techniques on the results test.

A sample test box was prepared as a simplified representative of building to be tested at different locations. The box was shifted to different locations and tested under real climatic conditions. Data representing the measurements were then sent to different research organizations for analysis. Based on similarity with round-robin test methodology, it was named as Round-robin box [START_REF] Agency | Reliable building energy performance characterisation based on full scale dynamic measurements[END_REF].

The aim of the test was to establish the state of the art on design of experiments, measurements, dynamic data analysis and dynamic characterization. The experiments provided an opportunity to look into capabilities, limitations and reliability of in situ full scale:

 testing methods

 dynamic data analysis

 influence of different variables on characterization results.

The thermal characteristics selected for these analysis are overall heat transfer coefficient 𝐻, solar aperture 𝑔𝐴 and dynamic characterization, such as dynamic response of building to changing boundary conditions (temperature and solar radiations) and effective capacitance [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. and outdoor conditions of 0℃ . The 𝐻-value was evaluated as 4.08 (W/K). Under real test conditions (co-heating test,) the H-value measured was 3.75 (W/K) [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. It was estimated that with changing wind speeds, the overall heat transfer coefficient may exhibit an uncertainty of ± 10 %. The resistance values for opaque walls were estimated to be between 1.927 to 2.2 m 2 K/W (this change is attributed to glue or thin air film between the layers) [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. The change in convection heat transfer co-efficient with air velocity is given as:

Round

𝑉 < 5 𝑚 𝑠 , ℎ 𝑐 = 5.6 + 3.9. 𝑉 𝑉 > 5 𝑚 𝑠 , ℎ 𝑐 = 7.2𝑉 0.78

(5.1)

The measurements during Round-robin tests require the following instruments:

-Climate boundary conditions: a weather station that can measure outdoor temperature humidity, solar radiation (diffuse and direct), wind speed and wind direction.

-Test box measurements: surface temperature measurement, indoor temperature measurement, heat flux measurement.

-Co-heating tests: heating equipment and power measurement instrument [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

Different tests were performed at different locations. The first test was conducted at a site in Belgium Building Research Institute (BBRI) in the lee of wind and solar radiation. The test site weather is maritime weather with mild winters and cool summers, generally rainy, humid and cloudy [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. For the co-heating test, the box is heated using a 188 W heater. The following experiments were conducted 1. constant indoor temperature of 26 C for 5 days;

2. constant indoor temperature of 21 C for 5 days;

3. constant indoor temperature of 31 C for 5 days.

A simple linear regression between outdoor temperature and power input was used for an initial estimate of 𝐻 and wall thermal resistances. The estimated value was 3.4 to 3.5 W/K.

Figure 5.3: A linear regression to estimate H value[53]

A second series of tests was carried out outdoors in Belgium with the following set of experiments [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]:

1. co-heating test with constant indoor temperature of 25 for 2 weeks;

2. free-floating internal temperature for 2 weeks;

3. ROLBS sequence test for 3.5 days (dynamic heating test).

The measurements taken during the experiments included:

 ambient air temperature;

 vertical global solar radiations for glazing;

 horizontal longwave radiations;

 horizontal global solar radiations;

 horizontal diffuse solar radiations;

 vertical long wave radiations;

 wind velocity and direction;

 relative humidity.

Experiments at Belgium Building Research Institute (BBRI) were repeated in a different climate (extremely hot and dry) at Plataforma Solar de Almeria, South of Spain [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. The weather of this region is characterized by a large temperature fluctuations between day and night and strong horizontal solar radiation (summers) and strong vertical solar radiation (winters). With the strong weather fluctuations the estimates of overall heat transfer coefficient 𝐻 was between 3.75 to 4.08 W/K and thermal resistance R-is between 1.927 to 2.2m 2 K/W [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. This

shows that overall heat transfer coefficient and thermal resistance can be reliable measurement of building performance even with strong fluctuating weather conditions [START_REF] Agency | Reliable building energy performance characterisation based on full scale dynamic measurements[END_REF].

The weather, indoor temperature variation and construction data can be used for model validation.

A third experiment on Round-robin box was conducted at University Centre for Energy Efficient Buildings (UCEEB) Prague. Experiment was conducted in a controlled weather chamber [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The internal, surface, external and power dissipated were measured during the experiments. The conditions were maintained until steady state conditions were achieved for each step. Time constant for box was measured to be approximately 24 hours and the time calculated to reach steady state was approximately 3 days.

𝐻 was estimated after steady state is achieved using the steady state equation

Φ 𝑝 -𝐻(𝑇 𝑖 -𝑇 𝑒 ) = 0 (5.2)
As the climate chamber can keep the external temperature constant, it is relatively easy to use an average uniform temperature. The spatial internal temperature 𝑇 𝑖 measured with different sensors should be representative of temperature of heating surface (of heat source), indoor air and internal surface of the box [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. A representative temperature with weight factor for each

T 𝑖,1 = 𝐾 𝑐 𝑇 𝑎𝑖,1 + 𝐾 𝑟1 𝑇 𝑠 + 𝐾 𝑟2 𝑇 𝑠,2-6 𝐾 𝑐 + 𝐾 𝑟1 + 𝐾 𝑟2 = 𝑤 1 𝑇 𝑎𝑖,1 + 𝑤 2 𝑇 𝑠,2-6 + 𝑤 3 𝑇 𝑠 (5.3) 
where 𝐾 𝑐 and 𝐾 𝑟 are convective and radiative conductance and 𝑇 𝑎𝑖,1 , 𝑇 𝑠.2-6 , 𝑇 𝑠 are temperatures of air, the representative temperature of six surfaces and the temperature of the surface considered [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF].

The following uncertainties are important for determination of 𝐻;

 error in sensor measurement (e.g. manufacturing uncertainty od ±2W for power);

 error in installation of sensors;

 fuzzy representation of internal and external temperatures (assumed value of ±2℃

for outdoor and indoor temperature);

 assumption of steady state [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].

The propagation of uncertainty in internal temperature was evaluated by generating samples using Latin hyperbole technique where uncertainty in both weights and measurement was evaluated [START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The uncertainty in each surface was evaluated and finally the total internal temperature for each sample was calculated. The uncertainty in H was calculated using

u 𝑐 = √(𝑐 1 𝛿Φ 𝑝 ) 2 + (𝑐 2 𝛿T 𝑖 ) 2 + (𝑐 1 𝛿T 𝑒 ) 2 (5.4) 
where 𝑐 𝑖 is the sensitivity coefficient determined with respect to the partial derivative of the respective terms. The data from this test is availabe be used for validation of building energy models.

The Twin House experiment (IEA, EBC annex-58)

The Twin House experiments were conducted as part of IEA, EBC Annex-58 project aimed to provide data for validation of building simulation models used in performance measurement.

The two houses, named N2 and O5, are located on a plane area in Holzkirchen, Germany, at a altitude of 680 meters. As shown in Figure 5.4, both the houses are unshaded. The houses have an attic, a living space and loft [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF]. Before running the experiment, air leakage was measured using blowing door test. The specifications for the thermal properties of the construction and the details of measurements, such as ground reflectivity and leakage data are provided [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF]. Weather data was measured on the site by using a weather station. The experiments were conducted simultaneously in two buildings, with the sequence of heating as shown in Figure 5.8. -phase one: temperature is kept constant with the objective to obtain the required input heat necessary for keeping temperature constant.

-phase two; temperature is allowed to float freely (no application of internal heat) and the objective is to simulate variation of indoor temperature with time.

The stepwise description of the experiments is:

1. Seven days initialization period when temperature was set at 30 °C in both houses. The south façade blinds were kept close during the initialization period.

2. Further 7 days the temperature was kept at 30 °C and the blinds in one house (N2)

were lifted to let the solar radiations enter building.

3. Two weeks of randomly order logarithmic binary sequence for heating input was used in both buildings. The purpose of the ROLBS is to avoid any correlation between heating input and solar radiation for study purpose. The heat pulses ranged from 1 hour to 9 hours to ensure the entire range of time constant for building to be covered.

The heat pulses were of 500 W in magnitude.

4. Seven days of a second re-initialization period to keep indoor temperature at 25 °C.

5. Seven days of free-floating (i.e. no heating) of both houses.

A ventilation rate of 120 m 3 /h was maintained during the test period to avoid over heating of space. The data set provided with the twin house experiment can be used for model validation and design of experiments.

Conclusions

This chapter discussed the thermal characterization experiments conducted as part of IEA-EBC Annex 58 'Reliable building energy performance characterisation based on full scale dynamic measurements' [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. It also discussed the data analysis procedures used to obtain reliable results. The analysis steps together with the data from the experiments can be used as a validation data for modelling and thermal characterization. The experiment and construction data used in the twin houses are used for validation of the model developed in this work (chapter 6) and for design of QUB experiments (chapters 7 and 9).

A new simulation model for testing the short-time measurement methods A state space model presents a physical system in terms of inputs, outputs and state variables that are related to each other by first order differential equation. State-space representation is largely used in the theory of dynamic systems. The state space model can be used to model building in terms of a set of inputs such as outdoor temperature, solar radiations, wind speed, indoor heating etc. and outputs such as building indoor temperature with state variables such as the internal temperature of building components.

This chapter introduces a methodology for obtaining state-space representation from the thermal models of elementary components of a building in three steps:

1) generating thermal circuits for each component,

2) assembling thermal circuits,

3) extraction of state-space model from the thermal circuit.

This model is generated for the Twin Houses presented in Chapter 5.2 and tested with measurement data obtained from the IEA-ECB Annex 58 experiment. The model thus developed can be used for the analysis of the QUB method. With this modelling technique it is possible to estimate the time constants of the building and find the influence of increasing or decreasing the time duration of the QUB method. It allows us to increase or decrease the number of partitions of the building components and allows for ease of weather data with different sampling time.

Introduction

Thermal networks are graphic representations of systems of differential algebraic equations (DAE) which model heat transfer by conduction (described by the weak form of the heat equation [START_REF] Wang | Advances in building simulation and computational techniques: A review between 1987 and 2014[END_REF]), convection (described by Newton law) and long wave radiative exchange (described by using radiosity [START_REF] Bruning | Nonresidential Cooling and Heating Load Calculation Procedures[END_REF]). The resistor-capacitor (RC) models have physical meaning that allows the evaluation of the modelling hypothesis considered for buildings and their urban environment [105].

Thermal networks are used for defining the models of elementary components (e.g. walls, floors, doors, windows, etc.) in energy balance method [105 ,106]. Energy balance method is the recommended method of ASHRAE [108] and the basis of the CEN standard for calculation of the design heat load [109] as well as of other CEN standards related to thermal performance of buildings [109,[START_REF] Energyplus | EnergyPLus Engineering Reference[END_REF]. Other procedures are seen as variants or simplifications of the heat balance method. In this method, the set of equations is integrated numerically, generally by using existing solvers. It is the case of many commercial simulation software [START_REF] Clarke | Energy Simulation in Building Design[END_REF] such as TRNSYS [START_REF] Fakra | Development of a new model to predict indoor daylighting: Integration in CODYRUN software and validation[END_REF], EnergyPlus [START_REF]Advanced software tool for the dynamic analysis of heat transfer in buildings; applications to Syria[END_REF], IDA ICE [START_REF] Chung | Development of a software package for community energy system assessment -Part I: Building a load estimator[END_REF], of research oriented tools, like ESP-r [START_REF] Buonomano | Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies[END_REF],

CODYRUN [START_REF] Perera | Multi-floor building heating models in MATLAB and Modelica environments[END_REF] or of tools developed "in house" [START_REF] Michalak | The development and validation of the linear time varying Simulink-based model for the dynamic simulation of the thermal performance of buildings[END_REF]- [START_REF] Wang | A state of art review on methodologies for control strategies in low energy buildings in the period from 2006 to 2016[END_REF]. Another approach is to use equation-based modeling. In this case, the computational causality (i.e. the input -output relation) is defined after the model was constructed and can be changed. Then a simulation engine performs the calculations [START_REF] Harish | A review on modeling and simulation of building energy systems[END_REF], [START_REF] Afroz | Modeling techniques used in building HVAC control systems: A review[END_REF], [START_REF] Bacher | Identifying suitable models for the heat dynamics of buildings[END_REF]. This has the advantage of using the same model for different sets of inputs and outputs but can generate ill-posed problems [START_REF] Cen | Thermal performance of buildings-Sensible room cooling load calculation -General criteria and validation procedures EN 15255[END_REF].

State-space is the most used input-output representation of linear models, as shown by recent reviews on modelling of building energy systems [START_REF] Buonomano | Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies[END_REF], [START_REF] Hasan | A simplified building thermal model for the optimization of energy consumption: Use of a random number generator[END_REF] and on strategies for building energy management [START_REF] Harish | Reduced order modeling and parameter identification of a building energy system model through an optimization routine[END_REF], [START_REF] Florent | A perturbation method to estimate building thermal performance[END_REF]. State-space representation is widely used for model identification and calibration. In model identification, the structure of the model is proposed and then the parameters are identified by minimizing the error between the output of the model and the measured data. An essential issue is the structure of the model on which the experimental data is projected. This is done mostly empirically by using models with a variable number of states [START_REF] Andrade-Cabrera | Ensemble Calibration of lumped parameter retrofit building models using Particle Swarm Optimization[END_REF]- [START_REF] Zekar | Development and assessment of simplified building representations under the context of an urban energy model: Application to arid climate environment[END_REF]. The procedure of model calibration is very similar to parameter identification: use optimization techniques to fit the model to data by changing the values of the parameters. The main difference is that the parameters obtained by calibration of physical models have physical significance [START_REF] Kim | Urban energy simulation: Simplification and reduction of building envelope models[END_REF]- [START_REF] Naveros | Order selection of thermal models by frequency analysis of measurements for building energy efficiency estimation[END_REF].

State-space representation is widely used for model order reduction, which can be done numerically, when the state-space model is known, as is the case for walls, or by projecting the results obtained by simulation on a given structure [START_REF] Široký | Experimental analysis of model predictive control for an energy efficient building heating system[END_REF]. A key point in model order reduction is the model order selection [START_REF] O'dwyer | Prioritised objectives for model predictive control of building heating systems[END_REF].

State-space model is the most used representation in modern control theory. One approach to obtain the state-space representation is to use a thermal network for the model of the building [START_REF] Hazyuk | Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part II -Control algorithm[END_REF] and to identify the parameters of the state-space representation from inputoutput data [START_REF] Figueiredo | A SCADA system for energy management in intelligent buildings[END_REF][141][142] [START_REF] Viot | Model predictive control of a thermally activated building system to improve energy management of an experimental building: Part I-Modeling and measurements[END_REF]. Usually, the model used for controller synthesis has one state variable: the indoor temperature [START_REF] Viot | Model predictive control of a thermally activated building system to improve energy management of an experimental building: Part I-Modeling and measurements[END_REF]- [START_REF] Martinez-Marin | State-space formulation for circuit analysis[END_REF], although state-space models were obtained from the thermal network of a room for 4 states [START_REF] Uren | State space model extraction of thermohydraulic systems -Part I: A linear graph approach[END_REF], 6 states [151] or for 17

states [START_REF] Naveros | THERMAL NETWORKS CONSIDERING GRAPH THEORY AND THERMODYNAMICS[END_REF].

Since thermal networks are widely used for modelling heat transfer and state-space is the most used representation in control theory, state-space extraction from thermal networks is of the highest interest. A solution to obtain systematically the state-space representation is by using nodal/mesh analysis to reduce the number of undesired variables [START_REF] Strang | Intorduction to Linear Algebra[END_REF]. Another state-space extraction method uses the concepts of tree (a sub-graph of the original graph containing no loops) and co-tree (a sub-graph of the original graph containing the edges removed to form the tree) but it requires symbolic manipulation [START_REF] Strang | Intorduction to Linear Algebra[END_REF]. Commercial implementations of the state-space extraction are not documented [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF].

Obtaining thermal circuit for state space modelling

All load calculation software, whether simulating variation of air temperature or estimating heating or cooling loads, are based on heat balance method [START_REF] Ghiaus | Causality issue in the heat balance method for calculating the design heating and cooling load[END_REF]. Heat balance is essentially the first principle of conservation of energy, which states that "the total energy of an isolated system remains constant". Since, in real world, no isolated system exists, the law of conservation of energy is stated in terms of net balance of energy entering, leaving, generated and stored in the system.

For an air volume inside a facility, such as building or room, load estimation is based on heat balance of air, which states that [START_REF] Ghiaus | Causality issue in the heat balance method for calculating the design heating and cooling load[END_REF] 𝑚 𝑎 𝑐 𝑎 𝑑𝜃 𝑎 𝑑𝑡 = 𝑞 𝑐𝑖 + 𝑞 𝑣 -𝑄 ̇𝑔 -𝑄 ̇𝐻𝑉𝐴𝐶 (

where

𝑚 𝑎 𝑐 𝑎 𝑑𝜃 𝑎 𝑑𝑡
time variation of the heat stored in mass, 𝑞 𝑐𝑖 heat transfer from the enclosure surfaces/walls, such that:

𝑞 𝑐𝑖 = ∑ 𝑆 𝑖 ℎ 𝑖 (𝜃 𝑠𝑖 -𝜃 𝑎 ) 𝑖 (6.2) 
where 𝑆 𝑖 surface area;

𝜃 𝑠𝑖 surface area temperature;

𝑞 𝑣 heat transferred by outdoor air infiltration and ventilation, such that 𝑞 𝑣 = 𝑚̇𝑣𝑐 𝑎 (𝑇 𝑜 -𝜃 𝑎 ); 𝑄 ̇𝑔 longwave radiatios, sensible and latent heat from people, lights, home appliances, etc.;

𝑄 ̇𝐻𝑉𝐴𝐶 heat input from air-conditioning equipment, heaters, etc.

Thermal network models

The thermal model of a room, or any building, is represented by linear algebraic equations.

Though the actual heat transfer is non-linear, it can be written as an infinite sum of linear algebraic equations. The set of linear equations representing the heat transfer of a room are combined in state-space form [START_REF] Ghiaus | Causality issue in the heat balance method for calculating the design heating and cooling load[END_REF]. For ease of manipulation and comprehension, it is convenient to present heat transfer equations in form of thermal resistance circuits, analogous to electrical circuits Figure 6.1.

Figure 6.1 Representation of a wall heat transfer by a thermal circuit

The elements of thermal circuit represent thermal resistance, capacitance, flow rate sources, such as solar radiation, and temperature sources, such as outdoor temperature. The difference between thermal and electric circuits is that thermal circuits do not contain any inductance [START_REF] Ghiaus | Causality issue in the heat balance method for calculating the design heating and cooling load[END_REF]. As an example, the temperature difference across any node is (Figure 6.1):

𝑒 𝑘 = 𝜃 𝑙-1 + 𝑏 𝑘 -𝜃 𝑙 (6.3) 
where 𝜃 𝑙-1 and 𝜃 𝑙 are the temperatures in the nodes 𝑙 -1 and 𝑙, connecting branch 𝑘 via resistance 𝑅 𝑘 and 𝑏 𝑘 is the temperature source. The term 𝑏 𝑘 can be either an external temperature source, such as outside air temperature, or an internal temperature source (part of internal heat source).

As a building or a single room consists of multiple walls, the heat balance has a number of thermal circuits presented mathematically by differential equations. These equations are coupled as it is convenient to represent all thermal circuits in state space. The temperature difference over all nodes in Figure 6.1 is presented in matrix form:

𝐞 = -𝐀𝛉 + 𝐛 (6.4) 
where 𝐞 = [𝑒 1 , 𝑒 2 , … … . 𝑒 𝑛 ] 𝑇 is the vector of temperature drop across a resistor, 𝛉 = [𝜃 1 , 𝜃 2 … … . 𝜃 𝑛 ] 𝑇 is the vector of temperature nodes, 𝐛 = [𝑏 1 , 𝑏 2 , … … . 𝑏 𝑛 ] 𝑇 is the vector of temperature sources on each branch.

The matrix 𝐀 is the incidence matrix whose elements show the presence of resistances and direction of heat flows towards or away from the node. The rows of the incidence matrix show the heat flow branches between two nodes; the columns show the nodes of thermal circuit.

In a row corresponding to a branch, 1 or 0 presents whether the branch is connected to a particular node or not. The sign of the node shows whether heat is entering or leaving the node. The element 𝒂 𝑘𝑙 of the matrix A corresponding to branch 𝑘 and node 𝑙 is:

𝑎 𝑘𝑙 ={ 0, if branch is not connected to node +1, if heat is flowing towards node -1, if heat is moving away from node (6.5) 
Heat transfer across any thermal resistor/branch is

𝑞 𝑘 =𝑅 𝑘 -1 𝑒 𝑘 (6.6)
where 𝑅 𝑘 is the thermal resistance. For the wall presented in Figure 6.1, the insulation and the brick layers form the branches. The number of branches and nodes depend on the number of slices of each wall layer of material. Accounting for all heat transfers the matrix form of equation (6.6) is

𝐪 = 𝐆𝑒 (6.7) 
where

𝐪 = [𝑞 1 … 𝑞 𝑘 , … … .
𝑞 𝑚 ] 𝑇 is the vector of heat rates in branches;

𝐆 = ⌈ 𝑅 1 -1 0 0 0 ⋱ 0 0 0 𝑅 𝑚 -1
⌉ , is a diagnol matrix of conductivities

The heat balance for any node consists of the sum of heat entering and leaving the nodes and the heat sources connected to a node is

𝐶 𝑙 𝜃 ̇𝑙 = ∑ 𝑞 𝑙 𝑙 + 𝑓 𝑙 (6.8)
where 𝐶 𝑙 is the capacitance of the node, 𝑞 𝑙 represents heat entering or leaving the node and 𝑓 𝑙 is the heat source, input to the node. The heat balance for all the nodes is 𝐂𝜽 ̇= 𝐀 𝐓 𝐪 + 𝐟 (6.9)

The matrix of capacitances is:

𝐂 = ⌈ 𝐶 1 0 0 0 ⋱ 0 0 0 𝐶 𝑛 ⌉
where 𝐀 𝐓 , the transpose of the incidence matrix, represents the algebraic sum of all heat exchange rates, 𝐟 = [𝑓1, 𝑓 2 , … 𝑓 𝑙 … . 𝑓 𝑛 ] 𝑇 , is the vector of heat sources across nodes.

By substituting in equation (6.10), we obtain:

𝐂𝛉 ̇= -𝐀 𝐓 𝐆𝐀𝛉 + 𝐀 𝐓 𝐆𝐛 + 𝐟 (6.10)

The matrices in equation (6.10), can be partitioned based on nodes with capacitances and without capacitance as

⌊ 0 0 0 𝐂 c ⌋ ( 𝛉 o θ c ̇) = ⌊ 𝐊 11 𝐊 12 𝐊 21 𝐊 22 ⌋ ⌊ 𝛉 o 𝛉 c ⌋ + ⌊ 𝐊 b1 𝐊 b2 ⌋ b + ⌊ 𝐈 11 0 0 𝐈 22 ⌋ ⌊ 𝐟 o 𝐟 c ⌋ (6.11)
The state space form of the equation depends on the air capacitance. If it is non-negligible, than 𝜽 𝑎 (air temperature) can be obtained as output of the state space model

𝛉 ̇c = 𝐀 s 𝛉 c + 𝐁 s 𝐮 𝛉 a = 𝐂 s 𝛉 c + 𝐃 s 𝐮 (6.12) 
where

𝐀 s = 𝐂 c -1 [-𝐊 21 𝐊 11 -1 𝐊 12 + 𝐊 22 ], 𝐁 s = 𝐂 c -1 [-𝐊 21 𝐊 11 -1 𝐊 b1 + 𝐊 b2 -𝐊 21 𝐊 11 -1 𝐈 22 ], 𝒖 = [b f 0 f 𝑐 ] 𝑇 is the input vector,
𝛉 𝑎 is the air temperature 𝐃 𝑠 is feedthrough matrix that is zero in case of non-negligible air capacity and 𝐂 s extracts the air temperature 𝛉 𝑎 .

In case of negligible air capacity,

𝛉 0 = 𝐂 s 𝛉 c + 𝐃 s 𝐮 (6.13) 
where

𝐂 s = -𝐊 21 𝐊 11 -1 and 𝐃 s = 𝐊 11 -1 [𝐊 b1 𝐈 11 0].
𝛉 a is obtained from the vector of 𝛉 0 .

Assembling the thermal circuits

It is easy and convenient to obtain thermal circuits for different elements of the building (walls, floors, windows, doors, etc.). Then, the model of a whole building may be obtained by assembling the elements. Assembling is different from coupling. In coupling, the models of the elements form a set of equations which is solved numerically; in assembling, the model of the whole building is obtained first and then the system of equations is solved. The advantage of assembling is that the model can be analyzed: the eigenvalues and the eigenvectors of the whole system can be obtained.

The problem of circuit assembling is to obtain the thermal circuit 𝑇𝐶 by knowing that some nodes of the elementary circuits 𝑇𝐶 1 , 𝑇𝐶 2 , … , 𝑇𝐶 𝑛 are common to several circuits. Since a thermal circuit is described by the set of arrays, 𝑇𝐶 = {𝐀, 𝐆, 𝐛, 𝐂, 𝐟, 𝐲}, the aim of assembling is to form the global system:

[ 𝐆 -1 𝐀 -𝐀 𝑇 𝐂𝑠 ] [ 𝐪 𝛉 ] = [ 𝐛 𝐟 ] (6.14) 
or, by using the notations:

𝐊 ≡ [ 𝐆 -1 𝐀 -𝐀 𝑇 𝐂𝑠 ] ; 𝐮 ≡ [ 𝐪 𝛉 ] ; 𝐚 ≡ [ 𝐛 𝐟 ] (6.15) 
to form the equation:

𝐊𝐮 = 𝐚 (6.16)
from the models of the elementary systems (walls, floors, doors, windows, etc.):

[ 𝐆 𝒊 -𝟏 𝐀 𝑖 -𝐀 𝒊 𝑻 𝐂 𝑖 𝑠 ] [ 𝐪 𝑖 𝛉 𝑖 ] = [ 𝐛 𝑖 𝐟 𝑖 ] (6.17) 
We can write equation (6.16) as

𝐊 𝑖 𝐮 𝑖 = 𝐚 𝑖 (6.18) 
where

𝐊 𝑖 ≡ [ 𝐆 𝒊 -𝟏 𝐀 𝑖 -𝐀 𝒊 𝑻 𝐂 𝑖 𝑠 ] ; 𝐮 𝑖 ≡ [ 𝐪 𝑖 𝛉 𝑖 ] ; 𝐚 𝑖 ≡ [ 𝐛 𝑖 𝐟 𝑖 ] (6.19) 
Let's note the dissembled block matrix 𝐊 𝑑 and the disassembled block vectors 𝐮 𝑑 , 𝐚 𝑑 , the matrix and the vectors obtained by simply placing in order the matrices and the vectors of the elementary models described by equation (6.20) Erreur ! Source du renvoi introuvable.:

𝐊 𝑑 ≡ [ 𝐊 1 … 𝟎 ⋮ ⋱ ⋮ 𝟎 … 𝐊 𝑛 ] 𝐮 𝑑 ≡ [ 𝐮 1 ⋮ 𝐮 𝑛 ] ; 𝐚 𝑑 ≡ [ 𝐚 1 ⋮ 𝐚 𝑛 ] (6.20)
There is a disassembling matrix 𝐀 𝑑 which transforms the assembled vectors 𝐚 and 𝐮 into the dissembled vectors 𝐚 𝑑 and 𝐮 𝑑 as: 𝐚 𝑑 = 𝐀 𝑑 𝐚; 𝐮 𝑑 = 𝐀 𝑑 𝐮. (6.21) The relations between the global and the elementary matrices and vectors are: Extract state-space model from thermal circuits

If the thermal circuit contains nodes without heat capacity, the matrix 𝐂 is singular. In order to obtain the state-space model, the equations corresponding to the nodes without heat capacity need to be eliminated from the system of equations (6.10 and the input matrix is: Then, the output equation is:

𝐁 𝑆 = 𝐂 𝐶 -1 [-𝐊 21 𝐊
𝐂 𝑆 = -𝐊 11 -1 𝐊 12 (6.30) and the feed through matrix is: 

𝐃 𝑆 = -𝐊

Model construction by assembling: a proposal for BIM application

In Building Information Modelling (BIM), the building components (such as walls, doors, windows, etc.) are software "objects" with specific properties (such as thermal characteristics). These "objects" need to be parametrizable, i.e. adjust their width, position, number of meshes for numerical discretization, etc. [START_REF] Eastman | BIM Handbook[END_REF].

The assembling method proposed in this paper can be used for BIM objects. For the model of a house, six types of BIM "objects" may be defined (Figure 6.3). The outdoor walls have as boundary conditions on the outdoor surface the temperature, 𝑇 𝑜 , and short-wave and longwave thermal radiation, Φ 𝑜 , and on the indoor surface the short-wave and long-wave thermal radiation, Φ 𝑖 . The wall can be composed of an arbitrary number of materials, such as brick and insulation, each one discretized in an arbitrary number of meshes, depending on the frequency to which the model needs to respond (Figure 6.3 Type 1: Outdoor wall). The model for each mesh, composed by two thermal resistances and a thermal capacity, is obtained by the finite volume method [START_REF] Clarke | Energy Simulation in Building Design[END_REF].

The inner wall is defined in a similar way as the outdoor wall, with the difference that the boundary conditions are heat flow rates (Figure 6.3, Type 2: Inner wall). The doors and windows are considered without a thermal capacity (Figure 6.3, Types 3 and 4).

Ventilation is modelled as a conductance with the value 𝐺 = 𝑚̇𝑖 𝑛𝑓 𝑐 𝑎 (6.32) where 𝑚̇𝑖 𝑛𝑓 is the mass flow rate of the air and 𝑐 𝑎 is the specific heat of the air.

A complex model can be obtained by assembling the parameterizable types to form rooms; the transformation from the set of "objects" to an assembled circuit is done by the dissembling matrix, 𝐀 𝑑 , as indicated in equations (6.21)-(6.24). For example, Figure 6.3 shows a single room, the living room. The air in the room (object 13) is connected to 12 other objects through convective resistances; e.g. node 9 of object 13 is connected to node end of object 9

of type 1. The outdoor temperature, 𝑇 𝑜 , and the convective heater, 𝑄 ̇ℎ𝑒𝑎𝑡𝑒𝑟 , are inputs for the indoor air Figure 6.3.

Once the model of a room is done, it can be assembled with the model of another room. For example, Figure 6.5 shows the assembling of the living room, and shows the assembling of seven thermal zones. The time step of the simulation depends on the frequency spectrum of the inputs and on the frequencies to which the output needs to be analyzed. The eigenvalues of the state matrix were used to determine the maximum time step for simulation, Δ𝑡 ≤ min 𝑇 𝑖 2 (6.33) where the time constants, 𝑇 𝑖 , are found from the eigenvalues, 𝜆 𝑖 :

𝑇 𝑖 = - 1 𝜆 𝑖 (6.34)
Considering, for example, the living room. If the dynamics of the air into the room need to be modelled, the time step needs to be less than 360 s or 6 min. This time step requires that the insulation of the outdoor wall is divided in 4 meshes and the brick is divided in 8 meshes.

Another important application of the eigenvalues is to find the response time, which is 3 … 4 times the largest time constant. For the model of the living room, the largest time constant is 234 h = 9.7 days. It means that simulations need to be done for about 30 days in order to obtain the good initial conditions.

Experimental protocol

The state space model developed in sections (6.2,6.3,6.4 and 6.5) is validated by using data from the IEA,EBC annex-58 (the Twin House experiment). The experiment setup is discussed in details in chapter 0. The experiment was conducted for 41 days in summer 2013 starting with an initialization period of 7 days followed by a period of 7 days with a heating set point of 30 °C in all rooms. The constant temperature period was followed by a Randomly Ordered Logarithmic Binary Sequence of heat inputs (ROLBS) for 15 days. A 500 W heating power was supplied only in the living room during the ROLBS period. The time period for heat pulses ranged from 1 hour to 90 hours. The ROLBS period was followed by a re-initialization period for 7 days with a heating set point of 25 °C in all rooms. For the final 11 days of the experiment, no heat input was supplied and the temperature was allowed to float freely [START_REF] Strachan | Reliable building energy performance characterisation based on full scale dynamic measurements Report of Subtask 4a: Empirical validation of common building energy simulation models based on in situ dynamic data[END_REF].

Model of the Twin House

The experimental house consists of seven thermal zones: kitchen, living room, doorway, bedroom 1, bathroom, corridor and bedroom 2. Internal temperature is simulated for living room (single zone), kitchen & living room (two zones), and entire twin house (seven zones), respectively.

A thermal circuit for each building element (wall, roof, window, door, etc.) is obtained by using techniques discussed in section (6.2) (Figure 6.4). The spatial discretization of the building elements can be changed according to the frequency response desired for the system. The wall thermal capacity is located in the middle of each mesh.

All thermal properties are considered constant in time. In simulation, the solar radiation on walls and windows is taken from measurements done directly on the building surface and from calculations from the measurement on a horizontal surface; both approaches give very similar results.

Solar radiation entering the twin house through windows is calculated as a function of varying solar transmittance that changes with the angle of incidence of the solar radiation. According to the manufacturer, the heat from heaters is split in thirty percent radiation and seventy percent convection [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF]. The same split of heat input from the heater is considered in The thermal circuits generated for each zone are assembled as discussed in sections 6.3 and 6.4. The state space model for the assembled circuits is generated as discussed in section 6.5.

The measured data has a time step of 10 minutes. The simulation is done at a time step of 5 minutes.

Single zone model (Living room)

Living room is modelled as a single thermal zone. The conditions of spaces adjacent to living room are considered as boundary zones, as shown in Figure 6.5. The living room is bounded by kitchen wall, kitchen door, doorway wall, doorway door, corridor wall, bedroom wall, Southern external wall, southern window, Eastern wall and Eastern window. The kitchen and the living room were modelled together to validate the assembling and the state-space methodologies discussed in sections (6.2,6.3,6.4 and 6.5). The kitchen and the living room share an internal wall and a door. Although the shared door is sealed, there is infiltration of air between the two rooms, equivalent to 1/3 rd of the infiltration between North and South zones. The ventilation supply duct passing through the kitchen is uninsulated and is responsible for loss of heat from the kitchen. The heat losses to ventilation duct are provided in the experimental data and are incorporated in the simulation.

The total number of thermal circuits for the two zones is nineteen (Figure 6.9). All zones external to the kitchen and the living room are considered boundary conditions for the model.

The number of state variables in the assembled model is 57. The model for the whole house consists of seven thermal zones that are modelled by assembling 56 thermal circuits (Figure 6.11). The number of states in the final state-space model is 109. The simulation error increases with the number of zones, which is explained by the errors induced in the values of boundary conditions (Figure 6.12). For example, when only the living room is simulated, the boundary temperatures are the measurements of the temperatures of adjacent rooms (Figure 6.7); when the whole house is simulated, the boundary temperatures for the living room are state variables that are simulated with an error (Figure 6.12). The simulation results show that, for every zone, three quantiles of simulated temperature lie within ±1℃. These results are similar to the best results obtained in a benchmark of 21 modelling teams using commercial and research simulation programmes [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF]. The state-space representation can be effectively obtained from thermal circuits, even for very large models. This is specifically suited to detailed thermal models of buildings. The state-space models, although linear, can be used also for non-linear models if the linearity is considered for a time step. State-space models are completely equivalent to thermal circuits from which they were obtained. The assembling of elementary thermal circuits allows us to obtain only one thermal circuit for the whole building; therefore, the state-space model can model in detail a whole building. Since assembling can be used to create large models from individual elements, it can find applications in the emerging technologies of Building Information Modelling (BIM). Obtaining state-space representation from very large thermal networks can have applications in model order reduction and the synthesis of control algorithms for complex buildings. 

Design of experiments for QUB test method

The previous chapter discussed in detail the variations in results of QUB tests during experiments can be due to the influence of different variables, such as input power, time duration, level of insulation, outdoor temperature, solar radiation, wind speed, measurement errors etc. Like any other experiment QUB test is also performed under controlled set of inputs. The level of inputs depend on the weather conditions and the level of insulation of building. The process of selection of input values for an experiment is commonly known as design of experiment (DOE). The DOE for QUB experiment is to find the optimal value of power and time duration for different outdoor weather conditions and construction types.

The steps for DOE of QUB experiment as discussed in [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF] are:

-Obtain a state space model for the given building and determine the steady state value of heat loss coefficient using equation.

-Use the same state space model to simulate the temperature response to QUB input.

-Estimate the slope of the response (heating and cooling period).

-Determine the QUB value from the slopes and power level.

-Repeat the estimation of QUB value for different levels of input power and time duration.

-Draw the contour map that gives error at the given power level and the time duration and outdoor weather conditions. This chapter explains these steps to simulate QUB experiments for a building with weather data and different levels of inputs. Several numerical experiments are performed with variation of boundary conditions (solar radiation and outdoor temperature) and initial conditions (temperature distribution inside building surfaces and indoor air temperature).

Simulation of QUB experiments for the twin house

The IEA, EBC annex-58 provides full data set that includes: construction details along with dimensions and thermal properties, weather measurements, and the experimental indoor measurements. The Twin House data provides a good opportunity to generate and validate the building simulation models.

With the model of Twin House it is possible to design optimal conditions (time and power level) for the QUB experiment. The model was generated for ground portion only that includes seven zones: living room, kitchen, doorway, bedroom, corridor, bathroom and children's room. The conditions below the floor (ground) and above the ceiling (attic) was considered as boundary condition at the outdoor temperature.

A state space model 𝑥̇= 𝐴𝑥 + 𝐵𝑢 𝑦 = 𝐶𝑥 + 𝐷𝑢 (7.1) was generated for the twin house, where 𝑥 represents all the states of the twin house (109 in this case), 𝑦 represents the desired outputs, which in our case were the indoor temperatures of all the seven thermal zones (rooms) of the twin house. The model was validated using the indoor temperature measurement data from the experiment.

The steady state value for heat loss coefficient of a building maintained at a constant temperature by supplying heating power is defined as [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]: However, it is important to note that when the boundary temperatures are not the same, the heat loss coefficient value using equation (7.2) will give errors.

𝐻 ≡ 𝑃 𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 -
In case of multiple zones, it is important to find the single equivalent mean temperature 𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 , as representative of all zones temperature, to be used in equation (7.2) for 𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 .

The equivalent mean temperature in case of zones with equal height can be determined as:

𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 = ∑ 𝐴 𝑖 𝜃 𝑖 𝑖 𝐴 𝑖 (7.5)
The steady state heat loss coefficient 𝐻, is then estimated as [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]:

𝐻 = ∑ 𝑃 𝑖 𝑖 ∑ 𝐴 𝑖 𝜃 𝑖 𝑖 ∑ 𝐴 𝑖 𝑖 -𝑇 𝑜 (7.6)
where -𝑃 𝑖 is the power supplied to each zone -𝐴 𝑖 is the area of each zone -𝜃 𝑖 is the temperature of each zone in the steady state vector 𝑦 𝑠𝑠 -𝑇 𝑜 is the outdoor temperature

In QUB experiment, heating power is applied as a step input in all zones. The power in each zone is tailored according to the surface area of each zone. This generates uniform temperature across all zones. The response of the twin house is modelled using discrete exponential method

𝑋 𝑘+1 = Φ𝑋 𝑘 + Γ𝑢 𝑘 𝑦 𝑘 = 𝐶𝑋 𝑘 + 𝐷𝑢 𝑘 (7.7) 
where

Φ = 𝑒 𝐴Δ𝑡 Γ = 𝐵 𝐴 (𝑒 𝐴Δ𝑡 -𝐼) (7.8) 
The QUB experiments are simulated by using weather and construction data from IEA, EBC Annex-58 [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF] The average outdoor temperature during the QUB experiment nights varies between 6 to 16 ℃. Let us note already here that the conditions in which some of the QUB experiments were performed are known not to be the optimal one. A large temperature difference (e.g.

10 °C) in between the set point temperature (20 °C) and the outdoor temperature during the night is indeed known to increase the accuracy of the method.

As a first step, a QUB experiment is performed with constant outdoor temperature and assumed initial conditions (no solar radiations before the start of experiment) at different levels of power and time duration. The contour error for twin house are similar to those obtained previously in literature [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF], showing that QUB error is predictable at given power and time Influence of variation of optimal power on design of experiment (DOE) results

It is evident from the plot of error curves (Figure 7.1) that variation in input power changes the output of the QUB method. The optimum power for QUB experiment on any day with reference to the initial power can be estimated by using equation (7.9) [START_REF] Florent | Comparison of whole house heat loss test methods under controlled conditions in six distinct retrofit scenarios[END_REF]:

The effect of variation of the optimum power could be investigated by generating error curves for the twin house with ±20 % of the optimum power (𝑃 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 ) value. In this case the error curves were almost vertical (Figure 7.2). The advantage of this behavior was that the variation in QUB error (with ±20 % variation in power) was limited (maximum variation of 6 % in QUB error). For example, the QUB error would vary by 3 % when the optimum power varied from 2100 to 2600 W (blue vertical line in Figure 7.2). 

Influence of boundary and initial conditions on QUB experiments

The QUB experiment begin after the sunset, the solar radiation absorbed by the building envelope might influence the results of QUB experiment.The expression used for the calculation of overall heat transfer coefficient 𝐻 𝑄𝑈𝐵 , does not take into account the solar radiation. It is important to see how the error in QUB results vary with respect to the solar radiation. Since the QUB method is an experiment with short duration of time the initial condition before the start of QUB experiment can have influence results. This chapter analyses the variation of QUB results with boundary conditions (solar radiation) and initial conditions (initial power).

Timing of QUB experiment: before or after the sunset

To explore the effect of the solar radiation delayed by the transmission through the walls, the QUB experiment was performed at different starting times with respect to sunset. Figure 8.1

shows the errors of QUB experiment (black curves) and the indoor temperature (red curves) when the QUB experiment was done for heating power ranging from 500 to 3500 W and time duration between 0 and 6 h. When the time duration was shorter than 30 min., the measurement was very sensitive to the heating power: there was a large variation of error with a small variation of heating power. The errors became less sensitive with power if the time duration was about 5-6 h. When QUB experiment was performed half an hour before the sunset, in the same conditions of power and duration (1500 W and 5 h), the error was 13 % (blue star in Figure 8.1). There was a reduction of the error to 10.5 % when the experiment was performed one hour after the sunset (Figure 8.2). There was no further reduction of error when the starting time of QUB experiment was further delayed. It could be inferred that the solar radiation influenced QUB results. 

Dashed horizontal line (blue) is the steady state reference value

To explore further the effects of solar radiation on the QUB measurement, experiments were simulated on a sunny day. The simulations were started assuming that the temperature in the external walls was constant and equal to 10 °C. Then, simulations were repeated with the weather data of a given day in order to obtain the initial conditions. Figure 8.4 shows the results when the same day was repeated 1, 2, …, 40 times. It could be observed that the initial conditions of temperature distribution in the walls highly influenced the errors of QUB measurement. If initially the temperature in the walls was 10 °C, the error of QUB experiment was 140 %. However, this type of arbitrary initial conditions was specific to a numerical experiment; the simulations need to be repeated for more days in order to obtain values of the state variables, which are not influenced by the "arbitrary" initial conditions. It can be noticed in Figure 8.4 that the errors entered in a range after 15-17 days. In case of QUB method the heater power input is the only power considered for estimation of over-all heat transfer coefficient. The QUB over all heat transfer coefficient is estimated using formula

𝐻 𝑄𝑈𝐵 = 𝛼 1 𝑃 2 -𝛼 2 𝑃 1 𝛼 1 𝑇 2 -𝛼 2 𝑇 1 (8.2)
where 𝑃 1 is the heater power during the heating period. The expression gives a good value when there are no solar radiation. However, for a sunny day, the power of the heater is not the only power contributing to the rise in temperature during the heating phase. On a sunny day, the surfaces of a building continuously receive solar radiation that are partially absorbed and stored. As the QUB experiment starts immediately after the sunset and the heating continues for a short duration of time after the sunset, the contribution of delayed solar radiation transferred to the room air via building surfaces cannot be ignored. This is evident from the equation (8.1); when evaluated with no solar power added, the overall heat transfer coefficient will always result in a value smaller than its reference values for steady state. The input power (heating phase) for QUB calculations can be corrected as:

𝑃 1 = 𝑃 ℎ𝑒𝑎𝑡𝑒𝑟 + 𝑃 𝑠𝑜𝑙𝑎𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 (8.3) 
In absence of solar radiations the evolution of indoor temperature during the QUB experiment is different as shown in (Figure 8.5). The temperature profile in case of no delayed solar radiations via walls (orange line) is different from the profile (blue line) when delayed solar radiations from the wall are considered. The slope of temperature line with no solar radiations (orange) is different from the temperature line (blue) with delayed solar radiations. In order for the both lines to have the same the same evolution profile an additional power needs to be added to the indoor air temperature line with no solar radiations (orange line). 1) The heat flow from the building envelope to the room air, considering both outdoor temperature and solar radiation as inputs, is calculated in order to obtain the temperature of the walls and the temperature of the air during the heating phase of QUB experiment. The heat flow from the envelope to the room air is calculated by the convective heat transfer due to temperature difference between room air and walls (Figure 8.6 a).

2) The heat flow from the building envelope to the room air is calculated by considering only the outdoor temperature (no solar radiation) as input from the boundary conditions (Figure 8 

Influence of initial conditions

The optimal error curves for the experimental house change with the initial conditions. The QUB method error increases (Figure 8.9(a)) when there is no initial power before the start of QUB experiment, the error is large. The error curves converge when house is supplied with a steady heating power before the QUB experiment ((Figure 8.9b)). The validated model is then used to perform QUB experiment with different levels of power, boundary and initial conditions. The weather data of forty days was used to simulate QUB experiment. The following conclusions can be drawn from the results of QUB experiments:

 Heating building with steady state power before the experiment improved QUB results. The error curves show a large error when there was no initial power before the QUB experiment. The error curves converged to smaller error when the building was supplied with power before the experiment.  The starting time of the QUB experiment before or after the sunset affected the results. A QUB experiment half an hour before the sunset gave an error of 14 % that was reduced to 11 % when the experiment was conducted one hour after the sunset.  Comparison of QUB results for sunny and cloudy days revealed that at a given power and time duration of the QUB experiment the results on cloudy days showed less variation as compared to sunny days.  QUB errors on sunny days were due to solar radiation absorbed by the walls of the building. The absorbed solar radiation contributes as a delayed heat input to the evolution of air temperature during heating phase. This paper proposed a method to estimate the delayed solar radiation and to correct the input power during the heating phase. The solar correction factor, when added to the heating power 𝑃 1 in the QUB expression, reduced the error by 2 %.

Posterior error analysis

Design of experiment (DOE) can be used to estimate the optimum power and time duration for the QUB experiment that can give low errors [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]. The design of experiment depends on the overall heat loss coefficient used, a quantity that depends on the stated or calculated value using building material properties. The stated or calculated value of the overall heat loss coefficient is different from the one measured on the real building due to material property deterioration, missing insulation layers, moisture transfer and the quality of workmanship. It is therefore important to investigate how the results of the QUB method change when the overall heat loss coefficient value used in the design of the experiment is different from the real overall heat loss coefficient of the building, which in general is larger than the designed value.

Three cases were studied in which the value of 𝐻 (used for the design of the experiment) and the real value of 𝐻 were different:

1) The outer wall insulation for design of QUB experiment was two times higher than that of the real wall (8 % error in assumed 𝐻 𝑟𝑒𝑓 compared to the real envelope).

2) The real wall insulation is completely missing whereas in the design of QUB experiment the outer wall has insulation (50 % error in assumed 𝐻 𝑟𝑒𝑓 compared to the real envelope).

3) The real wall had no insulation and the roof insulation was smaller as compared to the wall and roof insulation used in the design of QUB experiment (100 % error in assumed 𝐻 𝑟𝑒𝑓 compared to the real envelope).

For the cases discussed above, the a priori error is defined as the error when the real 𝐻-value was used for designing the experiment, whereas the a posteriori error is defined as the error when a supposed 𝐻-value (obtained, for example from building specifications), which is different of the real 𝐻-value, was used for designing the experiment. Figure 9.1 shows the results of 32 QUB experiments conducted on different days. The results show that when 8 % error of 𝐻-value was used in the design of the experiment (Figure 9.1a), the increase in a posteriori error was not significant (shown by the blue bar slightly higher than the red bar). Figure 9.1b shows that with no outer wall insulation (𝐻 𝑟𝑒𝑓 error of 50 %), the a posteriori error was higher than the a priori error, with a median of a posteriori errors 10 % as compared to median error of 6 % for a priori errors. The majority of errors still lied within ±15 %. In case of no wall insulation and reduced roof insulation (H ref error of 100%) the a posteriori error was significantly higher as compared to a priori error, with a median of a posteriori errors of 16 % as compared to a priori median error of 8 % (Figure 9.1c). Nevertheless, in this case the error made with the QUB method (median error of 16 %) was significantly smaller than the error made on the initial estimate of the overall heat loss coefficient (100 %).

This also means that, in practice, the experimentalist will clearly notice that "something went wrong" in the sense that the measured value of the heat loss coefficient is very different from the assumed value (median difference being 100 % -16 % = 84 %). The experimentalist can then suspect that there is an important gap between the theoretical design of the building and its actual state. This could also trigger another QUB experiment, using for the design of experiment the measured value of the heat loss coefficient instead of the theoretical (or stated by design) value. In this case, the measured and the assumed values would be much closer, confirming the important gap between theoretical and actual thermal performance.

Ideal conditions for the QUB experiment

The derivation of equation is based on the evolution of indoor temperature as a single RC circuit:

𝐶 𝑑𝑇 𝑖 𝑑𝑡 = 𝑃 -𝐻(𝑇 𝑖 -𝑇 𝑜 ), (9.1) 
The conditions for the derivation of QUB equation are that the outdoor temperature should remain constant during heating and cooling phases and the heating and cooling durations should be of equal length [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF]. A constant value of power is maintained before the experiment [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. The power dissipated during the cooling phase should be zero i.e. 𝑄 2 = 0. The method assumes a homogeneous internal temperature to be maintained inside the building i.e. in case of a house with many rooms, the temperature during heating and cooling phases inside each room should be ideally the same, a condition that is difficult to achieve in real experiments.

There should be no air stratification (temperature difference along the height of the room) inside individual zones. The test should be carried without any occupants inside the house [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF].

The ideal conditions for QUB experiment are that it should start from the steady state conditions. The literature however does not mention how long before the QUB test an initial steady state should be maintained [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF].

The temperature evolution during the QUB experiment depends on the initial internal air temperature as well as the distribution of different temperatures inside the building envelope.

Before the start of the QUB experiment, the building should be in steady state [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. The power input should be in the form of a simple electric heater as the heating from gas or boiler requires conversion efficiencies for power calculation that can lead to increase in errors.

[82].

To reduce the variation of QUB results, a dimensionless quantity alpha (also known as alpha criterion) is introduced. Alpha is the ratio of power between initial power (before the start of QUB experiment to achieve steady state conditions) 𝑃 𝑜 and the power applied with the start of QUB experiment 𝑃 1 :

𝛼 = 1 -𝑃 𝑜 /𝑃 1 (9.2)
where the initial power 𝑃 𝑜 , before the start of QUB experiment is given as [START_REF] Meulemans | QUB/e: A novel transient experimental method for in situ measurements of the thermal performance of building fabrics[END_REF] 𝑃 𝑜 = 𝐻𝐿𝐶 𝑟𝑒𝑓 ∆𝑇 𝑜 (9.3) where ∆𝑇 𝑜 = 𝑇 𝑖𝑜 -𝑇 𝑒ℎ is the temperature difference between internal and external temperature at the beginning of the QUB test. Ideally, this difference should be around 10 K.

Since 𝐻𝐿𝐶 𝑟𝑒𝑓 in equation ( 9.3) is determined from the stated thermos physical properties [START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments Bases théoriques[END_REF].The power should be optimized based on the 𝛼 criteria [START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments Bases théoriques[END_REF]. The heating and cooling phases should be of equal durations. The theoretical model shows a strong dependence on the alpha value. For experiments, it is recommended that alpha should be between 0.4 and 0.7; the power during heating phase can be between 1.7𝑃 0 to 3.3𝑃 0 [START_REF] Pandraud | Experimental optimization of the QUB method[END_REF].

A method for the design of experiment of QUB method was introduced by [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF] where the error can be predicted at any power (heating phase) and time duration. The power input should be in the form of a simple electric heater as the heating from gas or boiler requires conversion efficiencies for power calculation that can lead to increase in errors. The power should be optimized based on the 𝛼 criterion [START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF]. The heating and cooling phases should be of equal durations.

A desired indoor temperature was maintained at real house using thermostatically controlled heaters [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF]. The house was tested between the end of September until the end of April. The experimental reported errors for QUB test conducted in real house were within ± 10 %.

However, few tests above this limit were also reported. There is no influence of 𝛼 criteria on the results provided that the alpha value stays in the range: 0.4 < 𝛼 < 0.6 [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF]. When 𝛼 was greater than 0.7, the results stayed consistently within +10% region. At reduced infiltration rate, the alpha criterion has no influence up to the value of 0.8. The result of a single experiment performed on real house shows that there is no correlation between the wind speed and 𝐻-value of the QUB method, although it was argued that the house was sheltered from three sides and only West side of the house was exposed [START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF]. Some of the variance 

Variation in Design of experiment (DOE) QUB results

The method of predicting the errors of the QUB at a given power and time was discussed in [START_REF] Ghiaus | Design of experiments for Quick U-building method for building energy performance measurement[END_REF]. The method has potential to be used as a tool for design of experiments provided that we have the simulation model of the building and the weather data is known. For any simulation model, to accurately predict the outcome end the error in QUB experiment, it is important that simulation starts with the true states, i.e. temperatures of the building surfaces and layers. The inability to realize the true states of the building envelope can lead to erroneous predictions. This is shown by generating error curves of the QUB method by repeating the QUB experiments at different levels of power and time duration. The error curves in Figure 9.3 are generated for the same house at the same outdoor temperature and power levels during the QUB experiment. However, the states i.e. the temperature of the surfaces and layers of building were different during each simulation. The results of simulation show that with the changed states, the QUB error also changes (Figure 9.3a). The error curves in Figure 9.3b are generated for the same building but with different temperature/states of the building envelope. The red dashed line show that an experiment at the same power, outdoor temperature, and time duration will result is different errors. A design of experiment therefore may not be relied upon if the real states of the building are not taken into account.

This also helps us understand that with the changed, states every time a QUB experiment is repeated, the results will be changed. The change in meteorological conditions during the QUB experiment can influence the results.

The design of experiment depends on the predicted temperature during the experiment. It is expected that outdoor conditions can deviate from the predicted weather conditions. The effects of meteorological uncertainties can be reduced by performing QUB experiment at high level of power [START_REF] Florent | A perturbation method to estimate building thermal performance[END_REF]. To analyze the effect of meteorological uncertainty, a QUB experiment was simulated at power level of 5'000 W during the heating phase. The experiment was simulated at the predicted outdoor temperature and then repeated at the ±20 % of the predicted temperature (Figure 9.4). It can be observed that the responses at different outdoor temperatures are only slightly different (Figure 9.4). The QUB results with variation of outdoor temperature show a variation of ±5%. 

QUB experiments during winter and summer seasons

The QUB experiments can be potentially performed during the entire year. The literature review does not show the impact of different seasons of the year on QUB test. To verify this, QUB experiments were simulated during winter, spring and summer seasons. An hourly EnergyPlus weather data for the city of Munich was used to simulate the QUB experiment on a house specified in IEA, EBC Annex-58 [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF]. The data was interpolated to generate 10 minute data. The applied power was optimized using alpha criteria of 0.5 with no power during the cooling phase. 

Conclusions

It is possible that the overall heat loss coefficient value 𝐻 𝑟𝑒𝑓 used for calculation of optimum power for QUB experiment is not known with accuracy, e.g. there may be a missing insulation layer inside the wall or the thickness of the real wall insulation may be higher than the stated value. To check the robustness of QUB method, three scenarios were replicated to perform a posteriori error analysis:

-The real outer wall insulation was twice the assumed value: the real 𝐻 𝑟𝑒𝑓 value of the house was 8 % less than the value used for QUB experiment design. QUB method (without knowing the real situation) responded well to the changed 𝐻value. The error remained well within 15 % for most of the days of QUB experiment. -The real outer wall insulation was missing (50 % change in value as compared to the assumed 𝐻-value for QUB method): QUB method, without knowing the real condition of outer wall, responded with 4 % increase in error compared to the situation when the real condition of the outer wall was known. The error remained within ±20 % for most of the days of QUB experiment. -The real outer wall insulation was missing and the roof insulation was reduced (100 % changed value as compared to the assumed 𝐻-value for the QUB method).

Though the QUB method responded to the changed situation, the error increased significantly (12.5 %). Still, even in this extreme case, we noted that the error made with the QUB method was significantly smaller than the error made originally. In this situation, although the accuracy of the method was deteriorated, the method still clearly showed the important fact that the assumed value of heat loss coefficient was far smaller than the true one.

QUB experiments with variable and constant outdoor temperature were simulated. Majority of the errors for variable and constant outdoor temperature (during QUB experiment) lie within±15%. The variation of QUB results for variable outdoor temperature is relatively similar.

The simulation results of QUB experiment can vary with change in the initial states/temperature of the building envelope. This explains why a QUB experiment for the same house but under different initial conditions will generate different results, a reason why two QUB experiments are most likely to have different outcomes.

The meteorological conditions can vary, i.e. the outdoor temperature can increase or decrease during QUB night. A ±20% variation in outdoor temperature vary the QUB results within ±5 %.

Winter can be considered as suitable for QUB experiments. Experiments conducted for the month of November, December, January, February and March show that the majority of the errors lie within±15% with few outliers around ±20 %.

The QUB experiments for summer months (June, July and August) show large variation (errors). However, it is possible to predict the experiment outcome by observing the difference between indoor temperature and outdoor temperature during the QUB experiment. The experiments give large errors when the temperature difference between the initial indoor and outdoor temperature is smaller than 10K. With set point of 20℃ the difference between indoor and outdoor temperature for few days remained smaller than 10K, the experiments in such conditions generated large errors. The results during summer days were improved by using a high set point temperature ( 25 ℃), such that majority of the errors remained within ±20 ℃ of the steady state overall heat transfer coefficient. Two approaches are used to reduce emissions due to building energy consumption: supply side management and demand side management. Demand side management includes all steps to reduce building energy consumption, such as improving thermal resistance of envelope, reducing infiltration losses, improving efficiency of heating and cooling equipment etc. A systematic and predictable way to achieve energy efficiency is to introduce building energy regulations that put limit on energy standards for different building components.

Majority of the countries have now adopted building energy regulations.

The positive impacts of regulations are difficult to assess because of the multiple factors impacting building energy consumption. However, some studies [START_REF] Jacobsen | ARE BUILDING CODES EFFECTIVE AT SAVING ENERGY? EVIDENCE FROM RESIDENTIAL BILLING DATA IN FLORIDA[END_REF], [START_REF] Doris | Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government[END_REF] have confirmed the potential savings, although the savings are either underestimated or overestimated. The building energy consumption is usually assessed using mathematical models or thermal performance tests. The models can either calculate the energy consumption of the building under different set of conditions or estimate performance measurement parameters.

This work discusses the mathematical methods for parameter identification. The modelling methods can be categorized as statistical modelling, physical/forward modelling and hybrid modelling. The focus of this work is on parameter identification models. The parameter identification models can be categorized as steady state modelling and dynamic modelling.

Both steady state and dynamic models have their advantages and disadvantages. The multiplicity of modelling performance criteria, i.e. criteria over which modelling performance can be evaluated, makes it difficult to prefer one method over the other. However, the dynamic models can be preferred for their ability to estimate dynamic characteristics of building. A short duration experimental data is usually required for dynamic analysis.

The performance prediction of building's energy consumption is based on simulation. The performance predictions are either underestimated or overestimated. This prediction discrepancy is termed as "Performance Gap". Some of the reasons of performance gap are deterioration of building thermal properties, reduction in efficiency of equipment, operation off the designed values, changing weather pattern, changes in operation schedule, occupancy and inability of simulation tools to cover complete dynamics of building.

A better measure for building performance is to determine the building parameters, such as overall heat transfer coefficient, solar aperture and building time constants etc., known as the intrinsic performance measurement. These measures remain fairly stable with changing weather conditions, operation schedule etc. The identification models can be either based on pre designed/supervised onsite (in-situ) experiments, such as co-heating, or they can be based on unsupervised experiments, such as smart metering data where the coefficient of regression analysis provide different parameters.

In case of supervised experiments, the thermal performance of building or building components is evaluated using onsite (in-situ) testing methods. Most of the test methods developed are aimed at thermal performance verification of building envelope by using measurements and estimation techniques to verify the claimed characteristics. The methods discussed in this work are ISO 9869 (flow meter) method, calorimetric method, co-heating testing methods, etc. These methods are known as long term methods.

The long term methods require a long testing period that can range from two to four weeks, with the least reported measurement period being three days. Most of the tests produce precise results when applied on unoccupied buildings. The season of the year during which the tests can be conducted is limited to heating season only when external temperatures are low and effects of solar radiations are minimal. These shortcomings make long term methods impractical to be employed at large scale in practice.

Short term in-situ thermal characterization methods are developed that have much smaller duration of time as compared to the long term methods. QUB, PSTAR/STEM, ISABELE, EPM (Excitation pulse method) and HYBRID methods are some of the short term methods reported in various literature sources. With short duration, they have the potential to be employed at large scale in practice. However, the validation of these methods is limited to small number of simulation and experimental results. These methods need critical analysis, significant simulations and real time tests on buildings, before they can be generalized in practice.

Among the short methods, QUB is a dynamic in-situ thermal characterization test method that has the potential to be conducted in the shortest duration; the theoretical background of the method offers an understanding of the correctness of the method. The method is tested on small scale buildings, on full scale house with controlled environment and a full scale house with real weather conditions. The method is robust; the over-all heat transfer coefficient value (𝐻) measured using QUB method lies within ±20 % of the steady state value. It is important to understand the variation of QUB method with variation in boundary conditions (solar radiations, outdoor temperature and outdoor temperature variation during QUB test night) and initial conditions (initial power before QUB experiment). The robustness of QUB method with uncertainty in power level (during QUB heating phase) and uncertainty in 𝐻 𝑟𝑒𝑓 (overall heat transfer coefficient) needs to be established with real time data.

To model the QUB method, a dynamic sate space modelling method is explained and tested in this work. The state space modelling involves generating thermal circuit for each component of building (walls, fenestration, ventilation etc.). The thermal circuits are then combined to generate a single circuit for the entire building. The state space model is validated using measured data of a full scale house (the Twin House). With a data of 10 min. time step size, the state space model simulated the interior temperature of the entire house (seven zones), the errors varied between ±2 ℃, The three quartiles of the errors lied within ±1 ℃.

The state space model is validated with QUB experimental data, with modelling errors well within±0.5 ℃.

Simulation of QUB experiment with the Twin House data shows that the method has only slight variation with uncertainty in power; for example, a 30 % error in optimum power can cause an error within 3 % of the reference value. The QUB method can be considered as robust with variation in power.

A priori analyses are achieved without the justification of experimental or real observations whereas A posteriori analyses are performed after obtaining experimental observations. A priori error analyses are done by performing the QUB experiments in a situation where the real envelope has different characteristics (without the knowledge of real envelope). These results are then compared with a posteriori errors, a situation in which QUB experiments are performed with the knowledge of the real envelope. The error analysis shows that with 50 % error in 𝐻 𝑟𝑒𝑓 value (missing wall insulation situation), the QUB method results in an increased error of 3 % only. The method can be considered as robust within the range of 50 % error in 𝐻 𝑟𝑒𝑓 .

The QUB method was tested with reference to variation in solar radiation. QUB results on cloudy days show lesser variation as compared to sunny days. It was shown that the heat transfer from the delayed solar radiation entering through the walls of the building has an effect on the temperature evolution during the QUB experiment. This can lead to an increased error in QUB method. A method was used to estimate the contribution of solar radiation and to calculate a solar corrective factor that can reduce the error of QUB method. The impact of corrective factor depends on the solar radiation before the QUB experiment and the thermal capacitance of the building envelope.

In this work, the QUB experiments were initially performed with a limited seasonal variation, that is a season between the months of August and September. The twin house can be considered as a full scale real house. The QUB method has a good potential to be employed on commercial scale. It is therefore important to conduct QUB experiment during different seasons of the year, such as winter and summer. The repetition of experiments during winter and summer seasons show that winter season is a preferred season for QUB experiments. The summer months show large variation (errors) in results when the temperature difference between indoor and outdoor conditions is smaller than 10 K. The QUB results during summer month can be improved by using a high set point temperature before the start of QUB experiments.

The analysis and results in the current work were performed using simulations. The simulation model was validated on IEA, EBC Annex-58 data. Some of the conditions, such as power levels and time duration, weather data etc., were varied with help of simulations. It will be interesting to repeat the real QUB experiment with the variation in power and time duration.

This will help validate the simulation results. The QUB method should be further tested on different constructions, such as apartment buildings, houses with low and high insulation levels as well. In the current simulation, the weather data from European region is used. It will be interesting to test the QUB method with construction and weather data from regions with temperate and hot climates, as well. The twin house experiment provides two data files. One with measurement of all the inside temperatures and heat input from the heaters along with other measurements. The file is named as Twin_house_exp1_house_N2_10min_ductwork_correction.xls. The second file contains data from the weather station measurements, such as outdoor temperature, solar radiations, wind speed, wind direction etc.

The file is named as Twin_house_exp1_weather_data_all_measurements_10min.xls

The procedure to load data in MATLAB:

- The input temperature, heat flow sources and solar radiations are modelled as:

The indoor temperature is simulated using all the three methods namely Euler Explicit, Euler Implicit and exponential methods as: The model of two zones is the same as single zone except that there will be a shared wall or door between the two zones and now the temperature of two zones will be simulated. In our two zones model we modelled two zones Kitchen and Living room. The shared zones are door and wall between the two zones. Infiltration is also shared between the two zones. 
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 1 Figure1.1: Energy balance for building/room in the heating modes[START_REF] Forgotten | Building Thermal Regulations : Why Has Summer Been Forgotten?[END_REF] 
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 16 Figure 1.6:Building energy quantification methods[START_REF] Wang | Quantitative energy performance assessment methods for existing buildings[END_REF] 

Figure 1 . 7 :

 17 Figure 1.7: Performance gap between predicted energy consumption and the actual energy consumption over a period of time[START_REF] Ipmvp | Measurement and Verification[END_REF] 

Figure 1 . 8 :

 18 Figure 1.8:Carbonbuzz study on median electricity in different sectors predicted vs actual[START_REF]A MAPPING OF NATIONAL APPROACHES ENERGY PERFORMANCE CERTIFICATES ACROSS THE EU[END_REF] 

Figure 2 .

 2 Figure 2.1 provides the classification of modelling methods.

Figure 2 .

 2 Figure 2.1:Clasification of modelling methods [36].



  Indoor air temperature. A time series of the average temperatures of the indoor air.  Heat input. A time series of the heating output value of heaters in building.  Ambient temperature. A time series of the outside air temperature. Global radiation. A time series of global radiations measured close to building. Wind speed and direction. A time series of wind speed and direction around building. Excitation signals to estimate the dynamic response of building. Usually ROLBS or PRBS sequential signals are used.

Park

  et al. used a four parameter change point regression model to analyze energy bills for 128 apartments [61]. A three-year billing data 2009-2011 was used where bills provided data on electricity, natural gas and district heating consumption. The model parameters were able to characterize the energy use of thermal buildings with hydronic radiators. The slope of the regression model represents the heat loss from the building and efficiency of the space heating (kWh/m 2 C).

 3 -

 3 D comparative plots: These are surface plots created using 3-dimensional data such as hourly and daily axes against vertical energy consumption axes. When plotted as function of difference between simulated and actual energy consumption, they can identify even very small discrepancies. The valleys and peaks of 3-D graph make visible the departure that can be tuned further. 3-D graphs are also used to view any unusual peaks in energy consumption[START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. Graphical statistical indices: Plots like Box Whisker Mean Plots (BWM) are used to indicate statistical indices in graphical format. This helps in easy understanding of data and elimination of data overlaps. They express data in the form of mean, median, 10 th , 25 th , 75 th and 90 th percentile for each data bin (month, week or day)[START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF]. Other Plots: Other plots (Figure2.3,Figure2.4) include colored contour plots showing error propagation, superposed and juxtaposed binned box and scatter plots[START_REF] Reddy | Literatue Review on Calibration of Building Energy Simulation Programs: Uses,Problems,Procedures,Uncetainty, and Tools[END_REF].

Figure 2 . 3 :

 23 Figure 2.3:Colour contour graphs showing error between simulated and actual energy consumption[START_REF] Raftery | Calibrating whole building energy models: Detailed case study using hourly measured data[END_REF] 

Figure 2 . 4

 24 Figure 2.4 Scatter Plot for Calibration[START_REF] Heo | Calibration of building energy models for retrofit analysis under uncertainty[END_REF] 

  and infiltration values when compared to the standard values used in simulation. A study on naturally ventilated buildings showed that estimated normal values used for naturally ventilated office buildings range between 5.0 to 10.0 m 3 /h at 50 Pa whereas actual values ranged between 8.3 and 32.0 m 3 /h at 50 Pa. Similar discussion of uncertainty applies to other parameters, such as infiltration due to window openings, number of window openings, variation in efficiency of HVAC equipment, heat losses in distribution system, heat gain from occupants (3-7 W/m 2 ), plug load per occupant (124-229 W/person), weather conditions, etc.

  simulation and actual data. Tuning each parameter is time consuming and computationally expensive. Different techniques are developed to segregate parameters that have significant effect on the output. This is called Sensitivity Analysis (SA). A typical sensitivity analysis method requires the steps shown in Figure2.5.

Figure 2 . 5 :

 25 Figure 2.5: Sensitivity analysis steps[START_REF] Tian | A review of sensitivity analysis methods in building energy analysis[END_REF] 

  this method. Many improved versions of the original method are used now. The common methods used are Standardized Correlation Coefficient (SRC), Partial Correlation Coefficient (PRC), Standardized Rank Regression Coefficient (SRRC) and Partial Rank Regression

Figure 2 . 6 :

 26 Figure 2.6: Sampling of continuous signal[START_REF] Edition | Theory and Design for Mechanical Measurements[END_REF] 

Figure 2 . 7 :

 27 Figure 2.7: (a) 60 minutes average data removes important information; (b) 60 minutesaverage removes noise.[START_REF] Jiménez | Energy performance assessment of buildings and building components. Guidelines for data analysis from dynamic experimental campaigns part 1: physical aspects[END_REF] 

Figure 2 . 8 :

 28 Figure 2.8:The effect of filtering on noisy signa l[START_REF] Edition | Theory and Design for Mechanical Measurements[END_REF] 

2. 7 .

 7 The energy consumed by the heater can be measured by measuring the time for on and off of the heater. Sampling the on and off data over 60 minutes can mislead into wrong measurement of the energy consumed as shown in Figure2.7(a) by the blue line. A one minute sample is better approximation of the process[START_REF] Jiménez | Energy performance assessment of buildings and building components. Guidelines for data analysis from dynamic experimental campaigns part 1: physical aspects[END_REF] as it can be seen from the red line. For outdoor air temperature (Figure2.7(b)), the sampling data of one minute does not provide a clear picture of the outside temperature and simulation over this sample can lead to measurement noise. As can be seen in Figure2.7(b), averaging over a period of one hour reduces measurement error.

  𝑇 1 , 𝑇 2 are temperatures of nodes, 𝐻 1-2 and 𝐻 2-3 represent thermal conductance of wall partitions and 𝑞 2 represents an external heat flux such as solar radiations or external heating or cooling. With the dynamic model, both static (conductance) and dynamic properties (capacitance) can be estimated provided that data such as outdoor temperature, indoor temperature and solar radiation are given. The identified parameters such as thermal resistance or capacitance are compared with measured values. The identified parameters can be further optimized using an objective function with the aid of specialized software such as LORD or CSTM[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]. The estimation and validation process for the identified parameters is shown in Figure3.1.

Figure 3 .

 3 Figure 3.1: Parameter Identification and validation process for parameters of a wall[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF] 

Figure 3 . 2 :Figure 3 .

 323 Figure 3.2: Heat flux relationship for insulated concrete wall and glazing in flow metertesting[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF] 

Figure 3 . 3 :

 33 Figure 3.3:Varaition and stability of U value over time[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF] 

  measurement time took one and half hour for readings to converge. The schematic of the experiment is shown in Figure 3.4.

Figure 3 . 4 :

 34 Figure 3.4:The experimental setup for Excitation Pulse Method[START_REF] Rasooli | A response factor-based method for the rapid insitu determination of wall's thermal resistance in existing buildings[END_REF] 

  Model 1: with none of the assumptions of Model 0 and the assumption that heat transfer between the surroundings and test cell are linear. Non linear Transfer Model 2: same as model 1 with addition of nonlinear term for radiation heat transfer between the test cell and finally. Nonlinear continuous time state space model 3: with the same assumptions as Model 2 but expressed in form of dynamic state and consideration of difference between room temperature and sensor. A linear ARX model was used to estimate parameters for Models 0 to 2 using MATLAB toolbox for System Identification. Parameters for Model 3 were estimated using CSTM (Continuous Time Stochastic Modelling) software. UA and gA values were estimated for an opaque wall with a double-glazed window. The model was validated using a separate data set. The performance was measured by comparing the estimated values of UA and gA against the reference values in literature (for each model) and by analyzing residual characteristics such as mean, standard deviation and autocorrelation function and cumulated periodogram. The test results confirmed that Nonlinear Continuous Time State Space Model 3 is the best model among the four models for opaque wall with double glazing.

Figure 4 . 1 :

 41 Figure 4.1: Schematic presentation of QUB method[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF] 

Figure 4 . 2 :

 42 Figure 4.2: RC-Network Model used in QUB method[START_REF] Bouche | Methodologies for the Assessment of Intrinsic Energy Performance of Buildings Envelope[END_REF] 

𝑃 2

 2 Input power during cooling phase; 𝑇 1 temperature difference between indoor and outdoor temperature at the end of heating phase. The outdoor temperature is estimated by taking the mean temperature during QUB night; 𝑇 2 temperature difference between indoor and outdoor temperature at the end of cooling phase. The outdoor temperature is estimated by taking the mean temperature during QUB night;

Figure 4 . 3 :

 43 Figure 4.3: Variations of overall heat transfer coefficient values with alpha[START_REF] Sougkakis | An assessment of the QUB method for predicting the whole building thermal performance under actual operating conditions[END_REF] 

Figure 4

 4 Figure 4.4.

Figure 4 . 4 :

 44 Figure 4.4: Fitted curves to experimental data during cooling and heating of building[START_REF] Mangematin | Author ' s personal copy Comptes Rendus Physique Quick measurements of energy e ffi ciency of buildings Mesures rapides de l ' e ffi cacité énergétique des bâtiments[END_REF] 

  ) and (4.18) to estimate values of 𝐾 𝑜 and C as a. 𝐾 𝒐 = 462 W/K and 𝐶 = 112 𝑀𝐽/𝐾 b. 𝐾 𝒐 = 466 W/K and 𝐶 = 104 𝑀𝐽/𝐾. The time constant 𝜏 for building is almost 3 days. In the third stage, the energy consumption of the building is measured along with weekly outside temperature data when the indoor temperature is maintained at 20 ℃ [95]. The fitted line of the graph is shown in Figure 4.5.

Figure 4 . 5 :

 45 Figure 4.5: Energy consumption as a function of weekly averaged outside temperature[START_REF] Mangematin | Author ' s personal copy Comptes Rendus Physique Quick measurements of energy e ffi ciency of buildings Mesures rapides de l ' e ffi cacité énergétique des bâtiments[END_REF] 

  gradient and 𝑇 * is the temperature difference between internal building and external environment. The equation with 𝑛 nodes can be simplified to single RC network as after some time when the multiple time constants decay and the temperature evolution is the function of single time constant only. The capacitance is then calculated as a function of the largest time constant i.e. 𝐶 = 𝜏 𝑛 . 𝐾 𝑜 .Since single RC network is a crude presentation, H. Madsen[START_REF] Madesen | Estimation of continuous-time models for the heat dynamics of building[END_REF] proposed that two time constants are sufficient to model a simple building. Since QUB method simplifies analysis by conducting experiments at night (no solar radiations) and no occupancy, it can be assumed that the model in this method can be represented by two time constants. Two-time constants translate into two capacitances, three resistances and two nodes as shown in Figure4.6, where 𝑅 𝐸𝑊 and 𝑅 𝐼𝑊 are wall resistances, 𝑅 𝐼𝐸 is the ventilation/infiltration resistance and 𝑇 𝐸 is the external temperature, respectively.

Figure 4 . 6 :

 46 Figure 4.6:3R-2C representation of QUB model[START_REF] Pandraud | QUB: Validation of a Rapid Energy Diagnosis Method for Buildings[END_REF] 

Figure 4 . 7 :

 47 Figure 4.7: Steady state experiment for H value. The solid black line shows measurement valuesfor estimation of H[START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF] 

Figure 4 . 8 :

 48 Figure 4.8:Evolution of internal temperature (green curve) and various fits as applied to the measured(green) curve[START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF] 

Figure 4 . 9 :

 49 Figure 4.9: The error in QUB as a function α and time duration

Figure 4 .

 4 Figure 4.10:H_QUB as a function of initial conditions[START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF] 

Figure 4 . 11 :

 411 Figure 4.11: 𝐻 𝑄𝑈𝐵 as a function of position of heating and cooling duration[START_REF] Pandraud | Experimental optimization of the QUB method[END_REF] 

Figure 4 .

 4 Figure 4.13:𝐻 𝑄𝑈𝐵 as a function of α [97]

Figure 4 .

 4 Figure 4.14:Kqub Vs variation in initial conditions and 𝛼[97]

Figure 4 . 15 :

 415 Figure 4.15: Value of α as function of input Power[START_REF] Pandraud | Experimental optimization of the QUB method[END_REF] 

31 )

 31 Value of 𝐶 𝑄𝑈𝐵 evolves/increases with time and is know as effective capacitance. 𝐶 𝑄𝑈𝐵 represents the aggregate capacity of different elements of building. Increase in value is due to the fact that initially air temperature increases and later the air temperature warms the walls (at this point the capacitance of walls come into play) until the limiting value of capacitance is reached that can be given as 𝐶 𝑜 = 𝐾 𝑜 𝜏 𝑜 , where 𝜏 𝑜 is the largest time constant of building. The evolution of effective air capacity is shown in Figure4.[START_REF] Eu | [END_REF] 

Figure 4 . 16 :

 416 Figure 4.16:Effective heat capacity as function of time[START_REF] Pandraud | Experimental optimization of the QUB method[END_REF] 

Figure 4 . 17 :

 417 Figure 4.17:QUB values for Twin house Germany[START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF] 

  -robin box a cubical box with external dimensions of 120 × 120 × 120 m 3 and internal dimensions of 96 × 96 × 96 m 3 . The façade of the box is made in three layers with an internal façade of light weight material, a middle heavy weight and final light weight façade on the outside. The box rests on 50 cm high stand. There are three different designs of the box: abox with no window, with window and with a façade layer material that can be changed. The box had no heating or cooling equipment to allow different experts select equipment as per their design of experiment. An opening with a pipe at the base is provided as an outlet/inlet for instruments and equipment wiring[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF].
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 5152 Figure 5.1: An overview of the Round-robin box[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF] 
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 54 Figure 5.4: Views of twin houses from East and West house[START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF] 

Figure 5 . 5 :

 55 Figure 5.5: Views from South and North[102]

Figure 5 . 6 :

 56 Figure 5.6: Comparative baseline of the twin houses[102]

Figure 5 . 7 :

 57 Figure 5.7: Cross-and vertical sections of controlled boundary conditions (Strachan et al., 2016)

Figure 5 . 8 :

 58 Figure 5.8: Sequence of application of heat during experiments (Strachan et al., 2016)

Figure 6 . 2

 62 Figure 6.2 Simple example for the assembling of thermal circuits: a) three disassembled circuits with local indexing of nodes and branches (the dashed lines show the nodes which are in common); b) the assembled circuit with local and global indexing of nodes and branches; c) the matrices and the vectors characterizing the disassembled thermal circuits; d) the disassembling matrix and the transformation of the assembled vector into disassembled vectors; e) the matrices and the vectors characterizing the assembled thermal circuit.
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 63 Figure 6.3: Building components, thermal circuits and their symbols

11 Figure 6 . 4

 1164 Figure 6.4 Layout and dimensions of ground floor of twin house

Figure 6 . 5 :

 65 Figure 6.5: Thermal circuit connections for living room zone

Figure 6 .

 6 Figure 6.5 shows the connection of each thermal circuit (wall, windows, ceiling etc.) with room air. The model of the living room consists of 13 thermal circuits (building elements). The numbering of each circuit and the position of each input to thermal circuit is shown in Figure 6.5. Thermal circuit number 13 represents the air node, which receives heat transferred from 12 thermal circuits that model the building elements.
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 66767 Figure 6.6 Representation of a wall heat transfer by a thermal circuit

Figure 6 . 8 :

 68 Figure 6.8: Temperature simulation and histogram of errors, showing that error is between -0.5 and +0.5

Figure 6 . 9 :

 69 Figure 6.9: Thermal circuit diagram for living room and kitchen

Figure 6 . 11 :

 611 Figure 6.11: Thermal circuit diagram for all zones of twin house

Figure 6 . 12 :

 612 Figure 6.12: The simulation results of all the rooms in twin house and the corresponding error histograms

  The model developed is used for the analysis of QUB method in next chapter. The QUB experiments are designed with different level of power, time duration and weather data with the help of the state space model developed in this chapter. The state space model has the advantage of using flexible number of meshes for better validation of the model. It allows us to determine the minimum time step required for simulation. The eigen values obtained with the state space model help us identify the significant time constants that govern the evolution of temperature during the QUB experiments. The state of the building surfaces dictates the behavior of air temperature and the corresponding error of the QUB experiment. The state space model helps us to achieve the realistic status of the building in simulation.

  . The numerical QUB experiments are simulated for the ground floor of the twin house that consist of living room, kitchen, children's room, bathroom, two doorways and a bedroom. The outdoor ventilation is zero whereas the outdoor infiltration rate of 1.62 𝑚 3 /ℎ is considered for simulation. The values for outdoor and indoor convection heat transfer coefficient of 23 and 8 ( 𝑊 𝑚 2 𝐾 ) are considered for simulation. The shutters for windows and doors on Southern face are closed. The QUB experiments are simulated for the weather data of 40 days (Experiment-1, IEA, EBC Annex-58) of data given in [102]. The 40 days weather data show a good variation of weather with sunny, cloudy and partly cloudy days.

Figure 7 .

 7 1(a). The contour valleys of the error as a function of power and time duration show that consistent QUB values can be obtained even if the power and time duration vary Figure7.1(a).

Figure 7 .

 7 Figure 7.1 (b) shows the rise and fall of temperatures in different rooms of the experimental house during the simulated QUB experiment. It is evident that there is a slight variation (±1℃) in temperature of different rooms during the QUB experiment. It is therefore important to take weighted average temperature in case of a house with multiple thermal zones (black circles for heating and pink circles for cooling phase of the QUB experiment in Figure 7.1(b)).

Figure 7 . 1 :

 71 Figure 7.1: Design of the QUB experiment: (a) Heating power and time duration: error curves (black) and internal temperature (red); the blue star shows the error when the experiment is performed at 1500 W and 5 hour duration for the each phase of the QUB experiment; (b) the exponential response of seven zones of the house for 1500 W and 5 hours: fall of temperature during the two stages of QUB experiments (dotted line), weighted average temperature rise during heating (the black circles show the) and weighted average temperature rise during cooling (pink).

Figure 7 . 2 :

 72 Figure 7.2: QUB errors generated with variation of the optimum power: error curves (black) and indoor temperature (red). The blue vertical line shows error for QUB experiments at different levels of power but for the same duration of the experiment.

Figure 7 . 3 :

 73 Figure 7.3: QUB error curves (black) and indoor temperature curves (red) during the first 1.5 hours of the QUB experiment

Figure 7 . 4 :

 74 Figure 7.4: Variation of QUB error with change in time duration of QUB experiment

Figure 8 .

 8 Figure 8.1: Error (blue star) when the experiment is performed half an hour before the sunset time (at 1500 W and 5 h of heating); error of measured overall heat loss coefficient (black curves), indoor temperature (red curves).

Figure 8 . 2 :

 82 Figure 8.2: Results (blue star) when the experiment is performed one hour after the sunset (at 1500 W and 5 h of heating); error of overall heat loss coefficient (black curves), indoor temperature (red curves).

Figure 8 . 3 :

 83 Figure 8.3: QUB value variation as a function of day type: sunny, cloudy and partly cloudy.

Figure 8 . 4 :

 84 Figure 8.4: Convergence of QUB test when experiment is repeated without solar radiations (blue circles) and with solar radiations (black asterisk). In absence of solar radiations (blue circles) the QUB test settles at a value closer to 𝐻 𝑟𝑒𝑓 . Blue dashed line the reference/steady state over all heat transfer coefficient (𝐻 𝑟𝑒𝑓 ), upper dashed red line (+20% 𝐻 𝑟𝑒𝑓 ), lower dashed red line (-20% 𝐻 𝑟𝑒𝑓 )

Figure 8 . 5 :

 85 Figure 8.5: Temperature evolution during the QUB heating phase with no solar radiations (orange line) and with solar radiations (blue)

  .6 b). A controller is added to introduce the additional heat flow necessary to obtain the indoor temperature, 𝜃 𝐾 (Figure 8.6 b) that is same as indoor temperature, 𝜃 𝑖 , obtained in the first step (i. e. with solar radiation, (Figure 8.6a). The heat flow rate 𝑄 2 introduced by the controller represents the contribution of the solar radiation (Figure 8.6 b).

Figure 8 . 6 :

 86 Figure 8.6: QUB experiment with (a) indoor temperature evolution as a function of solar radiations, outdoor temperature and heater power; (b) temperature evolution as function of outdoor temperature, heater power and a controller

Figure 8 . 7 :

 87 Figure 8.7: Temperature evolution during the QUB heating phase with no solar radiations and controller heat (orange line) and with solar radiations (blue)

Figure 8 . 8 :

 88 Figure 8.8: Convergence of error to a value closer to reference value when a day with sunny conditions is repeated with solar power correction factor

Figure 8 . 9 :

 89 Figure 8.9: QUB error curves for the experimental house (a) no initial power before the experiment, the curves move towards increased error (b) initial power before the experiment, the curves converge, red curves show the indoor air temperature and black curve show the error curves.

Figure 8 .

 8 Figure 8.10 shows the results of QUB experiment when no power was used before the experiment (panel a) and when power of 600 W was used before the experiment. It can be seen that the errors persist after 15 days when there was no power before the experiment (Figure 8.10a); if the building was heated before the experiment, the errors of QUB experiment decreased, being in the range ±20 % Figure 8.10(b).

Figure 8 . 10 :

 810 Figure 8.10: QUB values obtained for simulations for forty days a) no initial power before the QUB experiment and b) initial power before QUB experiment. Blue dashed line the reference/steady state over all heat transfer coefficient (𝐻 𝑟𝑒𝑓 ), upper dashed red line (+20 % 𝐻 𝑟𝑒𝑓 ) and lower dashed red line (-20 % 𝐻 𝑟𝑒𝑓 ).

Figure 9 .

 9 Figure 9.1: A posteriori error analysis for three case studies: (a) outer wall insulation is reduced (8 % error in H-value), (b) outdoor wall insulation is completely removed (50 % error in H-value) and (c) outdoor wall insulation removed and roof insulation reduced (100 % error in H-value). Red bars show error with real envelope and blue bars show QUB error with assumed envelope.

(

  with a determination coefficient of 0.21 to 0.16) in QUB results can be attributed to external temperature where an increased external temperature can increase the 𝐻-value measured with QUB method. QUB experiments have generally shown good results. However, with limited experiment sets it should be repeated under different weather conditions to improve understanding of the method. The variation in results with change in test conditions and wall configuration should be established. The performance of the method when ideal conditions are not respected during the experiment should be analyzed further [82]. In the next section, QUB experiments under non-ideal conditions are simulated for further analysis. The QUB experiments are also simulated for winter and summer seasons to analyze the suitability of particular season for QUB experiments. Assumption of constant outdoor temperature The derivation of the QUB experiments assume that the external temperature should remain constant during heating and cooling phases [97]. This condition may not be respected in real experiments where the temperature can vary during both phases. It is interesting to find the impact of variation in outdoor temperature on the QUB results when the perfect conditions of constant outdoor temperature are not respected during the test. Two sets of QUB experiments are performed for winter months starting from November to end of March (150 days) for the weather data of Munich, Germany, and the construction data form IEA, EBC Annex-58 (one of the twin houses). One set of experiments is performed with constant outdoor temperature and the other set is performed with varying outdoor temperature during the QUB experiments.

Figure 9 .

 9 Figure 9.2 shows the results when the QUB experiments are performed: a) at the real outdoor temperature with normal variation during the QUB night and b) at the assumed constant outdoor temperature during the experiment night.

Figure 9 . 2 :

 92 Figure 9.2: Comparison between QUB results at (a) variable outdoor temperature and (b) varying outdoor temperature. The black dashed line shows the steady state overall heat transfer coefficient and the two red dashed lines show (±20 %) of the steady state overall heat transfer coefficient.

Figure 9 . 3 :

 93 Figure 9.3: QUB error when the states in simulation are changed although the outdoor temperature and power are the same during the QUB experiment. (i) top left 35 %, (ii) top right 30 %, (iii) bottom left 24 % and (iv) error is 12 %. (b) The error curves in 3D an experiment conducted at the same level of power and time duration with different errors as shown by red vertical line

Figure 9 . 4 :

 94 Figure 9.4: The indoor air temperature response when temperature during QUB experiment at different outdoor temperatures i.e. at predicted temperature (black circles), at -20% of the predicted temperature (green asterisks) and at +20% of the predicted temperature (blue asterisks)

Figure 9 .

 9 5 shows the results for November to March and June to August. The experiments start at 20:00 PM and end at 05:00 AM, with a length of 4.5 hours for heating and cooling phase. The results of the experiment show that in winter season (November to March) the QUB experiments have less error and variation. The majority of the results are within ± 15 % of the reference overall heat transfer coefficient with only few outliers near ±20 % (Figure 9.5). For the summer season (June, July, August), the QUB experiments show relatively large variation, majority of the results show under estimation (Figure 9.5). The set temperature before the start of QUB experiments was maintained at 20℃ during these experiments.It may be mentioned that the majority of the in-situ overall heat transfer coefficient testing methods are recommended for seasons where a minimum temperature difference of 10 K can be maintained between indoor and outdoor temperature, a condition that is difficult to achieve during summer time. The outliers during the summer season coincide with high outdoor temperatures during QUB experiments. Figure9.6 shows the temperature difference before the start of QUB experiments during summer months and the QUB error. It is evident that the small temperature difference between outdoor and indoor temperature results in increasing of the errors. It can be seen that with the temperature difference above 10 K, the error remains within ±20 %.

Figure 9 . 5 :

 95 Figure 9.5: QUB experiments when performed during three seasons: winter and summers. The black dashed line shows the steady state overall heat transfer coefficient and the two red dashed lines show (±20 %) of the steady state overall heat transfer coefficient.

Figure 9 . 6 :

 96 Figure 9.6: QUB error as a function of difference between outdoor and indoor temperature before the start of experiment

Figure 9 . 7 :

 97 Figure 9.7: QUB experiments when simulated at (a) 20C set point temperature and alpha = 0.5 (n=2), (b) 25C set point temperature and alpha = 0.5 (n=2) (c) 25C set point temperature and alpha = 0.67 (n=3)

  Conclusions and perspectivesEnergy (supply and consumption) constitute the major source of global greenhouse gas emissions. Different projections show continuous growth in consumption and associated emissions in future. Buildings contribute 21 % to the global energy consumption and 2/3 rd of the greenhouse gas emissions. In developed regions, like EU and US, buildings constitute 40 % and 34 % of the total energy consumption, respectively. The International Energy Agency projected an annual growth of 1.1 % between 2015 and 2040.

Figure 11 . 1

 111 Figure 11.1 Layout and dimensions of ground floor of twin house

Windows

  Double glazing with low emissivity and argon fill. U-value (EN ISO 10077_1): U = 1.2 W/m 2 K.Hemispheric solar transmittance 0.43. Hemispheric solar absorptance: 0.11. is ventilated with outside air at the rate of 120 m 3 /h. There two exhaust ducts inside the bathroom and bedroom with an exhaust rate of 60 m 3 /h, each. The ventilation air enters through basement and passes through kitchen to the ceiling of living room. The ventilation duct passing through kitchen is uninsulated and therefore receives heat from the kitchen air. This must be taken into consideration during simulation.

Figure 11 . 2 :

 112 Figure 11.2: Exhaust and intake ports for ventilation

  delete the header (first two lines) -change date and hour in numbers -take care to use decimal point -copy from A1 :AJ5905 and paste in a new sheet -save as .csv The measured data inside the house is as: The data files are loaded as (KithcenLivngrmnew.m ) Desired weather data such as outdoor temperature, solar radiations and data for any room temperature or input heat from heater is loaded as Thermal model of the Twin House 11.2.1 Modeling of single zone model (Living room) Script file s02THLiving01Rad.m Living room is modelled as a single room of twin house, the conditions of areas adjacent to living room are considered as boundary zones as shown in figure. The living room is bounded by kitchen wall, kitchen door, doorway wall, doorway door, corridor wall, bedroom wall, Southern external wall, southern window, Eastern wall and Eastern window.

Figure 11 . 4 :Figure 11 . 5 : 6 Figure 11 . 6 :

 1141156116 Figure 11.4: Thermal circuit connections for living room zone

11. 2 . 2

 22 The Twin house two zones model (Kitchen and Living room)Script File KithcenLivngrmnew.m

Figure 11 . 7 :

 117 Figure 11.7: Thermal circuit diagram for living room and kitchen

  'UNIVERSITE DE LYON OPEREE AU SEIN DE L'INSA LYON NOM : AHMAD DATE de SOUTENANCE : 08/07/2020 Prénoms : Naveed TITRE : Measurement of Energy Performance: Analysis of QUB method NATURE : Doctorat Numéro d'ordre : 2020LYSEI051 Ecole doctorale : Mécanique, énergétique, génie civil, acoustique (MEGA) Spécialité : Thermique et Energetique de Batiment et de leur de Environment RESUME : The quick U-building (QUB) method is used to measure the overall heat loss coefficient of buildings during one to two nights by applying heating power and by measuring the indoor and the outdoor temperatures. In this work numerical QUB experiments are performed with different initial conditions (initial power), boundary conditions (solar radiation) and designs of QUB experiment (heating power and time duration). In order to simulate the QUB experiments a dynamic state space model is developed. The developed model is validated using IEA EBC Annex 58 data for a single story house.The QUB experiments are simulated for this house, using different initial conditions, boundary conditions and different seasons. QUB method shows robustness to variation in the value of the overall heat loss coefficient for which the experiment was designed and in the variation of optimum power for the QUB experiments. The variations in the QUB method results are smaller on cloudy than on sunny days, the error being reduced from about 10 % to about 7 %. A correction is proposed for the solar radiation absorbed by the wall that contributes to the evolution of air temperature during the heating phase. The QUB results with variable outdoor temperature during the test show relatively high variation and error as compared to the conditions when temperature is constant. A ±20% increase or decrease in the outdoor temperature during the QUB experiment can change the results of test by ±5%. The QUB resultsfor QUB experiments simulated during the winter months show error within ±15%. The QUB results during the months of summers show relatively large variation. The median error of multiple QUB experiments in summers can be reduced by increasing the set point temperature before the start of QUB experiment.
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	MOAT	Morris Once-at-a-Time
	MC	Monte Carlo
	SA	Sensitivity Analysis
	STEM	Short Term Energy Monitoring
	SVM	Support Vector Machine
	PMEP	Performance Measurement and Evaluation Plan
	UMP	Uniform Methods Project

Introduction

Socio-economic relevance

World energy consumption has shown a consistent growth. International Energy Outlook 2019 (IEO 2019) has projected an annual growth of 3 %, between 2018 and 2050, leading to an increase in energy consumption from 600 quadrillion BTU to 911 quadrillion BTU

[1]

. Energy in building is the major source of greenhouse gas emissions and the sector with highest growth in emissions in future scenario

[START_REF]Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF]

. Building sector therefore risks to increase the CO2 emissions but at the same time has the opportunity to reduce greenhouse gas emissions.

Reduction in energy sector focuses on two sides: supply-side reduction by switching to renewable energy sources and demand-side reduction by improving energy efficiency.

Buildings offer a promising opportunity to reduce greenhouse gas emissions via demand-side reduction/management through energy efficiency improvement. In 2010, buildings (residential and commercial) accounted for 32 % of the total greenhouse gas emissions and one third of black carbon emissions worldwide. Buildings consume 21 % of the total energy worldwide. It is projected as the sector with the highest growth in energy consumption of 1.4 % per year between 2018 and 2050 [1].

  In UK (England and Wales), energy conservation part of the building regulations became effective in 1979. The part "L: Conservation of Fuel and Power" of the building regulations formed the building energy conservation part, with L1A dealing with conservation in new

	buildings and L1B with existing buildings. In 2005, UK also complied with EU Energy
	Performance of Building Directives (EPBD) for buildings by including EPBD directives in its
	energy regulations [15].
	Building energy consumption is Europe is high as compared to other parts of the world
	because of weather based loads. European Union (EU) building energy consumption is 40 %

. In US in 1975, ASHRAE published the first ASHRAE Standard 90.1 for energy conservation in new buildings. This standard was regularly updated and formed the basis for the implementation of Energy Policy Act (EPA) in 1992 which required all states to adopt the ASHRAE 90.1 Standards as a minimum level for building efficiency [12]. In 1994, International Code Council (ICC) was formed; it introduced the International Energy Conservation Code (IECC) for buildings. Both IECC and ASHRAE 90.1 Standard served as baseline standards or codes at state and federal level in US. IECC and ASHRAE codes for buildings are updated every three years. States are asked to comply with the codes within two years of issuance of new codes [13]. The energy policy act 2005 requires all federal buildings to reduce energy consumption by 20 % in 2015 as compared to 2003 level [14]. of total energy consumption and 36 % of total GHG emissions. EU has set a target of reducing building energy consumption by 20 % by 2020. To achieve this target, EU issued two main legislations: Energy Performance of Buildings Directive (2010) and Energy Efficiency Directive (2012)

  Simulation studies suggest that new building codes with energy efficiency improvements bring substantial savings. McKinsey in his study of 2009 IECC building codes estimates that code issued in 2009 has the potential to improve energy efficiency by 12 % to 15 % as compared to codes of 2006

Empirical or black box method. These

  

	between input and output data. The model offers no description of the parameters
	identified and leaves it to user to recognize them.
	 Hybrid method (grey box). Hybrid methods are semi-physical or semi-statistical
	approaches used to identify parameters or dynamical characteristics of buildings.
	Unlike black box modelling, the parameters have direct physical interpretation. This
	enable us to add prior physical knowledge, in addition to the statistical model to
	identify parameters of building. A controlled experiment data is used to apply this
	approach [42]. .
	 Calibrated simulation method (white box). The calibration method is a two-step
	method. A model of the building is generated based on first principles or engineering
	method. The model is then tuned with data to arrive at energy consumption in line
	with the billing/consumption data. Different methods of tuning are applied to various
	parameters of significance [42].
	 Artificial intelligence based methods such as genetic algorithms (GA), artificial neural
	networks (ANN) and support vector machine (SVM) are advanced approaches that are
	coupled with black box, grey box or calibrated simulation to improve the outcome of
	these methods. It may be noted that with the advancement of research, the distinction
	between these methods has blurred [36].
	are pure statistical techniques where simple or
	multiple variable regression is used to find parameters from relationship established

Table 2 -
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	Standard/guideline	Monthly criteria (%) MBE CVRMSE	MBE	Hourly criteria (%) CVRMSE
	ASHRARE Guideline 14	5	15	10	30
	IPMVP	20		5	20
	FEMP	5	15	10	30

1: Error acceptance criteria for building energy model

[START_REF] Coakley | A review of methods to match building energy simulation models to measured data[END_REF] 

  Time (MOAT), Multiple Adaptive Regression, Splines (MARS), Delta Test (DT), Monte Carlo (MC), Fourier Amplitude Sensitivity Test (FAST), etc.[START_REF] Gan | A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model[END_REF].First step for sensitivity analysis is to define inputs with probable variation. Different methods used for this purpose are known as sampling techniques. Sampling techniques are used to generate sample size of parameters or inputs, the range or variation of each data input and distribution for each value, such as normal, uniform, lognormal and triangular distribution.

	Plack-Burman (PB), Monte Carlo (MC), Extended Sobol etc., are some of the Sampling
	techniques [75]. Embedded Latin Hypercube Design (LHD) with Monte Carlo simulation

  the next chapter, the techniques discussed are applied with reference to experiments used for thermal characterization of buildings and building components. The next chapter explains in detail the standard thermal characterization test methods, experiments and data analysis techniques as applied to these test methods. These test methods provide construction data, weather data and measurement data that can be used to verify any model. The data from one of the test sites (twin house) is used for modelling in thesis.

  on quoted thermo-physical properties of building and steady state or dynamic model of building. are occupant-based methods. The heat transfer co-efficient is determined by regression analysis. The long term identification methods are better suited for estimation of savings from deep retrofits over long period of time as these methods cannot identify the short term dynamic effects;

	 Measurements using long testing methods, such as co-heating tests, PSTAR. Usually,
	statistical techniques are employed to dissociate the measured value from the effects
	of occupant's behavior, weather conditions and efficiency of building;

 Long-term test identification methods like energy signature, PRISM methods, RCidentification; that are based on energy consumption as a function of outdoor temperature and

  𝑈 𝑖 . 𝐴 𝑖 + 𝐻 𝑇𝐵 + 𝜌. 𝑐 𝑝 . 𝑄 𝑣 The overall heat loss coefficient is based on the experimental measurement of the terms in equation (3.2). As the tests, such as co-heating tests, are conducted throughout the day, multiple linear regressions are performed to identify 𝐻 and solar aperture. The identification relationship for co-heating test is:

	where						
	𝐻 𝑇𝐵	is the heat loss from thermal bridges,		
	𝑈 𝑖 𝐴 𝑖	-envelope losses,				
	𝜌𝑐 𝑝 𝑄 𝑣	-infiltration losses.			
		𝑄 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝑔 𝐴 𝑠𝑜𝑙𝑎𝑟 = 𝐻 ∆𝑇		(3.3)
	The in-situ parameter Identification methods starts with the collection of data based on
	experiments. The experiments conducted are either:		
	 long term						
	 short term	𝑄 𝑣 = √ 𝑄 𝑠	2 + 𝑄 𝑤	2 =	𝐴 𝑙 1000 . √ 𝐶 𝑠 . ∆𝑇 + 𝐶 𝑤. 𝑈 𝑤	2	(3.2)

where 𝑄 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 is steady state heat flow rate (W)

𝑔

are the measured solar radiation (W/𝑚 2 )

𝐴 𝑠𝑜𝑙𝑎𝑟 is the identified solar aperture (𝑚 2 ),

𝐻

is the identified overall heat transfer coefficient ∆𝑇 is the temperature difference between building (internal) and external environment

The estimated 𝐻 value is considered as accurate enough to be used as a reference value. Two co-heating tests conducted for the same building by two different teams have generated the same results

[START_REF] Brun | Short methodologies for in-situ assessment of the intrisinc thermal performance of the building envelope[END_REF]

.

 intrusive (non-controlled experiments)

 non-Intrusive (controlled experiments)

  𝑁,𝑆 𝑡𝑜 𝑆 = ∑ (𝑇 𝑖,𝑠,𝐾 -𝑇 𝑒,𝑆,𝐾 ) condition errors and data analysis errors. It is difficult to meet the data analysis conditions in steady state analysis. The steady state analysis does not provide any insight into dynamic properties and requires long time to arrive at accurate results. ISO 2014 outlines the standard procedure[START_REF] Janssens | Statistical Guidelines:Reliable building energy performance characterisation based on full scale dynamic measurements in Buildings Background : Renewed interest in full scale testing Interest[END_REF]:  test duration should be at least 72 hours;

		𝑁 𝐾=1		(3.4)
		∑	𝑁 𝐾=1	𝑞 𝑖,,𝑆,𝐾
	where		
	𝑅	is the thermal resistance (𝑚 2 K/W);
	𝑁	Is the number of measurements starting from 𝐾 = 1;
	𝑇 𝑖,𝑠	is the internal surface temperature (K);
	𝑇 𝑒,𝑠	is the internal surface temperature (K);
	𝑄 𝑖,𝑠	is the heat rate per meter square (W/𝑚 2 ).

Both static and dynamic analysis are used to measure the thermal characteristics using data obtained from the tests. The potential sources of error in this method are measurement errors, boundary

  Both coefficients 𝛼 𝑐 and 𝛼 ℎ are measured during experiments of heating and cooling. The heat loss coefficients and the capacitance of the building can be estimated by

	∆𝑇 𝑜 ℎ -𝑃/𝐾 𝑜 )exp (-𝑡/𝜏) + 𝑃/𝐾 𝑜 𝐾 𝑜 = 𝑃/(∆𝑇 𝑜 ℎ + ∆𝑇 𝑜 𝑐 𝛼 ℎ 𝛼 𝑐 )	(4.11) (4.17)
	Linearization of this equation (4.11) generates: and	
	∆𝑇 ℎ = (∆𝑇 𝑜 ℎ -𝑃/𝐾 𝑜 ) (1 -𝑡/𝜏) + 𝑃/𝐾 𝑜 𝐶 = 𝑃/(𝛼 ℎ + ∆𝑇 𝑜 ℎ 𝛼 𝑐 ∆𝑇 𝑜 𝑐 )	(4.12) (4.18)
	The theoretical evolution of temperature can be validated by following the experimental
	evolution of temperature inside a real house for heating and cooling. Measurement of
	experimental slope of temperature and fitting a line/curve generates:	
	∆𝑇 𝑐 = ∆𝑇 𝑜 𝑐 -𝛼 𝑐 𝑡	(4.13)
	where	
	𝛼 𝑐 = ∆𝑇 𝑜 𝑐 𝐾 𝑜 /𝐶	(4.14)
	For heating experiments:	
	∆𝑇 ℎ = ∆𝑇 𝑜 ℎ + 𝛼 ℎ 𝑡	(4.15)
	where	
	𝛼 ℎ = 𝑃 -∆𝑇 𝑜 ℎ 𝐾 𝑜 /𝐶	(4.16)
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	-1: Overall heat transfer coefficients estimated using three tests [95]
	Calculations	Measured yearly energy	Heating and cooling
	(thermo-physical	consumption(W/K)	experiments(W/K)
	properties)(W/K)		
	497	503	464

  𝜏 𝑖 are time constants in increasing order such that 𝜏 𝑛 represents the longest time constant and 𝑎 𝑖 represents the constants that depend on model resistance, capacitance and initial conditions. The steady state value 𝐻 𝑡𝑜𝑡 will be equal to 𝐻 𝑄𝑈𝐵 only if[START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF] 

	where ∑ [𝑎 𝑖.(1) /𝜏 𝑖 ]𝑒 𝑛 𝑖=1 ∑ [𝑎 𝑖.(1) ]𝑒 -𝑡 (1) -𝑡 (1) 𝜏 𝑖 𝜏 𝑖 𝑛 𝑖=1	=	∑ [𝑎 𝑖.(2) /𝜏 𝑖 ]𝑒 𝑛 𝑖=1 ∑ [𝑎 𝑖.(2) ]𝑒 -𝑡 (2) -𝑡 (2) 𝜏 𝑖 𝜏 𝑖 𝑛 𝑖=1	(4.21)
	The general solution for temperature evolution during the heating or cooling phase of the
	QUB experiment can be represented by equation :
	𝑇(𝑡) =	𝜑 𝐻 𝑡𝑜𝑡	+ [𝑇(0) -	𝜑 𝐻 𝑡𝑜𝑡	𝑛 ] ∑ 𝑎 𝑖 𝑒 𝑖=1	-	𝑡 𝜏 𝑖
								(4.20)

exponential terms. In steady state when the decay is considered for a time long the temperature can be given as: lim 𝑡→∞ 𝑇(𝑡) = 𝜑/ 𝐻 𝑡𝑜𝑡 . Where 𝜑 is the heating power and 𝐻 𝑡𝑜𝑡 is the steady state overall heat transfer coefficient.

  that is a sum of 𝑛 time constants[START_REF] Pandraud | Experimental optimization of the QUB method[END_REF]. By simple

	derivation, it can be proved that				
	𝑇 𝐼 * (𝑡) Ṫ𝐼 * (0) -𝑞/𝐾 𝑜	= -	𝜏 𝑛 1	𝑇 𝐼 * (0) -𝑞/𝐾 𝑜 𝑇 𝐼 * (𝑡) -𝑞/𝐾 𝑜	(4.22)
	This equation leads to the QUB equation for 𝐻
	𝐻 𝑄𝑈𝐵 =	𝛼 1 𝑞 2 -𝛼 2 𝑞 1 𝛼 1 𝑇 2 -𝛼 2 𝑇 1
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 4 3. The table shows that QUB results are in good agreement with 𝐻 𝑟𝑒𝑓 .

Table 4 - 3

 43 When heat flow plates are used, the QUB test it is referred to as QUB/e. With QUB/e test, U values of walls can be measured as well. It was inferred from the test that:  the H values obtained for QUB tests with one-hour heating duration yield values within 10% of the steady state reference values;

	University of Salford has built a controlled testing house known as Salford Energy House. It is
	a two-bedroom house built inside a controlled environment chamber where different weather
	conditions can be replicated. The house has sensors for multiple measurements in which
	fenestration, doors, and envelope insulations can be changed [94]. A number of in situ

: Results of three measurements from QUB test and steady state test

[START_REF] Florent | QUB: a fast dynamic method for in-situ measurement of the whole building heat loss[END_REF] 

There are some questions that still need to be answered despite a good agreement between QUB test values and steady state values, s. a. the relationship between error, building characteristics and test duration. It is evident from the experimental results, that QUB test can give better results even with shortest possible time (0.5h). The question of sufficient time for QUB test is still unanswered

[START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments Bases théoriques[END_REF]

.

QUB method was tested virtually using TRNSYS software for a virtual single family house of 109 m 2 (with internal insulation) with weather data from city of Rennes

[START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments[END_REF]

. Fifty-two tests were condcuted for a single year. The values obtained from QUB test were compared with the reference value 143 W/K obtained from TRANSYS model. The values obtained by QUB tests were between 136 and 167 W/K, with a mean value of 150 W/K and maximal deviation of 17%. The estimated QUB value was within ± 10% for 90 to 95% values

[START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments[END_REF]

.

measurements were conducted at Salford Energy House

[START_REF] Florent | Mesure rapide du coefficient de perte thermique des bâtiments[END_REF]

. Temperature sensors, power meters and heat flow plates were used for generating a data set of QUB test.

  𝑠 𝑖 𝑠 𝑗 𝛽 𝑖 𝛽 𝑗 (𝜏 𝑖 -𝜏 𝑗 )(𝛽 𝑖 -𝛽 𝑗 )

	𝑖>𝑗	
	𝑅 𝑇 ∑ (1 -𝛼𝛽 𝑖 )𝑠 𝑖 𝛽 𝑖 𝑖	(4.25)
	where 𝛼 = 1 -𝑇 𝑜 /𝑅 𝑇 𝑃 ℎ and 𝛽 𝑖 = 𝑒	

-𝑡 ℎ 𝜏 𝑖 . The value of 𝛼 is of particular importance in case of QUB test and represents the range of thermal load applied to building. There are two ways that can lead to 𝐻 𝑄𝑈𝐵 = 𝐻 𝑡𝑜𝑡 :

  ). By partitioning the matrix 𝛉 0 and 𝐟 0 correspond to the nodes without thermal capacity; 𝛉 𝐶 and 𝐟 𝐶 correspond to the nodes with thermal capacity; 𝐂 𝐶 is the bloc of the partitioned matrix 𝐂 for which the elements on the diagonal are non-zero; 𝐊 11 , 𝐊 12 , 𝐊 21 , and 𝐊 22 are blocs of the partitioned matrix 𝐊 obtained according to the partioning of the matrix 𝐂; 𝐊 𝑏1 and 𝐊 𝑏2 are blocs of the partitioned matrix 𝐊 𝑏 obtained according to the partitioning of the matrix 𝐂; 𝐈 11 and 𝐈 22 are identity matrices.

	where:														
	The state equation of the state-space model is:					
	𝛉 ̇𝐶 = 𝐀 𝑆 𝛉 𝐶 + 𝐁 𝑆 𝐮									(6.27)
	where the state matrix is:									
	𝐀 𝑆 = 𝐂 𝐶 -1 (-𝐊 21 𝐊 11 -1 𝐊 12 + 𝐊 22 )							(6.27)
	𝐂,														
	𝐂 = [	𝟎 𝟎 𝟎 𝐂 𝐶	]										(6.26)
	where 𝐂 𝐶 corresponds to the nodes having capacities, the set of equations (6.10) may be
	written as:														
	[	𝟎 𝟎 𝟎 𝐂 𝐶	] [	𝛉 ̇0 𝛉 ̇𝐶] = [	𝐊 11 𝐊 12 𝐊 21 𝐊 22	] [	𝛉 0 𝛉 𝐶	] + [	𝐊 𝑏1 𝐊 𝑏1	] 𝐛 + [	𝐈 11 𝟎 𝟎 𝐈 22	] [	𝐟 0 𝐟 𝐶	]	(6.26)

  If the outputs are temperatures of nodes with capacities, the observation matrix 𝐂 𝑆 extracts their values from the state vector and the feed-through matrix is 𝐃 𝑆 = 𝟎. If the outputs are

	𝛉 0 = -𝐊 𝟏𝟏 -𝟏 (𝐊 12 𝛉 𝐶 + 𝐊 𝑏1 𝐛 + 𝐈 11 𝐟 0 )		
		𝐛		(6.29)
	= -𝐊 𝟏𝟏 -𝟏 (𝐊 12 𝛉 𝐶 + [𝐊 𝑏1 𝐈 11 𝟎] [	𝐟 𝐶 𝐟 0	])
	11 -1 𝐊 𝑏1 + 𝐊 𝑏2 -𝐊 21 𝐊 11 -1 𝐈]	(6.28)
	temperatures from nodes without capacities, the observation equation can be obtained from
	the first row of equation (5.26):		

  11 -1 [-𝐊 𝑏1 𝐈 11 𝟎]

	(6.31)

  When several different boundary conditions are present, the indoor temperature 𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 is the result of the gains from the different boundary temperatures 𝑇 𝑖 and can be obtained by changing the indoor temperature in equation (7.2): 𝐾 𝑖 is the sate gain of boundary temperatures 𝑇 𝑖 and 𝐾 𝑝 is the static gain for power. Equation(7.4) is valid whether the boundary temperatures are same or not, ∀ 𝑖 ,𝑇 𝑖 = 𝑇 𝑜 .

	𝑃-steady state power supplied,	
	𝜃 𝑖 -indoor air temperature,		
	𝑇 𝑜 -outdoor air temperature.		
	Since the steady state is never achieved, the global conductance is estimated by the integral
	in time			
	𝐻 ≡	∫ 0 𝑡 𝑓𝑖𝑛𝑎𝑙	(𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 -𝑇 𝑜 )𝑑𝑡 ∫ 𝑃𝑑𝑡 𝑡 𝑓𝑖𝑛𝑎𝑙 0	(7.3)
	𝜃 𝑖𝑛𝑑𝑜𝑜𝑟 = ∑ 𝐾 𝑖 𝑇 𝑖	+ 𝐾 𝑝 𝑃	(7.4)
			𝑖	
	where			
					(7.2)
				𝑇 𝑜
	where			
	𝐻 -overall heat loss coefficient,	

Table 11

 11 

	-1 Window dimensions		
	Window	Overall dimensions	Overall dimensions	Glass dimensions
	type	with roller blinds	without roller blinds	
	W1	1.24 x 1.74	1.24 x 1.46	1.00 x 1.30
	W2	1.02 x 2.38	1.02 x 2.18	2.00 x 0.90
	W3	4.46 x 2?58	4.46 x 2.28	3 x 1.00 x 1.40

Table 11 -

 11 2 Walls and doors

	Wall type	Layer	Thickness	Cond.	Dens.	Sp.	Absorp	Emiss
			(m)	(W/mK)	(kg/m 3 )	heat	SW	LW
						(J/kg K)		
	P1 External wall	Ext. plaster	0.01	0.80	1200		0.23	0.90
	(red)	Insulation	0.12	0.035	80			
	U = 0.2	Plaster	0.01	1.00	1200			
		Brick	0.20	0.22	800			
		Int. plaster	0.01	1.00	1200		0.17	0.90
	P2 Internal wall	Plaster	0.01	0.35	1200		0.17	0.90
	(blue)	Brick	0.25	0.33	1000			
		Plaster	0.01	0.35	1200		0.17	0.90
	P3 Internal wall	Plaster	0.01	0.35	1200		0.17	0.90
	(green)	Brick	0.13	0.33	1000			
		Plaster	0.01	0.35	1200		0.17	0.90
	P4 Ceiling	Screed	0.04	1.40	2000		0.60	0.90
	U = 0.25	Insulation	0.04	0.04	80			
		Concrete	0.22	2.00	2400			
		Plaster	0.01	1.00	1200			
		Insulation	0.10	0.035	80		0.17	0.90
	P5 Ground	Concrete	0.22	2.10	2400		0.60	0.90
	U = 0.32	Fill	0.03	0.06	80			
		Insulation	0.03	0.025	80			
		Panel	0.03	0.023	80			
		Screed	0.06	1.40	2000		0.60	0.90
	D1 External door Wood	0.04	0.13	600		0.60	0.90
	D2 Internal door	Wood with	0.04	0.13	600		0.60	0.90
		glass						
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Description of the Twin House experiments

The Twin House experiments were conducted as part of Annex 58: Reliable building energy performance characterization based on full scale dynamic measurements of the International Energy Agency Energy in Buildings and Communities program (IEA EBC) [START_REF]Towards a characterisation of buildings based on in situ testing and smart meter readings and potential[END_REF]. The purpose of Annex 58 was to collect the existing tools, knowledge and experimental setups that can be used for dynamic thermal characterization of building components and whole building. The Subtask 4 of IEA EBC Annex 58 dealt with the characterization of an the entire building and involves verification of building energy models (thermal characterization) based on in situ tests [START_REF] Strachan | Empirical Whole Model Validation Modelling Specification Validation of Building Energy Simulation Tools[END_REF].

The purpose of Twin House experiment was to generate a good quality data set that can be used to verify the performance of building energy models. The aim was to simulate real conditions inside a real house and generate number of measurements that can be used for simulation and estimation of thermal characteristics. In order to simplify the simulation conditions, the two identical houses were non-occupied during the experiment. Both houses were equipped with instruments that might not be possible to install/use in normal occupied house. The experiment details are given in section 5. 12 length(f5) 13 12 ];