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Abstract 

Le QUB est une méthode d'essai de caractérisation thermique in situ dynamique qui a le 

potentiel d'être menée sur une courte durée d'une à deux nuits. La méthode a été testée sur 

des bâtiments à petite échelle, sur une maison à grande échelle avec un environnement 

contrôlé et une maison à grande échelle avec des conditions météorologiques réelles. La 

valeur globale du coefficient de transfert de chaleur (H) mesurée à l'aide de la méthode QUB 

se situe généralement à ± 15% de la valeur mesurée à l'état d'équilibre. Avec une telle 

variance, il est important de comprendre comment les résultats QUB varient avec les 

conditions aux limites (radiations solaires, température extérieure, température extérieure 

pendant la nuit de test QUB) et les conditions initiales (puissance initiale avant l'expérience 

QUB). L'expérience QUB, c'est-à-dire la puissance de chauffage et la durée, sont optimisées 

en utilisant une connaissance a priori (c'est-à-dire une valeur supposée) du coefficient de 

transfert global du bâtiment, 𝐻𝑟𝑒𝑓. La robustesse de la méthode QUB avec l'incertitude du 

niveau de puissance (pendant la phase de chauffage QUB), l'incertitude du coefficient de 

transfert de chaleur global à l'état d'équilibre, 𝐻𝑟𝑒𝑓, et les températures extérieures en 

fonction des saisons doivent être établies pour les bâtiments réels. 

 

Il est coûteux d'effectuer des expériences QUB sur une vraie maison pendant une longue 

période avec des conditions limites et initiales variables, différents niveaux d'isolation et des 

saisons. Afin de faire des expériences numériques, un modèle dynamique d'état-espace est 

développé et testé dans cette thèse. La modélisation espace-état consiste à générer un circuit 

thermique pour chaque composant du bâtiment (murs, fenestration, système de ventilation, 

etc.). Les circuits thermiques sont ensuite assemblés pour générer un seul circuit pour 

l'ensemble du bâtiment. Le modèle de l'espace d'état est validé en utilisant les 

caractéristiques thermiques et les données mesurées d'une maison à grande échelle (la 

maison jumelle) fournies par l'Annexe 58 de IEA EBC Caractérisation fiable de la performance 

énergétique du bâtiment basée sur des mesures dynamiques à grande échelle. L'erreur de la 

température intérieure simulée de toute la maison (sept zones thermiques) pour un pas de 

temps de 10 min. est de l'ordre de ± 2 ℃, avec trois quartiles des erreurs se situant à ± 1 ℃. 

Le modèle espace-état développé dans ce travail nous aide à analyser les valeurs propres et 

les constantes de temps du bâtiment. Ils sont utilisés pour optimiser le maillage utilisé dans la 
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modélisation, pour attribuer les conditions initiales, pour concevoir une expérience QUB 

optimale et pour expliquer pourquoi des expériences à temps relativement court peuvent être 

utilisées pour déterminer la valeur globale du coefficient de transfert de chaleur, qui est une 

caractéristique en régime permanent. 

 

Des expériences QUB ont également été menées sur la maison mentionnée ci-dessus. Les 

différences entre les mesures et les simulations numériques étaient de ± 1 ℃. En utilisant le 

modèle numérique, les expériences QUB montrent que la méthode ne présente que de 

légères variations avec une incertitude de puissance; par exemple, une erreur de 30% de la 

puissance optimale peut provoquer une erreur à moins de 3% de la valeur de référence. Par 

conséquent, la méthode QUB peut être considérée comme robuste avec la variation de 

puissance. Une analyse d'erreur a posteriori est effectuée en prenant soin des expériences 

QUB dans des situations où l'enveloppe réelle a des caractéristiques différentes de celles 

supposées dans la conception de l'expérience pour la méthode QUB. Ces résultats sont 

ensuite comparés à des erreurs a priori, une situation dans laquelle des expériences QUB sont 

effectuées avec la connaissance de l'enveloppe réelle. L'analyse d'erreur montre qu'avec une 

erreur de 50% du coefficient de transfert de chaleur global (c'est-à-dire une situation 

d'isolation de paroi manquante), la méthode QUB entraîne une erreur accrue de seulement 

3%. 

 

La précision de la méthode QUB a également été testée avec la variation du rayonnement 

solaire. Les résultats QUB les jours nuageux montrent une variation moindre par rapport aux 

jours ensoleillés. Il a été démontré que le transfert de chaleur des radiations solaires retardées 

entrant à travers les murs du bâtiment a un effet sur l'évolution de la température au cours 

de l'expérience QUB. Cela peut entraîner une augmentation de l'erreur dans la méthode QUB. 

Une méthode est proposée dans cette thèse pour estimer la contribution du rayonnement 

solaire et du facteur correctif solaire pouvant réduire l'erreur de la méthode QUB. L'impact du 

facteur correctif dépend du rayonnement solaire pendant la veille de l'expérience QUB et de 

la diffusivité de l'enveloppe du bâtiment. 
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Les expériences QUB sont simulées en été et en hiver pour déterminer l'impact des saisons 

sur la précision de la méthode. La saison d'hiver montre des résultats plus robustes que les 

mois d'été. Les mois d'été montrent une plus grande variation des résultats. Il est vérifié que 

la grande variation est due à une petite différence de température entre les conditions 

intérieures et extérieures pendant certaines nuits d'été. Les expériences en saison estivale 

peuvent être améliorées en augmentant la température de consigne avant l'expérience QUB. 
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Abstract 

 

QUB is a dynamic in-situ thermal characterization test method that has the potential to be 

conducted in a short duration of one to two nights. The method was tested on small scale 

buildings, on a full-scale house with controlled environment and a full-scale house with real 

weather conditions. The overall heat transfer coefficient value (𝐻) measured using QUB 

method usually lies within ±15 % of the value measured in steady state. With such a variance, 

it is important to understand how the QUB results vary with the boundary conditions (solar 

radiations, outdoor temperature, outdoor temperature during QUB test night) and the initial 

conditions (initial power before QUB experiment). The QUB experiment, i.e. the heating 

power and time duration, are optimized by using a priori knowledge (i.e. a supposed value) of 

the overall transfer coefficient of the building, 𝐻𝑟𝑒𝑓. The robustness of QUB method with 

uncertainty in power level (during QUB heating phase), uncertainty in overall heat transfer 

coefficient at steady state, 𝐻𝑟𝑒𝑓, and the outdoor temperatures a function of seasons needs 

to be established for real buildings. 

 

It is expensive to perform QUB experiments on a real house for a long time with varying 

boundary and initial conditions, different levels of insulation and seasons. In order to make 

numerical experiments, a dynamic state-space model is developed and tested in this thesis. 

The state-space modelling involves generating a thermal circuit for each component of the 

building (walls, fenestration, ventilation system, etc.). The thermal circuits are then assembled 

to generate a single circuit for the entire building. The state-space model is validated using 

thermal characteristics and measured data of a full-scale house (the twin house) provided by 

IEA EBC Annex 58 Reliable Building Energy Performance Characterisation Based on Full Scale 

Dynamic Measurements. The error of the simulated indoor temperature of the entire house 

(seven thermal zones) for a time-step of 10 min. is in the range of ±2℃, with three quartiles 

of the errors being within ±1℃. The state-space model developed in this work helps us to 

analyse the eigen values and the time constants of the building. They are used to optimize the 

meshing used in modelling, to assign the initial conditions, to design an optimal QUB 

experiment and to explain why relatively short time experiments can be used for determining 

the overall heat transfer coefficient value, which is a steady-state characteristic. 
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QUB experiments were also conducted on the house mentioned above. The differences 

between the measurements and the numerical simulations were within ±1℃. By using the 

numerical model, the QUB experiments show that the method has only slight variation with 

uncertainty in power; for example, 30% error in optimum power can cause an error within 

3 % of the reference value. Therefore, QUB method can be considered as robust with the 

variation in power. A posteriori error analysis is performed by caring on QUB experiments in 

situations in which the real envelope has different characteristics than those assumed in the 

design of the experiment for QUB method. These results are then compared with a priori 

errors, a situation in which QUB experiments are performed with the knowledge of the real 

envelope. The error analysis shows that with 50 %  error in the overall heat transfer 

coefficient (i.e. missing wall insulation situation), the QUB method results in an increased error 

of only 3 %. 

 

 

The precision of QUB method was tested also with the variation of solar radiation. QUB results 

on cloudy days show lesser variation as compared to sunny days. It was shown that the heat 

transfer from the delayed solar radiations entering through the walls of the building has an 

effect on the temperature evolution during the QUB experiment. This can lead to an increased 

error in QUB method. A method is proposed in this thesis to estimate the contribution of solar 

radiation and of the solar corrective factor that can reduce the error of QUB method. The 

impact of the corrective factor depends on the solar radiation during the day before the QUB 

experiment and the diffusivity of the building envelope.  

 

The QUB experiments are simulated during summer and winter to determine the impact of 

seasons on the accuracy of the method. The winter season shows more robust results as 

compared to summer months. The summer months show larger variation of results. It is 

verified that the large variation are due to small temperature difference between indoor and 

outdoor conditions during some of the summer nights. The experiments in summer season 

can be improved by increasing the set point temperature before the QUB experiment.  
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 Introduction 

 

 

 Socio-economic relevance 

 

World energy consumption has shown a consistent growth. International Energy Outlook 2019 

(IEO 2019) has projected an annual growth of 3 %, between 2018 and 2050, leading to an 

increase in energy consumption from 600 quadrillion BTU to 911 quadrillion BTU [1]. Energy 

in building is the major source of greenhouse gas emissions and the sector with highest growth 

in emissions in future scenario [2]. Building sector therefore risks to increase the CO2 

emissions but at the same time has the opportunity to reduce greenhouse gas emissions. 

Reduction in energy sector focuses on two sides: supply-side reduction by switching to 

renewable energy sources and demand-side reduction by improving energy efficiency.  

 

Buildings offer a promising opportunity to reduce greenhouse gas emissions via demand-side 

reduction/management through energy efficiency improvement. In 2010, buildings 

(residential and commercial) accounted for 32 % of the total greenhouse gas emissions and 

one third of black carbon emissions worldwide. Buildings consume 21 % of the total energy 

worldwide. It is projected as the sector with the highest growth in energy consumption of 

1.4 % per year between 2018 and 2050 [1].  

 

The projected increase in building energy consumption is due to improvement in living 

standards, changing lifestyles, population growth and rapid urbanization. United Nation’s 

World Urbanization Prospects reports that presently 54 % of the total world population is 

living in urban centers, that is expected to grow to 66 % by 2050 [3]. Increasing number of 

commercial and residential buildings in developing countries will increase energy 

consumption and associated emissions. 
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In absence of mitigation strategies and policies, it is expected that building energy 

consumption will increase two to three folds, by 2050 [4]. With 32 % of the total world GHG 

emissions, buildings offer an immense opportunity of improvement. This is the reason why 

building energy consumption sector is receiving significant attention for improvement in 

energy efficiency. Paris Agreement on climate change (COP21) and Montreal protocol have 

included buildings as important resources to reduce greenhouse gas emissions [5]. The IPCC 

(UN Intergovernmental Panel on Climate Change) working group III works on GHG mitigation 

strategies in different sectors, including buildings (IPCC, 2018). 

 

The increase in building GHG emissions, by two to three folds as projected, can be stabilized 

at its 2005 level and can even be reduced further. Energy efficiency policies, mitigation 

strategies, awareness campaigns and efficient technologies will play key role to reduce energy 

consumption in buildings. GEA [6] has projected that with broad based application of existing 

energy policies and technologies, 45 % reduction in heating and cooling loads is achievable in 

buildings.  

 

Significant savings can be achieved in both new and existing buildings. Depending on the level 

and type of retrofit (deep or shallow) and the type of building, the potential savings achieved 

can range from 25 % to 90 % [4]. Due to this potential, building energy efficiency sector 

received highest percentage (58 %) of investments in energy efficiency, in IEA member 

countries (including six major emerging economies Brazil, China, India, Indonesia, Russian 

Federation and Mexico)[5].  

 

Monetary benefits from savings are coupled with other benefits, referred as co-benefits. If the 

impacts of co-benefits are counted, then the actual benefits from retrofit are double the 

indicated economic benefits. Common co-benefits include:  

1. health benefits from improved indoor and outdoor conditions, 

2. ecological benefits due to reduce carbon footprint, 

3. employment creation,  

4. service provision benefits (reduction of transmission and distribution losses,  
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5. social effects (e.g. reduction in energy poverty, improved control on indoor 

environment) [5]. 

      

To meet the GHG mitigation goals using potential savings from buildings, some barriers are 

yet to be overcome. These include improvements on availability of direct data from buildings, 

gaps in knowledge to understand the buildings behavior, lack of comprehensive measured 

data from real occupied buildings, difficulty to predict occupants’ behavior and life styles, 

inclusion of energy efficiency in building decisions, continuous and dissemination of available 

resources, knowledge and policies to the public [2].   

 

Variation and uncertainties in building energy consumption at building level, and 

consequently at the aggregated level of cities and regions, make it difficult to forecast the 

future of building energy consumption (and hence GHG emissions) within narrow confidence 

interval. Reason for such variations and uncertainty are  the uncertainties in accurate 

determination of envelope properties of building, changing operating schedules, stochastic 

occupant behavior, changing weather patterns and discrepancies in understanding/modelling  

accurate relations between inputs and corresponding output building energy consumption 

[7]. 

 

 Thermal regulations 

 

1.2.1 Introduction 

Building thermal regulations provide the basic description of how buildings should be 

constructed in order to save energy. Some building regulations are specifications of different 

building components, such as minimum heat transfer coefficient value (U-value), thermal 

resistance (R), solar transmittance for windows (g-value) and roof insulation level [8]. Building 

regulations are not strict in terms of specifications, but define overall minimum energy 

efficiency or maximum level of energy consumption that must be maintained in new and 

existing buildings. An illustrative figure representing buildings heat transfer with environment 

is presented in Figure 1.1. 
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Figure 1.1: Energy  balance for  building/room  in the heating modes [9] 

 

The steady-state energy balance for heating the air inside a building is: 

 𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 𝑄𝑐𝑜𝑛𝑑 − 𝑄𝑣𝑒𝑛𝑡 + 𝑄𝑔𝑎𝑖𝑛𝑠 − 𝑄𝑠𝑜𝑙𝑎𝑟 (1.1) 

where 

𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔   is the amount of heat supply required to maintain the maintain the 

temperature inside; 

𝑄𝑐𝑜𝑛𝑑   - heat conduction fom the walls; 

𝑄𝑣𝑒𝑛𝑡    - heat exchange due to ventilation; 

𝑄𝑠𝑜𝑙𝑎𝑟   - solar radiation; 

𝑄𝑔𝑎𝑖𝑛𝑠   - internal heat gains due to occupancy and electrical loads. 

 

The indoor temperature 𝑇𝑖 is kept at desired level against the fluctuations of outdoor 

temperature 𝑇𝑎. In absence of an external heating or cooling, the indoor temperature 

variation (at steady state) from equation (1.1) is given as [9]: 

 

 
𝑇𝑖 = 𝑇𝑎 +

𝑄𝑔𝑎𝑖𝑛𝑠  +  𝑄𝑠𝑜𝑙𝑎𝑟

𝑈𝐴 + �̇�𝑐
 

(1.2) 

where 

𝑈 is the conduction heat transfer coefficient; 
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�̇� - mass low rate of ventilation/infiltration air; 

𝑐 - specific heat capacity of air. 

 

The building regulations aim to maintain comfortable conditions inside building with least 

possible input energy i.e. 𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔  or 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (mechanical or electrical) in equation (1.1) by 

manipulating the second term in equation (1.2), i.e. by regulating losses through envelope and 

ventilation/infiltration etc. [9]. 

 

Regulations provide a framework or path under which building codes are implemented [10]. 

Most regulations are now defined in line with international, regional or national goals of 

greenhouse gas (GHG) reductions; for example, EU target of reduction of GHG emissions by 

20 % by 2020 is reflected in energy performance of building directives (EBPD). In such case, 

building regulations define maximum allowable CO2 per square meter. This provides designers 

and constructers sufficient freedom to work within the regulatory framework to achieve this 

target. Building energy codes cover lighting, insulation, glazing, heating and cooling 

equipment and other energy efficiency measures.  

 

 

1.2.2 History of building thermal regulations 

Building energy regulations were developed during the 1970s oil embargo when developed 

countries realized the need to reduce their dependence on foreign oil [11]. In US in 1975, 

ASHRAE published the first ASHRAE Standard 90.1 for energy conservation in new buildings. 

This standard was regularly updated and formed the basis for the implementation of Energy 

Policy Act (EPA) in 1992 which required all states to adopt the ASHRAE 90.1 Standards as a 

minimum level for building efficiency [12]. In 1994, International Code Council (ICC) was 

formed; it introduced the International Energy Conservation Code (IECC) for buildings. Both 

IECC and ASHRAE 90.1 Standard served as baseline standards or codes at state and federal 

level in US. IECC and ASHRAE codes for buildings are updated every three years. States are 

asked to comply with the codes within two years of issuance of new codes [13]. The energy 

policy act 2005 requires all federal buildings to reduce energy consumption by 20 % in 2015 

as compared to 2003 level [14]. 
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In UK (England and Wales), energy conservation part of the building regulations became 

effective in 1979. The part “L: Conservation of Fuel and Power” of the building regulations 

formed the building energy conservation part, with L1A dealing with conservation in new 

buildings and L1B with existing buildings. In 2005, UK also complied with EU Energy 

Performance of Building Directives (EPBD) for buildings by including EPBD directives in its 

energy regulations [15]. 

 

Building energy consumption is Europe is high as compared to other parts of the world 

because of weather based loads. European Union (EU) building energy consumption is 40 % 

of total energy consumption and 36 % of total GHG emissions. EU has set a target of reducing 

building energy consumption by 20 % by 2020. To achieve this target, EU issued two main 

legislations: Energy Performance of Buildings Directive (2010) and Energy Efficiency Directive 

(2012) [16]. This legislation provides a framework for EU countries to adopt different 

mitigation strategies relevant to building energy consumption. Under the energy performance 

directive, the member countries need to take steps to the set targets, such as target for all 

new buildings to be  zero energy by 31st December 2020, setting minimum energy standards 

for retrofits, inspection schemes for heating and cooling systems [16].   

 

1.2.3 Performance and prescriptive building regulations 

Building regulations have two philosophies: 

1. performance based, 

2. prescriptive based. 

 

Performance based regulations set maximum target for either energy consumption per 

square meter in heating and/or cooling and range of allowable internal temperature in free-

running. They leave the designer the freedom to choose between different sets of parameters. 

Prescriptive based regulations set minimum values of building material properties like 

minimum U-value, infiltration level, glazing values etc. They are easy to follow. Performance 

based regulations directly target emissions or energy consumption and are usually preferred 
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over prescriptive based regulations [9]. A combination of two approaches are also used in 

building regulations. 

 

Building regulations are set based on the dominant climatic conditions (summer or winter) of 

a country or region. This provides a challenge to set specifications that operate with optimal 

energy in every season. For example, in EU countries the building regulations are based on 

winter conditions; the summer or the mid-season conditions are ignored for optimal 

performance [9]. However, regardless of the designed weather conditions for building 

regulations, they bring reduction in energy consumption and therefore should be 

implemented despite imperfections, with continuous search for improvement.   

 

Standard for comfort conditions inside buildings are usually set and regulated by bodies like 

ASHRAE, ISO and CEN. These standards categorize or evaluate buildings based on the 

closeness with which internal building conditions are maintained and controlled. The buildings 

are labelled accordingly, for example category A building is the building with best comfort 

control. Some authors argue that following comfort standards closely leads to high energy 

consumption [17]. These standards, on one hand, control indoor environment through 

mechanical or electrical heating and cooling but also set minimum standards on energy 

consumption (building fabric and ventilation). These goals are at times in conflict in the sense 

that following the set point temperature strictly results in high consumption.  

 

One of the criticisms on thermal regulations is the declaration of universal set point 

temperature. The thermal comfort conditions for different people are different based on their 

age, activity level and regional climate. Therefore, the thermal comfort conditions should not 

follow a universal set point temperature. It should vary based on localized comfort conditions 

at the level of personal comfort. Substantial savings can be achieved by giving to the occupants 

control over their comfort [17]. In this way, satisfaction level of occupants is enhanced and 

the energy consumption is reduced, allowing occupants to use fresh or free cooling and 

heating as available from natural environment.  
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Simulation studies suggest that new building codes with energy efficiency improvements bring 

substantial savings. McKinsey in his study of 2009 IECC building codes estimates that code 

issued in 2009 has the potential to improve energy efficiency by 12 % to 15 % as compared to 

codes of 2006 [14].  The question of whether building energy regulations bring substantial 

reduction in reality is addressed in different research works. A comparison study between 

billing data of Florida state for buildings constructed before and after implementation of 

newbuilding energy codes (2002), was conducted [11]. It was found that electricity 

consumption per year was reduced by 4 % and gas consumption per year was reduced by 6 % 

after codes were implemented. As code changes are implemented with substantial 

investments, the payback period for the investments were 6.4 years for private buildings and 

between 3.5 to 5.4 years for public buildings. The conclusion that building regulations bring 

similar reductions in other regions needs further investigation [11].  

 

1.2.4 Performance measurement (certificate of performance) 

The building performance measurement or certificate provides information on “the thermal 

characterization of a building that is measured using set procedures. The certificate provides 

information on the energy used for different purposes (heating, cooling, lighting etc.); on how 

well (efficiently) the building is using energy; and the opportunities to improve energy 

efficiency” [18]. A typical energy performance certificate is a shown in (Figure 1.2). 
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Figure 1.2: An Energy Performance Certificate (EPC), UK [19] 

 

Energy performance of buildings is assessed based on energy and water consumption required 

to meet the typical operational demands of a building [20]. Energy performance is expressed 

in terms of performance index such as normalized energy consumed per square meter per 

year, also called Energy Utilization Index (EUI) or CO2 emissions per unit area per year.  

 

Energy performance certificate are awarded based on the energy consumption of a building 

and its relative position in comparison to consumption of buildings at national, state, or 

regional level. The building performance is assessed and expressed using any or the 

combination of the three terms or methodologies known as [18]: 

 energy rating, 

 benchmarking process, 

 energy labelling. 

 

Energy rating is the specific method of performance assessment of a building that presents 

the energy performance with an index or number. It is a methodology of performance 

assessment, energy use prediction and rating score based on level of energy consumption. For 

example, Energy Performance Certificate (EPC), Leadership in Energy and Environmental 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



35 

 

Design (LEED), Building Research Establishment Environmental Assessment Method (BREAM), 

Home Energy Rating System (HERS) etc., present different rating systems based on slightly 

different methodologies [18]. The rating system is categorized into asset rating and tailored 

rating. The asset rating evaluates building performance based on climate and energy 

consumption, irrespective of occupant’s behavior or other factors that may affect building 

energy consumption. The tailored rating systems take into account all the factors that affect 

the energy consumption, such as changes in occupancy, operation schedule etc., [18]. 

 

Benchmarking process is based on comparison of building energy performance indicator (EPI) 

with a sample of similar buildings. The similarity is based on type of use, climate, location, 

shape, etc. Benchmarking of buildings involves four steps that are [18]: 1) development of 

database of similar buildings; 2) performance evaluation of building (Energy Performance 

Indicator, EPI); 3) comparison analysis with database of similar buildings;  and 4) 

recommendations for efficiency improvements. Figure 1.3 presents the steps for 

benchmarking. 

 

Figure 1.3: Benchmarking process [21] 

 

Energy labelling is based on points achieved by building against a set of criteria set by 

certifications such as LEED and BREAM etc. For example, LEED labels a building as Silver, Gold 

or Platinum, if the building achieves sufficient points to be eligible for labelling. The criteria 

for LEED are based on energy and environmental sustainability. The labelling can also be 

developed based on the bell curve distribution of energy consumption of a similar stock of 

buildings. Building labelling identify the position of building in the bell curve of similar 

buildings [22]. According to performance of the building, a certificate is awarded such as A to 

G (EU) or score of 1-100 depending on the score of the building and the rating system being 

used (EPA, 2000).  

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



36 

 

 

.  

 

 

Figure 1.4: A typical labelling system procedure [22] 

 

 

Figure 1.5:Building energy labelling system [22] 
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Figure 1.4 presents a general flow of building labelling system. The performance assessment 

can be done online using billing data and building specifications. Alternatively, performance 

assessment is performed by certified auditors using measurement surveys at building level. 

After the building is assessed and the score is achieved, it is compared with either similar 

buildings (percentile score) or with a standard score set in certification criteria.  

 

The comparison score based on Energy Utilization Index is shown in Figure 1.5. The score 

achieved by the building places it in a range of percentile score. Accordingly, the building will 

be eligible for a label. A label of ‘A’ achieved by building (based on EUI) means that building is 

in top 25 % buildings [22].  

 

1.2.5 Performance certificates in US, EU and UK 

Building performance certificates have gained prominence within the last 15 to 20 years. 

Majority of the developed countries are now using building rating systems [20]. In some 

countries, it is mandatory to have an energy performance certificate (European Union) 

whereas in other countries, it is voluntary or a combination of voluntary and enforced (United 

States). 

 

In US, different performance or building rating systems exist. These include mandatory state 

level programs like New York City, California, Washington DC that have mandatory 

performance certificate programs. The voluntary national level certification programs include 

LEED (Leadership in Energy and Environmental Design) certification program (for new and 

existing buildings) and the ENERGY STAR Portfolio Manager. For residential purposes, RESNET, 

HERS and ENERGY STAR are common labelling schemes [14]. ASHRAE’s building Energy 

Quotient rates both new buildings (as designed) and existing buildings (ACEEE, 2002). Existing 

buildings are rated after conducting an ASHRAE Level 1 audit [14].  

 

In European Union countries, Energy Performance Certificates (EPC) were introduced in 2002 

through the ‘Energy Performance Building Directive (EPBD)’ which requires all EU countries to 

introduce performance certificate scheme according to the local weather conditions. Different 

updates (2010 and 2013) to EPC have been added for further improvements [19]. EPBD 
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requires all states to have an EPC scheme for all new buildings or buildings undergoing major 

renovations, for all standalone houses or apartments, sold or rented.  

 

EPC certificates must be available at the time of building construction, mentioned in any 

advertisement selling or renting building; EPC certificate must be handed over to tenant or 

person purchasing the building. Countries with local EPC scheme need to update their scheme 

as per Energy Performance Building Directives [19]. The building directive set qualification 

standards for personal involved in EPC calculations, set calculation methodology, 

recommendations for software and the obligatory information provided by EPC. The EPC 

should include technically feasible recommendations for improvement in energy efficiency, 

breakup of heating and cooling energy and its impact on energy consumption and emissions 

and an estimate of payback period (for recommended improvements).  

 

BREAM (Building Research Establishment Environmental Assessment Method) developed by 

UK in 1990 is the earliest building rating system. Like LEED certification, it has a holistic 

approach towards sustainability and evaluates building on points accrued, rather than on 

comparison with other buildings. The sustainability is assessed with respect to a number of 

categories such as energy, water, innovation in building (design, construction and operation), 

and sustainable land use, materials, management, pollution, transport and waste. A certified 

BREAM assessor evaluates each category for a given building and gives credits; these credits 

are multiplied with environmental weights given for each category. The accumulated credits 

provide a score for the building that categorizes it as unclassified, pass, good, excellent and 

outstanding building [23]. 

   

 Performance gap 

 

1.3.1 Energy quantification methods 

Significant difference exists between the predicted energy consumption of buildings and the 

actual or measured energy consumption; this is known as performance gap [24]. Predicted 

energy consumption is the estimation or simulation of future energy consumption of building 

over a specific time horizon (day, month or year). However, simulation can also be used to 
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assign the measured energy consumption to different uses/sources such as heating, cooling 

and lighting etc. Simulation methods used for energy prediction are calculation based 

methods, measurement based methods and a combination of calculation and measurement 

approaches that is hybrid methods [20]. Different methods of quantification are as shown in 

Figure 1.6. 

 

Figure 1.6:Building energy quantification methods [20] 

 

All the three methods, i.e. calculation-based, measurement based, or hybrid based methods, 

predict future consumption of building energy against uncertain weather conditions, 

occupant’s behavior, operating schedules, and are therefore prone to errors. The calculation 

based methods suffer from significant errors between predicted and actual energy 

consumption, the measurement based and hybrid based methods can also  be erroneous due 

to observation/measurement errors, as measurements themselves rely on equations that 

may not present the true relationships [25].   
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Figure 1.7: Performance gap between predicted energy consumption and the actual energy 

consumption over a period of time[26] 

1.3.2 Magnitude of performance gap 

The magnitude of the gap between predicted and actual consumption can be significant. Some 

authors estimated a performance gap of 2.5 times of predicted energy consumption [25]. A 

study of 600 buildings carried out by Carbon-buzz in UK indicates that actual energy 

consumption was 1.48 to 1.9 times higher than the simulated energy consumption [27]. Figure 

1.8 shows the results of a study that highlights the difference between predicted and actual 

energy consumption in schools, offices and campus buildings. 

  

 

Figure 1.8:Carbonbuzz study on median electricity in different sectors predicted vs actual [19] 

Perfromance  gap 

Simulated energy 
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Energy Utilization Index (EUI) is usually used as a prediction indicator that is used for 

performance comparison between new and existing buildings. Majority of the building 

performance certification awards are based on EUI. Figure 1.9 shows a spread of EUI data 

presenting the difference between simulated and measured EUI. This difference reflects in 

significant increase in actual energy bills compared to expected energy bills based on designed 

EUI.   

 

 

Figure 1.9: Difference between measured and predicted EUI [28] 

 

The performance gap becomes important when forecasting payback period for investments 

based on Energy Conservation Measures (ECM). The ECM savings are always either under-

predicted or over-predicted. Empirical evidences in UK, Austria, Norway, US and Canada show 

that actual energy savings from heating retrofits were 68 % less than predicted savings [27]. 

A study of German dwellings indicates an over estimation of energy consumption by 30 % as 

predicted by Energy Performance Rating (EPR) [29]. 

 

The Efficiency Valuation Organization (EVO) has developed the International Performance 

Measurement and Verification Protocol (IPMVP) to standardize the quantification of energy 
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savings and manage the risks and associated benefits with energy efficiency projects in 

buildings [26].   

 

Savings predicted from energy conservation measures (ECM) can be misleading if the savings 

are based on post ECM billing data only (Figure 1.7). The increase or decrease in energy can 

be attributed to many reasons other than ECM, for example the increased or reduced level of 

activity, change of weather, change of occupant’s behavior, etc. IPMVP recommends 

adjustments to original baseline in case of any change in the conditions of the original 

baseline. 

 

1.3.3 Causes for performance gap 

The gap between predicted or simulated energy consumption of building and actual energy 

consumption for buildings is called performance gap. The three categories of root causes for 

performance gap are design, construction and operation [25]. Study for a school in revealed 

that operational issues were responsible for 75 % of the performance gap and procurement 

issues (construction and equipment malfunction) were responsible for 25% of the 

performance gap [27].  

 

The design stage causes include miss-communications about performance targets of building, 

inability to accurately predict the future operations and condition of buildings, over 

specification of building equipment, lack of thermal concepts at design stage and assumptions 

due to lack of data [19]. 

 

The construction causes include inability to construct as per design specifications of building 

and non-uniform properties of building materials due to manufacturing defects. Building 

materials specification are generally quoted for standard conditions and may change 

behaviour due to change in climate conditions. A detailed inspection is required to confirm 

the building construction as per design specifications [30]. 

 

The operational causes for performance gap come into play once the building is commissioned 

for use. The operational causes include difference in occupants’ behavior, which is always 
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difficult to predict. Occupant behavior is considered as one of the main reasons of the 

performance gap [29]. Simulation is based on standard operating conditions, i.e. standard 

heating and cooling set points, ventilation rates and operation schedules. The control and 

operation of building HVAC equipment, different from the simulation values, lead to 

significant performance gap [31]. The building staff responsible of running the equipment may 

not run it according to the designed control values.  

 

Most of the simulations consider constant internal temperature which is misleading as indoor 

condition differ over the year. The weather conditions can change significantly from the data 

used for predictions. This will result in significant gap in case of building with significant 

weather-based loads. Acquisition of accurate weather data poses a problem and suffers from 

uncertainties even if data from dedicated weather stations is used. In contrast to weather 

based loads, the uncertainties in electrical loads, especially the ICT based loads, may cause 

performance gap [27]. With rising living standards, the electrical loads (ICT) will factor 

significantly in building energy use in future.  

 

One of the reasons for performance gap is the inability of simulation process to fully 

understand the relationships between various inputs and output energy consumption of 

buildings. Building physics is complex process whereas most of the simulation programs are 

based on equations that are the approximate representation of actual process. The operation 

and control of an HVAC system is not fully understood with significant performance deviations 

from modelling equations [32]. This is the reason current research focus also on data-based 

analysis, like black box and grey box modelling. The output of any simulation also depends on 

the skills and the knowledge of the expert. Two experts using the same simulation tool may 

produce different results.  This leads to the conclusion that it is extremely difficult to model 

building energy consumption accurately. 

  

The measurements of inputs and outputs that are used to find the performance gap may be 

erroneous due to uncertainty of data from sensors. Figure 1.10 shows the sources and the 

possibility of errors with each source that can lead to performance gap. The most revealing 

fact from the figure is that dwellings with similar ratings differ significantly in energy 
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consumption with a difference of more than 13 times between the least and the most 

consuming dwelling [33]. Sources of difference are inability to mark space heating and water 

heating, variations in weather conditions, occupant behavior, model simplifications, 

performance gaps of installations and modelling faults.   

 

 

Figure 1.10: Sources of error between measurements and predictions [34] 

The technical reasons of performance gap may be exacerbated by the effects known as pre-

bound and rebound effects. The pre-bound presents a situation before retrofit meaning that 

in inefficient houses with higher energy bills people tend to use less energy than expected or 

modelled; for example, people may choose to live in comparatively colder conditions. The 

rebound effect represents a situation where the savings are overconsumed by the increased 

energy use after retrofits. Both present an important source of performance gap in EU 

countries as mentioned in [29]. 

 

One of the issues with benchmarking is to classify buildings based on single parameter, i.e. 

type of use (e.g. school, hospital or single home), as practiced in benchmarking programs like 

Energy Star Portfolio Manager. Studies suggest that this can be misleading as a school with 

less amenities and services might score higher then another school using more energy 

efficient technologies [24]. A single floor commercial building will be always rated lower than 

a commercial building with multiple floors but the same per floor area.  It is recommended to 

search for similarities other than type of use only, like height and shape, age, equipment and 

operation schedule, internal loads and other features of the building. It is recommended to 
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take into account multiple features for realistic a realistic topology, e.g. the  building typology 

using ‘data based unsupervised’ clustering techniques generate better results [24].     

 

 

 Intrinsic performance measurement 

 

The main causes of performance gap, as discussed in section 1.3, are constructional and 

operational. The operational causes constitute the equipment efficiency and the operational 

schedule of equipment. It is relatively easy to measure the equipment efficiency; however, 

the operational schedule depends on occupant behavior, changing weather conditions and 

thermal performance of building.  

 

The thermal performance of building, also known as the intrinsic performance of building, is 

the ability of the building to maintain the comfort conditions without energy or as low energy 

as possible. The thermal performance is important for energy consumption of the building as 

it affects both the occupant behavior and the operational hours of heating and cooling 

equipment.  

 

A common parameter that quantifies the thermal performance of building is overall heat 

transfer coefficient (𝐻). It represents the amount of heat required to maintain the indoor 

environment at a given set point temperature against the varying outdoor temperature. The 

overall heat transfer coefficient can be determined using the stated values of building 

envelope. However, the material properties deteriorate with time and does not give the 

correct estimation of the overall heat transfer coefficient. The parameters, such as overall 

heat transfer coefficient, can be determined using parameter identification and onsite test 

methods. 

 

The parameter identification models, like energy signature, PRISM methods, RC-identification 

etc., are based on energy consumption as a function of outdoor temperature, solar radiation, 

wind speed, occupants, etc. These parameters can be determined as coefficients of regression 

analysis (in case of black box models). The identification models can be both dynamic and 
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static models, depending on the intended purpose of model and the sampling time of the 

available data. The identification models can be either based on pre-designed/supervised 

onsite (in-situ) experiments such as co-heating or they can be based on unsupervised 

experiments, such as smart metering data. 

 

The pre-designed/supervised onsite test methods are categorized as long term and short term 

methods. The long term methods are based on steady state analysis and are considered 

accurate. The results of long term test methods, such as co-heating, are used as reference or 

standard methods. The results of these methods are used as a benchmark for other methods. 

The issue with long term methods is their duration, which makes it difficult to apply them in 

commercial sector. The short test methods, such as QUB (Quick U-Value for Buildings), 

ISABELE etc., are fast methods that can be performed in short time. 

 

The QUB method is the shortest of all methods. However, the results of test show variations 

and the method is not tested with varying building types, weather conditions, etc. The number 

of QUB tests data conducted are limited. The aim of the current work is to analyze the 

influence of boundary and initial conditions on QUB method (change in input power and time 

duration) and the influence of weather conditions (such as winter and summer) on QUB 

results.  

 

 

 Thesis outline 

 

The thesis begins by presenting the importance of building consumption and the potential 

savings, building energy regulations, the performance gap analysis, causes of performance gap 

and need for the performance measurement. 

 

The parameter identification models can be used to determine the intrinsic performance 

measurement, i.e. overall heat transfer coefficient. In chapter 2, the state of art on the 

modelling of intrinsic thermal performance measurement is discussed; the chapter details the 

classification of models, black box and grey box model structures and principles, calibration 
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and sensitivity analysis, statistical techniques to remove or reduce the errors, model order 

selection and data analysis techniques. 

 

In chapter 3, long term thermal characterization tests are presented, such as calorimetric and 

co-heating methods. The standard tests and test setups conducted to as part of IEA, EBC 

Annex-58 are discussed. The potential errors of the methods and data analysis techniques 

with long term thermal characterization methods are also discussed. 

 

In chapter 6, the short term thermal characterization methods are discussed. The focus is on 

the analysis of QUB method, its theoretical background, analysis of QUB experiments 

performed, shortcomings of this method and the need for future work.  

 

In chapter 5, a state space model for analysis of the QUB method is developed. The chapter 

discuss the assembling of individual thermal circuits and the extraction of state space from 

thermal circuit of the building components. The model is validated using data from the house 

as discussed in IEA, EBC annex-58.   

 

In chapter 6, the model developed is used to design QUB experiments using different values 

of initial (power during heating phase) and boundary conditions (solar radiation). The impact 

of solar radiation on QUB method is analyzed. The impact of time duration on QUB 

experiments is also analyzed. 

 

In chapter 7, the a-posteriori error analysis of the QUB method is performed. The ideal 

conditions for QUB method are discussed. The QUB experiments for non-ideal conditions are 

performed and analyzed. The QUB experiments are performed for two seasons i.e. summer 

and winter. The errors are analyzed by observing the evolution of temperature during heating 

and cooling phases of QUB experiment. 

 

In chapter 8, the conclusions for the entire thesis are summarized and directions for future 

work are given. Chapter 9 forms the annexure of the thesis and is composed of discussion on 

effective capacity and model order reduction. 
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 State of the art for intrinsic building energy performance 

measurement 

 

 

In the first chapter, the main causes of performance gap were identified as uncertainty in 

input data, inability to correctly measure/identify the building parameters, changes in building 

operations and the occupant’s behavior. The building parameters, such as overall heat 

transfer coefficient, time constant, solar aperture etc. also known as the intrinsic building 

performance measurements, provide efficiency measures that do not change with occupant’s 

behavior and weather patterns. 

 

This chapter discusses different modelling methods used for parameter identification 

(intrinsic performance measurement). There are number of methods used for this purpose. 

Each one has its own application, advantages and disadvantages. From the point of view of 

parameter identification, it is important to know the methodology for characterization of 

models, the data pre-processing steps, the interpretation of results, identification and 

removal of modelling errors. A discussion of different methods of modelling, their advantages, 

disadvantages and necessary data analysis steps is given below. 

  

 Classification of modelling methods 

 

Due to complexity of building energy consumption, there is a continuous search to improve 

the performance of existing simulation methods and introduce new techniques. Different 

modelling methods and approaches currently exist. Some of the common methods are: 

engineering methods, statistical methods (black box), intelligent methods such as genetic 

algorithms (GA), artificial neural networks (ANN), support vector machine (SVM) and hybrid 

methods (grey box). The classification is not strict; different researchers provide different 

techniques of classification [35]–[38] 
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A brief categorization of modelling methods into forward approach (classical) and inverse 

approach (data driven) is [38]: 

 Forward approach (classical method): The objective of these methods is to predict an 

output variable based on specified model structure and known input variables [38]. An 

interesting explanation in case of forward modelling is that the modeller has the 

complete description of building to model the peak demand and operational energy 

required [39]. These methods use engineering and thermodynamic principles to model 

energy consumption. They require complete description of buildings, including 

geometrical shape, location, properties of building fabric, HVAC equipment and plug 

loads, occupancy data and operating schedules. They can be used to predict the peak 

demand, annual energy consumption and savings from retrofits. The effectiveness of 

these methods depends on details added to model that are inclusion of different heat 

transfer phenomenon and their quantification that affects building energy 

consumption. This adds complexity to the model and is the reason why a number of 

sophisticated software tools, like BLAST, ENERGY PLUS, EQUEST, TREAT and ESP-r etc., 

are used for forward modelling. When interactions between inputs, outputs and 

parameters get complex, results of forward modelling method may divert from actual 

energy consumption. Physical models have the advantage that they can be 

extrapolated beyond the data, i.e. based on first principles they can model for a set of 

completely unobserved conditions [40]. 

 Data driven (inverse approach):  In data driven approach, the output (that is the 

energy consumption or indoor temperature) and inputs (such as outdoor conditions) 

are known by measurements. The model of the building is built based on input-output 

relation. An interesting definition for data driven model is: “Given a set of input and 

output vectors of measurements, a supervised learning generates a function that 

builds an input-output relation” [41]. The method is used to estimate system 

parameters, such as building thermal mass, thermal resistance, effects of occupancy 

behaviour etc. It can also be used to determine energy consumption with reference to 

single variable, such as outdoor temperature, or multiple variables, such as wind, solar 

radiation and occupancy [37]. The objectives of an inverse model are to answer the 

questions concerned with existing building energy use, such as how much energy a 
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building is consuming compared to design predictions, how parameters (such as 

change of thermostat settings or ventilation rate) will effect energy consumption and, 

in case of retrofit settings, the question that whether the savings were due to weather 

conditions or due to retrofit [39]. They require a minimal set of input variables for 

modelling [40]. The inverse models help identify building parameters with improved 

accuracy, as they are deduced from actual building data. The system parameters thus 

obtained can be used for better energy modelling in future. The data for modelling can 

be intrusive data, i.e. obtained through controlled experiments, or non-intrusive data, 

i.e. data from normal building operation. The model is built with fewer parameters in 

aggregated form, such as overall heat transfer co-efficient and time constants etc. The 

inverse modelling is data intensive and the uncertainty and quality of data affects the 

modelling accuracy. They help us to understand better the effects of different 

parameters on energy consumption and can be used to build a better building energy 

baseline against which the savings from retrofits can be evaluated. However, no 

extrapolation can be made beyond the valid data range; only interpolation is allowed 

with data-based models. 

 

Both the forward and data-based approaches can be static or dynamic depending on the time 

domain and the analysis approach. The  steady state methods are based on degree-days and 

bin temperatures [38], whereas dynamic methods are based on transfer functions and 

solution of differential equations. In general, the steady state methods are based on monthly, 

weekly and daily data, whereas dynamic models are based on hourly or sub hourly 

measurements [37]. The dynamic models consider the transients effects due to thermal mass  

of the building that influences the duration of building warm up or cool down. They are 

appropriate for peak load determination and building load control. In contrast, the steady 

state models do not have any time lagged terms and are used for overall monthly or annual 

energy consumption.  

 

The data driven approach can further be classified into three categories: 

 Empirical or black box method. These are pure statistical techniques where simple or 

multiple variable regression is used to find parameters from relationship established 
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between input and output data. The model offers no description of the parameters 

identified and leaves it to user to recognize them. 

 Hybrid method (grey box). Hybrid methods are semi-physical or semi-statistical 

approaches used to identify parameters or dynamical characteristics of buildings. 

Unlike black box modelling, the parameters have direct physical interpretation. This 

enable us to add prior physical knowledge, in addition to the statistical model to 

identify parameters of building. A controlled experiment data is used to apply this 

approach [42]. .  

 Calibrated simulation method (white box). The calibration method is a two-step 

method. A model of the building is generated based on first principles or engineering 

method. The model is then tuned with data to arrive at energy consumption in line 

with the billing/consumption data. Different methods of tuning are applied to various 

parameters of significance [42].  

 Artificial intelligence based methods such as genetic algorithms (GA), artificial neural 

networks (ANN) and support vector machine (SVM) are advanced approaches that are 

coupled with black box, grey box or calibrated simulation to improve the outcome of 

these methods. It may be noted that with the advancement of research, the distinction 

between these methods has blurred [36].  

 

Figure 2.1 provides the classification of modelling methods. 

 

 

Figure 2.1:Clasification of modelling methods [36]. 
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A comparison between two modelling approaches can be observed in Figure 2.2. It shows that 

the aim of the inverse approach is to estimate model parameters. Since the subject of the 

thesis is the measurement of intrinsic performance, parameter identification for buildings is 

discussed in more detail in the next section. 

 

 

Figure 2.2: A comparison of modelling approaches (forward and inverse methods) 

 

 Parameter identification 

 

Parameter identification is the establishment or correction of mathematical models with real 

world data [43]. It has applications in versatile fields of science and engineering, such as 

statistics, econometrics, health science, biological sciences, geophysics and thermal sciences. 

The system identification theory has been developed independently and therefore finds 

applications equally in all fields [44]. For any system of interest, parameter identification can 

be used for dynamic or static modelling aimed at prediction, control, simulation, 

reconstruction of measurement data etc. [45].  

 

Parameter Identification is based on relationships generated with historical set of input and 

output observations, also known as regression analysis. Regression analysis can be used for 

two purposes: 1) determination of output energy in relation to a single or multiple variables 

and 2) estimation of system parameters, such as total heat loss coefficient, total heat capacity, 
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gain factor etc. [37]. Data acquisition and analysis are essential components of parameter 

estimation and the quality of the results from parameter estimation are highly dependent on 

the performance of these two steps.  

 

Since the subject of this research is measurement of energy efficiency in buildings the next 

section discusses the applications of Parameter Identification methods as applied to thermal 

characterization of buildings. In case of buildings, parameter identification is used for 

improved estimation of parameters, for finding the impacts of different parameters on 

building energy consumption, for improved estimation of building energy consumption with 

changing inputs such as weather, occupancy and for optimal control of HVAC equipment.  

 

 

2.2.1 Principles of parameter identification 

Various methods of parameter identification are based on choice of  independent variables, 

applied constraints, criterion for goodness of fit and choice of linear or nonlinear algorithms 

[39]. Parameter identification is done in more step: data measurement and acquisition, 

selection of model structure, optimization algorithm and estimation of parameters, and model 

validation. 

 

The steps for parameter identification are: 

Data measurement and acquisition depends on the nature of analysis and involves steps such 

as: 

 Design of Experiment (DOE) procedure indicating the necessary instrumentation, 

measurements, accuracy, type of experiments. For example, the standard ISO 

9869:2014 (on measurement the overall conductance of a wall in steady state) 

provides complete details for the measurement equipment, installation, calibration 

and measurement procedure and analysis of data [46]. 

 Sampling rate for data acquisition that defines the time between two measurements. 

 Data filtering for removing noise to receive the desired signal only (preliminary data 

analysis). 

 Segregation of data into training data, test data and validation data. 
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Selection of model structure determines the type of model as applied/fitted to data for the 

purpose of identification. Selection of model is a complex decision because of the large 

number of available models, the lack of a single criteria for the best model selection and the 

conflicting criteria between the simplicity of the model and its capability of explaining the 

observed data. The model structure can be black box that is purely based on data that do not 

require any description of physical nature of system or parameters, or grey box, that uses 

physical description of system. The grey or black box model selected can be dynamic or static. 

The models range from simple linear regression to complex models such as artificial neural 

networks (ANN), genetic algorithms (GA), etc. 

 

Parameter estimation is an inverse problem and is said to be well posed if the following 

conditions are fulfilled:  

Existence: For all data, solution exists for the problem posed.  

Uniqueness: For all data, there exists a unique solution. 

Stability: The solution depends on continuously available data.  

 

Parameters are estimated against criteria that optimize the solution. A common criterion used 

is the least square minimisation criteria that minimizes the gap between observations and 

estimated model [46].   

 

Model validation is done on data which was not used for model training. Cross validation is 

achieved by comparing with the known or expected values or with results of other models. 

Based on validation results, the model is rejected, accepted or further improved [47]. 

 

Performance of parameter estimation or system identification depends on how well these 

steps are applied and how well the principles governing the system are understood and 

incorporated. Crassidis and Junkins summarized these steps as [45]: decisions regarding which 

variables need to be measured, the frequency of data acquisition, accuracy of measurements 

and selection of the best mathematical models. Principles of estimation theory are developed 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



55 

 

separately from consideration of any particular physical system and the success of the method 

lies in understanding of estimation theory and principles governing system.    

 

A variable of interest can be quantified in terms of three values i.e., true value say 𝑦(𝑡), 

measured value �̃�(𝑡) and estimated value �̂�(𝑡). True value is the actual value that is known 

either via measurement with some measurement error or via estimation with some 

estimation error such that the true value is never known with hundred percent accuracy [45]. 

The errors arise due to errors in measurement, wrong selection of parameters and modelling 

errors (inadequate presentation of actual phenomenon). Mathematically, the measured value 

is: 

  �̃�(𝑡) = 𝑦(𝑡) + 𝜈,        (2.1a) 

where 𝜈 represents the measurement errors, and the estimated value is: 

 

  �̂�(𝑡) = �̃�(𝑡) + 𝑒,   (2.1b) 

where 𝑒 represents the modelling or the estimation errors. Simple linear regression will be 

taken as a sample model to illustrate the methodology of parameter estimation. Let’s assume 

we have a set of measurements 𝑦𝑗 taken as time series data with time interval 𝑡𝑗  presented as 

 {𝑦1, 𝑡1;  𝑦2, 𝑡2; … … … . 𝑦𝑚, 𝑡𝑚} (2.2) 

 

True value ideally can be presented as 

 𝑦(𝑡) = 𝑥𝑇ℎ𝑖(𝑡),      𝑚 ≥ 𝑛 

𝑥 = [𝑥1, 𝑥2 … . . 𝑥𝑚]𝑇 

(2.3) 

 

where 𝑥𝑖  represents the parameter values and ℎ𝑖(𝑡) presents the basis function that can be 

expressed as: 

 ℎ𝑖(𝑡) ∈ {ℎ1(𝑡), ℎ2(𝑡) … … . , ℎ𝑛(𝑡)} (2.4) 

 

Relationship between measured �̃�(𝑡), true value 𝑦(𝑡) and estimated  �̂�(𝑡) can be presented 

as 
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 �̃�𝑗 ≡ �̃�(𝑡𝑗) = 𝑥𝑇ℎ𝑖(𝑡𝑗) + 𝜐𝑗 ,      𝑚 ≥ 𝑛 

𝑥 = [𝑥1, 𝑥2 … . . 𝑥𝑖]𝑇 

(2.5) 

 

 �̂�𝑗 ≡ �̂�(𝑡𝑗) = �̂�𝑖
𝑇ℎ𝑖(𝑡𝑗) + 𝜐𝑗 ,      𝑚 ≥ 𝑛 

�̂� = [�̂�1, �̂�2, … �̂�𝑖]𝑇 

 

(2.6) 

 

 �̃�𝑗 = �̂�𝑇ℎ𝑖(𝑡𝑗) + 𝑒𝑗 ,      𝑚 ≥ 𝑛 

�̂� = [�̂�1, �̂�2, … �̂�𝑚]𝑇 

 

(2.7) 

 

where residual error 𝑒𝑗 is given by 

 

 𝑒𝑗 ≡  �̃�𝑗 − �̂�𝑗 (2.8) 

 

This can be written in compact matrix form as 

 

  �̃� = 𝐻�̂� + 𝑒 (2.9) 

 

 The least square optimization criterion is used to find the parameter values �̂� as 

 

  �̂� = (𝐻𝑇𝐻)−1𝐻𝑇 �̃� (2.10) 

 

These set of equations forms the fundamental basis of estimation theory. Further 

improvements in estimation theory can be regarded as extensions, modifications or 

generalization of linear regression analysis to adapt to different measurement techniques and 

mathematical models [45]. For example, further improvement to this method are sequential 

estimation to update/improve model with receiving data, weighted least square solution, 

constrained least square solution, differential correction procedures for application to 
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nonlinear problems, nonlinear estimation techniques, minimum variance and Bayesian 

estimation [45]. Solution criteria, other than least square criterion (LS), are minimum mean 

square error criterion (MMSE), prediction error methods (PEM), subspace identification 

methods (SIM) and the maximum likelihood criterion (ML). Recently, new criteria are 

introduced based on information theory descriptors of entropy and dissimilarity (Badong 

Chen, 2013). 

 

 

2.2.2 Model structure 

Model structure provides a framework in which Identification algorithms work to generate a 

model. In certain cases, such as black box modelling, model structure and identification 

algorithm are considered as synonymous [48]. Data based modelling structures are identified 

with one of the two model structures i.e., black box pure statistical approach and grey box 

model, a combination of statistical and physical method.  

 

 

2.2.2.1 Black box structure 

Black Box models consider building as a model for which the parameters can be inferred from 

inputs, such as outdoor temperature, humidity, solar radiations etc. and outputs such as 

indoor temperature, energy consumption etc. [39]. It is a pure statistical approach where 

fitting a statistical model to data is used for identification. The coefficients identified have no 

physical meaning [49]. They are regression models (regression techniques identify 

relationships between dependent and independent variables) with complexity of regression 

model equations ranging from simple linear equations, to exponential forms, Fourier series, 

artificial neural networks (ANN), fuzzy logic and genetic algorithms. ARX, ARMAX, state space, 

impulse response and transfer function models are some of the most common black model 

structures for dynamic systems [49].  

 

As an example, consider simple black box linear auto regressive with exogenous (ARX) 

models that can be used to estimate thermal load. The ARX models are recommended for 

linear time invariant dynamic systems (stationary). ARX models are used for estimation of 
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over-all heat transfer co-efficient 𝐻, solar radiations 𝑔𝐴, and the time constants 𝜏 of the 

system. It consists of outputs that are related to inputs in linear form using coefficients. A 

general equation of an ARX model is given as:  

 

  𝑦(𝑡) + 𝑎1𝑦(𝑡 − ∆𝑡) + ⋯ + 𝑎𝑟𝑦(𝑡 − 𝑟∆𝑡) = 𝑏0𝑢(𝑡 − 𝑏∆𝑡) + ⋯ + 𝑏𝑠𝑢(𝑡 − (𝑏 + 𝑠)∆𝑡) + 𝑒(𝑡) (2.11) 

 

where 𝑦(𝑡) represent the model output related linearly to number ‘𝑠’ of the past inputs via 

coefficients ‘𝑏’ and to the past output readings ‘𝑦’ via coefficients ‘𝑎’. A parametrized form of 

the ARX model to building thermal load can be of the form: 

 

  𝐿𝑜𝑎𝑑𝑡 = 𝑊1𝑇𝑡 + 𝑊2𝐻𝑡 + 𝑊3𝑊𝑖𝑛𝑑𝑡 + 𝑊4𝑅𝑎𝑑𝑡 + 𝑊5𝑂𝑐𝑐𝑡 + 𝑊6𝐿𝑜𝑎𝑑𝑡−1 (2.12) 

 

where 𝐿𝑜𝑎𝑑 is the building thermal load, 𝑇 is the dry bulb temperature 𝐻 is the outdoor 

humidity, 𝑊𝑖𝑛𝑑 is the wind speed, 𝑅𝑎𝑑 is the direct radiation, 𝑂𝑐𝑐 is the occupancy and 𝑊1−6 

represents estimated parameters.  

 

The black box models are also called external models. They are based on external relation 

between input and output and hence can be used for external properties of buildings, such as 

𝐻 and gA values [46]. They cannot estimate internal properties, such as internal resistance 

and heat capacities, although they can be inferred using dynamics of actual system. 

 

Sampling time, for any black box model, depends on whether it is dynamic estimation or 

steady state estimation. For 𝐻 and gA, estimation of the sampling time ranges between 1 and 

6 hours for normal buildings. However, sampling can be longer for heavily insulated buildings. 

For the purpose of control, the sampling time usually ranges from four minutes to an hour 

[46]. 

 

Model Parametrization. The output for the model can be either heating power or Internal 

temperature [46]. In case of heating power as output, the temperature is thermostatically 

controlled by supplying heat. The parametric form of the time series model is:  
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 𝜙(𝐵)Φ𝑡
ℎ = 𝜔𝑖(𝐵)𝑇𝑡

𝑖 + 𝜔𝑒(𝐵)𝑇𝑡
𝑒 + 𝜔𝑠𝑜𝑙(𝐵)𝐼𝑡

𝑠𝑜𝑙 + 𝜀𝑡  (2.13) 

  

where 

 𝜙(𝐵)  is an output polynomial of order 𝑝 in the backshift operator 𝐵; 

𝑇𝑡
𝑖, 𝑇𝑡

𝑒  are internal and external temperatures respectively; 

 𝜔𝑖(𝐵), 𝜔𝑒(𝐵), 𝜔𝑠𝑜𝑙(𝐵) are polynomials co-efficients of order 𝑆𝑖, 𝑆𝑒 and 𝑆𝑠𝑜𝑙 respectively.  

 

In ARX modelling, where heating power is considered as output, the internal temperature is 

kept constant and hence the order of the internal temperature polynomial is set to zero. In 

case of change in internal temperature, the linear ARX model with heating power as output is 

not valid. The order of input polynomials 𝑆𝑒= 𝑆𝑠𝑜𝑙 is set equal to 𝑝 − 1, where 𝑝 is the model 

order. In case of model order 𝑝 = 0, the order of all input polynomials is set equal to p which 

is a special case of linear steady state condition. In complex cases, different models are 

considered [50]. 

 

Model order selection. The model order 𝑝 (of output) is selected by the following criteria; 

(a) The model order is set to zero initially (𝑝 = 0). 

(b) Estimate model parameters. 

(c) Evaluate noise residuals using autocorrelation function (ACF) and partial 

autocorrelation function (PACF) functions 

The model order is increased until both ACF and PACF show white noise only [46]. 

  

Calculation of H, 𝒈𝑨-vaues and time constants. In case of heating power as output, the heat 

transfer coefficients 𝐻𝑖 , 𝐻𝑒 and 𝑔𝐴𝑠𝑜𝑙  (solar aperture) are calculated using the equation (2.13) 

[46]: 

 

  

𝐻𝑖 =
𝜔𝑖(1)

𝜙(1)
 

 

𝐻𝑒 = −
𝜔𝑒(1)

𝜙(1)
 

 

 

 

 

(2.14) 
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𝑔𝐴𝑠𝑜𝑙 =

𝜔𝑠𝑜𝑙(1)

𝜙(1)
 

(2.15) 

 

 

Time constant. Time constant of the system is calculated as [46]: 

 

 
𝜏𝑖 = −Δ𝑡𝑠𝑚𝑝

1

ln (𝑝𝑖)′
 

(2.16) 

( 

 

where 𝑝𝑖 is the i’th non-negative real pole determined as roots in charactersitic equation and 

Δ𝑡𝑠𝑚𝑝 is the sampling time.  

 

Advanced model forms can be considered with the objective to improve model accuracy. 

These include separate model orders (for each input in contrast to output), including Moving 

Average (MA) term in the model, i.e. historical values of residuals, additional input variables 

other than 𝑇𝑖,𝑇𝑒 and 𝐼𝑠𝑜𝑙  like the long wave radiation, wind speed,  wind speed multiplied with 

temperature differences, precipitation, transformed input variables like 𝑇4 for radiative heat 

transfer, methods like pre-whitening and ridge regression, and adding cross-correlation 

functions between residuals and various candidate variables [46].  

 

Improvements in solar radiations modelling can also be added. Some of the improved 

modelling effects are adding a parametrized gA-curve that is function of solar elevation and 

azimuthal angle (as gA is not constant) or simply as function of time of day (for short periods), 

splitting total solar radiations into direct and diffuse radiations, transformation of solar 

radiations on the surface of buildings and use of semiparametric functions such as modelling 

gA-curve using spline function [46].   

 

Box-Jenkins transfer function model.  In transfer function form, the input series 𝑈𝑡 can be 

related to the output series 𝑌𝑡 as 
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 Υ𝑖 = ℎ𝑘
𝑇 . 𝑈𝑡−𝑘 + 𝑁𝑡, where ℎ𝑘 = [ℎ1, ℎ2, … . ℎ𝑘] (2.17) 

 

where 𝑁𝑡, is correlated noise process. The parametrized form in Box-Jenkins form can be 

written as  

 

 𝜙(𝐵)Υ𝑡 = 𝜔(𝐵)𝑈𝑡 + 𝜖𝑡 (2.18) 

 

where 𝜙, 𝜔 and 𝜃 are polynomials in 𝐵. The effect of other inputs can be included, such as 

solar radiation and heat supply. The assumption of the Box-Jenkin models is that output 

process does not influence the inputs [46].  

 

State space model in discrete time is used to model input_output relations but also focus on 

the internal states of the system. A linear state space equation relating the state vector 𝑋𝑡 (m-

dimentional, latent and random in case of black box modelling), input vector 𝑈𝑡 , via known 

matrices 𝐵 and 𝐶, can be expressed as: 

 

 𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝐵𝑈𝑡−1 + 𝑒1,𝑡 𝜖𝑡 (2.19) 

 

The measurement equation can be given as 

 

 Υ𝑡 = 𝐶𝑋𝑡 + 𝑒2,𝑡  (2.20) 

 

Kalman filter (Kalman smoother) can be used to estimate the state vector.  The two elements 

of the output state vector defined in case of building modelling can be the temperature of 

indoor air and heat accumulating concrete floor. The input vector consists of ambient air 

temperature, solar radiation and heat input. When only indoor temperature is observed, Υ𝑡 it 

consists only on indoor temperature.    
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Black box models are easy to build and are computationally savvy. However, they require 

extensive training data and long training period. They are applicable to specific building 

conditions, for which they were developed and can generate prediction errors if the training 

data do not cover all the conditions that building undergoes [51]. One issue with black box 

modelling is the parameter interpretation. The model in itself does not offer any explanation; 

physical interpretation is not transparent and can change drastically as the model order 

increases [39]. Grey box models are used as improvement of black box model and are further 

explained in the next section.  

 

2.2.2.2 Grey box model structure 

Grey Box models are empirical models based on simplified physical description to simulate 

building energy behaviour [51]. They are combination of physical and empirical models and 

potentially compensate for the deficiencies in both approaches [52]. These are semi-physical 

or semi-statistical approaches for identifying internal parameters or internal dynamic 

characteristics of buildings. Unlike black box, the grey box parameters have direct physical 

interpretation [46]. This enables us to add prior physical knowledge in addition to the 

statistical model to identify parameters of building. The simple semi physical models reduce 

the requirement of training data set (up to two weeks) and computation time [51].  

 

The steps for implementation of grey box model are [51] : 

 Development of model based on simplified physical expression. 

 Putting rough bounds on physical parameters from prior description of building. 

 Application of identification algorithm for identification of parameters. 

 Validation of model with test data and external validation. 

 

A simple explanation of these steps can be given in terms of resistance capacitance network 

𝑅𝐶. The 𝑅𝐶 network represents a highly simplified form of physical/thermal behaviour of the 

building with a high computational efficiency. The 𝑅𝐶 network is able to simulate the thermal 

dynamics of building via two elements, i.e. thermal mass represented by the capacity 𝐶 and 

building envelope presented by resistance 𝑅. The resistances and the capacities are then 

identified using different statistical techniques. 
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Grey box models can take into consideration both linear, non-linear, stationary and non-

stationary effects.  The nonlinear and time varying approaches provide better explanation of 

complex phenomenon at the cost of high computation time. The linear methods are easy to 

implement. However, they leave much of the scatter in the data unexplained. An example of 

the effectiveness of grey box models is that they can model the variation in thermal capacity 

of building with change in moisture (a time varying phenomenon) where building moisture 

show high variation with temperature, radiation and season of the year [53].  

 

There are different methods for presenting the physical grey box model expression such as 

Thermal Netwrok Models of resistances and capacities, Auto Regressive Moving Averages 

(ARMA), differential equation and modal analysis [39]. The thermal network models are easy 

to understand and construct. However, a systematic decision regarding the number of 

resistors and capacitors in model, presents a problem [39]. The differential equation or ARMA 

model are recommended as in both methods the ease of implentation is coupled with 

systematic addition of parameters. The ARMA is solved via numerical methods but differntial 

equation offer the ease of analysis with analytical methods and therfeore some authors 

recommend to use differential equation to ARMA [39]. 

 

A differential equation in state space form is used to parametrize physical system described 

by linear differential equation lumped form (limited number of parameters). A deterministic 

linear model in continuous time of the states 𝑋 of the system: 

 

 
 
𝑑𝑋

𝑑𝑡
= 𝐴𝑋 + 𝐵𝑈 

(2.21) 

 

where matrices 𝐴 and 𝐵 presents how parameters transform the state and inputs respectively. 

The matrices 𝐴 and 𝐵 are described by physical equations such as 𝑅𝐶 formulation. 

Since the deterministic linear equation cannot predict exactly the future states of the system, 

the deviation is usually dealt with by introducing a noise term in the differential equation. The 

stochastic linear state space model can be given as: 
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  𝑑𝑋 = 𝐴𝑋𝑑𝑡 + 𝐵𝑈𝑑𝑡 + 𝑑𝜔(𝑡) (2.22) 

where 𝜔(𝑡) is 𝑛 dimensional stochastic process. Reason for introducing 𝜔(𝑡) are: 

 inability of matrix 𝐴 to present the dynamics of system due to approximations, 

 some inputs may not be measured but have impact on dynamics of system, 

 measurements are noisy due to measurement errors. 

 

Since practically all systems are non-linear and a non-linear presentation is a better 

approximation of the system, in non-linear form the equation can be written as ordinary 

differential equation (ODE) as 

 

  𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑈𝑡, 𝑡)𝑑𝑡  𝑡 ≥ 0 (2.23) 

 

where 𝑓 is a deterministic function of time 𝑡. The equation is deterministic and parameters 

can be estimated. 

 

Stochastic differential equations, as continuous description of physical phenomenon such as 

dynamics of heat transfer, are coupled with a set of discrete data measurement equations. 

These models are called continuous-discrete stochastic (SDE) state space model. A general 

non-linear (continuous) SDE for stochastic process is given as: 

 

  𝑑𝑋𝑡 = 𝑓(𝑋𝑡, 𝑈𝑡, 𝑡)𝑑𝑡 + 𝐺(𝑋𝑡, 𝑈𝑡)𝑑𝑊𝑡 (2.24) 

 

where 𝑋𝑡 𝜖 𝑅𝑛 is the 𝑛-dimensional state vector, 𝑈𝑡  𝜖 𝑅𝑚 is 𝑚-dimensional input vector, 𝐺 is 

the stochastic drift term and 𝑊𝑡 is the Wiener process of dimension 𝑛 with incremental 

covariance 𝑄𝑡. 

 

And the discrete set of measurements are given as: 

 

  𝑌𝑡𝑘
= ℎ(𝑋𝑡𝑘

, 𝑈𝑡𝑘
) + 𝑒𝑡𝑘

 (2.25) 
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where 𝑌𝑡𝑘
 𝜖 𝑅𝑚 is the 𝑚-dimensional vector of measurements at time 𝑡𝑘, ℎ is the 

measurement function and 𝑒𝑡𝑘
  𝜖 𝑅𝑚  is a Gaussian white noise with covariance ∑ 𝑡𝑘[46].  

 

Depending on study objectives, grey box can be steady state and dynamic state where 

dynamic state models are characterized by differential equations. The dynamic grey box 

modelling is explained with reference to [49] who used 6 days data of a single story test 

building (Flex House) to test the performance of grey box models of increasing complexity.  

Thermal networks were used as physical model for building. These models can be presented 

as stochastic linear state space model with dynamic states written as 

 

 𝑑𝑻 = 𝑨𝑻𝑑𝑡 + 𝑩𝑼𝑑𝑡 + 𝑑𝜔  (2.26) 

 

where 𝑻 represents the state vector, 𝑼 the input vector, and matrices 𝑨 and 𝑩 consist of 

combinations of parameters such as 𝐶𝑖 and 𝑅𝑖 . Depending on the complexity of the model, 

the number of 𝐶𝑠 and 𝑅𝑠 may change accordingly.  For example, in the simplest model there 

will be a single 𝑅 and 𝐶 representing thermal resistance and heat capacity of the entire 

building. 𝜔 is the standard Wiener process. Input vector  𝑼 can be represented as: 

 

 𝑼 = [𝑇𝒂, Φ𝒔, 𝜙ℎ]𝑻  (2.27) 

 

where 𝑇𝒂  is the ambient temperature, Φ𝒔 are solar radiations and 𝜙ℎ is the heat input from 

building heat source. Parameters were estimated using maximum likelihood function where 

observations are presented by  

 

 𝑦𝒏 = [𝑌𝑁 , 𝑌𝑁−1, … . . , 𝑌1, 𝑌0]  (2.28) 

 

The likelihood function is given by the joint probability density: 
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𝐿(𝜃; 𝑦𝒏) ∏ 𝑝(𝑌𝑘/𝑦𝑘−1, 𝜃)𝑝(𝑌0/𝜃)

𝑁

𝑘=1

  
 

(2.29) 

 

where: 

 

𝐿(𝜃; 𝑦𝒏) is the Likelihood function of parameter 𝜃 given the observations 𝑦𝑛 

𝑝(𝑌𝑘/𝑦𝑘−1, 𝜃) is the probability density of observations given the parameter 𝜃 

 

The maximum likely estimate of the parameters is then: 

 

 𝜃=𝑎𝑟𝑔 max
𝜃

{𝐿(𝜃; 𝑦𝒏)} (2.30) 

 

Likelihood ratio test was used to evaluate the performance of different combination of models 

of same order. The model with highest log-likelihood is chosen. After this stage, the extended 

models are compared with lower order (subset) models using likelihood ratio test and 

improvement with increasing order is estimated from 𝑝 value (where 𝑝 is a significance of test,  

a lower value of 𝑝 indicates the hypothesis that both full order and reduce order are the same 

should be rejected) [49]. A lower 𝑝 value indicates improvement with increasing model order. 

The iteration is repeated until no more improvement is visible. The models are evaluated by 

data fitting and evaluating residuals using auto correlation function (ACF) and the cumulated 

periodogram (CP). Any pattern in residuals indicate that the model does not fit the data and 

it should be further extended [49]. The analyses initiated with simplest building model 

consisting of single state 𝑇𝑖 (indoor air temperature only). The order was increased and in each 

order the performance of every sequence was evaluated. The model with highest order was 

𝑇𝑖 𝑇𝑚 𝑇𝑒 𝑇ℎ 𝑇𝑠 𝐴𝑒, where 

 

𝑇𝑖 is the temperature of the indoor air, 

𝑇ℎ is the temperature of heater 

𝑇𝑚 is the temperature of the walls and furniture (Indoor medium) 

𝑇𝑒 is the temperature of building envelope 
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𝑇𝑠 is the temperature of the sensor. 

 

Based on the result of the fitted data, parameter estimation (using CSTM-R) and the 

autocorrelation and cumulated periodogram plots, it was inferred that a third order or three 

state model order 𝑇𝑖𝑇𝑒𝑇ℎ   generated acceptable results. A similar estimation procedure was 

applied to data from smart grid experimental facility SYSLAB at DTU Elektro, Denmark, and 

the third order model 𝑇𝑖𝑇𝑒𝑇ℎ  was found suitable [46]. 

 

The following measurements were done for the identification of the grey box modelling as 

discussed in the previous paragraph [46]: 

 Indoor air temperature. A time series of the average temperatures of the indoor air. 

 Heat input. A time series of the heating output value of heaters in building. 

 Ambient temperature. A time series of the outside air temperature. 

 Global radiation. A time series of global radiations measured close to building. 

 Wind speed and direction. A time series of wind speed and direction around building. 

 Excitation signals to estimate the dynamic response of building. Usually ROLBS or PRBS 

sequential signals are used. 

  

The typical parameters estimated using grey box models are the overall heat transfer 

coefficient or thermal resistance, effective heat capacities of parts of building, effective solar 

aperture (effective area for solar radiations), parameters representing effects of wind such as 

wind induced infiltration [46]. The parameters are estimated using maximum likelihood with 

Kalman filter. Kalman filter reduces the impact of noisy measurements that are included in 

model on the estimation of parameters. 

 

2.2.3 Steady state models  

Steady state methods assume that both the system and the variables are constant in time. 

The measurement time considered is sufficiently long to average out indoor and outdoor 

variations, i.e. constant during duration of observation [38]. This is called down sampling, 

where data is averaged over longer periods of time so that auto-correlated noise/residuals 

are filtered out (becoming white noise).  
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These methods are used for describing linear and stationary steady state relations between 

the input and the output. They do not consider thermal storage in building or the transient 

skin behavior of the building that can cause temperature transients. ISO (9251:1987) gives 

description of steady state methods [50]. These methods are less suitable to represent real 

experimental conditions and utilize data on sub-optimal level. These methods can be used for 

estimation of overall heat transfer co-efficient (𝐻) and gA-values (product of solar 

transmittance and effective solar aperture).  

 

Single variate models are steady state models where only a single variable is considered as 

driving agent. For example, in case of buildings, it is common to consider outdoor dry bulb 

temperature as a variable. A number of parameters (P), ranging from single parameter (1-P) 

to 5-P are used. Number of parameters considered vary with type of study, building i.e. 

commercial, residential and weather based or non-weather based [50]. Single variable models 

are applicable to buildings where single variable, such as outdoor temperature, is the 

dominant driving force for energy consumption (e.g. residential buildings). In case of 

commercial buildings with multiple driving factors, the model may not truly represent or 

relate energy consumption to single variable. Their advantage of use is to single out weather 

based loads, compare pre-and post-retrofit normalized (weather) energy consumption in 

buildings and provide an overall easy visualization of energy consumption [38]. These models 

ignore effects of variables such as solar radiation, thermal mass and effects of humidity.  

 

Multivariate models are extension of single-variate models and take into consideration other 

variables such as internal loads (heat given by people and electrical devices), solar radiation 

and humidity effects.  They can take the form of Fourier series models (for seasonal diurnal 

effects) and standard multiple-linear or change point regression models. Parameters that are 

difficult to estimate or measure, such as internal heat given by occupants, are usually lumped. 

The problem of linear correlation of some variables i.e., multi collinearity, can lead to poor 

model predictions. Multi collinearity may be overcome by principal component analysis (PCA). 

However, it should be used with caution [46].  
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A simple steady state energy balance equation for a building is given as: 

 

  Φℎ = 𝐻(𝑇𝑖 − 𝑇𝑒) − 𝑔𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙 (2.31) 

 

where Φℎ  is heating power supplied, 𝐻  is the parameter representing overall heat transfer 

coefficient (both transmission heat coefficient and ventilation heat transfer coefficient) and 

𝑔𝐴𝑠𝑜𝑙  is the parameter that is the product of solar transmittance 𝑔 and affective solar 

collecting area(solar aperture) representing  is the heat transfer coefficient, 𝑇𝑖 and 𝑇𝑒 are 

external and internal temperatures 𝐼𝑠𝑜𝑙  is the solar radiation received by the building [46]. This 

equation is used to parametrize the linear regression model 

  

 Φ𝑡
ℎ = 𝜔𝑖𝑇𝑡

𝑖 + 𝜔𝑒𝑇𝑡
𝑒 + 𝜔𝑠𝑜𝑙𝐼𝑡

𝑠𝑜𝑙 + 𝜀𝑡 (2.32) 

 

where 

 𝜀𝑡 is independently and identically distributed white noise with zero mean and 

variance 𝜎2, expressed as (0, 𝜎2), called white noise; 

 𝜔𝑖 and 𝜔𝑒 represent the 𝐻, from the two estimates of 𝐻 the best estimation is 

obtained using a linear minimum variance method; 

 𝜔𝑠𝑜𝑙 is  the estimate of 𝑔𝐴𝑠𝑜𝑙, it should be noted that this estimate is obtained from 

the available solar radiations measurements such as global solar radiations and since 

the incoming solar radiations are different from the measurements care must be taken 

while estimating 𝑔𝐴𝑠𝑜𝑙  [46]. 

 

All the estimates must be stated with the standard error of estimates for better comparison 

with physically judged results. 

 

Sampling time for steady state. In case of buildings where data is available as time series, it 

is important to consider proper sampling time for measurements. The sampled data is usually 

averaged out and is denoted as function of time indicating the hour at which it is averaged 

out. A sampling time of one or two hours is taken in case of standard insulated buildings 

whereas for heavy insulated buildings the averaging time may be increased. For small 
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buildings, 6 hours average time is considered as appropriate. An Auto Correlation Function 

(ACF) method is used to select appropriate time that will avoid significant cross-correlation 

between different inputs, such as solar radiation [53].   

 

A steady state method that can be used for estimation of long-term energy consumption of 

buildings is the energy signature method. This method is based on determination of overall 

heat transfer coefficient (𝐻) of buildings from the measured energy consumption (bills) and 

mean outdoor temperature. The overall heat transfer coefficient (𝐻) appears as regression 

coefficient in relationship between outdoor temperature and energy use [46]. The overall heat 

transfer coefficient determined by using steady state (energy signature method) is also known 

as the building heat loss coefficient and includes envelope transmission losses, ventilation 

losses and infiltration losses [54]. The general expression of the heat transfer between 

building and environment can be presented approximately as:  

 

  𝐻(𝑇𝑖 − 𝑇0) = 𝑄ℎ𝑠  + 𝑄𝑒𝑙 + 𝑄𝑃 + 𝑄𝑠𝑜𝑙 − 𝑄𝑑𝑦𝑛  (2.33) 

 

where 𝑄ℎ𝑠  is the heat supplied from heating system,  𝑄𝑒𝑙 represents the heat gains from 

electricity, 𝑄𝑃  is heat gain from people, 𝑄𝑠𝑜𝑙  are solar gains and 𝑄𝑑𝑦𝑛 presents heat storage 

corrective factor. For steady state methods, heat transfer due to solar radiations, intermittent 

building operation, occupancy behavior and the dynamic storage (building envelope) are 

ignored. 𝐻 is estimated using the first three terms of equation (2.33) only. As a result, overall 

heat transfer coefficient 𝐻 is estimated with low determination constant leading to low 

precision [55]. 

 

In order to improve steady state methods, the dynamic effects are incorporated using 

correction factors. Danov et al., introduced a methodology to include both the dynamic effects 

(effective capacitance) and the solar gain effects as correction factors for improved estimation 

of 𝐻 [56]. Results indicated that considering both dynamic and solar effects as correction 

factor improved linear relationship resulting in an increased value of determination constant. 
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The estimation of overall heat transfer coefficient is based on linear regression. The results of 

linear regression are valid if temperature follows the normal distribution and the residuals 

follow a normal distribution with zero mean [57]. Both the outdoor temperature and energy 

load should follow an identical distribution. Temperature is usually normally distributed. 

However, energy load does not follow the distribution of the outdoor temperature at tails. 

The model from this simple linear regression may generate acceptable results for the data for 

which it was generated, but it is much less precise when used for other set of outdoor 

temperatures. A new method was proposed that uses a regression model based on quantile 

q-q plot. The model based on q-q regression can be used with equal precision for a data set 

different from the data for which the original model was developed [57].   

 

2.2.4 Energy signature and degree-day 

One of the simplest ways to measure the energy performance of the building is to evaluate 

energy consumption against the outdoor weather conditions. A correlation between the 

energy bills (electricity or gas) and outdoor temperature, is used to predict energy demand. 

This method is known as energy signature method. It has the capability to predict within 90 

percent confidence interval of the actual demand [57]. Degree day method is simpler as 

compared to dynamic method and is used in energy management of buildings. This method 

simplifies the weather conditions by expressing them as a single variable: outdoor 

temperature. The energy performance system are based on degree day method for 

assessments [58].  It provides a simple and cost-effective method of benchmarking similar 

buildings by comparing the energy bills and weather data only. 

 

Heating degree days is the summation of temperature difference between the outdoor air 

and indoor air (base temperature) over a period (year, day or season), where base 

temperature is defined as maximum or minimum outdoor temperature for which no internal 

heating is required. The base temperature can be expressed as: 

 

 𝑞𝑔𝑎𝑖𝑛 = 𝐾𝑡𝑜𝑡(𝑇𝑖 − 𝑇𝑏𝑎𝑙) (2.34) 

 

where 
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𝑞𝑔𝑎𝑖𝑛 are the total heat gains (internal and external) 

𝐾𝑡𝑜𝑡 - overall heat transfer coefficient (ventilation and conduction) 

𝑇𝑖 - indoor temperature 

𝑇𝑏𝑎𝑙 - temperature for which no heating or cooling is required 

𝑇𝑒 - temperature of building envelope 

𝑇𝑠 - temperature of the sensor 

 

 The base or balance temperature can be given by: 

 

 𝑇𝑏𝑎𝑙 = 𝑇𝑖 −
𝑞𝑔𝑎𝑖𝑛

𝐾𝑡𝑜𝑡
 

(2.35) 

 

The energy loss or heating energy required can be given as: 

 

 
𝑞ℎ =

𝐾𝑡𝑜𝑡

𝜂ℎ
[𝑇𝑏𝑎𝑙 − 𝑇𝑜]+ 

(2.36) 

 

where 

𝑇𝑜 is the outdoor temperature  

 

This can be integrated over a time t to determine/predict energy consumption provided that 

the overall heat transfer coefficient and thermal efficiency of the heating system 𝜂𝑡ℎ  are 

known as 

 

 
𝑞ℎ,𝑦𝑟 =

𝐾𝑡𝑜𝑡

𝜂ℎ
∫[𝑇𝑏𝑎𝑙 − 𝑇𝑜]+𝑑𝑡 

(2.37) 

 

Depending on how the integral is approximated by summing over average values of daily or 

hourly temperatures, the method is termed as degree day or degree hour. The base 

temperature in majority of the cases is taken as 18.3℃ [38] in US and 15℃ in UK [58]. The 

base temperature can be adjusted to include solar, ventilation and losses to ground as well.  
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The overall heat transfer coefficient and the balance temperature varies with occupancy, 

internal heat gains, time of day (activity level) and outdoor temperature. In order to improve 

estimation using energy signature method, the base or balance temperature is calculated 

based on bin hour where average temperature and periods of interval are stated 

simultaneously to account for activity level and efficiency of heating equipment [26]: 

 

 
𝑞𝑏𝑖𝑛 = 𝑁𝑏𝑖𝑛

𝐾𝑡𝑜𝑡

𝜂ℎ
[𝑡𝑏𝑎𝑙 − 𝑡𝑜]+ 

(2.38) 

 

where 𝑁𝑏𝑖𝑛 presents number of hours in a bin. The bins are usually measured and stated in 

interval of 2.8 K and eight hours shift [38]. 

 

The energy signature method is based on number of heating degree days that are based on 

base temperature. The consideration of fixed base temperature is misleading as it varies with 

type, age, size, operational schedule and percentage of heated space [58]. For further 

improvement the measurement of indoor set temperature is required [59]. The base 

temperature is determined by energy signature method or performance line method where 

performance line method requires small sampling periods as compared to energy signature 

method. 

  

Different regression methods used for energy signature are change point (CP), Gaussian 

process regression (GPR), Gaussian mixture regression (GMR) and artificial neural network 

(ANN). GMR offers a slightly better statistical performance compared to rest of the three 

methods. However, CP is preferred because of its simplicity and less computational 

requirements to predict energy consumption [60].  

 

Meng and Mourshed analyzed energy consumption of 199 non-domestic buildings in UK using 

change point regression analysis [58]. The variation of base temperature was analyzed with 

respect to building type, age, location and operational schedule. It was concluded that the 

actual base temperature was 1.2 ℃ higher than the value used for UK regulations (15.5℃). 
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Park et al. used a four parameter change point regression model to analyze energy bills for 

128 apartments [61]. A three-year billing data 2009-2011 was used where bills provided data 

on electricity, natural gas and district heating consumption. The model parameters were able 

to characterize the energy use of thermal buildings with hydronic radiators. The slope of the 

regression model represents the heat loss from the building and efficiency of the space 

heating (kWh/m2C). 

   

Lakatos discussed the variation of balance temperature with difference in location of the city, 

solar gains, apartment house or standalone house, level of refurbishment, level of insulation  

and heat island effect for a city in Hungary [62]. The assumption of base temperature of 12℃ 

(Hungary) can mislead to over estimation or under estimation of heating energy demand. The 

number of degree days vary depending on the assumed balance point temperature [63]. 

 

Anjomshoaa used daily consumption data of Kerman city to estimate the change over time 

and the base temperature for heating and cooling. Gas consumption was analyzed for heating 

and electricity consumption for cooling [64]. The base temperature estimated was 15.42 ℃ 

for cooling and 21.18 ℃ for heating. A linear relationship between base temperature and 

heating energy consumption was inferred based on sensitivity analysis. It was found that 

changing the base temperature by 1℃ changes heating energy by 5 MJ. 

 

Energy performance estimation using degree day methods is based on steady state analysis. 

They have the advantage of simplicity and can provide long term scenario analysis for different 

energy efficiency measures [65]. One of the limitations with steady state method is that they 

neglect the effects of inertia as the method is based on building envelope characteristics only 

(steady state). This leads to prediction errors and inability to correctly model short term 

variations.  Several methods have been suggested that add corrective terms to the original 

steady state methods.  

 

Transient thermal models can be used to overcome the shortcomings (inertia) of steady state 

degree day methods. De Rosa used lumped RC model for a building energy simulation using 

MATLAB the tool Building Energy Performance Simulator (BEPS) [65]. Building energy 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



75 

 

consumption was then analyzed for different climate zones and several cities in Europe. The 

model was able to predict energy demand for all cities and climates. It was found that for 

heating degree days HDD, the heating demand was linearly related to difference between 

external and internal temperature. For cooling demand, the relationship is not linear for 

cooling degree days (CDD< 200 ) as the data scatter cannot be explained [65]. This is due to 

inertia of building related to solar radiations. A correction factor added was used to improve 

the linear relationship between cooling energy demand and temperature difference between 

internal and external environment [65].   

 

The degree day and degree hour methods cannot model dynamic effects (thermal inertia, 

solar radiations etc.) on building energy consumption. This leads to poor estimation. However, 

these methods have their advantages. They are based on utility billing data (electricity and gas 

consumption) and weather data that are easily available. They do not require any 

experimentation or detailed input data as required in case of forward models. They can 

predict long term energy consumption for buildings and cities with weather variations [61]. 

Physical parameters can be estimated using degree day method and the fitted parameters are 

then able to predict energy consumption. 

 

 

 Calibrated simulation 

 

In building energy modelling, considerable discrepancies exist between the predicted energy 

consumption and the actual energy consumption. The reasons for such discrepancies are 

modelling simplifications and assumptions (also called model inadequacies), uncertainties in 

indoor conditions and operating schedules, weather conditions and building material 

properties. Calibration of simulation model  is used to remove the errors between predictions 

and observations [7].  Calibration is the process of tuning the simulation model so that the gap 

or error between the predicted and actual energy consumption can be reduced [36]. 

 

Building energy simulation is an integral part of energy audits required by country or state 

laws for energy performance assessment of buildings. Building simulation is used to develop 
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a baseline energy for buildings, i.e. average annual energy consumed by the building in 

absence of any energy conservation measures (ECM). The baseline helps to determine the 

contribution of heating/cooling loads, water heating, lighting, plug loads, building fabric 

(thermal performance), solar radiation, ventilation and occupancy on the total building energy 

consumption.  

 

Savings from any energy conservation measures are estimated against the simulated baseline. 

It is difficult to simulate a representative baseline that can take into account the impact of all 

parameters. Discrepancies in baseline are more pronounced in existing buildings because of 

deterioration of building thermal properties, reduction in efficiency of equipment, operation 

off the designed values, changing weather pattern, changes in operation schedule and 

occupancy [66]. Majority of energy conservation measures are adapted to existing buildings. 

They require investment by building owners that have to be guaranteed against predicted 

savings by Energy Service Companies (ESCOS). Uncertainty in predicted savings make it 

difficult to gain the confidence of investors in savings from energy conservation measures. 

 

Due to discrepancies in modelled energy, different energy performance certificates have set 

minimum acceptable error between simulated and actual energy consumption [40]. ASHRAE 

Guideline 14 [67], International performance measurement and verification protocol (IPMVP) 

[26], US Department of Energy’s (DOE) Performance Measurement and Evaluation Plan 

(PMEP) and Guideline and Uniform Methods Project (UMP) provide the procedures for ECM 

saving calculations, measurement verification of savings from energy conservation measure, 

and minimum criteria for simulation/model fitness [67]. Calibration is therefore a requirement 

for energy auditors to bring simulated energy consumption close to actual energy 

consumption. In absence of calibration, the discrepancies can be in the range of ± 30% for an 

entire building whereas for components, such as HVAC equipment, the discrepancies can rise 

up to  ± 90 % [37, 41]. 

 

Calibration is considered as an overdetermined problem i.e. too many parameters to support 

with observed data [68]. This can result in non-unique solutions [40]. One of the major issues 

with calibration guidelines, such as IPMVP,  is the criterion for estimating prediction errors 
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without specifying procedure or methodology of calibration [68]. There are many published 

methods for calibration. However, there is a lack of standardized, uniform method for 

calibration. The following paragraphs explains the principles of calibration along with the 

issues and advancements in this field.  

 

2.3.1 Principles 

 Calibration for building energy models is carried using the following steps: 

 Collect data   

 Enter data and run simulation  

 Find error between simulation and actual data  

 Tune the parameters until the desired accuracy is achieved [68]. 

 

The method of error determination and tuning can be used to further classify the calibration 

techniques. For example, a broad classification is  

a) Manual calibration, where tuning of parameters is performed manually by the user 

utilizing their knowledge and experience. 

b) Automatic calibration, which is performed by automated process or tools that assist 

in calibration, e.g. using mathematical and statistical techniques. 

 

A more detailed classification is given by [40], [68]. 

i. Calibration based on manual, iterative and expert-based intervention. 

ii. Calibration based on suite of graphical or visualization techniques. 

iii. Calibration based on empirical tests and analysis. 

iv. Calibration based on analytical and mathematical techniques. 

 

It may be noted that a single method of calibration cannot work alone. Therefore, a 

combination of two or more techniques is used. A brief description of error criteria between 

simulated and actual energy consumption is explained in the following paragraphs. 
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2.3.2 Error criteria for calibration (objective function) 

In order to reduce the gap between simulation output and measured energy consumption 

(billing data), it is necessary to quantify the error between simulation and measured data. 

Different terms are used in literature for this purpose. 

 

A simple method to calculate the simulation error is to find percent difference between actual 

energy consumption and simulated energy consumption also known as Mean Bias Error [38]:  

 

 
𝑀𝐵𝐸(%) =

∑ (𝑀𝑖 − 𝑆𝑖)
𝑁𝑃
𝑖=1

∑ 𝑀𝑖
𝑁𝑃
𝑖=1

 
(2.39) 

 

where 𝑀𝑖  and 𝑆𝑖 are measured and simulated data at instance i; P is the period of interval 

(e.g., monthly, weekly, daily and hourly); 𝑁𝑃 is the number of values at interval period P (i.e., 

Nmonth = 12, Nday = 365, Nhour =  8760). This is practiced in energy audits of multi residential 

buildings. However, error computed using this method gives a false perception of reduced 

error due to compensation from over and under estimation over an year [38].   

 

To overcome the under estimation of error, Root Mean Square Error (RMS) is used making all 

the  (𝑀𝑖 − 𝑆𝑖)  terms positive before addition thereby cancelling the effect of over and under 

estimation in estimated error [26]. The RMS is indexed by introducing an error term called 

coefficient of variance of Root Mean Squared Error (CVRMSE): 

 

 

𝐶𝑉𝑅𝑀𝑆𝐸(𝑃) =

√∑ ((𝑀𝑖 − 𝑆𝑖)2/𝑁𝑃)
𝑁𝑃
𝑖=1

𝑀𝑃

 

 

(2.40) 

where 

 
𝑀𝑝 =

∑ 𝑀𝑖
𝑁𝑝

𝑖=1

𝑁𝑃
 

 

(2.41) 

 

In contrast to error coefficients (MBE, CVRMSE), Index of agreement 𝑑 gives a direct measure 

of the fitness or agreement. The value of 𝑑 varies between 0 and 1, with higher value 

indicating good fit [69]: 
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𝑑 = 1 −

∑ (𝑂𝑖 − 𝑃𝑖)
2𝑛

𝑖=1

∑ (|𝑃𝑖 − 𝑂| + |𝑂𝑖 − 𝑂|)2𝑛
𝑖=1

 
 

(2.42) 

 

where 𝑂 is the observation and P is the prediction value for the corresponding instances. 

 

The acceptance criteria for simulation error is based on CVRMSE and RMS with models 

achieving minimum values for CVRMSE and MBE are considered as ‘fit’. The fitness shows the 

acceptance criteria as per ASHRAE Guideline 14, IPMVP and FEMP. CVRMSE is used as a cost 

function or objective function criteria against which parameters are optimized during 

calibration [7]. As the minimum error criteria can be achieved through many non-unique 

solutions, constrain on parameter values can be used as an additional criteria to reduce 

number of possible solutions [7]. 

 

In case of model output with a specific distribution, the closeness with measured distributions 

is calculated using Continuous Rank Probability Score (CSPR) [7]. If distributions are obtained 

using Monte Carlo Simulation, then CSRP is given as: 

 

 
𝐶𝑅𝑃𝑆(𝐹, 𝑌) =  𝐸𝐹|𝑌 − 𝑦| −  

1

2
𝐸𝐹|𝑌 − 𝑌′| 

 

(2.43) 

 

where 𝐹 is the predictive distribution of random variable 𝑌, 𝑦 is the observation, 𝐸𝐹 is the 

expectation over 𝐹 and 𝑌′ is an independent random variable with identical distribution as 𝑌. 

A larger distribution means a larger discrepancy between predicted and observed distribution. 

Table 2-1: Error acceptance criteria for building energy model [40] 

Standard/guideline 
Monthly criteria (%) Hourly criteria (%) 

MBE CVRMSE MBE CVRMSE 

ASHRARE Guideline 14 5 15 10 30 

IPMVP 20  5 20 

FEMP 5 15 10 30 
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2.3.3 Calibration methods 

The methods of calibration require building construction and operation details. The details 

are either provided by owner or obtained by a detailed survey of the building for which the 

simulation is developed, known as characterization technique, to know the physical and 

operational characteristics of buildings. Standardized methods of characterization have been 

developed that are known as energy audits or energy surveys [70]. According to the level of 

detailed survey, they may be characterized as: 

 

Level 1-walkthrough audit. It involves a visual inspection of the facility to know the building 

and its operations. It usually does not involve extensive data collection. 

Level 2-standard audit. It involves extensive inspection and data collection. All energy 

consumption equipment is noted in detail and is broken down as per type of energy 

consumption such as heating, cooling, lighting loads etc. building geometry, shape, structure, 

fenestration and roof etc. are inspected [67]. 

Level 3-investment audit. It involves measurements of energy consumption equipment along 

with extensive detailed inspection of facility, detailed interviews with facility managers to 

know the building operations. These audits serve the purpose of providing guaranteed ECM 

savings for investments [67].  

 

Depending on the level of audits, simulations are carried out by using data from facility. 

Simulation ranges from simple excel macros to detailed software analysis using market 

software such as BLAST, EnergyPlus, ESP-r, Equest etc. After simulation, the results are 

compared with actual billed data of building to find any prediction or simulation errors. 

Simulations are calibrated to remove the errors based on any or combination of the following 

methods explained [71].   

 

2.3.3.1 Calibration based on manual, iterative and expert-based Intervention 

Field calibration is performed manually by experts through steps such as selection of 

significant parameters and tuning or “fudging” the values of significant parameters 

(parameter estimation). The process is repeated by iteratively changing values of set of 
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parameters and running simulation until the desired closeness of gap between the simulated 

energy consumption and actual energy consumption is achieved [66]. This method of 

calibration is labor intensive, time consuming and subjective, depending on the skills and 

experience of the expert. This can result in unrealistic values of parameters, different values 

of parameters leading to the same results (identification issue), poor optimization of 

parameter and unrealistic fitting between actual data and simulation [66]. The unrealistic 

closeness between simulation and actual energy consumption can lead to saving predictions 

that are never achieved. Some of the discrepancies in manual calibration can be resolved by 

assisting it with mathematical/analytical and advanced graphical techniques.  

 

2.3.3.2 Advanced graphical techniques for calibration 

A simple form of graphical analysis is to compare the simulation time series of energy 

consumption versus the measured energy consumption using time series graphs. The scale of 

time can be months, days or hours; parameters are tuned to reduce the difference between 

measurements and simulation results. Advancement in graphical data presentation has 

improved the comparisons. Some of the advanced graphical comparisons are: 

 3-D comparative plots: These are surface plots created using 3-dimensional data such 

as hourly and daily axes against vertical energy consumption axes. When plotted as 

function of difference between simulated and actual energy consumption, they can 

identify even very small discrepancies. The valleys and peaks of 3-D graph make visible 

the departure that can be tuned further. 3-D graphs are also used to view any unusual 

peaks in energy consumption [40].  

 Graphical statistical indices: Plots like Box Whisker Mean Plots (BWM) are used to 

indicate statistical indices in graphical format. This helps in easy understanding of data 

and elimination of data overlaps. They express data in the form of mean, median, 10th, 

25th, 75th and 90th percentile for each data bin (month, week or day) [40]. 

 Other Plots: Other plots (Figure 2.3,Figure 2.4) include colored contour plots showing 

error propagation, superposed and juxtaposed binned box and scatter plots [68].   

 

One way to use graphical analysis is using signature method, i.e. Calibration Signature and 

Characteristic Signature in which a normalized plot of difference between simulated versus 
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actual energy consumption is plotted as a function of outdoor temperature. This graphic 

signature can then be tuned by changing different parameters. A characteristic signature for 

each building can be generated for heating and cooling loads. These signature graphs serve 

the purpose of baseline for evaluating any energy conservation measure [68]. 

 

 

Figure 2.3:Colour contour graphs showing error between simulated and actual energy 

consumption [71] 

 

Figure 2.4 Scatter Plot for Calibration [66] 

 

2.3.3.3 Calibration based on tests 

The total building energy consumption can be modelled as the summation of energy 

consumption from heating, cooling, domestic hot water, lighting and electronic equipment 

consumption. The energy bills do not provide the segregation of different loads. Simulation 
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uses operation schedules and energy relations to find the impact of each load on overall 

energy consumption. One of the simple ways is to perform on site tests for this purpose. The 

different test methods explained in this section are used for calibration and parameter 

identification.  

 

Intrusive blink tests: These tests include turning on and off load equipment for a short interval 

of time usually one to five minutes. This help to identify the impact of selected parameters 

effect on hourly energy consumption that can be averaged over longer period. Usually loads 

are turned on and off sequentially for a short interval of time. The incremental energy 

consumption can accurately quantify the impact of these loads. Two to four weeks of testing 

is considered enough for calibration purposes [68]. 

 

STEM tests: The short-term energy monitoring (STEM) test is a calibration test to segregate 

energy consumption into end use profile such as cooling energy, heating energy, lighting 

energy and plug loads. STEM test involve intrusive and non-intrusive controlled heating and 

cooling tests for a period of two to four weeks. The method was developed by Subbarco (1988) 

[72]. The test protocol consists a period when temperature is kept constant by application of 

heating or cooling followed by a period where temperature is allowed to float freely. The co-

heating is usually carried at night time and is used to determine the overall heat transfer 

coefficient in case of buildings where heat loss through building shell is significant. The cool 

down/free floating time is used to determine building time constant. Building heat transfer 

coefficient ‘U’ is a significant parameter influencing building energy simulation, the calibrated 

value determined effectively reduces discrepancy between simulated and actual energy 

consumption.  

 

2.3.3.4 Calibration based on analytical and mathematical techniques (automatic calibration) 

The mathematical and analytical calibration can be defined as an optimization process with 

an objective function to reduce the gap between the simulated and actual energy 

consumption for buildings [68]. These methods find the important parameter to tune and 

decide on how much to tune. An analytic framework for automatic calibration using tools 

(steps) such as Sensitivity Analysis (to determine the most significant parameters), 
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Identifiability Analysis (to find parameters that can be tuned), numerical optimization (to find 

the best parameter sets that can reduce discrepancies) and uncertainty analysis (variation 

space of parameters) is provided in [73].  An exhaustive literature is available on each of these 

tools. This section provides an overview of important issues relevant to the work of this thesis. 

 

2.3.3.5 Uncertainty in inputs 

Simulation output depends on the quality of the data (measured and calculated) used for 

simulation. The quality of input data varies largely due to many reasons. Uncertainty in data 

is due to stated values based on laboratory tests (standard conditions only), manufacturing 

defects and errors during measurement process. For example, in real working conditions the 

properties such as thermal transmittance, density and specific heat are reported to have a 

standard deviation of 1 %, 5 %, and 25 % as compared to stated values [66]. The area weighted 

thermal capacity C (kJ/m2 K) of concrete can have variation between 160 to 257 (kJ/m2 K). 

Significant variations occur in actual ventilation and infiltration values when compared to the 

standard values used in simulation.  

 

A study on naturally ventilated buildings showed that estimated normal values used for 

naturally ventilated office buildings range between 5.0 to 10.0 m3/h at 50 Pa whereas actual 

values ranged between 8.3 and 32.0 m3/h at 50 Pa. Similar discussion of uncertainty applies 

to other parameters, such as infiltration due to window openings, number of window 

openings, variation in efficiency of HVAC equipment, heat losses in distribution system, heat 

gain from occupants (3-7 W/m2), plug load per occupant (124-229 W/person), weather 

conditions, etc.  

 

Simulation model may fit actual data even with incorrect inputs or parameters. This is 

misleading as is evident in many projects where savings were either over estimated or under 

estimated, despite initial simulation agreement [40].  Confidence in simulation output 

depends on the quality of input data. It is therefore important to perform uncertainty analysis 

to reflect the impacts of uncertainty in inputs on output simulation. One way is to express 

uncertainty of each input as statistical distribution and run simulations to generate an output 

with statistical distribution [41]. 
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Simulation involves large number of parameters and running simulations for every input 

parameter with its statistical distribution is time consuming. It is therefore important to select 

parameters with significant importance using Sensitivity Analysis techniques.  

 

2.3.3.6 Sensitivity analysis (parameter selection) 

Any calibration process involves a number of parameters that need to be tuned to match 

simulation and actual data. Tuning each parameter is time consuming and computationally 

expensive. Different techniques are developed to segregate parameters that have significant 

effect on the output. This is called Sensitivity Analysis (SA). A typical sensitivity analysis 

method requires the steps shown in Figure 2.5. 

 

 

Figure 2.5: Sensitivity analysis steps [74] 

 

Sensitivity analysis methods can be broadly classified as local and global. Local sensitivity 

analysis, also referred as one-factor-at-a-time methods, explore the relationship of individual 

input by keeping the other inputs constant. It is a simple method compared to the global 

sensitivity analysis that considers the effect of uncertain inputs and the correlation between 

inputs on the entire input space as well. Global methods are more reliable, but require high 

number of computations.  Several techniques have been recommended in literature for 

sensitivity analysis, such as Correlation Analysis, Regression Analysis (RA), Morris One-at-a-
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Time (MOAT), Multiple Adaptive Regression, Splines (MARS), Delta Test (DT), Monte Carlo 

(MC), Fourier Amplitude Sensitivity Test (FAST), etc. [75].  

 

First step for sensitivity analysis is to define inputs with probable variation. Different methods 

used for this purpose are known as sampling techniques. Sampling techniques are used to 

generate sample size of parameters or inputs, the range or variation of each data input and 

distribution for each value, such as normal, uniform, lognormal and triangular distribution. 

Plack-Burman (PB), Monte Carlo (MC), Extended Sobol etc., are some of the Sampling 

techniques [75]. Embedded Latin Hypercube Design (LHD) with Monte Carlo simulation 

technique for generating samples was used in [7]. The advantage of this method is that it 

reduces sample size and all desirable properties of input are retained as it. 

 

The global sensitivity analysis can classified into regression based, Morris design (screening 

based), variance based and meta-modelling [76]. A brief explanation of each method is given 

in below. 

 

Regression based is one of the fastest methods that has low computational costs and is easy 

to interpret. However, the effects of some parameters may be left unexplained when using 

this method. Many improved versions of the original method are used now. The common 

methods used are Standardized Correlation Coefficient (SRC), Partial Correlation Coefficient 

(PRC), Standardized Rank Regression Coefficient (SRRC) and Partial Rank Regression 

Coefficient (PRRC) [76]. The SRRC and PRRC methods, also called rank transformation 

methods, are used when there is a nonlinear relationship between input and output. The SRC 

and PRC methods are used in case of linear relationships between inputs and outputs, with 

the difference that SRC do not consider interrelation effects between inputs.  The statistics 

used for selection of important parameters are t-statics, F-statics and R determination 

coefficient (R2) [76]. 

 

Morris design (screening based) is a global sensitivity analysis method that changes one input 

at a time whereas the other inputs are kept constant at initial value and the variation in output 

with respect to output is calculated. The process is repeated, and the inputs are ranked 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



87 

 

according to their variation impact on output. Input factors are selected from levels rather 

than distributions [76].  The sensitivity index µ is used to present direct effects of input on 

output, another index δ indicates the correlation effects between various inputs, and another 

index µ* indicates the total effect. This method requires lesser simulations and is 

recommended for projects with small number of significant parameters and large number of 

insignificant parameters. The disadvantage of this method is that it is qualitative and cannot 

quantify the impacts of input variations on output [76]. 

 

Variance based methods decompose the effects of input on output into easily interpretable 

fractions such as main effects of an input on output (first order) and the total effects due to 

both main effects and non-linear effects such as correlation between the inputs. The 

difference between main and total effects give fraction of correlation effects due to 

interrelation between two or more inputs. Two common methods used in variance-based 

methods are Fast Amplitude Sensitivity Test (FAST) and Sobol. The FAST method considers the 

nonlinear effects only, whereas the Sobol method fractions variations of output into nonlinear 

and correlation effects. The methods are recommended for complex nonlinear systems. 

However, they are computational expensive, e.g., a model with 6 input factors will require 

minimum 608 simulation runs [41].   

 

Meta-modelling sensitivity analysis analysis require multiple simulation runs depending on 

the number of inputs. With inputs in hundreds can lead to simulation runs in thousands. With 

detailed building energy software like EnergyPlus, ESP-r, Equest this is computationally 

expensive and time consuming. A replica of the original model, with reduced computational 

requirements, called meta-model or emulator, is generated to emulate the parent model. This 

reduces both computation steps and time consumed for running simulations [41].  

 

Meta model is reduced order approximate predictor for complex model generated through 

supervised learning, training and testing. The meta model may work as classifier (discrete 

values) or as a regressor (continuous values).  Variance based sensitivity analysis methods can 

then be applied to meta-modelling. The meta models reported in literature are Multiple 

Adaptive Regression Splines (MARS), Adaptive Component Selection and Smoothing Operator 
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(ACOSSO), Support Vector Machine (SVM), Gaussian Process (GP) and Treed Gaussian Process 

(TGP).  

 

Choice of sensitivity analysis methods depend on the intended purpose of research, 

computation time and cost and number of input variables [76]. The sensitivity analysis take 

much lower time as compared to energy simulation time required for multiple runs with 

different input sets [76]. Linear regression-based methods are first choice based on their 

simplicity and computational cost. However, they can leave variation in output unexplained. 

A meta-model can be better solution in this case. In case of large number of inputs, Morris 

method is preferred based on smaller number of simulations required, especially for 

qualitative analysis. Variance-based method is more reliable. However, it has high 

computational cost [76]. 

 

2.3.3.7 Meta modelling (linear regression) 

Model calibration is essentially an optimization problem. Building simulation calibration has a 

number of parameters to tune by using observations. However, it is a problem with multiple 

non-unique solutions [40]. The first step therefore is to put constraints on the number of 

solutions by reducing the number of parameters, as explained in the previous section. The 

next step is to calibrate it with significant parameters using automated optimization criteria.  

 

Let us assume that 𝐺(∙) represents a model with 𝑥 as observable inputs and 𝜃 as numerical 

parameters and unobservable inputs. The model output 𝑦 can be given as: 

 

 𝑦 = 𝐺(𝑥, 𝜃) (2.44) 

 

Suppose the number of experimental observations 𝑑𝑖 are obtained representing the actual 

output: 

 

 𝑑 = 𝑑1,𝑑2 … … … , 𝑑𝑛 (2.45) 

 

Discrepancy 𝜀𝑖 between model output 𝑦 and observations 𝑑 can be represented as: 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



89 

 

 

 𝑑 = 𝐺(𝑥, 𝜃) + 𝜀𝑖 (2.46) 

 

One way to calibrate this model is to perform non-linear regression between model output 

and observation and then optimize parameters in a way that minimizes the squared difference 

between model output and observation. The Root Mean Square Error (RMS) is given as:  

  

 

𝑅𝑀𝑆 = √
1

𝑛
∑ (𝑑𝑖 − 𝐺(𝜃, 𝑥𝑖))2

𝑛

𝑖=1
 

 

(2.47) 

 

Using this calibration method has some drawbacks as calibration requires multiple simulation 

runs, sometime running into thousands. Using detailed energy models for this purpose is time 

consuming and computationally expensive [40]. The meta models, also known “model of the 

model”, of reduced order can be used as a short cut to long, detailed simulations. It is simple 

and computationally fast generated based on input/output data relationship, also called 

supervised learning. The simplest way of modelling based on supervised learning is linear 

regression with equation: 

 

 
ℎ(𝑥) = ∑ 𝜃𝑖𝑥𝑖 = 𝜃𝑇𝑥

𝑚

𝑖=0

 
(2.48) 

where 𝑚 is the number of input variables, 𝑥 the observations and 𝜃 parameters. Linear 

regression calibration minimizes the difference between modelled ℎ(𝑥𝑖) and output 

observation 𝑦𝑖 using least square as cost function: 

 

 
𝐽(𝜃) = ∑(ℎ(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 
(2.49) 

 

The cost function 𝐽(𝜃) is minimized by: 
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 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (2.50) 

 

where 𝑋 represent training input data and 𝑦 represents training output data in matrix form. 

Fitness criteria used for this purpose is RMSE and/or coefficient of determination 𝑅2 given as: 

 

 
𝑅2 = 1 −

∑ (𝑦 − 𝑦𝑖)
𝑛
𝑖=1

∑ (𝑦 − 𝑦𝑚𝑒𝑎𝑛)𝑛
𝑖=1

 
(2.51) 

 

Distribution of residuals is analyzed for any pattern which is an indication of imperfect 

modelling. T-test and F-test are used to verify that residuals are identically identified and 

independently distributed (i. i. d.). Further details can be introduced to linear regression to 

improve the model and its calibration [41]: 

 Expressing linear relationship in probabilistic form. 

 Introducing relation/interaction terms i.e., 𝑥 = 𝑥1𝑥2 or in polynomial form i.e., 𝑥2 =

𝑥1
2. 

 Using nonlinear functions that are linear in their parameters. 

 Using kernel functions. 

 

Some advanced meta models are MARS (Multiple Adaptive Regression Splines), ACOSSO 

(Adaptive Component Selection and Smoothing Operator), Support vector machine (SVM), 

Gaussian Process(GP) and Treed Gaussian Process (TGP) [41]. These models can be used 

within Bayesian frame work. The Bayesian calibration is explained in next section. 

 

2.3.3.8 Bayesian calibration 

It is a well-established fact that energy conservation measures (ECM) for buildings are either 

under estimated or overestimated due to discrepancies in modelling, uncertainties in inputs 

and variation in parameter values. ECMs are potential investment risks and that is the reason 

why ESCOs usually down grade the potentials savings.  One way to overcome this issue is to 

express the energy conservation measures savings with uncertainties or confidence interval 

by taking into account all the uncertainties of the inputs and model outputs. Bayesian 
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statistical inference provides a systematic way to consider uncertainties in inputs and their 

propagation in model output [70].  

 

Bayesian inference collects and generates the uncertainty in parameters in the form of 

probability distribution. This distribution is then mapped into the output by generating 

probability distribution for model output. These model output and prior parameter 

distributions are updated by using Bayes rules to generate posterior distributions [70]. 

Bayesian calibration incorporates three sources of uncertainty that are parameter uncertainty 

𝜃 in model output 𝜂(𝑥, 𝜃)  [77]: 

  

 𝑦(𝑥) = 𝜂(𝑥, 𝜃) + 𝛿(𝑥) +  𝜀(𝑥) (2.52) 

 

where 𝑥 is input, 𝛿(𝑥) is the discrepancy between model output and observations where 𝑦(𝑥) 

are the observations, and 𝜀(𝑥) is the observation error. 

 

An emulator, such as Gaussian process, is used to model the simulation output (𝜂(𝑥, 𝜃) +

𝛿(𝑥)), as a reduced order model. Probability distribution function for parameters is generated 

by using Markov Chain Monte Carlo algorithm. As models are always based on 

approximations, they will never be able to match the observations. Bayesian calibration avoids 

the problem of over estimation by keeping the discrepancy term 𝛿(𝑥) [66]. 

 

Under Bayesian framework, different modelling techniques have been used for calibration 

purposes. Normative modelling [66] and Artificial Neural Networks (ANN) [40] were used to 

calibrate a building model for retrofit analysis to quantify risks associated with retrofits. Data 

from a building at University of Sao Paulo were used for simulation of building energy 

consumption using ANN and EnergyPlus [40]. It was found that ANN generated building energy 

model with 10 % error compared to 13 % error by EnergyPlus. The ANN requires less manual 

inputs but requires extensive data for training. The ANN models, however, do not provide any 

physical understanding of the process. The author  suggested that the use of this method 

should be further investigated for air conditioned buildings [40]. 
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Three models, i.e. piecewise linear regression, Gaussian process (GP) meta modelling and 

detailed simulation  are used to simulate energy consumption for office building using 

Bayesian calibrantion [41]. All these models were found in agreement with observation data, 

with the reduced order GP providing additional benefits of ease of use and computational cost 

reduction in all three steps: optimization, uncertainty and sensitivity analysis. GP method has 

the potential to provide promising results in terms of continuous commissioning, model 

predictive control, monitoring of energy consumption and detection of faults, and power 

peaks, especially in the field of smart grid and district energy systems [41]. 

 

Four linear emulators using Bayesian calibration were tested on building energy data from 

Georgia Tech University [7]. The corresponding four linear emulators were GP emulator, 

Linear-main (LM) emulator, that includes only main effects, Linear-interaction emulator (LI), 

that includes main effects and the interaction effects, and Linear-quadratic (LA) emulator, that 

takes into consideration main effects, interaction effects and quadratic effects. The emulators 

were used for calibration of physical model and for generating calibrated meta-model. The 

emulators LI or LQ showed a promising result in parameter estimation when used for physical 

model calibration and provide accurate predictions when used as meta-model. Use of 

emulators saved time and computational cost without compromising accuracy. 

 

An important point mentioned by is that emulators can fit the building data and generate an 

acceptable model [7]. However, different emulators generate agreeably similar results, even 

with different parameter sets. In case of ECM predictions with changes in parameter values, 

an emulator may not be flexible enough to consider the sole effects of parameter change. This 

can result in wrong predictions. The author therefore prefers the calibration of physical model 

by modeler as compared to relying on emulators.  

 

 

 Data pre-processing 

 

Parameter identification (both black and grey box) are based on data. The estimated results 

depend largely on the quality of measurements, sampling and analysis of data. A well-known 
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term used in modelling literature with reference to input data is “GIGO” that is garbage in 

garbage out. In order to ensure the acquisition and utilization of quality data, International 

Energy Agency (IEA), EBC (energy in buildings and communities) Annex-58 has recommended 

necessary pre-processing steps [53]. 

 

Pre-processing. It is important to analyze data for any abnormalities and errors before using 

it for modelling. This process is known as data pre-processing. Understanding the data 

requires knowledge of measurement system and principles of phenomena to be measured. It 

is important to plot data on different time scales such as time of day, week, month and yearl. 

These plots help find any abnormal tendencies, missing sensor data, outliers, irregularities. 

Averages or quantiles that may be calculated to single out unusual phenomena, Box plots and 

time series plots can also be useful in this regard [50]. Pre-processing can lead to rejection of 

measurements, correction of experimental setup or repetition of experiments [78]. Time 

synchronization of data acquired from different measurement systems should be dealt with 

care.  

 

Sampling. An important question regarding data acquisition is the sampling rate of data, i.e. 

the time interval between acquisitions of two data samples. Measurement is a continuous 

process but is registered at discrete time interval. This is known as sampling the signal or 

simply sampling [79]. Discrete sampling for a continuous measurement can be represented as 

shown in Figure 2.6 
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Figure 2.6: Sampling of continuous signal [80] 

  

 

Sampling rate depends on the time constant or dynamic response of instrument, i.e. time 

required by instrument for stable readings, dynamics of the measured process (frequency of 

analog signal) and sampling requirement of modelling or interest. The frequency with which 

a sample is measured at time interval 𝛿𝑡 is given by: 

 

  𝑓𝑠 = 1
𝛿𝑡⁄  (2.53) 

 

Sampling theory states that the signal should be sampled at a rate more than twice the highest 

frequency (𝑓𝑚) in input signal i.e. 

 

  𝑓𝑠 > 2𝑓𝑚 or 𝛿𝑡 < 1
2𝑓𝑚

⁄ . (2.54) 

 

Aliasing. When a signal is measured or sampled at a rate 𝑓𝑠 < 2𝑓𝑚, this can cause removal of 

high frequency signal/data and the resulting sample will show false lower frequency, a 

misinterpretation of the original signal. This is called aliasing and the sampled frequency as 

alias frequency [80]. Nyquist frequency 𝑓𝑁 is a term used with alias frequency 𝑓𝑎  is given by: 
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  𝑓𝑁=  
𝑓𝑠

2⁄ = 1
2𝛿𝑡⁄  

(2.55) 

 

It shows that all the frequencies in the input signal above the Nyquist frequency will appear 

as signals of lower frequency equal to alias frequency 𝑓𝑎 less than  𝑓𝑁. A folding diagram can 

be used to predict the alias frequency. In order to overcome the problem of aliasing, the 

sampling rate should be based on the maximum frequency of interest and the signal should 

be passed through a low pass filter (anti-aliasing filter) to remove signal content at or above 

the 𝑓𝑁 [80]. One way to overcome the issue of aliasing is to select a sampling frequency such 

that the majority of the frequency content is lower than the Nyquist frequency, 𝑓𝑁.  There is 

a trade-off between accurately depicting a signal using as high frequency as possible but at 

the same time reducing the measurement noise.  

 

 

Figure 2.7: (a) 60 minutes average data removes important information; (b) 60 minutes 

average removes noise.[78] 

 

Filtering. Filters are used to remove undesirable frequencies/information form an input signal. 

A filter allows the desired range of frequencies to pass through, known as the pass band and 

blocks the undesirable frequencies known as the stopband. Depending on the requirement, a 

filter can be low-pass, high-pass and band-pass. In case of high frequency in input data, the 

measurement system cannot respond with the frequency of input data and becomes a filter 

by itself. This is the case of undesirable filtering. In certain cases, the input signal comes with 

noises and disturbances and the filter has to be used to obtain the desired data only.  A moving 

average or smoothing filter is used for removing noise or trends. A self-correcting filter can 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



96 

 

remove the current faulty data point based on the average or weighted average of the 

previous data points: 

   

  �̇�𝑖 = (𝑦𝑖−𝑛 + ⋯ . . +𝑦𝑖−1 + 𝑦𝑖 + 𝑦𝑖+1 + ⋯ + 𝑦𝑛+1)/2(𝑛 + 1)  (2.56) 

 

where �̇�𝑖 is the average value used. The average smoothing can be both forward-moving and 

backward-moving. 

  

In advanced form, various Kalman filtering techniques are used directly for state estimation 

by filtering noisy measurements. Kalman filtering can be used for decisions regarding the type, 

location and orientation of sensors, pre-filtering methods for smoothing sensor noise and data 

sampling rates for sensors. Kalman filter achieves a better estimate of variables by estimating 

a joint probability distribution, using series of measurements that may be corrupted by 

statistical noise and other inaccuracies [81]. Extended Kalman filter, colored noise Kalman 

filtering and adaptive filtering are the advanced forms of the original Kalman filtering [45]. 

 

 

Figure 2.8: The effect of filtering on noisy signa l[80] 

 

 

Averaging and filtering. Averaging is sometimes required to obtain a consistent sample 

whereas filtering is used to remove any unwanted information from the input signal. Both can 

be used in case they do not hide any useful information from the signal. These techniques may 
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be used to remove information that is not relevant to the phenomenon being studied. 

However, care must be used not to wipe relevant information while using these methods. 

Special care should be practiced in case of averaging signals with extreme low and high values 

[53]. In case of two measurement systems with different data sampling rates, the data for one 

instrument must be averaged out. This can create the issue of aliasing or weaning out of the 

relevant information from one of the signals [78]. In case of down sampling (longer sampling), 

the same method should be used for all inputs.  

 

A relevant example of the advantages and disadvantages of averaging can be seen in Figure 

2.7. The energy consumed by the heater can be measured by measuring the time for on and 

off of the heater. Sampling the on and off data over 60 minutes can mislead into wrong 

measurement of the energy consumed as shown in Figure 2.7(a) by the blue line. A one minute 

sample is better approximation of the process [78] as it can be seen from the red line. For 

outdoor air temperature (Figure 2.7(b)), the sampling data of one minute does not provide a 

clear picture of the outside temperature and simulation over this sample can lead to 

measurement noise. As can be seen in Figure 2.7(b), averaging over a period of one hour 

reduces measurement error. 

 

 

 Conclusions 

 

This chapter details the theory for parameter identification, simulation models used and the 

statistical analysis techniques. Since the subject of current thesis is the analysis of models used 

for parameter identification, this chapter forms the theoretical foundation for the analysis of 

results. The models are broadly classified as classical (forward approach) and data driven 

(inverse approach). These types are further discussed in detail. The chapter discussed the 

calibration principles and techniques used to reduce the gap between predicted and 

measured energy consumption. The sensitivity analysis and a discussion on the advantages 

and disadvantages of each method were presented.   
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A detailed study on the parameter identification includes the different type of model 

structures, sampling time, model order selection, application of identification methods. The 

data analysis techniques and effect of data sampling, filtering and aliasing are discussed. The 

material in the chapter can be used as a guideline for building modelling, parameter 

identification and data analysis.  

 

In the next chapter, the techniques discussed are applied with reference to experiments used 

for thermal characterization of buildings and building components. The next chapter explains 

in detail the standard thermal characterization test methods, experiments and data analysis 

techniques as applied to these test methods. These test methods provide construction data, 

weather data and measurement data that can be used to verify any model. The data from one 

of the test sites (twin house) is used for modelling in thesis. 
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 Long-term identification test methods 

 

 

Two common approaches to reduce building energy consumption are: to improve energy 

efficiency of the equipment inside the building, such as lighting and HVAC etc., and to improve 

the performance of the building envelope, such as adding insulations, reducing infiltration etc. 

It is relatively easy to measure the equipment efficiency in comparison to the performance 

measurement of building envelope [82].  

 

Some of the common indicators of envelope performance measurement are: overall heat 

transfer coefficient (𝐻), thermal inertia, thermal resistance, solar factor, time constant etc. 

The overall heat transfer coefficient (𝐻) is considered as the most popular indicator of energy 

efficiency of building envelope. It represents the heat flow rate due to temperature difference 

between building and environment and is expressed as W/K. The overall heat transfer 

coefficient includes losses due to transmission (transmission losses through building physical 

surfaces) and infiltration losses (due to ventilation and infiltration) [82].  

The overall heat transfer coefficient of building with a steady state heat rate of �̇� that 

maintains a steady state temperature difference ∆𝑇 between inside of the building and 

surroundings   is: 

 

𝐻 =
�̇�

𝐴∆𝑇
 

(3.1) 

 

A number of methods are used to measure the over-all heat transfer coefficient: 

 Calculations based on quoted thermo-physical properties of building and steady state 

or dynamic model of building. 

 Measurements using long testing methods, such as co-heating tests, PSTAR. Usually, 

statistical techniques are employed to dissociate the measured value from the effects 

of occupant’s behavior, weather conditions and efficiency of building; 

 Long-term test identification methods like energy signature, PRISM methods, RC-

identification; that are based on energy consumption as a function of outdoor 
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temperature and are occupant-based methods. The heat transfer co-efficient is 

determined by regression analysis. The long term identification methods are better 

suited for estimation of savings from deep retrofits over long period of time as these 

methods cannot identify the short term dynamic effects; 

 Methods that are short enough to limit the effects of occupancy and weather 

conditions (tests carried with no occupants inside) 

 

For long term identification methods, it is difficult to dissociate the impact of occupant’s 

behavior, energy efficiency of systems, hot water consumption, infiltration rate, impact of 

solar radiations etc., from envelope performance.  

 

The short-term parameter identification methods are dynamic methods based on lumped 

parameters and can be used to identify suitable models that can describe thermal 

characteristics of building structure and its systems (HVAC equipment etc.). These methods 

are useful for grid optimization that can respond to changing energy needs of buildings (based 

on dynamic model of buildings) [83].  

 

The calculated or designed 𝐻 value of building is validated using different tests. Long term 

methods, such as co-heating tests, are zero occupancy steady state method and measure the 

𝐻 value as a function of the daily energy consumption and average outdoor temperature. 

Linear regression is used to identify U-value.  

 

The long term test methods are aimed at thermal performance verification of building 

envelope using measurements and estimation techniques (as discussed in chapter 2) [46]. A 

simple explanation of how these methods work can be given by the equation presenting 

estimation of overall heat loss coefficient [46]: 

 

 𝐻 =  ∑ 𝑈𝑖. 𝐴𝑖 + 𝐻𝑇𝐵 + 𝜌. 𝑐𝑝. 𝑄𝑣 

𝑄𝑣 = √𝑄𝑠
2 + 𝑄𝑤

2=
𝐴𝑙

1000
.√𝐶𝑠. ∆𝑇 + 𝐶𝑤.𝑈𝑤

2 

 

(3.2) 
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where 

 𝐻𝑇𝐵  is the heat loss from thermal bridges, 

 𝑈𝑖𝐴𝑖    - envelope losses, 

  𝜌𝑐𝑝𝑄𝑣  - infiltration losses.  

 

The overall heat loss coefficient is based on the experimental measurement of the terms in 

equation (3.2). As the tests, such as co-heating tests, are conducted throughout the day, 

multiple linear regressions are performed to identify 𝐻 and solar aperture. The identification 

relationship for co-heating test is: 

 

𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝑔 𝐴𝑠𝑜𝑙𝑎𝑟 = 𝐻 ∆𝑇 (3.3) 

 

where 

𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 is steady state heat flow rate (W) 

𝑔 are the measured solar radiation (W/𝑚2) 

𝐴𝑠𝑜𝑙𝑎𝑟 is the identified solar aperture (𝑚2), 

𝐻 is the identified overall heat transfer coefficient 

∆𝑇 is the temperature difference between building (internal) and external 

environment 

 

The estimated 𝐻 value is considered as accurate enough to be used as a reference value. Two 

co-heating tests conducted for the same building by two different teams have generated the 

same results [83].   

 

The in-situ parameter Identification methods starts with the collection of data based on 

experiments. The experiments conducted are either: 

 long term 

 short term 

 intrusive (non-controlled experiments) 

 non-Intrusive (controlled experiments) 
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 experiments based on building components such as walls, roofs etc. 

 experiments based on entire buildings. 

 

Depending on the available data and purpose of measurement, the parameter identification 

can be based on: 

 steady state analysis 

 dynamic analysis 

 

This chapter discuss long term test methods discussed in literature. 

 

 Long-term methods for building components (walls) 

 

The heat flow meter test method (ISO 9869) is used to measure the thermal properties, such 

as thermal resistance and conductance, of building components, such as opaque walls [84]. 

The measurements involve heat flux measurement across wall surface using heat flow meter 

and the temperature measurement of the two surfaces using thermocouples [46]. Thermal 

resistance is evaluated by dividing the mean temperature difference by the heat flux: 

 

 
R𝑁,𝑆 𝑡𝑜 𝑆 =   

∑ (𝑇𝑖,𝑠,𝐾 − 𝑇𝑒,𝑆,𝐾)𝑁
𝐾=1

∑ 𝑞𝑖,,𝑆,𝐾
𝑁
𝐾=1

 
(3.4) 

 

 

where 

𝑅 is the thermal resistance  (𝑚2K/W); 

𝑁 Is the number of measurements starting from 𝐾 = 1; 

𝑇𝑖,𝑠 is the internal surface temperature (K); 

𝑇𝑒,𝑠 is the internal surface temperature (K); 

𝑄𝑖,𝑠 is the heat rate per meter square (W/𝑚2). 

 

Both static and dynamic analysis are used to measure the thermal characteristics using data 

obtained from the tests. The potential sources of error in this method are measurement 
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errors, boundary condition errors and data analysis errors. It is difficult to meet the data 

analysis conditions in steady state analysis. The steady state analysis does not provide any 

insight into dynamic properties and requires long time to arrive at accurate results. ISO 2014 

outlines the standard procedure [46]: 

 test duration should be at least 72 hours; 

 measured value should be within 5 % of the value estimated at the end of the test 

period; 

 the value estimated during first  period (up to 2/3rd of the time from the beginning) 

should be within 5 % of the value estimated during last period of the test (up to 2/3rd 

from the end) 

 internal energy in wall/component should not increase by more than 5 % of the initial 

value. 

 

It is usually difficult to achieve these steps during the tests, especially for unknown 

components. However, they are recommended as a first estimation. For light components, 

this method can achieve reasonable accuracy. In a simple case, for a wall with insulation of 

20 cm, U-value was averaged over eight days to arrive at value, consistent with reference 

value [46].  

 

The dynamic analysis requires less testing time and is used for estimation of both static and 

dynamic properties with reasonable accuracy [46]. A lumped RC model is used for dynamic 

analysis of the wall. The standard form of energy balance equation for any node inside the 

wall can be written as:  

 

 
C2.

𝑑𝑇2

𝑑𝑡
=   (𝑇1 − 𝑇2)𝐻1−2 +  (𝑇3 − 𝑇2)𝐻2−3 + 𝑞2 

(3.5) 

 

Where 𝑇1, 𝑇2 are temperatures of nodes,  𝐻1−2  and 𝐻2−3 represent thermal conductance of 

wall partitions and 𝑞2 represents an external heat flux such as solar radiations or external 

heating or cooling. With the dynamic model, both static (conductance) and dynamic 

properties (capacitance) can be estimated provided that data such as outdoor temperature, 

indoor temperature and solar radiation are given. The identified  parameters such as thermal 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



105 

 

resistance or capacitance  are compared with measured values. The identified parameters can   

be further optimized using an objective function with the aid of specialized software such as 

LORD or CSTM [46]. The estimation and validation process for the identified parameters is 

shown in Figure 3.1. 

 

 

Figure 3.1: Parameter Identification and validation process for parameters of a wall [46] 

The flow meter method was applied to a triple glazing and an insulated concrete wall to 

validate the claims of manufacture about the U values. Both the wall and the glazing were 

oriented towards North [46]. The data obtained every five minutes was averaged over 5 hours. 

Interesting results for glazing and wall can be observed as shown in Figure 3.2. 

 

 

Figure 3.2: Heat flux relationship for insulated concrete wall and glazing  in flow meter 

testing [46] 

Figure 3.2 shows a strong relationship between the heat flow through glazing and 

temperature difference. The U-value can be easily determined from the relationship. 

However, in the case of insulated heavy wall, the data is scattered and U-value cannot be 
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determined from the measurement. An increased averaging time of up to 72 hours or dynamic 

relationship can be used to determine U-value in this case [46].   

 

A light wall with strong insulations (high resistance) on two sides was tested using heat flow 

meter method. Both static and dynamic methods were used for estimation of thermal 

properties. For steady state estimation, the observation length was increased to one day per 

sampling. The period necessary to obtain an accurate U-value was between 5 to 6 days. In 

total, observations for 8 days were used.  

 

Figure 3.3:Varaition and stability of U value over time [46] 

A dynamic model was generated by using 3R2C model with an approximate 72 hours of test 

data. The observed surface to surface U value was measured as 0.179 W/m2K with a standard 

deviation of 0.4. Both the steady state and dynamic conductance values (U) were close to each 

other [46].  

 

An interesting comparison of steady state and dynamic analysis methods is provided by [63] 

for a cavity wall located in Belgian climate. The thermal resistance calculated from thermos 

physical properties of walls is 4.002 m2KW-1. The weather conditions, temperature variation 

of wall and heat flow through wall is modelled for a period of one year and simulation step of 

one minute. The methods tested with data were steady state methods; the simple ISO 9869 

(average method), ISO 9869 method with rectification/correction for storage (also known as 

semi stationary method) and dynamic methods; using Anderlind’s regression (regression with 

correction for dynamic effects), ARX and the stochastic state space GREY BOX methods. The 

ARX model of order 18 and grey box model of order 3 were found suitable [63]. 
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The dynamic methods generated an improved performance compared to the stationary 

methods. Different dynamic methods performed more or less equally well. The anderlind’s 

regression (improved black box) method converged quickly to accurate estimates as 

compared to ARX and grey box methods. The state space grey-box modelling was more labor 

intensive as compared to ARX and Anderlind’s regression method. In winters, both semi 

stationary and dynamic methods performed equally well. In summers, only dynamic methods 

generated reliable results. Dynamic models are more versatile. However, they are complex to 

use in contrast to semi-stationary methods, which provide reliable results in winters only [63]. 

 

The flow meter (ISO 9869) testing for thermal characterization can take from 3 days to a week, 

depending on the thermal mass of the wall and the weather conditions [84]. The value 

estimated using this method is used as a reference value and is considered as accurate. 

However, the long-time duration of this method makes it impractical to be employed at a large 

scale. A new transient short term method called Excitation Pulse method was proposed, based 

on the theory of the response factors (RFs)  [85]. 

 

This method involves the application of triangular excitation pulse to a wall for a short 

duration and the measurement of heat flow and temperature on both sides of wall. The 

measurement time took one and half hour for readings to converge. The schematic of the 

experiment is shown in Figure 3.4. 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



108 

 

 

Figure 3.4:The experimental setup for Excitation Pulse Method[85] 

  The response factors 𝑋 and 𝑌 are calculated as 

 

 X𝑖 =
𝑞1

𝛿
, Y𝑖 =

𝑞2

𝛿
 (3.6) 

 

where 𝑞1 and 𝑞2 are the heat fluxes measured at inner and outer surfaces of the wall, 

respectively and 𝛿 is the magnitude of triangular pulse. The resistance value of the wall can 

be measured as: 

 

 
𝑅𝑐 = 2 × (∑(𝑋𝑖 + 𝑌𝑖)

𝑛

𝑖=0

)

−1

 
(3.7) 

 

The Excitation Pulse Method (EPM) method was applied for different case studies (walls) [85]. 

It was found that the measured 𝑅𝑐 values were close to the values obtained by ISO-9869 

during the same experiment. A difference of less than 2 % was found between ISO-9869 and 

EPM. It was recommended to test EPM method for different constructions and to standardize 

the testing method using automatic controls [85].   

 

Calorimetric methods are used to determine both thermal and solar characteristics of building 

components [46]. Calorimetric method is based on the principle that heat flow through any 

component is based on its thermal properties and boundary conditions (internal temperature, 
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global radiations, wind speed direction etc.). Hence, if the time series of heat flow and 

boundary conditions are measured, the thermal properties can be estimated [46]. The test 

cell for calorimetric method is a rectangular box (PASLINK Test cell) with front surface used to 

test wall specimens (Figure 3.5). 

 

 

Figure 3.5: A view of calorimetric test cell and heat transfer surfaces [46] 

 

A general form of heat transfer equation for the test cell can be given as: 

 

 Φ𝑛𝑒𝑡,𝑐 =     𝑃𝑎𝑢𝑥 − Φ𝑡𝑐 − Φ𝑠𝑟 (3.8) 

 

where Φ𝑛𝑒𝑡,𝑐 is the net heat flow through the test component, 𝑃𝑎𝑢𝑥  is the net heat supplied, 

Φ𝑡𝑐 is the heat transfer to the exterior across the boundaries/walls of the cell and the Φ𝑠𝑟 is 

the heat transfer with service room. The measured Φ𝑛𝑒𝑡,𝑐 from the experiment is used to 

estimate the thermal properties by using equation:  

 

 Φ𝑛𝑒𝑡,𝑐 =   𝐻(𝑇𝑖 − 𝑇𝑒) − 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙,𝑣 (3.9) 
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where 

𝑇𝑖 is the internal box temperature (K); 

𝑇𝑒 is the external temperature (K); 

𝐼𝑠𝑜𝑙,𝑣 is the solar radiations (W/𝑚2); 

𝐴𝑠𝑜𝑙  is the solar aperture (𝑚2); 

 

One week of test data is usually required for determination of all thermal properties. For linear 

regression, the following equation is used where 𝐻 and 𝐴𝑠𝑜𝑙  form the intercept and slope of 

regression line: 

 

 Φ𝑛𝑒𝑡,𝑐

(𝑇𝑖 − 𝑇𝑒)
=   𝐻 − 𝐴𝑠𝑜𝑙

𝐼𝑠𝑜𝑙,𝑣

(𝑇𝑖 − 𝑇𝑒)
 

 

(3.10) 

 

The above equation can be used for steady state analysis. The steady state methods require 

a long testing time, sometimes more than 10 days, and is unable to provide information on 

dynamic properties of the building. In order to overcome these issues, dynamic analysis are 

used using software tools such as LORD or Continuous time linear stochastic modelling 

(CSTM). CSTM considers uncertainties in both measurements and calculations during 

estimation. This software tool can be used for identification and performance assessment of 

the entire building, building components and heat exchangers, etc. However, there are two 

issues with this method: the correct assignment of variables as inputs and outputs and its 

dependence on user experience, as with same data, different users can generate different 

results [86]. One week of measurement is recommended for majority of the tests. 

 

Jimenez and Madsen applied different models of varying complexity for estimating 

characteristics of building components such as UA and gA values [87]. A wall with double 

glazed window was used as a sample in PASLINK test cell and data was collected during tests 

for two orientations of wall, i.e. towards South and North. The test cell was excited using 

randomly ordered logarithmically distributed binary sequence (ROLBS). 

 

Different mathematical models were used for data fitting and validation [47]: 
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Linear Model 0: with assumption of no infiltration air and no heat transfer via test cell 

boundaries. 

Linear transfer function Model 1: with none of the assumptions of Model 0 and the 

assumption that heat transfer between the surroundings and test cell are linear. 

Non linear Transfer Model 2: same as model 1 with addition of nonlinear term for radiation 

heat transfer between the test cell and finally. 

Nonlinear continuous time state space model 3:  with the same assumptions as Model 2 but 

expressed in form of dynamic state and consideration of difference between room 

temperature and sensor. 

 

A linear ARX model was used to estimate parameters for Models 0 to 2 using MATLAB toolbox 

for System Identification. Parameters for Model 3 were estimated using CSTM (Continuous 

Time Stochastic Modelling) software. UA and gA values were estimated for an opaque wall 

with a double-glazed window. The model was validated using a separate data set. The 

performance was measured by comparing the estimated values of UA and gA against the 

reference values in literature (for each model) and by analyzing residual characteristics such 

as mean, standard deviation and autocorrelation function and cumulated periodogram. The 

test results confirmed that Nonlinear Continuous Time State Space Model 3 is the best model 

among the four models for opaque wall with double glazing.  

 

Naveros conducted further studies on calorimetric method on real sized building components 

to analyze the limitations of average linear regression, such as minimum data integration time 

required and minimum number of terms required in energy balance equation for steady state 

methods. It was observed that the results were improved significantly if the average period of 

data integration is increased from one to five days and the wind speed is included as variable 

(Naveros, 2012). Jimenez performed statistical analysis for calorimetric test using RC network, 

transfer functions and state space modelling. It was concluded that better results can be 

obtained by using state space model with inclusion of non-linear long wave radiations [47]. 

 

The  overall heat transfer coefficient and heat capacity for a building with integrated solar 

panels  was estimated using one and two state grey box model [88]. Evaluation of one state 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



112 

 

and two state showed that two-state model was able to model the system dynamics very well 

and further improvement to the model can be made by adding terms for solar radiation and 

PV module temperature to the noise term. The statistical evaluation of the two-state model 

shows that this model describes the dynamics of the system very well. A possible model 

improvement could be the introduction of a dependency of the solar radiation and the PV 

module temperature in the noise term. 

 

 

 

 Co-heating method 

 

Co-heating method is used for measuring heat transfer coefficient 𝐻(
𝑊

𝐾
) and solar aperture 

𝐴𝑠𝑜𝑙(𝑚2) for an entire building. It is a quasi-static method in which a building is heated to a 

uniform and constant temperature of 25 °C, with the varying external weather conditions [89]. 

Electric heaters and fans are used to achieve uniform temperature. Heat input, indoor and 

outdoor temperatures, solar radiations, wind speed and direction and relative humidity are 

observed during the experiment. The experiment timing and data averaging is selected in a 

way to reduce the effect of charging and discharging of building. 

 

The data is collected over five-minute interval with the advantage that data can be utilized to 

analyze the dynamic effects. The data is aggregated over long time span such as 1 day, 2 days 

or one week. The data aggregation methods include averaging, resampling and decimating 

[89]. The controlled indoor temperature and appropriate sampling of data help to reduce the 

effects of dynamic effects [90].  

 

The total heat loss coefficient is the combination of both fabric and ventilation losses. The 

ventilation loss coefficient can be segregated from envelope heat loss coefficient using 

common tests such as pressurization tests, tracer gas decay method and constant 

concentration test method. For co-heating test, at least 10 K temperature difference is 

recommended. This is the reason why it is preferred to conduct the co-heating tests during 
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winters when temperature difference between indoor and outdoor temperature is sufficient. 

A recommended duration of the test is from two to four weeks [46].  

 

The energy consumption of building is analyzed against the indoor and outdoor conditions 

using regression analysis. The coefficients of regression give the building thermal 

characteristics such as total heat loss coefficient and solar aperture [89]. Steady state 

conditions are achieved by keeping the indoor temperature constant during analysis when the 

outdoor temperature can be considered as constant. The heat balance equation used for 

regression analysis of the data is:  

 

 Φ𝑝 + 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙 = 𝐻(𝑇𝑖 − 𝑇𝑎) (3.11) 

 

where 

Φ𝑝  is the power supplied for keeping the indoor temperature constant (W) 

𝐴𝑠𝑜𝑙  is the solar aperture (𝑚2); 

𝐼𝑠𝑜𝑙,𝑣 is the solar radiations (W/𝑚2); 

𝐻 Overall heat transfer coefficient (W/K); 

𝑇𝑖 is the internal box temperature (K); 

𝑇𝑎 is the external temperature (K); 

 

The solar aperture 𝐴𝑠𝑜𝑙  can be calculated from the building geometry, orientation, properties 

of walls and fenestration and solar measurements. Alternatively, it can be estimated by using 

linear regression analysis. Different methods of analysis to estimate 𝐻 and 𝐴𝑠𝑜𝑙  are: 

 Calculating 𝐴𝑠𝑜𝑙  from building features and average measured 𝐼𝑠𝑜𝑙  and use equation 

to estimate 𝐻 value only. However, it is recommended not to calculate 𝐴𝑠𝑜𝑙  on the 

basis of orientation and shape as this term includes complicated terms not presented 

by geometrical dimensions only [90].  

 Multiple regression analysis where 𝐻 and 𝐴𝑠𝑜𝑙  are considered as independent 

variables and Φ𝑝 (heating power) as dependent variable. 

 Rearranging equation so that in regression analysis 𝐻 appears as intercept and 𝐴𝑠𝑜𝑙  as 

the slope of linear regression line (Figure 3.6). 
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 Φ𝑝

ΔT
= 𝐻 + 𝐴𝑠𝑜𝑙 . 𝐼𝑠𝑜𝑙/ΔT 

(3.12) 

 

The graph shows determination of heat loss coefficient based on calculation of 𝐴𝑠𝑜𝑙,  where 

the equation is forced through zero intercept and heat loss coefficient is determined as slope 

of the regression line (Figure 3.6). The plot on right of Figure 3.6 is based on 𝐴𝑠𝑜𝑙   and 𝐻  as 

independent variables and determined as intercept and slope of the graph respectively. 

 

The validity of results from co-heating experiments depend on three factors that are 

repeatability of results, systematic errors due to neglecting solar radiation and thermal lags 

[89]. The errors can be further reduced by observing separately thermal bridging and local 

infiltration losses. 

 

 

Figure 3.6: Estimation of H and Solar aperture, using simple linear regression [46] 

 

A regression analysis on three axis is recommended for co-heating data analysis as it helps 

visualize the estimates under the influence of different boundary conditions (weather), as 

shown in Figure 3.7 [90]. 
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Figure 3.7: Three dimensional presentation of linear regression of co-heating data [89] 

One of the issues with co-heating method is the measurement of solar radiation, i.e. whether 

vertical measured radiations should be considered or horizontal radiations [91]. Majority of 

the tests have reported horizontally measured radiation. The heat lost through adjoining 

buildings or spaces is another issue and usually requires heating the adjoining building or 

space to equal temperatures. These issues, together with the long periods of testing and with 

testing periods specifically limited to the cold seasons of the year have reduced the popularity 

of co-heating methods [91]. 

 

The  normal period for coheating test ranges recommended testing duration can be reduced 

up to 3 days. Within 72 hours of testing period, the value of 𝐻 can reach within ± 10 % of the 

reference value, as demonstrated for 12 out of 16 cases [91]. Monitoring beyond this period 

improves results to a smaller extent. The range of suitable testing period depends on dwelling 

type. The suitable testing period is 2/3 of the year for buildings built as per UK 2012 

regulations, 40% of the year for buildings built to national standards, 20 % for Passivhaus and 

12% for apartments [91]. 
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 Conclusions 

 

The long term test methods, such as co-heating, calorimetric and flow metric tests (ISO 9869) 

are utilized for in-situ thermal characterization of buildings. The thermal values estimated 

using these tests are precise compared to raw model values (based on simulations or 

calculations only) and can be effectively used to reduce performance gap. However, certain 

shortcomings make these methods impractical to be employed in field tests at large scale. 

These methods require a long testing period, that can range from two to four weeks, with the 

shortest reported period being 3 days [85].  

 

There are many reasons why the long-term methods cannot be applied on a large scale in field 

tests. The season of the year during which the tests can be conducted is limited to heating 

season only, when external temperatures are low and effects of solar radiations are minimal 

[92]. The range of suitable testing duration depends on type of dwellings. The methods also 

require a long testing period with no occupancy. It is usually difficult to obtain a facility for 

such a long period. 

 

The long-term test methods, as discussed in this chapter, have a shortcoming: they are too 

long to be employed on commercial scale. To overcome this shortcoming, short term thermal 

characterization test methods were developed. The short-term test methods, with focus on 

QUB method is discussed in the next chapter. 
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 Short-term test method: QUB method 

 

 

Short term methods were developed to overcome the shortcomings of long term methods, 

i.e. the long testing time. PSTAR, ISABELE (In Situ Assessment of Building EnveLope 

pErformance) and QUB (Quick U-value of Buildings) are some of the short test methods. 

 

PSTAR is a dynamic testing method that uses system identification techniques to estimate 

building parameters. The test is performed in three nights and four days: the first night is to 

achieve steady state conditions; the second night is to let the temperature decay and the third 

night is to calibrate the heating system. One or more solar days are included to account for 

solar aperture. Overall heat transfer coefficient is estimated in last two nights. The method 

requires strict experimental conditions and has repeatable accurate results. The errors result 

from the inability to achieve steady state conditions and the sensitivity to solar radiations. The 

methods also require building to be modelled as single zone. 

 

ISABELE (In-Situ Assessment of the Building envelope performancEs) is a dynamic thermal 

characterization method based on the response of building temperature to controlled heating 

input. This method is based on French Thermal Regulation RT2012 and identifies thermal 

transmission and thermal inertia. The identification process involves fitting a thermal model 

to the observed temperature response. ISABELE method models uses five resistances and one 

capacitance and identifies the parameters from the response curve [93]. The experiment 

involves the observation of the building temperature when no power is injected, followed by 

power injection and finally no power is supplied. The required measurements are internal 

temperature, heating power injected, air infiltration rate and external climate conditions. The 

test takes 5 to 15 days to be completed, depending on thermal inertia of building [83]. The 

method is sensitive to air infiltration rate and solar radiation.  

 

 QUB is a short term testing method that measures the heat loss co-efficient in one to two 

nights. It has the shortest duration among the short term methods, with results of the test 

ranging in ±15 to ±20% of the reference value. As the focus of the thesis is on QUB method, 
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its development, basic principles and experimental validation is discussed in details in the next 

sections.  

 

 Introduction to QUB method 

 

QUB is quick method for testing, introduced by Saint-Gobain, to measure the heat loss 

coefficient (H) within a single night. The method has the potential to reduce the testing time 

from 8 hours to 1 hour in some cases [46], [91], [92], [94].This method involves application of 

two levels of excitations, i.e. different levels of power. Usually, a high power period is followed 

by low level or no power period, as shown in Figure 4.1. The duration for both excitations is 

the same. The experiment is performed at night without any occupants to avoid external gains 

[59]. The response of building is estimated by measuring indoor and outdoor temperatures 

and the power levels.  

 

 

 

Figure 4.1: Schematic presentation of QUB method [46] 

The building is represented by a RC network (Figure 4.2).  The temperature inside the building 

is considered as homogeneous and represented by a single node. The evolution of the internal 

temperature with input power is modelled with respect to indoor and outdoor temperatures, 

over-all heat transfer coefficient and the capacitance of building. The power injected is:  

 

 
�̇�ℎ =  𝐻(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) + 𝐶

𝑑𝑇𝑖𝑛

𝑑𝑡
 

(4.1) 
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where �̇�ℎ is the power supplied, 𝐻 is the over all heat transfer coefficient, 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 are 

the indoor and outdoor temperatures respectively, and 𝐶 is the capacitance. The temperature 

evolution is expressed as time constant with product of resistance and capacitance as 

exponents of decay. 

 

 

 

 

Figure 4.2: RC-Network Model used in QUB method [59] 

 The overall heat transfer coefficient is estimated by  

 

 
𝐻𝑄𝑈𝐵 =  

𝛼2𝑃1 − 𝛼1𝑃2

𝛼2∆𝑇1 − 𝛼1∆𝑇2
 

 

 

(4.2) 

 

where  

𝛼1 slope of the measured indoor temperature at the end of heating phase; 

𝛼2 slope of measured indoor temperature at the end of cooling phase; 

𝑃1 input power during heating phase; 

𝑃2 Input power during cooling phase; 

𝑇1 temperature difference between indoor and outdoor temperature at the end of 

heating phase. The outdoor temperature is estimated by taking the mean 

temperature during QUB night; 
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𝑇2 temperature difference between indoor and outdoor temperature at the end of 

cooling phase. The outdoor temperature is estimated by taking the mean 

temperature during QUB night; 

 

 Taylor series method for uncertainty is used for estimate uncertainty with estimation of 

𝐻𝑄𝑈𝐵. It is recommended to carry out the test when the building is empty and there is no 

power in the second period of the test [92]. This one night testing method has the potential 

to be an effective tool for energy measurement. Since the method is relatively new, it requires 

further validation by repeating method on virtual buildings, test buildings and actual buildings. 

 

The QUB test requires instruments for measuring zone air temperatures, external air 

temperature and power input. The power measurement requires special care during QUB test. 

To estimate the influence of weather parameters, such as wind speed, solar radiations etc., a 

weather station may also be used [94]. Heat flux meters may be used to measure the U-value 

for building components, such as walls, during the QUB test. 

 

QUB method is sensitive to the homogeneity of the input temperature in the measurement 

zone and care must be taken to ensure that uniform temperature is maintained. Saint-Gobain 

recommends to use mat heaters for this purpose. The duration of heating and cooling should 

be the same. The data analysis period must be the same. For example, when heating duration 

starts at 7 PM and ends at 1 AM and two hour analysis period is selected between 11 AM and 

1 AM, then the same data analysis period must be selected for the cooling period, that is from 

4 AM to 6 AM [46]. To avoid effects of solar radiation, the test is conducted during the night 

in empty building with power measurements (electric heating). 

 

A dimensionless parameter 𝛼 is used as a check on the estimated value of overall heat transfer 

coefficient, known as 𝛼-criterion: 

 

 
𝛼 = 1 −  

𝐻𝑟𝑒𝑓∆𝑇0

𝑃1
 

(4.3) 
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where 𝐻𝑟𝑒𝑓 is the reference heat loss coefficient determined earlier using co-heating test 

method or the stated/assumed value available [92], ∆𝑇0 is the initial temperature difference 

between indoor and outdoor temperature at the start of the test and 𝑃1 is the power supplied 

during the first phase of test. The value of 𝛼 is an indirect measure of certainty on the 

estimated value of 𝐻𝑄𝑈𝐵. An 𝐻𝑄𝑈𝐵 value for which 𝛼 lies between 0.4 and 0.7 is considered 

within the limits of reference value. Any 𝛼 greater than 0.7 indicates that 𝐻𝑄𝑈𝐵 value is 

overestimated. A value smaller than 0.3 indicates an underestimation. In case of 

overestimation, the test period is increased.  

 

Figure 4.3: Variations of overall heat transfer coefficient values with alpha [92] 

For equal heating and cooling times (𝑡1 = 𝑡2), constant external temperature and no power 

dissipation during the second phase of the test, the 𝐻𝑄𝑈𝐵 can be given as function of 

theoretical 𝐻  by the equation: 

 

 
𝐻𝑄𝑈𝐵 =  

𝐻

1 − 𝛼2𝑓(𝛼)
 

(4.4) 

 

where function 𝑓(𝛼) depends on 𝛼, on resistance 𝑅𝑖 and capacitance 𝐶𝑖 of the model. This 

equation shows that 𝐻𝑄𝑈𝐵 is equal to the theoretical 𝐻 at lower values of 𝛼. However, at 

higher values of 𝛼, 𝐻𝑄𝑈𝐵 overestimated as shown in Figure 4.3. 

 

A simple R-C model with internal heat generation is used to model the entire building for QUB 

data analysis 

 𝐶 𝑑𝑇 = (Φ𝑃 − 𝐻. ∆𝑇) 𝑑𝑡 (4.5) 
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where 𝐶, is the heat capacity of the building representing the amount of heat required to bring 

1 K temperature difference, Φ𝑃 is the heat supplied, 𝐻 is the overall heat transfer coefficient 

and ∆𝑇 is the temperature difference between internal and external temperature. The 

assumptions of this model are uniform/homogeneous internal temperature and constant 

external temperature.  

 

The QUB test results can be expected to show a maximum standard deviation of 20 % 

compared to the co-heating tests, numerical studies showed a deviation of 11 % (for specific 

study), experiment in a controlled climate chamber a deviation of 4% and a real building 

showed a deviation of 11%.  The method is tested successfully for few buildings and the results 

obtained were verified with reference values. The experimental tests and simulation tests 

show  a variation in QUB results for the same house under relatively identical conditions [92]. 

The variation of the method with varying levels of insulation in not verified. The impact of 

changing weather conditions on QUB tests needs to investigated. The QUB method do not 

take into consideration heat losses to building  ground floor losses , this can be a source of 

error that warrants experiments with and without the consideration of losses through ground 

floor.  

 

 State of the art on QUB method  

 

In order to understand the QUB method, it is useful to discuss a previous work concerning the 

estimation of overall heat transfer coefficient of complex house [95]. The overall heat transfer 

coefficient is determined via three methods i.e.  

 Thermo physical properties only; 

 Free cooling and heating experiments in a house (short term); 

 using energy signature method. 

 This work provides a good opportunity to understand the theoretical framework of QUB 

method.  

The overall heat transfer coefficient  𝐾𝑜 value using thermos physical properties for building 

envelope is calculated as a sum of heat loss coefficients via building surfaces/envelope and 

heat loss via transmission/infiltration and ventilation losses using: 
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𝐾𝑜 = 𝐾01 + 𝑓𝐶𝑎 (4.6) 

 

where 𝐾01 is the building envelope loss, 𝑓 is the mass flow rate of air and 𝐶𝑎 is the total air 

capacity. The conductance of the building is calculated as: 

 

𝐾01 = (∑ 𝐴𝑖

𝑖

) 𝑈𝑏𝑎𝑡 = ∑ 𝑈𝑖𝐴𝑖

𝑖

+ ∑ 𝜓𝑗𝑙𝑗
𝑗

+ ∑ 𝜒𝑘

𝑘

 
(4.7) 

 

where 𝜓𝑗(
𝑊

𝑚∗𝐾
) is the linear coefficient for thermal bridge junction 𝑗, 𝑙𝑗 is the length of the 

thermal bridge and 𝜒𝑘 is the punctual coefficient of 3D thermal bridge (W/K). The calculated 

𝐻 value was 497 (W/K) [95]. 

 For a heating or free cooling experiment, assuming no occupancy, homogeneous internal 

temperature and no internal power generation, the behavior of building with the active 

heating source such can be described by equation: 

 

𝐶𝑑𝑇 = (𝑃 − 𝐾𝑜𝑇)𝑑𝑡 (4.8) 

 

Where 𝐶 is the apparent heat capacity, 𝑃 is the heating power and 𝑇  is the temperature 

difference between outside and inside building. 

 

 Taking the Laplace transform of equation (4.8) (free cooling) we get  : 

 

∆𝑇𝑐 = ∆𝑇𝑜
𝑐(exp (−𝑡/𝜏)) (4.9) 

 

Linearization of this equation generates: 

 

∆𝑇𝑐 = ∆𝑇𝑜
𝑐(1 − 𝑡/𝜏) (4.10) 
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where 𝜏 = 𝐶/𝐾𝑜 , is the characteristic time of the building. In “heating case”, with constant 

power 𝑃, the temperature evolution obtained by using Laplace transform is: 

 

∆𝑇ℎ = (∆𝑇𝑜
ℎ − 𝑃/𝐾𝑜)exp (−𝑡/𝜏) + 𝑃/𝐾𝑜 (4.11) 

 

Linearization of this equation (4.11) generates: 

 

∆𝑇ℎ = (∆𝑇𝑜
ℎ − 𝑃/𝐾𝑜) (1 − 𝑡/𝜏) + 𝑃/𝐾𝑜 (4.12) 

 

The theoretical evolution of temperature can be validated by following the experimental 

evolution of temperature inside a real house for heating and cooling. Measurement of 

experimental slope of temperature and fitting a line/curve generates: 

  

∆𝑇𝑐 = ∆𝑇𝑜
𝑐 − 𝛼𝑐𝑡 (4.13) 

 

where  

 

𝛼𝑐 = ∆𝑇𝑜
𝑐𝐾𝑜/𝐶 (4.14) 

 

  

 For heating experiments: 

 

∆𝑇ℎ = ∆𝑇𝑜
ℎ + 𝛼ℎ𝑡 (4.15) 

 

where  

 

𝛼ℎ = 𝑃 − ∆𝑇𝑜
ℎ𝐾𝑜/𝐶 (4.16) 
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Both coefficients 𝛼𝑐 and 𝛼ℎ are measured during experiments of heating and cooling. The heat 

loss coefficients and the capacitance of the building can be estimated by 

 

𝐾𝑜 = 𝑃/(∆𝑇𝑜
ℎ + ∆𝑇𝑜

𝑐
𝛼ℎ

𝛼𝑐
) (4.17) 

 

and 

 

𝐶 = 𝑃/(𝛼ℎ + ∆𝑇𝑜
ℎ

𝛼𝑐

∆𝑇𝑜
𝑐) (4.18) 

 

The experiments for free cooling and heating as explained  are conducted during the months 

of February and April. The experimental curves used for derivation of equations are shown in 

Figure 4.4. 

 

Figure 4.4: Fitted curves to experimental data during cooling and heating of building [95] 
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From the slopes of the fitted curves, the values of 𝛼𝑐 and 𝛼ℎ are measured. They are inserted 

in equations (4.17) and  (4.18) to estimate values of 𝐾𝑜 and C as 

 

 a. 𝐾𝒐 = 462 W/K and 𝐶 = 112 𝑀𝐽/𝐾 

 b. 𝐾𝒐 = 466 W/K and 𝐶 = 104 𝑀𝐽/𝐾. 

 

The time constant 𝜏 for building is almost 3 days. 

 

In the third stage, the energy consumption of the building is measured along with weekly 

outside temperature data when the indoor temperature is maintained at 20 ℃ [95]. The fitted 

line of the graph is shown in Figure 4.5. 

 

Figure 4.5: Energy consumption as a function of weekly averaged outside temperature [95] 

  

The 𝐻 value estimated in this case using using regression analysis: 

 

𝐸 = 503(20 − 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒) − 453𝑊 (4.19) 

 

where 453 Watts, is the corrective factor for solar gains and heat generated due to occupancy. 

 

The three values for overall heat transfer coefficient estimated using the three methods i.e. 

based on thermos physical properties, short term heating and cooling experiments and energy 
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signature/annual energy consumption are shown in Table 4-1. The three values for overall 

heat transfer coefficient estimated using three methods are in relative agreement with each 

other as shown in Table 4-1. The overall heat transfer coefficient during short term heating 

and cooling experiments is slightly underestimated, this may be attributed to zero occupancy 

and no solar radiations due to closed shutters, however  this needs further investigation [95]. 

The short term method as explained in this section can be considered as precursor to more 

sophiticated QUB method. 

 

Table 4-1: Overall heat transfer coefficients estimated using three tests [95] 

Calculations 

(thermo-physical 

properties)(W/K) 

Measured yearly energy 

consumption(W/K) 

Heating and cooling 

experiments(W/K) 

497 503 464 

 

 Influence of time constants of building for QUB method 

 

QUB method assumes homogeneous internal temperature, constant external temperature 

and equal heating and cooling duration. The assumption of single RC network is too simplistic 

and the number of resistances and capacitances can be increased to 𝑛 nodes to present the 

real behavior of the building [96]. In such a case, the temperature decay can be presented as 

𝑛 exponential terms. In steady state when the decay is considered for a time long the 

temperature can be given as:  lim
𝑡→∞

𝑇(𝑡)  = 𝜑/ 𝐻𝑡𝑜𝑡. Where 𝜑 is the heating power and 𝐻𝑡𝑜𝑡 is 

the steady state overall heat transfer coefficient. 

The general solution for temperature evolution during the heating or cooling phase of the 

QUB experiment can be represented by equation : 

 

𝑇(𝑡) =
𝜑

𝐻𝑡𝑜𝑡
+ [𝑇(0) −

𝜑

𝐻𝑡𝑜𝑡
] ∑ 𝑎𝑖𝑒

−
𝑡
𝜏𝑖

𝑛

𝑖=1
 

 

 

(4.20) 
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where 𝜏𝑖 are time constants in increasing order such that 𝜏𝑛 represents the longest time 

constant and 𝑎𝑖 represents the constants that depend on model resistance, capacitance and 

initial conditions. The steady state value 𝐻𝑡𝑜𝑡 will be equal to 𝐻𝑄𝑈𝐵 only if [82] 

 

∑ [𝑎𝑖.(1)/𝜏𝑖]𝑒
−

𝑡(1)

𝜏𝑖
𝑛
𝑖=1

∑ [𝑎𝑖.(1)]𝑒
−

𝑡(1)

𝜏𝑖𝑛
𝑖=1

=
∑ [𝑎𝑖.(2)/𝜏𝑖]𝑒

−
𝑡(2)

𝜏𝑖
𝑛
𝑖=1

∑ [𝑎𝑖.(2)]𝑒
−

𝑡(2)

𝜏𝑖𝑛
𝑖=1

 

 

 

(4.21) 

 

The above equation holds true when we consider the temperature evolution: as a function of 

single time constant i.e. 𝑛 = 1, this happens when the time duration for two phases 𝑡(1) and 

𝑡(2) increase to such extent that all the time constants except the highest time constant decays 

This is considered as sufficient time for QUB experiment and if this time is shorter than single 

night, than QUB experiment can be performed during a night without the influence of solar 

radiations [82]. 

 

The accuracy of the QUB method as a function of longest/highest time is discussed in [93]. 

The time constants are determined as eigen values of state space matrix 𝐴 of the building. The 

response of the building temperature is exponential due to the cumulative effect of all time 

constants. However, the matrix 𝐴 has a number of time constants (negative inverse of eigen 

values) categorized as short, medium or long time constants (significant or non-significant 

time constants) [93]. The coefficient of time constants determines whether they are dominant 

or insignificant time constant.  

 

The medium time constants with large coefficients determine the exponential response of the 

building [93]. The response of the building is exponential after the small time constants 

(insignificant) have decayed and before the effect of large time constants have set in. The 

slope of the response curve should be determined at this stage. 

 

The QUB experiment is performed without any occupancy at night so that influence of solar 

radiation and any other power input (due to occupants) can be eliminated. The thermal power 
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has strong influence on the result of QUB experiment and should be applied as a constant 

value known with accuracy. To ensure accuracy, it is advisable to use two electric heaters with 

low inertia. Any other sources of heat, such as wood, boiler, gas etc., require conversion and 

efficiency factors. This can lead to errors. A small deviation such as 5% deviation in voltage 

measurement, can lead to larger deviation in power measurement and a 10% deviation in 

measured 𝐻𝑄𝑈𝐵 [97]. 

 

It is important to keep temperature homogeneous across the buildings. This can be a problem 

in case of buildings with multiple rooms. Heaters with small power (100 W) designed to 

maximize convection can be used to ensure this. This problem can also be resolved by using 

heaters according to the thermal parameters of the room. G. Pandraud recommended to use 

heating mats of 112.5 W placed in vertical position over floor to ensure homogeneous 

temperature distribution. Vertical position results in lesser heat transfer to the ground and 

generates a smoother temperature curve [97]. The analysis period must be long enough to 

average out the measurement noise but still be representative of the dynamic conditions. 

 

It should be mentioned here that the formulas for 𝐻𝑄𝑈𝐵 are derived using single RC network, 

which is a crude approximation of the actual temperature evolution. The exact evolution of 

temperature during a QUB experiment can be modelled by considered the wall with 𝑛 layers 

(an RC network with 𝑛 nodes). The temperature evolution during QUB experiment can then 

be presented as  [𝑇∗] = ∑ 𝑐𝑖[𝑋𝑖]
𝑛
𝑖=1 𝑒

−
𝑡

𝜏𝑖, that is a sum of 𝑛 time constants [97]. By simple 

derivation, it can be proved that 

 

𝑇𝐼
∗(𝑡)̇

𝑇𝐼
∗(0) − 𝑞/𝐾𝑜

= −
1

𝜏𝑛

𝑇𝐼
∗(𝑡) − 𝑞/𝐾𝑜

𝑇𝐼
∗(0) − 𝑞/𝐾𝑜

 
(4.22) 

 

This equation leads to the QUB equation for 𝐻  

 

𝐻𝑄𝑈𝐵 =
𝛼1𝑞2 − 𝛼2𝑞1

𝛼1𝑇2 − 𝛼2𝑇1
 (4.23) 
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where 𝛼 =
𝑑𝑇

𝑑𝑡
 is the temperature gradient and 𝑇∗ is the temperature difference between 

internal building and external environment. The equation with 𝑛 nodes can be simplified to 

single RC network as after some time when the multiple time constants decay and the 

temperature evolution is the function of single time constant only. The capacitance is then 

calculated as a function of the largest time constant i.e. 𝐶 = 𝜏𝑛. 𝐾𝑜. 

 

Since single RC network is a crude presentation, H. Madsen [98] proposed that two time 

constants are sufficient to model a simple building. Since QUB method simplifies analysis by 

conducting experiments at night (no solar radiations) and no occupancy, it can be assumed 

that the model in this method can be represented by two time constants. Two-time constants 

translate into two capacitances, three resistances and two nodes as shown in Figure 4.6, 

where 𝑅𝐸𝑊 and 𝑅𝐼𝑊 are wall resistances, 𝑅𝐼𝐸 is the ventilation/infiltration resistance and 𝑇𝐸 

is the external temperature, respectively. 

 

Figure 4.6:3R-2C representation of QUB model [99] 

 

The model (3R2C) can be solved both numerically and analytically and can be presented by 

the equation 

 

𝑇𝐼
∗(𝑡) − 𝑞/𝐾𝑜

𝑇𝐼
∗(0) − 𝑞/𝐾𝑜

=
(𝐴1 −

1
𝜏1

) 𝑒
−

𝑡
𝜏1 − (𝐴1 −

1
𝜏2

) 𝑒
−

𝑡
𝜏2

1
𝜏2

−
1
𝜏1

 

(4.24) 
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where the values of 𝐴1,𝜏1 and 𝜏1 are given as functions of capacitance, resistance and 

different temperatures of the circuit [99]. The influence of the exponential exp (−𝑡/𝜏1) 

disappears quickly, leaving temperature evolution as a function of single time constant 𝜏2, 

that leads to the simple QUB equation for 𝐻. The method can thus be applied to complex 

buildings. 

 

Experiments conducted in Energy House in Salford were used to validate both QUB method 

(single RC), and the 3R2C model. The 3R2C fits the temperature evolution curve with two-time 

constants, as shown in Figure 4.8. The temperature evolution after four hours becomes a 

simple exponential decay. The 𝐻 values from the four methods, i.e. steady state experiments, 

QUB method, 3R2C and estimation via basic energy modelling software SAP are compared in 

[99]. The estimates of 𝐻 from different methods given in table are close to each other.  

 

Table 4-2: Comparison of three method of overall heat transfer estimation [99]) 

 

 

Results of these estimations validate QUB method. There are two sources of uncertainty: the 

uncertainty underlying the model due to the simplicity that is difficult to estimate; the choice 

of time period during which data is analyzed, especially the time for slope determination. The 

change in slope period during different test periods causes the dispersion in 𝐻 value 

(± 10 W/K). The suggested direction for future work is that the range of uncertainty of QUB 

method under different test conditions needs to be established (though it is in range of ±10 −

15%) [99]. 
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The heating power should be high enough to ensure the significant temperature difference 

between interior and exterior. The required power levels can be obtained by optimizing the 

value of power ratios 𝛼 given be equation (4.3). The QUB method involves application of two 

levels of power: a heating power followed by no power. There are two ways to conduct these 

experiments: either applying both levels of power in a single night (8-12h) or applying two 

stages separately in two nights (36-48h). The experiment should be as long as possible. If initial 

conditions are similar, i.e. the two constants 𝛼𝑖.(1)=𝑎𝑖.(2) in equation (4.21) then overall heat 

transfer coefficient estimated by QUB method (𝐻𝑄𝑈𝐵) will be equal to steady state heat 

transfer coefficient provided that the time for heating and cooling durations is equal i.e.  

𝑡(1)=𝑡(2),. The values are calculated at the end of each test period [82]. 

 

 

 

 Validation experiments for QUB 

 

An experiment to validate the measurement of 𝐻 by QUB method was conducted at energy 

house of Salford University [82]. In this experiment, H value was measured first by conducting 

a steady state experiment where H was estimated using 𝐻𝑡𝑜𝑡 = 𝜑/(𝑇2 − 𝑇1)  from Figure 4.7 

where values are averaged over a period of 12 hours. 𝐻𝑡𝑜𝑡 is used as a reference value. 
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Figure 4.7: Steady state experiment for H value. The solid black line shows measurement values 

for estimation of H [82] 

 

 

Figure 4.8:Evolution of internal temperature (green curve) and various fits as applied to the 

measured(green) curve [82] 

The measurement of H in steady state is followed by a QUB test. The evolution of the internal 

temperature is as shown in (Figure 4.8). The red dotted line in Figure 4.8 shows the fit with 

single time constant from the RC model also called trend. The blue line represents the same 

single RC model but with two-time constants, also called fit. Both the trend and fit models are 

derived using the same equation but with different number of time constants. The model with 

two-time constants corresponds to a model with two capacitances and minimum two 

resistances. Two time constant model seems to fit data very well [100]. The first-time constant 
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is shorter and dies out in 23 minutes or within an hour. After this time, temperature evolution 

can be presented by a single time constant. The results of QUB tests for H are compared in 

Table 4-3. The table shows that QUB results are in good agreement with 𝐻𝑟𝑒𝑓. 

 

Table 4-3: Results of three measurements from QUB test and steady state test [82] 

 

 

There are some questions that still need to be answered despite a good agreement between 

QUB test values and steady state values, s. a. the relationship between error, building 

characteristics and test duration. It is evident from the experimental results, that QUB test can 

give better results even with shortest possible time (0.5h). The question of sufficient time for 

QUB test is still unanswered [96].  

 

QUB method was tested virtually using TRNSYS software for a virtual single family house of 

109 m2 (with internal insulation) with weather data from city of Rennes [101]. Fifty-two tests 

were condcuted for a single year. The values obtained from QUB test were compared with the 

reference value 143 W/K  obtained from TRANSYS model. The values obtained by QUB tests 

were between 136 and 167 W/K, with a mean value of 150 W/K and maximal deviation of 

17%. The estimated QUB value was within ± 10% for 90 to 95% values [101]. 

 

University of Salford has built a controlled testing house known as Salford Energy House. It is 

a two-bedroom house built inside a controlled environment chamber where different weather 

conditions can be replicated. The house has sensors for multiple measurements in which 

fenestration, doors, and envelope insulations can be changed [94]. A number of in situ 

measurements were conducted  at Salford Energy House [101]. Temperature sensors, power 

meters and heat flow plates were used for generating a data set of  QUB test. When heat flow 
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plates are used, the QUB test it is referred to as QUB/e. With QUB/e test, U values of walls 

can be measured as well. It was inferred from the test that: 

 the H values obtained for QUB tests with one-hour heating duration yield values 

within 10% of the steady state reference values; 

 for heating duration less than half an hour, H values showed dispersion with a 

difference of up to 40 % with steady state reference values; 

 U values measured with QUB/e method were found within the recommended 

uncertainty bounds of steady state methods (co-heating methods ISO 9869-1). 

 

It should be noted that these conclusions were obtained for a reference test house and may 

not represent the real conditions of a living house in a community. 

 

A number of in situ tests were conducted for a detached uninsulated house in UK with heating 

duration of 5, 6 and 7 hours [92]. The tests were conducted starting from end of September 

till end of April. The tests were conducted for two different configurations of air tightness. It 

was concluded that: 

 QUB method provides reasonable results within 10 % error, provided that 𝛼 lies 

between 0.4 and 0.7; 

 tests with 5, 6 and 7 hours generated similar results, though for 5 hours heating 

duration results were at the lower limit; 

 no significant relation was found with wind speed, with a possible explanation that the 

building was sheltered from wind from three directions; 

 with tests extending from October to late September, a relation between H and 

external temperature was found. 

 

 Test duration and power levels for QUB test 

 

The test duration for QUB experiment should be as long as practical and for identical initial 

conditions i.e. 𝑎𝑖(1) ≈ 𝑎𝑖(1), the heating and cooling test durations should be equal. There is 

no optimal duration and for each experiment the test duration should be dealt on case to case 
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basis [82]. However, the period should be long enough to average out measurement noise but 

short enough to be representative of dynamic conditions.  

 

In order for 𝐻𝑄𝑈𝐵 ≈ 𝐻𝑟𝑒𝑓, it is important that 𝑡ℎ = 𝑡𝑐 > 𝑡𝑙 where 𝑡𝑙  is the sufficient time for 

all the small time constants to become zero, except the highest one. The quadrupole analysis  

shows the relationship between 𝐻𝑄𝑈𝐵 and 𝐻𝑟𝑒𝑓 (steady state) [82]: 

 

𝐻𝑄𝑈𝐵 = 𝐻𝑡𝑜𝑡

1

1 − 𝛼2
∑ 𝑠𝑖𝑠𝑗𝛽𝑖𝛽𝑗(𝜏𝑖 − 𝜏𝑗)(𝛽𝑖 − 𝛽𝑗)𝑖>𝑗

𝑅𝑇 ∑ (1 − 𝛼𝛽𝑖)𝑠𝑖𝛽𝑖𝑖

 

 

 

(4.25) 

 

where 𝛼 = 1 − 𝑇𝑜/𝑅𝑇𝑃ℎ and 𝛽𝑖 = 𝑒
−

𝑡ℎ
𝜏𝑖  . The value of 𝛼 is of particular importance in case of 

QUB test and represents the range of thermal load applied to building. There are two ways 

that can lead to 𝐻𝑄𝑈𝐵 = 𝐻𝑡𝑜𝑡: 

- If 𝑡ℎ is increased such that its value is higher than the second largest time constant, then all 

the 𝛽𝑖 terms except one are zero and the second term in the denominator of equation (4.25) 

tends to 0. 

- It is possible to make 𝛼 = 0. This can be achieved by 𝑝ℎ = 𝑝𝑜, that is the building stays at 

steady state, the temperature slope is zero and and 𝐻𝑄𝑈𝐵 = 𝜑/𝑇 [82]. However, it is 

practically not possible to make 𝛼 = 0, although its value can be reduced. As the value of 𝛼 

increase, the corrective factor in denominator increases as well. 

 

Using Quadrupole numerical analysis, the error in 𝐻𝑄𝑈𝐵 was analyzed as a function of 𝛼, using 

time durations of 1,6 and 12 hours respectively [82]. As shown in Figure 4.9, for a given 𝛼, the 

error reduces as test duration increases. 
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Figure 4.9: The error in QUB as a function α and time duration 

Another simulation, with varying initial conditions and different durations of cooling periods 

before QUB test, showed strong dependence of the test on 𝛼, showing that reliable results 

can be obtained (within 10% of the reference value) even with shorter durations provided that 

𝛼 is kept at low values. 

 

 

Figure 4.10:H_QUB as a function of initial conditions[82] 

G. Pandraud conducted both numerical and experimental analysis to optimize power levels 

and duration of the test. The purpose is to decrease both time duration and uncertainty of 

QUB test [97]. Results of QUB test depend on duration of the test: the longer the test period, 

the more accurate/closer is the 𝐻𝑄𝑈𝐵 to the refence value. It is possible to obtain an accurate 

value from QUB test by using one night per test (heating and cooling). This is evident from the 

expression [𝑇∗] = ∑ 𝑐𝑖[𝑋𝑖]
𝑛
𝑖=1 𝑒

−
𝑡

𝜏𝑖, or from the expression 3R2C (function of two time 

constants) where after sufficient time, the temperature evolution is function of single time 

constant. With temperature as a function of a single time constant, the equation for QUB test 

can be used to estimate 𝐻  
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𝐻𝑄𝑈𝐵 =
𝛼1𝑞2 − 𝛼2𝑞1

𝛼1𝑇2 − 𝛼2𝑇1
 

 

(4.26) 

 

 

The uncertainty of QUB test therefore increases with decrease in duration of the test. 

However, it is important to understand the relationship between the length of the test and 

the uncertainty in strict terms (numerical or analytical) in order to optimize the test duration, 

i.e. to reduce the test duration with minimal loss of accuracy. 

 

QUB tests were simulated with different durations of test, a 3D surface as function of all 

heating and cooling times was generated [97] as shown in Figure 4.11: 

 

Figure 4.11: 𝐻𝑄𝑈𝐵 as a function of position of heating and cooling duration [97] 

 

It is concluded from the Figure 4.11 that after 6h, the  𝐻𝑄𝑈𝐵 flattens out, i.e. no further 

improvement is obtained by increasing the test duration. The second conclusion is that 

accurate estimation of QUB in time lesser than one night can be achieved by keeping both 

heating and cooling durations equal [97]. 
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These results were confirmed by experiments at Energy House Salford University (for case of 

uninsulated house) as shown  

 

Figure 4.12:QUB tests as function of test duration [97] 

 

Figure 4.12 shows that accurate results can be achieved even with small durations, such as an 

hour. The accurate result for test lesser than an hour (0.5h) may be sheer luck as it is not 

supported by theoretical evidence. 

 

A special case for quadrupole analysis is considered where the precise value of initial 

conditions, initial power 𝑃𝑜 and temperature, are known, external temperature is constant, 

heating and cooling durations are equal and power dissipated during cooling phase in nil [97]. 

These assumptions lead to a semi analytical expression of 𝐻𝑄𝑈𝐵 as a function of theoretical 

value 𝐾𝑜, heating duration 𝑡ℎ and the resistance 𝑅𝑖 and 𝐶𝑖 of the network as: 

 

𝐻𝑄𝑈𝐵 = 𝐾𝑜

1

1 − (1 −
𝑃𝑜

𝑃ℎ
)

2

. 𝑓 ((1 −
𝑃𝑜

𝑃ℎ
) , exp(−𝑡ℎ) , 𝑅𝑖, 𝐶𝑖)

 
 

(4.27) 

 

where 𝑓 is a function of infinite sums of different products of resistances and capacitances 

and exponentials of time duration and ratios of power levels (during heating and cooling). 

Although 𝑓 cannot be expressed analytically, it decreases exponentially with time and hence 

the denominator gets closer to 1 and the 𝐾𝑄𝑈𝐵 value gets closer to reference value 𝐾𝑜. As it is 
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evident from the equation, the second way to optimize the 𝐻𝑄𝑈𝐵 independent of time 

duration is to keep the ratio 
𝑃𝑜

𝑃ℎ
  in equation (4.27) close to 1, i.e. to keep the low thermal load 

during heating phase relative to initial conditions [97], [99]. 

 

The initial conditions during QUB test refer to the steady state conditions before the 

experiment. The power required to keep initial conditions in steady state is given as  

 

𝑃𝑜 = 𝐻𝑜∆𝑇𝑜 (4.28) 

 

where ∆𝑇𝑜 = (𝑇𝑖𝑜 − 𝑇𝑒,ℎ), i.e. the difference between initial indoor and external temperature. 

The ratio of powers can be presented as  𝛼 = 1 − 𝐾𝑜∆𝑇𝑜/𝑃ℎ. For a fixed duration of time, we 

can write the equation: 

 

𝐻𝑄𝑈𝐵 = 𝐻𝑜

1

1 − 𝛼2𝜑(𝛼)
 

(4.29) 

 

 

Figure 4.13:𝐻𝑄𝑈𝐵 as a function of α [97] 

Thus, a value of 𝐻𝑄𝑈𝐵 = 𝐻𝑜 can be achieved by keeping 𝛼 between 0.5 to 0.8. This is 

confirmed from experimental evidence for tests conducted at Energy House at Salford 

University as shown in Figure 4.13 

 

Three conclusions can be drawn from the experiments at Salford University: 
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 𝐻𝑄𝑈𝐵 increases as a function of 𝛼 and generates an overestimated value of 𝐻𝑄𝑈𝐵. 

 Overestimation can be reduced by increasing the test duration. 

 Low values of 𝛼 can also lead to errors in  𝐻𝑄𝑈𝐵, i.e. is under estimations. 

 

Numerical simulations were performed by changing initial conditions and observing the 

variation of  𝐻𝑄𝑈𝐵. The variation of 𝐻𝑄𝑈𝐵 with 𝛼 was also observed as shown in Figure 4.14. 

 

Figure 4.14:Kqub Vs variation in initial conditions and 𝛼[97] 

 

It can be a delicate task to control 𝛼 in practical situations. However, simulation results show 

that satisfactory results (𝐻𝑄𝑈𝐵) can be obtained with 𝛼 values (4.3) between 0.2 and 0.8; 𝛼 

values between 0.3 and 0.7 generate best results. This help us identify the optimized value of  

𝛼. The value of 𝛼 = 1 − 𝐻𝑜∆𝑇𝑜/𝑃ℎ is based on 𝐻𝑜 which might not be known in advance. This 

requires the prior estimation of 𝐻𝑜 that can be estimated using thermophysical values or some 

software such as SAP [97]. 

 

It is highly probable that the estimated value of 𝐾𝑜 will always be known with error. G. 

Pandraud showed that as long as the error in  𝐾𝑜∆𝑇𝑜 stays within 40 % , the value of 𝛼 can be 

kept in range of 0.3 to 0.7, as shown in Figure 4.15 
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Figure 4.15: Value of α as function of input Power [97] 

  

To quantify, for a targeted value of 𝛼 = 0.5, an error of 10% on 𝑃ℎ leads to an error of 5% on 

𝛼, which leads to an error of 2 to 5% on 𝐾𝑄𝑈𝐵. 

 

The QUB method can also be used to find out the apparent capacitance 𝐶𝑄𝑈𝐵 as is evident 

from equation 

 

𝑞 = 𝐶𝑄𝑈𝐵

𝑑𝑇𝑖𝑛𝑡,𝑖

𝑑𝑡
+ 𝐾𝑄𝑈𝐵(𝑇𝑖𝑛𝑡,𝑖 − 𝑇𝑖𝑛𝑡,𝑒) 

 

(4.30) 

 

 

This equation can be used to determine 𝐶𝑄𝑈𝐵 during  as  

 

𝐶𝑄𝑈𝐵 =
𝑞1𝑇2

∗ − 𝑞2𝑇1
∗

𝑇1
′𝑇2

∗ − 𝑇2
′𝑇1

∗ 

 

(4.31) 

 

 

Value of 𝐶𝑄𝑈𝐵 evolves/increases with time and is know as effective capacitance. 𝐶𝑄𝑈𝐵 

represents the aggregate capacity of different elements of building. Increase in value is due 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



144 

 

to the fact that initially air temperature increases and later the air temperature warms the 

walls (at this point the capacitance of walls come into play) until the limiting value of 

capacitance is reached that can be given as 𝐶𝑜 = 𝐾𝑜𝜏𝑜, where 𝜏𝑜 is the largest time constant 

of building. The evolution of effective air capacity is shown in Figure 4.16 

 

Figure 4.16:Effective heat capacity as function of time[97] 

  

 

 Results of QUB Experiments 

 

Three test houses were used to validate the numerical results, as shown in numerical 

simulation section. The three test houses were: small scale building in real climate (Saint-

Gobain), real scale building in controlled climate (energy house at Salford University) and real 

scale building in real climate (Twin houses at Fraunhofer Institute of Building Physics IBP). In 

all the tests, the steady state 𝐻 was measured using the standard co-heating test method 

followed by QUB test. Reliable QUB results are therefore obtained with increased time 

duration for QUB test; the optimized value of 𝛼 for QUB test is between 0.4 and 0.7 [82]. 
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Figure 4.17:QUB values for Twin house Germany [82] 

 

The nonconformity of some QUB experimental results with numerical simulation can be 

attributed to the following reasons: 

 non-homogeneous temperature due to stratification, stack effects (a temperature 

difference of 2 K is observed between ground floor and attic space); 

 changed air infiltration rate and wind pressure conditions between the two tests, i.e. 

QUB test and steady state test; 

 inability to control 𝐻𝑄𝑈𝐵 𝛼-value in practice. 

 

Reliable results for QUB test can be obtained provided that good air tightness is maintained. 

During the tests, the conditions of airtightness and infiltration must be considered. It is 

important to use more sophisticated techniques (tracer gas measurements) for air infiltration 

measurement and its impact on heat transfer coefficient [82]. The error depends on 𝛼, 

building structure and test duration, that can be reduced by choosing 𝛼 carefully. A low value 

of 𝛼 leads to an underestimated 𝐻𝑄𝑈𝐵 whereas high value leads to an overestimation of 𝐻𝑄𝑈𝐵. 

An optimal value of 𝛼 (between 0.4 and 0.7) can lead to a reliable H value. 

 

With short duration of QUB test it is possible to conduct as many as 20 QUB tests in 

comparison to single co-heating test that can take two to three weeks. Due to short duration 
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and dynamic nature of the QUB test, it offers an opportunity to find the impact of weather 

conditions, such as wind velocity, on the value of the H-value of the building H [82]. 

 

QUB method is relatively new and needs further validation, both theoretically and empirically. 

It is important to know the nature of uncertainty of QUB value, variations in uncertainty with 

test duration, building/wall type and experimental conditions. The information provided by 

QUB test are not diagnostic and should be further added with additional infiltration tests, 

thermal bridges, window types etc. [82]. 

 

 Conclusions  

 

The QUB method can be used as a tool to quickly estimate U-value of building. This U-value 

can be used for labelling, certification, control or research purposes. However, QUB results 

are based on interpretation of data that can be user dependent. This can result in erroneous 

values that cannot be used with certainty (for certifications or research purposes). 

 

There are two sources of uncertainty:  

1. model complexity (single RC or 3R2C due to simplicity of the model) that is difficult to 

estimate;  

2. choice of time period during which data is analyzed, especially the time for slope 

determination.  

 

The change in slope period during different test periods causes the dispersion in 𝐻 value 

(± 10 W/K). Determination of temperature slope is a serious problem and should be 

determined with mathematical and experimental precautions that leads to reproducible 

results. It is advisable to analyze temperature evolution for a long period and determine 

temperature slop at or near the end of test (end of heating or cooling period). Aother 

technique is to determine the slope for a set of points along the temperature evolution curve. 

It is also possible to model temperature evolution by a model function such as exponential, 

polynomial or spline, and then calculate the temperature slope once again at or near the end 

of the period.  
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The direction for future work  is that range of uncertainty of  QUB method under different test 

conditions needs to be established [99]. The limitations of QUB method (due to simplicity and 

short duration) need to be quantified. Measurements under different conditions, such as 

weather, type of constructions and variation in 𝐻𝑄𝑈𝐵 and the determination of time when the 

temperature evolution become a simple exponential decay. These experiments should be 

coupled with numerical simulations as well. 

 

It is important to understand the variation of error when the QUB experiments are repeated 

in succession for a number of days. The variation in QUB value with power level and time 

duration has been already explored [93]. However, the variation in 𝐻𝑄𝑈𝐵 value with real 

boundary conditions (solar radiation, outdoor temperature) and initial conditions (initial 

power and initial conditions of building) with experimental data needs to be further 

investigated. 

 

There are two possibilities to perform the detailed analysis of QUB under different set of 

weather conditions, construction types etc. One is to perform real experiments at different 

sites, with different construction types, under different set of weather conditions. This can be 

both expensive and time consuming. Several experimental setups are presented in Chapter 0. 

 

The second possibility is to design simulation experiments with different condition sets. This 

is less expensive and can be performed in relatively short time but needs adapted models. To 

simulate and design QUB experiments, it is important to have a modelling tool that has the 

ability to generate the evolution of indoor temperature under different set of power, time 

duration and weather conditions. A state space modelling technique with its developed is 

presented in Chapter 6. The techniques for generating thermal circuits for individual 

components of buildings, assembling of thermal circuits, generating state space model from 

the assembled circuits and the advantages for using this modelling technique are discussed in 

next chapter. 
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 Experimental setups for testing the measurement methods 

 

 

Building thermal characterization or building energy models need to be validated before their 

general application. It is important to obtain a data set with known conditions and accuracy 

that can be used to validate and calibrate building energy models. This section explains the 

experiments, experimental setups and data analysis techniques that are documented as part 

of IEA, EBC Annex 58 ‘Reliable building energy performance characterisation based on full 

scale dynamic measurements’[50].   

 

 

 Round-robin box 

 

A round-robin test is an experimental methodology aimed to repeat a single test (or group of 

tests) on a specimen in multiple laboratories or in multiple conditions with different sets of 

instruments, assumptions and experts. The purpose of the test method is to verify the 

repeatability of results, validity of new methods, analyze the effect of varying conditions and 

varying techniques on the results test.  

 

A sample test box was prepared as a simplified representative of building to be tested at 

different locations. The box was shifted to different locations and tested under real climatic 

conditions. Data representing the measurements were then sent to different research 

organizations for analysis. Based on similarity with round-robin test methodology, it was 

named as Round-robin box [53].  

 

The aim of the test was to establish the state of the art on design of experiments, 

measurements, dynamic data analysis and dynamic characterization. The experiments 

provided an opportunity to look into capabilities, limitations and reliability of in situ full scale: 

 testing methods  

 dynamic data analysis 

 influence of different variables on characterization results. 
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The thermal characteristics selected for these analysis are overall heat transfer coefficient 𝐻, 

solar aperture 𝑔𝐴 and dynamic characterization, such as dynamic response of building to 

changing boundary conditions (temperature and solar radiations) and effective capacitance 

[46].   

 

Round-robin box a cubical box with external dimensions of 120 × 120 × 120 m3 and internal 

dimensions of 96 × 96 × 96 m3. The façade of the box is made in three layers with an internal 

façade of light weight material, a middle heavy weight and final light weight façade on the 

outside. The box rests on 50 cm high stand. There are three different designs of the box:  a 

box with no window, with window and with a façade layer material that can be changed. The 

box had no heating or cooling equipment to allow different experts select equipment as per 

their design of experiment. An opening with a pipe at the base is provided as an outlet/inlet 

for instruments and equipment wiring [46].  

 

 

Figure 5.1: An overview of the Round-robin box [46] 
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Figure 5.2: Box outlook with sensor and equipment arrangements [53] 

Virtual simulation of the box was performed before the actual test to estimate the thermal 

properties of the box. A 3D steady state model was generated with indoor conditions of 25℃ 

and outdoor conditions of 0℃ . The 𝐻-value was evaluated as 4.08 (W/K). Under real test 

conditions (co-heating test,) the H-value measured was 3.75 (W/K) [50]. It was estimated that 

with changing wind speeds, the overall heat transfer coefficient may exhibit an uncertainty of  

± 10 %. The resistance values for opaque walls were estimated to be between 1.927 to 

2.2 m2K/W (this change is attributed to glue or thin air film between the layers) [50]. The 

change in convection heat transfer co-efficient with air velocity is given as: 

 

 𝑉 < 5 
𝑚

𝑠
, ℎ𝑐 = 5.6 + 3.9. 𝑉 

𝑉 > 5 
𝑚

𝑠
, ℎ𝑐 = 7.2𝑉0.78 

 

(5.1) 

 

 

The measurements during Round-robin tests require the following instruments: 

- Climate boundary conditions: a weather station that can measure outdoor 

temperature humidity, solar radiation (diffuse and direct), wind speed and wind 

direction. 

- Test box measurements: surface temperature measurement, indoor temperature 

measurement, heat flux measurement. 

- Co-heating tests: heating equipment and power measurement instrument [46]. 
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Different tests were performed at different locations. The first test was conducted at a site in 

Belgium Building Research Institute (BBRI) in the lee of wind and solar radiation. The test site 

weather is maritime weather with mild winters and cool summers, generally rainy, humid and 

cloudy [46]. For the co-heating test, the box is heated using a 188 W heater. The following 

experiments were conducted 

1. constant indoor temperature of 26 C for 5 days; 

2. constant indoor temperature of 21 C for 5 days; 

3. constant indoor temperature of 31 C for 5 days. 

 

A simple linear regression between outdoor temperature and power input was used for an 

initial estimate of 𝐻 and wall thermal resistances. The estimated value was 3.4 to 3.5 W/K. 

 

 

Figure 5.3: A linear regression to estimate H value[53] 

A second series of tests was carried out outdoors in Belgium with the following set of 

experiments [46]:  

1. co-heating test with constant indoor temperature of 25 for 2 weeks; 

2. free-floating internal temperature for 2 weeks; 

3. ROLBS sequence test for 3.5 days (dynamic heating test). 

 

The measurements taken during the experiments included: 

 ambient air temperature; 

 vertical global solar radiations for glazing; 

 horizontal longwave radiations; 
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 horizontal global solar radiations; 

 horizontal diffuse solar radiations; 

 vertical long wave radiations; 

 wind velocity and direction; 

 relative humidity. 

 

Experiments at Belgium Building Research Institute (BBRI) were repeated in a different climate 

(extremely hot and dry) at Plataforma Solar de Almeria, South of Spain [50]. The weather of 

this region is characterized by a large temperature fluctuations between day and night and 

strong horizontal solar radiation (summers) and strong vertical solar radiation (winters). With 

the strong weather fluctuations the estimates of overall heat transfer coefficient 𝐻 was 

between 3.75 to 4.08 W/K and thermal resistance R- is between 1.927 to 2.2m2K/W [50]. This 

shows that overall heat transfer coefficient and thermal resistance can be reliable 

measurement of building performance even with strong fluctuating weather conditions [53]. 

The weather, indoor temperature variation and construction data can be used for model 

validation.   

 

A third experiment on Round-robin box was conducted at University Centre for Energy 

Efficient Buildings (UCEEB) Prague. Experiment was conducted in a controlled weather 

chamber [46]. The internal, surface, external and power dissipated were measured during the 

experiments. The conditions were maintained until steady state conditions were achieved for 

each step. Time constant for box was measured to be approximately 24 hours and the time 

calculated to reach steady state was approximately 3 days.  

𝐻 was estimated after steady state is achieved using the steady state equation 

 

 Φ𝑝 − 𝐻(𝑇𝑖 − 𝑇𝑒) = 0 (5.2) 

 

As the climate chamber can keep the external temperature constant, it is relatively easy to 

use an average uniform temperature. The spatial internal temperature 𝑇𝑖 measured with 

different sensors should be representative of temperature of heating surface (of heat source), 
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indoor air and internal surface of the box [46].  A representative temperature with weight 

factor for each  

 

 
T𝑖,1 =

𝐾𝑐𝑇𝑎𝑖,1 + 𝐾𝑟1𝑇𝑠 + 𝐾𝑟2𝑇𝑠,2−6

𝐾𝑐 + 𝐾𝑟1 + 𝐾𝑟2
= 𝑤1𝑇𝑎𝑖,1 + 𝑤2𝑇𝑠,2−6 + 𝑤3𝑇𝑠 

(5.3) 

 

where 𝐾𝑐 and 𝐾𝑟 are convective and radiative conductance and 𝑇𝑎𝑖,1, 𝑇𝑠.2−6,  𝑇𝑠 are 

temperatures of air, the representative temperature of six surfaces and the temperature of 

the surface considered [50]. 

The following uncertainties are important for determination of 𝐻; 

 error in sensor measurement (e.g. manufacturing uncertainty od ±2W for power); 

 error in installation of sensors; 

 fuzzy representation of internal and external temperatures (assumed value of ±2℃ 

for outdoor and indoor temperature); 

  assumption of steady state [46]. 

 

The propagation of uncertainty in internal temperature was evaluated by generating samples 

using Latin hyperbole technique where uncertainty in both weights and measurement was 

evaluated [46]. The uncertainty in each surface was evaluated and finally the total internal 

temperature for each sample was calculated. The uncertainty in H was calculated using 

 

 
u𝑐 = √(𝑐1𝛿Φ𝑝)2 + (𝑐2𝛿T𝑖)2 + (𝑐1𝛿T𝑒)2 

(5.4) 

 

where 𝑐𝑖 is the sensitivity coefficient determined with respect to the partial derivative of the 

respective terms. The data from this test is availabe be used for validation of building energy 

models.  
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 The Twin House experiment (IEA, EBC annex-58) 

 

The Twin House experiments were conducted as part of IEA, EBC Annex-58 project aimed to 

provide data for validation of building simulation models used in performance measurement. 

The two houses, named N2 and O5, are located on a plane area in Holzkirchen, Germany, at a 

altitude of 680 meters. As shown in Figure 5.4, both the houses are unshaded. The houses 

have an attic, a living space and loft [102].  

 

Figure 5.4: Views of twin houses from East and West house[102] 

 

Figure 5.5: Views from South and North[102] 

The two houses are identical in construction and thermal properties. A baseline generated in 

October 2012 for both houses indicated that the difference in energy performance is only 1-

2 % at the start of the experiments and remains 0.5 % throughout the experiment. The 

experiments were conducted with the following conditions; building heated to a constant 

temperature of 25 C with electric heating, no internal heating generation and blinds closed 

[102]. 
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Figure 5.6: Comparative baseline of the twin houses[102] 

 

The measurement experiments were conducted in the ground floor of the building with attic 

and loft temperatures used as external boundary conditions. Experiments were conducted in 

August and September with rollers on the southern sides of one building down and the other 

up. As experiments were conducted in hot season, a high ventilation rate was used to avoid 

overheating. Electric heaters are used for heating the indoor space. Each building was divided 

virtually into north (boundary zone) and south zones. The south zone consisted of living room, 

bedroom, bathroom and corridor that were sealed from the boundary zone that consists of 

cellar, attic, kitchen, north bedroom, hall and outdoor ambient as shown in Figure 5.7. The 

boundary space is kept at constant temperature of 22 °C. 

 

Figure 5.7: Cross-and vertical sections of controlled boundary conditions (Strachan et al., 

2016) 
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Before running the experiment, air leakage was measured using blowing door test. The 

specifications for the thermal properties of the construction and the details of measurements, 

such as ground reflectivity and leakage data are provided [102]. Weather data was measured 

on the site by using a weather station. The experiments were conducted simultaneously in 

two buildings, with the sequence of heating as shown in Figure 5.8. 

 

 

Figure 5.8: Sequence of application of heat during experiments (Strachan et al., 2016) 

 

The experiments were performed with two houses, named as O5 and N5. The experiments in 

O5 house differ from those in N5 house by the operation of the southern windows. In N5, the 

roller blinds of the southern windows remain open during the initialization period. The 

experiment has two phases: 

- phase one: temperature is kept constant with the objective to obtain the required 

input heat necessary for keeping temperature constant. 

- phase two; temperature is allowed to float freely (no application of internal heat) and 

the objective is to simulate variation of indoor temperature with time. 

 

The stepwise description of the experiments is: 
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1. Seven days initialization period when temperature was set at 30 °C in both houses. The 

south façade blinds were kept close during the initialization period. 

2. Further 7 days the temperature was kept at 30 °C and the blinds in one house (N2) 

were lifted to let the solar radiations enter building. 

3. Two weeks of randomly order logarithmic binary sequence for heating input was used 

in both buildings. The purpose of the ROLBS is to avoid any correlation between 

heating input and solar radiation for study purpose. The heat pulses ranged from 1 

hour to 9 hours to ensure the entire range of time constant for building to be covered. 

The heat pulses were of 500 W in magnitude. 

4. Seven days of a second re-initialization period to keep indoor temperature at 25 °C. 

5. Seven days of free-floating (i.e. no heating) of both houses. 

 

A ventilation rate of 120 m3/h was maintained during the test period to avoid over heating of 

space. The data set provided with the twin house experiment can be used for model validation 

and design of experiments. 

 

 Conclusions 

 

This chapter discussed the thermal characterization experiments conducted as part of IEA-EBC 

Annex 58 ‘Reliable building energy performance characterisation based on full scale dynamic 

measurements’ [50]. It also discussed the data analysis procedures used to obtain reliable 

results. The analysis steps together with the data from the experiments can be used as a 

validation data for modelling and thermal characterization. The experiment and construction 

data used in the twin houses are used for validation of the model developed in this work 

(chapter 6) and for design of QUB experiments (chapters 7 and 9). 
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 A new simulation model for testing the short-time measurement 

methods 

 

 

A state space model presents a physical system in terms of inputs, outputs and state variables 

that are related to each other by first order differential equation. State-space representation 

is largely used in the theory of dynamic systems. The state space model can be used to model 

building in terms of a set of inputs such as outdoor temperature, solar radiations, wind speed, 

indoor heating etc. and outputs such as building indoor temperature with state variables such 

as the internal temperature of building components. 

 

This chapter introduces a methodology for obtaining state-space representation from the 

thermal models of elementary components of a building in three steps:  

1) generating thermal circuits for each component,  

2) assembling  thermal circuits, 

3) extraction of state-space model from the thermal circuit.  

 

This model is generated for the Twin Houses presented in Chapter 5.2 and tested with 

measurement data obtained from the IEA-ECB Annex 58 experiment. The model thus 

developed can be used for the analysis of the QUB method. With this modelling technique it 

is possible to estimate the time constants of the building and find the influence of increasing 

or decreasing the time duration of the QUB method. It allows us to increase or decrease the 

number of partitions of the building components and allows for ease of weather data with 

different sampling time.  

 

 Introduction 

 

Thermal networks are graphic representations of systems of differential algebraic equations 

(DAE) which model heat transfer by conduction (described by the weak form of the heat 

equation [103]), convection (described by Newton law) and long wave radiative exchange 
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(described by using radiosity [104]). The resistor-capacitor (RC) models have physical meaning 

that allows the evaluation of the modelling hypothesis considered for buildings and their 

urban environment [105]. 

 

Thermal networks are used for defining the models of elementary components (e.g. walls, 

floors, doors, windows, etc.) in energy balance method [105 ,106]. Energy balance method is 

the recommended method of ASHRAE [108] and the basis of the CEN standard for calculation 

of the design heat load [109] as well as of other CEN standards related to thermal performance 

of buildings [109, 110]. Other procedures are seen as variants or simplifications of the heat 

balance method. In this method, the set of equations is integrated numerically, generally by 

using existing solvers. It is the case of many commercial simulation software [112] such as 

TRNSYS [113], EnergyPlus [114], IDA ICE [115], of research oriented tools, like ESP-r [116], 

CODYRUN [117] or of tools developed “in house” [118]–[122]. Another approach is to use 

equation-based modeling. In this case, the computational causality (i.e. the input – output 

relation) is defined after the model was constructed and can be changed. Then a simulation 

engine performs the calculations [121], [123], [124]. This has the advantage of using the same 

model for different sets of inputs and outputs but can generate ill-posed problems [125]. 

 

State-space is the most used input-output representation of linear models, as shown by recent 

reviews on modelling of building energy systems [116], [126] and on strategies for building 

energy management [127], [128]. State-space representation is widely used for model 

identification and calibration. In model identification, the structure of the model is proposed 

and then the parameters are identified by minimizing the error between the output of the 

model and the measured data. An essential issue is the structure of the model on which the 

experimental data is projected. This is done mostly empirically by using models with a variable 

number of states [129]–[132]. The procedure of model calibration is very similar to parameter 

identification: use optimization techniques to fit the model to data by changing the values of 

the parameters. The main difference is that the parameters obtained by calibration of physical 

models have physical significance [133]–[136]. 
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State-space representation is widely used for model order reduction, which can be done 

numerically, when the state-space model is known, as is the case for walls, or by projecting 

the results obtained by simulation on a given structure [137]. A key point in model order 

reduction is the model order selection [138]. 

 

State-space model is the most used representation in modern control theory. One approach 

to obtain the state-space representation is to use a thermal network for the model of the 

building [139] and to identify the parameters of the state-space representation from input-

output data  [140][141][142][143]. Usually, the model used for controller synthesis has one 

state variable: the indoor temperature [143]–[149], although state-space models were 

obtained from the thermal network of a room for 4 states [150], 6 states [151] or for 17 

states[152].  

 

Since thermal networks are widely used for modelling heat transfer and state-space is the 

most used representation in control theory, state-space extraction from thermal networks is 

of the highest interest. A solution to obtain systematically the state-space representation is 

by using nodal/mesh analysis to reduce the number of undesired variables [153]. Another 

state-space extraction method uses the concepts of tree (a sub-graph of the original graph 

containing no loops) and co-tree (a sub-graph of the original graph containing the edges 

removed to form the tree) but it requires symbolic manipulation [153]. Commercial 

implementations of the state-space extraction are not documented [93].  

 

 

 Obtaining thermal circuit for state space modelling 

 

All load calculation software, whether simulating variation of air temperature or estimating 

heating or cooling loads, are based on heat balance method [154]. Heat balance is essentially 

the first principle of conservation of energy, which states that “the total energy of an isolated 

system remains constant”. Since, in real world, no isolated system exists, the law of 

conservation of energy is stated in terms of net balance of energy entering, leaving, generated 

and stored in the system. 
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For an air volume inside a facility, such as building or room, load estimation is based on heat 

balance of air, which states that [154] 

 

 
𝑚𝑎𝑐𝑎

𝑑𝜃𝑎

𝑑𝑡
=  𝑞𝑐𝑖 + 𝑞𝑣 − �̇�𝑔 − �̇�𝐻𝑉𝐴𝐶   

(6.1) 

 

where 

𝑚𝑎𝑐𝑎
𝑑𝜃𝑎

𝑑𝑡
   time variation of the heat stored in mass, 

𝑞𝑐𝑖   heat transfer from the enclosure surfaces/walls, such that: 

 

 𝑞𝑐𝑖 = ∑ 𝑆𝑖ℎ𝑖(𝜃𝑠𝑖 − 𝜃𝑎)

𝑖

 (6.2) 

 

where 

𝑆𝑖  surface area; 

𝜃𝑠𝑖  surface area temperature; 

𝑞𝑣 heat transferred by outdoor air infiltration and ventilation, such that 𝑞𝑣 = �̇�𝑣𝑐𝑎(𝑇𝑜 −

𝜃𝑎); 

�̇�𝑔 longwave radiatios, sensible and latent heat from people, lights, home appliances, etc.; 

�̇�𝐻𝑉𝐴𝐶   heat input from air-conditioning equipment, heaters, etc. 

 

 

 Thermal network models 

 

The thermal model of a room, or any building, is represented by linear algebraic equations. 

Though the actual heat transfer is non-linear, it can be written as an infinite sum of linear 

algebraic equations. The set of linear equations representing the heat transfer of a room are 

combined in state-space form [154]. For ease of manipulation and comprehension, it is 
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convenient to present heat transfer equations in form of thermal resistance circuits, 

analogous to electrical circuits Figure 6.1. 

 

 

Figure 6.1 Representation of a wall heat transfer by a thermal circuit 

 

The elements of thermal circuit represent thermal resistance, capacitance, flow rate sources, 

such as solar radiation, and temperature sources, such as outdoor temperature. The 

difference between thermal and electric circuits is that thermal circuits do not contain any 

inductance [154]. As an example, the temperature difference across any node is (Figure 6.1): 

 

 𝑒𝑘 = 𝜃𝑙−1 + 𝑏𝑘 − 𝜃𝑙  (6.3) 

 

where 𝜃𝑙−1 and 𝜃𝑙  are the temperatures in the nodes 𝑙 − 1 and 𝑙, connecting branch 𝑘 via 

resistance 𝑅𝑘 and 𝑏𝑘 is the temperature source. The term 𝑏𝑘 can be either an external 

temperature source, such as outside air temperature, or an internal temperature source (part 

of internal heat source). 

 

As a building or a single room consists of multiple walls, the heat balance has a number of 

thermal circuits presented mathematically by differential equations. These equations are 

coupled as it is convenient to represent all thermal circuits in state space. The temperature 

difference over all nodes in Figure 6.1 is presented in matrix form: 

  

 𝐞 = −𝐀𝛉 + 𝐛 (6.4) 

 

 where 
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 𝐞 = [𝑒1, 𝑒2, … … . 𝑒𝑛]𝑇  is the vector of temperature drop across a resistor, 

 𝛉 = [𝜃1, 𝜃2 … … . 𝜃𝑛]𝑇 is the vector of temperature nodes, 

 𝐛 = [𝑏1, 𝑏2, … … . 𝑏𝑛]𝑇 is the vector of temperature sources on each branch. 

 

The matrix 𝐀 is the incidence matrix whose elements show the presence of resistances and 

direction of heat flows towards or away from the node. The rows of the incidence matrix show 

the heat flow branches between two nodes; the columns show the nodes of thermal circuit. 

In a row corresponding to a branch, 1 or 0 presents whether the branch is connected to a 

particular node or not. The sign of the node shows whether heat is entering or leaving the 

node. The element 𝒂𝑘𝑙  of the matrix A corresponding to branch 𝑘 and node 𝑙 is: 

 

 
𝑎𝑘𝑙 ={

 0, if branch is not connected to node  
+1,   if heat is flowing towards node 

−1, if heat is moving away from node
 

(6.5) 

 

  

Heat transfer across any thermal resistor/branch is 

 

 𝑞𝑘 =𝑅𝑘
−1𝑒𝑘 (6.6) 

 

where 𝑅𝑘 is the thermal resistance. For the wall presented in Figure 6.1, the insulation and 

the brick layers form the branches. The number of branches and nodes depend on the number 

of slices of each wall layer of material. Accounting for all heat transfers the matrix form of 

equation (6.6) is 

 

 𝐪 = 𝐆𝑒 (6.7) 

 

where 

𝐪 = [𝑞1 … 𝑞𝑘, … … . 𝑞𝑚]𝑇 is the vector of heat rates in branches; 

𝐆 = ⌈
𝑅1

−1 0 0
0 ⋱ 0
0 0 𝑅𝑚

−1
⌉ , is a diagnol matrix of conductivities 
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The heat balance for any node consists of the sum of heat entering and leaving the nodes and 

the heat sources connected to a node is 

 

 𝐶𝑙�̇�𝑙 = ∑ 𝑞𝑙
𝑙

+ 𝑓𝑙  
(6.8) 

 

where 𝐶𝑙 is the capacitance of the node, 𝑞𝑙 represents heat entering or leaving the node and 

 𝑓𝑙  is the heat source, input to the node. The heat balance for all the nodes is  

 

 𝐂�̇� = 𝐀𝐓𝐪 + 𝐟 (6.9) 

 

 The matrix of capacitances is: 

 

𝐂 = ⌈
𝐶1 0 0
0 ⋱ 0
0 0 𝐶𝑛

⌉ 

 

where 𝐀𝐓, the transpose of the incidence matrix, represents the algebraic sum of all heat 

exchange rates, 

𝐟 = [𝑓1, 𝑓2, … 𝑓𝑙 … . 𝑓𝑛]𝑇 , is the vector of heat sources across nodes. 

 

By substituting in equation (6.10), we obtain: 

 

 𝐂�̇� = −𝐀𝐓𝐆𝐀𝛉 + 𝐀𝐓𝐆𝐛 + 𝐟 (6.10) 

 

The matrices in equation (6.10), can be partitioned based on nodes with capacitances and 

without capacitance as 
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⌊
0 0
0 𝐂c

⌋ (
𝛉ȯ

𝛉ċ

) = ⌊
𝐊11 𝐊12

𝐊21 𝐊22
⌋ ⌊

𝛉o

𝛉c
⌋ + ⌊

𝐊b1

𝐊b2
⌋ b + ⌊

𝐈11 0
0 𝐈22

⌋ ⌊
𝐟o

𝐟c
⌋ 

(6.11) 

 

 

The state space form of the equation depends on the air capacitance. If it is non-negligible, 

than 𝜽𝑎(air temperature) can be obtained as output of the state space model 

 

 �̇�c = 𝐀s𝛉c + 𝐁s𝐮 

𝛉a = 𝐂s𝛉c + 𝐃s𝐮 

 

(6.12) 

 

where 

 

𝐀s = 𝐂c
−1[−𝐊21𝐊11

−1𝐊12 + 𝐊22 ], 

𝐁s = 𝐂c
−1[−𝐊21𝐊11

−1𝐊b1 + 𝐊b2 − 𝐊21𝐊11
−1 𝐈22 ], 

𝒖 = [b f0 f𝑐]𝑇 is the input vector,   

𝛉𝑎 is the air temperature 

𝐃𝑠  is feedthrough matrix that is zero in case of non-negligible air capacity and  

𝐂s  extracts the air temperature 𝛉𝑎. 

 

In case of negligible air capacity, 

 

 𝛉0 = 𝐂s𝛉c + 𝐃s𝐮 (6.13) 

 

where 

 

𝐂s = −𝐊21𝐊11
−1 and  𝐃s = 𝐊11

−1[𝐊b1 𝐈11 0].  

𝛉a is obtained from the vector of 𝛉0. 

 

 Assembling the thermal circuits 

 

It is easy and convenient to obtain thermal circuits for different elements of the building 

(walls, floors, windows, doors, etc.). Then, the model of a whole building may be obtained by 
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assembling the elements. Assembling is different from coupling. In coupling, the models of 

the elements form a set of equations which is solved numerically; in assembling, the model of 

the whole building is obtained first and then the system of equations is solved. The advantage 

of assembling is that the model can be analyzed: the eigenvalues and the eigenvectors of the 

whole system can be obtained.  

 

The problem of circuit assembling is to obtain the thermal circuit 𝑇𝐶 by knowing that some 

nodes of the elementary circuits 𝑇𝐶1, 𝑇𝐶2, … , 𝑇𝐶𝑛 are common to several circuits. Since a 

thermal circuit is described by the set of arrays, 𝑇𝐶 = {𝐀, 𝐆, 𝐛, 𝐂, 𝐟, 𝐲}, the aim of assembling 

is to form the global system: 

 

 [ 𝐆−1 𝐀
−𝐀𝑇 𝐂𝑠

] [
𝐪
𝛉

] = [
𝐛 
𝐟

] 
(6.14) 

 

 

or, by using the notations: 

 

 𝐊 ≡ [ 𝐆−1 𝐀
−𝐀𝑇 𝐂𝑠

] ; 𝐮 ≡ [
𝐪
𝛉

] ; 𝐚 ≡ [
𝐛 
𝐟

] 
(6.15) 

 

 

to form the equation: 

 

 𝐊𝐮 = 𝐚 
(6.16) 

 

 

from the models of the elementary systems (walls, floors, doors, windows, etc.): 

 

[
𝐆𝒊

−𝟏 𝐀𝑖

−𝐀𝒊
𝑻 𝐂𝑖𝑠

] [
𝐪𝑖

𝛉𝑖
] = [

𝐛𝑖 
𝐟𝑖

] 
(6.17) 

 

 

We can write equation (6.16) as 
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𝐊𝑖𝐮𝑖 = 𝐚𝑖 
(6.18) 

 

 

where 

 

𝐊𝑖 ≡ [
𝐆𝒊

−𝟏 𝐀𝑖

−𝐀𝒊
𝑻 𝐂𝑖𝑠

] ; 𝐮𝑖 ≡ [
𝐪𝑖

𝛉𝑖
] ; 𝐚𝑖 ≡ [

𝐛𝑖 
𝐟𝑖

]  

(6.19) 

 

 

Let’s note the dissembled block matrix 𝐊𝑑 and the disassembled block vectors 𝐮𝑑 ,  𝐚𝑑, the 

matrix and the vectors obtained by simply placing in order the matrices and the vectors of the 

elementary models described by equation (6.20) Erreur ! Source du renvoi introuvable.: 

 

𝐊𝑑 ≡ [
𝐊1 … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝐊𝑛

] 𝐮𝑑 ≡ [

𝐮1

⋮
𝐮𝑛

] ;  𝐚𝑑 ≡ [

𝐚1

⋮
𝐚𝑛

]   

(6.20) 

 

 

There is a disassembling matrix 𝐀𝑑 which transforms the assembled vectors 𝐚 and 𝐮 into the 

dissembled vectors 𝐚𝑑 and 𝐮𝑑 as: 

 

𝐚𝑑 = 𝐀𝑑𝐚; 𝐮𝑑 = 𝐀𝑑𝐮.  

(6.21) 

 

 

The relations between the global and the elementary matrices and vectors are: 

 

𝐊 = 𝐀𝑑
𝑇 𝐊𝑑𝐀𝑑 

(6.22) 

 

 

𝐮 = 𝐀𝑑
𝑇 𝐮𝑑 

(6.23) 
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𝐚 = 𝐀𝑑
𝑇 𝐚𝑑 (6.24) 

 

The elements of the assembled circuit, 𝑇𝐶 = {{𝐀, 𝐆, 𝐛, 𝐂, 𝐟, 𝐲}, are then obtained from the 

partition of the arrays: 

 

𝐊 = [ 𝐆−𝟏 𝐀
−𝐀𝐓 𝐂𝑠

] ; 𝐮 = [
𝐪
𝛉

] ; 𝐚 = [
𝐛
𝐟

]  (6.25) 

 

 

 

Figure 6.2 Simple example for the assembling of thermal circuits: a) three disassembled circuits 

with local indexing of nodes and branches (the dashed lines show the nodes which are in 

common); b) the assembled circuit with local and global indexing of nodes and branches; c) the 

matrices and the vectors characterizing the disassembled thermal circuits; d) the 

disassembling matrix and the transformation of the assembled vector into disassembled 

vectors; e) the matrices and the vectors characterizing the assembled thermal circuit. 
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An illustrative example is given in Figure 6.2. There are three circuits:  

 TC1 with two branches and two nodes,  

 TC2 with one branch and two nodes,  

 TC3 with two branches and one node.  

 

The second node of TC1 is put in common with the first node of TC2 and the second node of 

TC2 is put in common with the first node of TC3 (Figure 6.2a). The local indexes of the 

dissembled circuits correspond to global indexes in the assembled circuit (Figure 6.2b). Each 

disassembled circuit is characterized by the set of arrays 𝑇𝐶𝑖 = {𝐀𝑖, 𝐆𝑖 , 𝐛𝑖, 𝐂𝑖, 𝐟𝑖, 𝐲𝑖}, where 

𝑖 = 1, 2, 3, with values given by equations of each circuit (Figure 6.2c). The disassembling 

matrix, 𝐀𝑑, transforms the assembled variables, 𝐮, into disassembled variables, 𝐮𝑑 (Figure 

6.2d). Finally, the assembled circuit is characterized by a set of arrays, 𝑇𝐶 = {𝐀, 𝐆, 𝐛, 𝐂, 𝐟, 𝐲} 

(Figure 6.2e). 

 

 

 Extract state-space model from thermal circuits 

 

If the thermal circuit contains nodes without heat capacity, the matrix 𝐂 is singular. In order 

to obtain the state-space model, the equations corresponding to the nodes without heat 

capacity need to be eliminated from the system of equations (6.10). By partitioning the matrix 

𝐂, 

 

 𝐂 = [
𝟎 𝟎
𝟎 𝐂𝐶

] 
(6.26) 

 

 

where 𝐂𝐶  corresponds to the nodes having capacities, the set of equations (6.10) may be 

written as: 

 

 [
𝟎 𝟎
𝟎 𝐂𝐶

] [
�̇�0

�̇�𝐶

] = [
𝐊11 𝐊12

𝐊21 𝐊22
] [

𝛉0

𝛉𝐶
] + [

𝐊𝑏1

𝐊𝑏1
] 𝐛 + [

𝐈11 𝟎
𝟎 𝐈22

] [
𝐟0

𝐟𝐶
] 

(6.26) 
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where: 

𝛉0 and 𝐟0 correspond to the nodes without thermal capacity;  

𝛉𝐶  and 𝐟𝐶  correspond to the nodes with thermal capacity; 

𝐂𝐶  is the bloc of the partitioned matrix 𝐂 for which the elements on the diagonal are 

non-zero;  

𝐊11, 𝐊12, 𝐊21, and 𝐊22 are blocs of the partitioned matrix 𝐊 obtained according to the 

partioning of the matrix 𝐂; 

𝐊𝑏1 and 𝐊𝑏2 are blocs of the partitioned matrix 𝐊𝑏 obtained according to the 

partitioning of the matrix 𝐂; 

𝐈11 and 𝐈22 are identity matrices. 

 

The state equation of the state-space model is: 

 

 �̇�𝐶 = 𝐀𝑆𝛉𝐶 + 𝐁𝑆𝐮 
(6.27) 

 

 

where the state matrix is: 

 

 𝐀𝑆 = 𝐂𝐶
−1(−𝐊21𝐊11

−1𝐊12 + 𝐊22) 
(6.27) 

 

 

and the input matrix is: 

 

 𝐁𝑆 = 𝐂𝐶
−1[−𝐊21𝐊11

−1𝐊𝑏1 + 𝐊𝑏2 −𝐊21𝐊11
−1 𝐈] 

(6.28) 

 

 

If the outputs are temperatures of nodes with capacities, the observation matrix 𝐂𝑆 extracts 

their values from the state vector and the feed-through matrix is 𝐃𝑆 = 𝟎. If the outputs are 

temperatures from nodes without capacities, the observation equation can be obtained from 

the first row of equation (5.26): 
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𝛉0 = −𝐊𝟏𝟏
−𝟏(𝐊12𝛉𝐶 + 𝐊𝑏1𝐛 + 𝐈11𝐟0) 

      = −𝐊𝟏𝟏
−𝟏 (𝐊12𝛉𝐶 + [𝐊𝑏1 𝐈11 𝟎] [

𝐛
𝐟0

𝐟𝐶

]) 

(6.29) 

 

 

Then, the output equation is: 

 

 𝐂𝑆 = −𝐊11
−1 𝐊12 

(6.30) 

 

 

and the feed through matrix is: 

 

 𝐃𝑆 = −𝐊11
−1[−𝐊𝑏1 𝐈11 𝟎] 

(6.31) 

 

 

 

 Model construction by assembling: a proposal for BIM application 

 

In Building Information Modelling (BIM), the building components (such as walls, doors, 

windows, etc.) are software “objects” with specific properties (such as thermal 

characteristics). These “objects” need to be parametrizable, i.e. adjust their width, position, 

number of meshes for numerical discretization, etc. [155]. 

 

The assembling method proposed in this paper can be used for BIM objects. For the model of 

a house, six types of BIM “objects” may be defined (Figure 6.3). The outdoor walls have as 

boundary conditions on the outdoor surface the temperature, 𝑇𝑜, and short-wave and long-

wave thermal radiation, Φ𝑜, and on the indoor surface the short-wave and long-wave thermal 

radiation, Φ𝑖. The wall can be composed of an arbitrary number of materials, such as brick 

and insulation, each one discretized in an arbitrary number of meshes, depending on the 

frequency to which the model needs to respond (Figure 6.3 Type 1: Outdoor wall). The model 
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for each mesh, composed by two thermal resistances and a thermal capacity, is obtained by 

the finite volume method [112]. 

 

The inner wall is defined in a similar way as the outdoor wall, with the difference that the 

boundary conditions are heat flow rates (Figure 6.3, Type 2: Inner wall). The doors and 

windows are considered without a thermal capacity (Figure 6.3, Types 3 and 4).  

 

Ventilation is modelled as a conductance with the value  

 

 𝐺 = �̇�𝑖𝑛𝑓𝑐𝑎  

(6.32) 

 

 

 

where �̇�𝑖𝑛𝑓 is the mass flow rate of the air and 𝑐𝑎 is the specific heat of the air. 

 

A complex model can be obtained by assembling the parameterizable types to form rooms; 

the transformation from the set of “objects” to an assembled circuit is done by the 

dissembling matrix, 𝐀𝑑, as indicated in equations (6.21)-(6.24). For example, Figure 6.3 shows a 

single room, the living room. The air in the room (object 13) is connected to 12 other objects 

through convective resistances; e.g. node 9 of object 13 is connected to node end of object 9 

of type 1. The outdoor temperature, 𝑇𝑜, and the convective heater, �̇�ℎ𝑒𝑎𝑡𝑒𝑟, are inputs for the 

indoor air Figure 6.3. 

 

Once the model of a room is done, it can be assembled with the model of another room. For 

example, Figure 6.5 shows the assembling of the living room, and shows the assembling of 

seven thermal zones. 
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Figure 6.3: Building components, thermal circuits and their symbols 

 

 

 Eigenvalues, time step and response time 

 

An important advantage of the assembling over coupling is that in assembling a single circuit 

is obtained, which can be transformed in state-space representation. This allows us to obtain 

the eigenvalues and the eigenvectors of the state matrix, which have many applications. 
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The time step of the simulation depends on the frequency spectrum of the inputs and on the 

frequencies to which the output needs to be analyzed. The eigenvalues of the state matrix 

were used to determine the maximum time step for simulation, 

 

Δ𝑡 ≤ min
𝑇𝑖

2
 

(6.33) 

 

 

where the time constants, 𝑇𝑖, are found from the eigenvalues, 𝜆𝑖: 

 

𝑇𝑖 = −
1

𝜆𝑖
   

(6.34) 

 

 

Considering, for example, the living room. If the dynamics of the air into the room need to be 

modelled, the time step needs to be less than 360 s or 6 min. This time step requires that the 

insulation of the outdoor wall is divided in 4 meshes and the brick is divided in 8 meshes. 

 

Another important application of the eigenvalues is to find the response time, which is 3 … 4 

times the largest time constant. For the model of the living room, the largest time constant is 

234 h = 9.7 days. It means that simulations need to be done for about 30 days in order to 

obtain the good initial conditions. 

 

 

 Experimental protocol 

 

The state space model developed in sections (6.2,6.3,6.4 and 6.5) is validated by using data 

from the IEA,EBC annex-58 (the Twin House experiment). The experiment setup is discussed 

in details in chapter 0. The experiment was conducted for 41 days in summer 2013 starting 

with an initialization period of 7 days followed by a period of 7 days with a heating set point 

of 30 °C in all rooms. The constant temperature period was followed by a Randomly Ordered 

Logarithmic Binary Sequence of heat inputs (ROLBS) for 15 days. A 500 W heating power was 

supplied only in the living room during the ROLBS period. The time period for heat pulses 
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ranged from 1 hour to 90 hours. The ROLBS period was followed by a re-initialization period 

for 7 days with a heating set point of 25 °C in all rooms. For the final 11 days of the experiment, 

no heat input was supplied and the temperature was allowed to float freely [156]. 

 

 

 Model of the Twin House 

 

The experimental house consists of seven thermal zones: kitchen, living room, doorway, 

bedroom 1, bathroom, corridor and bedroom 2. Internal temperature is simulated for living 

room (single zone), kitchen & living room (two zones), and entire twin house (seven zones), 

respectively. 

 

A thermal circuit for each building element (wall, roof, window, door, etc.) is obtained by using 

techniques discussed in section (6.2) (Figure 6.4). The spatial discretization of the building 

elements can be changed according to the frequency response desired for the system. The 

wall thermal capacity is located in the middle of each mesh. 

 

All thermal properties are considered constant in time. In simulation, the solar radiation on 

walls and windows is taken from measurements done directly on the building surface and 

from calculations from the measurement on a horizontal surface; both approaches give very 

similar results. 

 

Solar radiation entering the twin house through windows is calculated as a function of varying 

solar transmittance that changes with the angle of incidence of the solar radiation. According 

to the manufacturer, the heat from heaters is split in thirty percent radiation and seventy 

percent convection [102]. The same split of heat input from the heater is considered in 

simulation. A detailed description of the twin house construction, experiments and data is 

given in Annex 11-11 
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Figure 6.4 Layout and dimensions of ground floor of twin house 

 

The thermal circuits generated for each zone are assembled as discussed in sections 6.3 and 

6.4. The state space model for the assembled circuits is generated as discussed in section 6.5. 

The measured data has a time step of 10 minutes. The simulation is done at a time step of 5 

minutes. 

 

 

6.9.1 Single zone model (Living room) 

 

Living room is modelled as a single thermal zone. The conditions of spaces adjacent to living 

room are considered as boundary zones, as shown in Figure 6.5. The living room is bounded 

by kitchen wall, kitchen door, doorway wall, doorway door, corridor wall, bedroom wall, 

Southern external wall, southern window, Eastern wall and Eastern window. 
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Figure 6.5: Thermal circuit connections for living room zone 

 

 

Figure 6.5 shows the connection of each thermal circuit (wall, windows, ceiling etc.) with room 

air. The model of the living room consists of 13 thermal circuits (building elements). The 

numbering of each circuit and the position of each input to thermal circuit is shown in Figure 

6.5. Thermal circuit number 13 represents the air node, which receives heat transferred from 

12 thermal circuits that model the building elements. 

 

 

Figure 6.6 Representation of a wall heat transfer by a thermal circuit 
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Each wall is modelled as an RC (resistances and capacitances) circuit with adjustable number 

of slices. The air inside the living room is modelled as homogeneous node exchanging heat 

with different surfaces via branches as shown in Figure 6.7 

 

                                                                       

Figure 6.7: Air nodes with braches connecting different walls and components of living room 

 

All the circuits once modelled are assembled and connected with the air node. The indoor 

temperature is simulated using three methods numerical integration methods: Euler explicit, 

Euler Implicit and exponential. 

 

In Figure 6.8, the simulation results (in red) as compared to the actual measured internal 

temperature (in green). The histogram show that errors are within range of ±0.5℃ 
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Figure 6.8: Temperature simulation and histogram of errors, showing that error is between -

0.5 and +0.5 

 

 

6.9.2 Two zones model (Kitchen and Living room) 

 

The kitchen and the living room were modelled together to validate the assembling and the 

state-space methodologies discussed in sections (6.2,6.3,6.4 and 6.5). The kitchen and the 

living room share an internal wall and a door. Although the shared door is sealed, there is 

infiltration of air between the two rooms, equivalent to 1/3rd of the infiltration between North 

and South zones. The ventilation supply duct passing through the kitchen is uninsulated and 

is responsible for loss of heat from the kitchen. The heat losses to ventilation duct are provided 

in the experimental data and are incorporated in the simulation. 

 

The total number of thermal circuits for the two zones is nineteen (Figure 6.9). All zones 

external to the kitchen and the living room are considered boundary conditions for the model. 

The number of state variables in the assembled model is 57.  
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Figure 6.9: Thermal circuit diagram for living room and kitchen 

 

Figure 6.10: Simulation of living room and kitchen temperatures 
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The results of simulation for two zones along with error histogram are shown in Figure 6.10. 

The modelling errors lie within −1 to +1.5℃ . The increase in error coincide with the peak 

solar radiation hours. 

 

Figure 6.11: Thermal circuit diagram for all zones of twin house 

 

6.9.3 All zones model  

 

The model for the whole house consists of seven thermal zones that are modelled by 

assembling 56 thermal circuits (Figure 6.11). The number of states in the final state-space 

model is 109. The simulation error increases with the number of zones, which is explained by 

the errors induced in the values of boundary conditions (Figure 6.12). For example, when only 

the living room is simulated, the boundary temperatures are the measurements of the 

temperatures of adjacent rooms (Figure 6.7); when the whole house is simulated, the 

boundary temperatures for the living room are state variables that are simulated with an error 

(Figure 6.12). The simulation results show that, for every zone, three quantiles of simulated 

temperature lie within ±1℃. These results are similar to the best results obtained in a 

benchmark of 21 modelling teams using commercial and research simulation programmes 

(Strachan, et al., 2016). 
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Figure 6.12: The simulation results of all the rooms in twin house and the corresponding 

error histograms 
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 Conclusions 

 

This chapter discussed the theoretical background for the state space modelling. The thermal 

circuit presentation of the individual components of the building is explained with reference 

to the Twin House construction details. The component thermal circuits are then assembled 

to generate a single thermal circuit for the entire building. A state space model is developed 

using the input data (outdoor temperature, solar radiations etc.) and the assembled thermal 

circuit. The model is validated with the measured data. The error histogram ranges between 

±2℃. Three quartiles of simulation errors lie within ±1℃.  

  

The state-space representation can be effectively obtained from thermal circuits, even for 

very large models. This is specifically suited to detailed thermal models of buildings. The 

state-space models, although linear, can be used also for non-linear models if the linearity is 

considered for a time step. State-space models are completely equivalent to thermal circuits 

from which they were obtained. The assembling of elementary thermal circuits allows us to 

obtain only one thermal circuit for the whole building; therefore, the state-space model can 

model in detail a whole building. Since assembling can be used to create large models from 

individual elements, it can find applications in the emerging technologies of Building 

Information Modelling (BIM). Obtaining state-space representation from very large thermal 

networks can have applications in model order reduction and the synthesis of control 

algorithms for complex buildings. 

 

The model developed is used for the analysis of QUB method in next chapter. The QUB 

experiments are designed with different level of power, time duration and weather data with 

the help of the state space model developed in this chapter. The state space model has the 

advantage of using flexible number of meshes for better validation of the model. It allows us 

to determine the minimum time step required for simulation. The eigen values obtained with 

the state space model help us identify the significant time constants that govern the evolution 

of temperature during the QUB experiments. The state of the building surfaces dictates the 

behavior of air temperature and the corresponding error of the QUB experiment. The state 

space model helps us to achieve the realistic status of the building in simulation. 
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 Design of experiments for QUB test method 

 

The previous chapter discussed in detail the variations in results of QUB tests during 

experiments can be due to the influence of different variables, such as input power, time 

duration, level of insulation, outdoor temperature, solar radiation, wind speed, measurement 

errors etc. Like any other experiment QUB test is also performed under controlled set of 

inputs. The level of inputs depend on the weather conditions and the level of insulation of 

building. The process of selection of input values for an experiment is commonly known as 

design of experiment (DOE). The DOE for QUB experiment is to find the optimal value of power 

and time duration for different outdoor weather conditions and construction types. 

The steps for DOE of QUB experiment as discussed in [93] are: 

- Obtain a state space model for the given building and determine the steady state 

value of heat loss coefficient using equation. 

- Use the same state space model to simulate the temperature response to QUB 

input. 

- Estimate the slope of the response (heating and cooling period). 

- Determine the QUB value from the slopes and power level. 

- Repeat the estimation of QUB value for different levels of input power and time 

duration. 

- Draw the contour map that gives error at the given power level and the time 

duration and outdoor weather conditions. 

 

This chapter explains these steps to simulate QUB experiments for a building with weather 

data and different levels of inputs. Several numerical experiments are performed with 

variation of boundary conditions (solar radiation and outdoor temperature) and initial 

conditions (temperature distribution inside building surfaces and indoor air temperature).  
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 Simulation of QUB experiments for the twin house 

 

The IEA, EBC annex-58 provides full data set that includes: construction details along with 

dimensions and thermal properties, weather measurements, and the experimental indoor 

measurements. The Twin House data provides a good opportunity to generate and validate 

the building simulation models.  

 

With the model of Twin House it is possible to design optimal conditions (time and power 

level) for the QUB experiment. The model was generated for ground portion only that includes 

seven zones: living room, kitchen, doorway, bedroom, corridor, bathroom and children’s 

room. The conditions below the floor (ground) and above the ceiling (attic) was considered as 

boundary condition at the outdoor temperature.  

 

A state space model 

 

�̇� = 𝐴𝑥 + 𝐵𝑢  

𝑦 = 𝐶𝑥 + 𝐷𝑢 

(7.1) 

 

 was generated for the twin house, where 𝑥 represents all the states of the twin house (109 

in this case), 𝑦 represents the desired outputs, which in our case were the indoor 

temperatures of all the seven thermal zones (rooms) of the twin house. The model was 

validated using the indoor temperature measurement data from the experiment.  

 

The steady state value for heat loss coefficient of a building maintained at a constant 

temperature by supplying heating power is defined as [93]: 

  

𝐻 ≡
𝑃

𝜃𝑖𝑛𝑑𝑜𝑜𝑟 − 𝑇𝑜
 

 

(7.2) 

 

where 

𝐻 – overall heat loss coefficient, 
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𝑃– steady state power supplied, 

𝜃𝑖– indoor air temperature, 

𝑇𝑜– outdoor air temperature. 

 

Since the steady state is never achieved, the global conductance is estimated by the integral 

in time 

 

𝐻 ≡
∫ 𝑃𝑑𝑡

𝑡𝑓𝑖𝑛𝑎𝑙

0

∫ (𝜃𝑖𝑛𝑑𝑜𝑜𝑟 − 𝑇𝑜)𝑑𝑡
𝑡𝑓𝑖𝑛𝑎𝑙

0

 
(7.3) 

 

When several different boundary conditions are present, the indoor temperature 𝜃𝑖𝑛𝑑𝑜𝑜𝑟 is 

the result of the gains from the different boundary temperatures 𝑇𝑖  and can be obtained by 

changing the indoor temperature in equation (7.2): 

 

𝜃𝑖𝑛𝑑𝑜𝑜𝑟 = ∑ 𝐾𝑖𝑇𝑖

𝑖

+ 𝐾𝑝𝑃 (7.4) 

 

where 𝐾𝑖 is the sate gain of boundary temperatures 𝑇𝑖 and 𝐾𝑝 is the static gain for power. 

Equation (7.4) is valid whether the boundary temperatures are same or not, ∀𝑖,𝑇𝑖 = 𝑇𝑜. 

However, it is important to note that when the boundary temperatures are not the same, the 

heat loss coefficient value using equation (7.2) will give errors. 

  

In case of multiple zones, it is important to find the single equivalent mean temperature 

𝜃𝑖𝑛𝑑𝑜𝑜𝑟, as representative of all zones temperature, to be used in equation (7.2) for 𝜃𝑖𝑛𝑑𝑜𝑜𝑟. 

The equivalent mean temperature in case of zones with equal height can be determined as:  

 

𝜃𝑖𝑛𝑑𝑜𝑜𝑟 =
∑ 𝐴𝑖𝜃𝑖𝑖

𝐴𝑖
 

(7.5) 

 

The steady state heat loss coefficient 𝐻, is then estimated as [93]:  
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𝐻 =
∑ 𝑃𝑖𝑖

∑ 𝐴𝑖𝜃𝑖𝑖

∑ 𝐴𝑖𝑖
− 𝑇𝑜

 
(7.6) 

 

where 

- 𝑃𝑖  is the power supplied to each zone 

- 𝐴𝑖  is the area of each zone 

- 𝜃𝑖  is the temperature of each zone in the steady state vector 𝑦𝑠𝑠 

- 𝑇𝑜 is the outdoor temperature 

 

 In QUB experiment, heating power is applied as a step input in all zones. The power in each 

zone is tailored according to the surface area of each zone. This generates uniform 

temperature across all zones. The response of the twin house is modelled using discrete 

exponential method  

 

𝑋𝑘+1 = Φ𝑋𝑘 + Γ𝑢𝑘 

𝑦𝑘 = 𝐶𝑋𝑘 + 𝐷𝑢𝑘 

 

(7.7) 

 

where  

 

Φ = 𝑒𝐴Δ𝑡 

Γ =
𝐵

𝐴
(𝑒𝐴Δ𝑡 − 𝐼) 

 

(7.8) 

 

 
The QUB experiments are simulated by using weather and construction data from IEA, EBC 

Annex-58 [102]. The numerical QUB experiments are simulated for the ground floor of the 

twin house that consist of living room, kitchen, children’s room, bathroom, two doorways and 

a bedroom. The outdoor ventilation is zero whereas the outdoor infiltration rate of 1.62 𝑚3/ℎ 

is considered for simulation. The values for outdoor and indoor convection heat transfer 

coefficient of 23 and 8 (
𝑊

𝑚2𝐾
) are considered for simulation. The shutters for windows and 
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doors on Southern face are closed. The QUB experiments are simulated for the weather data 

of 40 days (Experiment-1, IEA, EBC Annex-58) of data given in [102]. The 40 days weather data 

show a good variation of weather with sunny, cloudy and partly cloudy days.  

 

The average outdoor temperature during the QUB experiment nights varies between 6 to 

16 ℃. Let us note already here that the conditions in which some of the QUB experiments 

were performed are known not to be the optimal one. A large temperature difference (e.g. 

10 °C) in between the set point temperature (20 °C) and the outdoor temperature during the 

night is indeed known to increase the accuracy of the method. 

 

As a first step, a QUB experiment is performed with constant outdoor temperature and 

assumed initial conditions (no solar radiations before the start of experiment) at different 

levels of power and time duration. The contour error for twin house are similar to those 

obtained previously in literature [93], showing that QUB error is predictable at given power 

and time Figure 7.1(a). The contour valleys of the error as a function of power and time 

duration show that consistent QUB values can be obtained even if the power and time 

duration vary Figure 7.1(a).  

 

Figure 7.1 (b) shows the rise and fall of temperatures in different rooms of the experimental 

house during the simulated QUB experiment. It is evident that there is a slight variation (±1℃) 

in temperature of different rooms during the QUB experiment. It is therefore important to 

take weighted average temperature in case of a house with multiple thermal zones (black 

circles for heating and pink circles for cooling phase of the QUB experiment in Figure 7.1(b)). 
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Figure 7.1: Design of the QUB experiment: (a) Heating power and time duration: error curves 

(black) and internal temperature (red); the blue star shows the error when the experiment is 

performed at 1500 W and 5 hour duration for the each phase of the QUB experiment;  (b) the 

exponential response of seven zones of the house for 1500  W and 5 hours: fall of 

temperature during the two stages of QUB experiments (dotted line), weighted average 

temperature rise during heating (the black circles show the) and weighted average 

temperature rise during cooling (pink). 

The numerical QUB experiments are conducted with the different conditions of weather given 

in EBC Annex-58. The power during heating phase is estimated using equation (7.9). A low 

power of 200 W is kept during the cooling phase of QUB experiments. 

 

𝑃𝑜𝑝𝑡𝑖𝑚𝑢𝑚~ 2𝐻𝑟𝑒𝑓(𝑇𝑖 − 𝑇𝑜) (7.9) 

 

The results for three days i.e. 3, 4, 18, 28 and 33 are the extreme outliers in the experiment 

set with an in the range of 30 % to 40 %,. The corresponding slopes during these days show 

that the slopes were extremely small during the heating and cooling phases showing a failure 

of experiment during these days. The experiment on day 18 failed as the slope is positive 
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during the cooling phase. The day 33 and 28 show a high difference of slope during two phases 

(higher than 2E − 05 ). The outliers corresponding to the days 3, 4, 18, 28 and 33 are removed 

for further analysis in this work.  

 Influence of variation of optimal power on design of experiment (DOE) results 

 

It is evident from the plot of error curves (Figure 7.1) that variation in input power changes 
the output of the QUB method. The optimum power for QUB experiment on any day with 
reference to the initial power can be estimated by using equation (7.9) [100]: 
 
The effect of variation of the optimum power could be investigated by generating error curves 
for the twin house with ±20 % of the optimum power (𝑃𝑜𝑝𝑡𝑖𝑚𝑢𝑚) value. In this case the error 

curves were almost vertical (Figure 7.2). The advantage of this behavior was that the variation 
in QUB error (with ±20 % variation in power) was limited (maximum variation of 6 % in QUB 
error). For example, the QUB error would vary by 3 % when the optimum power varied from 
2100 to 2600 W (blue vertical line in Figure 7.2). 

 

Figure 7.2: QUB errors generated with variation of the optimum power: error curves (black) 

and indoor temperature (red). The blue vertical line shows error for QUB experiments at 

different levels of power but for the same duration of the experiment. 
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7.2.1 Design of experiment time duration for QUB test 

It is interesting to see that 𝐻-values with small errors could be obtained with QUB tests having 

short heating duration. This is evident from Figure 7.3 showing that 𝐻𝑄𝑈𝐵 value within ±20 % 

of the reference value could be obtained during the first half hour of QUB experiment. The 

error curves however were very sensitive to power level if the duration of the experiment was 

short. 

 

Figure 7.3: QUB error curves (black) and indoor temperature curves (red) during the first 1.5 

hours of the QUB experiment 

 

The variation in error with the time duration of QUB test could be further explored by 

performing QUB experiments with different time durations. The dependency of QUB errors 

with time was generated by repeating a QUB experiment with time duration ranging from 20 

min to 5 h (Figure 7.4). It can be seen that initially the error was large (30 %) but it reduced 

significantly during the next twenty minutes. The error remains almost constant after 1–2 h 

of the QUB experiment, which was in accordance with previously published results [93]. This 
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behavior was explained by the important contribution of the exponentials corresponding to 

medium time constants (1 … 2 h), which have significant coefficients [93]. 

 

Figure 7.4: Variation of QUB error with change in time duration of QUB experiment 

 Conclusions 

 

This chapter discussed the steps for the design of QUB experiments. Using design of 

experiment the QUB experiment were simulated with varying level of power and time 

duration. The error curves generated at varying level of power and time duration can help us 

predict the QUB error. The optimum power for the QUB experiment given by equation (7.9) 

depends on the overall heat transfer coefficient 𝐻𝑟𝑒𝑓, a quantity estimated with stated 

thermos physical properties. It is verified that ± 20 % variation in optimum power causes only 

± 3 % variation in QUB results. The QUB experiments can produce accurate results with 

durations shorter than half hour, however, the results are prone to large variation with small 

change in power during heating phase. It was shown that after 3 hours the results of 

experiments only slightly improve with increase in duration of QUB experiments.   
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 Influence of boundary and initial conditions on QUB experiments  

 

 

The QUB experiment begin after the sunset, the solar radiation absorbed by the building 

envelope might influence the results of QUB experiment.The expression used for the 

calculation of overall heat transfer coefficient 𝐻𝑄𝑈𝐵, does not take into account the solar 

radiation. It is important to see how the error in QUB results vary with respect to the solar 

radiation. Since the QUB method is an experiment with short duration of time the initial 

condition before the start of QUB experiment can have influence results. This chapter analyses 

the variation of QUB results with boundary conditions (solar radiation) and initial conditions 

(initial power). 

 

8.1.1 Timing of QUB experiment: before or after the sunset 

 

To explore the effect of the solar radiation delayed by the transmission through the walls, the 

QUB experiment was performed at different starting times with respect to sunset. Figure 8.1 

shows the errors of QUB experiment (black curves) and the indoor temperature (red curves) 

when the QUB experiment was done for heating power ranging from 500 to 3500 W and time 

duration between 0 and 6 h. When the time duration was shorter than 30 min., the 

measurement was very sensitive to the heating power: there was a large variation of error 

with a small variation of heating power. The errors became less sensitive with power if the 

time duration was about 5–6 h. When QUB experiment was performed half an hour before 

the sunset, in the same conditions of power and duration (1500 W and 5 h), the error was 

13 % (blue star in Figure 8.1). There was a reduction of the error to 10.5 % when the 

experiment was performed one hour after the sunset (Figure 8.2). There was no further 

reduction of error when the starting time of QUB experiment was further delayed. It could be 

inferred that the solar radiation influenced QUB results. 
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Figure 8.1: Error (blue star) when the experiment is performed half an hour before the sunset 

time (at 1500 W and 5 h of heating); error of measured overall heat loss coefficient (black 

curves), indoor temperature (red curves). 
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Figure 8.2: Results (blue star) when the experiment is performed one hour after the sunset (at 

1500 W and 5 h of heating); error of overall heat loss coefficient (black curves), indoor 

temperature (red curves). 

 

 

8.1.2 Influence of the day type: sunny, cloudy or partly cloudy 

 

The experimental data offer an opportunity to investigate the impact of the day type (sunny, 

cloudy or partly cloudy) on the results of the QUB experiment. To perform the analysis, days 

are classified based on the average global Horizontal solar radiation. The QUB numerical 

experiments are performed with the weather data, optimal power and time duration of five 

hours. For each day, the initial conditions are simulated with respect to the conditions of all 

the days before the QUB experiment. The days are categorized as sunny days (average solar 

radiation>350 𝑊/𝑚2), partly cloudy days (average solar radiation>152 𝑊/𝑚2) and cloudy 

days (average solar radiation<153 𝑊/𝑚2). It can be observed that results for sunny days show 

high variation as compared to cloudy and partly cloudy days (Figure 8.3). The 2nd and 3rd 

quartile of the QUB results on cloudy days are close to the steady state 𝐻-value as compared 
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to the QUB results on sunny days (Figure 8.3). However, the variation in QUB results on  

cloudy, partly cloudy and sunny days show that not all the errors can be explained with respect 

to solar radiation. 

 

 

Figure 8.3: QUB value variation as a function of day type: sunny, cloudy and partly cloudy. 

Dashed horizontal line (blue) is the steady state reference value 

To explore further the effects of solar radiation on the QUB measurement, experiments were 

simulated on a sunny day. The simulations were started assuming that the temperature in the 

external walls was constant and equal to 10 °C. Then, simulations were repeated with the 

weather data of a given day in order to obtain the initial conditions. Figure 8.4 shows the 

results when the same day was repeated 1, 2, …, 40 times. It could be observed that the initial 

conditions of temperature distribution in the walls highly influenced the errors of QUB 

measurement. If initially the temperature in the walls was 10 °C, the error of QUB experiment 

was 140 %. However, this type of arbitrary initial conditions was specific to a numerical 

experiment; the simulations need to be repeated for more days in order to obtain values of 

the state variables, which are not influenced by the “arbitrary” initial conditions. It can be 

noticed in Figure 8.4 that the errors entered in a range after 15–17 days. 
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Figure 8.4: Convergence of QUB test when experiment is repeated without solar radiations 

(blue circles) and with solar radiations (black asterisk). In absence of solar radiations (blue 

circles) the QUB test settles at a value closer to 𝐻𝑟𝑒𝑓. Blue dashed line the reference/steady 

state over all heat transfer coefficient (𝐻𝑟𝑒𝑓), upper dashed red line (+20% 𝐻𝑟𝑒𝑓), lower 

dashed red line (-20% 𝐻𝑟𝑒𝑓) 

 

This error can be explained by the power of solar radiation in the over-all heat transfer 

coefficient for steady state conditions 

𝐻 =
𝑃ℎ𝑒𝑎𝑡𝑒𝑟 + 𝑃𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛𝑠

𝐴∆𝑇
 

(8.1) 

 

In case of QUB method the heater power input is the only power considered for estimation of 

over-all heat transfer coefficient. The QUB over all heat transfer coefficient is estimated using 

formula 
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𝐻𝑄𝑈𝐵 =
𝛼1𝑃2 − 𝛼2𝑃1

𝛼1𝑇2 − 𝛼2𝑇1
 

(8.2) 

   

where 𝑃1 is the heater power during the heating period. The expression gives a good value 

when there are no solar radiation. However, for a sunny day, the power of the heater is not 

the only power contributing to the rise in temperature during the heating phase. On a sunny 

day, the surfaces of a building continuously receive solar radiation that are partially absorbed 

and stored. As the QUB experiment starts immediately after the sunset and the heating 

continues for a short duration of time after the sunset, the contribution of delayed solar 

radiation transferred to the room air via building surfaces cannot be ignored. This is evident 

from the equation (8.1); when evaluated with no solar power added, the overall heat transfer 

coefficient will always result in a value smaller than its reference values for steady state. The 

input power (heating phase) for QUB calculations can be corrected as: 

 

𝑃1 = 𝑃ℎ𝑒𝑎𝑡𝑒𝑟 + 𝑃𝑠𝑜𝑙𝑎𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 (8.3) 

 

In absence of solar radiations the evolution of indoor temperature during the QUB experiment 

is different as shown in (Figure 8.5). The temperature profile in case of no delayed solar 

radiations via walls (orange line) is different from the profile (blue line) when delayed solar 

radiations from the wall are considered. The slope of temperature line with no solar radiations 

(orange) is different from the temperature line (blue) with delayed solar radiations. In order 

for the both lines to have the same the same evolution profile an additional power needs to 

be added to the indoor air temperature line with no solar radiations (orange line). 
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Figure 8.5: Temperature evolution during the QUB heating phase with no solar radiations 

(orange line) and with solar radiations (blue) 

The correction for solar radiation requires the calculation of delayed heat flow to indoor air 

due to solar radiation absorbed by the building envelope. In order to solve this problem, two 

calculations are performed (Figure 8.6): 

1) The heat flow from the building envelope to the room air, considering both outdoor 

temperature and solar radiation as inputs, is calculated in order to obtain the 

temperature of the walls and the temperature of the air during the heating phase of 

QUB experiment. The heat flow from the envelope to the room air is calculated by the 

convective heat transfer due to temperature difference between room air and walls 

(Figure 8.6 a). 

2) The heat flow from the building envelope to the room air is calculated by considering 

only the outdoor temperature (no solar radiation) as input from the boundary 

conditions (Figure 8.6 b). A controller is added to introduce the additional heat flow 

necessary to obtain the indoor temperature, 𝜃𝐾  (Figure 8.6 b) that is same as indoor 

temperature, 𝜃𝑖, obtained in the first step (i. e. with solar radiation, (Figure 8.6a). The 

heat flow rate 𝑄2 introduced by the controller represents the contribution of the solar 

radiation (Figure 8.6 b). 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



201 

 

 

Figure 8.6: QUB experiment with (a) indoor temperature evolution as a function of solar 

radiations, outdoor temperature and heater power; (b) temperature evolution as function of 

outdoor temperature, heater power and a controller 

The controller power required to keep the controlled temperature 𝜃𝑘  (no solar radiations) 

equal to the indoor temperature 𝜃𝑖  (with solar radiation) is the contribution of solar radiation 

to the indoor temperature evolution (Figure 8.7). The average power from the controller in 

such case is equal to 110 W. This is considered as the corrective power needed to be added 

to power 𝑃1 (power during heating phase) in QUB expression for 𝐻 in equation (8.2).  
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Figure 8.7: Temperature evolution during the QUB heating phase with no solar radiations 

and controller heat (orange line) and with solar radiations (blue) 

When this corrective power is added as compensation for solar radiations, it reduces errors 

from 8% (Figure 8.4) to 5% (Figure 8.8). The average power contributed by the walls to inside 

air is 110 Watts.  
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Figure 8.8: Convergence of error to a value closer to reference value when a day with sunny 

conditions is repeated with solar power correction factor 

 

 Influence of initial conditions 

 

The optimal error curves for the experimental house change with the initial conditions. The 

QUB method error increases (Figure 8.9(a)) when there is no initial power before the start of 

QUB experiment, the error is large. The error curves converge when house is supplied with a 

steady heating power before the QUB experiment ((Figure 8.9b)). 
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Figure 8.9: QUB error curves for the experimental house (a) no initial power before the 

experiment, the curves move towards increased error (b) initial power before the experiment, 

the curves converge, red curves show the indoor air temperature and black curve show the 

error curves. 
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Figure 8.10 shows the results of QUB experiment when no power was used before the 

experiment (panel a) and when power of 600 W was used before the experiment. It can be 

seen that the errors persist after 15 days when there was no power before the experiment 

(Figure 8.10a); if the building was heated before the experiment, the errors of QUB 

experiment decreased, being in the range ±20 % Figure 8.10(b). 
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Figure 8.10: QUB values obtained for simulations for forty days a) no initial power before the 

QUB experiment and b) initial power before QUB experiment. Blue dashed line the 

reference/steady state over all heat transfer coefficient (𝐻𝑟𝑒𝑓), upper dashed red line (+20 % 

𝐻𝑟𝑒𝑓) and lower dashed red line (−20 % 𝐻𝑟𝑒𝑓). 

 

 Conclusions 

 

The IEA ECB Annex experiment provides good data to simulate a model of temperature 

variation inside a house. The simulated temperature lies well within ±1℃ of the measured 

temperature; the error outliers (±2℃ ) are obtained during the initialisation period only. The 

model is also validated with real QUB experiments performed on the twin house. 

 

 The validated model is then used to perform QUB experiment with different levels of power, 

boundary and initial conditions. The weather data of forty days was used to simulate QUB 

experiment. The following conclusions can be drawn from the results of QUB experiments: 

 

 Heating building with steady state power before the experiment improved QUB 
results. The error curves show a large error when there was no initial power before 
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the QUB experiment. The error curves converged to smaller error when the building 
was supplied with power before the experiment. 

 The starting time of the QUB experiment before or after the sunset affected the 
results. A QUB experiment half an hour before the sunset gave an error of 14 % that 
was reduced to 11 % when the experiment was conducted one hour after the sunset. 

 Comparison of QUB results for sunny and cloudy days revealed that at a given power 
and time duration of the QUB experiment the results on cloudy days showed less 
variation as compared to sunny days. 

 QUB errors on sunny days were due to solar radiation absorbed by the walls of the 
building. The absorbed solar radiation contributes as a delayed heat input to the 
evolution of air temperature during heating phase. This paper proposed a method to 
estimate the delayed solar radiation and to correct the input power during the 
heating phase. The solar correction factor, when added to the heating power 𝑃1 in 
the QUB expression, reduced the error by 2 %. 
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 Posterior error analysis 

 

 

Design of experiment (DOE) can be used to estimate the optimum power and time duration 
for the QUB experiment that can give low errors [93]. The design of experiment depends on 
the overall heat loss coefficient used, a quantity that depends on the stated or calculated value 
using building material properties. The stated or calculated value of the overall heat loss 
coefficient is different from the one measured on the real building due to material property 
deterioration, missing insulation layers, moisture transfer and the quality of workmanship. It 
is therefore important to investigate how the results of the QUB method change when the 
overall heat loss coefficient value used in the design of the experiment is different from the 
real overall heat loss coefficient of the building, which in general is larger than the designed 
value.  
 
Three cases were studied in which the value of 𝐻 (used for the design of the experiment) and 
the real value of 𝐻 were different:  

1) The outer wall insulation for design of QUB experiment was two times higher than 
that of the real wall (8 % error in assumed 𝐻𝑟𝑒𝑓 compared to the real envelope).  

2) The real wall insulation is completely missing whereas in the design of QUB 
experiment the outer wall has insulation (50 % error in assumed 𝐻𝑟𝑒𝑓 compared 

to the real envelope).  
3) The real wall had no insulation and the roof insulation was smaller as compared 

to the wall and roof insulation used in the design of QUB experiment (100 % error 
in assumed 𝐻𝑟𝑒𝑓 compared to the real envelope). 

 
For the cases discussed above, the a priori error is defined as the error when the real 𝐻-value 
was used for designing the experiment, whereas the a posteriori error is defined as the error 
when a supposed 𝐻-value (obtained, for example from building specifications), which is 
different of the real 𝐻-value, was used for designing the experiment. Figure 9.1 shows the 
results of 32 QUB experiments conducted on different days. The results show that when 8 % 
error of 𝐻-value was used in the design of the experiment (Figure 9.1a), the increase in a 
posteriori error was not significant (shown by the blue bar slightly higher than the red bar). 
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Figure 9.1: A posteriori error analysis for three case studies: (a) outer wall insulation is reduced 

(8 % error in H-value), (b) outdoor wall insulation is completely removed (50 % error in H-value) 

and (c) outdoor wall insulation removed and roof insulation reduced (100 % error in H-value). 

Red bars show error with real envelope and blue bars show QUB error with assumed envelope. 

Figure 9.1b shows that with no outer wall insulation (𝐻𝑟𝑒𝑓 error of 50 %), the a posteriori error 

was higher than the a priori error, with a median of a posteriori errors 10 % as compared to 
median error of 6 % for a priori errors. The majority of errors still lied within ±15 %. In case 
of no wall insulation and reduced roof insulation (Href error of 100%) the a posteriori error 
was significantly higher as compared to a priori error, with a median of a posteriori errors of 
16 % as compared to a priori median error of 8 % (Figure 9.1c). Nevertheless, in this case the 
error made with the QUB method (median error of 16 %) was significantly smaller than the 
error made on the initial estimate of the overall heat loss coefficient (100 %). 
 
This also means that, in practice, the experimentalist will clearly notice that “something went 
wrong” in the sense that the measured value of the heat loss coefficient is very different from 
the assumed value (median difference being 100 % – 16 % = 84 %). The experimentalist can 
then suspect that there is an important gap between the theoretical design of the building 
and its actual state. This could also trigger another QUB experiment, using for the design of 
experiment the measured value of the heat loss coefficient instead of the theoretical (or 
stated by design) value. In this case, the measured and the assumed values would be much 
closer, confirming the important gap between theoretical and actual thermal performance. 
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 Ideal conditions for the QUB experiment 

 

The derivation of equation is based on the evolution of indoor temperature as a single RC 

circuit: 

 𝐶
𝑑𝑇𝑖

𝑑𝑡
= 𝑃 − 𝐻(𝑇𝑖 − 𝑇𝑜), (9.1) 

  

The conditions for the derivation of QUB equation are that the outdoor temperature should 

remain constant during heating and cooling phases and the heating and cooling durations 

should be of equal length [97]. A constant value of power is maintained before the experiment 

[82]. The power dissipated during the cooling phase should be zero i.e. 𝑄2 = 0.  The method 

assumes a homogeneous internal temperature to be maintained inside the building i.e. in case 

of a house with many rooms, the temperature during heating and cooling phases inside each 

room should be ideally the same, a condition that is difficult to achieve in real experiments. 

There should be no air stratification (temperature difference along the height of the room) 

inside individual zones. The test should be carried without any occupants inside the house 

[92].  

 

The ideal conditions for QUB experiment are that it should start from the steady state 

conditions. The literature however does not mention how long before the QUB test an initial 

steady state should be maintained [92]. 

 

The temperature evolution during the QUB experiment depends on the initial internal air 

temperature as well as the distribution of different temperatures inside the building envelope. 

Before the start of the QUB experiment, the building should be in steady state [82]. The power 

input should be in the form of a simple electric heater as the heating from gas or boiler 

requires conversion efficiencies for power calculation that can lead to increase in errors.  

[82]. 
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To reduce the variation of QUB results, a dimensionless quantity alpha (also known as alpha 

criterion) is introduced. Alpha is the ratio of power between initial power (before the start of 

QUB experiment to achieve steady state conditions) 𝑃𝑜  and the power applied with the start 

of QUB experiment 𝑃1: 

 

 

𝛼 = 1 − 𝑃𝑜/𝑃1 

(9.2) 

 

 where the initial power 𝑃𝑜 , before the start of QUB experiment is given as [94] 

 

𝑃𝑜 = 𝐻𝐿𝐶𝑟𝑒𝑓∆𝑇𝑜 (9.3) 

 

where ∆𝑇𝑜 = 𝑇𝑖𝑜 − 𝑇𝑒ℎ is the temperature difference between internal and external 

temperature at the beginning of the QUB test. Ideally, this difference should be around 10 K. 

Since 𝐻𝐿𝐶𝑟𝑒𝑓 in equation (9.3) is determined from the stated thermos physical properties  

[96].The power should be optimized based on the 𝛼 criteria [96]. The heating and cooling 

phases should be of equal durations. The theoretical model shows a strong dependence on 

the alpha value. For experiments, it is recommended that alpha should be between 0.4 and 

0.7; the power during heating phase can be between 1.7𝑃0 to 3.3𝑃0[97]. 

 

A method for the design of experiment of QUB method was introduced by [93] where the 

error can be predicted at any power (heating phase) and time duration. The power input 

should be in the form of a simple electric heater as the heating from gas or boiler requires 

conversion efficiencies for power calculation that can lead to increase in errors. The power 

should be optimized based on the 𝛼 criterion [82]. The heating and cooling phases should be 

of equal durations.  

 

A desired indoor temperature was maintained at real house using thermostatically controlled 

heaters [92]. The house was tested between the end of September until the end of April. The 

experimental reported errors for QUB test conducted in real house were within ± 10 %. 

However, few tests above this limit were also reported. There is no influence of 𝛼 criteria on 
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the results provided that the alpha value stays in the range: 0.4 < 𝛼 < 0.6 [92]. When 𝛼  was 

greater than 0.7, the results stayed consistently within +10% region. At reduced infiltration 

rate, the alpha criterion has no influence up to the value of 0.8. The result of a single 

experiment performed on real house shows that there is no correlation between the wind 

speed and 𝐻-value of the QUB method, although it was argued that the house was sheltered 

from three sides and only West side of the house was exposed [92]. Some of the variance 

(with a determination coefficient of 0.21 to 0.16) in QUB results can be attributed to external 

temperature where an increased external temperature can increase the 𝐻-value measured 

with QUB method. 

 

QUB experiments have generally shown good results. However, with limited experiment sets 

it should be repeated under different weather conditions to improve understanding of the 

method. The variation in results with change in test conditions and wall configuration should 

be established. The performance of the method when ideal conditions are not respected 

during the experiment should be analyzed further [82]. In the next section, QUB experiments 

under non-ideal conditions are simulated for further analysis. The QUB experiments are also 

simulated for winter and summer seasons to analyze the suitability of particular season for 

QUB experiments. 

 

 Assumption of constant outdoor temperature 

 

The derivation of the QUB experiments assume that the external temperature should remain 

constant during heating and cooling phases [97]. This condition may not be respected in real 

experiments where the temperature can vary during both phases. It is interesting to find the 

impact of variation in outdoor temperature on the QUB results when the perfect conditions 

of constant outdoor temperature are not respected during the test. Two sets of QUB 

experiments are performed for winter months starting from November to end of March (150 

days) for the weather data of Munich, Germany, and the construction data form IEA, EBC 

Annex-58 (one of the twin houses). One set of experiments is performed with constant 

outdoor temperature and the other set is performed with varying outdoor temperature during 

the QUB experiments.  
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Figure 9.2 shows the results when the QUB experiments are performed:  

a) at the real outdoor temperature with normal variation during the QUB night and  

b) at the assumed constant outdoor temperature during the experiment night.  

 

It is evident form the figure Figure 9.2 that, with the exception of two outliers, the results 

of QUB experiments for both conditions (a) and (b) lie within ± 20 %  of the steady state 

overall heat transfer coefficient.  It can be inferred, with constant outdoor temperature, the 

QUB results show that with both constant and variable outdoor temperature, the QUB results 

are relatively similar.  

 

 

 

 

Figure 9.2: Comparison between QUB results at (a) variable outdoor temperature and (b) 

varying outdoor temperature. The black dashed line shows the steady state overall heat 

transfer coefficient and the two red dashed lines show (±20 %) of the steady state overall 

heat transfer coefficient. 
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 Variation in Design of experiment (DOE) QUB results  

 

The method of predicting the errors of the QUB at a given power and time was discussed in 

[93]. The method has potential to be used as a tool for design of experiments provided that 

we have the simulation model of the building and the weather data is known. For any 

simulation model, to accurately predict the outcome end the error in QUB experiment, it is 

important that simulation starts with the true states, i.e. temperatures of the building surfaces 

and layers. The inability to realize the true states of the building envelope can lead to 

erroneous predictions. This is shown by generating error curves of the QUB method by 

repeating the QUB experiments at different levels of power and time duration. The error 

curves in Figure 9.3 are generated for the same house at the same outdoor temperature and 

power levels during the QUB experiment. However, the states i.e. the temperature of the 

surfaces and layers of building were different during each simulation. The results of simulation 

show that with the changed states, the QUB error also changes (Figure 9.3a). The error curves 

in Figure 9.3b are generated for the same building but with different temperature/states of 

the building envelope. The red dashed line show that an experiment at the same power, 

outdoor temperature, and time duration will result is different errors. A design of experiment 

therefore may not be relied upon if the real states of the building are not taken into account. 

This also helps us understand that with the changed, states every time a QUB experiment is 

repeated, the results will be changed. 
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Figure 9.3: QUB error when the states in simulation are changed although the outdoor 

temperature and power are the same during the QUB experiment. (i) top left 35 %, (ii) top right 

30 %, (iii) bottom left 24 % and (iv) error is 12 %. (b) The error curves in 3D an experiment 

conducted at the same level of power and time duration with different errors as shown by red 

vertical line 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



217 

 

 Change in temperature during the QUB experiment 

 

The change in meteorological conditions during the QUB experiment can influence the results. 

The design of experiment depends on the predicted temperature during the experiment. It is 

expected that outdoor conditions can deviate from the predicted weather conditions. The 

effects of meteorological uncertainties can be reduced by performing QUB experiment at high 

level of power [128]. To analyze the effect of meteorological uncertainty, a QUB experiment 

was simulated at power level of 5’000 W during the heating phase. The experiment was 

simulated at the predicted outdoor temperature and then repeated at the ±20 % of the 

predicted temperature (Figure 9.4). It can be observed that the responses at different outdoor 

temperatures are only slightly different (Figure 9.4). The QUB results with variation of outdoor 

temperature show a variation of ±5%. 

 

 

Figure 9.4: The indoor air temperature response when temperature during QUB experiment at 

different outdoor temperatures i.e. at predicted temperature (black circles), at −20% of the 

predicted temperature (green asterisks) and at  +20% of the predicted temperature (blue 

asterisks)  
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 QUB experiments during winter and summer seasons 

 

The QUB experiments can be potentially performed during the entire year. The literature 

review does not show the impact of different seasons of the year on QUB test. To verify this, 

QUB experiments were simulated during winter, spring and summer seasons. An hourly 

EnergyPlus weather data for the city of Munich was used to simulate the QUB experiment on 

a house specified in IEA, EBC Annex-58 [102]. The data was interpolated to generate 10 minute 

data. The applied power was optimized using alpha criteria of 0.5 with no power during the 

cooling phase. Figure 9.5 shows the results for November to March and June to August. The 

experiments start at 20:00 PM and end at 05:00 AM, with a length of 4.5 hours for heating 

and cooling phase. The results of the experiment show that in winter season (November to 

March) the QUB experiments have less error and variation. The majority of the results are 

within ± 15 % of the reference overall heat transfer coefficient with only few outliers near 

±20 % (Figure 9.5). For the summer season (June, July, August), the QUB experiments show 

relatively large variation, majority of the results show under estimation (Figure 9.5). The set 

temperature before the start of QUB experiments was maintained at 20℃ during these 

experiments.  It may be mentioned that the majority of the in-situ overall heat transfer 

coefficient testing methods are recommended for seasons where a minimum temperature 

difference of 10 K can be maintained between indoor and outdoor temperature, a condition 

that is difficult to achieve during summer time. The outliers during the summer season 

coincide with high outdoor temperatures during QUB experiments. Figure 9.6 shows the 

temperature difference before the start of QUB experiments during summer months and the 

QUB error. It is evident that the small temperature difference between outdoor and indoor 

temperature results in increasing of the errors. It can be seen that with the temperature 

difference above 10 K, the error remains within ±20 %. 
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Figure 9.5: QUB experiments when performed during three seasons: winter and summers. The 

black dashed line shows the steady state overall heat transfer coefficient and the two red 

dashed lines show (±20 %) of the steady state overall heat transfer coefficient. 
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Figure 9.6: QUB error as a function of difference between outdoor and indoor temperature 

before the start of experiment 

It can be concluded that winters is a better seasons for the QUB experiment. In summer, the 

variation and error in QUB experiment is relatively large due to small temperature difference 

between indoor and outdoor temperatures. 

In order to increase the temperature difference in summer, QUB experiments during 

summers were repeated with a high set point temperature of 25 ℃ before the start of the 

experiment. The results of QUB experiments show (Figure 9.7) that, at high indoor set 

temperature, the results of QUB experiment improve. The majority of the QUB results are 

within ± 20 % of the steady state overall heat transfer coefficient with few outliers. The 

results are further improved by increasing the power ratio (𝛼 = 0.7, n=3), an increase in 

power ratio, 𝛼  above 0.7 results in over estimation of QUB results. 
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Figure 9.7: QUB experiments when simulated at (a) 20C set point temperature and alpha = 0.5 

(n=2), (b) 25C set point temperature and alpha = 0.5 (n=2) (c) 25C set point temperature and 

alpha = 0.67 (n=3) 

 

 

 Conclusions 

 

It is possible that the overall heat loss coefficient value 𝐻𝑟𝑒𝑓 used for calculation of optimum 

power for QUB experiment is not known with accuracy, e.g. there may be a missing insulation 
layer inside the wall or the thickness of the real wall insulation may be higher than the stated 
value. To check the robustness of QUB method, three scenarios were replicated to perform a 
posteriori error analysis: 

- The real outer wall insulation was twice the assumed value: the real 𝐻𝑟𝑒𝑓 value of 

the house was 8 % less than the value used for QUB experiment design. QUB 
method (without knowing the real situation) responded well to the changed 𝐻-
value. The error remained well within 15 % for most of the days of QUB 
experiment. 

- The real outer wall insulation was missing (50 % change in value as compared to 
the assumed 𝐻-value for QUB method): QUB method, without knowing the real 
condition of outer wall, responded with 4 % increase in error compared to the 
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situation when the real condition of the outer wall was known. The error remained 
within ±20 % for most of the days of QUB experiment. 

- The real outer wall insulation was missing and the roof insulation was reduced 
(100 % changed value as compared to the assumed 𝐻-value for the QUB method). 
Though the QUB method responded to the changed situation, the error increased 
significantly (12.5 %). Still, even in this extreme case, we noted that the error made 
with the QUB method was significantly smaller than the error made originally. In 
this situation, although the accuracy of the method was deteriorated, the method 
still clearly showed the important fact that the assumed value of heat loss 
coefficient was far smaller than the true one. 

 

QUB experiments with variable and constant outdoor temperature were simulated. Majority 

of the errors for variable and constant outdoor temperature (during QUB experiment) lie 

within±15%. The variation of QUB results for variable outdoor temperature is relatively 

similar. 

 

The simulation results of QUB experiment can vary with change in the initial 

states/temperature of the building envelope. This explains why a QUB experiment for the 

same house but under different initial conditions will generate different results, a reason why 

two QUB experiments are most likely to have different outcomes.  

 

The meteorological conditions can vary, i.e. the outdoor temperature can increase or decrease 

during QUB night. A ±20% variation in outdoor temperature vary the QUB results within 

±5 %. 

 

Winter can be considered as suitable for QUB experiments. Experiments conducted for the 

month of November, December, January, February and March show that the majority of the 

errors lie within±15% with few outliers around ±20 %. 

 

The QUB experiments for summer months (June, July and August) show large variation 

(errors). However, it is possible to predict the experiment outcome by observing the 

difference between indoor temperature and outdoor temperature during the QUB 

experiment. The experiments give large errors when the temperature difference between the 

initial indoor and outdoor temperature is smaller than 10K. With set point of 20℃ the 

difference between indoor and outdoor temperature for few days remained smaller than 10K, 

the experiments in such conditions generated large errors. The results during summer days 

were improved by using a high set point temperature ( 25 ℃), such that majority of the errors 

remained within ±20 ℃ of the steady state overall heat transfer coefficient. 
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 Conclusions and perspectives 

 

Energy (supply and consumption) constitute the major source of global greenhouse gas 

emissions. Different projections show continuous growth in consumption and associated 

emissions in future. Buildings contribute 21 % to the global energy consumption and 2/3rd of 

the greenhouse gas emissions. In developed regions, like EU and US, buildings constitute 40 % 

and 34 % of the total energy consumption, respectively. The International Energy Agency 

projected an annual growth of 1.1 % between 2015 and 2040. 

 

Two approaches are used to reduce emissions due to building energy consumption: supply 

side management and demand side management. Demand side management includes all 

steps to reduce building energy consumption, such as improving thermal resistance of 

envelope, reducing infiltration losses, improving efficiency of heating and cooling equipment 

etc. A systematic and predictable way to achieve energy efficiency is to introduce building 

energy regulations that put limit on energy standards for different building components. 

Majority of the countries have now adopted building energy regulations.  

 

The positive impacts of regulations are difficult to assess because of the multiple factors 

impacting building energy consumption. However, some studies [11], [14] have confirmed the 

potential savings, although the savings are either underestimated or overestimated. The 

building energy consumption is usually assessed using mathematical models or thermal 

performance tests. The models can either calculate the energy consumption of the building 

under different set of conditions or estimate performance measurement parameters.  

 

This work discusses the mathematical methods for parameter identification. The modelling 

methods can be categorized as statistical modelling, physical/forward modelling and hybrid 

modelling. The focus of this work is on parameter identification models. The parameter 

identification models can be categorized as steady state modelling and dynamic modelling. 

Both steady state and dynamic models have their advantages and disadvantages. The 
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multiplicity of modelling performance criteria, i.e. criteria over which modelling performance 

can be evaluated, makes it difficult to prefer one method over the other. However, the 

dynamic models can be preferred for their ability to estimate dynamic characteristics of 

building. A short duration experimental data is usually required for dynamic analysis. 

 

The performance prediction of building’s energy consumption is based on simulation. The 

performance predictions are either underestimated or overestimated. This prediction 

discrepancy is termed as “Performance Gap”. Some of the reasons of performance gap are 

deterioration of building thermal properties, reduction in efficiency of equipment, operation 

off the designed values, changing weather pattern, changes in operation schedule, occupancy 

and inability of simulation tools to cover complete dynamics of building.  

 

A better measure for building performance is to determine the building parameters, such as 

overall heat transfer coefficient, solar aperture and building time constants etc., known as the 

intrinsic performance measurement. These measures remain fairly stable with changing 

weather conditions, operation schedule etc.  The identification models can be either based on 

pre designed/supervised onsite (in-situ) experiments, such as co-heating, or they can be based 

on unsupervised experiments, such as smart metering data where the coefficient of regression 

analysis provide different parameters.   

 

In case of supervised experiments, the thermal performance of building or building 

components is evaluated using onsite (in-situ) testing methods. Most of the test methods 

developed are aimed at thermal performance verification of building envelope by using 

measurements and estimation techniques to verify the claimed characteristics. The methods 

discussed in this work are ISO 9869 (flow meter) method, calorimetric method, co-heating 

testing methods, etc. These methods are known as long term methods. 

 

The long term methods require a long testing period that can range from two to four weeks, 

with the least reported measurement period being three days. Most of the tests produce 

precise results when applied on unoccupied buildings. The season of the year during which 

the tests can be conducted is limited to heating season only when external temperatures are 
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low and effects of solar radiations are minimal. These shortcomings make long term methods 

impractical to be employed at large scale in practice. 

 

Short term in-situ thermal characterization methods are developed that have much smaller 

duration of time as compared to the long term methods. QUB, PSTAR/STEM, ISABELE, EPM 

(Excitation pulse method) and HYBRID methods are some of the short term methods reported 

in various literature sources. With short duration, they have the potential to be employed at 

large scale in practice. However, the validation of these methods is limited to small number 

of simulation and experimental results. These methods need critical analysis, significant 

simulations and real time tests on buildings, before they can be generalized in practice. 

 

Among the short methods, QUB is a dynamic in-situ thermal characterization test method that 

has the potential to be conducted in the shortest duration; the theoretical background of the 

method offers an understanding of the correctness of the method. The method is tested on 

small scale buildings, on full scale house with controlled environment and a full scale house 

with real weather conditions. The method is robust; the over-all heat transfer coefficient value 

(𝐻) measured using QUB method lies within ±20 % of the steady state value. It is important 

to understand the variation of QUB method with variation in boundary conditions (solar 

radiations, outdoor temperature and outdoor temperature variation during QUB test night) 

and initial conditions (initial power before QUB experiment). The robustness of QUB method 

with uncertainty in power level (during QUB heating phase) and uncertainty in 𝐻𝑟𝑒𝑓 (overall 

heat transfer coefficient) needs to be established with real time data. 

 

To model the QUB method, a dynamic sate space modelling method is explained and tested 

in this work. The state space modelling involves generating thermal circuit for each 

component of building (walls, fenestration, ventilation etc.). The thermal circuits are then 

combined to generate a single circuit for the entire building. The state space model is validated 

using measured data of a full scale house (the Twin House). With a data of 10 min. time step 

size, the state space model simulated the interior temperature of the entire house (seven 

zones), the errors varied between ±2 ℃, The three quartiles of the errors lied within ±1 ℃. 
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The state space model is validated with QUB experimental data, with modelling errors well 

within±0.5 ℃. 

 

Simulation of QUB experiment with the Twin House data shows that the method has only 

slight variation with uncertainty in power; for example, a 30 % error in optimum power can 

cause an error within 3 % of the reference value. The QUB method can be considered as 

robust with variation in power. 

 

A priori analyses are achieved without the justification of experimental or real observations 

whereas A posteriori analyses are performed after obtaining experimental observations. A 

priori error analyses are done by performing the QUB experiments in a situation where the 

real envelope has different characteristics (without the knowledge of real envelope). These 

results are then compared with a posteriori errors, a situation in which QUB experiments are 

performed with the knowledge of the real envelope. The error analysis shows that with 50 %  

error in 𝐻𝑟𝑒𝑓 value (missing wall insulation situation), the QUB method results in an increased 

error of 3 % only. The method can be considered as robust within the range of 50 % error in 

𝐻𝑟𝑒𝑓. 

 

The QUB method was tested with reference to variation in solar radiation. QUB results on 

cloudy days show lesser variation as compared to sunny days. It was shown that the heat 

transfer from the delayed solar radiation entering through the walls of the building has an 

effect on the temperature evolution during the QUB experiment. This can lead to an increased 

error in QUB method. A method was used to estimate the contribution of solar radiation and 

to calculate a solar corrective factor that can reduce the error of QUB method. The impact of 

corrective factor depends on the solar radiation before the QUB experiment and the thermal 

capacitance of the building envelope.   

 

In this work, the QUB experiments were initially performed with a limited seasonal variation, 

that is a season between the months of August and September. The twin house can be 

considered as a full scale real house. The QUB method has a good potential to be employed 

on commercial scale. It is therefore important to conduct QUB experiment during different 
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seasons of the year, such as winter and summer. The repetition of experiments during winter 

and summer seasons show that winter season is a preferred season for QUB experiments. The 

summer months show large variation (errors) in results when the temperature difference 

between indoor and outdoor conditions is smaller than 10 K. The QUB results during summer 

month can be improved by using a high set point temperature before the start of QUB 

experiments. 

 

The analysis and results in the current work were performed using simulations. The simulation 

model was validated on IEA, EBC Annex-58 data. Some of the conditions, such as power levels 

and time duration, weather data etc., were varied with help of simulations. It will be 

interesting to repeat the real QUB experiment with the variation in power and time duration. 

This will help validate the simulation results. The QUB method should be further tested on 

different constructions, such as apartment buildings, houses with low and high insulation 

levels as well. In the current simulation, the weather data from European region is used. It will 

be interesting to test the QUB method with construction and weather data from regions with 

temperate and hot climates, as well. 
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 Annexes 

 

 Description of the Twin House experiments 

 

The Twin House experiments were conducted as part of Annex 58: Reliable building energy 

performance characterization based on full scale dynamic measurements of the International 

Energy Agency Energy in Buildings and Communities program (IEA EBC) [50]. The purpose of 

Annex 58 was to collect the existing tools, knowledge and experimental setups that can be 

used for dynamic thermal characterization of building components and whole building. The 

Subtask 4 of IEA EBC Annex 58 dealt with the characterization of an the entire building and 

involves verification of building energy models (thermal characterization) based on in situ 

tests [102].  

 

The purpose of Twin House experiment was to generate a good quality data set that can be 

used to verify the performance of building energy models. The aim was to simulate real 

conditions inside a real house and generate number of measurements that can be used for 

simulation and estimation of thermal characteristics. In order to simplify the simulation 

conditions, the two identical houses were non-occupied during the experiment. Both houses 

were equipped with instruments that might not be possible to install/use in normal occupied 

house. The experiment details are given in section 5.2 

 

11.1.1 Construction details of the Twin Houses 

Location: Holzkirchen, Germany, 47.874 N, 11.728 E, 680 m altitude 

Constant temperatures: cellar 19.5 °C, attic 25 °C 

South façade roller blinds: down for building 𝑁5, up for building 𝑂5.  

Internal height: 2.495 m 
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Figure 11.1 Layout and dimensions of ground floor of twin house 

 

Table 11-1 Window dimensions 

Window 

type 

Overall dimensions 

with roller blinds 

Overall dimensions 

without roller blinds 

Glass dimensions 

W1 1.24 x 1.74  1.24 x 1.46 1.00 x 1.30 

W2  1.02 x 2.38 1.02 x 2.18 2.00 x 0.90 

W3  4.46 x 2?58 4.46 x 2.28 3 x 1.00 x 1.40 

 

 

 

 

 

 

10
05

1005

Living room

33.64 m2

Corridor
5.43 m2

Kitchen

7.41 m2

Doorway

5.81 m2
Bedroom 1

10.16 m2

Bathroom

6.84 m2

Bedroom 2
11.17 m2

W1
124

146

124

146
W1

W1

12
4

14
6

W1
12

4

14
6

W2

10
2

21
8

W3

44
6

22
8

D2

93 19
5

D2

93 19
5

D2

93 19
5

D2

93 19
5

D2
93

195

D1

10
0

20
0

35
26

2
27

64
7

35

124
146

W1

44
1

12
4

12
4

19
4

12
2

520
35 27 388 35

481 212 124 188

10
05

35
28

8
15

32
9

15
28

8
35

43
9

44
2

12
4

283
35 15 165

35

1005

222 27 15
208

397 100 230 124 153

h: 90

h: 90

h:
 9

0
h:

 9
0

h:
 9

0

h: 0

Hight: 249.5 cm

D293
195

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



232 

 

Table 11-2 Walls and doors 

 Wall type Layer Thickness 

(m) 

Cond. 

(W/mK) 

Dens. 

(kg/m3) 

Sp. 

heat  

(J/kg K) 

Absorp 

SW 

Emiss 

LW 

P1 External wall 

(red) 

U = 0.2 

Ext. plaster 0.01 0.80 1200 1000 0.23 0.90 

 Insulation 0.12 0.035 80 840   

 Plaster 0.01 1.00 1200 1000   

 Brick 0.20 0.22 800 1000   

 Int. plaster 0.01 1.00 1200 1000 0.17 0.90 

P2 Internal wall 

(blue) 

Plaster 0.01 0.35 1200 1000 0.17 0.90 

 Brick 0.25 0.33 1000 1000   

 Plaster 0.01 0.35 1200 1000 0.17 0.90 

P3 Internal wall 

(green) 

Plaster 0.01 0.35 1200 1000 0.17 0.90 

 Brick 0.13 0.33 1000 1000   

 Plaster 0.01 0.35 1200 1000 0.17 0.90 

P4 Ceiling Screed 0.04 1.40 2000 2000 0.60 0.90 

 U = 0.25 Insulation 0.04 0.04 80 840   

  Concrete 0.22 2.00 2400 1000   

  Plaster 0.01 1.00 1200 1000   

  Insulation 0.10 0.035 80 840 0.17 0.90 

P5 Ground Concrete 0.22 2.10 2400 1000 0.60 0.90 

 U = 0.32 Fill 0.03 0.06 80 840   

  Insulation 0.03 0.025 80 840   

  Panel 0.03 0.023 80 840   

  Screed 0.06 1.40 2000 1000 0.60 0.90 

D1 External door Wood 0.04 0.13 600 1000 0.60 0.90 

D2 Internal door Wood with 

glass 

0.04 0.13 600 1000 0.60 0.90 

 

 

Windows 

Double glazing with low emissivity and argon fill. U-value (EN ISO 10077_1): U = 1.2 W/m2K. 

Hemispheric solar transmittance 0.43. Hemispheric solar absorptance: 0.11. 
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Thermal bridges 

 

Junction 𝜓 − value (W/m K) 

External wall – floor  0.107 

External wall – ceiling  0.084 

External wall – external wall 0.093 

Internal wall – floor  0.378 

Internal wall – ceiling  0.204 

Window sill 0.140 

 

Ventilation 

The living room is ventilated with outside air at the rate of 120 m3/h. There two exhaust ducts 

inside the bathroom and bedroom with an exhaust rate of 60 m3/h, each. The ventilation air 

enters through basement and passes through kitchen to the ceiling of living room. The 

ventilation duct passing through kitchen is uninsulated and therefore receives heat from the 

kitchen air. This must be taken into consideration during simulation. 

 

 

                      Figure 11.2: Exhaust and intake ports for ventilation 
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Supply flow rates and temperatures are supplied with data. The air is distributed equally to 

both extractors. 

 

Heating / cooling 

Electric heater 30 % radiative and 70 % convective. 

Time response of the heater: 1 – 2 minutes. 

 

                   Figure 11.3: Heater locations in Twin house 

 

Air leakage 

Whole ground floor 

Twin House N2 (northern house): n50 = 1.62 ACH 

Twin House O5 (southern house): n50 = 1.54 ACH 

 

Living room‐corridor‐bathroom‐children’s room with doors sealed: 

Twin House N2 (northern house): n50 = 2.2 ACH 

Twin House O5 (southern house): n50 = 2.3 ACH 

Ground reflectivity: 0.23 

 

Table 11-3 Surfaces 

 Position  Type  Surface 

1 North wall P1 10.05*2.49 - 2*0.35 - 1.00*2.00 - 1.24*1.46 20.51 

2  door D1 1.00*2.00 2.00 
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3  window W1 1.24*1.46 1.81 

4 East wall P1 10.05*2.49 - 2*0.35 - 1.24*1.46 22.51 

5  window W1 1.24*1.46 1.81 

6 South wall P1 10.05*2.49 - 2*0.35 - 1.24*1.46 - 4.46*2.28 -1.02*2.18 10.12 

7  window W1 1.24*1.46 1.81 

8  window W2 1.02*2.18 2.22 

9  window W3 4.46*2.28 10.17 

10 West wall P1 10.05 - 2*0.35 - 2*1.24*1.46 5.72 

11  window W1 2*1.24*1.46 3.62 

12 Indoor wall P2 2.49*(3.97 + 2.62 + 10.05 - 2*0.35) - 3*0.93*1.95 34.25 

13  wall P3 2.49*(2*2.08 + 3.29) - 0.93*1.95 16.74 

      

 

11.1.2 Data 

The twin house experiment provides two data files. One with measurement of all the inside 

temperatures and heat input from the heaters along with other measurements. The file is 

named as Twin_house_exp1_house_N2_10min_ductwork_correction.xls. The second file 

contains data from the weather station measurements, such as outdoor temperature, solar 

radiations, wind speed, wind direction etc.  

The file is named as Twin_house_exp1_weather_data_all_measurements_10min.xls 

The procedure to load data in MATLAB:  

- delete the header (first two lines) 

- change date and hour in numbers 

- take care to use decimal point 

- copy from A1 :AJ5905 and paste in a new sheet 

- save as .csv 
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The measured data inside the house is as: 

  

 

 

 

The data files are loaded as (KithcenLivngrmnew.m ) 

 

Desired weather data such as outdoor temperature, solar radiations and data for any room 

temperature or input heat from heater is loaded as 
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 Thermal model of the Twin House 

11.2.1 Modeling of single zone model (Living room) 

Script file s02THLiving01Rad.m 

Living room is modelled as a single room of twin house, the conditions of areas adjacent to 

living room are considered as boundary zones as shown in figure. The living room is bounded 

by kitchen wall, kitchen door, doorway wall, doorway door, corridor wall, bedroom wall, 

Southern external wall, southern window, Eastern wall and Eastern window. 

   

Figure 11.4: Thermal circuit connections for living room zone 
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Figure 11.5 shows the connection of each thermal circuit (wall, windows, ceiling etc.) with 

room air. The thermal circuit for each component of living room (wall, windows, ceiling etc.) 

is as shown in figure 

 

 

 

Figure 11.5: Building components, thermal circuits and their symbols 
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Each wall is modelled as RC circuit with adjustable number of slices (Resistances and 

Capacitances) as  

 

 

 

The air inside living room is modelled as homogeneous node exchanging heat with different 

surfaces via branches as shown in Figure 11.6 

 

                                                                       

Figure 11.6: Air nodes with braches connecting different walls and components of living 

room 
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The air node for each room/zone is modelled as (s02THLiving01Rad.m)  

 

 

All the circuits once modelled are assembled and connected with air node using Matlab 

function fTCAssAll. 

  

 

The input temperature, heat flow sources and solar radiations are modelled as: 

  

   

 

The indoor temperature is simulated using all the three methods namely Euler Explicit, Euler 

Implicit and exponential methods as: 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



241 

 

 

 

11.2.2 The Twin house two zones model (Kitchen and Living room) 

Script File KithcenLivngrmnew.m 

The model of two zones is the same as single zone except that there will be a shared wall or 

door between the two zones and now the temperature of two zones will be simulated. In our 

two zones model we modelled two zones Kitchen and Living room. The shared zones are door 

and wall between the two zones. Infiltration is also shared between the two zones. 

 

Figure 11.7: Thermal circuit diagram for living room and kitchen 

 

The shared walls are modelled as  
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The shared door is modelled as 

 

 

 

Each wall is modelled as a thermal circuit according to the input heat flows and temperature 

sources as 

 

 

 

 MATLAB code for modelling 

 

11.3.1 MATLAB code for single zone (living room) 

Files s02THLiving01Rad.m, fTC2SSold.m, ftrans1.m, fTCAssAll.m 

% Equivalent to s02THLiving01.m 

clear all, clc 

% Read data 
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H = dlmread('TwinHouse.csv');   % house 

W = dlmread('TwinWeather.csv'); % weather 

  

% Physical values 

% **************************************** 

ho = 23;                % outdoor convection coefficient 

hi = 8;                 % indoor convection coefficent 

rhoa = 1.2; ca = 1000;  % indoor air density; heat capacity 

Kp = 1000;              % controller 

  

% Conductances and capacities per unit surface 

% Wall type P1: external [insulation; brick] 

nm1 = [4 8]';           % for wall P1, number of meshes in layer 1, 2, ... 

w1 = [0.12 0.20]';      % width [m]  

lam1 = [0.035 0.22]';   % conductivity [W/m K] 

rho1 = [80 800]';       % density [kg/m3] 

c1 = [840 1000]';       % specific heat [J/kg K] 

  

G1 = lam1./w1; 

C1 = rho1.*c1.*w1; 

G1m1 = 2*nm1(1)*G1(1)*ones(2*nm1(1),1); % meshed insulation 

G1m2 = 2*nm1(2)*G1(2)*ones(2*nm1(2),1); % meshed brick 

C1m1 = C1(1)/nm1(1)*mod(0:2*nm1(1)-1,2)';% meshed insulation 

C1m2 = C1(2)/nm1(2)*mod(0:2*nm1(2)-1,2)';% meshed brick 

  

G1 = [ho; 0.8/0.01; G1m1; 1/0.03; G1m2;1/0.01]; 

C1 = [0; C1m1; 0; C1m2;0;0]; 

nt = length(G1); nq = nt;       % no. temperatures; no. flows     

A1 = diff(eye(nt+1)); 

A1(:,1) = [];                   % delete 1st node = reference temperature 

b1 = zeros(nq,1); b1(1) = 1;    % Temp source on branch 1: Tout 

f1 = zeros(nt,1); f1(1) = 1;    % Flow source in node 1: Qsolar 

f1(end) = 1;                    % radiation on surface 

y1 = zeros(nt,1);               % No output 

  

% A1'*diag(G1)*A1 + A1'*diag(G1)*b1 + diag(C1)*f1 + y1 

  

% Wall type P2: internal [brick] 

%nm2 = 1;      % number of meshes in layer 

%w2 = 0.25;    % width 

%lam2 = 0.33;  % conductivity [W/m K] 

%rho2 = 1000;  % density [kg/m3] 

%c2 = 1000;    % specific heat [J/kg K] 

% 

%G2 = lam2./w2; 

%C2 = rho2.*c2.*w2; 

%G2m = 2*nm2*G2*ones(2*nm2,1);         % meshed brick 

%C2m = [C2/nm2*mod(0:2*nm2-1,2)'; 0];  % meshed brick 

% 

%nt = 1+2*sum(nm2); nq = nt - 1;   % no. flows; no. temperatures 

%A2 = diff(eye(nt)); 
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%G2 = G2m; 

%b2 = zeros(nq,1); 

%C2 = C2m; 

%f2 = zeros(nt,1); 

%y2 = zeros(nt,1); 

  

nm2 = 3;      % number of meshes in layer 

w2 = 0.24;    % width 

lam2 = 0.33;  % conductivity [W/m K] 

rho2 = 1000;  % density [kg/m3] 

c2 = 1000;    % specific heat [J/kg K] 

  

G2 = lam2./w2; 

C2 = rho2.*c2.*w2; 

G2m = 2*nm2*G2*ones(2*nm2,1);    % meshed brick 

C2m = C2/nm2*mod(0:2*nm2-1,2)';  % meshed brick 

  

nt = 1+2*sum(nm2); nq = nt;     % no. temperatures; no. flows 

A2 = diff(eye(nt+1)); 

A2(:,1) = [];                   % delete 1st node = reference temperature 

G2 = [hi; G2m]; 

b2 = zeros(nq,1); b2(1) = 1;    % Temp source on branch 1: Troom 

C2 = [C2m; 0]; 

f2 = zeros(nt,1); f2(end) = 1;  % Rad. flow on int. surface 

y2 = zeros(nt,1);               % No output 

  

% A2'*diag(G2)*A2 + A2'*diag(G2)*b2 + diag(C2)*f2 + y2 

  

% Wall type P3: internal [brick] 

nm3 = 1;      % number of meshes in layer 

w3 = 0.115;    % width 

lam3 = 0.33;  % conductivity [W/m K] 

rho3 = 1000;  % density [kg/m3] 

c3 = 1000;    % specific heat [J/kg K] 

  

G3 = lam3./w3; 

C3 = rho3.*c3.*w3; 

G3m = 2*nm3*G3*ones(2*nm3,1);         % meshed brick 

C3m = C3/nm3*mod(0:2*nm3-1,2)';  % meshed brick 

  

nt = 1+2*sum(nm3); nq = nt;     % no. temperatures; no. flows 

A3 = diff(eye(nt+1)); 

A3(:,1) = [];                   % delete 1st node = reference temperature 

G3 = [hi; G3m]; 

b3 = zeros(nq,1); b3(1) = 1;    % Temp source on branch 1: Troom 

C3 = [C3m; 0]; 

f3 = zeros(nt,1); f3(end) = 1;  % Rad. flow on int. surface 

y3 = zeros(nt,1);               % No output 

  

% A3'*diag(G3)*A3 + A3'*diag(G3)*b3 + diag(C3)*f3 + y3 
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% Wall type P4: ceiling [concrete & insulation] 

nm4 = [3 1]';         % for wall P4, number of meshes in layer 1, 2, ... 

w4 = [0.22 0.10]';    % width [m]  

lam4 = [2.00 0.035]'; % conductivity [W/m K] 

rho4 = [2400 80]';    % density [kg/m3] 

c4 = [1000 840]';     % specific heat [J/kg K] 

  

G4 = lam4./w4; 

C4 = rho4.*c4.*w4; 

G4m1 = 2*nm4(1)*G4(1)*ones(2*nm4(1),1); % meshed concrete 

G4m2 = 2*nm4(2)*G4(2)*ones(2*nm4(2),1); % meshed insulation 

C4m1 = C4(1)/nm4(1)*mod(0:2*nm4(1)-1,2)';% meshed concrete 

C4m2 = C4(2)/nm4(2)*mod(0:2*nm4(2)-1,2)';% meshed insulation 

  

%nt = 1+2*sum(nm4); nq = nt;     % no. temperatures; no. flows 

A4 = diff(eye(nt+1)); 

A4(:,1) = [];                   % delete 1st node = reference temperature 

G4 = [ho;1.4/0.4;0.04/0.04; G4m1;1.0/0.01; G4m2]; 

nt = length(G4); nq = nt;     % no. temperatures; no. flows 

A4 = diff(eye(nt+1)); 

A4(:,1) = [];                   % delete 1st node = reference temperature 

b4 = zeros(nq,1); b4(1) = 1;    % Temp source on branch 1: Tceiling 

C4 = [0;0;C4m1;0;C4m2;0]; 

f4 = zeros(nt,1); f4(end) = 1;  % Rad. flow on int. surface 

y4 = zeros(nt,1);               % No output 

  

% A4'*diag(G4)*A4 + A4'*diag(G4)*b4 + diag(C4)*f4 + y4 

  

% Wall type P5: ground (concrete & insulation & screed) 

nm5 = [3 1 1]';         % for wall P4, number of meshes in layer 1, 2, ... 

w5 = [0.22 0.03 0.065]';    % width [m]  

lam5 = [2.10 0.025 1.40]'; % conductivity [W/m K] 

rho5 = [2400 80 2000]';    % density [kg/m3] 

c5 = [1000 840 1000]';     % specific heat [J/kg K] 

  

G5 = lam5./w5; 

C5 = rho5.*c5.*w5; 

G5m1 = 2*nm5(1)*G5(1)*ones(2*nm5(1),1);   % meshed concrete 

G5m2 = 2*nm5(2)*G5(2)*ones(2*nm5(2),1);   % meshed insulation 

G5m3 = 2*nm5(3)*G5(3)*ones(2*nm5(3),1);   % meshed screed 

C5m1 = C5(1)/nm5(1)*mod(0:2*nm5(1)-1,2)'; % meshed concrete 

C5m2 = C5(2)/nm5(2)*mod(0:2*nm5(2)-1,2)'; % meshed insulation 

C5m3 = C5(3)/nm5(3)*mod(0:2*nm5(3)-1,2)'; % meshed insulation 

  

  

G5 = [ho;G5m1;0.060/0.029;G5m2;0.023/0.030; G5m3]; 

nt = length(G5); nq = nt;     % no. temperatures; no. flows 

A5 = diff(eye(nt+1)); 

A5(:,1) = [];                   % delete 1st node = reference temperature 

b5 = zeros(nq,1); b5(1) = 1;    % Temp source on branch 1: Tground 

C5 = [C5m1;0; C5m2;0; C5m3; 0];      
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f5 = zeros(nt,1); f5(end) = 1;  % Rad. flow on int. surface 

y5 = zeros(nt,1);               % No output 

  

% A5'*diag(G5)*A5 + A5'*diag(G5)*b5 + diag(C5)*f5 + y5 

  

% Door type D1 & D2: wood 

nm6 = 1;      % number of meshes in layer 

w6 = 0.04;    % width [m] 

lam6 = 0.13;  % conductivity [W/m K] 

rho6 = 600;  % density [kg/m3] 

c6 = 1000;     % specific heat [J/kg K] 

%c6 = 0;      % changes dt = 49 s -> dt = 3920 s    

  

G6 = lam6./w6; 

C6 = rho6.*c6; 

G6m = 2*nm6*G6*ones(2*nm6,1);         % meshed wood 

C6m = C6/nm6*mod(0:2*nm6-1,2)';  % meshed wood 

  

nt = 1+2*sum(nm6); nq = nt;     % no. temperatures; no. flows 

A6 = diff(eye(nt+1)); 

A6(:,1) = [];                   % delete 1st node = reference temperature 

G6 = [hi; G6m]; 

b6 = zeros(nq,1); b6(1) = 1;    % Temp source on branch 1: Troom 

C6 = [C6m; 0]; 

f6 = zeros(nt,1); f6(end) = 1;  % Rad. flow on int. surface 

y6 = zeros(nt,1); 

  

% A6'*diag(G6)*A6 + A6'*diag(G6)*b6 + diag(C6)*f6 + y6 

  

% Window 

A7 = 1; 

G7 = 1.2; % 1.2; 

C7 = 0; 

b7 = 1; 

f7 = 1; 

y7 = 0; 

  

% A7'*diag(G7)*A7 + A7'*diag(G7)*b7 + diag(C7)*f7 + y7 

% Window 

rhoa=1.2; 

ca=1000; 

A8 = 1; 

G8 = 2.2/23*rhoa*ca; % 1.2; 

C8 = 0; 

b8 = 1; 

f8 = 0; 

y8 = 0; 

%Thermal Bridge 

rhoa=1.2; 

ca=1000; 

A9 = 1; 
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G9 = 2.495*0.093; % 1.2; 

C9 = 0; 

b9 = 1; 

f9 = 0; 

y9 = 0; 

  

  

% Dissambled thermal circuits 

% ************************************************* 

S1 = (3.97 - 0.35)*2.495 - 0.93*1.95; 

TCd{1} = {A2,S1*diag(G2),b2,S1*diag(C2),f2,y2};   % Living-kitchen internal wall 

  

S2 = 0.93*1.95; 

TCd{2} = {A6,S2*diag(G6),b6,S2*diag(C6),f6,y6};  % Living-kitchen door 

  

S3 = 2.22*2.495 - 0.93*1.95; 

TCd{3} = {A2,S3*diag(G2),b2,S3*diag(C2),f2,y2};   % Living-doorway internal wall 

  

S4 = 0.93*1.95; 

TCd{4} = {A6,S4*diag(G6),b6,S4*diag(C6),f6,y6};       % Living-doorway door 

  

S5 = 3.29*2.495 - 0.93*1.95; 

TCd{5} = {A2,S5*diag(G2),b2,S5*diag(C2),f2,y2};       % Living - corridor wall 

  

S6 = 0.93*1.95; 

%TCd{6} = {A6,S6*diag(G6),b6,S6*diag(C6),f6,y6};       % Living-corridor door 

  

S7 = 2.28*2.495; 

TCd{6} = {A2,S7*diag(G2),b2,S7*diag(C2),f2,y2};       % Living - bedroom2 wall 

  

S8 = 5.290*2.495 - 8.66; 

TCd{7} = {A1,S8*diag(G1),b1,S8*diag(C1),f1,y1};       % Living - extern. South wall 

  

S9 = 8.66; 

TCd{8} = {A7,S9*diag(1.05),b7,S9*diag(C7),f7,y7};       % Living - South windows 

  

S10 = 6.47*2.495 - 2.14;  

TCd{9} = {A1,S10*diag(G1),b1,S10*diag(C1),f1,y1};    % Living - extern. West wall 

  

S11 = 2.14; 

TCd{10} = {A7,S11*diag(G7),b7,S11*diag(C7),f7,y7};     % Living - West window 

  

S12 = 6.47*5.20; 

TCd{11} = {A4,S12*diag(G4),b4,S12*diag(C4),f4,y4};     % Living - Attic 

  

TCd{12} = {A5,S12*diag(G5),b5,S12*diag(C5),f5,y5};     % Living - Cellar 

  

% Indoor air 

Va = 120/3600;      % volumetric air flow [m3/s] 

Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

sg=81.69; 
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Infil1=0.75*2.22/3600; 

S13=2.662; %Surface area of Pillar 

G8 = hi*[S1; S2; S3; S4; S5;S7; S8; S9; S10; S11; S12; S12]; 

G8 = [G8; rhoa*Va*ca;Infil/23*sg*rhoa*ca;Infil1/23*sg*rhoa*ca;Va*rhoa*ca;2.495*0.093]; 

%Inculding thermal bridge 

A8 = -eye(13); A8=[A8;zeros(1,13);zeros(1,13);zeros(1,13);zeros(1,13)]; A8(:,13) = 1; 

C8 = zeros(13,1); C8(13) = rhoa*6.47*5.20*2.495*ca; 

b8 = zeros(17,1); b8(13) = 1;b8(14) = 1;b8(15)=1;b8(16)=1;b8(17)=1;  % in: source Tout 

f8 = zeros(13,1); f8(13) = 1;   % in: source heat flow in air volume 

y8 = zeros(13,1); y8(13) = 1;   % out: indoor air 

  

TCd{13} = {A8,diag(G8),b8,diag(C8),f8,y8};              % indoor air 

  

% Assembling and ss-model 

% *********************************** 

AssX = [1 length(f2) 13 1;... 

        2 length(f6) 13 2;... 

        3 length(f2) 13 3;... 

        4 length(f6) 13 4;... 

        5 length(f2) 13 5;... 

        6 length(f2) 13 6;... 

        7 length(f1) 13 7;... 

        8 length(f7) 13 8;... 

        9 length(f1) 13 9;... 

        10 length(f7) 13 10;... 

        11 length(f4) 13 11; 

        12 length(f5) 13 12 ]; 

  

[TCa, Idx] = fTCAssAll(TCd, AssX); 

A = TCa{1}; G = TCa{2}; b = TCa{3}; C = TCa{4}; f = TCa{5}; y = TCa{6}; 

  

% *************************************** 

% State-space 

% *************************************** 

% Model 

[A,B,C,D] = fTC2SSold(A,G,b,C,f,y); 

% Inputs 

Ti = H(:,7);    % temperature in living at 125 cm (output) 

Tk = H(:,12);   % kitchen 

Td = H(:,13);   % doorway 

Tc = H(:,9);    % corridor 

Tb2 = H(:,11);  % bedroom 2 

Ta = H(:,4);    % attic 

Tg = H(:,5);    % cellar 

Tv = H(:,30);   % ventilation supply air  

To = W(:,3);    % outdoor 

Qs = W(:,8);    % specific global solar vert. South 

Qw = W(:,9);    % specific global solar vert. West 

Qi = H(:,21);   % el. power living 

  

% SW radiative sources on walls: distributed uniformely 
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Sliv = 2*(6.47+5.20)*2.495 + 2*6.47*5.20; % total area living room 

% radiative gain through closed blinds 

Qr = [S1 S2 S3 S4 S5 S7 S8 S9 S10 S11 S12 S12]/Sliv.*(1.29*Qw*0.427+0.3*Qi)*0.8 ; 

  

T = [Tk'; Tk'; Td'; Td'; Tc';Tb2';... 

    To'; To'; To'; To';... 

    Ta'; Tg'; Tv';To';Tk';Tc';To']; 

  

Q=[Qr'; 0.7*Qi'+(1.29*Qw'*0.427+0.3*Qi')*0.20]; 

u=[T;Q]; 

u = [u(1:23,:); S8*0.23*Qs'; u(24,:); u(25,:); ... 

    S10*0.23*Qw'; u(26,:); u(27,:); u(28:end,:)]; 

  

disp(['max dt = ',num2str(min(-2./eig(A))),'[s]']) 

  

dt = 10*60;                     % time step: 10 min 

n = length(H(:,1)); 

Time = 0:dt:(n-1)*dt;           % time 

nth = size(A,1);                % no states 

% initial conditions 

th = 28*ones(nth,n); thi = th; the = th; 

Ae = (eye(nth) + dt*A);         % Euler explicit 

Ai = inv((eye(nth) - dt*A));    % Euler implicit 

Ad = expm(A*dt);                % exp. matrix 

Bd = (Ad-eye(size(A)))*inv(A)*B; 

for k = 1:n-1 

 th(:,k+1) = Ae*th(:,k) + dt*B*u(:,k);     % Euler explicit 

 thi(:,k+1) = Ai*(thi(:,k) + dt*B*u(:,k));  % Euler implicit 

 the(:,k+1) = Ad*the(:,k)+Bd*u(:,k);        % matrix exponential 

end 

ye = C*th + D*u;        % Euler explicit 

yi = C*thi + D*u;       % Euler implicit 

yE = C*the + D*u;       % exponential 

  

figure(1) 

Time = Time/3600/24; 

% plot(Time,ye,Time,yi,Time,yE,'r',Time,Ti, Time, To,'b') 

% plot(Time,yi, Time,yE,'r',Time,Ti,'g', Time, To,'b') 

plot(Time,yE,'r', Time,Ti,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

% subplot(212) 

% plot(Time,Qi) 

% xlabel('Time [h]'),ylabel('P_e_l[W]') 

delta=yi'-Ti; 

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

%plot(Time,delta,'r') 

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(2) 
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hist(delta) 

 

 

 MATLAB code for two zones(kitchen and living room) 

Files KithcenLivngrmnew.m, fTC2SSold.m, ftrans1.m, fNumInOut.m,  

   fTCAssAll.m 

% Equivalent to s02THLiving01.m 

clear all, clc 

% Read data 

H = dlmread('TwinHouse.csv');   % house 

W = dlmread('TwinWeather.csv'); % weather 

ft=xlsread('f1'); 

% Physical values 

% **************************************** 

ho = 23;                % outdoor convection coefficient 

hi = 8;                 % indoor convection coefficent 

rhoa = 1.2; ca = 1000;  % indoor air density; heat capacity 

Kp = 1000;              % controller 

  

% Inputs 

Ti = H(:,7);    % temperature in living at 125 cm (output) 

Tk = H(:,12);   % kitchen 

Td = H(:,13);   % doorway 

Tc = H(:,9);    % corridor 

Tb2 = H(:,11);  % Children room 

Tb1=H(:,14);    %Bed room 

Ta = H(:,4);    % attic 

Tg = H(:,5);    % cellar 

Tv = H(:,30);   % ventilation supply air  

To = W(:,3);    % outdoor 

Qn = W(:,6); 

Qs = W(:,8);    % specific global solar vert. South 

Qw = W(:,9);    % specific global solar vert. West 

Qi = H(:,21);   % el. power living 

Qk=H(:,24)+H(:,25); %Kithcne power input minus duct losses 

Qd=H(:,26); %Doorway Heater 

QB=H(:,27); %Bedroom Heater 

  

% Conductances and capacities per unit surface 

% Wall type P1: external [insulation; brick] 

nm1 = [4 2]';           % for wall P1, number of meshes in layer 1, 2, ... 

w1 = [0.12 0.20]';      % width [m]  

lam1 = [0.035 0.22]';   % conductivity [W/m K] 

rho1 = [80 800]';       % density [kg/m3] 

c1 = [840 1000]';       % specific heat [J/kg K] 

  

G1 = lam1./w1; 

C1 = rho1.*c1.*w1; 

G1m1 = 2*nm1(1)*G1(1)*ones(2*nm1(1),1); % meshed insulation 

G1m2 = 2*nm1(2)*G1(2)*ones(2*nm1(2),1); % meshed brick 
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C1m1 = C1(1)/nm1(1)*mod(0:2*nm1(1)-1,2)';% meshed insulation 

C1m2 = C1(2)/nm1(2)*mod(0:2*nm1(2)-1,2)';% meshed brick 

  

G1 = [ho; 0.8/0.01; G1m1; 1/0.03; G1m2;1/0.01]; 

C1 = [0; C1m1; 0; C1m2;0;0]; 

nt = length(G1); nq = nt;       % no. temperatures; no. flows     

A1 = diff(eye(nt+1)); 

A1(:,1) = [];                   % delete 1st node = reference temperature 

b1 = zeros(nq,1);              % Temp source on branch 1: Tout 

f1 = zeros(nt,1);               % Flow source in node 1: Qsolar                     

y1 = zeros(nt,1);               % No output 

  

%Internal thick wall 

nm2 = 3;      % number of meshes in layer 

w2 = 0.24;    % width 

lam2 = 0.33;  % conductivity [W/m K] 

rho2 = 1000;  % density [kg/m3] 

c2 = 1000;    % specific heat [J/kg K] 

  

G2 = lam2./w2; 

C2 = rho2.*c2.*w2; 

G2m = 2*nm2*G2*ones(2*nm2,1);    % meshed brick 

C2m = C2/nm2*mod(0:2*nm2-1,2)';  % meshed brick 

G2 = [hi;0.35/0.01;G2m;0.35/0.01]; 

C2 = [0;C2m;0;0]; 

nt = length(G2); nq = nt;     % no. temperatures; no. flows 

A2 = diff(eye(nt+1)); 

A2(:,1) = [];                   % delete 1st node = reference temperature 

b2 = zeros(nq,1); b2(1) = 1;    % Temp source on branch 1: Troom 

  

f2 = zeros(nt,1);f2(1)=1; f2(end) = 1;  % Rad. flow on int. surface 

y2 = zeros(nt,1);               % No output 

  

%Shared wall with livingroom 

nm2 = 2;      % number of meshes in layer 

w2 = 0.24;    % width 

lam2 = 0.33;  % conductivity [W/m K] 

rho2 = 1000;  % density [kg/m3] 

c2 = 1000;    % specific heat [J/kg K] 

G21 = lam2./w2; 

C21 = rho2.*c2.*w2; 

G2m = 2*nm2*G21*ones(2*nm2,1);    % meshed brick 

C2m = C21/nm2*mod(0:2*nm2-1,2)';  % meshed brick 

G21 = [0.35/0.01;G2m;0.35/0.01]; 

C21 = [0;C2m;0;0]; 

nt = length(C21); nq =length(G21);     % no. temperatures; no. flows 

A21 = diff(eye(nt)); 

b21 = zeros(nq,1); 

f21 = zeros(nt,1); 

y21 = zeros(nt,1);               % No output 
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% Internal thin Wall type P3: internal [brick] 

nm3 = 1;      % number of meshes in layer 

w3 = 0.115;    % width 

lam3 = 0.33;  % conductivity [W/m K] 

rho3 = 1000;  % density [kg/m3] 

c3 = 1000;    % specific heat [J/kg K] 

  

G3 = lam3./w3; 

C3 = rho3.*c3.*w3; 

G3m = 2*nm3*G3*ones(2*nm3,1);         % meshed brick 

C3m = C3/nm3*mod(0:2*nm3-1,2)';  % meshed brick 

G3 = [hi;0.35/0.01;G3m;0.35/0.01];%With plaster layers 

C3 = [0;C3m;0;0]; 

nt = length(G3); nq = nt;     % no. temperatures; no. flows 

A3 = diff(eye(nt+1)); 

A3(:,1) = [];                   % delete 1st node = reference temperature 

b3 = zeros(nq,1); b3(1) = 1;    % Temp source on branch 1: Troom 

f3 = zeros(nt,1);f3(1)=1; f3(end) = 1;  % Rad. flow on int. surface 

y3 = zeros(nt,1);               % No output 

  

% Shared Internal thin Wall type P3: internal [brick] 

nm3 = 2;      % number of meshes in layer 

w3 = 0.115;    % width 

lam3 = 0.33;  % conductivity [W/m K] 

rho3 = 1000;  % density [kg/m3] 

c3 = 1000;    % specific heat [J/kg K] 

  

G31 = lam3./w3; 

C31 = rho3.*c3.*w3; 

G3m = 2*nm3*G31*ones(2*nm3,1);         % meshed brick 

C3m = C31/nm3*mod(0:2*nm3-1,2)';  % meshed brick 

G31 = [0.35/0.01;G3m;0.35/0.01];%With plaster layers 

C31 = [0;C3m;0;0]; 

nt = length(C31); nq = length(G31);     % no. temperatures; no. flows 

A31 = diff(eye(nt)); 

b31 = zeros(nq,1); b31(1) = 1;    % Temp source on branch 1: Troom 

f31 = zeros(nt,1);f31(1)=1; f31(end) = 1;  % Rad. flow on int. surface 

y31 = zeros(nt,1);               % No output 

  

  

% Wall type P4: ceiling [concrete & insulation] 

nm4 = 2;         % for wall P4, number of meshes in layer 1, 2, ... 

w4 = 0.22;    % width [m]  

lam4 = 2.00; % conductivity [W/m K] 

rho4 =2400;    % density [kg/m3] 

c4 =1000;     % specific heat [J/kg K] 

  

G4 = lam4./w4; 

C4 = rho4.*c4.*w4; 

G4m1 = 2*nm4(1)*G4(1)*ones(2*nm4(1),1); % meshed concrete 
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C4m1 = C4(1)/nm4(1)*mod(0:2*nm4(1)-1,2)';% meshed concrete 

G4 = [ho;1.4/0.4;0.04/0.04; G4m1;1.0/0.01;0.035/0.1]; 

C4 = [0;0;C4m1;0;0;0]; 

nt = length(G4); nq = nt;     % no. temperatures; no. flows 

A4 = diff(eye(nt+1)); 

A4(:,1) = [];                   % delete 1st node = reference temperature 

b4 = zeros(nq,1); b4(1) = 1;    % Temp source on branch 1: Tceiling 

  

f4 = zeros(nt,1); f4(end) = 1;  % Rad. flow on int. surface 

y4 = zeros(nt,1);               % No output 

  

% A4'*diag(G4)*A4 + A4'*diag(G4)*b4 + diag(C4)*f4 + y4 

  

% Wall type P5: ground (concrete & insulation & screed) 

nm5 = [1 1 4]';         % for wall P4, number of meshes in layer 1, 2, ... 

w5 = [0.22 0.03 0.065]';    % width [m]  

lam5 = [2.10 0.025 1.40]'; % conductivity [W/m K] 

rho5 = [2400 80 2000]';    % density [kg/m3] 

c5 = [1000 840 1000]';     % specific heat [J/kg K] 

  

G5 = lam5./w5; 

C5 = rho5.*c5.*w5; 

G5m1 = 2*nm5(1)*G5(1)*ones(2*nm5(1),1);   % meshed concrete 

G5m2 = 2*nm5(2)*G5(2)*ones(2*nm5(2),1);   % meshed insulation 

G5m3 = 2*nm5(3)*G5(3)*ones(2*nm5(3),1);   % meshed screed 

C5m1 = C5(1)/nm5(1)*mod(0:2*nm5(1)-1,2)'; % meshed concrete 

C5m2 = C5(2)/nm5(2)*mod(0:2*nm5(2)-1,2)'; % meshed insulation 

C5m3 = C5(3)/nm5(3)*mod(0:2*nm5(3)-1,2)'; % meshed insulation 

  

  

G5 = [ho;G5m1;0.060/0.029;G5m2;0.023/0.030; G5m3]; 

nt = length(G5); nq = nt;     % no. temperatures; no. flows 

A5 = diff(eye(nt+1)); 

A5(:,1) = [];                   % delete 1st node = reference temperature 

b5 = zeros(nq,1); b5(1) = 1;    % Temp source on branch 1: Tground 

C5 = [C5m1;0; C5m2;0; C5m3; 0];      

f5 = zeros(nt,1); f5(end) = 1;  % Rad. flow on int. surface 

y5 = zeros(nt,1);               % No output 

  

% A5'*diag(G5)*A5 + A5'*diag(G5)*b5 + diag(C5)*f5 + y5 

  

% Door type D1 & D2: wood 

nm6 = 1;      % number of meshes in layer 

w6 = 0.04;    % width [m] 

lam6 = 0.13;  % conductivity [W/m K] 

rho6 = 600;  % density [kg/m3] 

c6 = 1000;     % specific heat [J/kg K] 

  

G6 = lam6./w6; 

C6 = rho6.*c6; 

G6m = 2*nm6*G6*ones(2*nm6,1);         % meshed wood 
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C6m = C6/nm6*mod(0:2*nm6-1,2)';  % meshed wood 

  

nt = 1+2*sum(nm6); nq = nt;     % no. temperatures; no. flows 

A6 = diff(eye(nt+1)); 

A6(:,1) = [];                   % delete 1st node = reference temperature 

G6 = [hi; G6m]; 

b6 = zeros(nq,1);     % Temp source on branch 1: Troom 

C6 = [C6m; 0]; 

f6 = zeros(nt,1);   % Rad. flow on int. surface 

y6 = zeros(nt,1); 

  

% A6'*diag(G6)*A6 + A6'*diag(G6)*b6 + diag(C6)*f6 + y6 

  

%Shared Door 

nm6 = 1;      % number of meshes in layer 

w6 = 0.04;    % width [m] 

lam6 = 0.13;  % conductivity [W/m K] 

rho6 = 600;  % density [kg/m3] 

c6 = 1000;     % specific heat [J/kg K] 

%c6 = 0;      % changes dt = 49 s -> dt = 3920 s    

  

G61 = lam6./w6; 

C61 = rho6.*c6; 

G6m = 2*nm6*G61*ones(2*nm6,1);         % meshed wood 

C6m = C61/nm6*mod(0:2*nm6-1,2)';  % meshed wood 

G61 = [G6m]; 

C61 = [C6m; 0]; 

nt = length(C61); nq = length(G61);     % no. temperatures; no. flows 

A61 = diff(eye(nt)); 

b61 = zeros(nq,1);  

f61 = zeros(nt,1);   % Rad. flow on int. surface 

y61 = zeros(nt,1); 

  

% Shared Infiltration 

A7 =1; 

G7 = 1.62/3600*rhoa*ca; 

C7 = 0; 

b7 = 0; 

f7 = 0; 

y7 = 0; 

  

% Shared Infiltration 

A71 =[-1 1]; 

G71 = 1.62/3600*rhoa*ca; 

C71 = [0;0]; 

b71 = 0; 

f71 = [0;0]; 

y71 = [0;0]; 

  

% % A7'*diag(G7)*A7 + A7'*diag(G7)*b7 + diag(C7)*f7 + y7 

%Pillar 
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rhoc=2400; 

cc=1000; 

S20=0.3048*0.23; %Cross sectional area of concrete 

Hc=2.495; %Hieght of concrete 

A20 = [-1 1]; 

G20 =0.5; % 1.2; 

C20 =[rhoc*cc*S20*Hc;0]; 

b20 = 0; 

f20 = [0;0]; 

y20 = [0;0]; 

TCd{20}={A20,diag(G20),b20,diag(C20),f20,y20}; 

  

%***************************% 

%Kitchen zones 

%***************************% 

S1 = 2.8355*2.495; 

b1(1)=1; 

f1(1)=1; 

f1(end)=1; 

TCd{1} = {A1,S1*diag(G1),b1,S1*diag(C1),f1,y1};   % Kitchen Northern wall 

  

S2 = 2.625*2.495; 

b3(1)=1; %Doorway Temperature 

f3(1)=0; 

f3(end)=1; 

TCd{2} = {A3,S2*diag(G3),b3,S2*diag(C3),f3,y3};  % Kitchen Eastern wall shared with doorwy 

  

S3=2.835*2.495; % Kithcen wall shared with livngrm 

b21(1)=0; 

f21(1)=1; 

f21(end)=1; 

TCd{3} = {A21,S3*diag(G21),b21,S3*diag(C21),f21,y21};    

  

S4=0.935*1.95; 

b61(1)=0; 

f61(1)=1; 

f61(end)=1; 

TCd{4} = {A61,S4*diag(G61),b61,S4*diag(C61),f61,y61};  % Door shared with livngrm 

  

Sg = 81.69;%Infiltration between two zones 

b71(1)=0; 

f71(1)=0; 

f71(end)=0; 

TCd{5} = {A71,Sg*diag(G71),b71,diag(C71),f71,y71};  % Infiltration 

  

S5 =2.625*2.495;%West wall 

b1(1)=1; 

f1(1)=1; 

f1(end)=1; 

TCd{6} = {A1,S5*diag(G1),b1,S5*diag(C1),f1,y1};  % Kithcen west wall 
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S6 = 7.44; 

f4(1)=0; 

b4(1)=1; 

f4(end)=1; 

TCd{7}={A4,S6*diag(G4),b4,S6*diag(C4),f4,y4};       % Kitchen cieling 

  

S7=7.44; 

f5(1)=0; 

b5(1)=1; 

f5(end)=1; 

TCd{8} = {A5,S7*diag(G5),b5,S7*diag(C5),f5,y5};       % Kitchen Ground 

  

% Indoor air 

  

Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

sg=7.44; 

Infil1=1/3*2.22/3600; 

  

G9 = hi*[S1; S2; S3; S4; S5;S6;S7]; 

Gwind=1.2*2.14; %Window resistance 

Ginfil=Infil/10*sg*rhoa*ca; %External 

Gextwall=0.091*2.495; %Thermal bridge b.w ext-ext wall 

Gt=Gwind+Ginfil+Gextwall;%Total 

  

G9 = [G9;Gt];  

  

A9 = -eye(8);  A9(:,8) = 1; 

C9 = zeros(8,1); C9(8) = rhoa*sg*2.495*ca; 

b9 = zeros(8,1); b9(8) = 1; % in: source Tout 

f9 = zeros(8,1); f9(8) = 1;   % in: source heat flow in air volume 

y9 = zeros(8,1); y9(end) = 1;   % out: indoor air 

  

TCd{9} = {A9,diag(G9),b9,diag(C9),f9,y9};              % indoor air 

  

% SW radiative sources on walls: distributed uniformely 

Skith = 2*(2.625+2.835)*2.495 + 2*2.625*2.835; % total area Kitchen room 

% radiative gain through closed blinds 

%Splr=2*2.495*(0.3048+0.203); 

Z=90; 

trns1=ftrans1(Z); 

Qr = [S1 S2 S3 S4 S5 S6 S7]/Skith.*(1.29*Qw*0.427.*trns1+0.3*Qk); 

Tkith = [To';Td';To';Ta';Tg';To']; 

Qr=Qr'; 

  

Qsolkith=[S1*0.23*Qn';Qr(1:4,:);S2*0.23*Qw';Qr(5:end,:);0.9*0.7*Qk']; 

%Qheaterkith=0.9*0.7*Qk'+(1.29*Qw'*0.427*0.8+0.3*Qk')*0.25; 

  

%*********************% 

    %Livingroom Zone% 

%**********************% 

S1 = (3.97 - 0.35)*2.495 - 0.93*1.95;%Livng shared wall with Kithcen 
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S2 = 0.93*1.95; % Living-kitchen door 

   

  

S3 = 2.225*2.495 - 0.93*1.95; 

b2(1)=1; 

f2(1)=1; 

f2(end)=1; 

TCd{10} = {A2,S3*diag(G2),b2,S3*diag(C2),f2,y2};   % Living-doorway internal wall 

  

S4 = 0.93*1.95; 

b6(1)=1; 

f6(1)=1; 

f6(end)=1; 

TCd{11} = {A6,S4*diag(G6),b6,S4*diag(C6),f6,y6};       % Living-doorway door 

  

Sg = 81.69;%Infiltration between two zones 

b7(1)=1; 

f7(1)=0; 

f7(end)=0; 

TCd{12} = {A7,Sg*diag(G7),b7,diag(C7),f7,y7};  % Infiltration between zones 

  

S5 = 3.29*2.495 - 0.93*1.95; 

b2(1)=1; 

f2(1)=0; 

f2(end)=1; 

TCd{13} = {A2,S5*diag(G2),b2,S5*diag(C2),f2,y2};       % Living - corridor wall 

  

S6 = 2.28*2.495; 

b2(1)=1; 

f2(1)=1; 

f2(end)=1; 

TCd{14} = {A2,S6*diag(G2),b2,S6*diag(C2),f2,y2};       % Living - bedroom2 wall 

  

S7 = 5.290*2.495 - 8.66; 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{15} = {A1,S7*diag(G1),b1,S7*diag(C1),f1,y1};       % Living - extern. South wall 

  

S8 = 6.47*2.495 - 2.14;  

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{16} = {A1,S8*diag(G1),b1,S8*diag(C1),f1,y1};    % Living - extern. West wall 

  

S9 = 6.47*5.20; 

f4(1)=0; 

f4(end)=1; 
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b4(1)=1; 

TCd{17} = {A4,S9*diag(G4),b4,S9*diag(C4),f4,y4};     % Living - Attic 

  

S10 = 6.47*5.20; 

f5(1)=0; 

f5(end)=1; 

b5(1)=1; 

TCd{18} = {A5,S10*diag(G5),b5,S10*diag(C5),f5,y5};     % Living - Cellar 

  

% Indoor air 

Va = 120/3600;      % volumetric air flow [m3/s] 

Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

sg=81.69; 

Infil1=1/3*2.22/3600; 

%S13=2.662; %Surface area of Pillar 

G10 = hi*[S1; S2; S3; S4; S5;S6;S7; S8; S9; S10]; 

%Last three terms consist of thermal bridges:Ext-Ext wall, Extwall-Ground 

%and Internal wall ground 

  

Gsouthwin=8.66*1.05; %South window 

Gwestwin=2.14*1.2;   %West window 

Infil=Infil/10*33.65*rhoa*ca;%External Infiltration 

Gt=Gsouthwin+Gwestwin+Infil; 

G10 = [G10;Gt;rhoa*Va*ca;]; 

%G10 = [G10;8.66*1.05;2.14*1.2;rhoa*Va*ca;Infil/10*33.65*rhoa*ca];  

A10 = -eye(11); A10=[A10;zeros(1,11)]; A10(:,11) = 1; 

C10 = zeros(11,1); C10(11) = rhoa*6.47*5.20*2.495*ca; 

b10 = zeros(12,1); b10(11) = 1;b10(12) = 1;  % in: source Tout 

f10 = zeros(11,1); f10(end) = 1;   % in: source heat flow in air volume 

y10 = zeros(11,1); y10(11) = 1;   % out: indoor air 

  

TCd{19} = {A10,diag(G10),b10,diag(C10),f10,y10};  % indoor air 

%Radiations on wall of Living room 

Sliv = 2*(6.465+5.205)*2.495 + 2*6.465*5.205; 

Qr = [S1 S2 S3 S4 S5 S6 S7 S8 S9 S10]/Sliv.*(1.29*Qw*0.427.*trns1+0.3*Qi); 

Qr=Qr'; 

Tliv = [Td';Td';Td';Tc';Tb2';To';To';Ta';Tg';To';Tv']; 

Qsolliv=[Qr(1:2,:);0.3*Qd'/8;Qr(3,:);0.3*Qd'/10;Qr(4:5,:);0.3*QB'/7;Qr(6,:);S7*0.23*Qs';Qr(7,:

);S8*0.23*Qw';Qr(8:end,:);0.9*0.7*Qi']; 

%Qsolliv=[S7*0.23*Qs';S8*0.23*Qw']; 

%Qheaterliv=0.9*0.7*Qi'+(1.29*Qw'*0.427+0.3*Qi')*0.25; 

  

  

% Assembling and ss-model 

% *********************************** 

%Kitchen 

AssXkith=[1 length(TCd{1}{5}) 9 1;... 

        2 length(TCd{2}{5}) 9 2;... 

        3 length(TCd{3}{5}) 9 3;... 

        4 length(TCd{4}{5}) 9 4;... 

        6 length(TCd{6}{5}) 9 5;... 
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        7 length(TCd{7}{5}) 9 6;... 

        8 length(TCd{8}{5}) 9 7;9 length(TCd{9}{5}) 20 length(TCd{20}{5});9 length(TCd{9}{5}) 5 

length(TCd{5}{5})]; 

%Living Room 

AssXliv = [3 1 19 1;...       

        4 1 19 2;...            %Kithcen door 

        19 length(TCd{19}{5}) 5 1;...  %Infiltration between zones 

        10 length(TCd{10}{5}) 19 3;...      %Doorway wall 

        11 length(TCd{11}{5}) 19 4;...      %Doorway door 

        13 length(TCd{13}{5}) 19 5;...         % Corridor wall 

        14 length(TCd{14}{5}) 19 6;...         %Children room wall 

        15 length(TCd{15}{5}) 19 7;...         % South wall 

        16 length(TCd{16}{5}) 19 8;...         %West wall 

        17 length(TCd{17}{5}) 19 9;...         %Cieling 

        18 length(TCd{18}{5}) 19 10;19 length(TCd{19}{5}) 12 length(TCd{12}{5})];          % 

Ground 

AssX=[AssXkith;AssXliv]; 

[TCa1, Idx1] = fTCAssAllold(TCd, AssX); 

A1 = TCa1{1}; G1 = TCa1{2}; b1 = TCa1{3}; C1 = TCa1{4}; f1 = TCa1{5}; y1 = TCa1{6}; 

  

[TCa, Idx] = fTCAssAll(TCd, AssX); 

A = TCa{1}; G = TCa{2}; b = TCa{3}; C = TCa{4}; f = TCa{5}; y = TCa{6}; 

[InTN, InFN, OutN] = fNumInOut(TCa, Idx); 

%f=ft(1,1:160); 

%f=f'; 

% *************************************** 

% State-space 

% *************************************** 

% Model 

[A,B,C,D] = fTC2SSold(A,G,b,C,f,y); 

disp(['max dt = ',num2str(min(-2./eig(A))),'[s]']) 

  

% *************************************** 

%               Inputs                  % 

% *************************************** 

u=[Tkith;Tliv;Qsolkith;Qsolliv]; 

  

dt = 10*60;                     % time step: 10 min 

n = length(H(:,1)); 

Time = 0:dt:(n-1)*dt;           % time 

nth = size(A,1);                % no states 

% initial conditions 

th = 28*ones(nth,n); thi = th; the = th; 

Ae = (eye(nth) + dt*A);         % Euler explicit 

Ai = inv((eye(nth) - dt*A));    % Euler implicit 

Ad = expm(A*dt);                % exp. matrix 

Bd = (Ad-eye(size(A)))*inv(A)*B; 

for k = 1:n-1 

 th(:,k+1) = Ae*th(:,k) + dt*B*u(:,k);     % Euler explicit 

 thi(:,k+1) = Ai*(thi(:,k) + dt*B*u(:,k));  % Euler implicit 

 the(:,k+1) = Ad*the(:,k)+Bd*u(:,k);        % matrix exponential 
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end 

ye = C*th + D*u;        % Euler explicit 

yi = C*thi + D*u;       % Euler implicit 

yE = C*the + D*u;       % exponential 

  

%subplot(211) 

figure(1) 

Time = Time/3600/24; 

plot(Time,ye,Time,yi,Time,yE,'r',Time,Ti, Time, To,'b') 

plot(Time,yi, Time,yE,'r',Time,Ti,'g', Time, To,'b') 

plot(Time,yE(1,:),'r', Time,Tk,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

%subplot(212) 

figure(2) 

plot(Time,yE(2,:),'r', Time,Ti,'g', Time,To,'b') 

delta=yE(1,:)'-Tk; 

delta=delta(700:5905,:); 

Time=Time(:,700:5905); 

%plot(Time,delta,'r') 

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(3) 

hist(delta) 

title('Kitchen Histogram') 

  

delta=yE(2,:)'-Ti; 

delta=delta(700:5905,:); 

%Time=Time(:,700:5905); 

%plot(Time,delta,'r') 

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(4) 

hist(delta) 

title('Living room Histogram') 

  

 

 

 

 

 

 

 

 

 

 MATLAB Code for all Zones 

Files sevenzonessinglegraph.m, fTC2SSold.m, ftrans1.m, fNumInOut.m,  

   fTCAssAll.m 
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% Equivalent to s02THLiving01.m 

clear all, clc 

% Read data 

H = dlmread('TwinHouse.csv');   % house 

W = dlmread('TwinWeather.csv'); % weather 

  

% Physical values 

% **************************************** 

ho = 23;                % outdoor convection coefficient 

hi = 8;                 % indoor convection coefficent 

rhoa = 1.2; ca = 1000;  % indoor air density; heat capacity 

Kp = 1000;              % controller 

  

% Inputs 

Ti = H(:,7);    % temperature in living at 125 cm (output) 

Tk = H(:,12);   % kitchen 

Td = H(:,13);   % doorway 

Tc = H(:,9);    % corridor 

Tbh=H(:,10);    % Bathroom Temperature 

Tb2 = H(:,11);  % Children room 

Tb1=H(:,14);    %Bed room 

Ta = H(:,4);    % attic 

Tg = H(:,5);    % cellar 

Tv = H(:,30);   % ventilation supply air  

To = W(:,3);    % outdoor 

Qn = W(:,6);    % Solar radiations on North wall 

Qe = W(:,7);    % Solar radiations on East wall 

Qs = W(:,8);    % specific global solar vert. South 

Qw = W(:,9);    % specific global solar vert. West 

Qi = H(:,21);   % el. power living 

Qk=H(:,24)+H(:,25); %Kithcne power input minus duct losses 

Qbh=H(:,22);    %Bathroom heater 

Qch=H(:,23); %Children room heater 

Qd=H(:,26); %Doorway Heater 

QB=H(:,27); %Bedroom Heater 

  

% Conductances and capacities per unit surface 

% Wall type P1: external [insulation; brick] 

nm1 = [1 2]';           % for wall P1, number of meshes in layer 1, 2, ... 

w1 = [0.12 0.20]';      % width [m]  

lam1 = [0.035 0.22]';   % conductivity [W/m K] 

rho1 = [80 800]';       % density [kg/m3] 

c1 = [840 1000]';       % specific heat [J/kg K] 

  

G1 = lam1./w1; 

C1 = rho1.*c1.*w1; 

G1m1 = 2*nm1(1)*G1(1)*ones(2*nm1(1),1); % meshed insulation 

G1m2 = 2*nm1(2)*G1(2)*ones(2*nm1(2),1); % meshed brick 

C1m1 = C1(1)/nm1(1)*mod(0:2*nm1(1)-1,2)';% meshed insulation 

C1m2 = C1(2)/nm1(2)*mod(0:2*nm1(2)-1,2)';% meshed brick 
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G1 = [ho; 0.8/0.01; G1m1; 1/0.03; G1m2;1/0.01]; 

C1 = [0; C1m1; 0; C1m2;0;0]; 

nt = length(G1); nq = nt;       % no. temperatures; no. flows     

A1 = diff(eye(nt+1)); 

A1(:,1) = [];                   % delete 1st node = reference temperature 

b1 = zeros(nq,1);              % Temp source on branch 1: Tout 

f1 = zeros(nt,1);               % Flow source in node 1: Qsolar                     

y1 = zeros(nt,1);               % No output 

  

%Internal thick wall 

nm2 = 2;      % number of meshes in layer 

w2 = 0.24;    % width 

lam2 = 0.33;  % conductivity [W/m K] 

rho2 = 1000;  % density [kg/m3] 

c2 = 1000;    % specific heat [J/kg K] 

  

G2 = lam2./w2; 

C2 = rho2.*c2.*w2; 

G2m = 2*nm2*G2*ones(2*nm2,1);    % meshed brick 

C2m = C2/nm2*mod(0:2*nm2-1,2)';  % meshed brick 

G2 = [hi;0.35/0.01;G2m;0.35/0.01]; 

C2 = [0;C2m;0;0]; 

nt = length(G2); nq = nt;     % no. temperatures; no. flows 

A2 = diff(eye(nt+1)); 

A2(:,1) = [];                   % delete 1st node = reference temperature 

b2 = zeros(nq,1); b2(1) = 1;    % Temp source on branch 1: Troom 

  

f2 = zeros(nt,1);f2(1)=1; f2(end) = 1;  % Rad. flow on int. surface 

y2 = zeros(nt,1);               % No output 

  

%Shared wall with livingroom 

nm2 = 2;      % number of meshes in layer 

w2 = 0.24;    % width 

lam2 = 0.33;  % conductivity [W/m K] 

rho2 = 1000;  % density [kg/m3] 

c2 = 1000;    % specific heat [J/kg K] 

G21 = lam2./w2; 

C21 = rho2.*c2.*w2; 

G2m = 2*nm2*G21*ones(2*nm2,1);    % meshed brick 

C2m = C21/nm2*mod(0:2*nm2-1,2)';  % meshed brick 

G21 = [0.35/0.01;G2m;0.35/0.01]; 

C21 = [0;C2m;0;0]; 

nt = length(C21); nq =length(G21);     % no. temperatures; no. flows 

A21 = diff(eye(nt)); 

b21 = zeros(nq,1); 

f21 = zeros(nt,1); 

y21 = zeros(nt,1);               % No output 

  

  

% Internal thin Wall type P3: internal [brick] 

nm3 = 2;      % number of meshes in layer 
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w3 = 0.115;    % width 

lam3 = 0.33;  % conductivity [W/m K] 

rho3 = 1000;  % density [kg/m3] 

c3 = 1000;    % specific heat [J/kg K] 

  

G3 = lam3./w3; 

C3 = rho3.*c3.*w3; 

G3m = 2*nm3*G3*ones(2*nm3,1);         % meshed brick 

C3m = C3/nm3*mod(0:2*nm3-1,2)';  % meshed brick 

G3 = [hi;0.35/0.01;G3m;0.35/0.01];%With plaster layers 

C3 = [0;C3m;0;0]; 

nt = length(G3); nq = nt;     % no. temperatures; no. flows 

A3 = diff(eye(nt+1)); 

A3(:,1) = [];                   % delete 1st node = reference temperature 

b3 = zeros(nq,1); b3(1) = 1;    % Temp source on branch 1: Troom 

f3 = zeros(nt,1);f3(1)=1; f3(end) = 1;  % Rad. flow on int. surface 

y3 = zeros(nt,1);               % No output 

  

% Shared Internal thin Wall type P3: internal [brick] 

nm3 = 2;      % number of meshes in layer 

w3 = 0.115;    % width 

lam3 = 0.33;  % conductivity [W/m K] 

rho3 = 1000;  % density [kg/m3] 

c3 = 1000;    % specific heat [J/kg K] 

  

G31 = lam3./w3; 

C31 = rho3.*c3.*w3; 

G3m = 2*nm3*G31*ones(2*nm3,1);         % meshed brick 

C3m = C31/nm3*mod(0:2*nm3-1,2)';  % meshed brick 

G31 = [0.35/0.01;G3m;0.35/0.01];%With plaster layers 

C31 = [0;C3m;0;0]; 

nt = length(C31); nq = length(G31);     % no. temperatures; no. flows 

A31 = diff(eye(nt)); 

b31 = zeros(nq,1); b31(1) = 1;    % Temp source on branch 1: Troom 

f31 = zeros(nt,1);f31(1)=1; f31(end) = 1;  % Rad. flow on int. surface 

y31 = zeros(nt,1);               % No output 

  

  

% Wall type P4: ceiling [concrete & insulation] 

nm4 = 2;         % for wall P4, number of meshes in layer 1, 2, ... 

w4 = 0.22;    % width [m]  

lam4 = 2.00; % conductivity [W/m K] 

rho4 =2400;    % density [kg/m3] 

c4 =1000;     % specific heat [J/kg K] 

  

G4 = lam4./w4; 

C4 = rho4.*c4.*w4; 

G4m1 = 2*nm4(1)*G4(1)*ones(2*nm4(1),1); % meshed concrete 

C4m1 = C4(1)/nm4(1)*mod(0:2*nm4(1)-1,2)';% meshed concrete 

G4 = [ho;1.4/0.4;0.04/0.04; G4m1;1.0/0.01;0.035/0.1]; 

C4 = [0;0;C4m1;0;0;0]; 
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nt = length(G4); nq = nt;     % no. temperatures; no. flows 

A4 = diff(eye(nt+1)); 

A4(:,1) = [];                   % delete 1st node = reference temperature 

b4 = zeros(nq,1); b4(1) = 1;    % Temp source on branch 1: Tceiling 

  

f4 = zeros(nt,1); f4(end) = 1;  % Rad. flow on int. surface 

y4 = zeros(nt,1);               % No output 

  

% A4'*diag(G4)*A4 + A4'*diag(G4)*b4 + diag(C4)*f4 + y4 

  

% Wall type P5: ground (concrete & insulation & screed) 

nm5 = [2 1 1]';         % for wall P4, number of meshes in layer 1, 2, ... 

w5 = [0.22 0.03 0.065]';    % width [m]  

lam5 = [2.10 0.025 1.40]'; % conductivity [W/m K] 

rho5 = [2400 80 2000]';    % density [kg/m3] 

c5 = [1000 840 1000]';     % specific heat [J/kg K] 

  

G5 = lam5./w5; 

C5 = rho5.*c5.*w5; 

G5m1 = 2*nm5(1)*G5(1)*ones(2*nm5(1),1);   % meshed concrete 

G5m2 = 2*nm5(2)*G5(2)*ones(2*nm5(2),1);   % meshed insulation 

G5m3 = 2*nm5(3)*G5(3)*ones(2*nm5(3),1);   % meshed screed 

C5m1 = C5(1)/nm5(1)*mod(0:2*nm5(1)-1,2)'; % meshed concrete 

C5m2 = C5(2)/nm5(2)*mod(0:2*nm5(2)-1,2)'; % meshed insulation 

C5m3 = C5(3)/nm5(3)*mod(0:2*nm5(3)-1,2)'; % meshed insulation 

  

  

G5 = [ho;G5m1;0.060/0.029;G5m2;0.023/0.030; G5m3]; 

nt = length(G5); nq = nt;     % no. temperatures; no. flows 

A5 = diff(eye(nt+1)); 

A5(:,1) = [];                   % delete 1st node = reference temperature 

b5 = zeros(nq,1); b5(1) = 1;    % Temp source on branch 1: Tground 

C5 = [C5m1;0; C5m2;0; C5m3; 0];      

f5 = zeros(nt,1); f5(end) = 1;  % Rad. flow on int. surface 

y5 = zeros(nt,1);               % No output 

  

% A5'*diag(G5)*A5 + A5'*diag(G5)*b5 + diag(C5)*f5 + y5 

  

% Door type D1 & D2: wood 

nm6 = 1;      % number of meshes in layer 

w6 = 0.04;    % width [m] 

lam6 = 0.13;  % conductivity [W/m K] 

rho6 = 600;  % density [kg/m3] 

c6 = 1000;     % specific heat [J/kg K] 

  

G6 = lam6./w6; 

C6 = rho6.*c6; 

G6m = 2*nm6*G6*ones(2*nm6,1);         % meshed wood 

C6m = C6/nm6*mod(0:2*nm6-1,2)';  % meshed wood 

  

nt = 1+2*sum(nm6); nq = nt;     % no. temperatures; no. flows 
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A6 = diff(eye(nt+1)); 

A6(:,1) = [];                   % delete 1st node = reference temperature 

G6 = [hi; G6m]; 

b6 = zeros(nq,1);     % Temp source on branch 1: Troom 

C6 = [C6m; 0]; 

f6 = zeros(nt,1);   % Rad. flow on int. surface 

y6 = zeros(nt,1); 

  

% A6'*diag(G6)*A6 + A6'*diag(G6)*b6 + diag(C6)*f6 + y6 

  

%Shared Door 

nm6 = 1;      % number of meshes in layer 

w6 = 0.04;    % width [m] 

lam6 = 0.13;  % conductivity [W/m K] 

rho6 = 600;  % density [kg/m3] 

c6 = 1000;     % specific heat [J/kg K] 

%c6 = 0;      % changes dt = 49 s -> dt = 3920 s    

  

G61 = lam6./w6; 

C61 = rho6.*c6; 

G6m = 2*nm6*G61*ones(2*nm6,1);         % meshed wood 

C6m = C61/nm6*mod(0:2*nm6-1,2)';  % meshed wood 

G61 = [G6m]; 

C61 = [C6m; 0]; 

nt = length(C61); nq = length(G61);     % no. temperatures; no. flows 

A61 = diff(eye(nt)); 

b61 = zeros(nq,1);  

f61 = zeros(nt,1);   % Rad. flow on int. surface 

y61 = zeros(nt,1); 

  

% Shared Infiltration 

A7 =1; 

G7 = 2.22/3600*rhoa*ca*2.495; 

C7 = 0; 

b7 = 0; 

f7 = 0; 

y7 = 0; 

  

% Shared Infiltration 

A71 =[-1 1]; 

G71 = 1/3*2.22/3600*rhoa*ca*2.495; 

C71 = [0;0]; 

b71 = 0; 

f71 = [0;0]; 

y71 = [0;0]; 

  

% Shared Ventilation 

A81 =[-1 1]; 

G81 = 60/3600*rhoa*ca*2.495; 

C81 = [0;0]; 

b81 = 0; 
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f81 = [0;0]; 

y81 = [0;0]; 

  

% % A7'*diag(G7)*A7 + A7'*diag(G7)*b7 + diag(C7)*f7 + y7 

% %Pillar 

% rhoc=2400; 

% cc=1000; 

% S9=0.3048*0.23; %Cross sectional area of concrete 

% Hc=2.495; %Hieght of concrete 

% A9 = [-1 1]; 

% G9 =0.5; % 1.2; 

% C9 =[rhoc*cc*S9*Hc;0]; 

% b9 = 0; 

% f9 = [0;0]; 

% y9 = [0;0]; 

  

%***************************% 

%Kitchen zones 

%***************************% 

S1k = 2.8355*2.495; 

b1(1)=1; 

f1(1)=1; 

f1(end)=1; 

TCd{1} = {A1,S1k*diag(G1),b1,S1k*diag(C1),f1,y1};   % Kitchen Northern wall 

  

S2k = 2.625*2.495; 

b31(1)=0; %Doorway Temperature 

f31(1)=1; 

f31(end)=1; 

TCd{2} = {A31,S2k*diag(G31),b31,S2k*diag(C31),f31,y31};  % Kitchen Eastern wall shared with 

doorwy 

  

S3k=2.835*2.495; % Kithcen wall shared with livngrm 

b21(1)=0; 

f21(1)=1; 

f21(end)=1; 

TCd{3} = {A21,S3k*diag(G21),b21,S3k*diag(C21),f21,y21};    

  

S4k=0.935*1.95; 

b61(1)=0; 

f61(1)=1; 

f61(end)=1; 

TCd{4} = {A61,S4k*diag(G61),b61,S4k*diag(C61),f61,y61};  % Door shared with livngrm 

  

Sg = 81.69;%Infiltration between two zones 

b71(1)=0; 

f71(1)=0; 

f71(end)=0; 

TCd{5} = {A71,Sg*diag(G71),b71,diag(C71),f71,y71};  % Infiltration 

  

S5k =2.625*2.495;%West wall 
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b1(1)=1; 

f1(1)=1; 

f1(end)=1; 

TCd{6} = {A1,S5k*diag(G1),b1,S5k*diag(C1),f1,y1};  % Kithcen west wall 

  

S6k = 7.44; 

f4(1)=0; 

b4(1)=1; 

f4(end)=1; 

TCd{7}={A4,S6k*diag(G4),b4,S6k*diag(C4),f4,y4};       % Doorway cieling 

  

S7k=7.44; 

f5(1)=0; 

b5(1)=1; 

f5(end)=1; 

TCd{8} = {A5,S7k*diag(G5),b5,S7k*diag(C5),f5,y5};       % Kitchen Ground 

  

% Indoor air 

  

Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

sg=7.44; 

  

  

G9 = hi*[S1k; S2k; S3k; S4k; S5k;S6k;S7k]; 

Gb1=0.089*11.67; % Thermal bridge Ext wall cieling 

Gb2=0.110*11.67; % Thermal bridge Ext wall ground 

Gb3=2*0.093*2.495; % Thermal bridge Ext wall-wall 

Gwin=2.14*1.2; %West Window 

GInfil=Infil/30*sg*2.495*rhoa*ca; % External infiltration 

Gt=Gwin+GInfil; 

G9 = [G9;Gt];  

%Last three terms Extwall-Ground Thermal-bridge,Extwall-cieling bridge,shared-wall-

kithcen/ground bridge  

A9 = -eye(8);  A9(:,8) = 1; 

C9 = zeros(8,1); C9(8) = rhoa*sg*2.495*ca; 

b9 = zeros(8,1); b9(8) = 1; % in: source Tout 

f9 = zeros(8,1); f9(8) = 1;   % in: source heat flow in air volume 

y9 = zeros(8,1); y9(end) = 1;   % out: indoor air 

  

TCd{9} = {A9,diag(G9),b9,diag(C9),f9,y9};              % indoor air 

% SW radiative sources on walls: distributed uniformely 

Skith = 2*(2.625+2.835)*2.495 + 2*2.625*2.835; % total area Kitchen room 

% radiative gain through closed blinds 

%Splr=2*2.495*(0.3048+0.203); 

%Qheaterkith=0.9*0.7*Qk'+(1.29*Qw'*0.427*0.8+0.3*Qk')*0.25; 

  

%*********************% 

    %Livingroom Zone% 

%**********************% 

S1l = (3.97 - 0.35)*2.495 - 0.93*1.95;%Livng shared wall with Kithcen 
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S2l = 0.93*1.95; % Living-kitchen door 

   

  

S3l = 2.225*2.495 - 0.93*1.95; 

b21(1)=0; 

f21(1)=1; 

f21(end)=1; 

TCd{10} = {A21,S3l*diag(G21),b21,S3l*diag(C21),f21,y21};   % Living-doorway internal wall 

  

S4l = 0.93*1.95; 

b61(1)=0; 

f61(1)=1; 

f61(end)=1; 

TCd{11} = {A61,S4l*diag(G61),b61,S4l*diag(C61),f61,y61};       % Living-doorway door 

  

Sg = 81.69;%Infiltration between two zones 

b71(1)=0; 

f71(1)=0; 

f71(end)=0; 

TCd{12} = {A71,Sg*diag(G71),b71,diag(C71),f71,y71};  % Infiltration between zones 

  

S5l = 3.31*2.495 - 0.93*1.95; 

b21(1)=0; 

f21(1)=0; 

f21(end)=1; 

TCd{13} = {A21,S5l*diag(G21),b21,S5l*diag(C21),f21,y21};       % Living - corridor wall 

  

S6l = 2.88*2.495; 

b21(1)=0; 

b21(end)=0; 

f21(1)=1; 

f21(end)=1; 

TCd{14} = {A21,S6l*diag(G21),b21,S6l*diag(C21),f21,y21};       % Living - bedroom2 wall 

  

S7l = 5.290*2.495 - 8.66; 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{15} = {A1,S7l*diag(G1),b1,S7l*diag(C1),f1,y1};       % Living - extern. South wall 

  

S8l = 6.47*2.495 - 2.14;  

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{16} = {A1,S8l*diag(G1),b1,S8l*diag(C1),f1,y1};    % Living - extern. West wall 

  

S9l = 6.47*5.20; 

f4(1)=0; 

f4(end)=1; 
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b4(1)=1; 

TCd{17} = {A4,S9l*diag(G4),b4,S9l*diag(C4),f4,y4};     % Living - Attic 

  

S10l = 6.47*5.20; 

f5(1)=0; 

f5(end)=1; 

b5(1)=1; 

TCd{18} = {A5,S10l*diag(G5),b5,S10l*diag(C5),f5,y5};     % Living - Cellar 

  

% Indoor air 

Va = 120/3600;      % volumetric air flow [m3/s] 

Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

%S13=2.662; %Surface area of Pillar 

G10 = hi*[S1l; S2l; S3l; S4l; S5l;S6l;S7l; S8l; S9l; S10l]; 

%Last three terms consist of thermal bridges:Ext-Ext wall, Extwall-Ground 

Gb1=0.089*11.67; % Thermal bridge Ext wall cieling 

Gb2=0.110*11.67; % Thermal bridge Ext wall ground 

Gb3=0.093*2.495; % Thermal bridge Ext wall-wall 

Ginf=Infil/23*33.65*2.495*rhoa*ca 

Gt=Ginf+Gb1+Gb2+Gb3; % Total resistance 

%and Internal wall ground 

%        S window W window Ventilation  Infiltration   Air-exchange corridr 

G10 = [G10;8.66*1.05;2.14*1.2;rhoa*Va*ca;Gt];  

A10 = -eye(11); A10=[A10;zeros(1,11);zeros(1,11);zeros(1,11)]; A10(:,11) = 1; 

C10 = zeros(11,1); C10(11) = rhoa*6.47*5.20*2.495*ca; 

b10 = zeros(14,1); b10(11) = 1;b10(12) = 1;b10(13) = 1;b10(14) = 1;  % in: source Tout 

f10 = zeros(11,1); f10(end) = 1;   % in: source heat flow in air volume 

y10 = zeros(11,1); y10(11) = 1;   % out: indoor air 

  

TCd{19} = {A10,diag(G10),b10,diag(C10),f10,y10};  % indoor air 

  

%Radiations on wall of Living room 

Sliv = 2*(6.465+5.205)*2.495 + 2*6.465*5.205; 

%Qsolliv=[S7*0.23*Qs';S8*0.23*Qw']; 

%Qheaterliv=0.9*0.7*Qi'+(1.29*Qw'*0.427+0.3*Qi')*0.25; 

%*********************% 

    %Doorway Zone% 

%**********************% 

S20d=2.225*2.495-2.0;  % Doorway Northwall 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{20}={A1,S20d*diag(G1),b1,S20d*diag(C1),f1,y1}; % Doorway Northwall 

  

S21d=1.0*2.0;  % Doorway Door 

f6(1)=1; 

f6(end)=1; 

b6(1)=1; 

b6(end)=0; 

TCd{21}={A6,S21d*diag(G6),b6,S21d*diag(C6),f6,y6}; % Doorway Door 
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S22d=2.625*2.495;  % Doorway wall shared with Bedroom 

f21(1)=1; 

f21(end)=1; 

b21(1)=0; 

b21(end)=0; 

TCd{22}={A21,S22d*diag(G21),b21,S22d*diag(C21),f21,y21}; % Doorway wall shared with Bedroom 

  

S23d=0.935*1.95; %Doorway door shared with Livingrm 

  

S24d=2.225*2.495-0.935*1.95; %Area of shared wall/Livingrm 

  

S25d=2.625*2.495; %Wall shared with Kitchen 

  

S26d=5.84;  % Doorway Ceiling 

f4(1)=0; 

f4(end)=1; 

b4(1)=1; 

b4(end)=0; 

TCd{23}={A4,S26d*diag(G4),b4,S26d*diag(C4),f4,y4}; % Doorway Ceiling 

  

S27d=5.84;  % Doorway Ground 

f5(1)=0; 

f5(end)=1; 

b5(1)=1; 

b5(end)=0; 

TCd{24}={A5,S27d*diag(G5),b5,S27d*diag(C5),f5,y5}; % Doorway Ground 

  

%Doorway Air node 

  

%Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

%S13=2.662; %Surface area of Pillar 

G11 = hi*[S20d; S21d; S22d; S23d; S24d;S25d;S26d; S27d]; 

Ginf=Infil/23*5.84*2.495*rhoa*ca; 

% Gb1=0.089*2.22; % Thermal bridge Ext wall cieling 

% Gb2=0.110*2.22; % Thermal bridge Ext wall ground 

%Gb3=0.093*2.495; % Thermal bridge Ext wall-wall 

Gt=Ginf; % Total resistance 

%Last three terms consist of thermal bridges:Ext-Ext wall, Extwall-Ground 

%and Internal wall ground 

%        S window W window Ventilation  Infiltration   Air-exchange corridr 

G11 = [G11;Gt];  

A11 = -eye(9);  A11(:,9) = 1; 

C11 = zeros(9,1); C11(9) = rhoa*5.84*2.495*ca; 

b11 = zeros(9,1); b11(9) = 1;  % in: source Tout 

f11 = zeros(9,1); f11(end) = 1;   % in: source heat flow in air volume 

y11 = zeros(9,1); y11(9) = 1;   % out: indoor air 

TCd{25}={A11,diag(G11),b11,diag(C11),f11,y11}; 

%Radiations on wall of Living room 

%Qsolliv=[S7*0.23*Qs';S8*0.23*Qw']; 

%Qheaterliv=0.9*0.7*Qi'+(1.29*Qw'*0.427+0.3*Qi')*0.25; 
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% Pillar 

% Kitchen Pillar 

rhoc=2400; 

cc=1000; 

S26=0.3048*0.23; %Cross sectional area of concrete 

Hc=2.495; %Hieght of concrete 

A26 = [-1 1]; 

G26 =0.5; % 1.2; 

C26 =[rhoc*cc*S26*Hc;0]; 

b26 = 0; 

f26 = [0;0]; 

y26 = [0;0]; 

TCd{26}={A26,diag(G26),b26,diag(C26),f26,y26}; 

% Livingroom Pillar 

TCd{27}={A26,diag(G26),b26,diag(C26),f26,y26}; 

  

% *********************************** 

        %Children's Room 

% *********************************** 

S1C = 2.09*2.495 - 0.935*1.95; 

f31(1)=1; 

f31(end)=1; 

b31(1)=0; 

b31(end)=0; 

TCd{28} = {A31,S1C*diag(G31),b31,S1C*diag(C31),f31,y31};  % Childrnrm wall shared with Bathroom 

  

  

S2C = 2.88*2.495; 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{29} = {A1,S2C*diag(G1),b1,S2C*diag(C1),f1,y1};  % Childrenrm Eastern wall 

  

S3C=3.885*2.495 - 2.14; 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{30} = {A1,S3C*diag(G1),b1,S3C*diag(C1),f1,y1};  % Childrenrm South wall 

  

S4C=2.88*2.495; 

% f2(1)=1; 

% f2(end)=1; 

% b2(1)=1; 

% b2(end)=0; 

% TCd{31} = {A2,S4C*diag(G2),b2,S4C*diag(C2),f2,y2};  % Childrnrm wall shared with livngrm 

  

S5C =11.19; 

f4(1)=0; 

f4(end)=1; 
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b4(1)=1; 

b4(end)=0; 

TCd{31} = {A4,S5C*diag(G4),b4,S5C*diag(C4),f4,y4};     % Childrnrm - Attic 

  

S6C = 11.19; 

f5(1)=0; 

f5(end)=1; 

b5(1)=1; 

b5(end)=0; 

TCd{32} = {A5,S6C*diag(G5),b5,S6C*diag(C5),f5,y5};     % Childrnrm- Cellar 

  

TCd{33} = {A26,diag(G26),b26,S6C*diag(C26),f26,y26};     % Plillar 

  

% Indoor air 

Va = 60/3600; 

rhoa=1.2; 

ca=1000; 

Infil=1.62/3600; %Infiltration per hour per floor area 81.69 

sg=11.19; 

G34 = hi*[S1C; S2C; S3C; S4C; S5C;S6C;1.65*2.495]; 

Gwin=2.14*1.05; %Window 

Gven=0.9*Va*rhoa*ca; 

Gbe=0.107*6.765+0.084*6.765; %External wall-ground+cieling bridge 

Gbil=0.378*2.88+0.204*2.88;%Internal Floor and Cieling thermal bridge shared with livingroom 

Gbibh=0.243*3.885+0.131*3.885; %Intermal floor and ceiling thermal bridge shared with Bathroom 

Ginfil=Infil/20*sg*2.495*rhoa*ca+0.01*Va*rhoa*ca; %Outdoor Infiltration 

Gextwall=0.091*2.495; %Thermal bridge b.w ext-ext wall 

Gt=Gwin+Ginfil+Gextwall+Gbe; %Total 

  

G34 = [G34;Gt;Gbil;Gbibh];  

%Last three terms Extwall-Ground Thermal-bridge,Extwall-cieling bridge,shared-wall-

kithcen/ground bridge  

A34 = -eye(8);A34=[A34;zeros(1,8);zeros(1,8)];  A34(:,8) = 1; 

C34 = zeros(8,1); C34(8) = rhoa*sg*2.495*ca; 

b34 = zeros(10,1);  b34(8) = 1;b34(9) = 1;b34(10) = 1; % in: source Tout 

f34 = zeros(8,1); f34(8) = 1;   % in: source heat flow in air volume 

y34 = zeros(8,1); y34(8) = 1;   % out: indoor air 

  

TCd{34} = {A34,diag(G34),b34,diag(C34),f34,y34};              % indoor air 

  

%Qsolcdrm=[0.17*0.3*Qbh'/6;Qr(1,:);Qe'*0.23*S2;Qr(2,:);Qs'*0.23*S3;Qr(3,:);0.17*0.3*Qi'/12;Qr(

4:end,:);0.9*0.7*Qch']; 

  

% *********************************** 

        %Bedroom Room 

% *********************************** 

S1b = 3.885*2.495 - 2.14; 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 
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TCd{35} = {A1,S1b*diag(G1),b1,S1b*diag(C1),f1,y1};   % Bedroom Northern wall 

  

  

  

S2b = 2.88*2.495; 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{36} = {A1,S2b*diag(G1),b1,S2b*diag(C1),f1,y1};  % Bedroom Eastern wall 

  

S3b=2.09*2.495;  

f31(1)=1; 

f31(end)=1; 

b31(1)=0; 

b31(end)=0; 

TCd{37} = {A31,S3b*diag(G31),b31,S3b*diag(C31),f31,y31};  % Bedroom wall shared with Bathroom 

  

S4b=1.65*2.495-0.935*1.95;  

f31(1)=0; 

f31(end)=1; 

b31(1)=0; 

b31(end)=0; 

TCd{38} = {A31,S4b*diag(G31),b31,S4b*diag(C31),f31,y31};  % Bedrrom wall shared with Corridor 

  

  

S5b =0.935*1.95; 

f61(1)=0; 

f61(end)=1; 

b61(1)=0; 

b61(end)=0; 

TCd{39} = {A61,S5b*diag(G61),b61,S5b*diag(C61),f61,y61};     % Bedroom door shared with corridor 

  

S6b = 2.88*2.495; 

% f21(1)=0; 

% f21(end)=1; 

% b21(1)=0; 

% b21(end)=0; 

% TCd{6} = {A21,S6b*diag(G21),b21,S6b*diag(C21),f21,y21}; % Bedroom wall shared with Doorwy 

  

S7b =11.19; 

f4(1)=0; 

f4(end)=1; 

b4(1)=1; 

b4(end)=0; 

TCd{40} = {A4,S7b*diag(G4),b4,S7b*diag(C4),f4,y4};     % Bedrrom - Attic 

  

S8b = 11.19; 

f5(1)=0; 

f5(end)=1; 

b5(1)=1; 
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b5(end)=0; 

TCd{41} = {A5,S8b*diag(G5),b5,S8b*diag(C5),f5,y5};     % Bedroom- Cellar 

  

TCd{42} = {A26,diag(G26),b26,diag(C26),f26,y26};     % Pillar 

% Indoor air 

rhoa=1.2; 

ca=1000; 

 %Infiltration per hour per floor area 81.69 

sg=11.19; 

GInfil=1.62/3600*sg*2.495*rhoa*ca; 

%GInfil1=1/3*2.22/3600*sg*2.495*rhoa*ca; 

Gwin=2.14*1.2; 

Gextwall=0.091*2.495; %Thermal bridge b.w ext-ext wall 

Gt=Gwin+GInfil/20+Gextwall; 

G8 = hi*[S1b; S2b; S3b; S4b; S5b;S6b;S7b;S8b]; 

  

G8 = [G8;Gt];  

%Last three terms Extwall-Ground Thermal-bridge,Extwall-cieling bridge,shared-wall-

kithcen/ground bridge  

A8 = -eye(9);  A8(:,9) = 1; 

C8 = zeros(9,1); C8(9) = rhoa*sg*2.495*ca; 

b8 = zeros(9,1); b8(9) = 1;  % in: source Tout 

f8 = zeros(9,1);  f8(9) = 1;   % in: source heat flow in air volume 

y8 = zeros(9,1); y8(9) = 1;   % out: indoor air 

  

TCd{43} = {A8,diag(G8),b8,diag(C8),f8,y8};              % indoor air 

  

% *********************************** 

        %Bathroom Room 

% *********************************** 

S1bh=2.09*2.495; % Wall shared with Bedroom 

  

S2bh = 3.31*2.495; % Bathroom East External wall 

f1(1)=1; 

f1(end)=1; 

b1(1)=1; 

b1(end)=0; 

TCd{44} = {A1,S2bh*diag(G1),b1,S2bh*diag(C1),f1,y1};   % Bedroom East wall 

  

S3bh=2.09*2.495; %Wall shared with Children room 

  

S4bh =3.31*2.495-0.935*1.95; % Bathroom wall shared with corridor 

f31(1)=0; 

f31(end)=1; 

b31(1)=0; 

b31(end)=0; 

TCd{45} = {A31,S4bh*diag(G31),b31,S4bh*diag(C31),f31,y31};    

  

S5bh =6.92; % Bathroom Cieling 

f4(1)=0; 

f4(end)=1; 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI051/these.pdf 
© [N. Ahmad], [2020], INSA Lyon, tous droits réservés



275 

 

b4(1)=1; 

b4(end)=0; 

TCd{46} = {A4,S5bh*diag(G4),b4,S5bh*diag(C4),f4,y4};    

  

S6bh =6.92; % Bathroom Ground 

f5(1)=0; 

f5(end)=1; 

b5(1)=1; 

b5(end)=0; 

TCd{47} = {A5,S6bh*diag(G5),b5,S6bh*diag(C5),f5,y5}; 

  

% Indoor air 

rhoa=1.2; 

ca=1000; 

%Infiltration per hour per floor area 81.69 

sg=6.92; 

Va=60/3600; % Ventilation 

Gvent=Va*rhoa*ca; % Ventilation 

GInfil=1.62/3600*sg*2.495*rhoa*ca+0.01*Va*rhoa*ca; 

Gwin=2.14*1.2; 

Gt=Gwin+GInfil/20; 

  

G8 = hi*[S1bh;S2bh;S3bh;S4bh;S5bh;S6bh]; 

G8 = [G8;Gt];  

  

A8 = -eye(7);  A8(:,7) = 1; 

C8 = zeros(7,1); C8(7) = rhoa*sg*2.495*ca; 

b8 = zeros(7,1); b8(7) = 1;  % in: source Tout 

f8 = zeros(7,1);  f8(7) = 1;   % in: source heat flow in air volume 

y8 = zeros(7,1); y8(7) = 1;   % out: indoor air 

  

TCd{48} = {A8,diag(G8),b8,diag(C8),f8,y8};              % Indoor air 

%Bathroom 

% *********************************** 

        %Corridor 

% *********************************** 

S1cr=0.935*1.95; %Shared door area 

  

S2cr=1.65*2.495-0.935*1.95; % Shared wall between corridor and bedrm 

  

S3cr=3.31*2.495-0.935*1.95; % Shared wall between corridor and bathroom 

  

S4cr=1.65*2.495-0.935*1.95; %Shared wall between Children rm and corridor 

  

S5cr=3.31*2.495-0.935*1.95; %Shared wall between living rm and corridor 

  

f71(1)=0; %Infiltration between Bedrm and Corridor 

f71(end)=0; 

b71(1)=0; 

b71(end)=0; 

TCd{49} = {A71,diag(G71),b71,diag(C71),f71,y71}; 
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f81(1)=0; %Infiltration between Bathrm and Corridor 

f81(end)=0; 

b81(1)=0; 

b81(end)=0; 

TCd{50} = {A81,diag(G81),b81,diag(C81),f81,y81}; 

  

S4cr=1.65*2.495-0.935*1.95; %Shared wall between Bathrm and corridor 

f31(1)=0;  

f31(end)=0; 

b31(1)=0; 

b31(end)=0; 

TCd{51} = {A31,S4cr*diag(G31),b31,S4cr*diag(C31),f31,y31}; 

  

f81(1)=0;%Shared Infiltration between corridor and chldrn rm  

f81(end)=0; 

b81(1)=0; 

b81(end)=0; 

TCd{52} = {A81,diag(G81),b81,diag(C81),f81,y81}; 

  

f81(1)=0;%Shared Infiltration between corridor and Livngrm  

f81(end)=0; 

b81(1)=0; 

b81(end)=0; 

TCd{53} = {A81,2*diag(G81),b81,diag(C81),f81,y81}; 

  

S6cr =5.46; % Corridor Cieling 

f4(1)=0; 

f4(end)=0; 

b4(1)=1; 

b4(end)=0; 

TCd{54} = {A4,S6cr*diag(G4),b4,S6cr*diag(C4),f4,y4};    

  

S7cr =5.46; % Bathroom Ground 

f5(1)=0; 

f5(end)=0; 

b5(1)=1; 

b5(end)=0; 

TCd{55} = {A5,S7cr*diag(G5),b5,S7cr*diag(C5),f5,y5}; 

  

% Indoor air 

rhoa=1.2; 

ca=1000; 

%Infiltration per hour per floor area 81.69 

sg=5.46; 

% Va=60/3600; % Ventilation 

% Gvent=Va*rhoa*ca; % Ventilation 

% GInfil=1.62/3600*sg*2.495*rhoa*ca; 

% Gwin=2.14*1.2; 

% Gt=Gwin+GInfil/20; 
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G8 = hi*[S1cr;S2cr;S3cr;S4cr;S5cr;S6cr;S7cr]; 

  

A8 = -eye(8);A8(8,:)=[]; A8(:,8) = 1; 

C8 = zeros(8,1); C8(8) = rhoa*sg*2.495*ca; 

b8 = zeros(7,1);   % in: source Tout 

f8 = zeros(8,1);     

y8 = zeros(8,1); y8(8) = 1;   % out: indoor air 

  

TCd{56} = {A8,diag(G8),b8,diag(C8),f8,y8};              % Indoor air 

  

% *********************************** 

            %Assembly 

% *********************************** 

  

AssX=[1 length(TCd{1}{5}) 9 1;... 

          2 1 25 6;...         

          2 length(TCd{2}{5}) 9 2;... 

          3 1 19 1;... 

          3 length(TCd{3}{5}) 9 3;...  

          4 1 19 2;... 

          4 length(TCd{4}{5}) 9 4;... 

          9 length(TCd{9}{5}) 5 length(TCd{5}{5});... 

          6 length(TCd{6}{5}) 9 5;... 

          7 length(TCd{7}{5}) 9 6;... 

          8 length(TCd{8}{5}) 9 7;... 

          9 length(TCd{9}{5}) 26 length(TCd{26}{5});... 

          10 1 25 5;... 

          10 length(TCd{10}{5}) 19 3;... 

          11 1 25 4;...     

          11 length(TCd{11}{5}) 19 4;... 

          13 1 56 5;... 

          13 length(TCd{13}{5}) 19 5;... 

          14 length(TCd{14}{5}) 19 6;... 

          14 1 34 4;... 

          15 length(TCd{15}{5}) 19 7;... 

          16 length(TCd{16}{5}) 19 8;...          

          17 length(TCd{17}{5}) 19 9;...          

          18 length(TCd{18}{5}) 19 10;...    

          19 length(TCd{19}{5}) 5 1;... 

          19 length(TCd{19}{5}) 12 length(TCd{12}{5});... 

          19 length(TCd{19}{5}) 27 length(TCd{27}{5});... 

          20 length(TCd{20}{5}) 25 1;... 

          21 length(TCd{21}{5}) 25 2;... 

          22 length(TCd{22}{5}) 25 3;... 

          22 1 43 6;... 

          23 length(TCd{23}{5}) 25 7;... 

          24 length(TCd{24}{5}) 25 8;... 

          25 length(TCd{25}{5}) 12 1;... 

          28 length(TCd{28}{5}) 34 1;... 

          28 1 48 3;...  

          29 length(TCd{29}{5}) 34 2;... 
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          30 length(TCd{30}{5}) 34 3;... 

          31 length(TCd{31}{5}) 34 5;... 

          32 length(TCd{32}{5}) 34 6;... 

          34 length(TCd{34}{5}) 33 length(TCd{33}{5});... 

          35 length(TCd{35}{5}) 43 1;... 

          36 length(TCd{36}{5}) 43 2;... 

          37 length(TCd{37}{5}) 43 3;... 

          37 1 48 1;...  

          38 1 56 2;... 

          38 length(TCd{38}{5}) 43 4;... 

          39 1 56 1;... 

          39 length(TCd{39}{5}) 43 5;... 

          40 length(TCd{40}{5}) 43 7;... 

          41 length(TCd{41}{5}) 43 8;... 

          43 length(TCd{43}{5}) 42 length(TCd{42}{5});... 

          44 length(TCd{44}{5}) 48 2;... 

          45 1 56 3;... 

          45 length(TCd{45}{5}) 48 4;... 

          46 length(TCd{46}{5}) 48 5;... 

          47 length(TCd{47}{5}) 48 6;... 

          48 length(TCd{48}{5}) 50 length(TCd{50}{5});... 

          43 length(TCd{43}{5}) 49 1;... 

          56 length(TCd{56}{5}) 49 length(TCd{49}{5});... 

          56 length(TCd{56}{5}) 50 1;... 

          51 length(TCd{51}{5}) 34 7;... 

          51 1 56 4;... 

          34 length(TCd{34}{5}) 52 1;... 

          56 length(TCd{56}{5}) 52 length(TCd{52}{5});... 

          19 length(TCd{19}{5}) 53 length(TCd{53}{5});... 

          56 length(TCd{56}{5}) 53 1;... 

          54 length(TCd{54}{5}) 56 6;... 

          55 length(TCd{55}{5}) 56 7]; 

  

[TCa, Idx] = fTCAssAll(TCd, AssX); 

A = TCa{1}; G = TCa{2}; b = TCa{3}; C = TCa{4}; f = TCa{5}; y = TCa{6}; 

[InTN, InFN, OutN] = fNumInOut(TCa, Idx); 

% *************************************** 

% Inputs 

% *************************************** 

Z=90; 

trns1=ftrans1(Z); 

Qrkith = [S1k S2k S3k S4k S5k S6k S7k]/Skith.*(1.29*Qw.*trns1+0.3*Qk)*0.70; %Kithcen 

Tkith = [To';To';Ta';Tg';To']; 

Qrkith=Qrkith'; 

%Qsolkith=[S1k*0.23*Qn';Qrkith(1:4,:);S5k*0.23*Qw';Qrkith(5:end,:);0.7*Qk'+(1.29*Qw'.*trns1'+0

.3*Qk')*0.30]; 

%Living room 

  

Qrliv = [S1l S2l S3l S4l S5l S6l S7l S8l S9l S10l]/Sliv.*(1.29*Qw.*trns1+0.3*Qi)*0.70; 

Qrliv=Qrliv'; 

Tliv = [To';To';Ta';Tg';To';To';Tv';To']; 
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%Qsolliv=[Qr(1:6,:);Qr(7,:);Qr(8:end,:);0.7*Qi'+(1.29*Qw'*0.427.*trns1'+0.3*Qi')*0.30]; 

%Doorway 

Sdrwy = 2*(2.625+2.225)*2.495 + 2*2.625*2.225; 

Qrdrwy = [S20d S21d S22d S23d S24d S25d S26d S27d]/Sdrwy.*(0.9*0.3*Qd); 

Qrdrwy=Qrdrwy'; 

Tdrwy = [To';To';Ta';Tg';To']; 

  

% SW Children's room 

Scdrm = 2*(3.885+2.88)*2.495 + 2*3.885*2.88; % Children's room 

% Childre's room temperature 

Tcdrm=[To';To';Ta';Tg';To';Ti';Tbh']; 

% Childre's room internal radiations 

Qrcdrm = [S1C S2C S3C S4C S5C S6C]/Scdrm.*(0.85*0.3*Qch); 

Qrcdrm=Qrcdrm'; 

  

%Bedroom 

Sbdrm = 2*(3.885+2.88)*2.495 + 2*3.885*2.88; % total area Doorway room 

% radiative gain through closed blinds 

Tbdrm=[To';To';Ta';Tg';To']; 

Z=180; 

trns1=ftrans1(Z); 

  

Qbdrm = [S1b S2b S3b S4b S5b S6b S7b S8b]/Sbdrm.*(Qn.*trns1*1.29+0.90*0.30*QB)*0.7; 

Qbdrm=Qbdrm'; 

%Qsol=[S1*0.23*Qn';Qr(1,:);S2*0.23*Qn';Qr(2:end,:)]; 

%Qheaterdrwy=0.70*QB'+(Qn'*0.427*1.29+0.90*0.30*QB')*0.7; 

  

%Bathroom 

Sbthrm = 2*(2.09+3.31)*2.495 + 2*2.09*3.31; % total area Doorway room 

% radiative gain through closed blinds 

Tbthrm=[To';Ta';Tg';To']; 

Z=-90; 

trns1=ftrans1(Z); 

  

Qbthrm = [S1bh S2bh S3bh S4bh S5bh S6bh]/Sbdrm.*(Qe.*trns1*1.29+0.90*0.30*Qbh)*0.7; 

Qbthrm=Qbthrm'; 

  

%Corridor 

Tcrrdr=[Ta';Tg']; 

  

Q=[S1k*0.23*Qn';Qrkith(1,:);Qrdrwy(6,:);Qrkith(2,:);Qrliv(1,:);... 

   Qrkith(3,:);Qrliv(2,:);Qrkith(4,:);S5k*0.23*Qw';Qrkith(5:end,:);... 

   0.7*Qk'+(1.29*Qw'*0.427+0.3*Qk')*0.30;Qrdrwy(5,:);Qrliv(3,:);... 

   Qrdrwy(4,:);Qrliv(4:5,:);Qrcdrm(4,:);Qrliv(6,:);S7l*0.23*Qs';Qrliv(7,:);S8l*0.23*Qw';... 

   Qrliv(8:end,:);0.7*Qi'+(1.29*Qw'*0.427+0.3*Qi')*0.30;S20d*0.23*Qn';... 

   Qrdrwy(1,:);S21d*0.23*Qn';Qrdrwy(2,:);Qbdrm(6,:);Qrdrwy(3,:);Qrdrwy(7:8,:);0.9*0.7*Qd';... 

   Qbthrm(3,:);Qrcdrm(1,:);S2C*0.23*Qe';Qrcdrm(2,:);S3C*0.23*Qs';Qrcdrm(3,:);... 

   Qrcdrm(5:6,:);0.85*0.7*Qch';Qn'*0.23*S1b;Qbdrm(1,:);Qe'*0.23*S2b;... 

   Qbdrm(2,:);Qbthrm(1,:);Qbdrm(3:5,:);Qbdrm(7:8,:);... 

   0.9*0.70*QB'+(Qn'.*trns1'*1.29+0.90*0.30*QB')*0.3;Qe'*0.23*S2bh;... 

   Qbthrm(2,:);Qbthrm(4:6,:);0.9*0.7*Qbh'+(Qe'.*trns1'*1.29+0.90*0.30*Qbh')*0.3]; 
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% *************************************** 

%           State Space 

% *************************************** 

  

% Model 

[A,B,C,D] = fTC2SSold(A,G,b,C,f,y); 

disp(['max dt = ',num2str(min(-2./eig(A))),'[s]']) 

  

% *************************************** 

%               Inputs                  % 

% *************************************** 

u=[Tkith;Tliv;Tdrwy;Tcdrm;Tbdrm;Tbthrm;Tcrrdr;Q]; 

  

dt = 10*60;                     % time step: 10 min 

n = length(H(:,1)); 

Time = 0:dt:(n-1)*dt;           % time 

nth = size(A,1);                % no states 

% initial conditions 

th = 28*ones(nth,n); thi = th; the = th; 

Ae = (eye(nth) + dt*A);         % Euler explicit 

Ai = inv((eye(nth) - dt*A));    % Euler implicit 

Ad = expm(A*dt);                % exp. matrix 

Bd = (Ad-eye(size(A)))*inv(A)*B; 

for k = 1:n-1 

 th(:,k+1) = Ae*th(:,k) + dt*B*u(:,k);     % Euler explicit 

 thi(:,k+1) = Ai*(thi(:,k) + dt*B*u(:,k));  % Euler implicit 

 the(:,k+1) = Ad*the(:,k)+Bd*u(:,k);        % matrix exponential 

end 

ye = C*th + D*u;        % Euler explicit 

yi = C*thi + D*u;       % Euler implicit 

yE = C*the + D*u;       % exponential 

  

figure(1) 

Time = Time/3600/24; 

% plot(Time,ye,Time,yi,Time,yE,'r',Time,Ti, Time, To,'b') 

% plot(Time,yi, Time,yE,'r',Time,Ti,'g', Time, To,'b') 

plot(Time,yE(1,:),'r', Time,Tk,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Kitchen Tempearture') 

  

delta=yE(1,:)'-Tk; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(2) 

hist(delta) 
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title('Kithcen Histogram') 

  

figure(3) 

Time = 0:dt:(n-1)*dt; 

plot(Time,yE(2,:),'r', Time,Ti,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Livingroom Tempearture') 

delta=yE(2,:)'-Ti; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(4) 

hist(delta) 

title('Livingroom Error Histogram') 

figure(5) 

Time = 0:dt:(n-1)*dt; 

plot(Time,yE(3,:),'r', Time,Td,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Doorway Tempearture') 

delta=yE(3,:)'-Td; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(6) 

hist(delta) 

title('Doorway Error Histogram') 

  

figure(7) 

Time = 0:dt:(n-1)*dt; 

plot(Time,yE(4,:),'r', Time,Tb2,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Children room Temperature') 

delta=yE(4,:)'-Tb2; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(8) 

hist(delta) 

title('Childrenroom Error Histogram') 
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figure(9) 

Time = 0:dt:(n-1)*dt; 

plot(Time,yE(5,:),'r', Time,Tb1,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Bedroom Temperature') 

delta=yE(5,:)'-Tb1; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(10) 

hist(delta) 

title('Bedroom Error Histogram') 

  

figure(11) 

Time = 0:dt:(n-1)*dt; 

plot(Time,yE(6,:),'r', Time,Tbh,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Bathroom Temperature') 

delta=yE(6,:)'-Tbh; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(12) 

hist(delta) 

title('Bathroom Error Histogram') 

  

figure(13) 

Time = 0:dt:(n-1)*dt; 

plot(Time,yE(7,:),'r', Time,Tc,'g', Time,To,'b') 

ylabel('Temperature [C]') 

legend('T_s_i_m','T_i','T_o') 

title('Corridor Temperature') 

delta=yE(6,:)'-Tc; 

  

delta=delta(500:5905,:); 

Time=Time(:,500:5905); 

  

% Statics of error 

[mean(delta) std(delta) max(delta) min(delta)] 

figure(14) 

hist(delta) 

title('Corridor Error Histogram') 
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