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Résumé
Cette thèse doctorale fait appel à des concepts propres à la physique du solide

et la physique atomique. La variété des structures cristallines, des constituants
chimiques, des dimensionnalités rencontrées dans les matériaux offre une abondance
de phénomènes fascinants qu’explore la physique du solide. De son côté, la physique
atomique dont les données expérimentales sont d’une grande précision a permis le
développement de méthodes théoriques possédant un haut niveau de rigueur et de
contrôle systématique pour l’étude des systèmes finis composés de particules en
interaction électromagnétique. L’objectif de cette thèse est d’étendre les méthodes
théoriques de physique atomique à l’étude des nanoparticules faites de matériaux
semi-conducteurs, un domaine de la physique du solide.

On distingue deux grandes catégories de méthodes théoriques pour l’étude de
la structure électronique des nanocristaux semi-conducteurs. D’un part, les méth-
odes ab initio fondées sur la théorie de la fonctionnelle de densité et l’usage de
pseudo-potentiels traitent l’ensemble des atomes présents dans la nanoparticule.
Ces méthodes ont l’avantage de pouvoir prendre en compte les impuretés, les dé-
fauts, les états de surface, .. En revanche, ces méthodes ab initio sont rapidement
limitées par les capacités des ordinateurs actuels les plus performants. Pour des
nanocristaux contenant plusieurs milliers d’atomes, les calculs ab-initio deviennent
vite prohibitifs. D’autre part, les modèles de type k · p permettent de réaliser des
calculs beaucoup moins coûteux et bien adaptés à l’étude de phénomènes électron-
iques au voisinage de la bande interdite, ceci au prix de disposer par les méthodes
ab initio ou l’expérience des paramètres fondamentaux que sont les masses effec-
tives (des électrons et des trous), la permittivité diélectrique et aussi le «gap»
énergétique. Il est à noter que le modèle k · p produit parfois des états fallacieux
n’ayant aucune signification physique, dans la bande interdite. Dans cette thèse,
nous proposons une solution pour résoudre ce problème d’états fallacieux via un
méthode de théorie des perturbations.

Jusqu’à récemment, les études ont été consacrées principalement aux semi-
conducteurs de groupes II-VI et III-V, comme GaAs ou CdSe. Efros et al. et
Ekimov et al. ont pour cela développé le modèle ‘non-interacting single-particle’ via
la méthode k ·p. Plus tard, l’interaction de Coulomb a été incluse avec les fonctions
d’onde non-interactives. Pour les matériaux à base de perovskites, les structures
de bandes ont été traitées par le théorie de la fonctionnelle de la dénsite (DFT).
Becker et al. ont examiné le cas de l’exciton, une paire électron-trou corrélée.
Longtemps, les travaux théoriques ont négligé les systèmes multi-excitoniques. Or,
grâce à une puissance d’excitation croissante les mesures expérimentales ont permis
d’obtenir plus d’une paire électron-trou. L’émission de trions et biexcitons a été
observée, révélant une énergie de liaison quantifiable de lumière. Seule la prise en
compte des corrélations N-corps, c.-à-d. de l’interaction entre les charges (les élec-
trons et les trous) permet de prédire correctement ces énergies de liaison. La durée
de vie de l’exciton dans son état fondamental est sub-nanoseconde pour les per-
ovskites et beaucoup plus courte que celle de CdSe ou d’halogénures métalliques.
L’émission rapide est peut-être responsable de la forte luminosité de nanocristaux
de perovskites. Les sections efficaces d’absorption expérimentales sont aussi plus
fortes que celles d’autres semi-conducteurs de même taille. Pour cette raison, les
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perovskites sont des matériaux prometteurs pour les cellules solaires.
Dans cette thèse, nous avons construit une méthode théoretique adaptée a

l’étude de systèmes excitoniques avec Ne électrons et Nh trous confinés dans un
nanocristal sphérique. Au Chapitre 2, après avoir rappelé les principes des cal-
culs de structure de bandes, nous présentons le Hamiltonien k · p pour modéliser
l’énergie cinétique du semi-conducteur. En imposant la symétrie sphérique pour
la structure de bandes et aussi le potentiel du confinement, le temps de calcul est
réduit par environ 10000 fois. Si on permet au paramètre de Kane d’être nul, le
modèle k · p devient l’approximation parabolique de masse effective.

Pour traiter l’interaction de Coulomb, nous nous plaçons dans l’approximation
Hartree-Fock introduite dans le chapitre 3. Nous évaluons alors les énergies de
l’exciton pour plusieurs tailles de nanocristaux.

Le chapitre 4 est consacré à la présentation de la théorie des perturbations à
N-corps à partir de l’espace modèle Hartree-Fock. Nous calculons le «redshift»
du biexciton et celui du trion au deuxième ordre des perturbations à N-corps.
Cependant, il est nécessaire d’inclure tous les ordres pour obtenir des prédictions
quantitatives. Au bout de ce chapitre, nous présentons la méthode de théorie à
N-corps «dégénérée» pour calculer la différence énergétique entre les «dark» et
«bright» excitons.

Dans le chapitre 5, one examine l’interaction entre un électron et un photon
(processus à un photon). Le taux de recombinaison radiative d’un exciton dans
son état fondamental et la section efficace d’absorption sont très mal décrits au
niveau de l’approximation Hartree-Fock. La prise en compte de la corrélation
électron-trou, ou autrement dit l’interaction dans l’état final, est essentielle pour
obtenir un bon accord de la théorie avec les mesures expérimentales. Cet approche
complexe à N-corps, qui couple tous les états excités de l’exciton à tous les ordres
de corrélation, pour construire le spectre d’absorption, devrait être plus rigoureuse
que la méthode se fondant sur un principe variationnel.
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Chapter 1

Introduction

The research described in this doctoral thesis lies at the interface of two major
fields of modern physics: solid-state physics and atomic physics. On the one hand,
the former offers a rich playground replete with fascinating phenomena, thanks
to the endless possibilities of variation in the lattice structure, chemical composi-
tions, material dimension etc. On the other hand, the theoretical techniques from
atomic physics, for dealing with finite systems of multiple interacting particles (i.e.
finite many-body systems), have been developed to a high standard of rigour and
methodology. The aim of this work is to apply the theoretical formulations from
the latter field to solve certain outstanding issues in semiconductor nanoparticles, a
branch of solid-state physics. These problems would be extremely time-consuming
or even infeasible with the traditional techniques that are normally used in the
study of semiconductor nanocrystals.

This chapter serves as an introduction to the later, technical parts of the thesis.
We start out by recalling the concept of an exciton, including the Frenkel and
Wannier types, in the bulk semiconductor. Subsequently, we explain the reasons
for choosing lead halide perovksite nanocrystals as the applications in Section 1.2.
In the study of semiconductor nanocrystals, it is important to understand the
interplay between the confinement effect and the Coulomb interaction, to which
Section 1.3 is devoted. The fundamental parameter here is the ratio between the
effective Bohr radius and the nanocrystal size. The existing literature will be
reviewed in Section 1.4, which provides the motivation and defines the scope of the
current work. Section 1.5 contains an overview of the remaining chapters and is
meant to guide the reader through the whole structure of the thesis.

1.1 The concept of a bulk exciton

In a metal, the highest occupied band is a partially filled conduction band and the
electrons can freely move around in the crystal lattice. Any amount of excitation,
no matter how little energy it carries, can transport an electron from the Fermi
level to an unoccupied state. As a result, metals absorb light strongly over an
extended frequency range subsuming the entire visible spectrum. Only more than
several atomic layers successfully make a metal sheet opaque. On the contrary, a
semiconductor stays almost transparent for excitation energy below the electronic
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band gap. The band gap is defined as the energy difference between the highest
occupied energy level, the valence band maximum, and the lowest unoccupied
band (or the conduction band). All bands below the valence band maximum are
commonly referred to as valence bands. For most electronic processes, the highest
valence band and the lowest conduction band are the most relevant. With the
right amount of a quantum of energy (e.g. photon frequency �ω), an electron is
promoted from a valence band to a conduction band, leaving a hole, i.e. a missing
electron, in the valence band. The Coulomb interaction between these two charge
carriers leads to the formation of a correlated electron-hole pair that is called an
exciton.

Depending on the semiconductor, an exciton can be classified into one of two
types. When the electron and hole wave functions tend to localize around an atomic
site, they form a Frenkel exciton [49, 50]. The spatial extent of the electron-hole
pair is limited to just one unit cell. Their energy levels resemble those of an atom
or a molecule staying at a particular point on the lattice. The Coulomb interaction
between the electron and the hole remains largely unscreened. Materials with
Frenkel excitons include halide salts and some organic materials, among others.
Early calculations for Cu2O and CuCl, for instance of their exciton and biexciton
binding energies, have been given in Ref. [42]. A Frenkel exciton moves around
the lattice via the annihilation and recreation of the correlated electron-hole pair
under Coulomb interaction of the charged particles at different points throughout
the material. In other words, a Frenkel exciton is a coherent superposition of the
electron-hole excitations that occupy various sites across the entire lattice.

Figure 1.1.1: A Wannier exciton, also referred to as ‘an exciton’ in the rest of the thesis,
spreads over many lattice sites. The averaged electron-hole distance can be characterized
by the effective Bohr radius aB given in (1.1.3).

For materials such as GaAs, CdSe as well as perovskites, the averaged distance
between the electron and the hole spans over many unit cells. In this case, the
correlated electron-hole pair is called a Wannier exciton [128]. Two factors that
contribute to the size of a Wannier exciton are the light effective masses of the
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carriers and the large dielectric constant. On the one hand, the electron and hole
effective masses m∗

e and m∗
h at the band edge are an order of magnitude smaller

than the bare mass m0 due to the interaction with other bands [98]. The smallness
of m∗

e or m∗
h also leads to high carrier mobility [134], which is beneficial for charge

transport. On the other hand, the dielectric constants of these semiconductors turn
out to be typically on the order of 10, see Table 1.1 and Table 3.1. They are the
result of the many-body Coulomb interaction between the charged particles [28].

A Wannier exciton moves across the semiconductor in the center-of-mass motion
of a ‘hydrogen-like’ system. In the 3D crystal, the translational symmetry implies
that the center-of-mass wave function is a plane wave with wave number �kCM . In
the bulk, a Wannier exciton can be described by the hydrogen-like states with the
reduced mass µ, where

1

µ
=

1

m∗
e

+
1

m∗
h

. (1.1.1)

Its bulk binding energy takes the form

Ebulk
bind =

µ

ε2sc
EH , (1.1.2)

in which EH = 13.605693122994(26) eV is the Rydberg constant. The symbol εsc
represents the dielectric constant of the semiconductor. The spatial extent of a
Wannier exciton is captured in the effective Bohr radius aB.

aB =
εsc
µ
a0, (1.1.3)

where a0 = 5.2917721067(12)× 10−2 nm stands for the Bohr radius of a hydrogen
atom. We note that the dielectric ‘constant’ εsc generally depends on the frequency
[43] or on the sample size [125, 67] in the case of a confined system.

Considering the group III-V and II-VI semiconductors, the highest valence band
consists of three subbands: the heavy hole band, the light hole and the spin-orbit
split-off band. The separation into three subbands comes as a result of the coupling
within the valence band and of the spin-orbit coupling. The basic parameters of
the band structure as well as the dielectric constant of the three common semicon-
ductors GaAs, CdSe and CdS are listed in Table 1.1. In the bulk, the heavy hole
lies at the top of the valence band. Therefore, the effective hole mass that appears
in the formula (1.1.1) for the reduced mass µ is equal to m∗

hh, the heavy hole mass.
Using the value of m∗

hh in Table 1.1 for GaAs, we can estimate the binding energy
of a bulk exciton in GaAs to be Ebulk

bind = 4.7 − 5.1 meV, which agrees with the
measured values in Ref. [87]. This implies that the hydrogen-like model provides
a reasonable description of the Wannier exciton in the bulk. From now on, we use
the word ‘exciton’ to simply denote the Wannier exciton in a semiconductor, which
is the focus of the current thesis.

The hydrogen-like model with the binding energy Ebulk
bind and the effective Bohr

radius aB, given in (1.1.2) and (1.1.3), can be used in the study of a free exciton in
the bulk. The value of Ebulk

bind helps to understand the process of thermal dissociation
of the exciton, which happens around 60K for GaAs [131]. The exciton Bohr radius
is one way of determining the regime of confinement when the exciton was created
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inside a nanocrystal. In this thesis, we are particularly interested in understanding
the excitons in perovskite nanocrystals. We shall provide the reasons for our focus
on these recent materials in the next section.

parameters GaAs CdSe CdS

m∗
e 0.0665 0.11 0.18

m∗
hh 0.502 1.000 2.128

m∗
lh 0.082 0.313 0.339

m∗
soc 0.141 0.476 0.585

εstatic 12.5− 13.1 9.56 8.28

ε∞ 10.9 6.23 5.23

Egap (eV) 1.519 1.84 2.56

Table 1.1: The basic band parameters and the dielectric constants for GaAs (zincblende
lattice structure), CdSe and CdS (wurtzite lattice structure). The band parameters in-
clude the electron effective mass m∗

e, the heavy hole mass m∗
hh, the light hole mass m∗

lh,
the spin split-off hole mass m∗

soc and the bulk energy gap Egap. The hole effective masses
were derived from the Luttinger parameters taken from Ref. [98] (GaAs, CdS) and Ref.
[41] (CdSe). εstatic and ε∞ are the static and high-frequency dielectric constants from
Ref. [115, 54] (GaAs), Ref. [94] (CdSe) and Ref. [92] (CdS).

1.2 Why perovskite nanocrystals?

Perovskites represent a wide class of materials with the perovskite structure, which
is named after the crystal structure of calcium titanium oxide (CaTiO3). Nonethe-
less, it was the class of lead halide perovskites APbX3 that has been recently
demonstrated to possess superior optoelectronic properties [24]. In APbX3, A rep-
resents some cation such as Cs, CH3NH3 or FA (formamidinium), while X stands
for a halide among Cl, Br or I. For the reason just stated, we focus in this thesis
on understanding the optical properties of APbX3. In the remainder of the thesis,
the word ‘perovskites’ refers specifically to APbX3.

As 3D crystals, perovskites show high carrier mobility [134] and long carrier
lifetime [13, 141]. These materials also have rather good defect tolerance [65]
and the defects generally stay quite close to the band edges [136]. These shallow
defects do not severely affect the optical and transport properties of the perovskites.
Besides, the solution processability allows for a cheap and economically viable
route to the large-scale production of this class of semiconductors [129]. Lead
halide perovskites absorb strongly in the optical range and prove to be some of the
most promising candidates for photovoltaic applications [77, 116]. The perovskite-
perovskite tandem solar cells that use a mixture of various perovskites achieve an
excellent efficiency over 20% [44, 56, 63]. These materials have been shown to be
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very bright emitters, with potential implications for their usage in light emitting
devices [117, 26].

Several years ago, arose the idea of making perovskite nanocrystals for the
purpose of further exploiting their optoelectronic properties [111]. Generally, the
emitting and absorbing characteristic frequency can be tuned by using the chemical
technique of halide exchange [30]. However, nanocrystals can also offer the color
tunability through the variation of the nanoparticle sizes, which can be achieved
by varying numerous experimental conditions, such as the processing tempera-
ture or the choice of ligands of the synthesis. The perovskite nanocrystals have
been demonstrated to cover the whole visible range with very high color purity in
their photoluminescence spectra [99, 73]. Recent efforts aimed at making highly
monodisperse nanocrystals have achieved significant success [60, 35]. With an
increasing level of control over the size and shape as well as the chemical com-
position of the nanocrystals, researchers are getting closer and closer to making
bright nanocrystals emitting at the desired frequency. This potentially open the
way to creating single-photon sources [123] or even generating entangled photon
pairs [22], which will continue to attract additional fundamental research interest
in the future.

To study an excitonic system in a perovskite nanocrystal, it is important to un-
derstand the quantum-mechanical effect that a nanocrystal creates via its confining
potential.

1.3 Confinement and Coulomb interaction

material phase µ Ebulk
bind (meV) aB (nm)

CsPbBr3 orthorhombic 0.126 33 3.07

CsPbI3 cubic 0.114 15 4.64

FAPbBr3 orthorhombic 0.115 25 3.87

FAPbBr3 tetragonal 0.13 24 3.50

FAPbI3 orthorhombic 0.09 14 5.50

FAPbI3 tetragonal 0.095 10 6.35

MAPbBr3 orthorhombic 0.117 25 3.39

MAPbI3 orthorhombic 0.104 16 4.78

MAPbI3 tetragonal 0.104 12 5.55

Table 1.2: The measured reduced mass µ, bulk binding energy Ebulk
bind and the estimated

Bohr radius from the formula (1.1.3) of the hydrogen-like model for various perovskites.
The measurements for µ and Ebulk

bind come from Ref. [132] and Ref. [53].

Upon passing from the bulk crystal to nanocrystals (or eventually quantum
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dots), the created electron and hole are confined inside the semiconducting material,
which may be surrounded by an outer medium (a solvent or some ligand). The
situation of the charged particles is similar to that of a standing wave in a box.
The smaller the size of the box, the shorter the wavelength and the higher the
wave energy. The confinement comes as a consequence of, for instance, the band
misalignment between the semiconductor and the surrounding medium. When
an electron-hole pair, or an exciton, lives within a nanocrystal, it experiences a
quantization of the kinetic energy.

In the bulk, the translational symmetry guarantees that the particle momen-
tum �p or the wave vector �k is a good quantum number. Generally, the confining
potential breaks this translational symmetry. Nonetheless, depending on the shape
of the nanocrystal and on the properties of the band structure, there may still be
some other symmetry exhibited by the excitonic system. For instance, an overall
spherical symmetry exists if the band edge kinetic energy is isotropic [55, 8] and
the nanocrystal turns out to be a sphere. In this case, the quantum states of the
exciton can be classified by the total angular momentum, which is well-known to
be a conserved quantity for a spherical system. If the nanocrystal comes out to
be cuboidal, we shall show in Section 2.3 that an appropriately chosen spherical
confining potential serves as a fair approximation to the cubic case. In brief, the
edge length L of a cube can be related to the radius R of the equivalent sphere by
L =

√
3R. For this reason, we shall focus in the remainder thesis on the treatment

of spherical models.
Let R be the radius of the spherical nanocrystal. The ratio R/aB characterizes

the confinement regime. Table 1.2 provides the effective Bohr radii of a number of
perovskites in different phases. Fig. 1.3.1 depicts the various limits for the confining
potential. There is no clear threshold between them. Generally, we consider the
region where the ratio R/aB ≤ 1 to be the strong confinement regime. Here,
the wave functions of the charge carriers experience a forced overlap due to the
confining potential. Consequently, the Coulomb attraction between the electron
and the hole, which is proportional to 1/R, becomes stronger while, at the same
time, their kinetic energy increases much more rapidly as 1/R2. As a result, the
emission or absorption line shifts to higher energy as one enters more deeply into
the strong confinement limit. Moreover, the electron and the hole exhibit more
clearly their single-particle characteristics.

intermediate weakstrong

R/aB1

Figure 1.3.1: The confinement regime depending on the ratio R/aB. The intermediate
confinement regime is understood to be the case in which R is equal to several times the
Bohr radius aB. We consider the strong confinement regime to be where R/aB ≤ 1. In
the weak confinement regime, R/aB � 1.
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When the nanocrystal radius ranges from slightly above aB up to several times
aB, we consider the system to be in the intermediate confinement regime. As
R/aB increases, one enters further into the weak confinement. In these regimes,
Coulomb interaction becomes relatively more important compared to the kinetic
energy. Furthermore, the strong electron-hole correlation also implies that the
many-body effects are crucial for computing the long-range exchange interaction
and the electron-photon interaction, see subsection 4.2.5 and section 5.4 respec-
tively. Nonetheless, we have to remark that the effect of the confinement on the
kinetic energy cannot be neglected. The hydrogen-like model for a bulk exciton
does not suffice as a description of an exciton in the intermediate or even weak
confinement limit. Here, the kinetic energy of the confined particles must be taken
into account to yield the correct exciton energy as shown in Fig. 3.4.3.

1.4 Motivation and objective

Two main lines of theoretical studies exist for investigating the electronic structure
of semiconductor nanocrystals. On the one hand, the first-principle calculations
[137, 68] or the pseudopotential methods [125, 144] describe the nanoparticles with
the full atomistic details. Their advantages remain at providing answers to many
issues that would otherwise be intractable if one uses, for instance, the k · p ap-
proach. These issues include impurities, small and irregular systems, surface bonds
etc. Nonetheless, the ab initio methods are limited by the computational capabil-
ity. When the nanocrystal becomes very large with several thousands of atoms or
more, an ab initio approach becomes extremely expensive or even impractical com-
putationally. On the other hand, the k · p model has been employed to study the
physics around the band edge. This is possible only when the basic parameters of
the bulk band structure, such as the effective masses and the band gap, are known
via another method. Then, the k · p approach offers a simple and computationally
efficient route that can treat nanocrystals of any size in principle. However, there
are still issues with the k · p model for certain semiconductors, as discussed in Ref.
[124]. The k ·p model in these cases produces spurious, unphysical solution(s) that
stay inside the energy gap of the semiconductors. This thesis takes the k · p model
as the starting point and will deal with the issue that we have just mentioned in
the later parts. We shall show in chapters 4 and 5 a way of avoiding the problem
of the spurious (or intra-gap) solutions by following the philosophy of perturbation
theory.

Past studies have mostly treated the case of nanocrystals from group III-V
and II-VI semiconductors. With the k · p approach, the non-interacting single-
particle picture has been discussed [39, 41]. Later on, the Coulomb interaction
was treated by using the non-interacting particle wave functions [72, 7]. Regarding
perovskites, the band structure in the bulk has been investigated via the use of
density functional theory [45, 46, 10]. Less work was done on the calculations of
perovskite nanocrystals [99, 10]. A discussion of the correlated single exciton in
nanocrystals can be found in Ref. [10]. So far, all of the theoretical studies on
perovskite nanocrystals have not focused on the properties of any electron-hole
system other than a single exciton. However, with increasing excitation power,

18



more than one pair of electron and hole can be created inside a nanocrystal [71, 126].
Many interesting experimental results are available on the emission of the trions (a
neutral exciton with an additional charge) [52, 100, 80] as well as the biexciton (two
electrons and two holes) [21, 80, 135]. The trion and biexciton emission peaks differ
from that of a single exciton due to the correlation between the charge carriers.

negative

trion

positive

trion
biexciton

Figure 1.4.1: From left to right: depiction of the negative trion, position trion and biex-
citon in their respective ground states.

Further motivation for this research comes from the measured lifetime and
absorption cross-section of the electron-photon interaction involving one photon.
The radiative lifetime of an exciton in its ground state falls in the sub-nanosecond
range for perovskites [10, 100, 20], which seems to be similar to that of GaAs
[11] and is notably shorter than in many other semiconductors such as CdSe or
CuCl [71, 61]. The fast radiative decay might be linked to the brightness of these
perovskite nanocrystals. The recorded one-photon absorption cross-section is also
quite good compared to the nanocrystals of other materials of the same size [23, 85].
This fact partially explains why perovskites are generally good light absorbers for
solar cells [24].

In this thesis, we aim at providing a computationally efficient theoretical method
for the study of an excitonic system with Ne electrons and Nh holes in a semicon-
ductor nanocrystal. The main applications of the theory that will be developed in
the thesis are

(i) the single exciton binding energy for nanocrystals,

(ii) the long-range exchange contribution to single exciton fine structure,

(iii) the emission energies of trions and biexciton from their ground states,

(iv) the spontaneous radiative decay rate and the one-photon absorption cross-
section.

The study of the quantities listed above can be accomplished by using the approach
of many-body perturbation theory. Our theoretical formulation will be constructed
in stages. They correspond to the various chapters of the thesis. An overview is
also given below.
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1.5 Outline of the thesis
In Chapter 2, we start the technical discussion with a quick recapitulation of the
band structure calculations. The k · p Hamiltonian is viewed as a way to model
the kinetic energy at the band edge of the semiconductor. To further boost the
computational efficiency, we make the assumption of spherical symmetry for the
band structure as well as the confining potential. Both the 8× 8 and 4× 4 models
will be discussed. By setting the Kane parameter Ep = 0 in the k · p model, we
recover the effective mass model (parabolic approximation).

Only in a nanocrystal with a high dielectric constant in the strong confinement
regime such as PbSe or PbS [64], the non-interacting single-particle picture for
charge carriers (electrons and holes) adequately describes the exciton binding en-
ergy. However, this is no longer true for perovskite nanocrystals: one has to take
the Coulomb interaction into account. In Chapter 3, we present the Hartree-Fock
formulation as a mean-field level approximation to the exact intercarrier Coulomb
interaction. As an application, the calculated single exciton energy will be com-
pared to experimental figures at the end of this chapter. The Hartree-Fock approx-
imation shows to be a reasonable description for a single exciton binding energy in
perovskites, see the results of Section 3.4.

It turns out that at a mean-field level, including Hartree-Fock, the emission
energy of a trion or a biexciton is basically identical to that of a single exciton.
The small but measurable difference between their emission energies come almost
purely from correlation effects [113]. Chapter 4 is concerned with the theoretical
foundation for obtaining the trion and biexciton shifts. There, we use the second-
order many-body perturbation theory approach to clearly demonstrate that some
nonzero red-shifts are present for trions as well as the biexciton. The quantitative
prediction is less than satisfactory at second-order level, which implies that an all-
order method is needed for a better comparison with experiments. To complete
the discussion of many-body perturbation theory, we shall apply the second-order
degenerate version [75] to calculate the long-range exchange contribution to the
dark-bright exciton energy splitting.

Chapter 5 deals with the electron-photon interaction. At Hartree-Fock level, the
computed radiative decay rate and one-photon absorption cross-section turn out
to be too small compared to the measured values. The electron-hole correlation in
the many-body approach greatly improves the theoretical prediction of these quan-
tities, bridging the gap between our theory and the experiments. We conclude that
the Coulomb correlation also plays a very important role in the electron-photon
interaction. Again, to have a good quantitative agreement with the measurements,
this correlation must be included up to all orders. Even though the variational
method, which was first given in Ref. [119], can take care of the Coulomb in-
teraction nonperturbatively in principle, it becomes increasingly involved for the
calculations of the higher exciton states [118]. We remark that our current ap-
proach requires the same level of complexity when applied to these excited states,
which is beneficial for correcting the whole absorption spectrum.

Finally, we conclude the thesis in Chapter 6 with a summary of the basic findings
and a discussion of some future research directions.
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Chapter 2

Non-interacting particles

At the beginning of this chapter, we rapidly recall the concept of an electronic
band structure with rather minimal details. More thorough studies on the subject
can be found in Ref. [4] and Ref. [70]. We then move on to the k · p theory, in
combination with envelope function approximation, as a simple and canonical way
of modelling the band edge kinetics in Section 2.2. Both the eight-band 8× 8 and
four-band 4×4 k ·p models will be discussed. The former is known to work well for
the case of group III-V and II-VI semiconductors [69, 78, 71] whereas the latter has
been recently used to examine the properties of perovskites [10, 105, 106]. It should
be stressed here that all the k · p models considered in this thesis are spherical.
Regarding the non-spherical (or cubic) corrections in a more general k ·p approach,
the interested readers are directed to Ref. [114], for example. We dedicate the last
section to how the spherical confinement, in conjunction with the k · p model, can
be used to treat cubic-shape nanocrystals.

2.1 Band structure

The semiconductor nanocrystal system can be described by the total Hamiltonian
for a system with N0 valence electrons

HN0
tot = −1

2

N0�

i

∇2
i

� �� �
H

N0
kin

+

N0�

i

Vion(�ri) +

N0�

�i,j�
G(�ri,�rj)

� �� �
V

N0
Coul

. (2.1.1)

The N0 electrons build up the band structure of the semiconductor by filling
in the available bulk states up to the valence band maximum (VBM). Clearly,
HN0

kin = −1
2

�N0

i ∇2
i describes the kinetic energy of these N0 electrons. The peri-

odic potential Vion(�ri) represents the interaction of the ith electron with the lattice
consisting of the positive ionic background and the non-valent electrons. Here, we
assume a fix lattice structure, which results in a constant energy added for the ion-
ion interaction. Therefore, we shall remove this part from the total Hamiltonian.
In principle, the dynamics of the ionic background and the resulting interaction
with the valence electrons, in other words, the electron-phonon interaction, should
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be also included [142]. By virtue of the Bloch theorem, the single-particle electronic
wave function can be written as

ψ(�r) = η(�r) uλ,k(�r), (2.1.2)

where the bulk (3D) envelope function η(�r) equals to ei�k·�r for the case of a peri-
odic potential and the Bloch function uλ,k(�r) of a band indexed λ has the same
periodicity as the underlying lattice.

The last term V N0
Coul =

�N0

�i,j� G(�ri,�rj) of HN0
tot contains the Coulomb interaction

of the N0(N0 − 1)/2 pairs �i, j� of electrons. When V N0
Coul or an external potential

is present, which is important for the case of semiconductor, the envelope function
η(�r) may no longer take the form ei�k·�r though the Bloch function uλ,k(�r) is still
expected to be periodic. The exact solution of the ground state of the Hamiltonian
in Eq. (2.1.1) proves a numerical challenge, due not only to the need for a sensible
description of Vion(�r) but also, more importantly, the many-body nature of the
Coulomb interaction V N0

Coul. For gaining a good understanding of the semiconductor
ground state, one must look for a way of approximating V N0

Coul, sometimes by trial
and error.

To use a mean-field potential UN0
mf is among the most conceptually simple ap-

proximations to the many-body Coulomb interaction. One choice of a mean-field
UN0

mf is UN0
mf = UN0

HF, where the HF potential UN0
HF is defined as follows

�i|UN0
HF|j� =

N0�

a=1

�i|Ua|j� =
N0�

a=1

�ia|G12|ja� − �ai|G12|ja�. (2.1.3)

In Eq. (2.1.3),
�N0

a=1 means summing over the N0 states in the valence bands.
However, the mean-field methods are usually insufficient to predict the cor-

rect band structure of most semiconductors. An approach, which somehow in-
cludes exchange and correlation effects, must be used instead. In considering
the system ground state, the density functional theory (DFT) often provides a
reasonable approximation to the electron-electron correlation with a well-chosen
effective single-particle exchange-correlation functional. The readers who are in-
terested in knowing more about its theoretical foundation can look for a con-
cise introduction from the book by R. G. Parr and W. Yang [96] or a more
comprehensive study in the book of R. Martin [82]. Various software versions
that implement DFT to calculate the electronic band structure are available ei-
ther freely, for instance Quantum Espresso and Abinit, or commercially such as
VASP. An exhaustive list of programs for DFT can be found at the following link
“en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_
software”. Some example calculations of the band structure of CsPBX3, one of the
recent promising semiconductors for photovoltaics and light-emitting applications,
are shown in Fig. 2.1.1.

There are a number of basic features of the band structures of semiconductors,
as seen from Fig. 2.1.1. The lowest unoccupied band right above the VBM, called
the conduction band (CB), is separated from the VBM by an energy gap Egap. The
values of Egap are in the optical range for the semiconducting materials. To excite
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Figure 2.1.1: Example calculations using VASP of the band structures of CsPbX3, where
X=Cl, Br or I. The figure is taken from Supp. Info. of Ref. [99]. All N0 valence electrons
fill the electronic levels up to the valence band maximum that is set to be at 0 eV.

an electron from a valence band to a conduction band, one needs to provide an
amount of energy of at least Egap. One common problem with DFT is the underes-
timation of Egap, as for the case of perovskites. In addition to this, around a high
symmetry point, for instance the R-point at the band gap of CsPBX3, the cur-
vatures of the electronic bands also incorrectly underestimate the reduced masses
in the bulk [99] as compared to the measured values [132, 53, 84]. One way of
attempting to deal with these problems is to employ the GW method. Using the
wave functions and energy levels from the DFT calculations, the GW approxima-
tion takes into account the electronic correlation more properly by using the many-
body Green function method. Roughly speaking, a correlation functional ΣN0 will
be used, in place of UN0

HF or any other mean-field potential UN0
mf , for treating the

Coulomb interaction. All the software listed above can be extended, in principle,
to include GW approximation though at the price of much heavier computations.
Example calculations of GW method can be found in [122, 1].

The calculations of the band structure based on DFT or GW methods are
referred to as ab initio calculations in this thesis. They provide the useful inputs,
such as the band gap Egap and the effective masses of the band edge, for the k · p
theory in the next section to describe an excitonic system in a confined system.
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2.2 k · p model
When an electron is promoted from the valence band to the conduction band, an
‘exciton’ is created where the electron stays in the conduction band and the ‘hole’,
a missing electron, in the valence band. The curvatures of the conduction and
valence bands around the band gap are interpreted as the ‘effective masses’ m∗

e and
m∗

h of the electron and hole respectively. Note that VBM has a negative curvature,
which implies that m∗

h is positive.

Figure 2.2.1: Calculated band structure of In0.5Ga0.5As, taken from Ref. [109], using
three different methods: the 8 × 8 k · p method (dotted lines), the tight-binding like
effective bond-orbital method (solid lines) and the empirical sp3s∗ tight-binding method
(dashed lines). The 8 × 8 k · p method works very well around the Γ point where the
direct band gap occurs, as typical for GaAs, CdSe etc.

Fig. 2.2.1 shows an example band structure of In0.5Ga0.5As calculated using
three different methods. The k · p theory agrees very well with the other two
numerical methods in reproducing the band edge structure around the Γ point
(i.e. wave vector �k = 0), where there is the direct band gap. Moving away from
�k = 0 at the Γ point, some deviations start to appear, which possibly are caused
by insufficient number of included bands (since only 8×8 k ·p model was used) and
other atomistic effects. In an excitonic system, the electron(s) and hole(s) relax to
CBm and VBM respectively, after the initial excitation, via phonon emission on the
time scale of picoseconds. Therefore, only the valence and conduction band edges at
�k = 0 are important and the k ·p theory renders a simple and adequate description
for the electronic energy levels and relevant processes of the electron-hole system.

Within the scope of the current thesis, we focus on describing the optical prop-
erties of colloidal nanocrystals. Due to the confinement from the shape of nano-
structure, the full wave function of a particle no longer belongs purely to the bulk
conduction or valence band. In other words, the confining potential mixes the vari-
ous bands at the band edge as well as discretizes the electronic energy levels, which
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makes a nanocrystal look like an ‘artificial’ atom. The full wave function ψa(�r) of
a particle state |ψa� in 2n × 2n k · p model is

ψa(�r) =
n�

α=1

ψaα(�r), where ψaα(�r) = ξaα(�r) uaα,0(�r). (2.2.1)

The wave function ψaα(�r) can be expressed as in (2.2.1) thanks to the separation
of length scale, for which the Bloch part uaα,0(�r) is periodic w.r.t. the unit cells
(microscopic, atomic length scale) while ξaα(�r) varies over the whole mesoscopic
nanocrystal. The information about symmetry and degeneracy of the bands at
�k = 0 is contained inside the Bloch functions uaα,0(�r). The envelope parts ξaα(�r)
of the full wave function ψa(�r) describe the particle at mesoscopic length scale.

The remaining part of this chapter is devoted to deriving the radial form for
the k ·p Hamiltonian and the envelope functions ξaα(�r). This will provide a theory
for the mesoscopic length scale, which is much more computationally efficient than
the atomistic approaches. We shall make the basic assumption that the same bulk
parameters can be used for the confined nanocrystal systems. For the very small
nanocrystals, especially those having less than 10 atomic layers in each dimension,
the assumption about using the bulk parameters may not strictly hold true. This
range of sizes may introduce certain atomistic effects, for example the distortions
from the bulk lattice crystals, surface defects, etc. Hence, an ab initio approach
might be desirable here. Nonetheless, for a sizable nanocrystal with more than
several thousands of atoms, the band structure parameters get closer to the bulk
values throughout the whole nanocrystal while the atomistic-level calculations be-
come too expensive or even infeasible. In this case, the k · p model in combination
with the envelope function approximation is extremely advantageous.

In Chapters 2 and 3, we treat both the 8 × 8 k · p model (for group III-V and
II-VI semiconductors) and the 4×4 k ·p model (PbS, PbSe and perovskites). After
obtaining the radial k·p Hamiltonian Hk·p in this chapter, we shall derive the radial
Hartree-Fock potential, which is a mean-field approximation, in Chapter 3. Then,
the Hartree-Fock equations can be utilized to generate a single-particle (mean-field)
basis for the many-body perturbation theory in Chapters 4 and 5. In those two
chapters, the calculations of the correlation energy and the optical response focus
on the 4× 4 k · p model having perovskites as the materials for applications.

2.2.1 Eight-band k · p model

As a reminder, the band structure at �k = 0 (the band gap) of the common semi-
conductors such as GaAs, InAs, CdSe, CdS etc. can be well described using the
8× 8 k · p model. The lowest conduction band has an approximate s-wave symme-
try, thus called an s-like band, with two-fold degeneracy from spin [41]. Meanwhile,
the valence band is p-like and is split further into two subbands due to spin-orbit
coupling of the constituent heavy metal (Ga, Cd, . . . ), see [40, 78] for more details.

Let �L be the orbital angular momentum and �S be the electron spin associated
with the Bloch functions. The spin-orbit coupling implies that only the Bloch
total angular momentum �J = �L+ �S, also called the pseudospin �J , is the conserved
quantity in the bulk. Therefore, the p-like subbands (with L = 1) are labelled as
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p3/2 and p1/2 corresponding to J = 3/2 and J = 1/2. At �k = 0, their degeneracy
(2J + 1) equals 4 and 2 respectively. As the wave vector �k becomes non-zero, the
p3/2 band splits into a light hole branch with more negative curvature and a heavy
hole branch that lies above the light hole. Figure 2.2.2 is a schematic of an 8×8 k·p
model of the band structure at around the band edge.

SOC

Figure 2.2.2: The schematic of the 8 × 8 k · p. The s1/2 conduction band and the (spin
split-off) p1/2 valence band are two-fold degenerate. At �k = 0, the p3/2 valence band
is four-fold degenerate. Away from |�k| = 0, the p3/2 band constitutes of two branches
with different curvatures. These are called the light and heavy holes. The p3/2 and p1/2
bands are further coupled to s1/2 via (−�p · �∇), where (−�∇) is the momentum opertor
�k in position space representation. We have chosen the convention where a momentum
operator is real and the complex unit i has been omitted.

The effective Hamiltonian for the kinetic energy of a hole can be described by
the 8× 8 k · p model as [39]

Hkin = H8×8
k·p = −(Ac∇2 + Egap) Ic − �p · �∇+H6×6

k·p Iv +Hsoc. (2.2.2)

In the above, Hsoc represents the spin-orbit coupling in the p-like valence band.
Its effect is to put the p1/2 band below the p3/2 band by an energy difference Δsoc.
The operator Ic/v acts on a conduction/valence state as the identity and equals to
0 otherwise. The block −(Ac∇2 + Egap) Ic captures a portion of the conduction
band kinetic energy. The 6× 6 block H6×6

k·p describes the properties of the valence
band including the p3/2 and p1/2 subbands. One has that

H6×6
k·p =

1

2
γ1∇2 + γ(�∇ · �L)2, (2.2.3)

where �L acts on the Bloch function part of the total wave function. The idea be-
hind Eq. 2.2.3 is a Hamiltonian that has quadratic dependence on the momentum
operator, in other words quadratic in �∇, meanwhile possesses rotational invari-
ance. We note that the coefficients γ1 and γ in (2.2.3) are precisely the Luttinger
parameters of the spherical k · p model used in Ref. [98, 39].
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The term (−�p · �∇) is the k · p coupling between the s1/2 band and the p3/2 and
p1/2 bands. It will become clear later in this chapter that (−�p · �∇) is proportional
to
�
Ep, where Ep is the Kane parameter. The operator �∇ acts on the envelope

parts ξaα(�r) of the total wave function while �p = �∇(L) acts only on the orbital parts
of the Bloch functions uaα,0(�r).

In the bulk, both the pseudospin �J and the wave vector �k are conserved quan-
tities. In a confined system, �J and �k of the total wave function are no longer good
quantum numbers. Instead of �k, the envelope degree of freedom can be more conve-
niently classified by its orbital angular momentum �l. The total angular momentum
�F = �J +�l, of a single-particle state, is a good quantum number of the Hamiltonian
H8×8

k·p . In other words, the operator �F commutes with H8×8
k·p , for which we shall now

give a proof. For a system with an overall spherical symmetry, the total angular
momentum should be a good quantum number in principle. It is obvious that �F
commutes with −(Ac∇2 +Egap)Ic. The operator �l commutes with ∇2 because the
eigen functions |lml� of the former are also eigen functions of the Laplacian ∇2. On
the other hand, ∇2 contains no dependence on �J and, as a result, must commute
with �J .

Therefore, it remains to show that (−�p · �∇) and H6×6
k·p also commute with �F .

Next, we shall show that
�
�p · �∇, �F

�
= 0.

Let �ijk be the Levi-Civita symbol. Note the following commutation identities

[pi, Lj] = i�
�

k

�ijk pk,

[∇i, lj] = i�
�

k

�ijk∇k.
(2.2.4)

By applying the identities in (2.2.4) to the commutator
�
�p · �∇, Fj

�
, where

�
�p · �∇, Fj

�
=
�

i

(pi [∇i, Lj] + [pi, lj]∇i) , (2.2.5)

and recalling that �ijk is anti-symmetric upon exchanging any two indices, one has

�
�p · �∇, Fj

�
=
�

ik

i� (�ijk∇ipk + �ijk∇kpi) = 0. (2.2.6)

Now, we prove that the commutator
�
H6×6

k·p , �F
�

is also zero.

In Eq. (2.2.3), the first term 1
2
γ1∇2 commutes with �F . Therefore, to show that

H6×6
k·p commutes with �F , one only needs that

�
(�∇ · �L)2, �F

�
= 0.

�
(�∇ · �L)2, Fj

�
=
�
(�∇ · �L)2, lj

�
+
�
(�∇ · �L)2, Jj

�
, (2.2.7)
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where �∇ · �L =
�

k ∇kLk and
�
(�∇ · �L)2, Jj

�
=
�
(�∇ · �L)2, Lj

�
. Therefore,

�
(�∇ · �L)2, Fj

�
= i�

�

i1i2

��

k2

�i2jk2∇i1∇k2 +
�

k1

�i1jk1∇k1∇i2

�
Li1Li2

+ i�
�

i1i2

∇i1∇i2

��

k2

�i2jk2Li1Lk2 +
�

k1

�i1jk1Lk1Li2

�
.

(2.2.8)

With a change of notation for the sum,
�

i1i2k2

�i2jk2∇i1∇k2Li1Li2 =
�

i1k2i2

�k2ji2∇i1∇i2Li1Lk2 = −
�

i1i2k2

�i2jk2∇i1∇i2Li1Lk2 ,

�

i1i2k1

�i1jk1∇k1∇i2Li1Li2 =
�

k1i2i1

�k1ji1∇i1∇i2Lk1Li2 = −
�

i1i2k1

�i1jk1∇i1∇i2Lk1Li2 .

(2.2.9)

Substituting (2.2.9) to (2.2.8), we get
�
(�∇ · �L)2, Fj

�
= 0, which completes the

proof of �F being a good quantum number for H8×8
k·p . Thus, an eigenstates of H8×8

k·p
can be classified by the total angular momentum �F and takes the form |FM�.

It is also clear from the above derivation that (�∇ · �L)2 does not commute with
either �l or �J . Thus, (�∇ · �L)2 generally mixes the Bloch states with J = 1/2 and
J = 3/2.

Consider the ∇1
q component of �∇ = ∇1, which is a rank-one spherical tensor.

∇1
q maps |lml� to |l ± 1 ml + q�. As a consequence, (−�p · �∇) connects |lml� to

|l� ml��, where l� = l± 1, and (�∇ · �L)2 connects |lml� to |l� ml��, where l� = l, l± 2.
It means that within the valence band, the various states | (l, J)FM� for the same
(F,M) with different l and J are coupled to each other. These coupled states can
have both J = 1/2 and J = 3/2.

Let l be the smallest envelope angular momentum among these coupled states.
From the triangle inequality (l, J, F ), there is a number of cases, depending on the
relation between l and F :

• If l = F − 3
2

for F ≥ 3
2
, there are four coupled states

|
�
l, p3

2

�
FM�, |

�
l + 2, p3

2

�
FM�, |

�
l + 2, p1

2

�
FM� and |

�
l + 1, s1

2

�
FM�.

• If l = F − 1
2

for F ≥ 3
2
, the four coupled states are

|
�
l, p3

2

�
FM�, |

�
l + 2, p3

2

�
FM�, |

�
l, p1

2

�
FM� and |

�
l + 1, s1

2

�
FM�.

• If F = 1
2
, there are two sets of three coupled states

|
�
l = 1, p3

2

�
F = 1

2
M�, |

�
l = 1, p1

2

�
F = 1

2
M� and |

�
l = 0, s1

2

�
F = 1

2
M�,

|
�
l = 0, p3

2

�
F = 1

2
M�, |

�
l = 0, p1

2

�
F = 1

2
M� and |

�
l = 1, s1

2

�
F = 1

2
M�.

We would like to remind the readers again that each of the coupled states
|(l, J)FM� contains information about the corresponding Bloch function and its
transformation properties. In what follows, the Bloch functions uaα,0(�r) in the full
wave function |ψa� (see Eq. (2.2.1)) will be implicit in the k · p components of the
so-called total wave function |a�, which will be defined immediately below.
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We conclude that for F ≥ 3
2
, the total wave function |a� of an eigenstate can

be written explicitly as a sum of four components

|a� =





1
r

�
Ra1(r)|(l + 1, s1

2
)FM�+Ra2(r)|(l, p3

2
)FM�

+Ra3(r)|(l + 2, p3
2
)FM�+Ra4(r)|(l + 2, p1

2
)FM�

�
, if l = F − 3

2
,

1
r

�
Ra1(r)|(l + 1, s1

2
)FM�+Ra2(r)|(l, p3

2
)FM�

+Ra3(r)|(l + 2, p3
2
)FM�+Ra4(r)|(l, p1

2
)FM�

�
, if l = F − 1

2
.

(2.2.10)
For the special case F = 1

2
, there are only three coupled components, as establish

above, and one has

|a� =





1
r

�
Ra1(r)|(l − 1, s1

2
)FM�

+Ra3(r)|(l, p3
2
)FM� +Ra4(r)|(l, p1

2
)FM�

�
, if l = F + 1

2
,

1
r

�
Ra1(r)|(l + 1, s1

2
)FM�+Ra2(r)|(l, p3

2
)FM�

+Ra4(r)|(l, p1
2
)FM�

�
, if l = F − 1

2
.

(2.2.11)

Any missing k · p component, which is understood to be zero, in Eq. (2.2.11)
is due to the corresponding orbital angular momentum �l being negative or not
satisfying the triangle inequality (l, J, F ). By using the convention that α, where
α = 1, . . . , 4, indexes the spin-angular basis vector |(lJ)FM�, one can write down
a vector containing only the radial components Ra,α.

The radial form of the total wave function |a� can be written as

|a� = 1

r




Ra1(r)

Ra2(r)

Ra3(r)

Ra4(r)




, (2.2.12)

where the associated angular momentum states are as given in Eqs. (2.2.10) and
(2.2.11). For the case of F = 1/2, the missing component with either α = 2 or
α = 3, see (2.2.11), is set to zero automatically.

In a confined system, the external potential Vext mixes the various k · p compo-
nents with angular states |(l, J)FM�. The total wave function |a� is an eigenstate
of the following equation

�
H8×8

k·p + Vext
�
|a� = E0

a|a�. (2.2.13)

When the external potential Vext is spherically symmetric, |a� takes the form
(2.2.10) or (2.2.11). Next, we aim to work out the radial form of H8×8

k·p matrix
of which the radial wave function (2.2.12) is an eigenvector. Roughly speaking,
one can do this by taking the projection �(l, J)FM |H8×8

k·p |a�, where the total wave
function |a� contains the |(l�, J �)FM� k · p components. To achieve this goal, we
can use the spherical tensor algebra in chapters 2 and 3 of Ref. [75].
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The H6×6
k·p defined in Eq. (2.2.3) can be re-written as a sum of spherical tensors,

H6×6
k·p = A0∇2 + A2

�
�∇�∇
�2

· T2. (2.2.14)

The rank-zero tensor operator ∇2 commutes with �l and does not act on the
Bloch part. Therefore, ∇2 does not mix any of the components in Eq. (2.2.12).
From the matrix element �l l|∇2|l l�, see Eq. (B.2.10), the action of ∇2 on each
radial component takes the simple expression

�(l, J)FM |∇2|(l, J)FM� = 1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

1

r2
. (2.2.15)

About the second term, both
�
�∇�∇
�2

and T2 are rank-two spherical tensors.

While
�
�∇�∇
�2

acts on the envelope degree of freedom, T2 operates on the Bloch
part of the total wave function. From the results of Section B.2 in the appendix, one

easily sees that
�
�∇�∇
�2

·T2 generally mixes the various k·p components |(l, J)FM�
of the total wave function. By applying the results (B.4.4) of the appendix Section

B.4, the action of
�
�∇�∇
�2

· T2 is

�(l, J)FM |
�
�∇�∇
�2

· T2| (l�, J �)FM� =(−1)l+J+F





l l� 2

J � J F



×

�J ||T2||J �� �l||
�
�∇�∇
�2

||l��,

(2.2.16)

where l� = l or l ± 2.
A complete derivation of the reduced matrix element �l||

�
�∇�∇
�2

||l�� are given
in appendix Section B.2. It remains to evaluate �J ||T2||J ��. We must note that,
being a rank-two tensor, T2 connects only the p-like states, which have L = 1. We
define T2 such that, for L = 1,

�L||T2||L� = 1. (2.2.17)

From the definition (2.2.17), one can deduce the reduced matrix element �J ||T2||J ��
by applying the formulas (B.3.2) and (B.3.3) to get

�J ||T2||J �� = (−1)L+1/2+J � × [J ]1/2[J �]1/2 ×





2 J J �

1/2 1 1



 . (2.2.18)

With this choice of T2, the coefficient A0 and A2 in (2.2.14) are related to the
Luttinger parameters γ1 and γ, see the expression (2.2.3) for H6×6

k·p , as follows
�
A0 =

1
2
γ1,

A2 = −3
√
5γ.

(2.2.19)
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The relations in (2.2.19) can be derived by relating the parameters A0 and A2 to
the effective masses m∗

lh and m∗
hh of the light and heavy holes in the bulk limit at

�k = 0. One can obtain a similar relation between {m∗
lh, m∗

hh} and {γ1, γ}.
The last remaining term of H8×8

k·p to be expressed in radial form is (−�p · �∇). We
need, in particular, the matrix element �(l, 1

2
)FM |�p · �∇|(l�, J)FM�, where l� = l±1.

Applying the results of the appendix B.4 leads to

�(l, 1
2
)FM |�p · �∇| (l�, J)FM� =(−1)l+3/2+F





l l� 1

J 1/2 F





× �(s, 1
2
)
1

2
||�p||(p, 1

2
)J� �l||�∇||l��,

�(l�, J)FM |�p · �∇|(l, 1
2
)FM� =(−1)l+J+F





l� l 1

1/2 J F





× �(p, 1
2
)J ||�p||(s, 1

2
)
1

2
� �l�||�∇||l�.

(2.2.20)

The reduced matrix element �l||�∇||l�� (or �l�||�∇||l�) can be found in Eq. (B.1.6),
see the appendix Section B.1. Regarding �(s, 1

2
)1
2
||�p||(p, 1

2
)J�, the spherical tensor

�p acts on the first angular momenta �L, where s and p stand for L = 0 and L = 1
respectively. Due to the parity selection rule, �p connects only between L = 0 and
L = 1 but not among the L = 1 states themselves. By using the final result of
Section B.3, the explicit expressions for the reduced matrix elements of �p are given
as

�(s, 1
2
)
1

2
||�p||(p, 1

2
)J� = (−1)

3
2
+J
�
2[J ]





1 1/2 J

1/2 1 0



 �0||�p||1�,

�(p, 1
2
)J ||�p||(s, 1

2
)
1

2
� = −

�
2[J ]





1 J 1/2

1/2 0 1



 �1||�p||0�

= −
�
2[J ]





1 1/2 J

1/2 1 0



 �0||�p||1�.

(2.2.21)

Now, we introduce the following shorthand notations for three radial operators
that will appear frequently later on.

Ll =
d2

dr2
− l(l + 1)

1

r2
, (2.2.22)

Ml =
d2

dr2
+ (2l + 3)

1

r

d

dr
+ l(l + 2)

1

r2
, (2.2.23)

Dl =
d

dr
− (l + 1)

1

r
. (2.2.24)

With the above definitions for Ll, Ml and Dl, one can write down the radial H8×8
k·p

more compactly.
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Again, the radial H8×8
k·p takes two explicit forms depending on the exact relation

between l and F . In Eqs. (2.2.25) and (2.2.26), we provide the radial expressions
for H8×8

k·p when all four radial components are present, i.e. when F ≥ 3
2
. When

(F = 1
2
, l = 1) and (F = 1

2
, l = 0), the rows and columns containing the index

α = 2 or α = 3, see Eq. (2.2.11), are set to zero.
If l = F − 3

2
, the radial form of H8×8

k·p can be found to be

H8×8
k·p =




−AcLl+1 + Egap −c
3
2
l+1,lDl −c

3
2
l+1,l+2D†

l+1 −c
1
2
l+1,l+2D†

l+1

−c
3
2
∗

l+1,lD†
l (A0 − A2δ

3
2

3
2

l )Ll A2σ
3
2

3
2

l,l+2Ml A2σ
3
2

1
2

l,l+2Ml

−c
3
2
∗

l+1,l+2Dl+1 A2σ
3
2

3
2

l,l+2M†
l (A0 − A2δ

3
2

3
2

l+2)Ll+2 −A2δ
3
2

1
2

l+2Ll+2

−c
1
2
∗

l+1,l+2Dl+1 A2σ
1
2

3
2

l+2,lM†
l −A2δ

1
2

3
2

l+2Ll+2 A0Ll+2 −Δsoc




.

(2.2.25)
Or else, if l = F − 1

2
, one has

H8×8
k·p =




−AcLl+1 + Egap −c
3
2
l+1,lDl −c

3
2
l+1,l+2D†

l+1 −c
1
2
l+1,lDl

−c
3
2
∗

l+1,lD†
l (A0 − A2δ

3
2

3
2

l )Ll A2σ
3
2

3
2

l,l+2Ml −A2δ
3
2

1
2

l Ll

−c
3
2
∗

l+1,l+2Dl+1 A2σ
3
2

3
2

l,l+2M†
l (A0 − A2δ

3
2

3
2

l+2)Ll+2 A2σ
3
2

1
2

l+2,lM†
l

−c
1
2
∗

l+1,lD†
l −A2δ

1
2

3
2

l Ll A2σ
1
2

3
2

l,l+2Ml A0Ll −Δsoc




.

(2.2.26)
The radial expressions of H8×8

k·p above are the ones describing a hole, where
the valence band consists of the light hole, heavy hole and p1/2 hole bands. The
H8×8

k·p for an electron receives just an overall minus sign compared to (2.2.25) and
(2.2.26).

The coefficients δJJ
�

l , σJJ �
l,l� and cJl+1,l� , which result from (2.2.14)-(2.2.24), can

be given as

δJJ
�

l = (−1)l+J+F

�
2

3

l(l + 1)(2l + 1)

(2l − 1)(2l + 3)





l l 2

J � J F



 �J ||T2||J ��, (2.2.27)

σJJ �
l,l� = (−1)l+J+F

�
(lmin + 1)(lmin + 2)

2lmin + 3





l l� 2

J � J F



 �J ||T2||J ��, (2.2.28)
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cJl+1,l� = (−1)l+J+F
�
2lmax[J ]




l + 1 l� 1

J 1/2 F









1 1/2 J

1/2 1 0



 �0||�p||1�,

(2.2.29)
where lmin = min (l, l�) and lmax = max (l + 1, l�).

The coefficients δJJ �
l and σJJ �

l,l� originate from the term
�
�∇�∇
�2

·T2 whereas cJl+1,l�

comes from (−�∇ · �p). Note the following symmetry properties of these coefficients

δJJ
�

l = δJ
�J

l , σJJ �
l,l� = σJ �J

l�l , cJl�,l+1 = cJ∗l+1,l� . (2.2.30)

The definitions of Ll, Ml and Dl together with the identities in (2.2.30) guarantee
that the expressions (2.2.25) and (2.2.26) are hermitian. The current derivation is
a generalization of the work of Baldereschi et al. [8] on the p3/2 valence band to
include the p1/2 valence band as well as the s1/2 conduction band.

The reduced matrix element of the dipole operator �p is basically related to the
Kane parameter Ep, as expressed by the formula

�0||�p||1� = �1||�p||0� =
�

3

2
Ep, (2.2.31)

where Ep is defined in (3.4.1) and (3.4.2). From the matrices (2.2.25) and (2.2.26)
of the radial 8× 8 k · p Hamiltonian H8×8

k·p , one expects the magnitude of the k · p
mixing between the conduction and valence bands to be proportional to

�
Ep.

An eigenvector |a�, which has been described explicitly in (2.2.12), of H 8×8
k·p

can be labelled following the convention in Ref. [39, 41]. Let l� = l + 1 be the
orbital angular momentum associated with the s1/2 (i.e. top left) block of H8×8

k·p .
If |Ra1|2 �

�4
α=2 |Raα|2, then the state is named the nl�F conduction (or electron)

state. Or else, we call |a� the nlF valence (or hole) state, where l appears in (2.2.25)
and (2.2.26). In these notations, n = 1, 2, . . . denotes the principal quantum num-
ber. We note that for the various components Ra,α, where α = 2, 3 or 4, in the
valence band can have comparable magnitudes.

2.2.2 Four-band k · p model

In the group of lead halide perovskites (APbX3), the basic electronic properties
stem from the octahedra of PbX6. Hence, many of the features of the band struc-
ture, for instance the band gap Egap and the spin-orbit splitting Δsoc, are roughly
independent of the choice of the cation A. The calculated band structures, of which
an example is given in Fig. 2.1.1 (CsPbX3), demonstrates the existence of a band
gap occurring at the R point of the Brillouin zone. The VBM is s1/2 (with R+

6

symmetry) while generally the CBm is p1/2 (with R−
6 symmetry) [10].

Due to the presence of Pb, which induces a strong spin-orbit coupling, the p-
like band splits into two subbands, p1/2 and p3/2. The p3/2 band stays above the
lower p1/2 band by an energy difference Δsoc. The measured Δsoc of about 1 eV has
been reported in Ref. [57] for MAPbI3 (Fig. 3) and Ref. [101] for CsPbBr3 (Fig.
1). As a comparison to APbX3, let us consider the band structure of GaAs. The
spin-orbit splitting of GaAs is Δsoc = 0.341 eV [98]. For an average radius at about
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several nanometers of the GaAs quantum dots, the energy of a confined particle
would exceed Δsoc [98]. Thereby, the inclusion of both p3/2 and p1/2 subbands and
the use of the 8× 8 k · p model become necessary for GaAs.

On the contrary, for a perovskite nanocrystal of edge length L ≥ 4.0 nm, the
confined kinetic energy is normally � 200 meV. Thus, the p3/2 band is quite far
above the p1/2 band. Hence, one expects only a small contribution from p3/2 band
to the electronic properties of, for instance the single exciton, trions and biexciton,
when the particles have relaxed to the lowest levels. As a result, the simplest k · p
model that describes the APbX3 perovskites is the 4× 4 k · p model that includes
the s1/2 valence band and a p1/2 conduction band.

Nonetheless, the derivation of the radial H8×8
k·p turns out to be very useful here

since the radial H4×4
k·p Hamiltonian can be immediately obtained from (2.2.25) and

(2.2.26) by removing the rows and columns involving the p3/2 band (i.e. where
J = 3/2). Let l be the envelope angular momentum of the p1/2 band.

The radials expressions for H4×4
k·p in (2.2.32) describes the kinetic energy of a

hole for materials with the same band structure as perovskites (APbX3). We note
that the bottom right blocks of these matrices correspond to the p1/2 band, which
is a conduction band. It explains the overall minus signs in front of the matrices.
The energy gap Egap should, therefore, be added to this block of H4×4

k·p .

H4×4
k·p =





−




−γhLl−1 −c
1
2
l−1,lD†

l−1

−c
1
2
∗

l−1,lDl−1 γeLl + Egap


 , if l = F + 1

2
,

−




−γhLl+1 −c
1
2
l+1,lDl

−c
1
2
∗

l+1,lD†
l γeLl + Egap


 , if l = F − 1

2
.

(2.2.32)

We have introduced a slight change of notations: Ac �→ γh and A0 �→ γe to be
the same as in the Supp. Info. of Ref. [10]. Let m∗

e and m∗
h be the effective masses

of the p1/2 band (electron) and the s1/2 band (hole) respectively. The off-diagonal
blocks in (2.2.32) represent the contribution of the p1/2 band to the effective mass
of the s1/2 band and vice versa. The parameters γh and γe describe the contribution
to m∗

h and m∗
e from the bands that are further away from the band edge, i.e. the

ones other than s1/2 and p1/2.
The coefficient cJl+1,l� is defined in (2.2.29) as same as for 8×8 k·p model. Again,

the terms containing cJl+1,l� bring about the k · p mixing between the conduction
and valence bands. Similar to (2.2.12), a 2-component eigenfunction of H 4×4

k·p can
be written as

|a� = 1

r


Ra1(r)

Ra4(r)


 , (2.2.33)

where the components α = 2 and α = 3 are removed from (2.2.12). Due to the
k · p mixing, the radial components in (2.2.33) are non-zero but one has a bigger
norm than the other.
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For the purpose of notational consistency, we shall relabel Ra4 to Ra2. The total
wave function |a� becomes, with the angular part included,

|a� =





1
r

�
Ra1(r)|(l − 1, s1

2
)FM�+Ra2(r)|(l, p1

2
)FM�

�
, if l = F + 1

2
,

1
r

�
Ra1(r)|(l + 1, s1

2
)FM�+Ra2(r)|(l, p1

2
)FM�

�
, if l = F − 1

2
.

(2.2.34)

Let l� = l + 1 be the orbital angular momentum of the s1/2 block while n denotes
the principal quantum number. If |Ra1|2 � |Ra2|2, the hole state is labelled nl�F .
Or else, it is called the nlF electron state. We also use the atomic notation from
now onwards, where s, p, d, ... correspond to the angular momenta l = 0, 1, 2, . . .

As the last note, the effective mass model can be obtained from (2.2.32) by
letting Ep = 0. It means that the coefficients c

1
2
l−1,l and c

1
2
l+1,l are also zero and

there is no coupling between the conduction and the valence band. The effective
masses m∗

e and m∗
h are physical parameters and their values must be respected. In

the effective mass model, γe = m∗
e and γh = m∗

h.

2.3 Confinement: spherical approximation

Many of the experimentally synthesized quantum dots, for instance of CdSe, come
out roughly as spheres [71]. In these cases, the created carriers (electrons and
holes) can be treated as being confined in a spherical potential. For the more
recent materials such as perovskites, the nanocrystals are cuboids that are fairly
monodisperse [73, 60]. A perfect cube is highly symmetric and is invariant under
many discrete rotations and inversion. Therefore, a well-chosen spherical confining
potential serves as a good approximation to a given cubic confinement.

Let us consider an infinite spherical well of radius R. The confining potential
is given as

Vconf =

�
0, if r < R;

∞, otherwise.
(2.3.1)

Consider a single particle, which can either be an electron or a hole, of effective
mass m∗ trapped in Vconf. Its wave function can be written as

ψsphr
n,l,m(�r) = Rn,l(r)Y

l
m(θ,φ). (2.3.2)

In (2.3.2), Y l
m(θ,φ) means the spherical harmonics of orbital angular momentum

l and magnetic quantum number m while the radial function Rn,l is a solution of
the spherical Bessel equation

�
d2

dr2
+

2

r

d

dr
+ (k2 − l(l + 1)

r2
)

�
Rn,l = Esphr

n,l Rn,l, (2.3.3)

where n is the principal quantum number of ψsphr
n,l,m(�r). Let zn,l be the nth zero of

the spherical Bessel function jl(r) (of the first kind). One has k = zn,l/R .
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The non-interacting single-particle energy Esphr
n,l associated with ψsphr

n,l,m(�r) is

Esphr
n,l =

�2

2m∗
1

R2
z2n,l. (2.3.4)

We claim here that the spectrum {Esphr
n,l } and the particle wave functions

{ψsphr
n,l,m} approximate well those of an infinite square well potential V cube

conf if

L =
√
3R, (2.3.5)

where L denotes the edge length of the V cube
conf confining potential (2.3.6).

V cube
conf =

�
0, if max (|x|, |y|, |z|) < L/2;

∞, otherwise.
(2.3.6)

The tuple (nx, ny, nz) of three integers classifies all single-particle eigen wave
functions ψcube

nx,ny ,nz
(�r) of Vcube. We have

ψcube
nx,ny ,nz

(�r) =

�
2

L

�3/2

cos
�
πnx

x

L

�
cos
�
πny

y

L

�
cos
�
πnz

z

L

�
(2.3.7)

with its corresponding eigen energy given by

Ecube
nx,ny ,nz

=
π2�2

2m∗
n2
x + n2

y + n2
z

L2
. (2.3.8)

To model the ground state exciton in a nanocrystal, the lowest energy level,
which is an s-wave for a sphere, is the most important. Regarding the s-wave
channel (l = 0), their energy levels can be given explicitly as

Esphr
n,0 =

π2�2

2m∗
n2

R2
,

since the zeros of j0(r) are simply zn,0 = π2n2. The wave function ψsphr
n,0,0 of the

lowest s-wave 1s takes the form

ψsphr
n,0,0 =

�
1

2πR

1

r
sin
�
π
r

R

�
. (2.3.9)

For an arbitrary integer n, the state ψcube
n,n,n has the same energy Ecube

n,n,n = Esphr
n,0 as

the spherical s-state ψsphr
n,0 . For this reason, the states ψcube

n,n,n are referred to as the
s-like states of a cube. The whole s-like spectrum of a cube of length L is exactly
reproduced by the s-waves of a sphere of radius R = L/

√
3.

The lowest p-like states of ψcube
nx,ny ,nz

correspond to the case where (nx, ny, nz) =

(2, 1, 1) and the other two permutations. Their eigen energy is Ecube
nx,ny ,nz

= π2�2
2m∗

2
R2

assuming that L =
√
3R. On the other hand, the lowest spherical p-wave ψsphr

1,1,m

has z1,1 = 4.493 and Esphr
1,0 = π2�2

2m∗
2.0458
R2 . The relative error |Ecube

2,1,1 − Esphr
1,0 |/Ecube

2,1,1 is
about 2.3%. The three permutations of (2, 1, 1) mean that the degeneracy of the
lowest p-like states of a cube is equal to 3, which reproduces that of the spherical
p-waves.
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Figure 2.3.1: The single-particle energy spec-
tra of a particle confined in Vconf (Eq.
(2.3.1)) and in V cube

conf (Eq. (2.3.6)). The
thickness of the lines represents the degen-
eracy of the energy levels. The two lowest
spherical states are the s-wave and p-wave of
principle quantum number n = 1. The s-like
and p-like spectra, for many n, of a cube are
approximately reproduced by the correpond-
ing ones of a sphere.

When going into the higher energy
states, i.e. larger l and n, the spec-
tra start to show more significant differ-
ences. Despite this fact, there remains
some correspondence between the eigen
states of the cubic and spherical con-
fining potentials. The cubic states
ψcube
nx,ny ,nz

can be thought of as being split
from the spherical states due to the for-
mer having a (much) smaller symmetry
group than the latter.

Nonetheless, the above observations
show that the use of Vconf in (2.3.1) still
serves as a good approximation for the
purpose of understanding the electronic
and optical properties of the lowest ex-
citon state. For instance, the over-
lap integral between the wave functions
ψsphr
1,0,0 in (2.3.9) and ψcube

1,1,1 in (2.3.7) is
equal to 0.98727. From this high degree
of overlapping, we expect the Coulomb
interaction in a cube to be within a few
percent error compared to the equiva-

lent sphere, Eq. (2.3.5). For a more detailed calculation of the Coulomb interaction
for a cube and a sphere, see Ref. [89].

In the calculation of the correlation energy, we need the whole basis set of
{ψsphr

n,l,m} of a sphere, (or {ψcube
nx,ny ,nz

} for a cube), up to some cut-offs lcut-off for the
orbital angular momentum and ncut-off for the principal quantum number. The
computation, in Chapter 4 for example, converges rapidly w.r.t. ncut-off. By setting
ncut-off = 3, we capture about 98% of the total correlation energy compared to
using ncut-off = 9 (with lcut-off = 10). When lcut-off = 1 and ncut-off = 2, about 80%
of the total correlation energy is obtained. This means that the two lowest p-waves
dominate the contribution to the total correlation energy. As established above,
the energy levels of these spherical p-waves are within an error of a few percent
from those of the equivalent p-like states of a cubic potential.

When the external potential Vext deviates from a spherical one, let us define the
nonspherical potential Vnsph to be

Vnsph = Vext − Vconf, (2.3.10)

see (2.3.1) for the definition of Vconf. In general, Vnsph can be treated as a pertur-
bation in the calculation procedure at a later stage if the nonspherical effect may
turn out to be important in some way. The spherical basis, see Eq. (4.1.3) for
more details, combining with the angular algebra offers a computationally efficient
method for treating the nonspherical perturbations. For many physical quanti-
ties of interest in the current thesis, the contribution from Vnsph is rather small
numerically and we shall omit this term for simplicity.
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In conclusion, the spherical potential Vconf is expected to provide an adequate
approximation to describe a cubic nanocrystal of length L =

√
3R. The advantage

of using spherical symmetry over cubic symmetry is the reduction of dimensional-
ity. A three-dimensional problem becomes a radial problem, after performing the
angular reduction. This brings about a significant computational speed-up, which
shows to be extremely useful in the calculations of correlation energy in Chapter 4
and of the electron-photon matrix elements in Chapter 5. With this in mind, we
move on to derive the radial Hartree-Fock equations in Chapter 3.
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Chapter 3

Hartree-Fock approximation

The previous chapter was concerned with the description of the non-interacting
single-particle states in the semiconducting ground state of a nanocrystal. After
an external excitation with an energy exceeding Egap, an excitonic system with
Ne electrons and Nh holes is created inside the nanocrystal. The particles will be
assumed to have relaxed to the lowest occupied states. Using the Hartree-Fock
(HF) formulation [75, 96], we aim at understanding the intercarrier interaction in
a mean-field approximation in this case.

In the first two sections, we discuss the origin of the HF approximation of the
electron-hole system and the dielectric screening of the Coulomb interaction as
well as the surface polarization charge. In Section 3.3, the radial HF equations
will be derived while, at the same time, one defines the various contributions to
the HF energy. Section 3.4 is devoted to calculations of the single exciton binding
energy, which comes after a rather careful survey of the fundamental parameters
of perovskite materials.

Regarding the notations, |a�, |b�, . . . denote the occupied states of the exci-
tonic system, with their total angular momenta and magnetic quantum numbers
(Fa,Ma), (Fb,Mb), . . . The Greek letters α, β, . . . represent the k · p components
of their total wave functions. The capital letters A,B, . . . label the shells (with
Fa, Fb, . . . ) containing the states |a�, |b�, . . . The words ‘shell’ and ‘level’ (or ‘en-
ergy level’) will be used interchangeably. Given an integer or a half-integer f , the
shorthand symbol [f ] stands for 2f + 1.

3.1 Hartree-Fock approximation

Consider a system with Ne electrons and Nh holes. It is important for the readers to
keep in mind the two parallel-running points of view, which we shall now explain.
On the one hand, we may think of electrons and holes as belonging to separate
species of particles with different effective masses and opposite charges. This point
of view offers the ease of visualizing the interaction between these charge carriers.
We call it the viewpoint no. 1. On the other hand, a hole is effectively the absence
of an electron in a valence state (in the case of a semiconductor). A system with
‘Ne electrons and Nh holes’, in fact, contains Ne electrons above the VBM and
Nv = N0 − Nh electrons deeper in the valence bands. Consequently, the creation
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and annihilation operators of an electron and a hole must anti-commute. Let us
call this the viewpoint no. 2.

As an approximation from the viewpoint no. 1, an electron orbital (occupied or
virtual) experiences a mean-field potential U created by all the occupied electrons
and holes. The general matrix element �i|U |j� of U , between two arbitrary electron
states |i� and |j�, can be written as

�i|U |j� =
�

c

�i|U c|j� −
�

v

�i|U v|j�, (3.1.1)

where the sums
�

c and
�

v are over Ne electrons and Nh holes respectively. In
the HF approximation, the various terms in (3.1.1) take the following expression

�i|Ua|j� = �ia|G12|ja� − �ia|G12|aj�, (3.1.2)

where Ua is the contribution to the HF potential due to an occupied state |a� in
which a can denote either an electron or a hole state. The first term �ia|G12|ja�,
called the direct potential, embodies the classical charge density interaction. The
second term in (3.1.2) is the exchange potential coming from the Slater determinant
of the many-particle fermionic wave function [96].

Let N = Nv +Ne be the total number of electrons in the system, including the
conduction and valence bands. Similar to the formula (2.1.1), the total Hamiltonian
describing a system of N electrons can be written as

HN
tot = −1

2

N�

i

∇2
i

� �� �
HN

kin

+
N�

i

Vion(�ri) +
N�

�i,j�
G(�ri,�rj)

� �� �
V N
Coul

. (3.1.3)

We define UN
HF to be the HF approximation to the Coulomb interaction V N

Coul
between the Ne electrons in the CB and Nv electrons in the VB. Analogous to UN0

HF
in (2.1.3), the matrix element �i|UN

HF|j� can be given as

�i|UN
HF|j� =

Ne�

a=1

�i|Ua|j�+
Nv�

a=1

�i|Ua|j�, (3.1.4)

where �i|Ua|j� that is defined in (3.1.2) describes the HF potential U a generated
by an occupied state |a�.

As an approximation to the Hamiltonian HN
tot (3.1.3), we construct the following

Hamiltonian at the HF level

HN
HF = HN

kin +
N�

i

Vion(�ri) + UN
HF

= HN
kin +

N�

i

Vion(�ri) + UN0
HF + U,

(3.1.5)

where the difference UN
HF−UN0

HF between the HF approximations in Eqs. (3.1.4) and
(2.1.3) is precisely the HF potential U as defined in (3.1.1) and (3.1.2). We recover
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the fact that U is the HF approximation to the effective Coulomb interaction for
the Ne electrons and Nh holes system.

Apart from the correction U , the one-body term for the kinetic energy plus
interaction with the ionic background will be modelled by using the k · p theory in
envelope function approximation. The total energy EN0

tot of the N0-electron ground
state is usually taken to be zero though one can choose another conventional value
for convenience. The difference between the expectation value of (HN

HF −U) of the
Ne conduction and Nv valence electron system and EN0

tot is the total kinetic energy
of the Ne electrons and Nh holes.

Let us define the HF approximation to the Hamiltonian (2.1.1) to be

HN0
HF = HN0

kin +

N0�

i

Vion(�ri) + UN0
HF. (3.1.6)

Generally, it is necessary to use other approximations that go beyond mean-field
level and contain the correlation effects from the Coulomb interaction V N0

Coul, see
more the discussion at the beginning of Chapter 2. By using ΣN0 (GW method)
instead of UN0

HF, for instance as in Ref. [122], we get the k · p Hamiltonian Hk·p
that describes the kinetic energy of the Ne electron and Nh holes system with the
correct effective masses [84]. From the point of view of correlation, the potential
U in (3.1.1) is the lowest-order (Hartree-Fock) approximation to the correlated
effective Coulomb potential between the electrons and the holes.

We claim that one can obtain from U the binding energy of the excitonic system.
As an example, we look at the case of a single exciton, in which the electron occupies
the conduction state |c� while the hole stays in the valence state |v�. Explicitly,
the potential U , see Eq. (3.1.1), becomes

�i|U |j� = �i|U c|j� − �i|U v|j�, (3.1.7)

which implies the HF Coulomb potential felt by the electron and the hole are,
respectively, �

�c|U |c� = −�c|U v|c�,
�v|U |v� = +�v|U c|v�. (3.1.8)

One retrieves the attractive interaction that gives rise to the exciton binding energy.
We remark here that the hole energy spectrum is a reverse of that of an electron.
(In the electron description, the curvature of the VBM is negative and the effective
kinetic energy of a valence electron is negative.) Therefore, the ‘positive’ sign of
+�v|U c|v�, in actuality, signifies a ‘negative’ binding energy for the hole.

However, the potential U in (3.1.1) is not spherically symmetric. In princi-
ple, the matrix element �i|U |j� depends on the magnetic substates of the shells
containing |i� and |j�. In the systems with existing spherical symmetry such as
spherical nanocrystals, constructing a spherical HF (or mean-field) potential that
still captures the basic physics proves to be useful. Not only that one obtains an
elegant classification of the quantum states with the help of the angular algebra
[37, 75], the computational efficiency also improves owing to transforming from the
full three-dimensional to a radial problem.
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The configuration-averaged HF potential VHF, which is spherically symmetric,
can be defined here by its action on the state |j� as follows

�j|VHF|j� =
�

C

wC�j|U c|j� −
�

V

wV �j|U v|j�, (3.1.9)

where the sum
�

C (or
�

V ) means summing over all of the magnetic substates
|FcMc� (or |FvMv�) in all fully or partially occupied electron (or hole) levels with
the total angular momentum Fc (or Fv).

The configuration-averaged weight factor wA in (3.1.9) for an occupied shell A
can be given as

wA =

�
nA

NA
, if j /∈ A,

nA−1
NA−1

, if j ∈ A.
(3.1.10)

In the above, nA is the actual occupation of shell A (i.e. the number of particles in
shell A) whereas NA denotes the maximum occupation (or the degeneracy) of A.
If the level A is fully occupied with all magnetic substates filled, wA = 1 always.
Interested readers can find out the argument leading to wA in (3.1.10) from Chapter
6 of Ref. [75].

3.2 Coulomb interaction: Dielectric screening

Similar to the computation of the electronic band structure, one can from first-
principle calculate the dielectric function ε(�r,ω) using linear response theory. The
details of such computation go beyond the scope of the current study. For further
references, please see Ref. [31].

For the current thesis, we assume that each nanocrystal is a sphere with a
dielectric constant εin submerged in an outside medium of dielectric constant εout.
The dielectric constant εin is taken to be the dielectric constant in the bulk that can
be derived from the measured reduced mass and the bulk exciton binding energy
by using a hydrogen-like model for the exciton in 3D crystals [132, 53, 84]. This
value of εin is called the effective dielectric constant εeff. The sizes of a typical
nanocrystal, for instance of perovskites, are comparable to the length scale of a
bulk exciton, which justifies the use of the effective dielectric constant.

For materials with lots of polar bonds like perovskites, the dielectric function
ε(�r,ω) is strongly ω-dependent [46]. The high-frequency dielectric constant ε∞ is
the response of the valence electrons to an external field where the relevant energy
scale falls in the optical range or higher. In contrast, the static dielectric constant
also includes the response of heavy ions and other vibrational modes [9]. Normally,
the static εstatic is much bigger than the high-frequency ε∞ in the ionic materials
[104, 83, 74]. The value εeff often stays in between ε∞ and εstatic.

In a homogenous medium of dielectric constant εeff, the screened interaction
between two electrons at positions �r1 and �r2 is (q1 = q2 = 1 and 4πε0 = 1 in a.u.)

G(�r1,�r2) =
1

εeff
r−1
12 , r12 = |�r1 − �r2|. (3.2.1)
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When a spherical nanocrystal lives inside a solvent, the screening of the inter-
carrier interaction is further modified. We treat the screening of Coulomb inter-
action to be that of a dielectric sphere inside a medium of εout. In Subsection
3.2.1, an explicit formula for this case will be provided. Afterwards, we discuss
the self-energy of a particle in an inhomogeneous dielectric medium in Subsection
3.2.2.

3.2.1 Dielectric sphere

The Coulomb interaction in a system with spherical symmetry can be conveniently
expressed as a product of angular and radial parts in multipole expansion [62].

Let G(�r1,�r2) be the screened Coulomb potential between two electrons at �r1
and �r2 that are inside a dielectric sphere of εin surrounded by a solvent with εout.
The multipole expansion of G(�r1,�r2) is

G(�r1,�r2) =
�

k

γk(r1, r2)
4π

[k]

k�

m=−k

Y k
m(Ω)

∗Y k
m(Ω). (3.2.2)

In Eq. (3.2.2), when both charges are confined inside the nanocrystal, which means
max (r1, r2) < R, the radial Green function γk(r1, r2) of the multipole k, sometimes
referred to as the k-pole, takes the form

γk(r, r�) =
1

εin

�
rk<
rk+1
>

+
(εin − εout)(k + 1)

εink + εout(k + 1)

(rr�)k

R2k+1

�
, (3.2.3)

where r< = min (r, r�) and r> = max (r, r�).
The first term on the RHS of (3.2.3) describes the screening in a homogeneous

medium of dielectric constant εin. The second term originates from the interaction
with the bound polarization charge induced at the interface between the dielectric
sphere and the outside medium. If εout = εin, the second term disappears as
expected. To calculate many of the interesting excitonic quantities, for example
the exciton binding energy or the biexciton and trion shifts, we choose εin = εeff

[132, 53, 84].
Following the notations in Chapter 2 of Ref. [75], let us define the C-tensor to

be

Ck
m =

�
4π

[k]
Y k
m, (3.2.4)

which is a spherical tensor of rank-k. We can rewrite G(�r1,�r2) in terms of the
tensor products of Ck’s.

G(�r1,�r2) ≡ G12 =
�

k

γk(r1, r2) Ck(1) · Ck(2). (3.2.5)

In the above formula, Ck(1) and Ck(2) denote the Ck spherical tensors acting on
the wave functions of the first and second positions respectively. The form of G12 in
(3.2.5) makes it clear that G12 is preserved under spatial rotation and is therefore
spherically symmetric.
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To compute of the configuration-averaged HF potential VHF in (3.1.9), one needs
to derive the general matrix element �ab|G12|cd� of the Coulomb interaction. Here,
the states |a�, |b�, |c� and |d� are the n-component k · p total wave functions, see
formulas (2.2.10), (2.2.11) and (2.2.34),

|a� =
�

α

1

r
Raα|(laαJaα)FaMa�, |c� =

�

µ

1

r
Rcµ|(lcµJcµ)FcMc�,

|b� =
�

β

1

r
Rbβ|(lbβJbβ)FbMb�, |d� =

�

ν

1

r
Rdν |(ldνJdν)FdMd�.

(3.2.6)

The indices α, β, µ and ν denote the k · p components of the total wave functions
|a�, |b�, |c� and |d�. The expression (3.2.5) for G12, of which γk(r1, r2) is given in
(3.2.3), will be used for the derivation of �ab|G12|cd� with its radial and angular
parts separated.

Let us define the functional Yk[ρ] as follows

Yk[ρ](r) =

�
γk(r, r�)ρ(r�) dr�. (3.2.7)

The general Coulomb matrix element �ab|G12|cd� can be written as

�ab|G12|cd� =
�

k

�

αβ,µν

�
ρaα,cµ(r) Yk[ρbβ,dν ](r) dr ×

�(laαJaα)FaMa; (lbβJbβ)FbMb|Ck(1) · Ck(2)|(lcµJcµ)FcMc; (ldνJdν)FdMd�,
(3.2.8)

where the cross-densities are ρaα,cµ(r) = Raα(r)Rcµ(r) and ρbβ,dν(r) = Rbβ(r)Rdν(r).
The radial part of �ab|G12|cd� on the first line in (3.2.8) is an integral over

the radial functions ρaα,cµ(r) and ρbβ,dν(r). The second line contains the angular
expression of which an explicit formula will be derived in Subsection 3.3.1.

Generalized Poisson equation:
To have a more realistic description of the dielectric screening, one can start

by assuming that the dielectric function ε(r) takes the bulk value εin of the semi-
conducting material around r = 0 (i.e. the center of the sphere) and equals to
εout of the medium at a position far enough from the nanocrystal, i.e. as r → ∞.
At the interface between the nanocrystal and the medium outside, ε(r) makes a
continuous transition from εin to εout.

ε(r) = εin + t(r)(εout − εin), (3.2.9)

where t(r) is a smoothly varying function such that t(r = 0) = 0 and t(r � R) = 1.
The exact functional form of t(r) can be also chosen to model the situations in which
there are more than two dielectric media.

In (3.2.9), ε(r) depends only on the radial position r and the dielectric function
still possesses the full rotational symmetry. Therefore, the expression (3.2.5) for
G12 remains valid, except that γk(r1, r2) should be now solved for by using the
following generalized Poisson equation

∇ · (ε(r) ∇V (�r)) = −4πρ(�r). (3.2.10)
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In the above, ρ(r) is the density of some free charge, for instance from the charge
carriers.

For a more general dielectric medium, the function Yk[ρbβ,dν ](r), which was
defined in (3.2.7) for the case of a single dielectric sphere, can be obtained from
solving the equation (3.2.10) with ρ(r) = ρbβ,dν(r). In this way, we can also treat
the problem of a nanocrystal having a semiconducting core coated with various
shells. The k · p formulation for a core-shell system [17, 18] and the derivation of
the radial equations for the generalized Poisson equation will be the subject for
future publications.

3.2.2 Self-energy

Given a free charge distribution ρ(�r), there is an energy cost that one needs to pay
to assemble ρ(�r). Let us consider a charge particle occupying the quantum state
|a�. The aforementioned energy cost is 1

2
�aa|G12|aa�.

All the indices α, β, µ and ν in (3.2.11)-(3.2.15) refer to the k · p components of
|a�. In an homogenous medium with dielectric constant εin, the energy for creating
a charge occupying |a� is

�a|V hom
self |a� = 1

2

�

k

�

αβ,µν

�
ρα,µ(r) Yk

0 [ρβ,ν ](r) dr ×

�(lαJα)FaMa; (lβJβ)FaMa|Ck(1) · Ck(2)|(lµJµ)FaMa; (lνJν)FdMd�,
(3.2.11)

where ρα,µ(r) = Raα(r)Raµ(r) and ρβ,ν = Raβ(r)Raν(r). The subscript a has been
omitted for notational simplicity since only one total wave function |a� is involved
in this subsection.

We define Yk
0 [ρ](r) for the homogenous medium as

Yk
0 [ρ](r) =

�
1

εin

rk<
rk+1
>

ρ(r�) dr�. (3.2.12)

In the case of a dielectric sphere εin submerged in an external medium εout, the
energy cost becomes

�a|V het
self |a� =

1

2

�

k

�

αβ,µν

�
ρα,µ(r) Yk[ρβ,ν ](r) dr ×

�(lαJα)FaMa; (lβJβ)FaMa|Ck(1) · Ck(2)|(lµJµ)FaMa; (lνJν)FdMd�.
(3.2.13)

The definition of the radial function Yk[ρ](r) can be found in (3.2.7).
As can be seen from (3.2.11) and (3.2.13), �a|V hom

self |a� and �a|V het
self |a� have

the same angular structure and differ only in their radial parts. The difference
Yk[ρaβ,aν ](r) − Yk

0 [ρaβ,aν ](r) represents the interaction between the charged parti-
cle in |a� and the boundary charge at the interface between the dielectric sphere
and its outer medium. This boundary charge, associated with the particle in |a�,
results from the surface polarization that was created due to the inhomogeneity of
the entire medium.
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Define the potential Vself to be such that

�a|Vself|a� = �a|V het
self |a� − �a|V hom

self |a�. (3.2.14)

Note that �a|V hom
self |a� is just a constant amount of energy added in the case of

a homogeneous medium. This energy is also present in �a|V het
self |a� as a result of

the first term in (3.2.3). Only the energy difference �a|Vself|a� has some physical
importance. It describes the interaction between a particle and its induced bound-
ary charge. For this reason, �a|Vself|a� is called the ‘self-energy ’ of the particle
occupying a quantum state |a� [32, 9].

By using the radial-angular forms of �a|V het
self |a� (Eq. (3.2.13)) and �a|V hom

self |a�
(Eq. (3.2.11)), one gets

�a|Vself|a� =
1

2

�

k

�

αβ,µν

�
ρα,µ(r)

�
Yk[ρβ,ν ](r)− Yk

0 [ρβ,ν ](r)
�
dr ×

�(lαJα)FaMa; (lβJβ)FaMa|Ck(1) · Ck(2)|(lµJµ)FaMa; (lνJν)FdMd�.
(3.2.15)

Regarding the case of a single dielectric sphere, the Coulomb Green function
(3.2.3) describes the screening due to the dielectric constant εin as well as the
interaction with the image charges, see Ref. [62]. Without spilling out of the wave
functions, i.e. when the confinement is as given in (2.3.1), �a|Vself|a� can be viewed
as the interaction between the free charge in |a� and its own image charge. The
self-energy term Vself is nonzero even for a single electron or hole and, thus, is a
one-body potential, contrary to the two-body term (3.2.8) that exists only when
at least two particles are present.

By using the final expression (3.2.15), it is possible to study a more general
case than the infinite spherical well (2.3.1), for instance a core-shell system with
potentially multi-shells or a potential barrier of finite height and width. In these
cases, one can obtain the function Yk by solving the generalized Poisson equation
(3.2.10) whereas the ‘homogeneous’ counterpart Yk

0 is an analogue of Yk for the
following equation

ε(r) ∇2V0(�r) = −4πρ(�r). (3.2.16)

Due to the level of details involved, we leave this generalization to future publica-
tions.

As a summary of the Hartree-Fock formulation, there are two modifications to
the non-interacting single-particle equation, see Eqs. (2.2.13) and (4.1.2). The first
one arises as a result of the screened intercarrier interaction that is the two-body
Coulomb potential (3.2.8). The second modification originates from the one-body
self-energy potential that captures the interaction between a confined charge and
its induced surface charge at the interface between the nanocrystal and the exterior
medium.

3.3 Radial Hartree-Fock equations
To take full advantage of the spherical symmetry imposed earlier in Chapter 2,
we also need to express the configuration-averaged HF interaction VHF (3.1.9) as a
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product of radial and angular parts. In Subsection 3.3.1, we lay down the derivation
for the general Coulomb matrix element �ab|G12|cd�, which will accomplish at the
same time the evaluation of the angular parts of (3.2.8) and (3.2.15). One will
come to the explicit radial expressions for the HF equations towards the end of
this section.

3.3.1 Angular reduction for a general Coulomb matrix ele-
ment

Given two spherical tensors Ck(1) and Ck(2), we recall the following relation be-
tween the dot product and the addition into the scalar tensor

�
Ck

1Ck
2

�0
0
,

Ck(1) · Ck(2) = (−1)k
�
[k]
�
Ck

1Ck
2

�0
0
. (3.3.1)

The general Coulomb matrix element �ab|G12|cd� in (3.2.8) can be rewritten as

�ab|G12|cd� =
�

k

�

α,β,µ,ν

(−1)k
�
[k]×Rk(aα bβ, cµ dν)×

�(laαJaα)FaMa, (lbβJbβ)FbMb|
�
Ck

1Ck
2

�0
0
|(lcµJcµ)FcMc, (ldνJdν)FdMd�,

(3.3.2)

where we have introduced the shorthand notation Rk(aα bβ, cµ dν) for the radial
integral

Rk(aα bβ, cµ dν) =

�
ρaα,cµ(r) Yk[ρbβ,dν ](r) dr. (3.3.3)

With Yk[ρbβ,dν ](r) as given in (3.2.7), the radial integral Rk(aα bβ, cµ dν) can be
easily calculated. We remind the readers that the spherical tensor Ck(1) or Ck(2)
individually acts on the pairs of the orbital angular momenta (laα, lcµ) and (lbβ, ldν)
respectively. There remains the angular part (on the second line) of (3.3.2) to be
evaluated.

Consider the matrix element �(laαJaα)FaMa|Ck
m|(lcµJcµ)FcMc�, where it is im-

plicitly understood that Ck
m ≡ Ck

m(1). The tensor Ck
m operators on the total

angular momenta Fa and Fc via its action on laα and lcµ. Hence, we can use the
results of Section B.3 in the appendix and arrive at

Fc Fa

k,m

+

�(laαJaα)FaMa|Ck
m|(lcµJcµ)FcMc� = �Fa||Ck||Fc� × , (3.3.4)

where �Fa||Ck||Fc� on the RHS is the reduced-matrix element of Ck. In fact, one can
obtain Eq. (3.3.4) as a direct application of Wigner-Eckart Theorem, see Chapter
3 of Ref. [75]. As a direct application of (B.3.2)-(B.3.3), one has

�Fa||Ck||Fc� = δJaαJcµ(−1)laα+Jaα+Fc+k
�
[Fa][Fc]





k Fa Fc

Jaα lcµ laα



 �laα||Ck||lcµ�.

(3.3.5)
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The explicit expression for the reduced-matrix element �laα||Ck||lcµ� between the
orbital angular momenta can be found at the end of Chapter 2, Ref. [75].

Repeating the same derivation for �(lbβJbβ)FbMb|Ck
m|(ldνJdν)FdMd� and making

use of the angular expression for Coulomb matrix element (see Chapter 3, Ref.
[75]), the angular part in (3.3.2) becomes

�(laαJaα)FaMa; (lbβJbβ)FbMb|
�
Ck

1Ck
2

�0
0
|(lcµJcµ)FcMc; (ldνJdν)FdMd� =

− +

FaMa

FcMc

k

FbMb

FdMd

ck(aα bβ, cµ dν) × 1√
[k]
× . (3.3.6)

The angular coefficient ck(aα bβ, cµ dν) is

ck(aα bβ, cµ dν) =
�
[Fa][Fb][Fc][Fd] c

k
χ(lJaαFa; lJcµFc) c

k
χ(lJbβFb; lJdνFd) (3.3.7)

where each ckχ(lJlFl; lJrFr) comes from the reduced matrix element �Fl||Ck||Fr� as
given in (3.3.5),

ckχ(lJlFl; lJrFr) = δJl,Jr(−1)ll+Jl+Fr




Fl Fr k

lr ll Jl



 �ll||Ck||lr�. (3.3.8)

One notes that k is an integer for the Coulomb multipole. Thus, (−1)2k = 1 and
the (−1)k, which occurs twice in (3.3.7), disappears from the phase factor of the
crossed coefficient ckχ(lJlFl; lJrFr) between the left and right states.

As a reminder, the angular momentum �J is the sum of the Bloch angular
momentum �L and the spin �S. The selection rule δJl,Jr in (3.3.8) also means Ll = Lr,
which is the selection rule of band index resulting from the orthogonality of Bloch
functions. Therefore, each δJl,Jr in ckχ(lJlFl; lJrFr) implies that (i) Jl = Jr and (ii)
the k · p components of the left and right wave functions belong to the same band.
In other words, it means that, for example, ckχ(lJaαFa; lJcµFc) is non-zero if and
only if α = µ.

The coefficient ck(aα bβ, cµ dν) can be factored out from the angular part in
(3.3.6) since the H-shape angular diagram is independent of the angular momenta
of the k · p components. In fact, this H-shape angular diagram is the values of
�FaMa;FbMb|

�
Ck

1Ck
2

�0
0
|FcMc;FdMd�. For the convenience of later usage, let us

define

Xk(ab, cd) = (−1)k
�

αβ,µν

Rk(aα bβ, cµ dν)× ck(aα bβ, cµ dν). (3.3.9)

Xk(ab, cd) can be thought of as the reduced matrix element of the multipole k of
the Coulomb matrix element.
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Finally, the full Coulomb matrix element (3.3.2) can be compactly written as

− +

FaMa

FcMc

k

FbMb

FdMd

�ab|G12|cd� =
�

k X
k(ab, cd)× .

(3.3.10)

Using the expression (3.3.10) for �ab|G12|cd�, we can now derive the angular reduc-
tion for the configuration-averaged HF potential VHF and the self-energy Vself.

3.3.2 Angular reduction for Hartree-Fock equations

For a particle in |a� (either an electron or a hole) confined in a spherical nanocrystal,
its kinetic energy can be described by the k · p Hamiltonian Hk·p together with the
confining potential Vconf as defined in (2.3.1). The HF Coulomb interaction with
other particles is given by the potential VHF (3.1.9). The self-energy Vself (due to
polarization of the surrounding medium) can be found in (3.2.15).

The Hartree-Fock equation for an electron in the occupied orbital |a� is

(Hk·p + Vconf + VHF + Vself) |a� = Ea|a�. (3.3.11)

Here, the Hamiltonian Hk·p for an electron equals to −H4×4
k·p in (2.2.32) for the

4 × 4 k · p model since those matrices describe the k · p Hamiltonian of a hole.
(Similarly, Hk·p = −H8×8

k·p , formulas (2.2.25) and (2.2.26). For more discussion,
see Section 2.2.) The confining potential Vconf in (2.3.1) with an infinite barrier
implies that the total wave function is zero outside the nanocrystal. For r < R,
because Vconf = 0, the contribution to the total energy from Vconf is also zero. The
numerical effect that the confinement has on the state |a� is really the restriction
of the solution on a finite range (i.e. between r = 0 and r = R). By solving Eq.
(3.3.11), we obtain the HF wave function and the HF energy of an electron in |a�.

The equation for a hole has the same structure as (3.3.11) except that Hk·p =
H8×8

k·p (eight-band k · p model) or Hk·p = H4×4
k·p (four-band k · p model). Besides,

its HF potential receives a minus sign compared to the definition of VHF in (3.1.9).
This minus sign results from the hole charge being opposite to an electron charge.
One has the following HF equation for a hole in state |b�

(Hk·p + Vconf − VHF + Vself) |b� = Eb|b�. (3.3.12)

From the definitions (3.1.2) and (3.1.9), the direct and exchange contributions
to the configuration-averaged HF potential VHF are

�a|Vdir|a� =
�

C

wC�ac|G12|ac� −
�

V

wV �av|G12|av�, (3.3.13)

�a|Vexc|a� = −
�

C

wC�ac|G12|ca�+
�

V

wV �av|G12|va�. (3.3.14)

49



An occupied orbital |a� of an electron (or a hole) appears among the conduction
(or valence) states |c� (or |v�) in the sum

�
C (or

�
V ). When |c�∗ = |a� (or

|v�∗ = |a�), there exists a term in Vexc that cancels exactly with the corresponding
term in Vdir. Therefore, �a|VHF|a� = �a|Vdir|a� + �a|Vexc|a� represents only the
interaction between a particle |a� and other particles.

Next, we define the non-zero contributions to the HF energy Ea of |a� originating
from the various terms on the LHS of (3.3.11).





Ekin,a = �a|Hk·p|a�,
Edir,a = �a|Vdir|a�, Eexc,a = �a|Vexc|a�,
Eself,a = �a|Vself|a�,

(3.3.15)

which means that the HF energy is Ea = Ekin,a +Edir,a +Eexc,a +Eself,a. The term
Ekin,a can be understood as the kinetic energy of a confined particle in Vconf. For
an electron, Ekin,a also includes the band gap energy.

One can easily obtain the total HF energy of the Ne electrons and Nh holes to
be

EHF(Ne, Nh) =

Ne,Nh�

a=1

�
Ekin,a +

1

2
(Edir,a + Eexc,a) + Eself,a

�
, (3.3.16)

where a denotes either an occupied electron or hole. Thus, the sum
�Ne,Nh

a=1 runs
over all electrons and holes present in the excitonic system. The first term Ekin =�

a=1 Ekin,a is the total kinetic energy (including the band gap energy NeEgap).
The factor (1

2
) in front of the direct and exchange energy avoids double counting

since the Coulomb interaction should be between the pairs of particles. Roughly
speaking,

E(1) =

Ne,Nh�

a=1

�
1

2
(Edir,a + Eexc,a) + Eself,a

�
(3.3.17)

gives the binding energy at HF level, which is up to the first-order MBPT. In other
words, the HF equations provide the first-order MBPT approximation to the true
total energy of the system of Ne electrons and Nh holes.

The single-particle HF equation (3.3.11) can be solved by numerical iteration
to self-consistency. To start the iteration process, one needs a set {|a�0, E0

a} of
approximate wave functions and energy values. The choice of {|a�0, E0

a} has to be
close enough to the final HF wave functions and energy values in order to achieve
convergence.

In the strong confinement limit, the non-interacting particle equation

(Hk·p + Vconf) |a�0 = E0
a|a�0 (3.3.18)

serves as a good approximation for obtaining the transition peaks [41]. The solution
{|a�0, E0

a} of equation (3.3.18) seems a good practical choice for the starting or-
bitals and energy levels for the HF iteration since the convergence can be obtained
in all cases examined so far.

In going from the strong confinement to the intermediate and eventually weak
confinement regime, Coulomb interaction becomes progressively more important.
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The non-interacting particle solutions of Eq. (3.3.18) no longer suffice to obtain the
binding energy of a single exciton, for instance. Fortunately, the HF energy EHF

shows to be a good approximation for the single exciton binding energy for a wide
range of experimental sizes, see Subsection 3.4.2. When multi-carriers are present,
the HF energy in (3.3.16) has already captured some Physics by accounting for
the inter-carrier Coulomb interaction up to first-order MBPT. Furthermore, the
HF equation (3.3.11) can be used to generate a basis set for the calculations of
the many-body corrections to the energy of the excitonic system. An example of
such calculations can be found in the next chapter and serves also as an additional
motivation for the HF formulation.

Under the assumption of spherical symmetry, equation (3.3.11) can be reduced
from a full three-dimensional to a one-dimensional radial problem. This fact allows
a remarkable improvement in the numerical efficiency of solving the HF equation
of a system with any practical number of electrons and holes. One can reduce
the computational time to not more than a few seconds on one computing core.
The computational speed-up shows to be even more advantageous for the MBPT
calculations later in Chapter 4 and Chapter 5. It is therefore important to work
out the radial HF equations of (3.3.11).

The radial expressions of the k · p Hamiltonian have been given in (2.2.25),
(2.2.26) and (2.2.32). There remains the task of finding the radial formulas for the
direct Vdir and exchange Vexc potentials as well as the self-energy Vself. The detailed
derivations of equations (3.3.21)–(3.3.22), (3.3.24)–(3.3.26) and (3.3.27)–(3.3.28)
are given in Chapter C of the appendix. In what below, we summarize the basic
results and provide some physical understanding of the terms that will appear.

Let qa be the charge of a particle in an occupied orbital |a�. We adopt the usual
convention where

qa =

�
−1, for an electron,
+1, for a hole.

(3.3.19)

Let V b
dir be the configuration-averaged direct potential created by a shell B

having a total angular momentum Fb. Clearly,

�a|Vdir|a� =
�

Fb

qa�a|V b
dir|a�. (3.3.20)

For an n-component vector (n=4 or 2), for example radial wave function |a�
in (2.2.12), we define the α-component of |a� to be |a�α = Raα(r). Given an
n-component wave function |a�, V b

dir|a� is also an n-component vector. The α-
component (V b

dir|a�)α of V b
dir|a� is

(V b
dir|a�)α =

�

α

Y0[ρdb ](r) Raα(r), (3.3.21)

where the direct charge density ρdb(r) can be written as

ρdb(r) = wb × qb[Fb]×
�

β

Rbβ(r)Rbβ(r) . (3.3.22)
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In fact, [Fb] = 2Fb+1 is the total degeneracy of shell B and qb[Fb] represents the
maximum amount of charge that shell B can accommodate. Hence, the prefactor
wb × qb[Fb] is the configuration-averaged total charge of an occupied shell B. The
product Rbβ(r)Rbβ(r) stands for the charge density created by one of the particles
in shell B. The function Y0[ρdb ](r) symbolizes the monopole Coulomb potential
created by the configuration-averaged charge density ρdb(r). The direct interaction
�a|V b

dir|a� recovers the classical interaction energy between a charge in the quantum
state |a� (belonging to shell A) and the charge distribution created by all the
occupied orbitals in shell B, after spherically averaging.

Similarly, the configuration-averaged exchange potential created by a shell B
(with total angular momentum Fb) is V b

exc. Again, we have

�a|Vexc|a� =
�

Fb

qa�a|V b
exc|a�, (3.3.23)

in which V b
exc|a� =

�
α(V

b
exc|a�)α is an n-component vector with

(V b
exc|a�)α =

�

ν

[vbX ]α,νRaν(r). (3.3.24)

One can write the expression on the RHS above explicitly as

�

ν

[vbX ]α,νRaν(r) = (−1)Fb−Fa
�

k

Yk[ρχba](r)

��

µ

ckχ(lJaαFa; lJbµFb) Rbµ(r)

�
.

(3.3.25)
Here, the cross-density ρχba(r) between the two state |a� and |b� takes the following
form

ρχba(r) = wb × qb[Fb]×
�

β,ν

ckχ(lJbβFb; lJaνFa) Rbβ(r)Raν(r). (3.3.26)

Just as before, the prefactor wb × qb[Fb] is the configuration-averaged total charge
of shell B. The coefficient ckχ(lJbβFb; lJaνFa) results from an exchange Coulomb
vertex and its expression can be found in (3.3.8).

In (3.3.25), the allowed multipoles k do not need to be the monopole k = 0,
contrary to the case of direct interaction in which only the monopole term is present.
Note also that the direct density ρdb(r) in (3.3.22) contains the overlap of the wave
function |b� with itself and is formally on the order O((k ·p)0). For a single exciton,
the product Rbβ(r)Raν(r) contained in the cross-density ρχba(r) of the exchange
interaction is the overlap between a big and a small component, which is of the
order O((k · p)1). The direct interaction is therefore expected to be the main
contribution to the single exciton binding energy.

Regarding the self-energy Vself, one needs to evaluate the angular expression in
(3.2.15). This can be done easily by plugging (3.3.6) with Fb = Fc = Fd = Fa into
(3.2.15). In general, the value of the H-shape angular diagram in (3.3.6) depends
on the magnetic quantum number Ma. To obtain a configuration-averaged self-
energy potential, one again needs to average over the magnetic substates |FaMa�,
i.e. doing 1

[Fa]

�
Ma

. Interested readers can look up the derivation in the appendix
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Chapter C. Here, we quickly quote the final result. The configuration-averaged
self-energy potential Vself|a� =

�
α(Vself|a�)α has its α-component to be

(Vself|a�)α =
[Fa]

[k]

�

k

�
Yk[ρχa ](r)− Yk

0 [ρ
χ
a ](r)
�
��

µ

ckχ(lJaαFa; lJaµFa) Raµ(r)

�
,

(3.3.27)
where

ρχa(r) =
�

β,ν

ckχ(lJaβFa; lJaνFa) Raβ(r)Raν(r). (3.3.28)

Using the radial potentials above, Eq. (3.3.11) (and also Eq. (3.3.12)) can be
solved iteratively to obtain the HF total wave function |a� and energy level Ea for
a given occupied state.

3.4 Application to single exciton binding energy
One of the most important applications of the HF formulation is the evaluation
of the single exciton binding energy. In this section, we focus on discussing the
properties of perovskites, which are the materials of recent intense research [24,
136, 73]. We first will summarize the basic parameters of the k · p model. As
it turns out, there is a substantial disagreement between the measured reduced
mass and the calculated DFT values [10, 132]. Next, we provide some calculation
of the single exciton binding energy Ebind for the case of a homogenous medium
εout = εin = εeff in Subsection 3.4.2. At HF level, Ebind = EHF with Ne = Nh = 1.
Lastly, we shall discuss the effect of the surface polarization of a single dielectric
sphere, in which εout differs from εin in (3.2.3).

3.4.1 Input parameters for perovskites

Frankly, one of the biggest difficulties working with perovskites is the uncertain
nature of many basic parameters, such as the effective masses of electron and hole
in the bulk, the exact value of the Kane parameter Ep that determines the optical
transition strength, etc. Additionally, the 3-D crystal structure [58] and the band
gap Egap [110] also show an evident temperature dependence.

The ab initio calculation in Ref. [10] of the electronic band structure of CsPbBr3
give m∗

e = 0.134 and m∗
h = 0.128, which is in close agreement with Ref. [99]. The

calculated values of the effective masses, using DFT, generally underestimate the
reduced mass µ by a factor of 2 compared to the experimental value [132, 53]. Using
magneto-optical measurement at low T [132], the reduced mass µ and the binding
energy Ebind have been directly measured. From them, the effective dielectric
constant εeff can be deduced, using the hydrogen model.

As a reminder for perovskites, the VB is an s-like band while the CB is p-like.
Due to the spin-orbit coupling, the p-like CB splits into p1/2 and p3/2 bands, where
the latter is higher than the former by Δsoc ≈ 1 eV [138]. The momentum operator
�p connects the s-like band to p-like bands via the following matrix elements

P = �S|pz|Z� = �S|px|X� = �S|py|Y �. (3.4.1)
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As a result, one expects that both the p1/2 and p3/2 bands are connected to the
s1/2 valence band, under the k · p perturbation, to a similar extent. It seems likely
that they both contribute to the effective mass of s1/2 band. The Kane parameter
is defined as

Ep = 2P 2. (3.4.2)

Material
(phase) εeff µ Egap (eV) E4×4

p (eV) m∗
h m∗

e

CsPbBr3
(orthorhombic) 7.3 0.126 2.342 27.88 0.337 0.201

CsPbI3 (cubic) 10.0 0.114 1.723 22.67 0.295 0.186
FAPbBr3

(orthorhombic) 8.42 0.115 2.233 29.12 0.299 0.187

FAPbBr3
(tetragonal) 8.6 0.13 2.294 26.47 0.351 0.206

FAPbI3
(orthorhombic) 9.35 0.09 1.501 25.01 0.220 0.153

FAPbI3
(tetragonal) 11.4 0.095 1.521 24.02 0.235 0.160

MAPbBr3
(orthorhombic) 7.5 0.117 2.292 29.38 0.306 0.190

MAPbI3
(orthorhombic) 9.4 0.104 1.652 23.83 0.263 0.172

MAPbI3
(tetragonal) 10.9 0.104 1.608 23.19 0.263 0.172

Table 3.1: The reduced mass µ and the bulk band gap Egap are measured using magneto-
optical measurements. The effective dielectric constant εeff is derived from the bulk
binding energy [132, 53]. E4×4

p was estimated from equation (3.4.8), m∗
e and m∗

h estimated
from (3.4.4).

From (2.2.32) and the definitions of γh and γe underneath, we have

1

m∗
h

= γh +
1

3

Ep

Egap

1

m∗
e

= γe +
1

3

Ep

Egap

(3.4.3)

To obtain an estimate of Ep, we assume that, except s1/2 and p1/2 bands, the other
bands that are further away do not contribute to the effective masses at the band
edge. Thus, one has γh = −1 and γe = 1 in (3.4.3). The same approximation was
adopted in Ref. [106], which leads to

1

m∗
h

= −1 +
1

3

E4×4
p

Egap
,

1

m∗
e

= 1 +
1

3

E4×4
p

Egap
.

(3.4.4)
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By using the relation between the reduced mass µ and the effective masses m∗
e and

m∗
h, where

1

µ
=

1

m∗
e

+
1

m∗
h

, (3.4.5)

we get from (3.4.4) that
1

µ
=

2

3

E4×4
p

Egap
. (3.4.6)

By knowing the measured µ, we can calculate E4×4
p , which serves as a point of

reference for the true value of Ep for various materials, see Table 3.1. m∗
e and m∗

h

can be approximated by plugging E4×4
p just obtained to (3.4.4).

However, as argued before, the p3/2 band likely contributes to m∗
e of the s1/2

band. Again, by neglecting the contribution from the bands other than s1/2, p1/2
and p3/2, one should have γh = −1 + 2

3

E8×8
p

Egap+Δsoc
. This means that

1

m∗
h

= −1 +
1

3

�
E8×8

p

Egap
+

2E8×8
p

Egap +Δsoc

�
,

1

m∗
e

= 1 +
1

3

E8×8
p

Egap
,

(3.4.7)

which leads to
1

µ
=

2

3

�
E8×8

p

Egap
+

E8×8
p

Egap +Δsoc

�
. (3.4.8)

We use the fact that Δsoc is about 1.0 eV [101, 57] to estimate Ep as well as m∗
e

and m∗
h from (3.4.7) and (3.4.8). When the spin-orbit coupling is so strong that

Δsoc � Egap, the expression on the right of (3.4.6) reduces to that of (3.4.8).
The values of E8×8

p (or E4×4
p ), m∗

e and m∗
h above may be subjected to some

further errors when, for instance, there exists a nearby (higher-lying) band that
strongly connect to the s1/2 or p1/2 bands, similar to the situation of PbSe [2].

Undoubtedly, the relations in (3.4.6) and (3.4.8) produce different estimates for
Ep. The value of Ep from the same calculations [10] that produces the reduced
mass to be half of the experimental µ also differs from these estimations (E8

p × 8
and E4

p × 4) using the n× n k · p models. We are led to the opinion that the actual
values of Ep, m∗

e and m∗
h are uncertain. This motivates one to also check how the

relevant physical quantities, for example the single-exciton binding energy Ebind

and the biexciton/trion shift, depend on the various possible choices for Ep, m∗
e

and m∗
h.

Tables 3.1 and 3.2 summarize the following:

• The experimentally measured parameters that are (a) the crystal structure,
(b) the reduced mass µ, (c) the bulk band gap Egap and (d) the effective
dielectric constant εeff.

• The estimated quantities are (i) the Kane parameter, (ii) the electron and
hole effective masses m∗

e and m∗
h respectively.
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Material
(phase) εeff µ Egap (eV) E8×8

p (eV) m∗
h m∗

e

CsPbBr3
(orthorhombic) 7.3 0.126 2.342 16.39 0.217 0.300

CsPbI3
(cubic) 10.0 0.114 1.723 13.89 0.197 0.271

FAPbBr3
(orthorhombic) 8.42 0.115 2.233 17.23 0.195 0.280

FAPbBr3
(tetragonal) 8.6 0.13 2.294 15.60 0.226 0.306

FAPbI3
(orthorhombic) 9.35 0.09 1.501 15.63 0.151 0.224

FAPbI3
(tetragonal) 11.4 0.095 1.521 14.98 0.160 0.233

MAPbBr3
(orthorhombic) 7.5 0.117 2.292 17.32 0.199 0.284

MAPbI3
(orthorhombic) 9.4 0.104 1.652 14.68 0.177 0.252

MAPbI3
(tetragonal) 10.9 0.104 1.608 14.35 0.177 0.252

Table 3.2: The parameters µ, Egap and εeff are taken from Ref. [132] and Ref. [53]. E8×8
p

was estimated from equation (3.4.6), m∗
e and m∗

h from (3.4.7).

The parameters (a)–(d) are taken as certain (measured) and have the same values
in both tables. The values of the quantities (i)–(ii) depend on the choice of the k ·p
model.

For CsPbBr3, we use two parameter sets listed below (in the 4× 4 k · p model)
for the subsequent calculations in the next subsection as well as in Chapter 4 and
Chapter 5.

Parameter set 1:




εeff = 7.3, Egap = 2.342 eV
m∗

h = m∗
e = 2µ = 0.252

Ep = 20.00 eV
(3.4.9)

Parameter set 2:




εeff = 7.3, Egap = 2.342 eV
m∗

h = 0.217, m∗
e = 0.300

Ep = E8×8
p = 16.39 eV

(3.4.10)

For CsPbI3, we use parameter set 3 below, where m∗
e = m∗

h. The Kane param-
eter Ep is taken to be 17.0 eV, which is intermediate between E8×8

p and E4×4
p .





εeff = 10.0, Egap = 1.723 eV
m∗

h = m∗
e = 2µ = 0.228

Ep = 17.00 eV
(3.4.11)

In parameter set 1, the values of m∗
h and m∗

e are set to be the same. It has been
indicated that m∗

e and m∗
h should be approximately equal [51]. For CsPbBr3, we
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compare the calculated binding energy Ebind, biexciton and trion shifts for the two
parameter sets (3.4.9) and (3.4.10), see Fig. 3.4.5 and Fig. 4.3.8. These results
imply that the precise values of m∗

e and m∗
h are not absolutely important to study

most quantities of interest within the scope of this thesis.
However, the exact value of Ep is crucial for the understanding of the long-range

exchange interaction, see Section 4.2, and the electron-photon interband transitions
in Chapter 5. Obviously, the interband matrix element (see (5.2.10)–(5.2.12)) is
proportional to Ep. The long-range exchange interaction relies on the conduction-
valence band k · p mixing that fundamentally is controlled by Ep. In studying
these physical quantities, we shall let Ep vary in the range (0, 40) eV, where the
‘expected maximum’ Emax

p = 40 eV is the value that the actual Ep likely does not
exceed. We also take a middle point of this range, for example Ep = 20 eV for
CsPbBr3, as a ‘typical’ value of the Kane parameter. This value should be treated
as the one that may be close to the actual Ep, which can be eventually determined
by a first-principle approach or by some measurement.

The problem with the uncertainty of the basic input parameters necessitates
the need for a high-quality band-structure calculation, which goes beyond the DFT
approach, for instance the relativistic GW method [122], to correctly obtain the
individual effective masses of the s1/2 and p1/2 bands as well as the Kane parameter
Ep.

3.4.2 Single exciton binding energy

Here, we calculate the HF energy EHF in (3.3.16) for the system with Ne = Nh = 1.
Two perovskite materials, CsPbBr3 and CsPbI3, will be considered. As discussed
before, EHF is the first-order MBPT approximation to the energy of an exciton. The
lowest absorption peak of a single exciton, of which the energy approximately equals
to the emission energy, is assumed to results from the lowest exciton 1se1/2 − 1sh1/2.
The calculated EHF versus edge length L can be found in Fig. 3.4.1 for CsPbBr3
and Fig. 3.4.2 for CsPbI3.

We note two basic features in Fig. 3.4.1 and 3.4.2. On the one hand, the
theoretical predictions are a bit lower than the experimental PL peaks when L >
7 nm, i.e. at the large size end. On the other hand, at small sizes L < 3 nm,
the HF energy EHF generally overestimates the emission peaks. We propose the
following explanations for these discrepancies.

The input parameters listed in Tables 3.2 and 3.1 were all measured at T = 2K
[132, 53]. When the temperature rises from cryogenic temperature T = 2K to
room temperature T = 250K, the bulk band gap increases by about ΔEgap =
60 meV for CsPbBr3 and ΔEgap = 80 meV for CsPbI3 [132]. Hence, one expects
also that the 1se1/2 − 1sh1/2 exciton has higher energy as T increases. Canneson
et al., Ref. [20] (CsPbBr3) and Yin et al., Ref. [135] (CsPbI3) conducted their
measurements at cryogenic temperature, which explains their reasonable agreement
with our theory. The remaining experimental PL peaks in Fig. 3.4.1 and 3.4.2 were
measured at room conditions. For these experiments, we assume the energy gap
to be Egap(250K) = Egap(2K) + ΔEgap. In Fig. 3.4.3, we show the theoretical
(EHF−Egap) against the experimental excitation energy, which is defined to be the

57



emission energy minus Egap(T ). A marked improvement in the theory-experiment
agreement from Fig. 3.4.1 and Fig. 3.4.2.
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Figure 3.4.1: CsPbBr3, theoretical calcula-
tions for 1se1/2 − 1sh1/2 exciton energy and
the measured PL peaks versus edge length.
Dashed green: HF energy, solid blue line:
HF plus second-order MBPT energy. The
experimental data are taken from Prote-
sescu et al., Ref. [99]; Dong et al., Ref. [35];
Canneson et al., Ref. [20]; Brennan et al.,
Ref. [15]
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Figure 3.4.3: The theoretical calculations and the measured excitation energy, which is
the emission energy minus Egap, versus edge length L. Dashed green: HF energy, solid
blue line: HF plus second-order MBPT energy. The exciton was assumed to be in the
state 1s11/2 − 1s11/2. Egap has been adjusted to the experimental temperature.

The adjustment of the T-dependence Egap bridges the gap between the theoret-
ical curves and the experimental data points for L > 5 nm. However, the overesti-
mation at small size L, in fact, becomes worse. So far, we have been comparing the
theoretical calculations to the experimental PL peaks. A well-known phenomenon,
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called the Stokes shift [33, 71], was also observed in perovskite nanocrystals [15].
The first absorption peak has slightly higher energy (blue shift) compared to the
PL peak. It remains unclear whether the emission peak or the first absorption peak
is better at reflecting 1se1/2 − 1sh1/2 single exciton energy. However, the compari-
son in Fig. 3.4.3 is purely due to the more abundant published experimental data
on photoluminescence. Brennan et al. [15] shows a strong size-dependent Stokes
shift in CsPbBr3, where the shift is larger for a smaller nanocrystal. The Stokes
shift ranges from 20− 35 meV for the biggest nanocrystals L = 11.7− 12.8 nm to
approximately 100 meV for the smallest sizes L ∼ 3.0− 3.8 nm.

In addition to the Stokes shift, one can identify two other factors that affects the
theoretical calculations at small L. First, when one uses a more realistic confining
potential with a finite barrier, the fermionic wave function will spill out of the
nanocrystal into the external medium. This has an effect on reducing the particle
energy, which is more noticeable for smaller sizes due to their higher excitation
energies. Second, there may be some variation of εeff on the nanocrystal size [67],
where the effective dielectric constant seems to decrease for a more strongly confined
system. The calculation of how εeff potentially varies w.r.t. the size L requires
careful theoretical investigation. These issues lie beyond the scope of the current
thesis. We leave them as subjects for future studies.

Having discussed the issues with T-dependent Egap, the Stokes shift as well as
some possible dependence of εeff on the nanocrystal size L, we conclude that the
HF-level calculations for the 1se1/2 − 1sh1/2 exciton energies versus L are in reason-
able agreement with the experimental data. This implies that Hartree-Fock energy
works well for predicting Ebind of the lowest exciton state up to about 12.5 nm. In
the strong to intermediate confinement regime, the second-order MBPT correction
E(2) is relatively unimportant for the binding energy compared to the first-order
energy E(1), as shown in Fig. 3.4.4. (See the next chapter for the detailed formal-
ism.) For L � 4.5 nm, E(2) contribution is at most 6% of E(1). Up to L � 9.0 nm,
the ratio E(2)/E(1) between the second-order and first-order Coulomb energy is less
than 10%, which indicates a still modest contribution to the total single exciton
binding.

However, as one enters the weak confinement and the bulk limit, the correlation
energy represents a fairly large portion of Ebind as the HF energy EHF no longer
provides a sufficient answer. Take the calculation at L = 22.9 nm � aB = 3.1 nm,
the Bohr radius. The first- and second-order contributions to ECoul are E(1) =
33.4 meV and E(2) = 6.3 meV, which means E(2) is around 19% of E(1). When the
size L becomes larger in approaching the bulk limit, the ratio E (2)/E(1) will increase
even further. In the bulk crystal of CsPbBr3, the binding energy is Ebulk

bind = −33±
1 meV [132], which is in agreement with Ref. [140]. We assume that the hydrogen
model gives an adequate description of an exciton in the bulk. By applying the
virial theorem and using the fact that Ebulk

bind = Ekin + ECoul, one can arrive at the
kinetic energy Ekin = 33 meV and the total Coulomb energy ECoul = −66 meV.
Assuming that the binding energy for L = 22.9 nm is close enough to the bulk
value, the fraction of ECoul that is contributed by E(1) approximately is

η(1) =
E(1)

ECoul
≈ 50.6%. (3.4.12)
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When the second-order contribution E(2) is included, one accounts for about

η(2) =
E(1) + E(2)

ECoul
≈ 60.1% (3.4.13)

of the total Coulomb energy up to second-order MBPT.
Furthermore, we note that an all-order method (in Coulomb perturbation) is

needed to correctly reproduce Ebulk
bind. The correlation also further modifies the

electron and hole correlated wave functions and their kinetic energy. The values of
η(1) and η(2) above provide only a vague idea of how much of the actual correlation
energy of trions and biexcitons is captured by the second-order MBPT in the
intermediate to weak confinement regime (L � aB) in the next chapter. To fully
understand the effect of all-order correlation, explicit calculations are needed.
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Figure 3.4.4: 1se1/2 − 1sh1/2 single exci-
ton binding energy versus edge length L,
CsPbBr3. Dashed green line: first-order
MBPT (or HF), solid blue line: first-order
plus second-order MBPT.
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Figure 3.4.5: 1se1/2 − 1sh1/2 exciton energy
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parameter sets. Solid line: parameter set
1 (3.4.9), dashed line: parameter set 2
(3.4.10).

As established earlier, there are some uncertainties related to the exact value of
m∗

h, m∗
e and Ep. Using parameter sets 1 and 2, we show the HF exciton energy EHF

versus the nanocrystal size L on Fig. 3.4.5. Despite having slightly different values
of m∗

h and m∗
e, these parameter sets, (3.4.9) and (3.4.10), give almost identical

results for the exciton energy. This leads to the suspicion that, although m∗
h and

m∗
e are not known, the fact that (i) 1/µ = 1/m∗

h + 1/m∗
e and (ii) the effective

masses are approximately equal makes the precise values of m∗
h and m∗

e not crucial
to the current approach. Additionally, after adjusting Egap to the experimental
temperature (Fig. 3.4.3), the good agreement between the theoretical calculations
and the measured data also validates the basic assumption in the k · p model of
using bulk values for the basic input, especially m∗

h, m∗
e and εeff.

The Kane parameter Ep enters the calculations of Ebind as a k · p correction
of the order O((k · p)2). As discussed before, the biggest contribution to Ebind

comes from the direct interaction (3.3.21), which is of order O((k · p)0) ≡ O(1).
Thus, Ep is expected to be unimportant here. An effective mass model with the
same value of m∗

h an m∗
e will reproduce similar answers to those of the 4 × 4 k · p
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model. One problem with the k · p model is the existence of the spurious (or intra-
gap) solution(s) in the case where the actual value of Ep is large enough [124]. In
Subsection 4.2.5, we introduce a simple approach, by virtue of perturbation theory
in k ·p Hamiltonian, to extrapolate into the region of high Ep values and stay away
from the problem of the intra-gap states.

3.4.3 Effect of surface polarization

Size L (nm) EHF (eV)
with εout = εeff

EHF (eV)
with εout = 2.4

3.1 2.857 2.858

6.0 2.4573 2.4575

9.0 2.37487 2.3749

12.3 2.34534 2.34537

Table 3.3: The HF energy EHF of 1se1/2 − 1sh1/2 exciton CsPbBr3 nanocrystals for various
sizes for two cases, without the boundary charge εout = εeff and with the boundary charge
in which εout = 2.4. The parameter set 1, see (3.4.9), was used. The values of EHF were
rounded to the first decimal place where the calculations for εout = εeff and εout = 2.4
start to show any difference. We note that the two cases produce almost identical answers,
down to a relative error of less than 0.05%.

The effect of the boundary (or surface) charges is negligible and diminishes as
the size increases, see Table 3.3. The same observation about the tiny effect of the
surface polarization has been reported by Bányai et al., Ref. [9], or Delerue et al.,
Ref. [32].

In the case of a single dielectric sphere, the interaction of a particle with the
induced charge at the interface is contained in the second term of γk(r, r�) in (3.2.3).
The self-energy Vself, as defined in (3.2.14), represents the interaction between a
charge and its own induced surface charge and also comes from

(εin − εout)(k + 1)

εink + εout(k + 1)

(rr�)k

R2k+1
, (3.4.14)

of γk(r, r�).
In a (neutral) single exciton system, where the total charge is zero, the interac-

tion between an electron and the surface charge of a hole cancels the self-energy of
the electron almost exactly. Let us consider more explicitly the monopole k = 0 of a
single exciton, which gives the biggest contributions to VHF and Vself. The exchange
term Vexc vanishes for the monopole and only Vdir is present in the Hartree-Fock
potential VHF. By making use of the identities (C.1.4) for |a�, we can show from
the results (3.3.21)-(3.3.22) and (3.3.27)-(3.3.28) that the monopole of the image
charge in Vdir exactly cancels the k = 0 term of the self-energy. For the higher
multipoles k > 1, partial cancellations still exist between VHF and Vself due to them
sharing the same term, given in (3.4.14). An identical argument applies to a hole.
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Hence, the overall physical effect of the surface polarization charge induced at the
interface is very small, as shown in Table 3.3.

As a result, this cancellation leads to the fact that the remaining interaction can
be described by 1

εin

rk<
rk+1
>

. Heuristically, this term corresponds to the simple screening
by a homogeneous medium with dielectric constant εin, which is equivalent to
setting εout = εeff.

The simple dielectric sphere model does not capture the real situation where
(i) the dielectric function changes continuously from inside the nanocrystal to the
outside environment [66] and (ii) the dielectric function ε(�r) actually depends on
the size L and other atomistic effects. The second issue (ii) can be studied via some
ab initio method, which will supply useful and more complete input to the k · p
theory. To understand the situation (i) above while following the current line of
research, one can use the generalized Poisson equation. It permits, in combination
with a more general k ·p approach as outlined in Ref. [17, 18], the study of various
core-shell systems. This work is left for another publication.

Since the effect of the surface charge in the dielectric sphere model seems unim-
portant, to minimize the number of MBPT diagrams and to simplify the subsequent
calculations, we focus on the case of a homogenous medium with εeff in the next two
chapters. The precise effect of the surface polarization on the correlation energy,
in the case of either a dielectric sphere or a more general inhomogeneous medium,
can be a subject of future study.

62



Chapter 4

Many-body perturbation theory:
Coulomb correlation

The objective of this chapter is to construct a unified approach to study the dark-
bright exciton splitting as well as the energy shifts of biexciton and trions compared
to the single exciton emission. The exchange interaction that controls the previous
splitting receives significant correlation correction. The enhancement factor from
correlation is estimated to be about 2.5-3.5 in the intermediate confinement regime,
see Subsection 4.2.5 as well as Ref. [106]. For the nanocrystal systems, the corre-
lated effect is usually evaluated by using a variational method with a one-parameter
variational ansatz [118, 121, 10]. Here, we shall instead treat the correlation via
the method of many-body perturbation theory that can also be applied to the
calculations of biexciton and trion shifts.

Roughly speaking, the basic idea of many-body perturbation theory (MBPT) is
to look for the eigenstates of a Hamiltonian H∗ knowing the exact solutions {|ψ�, E}
of an approximated Hamiltonian H. A true eigenstate |ψ∗� of H∗ will be expanded
in the basis of {|ψ�}. The smaller the perturbative Hamiltonian V = H ∗ −H, the
faster the convergence of the MBPT. The exact form of V will be determined by
which basis {|ψ�, E} is used. The technical details of this chapter follow closely
the formulation in Ref. [75], especially Chapters 11-13.

The first section deals with the basic elements of MBPT that are the HF basis
set and its corresponding residual Coulomb interaction V . The dark-bright exciton
splitting, as discussed in Subsection 4.2.2, serves as the motivation for the open-
shell formalism or the degenerate many-body perturbation theory. We start with
the derivation for the short-range and long-range Coulomb interaction in subsection
4.2.1. It turns out that the long-range interaction has comparable contribution
as the short-range term to the previously mentioned splitting, contrary to the
conclusion in Ref. [119] for k · p theory. More recent publications [106, 121],
however, have recognized that the long-range term is non-vanishing. We shall
provide a clear derivation in the momentum space together with calculated results
for this fact. Subsections 4.2.3 and 4.2.4 discuss the first- and second-order MBPT
contributions to the long-range Coulomb interaction. The second-order diagrams
Fig. 4.2.2b act as vertex corrections to the first-order diagram Fig. 4.2.6 (lowest-
order in MBPT). The last part of Section 4.2 is devoted to the discussion of the
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long-range exchange splitting between dark and bright excitons up to second-order
MBPT.

The aim of Section 4.3 is to build a simple theory and an efficient numerical
method for computing the biexciton and trion shifts. Biexciton and trion (an exci-
ton with an additional electron or hole) emit at a different energy than the single
exciton emission due to the intercarrier interaction. The difference in the emit-
ted energy is referred to as biexciton and trion shifts. Correlation energy gives a
small contribution to the single exciton binding energy, see Fig. 3.4.3. However,
it has been shown that the biexciton/trion shift equals to almost zero from the
Hartree-Fock (or any mean-field) calculation [113] and comes purely from corre-
lated effects. For this purpose, we provide the basic results from the closed-shell
formalism, including the relevant Feynman diagrams and their explicit expressions,
in Subsection 4.3.1. The calculations of the shifts are presented in Subsection 4.3.2.
Thanks to a number of available measured data [21, 52, 135], we discuss the com-
parison between the experiments and our theory as well as the various sources of
theoretical errors.

The labelling of the orbitals goes as follows.

i) v and c denote an occupied hole (valence) and electron (conduction) respec-
tively.

ii) a, b, . . . denote occupied states of either electron or hole.

iii) p, q, s, r, . . . denote unoccupied states.

4.1 Many-body perturbation formalism

Once again, we consider a nanocrystal with Ne and Nh confined electrons and
holes respectively. To calculate the many-body corrections to the system energy,
for example, one needs to construct a set {|ψ�, E} of the basis functions and their
corresponding energy levels. In Subsection 4.1.1, the various possibilities of the ap-
proximated Hamiltonian H and the set of its eigenstates and eigenenergy {|ψ�, E}
will be discussed. We shall argue in favor of choosing the HF Hamiltonian

HHF = Hk·p + Vconf + VHF (4.1.1)

over the non-interacting Hamiltonian H0 = Hk·p + Vconf. In Subsection 4.1.2, we
write down the explicit form of the perturbative potential V related to the HHF

approximation of the exact Hamiltonian H∗.

4.1.1 Hartree-Fock basis set

From the discussion in Subsection 3.3.1, there are two immediate choices of {|ψ�, E}
for the system with Ne electrons and Nh holes. One possibility is the non-interacting-
particle basis (wave functions and energy levels) that is the solution of

(Hk·p + Vconf)|s�0 = E0
s |s�0. (4.1.2)
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Eq. (4.1.2) offers the ease of generating the whole basis set including the occupied
state |a�0 by using, for instance, the LAPACK solver ‘dgeev ’ for the eigenvectors
and eigenvalues of a general matrix, without performing any iteration.

Another way of generating the unoccupied states is to use the HF Hamiltonian.
We can obtain the full basis set (particle and hole) for MBPT calculations after
iterating the equation

(Hk·p + Vconf + VHF) |s� = Es|s� (4.1.3)

to self-consistency starting from some initial guess function and energy, for example
from {|s�0, E0

s} of Eq. (4.1.2).
The HF basis has several advantages over the one of non-interacting-particle

model. Firstly, in the intermediate or weak confinement regime or when Ne > 1 or
Nh > 1, the non-interacting particle picture, Eq. (3.3.18), is rendered inadequate.
Secondly, for a single exciton in its ground state, the energy of an unoccupied
electron-hole pair turns out to be within a few per cent relative error from the
actual HF energy. Thus, the transition energy of the higher exciton states can
be well approximated once one has generated the whole basis set. This fact is
particularly useful for obtaining the single-photon absorption spectrum. Lastly,
the use of the HF basis minimizes the number of diagrams in higher-order MBPT,
particularly at second-order [75]. This means that the second-order calculations
will be simplified analytically and numerically. When one needs to go beyond
second-order MBPT, for example by using configuration interaction, the HF basis
usually provide faster convergence as well.

The k · p Hamiltonian Hk·p, the confining potential Vconf and the configuration-
averaged HF potential VHF all possess spherical symmetry. Therefore, the solution
|s� of Eq. (4.1.3) can be separated into angular and radial parts. One has

|s� = 1

r

�

ν

Rsν(r)|(lsνJsν)FsMs�. (4.1.4)

Note that the unoccupied states |s� must be orthogonal to the occupied states
|a�, see the definitions in (3.2.6) for |a�. If |s� has a different angular momentum
than that of |a�, the two states are orthogonal as a result of the orthogonality of
their spherical harmonics. If |s� and |a� belong to the same angular momentum
channel, the radial integral

�
Rsν(r)Raα(r) dr = 0 due to the fluctuating sign of

Rsν(r)Raα(r). A Gram-Schmidt orthogonalization can be performed to ensure the
orthogonality in the latter case.

For the MBPT calculations, the HF basis set has been generated up to the
orbital angular momentum cut-off lcut-off = 10 and the cut-off ncut-off = 9 for the
principal quantum number n. The computation of the correlation energy, see the
later sections, converges extremely rapidly w.r.t. l and n, see Table 4.2. As a
demonstration, the cut-offs (lcut-off = 1, ncut-off = 2) gives about 80% of the answer
from (lcut-off = 10, ncut-off = 9) for second-order correlation energy. Putting lcut-off >
10 or ncut-off > 9 produces less than 0.1% difference in the calculated correlation
energy.
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4.1.2 Perturbative Coulomb potential

We have shown that the effective HF interaction between the Ne electrons and Nh

holes is U , which is given by (3.1.1). After configuration-averaging U , one obtains
the spherical HF potential VHF in (3.1.9). In this section, we follow the formalism
and convention in Ref. [75] (or Ref. [107] for a more advanced textbook). The
perturbative Coulomb potential for the MBPT can be decomposed as follows

V = V0 + V1 + V2, (4.1.5)

where V0, V1 and V0 are the zero-body, one-body and two-body parts respectively.
The zero-body term is

V0 = −
Nv+Nc�

a=1

�a|UN
HF|a�+

N0�

a=1

�a|U (0)
HF|a�. (4.1.6)

In the above formula, the sum
�Nv ,Nc

a=1 means summing over the Nv electrons in
the VBs and Nc electrons in CBs. Similarly,

�N0

a=1 is the sum over the ‘core’ states
in the nanocrystal ground state. 1 We note that V0 is just an energy constant
containing no creation or annihilation operator. Thus, it gives no perturbative
correction to the wave function and energy of the system since it does not connect
the model space to the states outside of the model space. Only V1 and V2 potentially
contribute to the MBPT series. 2

Let i, j, k and l denote arbitrary electron orbitals, either occupied or unoccu-
pied, in the VBs as well CBs. The one-body and two-body terms can be written
respectively as

V1 = −
�

i,j

�
i† j
�
�i|VHF|j�

=
�

i,j

�
i† j
�
�
−
�

C

wC�i|U c|j�+
�

V

wV �i|U v|j�
�
,

(4.1.7)

and
V2 =

1

2

�

ij,kl

�
i† j† l k

�
Vij,kl, (4.1.8)

where Vij,kl = �ij|G12|kl� is the general Coulomb matrix elements between the
states i, j, k, l. An expression for �ij|G12|kl� can be found in (3.3.10). The curly

1Despite the rather cumbersome look, formula (4.1.6) results from the direct application of
Chapter 11 of Ref. [75]. One only needs to keep in mind that the core particles are the N0

electrons in the semiconductor ground state. The mean-field potential u, which has been defined
in Ref. [75], is the HF potential UN

HF of the Ne conduction and Nv valence electrons in our
case. The effective potential �i|v|j� = �i|UN

HF − UN0

HF|j�, which becomes exactly �i|VHF|j�, after
configuration-averaging.

2For the ground state exciton 1se1/2 − 1sh1/2, in which the electron and hole states are denoted
as |c� and |v� respectively, V0 approximately equals to zero. To see this, one notes that V0 =

−�Nv

a=1�c|Ua|c� +�Nv

a=1�v|Ua|v�. When the electron and hole effective masses are similar, we
can reasonably assume that the 1s1/2 envelope functions of |c� and |v� are the same. Thus, the
terms −�c|Ua|c� and �v|Ua|v� roughly cancel. Hence, V0 ≈ 0.
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brackets {. . . } in (4.1.7) and (4.1.8) stand for normal ordering of the fermion opera-
tors. In a normal order, all the creation operators of valence states and annihilation
operators of conduction states appear to the right.

The diagrammatic representations of V1 and V2 are given in Fig. 4.1.1.

i

j

�i|VHF|j� =

(a) one-body term

i

k

j

l

�ij|G12|kl� =

(b) two-body term

Figure 4.1.1: Graphical representations of V1 and V2. An arrowed solid line represents
a fermion (including electron and hole) where an inwards/outwards pointing arrow indi-
cates an annihilation/a creation of the fermion. On the LHS of the graphs, we have the
associated algebraic expressions when the interacting vertices appear in a given Feynman
diagram.

4.2 Correlation for open-shell systems

We start this section by studying the short-range and long-range Coulomb interac-
tion. In general, the total Coulomb interaction is the sum of the short-range and
long-range terms. The derivation in Subsection 4.2.1 was inspired by the work in
Ref. [119, 97] though we provide the explicit angular-radial expressions here. The
energy splitting between the dark and bright excitons, as discussed in subsection
4.2.2, serves as the motivation for open-shell MBPT. In Subsections 4.2.3 and 4.2.4,
we provide the first- and second-order long-range contributions to the dark-bright
exciton splitting. In the final subsection, we calculate the long-range exchange
splitting as an application of these results.

4.2.1 Short-range and long-range Coulomb interaction

Below, the division of the Coulomb interaction into the short-range and long-
range parts will be given. Roughly speaking, this division originates from the
exchanged momentum at the Coulomb vertices, which is related to either the size
of the nanocrystal (mesoscopic length scale, long-range) or the size of each unit
cell (atomic length scale, short-range). Despite the topic being very interesting,
the technical details can be quite involved. The readers can safely take the final
results, as presented in (4.2.9) and (4.2.17), and move on to the next subsections.

For the clarity of the derivation, we focus on the case of the unscreened Coulomb
interaction G12 = 1/|�r1 −�r2|. The same method should be applicable, in principle,
for the case of a more general medium. G12 can be rewritten as the following
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Fourier integral
1

|�r1 − �r2|
=

�
4π

q2
ei�q·(�r1−�r2) d�q. (4.2.1)

In other words, 1/q2 is the Coulomb interaction in momentum-space representation,
where �q is understood to be the exchanged momentum between the particles at each
Coulomb vertex.

With a bit of generalization from Chapter 2, one can express the α-component
of the full wave function of the state |ψa� to be

ψaα(�r) =
�

�k

caα(�k) ei�k.�ruaα,k(�r), (4.2.2)

where the Bloch function uk(�r) is periodic w.r.t. the unit cells. More generally, the
envelope function is defined as

ξaα(�r) =
�

�k

caα(�k) ei�k.�r. (4.2.3)

By assuming that �k narrowly centers around a certain �k0, for instance �k0 = 0, one
has ψaα(�r) = ξaα(�r) uaα,�k0

(�r) and we recover precisely the expression (2.2.1).
For this thesis, we follow the convention in the appendix Chapter A. After tak-

ing the Fourier transform into the momentum space, the Coulomb matrix element
�ψaα,ψbβ|G12|ψcµ,ψdν� between the various k · p components turns into

�ψaα,ψbβ|
1

|�r1 − �r2|
|ψcµ,ψdν� =

�

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2)

�

�K�
1,
�K1

uaα
∗
,k�1
(�K�

1) ucµ,k1(
�K1)
�

�K�
2,
�K2

ubβ
∗
,k�2
(�K�

2) udν ,k2(
�K2)

4π

|�k1 − �k�
1 +

�K1 − �K�
1|2

δ(�k1 − �k�
1 +

�K1 − �K�
1 +

�k2 − �k�
2 +

�K2 − �K�
2).

(4.2.4)

Note that �K1/2 and �K�
1/2 are the wave vectors in the reciprocal lattice. It means

that �K ∼ 2π/a0, where a0 is the averaged distance between two adjacent points in
the Bravais lattice and a0 corresponds to the atomic length scale. On the other
hand, �k1/2 or �k�

1/2 are on the order of 2π/R, where R is the nanocrystal size (meso-
scopic). Clearly, R � a. Therefore, |�K1−�K�

1| or |�K2−�K�
2| � max(|�k1−�k�

1|, |�k2−�k�
2|).

If �K1 = �K�
1, one must have �K2 = �K�

2 for the δ−function in (4.2.4) to give non-
zero contribution. Or else, if �K1 �= �K�

1, note that unless (�K1 − �K�
1 +

�K2 − �K�
2) = 0,

(�k1 − �k�
1 +

�K1 − �K�
1 +

�k2 − �k�
2 +

�K2 − �K�
2) �= �0.

We claim here that the two cases (�K1 = �K�
1) and (�K1 �= �K�

1) give rise to the long-
range and short-range interactions respectively. The total Coulomb interaction
equals to the sum of these two terms. To see it, one needs to look at (4.2.4) in
further details.
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For the case where �K1 = �K�
1:
�

�K�
1,
�K1

�−→ �
�K1

and
�

�K�
2,
�K2

�−→ �
�K2

.
Therefore, this part of the Coulomb interaction in (4.2.4) is

�ψaα,ψbβ|
1

|�r1 − �r2|
|ψcµ,ψdν�LR

=
�

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2)
�

�K1

uaα
∗
,k�1
(�K1) ucµ,k1(

�K1)

4π

|�k1 − �k�
1|2

δ(�k1 − �k�
1 +

�k2 − �k�
2)
�

�K2

ubβ
∗
,k�2
(�K2) udν ,k2(

�K2).

(4.2.5)

By making the inverse Fourier transform into the position space, one has

�ψaα,ψbβ|
1

|�r1 − �r2|
|ψcµ,ψdν�LR =

�

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2)

�

�K1

1

v20

��

v0

uaα
∗
,k�1
(r̃�1) ucµ,k1(r̃1) e−i�K1.(r̃1−r̃�1) dr̃�1 dr̃1

�
1

r
ei(�k1−�k�1).�r d�r

�
ei(�k1−�k�1+�k2−�k�2).�r

�
d�r�
�

�K2

1

v20

��

v0

ubβ
∗
,k�2
(r̃�2) udν ,k2(r̃2) e−i�K2.(r̃2−r̃�2) dr̃�2 dr̃2.

(4.2.6)

In the above, r̃1, r̃�1, r̃2, r̃�2 denote the vectors within a unit cell of the crystal lattice.
We apply the identity (A.0.3) to the sums over �K1 and �K2. After regrouping the
terms in the integrals w.r.t. �r and �r�, the expression above becomes

�ψaα,ψbβ|
1

|�r1 − �r2|
|ψcµ,ψdν�LR =

�

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2)

��
e−i�k�2.�r

�
e−i�k�1.(�r

�+�r)1

r
ei�k1.(�r

�+�r)ei�k2.�r
�
d�r d�r�

1

v0

�

v0

uaα
∗
,k�1
(r̃1) ucµ,k1(r̃1) dr̃1

1

v0

�

v0

ubβ
∗
,k�2
(r̃2) udν ,k2(r̃2) dr̃2.

(4.2.7)

To lowest order in k · p theory, the orthogonality of the Bloch functions implies
that

1

v0

�

v0

uaα
∗
,k�1
(r̃1) ucµ,k1(r̃1) dr̃1 = δJaα,Jcµ ,

1

v0

�

v0

ubβ
∗
,k�2
(r̃2) udν ,k2(r̃2) dr̃2 = δJbβ ,Jdν .

(4.2.8)

Again, the notation δJaα,Jcµ carries the selection rule for the angular momentum �L

and pseudo-spin �J of the Bloch functions. See the expression (3.3.8) for ckχ and the
discussion thereon. At higher-order k · p perturbation, the above orthogonality is
slight corrupted, which leads to k · p corrections to the Coulomb matrix element
in (4.2.7). However, the effect of these terms are not important for the current
purposes and we shall omit them for now.
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Let us rename the variables as (�r� + �r) �→ �r1 and �r� �→ �r2. By substituting
the identities (4.2.3) and (4.2.8) into (4.2.7), we arrive at the following long-range
Coulomb interaction

�ψaα,ψbβ|
1

|�r1 − �r2|
|ψcµ,ψdν�LR = δJaα,Jcµ δJbβ ,Jdν

��
ξ∗bβ(�r2) ξ

∗
aα(�r1)

1

|�r1 − �r2|
ξcµ(�r1) ξdν(�r2) d�r1 d�r2.

(4.2.9)

The integration on the second line of (4.2.9) is over the envelope functions
of the total wave functions. The relevant length scale is the mesoscopic size of
the nanocrystals. Thus, the part with �K1 = �K�

1 of the total Coulomb interaction
(4.2.4) is called long-range interaction. The decomposition of (4.2.9) into radial
and angular parts has been given in Subsection 3.3.1. After summing over the k ·p
components, one can find the final result in (3.3.10).

For the case where �K1 �= �K�
1: As established above, the non-zero contribu-

tions only come from �K1 − �K�
1 +

�K2 − �K�
2 = 0. This leads to

δ(�k1 − �k�
1 +

�K1 − �K�
1 +

�k2 − �k�
2 +

�K2 − �K�
2) = δ(�k1 − �k�

1 +
�k2 − �k�

2) δ�K1−�K�
1,
�K�
2−�K2

.

For the double sums over the reciprocal lattice vectors,
�

�K�
1,
�K1

�−→��K1,�K�
1 �=�K1

and�
�K�
2,
�K2

�−→ ��K2,�K�
2 �=�K2

. We denote �ψaα,ψbβ| 1
|�r1−�r2| |ψcµ,ψdν�SR to be the value of

(4.2.4) in the case �K1 �= �K�
1 and �K2 �= �K�

2.
Furthermore, since |�k1−�k�

1| � |�K1−�K�
1|, we consider |�k1−�k�

1+
�K1−�K�

1| ≈ |�K1−�K�
1|

to simplify the subsequent algebraic manipulations. This approximation separates
(4.2.4) into Bloch and envelope parts.

The Bloch part of �ψaα,ψbβ| 1
|�r1−�r2| |ψcµ,ψdν�SR is

�

�K�
1

�K1 �=�K�
1

uaα
∗
,k�1
(�K�

1)ucµ,k1(
�K1)
�

�K�
2

�K2 �=�K�
2

ubβ
∗
,k�2
(�K�

2)udν ,k2(
�K2)

4π

|�K1 − �K�
1|2

δ�K1−�K�
1,
�K�
2−�K2

=
�

�K�
1

�K1 �=�K�
1

�

�K�
2

�K2 �=�K�
2

1

v20

��

v0

uaα
∗
,k�1
(r̃�1)e

i�K�
1.r̃

�
1ucµ,k1(r̃1)e

−i�K1.r̃1 dr̃1 dr̃�1

�

v0

1

r
ei(�K

�
1−�K1).r̃ dr̃

1

v0

�

v0

ei(�K
�
1−�K1+�K�

2−�K2).r̃� dr̃�
1

v20

��

v0

ubβ
∗
,k�2
(r̃�2)e

i�K�
2.r̃

�
2udν ,k2(r̃2)e

−i�K2.r̃2 dr̃2 dr̃�2.

(4.2.10)

The latter expression results from inverse Fourier transforming to the position
space. After summing over �K1, �K

�
1,
�K2, �K

�
2, we have the expressions in (4.2.10) to be

equal to
1

v50

�
· · ·
�

v0� �� �
×6

ubβ
∗
,k�2
(r̃�2) uaα

∗
,k�1
(r̃�1)

1

r
ucµ,k1(r̃1) udν ,k2(r̃2)

δ(r̃�1 + r̃ + r̃�) δ(r̃1 + r̃ + r̃�) δ(r̃� + r̃2) δ(r̃
� + r̃�2) dr̃ dr̃� dr̃1 dr̃�1 dr̃2 dr̃�2

=
1

v0

��

v0

ubβ
∗
,k�2
(r̃2) uaα

∗
,k�1
(r̃1)

1

|r̃1 − r̃2|
ucµ,k1(r̃1) udν ,k2(r̃2)dr̃1 dr̃2.
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The last line can be obtained by integrating over r̃, r̃� and then r̃�1, r̃
�
2. We define

the exchange αexch constant as follows

αexch(aα bβ, cµ dν) =
1

v0

��

v0

ubβ
∗
,k�2
(r̃2) uaα

∗
,k�1
(r̃1)

1

|r̃1 − r̃2|
ucµ,k1(r̃1) udν ,k2(r̃2).

(4.2.11)
In essence, αexch is the Coulomb interaction within a unit cell normalized over its
unit volume v0. Since the relevant length scale for αexch is roughly the distance be-
tween two points on the Bravais lattice, the term is called the short-range exchange
constant.

Now, we return to the envelope degree of freedom. One can perform an inverse
Fourier transform to δ(�k1 − �k�

1 +
�k2 − �k�

2).
�

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2) δ(�k1 − �k�
1 +

�k2 − �k�
2)

=

� �

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2) ei(�k1−�k�1+�k2−�k�2).�r d�r

(apply the definition (4.2.3))

=

�
ξ∗bβ(�r) ξ

∗
aα(�r) ξcµ(�r) ξdν(�r) d�r

=

��
ξ∗bβ(�r2) ξ

∗
aα(�r1) δ(�r1 − �r2) ξcµ(�r1) ξdν(�r2) d�r1 d�r2

= �aα, bβ|δ(�r1 − �r2)|cµ, dν�.

(4.2.12)

One combines the exchange constant (4.2.11) and the envelope part (4.2.12)
and finds the short-range Coulomb interaction to be

�ψaα,ψbβ|
1

|�r1 − �r2|
|ψcµ,ψdν�SR = αexch(aα bβ, cµ dν) �aα, bβ|δ(�r1 − �r2)|cµ, dν�.

(4.2.13)
As apparent from δ(�r1 − �r2), the envelope part of �ψaα,ψbβ| 1

|�r1−�r2| |ψcµ,ψdν�SR
takes the form of a contact interaction. In 3-D, the Dirac δ-function carries the
dimension of volume inverse. Therefore, one expects the short-range interaction to
scale as 1/R3, instead of 1/R as in the long-range counterpart.

We can make use of the following multipole expansion of the Dirac δ-function,

δ(�r1 − �r2) =
δ(r1 − r2)

r21

�

k

[k]

4π
�Ck
1 · �Ck

2

=
δ(r1 − r2)

r21

�

k

[k]

4π
× (−1)k

�
[k]
�
Ck

1Ck
2

�0
0
,

(4.2.14)

to decompose �aα, bβ|δ(�r1−�r2)|cµ, dν� into angular and radial parts. From (4.2.14)
and (3.2.5), it is clear that the contact interaction between the envelope functions
should have a similar angular decomposition as for the long-range Coulomb inter-
action in (3.3.10).
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By repeating the derivation (3.3.2)-(3.3.10) for a general Coulomb matrix ele-
ment as in Subsection 3.3.1, one can obtain the angular-radial expression for the
contact term. As the detailed derivation is quite tedious and fairly straightforward,
we just quote the final result for the contact interaction,

�aα, bβ|δ(�r1 − �r2)|cµ, dν� =
�

k

(−1)k
[k]

4π
Rk

δ (aα bβ, cµ dν)

− +

FaMa

FcMc

k

FbMb

FdMd

ck(aα bβ, cµ dν) × .
(4.2.15)

The ‘contact’ radial integral Rk
δ (aα bβ, cµ dν) is given as follows

Rk
δ (aα bβ, cµ dν) =

�
Rbβ(r) Raα(r)

1

r2
Rcµ(r) Rdν(r) dr . (4.2.16)

The full expression for the short-range interaction �ab|G12|cd�SR of a general
Coulomb interaction G12 becomes

− +

FaMa

FcMc

k

FbMb

FdMd

�ab|G12|cd�SR =
�

k X
k
SR(ab, cd) × ,

(4.2.17)

where the states |a�, |b�, |c� and |d� are defined in (3.2.6) and contain all the k · p
components. We note from (4.2.17) that the structure of the short-range Coulomb
interaction is as same as the long-range expression (3.3.10). Xk

SR is also called the
short-range reduced matrix element and is given as

Xk
SR(ab, cd) =(−1)k

[k]

4π

�

αβ,µν

Rk
δ (aα bβ, cµ dν)

ck(aα bβ, cµ dν) αexch(aα bβ, cµ dν).

(4.2.18)

4.2.2 Single exciton: dark versus bright states

In this subsection, the reader is quickly introduced to the classification of single
exciton states based on the total angular momentum of the electron-hole pair. As
theoretically predicted and experimentally observed [97, 93, 121], these various
exciton states with different total angular momenta have slightly different energy.
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The calculation of the energy differences serves as the motivation for the first- and
second-order open-shell MBPT.

For the system of Nc conduction and Nv valence electrons, the Coulomb poten-
tial VCoul dictates that the true conserved quantity is the total angular momentum
Ftot, which is the sum of all the angular momenta F ’s of the Nc +Nv electrons. In
the neutral ground state |∅� of a nanocrystal, the N0 electrons completely fill the
energy levels up to VBM. As a consequence, each energy level is fully occupied with
the electrons present in all magnetic substates and the total angular momentum of
the system is Ftot = 0.

In a neutral single exciton with Nc = 1 electron and Nh = 1 hole, the electron
occupies some conduction state |c� with the angular momentum and magnetic
quantum number (Fc,Mc) while there is another electron in |v� missing from the
valence state with (Fv,Mv). We note that for a hole, Fh = Fv and Mh = −Mv. In
second-quantization formalism, this single exciton state can be expressed as c†v|∅�,
i.e. one electron has been destroyed from |v� and brought to |c�. The angular state
of the remaining electrons in the same shell as |v� is |Fv (−Mv)� = |FhMh�. Except
for the shell that has total angular momentum Fv, all other energy levels in the VBs
are fully occupied. Hence, for a single exciton, its total angular momentum Ftot

is the sum of the angular momenta Fc and Fv. In other words, the angular states
|FcMc� of an electron and |FhMh� of a hole, where Mh = −Mv, are coupled to form
the exciton angular state |FtotMtot�. The associated Clebsch-Gordan coefficients
and their graphical representations are given as

Ceh(Fc Mc, FvMv;FM) = (−1)Fv−Mv�FcMc, FvMv|FM�

−

FcMc

FvMv

FM
= [F ]1/2 × , (4.2.19)

C∗
eh(FcMc, FvMv;FM) = (−1)Fv−Mv�FM |FcMc, FvMv�

FM

+

FcMc

FvMv

= [F ]1/2× . (4.2.20)

The phase factor (−1)Fv−Mv stems from the fact that a hole wave function is the cor-
responding time-reversed (complex conjugate) electron wave function. From Ref.
[37] or Ref. [14], under time-reversal symmetry, Y l

−m(θ,φ)
∗ = (−1)l−mY l

m(θ,φ).

|FtotMtot� =
�

Mc,Mv

Ceh(FcMc, FvMv;FtotMtot) |FcMc, FvMv�. (4.2.21)
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Upon emitting a single photon, the system makes the transition from a single
exciton state with Ne = Nh = 1 to |∅�. A photon has its angular momentum
lphoton = 1. The selection rule ΔFtot = 1 applies as a result of the conservation
of the total angular momentum of the exciton and the photon [14]. Under the
emission of a single photon, only the exciton states with Ftot = 1 can radiatively
decay into the ground state |∅� and, thus, are called the bright excitons. The
other exciton state(s) with Ftot �= 1 cannot transition to |∅� via emitting only one
photon and are called the dark exciton(s).

As a concrete example for lead halide perovskites (but not only), take the
1se1/2 − 1sh1/2 exciton. The conduction and valence electrons have Fc = 1/2 and
Fv = 1/2 respectively. When the angular momenta of the conduction and valence
electron are coupled to produce an exciton with total angular momentum Ftot, one
has the triangle inequality 0 = |Fc − Fv| ≤ Ftot ≤ |Fc + Fv| = 1. It means Ftot = 0
or Ftot = 1. Followed from the discussion above, only the exciton Ftot = 1 can
radiatively decay to |∅� by releasing one photon. The states with Ftot = 1 are
called the bright excitons while the Ftot = 0 exciton is dark.

Let E(Ftot) denote the energy of the exciton with Ftot. In a spherical model,
the magnetic substates |FtotMtot� of the same Ftot are degenerate. It turns out that
the exciton states with Ftot = 0 and Ftot = 1 have slightly different energy. The
dark-bright exciton splitting is the energy difference E(Ftot = 1)−E(Ftot = 0). The
contribution from the long-range Coulomb interaction, called ΔLR, to this energy
splitting will be shown in Subsection 4.2.5. Subsections 4.2.3 and 4.2.4 focus on
deriving the first- and second-order MBPT contributions to ΔLR.

At first-order MBPT, only the exchange diagram in Fig. 4.2.2, which comes
from the two-body V2 interaction, gives non-zero splitting as will be shown in
Subsection 4.2.3. At second-order MBPT, ΔLR receives non-zero contributions
from both the one-body V1 and two-body V2 interaction. It can be shown that the
diagrams containing V1 cancels some diagrams coming from only V2. This effectively
reduces the computation to a subset of second-order diagrams containing only the
two-body interaction. The two exchange diagrams in Fig. 4.2.6 are the vertex
corrections to the first-order exchange diagram, Fig. 4.2.2. Their contribution
to the total ΔLR varies depending on the confinement regime, i.e. on the size of
the nanocrystal. At large sizes, the second-order vertex correction can be quite
important, as seen in Fig. 4.2.9 and 4.2.10.

4.2.3 First-order correlation

We note to the readers here that there are two kinds of diagrams appearing in this
thesis: the angular momentum diagrams and the Feynman diagrams. In the former
case, a black solid line represents an angular momentum (integer or half-integer)
and its arrow, if there is any, carries an associated phase factor. The convention
used in the Feynman diagrams can be described as follows:

1) A blue or red solid line represents an electron or a hole (fermion) respectively.
An inwards or outwards pointing arrow indicates respectively the annihilation
or creation of the corresponding fermion. 3

3Even though it is not necessary, the colouring of the fermion lines seems useful for the
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2) Each horizontal dashed line represents a Coulomb interaction.

3) In Chapter 5, each photon is drawn by a wavy line. 4

Long-range interaction
The first-order MBPT correction to the energy of |FtotMtot� is

E
(1)
LR(Ftot) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot)

�∅|v�†c�(V1 + V2)c
†v|∅� Ceh(FcMc, FvMv;FtotMtot).

(4.2.22)

c

c� v

v c

c v�

v

Figure 4.2.1: First-order MBPT diagrams coming from V1.

We show briefly here that the first-order diagrams from the one-body term V1

in Fig. 4.2.1 do not contribute to the energy of an exciton and thus do not give
rise to the dark-bright exciton splitting.

Consider the matrix element �∅|v�†c� V1 c†v|∅� for a single exciton, where V1

is given in (4.1.7). There are two ways of performing the Wick contraction of the
first-order term (−�∅|v�†c��i,j

�
i† j
�
�i|VHF|j�c†v|∅�):

• j �→ c and i �→ c�, v ≡ v�.

The associated matrix element is (
�

V wV �cv|G12|cv�).

• i �→ v and j �→ v�, c ≡ c�.

The matrix element, in this case, is (−�C wC�vc|G12|vc�). 5

The Wick phases coming from the two contractions above are

�∅|v†c�
�
i† j
�
c†v|∅� = +1,

�∅|v�†c
�
i† j
�
c†v|∅� = +1.

(4.2.23)

discussion in the next two subsections.
4In principle, an inwards/outwards arrow also implies the absorption/emission of a photon, as

used in Fig. 5.1.1. However, in calculating the transition amplitude and the vertex correction of
a one-photon process, the detail knowledge of whether it is an absorption or emission process is
not very important.

5We note that v and v� (or c and c�) are just two different magnetic substates belong-
ing to the same valence (or conduction) energy level. Therefore, after configuration-averaging,�

V wV �c�v|G12|cv� =
�

V wV �cv|G12|cv� and
�

C wC�vc|G12|v�c� =
�

C wC�vc|G12|vc�.
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For the single exciton 1se1/2−1sh1/2, the weight factors are wC = wV = 1
2
. There-

fore, the contributions of the two contractions of the one-body term V1 have the
same absolute value but opposite signs. Consequently, the sum of the diagrams in
Fig. 4.2.1 gives zero and only the two-body potential V2 gives non-zero contribu-
tion, as shown below.

Consider the two-body matrix element, in which Vij,kl = �ij|G12|kl�,

�∅|v�†c� V2 c†v|∅� = 1

2

�

ijkl

Vij,kl �∅|v�†c�
�
i† j† l k

�
c†v|∅�. (4.2.24)

There are two pairs of equivalent Wick contractions of �∅|v �†c�
�
i† j† l k

�
c†v|∅�

as follows




�∅|v�†c�
�
i† j† l k

�
c†v|∅� = −�∅|v�†c�

�
c�†v�v†c

�
c†v|∅� = −1,

�∅|v�†c�
�
i† j† l k

�
c†v|∅� = −�∅|v�†c�

�
c�†v�v†c

�
c†v|∅� = −1.

(4.2.25)

The contractions in (4.2.25) have the same Coulomb matrix element (with the Wick
phase included)

−Vvc�,v�c = −Vc�v,cv� = −�c�v|G12|cv��.

Therefore, they contribute a factor of 2 that cancels with 1
2

in (4.2.24). The same
applies for the contractions in (4.2.26) with the Wick phases equal to 1 and their
corresponding Coulomb matrix element to be

Vvc�,cv� = Vc�v,v�c = �vc�|G12|cv��.




�∅|v�†c�
�
i† j† l k

�
c†v|∅� = �∅|v�†c�

�
c�†v�v†c

�
c†v|∅� = +1,

�∅|v�†c�
�
i† j† l k

�
c†v|∅� = �∅|v�†c�

�
c�†v�v†c

�
c†v|∅� = +1.

(4.2.26)

The two sets of equivalent Wick contractions in (4.2.25) and (4.2.26) correspond
to the following two diagrams in Fig. 4.2.2, that are called direct and exchange
diagrams respectively.

When the Coulomb interaction is expressed in multipole expansion, one has

D1
d = −Vc�v,cv� = −�c�v|G12|cv�� = −

�

k

Xk(cv, cv) D1
d(k), (4.2.27)

D1
x = Vvc�,cv� = �vc�|G12|cv�� =

�

k

Xk(vc, cv) D1
x(k). (4.2.28)
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c�

c

v�

v

D1
d =

(a) Direct diagram

D1
x =

c v

c� v�

(b) Exchange diagram

Figure 4.2.2: The first-order MBPT diagrams coming from V2. In contrast to D1
d, the

‘particle type’ changes at each Coulomb vertex in D1
x from electron to hole, or equivalently

from conduction to valence band and vice versa. These changes in ‘particle type’ are
across-the-gap excitations.

− +

Fc�Mc�

FcMc

k

FvMv

Fv�Mv�

D1
d(k) = − +

FvMv

FcMc

k

Fc�Mc�

Fv�Mv�

D1
x(k) =

Figure 4.2.3: The angular diagrams D1
d(k) and D1

x(k) for the k-pole in the multipole
decompositions of D1

d and D1
x given in (4.2.27) and (4.2.28).

The Coulomb reduced matrix element Xk(ab, cd) was defined in (3.3.9). 6 The
k-pole angular diagrams of the direct and exchange interactions can be found in
Fig. 4.2.3.

For the ground state exciton 1se1/2 − 1sh1/2, Fc = Fc� = 1/2 and Fv = Fv� =

1/2. Implicit in the direct and exchange angular diagrams Dd(k) and Dx(k) are
the triangle inequalities (Fc, Fc, k) (or equivalently (Fv, Fv, k)) and (Fc, Fv, k) that
require

|Fc − Fc� | = 0 ≤ k ≤ 1 = |Fc + Fc� |,
and

|Fc − Fv| = 0 ≤ k ≤ 1 = |Fc + Fv|.
Therefore, only k = 0 and k = 1 multipoles are allowed for Dd(k) and Dx(k) in
Fig. 4.2.3.

In the direct diagram D1
d, the particle type (electron or hole) does not change

at each interaction vertex. In order to make the reduced matrix element �ll||Ck||lr�
in (3.3.8) non-zero, (ll + k + lr) must be an even integer. This fact together with
the selection rule δJl,Jr from ckχ restricts the k-poles in D1

d to only the monopole
k = 0. Once more, the direct interaction recovers the classical Coulomb interaction

6We note that the reduced matrix element Xk does not depend on the magnetic substates.
Hence, Xk(c�v, cv�) = Xk(cv, cv) and Xk(vc�, cv�) = Xk(vc, cv).
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between the charge density distributions. It is this type of interaction that gives
the most contribution to the binding energy of a single exciton.

At each Coulomb vertex of the exchange diagram, there is change of particle
type (from electron to hole and vice versa). The Coulomb interaction scatters the
particles across the gap and leads to reshuffling of the magnetic substates. This
phenomenon, which has no classical analogy, contributes to the energy splitting
between the dark and bright exciton. At each vertex where the particle type
changes, the radial integral (3.3.3) contains twice the overlaps between the big and
small components of the k · p solution of the HF Eq. (3.3.11). Each overlap of
this kind brings in an extra order in k · p perturbation. Therefore, the exchange
diagram in (4.2.28) is on the order of O((k ·p)2) and should be proportional to Ep.

The first-order correction (4.2.22) becomes

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot) �∅|v�†c� V2 c†v|∅� Ceh(FcMc, FvMv;FtotMtot)

=
�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot) (D1

d +D1
x) Ceh(FcMc, FvMv;FtotMtot)

=
�

Mc�Mv�
McMv

�

k

�
Xk(cv, cv)D1

d(k) +Xk(vc, cv)D1
x(k)
�

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot) Ceh(FcMc, FvMv;FtotMtot).

Note that the reduced matrix elements Xk(vc, cv) and Xk(cv, cv) do not depend
on the magnetic substates. For each k, the sums

�
Mc�Mv�
McMv

can be individually

performed. We define the first-order exciton angular diagrams to be

Dexc
1,d (k) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot) D

1
d(k) Ceh(FcMc, FvMv;FtotMtot)

= (−1)Fc+Fv+Ftot




Fv� k Fv

Fc Ftot Fc�



 ,

(4.2.29)

Dexc
1,x (k) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot) D

1
x(k) Ceh(FcMc, FvMv;FtotMtot)

=
(−1)Fc−Fv+Ftot

[Ftot]
δFtotk.

(4.2.30)

The derivations for the final expressions in (4.2.29) and (4.2.30) of the angular
diagrams Dexc

1,d (k) and Dexc
1,x (k) for a single exciton are given in Sections D.1 and

D.2 of the appendix. Obviously from (4.2.29) and (4.2.30), the values of Dexc
1,d (k)

and Dexc
1,x (k) are independent of the magnetic substates. The first-order MBPT
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correction to the exciton energy is

E
(1)
LR(Ftot) =

�

k

�
−Xk(cv, cv) Dexc

1,d (k) +Xk(vc, cv) Dexc
1,x (k)

�
. (4.2.31)

Also, Xk(vc, cv) and Xk(cv, cv) do not depend on the total angular momen-
tum Ftot of the exciton. As established previously, Xk(cv, cv) of the k = 1
dipole term vanishes. From (4.2.29), the values of Dexc

1,d (k = 0) for Ftot = 0 and
Ftot = 1 are equal to 1

2
for 1se1/2 − 1sh1/2 exciton. In consequence, the direct term�

k X
k(cv, cv) Dexc

1,d (k) does not give rise to dark-bright exciton splitting.

In the exchange angular expression (4.2.30), due to the selection rule δFtotk,
only k = 0 (or k = 1) term is non-zero for the dark exciton Ftot = 0 (or the bright
exciton Ftot = 1). Dexc

1,x (k) receives a different value depending on whether k = 0
or k = 1. Therefore, the exchange interaction Xk(vc, cv) Dexc

1,x (k) is expected to
introduce some energy splitting between the dark and the bright exciton.

Short-range exchange interaction

In general, the short-range Coulomb interaction also contains direct and ex-
change parts, which contribute to the binding energy. The short-range coefficient
αexch in (4.2.17) contains 4π/|�K1 − �K�

1|2, in contrast to 4π/|�k1 − �k�
1|2 in the case

of long-range Coulomb interaction. Since |�k1 − �k�
1|/|�K1 − �K�

1| is on the order of
a0/R � 1, the contribution from the short-range interaction to the exciton binding
energy is of the order of O ((a0/R)2) and, hence, seems unimportant in comparison
with the long-range direct interaction.

As one can see from (4.2.17), the structure of the short-range term is the same
as the long-range counterpart. Hence, the angular parts of the direct and exchange
short-range interaction of a single exciton are precisely Dexc

1,d (k) and Dexc
1,x (k). The

short-range contribution to the exciton energy at first-order MBPT is

E
(1)
SR(Ftot) =

�

k

�
−Xk

SR(cv, cv) D
exc
1,d (k) +Xk

SR(vc, cv) D
exc
1,x (k)

�
, (4.2.32)

where the short-range reduced matrix element Xk
SR is given in (4.2.18). For pre-

cisely the same reason as for long-range interaction, only the exchange interaction
participates in the dark-bright exciton splitting.

The long-range exchange interaction is of the order O ((k · p)2), as previously
established, while the short-range exchange interaction is O ((a0/R)2). Therefore,
we expect the two contributions to the dark-bright exciton splitting to be of equal
importance. The short-range exchange interaction has been more thoroughly inves-
tigated in the literature [93, 10, 120]. The focus of our calculations in this thesis is
on the long-range exchange contribution since less theoretical work has been done
on the topic [48].
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4.2.4 Second-order correlation

In this subsection, we aim to evaluate the second-order MBPT corrections to the
exciton energy. This amounts to calculating the following matrix element
�

Mc�Mv�
McMv

�

pq

�∅|v�†c� (V1 + V2) p
†q|∅� 1

(�c + �v)− (�p + �q)
�∅|q†p (V1 + V2) c

†v|∅�,

(4.2.33)

where �c, �v, �p and �q denote the electron energy levels. The energy �q of an electron
in the valence state |q� has the opposite sign to a hole state of energy �h in the
same level, i.e. �q = −�h.

We only calculate the second-order corrections that are lowest in k ·p perturba-
tion. Roughly speaking, these are the diagrams containing the lowest-order MBPT
corrections to the first-order diagrams in Fig. 4.2.2. For the direct and exchange
interaction, they are respectively the ladder diagram, Fig. 4.2.4a, and the vertex
corrections, Fig. 4.2.6. At second-order MBPT in the perturbative Coulomb po-
tential V , the diagrams that have higher k · p corrections are formally O((k · p)2)
times the lowest-order diagrams. Their total contribution is thus expected to be
insignificant to the ones in Fig. 4.2.4a and Fig. 4.2.6.

We note that there exist other second-order diagrams consisting of the one-
body term V1, which has been given in (4.1.7). These diagrams can be shown to
cancel partly the two-body diagrams Fig. 4.2.4a and Fig. 4.2.6 where |p� and |c�
(or |q� and |v�) are in the same shell. As a final result,

�
pq actually denotes the

sum over shells P and Q and all of their magnetic substates such that P �= C and
Q �= V . Later, any

�
FqFp

implies summing over the conduction and valence shells
P and Q, with total angular momentum Fp and Fq, that are different from C and
V respectively.

D2
d =

c v

c� v�

p q

(a) Feynman diagram

Dd(k1, k2) =

Fc Fv

Fc� Fv�

Fp Fq

k2

k1
−

−

−

−

(b) Angular diagram

Figure 4.2.4: Second-order MBPT direct ladder diagram, left: Feynman diagram, right:
the corresponding angular diagram.

The Feynman diagram D2
d in Fig. 4.2.4a provides the MBPT correction from

the electron-hole pair excitation. The upward-arrowed blue lines in Fig. 4.2.4a
represent the conduction electrons. The downward-arrowed red lines stand for
the valence electrons, in other words the holes. The annihilation/creation of a
valence electron (with an arrow going in/out of a vertex) is equivalent to cre-
ation/annihilation of a hole.
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The actual process can be described in two stages: During the first stage, a
conduction electron in |c� makes a transition to an unoccupied state |p� while
another electron in the valence state |q� is destroyed and recreated in |v�, leaving
a ‘hole’ in |q�. In the second stage, the electron in |p� comes down to |c�� and, at
the same time, an electron moves from |v�� to fill the state |q�.

The expression for the diagram D2
d is

D2
d = (+1)× 4×

�

pq

1
2
�c�q|G12|pv��12�pv|G12|cq�
(�c + �q)− (�p + �v)

=
�

pq

�c�q|G12|pv���pv|G12|cq�
(�c + �q)− (�p + �v)

.

(4.2.34)

Here, the Wick phase (+1) comes from the Wick contractions in (4.2.35). Since
there are four equivalent ways of Wick contracting, as listed in the first two lines
of (4.2.35), there should be a multiplicative factor of 4. This combines with ( 1

2
)2

to give the overall prefactor equal to 1.

�∅|v�†c�
�
i† j† l k

��
m† n† s r

�
c†v|∅� = �∅|v�†c�

�
i† j† l k

��
m† n† s r

�
c†v|∅�

=�∅|v�†c�
�
i† j† l k

��
m† n† s r

�
c†v|∅� = �∅|v�†c�

�
i† j† l k

��
m† n† s r

�
c†v|∅�

=�∅|v�†c�
�
c�† v� q† p

��
p† q v† c

�
c†v|∅� = +1

(4.2.35)

After separating the angular part D2
d(k1, k2) by using the result in (3.3.10), D2

d can
be expressed compactly as 7

D2
d =
�

k1k2

�

FqFp

Xk2(cq, pv)Xk1(pv, cq)

(�c + �v)− (�p + �q)
D2

d(k1, k2). (4.2.36)

As it will be shown in Subsection 4.2.5, even though the absolute value of the
second-order direct diagram is larger than the second-order exchange diagrams, Fig.
4.2.6, the amount contributed to the dark-bright exciton splitting is surprisingly
negligible.

For systems with more than one electron or one hole, apart from the direct
interaction between particles in a conduction and a valence state as depicted in
Fig. 4.2.4a, there exist other ladder diagrams that represent the electron-electron
or the hole-hole interaction as given in Fig. 4.2.5. When c1 is joined to c�1 and c2
to c�2, we recover the closed-shell diagram in Fig. 4.3.1a. If the order of joining of
the external legs are exchanged, i.e. c1 to c�2 and c2 to c�1, we get the left diagram
in Fig. 4.3.3. The similar conclusions hold for the right diagram in Fig. 4.2.5 for
hole-hole interaction.

7Again, for v and v� coming from the same shell and similarly for c, c�, Xk2(c�q, pv�) =
Xk2(cq, pv). An analogous situation is true in going from (4.2.37) and (4.2.38) to (4.2.41) and
(4.2.42), Xk2(c�q, pv�) = Xk2(cq, pv) and Xk2(qc�, pv�) = Xk2(qc, pv).
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c1 c2

c�1 c�2

p1 p2

v1 v2

v�1 v�2

q1 q2

Figure 4.2.5: The second-order ladder diagrams for systems with more than one electron
or hole, left: electron-electron interaction, right: hole-hole interaction. By joining the
free ends, we obtain the closed-shell diagrams in Fig. 4.3.1a, 4.3.1b and 4.3.3.

D2
x1 =

c v

p q

c� v�

D2
x2 = p q

c� v�

c v

Figure 4.2.6: Second-order MBPT exchange diagrams. The two diagrams correspond to
the vertex corrections for the two vertices of first-order exchange interaction.

At second-order MBPT, there are two dominant Feynman diagrams D2
x1 and

D2
x2 that work as the vertex corrections to D1

x on the right of Fig. 4.2.2. The
expressions for these second-order corrections are

D2
x1 = (−1)× 4×

�

pq

1
2
�c�q|G12|pv��12�vp|G12|cq�
(�c + �v)− (�p + �q)

= −
�

pq

�c�q|G12|pv���vp|G12|cq�
(�c + �v)− (�p + �q)

,

(4.2.37)

D2
x2 = (−1)× 4×

�

pq

1
2
�qc�|G12|pv��12�pv|G12|cq�
(�c + �v)− (�p + �q)

= −
�

pq

�qc�|G12|pv���pv|G12|cq�
(�c + �v)− (�p + �q)

.

(4.2.38)
In (4.2.37) or (4.2.38) above, the factor 4 comes from the four equivalent Wick

contractions as can be seen in (4.2.39) for D2
x1 and (4.2.40) for D2

x2 . Each of the
contractions gives the Wick phase equal to (−1).
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(4.2.39)
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��
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�
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(4.2.40)

Again, we can apply (3.3.10) and get the following angular-radial decomposi-
tions of the vertex corrections

D2
x1 = −

�

k1k2

�

FpFq

Xk2(cq, pv)Xk1(vp, cq)

(�c + �v)− (�p + �q)
D2

x1(k1, k2), (4.2.41)

D2
x2 = −

�

k1k2

�

FpFq

Xk2(qc, pv)Xk1(pv, cq)

(�c + �v)− (�p + �q)
D2

x2(k1, k2), (4.2.42)

where the angular diagrams D2
x1(k1, k2) and D2

x2(k1, k2) are given in Fig. 4.2.7 and
Fig. 4.2.8.

− +

Fc�Mc�

FpMp

k2

FqMq

Fv�Mv�

D2
x1(k1, k2) =

�
MpMq

− +

FvMv

FcMc

k1

FpMp

FqMq

× .

Figure 4.2.7: Angular diagram D2
x1(k1, k2) associated with D2

x1

The second-order correction to the energy of the exciton angular state |FtotMtot�
can be written as

E
(2)
LR(Ftot) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot)

�
D2

d +D2
x1 +D2

x2

�
Ceh(FcMc, FvMv;FtotMtot).

(4.2.43)
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− +

FqMq

FpMp

k2

Fc�Mc�

Fv�Mv�

D2
x2(k1, k2) =

�
MpMq

− +

FpMp

FcMc

k1

FvMv

FqMq

× .

Figure 4.2.8: Angular diagram D2
x2(k1, k2) associated with D2

x2

The reduced matrix elements Xk1 and Xk2 are independent of the magnetic
substates Mc, Mv, Mv� and Mc� . Therefore, the sum over the magnetic substates
are only performed on the angular parts D2

x1(k1, k2) and D2
x2(k1, k2). We define the

exciton angular diagrams at second-order MBPT to be

Dexc
2,d (k1, k2) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot)

D2
d(k1, k2) Ceh(FcMc, FvMv;FtotMtot),

(4.2.44)

Dexc
2,x1(k1, k2) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot)

D2
x1(k1, k2) Ceh(FcMc, FvMv;FtotMtot),

(4.2.45)

Dexc
2,x2(k1, k2) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;FtotMtot)

D2
x2(k1, k2) Ceh(FcMc, FvMv;FtotMtot).

(4.2.46)

Interested readers can look for the derivation of (4.2.44)-(4.2.46) in section D.4
of the appendix. Here, we mention just the explicit values of the exchange angular
diagrams above.

Dexc
2,d (k1, k2) = (−1)Fv−Fc+Fq−Fp




Fv� Fq k2

Fp Fc� Ftot








Fq Fv k1

Fc Fp Ftot



 , (4.2.47)

Dexc
2,x1(k1, k2) = Dexc

2,x2(k1, k2) = −(−1)Fc+Fv+Fp+Fq

[Ftot]




Fv Fc Ftot

Fp Fq k1



 δk2,F .

(4.2.48)

The second-order MBPT contribution to the exciton energy takes the following
final expression

E
(2)
LR(Ftot) =

�

k1k2

�

FqFp

1

(�c + �v)− (�p + �q)

�
Xk2(cq, pv)Xk1(pv, cq) Dexc

2,x1(k1, k2)

−Xk2(cq, pv)Xk1(vp, cq) Dexc
2,d (k1, k2)−Xk2(qc, pv)Xk1(pv, cq) Dexc

2,x2(k1, k2)
�
.

(4.2.49)
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The exciton angular diagrams Dexc
... are given in (4.2.29)-(4.2.30) and (4.2.47)-

(4.2.48) as products of phase factors, fractions of integers and 6j-symbols. These
expressions can be easily evaluated, even by hand. Once a subroutine for the
reduced matrix element Xk exists, see (3.3.9), the evaluations of E

(1)
LR(Ftot) and

E
(2)
LR(Ftot) become extremely straightforward and efficient. As an application of

(4.2.31) and (4.2.49), we show in the next Subsection the calculations of the long-
range dark-bright exciton splitting.

4.2.5 Application to dark-bright exciton splitting

Before we start the technical discussion, it is important to remark that, in this
thesis, the energy splitting is between the Ftot = 0 and Ftot = 1 excitons. All
the magnetic substates of Ftot = 1 are completely degenerate. To have a more
complete study of the single exciton fine structure, one needs to go beyond the
spherical models. Non-spherical effects such as crystal field and shape deformation
[12, 88], Rashba effect [19, 91, 60] etc. must be included. These effects will not
only add to the energy difference between Ftot = 0 and Ftot = 1 but will also split
the various magnetic substates of the bright exciton. As discussed at the end of
Subsection 4.2.3, we focus on the long-range splitting in the current application.

We define the first- and second-order contributions from long-range interaction
to dark-bright exciton splitting to be

Δ
(1)
LR = E

(1)
LR(Ftot = 1)− E

(1)
LR(Ftot = 0) , (4.2.50)

Δ
(2)
LR = E

(2)
LR(Ftot = 1)− E

(2)
LR(Ftot = 0) . (4.2.51)

The long-range (LR) splitting is defined to be the sum of the first- and second-order
contributions.

ΔLR = Δ
(1)
LR +Δ

(2)
LR. (4.2.52)

Note that ΔLR does not include all of the splitting between Ftot = 0 and Ftot = 1
exciton. The terms that are higher-order in MBPT have been omitted.

In Fig. 4.2.9, the dark-bright exciton splitting ΔLR is plotted against the edge
length L for a cubic nanocrystal by using the parameter set 1 (3.4.9). Most of the
contribution to the splitting ΔLR comes from the exchange interaction. Therefore,
ΔLR is sometimes referred to as the exchange splitting. The direct diagram D2

d

in Fig. 4.2.4a, despite having a bigger contribution to the exciton binding energy
than the exchange diagrams D2

x,1 and D2
x,2 in Fig. 4.2.6, gives almost no splitting

between the dark and the bright exciton.
The vertex correction from the second-order MBPT diagrams in Fig. 4.2.6

result in a strong enhancement of the first-order exchange diagram D1
x, see Fig.

4.2.2b. Let us define the vertex enhancement factor to be

βLR =
ΔLR

Δ
(1)
LR

= 1 +
Δ

(2)
LR

Δ
(1)
LR

. (4.2.53)

The first-order term Δ
(1)
LR is the lowest-order, non-zero MBPT contribution to

the dark-bright exchange splitting. βLR reflects the relative importance of the
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second-order contribution Δ
(2)
LR over the first-order contribution Δ

(1)
LR to the ex-

change splitting. Approximately, βLR depends linearly on the size L, as shown
in Fig. 4.2.10. A heuristic explanation of this linear dependence is as follows.
The expressions (4.2.41) and (4.2.42) for the second-order corrections contain two
Coulomb interactions G12 on the numerator and an excitation energy (�c+�v)−(�p+
�q) in the denominator. Each Coulomb term G12 scales as 1/L whereas the excita-
tion energy is 1/L2. Therefore, the ratio (D2

x,1 +D2
x,2)/D1

x is roughly proportional
to L.
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Figure 4.2.9: Long-range splitting ΔLR ver-
sus edge length L for CsPbBr3. The cal-
culation here uses parameter set 1 (3.4.9),
where Ep = 20.0 eV. Generally, as L be-
comes smaller, the exchange splitting in-
creases. The dependence of Δ(1)

LR and Δ
(2)
LR

on L can be found in (4.2.54) and (4.2.55)
respectively.
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Figure 4.2.10: The long-range enhance-
ment factor βLR = ΔLR/Δ

(1)
LR versus L for

CsPbBr3. The dotted line is a linear ex-
trapolation into the small L region, where
ΔLR approaches 1 in the strong confinement
limit. As L increases, Δ

(2)
LR becomes rela-

tively more important compared to Δ
(1)
LR.

The polymonial fits of the calculated Δ
(1)
LR and Δ

(2)
LR w.r.t. L−1 shows the fol-

lowing dependence on the size L.

Δ
(1)
LR =

a3
L3

+
a2
L2

, (4.2.54)

Δ
(2)
LR =

b2
L2

+
b1
L
, (4.2.55)

where (a3, a2) = (−51.68, 73.02) and (b2, b1) = (−1.15, 6.76).
In the strong confinement regime, in which L < aB, the higher-order MBPT

corrections are quantitatively less important. The linear extrapolation, which is
represented by the dotted line in Fig. 4.2.10, indicates that βLR → 1 as L → 0.
For the size L ≥ aB, (for CsPbBr3, aB = 3.1 nm), one enters the intermediate to
weak confinement regime. The enhancement factor βLR is 1.5 or bigger for size L >
5.0 nm and Δ

(1)
LR alone is insufficient to describe the dark-bright exciton splitting.

Most of the synthesized nanocrystals have their edge length in the range from
7.5 nm to 12 nm, for which the exciton is weakly confined. For these nanocrystals,
the second-order correction Δ

(2)
LR is needed, at least.
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In the case of intermediate to weak confinement, to obtain a quantitative agree-
ment with the experimental values, it seems necessary to go to an all-order method
(e.g. configuration interaction) as well as to have the short-range term included.
At the level O(1) in k · p theory, the omitted higher-order MBPT contribution
corresponds to the ladder diagrams, that are the generalization of the second-order
vertex corrections in Fig. 4.2.6 with more rungs of Coulomb interaction. One
can sum over these diagrams by solving the particle-hole Bethe-Salpeter equation
[79, 29].

As established in Subsection 3.4.1, the actual value of Ep is uncertain. Fig.
4.2.11 shows the variation of ΔLR versus the Kane parameter. For Ep < 24.5 eV,
ΔLR behaves linearly with respect to Ep. From our discussion in Subsection 4.2.3,
the first-order exchange term D1

x is O((k ·p)2) and thus Δ(1)
LR is proportional to Ep.

Similarly, in the second-order exchange terms, Xk1(vp, cq) and Xk2(qc, pv) are also
O((k · p)2) while Xk2(cq, pv) and Xk1(pv, cq) are O(1) in k · p. Therefore, D2

x,1 and
D2

x,2 as well as Δ
(2)
LR depend linearly on Ep. This explains the linear relationship

between ΔLR and Ep.
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Figure 4.2.11: The long-range splitting ΔLR
versus Kane parameter Ep. The high Ep
region, where Ep > 24.49 eV, show various
issues coming from the spurious solutions of
the k · p model.
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Figure 4.2.12: ΔLR versus Kane param-
eter Ep with extrapolation into high Ep
region (solid green line). Circles: calcu-
lated data, solid line: linear fit α1Ep, where
α1 = 3.87× 10−2.

When one reaches the high Ep region with Ep ≥ 24.5 eV, the spurious solutions
of the k · p model start to appear [124]. The existence of these states seems to
be rooted in some numerical instability. The spurious solutions stay inside the
band gap and, unfortunately, introduce some nonsensible contribution to several
physical quantities, such as ΔLR as seen in Fig. 4.2.11. We note that ΔLR relies on
the big-small component overlap, which is a consequence of the k · p perturbation
on the total wave functions. In the Ep > 24.49 eV region, the direct calculations
show that ΔLR is O((k · p)2), or in other words is linear in Ep. From the principle
of perturbation theory, we expect that this relation continues to be hold beyond
the Ep threshold. Linear fitting shows ΔLR(Ep) = α1Ep where α1 = 3.87 × 10−2,
see Fig. 4.2.12. It can be used to extrapolate into the high Ep region to get an
insight of how much ΔLR may be.
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Using parameter set 1 with Ep = 20.0 eV, one has ΔLR = 0.52 meV at L =
11 nm. If we keep other parameters as in parameter set 1 but instead use Ep =
27.88 eV as derived from the 4 × 4 k · p model (see Table 3.1), ΔLR = 0.72 meV.
This latter ΔLR, which is in the general expected range, underestimates the value in
Table 4 of Ref. [106] by 40%. We attribute the underestimation in our calculation
to the truncation at second-order MBPT.
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Figure 4.2.13: ΔLR versus edge length L
using the two parameter sets (3.4.9) and
(3.4.10). Ep of parameter set 2 has been
rescaled to that of parameter set 1.

Fig 4.2.13 contains the calculations
for two different parameter sets (3.4.9)
and (3.4.10) as given in Subsection
3.4.1. Since the long-range splitting
ΔLR depends linearly on Ep, to have a
fair comparison between the two choices
of the parameters, one needs to use the
same Ep value. The calculations us-
ing parameter set 2 have been adjusted
by the factor 20.0

16.39
. Two parameter sets

(with Ep = 20.0 eV) give almost iden-
tical long-range splitting ΔLR. This
demonstrates the fact that the exact
value of m∗

e and m∗
h do not influence

very much the answer for ΔLR as long
as 1/µ = 1/m∗

e + 1/m∗
h and the ratio

m∗
e/m

∗
h is sufficiently close to 1.

Apart from the Kane parameter Ep,
another important quantity for ΔLR is the effective dielectric constant. Each re-
duced matrix element Xk is inversely proportional to εeff. Hence, if εeff turns out
to be smaller or bigger, the splitting ΔLR also increases or decreases respectively.
A more detailed discussion of how the variation in εeff affects the correlation energy
will be given in Subsection 4.3.2.

4.3 Second-order correlation for closed-shell sys-
tems

In this section, we aim at a pedagogic and qualitative explanation for the observed
biexciton and trion shifts relative to the single exciton emission in the literature.
For simplicity, we treat the electrons and holes as different types of particles here.
This assumption is equivalent to accounting only for the O(1) (zeroth-order) dia-
grams in k · p perturbation. The higher-order k · p diagrams, some of which has
been discussed in the previous section for open-shell MBPT formalism, contribute
quantitatively a small fraction of the total shifts.

To understand why the closed-shell formalism is expected to be a good ap-
proach in this situation, we take the biexciton as an example. In its ground state,
a biexciton has the two electrons and two holes occupying the various magnetic
substates in the lowest conduction and valence shells respectively. For perovskites,
these shells are 1se1/2 and 1sh1/2. Each shell has a total degeneracy equal to 2 and is
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fully occupied or closed in the biexciton ground state. The closed-shell description
is, thus, exact for a biexciton in a system like perovskite nanocrystals.

Even when the shells are not fully occupied as in the case of a single exciton, the
magnetic substates are degenerate and have equal chances to be occupied. From the
previous subsection, when the electron and hole angular momenta are combined,
the resulting exciton states with different Ftot have slightly different energy. This
splitting is at most a few meV, even for the smallest sizes, and is much smaller than
the biexciton or trion shift. It can be shown that by using the open-shell formalism
and averaging over the exciton states with various Ftot, one recovers the results of
the closed-shell formalism.

In Subsection 4.3.1, we first lay down the formulation of second-order MBPT
for closed-shell systems. The theoretical foundation and other details thereon can
be found in Chapter 12 of Ref. [75]. In Subsection 4.3.2, we calculate the biexciton
and trion shifts, ΔXX and ΔX+/ΔX− respectively. In both cases, the second-order
MBPT clearly shows a red shift, in contrast to the HF (or any other mean-field)
calculation [113]. A reasonable level of agreement with experimental data is found
for trion shifts. However, the agreement seems very poor for the case of ΔXX of
CsPbBr3, where the various experiments also disagree with each other.

4.3.1 Closed-shell many-body perturbation theory

The graphical conventions for the angular momentum diagrams and Feynman di-
agrams have been stated at the beginning of Subsection 4.2.3. The labelling of
orbitals is as mentioned at the beginning of this chapter. Similar to HF interac-
tion, at second-order MBPT, the correction to the excitonic energy also comes from
direct diagrams and their exchange variants.

There are three distinct direct diagrams Dh-h
d , De-e

d and De-h
d that correspond

to the electron-electron, hole-hole and electron-hole interaction. Dh-h
d , for instance,

requires the excitation of two particles and is only non-zero for a system with more
than one hole. A similar conclusion holds for De-e

d for a system with more than
one electron. It means also that the first two diagrams in Fig. 4.3.1 are zero for
the case of a single exciton and only De-h

d gives non-zero contribution to correlation
energy.

Here, the simplicity of the closed-shell formalism is that one can directly apply
the results from chapter 12 of Ref. [75]. We remind the readers that in Fig. 4.3.1,
a and b denote the occupied orbitals while r and s stand for the unoccupied states
of both electrons and holes. Since the three diagrams De-e

d , Dh-h
d and De-h

d share the
same structure, they also have the same common expression below, called Dd for
convenience.

Dd = 2
�

AB,RS

wAB

1
2
�ab|G12|rs� 1

2
�rs|G12|ab�

(�a + �b)− (�r + �s)
, (4.3.1)

where the capital letters represent the shells that the orbitals belong to. Each sum,
for instance

�
A, means summing over all the occupied shells and all magnetic

substates within each shell. Roughly speaking, the prefactor 2 comes from the two
possible Wick contractions, each carries a (+1) Wick phase. The factor wAB is the
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c1 r s c2De-e
d =

(a) electron-electron interaction

v1 r s v2Dh-h
d =

(b) hole-hole interaction

v r s cDe-h
d =

(c) electron-hole interaction

Figure 4.3.1: The three second-order direct Feynman diagrams in the closed-shell MBPT
formalism. The first two diagrams in Fig. 4.3.1a and Fig. 4.3.1b are non-zero only for
systems with more than one electron and one hole respectively. For a single exciton, De-e

d

and Dh-h
d vanish. The three diagrams share the same angular diagram Fig. 4.3.2.

configuration-averaged weight factor between the two shells A and B

wAB =

�
nA

NA

nB

NB
, if A �= B,

nA

NA

nB−1
NB−1

, if A = B.
(4.3.2)

In the above, nA/B and NA/B follow the same notations as used for VHF, see the
discussion right below (3.1.10). From the multipole decomposition (3.3.10), the
expression Dd can be decomposed into radial and angular parts as

Dd =
1

2

�

AB,RS

wAB
Xk2(ab, rs)Xk1(rs, ab)

(�a + �b)− (�r + �s)
Dk2k1

d , (4.3.3)

where Dk2k1
d is the direct angular diagram in Fig. (4.3.2).

Fa Fr Fs Fb

k1

k2

− +

− +

Dk2k1
d =

Figure 4.3.2: Direct angular diagram

The k-pole reduced matrix el-
ement Xk(ab, cd) of G12 has been
given in (3.3.9). The calculation
of the expression (4.3.3) of the
second-order MBPT diagrams be-
comes straightforward once the an-
gular diagram Dk2k1

d can be evalu-
ated. The derivation of Dk2k1

d can
be easily done with the angular al-
gebra in Ref. [75], Chapter 2-4.
By applying the second theorem of
Jucys, Levinson and Vanagas (the

JLV2 theorem, see Chapter 4 of Ref. [75]) to the angular lines with k1 and k2, we
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have

Dk2k1
d = Fa Fr k1 ×

−

−

k2 Fa Fb × δk1k2
[k1]

+

+

= (−1)2Fa+(Fa+Fr+k1) (−1)2Fb+(k1+Fs+Fb)
δk1k2
[k1]

.

(4.3.4)

One arrives at the second line of (4.3.4) after changing the sign and the direction
of the arrow in each of the diagrams above, see Chapter 3 of Ref. [75].

Therefore, the value of the angular diagram Dk2k1
d is

Dk2k1
d =

(−1)Fr−Fa+Fs−Fb

[k1]
δk1k2 . (4.3.5)

c1 r s c1De-e
x =

(a) electron-electron interaction

v1 r s v2Dh-h
x =

(b) hole-hole interaction

Figure 4.3.3: The two second-order exchange Feynman diagrams in the closed-shell MBPT
formalism. These are non-zero only for system with more than one electron (left diagram)
or one hole (right diagram) and, just as the direct diagrams, they have the same angular
part called Dk2k1

x .

There are two second-order exchange diagrams De-e
x and Dh-h

x that are O(1)
in k · p perturbation, see Fig. 4.3.3. Each of these involves only one type of
particle, either electron or hole. The second-order diagrams with similar structure
but contain both electron and hole lines are at least O((k · p)2) and we neglect
them at this level of computation, as there exist other effects that may be more
important. Similar to the direct diagrams, the same expression Dx for De-e

x and
Dh-h

x can be written as

Dx = −2
�

AB,RS

wAB

1
2
�ab|G12|sr� 1

2
�rs|G12|ab�

(�a + �b)− (�r + �s)

= −1

2

�

AB,RS

wAB
Xk2(ab, sr)Xk1(rs, ab)

(�a + �b)− (�r + �s)
Dk2k1

x .

(4.3.6)

Again, the prefactor (−2) results from the Wick phase equal to (−1) and from the
fact that there are two equivalent Wick contractions. In (4.3.6), Dk2k1

x symbolizes
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the angular part of which the diagramatic representation is

Fa Fr Fs
Fb

k1

k2

− +

− +

+

+

+

+ k2
Fs

Fa

k1

Fr Fb
= (−1)2Fa+(Fa+Fs+k2)+(Fr+Fb+k2) .

(4.3.7)

Therefore, we arrive at the following expression for the exchange angular dia-
gram

Dk2k1
x = (−1)Fs−Fa+Fr+Fb




k2 Fs Fa

k1 Fr Fb



 . (4.3.8)

The word ‘exchange’ in the case of De-e
x and Dh-h

x refers to the fact that r and
s swap their relative places in Xk1 and Xk2 . In other words, the states r and
s exchange their positions in the Coulomb interaction. The closed-shell exchange
diagrams are closely related to the ladder diagrams of the open-shell formalism, Fig.
4.2.5. An explanation of this link was given in conjunction with Fig. 4.2.5. The
readers should not confuse De-e

x and Dh-h
x with the open-shell exchange diagrams

that are actually the higher-order k ·p variants of De-e
x and Dh-h

x . The electron-hole
direct diagram De-h

d , Fig. 4.3.1c, can be obtained from D2
d, Fig. 4.2.4a, by joining

c−c� and v−v�. In fact, the closed-shell second-order correlation energy E
(2)
LR below

equals to the average 3
4
E

(2)
LR(Ftot = 1) + 1

4
E

(2)
LR(Ftot = 0) over the dark and bright

exciton states of the open-shell E(2)
LR(Ftot).

4.3.2 Appliation to trion and biexciton shifts

For an excitonic system, we defined its energy up to second-order MBPT to be

E = EHF + E
(2)
LR, (4.3.9)

where E
(2)
LR denotes the energy contribution from the second-order diagrams in Fig.

4.3.1 and 4.3.3 and

E
(2)
LR = De-e

d +Dh-h
d +De-h

d +De-e
x +Dh-h

x . (4.3.10)

Let EX, EXX, EX+ and EX− be the total energy, up to second-order MBPT, of
the single exciton, biexciton, positive and negative trions respectively. A biexciton
consists of two pairs of electrons and holes, which are assumed to be in their ground
states. During the biexciton emission, one pair of electron and hole recombines and
the system relaxes to a single exciton state. The frequency of the emitted photon is
the difference between the biexciton and single exciton energy. The process can be
easily generalized to describe trion emission. As a result, we define the biexciton
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and trion shifts as follows.

ΔXX = 2EX − EXX,

ΔX+ = (EX + Eh)− EX+ ,

ΔX− = (EX + Ee)− EX− ,

(4.3.11)

where Eh and Ee are the non-interacting single-particle energy of an electron or
a hole. Note that in a system with only a single electron or hole, there is no
many-body correction.

For single exciton, only the diagram De-h
d gives non-zero contribution, which

can be seen from the expression of the weight factor wAB. The contribution of
De-h

d to (positive or negative) trion energy is approximately twice as big as that of
this diagram to a single exciton. All five diagrams, including direct and exchange,
contribute to E

(2)
LR in the case of a biexciton. In the expression (4.3.1), since a and b

are the lowest orbitals whereas r and s represent the excited levels, the denominator
(�a + �b) − (�r + �s) < 0. Coupled to the fact that the numerator is positive, the
contribution from each direct diagram is negative.

contribution EX EX∗ EXX ΔX∗ ΔXX

EHF 2374.16 4763.48 4748.90 1.41 -0.58

De-e
d 0.00 -8.22 -8.17 8.22 8.17

De-h
d -6.83 -10.07 -16.35 3.24 2.69

Dh-h
d 0.00 0.00 -8.17 0.00 8.17

De-e
x 0.00 4.11 4.08 -4.11 -4.08

Dh-h
x 0.00 0.00 4.08 0.00 -4.08

total E(2)
LR -6.83 -14.18 -24.53 7.36 10.87

Table 4.1: The various contributions from HF level and the second-order MBPT diagrams
to the energy of single exciton EX, trion EX∗ and biexciton EXX as well as the biexciton
and trion shifts, ΔXX and ΔX∗ , for CsPbBr3 nanocrystal of edge length L = 9.0 nm. All
the values of energy are given in meV. Parameter set 1 was used for the calculation, where
m∗

e = m∗
h implies ΔX− = ΔX+ = ΔX∗ . The HF-level shifts are almost zero. For a single

exciton, only the term De-h
d is nonzero among the second-order diagrams. The exchange

diagrams De-e
x and Dh-h

x have positive values but are generally smaller than their direct
counterparts. Most of ΔXX or ΔX∗ comes from second-order MBPT.

The exchange diagrams are expected to give positive contribution due to the
additional minus sign. However, the absolute value of an exchange diagram is
generally smaller than its direct counterpart, as shown in Table 4.1. So in general,
De-e

d +De-e
x < 0 and Dh-h

d +Dh-h
x < 0 for the systems with more than one electron or

more than one hole respectively. Therefore, one expects that the trion emission, via
recombination of an electron-hole pair to a single charge state, has smaller energy
than that of a single exciton. For the same reason, the biexciton emission is also
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red-shifted w.r.t. the single exciton emission. For biexciton, the contribution from
De-h

d is roughly twice and four times that for trions and single exciton respectively.
Both De-e

d + De-e
x and Dh-h

d + Dh-h
x contribute to the biexciton E

(2)
LR in comparison

with trions. As a consequence, one generally expects also that ΔXX > ΔX+ or ΔX− ,
see Table 4.1 and Fig. 4.3.4.

In Fig. 4.3.4, we plot the biexciton shift ΔXX and trion shifts, ΔX+ for positive
trion and ΔX− for negative trion. Under the assumption that m∗

e = m∗
h, ΔX+ and

ΔX− are identical. Since there is no distinction needed to be made between ΔX+

and ΔX− , sometimes we shall commonly refer to them as ΔX∗ when no confusion
arises.

size (nm) L = 6.0 L = 9.0 L = 12.0

lcut-off ncut-off X∗ XX X∗ XX X∗ XX

0 9 1.16 2.24 1.13 2.18 1.12 2.16

1 9 12.94 22.54 11.39 19.40 10.31 17.30

2 9 14.94 26.22 13.20 22.67 11.99 20.29

4 9 15.77 27.80 13.96 24.09 12.69 21.61

7 9 15.98 28.22 14.14 24.44 12.86 21.94

10 9 16.03 28.32 14.18 24.53 12.90 22.01

10 1 11.47 19.23 9.63 15.41 8.27 12.68

10 2 15.18 26.51 13.27 22.53 11.90 19.74

10 3 15.78 27.79 13.93 23.96 12.62 21.36

10 6 16.01 28.27 14.16 24.47 12.88 21.96

10 9 16.03 28.32 14.18 24.53 12.90 22.01

1 2 12.85 22.36 11.30 19.18 10.20 17.02

Table 4.2: Convergence of the second-order MBPT energy E
(2)
LR for biexciton XX and

for trion X∗ w.r.t. the angular momentum and principal quantum number cut-off, lcut-off

and ncut-off respectively. All values E
(2)
LR for XX and X∗ are given in meV. When the

carries stay in the states 1se1/2 and 1sh1/2, the dominant contribution comes from the p-

wave channel, which constitutes about 70% of the total E(2)
LR depending on the size (with

ncut-off = 9). By fixing lcut-off = 10, the convergence w.r.t. ncut-off is extremely rapid with
ncut-off = 3 giving more than 95% of the total result.

The dashed green curves on Fig. 4.3.4 give the biexciton and trion shifts at
HF level. ΔX∗ is slightly positive but remains less than about 1.5 meV. ΔXX is
almost identically zero for size L ≥ 6 nm and becomes slightly negative for small
L. Evidently, there is no difference in the emission of biexciton or trions compared
to that of single exciton at HF level. The results here are in accordance with Ref.
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[113]. We conclude also that to obtain the biexciton or trion shift, one has to go
beyond mean-field level.

The second-order MBPT results in Fig. 4.3.4 demonstrate that trion and biex-
citon emission is at a lower energy than that of a single exciton. Since the Coulomb
interaction �ab|G12|rs� scales as L−1, the second-order energy E

(2)
LR increases as L

decreases. ΔXX and ΔX∗ become bigger as L goes smaller, a fact that is also ob-
served experimentally as shown in Fig. 4.3.5. However, it does not mean that
the system is more correlated at small L. The ratio E

(2)
LR/EHF becomes smaller

when L decreases, which implies that for small sizes, the correlation energy is less
important in the total energy of the system.

The biexciton receives a bigger shift than trions, which has been argued for
earlier. The difference between ΔXX and ΔX∗ becomes less significant at large L.
This may already be an indication that the current second-order MBPT is not
sufficient since at large L, the system becomes more and more correlated and a
higher-order method seems needed.
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Figure 4.3.4: The calculated biexciton and trion shifts versus edge length L for CsPbBr3.
Dashed green line: HF level, solid blue line: second-order MBPT. The dashed lines show
that the biexciton or trion shifts equal to almost zero at HF level, which remains true
for any mean-field method [113]. The nonzero ΔX∗ and ΔXX are essentially the result of
correlation energy.

Regarding the trion data, the theoretical curves show a reasonable agreement
with the measurements, see Fig. 4.3.5a for CsPbBr3 and Fig. 4.3.6a for CsPbI3.
The theoretical values are about 1.5 to 2.0 times less than the experimental ones.
By truncating at second-order MBPT, we have underestimated the true correlation
energy. From the calculation of ΔLR in the previous section, the first- plus second-
order MBPT captures about 60% of the correlation energy that was obtained by
using variational method [106]. Thus, we expect the same level of underestimation
for the trion shift, and perhaps biexciton shift.

The biexciton shifts for CsPbI3 also show some qualitative agreement between
the theoretical prediction and the experimental data [135, 80]. The theoretical
values are about half of the measured ΔXX, which means that the ratio between
experiments and theory is a bit bigger than for trions. With more particles present,
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Figure 4.3.5: Biexciton ΔXX and trion ΔX+/X− shifts versus edge length L for CsPbBr3.
Solid blue line: theoretical calculation at second-order MBPT. Experimental data for
trion: Raino et al., Ref. [100]; Fu et al., Ref. [52]; Nakahara et al., Ref. [86]. Experimental
data for biexciton: Aneesh et al., Ref. [3]; Castaneda et al., Ref. [21]; Wang et al., Ref.
[126]; Ashner et al., Ref. [5].

the many-body correlation may be more important for the biexciton system. There-
fore, a second-order method seems even more insufficient. To achieve a quantitative
prediction for ΔXX as well as ΔX∗ , one will need an all-order MBPT method (e.g.
configuration interaction).

The second-order MBPT does not work very well in the case of CsPbBr3 biex-
citon shifts. Before moving on to discuss other sources of theoretical errors, we
wish to make some remarks regarding the experimental data. The values for L
of Castaneda et al., Ref. [21], were estimated from a linear relationship between
the nanocrystal volume L3 and the one-photon absorption cross-section σ(1). The
actual L values at small σ(1) could have been underestimated or overestimated.
This may explain the extreme fluctuation of ΔXX in the range L < 8 nm.

Schulenberger et al. [112] claimed that the upper bound for ΔXX should be
around 20 meV for CsPbBr3 nanocrystals of averaged edge length L = 7.5± 1 nm.
In a recent publication by Ashner et al. [5], the biexciton shifts were determined
to be some small blue shifts on the order of a few meV by using some novel fit-
ting method published in Ref. [6]. While the experimental ΔXX values are in
contradiction with one another, we would like to note that the extraction of the
biexciton shifts from the transient absorption (TA) or time-resolved photolumines-
cence (TRPL) spectra relies heavily on post-measurement fitting methods. The
results for ΔXX of CsPbBr3, Fig. 4.3.5b, were not direct observations from the
high-resolution PL spectra (low-temperature single-dot spectroscopy). As a result,
they may be prone to some errors in the fitting methods.

Here, all the calculated energy shifts ΔXX and ΔX+/ΔX− are under the basic
assumption that the biexciton and trions have relaxed to their ground state. As
suggested in the literature by Yumoto et al. [139], the formation of hot excitons
may have an effect on enhancing the observed red-shift.

Katan et al. [67] pointed out, from first-principle calculations, that the high-
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Figure 4.3.6: Biexciton ΔXX and trion ΔX+/X− shifts versus edge length L for CsPbI3.
Solid blue line: theoretical calculation at second-order MBPT. Experimental data: Yin
et al., Ref. [135]; Makarov et al., Ref. [80].

frequency dielectric ‘constant’ depends on the thickness z of the quantum well when
z varies from one to eight atomic layers. Generally speaking, ε∞ becomes smaller
when there are fewer atomic layers. An increase in thickness naturally leads to
more screening and, thus, a higher value of the dielectric function. Perovskites are
rather ionic materials of which the dielectric function ε(�r,ω) depends greatly on
the frequency. It brings about the fact that the high-frequency dielectric constant
ε∞ is much smaller than the static dielectric constant ε0.
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Figure 4.3.7: Biexciton shift versus edge
length L. The various curves correspond to
the different choices of εin.

Instead of just taking the bulk ef-
fective dielectric constant εeff, we spec-
ulate that there possibly is some de-
pendence of εin on the size L of the
nanocrystal and on the excitation en-
ergy involved in the second-order dia-
grams in Fig. 4.3.1 and Fig. 4.3.3.
Each reduced matrix element Xk is
inversely proportional to εin. From
the expressions (4.3.1) and (4.3.6) for
the direct and exchange interaction, we
have the proportionality between E

(2)
LR

and 1/ε2in. A variation of x% error in
εin results in 2x% error in E

(2)
LR.

In Fig. 4.3.7, we demonstrate how
the biexciton shift ΔXX changes as εin

varies. The optical dielectric constant
εopt = 4.84, see Ref. [34], was taken to
be the lower limit for εin. Even though

the same value of εin has been used for all sizes, in general, the current version of
our code allows the calculations with εin as a function of L.

As the last topic of this section, we provide the calculations of ΔXX and ΔX+/ΔX−
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by using two parameter sets for CsPbBr3 in Subsection 3.4.1. Unless m∗
e = m∗

h,
one generally expects ΔX+ and ΔX− to differ from each other. This is seen in
Fig. 4.3.8a, notably at the small sizes L < 6 nm. The unequal effective masses
(m∗

e �= m∗
h) of parameter set 2 also make ΔX+ and ΔX− to deviate from ΔX∗ ,

which was calculated using parameter set 1. However, the average (ΔX+ +ΔX−)/2
(parameter set 2) turns out to be very close to ΔX∗ . The biexciton shifts ΔXX

are also very similar between the two sets. At L = 9 nm, ΔXX values are within
5% of one another. With these observations in mind, we conclude that, once the
reduced mass µ is known [132], the exact values of effective masses do not greatly
affect the basic outcomes of the theory, with the assumption that m∗

e and m∗
h are

approximately equal.
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Figure 4.3.8: Biexciton and trion shifts versus edge length L. The calculations were done
at second-order MBPT by using the two parameter sets (3.4.9) and (3.4.10). We note
the small difference between the two parameter sets, especially for L > 6 nm. For trion
shifts, ΔX+ (positive trion) and ΔX− (negative trion) deviate from one another, more at
the small sizes. This fact, however, does not change the conclusion when the theory is
compared to experiments.

Together with the inconsistency of the measured ΔXX, the uncertainty of the
basic parameters, such as the correct effective dielectric constant and the effective
masses, makes it difficult to determine the appropriateness of using the second-order
MBPT. However, when an all-order method for calculating correlation energy is
in place, one will be in better position to judge the correctness of the parameters
used. This all-order method will also help us assess any experimental-theoretical
discrepancy, which we leave for future research.
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Chapter 5

Electron-photon interaction

This chapter is motivated by the available published experimental results on the
radiative lifetime τ of a single exciton and the one-photon absorption (OPA) cross-
section σ(1) of perovskite nanocrystals. It turns out that, for the perovskite ma-
terials, the lifetime τ stays in the sub nanosecond range, which is much shorter
compared to the more conventional semiconductors [71]. It means that the gap
between radiative rate and other non-radiative rates is reduced, which may be one
of the contributing factors for the bright emission of the perovskite nanocrystal.
Their large OPA cross-section σ(1) may also have some important implication for
being a good solar cell absorber [24].

By using the electron-photon Hamiltonian in the second-quantized form, see
Section 5.1, we derive in Section 5.2 the electron-photon matrix elements and their
corresponding Feynman diagrams for the interband and intraband transitions. The
amplitudes and transition rates at Hartree-Fock (HF) level will be given in Section
5.3. From these quantities, one obtains the lifetime τHF and the OPA cross-section
σ
(1)
HF. It is rather obvious that the HF-level calculations are not sufficient for de-

scribing nanocrystals in the intermediate or weak confinement regime. Due to the
intercarrier Coulomb interaction, the electron and hole become strongly correlated.
Section 5.4 focuses on the lowest-order MBPT corrections to the single-photon pro-
cesses. These lowest-order corrections turn out to be analogous to the second-order
vertex correction to the exchange interaction in Fig. 4.2.6. The relevant Feynman
diagrams and their expressions are provided in Subsection 5.4.1. The calculations
of the lifetime τ (1) and cross-section σ(1) up to first-order MBPT will be compared
against the measurements in the last two subsections. There, we shall also discuss
the enhancement from the vertex corrections as well as the variation of τ (1) and
σ(1) w.r.t. the size L and the Kane parameter Ep.

5.1 Electron-photon Hamiltonian

In minimal coupling [14], the Hamiltonian of electron-photon interaction takes the
following form

He−p = − qe
m0

�A(�r) · �p+ q2e
2m2

0

�A2(�r), (5.1.1)
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where �A(�r) is the electromagnetic vector potential in a given medium. Here, qe
and m0 represent the electron charge and free mass. In atomic units, m0 = 1 and
qe = 1. Hence, we shall omit the prefactor qe/m0 for now. The first term in He−p,

HA·p = − �A(�r) · �p, (5.1.2)

contains the momentum operator �p and dominates the electron-photon transition.
A discussion on the second term 1

2
�A2(�r) can be found in Chapter 13 of Ref. [69].

To calculate the transition amplitude, we choose the second-quantized approach.
In a general medium, the vector potential is a solution of the generalized Helmholtz
equation. In treating the dielectric screening, we consider the case of a single
dielectric sphere surrounded by a homogenous medium. The electromagnetic field
inside the sphere stays parallel to the field at infinity but differs by a multiplicative
factor fε, which we call the screening factor. Given that εout is the dielectric
constant of the medium around the dielectric sphere of dielectric constant εin, one
has

fε =
3εout

εin + 2εout
. (5.1.3)

For perovskites, the dielectric function varies dramatically with respect to the fre-
quency of the incoming light [47, 103]. Since light sources used in most of the
relevant experiments (e.g. pump-probe spectroscopy) are in optical range, the di-
electric ‘constant’ εin in the screening factor fε in (5.1.3) is taken to be the optical
value εopt. Therefore,

fε =
3εout

εopt + 2εout
. (5.1.4)

The dielectric screening factor of a cube, when averaged over its orientation and
a number of test wave functions, shows about 6% difference from that of a sphere
[127]. A perfect cube or sphere is an idealized geometry of an actual nanoparticle.
In reality, nanocrystals always come with some surface roughness and other sources
of shape deformation. For this reason, we shall continue to use the dielectric
screening fε of a sphere as an estimate for that of a synthesized nanocrystal.

The vector potential �A(�r) in second-quantized form is

�A(�r) =
�

�k,σ

fε A0(ω)
�
ei
�k·�rêσb�k,σ + e−i�k·�rê∗σb

†
�k,σ

�
, (5.1.5)

where b�k,σ/b
†
�k,σ

represents the annihilation/creation of a photon with wave vector �k
and polarization σ. The positive real function A0(ω) is the magnitude of the vector
potential.

The Hamiltonian HA·p can be written in second-quantized form as

HA·p = −
�

ij,�kσ

fεA0(ω)
�
�i|ei�k·�rêσ · �p|j� i†j b�kσ + �i|e−i�k·�rê∗σ · �p|j� b†−�kσ

i†j
�
. (5.1.6)

The states |i� and |j� are n-component (n=2 or 4) k ·p total wave functions, which
are the solutions of the radial HF Eqs. (3.3.11)-(3.3.12). However, we shall focus
this chapter on the 4× 4 k · p model (where n=2) for perovskites.
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The first term in (5.1.6) contains i†j b�kσ describes the absorption of a photon of
frequency ω = c|�k| and polarization σ during which an electron makes a transition
from the state |j� to |i�. Here c = c0/nref where nref =

√
εout is the refractive

index. The second term is conjugated to the first and describes de-excitation of
an electron from |j� to |i� by emitting a photon with ω = c|�k| and σ. These two
terms can be depicted graphically in the following Feynman diagrams (omitting
the prefactor −fεA0(ω)).

j i

�k, σ

�i|e−i�k·�rê∗σ · �p|j� =

(a) emission

j i

�k, σ

�i|ei�k·�rêσ · �p|j� =

(b) absorption

Figure 5.1.1: Feynman diagrams corresponding to the two terms in (5.1.6). The photon
has wave vector �k and polarization σ. The letters i and j denote any arbitrary valence
and conduction states, occupied or unoccupied.

j i

�k, σ

Figure 5.1.2: The electron-photon
interaction vertex.

Each of the diagrams in Fig. 5.1.1 can be
called an electron-photon vertex. These dia-
grams describe the transition of an electron from
an initial state |j� to a final state |i� via ei-
ther absorbing or emitting a photon. They
are among the basic ingredients to build Feyn-
man diagrams for HF-level or higher-order one-
photon processes or for multi-photon interac-
tions. Whether a photon is being absorbed or
emitted, the absolute value of the transition am-
plitude is the same. In what follows, we shall

omit the arrow on the photon propagator for simplicity and an electron-photon
interacting vertex is denoted as in Fig. 5.1.2.

5.2 Electron-photon matrix element

In the optical range, the wavelength of light λ = 2π/|�k| is about several hundreds
nanometers and is much larger than the size of a nanocrystal, which typically comes
out at most around 20 nm. This fact justifies the electric dipole approximation
ei
�k·�r = 1. With this, we define the electron-photon matrix element as

Me−p
i,j =

�
−fεA0(ω) �i|êσ · �p|j�, for absorption,
−fεA0(ω) �i|ê∗σ · �p|j�, for emission,

(5.2.1)
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in which an electron makes a transition from |j� to |i�. The states |i� and |j� are
the solutions of Eq. (4.1.3). Their total wave functions can be expressed as

|i� = 1

r

�

µ

Rµ(r)|(lµJµ)FiMi�,

|j� = 1

r

�

ν

Rν(r)|(lνJν)FjMj�.
(5.2.2)

In this chapter, we also perform the angular-radial separation for all electron-
photon matrix elements. It proves extremely useful for reducing the computational
time of the vertex correction in Section 5.4 by one to two orders of magnitude. The
two expressions in (5.2.1) are identical except for the polarization vectors êσ versus
ê∗σ. Hence, we demonstrate the angular-radial separation only for �i|êσ · �p|j� of the
absorption vertex. In the spherical tensor coordinates, the dot product êσ · �p can
be expressed as

êσ · �p =
1�

m=−1

e∗σ,m pm =
1�

m=−1

(−1)meσ,−m pm. (5.2.3)

If the momentum operator �p acts on the Bloch functions, which are implicit in
�J of the angular states |(lµJµ)FiMi� and |(lνJν)FjMj�, it gives rise to the interband
type matrix element Minter

i,j . When �p acts on the envelope parts of the total wave
functions in (5.2.2), the matrix element, Mintra

i,j , is called intraband type.

Me−p
i,j = Minter

i,j +Mintra
i,j , (5.2.4)

where the interband and intraband type transition matrix elements are given as

Minter
i,j = −fεA0(ω)

�

µν,m

�
Rµ(r)Rν(r) dr ê∗σ,m�(lµJµ)FiMi|pm|(lνJν)FjMj�,

(5.2.5)

Mintra
i,j = −fεA0(ω)

�

µν,m

�
1

r
Rµ(r) ê

∗
σ,m�(lµJµ)FiMi|pm|(lνJν)FjMj�

1

r
Rν(r) r

2dr.

(5.2.6)

The underlined angular components in (5.2.5) and (5.2.6) mark the ones that p1q
operates on. Additionally, the term �(lµJµ)FiMi|pm|(lνJν)FjMj� in (5.2.6) is a
radial operator in the space of envelope functions.
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5.2.1 Interband type transition

In this subsection, we analyze the matrix element Minter
i,j in (5.2.5). Applying

Wigner-Eckart Theorem leads to

FiMi FjMj

1,m

+

�(lµJµ)FiMi|pm|(lνJν)FjMj� = ×�(lµJµ)Fi||�p||(lνJν)Fj�.

(5.2.7)
By making use of the results in Section B.3 of the appendix, we have

�(lµJµ)Fi||�p||(lνJν)Fj� = χ2(lµJµFi, lνJνFj) �Jµ||�p||Jν�, (5.2.8)

where the coefficient χ2(lµJµFi, lνJνFj) can be found in (B.3.6).
Note that when �p acts on the pseudo-spin �J of the Bloch part, it only operates

on the Bloch orbital angular momentum �L, not the spin �S. This means that

�Jµ||�p||Jν� = �(SµLµ)Jµ||�p||(SνLν)Jν� = χ2(SµLµJµ, SνLνJν) �Lµ||�p||Lν�. (5.2.9)

Implicit in χ2(SµLµJµ, SνLνJν) is the spin selection rule.
The interband matrix element (5.2.5) can be written explicitly in radial-angular

decomposition as

FiMi FjMj

1,m

+

Minter
i,j = −fεA0(ω)

�
m ê∗σ,m × Rinter

i,j .

(5.2.10)

In the above, the radial part is

Rinter
i,j =

�

µν

�
Rµ(r)Rν(r) dr χ2(lµJµFi, lνJνFj) χ2(SµLµJµ, SνLνJν) �Lµ||�p||Lν�.

(5.2.11)
If Lµ and Lν are the Bloch angular momenta of the conduction and valence

states, �Lµ||�p||Lν� = �c||�p||v� can be expressed in terms of the Kane parameter Ep

as

|�Lµ||�p||Lν�| =
�

3

2
Ep. (5.2.12)

The radial term Rinter
i,j and, therefore, Minter

i,j are proportional to
�

Ep. As a re-
sult, the interband transition strength, which is proportional to |Minter

i,j |2, depends
linearly on Ep.

In the effective mass model, i.e. the wave function has no k ·p mixing, the selec-
tion rule lµ = lν that is contained in χ2(lµJµFi, lνJνFj) means that only transition
such as 1se − 1sh, 1pe − 1ph etc. are allowed. When the k · p mixing is taken into
account, the selection rule no longer holds due to the presence of the small k · p
components. However, as one will see later, the dominant transitions are still the
ones with lµ = lν .
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5.2.2 Intraband type transition

Now, let us consider the intraband matrix element Mintra
i,j .

By using the results in (B.3.2)-(B.3.3), one has

FiMi FjMj

1,m

+

�(lµJµ)FiMi|pm|(lνJν)FjMj� = ×�(lµJµ)Fi||�p||(lνJν)Fj�,

(5.2.13)
where, on the RHS of the above expression,

�(lµJµ)Fi||�p||(lνJν)Fj� = χ1(lµJµFi, lνJνFj)�lµ||�p||lν�. (5.2.14)

As, defined in (B.1.6), the reduced matrix element �lµ||�p||lν� = −i�lµ||�∇||lν�, is a
radial operator acting on Rµ(r) and Rν(r) in (5.2.6). The coefficient χ1(lµJµFi, lνJνFj)
carries the selection rule δJµ,Jν for the k · p components.

We define the following radial integral

Rintra
µi,νj = γµ

�
1

r
Rµ(r) �lµ||�p||lν�

1

r
Rν r2dr. (5.2.15)

Depending on which band is involved in the intraband matrix element, γµ = γν
is equal to either γh if µ = ν = 1 or γe if µ = ν = 2. The parameters γe and
γh also appear in (2.2.32). In the effective mass approximation, γµ should be
the inverse effective mass, 1/m∗

e or 1/m∗
h, of the corresponding band. This is the

basic result from Ref. [69], Chapter 13. Essentially, the factors 1/m∗
e and 1/m∗

h

represent the k · p corrections from other bands to the momentum matrix element.
The 2-component solutions of Eq. (4.1.3), where Hk·p is given in (2.2.32), have
already contained the k ·p correction from the s1/2 to the p1/2 band and vice versa.
Therefore, we have to exclude their contributions to get the prefactor γµ to be γe
(for s1/2 band) or γh (for p1/2 band) in the k · p model.

Based on the form of �lµ||�∇||lν� in (B.1.6), we have lµ = lν±1, which is the usual
selection rule for an atomic transition. Depending on the exact relation between
lµ and lν , there are two explicit forms for Rintra

µi,νj in (5.2.15).

Rintra
µi,νj =





i
�

lνγν

� �
−Rµ(r)

dRν

dr
− lν

r
Rµ(r)Rν(r)

�
dr, if lµ = lν − 1,

i
�
lµγµ

� �
Rµ(r)

dRν

dr
− lµ

r
Rµ(r)Rν(r)

�
dr, if lµ = lν + 1.

(5.2.16)

The intraband matrix element is thus

FiMi FjMj

1,m

+

Mintra
i,j = −fεA0(ω)

�
m ê∗σ,m × Rintra

i,j ,

(5.2.17)
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where the radial part of (5.2.17) is given to be

Rintra
i,j =

�

µν

χ1(lµJµFi, lνJνFj) Rintra
µi,νj. (5.2.18)

The interband term (5.2.10) and intraband terms (5.2.17) have the same angular
part. Let

Re−p
i,j = Rinter

i,j +Rintra
i,j . (5.2.19)

In fact, Re−p
i,j can be treated as the reduced matrix element of �p between the two

coupled state |i� and |j�.
The radial-angular decomposition of the electron-photon matrix element is

FiMi FjMj

1,m

+

Me−p
i,j = −fεA0(ω,�r)

�
m ê∗σ,m × Re−p

i,j .

(5.2.20)

With Me−p
i,j and Re−p

i,j as established in (5.2.20) and (5.2.19), we can now proceed
to calculate the radiative lifetime τ and the one-photon absorption cross-section
σ(1).

5.3 One-photon processes at Hartree-Fock level

We consider in this subsection the spontaneous emission and one-photon absorption
(OPA). The two physical quantities of interest are the radiative lifetime τ and the
OPA cross-section σ(1). To calculate τ and σ(1), we make use of the results of
Subsection 5.2 for the transition amplitudes of the electron-photon Hamiltonian
HA·p in (5.1.6). At the current level, we note that the total wave functions |i�
and |j� that enter the matrix element in (5.2.20) are the solutions of the HF Eq.
(4.1.3). Hence, the transition amplitudes in (5.3.5) and (5.3.14), which are depicted
graphically in Fig. 5.3.1, are also at HF level. The lowest-order MBPT corrections
to the HF calculations will be shown in Section 5.4. By using Fermi golden rule,
one can obtain the expressions for the lifetime τ and one-photon cross-section σ(1),
which will be given in Subsections 5.3.1 and 5.3.2 respectively.

c v
Dep,0

emi =

(a) emission

c v

Dep,0
abs =

(b) absorption

Figure 5.3.1: Single-photon interband transitions: absorption (left diagram) and emission
(right diagram). Here, c and v denote an electron (conduction) state and a hole (valence)
state respectively.
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Similar to the previous chapters, we also sum over the angular part analytically.
Doing this leads to reducing from the full 3-D problem to a 1-D radial problem and
significantly improve the numerical efficiency, which is particularly advantageous
in the calculations of the vertex corrections in Section 5.4.

5.3.1 Spontaneous emission

During spontaneous emission, an electron interacts with the vacuum electromag-
netic (EM) field in a medium with dielectric constant εout. The second-quantized
form of the EM field has

A0(ω) = AEM =

�
�

2V0ε0

1√
ωεout

. (5.3.1)

The polarization êσ is transversal, i.e. there are two modes indexed by σ = 1, 2
and each polarization vector êσ is perpendicular to �k.

Let |J� and |I� be the initial and final quantum states of the total excitonic sys-
tem. In considering the spontaneous emission of a single exciton, the exciton state
|J� has its total angular momentum and magnetic quantum number (Ftot,Mtot)
and the final state |I� = |∅�, which is the ground state of a nanocrystal. The
transition from |J� to |I� is accompanied by the creation of a photon.

Using the Fermi golden rule [27, 102], we can define the transition rate ΓIJ , i.e.
the transition probability per unit time, from |J� to |I� to be

ΓIJ =
2π

�
�

σ

��
|AI,J |2 δ(E − EJI) ρ(E) dΩ dE. (5.3.2)

In (5.3.2), AI,J stands for the transition amplitude from |J� to |I�. The integrals
over E and Ω together with the sum over the polarization σ means summing over
the possible states of the emitted photon. The density of states ρ(E) of photons
can be written as

ρ(E) =
V0

(2π)3
E2

�3c3
. (5.3.3)

The Dirac δ-function, δ(E − EJI), guarantees the energy conservation of the
entire system of the electrons plus the photon. The emitted photon carries away
the energy difference EJI = �ωJI = �(ωJ − ωI).

The radiative lifetime of the exciton state |J� having the angular state |FtotMtot�
is defined as

τJ = 1/ΓJ =

��

I

ΓIJ

�−1

. (5.3.4)

Generally, one must sum over the final states |I� to get the decay rate of |J�.
However, in the case of the spontaneous emission of a single exciton, |I� = |∅� has
only one state.

Another way of describing the spontaneous emission is by using the fermion
picture. In a single exciton, an electron relaxes from |c� to |v�, as depicted by the
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diagram Dep,0
emi in Fig. 5.3.1a. At HF level, the transition amplitude AHF

v,c of this
process is described by the matrix element Me−p

v,c in (5.2.20).

AHF
v,c = Dep,0

emi = Me−p
v,c . (5.3.5)

Let AHF
I,J denote the Hartree-Fock transition amplitude from |J� with angular

state |FtotMtot� to |I� = |∅�. From the electron-hole coupling coefficients in (4.2.19)
and (4.2.20), the transition amplitudes AHF

I,J and AHF
v,c are related by

AHF
I,J = Ceh(FcMc, FvMv;FtotMtot) AHF

v,c ,

AHF
I,J

∗ = C∗
eh(FcMc, FvMv;FtotMtot) AHF

v,c
∗.

(5.3.6)

To perform the integration over Ω in (5.3.2), note that êσ=1,2 and �k form a basis
for the position space. The completeness relation for the polarization vector êσ
means that, (see Complement AI of Ref. [27],)

�

σ=1,2

e∗σ,m1
eσ,m2

= δm1m2 −
km1km2

k2
, (5.3.7)

where m1 and m2 denote the components in a given coordinate system. After
integrating over the solid angle Ω, the expression on the RHS of (5.3.7) can be
easily shown to give

� �
δm1m2 −

km1km2

k2

�
dΩ =

8π

3
δm1m2 , (5.3.8)

which we leave the readers to verify. The results in (5.2.20) and (5.3.8) leads to

FvMv − FcMc

1

FvMv + FcMc

� �
σ |AHF

v,c |2 dΩ = f 2
εA

2
EM × 8π

3
× × |Re−p

v,c |2.

(5.3.9)

In going from AHF
v,c to AHF

I,J , one needs to couple the angular diagram above to
the electron-hole Clebsch-Gordan angular diagrams in (4.2.19) and (4.2.20). By
applying the angular algebra in Chapter 3 of Ref. [75], we have

� �

σ

|AHF
I,J |2 dΩ = f 2

εA
2
EM × 8π

3

1

[FJ ]
|Re−p

v,c |2 δFtot,1. (5.3.10)

The selection rule δFtot,1 implies that the transition rate (5.3.10) for the singlet
state with (Ftot = 0,Mtot = 0) indeed equals to zero and the |Ftot = 0,Mtot = 0�
exciton is ‘dark’.

For the spontaneous emission of a single exciton, we set �ωIJ equal to the single
exciton HF energy EHF(Ne = 1, Nh = 1), which has been calculated in Chapter
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3. In fact, a better choice for �ωIJ can be EX = �ωX that includes the second-
order correlation energy. However, Fig. 3.4.1 and Fig. 3.4.2 demonstrate that the
second-order energy does not seem to be very important in predicting the emission
peaks of the nanocrystal sizes of interest. The HF energy EHF shows to be a good
approximation for �ωIJ for the current purpose. The transition rate ΓHF

IJ , after
integrating over the photon energy E, becomes

ΓHF
IJ =

2π

�
ρ(EX)× f 2

εA
2
EM × 8π

3

1

[FJ ]
|Re−p

v,c |2 δFtot,1. (5.3.11)

Note that � = 1 and 4πε0 = 1 in atomic units. By using the photon density of
state in (5.3.3), the above expression can be simplified into

ΓHF
IJ =

4

3[FJ ]

ωX

c30
× ε

1/2
out f

2
ε × |Re−p

v,c |2 δFtot,1. (5.3.12)

Since there is only one final state that is the semiconductor ground state |I� = |∅�,
one has that the exciton lifetime τHF = 1/ΓHF

IJ .
Strictly speaking, when Ftot = 1, �ωIJ should be the bright exciton energy.

From the calculations of ΔLR in Subsection 4.2.5, the dark-bright exciton split-
ting comes out at typically 1 meV or at most a few meV and is much smaller
than the second-order correlation energy. Therefore, EHF or EX remains a good
approximation for the energy of the bright exciton Ftot = 1.

When the temperature T is high enough (e.g. at room T ), the exciton may
be in a thermal distribution between the dark and bright states or even excited to
some higher-energy configurations that lie close enough to the 1se1/2 − 1sh1/2 state.
Other processes such as phonon scattering may also take place at high temperature.
Therefore, the high-T lifetime can be significantly different from (or, in fact, larger
than) the low-T lifetime. For this reason, we shall compare the transition rate
ΓHF
IJ in (5.3.12) and the lifetime τHF of the bright exciton Ftot = 1 against the

measurements at low-T .
In the formula (5.3.12) for the transition rate ΓHF

IJ , the radial term Re−p
v,c contains

the momentum matrix element, which gives rise to the electron-photon interaction.
For the transition between a conduction state |c� and a valence state |v�, the
dominant contribution to Re−p

v,c comes from the interband matrix element Rinter
v,c .

The intraband term Rintra
v,c is proportional to the overlap between the big component

of |c� and the small component of |v� (in 4×4 k·p model) and vice versa. Therefore,
we expect the contribution from Rintra

v,c to be less significant compared to Rinter
v,c .

As established earlier in Subsection 5.2.1, Rinter
v,c scales linearly w.r.t.

�
Ep,

which makes the decay rate ΓHF
IJ depend linearly on Ep. This result is shown with

the dashed green line on Fig. 5.3.2.
From the interband radial term (5.2.11), we conclude that Rinter

v,c as well as Re−p
v,c

do not have any explicit dependence on the size L. For the transition rate ΓHF
IJ in

(5.3.12), the only term that has an L-dependence is the energy ωX. Generally,
the smaller the size L, the bigger the energy ωX. Note, however, that ωX does
not depend strongly on L, see Fig. 5.4.4, and stays always in the optical range.
Therefore, at HF level, ΓHF

IJ is slightly bigger and the lifetime τHF becomes slightly
smaller for smaller L, as shown by the dashed green line on Fig. 5.4.4.
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Figure 5.3.2: Decay rate 1/τ versus the
Kane parameter Ep for CsPbBr3. The two
curves correspond to the HF-level lifetime
τHF (dashed green line) and HF plus first-
order MBPT vertex correction τ (1) (solid
blue line). The kink on the solid curve for
τ (1) comes from the spurious solution of the
k · p model [124].

There are two problems with the ra-
diative lifetime τHF from the HF cal-
culations. First, the behaviour of τHF

w.r.t. L does not agree with the vari-
ational method by Takagahara [118] or
Efros et al. [38]. The actual lifetime
τ should become smaller as the size of
the nanocrystal increases. Second, the
theoretical calculations at the Hartree-
Fock level overestimate the measured
lifetime by a large factor, see the ex-
perimental data in Fig. 5.4.4.

We speculate the biggest source of
error here to be the usage of the mean-
field wave functions. In other words,
the correlation effect is very impor-
tant for the computation of the exci-
ton lifetime. In Section 5.4, we perform
the first-order (lowest-order) correction
in MBPT to the spontaneous emission
process in Fig. 5.3.1a.

As it will be shown later, the lowest-order correction to the electron-photon
interaction is the same for both emission and absorption. Before delving into the
MBPT correction to the electron-photon vertex, we shall derive and calculate in
the next subsection the one-photon absorption cross-section at HF level.

5.3.2 One-photon cross-section

In this subsection, let us consider the creation of a single exciton in a nanocrystal
via the absorption of a single photon, as depicted in Fig. 5.3.1b. We assume that
the incoming field has a fixed polarization of magnitude E0 of the electric field.
The magnitude of the vector potential is

A0(ω) =
E0

ω
, (5.3.13)

where ω denotes the photon frequency of the incoming field.
The electronic system makes a transition from the nanocrystal ground state

|J� = |∅� (initial state) to the single exciton state |I� with (Ftot,Mtot) (final state).
Let AHF

I,J be the transition amplitude of this process at HF level. In analogy with
the spontaneous emission, another description of the absorption can be that of an
electron going from a valence state |v� to a conduction state |c�. We denote the
amplitude of this process by AHF

c,v , where

AHF
c,v = Dep,0

abs = Me−p
c,v . (5.3.14)

Following the same argument that leads to (5.3.6), we have

AHF
I,J = Ceh(FcMc, FvMv;FtotMtot) AHF

c,v ,

AHF
I,J

∗ = C∗
eh(FcMc, FvMv;FtotMtot) AHF

c,v
∗.

(5.3.15)
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Under the same selection rule as for the spontaneous emission, only the bright
exciton state Ftot = 1 is created. The HF transition rate from |J� = |∅� to the
exciton |I�, which has the angular state |FtotMtot�, is

ΓHF
IJ =

2π

�
f 2
ε

�
E0

ω

�2

|AHF
I,J |2 δ(E − EIJ). (5.3.16)

To arrive at the final expression for the absorption rate ΓHF
IJ , we need to sum

over the magnetic substates of the final state |I� and average over the magnetic
substates of the initial state |J�. After performing the same angular reduction as
in Subsection 5.3.1, we arrive at

ΓHF
IJ =

2π

�
f 2
ε

�
E0

ω

�2
1

3[FJ ]
|Re−p

c,v |2 δ(E − EIJ). (5.3.17)

Regarding the vector potential (5.1.5) with its magnitude given in (5.3.13), the
corresponding electric and magnetic fields are

�E = 2E0 sin (�k · �r − ωt) ê,

�B =
2E0

c
cos (�k · �r − ωt) k̂ × ê.

(5.3.18)

Inside a solvent, the nanocrystals behave as point-like (or atom-like) defects. At
a macroscopic level, the entire medium can be treated as having the dielectric
constant εout of the outside solvent. The time-averaged electromagnetic energy
density is

ū =
1

2

�
ε0εoutE

2 +
1

µ0µout
B2

�
= 2ε0εoutE

2
0 (5.3.19)

and the corresponding photon density can be derived to be

ρ̄ =
ū

�ω
=

2ε0εoutE
2
0

�ω
. (5.3.20)

For the incoming laser field of frequency ω, we define the particle flux φ(ω) per
unit area per unit time to be the product between the density of the particles and
their speed. One has

φ(ω) = ρ̄× c0
n

= 2ε
1/2
out

c0ε0E
2
0

�ω
. (5.3.21)

The OPA cross-section σ(1) of the incoming light at frequency ω for the transi-
tion |J� → |I� is defined as

σ(1)(ω) =
ΓIJ

φ(ω)
. (5.3.22)

σ(1)(ω) has the correct unit of area. For the calculation of the transition rate at
HF level, we let the rate ΓIJ in (5.3.22) equal to ΓHF

IJ . The explicit expression for
σ
(1)
HF becomes

σ
(1)
HF(ω) =

4π2

3[FJ ]

f 2
ε

ε
1/2
outc0ω

|Re−p
c,v |2 δ(E − EIJ). (5.3.23)
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Apart from the Dirac δ-function, we call the remaining expression of the OPA
cross-section σ

(1)
HF above,

ΞHF =
4π2

3[FJ ]

f 2
ε

ε
1/2
outc0ω

|Re−p
c,v |2, (5.3.24)

the transition strength. Here, ΞHF is independent of the broadening mechanisms,
which will be shown in the next paragraph.

The δ−function, δ(E − EIJ), in (5.3.23) has dimension of [E]−1 and can be
considered as a distribution in the case where the excitonic system only interacts
with photons. When other decay channel(s) exist, for example via interacting with
phonons, or when there is some size variation within an ensemble of nanocrystals,
δ(E − EIJ) is ‘broadened’ into an actual probability distribution g(E − EIJ) that
peaks around EIJ . This broadening can be viewed as a consequence of the master
equation formalism [16]. The width of g(E − EIJ) (unit: eV−1) depends on the
coupling strength of the other decay pathways and the size variance of the ensemble
of synthesized nanocrystals.

At this level of our microscopic theory, the exact functional form of g(E−EIJ)
is unknown since it depends on various factors such as the details of the coupling
to the external environment. The determination of the exact functional form of
g(E −EIJ) can be rather involved and lies beyond the scope of the current thesis.
Here, we assume that each g(E−EIJ) is a Gaussian distribution of a certain width
ΔEIJ ,

g(η − η0) =

�
1

πΔη2
e−

(η−η0)
2

Δη2 . (5.3.25)

We shall give a simple way of estimating ΔEIJ assuming that there are two in-
dependent contributions to the total width, which will be shortly explained. One
has

ΔEIJ =
�

ΔE2
0 +ΔE2

size, (5.3.26)

where ΔE0 denotes the homogeneous broadening, in the sense that it takes the
same value for all transitions |J� → |I�. The second term ΔEsize stands for the
inhomogeneous broadening that depends on the size variation within an ensem-
ble of nanocrystals. For dephasing mechanism such as via phonon interaction, a
Lorentzian is more appropriate for describing the broadening of the transition lines.
However, for the inhomogeneous broadening coming from the size fluctuation, for
instance, a Gaussian function seems more reasonable. We note that the inhomo-
geneous width is often bigger than the homogenous one. Hence, we consider the
overall Gaussian profile to be a better choice for the broadening.

The broadening ΔE0 receives various contributions from the interaction with
phonons (10−30 meV), the deformation of the nanocrystals from a perfect sphere,
the lattice crystal field etc. We take ΔE0 to be in the range 90−120 meV. The exact
value of ΔE0 will be chosen so that the theoretical σ(1) reproduces approximately
the various absorption features of the experimental OPA cross-section versus ω.

Let ΔL represent the variance of edge length L that can be determined experi-
mentally using transmission-electron microscope (TEM). Here, we provide a simple
model for the inhomogeneous broadening ΔEsize coming from the size distribution.
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There are two size-dependence contributions to ΔEsize. The first one results from
the L-dependence kinetic energy, which we denote as ΔEkin. The second contribu-
tion, called the Coulomb broadening ΔECoul, comes from the Coulomb interaction.

ΔEsize = ΔEkin +ΔECoul. (5.3.27)

ΔEkin is the variation in the kinetic energy of a confined particle in a nanocrystal
and receives different values for different transitions. Roughly speaking, the kinetic
energy Ekin of a confined particle is proportional to 1/L2. Thus,

ΔEkin ∝ 2
ΔL

L3
⇒ ΔEkin = 2

ΔL

L
Ekin. (5.3.28)

For a more highly excited exciton having higher kinetic energy Ekin, the transition
becomes broader as the width ΔEkin increases.

The Coulomb energy ECoul = Edir + Eexc depends on the charge densities and
does not have a strong dependence on the various transitions. Since ECoul is roughly
proportional to 1/L, the width from Coulomb interaction can be approximated as

ΔECoul =
ΔL

L
ECoul. (5.3.29)
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Figure 5.3.3: Transition strength and one-photon absorption cross-section versus photon
energy ω (eV) at HF level for edge length L = 9.0 nm. The calculations were done by
using the parameter set 1. For the broadening of the transition lines, ΔE0 = 0.1 eV and
ΔL/L = 12%.

We give some example calculations of the transition strength and OPA cross-
section σ(1) in Fig. 5.3.3 for edge length L = 9.0 nm. For the one-photon calcula-
tions, the angular momentum and principal quantum number cut-off are lcut-off = 12
and ncut-off = 10.

The most prominent lines on Fig. 5.3.3a correspond to the absorption of a
photon accompanied by the transition from |∅� to the exciton state nlFc

− nlFv

where l goes from 0 to 8. The value lcut-off = 12 leads to an energy cut-off at around
4.5 eV for L = 9.0 nm. Many transitions such as 1pe

3/2 − 1sh1/2 are forbidden in the
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effective mass model but become allowed in the 4× 4 k · p model. These non-zero
transitions, which have small transition strength as seen in Fig. 5.3.3a, result from
intraband type matrix elements between the k · p components in the same band.

The cross-section σ(1), Fig. 5.3.3b, can be obtained by multiplying the transition
strength in Fig. 5.3.3a with a Gaussian distribution g(E−EIJ) of total width ΔEIJ .
The homogenous width ΔE0 has been chosen to be 100 meV as estimated from the
Gaussian peak decomposition in Ref. [15]. The ratio ΔL/L that expresses the size
distribution was set at about 12%. In other words, ΔL is around 0.6 nm, which is
in accordance with various experimental figures [15, 23].
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Figure 5.3.4: The theoretical one-photon absorption cross-section σ(1) versus photon en-
ergy ω at HF level (green dashed line) and HF plus first-order vertex correction (blue solid
line). The calculations were performed for edge length L = 9.0 nm using the parameters
from parameter set 1 for CsPbBr3. There is a big enhancement for σ(1), especially for the
absorption near the band edge. The one-photon cross-section σ(1) bends over at around
ω � 4.0 eV. This effect is attributed to the angular momentum cut-off lcut-off = 12.

Similar to the case of radiative decay rate, the correlation effect is also very
important here. We give an example of the HF plus first-order vertex correction
versus the HF-level calculations in Fig. 5.3.4. The first-order vertex correction
significantly increases the absorption cross-section, more notably for the transitions
closer to the band edge. More details on the first-order vertex correction will be
discussed in the next section.

Generally, σ(1) should grow as the transition energy becomes larger due to an
increased density of exciton final states at higher ω. This phenomenon is observed
from the absorption onset at around 2.25 eV up to about 3.75 eV in Fig. 5.3.4a. The
current 4×4 k·p model does not take into account the p3/2 band that lies at roughly
1.0 eV above the band edge [101, 138]. Therefore, one expects the absorption cross-
section to be underestimated starting from approximately the energy of the p3/2
band upwards.

However, Fig. 5.3.4b shows a reduction in σ(1) for ω � 4.0 eV. We attribute
this decrease in σ(1) to the numerical effect of the angular momentum cut-off at
lcut-off = 12, which is the maximum lcut-off allowed in the current version of the
code. It means that the highest energy of the created exciton 1lFc

− 1lFv
is around
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4.5 eV (for L = 9.0 nm). The Gaussian distributions g(E − EIJ) for the exciton
states with l ≥ 12 have ΔEkin > 0.5 eV due to their large Ekin. Since these states
were not computed, their contribution to σ(1)(ω � 4.0 eV) were not accounted for.
Furthermore, the higher bands such as the p3/2 band and the transitions at, for
example, the M point of the Brillouin zone have been excluded so far. Therefore,
the cross-section at ω � 4.0 eV is underestimated.

5.4 Correlation correction to electron-photon ver-
tex

The Hartree-Fock calculations overestimate the radiative lifetime [10, 52] and un-
derestimate the OPA cross-section σ(1) [23] by several times. The aim of this section
is to go beyond the HF (mean-field) level by including the lowest-order correlated
effect, which we expect to bring substantial corrections to the expressions in (5.3.12)
and (5.3.24). First, we provide the readers with the formalism of the first-order
MBPT correction to the electron-photon vertex in Subsection 5.4.1. Afterwards,
we shall discuss the effect of the vertex correction on the shortening of the exciton
lifetime in Subsection 5.4.2. The one-photon absorption cross-section will be the
subject of Subsection 5.4.3. After applying the formalism in Subsection 5.4.1 to
calculate σ(1), we discuss the dependence of the cross-section on the size L and the
Kane parameter Ep as well as the effects of using 4 × 4 k · p model against the
effective mass model. Comparisons with the various experimental data will also be
provided.

5.4.1 Formalism

Since the spontaneous emission and the absorption across the band gap are dom-
inated by the interband type transitions in Fig. 5.3.1, we focus in this section on
the correction to these processes.

p

c

q

v

Dep,1
emi =

(a) emission

p

c

q

v

Dep,1
abs =

(b) absorption

Figure 5.4.1: The first-order vertex corrections for the interband absorption and emission.
These diagrams are also lowest-order in k · p theory and, therefore, give the biggest
contributions. They come from the two-body potential V2 of the perturbative Coulomb
interaction V , see Subsection 4.1.2.

In Fig. 5.4.1, we list the Feynman diagrams that are lowest-order in both
Coulomb perturbative potential and k · p perturbation. Dep,1

abs and Dep,1
emi contain
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one perturbative Coulomb potential V2 and, thus, are first-order in Coulomb per-
turbative potential (4.1.5). Consequently, they are also called first-order vertex
corrections to the electron-photon interacting vertices in Fig. 5.3.1. The internal
lines p and q in Fig. 5.4.1 denote a conduction state and a valence state respec-
tively. There is no change of particle type (or band index) at each vertex of the
Coulomb interaction. It implies that the processes in Fig. 5.4.1 are of order O(1)
in k · p perturbation. The diagrams that are higher-order in k · p theory can be
found in Fig. 5.4.2 for absorption process. These diagrams are formally O((k ·p)2).
Since their values rely on the big-small k ·p components overlap, we expect them to
be at most within several percent of Dep,1

abs . As their contributions are insignificant
for the current interest, we shall omit them in the thesis for the sake of simplicity.

q

c

p

v

c v

q p

c v

q p

Figure 5.4.2: Feynman diagrams for absorption that are O((k · p)2) in k · p theory.

We note that the shells containing p and q in the diagrams in Fig. 5.4.1 have to
differ from the shells containing c and v respectively. In other words, the sum

�
PQ

means summing over all conduction levels with Fp and all valence levels with Fq as
well as all the magnetic substates with Mp and Mq, where the shell P containing |p�
is different from C and, similarly, Q �= V . The diagrams with either |p� contained in
shell C or |q� in shell V cancel with the first-order diagrams involving the one-body
potential V1 of the perturbative Coulomb potential V .

Let us consider the absorption process in Fig. 5.4.1b for example. The algebraic
expression of the diagram Fig. 5.4.1a can be easily obtained from the one of the
absorption diagram Fig. 5.4.1b. The algebraic expression for Dep,1

abs can be written
as

Dep,1
abs =

�

PQ

�∅|q†p
�
i† j† l k

�
c†v|∅�

1
2
�cq|G12|pv�

(�c + �v)− (�p + �q)
Me−p

p,q . (5.4.1)

Me−p
p,q represents the creation of an intermediate exciton state nplpFp

− nqlqFq
,

which differs from the final state nclcFc
− nvlvFv

, after absorbing a photon. Via
Coulomb excitation, the electron in |p� and the hole in |q� are scattered into the
states |c� and |v� respectively. Similar to the calculations of correlation energy, (�c+
�v)− (�p + �q) describes the excitation energy involved in the Coulomb interaction.
After Wick contracting, the term �∅|q†p

�
i† j† l k

�
c†v|∅� in (5.4.1) gives rise to a

Wick phase and a multiplicative factor from the number of possible contractions.
There are two equivalent ways of contracting �∅|q†p

�
i† j† l k

�
c†v|∅�, each of
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which results in the Wick phase equal to −1.

�∅|q†p
�
i† j† l k

�
c†v|∅� = �∅|q†p

�
p† v† q c

�
c†v|∅� = −1

�∅|q†p
�
i† j† l k

�
c†v|∅� = �∅|q†p

�
v† p† c q

�
c†v|∅� = −1

(5.4.2)

The angular-radial expressions of �cq|G12|pv� and Me−p
p,q are given in (3.3.10)

and (5.2.20). The product of the angular part of the multipole k of �cq|G12|pv�
and the angular part of Me−p

p,q can be analytically summed over Mq and Mp. By
applying the JVL3 theorem (see Chapter 3, Ref. [75]), we have

− +

FqMq

FvMv

k

FcMc

FpMp

�
MqMp

×
FpMp FqMq

1,m

+

FcMc FvMv

1,m

+

= (−1)Fp+Fq+1




k Fc Fp

1 Fq Fv



× .

(5.4.3)

The last diagram in (5.4.3) is, in fact, the angular part of Dep,1
abs . The factor (−2)

combines with the phase (−1)Fp+Fq+1 and the factor 1
2

to give (−1)Fp+Fq . The
expression for the first-order vertex correction Dep,1

abs to electron-photon vertex Dep,0
abs

is
FcMc FvMv

1,m

+

Dep,1
abs = −fεA0(ω,�r)

�
m ê∗σ,m × R(1)

c,v .
(5.4.4)

In the above formula, the radial part of the first-order vertex correction can be
written as

R(1)
c,v =

�

FpFq

�

k

(−1)Fp+Fq




k Fc Fp

1 Fq Fv





Xk(qc, vp) Re−p
p,q

(�c + �q)− (�p + �v)
. (5.4.5)

R(1)
c,v can be thought of as a first-order MBPT version of the radial function Re−p

c,v

in (5.2.20). The computation of this term and of Dep,1
abs , thanks to the angular

reduction, is very efficient.
The first-order vertex correction Dep,1

emi for emission is almost as same as Dep,1
abs

by exchanging c ↔ v and p ↔ q. The energy denominator (�c + �v) − (�p + �q)
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results from the first-order MBPT and is, therefore, the same for both Dep,1
abs and

Dep,1
emi . By making use of (5.4.4), one can immediately obtain the explicit formula

for Dep,1
emi as follows.

FvMv FcMc

1,m

+

Dep,1
emi = −fεA0(ω,�r)

�
m ê∗σ,m × R(1)

v,c,
(5.4.6)

where the radial part is

R(1)
v,c =

�

FpFq

�

k

(−1)Fp+Fq




k Fv Fq

1 Fp Fc





Xk(pv, cq) Re−p
q,p

(�c + �q)− (�p + �v)
. (5.4.7)

Due to the symmetry of the 6j-symbol, of the reduced matrix elements X k and
Rinter

i,j , we have that R(1)
v,c = R(1)

c,v . Therefore, the correction ratio between the first-
order MBPT and the HF diagram is identical for both absorption and emission
processes.

5.4.2 Exciton lifetime

Up to first-order vertex correction, the decay rate Γ
(1)
IJ in (5.3.2) can be calculated

by using the transition amplitude A(1)
I,J where

A(1)
I,J = Dep,0

emi +Dep,1
emi . (5.4.8)

From (5.4.4) and (5.4.6), Dep,1
emi has the same angular part as Dep,0

emi of the HF-level
calculations. Therefore, the result of the angular manipulation is clearly identical.
One can immediately write down

Γ
(1)
IJ =

4

3[FJ ]

ωX

c30
× ε

1/2
out f

2
ε × |Re−p

v,c +R(1)
v,c|2 δFtot,1. (5.4.9)

In other words, the transition rates Γ
(1)
IJ and ΓHF

IJ , see (5.3.12), differ only in their
radial parts.

Let τ (1) be the radiative lifetime of the bright state Ftot = 1 calculated at HF
plus first-order MBPT correction, see also (5.3.4). In the rest of this subsection,
we shall discuss the behaviour of τ (1) versus the Kane parameter Ep and the size
L of a nanocrystal.

The Kane parameter is proportional to the square of the momentum matrix
element, please refer to (5.2.12). As previously established, it is an important
parameter for the electron-photon interaction. At HF level, τ−1

HF has a linear rela-
tionship w.r.t Ep, which is shown by the dashed green line in Fig. 5.3.2.

The calculation of τ (1) versus Ep, where Ep varies in the range [0, 40] eV, is
presented with the solid blue line in Fig. 5.3.2. For Ep < 27 eV, the calculation
converges and the resulting decay rate 1/τ (1) versus ω is well behaved. As Ep
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increases, the bright exciton radiatively decays to the ground state much more
rapidly. At the value Ep around 27 eV and higher, the curve starts showing some
strange behaviour due to the spurious intra-gap states in the k · p model [124].
The HF iterations manage to converge for high value of Ep and the resulting wave
functions and energy levels still seem sensible.

Despite this fact, the existence of the spurious states proves detrimental to the
calculations of correlation effects. These states stay inside the energy gap and
have significant but unphysical contributions to the correlation correction. Their
presence explains the appearance of a kink at approximately Ep = 27 eV in Fig.
5.3.2. Nonetheless, the brute-force removal of the spurious states leads to the
incompleteness of the basis set, which poses a foundational problem.
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Figure 5.4.3: Decay rate 1/τ (1) versus the
Kane parameters Ep for edge length L =
9.0 nm. Open diamonds: calculated data
at HF level plus first-order vertex correc-
tion, dashed line: fitting function τ (1) =
aτ1Ep + aτ2E2

p where aτ1 = 5.51 × 10−2 and
aτ2 = 1.87 × 10−4. Polynomial fitting shows
that the dependence of 1/τ (1) on Ep is almost
linear with some quadratic correction.

When p and q describe a conduc-
tion and a valence state, Re−p

q,p is domi-
nated by the interband type term Rinter

q,p .
R(1)

v,c contains Re−p
q,p and, thus, is also

proportional to
�

Ep. The sum over
Fp and Fq, however, may have some
dependence on Ep due to the density
of states of the nonzero Rinter

q,p transi-
tions. Many of these transitions that
are rather small come from the k · p
corrections of the total wave functions
|p� and |q�. One expects the result-
ing polynomial fit of 1/τ (1) versus Ep

to be dominantly a linear function in
Ep with some higher power corrections
w.r.t. Ep. Fig. 5.4.3 shows that

τ (1) = aτ1Ep + aτ2E
2
p

with aτ1 = 5.51 × 10−2 and aτ2 =
1.87×10−4 produces an excellent fit for
the data when Ep stays in the interval
[0, 27] eV. By means of k · p perturba-

tion theory, the polynomial fit above can be used to extrapolate into the region
with higher Ep. In this way, one can extract the answer for the case where the high
Ep values cause the spurious-state problems in k · p model.

Now, we move on to discuss the variation of the lifetime versus the nanocrystal
size. The first-order vertex correction alters the behaviour of τ w.r.t. the edge
length L in comparison to HF-level calculation. With the correction Dep,1

emi included,
the lifetime becomes shorter for the more weakly confined exciton, which was also
observed by using variational method in [10, 118]. Let us define the enhancement
factor coming from the first-order vertex correction to be

βτ =
τHF

τ (1)
. (5.4.10)

A plot of βτ versus edge length L can be found on Fig. 5.4.5. The ratio βτ for a given
size L encapsulates the importance of the MBPT correlation in the exciton radiative
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Figure 5.4.4: Exciton lifetime τ versus edge length L for CsPbBr3 and CsPbI3. The
calculations were done using parameter set 1 (3.4.9) for CsPbBr3 and parameter set
3 (3.4.11) for CsPbI3. The two theoretical curves correspond to the HF lifetime τHF
(dashed green line) and τ (1) for HF plus first-order vertex correction (solid blue line).
Experimental data: Raino et al., Ref. [100]; Fu et al., Ref. [52]; Canneson et al., Ref.
[20]; Becker et al., Ref. [10].

lifetime. As L → 0, βτ is expected to converge towards 1. It is equivalent to say
that, in the strong confinement limit, the HF transition amplitude Dep,0

emi sufficiently
describes spontaneous emission of a single exciton. When the nanocrystal size
increases and one enters the intermediate to eventually weak confinement regime,
the system becomes more and more correlated as evidenced by an increasing βτ .
The enhancement of the lifetime, from first-order vertex correction, helps to explain
the fast sub-nanosecond decay of the single exciton in the perovskite nanocrystals.
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Figure 5.4.5: The enhancement factor βτ =
τHF/τ

(1) for the 1se1/2 − 1sh1/2 transition of
CsPbBr3 from first-order vertex correction.
As L becomes bigger, βτ increases, which
reflects the fact that the correlation be-
comes more important when one goes from
the strong to the weak confinement regime.

4 6 8 10 12 14 16
     0   

     0.5   

     1   

     1.5   

     2   

     2.5   

     3   

edge length L (nm)

lif
et

im
e
τ 

(n
s)

   

     HF level   

     
HF+1     

st     
-order,      ε     

in     
 = 7.30   

     
HF+1     

st     
-order,      ε     

in     
 = 4.84   

Figure 5.4.6: Calculated lifetime τ versus
edge length L for CsPbBr3. Dashed curve:
HF level; solid curve: HF plus first-order
MBPT using εin = εeff = 7.30 (effective di-
electric constant); dotted curve: HF plus
first-order MBPT using εin = εopt = 4.84
(optical value).

119



Fig. 5.4.5 demonstrates that βτ grows approximately linearly with L. However,
Takagahara [118] shows, via variational calculations, that the enhancement should
be proportional to the volume L3 provided that L is sufficiently large but not
approaching the bulk limit. We note that our MBPT method stops at first-order
while the variational method, in principle, includes all-order correlation. Therefore,
we do not expect a quantitative agreement at the current level of MBPT, especially
for weak confinement. We consider this to be one of the main reasons for the
overestimation of the experimentally measured lifetime in Fig. 5.4.4. Nonetheless,
it is important to emphasize that the current approach requires the same level of
complexity to treat the MBPT corrections to the higher exciton states as compared
to the ground state 1se1/2−1sh1/2. This is in contrast to the variational approach that
requires orthogonalization of the variational wave functions [118, 119]. Therefore,
one can easily improve the single-photon absorption cross-section with the first-
order vertex correction.

c v

...
�
n

Figure 5.4.7: Higher-order MBPT correc-
tions (ladder diagrams) for electron-photon
vertex.

In the effective mass model, one way
of including all-order MBPT in the bulk
limit is to use the final state interac-
tions, as described in Chapter 9 of Ref.
[79]. Another more general all-order ap-
proach via Bethe-Salpeter equations al-
lows the treatment of intermediately as
well as weakly confined systems. These
topics go beyond the scope of this thesis
and are left as future research problems.

Instead of embarking on a full all-
order calculation here, we can have a
rough estimate of the all-order MBPT
correction to the electron-photon vertex
Dep,0

emi . To lowest order in k · p pertur-
bation, the important higher-order dia-

grams will be the ladder diagrams as shown in Fig. 5.4.7, in which n = 2, 3, . . .
denotes the number of Coulomb interactions. Let Dep,2+

emi be the sum of contribu-
tions corresponding to n = 2, . . . ,∞. We surmise that the ratio Dep,2+

emi /Dep,1
emi , which

is controlled by the ratio of the Coulomb interaction over the excitation energy, to
be around 1/η(1) − 1. We remind ourselves that η(1) is the percentage of the total
correlation energy that comes from first-order Coulomb interaction, see (3.4.12) in
subsection 3.4.2. One can roughly estimate the enhancement coming from the sum
of all ladder diagrams to be βτ/η

(1). For edge length L = 11 nm, the estimated
‘total’ enhancement βτ/η

(1) comes to around 7. Ideally, one needs to carry out an
explicit calculation up to all-order MBPT, which provides a much more reliable
answer to the vertex enhancement than the estimate above. Again, we leave this
for future work.

Apart from the error of truncating at first order, another source of uncertainty
of the current theory could be the dielectric constant εin(�r,ω) that depends on the
length scale and excitation energy, in principle. Fig. 5.4.6 demonstrates the first-
order MBPT correction using two different values of εin for CsPbBr3. These are
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the effective dielectric constant εin = εeff = 7.30 and the optical dielectric constant
εin = εopt = 4.84. Clearly, with a smaller εin, the correlation correction becomes
relatively more important. The ratio Dep,1

emi /Dep,0
emi is proportional to 1/εin, i.e. an

x% change in εin leads to the same relative error in Dep,1
emi /Dep,0

emi . We suspect that
εopt acts as the lower bound for the correct value of εin used for each size L and
excitation energy.

5.4.3 Single-photon absorption

To calculate the absorption cross-section, we need to consider all the allowed tran-
sitions. For each transition from the ground state |J� = |∅� to the final state |I�,
the transition rate at HF plus first-order vertex correction is defined as

Γ
(1)
IJ =

2π

�
f 2
ε

�
E0

ω

�2

|A(1)
I,J |2 δ(E + EIJ). (5.4.11)

Similarly to the emission, the transition amplitude A(1)
I,J in (5.4.11) contains both

the HF contribution and the first-order correction.

A(1)
I,J = Dep,0

abs +Dep,1
abs . (5.4.12)

Again, Dep,0
abs and Dep,1

abs differ only in their radial parts Re−p
I,J and R(1)

I,J , see (5.2.20)
and (5.4.4). This implies that the results of the angular reduction in Subsection
5.3.2 can be directly applied here. One just needs to add the radial part of the
first-order vertex correction to the radial term in the HF-level expression.

Let σ(1) and Ξ(1) denote the one-photon absorption cross-section and transition
strength up to first-order MBPT. From the formula (5.3.24) for the transition
strength at HF level, we have

Ξ
(1)
IJ =

4π2

3[FJ ]

f 2
ε

ε
1/2
outc0ω

|Re−p
c,v +R(1)

c,v |2. (5.4.13)

Here, we have simply replaced Re−p
c,v of the HF formula by Re−p

c,v +R(1)
c,v . This leads

to the cross-section
σ(1)(ω) =

�

I

Ξ
(1)
IJ g(ωIJ − ω), (5.4.14)

where the broadening functions g(ωIJ − ω) of the transition lines are taken to be
the Gaussian distributions as given in (5.3.25). See (5.3.26) and the discussion
thereon for the choices of the widths ΔEIJ of g(ωIJ − ω). With these definitions
in mind, we first show in Fig. 5.4.8 an example calculation for Ξ(1) and σ(1) up to
first-order vertex correction.

In the expression (5.4.5) for the first-order correction, we note that the lowest
transition 1se1/2− 1sh1/2 has its energy well separated from other transitions. There-
fore, the energy denominator in (5.4.5) is always guaranteed to be far from zero
and the MBPT calculation converges to a finite answer. When higher transitions
nclcFc

− nvlvFv
are considered, some intermediate states nplpFp

− nqlqFq
that have
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nearly equal energy to the final state (c, v) may exist. The near-zero energy de-
nominator (�c + �v)− (�p + �q) causes some catastrophic effect on the results from
first-order MBPT. One quick solution to this problem of the nearly degenerate
states (p, q) is to remove their contributions of from the sum

�
FpFq

in (5.4.5) if
(�c + �v)− (�p + �q) < δEmin for a given choice of the energy lower bound δEmin.

Depending on the exact choice of δEmin, the positions and the values of the
transition strength Ξ(1), for instance in Fig. 5.4.8a, may change. However, the
final answer for the cross-section σ(1) does not depend that much on the choice of
δEmin. This fact also validates the current approach using first-order MBPT vertex
correction. In the calculation below, we set δEmin = 20 meV, which is about the
phonon broadening. The problem with the nearly degenerate states will disappear
when one implements an all-order MBPT method, for instance the Bethe-Salpeter
equation for a confined system or the final state interaction in the bulk [79]. For
now, we focus on some of the basic properties of the transition strength and the
one-photon absorption cross-section at the level of first-order MBPT.
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Figure 5.4.8: Transition strength and cross-section σ(1) versus transition energy ω for
CsPbBr3 nanocrystal with edge length L = 9.0 nm in the 4×4 k·p model. The calculations
were done at HF level plus first-order vertex correction with δEmin = 20 meV. The basic
parameters are given in parameter set 1.

Some transitions that were vanishing at HF level, for instance 1se1/2−1dh
5/2, may

become non-zero, in principle, as a result of the Coulomb excitation in Fig. 5.4.1b.
These new peaks, however, are rather small due to their existence owing only to the
k-pole excitation (where k ≥ 1) of the Coulomb matrix element. Therefore, they
do not bring about significant contributions to σ(1). Most of the enhancement of
the cross-section σ(1) in (5.4.14) compared to the HF-level cross-section σ

(1)
HF comes

from the increase of the transition strength Ξ(1) of the nlFc
− nlFv

transition with
higher n and l (n = nc = nv and l = lc = lv). The calculations of Ξ(1) for the
various transitions for edge length L = 9.0 nm are shown in Fig. 5.3.3a at HF level
and Fig. 5.4.8a up to first-order MBPT.

We note that the enhancement from MBPT for the first peak, which correspond
to 1se1/2 − 1sh1/2 transition, comes out about 3 in accordance with the emission
calculation. The lowest state 1se1/2 − 1sh1/2 receives the largest correcting factor.
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Similar to the transition strength in Fig. 5.3.3a, the most prominent peaks on
Fig. 5.4.8a correspond to the nlFc

−nlFv
transitions with higher principal quantum

number n or orbital angular momentum l. These transitions with higher n or l have
smaller correcting factors from first-order MBPT, see Table 5.1 for the enhancement
factor for various n and l values. This is somewhat expected from expression
(5.4.7) due to the fluctuating contributions, see Table 5.2 for more details, from
the intermediate states (p, q) with higher and lower energy than (c, v). The plot
of both σ(1) and σ

(1)
HF versus ω in Fig. 5.3.4 also provides the reader a sense of

the enhancement from first-order vertex correction. Let us define the enhancement
factor for the OPA cross-section at frequency ω to be

βσ(ω) =
σ(1)(ω)

σ
(1)
HF(ω)

. (5.4.15)

For ω ranging between 3.10 eV and 3.75 eV, βσ(ω) varies from 1.52 to 1.30. From
the results in Table 5.1, we generally expect βσ(ω) to be smaller than βτ , which
equals to βn=1 l=0. Intuitively, the electron and hole of an excited exciton stay
further apart. This makes its effective Bohr radius larger and, in the same volume
of a nanocrystal, an excited exciton seems more strongly confined than a ground
state exciton.

n l |Re−p
c,v |2 |Re−p

c,v +R(1)
c,v |2 βnl

1 0 0.710 2.159 3.042

2 0 0.653 0.779 1.193

3 0 0.585 0.663 1.133

1 1 0.786 1.888 2.402

2 1 0.741 1.365 1.843

1 2 1.073 2.037 1.899

2 2 0.956 1.926 2.014

1 4 1.429 2.128 1.489

1 6 1.886 2.592 1.375

1 8 2.348 3.052 1.300

Table 5.1: n and l correspond to the principal and orbital quantum number of the transi-
tions nlFc

− nlFv
. The radial parts |Re−p

c,v |2 and |Re−p
c,v +R(1)

c,v |2 in the transition strength
ΞHF and Ξ(1) are shown in atomic units. We defined the enhancement factor βnl to be
the ratio |Re−p

c,v +R(1)
c,v |2/|Re−p

c,v |2. βnl becomes smaller for higher n and l, i.e. the excited
states receive smaller corrections compared to the ground state 1se1/2 − 1sh1/2.

Fig. 5.4.8b shows that σ(1) increases w.r.t. ω. However, the curve of σ(1)

versus ω tends to flatten out at high energy due to the angular momentum cut-
off at lcut-off = 12, see the discussion in subsection 5.3.2. The general shape of
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the curve and the value of the cross-section σ(1)(ω) will further change when one
accounts completely for the correlation to all-order MBPT. The first-order vertex
correction brings an enhancement to the cross-section and an all-order method will
increase βσ(ω) even further. Hence, we expect that the cross-section has been so far
underestimated. Another source of underestimation of σ(1) comes from neglecting
the p3/2 band. The first absorption peak from the p3/2 band lies approximately 1 eV
above the 1se1/2 − 1sh1/2 [101, 138]. Since the p3/2 and p1/2 conduction bands are
both connected to the s1/2 valence band via the same momentum matrix element
�Lc||�p||Lv�, the optical absorption from s1/2 to p3/2 is also expected to be strong.
This fact leads one to expect a clear rise in σ(1) at about Δsoc above the first
transition 1se1/2 − 1sh1/2, see the discussion in Ref. [90]. It means that for CsPbBr3
nanocrystals with averaged edge length L = 9.0 nm, we may have a notably higher
σ(1) around ω = 3.3− 3.4 eV. To systematically include the p3/2 band, we need to
resort to electron-photon interaction in the 8 × 8 k · p model. For this reason, we
leave this issue for future study.

2 2.5 3 3.5
     0   

     0.02   

     0.04   

     0.06   

     0.08   

     0.1   

energy ω (eV)

tr
an

si
tio

n 
st

re
ng

th
   

  

(1
0

   
  

-1
4  c

m
   

 
2  e

V
) 

  

(a) Transition strength

2 2.5 3 3.5
     0   

     0.5   

     1   

     1.5   

     2   

     2.5   

energy ω (eV)

σ
(1

)  (
10

   
  

-1
4  c

m
   

 
2 ) 

  

(b) cross-section σ(1)

Figure 5.4.9: Transition strength and cross-section σ(1) versus transition energy ω for
CsPbBr3 nanocrystal with edge length L = 9.0 nm in the effective mass model. The
basic parameters are given in parameter set 1, except there is no k · p coupling between
the conduction and valence bands by setting Ep = 0.0 eV. The energy lower bound for
vertex correction is δEmin = 20 meV.

Before moving on to discuss the theoretical calculations and the measurements
of σ(1) for various sizes, a comparison between the 4× 4 k ·p and the effective mass
models is useful to understand the role of the k · p corrections to the single-photon
absorption.

At both HF level and at first-order MBPT, there are two most obvious conse-
quences of the k · p model against effective mass model. Firstly, the k · p mixing
reduces the energy of the conduction states, especially for the states with higher
angular momentum, while raises the energy of the valence (electron) states. In
other words, the energy of the nlFe

− nlFh
transition coming out of the k · p model

is smaller than the effective mass model, particularly for bigger l and n. Secondly,
some forbidden transitions in the effective mass model become non-zero in the k ·p
model. In fact, these transitions may be further enhanced after the vertex correc-

124



βnl

lcut-off
l = 0

(s-wave)
l = 1

(p-wave) l = 6 l = 8

HF level 1 1 1 1

0 1.089 0.813 0.993 0.983

1 2.015 0.873 1.005 0.976

2 2.399 1.546 0.971 0.936

3 2.603 1.841 0.935 0.927

4 2.729 2.008 0.878 0.880

5 2.814 2.116 0.614 0.997

6 2.875 2.193 0.634 0.926

7 2.920 2.250 0.978 0.663

8 2.956 2.294 1.133 0.680

9 2.984 2.329 1.226 1.005

10 3.007 2.358 1.290 1.151

11 3.026 2.382 1.338 1.239

12 3.042 2.402 1.375 1.300

Table 5.2: The enhancement factor from first-order MBPT βnl = |Re−p
c,v +R(1)

c,v |2/|Re−p
c,v |2

for the transition nlFc
− nlFv

, where n = 1. The HF-level calculations have βnl set equal
to 1 as a reference. As lcut-off increases, for instance from lcut-off = 1 to lcut-off = 2, the
angular momentum channel with l� = 2 (d-wave) has been included. The corresponding
change in βnl reflects the effect of the added l� channel. We note that, for a given l value,
the value of βnl w.r.t. lcut-off, where lcut-off < l, may fluctuate depending on whether the
contribution from a lower angular momentum channel is negative or positive. The higher
angular momentum channels always contribute a positive amount, which is evident by
the fact that βnl keeps growing if lcut-off increases and lcut-off > l.

tion and contribute a small but finite amount to the cross-section σ(1). Generally,
the k · p model results in a higher density of states within a certain energy range
compared with the effective mass model. One thus expects a slightly higher value
of σ(1) at a given ω from the k · p model, see Fig. 5.4.8b and Fig. 5.4.9b.

Next, we focus on the variation of the one-photon absorption cross-section σ(1)

versus L and how the computation up to first-order vertex correction looks in
comparison to the available experimental data.

The cross-sections σ(1) (with vertex correction) and σ
(1)
HF (Hartree-Fock) are

assumed to depend on some power of the edge length L. Using a least-square
linear fit to the log-log relation between σ(1) or σ(1)

HF and L, one obtains log(σ(1)) =
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(a) Effective mass model
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Figure 5.4.10: Transition strength at HF level versus transition energy ω for CsPbBr3 of
edge length L = 9.0 nm in the effective mass model (left) and 4 × 4 k · p model (right).
The basic parameters are from parameter set 1. Note the higher density of the transitions
in the case of 4× 4 k · p model.

A1 log(L)+A0, where A1 = 2.88, and log(σ
(1)
HF) = B1 log(L)+B0, where B1 = 3.02.

See Fig. 5.4.11 for further details. The experimental data from Chen et al., Ref.
[23], and Makarov et al., Ref. [80], show that the slope of the log-log plot ranges
from 2.94 to 3.36, which is in accordance with our theoretical values.

As the nanocrystals become bigger, the density of states that controls the ab-
sorption of the system grows proportionally to the volume in which the particles are
confined. Regarding the ground state 1se1/2 − 1sh1/2, the enhancement factor βτ has
a strong L-dependence as shown in Fig. 5.4.5. For the higher states nlFc

−nlFv
, the

enhancement factors βnl get closer to unity, see Table 5.1, and are less dependent
on L owning to stronger effective confinement. At ω = 3.1 eV, for instance, the
density of final exciton states become the dominant contribution to the one-photon
cross-section. Hence, σ(1) at this value of ω is expected to depend approximately
linearly on the volume L3. The cubic functions aL3 and bL3 in Fig. 5.4.12, where
a = 2.6 × 10−3 and b = 1.9 × 10−3 (unit: 10−14cm2 nm−3), describe reasonably
the theoretical data for σ(1) and σ

(1)
HF respectively. We use these cubic fits to com-

pare with the measurements in Fig. 5.4.12. Large discrepancies exist between
experimental data and the theoretical calculations as well as among the various
experiments themselves.

On the theoretical side, there are several reasons for an underestimation of the
true one-photon absorption cross-section. Since we stop at first-order correction
for the electron-photon vertex, some error undoubtedly comes from the truncation
of the MBPT. The discussion at the end of the previous subsection suggests a
substantially larger correcting factor when the correlation is taken into account up
to all-order. From the current theoretical point of view, the truncation at first-order
MBPT is regarded as one of the biggest sources of theoretical error.

The angular momentum cut-off lcut-off not only affects the high-energy end of
σ(1)(ω) but also the amount of MBPT correction at first-order. One must note
that the vertex correction of which the radial part is given in (5.4.5) for a more
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highly excited exciton contains many terms with varying signs. The contributions
in Rinter

c,v from the lower states fluctuate and partly cancel the contributions from
the higher states than (c, v). The transitions with high l closer to lcut-off = 12 tend
to receive lower first-order correction factors βnl compared to the actual values by
using a higher lcut-off, see Table 5.2 for some example calculations.
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Figure 5.4.11: The calculated σ(1) (filled
blue diamonds) and σ

(1)
HF (empty green cir-

cles) (unit: 10−14cm2) for CsPbBr3 at ω =
3.1 eV versus edge length L( nm) in loga-
rithmic scale. The least-square linear fits
show the slope of the log-log curves to be
A1 = 2.88 for σ(1) (blue solid line) and
B1 = 3.02 for σ(1)

HF (dashed green line). The
almost cubic dependence on L is attributed
to the proportionality between the density
of states (for large sizes) and the nanocrys-
tal volume L3. The calculated data points
were done with εout = 2.4 (toluene).
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Figure 5.4.12: Cubic fits of theoretical data
and the measured σ(1) versus edge length
L for CsPbBr3. The fitting coefficients are
a = 2.6 × 10−3 and b = 1.9 × 10−3 (unit:
10−14cm2 nm−3) The experimental data are
taken from Chen et al., Ref. [23]; Nagamine
et al., Ref. [85]; Xu et al., Ref. [130]; Wang
et al., Ref. [126]; Makarov et al., Ref. [80].
All the measurements were done at excita-
tion energy ω = 3.1 eV, which is equivalent
to 400 nm. We did not include the theoret-
ical data for the clarity of the plots. Note
that εout = 2.4 in our calculations, assum-
ing the solvent is toluene.

As we have discussed in Subsection 3.4.1, the actual value of Ep is unknown
with the estimated values ranging from E8×8

p = 16.39 eV to E4×4
p = 27.88 eV for

CsPbBr3 depending on the various k · p model, see Table 3.2 and Table 3.1. In the
calculations of the cross-section and the transition strength, the value Ep = 20.0 eV,
which is intermediate between E8×8

p and E4×4
p , was selected. In Fig. 5.4.13, we

provide the calculated σ(1) at two different frequencies ω = 3.1 eV (orange circles)
and ω = 2.65 eV (green diamonds) for various Ep such that 8 eV < Ep < 24.5 eV.
The explicit formulas of the polynomial fits can be found in the caption of Fig.
5.4.13.

We note to the readers that no linear function serves as a good fit for the
theoretical data, for example at ω = 3.1 eV, and a quadratic function such as
aσ2E2

p + aσ1Ep must be used to obtain a reasonable description. Compared to the
case of spontaneous emission, the one-photon absorption cross-section σ(1), as a
series expansion w.r.t. Ep, contains higher power of Ep. This reflects the two ways
in which σ(1) depends on Ep: via the transition strength in (5.4.13) and via the sum
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over the final states |I� that implicitly contains the density of states at a given ω.
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Figure 5.4.13: The calculated one-photon ab-
sorption cross-section versus Ep for CsPbBr3
of edge length L = 9.0 nm at two differ-
ent energies, ω = 3.1 eV (orange circles) and
ω = 2.65 eV (green diamonds). Their respec-
tive fits are the two solid lines, aσ2E2

p + aσ1Ep
where aσ2 = 2.69×10−3 and aσ1 = 4.79×10−2

and bσ
2E

2
p + bσ

1Ep where bσ
2 = 1.17 × 10−3

and bσ
1 = 5.82 × 10−2. The deviation from

a linear relationship between Ep and σ(1) is
considered to be due to the density of states
that depends on the k · p correction, which
in turn depends on Ep.

On the one hand, Ξ
(1)
IJ is proportional

to |Re−p
c,v + R(1)

c,v |2, which scales almost
linearly in Ep with a small quadratic
dependence, see the discussion for the
decay rate 1/τ (1). It explains the fairly
linear part of σ(1) for small Ep. On the
other hand, the k · p corrections that
are proportional to Ep increase the den-
sity of states, especially further away
from the band edge, as discussed above.
Consequently, σ(1)(Ep) deviates more
from a linear relationship w.r.t. Ep.

The polynomial fits in Fig. 5.4.13
allow the ability to extrapolate into
higher Ep region, where one faces the
problem of spurious solution of the k ·p
model. Once a better knowledge of
Ep is obtained via an ab initio method
or some measurements, the resulting
cross-section can be calculated by us-
ing, for instance

σ(1)(Ep) = aσ2E
2
p + aσ1Ep

for the exciting laser of wavelength
400 nm (i.e. ω = 3.1 eV).

So far, the effective dielectric constant from the bulk has been used. Similar to
the discussion in Subsection 4.3.2, some uncertainty exists related to the potential
dependence of εin on the size of the nanocrystals. Due to the lack of knowledge
of εin(�r,ω), the error coming from the size-dependent εin remains undetermined.
The dielectric screening of the electron-photon interaction, as reflected by the ratio
f 2
ε /ε

1/2
out , also depends on the dielectric constant of the external medium. The

specific experimental conditions may introduce some variation for εout.
The various solvents, among which toluene [23, 130] and hexane [85] are the

most common, may have different dielectric constants. Toluene has εout = 2.4
whereas the dielectric constant of hexane is approximately εout = 1.9. The change
of εout from 2.4 to 1.9 gives rise to about 14% relative error in the cross-section
[23, 85]. When the nanocrystals are closely packed into a thin film [126] instead of
being dispersed in solutions [80, 23], the εout should perhaps be treated as having the
same value as the optical dielectric constant of the semiconductor εopt. Depending
on the material of the nanocrystals, these detailed experimental set-ups can also
introduce a variation in σ(1) up to 45%.

Another source of experimental error is the estimation of the concentration of
nanocrystals, especially in solutions. This may explain the big factors between the
measured cross-sections σ(1), for instance between the data by Chen et al. [23] and
by Makarov et al. [80].
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(b) L = 9.0 nm

Figure 5.4.14: The calculated one-photon absorption cross-section σ(1) (with first-order
vertex correction) versus energy ω for two radii, L = 3.2 nm and L = 9.0 nm, of CsPbBr3
nanocrystals. The basic band parameters are from parameter set 1 with Ep = 20.0 eV.
The outside medium has dielectric constant εout = 2.4. The same lower bound δEmin =
20 meV for the energy denominator was used for both radii. εout = 2.4 and δEmin =
20 meV were used for both radii. The homogeneous broadening ΔE0 and the size variation
ΔL/L were chosen to appropriate various experimental values [35, 15]. For D = 3.7 nm,
ΔE0 = 120 meV and ΔL/L = 16% are estimated from Dong et al., Ref. [35]. The
edge length L = 3.2 nm is equivalent to a diameter D = 3.7 nm. For L = 9.0 nm,
ΔE0 = 100 meV and ΔL/L = 12% are taken from Brennan et al., Ref. [15]. The width
of the PL peak from Dong et al., Ref. [35], basically agrees with the width of the first
absorption peak from Brennan et al., Ref. [15].

As the last part of the discussion on one-photon absorption, we give example
calculations of σ(1) for CsPbBr3 versus ω for two different edge lengths of nanocrys-
tals, L = 3.2 nm and L = 9.0 nm. The point here is to show how the σ(1)(ω) curves
as functions of the energy ω would behave when the size changes. The parameters
used for these calculations were as before, see the description of Fig. 5.4.14. Apart
from the uncertainty with the basic parameters for the k·p theory and the dielectric
functions, one needs to also estimate the parameters ΔE0 for homogeneous broad-
ening and ΔL/L for the size broadening. The homogeneous broadening ΔE0 can
be estimated from either the width of the PL peak or the first absorption peak (if
available) for a given size. The size variation is specific to the method of synthesis
and various experimental conditions such as temperature etc. A good reference of
ΔL/L can be taken from Fig. S1 in Ref. [15].

For the size L = 9.0 nm, ΔE0 = 100 meV and ΔL/L = 12%, i.e. ΔL =
1.1 nm, which are intermediate between the corresponding values for L = 8.5 nm
and L = 9.2 nm from table S2 in Ref. [15]. The numbers in the supplementary
information of Ref. [15] are in general agreement with other experimental reported
values [100, 23, 133]. The homogeneous width was taken to be ΔE0 = 120 meV
for L = 3.2 nm [15] whereas the size distribution is ΔL/L = 16%, which implies
ΔL = 0.5 nm. The high monodispersity was chosen for a direct comparison with
the measurement in Fig. 5.4.15a from Ref. [35] for the diameter D = 3.7 nm. Note
that in Ref. [35], the synthesis gives the nanocrystals roughly spherical shape. So
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the size D = 3.7 nm should be interpreted as the diameter of the nanocrystals,
which is equivalent to cubic edge length L = 3.2 nm in the current modelling.

(a) D = 3.7 nm (b) L = 9.0 nm

Figure 5.4.15: Experimental absorption curves for CsPbBr3 for two different sizes. D =
3.7 nm and L = 9.0 nm were taken from Dong et al., Ref. [35], and Chen et al., Ref. [25]
respectively.

The smaller nanocrystals D = 3.7 nm have more clearly observed absorption
features than L = 9.0 nm nanocrystals and the theory correctly reproduces this
phenomenon. The 1se1/2 − 1sh1/2 transition energy is around ω = 2.82 eV, which
corresponds to the first absorption peak as seen in Fig. 5.4.14a. This transition
energy stays slightly above the emission frequency ω = 2.65 eV (λPL = 467 nm in
Fig. 5.4.15a). The comparison for other sizes between the theoretical calculations
and the data by Dong et al., Ref. [35], can be found in Fig. 3.4.3a. The first
absorption local maximum in Fig. 5.4.15a happens around ω = 2.76 eV, which is
equivalent to λabs = 450 nm, and is much closer to our calculated transition energy.
The difference between the PL and the first absorption peaks is the Stokes shift
[71], which may depend on the size of the nanocrystals [15].

The various absorption shoulders as observed in Fig. 5.4.15a between 2.75 eV
and 3.1 eV are missing from the current theory Fig. 5.4.14a. While a similar remark
is true also for L = 9.0 nm, we also note that the steep rise of σ(1) for energy above
400 nm that does not show also on Fig. 5.4.14b.

As the last note, we would like to conclude that the need for a better assessment
of the absorption features and of the correct curvature of the curves σ(1) w.r.t. ω
necessitates the theoretical calculations where (i) the Coulomb interaction should
be accounted for completely by using an all-order method and (ii) the p3/2 band is
preferably included in the k · p model.
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Chapter 6

Conclusion

In this work, we have developed a theoretical approach to study the correlation
effects in the systems of semiconductor nanocrystals. The basic assumption of
spherical symmetry has been made throughout the entire thesis. The angular-radial
separation, which was allowed by the underlying spherical symmetry, improves
considerably the computational efficiency. There are two essential elements of the
system that one needs to take care of: the Coulomb interaction and the effect of
confinement on the kinetic energy. The Hamiltonian for the particle kinetic energy
in a confining potential can be described using the well-established k · p model.

The Coulomb interaction was treated in two steps. First, we incorporated
into the non-interacting single-particle model the Hartree-Fock approximation for
describing the intercarrier interaction. This produces a mean-field level theory,
which has been shown to provide a satisfactory description of the single exciton
energy. The second step involves constructing the two building blocks of many-
body perturbation theory: a perturbative potential V and a basis set. In this
thesis, they correspond to the configuration-averaged Hartree-Fock approximation
and together they allow one to go beyond this mean-field theory via using the
many-body perturbation theory. The calculations of the correlation energies and
of the correlated electron-photon interaction were performed up to the lowest-order,
nonzero contributions in many-body perturbation theory. We shall summarize our
main results and basic conclusions in Section 6.1. A discussion of some future
research directions will be provided in Section 6.2.

6.1 Summary of basic findings

In Chapter 3, the configuration-averaged Hartree-Fock potential VHF, which is
spherically symmetric, was used to calculate the single exciton binding energy of
perovskite nanocrystals of various sizes. After careful literature research, we con-
cluded that many of the fundamental parameters of the perovskite band structures
are still poorly known. The values of these parameters from density functional the-
ory, such as the reduced mass, differ by a factor of two from the measured reduced
mass [99, 132]. We claim that more thorough calculations that go beyond density
functional theory must be used instead, such as the GW calculations in Ref. [122].

The band gap Egap of many perovskite materials have a clear dependence on the
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temperature T . After adjusting the exciton energy with Egap(T ), the theoretical
single exciton energies match excellently the experimental data, as shown in Fig.
3.4.3, except for some small deviation at L < 5.0 nm. The Hartree-Fock potential,
which is first-order in many-body perturbation theory, captures most of the exciton
binding energy. We attribute the overestimation at small L to three factors: the
Stokes shift, the use of an infinite barrier in the confining potential and the probable
size-dependence of the dielectric constant εeff.

Chapter 4 was concerned with the correlation energy of the single exciton,
trions and biexciton. We used the degenerate, open-shell MBPT to calculate the
long-range exchange splitting between the dark and bright excitons. Section 4.2
reasserts the fact that the long-range exchange contribution is nonzero for the
ground state exciton [106]. Up to second-order MBPT, the exchange contribution
to the dark-bright exciton splitting varies from approximately 0.5 meV to a few mili-
electronvolts. The second-order term is shown to be rather important compared
to the first-order term for the large nanocrystals, as reflected in the enhancement
factor βLR.

Section 4.3 confirms the previous observation that the biexciton and trion shifts
are essentially zero at mean-field level [113]. However, by using closed-shell formal-
ism of nondegenerate MBPT, we demonstrated that the biexciton or trion emission
is clearly red-shifted up to second-order (lowest-order) MBPT. The biexciton shifts
are bigger than those of trions for all sizes. Nonetheless, the theoretical values at
this level come out about 1.5-2.0 times smaller than the experimental data. We
ascribe the major cause of this rather unsatisfactory result to the truncation at
second order in our theory and the inconsistency among the different measure-
ments. Another source of errors may come from the variation of the dielectric
function ε(�r,ω) on the excitation frequency ω involved in the many-body Feynman
diagrams and the size of the nanocrystal.

In Chapter 5, we studied the electron-photon interaction, both at Hartree-Fock
level and up to first-order vertex correction. The radiative decay rate 1/τ and the
one-photon absorption cross-section σ(1) were calculated and discussed. The Kane
parameter Ep and the dielectric screening factor fε are among the most important
parameters for the one-photon processes. The rate 1/τ and the cross-section σ(1)

show an approximate linear dependence on Ep and f 2
ε . The precise value of Ep

is unknown, as established in Section 3.4.1. Therefore, we have also performed
calculations of τ and σ(1) while letting Ep vary in some conservative range in
Section 5.3 and Section 5.4. These calculations make it easier for extracting the
corresponding lifetime and cross-section once the true value of Ep will be known in
the future.

By comparing the results at Hartree-Fock level and at HF plus first-order ver-
tex correction, it is clearly shown that the vertex correction plays a fundamental
role in the electron-photon interaction. Regarding the spontaneous emission from
the exciton ground state, the vertex correction increases the radiative decay rate
by a factor βτ equal to 2 up to 4 as the nanocrystal size varies from 5.0 nm to
13.0 nm. The more weakly confined the exciton, which is equivalent to a bigger
nanocrystal, the more important the correlation effect. However, the enhancement
factor becomes smaller as the energy of an exciton state gets higher. Hence, further
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away from the band edge, the vertex correction to the cross-section σ(1) is not as
large as that for the radiative lifetime.

With the first-order vertex correction included, we note that the calculated
lifetime still remains about 2 to 3 times bigger than the measured values. We
argued that, in this case, the overestimation comes from the truncation at first-
order many-body perturbation theory. A method that takes care of the Coulomb
correlation up to all orders is strictly necessary, especially in the weak confinement
limit. Our theory also underestimates the experimental cross-section in Ref. [23] by
a sizable ratio. Surely, an all-order approach would further enhance the theoretical
results of σ(1). Additionally, we speculate that the p3/2 band, which stays about
1.0 eV above the band edge in perovskites, potentially increases the final answer
for the cross-section.

6.2 Outlook
Many directions for future research can be taken from the theoretical formulation
of the current work. Below, we list a number of possibilities that one can pursue.

From the discussions in Chapter 4 and Chapter 5, the dominant contribution to
the theoretical errors is the truncation at the first nonzero (or lowest order) term
of the MBPT series. The Bethe-Salpeter equation offers a way to treat the corre-
lation correction to electron-photon vertex up to all orders. This technique can be
used, in principle, for the single exciton binding energy, from which we can derive
nonperturbatively the long-range exchange contribution to the true dark-bright ex-
citon splitting. To obtain an all-order correction for the biexciton and trion shifts,
the many-body perturbative approach, such as configuration interaction, can be
employed. Considering the electron-photon interaction in particular, many mea-
surements of the multiphoton absorption cross-section are available in the literature
[23, 85, 25]. The current second-quantization technique used in Chapter 5 can be
extended to treat the case of multiphoton absorption [81].

To more accurately model the system, one should take into account the fact
that the surface barrier is, in fact, never infinite. Hence, the use of a more realistic
confining potential with a finite barrier is expected to further improve the theoreti-
cal prediction of, for example, the single exciton energy. A finite barrier allows the
particle wave function to extend into the outer region. This will likely reduce the
total kinetic energy of the particles and also modify the intercarrier Coulomb inter-
action. The potential barrier can be known if the band misalignment between the
nanocrystal material and the outside medium can be either calculated or measured.
One can make use of a well-chosen confining potential to describe the situation of
a core-shell nanoparticle. Here, the core nanocrystal is covered inside one semicon-
ducting shell or even multishells. Upon knowing the details of the band structure
of all involved semiconductors, the boundary condition given in Ref. [17] can be
deployed to construct a kinetic model for the core-shell systems.

The Auger recombination depletes the multicarriers created in an excitonic sys-
tem with more than one electron and one hole and, thus, is proved to be detrimental
to the multiexciton generation process [59, 108, 143]. With the current k · p ap-
proach, one can easily compute the Coulomb matrix element that is involved in the
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relevant Auger process. The Auger recombination rate can be calculated using the
Fermi golden rule. Other decay channels, such as electron-phonon interaction [31],
should also be taken into consideration for a more complete description. Instead
of Fermi golden rule, one can also build a quantum-dynamical model with these
decay pathways included in the Lindblad master equations for describing the open
quantum systems of nanocrystals [16].

With these open problems, and many more that were not even listed here,
we would like to conclude this thesis with the ending remark that one expects
semiconductor nanocrystals to continue to be a productive area of future research,
both experimentally and theoretically.
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Appendix A

Coulomb interaction in momentum
space

The Bloch functions uaα,k(r̃), which correspond to the α-component of the k · p
wave function |a�, are periodic w.r.t. the Bravais lattice vectors �R. We define the
Fourier transformation as follows.

uaα,k(r̃) =
�

�K

uaαk(�K)ei
�K.r̃

⇔ uaαk(�K) =
1

v0

�

v0

uaα,k(�r)e−i�K.r̃ dr̃,

(A.0.1)

where �K is a reciprocal lattice vector with ei�K·�R = 1 and
�
v0

denotes integrating
over a unit cell v0, where the position r̃ lives.

The completeness relation of the Bloch functions says that

1

v0

�

v0

e−i(�K−�K�).r̃ dr̃ = δ�K�K� , (A.0.2)
�

�K

ei�K.(r̃−r̃�) = δ(r̃ − r̃�). (A.0.3)

With the definition above of the Fourier transform, the product of two Bloch
functions in position space can be written as

uaα
∗
,k�(r̃) ucµ,k(r̃) =

�

�K�K�

ei(�K−�K�).r̃ uaα
∗
,k�(

�K�) ucµ,k(�K). (A.0.4)

The Fourier identity (A.0.4) means that
�

ei(�k−�k�+�q).�ruaα
∗
,k�(�r) ucµ,k(�r) d�r =

�

�K��K

uaα
∗
,k�(

�K�) ucµ,k(�K) δ(�k − �k� + �K− �K� + �q),

(A.0.5)
where δ(�k−�k�+ �K− �K�+�q) is a Dirac-δ since the integral

�
. . . d�r above is over the

whole space, not within a unitcell. Note that �k, �k� and �q are general wave vectors
that need not belong to the reciprocal space.
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Let |ψa�, |ψb�, |ψc� and |ψd� be the full wave functions, i.e. they contain also
the Bloch functions uk(�r), corresponding to the k ·p wave functions |a�, |b�, |c� and
|d� respectively.

|ψa� =
�

α |ψaα�, |ψc� =
�

µ |ψcµ�,
|ψb� =

�
β |ψbβ�, |ψd� =

�
ν |ψdν�,

(A.0.6)

where the position representation of, for instance, |ψaα� is

ψaα(�r) =
�

�k

ei�k.�rcaα(�k) uaα,k(�r). (A.0.7)

The sums over α, β, µ and ν also correspond to the k · p components of the total
wave functions |a�, |b�, |c� and |d�.

With the full wave functions given in (A.0.6), the general Coulomb matix ele-
ment �ψaψb|G12|ψcψd� is

�ψaψb|G12|ψcψd� =
�

αβ,µν

�ψaα,ψbβ|G12|ψcµ,ψdν�. (A.0.8)

In this part, we shall derive the momentum-space representation of the Coulomb
interaction. We start with the simple, unscreened Coulomb interaction G12 = r−1

12 .
The momentum representation of G12 in this case is

1

r
=

�
ei�q·�r

4π

q2
d�q. (A.0.9)

Therefore, one has

�ψaα,ψbβ|G12|ψcµ,ψdν� =
��

ψ∗
bβ(�r2)ψ

∗
aα(�r1)

1

|�r1 − �r2|
ψcµ(�r1)ψdν(�r2) d�r1 d�r2

=
�

�k�2�k
�
1,
�k1�k2

��
c∗bβ(�k

�
2)ubβ

∗
,k�2
(�r2) c

∗
aα(

�k�
1)uaα

∗
,k�1
(�r1)

ei(�k1−�k�1).�r1ei(�k2−�k�2).�r2

�
4π

q2
ei�q·(�r1−�r2) d�q ccµ(�k1)ucµ,k1(�r1) cdν(

�k2)udν ,k2(�r2) d�r1 d�r2.

(A.0.10)

After making the Fourier transform of the Bloch functions ubβ ,k�2 , uaα,k�1 , ucµ,k1

and udν ,k2 into the space of the reciprocal lattice vectors �K�
2,

�K�
1,

�K1 and �K2, we
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arrive at

�ψaα,ψbβ|G12|ψcµ,ψdν�

=
�

�k�2�k
�
1,
�k1�k2

��
c∗bβ(�k

�
2)c

∗
aα(

�k�
1) ccµ(

�k1)cdν(�k2) ei(�k1−�k�1).�r1ei(�k2−�k�2).�r2

�
4π

q2
ei�q·(�r1−�r2) d�q

�

�K�
1,
�K1

ei(�K1−�K�
1).�r1uaα

∗
,k�1
(�K�

1) ucµ,k1(
�K1)
�

�K�
2,
�K2

ei(�K2−�K�
2).�r2ubβ

∗
,k�2
(�K�

2) udν ,k2(
�K2) d�r1 d�r2

=
�

�k�2�k
�
1,
�k1�k2

c∗bβ(�k
�
2) c

∗
aα(

�k�
1) ccµ(

�k1) cdν(�k2)
�

�K�
1,
�K1

uaα
∗
,k�1
(�K�

1) ucµ,k1(
�K1)

�

�K�
2,
�K2

ubβ
∗
,k�2
(�K�

2) udν ,k2(
�K2)

�
4π

q2
δ(�k1 − �k�

1 +
�K1 − �K�

1 + �q) δ(�k2 − �k�
2 +

�K2 − �K�
2 − �q) d�q.

(A.0.11)

The last expression can be obtained by integrating the exponential functions w.r.t.
the position vectors �r1 and �r2

�
ei(�k1−�k�1).�r1 ei�q·�r1 ei(�K1−�K�

1).�r1 d�r1 = δ(�k1 − �k�
1 +

�K1 − �K�
1 + �q),

�
ei(�k2−�k�2).�r2 e−i�q·�r2 ei(�K2−�K�

2).�r2 d�r2 = δ(�k2 − �k�
2 +

�K2 − �K�
2 − �q).

(A.0.12)

The integral over �q gives
�

. . . d�q =
4π

|�k1 − �k�
1 +

�K1 − �K�
1|2

δ(�k1−�k�
1+

�K1−�K�
1+

�k2−�k�
2+

�K2−�K�
2), (A.0.13)

which immediately brings us to the expression (4.2.4).
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Appendix B

Angular algebra

Wigner-Eckart theorem says that for a spherical tensor tkq ,

�j�m�|tkq |jm� = (−1)j
�−m�


 j� k j

−m� q m


× �j�||tk ||j�

j�m� j.

kq

+

= × �j�||tk ||j� .

(B.0.1)

B.1 Reduced matrix element of �∇
Considering the spherical harmonics, we have (see Ref. [14])

|lm� = Y l
m(θ,φ) = (−1)m

�
2l + 1

4π

�
(l −m)!

(l +m)!
P l
m(cos θ) eimφ. (B.1.1)

Given that ∇1
0 = ∇z = cos θ ∂

∂r
− sin θ

r
∂
∂θ

and by letting x = cos θ, one has

∇1
0P

l
|m|(x) = cos θP l

|m|(x)
∂

∂r
+

1

r
(1− x2)

dP l
|m|(x)

dx

=

�
l − |m|+ 1

2l + 1
P l+1
|m| (x) +

l + |m|
2l + 1

P l+1
|m| (x)

�
∂

∂r

+

�
− l(l − |m|+ 1)

2l + 1
P l+1
|m| (x) +

(l + 1)(l + |m|)
2l + 1

P l−1
|m| (x)

�
1

r
.

(B.1.2)

More generally, ∇1
q connects Y l

m(θ,φ) to Y l±1
m+1(θ,φ).

From the action of ∇1
0 on to the Legendre polynomials, which essentially is the
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angular part of a spherical wave function, one can deduce its radial operator to be

∇1
0 = Y l+1

m (θ,φ)

�
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)

�
∂

∂r
− l

1

r

�

+Y l−1
m (θ,φ)

�
(l −m)(l +m)

(2l + 1)(2l − 1)

�
∂

∂r
+ (l + 1)

1

r

�
.

(B.1.3)

Using the Wigner-Eckart theorem, we can derived from (B.1.3) the two non-zero
reduced matrix elements of �∇: �l||�∇||l − 1� and �l||�∇||l + 1�.

For the case �l||�∇||l − 1� (l ≥ 1):

�l l − 1|∇1
0|l − 1 l − 1� = −


 l 1 l − 1

−(l − 1) 0 l − 1


 �l||�∇||l − 1�

⇒ 1�
[l]

�
∂

∂r
− (l − 1)

1

r

�
=

1�
l[l]

�l||�∇||l − 1�.
(B.1.4)

For the case �l||�∇||l + 1� (l ≥ 0):

�l l|∇1
0|l + 1 l� =


 l 1 l + 1

−l 0 l


 �l||�∇||l + 1�

⇒ 1�
[l + 1]

�
∂

∂r
+ (l + 2)

1

r

�
= − 1�

(l + 1)[l + 1]
�l||�∇||l + 1�.

(B.1.5)

In summary, the nonzero reduced matrix elements �l||�∇||l�� are

�l||�∇||l�� =





√
l
�

∂
∂r

− (l − 1)1
r

�
, if l = l� + 1,

√
l + 1

�
∂
∂r

+ (l + 2)1
r

�
, if l = l� − 1.

(B.1.6)

B.2 Reduced matrix element of
�
�∇�∇
�2

�
�∇�∇
�2

≡ {∇1∇1}2 denotes the rank-two spherical tensor that is a sum of two

spherical rank-one tensor �∇ ≡ ∇1. The notation ∇1 for �∇ means to emphasize its
rank.

From the previous subsection, we know that �∇ connects Y l
m(θ,φ) to Y l�

m�(θ,φ)

where l� = l ± 1. As a result,
�
�∇�∇
�2

connects Y l
m(θ,φ) to Y l�

m�(θ,φ). For the
rank-two tensor, it is noted that l� = l or l ± 2.

For the case �l||
�
�∇�∇
�2

||l + 2�:
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By using the Wigner-Eckart theorem for �l l|
�
�∇�∇
�2

−2
|l + 2 l + 2�, one has

l, l l + 2, l + 2

2, −2

+

�l l|
�
�∇�∇
�2

−2
|l + 2 l + 2� = ×�l||

�
�∇�∇
�2

||l + 2�

=
1�

[l + 2]
× �l||

�
�∇�∇
�2

||l + 2�.

(B.2.1)

On the other hand, the action of each �∇ ≡ ∇1 on the angular momentum states
gives

�l l|
�
�∇�∇
�2

−2
|l + 2 l + 2� = �l l|∇1

−1|l + 1 l + 1�× �l + 1 l + 1|∇1
−1|l + 2 l + 2�

l, l l + 1, l + 1

1 − 1

+

= �l||�∇||l + 1�× ×

l + 1, l + 1 l + 2, l + 2

1, −1

+

�l + 1||�∇||l + 2�× .

(B.2.2)

The angular diagrams above can be easily evaluated by noting that

l, l l + 1, l + 1

1 − 1

+

= (−1)l−l


 l 1 l + 1

−l −1 l + 1


 = (−1)l+1+(l+1)


l 1 l + 1

l 1 −(l + 1)




= (−1)l+1+(l+1)


 l 1 l + 1

−(l + 1) 1 l


 =

1�
[l + 1]

.

(B.2.3)

The last expresion in (B.2.2) becomes

�l l|
�
�∇�∇
�2

−2
|l+2 l+2� = 1�

[l + 1]
�l||�∇||l+1�× 1�

[l + 2]
�l+1||�∇||l+2�. (B.2.4)

Therefore,

�l||
�
�∇�∇
�2

||l+2� =
�

(l + 1)(l + 2)

2l + 3
×
�

1

r2
∂

∂r
(r2

∂

∂r
) + (2l + 3)

1

r

∂

∂r
+ (l + 1)(l + 3)

1

r2

�
.

(B.2.5)
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Similarly, by applying the same procedure to �l + 2 l + 2|
�
�∇�∇
�2

2
|l l�, we have

�l+2||
�
�∇�∇
�2

||l� =
�

(l + 1)(l + 2)

2l + 3
×
�

1

r2
∂

∂r
(r2

∂

∂r
)− (2l + 3)

1

r

∂

∂r
+ l(l + 2)

1

r2

�
.

(B.2.6)

For the case �l||
�
�∇�∇
�2

||l�:

�l l|
�
�∇�∇
�2

0
|l l� = �l l|

�

q,q�

∇1
q∇1

q�

�
[2]


1 1 2

q q� 0


 |l l�

=
1√
6

�
2�l l|∇1

0∇1
0|l l�+ �l l|∇1

−1∇1
1|l l�+ �l l|∇1

1∇1
−1|l l�

�

=
1√
6

�
3�l l|∇1

0∇1
0|l l� − �l l|∇2|l l�

�
.

(B.2.7)

From Wigner-Eckart theorem, the LHS of Eq. (B.2.7) turns into

l, l l, l

2, 0

+

�l l|
�
�∇�∇
�2

0
|l l� = ×�l||

�
�∇�∇
�2

||l�

=

�
(2l − 1)l

(2l + 3)(l + 1)
× �l||

�
�∇�∇
�2

||l�.

(B.2.8)

The terms on the RHS can be evaluated explicitly to be

�l l|∇1
0∇1

0|l l� = �l l|∇1
0|l + 1 l��l + 1 l|∇1

0|l l�

=
1

2l + 3

�
∂

∂r
+ (l + 2)

1

r

��
∂

∂r
− l

1

r

�

=
1

2l + 3

�
1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

1

r2

� (B.2.9)

and
�l l|∇2|l l� = 1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

1

r2
. (B.2.10)

The RHS of (B.2.7) can be expressed as

1√
6

�
3�l l|∇1

0∇1
0|l l� − �l l|∇2|l l�

�
= −
�

2

3

l

2l + 3

�
1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

1

r2

�
.

(B.2.11)

Therefore, the reduce matrix element �l||
�
�∇�∇
�2

||l� is

�l||
�
�∇�∇
�2

||l� = −
�

2

3

�
l(l + 1)(2l + 1)

(2l − 1)(2l + 3)

�
1

r2
∂

∂r
(r2

∂

∂r
)− l(l + 1)

1

r2

�
(B.2.12)
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B.3 Reduced matrix element of coupled angular
momenta

In this section of the appendix, we shall derive the reduced matrix element of
�(j1, j2) J ||tk || (j1, j2) J� where �j1+ �j2 = �J and �j�1+

�j�2 = �J �. The spherical operator
tk acts on either j1 or j2.

In the derivation below, the part where tk acts on will be written in bold letters.
For instance, �(j1j2)JM |tk |(j�1j�2)J �M �� means the reduced matrix element between
the coupled states |JM� and |J �M �� of tk where tk atcs on the first spherical tensor
j1 and j�1.

Let us consider the case where tk acts on the first angular momentum j1 and
j�1.

�(j1j2)JM |tk |(j�1j�2)J �M ��

=
�
[J ][J �]×

JM +

j1 j�1

kq

+

j2 j�2

− J �M � ×�j1||tk ||j �1�
(B.3.1)

�(j1j2)JM |tk |(j�1j�2)J �M �� =
�

[J ][J �] δj2,j�2× j1

+

−
j�1

j2

−

kq

J �M �

JM

× �j1||tk ||j �1�

=
�
[J ][J �] δj2,j�2 �j1||tk ||j �1�×

+

+

+

+ k

J �

J
j2

j1 j�1
(−1)(j1+j2+J)+(J+k+J �)+2j1+2j2× ×

JM J �M �

kq

+

.

Again, by using Wigner-Eckart Theorem, one arrives at

JM J �M �

kq

+

�(j1j2)JM |tkq |(j�1j�2)J �M �� = �(j1j2)J ||tk ||(j�1j�2)J �M ��× .

Since (j1, j2, J) forms a triangle, (−1)2(j1+j2+J) = 1 and the phase factor
(−1)(j1+j2+J)+(J+k+J �)+2j1+2j2 = (−1)j1+j2+J �+k.
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Therefore, the desired reduced matrix element can be written as

�(j1, j2) J ||tk || (j�1, j�2) J �� = χ1(j1j2J, j
�
1j

�
2J

�) �j1||tk ||j �1�, (B.3.2)

where the coefficient χ1(j1j2J, j
�
1j

�
2J

�) represents the effect of the coupled angular
momenta and is equal to

χ1(j1j2J, j
�
1j

�
2J

�) = (−1)j1+j2+J �+k
�
[J ][J �]





k J J �

j2 j�1 j1



 δj2,j�2 . (B.3.3)

For the other case in which tk acts on j2 and j �2, we can quickly arrive at the
final results by noting the identity

�j1m1, j2m2|JM� = (−1)j1+j2−J�j2m2, j1m1|JM� = (−1)J−j1−j2�j2m2, j1m1|JM�.

See Chapter 2 of Ref. [75] for more details. This identity leads to

�(j1, j2) JM |tkq | (j�1, j�2) J �M �� = (−1)J−j1−j2+j�2+j�1−J �×
JM J �M �

kq

+

�(j2, j1) JM ||tk || (j�2, j�1) J �M ��× .

(B.3.4)

Therefore, the previous results can be transformed into, by using the relation
(B.3.4),

�(j1, j2) J ||tk| | (j�1, j�2) J �� = χ2(j1j2J, j
�
1j

�
2J

�) �j2||tk ||j �2�, (B.3.5)

where the coefficient χ2 is defined to be

χ2(j1j2J, j
�
1j

�
2J

�) = (−1)j
�
1+j�2+J+k

�
[J ][J �]





k J J �

j1 j�2 j2



 δj1,j�1 . (B.3.6)

B.4 Matrix elements of the dot product of two spher-
ical tensors

Here, we give the derivation of the matrix element �(j1j2)JM |tk(1)·tk(2)|(j�1j�2)J �M ��,
where tk(1) and tk(2) act on the first and second angular momentum respectively.

To more conveniently operate using the angular-momentum algebra given in
Ref. [75], we use the following identity

�(j1j2)JM |tk(1) · tk(2)|(j�1j�2)J �M �� =
(−1)k

�
[k]× �(j1j2)JM |{tk(1)tk(2)}00|(j �1j�2)J �M ��.

(B.4.1)
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The matrix element on the RHS can be expressed as

�(j1j2)JM |{tk(1)tk(2)}00|(j �1j�2)J �M ��

=
�
[J ][J �]×

JM +

j1 j�1
k

−
k

00

+

−
j2 j�2

− J �M � ×�j1||tk1 ||j �1��j2||tk2 ||j �2�

=
�

[J ][J �]
[k]

×
JM +

j1 j�1

k

+

−
j2 j�2

− J �M � ×�j1||tk1 ||j �1��j2||tk2 ||j �2�

To evaluate the angular diagram above, we apply JLV2 theorem (please refer to
Chapter 4, Ref. [75]) to the free lines JM and J �M �. Together with some phases
to change the direction of some arrows and the two vertices with (−) sign to (+)
sign, we get

�(j1j2)JM |{tk(1)tk(2)}00|(j �1j�2)J �M �� = (−1)2j1+2J+2k+(j�1+j�2+J)+(k+j�2+j2) δJJ �δMM �

× 1�
[k]




j�2 j2 k

j1 j�1 J



× �j1||tk1 ||j �1��j2||tk2 ||j �2�.

(B.4.2)

The total phase factor of �(j1j2)JM |tk(1) · tk(2)|(j�1j�2)J �M �� can be simplified
into

(−1)2j1+3J+4k+j�1+2j�2+j2 = (−1)2(j1+k+j�1)

� �� �
=1

(−1)2(J+j�2−j�1)

� �� �
=1

(−1)2k� �� �
=1

(−1)j
�
1+j2+J

(B.4.3)
since both (j1, k, j

�
1) and (J, j �2, j

�
1) satisfy the triangle condition and k is an integer.

Therefore, combining (B.4.1), (B.4.2) and (B.4.3) gives

�(j1j2)JM |tk(1) · tk(2)|(j�1j�2)J �M �� = (−1)j
�
1+j2+J δJJ �δMM �




j�2 j2 k

j1 j�1 J





× �j1||tk1 ||j �1��j2||tk2 ||j �2�.
(B.4.4)
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Appendix C

Configuration-averaged
Hartree-Fock approximation:
derivation

For simplicity of notations, l/Ja is used synonymously for l/Jaα provided that its
meaning is clear under a given context.

The direct (3.3.13) and exchange (3.3.14) contains the sums over the magnetic
quantum number Mb of the substates in shell B. We perform these sums in this
chapter of the appendix.

Note that the only part of the Coulomb interaction that depends on the mag-
netic quantum number Mb (and also Ma) is the H-shape angular diagram that
appears in (3.3.6) and (3.3.10).

C.1 Direct interaction

For the direction interaction, |FcMc� = |FaMa� and |FdMd� = |FbMb�. The sum
over Mb means that one joins the free ends on the right hand side into a closed
loop.

Fb
k

+
−

FaMa

FaMa

=
�
[Fb] δk,0 ×

0, 0

FaMa

FaMa

− =
�

[Fb]
[Fa]

δk,0 .

(C.1.1)

The Kronecker-δ means that only the mono-pole term is non-zero, as claimed in
the main text. Using that fact that k = 0, we can further simplify the expression
for the coefficients ckχ(lJaαFa; lJaµFa) and ckχ(lJbβFb; lJbνFb) defined in (3.3.8).

As an example, we explicitly evaluate the coefficient ckχ(lJaαFa; lJaµFa). The
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6j-symbol is

+

+

+

+ Fa

Fa

k = 0
laµ

laα Jaα




Fa Fa k

laµ laα Jaα



 ≡ = (−1)laα+Jaα+Fa 1√

[laα]

1√
[Fa]

δlaα,laµ .

(C.1.2)

Given that �l||Ck||l�� = (−1)l
�
[l][l�]


 l k l�

0 0 0


 and


 l 0 l�

0 0 0


 = (−1)l δl,l� [l]

−1/2,

(see Chapter 2 of Ref. [75]), we have

�laα||0||laµ� =
�
[laα] δlaα,laµ . (C.1.3)

Together with (3.3.8), the coefficient ckχ(lJaαFa; lJaµFa) can be simplified, for
k = 0, into

ckχ(lJaαFa; lJaµFa) = δJaα,Jaµ δlaα,laµ
1�
[Fa]

(C.1.4)

and, similarly, ckχ(lJbβFb; lJbνFb) is

ckχ(lJbβFb; lJbνFb) = δJbβ ,Jbν δlbβ ,lbν
1�
[Fb]

. (C.1.5)

Note that δJaα,Jaµ δlaα,laµ = δα,µ and δJbβ ,Jbν δlbβ ,lbν = δβ,ν .
The sum over Mb, i.e. over all magnetic substates of shell B, yields,
�

Mb

�ab|G12|ab� = [Fb]×
�

α

Raα(r)Raα(r) Y0[
�

β

RbβRbβ](r). (C.1.6)

Taking the functional derivative of (C.1.6) w.r.t. �a|, we arrive at (3.3.21) for
(V b

dir|a�)α.

C.2 Exchange interaction
Consider the exchange matrix element �ab|G12|ba�. In the exchange diagram,
|FcMc� = |FbMb� and |FdMd� = |FaMa�. The sum over Mb lead to

Fb

k
+ +

FaMa

FaMa

= (−1)2Fa+(Fc+Fb+k)
FaMa FaMa

+ −

= (−1)Fb−Fa+k 1
[Fa]

.

(C.2.1)
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The phase factor (−1)k combines with (−1)k in (3.3.9). Summing the exchange
interaction �ab|G12|ba� over the magnetic substates Mb gives
�

Mb

�ab|G12|ba� = (−1)Fb−Fa [Fb]×
�

k

Yk[
�

β,ν

ckχ(lJbβFb; lJaνFa) RbβRaν ](r)

��

α,µ

ckχ(lJaαFa; lJbµFb) Raα(r)Rbµ(r)

�
.

(C.2.2)

C.3 Self-energy
The H-shape angular diagram in (3.3.6) with Fb = Fc = Fd = Fa and Mb = Mc =
Md = Ma can be written in terms of 3j-symbol as

− +

FaMa

FaMa

k

FaMb

FaMa

= (−1)k
�

m


 Fa k Fa

−Ma m Ma




2

= (−1)k


 Fa k Fa

−Ma 0 Ma




2

.

(C.3.1)
The last equality comes from the selection rule (−Ma + m + Ma) = 0 for the
magnetic quantum numbers. Note the following identity for 3j-symbols

�

m1m2


 j3 j1 j2

m3 m1 m2




 j�3 j1 j2

m�
3 m1 m2


 =

1

[j3]
δj3j�3 δm3m�

3
. (C.3.2)

Averaging over the magnetic substate |FaMa� and using the identity (C.3.2)
leads us to

1

[Fa]

�

Ma


 Fa k Fa

−Ma 0 Ma




2

=
�

MaM �
a


k Fa Fa

0 Ma M �
a




2

=
1

[Fa]

1

[k]
. (C.3.3)

The coefficient ck for self-energy, where with |b� = |c� = |d� = |a�, is

ck(aα aβ, aµ aν) = [Fa]
2 ckχ(lJaαFa; lJaµFa) c

k
χ(lJaβFa; lJaνFa). (C.3.4)

Combining the results in (C.3.1), (C.3.3) and (C.3.4) leads one to the final
expression (3.3.27) in the main text.

With this, the derivation for the radial formulas for Vdir, Vexc and Vself is com-
pleted.
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Appendix D

Single exciton angular diagrams

In this chapter of the appendix, we give the derivation of the expressions for the
angular diagrams concerning the many-body perturbation theory corrections to the
single exciton energy. These include the first-order direct Dexc

1,d (k) and exchange
Dexc

1,x (k) angular diagrams of the multipole k in (4.2.29) and (4.2.30) as well as the
second-order angular diagrams as defined in (4.2.44) and (4.2.46).

D.1 First-order direct angular diagram
Starting with the definition of Dexc

1,d (k) as in (4.2.29),

Dexc
1,d (k) =

�

Mc�Mv�
McMv

C∗
eh(Fc�Mc� , Fv�Mv� ;F

�
totM

�
tot) D

1
d(k) Ceh(FcMc, FvMv;FtotMtot)

with the first-order direct angular diagram D1
d(k) given on the left of Fig. 4.2.3. The

electron-hole Clebsch-Gordan coupling coefficients Ceh(FcMc, FvMv;FtotMtot) and
C∗

eh(Fc�Mc� , Fv�Mv� ;FtotMtot), of which their angular representations are in (4.2.19)
and (4.2.20).

Dexc
1,d (k) =

�
[F �

tot][Ftot] ×

Fc

Fc�

+
k

+

Fv

Fv�

−

FtotMtot

+

F �
totM

�
tot

=
�
[F �

tot][Ftot] ×

Fc

Fc�

+
k

+.

Fv

Fv�

−

FtotMtot

+

F �
totM

�
tot

(D.1.1)
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Applying the JLV2 theorem described in Chapter 4 of Ref. [75] to the free lines
with FtotMtot and F �

totM
�
tot transforms the previous expression into

Dexc
1,d (k) =

�
[F �

tot][Ftot]× + +
k

Fc

−

Fc�

+

Fv

Fv�

F

F �M �

FM

× δFtot,F �
tot

[Ftot]

= (−1)Fc+Fv+Ftot




Fv� k Fv

Fc Ftot Fc�



 δFtot,F �

tot
δMtot,M �

tot
.

(D.1.2)

Note the selection rule δFtot,F �
tot

δMtot,M �
tot

in the expression (D.1.2) above. This
unambiguously shows that the total angular momentum Ftot of the exciton is indeed
conserved by the Coulomb interaction. The reader should bare in mind that Ftot ≡
F �

tot also holds for the first-order exchange interaction and all the second-order
corrections. For notational simplicity in the manipulations of these diagrams, we
implicity assume that F �

tot = Ftot in sections D.2- D.4 below.

D.2 First-order exchange angular diagram
Here, we give the derivation for Dexc

1,x (k) in equation (4.2.30) for an exciton in
angular state |FtotMtot�.

Dexc
1,x k = [Ftot] ×

FtotMtot

−

Fv

Fc

− +k

Fc�

Fv�

−
FtotMtot

(D.2.1)

By applying the JVL2 theorem, again see Ref. [75], to the free lines with
FtotMtot, we arrive at

Dexc
1,x k = [Ftot] × k

+

−
Fc

Fv

Fc�

Fv�

Ftot

−

−

FtotMtot

FtotMtot

× 1
[Ftot]

.

(D.2.2)
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The value of the line on the right of (D.2.2) is 1 (Eq. (3.4) of Ref. [75].) Another
application of JLV2 theorem (see problem 4.2 in Ref. [75]) for the lines k and Ftot

in the above equation gives

Dexc
1,x k = (−1)2Fv�+Fv+Fc+Ftot

1

[Ftot]
δkFtot

=
(−1)Fc−Fv+Ftot

[Ftot]
δFtotk (Fv = Fv�).

(D.2.3)

D.3 Second-order direct angular diagrams

The second-order direct angular diagram Dd(k1, k2) Fig. 4.2.4b is coupled with the
electron-hole Clebsch-Gordan coefficients Ceh(FcMc, FvMv;FtotMtot) and C∗

eh(Fc�Mc� , Fv�Mv� ;FtotM
into Dexc

1,d (k1, k2).
The JLV2 theorem in Ref. [75] leads us to

+ FM

Fc Fv

Fp Fq

k1

k2

−

−

−

−
Fc� Fv�

− FtotMtot

[Ftot]×

+
Fc

Fv

Fp Fqk1
k2

−

−

−

−
Fc�

Fv�

−

Ftot= [Ftot]× × 1
[Ftot]

.

(and by using the JLV3 theorem of Ref. [75] for the three lines Fp, Fq and Ftot)

−

−

−

− Fv�

Fq

k2
Fp

Fc� Ftot
=

−

+

+

− Fq

Fv

k1
Fc

Fp Ftot×

= (−1)2Fp




Fv� Fq k2

Fp Fc� Ftot



× (−1)(Fp+k1+Fc)+(k1+Fq+Fv)+2Fc+2Ftot




Fq Fv k1

Fc Fp Ftot





One arrives at the last line by adding some phase factor to change the diagrams
into the ones for 6j-symbols.

Note that (−1)2k1 = (−1)2Ftot = 1 since k1 and Ftot are both integers. Since Fc

and Fp are half-integers, (−1)3Fc = (−1)−Fc and (−1)3Fp = (−1)−Fp . Finally, with
Fv� = Fv, Fc� = Fc, one can put the last expression into its final form in (4.2.47).
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D.4 Second-order exchange angular diagrams
Our aim in this subsection is to calculate the exciton angular diagrams Dexc

2,x1(k1, k2)
and Dexc

2,x2(k1, k2), as defined in (4.2.45) and (4.2.46).
Consider first the coupling between the direct diagram in D2

x1(k1, k2) on the left
of Fig. 4.2.7 and the electron-hole Clebsch-Gordan coupling coefficient
C∗

eh(Fc�Mc� , Fv�Mv� ;FtotMtot).

− +

Fc�Mc�

FpMp

k2

FqMq

Fv�Mv�

�
Mv�Mc�

−

Fc�Mc�

Fv�Mv�

FtotMtot
× =

FqMq +

FpMp +

k2

Fv�

Fc�

+

FtotMtot

=

FqMq+

FpMp+

k2

Fv�

Fc�

+

FtotMtot
=

FqMq

FpMp

+

+

k2
Fv�

Fc�

+
Ftot

+ × −

Fq

FtotMtot

Fp

= (−1)2k2+2Fc�+2Fp




Fv Fc Ftot

Fp Fq k2



× (−1)Fp+Fq+Ftot

−

FpMp

FqMq

FtotMtot

.

= (−1)Fp+Fq+Ftot




Fv Fc Ftot

Fp Fq k2



 C∗

eh(FpMp, FqMq;FtotMtot)

Therefore, Dexc
2,x1(k1, k2) is equal to

− +

FvMv

FcMc

k1

FpMp

FqMq

�
Mv�Mc�
MpMq

Ceh(FcMc, FvMv;FtotMtot)× × C∗
eh(FpMp, FqMq;FtotMtot)

×(−1)Fp+Fq+Ftot




Fv Fc Ftot

Fp Fq k2



 .
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By making use of the results in subsection D.2,

Dexc
2,x1(k1, k2) =

(−1)Fc+Fv+Fp−Fq

[Ftot]




Fv Fc Ftot

Fp Fq k2



 δk1,F . (D.4.1)

Either by repeating the calculation above, which is too tedious to be done again
here, or by using the fact that D2

x2(k1, k2) can be transformed into D2
x1(k1, k2), we

immediately have

Dexc
2,x2(k1, k2) =

(−1)Fc−Fv+Fp+Fq

[Ftot]




Fv Fc Ftot

Fp Fq k1



 δk2,F . (D.4.2)

Note that 2Fq and 2Fv are odd intergers. Hence,

(−1)Fc−Fv+Fp+Fq = (−1)Fc+Fv+Fp−Fq = −(−1)Fc+Fv+Fp+Fq .

This finishes the derivation for the expressions (4.2.47) and (4.2.48).
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