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Abstract

English:
The design target of energy efficiency for 5G networks is at least 1000-fold than the

currently available 4G system, while offering higher data transmission rate and very low

latency. To evaluate the performance of large representative cellular networks and capture

the main factors involved in the energy consumption process, representative and accurate

models must be developed.

To develop tractable and efficient models, we use the spatial fluid modeling framework

and compute the energy efficiency metric. Our model consists of a downlink transmission

of an OFDMA cellular network, composed of several base stations and multiple user

equipments randomly distributed over the area. An analytical expression of energy efficiency

is then derived to study the impact of the major factors involved in the energy consumption

process such as fading and shadowing attenuation, cellular coverage type and quality.

Extensive numerical simulations were run to compare the results obtained by Monte Carlo

simulations and demonstrate the effectiveness and accuracy of the fluid modeling for large

cellular networks. The numerical results indicate that user density does not affect energy

efficiency. Besides, energy efficiency is more important in suburban environments than in

urban environments where the shadowing effect is great, regardless of the cellular coverage

type. However, and more generally, micro-cellular networks’ deployment offers better

energy efficiency than the conventional macro-cellular ones.

Besides, we evaluated the effect of the promising Joint Transmission Coordinated

MultiPoint (JT-CoMP) technique on energy efficiency, which is significantly improved as

the number of coordinated BSs increases. On the other hand, coordination between base

stations is only effective for user equipment that is remote from their base station.

To resume, our numerical results illustrate the effectiveness and accuracy of fluid

modeling, which can be considered as a mathematical tool by operators to benchmark

cellular networks’ energy efficiency.

Keywords: energy efficiency, mobile networks, JT-CoMP, performance evaluation, fluid

modeling



vi Abstract

Français:
La conception des systèmes de communication dits 5G cible une efficacité énergétique

ambitieuse, au moins 1000 fois supérieure à celle du système 4G actuellement disponible,

tout en offrant un débit de transmission de données supérieur et un temps de latence très

faible. Il est donc nécessaire de développer des modèles représentatifs et précis des grands

réseaux cellulaires afin d’évaluer leur performance et d’identifier les principaux facteurs

impliqués dans la consommation d’énergie comme l’atténuation de signal, le type et la

qualité de la couverture cellulaire radio.

Nous avons utilisé la modélisation fluide spatiale pour développer des modèles représen-

tatifs et calculables afin de calculer la métrique d’efficacité énergétique. Notre modèle

considère un réseau composé de plusieurs cellules opérant en OFDMA sur les liens descen-

dants, et de multiples équipements utilisateurs répartis aléatoirement. Une expression

analytique de l’efficacité énergétique a été dérivée pour prendre en compte les principaux

facteurs liés à la communication : coefficient d’atténuation de signal, probabilité de couver-

ture, type du réseau. Des simulations numériques ont permis de comparer les résultats avec

ceux obtenus par les simulations Monte Carlo et ainsi, montrer l’efficacité et la précision

de la modélisation fluide pour de grands réseaux cellulaires. Les résultats numériques

montrent que l’efficacité énergétique est indépendante de la densité des équipements util-

isateurs. Par ailleurs, l’efficacité énergétique est plus importante dans les environnements

suburbains que dans les milieux urbains où l’effet de shadowing est grand et ce, quel que

soit le type de réseaux (macro, micro ou femto). Cependant, et d’une façon plus générale,

le déploiement de petits réseaux (small cells) offre une meilleure efficacité énergétique

comparée au réseau macro classique.

En outre, nous avons évalué l’effet de la technique de transmission conjointe multipoint

(JT-CoMP) sur l’efficacité énergétique, qui est considérablement améliorée lorsque le nombre

de stations de base coordonnées augmente. En revanche, la coordination entre les stations

de base n’est efficace que pour les équipements utilisateurs éloignés de leur station de base.

En résumé, nos résultats numériques mettent en évidence l’efficacité et la précision

de la modélisation fluide qui peut être considérée comme un outil mathématique par les

opérateurs pour évaluer l’efficacité énergétique des réseaux cellulaires.

Mots clés: efficacité énergétique, réseaux mobiles, JT-CoMP, évaluation des perfor-

mances, modélisation fluide



Overview of the manuscript

The 5G network design aims to offer more capacities and less latency and fulfill the in-

creasing data traffic, leading to higher energy consumption. From the view point of

environmental responsibility, radio communication is a large proportion of information and

communications technologies (ICT) related to carbon dioxide (CO2) emissions. During

the last decades, Energy Efficiency (EE) has received a lot of attention in wireless com-

munications and is very important, from the viewpoints of both economic benefits and

environmental responsibility. The investigation of EE, in wireless networks, is driven using

either system-level simulations or stochastic geometry to consider the spatial distribution

of nodes (base stations and user terminals) when describing the topological model of the

networks. However, since today’s wireless communication networks are denser and denser

due to the increasing number of base stations (BSs) and user terminals, simulation-based

approaches have become a painful task and resource-intensive. On the other hand, stochas-

tic geometry-based studies assume, in most cases, a Poisson point process to describe the

locations of nodes, which allows us to derive a closed-form formula of the energy efficiency

metrics. Nevertheless, when non-Poisson point processes are considered, eg., perturbed

lattice, β-Ginibre point process, and Matérn point process, the performance models are

not analytically tractable due to the non-independent nature of points. Therefore, either

approximations or simulations are conducted to prove the model accuracy.

Spatial fluid modeling has recently been developed to evaluate network performance,

like the signal-to-interference-plus-noise ratio (SINR) and outage probability through

analytical expressions. However, an investigation of EE based on fluid modeling in wireless

networks is still missing. Additionally, the advanced technique of Joint Transmission

Coordinated MultiPoint (JT-CoMP) has been designed to improve such parameters as SINR,

capacity, and quality of service. Nevertheless, this technology brings additional energy

power consumption for transmitting backhauling information. Hence, while utilizing

the JT-CoMP scheme, how to compute EE based on fluid modeling is still an open issue.

Performance of JT-CoMP has been studied by simulations or with stochastic geometry but

not using fluid modeling. Therefore, our objective is to evaluate EE for the cellular networks
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based on the fluid modeling, while considering JT-CoMP and non JT-CoMP schemes, in order

to develop an accurate and tractable model and to show the efficiency of fluid modeling.

The PhD thesis is divided into six chapters and it is organized as follows:

In chapter 1, we first outline the background information on energy efficiency (EE) in

the information and communications technologies. Then the cellular network concept and

its energy consumption are presented. Furthermore, advanced technologies developed

to increase spectral efficiency in 4G systems are introduced, as they have the potential to

improve EE. Finally, we discuss some survey papers focusing on EE by taking advantage of

the advanced technologies.

In chapter 2, we first list some EE models from the perspective of its definition. Then,

as the critical components of the EE model, the power consumption models and the

throughput models are introduced. Finally, we classify some literature papers on EE from

the perspectives of both EE-evaluation and EE-optimization, according to some advanced

technologies to illustrate the impact of these technologies on EE.

The chapter 3 is an introduction to the model common to the whole thesis. We first

survey main scientific papers published on fluid modeling. Then, we present the cellular

system we use in our work. Afterward, the concept of fluid modeling is introduced and

the mathematical expressions of SINR and interference factor based on this model are

presented. Finally, some numerical results of SINR are shown to validate the accuracy of

fluid modeling.

Chapter 4 illustrates a tractable model of EE without considering the impact of shadow-

ing and analyzes the joint effect of shadowing and path-loss exponent on EE based on the

spatial fluid modeling in the macro- and femto- cellular networks, respectively. After having

developed the associated EE model, the data rate computation is discussed without and

with considering the impact of shadowing. In the case of non-shadowing, we develop three

data rate models for three scenarios, depending on the network’s size. Whereas, in the case

of shadowing, we make a brief recall of the signal quality, the mean and standard deviation

of interference factor using fluid modeling, and then present a closed-form expression of

the signal quality threshold, which is depending on the user equipments’ location while

considering a fixed coverage probability. Finally, based on the above work, we assess the

EE for both macro- and femto- cellular networks in non-shadowing and shadowing cases

through simulation results.

In chapter 5, we develop a tractable and efficient EE model based on the spatial

fluid modeling framework when JT-CoMP is applied. After reviewing the literature on

JT-CoMP technology, we introduce the corresponding system model, including the refined

power consumption model and energy efficiency metrics. Then, the data rate computation
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and the backhauling traffic computation are presented. Moreover, we investigate the EE

enhancement in both macro- (MCN) and femto- (FCN) cellular networks, compared to

the baseline case where no coordination is applied. Finally, we show that the EE metrics

computed for a femto-cellular system increase depending on some parameters, such as

path-loss exponent, network area, and the number of coordinated base stations, when

varying the backhauling power cost depending on the data rate requirement. We further

reveal the impact of the distance threshold, which corresponds to the predefined threshold

of SIR, on EE per cell, thus verifying the effectiveness of JT-CoMP.

Finally, chapter 6 summarizes the thesis and sets some perspectives for the future

work. Appendices provides supplementary materials, including the published/submitted

contributions.





Vue d’ensemble du manuscrit

La conception du réseau 5G vise à offrir plus de capacités et moins de latence et à répondre

à l’augmentation du trafic de données, entraînant une consommation d’énergie plus élevée.

Du point de vue de la responsabilité environnementale, les radiocommunications constituent

une part importante des technologies de l’information et des communications (TIC) liées

aux émissions de gaz carbonique (CO2). Au cours des dernières décennies, l’efficacité

énergétique (EE) a été l’objet de beaucoup d’attention dans les communications sans

fil et est très importante, tant du point de vue des avantages économiques que de la

responsabilité environnementale. L’étude de l’EE, dans les réseaux sans fil, est conduite

à l’aide de simulations au niveau du système ou de géométrie stochastique pour prendre

en compte la distribution spatiale des nœuds (stations de base et terminaux d’utilisateurs)

lors de la description du modèle topologique des réseaux. Cependant, comme les réseaux

de communication sans fil d’aujourd’hui sont de plus en plus denses en raison du nombre

croissant de stations de base (BS) et de terminaux utilisateurs, les approches basées sur

la simulation sont devenues une tâche pénible et gourmande en ressources. D’autre part,

les études basées sur la géométrie stochastique supposent, dans la plupart des cas, un

processus ponctuel de Poisson pour décrire les emplacements des nœuds, ce qui nous

permet de dériver une formule en forme fermée des métriques d’efficacité énergétique.

Néanmoins, lorsque des processus ponctuels non-Poisson sont considérés, par exemple, un

réseau perturbé, un processus ponctuel β -Ginibre et un processus ponctuel de Matérn, les

modèles de performance ne sont pas analysables en raison de la nature non indépendante

des points. Par conséquent, des approximations ou des simulations sont effectuées afin de

prouver la précision du modèle.

La modélisation des fluides spatiaux a récemment été développée dans le but d’évaluer

les performances du réseau, comme le rapport signal/brouillage et bruit (SINR) et la

probabilité de panne au moyen d’expressions analytiques. Cependant, une enquête sur l’EE

basée sur la modélisation des fluides dans les réseaux sans fil fait toujours défaut. De plus,

la technique avancée dite « Joint Transmission Coordinated MultiPoint » (JT-CoMP) a été

conçue pour améliorer des paramètres tels que le SINR, la capacité et la qualité de service.
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Néanmoins, cette technologie conduit à une consommation d’énergie supplémentaire pour

la transmission des informations de « back-hauling ». Par conséquent, tout en utilisant

le schéma JT-CoMP, comment calculer l’EE basée sur la modélisation des fluides reste un

problème en suspens. Les performances de JT-CoMP ont été étudiées par des simulations

ou avec une géométrie stochastique mais pas en utilisant la modélisation des fluides. Par

conséquent, notre objectif est d’évaluer l’EE pour les réseaux cellulaires sur la base de la

modélisation des fluides, tout en considérant les schémas JT-CoMP et non JT-CoMP, afin de

développer un modèle précis et traitable et de montrer l’efficacité de la modélisation des

fluides.

La thèse de doctorat est divisée en six chapitres et est organisée comme suit:

Au chapitre 1, nous présentons d’abord les informations générales sur l’efficacité én-

ergétique (EE) dans les technologies de l’information et de la communication. Ensuite, le

concept de réseau cellulaire et sa consommation d’énergie sont introduits. En outre, des

technologies avancées développées dans le but d’augmenter l’efficacité spectrale des sys-

tèmes 4G sont considérées, car elles ont le potentiel d’améliorer l’EE. Enfin, nous discutons

de certains articles de revue axés sur l’EE en tirant parti des technologies de pointe.

Au chapitre 2, nous énumérons d’abord quelques modèles d’EE du point de vue de

leur définition. Ensuite, en tant que composants critiques du modèle EE, les modèles

de consommation d’énergie et les modèles de débit sont introduits. Enfin, nous classons

certains articles de la littérature sur l’EE du point de vue à la fois de l’évaluation de l’EE et

de l’optimisation de l’EE, selon certaines technologies avancées pour illustrer l’impact de

ces technologies sur l’EE.

Le chapitre 3 est une introduction au modèle commun à l’ensemble de la thèse. Nous

examinons d’abord les principaux articles scientifiques publiés sur la modélisation des

fluides. Ensuite, nous présentons le système cellulaire que nous utilisons dans notre travail.

Puis le concept de modélisation des fluides est introduit et les expressions mathématiques

du SINR et du facteur d’interférence basées sur ce modèle sont présentées. Enfin, certains

résultats numériques du SINR sont donnés pour valider la précision de la modélisation des

fluides.

Le chapitre 4 illustre un modèle traitable d’EE sans tenir compte de l’impact de l’ombrage

et analyse l’effet conjoint de l’ombrage et de l’exposant de perte de chemin sur l’EE basé

sur la modélisation des fluides spatiaux dans les réseaux macro et femto-cellulaires, respec-

tivement. Après avoir développé le modèle EE associé, le calcul du débit est discuté sans et

avec la prise en compte de l’impact de l’observation. Dans un cas de non-ombrage, nous

développons trois modèles de débit de données pour trois scénarios, en fonction de la taille

du réseau. Dans le cas de l’ombrage, nous faisons un bref rappel de la qualité du signal, la
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moyenne et l’écart type du facteur d’interférence en utilisant la modélisation de fluide, puis

nous présentons une expression de forme fermée du seuil de qualité du signal, qui dépend

de l’emplacement des équipements de l’utilisateur, tout en considérant une probabilité de

couverture fixe. Enfin, sur la base des travaux ci-dessus, nous évaluons l’EE pour les deux

réseaux macro-cellulaires et femto-cellulaires dans les cas de non-ombrage et d’ombrage

grâce aux résultats de simulation.

Dans le chapitre 5, nous développons un modèle d’EE traitable et efficace basé sur

le cadre de modélisation des fluides spatiaux lorsque JT-CoMP est appliqué. Après avoir

examiné la littérature sur la technologie JT-CoMP, nous présentons le modèle de système

correspondant, y compris le modèle de consommation d’énergie raffiné et les mesures

d’efficacité énergétique. Ensuite, le calcul du débit de données et le calcul du trafic

de backhauling sont présentés. En sus, nous étudions l’amélioration de l’EE dans les

réseaux cellulaires macro- (MCN) et femto- (FCN), par rapport au cas de base où aucune

coordination n’est appliquée. Enfin, nous montrons que les métriques d’EE calculées pour un

système femto-cellulaire augmentent en fonction de certains paramètres, tels que l’exposant

de perte de chemin, la zone de réseau et le nombre de stations de base coordonnées, en

faisant varier le coût de la puissance de retour en fonction du débit de données exigé. Nous

révélons en outre l’impact du seuil de distance, qui correspond au seuil prédéfini de SIR,

sur l’EE par cellule, vérifiant ainsi l’efficacité du JT-CoMP.

Le chapitre 6 résume la thèse et présente quelques perspectives de travaux futurs. Les

annexes fournissent des documents supplémentaires, y compris les contributions publiées

ou soumises.
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2 Related work on advanced techniques in 5G

1.1 Introduction

As far as we know, the fourth generation of the wireless communication systems has

been evaluated in terms of spectral efficiency (SE), defined as the throughput per unit

of bandwidth. It is an indication of how much traffic a limited frequency spectrum can

carry. However, SE can not offer any insight on how efficient the energy consumption

is, i.e., the energy required to handle the traffic. Therefore, energy efficiency (EE) has

attracted much interest in recent years as one of the key performance indicators to design

the energy-efficient 5G wireless networks. A most widely-applied definition of EE is the

ratio between SE and the total power consumption [1]. According to the above definition,

it is obvious that EE has a close relationship with SE. Hence, many studies have now been

conducted to improve EE through improving SE.

From the perspectives of both increasing bandwidth and improving the signal-to-

interference-plus-noise ratio at the users, several key and advanced technologies have

been developed to improve the SE of advanced 4G wireless networks, like: multiple-input

multiple-output (MIMO), base stations (BSs) cooperation, small cells, relay transmission,

on-off switching policy of BSs [2], cloud radio access networks (Cloud-RAN), carrier ag-

gregation and millimeter-wave (mmWave) communications. Given the above definition

of EE, denoted by SE, these technologies can be considered as promising candidates for

5G mobile cellular systems to improve EE. Additionally, we have found that most of the

studied work on the investigation of the energy efficiency (EE) in wireless networks, are

conducted with the purpose either to evaluate the impact of some advanced techniques

on EE, or to define/design the technical parameters in order to optimize the EE factor.

Accordingly, introducing these advanced technologies is very necessary for the reader’s

better understanding how they enable the dramatic increase of SE and EE.

This chapter aims to identify several technologies, which are crucial and can improve

capacity, coverage, or energy efficiency (EE) in the 5G wireless radio networks. Additionally,

this thesis is focusing on EE model design for the 5G cellular networks and specifically inves-

tigates the effect of coordinated BSs and shadowing on the performance of EE. Therefore,

presenting these advanced technologies is helpful to understand our thesis work. Mention

that the carrier aggregation and millimeter-wave (mmWave) communications mainly focus

on the efficient utilization of spectrum bandwidth, which is beyond the scope of discussion

of this thesis. Hence, the two technologies will not be discussed in this chapter.

In this chapter, we first outline the background information on energy efficiency in the

information and communications technologies (ICT). Then the concept of cellular network

and its energy consumption are presented. Furthermore, the advanced technologies are
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introduced, which have the potential to improve EE. Finally, we discuss some survey papers

which are focusing on EE through taking advantage of the advanced technologies so as to

illustrate the impact of these techniques on EE.

1.2 Energy efficiency (EE) in ICT

With the advent of the fifth generation of wireless networks, with millions more base

stations (BSs) and billions of connected devices, energy efficiency (EE) has been proposed

as one of key performance indicators for the design of energy-efficient wireless networks.

The EE of a communication link can be defined as a ratio of the achievable sum rate to

the total power consumed and is given in bits/Joule [3]. Energy consumption for wireless

systems has become a more and more important issue in the world due to its impact on the

environment and the operation cost. For example, carbon emissions of energy sources have

great negative impact on the environment, and the price of energy is increasing day by day.

Hence, it is very important to study EE in information and communications technologies

(ICT).

1.2.1 Environmental and 5G usage aspects

Information and communications technologies (ICT), powered by traditional carbon-based

energy sources, are playing a more and more substantial role in global greenhouse gas

emissions since the amount of energy for ICT increases dramatically with the rapidly growth

of the number of connected devices. Presently, the CO2 generated by ICT accounts for 5%

of the global emission [2, 4] and the percentage is increasing briskly due to the explosive

growth of service requirements in the near future. Meanwhile, as some parts of ICT systems,

infrastructures of cellular mobile networks, wired communication networks and Internet

consume more than 14% of the worldwide electric energy nowadays [5, 6]. It is anticipated

that 75% of the ICT district will be the radio access communication by 2020 [7]. The truth

hints that wireless communications should be highly concerned considering its key role in

diminishing ICT-related CO2 emissions.

However, reducing ICT-related energy consumption and CO2 emissions is challenging

considering the tremendous deployment of telecommunication devices and the requirement

of high communication quality. Currently, people foresee the mobile traffic to grow by a

factor of 1000 by the year of 2020, and 10 to 100-fold for the number of connected users.

In 5G networks, billions of devices (50 billion by the year of 2020) [8], are served to

provide ubiquitous connectivity and innovative and rate-demanding services. For example,
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multiple devices (including smartphone, laptop, PC, tablets) would be owned by each person

along with human communications and machine correspondence. One of the advantages

of 5G is its ability to build a universal and connected communication environment where

cars, robots, drones, smart city devices, medical devices, sensors and wearable devices

use radio access networks to associate with each other, interacting with users to provide

a series of innovative services such as smart grids, smart homes, smart cities, smart cars,

telesurgery, and advanced security [9]. Apparently, for the sake of serving such an extensive

amount of terminals and comparing to current standards, the provided capacity will have to

exponentially increase in the prospect networks. It is estimated that the traffic volume in 5G

networks is demanded to reach tens of Exabytes (1018 Bytes) per month. Correspondingly,

the capacity provided in 5G networks is required to be 1000 times higher than that in 4G

networks. Additionally, some applications require a lower latency. For example, the latency

of 5G networks is expected to be lower than 1ms in autonomous vehicles [10].
It is impossible to achieve the above ambitious goals based on the architecture and

infrastructure of current 4G networks by scaling up the transmitting powers considering

factors like the limited energy resources on the earth, greenhouse gas emissions, electro-

magnetic pollution, and the slow progress of battery technology and application. According

to the energy crunch, the design of 5G wireless communication systems thus necessarily

have to consider the energy efficiency (EE) as one of the objectives from the perspective of

operators and users.

1.2.2 Operators and users viewpoints

From the operators’ point of view, the energy consumption in the wireless access network

mainly comes from the base station (BS) [11], accounting for more than 57% of the total

energy consumption [11–13]. In total, 4.5 GWatt of power is consumed by approximately

3 million BSs in the world [14]. Meanwhile, the financial cost for energy consumption

occupies a great proportion of annual operating expenses for service provider [15, 16].
From literatures, one finds the electricity bills cost about 18% (in mature markets of Europe)

and 32% (in India) of their operational expenditure (OPEX) [17–19]. The percentage can

increase up to 50% for the radio access networks [20, 21]. Thus energy efficiency is of

high interest and urgent to be considered for operators since the financial benefits can be

expected for a well designed cellular networks.

Energy-efficient wireless communication is also crucial from users’ perspective. Around

3 billion mobile terminals (MTs) are in use in the world with power consumption ranging

from 0.2 to 0.4 GWatt [22]. The high energy expenditure of wireless access networks has

drawn concerns from mobile users in terms of economy and quality-of-experience (QoE).
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According to J. D. Power and Associates Reports [23] on the study of wireless smartphone

customer satisfaction, superior comments are given to iPhone except for the battery life.

In the report of [24], the same problem was found. About 60% of mobile users suffer

from the limited battery capacity [25] and the time cost for charging battery in a MT has

become a significant factor to value the quality-of-service (QoS) [26]. What’s worse, the

gap between energy demand and battery capacity offered by MTs is exponentially enlarging

[27]. Hence, without a breakthrough in battery technology, the battery life of terminal sets

will be the main limitation for the development of energy-hungry applications (e.g., video

games, mobile P2P, interactive video, video monitors, streaming multimedia, mobile TV, 3D

services, and video sharing) [18].
In the next section, we will show the concept of a cellular network and introduce the

power consumption in radio communication system.

1.3 Cellular network concept

A wireless cellular network is a mobile network, where a large number of base stations

(BSs) with limited power are deployed and provide services. Each BS covers a limited

area, called a cell. These cells together provide network coverage over larger geographical

areas, where the voice, data, and other types of content can be transmitted via BSs. Even,

mobile users are able to communicate with each other while they are moving through cells

during transmission. A BS typically uses a different set of frequencies from neighboring

BSs, to avoid interference and provide guaranteed service quality within each cell. A simple

example of cellular network is shown in Fig. 1.1.

Fig. 1.1 An example of cellular network

The design objectives for cellular networks are to maximize the throughput, spectral

efficiency (SE), defined as the throughput per unit of bandwidth while meeting quality-
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of-service (QoS) requirements. However, the energy consumption was not be considered

at the initial design of the cellular network. The typical power consumption of different

elements of a current wireless network [12] is shown in Fig. 1.2. It is clearly shown that

Fig. 1.2 Breakdown of energy consumption in cellular network [12]

BSs consume the highest proportion of energy in cellular networks. Typically, the increase

of the number of BSs inevitably leads to the raise of the overall energy consumption in the

network. Therefore, from BSs’ perspective, one can deploy efficient BSs to decrease the

energy consumption in the cellular network and then to obtain a energy-efficient cellular

network.

1.4 SE-EE relationship

1.4.1 Spectral efficiency (SE)

The efficiency of a communication system has traditionally been measured in terms of

spectral efficiency (SE) for a point-to-point transmission, where both the transmitter and

receiver are equipped with only one antenna. SE refers to the ability of a given channel

encoding method to utilize bandwidth efficiently. It is defined as the transmission rate per

unit of bandwidth [1, 13, 28]. SE is measured in bits per second per hertz. Let BW be the

system bandwidth, Puse as the given useful transmitting power, N0 as the power spectral

density of additional white Gaussian noise (AWGN). Correspondingly, the signal-to-noise

ratio (SNR) at the receiver can be defined as in [13], displayed by,

SNR=
Puse

N0 · BW
. (1.1)
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Via Shannon’s formula, then SE can be denoted as

SE = log2(1+ SNR) (1.2)

The SE metric indicates how efficiently a limited frequency spectrum is utilized.

1.4.2 Energy efficiency (EE)

Energy efficiency (EE) has been proposed as a metric to evaluate the energy consumption

for the network framework. Various EE metrics have been defined in the literatures [29].
Except the widely used bit-per-Joule capacity [30, 31], the energy-per-bit to noise power

spectral density ratio [30, 32–34], the rate per energy [35] or the Joule-per-bit [36] also

can be used as an EE metric. The detailed formulas of these EE metrics will be discussed in

the next chapter. Bit-per-Joule is expected as the popular EE metric for 4G cellular systems

and beyond. Since it not only considers the features and properties of capacity, but also the

energy consumption of the whole networks. Taking advantage of the popular EE metric

of bit-per-Joule, EE is defined as a ratio of the total transferred bits to the total power

consumption. Let Pex p,total be the total consumed power for transmitting data rate in a

point-to-point transmission system, the EE can be expressed as

EE =BW · (log2(1+
Puse

N0 · BW
))/Pex p,total

=BW · SE/Pex p,total .
(1.3)

1.4.3 SE-EE relationship

For simplification, in most of the theoretical work related to the EE-SE trade-off, Pex p,total =
Puse for a point-to-point transmission system. According to Eq. (1.2), we derive BW

Puse
=

1
N0(2SE−1) . Through combining Eq. (1.2) and Eq. (1.3), we can obtain the relationship

between SE and EE, as in [13],

EE =
BW · SE

Puse
=

SE
N0(2SE − 1)

(1.4)

From the above expression, EE converges to a constant, 1/(N0 · ln2) when SE approaches

zero. On the contrary, EE approaches zero when SE tends to infinity. The fundamental

tradeoff between EE and SE is shown in Fig. 1.3 (a). This EE-SE relationship is for point-

to-point communication not for network. However, in the practical systems, the EE-SE

relation is not as simple as the above formula and this relationship has been influenced by
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several hardware constraints, such as circuit power, power amplifier [27]. More precisely,

if circuit power is considered, the relationship curve will turn to a bell shape, as illustrated

in Fig. 1.3 (b).

Fig. 1.3 Sketch of EE-SE tradeoff: (a) in ideal case (b) under practical concerns [13]

According to the relationship between EE and SE in Fig. 1.3 (b), we observe that EE can

be improved with the increase of SE in the low-SE regime. Since in the low-SE regime, the

circuit and transmitting power of the BS site will not increase obviously with the increase

of SE, which leads to an increase in EE. Therefore, for the purpose of improvement of EE,

some advanced technologies have been widely and popularly used to improve SE, as we

list in the following section.

1.5 Promising key 5G technologies

In the last ten years, many studies have investigated the spectral efficiency for different

types of networks using some advanced radio communication technologies, e.g., multiple-

input multiple-output (MIMO), coordination multipoint (CoMP) scheme, heterogeneous

cellular networks, relay transmission, the on-off switching policy of base station (BS), and

cloud radio access network (cloud-RAN). A brief introduction is given to these technologies

in the below part, which helps the understanding of the underlying EE models.

1.5.1 Multiple-Input Multiple-Output (MIMO)

MIMO technique has been widely adopted in wireless networks nowadays to transfer and

receive more data at the same time by equipping BS or user equipments (UEs) with multiple

antennas [6]. A diagram of MIMO is given as in Fig. 1.4. Single-input single-output

(SISO), single-input multiple-output (SIMO), and multiple-input single-output (MISO) are

regarded as special cases of MIMO. In detail, SISO is a conventional radio system where the

transmitter and the receiver have only a single antenna, respectively. SIMO is the special
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case when the transmitter has a single antenna and the receiver has multiple antennas.

MISO is the contrary. MIMO can also be used with single user or multiple users to form

single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO), as shown in the figure.

Fig. 1.4 Diagrams of MIMO schemes [6]

MIMO increases the spatial diversity. The array gain is achieved by sending signals

that carry the same information through different paths between transmitting antennas

and receiver antennas. The variety of paths available in MIMO system can be used to

provide additional robustness to the radio link by improving the signal to noise ratio, or by

increasing the link data capacity. As a result of the use multiple antennas, MIMO wireless

technology is able to considerably increase the SE while still obeying Shannon’s law. The

transmission using multiple antennas also leads to higher network throughput. Due to the

configuration of multiple antennas, MIMO is shown as an effective technology to improve

the network capacity, spectral efficiency (SE). Based on the relationship between SE and

EE, thereby MIMO is regarded as a method to improve the network energy efficiency.

Recently, massive MIMO technology, one of the key enablers for 5G, is emerged where

BSs are equipped with a number of antennas to achieve multiple orders of spectral and

energy efficiency gains over current LTE networks [37, 38]. However, more antenna devices

will consume more circuit power as wells as more signaling overhead in MIMO systems.

For example, in order to obtain good performance, channel state information (CSI) is

required at the receiver or at both the transmitter and the receiver. Some symbols need to

be sent before the data transmission with the purpose of estimating the CSI, which leads to

additional signaling overhead. Therefore, the energy efficiency (EE) of MIMO systems is

still an open issue if the circuit power consumption and the signal overhead are considered.
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1.5.2 Coordination Multipoint (CoMP)

CoMP technique has been proposed in 3GPP LTE-Advanced as a tool to improve coverage,

cell-edge throughput and system efficiency [39]. In CoMP transmission, several BSs are

cooperated to transmit and receive data from multiple UEs based on the shared information

between BSs [40]. The cooperation techniques aim to avoid or exploit interference in order

to improve the data rates and spectral efficiency of cell edge UEs [41].
CoMP in radio access networks can be applied either in the downlink of the radio

systems, namely a transmission coordination, or in the uplink, namely a reception coor-

dination [42]. In general, CoMP includes two main families coordination methods, joint

processing/transmission (JP/JT) and coordinated beamforming/coordinated scheduling

(CB/CS). JP/JT scheme means that a single UE receives multiple copies of the useful data

from different BSs in the coordinated set (the set of BSs that are coordinated). This scheme

of JP/JT is aimed at improving the received signal quality of the target UE and/or cancel

the interference from the BSs outside the coordinated set. The BSs in coordinated set

share the required data via high-speed wired link since the amount of control data to be

exchanged is large, e.g., channel knowledge and computed transmission weights. JP/JT in

a downlink system is illustrated in Fig. 1.5 (b). However, CB/CS scheme means that data

to a single UE is instantaneously transmitted from one of BSs in the CoMP set, and that

scheduling decisions and/or generated beams are coordinated transmitted between BSs in

order to control the created interference. CB/CS is illustrated in Fig. 1.5 (a).

Fig. 1.5 CoMP schemes: (a) CB/CS (b) JP/JT [42]

A JT-CoMP scheme in the downlink system is shown in Fig. 1.5 (b). Each of the UEs

are associated with the two closed BSs and receives the useful information from them.

Since the transmission power resources of multiple BSs can be used through coherent
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transmissions, the maximum received signal powers for the cell-edge UEs are obtained,

and the interference from neighboring BSs is significantly mitigated. Thereby, the SINR

and SE of the cell-edge UEs are improved significantly [40]. Due to JT-CoMP, cell edge UEs

experience lower interference, higher receiving SE and throughput, hence requiring less

transmission power from both BSs. Given that the EE is related to throughput and power

consumption, thus, JT-CoMP can be regarded as a promising technology to improve the EE

for 5G wireless networks.

CoMP technology has been already included in LTE-A standard [43] and it plays an

important role in 5G networks due to the advantages of reducing interference and improving

SE. Motivated by these advantages, some studies have been investigated on JT-CoMP for

the energy efficiency in wireless networks. However, most of the current work is based on

intractable models, which needs a lot of time and huge resources to conduct simulations.

Therefore, how to develop an accurate and tractable model for EE-evaluation is still an

interesting issue while considering the JT-CoMP approach, which provides a research

direction for our thesis work.

1.5.3 Heterogeneous cellular network (HetNet)

Fig. 1.6 A scenario of heterogeneous wireless network (HetNet) [44]

Heterogeneous networks have been introduced in the LTE-Advanced standardization

[45]. A heterogeneous network (HetNet) is one kind of wireless network composed by a

mixture types of BSs (macro-, micro-, pico-, and femto- BSs) with different transmission

powers and coverage, as shown in Fig. 1.6. In recent years, HetNets are widely deployed

in 5G wireless networks so as to enhance the capacity/coverage and to save energy con-
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sumption [46]. Through the deployment of multi-tier BSs, the area spectral efficiency (SE)

is increased, while transmitting power is reduced due to the decreased propagation loss

between nodes [47]. Although the coverage and throughput can be enhanced by deploying

dense small cells, a tremendous escalation of energy consumption cannot be avoided, due

to the massive small connections in pico cell than the macro cell. The dense and random

deployment of small cells and their uncoordinated operation raise important questions

about the implication of energy efficiency (EE) in such multi-tier networks [16]. Improving

EE can help the operators reduce the operational expenditure as energy constitutes a

significant part of their expenditure. As a result, energy efficiency has been evolved as one

of the major concerns for network operators to design the HetNet.

1.5.4 Relay transmission

Fig. 1.7 Two scenarios of relay systems [6]

Relaying is an important technology for increasing the coverage and capacity of the

network. Relay node (RN) is a kind of BS which covers smaller area than a macro cell and

used to collect signals from a BS and resend an amplified or revised version to the target

UE. Two kinds of relay systems are taken into account in [6, 48], pure relay systems and

cooperative relay systems, as shown in Fig. 1.7. The function of the relay nodes in the

pure relay system is only to help the source node to transmit data. However, all the nodes

act as information sources as well as relays in the cooperative relay systems. Specially, a

micro/femto/pico BS can be regarded as a RN in a HetNet. If a BS is used as a RN, it is not
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only a source node to send its own signal, but it can also be as a received node to resend

the collected information.

Typically, relaying splits the transmission into smaller hops and better channel quality is

provided between base stations and relay nodes, compared to the direct transmission from

the base station to users. Therefore, the spectral efficiency can be increased. Furthermore,

since the distance between transmitter and receivers is decreased compared with the direct

transmission, the transmitting power can be reduced, which lead to the improvement of

energy efficiency. Therefore, RN is more efficient in communication due to the lower energy

consumption and different fading channels/links. As a consequence, RN is considered as a

promising solution to increase the energy efficiency in 5G network.

1.5.5 BS on/off strategy

Generally speaking, the network operators deploy and operate base stations (BSs) based on

the peak traffic volume and the BSs are kept switched-on, regardless of the traffic load. For

example, the traffic load can reach the peak during the daytime. Nevertheless, the traffic

load declines sharply after the office hours [2]. Based on internal surveys on operator

traffic data within the EARTH project and the Sandvine report [49], the average daily traffic

demand of a residential area is illustrated in Fig. 1.8. Therefore, dynamic switching on/off

the BS depending on the traffic demand maybe lead to saving the energy.

Fig. 1.8 The average daily traffic demand a residential area
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BS switching on/off is proposed as a technique to save operating energy through

adjusting the transmission strategy of network according to the traffic demand. Operators

switch off unnecessary infrastructure nodes or elements while satisfying constraints such as

coverage and data rate requirements [9]. In detail, the users in switching-off BS coverage

can be served by neighboring active BSs in order to maintain the user throughput and

the reliability performance. Given that EE is defined as a ratio of throughput over the

power consumption, EE increases with the decrease of the power consumption while the

throughput remains the same. Therefore, this technique is expected to be utilized to

meet the energy saving requirement for dense and ultra-dense deployments in future 5G

networks.

1.5.6 Cloud radio access network (Cloud-RAN)

Spurred by the impressive spread of cloud computing, cloud radio access network (Cloud-

RAN) is a network architecture where baseband resources are pooled to a remote data-center,

named baseband units (BBU) pool, so that they can be shared between BSs. This can be

implemented via software [50]. Fig. 1.9 gives an overview of the overall Cloud-RAN

architecture (RRH: remote radio head, BBU: baseband units). In more detail, only the

radio frequency (RF) chain and the baseband-to-RF conversion stages are presented by the

BSs and the BSs are connected through high-capacity links to the data-center, where all the

baseband processing and the resource allocation algorithms are run [9].

Fig. 1.9 Cloud-RAN architecture for mobile networks [50]
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Cloud-RAN is a network architecture that shows significant promises in improving

both the spectrum efficiency and the energy efficiency of wireless networks [51]. It brings

these benefits based on the below four folds [52, 53]. Firstly, a centralized BBU pool

allows for the joint precoding of user messages for interference mitigation. Therefore, the

transmitting power of BSs can be reduced with the less interference generated. Secondly,

the cooperative BS with distributed antenna equipped by radio remote head (RRH) provides

higher spectrum efficiency [51]. Thirdly, most of the baseband signal are proceed by the

BBU pool under the Cloud-RAN architecture. Then, the conventional highcost high-power

BSs can be replaced by low-cost low-power radio remote heads (RRHs). Fourthly, the

central processor can perform joint resource allocation among the BSs to allocate resources

according to the users’ traffic demand, and put idle BSs into sleep mode during non-peak

time for energy saving. Based on the advantages of reduction deployment costs in Cloud-

RAN, Cloud-RAN is another key technology instrumental to making 5G networks more

energy-efficient.

1.6 EE-related surveys

The tremendous growth of wireless communication systems leads to challenges in efficiently

utilizing limited network resources to meet the high QoS requirements. Higher capacity

wireless links are expected but suffer from increasing power consumption and associated

financial cost. Meanwhile, the battery capacity of the smartphones limits the improvement of

QoS. Additionally, the slow development of related technologies in battery also enlarges the

gap between energy demand and battery capacity offered by mobile terminals. Therefore,

energy efficiency is becoming more and more important for wireless system design.

Most of the surveys available in the literature theoretically discussed the energy efficiency

in 5G wireless networks from the perspective of the state-of-the-art technologies. Some

surveys of current literature on energy efficiency will be presented in the following part.

Surveys in [6, 46, 54, 55] discussed how to design the EE wireless communication from

the technical methods. For example, the work in [6] summarizes the advanced techniques

of MIMO and relay transmission, resource allocation between signaling and data symbols

in order to design EE networks. Those advanced technologies are only analyzed to improve

the SE from the view point of information-theoretic analysis. Moreover, the authors in [46]
mainly discussed the trade-off between EE and SE, QoS for 5G wireless communication,

based on a system framework of green HetNets along with some techniques, such as network

dynamic cooperative transmission and dynamic resource allocation. However, they studied

EE from the network architecture and cross-layer design perspectives, which mainly focus
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on the design principle. The detailed and precise equation of EE is not discussed in that

literature.

Alternatively, the enabling technologies (massive MIMO, millimeter waves and small

cells) for 5G green networks are investigated in [54]. Specially, the authors identified

the achievable capacity/throughput gains from both theoretical and practical perspectives

according to some references, for example, the system capacity of a massive MIMO system

can be increased by factors of 3 to 6.7 for a base station with 64 antennas serving 15

clients simultaneously. Moreover, an overview description of mobile access and several

new concepts for 5G networks are demonstrated in [55], where some key performance

indicators, the trends of EE and the evolutionary technologies of Massive MIMO, relay

transmission, cloud-RAN and small cell are illustrated for 5G networks.

The four mentioned surveys only focused on the discussion of the advanced technologies

so as to improve SE, whereas none of them are studied the EE and limited to quantify the

improvement of EE.

On the other hand, the papers in [9, 18, 19] discussed the energy saving from the

perspective of the radio resource management. For example, the survey in [9] provides

an investigation on the energy-efficient design and operation of 5G networks from the

domains of resource allocation and network planning and deployment. Different other

surveys focusing on the traditional electrical energy, the energy harvesting and transfer and

hardware solutions for energy efficient 5G networks are first proposed in that literature.

Some open issues are also addressed in [9], such as how to combine all energy-efficient

techniques to optimize EE, how to use random matrix theory, stochastic geometry and

learning techniques in order to deal with randomness of the deployed devices and user

equipments and thereby to maximize EE.

Moreover, from the perspectives of radio resource management and network deployment

strategies, the authors in [18] overview the energy-efficient technologies of various relay

and cooperative communications in wireless networks. Specially, the most popular EE

metric of bit-per-Joule is discussed there, which is defined as the system throughput for

unit-energy consumption. Considering that daily traffic loads at BSs vary widely over time

and space as shown in Fig. 1.8, thus, a lot of energy is wasted when the traffic load is

low. Accordingly, these energy-efficient technologies proposed in [18] are mainly discussed

under low-traffic loads.

Alternatively, from the perspectives of network operators and mobile users, the literature

in [19] elaborates a brief survey on energy-efficient techniques and solutions in order to

design and improve the efficiency usage of energy. A unified-treatment way of energy

efficient solutions is adopted for network operators and mobile users. For instance, the
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green solutions of switching on-off radio devices and radio resource scheduling are mainly

emphasized according to the low/high call traffic load conditions. However, it mainly

focuses on direct communications (i.e., no multi-hop or relaying techniques) for licensed

networks and users.

Specially, some work highlight the energy efficient 5G wireless network based on out-

standing technology, like Massive MIMO in [37] and switching on-off BSs in [56]. The work

in [37] discusses an overview of massive MIMO technology, a realistic power consumption

models in MIMO systems and some outstanding techniques for EE-maximization. The

survey pointed out that EE-maximization of a Massive MIMO system can be achieved

using the Massive MIMO technique through minimizing power amplifier (PA) power loss,

scaling the number of BS antennas and reducing radio frequency requirements at BS. The

simulation results show that the sum EE of all users can be improved by increasing the

number of BS antennas and it exists a maximum achievable sum EE. Furthermore, the

results also reveal that the optimal number of antennas increases from 63 to 92 and the

peak EE increases from 3.6 to 9.2 M bits/Joule with the raise of the number of users from

6 to 50 in the system.

Authors in [56] emphasize that the switching on/off BSs technology in order to improve

the EE in 5G dense and ultra-dense networks. They present that switching-off unnecessary

network elements can be as one of tools for decoupling the scaling of networks from the

growth of operating power, which is aimed at adjusting the network capacity according

to the demand in order to save operating energy. They mainly emphasize and devise an

energy-saving algorithm based on a majorization-minimization approach for turning-off

some unnecessary BSs. However, the quantitative improvement of EE is missing from

discussion.

Unlike most of the surveys that discussed the EE in the physical layer while some

advanced technologies are exploited, the survey in [28] presents an overview of different

EE trade-off mechanisms of green communications with respect to each protocol layer,

such as physical, media access control (MAC), network, transport and application layer,

respectively. Specially, the technologies of sleeping mode, cell breathing, cell zooming are

investigated in terms of the EE trade-offs. However, the quantitative improvement of EE

are limited in their investigation.

All survey papers discussed above illustrate that a energy-efficient wireless network

can be designed through taking advantage of the 5G technologies candidates. Moreover,

they also indicated that the 5G technologies candidates can be used to evaluate EE or to

study the problem of EE optimization. Nevertheless, these conclusions are drawn from the
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perspectives of theoretical and design principle. In the next chapter, we will present some

literatures to show the advanced technologies on EE through some simulation results.

1.7 Conclusion

This chapter provides the background information and some related work on advanced

techniques, beneficial to improve EE for 5G wireless networks. We first introduce research

motivation on EE in ICT and the cellular network concept. Then the relationship between SE

and EE is presented, which is helpful to understand our thesis work. Moreover, the typical

approaches and techniques to reduce the system energy consumption and to improve

the SE are presented, such as MIMO technique, coordination multipoint transmission,

heterogeneous cellular network, relay transmission, BS switching off and Cloud-RAN,

which are promising to be exploited in 5G networks. Finally, we discussed some surveys

which are focusing on the green communication.

To investigate the impact of the network parameters on EE, and to capture the major

factors involved in the energy consumption process, representative and accurate models

are needed. Therefore, in the next chapter, we will present the EE models which have been

utilized in some literatures.
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2.1 Introduction

As illustrated in the previous chapter, energy efficiency (EE), as one of key performance

indicators, becomes an important concern while designing a 5G wireless network, not only

because of the increasing energy price but also because of the environmental requirement

of a lower CO2 emission of communication networks. Hence, EE has received much

attention by both academia and industry through utilizing the different network model

tools, such as system-level simulations and stochastic geometry. Much efforts have been

done to investigate the problems of EE evaluation and EE optimization through using

some advanced technologies, such as multiple-input multiple-output (MIMO), coordination

multipoint (CoMP) scheme, heterogeneous cellular networks (HetNets), relay transmission

and the on-off switching policy of base station (BS). However, an appropriate definition of

EE is the fundamental to study the EE performance for the network.

Various EE models have been proposed in both academia and industry from the mea-

surement level of power amplifier, antenna, base stations (BSs), user equipments (UEs) and

the network. Among these models, some are proposed for simplicity, and the others are

proposed while considering the network performance such as spectral efficiency, throughput

and capacity. One can choose the EE model according to the measurement level as well as

the network performance. In this regards, it is very important to understand the detailed

definitions of EE metric in different literatures.

Throughout this chapter, we aim to present some EE models according to the different EE

definitions, and to classify the literatures on EE according to these promising technologies so

as to investigate the impact of these technologies on EE, which will be useful to understand

our thesis work.

In this chapter, we first list some EE models from the view point of EE definition. As

the important components of the EE model, then the power consumption models and the

throughput models are introduced. Furthermore, we classify some literatures on EE from

view points of both EE evaluation and EE optimization. The further classification of the

categories are based on the advanced technologies, since they have great impact on EE.

Afterwards, we summarize the impact of these techniques on EE through comparing the

simulation results in the literatures.

2.2 EE models

Various models have been proposed by both academia and industry to evaluate the EE

performance. In general, from the perspective of measurement level, most of the proposed
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EE models are on three different levels in mobile cellular networks so as to obtain the

network performance. The three different levels are as follows:

• Hardware component level (for wireless equipment subsystems e.g. power amplifier,

antenna, etc.)

• Node level (e.g. BSs and user terminals)

• System or network level (for a group of equipments that form a network).

Additionally, we also found that there are two ways of defining energy efficiency metrics.

First, EE is defined as the ratio between the energy output and the energy input, which is the

oldest model on EE. Secondly, considering the network performance of QoS parameters such

as throughput and capacity, EE is defined as the ratio between a given network performance

and the energy consumed [57].

Therefore, according to the measurement level and the various definitions of EE, a

review of the EE models used in wireless communication networks is carried out. Table

2.1 summarized the related variables and symbols of EE, capacity and throughput used

throughout our discussion.

2.2.1 Input/output power related EE model

At the system level, a simple definition of the energy efficiency is defined by the operators

is the ratio between the network output power (energy) and the total input power (energy)

[21]. This model is the oldest model. Denoting the network output power (i.e., the power

of the radio frequency (RF) transmitted signal) and the input power (consumed), as Po

and Pi, respectively, the energy efficiency EEs ys for the network is given by

EEs ys =
Po

Pi
(2.1)

According to the above definition, we observe EEs ys has no unit. Generally, the deployment

of cellular networks is typically optimized for ubiquitous radio access of mobile users. This

implies that a significant portion of base stations (BSs) are primarily providing coverage.

Eq. (2.1) shows that it is not necessary to achieve the full traffic load for the network, since

the users ask for the low service during the off-peak traffic hours. Therefore, this equation

can be used when the coverage of a cellular network is required to be greater than a given

value, i.e., to reach an acceptable coverage probability.
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Table 2.1 Main symbols on EE model

Notation Definition
EEs ys system or network EE
APC area power consumption (ratio of cell power consumption to cell area)
EC I energy consumption index (ratio of power cost and data rate)
EE energy efficiency
EEu EE of a user u
Po network output power
Pi network input power
Pex p,cel l total power consumption in a cell
Aarea cell area
Eex p the network energy consumption during the observation period
Nbi t the number of correctly delivered bits during the observation period
Pex p,ave the average network power
Rave the average data rate
SEarea the area spectral efficiency
Pex p,u the total transmitting power of user u
Ru the achievable data rate of user u
Cn the maximum data rate of the network
Thtotal the sum achievable data rate of the network
PCtotal the total power consumption of the network

2.2.2 Cell power consumption and cell area related EE model

To assess the EE for networks having different coverage areas, the area power consumption

is introduced, defined as the ratio between the average power consumption per cell and

the corresponding cell area [58]. Denoting Pex p,cel l as the total power consumption in the

cell and Aarea as the cell area, the area power consumption APC is given as

APC =
Pex p,cel l

Aarea
[W/Km2] (2.2)

measured in W/Km2. This EE model can be used at the node level (e.g. BSs) and the

system level, respectively. Since the cell area can not only refer to the coverage of a certain

BS but also the coverage of the whole network. Accordingly, Pex p,cel l can be the total power

consumption of a certain BS or the total power consumption of the whole network, from

the perspectives of both the node level and the system level, respectively. Moreover, the

coverage area can reflect the area power consumption from a deployment perspective.

Additionally, this equation can be used to compare the power consumption in HetNets while

varying the number of micro BSs in one cell so as to investigate the impact of deployment
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stratigies on the power consumption. However, this model needs to be used in conjunction

with other performance metrics as it cannot be used to successfully access the EE of two

networks having different capacity or throughput.

2.2.3 Transmitting power and data rate related EE model

Another EE model on the node level is the energy consumption index (ECI) or energy per

bit, proposed in the "Energy Aware Radio and neTworking tecHnologies (EARTH)" project

[59]. The energy per bit is measured in J/bit. The energy per bit metric is defined as a

ratio of the network energy consumption (EC) during the observation period (T) to the

total number of bits (B) that were correctly delivered in the network during the same time

period. Since the network energy consumption is simply the (average) power multiplied

by the observation period, this metric could be equivalently described as the ratio between

(average) network power (Pex p,ave) and the (average) data rate (Rave) and expressed in

W/bps. Denoting Eex p as the network energy consumption and Nbi t as the amount of data

correctly delivered in the network, the definition of ECI is given by

EC I =
Eex p

Nbi t
=

Pex p,ave

Rave
[J/bi t or W/bps]. (2.3)

The ECI focuses on the amount of energy spent per delivered bit and hence is an

indicator of network bit delivery EE. This may be especially important in the scenario of

high traffic loads. Furthermore, ECI approaches infinity with traffic load close to zero,

since the network energy consumption Eex p does not typically go to zero for low traffic

loads. ECI is commonly used in the literature, especially for theoretical studies and single

link evaluations. Nevertheless, for the low traffic load scenario, the traffic demands of the

mobile terminals do not always require BSs at the full power. Specially, the energy cost for

the error reception of data is not considered in this model.

2.2.4 SE and power cost related EE model

For the sake of reflecting the achieved network coverage, the authors in [16, 60] define

the EE as the ratio between the area SE and the average network power consumption.

Denoting Pex p,ave as the average network power consumption and SEarea as the area SE,

the network EE, denoted EEs ys, can be displayed as

EEs ys =
SEarea

Pex p,ave
(bi t/J/Hz) (2.4)
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EEs ys is measured in bi t/J/Hz. The objective of this definition is to increase the number

of transmitted information bits per unit energy, which has been widely used in various

publications. This model can be used to evaluate the EE at the component, node and system

levels. Moreover, it can also be applicable for the low service demands scenario, where

a reasonable network coverage should be guaranteed while considering the strategy of

switching off BSs. Specially, the area is a constant for evaluating the system EE.

2.2.5 Overall data rate and power cost related EE model

A classical and most widely-applied model to evaluate the EE for the telecommunication

networks is the Bit-per-Joule metric. It is defined as a ratio of total volume of data transferred

to the energy consumed within a given time interval, expressed by

EE =
overal l date rate

total power comsumption
(bi ts/J or bi ts/s/wat t) (2.5)

The system capacity, Cn, is the maximum total number of bits that the network can deliver

per Joule of energy by one/multiple BSs. The overall network throughput, Thtotal , is the

sum of the data rates that are successfully delivered to all the terminals in a network,

composed by one/multiple cells. Denoting PCtotal as the total power consumption, EE also

can be expressed as EE = Cn/PCtotal or EE = Thtotal/PCtotal .

Depending on the specific area of interest, this EE model can be covered on component,

node and system levels in wireless cellular networks. For example, EE becomes EEu (the

energy efficiency of one user) at the user’s level and EEs ys at the network or system level,

respectively. Considering the simplicity of this EE model, it has been applied in many

literatures for 4G networks and beyond.

Given that the most used definition of energy efficiency is related to the throughput

or capacity and to the power consumption, here we will briefly present some power

consumption models (PCMs) and throughput models, which are popular and most used in

literatures.

2.3 Power consumption models (PCM)

In [12, 14, 21, 61], the percentage of power consumption by different components of a

large-cell base station (BS) is reported, as shown in Fig. 2.1. We observe that the power

amplifier and feeder cost about 65.6% of the total power. Moreover, the power cost by

signal processing overhead, battery backup and power supply loss, cooling loss, power
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amplifier loss also can not be ignored. Therefore, a model to quantity the component

cost is necessary. Nowadays, various power consumption models have been proposed in

literatures for the BS. A summary of different models to calculate power consumption is

presented as follows. Here, the power consumption for the BS b is denoted as Pex p,b.

Fig. 2.1 Percentage of power consumption by different components of a large-cell BS [14].

2.3.1 Ideal load dependent PCM

The authors in [62] introduce an ideal load dependent power model with the assumption

that the power cost by base station (BS) is proportional to the BS utilization (or loads).

In other words, when a BS is utilized, it includes power consumption for transmitting

antennas, power amplifiers, cooling equipment and so on. However, there is no power

consumption for the BS in an idle state. Let ϕb denote the BS utilization and Pt x stands for

the BS transmitting power. The equation of power consumption can be displayed as

Pex p,b = ϕbPt x . (2.6)

This is a relatively old model to quantify the power consumption of one BS, which assumes

Pex p,b depending on the utilization of BS, ϕb. However, such a model is not realistic since

the power consumption does not matter with BS utilization, as illustrated in Fig. 2.1.

2.3.2 Linear PCM

In [63], a linear/canonical power consumption model is employed as

Pex p,b = ζPt x + Pcircui t , (2.7)
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where ζ is an inverse of the drain efficiency of transmitting amplifier and Pcircui t is the total

circuit power expenditure by radio frequency (RF) chain components (filters, mixers, and

synthesizers) and baseband operations (digital up/down conversion, precoding, receiver

combining, channel coding/decoding and channel estimation). The energy consumption of

power amplifier is excluded in Pcircui t , which is independent of the transmission state.

However, Eq. (2.7) tends to overestimate the system power consumption because

they assume that the transmitting buffer is never empty during the whole transmission

frame, which is not true since the transmitter has the idle state. Furthermore, given

the consideration of Rayleigh fading scenario, where a signal will randomly vary or fade

according to a Rayleigh distribution, it is not possible to have a deterministic estimation

when the buffer becomes empty during the frame transmission.

2.3.3 PCM with sleep mode

When the traffic requirement of users is zero, it means there is no traffic load for the BS

and the BS can be in sleep mode. However, the BS still uses some power. Therefore, [2]
proposed a new power consumption model of one BS, expressed as

Pex p,b =







ρload Pt x + Pact ive, if 0< Pt x ≤ Pt x ,max

Psleep, if Pt x = 0
(2.8)

where ρload denotes a constant coefficient depending on the traffic load, Pt x is the trans-

mitting power of BS, Pact ive is the minimum power required to support BS with non-zero

transmitting power, Pt x ,max is the BS transmitting power at the maximum load and Psleep

accounts for the power consumption of the BS in sleep mode. Normally, Psleep < Pact ive

so that this power model is popular to be used while the switching on/off technology is

adopted.

2.3.4 PCM with backhauling cost

In order to capture backhauling energy needs, the authors in [64] propose a general power

consumption model,

Pex p,b = a · Pt x + b · Psp + c · Pbh (2.9)

where Pex p,b, Pt x , Psp and Pbh denote the average consumed energy per BS, the radiated

power per BS, the signal processing power per BS, and the power due to backhauling,

respectively. The coefficients a, b, and c denote the scale with respect to the corresponding
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power type amplifier and feeder losses, cooling, or battery backup. The three coefficients

can be computed according to the parameters in [65]. This model assumes that all BSs are

under full load, i.e., the energy consumption for an idle BS is not considered.

2.3.5 PCM considering non-empty buffer

A new average power consumption model is introduced in [66] which fully accounts for the

non-empty buffer probability (NBP) and jointly optimizes both the transmitting power and

the quality-of-service (QoS) exponent for the data link layer in a wireless point-to-point

system, which is damaged by complex additive white Gaussian noise and block fading (the

channel state is independent from one to another). The new power consumption model is

thus formulated as:

Pex p,b(Pt x) = ζ · Prob · Pt x + Pcircui t =
Rmax ,arri

Eγ[log(1+ Pt xγ)]
︸ ︷︷ ︸

Prob

· ζ · Pt x + Pcircui t (2.10)

where Prob is the probability of non-empty buffer, ζ is an inverse of the drain efficiency of

transmitting amplifier, Rmax ,arri is the maximum constant arrival data at the physical layer

of the transmitter, Pt x is the transmitting power and γ is the exponential random variable

modeling the Rayleigh fading channel. This model is applicable for Rayleigh fading channel

and data link layer regardless of the noise impact.

2.3.6 PCM with transmitting antennas

When considering the effect of the number of transmitting antennas, a novel linear model

is presented in [65] as

Pex p,b = Nant · (ζPt x ,PA+ LSP) · (1+ LC) · (1+ LPSBB), (2.11)

where Nant denotes the number of antennas in the system, Pt x ,PA refers to the transmitting

power per power amplifier (PA), ζ is an inverse of the power amplifier efficiency, LSP ,

LC , LPSBB are the signal processing overhead, cooling loss, and battery backup and power

supply loss, respectively. While the power consumption for direct current to analog current

converters is neglected, this model gives an upper bound on the power consumption of a

BS equipped with transmitting antennas.

In [59, 67], this model has been refined so that the power consumption of the other

BS components, e.g., direct current (DC) and analog current (AC) converters, are also
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included. Denoting Nant as the number of antennas per BS, Pt x as the transmitting power

per BS, ζ as an inverse of the power amplifier efficiency, Pf i xed as the non-transmission

power consumption including baseband processing, battery backup, cooling, etc, the power

consumption model is given as

Pex p,b = ζPt x + Nant Pcircui t + Pf i xed . (2.12)

Even though this model takes into account the non-linearity of the power amplifier (PA),

it has been illustrated that the relation between the relative radio frequency (RF) output

power and the BS power consumption is nearly-linear. The given results show that the

power consumption of components like DC-DC/AC-DC converter and cooling unit will not

grow linearly with the number of antennas.

2.3.7 A refined double linear PCM

The refined double linear power consumption model (PCM) [68] is given by:

Pex p,b = Nant · (∆P · Pt x ,PA + P0) + P1 (2.13)

where ∆P = (1+ LC) · (1+ LPSBB)/µPA, µPA being power amplifier efficiency, P0 = LSP · (1+
LC) · (1+ LPSBB), and P1 is a fixed part accounting for the direct current (DC) and analog

current (AC) converters.

2.4 Throughput models

In the below part, we will present some concepts like the network capacity Cn, the overall

network throughput Thtotal , area spectral efficiency SEarea, and the user achieved data rate

Ru.

The network capacity, Cn, is defined as the maximum amount of data that may be

transferred by one or multiple BSs. Additionally, the overall network throughput, Thtotal ,

is defined as the sum of the data rates that are successfully delivered to all the terminals in

a network. Particularly, Thtotal equals Cn while Shannon formula is used, since Shannon

formula is applied to compute the highest number of binary digits per second during the

transmission.

In a MIMO uplink system, the authors in [69] define system network capacity Cn

(measured by bits per second) based on Shannon capacity, which is related to the total
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bandwidth of the network BWn and network channel information, as given by

Cn = BWn log2 det(I + PHH†), (2.14)

where H stands for the channel matrix between BSs and user terminals, I is the identity

matrix and P represents the transmission power of each user terminal, and † is the trans-

position operation. The matrix H characterizes the MIMO channel, where the fast fading,

noise and interference are considered in the wireless communication. Specially, in the

classical network without MIMO technology, the channel matrix H is a 1× 1 matrix.

The area spectral efficiency SEarea (measured over a unit area) is popularly used for

the energy efficiency expression [16] in a low traffic demand case, as displayed by

SEarea = λnPn(Γth) log2(1+ Γth), (2.15)

where λn denotes the BS density, Γth is a certain signal quality-of-service (QoS) threshold

and Pn stands for the coverage probability. The area spectral efficiency, SEarea, actually

measures the network throughput, Thtotal , while considering the coverage probability. The

coverage probability Pn can be computed by averaging the success probability over the

distance to the nearest node. Specially, success probability is defined as P(γx→u > Γth) when

the signal-to-noise ratio (SNR) γ of the transmitting signal from the BS at x to the mobile

terminal at u is above the threshold Γth.

Based on the knowledge of the instantaneous channel state information (CSI) [70, 71],
the achieved data rate Ru by the user u is related to the allocated bandwidth Bu and to the

received SNR, SNRu at user u, displayed as

Ru = Bu log2(1+
SNRu

Γ
) (2.16)

where Γ is the SNR gap between the channel capacity and a practical coding and modulation

scheme. Specially, Γ equals 1 in Shannon formula.

Given that the feedback of the instantaneous CSI between each user and its serving

base station is needed, a lot of expenses have to be paid by the operators and users. For this

case, the statistical CSI is utilized and the achieved data rate Ru is rewritten in a statistical

average sense [72], as

Ru = EH[Bu log2(1+
SNRu

Γ
)], (2.17)

where EH stands for the expectation over the channel matrix H. Ru in Eq. (2.16) and Eq.

(2.17) is measured in bits per second.
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Based on the models of energy efficiency (EE), power consumption and throughput

discussed before, much work have been studied on the EE performance in some literatures.

According to the published papers, we found that most of the work on the energy efficiency

(EE) investigation in wireless networks are conducted with the purpose either to evaluate

the impact of some advanced techniques on the EE, or to define/design the parameters of

these advanced techniques in order to optimize the EE. Therefore, a classification of the

literatures on EE performance will be presented in the following section, according to these

two objectives: EE evaluation and EE optimization.

2.5 Classification of EE models

As discussed in chapter 1, these advanced technologies are promising to be utilized so as to

improve the network EE for the future radio communication networks, such as multiple-

input multiple-output (MIMO), coordination multipoint (CoMP) scheme, heterogeneous

cellular networks (HetNets), relay transmission and the on-off switching policy of base

station (BS). Hence, we further categorize the evaluation-based related work and the

optimization-based related work of EE according to these advanced technologies, in order

to investigate the impact of these technologies on EE.

2.5.1 Evaluation-based related work

In this subsection, we further investigate the impact of these technologies, e.g., MIMO,

CoMP, HetNets, Relay and BS switching on/off, on EE through the simulation results in

some evaluation-based related work. Moreover, considering that most of the EE models are

proposed at the hardware component level, the node level and the system or network level,

we also discuss the evaluation-based related work according to the measurement levels.

– MIMO system

Many literatures focus on the investigation of the impact of MIMO technique on EE owing

to the improvement of spectral efficiency brought by this technique. As an example, Ngo

et al. [3] investigated the trade-off between EE and SE for a very large single-cell/multi-

cell multiuser MIMO uplink system, where EE is defined as a ratio of the sum of data

rates transmitted per user terminal over the transmitting power consumption of each user.

The system EE, EEs ys, can be expressed as EEs ys =
∑

u Ru

Pex p,u
bi ts/J , where Ru denotes the

achieved data rate of user u equipped with single antenna, computed by Eq. (2.17), and

Pex p,u is the total transmitting power consumption of user u, computed by Eq. (2.6). The
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numerical results reveal the EE and SE can be improved through taking advantage of large

antenna arrays with lower transmitting power regime, compared to a single-antenna system.

However, the circuit power consumption in the power consumption model (PCM) is not

taken into account. Additionally, when a realistic PCM is considered, Fabien Heliot et al.
[68] presented a novel and generic closed-form approximation of the trade-off between

EE and SE over a MIMO Rayleigh fading channel, where EE-SE trade-off can be regarded

as a problem of expressing EE by SE. Based on the energy consumption index (ECI), as

defined in Eq. (2.3), and a more realistic PCM, as defined in Eq. (2.13), the approximation

accuracy is assessed. Through a comparison of EE gain between in MIMO and SISO systems

over Rayleigh fading channel, the simulation results show that EE is not always improved

with the increase of SE and the number of antennas. Indeed, MIMO system will consume

more circuit power and more signaling overhead with numerous antenna configurations,

resulting that the practical EE gain decreases with the number of transmitting antennas.

In a nutshell, for the purpose of increasing EE, it is very important to choose an

appropriate number of antennas in the future MIMO system.

– CoMP system

Fabien Heliot et al. [73] analyzed the EE of both uplink and downlink in a idealistic CoMP

communication system, through assuming perfect backhaul links between each BS and an

idealistic cooperative processing. EE is defined as a ratio of the channel capacity, as defined

in Eq. (2.14), to the system consumed power, defined in Eq. (2.11). Numerical results

demonstrate that multi-BS cooperation can improve the EE when the link quality between

the BSs and MSs is weak, e.g., cell-edge communication, and that the backhauling and

cooperative processing power should be kept low in order to provide EE gain. However,

in that paper, the numerical results are obtained based on the assumption that the power

consumption required for backhaulings and cooperative multiple BSs is regarded as a

constant, which is not realistic.

In contrast, considering the realistic backhauling power consumption model, the work

in [74] investigated the EE for a Beyond-LTE cellular network through taking advantage

of the cell switch-off scheme and JT-CoMP transmission technology. EE is defined as the

ratio between the received capacity of one user, defined in Eq. (2.14), and the total access

network power consumption, defined in Eq. (2.9). Through simulations with realistic

parameters, the results show that the CoMP scheme used jointly with the cell switch off

schemes is more energy efficient in the access networks. Specially, setting a proper number

of coordinated BSs, namely CoMP set degree, is very important in terms of energy efficiency.

A higher CoMP set degree may cause a decrease in energy efficiency performance due to
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signaling and backhauling overhead in the network. Meanwhile, taking advantage of the

CoMP scheme, the authors in [64] also evaluated the EE for a cellular network and the

numerical results indicate that CoMP technique can not bring benefit to the energy efficiency

when CoMP set degree is above three, due to the additionally required backhauling power

for the cooperative set.

Unlike the conventional cellular networks powered by on-grid energy, Abu Jahid et al.
[75] proposed a novel network model to evaluate EE for a downlink LTE-A cellular hybrid

system, powered by both on-grid energy and solar energy. The EE is defined as the ratio of

aggregate throughput of the network, defined in Eq. (2.16), to the total power required

for running the network, defined in Eq. (2.12). This model is utilized in two scenarios: 1)

SINR-based JT-CoMP and 2) distance-based JT-CoMP. In SINR-based JT-CoMP technique,

the best two BSs offering maximum SINR are serving a user and in distance-based JT-CoMP

one, two closest BSs are intended to serve a user. Simulation results illustrate that the

proposed SINR-based JT-CoMP scheme achieves a superior EE performance compared to

the distance based JT-CoMP hybrid model.

Overall, CoMP technology can be used to improve the EE for the future wireless com-

munication networks, through setting an appropriate number of coordinated BSs for the

cooperative set.

– HetNet

From the BS deployment point of view, the EE evaluation is investigated in a cellular

network [58], in an interference-limited heterogeneous cellular mobile radio networks

[76], in a 5G wireless network [77] and in an ultra dense HetNets [78], respectively, so as

to illustrate the impact of different types of BSs deployment on EE.

The authors in [58] studied the impact of deployment strategies on the area power

consumption, through deploying varying numbers of micro BSs in a macro cell. The area

power consumption (APC) is defined as the ratio between the average power consumption

per cell, formulated in Eq. (2.7), and the corresponding cell area. The definition of area

spectral efficiency, as the achievable data rate in a network per unit bandwidth per unit

area, measured in bit per second per Hertz per square kilometer, is also demonstrated so

as to find the minimum area power consumption. The numerical results reveal that the

area spectral efficiency can be increased through improvement of the density of micro BSs,

whereas the area power consumption is moderate with the raise of the number of micro

BSs in the full traffic load scenario. Since the deployment of additional micro BSs per cell

increases the average power consumption per cell, resulting the increase of the area power

consumption.
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Additionally, with random micro BSs deployment and ‘bits/J’ as the EE metric, Henrik

Klessig et al. [76] investigated the EE of a heterogeneous OFDM-based mobile network

while taking into account the co-channel interference by varying traffic demand per area.

The EE is defined as the ratio between the actual throughput of the reference area, defined

in Eq. (2.16), and the total power consumption, defined in Eq. (2.7). The simulation results

indicate that a EE gain of about 20% can be achieved through increasing deployment density

of micro BSs, since the area spectral efficiency is enhanced and the transmitting power

of macro BSs is reduced with the micro BSs deployment, while still providing coverage.

Comparing to the work in [58] for the full traffic load scenario, this network EE model can

be applied in both non-full load scenario and hot spot scenario.

Unlike the work in [58, 76]with micro BSs deployment in macro, Safdar Rizvi et al. [77]
investigated the EE of a 5G HetNet when small BSs (pico, femto) are deployed in the macro

cells. The EE is defined as a ratio of the maximum data rate of the network, defined in Eq.

(2.16), over the total power consumption, defined in Eq. (2.7). The numerical analysis

have confirmed that EE is enhanced in 5G HetNet when the number of small BSs, i.e., pico

and femto, is increased in a rational manner. Additionally, [78] investigates the impact

of BS deployment on EE using the stochastic geometry theory and derives a closed-form

EE with respect to the BS deployment in an ultra dense HetNet where the pico BSs are

deployed in the macro cells. The network EE is defined as the ratio between the minimum

achievable throughput, defined in (2.15), and the total power consumption of the whole

network, defined in Eq. (2.6). Numerical results show that with the increasing number

of pico BSs, EE first increases and then decreases due to the rise of power consumption

caused by the increment of pico BSs.

Overall, in the HetNets, the density of small cell BSs should be designed carefully in

order to obtain the maximum network EE.

– Relay system

The energy consumption in relay systems is also investigated. Roberto Fantini et al. [79]
presented an analysis of the energy efficiency (EE) from the view points of two relay

schemes: two hop scheme and the multicast cooperative scheme. The division of the two

schemes is based on whether the relay node (RN) creates cell of its own or not. According

to the observed numerical results in terms of energy consumption index, energy can be

saved up to 15.6% in the two-hop relay scheme. RN can be as an effective tool to reduce

the energy consumption in telecommunication networks and achieve a great improvement

on the capacity.
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– BS on/off

Taking into account the BS on/off strategy, Chang Li et al. [67] investigated the effect

of the BS density and number of transmitting antennas on the network throughput and

energy efficiency in a random cellular network where all BSs are micro-BSs equipped with

multiple antennas. According to whether the BSs have users to serve, the BSs can be

divided into active BSs and inactive BSs. The inactive BSs do not transmit any signals. The

network EE, measured in bi t/J/Hz, is defined as the the network throughput to the power

consumption per unit area, defined in Eq. (2.12). Specially, the power consumption per

unit area includes the power consumption from both the active and inactive BSs, constituted

by the transmitting power, the circuit power of the corresponding radio frequency chain and

the non-transmission power consumption, including baseband processing, battery backup,

cooling, etc. The simulation results show that 1). EE first increases and then decreases with

the increase of BS density when the ratio of non-transmission power cost to the total BS

power consumption is smaller than a given value. Otherwise, EE decreases as BS density

increases. 2). EE first increases and then decreases with the increase of the number of BS

antennas, when the non-transmission power consumption is smaller than a given threshold

value. Otherwise, EE of a single-antenna system is better that of a multi-antenna system.

Therefore, the different components of BS power consumption play a critical role in the

EE when the technology of BS switching on/off is applied.

– MIMO + CoMP

However, with increasingly demanding of EE, only utilizing an advanced technology is not

enough to satisfy the energy-efficient design. Therefore, some existing publications have

investigated the EE through taking advantage of multiple advanced technologies.

The work in [80] derived a closed-form approximation (CFA) of the EE-SE trade-off for

the uplink of a CoMP system with MIMO Rayleigh fading channel. The network EE, EEs ys,

is defined as a ratio of the sum rate of all UEs, defined in Eq. (2.17), over the total power

consumption, defined in Eq. (2.9), given as EEs ys =
∑

u Ru
∑

u Pex p,u
bi ts/J . Ru and Pex p,u denote

the achieved data rate and the total transmitting power consumption of user u, equipped

with multiple antennas. The simulation results show that in a realistic PCM, CoMP system

is more energy efficient than a non-cooperative system due to the improvement in SE

and mainly for cell-edge communication. However, EE decreases with the increase of the

number of cooperating BSs, since the backhaulling and processing power consumption

brought by CoMP technique is increased.
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All the literatures discussed above validate that the advanced technologies can increase

the network capacity and improving system EE for the wireless network through theoretical

analysis and simulation results. Table 2.2 summarizes the classification discussed above

according to the advanced technologies. More general and comprehensive information can

be found in that table.

Table 2.2 Classification of evaluation-based related work

Tech. Model Measure.
level

Up/
Down-
link

Comments

MIMO Bit-per-Joule [3],
Energy consump-
tion index (ECI)
[68]

Node up,
down

MIMO can improve EE without
considering circuit power con-
sumption by antennas [3]; MIMO
can not improve EE with ultra-
multiple antenna configurations
and a realistic PCM [68]

CoMP Bit-per-Joule [64,
73–75]

System,
system,
node,
system

both,
both,
down,
down

All work indicate the improvement
of EE with CoMP. However, a con-
stant backhauling power cost is as-
sumed [73]; the power consump-
tion of solar energy is included
[75]; [64, 74] illustrates the size of
cooperative set above three can’t
improve EE

HetNet Area power con-
sumption (APC)
[58], Bit-per-
Joule [76–78]

System down All work illustrate that HetNet de-
ployment can improve EE. How-
ever, deployment of micro, macro
BSs [58, 76]; pico, femto and
macro BSs [77]; pico, macro BSs
[78]

Relay ECI [79] Node down Rely can reduce energy consump-
tion and a two-hop scheme is more
efficient

BS
on/off

Bit-per-Joule-Hz
[67]

System down EE increases with the raise of BS
density and the number of BS an-
tennas when the power consump-
tion of BS component satisfy cer-
tain conditions

MIMO
+
CoMP

Bit-per-Joule [80] System up Discussed EE-SE trade-off problem
and appropriate number of cooper-
ating BSs can lead EE improvement
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2.5.2 Optimization-based related work

Appropriate performance EE models are of primary importance for the design of green

wireless communication networks, because they are directly related to the choice of the

optimization objectives and the constraints of the corresponding optimization problems.

Based on the throughput models, power consumption models (PCMs) and the EE models

discussed before, we found the existing literatures investigate the optimization of EE either

from a power minimization perspective or data rate maximization perspective. Therefore,

an overview of EE maximization is presented below regarding these two perspectives.

Considering that all EE-optimization problems are proposed based on some advanced

technologies, such as HetNet, BS switching on/off strategy, CoMP, MIMO, and relay, in this

subsection, we further classify the optimization-based related work on EE according to

these advanced technologies.

– Power optimization

From the power perspective, the EE maximization problem can be transfered to minimize

the total power cost, expressed as

min Ptotal

s.t. γk ≥ γD, Pt x ≤ Pt x ,max

(2.18)

where Ptotal , Pt x , Pt x ,max represent the overall power consumption, the transmitting power

per BS and the maximum transmitting power per BS, respectively, γk, γD is respectively the

achievable data rate of the kth UE and the fixed quality-of-service (QoS) target for every

user. Taking advantage of these advanced technologies and based on the Eq. (2.18), we

present some related work of EE optimization in the below part and introduce the specific

concepts of the total power consumption in different literatures.

i). HetNet

An investigation of the impact of BS’s density and the transmitting power on the

network energy consumption is presented in [81] for both homogeneous and hetero-

geneous networks. The total power consumption Ptotal is computed as λmacro
n Pmacro

ex p,b +
λmicro

n Pmicro
ex p,b , where λmacro

n and λmicro
n account for the density of macro and micro BSs,

respectively, Pmacro
ex p,b and Pmicro

ex p,b are the total power consumption of macro and micro

BSs, as defined in Eq. (2.7). The numerical results show that the heterogeneous

deployment is one of advanced technology to improve the network EE.
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ii). HetNet + BS on/off

Taking advantage of some dynamic sleeping strategies of BSs and the tool of stochastic

geometry, the optimization problem of network EE is investigated for dense cellular

networks [82] and for a 5G HetNet [83]. Unlike the conventional HetNets, the

HetNet architecture in the two literatures is separated into the control and data

planes, where a macro BS manages control signal and low data rate traffic and small

BSs, e.g., pico, micro and femto BSs, manage only the high data rate traffic. The

optimization objective Ptotal , in the two literatures are given as Ptotal =
∑

Pex p,bλn

and Ptotal = Pmacro
ex p,b + P small

ex p,b + Pswitching , respectively, where λn denotes the spatial

density of BSs, P small
ex p,b is total power cost by small cell BSs, Pswitching is the power

cost owing to switching states of BSs and Pex p,b is computed by Eq. (2.8). The

numerical results in [82] and [83] reveal that the separated network architecture is

a better energy-efficient solution compared to the conventional HetNet architecture.

However, the difference between [82] and [83] is that the former only considered

the constraints of power control and quality-of-service (QoS) at UEs, while the latter

also covers the delay constraint.

iii). MIMO + HetNet

In [84], a combination of two densification approaches, massive MIMO BS and small-

cell access points (SCAs), is considered to minimize the total power consumption,

including dynamic emitted power and static hardware power, while satisfying quality-

of-service (QoS) constraints for the users and power constraints for the BS and

SCAs. The power consumption model is calculated by Eq. (2.7). Nevertheless,

the beamforming vectors is regarded as optimization variables in that work. The

simulation results show that the network EE can be improved by employing massive

MIMO at the BSs or deploying some small cells. However, EE can reach a saturation

point by combining massive MIMO and small cells due to the additional power

consumption coming from the extra hardware.

iv). CoMP + BS on/off

The study in [85] designed energy-aware cooperation strategies for green cellular

networks in order to ensure the system energy-saving while satisfying UE traffic

demands. Specially, a heuristic algorithm is proposed to cope with sleep-mode of BSs

and cooperate among active BSs. The power consumption is computed by Eq. (2.12),

which includes the dynamic serving power consumption of a BS, corresponding to

the number of downlink channel resource blocks allocated to each UE served by this

BS. Compared to the conventional system where all BSs are on, the simulation results
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demonstrate that the heuristic algorithm is outperformed under any kinds of traffic

loads, for instance, energy can be saved about 60% in low-load scenario and about

30% in high-load scenario.

In fact, Eq. (2.18) only reflects the minimization of power consumption in the system

and the total volume of data transferred by this power is not presented apparently. Therefore,

in what follows, we present some literatures which investigate the EE maximization problem

from the perspective of data rate.

– Data rate optimization

Regardless of the technology used in the wireless network, the most widely-used EE model

for the optimization problem is Bit-per-Joule. While satisfying the constraints of power

control and data rate, the general formula for the energy optimization problem is expressed

as

max EEs ys =
Rtotal

Ptotal

s.t. 0≤ Pt x ≤ Pt x ,max , Rtotal ≥ Rth

(2.19)

where Ptotal denotes the overall power consumption in the system, Pt x , Pt x ,max represent

the transmitting power per BS and the maximum transmitting power per BS, respectively,

Rtotal is the maximum amount of data, Rth accounts for the data rate requirement. Through

taking advantage of the common optimization formula of Eq. (2.19), in the following

part, an overview of the optimization-based related work is present according to some

advanced technologies in order to investigate their impact on EE. We also explain the

different concepts of the optimization goal in literatures.

i). MIMO

The EE maximization problem is investigated for a uplink multi-user MIMO system

[70], for a downlink multicell multiuser multiple-input single-output (MU-MISO)

system [86] and for a uplink and downlink of single-cell multi-user MIMO system

[38], respectively. In [70], the total data rate and the power cost are computed

by Eqs. (2.16) and (2.7), respectively. Based on the knowledge of instantaneous

CSI, the EE maximization can be achieved through a low-complexity optimal power

allocation algorithm. The numerical results demonstrate that EE of MU-MIMO can

be improved with a circuit management strategy where users can choose to turn

off electronic circuit operations when some antennas are not utilized. In particular,

both electronic circuit and radio frequency (RF) transmission power consumption

are taken into account in the single cell environment. However, the priority of UEs is



2.5 Classification of EE models 39

not considered. Through introducing a weight coefficient characterized the priority

of UEs in [86], the EE is defined as the ratio between the weighted sum data rate of

all users, defined in Eq. (2.14), and the system overall power consumption, defined

in Eq. (2.12). A two-layer optimization scheme is proposed to solve the non-convex

fractional problem of EE optimization. Numerical results illustrate that the proposed

scheme has a fast convergence and can achieve near-optimal EE.

However, the total EE for the uplink and downlink system in [38] is defined as a

ratio of the average sum rate, defined in Eq. (2.14), to the average overall power

consumption of the system, defined in Eq. (2.7). The optimal solution of EE is

obtained through selecting the appropriate optimization variables, e.g., the number

of BS antennas, the number of active user equipments, and the achievable rate

per user in a single-cell scenario with perfect channel state information (CSI). The

numerical results show that massive MIMO technology (deploying large number of

low-power antennas at BSs) is an effective method to achieve the EE maximization.

Typically, different from the normal linear PCM, the circuit power cost includes the

power consumption of the channel estimation process, power consumption of the

channel coding and decoding unit, and power consumption of the linear processing

by one BS. Unlike the previous work, the authors also analyzed the EE optimization in

the single-cell scenario with imperfect CSI and in the multi-cell scenario with perfect

CSI.

ii). MIMO + HetNet

Taking advantage of the tool of stochastic geometry, the work in [60] discussed

the uplink EE maximization problem for a dense heterogeneous MIMO cellular

network, where BSs configured with massive antennas are distributed according to a

homogeneous Poisson point processes (PPP) and UEs equipped with single antenna

are uniformly distributed. The EE model of Bit-per-Joule-Hz, as defined in Eq. (2.4),

is utilized to replace Bit-per-Joule metric in Eq. (2.19). The Eqs. (2.14) and (2.12)

are used to compute the data rate and the system power consumption, respectively.

The numerical results show that the maximum of EE can be achieved through adding

extra BS antennas, such as a massive MIMO setup with 91 antennas per BS and

10 UEs. Typically, the area power consumption includes the power cost of radiated

amplifier antenna, of BS transceiver chains, of the signal processing, coding and

decoding of UEs.

iii). MIMO + CoMP + Relay

Unlike most previous related works, in [87], a unified framework of power allocation
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policies is proposed to maximize the global energy efficiency (GEE), defined as

the ratio between the sum achievable rate and the total consumed power, as well

as to minimize the weighted EE for users in a 5G uplink wireless network while

taking advantage of the emerging techniques of OFDMA, MIMO, CoMP and relay

transmission. The total data rate and the power cost are computed by Eqs. (2.16)

and (2.7), respectively. The numerical results analyze the impact of minimum-rate

constraints on the algorithm, which is proposed to guarantee GEE convergence.

However, they assume that one or more resource blocks are exploited for data

transmission.

iv). CoMP

Based on the tool of Poisson point process (PPP), EE maximization is investigated

for a downlink coherent JT-CoMP network [88] while considering the circuit power

and non-ideal power amplifiers (PAs), and for a downlink CoMP network [89] while

exploiting the power efficient cache hardware at BSs. Specially, in [88], EE is defined

as the ratio between the number of overall data bits transmitted, defined in Eq. (2.16),

and the total energy consumed by all nodes, defined in Eq. (2.12). The numerical

results show that EE can be promoted by the application of power allocation. Unlike

other PCM where the power consumption is only devoted to the BSs, the total power

consumption in [88] comes from both of BSs and UEs.

Moreover, the network EE in [89] is defined as the ratio between the average network

throughput Rave, defined in Eq. (2.16), and the average total power consumption

Pex p,ave, defined in Eq. (2.9). The numerical results show EE maximum can be ob-

tained through optimizing cache capacity of each BS. In particular, the total power

consumption includes the power cost at BS for transmitting, for operating the base-

band and radio frequency circuits, for caching and backhauling, and for cooling and

power supply.

Additionally, a distributed power optimization scheme based on max-min weighted

EE in [90] is proposed with quality-of-service (QoS) constraint in a downlink CoMP

system, which is based on limited intercell coordination. The authors convert the

optimization problem to a standard form of max-min fractional problem and Eq.

(2.16) is used to compute data rate. Simulation results show that the proposed

scheme can significantly improve the minimum EE. Typically, unlike the common

PCM of Eq. (2.9), the power cost is computed by Pt x + Pcircui t + Pbh, where the

additional backhauling power cost Pbh for supporting CoMP is regarded as a constant.
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v). CoMP + HetNet

In [91, 92], authors investigate the problem of EE optimization in an OFDMA downlink

HetNet using CoMP transmission while applying a realistic power consumption model

and considering the quality-of-service (QoS) constraint. The network EE is defined

as a ratio of total system throughput, defined in Eq. (2.16), to the total power

consumption, defined in Eq. (2.12). Unlike the general HetNet, the authors define

a novel HetNet CoMP system, which is composed of many HetNet cell. Each of

HetNet cell includes one centralized macro BS, several small BSs and many UEs. The

centralized macro BS can cooperates with multiple small BSs in the same HetNet

cell as well as other macro BSs located at different HetNet cells. Simulations results

illustrate that there is a tradeoff between EE and SE. Typically, the power consumption

of backhaul links is considered.

Moreover, unlike the above HetNet, the authors in [93] design a JT-CoMP precoder

for the purpose of EE maximization while guaranteeing the data rate requirement

of each UE in a HetNet, where several pico-BSs are located in the coverage of a

macro-BS and the two kinds of BSs jointly serve multiple UEs with the same time

frequency resource. The network EE can be defined as a ratio of the total achievable

data rate of all UEs, obtained by Eq. (2.16), over the total power consumption of the

HetNet, defined in Eq. (2.7). The simulation results show that the optimal EE can

be achieved through the proposed JT-CoMP precoder scheme. However, the power

consumption for backhauling links between the macro-BS and the pico-BSs, and the

interference among the pico-cells is ignored in that literature.

vi). CoMP + BS on/off

Based on the stochastic geometry, the work in [94] investigated one network per-

formance metric, named energy-spectral efficiency (ESE), for the dense large-scale

cellular networks through taking advantage of the advanced technologies of CoMP

transmission and BS switching on/off scheme. Additionally, a closed-form expression

of ESE is proposed with some network parameters, e.g., CoMP activation factor,

BS-density, mobile-traffic intensity, system bandwidth and average data rate require-

ment. Numerical results show that the maximization of ESE is obtained through

jointly optimizing the CoMP activation factor and the BS density while considering

the constraint of users’ outage probability. Typically, unlike the previous EE model,

the network ESE is measured by bit/Hz/Joule, and defined as a ratio of the total

throughput of users per unit area to the overall power consumption Ptotal,b multiplied

by the system bandwidth BWn, expressed by ESE = ρu×Ru
Ptotal,b×BWn

, where ρu is the density

of users.
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vii). HetNet + BS on/off

Based on the tool of stochastic geometry, the optimization of EE is proposed in [95]
for a HetNet employing two sleep strategies for the small cell BSs, namely random

sleeping policy and strategic sleeping policy. In the random sleeping policy, the

small cell BSs are divided into four modes with some probability, i.e., on, off, sleep

and standby. Instead of randomly operating small cell BSs, BSs are chosen to sleep

according to traffic load in the strategic sleeping policy. The EE metric is defined as

the ratio between the overall throughput per unit area, defined in Eq. (2.16), and

the total power consumption of BSs. Power consumption model (PCM) is given as

Pt x + PM P + PRF + PF PGA, where Pt x accounts the transmitting power of BSs, PRF is the

power cost of the amplifier and radio frequency transmitter, PM P denotes the power

cost of a microprocessor for the purpose of managing the standardized radio protocols

and associated baseband, PF PGA is the power consumption of the field-programmable

gate array (FPGA) with other integrated circuitry in order to support a range of

functions, including data encryption, hardware authentication, and network time

protocol. The simulation results show that there are about 30% improvement in EE

with random sleeping policy and about 15% improvement with a strategic sleeping

policy. Different from the common EE metric in Eq. (2.19), the transmitting power is

assumed as a constant proportion of the total power consumption, which neglects

the instantaneous transmitting power varying with the instantaneous traffic load.

Moreover, the authors in [16] also investigated the optimization of EE and the

power consumption minimization in HetNets through the deployment of different

sleeping policies and small cells. The EE is defined as a ratio of the area spectral

efficiency, defined in Eq. (2.15), over the average network power consumption,

Pave,ex p, computed by Pave,ex p = λnPex p,b. λn is the density of macro BS. The numerical

results illustrate that the EE improvement is related to the sleeping strategy used and

that the deployment of small cells generally leads to higher EE but this gain saturates

as the density of small cells increases.

All these optimization-based related work validated that EE improvement can be

achieved through using some advanced technologies. Alternatively, according to these

related work, we also find that even if the same technology is used in the wireless networks,

different EE model can be chosen while considering some constraints, such as power control,

quality-of-service (QoS) of UEs and delay constraint. The key is to develop an effective

and low-complexity algorithm or scheme so as to obtain the optimal solution of EE. A

classification of EE optimization problem proposed in literatures is presented in Table 2.3,

according to these advanced technologies mentioned before.
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Table 2.3 Classification of optimization-based related work

Power

Technique Up/
Down-
link

Constraints
Power,
QoS,
delay

Comments

HetNet [81] down Power,
QoS

Minimize the APC through joint BS
density and BS transmission power
optimization strategy [81]

HetNet+
BS on/off
[82, 83]

down Power,
QoS;
Power,
QoS, delay

Improving EE with a separated Het-
Net in [82, 83]. Power cost related
to BSs’ density [82] and covering
power cost for switching states of
BSs [83]

MIMO+ Het-
Net [84]

down Power,
QoS

Achieving high EE with beamform-
ing variable [84]

CoMP+ BS
on/off [85]

down Power Using a strategy of changing the
number of coordinated BSs accord-
ing to traffic demands

Data
rate

MIMO
[38, 70, 86]

up,
down,
both

QoS;
Power;
Power

Considering power cost of chan-
nel coding and decoding unit [38];
Turning-off UEs electronic circuit
[70]; Considering priority of serving
UEs [86]

MIMO + Het-
Net [60]

up Power,
QoS

Using Bit-per-Joule-Hz model

MIMO +
CoMP +
Relay [87]

up Power,
QoS

To maximize the globle EE and mini-
mize individual EE per UE

CoMP [88–
90]

down Power,
QoS;
–;Power

Power cost devoted by BSs and UEs
[88], by BS caching [89]. Backhaul-
ing power cost as a constant [90]

CoMP + Het-
Net [91–93]

down Qos; Qos;
Power,
QoS

Considering backhauling power cost
[91, 92]. Ignoring pico BSs inter-
ference and backhauling power cost
[93]

CoMP + BS
on/off [94]

down QoS Proposing a novel energy-spectral ef-
ficiency (ESE) model

HetNet +
BS on/off
[16, 95]

down QoS,delay;
QoS

Total power cost related to density
of BSs [16]; Including power cost of
FPGA [95]
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2.6 Conclusion

According to the related work on EE evaluation and EE optimization in the above section,

it can be found that different EE models can be used in wireless communication networks.

Moreover, different PCM and throughput models can be selected to compute the network

EE even if the same network is set up and the same EE metric is used in different literatures.

Typically, we found that the Bit-per-Joule metric is the most widely-used EE model, since it

reflects the energy required to handle the traffic and it can be applied at the different mea-

surement levels, such as at the component, node and system levels. Therefore, considering

its simplicity and popularity of the Bit-per-Joule metric, we will use this metric throughout

the PhD thesis.

Alternatively, through comparing the numerical results between these related work, we

also find that those 5G technologies candidates of MIMO, CoMP, HetNets, relay and BS

switching on/off strategy can enhance the network EE, which is consistent with the theoret-

ical discussion on technologies, as mentioned in chapter 1. Nevertheless, these technologies

must satisfy certain conditions so that they can improve the system EE. For instance, 1)

MIMO technique can bring EE improvement with using the appropriate number of antenna

configuration, since the excessive number of antennas may bring additional circuit power

consumption. 2) CoMP technique can improve EE when the number of coordinated BSs

does not exceed three, since the additional power consumption for backhauling increases

as the raise of the number of coordinated BSs. 3) While utilizing the HetNet technique, it

is very important to choose the appropriate density of small cell BSs so as to obtain the

maximum of EE. 4) For achieving the optimal EE in the system, it is the key to develop a

suitable sleeping policy for BSs and to chose the appropriate density of BSs, while the BS

switching on/off technique is applied.

The basic concepts of EE, PCM and throughput models discussed in the related work

provide the background and fundamental knowledge of EE, which helps us to propose our

own EE model. Additionally, we find that most of the above related work on EE for the

CoMP system is based on intractable models, which needs a lot of time and huge resources

to conduct simulations. Hence, how to develop an accurate and tractable model for EE

evaluation is still an interesting issue with considering the CoMP technique. Furthermore,

some works have shown that a tractable network model, namely fluid modeling, can be used

to evaluate performance of JT-CoMP. Motivated by that work, how to develop a tractable

EE model based on this fluid modeling and Bit-per-Joule metric is also an open issue. In

this regards, the main objective of the present thesis is to develop a tractable EE model
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based on the fluid modeling and to investigate the joint impact of shadowing and path-loss

exponent on EE in a wireless cellular network and in a CoMP system.

Finally, we summarize this chapter. This chapter provides an overview of the EE models

which are exploited in most of the literatures. We first listed some EE models based on

different EE definitions. Given that the EE models are closely related to the throughput and

power consumption models, then we introduced the power consumption models and the

throughput models. Moreover, based on EE-evaluation and EE-optimization, a catalog of

the EE-related work is presented, which illustrates that different EE models can be used in

the various networks and that the 5G promising technologies and their technical parameters

have an important impact on EE.

In the next chapter, we will present the system model and our EE model based on the

aforementioned PCM and EE metric in order to analyze the network performance.
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3.1 Introduction

With the progress towards 5G wireless network, energy efficiency (EE) has become one

of the key design criterion for future wireless communications. As shown in the previous

chapter, the EE models are utilized to evaluate and optimize this metric. It is observed that

the Bit-per-Joule metric is the most popular model for evaluating EE due to its definition of
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a ratio between the throughput or capacity and the power consumption. Therefore, taking

advantage of this EE definition, the purpose of our work is to propose a mathematical

framework for a downlink transmission network in order to evaluate the network EE based

on a so-called fluid modeling.

The spatial fluid modeling is an approximation approach for networks, where the

interfering BSs are replaced by a continuum of infinitesimal interferers [96]. Unlike a

Poisson network model where the distribution of all BSs is assumed following a Poisson

point processes distribution with a BSs density, the fluid modeling is tractable due to the

below assumption. Given the inter site distance (ISD) between two BSs, the interfering

BSs, consisted by a given finite number of BSs, are regarded as a continuum of transmitters

with a BSs density, which can be denoted using ISD. This means that the transmitted

interference power is considered as a continuous field over the entire network. Then,

the total interference power of a UE with fixed distance to its serving BS can be easily

calculated by integrating. Based on this model, Kelif et al. proposed analytical formulas for

the signal-to-interference-plus-noise ratio (SINR) in HetNets [97] and in a Poisson wireless

network [98], and for outage probability in cellular networks [96]. Furthermore, taking

advantage of this model, the paper [99] investigated the impact of coordination between

BSs in a dense area. In addition, authors in [100] also developed a tractable expression of

the total cell data rate and investigated its variations considering various frequency reuse

and scheduling schemes in an OFDMA cellular network. All these work highlighted the

benefits of this modeling method as it reduces considerably the analysis complexity and

provides a macroscopic evaluation of the network performance.

Spurred by the tractable advantages of spatial fluid modeling, the goal in this chapter is

to develop a tractable analytical expression of EE-evaluation based on this fluid framework.

This expression will be used throughout all the thesis work. First, system model is introduced

to provide the main network environment under consideration. In particular, we discuss in

detail the EE definition and the power consumption model we used. Further, we illustrate

how to compute the SINR in the hexagonal network and in the fluid one, respectively, since

SINR is the basic parameter to compute the data rate and EE. Finally, we discuss some

simulation results in order to prove the accuracy of fluid modeling.

3.2 System model for the thesis

In this thesis, we consider a downlink transmission of an OFDMA cellular network, composed

of NBS base stations (BSs) and Nu user equipments (UEs) randomly distributed over the

network. Since the radio resources of each BS are divided into many parallel and orthogonal
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sub-carriers, only inter-cell interference is considered. In the system, the integer frequency

reuse (IFR) 1 scheme is used, which means all the subcarriers allocated in one cell can be

utilized anywhere regardless of UEs’ location. For frequency reuse 1, the cell bandwidth

equals the network bandwidth BWn, as shown in Fig. 3.1. Here, an equal bandwidth

scheduling scheme is taken into account. Thus, all UEs are assigned the same bandwidth

whatever the spectral efficiency is available to them. We assume an homogeneous network

such that the transmission power Pt x is same for every BS equipped with an omni-directional

antenna.

Fig. 3.1 Cellular network with an integer frequency reuse (IFR) 1 scheme

3.2.1 Energy efficiency definition

In our thesis, we chose the classical Bit-per-Joule metric as the energy efficiency (EE) model,

as illustrated in Eq. (2.5) of chapter 2, since it is the most popular model to evaluate EE

in the telecommunication networks. Given that the Bit-per-Joule capacity indicates the

amount of energy consumed for transmitting information, here we consider the common

definition of EE as the ratio of total data rate Darea over a network area to the total power

consumption:

EE =
Darea

NBS × Pex p
, (3.1)

where Pex p is the total energy expenditure per BS and NBS denotes the total number of BSs

in the system.

According to Eq. (3.1) and as stated in [37, 78, 95], EE is not only related to the data

rate but also depends upon the BS power consumption. This EE model served to assess the

performance of the heterogeneous networks (HetNets) under different sleeping policies

[16], and to review the impact of BS density on EE in [78]. The numerical results in [78]
shown that the network EE first increases and then decreases with the increasing number

of pico BSs, due to the rise of power consumption. We will introduce how to compute the



50 System model

power consumption Pex p per BS and the total data rate Darea based on the fluid modeling

in the below part.

3.2.2 Power consumption model

Here, we consider a realistic double linear power consumption model (PCM) [68], as

defined in Eq. (2.13) (already been introduced in the second chapter). Since, this PCM

covers the most of the energy consumption in the system, such as the power cost by the

transmitting antenna, the baseband processing, the cooling system, the battery backup, the

power supply and the direct current (DC)-DC and analog current (AC)-DC converters.

The double linear PCM is defined as

Pex p = Nant(∆P Pt x + P0) + P1, (3.2)

where Nant is the number of transmitting antennas per BS, Pt x is the transmitting power

per power amplifier (PA), P1 is the fixed part accounting for the direct current (DC) and

alternating current (AC) converters. ∆P and P0 denote some circuit power consumption

which includes the signal processing overhead LSP , cooling loss LC and battery backup and

power supply loss LPSBB, respectively, characterized by ∆P = (1+ LC)(1+ LPSBB)/µPA and

P0 = LSP(1+ LC)(1+ LPSBB), µPA being the power amplifier (PA) efficiency.

This model shows that the BS power consumption increases with the number of antennas,

Nant , and the transmitting power, Pt x . However, the power consumption of components like

DC-DC/AC-DC converters and cooling unit will not grow linearly with Nant . The numerical

values of Pt x , ∆P , P0, P1 for different types of BSs, like macro, micro and femto BSs, are

given in Table 3.1 as in [68].

Table 3.1 Values of double linear PCM [68]

Parameters Pt x(W ) ∆P P0 P1

macro BSs 80 7.25 244 255

micro BSs 6.31 3.14 35 34

pico or femto BSs 0.25 4.4 6.1 2.6

3.2.3 Data rate (Darea) over a network area

We focus on evaluating the data rate Darea of the network area with radius Ra. For example,

when 0 < Ra ≤ Re, the area of interest is a small part of the central cell, as shown in Fig.

3.2. According to Shannon’s formula, we can compute the achievable data rate of one UE
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Fig. 3.2 Network area of radius Ra (0< Ra ≤ Re).

and the total data rate Darea over the network area of interest. Since the EE is computed

based on the Darea and Pex p, the detailed information on the computation of the data rate

Darea will be presented in the next chapter.

Based on the aforementioned EE model, power consumption model and data rate

expression, we can evaluate the network EE. Since the data rate is related to the SINR

expression, the basic thing is to explain how to compute SINR based on the fluid modeling.

In the following subsection, we shortly recall the fluid network modeling and present the

SINR expression and interference factor expression using the spatial fluid modeling.

3.3 Overview of fluid modeling

In an OFDMA network, radio resources of a BS are divided into many parallel and orthogonal

subcarriers and inner-cell interferences are neglected. The spatial fluid modeling is to

approximate a hexagonal network of several rings around a central cell. Here, only downlink

communications are considered and the shadowing effects are neglected. The network is

homogeneous and all base stations (BSs) have the same transmitting power.

3.3.1 Notations

The sketch of the hexagonal network is given in Fig. 3.3. The network is homogeneous.

Every hexagon has the same cell radii R. Rc and Rnw denote the half distance between two

adjacent BSs and the network range, respectively. Re is defined as the equivalent radius of

a circle whose area is identical to the hexagonal cell, i,e., Re = aRc where a =
Æ

2
p

3/π.

The network environment consists of NBS BSs and Nu UEs per cell. Assuming a uniform

distribution for the BSs and the UEs, the density of BSs is ρBS = 1/(2
p

3R2
c) and the density

of UEs is ρu = Nu/(2
p

3R2
c).
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Fig. 3.3 Network model in hexagonal case and main parameters

In the following, we introduce the computation of signal-to-noise-plus-interference ratio

(SINR) γu for a UE u in the hexagonal network and in the proposed fluid network modeling,

respectively.

3.3.2 SINR in the hexagonal network

Regarding the propagation model, the useful power pb,u received by UE u from BS b is

written as pb,u = Pt x Kr−ηu , where K is a constant, η (> 2) is the path-loss exponent, ru

denotes the distance between the UE and the serving BS. The total external signal power

(interference) pex t,u received at u equals
∑

j ̸=b Pt x Kr−ηu, j , where ru, j is the distance between

u and the BS j. Given the above notations, the SINR γu for a given UE u is given by

γu =
Pt x Kr−ηu
∑

j ̸=b Pt x Kr−ηu, j + N0

=
r−ηu
∑

j ̸=b r−ηu, j +σ

(3.3)

where σ = N0/(KPt x) and N0 denotes the received power from additional white Gaussian

noise.

As introduced in [96], the other-cell-interference-factor (OCIF) y f (r,η), for a fixed UE

at distance r, is defined as a ratio between the total external interference power from other

cells and the useful power, displayed as

y f (r,η) =
pex t,u

pb,u

=

∑

j ̸=b r−ηu, j

r−ηu

(3.4)
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3.3.3 SINR in fluid network model

In the spatial fluid model introduced in [96, 98, 99], a network (constituted by a finite

number of BSs) is regarded as an equivalent continuum of transmitters which are uniformly

distributed in the spatial domain. Considering that the distance between interfering BSs

is 2Rc, the set of transmitting power by interfering BSs in the network is also treated as a

continuous field over the entire system.

Fig. 3.4 Network model in fluid case and some parameters

For a given UE located in the central cell, we consider a circular shaped network

around this central cell with radius Rnw, as shown in Fig. 3.4. The interfering area is

the shaded region limited over the rings with radii 2Rc − ru and Rnw − ru, respectively,

centered at the UE’s position. For each elementary surface ds = zdzdθ at a distance z
which contains ρBSds BSs, the corresponding interference power equals ρBSzdzdθ Pt x Kz−η.
The integration over all the interfering area, gives the total amount of external interference

power pex t,u, approximated as in [96], by

pex t,u =

2π
∫

0

Rnw−ru
∫

2Rc−ru

ρBS Pt x Kz−ηzdzdθ

=
2πρBS Pt x K
η− 2

[(2Rc − ru)
2−η − (Rnw − ru)

2−η].

(3.5)

Therefore, the SINR γu in the fluid modeling can be expressed as

γu =
Pt x Kr−ηu

2πρBS Pt x K
η−2 [(2Rc − ru)2−η − (Rnw − ru)2−η] + N0

. (3.6)
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As a consequence, the other-cell-interference-factor (OCIF), y f (r,η), for a UE at distance

r, can be approximated as in [96],

y f (r,η) =
2πρBS rη

η− 2
[(2Rc − r)2−η − (Rnw − r)2−η]. (3.7)

When Rnw is much larger than ru (Rnw≫ ru) and neglecting the thermal noise σ (e.g.,

in urban environments), Eq. (3.6) can be further simplified into

γu =
(η− 2)r−ηu

2πρBS(2Rc − ru)2−η
. (3.8)

The substitution of ρBS = 1/(2
p

3R2
c) into Eq. (3.8) and the introduction of the normalized

distance x = ru/Rc, the above equation can be rewritten into

γu(x) =
p

3
π
(η− 2)x−η(2− x)2−η, (3.9)

from which one finds the γu for UE u only depends upon the relative distance to the serving

BS, ru/Rc, and the path-loss exponent, η.

The analytically tractable expression of γu of Eq. (3.8) can be easily used to compute the

data rate over a network area of interest, Darea. In the following section, some numerical

results will be presented to validate the accuracy of the fluid modeling.

3.4 Accuracy of fluid model

In this section, we show some numerical results of the SINR and its cumulative distribu-

tion function (CDF), which are obtained by fluid modeling and Monte Carlo simulations,

respectively. Simulations are carried out on MATLAB. For the simplification purpose, the

noise, the effect of shadowing and fast fading are ignored in all the simulation process.

Therefore, the SINR is equal to the SIR in this section.

3.4.1 Simulation process

For Monte Carlo (MC) simulations, we consider 15 rings of hexagonal cells around a central

hexagon such that Rnw = 31Rc. Nu UEs are generated uniformly in the central hexagon and

we assume that they are attached to the BS located at the center of a hexagon. We sort

all these UEs depending upon the distance to their serving BS, and we average the SINR,

γu, for all UEs at the same distance. The results presented here are obtained by averaging
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over 5000 MC simulations, by using Eq. (3.3). The numerical results of fluid modeling

are obtained by simulating Eq. (3.8) for the SINR. The numerical values of transmitting

power are set according to Table 3.1 for the macro and femto cellular networks, respectively.

The other simulation parameters are set up according to Table 3.2 for the other network

parameters.

Table 3.2 Simulation parameter value

Parameters Value

Cell radius R in macro and femto cellular networks, resp. {1000, 50}m
Half distance between BSs, Rc R

p
3/2

Range of network Rnw 31Rc

Equivalent radius of one cell, Re Rc

Æ

2
p

3/π

Distance of UE to its serving BS, r [R/50 R]
Number of UEs Nu 30

Path loss exponent η {2.6, 3, 3.5, 4}
Density of BSs ρBS 1/(2

p
3R2

c)

3.4.2 Discussion of results

Fig. 3.5 SINR vs the distance to the BS in a macro cellular network.

Fig. 3.5 and Fig. 3.6 depict the SINR γu as a function of distance from the serving BS in

macro cellular network and femto cellular network, respectively. The curves of the two
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figures prove the accuracy of the fluid modeling towards the hexagonal lattice one. We

also notice that there is a slight difference between fluid and hexagonal models, mainly for

the UEs located closer to the serving BS. The difference is related to the circular shaped

form considered in fluid model. Indeed, whatever the position of UEs in the inner circle,

the average of the external power of all neighboring BSs is the same. However, in the

hexagonal model, this assumption is no longer true, since we consider the real distance

from neighboring BSs.

Fig. 3.6 SINR vs the distance to the BS in a femto cellular network.

Furthermore, for the accuracy purpose, we compare the numerical results in Fig. 3.5

with the ones developed in [100] while considering the same system parameters values

for a macro cellular network. We observe that for a given distance, the numerical values

of SINR obtained by fluid modeling in Fig. 3.5 and the ones in [100] are the same with

the identical path-loss exponent η, which illustrates the accuracy of our code. However,

focusing on the results obtained by Monte Carlo simulations in Fig. 3.5 and in [100],
we also observe that there is a little difference in a short area around the BS, due to the

randomness of the locations of UEs.

Moreover, we observe that the SINR of UEs, near the serving BS, is larger than the

ones located at the edge. For example, for η= 3.5 in Fig. 3.5, the SINR reaches 50.3dB

at 40m from the serving BS, and about -3.1dB at 960m further. We also observe that

values of the SINR for UEs, which is far from their serving BS, are same obtained by fluid

and Monte Carlo simulation. Since for the UEs located at the cell edge, the principal
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received power is the interference power coming from other external BSs. The SINR, γu,

decreases exponentially with the distance whatever the path-loss exponent values, η, and

it is proportional to the path-loss exponent value, i.e., γu is higher for a larger path-loss

exponent η = 4. We conclude that the values of SINR are larger in suburban area (η in

{3.5, 4}) than the ones in the urban area (η in {2.6, 3}). Additionally, we can also observe

the same conclusion in the femto cellular network, as shown in Fig. 3.6.

3.4.3 CDF results

Fig. 3.7 CDF of SIR values in a macro cellular network

Fig. 3.8 CDF of SIR values in a femto cellular network
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For further verification of the accuracy of the spatial fluid modeling, we also investigate

the cumulative distribution function (CDF) of SINR. Fig. 3.7 and Fig. 3.8 describe the CDF

along with various SINR threshold for η= 2.5 in the macro and femto cellular networks,

respectively. The numerical values in both two figures show that the analytical results match

well with Monte Carlo ones, which reveals the accuracy of the fluid modeling, despite the

small difference. For example, the error is about 0.05 in the range [−5 15] dB. In addition,

we observe that the mean value of SIR is about 0dB (1bps) in both two figures. In other

words, due to the uniform distribution of UEs, the SIR of half of the UEs are greater than

0dB (1bps).

3.4.4 SIR vs network range

For illustrating the impact of network range on SIR, we investigate the SIR of fixed UEs

varies with the number of network rings. Fig. 3.9 and Fig. 3.10 depict the SIR variation

depending on the number of network rings in two types of cellular networks, macro and

femto, respectively, for η = 3. The distances, ru, of UE are set as {300m, 500m, 800m} and

{20m, 25m, 40m} in macro and femto celluar networks, respectively. The numerical results

of SIR are obtained based on Eq. (3.6) with considering network range, Rnw, and Eq. (3.8)

with neglecting Rnw. Focusing on Fig. 3.9, we observe that the numerical values of SIR are

almost the identical when the number of network rings is larger than 15, whatever the

values of ru. In other words, when the network range Rnw ≥ 31Rc, we can use the simplified

Eq. (3.8) to compute data rate and EE in a fluid modeling. Thus, we set the network range

is 31Rc in the simulation section. The same conclusion can be found in the femto cellular

networks.
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3.5 Conclusion

In this chapter, we developed a tractable analytical expression of EE-evaluation based on

this fluid framework, which will be used in the following chapters. First, we presented the

system model for evaluating network energy efficiency, including the expression of EE and

power consumption model. Then, we presented the expression of SIR in fluid modeling,

which is tractable. Furthermore, we discussed the simulation results of SIR and CDF of SIR.

The observations point out that the analytical results obtained by fluid model are similar

to the ones established by Monte Carlo simulations, which shown the accuracy of fluid

modeling.

In the next chapter, we will present the computation of data rate based on this system

model in detail and the work using this system model to evaluate EE for the large cellular

networks so as to investigate the impact of shadowing on EE.
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4.1 Introduction

To support the requirement of x1000 traffic increase in 5G networks, the EE has to be

improved dramatically x1000 at least in the next 5 years time-frame [10, 101]. However,

the goal is not easy to achieve considering so many factors, such as the environmental, eco-

nomical and operational concerns [102]. In particular, from the operators perspective, EE is

urgent to be considered for designing the cellular networks due to that a high EE reduces the

commercial expenditure of operators. In addition, several EU-funded research projects have

been carried out to develop more energy-efficient wireless communications, e.g., Energy

Aware Radio and neTwork tecHnologies (EARTH) [103], Towards Real Energy-efficient

Network Design (TREND) [104] and Mobile and wireless communications Enablers for

Twenty-twenty (2020) Information Society (METIS) [105]. On the other hand, several col-

laborative initiatives, such as the GreenTouch consortium [106], and the 5G Infrastructure

Public Private Partnership (5G PPP) [107], have also focused on analyzing the energy-

efficient wireless networks through utilizing some promising techniques. In these work, the

proposed solutions are achieved using system-level simulations, or stochastic geometry to

describe network model (mainly the nodes locations and the propagation models) and to

derive consequently the EE performance model. Nevertheless, since today’s networks are

more and more dense due to the increase number of BSs, simulation-based approaches have

become a hard task and resource-intensive. Moreover, stochastic geometry-based studies

assume in most cases a Poisson point process to describe the nodes locations which allows

to derive a closed-form formula of the energy metric. However, when non-Poisson point

processes are considered, eg., perturbed lattice, β -Ginibre point process, and Matérn point

process, the performance models are not analytically tractable due to the non-independent

nature of points [108]. Therefore, representative, tractable and accurate models are needed

to evaluate the EE performance of the cellular networks in the energy consumption process,

which motivates this work.

In addition, shadowing is used to model random variations of the received power

signals on the path loss due to the encountered obstacles like buildings, trees, terrain

conditions [109, 110], during the transmission of signal in wireless channel. In detail, the

obstacles make the signal change at random, resulting a random variation of the received
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signal power for the UEs, with the same distance to the transmitter whereas in different

locations. Commonly, shadow fading is modeled using the log-normal distribution in the

radio propagation process, thus it is also called as lognormal fading. Some research efforts

are made to illustrate the impact of shadowing fading. The authors in [111] derived some

closed-form expressions for the interference factor’s mean and standard deviation, as well

as the outage probability while taking into account the impact of the path-loss exponent and

the shadowing. The authors in [112] show that shadowing increases outage probability in

cellular radio networks. Additionally, the work of [113] shows that the coverage probability

is severely reduced by shadowing in a Poisson small cell network. The above work illustrates

that the effect of shadowing is significant and should not be neglected while characterizing

the performance of cellular networks, i.e., coverage probability and outage probability.

Nevertheless, the influence of shadowing on the EE is still an open issue while the fluid

modeling is utilized.

Hence, our objective in this chapter is to develop a tractable EE model for cellular

networks based on the spatial fluid modeling without considering the shadowing effect,

and to investigate the impact of shadowing on EE. We first present a tractable and effective

EE model for an OFDMA cellular network based on the spatial fluid modeling, which

reduces the analysis complexity. Then, we present how to compute the data rate while the

impact of shadowing is neglected. Furthermore, we develop a closed-form expression of

the signal-quality threshold using the Polynomial Curve Fitting (PCF) approach so as to

compute the data rate with taking into account the shadowing effect. Finally, we discuss

the simulation performance to prove the effectiveness and accuracy of the proposed model

through a comparison between fluid modeling and Monte Carlo simulations.

4.2 Energy efficiency definition

We consider the common definition of EE as the ratio of total data rate Darea in a network

area over the total power consumption, i.e., EE = Darea
NBS×Pex p

, as defined in Eq. (3.1). Metric

EE is measured in terms of bits/Joule, which is the maximum amount of bits that can be

reliably delivered by the system per Joule of energy. NBS denotes the overall number of

BSs in the system, and Pex p accounts for the total energy expenditure per BS. Pex p can be

calculated according to the Eq. (3.2).

Since the definition of EE is not only related to the data rate, but also related to the

power consumption of the system, we present how to compute the total data rate Darea

without/with considering the effect of shadowing during the transmission of signal in the

radio system.
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4.3 Data rate computation

In a cellular system, both the signal and interference strength decay super-linearly with

distance [114]. Therefore, the distance between the BS and mobile users is a key element to

quantify the fundamental network performance metrics and to estimate the system capacity

and the energy efficiency, which are critical indicators for the network deployment. Much

work on EE and data rates has been investigated focusing on the central cell. However, in a

practical scenario, the statistical distance of UEs to the origin is changing due to UEs’s life

activity, either inside or outside the central cell, or any point of the system network. As a

result, the data rate and energy consumption exist outside the central cell. Therefore, it is

an interesting issue to investigate the data rate over a disc region, not only limited to the

central cell.

The objective is to compute the total data rate, Darea, over a disc region with radius of

Ra. Let the center of a central hexagon be the origin. The radius of Ra is also called the

statistical distance. Based on the different size of Ra, in this chapter, we consider three

scenarios, i.e., 0< Ra ≤ Re, Re < Ra ≤ 2Rc and 0< Ra ≤ Rnw. Re is the radius of a disk with

a surface equivalent to the central hexagonal cell, such that Re = aRc =
Æ

2
p

3/πRc with

a =
Æ

2
p

3/π. Rc is the half distance between two BSs and Rnw is the network range.

According to the Shannon’s formula, the spectral efficiency (SE), measured by bps/Hz,

for a UE u is a function of signal quality γu as

SEu(r) = log2(1+ γu(r)). (4.1)

The maximum of achievable data rate Du(r) for user u at distance r is the multiplication of

the user’s bandwidth Bu and SEu, i.e.,

Du(r) = Bu × SEu(r). (4.2)

Since the user’s density ρu is invariant, users are assigned with the same bandwidth, and

the total data rate Darea over the area is closely related to the SINR γu(r) of users, Darea

can be written as the integration of Du over the interested area. Mention that γu(r) has

been given as γu =
(η−2)r−ηu

2πρBS(2Rc−ru)2−η
, as defined in Eq. (3.8).

Therefore, in the following subsection we focus on evaluating the data rate Darea of

interested area in different scenarios through Eqs. (3.8), (4.1) and (4.2).
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Fig. 4.1 Scenario 1: network area with radius Ra (0< Ra ≤ Re)

4.3.1 Data rate within the central hexagon

Fig. 4.1 depicts the scenario when the interested area is one part of the central cell, i.e.

(0 < Ra ≤ Re). Since the UEs are uniformly distributed in every cell, the density ρu

is a constant. Therefore, the number of users N ′u over the area of interest is given as

N ′u = (NuR2
a)/(a

2R2
c), where Nu is the number of users per cell.

Considering an equal bandwidth sharing among UEs, Bu = BWn/Nu where BWn is the

total bandwidth. Based on Eqs. (3.8), (4.1) and (4.2), replacing ρu = Nu/(2
p

3R2
c), the

total data rate Darea can be written as

Darea =

∫ 2π

0

∫ Ra

0

Buρulog2(1+ γu(r))rdrdθ

=
BWnπp

3R2
c

∫ Ra

0

r log2(1+ γu(r))dr.

(4.3)

A worthwhile observation is that the Eq. (4.3) neither depends on the number of UEs

deployed per cell nor upon the value of ρu. When Ra = Re, the above equation is evolved

to compute the total cell data rate, Dcel l , as in [100].

4.3.2 Data rate over a first ring

Actually, when a user moves from one cell to its adjacent cell, the BS located at the adjacent

cell becomes its new serving BS for the user. In this case, the SINR and data rate for the

user maybe change due to changes in relative distance between the user and its new serving

BS. Thus, to investigate the data rate over a first ring is also an interesting issue.

Beyond the central cell, we explain here how to compute the total data rate. Assume a

user m, located outside the central cell at distances r, rm from the central cell BS O0 and

its serving BS B, respectively, as shown in Fig. 4.2. According to the law of cosines, the
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Fig. 4.2 Scenario 2: network area with radius Ra (Re < Ra ≤ 2Rc)

distance rm of the user m from its serving BS B can expressed as

rm =
Æ

(2Rc)2 + r2 − 4rRccosφ. (4.4)

The SINR γm is computed by

γm(r) =
(η− 2)r−ηm

2πρBS(2Rc − rm)2−η

=
(η− 2)[4R2

c + r2 − 4rRccosφ]−η/2

2πρBS[2Rc − (4R2
c + r2 − 4rRccosφ)

1
2 ]2−η

.
(4.5)

Based on Eq. (4.2) and replacing ρBS and ρu by their values, the total data rate over a disc

with radius Ra is given as

Darea = Dcel l +
6BWnp

3R2
c

∫
π
6

0

∫ Ra

Re

r log2(1+ γm(r))drdφ. (4.6)

4.3.3 Data rate over a large network

By minor extension, the application of the spatial fluid framework is used to compute the

data rate over an area with any size. Because users maybe move to any point in the network

due to their random activities. As a result, there is signal quality at any point over the

network. Hence, in this subsection, we focusing on how to compute the data rate over a

disc area with radius Ra (0< Ra ≤ Rnw). Before presenting the computation of data rate

Darea in this case, we introduce some approximation between disc and hexagon.
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Approximation between disc and hexagon

Setting the origin of the global coordinate system at the central BS, as shown in Fig. 4.3,

the disc region with radius of Ra is of interest and denoted by Sdisc. The objective here is to

compute total data rate Darea over Sdisc based on Eq. (3.8).

Fig. 4.3 Scenario 3: network area with radius Ra (0< Ra ≤ Rnw)

For simplicity, some literatures took into account the hexagonal cell as a circular cell

with equal area to investigate the network performances, such as other-cell interference

[115] and the received power at a BS [116]. These work shown that the circular cell and

the hexagonal cell can be transformed into each other where the locations of all UEs are

the same. Hence, in this subsection we made the following approximations.

(1) The interested circular region Sdisc has the same area as the equivalent hexagon Shex ,

such as Sdisc = Shex .

(2) The date rate over a circular region is equal to the data rate over an equivalent

hexagonal region. Because UEs’ position remains unchanged whatever in the disc

region or in the equivalent hexagonal area.

(3) Using the symmetric property of a hexagon, the hexagon can be divided into 12 small

triangles.

Based on the above approximation, the total data rate Darea over an interested disc region

Sdisc is equal to the total data rate over an equivalent hexagon area Shex . As a result,

Darea =

∫∫

Sdisc

ρuBulog2(1+ γu(r))ds

=

∫∫

Shex

ρuBulog2(1+ γu(r))ds

=12× Dt r i
hex ,

(4.7)
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where Dt r i
hex is the data rate of the shaded triangular region, as shown in Fig. 4.3. Therefore,

we present how to compute the total data rate of the shaded triangular region, Dt r i
hex , in the

following part.

The notations used in this subsection are summarized in Table 4.1.

Table 4.1 Common parameters in a large network

Parameter Description
Sdisc surface area of a disc region with radius Ra

Darea data rate over Sdisc

Shex surface area of an equivalent hexagon
Dt r i

hex data rate over an area, i.e., twelfth of Shex

Dcel l data rate per hexagonal cell
△O0S2S1

surface area of a triangle
D△ data rate over the triangle area, △O0S2S1

(D△ =
3Dcel l

4 )
□S1S2S3S4

surface area of a square
D□ data rate over the square area □S1S2S3S4

(D□ = Dcel l)
Dre data rate over the remaining area
nt the number of D△
k the number of D□

Computation of data rate Dt r i
hex

According to the approximation of the disc area by a hexagon, the network area is enclosed

by two axes, for example, the x-axis represents the value of Ra/a, as shown in Fig. 4.4. Dt r i
hex

is decomposed as repeated blocks of the highlighted triangles, rectangle with vertices S1,

S2, S3, S4, and some remaining part. Two examples are given in the following to explain

the law of geometric decomposition.

Fig. 4.4 Homogeneous network with a various radius Ra/a
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The first example shows the case when 3Rc < Ra/a < 5Rc, so that Dt r i
hex is the data rate

over the triangle with vertices O0, A1 and B1. The corresponding decomposition scheme is

sketched by Fig. 4.5(a). Hence, the data rate Dt r i
hex is a summation of D△ (data rate over

a triangle) and data rate over the remaining part which is a trapezoid with vertices S1,

S2, A1 and B1. For the evaluation of data rate, D△, with the knowledge that the data rate

is only related to the distances from the serving BS and UEs, it is not difficult to derive

that D△ = 3Dcel l/4. The computation of the data rate over the remaining part is given in

Appendix A.

(a) example 1

(b) example 2

Fig. 4.5 Two examples for the decomposition of the network area.

The second example illustrates the case when 6Rc < Ra/a < 7Rc. Dt r i
hex is the data rate

over the surface area with vertices O0, A2 and B2, as shown in Fig. 4.5(b). Let D□, Dcel l

denote the data rate over the square area □S1S2S3S4
and data rate over a hexagonal cell,

respectively. Following similar analysis as the first example and based on the geometry

property of a hexagon, Dt r i
hex is decomposed as two D△, one D□, and the data rate over the

remaining part, where D□ = Dcel l . Appendix A presents the approach to compute the data

rate over the remaining region, as for the first example.

As seen from the above two examples, the data rate with any value of Ra/a is a

summation of multiple D△, D□, and the data rate over the remaining part, i.e.,

Dt r i
hex = nt D△ + kD□ + Dre, (4.8)

where nt , k are non-negative integers and denote the number of repeated parts of D△
and D□, respectively. Dre denotes the data rate over the remaining area. With any given
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value of Ra/a, the computation of the data rate for the remaining part, i.e., Dre, follows the

approach described in Appendix A. We here present how to compute nt and k.

Taking advantage of the symmetry pattern of a hexagon, we observe that the number of

△O0S2S1
appears with a period 3Rc and that the number of □S1S2S3S4

appears with a period

2Rc along the Ra/a axis. Hence, the number of D△, nt , can be defined as

nt =
�

Ra

a
, 3Rc

�

, (4.9)

where [·, ·] is the quotient operator. Additionally, we observe that D□ appears at the right

(towards to positive direction of the axis of Ra/a) and □S1S2S3S4
depends on Ra/a and nt .

Hence, the number of D□, k, is given by

k =
nt
∑

n=1

max

�

0,
�

Ra

a
− 3nRc, 2Rc

�

�

. (4.10)

Eqs. (4.9) and (4.10) are obtained based on the geometric characteristic of a hexagon.

A detailed example is given to better understand the above two equations. Assuming

6Rc < Ra/a < 7Rc as in example 2 and according to Eq. (4.9), nt is calculated, i.e., nt = 2,

which illustrates that there are two D△. With nt = 2 and following Eq. (4.10), the value

of k is a summation, which yields to the value of 1, i.e., k = 1. That shows that there is

one D□. In one word, according to Eqs. (4.9) and (4.10), we obtain nt = 2 and k = 1 for

6Rc < Ra/a < 7Rc, which is in accordance with the truth, as shown in Fig. 4.5(b). That

illustrates the accuracy of Eqs. (4.9) and (4.10).

Therefore, for a given value of Ra, using Eqs. (4.9), (4.10) and the computed Dre in

Appendix A, Dt r i
hex over a triangle area can be easily computed. Then replacing Dt r i

hex in Eq.

(4.7), we can obtain the data rate Darea over a disc region with radius of Ra.

As a result, we can easily compute the EE metric in Eq. (3.1) by replacing Pex p with Eq.

(3.2), replacing Darea with Eq. (4.3) or Eq. (4.6) or Eq. (4.7).

4.4 Data rate with shadowing consideration

In this section, we recall first the SINR expression of a user equipment u located at a

distance r from its serving BS b, taking the path-loss exponent and the shadowing impact

into account. Then, to calculate the data rate over a network area Darea, we rely on the

proposed fluid model to present a formula of the coverage probability. Especially, in the case

of a fixed coverage probability, we further drive a closed-form expression between SINR
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threshold Γ th(r) and UE’s distance r through a polynomial curve fitting method, which is

compared with the fluid modeling.

4.4.1 Signal quality

Regarding the propagation model, the received power pb at the UE u, located at a distance

r from its serving BS, b, can be written as,

pb = Pt x Kr−ηAb, (4.11)

where Ab = 10
ξb
10 denotes the shadowing effect. The lognormal random variable Ab charac-

terizes the random variations of the received power around a mean value. ξb stands for

a normal distributed random variable (RV), with zero mean and standard deviation, σ,

which is between 0 and 8 dB. Pt x Kr−η represents the mean value of received power from

BS b, at UE u, where K is a constant and η(> 2) is the path-loss exponent. The interference

received power, pex t , at u from the external BSs is:

pex t =
∑

j ̸=b

Pt x Kr−ηj A j. (4.12)

Given the above notations, the SINR γu of a given UE u is

γu =
Pt x Kr−ηb Ab
∑

j ̸=b Pt x Kr−ηj A j + N0

, (4.13)

where N0 is the Gaussian noise. Neglecting the noise power because of the urban area and

considering same transmission power of BSs, Pt x , the SINR can be rewritten as

γu =
r−ηAb
∑

j ̸=b r−ηj A j

. (4.14)

Let γu = 1/A f with

A f =

∑

j ̸=b r−ηj A j

r−ηAb
, (4.15)

where A f can be approximated by a lognormal RV with mean value, m f , and standard

deviation, s f [117–119]. According to the definition of [119], the terms m f and s f can be
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calculated as

m f =
1
a

ln[y f (r,η)H(r,σ)]

s2
f =2[σ2 −

1
a2

ln(H(r,σ))]

y f (r,η) =

∑

j ̸=b r−ηj

r−η

H(r,σ) =ea2σ2/2[G(r,η)(ea2σ2−1) + 1]1/2

G(r,η) =

∑

j ̸=b r−2η
j

(
∑

j ̸=b r−ηj )2

a =
ln10
10

(4.16)

where m f is measured in dB. The term y f (r,η), considered as the interference factor

since it stands for the A f factor without shadowing. Specially, in the fluid modeling, the

interference factor, y f (r,η), for a fixed UE at distance r can be computed by y f (r,η) =
2πρBS rη

η−2 [(2Rc − r)2−η − (Rnw − r)2−η], as displayed in Eq. (3.7). The factor G(r,η) can also

be rewritten as

G(r,η) =
y f (r, 2η)

[y f (r,η)]2
. (4.17)

4.4.2 Data rate

The data rate over a network area, as shown in Fig. 4.1, is computed while taking the

impact of shadowing into account.

As shown in [16, 19], the spectral efficiency of a given UE can be measured while con-

sidering the coverage probability. According to Shannon’s formula, the average achievable

throughput, for a UE u at the distance r, is given as

Du(r) = BuPr
cov log2(1+ Γ t h(r)), (4.18)

where Pr
cov = P(γu > Γ t h(r)) is the coverage probability [120], and Bu is the UE’s bandwidth.

Hence, the total data rate Darea over a network area of radius Ra, can be computed as

Darea =

∫ 2π

0

∫ Ra

0

BuρuPr
cov log2(1+ Γ t h(r))rdrdθ , (4.19)

where ρu is the UE’s density.



4.4 Data rate with shadowing consideration 73

Therefore, to compute the data rate, Darea, we first define the coverage probability based

on the other-cell-interference-factor (OCIF), y f (r,η) =
2πρBS rη

η−2 [(2Rc − r)2−η− (Rnw− r)2−η],
as shown in Eq. (3.7), Eqs. (4.14), (4.16) and (4.17). Then, we derive a closed-form

formula of the SINR threshold, Γ t h, in the case of a fixed coverage probability using the

Polynomial Curve Fitting (PCF) method.

4.4.3 Coverage probability

In the propagation channels, often coverage probability is used as a metric to assess the

performance of the communication system [121]. The coverage probability, Pr
cov, is defined

in [121, 122] as the probability for the signal quality SINR, γu, of a UE u to be larger than

a threshold value Γ t h and can be expressed as,

Pr
cov = P(γu > Γ t h). (4.20)

Based on Eqs. (4.14), (4.15), (4.16), as in [111, 119], we have,

Pr
cov =P(γu > Γ t h)

=P(
1
Γ t h
>

1
γu
)

=P(
1
Γ t h
> A f (m f , s f ))

=P(10log10(
1
Γ t h
)> 10log10(A f ))

=1−Q[
10log10(

1
Γ t h
)−m f

s f
],

(4.21)

where Q is the error function, denoted as Q(x) = 1
2π

∫ +∞
x

e−
t2
2 d t. For a given r, we can

compute the corresponding Γ t h according to Eqs. (3.7), (4.16), (4.17) and (4.21) in the

case of a known Pr
cov and a fixed path-loss exponent η. Furthermore, we can plot the

variation of Γ t h depending on the UE’s distance r based on the fluid framework. Then,

using the Polynomial Curve Fitting (PCF), we can set up an accurate fitting of an analytical

function relying Γ t h to r. Γ t h can be expressed by a third degree polynomial of r, as,

Γ t h(r) = w0 +w1r +w2r2 +w3r3, (4.22)

where the coefficients w0, w1, w2 and w3 can be obtained through the least-square fitting.

For example, w0 = 25.6483, w1 = −1.3220, w2 = 0.0222 and w3 = −0.0002 for η= 2.6
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and σ = 3dB. The coverage probability should be high enough to overcome the rapid

degradation of signal quality caused by the obstacles effect. Normally, Pr
cov should follow

the relationship Pr
cov ≥ C0, 70% ≤ C0 ≤ 95%, as shown in [123]. Here, we set Pr

cov = 0.9

whatever the distance r for all UEs [111], in order to guarantee the signal quality for all

UEs and to achieve a high coverage probability.

Replacing Γ t h(r) of Eq. (4.22) and ρu = Nu/(2
p

3R2
c) in Eq. (4.19), the total data rate

Darea is expressed as

Darea =
BWnπPr

covp
3R2

c

∫ Ra

0

r log2(1+w0 +w1r +w2r2 +w3r3)dr. (4.23)

For simplify purposes, an equal bandwidth sharing among UEs is considered here Bu =
BWn/Nu (BWn is the total bandwidth), as well as a constant coverage probability Pr

cov.

To compare with the case of a network without shadowing effect σ = 0, the data rate is

computed by Eq. (4.3) with γu(r) =
(η−2)r−ηu

2πρBS[(2Rc−ru)2−η−(Rnw−ru)2−η]
.

Simulations are performed to assess the performance of the proposed fluid modeling in

two cases: non-shadowing and shadowing impact in the network.

4.5 Model evaluation: non-shadowing case

In this section, the differences of the data rate per cell obtained by fluid modeling and Monte

Carlo simulations are first presented. Then, we estimate the EE of a small area constrained

by 0< Ra ≤ Re and with different kinds of cellular networks. After, the investigation on the

impact of the user density and the path-loss exponent on the cell EE for various cellular

networks is studied. At the end, we evaluate the performance of EE over the first ring

(Re < Ra ≤ 2Rc) and the large cellular networks (0 < Ra ≤ Rnw), in order to validate the

corresponding fluid models.

4.5.1 Simulation setup

Three values of the cell radius are considered as R ∈ {1000, 200, 50}m and stand for the

macro, micro and femto cellular networks, respectively. We consider 15 rings of hexagonal

cells around a central hexagon such that Rnw = 31Rc. Nu users are generated uniformly

in the central hexagon and we assume that they are attached to the BS located at the

center of the hexagon. To indicate the effect of pathloss, Erceg model [124] is utilized with

A= (4πζ f )2/(cζη/2)2, ζ= 100 m, f = 2.5 GHz, η= {2.6, 2.8} and c is the speed of light

in air. Here, thermal noise density = −174 dBm/Hz.
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For Monte Carlo (MC) simulations, the results presented here are obtained by averaging

over 3000 MC simulations. The main idea of Monte Carlo trails is as follows. First, we

initial the number of iterations and the number of UEs. Then, we create the location of

all BSs and UEs, and compute the γu for every UE in every iteration. Based on the γu, we

compute the total data rate of all UEs located at a disc region with radius Ra. Next, we

update the iteration and repeat the above process until finishing all the iterations. After

that, we average the total data rate over the number of iterations and obtain the averaged

data rate. We also compute the total power consumption for the networks. Finally, using

the definition of EE in Eq. (3.1), we compute EE with the average data rate and the total

power cost.

The numerical results of fluid modeling are obtained by simulating Darea using Eq.(4.3)

for the first scenario, Eq. (4.6) for the second scenario and Eq. (4.7) for the third scenario,

after replacing them in EE definition, as shown in Eq. (3.1). The other simulation parame-

ters are set up according to Table 3.1 for the power consumption model as defined in [68],
and Table 4.2 for the other network parameters.

Table 4.2 Simulation Parameter Value

Parameters Value
System bandwidth BWn 10MHz
Carrier frequency 2GHz
Cell radius R {1000, 200, 50}m for macro, micro and femto resp.
Half distance between BSs, Rc R

p
3/2

Range of network Rnw 31Rc

Radius of interested area Ra [R/20 2Rc]
Equivalent radius of one cell, Re Rc

Æ

2
p

3/π
Number of antennas Nant 1
Number of users Nu {100, 500}
Path loss exponent η {2.6, 2.8}
Density of BSs ρBS 1/(2

p
3R2

c)
Density of users ρu Nu/(2

p
3R2

c)

4.5.2 Model accuracy

In order to validate the accuracy of our model, we compute the difference of EE obtained

by fluid modeling and Monte Carlo simulations, considering the same Ra, η, BWn, Nu =
{100, 500} in a macro cellular network. The difference is plotted in Fig. 4.6 and computed
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(a) Nu = 100 (b) Nu = 500

Fig. 4.6 EE difference vs network radius Ra

by

Di f f erence =
|EE by Fluid− EE by Monte Carlo|

EE by Fluid
× 100% (4.24)

As seen, the relative error is smaller than 7% when Ra > 150m, Nu = 100 in Fig. 4.6(a).

This illustrates that fluid modeling can be considered as an effective tool to evaluate EE.

When the number of users per cell is increased to 500, a similar phenomenon is observed in

Fig. 4.6(b). Specially, the curves in Fig. 4.6 show significant differences when Ra < 150m,

e.g., about 24% with η= 2.6, Ra = 100m in Fig. 4.6(a) and 23% with η= 2.6, Ra = 80m

in Fig. 4.6(b). Since the number of users may be zero when Ra is very small for Monte

Carlo simulations. However, non-zero data rate exists over an area with any size for the

fluid modeling.

4.5.3 EE variation vs cell network types

Considering the first scenario, Fig. 4.7 depicts the EE metric in macro (R= 1000m), micro

(R = 200m) and femto (R = 50m) cellular networks as a function of various Ra values, i.e.,

the radius of the cell over the serving BS, for η = 2.6 and η = 2.8, respectively. These

figures confirm that the proposed model is effective and match well with Monte Carlo

results, whatever the types of the cellular networks. We observe a small difference between

these curves, mainly at the network edge, due to the circular shaped form considered in

fluid modeling. So, whatever the position of users in the inner circle, the average of the

external power of all neighboring BSs is the same. However, in the hexagonal model, this

assumption is no longer true, since we consider the real distance from neighboring BSs.
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(a) macro-cell, R= 1000m, Nu = 100 (b) micro-cell, R= 200m, Nu = 100

(c) femto-cell, R= 50m, Nu = 100

Fig. 4.7 EE variation vs network radius Ra for different network types.

Moreover, we observe that EE is improved with the increase of Ra. Surprisingly, EE

is less effective closer to the BS, even though the SIR is high. Indeed, the total power

consumption overall the network is much higher than the total data rate of a network with

radius Ra. However, in this case, EE raises fast, due to the ratio between the cell area of

radius Ra and the total network area of radius Rnw. For example, in Fig. 4.7(a), EE raises

quickly for Ra ∈ [0,600] and EE increases slightly for Ra ∈ [600, Re], since the SIR for a

given user far from its serving BS is small in this case.

Furthermore, results show that EE is about 24bi ts/Joule for the macro-cell network in

Fig. 4.7(a) for η = 2.8 and Ra = Re. EE values are, respectively, near 260bi ts/Joule for

a micro-cell network in Fig. 4.7(b), and about 2.5K bits/Joule for a femto-cell network
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in Fig. 4.7(c). However, the transmitting power per BS decreases from 80W to 0.25W . It

means that small-cell networks can save a lot of energy during the transmission due to

their lower energy dissipation and attenuation compared to the macro cellular networks.

Therefore, the small-cell network is more efficient than a macro-cell one and a micro-cell

one, which is consistent with findings in [82].

4.5.4 Impacts of user’s density on EE

Fig. 4.8 depicts the EE performance in a macro cellular network as a function of various Ra

values, i.e., the size of the cell over the serving BS, with Nu = 500, η = 2.6 and η = 2.8

respectively. In this case, the numerical values show the accuracy of the fluid modeling for

EE evaluation. While comparing Fig. 4.8 and Fig. 4.7(a) with Nu = 500, we observe that

the numerical values of EE are identical, for example, for Ra = Re and η= 2.6, the energy

efficiency is about EE = 18.16bi ts/Joule, regardless the number of users Nu. Indeed, the

data rate over the network area is not related to ρu and Nu, as defined in Eq. (4.3).

Fig. 4.8 EE variation vs network radius, Ra, with R= 1Km, Nu = 500

4.5.5 EE vs path-loss exponent

While considering the thermal noise N0 = −174dBm/Hz and Nu = 100, Fig. 4.9 shows

the variation of EE over the cell (Ra = Re) depending on different path loss exponents η

in case of macro and femto cellular networks, i.e., R= 1000m and R= 50m, respectively.

The results show that EE increases with the growth of η in both types of cellular networks.
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Fig. 4.9 EE vs path loss exponent in macro and femto cellular network

Interestingly, when η ranges from 2 to 3, i.e., from the free space to suburban environment,

the dissipation of transmitting power becomes great. However, in this case the SIR for a

fixed user increases leading to the EE improvement. Moreover, we observe that there is

an obvious increase of EE in femto cellular one, owing to that the power expenditure for

femto-BS is very small. Therefore, deployment of femto cells is more efficient to satisfy the

5G requirements.

4.5.6 EE variation over a first ring

In a practical case, with the movement of UEs from the central cell to the adjacent cell, the

data rate of UEs will changes. As a result, the total data rate and the EE over a network area

will be changed. Therefore, it is interesting to investigate the EE variation over the first ring

(not limited one central cell). Fig. 4.10 depicts the EE variation depending on the radius of

the network area of interest Ra, in case of the second scenario, Re < Ra ≤ 2Rc, for different

types of cellular networks. We observe that EE values increase fast when Re < Ra ≤ 2Rc w.r.t

those of one cell, since the total data rate grows quickly for users close to their serving BS.

Furthermore, results show that the EE is about 72bi ts/Joule for the macro-cell network

in Fig. 4.10(a) for η= 2.8 and Ra = 2Rc, and it is about 7.9K bits/Joule for a femto-cell

network in Fig. 4.10(c). It turns out that the small-cell network is more efficiency than a

macro-cell one.
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(a) macro-cell, R= 1000m (b) micro-cell, R= 200m

(c) femto-cell, R= 50m

Fig. 4.10 EE variation vs network radius in a first ring

4.5.7 EE variation over a large network

Finally, we assess the EE over a macro cellular network and a femto cellular network in

case of the third scenario, 0< Ra ≤ Rnw. Fig. 4.11 depicts the EE variation depending on

the radius of the network area, with path-loss exponent η= 2.6, the number of users per

cell Nu = 100 and Nu = 50, respectively, in both types of cellular networks. We observe

that the results obtained by the proposed model match well with the ones achieved by

Monte Carlo simulations, which shows that the proposed model is accurate. This accuracy

is further illustrated in Fig. 4.12, where the related relative error is given. The results show

that all error values are below 2.5% in the macro cellular network and are below 5% in the
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(a) macro-cell, R= 1000m, Nu = 100 (b) femto-cell, R= 50m, Nu = 50

Fig. 4.11 EE vs network radius Ra

femto cellular network. Thus, it illustrates that the proposed approach is an efficient and

accurate tool to evaluate EE for any size of networks.

(a) macro-cell (b) femto-cell

Fig. 4.12 EE error vs network radius Ra

Using the tool of fluid modeling, we also compute the average EE over a macro cellular

network and a femto cellular network, considering the same η = 2.6, BWn = 10MHz,

Nu = {100, 50}. The average EE, Average EE, is plotted in Fig. 4.13 and computed by

Average EE =
Darea

ρBS × Sarea × Pex p
(4.25)

where Darea is the total data rate over a network area with radius Ra, Sarea is the corre-

sponding area of the network, and ρBS denotes the density of BSs over the entire network,

respectively.
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As seen from Fig. 4.13, we observe that the average EE values first decrease, then

increase, and finally converge to a constant value, while varying Ra. Indeed, as the network

is homogeneous, fluid modeling considers that the transmitting power over any subsurface

area of the network is same, which causes the same power consumption over any subsurface

area. Therefore, the average EE decreases, for Rc/2< Ra ≤ 1.3Rc, due to the slow increase

of data rate Darea as well as the higher power cost. For 1.3Rc/2 < Ra ≤ 2Rc, the average

EE values increase, since the data rate Darea contains more UEs, which are close to their

serving BSs and have higher SIR. In particular, for Ra > 4Rc, we can observe that the

average EE over a very large network, is the same as the average EE over one cell in

both two figures. For example, for a macro cellular network, the average EE converges to

13.3K bits/Joule and for a femto cellular network, it converges to 1.5M bits/Joule. Since

a large homogeneous network is actually composed of many identical cells and every cell

has the same UEs distribution and same transmitting power. According to the convergence

law of large numbers in probability theory, i.e., the average of the whole observed samples

gets close to the average of an observed sample, the large network can be regarded as the

sum of all cells, resulting the average EE over the entire network equals the individual

average EE.

(a) macro-cell, R= 1000m, Nu = 100 (b) femto-cell, R= 50m, Nu = 50

Fig. 4.13 Average EE vs network radius Ra

4.6 Model evaluation: shadowing case

The aim of this section is threefold. First, we intend to show the relationship between the

SINR threshold Γ t h and the UE’s distance r in the case of a fixed coverage probability and
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a known path-loss exponent. The closed-form expression is obtained through a polynomial

curve fitting (PCF), and compared to the results obtained by the fluid modeling. Then,

taking advantage of this above expression, we show the accuracy of the EE formula proposed

by comparing the simulation results to those of Monte Carlo simulations over an equivalent

hexagonal network while considering the impact of shadowing. Finally, we investigate the

EE error between the fluid framework and Monte Carlo simulations, with the consideration

of the same parameters values of path-loss exponent and standard deviation of shadowing.

4.6.1 Simulation setup

The numerical results of fluid modeling are obtained by the simulations based on Eqs.

(3.7), (4.17), and (4.23). We compute the coverage probability for every ru according to

Eqs. (4.16) and (4.21) in Monte Carlo simulations (sim.). The results of EE are obtained

through averaging over 3000 independent iterations of Monte Carlo simulations. Here,

we set Pr
cov = {0.7, 0.9} since the Pr

cov is required to be large enough to make sure good

signal quality for all UEs [123]. According to Table 3.1 and Table 4.3, we set the other

simulation parameters.

Table 4.3 Simulation Parameter Value

Parameters Value
System bandwidth, BWn 10MHz
UEs minimum distance to BS, Dmin 10m
Half distance between BSs, Rc {50, 1000}m
Cell radius, R 2Rc/

p
3

Range of network, Rnw 15Rc

Equivalent radius of one cell, Re Rc

Æ

2
p

3/π
Radius of interested area, Ra [R/30 Re]
Number of antennas, Nant 1
Number of users, Nu {50, 100}
Path loss exponent, η {2.6, 3}
Density of BSs, ρBS 1/(2

p
3R2

c)
Density of users, ρu Nu/(2

p
3R2

c)
Shadowing standard deviation, σ {3, 6, 8} dB
Coverage probability, Pr

cov {0.9, 0.7}
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4.6.2 Relationship between Γth and r

A presented before, for the purpose to set up the relationship between Γ th and r, we

compare in Fig. 4.14, the coverage probability, Pr
cov, obtained by fluid modeling framework

to that obtained via Monte Carlo simulations (sim.) for the UEs located at the distance

of r = Rc/3, r = Rc/2 and r = Rc, respectively, considering the lognormal shadowing

deviation σ = 6dB and the path-loss exponent η= 3. The figure shows that the analytical

fluid modeling gives results very close to those obtained by Monte Carlo simulations (sim.).

Moreover, for a fixed coverage probability, the SIR threshold Γ t h varies depending on the

UEs locations or distances to the serving BS, since we neglect the noise here. For example,

we observe that for Pr
cov = 90%, Γ t h = 11dB, 3.5dB and −8dB for r = Rc/3, r = Rc/2 and

r = Rc, respectively, which due to the poor mean SIR for the cell-edge UEs. Obviously, a

lower SIR threshold should be defined for UEs which are far from their serving BS in order

that they can be covered.
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Fig. 4.14 Coverage probability vs SINR threshold for fixed UEs

Considering coverage probability Pr
cov = 90% and Pr

cov = 70% in the femto and macro

cellular networks, Fig. 4.15 depicts the SINR threshold Γ t h as a function of the distance r
of a UE to its serving BS while the shadowing standard deviation values σ are 3dB, 6dB

and 8dB, respectively. In fact, we compare the results based on Eq. (4.21) using the fluid

modeling to those derived from the Eq. (4.22) of the polynomial curve fitting (PCF) method.

Fig. 4.15 shows that the obtained curves through the two methods all exhibit the same

shape and match very well whatever the σ values, the Pr
cov values and the types of cellular

networks. Therefore, we can use the third degree polynomial of r to approximate the SIR
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threshold Γ t h in both cases of Pr
cov = 90% and Pr

cov = 70%, which shows the effective and

the accuracy of Eq. (4.22).

(a) femto-cell, η= 3, Pr
cov = 90% (b) macro-cell, η= 3, Pr

cov = 90%

(c) femto-cell, η= 3, Pr
cov = 70%

Fig. 4.15 SINR threshold Γ t h vs UE distance to the BS; Between fluid model and polynomial
curve fitting (PCF)

Furthermore, comparing the numerical values in Fig. 4.15(a) and Fig. 4.15(c), we

observe that the SINR threshold Γ t h in a femto cellular network increases with the decrease

of Pr
cov, for a fixed distance, a given σ and the same η. For example, for r = 20m, σ = 6dB

and η= 3, we find that Γ t h = 7dB for Pr
cov = 90% and Γ t h = 8dB for Pr

cov = 70%. Indeed,

for a higher coverage probability, the SINR threshold is required to be lower in order to

guarantee the good signal quality for UEs. Since the UEs may be not included in the

coverage when SINR threshold is larger, which leads to a lower coverage probability.

Additionally, for a fixed distance and a given Pr
cov and the same η in Fig. 4.15, the

SINR threshold Γ t h decreases with the raise of σ. For example, for r = 35m, Γ t h = 0dB for
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σ = 6dB and Γ t h = −6dB for σ = 8dB in Fig. 4.15(a). The reason is that the higher value

of σ leads to more serious shadow fading and then a lower SINR at a certain distance. This

observation has been already demonstrated in [113], that is the shadowing significantly

impacts on the coverage performance especially when the SINR thresholds are small.

For further illustrating the accuracy of polynomial curve fitting (PCF) method, we

compute the Γ t h fitting error as the difference between the fluid modeling and the PCF

in a femto cellular network with η = 3 and coverage probability Pr
cov = 90%, as shown

numerically in Table 4.4. We observe that the error does not exceed 0.2, which validate

the accuracy of PCF. Therefore, this method can be used to compute data rate and energy

efficiency in the below part.

Table 4.4 Γ t h fitting error between fluid and PCF, with Pr
cov = 90%, R= 50m, η= 3

 
𝒓𝒖 (m) 

11.9 15.8 19.6 25.4 29.3 35 40.8 44.6 50.4 52.3=𝑹𝒆 

σ=3 0.1802 0.1035 0.0902 0.0339 0.0764 0.0463 0.0404 0.0745 0.0154 0.1059 

σ=6 0.1803 0.1036 0.0903 0.0339 0.0764 0.0465 0.0404 0.0746 0.0154 0.1062 

σ=8 0.1814 0.104 0.0911 0.0339 0.077 0.0471 0.0406 0.0754 0.0154 0.1076 

According to the polynomial expression of Γ t h, in the following part we will show some

results of energy efficiency (EE) based on Eq. (3.1), when replacing the data rate Darea

with Eq. (4.23).

4.6.3 Energy efficiency discussion

Fig. 4.16 and Fig. 4.17 depict the EE variations in a femto cellular network and in a macro

cellular network depending on Ra, i.e., the size of the ring over the serving BS. Both figures

are obtained using the analytical model we proposed and Monte Carlo simulations (sim.)

for three cases, depending on the standard deviation value σ = 0dB (without shadowing),

σ = 6dB and σ = 8dB. The coverage probability is set Pr
cov = 90% or Pr

cov = 70%. Both of

two figures confirm that the proposed model is effective and matches well with the Monte

Carlo results, whatever the value of the path-loss exponent (η = 3 or η = 2.6). In addition,

we observe a small difference between these curves due to the circular shape considered

in the fluid modeling. Since in fluid modeling, the average interference factor y f (r,η)
without shadowing based on Eq. (3.7) is the same, resulting the same SINR threshold value
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(a) femto-cell, η= 3, Pr
cov = 90% (b) femto-cell, η= 2.6, Pr

cov = 90%

(c) femto-cell, η= 3, Pr
cov = 70%

Fig. 4.16 EE variation vs network radius Ra in femto cellular network

according to Eq. (4.21). However, in the hexagonal modeling, the y f (r,η) is calculated

according to the real UEs’ distances from neighboring BSs.

Furthermore, while comparing Fig. 4.16(a) and Fig. 4.16(c) with Pr
cov = 90% and

Pr
cov = 70%, respectively, we observe that the numerical values of EE, obtained by fluid

modeling, decrease with the reduction of Pr
cov for same values of Ra, η and σ. For example,

the EE is about 5.57K bits/Joule for η= 3, σ = 6dB and , at the cell edge (Ra = Re) and

Pr
cov = 90%, whereas the EE is about 4.99K bits/Joule when Pr

cov = 70%. Since a higher

coverage rate can lead to a larger data rate, and thus a larger EE can be obtained.

Moreover, focusing on Fig. 4.16(a), we observe that the values of EE decreases in a

femto cellular network with the increase ofσ for a fixed value of Ra. For example, in the case

of Ra = 30m, EE is about 3.85K bits/Joule for σ = 6dB, and it is about 1.65K bits/Joule
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(a) macro-cell, η= 3, Pr
cov = 90% (b) macro-cell, η= 2.6, Pr

cov = 90%

Fig. 4.17 EE variation vs network radius Ra in macro cellular network

for σ = 8dB. In fact, the larger the shadowing, the lower the achieved throughput of UEs.

The similar conclusion can be found in other figures of Fig. 4.16 and in Fig. 4.17.

In addition, while comparing Fig. 4.16(a) and Fig. 4.16(b) in a femto cellular network

with Pr
cov = 90%, we observe that the numerical values of EE, obtained by fluid modeling,

decrease with the reduction of η for same values of Ra and σ. For example, the EE is about

5.57K bits/Joule for η = 3, at the cell edge (Ra = Re) and σ = 6dB, whereas the EE is

about 3.73K bits/Joule when η = 2.6. When η ranges from 3 to 2, i.e., from the suburban

environment to the free space, the dissipation of the transmission power reduces. However,

in this case the SIR at a fixed distance decreases, which further leads to the EE decline.

Therefore, EE decreases as η reduces. Comparing Fig. 4.17(a) and Fig. 4.17(b) in a macro

cellular network with Pr
cov = 90%, we can find the same conclusion.

4.6.4 EE model accuracy

For the accuracy purpose, in Fig. 4.18 we compute the EE error between the proposed

fluid modeling and Monte Carlo simulations, depending on the network radius Ra of a

femto cellular network and a macro cellular network, respectively, with η = 2.6 and

Pr
cov = 90%. In Fig. 4.18(a), we observe that the error is less than 20% for Ra > 17m

in a femto cellular network, whatever the values of σ. Meanwhile, the results in Fig.

4.18(b) also show a error of less than 20% for Ra > 100m in a macro cellular network.

Those numerical results illustrate the accuracy of fluid modeling as a tool for performance

evaluation while considering the impact of shadowing. However, the EE error is less than

30% for 10< Ra < 17m in a femto cellular network, since the fitting error of Γ t h between

fluid and PCF is larger for 10< Ra < 17m, as shown in Table 4.4.
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(a) femto-cell, η= 2.6, Pr
cov = 90% (b) macro-cell, η= 2.6, Pr

cov = 90%

Fig. 4.18 EE error vs network radius Ra in cellular networks

4.7 Conclusion

In this chapter, we propose a tractable expression of EE based on fluid modeling in an

OFDMA cellular network. The model is proposed for a network area within the central

cell and is extended to compute the EE for network area, with any size. The proposed EE

model is assessed under the two conditions of non-shadowing and shadowing.

While neglecting the impact of shadowing, we assess the EE in three types of cellular

networks including macro, micro and femto cellular networks. The model accuracy of the

obtained EE model is shown through a comparison with Monte Carlo trials. Additionally,

the results also exhibit that: 1) the density of users per cell has no impact on the EE, since

the analysis is considered only in downlink transmissions, 2) EE is independent from the

users’ density but proportional to the path-loss exponent, 3) a femto cellular network is

more efficient than the macro one, and 4) the proposed EE model over the network area

with any size is accurate.

While taking the impact of shadowing and the path-loss exponent into account, we

first developed a closed-form polynomial formula between UEs’ location and the signal

quality threshold using polynomial curve fitting (PCF) for a fixed coverage probability.

Then taking advantage of this formula, we evaluated the energy efficiency (EE) based on

the fluid modeling in an OFDMA femto and a macro cellular network. Finally, we shown

the accuracy of the obtained EE models through a comparison with Monte Carlo trials. The

results shown the effective of fluid modeling as a mathematical tool to evaluate the EE with

the consideration of shadowing impact. The numerical results also illustrated the impact of
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shadowing on EE, i.e., EE decreased with the raise of the lognormal shadowing standard

deviation value of σ.

The results of this chapter provide adequate insights into that fluid modeling can be

considered as an accuracy tool to evaluate the network EE with/without considering the

effect of shadowing. Accordingly, in the following chapter, we derive an energy efficiency

model for a cellular network based on the fluid modeling while using the joint transmission

coordinated multipoint(JT-CoMP) scheme. Since the application of JT-CoMP brings the

power consumption due to the more channel estimation operation, more overhead to

deploy the coordinated cooperative base stations.
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5.1 Introduction

5G wireless networks are expected to increase substantially data rates and quality-of-service

(QoS) for users, at a similar or a lower power consumption as today’s 4G networks. As

discussed in chapter 1, Joint Transmission Coordinated Multipoint (JT-CoMP) transmission

is a promising technology to improve the network energy efficiency (EE) and to fulfill

upcoming communication demands [125], through turning the inter-cell interference

into useful signals, especially for the cell-edge user equipments (UEs). Through taking

advantage of the JT-CoMP technique, information is transmitted to a UE simultaneously

from different coordinated BSs in order to improve the received signal quality and strength

[47] as well as to enhance the spectral efficiency. However, this technology in practice also

brings some additional energy consumption for transmitting the resource information, i.e.,

backhauling information. Additionally, while JT-CoMP approach is applied, the performance

evaluation of energy efficiency (EE) becomes a hard task in terms of time expense to

conduct simulations. Therefore, it is still an open issue to develop an accurate model for

EE-evaluation while the JT-CoMP transmission is applied.

As illustrated in the results section of the previous chapter, fluid modeling can be

considered as an effective and accuracy tool to evaluate EE for the cellular networks

with/without taking the impact of shadowing into account. Since this modeling can reduce

the analysis complexity and provide a macroscopic evaluation of the network performance.

Therefore, spurred by the above advantages of fluid modeling, our objective in this chapter

is to design a tractable model for evaluating EE based on the fluid modeling while JT-CoMP

approach is considered in a network system.

In this chapter, we first introduce the concept of JT-CoMP in detail. Then, we discuss

the JT-CoMP models and the numerical results in some literatures. Furthermore, combing

our previous work in chapter 4, we derive a closed-form expression of EE based on the fluid

modeling while the JT-CoMP approach is applied, which reduces the analysis complexity.

Given that the definition of EE is related to the data rate and power consumption, we redefine

a new power consumption model with considering the backhauling power consumption for

the JT-CoMP system. Afterwards, depending on the JT-CoMP scheme, we consider three

scenarios to compute the total data rate of the network area and the backhauling traffic.

Finally, we discuss the simulation performance to prove the effectiveness and accuracy

of our proposed model through a comparison between fluid modeling and Monte Carlo

simulations.
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5.2 JT-CoMP scheme

Before introducing the concept of JT-CoMP, we first recall the concept of CoMP since JT-

CoMP is one of the main families coordination method of CoMP. As discussed in chapter 1,

CoMP refers to a system where the transmission and/or reception at multiple, geographically

separated antenna sites is dynamically coordinated in order to improve the coverage, cell-

edge throughput and system efficiency. In a CoMP transmission system, several BSs are

cooperated to transmit and receive data from multiple UEs based on the shared information

between BSs so as to mitigate intercell interference and hence improve spectral efficiency.

The set of several coordinated BSs is called as CoMP cooperative set, where the data is

available at each BS. In the CoMP cooperative set, the BSs directly or indirectly participate

in data transmission to UEs [126]. Hence, CoMP has been considered by 3GPP as a tool to

provide a significant gain in terms of capacity and cell edge throughput.

Joint Transmission Coordinated Multipoint (JT-CoMP) is outlined by 3GPP [126], which

is one of key strategies of CoMP. In JT-CoMP, data intended for a particular UE, comes jointly

from multiple coordinated BSs (part of or entire CoMP cooperative set) at the same time

and thus to improve the received signal quality as well as the spectral efficiency (SE) [75].
Fig. 5.1 illustrates the JT-CoMP scheme [40]. User 2 associates with BS 2 while user 1

associates with BS 1. Instead of serving their associated users independently, BSs 1 and 2

cooperatively transmit useful information to their users. For instance, if both BSs apply

time-division multiple access (TDMA) in the first time slot, both BSs 1 and 2 transmit the

same information to user 2. The user combines the signals from both BSs to decode the

information. In the second time slot, the BSs cooperatively serve user 1. Due to JT, cell

edge users experience higher receiving signal strength and lower interference, resulting

the higher coverage and larger cell-edge throughput.

Fig. 5.1 JT-CoMP scheme [40]
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According to the coordination way, JT-CoMP can be further classified into distance-based

JT-CoMP technique and SINR-based one. In detail, in the former, several nearest BSs are

intended to serve a UE, whereas in the SINR-based JT-CoMP technique, the best several

BSs offering maximum SINR are selected to serve a UE.

5.3 JT-CoMP performance evaluation

EE evaluation is investigated in [75] for a downlink LTE-Advanced cellular system with

using JT-CoMP scheme. Two JT-CoMP approaches are considered in that system, such

as SINR-based JT-CoMP and distance-based JT-CoMP. Based on system-level simulations,

simulation results illustrate that the SINR-based JT-CoMP scheme can achieve a superior

EE performance compared to the distance-based JT-CoMP scheme.

In [91], authors investigate the problem of EE optimization in an OFDMA downlink

heterogeneous network (HetNet) using a JT-CoMP transmission. The HetNet system is

composed of several HetNet cells and they are coordinated via fiber backhauling, which

can be called interbackhaul. Each of cell consists of one macro-BS, several low-power

femto-BSs, and some uniformly distributed UEs. These femto-BSs are backhauled through

fiber/microwave to the macro-BS in the one HetNet cell, which can be termed intrabackhaul.

In particular, JT-CoMP is applied in the system when the received SINR at the UE is lower

than 3dB. Using system-level simulations, simulation and analysis of results show that the

EE first increases with respect to the SE and then decreases when the SE exceeds some

value.

Additionally, the author in [125] investigated the outage probability and effective

throughput of the system through taking advantage of the JT-CoMP technology. The JT-

CoMP model is introduced as follows. A cellular network is considered, where each BS is

located at the center of a hexagonal cell and all UEs are assumed to be distributed uniformly

over a cell. Each cell is divided into the center zone, with a setting radius, and the edge

zone. Accordingly, the distance-based JT-CoMP technique is only available for UEs, located

at the edge zone over a downlink transmission so as to improve cell-edge performance.

Based on this system model, analytical expressions of cumulative distribution function

(CDF) of the SIR, outage probability and throughput are derived based on 2-dimensional

Markov chain analysis, since the call arrival process is assumed to follow a Poisson process.

The simulation results show that the system performance mainly depends on the center

zone size and the offered load. Moreover, compared with the dynamic point selection

scheme (one scheme dynamically switches the serving BS based on the UE’s channel and

the cell loading conditions), JT-CoMP scheme can achieve a lower outage probability.
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Additionally, simulations in [41] show that JT-CoMP transmission and reception schemes

have a significant effect in terms of improving the throughput of the cell-edge users based

on the LTE-Advanced simulation conditions.

Moreover, a tractable model for Non-Coherent Joint-Transmission (NC-JT) cooperation

is proposed in [127] while user-centric clustering and channel-dependent cooperation

activation are taken into account. The user-centric clustering is defined such as, the cluster

of cooperative BSs is formed around a typical user and the channel-dependent cooperation

activation is defined such as, JT is adopted according to whether the channel to a cooperative

BS is in deep fading. A single-tier OFDMA-based cellular system is considered, which is

formed according to a stationary Poisson point process. The definitions of cooperative set

and active cooperative set are introduced. The cooperative set is defined such as, if the

received signal strength at a BS in the uplink is larger than a threshold, then this BS is

grouped into the cooperative set. While, the active cooperative set is defined such as, if

the signal received at the typical user is greater than a cooperation activation threshold,

then this BS joints the cooperative transmission. The CDF of SINR of a typical user is

characterized in the case of user-centric BS clustering. Simulation results show that when

the NC-JT CoMP is used, increasing the BS density can improve the SINR, and that the

average spectral efficiency is saturated at a cluster size of around 7 BSs with imperfect CSI

at the receiver.

Until now, much leading work with JT-CoMP techniques is carried out either using

system-level simulations or based on stochastic geometry. However, stochastic geometry

framework yields to intractable models when non-Poisson point processes, eg., perturbed

lattice, β -Ginibre point process, and Matérn point process, are considered to describe, in a

more realistic way, the nodes’ locations. In this case, either approximations or simulations

are conducted to prove the model accuracy. In the other side, simulation-based models

become resource-intensive when considering large networks, with a high number of base

stations (BSs) and user equipments (UEs). As a result, an approximation-based is necessary

to evaluate the network performance.

As mentioned before, spatial fluid modeling can be used to evaluate the network

performance of cellular networks, such as SINR, outage probability, and energy efficiency

through analytical expressions. In [99], the authors use this mathematical framework

to study the SINR enhancement depending on the number of coordinated BSs and other

network-related parameters in dense areas. The notation of the cooperation field is proposed

to compute the power of coordinated BSs by integration. Depending on the number of

coordinated BSs, three scenarios are considered. As a matter of fact, we use this tractable

model to benchmark the EE variation depending on the network parameters, such as its size
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and its type (macro, femto), the number of coordinated BSs, and the path-loss exponent as

it reflects the network environment, while JT-CoMP is applied.

We combine here our previous work done in the last chapter to develop an EE model

in the case of JT-CoMP. We first extend the fluid modeling with JT-CoMP to compute the

total data rate over a network area. Then, we derive the closed-form expression of EE for

the JT-CoMP downlink transmission, which is tractable and quite simple to compute. The

effectiveness and the accuracy of the underlying model are shown for both types of cellular

networks, macrocells and femtocells, by comparing the results to those of Monte Carlo

(MC) simulations while considering several path-loss exponents and varying the number

of cooperating BSs, in the case of a constant backhauling power cost. Furthermore, we

investigate the EE improvement with the variation of the backhauling power cost, depending

on some parameters, like the network area radius and the number of coordinated BSs.

Actually, JT-CoMP is used to improve the signal quality of UEs far from their serving BS.

Here, we define a distance threshold as well as the associated SIR threshold making JT-

CoMP approach more efficient in terms of EE. We also discuss the impact of these thresholds

in the case of variable backhauling power costs depending on the data rate requirement.

5.4 System model

To meet these objectives cited before, we consider the downlink channel of an OFDMA

network with JT-CoMP approach, where the UE receives the useful signal from its serving

BS and the cooperative BSs. Interference is only generated by the outer BSs, i.e., ones

outside the cooperative set. The obtained model can be utilized as an efficient tool by an

operator to benchmark the energy efficiency of its network even if some additional BSs are

needed to boost the services.

Here, we describe the EE model when JT-CoMP is used through the network, mainly

within the closest BSs, i.e., those belonging to the first ring as shown in Fig. 5.2. In the

cellular system, only one BS is selected for data transmission to the UE. In contrast, when

the coordination is used, multiple BSs in the coordination set send data together to the UE.

Since interference mainly comes from neighbors in the first ring, we limit the coordination

set of BSs on this ring, so that the total number of coordinated BSs, Mco = 2, ..., 7. The

system model presented here is quite similar to the one in chapter 3. It concerns an OFDMA

cellular network, composed of NBS base stations (BSs) and Nu user equipments (UEs)

randomly distributed over the network. Mco BSs are able to jointly transmit data in order to

improve the signal quality at the UE located at the distance ru from its serving BS (central

cell in Fig. 5.2). We assume that the radio resources of each BS are divided into many
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parallel and orthogonal sub-carriers, only inter-cell interference is considered. The network

is supposed homogeneous, such that the transmission power Pt x is the same for every BS.

Fig. 5.2 Hexagonal network and main parameters.

Since we introduce the JT-CoMP scheme, the energy efficiency model is refined in this

chapter and presented below.

5.4.1 Energy efficiency model with JT-CoMP scheme

In order to capture the energy-efficiency of that network with JT-CoMP, we use the common

Eq. (5.1) as in [37, 78]:

EE =
Darea

Mco × PCoM P
ex p + (NBS −Mco)× Pex p

. (5.1)

The EE is computed as the ratio of total data rate over a network area Darea, to the total

power consumption. Here, PCoM P
ex p and Pex p are respectively the total energy expenditure

per coordinated BS and per BS.

5.4.2 Power consumption model with JT-CoMP scheme

The power consumption of a coordinated BS, PCoM P
ex p in Eq. (5.2), is defined depending on

the number of transmitting antennas Nant , the transmitting power Pt x and the backhauling

power cost KCoM P . The fixed part, P1, accounts for the direct current/alternating current

(DC/AC) converters. ∆P and P0 denote some circuit power consumption.

PCoM P
ex p = Nant(∆P Pt x + P0) + P1 + KCoM P . (5.2)

Backhauling power consumption KCoM P is the power cost due to the backhauling and

data sharing for every BS. Fehske et al., in [64] have investigated the impact of a microwave
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backhauling in most cellular networks with a CoMP approach. They model the backhauling

as a set of wireless micro wave links. KCoM P can be a constant for simplification, or be

calculated as in [64]:

KCoM P =
P0

bhCbh

C0
bh

= αbhCbh, (5.3)

where P0
bh denotes the power consumed by the backhaul equipment when supporting the

maximum data rate C0
bh, αbh = P0

bh/C
0
bh is the power coefficient of backhaul equipment,

and Cbh is the backhauling traffic for every BS, i.e., the accumulated data rate of several

UEs served by one cooperating BS [89]. Therefore, KCoM P is linearly proportional to the

backhauling requirement Cbh. The calculation of Cbh will be presented in the below sections.

In particular, αbh = 5 × 10−7Joules/bi t [64, 89] for a macro BS and αbh = 4 ×
10−8Joules/bi t for a femto BS [89, 128, 129].

Obviously, the power consumption of a common BS, i.e., without coordination, also

can be computed using the Eq. (5.2), without the KCoM P part. In other words, in Non-

CoMP mode, Cbh and KCoM P are zero. Therefore, the total energy expenditure per BS

with Non-CoMP is given by Pex p = Nant(∆P PT x + P0) + P1 and the EE equation is reduced

to EE = Darea
NBS×Pex p

. The numerical values of each part in Eq. (5.2) are listed in Table 3.1,

regarding the BSs types (macro, micro, femto).

Before presenting how to compute the total data rate Darea, we give the SINR calculation

with fluid modeling in the case of JT-CoMP.

5.4.3 SINR calculation: case of JT-CoMP

Basically, without any coordination and neglecting the noise, the SINR Γu at u in this basic

case, as we denote it Non-CoMP mode, is displayed by

Γu =
(η− 2)r−ηu

2πρBS[(2Rc − ru)2−η − (Rnw − ru)2−η]
. (5.4)

The above equation is obtained by fluid framework, which can be seen more details in

chapter 3.

Usually, BSs cooperate to transmit and receive data from multiple UEs in different cells

to improve the coverage and especially, to enhance cell-edge throughput. As in [99], a UE

u is served by the central BS b, and receives data from coordinated BSs as shown in Fig.

5.3. The UE experiences a SINR Γ CoM P
u as

Γ CoM P
u =

pb,u + pu,CoM P

pex t,u − pu,CoM P
. (5.5)



5.4 System model 99

pu,CoM P denotes the received power at u from the BSs which are in the coordinated set

together with the serving BS. It defines the received power improvement by means of

the coordination. pb,u = Pt x Kr−ηu is the received power from its serving BS b, pex t,u =
2πρBS Pt x K
η−2 [(2Rc − ru)2−η − (Rnw − ru)2−η] is the total external or interference power coming

from others BSs without cooperation.

Fig. 5.3 JT-CoMP in hexagonal model

As the first ring is composed of six BSs around the serving BS, as shown in Fig. 5.3,

the homogeneous network we consider is divided into six equal parts. Therefore, there

are n BSs, such that n= {1, ..., 6}, in the first ring to cooperatively transmit data with the

central BS. Hence, the JT coordination area can be delimited over a ring of radii between

[2Rc − ru, 4Rc − ru] and the angle of nπ/6 (see [99] for more details). For example, the

red area in Fig. 5.4 is the cooperative region between serving BS and one coordinated BS

(n= 1).

Fig. 5.4 JT-CoMP in fluid model with n(= 1) coordinated BSs
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Therefore, for a given UE u with n (n= {1, ..., 6}) BSs in the coordinated set to jointly

transmit data with its serving BS, the improvement of the received power or the coordinated

power can be written as

pu,CoM P =

∫
nπ
3

0

∫ 4Rc−ru

2Rc−ru

ρBS Pt x Kz−ηzdzdθ

=
nπ
3
ρBS Pt x K
η− 2

[(2Rc − ru)
2−η − (4Rc − ru)

2−η].

(5.6)

Consequently, we can compute the SINR Γ CoM P
u in Eq. (5.5) at u, by replacing pb,u =

Pt x Kr−ηu , pex t,u =
2πρBS Pt x K
η−2 [(2Rc − ru)2−η− (Rnw− ru)2−η] and pu,CoM P as defined in Eq (5.6),

displayed as

Γ CoM P
u =

3(η− 2)r−ηu + nπρBS[(2Rc − ru)2−η − (4Rc − ru)2−η]

6πρBS[(2Rc − ru)2−η − (Rnw − ru)2−η] + nπρBS[(2Rc − ru)2−η − (4Rc − ru)2−η]
.

(5.7)

The analytically tractable expressions of Γu in Eq. (5.4) and Γ CoM P
u in Eq. (5.7) can be

easily exploited to compute data rate over a network area, since the two equations only

depend on the density of BS, ρBS, the radius of the cell, Rc, the range of the network, Rnw,

the path-loss exponent, η, the distance of a UE to its serving BS, ru, and the number of

coordinated BS, n, in the first ring.

Therefore, taking advantage of the expressions of Γu and Γ CoM P
u , we will present the

computation of data rate Darea in the following section.

5.5 Data rate computation

Fig. 5.5 Area of interest with various radius Ra (0< Ra ≤ Re)
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This section presents the evaluation of data rate over a network area of radius Ra, such

that Ra varies in [0, Re], as shown in Fig. 5.5. Note that Re is the radius of a disk with a

surface equivalent to the hexagonal central cell, such that Re =
Æ

2
p

3/πRc.

We claim that JT-CoMP is not as much efficient for UEs with a greater Γu, and even can

reduce EE performance of the network. To investigate this hypothesis, we consider the

cell divided into two parts: inner region and outer region based on the signal quality Γu at

UE u, as displayed in Fig. 5.6. Indeed, UEs located in the inner region, do not need the

improvement of their SINR, since they are close to their serving BS. Hence, the inner region

is regarded as Non-CoMP mode. In return, the outer region is defined as CoMP mode, due

to the worst SINR experienced there. For example, a cell-edge UE u is in a CoMP mode

since

Γu ≤ Γthreshold , (5.8)

where Γthreshold is a predefined threshold in dB, related to a distance, called the distance

threshold dth. Hence, we aim to define these thresholds in order to set up the network

conditions ensuring a greatest JT-CoMP performance. Thus, we can further obtain the

higher EE.

Fig. 5.6 JT-CoMP strategy defined by distance threshold dth

Depending on different values of dth, we define three scenarios to resolve the problem.

• Non-CoMP scenario when dth = Re. Here, there is no need to use JT-CoMP, since the

overall cell falls in the inner region. In other words, all UEs are in Non-CoMP mode,

and their Γu can be calculated by Eq. (5.4). Although it is not realistic, this scenario

serves as a baseline or a reference to evaluate and to compare the gain of EE when

JT-CoMP is applied.

• AllUEs-CoMP scenario when dth = 0. It is the worst case, where all UEs in the cell

are in the outer region and choose JT-CoMP whatever their locations. Γ CoM P
u can be

computed by Eq. (5.7).
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The results analysis of the latter scenario together with Non-CoMP scenario results,

allow to define the dth threshold and thereby define adequately the inner and the

outer regions. Moreover, we can investigate the boundary of the EE using fluid

approximation.

• CoMP scenario is the common and the more realistic scenario, since the cell is com-

posed of two regions: inner region and outer region depending on the distance

threshold dth. In the inner, UEs do not use JT-CoMP scheme, whereas the UEs whose

distances are larger than dth choose JT-CoMP scheme. Using this scenario, we can

evaluate the effectiveness of JT-CoMP depending on the coordinated BSs number, the

distance threshold dth, and the network size Ra such that 0< Ra ≤ Re.

Regarding the three scenarios described above, we detail how to compute the data rate

in the following paragraphs.

5.5.1 Non-CoMP scenario

In this scenario, we aim at evaluating the data rate Darea over a network area with the

condition of dth = Re. To do so, we focus on a network area with a radius Ra, such as

(0< Ra ≤ Re), i.e., one part of the central cell, as depicted in Fig. 5.5. Since the UEs are

uniformly distributed in space, the density ρu is constant. Therefore, the number of users

N ′u over the area of interest, of radius Ra, is given as N ′u = (NuR2
a)/R

2
e , where Nu is the total

number of UEs.

According to Shannon’s formula, the spectral efficiency (SE), measured in bps/Hz,

for a UE u located at the distance r depends on its signal quality Γu and is given as

SEu(r) = log2(1+ Γu(r)). The maximum theoretical achievable data rate Du(r) of UE u can

be computed as Du(r) = Bu × SEu(r), where Bu is the UE’s bandwidth. Hence, the total

data rate Darea over a network area of radius Ra, can be written by

Darea =

∫ 2π

0

∫ Ra

0

Buρulog2(1+ Γu(r))rdrdθ . (5.9)

Considering an equal bandwidth sharing among UEs, Bu = BWn/Nu where BWn is the total

bandwidth. Replacing ρu = Nu/(2
p

3R2
c), the total data rate is rewritten as

Darea =
BWnπp

3R2
c

∫ Ra

0

r log2(1+ Γu(r))dr. (5.10)
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A worthwhile observation is that Eq. (5.10) neither depends on the number of UEs

deployed per cell, nor upon their density ρu. When Ra = Re, the above equation is evolved

to compute the total cell data rate, D̃.

5.5.2 AllUEs-CoMP scenario

In this scenario, whatever the location of UEs in the cell, all of them use JT-CoMP to

receive signal from both the serving BS and the coordinated BSs deployed in the first ring.

Therefore, in this case, the total data rate Darea over a network area with radius Ra can be

expressed as

Darea =
BWnπp

3R2
c

∫ Ra

0

r log2(1+ Γ
CoM P
u (r))dr. (5.11)

When Ra = Re, the above equation is evolved to compute the total cell data rate, DCoM P
cel l .

5.5.3 CoMP scenario

CoMP Scheme is used for a fixed value of dth, where only UEs with lower signal quality

compared to Γthreshold adopt JT-CoMP. The rest of UEs are in Non-CoMP mode. As same as

the previous scenarios, the aim is to compute total data rate Darea over a network area with

radius Ra. Therefore, depending on the network radius Ra, we can have two possibilities:

1. For Ra ≤ dth, the area of interest is one part of inner region and Darea can be computed

with the same Eq. (5.10).

2. For dth < Ra ≤ Re, the area of interest has two parts: inner region, i.e., a disk of

radius dth, and a ring part with inner radius dth and outer radius Ra. The data rate

over the inner region, Dinner , is computed by Dinner =
BWnπp

3R2
c

∫ dth

0
r log2(1+ Γu(r))dr.

The data rate over the ring between inner radius dth and outer radius Ra, Douter is

computed as Douter =
BWnπp

3R2
c

∫ Ra

dth
r log2(1+ Γ CoM P

u (r))dr.

Therefore, the data rate Darea in CoMP scenario can be expressed as

Darea =











BWnπp
3R2

c

Ra
∫

0

r log2(1+ Γu(r))dr, Ra ≤ dth

Dinner + Douter , dth < Ra ≤ Re

(5.12)

According to the above definition of data rate, we find that Darea is mainly related to the

distance threshold dth and the radius Ra. The accuracy of Eqs. (5.10), (5.11) and (5.12) is

verified in the simulation section through a comparison with Monte Carlo simulations.
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The bit-per-joule capacity indicates the amount of energy consumed for transmitting

information. In fact, the last parameter to define for the EE model concerns the power

consumption which must take into account not only the power consumed at each BS, but

also the relative backhauling power used to share data between cooperative BSs. In the

subsequent section we introduce the definition of energy efficiency expression depending

on these powers and the total data rate formulated above.

5.6 Backhauling traffic computation: Cbh

Regarding the last section, when JT-CoMP is applied, we suppose that KCoM P is related to

total data rate over the shaded region with CoMP, as shown in Fig. 5.6. So we consider

different equations of Cbh depending on the scenarios of CoMP approach, for example,

• AllUEs-CoMP: Cbh = DCoM P
cel l ,

• CoMP scenario: Cbh = DCoM P
shade ,

where DCoM P
shade =

BWnπp
3R2

c

∫ Re

dth
r log2(1+ Γ CoM P

u (r))dr. Meanwhile, in Non-CoMP mode, Cbh and

KCoM P are zero.

5.7 Simulation and results

In this section, we evaluate the proposed EE models through simulations and several

purposes are exposed as follows. First, we show some numerical results of the data rate

Darea over both macro cellular networks (denoted MCN) and femto cellular networks

(denoted FCN). Then, we present the accuracy of the EE expressions proposed in the last

section by comparing the simulation results to those of Monte Carlo (MC) simulations

of a hexagonal network. Additionally, we investigate the suitable value of SIR threshold,

Γthreshold and its corresponding distance threshold dth in order to define the inner and outer

regions. Finally, we show the impact of the number of coordinated BSs, n, variable path-loss

exponent, η, on the energy efficiency improvement and investigate the variation of the

backhauling power consumption, as mentioned in chapter 2. Simulations are carried out

on MATLAB.

For MC simulations, we consider 7 rings of hexagonal cells around a central hexagon

such that Rnw = 15Rc. Nu UEs are generated uniformly in the central hexagon and we

assume that they are attached to the BS located at the center of a hexagon. We compute

the Γu (without JT-CoMP case), Γ CoM P
u (in case of JT-CoMP), for each UE in the area and
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Table 5.1 Simulation Parameter Value

Parameters Value
System bandwidth B 10MHz
Cell radius R: macro, femto, resp. {1000, 50}m
Half distance between BSs, Rc R

p
3/2

Range of network Rnw 15Rc

Radius of interested area Ra [R/20 Re]
Equivalent radius of one cell, Re Rc

Æ

2
p

3/π
Number of antennas Nant 1
Number of users Nu: macro, femto, resp. {300, 100}
Power coefficient of backhaul equipment
αbh: macro, femto, resp.

{5× 10−7Joules/bi t,
4× 10−8Joules/bi t}

Path loss exponent η {2.6, 3, 3.5, 4}
Density of BSs ρBS 1/(2

p
3R2

c)
Density of users ρu Nu/(2

p
3R2

c)

then sum the achievable data rate for all UEs depending on Du = Bu × log2(1 + Γu) or

Du = Bu × log2(1 + Γ CoM P
u ), related to two cases above respectively. Finally, we obtain

the total data rate Darea in the area. We use the Eq. (5.1) to plot the EE variation. The

results presented here are obtained by averaging over 5000 independent iterations of MC

simulations. The other simulation parameters are set up according to Table 3.1 for the

power consumption model, and Table 5.1 for the other network parameters.

5.7.1 Date rate vs the network radius

Fig. 5.7 and Fig. 5.8 depict the data rate Darea as a function of the network radius Ra for

two path-loss exponent η= 2.6 or η= 3.5 in the MCN and FCN, respectively. The results

confirm that the proposed model is effective and match well with MC results for the case

of JT-CoMP, whatever the type of the cellular network and the values of η. Moreover, the

results in both figures show that the theoretical Darea increases with the size of the network

area Ra when the JT-CoMP is applied. Indeed, the data rate over the network area is related

to Ra, as defined in Eq. (5.11). Alternatively, while comparing Fig. 5.7 and Fig. 5.8, we

observe that the numerical values of Darea are identical. For example, for Ra = Re (the

whole cell) and η= 2.6, the data rate is constant Darea = 17.85M bps. Therefore, the data

rate enhancement is the same, regardless of the type of cellular networks. In fact, if we

introduce the normalized distance x = ru/Rc, and considering Rnw = 15Rc, Γ
CoM P
u (ru) can

be rewritten as Eq. (5.13).
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Fig. 5.7 Darea vs radius of the MCN, R = 1000m, KCoM P = 50W , n = 1, AllUEs-CoMP
scenario

Fig. 5.8 Darea vs radius of the FCN, R = 50m, KCoM P = 30mW , n = 1, AllUEs-CoMP
scenario

Γ CoM P
u (x) =

x−η + nπ
6
p

3(η−2)
[(2− x)2−η − (4− x)2−η]

πp
3(η−2)

[(2− x)2−η − (15− x)2−η] + nπ
6
p

3(η−2)
[(2− x)2−η − (4− x)2−η]

(5.13)
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With Ra = kRc, then the total data rate Darea over a network area of radius of Ra can be

rewritten as:

Darea =
BWnπp

3R2
c

∫ Ra

0

r log2(1+ Γ
CoM P
u (r))dr

=
BWnπp

3

∫ k

0

x log2(1+ Γ
CoM P
u (x))d x

(5.14)

As a result, Darea does not depend on Rc and Rnw, but is related to the ratios of Ra/Rc,

Rnw/Rc and η. In other words, we can obtain same data rate in the MCN and the FCN,

if the same path-loss exponent and the same bandwidth are set together with the same

distance ratios of Ra/Rc and Rnw/Rc.

5.7.2 EE vs radius Ra in scenario AllUEs-CoMP

Fig. 5.9 EE vs radius of the network area in a FCN, KCoM P = 30mW , AllUEs-CoMP scenario,
n= 1

The simulation results of energy efficiency for a FCN obtained through fluid model and

MCS are shown in Figs. 5.9 and 5.10 along with various Ra, and considering different

network parameters, such as the path-loss exponent η and the number of cooperative BSs

n. Figs. 5.11 and 5.12 depict the EE performance as a function of Ra values in a MCN. The

results in the four figures are obtained for the AllUEs-CoMP scenario. Here, we consider

the number of coordinated BSs, n = {1, 3}. Additionally, we set the backhauling power

cost KCoM P as a constant, i.e., KCoM P = 50W for a MCN and KCoM P = 30mW for a FCN as

in [90].
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Fig. 5.10 EE vs radius of the network area in a FCN, KCoM P = 30mW , AllUEs-CoMP
scenario, n= 3

Fig. 5.9 describes EE along with various Ra for 4 different values of η and one coor-

dinated BS, n= 1. Fig. 5.10 depicts the EE along with various Ra for 3 coordinated BSs,

n= 3. In both cases, we observe that EE values increase with the growth of η for a fixed

Ra, whatever the value of n, which is due to the improvement of SIR for a fixed UE along

with the raise of η. We conclude that EE gain in suburban area (η ∈ {3.5, 4}) is more

attractive than the one in the urban area (η ∈ {2, 6, 3}). However, BSs coordination is still

more important in such environment than in the suburban area.

Fig. 5.11 EE vs radius of the network area in a MCN, R= 1000m, KCoM P = 50W , AllUEs-
CoMP scenario, n= 1



5.7 Simulation and results 109

Moreover, the numerical values in Figs. 5.9 and 5.10 show that the analytical results

match well with Monte Carlo ones, whatever the values of η, as in [130], which reveals

the proposed model is effective and accurate, despite the small gap we observe in Fig. 5.10

when 35m < Ra < Re. Indeed, as the network is homogeneous, the approximated fluid

modeling considers that the impact of the 6 cooperative BSs located in the first ring on the

UE is same, which causes the same SIR improvement for the cell-edge UEs whatever its

position to the coordinated BSs. However, this assumption is no longer true in hexagonal

model, since the real distances from a UE to its serving BS, and to the coordinated BSs

are considered, which leads to a higher SIR and a greater EE for cell-edge UEs than the

analytical fluid results.

Fig. 5.12 EE vs radius of the network area in a MCN, R= 1000m, KCoM P = 50W , AllUEs-
CoMP scenario, n= 3

Figs. 5.11 and 5.12 depict the EE performance as a function of various Ra values in

a MCN. We observe that the numerical results of EE are improved with JT-CoMP scheme

compared to those without JT-CoMP, in both two figures. Especially, while comparing the

numerical values in Figs. 5.11 and 5.12 for η= 3.5, we observe that the EE improvement

is more important when 3 coordinated BSs are used than the case where only one BS is

considered (n= 1). Hence, increasing the number of cooperating BSs improves the data

rate over the network area in the case of fixed backhauling power consumption.

In addition, for convenient presentation purpose, the EE numerical values of a FCN

based on fluid modeling are presented in Table 5.2 for two scenarios: Non-CoMP and AllUEs-
CoMP, while considering a constant backhauling power cost KCoM P = 30mW , cooperation

with 1 and 3 BSs n = {1, 3} and various path loss exponent η = {2.6, 3, 4}. We observe

that EE is improved when the number of coordinated BSs increases. Moreover, compared
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to the baseline case of Non-CoMP where no coordination is considered, the EE gain varies

within the interval of [0.12 2.89]K bits/Joule in the urban area, whereas it changes within

the interval of [0.21 4.84]K bits/Joule in the suburban area, depending on the distance to

the serving BS.

Table 5.2 EE results (K bits/Joule) of a FCN in different scenarios: Non-CoMP
and AllUEs-CoMP. KCoM P = 30mW , n = [1, 3], η = [2.6, 3, 4] and Ra =
[10, 15,20,25, 30,35, 40, Re] (m)

 
𝑹𝒂 (m) 

10 15 20 25 30 35 40 45.5=𝑹𝒆 

η=2.6 

Non-CoMP 1.99 3.47 4.93 6.26 7.42 8.4 9.2 9.91 

AllUEs-CoMP (𝒏 = 𝟏) 2.03 3.56 5.08 6.5 7.77 8.88 9.85 10.77 

AllUEs-CoMP (𝒏 = 𝟑) 2.11 3.75 5.43 7.06 8.59 10.03 11.38 12.8 

η=3 

Non-CoMP 2.55 4.55 6.58 8.49 10.16 11.56 12.7 13.66 

AllUEs-CoMP (𝒏 = 𝟏) 2.59 4.65 6.76 8.77 10.58 12.15 13.48 14.69 

AllUEs-CoMP (𝒏 = 𝟑) 2.7 4.89 7.2 9.47 11.6 13.57 15.38 17.21 

η=4 

Non-CoMP 3.88 7.1 10.54 13.89 16.92 19.47 21.47 23.02 

AllUEs-CoMP (𝒏 = 𝟏) 3.94 7.24 10.78 14.27 17.47 20.24 22.48 24.35 

AllUEs-CoMP (𝒏 = 𝟑) 4.09 7.58 11.4 15.25 18.92 22.24 25.14 27.86 

Furthermore, we observe that the EE gain exceeds 3K bits/Joule for Ra ≥ 25m when

3 BSs jointly transmit the signal to the UE, which shows that the coordination is enough

important. However, the EE improvement is not as expected for Ra < 25m. In fact, it is not

very interesting to coordinated transmission for UEs with a great signal quality, i.e., those

UEs close to the serving BS. Coordination for closer UEs does not bring any improvement

on their SIR, quite the opposite, it increases the backhauling cost and impacts the energy

efficiency. Therefore, in the following, we present some results to analyze the EE gain

depending on the number of coordinated BSs, n, mainly when Ra > 25m. But, prior to

that, we need to fix the distance threshold dth, even so we can suppose it equal to 25m as

observed in the last result.

Since the CoMP approach has slight impact on UEs, in particular those far from their

serving BS in the case of a constant KCoM P about 30mW . Therefore, it is necessary in the

following part, to show the impact of distance threshold dth on EEcel l , considering the CoMP
scenario with variable KCoM P , depending on data rate requirement Cbh.
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5.7.3 Impact of distance threshold dth on cell EE EEcel l in CoMP sce-

nario

Considering the slight effect of coordinated BSs on the UEs close to their serving BS, we

aim to define the distance threshold dth, and investigate its impact on the cell EE, EEcel l .

To do so, we consider the third scenario, the realistic one as detailed earlier in section

5.5, i.e., CoMP scenario (0 < dth < Re). By varying dth, we evaluate the EE gain in a

FCN with variable KCoM P depending on Cbh, the backhauling requirement as in Eq. (5.3).

By this experiment we capture the network parameters/environment together with the

backhauling constraints.

Fig. 5.13 EE per cell vs dth, various KCoM P , η= 2.6 and n= 1 in a FCN

Fig. 5.13 shows the obtained result and compares the EEcel l of a FCN between the

proposed framework and Monte Carlo simulations taking into account η= 2.6 and n= 1.

Once again, Fig. 5.13 shows a slight error, below 4%, when compared with Monte Carlo

results, which validate the accuracy of the proposed model for evaluating EE. Furthermore,

we can clearly see from this figure, that the distance threshold dth makes a significant

impact on EEcel l . If we focus on fluid modeling result (the red curve), we observe that

the EEcel l values are almost constant for dth < 25m, and decrease when beyond. Indeed,

in this scenario, the outer region becomes smaller with the raise of dth, which leads to

lower data rate as well as higher power cost for backhauling brought by CoMP technique.

Interestingly, we can observe the analytical value of EEcel l (the red line) in scenario AllUEs-
CoMP is the same with the one for dth = 25m, i.e., EEcel l = 10.38K bits/Joule. In other

words, unnecessary use of CoMP for inner-region UEs with ru < 25m can cause high energy

consumption and low inefficiency, due to excess signaling transmission for cooperative BSs.
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Therefore, the distance threshold dth can be set as 25m, which is reasonable in our work.

Moreover, regarding the Fig. 5.14, where we plot quite simply the SIR depending on UE’s

distance to the serving BS in Non-CoMP mode, we observe that the UEs located beyond

25m experience a SIR ≤ 3dB. We emphasize that 3dB is considered as a standard reference

threshold beyond which a cell-edge UE makes use of joint transmission to increase signal

strength as set up previously in several references, as in [74, 92, 131].

Fig. 5.14 SIR versus distance to the BS in Non-CoMP mode, simulated by fluid model with
η= 2.6 in a FCN

To further analyze the impact of n on EE when Ra > 25m, we present some numerical

results of EE in case of two scenarios, AllUEs-CoMP and CoMP, considering both constant

KCoM P and varying KCoM P as defined in Eq. (5.3). Here, constant KCoM P is set as 30mW
rather than computed by Eq. (5.3). Since adding a new BS in the coordination set produces

a slight change in the backhauling power cost KCoM P , which will be shown in the following

parts.

5.7.4 EE gain vs BSs number

Figs. 5.15 and 5.16 show the numerical values of EE for various number of coordinated BSs

n and η= 2.6 for R/2 < Ra < Re, in a MCN and a FCN, respectively. In both two figures,

we observe that EE is improved as the growth of n for a fixed Ra. In fact, for a fixed Ra,

the data rate Darea increases with the raise of coordinated BSs number n, regarding the

fixed backhauling power cost. In the MCN, the EE enhancement reaches 66bi ts/Joule
when 6 BSs are used to jointly transmit data, against 26bi ts/Joule in case of 3 BSs. The
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EE improvement is more substantial in a FCN, since it is about 2.9K bits/Joule when 3 BSs

are considered and reaches 7.3K bits/Joule in case of 6 coordinated BSs.
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Fig. 5.15 EE improvement in a MCN, R = 1000m, η = 2.6, KCoM P = 50W for AllUEs-CoMP
scenario
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Fig. 5.16 EE improvement in a FCN, R= 50m, η= 2.6, KCoM P = 30mW for AllUEs-CoMP
scenario

For convenient presentation purpose, the fluid-based numerical values of EE per cell

(denoted as EEcel l for Ra = Re) and EE (denoted as EE25 for Ra = 25m ) in Fig. 5.16 are

presented respectively in Table 5.3 while considering constant backhauling power cost

KCoM P = 30mW . We observe that the EE25 gain is less than 2K bits/Joule whatever the

value of n. Once again, it demonstrates that the EE improvement is not very important for
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Ra < 25m, as in Table 5.2. Therefore, the numerical results of EE in Fig. 5.16 is presented

only for 25m< Ra < 50m.

Table 5.3 Numerical results of EEcel l and EE25 measured by Kbits/Joule in Fig. 5.16 when
η= 2.6 for Ra = Re, Ra = 25, respectively, in a FCN

Non-CoMP CoMP Mode
n= 1 n= 2 n= 3 n= 4 n= 5 n= 6

EEcel l 9.91 10.77 11.73 12.8 14.03 15.46 17.17
EE25 6.26 6.5 6.77 7.06 7.4 7.77 8.22

Additionally, comparing Figs. 5.10 and 5.12 for η= 3.5 and n= 3, we observe that EE

is improved about 38bi ts/Joule at the edge of a MCN, whereas it is about 4.3K bits/Joule
in a FCN. This means that the JT-CoMP is more effective and brings higher improvement in

small cellular networks. Although the same data rate Darea is observed in the MCN and the

FCN, the EE improvement is higher in the FCN than in MCN, thanks to the smaller fixed

backhauling power cost in the FCN.

5.7.5 Backhauling power cost vs BSs number

Fig. 5.17 KCoM P vs the number of coordinated BSs n in a MCN, AllUEs-CoMP scenario

When a new cooperative BS is added in the system, some additional energy is needed

due to the additional power consumption for transmitting the backhauling traffic. Therefore,

based on Eq. (5.3), Figs. 5.17 and 5.18 show some numerical results of the backhauling

power consumption, KCoM P , along with the various number of coordinated BSs n in a MCN

and a FCN, for η= 2.6 and 3.5. We observe that the values of KCoM P in a FCN increases
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Fig. 5.18 KCoM P vs the number of coordinated BSs n in a FCN, AllUEs-CoMP scenario

slightly with the raise of n whatever the values of η. Regarding the macrocell case, the

additional energy cost for transmitting the backhauling capacity between BSs while adding

the new coordinated BS is more significant. Specially, the results show that KCoM P is about

26W for η = 3.5 and n = 6 in a MCN, as shown in Fig. 5.17 , and it is about 2W for a FCN

in Fig. 5.18. For η = 3.5 and n = 3, KCoM P = 18.8W in a MCN and KCoM P = 1.5W in a

FCN. Since the FCN has lower power dissipation compared to the MCN, which causes the

smaller KCoM P in FCN.

Table 5.4 Numerical Results of EEcel l measured by Kbits/Joule in the FCN for fixed KCoM P

and various KCoM P with η= 2.6

Non-
CoMP

CoMP Mode

n= 1 n= 2 n= 3 n= 4 n= 5 n= 6

EEcel l (Fixed KCoM P) 9.91 10.77 11.73 12.8 14.03 15.46 17.17
EEcel l (Various
KCoM P)

9.91 10.74 11.69 12.76 13.98 15.4 17.1

Table 5.5 Numerical Results of EEcel l measured by bits/Joule in the MCN for fixed KCoM P

and various KCoM P with η= 2.6

no-CoMP CoMP Mode

n= 1 n= 2 n= 3 n= 4 n= 5 n= 6

EEcel l (Fixed KCoM P) 90.05 97.68 106.34 116.07 127.19 140.15 155.71

EEcel l (Various

KCoM P)

90.05 97.83 106.5 116.25 127.38 140.35 155.92
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For a convenient presentation purpose, we compare in Table. 5.4, the numerical values

of EE per cell (denoted as EEcel l when Ra = Re) obtained from fluid model in a FCN regarding

of the two cases: a constant backhauling power cost KCoM P = 30mW and variable KCoM P ,

calculated by Eq. (5.3). As presented previously, we observe that EEcel l increases with the

growth of n in the two cases, which is due to the higher data rate improvement brought

by JT-CoMP. Moreover, the results show that EEcel l gain is about 1.8K bits/Joule when

there are 2 coordinated BSs in the first ring. EEcel l gain is around 2.8K bits/Joule when 3

coordinated BSs are utilized regardless of the cases of KCoM P . Moreover, it is to emphasize

that EEcel l are quite similar in both two cases. Therefore, considering KCoM P = 30mW is

reasonable choice, it does not compromise the first results presented above. The same

observations are verified in case of a MCN with KCoM P = 50W , as shown in Table. 5.5.

In conclusion, the obtained results emphasize the JT-CoMP scheme in small cells as

opposed to macrocells. It is a very interesting result that matches very well with the

5G scenario characterized by high density and more short-range communication such as

Internet-of-Things (IoT).

5.8 Conclusion

In this chapter, we proposed a tractable expression of the energy efficiency (EE) performance

based on fluid modeling for the downlink transmission system while considering the JT-

CoMP approach. The expression of EE is a function of the total received data rate and the

total power consumption. Regarding the power consumption while JT-CoMP is applied in

the system, we consider the backhauling power cost in two cases: i) a constant backhauling

power cost, and ii) variable backhauling power cost depending on the data rate requirement.

Then, we investigate the impact of the path-loss exponent, the number of coordinated

BSs, and the radius of interest on the EE metric in both types of cellular networks: macro

(MCN) and femto (FCN) and its gain for three scenarios, which are divided according to the

different values of distance threshold dth. The numerical results show the model accuracy

of EE through a comparison with Monte Carlo trials. Moreover, the results exhibit that the

data rate is the same for both types of cellular networks, whereas the energy efficiency in a

FCN is larger than the one in a MCN. In both networks, the EE is improved with the raise

of the number of coordinated BSs n for the two cases: fixed backhauling power cost KCoM P

and variable KCoM P , since the total data rate of the area increases when n increases. For

various KCoM P values, we observe that dth set as 25m, is reasonable, which is corresponding

to the 3dB threshold value as defined in most of papers. The backhauling power cost

also increases with the growth of n, due to the additional energy cost for transmitting the
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additional backhauling capacity between macro BSs. However, in the FCN, adding a new

BS in the coordination set, produces a slight change in the backhauling power cost KCoM P .

Consequently, the proposed EE model with JT-CoMP is tractable and allow the study of

network energy efficiency through the main parameters of the network, which may provide

some insights on the design of future network.
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In this chapter, the main results obtained in this thesis will be first summarized. Then

we will give some possible and interesting ideas for the further work that may extend these

results.

6.1 Conclusion

The advent of the fifth generation of wireless networks requires an incredible increase in

throughput, simultaneous connections number and, low latency to provide the full set of

capabilities. However, this unprecedented increase in capacity are expected not leading to

an energy crunch. Therefore, 5G requirements specify it must be achieved at similar or

lower power consumption as todays’ networks. The energy efficiency (EE) becomes one

of the key performance indicators in 5G wireless communication network. To evaluate

the performance of large representative cellular networks, investigate the impact of the

environmental parameters on EE, and capture the significant factors involved in the energy

consumption process, representative and accurate models are needed.
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Furthermore, the advanced technology of Joint Transmission Coordinated MultiPoint

(JT-CoMP) is a promising scheme to enhance throughput and increase the capacity by

reducing the interference, especially for cell-edge users. Nevertheless, some additional

energy for hardware circuit and resource information is consumed by this technology.

Hence, a tractable model for the performance evaluation of EE in dense networks with

JT-CoMP approach is needed in terms of time expense to conduct simulations.

Fluid modeling is an approximation approach for the network evaluation, assuming

that a given finite number of transmitters are regarded as an equivalent continuum of

transmitters with a certain density. Then, the total interference power over the continuous

field can be easily calculated by integrating. Unlike other network models, SINR, outage

probability and data rate can be calculated easily based on this fluid modeling. Hence,

fluid modeling has the potential to be used for the energy efficiency evaluation, since it

reduces the analysis complexity and provides a macroscopic evaluation of the network

performance.

The objective of this thesis is to design and model the dense cellular network based on a

tractable and efficient fluid modeling in order to evaluate the network EE and to investigate

the impact of shadowing and JT-CoMP scheme on EE. With these objectives, we summarize

the key findings of our chapters.

Taking advantage of the proposed system model in chapter 3, chapter 4 evaluated the

network EE without and with considering the impact of shadowing on EE.

In the non-shadowing case, a tractable and efficient model based on spatial fluid modeling

has been developed for the investigation of network EE, whatever its size. Furthermore,

the effectiveness and accuracy of the proposed model have been verified in both macro-

and femto- cellular networks, through a comparison of the results obtained by Monte

Carlo simulations. Moreover, the EE variation has also been analyzed while considering

different network parameters, such as network size, network types, users’ density and the

path-loss exponent. The simulation results have shown that the proposed EE model over

the network area with any size is accurate and that the femto-cellular network is more

efficient than the macro-cellular one due to the lower energy dissipation and attenuation in

the femeto-cellular network. More interestingly, the simulation results have also exhibited

that the users’ density has no effect on EE and that EE increases as the path-loss exponent

increases.

In the case of shadowing, we have studied the joint impact of shadowing and path-loss

exponent on EE for both the macro- and femto- cellular networks, based on the tractable

fluid modeling. Using a polynomial curve fitting method, we first developed a closed-form

expression of SINR threshold, which is related to the users’ location. Based on the above
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expression and the spatial fluid modeling, we then established a tractable and efficient

EE model for both macro- and femto- cellular networks while considering the network

parameter of coverage probability. In addition, the effectiveness and accuracy of the

proposed model have been validated through a comparison with the results obtained by

Monte Carlo simulations. The simulation results have exhibited that EE increases as the

path-loss exponent and coverage probability increase and that EE decreases as the standard

deviation values of lognormal shadowing increases.

While the JT-CoMP approach is applied, in chapter 5 we proposed a tractable expression

of EE performance based on fluid modeling for a downlink transmission system. We

considered two cases of backhauling power cost, a constant backhauling power cost, and

variable backhauling power cost depending on the data rate requirement. We first defined

three scenarios according to the application of JT-CoMP. For example, in the first one,

we computed the EE expression without considering the coordination between BSs. The

second scenario is the worst case, where joint transmission is applied whatever the positions

of UEs in the cell. The third scenario is the realistic one, such that the coordination is

applied when necessary, at the cell edge or more precisely at a certain distance from the

serving BS. Regarding the three scenarios, we confirmed the accuracy of the proposed EE

model for both macro- (MCN) and femto- (FCN) cellular networks through comparing the

simulation results with the ones obtained by Monte Carlo trials. The simulation results

have been exhibited that the data rate is same in both types of cellular networks, whereas

the EE in a FCN was larger than the one in a MCN. The simulation results have also

shown that EE increases with the raise of the network area, path-loss exponent and the

coordinated BSs number in both cases of a constant backhauling power cost and variable

backhauling power cost. More interestingly, the simulation results have also demonstrated

that SINR threshold of 3dB is reasonable for the JT-CoMP system in the scenario of variable

backhauling power cost. Additionally, the simulation results have also pointed out that

adding a new coordinated BS in the FCN, compared with the MCN, produces a slighter

change to the backhauling power cost, illustrating that JT-CoMP is more efficient in the

small cellular network due to the short range transmissions.

6.2 Future work

This thesis concentrates on how to design and model the energy efficiency metrics based on

the spatial fluid modeling and the proposed model shows the effective and accuracy of the

fluid modeling, as a mathematical tool to benchmark the energy efficiency for the cellular

networks. However, there are other scenarios and test cases which could be reflected on as
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future work. Some of the potential extensions of our work done in this thesis are listed in

the below subsections.

6.2.1 Other bandwidth scheduling approach

For the investigation of EE based on the bandwidth scheduling approach, all the results in

this thesis have been obtained based on the equal bandwidth scheduling scheme, which

represents all users are assigned the same bandwidth whatever the spectral efficiency

is available to them. However, the user at the cell-edge experiences a lower signal-to-

interference-plus-noise ratio (SINR) due to the long distance and fast attenuation. If we

assign the same bandwidth to the cell-edge user, it has difficulties to get enough resource

for the communication and the requirement of quality of services can not be guaranteed.

Therefore, a resource allocation scheme is necessary to balance the bandwidth among

users in order to meet the users’ demand and improve the network performance. Thus, the

EE-evaluation through a new bandwidth scheduling scheme can be considered as a further

work of this thesis.

6.2.2 EE in heterogeneous networks

For the sake of simplicity, we have made some assumptions in this thesis that all the studied

cellular networks are homogeneous, i.e., the transmitting power of each base station is the

same. However, in most practical applications, the networks are heterogeneous to meet

the network flexibility and the increasing data rate requirements. Thus, heterogeneous

network deployment has been an advanced technology to improve the network coverage and

enhance the network energy efficiency in the view of operators, as cited in the first chapter.

The dense deployment of multi-tier small cells will incur a tremendous escalation of energy

consumption, which is one of the significant concerns faced by cellular networks. And some

work on EE has been done mainly depending on simulation analysis. However, it needs

massive computation and is not tractable. Additionally, the work in [97] demonstrated that

the spatial fluid modeling can be utilized to evaluate the signal-to-interference-plus-noise

ratio (SINR) of users in a heterogeneous cellular network, composed of macro- and femto-

cells. Therefore, it would be worthwhile to investigate the EE model, based on the fluid

modeling, for a 2-tier heterogeneous cellular network, which is composed by macro and

femto cells.
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6.2.3 EE-evaluation for uplink system

Due to the fact that limitations of downlink transmission speed are currently considered

the more important bottleneck of cellular communications, the work in this thesis only

focuses on evaluating the energy efficiency for the downlink system, from the operators’

view. However, from the users’ perspective, energy-efficient wireless communication is

also crucial. Since the high energy expenditure of wireless access networks has facilitated

quickly economic concerns and quality-of-experience (QoE) considerations for mobile users.

Additionally, the slow advances in battery technologies, as mentioned in chapter 1, also set a

limitation of energy demand for mobile multimedia services. For battery-constrained mobile

terminals, uplink power consumption dominates the power budget for data transmission.

Therefore, it is also interesting to evaluate the energy efficiency in the uplink scenario.

Additionally, the authors in [132] have already studied the effect of interference factor

based on the spatial fluid modeling for an uplink system, where the given fixed finite number

of mobile users are regarded as an equivalent continuum of mobile users distributed at

a certain density. That work illustrated that the fluid modeling also can be used for the

uplink system. But so far, there is no work on EE evaluation for the uplink system through

taking advantage of the spatial fluid modeling. Hence, following an analogue way as the

downlink one, how to model and design an effective and tractable EE model for the uplink

system, based on the spatial fluid modeling, is still an open issue.

6.2.4 EE mobility model

Our model is proposed without considering the constraints of quality of service for users

and under the assumption that the users are stationary during the transmission process.

However, for a given deployment scenario of wireless network, we know the average daily

traffic at a certain time of one day is changing with the hours of a day. For example,

the traffic demand during the evening is very low, since not all users are always active,

which leads to low energy consumption. However, the traffic demand increases as raise of

the number of active subscribers between busy and off-peak hours, as shown in Fig. 1.8.

Therefore, it is important to identify the spatial and temporal variation of EE in the wireless

network with the consideration of various traffic demand. Alternatively, when we consider

a deployed system where has many fixed users transmitting the signals, one user may move

from one cell to another as time passes. In this case, the network energy efficiency may

change. In addition, new users may appear on the deployed wireless cellular networks as

time passes and they request to communicate and allocate new channels. This leads to

changes in channel access and network energy efficiency. Therefore, in such scenarios, how
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to model the spatial-temporal change of EE becomes a critical issue in the wireless cellular

networks.



Appendix A

Computation of data rate in remaining

part

A.1 Basic functions and application on example 1

Fig. A.1 Decomposition of the remaining region for example 1.

This appendix illustrates the computation approach of the data rate of the remaining

part in Chapter 4. The illustration is based on the example 1, the remaining part of which

is shown in Fig. A.1. The corresponding data rate can be decomposed as data rate of

subregions as

Dre = DS1T1T6T7
+ DT1S2T3T6

+ DS2T2T3
+ DT3T2A1T4

+ DT6T3T4T5
+ DT7T6T5B1

, (A.1)

where the subscript of the summand denotes the vertices of the decomposed subregions.

Since the data rate is only related with the relative distance between the serving base station

(BS) and the user, it is no hard to conclude that DS1T1T6T7
, DT1S2T3T6

= Dcel l/4, DS2T2T3
=
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Dcel l/12 and DT3T2A1T4
= DT6T3T4T5

, Dcel l being the date rate for one cell. Thus, Eq. (A.1) is

rewritten as

Dre = 7Dcel l/12+ 2DT3T2A1T4
+ DT7T6T5B1

. (A.2)

The solution to DT3T2A1T4
and DT7T6T5B1

is obtained based on the introduced basic functions.

Fig. A.2 Fluid model: small integral triangular region (shaded area) and main parameters

Two basic functions are used to compute the data rate of the decomposed subregions.

The first is the function Γ in
t computing the data rate over a small triangular shaded region,

as shown in Fig. A.2. For a user u having the distance r to its serving base station, the data

rate = Bu log2(1+ γu(r)), where γu(r) denotes the signal-to-interference-plus-noise ratio

(SINR) and computed with Eq. (3.8). When the user density ρu is known, the number of

users in an infinitesimal area equals ρurdrdθ and the data rate Γ in
t over the shaded area is

computed by the integration

Γ in
t (d0) =

π
6
∫

0

d0
cosθ
∫

0

Bu log2(1+ γu(r))ρurdrdθ , (A.3)

where 0< d0 ≤ Rc. In particular, when d0 = Rc,

Γ in
t (Rc) = Dcel l/12. (A.4)

Fig. A.3 Fluid model: integral basin region (shaded area) and main parameters
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The second basic function Γbas computes the data rate over a trapezoid region, which is

shown as the shaded area in Fig. A.3. With the value of d1, 0< d1 ≤ Rc, the involved angle

φ = arctan Rc+d1p
3(Rc−d1)

and θmin =
π
3 −φ. Then, the total data rate over the shaded region

follows the integration

Γbas(d1) =
Dcel l

6
−

φ
∫

0

Rc−d1
cosθ
∫

0

Bu log2(1+ γu(r))ρurdrdθ −

θmin
∫

0

Rc
cosθ
∫

0

Bu log2(1+ γu(r))ρurdrdθ

(A.5)

The solution to DT3T2A1T4
and DT7T6T5B1

can be expressed according to Γbas as DT3T2A1T4
=

Γbas(Ra/a− 4Rc), DT7T6T5B1
= Dcel l/4− Γbas(5Rc − Ra/a).

A.2 Data rate for the remaining part for a disc area with

any size

Fig. A.4 Decomposition of the interested area with any size for the computation of data
rate.

As described in Chapter 4, with the decomposition of the interested space into repeated

D△, D□, and the remaining region, the total data rate is computed by

Dt r i
hex = nt D△ + kD□ + Dre, (A.6)
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with D△ = 3Dcel l/4, D□ = Dcel l , nt =
�

Ra
a , 3Rc

�

, k =
∑nt

n=1 max
n

0,
�

Ra
a − 3nRc, 2Rc

�
o

, [·, ·]
being the quotient operator. The computation of Dre needs further decomposition of the

remaining region, as sketched in Fig. A.4.

Fig. A.5 Four types of subregions in the decomposition of interested area.

When 0< Ra/a ≤ 3Rc, three cases need to be considered as shown by the line segments

X 1
1 Y 1

1 , X 1
2 Y 1

2 , X 1
3 Y 1

3 , which stand for the case of 0 < Ra/a ≤ Rc, Rc < Ra/a ≤ 2Rc, 2Rc <

Ra/a ≤ 3Rc, respectively. One summarizes that four types of subregions shown in Fig. A.5

are the basic units of the decomposition. Defining DA, DB, DC , DF as the data rate for the

corresponding region with the parameter d, we have

Dt r i
hex =











DC(Ra/a) , 0< Ra/a ≤ Rc

Dcel l/12+ DB(Ra/a− Rc) , Rc < Ra/a ≤ 2Rc

Dcel l/3+ DA(Ra/a− 2Rc) + DF(Ra/a− 2Rc) , 2Rc < Ra/a ≤ 3Rc

(A.7)

The solution to DA, DB, DC , DF as a function of d is not hard to be represented based on the

function Γ in
t and Γbas as DA(d) = Dcel l/4− Γbas(Rc − d), DB(d) = Γbas(d), DC(d) = Γ in

t (d),
DF(d) = Γbas(d)− (Dcel l/12− Γ in

t (Rc − d)). To simply the illustration below, new notations

are defined as D1(d) = DC(d), D2(d) = Dcel l/12+ DB(d), D3(d) = Dcel l/3+ DA(d) + DF(d).
The parameter d equals (Ra/a)mod Rc.

When 6Rc ≤ Ra/a < 9Rc, nt = 2, mod being the reminder operator. When 6Rc ≤ Ra/a <
7Rc (corresponding with the line segment X 3

1 Y 3
1 ), Dre = D1(d)+ Dcel l/2+2(DA(d)+ DB(d)),

where Dcel l/2 is due to [Ra/a− 3Rc − 2Rc, Rc] = 1 for the bottom layer of decomposition

in Fig. A.4. The multiplied number 2 for (DA(d) + DB(d)) equals nt . Following similar

analysis, when 7Rc ≤ Ra/a < 8Rc (corresponding with the line segment X 3
2 Y 3

2 ), since

[Ra/a − 3Rc − 2Rc, Rc] = 0 for the bottom layer and [Ra/a − 2 × 3Rc − 0 × 2Rc, Rc] = 1

for the second layer, Dre = D2(d) + Dcel l/2 + 2(DA(d) + DB(d)). For the line segment

X 3
3 Y 3

3 , Dre = D3(d) + Dcel l/2+ 2(DA(d) + DB(d)), where the summand Dcel l/2 is due to that

[Ra/a− 3Rc − 2× 2Rc, Rc] = 1 for the bottom layer.
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From the above analysis, the formula to compute Dre for any value of Ra/a is written as

Dre(Ra) = D1,2, or3(d) + vDcel l/2+ nt(DA(d) + DB(d)), (A.8)

where

v =
nt
∑

n=1

(Ra/a− 3nRc − 2knRc)mod Rc (A.9)

and

kn =max

�

0,
�

Ra

a
− 3nRc, 2Rc

�

�

. (A.10)
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Résumé : La conception des systèmes de 

communication dits 5G cible une efficacité 

énergétique ambitieuse, au moins 1000 fois 

supérieure à celle du système 4G actuellement 

disponible, tout en offrant un débit de transmission 

de données supérieur et un temps de latence très 

faible. Il est donc nécessaire de développer des 

modèles représentatifs et précis des grands réseaux 

cellulaires afin d’évaluer leur performance et 

d’identifier les principaux facteurs impliqués dans la 

consommation d'énergie comme l’atténuation de 

signal, le type et la qualité de la couverture cellulaire 

radio.  

Nous avons utilisé la modélisation fluide spatiale 

pour développer des modèles représentatifs et 

calculables afin de calculer la métrique d'efficacité 

énergétique. Notre modèle considère un réseau 

composé de plusieurs cellules opérant en OFDMA sur 

les liens descendants, et de multiples équipements 

utilisateurs répartis aléatoirement. Une expression 

analytique de l'efficacité énergétique a été dérivée 

pour prendre en compte les principaux facteurs liés à 

la communication : coefficient d’atténuation de 

signal, probabilité de couverture, type du réseau. Des 

simulations numériques ont permis de comparer les 

résultats avec ceux obtenus par les simulations 

Monte Carlo et ainsi, montrer l'efficacité et la  

précision de la modélisation fluide pour de grands  

réseaux cellulaires. Les résultats numériques 

montrent que l'efficacité énergétique est 

indépendante de la densité des équipements 

utilisateurs.  Par ailleurs, l'efficacité énergétique est 

plus importante dans les environnements 

suburbains que dans les milieux urbains où l'effet 

de shadowing est grand et ce, quel que soit le type 

de réseaux (macro, micro ou femto). Cependant, et 

d’une façon plus générale, le déploiement de petits 

réseaux (small cells) offre une meilleure efficacité 

énergétique comparée au réseau macro classique.  

En outre, nous avons évalué l'effet de la technique 

de transmission conjointe multipoint  (JT-CoMP) 

sur l'efficacité énergétique, qui est 

considérablement améliorée lorsque le nombre de 

stations de base coordonnées augmente. En 

revanche, la coordination entre les stations de base 

n ’ est efficace que pour les équipements 

utilisateurs éloignés de leur station de base.  En 

résumé, nos résultats numériques mettent en 

évidence l'efficacité et la précision de la 

modélisation fluide qui peut être considérée 

comme un outil mathématique par les opérateurs 

pour évaluer l'efficacité énergétique des réseaux 

cellulaires. 
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Title : Evaluation of energy efficiency in mobile cellular networks using a fluid modeling framework  
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Abstract : The design target of energy efficiency for 

5G networks is at least 1000-fold than the currently 

available 4G system, while offering higher data 

transmission rate and very low latency. To evaluate 

the performance of large representative cellular 

networks and capture the main factors involved in 

the energy consumption process, representative and 

accurate models must be developed.  

To develop tractable and efficient models, we use the 

spatial fluid modeling framework and compute the 

energy efficiency metric. Our model consists of a 

downlink transmission of an OFDMA cellular 

network, composed of several base stations and 

multiple user equipments randomly distributed over 

the area. An analytical expression of energy efficiency 

is then derived to study the impact of the major 

factors involved in the energy consumption process 

such as fading and shadowing attenuation, cellular 

coverage type and quality. Extensive numerical 

simulations were run to compare the results obtained 

by Monte Carlo simulations and demonstrate the 

effectiveness and accuracy of the fluid modeling for  

large cellular networks. The numerical results 

indicate that user density does not affect energy 

efficiency. Besides, energy efficiency is more 

important in suburban environments than in urban 

environments where the shadowing effect is great, 

regardless of the cellular coverage type. However, 

and more generally, micro-cellular networks ’ 

deployment offers better energy efficiency than the 

conventional macro-cellular ones. 

Besides, we evaluated the effect of the promising 

Joint Transmission Coordinated MultiPoint (JT-

CoMP) technique on energy efficiency, which is 

significantly improved as the number of 

coordinated BSs increases. On the other hand, 

coordination between base stations is only 

effective for user equipment that is remote from 

their base station. 

To resume, our numerical results illustrate the 

effectiveness and accuracy of fluid modeling, which 

can be considered as a mathematical tool by 

operators to benchmark cellular networks’ energy 

efficiency. 
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