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Abstract   

 

In this thesis, we have studied the impact of aging the GaN HEMT on the power converter 
efficiency. For that, we have developed an experimental methodology to estimate the power 
losses of the GaN HEMT for switching circuit applications. The estimation of the power losses 
is performed by a SPICE simulation approach using a non-segmented Electro-thermal model. 
The developed methodology enables the estimation of both the static and dynamic power losses 
in power converter applications. 

Additionally, we have implemented an accurate method for extracting both the intrinsic and 
extrinsic elements of the GaN HEMT power transistors. The experimental setup includes: 
Vector Network Analyzer, IVCAD measurement modules, drain and gate bias tees. The 
developed S-parameter setup enables the extraction of the parasitic elements of the power GaN 
HEMT at multiple bias conditions. The Annealing algorithm is chosen for the optimization of 
the model parameters. This method enables to study the effect of aging on both the parasitic 
elements of the GaN HEMT. 

Moreover, we have investigated the aging of a 650 V, 30 A GaN HEMT power transistor 
under operational switching conditions. The switching stress respects the Safe Operation Area 
(SOA) of the tested transistor. Various types of stress are performed, such as: continuous 
operational switching stress, on-state, off-state and frequency step stresses. The aging 
campaigns lasted 1000 h and was carried out through a developed switching application with 
high power efficiency. During aging, several electrical characterizations were performed for 
monitoring both the dynamic and static characteristics of the device under test, including: 
pulsed I-V, leakage current, C-V, S-parameters, temporal switching measurements. The effects 
of this degradation on power converters are studied for both the static and dynamic 
characteristics of the aged GaN HEMT. Using the developed SPICE model, the conduction 
power losses, switching power losses, leakage current gate and drain power losses are estimated 
before and after of aging. The accuracy and consistent convergence of the developed SPICE 
model provide a good way to investigate the reliability of GaN HEMTs by simulation. 

 

Keywords: GaN, HEMT, S-parameter, DC-DC power converters, aging, SOA, power losses.   
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Résumé 
 

Ce travail de recherche s’inscrit dans la problématique de l’efficacité énergétique des 

convertisseurs de puissance à base des transistors GaN-HEMTs, cette thématique représente 

une importance primordiale pour des domaines tels que les transports, les énergies 

renouvelables ou encore les télécommunications.  

Les travaux développés dans cette thèse se déroulent en cotutelle entre l’Université 

Abdelmalek Essaadi de Tétouan-Maroc et l’Université de Rouen Normandie-France, ce travail 

représente un intérêt réel pour les industriels internationaux et pour l’agence marocaine pour 

l’énergie durable au Maroc, puisqu’il traite une problématique actuelle qui est celle de la 

fiabilité et l’efficacité énergétique des convertisseurs de puissance. Notre travail s’inscrit donc 

dans le développement de la technologie électronique dans le cadre d’un partenariat Maroc-

France. 

Actuellement, les composants de puissance de nouvelle génération de technologie GaN 

(nitrure de gallium) ou SiC (carbure de silicium) remplacent peu à peu les technologies usuelles 

à base silicium. Des modèles électriques rencontrés en littérature sont adaptés à ces composants, 

cependant leur intégration dans les systèmes de conversion d’énergie nécessite de connaitre 

avec précision l’évolution de ces modèles face au stress subi, en premier lieu thermique et 

électrique.  

Ce travail de recherche consiste dans un premier temps à étudier l’impact des dégradations 

sur les éléments du modèle du composant à l’étude. Puis, dans un second temps, à partir du 

modèle, nous analysons l’impact des dégradations sur les performances d’un convertisseur de 

puissance.  

Concernant les applications mobiles alimentées par batterie comme les véhicules électriques, 

les avions « plus électriques » ou les applications photovoltaïques, une haute efficacité 

énergétique combinée à un poids faible et une conception compacte sont des exigences clés. 

En utilisant des semi-conducteurs à grand gap comme le GaN, il est possible de travailler 

avec des fréquences de commutation plus élevées. Par conséquent, le volume et le poids des 

composants magnétiques et des condensateurs peuvent être réduits de manière significative.        
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En raison de leurs caractéristiques, les composants de technologie GaN constituent un choix 

crucial pour les convertisseurs DC-DC fonctionnants à des fréquences de commutation allant 

au-delà de quelques centaines de100 kHz jusqu'au MHz. 

Malgré les nombreux avantages qu’apporte la technologie GaN comparée par la technologie 

Si, la fiabilité doit encore être démontrée. Cela est dû d’une part à l’évolution continue du 

processus technologique adopté, et d’autre part en raison du manque d’information concernant 

les modes et les mécanismes de défaillance.     

La contribution de ce travail de recherche se situe essentiellement au niveau de l’étude de 

l’impact du vieillissement d’un composant GaN HEMT commercial sur l’efficacité énergétique 

des convertisseurs DC-DC. L’étude consiste à la réalisation des tests de vieillissement en 

commutation dans des conditions opérationnelles de fonctionnement. Les pertes dynamiques et 

statiques du composant sont estimées avant et après les tests du vieillissement. Par conséquent, 

l’impact du vieillissement sur le rendement du convertisseur DC-DC est déterminé.  

Afin de réaliser ce travail, le banc de mesure des caractéristiques courant-tension (I-V) pulsé 

est exploité afin d’estimer les pertes de puissance de conduction à l’état passant d’un composant 

GaN HEMT commercial. La caractérisation I-V en mode pulsé permet de placer le transistor 

sous test dans un mode de fonctionnement très proche de celui de son utilisation réelle.  

La caractérisation expérimentale constitue un atout indéniable pour réussir ce projet de thèse.  

A ce sujet, le banc de mesure des caractéristiques capacité-tension (C-V) est exploité afin 

d’estimer les pertes de commutation du GaN HEMT. 

La technologie des transistors GaN HEMTs représente une importance primordiale pour les 

applications de convertisseurs de puissance.  Cependant, comme toute technologie émergente, 

la question de la fiabilité des transistors GaN HEMTs s'impose, car il y a peu de retour 

d'expérience sur cette technologie et une instabilité sur la maîtrise des processus de fabrication, 

notre étude s'intègre dans cette démarche de fiabilité.  

Pour aborder cette problématique, nous avons réalisé des tests de vieillissement en 

commutation dans des conditions opérationnelles. Le comportement statique et dynamique du 

transistor est impacté par les dégradations physiques causées par le stress thermique et 

électrique.  
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Les objectifs de cette thèse sont : 

• Étudier le vieillissement du transistor GaN HEMT 650V, 30A en conditions 

opérationnelles de fonctionnement. 

• Réaliser plusieurs campagnes de vieillissement dans diverses conditions 

opérationnelles. 

• Suivre l’évolution des caractéristiques dynamiques et statiques du transistor de test 

pendant 1000 h de vieillissement. 

• Étudier les indicateurs de défaillance du GaN HEMT à partir des caractérisations 

expérimentales et comparer les résultats obtenus avec la littérature. 

• Pour aider à répondre à ces objectifs, mettre en place au sein du laboratoire un banc 

expérimental d'extraction automatique des éléments parasites de transistors de 

puissance en utilisant des paramètres S à multiples points de polarisation. 

• Mettre en œuvre une méthodologie expérimentale de mesure des caractéristiques C-V 

des transistors GaN HEMT. 

• Concevoir un modèle SPICE précis de GaN HEMT de puissance pour les applications 

de convertisseurs de puissance. 

• Identifier l'impact du vieillissement du GaN HEMT sur l'efficacité des convertisseurs 

de puissance. Ceci est d'un très grand intérêt pour les concepteurs de circuits de 

commutation, car il est alors possible de prendre en compte les effets de la dégradation 

des transistors GaN de puissance sur leurs systèmes. 

 

Pour répondre aux objectifs, cette thèse est organisée en six chapitres : 

 

Le chapitre 1 présente l’introduction générale. Dans ce chapitre, les challenges majeurs de 

la technologie GaN HEMT dans les applications de convertisseurs de puissance sont présentés. 

Aussi, les objectifs de ce projet de thèse sont définis et une description du plan de ce rapport de 

thèse est donnée.     

Le chapitre 2 présente l'état de l’art des transistors de puissance GaN HEMT. Une étude du 

marché des convertisseurs du puissance est présentée afin de justifier le besoin des nouvelles 

technologies de transistors à base du GaN. De plus, ce chapitre décrit les propriétés physiques 

du matériau GaN ainsi que les avantages et les principales applications du GaN HEMT. Les 

limites des composants au Silicium et le besoin de technologies émergentes telles que : le GaN 
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et le SiC sont analysées dans ce chapitre. Les avantages et les principales applications des GaN 

HEMTs sont présentés.  

Ensuite, une comparaison des performances statiques et dynamiques entre le GaN et son 

concurrent SiC est développée en utilisant une approche de simulation SPICE. Cette étude est 

suivie par la présentation des propriétés physiques du matériau GaN. La formation du gaz 

d'électrons bidimensionnel (2DEG) est expliquée sur la base de l'interaction d'une couche de 

GaN avec une couche mince de l’AlGaN. 

Une description de la structure physique GaN HEMT est développée. Une étude comparative 

des différentes technologies du GaN HEMTs est présentée. De même, les différentes modes de 

défaillance du GaN HEMT dans des conditions de commutation sont synthétisées suivant une 

analyse AMDEC. En outre, les diverses techniques de vieillissement pour évaluer la fiabilité 

des GaN HEMT de puissance sont discutées. Aussi, pour l’estimation des pertes du puissance 

du GaN HEMT selon une approche de simulation, plusieurs modèles du GaN HEMT sont 

comparés aux données issues de la littérature.  

Le chapitre 3 présente une méthodologie complète pour l'estimation des pertes de puissance 

du GaN HEMT basée sur des mesures expérimentales. Le banc de commutation et les bancs de 

mesure I-V et C-V sont présentés. Les caractérisations I-V pulsé, C-V et le courant de fuite sont 

réalisées à différentes températures variant de 5 ° C à 115 ° C par pas de 10 ° C. L’effet de la 

température sur les caractéristiques statiques et dynamiques du GaN HEMT est étudié et 

comparé aux données présentes dans la littérature. L’effet de la fréquence sur les mesures C-V 

est étudié.  

Le modèle SPICE choisi pour le GaN HEMT présente des faibles erreurs par rapport aux 

mesures expérimentales. Une étude comparative du modèle électrothermique utilisé avec 

d’autres modèles de la littérature est réalisée. Le modèle utilisé montre une bonne convergence 

avec les mesures expérimentales. Aussi, le modèle prend en considération l’effet de la 

température ce qui permet l’estimation des pertes de puissances avec une grande précision.   

Les pertes de puissance du transistor sous test sont estimées sur la base d'une approche de 

simulation SPICE pour les applications de convertisseur de puissance. L'évolution des pertes 

de conduction et de commutation est modélisée en fonction de la température variant entre 5°C 

et 115 °C et pour un courant de sortie variant de 0 à 20A.   

Sur cette base, nous avons construit un modèle précis de pertes de puissance du GaN HEMT 

basé sur des mesures expérimentales.  Le rendement d'un convertisseur de puissance DC-DC 

30 V / 200 V à base du GaN HEMT est estimé pour une application d’énergie solaire.  
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La méthodologie proposée pour l'estimation des pertes de puissance sera exploitée dans le        

chapitre 5 pour étudier l'impact du vieillissement du GaN HEMT en condition de commutation 

opérationnelle sur le rendement des convertisseurs de puissance. 

Le chapitre 4 présente une méthodologie expérimentale pour extraction des éléments 

intrinsèques et extrinsèques du GaN HEMT de puissance sur une large gamme de fréquences : 

de 100 kHz à 200 MHz par un pas de 100 kHz. La méthodologie de mesure des paramètres S 

est vérifiée sur des composants passifs, tels que : un condensateur, une inductance, une 

résistance et sur des composants actifs, comme : les transistors GaN HEMT et SiC MOSFET.  

Après description de la procédure de calibration, l’étude de la répétabilité des mesures est 

effectuée.  Ensuite, la mesure des résistances d'accès et des inductances ainsi que des capacités 

est présentée. La mesure des paramètres S est effectuée sur le GaN HEMT à la fois à l'état froid 

et à de multiples points de polarisation.  

Le banc de mesure des paramètres S réalisé permet l’extraction automatique des paramètres 

parasites d’un transistor à multiples points de polarisations et utilisant l’algorithme 

d’optimisation « Annealing ».        

La modélisation des éléments parasites de GaN HEMT est donc réalisée en utilisant 

l'approche de simulation des paramètres S. L'extraction des éléments parasites du GaN HEMT 

est réalisée avec une grande précision. Cette méthode est utilisée dans le chapitre 5 pour étudier 

l'effet du vieillissement du GaN HEMT dans des conditions de commutation opérationnelle sur 

les éléments parasites du GaN HEMT. 

Dans le chapitre 5, nous présentons les effets du vieillissement du transistor de puissance 

GaN HEMT dans des conditions de commutation opérationnelles à fort courant et à haute 

tension. De telles études sont d'une grande importance, car le GaN HEMT est soumis à des 

conditions similaires à ce qui serait vécu dans une application réelle de convertisseurs de 

puissance.  

De plus, pour classifier les mécanismes de dégradation du GaN HEMT pour les applications 

de convertisseur de puissance, nous avons réalisé plusieurs campagnes de vieillissement, à 

savoir : stress en commutation continue, step-stress sur la grille, sur le drain et en fréquence de 

commutation.  

Aussi, une analyse des modes de défaillance et de leurs effets (AMDEC) du GaN HEMT 

pendant 1000 h de vieillissement en commutation est présentée. Au cours des campagnes de 

vieillissement, nous avons surveillé les changements des caractéristiques I-V, C-V et                     

des paramètres S. Les caractéristiques électriques statiques et dynamiques du GaN HEMT sont 

mesurées en fonction du temps de stress et sont modélisées.  
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L’impact du vieillissement sur l’efficacité énergétique des convertisseurs de puissance à base 

du GaN HEMT est estimé pour une application d’énergie renouvelable. Les pertes de 

conduction et commutation sont calculées avant et après vieillissement.     

Le chapitre 6 présente une conclusion générale de la thèse et les études futures possibles sur 

les transistors GaN HEMT de puissance. Aussi, les contributions majeures de la thèse sont 

définies et présentées comme suit :  

• Développement d’une méthodologie d’estimation des pertes de puissance statiques et 

dynamiques du GaN HEMT. Cette méthode est basée sur des caractérisations 

expérimentales I-V pulsé, C-V et du courant de fuites.  La précision et la convergence 

cohérente du modèle SPICE utilisé fournissent un bon moyen d'étudier l’impact du 

vieillissement du GaN HEMT sur le rendement des convertisseurs de puissance par une 

approche de simulation.  

• Développement d’un banc expérimental de caractérisation des paramètres S. Ce banc 

permet l’extraction des éléments parasites du GaN HEMT automatiquement et à 

multiples points polarisation. La méthode développée pour l’extraction des paramètres 

intrinsèques et extrinsèques est générique et peut être appliquée à plusieurs types de 

composants de puissance.      

• La plupart des études existantes dans la littérature concernent la fiabilité du GaN HEMT 

dans des conditions statiques. Ce travail étudie le vieillissement du GaN HEMT de 

puissance dans les conditions de commutation opérationnelles des convertisseurs de 

tension DC-DC.  

• Le banc de vieillissement proposé permet d'étudier l'impact des électrons chauds sur le 

GaN HEMT à haute courant et tension avec une faible consommation d'énergie.  

• Les divers types de vieillissement réalisés permettent de classifier les modes de 

défaillance du GaN HEMT pour chaque mode de fonctionnement dans les applications 

de convertisseur de puissance.    

 

Mots clés : GaN, HEMT, paramètres S, convertisseurs de puissance DC-DC, vieillissement, 
SOA, pertes de puissance.   

 

 

 

 



23 
 

Chapter 1: Introduction 
 

Investigating the impact of aging the power GaN HEMTs under operational switching 
conditions is receiving an increasing interest from research laboratories worldwide. The 
attention of academics and industrials on the power converters efficiency is accelerated by the 
impressive growth of GaN HEMTs market, due to their high superior performances compared 
to those of Silicon power transistors. Their applications are in various domains, such as 
renewable energy and high-power engineering. 

The estimation of power losses with high convergence to measurements is necessary to 
design efficient power converters using GaN transistors. The authors in [1] have proposed an 
estimation of power losses based on a look-up tables of energy losses to estimate the switching 
losses of IGBTs. Also, the authors in [2] have estimated and compared the switching power 
losses of GaN HEMTs to equivalent Si devices such as IGBT and MOSFETs.  

For that, an accurate model is necessary. In the literature, several behavioral models of GaN 
transistor have been proposed. References [3] and [4] show a simple and accurate segmented 
behavioral model, which include the important static parameters of the GaN HEMTs. However, 
these models suffer from the discontinuity of the simulated curves, because the used equations 
are divided into three segments according to cutoff, linear and saturation regions. 

In this work, we estimate both the static and dynamic losses of power GaN HEMTs. 
Moreover, we used a smooth and continuous behavioral model to estimate the efficiency of 
DC-DC power converter circuits before and after operational switching aging.  

Moreover, to validate the robustness of power GaN HEMTs, JEDEC standardized tests for 
Si power transistors are used [5]. However, the standardized tests for Si are not enough to 
guarantee the robustness of GaN transistors when they are used in power converter applications, 
because the reliability of GaN under switching operation is different from that of Si transistors 
[6]. Therefore, running GaN HEMTs power transistors under accelerated conditions would 
cause many non-GaN failures. 

In the literature, the reliability of GaN HEMTs has been improved. Reference [7] classifies 
the degradation modes of GaN HEMT in switching mode DC power converter into three 
classes: on-state, off-state and semi-off state. According to [8], one of the major disadvantages 
limiting the reliability of GaN HEMTs for switching power applications is hot electron effects 
that occurs during the switching state. In [9], this degradation result in decreased DC and RF 
performance. 

According to [10], it is important to study the reliability of GaN HEMT for power conversion 
circuits. This work presents a developed reliability methodology under operational switching 
conditions. The proposed aging switching bench presents high power efficiency. The effects of 
aging GaN HEMT transistor on a power converter application are studied by SPICE simulation 
approach. 

The devices investigated on this thesis are based on the gallium nitride (GaN) material. GaN 
is a III-V compound semiconductor with various physical properties such as wide band gap, 
large breakdown electric field, strong mechanical and thermal stability and good heat 
conductivity. In this first chapter, a general overview of the GaN power devices is given. 
Therefore, the objectives and the outline of this research work are presented. 
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1.1 GaN HEMT for power converter applications  

 

Power switching devices are used in DC-DC converters to convert voltages. In order to 
provide an efficient conversion, an ideal switching device should guarantee zero static and 
dynamic losses. The static losses are due to the parasitic resistance of the device (RON) when it 
is in the on-state and due to the leakage current when is in the off-state. However, the dynamic 
power loss is induced during the switching from the on-state to the off-state and vice versa. 

Furthermore, the possibility of having a power switching device able to operate at high 
switching frequencies would allow to reduce the size of passive components present in today 
DC-DC converts, this can significantly reduce the overall converter size. Nowadays, the Si 
MOSFET technology is reaching the limit [11]. Hence, emergent technologies have to be 
considered to go beyond the limit of Si devices.  

Due to the large critical electric field, the GaN material is considered to replace Si 
technology. The large critical electric field of the GaN is combined with the high two-
dimensional electron gas (2DEG) density, which is spontaneously generated at the AlGaN/GaN 
heterostructure interface, hence, with intrinsically low resistivity.  

As a result, due to the high-density and low-resistivity 2DEG in comparison to the Si 
technology for the same current target value, AlGaN/GaN HEMTs guarantee a smaller on-
resistance with smaller overall device area. Moreover, a smaller parasitic capacitance compared 
to other Si devises. Only the SiC based devices appear to be able to compete with the GaN. 
However, the GaN has lower dynamic losses, highest density and switching frequency. 

Despite the high performances of the GaN HEMT in power converter applications, this 
technology still has various challenges to overcome for both a wide use and highly confident in 
the power converter market. The GaN HEMT challenges are presented in the following.  

1.1.1. Normally-off challenge 

One of the challenges that the GaN technology had to overcome in order to enhance its 
performances on the power switching market was the creation of the GaN normally-off devices. 
In fact, naturally GaN transistors are normally-on devices and most of the advantages of this 
technology are due to the spontaneous formation of the 2DEG channel without applying any 
gate voltage. However, for switching applications normally-off devices are required for safety 
reasons. Today, various companies have commercialized normally-off devices with high 
operating voltage (1000 V). Their performances in term of dynamic and static losses are better 
than the Si devices for the same operating voltage. According to the power GaN HEMT 
roadmap [12], it is recommended to study the normally-off GaN HEMT technology for power 
converter circuits. This thesis fulfils the recommendation of the GaN power roadmap. For that, 
we have investigated both the reliability and the power efficiency of the p-GaN normally-off 
technology as required in the power converter market.  

1.1.2 Power losses estimation 

The estimation of the GaN HEMT losses offers to the power converter designers the 
possibility to estimate the power losses of GaN HEMT with high accuracy without the use of 
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the complex switching bench, which reduces the time to market and cost. To accurately design 
a power converter with GaN HEMT, it is important to calculate the power losses of the device. 
For that, we have presented in chapter 3 an experimental methodology for the estimation of 
both the static and dynamic power losses of the GaN HEMT using C-V and I-V measurement. 
The impact of the GaN HEMT losses on the efficiency of power converts are modelled using 
SPICE simulation approach. This accurate methodology enables to identify the impact of aging 
the GaN HEMT on the efficiency of power converts.  

1.1.3. Gate driver  

Another major constraint is driving the GaN high speed transistors. The studied power GaN 
HEMT is a GaNPX package [13] and not a standard wire-bonded, leaded packages, such as 
TO-220. Integrating the GaN HEMT in such package reduces parasitic inductances and 
optimizes switching performance. However, to design the gate driver and for the estimation of 
total power losses of the device, it is important to accurately evaluate the parasitic element of 
the device. In chapter 4, we have presented an accurate method based on the S-parameters 
measurements for the extraction of the GaN package parasitic resistances, capacitances and 
inductances.   

 
1.1.4. Reliability challenges 

Reliability is essential for the application of GaN power devices to critical electronic 
systems, for high voltage energy conversion, control of electrical engines, automotive 
electronics. However, the main challenge of GaN-HEMTs for wide commercialization, 
concerns the study of reliability.  

The reliability of AlGaN/GaN HEMTs can be limited by several breakdown mechanisms, 
which can be mainly summarized in [14] as: 

• The current collapse has been one of the critical issues for GaN transistors, where the 
drain current is reduced and thus ON-state resistance is increased once a high drain bias 
is applied to a GaN transistor. The current collapse is caused by the negative charge 
trapping in the structure under high-voltage stress. The increase in dynamic RDS(on) 

elevates the device temperature, which in turn can result in a thermal instability and 
finally device destruction. The current collapse has been investigated in this thesis under 
operational switching conditions. 

• Degradation at the gate edge: this failure mode takes place in the off-state, results in an 
increase of leakage current, and is accelerated by the electric field. This can be induced 
by trap creation and formation of conductive paths between the gate and channel. 

• In hard switching conditions, GaN HEMTs may be simultaneously subject to high drain 
voltage and nonnegligible drain current. The electrons injected from the source are 
accelerated by the electric field thus becoming “hot”. The hot electrons may induce both 
a recoverable degradation, when they are trapped in the gate-drain access region, or a 
permanent degradation, if their energy is sufficient to promote the generation of lattice 
defects. 
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1.2. Thesis project description 
 

This thesis project takes place in joint supervision between the Abdelmalek Essaadi 
University of Tetouan-Morocco and the University of Rouen Normandy France. The thesis 
research was performed in collaboration between the Laboratory for Communication 
Information Technologies (LabTIC) in Tangier, and the Group Laboratory for Materials 
Physics (GPM) in Rouen. The thesis work took place under the supervision of Mr. Olivier 
Latry, Mr. Ahmed El Oualkadi and Mr. Pascal Dherbecourt. During this thesis, I benefited 
from the PHC TOUBKAL scholarship. Also, two six-month and additional three month 
stays in France are funded through the PHC TOUBKAL project. 

 

1.3. Objectives of this research work 
 

This thesis objectives are: 

- Study the aging of a 650V, 30A GaN HEMT transistors in real operating conditions. 
- Perform multiple aging campaigns at various operational conditions.  
- Monitor the dynamic and static characteristics of the DUT during 1000 h of aging.    
- Investigate the failure mechanisms of the GaN HEMT based on experimental 

characterizations and compare the obtained results to the literature.  
- Develop an accurate methodology for measuring both the dynamic and static power 

losses of the GaN HEMT in power converter applications.  
- Estimate the impact of aging the GaN HEMT on the efficiency of power converters. 
- Implement in the GPM laboratory an experimental bench for extracting the parasitic 

elements automatically of power devices using S-parameters at multi-bias. 
- Develop a generic methodology for the extraction of both the intrinsic and extrinsic 

elements of power GaN HEMT for both at the cold state and under multiple bias 
conditions.  

- Implement in the GPM laboratory an experimental methodology for measuring the 
C-V characteristics of the GaN HEMT transistors.  

- Design an accurate SPICE Model of power GaN HEMT for switching circuit 
applications. 

- Take into account the evolution of the elements of the model following aging in the 
simulated temporal waveform. 

- Identify the impact of aging the GaN HEMT on the efficiency of power converts. 
This are of very high interest to circuit and system designers, as they will be eager 
to understand the effects of device degradation on their systems. 
 

1.4.  Outline of the thesis 
 

This manuscript is organized as follows:  

- Chapter 2 shows the state of the art concerning the GaN HEMT power transistors. 
Moreover, this chapter describes the fundamental properties of the GaN material as well 
the advantages and the major applications of the GaN HEMT power transistors. 
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- Chapter 3 presents a complete methodology for the estimation of the GaN HEMT power 
losses based on experimental measurement. The pulsed I-V, C-V and low current 
characterizations are performed at various temperatures: from 5 °C to 115 °C by a step 
of 10 °C. The power losses of the DUT are estimated based on a SPICE simulation 
approach for switching circuit applications. The evolution of the conduction losses and 
switching losses in power converter applications is modelled as a function of the 
junction temperature and the output current. As a result, we have built an accurate power 
losses model of the GaN HEMT based on experimental measurements, which include 
the major power losses in power converter applications. Using the extracted power 
losses model of the GaN HEMT, we have estimated the efficiency of a 30 V / 200 V 
DC-DC converter stage with GaN HEMT. The proposed methodology for the 
estimation of the GaN HEMT power losses is used in chapter 5 to study the impact of 
aging the power GaN HEMT under operational switching condition on the power 
converters efficiency.  

- Chapter 4 presents an experimental methodology to extract parasitic elements of a 
packaged GaN power transistor over a wide frequency ranges: from 100 kHz to              
200 MHz by a step of 100 kHz. In order to reach the best accuracy on the extraction of 
very low GaN device parasitics, a method based on S-parameter measurements and a 
specific calibration process using low-cost test fixtures are proposed. The S-parameters 
measurement methodology are verified on both passive components, such as: capacitor, 
inductor, resistor and on the tested GaN HEMT power. After detailing the calibration 
procedure, measurement of access resistances and inductances as well as voltage-
dependent capacitances are presented. The S-parameters measurement are performed 
on the GaN HEMT in both the cold state and the multiple bias conditions. The non-
linear model of the power GaN HEMT is extracted at multiple bias points which 
correspond to the power switching application load line. The modeling of parasitic 
elements of GaN HEMT is performed using S-parameters simulation approach. The 
extraction of the parasitic elements of the GaN HEMT with high accuracy using S-
parameter method is used in chapter 5 to study the effect of aging the GaN HEMT under 
operational switching conditions on the parasitic component of the GaN HEMT. 

- In chapter 5, we studied the effects of aging GaN HEMT power transistor under 
operational switching conditions at both high current and high voltage. Such studies are 
of great importance as the device is subjected to conditions similar to what would be 
experienced in a real application of power converters. Additionally, to separate the 
degradation mechanisms of the GaN HEMT in switching power converter mode, we 
have performed three step stress aging campaigns: frequency step stress, on-state step 
stress, off-state step stress. A failure mode and effects analysis (FMEA) of the GaN 
HEMT during 1000 h of step stress aging are presented. During the aging campaigns 
we have monitored the changes of the current-voltage (I-V), capacitance-voltage (C-V) 
and S-parameters characteristics. Both static and dynamic electrical characteristics of 
the devices are measured as a function of stress time and are modeled. Notably, these 
results are used to simulate the efficiency of a DC-DC buck converter using both fresh 
and aged devices.  

- Chapter 6 summarizes the results presented in this thesis and possible future studies on 
the AlGaN/GaN technology.  
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Chapter 2: Context and state of art of GaN HEMT power 

transistors 
 

2.1. Introduction 

 

In this chapter, the state of art of the power GaN HEMT in power converter applications is 
discussed. Firstly, the limitations of Silicon devices and the need of emerging technology such 
as: GaN and SiC in the power switching market are analyzed. Also, the advantages and the 
major applications of the GaN HEMT devices are presented. Then, a comparison of both the 
static and dynamic performances between the GaN and its SiC competitor technologies is 
studied using a SPICE simulation approach. This is followed by presenting the physical 
properties of the GaN material. The formation of the two-dimensional electron gas (2DEG) is 
explained based on the interaction of a GaN layer with a thin layer of aluminum gallium nitride 
(AlGaN). Moreover, a description of the GaN HEMT physical structure is provided. 
Subsequently, the various degradations of power GaN HEMT under switching conditions are 
summarized. Furthermore, the diverse aging technics for evaluating the reliability of the GaN 
power devices are discussed.  Finally, a brief description of the power losses modelling of the 
GaN HEMT is presented.  

2.2. Context of the study 

2.2.1. Improving energy efficiency through GaN technology 

According to the international energy agency (IEA). The world energy demand rises by 1 % 
per year to 2040 [1]. The electrical energy consumption will increase from 47.21 % in 2018 to 
68.87 % in 2040 compared to oil.  As shown in Fig. 2.1, electricity uses grows at more than 
double of overall energy demand between 2000 and 2040 [2-3], confirming its place at the heart 
of modern economies.   

     

Fig. 2.1: Change in oil and electricity consumption outlook 2000-2040 [2-3].  

However, 60 % of the produced electric energy is wasted before achieving the end-use stage 
for consumption [4]. Fig. 2.2 shows the electric energy losses during the conversion steps of 
the consumption flow: production, generation, transmission until the end-use consumption. The 
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reduction of losses in power conversion applications is the key to improve the energy efficiency 
in order to ensure the increased demand of electric energy.  

 

Fig. 2.2: Electric energy losses during the consumption flow [4]. 

Power converters are essential to ensure world electric consumption demand. They enable 
to distribute and use electric power, and to generate electrical energy from renewable sources 
(wind, solar, etc.). As shown in Fig. 2.3, power Si MOSFETs account for more than half the 
power loss in a buck converter application [5]. For more than five decades, power converters 
with silicon (Si) has been the dominant semiconductor for power electronics devices. However, 
today the increased demand for higher current, voltage and power density capability, as well as 
the need of a better energy efficiency to reduce the global energy consumption, are the driving 
forces to introduce new semiconductor, such as GaN technology in power electronics and to 
overcome the inherent limitations of Si-based devices. 

 

Fig. 2.3: Power losses in synchronous buck converter [5]. 

2.2.2. GaN power converters market  

According to [6], the power GaN Market is expected to be multiplied 24 times between 2016 
and 2022, from 12 million dollars in 2016 to 450 Million dollars in 2022. As illustrated in        
Fig. 2.4, the expansion of the GaN Market is mainly driven by the power converts applications 
DC-DC and AC-DC for power supply. Additional markets, including solar (PV), electric and 
hybrid electric vehicles (EV/HEV), are also driving forces behind this growth.  
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Fig. 2.4: GaN power device market by application ($M) [6]. 

However, with US$ 12 million in 2016, the GaN power market remains small compared to 
the US$ 30 billion silicon power semiconductor market [7]. But the fast growth of the GaN 
market between the period of 2016 and 2020 is a sign for the beginning of the competition 
between GaN and Si markets.   

To understand the reason of the fast expansion of the GaN market, we have analyzed the 
major GaN events that happened in the last few years. We have observed that the GaN 
technology has been successively achieved for a high operating voltage, high operating current, 
high power density, high switching frequency, and strong reliability. 

In the following, we present the most relevant improvement of the GaN technology during 
the period between 2017 to 2020. 

❖ High voltage requirements: 

Before 2017, the GaN device market has been mainly dominated by low voltage devices       
< 600 V [7]. Hence, increasing the voltage capability of the GaN devices is a requirement for 
power system applications. In 2017, Transfom produces the first 900 V GaN product in the 
market for high voltage power conversion applications [8]. This product has earned the 
confidence of both renewable and the automotive industry since is the first GaN JEDEC and 
AEC-Q101 qualified. According to [9], the result of integrating this high voltage GaN product 
in a single-phase DC converter shows a high total efficiency of 99 %.  

❖ High current requirements:  

The high current requirements in power converters application is essential to meet the needs 
of systems in areas such as: electric vehicles, renewable energy, industrial motors electronics 
that are consuming ever more power.  In 2019, Toyoda Gosei in Japan [10] has developed a 
vertical gallium nitride (GaN) power semiconductor device with high current operation of       
100 A on a single chip. Which has doubled the electric current capacity from the previous           
50 A to 100 A on a single chip. Also, in 2020, GaN System has announced world’s highest 
current rated GaN Power transistor [11]. The emergent 120 A, 650 V GaN E-HEMT, offers 
much higher power levels in the automotive, industrial, and renewable energy industries.  
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❖ High power density requirements: 

In 2018, EPC has introduced a 350 V GaN power transistor 20 times smaller than comparable 
silicon [12]. This 1.95 mm x 1.95 mm (3.72 mm2) product enables five times less area of power 
conversion circuits than a comparable silicon solution. Despite the small size of this product 
can handle thermal conditions more efficiently than plastic packaged MOSFETs. 

Fig. 2.5 shows the size reduction of the GaN power converters compared to those with Si 
[13]. As shown in Fig. 2.5 (a), the use of GaN power devices in designing AC power adapter 
enables lighter and up to quarter the current size with Si devices. In Fig. 2.5 (b), the size and 
weight of energy storage systems with GaN for renewable energy applications is reduced 3 
times compared to equivalent Si systems. Fig. 2.5 (c) shows power conversion module for 
industrial application. As shown in this figure, using GaN power devices results in power 
supplies that are more efficient and higher power density. This results in significant system size 
reductions including opportunities to integrate functions into a single system. 

                      

Fig. 2.5: GaN size equipment compared to Si [13]: (a) 65 W AC power adapter, (b) 1 kW ESS converter,          
(c) 3-Phase AC power conversion modules. 

❖ High switching frequency requirements: 

In 2020, 6 MHz buck converter evaluation board (GSWP050W-EVBPA) using GaN 
Systems 100V E-Mode GaN transistor and integrated high-speed driver [14]. This evaluation 
board exhibits much higher efficiencies than Si MOSFETs and exceeds performance in terms 
of switching speed, parasitic capacitance, switching loss, and thermal characteristics. 

❖ High reliability requirements: 

In 2019, the JEDEC wide bandgap power semiconductor committee publishes its first 
document [15]: test method for dynamic resistance of GaN HEMT for power conversion 
applications. This JEDEC committee establishes standards across suppliers for datasheet, 
qualification, and test methods for the consistent measurement of Drain-to-Source Resistance 
in the ON-state RDS(ON) encompassing dynamic effects. These dynamic effects are characteristic 
of GaN power FETs, and the value of the resulting measured RDS(ON) is method dependent.  

2.2.3. GaN power converter applications  

Fig. 2.6 shows the applications of Si, SiC and GaN devices in power electronics market based 
on power and frequency ranges. The migration from Si to WBG devices such as GaN and SiC, 
has been accelerated in the last few years. However, Si devices like Thyristors, IGBT and Si 
bipolar still be used in high power applications which do not require high switching frequency, 

(a) (b) (c) 
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for example: power grid and wind energy.  In the other side, SiC and GaN dominate the high 
frequency applications. Currently, GaN-transistors are ideal for high frequency power converts 
up to 1000 V, like: power supplies and audio amplifiers while SiC is rather suited for discrete 
devices or modules with breakdown voltages above 1000 V, such as: train transportation and 
photovoltaic. 

 

Fig. 2.6: Power vs Frequency on electronics: technology positionning in 2018 [6]. 

The GaN advantages in automotive, renewable energy and power converter markets are 
presented in the following:  

❖ Automotive GaN market: 

The number of electric and hybrid vehicles has increased rapidly in the world over the past 
few years and continues to accelerate. The electric vehicles market is expected to increase from 
5 million electric vehicles in 2018 to reach 250 million new electric vehicles sold in 2030 [16]. 
The electricity consumption that accompanies that will rise from 58 TWh in 2018 to 640 TWh 
in 2030 [17]. That will require a new solutions of power devices to improve electricity pricing 
for vehicle charging, as well as new storage and efficient power converters systems.  

For the automotive industry [18], GaN offers 3 times smaller power systems, 50 % power 
losses reduction and 20 % lower system cost. This means high performance electric vehicles 
with high energy efficiency and low cost.  Fig. 2.7 shows the GaN advantages in the automotive 
applications industry. 

 

The GaN ability to reduce size, weight and improve electricity consumption are increasingly 
being used in EV and HEV applications such as chargers and power converters. 
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Fig. 2.7: GaN advantages in automotive applications compared to Si [18].  
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❖ Renewable energy GaN market: 

Figure 2.8 shows the total renewable energy consumption outlook with projections to 2040. 
As can be shown, the renewable energy consumption will increase by 113.17 % between 2015 
and 2040 [19]. Moreover, more than 25 % of global electricity generation is expected to come 
from renewable sources by 2020 [20]. This increased demand of renewable energy from 2165 
trillion Megawatt-hour (MWh) in 2015 to 3845 trillion MWh in 2040, makes efficient power 
conversion systems with GaN devices more attractive for renewable energy industry.   

 

Fig. 2.8: Total renewable energy consumption outlook 2015-2040 [19]. 

For the renewable energy industry, GaN power transistors enable the design of simpler, 
lower cost, and more efficient energy storage systems that are not achievable with silicon [20]. 
Fig. 2.9 shows the GaN advantages in the renewable energy industry. 

 

❖ Energy GaN market: 

Energy is the main engine for economy and the most important factor for the national 
security. According to the International Energy Outlook [21], the word energy demand will 
continue to rise up to 5% by 2040 and the natural gas and oil will still be the dominant source 
of energy for the next twenty years (Fig. 2.10).  Therefore, the easy recoverable of gas and oil 
will be reduced, and their recovery will be from deep wells with hundreds of kilometers depth 
and high temperature varying from 180°C to 450°C.   
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Fig. 2.9: GaN advantages in renewable energy applications [20]. 



35 
 

 

Fig. 2.10: World Energy Consumption [11]. 

In such a harsh, high temperature and high-pressure environment, electronic power 
converters based on Silicon (Si) cannot survive and the drillers have to explore these deep wells 
without an appropriate instrumentation. Drilling in this manner is very costly, slow and 
inaccurate. The GaN power converters can support high temperature and robust environment. 

2.3. GaN and SiC power devices comparison  

Silicon has been reached its limits and wide bandgap semiconductors will take the next step 
[22]. The first power device, a silicon carbide (SiC) Schottky-diode, became commercially 
available in 2001. Since then, also a variety of SiC switches became commercially available. 
Gallium nitride (GaN) emerged as another alternative wide bandgap material for power devices 
and the first commercial power GaN devices have been introduced to the market by EPC in 
2010 [23]. 

In this section, we compare both the static and switching characteristics of two power 
transistors: GS66508P GaN HEMT from GaN SYSTEMS [24] and SCT2120AF SiC MOSFET 
from ROHM SEMICONDUCTOR [25]. The investigated devices have both similar breakdown 
voltages 650 V and maximum drain current 30 A. Table 2.1 summarizes the electrical 
characteristics of the investigated transistors.  

The performance of GaN and SiC transistors can be compared using the figure-of–merit 
(FOM). The FOM factor is calculated using (2.1) [26]: 
 

( )                                                                            (2.1)DS ON gFOM R Q=   

Where: RDS(ON) is the on-state resistance (Ω) and Qg is the gate charge (nC). Table 2.1 shows 
the comparison between the GaN and SiC FOM factor. As observed, the GaN HEMT FOM is 
25 times lower than that of SiC MOSFET. This is due to both the low resistance and gate charge 
of the GaN HEMT compared to thus of SiC MOSFET. According to [27], the low FOM factor 
of the GaN HEMT compared to SiC MOSFET enables lower power losses, thus a high energy 
efficiency for power converters. 
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Table 2.1: Comparison of the investigated transistors characteristics of GaN HEMT and SiC MOSFET [24-25].  

Parameters GaN HEMT (GS66508P) SiC MOSFET (SCT2120AF) 

IDS(max) (A) 30 29 

VDS(max) (V) 650 650 

RDS(ON) (mΩ) 50 120 

Qg (nC) 5.8 61 

FOM (Ω*nC) 0.29 7.32 

 
In the following, we have compared using SPICE simulation both the static and dynamic 

characteristics of the selected GaN and SiC transistors presented in Table 2.1.    

2.3.1. Static characteristics 

The simulated I-V static characteristics of the studied GaN and SiC transistors at various 
temperatures varying from 25 °C to 105 °C are shown in Fig. 2.11. As observed, the SiC 
MOSFETs has a low temperature coefficient of ON resistance compared to the GaN HEMT. 
For the SiC MOSFET, on-resistance only increases by 12 % between 25 °C and 105 °C as 
shown in Fig. 2.11. However, the GaN HEMT on-resistance increases by 14.78 % between 25 
°C and 105 °C. 

      

Fig. 2.11: Simulated output characteristic at various temperatures varying from 25 °C to 105 °C : (a) GaN 
HEMT (GS66508P) ; (b) SiC MOSFET (SCT2120AF). 

From the simulated output characteristic in Fig. 2.11, we have calculated the RON resitance 
using (2.2): 

1

( )                                                                         (2.2)

DS V

DS
DS ON

DS V

V
R

I
=

=  

Where: VDS is the drain to source voltage and IDS is the drain to source current.  Fig. 2.12 
shows the simulated on-state resistance temperature dependence for both the GaN HEMT and 
SiC MOSFET. As observed, the SiC MOSFET has 35.03 % higher RDS(ON) than that of GaN 
HEMT. This enables to GaN power converter applications lower conduction losses compared 
to thus with SiC MOSFET.   

(b) (a) 
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Fig. 2.12: Simulated RON comparison between GaN HEMT (GS66508P), SiC MOSFET (SCT2120AF).  

By using GaN HEMT transistors in power converters, the conduction power losses are 
reduced 50 % than by using SiC MOSFET as shown in Fig. 2.13.  

 

Fig. 2.13: Simulated conduction power losses comparison between GaN HEMT (GS66508P), SiC MOSFET 
(SCT2120AF). 

To summarize this section of static characteristics, the SiC MOSFET has a lower 
temperature dependency of the RDS(ON) resistance. However, the GaN HEMT has lower RDS(ON) 

resistance, which enables reduced conduction power losses for power switching applications 
compared to SiC MOSFET. 

2.3.2. Switching characteristics 

The double-pulse test (DPT) has been used to compare and analyze the switching 
characteristics between the SiC MOSFET and GaN HEMT. A double-pulse test circuit is shown 
in Fig. 2.14. The DPT analyze enables to observe the switching transients of a the DUT without 
the self-heating of the device [28]. This test is done with a purely inductive load. This mode 
enables a similar electrical waveform on the DUT, which could exist in DC-DC power 
converters. 
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Fig. 2.14: Double-pulse setup with inductive load [28]. 

 

The first pulse turns on the DUT transistor in Fig. 2.14 and charge a current through the 
inductor. The first pulse should be a wide pulse, which charges the load current to the 
magnitude. Then, a short break followed by a second short pulse appears. 

The double pulse setup was implemented in SPICE simulator, which enables the comparison 
of the switching characteristics between both the studied GaN and SiC transistors.  Fig. 2.15 
and Fig. 2.16 show both the turn-off and turn-on waveforms at 400 V drain-to-source voltage 
and    20 A drain current for GaN HEMT and SiC MOSFET respectively. The switching losses 
in a power transistor depend on its turn-on (TON) and turn-off (TOFF) transient times. The TON 

and TOFF times are defined by (2.3) [29]: 
 

                                                                           (2.3)
ON ri fv

OFF rv fi

T t t

T t t

= +
 = +

 

  
Where tri is the current rise time and tfv is the voltage fall time at turn-on. For TOFF, trv is the 

voltage rise time and tfi is the current fall time at turn-off. The rise time tr and the fall time tf are 
measured from 10 % to 90 % of the waveform switching level [29].  

Based on the simulated switching waveforms in Fig. 2.15 and Fig. 2.16, the TON and TOFF 
switching times of both the GaN and SiC are calculated and presented in Table 2.2. As can be 
observed, The GaN has a lower switching time TON and TOFF, which enables lower switching 
losses energy for power switching applications whith GaN HEMT. 
 
Table 2.2: Simulated switching time TON and TOFF of GaN HEMT (GS66508P) and SiC MOSFET 
(SCT2120AF). 

 GaN EOFF TOFF1 SiC EOFF TOFF2 GaN EON TON1 SiC EON TON2 

Time width (µs) 0.015 0.2 0.03 0.5 
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Fig. 2.15: GaN HEMT (GS66508P) drain current and voltage simulated switching waveforms at 25°C: (a) turn-
off; (b) turn-on. 

                   

Fig. 2.16: SiC MOSFET (SCT2120AF) Drain current and voltage simulated switching waveforms at 25°C: (a) 
turn-off; (b) turn-on. 

Fig. 2.17 shows the comparison of both the turn-on and turn-off switching losses energy 
between GaN HEMT and SiC MOSFET. As observed, EON losses of SiC MOSFET are 115 
times higher compared to GaN HEMT. Similarly, the EOFF losses of SiC MOSFET are 14 times 
higher compared to GaN HEMT.   

          

Fig. 2.17: GaN HEMT (GS66508P) and SiC MOSFET (SCT2120AF) simulated switching energy losses versus 
the temperature: (a) turn-on (EON); (b) turn-off (EOFF). 

 

TOFF1 =15ns 

GaN turn-off energy 

(b) (a) 

TON2=500ns TOFF2 =200ns 

SiC turn-on energy 
SiC turn-off energy 

(b) (a) 

(b) (a) 
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The high turn-on and turn-off energy losses of SiC compared to GaN is due to the high 
switching times of the SiC MOSFET. As shown in Table 2.2, the GaN has lower switching 
times compared to SiC, which enables high energetic efficiency for GaN power switching 
applications.   

To compare the switching losses of GaN HEMT and SiC MOSFET, we have calculated the 
total switching losses PSW from the simulated switching IDS current and VDS voltage waveforms 
in Fig. 2.15 and Fig. 2.16.  PSW is defined by (2.4) [29]. 

 

( ) ( )

0 0

1 1
                                                (2.4)

ON OFFT T

SW SW on SW off ds ds ds ds

ON OFF

P P P i v dt i v dt
T T

= + =   +     

  
Where vDS and iDS are the simulated drain-to-source voltage and the drain current, TON is the 

turn-on time and and TOFF is the turn-off time. The value of TON and TOFF for both the GaN 
HEMT and the SiC MOSFET are obtained from Table 2.2. The evolution of the simulated 
switching losses for both GaN and SiC for a range of frequency varying from 50 kHz to             
200 MHz is shown in Fig. 2.18. This interval of frequencies is very used in power switching 
applications. Fig. 2.18 shows that the switching losses of SiC transistors increases by 38.46 % 
from 50 kHz to 200 MHz compared to GaN power transistor. 

The responsible mechanism for this phenomenon is the high parasitic capacitances of the 
SiC compared to GaN. As shown in Fig. 2.19, the GaN has lower input capacitance (Ciss) and 
output capacitance (Coss) compared to SiC MOSFET. This results in low switching power 
losses for GaN power switching applications. 

 

 

Fig. 2.18: Simulated power switching losses comparison between GaN HEMT (GS66508P), SiC MOSFET 
(SCT2120AF). 
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Fig. 2.19: Ciss and Coss capacitances comparison between GaN HEMT (GS66508P) and SiC MOSFET 
(SCT2120AF) [24-25]. 

In this section, we have demonstrated using SPICE simulation the high performances of the 
power GaN HMET in both static and dynamic characteristics compared to those of SiC 
MOSFET. Furthermore, we have found using SPICE simulation that the GaN has a lower 
switching time TON and TOFF, which enables lower switching losses energy. Moreover, the GaN 
HEMT has a lower on-state resistance compared to the SiC MOSFET, which offers lower 
conduction losses energy for DC power converter applications. This makes the GaN HEMT 
very attractive for power switching applications market. Next, we will study the physical 
properties and the structure of the GaN HEMT power transistor. 

 

2.4. Physical properties of the power GaN HEMT  

 

To understand the origin of the GaN HEMT devices performances compared to those of SiC 
and Si MOSFET, we have studied in this suction the GaN material properties and compare it to 
the SiC and Si semiconductor materials. Fig. 2.20 (a) shows the on-resistance (RON) versus the 
BV of Si, 4H-SiC, 6H-SiC, and GaN material [30]. As shown in the limit chart, both the SiC 
and GaN materials have higher power performances in comparison with conventional Si 
material. The GaN enables low on-resistance and higher BV, which make it an attractive 
candidate for replacing Si power devices in power applications. Fig. 2.20 (b) shows the limits 
of the cutoff frequency and BV. As observed, the GaN combine both the high-speed and high-
voltage performances compared to Si.   
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Fig. 2.20: Comparison of GaN power performances limits: (a) RDS(ON) versus BV (b) BV versus cutoff frequency 
[30]. 

Table 2.3 shows the five key electrical properties of three semiconductor materials Si, GaN 
and SiC contending for the power management market [31]. The superior physical properties 
of the GaN semiconductor offer a higher band gab, a higher electric breakdown field, a larger 
electron mobility, a lower permittivity and a good thermal conductivity, when compared to 
silicon (Table 2.3). 
 
Table 2.3: Material properties of Si, GaN and SiC [31]. 

Parameter Unit Si GaN SiC 

Band gap Eg eV 1.12 3.39 3.26 

Critical field ECrit MV/cm 0.23 3.3 2.2 

Electron mobility µn cm2/V.s 1400 1500 950 

Permittivity εr  11.8 9 9.7 

Thermal conductivity  W/cm.K 1.5 1.3 3.8 

 

2.4.1. Physical properties of GaN 

The GaN is a hexagonal crystalline structure named “wurtzite” (Fig. 2.21). This structure is 
very chemically stable [32], it is mechanically robust and can withstand high temperatures [33]. 
This crystal structure also gives GaN piezoelectric properties that lead to its ability to achieve 
very high conductivity compared with other semiconductor materials [34].    

(b) (a) 
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Fig. 2.21: Schematic of the wurzite GaN [32]. 

 

❖ Spontaneous polarization: 
 

Since nitrogen has a higher electronegativity than gallium, Ga and N atoms have anionic (+) 
and cationic (−) characteristics, respectively, resulting in causing electric polarization. 

1P , 
2P

, 
3P and 

4P are the internal polarization vectors of the GaN. As shown in Fig. 2.22, the 
noncoincident center of the positive charge and negative charge leads to spontaneous 
polarization [35]. And its polarization direction depends on its material growth direction.  

 

 

Fig. 2.22: Generation of the GaN spontaneous polarization [35]. 

 

❖ Piezoelectric polarization: 
 

In addition to spontaneous polarization, piezoelectric effects were considered to be 
responsible for the sheet carrier densities in GaN devices. The mechanical stress inside the 
epitaxial layers with different lattice constants causes new type of polarization, which is referred 
to as piezoelectric polarization [36]. Fig. 2.23 explains how the piezoelectric polarization is 
caused in nitride semiconductors. As shown in the left figure, the resultant internal polarization 
vectors P1 + P2 + P3 + P4 become zero in a freestanding tetrahedral structure due to the crystal 
symmetry. However, when the crystal is deformed by the lattice mismatch, as shown in the 
right-hand side, the angle θ become widened when tensile stress is applied. Thus, the internal 
electric field becomes unbalanced to appear the piezoelectric field PPE appears as P1 + P2 + P3 
+ P4 = PPE. 
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Fig. 2.23: Generation of the GaN piezoelectric polarization [36]. 

❖ Heterojunction AlGaN/GaN: 

The GaN material combined both the spontaneous and piezoelectric polarizations, which 
lead to its ability to achieve very high conductivity compared to other semiconductor materials. 
The total polarization of the GaN material is given by (2.5) [36]: 

                                                                               (2.5)total SP PEP P P= +  

Where PSA is spontaneous polarization and PPE is the piezoelectric polarization. Fig. 2.24 (a) 
shows the directions of the spontaneous and piezoelectric polarization for the AlGaN/GaN 
heterostructures. As observed, two-dimensional electron gas (2DEG) is created at the interface 
AlGaN/GaN. This is due to the strain-induced polarization at the interface between the two 
materials. A negative density of charge is created due to the gradient of polarization between 
the AlGaN and GaN layers defined by (2.6) [37]: 𝜎𝐴𝑙𝐺𝑎𝑁/𝐺𝑎𝑁 = 𝛻𝑃𝐴𝑙𝐺𝑎𝑁/𝐺𝑎𝑁 = {𝑃𝐴𝑙𝐺𝑎𝑁𝑆𝑃 + 𝑃𝐴𝑙𝐺𝑎𝑁𝑃𝐸 } − {𝑃𝐺𝑎𝑁𝑆𝑃 + 𝑃𝐺𝑎𝑁𝑃𝐸 }                  (2.6) 

As shown in the band diagram of the AlGaN/GaN heterostructure in Fig. 2.24 (b). The strong 
piezoelectric and spontaneous polarization enables the confinement of the electrons in a deep 
and narrow quantum wells. This creates a two-dimensional electron gas (2DEG) with a high 
density of electrons at the interface AlGaN/GaN. The high concentration of electrons with very 
high mobility is the basis for the HEMT. 

  

Fig. 2.24: AlGaN/GaN heterostructure: (a) cross section (b) Band diagram [37]. 
(b) (a) 
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2.4.2. GaN HEMT normally-on structure 

GaN HEMT has a heterojunction AlGaN/GaN and a GaN buffer layer deposited on a 
substrate and the source, gate, and drain contacts. Fig. 2.25 shows a cross section of the GaN 
HEMT normally-on structure.  

 

Fig. 2.25: Cross section of the GaN HEMT structure. 

❖ Schottky contacts  

The gate of the GaN HEMT is a Schottky contact. This gate metal with high Schottky barrier 
height enables a low gate leakage current in the GaN device. Ni/Au is the most widely used 
Schottky gate metal in GaN HEMTs due to its good thermal stability [38]. 

❖ Ohmic contacts 

Both the drain and source of the GaN HEMT are ohmic contacts. The standard ohmic metal 
for GaN HEMTs is Ti/Al/Ni/Au [39]. The drain and source ohmic contacts constitute parasitic 
elements in the GaN HEMT, it is essential to minimize the contact resistance (Rc) in order to 
promote a good performance. To improve the ohmic contacts, several studies have focused on 
recessed ohmic contact. In [40], a recess etching by inductive coupled plasma etching (ICP) 
was performed before metal deposition and obtained a Rc of 0.3 Ωmm. Furthermore, in [41] a 
very low Rc of 0.26 Ωmm was obtained due to direct contact between ohmic electrode and the 
2DEG channel.   

❖ Passivation 

The passivation layer reduces the surface traps in the gate–drain access region. SiN is most 
commonly used for surface passivation in GaN HEMTs [42]. The effects of un-passivated 
devices are [43]: (1) Decrease of drain current capability; (2) Reduction of the 2DEG density 
(3) Activation of surface traps (4) Increase of leakage current. 

❖ Heterojunction AlGaN/GaN 

The principle feature of this structure is the AlGaN/GaN heterojunction. At the interface 
between these two layers, a layer of high-mobility electrons called “two-dimensional electron 
gas” (2DEG) forms as a result of spontaneous and piezoelectric polarizations of GaN material 
properties. 
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❖ Transition (Buffer) layer 

The buffer layer serves to prevent injection of electrons into a substrate during high Voltage 
operation, thereby improving performance of the GaN transistor during high Voltage operation 
[44]. AlN is preferably used as a component of this transition layer [45]. 

❖ Substrate  

The used substrate for the GaN HEMT can be Si, GaN or SiC. The criteria for substrate 
choice are: (1) low lattice-mismatch relative to the materials of the device layers; (2) good 
thermal conductivity; (3) low price per area.  

Based on the literature [46-51], we have compared in Table 2.4 the various substrate 
materials used for the GaN HEMTs, such as: Si, SiC and GaN substrates. As observed in Table 

2.4, the GaN substrate still the best choice for the GaN HEMT due to its low lattice mismatch 
and its good thermal conductivity. However, the price of GaN substrate is very expensive 
compared to Si. The use of SiC as substrate for the GaN HEMT can improve its thermal 
performances due to its good thermal conductivity properties. Also, SiC substrate has a much 
smaller lattice mismatch (~3%), is in principle a more suitable substrate, but is available only 
in small diameters and is very expensive. At the present, the silicon is widely used as a substrate 
for GaN HEMT because of their commercial availability and excellent surface preparation. 
However, the use of Si produces high lattice-mismatch. This causes the occurrence of 
dislocations and cracking of the grown layer due to the lattice mismatch and the difference in 
the thermal expansion coefficient between GaN and the substrate. Increasing device leakage 
[48] and promoting metal diffusion along the dislocation sites [49]. 
 
Table 2.4: GaN HEMT substrate comparison: Si, SiC and GaN.  

Substrate  Si  SiC  GaN 

Advantage  ❖ Low price (<100$) [46]. ❖ Good thermal 
conductivity [47]. 

❖ Low lattice 
mismatch [50]. 

❖ Good thermal 
conductivity. 

Challenge  • Poor thermal conductivity [47]  
• Large lattice mismatch (~16%) 

[51]. 
• Increased leakage current [48]. 
• Metal diffusion along 

dislocation sites [49]. 

• Existence of lattice 
mismatch (~3%) 
[51]. 

• High price (100$ to 
200$) [46]. 

• High price (200$) 
[46]. 

 
2.4.3. GaN HEMT normally-off 

For safety reasons, the GaN HEMT used in power converters should be normally-off 
devices. In this way, if the gate driver fails and its output goes to zero, the HEMT switches to 
the off-state. If a simple AlGaN/GaN heterojunction is used to fabricate a HEMT, the device 
shows a normally-on behavior. Several solutions have been proposed throughout the years to 
achieve normally-off operation. In Table 2.5, we have compared based on the literature the 
various GaN HEMT technologies. As observed section 2.4.2, the normally-on devices have a 
simple structure and do not require complicated gate drive configuration.  However, even when 
the gate bias is equal to zero volt, a current is formed in the 2DEG channel due to the 
spontaneous and piezoelectric polarization of the GaN material, which is not safe for power 
converter applications.  
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The implantation of fluorine ions under the gate results in normally-off behavior. However, 
this technic suffers from both the instability of the doped F-ions with high temperature [52] and 
the instability of VTH over the time [53].   

Cascode structure is a hybrid technology between Si MOSFET and GaN HEMT transistors, 
which connect a low-voltage Si MOSFET to the gate of a high-voltage GaN HEMT. This hybrid 
configuration, demonstrates a normally-off behavior. Moreover, the structure is compatible 
with existing Si gate drivers [54]. 

The use of a p-GaN or p-AlGaN layer on top of the AlGaN/GaN heterojunction enables a 
positive shift of the VTH voltage ranging from 1 to 3 V with the applied gate voltage larger than 
5 V.  
 
Table 2.5: Comparison of GaN HEMT structures. 

 Normally-on F doped gate P-type gate Cascode 

Structure 

 

 

 

 

Advantage  ➢ Simple structure  
➢ Simple process 

(see section II.4.2.) 

➢ Positive VTH. 
➢ Normally-off.  
➢ Lower gate 

leakage 
current. 
 

➢ High positive 
Vth (Vth>1). 

➢ Normally-off. 
➢ Stable VTH. 
➢ Lower gate 

leakage 
current.  

➢ High positive VTH. 
➢ Normally-off. 
➢ Gate driver. 

compatible with that 
of Si devices. 

➢ Good reliability. 

Challenge  ➢ Complex gate drive 
configuration. 

➢ Unsafe for switching 
appellations: current 
flow at VGS =0V 
[55]. 

➢ Instability of 
doped F-ions with 
high temperature 
[52]. 

➢ Instability of Vth 
over the time [53].  

 

 ➢ Limited high speed [54]. 
➢ High fabrication cost. 

 

Manufacturer  Cree [56] 

 

MACOM [57] 

 

➢ Academic project 
[58-59] 

GaN system [60] 

 

Panasonic [61] 

 

EPC  

 

➢ Transform [62] 

 

 
The p-GaN GaN HEMT normally-off approach is finding wide consensus within the 

scientific and industrial community. Nowadays, the p-GaN technology is the most attractive in 
the GaN HEMT market [63]. For this reason, it is important to investigate the main issues 
related to the stability of these devices. In the next section, we have presented the main 
degradation mechanisms that take place in GaN HEMT with p-GaN gate for power switching 
applications.  
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2.5. Aging of the GaN HEMT power transistors 

To understand the various degradations of power GaN HEMT under switching conditions, 
we have performed a failure mode and effects analysis (FMEA). Table 2.6 summarizes the 
most critical degradation processes that are induced by off-state, on state and semi-on state 
stress, along with the related failure modes. As shown in this table, the most critical failure 
mode is the increase of the on-state resistance (RDS(On)) due to the trapping of hot electrons 
under the gate [64] and the generation of lattice defects [65]. This may induce an elevation in 
the device temperature due to the increase of power conduction losses generated by the on-state 
resistance RDS(On). Another critical failure mode of the GaN HEMT is the negative shift of the 
threshold voltage VTH. This is caused by the trapping of electrons in the gate area [66]. This 
may induce a safety critical failure in the gate driving circuit of the power converter with GaN 
HEMT. The time-dependent failure mode is another issue facing the GaN HEMT power 
transistors. This degradation is due to the generation of short circuit paths in the GaN HEMT 
structure. This may increase the leakage current in the power converter circuit with GaN 
HEMT.  
 
 
Table 2.6: The most critical failure mode and effects analysis of the GaN HEMT. 

Component Failure mode Failure cause Failure effect 

GaN HEMT power 
transistor 

Increase in RDS(On) -Trapping of hot electrons 
under the gate. 

and at the gate edge [64]. 

-Generation of lattice defects 
[65]. 

- Elevation in the device 
temperature. 

- High conduction power 
losses. 

VTH shift - Trapping/detrapping of 
electrons in the gate area 
[66]. 

-Normally-on behavior. 

Decrease in gm -Buffer trapping [67]. 

-Surface trapping [68]. 

 

- RF performance 
degradation. 

- Current collapse. 

Time-dependent 

Degradation 

- Generation of source-drain 
current paths [69]. 

- Short circuits between gate 
and channel [70]. 

Increase of IDSS leakage 
current until the vertical 
(drain to substrate) 
breakdown. 

Time-dependent 

gate breakdown 

- Generation of 
defects/leakage paths in 
the p-GaN/AlGaN gate stack 
[71]. 

Increase of IGSS leakage 
current until the gate 
breakdown. 

 

In the literature including the GPM laboratory, various work were performed to evaluate the 
reliability of the GaN power devices, including: short-circuit, HTRB, HTGB and switching 
stresses [72].  
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2.5.1. Short circuit stress 

Short-circuit stresses enable to evaluate the robustness of power GaN HEMT transistors 
under high drain current pulses with short duration. In [73], a repetitive and non-destructive 
short-circuit aging test were applied on a 600 V GaN Gate Injection Transistor (GIT). The 
evolutions of C-V and I-V characteristics during the repetitive short-circuit tests show 
significant degradations before and after the test. During this test the DUT is maintained at on-
state during a 4 ms short-circuit phase with the drain voltage VDS equal to 35 V. After the aging 
test, the saturate region of IDS(sat) decreases obviously, which is due to the increase of the             
on-state resistance RDS(ON). Also, the CGS capacitance was increased due to the charge trapping 
and de-trapping between the gate-source [74].    

2.5.2. Static stresses: HTGB, HTRB  

High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) tests are 
JEDEC standards qualification tests for electronic devices [75]. During the aging, the Devices 
Under Test were placed in an environmental chamber which provided a constant temperature 
of 150 °C and in the meantime, they were bias stressed by applying a gate-source DC voltage 
with drain shorted to source for HTGB stress or by applying a drain-source DC voltage with 
gate shorted to source for HTRB stress [76].  

In [72], HTRB stress experiments are performed on a power GaN HEMT to investigate the 
degradation phenomena. Several degradation characteristics of DC parameters such as the 
reduction of saturated drain current, the increase of gate leakage current and on-resistance and 
the shift of threshold voltage are identified. The degradation mechanism is ascribed to the 
trapping of electrons in the region under the gate and the access region of gate to drain. These 
mechanisms may significantly limit the performance of power GaN HEMTs when they are 
operated at high drain voltage and frequency levels [77]. 

In [78], the threshold voltage instability during high temperature gate bias (HTGB) test has 
been investigated for a power GaN HEMT. The negative threshold voltage shift, occurring at 
large positive gate biases, has been attributed to holes generated by impact ionization in the 
high-field depleted p-GaN region and accelerated toward the AlGaN layer [79]. Authors in [80] 
have demonstrated the suppression of the negative VTH shift by optimizing the etching and 
passivation of the p-GaN layer. 

2.5.3. Switching stress 

In [81], a switching aging stress was performed under the Safe Operating Area (SOA) of a 
600 V / 30 A power GaN HEMT. The used switching bench offers a low energy consumption 
because no load is used. Also, it places a similar electrical waveform on DUTM, which could 
exist in a large class of power management products such as DC-DC power converters.                  
A 1000 h aging campaign has shown degradation of the DUT electrical characteristics, such as 
increase of RDS(ON), IDSS and IGSS. As presented in [82], these degradations are related to a self-
heating activated mechanism. 

In chapter 5, we have studied the aging of power GaN HEMT under operational switching 
conditions. We have extended our investigation of the aging of GaN HEMT not only in static 
characteristics but also in the dynamic aspect. For this, we have implemented both C-V and S 
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parameters measurements in the GPM laboratory. Also, in this work, we have studied the 
impact of aging the DUT in power converters application by a modeling approach.   

 

2.6. GaN HEMT power losses modeling 

 

Significant improvements in efficiency of power converters can be achieved due to the 
superior switching properties of GaN HEMT. The authors in [83] studied the efficiency of a T-
type inverter with Si IGBT, SiC MOSFET and GaN HEMT at 600 V blocking voltage range.            

Fig. 2.26 (a) shows the schematic of the T-Type converter and Fig. 2.26 (b) shows the 
efficiency analysis at 32 kHz for Si IGBT, SiC MOSFET and GaN HEMT. At 32 kHz, GaN 
HEMT brings up to 1.6 % efficiency gain and up to 0.75 % when using SiC MOSFET. This is 
due to the poor switching performance of Si IGBT. 

 

 

 

Fig. 2.26: Power converter efficiency comparison between Si IGBTs, SiC MOSFETs and GaN HEMTs: (a) T-
type inverter topology (b) Efficiency comparison at 32 kHz [83]. 

The high efficiency of power converters with GaN HEMT are due to the GaN advantage 
technology over silicon devices. As shown in Fig. 2.27, the gate capacitance at the input of the 
GaN HEMT is about four times lower than for a comparable silicon-based solution [84], 
yielding a higher switching rate and higher efficiency as a result of reduced gate drive losses 
[85].  

Another important benefit is low-output capacitance, which results in higher switching 
frequencies and helps to reduce switching losses [86]. Additionally, RDS(on) is about two times 
lower than for Si devices, resulting in lower conduction losses [87]. Finally, the use of GaN 
transistors enable to eliminate the integrated “body” diode. In consequence, achieving higher 
power efficiency by eliminating the reverse recovery loss [88]. 

(a) (b) 
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Fig. 2.27: GaN HEMT package and comparison to Si MOSFET parasitic elements [84]. 

2.6.1.  Power losses in DC power converter  

In a switching mode power converter, such as Boost DC/DC converter topology shown in      
Fig. 2.28 (a), the transistor is continuously switched from the off-state to the on-state and vice 
versa. When the transistor is in the off-state, a high voltage (up to 650 V) is applied between 
drain and substrate, drain and source, and between drain and gate. On the other hand, in the on-
state, the gate is positively biased at voltages higher than 5-6 V (in case of normally-off 
transistors) and a high current (up to 30 A) flow between the drain and source. Finally, when 
the transistor switches from the off-state to the on-state, it crosses a semi-on condition, in which 
the voltage and current on the drain may be simultaneously high (grey areas in Fig. 2.28 (b)).  
 

                              
 

 
 
 
 
 
 
 
 
 
 

 

Fig. 2.28: Boost DC/DC converter: (a) Circuit schematic (b) representation of the different operating regimes of 
the transistor in a boost converter. 

This Boost DC/DC switching application will be used in chapter 5 to evaluate the effect of 
aging of the GaN HEMT power transistors on the power converter efficiency. In this topology, 
the conduction power losses are defined in [89] by: 

• Losses in the inductor:
2       (2.7)L L INP R I=     

IDS VDS 

Switching losses 

Conduction losses 

(a) 

(b) 
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• Losses in the transistor: 
2

( )         (2.8)T DS on INP R I D=    

• Losses in the diode: ( ) ( )2 1         (2.9) D D IN f INP R I V I D=  +   −  

• Duty cycle:                               (2.10)ONT
D

T
=  

The switching power losses are defined by: 

• Turn-on switching losses: 0.5             (2.11)r
r OUT IN

t
P V I

T
=     

• Turn-off switching losses: 0.5            (2.12)f

f OUT IN

t
P V I

T
=     

Where RL is the dc inductor resistance, RDS(on) is the transistor on-resistance, RD is the diode 
series resistance, D is the duty-cycle, and VF is the diode forward voltage. tf and tr are the fall 
and rise times of the transistor drain current, respectively, while T is the period of the control 
signal and TON is the on-state period. The approximate expression for the converter efficiency 
is given in [89] by: 

                                                 (2.13)OUT

OUT L D T f r

P

P P P P P P
 =

+ + + + +
 

where POUT is the output power of the converter. 

 

2.6.2. Estimation of GaN power losses  

 

The estimation of power losses with high convergence to measurements is necessary to 
design efficient power converters using GaN transistors. The authors in [90] have proposed an 
estimation of power losses based on a look-up tables of energy losses to estimate the switching 
losses of the IGBTs. Also, the authors in [91] have estimated and compared the power switching 
energy of GaN HEMTs to equivalent Si devices such as IGBT and MOSFETs. In chapter 3, we 
estimate both the static and dynamic power losses of GaN HEMTs, which are most significant 
in DC-DC power converter with GaN HEMT [92].  

The distribution of power losses in the Boost DC/DC converter of Fig. 2.28 (a) with GaN 
HEMT transistors for VIN = 16 V, VOUT = 34 V and POUT = 15 W are shown in Fig. 2.29 [89]. 
As observed, the majority of losses in the power converter are due to both the conduction losses 
and switching losses of the GaN HEMT.  

In order to study the effect of GaN power losses on the efficiency of power converter, an 
efficient approach for the estimation of losses is necessary. Furthermore, the estimation of the 
GaN HEMT power losses offers to the power converter designers the possibility to estimate the 
power losses of GaN HEMT with high accuracy without the use of complex switching bench, 
which reduces both the time to market and cost. 
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Fig. 2.29: Distribution of power losses in Boost DC/DC converter with VIN = 16 V; VOUT = 34 V                      
and POUT = 15 W [89]. 

The power losses of the GaN HEMT can be estimated using SPICE simulation approach. 
This approach consists of building the compact model of the DUT in a SPICE simulator 
software, such as: LTspice, Orcad, and ADS. The SPICE model of the GaN HEMT is given in 
[93] and described in Fig. 2.30, where RD, RG and Rs are the parasitic resistances at the gate, 
drain and source, respectively. The current source iD determines the current from drain to 
source, which is a function of VGS and VDS. CGS, CGD and CDS are the capacitances between the 
gate and source, the gate and drain and the drain and source, respectively. These capacitances 
are nonlinear functions of VGS, VGD and VDS.  

 

Fig. 2.30: GaN HEMT SPICE model [93]. 

SPICE models of the GaN-based HEMT is constructed on the basis of experimental data. 
Then, the static and dynamic characteristics are obtained by simulation for any power 
conversion switching application.  

Another model that enables the estimation of the GaN HEMT power losses by simulation is 
the compact physical model [94]. This model includes both the current–voltage (I–V) and the 
charge–voltage (Q–V) formulations. Fig. 2.31 shows the topology of the complete GaN HEMT 
compact model. Conduction current is represented by Icon between the drain and source 
electrodes. The capacitances are integrated into charges and used to calculate the displacement 
currents. Reverse conduction between gate and source is represented by Irev. Forward 
conduction from gate to source is represented by Ifor. The current generator Itun between drain 
and gate represents current leakage. Finally, the current generator Ichbd between drain and source 
represents channel breakdown. 

GaN HEMT 
conduction losses 

GaN HEMT switching 
losses  

Diode 
losses  

Inductor 
losses 

31% 

39% 

11% 

19% 
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Fig. 2.31: Compact physical GaN HEMT model [94]. 

The physics-based compact GaN HEMT model allows the estimation by simulation of both 
the conduction and switching power losses of the GaN HEMT. However, this model requires 
detailed information about material properties and internal structure of the device. Otherwise, 
SPICE model does not require information about the physical structure of the device, since it 
based on behavioral equations of the GaN transistor.  

In the literature, various GaN HEMT SPICE models have been proposed for modeling the 
GaN HEMT static and dynamic power losses. References [95] and [96] show a simple and 
accurate segmented behavioral model, which include the important static parameters of the GaN 
HEMTs. However, these models suffer from the discontinuity of the simulated curves, because 
the used equations are divided into three segments according to cutoff, linear and saturation 
regions. 

A comparison of existing SPICE model is shown in Table 2.7 as given in [97]. According 
to this table, the least number of parameters, 59, corresponds to the Curtice model. However, 
the Curtice model does not take into account the electro-thermal effects of the GaN HEMT 
device parameters. Consequently, the Curtice model cannot be used for the estimation of the 
GaN HEMT power losses at various temperature. 

All models have a substantial number of parameters. The Angelov model has a higher 
number of parameters compared to both Curtice and MET models. The larger parameter number 
of the Angelov model introduces a longer parameter extraction time, which is not suitable in 
switching power converter applications. Finally, the Motorola Electrothermal (MET) combines 
both a lower number of parameters and high electrothermal sensitivity of the GaN HEMT 
device parameters, which makes the MET model very attractive for modeling both the static 
and dynamic power losses of the GaN HEMT in power converter applications.  

In chapter 3, we have adopted the SPICE electro-thermal model of Motorola for the 
estimation of the GaN HEMT power losses. Furthermore, The MET SPICE model is used in 
chapter 5 to study the impact of aging the power GaN HEMT under operational switching 
conditions on the power converter efficiency. 
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Table 2.7: Comparison of available GaN SPICE models [97]. 

SPICE Model Number of parameters  Electrothermal model  Origin device context   

Curtice 59 No GaAs MESFET 

Motorola Electrothermal 
(MET) 

62 Yes GaN HEMT 

Angelov 90 Yes GaN HEMT 

 
 

2.7. Conclusion 

This chapter presents the state of art of GaN HEMT power transistors in power converter 
applications. Firstly, it has been reported that the GaN HEMT devices satisfy the requirement 
of the power converter market for a high operating voltage, high operating current, high power 
density, high switching frequency, and strong reliability, which makes the GaN technology an 
attractive candidate for replacing Si power devices in power applications. However, SiC 
technology has always been a hot candidate for GaN in high power and high temperature 
applications. However, the high frequency applications are the main market of GaN and this 
huge market is pushing the GaN to dominate both the Si and SiC markets. Furthermore, the 
increased demand of efficient power conversion systems, makes the GaN devices more 
attractive for automotive and renewable energy industry. Next, the physical properties of the 
GaN semiconductor are presented and compared with those of Si and SiC. It is found that the 
GaN combine both the high-speed and high-voltage performances. This is followed by a 
description of the working principle of the AlGaN/GaN HEMT. Moreover, a comparison of the 
various GaN HEMT normally-off technologies are reported. Next, the various technics for 
aging the GaN HEMT transistors are presented.  Furthermore, the major degradations of power 
GaN HEMT under switching conditions are summarized. Finally, the SPICE modeling 
approach enables the estimation of the GaN HEMT power losses with high accuracy. The 
SPICE simulation tool can be used for studying the impact of the aging the GaN HEMT on the 
efficiency of power converter applications. In the next chapter, an experimental methodology 
for the estimation of the GaN HEMT power losses based on experimental static and dynamic 
measurements using SPICE simulation approach will be presented.   
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Chapter 3: GaN HEMT power losses estimation for switching 

applications  
 

3.1. Introduction 
 

In the previous chapter, the importance of the estimation the GaN HEMT power losses for 
power converter application has been shown. As discussed, various SPICE models have been 
proposed in the literature for estimating the GaN HEMT power losses. However, these models 
do not take into consideration both the static and dynamic behavior of the GaN HEMT. In this 
chapter, a complete methodology for the estimation of the GaN HEMT power losses based on 
experimental measurement is proposed and described.  

First, the pulsed I-V experimental setup is presented. The temperature dependency of the DUT 
static characteristics are discussed at various temperatures: from 5 °C to 115 °C by a step of        
10 °C. The conduction power losses of the DUT is estimated based on a SPICE simulation 
approach for switching circuit applications. The evolution of the conduction losses is modelled 
as a function of both the junction temperature and output current.  

Additionally, the C-V experimental setup is implemented in order to take into account the 
switching losses in the designed SPICE model of the GaN HEMT. The evolution of the 
switching losses is modelled as a function of the output current. The temperature dependence 
of the C-V characteristics is investigated using a Peltier heater plate in the temperature range 
from 5 °C to 115 °C. Moreover, the frequency dependency of the C-V measurements is carried 
out using HP 4192A impedance analyzer in the frequency range from 100 kHz to 10 MHz.  

Next, the low current experimental bench is carried out for measuring the gate leakage current 
(IGSS) of the GaN HEMT. The IGSS current is studied at various temperatures and voltages. The 
gate power losses of the GaN HEMT has been modelled by measuring experimentally the gate 
leakage current of the DUT. 

As a result, we have built an accurate power losses model of the GaN HEMT based on 
experimental measurements, which include the major power losses in power converter 
applications. This approach offers to the power converter designers the possibility to estimate 
the power losses of GaN HEMT with high accuracy without the use of complex switching 
bench, which reduces both the time to market and cost. Finally, using the extracted power losses 
model of the GaN HEMT, we have estimated the efficiency of a 30 V / 200 V DC-DC converter 
stage with GaN HEMT for a solar energy application. 

 

3.2. Static characterization of GaN HEMT 
 

In this section, the conduction power losses of the GaN HEMT have been estimated by 
modelling the static I-V characteristics of the GaN HEMT. First, the I-V experimental setup 
has been presented. The estimation of the conduction power losses is performed by a SPICE 
simulation using a non-segmented Electro-thermal model. Then, the temperature dependency 
of the I-V characteristic is studied from a low temperature (5˚C) to a high temperature (105˚C) 
using a Peltier heater plate. Furthermore, the modelled device is verified in a real switching 
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application using a developed efficient switching bench. Finally, the evolution of the GaN 
HEMT power losses in switching applications is modelled as a function of the temperature and 
output current. 

 

3.2.1. Pulsed I-V Experiment setup  

 

The Current-Voltage (I-V) characterization has been performed by using AMCAD pulsed I-V 
system [1]. The system consists of two independently operating mode: Pulsed or DC.                 
Fig. 3.1 shows the I-V pulsed bench with associated instruments. 

 

 

Fig. 3.1: I-V pulsed bench with associated instruments. 

The I-V pulsed bench is composed of: 

• AMCAD System: is the main unit; 

• Data capture and analysis computer: enable the control and configuration of the 
AMCAD System using the IVCAD interface. Also, they offer the treatment and analysis 
of the measured data using integrated tools, such as: visualization of measurement, pre-
treatment of data and modeling;  

• Peltier heater plate: provides a uniform distribution of temperature on bottom surface of 
the DUT. The temperature range is between 5 °C and 150 °C. 

Fig. 3.2 shows the I-V pulse chronogram. The I-V measurement is performed during TM 
period (measurement window). The drain pulse is larger than the gate pulse because the drain 
response time is lower than the gate response time. The drain current is measured near to the 
end of the flat top of the transient pulse. 
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Fig. 3.2: I-V pulse chronogram. 

 

Table 3.1 shows the used configuration of the I-V pulse timing. The measurement 
frequency is equal to 100 Hz. The measurement window time is equal to 0.4 µs. 

 

Table 3.1: I-V pulse timing. 

 Gate pulse (TG) Drain pulse (TD) Measurement window (TM) Pulse period (T) 
Time 2.5 µs 4.0 µs 0.4 µs 100 ms 

 

Pulsed I-V measurements are the most relevant characterization technique compared to 
conventional DC measurements [2], since they enable the elimination of both the effects of self-
heating and traps during the measurement. The pulsed I-V measurements allow output 
characteristic (IDS-VDS), transfer characterization (IDS-VGS), characterization of thermal 
phenomena and trapping. The main characteristics of the AMCAD bench for pulsed I-V 
measurements are: 

• Measurement probes 1k V / 30 A. 

• Pulses less than 200 ns. 

• All measurements are easy to perform, store and view with IVCAD software [3]. 

• Integrated measurement units provide high-bandwidth, high voltage accuracy and 
current measurements simultaneously: 50 MHz bandwidth, 16-bit resolution, 0.1% 
high accuracy, and fast acquisition. 

The principle of pulsed I-V measurements is illustrated in Fig. 3.3 It consists of the I-V 
characteristics measured under isothermal conditions at a given polarization point, defined by 
its quiescent voltages Vdsq and Vgsq. To characterize the I-V network at given polarization 
points, both the gate and drain control voltages are pulsed from these polarization points to new 
instantaneous values named Vgsi, Vdsi, Igsi and Idsi. 
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Fig. 3.3: Principle of pulsed I-V measurements. 

 

3.2.2. Temperature dependency of GaN HEMT static characteristics 

 

The investigation of the temperature dependency of GaN HEMT power transistors is vital 
to the use in power converter applications. Such an investigation is important particularly to 
understand the cause of deterioration of their electrical performances at elevated temperatures 
[4]. In this section, the I-V characteristics of a GaN HEMT power transistor at operating 
temperatures are studied experimentally. Moreover, the physics underlying various high-
temperature operations of the I-V characteristics is discussed. 

The DUT is a GS66508P from GaN Systems [5]. It is a p-type gate normally-off 
AlGaN/GaN power transistor which operates in the range of 650V/30A. Fig. 3.4 shows both a 
bottom and top views of the used GaN transistor package. The device package allows to study 
the temperature dependency of the GaN HEMT characteristics from low temperature (5˚C) to 
high temperature (105˚C). Fig. 3.5 shows the p-AlGaN gate formed over the undoped 
AlGaN/GaN heterostructure [6]. The p-AlGaN lifts up the potential at the channel, which 
enables normally-off operation. 

 
 

                                 
 

Fig. 3.4: GS66508P package [7]: (a) Top view; (b) bottom view. 
 

(a) (b) 
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Fig. 3.5: Schematic illustration of the tested GaN HEMT power transistor structure [6]. 

As mentioned before, the static characterization is performed using AMCAD pulsed I-V 
system. The pulses setting is fixed at a pulse frequency of 100 Hz with a gate pulse duty cycle 
of 0.04%. A pulse width of 4 μs is short enough to ensure iso-thermal measurement of pulsed 
I-V GaN HEMT characteristics. The used I-V pulsed probes have a high measurement 
accuracy, which is equal to ±100mA.  

The used GaN HEMT is characterized at various temperatures ranging from 5 ˚C to 105 ˚C 
in order to study the effect of temperature on GaN power transistors. The temperature is fixed 
by a Peltier heater plate.  

The measured output characteristic curves for a gate-to-source voltage (VGS) equals to 6V 
under operating temperatures equal to 5 °C, 25 °C, 75 °C and 105 °C are shown in Fig. 3.6 (a). 
As observed, the drain current ID is modulated by the voltage VGS. The transfer characteristic 
curves are obtained for a drain-source voltage (VDS) equals to 2V and for various temperatures 
equal to 5 °C, 25 °C, 75 °C and 105 °C see Fig. 3.6 (b). The tested device has the advantage of 
safe normally-off operation for temperature up to 105˚C. 

According to the output characteristics (Fig. 3.6 (a)), the evolutions of the following 
electrical parameters are extracted: the on-state resistance (RDS(ON)), the threshold voltage 
(VTH). From the transfer characteristic (Fig. 3.6 (b)), the evolution of the transconductance gm 
versus temperature is determined.  
 

3.2.2.1.   On-state resistance RDS(ON) 

 

The RDSON is defined as the inverse of the slope of output characteristics in the linear 
region and is calculated at VGS = 6 V by [8]: 
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Fig. 3.6: Measured (a) Output characteristics at VGS = 6V; (b) Transfer characteristics at VDS = 2 V of GaN 
HEMT for various temperatures: 5 °C, 25 °C, 75 °C and 105 °C.                   

The measurement conditions of normalized RDS(ON) are: VGS = 6V and varying temperature 
from 5 °C to 105 °C. Fig. 3.7 shows the variation of the normalized RDS(ON) versus temperature. 
An increasing of 180 % in on-state resistance at 105 °C can be observed compared to its value 
at 5 °C.  

The temperature dependency of RDS(ON) is due to the impact of temperature on the channel 
between the source and gate contacts [9]. In fact, if the device temperature is raised, the low-
field electron mobility in the channel is decreased [7], and a proportional increase of the channel 
resistance related to the drain-source resistance (RDS) can be expected. This result is also 
confirmed in reference [10] which has suggested to use GaN HEMT transistors with higher        
2-D electron gas (2DEG) channel density for enhanced performances.  

 

Fig. 3.7: Normalized RDS(ON) as a function of temperature at VGS = 6V. 

3.2.2.2   Threshold voltage (VTH) 
 
The VTH is extracted using Extrapolation in the Linear Region (ELR) method [11]. The 

temperature dependency of the extracted threshold voltage is given in Fig. 3.8 (a). The 
threshold voltage of GaN HEMT at 105 °C decreases about 12 % compared to their values at 5 
°C. 

(a) (b) 
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The dependency of VTH on temperature is mainly due to holes injected from the metal to 
the p-GaN layer [12]. The injected holes are accumulated at the p-GaN/AlGaN interface. This 
leads to a negative shift in threshold voltage, which can also be observed in [12]. Recent studies 
[13] show that using hydrogen plasma treatment instead of etching technology may compensate 
holes in the p-GaN layer above the two-dimensional electron gas (2DEG) channel to release 
electrons in the 2DEG channel and form high resistivity area to reduce leakage current and 
increase threshold voltage stability.  

 

3.2.2.3   Transconductance (gm) 
 
The gm quantifies the drain current variation with a gate-source voltage variation while 

keeping the drain-source voltage constant. The transconductance gm is defined as the maximum 
first derivative of the transfer characteristic in the saturation region and is calculated at              
VDS = 7 V using the following equation while VDS is the bias voltage [8]: 
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Fig. 3.8 (b) shows the variations of the transconductance gm as a function of temperature. 

The transconductance gm at 105 °C decreases about 58.38 % compared to their values at 5 °C. 
The decreasing of gm with the increase of temperature is mainly due to the decrease of both the 
electron mobility in the channel and the electron velocity [14]. The decrease of the 
transconductance when increasing temperature is observed in [15] which has confirmed that the 
channel mobility decreases with the increase of temperature [16]. 

                          

Fig. 3.8: (a) Threshold voltage; (b) Transconductance as a function of temperature at VDS = 2 V. 

 

3.2.3. Modeling GaN HEMTs Power Transistors 
 

3.2.3.1. Modeling methodology  
 

The proposed methodology for modeling power GaN HEMTs is shown in Fig. 3.9, which 
is composed of seven steps.  

 

(a) (b) 
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Step 1: The first one concerns the choice of the DUT. For that, a fresh GS66508P from GaN 

Systems [5], which is a p-type gate normally-off AlGaN/GaN power transistor in the range of 
650 V/30 A is selected.  

Step 2: The second step is to fix experimentally the temperature of the DUT at 25 °C using 
a Peltier heater plate.  

Step 3: The third step is to perform Pulsed I-V measurements using AMCAD pulsed I-V 
system at a pulse frequency of 100 Hz with a gate pulse duty cycle of 0.04 %. The pulse width 
of 4 μs is shorted enough to ensure iso-thermal measurement of pulsed I-V GaN HEMT 
characteristics. The used I-V pulsed probes have a high measurement accuracy, which is equal 
to ±100 mA.  

Step 4: The fourth step is to import the experimental output characteristic (IDS-VDS) and 
transfer characteristic (IDS-VGS) to a data analyzer software, where the data will be treated and 
analyzed.  

Step 5: The fifth step is to fit the experimental I-V static characteristic curves, then we 
extract the drain current model parameters. In order to develop the thermal model, we repeat 
the same previous stages for different temperature starting from 5 °C until we reach the 
maximum allowed temperature which is equal to 115 °C with a step of 10 °C.  

The proposed drain current model is based on a non-segmented, smooth and continuous 
equation inspired from the Motorola Electro-Thermal Model (MET) developed by Curtice 
et al. [17] and described in [18], the specific equation is given by: 
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Fig. 3.9: Proposed methodology for estimating the GaN HEMT power losses. 
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Where ID is the drain to source current, VDS is the drain to source voltage, VGS is the gate 
to source voltage K is the device forward transconductance (A.V-1) parameter at 25 °C, P is 
the output conductance (V-1) at 25 °C, b and c are related parameters of the transfer 
characteristic, while m, n, d and e are related parameters of the output characteristic. These 
parameters are obtained by using the Levenberg-Marquardt (L-M) algorithm [19], which is 
an optimization algorithm appropriate to solve non-linear equations such as Eq. (3.3). 

Step 6: The sixth stage of the proposed methodology concerns the experimental validation 
of the electro-thermal model in a real power switching application. Fig. 3.10 (a) shows the 
schematic of the developed switching bench [20], this circuit offers a low energy 
consumption because no load is used. Also, it uses similar electrical waveforms on DUTM, 
which could exist in a large class of power management products such as DC-DC power 
converters [21]. Moreover, it enables dynamic measurement of the RDS(ON), hence the 
calculation of conduction power losses. The electrical signals on DUTM are limited by two 
DC supplies. A microcontroller unit [22] generates Pulse Width Modulation (PWM) signals 
with a frequency range from 0 to 128 kHz and a duty cycle with 1/128 resolution. The DUTV 
switches with signal PWM2, the complimentary signal of PWM1 switches both DUTM and 
DUTC. The Galvanic isolated drivers separate control and power blocks [23].  

The DUTM current and voltage experimental waveforms are shown in Fig. 3.10 (b). The 
VDS voltage switches from 1.14 V to 24 V with a rise time equals to 53.46 ns and IDS current 
switches from 0 A to 14 A with a rise time equals to 3.94 μs. The studied switching 
conditions have been chosen to allow the DUTM switches in the operational switching 
conditions of power converters.  

 

       

 

Fig. 3.10: (a) Schematic of the switching bench; (b) Current and voltage waveforms on DUTM for switching 
conditions: 50 kHz, duty-cycle = 50 %, and 14 A / 24 V operating conditions. 

The developed switching bench with associated instruments and power supplies are shown 
in Fig. 3.11. 

 
 

(b) (a) 
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Fig. 3.11: Switching bench platform and associated instruments.  

Step 7: The last stage is the estimation of the power losses of the GaN HEMT in a 
switching circuit application as a function of both temperature and output current. 

 

3.2.3.2. Results and discussions 
 

In this section, we present the results of the extracted MET model and comparisons to the 
literature. Also, we study the temperature dependency of the GaN HEMT and we describe 
the MET thermal model. The efficiency of the extracted electro-thermal model is then 
validated in a real switching application for three chosen temperatures: 57 °C, 69 °C and     
86 °C. To evaluate the performance of the curve fitting, the error between measurements 
and model is given by: 
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Where E is the experimental value, M is the modelled value and n is the number of fitted 
points. The error reduction is defined as the difference between the constructor model (given 
by the manufacture) error and the MET model error. The equation of the drain current 
constructor model is given in [24] by: 
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Where c1, b, slp, x0, x1, c2 and c3 are related parameters of the output characteristic. The 
application of both the Levenberg-Marquardt algorithm [25] and Orthogonal Distance 
Regression algorithm on the constructor model did not show convergence of fitting to the 
experimental data. The proposed MET Model has the advantage to have less parameters 
compared to the constructor model. 
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(a) (b) 

a) Static characteristics 

 

Fig. 3.12 (a) and (b) show the comparisons of output and transfer characteristics of GaN 
HEMT obtained by: constructor model (dashed lines), MET model (dot) and measurements 
(solid lines). Table 3.2 summarized the static parameters comparison between 
measurements, constructor model and MET model. The constructor model suffers from an 
important mismatch compared to measurements, which produces high relative error to the 
static characteristics. Then, to improve simulation accuracy, we propose the electro-thermal 
model based on Eq. (3.3). Table 3.3 shows the extracted static model parameters at 25 °C.  

From Table 3.2, the MET model shows a good convergence to measurements, which 
enables an error reduction of RDS(on) by 15.2 %, gm by 10.19 % and VTH by 6.6 % compared 
to the constructor model static characteristics. Moreover, the mismatch between the MET 
model and measurements is significantly reduced compared to the constructor model as 
shown in Fig. 3.13 by calculating the mean relative error of constructor model and MET 
model for static characteristics using Eq. (3.4). By comparing the curve fitting of the MET 
model with others models provided in the literature [26-27] using the mean relative error 
given in Eq. 3.4 (Fig. 3.14), we conclude that the MET model shows lower mean relative 
error for the output characteristic at VGS = 3 V and 25 °C. The accuracy of the MET SPICE 
model is due to the convergence of the model parameters in Eq. (3.5) with the experimental 
data. As observed, the MET model uses a non-segmented and smooth continuous equations 
to describe the static characteristic of GaN HEMT. 

 

                         
 

Fig. 3.12: Comparison between measurements, Constructor model and MET model: (a) Transfer characteristics 
(b) Output characteristics. 

 

Table 3.2: Static parameters comparison between measurements, constructor model and MET model. 

Parameter RDS(on) (mΩ) gm (S) VGS(TH) (V) 

Measurements 43.26 21.58 1.82 
Constructor model 50.65 25.63 1.65 
Constructor model Error (%) 17.08 18.76 9.34 
MET model 42.46 23.43 1.77 
MET model Error (%) 1.84 8.57 2.74 

 

 

VDS=7V@25°C 

VDS=1V@25°C 

VGS=6V@25°C 

VGS=3V@25°C 
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Table 3.3: Extracted MET model parameters at 25°C. 

Parameter K B c M n P d E 

Value 1.42 1.65 0.14 8.12 -1.15 0.75 1.94 -0.35 

 

 

Fig. 3.13: Comparisons of Mean Relative Error between constructor model and MET model for both transfer 
and output static characteristics. 

 

Fig. 3.14: Comparisons of Mean Relative Error between MET model, constructor static model and literature for 
the output characteristic at VGS = 3 V and 25 °C. 

 

b) Thermal characteristics  

 

To take into consideration the thermal behavior of the tested device in the MET model, 
the device model should include the temperature dependence of device parameters. 
However, it is observed from Fig. 3.15 (a) and (b) that the constructor thermal model suffers 
from high mismatch compared to measurements. We performed experimentally in Fig. 3.16 

the evolution of the device parameters K and P versus temperature. The results in Fig. 3.16 
are obtained by calculating experimentally the MET model parameters K and P at various 
temperatures: started from 5 °C to 105 °C by a step of 10 °C. The K and P parameters are 
extracted using a curve fitting of the MET model to the experimental output and transfer 
characteristics at each temperature. No temperature dependency was observed for others 
MET model parameters b, c, m, n, d and e. To overcome this mismatch of constructor 
thermal model, a quadratic fit of the device parameters (K and P) as a function of temperature 
is given in [28] by:  
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Where TC1, TC2, TC3 and TC4 are temperature coefficients, which are extracted using 
Levenberg-Marquardt algorithm and given in Table 3.4. The K and P parameters are 
uniformly decreased when increasing temperature as shown in Fig. 3.16. 

From Fig. 3.15 (a) and (b), the MET thermal model shows a good convergence to 
measurements in term of temperature dependency. The MET model fit very well to 
measurements at two temperatures for both output and transfer characteristics.  

                        
 

Fig. 3.15: Comparisons between MET model (dot), constructor model (dashed) and measurements (solid): (a) 
Transfer characteristic for VDS = 7 V at 55 °C and 115 °C; (b) Output characteristic for VGS = 6 V at 55 °C and 
115 °C.             

Table 3.4: Extracted MET thermal model temperature coefficients. 

Parameter TC1 TC2 TC3 TC4 

Value -8.02E-3 3.22E-5 -3.75E-3 4.01E-6 

 

 
Fig. 3.16: Evolution of the device parameters K and P when varying temperature from 25 °C to 115 °C. 

c) Validation of the model 

 

In order to verify the accuracy of the extracted MET model, we implement the switching 
circuit of Fig. 3.10 (a) in the LTspice simulator under the switching conditions described in 
Table 3.5. The off-state voltage VDS(OFF) is chosen equal to 24 V, which is low enough to 

(b) (a) 
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ensure the non-effect of traps on dynamic measurements [29]. Also, the chosen frequency 
of 50 kHz and the duty-cycle of 50 % could be applied to a large application of power 
converters.  

The estimation of the junction temperature TJ from measurements is necessary in order to 
compare the conduction power losses between measurements, MET and constructor electro-
thermal models. The temperature TJ is estimated using the thermal model of DUTM 
described in [30]. By using the thermal Ohm’s law, we obtain: 

(3.7)                                                     J JA Aloss
T P T=  +  

Where ϴJA is the total thermal resistance from junction to ambient, which is equal to      
3.63 °C/W based on manufacturer datasheets and SPICE model [7], TA is the ambient 
temperature fixed at 25 °C by heatsink cooling, and Ploss is the experimental total power loss 
of DUTM over one period in watts. From measurements, Ploss is calculated using Eq. (3.8), 
TJ is calculated using Eq. (3.7), and the device parameters (K and P) that correspond to the 
temperature TJ are calculated using Eq. (3.6). Table 3.5 shows the calculated values of Ploss, 
TJ, K and P for the three different switching profiles. 
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After ensuring that the DUTM switches under the same electrical and thermal conditions 
in both experimental and simulation, a comparison of the conduction power loss (PCond) 
between measurements, constructor model and MET model is achieved. The PCond is defined 
in [31] by:  

2                                                     (3.9)DCond dyn
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The dynamic resistance (Rdyn) is calculated by: 
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 Where VDS(ON) and IDS are the drain-to-source voltage and the drain current during the on 
state respectively and D is the duty-cycle. From current and voltage temporal waveforms of 
DUTM, the experimental and simulated power PCond for both constructor and MET models 
are calculated using Eq. (3.9) and shown in Fig. 3.17 for three junction temperatures of 57 
°C, 69 °C and 86 °C. A good convergence of conduction power loss was achieved using the 
MET model.  

Table 3.6 compares the conduction losses between simulation and measurements of the 
tested device at three junction temperatures: 57 °C, 69 °C and 86 °C. As can be observed, 
the conduction power losses error between the measurements and MET model is much lower 
to that of the constructor model at various junction temperatures. The error reduction is 
defined as the difference between the constructor model error and the MET model error. 
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Table 3.5: Switching conditions applied to DUTM at: VDS(OFF) = 24 V, f = 50 kHz and Duty-cycle = 50 %. 

Parameter IDS (A) Ploss (W) TJ  (°C) K (A.V-1) P (V-1) 
Profile 1 8 8.70 57 1.11 0.67 
Profile 2 12 12.20 69 1.01 0.63 
Profile 3 14 16.68 86 0.90 0.54 

 

 
Fig. 3.17: Comparisons of conduction power loss between measurements, MET model and constructor model for 

three values of TJ: 57 °C, 69 °C and 86 °C. 

 

Table 3.6: Measurements, MET model and constructor model comparisons of conduction power losses. 

Conduction power loss (W) 57 °C 69 °C 86 °C 

Measurements 3.22 5.31 8.37 

MET model 3.55 5.27 7.46 

Constructor model 2.60 3.83 5.39 

Error reduction (%) 1.55 27.11 24.73 

 

 

d) Estimation of the power losses 
 

The conduction power losses are estimated in a switching power application. For that, we 
calculate by simulation the PCond of the extracted MET electrothermal model in the switching 

circuit of Fig. 3.10 (a) for  0, 20
DS

I A  and  5 ,115T C C    . Fig. 3.18 (a) shows the evolution 
of the PCond for various values of IDS at three temperatures: 25 °C, 65 °C and 115 °C.                    
Fig. 3.18 (b) shows a 3D graphical representation of the conduction energy losses (ECond)  at 
the following switching conditions: f = 50 kHz, Duty-cycle = 50 % and VDS = 200 V. 

From the results shown in Fig. 3.18 (a), we estimate the conduction power losses as a 
function of the drain current IDS and the temperature T using a second order polynomial 
relationship given by Eq (3.11) [32]. Also, we estimate the conduction energy losses as a 
function of the drain current IDS and the junction temperature TJ using a 2D polynomial 
relationship Eq (3.12). 
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Where a, b and c are coefficients extracted using the L-M algorithm. Table 3.7 presents the 
extracted parameters of both the estimated conduction power losses PCond(IDS,T) and the 
conduction energy losses ECond(IDS,T).  

  

 

Fig. 3.18: Conduction losses estimation: (a) power losses at three temperatures: 25 °C, 65 °C and 115 °C; (b) 
energy losses at f = 50 kHz, Duty-cycle = 50 %, VDS = 200 V. 

 

Table 3.7: Extracted parameters of the estimated conduction power losses PCond(IDS,T). 

Parameter a1 a2 a3 b1 b2 b3 c1 c2 

Value 8.22E-9 1.64E-4 0.05948 1.47E-6 5.67E-5 0.02813 -3.94E-6 1.49E-4 

Parameter c3 z0 A b C d f  

Value -0.05323 6.63 E-3 -1.69E-3 -1.40E-4 7.00E-4 2.81E-7 3.34E-5  

 
 
To summarize, based only on experimental I-V pulsed static characterization, the proposed 

model of losses enables the estimation of the conduction power losses of GaN HEMT in power 
switching applications for a specified operational value of current and temperature.  

 
 
 
 
 
 
 
 
 

 

(a) (b) 
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3.3. Dynamic characterization of GaN HEMT 
 

In this section, the switching power losses of the GaN HEMT have been estimated by 
modelling the dynamic C-V characteristics of the GaN HEMT. First, the C-V experimental 
setup has been presented. Then, both the temperature and frequency dependencies of the C-V 
characteristic are studied. Finally, the evolution of the power switching losses has been 
modelled for various values of IDS. 

 

3.3.1. C-V experimental setup 
 

The accuracy of the developed SPICE model has been improved by modelling of dynamic 
characteristics in order to take into consideration the switching losses when designing power 
converters with GaN HEMTs. Fig. 3.19 (a) shows the C-V bench with the associated 
instruments, which include: the HP 4192A impedance analyzer, Data capture and analysis 
computer, Ground connector and DUT.  

The HP 4192A is widely used for the measurement of the C-V characteristics of the 
transistors [33]. This impedance analyzer offers broad frequency range from 5 Hz to 13 MHz 
and it is very convenient since it can be fully computer controlled [34]. The C-V measurements 
were performed using HP 4192A impedance analyzer at a frequency of 1 MHz.  

Prior to the C-V measurements, both calibration and initialization steps should be 
performed. 

 

3.3.1.1. Calibration 
 

The analyzer was calibrated at the short and open modes. The calibration improves the 
precision of measurements by eliminating the parasitic elements [35].  

 

3.3.1.2. Initialization 
 

Before performing the C-V measurement, the DUT is first initialized and then characterized. 
The device initialization process consists of passing a low current in the drain for a short period 
in the range of 2 seconds in order to avoid a self-heating of the device.  

The proposed initializing process enables the detrapping of charge under the gate. This step 
allows to create a “stable” and reproducible initial state for the device. Fig. 3.19 (b) shows the 
experimental detrapping setup which consists of a DC voltage generator and both IDS current 
and VDS voltage measurements.  
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Fig. 3.19: C-V experimental setup: (a) CV bench; (b) detrapping setup. 

To confirm that the detrapping method is effective and complete, we have periodically 
remeasured the CGS-VGS characteristic at room temperature for various length of time: 0, 5 min, 
10 min, 15 min and 20 min. The resulting C-V measurements have been reproducible with a 
mean relative error equals to 2.08 %. 

 

3.3.1.3. Measurement circuits for CGS, CGD and CDS 

 

The measurement circuits for CGS-VGS, CGD-VGD and CDS-VDS characteristics based on an 
impedance meter (HP4292A) are shown in Fig. 3.20. In case of CGS capacitance measurement, 
an AC signal is injected at the gate via the high side of the impedance meter and the AC current 
flowing into the source is sensed at the low side of the meter, which is at ground potential. The 
drain is also connected to ground but the AC current into this terminal is not sensed by the 
meter. Thus, the impedance meter measures only CGS as a function of the gate-to-source bias 
VGS. The stray capacitances on chip (e.g. gate and source pads capacitances) are measured. 
These capacitances are constants and not affect the extraction process [36]. 

           

 

Fig. 3.20: Measurement circuit for the C-V characteristics: (a) CGS-VGS; (b) CGD-VGD; (c) CDS-VDS. 

 

(a) (b) 

(a) (b) (c) 
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3.3.2. Temperature-dependent capacitance–voltage measurements 

 

Understanding the temperature dependence of the GaN HEMT C-V characteristics is of a 
great importance to the successful design and manufacture of the devices. Thus, it is necessary 
to investigate the C-V characteristics over a wide temperature range in order to understand the 
capacitance temperature dependency and the nature of parasitic capacitances at the metal        
semiconductor interface [37]. For this, the forward and reverse bias C-V measurements of the 
GaN HEMT contacts have been performed in the temperature range from 5 °C to 115 °C. The 
temperature is fixed by a Peltier heater plate. 
 
3.3.2.1. CGS-VGS characteristic 

 

The CGS is a measure of the variation of the gate charge QG with respect to VGS, and is given 
by [38]: 

                                                                        (3.13)G
GS

GS

Q
C

V


=


 

The maximum of /GS GSC V   corresponds to the point when QG is changing most rapidly 

due to the applied VGS. This represents the onset of strong inversion in the channel 2DEG. 
Hence, the VTH can be defined as the VGS at which /GS GSC V   is maximum. Fig. 3.21 (a) 

shows the measured CGS-VGS plot of the tested GaN HEMT and Fig. 3.21 (b) shows the 
corresponded derivative of CGS-VGS plot. The extracted VTH is equal to 1.3 V. As can be 
observed, bellow VTH, QG is negligible due to the lack of electrons in the channel under the 
gate. Thus, CG is also small. Above VTH, CGS quickly rises as electrons are induced in the 2-
DEG channel. After the 2-DEG channel is fully turned-on, CGS exhibits a gradual decrease as 
VGS rises [39]. 

              

 

Fig. 3.21: (a) Gate to source capacitance CGS; (b) Derivative of CGS-VGS plot. 

Fig 3.22 (a) shows the measured CGS-VGS characteristics versus VGS, which sweeps from -
3V to 7V under operating temperatures equal to 5°C, 45°C, 85°C and 115 °C. The CGS is the 
maximum of CGS capacitance at 5 °C. It is observed that the CGS(Max) decreases when increasing 
the temperature and the trends of capacitance versus voltage are similar. Fig 3.22 (b) shows the 

(a) (b) 
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variation of CGS(Max) versus temperature. A decreasing of 8.22% in CGS(Max) at 115°C can be 
observed compared to its value at 5°C.  

          

 

Fig. 3.22: (a) CGS-VGS characteristics for various temperatures: 5°C, 45°C, 85°C and 115 °C. (b) CGS(Max) as a 
versus temperature. 

 

3.3.2.2. CGD-VGD characteristic 

 

The temperature dependency of the measured CGD-VGD under operating temperatures equal 
to 5°C, 45°C, 85°C and 115 °C is shows in Fig 3.23 (a). The gate-to-drain voltage (VGD) sweeps 
from -3V to 7V by a step of 0.1V. It is observed that CGD capacitance in the inversion region of 
the tested GaN HEMT at 105 °C decreases when increasing the temperature. Fig 3.23 (b) shows 
the variation of CGD(Max) versus temperature. A decreasing of 9.34% in CGD(Max)  at 115°C can 
be observed compared to its value at 5°C.  

The decrease of both the gate capacitances CGS and CGD when increasing the temperature is 
also observed in [40] and is related to the variation of Mg-doped p-GaN mobility under the 
Schottky contact of the GaN HEMT. The expression of the Schottky gate capacitance CG is 
given by [41]: 

 

( )
2

                                                      (3.14)
2

s
G

bi

q A N
C

V V


=

+
 

 

Where 𝑉bi is the built-in potential, 𝑁 is the carrier concentration, 𝑞 is the electronic charge, 𝐴 is the area of the Schottky contact, and 𝜀s is the permittivity of the semiconductor for AlGaN 
barrier layer.  

Authors in [42] have calculated the temperature dependence of the carrier concentration 𝑁 
parameter. They found that the carrier concentration decreases with temperature, and the values 
of 𝑁 vary from 2.767×1021 cm−3 to 1.952×1021 cm−3 in the temperature range from 223 K to 
398 K. 

(a) (b) 
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Fig. 3.23: (a) CGD-VGD characteristics for various temperatures: 5°C, 45°C, 85°C and 115 °C. (b) CGD(Max) as a 
versus temperature. 

 

3.3.2.3. CDS-VDS characteristics 
 

The measured CDS-VDS characteristics at various temperatures equal to 5°C, 45°C, 75°C 
and 115 °C is shown in Fig. 3.24 (a). The VDS sweeps from 0V to 20V by a step of 1V. As can 
be observed, the maximum CDS capacitance increases when increasing the temperature.           
Fig. 3.24 (b) shows the variation of CDS capacitance with regard to the temperature. An 
increasing of 0.62% in CDS at 115°C can be observed compared to its value at 5°C.  

According to [43], the depletion width of the AlGaN layer affects the value of CDS. Authors 
in [42], have observed that the depletion width of the ALGaN layer decreases with temperature, 
and varies from 4.675 nm to 4.644 nm in the temperature range from 223 K to 398 K. The 
AlGaN parasitic capacitance is given in [43] by: 

 

0                                                     (3.15)AlGaN AlGaN

AlGaN

A
C

d
 =  

 

Where dAlGaN is the depletion width of the AlGaN layer and ε0 is dielectric constant of 
vacuum (ε0 = 8.85 1014 F/cm) and εAlGaN dielectric constant of the AlGaN (εAlGaN = 8.8). 

From Eq. (3.15), the decrease of the depletion region with temperature induces a positive 
change of CDS capacitance, which is confirmed in [43]. 

(a) (b) 
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Fig. 3.24: (a) CDS-VDS characteristics for various temperatures: 5°C, 45°C, 85°C and 115 °C. (b) CDS versus 
temperature at VDS equals 10 V. 

 

3.3.3. Frequency dependent of C-V measurements 
 

With the aim to investigate the parasitic frequency-dependent switching losses, C–V 
measurements are carried out using HP 4192A impedance analyzer on a fresh GaN HEMT in 
the frequency range from 100 kHz to 10 MHz. Fig. 3.25 (a) shows the frequency-dependent C-
V measurements. The capacitance was measured with an AC signal with amplitude of 50 mV 
at frequencies ranging 100 kHz, 1 MHz and 10 MHz. The gate voltage was swept from 
depletion (−3 V) to accumulation (7 V) by a step of 0.1 V. As can be shown in Fig. 3.25 (a), 
the C-V characteristic of the DUT presents a frequency dependency by increasing the ac signal 
frequency from 1 MHz to 100 kHz. It can be noticed that the C-V characteristic in the inverse-
bias (VGS < VTH) significantly increases when increasing the frequency from 100 kHz to 10 
MHz. This distortion in the C-V characteristic when increasing the frequency is mainly 
originates from the increased gate leakage and insufficient ac-signal frequency [42]. Thus, to 
obtain the C-V characteristics within a wide bias range, it is necessary to boost the measurement 
frequency up to 1 MHz. However, when biased at forward voltages (VGS > 0 V), the measured 
capacitance did not show a significant dependency on the frequency. 

Fig. 3.25 (b) shows C-V characteristics measured on a tested GaN HEMT at 1 MHz and at 
room temperature. The data were taken for the two voltage sweep directions (the direction is 
marked by the arrow near each curve). As can be observed, the VTH hysteresis with a shift of 
0.72 V when the bias swept from −3 V to 7 V and 7 V to −3 V. According to [44], The hysteresis 
in the C-V measurement is induced by the charge trapped near the p-GaN interface, which 
induces the threshold voltage instability due to their different electron capture/emission time 
when measured in different directions. 

(a) (b) 
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Fig. 3.25: (a) C-V-f measurements; (b) Measured CGS-VGS characteristics at 1 MHz and at room temperature. 
Solid curves correspond to the voltage sweep from negative to positive values of VGS and dashed curves 

correspond to the opposite sweep direction. 

 

3.3.4. C-V modeling methodology 

 

In power transistor models, it is very important that device capacitances are modelled 
accurately so that switching losses and gate timing requirements of the converter can be 
accurately determined [45]. The modeling of the dynamic behavior of the power GaN HEMT 
required sensitive C-V measurements, since the GaN transistors have lower parasitic 
capacitances in the range of 100 pF [24] compared to Si devices which are in the range of      
1000 pF [46]. This makes the GaN technology very attractive for both RF markets and power 
converter applications with high speed and low power switching losses. For that, an accurate 
dynamic model is necessary. In the literature, several capacitance models of GaN transistor 
have been proposed. References [47] and [48] have modelled the GaN HEMT capacitance by 
the series combination of a fixed capacitance, representing the oxide capacitance of a MOS gate 
and a SPICE model for the diode to represent the field-dependent semiconductor capacitance 
[49]. However, these models do not fit the C-V measurements of the studied DUT, because the 
C-V characteristic of the p-GaN gate HEMTs are different to that of Si MOS gate transistors, 
due to the Mg doper concentration under the gate of the studied GaN transistor which enables 
a normally-off behavior of the GaN HEMTs. 

The proposed methodology for modeling the non-linear capacitance of the GaN HEMT is 
to extract the one-dimension model. In fact, the gate to drain capacitance CGD depends only on 
VGD voltage that will be selected close to the application range area between -3 V and 7 V. The 
CGS depends on intrinsic VGS voltage, chosen close to the application range area between -3 V 
and 7 V. The output Capacitance CDS depend on VDS voltage, selected close to the application 
range area between 0 V and 20 V. This approach reduces significantly the complexity of the 
model, and improves both the speed and convergence behavior of the simulation. The nonlinear 
functions chosen to fit the extracted CGS, CGD and CDS capacitances are based on the equations 
given by [50].  

(a) (b) 
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Where, C0, C1, C2, A, B are related parameters of the CGS-VGS and CGD-VGD characteristics 
and the VP is the pinch-off voltage. Fig. 3.26 shows the representation of these parameters on 
the CGS-VGS characteristic.  

 

Fig. 3.26: CGS capacitance model parameters. 

The extrapolation of the model parameters of (Eq.3.16-3.17) is performed using the Trust-
Region algorithm [51]. The initial values of the algorithm are extracted manually in order to 
reduce the calculation steps. Table 3.8 shows the extracted values of the CGS, CGD and CDS at 
25 °C.   

Table 3.8: Extracted values of CGS, CGD and CDS at 25°C. 

Parameters 
0
GSC  1

GSC  
AGS VTH 

2
GSC  BGS VP  

Value 221.5 pF 790 pF 469.22 pF/V 1.3 V 622.6 pF -43.02 pF/V 5 V  

Parameters 
0
GDC  1

GDC  
AGD 

2
GDC  BGD 

0
DSC  a B 

Value 98.41pF 838.76 pF 3.001 pF/V 200.95 pF 0.63 pF/V 434.316 -1.43E-3 2.39E-5 

 

In a SPICE simulator [52], we have simulated the modelled CGS(VGS), CGD(VGD) and 
CDS(VDS) capacitances. As shown in Fig. 3.27, the modelled capacitances fit with high 
convergence the measured capacitances at 25 °C. The modeling of the dynamic behavior of the 
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DUT, enables the estimation of the switching power losses of the GaN HEMT with high 
accuracy using a simulation approach. 

   

 

Fig. 3.27: Comparison between measured and modelled capacitances at 25 °C: (a) CGS-VGS; (b) CGD-VGD;         
(c) CDS-VDS. 

In order to estimate the switching power losses of the GaN HEMT in a switching power 
application, we have implemented in a SPICE simulator the modelled static characteristic 
obtained in section I and parasitic capacitances of the GaN HEMT obtained in section II.  

Fig. 3.28 (a) shows the GaN HEMT current and voltage simulated switching waveforms 
during the turn-on. The existence of both the current and voltage simultaneously during the 
turn-on time (TSW(on)) generates power switching losses. Based on Fig. 3.28 (a), we have 
calculated by simulation the power losses PSW(on) as a function of the drain current IDS at the 
temperature of 25 °C by calculating the turn-on power switching losses using Eq. (3.19) [53]. 

( )

( )
( ) 0

1                                                     (3.19)
SW onT

SW on ds ds
SW on

P i v dt
T

=    

Where, PSW(on) is the turn-on power switching losses in (Watt) and TSW(on) is the turn-on 
switching time. Fig. 3.28 (b) shows the evolution of the switching power losses PSW(on) as a 
function of drain to source current at 25 °C.  The proposed model of the switching losses enables 
the estimation of the GaN HEMT power converter efficiency with high accuracy, by taking into 
consideration the effect of C-V characteristics in the GaN HEMT SPICE model. 

             

 

Fig. 3.28: Turn-on switching losses estimation at 25 °C, f = 50 kHz, Duty-cycle = 50 % and VDS = 200 V: (a) 
switching times, (b) power losses. 

(a) (b) (c) 

(a) (b) 
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3.4. Leakage current characteristics 
 

In this section, the gate power losses of the GaN HEMT have been estimated by modelling 
the gate leakage current characteristics of the GaN HEMT. First, the low current experimental 
setup has been presented. Then, both the temperature and voltage dependencies of the leakage 
current characteristic are studied. Finally, the evolution of the gate power losses has been 
modelled for various values of temperature. 

 

3.4.1. Low current experiment setup 
 

The low current measurement was performed using Keithley 6485A SourceMeter. Fig. 3.29 
shows the leakage current bench with associated instruments, including: voltage source, 
Multimeter, interface circuit, measurement interface and Keithley 6485A Source meter [54]. 

 

Fig. 3.29: Leakage current measurement bench. 

 

3.4.2. Gate leakage current temperature dependency 

 

The gate leakage current (IGSS) is defined as the leakage that occurs when the specified 
voltage is applied across the gate and source with drain and source short-circuited. It is used to 
evaluate the gate blocking capacity of the device. The leakage current measurements were 
performed by using Keithly 6485 A SourceMeter at VGS = 6 V and VDS = 0 V. Fig. 3.30 (a) 
shows the evolution of the gate leakage current as a function of temperature. As shown, the 
current IGSS is increased by 77.77 % when varying temperature from 5 °C to 105 °C. It was 
demonstrated in reference [55] that increasing temperature may reduce the schottky barrier 
height at the metal/p-GaN contact and, consequently, increase the gate leakage current. 
Moreover, in p-GaN/AlGaN/ GaN heterostructure, the reduction of the Schottky barrier height 
at the metal/p-GaN gate enhances the tunneling of holes through the barrier [56]. Then, as 
highlighted by Hwang et al. [57], the enhancement of holes injection leads not only to a negative 
shift of the VTH but also to an increase in the leakage current in p-GaN HEMT. The increase in 
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the leakage gate current when increasing temperature is also observed in [58], which is 
attributed to the lowering of the Schottky barrier height of the metal/p-GaN gate.  

          

 

Fig. 3.30: Gate leakage current: (a) temperature dependency at VGS = 6V; (b) IGSS Model as a function of VGS      
at 25 °C. 

 

3.4.3. Gate leakage current power estimation 

 

To accurately estimate the efficiency of GaN HEMT power converters, it is important to 
calculate the gate power losses caused by the leakage current in the gate. The IGSS current in 
GaN HEMTs can be modelled as a voltage dependent current source by [59]: 

( )2 3
0 . 1 . . .                                                (3.20)GSS

GSS GS GS GSI I aV bV cV= + + +  

Where 0
GSSI is the gate leakage current at VGS = 0 V and a, b, c are polynomial coefficients 

parameters of IGSS current. Table 3.9 shows the extracted values of the IGSS current model of       
Eq. (3.20). As observed in Fig. 3.30 (b), the IGSS current model fit with high convergence the 
measurements of IGSS at 25 °C. Indeed, the modeling of the gate leakage current, enables the 
estimation of the gate power losses of the GaN HEMT with high accuracy using a simulation 
approach. 
                         Table 3.9: Extracted IGSS model parameters at 25°C. 

Parameter 
0
GSSI  a b C 

Value 4.58 µA -0.87 0.18 -6.39E-3 

 
The gate power loss is defined in [60] by:  
 

                                                                      (3.21) GSS GSS GSP I V=   

Fig. 3.31 shows the evolution of the gate power losses as a function of temperature at              
VGS = 6 V. As can be observed, the gate power losses are very low compared to the conduction 

(a) (b) 
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and switching losses of the GaN transistors at various junction temperatures. This result enables 
the estimation of the GaN power converters efficiency with high accuracy, by taking into 
account the gate power losses when calculating the efficiency of the power converters.  

         

Fig. 3.31: Gate power losses estimation versus temperature at VGS = 6 V. 

 

3.5. Estimation of the GaN HEMT power converters efficiency 
 

In this section, we have built an accurate power losses model of the GaN HEMT based on 
experimental measurements, which includes the major power losses in power switching 
applications: conduction power losses, switching power losses and gate power losses.  

Using the extracted power losses model of the GaN HEMT, we have estimated the 
efficiency of a 30 V / 200 V DC-DC converter stage using the GaN HEMT. Fig. 3.32 shows a 
solar energy application which include a solar photovoltaic panel that produce an output voltage 
of 30 V. This voltage is boosted to 200 V using a power DC-DC converter for charging 
electrical devices in smart houses. The solar energy application shown in Fig. 3.32 is a use case 
example for applying the developed methodology for estimating the GaN HEMT power losses 
in power switching applications based on experimental measurements. 

 

Fig. 3.32: Solar energy application with a 30V/200V DC-DC converter stage. 

The power efficiency of the DC-DC power converter shown in the solar application has 
been investigated by calculating the power losses of each component in the DC-DC converter, 
including the power losses in the diode, inductor, capacitor, GaN HEMT and output load.        

DC-DC 
Converter 

200 V 30 V 
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Fig. 3.33 shows the DC-DC converter circuit, which is a 30 V / 200 V boost converter. The 
DUTM is the extracted SPICE model of the GaN HEMT. 

 

Fig. 3.33: DC-DC boost converter, with L = 170 mH, C = 850 µF and R = 20 Ω, at 50 kHz switching frequency, 
30 V input voltage and 200 V output voltage. 

The power losses in the inductor, capacitor and diode are given respectively by [61].  

( )
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                                                                      (3.23)
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Where Iout is the output current, LI is the inductor current ripple, which assumed equals to 

30% of the maximum output current, D is the duty-cycle, RC is the equivalent series resistance 
of the capacitor, equals to 30 mΩ, RL is the equivalent series resistance of the inductor, equals 
to 0.2 mΩ, VD is the forward voltage of the diode, equals to 0.7 V. Table 3.10 summarizes the 
total losses and calculates the efficiency of a 30 V / 200 V DC-DC boost converter with GaN 
HEMT at 25°C and Iout = 10 A. 

The efficiency estimation of a GaN HEMT 30 V / 200 V DC-DC boot converter versus 
output current is shown in Fig. 3.34. The average efficiency has been estimated to be equal to 
92.09 %.  

Similar efficiency of 92 % was obtained experimentally in [62] at an output power of 2 kW 
in a 400V-to-12V DC-DC converter using same tested device GaN HEMT GS66508P.  

According to [62], the calculation of the power converter efficiency experimentally required 
important investments on equipment such as: high power DC supplies and loads. Also, running 
experimental power converter required high energy consumption, which is also a concern in 
energy efficiency, for example a 1000 hours campaign could consume as much as 20 MWh. 
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Table 3.10 : Total losses in DC-DC boost converter with GaN HEMT at 25°C and Iout = 10 A. 

 

Output power Pout 2000 W 

Power lost in the inductor PL 20.05 mW 

Power lost in the capacitor PC 22.5 mW 

Power lost in the diode PD 1.05 W 

Conduction power losses of the 
GaN HEMT 

PCond 6.66 W 

Switching power losses of the 
GaN HEMT 

PSW 163.8 W 

Gate power losses of the GaN 
HEMT 

PGSS 27.91 µW 

Total power losses of the GaN 
HEMT 

PGAN = PCond + PSW + PG 170.46 W 

Total power lost  Plost 171.55 W 

Input power Pin = Plost + Pout 2170.55 W 

Efficiency  
out

in

P

P
 =  

92.14 % 

 

 

Fig. 3.34: Efficiency estimation of a GaN HEMT 30 V/ 200 V DC-DC boot converter versus Iout at 50 kHz      
and 25 °C.  

 

3.6. Conclusion 
 
In this chapter, an experimental method is used to estimate the power losses of the GaN HEMTs 
in switching applications. The proposed approach is based on experimental I-V pulsed, C-V 
and low current characterizations. The static characteristics of the GaN HEMT have been 
modelled in section 3.2. The MET drain current model has shown high convergence compared 
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to the experimental measurement, which enables the estimation of the power conduction losses 
with high accuracy. The switching power losses of the GaN HEMT have been estimated by 
modelling the dynamic characteristics of the GaN HEMT. The modelled CGS, CGD and CDS 
capacitances show high convergence compared to the experimental measurements. The gate 
power losses of the GaN HEMT have been modelled by measuring experimentally the gate 
leakage current of the DUT. As a result of this study, both the static and dynamic power losses 
of the GaN HEMT can be estimated. The impact of the conduction power losses, switching 
power losses and gate power losses on the efficiency of power converts are modelled using 
SPICE simulation approach. The evolution of the GaN HEMT power efficiency in renewable 
energy application switching applications is modelled as a function of the output current. The 
accuracy and good convergence of simulation to experimental measurements provide a good 
way to design power converters with GaN HEMTs. Moreover, this approach offers to the power 
converter designers the possibility to estimate the power losses of GaN HEMT with high 
accuracy without the use of complex switching bench, which reduces the time to market and 
cost. The proposed methodology for the estimation of the GaN HEMT power losses is used in 
chapter 5 to study the impact of aging the power GaN HEMT under operational switching 
condition on the power converters efficiency. In the next chapter, The SPICE model is 
completed by adding the effects of the parasitic elements of the GaN HEMT. The parasitic 
resistances, inductances and capacitances of the DUT are extracted using S-parameters 
characterization. 
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Chapter 4: Extraction of the power GaN HEMTs intrinsic and 

extrinsic elements using S-parameter measurements  
 

4.1. Introduction 
 

The GaN transistors constitute an enabling technology for efficient power conversion at 
switching frequencies higher than the megahertz. However, their very low switching times         
(a few nanoseconds) generate high disturbances by interaction with parasitic elements. Thus, in 
order to accurately simulate the transistor behavior in power converters and estimate the power 
losses, it is of great interest to accurately determine the parasitic elements of the device such 
as: resistances, inductances, and capacitances.  

In order to investigate the impact of the high switching frequency on the power converters 
efficiency, parasitic elements of GaN HEMT devices should be accurately evaluated. This 
chapter reports the characterization of a GaN packaged power transistor using S-parameters. 
Because the transistor is packaged, a calibration technique is carried out using specific test 
fixtures designed on FR4 printed circuit board (PCB). The proposed method is suitable for a 
wide range of power devices. 

According to [1], the finite-element analysis (FEA) is a method to estimate parasitic 
elements of packaged transistors. However, this method requires the knowledge of the internal 
transistor topology and other technological data that are not available from the manufacturer. 
Although, the impedance meter measurement is a well-known technique to determine parasitic 
elements of the device [2], it is difficult to separate different parasitic values especially if they 
are very low. The S-parameter measurements have shown their capability to extract the 
transistor parasitic elements as well as intrinsic small-signal equivalent circuit [3]. 

Fast switching performance of GaN power transistors is critically determined by the values 
of parasitic inductances and capacitances. Negative effects of these elements such as 
overvoltage, overcurrent, and oscillations occur during transitions [1]. Recent works used S-
parameter measurements to extract the access inductances and capacitances of SiC packaged 
devices [4]. The authors show the capability of S-parameters to extract very low inductances 
and capacitances values. However, the parasitic inductances of new GaN power transistors 
packaging have values under the nanohenry and Miller capacitance under the picofarad. These 
elements still remain challenging to measure. 

The access resistances play an important role in the high-frequency operation of GaN 
HEMT degradation [5], because they add charging and discharging delays during switching. 
Furthermore, the source and drain parasitic resistances are a major part of ON-state resistance. 
Therefore, these values must be known with a good precision to estimate conduction losses and 
they also must be well separated from channel resistance for accurate modeling. Several works 
are based on S-parameters to extract the access resistance values and their temperature 
dependence [6].  
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This chapter reports an experimental methodology to extract both intrinsic and extrinsic 
parasitic elements of a packaged GaN power transistor. For that, we have developed two 
experimental setups for the measurements of the GaN HEMT parasitic elements. The first 
experimental setup enables the extraction of the GaN HEMT extrinsic elements at the cold state. 
The second experimental setup is based on optimization algorithm and offers an automatic 
extraction of the intrinsic parameters of the DUT at multiple bias conditions. Furthermore, the 
developed experimental setups for extracting both the intrinsic and extrinsic parameters are 
used in the next chapter for investigating the impact of aging the GaN HEMT on the S-
parameter characteristics of the DUT. 

Moreover, to reach the best accuracy on the extraction of very low GaN HEMT parasitics, 
we have proposed a method based on S-parameter measurements and a specific calibration 
process using low-cost test fixtures.  

After detailing the calibration procedure, measurements of access resistances and 
inductances as well as voltage-dependent capacitances are presented. The modeling of parasitic 
elements of GaN HEMT is performed using S-parameter simulation approach. The proposed 
method is suitable for a wide range of power devices. Furthermore, these results provide power 
circuit designers with a set of packaging parasitic elements to include for accurate design of 
power converters using GaN HEMT. 

4.2. Small signal model of power GaN HEMT  

Several small signal models were used for measuring the parasitic elements of the Si devices 
[7]. However, GaN HEMT devices shows different S-parameters characteristics due to the GaN 
device structure and physical properties.  

In [8], An accurate small signal equivalent circuit model for power GaN HEMT at low 
frequency up to 200 MHz has been proposed.  In this model, the parasitic elements were 
determined from S-parameters without the need for additional measurements or separate 
characterizations. Authors in [8] have demonstrated that the low frequency small signal 
topology is appropriate to describe the device S-parameter characteristics of power GaN HEMT 
up to 200 MHz.  

The parasitic elements of the GaN HEMT equivalent model at low frequency                              
(f  ≤ 200 MHz) are presented in [9] and shown in Fig. 4.1. The equivalent circuit can be divided 
into intrinsic part and extrinsic part. In the circuit, Cpg and Cpd parasitic capacitances are due to 
the pad connections, while Cgs, Cgd and Cds respectively account for inter-electrode and cross 
over capacitances between gate, source and drain. Lg, Ld and Ls represent parasitic inductances 
due to the contacts of gate, drain and source.  

Therefore, three additional resistances Rg, Rs and Rd are added into intrinsic elements for 
consideration of the gate leakage current. The parasitic gate, source, and drain resistances and 
inductances are assumed to be independent of the biasing conditions. Thus, they can be 
determined from the measurement under cold condition. 
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Fig. 4.1: GaN HEMT package [9]: (a) extrinsic parameters, (b) intrinsic parameters. 

The proposed low frequency model is used in [10] for extracting the parasitic inductances of 
the power SiC MOSFET at 200f MHz . Moreover, authors in [10] suggests that the proposed 

low frequency small signal model is suitable for characterizing accurate extraction of              
high-speed power devices parasitic inductances. In this chapter, we have used the proposed 
small signal topology at low frequencies in the range of 100 kHz ≤ f ≤ 200 MHz for extracting 
both the extrinsic and intrinsic parameters of the power GaN HEMT. 

 

4.3. S-parameters experimental setup at the cold state 
 

The Keysight VNA (E5080B) [11] was used to experimentally characterize the                           
S-parameters of the GaN power HEMT. The studied frequency interval sweeps between            
100 kHz and 200 MHz by a step of 100 kHz. This frequency range is widely used in various 
power converter applications [12].  

Fig. 4.2 (a) shows the experimental setup for GaN HEMT. Before the S-parameters 
measurement, several preparation steps are required.  

The first requirement is the development of a custom test fixture to ensure reliable and low 
inductance connections between the device terminals and VNA [13]. Fig. 4.2 (b) shows the 
designed printed circuit board (PCB) test fixture for interfacing the VNA to the DUT.  Two 50 
Ω SMA female adaptors are used.  

For a good connectivity, the DUT is soldered to the test fixture. We have also designed a 
test fixture for TO-220 style devices (see Fig. 4.2 (c)), but the results were non-reproducible 
due to the non-stability of the connection between the TO-220 connector and the DUT pads. 

 

 

 

(a) (b) 
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Fig. 4.2: (a) VNA measurement setup for GaN HEMT; (b) DUT test fixture; (c) Test fixture using                    
TO-220 connector. 

The second requirement is the VNA calibration. Through calibration, the VNA performs an 
error correction in the VNA itself and the test cables, adapters, and fixture that are between the 
VNA and the DUT [14]. The full two ports SOLT calibration [15] (Short-Open-Load-Through) 
was performed using the designed calibration Kit. This calibration enables the exclusion of the 
influence beyond the DUT from measurements.   

 

4.4. Measurement verification 
 

In the following, the verification of both the measurement repeatability and the calibration 
is performed in order to ensure that the S-parameter experimental setup is operational.  

 

4.4.1. Measurement repeatability 
 

Degradation of the VNA calibration over time is known as drift [16]. The validation of the 
S-parameter measurements repeatability aims to establish confidence with the user that the 
methods are fit for their intended purposes. Fig. 4.3 shows the GaN HEMT Z11 coefficient 
before and after 24 h VNA measurement session. The closeness of the traces shown in this 
figure indicates the absence of short-term drift in the measurement setup, and thus the 
repeatability of the S-parameter characterizations at the cold state using the VNA. 

(a) (c) 

(b) 
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Fig. 4.3: Measured GaN HEMT Z11 coefficient before and after 24 hours VNA measurement session: (a) Z11 
Magnitude and (b) Z11 Phase. 

 

4.4.2. Passive component test  
 

In order to verify the accuracy of the developed S parameter measurements, a verification 
test is performed using passive components: resistance of 3.25 kΩ, capacitance of 22.72 pF, 
inductance 56.68 μH. The values of the resistance, capacitance and inductance are pre-measured 
by a the HP4192A impedance meter at 1 MHz [17]. Table 4.1 shows a comparison between 
impedance meter and S-parameter measurements of the tested passive component at 1 MHz.  
The measured value of the tested passive component using S-parameters is closed to the 
measured value using the impedance analyser at 1 MHz, with a small shift. The error between 
the impedance meter and S-parameter measurements is due to the parasitic elements of the 
passive component model, which are accurately considered using S-parameter measurements 
[18]. 

Table 4.1: Comparison between impedance meter and S-parameter measurements of the tested passive 
component at 1 MHz: capacitance, inductance and resistance. 

 Impedance meter  S-parameter Error 

Capacitance  22.72 pF 18.46 pF  18,75 % 

Inductance 56.68 μH 57.86 µH  2.08 % 

Resistance 3.25 kΩ 3.264 kΩ  0.43 % 

 

According to [19], the S-parameters measured by a vector network analyzer (VNA) have 
shown their capability to extract the parasitic elements of passive components with high 
accuracy as well as intrinsic small-signal equivalent circuit. Compared to the impedance meter 
measurement method, which is not able to separate different parasitic values especially if they 
are very low [2]. The accuracy and good results of the S-parameters method when applied on 
passive components provide a good way to research the parasitic elements of power devices in 
order to investigate their impact on power converter application. In the next section, we apply 
the S-parameters method on power transistors, such as: GaN HEMT and SiC MOSFT. 

(a) (b) 
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As shown in this section, we have verified the measurement repeatability before and after 
24 h of a VNA measurement session. Also, we have compared the value of passive component 
obtained from S-parameters measurements using the VNA and we compare it to those obtained 
from the impedance meter, including: resistor, capacitor and inductor. The results show a good 
convergence of measurements. In the next section, the extraction methodology of the power 
GaN HEMT parasitic elements is presented.  

 

4.5. The proposed extraction methodology 
 

The proposed methodology for extracting both the small signal model of power GaN HEMTs 
is shown in Fig. 4.4, which is composed of eight steps. The model extraction process is 
composed of seven steps: 

Step 1: Parasitic parameters extraction at the cold state for VDS = 0 V, VGS = 0 V and 

  100 , 200f KHz MHz  . This step enables to define the boundaries of both the intrinsic 
capacitances (CGS, CGD, CDS) and the extrinsic elements (CPD, CPD RG, RS, RD, LS, LD, LG) 
before launching the optimizations. 

Step 2: Using the AMCAD bench, the output characteristic (IDS-VDS) linked with a set of S 
parameters are measured for   V 0 , 4DS V V  and   100 , 200f KHz MHz .   V 0 , 4DS V V  is 

selected in order to not exceed the allowed maximum current of the bias Tee (IDS(Max) = 2 A). 

Step 3: The linear modeling process start by chosen one quiescent point QP from the measured 
output characteristic (IDS-VDS) linked with a set of S parameters. The selected QP point is chosen 
in order to get the linear model close to the bias point that will be used in the power switching 
application. 

Step 4: The fourth step is to optimize the extracted model parameters. The Annealing algorithm 
[20] is chosen for the optimization of fitting. During the optimization process, a comparison 
between the model and the measurement is performed. If the convergence is not good, a new 
set of extrinsic and intrinsic parameters is provided, until measurement and model are consistent 
convergence. 

Step 5: After the optimization process, the compact model of the DUT at one QP point of the 
power switching application is extracted. The extracted model parameters must respect two 
criteria: 

• The value should be physical (no negative value); 
• Intrinsic parameters are independent of the frequency. These intrinsic and extrinsic 

parameters should be close to the average values that have been found into the cold state 
in step 1 of this methodology. 

Step 6: In order to validate both the extracted extrinsic and intrinsic model, an S-parameters 
simulation and verification are performed using S-parameters simulator. 

Step 7: The selection of one quiescent point QP provides a higher model extraction speed, but 
can lead to unrealistic determination of extrinsic and intrinsic model parameters. The selection 
of several points forces the solution to be more realistic. The same optimization can be launched 
simultaneously for all the points selected. 
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Step 8: Once the linear model has been extracted, the nonlinear intrinsic parameters CGS(VGS), 
CGD(VGD) and CDS(VDS) have been extracted. The Multi-bias extraction step enables to visualize 
the intrinsic parameters in multi bias conditions. 

 

4.6. GaN HEMT S-parameters extraction 
 

In this section, we apply the cold state (VDS = 0 V and VGS = 0 V) S-parameters method on 
power GaN transistor after verification of this technic on both the calibration kit and passive 
components. For that, we have selected a fresh 650 V / 30 A GaN HEMT (GaN Systems 
GS66508P) [21]. Fig. 4.5 shows the tested GaN HEMT mounted on the test fixture. The DUT 
is soldered to an Aluminium PCB, allowing more efficient conduction of heat compared to 
fibreglass PCB. 

Measurement of IDS-VDS 
characteristic linked with a 

set of S parameter 

Intrinsic and extrinsic 
parameters extraction at the 

cold state: CGS, CGD, CDS, RG, 
RD, RS, LS, LD, LG, CPG, CPD 

Pre-determination of the 
extracted parameters boundaries 

using the VNA for VDS = 0V, 

VGS=0V    100 , 200f KHz MHz   

IDS-VDS linked with S-parameters 
measurements are performed 
using AMCAD bench at multiple 
bias points   V 0 , 4

DS
V V  and   

  100 , 200f KHz MHz   

S-parameters simulation 
verification of the optimized 

compact model 

Parameters optimization at 
one quiescent point QP  

Fitting effect 

Extracted GaN HEMT 
compact model at one QP 

point of the power switching 
application 

The quiescent point QP is chosen 
in same conditions of power 

switching applications. 

The Annealing algorithm is 
chosen for the optimization of 

fitting. 

Parameters optimization at 
multiple quiescent points of 

the application load line    

Non-linear model extraction: 
CGS(VGS), CGD(VGD) and 

CDS(VDS) 

Extraction of the intrinsic 
capacitances at multiple bias. 

S-parameters simulation is used to 
verify the accuracy of the optimized 

model by a simulation approach  

1 
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4 

Fig. 4.4. GaN HEMT small signal model extraction methodology. 
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Fig. 4.5: Tested 650 V / 30 A GaN HEMT. 

The VNA measurement yields S-parameters instead of Z-parameters. The conversion to Z 
parameters is carried out by (4.1)-(4.4) [22]. Where Z0 is the characteristic impedance which is 
equal to 50 Ω: 

 

The magnitude and phases of the Z parameters are defined by (5) [23], where ZRe is real part 
and ZIm is the imaginary part of the Z parameter. 

( )

2 2
Re Im

Im

Re

( )                                                                 (4.5)

( ) 20 log( )                                                          (4.6)

( ) arctan              

Z Z Z

Z dB Z

Z
Z

Z


 
  
 

 = +

=  

=                                                  (4.7)

 

The frequency response of the tested power GaN HEMT is shown in Fig. 4.6. At high 
frequencies (> SRF) the GaN HEMT has an inductive behaviour [24]. At the SRF frequency, 
the DUT has a resistive behaviour. For low frequencies (< SRF), the DUT has a capacitive 
behaviour [25].  The extracted self-resonance frequency of each parameter Z11, Z12, Z21 and Z22 
are shown in Table 4.2. The non-equal SRF between Z11 and Z22, is due to the non-symmetrical 
parasitic element between both the source-gate side and the drain-gate side [26]. 

Parasitic elements of the GaN HEMT are determined from Z-parameters plot computed 
from the S-parameters. The extracting of the parasitic inductances, resistances and capacitances 
of the GaN HEMT are presented in the next section. We start by extracting the inductance at 
high frequency (= 200 MHz). Then, we extract the parasitic resistance at the SRF frequency. 
We finish by extracting the parasitic capacitance at low frequency (= 1 MHz). 
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Fig. 4.6: Frequency responses of the tested power GaN HEMT for 100 kHz < f < 200 MHz: (a) Z11, (b) Z12,      
(c) Z21 and (d) Z22 Magnitudes and phases. 

 

Table 4.2: Self resonance frequency of the tested power GaN HEMT. 

Z-parameters Z11 Z12 Z21 Z22 
SRF 72.58 - 72.81 MHz 69.92 – 70.14 MHz 69.69 – 69.92 MHz 55.02 – 55.24 MHz 

 

4.6.1. Parasitic inductances 
 

For the extraction of the parasitic inductances of GaN HEMT, we used the simplified two-
port network representation of the GaN HEMT equivalent circuit for inductance extraction at 
high frequency (> SRF), as shown in Fig. 4.7. At high frequency, the inductor impedance 
dominates while the capacitances and resistances can be neglected [27].  

 

Fig. 4.7: Equivalent circuit of the DUT at high frequency [27]. 

(a) (b) 

(c) (d) 
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The inductance effect of the DUT at high frequency for the two-port network Z-parameters are 
defined as follows [28]: 
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The extracted parasitic inductances of the tested GaN HEMT at 200 MHz are shown in     

Fig. 4.8: source inductance (LS), gate inductance (LG) and drain inductance (LD). Table 4.3 
shows the measured parasitic inductances of GaN HEMT at high frequency 200 MHz. The low 
parasitic inductance LS, LG, LD of the GaN HEMT enable best performance at high switching 
frequencies, which result in lower switching energy dissipation [29]. 

                 

 

 
 

Fig. 4.8: Inductances extraction of the tested power GaN HEMT: (a) LS, (b) LG and (c) LD frequency responses. 

(a) (b) 

(c) 
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Table 4.3: GaN HEMT extracted parasitic inductances LS, LG and LD at 200 MHz. 

Inductances LS LG LD 
GaN HEMT 3.44 nH @ 200 MHz 9.87 H @ 200 MHz 14.66 nH @ 200 MHz 

 

4.6.2. Intrinsic capacitances 
 

For the extraction of the parasitic capacitances of GaN HEMT, we used the equivalent 
circuit of GaN HEMT at low frequency (< SRF) (See Fig. 4.9). At low frequency, the capacitor 
impedance dominates while the inductances and resistances can be neglected [30].  

 

Fig. 4.9: Equivalent circuit of the DUT at low frequency using star connection [30]: CG, CS and CD. 

The capacitance effect of the GaN HEMT at low frequency for the two-port network Z-parameters 

are defined by [28]: 
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The conversion from star connection (Fig. 4.9) to delta connection (Fig. 4.10) enable to find 
the intrinsic capacitance CGS, CGD and CDS. These capacitances are calculated by [31]:  

                                     (4.16)
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Fig. 4.10: Delta connection of the extracted capacitances [31]: CGS, CGD and CDS. 

 

The extracted parasitic capacitances of the GaN HEMT at 1 MHz are presented in Fig. 4.11: 
source capacitance (CGS), gate capacitance (CGD) and drain capacitance (CDS). The measured 
CGS is a combination of the intrinsic gate capacitance and the pad capacitance CPG. Furthermore, 
the measured CDS is a combination of the intrinsic drain capacitance and the pad capacitance 
CPD. Table 4.4 presents a comparison between the VNA and impedance analyzer measurements 
of the extracted parasitic capacitances at 1 MHz.  

For the comparison, we used the same frequency of extracting the parasitic capacitances in 
literature [32], which is 1 MHz. Both the VNA and impedance analyzer measurements are 
performed at the cold state, which are VGS = 0 V and VDS = 0 V. The measurements with VNA 
are close to those performed using the impedance analyzer, with a mean error of 16.89 %. This 
error is due to the inability of the impedance analyzer measurement to separate different 
parasitic values especially if they are very low, which is the case of the GaN HEMT transistors 
[2]. However, S-parameters measured using a vector network analyzer (VNA), have shown 
their capability to extract the transistor parasitic capacitances [33]. 

 

          

(a) (b) 
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Fig. 4.11: Capacitances extraction of the tested power GaN HEMT: (a) CGS, (b) CGD and CDS frequency 
responses. 

Table 4.4: GaN HEMT extracted parasitic capacitances CGS, CGD and CDS at 1 MHz. 

GaN HEMT Capacitances CGS CGD CDS 
VNA measurements 218.36 pF 65.67 pF 422.38 pF 
Impedance analyser measurements  236 pF 109.36 pF 436.6 pF 
Error (%) 7.47 % 39.95 % 3.25 % 

 

4.6.3.  Parasitic resistances 
 

For the extraction of the parasitic resistances of GaN HEMT, we used the equivalent circuit 
of the GaN HEMT at SRF frequency (See Fig. 4.12).  At the SRF frequency in Table 4.2, the 
resistance impedance dominates while the inductances and capacitances can be neglected [34]. 

 

Fig. 4.12 : Equivalent circuit of the DUT at SRF frequency [34]: RG, RS, RD. 

The resistance effect of the GaN HEMT at SRF frequency for the two-port network Z-parameters 

are defined by [28]: 

(c) 
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The extracted parasitic resistances of the GaN HEMT at the SRF frequency are shown in 
Fig. 4.13: source resistance (RS), gate resistance (RG) and drain resistance (RD). Table 4.5 
presents the measured parasitic resistances of GaN HEMT at the corresponding SRF frequency 
of each parameter: RS, RG and RD. The parasitic resistances RD and RS are connected in series 
with the internal channel resistance, which play a vital role in determining device conduction 
losses [35].  

In general, the drain parasitic resistance RD is much larger than the source parasitic 
resistance RS, which is confirmed in [36]. The parasitic gate resistance RG value has a 
significant impact on the switching transients for fast switching power converters [37]. It is 
shown in [38] that a higher gate resistance reduces the switching speed and consequently causes 
higher switching losses at the DUT. 

            

 
(a) (b) 
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Fig. 4.13: Resistances extraction of the tested power GaN HEMT: (a) RS, (b) RG and (c) RD frequency responses. 

Table 4.5: GaN HEMT extracted parasitic resistances RS, RG and RD at SRF frequency. 

Parameters RS RG RD 
GaN HEMT 112.82 mΩ @ 70.36 MHz 2.48 Ω @ 74.59 MHz 354.59 mΩ @ 55.91 MHz 

 

 

In the next section, we have evaluated the accuracy of the used S-parameters extracting 
methodology for GaN HEMT by comparing the extracted parasitic parameters of a known DUT 
with those shown in the literature.  

 

4.6.4.   Measurement methodology verification  
 

 

Authors in [39] have extracted the parasitic inductances, capacitances, and resistances of a 
SiC power MOSFET by measuring the S-parameters using a VNA and then convert them into 
Z-parameters. In order to evaluate the accuracy of our S-parameter characterization at the cold 
state, we have compared the extracting methodology with those presented in [39]. For that, we 
have selected a second generation of a 1200 V SiC (Wolfspeed’s C2M0160120D). The selected 
Gen 2 SiC MOSFET is the same used in [39]. Fig. 4.14 shows the tested 1200V SiC MOSFET 
mounted on the test fixture.   

 

 

Fig. 4.14: Tested 1200 V SiC MOSFET 

 

Table 4.7 shows a comparison between both the measurements and the literature of the 
extracted parasitic inductances, capacitance and resistances of the Gen 2 1200 V SiC MOSFET. 
The used frequency for extracting the parasitic inductances is not specified in [39]. We used 

(c) 
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the higher frequency, which is 200 MHz. The extracting parasitic capacitances frequency is the 
same used in [39] which equals to 1 MHz. The parasitic resistances are extracted at SRF 
frequency. As observed the obtained measurements are close to those obtained in the literature. 
This shows the accuracy of the used S-parameters characterization for the GaN HEMT.   

Table 4.6: Tested SiC MOSFET parasitic elements extraction results summarization. 

 Inductances (nH) Capacitances (nF) Resistances (Ω) 

Parasitic LS  LG  LD  CGS  CGD  CDS  RG RS RD 

Measurements   13.06  16.57  1.88  0.504  0.265 0.495  2.70  0.469 0.231 

Literature [A9] 7.489  8.920  4.296  0.520  0.297  0.511  2.5 0.31 0.20 

 

4.7. Multiple bias model extraction 
 

Using the VNA we have de-embedded the parasitic elements of the GaN HEMT from the 
S-parameter measurements at the cold state (VGS = 0 V, VDS = 0 V). However, in power 
switching applications, the DUT is continuously switched from the off-state to the on-state and 
vice versa. During this operation, the DUT is subject to a high electric field.  

Studies have shown that the S-parameters of the GaN HEMT are very sensitive to the 
applied electric field and the extracted parasitic parameters are dependent to the chosen bias 
point (VGS, VDS) [40-41]. Moreover, the GaN HEMTs are exposed to high electric field at the    
off-state in the power converter applications. For that, the measured S-parameters must take 
into account the effect of the electric field on the extraction of the device parasitic parameters.  

To perform S-parameters measurements for power devices, this required extra tools and 
equipment [42-43], such as: power bias tees, process and control unit, drain and gate power 
modules, and non-linear vector network analyzers (NVNA).  

In this section, we have extracted the linear model of the GaN HEMT power transistors for 
multiple bias points. The chosen bias points correspond to the application load line. Fig. 4.15 
shows the GaN HEMT load line on the IDS-VDS characteristic. The application load line goes 
through four bias points QP1, QP2, QP3 and QP4 as presented in Table 4.8.  

 

                 Table 4.7: Load line bias points QP1, QP2, QP3 and QP4. 

Bias points IDS VDS VGS 

QP1 13.88 µA 1.052 V 0 V 

QP2 0.48 A 0.879 V 2 V 

QP3 1.786 A 0.431 V 3 V 

QP4 1.842 A 0.414 V  6 V 
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Fig. 4.15: GaN HEMT load line IDS-VDS characteristic. 

 

4.7.1. Multiple bias experiment setup 
 

The multiple bias experimental S-parameters bench is shown in Fig. 4.16, which includes: 
vector network analyzer, AMCAD bench, data capture and analysis computer, gate and drain 
bias T, gate and drain probes, test fixture. The small-signal S-parameter measurements were 
performed under continuous waveform (CW) operation at room temperature. Calculated               
S-parameters were measured at various frequencies starting from 100 kHz to 200 MHz by a 
step of 100 kHz.  

The selected frequencies are widely used in power switching application. External bias tees 
were used with high drain current capability in the range of 2 A [44]. Bias conditions were set 
by the internal DC-voltage sources of the AMCAD bench. The Keysight E5080A ENA was 
used to measure the S-parameters [45]. VNA calibration of S-parameter measurements was 
carried out applying the SOLT technique [46], using a Keysight 85032F type N calibration kit 
which included open, short, thru circuits and a 50 Ω load. 

 

Fig. 4.16: Multiple bias S-parameters bench. 
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4.7.2. Linear model extraction methodology 
 

The model adopted in this study corresponds to the conventional small-signal equivalent 
circuit of a field effect transistor in the saturated zone. Fig. 4.17 shows the conventional small-
signal equivalent circuit model for HEMTs [47], which can be partitioned into two parts: 
extrinsic and intrinsic parameters. The extrinsic elements LG, RG, CPG, LS, RS, RS, LD, RD, CPD 
are independent of the biasing condition [48]. The intrinsic elements CGS, CGD, CDS and are bias 
dependent [49]. The various components in the model are defined in the following list [50]: 
CPG: gate pad capacitance, CPD: drain pad capacitance, LG: gate inductance, LD: drain 
inductance, LS: source inductance, RG: gate resistance, RD: drain to channel resistance, RS: 
source to channel resistance. 

 

Fig. 4.17: Small signal equivalent circuit model of GaN HEMTs [47]. 

The Annealing algorithm [51] is chosen for the optimization of fitting. During the 
optimization process, a comparison between the model and the measurement is performed. If 
the convergence is not good, a new set of extrinsic and intrinsic parameters is provided, until 
measurement and model are consistent convergent. The model optimization required the 
specification of the parameter boundaries at the cold state for VDS = 0 V, VGS = 0 V. The GaN 

HEMT intrinsic and extrinsic parameters 
  100 , 200f KHz MHz 

 are calculated in section 4.6.   

Table 4.9 shows the mean value of the linear model parameters at multiple quiescent points: 
QP1, QP2, QP3 and QP4 of the GaN HEMT. For a good convergence of the extracted linear model 
with measurement, the value of RD, RG, RS, LD, LS, LG, CGS, CGD, CDS, CPD and CPG are specified 
from the cold state parameters extracting in the previous section. The Annealing algorithm is 
used for the extraction of the linear model. 

 

Table 4.8: linear model parameters of the GaN HEMT at multiple quiescent points: QP1, QP2, QP3 and QP4. 

Parameters RD RG RS LD LS LG 

Optimized value 54.332 mΩ 723.37 mΩ 9.48 mΩ 8.068 Nh 3.17 nH 382.72 pH 

Parameters CPD CPG CGS CGD CDS  

Optimized value 28.03 pF 18.549 pF 353.39 pF 12.815 pF 74.045 pF  

 

After extracting the GaN HEMT linear model parameters at multiple quiescent voltages, we 
have completed in the next section the developed model by extracting the non-linear 
capacitance characteristics of the GaN HEMT. 
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4.7.3. Non-linear intrinsic capacitance extraction 
 

The S-parameter characterization is an accurate technique to extract the parasitic 
capacitances for power modules and eliminate the uncertainty and inaccuracy associated with 
the impedance meter measurement approach [52].  In this section, we have extracted the CGS 
capacitance using multibias S-parameter measurements.  

Fig. 4.18 shows the extracted CGS at various bias points: VDS = 0 V and VGS start from 0 V 
to 7 V with a step of 0.1 V. As shown in this figure, we have obtained similar curves of the p-
GaN HEMT that have been found in chapter 3 using C-V impedance meter.  

The lower value obtained using S-parameters compared to impedance meter are due the CPG 
and CPD capacitances, which are not taken into account when using the impedance meter. This 
makes the measurement of parasitic capacitance using S-parameters highly accurate compared 
to the impedance meter.   

    According to the literature, the one-port configuration with shorted terminal using the 
impedance meter is no longer practical for the power module extraction due to the more 
complex structure with more parasitic capacitances [53]. Therefore, two-port extraction using 
S-parameters is the ideal method for power modules measurement. 

 

Fig. 4.18: Evolution of GaN HEMT CGS intrinsic capacitance. 

 

4.8.  S-parameter modelling and simulation 
 

To validate the extracted linear model of the tested GaN HEMT, we have simulated the 
equivalent circuit in frequency domain using an S-parameters circuit simulator. We have first 
built a small-signal equivalent circuit of a power GaN HEMT with a set of predefined parasitic 
inductance, capacitance, and resistance values. Fig. 4.19 shows the simulated power GaN 
equivalent circuit with extracted parameters given in Table 4.9. The GaN HEMT circuit setup 
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is biased at QP4 bias point, where VGS = 6 V, VDS = 0.414 V. The frequency domain simulation 
is carried out in the frequency range of 100 kHz to 200 MHz. We then run the frequency domain 
simulation to generate a set of S-parameters. Finally, we use the proposed approach to extract 
the parasitic values from these simulated S-parameters data. We then compare the extracted 
component values with the original predefined values to validate our derived mathematical 
formulas and extraction methodology. 

 

Fig. 4.19: S-parameter simulation setup at QP4 bias point. 

The comparison between the measured and optimized S-parameters using Annealing 
algorithm are shown in Fig. 4.20 for S11 and S22 parameters and in Fig. 4.21 for S12 and S21 
parameters. The blue dashed line corresponds to the optimized S-parameters and the black line 
corresponds to the measured S-parameters. As can be observed, the optimized GaN HEMT 
model shows good convergence with measurement.  

            
 

             
 

Fig. 4.20: Optimized S11 and S22 parameters for the tested GaN HEMT at QP4 bias point: (a) S11 Real,                  
(b) S11 imaginary, (c) S22 Real, (d) S22 imaginary. 

(a) (b) 

(c) (d) 



115 
 

         

        
 

Fig. 4.21: Optimized S12 and S21 parameters for the tested GaN HEMT at QP4 bias point: (a) S12 Real,                
(b) S12 imaginary, (c) S21 Real, (d) S21 imaginary. 

From the S-parameters plots in Fig. 4.20 and Fig. 4.21, we extract the parasitic component 
values following steps given of the extraction methodology described in section 4.5. Table 4.10 
summarizes the extracted values in comparison with the given values in the original circuit. It 
is noted that the extracted inductances, capacitances and resistances are reasonably accurate 
with the difference less than 10.61 %, giving us sufficient confidence with our proposed 
extraction method.  

Table 4.9: Comparison between measured and simulated extracted parasitic elements of the GaN HEMT at QP4 
bias point.  

Parameters Measurement Simulation Error (%) 
LS (nH) 3.27 3.12 4.58  
LG (nH) 120.34 78.76 34.55  
LD (nH) 10.61 12.57 18.47  
RS (mΩ) 11.82    12.59  8.29  
RG (mΩ) 634.37 587.76 7.34  
RD (mΩ) 72.82    86.59  18.90 
CGS (pF) 317.36 318.52 0.42  
CGD (pF) 17.67 15.85 10.18  
CDS (pF) 103.38 102.43 0.91  
CPG (pF) 21.09 19.13 9.29  
CPD (pF) 30.957 29.764 3.85  

 
 

(c) (d) 

(a) (b) 
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4.9. Conclusion 
 

In this chapter, an accurate methodology based on an accurate S-parameters calibration 
procedure is proposed to determine parasitic resistances, inductances, and capacitances of a 
packaged GaN power transistor. Two experimental setups have developed for the 
measurements of the GaN HEMT parasitic elements. The first one enables the extraction of the 
GaN HEMT extrinsic elements at the cold state. The second experimental setup is based on 
optimization algorithm and offers an automatic extraction of the intrinsic parameters of the 
DUT at multiple bias conditions. The obtained results show the possibility to extract very low 
device parasitics which may influence switching mechanisms in power converters. Good 
agreement is achieved between extracted values and technical data provided in the literature. 
Moreover, modeling equations are proposed for the nonlinear model parameters. The proposed 
method has the capability to be applied to any packaged GaN power transistor fabricated by 
different manufacturers. In this context, this method was already applied to extract SiC 
MOSFET parasitic elements. Furthermore, the method offers the possibility to extend the 
characterization to devices that have two terminals, such as: commercial inductances, 
capacitances and resistances. The characterization results and modeling approach presented in 
this chapter will be used in the next chapter to study the effect of aging the parasitic elements 
of GaN packaged power transistor on the efficiency and the design of power converter. 
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Chapter 5: Aging of the GaN HEMT under safe operational 

conditions 
 

5.1. Introduction  
 

The attention of academics and industrials on reliability of GaN HEMT is accelerated by 
the impressive growth of GaN HEMTs market, due to their high superior performances 
compared to those of Silicon power transistors. Their applications are in various domains, such 
as green energy and RF engineering.  

To validate the robustness of power GaN HEMTs transistors, JEDEC standardized tests for 
Si power transistors are used [1]. However, the standardized tests for Si are not enough to 
guarantee the robustness of GaN transistors when they are used in power converter applications, 
because the reliability of GaN under switching operation is different from that of Si transistors 
[2]. Moreover, running power GaN HEMTs under accelerated conditions would cause many 
non-GaN failures.  

In the literature, the reliability of GaN HEMTs has been improved. Reference [3] classifies 
the degradation modes of GaN HEMT in switching mode DC power converter into three 
classes: on-state, off-state and semi-off state. According to [4], one of the major disadvantages 
limiting the reliability of GaN HEMTs for switching power applications is hot electron effects 
that occurs during the switching state. In [5], this degradation result in decreased DC and RF 
performance. 

According to [6], it is important to study the reliability of GaN HEMT for power conversion 
circuits. This paper presents a developed reliability methodology under operational switching 
conditions. The proposed aging switching bench presents high power efficiency. The effects of 
aging GaN HEMT on a power converter application are studied by SPICE simulation approach.  

In this chapter, we studied the effects of aging power GaN HEMT under switching 
conditions at both high current and voltage. Such studies are of great importance as the device 
is subjected to conditions similar to what would be experienced in a real application of power 
converters. During the aging campaign, we have monitored the changes of the current-voltage 
(I-V), capacitance-voltage (C-V) and S-parameters characteristics. Both static and dynamic 
electrical characteristics of the devices are measured as a function of stress time and are 
modeled. Notably, these results are used to simulate the efficiency of a DC-DC buck converter 
using both fresh and aged devices. The investigation of the impact of aging the GaN HEMT on 
the efficiency of power converts are of very high interest to circuit and system designers, as 
they will be eager to understand the effects of device degradation on their systems. 

 

5.2. Aging methodology  
 

Tested transistor is a fresh GS66508P from GaN Systems [7], which is a p-type gate 
normally-off AlGaN/GaN power transistor operating in the range of 650V/30A. In the 
following lines, the aged GaN HEMT will be noted DUTM. The evolution of the electrical 
parameters of the DUTM from the new state to the aged state is monitored using a pulsed I-V 
measurements at a pulse frequency of 100 Hz and a pulse width of 4 µs, which is short enough 
to ensure iso-thermal measurement of pulsed I-V GaN HEMT characteristics. Moreover, to 
separate trapping effects on measurements, pulsed I-V characteristics were performed at DC-
bias levels VGS0 = 0 and VDS0 = 0. At this bias condition, trapping is expected to be negligible.  

During aging, three DC characteristics were measured successively at the fresh state (t = 0), 
216 h, and 720 h. The second characterizations are performed at 216 h, which is short enough 
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to ensure a regular aging monitoring in the infant stage [8]. The last characterization is 
performed after 504h before the second one so that the aging process is not interrupted and thus 
the degradations of the device can be detected.  

Fig. 5.1 (a) shows the developed aging switching bench, which is described in [9]. The gate 
driver proposed in [10] has been used to drive the power GaN HEMTs. PWM1 and PWM2 are 
two complementary pulse width modulated signals. The proposed switching circuit enables to 
investigate the impact of hot electrons on GaN HEMTs with low energy consumption compared 
to that in [11] because no load is used. The used switching conditions presented in Table 5.1 
have been chosen to ensure that the DUTM switches under its Safe Operating Area (SOA). As 
shown in Fig. 5.1 (b), the developed switching bench places similar stresses on the DUTM, 
which could exist in a large class of power management products such as power converters: on-
state stress, semi-off state stress and off-state stress. In the on-state, DUTM is on, ID is equal to 
10 A and VDS is equal to 1.14V. In the semi-off state, DUTM is turning-on, when both high 
current and high voltage exist simultaneously. In the off-state, DUTM is off, ID is null and VDS 
is equal to 200 V. The current rise time is equal to 3.94 µs and the voltage rise time is equal to 
53.46 ns. To ensure that the aging of the DUTM respects the SOA, the measurements of the 
junction temperature TJ, ID current and VDS voltage are performed. 

 

5.2.1. ID current and VDS voltage limitations 
 

At the on-state, the ID current is equal to 10A. At the off-state, the VDS voltage is equal to 
200 V. The choice of a high drain current (IDS = 10 A) and a high drain-source voltage (200 V) 
enables to study both the degradations caused by thermal dissipation and that caused by high 
electric field.   

According to the SOA of the DUTM in [7], it can be seen that the used 10 A, 200 V pulse 
(see Table 5.1) is located beyond SOA boundary. This indicates that the pulse is placed within 
acceptable limits of ID and VDS given by the constructor.  
 
5.2.2. Junction temperature limit 
 

Under the switching conditions in Table 5.1, the temperature TJ is estimated using the 
thermal model of DUTM package mounted on a PCB and a heatsink described in [12]. By using 
the thermal Ohm’s law: 

 

                                   (5.1)totJ JA A
T P T=  +  

Where ϴJA is the total thermal resistance from junction to ambient, which is equal to 
3.63°C/W based on both manufacturer datasheets and SPICE model, TA is the ambient 
temperature fixed at 25°C by heatsink cooling, and Ptot is the experimental total power loss of 
DUTM over one period in watts, which is calculated by 

0

1                                    (5.2)
T

tot ds ds
P i v dt

T
=    

Where, T is the period, ids and vds are the instantaneous drain current and drain-source 
voltage, respectively.  

From experimental measurements (Fig. 5.1 (b)), Ptot is equal to 16.68 W, the corresponded 
TJ is calculated using (1) and is equal to 86 °C, which is below the allowable TJ limit of 150°C. 
Once the switching conditions are fixed, the effect of aging the GaN HEMT under switching 
safe operational conditions can be investigated. 
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Fig. 5.1. (a) Aging switching bench; (b) ID and VDS waveforms of DUTM over one period for switching 
conditions: 100 kHz, duty-cycle = 50 %, and 10 A / 200 V operating conditions. 

 

                                     Table 5.1: Applied switching conditions on DUTM. 
 

VDS(OFF) IDS frequency tpulse duty-cycle 

200 V 10 A 100 kHz 5µs 50% 

 

5.3. Impact of aging on static characteristics  
 

5.3.1. Static parameters degradation  
 

The on-state resistance RDS(ON) is calculated in the linear region of the IDS-VDS characteristic, 
using (3). 

1

( )
6 , 0

                                           (5.3)
GS DS

D
DS ON

DS V V V V
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R

V

−

= →


=  

 

Fig. 5.2 (a) shows the evolution of RDS(ON) during 720 h of aging under the switching 
conditions described in Table 5.1. As can be seen, RDS(ON) increases by 15.00% after aging. 
According to [13], the observed increase of RDS(ON) is ascribed to trapping of hot electrons in 
the gate–drain access region during semi-off state. The trapping of electrons in the buffer due 
to the off-state bias may also induce the increase of RDS(ON). This may lead to the increase of 
power conduction losses and thus the device temperature elevation, resulting in reduced power 
GaN HEMTs efficiency and lower DC performances.  

The transconductance gm is defined as the maximum first derivative of the input 
characteristic in the saturation region. Fig. 5.2 (a) shows the evolution of gm during 720 h of 
aging under the switching conditions presented in Table 5.1. The resulted gm after aging is 
reduced by 17.86% compared to its values before aging. The decrease in gm is mainly due to 
the presence of hot electrons caused by the semi-off state, when both channel current and high 
electric field are present in the device [14], which could generate defects typically highest at 
the end of the gate on the gate–drain side [15], resulting in reduced RF performances. 

(a) (b) 
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The drain current ID is determined from the measured IDS-VDS static characteristic at            
VGS = 6V and VDS = 0.76V. Fig. 5.2 (b) shows the evolution of the current ID during 720 h of 
aging under the switching conditions described in Table 5.1. As can be noticed, ID decreases 
by 8.57 % after aging. This phenomenon is called current collapse, where ID is reduced due to 
hot electrons during switching [16]. The reduction in ID after aging can be observed in the ID-
VGS static characteristic (Fig. 5.3 (a)). According to [17], the current collapse can be suppressed 
by hole injection from drain.  

From Fig. 5.3 (b), the existence of trapped charge after aging in the gate-drain access region 
is experimentally demonstrated by pulsing from various quiescent voltages (VGSQ;VDSQ): (0;0), 
(-8V;100V) and (-8V;300V). The exposition to both a negative VGSQ and a high VDSQ fosters 
the trapping of electrons in the drain access region of the DUTM, while the reference condition 
is VGSQ=0V and VDSQ=0V. Measurements were carried out at 25 °C in the dark. 

 

                    

 

Fig. 5.2. Evolution of the static parameters during 720 h of aging: (a) RDS(ON) and gm; (b) IDS at VGS = 6 V and 
VDS = 0.76 V. 

 

        

Fig. 5.3. (a) IDS-VGS characteristics measured at VDS equals to 1V and 7V; (b) IDS-VDS characteristics for various 
quiescent bias points at 25°C in the dark.  

 
From Fig. 5.3 (a), a small shift of the threshold voltage VTH is observed. Before aging VTH 

was equal to 1.81V this value rises to 1.89 V after aging, with an increase of 4.17%. The small 
shift of VTH voltage is also noticed in [18]. According to [19], the negative shift of VTH is due 

(a) (b) 
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to the creation of defects under the gate caused by hot electrons during semi-off stress. In 
reference [20], the charge trapping at the p-GaN/AlGaN interface due to the bias-temperature 
instability (BTI) may also produce the shift of the VTH. 

Moreover, a negligible increase in the gate current leakage is measured using Keithly 2636B 
SourceMeter, we found that IGSS was equal to 11.69 µA before aging and equals to 12.08 µA 
after aging. The slight increase in IGSS current is also confirmed in [21]. As presented in [22], 
the resulted degradation of IGSS current is attributed to the generation of defects/leakage paths 
in the p-type/AlGaN gate interface due to hot electrons. 

Table 5.2 summarizes the values of RDS(ON), gm, ID, Vth and IGSS before and after 720 h of 
aging DUTM under the switching conditions presented in Table 5.1. The re-measurement of the 
static parameters after a long relaxation period shows no reversibility of the phenomena. The 
absolute relative degradation can be calculated by 

( )
(%)                                                (5.4)ab

b

x x
Degradation

x

−
=   

Where xa and xb are the DUTM parameter values after and before aging respectively.  
 

                    Table 5.2: 720 hours aging results for DUTM. 
 

 RDS(ON) (mΩ) gm (S) IDS (A) Vth (V) Igss (µA) 

t = 0 40.93 23.46 16.26 1.81 11.69 

t = 720 h 47.07 19.27 14.86 1.89 12.08 

Degradation (%) 15.00 17.86 8.57 4.17 3.16 

 

5.3.2. Static characteristics aging modeling  

 

The proposed drain current model of DUTM is a non-segmented, smooth and continuous 
equation inspired from the Motorola Electrothermal Model (MET) [23], the specific equation 
is shown as follows: 

( )
( )

log 1 exp , V 0                                   (5.5)
1

 GS DSGS
DS DS

GS DS

m n V VV b
I K

c P d e V V

  
      

+ −
=  +  

+  + 
  

Where K is the device forward transconductance parameter at 25 °C, P is the output 
conductance at 25 °C, b and c are related parameters of the transfer characteristic, while m, n, 
d and e are related parameters of the output characteristic. The different parameters are extracted 
using an accurate method based on the Levenberg-Marquardt algorithm, which is described in 
[24].  

The extracted static model parameters at 25 °C for the fresh state (t =0) and the aged state 
(t = 720 h) are shown in Table 5.3. The modelled output and transfer characteristics of DUTM 
before and after 720 h of aging are shown in Fig. 5.4. As can be observed, the developed aged 
SPICE model shows good convergence compared to experiment. The fresh and aged models of 
the DUTM are implemented using LTspice simulator.  
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        Table 5.3: Extracted Static Model Parameters at 25 °C for the Fresh State (t = 0) and Aged State (t = 720 h) 
 

                K         P       b         c        m        n         d        e 

t =0           2.24    0.58   1.69   0.16   6.39   -0.92   2.59   -0.44 

t= 720h   0.76    0.39   1.74   0.12   11.63  -1.68  3.21   -0.55 

 

 

 

Fig. 5.4. Experiment and model: (a) Output characteristics IDS-VDS; (b) transfer characteristics IDS-VGS before 
and after 720 h of aging. 

 

5.4. Impact of aging on dynamic characteristics 
 

To have a better understanding of the impact of aging on the dynamic behavior of the DUT, 
we have investigated the Capacitance-Voltage (C-V) characteristics of the p-GaN HEMT tested 
device as a function of the stress time. The aged C-V characteristics were modelled using a 
SPICE simulation tool and used to estimate the power switching losses before and after aging 
for a power switching application. The C-V measurements were performed using HP 4192A 
impedance analyzer at a frequency of 1 MHz. 
 
5.4.1. Parasitic capacitances degradation   
 

5.4.1.1. CGS-VGS characteristic 
 

Fig. 5.5 (a) shows the evolutions of CGS-VGS characteristic before and after aging. No 
significant change is observed in the inversion region below the threshold voltage VTH < 1.7 V. 
Otherwise, a significant positive shift of the CGS-VGS characteristic is observed in the 
accumulation region. Also, a slight positive shift of the threshold voltage VTH can be observed. 
Fig. 5.5 (b) shows the evolution of the maximum CGS capacitance during aging. The CGS(Max) 

resistance is increased by 6.72 % from the fresh state to the aged state. 

Authors in [25] have modelled the Mg doped concentration in the p-GaN structure using Eq 
(7). Based on this model, the increase of the gate capacitance profiles during aging is due to the 
increase in doping concentration [26].  

(b) (a) 
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( )2

2
                                                                     (5.6)

1/
N

d C
q

dV


=  

Where ε is GaN dielectric constant, C is the measured capacitance, N is the doping 
concentration, q is the electron charge and V is the forward voltage used in the Cg-Vg 
measurement. 

According to previous literature reports [27-28], we attribute this mechanism to the 
activation of the p-type dopant during aging, induced by the flow of a high density of carriers 
within the active region of the devices. To understand this interpretation, we have to consider 
that after the growth of a p-type layer, only part of the Magnesium acceptor atoms are 
electrically active, due to the fact that many Mg atoms are passivated by hydrogen, through the 
formation of Mg-H bonds, where the hydrogen is located at the nitrogen anti-bonding site [29-
30]. To achieve a better activation of Mg, both high temperature annealing and low energy 
electron beam irradiation (LEEBI [31-32]) can be carried out. Even after these treatments, part 
of the Mg atoms can remain electrically inactive [33-34]. The increase of the gate capacitance 
can be responsible for efficiency loss [35].  

During the off-state stress electrons can accumulate in traps, creating a virtual gate resulting 
in a threshold voltage shift. A leakage path can be formed at the edge of the Schottky contact, 
where the lateral component of the electric field is high. For very high negative voltages, 
additional trap states or defects near the Schottky contact can be created. 

          
 

Fig. 5.5: (a) Evolution of CGS-VGS characteristic before and after aging; (b) Evolution of CGS(Max) during aging. 

 

5.4.1.2. CGD-VGD characteristic 
 

From Fig. 5.6 (a) the evolutions of CGD-VGD characteristic before and after aging is similar 
to those of CGS-VGS characteristic. The input capacitances CGS and CGD have not changed for a 
gate voltage below VTH. For VGS beyond VTH, CGS and CGD show significant increase.                
Fig. 5.6 (b) shows the evolution of the maximum CGD capacitance during aging. The CGD(Max) 

resistance is increased by 6.32 % from the fresh state to the aged state. 

(a) (b) 
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Similarly, to the variation in CGS capacitance, the degradation of the CGD capacitance during 
aging are attributed to the activation of the p-type dopant during aging [36-39]. The increase of 
the Mg dopant concentration in the p-GaN structure can be modelled using Eq (7). As a 
consequence of aging, the charge distribution in the active layer can be modified [40] due to 
the generation/propagation of defective states that can contribute to the degradation of the 
dynamic characteristics of the GaN HEMT [41]. Furthermore, A leakage path can be formed at 
the edge of the Schottky contact, where the lateral component of the electric field is high [42]. 
For high voltages additional trap states or defects near the Schottky contact can be created. 

 

            
 

Fig. 5.6: (a) Evolution of CGD-VGD characteristic before and after aging; (b) Evolution of CGD(Max) during aging. 

5.4.1.3. CDS-VDS characteristic 
 

Fig. 5.7 (a) shows the evolution of the CDS-VDS characteristic during aging. Compared to 
the input capacitances CGS and CGD, an opposite evolution during aging of the output 
capacitance is observed. Fig. 5.7 (b) shows the evolution of the CDS capacitance at VDS = 10 V 
during aging. The CDS resistance is decreased by 0.90 % from the fresh state to the aged state. 

This change in CDS capacitance after aging was attributed to the extension of the depletion 
region due to the effect of the traps in the 2-dimension electron gas (2DEG) channel below the 
gate [43].  

The additional extending depletion region could be attributed to locally ionized acceptor-
like traps under the gate following the application of a 200 V stress during the off-state. The 
ionized traps formed a negative potential to deplete 2DEG. Using TCAD simulation it is 
observed in [44] that electrons were trapped into the AlGaN layer underneath the gate edge at 
the drain side after the device endured high VDS off-state stress. The injected electrons in the 
AlGaN are trapped by acceptor-like traps. These trapped electrons caused the decrease of the 
2DEG concentration [45-46]. Thus, the extension in the depletion region, which induce the 
decrease in CDS–VDS characteristics. 

 

(a) (b) 
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Fig. 5.7: (a) Evolution of CGD-VGD characteristic before and after aging; (b) Evolution of CDS @ VDS = 10 V 
during aging. 

 

5.4.2. Dynamic characteristics aging modeling  
 

Using a C-V simulator, we have simulated the modelled CGS(VGS), CGD(VGD) and CDS(VDS) 
capacitances before and after aging. As shown in Fig. 5.8, the modelled capacitances fit with 
high convergence the measured experimental capacitances during aging. Eq. (16-17) of chapter 
II are used for fitting the C-V characteristics during aging. Table 5.4 shows the extracted values 
of the CGS, CGD and CDS model before and after 720 h of aging.  The modeling of the dynamic 
behavior of the DUT during aging, enables to evaluate the impact of aging on the switching 
power losses of the GaN HEMT using a simulation approach.  

 

 

 

Fig. 5.8: Experiment and model before and after 720 h of aging: (a) CGS-VGS characteristics; (b) CGD-VGD 
characteristics; (c) CDS-VDS characteristics. 

 

 

 

 

 

 

 

(a) (b) 

(a) (b) (c) 
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Table 5.4: Extracted values of CGS, CGD and CDS model before and after 720 h of aging. 
 

Parameters 
0
GSC  1

GSC  
AGS VTH 

2
GSC  

BGS VP  

t = 0  229.79 pF 896.86 pF 2.79 pF/V 1.44 V 242.61 pF 0.54 pF/V 4.61V  

t = 720 h 231.54 pF 941.32 pF 3.74 pF/V 1.28 V 280.22 pF 0.51 pF/V 4.36 V  

Parameters 
0
GDC  1

GDC  
AGD 

2
GDC  

BGD 
0
DSC  

a b 

t = 0  99.70 pF 886.26 pF 3.53 pF/V 228.48 pF 0.59 pF/V 435.61 pF -1.2E-3 2.06E-5 

t = 720 h 100.27pF 937.41 pF 4.14 pF/V 275.68 pF 0.52 pF/V 433.74 pF -1.56E-3 1.04E-5 

 

 

5.5. Impact of aging on S-parameters characteristics 
 

The evaluation of the package parasitic elements during aging is of vital importance to 
power switching performances of GaN HEMT power converters that operate at high frequency. 
In this section, we have performed an experimental S-parameters characterization before and 
after 720 h. Based on the measured S-parameters, we have monitored during aging the GaN 
HEMT parasitic inductances, resistance and capacitance. This enables to evaluate the impact of 
aging the GaN HEMT parasitic elements on the power efficiency of power converters. The S 
parameter measurements were performed using Keysight E5080B vectoral network impedance 
analyzer at a frequency sweep between 100 kHz and 200 MHz by a step of 100 kHz. 
 

5.5.1. S-parameters degradation  
 

Fig. 5.9 shows the magnitude and the phase of the four S-parameters of the device, before 
and after 720 h of aging.      

The degradation of S12 and S21 can be explained by the decrease of transconductance (gm) 
and the increase of gate to drain capacitance (CGD) [47,48]. The Miller capacitance CGD is 
composed of two parts, the p-GaN capacitance (Cp-GaN) and the drift region capacitance (CAlGaN) 
[49]. The interface state generation after stress are responsible of the degradation of both gm, 
GGD [50]. By simulating the temperature distribution of the GaN structure using TCAD physical 
simulator, it is demonstrated in [51] a local hot spot in the drift after aging. The electrons are 
accelerated to high velocities by this high electric field. They become highly energized and 
should be accelerated away from their normal directional flow. These highly energized 
electrons may create interface states by breaking AlGaN bonds [52] or be injected into 
generated surface traps (hot electron injection) at the p-GaN/AlGaN interface [53]. The trapped 
electrons reduce the electric charge density and therefore the total charge in the area affected 
by the trapped carriers. As results, the capacitance characteristics are shifted by the trapped 
charges. 

The S12 and S21 phase were shifted to the left after aging. This shift means that the resonant 
frequency SRF of the test device has been changed due “hot-carrier stressing times” [54]. As a 
consequence, the parasitic elements have been changed during aging. This change in parasitic 
elements is confirmed in Table 5.5. 
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Fig. 5.9: Evolution of the S parameters during 720 h of aging: (a) S11 Magnitude, (b) S11 Phase,                          
(c) S12 Magnitude, (d) S12 Phase, (e) S21 Magnitude, (f) S21 Phase, (g) S22 Magnitude, (h) S22 Phase. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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The parasitic parameters of GaN transistor are increasingly sensitive to defects bound to the 
presence of charges in the p-GaN/AlGaN interface and at the drift region [55]. The hot carriers 
produce an additional interface trap density and trapped electron charge which results in a 
degradation of the parasitic elements of the device [56]. As shown in Table 5.5, the parasitic 
inductances Lg, Ls, Ld have been increased after aging. In [57] they have studied the impact of 
each parasitic inductance on the power efficiency of power GaN HEMTs. Based on this study, 
by eliminating the impact of Ld or Lg, the reduction of turn-on switching loss is negligible 
(around 1%). On the other hand, when the critical parasitic inductance like LS, is removed, the 
turn-on switching loss will reduce significantly (around 9%).  

From Table 6, the extracted parasitic capacitances CGS, CGD and CDS using the S-parameters 
technics shows similar degradation to that extracted using the impedance meter in the previous 
section. The degradation of the GaN HEMT parasitic capacitances increases the switching 
power losses of the device [58]. During the turn-on transition, the energy stored in the CGD and 
CDS capacitances is discharged through the channel of the device, which generates switching 
loss [59]. 

As shown in Table 5.5, the parasitic resistances Rg, Rs, Rd have been increased after 750 h 
of aging. The increased parasitic resistances are caused by the degradation of the GaN HEMT 
ohmic contacts [60]. Losses in the parasitic resistances increase the conduction power losses 
and reduce the efficiency of power converters [61].  

According to the literature [62, 63], the most probable cause of degradation for power GaN 
HEMT parasitic elements is attributed to hot electron-induced interface state generation and/or 
impact ionization.  

Table 5.5: Extracted values of parasitic parameters before and after 720 h of aging. 
 

Parameters Ls (nH) Lg (nH) Ld (nH) Cgs (pF) Cgd (pF) Cds (pF) Rg(mΩ) Rs(mΩ) Rd(mΩ) 
t = 0  1.66 1.98 4.49 238.24 67.20 439.69 367.25 110.39 159.94 

t = 720 h 2.02 1.93 4.96 244.68 69.23 431.12 617.4 120.25 249.67 

Degradation (%) 21.68↑ 2.52↑ 10.46↑ 2.70↑ 3.02↑ 1.94↓ 68.11↑ 8.93↑ 56.10↑ 

 

5.5.2. S-parameters aging modeling  

 

Using an S-parameters simulator, we have implemented the extracted parasitic element 
during aging shown in Table 5.5 in the GaN HEMT small-signal equivalent circuit presented 
in chapter 3. The frequency response (S-parameters) of the aged device are simulated using 
Keysight Advanced Design System (ADS) high frequency circuit simulator. The modeling of 
the S-parameters of the DUT before and after aging, enables to evaluate the impact of aging on 
the RF performances of the GaN HEMT using a simulation approach. As shown in Fig. 5.10, 
the modelled S11 an S12 fit with high convergence the measured experimental S-parameters 
during aging.  
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Fig. 5.10: Experiment and model of S11 and S12 parameters: (a) Before aging; (b) after 720 h of aging. 

 

5.6. Step stress tests 
 

To summarize, in the previous section we have performed a constant aging campaign under 
fixed stress conditions, which respect the SOA zone of the device. Tests at constant stress 
conditions required long aging time to activate the failure mechanisms [64]. In this section, we 
have investigated the aging of the power GaN HEMT using step stress tests. This technique is 
of interest because it allows us to quickly obtain aging information in weeks, rather than months 
of intensive activities as normally required from constant stress tests [65]. This enables to 
reduce test time and to assure that failures occur quickly enough. By performing two kinds of 
aging technics (constant stress and step stress), this enables the possibility to compare the 
degradation generated by different aging technics.  

In a switching mode power converter, the transistor is continuously switched from the off-
state to the on-state and vice versa. During this operation, the DUT are subject to three types of 
stresses: on-state stress; semi-on stress and off-state stress. To understand the failure modes that 
can be generated in each state, we have performed three step stress aging campaigns: 

• Frequency step stress; 
• On-state step stress; 
• Off-state step stress. 

Each aging campaign lasts 1000 h. The aging time of 1000 h is used by the JEDEC standard 
[66]. The aging is monitored every 200 hours by performing I-V, C-V and low leakage current 
characterizations. The characterization step of 200 h is also used in [67]. The aging campaign 
is monitored at the following times: 0, 200 h, 400 h, 600 h, 800 h and 1000 h.   
 

5.6.1. Frequency stress 
 

There is an increasing market pressure to reduce the size of power converter circuits with 
high reliability [68]. In order to address these needs, it is necessary to increase the switching 
frequency of the power switching circuits.   

(a) (b) 
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In this section, we have studied the effects of increasing the switching frequency on the 
degradation mechanism of the power GaN HEMTs.  

The switching frequencies used during aging are: 100 kHz, 200 kHz, 300 kHz and 400 kHz. 
This frequency range is widely used in power converter applications [69]. The used frequency 
step stress bench is presented in Fig. 5.1 (a). The PWM1 signal and its complementary PWM2 
are generated by programming the Arduino board to produce complementary PWM output 
signals at various frequency: 100 kHz, 200 kHz, 300 kHz and 400 kHz. The switching aging 
conditions are: VDS = 200 V, IDS = 10 A and Duty-cycle = 50 %.  

During the frequency step stress, we have observed similar trend of degradations that were 
found in the constant stress. After 200 h switching at 400 kHz, RDSON is 9.55 % higher as 
compared to switching at 100 kHz. The increase in dynamic RDS(on) is thus stronger under 
constant switching conditions than for a step stress switching frequency.  

In literature [70,71], it is known that the GaN HEMTs often suffer from an increased 
dynamic on-state resistance after switching from high-bias off-state. The phenomenon is based 
on trapping effects [72], and the electron trapping can be found at different places in the GaN 
transistor, at the 2DEG interface, in the AlGaN barrier layer or in the GaN buffer layer. This 
may result in increased conduction power losses of the device and an increase in temperature. 
Table 5.6 summarizes the most critical degradation processes that are induced in the frequency 
step stress along with the related failure modes, causes and their effects on the efficiency of 
GaN HEMT power converters. 

 

5.6.2. On-state stress 
 

In energy conversion applications, it is important to have a low IGSS gate leakage current to 
reduce on-state power losses. The purpose of performing an on-state step stress is to evaluate 
the degradation of the current IGSS as a function of stress time.  

In the on-state stress, the drain is short circuited with the source VDS = 0 V and an increasing 
voltage is applied to the gate [73]. The voltages applied to the gate respect the SOA zone:        
1.75 V, 3.5 V, 5.25 V and 7 V. Fig. 5.11 (a) shows the proposed the stress bench schematic for 
the on-state step stress. After every 200 h, the grid voltage is increased by a step of 1.75 V. 
During the aging stress I(V) and C(V) and low current characteristics are monitored at times: 
0, 200 h, 400 h, 600 h, 800 h and 1000 h.  

The investigation of the effect of high electric field on GaN HEMT is mandatory to 
distinguish experimentally between the degradations caused by self-heating mechanism at high 
current and low voltage, and those caused by high voltage switching conditions as well. 
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Fig. 5.11: (a) On-state stepp stress bench, (b) Off-state step stress bench [73]. 

The on-state stress makes it possible to extract the degradations that may exist on the gate 
of the component when a positive voltage is applied. The resulted degradations after aging 
were: increase of the gate leakage current IGSS; negative shift of the threshold voltage VTH.      
Fig. 5.12 shows the evolution of the IGSS current during on-state aging. The IGSS current is 
increased by 79.62 % from the fresh state to the aged state. As observed, a non-negligible 
increase in the gate current leakage is measured using Keithly 2636B SourceMeter, we found 
that IGSS was equal to 3.96 µA before aging and equals to 14.03 µA after aging. The resulted 
degradation of IGSS current is attributed to the generation of defects/leakage paths in the                
p-type/AlGaN gate interface due to hot electrons [74,75]. According to [76], this may also 
induce a negative shift of the threshold voltage VTH. Table 5.6 summarizes the most critical 
degradation processes that are induced in the on-state step stress along with the related failure 
modes, causes and their effects on the efficiency of GaN HEMT power converters. 

 

Fig. 5.12: Evolution of IGSS current at VGS = 6 V during on-state stress. 

 

5.6.3. Off-state stress 
 

In GaN HEMT power converter applications, the GaN transistors must be continuously 
switched from the off-state under a high drain voltage to the on-state with a gate bias. The 
optimization of the GaN HEMTs allows:  

(a) (b) 
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• Improved energy efficiency of GaN HEMT power converters by reducing power losses 
due to leakage currents.  

• Get a wide range of voltage. 

The off-state step stress enables to evaluate the degradations that may exist when the 
component is subjected to a high electric field. Fig. 5.11 (b) shows the off-state stress bench 
schematic.  

In this type of stress, the gate is short circuited with the source VGS = 0 V and an increasing 
voltage is applied to the drain. After every 200h the drain voltage is increased by a step of 100 
V. The voltages applied on the drain respect the SOA zone: 100 V, 200 V, 300 V and 400 V. 
During aging, pulsed I (V), C (V) and low current characteristics are monitored at times: 0, 200 
h, 400 h, 600 h, 800 h and 1000 h.  

IDSS is defined as the drain leakage current when the rated voltage is applied to the drain-
source. Fig. 5.13 shows the evolution of the IDSS current during off-state aging. The IDSS current 
is increased by 95.60 % from the fresh state to the aged state.  

Using Electroluminescence microscopic analysis in [79], it is observed a severe degradation 
located at the drain-side gate edge when applying high electric field in the drain side region. 
Off-state voltage stress induced the generation of source-drain current paths [80] and short 
circuits between gate and channel [81].  

To explain this phenomenon, electrons in the channel are accelerated by the applied electric 
field (i.e., drain voltage), gaining sufficient energy to cross the AlGaN barrier and getting 
trapped below the gate (edge) and in the gate-to-drain region [82]. This effect results in 
increasing of drain leakage current and drain parasitic capacitance. Table 5.6 summarizes the 
most critical degradation processes that are induced in the off-state step stress along with the 
related failure modes, causes and their effects on the efficiency of GaN HEMT power 
converters. 

        
 

Fig. 5.13: Evolution of IDSS current at VDS = 200 V during off-state stress. 
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Table 5.6: Failure mode and effects analysis (FMEA) of the GaN HEMT during 1000 h of step stress aging. 

STRESS TYPE FAILURE MODE FAILURE CAUSE FAILURE EFFECT 

Frequency step 
stress 

- Increase in RDS(on) by 9.55%. 

- Decrease in IDS(Max) by 15.45%. 

- Increase in CGS(MAX) by 6.72%. 

- Increase in CGD(MAX) by 6.32%. 

- Decrease in CDS(Max) by 2.06%. 

- Trapping of hot 
electrons under the gate 
and at the gate edge [83]. 

- Generation of lattice 
defects [84]. 

- Buffer trapping [85]. 

- Surface trapping [86]. 

 

- Elevation in the device 
temperature. 

- Increase of the 
switching losses. 

- High conduction power 
losses. 

- RF performance 
degradation. 

On-state step 
stress 

- Increase in IGSS gate leakage 
current by 79.62%. 

- Negative shift of the VTH 
voltage by 12.44%. 

- Increase in CGS(MAX) by 3.81%. 

- Increase in CGD(MAX) by 4.08%. 

- No change in CDS capacitance. 

- Generation of 
defects/leakage paths in 
the p-GaN/AlGaN gate 
stack [60]. 

- Trapping/detrapping of 
electrons in the gate area 
[61]. 

- Increase of the gate 
power losses. 

- Normally-on behavior. 

- Gate breakdown. 

Off-state step 
stress 

- Increase in IDSS drain leakage 
current by 95.60%. 

- Increase in CGS(MAX) by 4.62%. 

- Increase in CGD(MAX) 5.16%. 

- Increase in CDS(Max) is increased 
by 95.60%. 

- Generation of source-
drain current paths [87]. 

- Short circuits between 
gate and channel [88]. 

 

- Elevation in the off-
state power losses. 

- Drain breakdown. 

 

 

5.7. Effect of aging the GaN HEMT on the efficiency of power converters 
 

Both the static and dynamic characteristics of the GaN HEMT have been modelled by 
measuring experimentally the I-V, C-V, S-parameters, drain and gate leakage currents 
characteristics of the DUT during 720 h of aging. As a result, we have built an accurate power 
losses model for the aging of the GaN HEMT based on experimental measurements, which 
include the major power losses in power switching applications: conduction power losses 
(PCond), switching power losses (PSW), Gate power losses (PGSS), Off-state power losses (PDSS). 
In this section, the effects of aging the GaN HEMT on power converters are studied by modeling 
the power losses before and after 720 h of aging.  

Using the extracted power losses model of the GaN HEMT, we have estimated the impact 
of aging the GaN HEMT on the efficiency of a 200 V / 24 V DC-DC converter stage with GaN 
HEMT. Fig. 5.14 shows a wind energy application which produces an output voltage of 200 V. 
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This voltage is stepped down to 24 V using a buck DC-DC converter for electric vehicle 
charging stations. 

 

 

   

Fig. 5.14: Wind energy application with a 200 V/ 24 V DC-DC converter stage for electric vehicle charging 
stations.  

To remain the same switching conditions of the studied aging campaign, a 200 V converter 
application is used.  Fig. 5.15 shows the used DC-DC converter, which is a 200 V / 24 V buck 
converter. The DUTM is the SPICE model of the aged GaN HEMT.  

 

Fig. 5.15: DC-DC buck converter, with L = 170 mH, C = 850 µF and R = 20 Ω, at 100 kHz switching frequency, 
200 V input voltage and 24 V output voltage. 

The power losses in the inductor, capacitor and diode are given respectively by the 
following equations [89].  
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Where Iout is the output current, LI is the inductor current ripple, which assumed equals to 

30% of the maximum output current (A), D is the duty-cycle, RC is the equivalent series 
resistance of the capacitor, equals to 30 mΩ, RL is the equivalent series resistance of the 
inductor, equals to 0.2 mΩ, VD is the forward voltage of the diode, equals to 0.7 V.  

DC-DC 
Converter 

24 V 200 V 
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5.7.1. Conduction power losses aging effect 

 
The purpose of this part is to model the aging of the DUTM in order to evaluate the effects 

of aging the GaN HEMT under SOA on the power conduction losses of the DC-DC converters 
by a SPICE simulation approach. The conduction power losses PC is calculated by [90]: 
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Where Ton is the conduction time, dc is the duty cycle and f is the frequency.  

Figure 5.16 shows the measurement of PC at three output currents in the studied DC-DC 
buck converter. The effect of aging the GaN HEMT in the SOA during 720 h is that it produces 
an increase of PC losses after aging. The increase of PC is due to the increase of the DUTM on-
state resistance after aging. Resulting in decreased power converter efficiency. From Table 5.7, 
an average increase of PC equals to 7.42 % is observed between the before aging state and the 
after aging state for various output currents: 10 A, 12 A and 14 A. 

 

 

Fig. 5.16. Conduction power losses of DC-DC buck converter before and after 720 h of aging for different 
output current:  10 A, 12 A and 14 A. 

 

Table 5.7: DC-DC buck converter conduction power losses, before and after 720 h of aging for output current: 
10 A, 12 A and 14 A. 
 

PC (W) 10 A 12 A  14 A 

Before aging (t=0) 6.32  9.09 12.35  

After aging (t=720h) 6.79  9.77  13.26  

Degradation (%) 7.43 7.48 7.36 
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5.7.2. Switching power losses aging effect 
 

In order to investigate the impact of aging the GaN HEMT on the switching power losses 
in a switching power application, we have implemented in SPICE simulator both the modelled 
static characteristic obtained in section 5.3 and parasitic capacitances of the GaN HEMT 
obtained in section 5.4 before and after 720 h of aging. The switching power losses PSW(on) is 
calculated by [91]: 

( )

( )
( ) 0

1                                                                     (19)
SW onT

SW on ds ds
SW on

P i v dt
T

=    

Where, PSW(on) is the turn-on power switching losses in (Watt) and TSW(on) is the turn-on 
switching time. Figure 5.17 shows the measurement of switching power losses (PSW) at three 
output currents in the studied DC-DC buck converter. From Fig. 5.17, the effect of aging the 
GaN HEMT in the SOA during 720 h is that it produces an increase of PSW losses after aging. 
The increase of PC is due to the degradations of the DUTM parasitic capacitances after aging. 
Resulting in decreased power conversion efficiency. The average increase of PSW is estimated 
to be equal to 7.42 % before aging state and the after aging state for various output currents: 10 
A, 12 A and 14 A. 

 

Fig. 5.17: Switching power losses of DC-DC buck converter before and after 720 h of aging for different output 
current: 10 A, 12 A and 14 A. 

 

5.7.3. Gate leakage current losses aging effect 

 

To accurately evaluate the impact of the on-state aging on the efficiency of GaN HEMT 
power converters, we have calculated the gate power losses caused by the gate leakage current 
before and after 720 h of aging. Fig. 5.18 shows the measurement of the gate power losses 
(PGSS) before and after 720 h of on-state aging. The effect of aging the GaN HEMT in the SOA 
during 720 h is that it produces an increase of gate losses after aging. This is due to the 
degradations generation of defects/leakage paths in the p-GaN/AlGaN gate stack [77] and the 
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trapping/detrapping of electrons in the gate area [78]. Resulting in decreased power conversion 
efficiency. The average increase of the gate power losses is estimated to be equals to 2.62 % 
before aging state and after the aging state. 

       

Fig. 5.18: Estimated gate power losses before and after 720 h of on-state step stress aging. 

5.7.4. Drain leakage current losses aging effect 

To accurately evaluate the impact of the off-state aging on the efficiency of GaN HEMT 
power converters, we have calculated the off-state power losses caused by the drain leakage 
current before and after 720 h of aging. Fig. 5.19 shows the measurement of the off-state power 
losses before and after 720 h of off-state aging. The effect of aging the GaN HEMT in the SOA 
during 720 h is that it produces an increase of off-state power losses after aging. This is due to 
the degradations generation of source-drain current paths [80] and short circuits between gate 
and channel [81]. Resulting in decreased power converter efficiency. The average increase of 
the gate power losses is estimated to be equal to 21.83 % before and after the aging state 

        

Fig. 5.19: Estimated gate power losses before and after 720 h of off-state step stress aging. 

 

5.7.5. Efficiency aging impact  
 

The following table summarizes the total losses and calculates the efficiency of a 200 V / 
24 V DC-DC buck converter with GaN HEMT at 25 °C and 10 A. 
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                            Table 5.8: Total losses in DC-DC buck converter with GaN HEMT at 25°C, 10 A. 
 

Power losses Before aging After aging 

Pout 2000 W 2000 W 

PL 20.05 mW 20.05 mW 

PC 22.5 mW 22.5 mW 

PD 1.05 W 1.05 W 

PCond 6.32 W 6.79 W 

PSW 73.37 W 80.79 W 

PG 22.92 µW 83.08 µW 

Poff 1.32 mW 30.14 mW 

PGAN = PCond + PSW + PG + Poff 79.69 W 87.61 W 

Plost 80.78 W 88.70 W 

Pin = Plost + Pout 2080.78 W 2088.70 W 

out

in

P

P
 =  

96.11 % 95.75 % 

 

The total power losses estimation before and after aging of the GaN HEMT 200 V / 24 V 
DC-DC buck converter for various output currents: 10 A, 12 A and 14 A are shown in Fig. 5.20. 

The average increase in the total power losses after aging has been estimated to be equal to      
8.26 %.  

 

Fig. 5.20: GaN HEMT total power losses of DC-DC buck converter before and after 720 h of aging for various 
output current: 10 A, 12 A and 14 A. 
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5.8. Conclusion 
 

This chapter investigates the reliability of power GaN HEMT under operational switching 
conditions, which could exist in a large class of power management products such as power 
converters. The switching conditions respect the safe operating area of the tested device given 
by the constructor, which provides a useful information about the degradation of GaN HEMT 
under use conditions. The proposed switching bench gives an efficient way with low power 
consumption to study the reliability of power GaN HEMT under switching conditions. The 
aging campaign lasted 720 h and it has resulted on a degradation of both the static and dynamic 
characteristics of the device which is attributed to the hot electron generated during the 
switching state. The major causes that affect the reliability of the GaN HEMT are hard 
switching, long time of test and high intensity of the stress. The existence of trapped charge in 
the gate-drain access region after aging is experimentally demonstrated by pulsing from various 
quiescent voltages. Moreover, we studied the effect of aging GaN HEMT on the efficiency of 
a DC-DC power converter by a simulation approach. It is found that the aged devices result in 
decreased performances of power converters. 
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Chapter 6: Summary, conclusions and future work 
 

6.1 Summary 

 

This work explores the impact of aging the GaN HEMTs under operational switching 
conditions on the efficiency of DC-DC power converters. 

 As reported in chapter 1, the GaN HEMTs combine in one technology high voltage 
capability, large current and both high operational frequency and temperature. These features 
make the GaN HEMT highly suitable for power switching applications. 

The state of the art of the GaN HEMT power transistors has been presented in Chapter 2. As 
reported in this chapter, the GaN HEMT devices satisfy the requirements of the power converter 
market for a high operating voltage, high operating current, high power density, high switching 
frequency, and strong reliability, which makes the GaN technology an attractive candidate for 
replacing Si devices in power applications. The physical properties of the GaN semiconductor 
enables both high-speed and high-voltage performances. The p-GaN HEMT normally-off 
structure is finding wide consensus within the scientific and industrial communities. For that, 
we have investigated the main issues related to the aging of these devices. Finally, the SPICE 
modeling approach enables the estimation of the GaN HEMT power losses with high accuracy.  

In chapter 3, an experimental method is used to estimate the power losses of the GaN HEMTs 
in switching applications. The proposed approach is based on experimental I-V pulsed, C-V 
and low current characterizations. As a result of this study, both the static and dynamic power 
losses of the GaN HEMT are estimated. The impact of the conduction power losses, switching 
power losses and gate power losses on the efficiency of power converters are modelled using 
SPICE simulation approach. The accuracy and good convergence of simulation to experimental 
measurements provide a good way to design power converters with GaN HEMTs. Moreover, 
this approach offers to the power converter designers the possibility to estimate the power losses 
of GaN HEMT with high accuracy without the use of complex switching bench, which reduces 
both the time to market and cost. 

In chapter 4, an accurate methodology based on an accurate S-parameters calibration 
procedure has been proposed to determine parasitic resistances, inductances, and capacitances 
of a packaged GaN power transistor. The obtained results show the possibility to extract very 
low device parasitic inductances which may influence switching mechanisms in power 
converters. Good agreement has been found between extracted values and technical data 
provided in the literature. Moreover, modeling equations are proposed for the nonlinear model 
parameters. The proposed method has the capability to be applied to any packaged GaN power 
transistor fabricated by different manufacturers. Furthermore, the method offers the possibility 
to extend the characterization to devices that have two terminals, such as: commercial 
inductances, capacitances and resistances.  

Chapter 5 has investigated the reliability of GaN HEMT power transistor under operational 
switching conditions, which could exist in a large class of power management products such as 
power converters. The switching conditions respect the safe operating area of the tested device 
given by the constructor, which provide a useful information about the degradation of GaN 
HEMT transistor under use conditions. The proposed switching bench gives an efficient way to 
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study the reliability of power GaN HEMT under switching conditions. The aging campaign 
lasted 720 h and it has resulted on a degradation of both the static and dynamic characteristics 
of the device which is attributed to the hot electron generated during the switching state. The 
major causes that affect the reliability of the GaN HEMT are hard switching, long time of test 
and high intensity of the stress. The existence of trapped charge in the gate-drain access region 
after aging is experimentally demonstrated by pulsing from various quiescent voltages. 
Moreover, we studied the effect of aging GaN HEMT on the efficiency of a DC-DC power 
converter by a simulation approach. It is found that the aged devices result in decreased 
performances of power converters. 
 

6.2 Conclusion  

This work investigates the reliability of the GaN HEMT power transistor under operational 
switching conditions, which could exist in a large class of power converter applications. The 
switching conditions respect the safe operating area of the tested device given by the 
constructor, which provide a useful information about the degradation of GaN HEMT under 
safe optional conditions. The proposed switching bench gives an efficient way with low power 
consumption to study the reliability of power GaN HEMT under switching conditions. The 
aging campaigns lasted 1000 h and it has resulted on a degradation of the static parameters 
RDS(ON), gm, ID, VTH and IGSS which is attributed to the hot electron generated during the 
switching state. The existence of trapped charge in the gate-drain access region after aging is 
experimentally demonstrated by pulsing from various quiescent voltages. Additionally, we 
have monitored the evolution of the package parasitic elements during the aging of the GaN 
HEMT using the S-parameters method. The measurement of the S-parameters before and after 
aging shows the degradation of S12 and S21, which can be explained by the decrease of 
transconductance (gm) and the increase of the gate to drain parasitic capacitance (CGD). The 
change in the CGD capacitance due to the trapped charges was confirmed by applying C-V 
measurement on the aged DUT. Using the proposed methodology in chapter 5 for the estimation 
of the GaN HEMT both static and dynamic power losses, we have studied the effect of aging 
GaN HEMT on the efficiency of a DC-DC power converter by a SPICE simulation approach.  

6.3 Thesis contribution 
 

The major contributions of this thesis are presented as follows: 

• The developed methodology for estimating both the dynamic and static power losses of 
the GaN HEMT in power converter applications is accurate and based on experimental 
characterizations.  

• The accuracy and consistent convergence of the developed SPICE model provide a good 
way to investigate the reliability of GaN HEMTs by a simulation approach. 

• The developed experimental bench for S-parameters characterization enables the 
extraction of the parasitic elements of power devices automatically and at multi-bias. 

• The extraction methodology of the intrinsic and extrinsic elements can be applied to a 
large class of power devices.  

• Most existing studies investigate the reliability of the GaN HEMT at static conditions. 
This works investigates the aging of a 650V, 30A GaN HEMT power transistor under 
operational switching conditions of DC-DC power converters. 
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• The proposed aging bench enables to investigate the impact of aging the GaN HEMTs 
for both at high current and voltage and with low energy consumption. 

• The presented modeling methodology of aging the GaN HEMT is generic and can be 
applied to other aging campaign for other components of various voltage ranges. 

• The monitoring of the S parameters characteristic during aging enables to evaluate the 
impact of aging stress on the DUT packages. 

• We have extended our investigation of the aging of GaN HEMT not only in static 
characteristics but also in the dynamic aspect.  

6.4 Future work 

As prospects for this study, the accuracy of the developed SPICE model can be improved by 
modelling of trapping effects and by modelling of dynamic characteristics in order to take into 
consideration the switching losses and the trapping effects when designing power converters 
using GaN HEMTs. Also, it is interesting to perform additional switching campaigns at various 
switching frequencies to study the effect of hard switching on GaN HEMT power converters. 
Moreover, the accuracy of the estimate efficiency can be completed by designing a DC-DC 
converter to calculate experimentally the impact of aging the GaN HEMT on the efficiency of 
power switching circuits using an experimental approach and compare it to the estimate 
efficiency using the SPICE approach. 
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