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Spécialité de doctorat : Informatique
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Professeur, Télécom-SudParis (SAMOVAR/R3S) Examinateur

Gabriel GIRARD
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Résumé : L’écosystème de la cybersécurité évolue
en permanence en termes du nombre, de la diversité,
et de la complexité des attaques. De ce fait, les outils
de détection deviennent inefficaces face à certaines
attaques. On distingue généralement trois types de
système de détection d’intrusions: détection par ano-
malies, détection par signatures et détection hybride.
La détection par anomalies est fondée sur la ca-
ractérisation du comportement habituel du système,
typiquement de manière statistique. Elle permet de
détecter des attaques connues ou inconnues, mais
génère aussi un très grand nombre de faux posi-
tifs. La détection par signatures permet de détecter
des attaques connues en définissant des règles qui
décrivent le comportement connu d’un attaquant.
Cela demande une bonne connaissance du compor-
tement de l’attaquant. La détection hybride repose sur
plusieurs méthodes de détection incluant celles sus-
citées. Elle présente l’avantage d’être plus précise
pendant la détection. Des outils tels que Snort et Zeek
offrent des langages de bas niveau pour l’expression
de règles de reconnaissance d’attaques. Le nombre
d’attaques potentielles étant très grand, ces bases de

règles deviennent rapidement difficiles à gérer et à
maintenir. De plus, l’expression de règles avec état dit
stateful est particulièrement ardue pour reconnaı̂tre
une séquence d’événements.
Dans cette thèse, nous proposons une approche sta-
teful afin d’identifier des attaques complexes. Nous
considèrons l’approche diagramme état-transition
hiérarchique, en utilisant les ASTDs. Les ASTDs per-
mettent de représenter de façon graphique et modu-
laire une spécification, ce qui facilite la maintenance
et la compréhension des règles. Nous étendons
la notation ASTD avec de nouvelles fonctionnalités
pour représenter des attaques complexes. Ensuite,
nous spécifions plusieurs attaques avec la notation
étendue et exécutons les specifications obtenues sur
des flots d’événements à l’aide d’un interpréteur pour
identifier des attaques. Nous évaluons aussi les per-
formances de l’interpréteur avec des outils indus-
triels tels que Snort et Zeek. Puis, nous réalisons
un compilateur afin de générer du code exécutable
à partir d’une spécification ASTD, capable d’identifier
éfficiemment les séquences d’événements.

Title : Formal modeling of intrusion detection systems

Keywords : Intrusion detection, Formal specification, Compilation, Proofs, ASTD

Abstract : The cybersecurity ecosystem continuously
evolves with the number, the diversity, and the com-
plexity of cyber attacks. Generally, we have three IDS
types: anomaly-based detection, signature-based de-
tection, and hybrid detection. Anomaly detection is ba-
sed on the usual behavior description of the system,
typically in a static manner. It enables detecting known
or unknown attacks, but generating also a large num-
ber of false positives. Signature based detection en-
ables detecting known attacks by defining rules that
describe known attacker’s behavior. It needs a good
knowledge of attacker behavior. Hybrid detection re-
lies on several detection methods including the pre-
vious ones. It has the advantage of being more pre-
cise during detection. Tools like Snort and Zeek of-
fer low level languages to represent rules for detec-
ting attacks. The number of potential attacks being
large, these rule bases become quickly hard to ma-

nage and maintain. Moreover, the representation of
stateful rules to recognize a sequence of events is
particularly arduous.
In this thesis, we propose a stateful approach to iden-
tify complex attacks. We consider the hierarchical
state-transition diagram approach, using the ASTDs.
ASTDs allow a graphical and modular representation
of a specification, that facilitates maintenance and un-
derstanding of rules. We extend the ASTD notation
with new features to represent complex attacks. Next,
we specify several attacks with the extended notation
and run the resulting specifications on event streams
using an interpreter to identify attacks. We also eva-
luate the performance of the interpreter with indus-
trial tools such as Snort and Zeek. Then, we build a
compiler in order to generate executable code from
an ASTD specification, able to efficiently identify se-
quences of events.
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Introduction

En 2016, les dégâts causés par les attaques cybernétiques étaient évalués à plus de
450 milliards de dollars [123]. Malgré les efforts pour y remédier, les attaques conti-
nuent de croître rapidement, touchant les systèmes d’information, les infrastructures
industrielles, les réseaux informatiques et les appareils personnels. Dans la majorité
des cas, les causes majeures des attaques sont les vulnérabilités liées aux défauts
de conception et erreurs humaines telles que : l’ouverture de courriels malicieux,
consultation de pages Web non sécurisées et le manque de mises à jour du système
d’exploitation. De nombreux outils de prévention et de détection d’attaques ont été
proposés afin d’assurer le contrôle, précisément la sécurité des données sensibles et
la prise de décision sur les comportements d’attaques observés. Les outils sont placés
stratégiquement dans un réseau ou un hôte, où ils opèrent en mode singulier, distri-
bué, centralisé, collaboratif ou coopératif afin de prévenir et/ou détecter des attaques
visant la confidentialité, l’intégrité ou la disponibilité des informations. La précision
et la performance de tels outils dépendent de plusieurs critères parmi lesquels : la
méthode de détection, le type de réponse, l’environnement et le type de système de
détection d’intrusions.

Les méthodes de détection peuvent être regroupées en trois groupes : la détec-
tion par signatures, la détection par anomalies et la détection hybride. La détection
par signatures utilise des règles ou des motifs prédéfinis afin d’identifier des attaques
conformément à ces motifs. Tandis que la détection par anomalies se base sur des
profils statistiques représentatifs du comportement normal du système et toute dé-
viation à ces profils (comportement anormal) est considérée comme une attaque. La
méthode hybride exploite les deux méthodes sus-citées afin d’améliorer la détection.
Actuellement, les analystes en cybersécurité combinent la détection par anomalies
et par signatures afin d’optimiser le taux de détection. En effet, la détection par si-
gnatures est appropriée pour les attaques connues, c’est-à-dire qui existent dans sa
base de signatures, alors que la détection par anomalies est efficace pour identifier les
attaques inconnues. Face à un volume de données élevé, les centres des opérations en
sécurité (SOCs) associent les outils basés sur les méthodes sus-citées avec un système
de gestion des événements de sécurité afin d’avoir une vue holistique des postures de

1



Introduction

sécurité de l’organisation.

Problématique
Les attaques cybernétiques évoluent très rapidement, étant de plus en plus non

prévisibles et persistantes. De ce fait, les outils de détection d’attaques deviennent
inefficaces face à certaines attaques. Les outils tels que Snort [269] et Zeek [254] néces-
sitent une mise à jour des règles de détection à chaque fois qu’une attaque inconnue
est observée. En général, cette mise à jour se fait manuellement par un expert en
cybersécurité dû à la nature complexe des comportements d’attaques. De plus, les
règles sont exprimées dans un langage de bas niveau limitant la reconnaissance de
nouvelles d’attaques i.e., elles sont essentiellement exprimées en utilisant des fonc-
tions et des variables globales (cas de Zeek) ou représentées dans un format ASCII
difficile à comprendre (cas de Snort). En effet, les langages utilisés pour l’expression
des règles représentent celles-ci dans des environnements particuliers et souffrent des
idiosyncrasies de leurs paramètres opérationnels qui les rendent difficiles à étendre à
de nouveaux environnements. Ainsi, le modèle sémantique ou les abstractions four-
nis au développeur des règles sont soit de bas niveau, soit pas clairement définis.
D’autre part, les outils de détection par anomalies génèrent un nombre important de
faux positifs (i.e., des alertes d’attaques produites face à un comportement normal
du système) et peuvent difficilement expliquer pourquoi un événement est considéré
comme malveillant ; cette information est cruciale pour que l’analyste déclenche des
contre-mesures. Récemment, les outils de détection hybrides se sont avérés promet-
teurs car ils présentent l’avantage d’être plus précis pendant la détection et adaptés
pour le traitement de plusieurs sources d’événements (ex. paquets, logs). Toutefois,
l’interopérabilité des divers formats d’événements pour le traitement est particuliè-
rement ardue avec ces outils. Par conséquent, les experts ont recours à l’écriture de
plusieurs microprogrammes (scripts), l’usage de nombreux outils complémentaires et,
éventuellement, la modification du code des outils de détection. Avec la croissance
des attaques, ces opérations deviennent coûteuses et limitent considérablement la
maintenabilité, la réutilisabilité et le réusinage des outils.

Objectifs
Le but de cette thèse est de proposer une approche formelle de détection d’intru-

sions par la corrélation d’événements. Une telle approche consiste à spécifier les com-
portements d’attaques dans un langage structuré et plus abstrait, indépendamment
de tout logiciel ou matériel. De ce fait, les spécifications d’attaques sont facilement
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vérifiées, maintenues et réutilisées par les parties tierces d’une organisation. Nous
considérons la méthode de spécification basée sur les diagrammes d’état-transition
algébriques (ASTDs). Les ASTDs offrent une vue graphique, hiérarchique et modu-
laire des spécifications d’attaques. La corrélation d’événements est effectuée grâce à
un interpréteur et un compilateur d’ASTDs que nous définissons et implémentons
dans le cadre de cette thèse. Dans un but de détection, l’interpréteur permet d’exé-
cuter les spécifications d’attaques sur différentes sources d’événements provenant du
réseau ou de l’hôte. Tandis que le compilateur permet de générer un programme exé-
cutable à partir d’une spécification ASTD de l’attaque. Le programme compilé va
être exécuté pour la détection d’attaques. Due à l’hétérogénéité des événements, le
langage proposé est couplé avec une ontologie pour la représentation des différents
types d’événements avant leur envoi au détecteur.

Méthodologie
Le travail effectué durant cette thèse a débuté par une revue approfondie des

domaines d’attaques et leurs vulnérabilités, des techniques d’attaques et de détection
d’intrusions. Après cet aperçu contextuel, il était question de définir un langage de
spécification de haut niveau en se basant sur les comportements observés des attaques
et le langage existant ASTD. De ce fait, une simulation de plusieurs attaques a été
effectuée afin d’identifier les fonctionnalités à ajouter au langage ASTD. Ensuite, la
prochaine étape a consisté à spécifier différentes attaques simples et complexes en
utilisant la notation étendue. Afin de valider la notation, les spécifications d’attaques
ont été présentées à des experts de la sécurité et une évaluation comparative a été
réalisée entre le langage défini et d’autres langages de détection d’attaques existants.
Pour l’évaluation, les performances de l’interpréteur du langage ont été comparées
avec celles des outils industriels de détection d’attaques (ex. Snort, Zeek) à travers
de nombreuses études de cas. Enfin, la dernière étape était de réaliser le compilateur
du langage d’attaques. Pour ce faire, des règles de traduction ont été définies pour le
passage du langage d’attaques au langage intermédiaire et du langage intermédiaire
vers les langages de programmation de haut niveau tels que C++. Puis, le code
généré a été optimisé et compilé en format binaire en utilisant les compilateurs natifs
du langage de programmation (ex. GCC, JAVAC). Les performances des programmes
générés sont comparées aux outils existants de corrélation d’événements (ex. iASTD,
Beepbeep, MonPoly). La méthodologie ci-dessus se résume de la façon suivante :

1. Revue approfondie des domaines, techniques d’attaques et approches de détec-
tion d’intrusions (Chapitre 1).

2. Définition formelle et extension du langage ASTD existant pour la spécification
d’attaques (Chapitre 2).
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3. Méthodologie de spécification d’attaques et évaluation des performances de l’in-
terpréteur du langage (Chapitre 3).

4. Définition formelle des règles de traduction du langage d’attaques au langage
intermédiaire et du langage intermédiaire vers le langage C++ (Chapitre 4).

5. Comparaison des performances des programmes générés à partir du compilateur
avec les outils de corrélation iASTD, Beepbeep, et MonPoly (Chapitre 4).

Contributions
Les contributions de cette thèse sont comme suit :
1. L’étude comparative et approfondie de plus de trois cent travaux récents sur

les domaines d’attaques et leurs vulnérabilités (ex. contrôle industriel, médical), la
classification des systèmes de détection d’intrusions, les ensembles de données récents
pour l’évaluation de tels systèmes, les techniques de détection d’intrusions et de trai-
tement de flots d’événements hétérogènes, les limites et solutions potentielles pour la
mitigation des attaques [313]. Cette étude a permis de sélectionner les approches les
plus appropriées pour la conception et l’implémentation d’un système de détection
d’intrusions. Ce travail a fait l’objet d’un article de revue publié dans le volume 4 de
la revue IEEE Communication Surveys and Tutorials (IF : 29.830).

2. L’extension du langage ASTD et la définition formelle de sa sémantique. Cette
extension a permis de prendre en compte la déclaration d’attributs (i.e., variables
d’état), la déclaration des actions contenant du code exécutable pour modifier les at-
tributs au cours de l’exécution d’une transition et dans l’état de l’automate (entrée,
séjour, sortie), et un nouvel opérateur ASTD appelé Flow pouvant exécuter des évé-
nements partagés sur plusieurs modèles ASTDs lorsque cela est possible. Les actions
peuvent être exécutées également au niveau d’un ASTD lui-même, afin de facilement
factoriser le code à exécuter pour chaque transition de l’ASTD. La notation proposée
a été implémentée dans deux interpréteurs, un en Prolog avec ProB, et l’autre en
OCaml. ProB s’est avéré un ajout utile, car il donne accès à plusieurs fonctionnalités
de contrôle de modèle déjà implémentées, telles que le contrôle du raffinement, le
contrôle de terminaison et la vérification de formules temporelles [236]. Ce travail a
fait l’objet d’un article publié dans le cadre de la 23ième édition de la conférence inter-
nationale ICECCS (International Conference on Engineering of Complex Computer
Systems) de rang A.

3. L’élaboration d’une méthodologie de spécification d’attaques avec la notation
étendue des ASTDs et la comparaison de l’outil implémentant le langage avec des ou-
tils de détection d’attaques tels que Zeek et Snort. La notation a été couplée avec des
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descriptions de scénarios d’attaques tels que CAPEC 1 et ATT&CK [305]. L’évalua-
tion des outils est effectuée en temps réel et sur des ensembles de données existants.
Plus de 65 attaques ont été simulées et spécifiées avec la notation en collaboration avec
Nokia Canada. Une vingtaine d’attaques a été spécifiée à partir d’énormes ensembles
de données réelles provenant du Centre de la Sécurité des Télécommunications et de
l’Université Technique Tchèque de Prague. Pour la corrélation d’événements, l’ou-
til implémentant l’approche a produit peu de fausses alertes et est plus précis que
ceux répertoriés dans la littérature [314]. Ce travail a fait l’objet d’un article publié
dans le cadre de la 34ième édition de la conférence internationale AINA (International
Conference on Advanced Information Networking and Applications) de rang B.

4. La conception, l’implémentation, l’optimisation, et l’évaluation d’un compila-
teur du langage d’attaques vers le langage C++. Une syntaxe du langage intermédiaire
a été définie ainsi que les règles traduction du langage d’attaques vers le langage in-
termédiaire et du langage intermédiaire vers un langage de programmation donné. Le
code généré a été optimisé avec l’élimination des calculs redondants et le support de
la Kappa optimisation pour l’exécution efficiente des opérateurs quantifiés. Les pro-
grammes compilés ont été comparés avec plusieurs outils de traitement d’événements
(i.e., iASTD, Beepbeep, MonPoly) sur des ensembles de données de référence et sont
plus rapides que ceux-ci.

Plan de la thèse
Le reste de ce manuscrit est organisé comme suit. Le Chapitre 1 fournit une

revue et une évaluation des approches existantes sur la détection et le traitement
d’événements. Ensuite, le Chapitre 2 décrit l’extension des ASTDs pour la détection
d’attaques ainsi que sa sémantique formelle à travers une étude de cas. Le Chapitre
3 valide la notation proposée sur des données temps réel et de référence. La métho-
dologie de conception du compilateur du langage et la comparaison des performances
des programmes compilés avec les outils de traitement d’événements existants (ex.
iASTD) sont présentées dans le Chapitre 4. Les limites rencontrées durant les tra-
vaux de recherche, ainsi que les perspectives sont présentées en conclusion de cette
thèse.

Il est à noter que l’annexe A illustre un cas d’attaque et décrit quelques règles de
détection de l’attaque. L’annexe B présente des exemples de génération du code.

1. http ://makingsecuritymeasurable.mitre.org/docs/capec-intro-handout.pdf
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Chapitre 1

État de l’art

Résumé

De nos jours, les technologies réseaux sont essentielles pour transférer et
stocker diverses informations sur les utilisateurs, les entreprises et les in-
dustries. Cependant, la croissance du taux de transfert d’informations étend
la surface d’attaque, offrant un environnement riche aux intrus. Les sys-
tèmes de détection d’intrusion (IDS) sont des systèmes répandus capables
de contrôler passivement ou activement les activités intrusives dans un hôte
et un périmètre réseau définis. Récemment, différents IDS ont été propo-
sés en intégrant diverses techniques de détection, génériques ou adaptées à
un domaine spécifique et à la nature des attaques opérant sur ce domaine.
Le paysage de la cybersécurité traite d’énormes flux d’événements diver-
sifiés qui augmentent de manière exponentielle les vecteurs d’attaque. Les
méthodes de traitement des flux d’événements (ESP) sont des solutions qui
exploitent les flux d’événements afin de fournir des informations exploitables
et une détection plus rapide. Dans cet article, nous décrivons brièvement les
domaines ainsi que leurs vulnérabilités sur lesquels se fondent les articles
récents. Nous étudions également les normes d’évaluation de la vulnérabilité
et de classification des attaques. Ensuite, nous effectuons une classification
des systèmes de détection d’intrusions, des métriques d’évaluation et des en-
sembles de données. Nous fournissons les détails techniques et une évaluation
des travaux les plus récents sur les techniques IDS et les approches ESP cou-
vrant différentes dimensions (axes) : domaines, architectures et technologies
de communication locales. Enfin, nous discutons des défis et des stratégies
pour améliorer l’IDS en termes de précision, de performance et de robustesse.
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Commentaires

La contribution ici réside dans l’étude comparative et approfondie de plus
de trois cent travaux récents sur les domaines d’attaques et leurs vulnérabi-
lités (ex. contrôle industriel, transport, médical, construction, système sans
pilote), la classification des systèmes de détection d’intrusions, les ensembles
de données récents pour l’évaluation de tels systèmes, les techniques de dé-
tection d’intrusions et de traitement de flots d’évènements hétérogènes, les
limites et solutions potentielles pour la mitigation des attaques [313]. Cette
étude a permis de sélectionner les approches les plus appropriées pour la
conception et l’implémentation d’un système de détection d’intrusions.

Les contributions décrites dans ce chapitre ont fait l’objet d’un article
de revue publié dans le volume 4 de la revue IEEE Communication Surveys
and Tutorials, le 12 juin 2019.

Les contributions et l’article sus-cité ont été élaborées par mes soins en
tenant compte des remarques et commentaires issus de mon équipe d’enca-
drement.
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Abstract

Nowadays, network technologies are essential for transferring and stor-
ing various information of users, companies, and industries. However, the
growth of the information transfer rate expands the attack surface, offer-
ing a rich environment to intruders. Intrusion detection systems (IDSs) are
widespread systems able to passively or actively control intrusive activities
in a defined host and network perimeter. Recently, different IDSs have been
proposed by integrating various detection techniques, generic or adapted to a
specific domain and to the nature of attacks operating on. The cybersecurity
landscape deals with tremendous diverse event streams that exponentially
increase the attack vectors. Event stream processing (ESP) methods appear
to be solutions that leverage event streams to provide actionable insights
and faster detection. In this chapter, we briefly describe domains (as well
as their vulnerabilities) on which recent papers were based. We also survey
standards for vulnerability assessment and attack classification. Afterwards,
we carry out a classification of intrusion detection systems, evaluation met-
rics and datasets. Next, we provide the technical details and an evaluation
of the most recent work on IDS techniques and ESP approaches covering
different dimensions (axes): domains, architectures, and local communica-
tion technologies. Finally, we discuss challenges and strategies to improve
IDS in terms of accuracy, performance, and robustness.
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1.1. Introduction

1.1 Introduction
The global Internet economy is estimated to be valued at $4.2 trillion in 2016 [75].

It is estimated that the cost to the global economy from cybercrime is more than
$400 billion 1. Cyber-attacks are still spreading, targeting information systems, in-
dustrial infrastructures, computer networks, and personal end-devices. In most cases,
vulnerabilities related to design flaws and human errors are the main causes of such
attacks [16]. To defend network perimeters against these attacks, various intrusion
prevention and detection systems have been proposed. Such systems are strategically
placed in a network or host where they operate in single, distributed, centralized, col-
laborative or cooperative mode to prevent and/or detect eventual attacks against the
confidentiality, integrity, and availability of information. With the growth of network
infrastructures, intrusion detection systems must constantly adapt to new environ-
ments and changes. Network infrastructures support multiple diverse architectures
such as Mobile Ad-hoc Networks (MANETs), Vehicular Ad-hoc Networks (VANETs),
Unmanned Aerial Vehicle Networks (UAVNETs) and local communication technolo-
gies (e.g. Wi-Fi, Bluetooth) that are vulnerable to unknown/zero day attacks [205].
Consequently, network infrastructures require high performance and accurate IDSs.

An IDS is a hardware and/or software that passively or actively controls a net-
work/host in order to find possible intrusions. Generally, IDSs are mainly divided
into three categories: Network-based IDSs (NIDSs), Host-based IDSs (HIDSs), and
Hybrid IDSs. A NIDS is located in a demilitarized zone (DMZ) just after the firewall.
It captures network traffic in real time, analyzes it and performs defensive actions.
These actions against malicious traffic can be either single alerts to the administrator
or active reactions like dropping malicious traffic. Unlike NIDSs, HIDSs inspect log
files of the operating system, services and softwares installed on the host and trig-
ger alerts when suspicious activities are detected. IDSs that provide both NIDS and
HIDS capabilities are called hybrid IDSs. A hybrid IDS uses both NIDS and HIDS for
the gathering and analysis of heterogeneous cyber threat information. An IDS that
can autonomously block attacks before they occur is called an Intrusion Prevention
System (IPS).

In recent years, a large number of research work has been published on the use of
four main IDS techniques: i) anomaly-based detection that builds statistical patterns
representing normal behaviours of the monitored system to identify abnormal patterns
(e.g. machine learning, biologically-inspired systems); ii) knowledge-based detection
also known as signature-based detection matches incoming signatures to those in its
database of known threatening signatures for detection (e.g. knowledge-based sys-
tems); iii) multi-agent-based detection where IDS agents operate in centralized, dis-

1. www.mcafee.com/ca/resources/reports/rp-economic-impact-cybercrime2.pdf
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tributed, collaborative and cooperative manner to detect advanced persistent threats
and multi-stage attacks; and iv) hybrid detection that leverages multiple detection
techniques to increase the detection accuracy (e.g. machine learning + knowledge-
based systems + multi-agent systems). Recently, several detection techniques were
focused on a particular application domain, although others were more generic. In
addition, few recent papers were focused on IDS techniques in big network infrastruc-
tures particularly, event stream processing (ESP) approaches that are processor and
resource-intensives.

Recent survey papers describe latest advances in a specific dimension (axis). Di-
mensions give an essential understanding of areas related to recent work, that will
be classified and evaluated in our paper. This paper extends existing survey pa-
pers [63, 87, 156, 176, 202, 221, 239, 280, 354] by covering different comparison dimen-
sions. The first dimension is the domain, a technological and general application
area underlying a specific research work, for example: Cloud Computing, Big Data,
Software Defined Networking, Smart Cities in public safety and Smart Grids in cyber-
physical systems. The second is the architecture or topological organization of net-
work objects, for example: MANET, VANET, and UAVNET. Finally, the Local
Communication Technology (LCT) that enables exchanging data on a small and large
distance, for example: Bluetooth, Zigbee, Wi-Fi and WiMAX. For a given dimension,
we present some topics that are not fully covered in recent papers such as vulnera-
bilities, attack classification, intrusion detection techniques, event stream processing
approaches, and dataset lists. In Table 1.1, we use two notations: 3 when an aspect
is covered by the survey and 7 otherwise. Surveys [63, 354] cover the same domain,
but with different topic coverage, indicated in Table 1.1 with two distinct marks.
Dimensions are described in Section 1.2 including their vulnerabilities and attacks.

Table 1.1 – Comparison between recent surveys and ours

Dimension [156,221] [87] [63, 354] [202] [239] [176] [280] ours

Domain CloudC. SCADA BigData SmartGrid 7 7 7 3
Architect. 7 7 7 7 MANET 7 VANET 3
LCT 7 7 7 7 7 Wi-Fi 7 3

Topics

Vulnerability 3 3 7 7 7 3 3 3
Attack class. 3 3 7 3 7 3 3 3
Detect. tech. 3 3 7, 3 3 3 7 3 3
ESP methods 7 7 3 7 7 7 7 3
Dataset(list) 7 7 3, 7 7 7 3 7 3

For the present survey, we have reviewed more than 250 research articles and
selected about 100 qualitative articles published from December 2015 to January
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2019 in top academic databases such as IEEE explore, Springer Link and Science
Direct. We restricted ourselves to this period because we wanted to present the latest
advances, precisely, new emerging aspects which are not yet covered in recent survey
papers. The selection process was based on the dimension as mentioned above, the
year of publication, the number of citations, and the publishing house.

The contributions of this paper include:
— A dimensional overview of environments where IDSs are used. It gives an

essential understanding of domains and vulnerabilities related to the surveyed
research papers.

— A presentation of standards for vulnerability assessment and attack classifica-
tion;

— The technical details and an evaluation of recent work on intrusion detection
techniques and event processing methods for each dimension using the follow-
ing criteria: data source or input, technique, datasets, result or output;

— An up-to-date dataset list.
The rest of this paper is structured as follows. Section 1.2 describes dimensions

and vulnerabilities of the surveyed papers, standards for vulnerability assessment and
cyber attack classification. Section 1.3 gives an IDS classification including evalua-
tion metrics and datasets. Section 1.4 reviews recent papers on intrusion detection
techniques and evaluates them according to each dimension. In Section 1.5, we review
event stream processing methods and evaluate them according to each dimension us-
ing some criteria. Finally, Section 1.6 concludes and discusses the challenges of IDSs
and strategies to improve IDSs in terms of accuracy, performance, and robustness.

1.2 Dimensions, vulnerabilities and attacks
Cyber-attack targets can be categorized in three dimensions: domain, architec-

ture, and technology (see Fig. 1.1). Dimensions allow describing the vulnerable
environments protected by IDSs and, in particular, understanding the security chal-
lenges in these environments. We also mention standards for assessing vulnerability
and classifying cyber attacks.

1.2.1 Domain
In the literature, intrusion detection has been addressed in many domains. The

most important domains are defined below.

Industrial and control systems. Supervisory Control and Data Acquisition (SCADA)
systems are extensively used in industries to automate the control of systems like
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ArchitectureDomain Local Communication
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Figure 1.1 – Overview of IDS environments, vulnerabilities and standards

power grids, nuclear facilities, water supply systems and enable the remote monitor-
ing of industrial devices [232]. These devices are controlled using vulnerable LCTs like
WiMAX, Wi-Fi or Bluetooth. LCTs allowed cyberattacks such as Night dragon and
Stuxnet worm to penetrate SCADA networks and control industrial devices [310].
SCADA is used in Smart Grids to monitor relays, automated feeder switches and
batteries 2. Smart grids are vulnerable to cyber attacks such as false data injection
attacks (FDIAs), DoS (Denial of Service), and replay attacks [201].

Transportation systems. Intelligent transportation systems (ITS) is one solution
that leverages modern advanced communication technologies to make transportation
systems more efficient, reliable, secure, and resilient [204]. An ITS supports In-
Vehicle, Vehicle-to-Vehicle, and Vehicle-to-Infrastructure communication (e.g. Blue-
tooth, Wi-Fi, WiMAX) that are integrated into embedded devices in smart vehi-
cles, roads and railways. Recently, Symantec reported that numerous vehicle devices
support vulnerable Linux-based operating systems 3 and wireless technologies that
hackers can use to remotely take control, even to cut motor transmissions. ITS
communications are also vulnerable to DoS/DDoS attacks, network protocol attacks,
password and key attacks [249].

Health care systems. Ubiquitous health-care systems allow real-time patient care
using biosensors (e.g. insulin pumps, wearables) to respond to individual requirements
anywhere, anyhow, and at any time [283]. Recently, potential vulnerabilities were
found in medical devices such as implantable cardiac defibrillators, CT-scanners and
led to ransomware attacks [235]. In fact, health-care sensors support Wireless Body
Area Network (WBAN) technologies in order to remotely access physiological data
in real-time (e.g. ZigBee, Bluetooth, Wi-Fi). WBAN technologies are vulnerable
to various attacks such as Man-In-The-Middle, Eavesdropping, DoS, that could be
life-threatening [283].

Building systems. Building Systems integrate smart devices that continuously

2. https://energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid
3. https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
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collect raw data, control building’s heating, lighting systems, air conditioning and
water heating using networked building automation systems [230]. Building systems
are increasingly connected to the Internet, which increases the attack vectors, mak-
ing the target environment vulnerable. Hence, Internet-facing building devices with
insufficient authentication, default passwords, create opportunities for unauthorized
external access [261].

1.2.2 Architecture
Increasingly, network infrastructures support various dynamic and autonomous

networking architectures in order to provide a high-availability, high-scalability, high-
reliability, high-resiliency and low-latency of network connectivities in modern areas
such as health care, transportation, industry and building. Some of these networking
architectures are described hereafter.

Wireless Sensor Networks (WSN). WSNs are wireless networks of spatially dis-
tributed autonomous sensor nodes, with limited resources (e.g. battery energy), that
monitor physical conditions (e.g. power usage, temperature), communicate together
and transfer information for system management issues [184]. WSN sensors are fre-
quently affected by network-layer vulnerabilities. They face both external and internal
node attacks such as Sinkhole attacks, DoS attacks, Wormhole and Sibyl attacks [160].

Wireless Body Area Network (WBAN). A WBAN is a communication standard
optimized for low power devices and operation on, in or around the human body (but
not limited to humans), to serve a variety of applications including medical, consumer
electronics, personal entertainment and others [1]. WBANs consist of autonomous
or managed sensor nodes placed either in the body or on the skin to collect and
monitor patients’ health data (e.g. electro cardiogram, blood pressure) in real-time
using vulnerable wireless technologies for end-uses. Health record data are extremely
sensitive, particularly when an intruder can access, modify and inject false information
that may result in a patient’s death. WBANs are vulnerable to node capture attacks,
impersonate and spoofing attacks [172].

Mobile Ad-hoc Network (MANET). A MANET is a self-configuring infrastructure-
less dynamic wireless networks where the network topology changes over time [211].
Mobile nodes, with resources restrained, autonomously adjust and communicate with
each other. A MANET has numerous weak points including the absence of a fixed in-
frastructure, the dynamic topology change, their dependence on cooperative commu-
nication, the limited resource constraints and the unreliability of wireless links [216].
Consequently, they are vulnerable to various cyberattacks including gray-hole attacks,
black-hole attacks, selective packet dropping attacks, Sybil attacks, and flooding at-
tacks [299].

Vehicular Ad-hoc Network (VANET). A VANET is a part of MANET where ve-
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hicular nodes can move speedily inside the network, can communicate with each other
or with roadside units (RSUs) at any intersection point and traffic light, using three
communication modes: Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and
Hybrid [84]. A VANET is vulnerable to cyberattacks due to various constraints like
the use of wireless channels necessary to exchange information (e.g. GPS, Wi-Fi),
high mobility and dynamic topology [141]. VANET attacks are classified into three
categories [141]: attacks on wireless interface, attacks on infrastructure, attacks on
hardware and software.

Unmanned Aerial Vehicle Network (UAVNET). Unmanned Aerial Vehicles (UAVs)
[127] are aircrafts which carry no human pilot or passengers. UAVs are recent tech-
nologies used in various areas such as agriculture for crop monitoring, medical for
medical supply delivery, and military for border surveillance. UAVNETs are fluid
infrastructure-based networks of airborne nodes (UAVs) [127]. Each UAV node can
move slowly or rapidly and can communicate with ground nodes (i.e. control sta-
tions) as well as other UAVs. UANETs are vulnerable to jamming, injection fault
and spoofing attacks.

Heterogeneous Ad-hoc Network (HANET). HANETs are autonomous, multi-hop,
heterogeneous networks integrating both wireless sensor networks (WSNs), mobile ah-
hoc networks (MANETs), wireless body area networks (WBANs). They are accessible
and interconnected through gateway nodes [258]. A HANET is vulnerable to WSN,
MANET, and WBAN attacks.

1.2.3 Local Communication Technology
Local network technologies enable humans and things to transmit messages, video,

files, and other data through peer-to-peer or/and client-server connections in various
network architectures (e.g. MANET, VANET). They have various weak points ac-
cording to the used technology such as short range communication, short authentica-
tion keys or passwords and vulnerable cypher algorithms.

Bluetooth. Bluetooth is a wireless technology standard for short-range radio com-
munications, allowing transmitting data (e.g. audio, patient’s record) at high speeds
using radio waves, between various devices (approximately 10 meters of each other)
including computers, mobile phones, and other electronics. Bluetooth has many vul-
nerabilities such as authentication (no user authentication), keys (short size, shared
master key), cryptography (weak cypher algorithm), and security services (no end-
to-end security, no audit) [69]. Hence, Bluetooth is vulnerable to DoS, Man-In-the-
Middle (MITM), Bluespoofing, Bluejacking, and Bluebugging attacks [24].

Wireless Fidelity (Wi-Fi). Wi-Fi is a Wireless Local Area Network (WLAN)
based on IEEE 802.11 standards, that connects embedded devices within a short
distance (less than 100 meters). Today, it is used to remotely control human health,
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SCADA systems, vehicles and unmanned aerial vehicles (e.g. drones) for public safety
[142]. However, Wi-Fi is vulnerable to various cyberattacks targeting confidentiality
(eavesdropping, Wep key cracking, MITM), integrity (frame injection, data replay)
and availability (DoS, beacon flood, de-authenticate flood) [353].

Worldwide Interoperability for Microwave Access (WiMAX). WiMAX is a Wire-
less Metropolitan Area Network (WMAN) technology based on IEEE 802.16 stan-
dards, that provides broadband services for remote locations in different areas like
public safety, medical, transportation and industry. As any other wireless technol-
ogy, WiMAX introduces several security risks and it is vulnerable to cyberattacks at
different layers: physical layer (jamming, scrambling) and MAC layer (rogue Base
Station, MITM) [24].

Radio Frequency Identification (RFID) is a data collection technology that uses
electromagnetic fields in the radio frequency (RF) portion of the electromagnetic
spectrum to uniquely identify and track tags attached to objects. RFIDs are vulner-
able to numerous attacks such as skimming, illicit tracking, unauthorized access and
DoS [24].

Near Field Communication (NFC) is a wireless technology with a short range
(about 20 centimeters) integrated into smart cards, smart phones or tablets, that
allows wide services including identification, mobile payments, data exchange and
other transactions. NFC are vulnerable to eavesdropping attacks, relay and jamming
attacks [44].

ZigBee is a low-power consumption and low-cost wireless technology based on
IEEE standard 802.15.4 and adapted for various embedded applications, medical
monitoring, industrial control and home automation. ZigBee may be vulnerable to
tampering, key deciphering and authentication attacks.

1.2.4 Vulnerability assessment
The U.S. Department of Defense (DoD), Department of Homeland Security (DHS),

and the Commerce Department’s National Institute for Standards and Technology
(NIST) collaborated and established vulnerability and cyber threat intelligence man-
agement standards through The MITRE Corporation 4. The standards help cyberse-
curity companies to identify, characterize, structure, assess, report and share cyber
attack information for prevention, detection and mitigations of cyber attack incidents.
An incident occurs when a cyber attack exploits a vulnerability or weaknesses of a
common platform (e.g. Windows 10) [329].

A vulnerability assessment is a process that defines, identifies, classifies and pri-

4. https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
resources/standards
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oritizes vulnerabilities in a network, infrastructure and computer. It includes the
following steps.

Defining network or system resources. The Common Platform Enumeration (CPE)
is a standard that allows defining vulnerable IT products and platforms by providing
a machine-readable format for encoding names.

Identifying and classifying vulnerabilities. The Common Vulnerability Enumera-
tion (CVE) and Common Weaknesses Enumeration (CWE) gives a standard dictio-
nary and classification for publicly known cyber security vulnerabilities and weak-
nesses respectively.

Prioritizing or assigning relative levels of importance to vulnerabilities. Vulnera-
bilities and Weakness levels are evaluated according to various metrics such as impact,
environmental, temporal, attack surface and exploitability. The Common Vulnera-
bility Scoring System (CVSS) and Common Weaknesses Scoring System (CWSS) are
standards that provide consistent and flexible mechanisms, to prioritize vulnerability
and weakness risks respectively.

1.2.5 Cyber Attack classification
MITRE’s Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK)

describes cyber attacks’ life cycle in 7 steps: Reconnaissance, Weaponization, Deliv-
ery, Exploitation, Control, Execution and Maintain (see Fig. 1.2). During the attack
process, an attacker usually looks for unknown vulnerabilities on the target (Recon-
naissance), creates remote access malware weapon (e.g. worm, virus) using vulner-
abilities found (Weaponization), transmits the malware weapon (Delivery), uses the
weapon to command and control remotely the victim (Exploit, Control) and executes
malicious commands in the target machine for data ex-filtration and data destruction
(Execution, Maintain).

Cyber-attack classification consists in describing and categorizing attacks using
several criteria such as mechanisms, domains, scenarios, impacts, consequences or
effects of attack, motivations, skills and knowledge of attacker. Generally, the classi-
fication process is divided into two main steps:

Gathering and structuring cyber attack information. Standard platform, weakness,
vulnerability and malware information are collected by MITRE’s Common Platform
Enumeration (CPE), Common Weaknesses Enumeration (CWE), Common Vulnera-
bility Enumeration (CVE) and Malware Attribute Enumeration and Characterization
(MAEC) 5. The resulting cyber attack information are represented in CybOX (Cy-
ber Observable eXpression) language, and structured in STIX (Structured Threat

5. https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
resources/standards
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Figure 1.2 – Attack cycle

Information eXpression) language for classification, analysis, storing and sharing.
Classifying cyber attacks. Once the attack is identified, it is specified and clas-

sified using the Common Attack Pattern Enumeration and Classification (CAPEC).
CAPEC is a public dictionary and classification taxonomy of common attack patterns
described in a structured and comprehensive XML schema. Attack patterns describe
attack scenarios (i.e. execution flows) in term of phases and steps, attack impact,
attack techniques and motivations.

1.3 IDS classification, metrics and datasets
IDS accuracy and performance depend on various properties such as product,

type, structure, detection technique, state awareness, usage frequency, environment
and response type.

1.3.1 IDS-centered Classification
In the literature, several types of IDS have been proposed. These systems can be

classified according to different factors described below (see Fig.1.3).
Product. When deciding on IDS products, IT companies must balance or conduct

a trade-off analysis between cost, performance, essential functionalities and risks. On
the market, IDS products can be divided into three categories, depending on the ven-
dor [136]: commercial-off-the-shelf (COTS) IDS, modifiable-off-the-shelf (MOTS) IDS
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Figure 1.3 – An IDS-centered classification diagram

and government-of-the-shelf (GOTS) IDS. A COTS IDS is a commercial IDS product
that can be bought in the marketplace and fully designed for easy installation and
interoperability (e.g. IBM QRadar, LogRhythm, Splunk). While a MOTS IDS is
a modifiable COTS IDS product that can be customized by a third party to meet
customer needs (e.g. Snort). Finally, GOTS IDSs are products developed by govern-
ment technical staff or a government-funded external company to meet government
requirements and objectives (e.g. CSE AssemblyLine, US-CERT Einstein).

Type. Most IDSs are categorized in three classes: Network-based IDS, Host-based
IDS and Hybrid IDS (see Section 1.1).

Structure. In a network topology, there are three main IDS classes: centralized
IDS, distributed IDS and hybrid IDS (from a structure point of view). In central-
ized IDS, agents analyze network nodes or hosts and generate heterogeneous alerts,
which are sent to a central C&C handler, responsible for aggregating, correlating, and
making an accurate decision. In a distributed IDS, each agent is responsible of its
node where it analyzes events and triggers alerts. There are two kinds of distributed
IDS: Collaborative Distributed IDS (CDIDS) and Individual Distributed IDS also
known as standalone IDS. A CDIDS is a system of IDS agents which collaborate or
exchange information (P2P) together, without necessarily an administrator to detect
distributed attacks such as DDoS and worm attacks [206]. A standalone IDS is lim-
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ited to the monitored node and cannot take advantage of the other nodes to make
accurate decisions. A hybrid IDS combines both centralized and distributed IDS in
big network topologies.

Detection technique. There are three IDS classes: Knowledge-based IDS also
known as Signature or Misuse, Anomaly-based IDS also known as Profile or Heuristic,
and Hybrid IDS. A knowledge-based IDS matches attack patterns or signatures to
those in its signature database and triggers alerts whether a match is found. It cannot
detect zero-day attacks but it can accurately detect known attacks. An anomaly-based
IDS builds a normal behaviour profile of the monitored system and any deviation from
the profile is considered as an abnormal activity. An anomaly-based IDS can detect
zero-day attacks but generates numerous false positives. Currently, most companies
combine both signature-based and anomaly-based IDSs, known as hybrid IDSs, to
increase accuracy.

State awareness. IDSs can be divided in two categories: stateful and stateless
IDS. A stateful IDS analyzes events and relates them to past events, usually kept in
a state memory for that purpose. A stateless IDS analyzes an event without taking
into account other events. A stateless IDS is less accurate in detecting Advanced
Persistent Threat (APT) or multi-step attacks than a stateful IDS.

Usage frequency. In term of usage frequency, IDSs can be classify into two types:
offline and online IDS. An offline or a posteriori IDS analyzes events stored in a
database and uses contextual information to detect abnormal behaviors. While, an
online or on the fly IDS analyzes events in real-time as they occur.

Environment. Each environment requires an IDS adapted to its constraints. In
Cloud computing, Cloud IDSs can be deployed on virtual networks, hypervisor and
virtual hosts that have limited resources (e.g. CPU, Memory), often defined by the
provider. In MANET, MANET IDSs should be optimized for the dynamic network
topology and highly constrained nodes. In big data infrastructures, big data IDSs
analyze big heterogeneous event sources and should be accurate.

Response type. An IDS can also be classified as active or passive, depending on
the action taken when a malicious activity is detected. Passive IDSs log malicious
activities and trigger notification messages, which may be later consulted by system
administrators. Active IDSs can take immediate action themselves, for instance reject
malicious traffic, close a port.

19



1.3. IDS classification, metrics and datasets

Table 1.2 – Validation technique used
Year Dataset Provider Source Attacks IDS
1998 DARPA 1998 Defense Advanced 

Research Projects 
Agency

Traffic+Audit
data

DOS, Probe, R2L,
U2R, Data attacks

NIDS,
HIDS

1999 KDD cup 1999 MIT Traffic DOS, Probe, R2L,
U2R

NIDS

1999-2000 DARPA 1999
DARPA 2000

Defense Advanced 
Research Projects 
Agency

Traffic+Audit 
data

DOS, Probe, R2L,
U2R, Data attacks

NIDS,
HIDS

2006 UNM University of New
Mexico

System call
traces

Buffer overflows,
symbolic link
attacks, and
Trojan programs

HIDS

2008 CAIDA
Backscatter

Center for Applied
Internet Data 
Analysis

Traffic DOS attacks NIDS

2009 ASNM CDX Brno University
Security

Traffic Buffer overflow 
attacks

NIDS

2010 HTTP CSIC Spanish National
Research Council

Traffic Static attacks,
dynamic atttacks,
unintentional
illegal requests

NIDS

2010 ISOT University of
Victoria

Traffic Storm and
Waledac botnets

NIDS

2010-2011 MalGenome Android Malware
Genome Project

Malware
signatures

Malwares (49 
families)

NIDS, 
HIDS

2011 CTU Czech technical
university

Traffic Click Fraud, Port
scan, Botnet,
DDoS, SPAM, IRC

NIDS

2011 MAWI
(MAWILab)

MAWI Working
Group

Traffic Sasser worm,
ping, netbios
attacks, rpc and
smb attacks

NIDS

2011 USMA CDX National Security
Agency I United
States Military
Academy

Traffic +
Logs (Snort,
DNS, Web
Servers,
Splunk)

-- NIDS, 
HIDS

2012 MACCDC Mid-Atlantic 
Collegiate Cyber 
Defense 
Competition

Traffic + 
Audit logs 
(Bro,Snort
and  ICS)

APT, Malwares, 
Exploit, SSH login 
attempts

NIDS,
HIDS

2012 SMS Spam
Collection

University of
California, Irvine

SMS
messages

Spam NIDS

2012 TUIDS Tezpur University Traffic DDoS NIDS

2010-2012 Drebin Technische
Universitat
Braunschweig

Malware
signatures

Android Malware
(179 families)

NIDS, 
HIDS

2013 Gas Pipeline Mississippi
State
University
and Oak Ridge
National
Laboratory

No Events, 
Natural and
Attack
Events

Response
injection, Dos,
Command
Injection

NIDS

2009-2013 WITS Waikato Internet
Traffic Storage

Traffic -- NIDS

2013-2014 ADFA-LD/WD University of New
South Wales

Process
traces

Hydra, Shell,
Exploits, 
Backdoors

HIDS

2014 Gas Pipeline
and Water
Storage Tank

Mississippi State
University

No Events, 
Natural and
Attack
Events

Recon, Dos, Code
Injection,
Command
Injection,Reponse
Injection, Fault
replay, relay

NIDS

2014 Power System
Attack

Mississippi
State
University
and Oak Ridge
National
Laboratory

No Events, 
Natural and
Attack
Events

Short-circuit
fault, Data
Injection, Relay
setting change,
Remote tripping
command
injection, Line
maintenance

NIDS

2015 UNSW-NB15 Austral ian Centre
for Cyber Security
(ACCS)

Traffic +
Audit traces

Backdoors, Dos,
Exploits, Generic,
Reconnaissance,
Shellcode and
Worms

NIDS,
HIDS

2015 Microsoft
Malware
Classification
Challenge (BIG
2015)

Microsoft Malware
signatures

Malwares (9 
families)

NIDS,
HIDS

2006-2015 KYOTO Kyoto University Traffic -- NIDS

2010-2016 AMD Argus 
Cybersecurity Lab-
University of South 
Florida

Malware 
signatures

Malwares (71 
families)

NIDS, 
HIDS

2017 DDoSTB I.K.G. Punjab
Technical
University

Traffic DDoS NIDS

2018 Contagio
Malware Dump

International
Cyber Threat Task
Force

Malware
signatures

APT, Malwares,
Crime or
Metasploit

NIDS, 
HIDS

1996-current Defcon
Capture the
Flag (CTF)

United States
Armed Forces -
CTF competition

Traffic Port scan, Port
sweeps, buffer
overflows, gain
privilege, FTP
attacks

NIDS

2002-current USC/ISi ANT University of
Southern
California

Traffic DDoS, port scans,
or worm
outbreaks

NIDS

2005-current CRAWDAD 
Wireless and 
Bluetooth

Community
Resource for
Archiving Wireless
Data/Dartmouth
College

Traffic -- NIDS

2009-current UNB ISCX
(NSL-KDD,
IDS,Android)

University of New
Brunswick

Traffic,
malware
signatures

DOS, Probe, R2L,
U2R, Malwares,
Tor,  Botnets

NIDS, 
HIDS
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1.3.2 Metrics
In the literature, several metrics have been used in recent work to evaluate IDSs.

These metrics measure their accuracy and performance. Table 1.3 provides a sum-
mary of these metrics.

Table 1.3 – Detection system - Evaluation Metrics
Sensivity/Recall/True
Positive Rate/Detection Rate 
(DR)
probability that the IDS outputs 
an alert when there is an 
intrusion

Fall-out/False Positive Rate 
(FPR)
probability that the IDS outputs 
an alert although the behaviour 
of the system is normal

Miss Rate/False Negative 
Rate (FNR)
probability that the IDS does 
not output an alert although the 
behaviour of the system is 
malicious

Specificity/True Negative 
Rate (TNR)
probability that the IDS outputs 
no alter when the behaviour of 
the system is not malicious

Bayesian Detection 
Rate/Positive Predictive 
Value/Precision
probability that there is an 
intrusion when the IDS outputs 
an alert

Overall Sucess 
Rate/Accuracy (ACC)
probability that the IDS outputs 
correctly when the behaviour of 
the system is normal and 
malicious

F-measure/F-score
harmonic mean of Precision 
and DR

Negative Predicitive Value
(NPV)
probability that there is no 
intrusion when the IDS does 
not output an alert.

Receiver Operating 
Characteristic (ROC) curve
shows the ability of the 
intrusion classifier

𝐃𝐑 % =
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Let us consider four well-known parameters [94]: False Positive (FP ) is the num-
ber of normal events misclassified as malicious, False Negative (FN) is the number of
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malicious events misclassified as normal, True Positive (TP ) is the number of mali-
cious events correctly classified as malicious and True Negative (TN) is the number of
normal events correctly classified as normal. The number of normal events is denoted
by N and the number of malicious events is denoted by P .

1.3.3 Datasets
As cyber attacks evolve, the cybersecurity landscape changes and the older datasets,

usually considered in experiments, may not be relevant for recent security challenges.
Nonetheless, well-known DARPA (Defense Advanced Research Projects Agency) and
KDD cup (Knowledge Discovery in Databases) datasets are still widely used to-
day [354]. KDD cup 1999 is a data set used for The Third International Knowl-
edge Discovery and Data Mining Tools Competition, where the task was to build a
predictive model able to classify normal connections and malicious connections. It
consists of about 5 millions connection records that have 41 features for training and
24 attacks divided in 4 categories [309]: Probe (information gathering), User to Root
(attempting to access root privilege from an user privilege), Remote to Local (trying
to gain access to an unauthorized network/host from a remote machine) and DoS
(making resources unavailable for legitimate users). Since, KDD cup 1999 was criti-
cized about the characteristics of the synthetic data [309]. Firstly, synthetic data is
not representative of existing real networks (network landscape changes). Secondly,
it is not an exact definition of the attacks (attack behaviours evolve) and redundant
records.

Other datasets have been proposed to overcome the KDD dataset problems. The
first one is NSL-KDD provided by the Information Security Centre of Excellence at
the University of New Brunswick. It is very similar to KDD cup 1999 with new
advantages [309]: no redundant records i.e. learning models are not biased by other
models which have better detection rates, the number of selected records from each
difficulty-level group is inversely proportional to the percentage of records in the
original KDD cup i.e. classification rates of distinct learning methods vary in a wider
range, and the number of records is reasonable i.e. easy to run experiments on the
entire set without randomly selecting a small portion. However, NSL-KDD is not a
perfect representation of existing real networks [309].

Real NIDS data sets are private because of confidentiality problems, i.e., they
contain sensitive and private data that cannot be shared in the public domain (e.g.,
user information, company information, health records). There exist numerous other
NIDS datasets [129] such as Kyoto, CAIDA, DEFCON, WAIKATO [117,132], HTTP
CSIC 2010, TUIDS [37,38], DDoSTB [31,32], and USC Ant provided by academic and
governmental institutions. In addition, we have found some HIDS datasets provided
by the University of New Brunswick (UNB ISCX Android), the University of New
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Mexico (UNM datasets/s-tide), the University of New South Wales (ADFA-LD/WD),
the United States Military Academy (USMA CDX), the Australian Centre for Cyber
Security (UNSW-NB15), Microsoft Malware Classification Challenge, and Contagio
Malware Dump. They offer rich system call traces of various active processes (mali-
cious, normal) and malware signatures to evaluate HIDSs. We have summarized, in
Table 1.2, well-known NIDS and HIDS datasets for evaluation.

1.4 Review and Evaluation of IDS techniques
Improving the accuracy and performance of IDSs remains an overwhelming prob-

lem. To tackle these challenges, multiple IDS approaches have been proposed in
the surveyed papers. Anomaly-based detection takes advantage of recent AI tech-
niques like Machine Learning (ML), biologically-inspired systems to accurately iden-
tify threatening behavioral patterns. Knowledge-based detection leverages expert
systems, knowledge base systems, multi-agent systems to find meaningful suspicious
signatures. Hybrid detection is increasingly used and seems getting better results by
combining approaches above in different ways. Hereafter, we structure and present
a dimensional overview of recent work on the aforementioned detection techniques
(see Fig. 1.4). Tab. 1.4 shows the summary of papers in different dimensions (do-
main, architecture, technology) using criteria such as data source or input, technique,
datasets, and output. We also use the notation DR (D) which denotes the intrusion
detection rate, ACC (A) the accuracy rate, FPR (F) the false positive rate and ROC
the Receiver Operating Characteristic curve area [94]. The ROC area is an integral
number of the function f that takes a FPR in parameter and returns a TPR.

1.4.1 Anomaly-based detection techniques
Anomaly-based detection is a well-known technique, used to find out behavioral

patterns that do not match the normal behaviour profile of the monitored system.
It can be formulated into four essential aspects [58]. The first one is the nature of
input data, defined using a set of categorical, binary or continuous data instance’s at-
tributes. Another aspect is the type. Anomalies can be individual (one data instance),
contextual (depending on the context) and collective (multiple data instances). The
last aspect is the labeling of data. It consists in labeling data instances as normal
or abnormal, using anomaly-based detection approaches. In general, we have three
main approaches described in the following.

(a) supervised learning. Supervised learning is a machine learning approach that
uses a training (known) dataset of inputs and their output values to make predictions
by trying to learn a function that correctly predicts the output values for a new
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Figure 1.4 – Some recent detection techniques

data set. Two well-known examples of this approach are classification and regression.
Supervised learning is a widely used technique but it has many drawbacks [180]. It
needs known input and output datasets to train, which is not easily applicable in
real-world systems, performs well on training datasets but poorly with new dataset
(overfitting), and requires a lot of computation time for training.

(b) unsupervised learning. Unsupervised learning [25] is a machine learning ap-
proach that uses datasets consisting of input data without labeled responses. The
well-known unsupervised learning method is clustering, which targets homogeneous
data clusters such that the most similar data (aka low similarity distance) belongs
to the same cluster. Inversely, heterogeneous data are separated in different clusters.
The clusters are modeled using a measure of similarity which is defined upon metrics
such as Euclidean, Manhattan, Tchebychev, and probabilistic distance.

(c) semi-supervised learning [61] assumes the desired output values are provided
only for a subset of the training data and the remaining data is unlabeled. Semi-
supervised learning is more widely applicable than supervised techniques. Recent
hybrid intrusion detection approaches are semi-supervised by integrating methods
like classification and clustering.

The last aspect is the output of anomaly detection and it contains two elements:
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labels to assign a label (normal, abnormal) for each test instance and scores, which is
an anomaly degree. The following sub-sections describe the techniques of the main
approaches mentioned above and recent work using these techniques.

1.4.1.1 Classification techniques

Classification [238] is a supervised approach, applied for categorical output values,
where data can be separated into specific classes (see Fig. 1.5).

x

y

O

Figure 1.5 – Classification: An Overview

Theory. Let D = {(x1, y1), ..., (xn, yn)} be a training set of examples, where each
xi ∈ Rd (data) and yi ∈ {−1, 1} (2 classes), i ∈ {1, ..., n}. The prediction function is
of the form [41],

y(x,w) = wTφ(x) + b

where w = (w1, ..., wn−1)T , φ = (φ1, ..., φn−1)T is a basis function that can be linear
or non-linear, and b is the bias weight; it has value w0. There are many choices for
the basis functions. For polynomial regression, φi(x) = xi. Gaussian basis functions
are of the form,

φi(x) = 1√
2πσ

e
−

1
2
(x− µi

σ

)2

where µi governs the location of the basis functions in input space and σ their spacial
scale. The optimization problem is to find an optimal w that minimizes the error
ED(w),

w = arg min
w

n∑
i=1

l(y(xi, w), yi)
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Table 1.4 – Evaluation of recent intrusion detection techniques
Papers Domain Architect. LCT Source Technique Parent Tech. Datasets Results

M. Al-Rubaie et al. [13] CloudC. 7 7 Traffic SVM anomaly Simulation Good
S. Doss et al. [89] 7 MANET 7 Traffic SVM anomaly MITLincoln Good
A. S. Sadiq et al. [279] 7 MANET 7 Traffic ANN+PSO hybrid KDDcup99 D:99.5%
M. Barni et al. [26] Health sys. 7 7 Traf.+ECGs ANN+DT hybrid Simulation Good

H. H. Pajouh et al. [128] IoT 7 7 Traffic NaiveB+kNN hybrid KDDcup99 D:84.8%;
F:5.2%

U. Adhikari et al. [9] SmartGrids 7 7 Traf.+Elec.Power HA-DT hybrid Simulation D:>94%
H. J. Patel et al. [253] 7 7 Zigbee Fingerprint RNDF+MCA hybrid Simulation D:90%
K. Bu et al. [51] 7 7 RFID RF signal BF-Tree anomaly Simulation Good
J. Zhang et al. [348] SmartGrids 7 7 Elec.Power MLR hybrid IEEE bus RTS Good
K. Peng et al. [255] BigData 7 7 Traffic K-means+PCA hybrid KDDcup99 Good
C. Sudipta et al. [66] Big Data 7 7 Traffic GBC anomaly CTU-13 Good

K. Rina et al. [268] 7 WSN 7 RF signal Hierar.Clust. hybrid KDDcup99 D:84.84%;
5.21%

C. Zhang et al. [347] Network 7 7 Traffic Density+SVDD hybrid KDDcup+UCI D:95.2%
M. H. Eiza et al. [140] 7 VANET 7 Gen.Traffic ACO anomaly Simulation Good
M. Korczynski et al. [179] 7 WSN 7 Traffic ABC anomaly Testbed A:94.51%

L. Yang et al. [338] SmartGrids 7 7 Elec.Power ABC+ELM hybrid IEEE bus D:86.8%;
11.06%

D. Tirtharaj et al. [77] 7 WSN 7 Traffic GSA+PSO+ANN hybrid NSL-KDD D:98.13%
C. Chen et al. [62] 7 WSN 7 Net.Sensors MA+HRA hybrid Simulation Good
M. H. Ali et al. [17] Network 7 7 Traffic PSO+DPFNN hybrid KDDcup99 A:99%
R. Roman et al. [272] IoT 7 7 Net.Sensors AIS anomaly Simulation Good
J. M. Vidal et al. [321] 7 WSN 7 Net.Sensors AIS hybrid KDD+CAIDA Good
L. Xiao et al. [333] 7 UAVNET 7 Traffic Q-Learning RL Simulation Good
L. F. Maimo et al. [97] 7 MANET 7 Traffic DBN+RNN+SAE hybrid CTU D:70.95%
S. Garg et al. [115] SDN 7 7 Traffic RBM+SVM hybrid CMU Good
N. Moustapha et al. [228] CloudC. 7 7 Traffic GAN+ODM hybrid KDD+UNSW Good

R. Mitchell et al. [222] Health sys. 7 7 Traf.+Health.Rec. RBR Knowledge Simulation D:92.4%;
F:0.66%

D. Malathi et al. [74] Health sys. 7 7 Health.Rec. CBR+kNN hybrid UCI Good
W. Li et al. [198] Health sys. 7 7 Health.Rec. FBR hybrid Simulation Good
N. Naik et al. [231] Health sys. 7 7 Traffic FBR+GA hybrid UCI Good
T.R.B. Kushal et al. [185] SmartGrids 7 7 Elec.Power MAS Hybrid Simulation Good
T. Kim et al. [174] Network 7 7 Malw. signatures MultiDNN hybrid Malgenome A:98%
M. Al-Qatf et al. [12] Network 7 7 Traffic SAE+SVM hybrid NSL-KDD A:84.96%
I. H. A. et al. [5] SDN 7 7 Traffic CS+EGA hybrid Simulation Good
M. Watson et al. [328] CloudC. 7 7 Traffic SVM Anomaly Testbed A:>90%

K. Huang et al. [152] 7 WSN 7 Gen. Traffic SOM Anomaly Simulation D:95.3%;
F:4.1%

H. Sedjelmaci et al. [290] 7 UAVNET 7 Gen. Data Bayes. Game Anomaly Simulation A:96-98%

P. Jockar et al. [162] Smart Grids 7 ZigBee Traffic Q-Learning Anomaly Testbed D:92.5%;
F:0%

J. Kevric et al. [171] Network 7 7 Traffic random+NBTree Hybrid NSL-KDD A:89.24%

B. Hamid et al. [47] Network 7 7 Traffic GS+MI Hybrid NSL-KDD D:88.36%;
F:8.88%

D. P. et al. [248] Network 7 7 Traffic GA+DT Hybrid KDDcup99 A:98.5%;
F:0.75%

M. G. et al. [264] Network 7 7 Traffic GA Anomaly NSL-KDD D:95.32%;
F:0.83%

Z. Yi et al. [342] Network 7 7 Malw. samples PSO Anomaly VirusTotal A:>98%

M. E. A. et al. [18] – 7 Wi-Fi Traffic DAE+ANN Hybrid AWID A:99.91%;
F:0.012%

S. Shah et al. [291] Network 7 7 Gen. Traffic SVM+Firefly Hybrid Simulation A:95%;
F:8.6%

N. Nissim et al. [240] Network 7 7 Ms Docs active learn. Anomaly Testbed D:94.4%;
F:0.19%

G. Xu et al. [334] Network 7 7 – OBR Knowledge – Good
Y. Chuan et al. [67] Network 7 7 Traffic RNN Anomaly NSL-KDD A:99.81%
R. Kwon et al. [186] Network 7 7 Traff+Audit Logs Reg.+Corr. Hybrid Keimyung U. Good
K. Grosse et al. [126] Network 7 7 Malw. Samples GAN Anomaly DREBIN A:>95%
M. S. Parwez et al. [250] Big Data 7 7 Traffic K-means+Hierar. Anomaly Testbed Good
K. Wang et al. [324] Smart Grids 7 7 Traf.+Elec. Power Bayes. Game Anomaly Test-bed Good
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C. Feng et al. [96] Smart Grids 7 7 chemical samples GAN Anomaly SWaT Good
W. Laftah et al. [14] Network 7 7 Traffic SVM+ELM Hybrid KDDcup99 A:95.75%
S. Roshan et al. [273] Network 7 7 Traffic Clustering+ELM Hybrid NSL-KDD D:84%;F:3%
M. Chen et al. [64] Network 7 7 Traffic AIS+PBIL Hybrid KDDcup99 A:97.03%
R. Aamir et al. [20] Network 7 7 Traffic Fuzzy Anomaly NSL-KDD A:84.12%
F. Y. Leu et al. [192] Network 7 7 Traffic DM Anomaly Testbed D:94.29%
S. Chin Yip et al. [343] Smart Grids 7 7 Elect. Power Linear Reg. Anomaly Simulation Good
R. B. Diddigi et al. [85] 7 WSN 7 Net.Sensors POMDP+MCarlos Hybrid Simulation Good
N. Nissim et al. [241] Network 7 7 Malw. Samples active learn. Anomaly Simulation Good
Wenjuan Li et al. [199] 7 WSN 7 RT.Traffic MAS+ML Hybrid Testbed. Good
C.J. Fung et al. [107] Network 7 7 Audit Logs MAS Hybrid Simulation Good
M. S. R. et al. [262] Smart Grids 7 7 Audit+PMU data MAS Hybrid Simulation Good

where l(•, •) is a loss function. The optimal w is obtained, when the derivative
of ED(w) is null, i.e. ∇ED(w) = 0. There are numerous classification methods
including Support Vector Machines, Artificial Neural Networks, Naive Bayes, and
Decision Trees.

a) Support Vector Machine. Support Vector Machines (SVMs) [70] are maximum
margin linear classifiers formally defined by separating hyperplanes. For a given
labeled training data set, the SVM algorithm outputs an optimal hyperplane able
to classify a new data set. However, SVMs take a long time for training when the
dataset is very large [36].

Theory. SVMs rely on the concept of linear separators that divides a set of
examples into classes [41,293]. D is linear separable if there exists a halfspace, (w, b),
such that yi =sign(wTφ(xi) + b), ∀ i. In other words, the condition can be rewritten
as follows,

∀ i ∈ {1, ..., n}, yi(wTφ(xi) + b) > 0
This condition involves multiple solutions that depend on the arbitrary initial

values chosen for (w, b) and classify training datasets exactly. As there are multiple
solutions, SVMs use the concept of margin. The margins of the separator is the
distance between support vectors. Support vectors are the examples closest to the
separators. The margin is given by the perpendicular distance (ri) to the closest point
xi from the data set,

ri = yi(wTφ(xi) + b)
||w||

The optimization problem of the parameters (w, b) to maximize the margin is
defined by

arg max
w,b

min
i

ri

This problem can be reformulated into a much simpler one by assuming that
ri.||w|| >= 1. This one is to maximize 1/||w||, i.e. minimize ||w||2 and it is given by

arg min
w,b

1
2 ||w||

2
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which is a quadratic problem. However, this approach assumes that training sets
are linearly separable which is not always the case. To deal with non-linear sepa-
rable training sets, relaxation variables (slack variables) denoted ξi (ξi ≥ 0) allow
the constraint ri.||w|| >= 1 to be violated. The constraint is then reformulated to
ri.||w|| >= 1− ξi and the optimization problem is of the form,

arg min
w,b,ξ

{
1
2 ||w||

2
}

+ C
n∑
i=1

ξi

where C > 0 handles the trade-off between the slack variable penalty and the
margin.

Review. In cloud computing, M. Watson et al. [328] introduced an online cloud
anomaly detection approach based on the one-class SVM. The authors evaluated
the effectiveness of their approach using a controlled cloud testbed built on KVM
hypervisors (under Linux). In the cloud testbed, they simulated DoS attacks and
recent malware samples like Kelihos and multiple variants of Zeus. The proposed
model was able to detect these attacks with a DR over 90%.

In Cloud computing, M. Al-Rubaie et al. [13] proposed a SVM-based attack re-
construction model to gain access to users’ accounts on Active Authentication (AA)
Systems. The system under attack consisted of an AA server for biometric authen-
tication and a client app to gain access to the cloud services (System Model). An
attacker used the client app to access victim’s cloud data (Adversary model). During
biometric authentication, the authors extracted feature vectors of the system such as
Location, Shape, Time, and Pressure. Afterwards, the authors reconstructed raw ges-
ture data from the user’s authentication profiles (full-profile attack) and the decision
value returned by SVM sample testing. The reconstruction was based on a numerical
algorithm that estimates the original raw data from summary statistics in the feature
vector using SVMs and a randomized algorithm that adds Gaussian noise on data
and generates randomized raw data. Through several experiments, the randomized
approach performed well for attack reconstruction.

In MANETs, S. Doss et al. [89] combined authenticated routing-based framework
and support vector machine (SVM) to detect Jelly Fish attacks. The authenticated
routing-based framework relied on a hierarchical trust evaluation of the node property
so that only trusted nodes are selected for route path construction. A node in MANET
can evaluate trust of neighboring nodes using various metrics such as Packet Delay,
Packet Availability and Packet Forwarding. Each has a priority level assigned (High,
Low, Medium). With SVM, the nodes cannot deviate from their expected behavior.
When any change occurs, it is immediately notified and that node leaves the routing
path. The authors validated their approach using NS2-simulator and two datasets.
The first one with category labels and the second one from MIT Lincoln Lab without
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category labels. Through several experiments, the proposed model was able to detect
Jelly Fish attacks and achieved good performance in terms of throughput (22.67% on
average), packet delivery ratio (13.34% on average), dropped packet ratio (43% on
average) and end-to-end delay (51%).

b) Artificial Neural Network. An Artificial Neural Network (ANN) [214] is a
computational model inspired from biological neural networks. It consists of an inter-
connected group of artificial neurons and processes information using a connectionist
approach to computation [144]. Basically, the model has three layers: (a) a layer of
input neurons that receives data from the real world, (b) a hidden layer consisting
of various interconnected structures which process the inputs into something that
the output layer can use and (c) an output layer that sends information directly to
the outside world, to another computer process. ANNs are able to adapt and learn
through back propagation by computing the cost of paths and adjusting the weight of
neurons. However, they can take a long time to train and are difficult to scale [303].

Theory. There are several ANN types such as feedforward NNs, self-organizing
NNs (e.g. Kohonen network) and temporal NNs (e.g. time-delay NN). We restrict
our attention to feedforward NNs. A feedforward NN [293] is a directed acyclic graph
G = (V,E), where V are neurons and E are edges, with a weight function over the
edges, w : E → R. A neuron is represented by a scalar function f : R→ R, also called
the activation function of the neuron. f can be an identity function i.e. f(•) = 1[•>0],
a sign function i.e. f(•) =sign(•), sigmoid functions (e.g. f(•) = 1/(1 + e−•), f(•) =
tanh(•)), or a non-saturation function i.e. f(•) =max(0, •). A basic feedforward NN
has three layers: an input layer, a hidden layer and an output layer. In the input
layer, given n input variables (xi)i∈{1,..,n}, n linear combinations of variables are made,
in the form [41],

cj =
n∑
i=1

wji
(1) φi(xi) + w

(1)
j0

where j ∈ {1, ..., p}, p is the number of linear combination of the input layer, cj are
activations, φi(xi) = xi as it is a linear combination, wji(1) are weights of the first
layer, and wj0(1) are biases of the first layer. In the hidden layer, cj are transformed
using non linear activation function f and it returns hidden units dj, i.e. dj = f(cj).
dj are linearly combined to obtain output unit activations ck of the form,

ck =
p∑
j=1

wkj
(2) dj + w

(2)
k0

where k ∈ {1, ...,m}, m is the number of outputs, wkj(2) are weights of the second
layer and w(2)

k0 are biases of the second layer. Each ck is transformed using a sigmoid
activation function σ, such that yk(x,w) = σ(ck). The overall NN function is given
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by
yk(x,w) = σ

( p∑
j=1

wkj
(2)f

(
n∑
i=1

wji
(1)φi(x) + w

(1)
j0

)
+ w

(2)
k0

)

For m separate binary classifications, each output k is a binary class label yk ∈
{−1, 1}, k ∈ {1, ...,m}. The probability that a given input xi is in the first class
is given by yk(xi, w). Otherwise, it is given by 1 − yk(xi, w). If the class labels are
independent, given the input vector, the error ED(w) is of the form,

ED(w) = −
n∑
i=1

m∑
k=1

[yik ln(yk(xi, w)) + (1− yik) ln(1− yk(xi, w))]

and denotes the cross entropy, i.e. the negative logarithm of the conditional distribu-
tion of the targets. For a multiclass classification problem, each input xi is assigned
to one of m exclusive classes. The probability that xi is in the class k (the softmax
function) is defined by yk(xi, w) = eck(xi,w)/

∑m
l=1 e

cl(xi,w). The cross entropy ED(w) is
given by

ED(w) =
n∑
i=1

Ei(w) = −
n∑
i=1

m∑
k=1

yki ln yk(xi, w)

Review. In MANETs, A. S. Sadiq et al. [279] proposed an ANN modified with a
PSO-based heuristic algorithm to detect Smurf and Neptune attacks. The PSO-based
heuristic algorithm is inspired by magnetic field theory in physics that deals with
attraction between particles scattered in the search space. Each magnetic particle
has a measure of mass and magnetic field due to its fitness. The acceptable magnetic
particles are those with the higher mass and higher magnetic field. The hybrid model
consisted of three main entities: default gateway, network flow collector (server), and
the ANN analyzer. In the training phase, the authors used the information gain
as feature selection and trained the ANN classifier using the KDD cup99 dataset.
Through experiments, the proposed model achieved a high DR of 99.5%.

In Medical Healthcare Systems, M. Barni et al. proposed a secure ANN-based
ECG (Electrocardiogram) processing approach that encrypts patient data and clas-
sifies ECG diseases such as Normal Sinus Rythm, Atrial Premature Contraction, and
Ventricular Tachycardia. Upon starting, ECG signals are preprocessed and autore-
gressive features (e.g. heart rate, peak-to-peak) are extracted from ingoing heart
beats and encrypted. The ANN-classifier is then trained using the encrypted fea-
tures. During training, the ANN-classifier securely decrypts features and the model
is trained using the Levenberg-Marquardt learning algorithm [344]. Next, a Decision
Tree is applied on outputs for medical diagnosis. Overall, the proposed model was
able to classify diseases with a high accuracy larger than 86.30% and preserve the
security of patient data.

A. Saied et al. [15] implemented an ANN-based IDS to detect known and un-
known DDoS attacks. The authors generated datasets, using a realistic corporate
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safe environment where they launched different UDP, ICMP and TCP DDoS attacks
while normal traffic was flowing through the network. The datasets were organized
and structured in a qualified Java Neural Network Simulator (JNNS) format to train
the ANN model. Afterwards, they evaluated their approach in two phases. Firstly,
the authors integrated the model in Snort (Snort-AI) and tested it on known and
unknown DDoS traffic. They were able to achieve an ACC of 98% than existing
NIDSs like Snort. Secondly, the authors tested their model using old datasets (at-
tacks between 2000 and 2003) and new datasets (attacks between 2000 and 2013).
They achieved an average ACC of 95% (unknown DDoS) and 100% (known DDoS).

c) Naive Bayes classifier. A Naive Bayes classifier [196] is a classification algorithm
for two-class (binary) and multi-class classification problems. It is based on the
Bayesian theorem with an assumption of independence among predictors [223], by
assuming that the presence of a particular feature in a class is unrelated to the
presence of any other feature.

Theory. The Naive Bayes classifier relies on the Bayes theorem. Let us assume
m classes c1, c2, ..., cm and a new example xi. The classifier assigns xi to the class cj,
when cj has the highest posterior probability conditioned on xi,

P (cj|xi) > P (ck|xi)

for all k ∈ {1, ...,m} and k 6= j. The classification problem consists in maximizing
P (cj|xi). Given the Bayes theorem, we have

cj = arg max
cj

P (cj|xi)

= arg max
cj

P (xi|cj)P (cj)
P (xi)

where P (xi) remains constant for all classes, P (cj) = nj/n i.e. the number nj of
occurrences of cj over the size n of the training set, and P (xi|cj) is estimated from
the training set. For example, if P (xi|cj) is Gaussian,

P (xi|cj) = 1√
2πσcj

e
−

(x− µcj)2

2σcj 2

where σcj (variance) and µcj (mean) are computed from all occurrences of cj in the
training set. P (xi) being constant, only P (xi|cj)P (cj) should be maximized,

cj = arg max
cj

P (xi|cj)P (cj)
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Let us assume n conditionally-independent examples x1, ..., xn that we want to predict
if they are in the class cj. The classification problem is given by

cj = arg max
cj

P (x1, ..., xn|cj)P (cj)

= arg max
cj

n∏
i=1

P (xi|cj)P (cj)

as P (x1, ..., xn) = ∏n
i=1 P (xi) remains constant for all classes.

Review. M. Swarnkar et al. [308] proposed a content anomaly detection approach
(OCPAD) based on an one-class Multinomial Naive Bayes classifier for identifying
suspicious payload contents (HTTP attacks) in network packets. The OCPAD model
is trained using the likelihood of each sequence’s occurrence in a payload of known
non-malicious packets. The authors stored the likelihood range of these sequence’s
occurrences (generated by OCPAD) in a probability tree structure, which is used to
classify new payload contents as normal or malicious. In the testing phase, they used
an academic dataset of one million HTTP packets and achieved good performance
than other methods, with a high DR (up to 100%) and a low FPR (less than 0.6%).

In IoT, H. Haddad Pajouh et al. [128] proposed a classification model that consists
of two components. The first one uses component analysis and linear discriminate
analysis for dimension reduction. The second one combines Naive Bayes and K-
Nearest Neighbor to detect DoS, Probe, U2R and R2L attacks. In the training
phase, the model is trained and tested using the KDD cup99 dataset. As a result, the
proposed model achieved a high DR of 84.84% and a low FPR of 5.21% on average.

d) Decision Tree. A Decision Tree (DT) [260] is a non-parametric supervised
learning method used for classification and regression. It is a set of splitting decision
rules used to segment the predictor space into a number of simple regions. DTs are
known to be accurate because their cost is logarithmic in the number of samples
used to train the model. However, DT learners can create over-complex trees that
do not generalize the data well (overfitting) [271]. It becomes necessary to set the
maximum depth of the tree and the minimum number of samples required at a leaf
node (pruning) [271].

Theory. A DT [293] is a prediction function, D → C, that predicts the label
c ∈ C associated with an example x ∈ D. We restrict to the binary classification
i.e. C = {0, 1} and D = Rd. At each node from the root to leaf path, the successor
child is based on splitting rules or one of features of x. A splitting basis could be a
threshold function,

1[xi S γ] =

 1 ifxi S γ

0 else

where γ ∈ R is the threshold and xi (i ∈ {d}) is the most relevant feature of x.
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Another splitting basis could be decision rules Rk of the form IF-THEN with the
semantic below (premiss/conclusion).

Rk

x1 S γ1, ..., xd S γd

c

where x1, ..., xd are features of x, γ1, ..., γd are thresholds and c the label assigned to
x. Note that rule conditions could rely on strings instead of reals i.e. x ∈ Σd, γ ∈ Σ
where Σ is an alphabet.

To build a decision tree, the algorithm ID3 (Iterative Dichotomizer 3) is often
used. ID3 begins from the root and assigns it a label based on a majority vote among
all labels over the dataset. Iteratively, from the root to childs, ID3 measures the
information gain that quantifies the effect of splitting children. The information gain
G(D, x) is based on the decrease in entropy after the datasetD is split on one attribute
xi of x. It is defined by

G(D, x) = H[D]−
∑
xi∈x

P (xi)H[xi]

where H[D] = ∑
x∈D−P (x) log2(P (x)) is the entropy on the overall dataset such that

P (x) the probability of occurrences of x in D, P (xi) the probability of occurrences of
xi in x, and H[xi] is the entropy on the feature xi of x.

Amon all possible splits, ID3 chooses the one with the largest information gain as
the decision node, divides the dataset again using a splitting basis and repeats the
same process recursively until all the examples are classified.

Review. In Smart Grids, U. Adhikari et al. [9] proposed an intrusion detection
model based on Hoeffding adaptive trees [40] augmented with the drift detection
method [113] and adaptive windowing [39] for the binary-class or multi-class classi-
fication of power system contengencies and cyber-attacks. The authors trained the
model using a dataset containing 45 classes of cyber-power contingencies. After tests,
the proposed model achieved a high ACC greater than 98% for binary-class and 94%
for multi-class classification.

In Zigbee, H. J. Patel et al. [253] proposed a DT-based approach that relies on
non-parametric Random Forest (RndF) and Multi-Class AdaBoost (MCA) ensemble
classifiers to enhance Radio Frequency-Distinct Native Attribute (RF-DNA) finger-
printing in ZigBee device authentication. In the training phase, the authors used
a pre-classification Kolmogorov-Smirnoff Test (KS-Test), a post-classification RndF
feature relevance ranking, and a Generalized Relevance Learning Vector Quantization-
Improved (GRLVQI) feature relevance ranking [134] for dimensional reduction. Through
several tests, the proposed model achieved a higher DR of 90% on a benchmark and
correctly rejected 31 of 36 rogue access attempts in ZigBee devices.
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In RFIDs, K. Bu et al. [51] uses breadth first tree traversal to detect cloning attacks
and unreconciled collisions in large anonymous RFID systems. Three protocols where
proposed such as BASE, DeClone and DeClone+ for probabilistic and deterministic
clone detection. Through simulations, DeClone+ offered a faster clone detection when
the clone ratio was high.

J. Kevric et al. [171] proposed a hybrid classifier model that used the random
tree and NBTree algorithms to classify the simulated network traffic as normal or
malicious. They trained and tested the hybrid classifier model using the NSL-KDD
dataset. Through the experiments, the authors were able to achieve a high ACC of
89.24% than other individual classifiers.

1.4.1.2 Regression-based techniques

Regression [111] is a supervised statistical approach used for continuous output
values given continuous and/or categorical predictors. Regression models can be
divided in three main categories [41]: linear regression, nonlinear regression and gen-
eralized linear models. Linear regression [165] models the relationship between two
variables x (explanatory variable) and y (dependent variable) by fitting a linear equa-
tion to observed data. While, non-linear regression models the relationship between
the two variables by fitting a nonlinear equation to observed data (see Fig. 1.6).
Generalized linear models [234] are extensions of previous regression models where
the dependent variable y can be any member of a set of distributions called the expo-
nential family (e.g. Normal, Poisson, Binomial). Most known examples are Logistic
Regression (Logit) and Poisson Regression.

x

y

O

Figure 1.6 – Regression: An Overview

Theory. Let us consider the prediction function in Sect. 1.4.1.1. For linear
regression, given an example x, φ(x) = x and the prediction function takes the form,

y(w, x) = wTx+ b
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where x = (x1, ..., xn)T , w = (w1, ..., wn)T are weights, and b = w0 the bias. The
optimization problem is to find optimal w that minimize the error ED(w). ED(w)
can be deduced using the maximum likelihood or the maximum posterior. The max-
imum likelihood assumes that y are known and w are unknown. It maximizes the
conditional probability P (y|x,w) = P (y1, .., yn|x1, .., xn, w). If (xi, yi)1≤i≤n are in-
dependent, P (y1, .., yn|x1, .., xn, w) = ∏n

i=1 P (yi|xi, w). By assuming examples are
Gaussian (i.e. P (yi|xi, w) = N (yi|y(xi, w), σ2)), the optimization problem is given by
the expression,

w = arg max
w

P (y|x,w)

= arg max
w

n∏
i=1

1√
2πσ

e
−

1
2

(
yi − y(xi, w)

σ

)2

when we apply a logarithm function, the optimization problem takes the form,

w = arg min
w

n∑
i=1

(yi − y(xi, w))2

2︸ ︷︷ ︸
ED(w)

The maximum posterior consists in maximizing the conditional probability P (w|x, y)
i.e. maximizing P (y|x,w).P (w) (Bayes theorem) as P (x, y) is constant for w. Fol-
lowing the same process below, the optimization problem is given by

w = arg min
w

n∑
i=1

(yi − y(xi, w))2

2 + λ
w.wT

2︸ ︷︷ ︸
ED(w)

where λ is the regularization parameter depending of σ2. It is arbitrarily fixed or
randomly-chosen during the cross-validation. For non-linear regression, φ(x) is non
linear. The prediction function is given by the expression,

y(w, x) = wTφ(x) + b = W T φ̃(x)

where W = (b, w1, .., wn)T and φ̃(x) = (1, φ1(x), .., φn(x))T . For instance, φ̃(x) =
(1, x1, x2, .., xn)T in the case of the polynomial regression. Generically, the optimiza-
tion problem (maximum posterior) can be rewritten as follows,

W = arg min
W

n∑
i=0

(yi −W T φ̃(xi))2

2 + λ
W.W T

2︸ ︷︷ ︸
ED(W )
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Review. In Smart Grids, S. Chin Yip et al. [343] designed two linear regression-
based algorithms to study consumers’ energy utilization behaviour, in order to detect
energy theft (frauds) and defective smart meters. The authors introduced, in the
model, indicators of energy theft i.e. detection coefficients (e.g. if indicator = 0
then "normal utilization" else "energy theft"), and categorical variables to identify the
periods and locations of energy frauds and faulty smart meters. Simulations showed
that the proposed approach successfully detected all the fraudulent consumers.

In power systems, J. Zhang et al. [348] proposed a multiple linear regression (MLR)
classification model to identify false data injection (FDI) attacks. The attack model
is based on the attacker’s knowledge and capability by the assumption that the at-
tacker has perfect knowledge of the topology/historical load data and also has enough
historical data to perform MLR. The MLR model learns relationships from the ex-
ternal network and the attacker sub-network using the power transfer distribution
factor (PTDF) matrix. The PTDF matrix captures all effects in the external net-
work through the pseudo-boundary injections. The MLR model also used DC optimal
power flow (OPF) features such as power balance, thermal limit, and generation limit
constraints only in the outside area. In the testing phase, the model was evaluated
using the IEEE 24-bus RTS and IEEE 118-bus systems. As a result, the attacker can
overload transmission lines with the proposed model.

1.4.1.3 Clustering techniques

Clustering [158] is an unsupervised learning approach that partitions unlabeled
data into groups in order to understand their structure (see Fig. 1.7). There are many
clustering techniques such as k-Means clustering, graph-based clustering, hierarchi-
cal clustering, density-based clustering. Most have many applications in biomedical,
finance and industry. However, they still have some problems in terms of param-
eter setting, executing efficiency and clustering capabilities such as low efficiency,
algorithm complexity and noise-removing difficulty [350].

x

y

O
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Figure 1.7 – Clustering: An Overview

Clustering considers a long sequence of examplesD = {x1, x2, ..., xN} without their
targets. The aim consists in minimizing the distance between similar examples and
maximizing the distance between dissimilar examples. The distance is a symmetric
function d : D×D → R+, such that d(x, x) = 0,∀x ∈ D. Given an input parameter k,
Clustering partitions D into k-clusters. The set of clusters C = {C1, ..., Ck} is defined
such that ⋃ki=1Ci = D and ∀ i 6= j, Ci∩Cj = ∅. In soft clustering, a probability pi(x)
is assigned to each example x ∈ D, where pi(x) is the probability that x belongs to
cluster Ci.

a) K-Means clustering. K-mean clustering is an unsupervised learning method
that partitions data into k clusters, represented by their centers. The center of each
cluster k is caelculated as the mean of all the instances belonging to that cluster.

Theory. Given an input parameter k and p-examples x1, x2, ..., xn ∈ D (n ≤ N), K-
means clustering consists in finding k cluster centers µ1, µ2, ..., µk ∈ D that minimize
the quadratic function [41],

n∑
i=1

k∑
j=1

Iij||xi − µj||2

where Iij has value 1 when xi is assigned to cluster j (i.e. j = arg minj ||xi − µj||2)
and 0 otherwise. The cluster center µj is given by

µj =
∑n
i=1 Iijxi∑n
i=1 Iij

where ∑n
i=1 Iij is the number of points assigned to cluster j.

Review. In Big Data, K. Peng et al. [255] proposed a clustering method for IDS
based on Mini Batch K-means combined with principal component analysis to detect
complex attacks. The proposed approach has two main steps: Preprocessing and
Detection. The first one digitizes and normalizes strings in the dataset by using
replace function. Next, a principal component analysis (PCA) method is applied on
processed data to reduce their dimensionality and the results is forwarded to the Mini
Batch Kmeans clustering model for intrusion detection. The authors evaluated their
approach using the KDDCUP99 dataset and compared Kmeans, Kmeans with PCA,
single Mini Batch Kmeans. As a result, the model is effective and efficient (very low
clustering time).

b) Graph-based clustering (GBC) is a method that uses graphs to produce clus-
ters. A GBC is divided in two categories [270]: between-graph (full) clustering that
partitions a set of graphs into different clusters, and within-graph (single) that divides
the nodes of a graph into clusters.
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Theory. A sequence of data x1, ..., xn ∈ D is represented in a graph structure
G = (V,E), V are vertices and E are edges with weights. There are many graph
structures such as k-nearest neighbor (kNN) and spanning trees. A spanning tree
ST = (V ′, E ′) is a tree that contains all the vertices of the graph G. A minimum
spanning tree MST [346] is a spanning tree with the smallest total weight. A k-MST
is a graph consisting of k MSTs such that k-MST= ⋃k

i=1 MSTi. The k-MST-based
clustering partitions G into k MSTs to achieve clusters. It relies on the weight of an
edge of G and iteratively removes the edges of the biggest weight until a partition of
G is achieved. In spite of removing edges, other mechanisms such as split-and-merge
could be used [352]. During splitting, initial cluster centers are generated from the
k-MST graph and K-means clustering is applied to achieve a partition. Each partition
is adjusted so that it belongs to a sub-tree of the MST. During merging, the clusters
in partition are combined using a merge criteria to produce large clusters. The merge
criteria depends on the degree of information in the MST [352]. It could be to select
vertices vi ∈ V with maximum/minimum degree.

Review. In Big Data, C. Sudipta et al. [66] proposed a graph-based clustering
method that used self-organizing map clustering and topology features of graph nodes
(i.e. clustering coefficient, degree, weight, node betweenness) to efficiently detect
botnets. In the testing phase, the authors evaluated their approach using NetFlow
features in the CTU-13 dataset. Results shown that the proposed model was able to
isolate bots in clusters of small sizes while containing the majority of normal nodes
in the same big cluster.

c) Hierarchical-based clustering [161] is a clustering method which outputs a hi-
erarchy (structure) that is more informative than the unstructured set of clusters
returned by other clustering methods. The method constructs the clusters by re-
cursively partitioning the examples in either a top-down or bottom-up fashion [270].
In recent papers, many papers [250, 268] have integrated hierarchical clustering in
different ways.

Theory. Hierarchical clustering relies on two main parameters [43]; the distance
between clusters D : D×D → R+ and the stopping criterion θ as clusters going large
when examples are recursively partitioned. Let Ci ⊆ D and Cj ⊆ D be two clusters.
The distance D(Ci, Cj) can be computed using a single-linkage, group-linkage, and
complete-average. In single-linkage, D is the minimum distance between examples of
the two clusters and it is of the form,

D(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y)

The group-linkage assumes that D is the average distance between each cluster ex-
ample,

D(Ci, Cj) = 1
|Ci||Cj|

∑
x∈Ci,y∈Cj

d(x, y)
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In complete-linkage, D is the maximum distance between examples of the two clusters,
D(Ci, Cj) = min

x∈Ci,y∈Cj
d(x, y)

Review. In Cognitive Radio WSNs, K. Rina et al. [268] developed a model based on
K-medoids clustering and agglomerative hierarchical clustering to identify spectrum
sensing data falsification attack. In this attack, a node falsifies its local sensing report
before sending it to the fusion center. The goal being to damage the final sensing
decision of the fusion center. Through numerical simulations, the proposed model was
able to detect and isolate malicious nodes using the collection reports at the fusion
center.

In Big Data, M. S. Parwez et al. [250] implemented a big data analytic model
that combined k-means and hierarchical clustering methods to analyze users’ mobile
network data. The authors tested the model and compared the obtained results i.e.
detected anomalies with truth information in hand to identify regions of interest in the
network i.e. specific behaviours like faults, user-anomalies and malicious activities.
After that, they used these abnormal behaviours and normal data to show the impact
of anomalies in data while training intelligent models.

d) Density-based clustering is a clustering approach where the dataset that belongs
to each dense region (cluster) is drawn from a specific probability distribution [270].
An example of density-based clustering is DBSCAN (density-based spatial clustering
of applications with noise) [92]. A DBSCAN discovers clusters of arbitrary shapes, in
large spatial databases, by searching the neighborhood of each object in the database
and checks whether it contains more than the minimum number of objects [270].

Theory. A density-based clustering [139, 183] assumes that the neighbourhood of
a given radius ε (ε > 0) should contain a minimum number of m examples. Given an
example x ∈ D, the density of the neighbourhood denoted Nε(x) should exceed some
threshold and it is given by

Nε(x) = {y ∈ D, d(x, y) ≤ ε}
In a cluster, an example x follows three properties: directly density-reachability,

density-reachability, and density-connectivity. x is directly density-reachable from
an example y w.r.t. ε and m if x ∈ Nε(y) and Nε(y) ≥ m. Moreover, x is density-
reachable from an example y w.r.t. ε andm if there is a sequence of examples x1, ..., xn
with x1 = y, xn = x such that xi+1 is directly density-reachable from xi. In addition,
x is density-connected from an example y w.r.t. ε and m if there is an example z such
that x and y are density-reachable from z w.r.t. ε and m.

Review. C. Zhang et al. [347] developed an IDS approach that used density
peak clustering with support vector data description (SVDD), able to process high-
dimensional data with non-uniform density and identify network intrusion. The pro-
posed approach has five steps. The first step consists in generating training and test
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sample set using KDD cup99 and UCI datasets. The second one performs the cutoff
distance optimization based on the adjusted silhouette coefficient and outputs the
best cutoff distance. The third one used the best cutoff distance to achieve clustering
on training samples (k-clusters) using density peak clustering. The fourth step uses
an improved Particle Swarm Optimization to optimize parameter for the next step.
This one uses optimized parameters to train the support vector data description and
produce k sub-hyper spheres. After several tests, the proposed model achieved a high
F-score of 90.9% on average with the UCI dataset, a high Detection Rate of 95.2%
and F-score greater than 87% on average with the KDD cup99 dataset.

1.4.1.4 Evolutionary computing and swarm intelligence techniques

Evolutionary computing (EC) [345] is an advanced area which studies and designs
biologically-inspired algorithms (e.g. gene reproduction). Swarm intelligence takes
inspiration from the social behaviors of insects and other animals to solve problems.
EC methods perform optimizations and learning tasks with abilities to evolve for
complex problems. The basis cycle of EC methods consists of 4 main steps [345] (see
Fig. 1.8):

Populating. EC methods maintain a whole collection of candidate solutions (pop-
ulations) simultaneously, to optimize and learn the problem. Basically, they create
an initial population of individuals. An individual is a solution in a population. In
genetics, an individual has its gene representation called its code.

Evaluation. EC methods compute the objective values of the individuals for
preparing the fitness process.

Fitness and selection. EC methods use objective values to determine the fitness.
The fittest individuals are then selected for the reproduction.

Reproduction. Individuals will undergo a number of variation operations (e.g.
genetic mutation/crossover) to mimic biological changes (e.g. genetic gene changes),
which is necessary for the solution space. As a result, new individuals are then created
and reused for the evaluation process.
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Initialization

Selection

Termination

Mutation

Crossover

Figure 1.8 – Evolutionary computing cycle

In recent years, EC and swarm intelligence were successfully applied in various
domains like engineering, medicine and transportation. Nonetheless, they may have
some limitations [155]: (a) cannot guarantee finding the optimum solution in a finite
amount of time, (b) need to tune various search parameters without proper guid-
ance on how to set them for unknown problems, and (c) utilize too much exploration
(computationally expensive) due to the use of the population-based search approach
(greedy heuristic). Most known EC and swarm intelligence algorithms include Ant
Colony Optimization (ACO), Artificial Bee Colony (ABO), Gravitational Search Al-
gorithm (GSA), Genetic algorithm (GA), Memetic algorithm (MA), Particle Swarm
Optimization (PSO), Self-organizing maps (SOM), Artificial Immune System (AIS),
Cuckoo Search (CS) and Firefly algorithms.
a) Ant Colony Optimization (ACO). An ACO [88] is a meta-heuristic concept in-
spired from the foraging behavior of some ant species. Ants deposit pheromone on
the ground in order to mark some favorable path that should be followed by other
members of the colony. ACO exploits a similar mechanism to solve optimization prob-
lems. In recent years, an ACO has been successfully applied to improve the intrusion
detection process in a target environment.

Theory. ACOs was introduced [88] to solve combinatorial optimization problems.
A combinatorial optimization problem COP is defined by the tuple 〈S, f〉, where S
is the search space i.e. a finite set of solutions and f : S → R+ is the objective
function that assigns a positive cost value to each of the solutions, the goal being to
find a solution with the minimal cost. An ACO is a stochastic COP that relies on the
concept of pheromone model. A pheromone model is a vector T of pheromone trail
parameters Ti that have pheromone values τi. An ACO model is the 3-tuple 〈S ,Ω, f〉
where the solution space S is defined over a set of n pheromone trail parameters
T ji ∈ T = {T 1

i , ..., T
|T |
i } with values τ ji ∈ Di = {τ 1

i , ..., τ
|Di|
i }, i ∈ {1, ..., n}. An

instantiation of a pheromone trail parameter is the assignment of a value τ ji to a
pheromone trail parameter T ji i.e. T ji = τ ji . A globally optimal solution s∗ ∈ S ∗ ⊆ S
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satisfies the property f(s∗) ≤ f(s), for all s ∈ S . Each solution s should satisfy the
constraints ω ∈ Ω.

A generic ACO algorithm is described below. ACO algorithm starts by initializing
all pheromone values to a constant value c > 0. Next, it probabilistically constructs
solutions using heuristic information and transition probabilities. If valid solutions
are found, a local search is applied to improve the solutions constructed by ants.
Then, a pheromone value update rule is applied to increase the pheromone values
from high quality solutions as follows,

τ ji ← (1− λ).τ ji + λ .
∑

s∈Supd

F (s)

where Supd ⊆ S is the input solutions to update, λ is the evaporation rate that
uniformly decreases all the pheromone values, and F : S → R is a function such
that f(s1) < f(s2) ⇒ F (s1) ≥ F (s2) for all s1 6= s2 ∈ S . All the process below is
repeated until the optimal solution s∗ is found.

Review. In VANETs, M. H. Eiza et al. [140] developed a secure and reliable multi-
constrained QoS aware routing approach based on Ant Colony Optimisation. The
proposed approach computed feasible routes subject to multiple QoS constraints and
considered the topological properties of VANETs including variable communication
link quality and frequent link breakages. While searching for feasible routes, ants se-
lected their next hop when they arrived at intermediate nodes using state transition
rules. Note that ants only traversed more reliable links to avoid traversing vulner-
able links that are highly prone to breakage. A level of pheromone was associated
to communication links between vehicles. When a vehicle received routing control
messages, it used the received information to assign a pheromone value to each link
w.r.t. QoS constraints. In the testing phase, the authors used the OMNET++ 4.3
network simulator. The proposed model achieved a high packet delivery ratio and
efficiently identified feasible routes.

Recently, F.H. Botes et al. [48] used an ACO-based decision tree classifier called
Ant Tree Miner (AMT) to classify the dynamic behaviour of attacks as normal or
abnormal. In the training phase, the authors train the AMT model with 20% of
the NSL-KDD training dataset. In the testing phase, the AMT model has been
evaluated using the NSL-KDD Test-21 dataset (records with difficulty of 21) [309]
and outperformed the J48 Decision Tree classifier by 3% in detecting DoS attacks.
Moreover, the FPR was reduced to 0% using the AMT model.

E.K. Varma et al. [318] combine ACO and Fuzzy entropy algorithms to search the
best smallest network traffic features, which can be used to detect different type of
real-time intrusion attacks like DDoS, account hijacking and probe. To evaluate the
selected features, the authors run different classifiers (J48, Random Tree or Forest)
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using Weka tool and two standard benchmark datasets: Iris and Cleveland. After
feature reduction, the model generation time was 37.19% faster than the full feature
dataset and the Random Forest’s accuracy increased by 0.27%.

b) Artificial Bee Colony. An Artificial Bee Colony (ABC) [166] is a swarm-based
meta-heuristic technique, inspired by the intelligent foraging behavior of honey bees.
In ABC, artificial bees fly around in a multidimensional search space to discover the
places of food sources (good solutions for a given problem) with high nectar amount
by changing food positions (individuals) to find the one (optimal solution) with the
highest nectar.

Theory. Let S be the number of food sources (solutions) around the hive. The
optimization problem [73] consists in finding the maximum nectar amount of the
food source at the position θ ∈ Rd. The nectar amount of the i-th food source at
θi is represented by the objective function F (θi). Once the food source is chosen,
bees share their information with other bees (onlookers) within the hive and the ones
probabilistically select one of the food sources. The probability Pi that the food
source located at θi will be chosen by a bee is of the form,

Pi = F (θi)∑S
j=1 F (θj)

Onlookers go to the location of the food source θi using their belief Pi and de-
termine a neighbour food source to take its nectar by moving from position θi(c) to
θi(c+1) where c is the cycle. The position of the selected neighbour food source takes
the form,

θi(c+ 1) = θi(c)± φi(c)
where i ∈ {1, .., |S|}, φi(c) is a randomly produced step to find a food source with
more nectar around θi. If F (θi(c + 1)) > F (θi(c)), the bee goes to the hive, share
information to others and φi(c) ← φi(c + 1) otherwise φi(c) is not changed. When
the food source i cannot be improved, the food source at φi is abandoned and the
bee (scout) search for a new food source.

Review. In WSNs, M. Korczynski et al. [179] proposed a bee-inspired method
using DIAMOND to detect ealier distributed attacks such SYN flooding attacks and
TCP portscan activity. DIAMOND is a distributed coordination framework that
builds coordination overlay networks on top of physical networks and dynamically
combines direct observations of traditional localized/centralized network IDS (NIDS)
with knowledge exchanged with other coordinating nodes to automatically detect
anomalies of the physical networks. The authors developed their own prototype com-
munication protocol using OpenFlow and evaluated it using the Mininet 2.0 network
emulator. During the testing phase, the network traffic was captured from the trans-
Pacific line and was labelled by the MAWI working group as anomalous or normal
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using an advanced graph-based method that combines responses from independent
anomaly detectors built from principal component analysis (PCA), the gamma dis-
tribution, the Kullback-Leibler divergence, and the Hough transform. Overall, the
proposed model achieves a high ACC of 94.51%.

In Smart Grids, L. Yang et al. [338] combined extreme learning machine (ELM)
and ABC methods to identify data injection attacks. Firstly, an autoencoder was
used to reduce the dimensionality of the measurement data. Then, ABC finds optimal
parameters i.e. number of hidden nodes and input weights. The optimal parameters
are then sent to the ELM classifier for detection. In the testing phase, the authors
used IEEE 118-bus, IEEE 14-bus systems and the MATPOWER tool to simulate the
operation of the power network. Overall, the proposed model gave good results with
a medium FPR of 11.06% and a high DR of 86.8% on average.

c) Gravitational Search Algorithm. A Gravitational Search Algorithm (GSA) is
a heuristic optimization algorithm based on the law of gravity and mass interac-
tions [265]. In GSA, the searcher agents are a collection of masses that interact
with each other using the Newtonian gravity and the laws of motion. These agents
have four parameters 6: position, inertial mass, active gravitational mass, and passive
gravitational mass.

Theory. Let us consider n agents acting on the search space S. The position of
an agent i is given by x = (x1

i , .., x
k
i , .., x

|S|
i ), i ∈ {1, .., n}, where xki is the position

of the agent i in the k-th dimension, and |S| is the dimension of the search space
S. Once the search space is identified, GSA generates an initial population and
evaluates the fitness function for each agent in the population. First, GSA updates
the gravitational constant G. G has initial value G0 and it is exponentially reduced
in the time to control the search accuracy,

G(t) = G0e
−λ

t

T

where G0, λ are constant given during initialization and T the number of iteration.
Let fi : R+ → R be the fitness function of the agent i and fi(t) the fitness value of
the agent i at time t. For a minimization problem, the worst fitness value w(t) and
the best b(t) are expressed as follows,{

b(t) = minj∈{1,..,n} fj(t)
w(t) = maxj∈{1,..,n} fj(t)

Given a fitness value of the agent i, GSA updates its gravitational mass mi and

6. https://www.igi-global.com/dictionary/gravitational-search-algorithm/48381
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inertial mass Mi as follows, 
mi(t) = fi(t)− w(t)

b(t)− w(t)
Mi(t) = mi(t)∑n

j=1mj(t)

mi andMi are then used to compute the acceleration γki of the agent i in time t in the
k-th dimension. Then, GSA updates the agent velocity vki and position xki in time t
in the k-th dimension, {

vki (t+ 1) = ri.v
k
i (t) + γki (t)

xki (t+ 1) = xki (t) + vki (t+ 1)

where ri is a random number in the interval [0, 1], γki (t) the acceleration of the agent
i defined by

γki (t) =
∑n
j=1,j 6=i rj.F

k
ij(t)

Mi(t)
where F k

ij = (G0MpiMaj)/(dkij)2 is an external force exerted by an agent j on an
agent i in time t in the k-th dimension, such that dkij is the distance between the two
agents, Mpi and Maj are respectively the passive gravitational mass of the agent i
and the active gravitational mass of the agent j. GSA repeats the process below until
stopping criteria met.

Review. In WSNs, D. Tirtharaj et al. [77] combined GSAs and ANNs to detect
malicious network traffic. In the training phase, the ANN model is first trained using
a single GSA and next with a combination of GSA and Particle Swarm Optimiza-
tion [345](GSPSO-ANN). The resulting GS-ANN and GSPSO-ANN models are then
tested using the NSL-KDD dataset and compared to existing models such as decision
trees and ANNs based on genetic algorithms. The proposed model achieved a DR of
94.9% for GS-ANN and 98.13 % for GSPSO-ANN.

B. Hamid et al. [47] proposed a hybrid feature selection approach using a binary
gravitational search algorithm (BSGA) and mutual information (MI). The proposed
method has two layers of optimization: (a) an outer optimization layer that uses the
BGSA technique to find an optimal feature subset and (b) an inner optimization layer
that prunes the feature dataset to improve the previous layer. The authors evaluated
their model using SVM as a fast binary classifier and tested it with the NSL-KDD
datatset. After experiments, the MI-BGSA model outperformed some existing feature
selection approaches with a high ACC (88.362%) and a relatively low FPR (8.887%).

d) Genetic algorithm. Genetic algorithms (GAs) are optimization algorithms that
repeatedly modify a population of individual solutions [345]. Individuals have two
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properties: (a) its location (chromosome composed with genes), and (b) its quality
(fitness value). GAs randomly select individuals from the current population and use
them as parents to produce via crossover and recombination operations, the children
for the next generation [345]. As the generation cycle is repeated, the population
evolves toward an optimal solution.

Theory. GAs are inspired from behavior of chromosomes. A chromosome is a
string of genes. Each gene stores one from alleles (a finite number of values). Formally,
a chromosome [288] is a string C = c1c2...cp ∈ Σp, where Σ is the alphabet and p is
the length of the chromosome C. A chromosome C is similar to another one w.r.t.
a schema, which is the same length than C. A schema is a string S = s1s2...sp ∈
(Σ ∪ {ε})p, ε is an empty symbol. C matches a schema S when ci = ε ∧ ci = si for
all i ∈ {1, ..., p}. A GA starts by initializing a population S with n chromosomes
C1, ..., Cn. Then, GA selects an individual Ci from the population S with above-
average fitness using a probability Ps(Ci) defined by

Ps(Ci) = f(Ci)∑n
j=1 f(Cj)

where f : Σp → R is the fitness function. Individuals with above-average fitness
tend to receive low-average fitness. Next, GA applies a crossover operation on two
chromosomes Ci = ci1...c

i
p and Cj = cj1...c

j
q, where p = |Ci| and q = |Cj|. A simple

crossover operation generates two offspring chromosomes C ′i = ci1...c
i
kc
j
k+1...c

j
r and

C ′j = cj1...c
j
kc
i
k+1...c

i
r, where k is a random number in {1, ..., r− 1} and r is the length

of each generated chromosome. After crossover operation, chromosomes are mutated.
The mutation consists in randomly choosing a gene and swapping its value to increase
the structural variability of S. The process below is repeated until a criterion is
fulfilled.

Review. D. Papamartzivanos et al. [248] used GAs and Decision Trees to generate
new accurate detection rules able to classify common and zero-day attacks. The
proposed system, called Dendron, was evaluated and tested using three datasets:
KDDCup 99 (ACC=98.5%, FPR=0.75%), NSL-KDD (ACC=97.55%,FPR=1.08%)
and UNSW-NB15 (ACC=84.33%,FPR=2.61%). The best result was obtained using
KDDcup99.

M.R. Gauthama et al. [264] proposed a hypergraph-based GA method (HG-GA)
for parameter setting and feature selection in the SVM method. The authors eval-
uated their model using NSL-KDD and compared it to existing methods such as
GA-SVM, PSO-SVM, BGSA-SVM, Random Forest, and Bayesian Networks. They
achieved good performance with a high DR (95.32%) and a low FPR (0.83%).

e) Memetic algorithm. A Memetic algorithm (MA) is a corporative heuristic ap-
proach based on a meme [227] notion in cultural evolution. In MAs, a population of
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optimizing agents cooperate and complete by communicating with each other and us-
ing different heuristics: approximation algorithms, local search methods or specialized
recombination operators [227].

Theory. A MA relies on the concept of agents that represents a tentative solution
for the problem 7. Let A be a search space, an agent i is denoted Ai ∈ A. Agents
undergo multiple competition and mutual cooperation operations mimicking the be-
haviors of living beings from a same species. First, MA generates a population by
selecting agents based on their goodness. The goodness of an individual is evaluated
using the information from the fitness function f : A → R. The selection decision
is made upon a probability P (Ai) = f(Ai)/

∑
Aj∈A f(Aj). Resulting agents are sent

for reproduction. The reproduction consists in creating new agents from the older
ones. To create new ones, MA uses recombination operations such as crossovers and
cooperation. Afterwards, the agents mutate using local-improvers. Local improvers
start from an initial generated agent A0 ∈ A and iteratively uses at each step a tran-
sition based on the neighborhood of the current agent Acurr. The transitions going to
preferable agents are accepted (i.e. curr ← i) when f(Ai) < f(Acurr). The operation
terminates by the means of a criterion.

Review. In WSNs, C. Chen et al. [62] used a MA model to maximize sensing
coverage while achieving energy efficiency at the same time. This is particularly
necessary for intrusion detection nodes that require a full coverage at any time. The
proposed approach consisted of a MA-based scheduling strategy and a heuristic recur-
sive algorithm (HRA). In the MA-based scheduling, the MA is used with a dynamic
genetic structure to achieve a consecutive exploring process and create a maximal
number of disjoint sets of sensor nodes. In addition, a sleep schedule is built for
other off-duty nodes to conserve energy by using the power saving mode of IEEE
802.15.4, such that only the minimum nodes are active to cooperatively provide full
coverage without redundancy. On the other hand, the HRA is used to deal with the
dynamic-coverage-maintenance problem so that the loss of sensing coverage can be
recovered. The authors evaluated their approach using a WSN testbed and simula-
tions on the MATLAB tool. As a result, the proposed model was able to maximize
sensing coverage while achieving energy efficiency at the same time.

f) Particle Swarm Optimization. A Particle Swarm Optimization (PSO) [170] is
a population-based stochastic optimization method that mimics the ability of a bird
flock to fly synchronously, change directions suddenly, scatter, and regroup [345]. A
PSO uses two main notions: (a) velocity to describe the movement of birds and (b)
particle (in the sense of physics) to their method. Like GAs, PSOs are initialized
with populations of random solutions and search the optimal solutions by updating
generations. Frequently, PSOs are used in intrusion detection systems for the selection

7. http://www.lcc.uma.es/ ccottap/papers/IntroMAs.pdf
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of the best features to accurately detect network or host attacks.
Theory. A PSO is initialized with a set of random particles X and searches for

optima by updating generations. For each iteration, the position xi(t) of each particle
i is updated in time t based on its velocity vi(t), the best solution xbest

i achieved by the
i-th particle (fitness) and the best global position xgbest in the search space X . Over
time, the particle converges/clusters together around one or several optima through a
combination of exploration and exploitation of good position in X [170]. The velocity
vi and the position xi of the i-th particle is updated as follows,

{
vi(t+ 1) = vi(t) + λ1 ri(xbest

i − xi(t)) + λ2 ri(xgbest − xi(t)))
xi(t+ 1) = xi(t) + vi(t)

where vi(t + 1) is the new velocity of the particle i, λ1 and λ2 are the weighting
coefficients for the best and global best positions respectively, ri is a random number
belonging in the interval [0, 1], xbest

i is the i-th best position of the the particle pi,
xi(t) is the i-th position of the particle i, xgbest is the global best position in X , and
xi(t + 1) is the new position of the particle i. The process below is repeated when a
minimum error criteria is achieved.

Review. Recently, M. H. Ali et al. [17] developed a model based on fast learning
network and PSO-based optimization for zero-day attack detection. A fast learning
network is a double parallel forward neural network (DPFNN). A DFNN is defined
such that the re-coded information from the hidden nodes, along with the information
from the input nodes is fed into the output nodes. A PSO-based optimization selects
the best weight’s values and the number of neurons needed in the hidden layer to
achieve better accuracy. The authors trained and tested their approach using the
KDD cup99 dataset. Overall, the proposed model achieved a high ACC of 99% on
average.

Recently, Z. Yi et al. [342] proposed a feature selection approach that used Par-
ticle Swarm Optimization to detect Java Script malwares. Firstly, the authors used
ASTParser (an abstract syntax tree parser) to extract ASTs in code fragments of
downloaded malwares. After that, AST nodes are saved as features consisting of two
parts: the node’s structure (e.g. FunctionInvocation) and its content (e.g. XML-
HttpDownload). In the training phase, the authors collected 742 malicious and 854
benign scripts using a malicious javascript dataset [203] and VirusTotal public API,
and extracted AST nodes of scripts before applying PSO-based feature selection on.
In the testing phase, the model gave good results with a high ACC (over 98%).

g) Self-organizing map. A self-organizing map (SOM) is an unsupervised learning
ANN algorithm used to reduce dimensionality of feature vectors [175]. It has the
special property of effectively creating spatially organized internal representations of
various features of input signals and their abstractions [175].
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Theory. A SOM relies on a set of neurons, represented in 2-D grid to form a
discrete topological mapping (sensory-to-cortex mapping) of an input space X ⊆ Rd.
A weight vector wi (such that |wi| = d) is associated to each neuron i. A SOM
algorithm [71] starts by randomly initializing n weights w1, ..., wn of neurons 1, .., n.
At each time t, given an input x(t) ∈ X , SOM selects the best matching unit ω(t) as
follows,

ω(t) = arg min
k∈K

||x(t)− wk(t)||2

where K = {1, .., n} is a set of neuron indexes. Afterwards, SOM updates the weight
of the solution and its neighbours,

wk(t+ 1) = wk(t) + λ(t)φ(ω, k, t)(x(t)− wk(t))

where φ(ω, k, t) = e
−
||lω − lk||2

2σ(t)2 is a neighbourhood function and lω, lk denotes the
location vectors of neurons ω and k, respectively. σ(t) is the effective range of the
neighbourhood and λ(t) is the learning rate, randomly chosen within range [0, 1]. The
process below is repeated until SOM converges.

Review. In visual sensor networks, K. Huang et al. [152] use a hierarchical ver-
sion of self-organizing map (HSOM) and pattern learning to detect jamming, node
replication, MITM and DoS attacks. Firstly, the authors developed a traffic model
to describe the dynamic properties of network traffic in VSNs. Afterwards, they used
the model to extract the most relevant features of traffic patterns and fed them into
a HSOM neural network for pattern learning and intrusion detection. During simu-
lations, the authors generated a network traffic using Omnet++ and WVSNMODEL
simulators. The proposed approach gave a high DR of 95.3%, low FPR of 4.1% and
detection time less than 100ms.

h) Artificial Immune System. Artificial Immune Systems (AISs) are computation-
ally intelligent techniques inspired from the biological immune systems (BISs). BISs
are adaptive and complex systems that defend the body from invading pathogens [76].
They are formed of cells and molecules or non-self cells that represent the collective
coordinated immune responses. Moreover, BISs have three main layers [10]: (a) an
anatomic barrier which is the first line of defense in the body, (b) an innate immunity
i.e. an unchanging mechanism that detects and destroys invading pathogens, and (c)
an adaptive immunity that responds to previously unknown invading cells and builds
a response to them.

Theory. AISs have multiple mechanisms including artificial negative/positive se-
lection and artificial clonal selection [118]. An artificial negative selection (ANS)
starts by creating a set of self strings S. Then, it creates a set of randomly generated
strings R0. For each string R0 ∈ R0, ANS forms a detector set R of those that do
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not strongly match any S ∈ S. It uses a matching function F that indicates the level
of similarity between the strings, such that F (R0, S) ≥ λ, where λ is a threshold. For
each R ∈ R, ANS verifies that there is no S ∈ S matches above the threshold. Next,
this operation is repeated again while change detection of S is required.

In the artificial clonal selection (ACS), an initial population of antibodies A is
randomly created. Then, ACS selects a subset S of the fittest antibodies from At
using a fitness function f . For each antibody si ∈ S, ACS creates a set of clones
Ci ⊆ C, where C is the set of all clones. Next, ACS mutates each clone c ∈ C
and adds resulting clones C ′ to At. An ACS selects again a subset S ′ of the fittest
antibodies from the resulting At and randomly generates a new population. All the
best members of the new population are stored in At+1. The whole process is repeated
until a criterion is met.

Review. In WSNs, J. M. Vidal et al. [321] proposed an AIS model based on
building networks of distributed sensors, only required for the monitored network to
detect DoS attacks. Each sensor network (immune cell) detects intrusions and reacts
against the observed threats (immune response). This is done by emulating the dif-
ferent immune responses, the establishment of quarantine areas and the construction
of immune memory. During the testing phase, the authors tested their approach
using fooding attacks generated from the DDoSIM tool, public datasets (KDD’99,
CAIDA’07, CAIDA’08) and traffic samples gathered by the University Complutense
of Madrid. Overall, their approach achieve good performance with a high ACC on all
the datasets. In IoT, R. Roman et al. [272] proposed a proactive security architec-
ture that used AIS to defend against malicious edge nodes. The AIS model allowed
only authorized immune cells (e.g., virtual machines) to traverse edge nodes. It also
analyzed the security and consistency of the IoT infrastructure.

i) Cuckoo search. A Cuckoo search (CS) [341] is a nature-inspired optimization
strategy based on the cuckoo brood parasitic behaviour in combination with Levy
flight behaviour of other birds and fruit flies. It consists for the female to lay of the
nest of another species so that it ensures the brooding of the egg and feeding the
young individual. The CS model is divided in three steps [341]: (a) each cuckoo
lays one egg (a solution) at a time, and dumps its egg into a randomly chosen nest
(population), (b) the best nests with high quality of eggs (optimal solutions) will
carry over to the next generations and (c) the number of available host nests is fixed
(population size), and the egg laid by a cuckoo is discovered by the host bird with a
given probability.

Theory. A CS generates an initial population of n host nests xi, for all i ∈
{1, ..., n}. Afterwards, CS gets a cuckoo i randomly by Levy flights. When generating
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new solutions x(t+1)
i (a cuckoo i), the Levy-flights is performed as follows [341],

x
(t+1)
i = x

(t)
i + α⊕ Levy(λ)

where α > 0 is the step size. The Levy flight provides a random walk through a
Markov chain whose next/current state depends of the current location (i.e. x(t)) and
the transition probability (i.e. α⊕ Levy(λ)). The random step length follows a Levy
distribution defined by

Levy ∼ u = t−λ

where λ ∈]1, 3]. In addition, CS evaluates the fitness Fi of cuckoo i by randomly
choosing a nest amount of a cuckoo j and j is updated with i (new solution) when
Fi > Fj.

Review. In SDNs, I. H. Abdulqadder et al. [5] developed a secure architecture
based on chaotic secure hashing for user authentication, enhanced genetic algorithm
(EGA) and Cuckoo Search to mitigate flow table overloading attacks, control plane
saturation attacks and Byzantine attacks. The model included multiple controllers in
the control plane, multiple switches in the data plane and a monitoring cloud server.
EGA and CS assigned controllers (individuals) based on the available links, latency,
controller load balancing and alternative multiple path. In the testing phase, the
authors implemented the proposed model in the OMNeT++ simulator and evalu-
ated its performance in terms of packet loss, end-to-end delay, throughput, latency,
and bandwidth. Five actions were taken during detection: Alert (analyze the new
incoming flow), Quarantine (isolate the new incoming flow), Block (block the flow),
Discard (delete the new incoming flow) and Move (install the flow after analysis).
Overall, the proposed model achieved a throughput of 250Mbps for five switches, a
low end-to-end delay (max. 40ms), low packet loss (max. 30), and low bandwidth
consumption (null) for a simulation duration of 50sec.

Recently, G. Kanaka Raju et al. [116] proposed a customized CS-based model
that used the Hamming distance to find optimal attributes network transactions i.e.
continuous process of user’s activities. The selected optimal attributes of normal
and attack records are used to build nests for Cuckoo search. During simulations, the
authors trained and tested their model using the ISCX IDS dataset (70% for training,
30% for tests). They achieved good performance with a high ACC (97%).

j) Firefly algorithm. A Firefly algorithm (FA) [339] is a nature-inspired meta-
heuristic optimization algorithm inspired by the flashing behaviour of fireflies. Fire-
fly’s flash acts as a signal system i.e. an oscillator that charges or discharges the light
at regular intervals to attract other fireflies. A FA is defined as follows [339]: (a) all
fireflies (population) are unisexual, so one firefly will be attracted to all other fireflies;
(b) attractiveness is proportional to their brightness (objective function), and for any
two fireflies, the less bright one will be attracted by the brighter one; however, the
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brightness can decrease as their distance increases; and (c) if there are no fireflies
brighter than a given firefly, it will move randomly.

Theory. Let S be the search space, I the light intensity of a firefly and β its
attractiveness. Each firefly s ∈ S (potential solution) is represented by its light
intensity I [339]. I(s) is proportional to the value of fitness function f(s) and it
exponentially decreases as follows,

I(s) = I0e
−λ s2

where I0 is the light intensity of the source (i.e. when s = 0) , λ is a given light
absorption coefficient λ. The attractiveness β(s) of a firefly is proportional to its
light intensity value I(s) and it is given by

β(s) = β0e
−λ s2

where β0 is the attractiveness at s = 0. A firefly si moves in the search space S to find
a more attractive firefly sj using the fitness function f . The movement of a firefly si
is based on its current position i, the attraction to another more attractive firefly sj
at position j, and a random walk depending on a randomization parameter α and a
random generated value εi ∈ [0, 1]. εi follows a Gaussian distribution. The movement
of a firefly si is of the form,

si = si + β(rij)(sj − si) + αεi

where rij = ||si − sj|| is the distance between the two fireflies si and sj. Globally,
FA initializes a population S0 ⊆ S and determines a new random value α. Next, FA
evaluates si ∈ S using its fitness value f(s) and sorts s w.r.t. f(s). The best solution
is saved and the process below is repeated again.

Review. Recently, S.A. Raza Shah et al. [291] combined single MOTS IDSs (snort,
suricata) with anomaly detection methods such as SVM and firefly algorithm, SVM
and fuzzy logic. In the testing phase, the authors used a test bed where the input
network traffic was generated using open source network traffic generators like Osti-
nato, NMAP, and NPING. SVM and firefly algorithm achieved better performance
(ACC= 95%, FPR=8.6%) than SVM and fuzzy logic.

K. Munivara Prasad et al. [257] proposed a real-time bio-inspired anomaly IDS
(BARTD) that combined Firefly and Bat [340] algorithms to detect efficiently dif-
ferent kinds of Distributed DoS attacks: network/transport level DDoS, application
level DDoS and flooding (reflexion, HTTP-based). During tests, the authors used
JMETER to generate dataset and prepared data i.e. partitioned data into flood and
normal for training. As a result, the BARTD model outperformed single existing
approaches (Cuckoo Search, Firefly), with a high ACC over 95 %.
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Figure 1.9 – Reinforcement Learning: Markov Decision Process

1.4.1.5 Reinforcement learning techniques

Reinforcement learning (RL) is a learning paradigm which learns to control a sys-
tem so as to maximize a numerical performance measure that expresses a long-term
objective [307]. RL achieves their goal in two main steps [307]: (a) the use of samples
to compactly represent the dynamics of the control problem, and (b) the use of pow-
erful function approximation methods to compactly represent value functions. Most
known Reinforcement Learning algorithms are Markov Decision Process (MDP), Q-
Learning and Bayesian Game Theory. RL has various application areas like Robotics,
Finance, Industrial manufacturing and Power systems. However, RLs may have some
limitations. They must learn the model of environment i.e. need to know where
actions lead in order to evaluate actions and make decisions. In addition, they can be
computationally difficult to optimally solve when the problem size increases (curse of
dimensionality).

a) Bayesian Game Theory. A game consists of a number of players, a set of possi-
ble strategies for each player and the payoff function for each player [229]. A Bayesian
game is a game which takes into account the nature as an additional player, and where
the players have incomplete information on the other players but each player has a
subjective probability distribution (beliefs) over the alternative possibilities [229]. A
Bayesian game has different application areas including intrusion detection systems.

Theory. a Bayesian Game [229] is a tuple 〈N ,A,Θ, P, u〉 where N = {1, .., n} is
a set of players, A = {A1, .., An} is a set of actions where Ai is a pure strategy for
player i, Θ = {Θ1, ..,Θn} is a set of signals or types where θi ∈ Θi is a realization of
types for player i, P : Θ→ [0, 1] is a joint probability distribution according to which
types of players are drawn, and u = {u1, ..., un}, where ui : A × Θ → R is payoff
function of player i. A pure strategy for player i is a map si : Θi → Ai that prescribes
an action for each type of player i. Each player i knows its type and evaluates its
payoff according to a conditional distribution P (θ−i|θi), where θ−i = ⋃n

j=1,j 6=i θj. A
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payoff of player i is given by

ui(s̃i, s−i, θi) =
∑
θ−i

p(θ−i|θi)ui(s̃i, s−i(θ−i), θi, θ−i)

where s̃i ∈ Ai. The best responses of player i to s−i(θ−i) are given by

BNEi =
∑
θ−i

p(θ−i|θi)
(

arg max
s̃i∈Ai

ui(s̃i, s−i(θ−i), θi, θ−i)
)

A strategy profile si(θi) of player i is a Bayesian Nash Equilibrium (BNE) if si(θi) ∈
BNEi.

Review. In UAVNETs, H. Sedjelmaci et al. [290] proposed a Bayesian game model
to defend the UAVNET against internal (e.g. false injection) and external (e.g. DoS)
threats with a high detection accuracy and a low amount of intrusion detection data
being exchanged between IDSs at each node. The Bayesian game was formulated
between two couples: IDS vs attackers, Intrusion Ejection System (manages the ejec-
tion process of intrusive nodes) vs suspected node. The authors evaluated the model
using urban scenario generated by the Simulation of Urban Mobility (SUMO) tool
and achieved good performance with a high ACC between 96-98%.

In Smart Grids, K. Wang et al. [324] proposed a Bayesian honeypot game model to
analyze the strategic interactions between the attackers (anti-honeypot strategy) and
the defenders (honeypot strategy) using gathered information from honeypot sensors
in an Advanced Metering Infrastructure (AMI). In the testing phase, the authors
used a test bed that consisted of 4 servers, 10 honeypots, and 2 anti-honeypots. As
a result, the model can reach a dynamic balance between detection rate and energy
consumptions; it effectively detects DDoS attacks in AMI networks.

b) Markov Decision Process. A Markov Decision Process (MDP) is a memory-
less stochastic process model [33] that consists of a set of states, a discrete set of
actions, a conditional probability distribution which determines the transition from
the current state to the next state, and a reward/cost function that outputs the
immediate reward for given state and action (see Fig. 1.9). When the system state is
not determined, MDPs are Partially Observable (POMDP). POMDPs [56] are defined
by a set of partial observable actions, a set of observations, an observation distribution
for each state and an initial state distribution. MDPs are widely used to solve complex
problems in financial decision making (FDM), medical decision making (MDM), and
industrial decision making (IDM). Recently, MDPs were also successfully applied in
cybersecurity area precisely in intrusion detection and prevention systems.

Theory. A discounted Markov Decision Process [121] MDP = 〈S,A, P, R, γ〉, where
S is a finite or infinite set of all states, A = {a1, ..., an} is the set of all actions, P :
S ×A → P(S) is the Markov transition kernel; such that P (s′|s, a) is the probability
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distribution of the next state s′ given any state s and action a, R : S × A → P(R)
where R(s′|s, a) is distribution of the immediate reward and γ is the discounted
reward. A policy π : S → P(A) maps any state s ∈ S to a probability distribution
π(a|s) of taking action a when in state s. The value V π(s) of a state s under policy
π, given a state-value function V π : S → R, is defined by

V π(s) = E
[ ∞∑
k=0

γkRt+k+1

∣∣∣St = s,

At ∼ π(At|St), St+1 ∼ π(St+1|St, At)
]

where t is any time step and E[•] denotes the expected value of a random variable
•. Moreover, the value of taking action a in state s under a policy π, Qπ(s, a), where
the action-value function Qπ : S ×A → R. Qπ(s, a) takes the form,

Qπ(s, a) = E
[ ∞∑
k=0

γkRt+k+1

∣∣∣St = s, At = a,

At ∼ π(At|St), St+1 ∼ π(St+1|St, At)
]

Given any state s and action a, the optimal state-value function V ∗(s), the optimal
action-value function Q∗(s, a) and policy π∗(s) are given by

V ∗(s) = maxπ V π(s)
Q∗(s, a) = maxπQπ(s, a)
π∗(s) = arg maxaQ∗(s, a)

Review. In Smart Grids, H. Chen et al. [295] proposed a MDP-based approach
to model intruder’s attack strategy and analyze the likelihood of attacks in power
systems using an optimal intruder’s attack strategy. The authors tested the model
using IEEE 14-bus and IEEE 30-bus test case systems. Each test system used mea-
suring devices to record the voltage phase of its located bus and the current phasor
of incident lines. Finally, results have shown that the proposed approach successfully
described the attack behaviour and vulnerabilities of the test systems.

In WSNs, R. B. Diddigi et al. [85] uses a POMDP-based model to track the
intruder at each instant, while taking into account the energy consumption of sensors.
The authors optimized the POMDP-based model using three RL algorithms: greedy
algorithm, Monte Carlos tree search and hybrid (both of them). Next, they compared

55



1.4. Review and Evaluation of IDS techniques

the performances of different algorithms, and concluded that the hybrid algorithm is
more accurate for the mitigation of the state-action space explosion of the POMP-
based model.

c) Q-Learning. Q-Learning is a model-free reinforcement learning that provides
agents with the capability of learning to act optimally in Markovian domains by
experiencing the consequence of actions, without requiring them to build maps of the
domains [327]. Each agent performs the following steps [327]: (a) observes its current
state, (b) selects and performs an action, (c) observes the next state, (d) receives an
immediate reward, and (e) adjusts its Q-value using a learning factor.

Theory. The Q-Learning algorithm (QLA) is deduced from MDP. A QLA [327]
relies on the state-value function V and the Q-value (i.e. the action-value function
Q). The Q-value Q∗ (resp. V ∗) in the current state (s, a)is arranged in function of
Q∗ (resp. V ∗) in the next state (s′, a′) as follows,

Q∗(s, a) =
∑
s′∈S

P (s′|s, a)[r + γ. max
a′∈As′

Q∗(s′, a′)]

V ∗(s) = max
a∈As

∑
s′∈S

P (s′|s, a)[r + γ.V ∗(s′)]

Initially, QLA arbritarily sets an initial state-value function V0. For each iteration
i, QLA determines Q-values by computing Qi+1 (aka Vi+1) as follows,

Qi+1(s, a) =
∑
s′∈S

P (s′|s, a)[r + γ.max
a∈As

Qi(s′, a′)]

Vi+1(s) = max
a∈As

∑
s′∈S

P (s′|s, a)[r + γ.Vi(s′)]

This process is repeated until the criterion |Qi+1 − Qi| ≥ θ (aka |Vi+1 − Vi| ≥ θ)
is fulfilled.

Review. In Smart Grids, P. Jockar et al. [162] proposed a Q-Learning-based in-
trusion detection and prevention systems (HANIDPS) for ZigBee-based home area
networks. The proposed system has two main modules: (a) a detection module that
combines specification and anomaly methods using selected specifications from IEEE
802.15.4 standard, and (b) a prevention module that uses Q-Learning to find the
best strategy against an attacker. The prevention module performs automatically
preventive actions such as poofing prevention, interference avoidance and dropping
malicious packets. In the testing phase, the authors simulated an IEEE 802.15.4
network that contains 6 TelosB motes (TPR2400), 4 air monitors, an attacker and
a genuine node. As a result, they obtained an average DR of 92.5% and no FPR
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(0%) for the detection module. While in the prevention module, the average FPR is
13.805% and the average dynamic prevention performance is greater than 96%.

In UAVNETs, L. Xiao et al. [333] proposed a UAV power allocation strategy based
on deep Q-Learning and WoL-PHC to address subjective smart attacks in a dynamic
game such as jamming, spoofing and eavesdropping attacks. The attack game model
provides a user-centric view of subjective smart attacks and consisted of two players:
a smart attacker and the UAV system. A smart attacker makes subjective decisions
to choose the attack type (jamming, spoofing, eavesdropping) without knowing the
attack detection accuracy of the UAV system. The UAV system transmits power on
multiple radio channels to resist smart attacks. Through simulations, the authors
concluded that the proposed model increased the secrecy capacity and the utility of
the UAV against subjective smart attackers.

1.4.1.6 Active learning techniques

Most known supervised and unsupervised learning techniques first gather a signifi-
cant quantity of random data set from the world (underlying population distribution)
and then induce a classifier or model [285, 316]. However, gathering data are often
costly and time-consuming while we have limited resources for the collection [316]. A
solution can be to gather only needed data from the world by asking queries, receiv-
ing responses, and asking further queries based upon the previous responses. This
approach is called active learning. Both supervised and unsupervised techniques are
used in active learning.

Theory. An active learning relies on the concept active learners. An active learner
gathers information about the world by asking queries and receiving responses. It
typically queries information in a pool (pool-based active learning) or in streaming
(online learning) [316]. Let I be a measurable domain of elements andR a measurable
domain of responses. We assume that for each xi ∈ I, there is probably a response
yi ∈ R. An unlabeled pool is represented by the set P = (x1, ..., xd) ∈ Id. In pool-
based active learning, an active learner [316] is a tuple 〈f, q,D〉, where f : I → {−1, 1}
is a classifier trained on the current set of labeled/unlabeled data D ⊆ I. Given D,
q : I → R is the query function that allows deciding which next example to query
in P . After p-queries, active learners returns a set {(x1, y1), ..., (xp, yp)}. In online
learning, given an infinite stream S ⊆ I∞, active learners query an unlabeled data
s ∈ S and return its immediate label f(s), indefinitely.

Review. Recently, N. Nissim et al. [241] proposed an active learning-based ap-
proach (ALDROID) to update anti-virus signature repository by automatically ac-
quiring a maximum quantity of zero-day malwares and then, enhance the ALDROID’s
detection model using new malware samples. The authors tested their approach using
the Android platform and Android’s anti-virus softwares. As a result, the proposed
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system was able to acquire the largest number of zero-day malwares than existing
heuristic approaches. Latterly, N. Nissim et al. integrated their approach in AL-
DOCX [240] to efficiently assist anti-virus vendors and improve the detection accu-
racy. ALDOCX automatically identifies and collects new docx files that are malicious
and informative benign files. The authors evaluated their approach using 16,811 Mi-
crosoft Word files from Virus Total and Contagio, including 327 malicious and 16,484
benign files. Overall, ALDOCX achieved a high DR of 94.44% and a low FPR of
0.19%.

1.4.1.7 Deep learning techniques

Deep learning (DL) is inspired by the human brain’s ability to learn from expe-
rience instinctively [143–145]. It allows computational models that are composed of
multiple processing layers to learn representations of data with multiple levels of ab-
straction [190]. Unlike some learning methods, DL can be trained in an unsupervised,
semi-supervised and supervised manner for various learning tasks. Recently, DLs have
been successfully applied in various domains like speech recognition, computer vision,
sound and image processing. It generated interest due to many reasons [86]: (a) re-
duction of the need for feature engineering, (b) absence of unsupervised pre-training
and compression capabilities, and (c) easy adaptation to new problems relatively.
However, DLs require large amounts of data and are often extremely computation-
ally expensive to train (e.g. require expensive GPUs for complex models).
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Figure 1.10 – Deep Neural Networks : An Overview

Theory. The first well-known DL technique is Deep Neural Network. A Deep
Neural Network (DNN) is a composition of multiple hidden layers, typically more
than three layers, with an input layer and an output layer. Let us consider a DL
with N layers, consisting of N − 1 hidden layers, each having n(l) hidden units (l ∈
{1, ..., N −1}), an input layer with n(0), and an output layer n(N) (see Fig.1.10). Given
an activation function f (see Section 1.4.1.1-b)), the i-th unit within layer l is given
by [42],

y
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i = f(z(l)

i )

z
(l)
i =

n(l−1)∑
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(l−1)
j + w
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where z(l) and y(l) are vectors of the current inputs z
(l)
i and the outputs y

(l−1)
j ,

respectively. w
(l)
ik represents the weighted connection from the k-th unit in layer l − 1

to the i-th unit in layer l (w(l) is the matrix), and w
(l)
i0 is the biais at l-th layer.

y(x, w) = y(N) is the output vector of the DNN where w is the vector of all weights
of the DNN. When f is a sigmoid function, a softmax function is applied on outputs
and the cross entropy is similar to the one in Section 1.4.1.1-b) with m = n(N).
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A naive update of the DNN is prone to vanishing and exploding gradients, making
it impossible to train networks with multiple layers. Thus, it is necessary to use back-
propagation in training DNNs, which relies on squashing activation functions such as
sigmoid or hyperbolic tangent. Assuming a stochastic training, the input examples
are randomly chosen and DNN’s weights are updated using the training Ei(w), given
i input samples (see Section 1.4.1.1-b)). To avoid confusion, we will represent Ei(w)
by Eq(w), given n(0) input samples (x0, ..., xq, ..., xn(0)). Upon starting, the DNN’s
weights are randomly initialized [119] within range

−
√

6√
n(l−1) + n(l)

< w
(l)
ij <

√
6√

n(l−1) + n(l)

The initialization of DNN’s weights is crucial. After the initialization, DNN’s
weights are efficiently computed using the Gradient descent by iteratively updating
weights as follows,

w[t+ 1] = w[t]− γ ∂Eq
∂w[t]

where t is an iteration value, γ is the learning rate and ∂Eq/∂w[t] the weight error.
As mentioned in [42], the back-propagation error algorithm (BPA) consists in prop-
agating the input sample xq through the DNN, by a chain derivation process until
getting the current input and output of each unit. Errors δ(N)

i for output units are
computed as follows,
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For all hidden layers l, BPA computes the error δ(l)
i , given by

δ
(l)
i = f ′(z(l)

i )
n(l+1)∑
k=1

wikδ
(l+1)
k

and calculates the weight errors,
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Usually, these training operations are costly, particularly, when training sets are very
large. It becomes necessarily to parallelize data via asynchronous communication
[266]. There is three levels of parallelisms [78]: model parallelism, data parallelism,
and single-host-based multi-threading. In model parallelism, the N -layered DNN (i.e.
N−1 hidden layers and one output) is partitioned into N−1 hosts. When the network
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is locally connected, there are communications across hosts. In data parallelism, the
n(0) input samples are partitioned into M shards (S1, ..., SM), where Sr is the r-th
shard. The M shards forward data to M copies of the model (replicas) for training,
respectively. The parameters of replicas P = (P1, ..., PM) are asynchronously sent to
a set of hosts H. Each replica r computes the gradient on data from Sr, sends the
parameter Pr to a host h and the one will update its own parameter copy P ′h and
send it back to Sr. A single-host-based multi-threading uses cores of a single host to
perform matrix vector computations through multiple threads.

Other DL techniques include Deep Belief Networks (DBFs), Deep Boltzmann
Machines (DBMs), Deep Autoencoders (DAs), Deep Recurrent Neural Networks
(DRNNs), Deep Convolutional Neural Networks (DCNNs), Generative Adversarial
Networks (GANs), and Deep Capsule Networks [278].

a) Deep Belief Networks. A Deep Belief Network (DBN) is a graphical model that
learns to extract a deep hierarchical representation of the training data [146]. It is
a stack of Restricted Boltzmann Machines (RBMs) [8] which are trained in a greedy
manner. A RBM is an energy-based undirected generative method that models a
distribution of observations over visible variables using binary hidden variables [189].

Review. In 5G mobile communications, L. F. Maimo et al. [97] developed a novel
approach based on DBNs, long short-term recurrent neural networks (LSTM), and
Stacked Autoencoders (SAE) to analyze network flows and detect new botnet attacks.
The proposed approach has four modules: Virtualized Infrastructure (VI), Virtualized
Network Functions (VNF), Management and Orchestration (MANO), and Operations
and Business Support Systems (OSS/BSS). The first one virtualizes the physical re-
sources and sends them to VNFs. The second one was divided in Anomaly Symp-
tom Detection (ASD) and Network Anomaly Detection (NAD). The ASD component
uses DBNs and SAE models with mini batchs to perform quick search of anomaly
symptoms on network-flow aggregations. The NAD component collects timestamped
symptoms associated to RAN (Radio Acess Network) and analyzes the timeline as
well as the relationship among these symptoms using Long Short-Term Memory Re-
current Networks for anomaly detection. The MANO component ochestrates VNFs
and the network slicing for supporting multi-tenancy. During the training phase, the
authors selected 288 features from network flows (e.g. number of flows, entropy).
Afterwards, the proposed model was tested using the CTU dataset and libraries such
as Caffe2, PyTorch. Overall, the proposed achieved a high DR of 70.95% on average.

b) Deep Boltzmann Machines. A Deep Boltzmann Machine (DBM) is a graphical
undirected generative model that learns complex internal representations from a large
supply of unlabeled sensory inputs and limited labeled data [282]. Like Deep Belief
Networks, DBMs are compositions or stacks of RBMs.

Review. In SDNs, S. Garg et al. [115] proposed a deep-learning-based anomaly
detection approach to identify suspicious flows in social multimedia. The proposed
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model consisted of an anomaly detection module that leverages RBMs and gradient
descent-based SVM to detect the abnormal activities, and an end-to-end data delivery
module to satisfy strict QoS requirements of the SDN, i.e. high bandwidth and
low latency. The authors evaluated the proposed model using a Carnegie Mellon
University (CMU)-based insider threat dataset. Through experiments, the proposed
model gave good performance in terms of data delivery and successfully detected
malicious events such as identity theft, profile cloning, and confidential data collection.

c) Deep Autoencoders. A Deep autoencoder (DAE) [147, 322] is a graphical feed-
forward neural network which consists of two symmetrical Deep belief networks that
typically have four or five shallow layers representing the encoding half of the network,
and a second set of four or five layers that make up the decoding half. DAEs have
different applications like information retrieval, dimensionality reduction and data
compression.

Review. In Wi-Fi networks, M. E. Aminanto et al. [18] proposed a deep-feature
extraction and selection based on stacked feature extraction and weighted feature
selection to improve detection accuracy against impersonation, flooding, and injection
attacks. The stacked feature extraction uses DAEs to transform the original features
into a more meaningful representation by reconstructing its input. The weighted
feature extraction uses ANNs, which is trained with two target classes only (normal
and impersonation attack classes). The authors evaluated their approach using the
Aegean Wi-Fi Intrusion Dataset (AWID). As a result, the proposed model achieved
an ACC of 99.918% and a FPR of 0.012%.

d) Deep Recurrent Neural Networks. A Recurrent Neural Network (RNN) [149,
275] is a kind of neural network that includes weighted connections within a layer
and a loop memory i.e. it can maintain information while processing new input; its
decision at time (t-1) affects the new one at time t. Deep RNNs (DRNNs) are hierar-
chical representations of RNNs with some transition conditions [251]. In recent years,
DRNs have been successfully applied on temporal-data-based systems that usually
consider the history of the input such as machine translation, language modeling and
generating text, speech recognition and intrusion detection systems.

Review. Y. Chuan et al. [67] developed an RNN-based intrusion detection system
to detect unknown attacks. In the training phase, the authors preprocessed data from
the NSL-KDD dataset and extracted features to train the RNN-based model. The
training of the model consists of two modules: (a) a forward propagation module that
computes the output values, and (b) a back propagation module that updates weights
with accumulated residual values. In the testing phase, the model is simulated using
Theano-Weka and compared to existing ML techniques like J48 Decision Tree, ANN,
Random Forest and SVM. As a result, the proposed model gave a better ACC (99.81%
for KDDTRain+, 68.55% for KDDTest-21) than other methods.

e) Deep Convolutional Neural Networks. A Deep Convolutional Neural Network
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(DCNN) [106, 191] is a deep or generalized representation of ANNs that consists of
a number of convolutional and subsampling layers, followed by one or more fully
connected layers. DCNNs are usually used for image classification and, recently, they
were successfully applied to intrusion detection systems.

Review. Z. Li et al. [200] applied the CNN model to intrusion detection systems,
by converting the input dataset into an image before applying the CNN model on.
The detection process consisted of five steps: (a) raw data capture, (b) extraction
of the most relevant features, (c) data scaling using min-max normalization, (d)
image representation, and (e) the feeding of the CNN model using received images
for intrusion detection. In the testing phase, the authors used TensorFlow as deep
learning framework, NSL-KDD to train the model and existing DCNN models for
comparison such as ResNet 50 and GoogLeNet. As a result, the proposed model
gave a high ACC for both ResNet 50 (81.57% on Test-21, 79.14% on Test+) and
GoogLeNet (81.84% on Test-21, 77.04% on Test+).

f) Generative Adversarial Networks. A Generative Adversarial Network (GAN)
[122] is a minimax two-player game model for estimating generative models via adver-
sarial process, in which two models are trained simultaneously. The first model, called
generative, is responsible for the capture of the model distribution and its training
procedure consists in maximizing the probability of the second model making a mis-
take. Next, the second model, called discriminative, estimates the probability that
a sample is from the model distribution rather than the first model. More recently,
this framework was successfully tested in intrusion detection systems.

Review. In Cloud computing, N. Moustapha et al. [228] combined GAN and
Outlier Dirichlet Mixture (ODM-ADS) to process streaming data and detect advanced
persistent threats in Fog networks. The proposal can self-adapt against injection
attacks that targets the training phase and attempts to corrompt the learning process.
It can also build a normal profile from network flows and identify deviations from the
profile using Dirichlet Mixtures and GANs. The proposed model was evaluated using
NSL-KDD and UNSW-NB15 datasets. As a result, the proposed model achieved a
high ACC and high detection time than existing approaches.

As most ML models lack robustness to challenge real-world data of attackers, K.
Grosse et al. [126] constructed a GAN-based robust attack against malware detection
models. The authors’ aim was to get as possible a high misclassification rate from
detection models while optimizing their GAN-based detector model. The authors
used DREBIN dataset to train malware detectors, and an example of an adversarial
crafting algorithm to mislead trained malware detectors. As a result, they achieved
misclassification rates over 69% against malware detectors. Inversely, their malware
detector achieved a better ACC over 95% than existing detection models.

In Industrial and Control Systems, C. Feng et al. [96] proposed a real-time GAN-
based learning method to conduct stealthy attacks using a Secure Water Treatment
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(SWaT) testbed [120]. This dataset was preprocessed using min-max scaling and used
to train the stealthy attack GAN model. In the testing phase, the authors simulated
attacks by randomly injecting malicious chemical measurement (HCl-hydrochloric
acid, NaOCl-Sodium hypochlorite) in the begnin SWaT dataset and observed that
compromised Programmable Logic Controller sensor channels, when injecting mali-
cious measurements, have a high probability of conducting stealthy attacks.

1.4.2 Knowledge-based detection techniques
Basically, Knowledge-based systems (KBSs) [157] are computer systems that con-

tain stored knowledge and solve problems like humans would. KBSs are often assim-
ilated to System Experts (ESs) while ESs are just KBSs applied in a specific field.
KBSs have three main components [90]: knowledge base (KB), inference engine (IE)
and user interface (see Fig. 1.11). The knowledge base (KB) is a managed collec-
tion of structured or unstructured knowledge that includes storage and retrieval of
information via queries. Generally, the knowledge base is specified by a human ex-
pert of the target domain. The inference engine is a component that infers on the
knowledge base using reasoning mechanisms (e.g. backward chaining, forward chain-
ing, similitude-based) to make decision. Finally, the user interface dialogues with the
backend of KBS for consultations, suggestions, and configurations.

Figure 1.11 – Knowledge-based systems: An overview

KBSs have various advantages including [90]: (a) reduction of human interven-
tion, (b) consistency of answers, (c) explanation of solutions, (d) efficient and cost
effective. But they also present some limitations [90]: (a) restricted domain of exper-
tise, (b) lack of learning ability as they depend of the human expert who expresses
and articulates knowledges, and (c) cannot reason on the basis of human intuition
or even of common sense. Recently, different Knowledge base reasoning approaches
were proposed to challenging cyber threats in a given environment like Rule-based
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Reasoning (RBR), Case-based Reasoning (CBR), Ontology-based Reasoning (OBR),
Model-based Reasoning (MBR), and Fuzzy-based Reasoning (FBR) detailed here-
after.

Theory. The knowledge base is an essential component in KBSs. There are various
knowledge representation schemes including logic-based representation, procedural
and structured representation. In logic-based representation, the knowledge relies on
formal languages including First-order Logic [300] for an explicit representation of
system data, B/VDM/Z [7,163] for modelling system data and states, and CSP/CCS
[224,256] for modelling system behaviors and interactions.

In procedural representation, the knowledge is expressed as a set of instructions,
often called rules in production systems. The rules are of the form

if P1, ..., Pi then G1, ..., Gj

, where premises P1, ..., Pi are computed in order to achieve goals G1, ..., Gj. The
semantic of rules in the first-order predicate is given by

∀X1, ..., Xnj , Y1,1, ..., Y1,m1 , ..., Yi,1, ..., Yi,mi•
P1(Y1,1, ..., Y1,m1) ∧ ... ∧ Pi(Yi,1, ..., Yi,mi)→

G1(X1, ..., Yn1) ∧ ... ∧Gj(Xn1 , ..., Ynj)

where Pi and Gj are predicate names of the rule, Xj and Yi,k are variables. More
often, it is simplified using the clause,

P1, ..., Pi
G1, ..., Gj

On the other hand, the structured representation expresses and structures complex
knowledge i.e. objects or concepts of the target domain and relations between them. A
well-known example of structured representation is Ontology. A simple ontology [225]
O = 〈C,P,A, I〉 consists of a conceptualization C for each possible world that includes
concepts and instances, a set of properties and relations P , a set of axioms and rules
A, and an interpretation model I, such that

C = (
⋃

t∈Type

Ct) t (
⋃

i∈Type

Ii)

P = (
⋃
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The properties and relationships are respectively given by P=(D:DataType, O:Object,
T:Transitive, F:Functional)) and Rel = (≡,⊂,∩). For example, let consider three
concepts: Shape, Circle, and Square. Circle ⊂ Shape, Square ⊂ Shape, and Circle ∩
Square = ∅ are relationships between concepts.

1.4.2.1 Rule-based Reasoning

Rule-based Reasoning (RBR) [52] is the most widely used reasoning paradigm
which consists of two main components: (a) a set of "IF-THEN" rules representing
domain knowledge (knowledge base), and (b) an inference engine containing some
domain-independent inference mechanisms such as backward or forward chaining [59].
RBR uses a given input and finds applicable rules by matching against the rules
of the knowledge base. Then, the inference engine will use the obtained rules to
generate results using the chosen inference mechanism. In recent years, RBRs have
been successfully applied to detect known attacks (e.g. Snort, Suricata, OSSEC), and
they were often used as a complementary technique in hybrid detection systems (e.g.
Splunk, Elastic search) for the detection of advanced persistent threats and multi-step
attacks.

Review. In Medical Cyber Physical Systems, R. Mitchell et al. [222] proposed
a behavior-rule specification-based technique to detect abnormal patient behaviors
and attacks such as data modification, forgery, greyhole and blackhole. The pro-
posed model took a set of behavior rules in input (e.g. (Analgesic Infusion Rate > 0)
∧ (Mode = DEFIBRILLATOR)) and detected if a device’s behavior deviated from
the expected behavior specified the rule database. In addition, the behaviour rules
were transformed in state machine for model checking. In testing phase, the authors
simulated vital sign from monitors and evaluated their approach against the afore-
mentioned attacks. As a result, the proposed model achieved a high detection rate of
92.408% and low FPR of 0.666%.

1.4.2.2 Case-based Reasoning

Case-based Reasoning (CBR) [177] is a problem solving paradigm that can adapt
old solutions to meet new demands, using old cases to explain/critique new situations,
or reasoning from precedents to interpret a new situation or create an equitable
solution to a new problem. A general CBR cycle is described by four processes [2]:
(a) retrieves the most similar cases, (b) reuses the information and knowledge in that
cases to solve the problem, (c) revises the proposed solution, and (d) retains the parts
of this experience likely to be useful for future problem solving.

Review. In Medical Healthcare Systems, D. Malathi et al. [74] proposed a CBR-
model based on Fuzzy set theory and k-Nearest Neighbor (k-NN) to predict patient

66



1.4. Review and Evaluation of IDS techniques

anomalies while maintaining the security of patients’ health record. The CBR model
was used to produce more personalized suggestions and refine the suggestions using
patients’ treatment success rate to enhance the accuracy of the prediction. The model
was combined with Fuzzy k-NN to retrieve the similar cases of the target patients’
case record more effectively by estimating the similarity score. Successful target case
records are securely stored into the knowledge repository for future reuse. The security
of patients’ health record is done using Paillier Homomorphic Encryption to prevent
from unauthorized user access. During training, the authors selected features such
as the gender, age, Total Bilirubin, Direct Bilirubin (DB), Total proteins, Albumin,
Ratio of Albumin and Globulin. They trained the model using the Indian Liver
Patient dataset from UCI repository. Overall, the proposed model achieved a high
ACC of 96.74% and a medium FPR of 16%.

1.4.2.3 Ontology-based Reasoning

An Ontology [326] is referred as the shared understanding of some domains. It is
often conceived as a set of entities, relations, functions, axioms, and instances. The
World Wide Web Consortium (W3C) created a semantic Ontology Web Language
(OWL) for Ontology definition and sharing. An OWL is a Description Logic-based
Ontology language compatible with XML for transport layer, Resource Description
Framework (RDF) and other extended languages like Semantic Web Rule Language
(SWRL) [150] for expression of rules and logics, and Semantic Query-Enhanced Web
Rule Language (SQWRL) [243] for OWL queries. Recently, an Ontology-based rea-
soning (OBR) has been successfully applied in intrusion detection systems, by endow-
ing them with context-awareness and situational-awareness of vulnerabilities, attacks,
and network topologies of target environments.

Review. G. Xu et al. [334] proposed an OBR-based network security situational
awareness (NSSA) model to provide a real-time and holistic view of an IoT network
security situation. The NSSA reasoning process is divided into four steps: (a) cap-
turing multiple heterogeneous information (alert, vulnerabilities, context information,
network flows) from different embedded IoT sensors, (b) preprocessing heterogeneous
network data into an ontology format (OWL), (c) mapping resulting data to the on-
tology model; CAPEC and CVSS were used for modeling attacks and vulnerabilities
respectively, and (d) reasoning on the ontology model to find out anomalies using
SWRL and SQWRL.

1.4.2.4 Fuzzy-based Reasoning

A Fuzzy-based Reasoning (FBR) [109] is similar to human reasoning; it uses fuzzy
knowledge (knowledge which is vague, uncertain, ambiguous, probabilistic in nature)
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to generate decision. The FBR system consists of four modules: (a) a knowledge base
which contains a set of "IF-THEN" rules, (b) a fuzzification module that transforms
input or crisp values into fuzzy sets, (c) an inference engine that applies fuzzy values to
the system’s rules, and (d) a defuzzification module that outputs the crisp value from
a set of fuzzy variables, for example, using a combinatorial function like the center
of gravity. As the attacker’s behaviour is unpredictable, FBRs may be adapted for
intrusion detection systems and this is why many recent work [83,231,263] integrated
the FBR system in their approach.

Review. In Medical Cyber Physical Systems, multiple medical sensors generate
a number of false alarms that could affect the accuracy of sensors. To address this
problem, W. Li et al. [198] proposed a Medical Fuzzy Alarm Filter based on fuzzy if-
then rules to detect anomaly in medical CPS. The authors also mentioned that their
alarm filter approach could be also used in intrusion detection to decrease unwanted
alarms in a post-preprocessing manner. To realize the fuzzy if-then rules, the authors
modified the fuzzy grid partition algorithm in the fuzzy-weka project. In the training
phase, the authors trained the model using six features: Heart Rate (HR), Pulse,
Respiration Rate (ResR), Blood Pressure (BP), and Oxygen Saturation (SpO2). The
model is then applied on three datasets having respectively 533 false alarms and 683
true alarms, 683 false alarms and 1301 true alarms, 1179 false alarms and 523 true
alarms. As a result, the proposed model was able to better reduce the alarms in
a range from 62% to 83% than existing approaches such as neural network (NN),
support vector machine (SVM), decision tree (DT), and Naive Bayes (NB).

N. Naik et al. [231] also proposed a dynamic fuzzy rule interpolation approach
based on interpolated rules, GA algorithms and the Snort tool to detect attacks in the
network traffic. The GA model was responsible for finding the best clusters (solutions)
without assigning a predetermined number of emerging clusters. At the end of the
clustering process, only those clusters (solutions) containing adequate interpolated
rules are selected for the subsequent rule promotion process. After several tests, the
proposed model considerably reduced false alarms.

1.4.3 Muli-Agent based detection techniques
An agent [277] is an autonomous entity able to perceive its environment through

sensors and to act upon that environment through effectors. Like humans, agents pos-
sess a body of factual knowledge (ML, KBS, heuristics), belief, goal that give them
the ability to adapt to their environment, reason and act (see Fig. 1.12). There are
various kinds of agents including reactive agents that simply convert its sensory inputs
into actions without maintaining its internal state (e.g. memory based on rules) and
deliberative agents that maintain its internal state (e.g. memory based on predictive
or complex models) and can predict the effects of its actions. A Multi-Agent System
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(MAS) [304] is a society or network of agents which can work independently or coop-
eratively to achieve their goal together. The goal being, for example, to find solutions
to problems. In computer security, MASs are widely used in distributed/central-
ized network infrastructures to perform various tasks such as information gathering,
intrusion monitoring, fault monitoring in CPS systems, health supervisory and man-
agement. In intrusion detection systems, well-known multi-agent detection techniques
includes centralized multi-agent-based detection, collaborative multi-agent-based de-
tection, and cooperative multi-agent-based detection.

Percepts Actions

EffectorsSensors

Goals

Analysis

Decision

Environment

Agent

Figure 1.12 – An agent

1.4.3.1 Centralized Multi-Agent-based detection

Centralized Multi-Agent-based detection uses a set of local agents and coordinator
agents for the detection of complex attacks such as DDoS, Botnets and Spam cam-
paigns. Each local agent can perform various tasks such as gathering network data
from end-points and network nodes, local filtering or pre-processing of network data,
local analysis of data sources generated by web servers/softwares/operating systems,
alert triggering and sending of information to a remote coordinator agent. In the
central C&C server, coordinator agents manage the received information, and make
different operations including pre-processing of heterogeneous/homogeneous events,
aggregation/correlation/fusion of received events, deep analytics of received events,
and reporting of intrusions or system’s behaviours.

Review. In Smart Grids, T.R.B. Kushal et al. [185] proposed a strategy to mitigate
the effects of FDI attacks using battery to actively reduce load curtailment and a MAS
approach. The MAS approach consists of agent nodes that check commands from the
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central energy management system and identify malicious commands from malicious
nodes using a heuristic model. The authors evaluated their model through a risk
analysis mode and the results shown that the model is accurate in mitigating FDI
attacks.

R. Kwon et al. [186] proposed a centralized network intrusion forecasting and de-
tection system to predict and detect DDoS attack volume in their university. The
proposed system relies on the Honeypot network system (Honeynet) where honeypot
sensors collect various data (audit logs, network traffic) and send it to C&C servers
for forecasting and detection. In C&C server, both correlation and regression sta-
tistical approaches were used for deep data analytics. The approaches had to take
into account two factors: (a) external factors such as the number of C&C servers and
the size of malicious bot agents, and (b) internal factors such as the security level of
the resources and their values. Through experiments (over 8 months), the proposed
model predicted DDoS attack volume and helped network operators to decide when
installing IPSs or not.

1.4.3.2 Collaborative Multi-Agent-based detection

Collaborative Multi-Agent-based detection is an approach where agents collabo-
rate (mutual trust) i.e. share knowledge and experience together, and then, dynam-
ically update and improve their performance to achieve their goal. The goal can be
the information gathering, pre-processing and analysis of network data, negotiating
(P2P communication) on intrusion results whether results are not accurate, ejecting
malicious nodes in ad-hoc networks and alerting when an attack occurs. This ap-
proach is particularly useful for self-configuring infrastructure-less dynamic wireless
networks such as UAVNETs, MANETs or VANETs.

Review. In WSNs, Wenjuan Li et al. [199] proposed a trust-based collaborative IDS
which allows IDS agents to collect network data on its node and learn experience of
others using their detection sensibilities and a trust model between them. Thus, IDS
agents improve their detection accuracy using learned knowledge, based on machine
learning techniques. In the testing phase, the authors trained the model using a
simulated WSN traffic and compared the performance to some existing supervised
classifiers. They achieved a good performance and enhanced the detection accuracy
of malicious nodes.

Recently, C.J. Fung et al. [107] proposed a trust-based collaborative IDS frame-
work (FACID) that consists of a trust management model and a cooperative model.
The trust management model allows each agent to aggregate feedback (trust mes-
sages) received from its acquaintances (i.e. other IDSs) using a weighted majority
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algorithm, and to evaluate the trustworthiness of others based on its own experience
with them. The cooperative model connects each IDS agent together using an en-
crypted P2P communication, so that they can securely communicate and cooperate
with each other to achieve better intrusion detectability. The simulations showed
that the proposed approach was more accurate, cost efficient and robust than other
heuristic methods.

1.4.3.3 Cooperative Multi-Agent-based detection

Cooperative Multi-Agent-based detection assumes that agents cooperate (mutual
respect) together through their interaction, to achieve a join goal. For example, the
goal can be to detect an attack or proactively defend a given system.

Review. In Smart Grids, M. S. Rahman et al. [262] developed a distributed agent-
based cooperative framework that used a group of agent-based IDSs to analyze net-
work monitoring logs, relay status logs, synchrophasor data, and to detect faults,
cyber attacks in each substation of a power system. In the testing phase, the authors
simulated their model using MATLAB and used Java Agent Development Framework
(JADE) to develop three agents: a root node agent for the monitoring of relay ac-
tivities, a protected relay agent for the capture of protection parameters (e.g. status
of relays) and a base station agent for attack detection. Thus, the authors were able
to measure the effect of the proposed approach that effectively distinguished attacks
from faults.

1.4.4 Hybrid detection techniques
Most recent work used a hybrid detection as they are more accurate to prevent

and detect common threats. But, they are often expensive in terms of performance
due to the integration of various detection mechanisms. In the literature, hybrid de-
tection combined one or more topics like classification, evolutionary computing, deep
learning, multi-agent systems, reinforcement learning, knowledge base engineering,
active learning and regression. Some hybrid methods are presented in this section,
precisely, Multi Modal Deep Learning (DLn), SVM and ELM (Extreme Learning Ma-
chine), Clustering and ELM, Fuzzy C-Means and ANN, Population-based Incremental
Learning (PBIL) and AIS.

1.4.4.1 DLn

T. Kim et al. [174] proposed a multimodal deep Learning approach for Android
Malware Detection. The multimodal DNN consisted of 5 DNNs, each associated to a
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feature vector. Initially, DNNs are not connected to each other. Only the last layers
of the initial networks are connected to the merging layer that is the first layer of the
final DNN. The authors considered 5 kind of Android features to build training feature
vectors such as String feature, method API feature, method opcode feature, shared
library function opcode feature, and permission/component/environmental feature.
These features are extracted from Smali which is an assembler/disassembler for the
dex format and the instruction sequences of the disassembled code of .so files. In the
testing phase, the proposed model was implemented using the Keras library and the
Malgenome dataset. Overall, the proposed model achieved a high ACC of 98%.

1.4.4.2 SVM and ELM

W. Laftah et al. [14] proposed a hybrid approach (SVM-ELM) that combines
SVM and Extreme learning machines (ELM) [151] for the classification of known and
unknown attacks. In the training phase, the K-mean algorithm is used to transform
KDD cup 1999 dataset into small datasets representing the whole dataset. Then,
resulting datasets were used to train the SVM-ELMmodel and to improve the training
time as well as the detection accuracy. Simulations showed that the proposed solution
achieved an overall ACC of 95.75% on the entire improved dataset.

1.4.4.3 Clustering and ELM

S. Roshan et al. [273] developed an adaptive and real-time hybrid IDS that groups
clustering and ELM techniques to accurately classify known and unknown intrusions.
The model consists of three components: (a) a clustering manager that maps training
data into clusters (a class of traffic), (b) a decision maker that evaluates the clustering
decisions and provides correction proposals, and (c) a update manager that updates
the clustering model using new information from a human expert. In the experimen-
tal phase, the authors trained and evaluated their approach using NSL-KDD. The
proposed model gave good results i.e. a high DR of 84% and a low FPR of 3%.

1.4.4.4 Fuzzy C-Means and ANN

In cloud computing, N. Pandeeswari et al. [247] proposed a hybrid IDS that used
Fuzzy C-means (FCM) clustering [35] and ANN to efficiently detect attacks. The
model is implemented in the middleware i.e. the virtual machine monitor (VMM)
layer where it analyzes the network traffic and automatically captures new attack
patterns. The authors trained and tested the model using the KDD cup 1999 dataset.
Afterwards, they compared results with existing methods like Naive classifier and
ANN. As a result, the authors achieved better performance than other techniques i.e.
a high ACC over 95%, and a relative low FPR less than 6%.
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1.4.4.5 DAE and SVM

M. Al-Qatf et al. [12] proposed a hybrid method based on Sparse autoencoders and
SVMs for network intrusion detection. In the pre-training phase, Sparse autoencoders
were used to reconstruct low-dimensional features from raw data. Next, the resulting
features are fed into the SVM algorithm to improve its intrusion detection accuracy.
In the testing phase, the authors evaluated the model using the NSL-KDD dataset
and also analyzed the impact of low-dimensional features and sparsity parameter on
the SVM classifier. As a result, the proposed model achieved better performance than
a single SVM, with a high ACC of 84.96% and DR of 76.57% for testing datasets,
and a high ACC of 99.416% and DR of 99.291% for training datasets.

1.4.4.6 Population-based Incremental Learning and AIS

M. Chen et al. [64] combined AIS approach and Population-based incremental
learning (PBIL) [23] for cyber attack detection. PBIL groups GA and Simple Com-
petitive Learning (SCL) methods [276]. The hybrid approach has three phases: (a)
network traffic capture and pre-processing or network feature extraction, (b) compu-
tation of affinity between antibodies and antigens, creation of new antibodies and (c)
detection of attacks. In the experimental phase, KDD cup 1999 and ACA (Australia
Credit Approval) datasets were used to train and evaluate the proposed model. As a
result, the proposed solution outperformed existing evolutionary approaches with a
high ACC of 97.03%.

1.5 Review and Evaluation of Event Stream Pro-
cessing methods

Many things are increasingly connected to the Internet and generate tremendous
heterogeneous data streams in real time. Precisely, more than 2.5 quintillion bytes
of data are generated every day and this number is growing exponentially 8. Thus,
some intrusion detection techniques previously described may not be adapted. To
deal with big event streams, Event Stream Processing (ESP) methods are advanced
approaches that take advantage of large datasets or event streams to provide real-time
and proactive insights for intrusion detection. The nature of events depends of the
environment where they were produced, see Table 1.5.

8. https://www.ibm.com/analytics/hadoop/big-data-analytics
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Table 1.5 – Examples of events in different application domains
Environments Events

Industrial and Control 
Systems (ICSs)

Power systems 
(Smart Grids)

electric current (Voltage, 
Intensity, Power, Energy), 
temperature

Water Treatment 
Plant

chemical (hydrochloric 
acid, sodium 
hypochlorite), 
temperature, electric 
current

Nuclear Power 
Plant

temperature, electric 
current 

Intelligent
Transportation
systems (ITSs)

Smart vehicles geo-coordinates, fuel 
level

Unmanned Aerial
Vehicles (UAVs)

battery level, geo-
coordinates, urban 
images or videos

Smart trains geo-coordinates, fuel 
level

Health care systems Wearable
peacemakers

Heart beats

Blood Pressure 
Monitors

Blood pressures 
(diabetes, hepatitis, 
alcohol, stress)

Implantable 
cardioverter-
Defibrillators

Heart beats or Heart 
Rhythms

Building systems Smart homes Temperature, pressure, 
human activities,
electricity current, light 
brightness, Door 
open/close

Smart cities Weather, seismic, urban 
images or videos

Banking systems Automated Teller 
Machines (ATMs)

Money transactions 
(withdrawal, deposit, 
transfer, inquiry)

Electronic Funds 
Transfer (EFT) 
systems

Events can be natural (physical) and non-natural. Natural events represent sen-
sible nature-based raw data generated by cyber-physical systems like Industrial and
Control Systems (e.g. temperature, electrical energy, chemical compounds and phys-
ical location), animal and human bodies (e.g. blood pressure, heart beats), and the
natural ecosystem (e.g. weather, seismic or human activities). Non-natural events
are artificial or man-made data such as numerical/digital signals (e.g. current inten-
sity/voltage time series), heart beat or blood pressure time series, network packet
flows, and log file events generated by web servers, operating systems, applications
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or services.

Data
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Observe

Orient

Decide

Act

Observe
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Act

Low-level events
Raw or unbounded data 
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Actionable insights

Context-awareness /

Situational-awareness

Diverse

Deep analytics

, High speed 

& High volume

Aggregation /

Correlation / Fusion

/ Event analytics

Event Streams

Event Stream Ingestion

Staging area
Extract-Transform-Load

Event Lake
(HDFS, Event DW)

Event Queuing systems

Event Stream Analytics & Reports

Figure 1.13 – Event Stream Processing Chain

Events can be classified according to different levels of abstraction (see Fig. 1.13).
Generally, two powerful models are used together to better describe the hierarchical
levels: Data-Information-Knowledge-Wisdom (DIKW) [274] pyramid and Observe-
Orient-Decide-Action (OODA) loop [50].

a) Data Level. A huge number of diverse security events are captured in real-time
from a plethora of end-points and embedded devices by hardware and software event
collectors such as honeypots, IDSs, IPSs, anti-virus, firewalls, and custom event col-
lectors made by cybersecurity companies. Event collectors observe the target environ-
ment and push-out remotely raw or unbounded events for in-memory preprocessing,
analysis and storage. At this level, the raw events, also called low-level events, have
not yet been processed for use.

b) Information Level. Collected security event streams are transformed into ac-
tionable events (i.e. high-level events) to get orientations for the decision making.
The process cycle of security events is managed by a Security Information and Event
Management (SIEM) infrastructure that provides real-time analysis of security event
streams and supports various cloud technologies (e.g. OpenStack). During the pro-
cess, security event streams are fed into the staging area or landing zone responsible
of ETL (Extract-Transform-Load) operations and temporal storage in data marts and
warehouses.

Upon starting, event streams are ingested in Event Queuing Systems (EQSs).
EQSs are high-speed data ingestors (e.g. Apache Kafka) that manage and store
efficiently events in a queue. They enable real-time processing of event streams by
offering a straightforward mechanism for managing over-information in the queue
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and avoiding lock or concurrency problems. EQSs have been proposed to overcome
some limitations of the Event Batch Systems (EBSs) which compute results that are
derived from event stream batches or groups (batch processing). This approach is not
often suitable for stream analysis because it takes long waiting time (high latency)
and makes analysis more complex as the size of batches can be very large.

Ingested event stream queues are fine-tuned using Complex Event Processing
(CEP). A CEP allows complex computations on event frames using Map Reduce [79],
Machine Learning and Data Fusion [130]. CEPs are often assimilated to ESPs while
they are just a subset of ESPs. CEPs and ESPs differ in terms of processing en-
gines [209] due to many reasons. First of all, CEP engines support a SQL-like query
language while there is often need to write scripts or codes in ESPs. Secondly, ESP
engines are distributed and parallel natively opposite to CEP engines which are more
centralized. Most known tools such as Microsoft Azure Stream Analytics, Apache
Spark and Kafka support real-time CEP for event analytics.

After CEP computations, high-level event streams are then stored in big long-
term databases (event lake) such as Hadoop Distributed File System (HDFS) and
Relational Database Management System (RDBMS). Offline SQL-based stream pro-
cessors can be used for querying live security event streams (e.g. Apache Hive, Apache
Pig, Apache HBase).

c) Knowledge Level. High-level event streams are fetched from the event lake, and
refined using online or offline deep analytics to gain new security event insights for
more accurate decisions. Deep analytics integrate advanced ESP approaches such
as deep learning, text analytics, predictive analytics, data mining, statistics and
knowledge-based reasoning. In the next subsections, we will describe those approaches
and related recent work.

Unlike deep analytics, data streams can be processed at the edges of the network.
This concept was recently introduced by Cisco and it is called Fog analytics. The fog
is a cloud close to the ground [45]. Fog analytics [45, 182] leverage the extension of
cloud capabilities to the edge of the network, precisely at (or closer to) the source of
the event to perform real-time processing locally, and just send security event back
to the cloud, rather than moving massive amounts of raw events.

Generally, deep analytics are more centralized while fog analytics are decentral-
ized to the edge of the network. To be more accurate, deep analytics often take into
account contextual information to better understand the whole cybersecurity ecosys-
tem (context awareness) and the current situation of cyber threats occurring on the
monitored system (situational awareness). Contextual information includes platforms
(CPE), vulnerabilities (CVE), software weaknesses (CWE), attack classes (CAPEC),
network topology and all other system-related information. It is often organized into
an intuitive knowledge-based languages like Ontologies. The combination of deep
analytics and context/situational awarenesses help SIEM system to reason and take
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accurate decisions.
d) Wisdom Level. The SIEM system can reason based upon its knowledge-base

and act with/without human intervention. In this level, cyber threat information
is structured in attack languages such as STIX and routed between organizations
using the MITRE’s Trusted Automated eXchange of Indicator Information (TAXII)
mechanism. It is a standard that allows sharing cyber threat information using various
models such as Producer/Consumer, Peer-to-Peer (P2P) and Source/Subscriber.

In recent papers, various ESP techniques have been applied for preprocessing,
processing and deep processing of event security streams. In Table 1.6, we have
just reviewed some of them in the following topics: aggregation, fusion, correlation,
knowledge-based reasoning and deep analytics. We also use the notation R which
denotes the reduction rate of false alarms.

Table 1.6 – Evaluation of recent event processing techniques
Papers Domain Architect. LCT Source Technique Parent Tech. Datasets Results

Q. Chen et al. [65] ITS VANET 7 event stream AnRAD Deep Analytics Testbed Good
G. Xu et al. [334] Big Data 7 7 event stream OBR Knowledge-based Simulation Good
W. Wang et al. [325] Big Data 7 7 Traffic Tensor DL Data Fusion STL+CUAVEA:84.96%
J. Abawajy et al. [3] Big Data 7 7 Traffic – Data Fusion – –
S. Noel et al. [242] Big Data 7 7 security events CyGraph Deep Analytics – –
L. Yang et al. [337] Big Data 7 7 event stream HBST+DDF Aggregation Testbed D:90%
J. M. Vidal et al. [320] Big Data 7 7 alarm events Correlation Testbed Good
R. Shittu et al. [297] Big Data 7 7 alarm events – Correlation Testbed R:97%
S.N. Narayanan et al. [233] ITS VANET 7 event stream OBR Knowledge-based Simulation Good
A. Tuor et al. [317] Big Data 7 7 event stream DNN Deep Analytics CERT D:95.53%

V. Shah et al. [292] Big Data 7 7 alarm events Dempster-Shafer Data Fusion KDDcup99 A:73.32%;
F:0.73%

S. Samarah et al. [284] SmartHomes 7 7 Health data NB+aggreg. Aggregation Kyoto A:98%
Z. Tian et al. [311] SmartCampuses 7 7 Traffic – – Correlation –

1.5.1 Aggregation-based
In Large-scale infrastructures, a big amount of events is generated at any local

instances of sensors. More often, gathering all events and trying to look at each fea-
ture is humanly unfeasible. In addition, centralizing all gathered events for further
processing in C&C central is relatively time-consuming and expensive [19]. Thus, the
aggregation or summarization process appears to be one of solutions that compactly
reduces redundant events. However, aggregation remains a complex process (can be
NP-hard) that requires hardware optimization and additional hardwares, processing
optimization and task scheduling [323]. In recent work, aggregation has been differ-
ently applied in distributed mode i.e. at the edges of the network, locally or closer to
the source of the event and in centralized mode i.e. at the C&C network node.

Theory. An aggregation takes multiple inputs and outputs a summary from these
inputs using an aggregation function. Let (x1, ..., xm) ∈ Im be a finite data frame
in the data streams and y ∈ I an output data. An aggregation function [82, 108] is
defined by F : Im → I, such that y = F (x1, ..., xm) and satisfies several properties
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such as,

(1) F (x) = x

(2) F (x, ..., x) = x

(3) F (x1, ..., e, ..., xm) = F (x1, ..., xm)
(4) F (xσ(1), ..., xσ(m)) = F (x1, ..., xm)
(5) F (x1, ..., xm) ≥ F (x′1, ..., x′m) if xi ≥ x′i
(6) F (x1, ..., xm) = F (F (x1, .., xj), xj+1, ..., xm)

= F (x1, ..., xj, F (xj+1, ..., xm))
(7) F (αx1 + β, .., αxm + β) = αF (x1, .., xm) + β

where e is the neutral element, α and β are two reals. Simple aggregation func-
tions are MIN, MAX, SUM, PRODUCT, MEDIAN, AMEAN (arithmetic mean) and
WMEAN (weighted mean). Input data streams are often normalized and scaled be-
fore processing using functions such as standardization (ST), robust standardization
(RST), and normalization (NORM).

ST(x) = (x− AMEAN(x))
SD(x)

RST(x) = (x−MEDIAN(x))
MAD(x)

NORM(x) = (x−MIN(x))
MAX(x)−MIN(x)

where SD(x) is the standard deviation and MAD(x) is the median absolute deviation.
They are of the form,

SD(x) =
√√√√ 1
n− 1

n∑
i=1

(xi − AMEAN(x))2

MAD(x) = 1.4828.MEDIAN(|x−MEDIAN(x)|)

More complex aggregations functions include clustering and neural networks. Neu-
ral network aggregation functions are of family of hierarchical aggregation functions.
A hierarchy of fusion functions is defined by the tuple H = 〈l,m, F 〉, where l ∈ N is
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the number of layers, m = (m1, ...,ml) ∈ Nl, where mi = n is the number of aggre-
gation functions in layer i ∈ {1, ..., l}, m1 = n the number of inputs, ml = 1 is the
number of output, and F = (F (i)

j )i∈I,j∈J is a sequence of aggregation functions, such
that F (i)

j : Imi−1 → I, I = {1, ..., l} and J = {1, ...,mi}. In the case of feedforward
neural network aggregation, given an input example (x1, ..., xmi−1), F (i)

j is given by

F
(i)
j (x1, ..., xmi−1) = f

(mi−1∑
k=1

w
(i)
kj xk + w

(i)
0j )
)

where f is an activation function, w(i)
kj are weights of the i-th layer and w(i)

0j are biases
of the i-th layer.

Review. In Smart Homes, S. Samarah et al. [284] combined the spatiotemporal
mining approach, k-anonymity, micro-aggregation to efficiently recognizes human ac-
tivities and preserve health data from inference-based privacy attacks. The proposed
model collected health data from smart homes and weighted the readings from net-
work sensors using a probabilistic feature extraction technique [284]. The data set
consists of a set of events in which each event is associated with a date, time, sensor
id, and sensor status (Open-Close, On-Off). Profiles was extracted from dataset and
converted into a set of feature vectors. The collection of vectors is fed into a Naive
Bayes classifier for activity profiling. A k-anonymity model uses a micro-aggregation
to divide data into many equivalent classes such that the values of an identification
attribute of any record in the dataset are similar to at least k-1 records. The authors
evaluated the model using Kyoto, Milan and Tulum datasets. Overall, the proposed
model achieved a high ACC of 98% for Kyoto, 91% for Milan, and 92% for Tulum.

In IoT, L. Yang et al. [337] proposed a hybrid approach based on a divided dif-
ference filtering (DDF) and a hierarchical Bayesian Spatial-Temporal (HBST) model
[330] for false data injection (FDI) attack detection, when the aggregation process is
being compromised by malicious nodes that inject false aggregated data. The authors
modeled the attack scenario using an adversarial game model between FDI attacks
and defenders (based on their schemes). Next, they evaluated their approach and
achieved a high DR (greater than 90%) and a low FPR.

1.5.2 Fusion-based
Data Fusion [131] is analogous to the ongoing cognitive process used by humans

to integrate data continually from their senses to make inferences about the exter-
nal world. It fuses heterogeneous security events from multiple and various sensors
into a synthetic, accurate, and consistent representation. However, the fusion process
depends of computational resources and time delays when transferring information
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between the different sources [57]. Security event streams can be fused together using
various data fusion approaches such as data mining-based data fusion (i.e. K-Nearest
Neighbor (KNN) [34], probabilistic data association (PDA) [57]), stage-based data fu-
sion [351], feature-level-based data fusion [351] like DNN and feature concatenation,
semantic meaning-based data fusion [351] like similarity and co-training, Joint Direc-
tors of Laboratories (JDL) and Demptser-Shafer Theory-based Decision Fusion [57].

Theory. Data fusion is a little bit similar to data aggregation. Data aggregation
is essentially used to provide information in a synthetic form (summary of data)
while data fusion integrates multiple heterogeneous data, leverages some aggregation
techniques and extracts actionable insights from this data [108]. In the literature,
the most widely-used data fusion model is the JDL data fusion proposed by the Joint
Directors of Laboratories (JDL) Group and the American Department of Defense
(DoD).

Level 0: 
Source Pre
Processing

Data Fusion Engine

Level 1: Object 
Assessment

Level 2: 
Situation 

Assessment

Level 4: 
Process

Assessment

Level 3: 
Impact 

Assessment

Process
Management

Information 
sources 

(sensors)

Target 
output
(user 

interface)

Figure 1.14 – JDL Data Fusion Model

The JDL data fusion model has five processing levels [130]: source preprocessing
that preprocesses low-level data of sensors; object refinement that fine-tunes data
into valuable information using data fusion techniques like association, correlation,
clustering and state estimation; situation assessment that identifies the likely sit-
uations from the observed events and builds relationships between them; impact
assessment that evaluates the current situation to identify possible risks and vulner-
abilities; and process refinement that improves the previous steps to achieve efficient
resource management (see Fig. 1.14). In the JDL levels, Distributed Joint Probabilis-
tic Data Association (JPDA-D) [60] and Dempster-Shafer Inference-based Decision
Fusion (DSI) [213] are respectively used to track multiple targets in cluttered envi-
ronments and to make decisions, based on the knowledge of the perceived situation
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from sensors in the data fusion domain. JPDA-D estimates state of the target, given
two sensors as follows,

E[x|Z1, Z2] =
m1∑
j=0

m2∑
k=0

E[x|χ1
j , χ

2
k, Z

1, Z2]P (χ1
j , χ

2
k|Z1, Z2)

where Z1, Z2 are the set of accumulative data, m1 and m2 are the last set of mea-
surements of sensor 1 and 2, χ is the association hypothesis, χ1 and χ2 are the
joint hypotheses involving all measurements and objectives, E[x|χ1

j , χ
2
l , Z

1, Z2] the
expected estimated state from previous associations. The data association probabil-
ity P (χ1

j , χ
2
k|Z1, Z2) is defined by

P (χ1
j , χ

2
k|Z1, Z2) =

∑
χ1

∑
χ2

P (χ1, χ2|Z1, Z2)ω̂1
j (χ1)ω̂2

k(χ2)

with
P (χ1, χ2|Z1, Z2) = 1

c
P (χ1|Z1)P (χ2|Z2)γ(χ1, χ2)

where ω̂1
j (χ1), ω̂2

j (χ2) are the binary indicators of the measurement-target associ-
ation. γ(χ1, χ2) reflects the localization influence of the current measurements in the
joint hypotheses χ1, χ2 and it is based on the correlation of the individual hypothesis.

In DSI, the Dempster-Shafer relies on the mass function, belief and plausible
functions, and connection with rough sets. Let Ω be a frame discernment or possible
states of the world, a mass function m : 2Ω → [0, 1] is defined such that m(∅) = 0
and ∑

H⊆Ωm(H) = 1, where H is an hypothesis. A mass is induced by a source
〈S, 2S , P,Γ〉, where S is a finite set of interpretations of the evidence, P is a probability
measure on (S, 2S), and Γ is a multi-valued mapping from S to 2S . For any hypothesis
H ⊆ Ω, the incomplete beliefs in H is defined by a belief function Bel : 2Ω → [0, 1],
such that

Bel(H) = P (s ∈ S|Γ(s) ⊆ H) =
∑
X⊆H

m(X)

The plausibility of each hypothesis H is given by the function Plau : 2Ω → [0, 1], such
that

Plau(H) = 1− Bel(¬H) =
∑

X∩H=∅
m(X)

The confidence interval [Bel(H),Plau(H)] defines the true belief in hypothesis H.

Review. In IoT Big Data, W. Wang et al. [325] proposed a tensor deep learning
model (TDL) that composes multiple deep learning techniques using tensors to realm
processing big heterogeneous data. Tensors are used to model the complexity of
multisource heterogeneous data and extend the vector space data to the tensor space.
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The conventional back-propagation algorithm was extended into a high-order back-
propagation algorithm to transform data from the linear space into multiple linear
space. In the testing phase, the proposed model was trained and tested using STL-10
and CUAVE datasets. As a result, the proposed model achieved a higher recognition
accuracy than the stacked auto encoder and the multimodal deep learning model.

In Big Data, J. Abawajy et al. [3] proposed an iterative classifier fusion system
for Android Malware detection. The system iteratively applies classifiers in fusion
with new iterative feature selection (IFS) procedure. The model achieved better
performance when combining the ICFS procedure using LibSVM with polynomial
kernel with Multilayer Perceptron and NBtree classifier and applying IFS feature
selection based on Wrapper Subset Evaluator with Particle Swarm Optimization.

V. Shah et al. [292] proposed a fusion-based distributed intrusion detection system
that used an improved Dempster Shafer rule based on Alert-to-mass conversion. The
Alert-to-mass conversion transforms real-time heterogeneous alert events into mass or
weight values. The authors modified the Dempster Shafer Theory using a combination
function of these mass values. In the testing phase, they evaluated their approach
using the KDD cup 1999 dataset and achieved a good performance i.e. a low FPR of
0.73% and a high ACC of 73.32%.

1.5.3 Correlation-based
Event correlation relates different events across observation time and space to

identify patterns, their relationships and causalities. The observation time represents
the window or interval time where events occurred. The observation space takes
into account the spacial variation of other features of events in the time. Event
correlation is integrated in the SIEM module where it performs various operations
[112, 332]: (a) compression replaces multiple identical events by a single event; (b)
time-based correlation correlates events in the time as they occur (e.g. event X follows
event Y within 100 milliseconds); (c) logic operations connects events with Boolean
operator (or, and, not); (d) counting reports a specified number of similar events as
one; and (e) clustering identifies similar events and generates new events from the
patterns of clusters. In recent papers, various event correlation techniques were used
or combined to detect zero-day attacks including rule-based correlation, case-based
reasoning correlation, neural network-based correlation and fuzzy-based correlation.

Review. In Smart Campuses, Z. Tian et al. [311] proposed a real-time correlation
of host-level events using evidence graphs and a cyber range service (CRS) method
to detect attack evasions. The evidence graphs allow an effective evidence presen-
tation and automated reasoning. A C2RS supports an out-of-band data capturing
mechanism for greater attack resistance utilizing virtual machine introspection (VMI)
technology. The VMI technology process allows monitoring virtual machines at the
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hypervisor layer i.e. exposing/exploiting VM runtime state. A C2RS uses cloud con-
trollers such as OpenStack and VMWare vSphere as network management configura-
tion tools. The authors extracted from Virtual Machine, features such as process list,
process maps, open ports, open files, library list, and netstats. The evidence feature
vectors are stored in the backend database. Then, the correlation engine accessed
features and performed evidence analysis and graph reconstruction of the invasion
attacks. Through experiments, the proposed approach achieved low-latency detec-
tion and was able to reconstruction host attack scenarios (e.g. useradd/groupadd,
executes vbs file, write webshells, delete itself).

Recently, J. M. Vidal et al. [320] proposed a correlation framework that analyzes,
classifies and prioritizes alerts generated by multiple sensors based on payload anal-
ysis. The processing engine has two layers. The first layer makes a fast inspection
of potential threats in the gathered alerts. The second layer performs deep analysis
of alert flows by reconstructing attack scenarios and giving an overview of potential
threats. The authors evaluated their approach using a real-time traffic from a test
bed and reduce considerably the FPR.

R. Shittu et al. [297] developed a correlation-based hybrid model, called A Com-
prehensive System for Analyzing Intrusion Alerts (ACSAnIA), that integrates correla-
tion knowledge (contextual information) for alert clustering and an anomaly detection
based on prioritisation metrics. The authors tested their approach using 2012 cyber
range experiment carried out by the British Telecom Security Pratice Team. As a
result, the proposed model successfully reduced false-positives by 97%.

1.5.4 Knowledge-based
A Knowledge-based Reasoning (KBR) is an approach that uses the background

knowledge about events and their relations through ontologies for inferring relations
between events i.e. reasoning on their type hierarchy or temporal/spacial relation-
ships [212]. The knowledge-base contains event meta-data and contextual information
related to events or other resources of the system. This knowledge-base helps event
analysis to be aware of the context and current situation of the system in order to
take accurate decisions. The event analysis engine accesses to the knowledge-base by
performing online or offline event query rules (e.g. SQWRL, SPARQL).

Review. G. Xu et al. [334] proposed a network security situation awareness
(NSSA) model that integrates a semantic ontology about network security entities
(netflow, attack, vulnerability, context, alert, sensor), and user-defined rules based
on OWL/SWRL. The NSSA model allows providing a holistic view and situational
awareness of the security state of the entire network. It has three main levels: (a)
security situation perception level collects information from tremendous multi-source
heterogeneous data and translates it into comprehensive formats; (b) situation evalu-
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ation level identifies the security events and analyzes their relationships among these
events to obtain the security situation of the monitored network; and (c) situation
prediction predicts the change trend of the network situation in the future. To show
the effectiveness of their approach, the authors built and tested some scenarios us-
ing Protege for DDoS detection, worm detection and vulnerability assessment. As a
result, the model showed a good performance in all test cases.

In VANETs, S.N. Narayanan et al. [233] developed a semantic-based context min-
ing system for context-awareness of the attack surface (internal or external hardwares,
on-Vehicle devices) and vulnerabilities occurring in vehicular IoT. The system con-
sists of four layers: (a) a Local Context Detection (LCD) layer collects streaming
data from a vehicle’s controller area network (CAN) bus, extracts contextual infor-
mation (e.g. high speed, normal speed) and associates it to their respective ontology
entities; (b) a Cross Component Context Inferencing Engine (C3IE) layer aggregates
contextual information from LCD to infer overall state of the system using SWRL/S-
PARQL reasoners; and (c) a Rule Mining Engine extracts knowledge from historical
data to support the inferencing process. The authors evaluated their approach by
representing different abnormal scenarios in the Protege tool and testing whether the
proposed model can detect these scenarios.

1.5.5 Deep analytics
Deep Analytics is a multidimensional approach that uses mathematics, business

models and intelligent methods (e.g. machine learning, data mining) to find mean-
ingful patterns in depth, or predict behaviours of a system. Recently, different deep
analytics were applied in the intrusion detection such as descriptive analytics that
create a summary of historical events for data preparation, diagnostic analytics that
look events in depth to figure out their behaviours and causalities, predictive analyt-
ics that give trends about the system behaviour using predictive algorithms and past
events (e.g. regression, SVM), and prescriptive analytics that make real-time decision
using predictive analytics and knowledge-based reasoning for cyber threat detection.

Review. In VANETs, Q. Chen et al. [65] proposed a neuromorphic anomaly recog-
nition and detection (AnRAD) framework that learns an efficient self-structured con-
fabulation network (corrupted neural memory) using streaming data, and processes
diversified incoming concurrent data streams in parallel using a detection algorithm
based on the graphical processing unit (GPU) and the Xeon Phi coprocessor. The
authors tested the framework using a vehicular network testbed and the framework
was able to monitor more than 16 000 vehicles (event streams) and their interactions
in less than 0.2ms for one testing subject.

During the MITRE’s Cyber Situational Awareness Solution project, S. Noel et
al. [242] proposed a unified graph-based analytic model called CyGraph which has
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four main tasks: (a) capturing attack, vulnerability and real-time security events;
(b) building a predictive model of possible attack paths and critical vulnerabilities;
(c) correlating security events or intrusion alerts to known attack and vulnerability
paths, and then (d) providing a situational awareness of vulnerabilities and attacks
occurring on the monitored network. CyGraph supports a query language (CyQL)
for expressing graph patterns by querying cyber security assets with an interactive
visualization of query results.

A. Tuor et al. [317] proposed an online unsupervised DNN approach to filter
system log data streams and detect network activity from system logs in real-time. As
the user activity is non-predictable over seconds or minutes, the model continuously
trains to adapt to changing event patterns. During the training phase, raw event log
streams are fed into an online feature extractor which aggregates them into desired
feature vectors to feed the DNN model. In the testing phase, the authors evaluated
their approach using the CERT Insider Threat Dataset v6.2 and Tensorflow tool for
implementation. As a result, the model achieved a better performance than existing
approaches (Principal Component Analysis, SVM, Forest) with an average DR of
95.53%.

1.6 Challenges, Discussions and Conclusion
In this section, we present IDS challenges and potential solutions for each domain.

We also discuss about the surveyed papers and provide some strategies to improve
IDS in terms of accuracy, performance and robustness.

1.6.1 IDS challenges and potential solutions
Improving IDSs against evolving attacks must take into account the target do-

main behaviour, its dynamic and constraints. Domain-dependent IDS approaches are
increasingly adopted as they are designed to support domain constraints and defend
against domain-specific attacks. Such approaches are often more accurate than those
independent from the domain (generic IDS). IDS challenges can also be generic and
domain-specific. The generic challenges are common to all domain specific IDSs. In
the literature, We have identified the 10 generic challenges below.

1) IDSs are not yet scaled to meet the requirements posed by high-speed networks
(terabit, petabit) [124, 159], i.e. high-availability, low-latency, high-resiliency, high-
reliability, and high-scalability.

2) Factors, like noise in the ingoing traffic, significantly affect traffic profiles, and
the large amount of network traffic makes IDSs unable to build a normal traffic profile
of the network for intrusion detection [252].
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3) IDSs in default setting generate so many false positives [169] and fine-tuning
the IDS can be an arduous undertaking that requires both time and expertise.

4) IDSs have not yet reached the level where they effectively give historical analysis
of the intrusions detected over a period of time [286]. Thus, it is done manually by
cyber-analysts.

5) IDSs sometimes drop traffic when they become overloaded. As traffic levels
rise, the associated processing load required to keep up becomes prohibitive and the
IDS either falls behind or fails [55].

6) Some IDSs are ressource-intensives, i.e. they consume a lot of network band-
width and requires high performance hardwares.

7) Many IDSs don’t have the ability to decrypt the encrypted packets that they
catch. When an IDS catches an encrypted packet, it typically discards it and attacks
could be missed [22].

8) The evaluation of IDSs against the most recent attacks are not yet possible since
DARPA, KDD cup 99, and NSL-KDD are deprecated. Whenever ethical hacking is
done for penetration testing, it requires a lot of expertise, time and a deep knowledge
of the target network.

9) Despite many unified event formats proposed, each IDS vendor still provide
different event formats. This causes interoperability problems during processing.

10) As the frequency of signature updates varies from vendor to vendor, this
may cause a problem for knowledge-based IDSs that require continuous updates for
zero-day attack detection.

On the other hand, we have identified numerous IDS challenges for each of the sur-
veyed domain (see Table 1.7). Domain-specific IDSs are subjected to many domain-
constraints such as low-energy/low-memory consumption, minimal failures, dynamic
topology, shorter downtimes, and human safety. The common baseline of the domain-
specific IDSs is to ensure integrity, availability, confidentiality and authenticity of the
information. To satisfy these requirements, IDSs must support cryptographic and
trust management mechanisms [298] for data gathering, data processing and data
sharing [178]. For example, IDSs could support the Datagram Transport Layer Se-
curity (DTLS) protocol designed for IPv6 over Low power Wireless Personal Area
Networks (6LoWPANs) [246] and the key agreement protocol based on the ellip-
tic curve cryptosystem to ensure integrity and mutual authentication among sensor
nodes, gateway nodes and users [336].
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Table 1.7 – Domain-specific Challenges
Parent Domains Domains Challenges
Industrial systemsSmart Grids (1) IDSs do not yet support situational awareness for finer-

grained command and control [335] of both the network traffic,
energy distribution, power consumption monitoring, and phys-
ical components (e.g. substations, meters, sensors, computers);
(2) IDSs must be able to prevent from false data injection, in-
formation leakage to external source, a fault or breakdown of a
unit as generation, transmission, distribution or substation op-
erational failure [178]; (3) IDSs must support distributed threat
intelligence to continuously monitor smart metering infrastruc-
tures, micro-grids, and virtual power plants [49,81,197];

Health systems Smart Health (1) This field being extremely sensitive, IDSs must preserve se-
curity and privacy of patient’s data from data modification and
unavailability that may result in the patient’s death; [21,181] (2)
As recent health systems support various networking standards
(e.g. Wifi, Bluetooth, Zigbee), IDSs should support end-to-
end security of the electronic health record (EHR) and context-
awareness for EHR monitoring; and (3) IDSs must provide a
traceability of all access to healthcare data [11, 302]

Building systems Smart Homes (1) Smart homes support a plethoria of vulnerable networking
technologies (Bluetooth, Zigbee, Wifi, Insteon, ZWave, Ether-
net, RS485) and then, IDSs must support trust verification/-
validation, end-to-end security, key management mechanisms
(e.g. PKI), and continuous authentication schemes [178, 296];
(2) IDSs must adapt to low-power/low-memory constraints and
must provide an end-point security of the connected devices;
(3) Smart homes suffer from the heterogeneity of protocols due
to different manufacturers/networking standards/firmware up-
dates, IDSs should be continuously updated to handle multiple
heterogeneous streams

Transportation Smart Vehicles(1) IDSs must adapt to the network size, the geography rele-
vancy, the high mobility and dynamic topology, the short con-
nection duration and the frequent disconnections; (2) IDSs must
support trust and information verification mechanisms to secure
connectivity between On-Board Units (vehicles) and Road-Side-
Units (RSUs); (3) IDSs should provide key distribution mecha-
nisms and efficient packet forwarding algorithms [167,210,217]

In Smart Health, IDSs could integrate the signature-based access control mecha-
nism proposed in [4] to prevent unauthorized users from accessing patient data in the
cloud. The mechanism supports a SaaS (Software-As-A-Service) application where
only authorized professionals can access patient data. In Smart Vehicles, availabil-
ity is one of the key factor due to high vehicular mobility. During V2I and V2V
communication, messages are forwarded to a destination using multiple intermediate
vehicles as relay nodes and forwarding algorithms such as Greedy Perimeter Stateless
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Routing (GPSR) [168] and new path recovery mechanism [207]. More challenges and
solutions have been addressed in Smart Grids [49,81,173,178,197,215,245,306,335],
Smart Health [11,21,181,302], Smart Homes [164,178,218,296,349] and Smart Vehi-
cles [93, 153,167,210,217,259,287].

1.6.2 Evaluation of the surveyed work
In Table 1.4, anomaly-based detection techniques are most frequent in recent work

and achieved high intrusion detection accuracies in the intervall [84.12%, 99.81%].
Moreover, hybrid detection techniques achieved a good performance with a high in-
trusion detection accuracy in the interval [84.84%, 99.91%]. Consequently, it is nec-
essary to combine multiple detection approaches to increase the intrusion detection
performance while having a look to the cost in time and space. Other techniques
like knowledge-based and multi-agent based detection were coupled with/without
anomaly detection to enhance accuracy.

Studied papers used NSL-KDD and KDD cup 1999 to evaluate their approaches.
Precisely, 12.7% used NSL-KDD and 15.9% used KDD cup 1999. Other datasets
were used by 22.15% of studied papers. Some papers evaluated their approach using
a real-world environment (e.g. Industry tests), a self-built test bed and simulated
environment (e.g. traffic generator, MATLAB): 14.3% of studied papers tested their
solutions using a self-built test bed, 6.35% deployed the models in industry with
real-world data, and 28.6% performed various simulations to show the effectiveness
of their approaches. These statistics show that many researchers still used datasets
and simulations rather than real deployment tests. As mentioned in Section 1.6.1,
these datasets are deprecated as they do not take into account new attacks [354].
Researchers use deprecated datasets due to many reasons such as the building of a
test environment is often complex and time consuming, professional skills or back-
ground experience is often required to set up the test environment, and cybersecurity
companies do not allow researchers to perform internal real tests due to data privacy
and laws.

Several papers on ESP approaches have been surveyed. An effective validation of
these approaches requires a lot of resources. Hardware requirements and background
experience in the ESP field limited considerably academic researches. However, the
ESP necessity in big data security [354] is undeniable. In the studied papers, some
authors combined different ESP approaches to enhance the performance of their so-
lutions and efficiently reduce security event streams.
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Chapter 2

Extension des ASTDs

Résumé

Les diagrammes d’états-transitions algébriques (ASTD) sont des extensions
d’automates et des diagrammes d’états communs qui peuvent être combinés
avec des opérateurs d’algèbre de processus comme la séquence, le choix,
la garde et la synchronisation quantifiée. Ils étaient auparavant introduits
pour la représentation graphique, la spécification et la preuve des systèmes
d’information. Dans le but d’utiliser les ASTD pour spécifier la détection
des cyberattaques, nous avons identifié un certain nombre de fonctionnal-
ités manquantes dans les ASTD. Cet article étend la notation ASTD avec
des variables d’état (attributs), des actions sur les transitions et un nou-
vel opérateur appelé flux qui correspond aux états ET dans les diagrammes
d’états et est un compromis entre l’entrelacement et la synchronisation dans
les algèbres de processus. Nous définissons une sémantique opérationnelle
structurée formelle de ces extensions et illustrons son implémentation dans
un interpréteur basé sur OCaml appelé iASTD et le vérificateur de modèle
ProB. Les ASTD étendus sont illustrés par une étude de cas sur la détection
des attaques cybernétiques.

Commentaires

La contribution ici réside dans l’extension du langage ASTD et la définition
formelle de sa sémantique. Cette notation permet de prendre en compte la
déclaration d’attributs (i.e., variables d’état), la déclaration des actions con-
tenant du code executable pour modifier les attributs au cours de l’exécution
d’une transition et dans l’état de l’automate (entrée, séjour, sortie), et un
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nouvel opérateur ASTD appelé Flow permettant d’exécuter des évènements
partagés sur plusieurs modèles ASTDs lorsque cela est possible. Les actions
peuvent être exécutées également au niveau d’un ASTD lui-même, afin de
facilement factoriser le code à exécuter pour chaque transition de l’ASTD.
La notation proposée a été implémentée dans deux interpréteurs, un en Pro-
log avec ProB, et l’autre en Ocaml. ProB s’est avéré un ajout utile, car il
donne accès à plusieurs fonctionnalités de contrôle de modèle déjà implé-
mentées, telles que le contrôle du raffinement, le contrôle de détermination
et la vérification de formules temporelles [236].

Les contributions décrites dans ce chapitre ont fait l’objet d’un article
publié dans le cadre de la 23ième édition de la conférence internationale
ICECCS (International Conference on Engineering of Complex Computer
Systems), de rang A, qui a eu lieu à Melbourne, Australie, le 14 décembre
2018.

Les contributions et l’article sus-cité ont été élaborées par mes soins en
tenant compte des remarques et commentaires issus de mon équipe d’encadrement.
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Abstract

Algebraic State-Transition Diagrams (ASTDs) are extensions of common
automata and statecharts that can be combined with process algebra op-
erators like sequence, choice, guard and quantified synchronization. They
were previously introduced for the graphical representation, specification
and proof of information systems. In an attempt to use ASTDs to spec-
ify cyber attack detection, we have identified a number of missing features
in ASTDs. This paper extends the ASTD notation with state variables
(attributes), actions on transitions, and a new operator called flow which
corresponds to AND states in statecharts and is a compromise between in-
terleaving and synchronization in process algebras. We provide a formal
structured operational semantics of these extensions and illustrate its im-
plementation in an OCaml-based interpreter called iASTD and the model
checker ProB. Extended ASTDs are illustrated in a case study in cyber
attack detection.
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2.1. Introduction

2.1 Introduction
Model-based languages like Abstract State Machines (ASM) [46], B [6] and Z [301]

provide rich environments for specifying data and behavioural aspects of systems.
However, the modelling of control flow in these languages, e.g., sequence, choice or
parallel composition, is not easy to understand and validate with users. Process
algebras like Communicating Sequential Processes (CSP) [148] and the Calculus of
Communicating Systems (CCS) [110] describe interactions, communications, and syn-
chronizations between processes. They support rich operators like sequence, choice,
parallel composition, interleaving and iteration. But, they do not support a concise
and elegant way to describe complex data aspects [244].

Combinations of CSP and Z (e.g., Circus [331]), CSP and B (e.g. CSP‖B [289],
CSP2B [53]) integrate process algebras with model-based notations to provide a richer
specification environment that provides a more explicit representation of the control
flow and support a rich notation for data modelling. On the other hand, graph-
ical notations like statecharts [137, 138] and their variants offer an even more ex-
plicit representation of control and have shown their usefulness in various domains.
Algebraic-State Transition Diagrams (ASTDs) were proposed in [102] to combine the
graphical strengths of statecharts and the abstraction power of process algebra op-
erators. An elementary ASTD is an automaton. Elementary ASTDs can be easily
integrated with operators like sequence, Kleene closure, choice, guard, parallel com-
position with synchronization, quantified choice and quantified parallel composition.
Like in statecharts, automaton states can themselves be complex ASTDs. ASTDs
can be translated into B for formal analysis and proof [219]. They can be associ-
ated with B machines to model data and they can be refined in the Event-B style
by adding new events [95, 104]. A B machine contains one operation for each event
and it encapsulates data associated to the ASTD, similar to the CSP2B approach.
When an event is executed by the ASTD, the corresponding operation in the data B
machine is also executed.

In this chapter, we propose an extension of the ASTD notation to support the
declaration of attributes (i.e., state variables) and actions that can modify these at-
tributes when a transition is executed. In contrast to [53, 95, 289], these extensions
enable to support data handling directly within the ASTD specification, closer to the
statecharts style. Thus, the proposed extension provides the same level of data mod-
elling as in tools like Stateflow [135], but with the additional control flow abstraction
capability of process algebra operators. Attributes can be locally declared within
each ASTD. Actions can be executed on automaton transitions, but also at the level
of an ASTD itself, in order to easily factor out code that needs to be executed for
every transitions of an ASTD. This paper proposes also a new ASTD operator called
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flow which corresponds to an AND state in statecharts and is a compromise between
interleaving and synchronization in process algebras. It combines multiple ASTDs
and executes an event on each of them that can execute it. Thus, it is a form of weak
synchronization. We have identified the need for these extensions while exploring the
use of ASTDs to model cyber security attacks.

This paper provides a formal operational semantics of these extensions. It also
presents an interpreter implemented in OCaml and a model checker based on ProB [195]
that can be used to execute and validate ASTD specifications.

The rest of this paper is structured as follows. Section 2.2 introduces the extended
ASTD notation and describes its operational semantics. Section 2.3 presents a case
study in cyber attack detection and illustrates the proposed extensions. In Section
2.4, we present the ASTD interpreter and the model checker based on ProB. Section
2.5 concludes by some discussions and perspectives.

2.2 Extended ASTD Syntax and Semantics
This section aims to formally specify the extensions (i.e., attributes, actions and

the new operator flow). Actions and attributes are required to more precisely and
concisely describe cyber attacks [208], while the new operator allows executing mul-
tiple attack events from various sources (e.g., network, host) and combining different
attack models, being parts of a whole attack. This is particularly useful to detect
multi-step attacks and advanced persistent threats that originate from multiple en-
try points and attack vectors 1. Introducing attributes and actions require adding a
concept of global state to the ASTD semantic rules, while the new operator “simply”
requires its own rules to be added, albeit with a twist (Sect. 2.2.4).

The structure (syntax) of ASTDs is defined using a type hierarchy. Each ASTD
operator is represented by a type. To identify characteristics shared by all ASTD
types, we define an abstract ASTD type ASTD

∆= 〈n, P, V, Aastd〉 where n ∈ Name is
the name of the ASTD, P is an optional list of parameters, V is a set of attributes,
Aastd ∈ A is an action; its default value is skip, which does nothing. Parameters P
are used to receive values passed by a calling ASTD; they can be read-only or read-
write. Attributes V are state variables that can be modified by actions and tested in
guards within the scope of the ASTD. Actions can also modify attributes received as
parameters of the ASTD. Each ASTD type inherits from the supertype ASTD.

We also distinguish between the syntax of an ASTD and its state. We denote by
States the set of states of ASTDs. Each ASTD type gives rise to a subtype of States.
In this chapter, we content ourselves with the definition of the following subtypes of

1. https://www.fireeye.com/current-threats/anatomy-of-a-cyber-attack.html
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ASTDs: elem, Sequence, Automaton, Synchronization and Flow. A complete definition of
extended ASTDs is available at [312]. Final states of an ASTD are determined by a
function final of type ASTD × States → Boolean. Function init of type ASTD → States
returns the initial state of an ASTD.

The semantics of ASTDs consists of a labeled transition system (LTS). A LTS is a
subset of States× Event× States and a transition is denoted by s σ−→a s

′. It means that
ASTD a can execute event σ from state s and move to state s′. The semantics of an
ASTD depend on the variables declared in its enclosing ASTDs; we use environments
to represent the values of these variables. An environment is a partial function of
type Env

∆= Var 7→ Term which assigns values to variables. We need to introduce an
auxiliary transition relation that handles environments:

s
σ,Ee,E′e−−−−→a s

′

where Ee, E ′e denote the before and after values of variables in the ASTDs enclosing
ASTD a. The first rule provided below relates the state-transition relation with the
auxiliary one. It states that a transition is proved starting with empty environments.

s
σ,{},{}−−−−→a s

′
env

s
σ−→a s

′

ASTDs are non-deterministic. If several transitions on σ are possible from a given
state s, then one of them is non-deterministically chosen. The operational semantics
is inductively defined in the sequel for some ASTD subtypes.

2.2.1 Automaton
2.2.1.1 Syntax

An automaton ASTD is a structure Automaton
∆= 〈aut,Σ, S, ζ, ν, δ, SF,DF, n0〉 with

the following constraints. Σ ⊆ Event is the alphabet. S ⊆ Name is the set of state
names. ζ ∈ S → 〈Ain, Aout, Astay〉maps each state name to its actions: Ain is executed
when a transition enters the state; Aout is executed when a transition leaves the state;
Astay is executed when a transition loops on the state or is executed within the state.
ν ∈ S → ASTD maps each state name to its sub-ASTD, which can be elementary
(noted elem) or complex. An automaton transition between states n1, n2 ∈ S labeled
with σ[g]/Atr is represented as a tuple in the transition relation δ as follows:

((loc, n1, n2), σ, g, Atr, final?) ∈ δ

Symbol final? is a Boolean: when final? = true, the source of the transition is
decorated with a bullet; it indicates that the transition can be fired only if n1 is
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final. The final? field is only useful when n1 is a complex state. We also write
δ((loc, n1, n2), σ, g, Atr, final?) to state that a tuple is an element of δ.

There are other types of automaton transitions (e.g., to, or from, a state of a
nested automaton); they are omitted here; see [312] for further information. SF ⊆ S
is the set of shallow final states, while DF ⊆ S denotes the set of deep final states,
with DF ∩ SF = ∅. n0 ∈ S is the name of the initial state. The definition of final,
provided in the sequel, will describe the distinction between the two types of final
states.

The state of an automaton cannot be simply represented by a state name. It
is a more complex structure of type 〈aut◦, n, E, h, s〉. aut◦ is the constructor of the
automaton state. n ∈ S denotes the current state of the automaton. E contains
the values of the automaton attributes. h ∈ S 7→ States is the history function that
implements the notion of history state used in statecharts; it records the last visited
sub-state of a state. s ∈ States is state of the sub-ASTD of n, when n is a complex
state; s = elem when n is elementary.

Given an automaton a ∈ Automaton, we denote by a.Field with Field ∈ {Σ, S, ζ, ν, δ
, SF,DF, n0} the corresponding component of the tuple, i.e., a.n0 denotes the initial
state of a.

Functions init and final are now defined as follows. Let a be an automaton ASTD.

init(a) ∆= (aut◦, a.n0, a.Einit, hinit, init(a.ν(n0)))
hinit

∆= {n 7→ init(a.ν(n)) | n ∈ a.S}
final(a, (aut◦, n, E, h, s)) ∆= n ∈ a.SF ∨ (n ∈ a.DF ∧ final(a.ν(n), s))

Symbol Einit denotes the initial values of attributes, as specified in their declara-
tion. init(a.ν(n0)) returns the initial state of the sub-ASTD ν(n0) of n0. For ex-
ample, in Fig. 2.1, init(A.ν(1)) = elem as state 1 is elementary and init(A) =
(aut◦, 1, {(x, 0)}, hinit, elem), where hinit = {1 7→ elem}. Symbol hinit is the ini-
tial value of the history function; it maps each state name to the initial state of
its internal structure: elementary states are mapped to the constant elem (i.e.,
init(elem) = elem); complex automaton states are mapped to the initial state of their
sub-ASTD, recursively. A deep final state is final only when its sub-ASTD is also
final, whereas a shallow final state is final irrespective of the state of its sub-ASTD.

2.2.1.2 Semantics

There are six rules of inference to define the semantics of an automaton, in order
to deal with the different types of transitions and states. The two most frequently
used rules are illustrated here. The other rules are defined in [312].

The first rule, aut1, describes a transition between local states.
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a.δ((loc, n1, n2), σ′, g, Atr, final?) Ψ Ωloc
aut1

(aut◦, n1, E, h, s1) σ,Ee,E′e−−−−→a (aut◦, n2, E
′, h′, init(a.ν(n2)))

The conclusion of this rule states that a transition on event σ can occur from n1
to n2 with before and after automaton attributes values E,E ′. The state of the sub-
ASTD of n2 is its initial state (i.e., init(a.ν(n2))). The premiss provides that such
a transition is possible if there is a matching transition in δ, which is represented
by δ((loc, n1, n2), σ′, g, Atr, final?). σ′ is the event labelling the transition, and it may
contain variables. The value of these variables is given by the environment Ee and
local attributes values E, which can be applied as a substitution to a formula using
operator ([ ]). This match on the transition is provided by premiss Ψ defined as follows.

Ψ ∆=
(
(final?⇒ final(a, (aut◦, n1, E, s))) ∧ g ∧ σ′ = σ

)
([Eg])

Ψ can be understood as follows. If the transition is final (i.e., final? = true), then the
current state must be final. The transition guard g holds. The event received, noted
σ, is equal to the event σ′ which labels the automaton transition, after applying the
environment Eg as a substitution. Environment Eg is defined in premiss Ωloc.

Ωloc
∆=



if n1 = n2 then
A = Atr ; a.ζ(n1).Astay ; a.Aastd

else
A = a.ζ(n1).Aout ; Atr ; a.ζ(n2).Ain ; a.Aastd

end
Eg = Ee �− E
A(Eg, E ′g)
E ′e = Ee �− (a.V �− E ′g)
E ′ = a.V � E ′g
h′ = h�− {n1 7→ s1}


Premiss Ωloc uses the relational domain restriction operator U � r = {x 7→ x′ |

x ∈ U ∧ x 7→ x′ ∈ r}, where r is a relation and U a set, and the domain subtraction
U�−r = {x 7→ x′ | x′ 6∈ U∧x 7→ x′ ∈ r}, and the override r1�−r2 = (dom(r2)�−r1)∪r2.
The execution of an action A on attributes E with possible after value E ′ is noted
A(E,E ′). The sequential execution of actions A1 and A2 is noted A1 ; A2. Premiss
Ωloc can be understood as follows. The actions executed are the transition action
Atr, followed by the stay action ζ(n1).Astay of state n1 and finally the ASTD action
a.Aastd, which is declared in the heading of the automaton. The ASTD action is
useful to factor out state modifications that must be done on every transition of the
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ASTD. State actions (entry, exit and stay) are useful to factor out modifications that
must done on all transitions upon entry, exit or loop, of a given state. When the
transition is not a loop (i.e., n1 6= n2), the actions executed are the exit code of n1,
the transition action, the entry code of n2 and finally the ASTD action. Symbol
Eg, defined as Ee �− E, denotes the global list of variables that can be modified
by the actions. It includes the variables declared in the enclosing ASTDs (Ee) and
the variables declared locally (E). When a local variable bears the same name as a
variable declared in the enclosing ASTDs, it overrides it, similarly to shadowing in
programming languages like C, which is represented using the override operator (�−).
Their after values E ′g are used to set E ′ (the local attributes) using the restriction on
the attributes V declared in the ASTD and the values E ′e (the attributes declared in
enclosing ASTDs), to model variable shadowing.

Rule aut6, handles transitions within the sub-ASTD a.ν(n) of state n.

s
σ,Eg ,E′′g−−−−→a.ν(n) s

′ Θ
aut6

(aut◦, n, E, h, s)
σ,Ee,E′e−−−−→a (aut◦, n, E ′, h, s′)

Θ ∆=


Eg = Ee �− E a.Aastd(E ′′g , E ′g)

E ′e = Ee �− (V �− E ′g) E ′ = V � E ′g


The transition starts from a sub-state s and moves to the sub-state s′ of state n.
Actions are executed bottom-up. E ′′g denotes the values computed by the sub-ASTD.
Premiss Θ defines the computation of E ′g from E ′′g by executing the ASTD action
Aastd. E ′e and E ′ are extracted by partitioning E ′g using V . Premiss Θ is reused in
all subsequent rules where a sub-ASTD transition is involved.

2.2.1.3 Example

Fig. 2.1 provides an automaton ASTD that we can use to illustrate transitions
and transition execution proofs. Automaton A declares an attribute set V={(x,int,0)}
which contains attribute x, of type int with initial value 0. Automaton A also declares
an action x:=!x+2. Actions are expressed in OCaml; expression !x denotes the before
value of x. State 1 is an elementary state depicted by >e. State 2 of ASTD A is a
complex state, the automaton ASTD B. The transition from 1 to 2 is labeled with
event e1(?y : int), which declares a local variable y whose scope is only the transition.
It also contains guard [y > x] and an action x:=!x+y. ASTD B, of state 2, declares a
local variable z and an ASTD action x := !x∗3. Its initial state is also final and it is
computed by the function init(ν(2)) = (aut◦, 3, {(z, 0)}, elem).
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A, aut, V = {(x,int,0)}, x := !x+2

1

B, aut, V={(z,int,0)}, x:=!x*3

e1(?y : int) [y>x]

/ x := !x+y
3 4

e2(?u : int)

/ z := !z+u; x := !x+z

2

Figure 2.1 – An automaton ASTD with a complex state 2

ASTD A can execute the following two transitions.
(aut◦, 1, {(x, 0)}, elem)

e1(1)−−−→A (aut◦, 2, {(x, 3)}, (aut◦, 3, {(z, 0)}, elem))
e2(1)−−−→A (aut◦, 2, {(x, 14)}, (aut◦, 4, {(z, 1)}, elem))

The proof of the first transition is the following, stripping the keywords aut◦ and elem
for the sake of concision.

δ((loc, 1, 2), e1(y), y > x, x :=!x+ y, false)
(y > x ∧ e1(y) = e1(1))([x := 0])

aut1
(1, {(x, 0)}) e1(1),{},{}−−−−−−→A (2, {(x, 3)}, (3, {(z, 0)}))

env
(1, {(x, 0)}) e1(1)−−−→A (2, {(x, 3)}, (3, {(z, 0)}))

Rule env adds the empty environments. Rule aut1 succeeds, because y is valued to 1
by the equality e1(y) = e1(1) and the guard y > x holds after substituting x with 0.
The symbols of premiss Ωloc in step aut1 are valued as follows.

E = {(x, 0)} Ee = {}
Eg = {}�− {(x, 0)} = {(x, 0)}
E ′g = {(x, 3)},
since{x:=!x+1; x := !x+2}({(x, 0)}, {(x, 3)})

E ′e = {}�− ({x}�− {(x, 3)}) = {}
E ′ = {x}� {(x, 3)} = {(x, 3)}

The proof of the second transition is the following.
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δ((loc, 3, 4), e2(u), true, z :=!z + u;x :=!x+ z, false)
(e2(u) = e2(1))([x := 3, z := 0])

aut1
(3, {(z, 0)}) e2(1),{(x,3)},{(x,12)}−−−−−−−−−−−−−→B (4, {(z, 1)})

aut6
(2, {(x, 3)}, (3, {(z, 0)})) e2(1),{},{}−−−−−−→A

(2, {(x, 14)}, (4, {(z, 1)}))
env

(2, {(x, 3)}, (3, {(z, 0)})) e2(1)−−−→A

(2, {(x, 14)}, (4, {(z, 1)}))

2.2.2 Sequence
The sequence ASTD allows for the sequential composition of two ASTDs. When

the first item reaches a final state, the second one can start its execution [312]. This
enables decomposing problems into a set of tasks that have to be executed in sequence.

2.2.2.1 Syntax

A sequence ASTD is a structure 〈 , fst, snd〉 where fst, snd are ASTDs denoting
respectively the first and second sub-ASTDs of the sequence. A sequence state is of
type 〈 ◦, E, [fst | snd], s〉, where ◦ is a constructor of the sequence state, E the values
of attributes declared in the sequence, [fst | snd] is a choice between two markers that
respectively indicate whether the sequence is in the first sub-ASTD or the second
sub-ASTD and s ∈ States. Functions init and final are defined as follows. Let a be a
sequence ASTD.

init(a) ∆= ( ◦, a.Einit, fst, init(a.fst))
final(a, ( ◦, E, fst, s)) ∆= final(a.fst, s) ∧

final(a.snd, init(a.snd))
final(a, ( ◦, E, snd, s)) ∆= final(a.snd, s)

The initial state of a sequence is the initial state of its first sub-ASTD. A sequence
state is final when either i) it is executing its first sub-ASTD and this one is in a
final state, and the initial state of the second sub-ASTD is also a final state; ii) it is
executing the second sub-ASTD which is in a final state.

2.2.2.2 Semantics

Three rules are necessary to define the execution of the sequence. Rule 1 deals
with transitions on the sub-ASTD fst only. Rule 2 deals with transitions from fst
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to snd, when fst is in a final state. Rule 3 deals with transitions on the sub-ASTD
snd.

s
σ,Eg ,E′′g−−−−→a.fst s

′ Θ
1

( ◦, E, fst, s) σ,Ee,E′e−−−−→a ( ◦, E ′, fst, s′)

final(a.fst, s)([Eg]) init(a.snd)
σ,Eg ,E′′g−−−−→a.snd s

′ Θ
2

( ◦, E, fst, s) σ,Ee,E′e−−−−→a ( ◦, E ′, snd, s′)

s
σ,Eg ,E′′g−−−−→a.snd s

′ Θ
3

( ◦, E, snd, s) σ,Ee,E′e−−−−→a ( ◦, E ′, snd, s′)

2.2.3 Parameterized Synchronization
Synchronization ASTDs allow managing concurrent resources between two ASTD

components using the synchronization operator [312]. Events and variables between
the two components are recorded in a synchronization set ∆ for handling synchro-
nization.

2.2.3.1 Syntax

A parameterized synchronization ASTD is a structure 〈|[]|,∆, l, r〉 where ∆ is
the synchronization set of event labels, l, r ∈ ASTD are the synchronized ASTDs.
When the label of the event belongs to ∆, the two sub-ASTDs must both execute it;
otherwise either the left or the right sub-ASTD can execute it; if both sub-ASTDs
can execute it, the choice between them is nondeterministic. When ∆ = ∅, the
synchronization is called an interleaving, noted 9.

A parameterized synchronization state is of type 〈|[]|◦, E, sl, sr〉, where sl, sr are
the states of the left and right sub-ASTDs. Initial and final states are defined as
follows. Let a be a parameterized synchronized ASTD.

init(a) ∆= (|[]|◦, a.Einit, init(a.l), init(a.r))
final(a, (|[]|◦, E, sl, sr))

∆= final(a.l, sl) ∧ final(a.r, sr)

2.2.3.2 Semantics

There are three inference rules. Rules |[]|1 and |[]|2 respectively describe execution
of events, with no synchronization required, either on the left or the right sub-ASTDs.
Rule |[]|1 below caters for execution on the left sub-ASTD. The function α(e) returns
the label of event e.
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α(σ) /∈ ∆ sl
σ,Eg ,E′′g−−−−→a.l s

′
l Θ|[]|1

(|[]|◦, E, sl, sr)
σ,Ee,E′e−−−−→a (|[]|◦, E ′, s′l, sr)

Rule |[]|2 is symmetric to |[]|1 and indicates behaviour when the right side execute the
action.

α(σ) /∈ ∆ sr
σ,Eg ,E′′g−−−−→a.r s

′
r Θ|[]|2

(|[]|◦, E, sl, sr)
σ,Ee,E′e−−−−→a (|[]|◦, E ′, sl, s′r)

The most interesting case is when the left and right sub-ASTDs must synchronize
on an event (i.e., when α(σ) ∈ ∆). Consider the transitions on the left and right
sub-ASTDs when each of them is executed independently of the other.

Ωilr
∆=

(
sl

σ,Eg ,E′gl−−−−−→a.l s
′
l sr

σ,Eg ,E′gr−−−−−→a.r s
′
r

)
Since shared variables (Eg) can be modified by both sub-ASTDs, their modifications
could be inconsistent, which should forbid the synchronization transition. This re-
quires to check that E ′gl = E ′gr. However, when one variable is modified by both
sub-ASTDs, the natural intent is typically that the compound result of both sides
is desired, that is, to assume that one side executes on the values returned by the
other. For instance, assume that both sub-ASTDs increment shared variable x by 1
and assume that the before value of x is 0. The above semantics gives x = 1, whereas
the compound result is x = 2. If one sub-ASTD increments by 1 and the other by
2, the above semantics forbids execution because the result is inconsistent, whereas
the compound execution returns 3. Executing the left sub-ASTD before the right
sub-ASTD is specified as follows.

Ωlr
∆=

(
sl

σ,Eg ,E′g1−−−−−→a.l s
′
l sr

σ,E′g1,E
′′
g−−−−−→a.r s

′
r

)
Executing the right sub-ASTD before the left sub-ASTD is specified as follows.

Ωrl
∆=

(
sr

σ,Eg ,E′g2−−−−−→a.r s
′
r sl

σ,E′g2,E
′′
g−−−−−→a.l s

′
l

)
Since synchronization is commutative, i.e., both execution orders should return the
same states. Fig. 2.2 illustrates this property.

Checking this commutativity at each transition is expensive. To improve per-
formance, it could be statically checked using proof obligations, or by analysis of
the variables read and written by each sub-ASTD, to ensure that the left and right
sub-ASTDs are independent (i.e., they do not modify the same variables and one
sub-ASTD does not modify the variables read by the other). When the synchro-
nization operands are nondeterministic, this is still expensive to execute, because a
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(sl,sr)
s, Eg, E

’g1 (s’l,sr)

(sl,s’r)
s, Eg, E’g2

(s’l,s’r)

s, E’g1, E’’g

s, E’g2, E’’g

Figure 2.2 – Commutativity of actions execution in a parameterized synchronization
on σ

Attack0, ⋓

0

1

2>

Attack1, aut 

e[g]
e'[g']

/A'

3

4

5>

Attack2, aut 

e"[g"]e[g]/A /A"

6

7

8>

Attack3, aut 

e''' e/A'''

Figure 2.3 – Using the Flow operator to combine multiple attack models

commutative combination must be found, which means enumerating combinations
of possibilities from both sides. Still, this is our preferred semantics for a synchro-
nization, because it works well for deterministic specifications. Here is the rule for
synchronization.

α(σ) ∈ ∆ Ωlr Ωrl Θ|[]|3
(|[]|◦, E, sl, sr)

σ,Ee,E′e−−−−→a (|[]|◦, E ′, s′l1 , s
′
r1)

Note that our treatment of synchronization differs from those in CSP, CSP‖B, CSP2B
or Circus. Since CSP is a pure process algebra, it does not support attributes. In
CSP‖B and CSP2B, a single operation is executed to update a set of global state
variables; the problem of having two different actions modifying the same variable
does not exist. However, if the action to execute depends on the state of the CSP
expression, extra state variables must be added to encode the CSP state in the B
machine, which introduces some undesirable coupling between the CSP specification
and the B specification, breaking the ideal separation between the control part repre-
sented in CSP and the data part represented in B. In Circus, synchronization occurs
on channels only; state variables are not modified on a synchronization between two
processes; actions are executed in interleave. The ASTD action is particularly use-
ful for the synchronization ASTD, because it enables to make decisions and updates
based on the result of the execution in both sub-ASTDs.
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Also note that to process and combine action effects performed in sequence or in
parallel, there are multiple alternatives available. The B [6] style parallel updates are
quite restrictive, and disallow parallel assignments to the same variables. The ASM
approach [46] is to collect parallel updates and perform them at the end of an (atomic)
event. The translation from ASM to B in [194] proposes to use update functions which
are composed. While elegant, the actions in our ASTD implementation take effect
immediately and are executed by a “black box” interpreter. Hence this was not a
practical approach.

2.2.4 Flow
It is quite common that the same event e can be part of several cyber attack

specifications, as illustrated in Fig. 2.3. An intrusion detection system needs to
execute such an event on each attack specification that can execute it; this behaviour
is not fulfilled by either interleaving or synchronization of attack specifications. This
raises the need of a new operator d, called flow, which will execute the event on
each sub-ASTD whenever possible, like AND states in statecharts. In contrast to
other ASTD operators, the rules for this operator involve negation, i.e., one has to
determine whether an event is not possible for sub-ASTDs. In that respect it is related
to FDR’s priority annotation for CSP [98]. Such an annotation could probably be
used to implement d.

In Fig. 2.3, Attack0 combines multiple attacks using a flow: Attack1, Attack2 and
Attack3. The flow operator checks all possible transitions from each attack component
and executes them. When event e is received, transitions 0-1, 3-4 and 7-8 are executed
if their ASTDs are in state 0, 3 and 7, respectively. Other transitions (i.e., 1-2, 4-5
and 6-7) execute in interleaving.

2.2.4.1 Syntax

A flow ASTD is a structure 〈d, l, r〉. A flow state is of type 〈d◦, E, sl, sr〉, where
sl, sr are the states of the left and right sub-ASTDs. Initial and final states are defined
as follows. Let a be a flow ASTD.

init(a) ∆= (d◦, a.Einit, init(a.l), init(a.r))
final(a, (d◦, E, sl, sr)) ∆= final(a.l, sl) ∧ final(a.r, sr)
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2.2.4.2 Semantics

We use the following abbreviation to denote that an ASTD cannot execute a
transition from a state s and global attributes Eg.

s
σ,Eg−−→a ⊥

∆= ¬∃ E′g, s′ · s
σ,Eg ,E′g−−−−→a s

′

Symbol ⊥ is used to denote an undefined value. The negation of a transition predicate
is computed using the usual negation as failure approach. For example (Fig. 2.3),
the execution of transitions 0 to 1 and 3 to 4 fails on the reception of the event e′′′.
Then, they are ignored while the transition 6 to 7 is executed. Here are the first two
rules when only one of the two sub-ASTDs can execute the event.

sl
σ,Eg ,E′′g−−−−→a.l s

′
l sr

σ,E′′g−−→a.r ⊥ Ωlr ⇔ Ωrl Θ
d1

(d◦, E, sl, sr)
σ,Ee,E′e−−−−→a (d◦, E ′, s′l, sr)

sr
σ,Eg ,E′′g−−−−→a.r s

′
r sl

σ,E′′g−−→a.l ⊥ Ωlr ⇔ Ωrl Θ
d2

(d◦, E, sl, sr)
σ,Ee,E′e−−−−→a (d◦, E ′, sl, s′r)

The premiss Ωlr ⇔ Ωrl ensures that one execution order succeeds iff the other also
succeeds. It ensures the determinacy of the flow operator.

The third rule describes the case where both sub-ASTDs can execute the event;
it is almost the same as |[]|3, as it requires commutativity.

Ωlr Ωrl Θd3
(d◦, E, sl, sr)

σ,Ee,E′e−−−−→a (d◦, E ′, s′l1 , s
′
r1)

2.2.5 Choice
A choice ASTD allows a choice between two sub-ASTDs. Once a sub-ASTD has

been chosen, the other sub-ASTD is ignored [312]. The choice is nondeterministic if
each sub-ASTD can execute the requested event.

2.2.5.1 Syntax

The choice ASTD subtype has the following structure:

Choice
∆= 〈|, l, r〉

where l, r ∈ ASTD are respectively the first and second element of the choice. The
type of a choice state is 〈|◦, E, side, s〉 where side ∈ (⊥ | 〈left〉 | 〈right〉) denotes the
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sub-ASTD which has been chosen, s ∈ (States | ⊥) denotes the state of the sub-ASTD
which has been chosen and E the values of attributes declared in the choice ASTD.
A choice state is final if i) it hasn’t started yet and the initial state of each sub-ASTD
is final, or ii) the chosen sub-ASTD is in a final state. Here are the formal definitions
of the initial state and the final states. Let a be a choice ASTD.

init(a) ∆= (|◦, a.Einit,⊥,⊥)
final(a, (|◦, Einit,⊥,⊥)) ∆= final(init(a.l)) ∨ final(init(a.r))

final(a, (|◦, E, left, s)) ∆= final(a.l, s)
final(a, (|◦, E, right, s)) ∆= final(a.r, s)

2.2.5.2 Semantics

There are four rules of inference. The first two deal with the execution of the first
event from the initial state.

init(a.l)
σ,Eg ,E′′g−−−−→a.l s

′ Θ
|1

(|◦, Einit,⊥,⊥) σ,Ee,E′e−−−−→a (|◦, E ′, left, s′)

init(a.r)
σ,Eg ,E′′g−−−−→a.r s

′ Θ
|2

(|◦, Einit,⊥,⊥) σ,Ee,E′e−−−−→a (|◦, E ′, right, s′)

The other one deal with execution of the subsequent events from the chosen sub-
ASTD.

s
σ,Γ,Eg ,E′′g−−−−−−→a.l s

′ Θ
|3

(|◦, E, left, s) σ,Ee,E′e−−−−→a (|◦, E ′, left, s′)

s
σ,Γ,Eg ,E′′g−−−−−−→a.r s

′ Θ
|4

(|◦, E, right, s) σ,Ee,E′e−−−−→a (|◦, E ′, right, s′)

2.2.6 Quantified Synchronization
The quantified synchronization allows for the modeling of an arbitrary number of

instances of an ASTD which are executing in parallel, synchronizing on events from
∆ [312].
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2.2.6.1 Syntax

A quantified synchronization ASTD is a structure 〈|[]|:, x, T,∆, b〉 where x ∈ Var
a quantified variable that can be only accessed in read-only mode, T the type of
x, ∆ ⊆ Label a synchronization set of event labels and b ∈ ASTD the body of the
synchronization. The state of a quantified synchronization is of type 〈|[]|:◦, E, f〉
where |[]|:◦ is the constructor, E the values of attributes and f ∈ T → States is a
function which associates a state of b to each value of T . Initial and final states are
defined as follows. Let a be a quantified synchronized ASTD.

init(a) ∆= (|[]|:◦, a.Einit, T × {init(a.b)})
final(a, (|[]|:◦, E, f)) ∆= ∀ c : T · final(a.b, f(c))

2.2.6.2 Semantics

Rule |[]|:1 describe execution of events with no synchronization. Symbol c denotes
the element of T chosen for the execution.

α(σ) 6∈ ∆ f(c)
σ,Eg�−{x7→c},E′′g−−−−−−−−−−→a.b s

′ Θ|[]|:1
(|[]|:◦, E, f) σ,Ee,E′e−−−−→a (|[]|:◦, E ′, f �− {c 7→ s′})

Rule |[]|:2 describe execution of an event with synchronization. All elements of T
must execute σ, in any order. It generalizes rule |[]|3 and requires commutativity.

α(σ) ∈ ∆ Ωqsyn Θ
|[]|:2

(|[]|:◦, E, f) σ,Ee,E′e−−−−→a (|[]|:◦, E ′, f ′)
Premiss Ωqsyn formalizes commutativity by universally quantifying over all per-

mutations p of T (noted p ∈ π(T )) and using Es as a sequence of environments
storing the intermediate results of the computation of E ′′g from Eg by iterating over
the elements p(i) of p. Let k = |T |.

Ωqsyn
∆=


∀ p ∈ π(T ) · ∃Es ∈ 0..k→ Env ∧ Es(0) = Eg

∧ E(k) = E ′′g ∧ ∀ i ∈ 1..k · (

f(p(i)) σ,Es(i−1)�−{x7→p(i)},Es(i)−−−−−−−−−−−−−−−→a.b f
′(p(i)))



2.2.7 Quantified choice
The quantified choice is very similar to an existential quantification in first-order

logic. It allows for picking a value from a set and execute a sub-ASTD with that
value [312]. The scope of the quantified variable is the sub-ASTD.
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2.2.7.1 Syntax

A quantified choice ASTD subtype has the following structure:

QChoice
∆= 〈| :, x, T, b〉

where x ∈ Var denotes a quantification variable, T is a type and b ∈ ASTD is the
quantified ASTD. The type of a quantification choice state is 〈| :◦, [⊥ | c], E, [⊥ |
s]〉 where | :◦ is the constructor of the quantification choice state, ⊥ is a constant
indicating that the choice has not been made yet, c ∈ Term denotes the current value
of the choice quantified variable once the ASTD choice has been made, E the values
of attributes and s ∈ States. Initial and final states are defined as follows. Let a be a
quantified choice ASTD.

init(a) ∆= (| :◦,⊥, a.Einit,⊥)
final(a, (| :◦,⊥, Einit,⊥)) ∆= ∃x : T · final(a.b, init(a.b))

c 6= ⊥ ⇒
(
final(a, (| :◦, c, E, s)) ∆= final(a.b, s){x 7→ c}

)
2.2.7.2 Semantics

There are two inference rules. They use the notion of environment to manage the
quantification. When a transition is computed using rules, the value c bound to the
quantification variable x is added to the execution environment (the one appearing
on the transition arrow) and can be used to make the proof, in particular to check
that the event received σ matches the transition event σ′, after the environment has
been applied as a substitution. This behavior is expressed hereafter.

init(a.b)
σ,Eg�−{x7→c},E′′g−−−−−−−−−−→a.b s

′ Θ c ∈ T
| :1

(| :◦,⊥, Einit,⊥) σ,Ee,E′e−−−−→a (| :◦, c, E ′, s′)

s
σ,Eg�−{x7→c},E′′g−−−−−−−−−−→a.b s

′ Θ c 6= ⊥
| :2

(| :◦, c, E, s)
σ,Ee,E′e−−−−→a (| :◦, c, E ′, s′)

2.2.8 Kleene
This operator comes from regular expressions. It allows for iteration on an ASTD

an arbitrary number of times (including zero). When the sub-ASTD is in a final
state, it enables to start a new iteration. A Kleene closure is in a final state when it
has not started or when its sub-ASTD is in a final state [312].
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2.2.8.1 Syntax

The kleene ASTD subtype has the following structure:

Closure
∆= 〈?, b〉

where b ∈ ASTD is the body of the closure. The type of a closure state is 〈?◦, E, started?, s〉
where s ∈ States, E the attribute values of the closure ASTD and started? ∈ Boolean
indicates whether the first iteration has been started. It is essentially used to deter-
mine if the closure can immediately exit (i.e., is in a final state) without any iteration.
Initial and final states are defined as follows. Let a be a closure ASTD.

init(a) ∆= (?◦, a.Einit, false,⊥)
final(a, (?◦, E, started?, s)) ∆= final(a.b, s) ∨ ¬started?

2.2.8.2 Semantics

There are two inference rules: ?1 allows for restarting from the initial state of
the sub-ASTD when a final state has been reached; ?2 allows for execution on the
sub-ASTD.

final(a.b, s)([Eg]) init(a.b)
σ,Eg ,E′′g−−−−→a.b s

′ Θ
?1

(?◦, E, , s)
σ,Ee,E′e−−−−→a (?◦, E ′, true, s′)

s
σ,Eg ,E′′g−−−−→a.b s

′ Θ
?2

(?◦, E, , s)
σ,Ee,E′e−−−−→a (?◦, E ′, true, s′)

2.2.9 Guard
The guard ASTD is a generalization of the guard specified on an automaton

transition [312]. It is especially useful when the sub-ASTD is a complex structure,
avoiding the duplication of the guard predicate on all the possible first transitions of
that structure.

2.2.9.1 Syntax

The guard ASTD subtype has the following structure:

Guard
∆= 〈⇒, g, b〉
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where b ∈ ASTD is the body of the guard. The type of a guard state is 〈⇒◦, E, started?, s〉
where started? denotes when the guard has been satisfied, s ∈ States and E the at-
tribute values of the guard ASTD. Initial and final states are defined as follows. Let
a be a guard ASTD.

init(a) Δ= (⇒◦, a.Einit, false, init(a.b))
final(a, (⇒◦, Einit, false, init(a.b))) Δ= final(a, init(a.b))

final(a, (⇒◦, E, true, s)) Δ= final(a, s)

2.2.9.2 Semantics

There are two inference rules: ⇒1 deals with the first transition and the satisfac-
tion of the guard predicate; ⇒2 deals with subsequent transitions.

g([Eg]) init(a.b)
σ,Eg ,E′′

g−−−−→a.b s′
⇒1

(⇒◦, Einit, false, init(a.b)) σ,Ee,E′
e−−−−→ (⇒◦, E ′, true, s′)

s
σ,Eg ,E′′

g−−−−→a.b s′
⇒2

(⇒◦, E, true, s) σ,Ee,E′
e−−−−→ (⇒◦, E ′, true, s′)

2.2.10 Call
It is possible to call an ASTD which is defined in another diagram. A call is graph-

ically represented by the called ASTD name and its actual parameter values [312].
Calls can be recursive.

2.2.10.1 Syntax

A call ASTD is of the subtype ASTDCall
Δ= 〈cal, n( #»c )〉 where n is the name of an

ASTD q = 〈n, P, V, Aastd〉. Let P = #»x : #»

T . For each ci ∈ #»c , we have ci ∈ Ti. The
type of an ASTD call state is 〈cal◦, E, [⊥ | s]〉, where cal◦ is the constructor of the
call state, E the values of attributes, ⊥ denotes that the call has not been made yet
and s ∈ States is the state of the called ASTD q once the called has been made. The
initial and final states are as follows. Let a be an ASTD call.

init(a) Δ= (cal◦, a.Einit, ⊥)
final(a, (cal◦, Einit, ⊥)) Δ= final(q, init(q))([ #»x := #»c ])

s �= ⊥ ⇒ final(a, (cal◦, E, s)) Δ= final(q, s)([ #»x := #»c ])
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Remote_Access_Trojan, 

RAT_Host, 

6

3

987

4 5>

> >

0 1 2>

RAT_Network, 

e(?x1:RecordEvent)[g1] e(?x2:RecordEvent)[g2] e(?x1:RecordEvent)[g3] e(?x2:RecordEvent)[g4]

e(?x1:RecordEvent)[g5] e(?x2:RecordEvent)[g6]

/Atr1 /Atr2

/Atr3 /Atr4

g1 = (x1.ipdst=ipdst) && (x1.portdst=portdst) && (x1.proto="TCP") && (x1.tcpflags= "S") && (not recon_end)
g2 = (x2.ipsrc=ipdst) && (x2.portsrc=portdst) && (x2.proto="TCP") && (x2.tcpflags= "RA")
g3 = (x1.ipsrc=ipsrc) && (x1.portsrc=portsrc) && (x1.proto="TCP") && (x1.tcpflags= "S")
g4 = (x2.ipdst=ipsrc) && (x2.portdst=portsrc) && (x2.proto="TCP") && (x2.tcpflags= "SA") && (contains  x2.payload  "stdapi")
g5 = (x1.ipsrc=ipsrc) && (x1.portsrc=portsrc) && (x1.proto="TCP") && (x1.eventid= "3") 

&& (List.mem x1.portdst ["80"; "443"; "444"; "445"; "4444"]))
g6 = (x2.ipsrc=ipsrc) && (x2.eventid= "13") && (contains  x2.registrykey  "HK\\(U\\|LV\\|LM\\|CR\\)\\\\")  && 

(contains  x2.registrykey "\\\\Run\\\\[a-zA-Z]+ .\\(exe\\|vbs\\|bat\\|lnk\\)")

||| ipdst: string, Vb = {(count,int,0)} ||| portdst: string ||| ipsrc: string ||| portsrc: stringRecon, R1, aut Exploit,=>,recon_end

||| portsrc: stringNet_Activity, ||| ipsrc: string Registry_Activity, ||| ipsrc: string

Atr1 = { count := !count+1;
if !count >= !thres then

alert "Port scan attack";
count := 0; recon_end := true;;}

Atr2 = {alert "Metasploit privilege escalation";;}
Atr3 = {alert "File ' "^x1.image^" ' attempted a suspicious connection to "^x1.ipdst^" on port "      

^x1.portdst;;}
Atr4 = {alert "Malware registry attack";;}

V = {(thres, int, 45), (recon_end, bool, false)}

E1, aut

N1, aut R2, aut

Figure 2.4 – Remote Access Trojan ASTD specification

2.2.10.2 Semantics

There are two rules of inference. Rule cal1 deals with the initial call execution,
while cal2 deals with subsequent executions. Let Ecal = {P �→ #»c }.

init(a.b)
σ,Eg�−Ecal,E

′′
g−−−−−−−−→a.b s′ Θ

cal1
(cal◦, Einit, ⊥) σ,Ee,E′

e−−−−→a (cal◦, E ′, s′)

s
σ,Eg�−Ecal,E

′′
g−−−−−−−−→a.b s′ Θ

cal2
(cal◦, E, s) σ,Ee,E′

e−−−−→a (cal◦, E ′, s′)

2.3 Case Study
Fig. 2.4 illustrates a case study of ASTDs in cyber attack detection. Increas-

ingly, attackers develop various strategies to break down existing defence systems
and, consequently, gain unauthorized access to a private Information System (IS).
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They operate strategically by executing a sequence of threatening actions 2 to dis-
cover the network topology and vulnerabilities on the target IS, followed by a phase
exploiting the vulnerabilities found to command and control the target. We illustrate
this approach by an active attack called Remote Access Trojan (RAT) [125]. A RAT
attack operates both on a network and a host. It starts on a network through vulner-
ability scans. Next, the attacker sends a malware to the victim machine (e.g., using
email spams) for exploitation. Once the malware is installed on the victim’s machine,
it tries to automatically connect to the attacker machine, and an attack session is
opened when user clicks on the infected program (exploitation). Then, events are
generated from both host and network sides. Considering both gives better insights
(or a holistic view) of RAT activities.

The main ASTD is identified by the attack name Remote Access Trojan in the tab
of the box. The name can be omitted for nested ASTDs. Remote Access Trojan illus-
trates the extension: it declares two attributes, thres and recon end, with their types
and initial values. Remote Access Trojan is a flow ASTD (denoted by d) that concur-
rently executes events from two attack models in a network and host: RAT Network
and RAT Host. RAT Network allows for sequential composition of two ASTDs: Recon
and Exploit. The first ASTD of the sequence (i.e., Recon) must reach a final state
before the next one can start.

The ASTD Recon starts its execution and inspects the network traffic to detect
port scanning and operating system (OS) detection attempts. Attempts may be done
by an attacker who tries to scan open ports and OS vulnerabilities (e.g., system
errors, bugs) on the target IS (victim). Attacker actions generate network traffic
that contains malicious patterns enabling identifying the current attack. Recon is a
quantified interleaving ASTD (denoted by 9 ipdst : string) that allows an arbitrary
number of instances of the nested ASTD to be executed in interleaving, each instance
being indexed by its ip address ipdst. It also declares an attribute count whose value is
shared by all its interleave instances. Note that attributes can be declared within any
ASTD. ASTD Recon has a nested nameless ASTD which is a quantified interleaving
on the destination port (i.e., 9 portdst : string). For each possible value taken by ipdst
and portdst, the nested automaton R1 tracks the scanning of a port; it also has read-
write access of the attributes count and thres. However, R1 can not modify ipdst and
portdst, because quantified interleave variables are read-only. Being called within two
quantified interleaves, there is an instance of this automaton for each pair of values of
ipdst and portdst. Its initial state is 0, depicted by >eand it is also final (denoted byeg). This state has an outgoing transition labeled by the event e(?x1:RecordEvent) and
a guard [g1]. Variable x1 is a local variable whose scope is the transition only. Type
RecordEvent is a record containing both host and network events in the simplified

2. https://attack.mitre.org/wiki/AllT echniques
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form

〈systime, eventid, image, registrykey, proto, ipsrc, portsrc, ipdst, portdst, tcpflags, payload〉

where systime is the date-time when the event occurred, eventid is the event
ID 3 (e.g., "1"=Process Creation, "3"=Network Connection, "13"=Registry Value Set),
image the file path of the running process, registrykey the path of the registry object,
proto is the protocol type (e.g., ICMP, TCP, UDP), ipsrc the source address, portsrc
the source port, ipdst the destination address, portdst the destination port, flags
a combination of TCP flags (S/SYN initiates a connection, A/ACK acknowledges
received data, R/RST aborts a connection in response to ans error), and payload the
event content.

The guard states that the source initiates a TCP connection to the destination,
the destination ip address and port of the event matches the quantified interleave
variables ipdst and portdst, and the end of the reconnaissance phase has not been
reached. This means that the event is executed only on the appropriate automaton
instance. The transition from state 1 to state 2 captures the response of the victim
to the attacker. It illustrates the declaration of actions on transitions, the second
type of extensions made to the ASTD notation. Action Atr1 increases attribute count
of Recon. When count reaches the threshold, attribute recon end is set to true, which
will enable ASTD Exploit to start. Actions are expressed in OCaml to integrate easily
with the ASTD interpreter. An attribute x is represented by an OCaml reference
variable x, which is dereferenced using “!x” to access its value.

Let consider the following events which are used to describe the RAT specification.
revt1 <systime="t1", eventid="", image="", registrykey="", proto="TCP", ipsrc="ip1",
portsrc="pt1", ipdst="ip2", portdst="pt2", tcpflags="S", payload="p1">

revt2 <systime="t2", eventid="", image="", registrykey="", proto="TCP", ipsrc="ip2",
portsrc="pt2", ipdst="ip1", portdst="pt1", tcpflags="RA", payload="p2">

revt3 <systime="t3", eventid="", image="", registrykey="", proto="TCP", ipsrc="ip1",
portsrc="pt1", ipdst="ip2", portdst="pt3", tcpflags="S", payload="p3">

revt4 <systime="t4", eventid="", image="", registrykey="", proto="TCP", ipsrc="ip2",
portsrc="pt3", ipdst="ip1", portdst="pt1", tcpflags="RA", payload="p4">

revt5 <systime="t5",eventid="3",image="C:\\KWIAYA\\XYkgwUUo.exe", registrykey="",
proto="TCP", ipsrc="ip2", portsrc="pt2", ipdst="ip1", portdst="pt1", tcpflags="S",
payload="p5">

revt6 <systime="t6", eventid="", image="", registrykey="", proto="TCP", ipsrc="ip1",
portsrc="pt1", ipdst="ip2", portdst="pt2", tcpflags="SA", payload="stdapi">

revt7 <systime="t7",eventid="13",image="C:\\ProgramData\\pykEMEsI\\ykAYMkMA.exe",
registrykey="HKLM\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\EUgUgAYs.exe",
proto="UDP", ipsrc="ip1", portsrc="pt4", ipdst="ip1", portdst="pt5", tcpflags="",
payload="">

3. https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
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An attacker initiates a TCP connection on its machine (address ip1) to the victim
machine (address ip2). The reception of the event e(revt1) triggers a transition from
0 to 1, within Recon in the interleavings instance ip2 and pt2. The state 2 is reached
when event revt2 is received. Action Atr1 increments attribute count and returns an
immediate alert when the number of scanned ports on the victim machine reaches
a threshold. An alert is a message sent to the environment (e.g., stdout). In this
case, the attribute recon end takes the value true, enabling the next component of
the sequence (i.e., Exploit) to start. After receiving event revt4, the value of count is
2 and two instances of R1 (i.e., (ip2,pt2) and (ip2,pt3) are in state 2; the others are
still in their initial state).

Because ASTD Recon is a quantified interleave, it is final when all its interleaved
instances are final; similarly for its nested ASTD 9 portdst : string. An automaton is
final when its current state is final. Since all the states of R1 are final, then ASTD
Recon is always final. Thus, ASTD Exploit is always enabled, but it is a guard ASTD,
identified by the operator ⇒. It can start only if its guard condition (recon end) is
true. The introduction of attributes allows us to define more specific guard conditions
that can be used in guarded ASTDs in a sequential composition. It is an alternative
way of controlling the sequential composition of ASTDs: since each automaton state
is final, it is the guard that decides when the second component of a sequence can
trigger.

The exploit phase starts when the victim machine runs an infected program
(weapon) that communicates with the attacker machine. It allows the attacker to
send malicious payloads to the victim by exploiting the Server Message Block (SMB)
vulnerability 4. Payloads contain standard remote call API (STD API) signatures
that enable detecting attacker activities. The nested ASTDs of Exploit respectively
interleave on the source address (i.e., 9 ipsrc : string) and the destination address (i.e.,
9 ipdst : string). This allows a number of instances of E1 for each possible of ipsrc and
ipdst. The automaton ASTD E1 is in state 3.

On the reception of an event e(revt5), transitions from 3 to 4 and 6 to 7 are
synchronously executed by the flow operator. It means that the victim has clicked
on the malware file and exploit succeeded. In the host, the malware attempts a
network connection (i.e., revt5.eventid="3") to the attacker machine on port 4444.
The function List.mem elt list returns true when elt exists in list. In the network, an
attack session has been initiated (i.e., revt5.flags="S") between the victim and the
attacker. The next transition (i.e., from 4 to 5) is executed when an attack session is
established (i.e., revt6.flags="SA") and the attacker starts to send malicious payloads
(e.g., “stdapi” in the revt6 payload). Concurrently, the malware attempts to locally
modify registries (i.e., revt7.eventid="13") on the victim machine ip1. Its behaviour

4. https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf
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is identified by a regular expression in the registry key 5. The function contains str
regexp returns true, when a string in str matches the regular expression regexp.

2.4 ASTD Tool Support

2.4.1 Prolog and ProB
The ProB model checker was originally developed for B specifications, but can

also be applied to other languages whose operational semantics are expressed in Pro-
log. This is how the synchronization between CSP and B was realized in [54], by
transcribing the operational semantics of CSP to Prolog. We have implemented the
operational semantics of extended ASTDs along with all features and operators as
required for this case study: sequence, guard, and various synchronization operators
(interleaving, full and selective synchronization) and the new flow operator.

The operational semantics rules of extended ASTDs can be translated to individ-
ual Prolog clauses. For example, the rule for the sequence operator is translated as
follows.
atrans(seq([A1|T]),G1,Trans,S2,G2) :- aseq_trans(A1,T,
G1,Trans,S2,G2).
aseq_trans(A1,T,G1,Trans,S2,G2) :- %allow A1 to evolve
atrans(A1,G1,Trans,A2,G2), create_seq(A2,T,S2).
aseq_trans(A1,[A2|T],G1,Trans,S2,G2) :-
% if A1 is final: skip to rest
is_final_astd(A1), aseq_trans(A2,T,G1,Trans,S2,G2).

Intuitively, the Prolog predicate atrans(S1,G1,E,S2,G2) is true when the
ASTD expression S1 can execute the event E in the context of the global state
G1, resulting in a new ASTD expression S2 and a new global state G2. In other
words, it corresponds to S1 E,G1,G2−−−−−→a S2 from Sect. 2.2. The Prolog predicate
is final astd(A) is true when the ASTD A is final, implementing final from
Sect. 2.2. For efficiency reasons, atrans calls other subsidiary predicates like aseq
trans and create seq. The latter simply constructs a new ASTD sequence ex-
pression.

An ASTD expression is a Prolog term representing the ASTD structure, e.g.,
seq([aut(R1 (’8.8.8.8’,80), aut(E1(’8.8.8.8’,80)]) to represent the
sequential composition of an instance of the R1 automata and an instance of the E1
automata from Fig. 2.4. The global state is represented as a list of bindings, e.g.,
[count/0,recon end/0,thres/45, warnings/[]] for R1 in Fig. 2.4.

Note that here we have implemented sequence not as a binary operator like in

5. https://support.microsoft.com/en-ca/help/256986/windows-registry-information-for-
advanced-users
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Sect. 2.2.2, but also as n-ary operator that combines several ASTDs. The first clause
of aseq trans corresponds to the rule 1 from Sect. 2.2.2, and the second clause
to rule 2. There is no need for rule 3 as we throw away A1 in the resulting process
expression S2.

Currently, to run ProB on an ASTD, one needs to express the transitions of
the individual automata in Prolog. For normal automata, this results in one fact
per transition. For automata with actions and rules, this corresponds to one Prolog
clause per transition, the body of the clause containing the conditions and associated
actions. In future, we plan to generate those Prolog translations automatically from
the ASTD representation.

By writing the interpreter, we have gained access to various features of ProB:
animation, model checking (deadlock, determinism, safety, LTL, CTL), refinement
checking, and execution (a faster version of animation which does not store the history
of states). In principle one could also synchronize ASTDs with B machines in the
style of [54].

As a first simpler example we have replicated the Library case study from [101],
using global state to store reservations. Our Prolog ASTD interpreter is about three
times faster than ProB on the B translation of the system (not using ProB’s sym-
metry reduction or partial order reduction). On our security case study, the anima-
tion features uncovered various issues with earlier versions of the attack models of
Fig. 2.4. For example, the animator and model checker uncovered various unexpected
non-determinisms in the attack specification. We have also managed to replay a real
attack log, validating that attacks are indeed correctly detected. For this experiment,
we have written an ASTD which reads in a log file and replays the events in the file.
This ASTD is put into parallel with the attack model, and one can check whether
attacks are identified or not. The execution took 50 ms to process 300 events.

2.4.2 ASTD OCaml Interpreter
In [281], an initial development of an ASTD interpreter has been made for in-

formation systems. It has been extended to support new features for cyber attack
detection. The interpreter implements the operational semantics of ASTDs by com-
puting transition proofs. It executes an input attack specification on input sources
(i.e., packets, audit logs). Attack specifications are converted into a serialized for-
mat [312] before being sent to the interpreter. During execution, raw events from the
host or/and network are preprocessed into the enumerated form e(systime, eventid,
image, ...). The interpreter reads preprocessed events in offline mode (i.e., from a
file) or in real-time, and computes possible transitions of the specification. Actions
like alerts are displayed to the administrator. Hereafter, some alerts generated from
the iastd output during detection.
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Alert Port scan attack
Alert Metasploit privilege escalation

Alert File 'C:\\Users\\admin\\Desktop\\ZisUurWz.exe' attempted a suspi
cious connection to 192.168.1.129 on port 4444

Alert File 'C:\\ProgramData\\JAsIssEI\\EUgUgAYs.exe' attempted a suspi
cious connection to 172.217.3.206 on port 80

Several attacks like RAT, Ransomwares, and Lateral Movement have been specified
and executed using the interpreter 6.

2.5 Discussion and Conclusion
This paper proposes an extension of the ASTD notation with attributes, actions

and a new operator called flow. These extensions are particularly useful to model
cybersecurity attacks and are implemented in two interpreters, one in Prolog with
ProB, and the other in OCaml. ProB proved to be a useful addition, because it
gives us access to several model checking features already implemented, like refine-
ment checking, determinacy checking, temporal formula checking. However, these
interpreters are currently limited to primitive types integers and strings.

The algebraic nature of our approach is quite useful to explore several variants of
specification attacks. For instance, the specification of Fig. 2.4 triggers the exploit
phase detection when one ip address has been scanned. An alternative behaviour
is to trigger one exploit phase for each ip address scanned; it suffices to move the
sequence operator just after ASTD Recon, and remove the quantified interleave �
portsrc: string in ASTD Exploit. Another variant would be to use a synchronization �
instead of a sequence in RAT Network; this would enable to detect both port scans and
exploits concurrently. Making these changes in a model-based language like B, or in a
scripting language like Python, which is the common practice in security, would entail
several changes in the types of variables and the modification of preconditions and
postconditions in several operations, which is subtle and error-prone. The ability to
compose specifications relieves the specifier from this burden. The ASTD language
is accessible by users who are not necessarily experts and the attack detection is
automatically done by the interpreters. A script that reproduces the same behaviour
for attack detection, requires a huge case analysis on the content of the packet and
audit logs, something which is hard to code and maintain.

Our future work consists in building the ability to define complex types (e.g.,
Packet, Flow, Session, AuditLog) to handle the detection of more complex attacks.

6. The interpreter and results are available at https://depot.gril.usherbrooke.ca/
fram1801/iASTD-public.
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We plan to use ontologies to define these types and use them in various tools to
support our approach. Further experimentation will be conducted to handle more
complex attack specifications. If these are successful, we plan to develop an ASTD
compiler that will generate efficient code from ASTD specifications and use them
to detect intrusion in real environments. Quantified interleaves can be efficiently
executed in constant time or O(log(n)) when the quantification variable occurs in
each event, which is typically the case [99].
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Chapter 3

Détection d’intrusions avec les
ASTDs

Résumé

Dans cet article, nous montrons l’application des ASTD à la détection
d’intrusion. ASTD est une notation exécutable, modulaire et graphique qui
permet la composition de machines à états hiérarchiques avec des opérateurs
d’algèbre de processus pour modéliser des phases d’attaque complexes. Dans
l’ensemble, les spécifications d’attaque ASTD sont plus concises que celles
écrites dans le langage de Snort, Zeek et d’autres langages de la littéra-
ture. Pour la détection d’intrusion, iastd (l’interpréteur ASTD) et Zeek
ont fourni des résultats similaires. iastd a produit moins de faux posi-
tifs et un plus petit nombre de vrais positifs par attaque que Snort, ce qui
est un facteur important pour gérer d’énormes quantités d’événements. Le
temps de traitement de iastd sur le banc de test en temps réel est plus lent
que Snort et Zeek, mais il peut être amélioré en compilant les spécifications
ASTD dans des scripts Zeek.

Commentaires

La contribution ici réside dans l’élaboration d’une méthodologie de spéci-
fication d’attaques avec la notation étendue des ASTDs et la comparaison
de l’outil implémentant le langage avec des outils industriels tels que Snort
et Zeek. La notation étendue est plus modulaire, concise et réutilisable que
celles répertoriées dans la littérature. L’évaluation des outils est effectuée
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en temps réel et sur des ensembles de données existants. Plus de 65 at-
taques ont été simulées et spécifiées avec la notation en collaboration avec
Nokia Canada. Une vingtaine d’attaques a été spécifiée à partir d’énormes
ensembles de données réelles provenant du Centre de la Sécurité des Télé-
communications (CSE-CIC-IDS2018) et de l’Université Technique Tchèque
de Prague (CTU). Pour la corrélation d’événements, l’outil implémentant
l’approche a produit peu de fausses alertes et est plus précis que Snort et
Zeek [314].

Les contributions décrites dans ce chapitre ont fait l’objet d’un article
publié dans le cadre de la 34ième édition de la conférence internationale
AINA (International Conference on Advanced Information Networking and
Applications), de rang B, qui a eu lieu à Caserta, Italie, le 15 avril 2020.

Les contributions et l’article sus-cité ont été élaborées par mes soins en
tenant compte des remarques et commentaires issus de mon équipe d’encadrement.
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Abstract

In this chapter, we show the application of ASTDs to intrusion detection.
ASTD is an executable, modular and graphical notation that allows for the
composition of hierarchical state machines with process algebra operators to
model complex attack phases. Overall, ASTD attack specifications are more
concise than industrial tools like Snort, Zeek, and other attack languages in
the literature. For intrusion detection, iastd (the ASTD interpreter) and
Zeek provided similar results. iastd produced less false positives and a
smaller number of true positives per attack than Snort, which is an impor-
tant factor to deal with huge amounts of events. The processing time of
iastd on the real-time testbed is slower than Snort and Zeek, but it can be
improved by compiling ASTD specifications into Zeek scripts.

3.1 Introduction
In Security Operations Center (SOCs), several intrusion detection tools are placed

at different levels of the network to ensure the security and privacy of informa-
tion [313]. Snort [269], a widely used IDS, provides a low-level signature language to
express and detect multi-stage Advanced Persistent Threats (APT) attacks. Zeek [254]
was proposed to overcome some limitations of Snort by providing an event-driven
scripting language to precisely specify and identify APT attacks. The writing of
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3.1. Introduction

Zeek scripts is essentially programming using functions and global variables. Eck-
mann et al. [91] have proposed STATL, a stateful and domain-independent language
that allows a more abstract representation of attack scenarios than Snort and Zeek
using state machines with actions and state variables. Other attack languages like
LAMBDA [72] and Chronicle [226] have been proposed. LAMBDA [72] provides an
abstract description of an attack operation in terms of conditions and effects, ex-
pressed using predicates. Chronicle [226] reconstructs a state machine from event
patterns that can be ordered with timing constraints. Barringer et al. [27] have in-
troduced quantified event automata (QEA), in which universal and existential quan-
tification are used to quantify parameters of an automaton, allowing to replicate an
automaton and efficient execution.

In this chapter, we show the application of ASTDs to intrusion detection. ASTD
is an executable, modular and graphical notation that allows for the composition of
hierarchical state machines using process algebra operators such as flow, sequence,
quantified interleaving and parallel synchronization [102,236]. It allows one to capture
"big picture" of complex attacks by graphically specifying their behaviours in a mod-
ular fashion, defining complex relationships between events (i.e., event correlation)
to model and detect attack phases. ASTDs can be seen as extensions of STATL,
since state machines are elementary ASTDs. STATL does not compose state ma-
chines using process operators; thus it is less modular. ASTDs offer a more abstract
representation of attacks than LAMBDA, since the logical expressions of attacks are
low-level mechanisms to deal with APT attacks. ASTD operators can be encoded
into Chronicle, but at the expense of loosing abstraction and concision. Quantified
versions of synchronization and interleaving ASTDs [236] are generalisations of QEA’s
quantifications. These quantified versions provide the ability to replicate ASTDs and
index them with a quantified variable (e.g., address, port), which is necessary to
construct specifications which are more resilient to attack mutations and variants.

Our specification approach using ASTDs is based on attack pattern databases
like MITRE’s Common Attack Pattern Enumeration and Classification (CAPEC) 1
and ATT&CK (Adversarial Tactics, Techniques & Common Knowledge) [305]. We
propose to specify a case study of ransomwares with different Snort, Zeek, and ASTD
in the litterature to identify their weaknesses and strengths. The specification of
recent malwares including ransomwares has been conducted in collaboration with
Nokia Threat Intelligence Centre. The aim was to get feedbacks from cybersecurity
experts and improve the ASTD language for intrusion detection.

Among existing tools, we have selected IDSs like Snort and Zeek for comparison;
because they are widely used and well maintained by the cybersecurity community.
Tools related to other attack languages in the literature were either no longer available,

1. http://makingsecuritymeasurable.mitre.org/docs/capec-intro-handout.pdf
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Attack ID: 1
Name: Ransomware

CAPEC-ID : 98
Phishing
Severity: High

CAPEC-ID : 549 
Local exec. of Code
Severity: High

CAPEC-ID : 233 
Privilege Escalation
Severity: High

CAPEC-ID : 203  Manipulate 
Registry Information
Severity: Medium

ID: T1060
Name : Registry Run 
Key/Start Folder
Tactic: Persistence

ID: T1112
Name : Modify Registry 
Tactic: Defense Evasion

ID: T1053
Name : Scheduled Tasks 
Tactic: Execution/ 
Persistence /Privilege
Escalation

ID: T1068
Name : Exploitation for 
Privilege Escalation
Tactic: Privilege
Escalation

CAPEC-ID : 564 
Run Software at Logon
Severity: High

CAPEC-ID : 552  
Install Rootkit
Severity: High

Figure 3.1 – Ransomware attack pattern from CAPEC and ATT&CK

or deprecrated i.e. not able to run on current operating systems, or not working
operationally on real world environments (essentially worked on old datasets). Our
results show that the ASTD notation is more abstract, modular and concise than
Snort and Zeek, while achieving good performance on heterogeneous event sources,
thanks to its advanced event correlation capabilities [236]. Attack detection is done
by executing ASTD specifications on online and offline events using the iastd tool,
whose processing time is slower than Snort and Zeek, but it can be improved by
compiling ASTD specifications into Zeek scripts or other programming languages.

The rest of this paper is structured as follows. The methodology for ASTD attack
specification is described in Section 3.2. In Section 3.3, we present the specification
of a case study using Snort, Zeek, and ASTD. Section 3.4 describes the execution
of attack specifications by the tools. In Section 3.5, we compare and discuss the
results of the iastd tool against Snort and Zeek. Section 3.6 concludes with some
perspectives.

3.2 Attack Specification Methodology using ASTDs
CAPEC 2 is one of the most well-known attack pattern database. Cybersecurity

companies use it to figure out how cyber actors exploit weaknesses in applications
and platforms. Another interesting database is ATT&CK [305], which complements
CAPEC in providing more details about attacker actions and techniques. Attack
patterns are hierarchical descriptions: they are decomposed into phases, which are
further decomposed into steps. A step is realized using a combination of events.
A phase or a step may appear in several attack patterns, so there is an interest in
describing phases and steps independently and to compose them to build an attack
specification.

2. http://makingsecuritymeasurable.mitre.org/docs/capec-intro-handout.pdf
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ATTACK_1, 

Phase_98, Phase_549,

Step_552, Step_564,

A1 A2 A3

⋓
⋓*
* *

Step_T1112, Step_T1060,

A4 A5

⋓
* *

Phase_203,

Step_T1068, Step_T1053,

A6 A7

⋓
* *

Phase_233,

Figure 3.2 – ASTD specification of attack pattern of Fig. 3.1

The ASTD notation provides the necessary operators to construct modular formal
models of attack patterns. Each phase and step can be defined by its own ASTD,
properly encapsulated and parameterized, in order to allow its reuse in several at-
tack patterns. Attack patterns can be composed together to create a global ASTD
specification of an IDS.

To illustrate our approach, we show an attack pattern for ransomwares in Fig. 3.1,
extracted from CAPEC and ATT&CK. The pattern states that the attacker starts by
delivering an attached file to the victim machine through email phishing. The victim
downloads the malware by clicking on the malicious link in the email (CAPEC-98).
The malware locally executes and encrypts user files (CAPEC-549). It also modi-
fies the registry by adding an entry to the "run keys" in the registry to be persis-
tent (CAPEC-203). Concurrently, the malware spreads itself and executes malicious
scheduled tasks on the local or remote system (CAPEC-233).

Fig. 3.2 shows the top-level ASTD specification of the attack pattern of Fig. 3.1.
Attack phases and steps are composed using the flow operator d to execute them
in parallel. Phases are intuitively perceived as sequential, but in practice, they may
overlap, thus their composition is better represented by a flow. The Kleene closure
“?” allows iterating on each attack step as the attacker can execute the same step
several times. In each step, Ai (i ∈ 1..7) denotes a call to an ASTD which represents
the ASTD step, typically in terms of an automaton.
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3.3. Specification of a case study

3.3 Specification of a case study
We have specified more than 65 malware variants (including ransomwares) from

Nokia, targeting different operating system (Windows, Linux, Android, iOS) and 20
other malware variants from theZoo github project using the ASTD, Zeek, and Snort
languages. In this section, we specify a recent variant of ransomwares called Gand-
crab using ASTD, Snort, and Zeek. The specification of this variant in other attack
languages like STATL can be found on Git 3. Gandcrab can be resumed into 6 actions
(see Appendix A.1). In action 1, the attacker delivers an email containing an embed-
ded file. Once the victim runs the attached file, it downloads and executes Gandcrab
(action 2). In action 3, Gandcrab gets the IP address of the victim host by sending
a DNS request to the website ipv4bot.whatismyipaddress.com. In action 4, Gandcrab
replicates by creating a malicious file in the AppData folder (e.g., yxvace.exe). This
malicious file checks-in multiple command and control (C&C) sites using the com-
mand nslookup site name dns server. During C&C check-in, Gandcrab also sends a
HTTP GET request to its C&C site (action 5). Next, Gandcrab encrypts collected
data in action 3 and post it to the C&C server (action 6).

Actions 1 and 2 are done in phase CAPEC-98. The remainders are done in phase
CAPEC-549. Hereafter, we specify the Gandcrab case study using the Snort, Zeek
and ASTD languages in order to compare their weaknesses and strengths.

3.3.1 ASTD specification
As Gandcrab operates at both the host and the network levels, we build one attack

model for each and compose them using the flow operator, following the specification
methodology. In Fig. 3.3, the main ASTD Gandcrab Ransom is of type flow and
declares two variables v1 and v2, each of type boolean. These variables can be
modified by actions. Gandcrab Ransom composes phases Phishing (CAPEC-98) and
Exec Code (CAPEC-549) using the flow operator d.

The first phase (i.e., Phishing) is a quantified interleaving ASTD that allows de-
tecting the attacker’s action 2. Phishing and its nameless sub-ASTD (i.e., 9portsrc
:string) interleave instances of its sub-ASTD, indexed by variables ipsrc (source ad-
dress) and portsrc (source port). Its sub-ASTD is a nameless Kleene closure and it
is identified by ?. It allows iterating on an ASTD call that refers to the ASTD defi-
nition of Downld described in Fig. 3.3. Downld is an ASTD automaton that receives
parameters ipsrc, portsrc, v1, and v2 from its calling ASTDs. Being called within two
quantified interleaves, there is an instance of this automaton for each pair of values of
ipsrc and portsrc. The initial state 0 has an outgoing transition labeled by the event

3. https://depot.gril.usherbrooke.ca/fram1801/iASTD-public
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GrandCrab_Ransom,

⋑

|||ipsrc:string |||portsrc:stringPhishing , *

Downld (ipsrc, portsrc, v1, v2)

|||ipsrc:string |||portsrc:string

Exec_Code ,

Net_Exec_Code (ipsrc, portsrc, v1)

|||

* |||ip:string

Host_Exec_Code (ip, v2)

*

,  var v1, v2 :bool = false

0 1
e(?x0:HTTPSession)[g0]

Downld (ipsrc:string, portsrc:string, v1:bool, v2:bool), aut

/A0
2 3

e(?x3:HTTPSession)[g3]/A2

Net_Exec_Code(ipsrc:string, portsrc:string, v1:bool), aut

5

e(?x2:HTTPSession)[g2]e(?x1:DNSSession)[g1]

4
>

>

6

e(?x4:WinEvtLog)[g4]

>

Host_Exec_Code (ip:string, v2:bool), aut  

/A3e(?x6:WinEvtLog)[g6]

|||

7 

8

aut

9
e(?x7:WinEvtLog)[g7]

10

aut

e(?x5:WinEvtLog)[g5]

e(?x9:WinEvtLog)[g9]

12

aut

13

e(?x8:WinEvtLog)[g8]

11 
/A4

>
>

>

Figure 3.3 – Gandcrab crypto-worm specification

e(?x0:HTTPSession) and a guard [g0]. The local variable x0 has a user-defined type
HTTPSession. HTTPSession is described in an ontology to process multiple HTTP
sessions from the network traffic.

From the initial state 0, the transition executes action A0 (e.g., A0 = { v1 = true;
v2 = true;}) when the guard g0 is true. The guard g0 checks if HTTP sessions contain
signatures of the malicious file during downloading (e.g., GET /js/kukul.exe). When
transition 0→1 is executed, v1 and v2 take value true to notify other ASTDs that
the phishing phase is done. The second phase (i.e., Exec Code) interleaves two name-
less ASTDs. Each one respectively interleaves host and network events to identify
Gandcrab actions. The first one (i.e., 9ipsrc:string) and its nested component (i.e.,
9portsrc: string) allow multiple instances of the ASTD automaton Net Exec Code,
indexed by ipsrc and portsrc. Within Net Exec Code, the transition 2→3 tracks the
Gandcrab action 3 in the network traffic. Next, the transition 3→4 detects the Gand-
crab’s action 5 when g2 holds. From state 4, the transition 4→5 checks the malicious
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action 6. The action A2 (e.g., A2 = {if v1 then print "GandCrab CnC"; }) shows
an alert only if the phishing phase tooks place.

Concurrently, the transition 6→7 in ASTD Host Exec Code also tracks the Gand-
crab action 4 in host events. It is labeled by the event e(?x4:WinEvtLog) where x4
is a transition local variable of type WinEvtLog. Type WinEvtLog has a structure
similar to Windows event logs. The guard g4 is true when the Gandcrab file creates a
process that checks-in its C&C domains using the Windows command (e.g., nslookup
carder.bit ns1.wowservers.ru). Once g4 is true, the transition moves to the shallow
final state 7. The state 7 is a complex state (i.e., an interleaving ASTD) that com-
poses two ASTD automatons. Within the first automaton, the transition 8→9 checks
if the previous nslookup command successfully established a DNS connection to C&C
servers (e.g., ns1.wowservers.ru). Concurrently, the transition 10→11 detects when
the nslookup command process forks into another process svchost.exe to leak system
information over the open port 3389.

3.3.2 Snort specification
From the case study, we can deduce 4 detection signatures 4, each referring to

phases CAPEC-98 and CAPEC-549 (see Appendix A.2). These signatures are low-
level representations of transitions in ASTD automatons Downld and Net Exec Code
(see Fig. 3.3). For example, the following signature
alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Malicious Software Downloading";
flow:established, from_client; content:"GET"; http_method; content:".exe HTTP/1.";
fast_pattern:only; content:"Connection: Keep-Alive"; http_header; content:"Accept
|3a 20|";http_header;content:"User-Agent: Mozilla";http_header;content: "Host|3a|";
pcre:"/Host\x3a\x20(:?[0-9]{1,3}\.){3}[0-9]{1,3}/H"; reference: capec,CAPEC-98;
classtype:Downloader; sid:100000004; rev:1;)

detects the Gandcrab downloading through the attached file (i.e., Action 2). This
signature corresponds to the ASTD Downld. It targets the inbound HTTP traffic
($HOME NET ) directed to the C&C server ($EXTERNAL NET ). The clause any
means that the signature accepts all connection ports from the inbound traffic. Within
packet flows, it checks if the HTTP method is GET, the HTTP uri contains pattern
.exe HTTP/1., the HTTP connection is kept alive, the Accept header is used, the
user-agent is Mozilla and the Host header contains the ip address of the C&C server.
The unique pattern .exe HTTP/1. precisely characterizes the downloader trojan.

4. https://depot.gril.usherbrooke.ca/fram1801/iASTD-public
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3.3.3 Zeek specification
We have specified the Gandcrab phases using Zeek scripts and signatures 5. Zeek

signatures [254] do essentially pattern matching like Snort (see Appendix A.3). The
strength of Zeek is shown using Zeek scripts. The script below is a low-level represen-
tation of ASTD automatonsDownld (CAPEC-98) and Net Exec Code (CAPEC-549).

...
#BLOCK 0
export {

...
global v1: bool = F;
global v2: bool = F;
global state_downld: int = 0;
global state_net_exec_code: int = 2;
...

}
...
event http_request (c: connection, ...)
{
#BLOCK 1 (CAPEC-98)
local g0: bool = (c$http$method == "GET")
&& (/\/[a-z]+\.(bin|exe)/ in c$http$uri)
&& (/Mozilla/ in c$http$user_agent)
&& (/([0-9]{1,3}\.){3}[0-9]{1,3}/
in c$http$host);

if (state_downld == 0 && g0)
{

A0(v1, v2);
state_downld = 1;

}
#BLOCK 3 (CAPEC-549)
local g2: bool = (c$http$method=="GET")
&& (|c$http$uri| == 1)
&& (/[a-z]+\.(bit|ru)/ in c$http$host);

if (state_net_exec_code == 3 && g2)
{

state_net_exec_code = 4;
}
#BLOCK 4 (CAPEC-549)
local g3: bool=(c$http$method=="POST")
&& (/[a-z]+\.(bit|ru)/ in c$http$host)
&& (/Mozilla/ in c$http$user_agent);

if (state_net_exec_code == 4 && g3)
{

# Issue an alert
A1(v1, v2);
state_net_exec_code = 5;

}
} # end http_request

event dns_request (c: connection, ...)
{
#BLOCK 2 (CAPEC-549)
local g1: bool =(/\x00\x01\x00\x00/
in c$dns$query)
&& (/whatismyipaddress/
in c$dns$query);

if (state_net_exec_code == 2 && g1)
{

state_net_exec_code = 3;
}

} # end dns_request

Similar to ASTD Gandcrab Ransom, the header of the script contains two global
variables v1, v2 to notify that the downloading phase is done (see block 0). The
header also declares two state variables state downld and state net exec code for
maintaining states during the correlation. In the body of the script, we have two
Zeek event functions: event http request(c: connection, ...) and event dns request
(c: connection, ...). They respectively catch HTTP and DNS requests. Within the
http request event, the block 1 detects the Gandcrab’s action 2. The action function
A0 is executed to set variables v1 and v2 to true. Within the dns request event, the
block 2 targets action 3. Within the http request event, the block 3 detects action 5.
Next, the block 4 checks the malicious action 6.

5. https://depot.gril.usherbrooke.ca/fram1801/iASTD-public

127



3.4. Execution of attack specifications

3.4 Execution of attack specifications

The execution process of Snort signatures is described in [269], and Zeek scripts in
[254]. In Fig. 3.4, the ASTD-based detection process is shown. In a corporate network,
cyber-analysts specify attacks using the graphical editor eastd and following the
attack strategy methodology provided in 3.2. They also create new custom event
types (e.g., sFlow, DNP3 Session) using the ontology editor Protégé. These event
types are parsed into JSON to feed eastd and iastd

6. ASTD attack specifications
are saved in the local host in a specific repository, depending of the attack domain
(network, host, both). A watcher agent automatically synchonizes local specifications
and new event types to a remote network node, where iastd is installed. iastd has
five modules.

The capture module collects different event sources in offline and online mode.
In offline mode, it reads pcap files (option -pcap) and log files (option -i). Only log
files containing Windows/Syslog traces in the ontology format are recognized. The
attack specfication can be run from command line (e.g., ./iASTD -s my.spec -pcap
my.pcap), or in fully automated mode. In online mode, the capture module collects
network streams (HTTP sessions, DNS sessions, or custom sessions) from network in-
terfaces provided in a YAML configuration file. It also gathers Windows/Syslog event
streams on endpoints using the shipping agent hcap. The agent hcap is installed on
multiple endpoints, where it scans log files and sends real-time events to iastd on port
9092. The capture module also collects network flows/sessions from astd producer, a
shipping agent based on the rdkafka library. The agent astd consumer allows one to
consume Kafka events to feed iastd.

The decoding/encoding module essentially identifies which type of event stream
is being read (decoding) and structures it in the corresponding ontology format (en-
coding). The static analysis module is based on the Flex/Bison analyzer and it
checks if the input structured events and attack specifications are syntactically and
semantically corrects i.e., well parenthesized, structured and not containing unknown
keywords. Next, this module extracts the hierachichal structure of ASTD specifica-
tions and stores into ASTD objects. It also stores event contents into event objects.
Since transition actions contain executable code, they are compiled and linked at
runtime using the DynLink library. Next, they are loaded as plugin modules in the
execution engine at runtime for intrusion detection.

The execution engine runs ASTD objects on events using semantic rules. The
semantic rules for ASTDs are provided in [236]. The iastd detector can efficiently
execute ASTD specifications on event streams in n log m, where n is the size of the

6. The tools are available at https://depot.gril.usherbrooke.ca/fram1801/
iASTD-public
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3.5. Experiments

Figure 3.4 – ASTD-based detection process

ASTD specification and m the size of the quantification variable types [100]. Once
an attack behavior is detected, it executes real-time actions such as alerting, blocking
of a port, or dropping of a malicious traffic.

3.5 Experiments

We have selected two existing real-world datasets (i.e., CSE-CIC-IDS2018 [294]
and CTU [114]) and we have built a testbed close to a real world environment for
evaluation. CSE-CIC-IDS2018 [294] is a huge dataset of terabytes of packet captures
and audit traces (normal, attack), where 18 attacks were executed (including Gold-
enEye, HOIC DDoS HTTP, LOIC DDoS UDP, SQL Injection, XSS, FTP and SSH
BruteForcing) on the Amazon Web Service (AWS) platform. CTU [114] is a dataset
of gigabytes of botnet traffic (normal, background), where 7 botnets have been exe-
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cuted (Neris, Virut, Donbot, Sogou, Qvod, Rbot, NSIS.ay). For the real-time testbed,
20 attacks (including Gandcrab, TeslaCrypt, WannaCry and Petya) were specified in
the IDS tools and executed on the AWS platform.

3.5.1 Traffic and audit data generation
For the real-time testbed, we have selected 14 services to simulate random nor-

mal user and attacker behaviors including HTTP, HTTPS, SSH, SMTP, TELNET,
and FTP. Normal users perform benign activities including accessing HTTP/HTTPS
pages and sending/consulting emails. Concurrently, we semi-randomly run each at-
tack in different time frames to ensure that it is close to real-world attacks. This
means that attacker can repeat the same phase or the previous one in another phase
in different time intervals.

Hacker
R1 R2

Target 1 Target 2

Figure 3.5 – AWS Testbed

The simulation network consisted of 2 work groups, each connected through 2
router servers (i.e., R1 and R2 ), running on Ubuntu 16.04 (see Fig. 3.5). Each
work group had 2 local machines running on Windows 10. The first work group
(containing Target 1 ) had been patched with the latest Windows updates while the
second (containing Target 2 ) was running without Windows patches. The system
monitor (Sysmon) has been installed on Target 1 and Target 2 (see Appendix A.4).
Snort (version 2.9.15) and Zeek (version 3.0.0) were installed on R1 and controlled
the inbound traffic directed to the first work group. Kafka and iastd were installed
on R2 to collect and analyze Windows/Syslog events from work groups and router
servers.

The network infrastructure was built on Amazon Elastic Compute Cloud (Amazon
EC2) using T2 Small and Medium instances. The built-in network had a bandwidth
of 550 Mbits/s while all the aforementioned services were running.
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3.5.2 Results
We consider two metrics to compare the accuracy and performance of IDS tools:

detection rate (DR) and false positive rate (FPR). The detection rate (DR) is the
probability that the IDS outputs an alert when there is an intrusion. The false positive
rate (FPR) is the probability that the IDS outputs an alert although the behaviour
of the system is normal. These metrics are expressed of the form,

DR = TP
TP + FN

FPR = FP
FP + TN

where False Positive (FP) is the number of normal alerts misclassified as malicious,
True Positive (TP) is the number of malicious alerts correctly classified as malicious,
False Negative (FN) is the number of malicious alerts misclassified as normal, and
True Negative (TN) is the number of normal alerts correctly classified as normal.

Existing datasets. Results for CSE-CIC-IDS2018/CTU datasets and the real-time
testbed are reported in Table 3.1. The notation Zeek-sig/Zeek-script is used to dis-
tinguish results of two specification versions for Zeek. Zeek-sig denotes a specification
that uses only signatures while Zeek-script denotes a specification using scripts.

Table 3.1 – Evaluation of IDS tools
CSE-CIC
-IDS2018

Zeek-sig/Zeek-script Snort iastd
TP TN FP FN DR(%) FPR(%) TP TN FP FN DR(%) FPR(%) TP TN FP FN DR(%) FPR(%)

LOIC DDoS UDP 0/1 0/0 164/0 0/0 0/100 100/0 8904 4914 912 0 100 15.65 1 0 0 0 100 0
HOIC DDoS HTTP 0/1 0/0 289342/0 0/0 0/100 100/0 197 5071 755 0 100 13.31 1 0 0 0 100 0
SSH BruteForce 0/1 0/0 94216/0 0/0 0/100 100/0 67 94 0 0 100 0.00 1 0 0 0 100 0
FTP BruteForce 0/1 0/0 193392/0 0/0 0/100 100/0 3868 94 0 0 100 0.00 1 0 0 0 100 0
GoldenEye DoS 0/1 0/0 27751/0 0/0 0/100 100/0 1 96 8 0 100 7.84 1 0 0 0 100 0
Web BruteForce 71/1 0/0 0/0 0/0 100/100 0/0 3 2682 73 0 100 2.64 1 0 0 0 100 0
XSS BruteForce 19/1 0/0 0/0 0/0 100/100 0/0 1 2482 0 0 100 0.00 1 0 0 0 100 0
SQL Injection 15/1 0/0 0/0 0/0 100/100 0/0 2 2482 0 0 100 0.00 1 0 0 0 100 0
CTU
Neris 3/1 0/0 0/0 0/0 100/100 0/0 1 131 2 0 100 1.50 1 0 0 0 100 0
Rbot 2/1 0/0 0/0 0/0 100/100 0/0 10 5249 77 0 100 1.45 1 0 0 0 100 0
Rbot DoS 4/1 0/0 0/0 0/0 100/100 0/0 3 6684 20 0 100 0.30 1 0 0 0 100 0
Virut 2/1 0/0 0/0 0/0 100/100 0/0 1 11 0 0 100 0 1 0 0 0 100 0
Donbot 178/1 0/0 0/0 0/0 100/100 0/0 91 92 10 0 100 9.8 1 0 0 0 100 0
Sogou 2/1 0/0 0/0 0/0 100/100 0/0 1 15 0 0 100 0 1 0 0 0 100 0
qvod 2/1 0/0 0/0 0/0 100/100 0/0 2 501 36 0 100 6.7 1 0 0 0 100 0
NSIS.ay 3/1 0/0 0/0 0/0 100/100 0/0 3 97 0 0 100 0.00 1 0 0 0 100 0
Real-time
WannaCry 6/3 0/0 0/0 0/0 100/100 0/0 6 2434 58 0 100 2.32 2 0 0 0 100 0
Petya 13/4 0/0 0/0 0/0 100/100 0/0 22 1336 47 0 100 3.40 2 0 0 0 100 0
TeslaCrypt 4/1 0/0 0/0 0/0 100/100 0/0 8 20 0 0 100 0 2 0 0 0 100 0
Gandcrab 4/1 0/0 0/0 0/0 100/100 0/0 10 39 0 0 100 0 2 0 0 0 100 0
Normal 0/0 0/0 0/0 0/0 0/0 0/0 0 0 0 0 0 0 0 0 0 0 0 0

Overall, Zeek-script/Snort/iastd sucessfully detected CSE-CIC-IDS2018 and CTU
attacks with a DR of 100%. Zeek-script produced less TPs than Zeek-sig per attack
thanks to its correlation capabilities using global state variables. In Zeek-sig, we have
attempted to specify signatures for Distributed DoS (DDoS) and SSH/FTP Brute at-
tacks, essentially based on protocols and weak observed contents (e.g., GET / HTTP/1,
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User-Agent: Mozilla) that were not unique enough (FPR = 100%). In addition,
Zeek-sig detected SQL injection, XSS and Web BruteForce with a DR of 100%, be-
cause more precise and unique patterns were found (e.g., .php?id=3+, script\x25
\x33\x45).

Snort generated a significant FPR for LOIC DDoS UDP (15.65%) and HOIC
DDoS HTTP(13.31%). Since these attacks have not unique signatures (e.g., GET /)
, one must rely on the statistical distribution of packets per second. We have used
Snort features like threshold to reduce the number of alerts. Snort also generated a
significant number of TPs for LOIC DDoS UDP (8904), HOIC DDoS HTTP (197),
FTP BruteForce (3868), SSH BruteForce (67), and Donbot (91).

Overall, Zeek-script and iastd achieved better detection performance than Zeek-
sig and Snort with a high DR of 100% and no FP. The tools were able to correlate
multiple HTTP and DNS connections from CSE-CIC-IDS2018 and CTU attacks.
Real-time testbed. In Table 3.1, Zeek/Snort/iastd detected ransomware attacks
with a DR of 100%. Zeek-script produced less TPs than Zeek-sig and no FP for
WannaCry and Petya attacks. For Zeek-script, we got 3 TPs for WannaCry and
4 TPs for Petya using a behavioral analysis over SMB based on the entropy 7. In
addition, Zeek-script did not generated FPs on the normal traffic.

Like Zeek-sig, Snort matched network sessions only on a stream-by-stream basis
and generated redundant TPs per attack (e.g., 22 TPs for Petya). In addition, Snort
produced a significant FPR compared to Zeek-script and iastd for WannaCry and
Petya attacks (2.32% for WannaCry, 3.4% for Petya).

Oppositely to Snort and Zeek, iastd can correlate both network sessions and host
logs by generating no FP and 1 TP per attack for each environment (i.e., 1 TP for
host and 1 TP for network). Similar to Zeek and Snort, iastd did not generate FPs
on the normal traffic.

3.5.3 Discussion
Snort is a low level, stateless, event pattern language. Zeek is a scripting language

that is essentially a programming language. Its composition mechanisms are those of
imperative programming languages: procedural abstraction and programming com-
position using if-then-else, case analysis, and state variables. Creating Zeek script is
a daunting, complex and error-prone task. ASTD is a more abstract language. Its
state machines offer a graphical, deep representations of attack behavior and state
transitions. Its process algebra operators free the specifier from dealing with low
level composition of attack specification elements. An attack can be specified in a
modular fashion, following the natural language description of an attack’s structure

7. https://depot.gril.usherbrooke.ca/fram1801/iASTD-public
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into phases and steps. Attack specifications can be easily composed to create a global
IDS specification. Snort and Zeek signatures can be easily represented by ASTD
specifications using automatons and quantified interleaves.

Verification tools [236] can be used to check the correctness of ASTD specifications
and check properties about them. ASTDs are also extensible, portable and heteroge-
neous as they are domain-independent. This means that they can be executed in any
environment and on any source (e.g., network/host events, natural events). It is an
important factor to deal with complex attacks that operate on common networks but
also on cyber-physical systems. Snort and Zeek languages require additional updates
of the source code to be extended in new environments (e.g. host). In addition, Zeek
and Snort signatures refer to unique strings (e.g., GET /wordpress/?ARX8) that
can easily be changed by the attacker and make them obsolete. ASTD operators like
quantified interleaving allow one to abstract from a particular machine (ip address,
name) and to specify any ordering constraint, at any level of abstraction (e.g., ip,
host name, uuid, etc.) and in any combination.

Zeek is stateful using state variables and event functions. It can correlate multiple
network events and latterly host events after some manual updates of the source
code. Being abstract and domain-independent, the stateful language ASTD correlates
multiple diverse events in any environment, thanks to process algebra operators and
ontologies that are used on transitions of ASTD automata to structure the knowledge
about events. Snort cannot correlate different network connections (e.g., HTTP, DNS,
SSH). Snort features like flowbits can only handle packets within the same connection.

As measured in our experiments, Snort has a significant FPR and a high DR on
average. The processing time of Snort on the real-time testbed is also very low on
average (2.336s for 1Gb packets, 8.201s for 10Gb packets). Zeek-script has a very low
FPR and a high DR on average. Its processing time on the real-time testbed is low on
average (7.480s for 1Gb packets, 29.766s for 10Gb packets). iastd has a very low FPR
and a high DR average but its processing time on the real-time testbed is relatively
medium on average (20.184s for 1Gb packets, 96.778s for 10Gb packets). For network
intrusion detection, Snort is faster than Zeek and iastd since it matches each single
network connection without correlating them. Zeek can correlate multiple network
connections and it is faster than iastd. For network and host intrusion detection,
iastd was able to correlate both network connections and Windows/Syslog events
but the huge amount of events affected considerably the detection time (188.667s for
10Gb packets and 87 450 mixed Windows/Syslog events).

To improve the processing time of iastd for network detection, we are currently
working on translation rules to generate Zeek scripts from ASTD specifications 8.

8. The translation rules and the compiler are available at https://depot.gril.
usherbrooke.ca/lionel-tidjon/castd
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Hence, one could use the Zeek engine to run ASTD specifications on network event
streams. The Zeek scripts generated from ASTD specifications are as efficient as
manually written Zeek scripts. Another way is to generate Snort signatures from
ASTD specifications to process network events faster. This approach involves several
FPs due to the aforementioned limitations of Snort. Thus, it is not suitable for
network detection.

3.6 Conclusion
We have compared Zeek, Snort, and ASTD for intrusion detection. Snort is a

stateless language that offers very limited event correlation capabilities. Both Zeek
scripts and ASTD are stateful and thus better support event correlation. Conse-
quently, Snort produces more redundant true positives and false positives than Zeek
and ASTD. Zeek scripts and ASTD are equivalent in terms of detection and correla-
tion capabilities. However, Zeek being a scripting language, it is less abstract than
ASTD. Thanks to its process algebra composition operators, ASTD makes it easier
to create, reuse, compose and maintain attack specifications. Snort is the most effi-
cient IDS in terms of processing time because it does not support correlation. Zeek
is faster than iastd, but it should be possible to compile ASTD specifications into
Zeek scripts to execute ASTD specifications more efficiently while benefitting from
the features of the Zeek execution environment.
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Chapter 4

Compilation des ASTDs

Résumé

Le langage de spécification ASTD (Algebraic State-Transition Diagram)
est une notation graphique, exécutable, modulaire et indépendante du do-
maine qui permet la composition de machines à états hiérarchiques à l’aide
d’opérateurs d’algèbres de processus. Les spécifications ASTD peuvent être
exécutées sur un interpréteur appelé iASTD. Cependant, les performances
de l’iASTD sont considérablement affectées lors du traitement de spécifica-
tions ASTD de grandes tailles sur des flux d’événements volumineux. Dans
cet article, nous proposons une méthodologie qui génère du code exécutable
à partir des spécifications ASTD en utilisant des règles de traduction, via
un langage intermédiaire. Ces règles sont implémentées dans un outil appelé
cASTD qui génère des programmes en C++; des programmes dans d’autres
langages similaires comme Java pourraient également être générés à partir
du langage intermédiaire. L’exécution est plus rapide que iASTD et d’autres
outils comme Beepbeep v3 [319], Larva [68], et MonPoly [30].

Commentaires

La contribution ici réside dans la conception, l’implémentation, l’optimisation,
et l’évaluation d’un compilateur du langage ASTD vers les langages de pro-
grammation tels que C++ ou Java. Une syntaxe du langage intermédiaire
a été définie ainsi que les règles traduction des ASTDs vers le langage in-
termédiaire et du langage intermédiaire vers un langage de programmation
donnée. Le code généré a été optimisé avec l’élimination des calculs redon-
dants, des branchements inutiles et le support de la Kappa optimisation pour
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l’exécution efficiente des opérateurs quantifiés. Les programmes compilés ont
été comparés avec plusieurs outils de traitement de flux d’événements (i.e.,
iASTD, Beepbeep v3, Larva, MonPoly), sur des ensembles de données de
référence.

Les contributions décrites dans ce chapitre ont fait l’objet d’un journal
soumis dans la revue ACM Transactions on Programming Languages and
Systems.

Les contributions et l’article sus-cité ont été élaborées par mes soins en
tenant compte des remarques et commentaires issus de mon équipe d’encadrement.
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Abstract

Algebraic State-Transition Diagram (ASTD) is a domain-independent,
graphical, executable, and modular notation that allows for the composi-
tion of hierarchical state machines using process algebra operators. ASTD
specifications can be executed on an interpreter called iASTD. However,
the performance of iASTD is significantly affected when processing large
ASTD specifications on high throughput event streams. In this chapter, we
propose a methodology that generates executable code from ASTD speci-
fications using translation rules, through an intermediate language. These
rules are implemented in a tool called cASTD that generates programs in
C++; programs in other similar languages like Java could also be generated
from the intermediate language. The execution is faster than iASTD and
other runtime tools like Beepbeep v3, Larva, MonPoly.

4.1 Introduction
An Information System (IS) is composed of a collection of processes. A process

run consists of a sequence of system states or events with a priori total ordering [188].
This sequence of events is also called a trace. A run of a system can be considered
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as an infinite trace [193] while an execution of a system is a finite trace i.e. a finite
frame of a run. Runtime monitoring is the process of checking a property on a
trace [28]. A property defines a language over traces. A decision for the property is
made after executing traces by a device called monitor. An online monitoring consists
in executing traces efficiently and in a continuous manner. The process of executing
a property on finite or recorded traces is called offline monitoring.

Algebraic State-Transition Diagram (ASTD) is a modular, domain-independent,
executable, and graphical notation that was introduced to extend statecharts (i.e.
hierarchical state machines) with process algebra operators such as choice, sequence,
parameterized synchronization, and quantified interleaving [103,237]. It allows one to
capture an holistic view of activities on the monitored system and to define complex
relationships between events (e.g. event correlation). In addition, ASTD allows for
formal proof and verification of specifications by translating them into B/Event-B as
described in [105, 220]. In [237, 315], ASTDs have been used to check cyber-attack
behaviours over offline and online event traces.

ASTDs are supported by a graphical editor called eASTD and an interpreter called
iASTD for execution [315]. The performance of iASTD is considerably affected when
processing large ASTD specifications on big heterogeneous event streams [315]. In
this chapter, we propose a methodology to compile ASTD specifications into an Inter-
mediate Language (IL) that can be translated into high-level programming languages,
like C++ or Java, and optimized to improve execution efficiency. The translated code
is later compiled into monitoring programs using native compilers (e.g., GCC, JIT).
The methodology is implemented in a tool called cASTD (see Fig. 4.1).

ASTD 
spec

ASTD 
Parser

ASTD 
Object
model

ASTD 
Compiler

Syntax-
Independent
Executable 

model

ASTD 
Translator

Executable 
Program in 
a specific 
language

Input

Output

Intermediate
Model
(IM)

IM

Figure 4.1 – Compilation methodology

We have compared the execution time of ASTD specifications with cASTD and
iASTD on large specifications and large event streams. We have also compared

138



4.2. Introduction to ASTDs

cASTD and iASTD with other runtime verification tools (Beepbeep v3, MonPoly).
cASTD provides a 10x performance improvement over iASTD and other tools.

The rest of this paper is structured as follows. Section 4.2 presents an introduction
to ASTDs. The methodology on the compilation of ASTD specifications conventional
imperative languages is described in Section 4.3. Section 4.4 shows an implementation
of the methodology through the tool cASTD. In Section 4.5, we present existing
runtime monitoring work and tools that will be compared to cASTD in terms of
performance. The evaluation of generated code efficiency for cASTD and existing
tools is described in Section 4.6. In Section 4.7, we conclude with some perspectives.

4.2 Introduction to ASTDs
The ASTD notation [237, 312] allows for the composition of automata using op-

erators sequence, choice, Kleene closure, guard, parameterized synchronization, flow
(the AND states of Statecharts) and quantified versions of parameterized synchro-
nization and choice. Each ASTD operator defines an ASTD type that can be applied
to sub-ASTDs of any type. Elementary ASTDs are defined using automata. Au-
tomaton states can either be elementary or composite; a composite state can be of
any ASTD type. In comparison, Statecharts only allow for composite states of type
OR or AND. ASTD types share common properties which are represented in the
abstract type ASTD, and from which all other ASTD types inherit. ASTD supports
the declaration of attributes (i.e., state variables) and actions that can modify these
attributes when a transition is executed. Attributes can be locally declared within
each ASTD. Actions are declared on automaton states, automaton transitions, and
at the level of an ASTD itself for execution on all of its transitions. An ASTD can
also have parameters to be called from another ASTD.

4.2.1 A Simple Example
Fig. 4.2(a) describes an ASTD A of type flow (d). This flow operator combines

two sub-ASTDs B and E as follows. When an event is received, both B and E try
to execute it, independently. If they succeed, they each make an internal transition,
irrespective of the capability of the other (ie, there is no synchronisation between B
and E). This operator is similar to an AND state in Statecharts.

ASTD B is a quantified interleave (9). It declares a read-only quantified variable
u and it instantiates its sub-ASTD C for each possible value vi of u in T, i.e.,

B = 9u : T : C = [u := v1] C 9 . . . 9 [u := vn] C
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B, ⫴ u : T, var x : int = 0 { x := x+1}

1
a(u) [u < 10] / { z2 := z2 + 1}

2

C, *,   var y : int = 0    { y := y+1 }

D,    var z1,z2 : int = 0   {z1 := z1 + 1}

b(u)

E,    var z3 : int = 0

A, ⋓

3 a(?v : int) [ v >= 10 ] / { z3 := z3 + 1}

T = {1, 2, 3, 4}

(a)
u=1 u=2

Event x y z1 z2 y z1 z2 z3
0 Init. 0 0 0 0 0 0 0 0
1 a(1) 1 1 1 1
2 b(2)
3 b(1) 2 2 2
4 a(1) 3 3 3 2
5 a(2) 4 1 1 1
6 a(1) 5 4 1 1
7 b(1) 6 5 2
8 b(2) 7 2 2
9 a(10) 1

(b)

Figure 4.2 – Example of ASTD specification and execution trace
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These instances execute in interleaving. Basic types (integer and string) and user-
defined types can be used for typing variables. ASTD B declares an attribute (i.e., a
state variable) x of type integer which is initialized to 0. It also declares an action x
:= x+1, which is executed for each transition of B. Thus, the value of x denotes the
number of transitions that B has executed.

ASTD C is a Kleene closure. It iterates on its sub-ASTD D, which is an au-
tomaton. ASTD C can start a new execution of D (i.e., restart D from its initial
state) whenever D is in a final state. ASTD C declares an attribute y, and an action
y := y+1. Since y is declared within a quantified interleave, there is a copy of y for
each value of u. Thus, y denotes the number of transitions for each instance of C.

The initial state of automaton D is 1. This automaton declares two attributes
z1 and z2. A transition of an automaton has the following form: σ(p1, . . . , pn) [g] /
act, where σ is an event label, each pi is either a variable, a constant or the wild-
card “ ”, which accepts any value. When an event e(v1, . . . , vn) is received by D, the
current state of D is checked to see if a transition labelled with e exists and whether
p1, . . . , pn verify the equality (v1, . . . , vn) = [Γ](p1, . . . , pn) an execution environment
which contains the current value of enclosing variables (i.e., ASTD parameters, at-
tributes and quantification variables). If so, the guard g of the transition is checked;
if it is satisfied, the transition is triggered and the transition action act is executed.
If no transition can be triggered in each automaton of the ASTD, then the event is
ignored, and the next event in the input stream is processed. If several transitions
can be triggered, one is non-deterministically chosen.

The transition from State 1 to State 2 is labelled by event a(u). Recall that u
is a quantified variable, thus it has been instantiated with a concrete value in each
instance of C. The transition includes a guard u < 10 and an action z2 := z2 + 1 .
State 2 is a final state. Attribute z1 denotes the number of transitions in the current
iteration of the Kleene closure C, whereas y denotes the total number of transitions
for C. The guard u < 10 entails that all events a(v) and b(v) such that v ≥ 10 will
be ignored by B. Attribute z2 denotes the number of transitions on a in the current
iteration of the Kleene closure.

ASTD E is also an automaton with attribute z3. Its only transition is labeled by
event a(?v : int), which declares a local variable v of type int. Such a declaration
matches any value for v; the scope of v is the transition itself (ie, guard and action,
in read-only). It also includes a guard v ≥ 10, such that E only processes events that
B cannot process. Attribute z3 counts the number of events a(v) such that v ≥ 10.

Fig. 4.2(b) describes an example of execution of ASTD A with the value of ASTD
attributes. Only the active instances of C are illustrated, the others being at their
initial value. An empty cell means no change to the value. First, the ASTD states
and attributes are initialized on Line 0. ASTD A accepts the first input a(1) on Line
1; it is executed on instance u = 1 of C. The second input b(2) is rejected, because
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it can only be accepted by instance u = 2 of C, but this instance is still in its initial
state, since a(2) has not been received yet. All the subsequent inputs are accepted.
On Line 6, note that a new iteration has started for instance u = 1 of C. Indeed, the
automaton D is in State 2, after accepting a(1) on Line 4. In State 2, D cannot accept
a(1), but since State 2 is final, the Kleene closure of C can start a new iteration in
State 1 and accept a(1); all attributes of D are re-initialized when starting a new
iteration.

4.2.2 ASTD Abstract Syntax
The abstract syntax of the ASTD is defined in [187, 237]. We provide here a

subset of this syntax, for illustration purposes. As stated earlier, each ASTD type
inherits from an abstract type ASTD which introduces properties shared by all ASTD
type (see Sect. 2.2). Automatons are elementary ASTDs. An ASTD can be unary
or binary. Unary ASTDs consist of Kleene, guard, quantified choice, and quanti-
fied synchronization [312]. Binary ASTDs consist of choice, flow and parameterized
synchronization [312]. The abstract representation of an ASTD has the following
structure ASTD

∆= 〈name, P,Attr, Actastd〉, where name is the name of the ASTD,
P is an optional list of parameters, Attr is a list of attributes, Actastd is an action.
Parameters P are used to receive values passed by a calling ASTD; they can be read-
only or read-write. Attributes Attr are state variables that can be modified by actions
within the scope of the ASTD and read in guards. Attr is a list of attributes v of the
form 〈name, T, init〉, where T is the type of v and init its initial value. Quantified
variables are of the form 〈name, T 〉 and they read-only; they can not be modified by
actions.

4.3 Methodology
In this section, we describe the compilation methodology of ASTD specifications

into several programming languages. It is divided into 4 steps: parsing, translation
from the ASTD language to the Intermediate Model (IM), translation from the IM
model to the target code, and code optimization (see Fig. 4.1). The first compo-
nent reads an ASTD specification in JSON and produces an ASTD object model.
The second one generates a program represented into an intermediate language. The
last one translates an intermediate model of the program into a concrete program-
ming language like C++ or Java. Several optimizations such as removing redundant
calculations are applied to the output code during generation of the program.
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4.3.1 Translation of ASTDs into an Intermediate Model
This step consists in encoding an ASTD meta-model into a model written into an

intermediate language (IL). We first define the syntax of the IL language. Next, we
describe formal translation rules to produce the IL model conforming to the meta-
model.

4.3.1.1 The Intermediate Language

The intermediate language (IL) is a simple programming language which can be
translated into conventional programming languages like C++ or Java. A model
written into the IL language has a name, a set of variable declarations, and a set of
functions.

Syntax. The grammar of the IL language is provided in Fig. 4.3, with the usual
grammatical operators “|” (choice), “J K” (optional), “+” (at least one) and “*” (zero
or some), with comma separated occurrences for “+” and “*”. IL language keywords
are in roman bold, and lexical elements like identifiers are in sans serif.

The IL model consists of three sets of declarations: types, variables, and functions.
The type declarations are similar to structures in C (i.e., record). We also use the
sum operator “⊕” which denotes the sum of two types (i.e., variant records) The
functions are of the form 〈name, params, type, block〉, where name is the identifier,
params is an optional list of input parameters, type is an optional return type and
block is the body of the function. The body is composed of a list of statements.

The conditional statement if C1 → S1, . . . , Cn → Sn fi is used instead of
if C1 then S1 else if C2 then S2 . . . end to simplify the representation of complex
ASTD cases. The if -fi statement is Dijkstra’s selection statement; we have added the
optional case else → Statement, which is an abbreviation for not (C1 or C2 ... Cn).
An if -fi statement aborts when the else is absent and none of the conditions holds.
The call 〈name, callparams〉 allows to invoke the function name with optional param-
eters callparams. Test operator like or, and, not, eq and neq denote usual Boolean
operators. Other operators like exists are used to check whether there exists a value
for a variable from a given set that satisfies a given condition, and forall, that checks
whether a condition is satisfied for all values of a set.

4.3.1.2 The Structure of the Generated Programs

The translation algorithm is based on the following four translation functions:
— τtype(A) generates the type and constant declarations needed to represent the

state of ASTD A;
— ι(A) generate the initialization statements for the state of ASTD A;
— φ(A) generates a condition that determines if the current state of A is final;
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ILModel ::= identifier Body

Body ::= begin Decl∗ Function∗ end
Decl ::= TypeDecl | V arDecl

TypeDecl ::= def type identifier = record { V arType+ }
Function ::= identifier (V arType∗) Type FuncBlock

| identifier (V arType∗) FuncBlock
FuncBlock ::= begin Statement∗ end
Statement ::= V arDecl

| if BlockIf fi
| while Condition do Statement endwhile
| for Condition do Statement endfor
| Identifier := Expression

| Call
V arDecl ::= var V arDecl′ | const V ardecl′

V arDecl′ ::= V arType | V arType = V alue

V arType ::= identifier : Type

Type ::= identifier | identifier ⊕ identifier

V alue ::= number | string | jsonObject

BlockIf ::= Condition → Statement

| Condition → Statement [] BlockIf
| Condition → Statement [] else → Statement

Condition ::= PredCond | Boolean
PredCond ::= (and Condition+)

| (or Condition+)
| (not Condition)
| (TestOperator Expression+)

Expression ::= (NumOperator Expression+)
| Call | Number | Boolean | identifier

Call ::= identifier (identifier∗)
NumOperator ::= + | − | \ | ∗
TestOperator ::= eq | neq | leq | geq | lt | gt | in | exists | forall

Boolean := true | false

Figure 4.3 – The grammar of the intermediate language
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— τevent(σ,A) generates the body of a function that determines if an event of
label σ can be executed by A, and updates the state of the ASTD if so.

The generated program contains a single global variable, called ts A of type
TState A. The type of this variable is generated by function τtype(A). Function
main of the generated program has the following form.

main(P ) ∆= (4.1)

begin

ι(A); (4.2)

while true do

e := read event(src);

if (4.3)

J [] (eq e.label σ) → σ(e.P ) Kσ ∈ ΣA (4.4)

[] else msg("Event is not recognized") (4.5)

fi

endwhile

end

Symbol P on Line (4.1) denotes the parameters of main and it consists of the pa-
rameters of ASTD A. On Line (4.2), the state of the ASTD is initialized. Then,
the program loops indefinitely to read events e from an external source and calls a
specific function σ(P ) for each event of label σ. The if statement on Line (4.3) sim-
ulates a case statement that calls the function matching event label σ. If there is no
match for event e, then an error message "Event is not recognized" is thrown on Line
(4.5). The notation J � E(i) Ki∈{v1...,vk} used on Line (4.4) denotes the expression
E(v1)� . . .�E(vk), assuming some ordering on the values vi when necessary. We use
it to denote a list of statements or other declarations like if -fi statement. Symbol �
denotes either an operator or a separator like “[]”.

Function σ(P ), that processes events of label σ, has the following structure.

σ (P ) ∆= τevent(σ,A)
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Its body has the following form:

τevent(σ,A) ∆=
if C1 → Act1

[] ...
[] Cn → Actn

[] else → msg("Event not executable")
fi

where Ci are conditions and Acti are actions. We define Cond(τevent(σ,A)) as the
disjunction of all conditions in τevent(σ,A), i.e.,

Cond(τevent(σ,A)) = (or C1 ... Cn)

In our translation rules, we often use variables (e.g., A) to denote some element of
the ASTD metamodel. We sometimes use the value of A to construct an identifier in
the generated program. For instance, we define an identifier TState A in the generated
program that represents the type for the state of an ASTD A. For the sake of clarity,
we have to distinguish two cases: i) “A” that appears as a letter in a symbol, and
ii) “A” as a variable whose value is used to construct an identifier. We use $A to
denote the latter case. For instance, we write TState $A to construct an identifier
that includes the name of ASTD A as its suffix.

4.3.1.3 Translation rules of each ASTD Type

In this section, we describe the translation rules for the most significant ASTD
types.

Automaton ASTD. Let A be an automaton ASTD. Recall that A has the follow-
ing structure:

〈aut,Σ, S, ζ, ν, δ, SF,DF, n0〉
Σ is the alphabet. S is the set of state names of the automaton. Special state
names H and H∗ respectively denote shallow and deep history states of Statecharts.
ζ ∈ S → 〈Actin, Actout, Actstay〉 maps each state name to its actions: Actin is executed
when a transition enters the state; Actout is executed when a transition leaves the
state; Actstay is executed when a transition loops on the state or is executed within
the state. ν ∈ S → ASTD maps each state to its sub-ASTD, which can be elementary
(noted elem) or composite. An automaton transition from n1 to n2 labelled with
σ[g]/Acttr is represented in the transition relation δ as follows:

(η, σ, g, Acttr, final?)
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Symbol η denotes the arrow. There are three types of arrows: 〈loc, n1, n2〉 denotes a
local transition from n1 to n2, 〈tsub, n1, n2, n2[〉 denotes a transition from n1 to sub-
state n2[ of n2 such that n2[ ∈ ν(n2).S, and 〈fsub, n1, n1[ , n2〉 denotes a transition from
sub-state n1[ of n1 to n2 such that n1[ ∈ ν(n1).S. Symbol final? is a Boolean. When
final? = true, the source of the transition is decorated with a bullet (i.e, •); it indicates
that the transition can be fired only if n1 is final. SF ⊆ S is the set of shallow final
states, while DF ⊆ S denotes the set of deep final states, with DF ∩SF = ∅. n0 ∈ S
is the name of the initial state.

The state of an automaton is a structure of type 〈aut◦, n, E, h, s〉. aut◦ is the con-
structor of the automaton state. n ∈ S denotes the current state of the automaton.
E contains the values of the automaton attributes. h ∈ S 7→ States is the history
function that records the last visited sub-state of a state. s ∈ States is state of the
sub-ASTD of n, when n is a composite state; s = elem when n is elementary.

State and Attributes. Let Sc denote the set of composite states of automaton A.
The types generated for automaton A are defined as follows:

τtype(A) ∆= def type TState $A = record {
autState : AutState,

J, v.name : v.T Kv ∈ A.Attr (4.6)
ts : TStateComposite $A if Sc 6= ∅
hState : Map<AutState, TStateComposite $A>, if ∃n ∈ Sc that contains

}; an history state
const shallow final $A : Set<AutState> = A.SF ; if A.SF 6= ∅
const deep final $A : Set<AutState> = A.DF ; if A.DF 6= ∅
J; τtype(A.ν(n))Kn ∈ Sc (4.7)

Variable autState stores the name of the current state of A; its type AutState is an
enumeration of the element of A.S. On Line (4.6), the list of attribute declarations is
generated. Variable ts holds the state of the current composite state, when applicable;
its type TStateComposite $A is the sum of the types of the composite states, and it is
defined as J ⊕ TState $n Kn ∈ Sc . Variable hState is a map that represents the history
states. It is generated when at least one composite state contains an history state. Its
domain contains only the composite state that contains an history state. Constant
shallow final $A is the set A.SF of shallow final states of A and deep final $A is the
set A.DF of deep final states of A. On Line (4.7), the types of the composite states
are generated.
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Since the type generated for the state of ASTD A is a nesting of the types of its
sub-ASTDs states, each reference to a field of a sub-ASTD state must be prefixed
with the enclosing ASTD state. For instance, if ASTD A1 has a sub-ASTD A2 with
attribute x, then a reference to x must be prefixed by ts A1.ts.x . We define function
λ for generating these prefixes. Let parent be a partial function that returns the
immediate parent of an ASTD. The function λ is defined as follows:

λ(A) =


ts $A, if A is the root
λ(parent(A)) . cast(TState $A, ts), else if ts is of type sum in parent(A)
λ(parent(A)) . ts, otherwise

where cast(T, x) is a cast expression that returns the variable x with type T . In
Fig. 4.2, the flow A is the root; then λ(A) = ts A. To access properties of the
quantified interleaving B, the prefix is λ(B) = λ(A).ts = ts A.ts. The automaton D
has no composite states (i.e., Sc = ∅) then no cast is applied. For example, suppose
that state 1 and 2 are composite states, and we wanted to access some attribute x of
state 2. The type of ts in the state of D is the sum TState 1 ⊕ TState 2. The prefix
of x would be given by λ(2) = λ(D).cast(TState 2, ts).

Let Sch be the set of composite states that include an history state. For an ASTD
automaton, the initialization function ι(A) is computed as follows:

ι(A) ∆= λ(A).autState := A.n0;

J; λ(A).v.name := v.initKv ∈ A.Attr

J; λ(A).hState(n) := i(A.ν(n))Kn ∈ Sch

ι(A.ν(A.n0)) if n0 is composite

It initializes the attributes of A, the history states with the initial state of the cor-
responding sub-ASTD, and the initial state of A. The final state function φ(A) is
computed as follows:

φ(A) ∆= (or (in λ(A).autState shallow final $A)
(and (in λ(A).autState deep final $A)

φ(A.ν(λ(A).autState)) ) )

Function φ(A) checks whether A is in a shallow final state or a deep final state.
The operation (in c X) checks if the element c in the set X. For a deep final state, φ( )
is recursively called to determine if the sub-state is also final. For sake of concision
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Figure 4.4 – Six cases of transitions in automata

and simplicity, we will omit prefix “λ(A).′′ in the definitions in the sequel, as it is
easy to determine when it should be used (i.e., whenever we refer to a field of a state).

Event. The translation of events for an automaton is one of the most complex
cases, because the automaton notation is very rich. The semantics of automaton
transitions is defined using 6 inferences rules [312] which are quite complex. We will
provide the intuition of the semantics to describe and justify the translation; the
reader is referred to [312] for the formal semantics of automaton behaviour. Fig. 4.4
illustrates the 6 cases of transition.

Let Tσ ⊆ A.δ be the set of transitions labelled with σ. Let Ct be an activation
condition for the transition t ∈ Tσ, Ht be the statement to update the history state, Ωt

be the compositions of actions defined on automaton states and the ASTD itself, and
Tt be the statements for updating the state name and its sub-ASTD. The translation
of an event of label σ is computed as follows.

τevent(σ,A) ∆= if
J Ct → Ωt ; Tt Kt ∈ Tσ (4.8)

[] J (and (eq autState n)
Cond(τevent(σ,A.ν(n)))→ τevent(σ,A.ν(n)) Kn ∈ Sc (4.9)

fi

The statements generated at Line (4.8) define the execution of transitions t labeled
by σ for one of the first five cases of Fig. 4.4. The statements generated at Line (4.9)
define the execution of a transition within a composite state n of the automaton,
which corresponds to Case 6 in Fig. 4.4.

The condition Ct and the statements 〈Ωt; Tt〉 differ according to the type of the
arrow of the transition t (local, to sub-state, to shallow history state H, and to deep
history state H*, and from sub-state). The values of Ct, Tt, and Ωt are computed as
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Table 4.1 – Definition of Ct, Tt, Ωt, Ht

Type Ct Tt Ωt Ht

〈loc, n1, n2〉 Cloc Tloc Ωloc H
〈tsub, n1, n2, n2[〉,
with n2[ /∈ {H,H∗}

Cloc Ttosub Ωtsub H

〈tsub, n1, n2, H〉 Cloc Ttosubh Ωtosubh H
〈tsub, n1, n2, H

∗〉 Cloc T ′tosubh Ωtosubh H
〈fsub, n1, n1[ , n2〉 Cfsub Tloc Ωfsub H

follows; the computation of transition guards and final transitions will be described
in the subsequent paragraph, as a modification of Ct.

Cloc = (eq autState n1)
Cfsub = (and (eq autState n1) (eq cast(TState $n1 , ts).autState n1[

))
Tloc = autState := n2; ι(A.ν(n2))
Ttosub = autState := n2; ι(A.ν(n2));

cast(TState $n2 , ts).autState := n2[
; ι(A.ν(n2).ν(n2[

))
Ttosubh = autState := n2; ι(A.ν(n2).ν(n2[

)) with n2[
= α(h(n2))

T ′tosubh = autState := n2; cast(TState $n2 , ts) := hState(n2)
Ωloc = H; t.Acttr; A.ζ(n1).Actstay; A.Actastd if n1 = n2

= H; A.ζ(n1).Actout; t.Acttr; A.ζ(n2).Actin; A.Actastd else
Ωtsub = H; t.Acttr; A.ζ(n1).Actstay; ι(A.ν(n2)); if n1 = n2

A.ν(n2).ζ(n2[
).Actin; A.ν(n2).Actastd; A.Astdastd

= H; A.ζ(n1).Actout; t.Acttr; A.ζ(n2).Actin; ι(A.ν(n2)); else
A.ν(n2).ζ(n2[

).Actin; A.ν(n2).Actastd; A.Actastd

Ωtsubh = H; A.ζ(n1).Actout; t.Acttr; A.ζ(n2).Actin;
A.ν(n2).ζ(n2[

).Actin; A.ν(n2).Actastd; A.Actastd

Ωfsub = A.ν(n1).ζ(n1[
).Actout; A.ν(n1).Actastd; H;

A.ζ(n1).Actout; t.Acttr; A.ζ(n2).Actin; A.Actastd

H = hState(n1) := ts

where α(•) returns the name of the composite state •. When t is local, a transition is
made from state n1 to state n2 when Cloc holds. Then, the action 〈Ωloc; Tloc〉 is exe-
cuted. Two cases have to be considered. When n1 = n2, the stay code A.ζ(n1).Actstay
should be included in 〈Ωloc; Tloc〉 since we loop over state n1. The global action of
A.Actastd is also called on all transitions of A, as the last step. When n1 6= n2, we
leave state n1 (triggering the exit code A.ζ(n1).Actout), execute the transition action
t.Acttr, and enter in the next state n2 (triggering the entry code A.ζ(n2).Actin). The
other cases of Ct and Ωt follow a similar pattern, depending on their semantics defined
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in the inference rules 1.
The value of Ct must be adjusted when the transition t has a guard, when it is

final and to cater for the value of t’s parameters, which acts like pattern matching.
For the sake of simplicity, we describe these modifications to Ct using the notation

Ct ← (... Ct ...)

When transition t has a guard g, the guard is added to Ct, i.e.,

Ct ← (and Ct g)

When transition t is final, the value φ(A.ν(n1)) is added to Ct, i.e.,

Ct ← (and Ct φ(A.ν(n1)))

When transition t is annotated with an event pattern σ(z1, ..., zn), the condition Cpat
is added to Ct, i.e.,

Ct ← (and Ct Cpat)

where Cpat = (and Cp1,z1 Cp2,z2 .... Cpn,zn), pi is the parameter of the function pro-
cessing event σ. zi can be one of the following:

1. an expression constructed using identifiers available in that scope, or constants.
The equality Cpi,zi = (eq pi zi) is generated.

2. ?x : T : this declares a new variable x whose scope is just the transition t.
In that case, no condition is generated; the occurrences of x elsewhere in the
transition are replaced with pi (i.e., in the guard and in the action).

Example. Let us consider the automaton ASTDs D and E (see Fig. 4.2). The
translation of variables and types is computed as follows,

1. https://depot.gril.usherbrooke.ca/lionel-tidjon/astd-tech-report26

151



4.3. Methodology

τtype(D) ∆= def type TState D = record {
z1 : int,
z2 : int,
autState : AutState

};
const shallow final D : Set<AutState> = {2};

τtype(E) ∆= def type TState E = record {
z3 : int,
autState : AutState

};

where AutState = {1, 2, 3}. The event a appears on local transitions 1→ 2 and 3→ 3.
There is no history state in TState D because D has none. The body of the event
function a(p1 : int) in D is defined by

τa(D) ∆= if C1→2 → Ω1→2 ; T1→2 fi

where

C1→2 = (and (eq autState 1) (and (u < 10) (eq p1 u)))
Ω1→2 = {z2 := z2 + 1; z1 := z1 + 1}
T1→2 = {autState := 2}

The body of a(p1 : int) in E is given by

τa(E) ∆= if C3→3 → Ω3→3 ; T3→3 fi

For the transition 3→ 3, we have

C3→3 = (and (eq (autState 2) (u >= 10))
Ω3→3 = {z3 := z3 + 1}
T3→3 = {autState := 2}
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Kleene ASTD. Let A be a Kleene ASTD [312]. Recall that A has the following
structure:

〈?, b〉

where b ∈ ASTD is the body of the closure. The type of a closure state is 〈?◦, E, started?, s〉
where s ∈ States, E denotes the attribute values of the closure ASTD, and started? ∈
Boolean indicates whether the first iteration has been started.

State and Attributes. The types generated for kleene A are defined as follows:

τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

kleeneState : KleeneState,

ts $b : TState $b
};
τtype(A.b)

where TState $A holds the attributes of A and the state of the body A.b. The variable
kleeneState of type KleeneState = {started, notstarted} stores the current state of A.
τtype(A.b) returns the translation of types and attributes of the body A.b.
ι(A) and φ(A) are computed as follows,

ι(A) ∆= kleeneState := notstarted;

J; $v.name := $v.initKv ∈ A.Attr

ι(A.b)

φ(A) ∆= (or (eq kleeneState notstarted) φ(A.b))

After calling ι(A), the variable kleeneState has an initial value notstarted; it repre-
sents the case when A is not started yet.

Event. The semantics of ASTDs [312] often requires to check that a transition
from the initial state of an ASTD can be fired, for example in a Kleene closure, where
a new iteration can be started when the body of the closure is in a final state. To
do so, we need the ability to substitute, in an expression, the occurrences of the
state variables and the attributes of A with their values in the initial state. For that
purpose, we define the substitution operator Sinit(A, E) as follows

Sinit(A, E) ∆= [ι(A)] E
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such that
[ι(A)] = [v1 := i1; ...; vn := in]

where [ι(A)] is a composition of substitutions representing the sequential execution
of the assignment statements of the initialisation. [ι(A)] substitutes the states and
attributes of A (i.e., v1, ..., vn) by their initial values (i.e., i1, ..., in).
When σ ∈ ΣA, τevent(σ,A) has the form,

τevent(σ,A) ∆=
if C1 → Act1

[] C2 → Act2

fi

The values of Ci and Acti are computed as follows,

C1 = (and φ(A.b) Sinit(A.b, Cond(τevent(σ,A.b))) )
C2 = Cond(τevent(σ,A.b))
Act1 = kleeneState := started; Sinit(A.b, 〈τevent(σ,A.b)〉); A.Actastd
Act2 = kleeneState := started; τevent(σ,A.b); A.Actastd

There are two inference rules to consider when triggering a transition in a Kleene
closure. Condition C1 denotes the first inference rule: when sub-ASTD A.b is in a
final state, it can trigger a transition from its initial state. Thus, condition Sinit(A.b,
Cond(τevent(σ,A.b))) checks that the initial state of A.b can execute event σ by taking
the condition generated for executing sigma in A.b and substituting the values of the
attributes and the state variables with their value in the initial state. The second
inference rule is represented by condition C2: the transition is triggered from the
current state of the sub-ASTD.

When C1 holds, the action Act1 updates the state of A to started, initializes and
executes the sub-ASTD A.b. The condition C2 checks if at least one condition holds
in the body (i.e., τevent(σ,A.b)) before executing it.

Example. Let us consider the Kleene ASTD C in the example. The translation of
variables and types is computed as follows,
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τtype(C) ∆= def type TState C = record {
y : int,
kleeneState : KleeneState,

ts D : TState D,

};
...

ASTD C contains the automaton D. Following translation rule, the body of the event
function a(p1 : int) in C is defined by,

τa(C) ∆=
if (and φ(C.D) Sinit(C.D, Cond(τevent(a, C.D))))→

kleeneState := started; Sinit(C.D, 〈τevent(a, C.D)〉); y := y + 1
[] Cond(τevent(a, C.D))→ kleeneState := started; τevent(a, C.D); y := y + 1
fi

where

τevent(a, C.D) ∆= if (and (eq autState 1) (and (u < 10) (eq p1 u)))→
z2 := z2 + 1; z1 := z1 + 1

fi

φ(C.D) ∆= (in autState shallow final D)
Cond(τevent(a, C.D)) ∆= (and (eq autState 1) (and (u < 10) (eq p1 u)))

Sinit(C.D, Cond(τevent(a, C.D))) ∆= (and (eq 1 1) (and (u < 10) (eq p1 u)))

The substitution Sinit(C.D, 〈τevent(a, C.D)〉) results in the following code,

if (and (eq 1 1) (and (u < 10) (eq p1 u)))→
z2 := 0 + 1; z1 := 0 + 1

fi
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Parameterized synchronization ASTD. Let A be a parameterized synchroniza-
tion ASTD [312]. Recall that A has the following structure:

〈|[]|,∆, l, r〉

where ∆ is the synchronization set of event labels, l, r ∈ ASTD are the synchronized
ASTDs. When the label of the event to execute belongs to ∆, the two sub-ASTDs
must both execute it; otherwise either the left or the right sub-ASTD can execute
it. When ∆ = ∅, the synchronization is called an interleaving and is abbreviated as
9. The state of A is of type 〈|[]|◦, E, sl, sr〉, where sl, sr are the states of the left and
right sub-ASTDs.

State and Attributes. The types generated for parameterized synchronization A
are defined as follows:

τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

ts $l : TState $l,
ts $r : TState $r

};
τtype(A.l);
τtype(A.r)

where TState $A holds the attributes of A, and the state of l and r. τtype(A.l) and
τtype(A.r) return the translation of A.l and A.r, respectively. For a parameterized
synchronization ASTD, ι(A) and φ(A) are computed as follows,

ι(A) ∆= J; $v.name := $v.initKv ∈ A.Attr

ι(A.l);

ι(A.r)

φ(A) ∆= (and φ(A.l) φ(A.r))

The initial state of A is composed of the initial states of l and r. A is final if l
and r are finals.

Event. Let σ an event that appears in A.l, A.r, or both. Let us consider first the
case where σ /∈ ∆.
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If σ only appears on the left side, we have

τevent(σ,A) ∆= if Cond(τevent(σ,A.l)) → τevent(σ,A.l); A.Actastd fi

If σ only appears on the right side, we have

τevent(σ,A) ∆= if Cond(τevent(σ,A.r)) → τevent(σ,A.r); A.Actastd fi

This means that transitions in the left and right side are executing in interleaving. If
σ appears on both side; the body of σ is computed as follows,

τevent(σ,A) ∆=
if Cond(τevent(σ,A.l)) → τevent(σ,A.l); A.Actastd
[] Cond(τevent(σ,A.r)) → τevent(σ,A.r); A.Actastd
fi

When both sides can execute σ, a non-deterministic choice is made between the two.
When σ ∈ ∆, both sides must synchronize; if they both can execute it, then their
body are executed in sequence. The semantics of ASTDs requires that the actions
executed by each side must be commutative, that is, the final value of the state
variables declared in A, which can be modified by both sides, is the same, whether
A.l or A.r is executed first. Thus, the implementation is free to choose the order
of execution. Here, we (arbitrarily) start with A.l. The operation τevent(σ,A) is
expressed as follows,

τevent(σ,A) ∆=
if (and Cond(τevent(σ,A.l)) Cond(τevent(σ,A.r))) →

τevent(σ,A.l); τevent(σ,A.r); A.Actastd
fi

Quantified synchronization ASTD. LetA be a quantified synchronization ASTD [312].
Recall that A has the following structure:

〈|[]|:, x, T,∆, b〉

where x ∈ Var is a quantified variable, T is a set of values, ∆ ⊆ Label is a set of event
labels on which synchronization must occur, and b ∈ ASTD is the sub-ASTD of the
synchronization. When ∆ = ∅, A is called a quantified interleaving. The state of A
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is of type 〈|[]|:◦, E, f〉 where |[]|:◦ is the constructor, E the values of attributes and
f ∈ T → States is a function which associates a state of b to each value of T .

State and Attributes. The types generated for quantified synchronization A are
defined as follows:

τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

x : A.x.T,
f : Map<A.x.T, TState $b>

};
const T $A : Set<A.x.T> = A.T.values;
τtype(A.b)

where TState $A holds the attributes of A, the quantified variable x, and the map
f that stores the state of A.b for each value in A.x.T . A.x.T is the type of the
quantified variable x. T $A is a constant set of type Set<A.x.T>; it is used when T
is an enumerated set. The initialisation operation ι(A) is computed as follows,

ι(A) = J; $v.name := $v.initKv ∈ A.Attr

f is initialized to an empty map. The final operation φ(A) is expressed as follows,

φ(A) = forall(T $A, φ(A.b), f)

where operation forall(S,C, g) = ∀ s ∈ S [fields(TStateA.b) := g(s)] C. We use the
forall construct to check that final holds for each instance of A.b; the state of these
instances is stored in f ; the quantifier ∀ s ∈ S is implemented by a loop over S. The
operator fields(•) returns all the field names of •. The initialisation is optimised by
initializing the map to empty and by adding instances only when they are created
(or needed) when an event is received for that instance. To evaluate if a quantified
synchronization is in a final state, we can simply evaluate φ for the instances created
in f ; all the others are in the initial state; they can be evaluated all at once using
φ(ι(A.b)), since it does not depend on the value of x.

Event. Let σ be an event that appears in A.b. When σ /∈ ∆, the translation of
the body of σ is computed as follows,
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τevent(σ,A) ∆=
if exists(x, T $A, Cond(τevent(σ,A.b)), f) →

[fields(TState $A.b) := f(x)] τevent(σ,A.b);
A.Actastd

fi

where exists(u, S, C, g) searches for a value s ∈ S such that ([fields(TState $name) :=
g(s)] C) holds and sets u to s when it does hold. The exists condition can be optimized
when the value of the quantified variable can be determined by the constraints im-
posed by the transitions in the automata of A.b. This process is called κ-optimization
and is defined in [100] for EB3 process expression; it has been adapted here for ASTD
expressions. When T $A is not an enumerated set and A.b is not κ-optimizable,
then the exists condition cannot be implemented, because the number of values is
unbounded or too large to be executed (e.g.,string, int).
When σ ∈ ∆,the translation of the body of σ is computed as follows,

τevent(σ,A) ∆=
if forall(x, T $A, Cond(τevent(σ,A.b)), f) →

for (in x T $A)
[fields(TState $A.b) := f(x)] τevent(σ,A.b);

endfor
A.Actastd

fi

In this case, we execute τevent(σ,A.b) for each state of A.b stored in f . Finally, we
execute the ASTD action A.Actastd.

Example. Let us consider the quantified interleaving B from Fig. 4.2. The set of
values T B is {1,2,3,4}. The quantified variable u is applied on the Kleene ASTD C.
The translation of variables and types is computed as follows,
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τtype(B) ∆= def type TState B = record {
x : int,
u : int,
f : Map<int, TState C>

};
const T $B : Set<int> = {1, 2, 3, 4};
...

Following the translation rules, the body of a(p1 : int) in B is given by

τa(B) ∆=
if exists(u, T B,Cond(τevent(a,B.C)), f) →

[fields(TState $B.C ) := f(u)] τevent(a,B.C);
x := x+ 1

fi

where

exists(u, T B,Cond(τevent(a,B.C)), f) ∆=
for (in t T B)

u := t

if Cond(τevent(a,B.C))
→ return(true)

fi
endfor
return(false)

with

Cond(τevent(a,B.C)) ∆= (or (and φ(C.D) Sinit(C.D, Cond(τevent(a, C.D))))
Cond(τevent(a, C.D)) )

φ(C.D) = (in f(u).ts C.ts D.autState f(u).ts C.ts D.shallow final D)
Cond(τevent(a,C.D)) = (and (eq f(u).ts C.ts D.autState 1) (and (u < 10) (eq p1 u)))

Sinit(C.D, Cond(τevent(a,C.D))) = (and (eq 1 1) (and (u < 10) (eq p1 u))))

160



4.3. Methodology

Likewise, the substitution of the action

[fields(TStateB.C) := f(u)]τevent(a,B.C) ∆= if (and φ(C.D) Sinit(C.D, Cond(τevent(a,C.D))))→
f(u).ts C.kleeneState := started;
Sinit(C.D, 〈τevent(a,C.D);

f(u).ts C.y := f(u).ts C.y + 1〉)
[] Cond(τevent(a,C.D))→

f(u).ts C.kleeneState := started; τevent(a,C.D);
f(u).ts C.y := f(u).ts C.y + 1

fi
x := x+ 1

where

τevent(a,C.D) ∆= if (and (eq f(u).ts C.ts D.autState 1) (and (u < 10) (eq p1 u)))→
f(u).ts C.ts D.z2 := f(u).ts C.ts D.z2 + 1;
f(u).ts C.ts D.z1 := f(u).ts C.ts D.z1 + 1

fi

and

Sinit(C.D, 〈τevent(a,C.D); f(u).ts C.y := f(u).ts C.y + 1〉) ∆=
if (and (eq 1 1)

(and (u < 10) (eq p1 u)))→
f(u).ts C.ts D.z2 := 0 + 1;
f(u).ts C.ts D.z1 := 0 + 1

fi
f(u).ts C.y := f(u).ts C.y + 1

Flow ASTD. A flow ASTD A has structure 〈d, l, r〉, where l and r are left and
right components of A. The state of A is of type 〈d◦, E, sl, sr〉, where sl, sr are the
states of the left and right sub-ASTDs.
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State and Attributes. The types generated for flow A are defined as follows:

τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

ts $l : TState $l,
ts $r : TState $r

};
τtype(A.l);
τtype(A.r)

where TState $A holds the attributes of A and the states of l and r. τtype(A.l) and
τtype(A.r) return the translation of A.l and A.r, respectively.
For a flow ASTD, ι(A) and φ(A) are computed as follows,

ι(A) ∆= J; $v.name := $v.initKv ∈ A.Attr

ι(A.l);

ι(A.r)

φ(A) ∆= (and φ(A.l) φ(A.r))

Event. Let σ an event that can appear in A.l, A.r, or both. The value of
τevent(σ,A) is computed as follows,

τevent(σ,A) ∆=
var b : Boolean = false;
if Cond(τevent(σ,A.l)) →

τevent(σ,A.l);
b := true;

fi
if Cond(τevent(σ,A.r)) →

τevent(σ,A.r);
b := true;

fi
if (eq b true) → A.Actastd; fi
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The left side and the right side execute independently of one another. The se-
mantics requires that if they both modify the attributes of the flow ASTD, then their
modification must be commutative, as in the synchronization ASTD. The global con-
dition Cond (to be used by parent ASTDs) is the disjunction of Cond(τevent(σ,A.l))
and Cond(τevent(σ,A.r)).

Example. Let us consider the flow ASTD A in Fig. 4.2. The translation of variables
and types is computed as follows,

τtype(A) ∆= def type TState A = record {
ts B : TState B,

ts E : TState E

};
...

ts A : TState A

Event a appears on local transitions 1 → 2 and 3 → 3. The translation of the
body of a(p1 : int) is given by,

τevent(a,A) ∆=
var b : Boolean = false;
if exists(u, T,Cond(τevent(a,A.B.C)), f) →

τevent(a,A.B);
b := true

if
if (and (eq (autState 2) (u >= 10)) →

τevent(σ,A.E);
b := true

if
if (eq b true) → A.Actastd fi

where A.Actastd = ∅. The translation operations τevent(a,A.B) and τevent(σ,A.E)
were previously computed. We can observe that some conditions of if -fi statements
are re-evaluated several times due to the nesting of conditions; thus a pruning op-
eration is necessary to optimize the generated code. This will be discussed later in
Sect. 4.3.3.
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Sequence ASTD. Let A be a sequence ASTD [312] that has the following struc-
ture:

〈 , fst, snd〉
where fst and snd are ASTDs denoting respectively the first and second sub-ASTDs
of the sequence. A sequence state is of type 〈 ◦, E, [fst | snd], s〉, where ◦ is a
constructor of the sequence state, E the values of attributes declared in the sequence,
[fst | snd] is a choice between two markers that respectively indicate whether the
sequence is in the first sub-ASTD or the second sub-ASTD and s ∈ States.

State and Attributes. The types generated for sequence A are defined as follows:

τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

sequenceState : SequenceState,

ts : TState $fst ⊕ TState $snd

};
τtype(A.fst);
τtype(A.snd)

where TState $A holds the attributes of A, the state of A, and the state of fst and
snd. The variable sequenceState of type SequenceState = {fst, snd} stores the current
state of A. The field ts is a sum type, i.e., TState $fst and TState $snd. τtype(A.fst)
and τtype(A.snd) return the translation of attributes and types of A.fst and A.snd.
For an ASTD sequence, ι(A) and φ(A) are computed as follows,

ι(A) ∆= sequenceState := fst;

J; $v.name := $v.initKv ∈ A.Attr

ι(A.fst)

φ(A) ∆= (or (and (eq sequenceState fst)

(and φ(A.fst) Sinit(A.snd, φ(A.snd))))

(and (eq sequenceState snd) φ(A.snd)))

Event. A sequence is final when either it is executing the first ASTD, its state is
final state, and the initial state of the second ASTD is final, or when it is executing
the second ASTD and its state is final. Let σ be an event that appears in A.fst or
A.snd. For a sequence ASTD, the body of σ in the IL language is defined by
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τevent(σ,A) ∆=
if C1 → Act1 if σ appears in A.fst

[] C2 → Act2

[] C3 → Act3

}
if σ appears in A.snd

fi
The values of Ci and Acti are computed as follows,

C1 = (and (eq sequenceState fst) Cond(τevent(σ,A.fst)))

C2 = (and (eq sequenceState fst)
(and φ(A.fst) Sinit(A.snd, Cond(τevent(σ,A.snd)))) )

C3 = (and (eq sequenceState snd) Cond(τevent(σ,A.snd)))
Act1 = τevent(σ,A.fst); A.Actastd
Act2 = sequenceState := snd; Sinit(A.snd, 〈τevent(σ,A.snd)〉); A.Actastd
Act3 = τevent(σ,A.snd); A.Actastd

The condition C1 checks if the state of A is fst and at least one condition is true in
τevent(σ,A.fst). When C1 is true, the first component is executed (i.e., Act1). The
condition C2 checks if the first component is in final state and if the second ASTD
can execute σ from its initial state. When it is the case, Act2 updates the state of
A to snd and initializes the second component. Finally, the condition C3 checks if at
least one condition is true in τevent(σ,A.snd) before executing it.

Choice ASTD. Let A be a choice ASTD [312] with the following structure:

〈|, l, r〉

where l, r ∈ ASTD are respectively the first and second element of the choice. The
type of a choice state is 〈|◦, E, side, s〉 where side ∈ (⊥ | 〈left〉 | 〈right〉) denotes the
sub-ASTD which has been chosen, s ∈ (States | ⊥) denotes the state of the sub-ASTD
which has been chosen and E the values of attributes declared in the choice ASTD.

State and Attributes. The types generated for choice A are defined as follows:
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τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

choiceState : ChoiceState,

ts : TState $l ⊕ TState $r
};
τtype(A.l);
τtype(A.r)

where TState $A holds the attributes of A, the state of A, and the state of l and r.
The variable choiceState, of type ChoiceState = {none, left, right}, stores the current
state of A. The structure ts is a sum type, i.e., it can be of any of type TState $l and
TState $r . τtype(A.l) and τtype(A.r) return the translation of A.l and A.r, respectively.
For a choice ASTD, ι(A) and φ(A) are computed as follows,

ι(A) = choiceState := none;

J; $v.name := $v.initKv ∈ A.Attr

φ(A) = (or (and (eq choiceState none) (or Sinit(A.l, φ(A.l)) Sinit(A.r, φ(A.r))))

(or (and (eq choiceState left) φ(A.l))

(and (eq choiceState right) φ(A.r))))

The variable choiceState has initial value none; it means that no choice has been
made. It takes value left (resp. right) if the left side (resp. left) of A has been chosen.

Event. Let σ an event that appears in A.l or A.r. For a choice ASTD, the body
of σ in the IL language is defined by

τevent(σ,A) ∆=
if C1 → Act1

[] C2 → Act2

}
if σ appears in A.l

[] C3 → Act3

[] C4 → Act4

}
if σ appears in A.r

fi
The values of Ci and Acti are computed as follows,
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C1 = (and (eq choiceState none)
Sinit(A.l, Cond(τevent(σ,A.l))))

C2 = (and (eq choiceState left) Cond(τevent(σ,A.l)))

C3 = (and (eq choiceState none)
Sinit(A.r, Cond(τevent(σ,A.r))))

C4 = (and (eq choiceState right) Cond(τevent(σ,A.r)))
Act1 = choiceState := left; Sinit(A.l, 〈τevent(σ,A.l)〉); A.Actastd
Act2 = τevent(σ,A.l); A.Actastd
Act3 = choiceState := right; Sinit(A.l, 〈τevent(σ,A.r)〉); A.Actastd
Act4 = τevent(σ,A.r); A.Actastd

The conditions C1 means that no choice has been made and the initial state of
left side can execute sigma. Act1 initializes the left component before executing it.
The condition C2 means that the left side has been already chosen and it executes
the subsequent action Act2. A symmetric behavior is generated for the right side.

QChoice ASTD. Let A be a quantified choice ASTD [312] that has the following
structure:

〈| :, x, T, b〉

where x ∈ Var is the quantification variable, T is a type and b ∈ ASTD is the quantified
ASTD. The state of A is a structure 〈| :◦, [⊥ | c], E, [⊥ | s]〉 where | :◦ is the constructor
of the quantified choice state, ⊥ is a constant indicating that the choice has not been
made yet, c ∈ Term denotes the current value of the choice quantified variable once
the choice has been made, E the values of attributes and s ∈ States.

State and Attributes. The types generated for quantified choice A are defined as
follows:
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τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

x : A.x.T,
qchoiceState : A.x.T,
ts $b : TState $b

};
const T $A : Set<A.x.T> = A.T.values;
τtype(A.b)

where TState $A holds the attributes of A and the state of the body A.b. The
state variable qchoiceState, of type A.x.T , stores the current state of A. T $A is a
constant set of type Set<A.x.T> with value A.T.values. τtype(A.b) generates types
and variables of A.b. For a quantified choice ASTD, ι(A) and φ(A) are computed as
follows,

ι(A) = qchoiceState := nil;

J; $v.name := $v.initKv ∈ A.Attr

φ(A) = (or (and (eq qchoiceState nil) exists(x, T $A, Sinit(A.b, φ(A.b))))

(and (neq qchoiceState nil) [x := qchoiceState] φ(A.b)))

The operation exists(c, T, C) finds if there exists a value c ∈ T that can satisfy the
condition C, and sets x to that value. The variable qchoiceState has an initial value
nil; it represents the case when a choice has not been made yet. It takes value
c ∈ T $A when a choice is made.

Event. Let σ be an event that appears in A.b. For a quantified choice ASTD
where σ ∈ ΣA, the translation of the body of σ is computed as follows,

τevent(σ,A) ∆=
var c : A.x.T ;
if (and (eq qchoiceState nil)

exists(c, T $A, Sinit(A.b,Cond(τevent(σ,A.b)))))→
qchoiceState := c; Sinit(A.b, 〈τevent(σ,A.b)〉); A.Actastd

[] (neq qchoiceState nil) → τevent(σ,A.b); A.Actastd
fi
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When σ /∈ ΣA, τevent(σ, A) = skip. If the operation exists holds, the current state of
A is updated to c and the body A.b is initialized and executed. Next, if a choice has
been already made (i.e., (neq qchoiceState nil)), the body A.b is executed.

Call ASTD. Let A be a call ASTD [312]. Recall that A has structure 〈cal, n( #»c )〉,
where n is the name of an ASTD q = 〈n, P, V, Aastd〉. Let P = #»x : #»

T . For each
ci ∈ #»c , we have ci ∈ Ti. The type of an ASTD call state is 〈cal◦, E, [⊥ | s]〉, where
cal◦ is the constructor of the call state, E the values of attributes, ⊥ denotes that the
call has not been made yet and s ∈ States is the state of the called ASTD q once the
called has been made.

State and Attributes. The types generated for call A are defined as follows:

τtype(A) Δ= def type TState $A = record {
�, $v.name : $v.T �v ∈ A.Attr

callState : CallState,

ts $q : TState $q
};
τtype(A.q)

where TState $A holds the attributes of A and the state of the called ASTD A.q. The
state variable callState, of type CallState = {called, notcalled}, stores the current state
of A. τtype(A.q) generates types and variables from A.q. For a call ASTD, ι(A) and
φ(A) are computed as follows,

ι(A) = callState := notcalled;

�; $v.name := $v.init�v ∈ A.Attr

φ(A) = (or (and (eq callState notcalled) [ $x.name := $c.name ](x, c) ∈ x:�c Sinit(A.q, φ(A.q)))

(and (eq callState called) � $x.name := $c.name �(x, c) ∈ �x:�c φ(A.q)))

After calling ι(A), the variable callState has an initial value notcalled; it represents the
case when A has not been called yet. It takes value called when A is called with input
values �c. We use the values �c of the call to replace the value of parameters �x in the
body A.q.

Event. Let σ an event that can appear in A.q. For a call ASTD, the translation
of the body of σ is computed as follows,
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τevent(σ,A) ∆=
if (and (eq callState notcalled) Sinit(A.q,Cond(τevent(σ,A.q))))→

callState := called; [~x := ~c] Sinit(A.q, 〈τevent(σ,A.q)〉); A.Actastd
[] (eq callState called) → [~x := ~c] τevent(σ,A.q); A.Actastd
fi

The first condition states that the call has not started (i.e., (eq callState notcalled))
and the precondition Sinit(A.q, τevent(σ,A.q)) must hold. If it is the case, the state of
A is updated to called, the body A.q is initialized and executed. The second condition
states that if A has already started its execution, it just continues to executes the
body A.q.

Guard ASTD. Let A be a guard ASTD [312] with the following structure:

Guard
∆= 〈⇒, g, b〉

where b ∈ ASTD is the body of the guard. The type of a guard state is 〈⇒◦, E, started?, s〉
where started? denotes when the guard has been satisfied, s ∈ States and E the at-
tribute values of the guard ASTD.

State and Attributes. The types generated for guard A are defined as follows:

τtype(A) ∆= def type TState $A = record {
J, $v.name : $v.T Kv ∈ A.Attr

guardState : GuardState,

ts $b : TState $b
};
τtype(A.b)

where TState $A holds the attributes of A and the state of the body A.b. The state
variable guardState is of type GuardState = {started, notstarted}. τtype(A.b) generates
types and variables from A.b. For a guard ASTD, ι(A) and φ(A) are computed as
follows,
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ι(A) = guardState := notstarted;

J; $v.name := $v.initKv ∈ A.Attr

ι(A.b)

φ(A) = (or (and (eq guardState notstarted) (and A.g Sinit(A.b, φ(A.b))))

(and (eq guardState started) φ(A.b)))

After calling ι(A), the variable guardState has an initial value notstarted; it repre-
sents the case when the guard ASTD has not started yet. It takes value started when
the guard is satisfied, and execution has started.

Event. Let σ be an event that appears in A.b. For a call ASTD, the translation
of the body of σ is computed as follows:

τevent(σ,A) ∆=
if (and (eq guardState notstarted)

(and A.g Sinit(A.b,Cond(τevent(σ,A.b)))))→
guardState := started; Sinit(A.b, 〈τevent(σ,A.b)〉); A.Actastd

[] (eq guardState started) → τevent(σ,A.b); A.Actastd
fi

The first condition states that the guard has not started (i.e., (eq guardState notstarted)),
the guard g and the precondition Sinit(A.b, τevent(σ,A.b)) must hold. If it is the case,
the state of A is updated to started, the body A.b is initialized and executed. The
second condition states that if A has already started its execution, it just continues
to executes the body A.b.

4.3.2 Translation from the Intermediate Model to the target
code

The translation operation takes an input IL model ilm, a given target language
lang (e.g., C++), and returns the corresponding source code code in this language.
The translation approach constructs the source code by traversing types, variables,
functions and statements in the IL model. The main procedure for translation is
expressed as follows,
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Table 4.2 – Example of translation from IL to C++ and Java
IL C++ Java
(eq A B) A.compare(B) == 0 A.compareTo(B) == 0
(or A B) A || B A || B
(and A B) A && B A && B
(not A) ! A ! A
(in A B) std::find(B.begin(), B.end(), A) !=B.end() B.contains(A)
if A1 ->B1 [] A2 ->B2 fi if (A1) {B1} else if (A2) {B2} if (A1) {B1} else if (A2) {B2}
while(A) begin B end while(A) { B } while(A) { B }

for(in A B) C end for(const T& A : B) { C }, where
T is type of A

for(T A : B) { C }, where
T is type of A

exists(x, T, A) bool exists(x){A}, where domain
T declared globally

boolean exists(x){A} where domain
T declared globally

forall(x, T, A) bool forall(x){A}, where domain
T declared globally

boolean forall(x){A} where domain
T declared globally

var x : type = value type x = value type x = value
main(P) int main(P) public static void main(P)
e = read event(src) Event<T> e = read event(src) Event<T> e = read event(src)

Algorithm 1 Generic structure of the translation
1: procedure TRANS (ilm, lang, code)
2: Transt (ilm.typedecls, lang, code)
3: Transd (ilm.vardecls, lang, code)
4: Transf (ilm.functions, lang, code)
5: end procedure

The procedure Trans generates the source code from the declaration of types
ilm.typedecls, declaration of variables ilm.vardecls and ilm.functions (see Fig. 4.3).
The procedure Transt translates the declaration of types in the target language. Like-
wise, the procedure Transd translates variables in the target language. The proce-
dure Transf translates event functions and the main function in the target language.
Wrapping and template types are used to deal with event variants and complex event
types like JSON (e.g., string, JSONObject). JSON types are used to represent com-
plex event records (e.g., logs). For example, Table 4.2 shows the translation relation
between the IL language and the C++/Java languages.

Table 4.3 also shows the translation of types between the IL language and C++/Java
languages. The C++ type json is based on the Nlohmann library and it is used to
represent complex records. The library allows to easily manipulate JSON documents.

4.3.3 Optimization
During code generation, we apply three levels of optimization: if -fi optimization,

kappa optimization, and native-compiler optimization.
a) if-fi optimization. It consists of computing if -fi conditions only once in the

generated code; thus it improves the execution time. To implement this approach, we
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Table 4.3 – Example of translation of types
IL C++ Java
int int int
Boolean bool boolean
string std::string String
Set<T> std::set<T> Set<T>
Map<T, U> std::map<T, U> Map<T, U>
Json nlohmann::json JSONObject
def type A = record { B }; struct A { B }; class A { B }
def type A = enum { B }; enum A { B }; enum A { B }

TState A ⊕TState B
TState; it is the super
class of TState A
and TState B

TState; it is the super
class of TState A
and TState B

add Boolean variables condi in the type of the ASTD state to store the values of the
conditions. For example, the code of the type of A is expressed in C++ as follows,

τtype(A) ∆= struct TState A = {
TState B ts B;
TState E ts E;
bool cond1;
bool cond2;
bool cond3;

};
The event functions are also modified to compute conditions only once. Let assume

the event function a in the simplified form,

...
void a(int u)
{

...
if(C1 || C2)
{

if(C1)
{
A1

}
else if (C2)

173



4.3. Methodology

{
A2

}
}

}
...

The previous code after if -fi optimization is expressed as follows,

...
void a(int u)
{

...
cond_1 = ((cond_2 = C1) || (cond_3 = C2));
if(cond_1)
{

if(cond_2)
{
A1

}
else if(cond_3)
{
A2

}
}
...

}
...

b) κ-optimization. It allows to reduce the complexity of exists and forall operations
in large quantified ASTDs [99, 100, 281]. The algorithm prunes the search space in
the quantification domain using the arguments of an event. Then, only the correct
copy of an ASTD that can execute the current event is executed. This operation is
done in logarithmic time.

c) native-compiler optimization. After if -fi and kappa optimization, the generated
code is optimized for code size, compilation and execution time using native compiler
options (e.g. -Olevel in GCC, -XX:Options in JIT). The options -Olevel includes flags -
fcompare-elim, -fdce, -ftree-dce, -fmove-loop-invariants that allows to remove dead codes
and loop invariants.

174



4.4. Tool support

4.4 Tool support

We have designed and developed cASTD 2 in Java following the Continuous inte-
gration (CI) and continuous delivery (CD) approach. We have chosen Java because
of its portability. The Java Virtual Machine (JVM) allows cASTD to be executed
on different operating systems (OS). It also supports a Just-In-Time (JIT) compiler
that optimizes the compilation of bytecode into machine code. The current version
of cASTD generates efficient code in C++ thanks to the IL language.

Figure 4.5 – cASTD - Structure of input/output files

cASTD is executed in command-line. It takes three inputs : the input user files
that contains action codes, the ASTD specification, and the target language. cASTD
has several options including -c | –cond-opt for if -fi optimization, -d [false | true]
for debugging and logging executing actions, and -k [direct | indirect] for kappa op-
timization. In Fig. 4.5, cASTD generates the source code in the target language and
the associated program (monitor) that will be executed on traces. The source code
consists of the helper file that calls constructors associated to given string types, the
logger file that allows one to debug the generated program (only in debug mode),
the astd name file that contains the translated code of the ASTD specifications, and
the makefile for linking and compilation. This makefile calls the native compiler
corresponding the target language (e.g. GCC for C++, JIT for Java) and it is au-
tomatically executed by cASTD to produce the astd name program. Configurations
about the native compiler is provided in a YAML file. It includes the name, the class
path, and compilation arguments. When external static/dynamic libraries are used

2. The compiler is available at https://depot.gril.usherbrooke.ca/lionel-tidjon/
castd
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by action codes in ASTD specifications, they must be also referenced in the YAML
file for compilation.

4.5 Related work
S. L. M. Barrocas et al. [29] proposes the JCircus compiler that translates spec-

ifications written in Circus (a combination of Z and CSP) into Java programs that
use JCSP, a library that implements most of the CSP constructs. Baringer et al. [28]
introduced the concept of Quantified Event Automata (QEA) that applies quantified
variables on event automata. QEA allows efficient execution by slicing parametric
traces into a set of propositional traces that can be processed by separate propo-
sitional monitors. QEA is implemented in a tool called MARQ. ASTD supports a
richer set of operators than JCircus and MARQ which can be arbitrarily combined
in an algebraic manner.

In big data, Complex Event Processing (CEP) supports several processors includ-
ing filtering, slicing, windowing, and piping that allows one to query and process
multiple event streams. Beepbeep [319] combines CEP with logic operators from Lin-
ear Temporal Logic (LTL), Finite State Machines (FSMs), and First-order quantifiers
like QEAs. CEP processors can be expressed in the ASTD language in a modular
and concise manner. ASTDs can be seen as extensions of FSMs.

Larva [68] allows one to specify properties of Java programs using variables, events,
states, and transitions. The Larva tool compiles these specifications (scripts) into Java
byte code which is later executed on event traces in real-time. Larva does not support
composition operators like ASTDs; it essentially relies on basic automatons.

MonPoly [30] processes a stream of system events with identifiers representing
the data involved and reports policy violations. Policies are given as formulas of an
expressive safety fragment of metric first-order temporal logic (MFOTL). MUFIN [80]
is a tool based on AspectJ that uses union-find structure for monitoring the individual
behaviour and interaction of an unbounded number of runtime objects. Union-find
structure is based on projection automata [80] and it represents disjoint sets of objects
organised as a tree. ASTD automata can be seen as extensions of projection automata.

4.6 Performance evaluation
In this section, we propose to evaluate the performance of cASTD against iASTD

and other event processing tools in the literature using some case-studies.
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4.6.1 Case studies
The runtime verification competition 2016 (RVC2016) consisted of two tracks :

Offline and JAVA. The offline tracks consisted of 3 benchmarks from MARQ [28,267]
(i.e., AunctionBidding, CandidateSelection, and SQLInjection) and 3 benchmarks
from BeepBeep v3 [319] (i.e., PinguCreation, EndlessBashing, and TurnAround).
The JAVA tracks contains 9 benchmarks : 3 benchmarks from LARVA [68] (i.e.,
GreyListing, ReconcileAccounts, and Logging), 3 benchmarks from MARQ [28, 267]
(i.e., PublisherSubscriber, AnnonyingFriend, and ResourceLifecycle), and 3 bench-
marks from MUFIN [80] (i.e., Tree, Multiplexer, Toggle). In the offline track, we have
selected 3 benchmarks from MARQ. We have also selected all benchmarks from the
JAVA track. Since each benchmark contained few event samples, we have generated
1 million events for each benchmark using existing event samples.

We have also considered 8 other scenarios. Seven scenarios consist of complex
ASTD specifications generated from the eASTD editor. Each of them contains one
hundred top ASTDs combined with operators such as Flow, QInterleaving, QChoice,
QSynchronization, Sequence, Kleene, and Automaton. The last scenario is called
HasNext. It consists of two cases: (1) A file of one million of events containing
hasNext and Next patterns, and (2) one million of events randomly generated.

4.6.2 Generated Code Efficiency
In this section, we compare the code generated from cASTD to iASTD and other

event processing tools in the literature. The comparison is done in terms of execution
time on a single computer (chip type: NVIDIA GeForce GTX 1050, CPU: 2.80 GHz-8
cores, RAM: 16GB). The performance of cASTD and iASTD have been evaluated on
the RVC 2016 benchmarks and complex scenarios generated from the eASTD editor.
The scenarios are available on Git 3. cASTD and iASTD were compared to other
tools such as Beepbeep v1, Beepbeep v3 and MonPoly [30] using the LABPAL frame-
work [133]. The LABPAL framework allows one to easily run several experiments
and it generates reports after execution. We were unable to replay MUFIN, LARVA,
and MARQ specifications using the RVC 2016 benchmark; because they were not
available, and their usage specification was not sufficiently documented.

4.6.2.1 Comparison with iASTD

In Table 4.4, we present execution time of cASTD and iASTD. We have processed
1 million of events using 7 specifications generated by the eASTD editor (see Table 4.4)
and 3 specifications from each benchmark (see Table 4.5). As result, cASTD is about

3. https://depot.gril.usherbrooke.ca/lionel-tidjon/castd/tree/master/tests
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10x more efficient than iASTD. The specifications that use the flow operator are faster
than those based on the sequence operator. In addition, the high number of enclosing
quantifications does not affect the performance of iASTD and cASTD, thanks to
kappa optimization.

Table 4.4 – Comparison between cASTD and iASTD using generated specifications

Scenario Execution time
cASTD(s) iASTD(s)

flow+aut (x100) 0.425 4.495
seq+aut (x100) 0.550 5.738
flow+kleene+aut (x100) 0.370 3.109
flow+qinter+aut (x100) 0.448 3.329
flow+qchoice+aut (x100) 0.391 3.395
flow+qinter+qchoice+aut (x100) 0.304 3.134
flow+qsynch+qinter+qchoice+kleene+aut (x100) 0.289 2.940

In Table 4.5, we compare cASTD and iASTD on benchmarks (LARVA, MUFIN,
MARQ) from the runtime verification competition 2016. Each benchmark is num-
bered from 1 to 3. For MARQ, we have Bench 1 = AunctionBidding, Bench 2 =
CandidateSelection, and Bench 3 = SQLInjection. Overall, cASTD provides a 10x
performance improvement over iASTD.

Table 4.5 – Comparison between cASTD and iASTD using RVC 2016

Scenario LARVA MUFIN MARQ
cASTD(s) iASTD(s) cASTD(s) iASTD(s) cASTD(s) iASTD(s)

Bench 1 0.044 0.384 0.030 0.320 0.075 0.233
Bench 2 0.081 0.422 0.061 0.408 0.098 0.249
Bench 3 0.022 0.299 0.059 0.317 0.084 0.239

4.6.2.2 Comparison with other tools

We have executed MonPoly, iASTD, cASTD, Beepbeep v1 and Beepbeep v3 on
the HasNext scenario using the LABPAL framework. In Table 4.6, cASTD and
iASTD achieved better performance than Beepbeep v1, Beepbeep v3, and MonPoly.
Beepbeep v1 is faster than Beepbeep v3 on the HasNext scenario. cASTD provides
the best performance of all tools.
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Table 4.6 – Comparison between Beepbeep v1, Beepbeep v3, MonPoly, iASTD, and
cASTD (milliseconds)

Scenario Beepbeep v3 Beepbeep v1 MonPoly iASTD cASTD
HasNext(file) 143061.52 300.58282 0.829875 2.551020 0.29585
HasNext(gen) 555555.56 7396.4497 113636.37 18148.82 3371.544
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4.7 Conclusion
In this work, we provided translation rules to efficiently generate code from ASTD

specifications using an intermediate language which can be easily translated into con-
ventional programming languages like C++ and Java. Our approach is implemented
in a tool called cASTD whose performance is about 10x faster than iASTD, and
it is also faster than other event processing tools (Beepbeep v3, iASTD, MonPoly).
In large and complex specifications, cASTD achieved better results than other tools
thanks to several optimization mechanisms such as if -fi optimization, kappa opti-
mization, and native optimization. In the future, we intent to evaluate cASTD on
more complex real-world cases in cybersecurity and information systems.
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Plusieurs outils tels que Snort et Zeek permettent de spécifier des comportements
d’attaques en utilisant des règles. Toutefois, ces règles deviennent inefficaces face à
certaines attaques complexes et difficiles à maintenir lorsque le nombre d’attaques
est potentiellement grand. De ce fait, cette thèse a proposé un langage avec état,
graphique, modulaire et exécutable afin de corréler plusieurs sources d’événements et
d’identifier des attaques simples et complexes. Dans cette optique, il était question
d’analyser les comportements d’attaques et de tenter de les spécifier avec le langage
ASTD existant afin d’identifier ses limites. Ces limites ont permis d’ajouter des
fonctionnalités aux ASTDs et de définir une sémantique formelle pour la notation
étendue [236]. Ensuite, la notation étendue a été testée avec des bases d’attaques
telles que CAPEC et ATT&CK afin d’offrir une vue holistique des phases et des
étapes de l’attaque [314].

Plusieurs études de cas d’attaques provenant de Nokia Canada et d’ensembles
de données de référence ont été spécifiées avec les ASTDs [314]. Ces spécifications
d’attaques ont été exécutées à l’aide d’un interpréteur d’ASTD dont les performances
ont été comparées avec des outils industriels de détection d’attaques tels que Snort
et Zeek. L’interpréteur produit peu de fausses alertes et est plus précis. Toutefois,
le temps d’exécution de l’interpréteur est relativement élevé par rapport à celui de
Snort et Zeek. De ce fait, la prochaine étape a consisté à réaliser un compilateur
d’ASTDs vers plusieurs langages de programmation tels que C++ et Java, en util-
isant un langage intermédiaire, afin d’améliorer le temps d’exécution. Pour ce faire,
il était question de formaliser les règles de traduction du langage ASTD vers le lan-
gage intermédiaire et du langage intermédiaire vers les langages de programmation.
Ensuite, le code généré, optimisé et compilé a été comparé avec plusieurs outils de
traitement de flux d’événements (iASTD, Beepbeep, MonPoly) sur des ensembles de
données de référence. Lors de l’exécution, les programmes compilés sont plus rapides
que l’interpréteur iASTD et d’autres outils (i.e., Beepbeep, MonPoly).
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Synthèse des contributions
La première contribution de cette thèse a consisté en la définition formelle de la

syntaxe et de la sémantique d’une notation adaptée pour la spécification des attaques
récentes en utilisant les ASTDs [236]. Le langage est supporté par un interpréteur,
qui permet de corréler des d’événements (paquets, logs).

Afin de représenter de façon concise les phases de l’attaque, les ASTDs ont été cou-
plés avec les bases de scénarios d’attaques tels que CAPEC et ATT&CK. L’approche
a été validée sur plusieurs attaques du monde réel et des bases d’attaques existantes
répertoriées dans la littérature [314]. L’interpréteur a fourni un taux de précision élevé
pour le traitement de diverses sources d’événements par rapport à Snort et Zeek, ce
qui est un facteur important pour la détection d’intrusions.

Le temps d’exécution de l’interpréteur des ASTDs était élevé par rapport à Zeek
et Snort face à des flots d’événements importants. De ce fait, un compilateur a
été développé afin de générer du code exécutable efficient à partir des spécifications
ASTDs. Lors de la validation de l’outil, les programmes compilés étaient plus efficaces
que les outils existants, grâce à plusieurs optimisations du code telles que l’élimination
des calculs redondants et l’optimisation Kappa.

Menaces à la validité
Plusieurs difficultés ont été rencontrées lors de la validation des spécifications

d’attaques et des outils implémentés tout au long de cette thèse. En ce qui concerne
la validation des spécifications, les menaces suivantes ont été identifiées:

— Dans le cas des attaques complexes, l’écriture de certaines spécifications néces-
sitait une analyse de milliers voire de millions d’événements, pouvant affecter
la prise en compte de tous les scénarios de l’attaque;

— 45% des spécifications d’attaques ont été vérifiées avec des experts provenant
de Nokia Canada et du Centre de la sécurité des télécommunications. 55% des
spécifications ont été validées par nous-même, pouvant ainsi biaiser la validité
des spécifications.

Durant la validation des outils implémentés dans le cadre de cette thèse, plusieurs
menaces ont été rencontrées parmi lesquelles,

— L’évaluation des outils a été effectuée à 50% avec des ensembles de données
de référence, 20% avec les données du monde réel dans les environnements
industriels tels que Nokia, et 30% avec les données simulées par nous-même
sur des bancs d’essai, sujettes à plusieurs erreurs de manipulation;

— La comparaison des outils était très coûteuse en temps car il fallait exécuter
plusieurs fois les outils sur des millions d’événements afin de s’assurer de
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l’intégrité des résultats. Plusieurs erreurs d’expérimentation étaient suscep-
tibles de survenir durant ces opérations manuelles.

Perspectives
La suite de ce travail pourrait consister au passage à l’échelle des outils implé-

mentés, l’implémentation d’un vérificateur de modèles ASTDs, l’ajout de nouvelles
fonctionnalités aux ASTDs pour l’exécution dans des environnements distribués, et
la vérification formelle du code dans le langage intermédiaire avant de le compiler en
exécutable. Une fois que le passage à l’échelle est effectué, les outils pourront être
utilisés dans de larges infrastructures pour la détection des attaques. De plus, le
vérificateur de modèles ASTDs permettra de s’assurer que les spécifications sont bien
écrites et que le code des actions est valide avant leur exécution. Actuellement, les
spécifications ne peuvent pas être exécutées sur plusieurs environnements en paral-
lèle (ex. réseau, hôte). La sémantique formelle doit être modifiée afin de prendre en
compte ces changements. Enfin, le code produit dans la représentation intermédiaire
doit être conforme à la spécification ASTD d’origine. De ce fait, une vérification
formelle serait souhaitable avant de générer le code dans un langage de programma-
tion.
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Appendix A

Détection d’intrusion à base des
ASTDs

A.1 Description détaillée de Gancrab
Dans ce qui suit, une variante de rançongiciels appelée Gancrab est spécifiée.

Gandcrab est un rançongiciel mis à jour et actif qui est publié sur plusieurs versions
(i.e., version 1.0 à 5.2). Chaque variante vise à crypter les fichiers utilisateurs avec
les extensions .GDCB, .CRAB et .KRAB. Ils déposent également une note de rançon
contenant les instructions pour le paiement sur les domaines Tor (par exemple gand-
crabmfe6mnef.onion, gandcrab2pie73et.onion). La description détaillée des actions de
Gancrab est présentée ci-dessous.

1. L’attaquant délivre un courriel contenant un fichier incorporé avec les exten-
sions .DOC, .PDF, .ZIP et .VBS. Le fichier intégré semble inoffensif et contient un
lien malveillant. Un extrait du courriel envoyé à l’aide de l’outil Social Engineering
Toolkit (SET) est de la forme,

220 smtp.gmail.com ESMTP w6sm3177398iom.22 - gsmtp
ehlo ip-172-31-22-90.us-east-2.compute.internal
250-smtp.gmail.com at your service, [18.216.143.79]
250-SIZE 35882577
250-8BITMIME
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-CHUNKING
250 SMTPUTF8
STARTTLS
220 2.0.0 Ready to start TLS
............R..Nj. .....q.%.1[....E.0h....L....0.,.2.../.+.1.-..(.$..

2. Une fois que la victime clique et exécute le fichier, elle télécharge Gand-
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crab ("kukul.exe") et l’exécute. Cette opération est observée dans le trafic HTTP
ci-dessous. Après cela, le fichier se ferme mais fonctionne toujours en arrière-plan.

GET /js/kukul.exe HTTP/1.1
Connection: Keep-Alive
Accept: */*
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko
Host: 172.104.40.92

3. Gandcrab obtient l’adresse IP de la victime en envoyant une requête DNS au
site Web ipv4bot.whatismyipaddress.com. Ce comportement est observé dans le trafic
DNS ci-dessous.

00000 36 27 01 00 00 01 00 00 00 00 00 00 07 69 70 76 6'...... .....ipv
00010 34 62 6f 74 11 77 68 61 74 69 73 6d 79 69 70 61 4bot.wha tismyipa
00020 64 64 72 65 73 73 03 63 6f 6d 00 00 01 00 01 ddress.c om.....

Le crypto-ver obtient également d’autres informations système (par exemple, ver-
sion du système d’exploitation, nom d’utilisateur, domaine Active Directory, archi-
tecture du processeur, numéro de série du volume de stockage principal, antivirus en
cours d’exécution).

4. Gandcrab se réplique en créant un fichier malveillant dans le dossier AppData
(par exemple, yxvace.exe). Ce fichier malveillant vérifie plusieurs sites de commande
et contrôle (C2) à l’aide de la commande nslookup site name dns server. Ces sites
C2 incluent carder.bit, ransomware.bit et zonealarm.bit. Les serveurs DNS incluent
ns1.wowservers.ru et ns2.wowservers.ru. Ce comportement peut être observé dans les
journaux d’événements Windows comme suit,

Provider_Name: Microsoft-Windows-Sysmon
Event_ID: Process Create
Computer: WIN-N58C5B48R34
Data_ProcessID: 69104
Data_Image: C:\Windows\SysWOW64\nslookup.exe
Data_CommandLine: nslookup carder.bit ns2.wowservers.ru
Data_CurrentDirectory: C:\Windows\system32\
Data_User: WIN-N58C5B48R34\Admin
Data_ParentProcessId: 1132
Data_ParentCommandLine: C:\Users\Admin\AppData\Roaming\Microsoft\yxvace.exe

5. Lors de la vérification du serveur C2, Gandcrab envoie également une requête
HTTP GET à celui-ci,

GET / HTTP/1.1
Host: carder.bit
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko
Cache-Control: no-cache

6. Ensuite, Gandcrab crypte les données collectées dans l’action 3 et les envoient
sur le serveur C2. Le serveur C2 répond et le cryptage démarre.
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POST /iafsc?eapeli=ausc&lpee=lpie HTTP/1.1
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko
Host: carder.bit
Content-Length: 5828
Cache-Control: no-cache

wfKD6iudumBkmpL8IRr4U4KxFFazOXLtyjwmOrT1y1YWvOiWMx5GYaRdvZZTTpZRqHYW
7nxWyLfFTGKHhh5qBJzzs9MC7736UkGSDDniUJJG8/LFF//kmGmoAZAGLo2j5/wd2UrxM
...

A.2 Règles Snort
A partir de l’étude de cas précédente, nous pouvons construire 4 règles de détec-

tion, chacune faisant référence aux phases CAPEC-98 et CAPEC-549. Une référence
CAPEC est ajoutée au système Snort et mappe le mot-clé capec à http://capec.mitre.org/find/index.html?q=.
Nous utilisons la règle suivante

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Net/Win32.Ransom.Gandcrab -
Malicious Software Downloading"; flow:established,from_client; content:"GET";
http_method; content:".exe HTTP/1.";fast_pattern:only; content:"Connection: Keep-Alive";
http_header;content:"Accept|3a 20|"; http_header; content:"User-Agent|3a 20|Mozilla";
http_header; content:"Host|3a 20|"; pcre:"/Host\x3a\x20(:?[0-9]{1,3}\.){3}[0-9]{1,3}/H";
reference:capec,CAPEC-98; classtype:Downloader; sid: 10000000004; rev:1;)

pour détecter le téléchargement de Gandcrab via un fichier joint (voir Action
2)). Snort ne peut pas détecter l’action 1; puisque le trafic réseau est chiffré. La règle
cible le trafic HTTP entrant ($HOME NET) dirigé vers le serveur C2 ($EXTERNAL
NET). $HOME NET est une variable de Snort qui contient la plage IP ou le sous-
réseau du réseau interne (par exemple $HOME NET = 10.23.4.0/24, $HOME NET
= [10.10.8.1, 10.10.8.254] ). La variable $EXTERNAL NET définit la plage IP ou le
sous-réseau du réseau externe sur lequel le trafic HTTP sortant est activé. La clause
any signifie que la règle accepte tous les ports de connexion du trafic entrant. Dans
les flux de paquets, il vérifie si la méthode HTTP est GET, l’URI HTTP contient le
motif .exe HTTP / 1., La connexion HTTP est maintenue active, l’en-tête Accept est
utilisé, l’agent utilisateur est Mozilla et l’en-tête Host est une adresse IP. Le motif
.exe HTTP / 1. permet d’identifier le téléchargement du fichier malicieux. La règle
suivante

alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg:"Net/Win32.Ransom.Gandcrab -
Got IP address (Spyware)"; content:"|00 01 00 00 0000 00 00|";
content:"ipv4bot|11|whatismyipaddress|03|com"; fast_pattern; reference:capec,
CAPEC-549; classtype:Spyware; threshold:type limit,track by_src,count 1,seconds 60
;sid:10000005; rev:1;)

suit le trafic DNS entrant ($HOME NET) dirigé vers le serveur C2 ($EXTERNAL
NET). Il accepte tous les ports de connexion du trafic entrant. La règle vérifie la
requête DNS contient des octets |00 01 00 00 00 00 00 00 | et l’url du site d’espionnage
ipv4bot|11|whatismyipaddress|03|com|. Le motif ipv4bot|11| whatismyi-
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paddress|03|com permet d’identifier les activités d’espionnage de Gandcrab (voir
Action 3). L’option de seuil limite le nombre d’alertes à une par minute. La règle
suivante

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Net/Win32.Ransom.Gandcrab -
CnC checkin"; flow:established,to_server; urilen:1;content:"GET"; http_method;
content:"/"; http_uri; content:"Host|3a 20|"; http_header;content:".bit";
fast_pattern;content:"User-Agent|3a 20|Mozilla"; http_header; content:
"Cache-Control|3a 20|no-cache"; content:!"Accept"; content:!"Connection";
content:!"Referer"; reference:capec, CAPEC-549; classtype:Ransomware;
sid:10000000006; rev:1;)

identifie l’attaquant Action 5. Snort ne peut pas voir l’attaquant Action 4 puisqu’elle
est effectuée au niveau de l’hôte. La règle vérifie si la méthode HTTP est GET, l’urilen
est 1, l’url de l’hôte provient du domaine .bit, l’agent utilisateur est Mozilla, il n’y a
pas de contrôle de cache et il n’y a pas d’en-têtes HTTP tels que Accept, Connexion et
Referer. Le symbole ! désigne la négation (par exemple, le contenu:! "c" ne contient
pas "c"). La dernière règle

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Net/Win32.Ransom.Gandcrab -
Communicating With Command and Control Server"; flow:established,to_server;
content:"POST"; http_method; content:"Host|3a 20|"; http_header;content:".bit";
fast_pattern; content:"User-Agent|3a 20|Mozilla"; http_header; content:
"Content-Type|3a 20|"; pcre:"/Content-Type\x3a\x20(application|multipart)/";
content:"Cache-Control: no-cache"; http_header; content:!"Accept";
reference:capec,CAPEC-549; classtype:Ransomware;sid:10000000007; rev:1;)

détecte le cryptage et l’exfiltration des informations sur la victime (voir Action 6).
La règle vérifie si la méthode HTTP est POST, l’url de l’hôte provient du domaine de
premier niveau .bit, l’agent utilisateur est Mozilla, le type de contenu est application/x-
www-form-urlencoded ou multipart/form-data, il n’y a pas de contrôle de cache et pas
d’en-tête Accept.

A.3 Règles Zeek
Dans l’étude de cas, nous avons spécifié les phases de Gandcrab à l’aide de scripts

et de règles Zeek [154]. Ci-après, nous décrivons quelques règles Zeek pour la détection
de Gancrab. La première règle

signature gandcrab_phishing_capec_98 {
ip-proto == tcp
dst-port == 80
payload /^GET \//
http-request /\.(exe|bin)/
http-request-header /Connection: Keep-Alive/
http-request-header /Accept: /
http-request-header /User-Agent: Mozilla/
http-request-header /Host: ([0-9]{1,3}\.){3}[0-9]{1,3}/

}

détecte le téléchargement de Gandcrab pendant la phase de hameçonnage (voir
Action 2). Zeek peut tracer le trafic chiffré pendant l’action 1 de l’attaquant mais il
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ne peut pas lire son contenu, c’est-à-dire le fichier joint. La prochaine règle
signature gandcrab_spyware_capec_549 {
ip-proto == udp
dst-port == 53
payload /\x00\x01\x00\x00\x00\x00\x00\x00/
payload /ipv4bot\x11whatismyipaddress\x03com/
requires-signature gandcrab_phishing_capec_98

}

identifie le site d’espionnage avec lequel Gandcrab communique (voir Action 3) et
nécessite l’exécution de la règle précédente. La règle suivante

signature gandcrab_cnc_checkin_capec_549 {
ip-proto == tcp
dst-port == 80
payload /^GET \//
http-request-header /Host: /
http-request-header /[a-z]+\.(bit|ru)/
http-request-header /User-Agent: Mozilla/
http-request-header /Cache-Control: no-cache/
requires-signature gandcrab_spyware_capec_549

}

détecte quand Gandcrab vérifie ses sites C2 à partir des domaines .bit et .ru (voir
Action 5). La dernière règle

signature gandcrab_cnc_capec_549 {
ip-proto == tcp
dst-port == 80
payload /^POST \//
http-request-header /Host: /
http-request-header /[a-z]+\.(bit|ru)/
http-request-header /User-Agent: Mozilla/
http-request-header /Content-Type: application/
http-request-header /Cache-Control: no-cache/
requires-signature gandcrab_cnc_checkin_capec_549
event "Net/Win32.Ransom.Gandcrab - Communicating With CnC Server"

}

identifie l’action malveillante 6, c’est-à-dire lorsque Gandcrab envoie les informa-
tions de la victime sur le serveur C2. La règle est déclenchée après l’exécution de
l’action C2 de Gandcrab.

A.4 Règles OSSEC
OSSEC est un outil IDS qui détecte les activités malveillantes sur un ou plusieurs

hôtes. Il utilise des règles de détection, y compris des règles externes de Sysmon, un
service système Windows. L’outil a été utilisé lors de la comparaison de Snort, Zeek
et iASTD. Il a été associé à iASTD afin de fournir les événements de l’hôte pour la
détection des attaques. Certaines règles OSSEC permettant d’identifier Gancrab sont
présentées ci-dessous. La première règle
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<rule id="1000001" level="9">
<match>downloads|temp</match>
<regex>.exe</regex>
<description>Suspicious File Downloading</description>
<group>capec,CAPEC-98</group>

</rule>

détecte aux fichiers téléchargés suspects avec des extensions .exe (voir Action 2).
Ces fichiers sont souvent déposés dans les dossiers de téléchargement et temporaires.
La règle suivante

<rule id="1000002" level="12">
<if_sid>1000001</if_sid>
<match>nslookup</match>
<regex>.bit|.ru</regex>
<description>Gandcrab CnC Checkin - DNS lookup</description>
<group>capec,CAPEC-549</group>

</rule>

identifie quand Gandcrab utilise la commande nslookup afin de vérifier ses sites
C2 à partir des domaines .bit et .ru (voir Action 4). La règle requiert l’exécution de
celle précédente. La règle suivante

<rule id="1000003" level="12">
<if_sid>1000001</if_sid>
<match>svchost.exe</match>
<protocol>tcp</protocol>
<srcport>3389</srcport>
<description>Gandcrab CnC- Exfiltration</description>
<group>capec,CAPEC-549</group>

</rule>

détecte quand Gandcrab élimine les informations système et se propage sur le port
ouvert 3389. La règle ne s’exécute que si un téléchargement de fichier suspect a été
effectué. Le dernière règle

<rule id="1000004" level="12">
<if_sid>1000001</if_sid>
<match>DECRYPT.txt|DECRYPT.html</match>
<description>Gandcrab CnC - Encrypted Files</description>
<group>capec,CAPEC-549</group>

</rule>

vérifie si une note de déchiffrement a été déposée sur l’hôte. Cela signifie que les
fichiers de la victime sont cryptés et qu’il doit payer pour obtenir la clé de décryptage.
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Appendix B

Traduction des ASTDs en langages
de programmation de haut niveau

Ci-après, nous présentons 3 cas de génération de code (voir Sect. B.1, Sect. B.2,
Sect. B.3) et 1 cas d’optimisation de code (voir Sect. B.4).

B.1 Exemple de génération de code: Cas 1
La figure B.1 montre un exemple de flux ASTD contenant deux ASTD Kleene.

Chaque ASTD Kleene contient un ASTD automate.
C’est le code C++ généré à partir de la Fig. B.1 par le compilateur ASTD.

1 #include "Code.cpp"
2 #include "helper.h"
3 #include "logger.h"
4 enum KleeneState{
5 KLEENE_NOTSTARTED,
6 KLEENE_STARTED
7 };
8 enum AutState{
9 S0,
10 S1
11 };
12 struct TState_C_2{
13 AutState autState;
14
15 };
16 struct TState_B_2{
17 KleeneState kleeneState;
18 TState_C_2 ts_C_2;
19
20 };
21 struct TState_C_1{
22 AutState autState;
23
24 };
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Figure B.1 – Exemple - Flux, Kleene, Automate

25 struct TState_B_1{
26 KleeneState kleeneState;
27 TState_C_1 ts_C_1;
28
29 };
30 struct TState_A{
31 int x;
32 TState_B_1 ts_B_1;
33 TState_B_2 ts_B_2;
34
35 };
36 const std::vector<AutState> shallow_final_C_1 = {S1};
37 const std::vector<AutState> shallow_final_C_2 = {S1};
38 TState_A ts_A;
39
40 void e1(int c){
41 if(((std::find(shallow_final_C_1.begin(), shallow_final_C_1.end(),
42 ts_A.ts_B_1.ts_C_1.autState) !=shallow_final_C_1.end() && (S0 == S0 && c <= ts_A.x))
43 || (ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x))){
44 if((std::find(shallow_final_C_1.begin(), shallow_final_C_1.end(),
45 ts_A.ts_B_1.ts_C_1.autState) !=shallow_final_C_1.end()
46 && (S0 == S0 && c <= ts_A.x))){
47 ts_A.ts_B_1.kleeneState = KLEENE_STARTED;
48 if((S0 == S0 && c <= ts_A.x)){
49 Code::alert(c, ts_A.x);
50 ts_A.ts_B_1.ts_C_1.autState = S1;
51
52 }
53
54 }else if((ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x)){
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55 if((ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x)){
56 Code::alert(c, ts_A.x);
57 ts_A.ts_B_1.ts_C_1.autState = S1;
58
59 }
60
61 }
62
63 }
64 if(((std::find(shallow_final_C_2.begin(), shallow_final_C_2.end(),
65 ts_A.ts_B_2.ts_C_2.autState) !=shallow_final_C_2.end() && (S0 == S0 && c <= ts_A.x))
66 || (ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x))){
67 if((std::find(shallow_final_C_2.begin(), shallow_final_C_2.end(),
68 ts_A.ts_B_2.ts_C_2.autState) !=shallow_final_C_2.end()
69 && (S0 == S0 && c <= ts_A.x))){
70 ts_A.ts_B_2.kleeneState = KLEENE_STARTED;
71 if((S0 == S0 && c <= ts_A.x)){
72 Code::alert(c, ts_A.x);
73 ts_A.ts_B_2.ts_C_2.autState = S1;
74
75 }
76
77 }else if((ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x)){
78 if((ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x)){
79 Code::alert(c, ts_A.x);
80 ts_A.ts_B_2.ts_C_2.autState = S1;
81
82 }
83
84 }
85
86 }
87
88 }
89 int main(int argc, char** argv){
90 ts_A.x = 1;
91 ts_A.ts_B_1.kleeneState = KLEENE_NOTSTARTED;
92 ts_A.ts_B_1.ts_C_1.autState = S0;
93 ts_A.ts_B_2.kleeneState = KLEENE_NOTSTARTED;
94 ts_A.ts_B_2.ts_C_2.autState = S0;
95 while (1){
96 Event e = read_event(argc, argv);
97 if(e.label.compare("e1") == 0){
98 _safe_(e1(Types::get_int(e.params[0])));
99
100 }else {
101 ERROR_1;
102 }
103
104 }
105 return 1;
106 }

B.2 Exemple de génération de code: Cas 2
La figure B.2 montre un exemple de séquence ASTD contenant deux ASTD

Kleene. Chaque ASTD Kleene contient un ASTD automate.
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Figure B.2 – Exemple - Séquence, Kleene, Automate

C’est le code C ++ généré à partir de la Fig. B.2 par le compilateur ASTD.
1 #include "Code.cpp"
2 #include "helper.h"
3 #include "logger.h"
4 enum KleeneState{
5 KLEENE_NOTSTARTED,
6 KLEENE_STARTED
7 };
8 enum AutState{
9 S0,
10 S1
11 };
12 enum SequenceState{
13 FST,
14 SND
15 };
16 struct TState_C_2{
17 AutState autState;
18
19 };
20 struct TState_B_2{
21 KleeneState kleeneState;
22 TState_C_2 ts_C_2;
23
24 };
25 struct TState_C_1{
26 AutState autState;
27
28 };
29 struct TState_B_1{
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30 KleeneState kleeneState;
31 TState_C_1 ts_C_1;
32
33 };
34 struct TState_A{
35 int x;
36 SequenceState sequenceState;
37 TState_B_1 ts_B_1;
38 TState_B_2 ts_B_2;
39
40 };
41 const std::vector<AutState> shallow_final_C_1 = {S1};
42 const std::vector<AutState> shallow_final_C_2 = {S1};
43 TState_A ts_A;
44
45 void e1(int c){
46 if((ts_A.sequenceState == FST && ((std::find(shallow_final_C_1.begin(),
47 shallow_final_C_1.end(), ts_A.ts_B_1.ts_C_1.autState) !=shallow_final_C_1.end()
48 && (S0 == S0 && c <= ts_A.x)) || (ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x)))){
49 if((std::find(shallow_final_C_1.begin(), shallow_final_C_1.end(),
50 ts_A.ts_B_1.ts_C_1.autState) !=shallow_final_C_1.end()
51 && (S0 == S0 && c <= ts_A.x))){
52 ts_A.ts_B_1.kleeneState = KLEENE_STARTED;
53 if((S0 == S0 && c <= ts_A.x)){
54 Code::alert(c, ts_A.x);
55 ts_A.ts_B_1.ts_C_1.autState = S1;
56
57 }
58
59 }else if((ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x)){
60 if((ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x)){
61 Code::alert(c, ts_A.x);
62 ts_A.ts_B_1.ts_C_1.autState = S1;
63
64 }
65
66 }
67
68 }else if((ts_A.sequenceState == FST && ((ts_A.ts_B_1.kleeneState == KLEENE_NOTSTARTED
69 || std::find(shallow_final_C_1.begin(), shallow_final_C_1.end(),
70 ts_A.ts_B_1.ts_C_1.autState) !=shallow_final_C_1.end()) &&
71 ((std::find(shallow_final_C_2.begin(), shallow_final_C_2.end(), S0)
72 !=shallow_final_C_2.end() && (S0 == S0 && c <= ts_A.x)) || (S0 == S0 && c <= ts_A.x))))){
73 ts_A.sequenceState = SND;
74 if((std::find(shallow_final_C_2.begin(), shallow_final_C_2.end(), S0)
75 !=shallow_final_C_2.end()
76 && (S0 == S0 && c <= ts_A.x))){
77 ts_A.ts_B_2.kleeneState = KLEENE_STARTED;
78 if((S0 == S0 && c <= ts_A.x)){
79 Code::alert(c, ts_A.x);
80 ts_A.ts_B_2.ts_C_2.autState = S1;
81
82 }
83
84 }else if((S0 == S0 && c <= ts_A.x)){
85 if((S0 == S0 && c <= ts_A.x)){
86 Code::alert(c, ts_A.x);
87 ts_A.ts_B_2.ts_C_2.autState = S1;
88
89 }
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90
91 }
92
93 }else if((ts_A.sequenceState == SND && ((std::find(shallow_final_C_2.begin(),
94 shallow_final_C_2.end(), ts_A.ts_B_2.ts_C_2.autState) !=shallow_final_C_2.end()
95 && (S0 == S0 && c <= ts_A.x)) || (ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x)))){
96 if((std::find(shallow_final_C_2.begin(), shallow_final_C_2.end(),
97 ts_A.ts_B_2.ts_C_2.autState) !=shallow_final_C_2.end()
98 && (S0 == S0 && c <= ts_A.x))){
99 ts_A.ts_B_2.kleeneState = KLEENE_STARTED;
100 if((S0 == S0 && c <= ts_A.x)){
101 Code::alert(c, ts_A.x);
102 ts_A.ts_B_2.ts_C_2.autState = S1;
103
104 }
105
106 }else if((ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x)){
107 if((ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x)){
108 Code::alert(c, ts_A.x);
109 ts_A.ts_B_2.ts_C_2.autState = S1;
110
111 }
112
113 }
114
115 }
116
117 }
118 int main(int argc, char** argv){
119 ts_A.sequenceState = FST;
120 ts_A.x = 1;
121 ts_A.ts_B_1.kleeneState = KLEENE_NOTSTARTED;
122 ts_A.ts_B_1.ts_C_1.autState = S0;
123 while (1){
124 Event e = read_event(argc, argv);
125 if(e.label.compare("e1") == 0){
126 _safe_(e1(Types::get_int(e.params[0])));
127
128 }else {
129 ERROR_1;
130 }
131
132 }
133 return 1;
134 }

B.3 Exemple de génération de code: Cas 3
La figure B.3 montre un exemple de flux ASTD contenant deux ASTD entrelace-

ments quantifiés. Chaque ASTD entrelacement quantifié contient un ASTD Kleene.
C’est le code C++ généré à partir de la Fig. B.3 par le compilateur ASTD.

1 #include "Code.cpp"
2 #include "helper.h"
3 #include "logger.h"
4 enum KleeneState{
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Figure B.3 – Exemple - Flux, QInterleaving, Kleene, Automate

5 KLEENE_NOTSTARTED,
6 KLEENE_STARTED
7 };
8 enum AutState{
9 S0,
10 S1
11 };
12 struct TState_D_2{
13 AutState autState;
14
15 };
16 struct TState_C_2{
17 KleeneState kleeneState;
18 TState_D_2 ts_D_2;
19
20 };
21 struct TState_B_2{
22 int u;
23 std::map<int, TState_C_2> f;
24
25 };
26 struct TState_D_1{
27 AutState autState;
28
29 };
30 struct TState_C_1{
31 KleeneState kleeneState;
32 TState_D_1 ts_D_1;
33
34 };
35 struct TState_B_1{
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36 int u;
37 std::map<int, TState_C_1> f;
38
39 };
40 struct TState_A{
41 int x;
42 TState_B_1 ts_B_1;
43 TState_B_2 ts_B_2;
44
45 };
46 const std::vector<int> T_B_1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
47 const std::vector<AutState> shallow_final_D_1 = {S1};
48 const std::vector<int> T_B_2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
49 const std::vector<AutState> shallow_final_D_2 = {S1};
50 TState_A ts_A;
51
52 int exists0(int& u, int _u){
53 u = _u;
54 if((std::find(T_B_1.begin(), T_B_1.end(), u) !=T_B_1.end()
55 && ((std::find(shallow_final_D_1.begin(), shallow_final_D_1.end(),
56 ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState) !=shallow_final_D_1.end() && (S0 == S0
57 && ts_A.ts_B_2.u <= ts_A.x)) || (ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState == S0
58 && ts_A.ts_B_2.u <= ts_A.x)))){
59 return 1;
60
61 }
62 return 0;
63
64 }
65
66 void e1(int _u){
67 if(exists0(ts_A.ts_B_2.u, _u)){
68 if(exists0(ts_A.ts_B_2.u, _u)){
69 if((std::find(shallow_final_D_1.begin(), shallow_final_D_1.end(),
70 ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState) !=shallow_final_D_1.end()
71 && (S0 == S0 && ts_A.ts_B_2.u <= ts_A.x))){
72 ts_A.ts_B_1.f[ts_A.ts_B_2.u].kleeneState = KLEENE_STARTED;
73 if((S0 == S0 && ts_A.ts_B_2.u <= ts_A.x)){
74 Code::alert(ts_A.ts_B_2.u);
75 ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState = S1;
76
77 }
78
79 }else if((ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState == S0
80 && ts_A.ts_B_2.u <= ts_A.x)){
81 if((ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState == S0
82 && ts_A.ts_B_2.u <= ts_A.x)){
83 Code::alert(ts_A.ts_B_2.u);
84 ts_A.ts_B_1.f[ts_A.ts_B_2.u].ts_D_1.autState = S1;
85
86 }
87
88 }
89
90 }
91
92 }
93 if(exists0(ts_A.ts_B_2.u, _u)){
94 if(exists0(ts_A.ts_B_2.u, _u)){
95 if((std::find(shallow_final_D_2.begin(), shallow_final_D_2.end(),
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96 ts_A.ts_B_2.f[ts_A.ts_B_2.u].ts_D_2.autState) !=shallow_final_D_2.end()
97 && (S0 == S0 && ts_A.ts_B_2.u <= ts_A.x))){
98 ts_A.ts_B_2.f[ts_A.ts_B_2.u].kleeneState = KLEENE_STARTED;
99 if((S0 == S0 && ts_A.ts_B_2.u <= ts_A.x)){

100 Code::alert(ts_A.ts_B_2.u);
101 ts_A.ts_B_2.f[ts_A.ts_B_2.u].ts_D_2.autState = S1;
102
103 }
104
105 }else if((ts_A.ts_B_2.f[ts_A.ts_B_2.u].ts_D_2.autState == S0
106 && ts_A.ts_B_2.u <= ts_A.x)){
107 if((ts_A.ts_B_2.f[ts_A.ts_B_2.u].ts_D_2.autState == S0
108 && ts_A.ts_B_2.u <= ts_A.x)){
109 Code::alert(ts_A.ts_B_2.u);
110 ts_A.ts_B_2.f[ts_A.ts_B_2.u].ts_D_2.autState = S1;
111
112 }
113
114 }
115
116 }
117
118 }
119
120 }
121 int main(int argc, char** argv){
122 ts_A.x = 1;
123 while (1){
124 Event e = read_event(argc, argv);
125 if(e.label.compare("e1") == 0){
126 _safe_(e1(Types::get_int(e.params[0])));
127
128 }else {
129 ERROR_1;
130 }
131 }
132 return 1;
133 }

B.4 Exemple d’optimisation de code
Cette section montre l’optimisation du code de l’exemple de la Fig. B.1.

1 #include "Code.cpp"
2 #include "helper.h""
3 #include "logger.h"
4 enum KleeneState{
5 KLEENE_NOTSTARTED,
6 KLEENE_STARTED
7 };
8 enum AutState{
9 S0,
10 S1
11 };
12 struct TState_C_2{
13 AutState autState;
14 int cond_0;
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15
16 };
17 struct TState_B_2{
18 KleeneState kleeneState;
19 TState_C_2 ts_C_2;
20 int cond_1;
21 int cond_2;
22
23 };
24 struct TState_C_1{
25 AutState autState;
26 int cond_0;
27
28 };
29 struct TState_B_1{
30 KleeneState kleeneState;
31 TState_C_1 ts_C_1;
32 int cond_1;
33 int cond_2;
34
35 };
36 struct TState_A{
37 int x;
38 TState_B_1 ts_B_1;
39 TState_B_2 ts_B_2;
40 int cond_1;
41 int cond_2;
42
43 };
44 const std::vector<AutState> shallow_final_C_1 = {S1};
45 const std::vector<AutState> shallow_final_C_2 = {S1};
46 TState_A ts_A;
47
48 void e1(int c){
49 ts_A.cond_1 = ((ts_A.ts_B_1.cond_1 = ((std::find(shallow_final_C_1.begin(),
50 shallow_final_C_1.end(), ts_A.ts_B_1.ts_C_1.autState) !=shallow_final_C_1.end() &&
51 (ts_A.ts_B_1.ts_C_1.cond_0 = ((ts_A.ts_B_1.ts_C_1.autState == S0
52 && c <= ts_A.x)))))) || (ts_A.ts_B_1.cond_2 = ((ts_A.ts_B_1.ts_C_1.cond_0 =
53 ((ts_A.ts_B_1.ts_C_1.autState == S0 && c <= ts_A.x))))));
54
55 ts_A.cond_2 = ((ts_A.ts_B_2.cond_1 = ((std::find(shallow_final_C_2.begin(),
56 shallow_final_C_2.end(), ts_A.ts_B_2.ts_C_2.autState) !=shallow_final_C_2.end() &&
57 (ts_A.ts_B_2.ts_C_2.cond_0 = ((ts_A.ts_B_2.ts_C_2.autState == S0
58 && c <= ts_A.x)))))) || (ts_A.ts_B_2.cond_2 = ((ts_A.ts_B_2.ts_C_2.cond_0 =
59 ((ts_A.ts_B_2.ts_C_2.autState == S0 && c <= ts_A.x))))));
60
61 if(ts_A.cond_1){
62 if(ts_A.ts_B_1.cond_1){
63 ts_A.ts_B_1.kleeneState = KLEENE_STARTED;
64 if((ts_A.ts_B_1.ts_C_1.cond_0 && c <= ts_A.x)){
65 Code::alert(c, ts_A.x);
66 ts_A.ts_B_1.ts_C_1.autState = S1;
67
68 }
69
70 }else if(ts_A.ts_B_1.cond_2){
71 if((ts_A.ts_B_1.ts_C_1.cond_0 && c <= ts_A.x)){
72 Code::alert(c, ts_A.x);
73 ts_A.ts_B_1.ts_C_1.autState = S1;
74
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75 }
76
77 }
78
79 }
80 if(ts_A.cond_2){
81 if(ts_A.ts_B_2.cond_1){
82 ts_A.ts_B_2.kleeneState = KLEENE_STARTED;
83 if((ts_A.ts_B_2.ts_C_2.cond_0 && c <= ts_A.x)){
84 Code::alert(c, ts_A.x);
85 ts_A.ts_B_2.ts_C_2.autState = S1;
86
87 }
88
89 }else if(ts_A.ts_B_2.cond_2){
90 if((ts_A.ts_B_2.ts_C_2.cond_0 && c <= ts_A.x)){
91 Code::alert(c, ts_A.x);
92 ts_A.ts_B_2.ts_C_2.autState = S1;
93
94 }
95
96 }
97
98 }
99
100 }
101 int main(int argc, char** argv){
102 ts_A.x = 1;
103 ts_A.ts_B_1.kleeneState = KLEENE_NOTSTARTED;
104 ts_A.ts_B_1.ts_C_1.autState = S0;
105 ts_A.ts_B_2.kleeneState = KLEENE_NOTSTARTED;
106 ts_A.ts_B_2.ts_C_2.autState = S0;
107 while (1){
108 Event e = read_event(argc, argv);
109 if(e.label.compare("e1") == 0){
110 _safe_(e1(Types::get_int(e.params[0])));
111
112 }else {
113 ERROR_1;
114 }
115 }
116 return 1;
117 }
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