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Dominique Chiaroni
Ingénieur de Recherche, Nokia Bell Labs Invité





Titre : Contrôle des amplificateurs par apprentissage machine et conception de nœuds de commutation de
paquets optiques colorés dans les réseaux optiques

Mots clés : Amplificateurs à fibre dopée à l’erbium, apprentissage machine, réseaux optiques, commutation
de paquets optiques colorés, excursion de puissance optique, qualité de transmission

Résumé : Le débit de données et la consommation
d’énergie sont les principaux défis auquels doivent
faire face les réseaux optiques. Afin de réduire la
consommation d’énergie, les réseaux opérateurs de
transport optiques basés sur le concept de com-
mutation de circuits optiques (OCS), deviennent op-
tiquement transparents, réduisant les conversions
optique/électrique (O/E) et électrique/optique (E/O).
Pour faire face à l’augmentation du débit de
données, on utilise des formats de modulations
complexes et la technique de multiplexage en po-
larisation et on économise le spectre des fibres
optiques en considérant une grille en longueurs
d’onde plus flexible que la grille fixe ITU-T WDM.
On développe des transpondeurs flexibles capables
de sélectionner différents formats de modulation
et longueurs d’onde; on développe également des
multiplexeurs optiques d’insertion/extraction reconfi-
gurables (ROADMs) basés sur des commutateurs
sélectifs en longueur d’onde (WSSs).
Ces réseaux flexibles prennent également en compte
un trafic plus dynamique. Dynamisme et flexibilité im-
pactent fortement les équipements des réseaux op-
tiques, y compris les nœuds optiques d’un point de
vue couche physique et couche de contrôle. Lorsque
des canaux ou demandes sont ajoutés et/ou extraits,
l’excursion de puissance optique des amplificateurs
à fibre dopée à l’erbium (EDFAs) varie temporelle-
ment ce qui implique qu’elle doit être contrôlée dyna-
miquement. Dans ce contexte, le concept de réseau
défini par le soft (SDN: Software Defined Network)
prend tout son sens et l’introduction des techniques
d’apprentissage machine (ML) permet d’entrevoir une
aide au concept de SDN pour la gestion et le contrôle
dynamique des réseaux optiques.
Dans la première partie de ce travail de thèse, nous
étudions l’excursion de puissance optique dans les
réseaux de transport optiques dynamiques. Afin d’en
atténuer les effets indésirables, nous introduisons et

mettons en œuvre un module de prédiction et de pré-
compensation de l’excursion de puissance en utili-
sant les méthodes ML. Comme les altérations de la
couche physique (PLIs : Physical Layer Impairments)
s’accumulent le long du chemin optique entre les
noeuds source et destination de réseau, nous asso-
cions à l’excursion de puissance optique le rapport si-
gnal/bruit optique (OSNR: Optical Signal to Noise Ra-
tio) et le taux d’erreur binaire (BER: Bit Error Rate),
afin d’estimer la qualité de transmission (QoT: Quality
of Transmission) de nouvelles configurations de ca-
naux. Ensuite, en utilisant l’approche d’apprentissage
par renforcement (RL), nous attribuons un format de
modulation et une longueur d’onde aux différents ca-
naux de façon automatique afin de réduire la proba-
bilité de blocage des demandes entrantes dans les
nœuds optiques.
Dans la deuxième partie de ce travail de thèse, nous
présentons notre contribution en tant que partenaire
du projet ANR N-GREEN. Le principal objectif de
N-GREEN est de proposer une nouvelle génération
de routeurs peu consommateurs en énergie en
considérant une architecture de réseau. Dans ce
projet, nous abordons une architecture de réseau
basée sur la commutation optique de paquets co-
lorés (OPS: Optical Packet Switching) en rupture
avec celle considérée dans la première partie de
cette thèse. Dans le cadre de ce projet, nous avons
caractérisé expérimentalement un commutateur op-
tique 2 × 2 basé sur des amplificateurs optiques
à semi-conducteurs (SOAs). Cette caractérisation
nous a permis de valider un réseau en anneau
constitué de 10 noeuds en cascade. En envisageant
une configuration de commutateur 16 × 16, la ca-
ractérisation expérimentale, dans des configurations
à canal unique et WDM, laisse entrevoir des possibi-
lités intéressantes pour la transmission de données à
très haut débit.
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Abstract : Data rate and energy consumption are the
major concerns in optical networks. In order to reduce
energy consumption, transport operator networks ba-
sed on optical circuit switching (OCS) concept, are be-
coming optically transparent, reducing optical to elec-
trical (O/E) and electrical to optical (E/O) conversions.
To face data rate increase, complex modulation for-
mats and dual-polarization systems are considered
and fiber spectrum is saved using network resources
in a more efficient way, giving rise to a flexible fre-
quency grid. Flexible transponders are developed to
tune modulation formats and wavelengths and recon-
figurable optical add/drop multiplexers (ROADMs) ba-
sed on wavelength selective switches (WSSs) are stu-
died.
Flexible networks consider also a more dynamic traf-
fic. Dynamism and flexibility lead to a deep trans-
formation of the optical networks, including optical
nodes, from both physical and control layer point of
view. When channels are added and/or dropped, op-
tical power excursion from erbium doped fiber ampli-
fiers (EDFAs) has to be controlled dynamically. In that
context, software defined networking (SDN) assisted
by machine learning (ML) techniques is envisaged as
promising candidate for the management and the dy-
namic control of optical networks.
In this context, in the first part of our PhD work, we
deal with optical power excursion in dynamic optical
transport networks. In order to mitigate undesirable

effects, we introduce and implement power excursion
prediction and pre-compensation module using ML
methods. As physical layer impairments (PLIs) ac-
cumulate along the path, we consider optical power
excursion together with optical signal to noise ratio
(OSNR) and bit error rate (BER), to estimate quality
of transmission (QoT) of unseen channel configura-
tions. Afterwards, using a reinforcement learning (RL)
approach, we establish an autonomous impairment
aware modulation format and wavelength assignment
procedure, and we show that this permits to reduce
the blocking probability of the incoming demands in
optical nodes.
In the second part of our PhD work, in the context
of the N-GREEN project from the French national
agency of research, we address a disruptive network
architecture based on coloured optical packet swit-
ching (OPS). The main objective of N-GREEN is to
propose a new generation of energy efficient routers.
In the N-GREEN project, we perform the experimen-
tal characterization of an optical 2×2 switch based on
semiconductor optical amplifiers (SOAs). This charac-
terization leads to the proof of concept of a ring net-
work with 10 nodes in cascade. Envisaging a 16 × 16
switch configuration, the experimental characteriza-
tion, in single channel and WDM configurations, unveil
interesting possibilities for the transmission of ultra-
high data rates.

Institut Polytechnique de Paris
91120 Palaiseau, France
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Main introduction

Year by year the number of internet users, devices and connections increase continuously [1].

Video streaming, web services, gaming, social applications and file sharing are some of the

most hungry applications representing a large part of the global traffic [2]. Apart from high

capacity, 5G wireless networks request low latency and precise synchronization [3]. All these

factors shape the evolution of optical networks.

First generation of opaque optical networks was based on point-to-point links, where at each

node, all the traffic had to undergo optical to electrical (O/E) and electrical to optical (E/O)

conversions. All the intelligence of the network, routing and switching capabilities, resided in

the electrical domain.

Second generation initiated the road towards transparency, reducing the network cost and

improving its energy-efficiency [4], [5]. First, erbium doped fiber amplifiers (EDFAs) allowed

to compensate fiber propagation losses in wavelength division multiplexing (WDM) systems

avoiding O/E-E/O conversions. After, the introduction of optical add-drop multiplexers

(OADMs) introduced the optical bypass concept, i.e. traffic for which the current node is not

its final destination can pass-through the node, escaping again from unnecessary O/E-E/O

conversions. This second generation has acquired intelligence, including an optical control

plane, which permits to perform switching functionalities, usually based on an electrical

control. Although current second generation, includes already reconfigurability capabilities,

e.g. using reconfigurable optical add-drop multiplexers (ROADMs), it relies mainly on static

traffic.

Third generation of optical networks is still under active development phase. Photonics

community considers the circuit switching-based operation as fundamental in the optical

systems currently in use. An interesting alternative discussed in the literature, although still

immature due to optical buffering and optical signal processing issues, could be potentially

based on optical packet switching (OPS) operation [6]. Presumably preserving optical circuit

switching, third generation will be likely to be based on transparency, exploiting all-optical

switching.

In order to answer to the high-capacity requirements imposed by the traffic, third generation

is expected to grow on dynamism and flexibility. Under dynamic traffic conditions, where

1



Main introduction

channels are often added and dropped, dynamic reconfiguration capabilities allow for a

more efficient use of the available spectrum [7]. Flexible optical networks, where instead of

a fixed frequency grid of 50 GHz frequency spacing, a flexible frequency grid with 12.5 GHz

frequency slots is considered, permit to assign a channel to any multiple of the fundamental

slot, contributing to optimize the spectrum usage [8]. Furthermore, due to the independence

of modulation formats and data rates given by the use of transparent nodes, flexible frequency

grid can be combined with mixed line rates and different modulation formats, upgrading the

network performance.

To exploit these capabilities, flexibility and dynamism, optical control plane is gaining more

importance, with software defined networking (SDN) becoming more popular [9]. Control

and management of the network is therefore carried out by soft-controllers. However, with

optical networks becoming more and more complex, controllers need to be provided with

intelligence. Machine learning (ML) techniques have demonstrated to be able to provide

this intelligence at network and physical layer level, supporting different tasks as routing and

wavelength assignment (RWA), optical amplifier control or quality of transmission (QoT).

In this context, the first part of the PhD thesis has addressed the control plane. With physical

layer impairments (PLIs) accumulating along the path in transparent networks, a customised

control of the physical layer must be executed. Our work contributes to build autonomous

optical networks, able to deal with different impairments as optical power excursion (per-

manent power transients) coming from optical amplifiers. Algorithms used with the aim of

achieving this purpose can be already introduced in the short-term in dynamic and flexible

optical networks. Making decisions in an autonomous way, these envisaged approaches built

on ML techniques allow to rapidly take actions based on the current network state with the

objective of improving the system performance. The actions considered here include optical

input launch channel power adjustment and modulation format and wavelength assignment.

Each action is optimized pursuing a particular objective. Optical input launch channel power

is adjusted with the aim of reducing mean optical power excursion at the output of a link.

Modulation format and wavelength assignment is performed in order to reduce blocking

probability while taking into consideration optical signal to noise ratio (OSNR), bit error rate

(BER) and optical power excursion. In the second part, work has been particularly focused on

the physical layer, analyzing the performance of optical nodes exploiting optical switching

capabilities under packet mode operation.

Contributions

In this manuscript, contributions are organized in two main parts:

• ML techniques for physical layer control: In order to improve the performance of

dynamic and flexible transparent optical networks, we have devoted effort to develop

techniques providing intelligence to the network:
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– Initially oriented to optical amplifier control and focusing on a particular impair-

ment, optical power excursion due to optical amplifiers, two different solutions

are proposed based on ML techniques:

* Optical power excursion prediction using neural networks (NNs) [10]. These

estimations can be used during RWA process in order to reduce optical power

excursions.

* Power precompensation based on reinforcement learning (RL) with the aim

of mitigating optical power excursion [11].

– Beyond optical amplifier control, but still dealing with the optical power excursion

problematic, we have addressed the wavelength assignment problem:

* Impairment aware modulation format and wavelength assignment based

on RL has been proposed. Considering jointly optical power excursion with

OSNR and BER, this solution allows to autonomously allocate traffic requests

reducing blocking probability compared to other heuristic approaches. Im-

plemented for two different scenarios, fixed and flexible frequency grid, the

algorithm demonstrates not only to reduce blocking probability but also to

contribute to spectrum defragmentation by reducing mean optical power

excursion [12].

• Coloured optical packet switching in the N-GREEN project: This contribution examines

OPS in the framework of the N-GREEN project, developing a new generation of routers

for energy efficient networks. Our contribution to the N-GREEN project was:

– Experimental characterization of the N-GREEN switch: In this context, we have

performed the experimental characterization of a 2×2 optical switch based on

semiconductor optical amplifiers (SOAs), which has revealed impressive capabili-

ties handling high data rates [13]. Up to a switch capacity of 1 Pb/s is estimated,

when the 2× 2 optical switch is integrated as part of a high port count switch.

A possible application for this type of switch may be the backplane, intercon-

necting the switch fabrics with processing boards, substituting current electronic

interconnections [14].

Thesis organization

This PhD thesis is organized as follows:

Chapter 1 introduces our research context. Through the evolution of optical networks towards

transparent networks, some key concepts about optical networks and their constituent ele-

ments are presented, highlighting the role of SDN aided by ML techniques. In addition, OPS,

key idea on the disruptive solution proposed in the N-GREEN project, is briefly discussed.

Envisaging dynamic and flexible optical networks, Chapter 2, after introducing ML techniques,

presents the optical power excursion problematic and the work performed in the last years in
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order to mitigate its effect on the system performance. Then, our contributions are introduced.

First, using ML, optical power excursion prediction is demonstrated. Second, optical power

excursion mitigation by means of power predistortion based on RL is proven.

In the same scenario, but including OSNR and BER in our study in order to solve to wavelength

assignment problem, an impairment aware modulation format and wavelength assignment

algorithm based on RL is presented in Chapter 3. After a state of the art of RWA proposed

solutions, our RL-based approach is presented. Including different parameters, as optical

power excursion, OSNR and BER, the RL algorithm succeeds in intelligently allocating traffic

requests in two different scenarios, fixed and flexible frequency grid.

Focusing on a possible future transition to packet switching operation, as part of ANR (French

National Research Agency) N-GREEN project, Chapter 4 describes the experimental charac-

terization, in single channel and WDM configuration, of a 2×2 optical switch based on SOAs

working as optical gates.

Finally, conclusions are drawn, summarising results and providing open future research lines.
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1 Research context

The already dramatic exponential traffic growth experienced in optical communication sys-

tems has been pushed even further by 5G applications, including new requirements as low

latency and accurate synchronization [3]. Although traffic predictions are not obvious, several

works have been forecast future traffic trends [15], [16]. Interface rates and system capacities

evolution over the last ∼ 30 years, and extrapolation for the next ∼ 20 years is shown in Fig. 1.1.

While CMOS-based packet processing technologies are increasing by ∼ 40 % each year, system

capacity is only increasing by ∼ 20 %. This alarming ∼ 40 %/∼ 20 % ratio is expected to lead to

an optical capacity crunch [17]–[19]. Another disturbing subject is the energy consumption.

Information and communication technology systems account already for 5 % of the total

electricity consumption [19]. System capacity increase is accompanied by an increment in

the energy consumption. Evolution towards transparent optical networks together with a

responsible and adequate energy planning scheme are decisive for the development of future

optical networks.

Bearing this in mind, five physical dimensions have been explored in order to increase the

capacity (Fig. 1.2) [17], [21]:

• Time: Symbol rate, pulse shape.

• Quadrature: Real and imaginary part.

• Polarization: Orthogonal polarizations.

• Frequency: WDM.

• Space: Different spatial paths (cores, modes).

In fact, the ∼ 20 % increase in system capacity has mainly been driven by two physical di-

mensions: (1) quadrature, using high-order modulation formats, (2) polarization, including
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Figure 1.1 – Evolution of commercial optical transmission systems [20].

Figure 1.2 – Five physical dimensions to increase capacity [20].

polarization division multiplexing [22]. However, this increase will not be sustainable over the

next years, intensifying the research in spatial division multiplexing (SDM) techniques.

Another strategy to squeeze the fiber capacity intends to use resources in a more efficient

way. On the one hand, preserving optical circuit switching (OCS) in transparent optical

networks, but allowing dynamic demands instead of the current static traffic, allows for a more

efficient spectrum usage. On the other hand, flexible line cards supporting the adjustment

of physical parameters permit to accommodate diverse traffic demands, increasing again

the efficiency. Some of these tuneable parameters are data rate, modulation format and
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frequency, considering a flexible frequency grid enabling optical super-channels [8]. Apart

from dynamism and flexibility, which must be supported not only by line cards but also by

the optical nodes, the third fundamental piece in order to really exploit these compelling

capabilities is intelligence. ML techniques integrated in SDN-based architectures provide

intelligent management and network control, leading to network automation [20], [23]. Typical

functionalities to be included are RWA tasks, which become more complicated in dynamic and

flexible networks. Many other capabilities may be also integrated: power control techniques,

critical in dynamic optical networks or PLI prediction and mitigation, crucial in transparent

optical networks with PLIs accumulating along the lightpaths.

In this context, during the first part of the PhD thesis, we have addressed physical layer control

tasks by means of ML techniques providing network automation capabilities. Chapter 2 deals

with the power control task in transport optical networks with a fixed grid. In particular,

we have addressed optical power excursions1 due to wavelength-dependent gain in optical

amplifiers, worrisome matter under dynamic traffic conditions. Chapter 3 couples optical

power excursion together with QoT, to perform impairment aware modulation format and

wavelength assignment, complex problem in dynamic and flexible optical networks.

In the second part, a disruptive solution with respect to the first one is proposed. Instead of

OCS, OPS is considered. Although immature in terms of optical buffering and optical signal

processing, OPS has been envisaged in the literature as a long-term solution, offering higher

bandwidth efficiency [24]. Chapter 4 considers an optical node for OPS networks, developed

in the framework of the N-GREEN (New Generation of Routers for Energy Efficient Networks)

project. By exploiting transparency and the use of integrated transceivers, this innovative

optical node reduces energy consumption, main concern in optical networks. As part of the N-

GREEN project, Chapter 4 presents the work performed on the experimental characterization

of an optical switch, constituent element of the complete envisioned N-GREEN node.

This chapter gives a brief overview of the network evolution in Section 1.1, with a focus on

optical node in Section 1.2. Considering an SDN-based architecture, Section 1.3 examines the

impressive role ML techniques are starting to play in optical networks, providing intelligence

to the network. Finally, Section 1.4 describes the distinctive characteristics of the optical

network operation studied in Chapter 4.

1.1 Network Evolution

In optical network architectures, three main different segments can be distinguished (Fig. 1.3):

long-haul (core), metropolitan (metro) and access. Long-haul networks are the core of the

optical network, interconnecting continents. On the other side, access networks are the closest

to the end users. In between long-haul and access networks, metro networks connect the

1Optical power excursions are permanent power transients, extensively addressed in Chapters 2 and 3.
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Figure 1.3 – Optical network architecture, based on [17].

long-haul and access networks, covering cities or regions.

Since a couple of years, optical transport networks have been evolved from opaque to trans-

parent networks.

Opaque networks include regenerators in each intermediate node, involving O/E-E/O con-

versions. Contrary to opaque networks, transparent optical networks, also called all-optical

networks, establish end-to-end connections in which signals are always kept in the optical

domain, bypassing intermediate nodes without undergoing O/E-E/O conversions. These

networks facilitate the transition to flexible optical networks, where bit rates, modulation and

signal formats can be tuned matching the traffic demands. However, as a consequence of the

lack of regeneration, PLIs accumulate along the path, limiting the reach. One of these PLIs,

optical power excursion is dealt with in Chapters 2 and 3.

Translucent networks combine both types of nodes: nodes including bypassing capabilities

(transparent) and nodes performing O/E-E/O conversions (opaque).

1.2 Optical node evolution

In the first generation of optical networks, based on opaque point-to-point links, only transport

functionality was performed in the optical domain [25]. Routing and switching of demands

were implemented in the electrical domain. For transmission, traffic was multiplexed on

different wavelengths onto a fiber. For reception, traffic was demultiplexed in the original

wavelengths to be delivered to the client or to be transmitted again, after regeneration, E/O

conversion and multiplexing.

Second generation of optical networks included the notion of optical bypass: traffic which

destination is not the current node can pass-through the node without undergoing E/O-

O/E conversions. Considering approximately 50 % of the traffic in a node corresponds to

pass-through traffic, optical bypass represented a significant reduction in cost and energy
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Figure 1.4 – Wavelength blocker ROADM architecture [28]. In the figure: array waveguide grat-
ing (AWG), power combiner (PC), power splitter (PS), receiver (R), transmitter (T), wavelength
blocker (WB).

consumption, by avoiding transponders [25]. Key enabling technologies are the OADM and

ROADMs, the latter including reconfiguration capabilities, allowing to add/drop wavelengths

on the fly.

OADMs and ROADMs are used in the intermediate nodes, where three functionalities are

available: channel adding, channel dropping and channel optical bypass. It is possible to

visualize an ROADM as two (de)multiplexers connected back-to-back: (1) the first one demul-

tiplexes the different wavelengths, dropping some of them, (2) the second one multiplexes

the wavelengths passing through, together with added wavelengths [26]. Two sections can

be distinguished in an ROADM: mux/demux and a switch core, in order to include the ad-

d/drop/bypass capabilities [27]. Besides, a control layer, which will be described in the next

section, manages the ROADM operation.

First commercialized ROADMs integrated wavelength blockers. Able to deal with up to

100 channels in a fixed frequency grid, there were the selected option for the long-haul

applications (backbone) [27]. Usually based on a broadcast and select architecture (Fig. 1.4),

using an optical splitter, traffic is transferred to a demultiplexer and a wavelength blocker, with

the blocker deciding which wavelengths to terminate and which wavelengths to pass-through.

After the wavelength blocker, an optical coupler allows to add wavelengths.

Whereas ROADMs integrating wavelength blockers were used in the backbone, planar light-

wave circuits (PLCs) based ROADMs were popular in the metro ring networks, as the one

illustrated in Fig. 1.5 [27], [29]. A power splitter allows dropping channels through a first

demultiplexer. For adding channels, wavelengths are also first demultiplexed. Then, for each

wavelength, a 2×2 switch decides whether a wavelength is added or the existing wavelength

passes through (optical bypass). Finally, wavelengths are again multiplexed into the fiber. The

disadvantage of this architecture is that all the channels, included the ones bypassing the

ROADM, have to be demultiplexed and multiplexed introducing filtering losses [26].

None of them, wavelength blocker or PLC based ROADMs are suitable for multi-degree ar-

chitecture. In this sense, wavelength selective switches (WSSs) have become very popular in
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Figure 1.5 – PLC-ROADM architecture [28]. In the figure: array waveguide grating (AWG),
power splitter (PS), receiver (R), transmitter (T).

ROADM architectures, allowing for more scalability [30]. Based on different technologies as

microelectromechanical systems (MEMS) or liquid crystals (LCs), WSS functionality is similar

to a demultiplexer. However, while a demultiplexer is based on fixed frequencies, a WSS allows

to direct any wavelength, waveband or group of wavelengths to any output fiber. Configuration

can be modified easily using an electrical interface. ROADM degree 2 architecture based on

WSSs is shown in Fig. 1.6a. A first WSS is located at the input of the ROADM. One of its outputs

is used for the pass-through signals and another is used for the dropping channels. A second

WSS is used for adding channels. Based on the same principle, a multi-degree architecture is

shown in Fig. 1.6b. Note that by slicing the spectrum in small slices of 6.25 GHz bandwidth,

WSS architectures are also able to work on flexible frequency grid [27].

ROADMs have continued to evolve, mainly at the mux/demux section, in order to include new

functionalities: colorless, directionless and contentionless [31]:

• Colorless: Any wavelength can be transmitted/received at any port. If a transceiver

changes its wavelength, it does not need to be moved to another port. Architectures as

the one shown in Fig. 1.6b, based on array waveguide gratings (AWGs) are colored. Some

approaches which can be used at the mux/demux section of the ROADM architecture in

order to become colorless are: (1) optical power splitter connected to a WSS, (2) AWG

followed by an optical cross-connect, (3) power splitter followed by tuneable filters [27].

• Directionless: A transponder can access any fiber. This can be achieved by using color-

less mux/demux together with power splitters and WSS [27].

• Contentionless: Wavelength blocking is avoided. This property can be accomplished by:

(1) using multicast switches (Fig. 1.7a), (2) using WSSs (Fig. 1.7b) [27].

In the long-term ROADMs will keep progressing in order to adapt to future use-case scenar-

ios. To increase capacity, dynamic traffic conditions are envisaged. In this scenario, time
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(a) Degree 2. In the figure: array waveguide grating (AWG), power splitter (PS),
receiver (R), transmitter (T).

(b) Degree 3. In the figure: array waveguide grating (AWG), power splitter (PS),
receiver (R), transmitter (T).

Figure 1.6 – WSS based ROADM architectures [28].

constraints are limiting. Main time-consuming tasks are the software functions in charge of

provisioning functionalities residing at the control layer, which must be accelerated. Never-

theless, other aspects have to be considered too, as the laser tuning speed and the switching

time. MEMS-based switches meet the requirements for OCS, but their switching response is

not fast enough in case of OPS operation [14].

An important challenge, addressed in this PhD thesis, is the impact of dynamically adding/-

dropping channels in the system performance, considering optical power excursion produced

in optical amplifiers along the link.

1.3 SDN decision aided with machine learning methods

The SDN paradigm is a strong disruptive approach which has an important impact on the

control layer of optical backbone networks. During decades, Generalized Multi-Protocol

Label Switching (GMPLS) [32], [33] was a promising candidate to extend label switching Multi-

Protocol Label Switching (MPLS) to the first three layers of the network. SDN changed that
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(a) Using multicast switches. In the figure, multicast switch (MCS).

(b) Using WSSs.

Figure 1.7 – ROADM colorless, directionless, contentionless architectures [27].

due to the separation of control and data plane [34]:

“In the SDN architecture, the control plane and data plane are decoupled, network intelligence

and state are logically centralized, and the underlying network infrastructure is abstracted

from the applications[35], [36].”

According to this definition, SDN includes three layers (Fig. 1.8):

• Infrastructure or data layer: Lowest layer, it includes physical and virtual resources. Phys-

ical and virtual switches are hardware-based and software-based switches, respectively.

Whereas virtual switches support commonly SDN, physical switches do not always do,

depending on the vendor. Open ROADM is an initiative dedicated to provide open

software control for different proprietary systems [38]. The data layer acts based on

instructions coming from the control layer. Apart from switches, transceivers are also

physical elements which can be controlled through an SDN interface, in order to exploit
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Figure 1.8 – SDN-based optical network architecture [37].

its flexibility in data rate, modulation formats, forward error correction (FEC) properties

or frequency grid.

• Control layer: Between the data and the application level, control plane is the key layer

in SDN-based architectures, managing the network. Using several interfaces, it converts

the requirements coming from the application plane to policies, controlling the physical

layer. Several interfaces can be distinguished:

– Southbound interfaces between control and data plane, with OpenFlow being the

most commonly used [39].

– Northbound interfaces between control and application plane.

– Eastbound/westbound interfaces between different SDN controllers.

• Application layer: This highest layer performs network applications by using the control

layer, including network monitoring or traffic provisioning.

Although this is the general implementation, two main trends are considered in the imple-

mentation of SDN systems: white box and bright box. In the white box approach, all control

capabilities of the network nodes are given to the SDN controller, which has a full view of the

network. There is no communication between network nodes. The bright box approach, more

scalable, allows communication between SDN controllers [37].

Different functionalities can be implemented through SDN. Most popular ones aimed RWA,

including also impairment aware RWA (IA-RWA), key issue in transparent networks, guaran-

teeing sufficient QoT when PLIs are considered. Another interesting capability that can be

enabled by SDN is the optical power control, fundamental in dynamic optical networks. When

channels are added or dropped, power instabilities in optical amplifiers must be limited, in

order not to deteriorate the system performance. These functionalities are addressed in this

PhD thesis where optical power excursion in optical amplifier is predicted, compensated and

coupled with impairment aware modulation format and wavelength assignment algorithm

using ML techniques.
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ML methods, which once trained, provide a very fast response, have gained popularity in the

last years. Integrated in the SDN controllers, they can fulfill the time constraints required in

dynamic optical networks, still providing close to optimal solutions [23]. ML techniques have

been applied at physical and network layer, implementing different functionalities [40].

Several topics have been addressed at the physical layer by ML algorithms:

• QoT estimation: In order to perform IA-RWA, the knowledge about QoT for any lightpath

has to be available, allowing to make decisions, assigning traffic demands to lightpaths

providing an adequate QoT. Required knowledge can be obtained from analytical formu-

las, implying high complexity, or approximated ones, lacking accuracy. ML algorithms

have been proposed to solve this problem [41]–[43]. This subject is developed in Chap-

ter 3, where we propose QoT estimation based on ML techniques using optical power

excursion as input feature.

• Optical amplifier control: As mentioned before, optical power excursions due to optical

amplifiers under dynamic traffic operation conditions produces undesired effects in

the system performance. Difficult to approximate, as they depend on optical amplifiers’

physical characteristics, ML algorithms have demonstrated to provide a high accuracy

in its prediction [44], [45], as we will show in Chapter 2.

• Modulation format recognition: Flexible optical networks include flexible transceivers

where modulation format is a tuneable parameter to be adjusted. Modulation format

recognition is a desirable capability at the receiver, in order to adjust the demodulation

process, even before information from the transmitter is received. Several works have

dealt with this matter by means of ML techniques [46]–[48].

• Nonlinearity mitigation: Complex analytical models are required in order to estimate

nonlinearities, which greatly affect QoT. Due to this complexity, ML methods are a

promising candidate to estimate or compensate nonlinearities [49], [50].

• Optical performance monitoring: To ensure QoT and help in the fault management

process, optical performance monitoring becomes necessary. To reduce the number

of monitors deployed in the network, ML techniques may be useful by estimating

performance parameters based on known gathered data [51].

At the network layer, ML techniques have been applied to accomplish several purposes:

• Traffic prediction and virtual topology design: At the design phase, traffic prediction

helps to reduce overprovisioning. During the network operation, it allows to use re-

sources in a more efficient way. Analogous reasoning can be applied to the virtual

topologies (connecting nodes without a direct physical link). Based on gathered data,

ML techniques are able to extract traffic characteristics or even to make predictions on

the traffic [52], [53].
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• Failure management: Fault detection, localization and identification are intricate tasks

which can be solved by ML methods, helping to restore the traffic [54], [55].

• Traffic flow classification: Traffic differentiation can contribute to optimize resource

allocation problems. By working on historical data, ML methods are able to perform

traffic classification, e.g. differentiating elephants from mice flows [56].

• Path computation: Routing is a fundamental functionality at the network layer. Complex

process, it becomes even more complex when impairments are considered. Different

approaches based on ML techniques have been proposed, e.g. optimizing physical layer

parameters, as modulation format, for a given lightpath [57].

1.4 Optical packet switching vision in the N-GREEN project

OCS is the fundamental operation mode in transport optical networks, providing high Quality

of Service (QoS) [58]. Dedicated end-to-end circuits are established between source and

destination nodes before starting data transmission. During the transmission, the network

resources allocated to this particular transmission cannot be accessed by other transmissions.

When the transmission ends, the path is removed and the corresponding allocated resources

released [59]. Although wavelength converters are occasionally available, OCS may be some-

times subject to wavelength continuity constraints, i.e. same wavelength has to be kept from

source to destination, reducing its flexibility. Transparent optical networks working in OCS

reduce energy-consumption compared to the ones using electrical switches. However, using

pre-established connections, OCS could limit the efficiently use of network resources [60].

Subject of debate [60], [61], OPS has been deeply studied in the literature as successor of

OCS in order to decrease energy consumption and increase network resource use. OPS is a

technique whose origin is in data signal transmission, bursty in nature [59]. Different to OCS,

the data is in this case split into small units or packets. Each packet is composed of a header

(or label) and a payload, with the header including control and addressing information. Edge

routers are in charge of attaching and detaching labels to the packets. Once the packet reaches

a node, based on the routing information obtained after extracting and processing the label,

routing and contention resolution tasks are performed. Also, label is accordingly modified

and reattached to the payload which remains the same [58]. Note that buffers are required

in OPS in order to solve contention, increasing complexity. On the opposite, high efficient

bandwidth utilization can be achieved with OPS.

In order to allow OPS mode, important progress is being done in optical switching and burst

mode receivers (BMRx) already reaching 10 Gb/s for operation in passive optical networks [62].

Despite these advances, for OPS to become a reality, several challenges have to be faced, as

synchronization, buffering, wavelength conversion, optical header processing and regenera-

tion [59].
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• Synchronization: In slotted networks, fixed-length packets are transmitted in fixed-

duration timeslots. After suffering delays, packets arrive at nodes at any moment during

a timeslot. Thus, synchronization is mandatory in order to realign the packets with

respect to timeslots at the output ports. The most common approach makes use of

optical switches interconnected by fiber delay lines (FDLs) of different lengths, providing

a controllable variable delay [63].

• Buffering: One of the most important open issues in OPS is the fact that there is no

component equivalent to an electronic random access memory (RAM). Similar to the

approach used for synchronization, one of the most common solutions is the imple-

mentation of programmable delay units based on a cascade of optical switches and

FDLs of different lengths [64]. Simple solution, it is in turn bulky. In order to reduce the

contention and the memory needs, combination of FDLs with wavelength converters

has also been investigated [65]. Another proposed solution has utilized recirculating

loops, where switch output ports were connected to the input ports through FDLs. In

such manner, packets are recirculating until the port is available at the expense of noise

accumulation resulting in a need for amplification [64]. A most recent approach has

used nonlinear effects, e.g. four-wave mixing (FWM) in SOAs or stimulated Raman and

Brillouin scattering in fibers, reducing the group velocity, thus reducing the speed of

light in the medium, e.g. SOAs and fiber [66]–[68]. Its main constraint is the bandwidth,

limiting the bit rate.

• Wavelength conversion: Important functionality allowing not only contention resolution

but also wavelength routing [65], [69]. Considered to be essential for future transparent

optical networks, its adoption in each node of the network seems unlikely due to its cost

and the maturity of the technology [70].

• Optical header processing: Some demonstrations can be found in the literature, as an

all-optical header processing module using two main blocks: an optical correlator to

recognize the header and an all-optical flip-flop memory to store the header [65].

• Regeneration: Re-amplification and re-shaping (2R), or re-amplification, re-shaping

and re-timing (3R) are regeneration tasks complicated to solve exclusively in the op-

tical domain. However, some demonstrations of all-optical regenerators have been

implemented based on: nonlinear fiber Sagnac interferometer switch [71], symmetric-

Mach-Zehnder-type interferometric semiconductor switch [72], electroabsorption mod-

ulators [73]. Going further, all-optical single channel regeneration techniques have been

extended to multi-channel [74].

All these complex issues have led to the opening of an intermediate option, becoming very

popular for data-center networks [14]: hybrid opto-electronic packet switching. In this case, in

order to solve contention, packets are allowed to undergo O/E-E/O conversions [75]. Several

approaches have been demonstrated in this scenario, combining electronics and photon-

ics [76], [77].
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1.5 Summary

In this chapter, the research context of the PhD thesis is presented. To answer data bit rate

and power consumption challenges, optical networks are shown to evolve to transparent

flexible optical networks. A focus on optical node evolution shows that new node architectures

have to respond to the same challenges. Progress at the control layer, adopting SDN-based

architectures, is analyzed to fill with the new dynamism and flexibility features in optical

networks. Nevertheless, this new concept of networks implies an increasing complexity

at physical and network layers, which can be addressed by ML techniques assisting the

SDN controllers. In this scenario, we have proposed optical power excursion prediction and

precompensation (Chapter 2). Using synthetic data, high accuracy was obtained for optical

power excursion prediction. After precompensation reductions of 86 %, 74 %, 62 %, for 12-

channel, 24-channel and 40-channel configurations were achieved. In Chapter 3, using optical

power excursion together with OSNR and BER, we have developed an impairment aware

modulation format and wavelength assignment algorithm reducing blocking probability (ratio

of blocked traffic demands with respect to arrived demands).

A disruptive solution to optical flexible network is considered in Part 2, based on multi-

coloured OPS, developing a new generation of routers for energy efficient networks. The

work presented in Chapter 4, in the framework of the N-GREEN project, is focused on the

experimental characterization of a 2×2 switch integrated in the N-GREEN node. The obtained

results, in single channel and WDM configurations, confirm the feasibility of working at higher

data rates, envisaging a 16×16 switch configuration.
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2 Optical power excursion prediction
and precompensation

Artificial intelligence, driven by several elements as computational power growth, develop-

ment of ML libraries and "big data", is becoming essential, providing impressive performance

in different fields as computer vision, speech recognition, robotics and more recently op-

tical networks. As a proof of this, European photonics community has identified artificial

intelligence enabled optical networks as one of the main research topics for the next years [78].

Optical amplifier control is one of the fields where ML can make the difference. In dynamic

optical networks, wavelength dependent gain in optical amplifiers, producing power excur-

sions is still an issue to be solved. Here, two approaches based on ML techniques are proposed

in order to mitigate power excursion undesired effects (OSNR degradation and nonlinearities).

First approach relies on power excursion prediction which can afterwards be used for wave-

length assignment. Second approach presents a power precompensation solution reducing

power excursions at the output of a link.

First, Section 2.1 gives an introduction to ML techniques, as some of them will be used in the

proposed approaches. Section 2.2 introduces the power excursion problematic together with

the state of the art of the solutions found in the literature. Section 2.3 describes the experimen-

tal validation of a double-stage amplifier, used in the following, to bring the work performed

in simulations closer to the real world. Section 2.4 and Section 2.5 present the two proposed

approaches: power excursion prediction and power precompensation. Experimental work

presented in this chapter was performed by Network Technology Lab, École de technologie

supérieure (Canada), without my participation.

2.1 Machine learning techniques overview

ML techniques are incredibly evolving over the last years. At the end of 2018, DeepMind [79]

has shown how close a computer program, AlphaZero, is to master any kind of game without

human guidance, exclusively by self-playing. One year after, MuZero [80], also developed

by DeepMind, matched AlphaZero’s superhuman performance without knowing the game
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rules. Present already in real-world applications as image and speech recognition, product

recommendation or medical diagnosis, ML techniques have started to gain popularity also in

optical network applications. From physical layer to network layer, ML techniques are demon-

strating to be able to improve optical network performance being of aid in different tasks:

optical amplifier control, QoT estimation, optical monitoring, RWA, failure detection, etc. [40].

During the PhD thesis, ML techniques have been extensively used, having an important role

in Chapter 2 and Chapter 3. This section provides ML fundamentals and a short review on

most popular ML techniques.

2.1.1 Fundamentals

The first question to solve is: What is ML? A very popular definition is given in [81], where ML

is defined as:

“A computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P , if its performance at tasks in T , as measured by P , improves

with experience E . (Mitchell, 1997, p.2)”

To better understand the precedent definition and the ideas behind ML, some examples are

given:

• ML algorithm learning to classify images of dogs and cats (Fig. 2.1a):

– Task T : classification of images in two categories: (1) dog, when there is a dog in

the picture and (2) cat, when there is a cat in the picture.

– Performance P : Percentage of images successfully classified.

– Experience E : Dataset of images containing photos of cats and dogs.

• ML algorithm learning to predict prices of houses based on specific features e.g. size,

number of rooms. . . (Fig. 2.1b):

– Task T : Prediction of house prices.

– Performance P : Accuracy of the prediction.

– Experience E : Dataset of features (size, number of rooms. . . ) and corresponding

prices.

In these previous two examples, the two most common types of tasks are established: (1)

classification, where the algorithm assigns an input to a category, e.g. image classification,

(2) regression, with the algorithm estimating a numerical value, e.g. predicting the prices

of houses based on specific features. Depending on the task, also different performance

measures can be utilized, as accuracy or error rate. Note that the performance measurement

should be done in a separated dataset, not used during training, called test set.
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(a) Image classification. (b) House prices prediction.

Figure 2.1 – ML examples.

Continuing with the second ML application proposed before, linear regression can serve as ML

algorithm to predict house prices. Using linear regression, the predicted price y is calculated

as [82]:

y = w T x , (2.1)

where x is a vector containing the input features and w is a weight vector estimated during

training in order to get the best approximation. In order to find these w parameters, an objec-

tive function J(w ) is minimized, by using gradient descent. Note that an objective function

which is minimized can be also called cost function, loss function or error function [82]. In

this case, the objective function corresponds to the error between the estimations and the

target values t . The error to minimize during the training MSEtrain can be written as [82]:

J (w ) = MSEtrain =
1

m

∑
i

(
y (t r ai ni ng ) − t (t r ai ni ng )

)2

i
, (2.2)

where m is the total number of samples in the training set. The test error MSEtest is defined in

the same way, but is measured over the n samples constituting the test set [82]:

MSEtest =
1

n

∑
i

(
y (t est ) − t (t est ))2

i . (2.3)

Note for classification problems, instead of mean squared error, accuracy is used:

Number of correct predictions

Number of total predictions
. (2.4)

The ability of the ML algorithm to be effective when tested on new data is called generalization.
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Figure 2.2 – Relationship between capacity and error [82].

During the learning phase, a primary goal is to reduce the training error, computed on the

training set. After the training, the ML algorithm is executed on new data, with the perfor-

mance measured by the test error (generalization error) calculated on the test data. The test

error will be larger than the training error, but the gap between them should be small. When

the training error is too large, the ML algorithm presents an underfitting problem. On the

opposite, when the training error is low but the test error is high, the ML algorithm exhibits an

overfitting problem. Different approaches have been used in order to reduce the overfitting

problem:

• Capacity reduction: Algorithms with high capacity tend to overfit when the task to

solve does not require such capacity. As an example, consider an ML model based on

polynomial. For a particular degree N the output is given by:

y =
N∑

i =1
wi xi +w0. (2.5)

As represented in Fig.2.2, using this model with different N degrees in order to solve a

simple task will usually derive in underfitting if the degree is very low and overfitting if it

is very high. Reducing the degree polynomial (capacity), without falling in underfitting,

allows to fix overfitting.

• Regularization: By adding a tuning parameter, the flexibility of the ML algorithm is

penalized, therefore preventing overfitting. An example of regularization operates on

penalizing larger weights over small weights, by minimizing the function J (w ):

J (w ) = MSEtrain +λw T w , (2.6)

where λ is a parameter chosen beforehand.
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Differently to w values, other parameters cannot be estimated during the training. They affect

the performance of the ML model but there is no formula to calculate their values. These

external parameters are called hyperparameters, as the degree of the polynomial in regression.

In order to tune hyperparameters, the training set is subdivided in two subsets: a training

set (∼ 80% of the original training set) where the training is performed, and a validation set

(∼ 20% of the original training set) where the performance of the hyperparameters used in the

training is measured. By training the ML model for different hyperparameters and comparing

the performance on the validation set, hyperparameters are optimized.

2.1.2 Algorithms: Supervised, unsupervised and reinforcement learning

According to the type of experience used during the learning phase, ML algorithms can be

classified under three main categories: supervised learning, unsupervised learning and RL

(Fig. 2.3). Supervised learning refers to all the techniques making use of a labelled training

dataset, where each input x has an associated output y . Based on these labelled samples,

the algorithm is instructed, in a way that after the training it is able to predict an output y

from a new input x not present in the dataset. On the contrary, in unsupervised learning,

training data is not labelled, the algorithm has to figure out by itself hidden patterns in order

to be able to learn some probability distribution p(x) or even to extract properties. The third

group of ML techniques, RL, learn by interaction with an environment rather than from a

dataset. In general, unsupervised learning algorithms are able to extract patterns from data,

supervised learning algorithms are used for prediction and classification tasks and RL allows

autonomous system control. Following this general rule, in this thesis, supervised learning is

used for optical power excursion prediction and RL algorithms are used (in the present chapter

and in Chapter 3) to learn to optimize launch input powers and the wavelength assignment

process. For supervised learning, we have focused our work on NNs, which have become very

popular in the last years, outperforming other supervised algorithms [83].

Supervised learning

Some of the most common supervised learning methods are described in the following, always

based on a labelled training dataset.

Linear regression Introduced before, coming from classic statistics, linear regression is a

simple technique which assumes a linear relationship between the inputs x and the output y .

Probabilistic supervised learning The main goal of this family of algorithms is to estimate

a probability distribution p(y |x) [82]. This is the case of logistic regression, Naives Bayes and

Bayesian networks.
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Figure 2.3 – ML techniques and their applications [84].

Support Vector Machines Different from probabilistic supervised learning, support vector

machines (SVMs) do not output a probability but a class identity. In order to do this, SVMs

estimate a hyperplane that optimally separates the different classes [82].

k-nearest neighbors (k-NN) They do not require a training stage. For a chosen number of

neighbors N , the algorithm calculates the distance of the test sample to each of the samples

in the dataset. Based on the labels of the k nearest samples, it returns the average of the k

samples. Simple; however, this algorithm becomes slower as the number of samples in the

dataset increases.

Decision trees With a flowchart like architecture, decision trees make predictions based on

simple decisions, where each decision maps to a region breaking in sub-regions (child nodes)

depending on the outcome of the decision. Random forests (RF), also based on decision trees,

combine the output of multiple random decision trees.

Neural networks NNs are a nonlinear data modelling tool based on a high-interconnected

node structure which will be used in Chapter 2 and Chapter 3. In general, NNs map an input

x to an output y by estimating a function approximation y = f (x , w ). The function f (x , w )

depends not only on the input x but also in a set of parameters w , learnt throughout the
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training phase [82]. Data used for training is labelled, i.e. each input x is associated to its

corresponding output t . Organized in layers, the general structure can be seen in Fig. 2.4,

where between the input layer, i.e. first layer, and the output layer, i.e. last layer, there are a

variable number of hidden layers. Each layer is composed by nodes working in parallel. Each

unit, reminding to a neuron, gathers input data coming from other nodes and calculates an

output activation value. A nonlinear function (activation function) is then applied on the

received activations. Thus, for the first hidden layer, a linear combination is performed first,

calculating the activations a:

a =
(
W (1)T

x
)

, (2.7)

where W (1) is the matrix representation of the mapping parameters between the first and

second layer. Then, the activation function h(·) is applied on eq. 2.7:

z = h (a) . (2.8)

The same procedure is followed for the next layers. If there is only one hidden layer, with

second layer being already the output layer and having only one output unit, the activations

are calculated as:

a =
(

w (2)T
z
)

, (2.9)

where w (2) is the vector representation of the mapping parameters between the hidden layer

and the output layer. Then, activation function g (·) is applied in order to obtain the output:

y = g (a) . (2.10)

There are no feedback connections, information propagates always forward. If feedback

connections are included, they are referred as recurrent NNs. More details about NNs are

provided in Appendix A.

During the training, the NN adjusts the parameters w in order to get, for each x , an estimated

value y close to the true value t . In order to do this, gradient descent on a cost function is

used [82]. Different cost functions can be utilized, similarly as for the linear regression shown

in Section 2.1.1. Some of the most common are:
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Figure 2.4 – General NN diagram [85].

• Mean squared error: Commonly used as loss function for regression tasks:

1

m

m∑
i =1

(
yi − ti

)2 , (2.11)

measuring the difference between the true values t and the estimated values y in the m

samples existing in the training dataset.

• Cross-entropy: Demonstrated to be faster for classification tasks, it is the most common

loss function [85]. When only two classes are considered, the binary cross-entropy loss

is given by:

− 1

m

m∑
i =1

(
ti log

(
yi

)+ (1− ti ) log
(
1− yi

)
ti

)
, (2.12)

where again, as before, t and y are the true and estimated values in the m samples of the

dataset. Intuitively, the loss is larger when the estimated value is far from the true value.

The cost function is associated to the activation function used in the output unit. At the output

layer, the hidden features undergo the last transformation, producing the final output. Here,

some of the most popular output units are introduced:

• Linear: The output is a linear combination of the hidden features y = w T z . It is typical

for regression tasks with mean squared error cost function.
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• Sigmoid: The output can be seen as a probability P (y = 1|x), limited between 0 and 1:

y =σ
(
w T z

)
, (2.13)

with σ(·) the logistic sigmoid function:

σ(x) =
1

1+e−x . (2.14)

Note that the sigmoid unit provides a value between 0 and 1, as a probability. For binary

classification, a 0.5 threshold is used to distinguished the two classes. However, this

threshold can be modified.

• Softmax: Also calculating a probability, but considering multiple classes.

Although previous activation functions (linear, sigmoid, softmax) can also be used in the

hidden layers, other are more popular, as sigmoid and hyperbolic tangent (tanh), currently

substituted by rectified linear unit (ReLU):

h(z) = max(0, z), (2.15)

which is widely used nowadays, as it presents a faster training than other activation functions,

as tanh [86].

Unsupervised learning

Unsupervised learning works on unlabelled data, determining new data representations. Most

popular types of unsupervised learning can be classified in: (1) based on data compression,

searching for low dimensional representations as principal component analysis (PCA), (2)

based on clustering, sparse representation, aggregating data in different groups, as k-means

clustering.

Principal component analysis By using compression, PCA learns a new representation of

the data with a lower dimension, still preserving as much information as possible from the

original data [82].

k-means Simple unsupervised learning algorithm consisting on grouping data in a set of k

clusters [82]. Each cluster has a centroid µ, the center of the cluster. Starting from randomly

selected k centroids, in a first step, distances of each of the samples in the dataset to each the

centroids are calculated. Then, samples are assigned to the nearest centroid. Finally, each
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centroid is updated to the average value of the samples assigned to this corresponding cluster.

The process is repeated until the centroids are stable.

Reinforcement learning

Learning by interaction with an environment is the fundamental basis of RL algorithms,

used in Chapter 2 and Chapter 3. In psychology, this idea is already present since the early

twentieth century. Law of effect, developed by Edward Lee Thorndike [87], establishes that

actions leading to pleasant outcomes are expected to reoccur whereas actions coupled with

unpleasant outcomes are less likely to be repeated:

Of several responses made to the same situation, those which are accompanied

or closely followed by satisfaction to the animal will, other things being equal, be

more firmly connected with the situation, so that when it recurs, they will be more

likely to recur; those which are accompanied or closely followed by discomfort

to the animal will, other things being equal, have their connections with that

situation weakened, so that, when it recurs, there will less likely to occur. The

greater the satisfaction or discomfort, the greater the strengthening or weakening

the bond. (Thorndike, 1911, p.244)

Similarly, RL algorithms learn by interacting with an environment. Suppose an RL algorithm

learning to play chess. At the beginning, it does not have any knowledge about chess, not

knowing which the objective is. Thus, it moves the pieces randomly. Some of these random

actions will result in favorable outcomes like capturing pieces or promoting a pawn; never-

theless, other actions will be followed by unfortunate events, as giving away pieces. All the

experience collected by trial and error is valuable and based on it, the RL algorithm learns to

intelligently determine which is the most profitable move to make in its turn, in order to get

it closer to win. Putting too much trust in the gathered experience, can lead to sub-optimal

performance, where the RL algorithm keeps playing long but it never wins because it never

discovered the right moves. Balance between exploration of new actions and exploitation of

previous knowledge must be achieved.

In general, two entities are distinguished in an RL method, as shown in Fig. 2.5: agent and

environment. The agent, is a learner, perceiving the environment, taking actions and analyzing

the outcomes. Everything surrounding the agent, constituting a separated entity, is called

environment. Interactions between agent and environment take place at discrete timesteps

t = 0,1,2.... At each timestep:

• The agent collects an observation st , called state, containing relevant information about

the environment at the timestep t . Although carrying pertinent information, not all the

information has to be included in a state; it is possible some pieces of information are
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Figure 2.5 – RL agent-environment interaction [88].

hidden. Despite of this, in general, states have the Markov property, i.e. next state st+1

can be determined based on the current state st and action at at timestep t .

• At the same timestep t , the agent chooses an action at , following a policy πt which takes

into account the current state st . The policy is described as a function πt (s, a) mapping

each state s and action a to a probability of selecting action a in the current state s.

Policy function should be optimized, in order to assign maximum probabilities to the

actions providing better results.

• In the next time step t +1, the environment delivers a reward to the agent rt+1 and

moves to the next state st+1. Reward values depend on action outcomes: high rewards

and low rewards are associated to satisfying and unsatisfying results, respectively.

Previous interactions continue until a terminal state is reached, e.g. in the previous exam-

ple, until the agent wins or loses the game. Each of these sequences of agent-environment

interactions are called episodes. The end of an episode, is followed by a reset which drives the

environment to the initial state, starting a new episode. Although here the analysis is restricted

to episodic tasks, not always tasks are required to be episodic, e.g. many control tasks are

continuous tasks lacking terminal states.

Maximizing the long-term reward is the main goal of RL algorithms. This long-term reward

can be defined as a cumulative reward Rt , sum of the rewards between the current timestep t

and the timestep at which a terminal state is reached T :

Rt = rt+1 + rt+2 + rt+3 + ...+ rT . (2.16)

This definition becomes questionable for continuous tasks, where the terminal state occurs at

T = ∞. Consequently, the cumulative reward could also turn up being an infinite value. To

solve this issue, a discount rate γ is introduced in eq. 2.16:

Rt = rt+1 +γrt+2 +γ2rt+3 + ... =
∞∑

k=0
γk rt+k+1, (2.17)
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with 0 ≤ γ ≤ 1. For γ = 0, the discounted reward is equal to the immediate reward rt+1. In

general, maximizing the immediate reward and ignoring future rewards is not a good option,

as it can block the progress to a path accounting with most advantageous future rewards.

As γ increases, future rewards become more significant. The farther into the future, the less

importance the reward has, e.g. at timestep k the reward is scaled by γk , but at timestep k +1

the reward is scaled by γk+1, its value is γ times less. Typical values for γ are close, but not

equal, to 1.

Nevertheless, estimating discounted rewards is unpractical, as each sequence of state-actions

generates a different discounted reward. Thus, most RL methods determine value functions,

estimating an expected return when the agent is at a particular state and follows a particular

policy. Different value functions can be defined, as the state-value function or the action-value

function. The state-value function Vπ(s), represents the expected return when a policy π is

followed:

Vπ(s) = Eπ [Rt |St = s] = Eπ

[ ∞∑
k=0

γk rt+k+1
∣∣St = s

]
, (2.18)

where Eπ{·} represents the expected return after following policy π. Action-value function

Qπ(s, a) is defined in an identical way, determining expected return received when starting in

s and selecting action a, afterwards following policy π:

Qπ(s, a) = Eπ [Rt |St = s, At = a] = Eπ

[ ∞∑
k=0

γk rt+k+1
∣∣St = s, At = a

]
. (2.19)

Different features can be considered in order to classify RL algorithms [89]:

• Model-based / model-free: Model-based methods try to learn a representation of the

environment, being able to anticipate states and/or rewards. On the opposite, model-

free algorithms operate on state-action pairs without creating an environment model.

• Policy-based / value-based: Policy-based methods directly approximate the policy,

probability of selecting an action from the action space, allowing to know which action

to take at each step. Value-based methods approximate all the values for each action,

selecting the action maximizing the reward.

• On-policy / off-policy: On-policy methods work on optimizing the same policy used for

taking decisions whereas off-policy methods use different policies for optimizing and

taking decisions.
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Policy gradient algorithms

Value-based methods, estimating all the values for each action result impracticable for con-

tinuous action spaces or large action spaces. In this case, which is also the case of the tasks

presented here, policy-based methods are more convenient.

Essentially, policy-based algorithms approximate policies. Although they may need a value-

function to learn the policy parameters θ, they do not need it in order to select an action at

each state. Note that the value function used for learning the policy can also be learnt, having

therefore associated value parameters w . The policy π, probability of selecting an action a

when being at a state s and using policy parameters θ is expressed as:

π(a|s,θ) = p (At = a|St = s,θt = θ) . (2.20)

Gradient is the most popular method in order to estimate policy parameters. The main

idea behind it is to maximize an objective function J(θ), measuring performance, which is

equivalent to maximize the gradient of the objective function J(θ) with respect to the policy

parameters θ. This is done in an iterative manner. At each step the policy parameters are

updated using a stochastic estimate of the gradient á∇θ J (θt ) with respect to θt according to:

θt+1 = θt +αá∇θ J (θt ). (2.21)

The objective function J(θ) can be directly defined from the value function Vπθ following

policy πθ from an initial state s0:

J (θ) = Vπθ (s0). (2.22)

From eq. 2.22, it seems difficult to compute ∇θ J (θt ) with respect to policy parameters, as policy

changes affect state distribution. However, policy gradient theorem, which is demonstrated

in [88], helps to solve this problem, establishing an analytical formula which does not require

the state distribution derivative:

∇θ J (θ) ∝∑
s
µ(s)

∑
a

Qπ(s, a)∇θπ(a|s,θ), (2.23)

where µ(s) is on-policy distribution under π. Developing more eq. 2.23, as explained in

Appendix B, a general formulation stated in [90] is achieved. Policy gradient methods maximize

the expected total reward by continuously estimating the gradient g := ∇θE[
∑∞

t=0 rt ], following
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the formula:

g = E

[ ∞∑
t=0
Ψt∇θ logπθ(At |St )

]
, (2.24)

where Ψt can adopt different forms:

•
∑∞

t=0 rt : total reward

•
∑∞

t ′=t rt ′ : reward following action

•
∑∞

t ′=t rt ′ −b(St ): baselined version

• Qπ(St , At ): state-action value function

• Aπ(St , At ): advantage function

• rt +Vπ(St+1)−Vπ(St ) temporal difference residual

where:

Vπ(St ) := ESt+1:∞
At :∞

[ ∞∑
l =0

rt+l

]
, (2.25)

Qπ(St , At ) := ESt+1:∞
At+1:∞

[ ∞∑
l =0

rt+l

]
, (2.26)

Aπ(St , At ) = Qπ(St , At )−Vπ(St ). (2.27)

Actor-critic methods

Policy gradient methods learning to estimate not only the policy function but also a value

function are called actor-critic methods. Two entities are distinguished: an actor learning the

policy and a critic learning a value function. Four of the most popular actor-critic methods

are described here: advantage actor critic (A2C) [91], deep deterministic policy gradient

(DDPG) [92], trust region policy optimization (TRPO) [93] and proximal policy optimization

(PPO) [94].

• A2C is a synchronous, deterministic version of asynchronous advantage actor critic

(A3C), developed by Google’s DeepMind [91] based on parallel agents. It is an on-policy

algorithm where the policy gradient is based on an advantage function eq. 2.27. Whereas
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in A3C agents can be working on different version policies, leading to discrepancies, in

A2C this issue is solved by waiting until all the agents finish before executing updates.

This ensures in each iteration all the agents start from the same policy.

• DDPG is an off-policy actor-critic algorithm. In order to encourage exploration, the

exploration policy µ′ is built by adding noise sampled from a noise process N :

µ′(St ) =µ(St |θµt )+N . (2.28)

Target values are varied slowly by means of ’soft’ updates: τ<< 1 : θ′ ← θ+ (1−τ)θ′.

• TRPO is an off-policy algorithm considering the policy π to optimize and the policy β

collecting trajectories. The objective function uses the discounted visitation frequencies

of an state ρπol d (s) as:

J (θ) =
∑

s∈S

ρπθold
∑

a∈A

(
πθ(a|s)Âθold (s, a)

)
=

∑
s∈S

ρπθold
∑

a∈A

(
β(a|s)

πθ(a|s)

β(a|s)
Âθold (s, a)

)
,

(2.29)

where θold are the old parameters previous to update. Using importance sampling:

J (θ) = Es∼ρπθold ,a∼β
[πθ(a|s)

β(a|s)
Âθold (s, a)

]
. (2.30)

TRPO defines an additional constraint on the policy update, expressed as a maximum

Kullback-Leibler divergence between the old and the new policies D
ρθol d
K L (θol d ,θ) < δ:

Es∼ρπθold [DKL(πθold (.|s)‖πθ(.|s)] ≤ δ, (2.31)

preventing the old and new policies from differing too much.

• PPO, simpler than TRPO, uses as objective function the ratio between the new and the

old policy scaled by the advantage:

J (θ) = Et

[
πθ(a|s)

πθol d (a|s)
Âθol d (s,a)

]
= Et

[
r (θ)Âθol d (s, a)

]
, (2.32)

where r (θ) = πθ(a|s)
πθol d

(a|s) . In order to avoid instabilities by restricting the update, the

objective function is clipped, being:

J cl i p
θ

= Et
[
min(r (θ)Âθol d (s, a), clip(r (θ),1−ε,1+ε)Âθol d (s, a))

]
. (2.33)

The function clip(·) limits the change ratio in the interval [1−ε,1+ε] with ε being a

hyperparameter.
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2.2 Optical power excursion challenge

Channel load modifications cause power dynamics (Appendix C). A change in the channel load

implies a change in the amplifier input power. As a result, at the output of an EDFA operated

at fixed pump, first, fast power changes characterized by undershooting or undershooting

(power transients) are observed. After these power transients, once the power becomes stable,

persistent power deviations remain (power excursions), deviating the output power from the

desired power which would be obtained for an ideal amplifier with flat gain.

2.2.1 Optical amplifier modules

Two main different types of control are usually available in EDFAs: automatic gain control

(AGC) which keeps a constant mean EDFA gain level for any input power and automatic power

control which provides constant mean output power for any gain. AGC mode is preferred

in terrestrial optical networks to reduce the undesired effects of power dynamics on WDM

signals. In general, implementing AGC requires: (1) detection of signal power variations, (2)

generation of an error signal (3) amplifier adjustment in order to reduce the error signal [95].

Different approaches have been proposed to introduce gain control capabilities in EDFAs:

pump power adjustment, gain clamping and continuous wave extra channel insertion.

Pump power adjustment consists on modifying the pump power until the desired mean gain is

achieved, usually involving feedforward or feedback loops. Feedforward loops, modifying the

pump power depending on the input power values, have been demonstrated [96]. A similar

method, including a supervisory channel, has also been developed [97]. Feedback loops acting

on pump power as a response to the output power in order to keep a constant mean gain have

also been validated [95]. Even more, combination of feedforward and feedback loops have

also been investigated in order to reduce the time response [98], [99].

Another method allowing to keep a constant mean gain is gain clamping, which consists on

adding an additional input optical control channel keeping the gain constant. In [100], two

Bragg reflectors are connected to the input and the output of an erbium doped fiber (EDF),

permitting the signals to pass transparently but reflecting the control channel. Thus, the

amplifier oscillates at the control wavelength while the gain is kept constant. A ring laser can

also be used to adjust the gain. In this case, the control channel circulates in a feedback loop

including an attenuator in order to readjust the gain [101].

As in gain clamping, other alternatives also include an extra-channel. However, the additional

channel in this case is transmitted along with the other channels, without being restricted

to a feedback loop. The mean gain is kept constant by modifying the power of the extra-

channel [102].

36



Optical power excursion prediction and precompensation Chapter 2

Figure 2.6 – EDFA module architecture [103]. In the figure: dispersion compensating module
(DCM), gain flattening filter (GFF), optical isolator (OI), optical supervisor channel (OSC),
photodiode (PD), power splitter (PS), variable optical attenuator (VOA).

Currently, AGC mode based on electronic control loop is the most popular approach from the

previous solutions. Shown in Fig. 2.6, typical commercial amplifier modules including AGC

capabilities are based on complex architectures making use of multistage amplifiers (cascade

of amplifiers) with additional elements:

• Optical supervisor channel (OSC) module for monitoring the amplifier.

• Gain flattening filter (GFF) eliminating amplifier gain ripples due to wavelength depen-

dent gain.

• Variable optical attenuator (VOA) in between two stages in order to modify the tilt. When

attenuation is increased, the pump power has also to be increased in order to keep the

same power at the output of the second stage. As a consequence, the tilt changes but

the output power does not, also keeping the same gain.

• Dispersion compensating module (DCM) cancelling the dispersion introduced by the

fiber.

These amplifier architectures incorporate various control capabilities:

• Gain control based on electronic loops. As discussed before, feedfordward, feedback

or both can be used in order to keep a desired constant mean gain. Time response is

limited by the electronics.

• Tilt control based on VOA. Main sources of tilt changes are the frequency dependent

attenuation in fibers and the stimulated Raman scattering (SRS), with the latter being the

dominant. When a signal and a pump photon (at higher frequency) travel in a nonlinear
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medium, as a fiber, the signal photon can stimulate the emission of a second photon

by Stokes-shifting the frequency of the pump photon until matching the signal photon.

The excess of energy of the pump photon can be released in vibrational modes [104].

For WDM signals, SRS produces a transfer of energy from the channels at higher powers

to the channels at lower frequencies [105].

• Amplified spontaneous emission (ASE, Appendix C) correction: For a noiseless amplifier,

the gain G is given by:

G =
P out

meas

P i n
meas

=
P out

si g

P i n
si g

, (2.34)

where P i n
meas and P i n

si g are the measured input power and the signal input power, and

P out
meas and P out

si g are the measured and signal output power. However, once the noise is

included in the calculations, the gain is rewritten as:

G =
P out

meas

P i n
meas

=
P out

si g ′ +P ASE

P i n
meas

, (2.35)

with P out
si g ′ the signal output power when the noise is included. The output power can be

therefore expressed as:

P out
si g ′ = GP i n

meas −P ASE , (2.36)

meaning that some of the output power is corresponds to ASE noise. In order to keep

the same signal output power as if there would be no noise, the gain has to be corrected:

Gcor r =
P out

si g +P ASE

P i n
meas

=
P out

si g

P i n
meas

+ P ASE

P i n
meas

= G + P ASE

P i n
meas

= G + ASEcor r . (2.37)

This correction factor ASEcor r is precalculated and stored in a table, so it can be used

during amplifier operation [106], [107]. When the input power is low (e.g. low number

of channels) or the gain is small this factor becomes important.

2.2.2 Optical power excursion problem in WDM systems

Although complex amplifier structures including several control options reduce optical power

excursions, they do not cancel them, leaving residual power excursion. Main reason behind

residual power excursions is the wavelength dependent gain, which is determined by the

specific physical EDFA characteristics as erbium concentration [95] (Appendix C). Analytical

investigation on power excursion on a single stage amplifier operating in AGC mode is given

in [108]. Some definitions are required previous to this analysis. As signal, a WDM signal is

considered with P i n
tot total input power and P out

tot total output power. For each channel in the
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WDM signal, P i n
j and P out

j are the input and output powers at the channel j . Regarding to the

amplifier, GM is defined as mean gain and GTC the target gain selected by AGC. Mainly due to

the wavelength dependent gain, the gain at a channel j is determined by GM g j t j , being g j

and t j the gain ripple and tilt in channel j . Gain ripple corresponds to the gain non-flatness

of the amplifier whereas gain tilt refers to the gain slope with reference to another channel.

When the amplifier operating point changes, the gain ripple is also modified and tilted. Tilt

can also be affected by SRS and wavelength dependent attenuation in fibers. Based on the

previous definitions, total input power P i n
tot is expressed as:

P i n
tot =

∑
P i n

j +NI , (2.38)

where NI is the optical noise power at the input of the amplifier. The output power seen by

the AGC controller can be expressed in terms of the target gain including a noise correction

factor NC , from eq. 2.37 [107]:

P out
tot = GTC

(
P i n

tot +NC

)
. (2.39)

When channels are added or dropped, pump powers are adjusted in order to keep the same

gain. Note the controller works on adjusting the mean output gain but not the individual

gain at each channel, implying that the output power at each channel of the WDM signal is

adjusted by a factor f :

P out
j = f GM g j t j P i n

j . (2.40)

Therefore, the total output power P out
tot including the noise introduced by the amplifier NR is

given by:

P out
tot = f GM

∑
j

P j g j t j + f GM NR gR + f GM NI g I , (2.41)

where g I and gR represent the average gain ripple experienced by the input and generated

noises. From eq 2.38-2.41, defining R = GTC /GM , the factor adjustment is expressed as:

f = R

( ∑
j P i n

j +NI +NC∑
j P i n

j g j t j + gR NR + g I NI

)
, (2.42)

which depends on channel input powers and amplifiers gains. Finally, the output power at
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channel at an specific channel, e.g. channel 1 is given by:

P out
1 = RGM P1 +GM

∑
j 6=1

(
R − f g j t j

)+GM
(
R − f g I

)
NI − f GM gR NR +RGM NC , (2.43)

which shows the dependence of the power excursions on the factor (R− f g j t j ) averaged over all

the channels. This analysis demonstrates how residual power excursions do exist even under

AGC and how they fluctuate depending on the input power channels and gains. Producing

undesired optical mean power excursions, its effect in WDM systems can be significant. As a

result, nonlinearities and OSNR degradation are observed [95].

2.2.3 State of the art of the technical solutions

Solving optical power excursions is an open topic investigated for years. Different approaches

have been proposed in order to flatten amplifier gain. Based on gain clamping characteristics

in inhomogeneous lasers, gain flattening has been accomplished by placing an amplifier

working under saturation conditions in a ring laser configuration [109]. By cooling the fiber,

inhomogenous characteristics are boosted producing a flattened gain. Other different tech-

niques made use of a two-stage amplifier with complementary gain [110] or spatial hole

burning in an erbium doped twincore fiber [111]. Active optical filtering has also been stud-

ied in order to flatten the gain, using acousto-optic tunable filters [112] or Mach-Zehnder

filters [113]. Passive optical filters utilizing an optical notch filter [114], a filter based on D-fiber

with grating [115] and fiber photosensitive blazed grating [116] have also been shown.

Passive optical filtering have become the preferred approach, with thin-film filters being the

solution widely adopted [117]. Presenting an adequate performance in static conditions,

residual power excursion remain under dynamic operation including channel load changes, as

seen in Section 2.2.2. Thus, considering the amplifier response looks almost unpredictable, the

first challenge to solve is how to predict the amplifier behaviour at different operating points.

Once this first challenge is overcome, another still remains: how to use this new prediction

ability in order to mitigate power excursions.

Different alternatives have been considered in order to face the first challenge, building an

amplifier representation providing the amplifier response under different operating conditions.

Most of the proposals are based on: amplifier modelling, amplifier characterization and use of

historical data.

Amplifier modelling has been studied to estimate the amplifier response. Different analytical

and semi-analytical models have been developed over the years [118]:

• Standard confined doping model: Version of the main EDFA model using the assumption

of confined doping [119].
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• Transcendental power equation model [120].

• Linear Power Equation model: Approximation of transcendental power equation mo-

del [121].

• Exact power equation model: Extension of the transcendental power equation model

using explicit expression for the EDFA gain [118].

In order to use these models amplifier physical parameters are required to be known. For

example, standard confined doping model requires to know the absorption coefficient, the

stimulated emission coefficient, the background loss coefficient and the saturating parame-

ter [119]. Furthermore, these models are usually computationally expensive. Assumptions to

simplify the model usually are accompanied with lower performance. A simple gain model

has been used in [122], [123]. Using that estimation, the approximated gain ĝ (λi ) for a channel

at λi considering N channels at locations λ1,λ2, ...,λN , is given by:

ĝ (λi ) = g (λi )+
∑N

j =1

(
gs(λ j )− g (λ j )

)
N

, (2.44)

where gs(λi ) represents the gain at λi when a single channel at λi is transmitted, and g (λi )

represents the gain at λi when the whole band of WDM channels are transmitted. Allocating

channels in the wavelengths with reduced gain deviations according to the model has been

demonstrated to cut down gain deviations, but only by 5-15 %.

Another possible option is amplifier characterization, involving measuring the true gain am-

plifier response at the different WDM load configurations, requiring therefore a high number

of sources. Fortunately, number of sources can be substantially reduced by using broadband

edge-emitting LEDs probes [124] or a non-uniform WDM source spacing [125]. Still, character-

ization is a time-consuming task, involving offline experimental measurements. More recently,

an online alternative, based on using weak probes has been presented. Using 10 % of the total

WDM channels as weak probes, gain spectrum and power excursion estimation have been

demonstrated [126]. Although weak-probe sampling can be done during network operation

without disrupting the service, it demands sources and continuous measurements.

A third possibility, typically based on ML techniques, attracting a lot of attention in the last

years, is based on predicting the amplifier behaviour using the information extracted from

historical data. Required data can be obtained offline, gathered previous to network operation,

or online collected during network operation. As an example of offline operation, for a partic-

ular amplifier, an ML model based on NNs has been trained in order to estimate its gain [127].

The dataset used for training and test contained experimental measurements, input powers

to the amplifier and corresponding output powers, performed under different conditions:

variable channel loads and input powers. When applied online, during network operation,

instead of modelling an isolated amplifier, a complete link is considered. ML-based power
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Figure 2.7 – NN architecture used to predict maximal power excursion [44].

standard deviation estimation after transmission in a cascade of two and three amplifiers

has been demonstrated [128]. The selected ML algorithm was kernel bayesian regression

trained on a experimental dataset. The collected dataset contained input active channels and

power deviations at the output of the link, for different channel loads. No input power channel

values were required as the input powers were fixed. Later, a similar work from the same

group used deep NNs (Fig. 2.7) in a more complex link scenario, which included ROADMs,

predicting maximum optical power excursion for a given channel load configuration [44],

[129]. ML-techniques can be combined with other methods as characterization, in order to

enhance the performance. Trained on data experimentally measured (including as measured

inputs: input power, frequency and locked gain; as measured outputs: gain and noise figure

(NF, Appendix C)), an NN is able to extrapolate gain and NF under new configurations, not

measured before, with different input power, channel frequency and set gain [130]. Another

proposed approach has been a hybrid ML EDFA model using an analytical model together

with experimental measurements [131].

Still open to improvement, estimating the amplifier behaviour at different operating conditions

can be performed, as demonstrated in the previous paragraphs. At this point, another question

arises, how the available knowledge can be used in order to mitigate power excursions.

Wavelength assignment can be seen as a direct application. Previous approaches provide

a ’module’ able to approximate power excursion at the output of an amplifier or cascade of

amplifiers. When a request for adding a channel is received, this module is executed several

times, each time assuming the channel to be added is allocated in a different frequency out of

the available ones. Every time, the module returns an estimation of gain or power excursion

corresponding to the tested configuration. Of all these trials, some will present a lower power

excursion than others, even below a particular established threshold, becoming candidates

for allocating the channel to be added. Reported results have been presented in [44], [122],

[123], [126], [128], [129].

Amplifier operating control techniques represent another opportunity to reduce power ex-

cursion. It can be used as complement of power excursion aware wavelength assignment
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Figure 2.8 – Amplifier power masks for gain and NF [134].

methods introduced in the last paragraph. Once a new channel is added, the total launched

power at the input of the amplifier or cascade changes, changing therefore the operating

point and gain flatness with it. Controlling the operating point can enable power excursion

reductions. Most of these works rely on power masks as the one shown in Fig. 2.8. For a

particular input power and locked gain, gain and NF are measured. The process is repeated

for numerous input powers and gains in order to have a complete characterization of the

power mask. Still, the obtained power mask built on discrete measurements provides discrete

outputs, not being able to give information about each input power and gain combination.

Trying to solve this issue, by providing an interpolated response, NNs [132] and case based

reasoning (CBR) [133] have been proposed, learning from the original discrete power mask.

Typically, based on this information, the problem to solve is formulated as the optimization

of a parameter measuring performance, as gain flatness or OSNR, by adjusting the amplifier

gain. When OSNR is optimized, some works neglected nonlinearities, other used incoherent

Gaussian-noise (IGN) model [134] and other imposed a threshold for the launch power [135].

Up to here, the gain adjustment of a single amplifier has been considered. Nevertheless, most

of these works targeted cascades of amplifiers, being a crucial issue how to choose the right

procedure in order to optimize the performance of the whole link. Some schemes trust on

global methods, carrying out an exhaustive search of the optimum operating point among

all the possible points [136]. Contrarily, other approaches use local methods, where each

amplifier has only access to its state information along with input and output power, with

optimization being accomplished through a single step or iterative process gradually adjusting

the gains at each amplifier [137].

Previous approaches aim to reduce power excursion but they are unable to cancel them. Dis-

tributing signal power in two different wavelengths which produce opposite power excursions,

has been used in order to cancel power discrepancies [138]. This cancellation can be done us-

ing wavelengths causing equal and opposite power excursion or by using wavelengths causing

opposite power excursions with a variable dwell time. Including guardbands, fast laser switch-

ing has been experimentally demonstrated to cancel power excursions without impacting the

BER. However, using dual wavelengths can result in inefficient use of the spectrum for a high

channel load. To address this issue, guidelines to work combining single and dual-wavelength

sources, limiting the number of each source type, have been developed [139] .
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Other methods rely on cancelling the output power excursions by applying power precompen-

sation at the input of the amplifier or link. Simple iterative method has been demonstrated

in [140] using as precompensation powers in each channel P i
new :

P i
new = PT OT

1/Gi∑N
1 1/Gi

, (2.45)

where PT OT is the total input power, Gi the gain at channel i and N the total number of

channels. Interesting approach, presented differences with regard to the scenarios presented

in the last paragraphs. Firstly, instead of amplifiers working on AGC, fixed pump was as-

sumed and secondly, input power was fixed. These assumptions greatly simplify the problem.

Furthermore, continuous monitoring is required. Gain equalization by means of power

pre-emphasis combined with unequal amplifier parameters has also been presented [141].

Amplifier response was based on analytical model using the transcendental equation includ-

ing the dynamics of the reservoir, i.e., the total number of excited ions, thus requiring physical

amplifier parameters and being quite complex. Several works have worked on the OSNR (or

other similar performance measurement) optimization by means of launched power per chan-

nel adjustment, in scenarios going from optical point to point link to mesh networks. In order

to solve this complex problem different methods have been proposed: game theory [142], an

iterative algorithm [143], [144], particle swarm optimization [145], convex solution methods

applied to convex objectives [146]. With most of these works considering flat gain ampli-

fiers, these solutions turned out to be computationally complex and time consuming. An

ML approach to preadjust the power has been presented, reducing the power discrepancy in

defragmentation process [45]. First, two ML-models were trained and validated. One, using

ridge regression for approximating the magnitude of the impact, i.e. influence of each channel

in the output power excursion. Another, using logistic regression for estimating the correlation,

whether an increase in a channel input power produces a increase (decrease) in the optical

power excursion. Then, the model was used to adjust in a single step, the input powers of the

defragmented super-channel reducing the power excursion in comparison to the case where

no power pre-adjustment was applied.

2.3 Experimental validation of an amplifier model

As it will be shown in the next sections, the work presented here is mostly based on simulations.

In order to make this synthetic data as close as possible to reality, amplifier characteristic

curves experimentally measured, by Network Technology Lab, École de technologie supérieure

(Canada), have been used in the simulations. The objective of this section is to describe how

these experimental characteristic curves were measured and how they have been utilized

by an amplifier model in order to estimate the gain and noise for a given operating point.

Results obtained using the model are compared with results obtained experimentally. The

following section structure is followed. First, in Section 2.3.1, the measurements done at
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Figure 2.9 – Simplified scheme of a double-stage amplifier.

Network Technology Lab, École de technologie supérieure (Canada) are explained in detail.

Second, the description of the model used to estimate the amplifier response is introduced

in Section 2.3.2 together with the procedure followed to validate the model in simulations.

Finally, Section 2.3.3 compares gain characteristics obtained experimentally with the ones

obtained in simulations.

As mentioned in the previous section, complex amplifier architectures including several stages

of EDFAs together with additional components have become popular, providing a control

layer to the amplifier. The amplifier here characterized is a double-stage amplifier including:

gain flattened amplifier stages in order to use the whole C-band [118], a VOA for tilt control in

between the two amplifier stages (Fig. 2.9) and noise correction techniques [106], [107].

2.3.1 Amplifier experimental characterization

As it will be explained in Section 2.3.2, the characteristic curves required to model the amplifier

behaviour are: dynamic gain and noise characteristics. The setup, at Network Technology

Lab, École de technologie supérieure (Canada), used in order to perform the aforementioned

characterization is depicted in Fig. 2.10. Two lasers are combined at the input of the double-

stage amplifier:

• One laser acting as gain saturating laser at a fixed wavelength λm = 1550.918 nm (LD1,

on the top left of Fig. 2.10).

• One tuneable laser acting as probe laser. For this purpose, a comb source followed by a

wavelength blocker (selecting the desired wavelength) were used, as can be seen in the

bottom left of Fig. 2.10.

To monitor the output of the amplifier, an optical spectrum analyzer (OSA) is connected at the

output of the amplifier.

The characterization procedure included three different measurements, defined as follows:
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Figure 2.10 – Amplifier characterization: Experimental setup (Network Technology Lab, École
de technologie supérieure).

• Measurement 1 - Dynamic Gain 1, G1(λ): To fix the inversion level of the EDFA, LD1

is set to a relatively large power of −15.7 dBm and injected into the amplifier at the

measurement wavelength λm = 1550.918 nm. LD2, the probe laser, at a considerable

lower power of −30 dBm, is swept in a bandwidth 1530.72–1562.23 nm.

• Measurement 2 - Dynamic Gain 2, G2(λ): Measurement 1 is repeated with a higher

power in LD1 of −5.5 dBm.

• Measurement 3 - Noise: With the same setup as measurement 1, LD2 is turned off.

All three measurements were done in current control (CC) mode [95], i.e. for a fixed pump

power value, for different values of the VOA 0 dB, 5 dB, 10 dB and 20 dB in between the two

stages of the double-stage amplifier (see Fig. 2.9). From these measurements, Fig. 2.11a,

Fig. 2.11c, Fig. 2.11e and Fig. 2.11g show the dynamic gains [147] calculated from Measure-

ment 1 and Measurement 2, for VOA values of 0 dB, 5 dB, 10 dB and 20 dB, respectively. As

expected, the gain tilt increases as the attenuation introduced by the VOA in the mid-stage

increases. Spectral noise power determined from Measurement 3 is represented in Fig. 2.11b,

Fig. 2.11d, Fig. 2.11f and Fig. 2.11h, corresponding to the same VOA values 0 dB, 5 dB, 10 dB

and 20 dB. From the results, noise spectral power decreases as the introduced attenuation

increases. This is due to the fact that the VOA attenuates the power at the output of the first

stage, producing an increase in the pump power in order to keep the output power, therefore

decreasing the noise.

2.3.2 Amplifier model based on experimental characterization

The amplifier model, based on the so-called ’black-box’ model [147], used the characteristic

curves calculated during the characterization described in Section 2.3.1. Note that, from the

characterization, the following set of characteristic curves were obtained:

• Dynamic gains (Measurement 1 and Measurement 2): Two curves describing the dy-

namic wavelength dependent gains of the amplifier at two different input powers.
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(a) Dynamic gain - VOA 0 dB. (b) Noise spectral power - VOA 0 dB.

(c) Dynamic gain - VOA 5 dB. (d) Noise spectral power - VOA 5 dB.

(e) Dynamic gain - VOA 10 dB. (f) Noise spectral power - VOA 10 dB.

(g) Dynamic gain - VOA 20 dB. (h) Noise spectral power - VOA 20 dB.

Figure 2.11 – Dynamic gain curves (left) and noise spectral power (right) in CC mode for
VOA 0 dB, 5 dB, 10 dB and 20 dB.

• Noise characteristics (Measurement 3): Noise power reflecting the wavelength depen-

dency, under the assumption that noise is independent on the saturating conditions.

For each operating point, the gain G at each wavelength λ is calculated based on the two
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dynamic gain curves previously measured G1(λ) and G2(λ):

logG(λ,∆G) = logG2(λ)+T(λ) log∆G, (2.46)

where log∆G represents the gain difference logG(λref)− logG2(λref) at a reference wavelength

λref and T(λ) is the tilt:

T(λ) =
logG1(λ)− logG2(λ)

logG1(λref)− logG2(λref)
. (2.47)

In AGC mode, a specific locked gain Glock can be expressed as:

Glock =
Pout

Pin
=

∑
λPin(λ)G(λ)+∫ ∞

−∞ S( f ,G(λ))d f∑
λPin(λ)

, (2.48)

where Pin(λ) and G(λ) are the input power and the experienced gain at each wavelength and

S( f ,G(λ)) is the noise power spectral density, which assuming constant NF approximation is

only dependent on the gain:

S(λ, log∆G) =
(
10N F (λ)/10G(λ, log∆G)−1

)
hv. (2.49)

with h and v , Plank constant and frequency, respectively. Therefore, in AGC mode, gain and

noise responses can be approximated for locked gain Glock using eqs. 2.46, 2.47 and 2.48.

However, the experimentally characterized amplifier is compensating for the ASE noise (noise

correction). Therefore, an adjustment of the locked gain in the simulations is required in order

to have the same gain as in the experimental measurements. As seen in Section 2.2.1, this

adjustment consists in increasing the gain by the factor related with the ASE noise, calculating

the gain for simulations as Glock,adj:

Glock,adj = Glock +
∫ ∞
−∞ S( f ,G(λ))d f∑

λPin(λ)
. (2.50)

As the NF is considered to be constant, in order to calculate the spectral noise density from

eq 2.49, the gain G(λ) is required, which was approximated by the average gain obtained from

measurements. This makes the model more accurate at high loads, where the correction

factor can be neglected, and at low channel loads, if the noise power spectral density is known.

Improvements in the model are required in order to be applied during dynamic wavelength

operation including low channel load. This limit can be neglected for amplifiers not including

noise correction, as they calculate the locked gain in same conditions as the original model.
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Figure 2.12 – Amplifier model validation: Experimental setup (Network Technology Lab, École
de technologie supérieure).

2.3.3 Model validation

In order to validate the model, experimental measurements and simulations were carried

out under different conditions, always working in AGC mode with a locked gain of 15 dB and

VOA at 5 dB. First, experimental and simulation setups are described, with the experimental

setup at Network Technology Lab, École de technologie supérieure (Canada). Afterwards, the

comparison of obtained results under different operating conditions are shown.

Experimental setup

Experimental setup is shown in Fig. 2.12. At the input of the double-stage amplifier a comb

source together with a wavelength blocker are configured in order to generate a particular

channel configuration using a 50 GHz frequency spacing. For each measurement, following

parameters must be precised: number of active channels, channel frequencies and input

channel powers. After passing through the double-stage amplifier working in AGC mode at

15 dB and with VOA at 5 dB, the output spectrum is recorded.

Simulation setup

A similar simulation setup was developed in VPItransmissionMakerTM (hereafter called VPI,

Appendix D), as seen in Fig. 2.13, using parameterized signals based on a power signal repre-

sentation [148]. For the same input configurations as in the experimental measurements, the

channels were multiplexed at the input of the amplifier to be demultiplexed again at its output

in order to measure the output powers per channel at the receivers (RXs). The amplifier model

was also configured with the same parameters as in the experimental setup, locked gain 15 dB

and VOA at 5 dB (using the characteristic curves corresponding to VOA at 5 dB),
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Figure 2.13 – Amplifier model validation: Simulation setup.

(a) 80 ch.-Gain (b) 40 ch.-Gain (c) 10 ch.-Gain

Figure 2.14 – Gain for 80 channels, 40 random channels and 10 channels swept in the band
representing 8 different measurements, separated by vertical dashed lines.

Obtained results under different operating conditions

Considering a maximum of 80 channels in a 50 GHz frequency grid, in the range [191.9−
195.85] THz, first, for a fixed input channel power, three different input channel loads were

examined:

1. 80 channels: all the channels were active.

2. 40 channels: 40 random channels.

3. 10 channels: 10 active channels sweeping in the band i.e. first measurement with the

first 10 channel frequencies in the range [191.9−192.35] THz, second measurement

with the next 10 channel frequencies in the range [192.4−192.85] THz, etc. (8 different

measurements).

Figure 2.14 illustrates the results obtained in experimental measurements and simulations for

the three different cases considered: 80 channels, 40 random channels and 10 channels (each

vertical dashed line separates each 10-channel measurement). For all of them, there is a good

agreement between the experimental measurements and simulations.

Secondly, for a particular channel configuration, 12 channels in a 100 GHz frequency spacing

in the frequency range [191.9−193.0] THz, different input channel powers were tested. As it

can be seen in Fig. 2.15, showing the difference between experimental measured gain and the
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Figure 2.15 – Gain difference between experimental measurement and simulation for different
input peak powers.

Figure 2.16 – Optical power excursion prediction: Development diagram.

simulated gain for the different input peak powers per channel (ch) considered, the model

shows a good performance for medium powers. For high input powers, the experimental

gain is lower than expected, probably due to homogeneous and mutual inhomogeneous gain

saturation effect [95]. The model is not working so well in the saturation regime, where the

gain should decrease (Appendix C). For low input power, the difference is likely to be due to

the noise correction factor.

2.4 Optical power excursion prediction based on neural networks

Pointed out in Section 2.2.3, several recent works have demonstrated the utility of ML in

predicting optical power excursions. In the case presented here, optical power excursion

prediction based on NNs is demonstrated using a synthetic dataset. The procedure followed

for the development and test of the ML module is shown in Fig. 2.16. First step is the generation

of the dataset, in this case a synthetic dataset created using VPI. An NN model is then trained

and validated. Finally, the performance of the NN predicting optical power excursion is

evaluated. Next sections are organized as follows. First, the dataset generation is described.

Afterwards, the NN module, training, validation and test are detailed.

A simplified diagram of the simulated setup is illustrated in Fig. 2.17, where 80 transmitters
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Figure 2.17 – Optical power excursion prediction: Simulation setup.

Figure 2.18 – Optical power excursion prediction: Dataset.

using a 50 GHz frequency grid are considered [149]. Every channel carries modulated data at

100 Gb/s using 16 quadrature amplitude modulation (QAM) modulation. Power per channel

is fixed to be the same and equal to 0 dBm. Number of active channels and frequency alloca-

tion are parameters to configure in each simulation. Generated signals are multiplexed and

transmitted over a 100 km single-mode fiber (SMF). After propagating through the fiber, a

single stage EDFA operating in AGC mode at 20 dB gain compensates the losses introduced by

the fiber. Finally, received channels are demultiplexed and sent to the corresponding receivers

where optical power excursions are measured.

In each simulation a random channel load in the range 40 % to 87.5 % is selected. Wavelength

assignment is also performed randomly. Following this procedure, a total of 300 simulations

were executed, saving for each simulation the active channels and the corresponding output

power excursions. Output power excursions of the complete dataset are shown in Fig. 2.18.

This dataset is used to train an NN. The input feature vector to the NN is a vector of 80 values,

with each value indicating whether the channel is active or not. The input layer is connected

to a hidden layer with 160 neurons using ReLU as activation function (Section 2.1.2). The

choice of this activation function is justified on the basis of its performance and fast training

in comparison with another activation functions as t anh [86]. After the hidden layer, the

output layer with 80 outputs returns the power excursion in every channel. As the output

power excursion is a real number, linear activation is used.

The NN model has been developed in Keras, high level NN application programming interface

running on TensorFlow Python library [150]. Training and validation were performed using

80 % and 15 % of the dataset respectively. During training, stochastic gradient descent with a

batch size equal to the 10 % of the training dataset has been used for optimization.
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Figure 2.19 – Estimated power excursion calculated by simulation and the predicted values
using the presented approach, for one of the samples of the test dataset.

Figure 2.20 – Accuracy on a test sample from the test set.

Remaining 5 % of the dataset has been utilized for test purposes. For one of the samples of the

test dataset, Fig. 2.19 shows the estimated power excursion calculated by simulation and the

predicted values using the NN, which are very close.

On the same sample, Fig. 2.20 illustrates the algorithm accuracy as a function of the minimum

acceptable difference between the real values and the predicted values. Considering a 1 dB

threshold, small in comparison to the 3 dB critical value, the NN provides 100 % accuracy.

Lowering the threshold to 0.2 dB, the NN still achieves above 90 % of accuracy.

2.5 Optical power excursion precompensation based on reinforce-

ment learning

As in current optical networks wavelength conversion is not always an option, additional

wavelength continuity constraints must be considered. In these conditions, reducing optical

power excursion by selecting wavelengths which undergo lower power excursions is not

a possibility. Adjusting the operating point of each optical amplifier could be a solution,

although at the expense of requiring a continuous control of each amplifier in the link. In

this sense, precompensation techniques, as the one discussed here represent an effective

end-to-end approach, transparent to the network, without the necessity of any intermediate

component control.
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(a) RL general model. (b) Environment details.

Figure 2.21 – RL approach for optical power excursion precompensation.

The objective is to minimize the power excursion at the output of a point-to-point link by

adjusting the channel input powers at the transmitter side. The reported method, based on

RL techniques, allows to solve this complex optimization difficulty by directly learning on the

gathered data from the point-to-point link. The fine tuning of the input powers, in small steps

of 0.1 dB, allows smooth power transitions, reducing undesired impact on the established

lightpaths.

As introduced in Section 2.1.2, RL methods learn by interaction between a learner (agent)

with the outside world (environment) (Fig. 2.21a). In the power precompensation scenario

presented here, the power precompensation module (agent) interacts with optical amplified

link (environment). For each power excursion at the output of the link, the power precompen-

sation module (agent) takes an action changing the input channel powers in small steps of

0.1 dB. As a consequence of this action, depending whether the power excursion increases or

decreases, the power precompensation module receives a reward. Through this process, the

agent learns which actions maximize the expected reward and therefore it learns to minimize

the power excursion.

This learning task can be broken in episodes. Each episode starts with the environment in

the initial state, which is considered to be the one with the input power distributed equally

among the channels. During the episode, the output power excursion evolves depending

on the actions taken by the precompensation module. Finally, the episode ends when the

maximum optical power excursion is below a threshold and the agent wins, or when optical

power excursion increases or the maximum number of steps to achieve this threshold is over

and the agent loses. In any case, after the end of an episode, a new episode begins.

In the following, environment and agent, together with its joint learning, are described in more

detail under different circumstances. In Section 2.5.1, DDPG algorithm is adopted whereas in

Section 2.5.2 a comparison among different policy-gradient methods is provided including

also a study for different channel loads. Section 2.5.3 validates the RL-based precompensation

approach, trained based on synthetic data, in an experimental testbed.
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2.5.1 Development of a reinforcement learning algorithm for precompensation

In this first approach of power precompensation using RL techniques, DDPG has been selected

as RL algorithm to implement the agent. Before going into detail about the agent implementa-

tion, the environment is introduced. Once environment and agent are described, the obtained

results are analyzed.

Environment: Model based on simulations

The existence of a good match between experimental and simulation results, as revealed

in Section 2.3, authorizes the direct usage of simulations as an environment to train the RL

algorithm. Although this was the strategy adopted at the beginning, unfortunately turned out

to be slow, as many interactions with the environment are required to take place in order to

motivate the agent to learn. This is the main reason to develop a model able to replace the

simulations. The selected model is based on NNs, as shown in Section 2.4 and successfully

used in the literature to predict optical power excursion [10], [44], [127]–[129].

According to this, environment’s generation is executed in three steps (Fig. 2.21b): (1) synthetic

dataset generation based on VPI simulations, (2) NN model training (3) complete environment

creation by integrating in a Python module the NN model together with a reward, being able

to interact with the agent at each timestep.

Synthetic dataset generation Figure 2.22 illustrates the setup developed in VPI, used to

create a synthetic dataset. First, a bank of transmitters allows to generate a maximum of

80 channels using a 50 GHz frequency grid in the frequency range [191.9,195.85] THz. After

multiplexing, the channels are first amplified in a booster amplifier and then transmitted in a

loop for 10 times. Each pass in the loop is equivalent to traverse one span with 75 km fiber and

an inline amplifier working in AGC mode at 15 dB gain in order to compensate the losses in

the fiber. All the amplifiers included in the setup operate in AGC mode at 15 dB gain modelled

using the experimental curves obtained in Section 2.3 for VOA at 5 dB without including noise

correction (Section 2.3.2, Fig. 2.22b).

Input channel powers, frequency positions and number of active channels are parameters

to be configured in each simulation. For the input powers, different distributions have been

considered:

• Constant power for all the channels.

• Random input powers per channel.

• Predistorted input powers as explained in [140] in order to be able to predict equalized

output powers.
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(a) Simulation setup. (b) Amplifier gain dynamic curve.

Figure 2.22 – Power precompensation: (a) Simulation setup and (b) amplifier gain dynamic
curve.

• Modified input powers determined in the previous cases by adding or subtracting 0.1 dB

to all or some active channels.

Channel load was modified between 3.75 % and 100 % corresponding to 3 and 80 channels,

respectively, with randomly frequency assignment. Approximately ∼ 2000 simulations have

been run in this way, storing for each simulation the input and output channel powers. The

generated dataset has been used to train and test an NN model of the optical link environment.

NN model Using the previous dataset, an NN model, with 1 NN per channel, has been trained

in Keras and TensorFlow Python libraries. The selected NN structure contains:

• Input layer: representing the input power in each channel, the number of neurons is

equal to the number of channels.

• Hidden layer: 160 neurons using ReLU as activation function.

• Output layer: 1 neuron with linear activation in order to calculate the power deviation

between the calculated output power and the desired power per channel which was

considered to be −21.5 dBm.

The previous dataset was split in three fractions: 85% for training, 5% for validation and 10%

for test purposes. After training using Adam [151] as method for stochastic optimization, an

average mean squared error of 9.5×10−3 was obtained.

Environment entity The complete environment was developed as a Python module. Inter-

nally storing the current environment status, i.e. current channel input powers and corre-

sponding output power excursions, at each interaction with the agent:
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• The environment sends to the agent the current power deviation vector (state).

• The environment receives an action vector indicating for each channel whether the

channel power is increased or decreased by 0.1 dB.

• After updating the input channel power using the received action, the environment

calculates, using the NN model, the new power excursion (updated state).

• Depending on whether the power excursion has increased or decreased, a reward is

returned to the agent together with the updated state.

Special attention requires the reward. The reward indicates to the agent whether the action

has been ’good’ or ’bad’ bringing him closer or farther to minimize the power excursion.

After testing different rewards, including continuous and discontinuous, the best results

were obtained with an exponential of the distance [152] to the desired zero power excursion.

Therefore, the reward varies between values close to 0 for large power excursions to values

close to 1 for small power excursions. Apart from the continuous exponential two dedicated

rewards were defined:

• Reward -1.0: For an episode ending after running off timesteps, doing a no-action,

increasing the total input power above a threshold, increasing the power excursion.

• Reward 100.0: For an episode ending winning: the maximum power excursion is below

a threshold, which in this case was considered to be 0.5 dB.

Agent: precompensation module

Considering that in the case studied here, a continuous state space (optical power excursion is

a real value) and a high-dimension action space (increase or decrease the input power in each

channel) make unpractical to use RL algorithms based on estimating value function, policy-

gradient algorithms using actor-critic methods look like a suitable option. As presented in

Section 2.1.2, in these algorithms, the agent is composed by two different entities: the actor and

the critic. The actor decides which action to take depending on the current state, estimating

the policy, whereas the critic evaluates the actions taken by the actor, learning a value function.

In this specific case, the state corresponds to the current power excursion or deviation whereas

the action is the fine tuning change in input power done by the precompensation module.

In this first approach, DDPG, a popular action-critic method introduced in Section 2.1.2 has

been implemented in Tensorflow. Actor and critic were both defined as two separated NNs.

The critic has as an input the state and action and returns as an output the expected reward

based on the current reward given by the environment and the estimated discounted future

reward. The actor takes as an input the current state and as an output the selected action. For

training the actor, its NN weights are optimized based on the critic, by using the gradient, in

order to get the maximum reward.
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Similar as the environment, the actor-critic method has been developed in TensorFlow. For the

actor, the NN has as input the power deviation. Thus, the required number of input neurons is

equal to the number of channels. After one hidden layer, the output layer returns the power

change or action. As the action can only take two values +0.1 or −0.1, the selected activation

function for the output layer is the hyperbolic tangent (t anh). The number of output neurons

is again equal to the number of channels. For the critic, the NN has as input the state and the

action, which are followed by one hidden layer. After this first hidden layer, both are merged in

a second one, which is finally connected to the output layer. As the critic returns an expected

reward, the output layer has only one neuron and uses linear activation. Both of them using

ReLU activation in the hidden layers and Adam method for optimization. Note that DDPG

is an off-policy algorithm, copies of actor and critic are used as targets, doing soft-updates:

τ<< 1 : θ′ ← θ+ (1−τ)θ′.

After explaining the working principle and implementation of actor and critic, it is worth to

clarify how actions are chosen from the start. Part of the actions are chosen by exploiting the

knowledge gathered in the interaction with the environment, but another part is chosen by

exploration, randomly selecting actions from the action space. At the beginning, the actor

has no knowledge about which is the best action, so most of the actions are random; with the

time, as the actor starts to be able to distinguish between correct and incorrect actions, the

exploration rate decreases exponentially until it reaches a minimum (ε-greedy exploration

technique) [88]. This is kept until the end in order to leave always a possibility to learn from

new action/states.

Results

The RL method has been trained for 12 channels in a 50 GHz frequency spacing, which

approximately took 2 hours in a processor Intel core i7-8654U at 1.90 GHz. After training,

Fig. 2.23 shows the evolution of the input channel power and output power excursion. Starting

from a flat input channel power, the precompensation module modifies the input channel

powers in steps of 0.1 dB until achieving a maximum absolute power excursion below 0.5 dB.

As an example (Fig. 2.23), in the first channel, power excursion is reduced from 2.03 dB before

starting the adjustment to approximately −0.34 dB after applying power precompensation.

2.5.2 Evaluation of different reinforcement learning methods

After this first approach to a power precompensation module adopting DDPG as selected RL

method, different algorithms have been compared. The selected RL methods to be compared

are the ones presented in Section 2.1.2: A2C, DDPG, TRPO and PPO. Instead of developing a

customized implementation of these algorithms, available code part of Stable Baselines [153],

implementations of RL algorithms based on OpenAI Baselines [154] has been utilized. Further-

more, the performance under different channel loads (12-channel, 24-channel, 40-channel,

random-channel scenarios) in terms of optical power excursion reduction and training time
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BErfore RLBefore RL

After RL

Before RL

After RL

Figure 2.23 – Evolution of the input channel powers and power excursion for 12 channels after
RL training.

has been compared. The present section follows the same structure as Section 2.5.1. First, en-

vironment and agents implementation and characteristics are discussed. Afterwards, obtained

results are analyzed.

Environment: Model based on simulations

The developed environment is very similar to the one presented in Section 2.5.1. In the follow-

ing, the procedure adopted in order to create the environment module is described, starting

by the synthetic dataset generation, continuing with the NN model and finalizing with the

complete integrated environment entity. Note that 4 enviroments are created corresponding to

the 4 considered scenarios: 12-channel, 24-channel, 40-channel, random-channel scenarios.

Synthetic dataset generation Using almost the same setup as in Fig. 2.22 but considering

only 5 spans in order to reduce the accumulated optical power excursion and assuming similar

operating conditions for the amplifier model (AGC mode at 15 dB gain, VOA at 0 dB, no

noise correction (Section 2.3.2)), simulations have been run in the same manner adjusting

input channel powers, frequency positions and number of active channels at each simulation

(Fig. 2.24). The considered channel load was slightly different, varying between 15 % and

100 % corresponding to 12 and 80 channels, respectively, with random frequency assignment.

Storing in a dataset input channel powers used in each simulation and the corresponding

output powers, the complete generated dataset comprises ∼ 8000 simulations. From this

complete dataset 4 separated datasets were created, corresponding to the 4 different channel

load scenarios tested in this section. Therefore, the original dataset was used to construct

4 datasets:

• Dataset 12-channel model: ∼ 1800 simulations subset containing simulations corre-
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(a) Simulation setup. (b) Amplifier gain dynamic curve.

Figure 2.24 – Power precompensation: (a) Simulation setup for algorithm comparison and (b)
amplifier gain dynamic curve.

sponding to 12 channels in the 191.9 THz to 192.45 THz frequency range in a 50 GHz

frequency spacing.

• Dataset 24-channel model: ∼ 1800 simulations subset containing simulations corre-

sponding to 24 channels in the 191.9 THz to 193.05 THz frequency range in a 50 GHz

frequency spacing.

• Dataset 40-channel model: ∼ 1800 simulations subset containing simulations corre-

sponding to 40 channels in the 191.9 THz to 193.85 THz frequency range in a 50 GHz

frequency spacing.

• Dataset random-channel model: complete original dataset of ∼ 8000 simulations, con-

taining simulations corresponding to random channels together with all the 3 previous

cases.

NN model For each of the 4 datasets, an NN model with almost the same parameters as in

Section 2.5.1 has been trained. The only difference is that the desired power per channel is

considered to be −17.5 dBm, in order to optimize launch power but avoid nonlinearities [43],

[155]. After training, 4 NN models are obtained for each of the 4 scenarios to test: 12 channel,

24 channel, 40 channel and random channel. Average mean squared error of 7.69×10−5,

7.19×10−5, 1.76×10−4 and 4.79×10−4 were obtained for the 4 NN models respectively.

Environment entity Accordingly, each of the 4 NN models has been integrated in a Python

module able to interact with the agent. At each timestep, the environment sends the current

state to the agent, receiving from the agent the action to take (increasing or decreasing input

channel powers). Consequently, in the next timestep, the environment updates the state due

to the executed action and delivers the corresponding reward to the agent. With regard to the

environment created in Section 2.5.1 one main difference has to be mention, related with the

reward. The limit in the number of timesteps to achieve an average power excursion below a
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specific threshold has been removed, as now scenarios are more complex. The threshold used

to determined whether an episode is successful has been kept to 0.5 dB of mean optical power

excursion.

Agent: precompensation module

As agent, four different actor-critic algorithms presented in Section 2.1.2 have been used:

A2C, DDPG, TRPO and PPO. Instead of developing custom implementations, existing im-

plementations, part of Stable Baselines [153], based on OpenAI Baselines [154], have been

utilized.

Based on TensorFlow, actor and critic are implemented as NNs. A2C, TRPO and PPO use the

same actor-critic network architecture, with actor and critic sharing layers in the same NN

model with 2 hidden layers of 128 neurons using t anh activation. Both layers are shared for

policy and value function estimation, receiving observations as an input and returning a latent

representation for the policy and value function. The DDPG actor-critic network is different,

as it is based on action-value function estimation. The actor chooses the action based on the

input state, whereas the critic requires observation and action in order to estimate the value

function. Actor and critic are therefore separated networks, both of them having also 2 hidden

layers of 128 neurons. Some differences exist regarding activation. The critic uses only ReLU

activation for all the layers. However, the actor uses ReLU activation for the hidden layers

and t anh for the output layer. Although this is the specific configuration for the 12-channel

and 24-channel scenarios, only slight changes were done for the other scenarios and only

regarding the number of neurons: 2 layers of 256 neurons for the 40-channel case and 2 layers

of 512 neurons for the random-channel case.

RL exploitation-exploration dilemma is addressed differently depending on the RL method.

Instead of using the ε-greedy exploration technique [88] as in the previous custom implemen-

tation of the DDPG method shown in Section 2.5.1, here, in order to improve exploration,

during the training, DDPG adds noise to the actions following an Ornstein-Uhlenbeck process.

A2C modifies the gradient formula using an entropy component [91]. TRPO and PPO rely on

sampling actions according to the latest version of its stochastic policy [154].

For the 4 environments considered, agent and environment have been finally associated

together in a Python software environment. Before training, models of each RL algorithm

are defined with their specific hyperparameters. During training, interactions between agent

and environment are succeeding, monitoring its evolution. After completion, performance of

each of the trained agents is evaluated. Results obtained during training and evaluation are

analyzed in the next section.
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Results

RL-algorithms’ training has been carried out on the 4 generated environments corresponding

to 12-channel, 24-channel, 40-channel (with 50 GHz frequency spacing) and random number

of channels (on a 50-GHz frequency grid). Before presenting the results, it is essential to

mention that the training and test for all the 4 scenarios was identical except for:

• Each scenario requires its own developed environment.

• For the agent, specifically for the NN architectures used to approximate policy and value

functions, differences in the number of neurons were required for each scenario (as

indicated before: 2 layers of 128 neurons for the 12-channel case, 2 layers of 128 neurons

for the 24-channel case, 2 layers of 256 neurons for the 40-channel and 2 layers of

512 neurons for the random-channel case).

During training, interactions between environment and agent have been monitored, with

each interaction being called timestep. Learning curves, calculated as average rewards over a

100 episode window with respect to timesteps, are illustrated in Fig. 2.25, with each figure in

Fig. 2.25, reproducing the results of each of the 4 scenarios.

Starting for the simplest scenario, the 12-channel case shown in Fig. 2.25a, all the algorithms

manage to learn a suitable policy. TRPO presents the worst performance of all of them,

achieving quite low rewards. A2C is able to get high rewards, although with an unstable

behaviour, converging to lower rewards, at the end of the training. DDPG produces the best

results, but PPO learns faster, achieving high scores within less than 50.000 timesteps.

The 24-channel scenario, more complex, shows a similar performance. Shown in Fig. 2.25b,

PPO and DDPG demonstrate a better performance, with DDPG achieving the highest rewards

in a shorter time. TRPO ends the training with very low rewards, not being enough to learn a

policy which reduces the average power excursion below the threshold. A2C shows again an

unstable behaviour, with rewards falling at the end of the training.

Same tendency continues in the 40-channel scenario shown in Fig. 2.25c. PPO learns smoothly,

but DDPG keeps outperforming it (with higher rewards), now learning a policy in a similar

number of timesteps. A2C keeps showing instabilities and TRPO fails to learn.

RL algorithm learning curve on the most complex environment considered here, the random-

channel environment, is shown in Fig. 2.25d, only for the DDPG algorithm, as the other

algorithms were not able to learn. Note that although the environment’s channel load working

range, previously indicated, is between 15 % and 100 %, during the RL-model training the range

was reduced to between 15 % and 80 %. Thus, the RL-model is trained on random channel

loads, where the number of active channels is randomly selected between 12 and 64 channels.

For a particular number of channels, frequencies are randomly assigned out of the 80 possible

frequencies. Comparing Fig. 2.25d with the previous learning curves obtained with the other
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environments, scores are much lower. Previous scenarios achieved average reward of 100,

meaning that the agent is always able to win an episode, i.e. reducing the average power

excursion under the specific threshold. Now, an average reward of 5 is accomplished at the

end of the training, implying that the agent is not winning. Nevertheless, the agent does learn,

if the input power were randomly modified as at the beginning of the training, the average

reward would become close to 0. This is visible in Fig. 2.25d inset using a different scale for

the y-axis. There is therefore a slow increase in the number of rewards over the timesteps. The

performance could be improved by upgrading the environment’s model, increasing the size of

the dataset size used for training.

After seeing the learning curves for the different scenarios, some remarks can be derived. First,

A2C and TRPO do not seem to be suitable for this use case scenario. Best performance is

obtained with DDPG and PPO, with DDPG being slightly better. However, it is also important

to notice that PPO learns very smoothly, due to the restrictions in the policy updates, whereas

DDPG presents a more abrupt learning curve, which could lead to instabilities. Better results

could be achieved in PPO and TRPO by modifying the used hyperparameters.

Time required by each algorithm to learn a policy for each of the 4 scenarios in a processor

Intel core i7-8654U at 1.90 GHz is illustrated in Fig. 2.26. In general, as the considered channel

load increases, from 12 to 40 channels, the required time is kept quite constant. Focusing the

attention in the two best performing algorithms, DDPG and PPO require almost the same

amount of time in order to learn a suitable policy. For the random-channel scenario, conver-

gence is not clear, all the training time, 300 k timesteps, is accounted, causing a considerable

increase of the required training time.

As DDPG has been the algorithm showing better performance during training, it was selected

to be tested after the training. In order to evaluate the performance of the learnt policy,

DDPG was tested working on a deterministic mode, which disables random action selection

used for exploration. Evolution of the input powers and corresponding power excursions

for each of the 4 scenarios are shown in Fig. 2.27. Note the learnt policy, and therefore, the

power evolution shown here, can vary from training to training. RL algorithms learn by

trial and error, depending on the selected random actions and on the actor and critic NNs

weight initialization, which can be different at each time the algorithm is trained, leading

to different policies. Thus, solutions shown here are not unique, making RL methods very

powerful on finding solutions which could be hidden. Taking as example the 12-channel case

in Fig. 2.27a, before applying any precompensation, input channel powers (Pin) are equal and

the corresponding maximum power excursion exceeds −5 dB. Step by step of 0.1 dB, input

channel powers are modified reducing optical power excursion, until reaching the final input

predistorted channel powers which produce an average power excursion below 0.5 dB. Same

analysis can be applied to the 24-channel and 40-channel cases. During the RL algorithm

training, we have not included upper or lower limits in the input channel powers. As in this

case the accumulated optical power excursion at the end of the link (when the whole band

is considered, as in Fig. 2.27d) varies from −5 dB to 5 dB, the input channel powers can be
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(a) Learning curves for 12 channels.

(b) Learning curves for 24 channels.

(c) Learning curves for 40 channels.

(d) Learning curves for random number of channels. Same graph with different
axes in the inset.

Figure 2.25 – Power precompensation: Learning curves during training for 12 channels,
24 channels, 40 channels, and random number of channels.

importantly modified. In order to avoid problems related to OSNR and nonlinearities upper

and lower limits in the input channel powers could be employed during training. The random-

channel scenario in Fig. 2.27d shows a lower performance, but still presenting a considerable

power excursion reduction. In order to get better results, a more accurate model based on a
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Figure 2.26 – Power precompensation: Time required by each algorithm to learn a policy.

(a) Evolution - 12 channels. (b) Evolution - 24 channels.

(c) Evolution - 40 channels. (d) Evolution - random number of channels.

Figure 2.27 – Power precompensation: Evolution of input powers and optical power excursion
for an episode after training.

higher number of simulations is required.

Furthermore, histograms corresponding to Fig. 2.27 for the initial and final power excursions

(before and after applying RL) are illustrated in Fig. 2.28. The bars represent the number

of channels (NoCh) with a power excursion in the range indicated by the x-axis. For all the

cases, power excursion values before applying precompensation are spread in a larger range,

reaching larger maximum power excursions. After power precompensation using RL, power

excursion variance is reduced with an average getting closer to 0 dB.

Another performance indicator, the average optical power excursion evolution during the

deterministic evaluation done after training is shown in Fig. 2.29 for 12-channel, 24-channel

and 40-channel scenarios. At the beginning of the episode, timestep= 0, the average power

excursion is at the maximum. After each timestep, corresponding to each action the agent

takes (modifying the input channel powers), the optical power excursion decreases smoothly,
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(a) Histogram - 12 channels. (b) Histogram - 24 channels.

(c) Histogram - 40 channels. (d) Histogram - random number of channels.

Figure 2.28 – Power precompensation: Histograms of the optical power excursion per channel
after training.

demonstrating how this technique reduces impact on existing channels, avoiding power

channel fluctuations. Finally, episodes end successfully when an average power excursion

below the aforementioned threshold is reached. This means a power excursion reduction

of 86 %, 74 %, 62 %, for 12-channel, 24-channel and 40-channel configurations, respectively.

For the random-channel case, and averaging on 100 different episodes after training, a 28 %

average reduction is obtained.

Finally, in order to better understand the impact of the optical power precompensation in

the QoT, VPI simulations have been performed using modulated data at 32 Gb/s with dual

polarization (DP) quadrature phase-shift keying (QPSK) modulation. For the 12-channel

Figure 2.29 – Power precompensation: Mean optical power excursion evolution.
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Figure 2.30 – Power precompensation: Valid wavelengths.

scenario, 2 simulations were carried out: one with equal channel power and the other with

the predistorted powers shown in Fig. 2.27. Same procedure was followed for the 24 and

40-channel scenario. In all the cases, error free transmission was achieved, without requiring

FEC techniques.

The same process was repeated for 128 Gb/s with DP-QPSK modulation. In this case, a pre-FEC

BER threshold of 0.04 [156], was considered. The number of channels below the pre-FEC BER

threshold for the 3 scenarios, before and after using RL are shown in Fig. 2.30. In all cases, after

applying the power precompensation values calculated by the RL algorithm, the number of

channels below the pre-FEC BER threshold increases, boosting the number of valid candidate

wavelengths.

2.5.3 Experimental proof-of-concept of the reinforcement learning algorithm

After the remarkable performance obtained in previous sections, the RL-based power precom-

pensation algorithm has been validated in a testbed. In order to do this, the same procedure, as

in Section 2.5.1 and Section 2.5.2 has been followed with the difference that the environment

presented here corresponds to a testbed. After power precompensation values to reduce the

power excursion under a 0.2 dB threshold are obtained by means of RL, these same values are

used in the testbed under the same setup configuration in order to validate the results. Note

that results presented in the following are the outcome of a direct test of the RL algorithm in a

testbed, without applying transfer learning or domain adaption, typical used in ML in order

to facilitate the jump from a simulated world to a real world. This represents a real challenge

for the RL model, making only possible to validate a proof-of-concept but without a high

accuracy.

Environment: Model based on simulations

The environment considered this time is different from the previous cases, as it has to repro-

duce the one available at Network Technology Lab, École de technologie supérieure (Canada),

shown in Fig. 2.31. After being amplified in a booster amplifier, transmitted signal traverses a

cascade of 2 spans. Each span consists on a ∼ 75 km fiber and an amplifier. All amplifiers in
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Figure 2.31 – Power precompensation proof of concept: Experimental setup (Network Tech-
nology Lab, École de technologie supérieure).

(a) Simulation setup. (b) Amplifier gain dynamic curve.

Figure 2.32 – Power precompensation proof of concept: (a) Simulation setup and (b) amplifier
gain dynamic curve.

the setup are double-stage amplifiers working in AGC mode at 15 dB gain with the VOA set to

5 dB including noise correction capabilities (Section 2.3.2).

Synthetic dataset generation Presented in Fig. 2.32, this setup is similar to the testbed

shown in Fig. 2.31. All amplifiers operating in AGC mode at 15 dB gain have been modelled

using the experimental curves obtained in 2.3 for VOA at 5 dB and including noise correction

(Fig. 2.32b).

For a fixed number of 12 channels at fixed frequencies in the range [191.9,193.0] using a

100 GHz frequency spacing, simulations were executed for different input channel powers

according to:

• Constant power for all the channels.

• Random input powers per channel.

• Predistorted input powers as explained in [140].

• Modified input powers determined in the previous cases by adding or subtracting 0.1 dB

to all or some active channels.

A dataset containing ∼ 14.000 simulations has been generated, containing as in previous cases

the input channel powers and the corresponding output powers.
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Figure 2.33 – Power precompensation proof of concept: Learning curve.

NN model Using the generated dataset, the trained NN model followed the same architecture

and procedure than the ones described in Section 2.5.1 and Section 2.5.2. The only difference

is the desired peak channel power was set to −25.5 dBm, offering a better agreement between

simulations and experiments (Fig. 2.15). Mean squared error of 2.16×10−4 was obtained after

training.

Environment entity The complete environment has been integrated in a Python module

following the exact same method as in Section 2.5.2.

Agent: precompensation module

As after comparing different algorithms in Section 2.5.2, DDPG achieved the best overall

performance, this has also been the algorithm used here as agent.

Results

Figure 2.33 illustrates the learning curve obtained during the training. After ∼ 250 k timesteps,

taking 3 hours and 25 min in a processor Intel core i7-8654U at 1.90 GHz, the RL algorithm

learns a suitable policy.

After training the RL-based power precompensation module, the module was executed in

deterministic mode. Figure 2.34 shows the evolution input power channels and corresponding

power excursions. At the start, before applying the RL algorithm, all the input channel powers

are set to the same power producing a maximum absolute power excursion of ∼ 2.5 dB. At

each timestep, input powers are modified, slowly decreasing the average power excursion. At

the end of the episode, the average power excursion is decreased below the 0.2 dB threshold.

After this deterministic mode execution, the following information has been saved:

• Input channel powers before and after applying the RL-based precompensation module.

• Power deviation (difference between the output channel powers and the average output

power) before and after applying the RL-based precompensation module.
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Figure 2.34 – Power precompensation proof of concept: Evolution of input channel powers
and corresponding power excursions after training.

The input channel powers before and after precompensation are used in VPI simulations, using

the setup shown in Fig. 2.32. Also, the same input channel powers are used to experimentally

measure the output power using the setup shown in Fig. 2.31.

Due to the differences between the gain experimentally measured and the approximated

gain calculated in the simulations (Fig. 2.15), likely related to the noise correction factor,

experimental measurements and simulations are here compared in terms of the difference

between the output channel powers and the average output power. Figure 2.35a shows this

difference for both, experiments and simulations, before applying precompensation. Although

the simulated and experimental gains are not exactly the same, the power deviations are quite

similar. Similar curves are shown in Fig. 2.35b after applying the precompensation. Although

the offset gain still exists, the output power deviation has been greatly reduced by a 63 %.

Better results could be obtained by using transfer learning.

(a) Power deviation for equal channel power. (b) Power deviation for predistorted channel
power.

Figure 2.35 – Power precompensation proof of concept: Power deviation.

2.6 Conclusions

Optical power excursion problems have been investigated in this chapter. Current optical

amplifier modules are able to reduce optical power excursions by introducing additional ele-
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ments: (1) feedforward/feedback loops enabling AGC mode, (2) VOAs allowing to control the

tilt, (3) gain flattening filters compensating amplifier gain non-flatness. Despite this built-in

amplifier control, power excursions persist under dynamic wavelength configuration. As a first

step towards solving this problem, different approaches have been utilized in order to estimate

the amplifier response under different operating conditions. Most of these approaches corre-

spond to one of the following categories, being based on: analytical or semi-analytical models,

experimental characterization and historical data, with the latter usually related to ML tech-

niques. Being able to estimate the amplifier response allows to mitigate power excursions by,

e.g. assigning new channels to wavelengths producing smaller channel excursion, controlling

the amplifier operating point or applying power precompensation at the transmitter.

Two solutions have been proposed here, which can be integrated in an SDN-based optical

network architecture (Fig. 2.36). The first one, power excursion prediction based on NNs

using a synthetic dataset which can be used for wavelength assignment and consequently

optical power excursion reduction. The second solution, RL-based power precompensation,

where input powers at the transmitter are adjusted in order to minimize power excursions

at the output of an optical link. After testing several algorithms and scenarios, considerable

power excursion reductions of 86 %, 74 %, 62 %, for 12-channel, 24-channel and 40-channel

configurations, have been achieved, respectively. For the random-channel case, and averaging

on 100 different episodes after training, a 28 % average reduction is obtained. For imple-

mentation in a real network, this approach can be applied online, during network operation,

making use of monitored available information, therefore directly learning the environment

model. Also, it could be deployed, as demonstrated here, generating first an environment

model based on synthetic data. The power deviation has been reduced by 63 %, just by directly

using the results obtained in simulations in a experimental testbed. In order to improve the

performance, transfer learning could be possibly applied. Future work should include upper

and lower limits in the input power channels.
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Figure 2.36 – Amplifier control in SDN-based optical network architecture (based on [17]).
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and wavelength assignment

PLIs, accumulating along the lightpath, are critical in transparent or translucent optical net-

works. As a consequence, physical layer constraints must be included in the RWA process,

which turns into an even more complex problem. Thus, before accepting any traffic request,

candidate lightpaths need to be assessed in terms of QoT. In this chapter, QoT estimation

based on NNs, considering optical power excursion as input feature is proposed. The imple-

mented QoT model is used as environment for an RL algorithm, enabling impairment aware

modulation format and wavelength assignment.

Section 3.1 and Section 3.2 review the state of the art of RWA and QoT estimation techniques,

respectively. Section 3.3 describes the implementation of the QoT model and the impairment

aware modulation format and wavelength assignment algorithm. Finally, Section 3.4 and

Section 3.5 present the results obtained under fixed and flexible frequency grid configurations.

3.1 State of the art of routing and wavelength assignment

Different approaches have been scrutinized in order to perform IA-RWA. By including PLI

constraints in a linear programming (LP) relaxation formulation, IA-RWA has demonstrated

to outperform pure RWA (which does not consider impairments) [157]. In the following, Sec-

tion 3.1.1 provides an overview of the traditional RWA methods, allowing to better understand

IA-RWA techniques introduced in Section 3.1.2.

3.1.1 Traditional RWA formulation overview

A wide range of algorithms have been inspected in order to solve the NP-complete RWA

problem [158]. At a first glance, two categories can be distinguished:

• Offline RWA algorithms address static lightpath assignment, corresponding to static
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traffic. Connections are known in advance. RWA is executed during network planning.

• Online RWA algorithms target dynamic lightpath establishment, corresponding to dy-

namic traffic. RWA is performed during network operation.

Besides this categorization, RWA methods can be also classified as: one-step or multi-step

algorithms [25]. One-step methods deal with RWA as a single problem. Most of them, targeting

a static traffic situation where the traffic is known in advance, are based on integer linear pro-

gramming (ILP) formulations optimizing an objective function (e.g. blocking ratio1, number

of utilized wavelengths or number of wavelengths per fiber) to serve a maximum number of re-

quests [159]. Together with the objective function, wavelength, clash and network constraints

must be defined: (1) wavelength constraints ensure a wavelength per connection, (2) clash

constraints establish that two lightpaths on the same fiber cannot use the same wavelength,

(3) network constraints guarantee the existence of a path between source and destination. For

the network constraints, various mathematical formulations have been pondered, e.g. path,

edge or arc-based formulations. Using weaker constraints, LP relaxation approaches yield

bounds and solutions close to the optimal [160].

Multi-step RWA algorithms break the RWA problem in sub-problems: (1) routing, finding

a path from source to destination; (2) wavelength assignment, allocating a wavelength for

the selected path. Although leading to non-optimal solutions, dividing the RWA problem in

sub-problems makes it more tractable. Numerous algorithm combinations can be identified

in the literature, as routing by multicommodity flow formulation integrated with randomized

rounding and wavelength assignment based on graph-coloring techniques [161].

Providing solutions close to optimal, heuristics have also been studied. From simple heuris-

tics, allocating wavelengths to the longest lightpaths first [162], to more complex heuristic

techniques, finding shortest paths based on wavelength-graph to maximize network through-

put [163], diverse heuristic algorithms have been demonstrated. Multiple objectives have

been addressed: minimizing the maximum load per link [164], minimizing the number of

wavelengths required to establish the lightpaths [165], or minimizing the number of used

wavelengths by rerouting lightpaths depending on their load [166].

In general, many heuristic approaches belong to the multi-step RWA algorithms group, decou-

pling the RWA problem in sub-problems. For the routing problem, three main categories are

distinguished [158]: (1) single-path, the most simple, each source-destination pair is associ-

ated to a specific path, available beforehand, e.g. shortest path; (2) alternate paths, several

paths are considered for each connection e.g. k-shortest paths; (3) adaptive routing, routes

are selected in a more dynamic way e.g. least congested path. Also, to separately solve the

wavelength assignment problem, different heuristic techniques have been studied [158]:

• Random wavelength assignment approach: From the set of available wavelengths a

1Ratio of blocked requests with respect to total requests.
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random wavelength is selected.

• First-fit (FF) method: All the wavelengths are ordered using a specific criteria. The first

available wavelength with the lowest index in the ordered list is selected.

• Least-used algorithm: The least used wavelength in the network is assigned, distributing

the demands over the wavelengths. Apart from penalizing long wavelength paths, it

introduces overhead to know which are the least used wavelengths.

• Most-used method: Opposite to least-used, new channels are assigned to the most used

wavelengths in the network. It requires overhead, but it shows a better performance

than least-used.

• Min-product algorithm: For multi-fiber cases, this algorithm assigns wavelengths into

fibers, with the objective of minimizing the number of fibers.

• Least-loaded technique: Also for multi-fiber scenarios, in the link with the highest load,

the wavelength with largest residual capacity is selected.

• Max-sum algorithm [167]: Knowing beforehand a matrix with all the possible paths

(and corresponding assigned wavelengths), max-sum algorithm selects the wavelength

minimizing the capacity loss considering all the paths after lightpath establishment. It

can be used in single and multi-fiber networks.

• Relative capacity loss method [168]: Based on max-sum, the relative capacity loss instead

of the capacity loss is minimized.

To avoid blocking long paths i.e. paths with multiple hops, additional algorithms have been

included, as wavelength reservation and protecting threshold methods [169]. As they do not

perform wavelength assignment, but only protection of long paths, they operate together

with wavelength assignment algorithms. Wavelength reservation technique reserves some

wavelengths for long paths, whereas in protecting threshold method, a wavelength is only

assigned if the number of unused wavelengths is above a threshold.

3.1.2 Impairment Aware RWA problem formulation

Classical methods to solve RWA problems neglect PLIs. Although this is still correct when

O/E, E/O conversions are available at each node, it becomes unreliable when transparent or

translucent networks are traversed. In this case, PLIs must be taken into account. This can be

done by evaluating the candidate lightpath before being assigned. Then, if the route satisfies

the quality demands, the path is chosen. Otherwise, another path must be searched or the

request is blocked. More complex solutions involve adding constraints to the classical RWA

problem, leading to find new routes meeting these additional requirements. In the following,

some approaches are presented, adopting almost the same classification as for the classical

RWA problem.
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Heuristic algorithms

Although they do not provide an optimal solution, they do get close to it much faster. As for

the traditional RWA case, some of these algorithms tackle the problem as an unique problem,

whereas other methods divide it in two separate sub-problems: (1) routing and (2) wavelength

assignment.

Routing Frequently used, single-path routing selects a unique path, most commonly the

shortest path using Dijkstra algorithm [170]–[177]. Instead of hops, to account for PLIs, other

criteria have been examined in order to establish the shortest path, defining link cost in terms

of minimum physical distance [178], highest Q-factor [178] or minimum FWM crosstalk [179].

Different from the previous approaches, multi-path routing takes into consideration several

routes, commonly the k-shortest paths before selecting one [180], [181]. Analogously to the

single-path approaches, the k paths can be selected on a different basis: minimum distance

having less common links [182], least congested routes [174], highest Q-factor [183], [184],

highest Q-factor combined with least congested constraints [185] or least number of O/E, E/O

modules and global used wavelengths [186].

Wavelength assignment techniques Various heuristic algorithms have also been formulated

for wavelength assignment. Traditional wavelength assignment techniques have been used.

FF is utilized very often [170], [172], [178], [180], [187], [188]. FF using an ordered list with the

least congested wavelength at the top has been demonstrated [174]. Another approach, FF

with wavelength ordering assigns wavelengths following an ordered list maximizing spectral

separation among channels, mitigating channel crosstalk [177]. A threshold may be also

introduced [176]. In this way, the ordered list is only used when the crosstalk is small; for larger

crosstalk, the wavelength minimizing the crosstalk is selected. Best fit has been explored [182]

too, through several possibilities: selecting the least loaded wavelength, the wavelength

providing maximum OSNR [174] and the wavelength producing the lowest FWM level [179].

For comparison, random assignment has been implemented, choosing a random wavelength

from the available wavelength set, showing higher blocking ratio [171], [178].

RWA Several IA-RWA methods have been studied, solving the complete unified problem. An

RWA algorithm based on Dijkstra’s algorithm using Q-factor as performance measurement

has been evaluated [189]. Furthermore, an algorithm targeting minimum crosstalk has been

proven [190]. For each wavelength, a candidate path was calculated based on shortest path

algorithm. Then, the one with minimum crosstalk was selected. A different technique, best-

OSNR, has been implemented, selecting the route and corresponding wavelength maximizing

OSNR [174]. Inter-domain problem has also been addressed by means of heuristics [191].
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Metaheuristic algorithms

They reach optimal solutions without complex mathematical formulations. Ant colony opti-

mization, selecting not a complete route but single hops (hop-by-hop until destination) based

on the physical layer information available at each node and collected by monitoring, has

been assessed [180]. Also, a genetic algorithm has been utilized, considering polarization

mode dispersion and ASE [192]. Additionally, tabu-search metaheuristics have been inspected,

outperforming local optimization heuristics [186]. As well, a predictive algorithm based on

two-bit counters per lightpath indicating availability/unavailability has been introduced [182].

Optimization methods

IA-RWA has been solved by linear optimization as the traditional RWA problem [193]. ILP

and binary ILP have been utilized, addressing offline impairment aware planning in trans-

parent optical networks [194], [195]. Using a Q-factor analytical model, accounting only

for linear impairments, RWA problem has also been solved by means of linear optimiza-

tion [184]. One step further, RWA together with the placement regenerator problem have

been addressed [196], [197]. Similarly, wavelength converter placement problem has been

investigated [198]. Furthermore, IA-RWA using ILP in optical virtual private networks over

WDM has been demonstrated [199] and mixed ILP formulation for virtual topology design has

been introduced [200].

3.2 Quality of transmission estimation models

In order to operate, IA-RWA algorithms require QoT information, which can be obtained

through analytical formulations. Although accurate, analytical models as the split-step Fourier

method are complex and time consuming [201]. Different fiber propagation approximation

models have been proposed over the years: based on Volterra series on the frequency do-

main [202] or in FWM by slicing the spectrum in spectral components [203]. Not working

sufficiently well for dispersion compensated systems, these methods did not become very

popular. With the increase of uncompensated links, a Gaussian noise (GN) model describing

nonlinear propagation has been formulated [204], based on the following assumptions: (1)

nonlinearities are relatively small, (2) after propagating through uncompensated link, signal

acts as stationary Gaussian noise (3) nonlinear interference (NLI) behaves as additive Gaussian

noise. This model produces approximate but accurate results, becoming useful as a tool for

optical link design, but only for uncompensated optical links. Closed analytical formulas

have been derived for ideal Nyquist-WDM2 and non-Nyquist-WDM over one single span,

multiple spans and Nyquist-WDM with distributed amplification [206]. For systems with large

number of channels, it is possible to simplify the GN-model neglecting coherent interference

among NLI generated in different spans, leading to a simpler IGN model. Although this model

2Channel bandwidth ideally equal to baud rate[205].
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does not address network scenarios, with signals coming from different locations, its usage

for dynamic reconfiguration optimization has been shown. Considering the IGN-model for

the particular case of a point-to-point link where launch input powers can be adjusted and

optimized in each span, maximizing OSNR at the end of a link is performed by maximizing

the OSNR in each span. This strategy is useful to calculate OSNR for unestablished lightpaths

under full spectrum load [207]. Although underestimating OSNR due to the full spectrum load

assumption, this method ensures a continuous service.

Another strategy to determine QoT for intensity modulated signals is through Q-value esti-

mation [208]. Assuming single channel propagation, a detailed numerical split-step Fourier

method is used to estimate the static impairments (self-phase modulation (SPM), chromatic

dispersion (CD), and filter concatenation). Other parameters, as ASE, cross-phase modula-

tion (XPM), FWM and polarization mode dispersion (PMD) are introduced in the model by

means of particular analytical models. Based on the obtained Q-value estimation, IA-RWA is

performed. Experimental centralized and distributed approaches have been shown, with the

centralized approach reducing the blocking ratio whereas the distributed approach reduced

the lightpath setup time, still requiring a setup time in the order of seconds. An advanced

hardware acceleration architecture has been tested requiring less than 1 second by using

FPGAs [209].

In general, when an approximate model is used for QoT estimation, inaccuracies have to

be accounted in margins [210]. Apart from inaccuracies in the model, these margins also

include inaccuracies in the parameters required by the model or uncertainties introduced

by the network operating condition e.g. channel load conditions. Although mandatory in

optical networks, margin values must be optimized: too large margins lead to overprovisioning

whereas too small margins lead to compromising QoT, requiring multiple attempts before

establishing a lightpath. Transforming fixed value margins in adaptive margins, could help to

set right values. This approach has been developed, considering system uncertainties coming

from several parameters: channel power at detection, crosstalk and nonlinear phase after fiber

propagation [211] or residual dispersion [212]. At network planning stage, these strategies

have been able to reduce the number of regenerators.

Monitoring information appears to be promising in order to cut down margins by reducing

uncertainties. Optical network monitoring availability has been examined [213]. Associat-

ing inaccuracies of the QoT estimators with monitor availability, i.e. routes equipped with

monitors show reduced uncertainties in the QoT estimations, allows to reduce margins, there-

fore being able to accommodate more lightpaths. With monitors becoming more and more

common, ML approaches, learning from the monitored data, are emerging as the logical

way forward, in order to estimate QoT. Multiple examples of QoT estimation based on ML

techniques are found in the literature. In an attempt to classify these works, different criteria

may be considered: used method, estimated parameter, input features used, etc. Here, some

of these works are mentioned, classified in terms of used algorithm and estimated parameter.

A short summary is shown in Table 3.1.
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Starting from a simple implementation based on regression, continuously monitored BER

data has been used to estimate BER for unestablished lightpaths [214]. This estimation is

performed using regression on the existing OSNR estimations calculated from measured data

over different wavelengths, which is available in a database. Experimentally demonstrated,

once a lightpath is established, corresponding new measurements are stored in the database,

improving the estimation accuracy for future requests.

Also based on regression, a reduction of inaccuracies on estimated signal to noise ratio (SNR)

from a QoT tool has been achieved by using gradient descent on a cost function based on

the difference between estimated and measured SNR. Attributing SNR uncertainties to total

output powers and amplifier NF values, the gradient descent algorithm reduces the difference

between estimated and measured SNR by modifying these parameters in an iterative manner.

Reduction on uncertainties has led to a reduction on the margins for future demands using the

new learnt parameters stored in a centralized database, bringing a cost reduction by cutting

overprovisioning [215]. Polynomial regression has also been used to reduce design margins,

providing a better estimation of amplifier gain ripples connected to OSNR penalties [216]. As

pointed in this work, the influence of power excursion in QoT has not been yet sufficiently

investigated.

Using a method close to extended Kalman filtering, lightpath parameters have been adjusted in

order to improve the Q-value estimations based on a physical layer model. Margin reductions

in the order of 1 to 3 dB have been achieved [217].

Instead of relying on a single monitored parameter at the end of the link to estimate QoT, as in

the previous case, multiple parameters can be also monitored: ASE, PMD, CD, and SPM [218].

Based on this information, BER is estimated by a QoT tool. All the parameters are stored in

a database. When a request arrives and a lightpath candidate is selected, two cases can be

distinguished: (1) parameters are present in the database, and therefore QoT can be directly

estimated or (2) parameters are not present in the database and therefore unknown parameters

have to be estimated by using network kriging 3 [219] or norm l 2-normalization [220] (typically

used in network tomography [221]). These methods make estimations based on the previous

measured parameters and the spatial correlation among them, as some part of the links can

be common to several lightpaths. As a result, QoT estimation reduces the number of attempts

before establishing a successful connection for a particular blocking ratio. Monitor placement

and how it affects the estimation accuracy have been discussed in [222]. Interference effects

have also been included in the calculations showing better accuracy compared with the worst

case scenario where all the channels are in use [223], [224]. Furthermore, network kriging

and norm l2-normalization have been applied to estimate Q-value parameters for intensity

modulation signals [225]. By measuring means of the distributions of the “0” and “1” symbols

(µ0, µ1) and their respective noises considered as standard deviations (σ0, σ1), Q-factor and

BER have been estimated based on the proposed algorithms.

3Network path characteristics prediction based on a small set of samples [219]
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A more advanced ML technique, CBR, has been used for lightpath classification [42]. During

offline operation, a database of lightpaths is generated containing different parameters: route,

selected wavelength, total length, sum of co-propagating lightpaths per link and standard

deviation of the number of total co-propagating lightpaths. Together with this information,

the associated Q-factor is also stored in the database. When a traffic request arrives, similarity

for each path is calculated, with the similarity considering a weighted Euclidean distance. The

most similar case is selected, assuming the stored Q-value will be the same of the retrieved

case. As a larger database increases the retrieval time, an algorithm variant which adjusts

the database size by forgetting some information has also been developed. Comparison with

other techniques has been shown [41], with CBR outperforming the percentage of successful

classifications of lightpaths compared to naive Bayes, decision tree, RF and J4.8 tree 4. Experi-

mental demonstration of CBR for lightpath classification, but considering different attributes

(channel wavelength, launch power, link length, active lightpaths in the link, total input power

to the link and total power carried by the neighbour channels) and estimating error vector

magnitude (EVM) instead of Q-value has also been presented [226].

Additionally, RF and k-NN have been studied for QoT classification. Both methods are com-

pared in order to classify lightpaths according to BER [227]. Considering as input features

number of links of the lightpath, lightpath total length, length of its longest link, traffic volume

it serves and modulation format, results have shown RF gives better results in terms of perfor-

mance and computation time. In an extended work [43], nonlinear effects have been included

in the BER estimation model. Again, RF provided a better trade-off between computation time

and accuracy.

Going one step further, an SVM has been trained on a synthetic dataset for QoT classifica-

tion [228]. The dataset considered the following features: source and destination nodes, set

of traversed links, corresponding wavelength, total length, sum of co-propagating lightpaths

per link and standard deviation of that number. After training, the algorithm has been able

to classify lightpaths according to low or high Q-values. Results showed SVM outperform-

ing CBR in accuracy and computing time. Also using SVM, QoT of lightpaths based on BER

estimation from OSNR calculation including nonlinearities as a function of link and signal

parameters (total link length, span length, channel launch power, modulation format and data

rate) has been validated [229], [230]. After comparing RF, k-NN and SVM, best results have

been obtained with SVM. Furthermore, using a network emulator including optical power

excursion [231], an SVM performing multi-class optical parameter-based prediction of QoT

has been developed [232]. Each of the four classes corresponds to an OSNR threshold for a

particular modulation format. C-band is divided in bins, representing a section of the EDFA

gain. This information is used during training in order to account for optical power excursions.

NNs are one of the most popular ML techniques for QoT classification. Having as input

features path length, number of EDFAs, link length and degree of destination node, a trained

NN has been able to predict whether a lightpath Q-value is above or below a threshold [233].

4Algorithm used to generate a decision tree.
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The work has been extended taking into account different wavelengths, including wavelength

as a new input feature. In the proposed algorithm, every time a request is processed, a

candidate lightpath is selected. After checking availability of transmitters and receivers and

lightpath existence between source and destination, the Q-factor classification (above or

below threshold) is performed using NN. If the Q-factor is below the considered threshold,

a new wavelength candidate is chosen and the algorithm restarted [234]. This process is

repeated until a wavelength is found and the request is processed or no wavelength fulfilling

the requirements is found and the request is blocked.

OSNR prediction based on NN has been experimentally shown [235]. Transmitter (launch

powers), optical path (EDFA input power, output power, gain, NFs, etc.) and receiver informa-

tion together with OSNRs obtained through monitoring are stored in a database. Database

information has been used to train an NN able to predict OSNR. This approach has been

validated in a field-trial testbed.

Detailed comparison among k-NN, logistic regression, SVM and NN for QoT estimation

has been shown [83]. Considering three different network scenarios, NN resulted to be the

algorithm achieving the best generalization. Impact on accuracy due to training data size and

due to the set of used features (number of hops, number of spans, total length, average and

maximum link length, average span attenuation, average dispersion) has been analyzed.

Instead of lightpath parameters as features, eye diagram as an image has been used in order

to train a convolutional neural network (CNN) able to estimate OSNR [236]. At the same

time, the ML module has been trained for modulation format recognition. Compared with

decision tress, k-NN, NN, and SVMs, CNN obtained the best results. Using directly raw data

coming from a coherent receiver, an NN [237] first, and a CNN [238] afterwards, have been

trained to estimate OSNR, without requiring specific lightpath features. Both works have been

experimentally proven.

A particular case of multi-domain scenario has been addressed [239]. QoT using a deep NN has

been experimentally implemented for a multi-domain scenario including different features

as source and destination nodes, data rate path length, etc. The model has achieved high

accuracy on classifying requests according to the BER (higher or lower with respect to the

pre-FEC BER threshold).

Data collection reduction, a key aspect in ML applications, has been tackled by transfer

learning, being able to learn fast from pre-trained models [240].

3.3 Impairment aware modulation format and wavelength assign-

ment algorithm proposal

In this section, the proposed impairment aware modulation format and wavelength assign-

ment algorithm is presented. First, Section 3.3.1 describes the use case scenario in detail. After,
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ML method Input data Output data Dataset Ref

Regression BER OSNR E [214]
SNR SNR S [215]

Kalman fitering BER Q-value E [217]
Network kriging Lightpath parameters BER S [218], [222]–[224]

σ0, σ1, µ0, µ0 Q-factor S [225]
CBR Lightpath parameters Q-factor S [42], [41]

Lightpath parameters EVM E [226]
RF Lightpath parameters BER S [227], [43]

SVM Lightpath parameters Q-factor S [228]
Lightpath parameters BER S [229], [230]

OSNR, wavelength band OSNR S [231]
NN Lightpath parameters Q-factor S [233], [234]

Lightpath parameters Q-factor E [240]
Lightpath parameters OSNR E [235]
Lightpath parameters OSNR S [83]

Samples output receiver OSNR E [237]
Lightpath parameters BER E [239]

CNN Eye diagram OSNR S [236]
Samples output receiver OSNR E [238]

Table 3.1 – Summary of QoT estimation approaches based on ML techniques. In the column
corresponding to dataset, E and S refer to experimental and synthetic.

QoT estimation based on NN models is demonstrated in Section 3.3.2. Then, in Section 3.3.3,

the QoT models are integrated in a environment used by an RL algorithm, learning to assign

modulation format and wavelength to incoming traffic requests. Section 3.4 and Section 3.5

show the results obtained for a fixed and a flexible frequency grid configuration, respectively.

3.3.1 Numerical setup

The numerical setup, shown in Fig. 3.1, was developed in VPI. It consists on a variable number

of transmitters, which outputs are multiplexed and amplified by a booster amplifier before

being transmitted through a span, composed by 75 km of fiber followed by an inline amplifier.

Then, the signal traverses an ROADM, which losses are adjusted by using a VOA to 15 dB. At

the ROADM output, an amplifier compensates for the losses. After being transmitted through

a second span, the signals are demultiplexed and sent to the corresponding receivers.

A more detailed description of the setup is given in the following. First, the input parameters

to be configured are defined. Second, specific aspects of the general parameters and particular

blocks included in the simulations are described. Third, results obtained for simulations in

back-to-back (B2B) configuration and for different launch input powers are analyzed.
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(a) Simulation setup. (b) Amplifier gain dynamic curve.

Figure 3.1 – Setup for impairment aware modulation format and wavelength assignment and
amplifier gain dynamic curve.

Input tuneable parameters

Three main input parameters must be configured in each simulation: data rate, modulation

format and wavelength allocation.

Data rate and modulation format Two different data rates (128 Gb/s, 256 Gb/s) and two

different modulation formats (DP-QPSK, DP-16-QAM) are considered, but only three possible

combinations are allowed between them: 128 Gb/s DP-QPSK, 128 Gb/s DP-16-QAM and

256 Gb/s DP-16-QAM. Considering soft decision FEC (SD-FEC) with overhead of 21.875 %, the

maximum allowed pre-FEC BER value5 was fixed to 0.04, which is pessimistic according with

the limits shown in [156]. Net data rates corresponding to 128 Gb/s and 256 Gb/s are 100 Gb/s

and 200 Gb/s, respectively. Therefore, the three possible configurations are referred in the

following as 100G-DP-QPSK, 100G-DP-16QAM and 200G-DP-16QAM (Table 3.2).

Data Rate Modulation Label
(Gb/s)

128 DP-16QAM 100G-DP-16QAM
128 DP-QPSK 100G-DP-QPSK
256 DP-16QAM 200G-DP-16QAM

Table 3.2 – Considered data rate and modulation formats.

Frequency channel allocation Channels have been allocated in the C-band (1530- 1565 nm)

using the ITU frequency grid [149]. For the fixed frequency grid, with a 50 GHz channel

spacing, the possible center frequencies in THz are defined as:

193.1+n×0.05. (3.1)

5Predefined threshold for error-free post-FEC transmission.
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The flexible frequency grid considers a slot center frequency granularity of 6.25 GHz, although

the width slot granularity is 12.5 GHz. Analogously to eq. 3.1, flexible grid center frequencies

in THz are determined by:

193.1+n×0.00625. (3.2)

In both cases, eq. 3.1 and eq. 3.2, n is a positive or negative integer including 0.

In the scenario presented here, 80 channels have been considered for the fixed grid case, where

the first channel has been defined at:

193.1−24×0.05 = 191.9 THz. (3.3)

Therefore, being the first channel centered at 191.9 THz and the 80th channel at 195.85 THz.

For the flexible grid case, the same total bandwidth of 4 THz was considered, with the first

possible slot center frequency defined at:

193.1−195×0.00625 = 191.88125 THz, (3.4)

and the last possible slot center frequency at 195.86875 THz. In both cases, the defined

bandwidth goes from 191.875 THz to 195.875 THz, which corresponds to approx. 1531.5 nm

to 1563.5 nm.

Main specific features

After defining the main configurable parameters and before defining the main output values

obtained in each simulation, some information about the general parameters and main used

building blocks is provided. First, the major global parameters set in the simulations are:

• TimeWindow: It is defined as the simulated period of time, impacting the resolution of

spectral displays and the accuracy of BER estimations. The bigger is the simulated data,

the more resolution of spectral displays and the more accuracy of BER estimations. At

the same time, more time and more memory will be required to run each simulation.

Furthermore, as Fast Fourier Transform (FFT) is intensively used in the simulations,

a good practice is to keep this value as a power of two, in order to accelerate FFT

computations.

• SampleRateDefault: By default, unless another specific sample rate is defined, this

value is used as the sample rate value for all the blocks. As a reference, the sampling rate

should be at least 2-3 times the total simulated bandwidth.
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• GreatestPrimeFactorLimit (GPFL): It indicates the maximum prime factor of the

number of samples in the simulated signal. In order to speed up simulations, by accel-

erating the FFT, this parameter should be kept as low as possible, ideally GPFL equals

2.

The number of simulated symbols and the number of samples per symbol must be integers.

To guarantee this condition, for simulations with simultaneous propagation of signals with

multiple symbol rates, as the case considered here, the simulated time window (TimeWindow)

should be a multiple of some fundamental symbol rate SFundamental of the simulated signals.

As two different symbol rates are considered in the presented scenario, 16 Gbaud/s and

32 Gbaud/s, both symbol rates can be expressed in terms of fundamental symbol rate of

SFundamental = 16 Gbaud/s:

S100G−DPQPSK = 32 Gbaud/s = 2×SFundamental, (3.5)

S100G−DP16−QAM = 16 Gbaud/s = 1×SFundamental, (3.6)

S200G−DP16−QAM = 32 Gbaud/s = 2×SFundamental. (3.7)

The simulated period is required to contain an integer number of simulated symbols. After

the definition of the fundamental rate, the minimum possible TimeWindow is given by:

TimeWindowmin =
1

SFundamental
= 6.25×10−11 s, (3.8)

containing one symbol of the 100G-DP-16QAM signal and two symbols of the 100G-DP-QPSK

and the 200G-DP-16QAM signals. This means that for the minimum simulated window, at least

two samples would be required, defining 2 as the minimum GreatestPrimeFactorLimit.

Sampling rate should be at least 3 times the total simulated bandwidth. In this case, with

80 wavelengths spaced 50 GHz for the fixed grid scenario and 320 frequency slots of 12.5 GHz

bandwidth for the flexible grid scenario, i.e. a total bandwidth of 4 THz, the sampling rate has

been set to:

1024×SFundamental = 16.384 THz, (3.9)

larger than 3 times the total bandwidth, choosing 1024 as a multiplication factor in order to

keep a number of samples power of two. Limited by the 16 GB RAM of the computer used for

simulations during approximately the first half of PhD work (∼ 18 months), the time window

was tuned to the maximum possible:

TimeWindow = 8× 1024

SFundamental
= 2.56×10−7 s, (3.10)
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again, choosing 8×1024 to keep a power of 2, resulting in a total number of samples of:

SampleRateDefault×TimeWindow = 8388608 = 223, (3.11)

corresponding to a different number of simulated symbols and samples per symbol for each

of the modulations and data rates considered here, as can be seen in Table 3.3. These values

have been kept after changing PC in order not to increase simulation time. Depending on the

channel load, time required to perform one simulation can be more than 1 hour.

Symbol Rate Modulation Simulated symbols Samples per symbol
(Gbaud)

16 DP-16-QAM 16384 512
32 DP-QPSK 8192 1024
32 DP-16-QAM 16384 512

Table 3.3 – Simulated symbols and samples/symbol for each modulation and data rate.

As before the multiplexer and after the demultiplexer a total maximum of 80 signals for the

fixed grid and 106 signals for the flexible grid case can be transmitted, the sample rate at

the transmitter and receiver has been kept lower, 16×SFundamental, in order to have enough

physical memory.

Figure 3.1 illustrates the used setup. To enable different channel spacings, the multiplexer is

modelled using an ideal multiplexer. Every channel is filtered before the multiplexer in order

to introduce its filtering effect. The signal coming out from the multiplexer is first amplified by

a booster amplifier. The amplified signal is transmitted in a first span, composed by 75 km

SMF and the EDFA acting as inline amplifier compensating the losses of the fiber. After the

span, the signal traverses an ROADM, modelled by 2 WSSs [241], one for adding channels

and other for dropping channels. In order to model the WSS, a bank of super Gaussian filters

order n = 6 are used, approximating a MEMS-mirror based WSS with steep edges [242]. Higher

orders can be achieved with liquid crystal on silicon (LCoS) [243]. Losses in the ROADM are

adjusted with an optical attenuator to 15 dB. At the output of the ROADM, the signal is again

amplified before being transmitted over a second span with the same characteristics. At its

output, the signal is demultiplexed, filtered and processed by a coherent receiver. Finally, after

digital signal processing (DSP), the BER of the received signal is calculated. All the amplifiers

included in the setup are identical, corresponding to the double stage amplifier characterized

in Section 2.3, operating in AGC mode at 15 dB with with VOA at 5 dB (dynamic curve in

Fig. 3.1b). Some more details about the transmitter, the dual polarization coherent receiver

and the DSP algorithms are given in the following.

Transmitter Dual polarization M-QAM/M-PSK transmitters have been used for signal gener-

ation. First, a series of randomly generated bits are mapped to symbols. As shown in Table 3.4,
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for every modulation and data rate, parameters corresponding to bits per symbol and symbol

rate needed to be adjusted accordingly. Then, a raised cosine filter with a roll-off factor of 0.1

has been used as a shaping filter to generate the driving signal to the IQ modulator.

In the optical part, the transmitter’s laser source has been programmed with the corresponding

channel frequency. The laser linewidth has been set to 100 kHz. A polarized beam splitter

divides, then, the light in two polarizations, with each one of them being modulated by one

IQ modulator, based on two single drive Mach Zehnder modulators. One of them modulates

directly the incoming optical carrier and the other modulates the 90° phase-shifted optical

carrier. Then, both polarizations are combined together, to finally set the average power with

a noiseless amplifier to a selected specific value, equal for all the channels and optimized as it

will be shown later.

Bits per symbol Symbol rate
per polarization (Gbaud)

100G-DP-QPSK 2 32
100G-DP-16QAM 4 16
200G-DP-16QAM 4 32

Table 3.4 – Transmitter configuration.

Dual polarization coherent receiver At the dual polarization coherent receiver, both, input

signal and local oscillator laser, are splitted in both polarizations. Each one of them is down-

converted by a coherent receiver, filtered and sampled by an analog to digital converter. The

coherent receiver, comprises 4 photodiodes. Every photodiode has been modelled ideally,

with a responsitivity equal to 1.0. The chosen electrical filter has been a Bessel filter with a

bandwidth of 0.6 times the symbol rate. For the analog to digital converter, a sampling rate of

2 samples/symbol has been selected, which translates in 64 Gsamples/s, 32 Gsamples/s and

64 Gsamples/s, for the 100G-DP-QPSK, 100G-DP-16QAM and 200G-DP-16QAM, respectively.

Furthermore, the resolution has been set to 8 bits. The local oscillator has been parameterized

as the local oscillator at the transmitter: emission frequency at the specific channel and

100 kHz linewidth.

DSP Several DSP techniques are applied to the received signal: CD compensation, equaliza-

tion, frequency offset and phase offset compensation, synchronization and BER calculation.

All these techniques are explained in more detail in the next paragraphs.

• CD compensation: Digital CD compensation in the frequency domain, compensating

accumulated CD over the transmission line [244].

• Equalizer: Time domain equalizer based on constant modulus algorithm [245] for QPSK

and multiple modulus algorithm [246] for 16-QAM.
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Figure 3.2 – Input channel power measured in slices of 6.25 GHz bandwidth.

• Carrier frequency recovery: Based on [247].

• Phase offset estimation: Sliding window implementation of Viterbi phase estimator [245]

and [246], for dual-polarization mPSK signals and 16-QAM signals, respectively, are

used.

• Synchronization: By using correlations between the received signal and the original

signal for different delays, this module calculates the time offset. Based on this, the

received signal is adjusted, aligned with the transmitted one.

• BER: First, symbol decisions are taken based on the closest constellation point to the

received symbol (maximum likelihood detection). After demapping, the transmitted bits

are compared to received bits. EVM values, symbol error rate and BER are calculated.

Measured performance parameters

Three main parameters, measuring the performance of the received optical signal have been

monitored: optical power excursion, OSNR and BER. More details are given in the following.

Optical power excursion Using the same input channel configuration, but each time for

a different data rate and modulation case (100G-DP-QPSK, 100G-DP-16QAM and 200G-DP-

16QAM), measured power excursion was compared. For the same channel centered at fre-

quency 192.9 THz the input power at the booster amplifier, measured in slices of 6.25 GHz

bandwidth, is plotted in Fig. 3.2 for the three different modulation and date rate pairs consid-

ered here. Correspondingly, Fig. 3.3 illustrates the power at the output of the considered optical

link. In the case of 100G-DP-QPSK and 200G-DP-16QAM, the power is mainly concentrated in

5 bandwidth slices, i.e. 5×6.25GHz = 31.25 GHz. Differently, the 100G-DP-16QAM occupies

less spectrum, the power is accumulated over 3 bandwidth slices, i.e. 3×6.25GHz = 16.25 GHz.

Using this data, optical power excursion in each slice i of 6.25 GHz bandwidth is calculated as:
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Figure 3.3 – Output channel power measured in slices of 6.25 GHz bandwidth.

Figure 3.4 – Output power excursion measured in slices of 6.25 GHz bandwidth.

Pexci =
Pouti

Pi ni G
, (3.12)

where G is the desired average amplifier gain of 15 dB and Pi ni , Pouti and Pexci are the input

power, output power and power excursion at the slice i . Figure 3.4 represents the calculated

power excursion per slice as expressed in eq. 3.12. Note that, as explained before, 100G-

DP-QPSK and 200G-DP-16QAM considered 5 slices whereas 100G-DP-16QAM required only

3 slices. As expected, a larger signal bandwidth is influenced by a larger amplifier bandwidth

being more sensitive to experience a larger power excursion. Finally, the power excursion for

the complete channel is calculated as the average of the individual power excursions:

Pexc =

∑
i Pexci

M
, (3.13)

with M the total number of slices, M = 3 for 100G-DP-16QAM and M = 5 for 100G-DP-QPSK

and 200G-DP-16QAM. In this example, the final power excursion per channel was 0.90 dB

for 100G-DP-QPSK, 0.86 dB for 100G-DP-16QAM and 0.89 dB for 200G-DP-16QAM, with

100G-DP-16QAM suffering the smallest optical power excursion.
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OSNR The OSNR obtained as one of the simulation outputs has been calculated from out-

band measurements in every channel. The used reference bandwidth Bn has been fixed to

12.5 GHz. In order to do this measurement, signal power and noise power are required.

Firstly, the power at the center frequency in every channel (PTOT) is measured over the refer-

ence bandwidth. This power measurement contains signal and noise. Secondly, two noise

measurements are done at both edges of the reserved channel bandwidth (right and left),

e.g. +/−25 GHz for fixed grid. This measurement is done in a smaller bandwidth Bmeas in

order to measure only noise, without including signal. Assuming a flat noise spectra, the

noise approximation at each extreme of the channel in the reference bandwidth is directly

calculated by using a multiplication factor (Bn/Bmeas) on the two noise power measurements

performed in the smaller bandwidth Bmeas (Poutband−noise−right,Bmeas , Poutband−noise−left,Bmeas ):

Poutband−noise−right,Bn = Poutband−noise−right,Bmeas

Bn

Bmeas
. (3.14)

Poutband−noise−left,Bn = Poutband−noise−left,Bmeas

Bn

Bmeas
. (3.15)

Then, the noise in the center frequency is estimated as the average of the two side values:

P̂inband−noise,Bn =
Poutband−noise−right,Bn +Poutband−noise−left,Bn

2
. (3.16)

Finally, the OSNR is calculated as:

OSNRoutband,Bn =
Ptot,Bn − P̂inband−noise,Bn

P̂inband−noise,Bn

. (3.17)

BER BER estimation for each channel has been obtained directly by a built-in VPI block,

included in the setup.

Crosstalk and ISI penalties

Simulations have been performed in a B2B scheme, with the transmitter directly connected to

the receiver, avoiding the optical link. The selected scenario considered a WDM configuration

with 40 channels spaced 50 GHz. Although in each simulation all the channels have been

configured using the same traffic demand type (modulation and data rate), simulations have

been repeated for the three different traffic demands under study (Table 3.2). By adding noise

in the system (noise loading), OSNRs have been adjusted in a range from 10 to 30 dB. OSNR

due to noise loading is denoted in the following as OSNRASE, to keep the same nomenclature
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as in the following section. Together with OSNRASE, in every simulation, BER measurements

at the receiver have been stored. From the BER calculated in the simulations and using the

formulas associating SNR and BER for Gray coding, for DP-QPSK and for DP-16-QAM given by

eq. 3.18 and 3.19, respectively:

BER =
1

2
erfc

(p
SNR/2

)
, (3.18)

BER =
3

8
erfc

(√
1

10
SNR

)
, (3.19)

it is possible to estimate the SNR. The corresponding OSNR, denoted OSNRLIN, has been

approximated using the relationship between OSNR and SNR for dual polarization given by:

OSNR =
Rs

Bn
SNR, (3.20)

where Bn denotes the OSNR bandwidth, defined as 12.5 GHz (∼ 0.1 nm) and Rs refers to the

symbol rate, which takes the values defined in Table 3.4.

Figure 3.5 shows the BER with respect to OSNRs for the three different traffic demands. For low

OSNR, the BER estimation calculated with VPI is not very accurate, represented by an abrupt

BER cliff in Fig. 3.5. As ASE is not the only disturbance, but also crosstalk and intersymbol

interference (ISI), both OSNRs, OSNR due to noise (OSNRASE) and the total linear OSNR

(OSNRLIN) are not equal, being OSNRASE > OSNRLIN. As can be seen, DP-16-QAM is more

sensitive to crosstalk and ISI. In the following, OSNR thresholds used for the three cases are

set to: 16 dB, 20 dB and 20 dB for 100G DP-QPSK, 100G DP-16QAM and 200G DP-16QAM,

corresponding to BER of approximately 10−3 [248], [249]. Based on Fig. 3.5, these thresholds

are restrictive, taking into account that a pre-FEC BER6 value limit of 0.04 is assumed for

SD-FEC with overhead of 21.875 % [156] (Table 3.2). However, as the OSNR we measured in

the simulations, is an estimation obtained from out-band measurements (eq. 3.17), we add a

margin in order to prevent inaccuracies. All these thresholds are summarised in Table 3.5.

OSNR threshold (dB) pre-FEC BER threshold

100G-DP-QPSK 16 0.04
100G-DP-16QAM 20 0.04
200G-DP-16QAM 20 0.04

Table 3.5 – OSNR and pre-FEC BER thresholds for the considered traffic demands.

Using these results, it is possible to define a parameter χ2
X I , associating both OSNRs (OSNRASE

6Predefined threshold for error-free post-FEC transmission.
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(a) 100G-DP-QPSK. (b) 100G-DP-16-QAM. (c) 200G-DP-16-QAM.

Figure 3.5 – Back-to-back simulation results.

and OSNRLIN) [250]:

χ2
X I =

1

OSNRLIN
− 1

OSNRASE
. (3.21)

This new defined parameter χ2
X I , valuable to afterwards calculate the nonlinear OSNR, is

directly the inverse of the OSNR due to crosstalk and ISI (OSNRXI) [250]:

OSNRXI =
Ps

σ2
X I

=
1

χ2
X I

, (3.22)

where σ2
X I , the noise variance due to crosstalk and ISI, depends on χ2

X I as [250]:

σ2
X I = Psχ

2
X I . (3.23)

Finally, the linear OSNR, OSNRLIN is defined as follows [250]:

OSNRLIN =
Ps

σ2
ASE +σ2

XI

, (3.24)

where σ2
ASE and σ2

XI are the noise variances from ASE and crosstalk-ISI, respectively.

Launch input power adjustment

Selecting a suitable input launch power is of great importance, having a significant impact

in the system performance: for low input launch powers, the system is limited by the noise

whereas for high large launch powers, the system is limited by nonlinearities. In order to

estimate the optimum launched power in the fiber, simulations have been performed in this

case with varying input powers for 40 WDM channels spaced 50 GHz using 100G-DP-16QAM.

92



Impairment aware modulation format and wavelength assignment Chapter 3

The OSNR, analogously to the previous section, has been estimated using the BER, from the

equations 3.18 and 3.19. This OSNR, comprising linear and nonlinear effects, is referred as

OSNRTOT:

OSNRTOT =
Ps

σ2
LIN +σ2

NLI

, (3.25)

where Ps is the signal power and both contributions: noise linear contribution σ2
LIN and noise

nonlinear contribution σ2
NLI are considered. Consequently, it is possible to approximate the

OSNR at low input launch powers by OSNRLIN = Ps

σ2
LIN

and at high input launch powers by

OSNRNLI = Ps

σ2
NLI

. In the following, the calculation of both OSNRs is explained in more detail.

Linear OSNR Seen in the previous section, OSNRLIN can be expressed in terms of the OSNR

due to ASE noise (OSNRASE) and the OSNR due to crosstalk and ISI (OSNRXI). Taking into

account that OSNRXI can be calculated from σ2
X I obtained in B2B simulations, only the

OSNRASE needs to be calculated here. For doing this, the ASE noise spectral density SASE, is

defined as:

SASE = hνNF(G−1), (3.26)

where h is the Planck’s constant, ν is the frequency, NF is the amplifier noise figure and G is

the amplifier gain. For a bandwidth B0 the noise power becomes:

PASE = hνNF(G−1)B0. (3.27)

In a cascade of NA amplifiers, where the first amplifier acts as a booster amplifier and the

following NA −1 are inline amplifiers compensating the losses in the fiber spans, the total

noise power at the output of the NAth amplifier is given by [251]:

PASE = NA (hνNF(G−1)B0) . (3.28)

Using equation 3.28 and considering the signal power at the output of the amplifier cascade

Psig,out/ch as the transmitted power per channel at the output of the transmitter (Ptx/ch) after

being amplified by the booster (Psig,out/ch = Ptx/chG), the linear OSNR at the output of the

cascade is calculated as:

OSNRLIN =
Psig,out/ch

σ2
ASE +σ2

X I

=
Ptx/chG

NA (hνNF(G−1)B0)+σ2
X I

. (3.29)
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Note that, as an approximation, the ROADM together with the amplifier at its output, is

approximated as one span.

Nonlinear OSNR From eq. 3.25 and after calculating the OSNRLIN, there is enough informa-

tion to estimate the OSNR due to nonlinearities OSNRNLI as:

OSNR−1
NLI = OSNR−1

TOT −OSNR−1
LIN. (3.30)

Furthermore, nonlinear OSNR (OSNRNLI) is usually expressed in terms of a nonlinear factor

αN LI , independent of the power:

OSNRNLI =
1

αN LI P2
sig,out/ch

. (3.31)

Combining eq. 3.30 and eq. 3.31, the nonlinear factor is given by:

αNLI =
OSNR−1

TOT −OSNR−1
ASE

P2
sig,out/ch

. (3.32)

Using eq. 3.32, the nonlinear factor has been estimated, allowing to calculate the nonlinear

OSNR.

Finally, using the previous analytical formulations on the results (BER) obtained on simulations

using different launch input powers, the following parameters have been estimated:

• OSNRTOT: OSNR estimated from the BER, therefore including linear and nonlinear

effects (eq. 3.19 and eq. 3.20).

• OSNRLIN: OSNR including linear noise ASE, crosstalk and ISI (eq. 3.29).

• OSNRNLI: OSNR including only nonlinear noise (eq. 3.31).

Figure 3.6 illustrates the obtained results. As can be seen, for low input powers, where nonlin-

earities can be neglected, the linear OSNR approximation considering ASE noise, crosstalk

and ISI is very close to the total OSNR. Not shown in the Figure, but tested, if the crosstalk and

ISI are neglected, the approximation suffers a small deviation (∼ 1 dB). For high input powers,

the OSNR including only nonlinear effects is close to the total OSNR.

The break point power and the power which maximizes OSNR are plotted in Fig. 3.6. Theoret-

ically, the break point power (PB), where the OSNRLIN and OSNRNLI asymptotes cross each
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Figure 3.6 – OSNR for different input launch powers.

other, is calculated as:

PB =

(
σ2

ASE +σ2
X I

αN LI

) 1
3

. (3.33)

The power which maximizes the OSNR (PNLT) is calculated using the derivative condition:

dOSNRTOT

dP
= 0. (3.34)

Solving eq. 3.34, PNLT is expressed as:

PNLT =

(
σ2

ASE +σ2
X I

2αN LI

) 1
3

. (3.35)

As seen in the Fig. 3.6, the optimum launch power PN LT is −15.77 dBm. In the following work,

the same input channel power has been used independently of the modulation. To determine

the input power channel, a more conservative approach has been adopted. According to [43],

[155], optimum launch power, depends on the span attenuation. Input power per channel has

been therefore determined as:

PT X =
G −22

3
, (3.36)

being −17.5 dBm in this case, lower than the optimum values calculated before, in order to

avoid nonlinearities.
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3.3.2 Quality of Transmission estimation

For the setup detailed in the previous section (Section 3.3.1), an ML model able to anticipate

the QoT for each channel in a particular channel configuration has been developed based on

NNs. Three different NNs have been trained in order to forecast optical power excursion and

predict whether the channel OSNR and BER are above or below a threshold (see Table 3.5).

First, a dataset to train the NNs has been generated. Then, NNs have been trained and

validated. This process has been performed for two scenarios: fixed and flexible frequency

grid.

Dataset generation

Considering first a fixed frequency grid, simulations have been performed under the next

input parameter conditions:

• Data rate and modulation format: Assuming moderate data rate traffic, most of the

traffic demands correspond to 100G traffic requests. In particular, 20 % of the total

traffic requests have been assigned to 200G-DP-16QAM channels and the remaining

80 % has been uniformly distributed between the 100G-DP-QPSK and 100G-DP-16QAM

channels [252].

• Channel load: Four different average channel loads have been considered, 20 %, 40 %,

60 % and 80 %, with a deviation of +/−5 %.

• Frequency allocation: Random assignment.

A total number of ∼ 2.400 simulations have been executed, distributed approximately equally

among the 4 considered average channel loads of 20 %, 40 %, 60 % and 80 % (∼ 2400/4 =∼
600 simulations per scenario).

The same procedure has been followed for a flexible grid scenario. In this case, the total

number of simulations is ∼ 3.000. As fixed grid channel configurations are compatible with

flexible grid7, simulations performed for a fixed grid scenario are included as part of the

flexible grid dataset.

Time required to execute each simulation (more than 1 hour depending on the channel load,

more channels require more time) was the main constraint at this point, limiting the dataset

sizes to ∼ 2.400 and ∼ 3.000 simulations. Larger datasets would allow to achieve more accurate

models. However, our work does not aim to achieve the best accuracy, but to demonstrate: (1)

the importance of optical power excursion as input feature in an NN model predicting QoT,

which can be shown even with lower accuracy models and (2) the usage of an RL algorithm to

autonomously perform modulation format and wavelength assignment; comparison between

7Fixed grid frequency spacing is 50 GHz, multiple of the 12.5 GHz flexible grid frequency slot.
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the RL algorithm and other algorithms is performed on the same environment, i.e. equal

conditions, thus, having a lower accuracy affects all the algorithms equally, allowing still a fair

comparison.

Machine learning models

Three different NNs have been developed dedicated to the three different parameters to

predict: optical power excursion, OSNR and BER. Corresponding code has been developed in

Python making use of Keras and Tensorflow libraries. All the NN architectures have adopted

Adam as optimizer. As loss function, mean squared error function has been used for the

optical power excursion regression (eq. 2.11) and binary cross-entropy for the OSNR and BER

classification (eq. 2.12)8. For the training, the dataset has been divided using 85 % for training,

5 % for validation and 10 % for test purposes.

For the fixed grid scenario, five different NN model possibilities have been trained for each

parameter (optical power excursion, OSNR and BER) targeting different channel loads:

• 20 %: Model trained on a dataset containing only simulations with a 20 % average

channel load (∼ 600 simulations). This model is only valid for 20 % average channel

load.

• 40 %: Model trained on a dataset containing only simulations with a 40 % average

channel load (∼ 600 simulations). This model is only valid for 40 % average channel

load.

• 60 %: Model trained on a dataset containing only simulations with a 60 % average

channel load (∼ 600 simulations). This model is only valid for 60 % average channel

load.

• 80 %: Model trained on a dataset containing only simulations with a 80 % average

channel load (∼ 600 simulations). This model is only valid for 80 % average channel

load.

• Variable: Model trained on a dataset containing simulations at 20 %, 40 %, 60 % and

80 % average channel load (total ∼ 2.400 simulations). This model is valid 20 %, 40 %,

60 % and 80 % average channel loads.

As better performance was achieved by training on the complete dataset with variable channel

load, the flexible grid models have been trained only in the complete dataset of ∼ 3.000 simu-

lations, for variable channel load (20 %, 40 %, 60 % and 80 %).

8As explained in Section 2.1.2, mean squared error is a common loss function for regression tasks, whereas
cross-entropy is common for classification tasks.
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The main difference among the fixed grid and the flexible grid NN models is regarding vector

sizes. Fixed grid models use 80 value vectors for the input and output layers, one value per

50 GHz channel. However, flexible grid models use 640 value vectors for the input and output

values, each value representing 6.25 GHz sub-slot. Note that in flexible grid, 12.5 GHz is the

slot width granularity and 6.25 GHz the central frequency granularity. Therefore, the 80 values

from fixed grid become 80× (50/6.25) = 640 values in the flexible grid.

Hyperparameters, as number of layers and number of units per layer, were adjusted empirically.

Different combinations were tried, choosing the ones providing better performance in terms

of mean squared error and accuracy (Section 2.1.1). Similar results could be obtained with

different architectures.

Optical power excursion For the fixed grid case, the NN trained to predict optical power

excursion has adopted the following architecture:

• Input layer: 80 neurons corresponding to 80 channels. Four possible values are allowed,

representing: unused channel, 100G-DP-QPSK channel, 100G-DP-16QAM channel

and 200G-DP-16QAM channel. In the following, this vector is called channel state

information (CSI) vector.

• Hidden layer: 160 neurons with ReLU activation (Section 2.1.2).

• Output layer: 80 neurons representing the optical power excursion in each channel.

Linear activation is used, as optical power excursion is a real value.

The same NN architecture was trained with the 5 datasets (20 %, 40 %, 60 %, 80 % and variable

channel load), as seen in Fig. 3.7. After training, best results (Table 3.6) with the lowest

minimum squared error have been obtained for the complete dataset, trained with a variable

channel load (20 %, 40 %, 60 %, 80 %).

20 % 40 % 60 % 80 % Variable

Mean squared error 0.27 0.39 0.31 0.16 0.10

Table 3.6 – Fixed grid: Mean squared error optical power excursion regression.

Flexible grid model is identical to the fixed grid model, but considering 640 neurons instead

of 80, due to the frequency grid. Thus, the length of the CSI vector is also 640 instead of

80. Furthermore, two more hidden layers have been included, with 320 and 160 neurons,

respectively. Obtained mean squared error after training was 0.10, as for the fixed grid model.

Although more simulations would allow to reduce the mean squared error, it is sufficient for

our purpose.
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Figure 3.7 – NN models for optical power excursion prediction.

Figure 3.8 – NN models for OSNR classification.

OSNR Two different architectures have been considered for the OSNR prediction. The first

one, using only the CSI vector (state information about active channels and their modulation

formats) and the second one including optical power excursion as input feature. Details about

the developed models for the fixed grid scenario are given in the following. Note that for the

fixed grid, each NN architecture was trained on the different datasets of 20 %, 40 %, 60 %, 80 %

and variable channel load (process for the 20 % channel load is shown in Fig. 3.8).

The NN architecture based only on CSI has followed the structure:

• Input layer: 80 neurons corresponding to CSI vector.

• 3 hidden layers: 160 neurons, 320 neurons and 160 neurons.

• Output layer: 80 neurons representing for each channel, whether the OSNR is above

or below the minimum required OSNR value: 16 dB, 20 dB, 20 dB for 100G-DP-QPSK,

100G-DP-16QAM and 200G-DP-16QAM, respectively (Section 3.3.1, Table 3.5).
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Including optical power excursion as input feature, the NN architecture has been defined as:

• Input layer: 160 neurons, the first 80 neurons corresponding to CSI vector, the second

80 neurons corresponding to the optical power excursion.

• Hidden layers: First hidden layer with 160 neurons connected to the CSI vector and

160 neurons connected to the optical power excursion. Both hidden layers are merged

in a second hidden layer with 320 neurons, followed by a third hidden layer with 160 neu-

rons.

• Output layer: 80 neurons representing for each channel, whether the OSNR is above

or below the minimum required OSNR value: 16 dB, 20 dB, 20 dB for 100G-DP-QPSK,

100G-DP-16QAM and 200G-DP-16QAM, respectively (Section 3.3.1, Table 3.5).

Regarding activation, hidden layers have used ReLU activation whereas output layers have

used sigmoid activation, compatible with binary cross-entropy loss function (Section 2.1.2).

Accuracy obtained on the test set after the training is shown in Table 3.7. As for the power

excursion model, the accuracy is improved when the complete dataset, for variable channel

load, is used for training. Furthermore, when power excursion is included as input feature, the

accuracy improves by 7.44 % when trained in the complete dataset (92.01%−84.57% = 7.44%).

In this particular case, with a cascade of optical amplifiers introducing a large power excursion,

power excursion conveys important information for the OSNR estimation. It is important to

note that, for an optical link different from the one considered here (Figure 3.1) producing

a smaller optical power excursion (< 5 dB), the importance of the power excursion as input

feature for predicting OSNR could have less impact.

Input features 20 % 40 % 60 % 80 % Variable

CSI 91.05 % 80.85 % 73.79 % 71.6 % 84.57 %
CSI + power excursion 93.98 % 88.70 % 84.07 % 81.9 % 92.01 %

Table 3.7 – Fixed grid: Accuracy OSNR classification.

For flexible grid scenario, the difference again is only the number of components for the

input and output vectors (80 for fixed and 640 for flexible grid). Obtained results for the

complete dataset are shown in Table 3.8. Similarly to the fixed grid case, including optical

power excursion improves accuracy. Furthermore, compared to fixed grid results, accuracy is

higher. In the flexible grid model, many of the output values correspond to unused sub-slots,

easy to predict by the NN model, therefore increasing the accuracy.

BER Analogously to the OSNR, different input features have been considered in order to

predict BER. Four architectures have been developed using as input features: (1) only CSI

vector, (2) CSI vector and optical power excursion, (3) CSI and OSNR information, (4) CSI,

100



Impairment aware modulation format and wavelength assignment Chapter 3

Input features Variable

CSI 97.59 %
CSI + power excursion 98.05 %

Table 3.8 – Flexible grid: Accuracy OSNR classification.

Figure 3.9 – NN models for BER classification.

optical power excursion and OSNR information. When OSNR information is included as input

feature, not the particular real-value OSNR but the OSNR classification information (being

above or below the OSNR limits defined in Table 3.5) is used. Developed models for the fixed

grid scenario are described in the following. As for the OSNR models, note that for the fixed

grid, each NN architecture was trained on the different datasets of 20 %, 40 %, 60 %, 80 % and

variable channel load (process for the 20 % channel load is shown in Fig. 3.9).

When only CSI vector is considered as input vector, the architecture has been defined as

follows:

• Input layer: 80 neurons corresponding to CSI vector.

• 3 hidden layers: 160 neurons, 320 neurons and 160 neurons.

• Output layer: 80 neurons representing whether the BER in each channel, is above or

below the pre-FEC BER threshold considered to be 0.04 (Section 3.3.1, Table 3.5).

NN architecture has been modified to include optical power excursion as input feature, follow-

ing:

• Input layer: 160 neurons, the first 80 neurons corresponding to CSI vector, the second

80 neurons corresponding to the optical power excursion.

• Hidden layers: First hidden layer with 160 neurons connected to the CSI vector and

160 neurons connected to the optical power excursion. Both hidden layers are merged

in a second hidden layer with 320 neurons, followed by a third hidden layer with 160 neu-

rons.
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• Output layer: 80 neurons representing whether the BER in each channel, is above or

below the pre-FEC BER threshold of 0.04.

The architecture used when CSI vector and OSNR information are used as input features is

identical to the previous one, only substituting optical power excursion by OSNR information.

The fourth architecture, using CSI vector, optical power excursion and OSNR information as

input features, has been defined as follows:

• Input layer: 320 neurons, the first 80 neurons corresponding to CSI vector, the second

80 neurons corresponding to the optical power excursion and the third 80 neurons

corresponding to OSNR information.

• Hidden layers: First hidden layer with 160 neurons connected to the CSI vector, second

160 neurons connected to the optical power excursion and third 160 neurons connected

to the OSNR information. The three hidden layers are merged in a second hidden layer

with 320 neurons, followed by a third hidden layer with 160 neurons.

• Output layer: 80 neurons representing whether the BER in each channel, is above or

below the pre-FEC BER threshold of 0.04.

As for the OSNR case, hidden layers have used ReLU activation whereas output layers have used

sigmoid activation compatible with binary cross-entropy (Section 2.1.2). Accuracy calculated

on the test set after training is shown in Table 3.9. Again, training on the complete dataset,

for variable channel load, offers better performance. Regarding the input features, using CSI

vector together with power excursion and OSNR information outperforms all the other models.

However, the difference in performance with respect to using only CSI and power excursion

is neglectable, likely due to the fact that the considered OSNR thresholds are very restrictive,

corresponding to BER of ∼ 10−3. It is important to highlight that including optical power

excursion, as for the OSNR model, significantly improves the model.

Input features 20 % 40 % 60 % 80 % Variable

CSI 87.22 % 76.76 % 71.33 % 70.05 % 83.14 %
CSI + power excursion 91.86 % 87.21 % 84.31 % 82.30 % 93.21 %

CSI + OSNR info 90.87 % 82.03 % 77.43 % 75.90 % 88.63 %
CSI + power excursion + OSNR info 93.22 % 88.83 % 86.07 % 83.40 % 93.43 %

Table 3.9 – Fixed grid: Accuracy BER classification.

For flexible grid, same architectures with larger input and output vectors have been used (80 for

fixed and 640 for flexible grid). Results are shown in Table 3.10. As in the OSNR classification

model, accuracy looks higher due to the number of components. Many of output values

correspond to inactive sub-slots, being not difficult for the NN model to predict, producing
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an increase in accuracy. Nevertheless, the important aspect here is again that using power

excursion as input feature improves accuracy.

Input features Variable

CSI 97.49 %
CSI + power excursion 98.16 %

CSI + OSNR info 97.91 %
CSI + power excursion + OSNR info 97.49 %

Table 3.10 – Flexible grid: Accuracy BER classification.

After training and testing NN models predicting optical power excursion and classifying OSNR

and BER, for fixed and flexible grid, we conclude that using complete dataset, for variable

channel loads, produces better results than training for particular channel loads. Furthermore

and more important, we have demonstrated the importance of optical power excursion as

input feature in QoT models based on NNs. These NN models are used in the next section as

part of the environment in an RL algorithm.

3.3.3 Reinforcement learning approach

RL algorithms have been presented in Section 2.1.2. In Chapter 2, an RL method has been

investigated for optical power excursion precompensation in an optical link. In this chapter,

we propose an RL algorithm performing modulation format and wavelength assignment. As

always in RL algorithms, an agent must interact with an environment in order to learn, by trial

and error (Fig. 3.10). In this case, the environment corresponds to the optical link and the

agent to the entity deciding modulation format and wavelength assignment for each received

traffic demand. At each timestep, the agent receives a request from the environment for

adding (input demand) or dropping (output demand) a channel. Based on the current state

(channel configuration: channel frequencies and their modulation formats), the agent selects

an action:

• For an add request, the action indicates to the environment, which wavelength and

modulation format is selected for the new channel.

• For a drop request, the action indicates the wavelength of an active channel which

will replace the dropped channel by using wavelength conversion. The action can also

indicate that no channel is wavelength converted.

After adding or dropping the channel according to the agent instructions, the environment

estimates the QoT of the new channel configuration, by using the NN models developed in

Section 3.3.2. Then, the environment sends to the agent the updated state and next demand

together with a reward:
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(a) RL general model. (b) Environment details.

(c) Modelled optical link.

Figure 3.10 – RL approach for impairment aware modulation format and wavelength assign-
ment.

• Negative reward if the QoT is not fulfilled for all the active channels. The episode9 is

terminated.

• Positive reward if the QoT is fulfilled for all the active channels. The episode continues.

Through these interactions the agent learns to optimize the modulation format and wave-

length assignment.

This solution based on an RL algorithm allows to find an almost optimal solution for this

complex problem. Once trained, RL time response is immediate, compared to other solu-

tions as ILP. RL is faster, even when compared to ML supervised algorithms estimating QoT.

Common strategy, when ML supervised algorithms are used, is to first look for candidate

wavelengths with a specific QoT (based in ML techniques). Another algorithm is in control of

deciding which of the candidate wavelengths is assigned. Depending on the used algorithm,

this strategy may end up being time consuming. Another important aspect of our implemen-

tation is that power excursion is considered together with BER and OSNR. Power excursion

turns to have a significant impact on the QoT also helping spectrum defragmentation10 [12].

Compared to other parameters, optical power excursion is an impairment simple to monitor,

even in transparent optical networks, as there is no need of O/E-E/O conversions. Also, it is

9Sequence of agent-environment interactions, from an initial to a terminal state (Section 2.1.2).
10Similar to resource fragmentation in computers, spectrum fragmentation produces problems in flexible optical

networks, generating isolated or non-contiguous frequency slots that cannot allocate a channel [253], [254].
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important to highlight that, not only the changes in QoT when channels are added, but also

when channels are dropped are considered. When a channel is dropped, the RL-based algo-

rithm, knowing QoT in other established channels will be impacted, can decide to replace the

dropped channel by one of the active channels (by using wavelength conversion), mitigating

the QoT and power excursion fluctuation.

Environment and agent are explained in detail in the following paragraphs. In order to assess

the performance of the trained RL algorithms four different strategies for wavelength assign-

ment are used, which will be explained at the end of the present section. These algorithms

will be compared by interacting on the same environment, as the RL agent. Different from the

RL approach, these algorithms do not learn from the interaction with the environment.

Environment

The environment presented here, represents the optical link previously defined (Fig. 3.1,

Fig. 3.10c) which we have modelled with NNs in Section 3.3.2. These NN models allow to

estimate optical power excursion and classify channels according to OSNR and BER, being a

main element in the complete environment. However, for building a complete environment,

rewards and traffic demands must be included (Fig. 3.10b).

For the traffic demands, we consider that only one channel can be added or dropped at a time.

Arrivals follow a Poisson process with an exponential holding time (HT) of average 600 s [208],

with the load being adjusted by tuning the inter-arrival time (IAT) as load = HT/IAT. For a given

channel configuration, the environment experiences a particular power excursion, OSNR and

BER at each channel (which are estimated with the developed NN models). The state vector

exchanged with the agent contains the CSI vector together with the type of request (add/drop)

and the data rate, only for the adding case (100G/200G). The reason to also consider drop

as requests is that dropping channels impacts the QoT of the other established channels. In

order to mitigate these fluctuations, the developed environment allows to apply wavelength

conversion on an active channel in order to occupy the frequency of the channel about to be

dropped, also contributing to defragmentation [255]. The actions selected by the agent, are

composed by 4 components. The interpretation of the action information depends on the

request:

• For an add request, the first component indicates the index of the channel (frequency

slot for flexible grid) where the channel has to be added, the third component selects the

modulation format of the new channel (DP-QPSK or DP-16-QAM) and the fourth com-

ponent indicates the number of slots to be used (1 or 2), only valid for the 200G requests.

For the particular case of 200G requests, it is possible to use 1 wavelength (50 GHz band-

width) or 2 wavelengths (100 GHz bandwidth, carrying 100G per wavelength). Second

component is not used for add requests.

• For a drop request, the first, third and fourth components are not used. The second
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component indicates the index of a channel (frequency slot for flexible grid) where an

active channel is allocated. This active channel is wavelength converted and it replaces

the channel about to be dropped (e.g. channel 2 is going to be dropped and its position

will be replaced by channel 4 by using wavelength conversion). In case no active channel

is selected for wavelength conversion, the channel is dropped, leaving the wavelength

free for future demands.

Once the environment receives the action, it extracts the information according to the different

components. After that, it updates the channel state. Then, it calculates the new power

excursion and classifies the channels according to being above or below the threshold for the

OSNR and BER. All of this is done by using the NN models trained before. Depending on the

outcome, a specific reward is delivered to the agent. If all active channels have sufficient QoT,

the reward is calculated as an exponential of the mean optical power excursion, being close to

1 for low power excursion and close to 0 for large power excursions, penalizing large power

excursions. In case the QoT is not good enough, the episode is terminated with a negative

reward (Section 2.1.2).

After terminating an episode, the environment is reset, starting with a new channel configura-

tion at a particular load. These initial channel configurations have been calculated beforehand,

in order to speed up the process, by using the ML models previously developed. For doing this,

channels have been assigned to random wavelength frequencies, and only the configurations

keeping all channels above the OSNR and BER threshold have been kept in a list. At each

environment reset, the initial channel configuration is randomly selected from this list.

At this point, a slight modification was performed in the NN models developed in Section 3.3.2.

The chosen optical link configuration was selected in order to have a considerable power

excursion at the output of the link. However, this made difficult to find channel configurations

where all the channels achieve a sufficient QoT. This, together with the fact that sometimes

the developed NN models predict that a channel has lower QoT than in reality has, limited

even more the process of finding valid channel configurations. To solve this issue, finding a

better balance between valid and invalid channel configurations, we modified the threshold

of the sigmoid at the output of the NNs classifying OSNR and BER, reducing the number of

channels wrongly classified as having a low QoT (Section 2.1.2). As a consequence, model

accuracies for OSNR and BER were reduced to ∼ 82 % for fixed grid and ∼ 95 % for flexible grid.

Nevertheless, as all the algorithms compared in Section 3.4 and Section 3.5 used the same

environment, based on the same NN models, the comparison is still fair and valid, even if the

environment is less accurate.

Agent

RL-based agent has been adopted from Stable Baselines [153]. The selected algorithm has

been an implementation of the PPO, similar to the one used in the previous chapter, but using
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multiple workers as A2C, resulting to be faster.

Wavelength assignment strategies for comparison with reinforcement learning approach

For comparison, three different wavelength assignment algorithms were considered. We chose

that these algorithms only act on input demands (adding channels). For output demands

(dropping channels), they do not perform any reconfiguration in the remaining active channels.

When a channel is dropped, no channel can replace it occupying its frequency by using

wavelength conversion capabilities. Only future input demands can occupy the bandwidth

freed by the dropped channel. These three strategies are described in the following:

• FF from lowest to highest frequencies (FF-L2H): Frequencies are ordered from lower to

higher frequencies. The first channel available in the list is assigned. For 100G requests,

DP-QPSK is always the selected modulation.

• FF closest to the center of the band (FF-Center): The available wavelength (slot for

flexible grid) closer to the center of the band is selected. For 100G requests, DP-QPSK is

always the selected modulation.

• NN based: Using the NN models developed before (Section 3.3.2), a random channel

satisfying the restrictions in terms of QoT is selected. For 100G requests, DP-QPSK is

always the selected modulation.

Comparison in terms of blocking probability

The four strategies (RL, FF-L2H, FF-Center, NN) are compared in terms of blocking probability,

defined as:

Pblocking =
Blocked requests

Total number of requests
, (3.37)

where the total number of requests includes adding and dropping requests and the number

of blocked requests corresponds to the number of requests which produced the end of an

episode, with the QoT being lower than the specified thresholds.

In order to calculate the blocking probability, the trained RL algorithm interacted with the

environment, for a total of 50.000 requests. Every time a demand is blocked, terminating an

episode, the environment is reset, starting a new episode. Sequence of episodes is continued,

accumulating the number of blocked requests and received requests, until total number of

requests reaches 50,000 requests.

Blocking probability is estimated in the same way for the other three strategies (FF-L2H,

FF-Center, NN), interacting with the same environment.
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Figure 3.11 – Fixed grid: Example of obtained power excursion, OSNR and BER obtained for a
particular channel configuration.

In the following sections we consider two scenarios, fixed and flexible grid. For both of them,

we have first trained the RL algorithm. Afterwards, we have compared its performance with the

other three strategies (FF-L2H, FF-Center, NN) in terms of blocking probability as presented

here.

3.4 Fixed grid

Figure 3.11 shows results obtained for one of the ∼ 2.400 simulations performed under a fixed

frequency grid configuration used in Section 3.3.2 to train the NN models now integrated as

part of the RL environment. On the top of the figure, distribution in the frequency band of

the three different traffic demands is shown: 100G-DP-QPSK, 100G-DP-16QAM and 200G-DP-

16QAM, with each traffic type represented by one colour. In the bottom of the figure, power

excursion, OSNR and BER estimated in the simulation, for each of the active channels, are

plotted. For channels having a BER below the pre-FEC BER threshold, a green vertical bar is

used. A red vertical bar indicates a BER above the pre-FEC BER limit.

As introduced in Section 3.3.1, considering SD-FEC with overhead of 21.875 %, the pre-FEC

BER limit is set to 0.04 [156]. Minimum required OSNRs are: 16 dB, 20 dB and 20 dB, for

100G-DP-QPSK, 100G-DP-16QAM and 200G-DP-16QAM, respectively. During the simulations,

we have observed 200G-DP-16QAM channels were more sensitive to power fluctuations.

Therefore, an upper power excursion limit of +1.0 dB is considered for 200G-DP-16QAM.

All these values are summarised in Table 3.11 and used to train two different impairment

aware modulation format and wavelength assignment algorithms: one considering BER and

the other considering OSNR together with power excursion limits. Both of them, use power

excursion information, with the reward used during training using this information to penalize

large power excursion.
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100G-DP-QPSK 100G-DP-16QAM 200G-DP-16QAM

Power excursion threshold - - +1.0 dB
OSNR threshold 16.0 dB 20.0 dB 20.0 dB

BER threshold 0.04 0.04 0.04

Table 3.11 – Power excursion, OSNR and BER thresholds.

Figure 3.12 – Fixed grid: Blocking probability comparison for OSNR aware algorithm.

3.4.1 OSNR aware wavelength assignment

In a first approach, the environment has considered OSNR and optical power excursion limits.

After adding or dropping a channel, the environment estimates the new power excursion and

whether the OSNR in each channel is above or below the threshold. The episode is terminated

if one or more channels are below the OSNR threshold or the power excursion is above the

established limit only for the 200G-DP-16QAM channels. (Table 3.11).

After training, blocking probability for the RL algorithm is compared with the other three

wavelength assignment strategies: (1) FF-L2H, (2) FF-Center, (3) NN based (assigning a

channel to a frequency fulfilling the OSNR and power excursion requirements). Results are

shown in Fig. 3.12. Blocking probability is lower for lower channel loads. Then, as the channel

load increases, blocking probability also increases, reaching its maximum between 40 % and

60 %; however, it decreases towards the highest 80 % channel load. This unexpected behaviour

is explained by two factors: (1) inaccuracies in the model, leading to incorrectly classify as

suitable lightpaths the ones that are not, (2) higher channel occupation is more stable as

e.g. power excursion presents less variability for higher channel loads. In addition, for the

highest channel load, blocking probability is similar for almost all the methods, as there are

few frequencies available. The lowest blocking probability is obtained by using directly the NN

models, i.e. assigning directly a frequency fulfilling the OSNR and power excursion constraints.

The RL approach is, however, close to have the lowest blocking probability. Apart from being

autonomous, the RL algorithm generalizes better, performing very good in any scenario, as it

will be seen in the remaining part of the chapter.

Figure 3.13a illustrates an example of the evolution of modulation format and wavelength
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(a) 20 % load. (b) 40 % load. (c) 60 % load. (d) 80 % load.

Figure 3.13 – Fixed grid: Channel assignment evolution under RL-algorithm control for OSNR
aware algorithm.

assignment when the RL algorithm is used for a 20 % channel load. At timestep 0, a random

channel configuration is observed; with time passing, the RL algorithm assigns channels to

the lower frequencies where the power excursion is lower due to the amplifier characteristics

(dynamic curve in Fig. 3.1b), defragmenting the spectrum. Assignment to lower frequencies is

not only done when a channel is added but also when it is dropped. When a channel from lower

frequency is dropped, the RL algorithm replaces it with a channel from a higher frequency,

also contributing to defragmentation. Regarding modulations, 100G requests are assigned to

100G-DP-QPSK and 200G requests are assigned to 200G-DP-16QAM. Similar behaviour can be

seen for the 40 % load case (Fig. 3.13b). When the load increases up to 60 % (Fig. 3.13c), still

higher frequencies are avoided, but it can be seen that some of the 100G requests are assigned

to 100G-DP-16QAM, as power excursion is usually lower and by occupying less spectrum

produces less nonlinearities. Finally, for the highest 80 % load, 100G-DP-QPSK is again mainly

used as modulation format (Fig. 3.13d).

3.4.2 BER aware wavelength assignment

Compared to the previous strategy, here, only BER has been considered as a limit (power

excursion is included in the reward). Therefore, an episode is terminated if one or more of the

channels are above the pre-FEC BER threshold of 0.04. After training, blocking probabilities

are shown again in comparison to the other techniques: (1) FF-L2H, (2) FF-Center, (3) NN

based, assigning channels to frequencies fulfilling the BER requirements. As before for the

OSNR-aware algorithm, due to inaccuracies in the model and the fact that higher channel

loads offer more stability (power excursion varying less abruptly), blocking probability for

higher channel loads drops slightly. As seen in Fig. 3.14, among all of them, RL-algorithm

obtains the best results. Compared to Fig. 3.12, blocking probabilities are lower, as the limits

used in the OSNR case have been more restrictive.
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Figure 3.14 – Fixed grid: Blocking probability comparison for BER aware algorithm.

(a) 20 % load. (b) 40 % load.

(c) 60 % load. (d) 80 % load.

Figure 3.15 – Fixed grid: Channel assignment evolution under RL-algorithm control for BER
aware algorithm.

Evolution of the channel assignment in one episode for 20 % channel load is shown in Fig. 3.15a.

As for the OSNR case, due to the amplifier characteristics (dynamic curve in Fig. 3.1b), RL

algorithm assigns channels to the lower frequencies, directly each time a channel is added or

indirectly when a channel is dropped and an existing channel replaces it. The main difference

is that, here, 100G requests are assigned to DP-16QAM. Similar behaviour is observed for 40 %,

60 % and 80 % in Fig. 3.15b, Fig. 3.15c and Fig. 3.15d. But, contrarily to the 20 % channel load,

100G requests are assigned to DP-QPSK.
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Figure 3.16 – Flexible grid: Example of obtained power excursion, OSNR and BER obtained for
a particular channel configuration.

3.5 Flexible grid

Figure 3.16 illustrates the results obtained for a particular simulation using a flexible frequency

grid. Results are very similar to the ones obtained for fixed grid and shown in Fig. 3.11. The

main difference is the number of frequency slots used by each of the three pairs of data rate

and modulation formats: 100G-DP-QPSK and 200G-DP-16QAM require 4 frequency slots

(4×12.5 GHz) whereas 100G-DP-16QAM requires only 3 frequency slots (3×12.5 GHz). The

same limits in BER, OSNR and power excursion have been applied here (Table 3.11) to train two

different impairment aware modulation format and wavelength assignment algorithms: one

algorithm considering BER and the other considering OSNR together with power excursion

limits. Power excursion information is always included in the reward, penalizing large power

excursions. Results are shown in the following paragraphs.

3.5.1 OSNR aware wavelength assignment

As for the fixed grid case, the RL algorithm has been trained considering OSNR and power

excursion limits. Same value limits have been considered. Each time a channel is added

(dropped), OSNR and power excursion per channel are calculated. If all the channels are

above the OSNR threshold and below the power excursion threshold (for the 200G-DP-16QAM

channels), the episode continues, sending the updated state information, the new request and

the calculated reward (using the power excursion) based on the last update. On the opposite,

if one or more of the channels are below the OSNR threshold or above the power excursion

threshold (only for the 200G-DP-16QAM channels) the episode is terminated, sending a

negative reward.

After training, blocking probability for different channel loads (20 %, 40 %, 60 %, 80 %) is
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Figure 3.17 – Flexible grid: Blocking probability comparison for OSNR aware algorithm.

compared with the 3 same algorithms as before: (1) FF-L2H, (2) FF-Center, (3) NN. Results are

shown in Fig. 3.17. Best results are obtained with the FF-Center and the RL algorithm, with the

last one outperforming all of them for 20 % and 80 % channel load. Differently to the results

obtained for the fixed grid, blocking probability monotonously increases with the channel

load, as the 80 % channel load now suffers the consequences of spectrum fragmentation.

Although these results cannot be directly compared to the ones obtained for the fixed grid

scenario (two different environment models are used, one for the fixed and one for the flexible

grid, therefore results should not be directly compared among them), in general it is possible

to conclude that the use of flexible grid allows to reduce the blocking probability.

Figure 3.18 shows the channel allocation evolution when the RL algorithm is used, for the

different channel loads (20 %, 40 %, 60 %, 80 %). In all of them, similar behaviour is observed.

Channels are allocated in the lower frequencies, with lower power excursion due to amplifier

characteristics (dynamic curve in Fig. 3.1b), leading to spectrum defragmentation. Regarding

modulation, different from the fixed grid results selecting DP-QPSK for 100G requests, in the

flexible grid scenario DP-16-QAM is predominantly preferred for both 100G and 200G requests.

As 100G-DP-16QAM occupies less bandwidth in the flexible grid case, its usage allows to save

spectrum. However, there are some exceptions. Due to the OSNR restriction, sometimes

DP-QPSK is also assigned for the 100G and 200G requests. In fact, for the 20 % channel load,

DP-QPSK is the predominant modulation format.

3.5.2 BER aware wavelength assignment

After OSNR together with optical power excursion, BER limits have been considered. Done as

for the fixed grid scenario, an episode is terminated if at least one of the channels presents

a BER above the pre-FEC BER threshold. Otherwise, the episode is continued, providing

a reward dependent on the optical power excursion. As in the previous cases, blocking

probability obtained after training the RL algorithm is compared to the other three methods

previously defined: (1) FF-L2H, (2) FF-Center, (3) NN based. This time, illustrated in Fig. 3.19,

RL algorithm is the best performing one, except for the 20 % channel load where FF-L2H is

slightly better. When channel allocation using the RL algorithm is evaluated (Fig. 3.20), results
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(a) 20 % load. (b) 40 % load. (c) 60 % load. (d) 80 % load.

Figure 3.18 – Flexible grid: Channel assignment evolution under RL-algorithm control for
OSNR aware algorithm.

Figure 3.19 – Flexible grid: Blocking probability comparison for BER aware algorithm.

are very similar to the ones shown in Fig. 3.18 for the OSNR aware algorithm, with channels

allocated in the lower part of the spectrum. However, in this case, DP-16-QAM is used almost

exclusively as modulation format for both 100G and 200G requests, contributing to lower

power excursion and spectrum saving.

3.6 Conclusions

In this chapter, impairment aware modulation format and wavelength assignment based on

RL has been demonstrated. To this end, first RWA assignment problem has been presented. Re-

quired to work in transparent/translucent networks, IA-RWA algorithms have been introduced.

In order to consider impairments, QoT estimation based on ML algorithms has become popu-

lar in the last years. As a first part of the work developed in this chapter, for a particular optical

link developed in VPI, QoT models estimating power excursion and classifying wavelengths

in terms of OSNR and BER have been implemented. Although better performance could
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(a) 20 % load. (b) 40 % load.

(c) 60 % load. (d) 80 % load.

Figure 3.20 – Flexible grid: Channel occupation evolution under RL-algorithm control for BER
aware algorithm.

have been obtained by increasing the training dataset size, the significance of optical power

excursion as input feature to the OSNR and BER models has been demonstrated. In a second

part, QoT models have been integrated in an environment receiving dynamic traffic requests

used to train an RL algorithm. After training, the RL algorithm is able to assign modulation

format and wavelength to channel requests, outperforming other heuristic methods in terms

of blocking probability. As an example, for 80 % channel load, blocking probability reduction

of 10 % and 81 % for fixed and flexible frequency grid have been achieved, respectively, with

respect to the best-performing heuristic algorithm used for comparison. Besides performance,

the presented algorithm also contributes to spectrum defragmentation, operating in an in-

stantaneous manner after training. As in Chapter 2, this application can be integrated in an

SDN-based optical network architecture (Fig. 3.21).
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Figure 3.21 – Dynamic modulation format and wavelength assignment in SDN-based optical
network architecture (based on [17]).

116



Part IIColoured optical packet switching in
the N-GREEN project
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4 Experimental characterization of an
SOA-based photonic integrated switch

With the aim of reducing cost and energy consumption, N-GREEN (New Generation of Routers

for Energy Efficient Networks) project, funded by ANR (French National Research Agency), pro-

posed a new node and network architecture based on WDM packet switching [256]. Two main

innovations were introduced in the N-GREEN project: a WDM-slotted add/drop multiplexer

(WSADM) and a ultra-high capacity backplane based on optical switches.

This chapter is focused on the WDM backplane. Operating on aggregated traffic at very high

data rates, the proposed full-protected WDM backplane uses optical switching enabling inter-

nal channel capacities close to 1 Petabit/s, hardly feasible using only electronic technologies.

Including load balancing capabilities, optical switch sizes of 4×4 and 16×16 have been consid-

ered, based on smaller 2×2 switching elements. Fundamental element in the WDM backplane

architecture, a photonic-integrated 2×2 SOA switch has been designed and fabricated at

III-V Lab (France) in the framework of the N-GREEN project. This chapter collects the work

performed on the experimental characterization of the 2×2 switch, in order to determine its

operating range in single channel and WDM configurations. All this experimental work was

done outside Télécom SudParis, in Nokia Bell Labs (project leader), Télécom Paris and III-V

Lab. Part of the experimental measurements were performed by myself whereas some others

were performed in collaboration with the previous mentioned partners.

Section 4.1 provides an overview on optical switching technologies. Section 4.2 describes the

N-GREEN project architecture along with its main innovations including the WDM backplane,

made of 2×2 optical switches, object of this study. Once context has been provided, Section 4.3

reports on the experimental characterization of the 2×2 optical switch.
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4.1 Optical switching overview

Many technologies and architectures have been investigated for optical switching. The sim-

plest optical switching elements are the 1×2 (1 input, 2 outputs) or 2×2 (2 inputs, 2 outputs)

modules. Larger switching matrices M ×N are built by interconnection in cascade of the

previous basic elements. These switching modules may be classified as digital or analog [156].

Digital switching elements have only two positions (on, off). Therefore, a N ×N switching

matrix made of 2×2 digital switching elements requires N 2 switching elements. Benes ar-

chitecture is able to reduce the number of switching elements; however, this architecture

may be blocking [257]. Analogue actuators allow to direct the light in different directions,

reducing the number of switching elements in a N ×N switching matrix to 2N at the expense

of complexity. Besides optical matrices using digital switching elements or analogue actuators,

Clos architecture, also based on smaller switching units, builds a N ×N switch by using three

stages, reducing the number of switching elements [258]. Regarding technologies, several

criteria have been used to classify optical switching elements, being one of the most common,

the physical effect exploited for switching operation [64], [259] which is used in the following:

• Opto-mechanical switching: Using the movement of a fiber or an optical component,

the most common opto-mechanical switches are based on MEMS. Always relying on

movement, some work on diffractive or interference effects [260], although most of

them work directly on the reflective effect modifying light propagation direction. A

typical structure consists of an array of micro-mirrors which movement is activated by

an electrostatic or electromagnetic principle. Usually made of silicon substrate with

a metal coating, micro-mirrors can be fabricated using micromachining technologies

(bulk, surface or combination) [156], allowing to be batch-fabricated [14]. Typical

architectures are: (1) 2D, with signals travelling in a 2D plane (Fig. 4.1a) and MEMS

having only two positions (on, off) and (2) 3D, with signals travelling in a 3D space, with

MEMS rotating in two axes. Although 2D architectures are easier to control, they require

a larger number of micro-mirrors. For a N×N switch, N 2 micro-mirrors are arranged in a

2D structure whereas only N or 2N micro-mirrors are used in a 3D implementation. As a

consequence, although 50×50 2D MEMS optical switches have been demonstrated [261]

only 32×32 are commercially available [262], compared to the 320×320 3D MEMS optical

switches already in the market [263].

• Electro-optic switching: Based on Pockels effect, which varies the refractive index when

a voltage is applied, or carrier injection [156]. The most popular switches in this cate-

gory are the guided wave electro-optic switches (Fig. 4.1b) based on Lithium Niobate

(LiNbO3) substrates, also used for modulators, controlling the switching by deflection or

diffraction. According to the switching curve, output optical power versus voltage, two

types of LiNbO3 switches can be distinguished: (1) digital, switching state can be main-

tained in a voltage range, and (2) interferometric, several values for a switching voltage.

Stability with regard to the drive voltage converts digital in the preferred ones [14]. Maxi-

mum commercial sizes are 8×8 and 1×16 on LiNbO3 [264], [265] and lead lanthanum
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zirconate titanate (PLZT) [266], [267]. LCs based switches can also be included in this

category [259]. Molecular alignment in LCs (state of matter with a rod-like molecular

order intermediate between solids and liquids) can be modified by applying an electric

field, altering optical properties, as polarization and birefringence. Polarization-based

LC switches (Fig. 4.1c) require additional components, as polarization splitters and

combiners, making polarization dependent loss a critical issue. Birefringence-based LC

switches are usually referred as refractive-index-based LC switches, where switching

is performed by transmission or total reflection driven by the refractive index changes

in the LC cells. Compact architectures can be obtained with LCoS technology used for

WSSs, commercially available [268].

• Acousto-optic switching: Waveguide switching category exploiting refractive index

modulation by acoustic waves operating on beam deflection or collinear mode conver-

sion [64]. As in electro-optic switches, LiNbO3 is most popular material used for this

type of switches. Acousto-optic Q-switches for lasers are available in the market [269].

• Thermo-optic switching: This waveguide based category utilizes temperature depen-

dence of the refractive index in materials as polymers [14]. Similar to electro-optic

switches, thermo-optic switches can be built as digital switches, based on mode cou-

pling or interferometric structures. Thermo-optic switches up to 16× 16 ports are

commercially available [270].

• Magneto-optic switching: Type under investigation, magneto-optic switches are based

on Faraday effect. Advances in magneto-optic materials as bismuth-substituted iron

garnets and orthoferrites have increased the interest in this type of technology [259].

Maximum commercial sizes up to 16×16 are available [271].

• Switching based on nonlinear effects: Due to Kerr effect, changes in the refractive index

of a material occur in response to applied electric fields [259]. As the light propagates, it

undergoes a phase shift due to the refractive index change produced in the interaction

with the optical nonlinear medium (fibers and SOAs). Switching can be performed by

using an optical gate at the output of the medium. Some types of nonlinear effects based

switches include: nonlinear optical mirrors, Mach–Zehnder interferometers, ultrafast

nonlinear interferometers and non-interferometric-based switches.

• Amplifier based switching: Although fiber based amplifiers can be used, SOAs are the

preferred option. SOA structure (Appendix C), similar to a laser one, includes an active

region in between n-type and p-type cladding layers. Amplification is produced by

stimulated emission when the light passes through the active region. In order to use

SOAs for switching purposes, working as gates, control can be performed electrically

or optically. The electrical control is based on bias current, operating the SOA in the

linear regime (Fig. 4.1d). On the contrary, using optical control the SOA is operated in

the nonlinear regime by injecting auxiliary light beams. Two types of nonlinear effects

can be considered: new frequency components generation (FWM) and alteration of a
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(a) Schematic of 2-D MEMS optical switch [273]. (b) Schematic of a 2×2 electro-optic switch [259].

(c) Structure of 1 × 2 LC optical switch [14]. (d) SOA broadcast and select switch architecture [259].

Figure 4.1 – Optical switching technologies: (a) Schematic of 2-D MEMS optical switch [273],
(b) Schematic of a 2×2 electro-optic switch [259] (c) Structure of 1×2 LC optical switch [14]
and (d) SOA broadcast and select switch architecture [259].

property as (polarization, phase or amplitude). An element sensitive to the modified

property produces the switching (polarization beam splitter, SOA interferometer, AWG).

SOAs targeting switching applications, working as ON/OFF gates, are commercially

available with very high switching speed < 1 ns [272].

Table 4.1 [14] shows a comparison of most popular commercial optical switch technologies

based on several aspects: switching speed, insertion loss, power efficiency, scalability, reliabil-

ity, implementation cost and application. MEMS based switches are characterized by a low

switching speed; suitable for circuit switching, they are inadequate for packet switching. LC

switches, also with low switching speed, offer high power efficiency but with a lower scalability,

being appropriate ROADMs or WSSs. Thermo-optic switches present a higher power con-

sumption but also a high reliability, making them adequate for protection switching. Finally,
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MEMs LC Electro- SOA Thermo-
(LCoS) optic optic

Switching speed 10−20 ms 100 ms ˜ ns ˜ ns 5−10 ms
Insertion loss Medium High High Low Low
Power efficiency Medium High High Low Low
Scalability Large Medium Medium Medium Small

320×320 1×20 32×32 16×16 8×8
Reliability Low High High Medium High
Implementation cost Medium Low High High Low
Application OCS, WSS ROADM, OPS, OPS, Protection

protection optical WSS switching
switching, modulators
WSS

Table 4.1 – Comparison of commercial optical switching technologies [14].

electro-optic and SOA based switches with high switching speed are the best candidates for

packet switching although limited in scalability. SOA based switches have been the option

selected in the N-GREEN project, introduced in Section 4.2.

4.1.1 Future optical interconnections

Typical interconnections at data centers are still based on cascade of electrical switches. This

architecture produces difficulties [14]: (1) inefficiencies in terms of latency, throughput and

power consumption, (2) limits in the transmitted data rate imposed by the ratio of the length of

the electrical interconnection to the total cross-sectional dimension
p

(A) of the interconnect

wiring [274], meaning that the transmission distance limit for 25 Gb/s for a typical electrical

interconnect is less than 1 cm [14], (3) inability to reconfigure in order to absorb traffic peaks.

On the one hand, SDN for reconfiguration is being considered as potential candidate to solve

reconfigurability limitations. On the other hand, as investigated in several works [275]–[277],

optical interconnections appear to be a suitable choice to lower energy consumption, outper-

forming electrical interconnects also in transmission length and offered bandwidth. However,

the lack of optical RAM limits its application. Hybrid solutions making use of photonics and

electronics appear to be the optimal successors of electrical interconnects [278], [279], with

optical-electrical printed circuit boards [280] connected to optical-electrical-backplanes, and

reconfigurable optical switches as a key technology [281].

4.2 N-GREEN project

Funded by ANR (French National Research Agency), N-GREEN project started in 2016 for a

3-year duration. Partners contributing to N-GREEN project were: Nokia Bell Labs (project
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Figure 4.2 – Scheme of the POADM [284].

leader), Télécom SudParis, Télécom Paris, IMT Atlantique, Université de Versailles and III-V

Lab, all of them in France.

Some of the N-GREEN predecessors were the European project DAVID and the ECOFRAME

project. European project DAVID considered the usage of out-band headers (in a separeted

channel) for the metro ring and in-band for the backbone [282], as synchronization between

header and payload channels is simpler in ring networks. Used in N-GREEN project, out-band

labels allow to separate control and switching planes.

Similar to DAVID project, out-band labels have also been utilized in the ECOFRAME project in

a metro-ring architecture based on optical slot switching technology [283]–[285]. Considering

a slotted ring with 10 µs timeslot, the packet optical add/drop multiplexer (POADM) (Fig. 4.2),

precursor of the N-GREEN concept which will be shown afterwards, used optical gates based

on SOAs in order to let pass or block optical packets at sub-wavelength granularity. Combiners

and splitters were available to add and drop the packets, requiring a tuneable transceiver for

adding or dropping a packet at any available wavelength.

To cut down the cost and the energy consumption, N-GREEN project came up with the idea of

a new network architecture and node design, based on WDM packet switching [256]. A WDM

packet, also called coloured optical packet, as introduced in [286], is formed by the aggregation

of data units (e.g. Ethernet frames) in a container, which is afterwards distributed in several

wavelengths. As exposed in [287], this strategy presents several benefits as reductions in cost

and power consumption by exploiting optical integration using WDM transceivers. Two main

innovations were introduced in the project:

• WSADM: Based on a POADM structure, as a novelty, it operates on WDM packets.

Each WDM packet occupies one timeslot, composed by 10 times 1 µs timeslot over

10 wavelengths.

• Ultra-High Capacity WDM Backplane: Working on WDM packets and based on optical

switching, the WDM backplane proposed in N-GREEN is able to offer internal channel
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Figure 4.3 – Scheme of the WSADM [256].

capacities close to 1 Petabit/s.

4.2.1 WSADM

At each optical timeslot, the WSADM manages the WDM packet stream offering several

possibilities: (1) drop and erase, (2) drop and continue and (3) drop and add. Figure 4.3

shows its general structure. N-GREEN project considers an out-band labeling approach, with

a dedicated control channel in a separate wavelength. As a first step, an optical coupler at

the WSADM input establishes a second path dedicated to the control channel recovery and

header processing tasks. To do this, first, the control channel is selected in the optical domain

rejecting any other wavelengths. After O/E conversion, synchronization and data recovery, the

header is ready to be processed. Depending on the information extracted from the header,

a control board (not included in the figure), configures the WSADM’s elements in order to

execute one of previous functionalities (drop and erase, drop and continue or drop and add).

Coming back to the main optical path in Fig. 4.3, header processing time is absorbed by an FDL

connected to the optical coupler’s output. In order to operate at waveband level, a waveband

demultiplexer is used with each output connected to an SOA acting as optical gate. Depending

on the previously extracted header information, the SOA is configured to block or let pass

(optical bypass) the WDM packet. For the dropping functionality in each subband, before

the optical gate, a splitter directs the WDM packets to the receivers. In a similar way, for the

adding functionality, a combiner allows to inject WDM packets generated at the transmitters.

Finally, subbands are multiplexed and the control channel is reinserted by means of an optical

coupler.

Note that in order to build the WDM packets, a buffer has to previously store the packets

coming from the line cards. A shift register is then used to convert the 10 µs series data into

parallel data in 10 wavelengths by 1 µs.

By exploiting WDM, reducing the frequency in the electrical interfaces, a simpler and less

power-consuming node is proposed in N-GREEN. Also, relying on a simpler node architecture

(e.g. using one SOA per waveband instead of one SOA per wavelength) cost is cut down.
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Figure 4.4 – Scheme of the WDM backplane [287].

4.2.2 Ultra-High Capacity WDM backplane

A hybrid switch fabric is proposed in the N-GREEN project in order to reduce the energy

consumption compared to the traditional electrical backplane included in switch routers.

Similar to the WSADM, data aggregation in slots of 10 µs is the first step. However, the back-

plane manages higher data rates than the WSADM, slots of 10 µs at 1 Tb/s are considered.

WDM packets are built using a shift register to redistribute the data over 10 buffers, corre-

sponding to the 10 wavelengths. Contention resolution is addressed by the buffer usage.

As illustrated in Fig. 4.4, when the control board acting as scheduler, triggers a WDM packet

dispatch, the WDM packet is sent to a first stage 1+1 4×4 WDM switch used for load balancing,

including protection in case of failure. In the next step, the WDM packet is routed to one of

the 3 16×16 optical switches available in parallel, keeping a load of 33.33 % in each of three

switches. With this scheme, in case of failure of one of the switches, traffic is routed using the

other 2, guaranteeing the protection. Finally, WDM packets are stored again in buffers in order

to retrieve the 10 µs slot which is processed at the client.

4.2.3 Network scenarios

N-GREEN project considers two main network scenarios: metro and core network. At the

metro network, a bidirectional ring topology, working in a timeslot basis is considered. As in-

dicated before, each timeslot of 1 µs carries one WDM packet distributed over 10 wavelengths.

Slot assignment is communicated in the dedicated control channel. Two types of nodes are

available in the metro network:
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SOA Input Output

SOA-1 2 1
SOA-2 1 1
SOA-3 1 2
SOA-4 2 2

Table 4.2 – Switch correspondence among SOA, input and output.

• The metro node belongs only to the ring. The main building block is the WSADM,

duplicated in each direction of the double ring in order to protect the network in the

event of a fiber cut. Apart from the WSADM, a control board and data board centralizing

the add and drop traffic are part of the metro node.

• The edge node belongs to the metro and core networks. It terminates the traffic from

the ring, avoiding resonances. Besides, it aggregates packets from the metro network at

10 Gb/s per wavelength to the core network at 100 Gb/s per wavelength.

At the core network, the network topology can be a ring, an interconnection of rings or a

mesh topology. The N-GREEN core node is able to switch between different buses. At the

node, a data board aggregates the traffic at 1 Tb/s, creating WDM packets at 10 Tb/s (1 Tb/s

on 10 wavelengths). This traffic is switched at the hybrid backplane, with a total internal

switching capacity of 16×10 Tb/s×3×2 = 960 Tb/s, nearly 1 Petabit/s.

4.3 Experimental characterization of the 2 x 2 N-GREEN switch

The optical switch is the key element in the proposed WDM backplane. The 4×4 and 16×16

optical switches are composed by smaller 2×2 switching elements, as the photonic-integrated

2×2 SOA switch fabricated at III-V Lab (France) in the framework of the N-GREEN project

(Fig. 4.5a). Reference element, the section is focused on its experimental characterization.

The scheme of the 2×2 SOA switch is shown in Fig. 4.5b. Each of the two inputs (Input-1 and

Input-2 in Fig. 4.5b) is connected to a 3-dB coupler in order to create the two possible paths to

the two possible outputs. The switching functionality, forwarding (optical bypass) or blocking

packets, is performed by 4 SOAs acting as optical gates. Signal coming out from the 4 SOAs are

combined in the two available outputs (Output-1 and Output-2 in Fig. 4.5b). Table 4.2 shows

the correspondence among SOA, input and output according to the Fig. 4.5b.

Experimental characterization presented here considered different aspects: static and dy-

namic. Dynamic characterization includes two distinctive scenarios: (1) continuous mode

at 128 Gb/s DP-QPSK, (2) packet mode at ∼ 10 Gb/s OOK. Results are presented in the next

paragraphs.
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(a) Integrated 2×2 switch. (b) Scheme of the 2×2 switch.

Figure 4.5 – Image (a) and scheme (b) of the 2×2 switch.

Figure 4.6 – Output power for different bias current.

4.3.1 Static characterization

Without injecting an input signal, only connecting the power meter to the output of the switch,

the ASE noise power was measured for different bias currents. Results are shown in Fig. 4.6.

SOA comparison

A static characterization of the switch’s fiber-to-fiber gain G = Pout /Pi n at different input

optical power (Pi n) values was performed for each SOA by injecting a continuous-wave laser

at λ0 = 1542 nm. A VOA and a polarization controller (PC) were used to respectively adjust the

power and polarization of the input signal. The output power was measured using an OSA.

Results are shown in Fig. 4.7a. As can be seen, in the small signal region, the switch presents a

maximum fiber-to-fiber gain, including the internal switch coupling losses, between 0 and

−2 dB depending on the given SOA. The gain saturation occurs for an input power between

−3 dBm and 0 dBm for all the SOAs in the 2×2 switch. Above this level, in the saturation

region, the gain decreases sharply.
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(a) Fiber-to-fiber gain with respect to
input power.

(b) NF with respect to input power.(c) Fiber-to-fiber gain with respect to
bias current.

Figure 4.7 – Static Characterization - SOA comparison: (a) Fiber-to-fiber gain with respect to
input power, (b) NF with respect to input power and (c) Fiber-to-fiber gain with respect to bias
current.

The corresponding NF, illustrated in Fig. 4.7b, was calculated based on optical source-substraction

method [288]. According to it, NF is calculated using:

N F =
P ASE

GhvB0
+ 1

G
− PSSE

GhvB0
, (4.1)

where:

• v : Signal frequency.

• G : Gain at the signal frequency v , previously measured.

• P ASE : Noise spectral density, out-band measure.

• PSSE : Source spontaneous spectral density, measured during calibration, bypassing the

switch.

• B0: bandwidth resolution OSA.

Using the same setup, but fixing the input power to −25 dBm, Fig. 4.7c shows the fiber-to-fiber

gain measured at different bias currents. For low bias current, the injected signal is absorbed

and there is no amplification. However, above the transparency current, the injected signal

produces stimulated emission being therefore amplified.

As the performance of the 4 SOAs is comparable, only one SOA is used in the subsequent

experimental work.

Wavelength dependency

The same measurements described previously were repeated in order to compare fiber-to-

fiber gain and NF for two different wavelengths λ0 = 1542 nm and λ0 = 1550 nm. From these
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(a) Fiber-to-fiber gain with respect to
input power.

(b) NF with respect to input power.(c) Fiber-to-fiber gain with respect to
bias current.

Figure 4.8 – Static Characterization - Wavelength comparison: (a) Fiber-to-fiber gain with
respect to input power, (b) NF with respect to input power and (c) Fiber-to-fiber gain with
respect to bias current.

(a) Fiber-to-fiber gain with respect to
input power.

(b) NF with respect to input power.(c) Fiber-to-fiber gain with respect to
bias current.

Figure 4.9 – Static Characterization - Polarization comparison: (a) Fiber-to-fiber gain with
respect to input power, (b) NF with respect to input power and (c) Fiber-to-fiber gain with
respect to bias current.

results shown in Fig. 4.8, one can see that the behavior for these two wavelengths is quite

close.

Polarization dependency

Polarization dependency, critical parameter in SOAs, was assessed repeating the measure-

ments for two different input signal polarizations: optimum polarization in order to achieve

maximum output power, and worst-case polarization minimizing the output power. Re-

sults in Fig. 4.9 illustrates how critical it is the polarization, which is always optimized in the

measurements performed for the dynamic characterization in the next section.

4.3.2 Dynamic characterization

Dynamic characterization was carried out in two different testbeds:
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Figure 4.10 – Setup continuous mode single ch. at 128 Gb/s DP-QPSK (Télécom Paris). In the
figure: arbitrary waveform generator (AWG), dual polarization-Mach Zehnder modulator (DP-
MZM), IQ modulator (IQ mod.), laser diode (LD), optical spectrum analyzer (OSA), polarization
division multiplexer emulator (PDME), polarization controller (PC), receiver (RX).

• Continuous mode at 128 Gb/s DP-QPSK (Télécom Paris).

• Packet mode at ∼ 10 Gb/s OOK (Nokia Bell Labs).

Considering the switch use-case scenario is as part of the backplane, an optimal testbed would

consider packet switching mode at high data rate. Two scenarios were examined: one oriented

towards high data rate and the other towards packet mode. Detailed information is provided

in the next paragraphs. During the measurements polarization adjustment was crucial. Note

that crosstalk in SOAs is not critical 1.

Continuous mode at 128 Gb/s DP-QPSK

Figure 4.10 illustrates a scheme of the setup used for the switch dynamic characterization.

The signal, 64 Gb/s QPSK, is generated in Matlab and downloaded to the arbitrary waveform

generator (AWG in Fig. 4.10) with a sampling rate of 32 Gsamples/s. Inside the IQ-modulator

(IQ mod.), this signal drives a dual polarization-Mach Zehnder modulator (DP-MZM), which

output is amplified by an EDFA. Using a polarization division multiplexer emulator (PDME),

a DP-QPSK signal of 128 Gb/s is generated with the polarization adjusted using a PC. After

the IQ-modulator, an optical attenuator and a PC allowed to control the input power and

polarization of the optical input signal to the switch. The switch output is filtered and amplified

before reaching an optical coupler which sends 10% of the received signal to an OSA and

the other 90% to a coherent receiver after adjusting the polarization and controlling the

power using, respectively, a PC and a VOA. Finally, the signal is captured by a digital sampling

oscilloscope (DSO) of 64 Gsamples/s. After the signal is captured by the DSO, offline digital

signal processing (frequency offset estimation, channel equalizer, phase offset estimation)

is carried out in Matlab. Note that to avoid frequency offset at the receiver, the same laser

source, after controlling its polarization, being amplified and linearly polarized, is used as

local oscillator at the receiver.

1With Mach–Zehnder interferometers, we are closer to 15 dB (in dynamic range) than 45 dB. With SOAs the
crosstalk is not critical.
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(a) BER for different input powers. (b) EVM for different input powers.

Figure 4.11 – Dynamic Characterization continuous mode, single ch. 128 Gb/s DP-QPSK: (a)
BER, (b) EVM with respect to input power.

Bias Current Optimum Channel Input Power EVM BER
(mA) (dBm) (%)

110 -7.93 15.99 1.4×10−10

120 -8.89 17.01 1.48×10−9

130 -6.94 16.28 2.89×10−10

Table 4.3 – Dynamic Characterization continuous mode, single ch. 128 Gb/s DP-QPSK: Sum-
mary.

For different input powers, EVM was measured, and BER estimated from the EVM measure-

ments [289]. Measurements were done for 3 different bias currents: 110, 120 and 130 mA.

Figures 4.11a and 4.11b show the obtained results. For low input powers the performance is

limited by the noise. As the power increases, the BER (EVM) decreases, until an optimum value

is reached. For larger powers, performance starts deteriorating, due to gain saturation. Similar

results were obtained for the three different bias currents considered. Table 4.3 summarises

the optimum input powers for each of the three bias currents. Considering a BER threshold of

10−9, error free transmission can be achieved.

Received constellations for three different input powers, measured during the characterization

(Fig. 4.11), −17.88, −6.94, and 1.04 dBm, using the 110 mA bias current are plotted in Fig. 4.12.

The first constellation (Fig. 4.12a) with the lowest of the input powers (−17.88 dBm) is noisy,

showing a symmetrical broadening of the constellation symbols, suffering from a low OSNR.

For a higher input power (Fig. 4.12b), the constellation is less noisy, having a higher quality.

However, for even higher input power (Fig. 4.12c), entering the saturation regime, constellation

points are rotated due to the refractive index change in the SOA producing a nonlinear phase

change [290].

After the single channel measurements, the next step was WDM, closer to the use case for
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(a) Input power −17.88 dBm. (b) Input power −6.94 dBm. (c) Input power 1.04 dBm.

Figure 4.12 – Dynamic Characterization continuous mode, single ch. 128 Gb/s DP-QPSK:
Constellations.

Figure 4.13 – Setup continuous mode WDM 128 Gbps DP-QPSK (Télécom Paris). In the figure:
arbitrary waveform generator (AWG), IQ modulator (IQ mod.), laser diode (LD), multiplexer
(MUX), optical spectrum analyzer (OSA), polarization controller (PC), receiver (RX).

which the switch was designed. The setup is shown in Fig. 4.13. Compared to the single

channel setup in Fig. 4.10), few modifications were introduced:

• Seven laser signals are multiplexed with the optical modulated signal. The wavelength

of the modulated signal was 1542 nm. Using a non-uniform frequency spacing, all

8 wavelengths are indicated in Table 4.4.

• An optical band pass filter is included before the receiver to select the modulated signal.

As for the single channel case presented before, BER and EVM were measured for different

input power values, also considering the same three bias currents (110, 120, 130 mA). Results
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λ1 (nm) λ2 (nm) λ3 (nm) λ4 (nm) λ5 (nm) λ6 (nm) λ7 (nm) λ8 (nm)

1539.371 1540.953 1541.746 1542.0 1542.539 1543.333 1544.128 1544.924

Table 4.4 – Dynamic Characterization continuous mode, WDM 128 Gb/s DP-QPSK: Wave-
lengths.

(a) BER for different input powers. (b) EVM for different input powers.

Figure 4.14 – Dynamic Characterization continuous mode, WDM 128 Gb/s DP-QPSK: (a) BER,
(b) EVM with respect to input power.

are shown in Fig. 4.14. Although the behaviour is the same, with performance limited at

low powers by the noise and at high powers for gain saturation, in this case, the optimum

powers are slightly lower (Table 4.5) due to nonlinearities. Contrarily to the single channel

case, the BER threshold of 10−9 could not be achieved in the WDM scenario, suggesting that

FEC techniques are needed.

Packet mode at 10 Gb/s DP-QPSK

In a different testbed at Nokia Bell Labs, a separate dynamic characterization of the switch

was performed, this time in a packet transmission mode [13]. Again two different scenarios

were considered: single channel and WDM.

Setup for single channel case is illustrated in Fig. 4.15. Data at 9.95328 Gb/s using NRZ-

Bias Current Optimum Input Power EVM BER
(mA) (dBm) (%)

110 -9.42 20.86 5.8×10−7

120 -9.42 21.13 7.88×10−7

130 -9.42 22.41 2.87×10−6

Table 4.5 – Dynamic Characterization continuous mode, WDM 128 Gb/s DP-QPSK: Summary.
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Figure 4.15 – Setup packet mode single ch. at 10 Gb/s (Nokia Bell Labs, France). In the figure:
burst mode receiver (BMRx), integrated laser modulator (ILM), polarization controller (PC),
power meter (PM).

Data rate 9.95328 Gb/s
Modulation NRZ-OOK
Frame format 8 slots of 10240 bits
Preamble format Two 12.8 ns clock patterns and

one pattern of 1’s between the two clocks
Guard band format Series of 0’s of 20 ns
ILM Maximum optical power 3 dBm
ILM extinction ratio 10.5 dB

Table 4.6 – Parameters for packetized data.

OOK (PRBS-27 −1) modulates an integrated laser modulator (ILM) at λ0 = 1549.3 nm. After

amplification and filtering, the signal polarization is optimized (PC) to obtain maximum

output optical power out of the switch. Then, a VOA allows to control the input power injected

in the switch, passing through SOA-3 (Fig: 4.5b). The output of the switch is connected to a

band-pass filter centered at λ0 removing the ASE noise introduced by the amplifiers. Another

VOA varies the received power Pr x (at PM2) at the BMRx [291]. The BMRx has a clock recovery

time of < 4 ns, fast-power-dynamic-range of 5 dB and sensitivity of −17 dBm at BER of 10−9.

Finally, the BER is measured with a BER analyzer on the payload of the optical slots. Some

more detailed parameters can be found in Table 4.6.

In the WDM case, shown in Fig. 4.16, the channel at λ0 is coupled with multiple channels

(λ1 −λ8 in Table 4.7) which are separated by 0.8 nm and injected at 1.2 dBm optical power

per channel. Similar as before, the switch launched optical power Pi n is varied using the VOA.

For each Pi n , the PC is adjusted maximizing switch output optical power. The received power

Pr x at the BMRx (at PM2) is modified with the VOA. Again, the BER is measured with a BER

analyzer on the payload of the optical slots.

For both scenarios (single channel and WDM), in a first set of measurements, a series of input

λ1 (nm) λ2 (nm) λ3 (nm) λ4 (nm) λ5 (nm) λ6 (nm) λ7 (nm) λ8 (nm)

1546.12 1547.72 1548.51 1550.92 1551.72 1552.52 1554.13 1554.94

Table 4.7 – WDM wavelengths used for dynamic characterization.
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Figure 4.16 – Setup packet mode WDM at 10 Gb/s (Nokia Bell Labs, France). In the figure:
burst mode receiver (BMRx), integrated laser modulator (ILM), laser diode (LD), modulator
(mod.), multiplexer (MUX), polarization controller (PC), power meter (PM).

Figure 4.17 – Dynamic characterization: Pr x vs. Pi n at a BER of 10−9 for single and WDM cases.

powers Pi n was evaluated. For each input power, the received power Pr x was adjusted in order

to keep the BER fixed at 10−9. Results are illustrated in Fig. 4.17. The measured input power

dynamic range (IPDR), defined as the range of Pi n for which Pr x remains constant within a

penalty of 2 dB, is 16 dB for the single channel case. In the WDM scenario, due to the presence

of nonlinear effects [292], the IPDR is reduced to 10 dB, still allowing a sufficient operation

range.

In a second set of measurements, while the input power Pi n was kept constant, the Pr x was

varied and the BER measured at the BER analyzer. Figure 4.18 shows the measured BER vs.

Pr x obtained in this process, repeated for several input power values in the single channel

and WDM scenarios. The B2B curve, measured bypassing the switch for λ0, is also plotted for

reference at Pi n = 0 dBm. For the single channel scenario, BER of 10−9 could be achieved with

a power penalty below 1.2 dB in comparison to the B2B reference measurement. For WDM,

the power penalty increases, moderately, to 2.8 dB at Pi n = 0 dBm, 3.7 dB at Pi n = 2 dBm and

4.04 dB at Pi n = 4 dBm. When compared to the single channel scenario, also larger differences

between curves can be observed due to the nonlinear effects produced (on the main channel

λ0) from other channels.
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Figure 4.18 – Dynamic characterization: BER vs. Pr x at different Pi n for B2B, single channel
and WDM cases.

4.4 Conclusions

At the optical layer, evolution from circuit switching to packet switching offers the possibility

to more efficiently use the spectrum resources. Since all-optical packet switching presents still

some unsolved issues, as optical buffering, hybrid optical-electrical approaches appear to be

the medium-term solutions exploiting the capabilities in both domains. In this context, N-

GREEN project proposed a new network architecture based on WDM packets. The validation

of the proposed energy-efficient node together with its adoption for a Nokia product are the

major outcomes of the project.

More in detail, N-GREEN project included two main innovations: a WSADM and a WDM

backplane based on optical switching, which has been the main subject in this chapter. This

hybrid WDM backplane with a total switch capacity of 1 Pb/s, achieved thanks to the use of 4×4

and 16×16 optical switches is made of smaller 2×2 switching elements. To this end, developed

and fabricated in the N-GREEN project, a 2×2 SOA-based photonic integrated switch was

experimentally characterized. Through its experimental characterization, its capability to

work on large IPDR has been demonstrated, for both single channel and WDM scenarios.

Penalties introduced by nonlinearities when operating in WDM configuration are tolerable.

These promising capabilities, large IPDR and possibility to work at high data rates by including

FEC, allow to envisage a 16×16 switch configuration based on a cascade of 7 2×2 switches

using a Benes architecture.
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Apart from exploiting physical dimensions, in order to cope with the traffic requirements,

optical networks will improve in dynamism and flexibility. Under these conditions, network

management will become more complex requiring to control several aspects at the physical

layer. Including ML techniques in SDN controllers allows to improve network performance.

In the first part of this PhD thesis, we have investigated different approaches contributing to

engineer autonomous optical networks based on ML techniques. Furthermore, in order to

reduce energy consumption, optical networks are evolving towards transparency, keeping

OCS as fundamental mode. As an alternative, photonics community has investigated OPS

to increase network utilization. In the second part of the PhD thesis, we have examined this

possibility in the context of the N-GREEN project, through the experimental characterization

of a 2×2 switch.

Three main contributions can be distinguished:

First contribution has addressed optical amplifier control in order to mitigate optical power

excursion due to wavelength dependent gain in optical amplifiers. Although commercial

amplifier modules consider complex architectures, with several amplifier stages and gain

flattening filters, optical power excursion is still a matter of concern: working well under static

traffic conditions, optical power excursion become again visible under dynamic operating

conditions (adding/dropping channels), changing the amplifier operating point for which

the gain flattening filter is not optimized. Difficult to predict, as it directly depends on the

physical amplifier characteristics, ML techniques have been started to be also applied in this

particular field. In this thesis, optical power excursion prediction using NNs for an EDFA under

dynamic traffic operation has been demonstrated, which may be useful in an RWA process.

Although convenient to alleviate the undesirable effects optical power excursion produces

in WDM systems, prediction does not solve the optical power excursion problem. To this

aim, power precompensation based on RL has also been investigated reducing the optical

power excursion at the output of an optical link, comprising several spans. As advantages with

respect to other techniques, the presented RL algorithm, once trained, is able to operate in an

autonomous way providing a fast response.
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Second contribution has been focused towards QoT estimation. With PLIs accumulating along

the lightpath, IA-RWA must be used in order to guarantee QoT, especially when transparent or

translucent optical networks are considered. In order to optimize the assignment process, IA-

RWA methods require knowledge about PLIs or QoT estimation. Taking into account analytical

models are usually time consuming, ML techniques appear to be promising in order to solve

both problems: QoT estimation and wavelength assignment, by utilizing the available data

coming from optical monitoring. In the work presented here, first, QoT estimation has been

performed based on NNs. Obtained estimations have been afterwards used as environment

for an RL algorithm with the aim of performing impairment aware modulation format and

wavelength assignment reducing blocking probability, while working in an autonomous

manner and offering fast execution.

Third contribution have studied the technology required to be available for a future generation

of optical networks considering OPS. Part of N-GREEN project, which proposed a new node

design and architecture, the work presented here targeted one of its two main innovations: an

ultra-high capacity WDM backplane based on optical switching. Fundamental component in

the WDM backplane are the 16×16 and 4×4 switches, composed by smaller 2×2 switches.

In the N-GREEN framework, a 2×2 SOA switch has been developed and fabricated in III-V

Lab (France). Together with other two partners in the N-GREEN project, Nokia Bell Labs

(project leader) and Télécom Paris, the experimental characterization of a 2×2 optical switch

has been performed. After analyzing the experimental results, its large IPDR and capacity to

work with high data rate signals have been demonstrated, opening the door to more complex

architectures required for the backplane, as the 16×16 and 4×4 switches.

In more detail, the contributions by chapter are described in the following:

• Chapter 1 serves as general introduction to optical network and node evolution. The role

of ML techniques in SDN has been also discussed. In the framework of the N-GREEN

project, possible adoption of OPS has been studied.

• Chapter 2 deals with optical power excursion introduced by optical amplifiers. First,

a global overview on ML techniques is given, summarizing the most common ML

methods, with NNs and RL being extensively used in this work. After introducing optical

power excursion problematic, two main approaches have been proposed to handle

this issue. The first one relies on predicting power excursion by using NNs. Knowing

power excursion values in advance allows to allocate channels in an appropriate way,

facilitating the wavelength assignment process. The second one uses RL techniques

in order to pre-adjust input channel powers reducing the optical power excursion at

the output of an optical link containing several spans. Three main aspects have been

studied:

– Algorithms: Several well-known RL algorithms (A2C, DDPG, TRPO and PPO) have

been compared in terms of performance and training time on our developed

environment.
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– Environment complexity: Different channel load configurations have been studied,

with different number of active channels, allowing again to compare the achieved

performance.

– Adaptability of the develop approach to be used in a real setup: Although previous

work has been based on synthetic data, amplifier models have made used of

the experimental characterization of a real double-stage amplifier, work done

in collaboration with Network Technology Lab, École de technologie supérieure

(Canada). Proof of concept of the RL predistortion technique (based on synthetic

data) on an experimental setup, also in collaboration with Network Technology Lab,

École de technologie supérieure (Canada), using the experimentally characterized

amplifier has been evaluated.

As a result, DDPG and PPO have been found as the best performing algorithms in our

particular case, both of them performing well for the different channel configurations

reducing the mean optical power excursion to 0.5 dB. Although OSNR and BER have not

been considered, an improvement of the QoT when RL predistortion is used has been

demonstrated. Regarding the proof of concept on an experimental testbed, promising

results have been found, with a reduction of the power deviation at the output of the

link.

• Chapter 3 examines QoT estimation and RWA problems. First, a QoT estimation tool

based on NNs including optical power excursion as input feature has been proposed,

demonstrating to improve the achieved accuracy. Then, the QoT estimation models

have been integrated into an environment used for training of an RL algorithm able to

implement impairment aware wavelength and modulation assignment in a mixed line

rate optical link (100G-DP-QPSK, 100G-DP-16QAM and 200G-DP-16QAM). Compared

to different heuristic techniques, the proposed approach reduces blocking probability.

It takes advantage of wavelength conversion capabilities, rearranging the spectrum

every time a channel is dropped, indirectly performing spectrum defragmentation. Two

scenarios have been studied:

– Fixed grid: In this scenario, the RL algorithm decides to assign most of the 100G

and 200G traffic demands to DP-QPSK and DP-16-QAM, respectively, making use

of the lower frequencies in the band, due to the amplifier characteristics.

– Flexible grid: the RL algorithm allocates again most of the traffic to the lower

frequency slots in the band (due to the amplifier characteristics). However, it

decides to assign both 100G and 200G traffic demands to DP-16-QAM, which

occupies less frequency slots, saving spectrum resources.

• Chapter 4 tackles OPS, which could become a reality in the long-term. In this context,

a 2×2 optical switch based on SOAs, developed by III-V Lab in the N-GREEN project

framework, has been experimentally characterized in two different testbeds: continuous

mode (Télécom Paris) and packet mode (Nokia Bell Labs). From the obtained results, in
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single mode and WDM operation, the optical switch presents a large IPDR and capacity

to work at high data rates, being a suitable option for the backplane once integrated in a

larger switch (16×16, 4×4).

Multiple research lines are open from this point:

• For the RL power precompensation approach:

– Direct training of the RL algorithm in an experimental testbed.

– Generation of a new environment model trained on a large dataset from experi-

mental measurements.

– Implementation of more complex amplifier models.

– Launch power optimization to improve QoT, e.g. by OSNR flattening together with

the optical power excursion reduction.

• For the RL impairment aware wavelength and modulation format assignment approach:

– Consideration of ROADM filtering penalties.

– More complex scenarios, including routing capabilities and/or mixed grid net-

works (fixed and flexible node grid combination).
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A Neural networks

To complete the overview in Section 2.1, a more detailed description about feedforward

network operation is presented [85], revealing how, after the NN has been trained, outputs are

estimated by forward propagation of data from input to output. Considering the structure in

Fig. 2.4, with D inputs x1, x2, ...xD and a first hidden layer with M neurons, the first step is to

calculate M linear combinations corresponding to the M nodes using the coefficients w j
(1)

(estimated during training) for the first hidden layer (superscript (1) specifying the hidden

layer number 1):

a j =
D∑

i =1
w (1)

j i xi +w (1)
j 0 . (A.1)

Using common nomenclature, w (1)
j i are referred as weights, w (1)

j 0 as biases and a j as activations.

At each neuron, an output z j is calculated by applying a nonlinear activation function h(·) on

the inputs:

z j = h(a j ). (A.2)

This process of linear combinations followed by nonlinear transformations is repeated for

each layer, e.g. for a hidden layer 2:

ak =
M∑
j =1

w (2)
k j z j +w (2)

k0 , (A.3)

zk = h(ak ), (A.4)

until reaching the output layer. Coming back to the structure in Fig.2.4, a 1 hidden layer NN
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and assuming sigmoid function activation σ(·) in the output layer, the output is given by:

yk (x , w ) =σ

(
M∑
j =1

w (2)
k j h

(
D∑

i =1
w (1)

j i xi +w (1)
j 0

)
+w (2)

k0

)
. (A.5)

Instead of defining weights and biases separately, another common used nomenclature,

includes an additional input x0 which value is always 1, hence eq. A.1 and eq. A.5 are rewritten

as:

a j =
D∑

i =0
w (1)

j i xi , (A.6)

yk (x , w ) =σ

(
M∑
j =0

w (2)
k j h

(
D∑

i =0
w (1)

j i xi

))
. (A.7)

Once the operation is explained, the challenge is how to perform the training, in order to

get to know the weights. The idea behind NN training is to minimize a cost function (error

function) by using stochastic gradient descent. Defining t = t1, t2, ..., tN as the N target vectors

associated to the X = x1, x2, . . . , x N independent inputs included in the training dataset and

assuming they follow a Gaussian distribution with β being the precision of the Gaussian noise,

the error function E(w ) to minimize is given by [85]:

E(w ) =
1

2

N∑
n=1

{
y(xn , w )− tn

}2. (A.8)

Therefore, the optimum coefficients w ML can be found by minimizing eq. A.8, making also

possible to calculate the β values [85]:

1

βML
=

1

N

N∑
n=1

{
y(xn , w ML)− tn

}2. (A.9)

Due to its simplicity, gradient descent optimization has been the technique selected in order

to find the w coefficients minimizing the error function, i.e. discover the w weights bound

to ∇E(w ) = 0. Note that the algorithm does not guarantee that the identified minimum is a

global minimum; it can also be a local minimum. In general, starting from some initial values

w (0), weights are optimized in each update τ following:

w (τ+1) = w (τ) −η∇E(w (τ)), (A.10)
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where η is the learning rate parameter. The value selected for the learning rate parameter is

critical: a small learning rate yields to slow convergence whereas a large learning rate can fail

to converge. Weights updates can be performed after processing the whole dataset (batch

methods) or after processing each sample in the training dataset (stochastic gradient descent):

w (τ+1) = w (τ) −η∇En(w (τ)), (A.11)

with En denoting the error function calculated for the n sample in the dataset. Intermediate

solutions, very commonly used, update the weights on training dataset subsets (batches). One

of the advantages of stochastic gradient descent, is that makes more difficult to fall on local

minima, as an stationary point for one sample in the dataset does not have to be an stationary

point for the whole dataset.

The last missing part, when looking at eq. A.11 is how to efficiently calculate the derivatives.

Error backpropagation method is the answer, making possible to calculate the derivative by

backpropagating information from the output towards the input layer. This can be intuitively

explained by the fact that the cost function depends on the output. A complete proof based

on applying the chain rule is provided in [85]. Before describing the main steps followed in the

algorithm, some definitions are required. In the following, a regular NN will be considered. As

explained before, at each neuron, first, an activation a j is calculated as a linear combination

of the inputs zi and associated weights w j i :

a j =
∑

i
w j i zi . (A.12)

Secondly, a nonlinear transformation h(·) is applied on the activation:

z j = h(a j ). (A.13)

At the output layer, the output yk is directly calculated as:

yk =
∑

i
wki zi . (A.14)

The error function is defined as before:

En =
1

2

∑
k

(
ynk − tnk

)2 . (A.15)

Demonstrated by applying the chain rule, derivatives can be calculated as a multiplication,
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Error propagation

1. Apply an input vector xn to the network and forward propagate through the network
using eq. A.12 and A.13 to find the activations of all the hidden and output units.
2. Evaluate δk for all the output units using eq. A.18
3. Backpropagate the δ’s using eq.A.19 to obtain δ j for each hidden unit in the network
4. Use eq. A.16 to evaluate the required derivatives.

Table A.1 – Error propagation [85].

expressed as [85]:

∂En

∂w j i
= δ j zi , (A.16)

where δ j ’s, usually called errors, are given by:

δ j =
∂En

∂a j
. (A.17)

Different expressions are obtained for the δ’s at the output and the hidden layer:

• At the output layer:

δk = yk − tk . (A.18)

• At the hidden layers:

δ j = h′(a j )
∑
k

wk jδk . (A.19)

From eq. A.19, δ’s are calculated from the output layer towards the input layer, propagating

backwards. The procedure is summarized in Table A.1.
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Policy gradient theorem [88] establishes the analytical formula:

∇θ J (θ) ∝∑
s
µ(s)

∑
a

Qπ(s, a)∇θπ(a|s,θ), (B.1)

where µ(s) is on-policy distribution under π. Eq. B.1 is proportional to a sum over states

weighted by the frequency occurrence of the states, therefore being possible to write it as an

expectation on sample states St [88]:

∇θ J (θ) = Eπ

[∑
a

Qπ(St , a)∇θπ(a|St ,θ)

]
. (B.2)

In order to introduce sample actions At using the same method as for introducing sample

states St , it is required to multiply and divide by π(a|St ,θ) [88]:

∇θ J (θ) = Eπ

[∑
a
π(a|St ,θ)Qπ(St , a)

∇θπ(a|St ,θ)

π(a|St ,θ)

]
. (B.3)

In that way, the sum over actions is weighted by π(a|St ,θ), which is needed to apply the

expectation, replacing a by At [88]:

∇θ J (θ) = Eπ

[
Qπ(St , At )

∇θπ(At |St ,θ)

π(At |St ,θ)

]
. (B.4)

Finally, as ln(x)′ = 1/x, the following expression is obtained [88]:

∇θ J (θ) = Eπ [Qπ(St , At )∇θ ln(π(At |St ,θ))] , (B.5)
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which is the foundation of many policy gradient algorithms.
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C Optical amplification

Optical amplifiers allow to compensate the attenuation caused by optical fibers and other

components. Independent of bit rate and modulation format, they play a key role in optical

networks. However, they present several issues as gain non-flatness and noise generation.

First, principles of light amplification, fundamental in optical amplifiers, are introduced. After,

two of the most common optical amplifiers, EDFAs (used in Chapter 2 and Chapter 3) and

SOAs (used in Chapter 4), are briefly reviewed. As seen in Fig. C.1, both of them present

a large bandwidth appropriate for WDM applications. However, EDFAs posses a higher

gain and lower insertion noise, becoming preferred option for system applications (booster

amplifiers, inline amplifiers and preamplifiers). SOAs, showing higher nonlinear effects

and photonic integration capabilities, are dominant in functional applications (e.g. optical

switches, wavelength converters).

Figure C.1 – Amplifier gain comparison [58].
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(a) Absorption. (b) Stimulated emission. (c) Spontaneous emission.

Figure C.2 – Interactions between photons and atoms [104].

C.1 Light amplification

Interactions of photons with atoms are the basis of light amplification [104]. In a simple

example, an atom with two energy levels, E1 and E2 is considered. Assuming photons of

frequency v ≈ v0 matching the energy level difference hv0 = E2 −E1, with h being the Plank

constant, three different interactions can be considered:

• Absorption: An atom in the lower level absorbs a photon promoting to the higher level

(Fig. C.2a).

• Stimulated emission: An atom in the upper level is stimulated by a photon to emit

another photon in the same mode, coherent to the electromagnetic wave (Fig. C.2b). It

produces amplification.

• Spontaneous emission: An atom in the upper level, drops spontaneously to the lower

level releasing energy in the form of a photon(Fig. C.2c), generating ASE noise.

Of these three interactions, stimulated emission is responsible of the light amplification,

exploited by optical amplifiers as EDFAs and SOAs, presented in the next paragraphs.

C.2 EDFAs

Different dopants, as rare earth ions, transition metal ions, semiconductor or metal nanoparti-

cles [293], can be included in glasses in order to become active materials, i.e. laser glass. Rare

earth doped glasses, exhibiting long lifetimes at metastable level and high quantum efficiency,

have become extensively utilized as fiber amplifiers [294]. Among rare earth dopants, erbium

is typically used due to its compatibility with the telecommunication window [295]. Relevant

parameters in EDFs are the transition cross sections, plotted in Fig. C.3, representing absorp-

tion and emission efficiencies at each wavelength. Several methods can be used in order to

measure them [95], [296], [297].

Considering an optical signal with intensity (power per unit area) Is and wavelength λs illumi-

nating an isolated lasing structure (neglecting the effect of the SMF acting as a waveguide) of

thickness d z, absorption and emission cross sections at λs σ12(λs) and σ21(λs) and atomic
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Figure C.3 – Example of absorption and emission cross sections of Lucent HE980 EDF [298].

populations N1 and N2, the intensity change d Is [299] can be written as:

d Is = (σ21 (λs) N2 −σ12(λs)N1) Isd z. (C.1)

When degeneracy of energy levels are considered, i.e. an energy level can correspond to

different quantum states, eq. C.1 turns into [104]:

d Is

d z
=σ12(λs)

(
g1

g2
N2 −N1

)
Is , (C.2)

with g1 sublevels at the lower level and g2 sublevels at the higher level. Eq. C.2 is still not

precise, as it has assumed identically populated sublevels by using g1σ12 = g2σ21. In order

to improve the accuracy, eq. C.2 is rewritten based on new defined absorption and emission

cross system sections (σa(λs), σe (λs)) or cross-section ratio (η(λs) =σe (λs)/σa(λs)) [95]:

d Is

d z
= (σe (λs)N2 −σa(λs)N1) Is =σa(λs)

(
η(λs)N2 −N1

)
Is . (C.3)

From eq. C.3, the gain coefficient corresponds to g =σa(λs)(η(λs)N2 −N1). This result reveals

three important aspects about the gain coefficient. First, the gain depends on the wavelength,

different EDFA structures possess different emission and absorption cross-sections. This

property has a negative effect in WDM systems, with each channel experiencing a different

gain. Its mitigation is studied in Chapter 2. Second, gain also exhibits dependence on the

relative inversion. When there is no inversion, i.e. all the atoms are in the ground state, the

medium absorbs all the wavelengths producing a negative gain coefficient. As the inversion is

increased, i.e. there are atoms in excited level, gain coefficient will start also increasing until it

will reach a maximum for the complete inversion, i.e. all the atoms in excited level. Third, gain

coefficient depends on the longitudinal coordinate z, with the gain changing over the fiber
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(a) Unidirectional forward pumping.

(b) Unidirectional backward pumping.

(c) Bidirectional pumping.

Figure C.4 – Different EDFA architectures [300].

length as pump is absorbed by the medium.

C.2.1 Gain characteristics

A complete EDFA module is composed of an EDF, but also of a pump source and various

optical components as combiners or isolators to avoid reflections. Different architectures can

be conceived, shown in Fig. C.4: unidirectional forward pumping, unidirectional backward

pumping and bidirectional pumping.

For any of them, gain is one of the most important characteristics. Directly depending on

pump photon absorption, it is limited by the erbium concentration. For a full inverted 3-level

laser medium of length L and rare earth concentration ρ, the maximum signal gain is given

by [95]:

G =
P out

s

P i n
s

= exp(ρσe L). (C.4)
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(a) EDFA gain. (b) EDFA spontaneous emission factor.

Figure C.5 – EDFA gain and spontaneous emission factor for different pump powers [301].

At the same time, gain limits in EDFAs can be found in a straight way by using the energy

conservation principle. Defining P i n
p , P i n

s , P out
s as the input pump power, input signal power

and output signal power, and λp and λs the pump and signal wavelengths, the amplifier’s fun-

damental limits, obtained using eq. C.4 and the energy conservation principle, are expressed

as [95]:

G ≤ min

{
exp(ρσe L),1+ λp

λs

P i n
p

P i n
s

}
, (C.5)

P out
s ≤ min

{
P i n

s exp(ρσe L),P i n
s + λp

λs
P i n

p

}
. (C.6)

Despite these limits, gain varies depending on the injected pump and signal powers. Under

varying pump powers, three different regimes are distinguished: underpumped regime, where

the signal is absorbed (G < 1); incomplete inversion regime, where the gain increases with the

pump power; the near complete inversion regime where the gain approaches the maximum.

These three regimes are illustrated in Fig. C.5a, where the gain as a function of the wavelength

is shown for different pump powers. Differently, two different regimes can be distinguished

when signal power variations are considered, called small signal regime and saturation regime,

showing a linear behaviour and nonlinear behaviour respectively. The output power at which

the gain drops 3 dB is defined as saturation output power P out
sat .
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C.2.2 Noise characteristics

In order to describe the noise, an m mode amplifier (for SMF, one propagation mode polariza-

tion m = 2) is considered, with gain G(z). Amplifier noise performance is usually measured in

terms of spontaneous emission factor nsp , which for a constant population inversion over the

amplifier length, is expressed as [301]:

nsp =
σe N2

σe N2 −σa N1
= 1+ σa N1

σe N2 −σa N1
. (C.7)

To calculate the NF, SNR variation due to the amplification, it is assumed that: (1) input signal

is governed by Poisson statistics (2) shot noise and spontaneous-spontaneous beat noise can

be neglected. Thus, NF can be expressed as [95]:

N F =
SN Ri n

SN Rout
= 2nsp

G(z)−1

G(z)
+ 1

G(z)
, (C.8)

where nsp = PN /((G −1)hvB0) and SN Ri n and SN Rout are SNR at the input and output of

the amplifier, respectively. Minimum NF is 2nsp (3 dB) obtained for a high gain amplifier.

For a linear regime, eq. C.8 can be used. For a saturated regime, no rigorous expression

is available. Intuitively, NF will decrease when the amplifier saturates, as the spontaneous

emission becomes neglectable. An increasing pump power decreases spontaneous emission

factor to a minimum spontaneous emission factor nmi n
sp , as it can be seen in Fig. C.5b.

Noise accumulation in optical links is a critical impairment, limiting the transmission reach

(Chapter 3).

C.2.3 Gain dynamics

In EDFAs, typical saturation and recovery times are in the range 100 µs to 1 ms. As a con-

sequence, EDFAs exhibit slow gain dynamics [95]. When operated in the saturation regime,

input power changes can lead to gain changes, i.e. gain modulation producing undesired

effects as intersymbol interference, patterning and crosstalk. Data modulation is one source

of input power fluctuations [103]. Fortunately, high data rates used in optical communications

together with the slow gain dynamics in EDFAs make them immune to these issues, contrary

to SOAs, as explained in Section C.3.

Modifications in the channel load are another source of input power changes. These modifica-

tions can occur as a result of network reconfigurations, e.g. adding or dropping channels at

ROADMs or network failures, e.g. a fiber cut. Assume a single stage amplifier working on the

saturation region. Before time t = 0, the EDFA is operating in a steady state having as input

a WDM signal with N channels. At t = 0, some number of channels are added (or dropped).
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Figure C.6 – Power transients in an EDFA cascade [103].

According to [302], the time evolution of the power at the output of the EDFA, P out (t ), follows:

P out (t ) = P out (∞)

(
P out (0)

P out (∞)

)e−t/τe

, (C.9)

where P out (0) and P out (∞) are the output power at the initial state t = 0 and the output power

at the end of the transient, respectively, which can be calculated analytically or experimentally;

τe is the effective decay time of the upper level averaged over the fiber length [303] which can

be obtained as a fitting parameter, typically in the order of 10-100 µs [304]. This analysis can

be applied to different number of channels and even multistage amplifiers. When a cascade

of amplifiers is considered, the dynamics of the output power changes are faster, the farther

in the cascade of EDFAs the faster are the changes. Fig. C.6 illustrates an example of power

transients on the total signal power in an EDFA cascade after dropping 8 of the 12 channels at

the input of the first amplifier. Power changes in amplifier 12th are much faster than in the

first amplifier.

However, this approximation considers a saturated EDFA operating under a constant pump

power. In WDM operation, constant gain is preferred, in order to maintain a constant channel

power and not a constant total output power. Gain control is usually implemented by adjusting

the pump powers using forward/feedback loops involving electronics, implying a limited

response speed. Even using gain control, transients are present, producing a similar response

to the one obtained under constant pump [103]. In order to eliminate this optical power surge,

which can deteriorate the BER on the surviving channels, some proposed solutions include

both feedback and feedforward circuits [98], [99]. In this way, the feedforward reacts on the

input power, allowing a fast reaction in the order of 1 µs. After, the feedback circuit, reacting on

the output power, allows a fine-adjustment in the order of 1 ms. It is important to distinguish

these power transients from the optical power excursions, persistent over the time, which are

discussed in Chapter 2 and Chapter 3.

159



Optical amplification

Figure C.7 – SOA structure [308].

C.3 SOAs

In the following, SOAs are briefly presented. In general, SOAs can be classified in two main

types: Fabry-Perot SOAs and travelling-waveguide SOAs. Fabry-Perot SOAs present consider-

able reflections. Allowing the signal to oscillate, passing several times through the amplifier,

they are useful for laser structures. On the contrary, reflections at the end facets of travelling-

waveguide SOAs can be neglected, restricting the number of passes to one [305].

Light amplification based on stimulated emission is a fundamental working principle in

optical amplifiers, also in SOAs. However, whereas EDFAs achieve population inversion by

injecting an optical carrier, inversion in SOAs is produced by the injection of electrical current

in a p-n junction with an active region in between [306], [307].

C.3.1 Physical characteristics

Typical structure of an SOA includes an active region in between two separate confinement

heterostructure (SCH) layers, as seen in Fig. C.7. In this double-heterostructure, an optical

waveguide is constructed within the three layers, where the active layer in between has a

refractive index greater than the two outer layers [308].

Wavelength operating range can be selected depending on the semiconductor material. Ta-

ble C.1 [309] shows the bandgap and photon emission wavelength for some semiconductors.

For working in the telecommunications band, indium gallium arsenide phosphide (InGaAsP),

indium gallium arsenide (InGaAs), and indium phosphide (InP) are commonly used.
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Material Composition Bandgap (eV) Wavelength (nm)

Indium phosphide InP 1.35 920
Gallium arsenide GaAs 1.42 870
Aluminium gallium arsenide AlGaAs 1.40-1.55 800-900
Indium gallium arsenide InGaAs 0.95-1.24 1000-1300
Indium gallium arsenide phosphide InGaAsP 0.73-1.35 900-1700

Table C.1 – Bandgap of some semiconductor compounds [309].

(a) Gain. (b) ASE spectrum.

Figure C.8 – Typical SOA gain and ASE spectrum for different bias currents [308].

C.3.2 Gain characteristics

As in any optical amplifier, gain and NF (including ASE and coupling losses) are fundamental

characteristics. Typical gain and ASE spectrum for different bias currents can be seen in

Fig. C.8a and Fig. C.8b, respectively. A brief explanation on SOAs gain is presented in the next

paragraphs.

Small signal gain in a Fabry-Perot SOA with input and output facet reflectivities R1 and R2 and

cavity longitudinal mode spacing∆v at a frequency v is given by [310]:

G(v) =
(1−R1)(1−R2)Gs

(1−p
R1R2Gs)2 +4

p
R1R2Gs sin2(π(v − v0)/∆v)

, (C.10)

with Gs the single pass gain and v0 the Fabry–Perot resonant frequency. From eq. C.10, 3 dB

bandwidth B can be calculated as [311]:

B =
c

πN L
sin−1

(
1−p

R1R2Gs

2(
p

R1R2Gs)
1
2

)
, (C.11)
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where c is the speed of light, N the material refractive index and L the amplifier length. For

travelling-waveguide SOAs, bandwidth is three orders of magnitude larger. The single pass

gain can be defined as [58], [305]:

Gs = exp

((
Γg0

1+ I /Is
−α

)
L

)
, (C.12)

with Γ the optical confinement factor, g0 unsaturated material gain coefficient, α the absorp-

tion coefficient and Is the saturation intensity.

From eq. C.12, for an increasing signal intensity, single pass gain decreases. The associated

phase shift is expressed as [312]:

φs =φ0 + g0bL

2

(
I

1+ Is

)
, (C.13)

where φ0 is the nominal phase shift and b the linewidth broadening factor. For intensity vary-

ing signals, the dependence of gain and phase change with intensity may produce distortion,

causing nonlinearities at high powers. Furthermore, when the input power signal is high, the

active region becomes depleted. As a consequence, the gain decreases, with the amplifier

entering the saturation region.

C.3.3 Noise characteristics

In order to calculate the NF of an SOA with gain G , the SOA output signal is considered to

traverse a narrowband filter with bandwidth B0, before being detected by a photodetector.

The input signal is assumed to be noise limited.

For small B0, signal shot and signal-spontaneous components are dominant, thus, NF can be

expressed as [305], [308]:

N F =
1

G
+ 2σASE

hvG
, (C.14)

with v the signal frequency, nsp the spontaneous emission factor and σASE the noise power

spectral density calculated as σASE = nsp hv(G −1). When gain is much greater than 1, it is

possible to estimate NF simply as function of the spontaneous emission factor nsp :

N F = 2nsp . (C.15)

162



Optical amplification

C.3.4 Gain dynamics

Considering carrier recombination lifetime in SOAs is in the order of hundreds of picosec-

onds, amplifier gain is able to follow input power signal variations producing distortions,

becoming even worst when WDM is considered [305]. Although they can seem inconvenient,

nonlinearities as SPM, XPM have been exploited for optical signal processing applications.
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D VPI software

VPI, advanced simulation software, allows to analyze the performance of optical communi-

cation systems [148]. The objective of this appendix is to provide a brief introduction to this

software, as it has been intensively used during this PhD thesis.

Any simulation setup can be developed by using the VPI user interface. After creating a project,

the desired optical system can be designed by including built-in or custom modules. A wide

library of built-in modules is available, including electrical sources, electrical amplifiers, opti-

cal sources, optical modulators, optical filters, optical modulators, fibers, receivers, etc. Once

modules are included and connected between them in the schematic, global (affecting the

whole project) and local (affecting each module) parameters must be selected in order to

model the behaviour of the optical system. Figure D.1 shows an example of schematic devel-

oped in VPI, used in Section 2.4 to generate a dataset for power excursion prediction using NNs.

The schematic contains an array of transmitters. Then, after multiplexing, the signal traverses

100 km fiber and an amplifier, to finally be acquired by a receiver array. Additionally, the

schematic must contain analyzers in order to be able to measure the performance parameters

required for each specific application. Built-in modules allow to display spectrum or eye

diagrams and to measure EVM or OSNR. Apart from graphical display of these parameters,

also file storage is permitted, option useful in this PhD thesis in order to collect the results of

multiple simulations. In Fig. D.1, active channels and output powers are stored in files after

simulation.

Once the schematic is completed, simulations can be directly run by using the graphical

interface. However, as this PhD thesis required to run simulations intensively, we developed

a Python script allowing to automatically run any number of simulations. Beyond running

the simulations, the Python script permitted to modify parameters (e.g. channel load, active

channels, etc.) and to store the results in each simulation.
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Figure D.1 – VPI schematic.
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Pour faire face à la montée en débit du trafic, les réseaux optiques doivent gagner en dy-

namisme et en flexibilité. Dans ces conditions, la gestion des réseaux devient de plus en plus

complexe et nécessite de contrôler certains paramètres des dispositifs de la couche physique.

L’intégration des techniques d’apprentissage machine dans les contrôleurs SDN, permet

d’effectuer ce contrôle tout en respectant des règles d’ingénierie afin que les réseaux restent

performants. Afin de réduire leur consommation énergétique, les réseaux optiques évoluent

vers des réseaux optiques transparents basés sur la commutation de circuits optiques (OCS :

Optical Circuit Switching). Cependant, la commutation de paquets optiques (OPS : Optical

Packet Switching) a été étudiée par la communauté scientifique comme une technique de

commutation alternative afin d’optimiser l’utilisation des ressources des réseaux. Les deux

approches «apprentissage machine appliquée aux réseaux optiques» et «technique OPS» ont

fait l’objet des travaux de cette thèse.

Dans la première partie, nous avons étudié différentes approches d’ingénierie de réseaux

optiques intelligents en utilisant des techniques d’apprentissage machine. Nous avons focalisé

notre étude sur le contrôle des amplificateurs optiques dans les réseaux.

Dans ce contexte, nous avons porté notre attention sur l’atténuation de l’excursion de puis-

sance optique résultant de la dépendance du gain en fonction de la longueur d’onde dans les

amplificateurs optiques. Bien que les dispositifs d’amplification commerciaux considèrent des

architectures complexes, avec plusieurs étages d’amplification et des filtres d’aplatissement

du gain, l’excursion de puissance optique est toujours un problème. En effet, ces disposi-

tifs fonctionnent bien dans des conditions de trafic statique mais l’excursion de puissance

optique réapparaît dans des conditions de fonctionnement dynamique lors de l’ajout ou de

la suppression de canaux WDM qui modifie le point de fonctionnement des amplificateurs

pour lequel le filtre d’aplatissement du gain n’est pas optimisé. L’excursion de puissance

est difficile à prévoir, car elle dépend directement des caractéristiques physiques des am-

plificateurs. Les techniques d’apprentissage machine ont commencé à être appliquées pour

lever ce verrou technologique. Dans la thèse, nous avons montré dans un premier temps
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qu’il était possible de prédire l’excursion de puissance optique d’un amplificateur optique

dopé à l’erbium (amplificateur EDFA) en présence d’un trafic dynamique en utilisant des

réseaux de neurones (NNs). Puis, étant donné que la prédiction ne résoud pas le problème de

l’excursion de puissance optique, nous avons proposé de pré-compenser la puissance injectée

dans le système WDM en utilisant un processus d’apprentissage machine par renforcement

(RL : reinforcement learning) et nous avons montré que l’excursion de puissance optique

cumulée à la sortie d’une liaison optique, comprenant plusieurs liens optiques pouvait être

sensiblement réduite. Le principal avantage de la méthode d’apprentissage par renforcement

que nous avons choisie par rapport à d’autres méthodes, réside dans le fait qu’une fois le

processus acquis, il est capable de fonctionner de manière autonome en fournissant une

réponse rapide. Trois aspects principaux ont été étudiés :

• Comparaison de divers algorithmes : Plusieurs algorithmes RL bien connus (A2C :

Advantage Actor Critic, DDPG : Deep Deterministic Policy Gradient, TRPO : Trust Region

Policy Optimization et PPO : Proximal Policy Optimization) ont été comparés en termes

de performances et de temps d’entrainement requis.

• Complexité de l’environnement : Différents taux de charge en canaux ont été con-

sidérées, avec un taux de canaux actifs variable, afin de comparer les performances

obtenues.

• Adaptabilité de l’approche dans un contexte réel : Bien que les travaux précédents

aient été basés sur des données synthétiques, les modèles d’amplificateur ont utilisé la

caractérisation expérimentale d’un véritable amplificateur à double étage, travail effec-

tué en collaboration avec Network Technology Lab (Ecole de Technologie Supérieure,

Canada). Une preuve de concept de la technique de précompensation RL (basée sur des

données synthétiques) sur un banc d’essai expérimental a été considérée, également

en collaboration avec Network Technology Lab, en utilisant l’amplificateur caractérisé

expérimentalement.

Les algorithmes DDPG et PPO se sont avérés les plus performants dans notre cas partic-

ulier, tous deux étant performants pour les différentes configurations de canaux, réduisant

l’excursion de puissance optique moyenne à 0.5 dB. Bien que l’OSNR n’ait pas été mesuré,

une amélioration de la QoT a été observée en comparant l’évolution du BER des différents

canaux WDM avant et après application de l’apprentissage par renforcement lors de la pré-

compensation. En ce qui concerne la preuve de concept sur un banc d’essai expérimental, des

résultats prometteurs ont été trouvés, avec une réduction de l’écart de puissance à la sortie de

la liaison.

Dans un deuxième temps, nous nous sommes focalisés sur l’estimation de la qualité de

transmission (QoT) dans les réseaux optiques transparents afin de répondre à la problématique

d’allocation des chemins et des longueurs d’onde. Les modèles analytiques utilisés pour

répondre à cette problématique prennent généralement beaucoup de temps et les techniques
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d’apprentissage machine sont intéressantes à considérer pour atteindre les deux objectifs

à savoir l’estimation de la qualité de transmission et l’attribution des longueurs d’onde, en

utilisant des données issues de la surveillance optique. Dans nos travaux, nous avons procédé

à une estimation de la qualité de transmission sur la base de réseaux neuronaux puis nous

avons utilisé ces estimations comme environnement de l’algorithme d’apprentissage par

renforcement. L’objectif ultime de notre étude a été d’affecter un format de modulation

et une longueur d’onde adéquats aux différentes demandes en débit dans les réseaux tout

en optimisant la qualité de transmission et en réduisant l’excursion de puissance cumulée

dans les amplificateurs optiques. Ce travail a permis de réduire la probabilité de blocage

des demandes arrivant dans les nœuds optiques des réseaux, tout en travaillant de manière

autonome et en offrant une exécution rapide.

Tout d’abord, un outil d’estimation de la QoT basé sur les NNs incluant l’excursion de puis-

sance optique comme caractéristique d’entrée a été proposé, ce qui a permis d’augmenter la

précision des résultats obtenus. Ensuite, les modèles d’estimation de la QoT ont été intégrés

comme environnement d’un algorithme d’apprentissage par renforcement afin de pouvoir

allouer un format de modulation en tenant compte de la dégradation du signal dans une

liaison optique à débit mixte (100G-DP QPSK, 100G-DP-16QAM et 200G-DP-16QAM). Par

rapport aux différentes techniques heuristiques, l’approche proposée réduit la probabilité de

blocage des demandes arrivant dans les noeuds optiques. L’apprentissage par renforcement

réarrange le spectre WDM lors de l’extraction de certains canaux, en proposant de convertir

les longueurs d’onde de certains canaux actifs avec celles des canaux extraits ce qui conduit à

une défragmentation du spectre. Deux scénarios ont été étudiés :

• Grille fixe : Dans ce scénario, l’algorithme RL décide d’attribuer la plupart des demandes

de trafic de 100G et 200G à la DP-QPSK et DP-16-QAM, respectivement, en utilisant les

fréquences les plus basses de la bande, en raison des caractéristiques de l’amplificateur.

• Grille flexible : L’algorithme RL attribue à nouveau la plupart du trafic aux créneaux de

fréquences inférieures de la bande (en raison des caractéristiques de l’amplificateur).

Cependant, il décide d’attribuer les demandes de trafic de 100G et de 200G au DP-16-

QAM, qui occupe moins de slots fréquentiels, ce qui permet d’économiser les ressources

du spectre.

Dans la deuxième partie, nous avons étudié une nouvelle génération de routeurs optiques pour

des réseaux économes en énergie dans le cadre du projet ANR N-GREEN, et nous présentons

ici notre contribution de caractérisation expérimentale du commutateur 2×2, composant de

base du routeur optique nouvelle génération proposée.

Nous avons considéré la technologie de commutation de paquets colorés. Les travaux présen-

tés ici ont ciblé l’une des deux principales innovations du projet NGREEN : un fond de panier

WDM à ultra-haute capacité basé sur la commutation optique. Les composants fondamentaux
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de ce fond de panier WDM sont les commutateurs 16×16 et 4×4, composés de commuta-

teurs plus petits 2×2. Dans le cadre de N-GREEN, un commutateur optique 2×2 à base

d’amplificateurs optiques à semi-conducteur (SOA : semiconductor optical amplifier) a été

proposé et fabriqué par le III-V Lab (France). En collaboration avec deux autres partenaires

du projet N-GREEN, Nokia Bell Labs (coordinateur du projet) et Télécom Paris, la caractéri-

sation expérimentale d’un commutateur optique à 2×2 a été réalisée. Les expériences ont

montré que la plage dynamique de la puissance d’entrée du système était élevée et que la

capacité à travailler avec des signaux à haut débit était tout à fait envisageable, ouvrant des

perspectives d’études d’architectures plus complexes requises pour le fond de panier, comme

les commutateurs 16×16 et 4×4.

De nombreuses perspectives découlent de ce travail de thèse à savoir :

• Pour l’approche de pré-compensation de puissance RL :

– Application de l’algorithme d’apprentissage par renforcement avec des données

expérimentales.

– Génération d’un nouveau modèle d’environnement à partir d’un grand volume de

données expérimentales.

– Mise en œuvre de modèles d’amplification plus complexes.

– Lancement de l’optimisation de la puissance pour améliorer la qualité de fonc-

tionnement, par exemple par l’aplatissement de l’OSNR en même temps que la

réduction de l’excursion de puissance optique.

• En ce qui concerne la problématique de l’allocation optimisée des longueurs d’onde et

des formats de modulation :

– Examen des fonctions de filtrage des différents routeurs optiques d’insertion/extraction

reconfigurables (ROADMs).

– Scénarios plus complexes, y compris les capacités de routage et/ou les réseaux à

grille mixte (combinaison de grilles à nœuds fixes et flexibles).
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