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populations et de coagulation-fragmentation

Romain Yvinec

2



Résumé

Ce manuscrit est le mémoire de mon dossier de candidature à l’habilitation à diriger des recherches.
À ce titre, il contient le bilan de mes travaux de recherche depuis ma thèse soutenue en 2013. L’objectif
du manuscrit est de présenter sous forme concise les principaux modèles mathématiques que j’étudie, les
questions théoriques que ceux-ci soulèvent, et leurs applications en biologie. L’ensemble de mes articles est
disponible sur ma page web personnelle 1.

Depuis mon recrutement au laboratoire Physiologie de la Reproduction et des Comportements (INRAE,
CNRS, Université de Tours), au sein de l’équipe Biologie & Bioinformatique des Systèmes de Signalisation
(BIOS), j’ai consacré une partie importante de mes activités de recherches à la modélisation de la folliculo-
genèse ovarienne, en particulier en décrivant précisément les différentes dynamiques de populations cellulaires
et tissulaires en jeu dans ce systèmes. Je me suis attaché à construire, analyser et simuler des modèles pro-
babilistes adaptés à chaque problématique biologique, jusqu’à la calibration des paramètres des modèles et
l’identification de prédictions pouvant être testées expérimentalement. Ces travaux font l’objet de la partie 1
de ce manuscrit.

Ce travail de modélisation ne pourrait se faire sans une bonne compréhension des enjeux et connaissances
actuels de la biologie de la reproduction et des travaux de modélisation qui s’y rapportent. J’ai ainsi contribué
à trois articles de synthèse dans ce domaine :
• M. A. Ayoub, R. Yvinec, P. Crépieux, and A. Poupon. Computational modeling approaches in gona-

dotropin signaling. Theriogenology, 86(1):22–31, 2016
• R. Yvinec, P. Crépieux, E. Reiter, A. Poupon, and F. Clément. Advances in computational modeling

approaches of pituitary gonadotropin signaling. Expert Opin. Drug. Discov., 13(9):799–813, 2018
• F. Clément, P. Crépieux, R. Yvinec, and D. Monniaux. Mathematical modeling approaches of cellular

endocrinology within the hypothalamo-pituitary-gonadal axis. Mol. Cell. Endocrinol., 518:110877,
2020

Une partie de ces travaux a nourri la présentation du premier chapitre 1.1 de ce manuscrit, qui donne une
nécessaire introduction à la biologie de la reproduction femelle.

Au cours de mes travaux sur la modélisation de la folliculogenèse ovarienne, je me suis d’abord intéressé à la
modélisation de la croissance d’un follicule ovarien, en modélisant précisément la cinétique de différentiation et
prolifération cellulaire au sein d’un follicule. On s’intéresse à caractériser le comportement de la population
de cellule somatiques au sein d’un follicule ovarien, et à préciser l’influence des différents paramètres des
modèles qui s’écrivent sous forme de processus de Markov en temps continu. Ces modèles caractérisent les
lignages cellulaires et sont parcimonieux dans leur description de phénomènes biologiques complexes, afin
de pouvoir les calibrer de manière rigoureuse à l’aide de données quantitatives. Cette problématique a fait
l’object du co-encadrement de thèse de Frédérique Robin (2016-2019), co-encadrée par Frédérique Clément
(Centre de recherche Inria Saclay-̂Ile-de-France), et a nourri deux articles scientifiques :
• F. Clément, F. Robin, and R. Yvinec. Analysis and calibration of a linear model for structured cell

populations with unidirectional motion : Application to the morphogenesis of ovarian follicles. SIAM
J. Appl. Math., 79(1):207–229, 2019

• F. Clément, F. Robin, and R. Yvinec. Stochastic nonlinear model for somatic cell population dynamics
during ovarian follicle activation. Accepted in J. Math. Biol., 2020

Le chapitre 1.2 présente ces travaux.
Je me suis également intéressé à décrire l’ensemble de la population folliculaire au cours de la vie re-

productive d’une individue, et à modéliser en particulier les interactions entre populations folliculaires qui
résultent de rétro-actions de nature paracrine et endocrine. En prenant en compte les différentes échelles de
temps en jeu dans ce système, nous obtenons un problème de type perturbation singulière que nous pouvons
résoudre. Le modèle limite est plus adapté à une caractérisation détaillée du comportement transitoire et en
temps long de la population de follicules, ainsi qu’à sa calibration aux données quantitatives. Ce travail a fait
l’objet d’un co-encadrement du stage de recherche de Céline Bonnet et Keltoum Chahour (CEMRACS 2018),
co-encadrées par Frédérique Clément et Marie Postel (Sorbonne Université, Université Paris-Diderot SPC,
CNRS, Laboratoire Jacques-Louis Lions, LJLL), et d’un co-encadrement en cours de la thèse de Guillaume
Ballif (2019–.), co-encadrée par Frédérique Clément. Le chapitre 1.3 présente ces travaux, publiés partielle-
ment dans

1. http://yvinec.perso.math.cnrs.fr/publications.html
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• C. Bonnet, K. Chahour, F. Clément, M. Postel, and R. Yvinec. Multiscale population dynamics in
reproductive biology: singular perturbation reduction in deterministic and stochastic models. ESAIM:
ProcS, 67:72 – 99, 2020

et dans un article en préparation. Je conclue cette première partie par quelques perspectives et réflexions sur
la modélisation de la folliculogenèse ovarienne dans le chapitre 1.4.

Une partie de mes travaux de thèse a nourri des questions théoriques sur l’étude d’un modèle particulier de
coagulation-fragmentation, le modèle de Becker-Döring, et sont présentées dans la partie 2 de ce manuscrit. Ce
modèle est très utilisé en physique des matériaux pour décrire des phénomènes de nucléation et de transition
de phase, mais également depuis quelques années dans divers domaines de la biologie cellulaire et moléculaire.
Je présente dans le chapitre introductif 2.1 la définition du modèle de Becker-Döring et ses variantes, ainsi
que des résultats clés de la littérature, essentiellement basé sur mon article de synthèse
• E. Hingant and R. Yvinec. Deterministic and Stochastic Becker-Döring Equations: Past and Recent

Mathematical Developments. In Stochastic Processes, Multiscale Modeling, and Numerical Methods
for Computational Cellular Biology, pages 175–204. Springer, Cham, 2017

Mes travaux, en collaboration avec Erwan Hingant (Universidad del Bio-Bio, Chili) et Juan Calvo (Uni-
versidad de Granada, Espagne), ont porté notamment sur l’établissement de théorèmes limites mettant en
lien différents modèles entre eux, par des procédés de renormalisation et d’étude de compacité de suites de
solutions. Ce travail m’a amené à définir des notions de convergences subtiles dans des espaces fonctionnels
en dimension infinie, et pointe les propriétés particulières du modèle de Becker-Döring. Je présente ce travail
dans le chapitre 2.2, basé sur les publications :
• J. Deschamps, E. Hingant, and R. Yvinec. Quasi steady state approximation of the small clusters in

Becker-Döring equations leads to boundary conditions in the Lifshitz–Slyozov limit. Commun. Math
Sci, 15(5):1353–1384, 2017

• E. Hingant and R. Yvinec. The Becker–Döring process: law of large numbers and non-equilibrium
potential. J. Stat. Phys., 177:506–527, 2019

• J. Calvo, E. Hingant, and R. Yvinec. Initial-boundary value problem to the lifshitz-slyozov equation
with non-smooth rates at the boundary. Submitted. arXiv:2004.01947, 2020

Un deuxième axe de travail sur le modèle de Becker-Döring porte sur l’établissement des propriétés en temps
long de sa version stochastique, en s’inspirant de travaux analogues en réseaux de réactions biochimiques ou en
dynamiques de populations. La compréhension fine de l’état stationnaire et des phénomènes de métastabilité
reste un important problème ouvert. Nous avons tout d’abord obtenu un principe de grande déviation sur
la mesure stationnaire, en le reliant à la fonction de Lyapounov connue pour ce système. Puis nous avons
caractérisé le phénomène de métastabilité dans une version linéaire du modèle de Becker-Döring, grâce à
l’établissement d’une convergence exponentielle vers une distribution quasi-stationnaire dont on connâıt une
expression analytique. Je présente ma contribution dans ce domaine au chapitre 2.3, basé sur les publications
• E. Hingant and R. Yvinec. The Becker–Döring process: law of large numbers and non-equilibrium

potential. J. Stat. Phys., 177:506–527, 2019
• E. Hingant and R. Yvinec. Quasi-stationary distribution and metastability for the stochastic Becker-

Döring model. Submitted. arXiv: 2008.02544, 2020
et je conclue sur quelques perspectives au chapitre 2.4.

Certains travaux post-thèse ne sont pas abordés dans ce manuscrit. Cela concerne notamment la thématique
de la modélisation dynamique des réseaux de signalisations des gonadotrophines, au cœur des aspects cel-
lulaires de la biologie de la reproduction. Sur cette thématique, je juge mes travaux publiés non encore
suffisamment aboutis pour être présentés dans ce manuscrit, et ma contribution personnelle a été pour l’es-
sentiel mineure [A2, A8, A13, A14, A15, A16, A17]. Cette thématique n’en reste pas néanmoins un axe
important dans mon projet de recherche futur.

Le chapitre introductif 1.1 est écrit en français, les autres chapitres sont écrits en anglais.
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1 Modeling ovarian folliculogenesis : population dynamics

1.1 Introduction
La présentation qui suit est librement inspirée de revues de modélisation dans le domaine de la reproduction

[81, 32, A19], du manuscrit de thèse de Frédérique Robin [94] que nous avons co-encadrée avec Frédérique
Clément, ainsi que des excellents articles et revues de notre collaboratrice biologiste Danielle Monniaux et ses
co-autrices et co-auteurs [35, 75, 76, 78, 79]. Je me reporte également à quelques endroits au "textbook" [101].
Le but de cette introduction n’est pas d’être exhaustif dans la présentation de la biologie de la reproduction
femelle, mais plutôt de présenter certains aspects qui motivent l’introduction des modèles mathématiques de
dynamiques de populations que j’étudie par la suite.

1.1.1 L’axe hypothalamo-hypophyso-gonadique

La fonction de reproduction est principalement assurée par l’axe hypothalamo-hypophyso-gonadique
(HHG) (voir Figure 1), qui comprend les trois composantes anatomiques majoritairement responsables de
la production des hormones de la reproduction. Le système de reproduction femelle chez les mammifères
(post-puberté et hors phase de gestation) subit des changements cycliques d’environnement hormonal mais
également de structure et de fonction des ovaires, au cours de ce qui est communément appelé les cycles
menstruels ou cycles ovariens. Cependant, ce comportement cyclique cache des mécanismes et dynamiques
qui s’opèrent à des échelles très différentes et tout au long de la vie des individues.

Au sein de l’ovaire, le développement et la maturation des gamètes (ovocytes ou cellules œufs) est un
processus qui s’initie dès la période embryonnaire et continue tout au long de la vie de l’individue, et donne
lieu aux ovulations à chaque cycle ovarien, sous le contrôle principal de certaines hormones hypophysaires
(dites gonadotrophines), l’hormone folliculo-stimulante (FSH) et l’hormone lutéinisante (LH). Ces hormones
sont sécrétées par l’hypophyse sous stimulation par une neuro-hormone, l’hormone de libération des gona-
dotrophines hypophysaires (GnRH), elle-même sécrétée au niveau de l’hypothalamus. Ces hormones ont des
profils spatio-temporels très particuliers. La GnRH et la LH sont sécrétées de manière fortement intermit-
tente, pulsatile, alors que la sécrétion de FSH est plus régulière. Au moment de l’ovulation, ces signaux ont
également des variations temporelles très importantes (on parle de "pic") sur une courte période de temps
(heure/jour). Ces hormones induisent des signaux intra-cellulaires au niveau de leurs cellules cibles qui se
produisent à une toute autre échelle temporelle, typiquement de l’ordre de la minute ou de la seconde.

1.1.2 Ovogenèse et folliculogenèse ovarienne

Les cellules cibles des gonadotrophines FSH et LH sont les cellules somatiques qui constituent, avec la cel-
lule germinale, le follicule ovarien. Dès le stade embryonnaire, la lignée des cellules germinales se sépare des cel-
lules somatiques. Initialement proliférantes, les cellules germinales débutent leur processus de différenciation
dans l’ovaire embryonnaire et, parallèlement, elles recrutent et s’associent avec des cellules somatiques avoi-
sinantes pour constituer l’unité anatomique et fonctionnelle de base des ovaires, le follicule ovarien. À l’issue
de cette phase qui a lieu intégralement aux stades embryonnaire et fœtal (dans la majorité des espèces de
mammifères), l’ensemble de tous les follicules constituent une réserve (dite "statique" [79]) qui ne sera plus
renouvelée et assurera la fonction de reproduction pendant la vie adulte qui suivra. Les follicules ainsi formés
sont appelés follicules primordiaux, et sont initialement dans une phase de quiescence, les ovocytes dans ces
follicules étant maintenus à l’arrêt dans une phase particulière de la méiose, la prophase I. Cette réserve sta-
tique s’amenuise lentement tout au long de la vie des individues (jusqu’à presque épuisement chez la femme,
après la ménopause). Le processus de développement des follicules ovariens constitué par l’ensemble des étapes
de sortie de quiescence (activation), croissance, morphogenèse et maturation des follicules ovariens s’appelle
la folliculogenèse ovarienne. Ce processus débute donc dès le stade embryonnaire et persiste à l’âge adulte.
La croissance d’un follicule, depuis sa sortie du pool primordial jusqu’à l’ovulation (ou la dégénérescence par
atrésie), s’étend sur plusieurs cycles ovariens (plusieurs mois dans l’espèce humaine et chez les mammifères
domestiques de rente). On distingue classiquement deux grandes phases de croissance, qui sont caractérisées
par des critères morphologiques des follicules mais également par les processus de régulation qui sont mis en
jeux (avec une certaine conservation entre espèces) : (i) la croissance dite basale est contrôlée par des facteurs
sécrétés localement au sein de l’ovaire, indépendamment de la dynamique de l’axe HHG ; (ii) la croissance
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dite terminale, strictement dépendante de la fourniture en hormones hypophysaires. La croissance basale peut
démarrer dès le stade fœtal ou périnatal alors que la croissance terminale ne peut avoir lieu qu’après la pu-
berté 2. À chaque cycle ovarien, un relativement petit nombre de follicules ayant atteint une certaine maturité
(fin de croissance basale) démarre une phase de croissance terminale : on parle de recrutement cyclique. Une
ou plusieurs vagues de recrutement folliculaire par cycles sont observées selon les espèces. Il est important de
préciser que la croissance basale des follicules est asynchrone (ainsi tous les types folliculaires peuvent être
observés à un instant donné au sein d’un ovaire) alors que la croissance terminale est plus synchrone et coor-
donnée (et donc une corrélation avec la dynamique du cycle ovarien peut-être observée pour les follicules en
croissance terminale, un follicule en croissance terminale pouvant néanmoins être recruté à un cycle ovarien
antérieur). Les follicules en fin de croissance basale constituent ce qui est appelé une réserve "dynamique" :
celle-ci est continuellement alimentée par l’activation des follicules primordiaux et la croissance basale des
follicules, et est vidée régulièrement par le recrutement de follicule en phase terminale. Notons que la taille
de cette réserve dynamique est mesurée en routine cliniquement (appelée "Antral Follicle Count") et est
d’importance cruciale pour les biotechnologies de la reproduction assistée, humaine et animale.

La folliculogenèse ovarienne est finement régulée par l’intermédiaire d’un certain nombre de molécules
messagères. Les différents types de cellules somatiques du follicule ovarien reçoivent les signaux hypophysaires
et sont en dialogue (direct ou indirect) permanent avec la cellule germinale qu’elles confinent. Ce dialogue est
nécessaire pour le bon déroulement de la croissance et de la maturation de l’ovocyte et du follicule ovarien
qui le contient (abordé plus loin en section 1.1.3), mais donne également lieu à des rétro-actions sur une
partie ou l’ensemble des follicules ovariens. En particulier, l’expression de l’hormone Anti-Mullërienne par les
cellules somatiques d’un follicule en croissance basale a pour effet d’inhiber l’activation de nouveaux follicules
primordiaux et de ralentir la croissance des petits follicules en croissance basale. Également, la synthèse des
stéröıdes sexuels (progestérone, testostérone, estradiol) par les cellules somatiques du follicule ovarien en
croissance terminale, en réponse aux stimulations des gonadotrophines, modulent en retour la sécrétion des
gonadotrophines et de la GnRH, terminant la boucle de rétro-action. Cette modulation résulte en particulier
par une diminution du niveau circulant d’hormone FSH, associée aux vagues de croissance terminale, et
mène à la sélection des follicules dits "dominants" (avec une certaine part d’aléatoire, ceux-ci devant être
à la "bonne" maturité au "bon" moment [35, 97]) qui sont seuls capables de continuer leur croissance et
deviendront les follicules ovulatoires.

Un dernier aspect primordial, quoique peu compris à ce jour, de l’ovogenèse mérite d’être mentionné.
Durant la phase embryonnaire et fœtale, un très grand nombre de cellules germinales est produit alors qu’une
infime minorité sera ovulée : ainsi, chez la femme, sur les 6 à 7 millions de cellules germinales présentes dans
l’ovaire fœtal, seules environ 500 seront ovulées. Il y a vraisemblablement beaucoup de perte de cellules germi-
nales lors du processus de formation des follicules ovariens, mais également tout au long de la folliculogenèse
ovarienne. L’atrésie folliculaire est le mécanisme d’arrêt de croissance et de dégénérescence du follicule, et
concerne environ 99% des follicules qui entrent en croissance [80]. La perte la plus importante se produit
à la naissance, où le pourcentage de follicules (quiescent) atrétiques seraient de l’ordre de 50% selon [52].
Le déclenchement du programme d’atrésie d’un follicule peut survenir à tous les stades de croissance, et est
également finement régulé.

Pour terminer ce bref panorama de la folliculogenèse ovarienne, nous donnons quelques ordres de grandeurs
de taille de populations (voir Tables 1-2) et de durée moyenne (voir Table 3) de chaque stade de croissance
pour différentes espèces. 3 En particulier, selon [101, Chapitre 15], les follicules primordiaux représentent
plus de 95% de la population folliculaire ovarienne. Il faut garder à l’esprit cependant qu’il y a une grande
hétérogénéité dans le nombre de follicules entre individues de même espèce et même âge (d’un facteur 5 à 10
selon [39])

Dans le chapitre 1.3, nous mettrons en musique (ou en équations) la dynamique de populations des
follicules ovariens. Ces modèles sont du type "naissance-migration-mort" et modélisent l’évolution de la
population de follicules structurée selon une variable de maturité, discrète, qui ne peut qu’augmenter au
cours du temps. On peut penser à des classes de taille par exemple, qui sont fréquemment utilisées par les
biologistes pour dénombrer les follicules, ou d’autres critères morphologiques ou fonctionnels. Les différences

2. Les repères temporels des phases de constitution de la réserve statique et de la folliculogenèse pré et post pubère chez
différentes espèces de mammifères peuvent être visualisés dans la figure 1 de l’article de synthèse [79].

3. Nb : La durée moyenne de la phase de quiescence est une estimation relativement "grossière", basée sur une estimation du
taux d’activation par jour et de l’effectif total. Le taux d’activation journalier est lui-même issu de mesure d’effectif folliculaire
à différents âges (voir par exemple [53]).
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d’ordre de grandeur et d’échelle de temps en jeu chez certaines espèces motivent l’introduction de facteurs
d’échelle et la considération de problèmes de type perturbation singulière. Les différentes régulations de la
folliculogenèse au sein de l’ovaire et au sein de l’axe HHG, abordées plus haut, guident l’introduction de
termes d’interaction entre les différentes sous-populations de follicules ovariens.

Table 1 – Ordre de grandeur du nombre de cellules germinales et follicules primordiaux à différentes périodes
de la vie. Voir [101, Chapitre 15] et les références mentionnées par espèce ci-dessous.

Cellules
germinales
(embryon)

Follicules
primordiaux
(naissance)

Follicules
primordiaux
(puberté)

Follicules
primordiaux
(Jeune adulte)

Follicules
primordiaux
(Fin de vie
reproductive)Espèces

Femmes
[53]

5 · 106 0.2 à 1 · 106 1 à 5 · 105

(10 ans)
5 · 104 (25 ans) 0.15 à 2.4 · 104

(45 ans)
Brebis [73, 72,
95]

5 · 105 105 2 à 8 · 104 (2 ans) 104 (5 ans)

Souris [42, 44,
26, 45, 103]

1.3 · 104 0.7 à 1 · 104 2.5 à 5·103 (50j) 1 à 2.5 · 103

(100j)
0 à 500 (500j)

Table 2 – Ordre de grandeur du nombre de follicules en croissance pendant la vie reproductive. Voir [101,
Chapitre 15], [39] et les références mentionnées par espèce ci-dessous.

Follicules
en crois-
sance
basale

Follicules
en crois-
sance
antrale

Follicules
en crois-
sance
terminale

Follicules
pré-
ovulatoire

Nombres
d’ovula-
tions par
cyclesEspèces

Femmes (à 20-30 ans) 1 à 10 · 104 100 10 à 20 1 à 10 1
Brebis (1.5 ans) [30, 95] 5 · 104 40-60 10 à 30 1 à 10
Souris (100j) [42, 44, 26, 45] 500 à 1000 50 à 100 10 10

Table 3 – Ordre de grandeur de la durée moyenne d’une phase de croissance de la folliculogenèse ovarienne.
Voir [101, Chapitre 15] et les références mentionnées par espèce ci-dessous.

Quiescence Croissance
basale

Croissance
antrale

Croissance
terminale

Espèces (Jours) (Jours) (Jours) (Jours)
Femmes 6.6 · 104 180 45 15
Brebis[30] 0.66 à 8.104 130 40 2 à 3
Souris (100j)
[42, 44, 26, 45, 70] 200 à 300 30 à 140 3

1.1.3 Croissance morphodynamique d’un follicule ovarien

Nous revenons maintenant sur la description plus fine de la morphologie d’un follicule ovarien, et de son
évolution au cours de sa croissance. Ces considérations mènent également à l’étude de modèles mathématiques
de dynamique de populations (abordés au chapitre 1.2) pour caractériser l’évolution du nombre de cellules
somatiques au sein d’un follicule, et (plus ou moins finement) la géométrie d’un follicule ovarien. Suivant
les modèles, ces cellules somatiques seront structurées en âge, en type cellulaire et/ou en position spatiale
relativement à l’ovocyte.

Chez tous les mammifères, les premières étapes du développement folliculaire sont comparables au sens où
les tailles de follicules et les changements morphologiques sont remarquablement conservés entre des espèces
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Figure 1 – Illustration de l’axe hypothalamo-hypophyso-gonadique. La GnRH est relarguée sous forme de
pulses par les "neurones à GnRH" au niveau de l’hypothalamus. Cette hormone induit la sécrétion de la
LH, sous forme pulsatile, et de la FSH, de manière plus continue, toutes les deux au niveau de l’hypophyse.
Ces hormones hypophysaires ciblent les cellules somatiques des follicules au sein des ovaires (ou au sein des
testicules chez les mâles). Lors de la croissance des follicules ovariens, la synthèse des stéröıdes sexuels et
hormones peptidiques modulent en retour les hormones GnRH, LH et FSH. Cette boucle de rétro-action est
en particulier responsable du "pic ovulatoire" de LH observé lors de l’ovulation. Figure extraite de [A19].
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de poids très différents. Le follicule primordial est constitué d’une part de la cellule germinale, l’ovocyte en
quiescence (processus de méiose arrêté au stade diplotène de la prophase I, qui ne reprendra qu’à l’ovulation)
situé en position centrale, et d’autre part d’une simple couche de cellules somatiques qui entourent l’ovocyte.
Ces cellules somatiques sont appelées les cellules de la Granulosa. A ce stade, l’ovocyte a un diamètre de
l’ordre de 20 à 30µm et le follicule a un diamètre compris entre 30 et 50 µm. Les cellules de la Granulosa ont
alors une forme aplatie, et sont en nombre très variable entre follicules, généralement de l’ordre de la dizaine
(5 à 20 cellules d’après [51]). Cette variabilité est supposée provenir du processus complexe de formation des
follicules primordiaux. Ce processus est marqué initialement par la prolifération des cellules germinales, leur
migration puis le "recrutement" de cellules somatiques par les cellules germinales au sein de structure appelée
cordon ovigère [75]. Les follicules primordiaux se forment enfin à l’issue de la fragmentation de ces cordons
ovigères, et entrent pour la plupart dans un état de "dormance", inactif.

L’activation des follicules primordiaux est ensuite caractérisée par trois processus principaux [91] :
(i) Une transition irréversible du phénotype des cellules somatiques (cellules quiescentes puis prolifératives),

caractérisée par un changement concomitant de leur forme (d’abord aplatie puis cuböıde)) ;
(ii) Une augmentation du nombre de cellules somatiques par division cellulaire ;
(iii) Une augmentation de l’activité métabolique et l’élargissement associé de l’ovocyte.

On considère que la phase d’activation se termine lorsque toutes les cellules somatiques ont changé de forme,
moment où le stade de développement monocouche est terminé [47].

La phase de croissance suivante est appelé croissance basale, et comprend notamment les stades com-
munément appelés primaires, secondaires et pré-antraux. Au cours de ces stades, la croissance folliculaire est
le résultat d’une augmentation conjointe de la taille de l’ovocyte et du nombre de cellules somatiques environ-
nantes 4. L’ovocyte occupe toujours la position centrale du follicule, et les cellules somatiques se répartissent
en couches successives autour de l’ovocyte. Au cours de la phase basale du développement du follicule, du
stade primaire au stade pré-antral, le follicule ovarien se développe ainsi sous la forme d’un agrégat cellulaire
compact avec une structure sphérique. Chez les ovins, la population de cellules somatiques double environ
10-12 fois et le nombre de couches de cellules somatiques passe de une à quatre à six couches [34]. Pendant
ce temps, le diamètre de l’ovocyte passe de quelques dizaines de µm à une centaine de µm. De manière
cruciale, la croissance des ovocytes et la prolifération cellulaire sont couplées par un dialogue moléculaire
étroit établi entre les ovocytes et les cellules somatiques. Les facteurs de croissance dérivés des cellules soma-
tiques (ligand KIT) favorisent la croissance de l’ovocyte et, à leur tour, ceux de l’ovocyte (BMP15, GDF9)
influencent la prolifération cellulaire somatique. L’évolution morphologique d’un follicule à ce stade résulte
donc d’un équilibre finement régulé entre le taux de croissance de l’ovocyte et le taux de prolifération des
cellules folliculaires déterminant, pour un diamètre folliculaire donné, la taille de l’ovocyte, et le nombre de
cellules et de couches somatiques (voir Figure 2). Cet équilibre est compromis dans le cas de certaines muta-
tions génétiques naturelles (observées et étudiées en particulier chez les ovins) ou induites expérimentalement
(Knock-Out (KO) chez la souris). En fonction de la cible moléculaire de ces mutations, le déséquilibre entre
croissance et prolifération conduit à la formation de gros ovocytes entourés de moins de cellules (exemple de
la mutation FecB chez les brebis Booroola, associée à augmentation du nombre d’ovulations), ou au contraire
de petits ovocytes enfouis dans une masse dense de cellules folliculaires (exemple de l’inhibine KO chez la
souris) [79].

Dans le follicule multicouches, d’environ 200 µm diamètre (taille relativement conservée entre espèces), des
cavités remplies de liquide apparaissent et fusionnent pour former une seule grande cavité appelée l’antrum.
Jusqu’à ce stade, le développement folliculaire est principalement contrôlé par des facteurs ovariens locaux.
On rappelle qu’au stade de développement terminal, le follicule devient dépendant de l’approvisionnement en
hormones hypophysaires (FSH et LH). Le passage de la phase basale à la phase terminale correspond donc
à un changement fonctionnel du follicule : pour continuer sa croissance, le follicule a besoin de fourniture
en hormones gonadotrophines. Chez certaines espèces de mammifères, ce changement fonctionnel apparâıt
après l’apparition de la cavité antrale alors que chez d’autres, comme les rongeurs, il apparâıt au moment
de la formation de l’antrum. La phase de croissance après apparition de l’antrum est aussi caractérisée par
une importante prolifération cellulaire des cellules de Granulosa, ainsi qu’une différenciation des cellules
proliférantes en cellules appelées cellules murales, situées à la périphérie du follicule. L’ovocyte quant à lui
ne grossit presque plus, et occupe désormais une position excentrique dans le follicule. La cavité antrale

4. La taille des cellules somatiques évolue certainement au cours du cycle cellulaire mais est considérée relativement constante
tout au long du développement folliculaire, avec un diamètre de l’ordre 10µm.
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crôıt jusqu’à occuper la majeure partie du volume du follicule pré-ovulatoire. L’ovulation est caractérisée
par une rupture de la membrane basale qui entoure les cellules somatiques, et l’expulsion de l’ovocyte. Le
rôle exact de l’antrum n’est pas complètement connu, mais plusieurs hypothèses tendent à le considérer
comme une stratégie pour maintenir un certain niveau de "ressources" accessibles pour l’ovocyte et les
cellules somatiques du follicule (réservoir). La vascularisation du follicule ovarien s’arrête au niveau de la
fine couche a-cellulaire constituant la membrane basale, à l’extérieur de l’amas cellulaires constitué par les
cellules de la Granulosa et de l’ovocyte. Cependant, pour atteindre une production de stéröıdes suffisante,
capable d’influencer la dynamique de l’axe HHG, le follicule en croissance doit accrôıtre considérablement
son nombre de cellules somatiques. Ainsi, à partir d’une certaine taille, sans formation de l’antrum mais avec
toujours une prolifération cellulaire importante, le follicule n’aurait pas accès à suffisamment de facteurs de
croissance et/ou à l’oxygène. L’antrum apparâıt alors comme une stratégie possible pour accrôıtre le nombre
de cellules somatiques tout en maintenant relativement constant l’épaisseur de cette couche de cellules, qui
serait le facteur limitant la diffusion de "ressources" depuis l’extérieur de l’amas cellulaires vers l’intérieur
[28]. Notons également que l’antrum a certainement un rôle clé au moment de l’ovulation, en donnant une
force considérable d’écoulement pour permettre à l’ovocyte de rejoindre les tubes utérins.

Nous terminons ce chapitre avec également quelques ordres de grandeurs de morphologie de follicules et
de nombre de cellules somatiques, donnés en Table 4. Là aussi, il faut garder à l’esprit qu’il y a une grande
hétérogénéité dans le nombre de cellules pour deux follicules de même taille (d’un facteur 5 selon [39]).

Table 4 – Ordre de grandeur du diamètre d’un follicule, du diamètre de l’ovocyte et du nombres de cellules
somatiques aux différents stades de développement (Primordial, Antral, Terminal, Ovulatoire). Voir [101,
Chapitre 15], [52] et les références mentionnées par espèce ci-dessous.

Diamètre du follicule Diamètre de l’ovocyte Nbre de cellules somatiques
Prim. Ant. Term Ov. Prim. Ant. Term Ov. Prim. Ant. Term Ov.

Espèces (mm) (µm) -
Femmes
[54]

0.03
à
0.06

0.1
à
0.3

2 20 19 120 120 120 15 104 106 5.107

Brebis
[30, 72]

0.03
à
0.06

0.1
à
0.3

2 6 à
8

10 à
40

100 100 100 15 104 2 ·
106

3.5 ·
106

Souris
[87, 86,
54, 45]

0.007
à
0.025

0.2
à
0.35

0.35 à 0.6 4 à 6 80 à
120

85 à 180 <20 103

à
104

1.5 ·
104

3 ·
105
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1.2 Modeling an individual follicle growth
In this chapter, we go through two works on the modeling of the growth of an ovarian follicle [A6, A5]. This

work was carried out as part of the thesis of Frédérique Robin [94], which we co-supervised with Frédérique
Clément. I start by presenting the datasets used during these two works in the section 1.2.1. Then I detail in
section 1.2.2 a model of somatic cell transition during activation of a primordial follicle [A6], and in section
1.2.3 a model of somatic cell proliferation during basal follicle growth [A5]. Finally, I discuss some modeling
and statistical perspectives in section 1.2.4.

1.2.1 Data set presentation

This section is mostly taken from [94] and is included for the reader convenience. The dataset used throu-
ghout this work was provided to us by Kenneth McNatty and is partially published in [72, 104]. The dataset
consists of morphological measurements of follicles performed by histology on ovaries from 120 and 135 days
old sheep fetuses (cf Figure 2) : follicle and oocyte diameter, cell number, layer number, presence or absence
of an antrum. The sheep used in this study are of the Romney strain. The dataset is subdivided into two
subsets corresponding to two different genotypes : the “wild-type” genotype (WT) and the “mutant” Booroola
(BB) genotype. Morphological and timing differences are observed between these two genotypes. During fetal
development, all follicles stages appear at a later age in BB compared to WT. Also, at the end of the compact
phase, oocytes are larger and there are fewer cells in BB. The alteration of follicle development observed in
Booroola genotype comes from a natural mutation affecting the receptor to growth factor BMP15 [79].
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Figure 2 – Dataset presentation. Follicle diameter, oocyte diameter and somatic cell numbers in sheep
fetuses from Wild-Type and Mutant phenotype, taken from [72]. The blue points represent the 120–days old
fetuses while the orange ones correspond to the 135–days old fetuses.

The measurement of morphological characteristics of ovarian follicles is an invasive procedure. The ovaries
are removed from individuals, then sectioned (slices of 20µm thickness) and fixed with a chemical agent. To
perform the measurements (diameter, number of layers, etc.), experimentalists select the optical plane passing
through the oocyte nucleolus (see for instance Figure 3). Cells are counted from this optical plane. This 2D
cell number can be used to assess the whole 3D cell number from stereological techniques (see details in
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Figure 3 – Histological slice of an ovary with different types of follicles. Courtesy of Danielle
Monniaux.

[72]). The only temporal information associated with the morphological measures is the fetus age, which,
as explained in the introduction, is not in principle correlated with the time spent by each follicle since its
activation (which is asynchronous).

Although the dataset presented in Figure 2 can look consistent as a whole, it hides very distinct biological
processes at play within the follicle growth. In particular, there a mixture of quiescent follicle and actively
growing follicles. To segregate between each other, we dwell on a particular feature of our dataset, the follicle
type. Indeed, follicles (in basal growth phase) were classified by the expert according to the following six
categories (see details in [94]) :

— Type 1 : primordial quiescent follicles (one layer of flattened somatic cells),
— Type 1A : transitory follicles (one layer with a mixture of flattened and cuboidal somatic cells),
— Type 2 : primary follicles (from one to less than two complete layers of cuboidal somatic cells),
— Type 3 : small preantral follicles (from two to less than four complete layers of cuboidal somatic cells),
— Type 4 : large preantral follicles (from four to less than six complete layers of cuboidal somatic cells),
— Type 5 : small antral follicles (more than five layers of cuboidal somatic cells and a fully formed

antrum).
Figure 4 presents the number of follicles of different types observed in our dataset. As mentioned, there are
some differences in the distribution of follicle types according to the genotype. In the Mutant genotype, there
are only very few primordial follicles already formed at age 120 days, and newly formed follicles have not
reached the Type 4 and 5 at age 120 neither 135 days. In the sequel, we have used the data for Type 1, 1A
and 2 to model the activation phase (section 1.2.2), and Type 2 to 4 to model the compact growth phase
(section 1.2.3).

Furthermore, we applied additional criteria, gathering information from other studies, in order to really
select follicles that can be termed as "viable" (see details in [94]). Only properly formed follicles will be able
to get activated, and only follicles with a good balance between the oocyte diameter and the cell layer number
will be able to pursue their development.

Finally, some partial kinetics information can be inferred from the first times of appearance of the different
follicular types during the fetal life (see details in in [94]). From these information, we roughly deduce the
transit times : it takes 20 days to go from a Type 2 to a Type 3 follicle, and 15 more days to go from a
Type 3 to a Type 4. These orders of magnitude have to be taken with cautious given the time resolution of
the data (10 to 15 days !).

The dataset used for the calibration of the follicle activation model finally consists of 90 data points for
the Wild-Type dataset, and 81 data points for the BB dataset. The dataset used for the calibration of the
model dedicated to the compact growth phase consists of 101 follicles, all from the Wild-Type phenotype.
These datasets are presented in Figure 5.

We close this presentation on available data by mentioning that our experimentalist collaborators are
able to follow the growth of ovarian follicle in-vitro during a specific window of follicle development, namely
from pre-antral to large antral follicles [29]. This experimental device presents a very rich opportunity to
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Figure 4 – Follicle types. Follicle distribution according to follicle types (same dataset as presented in
Fig 2).
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Figure 5 –Wild-Type extracted datasets.We extract from the original dataset (see Fig 2), two datasets :
one dedicated to the compact growth phase (red, green and blue points, corresponding respectively to Type
2, 3 and 4) and one dedicated to the activation phase (coral and cyan points, and cross sign +). The gray
points represent the follicles of the original dataset that we did not select based on other criteria (see details
in in [94]).

obtain real kinetic information on this process (with of course all possible bias due to the in-vitro settings).
This and other recent improvements on experimental devices (such as CLARITY [45]) constitute interesting
perspectives for quantitative dynamical modeling of follicle growth.

1.2.2 Activation phase

This chapter is taken from [A6].
We model the follicle activation by focusing on the number of somatic cells in one follicle, from its

initial quiescent state (primordial follicle) to its fully activated state (primary follicle). The somatic cells
are structured in two types : flattened (here after named precursor) cells and cuboidal (here after named
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proliferative) cells. The model aims to study the joint dynamics of the precursor cells F and proliferative
cells C within a single follicle, whose populations are ruled by four types of cell events. In the absence of
specific information, we used the simplest formulation as possible for all event rates, according to Occam’s
razor principle. Two cell events occur at the expense of the precursor cells, which are consumed during their
transition : (i) R1 is the spontaneous transition of precursor cells into proliferative cells, whose rate α1F is
linearly proportional to the number of precursor cells ; (ii) R2 is the auto-amplified transition of precursor
cells into proliferative cells, which occurs at rate β FC

F+C . This event represents the feedback of proliferative
cells onto the transition of the precursor cells. Two other cell events increase the proliferative cell population
without affecting the precursor cell population : (i) R3 is an asymmetric division of precursor cells F (giving
rise to one precursor cell and one proliferative cell), which occurs at rate α2F ; (ii) R4 is a symmetric division
of the proliferative cells C (giving rise to two proliferative cells), which occurs at rate γC.
These four cell events are the building blocks of modelMFC :

Cell events Rate
Spontaneous transition R1 : (F,C)→ (F − 1, C + 1), α1F,
Auto-amplified transition R2 : (F,C)→ (F − 1, C + 1), β FC

F+C ,

Asymmetric division of F R3 : (F,C)→ (F,C + 1), α2F,
Symmetric division of C R4 : (F,C)→ (F,C + 1), γC .

(MFC)

Cell events R1 and R4 constitute the fundamental ingredients involved in the activation process. We also
consider two additional cell events, R2 and R3, which are not only intended to enrich the model behavior,
but are also substantiated by biological observations. We refer to [A6] for a deeper discussion on the model
design and the choice of rate events.

The model (MFC) is mathematically formulated as a Continuous time Markov chain (CTMC), whose
matrix transition can be directly deduced from (MFC). This stochastic description is especially appropriate
when dealing with a small number of cells. As it can be easily seen from (MFC), the proliferative C population
grows monotonously as the precursor F population decreases until extinction. The number of precursor cells
remains constant whenever there is a division event (R3 or R4), and decreases by one whenever there is a
transition event (R1 or R2). If we are only given the sequence of jump events ((−1, 1) vs (0, 1)), we cannot
discriminate R1 from R2, neither R3 from R4. The biological data will however be slightly richer by providing
snapshot data with the number of flattened and cuboidal cells in distinct follicles. The fact that each event
has distinct rate events in (MFC) gives a priori some possibilities to infer parameter values from these
observations (e.g. R1 and R3 intensities decrease along the activation phase, while R2 and R4 increases).
We present these data in Figure 6 (see [A6] for a detailed presentation).

Starting with no proliferative cells and given (random) number of precursor cells F0, we have mainly
focused in our study [A6] on characterizing the extinction time of the precursor cell population (which
represents the total follicle activation time),

τ := inf{t ≥ 0; Ft = 0|F0} , (1)

and the number of proliferative cells C at that time,

Cτ . (2)

We may notice that the proliferative cells undergo an exponential growth due to the cell event R4 in (MFC).
It is also clear that the precursor cells F cannot decrease faster than the maximal transition rate (α1 +β)F , so
that τ is lower bounded by a hypo-exponential distribution, whose tail distribution is exponentially decreasing
at rate (α1+β). This suggests that the maximal transition rate (α1+β) must be greater than the proliferative
rate γ to control the mean number of proliferative cells at the extinction time of precursor cells. This is indeed
true, and proved in the following main result :

Theorem 1. For any integer p ∈ N∗, we have

E [(Cτ )
p
] <∞ , (3)

if and only if
pγ < α1 + β . (MFC-H1)
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Figure 6 – Experimental dataset for the activation phase. Left panel : experimental data points of
the number of Flattened cells F and the number of Cuboidal cells C, for both the Wild-Type and Mutant
datasets. Red points : primary follicles, green points : transient follicles, blue points : primary follicles. Right
panel : histological slices illustrating the different steps of activation (from left to right : primordial, transitory
and primary follicles). Experimental dataset : courtesy of Ken McNatty ; Histological images : courtesy of
Danielle Monniaux.

The proof of Theorem 1 is obtained by a coupling argument, finding appropriate lower and upper bounds
of Cτ , for which analytical approaches are feasible. As discussed above, the lower bound is simply given
by a Yule process C̃ (with only binary division event R4, that is cell division at rate γC̃) stopped at an
exponential random variable of rate (α1 + β). The upper bound is slightly more technical and goes along the
following simple verbal argument. The proliferative cell population C may be bounded by an immigration-
birth process Ĉ (immigration at rate α2F0, birth at rate γĈ). If C increases without bounds, the rate of
transition of precursor cells will approach (α1 + β) (or the precursor cells extinct before), so that Cτ will be
upper bounded by Ĉ stopped at a hypo-exponential distribution whose tail decreases with a rate arbitrary
close to (α1 + β). Hypothesis (MFC-H1) is thus optimal to guarantee (3).

Theorem 1 provides strong theoretical argument to argue that the division rate of proliferative cells must
be lower than the precursor transition rate, otherwise transient follicle with high number of proliferative cells
will be observed, which is not the case (see Figure 6). The asymmetric transition rate α2 is however not
constrained by such consideration. The proof of Theorem 1 also provides an interesting upper-bound, that is
analytically tractable (at the price of some efforts not shown here !).

This upper-bound motivates the use of a finite projection method [82, 62] to numerically solve the infinite
backward Kolmogorov equation that governs E [τ ] and E [(Cτ )]. Instead of trying to calculate the mean of
(1) and (2), the algorithm computes (exactly) the mean of :

τr := inf{t ≥ 0; Ft = 0 , or Ct ≥ r|F0} , Cτr .

The justification of the algorithm’s accuracy is based on the idea that it is unlikely that Cτr ≥ r, for large
r, so that τr = τ (and Cτr = Cτ ) with high probability. As Cτ may potentially have infinite moments, some
care must actually be taken to calculate those moments with a truncation argument. As a consequence, we
require γ < α1 + β to calculate E [τ ] with an arbitrary precision, and we require 2γ < α1 + β to calculate
E [Cτ ] with an arbitrary precision (we need E

[
C2
τ

]
<∞). See [A6, Proposition 4] for more details. We note

that Monte-Carlo procedures may actually provide estimates for E [τ ] without parameter restriction, since
the second moment of τ is finite for any parameter combination.

Parameter calibration requires a statistical model to attest the distance between the model to the data.
A remarkable feature of (MFC) is that the proliferative cell population C increases by one at any cell event.
Hence the embedded discrete Markov Chain (Fn, Cn)n∈N given by the population at any cell event is such
that Cn is deterministic with Cn = n. Also, the iteration Fn may be deduced from Fn−1, or, say differently,
we deduce the law of Fc at the “pseudo-time” C = c from the law of Fc−1 at the “pseudo-time” C = c− 1 as
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follows : for all (f, c) ∈ S,

P [Fc = f ] = qf+1,f (c− 1)P [Fc−1 = f + 1]

transition

+ qf,f (c− 1)P [Fc−1 = f ]

asymmetric/symmetric division

, (4)

where

qf+1,f (c) =
α1(f + 1) + β (f+1)c

f+1+c

(α2 + α1)(f + 1) + γc+ β (f+1)c
f+1+c

, qf,f (c) =
α2f + γc

(α2 + α1)f + γc+ β fc
f+c

. (5)

Hence (Fc)c∈N is a non-homogeneous discrete time Markov chain, its law (P [Fc = f ])f,c≥0 gives the probability
to get f precursor cells when there is c proliferative cells. We use this discrete time Markov chain to build a
likelihood for our data.
Remark 1. Besides neglecting measurement error and inter-individual variability, we note that doing so, we
implicitly assume that we have a complete observation of the successive cell events, or equivalently, that
the time spent in each state through the follicle activation process is roughly of the same order and do not
bias any snapshot observation from the point of view of the discrete time Markov chain. However, a look at
the data in Figure 6 clearly shows that there is a gap in our observation : we do not have data points for
F ∈ [1, 4] in the Wild-Type strain, suggesting that the end of the follicle activation was fast enough to be
barely visible from a snapshot data of a subset of the follicle population present in the ovaries. We disregard
this consideration for the moment, and will come back to that in chapter 1.4.

To complement Eqs. (4), we take as initial law for F0 a shifted Poisson random variable (on N∗) of
parameter µ, for all f ≥ 1,

P [F0 = f ] =
µf

(eµ − 1)f !
. (6)

We compute the maximum likelihood (MLE) associated to Eqs (4)-(5)-(6) (see details in [A6]). The best fit
results are shown in Figure 7, where we included two submodels, with only (R1,R4) events or only (R1,R3)
events. For both the Wild-Type and Mutant subsets, a visual inspection shows that submodel (R1,R4) leads
to a “direct” transition, followed by prolonged cell proliferation after precursor cell extinction, while with
submodel (R1,R3), there is a higher probability that the total number of cells increases before precursor cell
extinction (as cell proliferation is not anymore possible after cell precursor extinction). We also observe from
the lower panels of Figure 7 that the full model lies somehow in between, with trajectories that display an
intermediate level of cell proliferation before precursor cell extinction.

To analyze the parameter identifiability, we follow the practical approach based on the profile likelihood
estimate (PLE), see for instance [92]. Note that we have fixed α1 = 1 as the time scale cannot be inferred from
these data. The results are shown in Figure 8. In short (see [A6] for details), we could faithfully estimate the
initial condition parameter µ, the proliferative cell division rate can only be upper bounded, there is a very
large confidence interval for α2 in the complete model and β cannot be inferred. Consistently with Theorem
1, we could nevertheless show that the self-amplification transition rate β is constrained to be grater than
the proliferation rate γ. We conclude that the best fit trajectories indeed favors transition over proliferation.

Comparing the results between WT and Mutant, we found that there is around one more flattened cells
initially in WT follicles. No clear timescale separation between the Wild-type and Mutant dynamics could
however be revealed, although some parameter combinations are compatible with a faster transition in the
Wild-Type case than in the Mutant case. This is compatible with monitoring studies, which observed that
the times of apparition of both the first primordial and primary follicles are shifted compared with wild-type
animals (they appear a little later). The predicted mean number of proliferative cells at the extinction time
lies between 8 and 10 cells in both phenotype, while the number of divisions during the follicle activation
is smaller in the Wild-Type than in the Mutant subset (E[Cτ − F0] ≈ 2 in Wild-Type, E[Cτ − F0] ≈ 4 in
Mutant). In overall, we conclude from our extensive data-fitting analysis that the Wild-Type subset exhibits
a clearer separation of dynamics during follicle activation (first cell transition, then cell proliferation), while
in the Mutant cell proliferation could occur at a substantial rate before precursor cell extinction. We note that
this conclusion has to be tempered by the sparse character of our experimental dataset. With the available
experimental dataset, we have yet not managed to make a clear distinction between, on one side, a progressive
transition with a steady net flux from flattened to cuboidal cells, and, on the other side, an auto-catalytic
transition with an ever increasing flux all along the activation phase.
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Figure 7 – Two-events and full submodels : best fit trajectories. Using Formula 4, we compute
each probability P [Fc = f ] for submodels (R1,R4), (R1,R3) and the complete model (R1,R2,R3,R4) with
their respective maximum likelihood parameter estimate for Wild-Type data set (left column) and Mutant
dataset (right column). Each dark gray square corresponds to a data point. The colormap corresponds to the
probability values P [Fc = f ] in log10 scale.

1.2.3 Basal growth phase

This section is taken from [A5].
The objective of this study is to model the compact growth phase of small follicles, focusing on describing

the somatic cell population evolution. We study a multi-type age dependent branching process to represent
the dynamics of a finite population of proliferative cells distributed into successive layers around the oocyte.
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The cell population has two structuring variables : a continuous age variable a ∈ R+ and a discrete layer
index variable j ∈ J1, JK. All cells behave independently from each other, and a cell of age a and index j may
divide and give birth to two new cells according to the following transitions

Cell events Rate
No migration : (j, a)→ (j, 0), (j, 0) bj(a)p

(j)
2,0,

One migration : (j, a)→ (j + 1, 0), (j, 0), bj(a)p
(j)
1,1,

Two migrations : (j, a)→ (j + 1, 0), (j + 1, 0), bj(a)p
(j)
0,2 .

(MC)

In model (MC), b = bj(a) is an age-and-layer-dependent instantaneous division rate, and p(j)
2,0 is the proba-

bility that both daughter cells remain on the same layer, p(j)
1,1 and p(j)

0,2, the probability that a single or both
daughter cell(s) move(s) from layer j to layer j + 1, respectively, with p(j)

2,0 + p
(j)
1,1 + p

(j)
0,2 = 1. There is a fixed

maximal layer J , with p(J)
2,0 = 1. We note the probability that a cell taken randomly among both daughter

cells remains on the same layer by p(j)
S = 1

2p
(j)
1,1 + p

(j)
2,0, and p

(j)
L := 1 − p(j)

S is the probability that the cell
moves, for any j ∈ J1, J − 1K.

Hence, cells divide and the two daughter cells of age 0 may move irreversibly from one layer to the next.
The cell population may be represented for each time t ≥ 0 by a measure Zt ∈MP , the set of point measures
on E := J1, JK× R+ :

Zt =

Nt∑
k=1

δ
I
(k)
t , A

(k)
t
, Nt :=� Zt,1�=

J∑
j=1

∫ +∞

0

Zt(dj, da) ,

where Nt is the total number of cells at time t. In the sequel, we take for simplicity Z0 = δ1,0. Yet, a typical
biological condition would be the outcome of the activation process, see model (MFC), that is the number
of proliferative cells of a primordial follicle.

The mathematical question is to understand the long time behavior of Zt. Clearly, an exponential growth
is expected, like in standard branching processes or finite-dimensional linear systems.

On a layer j, the cell division time is given by a random variable τj , whose probability distribution is
given by

dBj(x) = bj(x)e−
∫ x
0
bj(a)da .

Looking for the time being a layer j as an isolated system (without influx from layer j−1), it is classical that
the growth rate of the population of cells on that layer is dependent of the sign of (2p

(j)
S − 1) and governed

by the rate λj defined by :

Definition 1. The intrinsic growth rate λj of layer j is (if it exists) the unique solution of

dB∗j (λj) :=

∫ ∞
0

e−λjsdBj(s)ds =
1

2p
(j)
S

. (7)

Note that a solution of (7) does not necessarily exist, which may lead to technical complications (essentially
because cells would divide too fast, and leads to infinitely many cells in age 0, or too slow, and leads to cells
never dividing of age infinity). For this reason, we assume the (non-optimal) hypotheses :

Assumption 1. For all j ∈ J1, J − 1K, p(j)
S , p

(j)
L ∈ (0, 1).

Assumption 2. For each layer j, bj is continuous bounded below and above :

∀j ∈ J1, JK, ∀a ∈ R+, 0 < bj ≤ bj(a) ≤ bj <∞ .

Assumption 3. For all j ∈ J1, JK, λj > −lim inf
a→+∞

bj(a).

Assumptions (1)-(2) guarantee the existence and uniqueness of λj with λj > −bj , and we recall that
λj < 0 when p(j)

S < 1
2 , λj > 0 when p(j)

S > 1
2 and λj = 0 when p(j)

S = 1
2 . In particular, λJ > 0 as p(J)

S = 1.
Assumption 3 implies additional regularity for t 7→ e−λjtdBj(t) :

∀j ∈ J1, JK,∀k ∈ N,
∫ ∞

0

tke−λjtdBj(t)dt <∞ .
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Thus each layer has a proper intrinsic rate of growth (or degrowth). However, this is not enough to obtain
an exponential growth for the whole population. Just like a matrix may have multiple eigenvalue, one has to
exclude some degenerate cases that would lead to polynomial corrections. This consideration motivate the :

Assumption 4. There is an unique maximal element taken among the intrinsic growth rates (λj, j ∈ J1, JK)
(defined in Definition 1). This unique element is called the Malthus parameter, λc, and the layer such that
the index j = c is called the leading layer.

Note that it is clear that λc is positive. The precise long time results requires the introduction of an
eigenproblem (P), analogous to finite-dimensional linear systems :

LP ρ(a) = λρ(a), a ≥ 0

ρ(0) =

∫ ∞
0

K(a)ρ(a)da

� ρ,1�= 1 and ρ ≥ 0 ,

, LP ρ(a) = ∂aρ(a)−B(a)ρ(a), (P)

and its dual problem (D){
LDφ(a) = λφ(a), a ∈ R∗+
� ρ, φ�= 1 and φ ≥ 0

, LDφ(a) = ∂aφ(a)−B(a)φ+K(a)Tφ(0) , (D)

where

B(a) = diag(b1(a), ..., bJ(a)), [K(a)]i,j =

 2p
(j)
S bj(a), i = j, j ∈ J1, JK ,

2p
(j−1)
L bj−1(a), i = j − 1, j ∈ J2, JK .

We now state the existence of maximal solutions to this eigenproblem.

Theorem 2 (Eigenproblem). Under Assumptions 1, 2, 3 and 4, there exists a first eigenelement triplet
(λ, ρ, φ) solution to equations (P) and (D) where ρ ∈ L1(R+)J and φ ∈ Cb(R+)J . Moreover, λ = λc is the
Malthus parameter given in Definition 4, and ρ and φ are unique.

Due to the specific form of the transition between layers, we may actually obtain analytical formulas
for the eigenfunctions, so that the hypotheses of Theorem 2 could be weakened. In any case, from these
eigenelements, using martingale techniques [56], we deduce directly the following result of convergence for
the stochastic process Z :

Theorem 3. Under Assumptions 1, 2, 3 and 4, Wφ
t = e−λct � φ,Zt � is a square integrable martingale

that converges almost surely and in L2 to a non-degenerate random variable Wφ
∞.

An analytical characterization of the law of Wφ
∞ is not always possible. Instead, using generating function

methods developed for multi-type age dependent branching processes (see [55], Chap. VI), we write a system
of renewal equations and obtain analytical formulas for the first asymptotic moment (up to some integral
calculations, some effort needed !). We define Y (j,a)

t := 〈Zt,1j,≤a〉 as the number of cells on layer j and of
age less than or equal to a at time t, and ma

i (t) its mean starting from one mother cell of age 0 on layer 1 :

ma
j (t) := E[Y

(j,a)
t |Z0 = δ1,0] .

Theorem 4. Under Assumptions 1, 2, 3 and 4, for all a ≥ 0,

∀j ∈ J1, JK, ma
j (t)e−λct → m̃j(a), t→∞, (8)

where m̃j(a) = 

0, j ∈ J1, c− 1K,∫ a
0
ρ(c)(s)ds

2p
(c)
S ρ(c)(0)

∫∞
0
sdBc(s)e−λcsds

, j = c,

∫ a
0
ρ(j)(s)ds

2p
(c)
S ρ(c)(0)

∫∞
0
sdBc(s)e−λcsds

c−1∏
k=1

2p
(k)
L dB∗k(λc)

1− 2p
(k)
S dB∗k(λc)

, j ∈ Jc+ 1, JK.
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At the price of some assumptions, the theoretical results thus predict an asymptotic exponential growth,
with a stable repartition according to age/layer (we refer to [A5] for analogous results from the deterministic
point of view on the same model). It can be seen from our analytical results that under assumption 4 there is
a leading (or driving) layer, the one that has the highest intrinsic growth rate. Because cells are not allowed to
come back to previous layer, the cell population in layers below the leading one are growing at an exponential
rate strictly lower than the Malthus parameter, and thus vanishes in the renormalization (8).

Interestingly, our data-fitting approach on the data presented in Figure 5 showed that it is plausible that
the leading layer is the first one and that the somatic cell population in a basal follicle undergo an exponential
growth, driven by the intrinsic exponential rate of the first layer and subsequent migration towards outer
layers. Due to the very sparse data compared to our parametrization in model (MC), we had to simplify
quiet a lot the model calibration approach. We then considered age-independent birth rates of the form

bj =
b1

1 + (j − 1)× α
, j ∈ J1, 4K, α ∈ R. (9)

These relations (9) are motivated by biological specifications and were primarily used in [34] : somatic cell
division is supported by growth factors secreted by the oocyte, thus division is slower and slower when the
somatic cells get further away of the oocyte. Hence the law (9) reflects that (bj) is decreasing, which does
not necessarily imply that λj = (2pjs − 1)bj does so as well. We finally focused only on the mean number of
cells in each layer. We are then lead to a very simple finite dimension linear system{

d
dtM(t) = AM(t)
M(0) = (N, 0, ..., 0) ∈ RJ , [A]i,j :=

{
(2p

(j)
S − 1)bj , i = j, j ∈ J1, JK,

2p
(j−1)
L bj−1, i = j − 1, j ∈ J2, JK.

(10)

where we considered an initial condition with N ∈ N∗ cells in the first layer.
We proved the structural identifiability of the parameter set P := {N, bj , p(j)

S , j ∈ J1, JK} when we observe
the vector M(t;P) at each time t.

Theorem 5. Under Assumption 1, and complete observation of system (10), the parameter set P is identi-
fiable.

We then perform the estimation of the parameter set P from experimental cell number data retrieved on
four layers and sampled at three different time points.

We estimate the parameter set Pexp = {N, b1, α, p(1)
S , p

(2)
S , p

(3)
S } using deterministic optimization of a

likelihood with an additive Gaussian noise model, using the D2D software [93] (see Figure 9 and Table 5). An
analysis of the profile likelihood estimate showed that all parameters except p(2)

S are practically identifiable
(see details in [A5]).

Table 5 – Estimated values of the parameters of model (10), associated to the best fit in Fig 9.. Only
black parameters were free parameters. The blue ones are given by Eq. (9), and the orange ones given by
λj = (2pjs − 1)bj .

Layer j p
(j)
S bj λj

1 0.6806 0.1146 0.0414
2 0.4837 0.0435 -0.0014
3 0.9025 0.0354 0.0285
4 1 0.0324 0.0324

Going back to Theorem 4, the predicted long time repartition with the parameter set of Table 5 is a cell
population with same order of magnitude in all layers (λc = λ1), such that layer 3 has the more cells among
the four layers included in the study. This certainly points out the limitation of our approach.
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Figure 9 – Data fitting with model (10). Each panel illustrates the changes in the cell number in a
given layer (top-left : Layer 1, top-right : Layer 2, bottom-left : Layer 3, bottom-right : Layer 4). The black
diamonds represent the experimental data, the solid lines are the best fit solutions of (10) and the dashed
lines are drawn from the estimated variance.

1.2.4 Perspectives

We have studied two relatively simple population dynamics model, which allow to shed light on the cell
kinetic mechanism at play during the early phase of ovarian follicular growth. These model were somehow
adapted to the given set of data we dispose of, in order to extract the maximum of information from it (see
chapter 1.4).

Regarding the activation phase, one may wonder if the spatial location of the first proliferative cells
versus the remaining flattened cells play a role. This would require a refined model with some geometrical
structure. The introduction of auto-amplification rate was motivated by some spatial interpretation, with
two possible (and non exclusive) underlying mechanisms. First, the very first cell transitions could awake the
oocyte and settle a positive feedback loop between the somatic cells and the oocyte [77] that would in turn
secrete stimulatory factors reaching the surrounding somatic cells by diffusion (global amplification). Second,
communications between adjacent somatic cells could help propagate activation step by step, from one (or
a few) originally activated cell (local amplification). The later local amplification might be detected in the
data by recording the location of cuboidal cells and checking whether cluster of spatially related cuboidal
cells can be detected. Homogeneous repartition of cuboidal cells from static histological data would rather
favor the the global amplification scenario.

For the compact growth phase, we are well aware that our model lacks several crucial ingredient in the
dynamics of follicle growth, namely the cell crowding on each successive layers around the oocyte, and the
dialog that settle between the growth of the oocyte and the proliferation of somatic cells. The interplay
between the growth and proliferation processes was at the heart of the first model designed by Frédérique
Clément and co-authors in [34]. Although this study has shown the necessary balance between the two
processes, the detailed geometrical structure makes it very hard to analyze extensively the model outputs
and to fully appreciate the role of each parameters in the transient and long term evolution of the follicle.
The mean-field limit obtained recently in [74] may provide an interesting intermediate between somehow too
simplistic and hardly tractable models.

Last but not least, the current perspective in our team is to design a satisfactory model of antrum
formation and growth, to close the loop of a series of models on ovarian follicle growth. The difficulty there
is to capture the essential biophysical processes that explain the apparition of this cavity, at a precise follicle
diameter, and its subsequent growth. Our current working hypothesis is that competing forces are exerting on
the antrum. On one side, an osmotic gradient pressure tends to enlarge it, as a consequence of the secretion
by somatic cells of some large osmotically-active molecules (proteoglycans and glycosaminoglycans, see [33])
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which are "trapped" inside the follicle. On the other side, a more classical mechanical gradient pressure, as
a consequence of cell proliferation and overcrowding. We have formulated this model in a continuous PDE
approach, based on advection-diffusion equations. We obtain a moving-boundary problem, which is a variant
of the porous medium equation with non trivial boundary condition. The analysis of such models is a work
in progress...

1.3 Modeling the whole follicle population
In this chapter, we turn to models that takes into account the whole follicle population on a lifespan time

scale. We first describe briefly in section 1.3.1 the typical dataset we are interested in. In section 1.3.2 we
present a multi-time scale model together with a singular perturbation analysis. We close this chapter with
some perspectives in section 1.3.3.

1.3.1 Data set and working hypothesis

Typical data on follicle counts are based on invasive measures of follicles that are manually counted and
classified into distinct morphological classes adapted to the given species. Repeated measures on distinct
individuals at different ages then results in unpaired time series of follicles according to age. These data are
mostly available on mouse models [42, 44] (see Figure 10), sheep [95] or women [37], with variable granularity
on particular sub-classes of follicles according to studies. This is little to say that exhaustive counting data
are scarce. Yet, as mentioned in introductory chapter 1.1, recent biotechnological improvements may lead to
a gain of interest for more quantitative data in a near future.

There have been quiet of interests in statistical analysis of those data, trying most of the time through
regression analysis to assess the difference between different genotype or even different species [37]. From the
modeling side, pioneering studies (see e.g. [42]) have focused on fitting the parameters of a linear compart-
mental model, with one compartment by follicle class. This approach was clearly motivated by the apparent
exponential decay of the total follicle numbers through age. A closer look at the data actually revealed
some limitations of simple exponential models. Generalizations have thus considered time-varying (piecewise
constant) rates [43], where the timing of the rate changes is motivated by global anatomical changes (closely
after birth, at puberty, close to menopause, etc...).

These studies remain rather descriptive, and do not take into account follicle interactions, which is now
clearly established through paracrine and endocrine feedback loops (see introductory chapter 1.1). Starting
from previous linear compartmental studies, we thus have extended in [A3] the population dynamic approach
accounting for interactions between follicles. For instance, we have in mind the possibility to represent the
population-level modulation exerted by growing ovarian follicles on the activation of quiescent, primordial
follicles, and/or the competition between terminally growing follicles [35].

We may observe in Tables 1-2-3 that various order of magnitude and time scales are involved in the whole
folliculogenesis. In particular, it is striking to note that the level of the population of primordial follicles is
10 to 100 times higher than small growing follicles, and that the estimated rate of activation is also 10-100
times slower than the growth rate of basal follicles, according to the species. We make then the hypothesis
that two distinct time scales are present, which are also related to two distinct orders of magnitude :

— The "static" reserve of the quiescent follicles is initially very abundant, of order 1
ε , and each quiescent

follicle has a slow basal activation rate, of order ε. The overall rate of apparition of new small growing
follicles is thus or order 1.

— The "dynamic" reserve of growing follicles is of order one, and their growth rate is of order 1.
— The timescale of interest, the lifespan, is of order 1

ε .
We take advantage of the timescale difference between the growth and activation processes to apply model
reduction techniques in the framework of singular perturbations (slow/fast systems). The mathematical model
and theoretical results are presented in the next section.

1.3.2 Slow-Fast model

This section is taken from [A3] and from a joint work in preparation with Guillaume Ballif (Ph.D student,
co-supervised with and Frédérique Clément).
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Figure 10 – Population of Follicles in mice according to age (in days). The data is extracted from
[42].

We model through a continuous time Markov chain the population of Follicles structured in d + 1 com-
partments. The first compartment represents the number of quiescent ("static reserve") follicles X, and the
subsequent d compartments the number of growing ("dynamic reserve") follicles, Y = (Y1, Y2, · · ·Yd). After
scaling by a small parameter ε, the transitions of the chain obey the following rules :

Follicle events Rate
self-renew : (X,Y )→ (X + ε, Y ), 1

εr0(X)X ,
atresia : (X,Y )→ (X − ε, Y ), 1

εµ0(Y )X ,
activation : (X,Y )→ (X − ε, Y + e1), 1

ελ0(Y )X ,
growth : (X,Y )→ (X,Y + ei+1 − ei), 1

ελi(Y )Yi , i = 1..d− 1 ,
atresia : (X,Y )→ (X,Y − ei), 1

εµi(Y )Yi , i = 1..d ,

(Mpop)

and where ei denotes the unit vector on Rd such that ei,j = 1j=i, X is valued in εN, and Y is valued in Nd.
A few comments about model (Mpop) are in order. The ε-dependency of rates in (Mpop) is due to a time

scaling to look the process at longer time scale than the individual growth time scale. The jump size of ε
for the X compartment reflects its large initial size after abundance scaling. Rate functions r0, µ0, λ0, λi, µi
provide a compact formalism to resume the nonlinear interaction between follicles. The rate r0 is included to
take into account specific capacity of germ cells to self-renew in some species like in fish species. We could
think for instance of logistic-like growth rate

r0(x) =
h0

c0 + x
.

For most mammals species, this self-renew capacity is believed to be null. For the remaining rates, we typically
have in mind the following choices, for i ∈ {0, . . . , d},

λi(y) = mi +
fi

1 +K1,i

d∑
j=1

ω1
i,jyj

, µi(y) = gi

1 +K2,i

d∑
j=1

ω2
i,jyj

 , (11)

with non-negative parameter constants, fi (fd = 0), K1,i, gi, K2,i and ωki,j ∈ [0, 1]. The formulation of the
growth and death rates in Eq. (11) is based on the following, biologically-grounded principles. Parameters
mi+fi and gi set the “basal levels” of growth or death rates, as they would be ideally observed in standardized
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situations where follicle dynamics would be uncoupled from one another. Such a situation is rather well
approximated by innovative devices of in vitro culture of isolated ovarian follicles. From this basal situation,
switching the coupling on would result in lowering the growth rate and increasing the death rate. Parameters
K1,i (resp. K2,i) tune the sensitivity of the growth rate (resp. death rate) of a given developmental stage i to
the other follicles’ feedback. Parameters ωki,j are used to weight, or even filter (when their values are set to
zero) the contribution of follicles from any developmental stage j ≥ 1 to the control of the maturation (k = 1)
and death rates (k = 2) of follicles in developmental stage i ≥ 0. For instance, the maturation rates of the
earliest stages are slowed down by AMH, which is secreted by the small growing follicles. On the other end,
the survival of the terminally developing follicles is highly sensitive to the sufficient supply of FSH, whose
levels are in turn down regulated by hormones secreted by the cohort of terminally developing follicles itself.

The limits ε → 0 of model (Mpop) is intuitively deduced from the following consideration. The first
compartment X will make more and more jumps of size ε at rate 1

ε . This is the typical scaling for a functional
law of large numbers, and X will then be expected to converge to a continuous deterministic function solution
of some ordinary differential equation, provided one can prove sufficient regularity and compactness property
for X. The growing compartment population Y keeps doing jumps of size "±1", at an ever and ever increasing
rate 1

ε . This process will thus be a fast varying process and cannot converge in a standard functional sense. It is
tempting to describe the time dependence of Y as a function of t/ε, Y ≈ Y ( tε ). Formally letting ε→ 0 leads to
Y (∞). Indeed, providing Y is ergodic for any "frozen" X value, it turns out that Y will converge in some sense
towards its X-dependent (and thus time-dependent) steady-state probability distribution. At the limit ε→ 0,
the time dependent function Y does not have a proper meaning any more, and any function of Y are rather
to be replaced by their averaged value against a limiting time-dependent measure. Probabilistic literature
usually refer to averaging theorem, while more applied literature refers to quasi steady-state approximation
(QSSA).

We now assume the following hypotheses on functions λi, µi and r0 :

• Upper bound of the renewal rate r0 :

∃R0 > 0, ∀x ∈ R+, r0(x) ≤ R0 , (Mpop-H1)

and regularity :
x 7→ xr0(x) is locally Lipschitz continuous on R+ . (Mpop-H2)

• Upper bound of the activation rate λ0 :

∃B0 > 0, ∀y ∈ Nd, λ0(y) ≤ B0 , (Mpop-H3)

• Positivity of activation/maturation rates :

∀y ∈ Nd ,∀i ∈ [[0, d− 1]] , λi(y) > 0 . (Mpop-H4)

• Lower bound of the total transit rates from each compartment

∀i ∈ [[0, d− 1]], ∃αi > 0, ∀y ∈ Nd, αi ≤ λi(y) + µi(y) . (Mpop-H5)

∃αd > 0, ∀y ∈ Nd, αd ≤ µd(y) . (Mpop-H6)

Our main result is

Theorem 6. Under the assumptions (Mpop-H4)-(Mpop-H6), we assume furthermore that

∃p0 ∈ N, ∃D0 ∈ R+ such that ∀y ∈ Nd, µ0(y) ≤ D0

(
1 +

d∑
i=1

yp0i

)
. (Mpop-H7)

Then for a sequence of relatively compact initial condition Xε,in → xin, the process (Xε, Y ε) is relatively
compact in DN[0,∞[×Lm(Nd) and has a unique limit process (x, π) ∈ C1(R+)× Lm(Nd) such that :

dx
dt (t) =

[
r0

(
x(t)

)
− Λ0

(
x(t)

)]
x(t) , x(0) = xin ,

Λ0

(
x(t)

)
=

∑
y∈Nd

(
λ0(y) + µ0(y)

)
πx(t)(y) .

(12)
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with for x ∈ R+, πx such that for all ψ bounded on Nd,∑
y∈Nd

Lxψ(y)πx(y) = 0 , (13)

where

∀y ∈ Nd, Lxψ(y) = λ0(y)x
[
ψ(y + e1)− ψ(y)

]
+

d−1∑
i=1

λi(y)yi

[
ψ(y + ei+1 − ei)− ψ(y)

]
+

d∑
i=1

µi(y)yi

[
ψ(y − ei)− ψ(y)

]
. (14)

The proof of Theorem 6 is based on the following averaging methodology from [65, 66]. We first identify
a limit candidate. To that, we start from the generator associated to the chain (Mpop), given by ∀(x, y) ∈
εN× Nd :

Lεψ(x, y) =
1

ε

(
r0(x)x

[
ψ(x+ ε, y)− ψ(x, y)

]
+ µ0(y)x

[
ψ(x− ε, y)− ψ(x, y)

]
+ λ0(y)x

[
ψ(x+ ε, y + e1)− ψ(x, y)

]
+

d−1∑
i=1

λi(y)yi

[
ψ(x, y + ei+1 − ei)− ψ(x, y)

]
+

d∑
i=1

µi(y)yi

[
ψ(x, y − ei)− ψ(x, y)

])
. (15)

We define the occupation measure πε associated to the fast process Y ε,

∀K ⊂ Nd, πε([0, t]×K) =

∫ t

0

1K(Y ε(s))ds .

Then, we split the generator (15) in two pieces for each variable Xε and πε. On one hand, for test functions
that depends only of x, the generator (15) is close to

Lεψ(x, y) ≈ Aψ(x, y) := x (r0(x)− µ0(y)− λ0(x))ψ′(x) ,

so that we deduce

ψ(Xε(t))− ψ(Xε(0))−
∫

[0,t]×Nd
Aψ(Xε(s), y)πε(ds× dy) +Rεψ(t) (16)

is a martingale, where Rεψ(t) can be shown to converge to 0, almost surely. On the other hand, for test
function depending only of y, we have that

ε [ψ(Y ε(t))− ψ(Y ε(0))]−
∫

[0,t]×Nd
LXε(s)ψ(y)πε(ds× dy) (17)

is a martingale. Finally, with appropriate compactness criteria, we may extract a converging sub-sequence of
(Xε, πε) and pass to the limit in martingales (16)-(17) to recover Eqs. (12)-(13)-(14).

The uniqueness part requires to prove that a single quasi steady-state distribution exits (namely a single
solution πx of (13) for each x), together some moment control and x-dependent regularity, which is simplified
here by the specific x-dependence of the generator (14) of the fast process.

Hypothesis (Mpop-H1) is used to obtain straightforward compactness property forXε, and (Mpop-H2) is a
standard assumption for uniqueness of the limit model. Hypotheses (Mpop-H3) with (Mpop-H5)-(Mpop-H6)
ensure compactness of the fast process Y ε while (Mpop-H4) ensure its irreductibility. The lower bounds
(Mpop-H5)-(Mpop-H6) also give (non-optimal) criteria that guarantee exponential ergodicity of the fast
process, which is required to prove uniqueness of solutions of the limit model. The last hypothesis (Mpop-H7),
although not very restrictive, is purely technical to ensure integrability of πx against µ0, required to define
Λ0 in the limit model (12).
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1.3.3 Perspectives

The limit model obtained in Theorem 6 is a first step to analyze the effect of nonlinear interactions
between follicles on key output of folliculogenesis, such as the decay rate of the follicle pool, its robustness
to genetic or external perturbations, and so on. The limit model is also adequate for data fitting of follicle
count data such as those shown in Fig 10 (away from time origin, in order for the fast process to get time
to reach the QSSA). However, this requires to be able either to solve analytically this model (see below), or
to simulate it numerically in an efficient way. This is not completely trivial, and two strategies are currently
in evaluation. A first one is based on a direct solution of (12) with a truncation argument (like in section
1.2.2) to find πx and compute the right hand-side of (12). This strategy appears to be restricted with respect
to the dimension of the state-space, and thus the number of compartments. A second strategy tries instead
to simulate sample path of (Mpop) with a cost that is independent of ε. The Xε process is simulated using
the τ -leap method (fixed time-step simulation), and the fast process Y ε is replaced by an auxiliary "nested"
chain that approximates the quasi steady-state distribution.

We also note that the solution of (13) can be computed analytically when the rate functions are linear
with respect to x, y (constant λi, µi), see [A3]. The solution is a product of Poisson laws, with compartment-
dependent parameter given by λi/(µi+1 + λi+1). This particular case shows that the full set of parameters
is not identifiable with data like in Fig 10, where we cannot distinguish the growth rate from the death
rate. Further data/information is thus needed, like the number of atretic follicles (which could potentially be
accessed with specific bio-markers), or transit time between each compartment (which have been estimated
using various methods, including data fitting of similar models, see table 3).

1.4 Perspectives on combining individual morphological models with population
models

In this last chapter on modeling the ovarian folliculogenesis, we discuss how to combine both approaches
presented in chapter 1.2 and 1.3, namely individual-scale morphological models with population-level models.

To that, we come back to a comment on the likelihood used for calibrating the activation model, see
remark 1. The biological data of chapter 1.2 provides snapshot on possible morphological characteristics of
follicles, namely number of cells, diameter of oocyte, antrum, and so on. We have used a model of the growth
of a single follicle with the requirement that its possible trajectories resemble as closely as possible to the
observed follicles in the snapshot data. Doing so, we are not able to capture neither absolute nor relative
kinetics requirements.

In contrast, the quasi steady-state distribution πx, obtained in theorem 6 from chapter 1.3 contains
dynamical information that are build in its infinitesimal generator : the relative proportion of follicle in each
compartment is dependent on the growth rates λi’s (and death rates µi’s).

The snapshot morphological data are certainly more satisfactory interpreted as (a sampling of) a quasi
steady state distribution of a dynamical morphological process. Furthermore, this point of view gives an unified
way to gather our different models on a single modeling framework to decipher the various hidden interactions
and kinetic processes at play within the ovarian folliculogenesis.

To be more specific, the structuring d fast compartment of model (Mpop) can be replaced by the cell
content (f, c) ∈ N2 of follicles of model (MFC). Thus, a possible inclusion of model (MFC) within the
multiscale population framework of model (Mpop), leads to the following model, by analogy with the limit
model (12), 

dx

dt
(t) = −Λ0(x(t))x(t) , x(0) = xin ,

Λ0(x(t)) =
∑

y∈`1(N2,N)

(λ0(y) + µ0(y))πx(t)(y) ,
(18)

with for x ∈ R+, πx is a probability distribution on the set of summable integer-valued sequences indexed by
N2,

`1(N2,N) :=

y = (yf,c)f,c∈N2 , yf,c ∈ N ,
∑

(f,c)∈N2

yf,c <∞

 ,
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such that for all ψ with finite support on `1(N2,N),∑
y∈`1(N2,N)

Lxψ(y)πx(y) = 0 , (19)

where for any y ∈ `1(N2,N),

Lxψ(y) = λ(y)x
∑
f∈N∗

[
ψ(y + ef,0)− ψ(y)

]
P [F0 = f ] (20)

+
∑

(f,c)∈N2

(α2(y)f + γ(y)c) yf,c

[
ψ(y + ef,c+1 − ef,c)− ψ(y)

]
+

∑
(f,c)∈N2

(α1(y)f + β(y)fc/(f + c)) yf,c

[
ψ(y + ef−1,c+1 − ef,c)− ψ(y)

]
+

∑
(f,c)∈N2

µ(y, f, c)yf,c

[
ψ(y − ef,c)− ψ(y)

]
.

In Eqs. (18)-(19)-(20), x is the (macroscopic) number of quiescent follicles and y = ((yf,c)f,c∈N2) represents
the population of growing follicles, with yf,c the number of follicles with given flattened cells f and cuboidal
cells c. The measure πx is a probability distribution on those follicles. The parameter λ is the rate of activation
of new growing follicles, µ0 (resp. µ) are death rate of quiescent (resp. growing) follicles, and α1, α2, β, γ are
a population-dependent version of the cell kinetic rates of model (MFC). A perspective would be to use
πx(t)(y) as a building block of a likelihood to observe a snapshot y of follicles with given content of flattened
and cuboidal cells, in an individual of age t with (known or hidden) x(t) quiescent follicles. We note that the
mathematical description of the model is slightly more involved, however its interpretation and (importantly)
its parametrization has not drastically changed. The validity of Eqs. (18)-(19)-(20) essentially depends on
the exponential ergodicity of the fast process Eqs. (20). Requirement like µ > γ should be sufficient to ensure
that the number of cells c in a growing follicle stays finite (in mean) before atresia occurs (see similarity with
hypothesis MFC-H1). It is clear that further individual morphological models can be "added" within (20).
Model extensions should hence consider to handle more structuring variable, in order to better represent
growing follicles with respect to several important bio-markers (size, number of cells, maturity etc...).

Relatively few modeling works have been attempted in this field, yet general trends strike out from this
studies : linear models are predominant, and parameter identifiability is often overlooked. Nonlinear multiscale
models like Eqs. (18)-(19)-(20), close to biological data, are thus expected to be valuable in the reproductive
biology field.
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2 Becker-Döring model
Natural mathematical formalism to model the kinetics of polymer formation, or more generally cluster for-

mation, are coagulation-fragmentation processes which describe the dynamics of association and dissociation
of particles in clusters. Among them, the Becker-Döring (BD) model is perhaps the simplest kinetic model
describing a number of properties of the dynamics of phase transitions, such as metastability, nucleation
and coarsening [99]. Those three notions are very large. Roughly speaking, in the context of the BD model,
they mean the following.

— Metastability refers to the existence of a particular point in the phase space which is not stationary
for the dynamical system, yet has the following property : it attracts some solutions that stay arbitrary
close the metastable state for a very large time, before converging towards the true steady-state.

— Nucleation refers to the formation of the most thermodynamically unstable cluster, the nucleus.
Clusters bigger than the nucleus tend to growth, while clusters shorter than the nucleus tend to
shrink. The energy barrier is related to the metastability time.

— Coarsening refers to two-phase systems, in which the interface between the two phases progressi-
vely reduces due to energy minimization constraints : the pattern formed by the two phases grows
("coarsens") with time.

The BD model goes back to the seminal work “Kinetic treatment of nucleation in supersaturated vapors” by
[25]. Since then, it has found many different applications ranging from physics to biology. From the ma-
thematical point of view, this model has received much more attention in the deterministic literature than
the probabilistic one. We refer to our review [A10] for historical comments and detailed literature review on
theoretical results from the deterministic side.

The model was initially designed to explain critical phase condensation phenomena where macroscopic
droplets self-assemble and segregate from an initially supersaturated homogeneous mixture of particles, at
a rate that is exponentially small in the excess of particles. This led to important applications in kinetic
nucleation theory [98]. Mathematical studies in the 90’s showed that (in the deterministic context), departing
from certain initial conditions, the size distribution of clusters quickly reaches a metastable configuration
composed of "small" clusters, and remains arbitrary close to that state for a very large time, before it
converges to the true stationary solution that leads to "infinitely large" clusters (interpreted as droplets)
[60, 88]. This notion will be investigated in a probabilistic context in chapter 2.3.

The BD model consists in describing the cluster distribution according to their size i ≥ 1, i.e. the number
of particles that composed them. Clusters belong to a “solvent” in much smaller proportion and are assumed
to be spatially homogeneously distributed. Along their motion, clusters give rise to two types of reactions,
namely the Becker-Döring rules :

1. A cluster of size 1, commonly called monomer or elementary particle, may encounter a cluster of size
i ≥ 1 to coalesce and give rise to a cluster of size i+ 1.

2. A cluster of size i ≥ 2 may release spontaneously a monomer resulting in a cluster of size i− 1.

These can be summarized by the set of kinetic reactions, for each i ≥ 1,

C1 + Ci
ai−−−⇀↽−−−
bi+1

Ci+1 , (21)

where Ci denotes clusters consisting of i particles. Coefficients ai and bi+1 stand, respectively, for the rate of
lengthening and shortening. These may depend on the size of clusters involved in the reactions and typical
coefficients are derived from physical principles by [89] and [83] :

ai = iα , bi+1 = ai+1

(
zs +

q

(i+ 1)γ

)
, i ≥ 1 .

for 0 ≤ α < 1, zs > 0, q > 0 and 0 < γ < 1. This choice is in agreement with original derivation where
ai ≈ i2/3, bi ≈ ai exp(i−1/3). In particular, the diffusion-limited case of monomers clustering into sphere
corresponds to

— α = 0, γ = 1/2 in 2D
— α = 1/3, γ = 1/3 in 3D

while the interface-reaction-limited case corresponds to
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— α = 1/2, γ = 1/2 in 2D.
— α = 2/3, γ = 1/3 in 3D
In its mean-field (deterministic) version, the BD model is an infinite set of ordinary differential equations

for the time evolution of the concentration of clusters structured according to their size. In its stochastic
version, the BD model is a continuous time Markov chain, on a finite state space. We detail below the
necessary material for introducing our results, and refer to our review [A10] for more details.

2.1 Introduction
2.1.1 Deterministic Becker-Döring model (BD)

The general formulation of the deterministic BD equations, as studied today, seems to go back to [27]
and was popularized among mathematicians by [90]. It assumes the system behaves homogeneously in space
with a high number of clusters, and considers concentrations ci(t) of clusters with size i ≥ 1 at time t ≥ 0.
Assuming classical Law of Mass Action, the lengthening is considered as a second order reaction while the
shortening is a first-order (linear) reaction. The flux associated to the kinetic scheme (21) is thus given, for
each i ≥ 1, by

Ji = aic1ci − bi+1ci+1 . (22)

Considering all the fluxes involved in the variation of the concentration of each ci entails the infinite system
of differential equations, namely the BD equations :

d

dt
c1 = −J1 −

∑
i≥1

Ji , (23)

d

dt
ci = Ji−1 − Ji ,

for every i ≥ 2. The system considered here has no source nor sink. Consequently, for the total amount of
particles, we should have, for all t ≥ 0, ∑

i≥1

ici(t) = ρ . (24)

The infinite sums in Eqs. (23)-(24) are at the heart of some mathematical difficulties. Therefore, a natural
functional space to study the BD model is

X+ = {c ∈ (R+)N : ‖c‖ :=

∞∑
i=1

ici <∞} . (25)

The mathematical foundations of the BD equations have been laid down by [24]. Any solution of the BD
equations defined by [24] satisfies the balance of mass given by (24) at all times, and avoids the so-called
gelation phenomenon in finite time which can occur in general coagulation-fragmentation equations. Essential,
a linear bound on the lengthening rate a is needed to control the infinite sum

∑
aici in Eq. (23) by the mass∑

i≥1 ici. Up to my knowledge, the weakest condition for well-posedness needs to suppose the following growth
condition on rate a, b (see [68]) :

ai − ai−1 ≤ K , bi − bi+1 ≤ K , (BD-H1)

where the second condition on b is purely technical and is needed to obtain uniqueness of solutions.
The most interesting behavior of the BD equations is their long-time behavior. It is not difficult to see

that any steady state solutions of (23) should satisfy the detailed balance condition Ji = 0, for all i ≥ 1,
which leads to

ci = Qiz
i , where Qi =

a1a2 · · · ai−1

b2b3 · · · bi
, (26)

with z > 0 a free parameter. Due the conservation of mass in Eq. (24), it is natural to wonder if one (or
several) candidate equilibrium belongs to the stoichiometric subspace of X+, given by

X+
ρ = {c ∈ X+ : ‖c‖ :=

∞∑
i=1

ici = ρ} .
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To that, we define the following critical quantities

zs :=

(
lim sup
i→∞

Q
1/i
i

)−1

, and ρs := sup
{z<zs}

∑
i≥1

iQiz
i.

The long-time behavior of the BD solution is shown to obey the following dichotomy (under some technical
conditions) :

1) if the initial condition has a sub-critical density ρ ≤ ρs, then its associated solution converges (in
strong norm on X+) as time goes to infinity towards the unique equilibrium of BD equations of same
density ρ ;

2) if the initial condition has a super-critical density ρ > ρs, then its associated solution converges (in
a weak sense) as time goes to infinity towards the unique equilibrium of strictly inferior density ρs.
The difference ρ− ρs is linked to the formation of particles with infinite size that are interpreted as a
different phase, leading to a phase transition.

These long time results are proved with an analogous of a H-theorem with (relative) entropy given by

Hz(c) =

+∞∑
i=1

{
ci

(
ln

ci
Qizi

− 1

)
+Qiz

i

}
. (27)

However, the super-critical case is not completely understood, and no convergence rate towards equilibrium
is known, in contrast to the sub-critical case which is known to be exponentially ergodic [31]. Using time-
independent upper-bound on solutions of BD equations, the existence of a metastable state has been proved
in the limit of vanishing excess of density ρ − ρs [88, 60, 40]. This metastable state has been related to
extremely small nucleation rates in classical nucleation theory [98]. Our work in chapter 2.3 (section 2.3.1)
revisits some of those results for the stochastic (linear) Becker-Döring model.

Further, the large cluster dynamics in the Becker-Döring model have been related to solutions of various
version of Lifshitz-Slyozov equations (LS) [89, 84, 102] (see section 2.1.3 below), for which some coarsening
and self-similarity properties are known, and related to the theory of Ostwald ripening (roughly speaking : the
large clusters grow at the expense of the small ones, which is the case for instance for the oil droplets in pastis
mixed with water – the ouzo effect). Our work in chapter 2.2 (section 2.2.2) adds a connection between the BD
and LS models, in an intermediate regime where nucleation and Ostwald ripening take place at comparable
rates.

2.1.2 Stochastic Becker-Döring model (SBD)

A stochastic version of the Becker-Döring model may be defined as a continuous time Markov chain analog
of the set of ordinary differential equations (23), for which transition are given by the same set of kinetic
reactions (21), but modeling discrete numbers of clusters instead of continuous concentrations. Precisely,
given a positive integer n, we define

Xn :=

{
C = (Ci)i≥1 ∈ NN :

n∑
i=1

iCi = n

}
,

and the state space
X∞ =

⋃
n∈N∗

Xn = l1(N)

of all summable integer-valued sequences. On X∞, we introduced the following operators defined by, for any
configuration C on X∞,

R+
1 C = (C1 − 2 , C2 + 1 , · · · , Ci , · · · ) ,

R−2 C = (C1 + 2 , C2 − 1 , · · · , Ci, , · · · ) ,

and, for any i ≥ 2,
R+
i C = (C1 − 1 , C2 , · · · , Ci − 1 , Ci+1 + 1 , · · · ) ,

R−i+1C = (C1 + 1 , C2 , · · · , Ci + 1 , Ci+1 − 1 , · · · ) .
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Given non-negative kinetic rates (ai)i≥1, (bi)i≥2, the stochastic Becker-Döring model (SBD) is defined as the
continuous time Markov chain on X∞ with transition rates

q(C,R+
1 C) = a1C1(C1 − 1) ,

q(C,R+
i C) = aiC1Ci , i ≥ 2 ,

q(C,R−i C) = biCi , i ≥ 2 .

which clearly leaves invariant each finite subspace Xn. We consider a given fixed n ∈ N∗ for now. For an
initial configuration C in ∈ Xn (deterministic or random), the configuration C(t) defined by the SBD may
alternatively be represented as the solution of the following system of stochastic equations C1(t) = C in

1 − 2J1(t)−
∑
i≥2

Ji(t) ,

Ci(t) = C in
i + Ji−1(t)− Ji(t) , i ≥ 2 ,

(28)

with

Ji(t) = Y +
i

(∫ t

0

aiC1(s)(Ci(s)− δ1,i)ds
)
− Y −i+1

(∫ t

0

bi+1Ci+1(s)ds
)
, i ≥ 1 ,

where δ1,i = 1 if i = 1 and δ1,i = 0 if i > 1 and Y +
i , Y −i+1 for i ≥ 1 are independent standard Poisson processes.

Analogy between Eq. (28) and Eq. (23) is clear. The number of clusters of size i ≥ 2 evolves according to the
differences between two (stochastic) cumulative counts Ji−1 and Ji. Finally, we may also identified the SBD
with the help of its infinitesimal generator L, defined by, for any bounded functions f on Xn,

Lf(C) =

n−1∑
i=1

[
f(R+

i C)− f(C)
]
aiC1(Ci − δ1,i) +

[
f(R−i+1C)− f(C)

]
bi+1Ci+1 . (29)

Although the well-posedness of the SBD model is of course standard on each Xn (as a pure-jump Markov
process on a finite state-space), a first non trivial question arises with respect to the precise description of the
state space, and in particular to its cardinality. In fact, the state space Xn is given by all possible partitions
of the integer n, a well-known problem in combinatorics [46, chap I.3]. In particular, we have the asymptotic
as n→∞,

| Xn |∝
1

4n
√

3
exp

(
π

√
2n

3

)
.

Perhaps surprisingly, the stationary solution associated to Eq. (29) has a relatively simple form, namely a
product-form [23]. Indeed, the (unique) stationary probability Π on Xn of Eq. (29) is given by [59, Theorem
8.1]

Π(C) = Bn

n∏
i=1

(Qi)
Ci

Ci!
, (30)

where Bn is a normalizing constant and Qi is defined by Eq. (26). One may verify simply that the following
detailed balance condition holds [59, Theorem 1.2]

Π(C)q(C,R+
i C) = Π(R+

i C)q(R+
i C,C) .

Note also that, for all z > 0, withBz := Bn/z
n, the expression (30) may be rewritten Π(C) = Bz

∏n
i=1

(Qiz
i)Ci

Ci!
,

which has a clearer analogy with the deterministic equilibrium of the BD equation. Finally, the distribution
Π has the following probabilistic meaning : let Zi, i = 1, · · · , n, be independent Poisson random variables
with respective means Qi, then it is easily seen that, for all C ∈ Xn,

Π(C) = P

{
Z1 = C1, · · · , Zn = Cn |

n∑
i=1

iZi = n

}
.

In section 2.2.1, we study the (finite-time) functional law of large numbers that allows to make the rigorous
link between Eq. (28) and Eq. (23). In section 2.3.1, we study metastability properties for a linear version
the SBD model, when c1 is a fixed parameter. Finally, we come back to the study of some properties of the
equilibrium distribution in chapter 2.3.2, related to the formation of "infinitely large" clusters and the phase
transition in BD model.
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2.1.3 Lifshitz-Slyozov model (LS)

The Lifshitz–Slyozov (LS) system [71] describes the temporal evolution of a mixture of monomers and
aggregates, where individual monomers can attach to or detach from already existing aggregates, the later
being described by a continuous size variable. The aggregate distribution follows a transport equation with
respect to that size variable, and the transport rates are coupled to the dynamics of monomers through a
mass conservation relation. The initial-boundary value problem for the Lifshitz–Slyozov model reads

∂f(t, x)

∂t
+
∂[(a(x)u(t)− b(x))f(t, x)]

∂x
= 0 , t > 0 , x ∈ (0,∞) ,

u(t) +

∫ ∞
0

xf(t, x) dx = ρ , t > 0 ,
(31)

for some given ρ > 0, subject to the initial condition

f(0, x) = f in(x) , x ∈ (0,∞) , (32)

and the boundary condition
lim
x→0+

(a(x)u(t)− b(x))f(t, x) = n(u(t)) , (33)

at any times t > 0 where u(t) > limx→0+
b(x)
a(x) . Here f(t, x) is a non-negative distribution of aggregates

according to their size x and time t, u(t) is the monomer concentration and ρ is interpreted as the total mass
of the system. The kinetic rates a(x) and b(x) determine how fast do attachment (a given monomer attaches
to a given aggregate) and detachment (a monomer detaches from a given aggregate) reactions take place.
Aggregates change their size over time according to the quantity of monomers that they gain or lose through
the previous reactions. Note that the attachment process is a second order kinetics whereas detachment is a
first order kinetics, as reflected in the transport term in (31).

The Lifshitz–Slyozov model has been traditionally used to describe late stages of phase transitions, where
Ostwald ripening phenomena take place : large aggregates grow larger at the expense of smaller ones, in
which case the flux J(x, t) := (a(x)u(t) − b(x)) is negative for small x near 0 and the boundary condition
(33) is not needed. Classical Lifshitz–Slyozov rates are indeed given by a(x) = x1/3 and b(x) = 1, see e.g.
[85]. The BD model is rather used to describe the initial stage of phase transition, where the nucleation
process is the dominant one. Recently, the intermediate stage has been considered in the physics literature
[21], where the growth of large aggregates and the ongoing nucleation rate are of equal importance, leading to
equations like (31)–(33) or variants of it. Indeed, some sets of kinetic rates for Eq. (31) may lead to Ostwald
ripening phenomena only after a certain transient period, where the dynamics of the Lifshitz–Slyozov model
are driven by boundary effects at very small sizes, and for which the boundary term (33) becomes important.
Moreover, recent applications of this framework in biologically oriented contexts make use of different sets
of kinetic rates for which a boundary condition becomes mandatory in order to make sense of the model. A
growing literature can be found on applications to protein polymerization phenomena and neurodegenerative
diseases, starting from the so-called prion model and some of its variants (see e.g. [96] and references therein),
whose different versions come as modifications of the standard Lifshitz–Slyozov equations. Inflow boundary
conditions are there used to describe nucleation processes. Our work in section 2.2.2 shows that a suitable
scaling of the discrete BD models lead to this scenario, where nucleation and Ostwald ripening take place at
rates of equal order of magnitude. We also study in section 2.2.2 the well-posedness of Eq. (31)–(33).

2.2 Links between SBD/BD/LS models
In this chapter, we present two sections making the link between time-dependent solutions of the models

SBD, BD and LS. Those results are quiet technical and have required adaptations to adequate functional
framework in infinite dimensional space of somehow standard limit theorem strategies. A first important
step, closer to a modeling step, requires re-scaling of parameters/state space to define a sequence of solutions
indexed by a small parameter that tends to 0. Two main strategies are then developed to obtain the limit
of that sequence. A generic one is based on compactness (or tightness) arguments in suitable topology,
and identification of the limit. The second one is more model-dependent and aims to prove a contraction
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property, that often relies on an underlying Lipschitz property of the dynamical system which imposes a strong
constraint. For BD/LS models, monotonicity arguments and maximum principles, systematically developed
by [69], allows to overcome this drawback.

2.2.1 SBD->BD

The link between the SBD process and the BD equations is expected as n → ∞, up to an appropriate
re-scaling procedure. Here, n stands for a total number of particles in Eq. (28), while ρ stands for a particle
density, like in Eq. (23)-(24). It is thus natural to consider a volume parameter V such that

V =
n

ρ
→∞ .

For n ≥ 1 and ρ > 0, we define the state space

Xn
ρ =

{
(ci)i≥1 ∈ RN : ∀i ≥ 1 , nρ ci ∈ N,

+∞∑
i=1

ici = ρ
}
.

An important fact is that Xn
ρ is a finite state space that can be embedded into X+ (defined in Eq. (25)). On

a probability space (Ω,F ,P), we define the SBD process as the pure jump Markov process with value in Xn
ρ ,

and having infinitesimal generator Ln given by, for all Borel function f : RN → R and finite on Xn
ρ ,

Lnf(c) =
n

ρ

+∞∑
i=1

(
aici(c1 − δi1 ρn )[f(c+ ρ

n∆i)− f(c)] + bi+1ci+1[f(c− ρ
n∆i)− f(c)]

)
, (34)

where ∆i = ei+1− ei− e1 with (e1, e2, . . .) the canonical basis of RN, that is eik = 1 if k = i and 0 otherwise.
This process corresponds to a rescaled version of the original SBD with n particles defined by the generator
in Eq. (29). The parameter n

ρ can be seen as a volume scaling parameter, ρ being the total concentration,
and the rescaled SBD process with generator (34) has the form of a classical scaling of a reaction network
model in large volume, see e.g. [22]. As a finite state-space continuous time Markov chain, given an initial
law cin, n ∈ Xn

ρ , there exists a unique (in law) SBD process cn with cn(0) = cin, n. By construction of Xn
ρ ,

this yields the mass conservation,
+∞∑
i=1

icni (t) = ρ .

We are ready to state the pathwise convergence of the SBD to the BD equations in the next theorem.

Theorem 7. Under hypothesis (BD-H1) on the rate constants, let a sequence {cin, n} in Xn
ρ being deter-

ministic and strongly converging in (X+, ‖ · ‖) toward cin, namely limn→+∞ ‖cin, n − cin‖ = 0. If {cn} is
the sequence of SBD processes with cn(0) = cin, n and c the unique solution of the BD equations satisfying
c(0) = cin then, for all T > 0, we have

lim
n→+∞

sup
t∈[0,T ]

‖cn(t)− c(t)‖ = 0 , a.s.

Functional law of large number is somehow classical for reaction network model [63]. Nevertheless, within
coagulation-fragmentation models, and in particular for BD model, most of the results, e.g. [57], are obtained
from tightness arguments. Here, we obtained a proof of pathwise convergence of the SBD to BD model in the
natural space X+ associated to mass conservation, rather than in some Hilbert space as in [57]. Furthermore,
our proof differs from classical results, see [63, Theorem 2.11] and [64, Theorem 2.2], in the sense that this
model lacks of a Lipschitz property. In [100], the authors also proved a pathwise law of large numbers for the
SBD process, but in the case of bounded rates (which makes the BD model having a Lipschitz property).
In Theorem 7, the class of kinetic rates allowed is more general and naturally adapted with up-to-date
results on the BD model. Here, we take advantage of monotonicity properties within the BD model (linked to
hypothesis (BD-H1) on the rate constants), together with fine control of large-sized clusters, taking inspiration
from deterministic results in [68].

In particular, besides standard moment estimates, the few key ideas are :
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— Control a superlinear moment like
∑
i1+αci for α > 0 in order to control the mass of large clusters∑

i≥N ici. Any good control will essentially allow to deal with finite sums instead of infinite ones,
easier to handle than ad-hoc limit-sums inversion. The "magic" of functional analysis here is that we
do not even have to hypothesize finite superlinear moment for the initial condition. A consequence of
the Dunford-Pettis theorem, known as the de la Vallée Poussin theorem [69], guarantees the existence
of a superlinear moment for a sequence of uniformly integrable functions in X+.

— Trying to compute directly the difference between cni and ci is difficult, and it turns way easier to
estimate ∥∥∥∥∥∥

∞∑
j=i

cnj (t)− cj(t)

∥∥∥∥∥∥ .
Deep reasons for that is the fact that the differential equation on the tail function Fi :=

∑∞
j=i cj

satisfy "almost" a maximum principle, which allows much finer estimates. Indeed, a straightforward
computation gives, for i ≥ 2,

dFi
dt

= ai−1c1(t)Fi−1(t)− (ai−1c1(t) + bi)Fi(t) + biFi+1(t) ,

which, ignoring the variable c1(t), looks like an infinite tridiagonal linear systems with non-negative off-
diagonal entries (Metzler matrix). It turns out that any control on c1 can be lifted to the tail variables
Fi if they are ordered for two different initial conditions, that is Fi(0) ≤ F ′i (0) for each i ≥ 2. The later
is too much to ask at the level of individual ci’s for two solutions of same density. This observation was
at the heart of the improvement on well-posedness for BD equations in [68], and also leads recently
to uniform-in-time moment estimates in [38], for sub-critical solution of the BD equations. It is also
connected to a very simple probabilistic interpretation : if c1(t) ≤ c′1(t) for all times, the inhomogeneous
Birth-Death process with birth rate aic1(t) and death rate bi will be stochastically dominated by the
inhomogeneous Birth-Death process with birth rate aic′1(t) and death rate bi.

Some perspectives The author in [100] has obtained a functional central limit theorem, providing an
infinite dimensional Gaussian process that quantifies the second order approximation between cn and c in
Theorem 7. The author uses a convenient Hilbert space representation, in order to properly defined the
Gaussian process and to handle technical estimates. We note that the Hilbert space used there leads to
restrictive hypothesis on kinetic rates ai, bi, which had to be bounded with respect to i.

We envision two strategies to overcome this limitation. Either used a Hilbert space more adapted to BD
equations, like the one used in [60] (see also section 2.3.1), which has the powerful advantage to yield a
self-adjoint operator. A second alternative, probably technically simpler, would be to quantify the fluctuations
between cn and the truncated versions of the BD system, which boils down to a finite n-dimensional system
[24, 41], for which Gaussian processes are simpler to handle.

Also, whether or not uniform in time approximations in Theorem 7 are possible for the rescaled SBD
process is an open question. We may anticipate that the subcritical case is easier to deal than the supercritical
case, using in particular uniform in time moment propagation proved in BD equations [38].

2.2.2 BD->LS

This chapter is taken from [A9] and [A4].
Starting from the BD equations (22)-(23)(24), we may recover the LS equations (31).
This connection is somehow classical and has been proved in the context of outgoing characteristic at the

boundary x = 0 for the LS model when small clusters tend to shrink. Two main approaches are used.
The first one considers the large time behavior of the supercritical BD model, with specific size-dependence

of the rate functions, and relates the dynamics of large clusters to solutions of various version of LS equations.
It is related to the so-called theory of Ostwald ripening, see [89, 84, 102].

The second one assumes that the initial condition of the BD equations as well as the rate coefficient
satisfy some particular scaling hypotheses, and relates the finite-time solution of this rescaled model with the
solution of the LS equations in [36, 68]. We rather follow the second approach.
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The main novelty of this work resides in a new estimate on the growth of small clusters, which behave at
a fast time scale. Through a rigorous quasi steady state approximation, we derive boundary conditions for
the incoming characteristic case, when small clusters tend to grow.

Here we start from a dimensionless (and already rescaled) BD model that involves a small parameter ε > 0.
We refer to the standard scaling procedure in [A9]. A few notations has changed from the BD equations (22)-
(23)(24) to highlight the specificity of the monomer variable and the first flux J1 in the BD equations. Denote
by cεi (t) the concentration at time t ≥ 0 of clusters consisting of i ≥ 2 particles and uε(t) the concentration of
free particles (clusters of size 1), where we make explicit the dependence on ε > 0. The dimensionless system
reads :

d

dt
uε = −εJε1 − ε

∑
i≥1

Jεi , t ≥ 0 ,

d

dt
cεi =

1

ε

[
Jεi−1 − Jεi

]
, i ≥ 2 , t ≥ 0 ,

(35)

where fluxes are defined by :

Jε1 = αε(uε)2 − εηβεcε2 , and Jεi = aεiu
εcεi − bεi+1c

ε
i+1 , i ≥ 2 .

Here, coefficients aεi and bεi+1, for i ≥ 2, denote respectively the rates of lengthening and shortening (ε-
dependent), while αε and βε denote respectively the first rate of lengthening (i = 1) and shortening (i = 2).
Finally, η is an exponent standing for the strength of the first shortening rate, in which the results strongly
depend (see discussion in [A9]). Observe that such model (at least formally) preserves the total number of
particles (no source nor sink), that is

uε(t) +
∑
i≥2

ε2icεi (t) = ρε , ∀t ≥ 0 .

The constant ρε is entirely determined by the initial conditions at t = 0 given by uin,ε and (cin,εi )i≥2, non-
negative and ε-dependent.

The first key step to obtain the limit of (uε, cε) is to embed the infinite system of differential equations
(35) into a partial differential equation with a suitable function framework. Accordingly, the size of each
cluster is now represented by a continuous variable x > 0, and we let, for all ε > 0,

fε(t, x) :=
∑
i≥2

cεi (t)1Λεi
(x) , x ≥ 0 , t ≥ 0 , (36)

where for each i ≥ 2, we defined Λεi = [(i−1/2)ε, (i+1/2)ε). We denote for the remainder f in, ε := fε(0, x).
Hence, each cluster of (discrete) size i ≥ 2 is seen as a cluster of size roughly iε ∈ R+. The scaling used in
the dimensionless BD equations (35) consists in an acceleration of the fluxes (by 1/ε), so that a cluster can
reach an asymptotically infinite size i = x/ε in finite time. The scaling is perhaps made clearer with a weak
form version of (35) using the function fε constructed in (36). For all ϕ sufficiently regular, we have (at least
formally), for all t ≥ 0,∫ +∞

0

fε(t, x)ϕ(x) dx

=

∫ +∞

0

f in,ε(x)ϕ(x) dx+

∫ t

0

[αεuε(s)2 − βεεηcε2(s)]

(
1

ε

∫
Λε2

ϕ(x) dx

)
ds

+

∫ t

0

∫ +∞

0

[aε(x)uε(s)fε(s, x)∆εϕ(x)− bε(x)fε(s, x)∆−εϕ(x)] dx ds , (37)

where ∆hϕ(x) = (ϕ(x+ h)− ϕ(x))/h, for h ∈ R, and

uε(t) +

∫ ∞
0

xfε(t, x) dx = ρε. (38)
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Then, an appropriate scaling of the rate functions together with the initial conditions entails that the
solution of Eq. (37) converges to a solution of the weak form of the LS model (31). Compare to previous
work, the main difficulty is to deal with the limit of the first flux Jε1 for ϕ(0) 6= 0, in order to recover the
boundary flux condition.

We now detail our precise (and somehow technical) assumptions.

Assumption 5. (Well posedness of BD equations). The rates αε, βε, (aεi )i≥2 and (bεi )i≥3 are positives and,
for each ε > 0, there exists a constant K(ε) > 0 such that

aεi+1 − aεi ≤ K(ε) , i ≥ 2 ,

bεi − bεi+1 ≤ K(ε) , i ≥ 3 .
(LS-H1)

Assumption 6. (Convergence of the rates). Let α and β be two positive numbers, and let a and b be two
non-negative continuous functions on [0,+∞) that are positive on x ∈ (0,+∞). As ε→ 0, we suppose that

{αε} converges towards α . (LS-H2)

{βε} converges towards β . (LS-H3)

{aε(. )} converges uniformly on any compact set of [0,+∞) towards a(. ) and
∃Ka > 0 s.t. aε(x) ≤ Ka(1 + x), ∀x ∈ R+ and ∀ε > 0 . (LS-H4)

{bε(. )} converges uniformly on any compact set of [0,+∞) towards b(. ) and
∃Kb > 0 s.t. bε(x) ≤ Kb(1 + x), ∀x ∈ R+ and ∀ε > 0 . (LS-H5)

Assumption 7. (regularity of the LS rate functions and Behavior of the rate functions near 0).

a, b ∈ C0([0,∞)) ∩ C1(0,∞) , (LS-H6)
a′ and b′ are bounded on (1,∞) , (LS-H7)
a(x) > 0 for all x > 0 . (LS-H8)

We define the quantity

Φ(x) :=
b(x)

a(x)
,Φ0 := lim

x→0+

b(x)

a(x)
. (39)

We suppose that

Φ(x) :=
b(x)

a(x)
≥ Φ0 , (LS-H9)

Φ′ ∈ L1(0, 1) , (LS-H10)
there exists x∗ > 0 such that Φ is monotone on [0, x∗) , (LS-H11)

and there exist ra ∈ [0, 1), rb ≥ ra, a > 0, b > 0 such that

a(x) ∼0+ axra , b(x) ∼0+ bxrb ,

aε(εi) = a(εi) + o((εi)ra) , bε(εi) = b(εi) + o((εi)rb) .
(LS-H12)

Finally, we assume some control on the initial conditions.

Assumption 8. (Initial conditions). We assume there exists ρ > 0, and a non-negative function f in, with

f in ∈ L1((0,∞), (1 + x+ x2) dx) , (LS-H13)

uin := ρ−
∫ ∞

0

xf in > Φ0 , (LS-H14)
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such that ρε converges to ρ, uin, ε converges to uin in R+ and {f in, ε} converges to f in, in the weak topology
of L1((0,∞), (1 + x) dx), e.g. for any ϕ ∈ Cb,∫ ∞

0

(1 + x)ϕ(x)f in, εdx→
∫ ∞

0

(1 + x)ϕ(x)f indx , (LS-H15)

as ε→ 0. Moreover, we suppose that for all z ∈ (0, 1),

sup
ε>0

∑
i≥2

εracin, εi e−iz < +∞ . (LS-H16)

Some comments about our assumptions. Hypothesis 5 on initial rate functions is needed to ensure well-
posedness of the solution to (35), and Hypothesis 6 states convergence of the rescaled rates to some limit
rate function. It is mainly technical although not too restrictive. Hypothesis 7 states the necessary regularity
of the limit rate function to have global uniqueness of solution to LS equations (31)-(32)-(33) (see our recent
work in [A4]). The main difficulty is to ensure that the monomer variables uε and u stays above the threshold
Φ0 so that incoming boundary condition always makes sense in the limit model. Finally, Hypothesis 8 states
the convergence of the initial condition, and could probably be optimized (in particular the second moment
in (LS-H13) ). Hypothesis (LS-H16) looks exotic, and is mostly needed to control the small clusters in the
rescaled BD equations, thanks to uniform-in-time moment estimate, taking inspiration from [38].

We now state our main theorem on the link between rescaled BD equations and the LS equations with
incoming boundary condition.

Theorem 8. For all T > 0, the sequence fε converges in C([0, T ];w − L1(R+, (1 + x)dx)) towards f that
satisfies, for all t ∈ [0, T ) and for every real-valued functions h locally bounded on [0,∞) such that h′ ∈
L∞(0,∞),∫ ∞

0

h(x)f(t, x) dx =

∫ ∞
0

h(x)f in(x) dx

+

∫ t

0

∫ ∞
0

(a(x)u(s)− b(x))h′(x)f(s, x) dx ds+

∫ t

0

h(0)n(u(s)) dt .

Moreover, uε converges in C([0, T ];R+) to u := ρ−
∫∞

0
xf(t, x), which is continuously differentiable on (0, T )

and
du(t)

dt
= −u(t)

∫ ∞
0

a(x)f(t, x) dx+

∫ ∞
0

b(x)f(t, x) dx ,

for all t ∈ (0, T ). In particular, f satisfies

lim
x→0+

(a(x)u(t)− b(x))f(t, x) = n(u(t)) ,

and, we have

n(u) =



αu2 , if η > ra

αu2 u

u+ β/(ā2η)
, if η = ra < rb ,

αu2 au− b
au− b+ β/2η

, if η = ra = rb .

Theorem 8 requires several steps that can be found in [A9]-[A4]. A standard step is to prove moment
estimates and uniform equicontinuity of fε in some suitable functional space. In [A9], a measure-valued space
was first used. Compactness arguments allows to extract a converging subsequence and we then need to pass
to the limit ε→ 0 in Eq. (37). There, the main difficulty is to handle the term cε2. Multiplying the re-scaled
BD equations (35) by ε, and integrating with respect to time, the later satisfies

ε(cεi (t)− cεi (0)) =

∫ t

0

(Jεi−1(s)− Jεi (s))ds , i ≥ 2 . (40)
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Hence, any L∞ bounds (in time) on cεi on [0, T ] leads to the identity, at least formally,

lim
ε→0

Jεi−1(s) = lim
ε→0

Jεi (s) , i ≥ 2 ,∀s ∈ [0, T ] . (41)

The identification of the limit then relies on arguments similar to the Fenichel-Tikhonov theory on singularly
perturbed dynamical systems (or slow-fast systems) [61]. We find that the limit value ci has to reach instan-
taneously the stationary state of the BD model with a "constant" monomer concentration u = u(t), see the
heuristic arguments from (40)-(41). The convergence of cε2 to c2 then holds on L∞(0, T ) equipped with the
weak-* topology, which is similar to the one used in stochastic averaging theorem (see section 1.3.2).

The end of the proof requires to uniquely identify possible candidate limit solutions. We proved uniqueness
of density global solution f to the LS equations (31)-(32)-(33) in [A4], with suitable regularity that allows to
improve a posteriori the convergence from fε to f . The regularity of the solution of the LS equation is obtained
thanks to a constructive approach using the methods of characteristic. Uniqueness rely on arguments from
[67] which heavily relies again on the control of tail function F (t, x) =

∫∞
x
f(t, y)dy, as in the BD equations.

The case η < ra has also been considered in [A9], where we obtain solution of LS equation (31)-(32)-(33)
with n(u) = 0. The statement and the proof is more technical as the convergence of the function fε holds
only on weak-* measure space, due to the lack of control of the time derivative of fε near x = 0.

Some perspectives A challenging question is to give a unified sense of solutions to LS equation (31) for
both outgoing and incoming characteristic. We have proved in [A4] that indeed when conditions (LS-H9)-
(LS-H11) fails, the monomer variable may reach in finite time the threshold value Φ0, in which case it is
not completely clear how to match this solution with an outgoing one on later times, raising the problem
of giving a wider meaning to the solution in order to be able to extend every local solution to a global one.
This is an important issue that is deeply connected with a full understanding of the long time behavior of
LS equation.

Regarding the long time behavior of LS equation, preliminary results indicate that for power-law kinetic
rates, a(x) = axra , b(x) = bxrb , with rb ≥ ra, a generic behavior to be expected is xf → 0, u→ ρ, as long as
the nucleation rate is strong enough.

We also note that second order approximation of (35) leads to diffusion correction in (31). However, up
to my knowledge, no rigorous proofs of such results are available, and the adequate boundary condition that
needs to be provided, according to the specific scaling hypotheses of the rate coefficients, is still unclear. This
is an important question as the boundary condition heavily impacts long time results on diffusive version of
LS equations [50].

2.3 Nucleation, metastability and equilibrium in SBD model
My thesis work focused on the study of first passage time for the SBD model, with applications to the

formation of PRION protein polymers, involved in neurodegenerative diseases. These works [A20, A18], not
detailed here, led me to take a closer look at fine properties of the SBD model, in particular related to
metastability and the creation of large polymers, in the continuity of equivalent work on deterministic BD
equations.

In the section 2.3.1, I detail a recent result in collaboration with Erwan Hingant on metastability in the
SBD linear model, variant of the SBD model (28) in which the monomer variable C1 is assumed constant.
This work constitutes a first step towards understanding metastability in the SBD model.

In section 2.3.2, I detail a result on the steady state of the SBD model, which shows that the phase
transition phenomenon is also present in the stochastic version of the Becker-Döring model, suggesting the
creation of at least one cluster of very large size. Here too, it is a first step to characterize the long time
behavior of the SBD model and the different time scales involved, when the number of particles n→∞.

2.3.1 Metastability in the linear SBD

Note that the "monomer" variable c1 (or C1) is fixed in this section.
The linear stochastic Becker-Döring (LSBD) process is a continuous-time Markov chain on the countable

state space E = `1(N2,N), the space of summable integer-valued sequences indexed by N2 = {2, 3, · · · }, with
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infinitesimal generator A, given for all ψ with finite support on E , by

A(ψ)(c) =

+∞∑
i=1

(
aizci[ψ(c+ ∆i)− ψ(c)] + bi+1ci+1[ψ(c−∆i)− ψ(c)]

)
, (42)

with the convention c1 = z, ∆1 = e2 and ∆i = ei+1 − ei, for each i ≥ 2, where {e2, e3, . . .} denotes the
canonical basis of E namely, ei,k = 1 if k = i and 0 otherwise.

Note that the transition intensities in the generator in Eq. (42) are linear with respect to the ci. This
motivates a different interpretation of such model, by modeling explicitly the size of each cluster. Let Cin =
(C in

2 , C
in
3 , . . .) a random variable on E and denote N in =

∑∞
i=2 C

in
i . By construction N in <∞ almost surely.

Then, given Cin, we define X in
1 , X

in
2 , . . . a denumerable collection of random variables on N2 such that for

each i ≥ 2,
C in
i = #

{
k ∈ [[1, N in]]

∣∣ X in
k = i

}
, a.s. ,

and X in
k = 2 for all k > N in. Each Xk is interpreted as the size of a given cluster, and follows a birth and

death process that can be written as

Xk(t) = X in
k +

∞∑
i=2

∫ t

0

∫
R+

1s>Tk−Nin1Xk(s−)=i

(
1u≤aiz − 1aiz≤u≤aiz+bi

)
Nk(ds, du) , (43)

where by convention Tk = 0 if k ≤ 0, and T1, T2, . . . is a collection of random times such that the Tk − Tk−1

are independent exponential random variable of parameter a1z
2, and N1, N2, . . . a denumerable family of

independent Poisson point measures with intensity the Lebesgue measure dsdu on R2
+.

The interpretation of (43) is clear : Xk(t) denotes the size of the cluster labeled by k at time t ; for
k ≤ N in, clusters are initially "active" while for k > N in clusters are initially “inactive” at state 2, and gets
“activated” at the random arrival time Tk−N in . The number of "active" clusters at time t ≥ 0 is given by the
counting process

N(t) = N in +
∑
k≥1

1t≥Tk ,

while the number of "active" cluster of size i ≥ 2 is

Ci(t) = # {k ∈ [[1, N(t)]] | Xk(t) = i} .

Let n ≥ 2. It is remarkable on this model that we have at hand an explicit quasi-stationary distribution
(QSD) before a cluster of size larger than n+ 1 is created, for the process C(t). Such a distribution is given,
for all C ∈ En = {C ∈ E | Ci = 0 , i ≥ n+ 1}, by (recall that Qi is defined in (26))

Πqsd
n (C) =

n∏
i=2

(fni )Ci

Ci!
e−f

n
i , with fni (z) = JnQiz

i
n∑
k=i

1

akQkzk+1
,

for i = 2, . . . , n and Jn given by

Jn =

(
n∑
k=1

1

akQkzk+1

)−1

. (44)

We define the hitting time of Ecn,
τn = inf {t ≥ 0 | C(t) /∈ En} .

Our main assumption needed to ensure the model (43) is uniquely defined for all times (with no explosion),
and thus the LSBD Markov chain too, is

∞∑
n=2

Qnz
n

( ∞∑
k=n

1

akQkzk+1

)
=∞ . (LSBD-H1)
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Theorem 9. Under assumption (LSBD-H1). Let z > zs and Cin a random variable in En such that E
[
N in

]
<

∞. Then, for the LSBD process C starting at Cin in En, we have

PCin {τn > t} ≥ Gin
n e
−Jnt ,

where

Gin
n = ECin

[ n∏
i=2

(
fni
Qizi

)Ci ]
≥ 1−

n∑
i=2

E
[
C in
i

]
(1− fni

Qizi
) .

Moreover, there exists γn > 0 such that, for all t ≥ 0, we have in total variation,

‖PCin {C(t) ∈ · | t < τn} −Πqsd
n ‖ ≤ Kn

(
H in
n

PCin {t < τn}
+ eJntHqsd

n

)
e−γnt ,

where

Kn = (

n∑
k=2

Qiz
i)

1
2 ,

and

H in
n =

n∑
i=2

√
Qizi

E
[
C in
i

]
fni

, Hqsd
n =

n∑
i=2

√
Qizi .

Theorem 9 relies on the individual cluster formulation (43) and coupling methods, thanks to the fact
that each clusters in (43) are independent from each others. Moreover, we make use of the results in the
deterministic literature [88, 60] that give a convenient Hilbert representation for the solution of the linear
BD equations, as well as important analytic characterization of birth-death processes from the seminal work
by [58].

Starting from the QSD Πqsd
n , the exact rate of creation of a cluster of size n+ 1 is given by Jn defined in

Eq. (44). The important results in Theorem 9 comes from the fact that the pre-factor are explicitly known
as a function of the initial condition. Although no optimality is claimed, these estimates are tight enough to
provide a quantitative description of metastability, that we give below.

We assume standard coefficient relations, to fit with [60, 88], given by

A′ < ai < Aiα ,
bi+1

ai+1
+
κ

iν
≤ bi
ai

and zse
Gi−γ ≤ bi

ai
≤ zseG

′i−γ
′

, (LSBD-H2)

for all i ≥ 2, where α, γ ∈ (0, 1), γ′, ν > 0, κ, A′, A, G and G′ positives. Note that Hypothesis (LSBD-H2)
implies (LSBD-H1). We also use the terminology of [88] namely a quantity q(z) of z is : exponentially small
if q(z)/(z − zs)m is bounded for all m > 0 as z ↓ zs ; and at most algebraically large if (z − zs)m0q(z) is
bounded for some m0 > 0 as z ↓ zs.

Under assumption (LSBD-H2) there exists a unique so-called critical size n∗ (depending on z) such that
bn∗+1/an∗+1 < z < bn∗/an∗ . The size n∗ is interpreted as the nucleus size : for a cluster X(t) ≤ n∗, X(t)
tends to shorten, while for X(t) > n∗, it tends to grow.

In [60, 88], n∗ is proved to be at most algebraically large. Moreover, the time scale 1/γn∗ (in Theorem 9)
is also at most algebraically large, while the nucleation rate Jn∗ (in Eq. (44)) is exponentially small.

We now choose an initial distributionCin with support on Ej (C in
i = 0 for all i ≥ j+1), with j independent

of z (no generality is claimed here), and such that E
[
N in

]
<∞. We have

PCin {τn∗ > t} ≥

(
1−

j∑
i=2

ECin

[
Ci
]
(1− fn

∗
i

Qizi
)

)
e−Jn∗ t , (45)

which is arbitrary close to one for times t � 1/Jn∗ as fn
∗

i /(Qiz
i) → 1 when z % zs (and i fixed). Moreover,

we have
‖PCin {C(t) ∈ · | τn∗ > t} −Πqsd

n ‖ ≤ (
Hin
j

Gin
j

+Hqsd
n∗ )Kn∗e

Jn∗ t−γn∗ t , (46)

which is arbitrary small for times 1/γn∗ � t � 1/Jn∗ . Indeed, note that aiQizi is decreasing up to the size
n∗, thus K2

n∗ ≤ a1z
A′ n

∗. Hence, Kn∗ as well as H
qsd
n∗ are at most algebraically large. Equations (45)-(46) show

that the QSD is indeed a metastable state.
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2.3.2 Phase transition in stationary state of the SBD model

We come back to the mass conservative SBD model (28) in this section. We turn to the study of the
behavior of the stationary distribution of the rescaled SBD process (34), as n→∞.

We define Πn, for any c ∈ Enρ , by

Πn(c) =
1

Bzn

n∏
i=1

(nρQiz
i)
n
ρ ci

(nρ ci)!
e
−nρQiz

i

,

where z > 0 is arbitrary and Bzn is the following normalizing constant

Bzn =
∑
c∈Enρ

n∏
i=1

(nρQiz
i)
n
ρ ci

(nρ ci)!
e
−nρQiz

i

.

One can easily check that Πn satisfies the reversibility condition : for all c ∈ Enρ , for all i ≥ 1,

Ai(c)Π
n(c) = Bi+1(c+ ρ

n∆i)Π
n(c+ ρ

n∆i) ,

and thus Πn is the unique invariant distribution of the SBD process on Enρ .
We may write the invariant measure under the form

− ρ
n

ln Πn(c) =

n∑
i=1

{
−ci ln

(
n

ρ
Qiz

i

)
+
ρ

n
ln
n

ρ
ci! +Qiz

i

}
+
ρ

n
lnBzn .

We clearly recognize a form closed to the relative entropy of the deterministic equations which drives its
long-time behavior (see [24]), defined by Eq. (27).

Theorem 10. Assume 0 < zs < +∞. Let {cn} be a sequence belonging to Enρ .

1. If 0 < ρ ≤ ρs and lim infi→+∞Q
1/i
i > 0 then,

lim
n→+∞

− ρ
n

ln Πn(cn) = H(c|cz(ρ)),

when cn → c strongly in X+, as n→∞.

2. If ρ > ρs and limQ
1/i
i exists then,

lim
n→+∞

− ρ
n

ln Πn(cn) = H(c|czs) ,

when cn ⇀ c weak − ∗ in X+.

Due to the study of the minimum of the relative entropy (27) in X+ and X+
ρ (see [24]), the stationary

distribution of the SBD model thus satisfies, if ρ ≤ ρs, Πn(·) → δcz(ρ)(·) as n → ∞, while if ρ > ρs,
Πn(·)→ δczs (·) as n→∞. In the latter case, the stationary distribution thus concentrates on the deterministic
state czs , which has a mass ρs strictly inferior than the mass ρ of the initial condition. The quantity ρ− ρs
is interpreted as the mass which leaves the initial phase and undergoes a phase transition. Moreover, our
numerical illustrations in Fig 11 indicate that the loss of mass ρ− ρs is contained in a single giant particle,
consistently with results on the Marcus-Lushnikov process [48].

Indeed, we show a numerical illustration of the law of large numbers and the phase transition phenomenon
in left panels of Fig 11. We use an exact stochastic simulation algorithm of the trajectories of the SBD process
defined by Eq. (34). Using classical reaction rates from literature [83] for ai, bi, we simulated a thousand of
trajectories with n = 1000 and three different concentrations ρ : ρ = 10, ρ = 1 and ρ = 0.1. Note that with
our choice of reaction rates, we have zs = 1/11 and ρs ≈ 0.1059. The illustration of the convergence of the
SBD process towards the BD model can be seen as a single trajectory follows closely its mean value (which
overlaps with a numerical simulation of the truncated BD model, not shown). For supercritical concentration
ρ > ρs, we also see in left panels that the largest cluster occupies a large fraction of the total mass n.
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The scaling behavior of the stationary distribution of the SBD model is illustrated with the first 10 sizes
in middle panels, where the respective mean number of clusters follows closely the deterministic stationary
state (little discrepancies are rather due to the finite size truncation than the stochastic fluctuations).
Finally, we illustrate the convergence to stationary state with the help of the relative entropy evaluated along
the stochastic trajectories, in right panels (note that the final value of the relative entropy is not zero due to
again finite size truncation). For the super-critical case with ρ = 1, the metastable phenomenon known for
the BD (see [88]), seems to appear also in the SBD model : the relative entropy is nearly constant for a large
time before converging to its final value. Interestingly, the sudden drop in the relative entropy value coincides
with the formation of a giant cluster, consistently with our result on the LSBD in section 2.3.1. Thus escape
of the metastable state and formation of a giant cluster appears to be concomitant. These observations will
be the subject of future works.

Figure 11 – We show results of stochastic simulation algorithm of the SBD process, with ai = i2/3, bi =
i2/3

(
1
11 + 10

11i1/3

)
, n = 1000 and (top row) ρ = 10, (middle row) ρ = 1, (down row) ρ = 0.1. A) On the left

column, we plot in colored lines (see legend) a single trajectory for the total number of clusters bigger than 2,
their associated mass and the normalized size of the biggest cluster, i.e. 1

n imax where imax = max (i : cni > 0).
For the three quantities, the sampled mean on 1000 trajectories are superimposed in black dashed lines. B)
On the middle column, we plot in blue the sampled mean (over 1000 realizations) number of clusters of size
1 to 10, at time t = 105 and in black the corresponding deterministic stationary state cz(ρs) (for the first
two rows) and cz(ρ) (for the last row). C) On the right column, we plot in red plain line the relative entropy
evaluated along a single stochastic trajectory, and in black dashed lines the sampled mean of this evaluation
over 1000 trajectories.

2.4 Perspectives
Going further from our limit results in [A11] on the stationary distribution, we are currently looking at

how to characterize the likelihood of existence of one or several giant clusters in the stationary state in the
super-critical case. To that, results in limiting shapes of random combinatorial structures [49] are useful. Up
to our knowledge, macroscopic scaling has not been considered in this literature, yet preliminary calculus
indicates that, in the limit n → ∞, a single giant cluster, of size bn(1 − ρs

ρ )c, is present, Πn-almost surely.
Further characterization such as second-order approximation can also be of some interests.
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The main challenge in the study of the SBD process is a fine characterization of the transient and long-time
dynamics in the super-critical case, with three steps :

— Timescale of super-critical clusters apparition, which tends to grow rapidly.
— Coarsening dynamics which leads to a single giant cluster emerge among the super-critical ones.
— Convergence of the single giant cluster size and the remaining small clusters to equilibrium.

As n→∞ and ρ↘ ρs, the critical size goes to infinity and the formation of a super-critical cluster becomes
a rare event, unlikely in finite time. Analytical characterization of the SBD process conditioned to the critical
size not being reached, and explicit formula for the quasi-stationary distribution, seem out of reach. Yet, any
estimate on the rate of creation of supercritical clusters could be important results for applications.
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filing of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications
in steroidogenesis. Mol. Cell. Endocrinol., 436 :10–22, 2016.

[A3] C. Bonnet, K. Chahour, F. Clément, M. Postel, and R. Yvinec. Multiscale population dynamics in
reproductive biology : singular perturbation reduction in deterministic and stochastic models. ESAIM :
ProcS, 67 :72 – 99, 2020.

[A4] J. Calvo, E. Hingant, and R. Yvinec. Initial-boundary value problem to the lifshitz-slyozov equation
with non-smooth rates at the boundary. Submitted. arXiv :2004.01947, 2020.

[A5] F. Clément, F. Robin, and R. Yvinec. Analysis and calibration of a linear model for structured cell
populations with unidirectional motion : Application to the morphogenesis of ovarian follicles. SIAM
J. Appl. Math., 79(1) :207–229, 2019.

[A6] F. Clément, F. Robin, and R. Yvinec. Stochastic nonlinear model for somatic cell population dynamics
during ovarian follicle activation. Accepted in J. Math. Biol., 2020.
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Proc. Edinb. Math. Soc., 45(3) :701–716, 2002.

[41] D. B. Duncan and A. R. Soheili. Approximating the Becker-Döring cluster equations. Appl. Numer.
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13(1) :115–155, 2003.
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