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The stability properties of radio-frequency traps make them a technology of choice for the design of embedded microwave ion clocks for deep space navigation applications. The main effect limiting the frequency stability of such clocks is the frequency shift induced by the second order Doppler effect which fluctuates with the number of trapped ions. The use of radio-frequency multipole traps in the design of microwave clocks is motivated by a built-in reduction of the radio-frequency driven motion of the ions with the increase of the order of the multipole field. Experimental realizations by NASA-JPL of ion clocks involving higher order multipole traps have demonstrated a stability gain, but no direct measurement has yet been undertaken to clarify wherever this gain is a direct consequence of the number of electrodes in the trap or from a global optimization of the whole setup. One of the objectives of the TADOTI experiment is to conduct a comparative measurement of the velocity distribution over a laser cooled Ca+ ion cloud trapped in a quadrupole and an octupole trap. Observations of cold samples have shown an inhomogeneous spatial distribution of the trapped particles with clustering of the ions in local potential wells. Simulations attribute this organization to a symmetry breaking in the trap, induced by realistic mis-positioning of the electrodes. A prerequisite for the velocity distribution characterization is to restore to symmetry of the potential of the octupole trap by tuning the RF voltage applied to each electrode. This thesis focuses on the analytical description of the potential perturbations induced by the structural deformation of the trap, and proposes a characterization and compensation protocol of the perturbations, based on the localization of the laser-cooled ion in the trap. These tools can be used to create any configuration of three parallel ion clouds in the octupole trap.

"Ponder Stibbon was one of those unfortunate people cursed with the belief that if he only found out enough things about the universe it would all, somehow, make sense. The goal was the Theory of Everything, but Ponder would settle for the Theory of Something and, late at night, when Hex appeared to be sulking, he despaired of even the Theory of Anything."

Terry Pratchett, The Last Continent.
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Résumé

Les propriétés de stabilité des pièges radiofréquence en font une technologie de choix pour la conception d'horloges micro-ondes à ions confinés embarquées pour les applications de navigation en espace lointain. Le principal effet limitant la stabilité en fréquence de ces horloges est le décalage en fréquence induit par l'effet Doppler du second ordre qui fluctue avec le nombre d'ions piégés. L'utilisation de pièges radiofréquence multipolaires dans la conception d'horloges micro-ondes est motivée par une réduction structurelle de la composante du mouvement des ions entraînée par le champ radiofréquence avec l'augmentation de l'ordre du champ multipolaire. Les réalisations expérimentales (NASA-JPL) d'horloges micro-ondes à ions confinés impliquant des pièges multipolaires d'ordre supérieur ont démontré un gain en stabilité, mais aucune mesure directe n'a encore été entreprise pour distinguer si ce gain est une conséquence directe du nombre d'électrodes dans le piège ou d'une optimisation globale de l'ensemble de l'installation. L'un des objectifs de l'expérience TADOTI est de réaliser une mesure comparative de la distribution de vitesse d'un nuage d'ion Ca+ refroidi par laser et piégé dans un piège quadripolaire et dans un piège octupolaire. Les observations d'échantillons froids ont montré une distribution spatiale non homogène des particules piégées avec un regroupement des ions dans des puits de potentiel locaux. Les simulations attribuent cette organisation à une rupture de symétrie dans le piège, induite par une erreur réaliste du positionnement des électrodes. Une condition préalable de la caractérisation de la distribution de vitesse est de rétablir la symétrie du potentiel dans l'octupole en ajustant la tension RF appliquée à chaque électrode. Cette thèse se concentre sur la description analytique des perturbations du potentiel induites par la déformation structurelle du piège, et propose un protocole de caractérisation et de compensation des perturbations, basé sur la localisation des ions refroidis par laser dans le piège. Ces outils peuvent être utilisés pour contrôler entièrement la position radiale des trois nuages d'ions parallèles dans l'octupole.
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To all of you, many, many thanks. xiii Résumé détaillé 0.1 Piégeages de particules chargées pour la métrologie des fréquences

Le piégeage radiofréquences est une technique utilisée pour confiner dans l'espace des particules chargées, en nombre allant d'une à plusieurs centaines de milliers, en fonction de l'application. Les pièges radiofréquence sont des systèmes fiables qui permettent le confinement des ions pendant plusieurs secondes à plusieurs semaines. Dans ces dispositifs et pour un ensemble choisi de paramètres de fonctionnement, la dynamique des particules est contrôlée par l'application de champs électriques oscillants, qui imposent une force de rappel périodique sur la particule. Le premier piège radiofréquence a été proposé par W. Paul en 1953, pour lequel il a reçu un prix Nobel en 1989 [START_REF] Paul | Electromagnetic traps for charged and neutral particles[END_REF]. Les propriétés de symétrie 3D de ce premier modèle permettent de générer un champ quadripolaire dans les trois directions de l'espace. En 1989, J.D. Prestage et al. [START_REF] Prestage | New ion trap for frequency standard applications[END_REF] ont introduit un modèle linéaire où les champs radiofréquence sont appliqués dans seulement deux directions de l'espace. Le potentiel RF correspondant s'écrit :

Φ 2 (x, y,t) = (V st -V r f cos(Ωt)) (x 2 -y 2 ) r 2 0 , (1) 
où Ω/2π et V r f sont respectivement la fréquence et l'amplitude du potentiel oscillant appliqué aux barreaux du piège, V st une contribution statique et r 0 le rayon inscrit du piège. Le confinement dans la troisième direction axiale est assuré par l'application d'un potentiel statique que l'on peut modéliser localement par:

Φ dc (x, y, z) = κV dc 2z 2 -(x 2 + y 2 ) z 2 0 ( 2 
)
où 2z 0 est la distance entre les électrodes DC et V dc le potentiel statique appliqué sur ces électrodes. Le facteur d'efficacité κ dépend de la conception des électrodes DC et de l'ensemble du piège. Le potentiel total dans le piège s'écrit comme la somme des deux composantes, Φ(x, y, z,t) = Φ 2 (x, y,t) + Φ dc (x, y, z). Comme l'amplitude du champ électrique augmente avec la distance à l'axe, les ions le long de l'axe sont exempts de la dynamique induite par les variations radiofréquences du champ, ce qui présente un intérêt pour les applications métrologiques.

Dans le but de réduire davantage l'amplitude du mouvement radiofréquence forcé des particules piégées, des modèles de piège impliquant davantage d'électrodes radiofréquence, appelées pièges multipolaires, ont été proposées pour la génération de potentiels confinant d'ordre supérieur. Le prototype d'horloge micro-onde à ions lancé en orbite en juin 2019 par le projet Deep Space Atomic Clock de la NASA utilise un piège multipolaire à 16 pôles [START_REF] Mohon | Deep Space Atomic Clock Overview[END_REF][START_REF] Baird | NASA Tests Atomic Clock for Deep Space Navigation[END_REF]. Le multipôle qui nous intéresse tout au long de cette thèse est le piège octupolaire linéaire (8 pôles), dont le potentiel radiofréquence s'écrit pour un octupole parfait: Φ 4 (x, y,t) = (V st -V r f cos(Ωt))

x 4 -6x 2 y 2 + y 4 r 4 0 ,

xiv et le potentiel total est une fois de plus la somme des composantes RF et statique, Φ(x, y, z,t) = Φ 4 (x, y,t) + Φ dc (x, y, z).

Dans le cas simple du piège quadripolaire, il est possible d'établir la solution analytique du mouvement d'un ion unique piégé en résolvant les équations de Mathieu. La stabilité de la trajectoire est conditionnée par le choix des conditions de piégeage (V st ,V r f , Ω), du piège (r 0 ) et de l'ion (m, q) par des conditions de stabilité sur les paramètres de Mathieu (a u , q u ) liant ces paramètres physiques. Pour les champs d'ordre supérieur, les directions spatiales sont couplées et aucune solution analytique ne peut être trouvée. Il est alors intéressant d'utiliser une approche simplifiée du problème, où la dynamique d'une charge piégée est découplée en un macro-mouvement correspondant aux oscillations de la particule dans un potentiel de confinement statique efficace, appelé pseudo-potentiel, et un mouvement oscillant rapide appelé micro-mouvement et responsable de chauffage radiofréquence dans le cas où plusieurs particules sont piégées simultanément. Dans les limites de l'approximation adiabatique, il est possible de considérer la particule comme piégée dans le pseudo-potentiel qui s'écrit pour un multipôle d'ordre n :

Ψ = q 2 4mΩ 2 E 2 (4) 
Pour le quadripôle, E 2 = 4V 2 r f x 2 + y 2 /r 4 0 et le pseudo-potentiel est simplement harmonique. Pour les multipôles d'ordre supérieur l'amplitude du champ électrique est plus faible pour une distance donnée au centre du piège, ce qui diminue l'amplitude du micro-mouvement à cette position. Le pseudo-potentiel total nécessite d'ajouter le terme dé-confinant statique, de sorte que Ψ(x, y, z) = Ψ n (x, y) + Φ dc (x, y, z). Dans le cas du quadripôle cela n'affecte que la profondeur du puits, mais pour les multipôles d'ordre supérieur la forme du puits est également affectée : le minimum du pseudo-potentiel est délocalisé du centre et s'étend en un anneau de rayon r min tel que [START_REF] Champenois | Ion ring in a linear multipole trap for optical frequency metrology[END_REF] :

r 2(n-2) min = 1 n -1 2mΩω z r n 0 kqV r f 2 (5)
La structuration du nuage d'ion dépend de l'importance relative de l'énergie cinétique des ions et de la répulsion Coulombienne entre les ions. En fonction de la température du nuage, la densité et la structuration attendues du nuage d'ions peuvent être décrites par trois états thermodynamiques : gazeux, liquide et solide. Dans notre expérience, l'espèce piégée est l'ion 40 Ca + . La température de l'ion est contrôlée par refroidissement laser et est de l'ordre de quelques millikelvins. Cela nous place dans le régime thermodynamique liquide ou solide, où l'interaction de Coulomb ne peut être ignorée et couple la dynamique individuelle des ions. Il n'existe alors pas d'équation analytique du mouvement des ions et des modèles sont alors nécessaires pour avoir un aperçu de l'organisation des ions dans le potentiel. Le cas du quadripôle est un cas particulier où la densité est homogène sur le volume occupé par les ions et où le centre du potentiel est un point stable pour l'accumulation des ions. Pour les pièges multipolaires d'ordre supérieur, une structuration creuse du nuage est attendue, conséquence soit de la répulsion de Coulomb entre les ions, soit, pour un petit nombre d'ions piégés, en raison de la forme annulaire du minimum du pseudo-potentiel.

Le but de ce travail est de faire une étude comparative de la distribution de la vitesse des ions entre un quadripôle et un octupole via l'étude du signal de fluorescence des ions piégés pour vérifier expérimentalement l'intérêt d'utiliser des pièges multipolaires pour la construction d'horloges micro-ondes à ions. Il a été identifié que le facteur limitant la stabilité xv en fréquence de ces horloges est la variation de l'effet Doppler du second ordre avec la fluctuation du nombre d'ions piégées lors du transport entre les différentes sections du piège, ou par collisions avec le gaz tampon. La fluctuation du nombre d'ions induit des changements dans le rayon du nuage, et une variation de l'amplitude moyenne champ RF vue par les ions. Dans l'hypothèse d'un nuage très long, cette contribution est proportionnelle à [START_REF] Champenois | Des atomes chargés et des photons : quelques phénomènes observables en piège radiofréquence[END_REF] : Nous travaillons dans le régime optique sur la raie de fluorescence à 397 nm de l'ion 40 Ca + , ce qui rend l'effet Doppler du premier ordre dominant. L'ion 40 Ca + présente l'avantage de permettre l'utilisation de lasers comme outils de mesure et de contrôle non accessibles dans le régime des micro-ondes. L'ion 40 Ca + peut être considéré comme un système à trois niveaux, comme le montre la fig.

∆ν ν 0 ∝ N ions L 1 (n -1) (6 
(1), avec l'apparition d'une résonance noire sur les niveaux concernés par le protocole de refroidissement (S 1/2 , P 1/2 , D 3/2 ). La mesure prévue exploite la forme de cette resonance noire pour estimer la réduction de la contribution du micro-mouvement entre le quadripôle et l'octupole par l'étude comparative de l'élargissement induit par l'effet Doppler du premier ordre sur son profile. Le dispositif dans lequel les mesures doivent avoir lieu est appelé TADOTI, un acronyme pour Thermodynamics And Dynamics Of Trapped Ions. Le dispositif est un piège radiofréquence linéaire macroscopique en deux parties, intégré dans une chambre ultravide (pression de l'ordre de 10 -9 mbar). Les deux parties, comme représentées sur la fig. [START_REF] Prestage | New ion trap for frequency standard applications[END_REF], correspondent à un quadripôle et octupole alignés sur le même axe. Les lasers nécessaires pour réaliser l'expérience sont deux lasers à 397 nm et 866 nm pour les mesures et deux lasers à 423 nm et 375 nm servant à l'ionisation du calcium neutre. La fluorescence des ions est recueillie au-dessus du piège, le long d'un axe perpendiculaire à l'axe du piège z et envoyée vers une caméra pour l'imagerie des ions et un photomultiplicateur pour l'étude du signal de fluorescence. Deux alimentations RF différentes sont utilisées pour générer les champs quadripolaire et octupolaire, avec leurs radiofréquences respectives (5.235 MHz et 2.774 MHz.).

Lors d'experiences menées dans l'octupole, deux problèmes de conception ont été identifiés. Premièrement, le transport retour de l'octupole vers le quadrupole n'était pas possible, le transport étant réalisé en appliquant des changements de tension sur les électrodes DC. Cela était dû au grand espacement entre les électrodes DC, l'électrode intermédiaire comme représentée sur la fig. [START_REF] Prestage | New ion trap for frequency standard applications[END_REF] étant absente dans le premier design ; combiné à un grand écrantage du potentiel statique appliqué sur l'axe. Ces deux effets résultaient en une faible influence des changements de tension appliqués aux électrodes sur la position des ions. Deuxièmement, l'imagerie des ions dans l'octupole a montré qu'ils ne s'organisent pas dans la structure tubulaire attendue, mais en trois nuages d'ions distincts. Il a été établi qu'il s'agissait d'une conséquence de l'imprécision de positionnement mécanique des électrodes radiofréquence dans le plan radial [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF].

Modification du piège pour assurer le transport des ions

Dans le contexte de nos mesures, il est nécessaire de disposer de conditions de transport optimales entre les différentes sections de notre piège. Dans la version initiale de l'octupole, un écrantage élevé du potentiel DC combiné à un grand espacement entre les électrodes DC empêchait le transport des ions de l'octupole vers la section quadripolaire du piège. Pour résoudre ce problème, le design des électrodes et leur écartement ont été modifiés. Une nouvelle découpe des électrodes DC, comme montrée sur la fig.

(3), a été proposée afin que le potentiel effectif sur l'axe soit moins réduit par l'écrantage due aux électrodes RF. On note la constante d'écrantage de l'électrode j κ = Ṽj /V j , avec V j le potentiel appliqué sur l'électrode et Ṽj le potentiel effectif sur l'axe. La nouvel constante d'écrantage est de κ = 8,75.10 -2 contre κ = 3.56.10 -3 avec les anciennes électrodes. Le piège a également été raccourci par l'ajout d'une électrode additionnelle comme montré sur la fig.

(2), pour permettre la reproduction des conditions de transport PII→PIII pour le transport PIII→PII. L'octupole a été initialement conçu pour le piégeage et l'étude des grands nuages d'ions, et pour que cette mesure reste possible, l'octupole a été divisé en deux zones de piègeage : le premier piège, directement derrière la section quadripolaire est court (2z 0 = 18 mm) et dédié aux expériences nécessitant le transport des ions ; le second piège est plus long (2z 0 = 80 mm) pour le piégeage des grands nuages d'ions. Le piège a été modifié pour intégrer les modifications au cours de la thèse. Des tests expérimentaux préliminaires de transport de PII à PIII ont été effectués pour vérifier les propriétés de piégeage de PIII et de sa nouvelle alimentation RF. Un petit nombre d'ions (<10) a été piégé avec succès mais les changements introduits nécessite de mettre à jour le protocole de transport pour tenir compte du nouveau positionnement et de l'efficacité des électrodes DC. 

Approche analytique du potentiel d'un octupole déformé

Des expériences menées dans la première version de l'octupole ont montré que les ions froids s'organisent en trois nuages distincts. La présence de minima locaux dans le pseudo-potentiel du multipôle peut être attribuée à une rupture de la symétrie radiale des électrodes RF [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF], due à un défaut d'alignement mécanique des électrodes radiofréquence du piège [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. Le piège a été construit au laboratoire, avec une précision mécanique d'environ 100 µm. L'équipe a démontré la possibilité de rétablir la symétrie du potentiel en appliquant des tensions correctives sur les électrodes RF du piège [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Dans le but d'établir un protocole de correction expérimental des défauts de symétrie du potentiel, un travail de caractérisation de l'impact des déformations de la structure du piège sur le potentiel a été entrepris.

Nous avons montré, dans le cadre d'une approche perturbative, qu'une erreur de positionnement des électrodes entraîne l'apparition de termes d'ordre inferieur quadripolaires et/ou dipolaires dans le développement analytique du potentiel octupolaire. La surface de potentiel 2D d'un piège multipolaire d'ordre n est caractérisée par un polynôme normalisé d'ordre n K n (x, y) :

Φ n (x, y,t) = V r f K n (x, y) cos(Ωt) [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF] où pour chaque ordre n, K n peut être l'une des deux fonctions {U n , V n } qui respectent l'égalité suivante [START_REF] Friedman | Fundamentals of ion motion in electricradio-frequency multipole fields[END_REF] :

1 r n 0 (x + iy) n = U n (x, y) + iV n (x, y) (8) 
La fonction U 4 (x, y) caractérise la surface potentielle de notre octupole dans le cas théorique parfait. Notre approche consiste à rechercher le terme de perturbatif W(x, y), de sorte que l'équation du potentiel asymétrique "réel" U R (x, y) s'écrive :

U R (x, y) = h 0 . [U 4 (x, y) -W(x, y)] (9) 
où le paramètre h 0 est une fonction d'échelle du rapport des rayons r d /r 0 , propre à la géométrie cylindrique de l'électrode (h 0 =-1,004 pour r 0 = 4 mm, r d = 1,5 mm). W(x, y) se décompose en contributions quadripolaires et dipolaires, dont l'impact sur le pseudo-potentiel sont montrés sur la fig. [START_REF] Baird | NASA Tests Atomic Clock for Deep Space Navigation[END_REF] :

W(x, y) = a 1 U 2 (x, y) + a 2 V 2 (x, y) + a 3 U 1 (x, y) + a 4 V 1 (x, y) (10) 
Les déformations de la structure du piège se décomposent en 5 classes selon leurs symétries internes. Les classes compression et shearing respectent une forme de symétrie centrale et entraînent l'ajout d'un terme quadrupolaire pur dans le développement du potentiel octupolaire. Les classes sliding et splitting brisent la symétrie centrale et entraînent une perturbation Dans un octupole expérimental, toutes les classes de déformation sont impliquées en même temps. Une équation générale pour le potentiel d'un octupole déformé est donc proposée. Elle s'appuie sur l'ensemble des paramètres identifiés à partir des différentes classes pour pondérer les perturbations et tenir compte des effets de couplage entre les classes de déformation lorsque des déformations angulaires sont impliquées. La forme finale des coefficients de pondération {a} en fonction des paramètres identifiées donnés dans le tableau 1 est la suivante :

a 1 = h c 1 + 2|δ | π (L S cos(2δ ) -L T sin(2δ )) + h h 1 + |δ | π β T 1 -3 ∆r r 0 cos(δ ) + β S 1 + 3 ∆r r 0 sin(δ ) (11) 
-0.1

x 2 0 -y 2 0 x 2 0 + y 2 0 xix a 2 = h c 1 + 2|δ | π (L T cos(2δ ) -L S sin(2δ )) + h h 1 + |δ | π β T 1 -3 ∆r r 0 sin(δ ) + β S 1 + 3 ∆r r 0 cos(δ ) (12) 
+ 0.1 2x 0 y 0

x 2 0 + y 2 0 a 3 = [h l 1 + 4 β T π x S l + x T l -4 β T π y T l + h p (1 + sin(2β T ) cos(2β S ))x 0 -sin(2β S )y 0 ] 1 + 2|δ | π ( 13 
)
a 4 = [h l 1 -4 β T π y S l + y T l -4 β T π x T l + h p (1 -sin(2β T ) cos(2β S ))y 0 -sin(2β S )x 0 ] 1 + 2|δ | π (14) 
L'approche est testée et validée pour une erreur de positionnement des électrodes allant jusqu'à 4% de la distance des électrodes au centre du piège (200 µm). La fig. [START_REF] Champenois | Ion ring in a linear multipole trap for optical frequency metrology[END_REF] montre la comparaison de la position des minima calculées par une approche numérique par le logiciel CPO et par notre méthode perturbative dans un cas où l'erreur sur le positionnement des électrodes est aléatoire. L'étude est étendue à tous les géométries de pièges utilisant des électrodes circulaires grâce à un ensemble de coefficients de calibration h c,l,h,p qui sont fonction de la géométrie du piège uniquement. Dans le but d'appliquer les résultats dans un contexte expérimental, où les positions des électrodes ne sont pas connues, nous avons construit un code qui identifie le poids sur les xx perturbations à partir des positions des minima dans le seul pseudo-potentiel. Nous supposons que les positions relatives des minima sont expérimentalement accessibles à partir de l'imagerie de fluorescence des ions car pour un nombre suffisant d'ions piégés froids, les particules devraient s'accumuler dans les minima du pseudo-potentiel. De très bons résultats montrent qu'il n'est pas nécessaire de connaitre la position des électrodes pour établir un diagnostic des perturbations du potentiel et que les positions des minima locaux dans le pseudo-potentiel sont suffisantes pour quantifier les perturbations du potentiel octupolaire.

Correction des asymétries du potentiel

Le fait de travailler directement avec la déformation du potentiel au lieu de la déformation du piège réduit la complexité du problème de 16 à 5 inconnus (le set de coefficients {a} et un rayon interne effectif r0 ). Les études numériques entreprises par l'équipe ont démontré la possibilité de corriger l'impact sur le potentiel radiofréquence d'une déformation mécanique du piège par l'application de tensions RF correctives sur les électrodes [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Une alimentation RF sur mesure a été construite à cet effet par Stahl Electronics, qui permet un réglage contrôlé par ordinateur des tensions appliquées sur les électrodes RF. L'excursion en tension accessible est de ± 3% de la tension de base, avec une résolution d'environ 10 -4 . Lors de l'ouverture de l'enceinte à vide pour le replacement des électrodes DC de l'octupole, les électrodes RF du piège ont été également câblées individuellement pour permettre l'application de potentiels individuels. Comme l'électronique de compensation est arrivé au laboratoire assez tard sur la fin du contrat de thèse, le système n'a pas encore été testée sur notre piège et doit être caractérisée avant que d'autres tests puissent être entrepris.

δ 0 v = V r f + b 1 q cal - b 4 d cal δ 1 v = V r f - b 2 q cal - 1 √ 2 b 3 + b 4 d cal δ 2 v = V r f - b 1 q cal - b 3 d cal δ 3 v = V r f + b 2 q cal - 1 √ 2 b 3 -b 4 d cal ( 15 
)
δ 4 v = V r f + b 1 q cal + b 4 d cal δ 5 v = V r f - b 2 q cal + 1 √ 2 b 3 + b 4 d cal δ 6 v = V r f - b 1 q cal + b 3 d cal δ 7 v = V r f + b 2 q cal + 1 √ 2 b 3 -b 4 d cal
où q cal = 0.796 ± 0.008 et d cal = 0.912 ± 0.008 sont des coefficients de calibration propres aux motifs de réglage choisis.

Dans un octupole déformé, le protocole de correction consiste à : (1) identifier la perturbation ({a}) à partir des positions des minima locaux, et [START_REF] Prestage | New ion trap for frequency standard applications[END_REF] appliquer la contre-perturbation xxi ({-a}) adaptée en réglant les tensions des électrodes. Les simulations ont montré que la simple application de la contre-perturbation adaptée n'est pas suffisante pour réaliser la compensation complète des asymétries du potentiel. C'est la conséquence des déformations structurelles de l'octupole qui affectent l'exactitude du potentiel de compensation appliqué. Cette erreur peut être considérée comme faible en première approximation, et le protocole de correction peut être itéré pour obtenir une compensation des asymétries de potentiel. La figure [START_REF] Champenois | Des atomes chargés et des photons : quelques phénomènes observables en piège radiofréquence[END_REF] montre un exemple pratique de correction appliquée selon ce protocole dans un octupole dont les électrodes sont déplacées aléatoirement avec une norme de 2% de la distance (r 0 + r d ) (r 0 = 4 mm et r d = 1.5 mm). Les minima commencent à une distance moyenne de leur barycentre d = 830 µm et sont, comme prévu, rapprochés du centre mais non fusionnés, avec d = 250 µm après la première itération. En itérant le protocole de correction la distance relative des minima est de plus en plus réduite mais ne va pas jusqu'à fusionner les 3 minima. Les simulations ont montré une limite résiduelle irréductible de 40 µm dans la distance des minima au centre du piège, et les profondeurs locales de puits associées sont alors négligeables en comparaison de la température du nuage d'ions. Les simulations ont également montré que les paramètres optimaux pour l'exécution de la correction itérative sont : une résolution de 10 -4 sur les tensions de réglage appliquées et une précision dans le positionnement des minima à 4 µm (la taille des pixels dans les simulations). En moyenne, 5 itérations sont nécessaires pour que la variation de la distance moyenne des minima par rapport au centre du piège soit inférieure à la taille du pixel. Les performances du protocole de correction itératif lorsqu'il est appliqué à la composante RF du potentiel sont adéquates, avec peu d'étapes expérimentales à entreprendre pour réaliser la correction par itération. Dans les faits, le potentiel radial est la somme de la composante RF et d'un terme dé-confinant due au confinement axial. Ce terme dé-confinant affecte la position des ions mais peut également être une source d'asymétrie supplémentaire si le centre de symétrie des composantes RF et DC ne sont pas superposés. Pour pouvoir profiter au mieux du protocole de correction de la composante RF, il est conseillé de travailler avec la composante DC la plus petite possible lors de la compensation de la composante RF. Le plus important est de positionner les minima dans le repère propre de l'octupole, et donc de connaître l'orientation de ce repère par rapport à l'axe d'observation expérimental. Il peut également être utile d'évaluer le rayon intérieur effectif du piège déformé, et le rapport des amplitudes RF et DC quantifié par le rapport de fréquence radiales et axiales ω u /ω z . Enfin, il est apparu que réaliser un diagnostic du décalage entre le centre de symétrie du terme DC dé-confinant et de la composante RF est nécessaire en vue de la correction de cet offset pour restaurer la symétrie du potentiel total. Un outil de diagnostic polyvalent est proposé, basé sur le branchement des électrodes de l'octupole selon un schéma quadripolaire déformé appelé strange quad et représenté sur la fig. [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. Le branchement de seulement quatre des huit électrodes est possible grâce à notre alimentation RF modifiée et à l'individualisation du câblage des électrodes de l'octupole. Comme le strange quad ne respecte pas une symétrie centrale, le motif se produit huit fois dans la structure. La position des minima des huit strange quad est utilisée pour diagnostiquer l'orientation du repère propre de l'octupole par rapport à l'axe d'observation des ions dans l'expérience. Des relations sont également montrées entre la distance moyenne des minima et la position de leur barycentre (x c , y c ) en fonction du rapport ω u /ω z et l'offset entre les termes DC et RF noté (x 0 , y 0 ). Les équations ajustées aux résultats des simulations ont montré :

∆r sq = r sq 2 ω z ω u 2 1 + 1 4 ω 2 z ω 2 u -1 (16) 
x c = -x 0 2

ω z ω u 2 1 + ω z ω u 2 -1
; y c = -y 0 2

ω z ω u 2 1 + ω z ω u 2 -1 (17) 
où r sq est la distance moyenne des minima des strange quad au centre du piège dans le cas théorique où ω z = 0, et autrement la distance moyenne des minima est r sq + ∆r sq . Ces résultats font des strange quad un outil clefs de caractérisation des paramètres globaux du piège, qui complète les informations recueillies à partir des positions des minima locaux dans le pseudo-potentiel de l'octupole.

FIGURE 7: Schéma d'un exemple de branchement appliquée sur les électrodes de l'octupole lorsqu'il est adressé en tant que strange quad. Les couleurs correspondent aux potentiels appliqués : en rouge +V r f , en bleu -V r f . Les électrodes grisées sont mises à la terre. Le nombre affecté aux électrodes est lié au repère.

Introduction

Radio-frequency trapping is a technique used to confine charged particles in space. It can be used with one to several hundred of thousand particles depending on the application purpose.

In such devices and for a chosen set of functioning parameters, the dynamics of the particles is governed by the application of oscillating electric fields, that impose a periodic restoring force. The first radio-frequency trap was proposed by W. Paul in 1953, for which he was awarded a Nobel prize in 1989 [START_REF] Paul | Electromagnetic traps for charged and neutral particles[END_REF]. The 3D symmetry properties of this first design allow for the generation of a quadrupole field in the three directions of space. In 1989, J.D. Prestage et al. [START_REF] Prestage | New ion trap for frequency standard applications[END_REF] introduced a linear design where the radio-frequency fields are applied in only two directions of space, the confinement in the third axial direction being ensured by the application of a static potential. Along this direction the ions are free from the radio-frequency driven dynamics, which presents an interest to metrological purpose. In the perspective of reducing further the amplitude of the radio-frequency driven motion of the trapped particles, designs involving more radio-frequency electrodes and called multipole traps were proposed for the generation of higher order fields to trap the ions.

Radio-frequency ion traps are reliable systems that allow to confine ions for several seconds to several weeks. This is a fundamental characteristic for applications like high resolution spectroscopy or frequency metrology. Radio-frequency ion traps are for example used in the design of atomic ion clocks [START_REF] Brewer | Al+27 Quantum Logic Clock with Systematic Uncertainty below 10-18[END_REF]. Atomic ion clocks are passive devices where a local oscillator delivers a clock signal with the stability properties of a reference atomic transition. The Jet Propulsion Laboratory (JPL-NASA) has been working on micro-wave ion clocks with suitable design and stability properties for deep space exploration. It is required of such systems to be stable and autonomous for the long duration of the mission, with a short term stability behaving like 10 -13 τ -1/2 and a long term limit at 10 -16 , as well as being robust to space conditions (cosmic rays, propulsion stage. . . ). The stability properties of radio-frequency traps make them a technology of choice for the purpose of designing embedded systems for deep space exploration. Concerning the trapped ion, the microwave clock transition at 40.5 GHz of the mercury ion 199 Hg + was identified to fit several criteria [START_REF] Vedel | Etude bibliographique, tache n • 1[END_REF][START_REF] Vedel | Etude bibliographique[END_REF] : this reference microwave transition is a dipolar magnetic transition between two levels of the hyperfine structure of the ground level, whose structure for the mercury isotope of metrological interest (199) is detailed on fig. (1.9). The temperature of the ions is controlled by a buffer gas (Ne) at 300 K. It requires no laser for the preparation and interrogation of the ions which is a definite advantage for space applications. The operation of the clock can be summarized in three main steps: Within the scope of the "Deep Space Navigation" project the JPL has opted for a double linear trap design, with a quadrupole and a multipole section in line. In this device, ions are shuttled between the two traps depending on the step of the clock operation. The excitation of the clock transition at 40.5 GHz is realised in the multipole trap to benefit from a reduced radio-frequency drive on the trapped particles. For the third step, the ions are shuttled to the quadrupole trap, whose more open structure allows for a better collection of the fluorescence photons. Performing the microwave excitation in a different trap shields the ions from the electromagnetic perturbations present in the quadrupole section. The ions are created in the quadrupole section to benefit from a deeper potential well for the initial trapping of the particles. The NASA project Deep Space Atomic Clock launched in orbit a first prototype of such a clock in June 2019 with a 16 poles multipole trap, that is currently being tested for its long-term performances and capabilities as a navigation instrument [START_REF] Mohon | Deep Space Atomic Clock Overview[END_REF][START_REF] Baird | NASA Tests Atomic Clock for Deep Space Navigation[END_REF].

The main source of instability in such devices has been identified to be the variations of the second order Doppler effect induced by a variation in the number of trapped ions. A notable occurrence of ion loss is the shuttling process between the different sections of the trap and the collisions of the ions with the buffer gas. The theory of multipole radio-frequency trapping demonstrates the interest of using higher order trapping fields to reduce the impact of the radio-frequency driven motion on the operation of the clock, and therefore the second order Doppler effect contribution. It has been shown the frequency variations with the number of ions are reduced by a factor 1/(k -1) in multipole with 2k electrodes [START_REF] Champenois | Des atomes chargés et des photons : quelques phénomènes observables en piège radiofréquence[END_REF]. Several setups featuring multipoles with an increasing number of electrodes were tested over time [START_REF] Baird | NASA Tests Atomic Clock for Deep Space Navigation[END_REF][START_REF] Vedel | Etude bibliographique[END_REF][START_REF] Burt | JPL Ultrastable Trapped Ion Atomic Frequency Standards[END_REF] [START_REF] Prestage | Higher pole linear traps for atomic clock applications[END_REF][START_REF] Prestage | Atomic Clocks and Oscillators for Deep-Space Navigation and Radio Science[END_REF][START_REF] Burt | A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping[END_REF][START_REF] Burt | JPL Ultrastable Trapped Ion Atomic Frequency Standards[END_REF], with an improvement in the measured stability for every new setup. Nonetheless, it is difficult to determine the part played by the increased number of electrodes in the measured improvement, as every new setup has seen a number of other changes being implemented, as well as an overall amelioration of the whole system with each new version.

Multipole traps can be used to other purposes, like the investigation of chemical reaction processes [START_REF] Otto | Nonstandard Behavior of a Negative Ion Reaction at Very Low Temperatures[END_REF][START_REF] Otto | How can a 22-pole ion trap exhibit ten local minima in the effective potential?[END_REF] or the study of the self-organisation of the ions in high order traps [START_REF] Marciante | Parallel ion strings in linear multipole traps[END_REF][START_REF] Marciante | Structural phase transition in multipole traps[END_REF]. Measurements conducted in multipole traps with cold samples have shown that the distribution of the trapped charges was not regular, with pockets of higher density in a 22-poles trap [START_REF] Otto | How can a 22-pole ion trap exhibit ten local minima in the effective potential?[END_REF] and even clustering of the ions in an octupole trap [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. The irregularities observed in the potential are a source of concern as an unpredictable repartition of the sample density can change the distribution of the radio-frequency driven component of the motion and impact the measurements in both the context of frequency metrology or the study of reaction rates between the trapped species. In this context, it is relevant to propose an experimental comparison of the velocity distribution of the ions between a quadrupole and a multipole trap to verify the interest of working with multipole traps.

The expertise of the CIML team concerns trapped 40 Ca + ions and the control of their temperature via laser cooling. The team has undertaken the task of conducting such experimental comparison in a double trap constructed in the fashion of the JPL design, with a quadrupole and an octupole section. The objective of this setup is to conduct a comparative study of the velocity distribution between the quadrupole and the octupole through the fluorescence signal of the ions. Working with the 40 Ca + ion presents the advantage that lasers can be used as a versatile measurement and control tools not accessible in the microwave regime. In our setup the temperature of the ions is controlled by laser cooling which can bring the temperature of the cloud down to a few tens of millikelvins. In this case the topological deformations of the effective confinement well have a strong impact on the structuration of the ion cloud. In our octupole trap the ions were observed to cluster in three separate clouds, each cloud presenting the properties of an ion cloud trapped in a local quadrupole well [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. The deformations in the potential were studied and attributed to asymmetries in the arrangement of the radial electrodes of the octupole, responsible for the radio-frequency confinement [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. The deformations induced by the structure on the potential compromise the intended measurements, as the ions are effectively confined in a potential of unpredictable shape. Investigation of a compensation protocol to restore the symmetry and regularity of the octupole potential was undertaken by the team and it was demonstrated that such a correction scheme was possible by applying custom radio-frequency voltages on the trap electrodes [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF].

The main purpose of this thesis was to develop an experimental-friendly protocol for the compensation of the asymmetries in the octupole potential induced by the structural deformations. It is a requirement of the method to work with experimentally accessible information only. A major difficulty is that the position of the electrodes is not accessible in our setup, which brought us to work with the fluorescence imaging of the ions and the structure in which they organise as our diagnostic tool. To translate these positions into compensation voltages, an in-depth analysis of the structural defects of the trap was conducted. The outcome of this study consists in an analytical equation for the potential of an asymmetric octupole trap that gives, within the scope of a perturbative approach, the potential of the octupole as a function of the trap deformations. The results from this study were used to establish a correspondence between the perturbations of the octupole potential, diagnosed by the position of the ions, and patterns of correction voltages to apply on the trap electrodes to implement the compensation. The final protocol takes as an input the position of the ions in the octupole and computes the voltages to apply on the radio-frequency electrodes to restore the symmetry of the octupole potential.

The work done in this thesis is presented in five chapters. The first chapter is dedicated to an overview of the physics governing the experiment. It covers the theory behind radiofrequency trapping and the thermodynamic governing the structural arrangement of the ions in the trap. The intended method to compare the second order Doppler effect contribution in the quadrupole and in the octupole is introduced. The section is concluded by a presentation of the experimental setup. The second chapter is dedicated to practical modifications implemented in the octupole trap during my thesis. These modifications were required to enable shuttling between the quadrupole trap and the octupole trap, to conduct the intended comparison measurements. The analysis of the impact of the structural defect on the radiofrequency potential is conducted in chapter 3. In chapter 4, a protocol for the implementation of the compensation of potential asymmetries is proposed, along with a characterisation of the protocol performances. Chapter 5 presents an alternative way to address the electrodes of the octupole trap to characterise some general information about the structure. This protocol uses a deformed quadrupole structure called strange quad. The study of the properties of the corresponding potential gives information about the octupole, and the axial confinement properties. Further perspectives for this work are discussed in conclusion.

Chapter 1

Trapping of charged particles for frequency metrology

Introduction

In this first chapter are presented the fundamentals necessary to understand the work presented in the rest of the manuscript. We begin by covering the basics of radio-frequency (RF) trapping through the derivation of the analytic solutions for the special case of a single trapped particle in a quadrupole field. The results are then extended to higher order multipole fields within the scope of the pseudo-potential approximation. The pseudo-potential is a keystone in our study of the multipole trap properties and can be understood as an effective static confinement well as seen by the ions. This approach allows for the dynamics of a particle trapped in a RF field to be deconstructed into two periodic components : a motion with low frequency and large amplitude that corresponds to the dynamics of the particle in the pseudo-potential, upon which is added a RF-driven motion of small amplitude oscillating at the frequency of the RF electric field : the micro-motion. When more than one particle is trapped, the Coulomb interaction affects the dynamics of the system and the organisation of the ions in the potential. Three thermodynamic regimes are introduced, gas, liquid, and crystal, that distinguish regimes of low interaction and high coupling between the trapped particles. The organisation of the ions is discussed depending on the number of trapped particles.

In the context of the JPL interest with building a stable RF microwave mercury ion clock, it has been shown that the main source of frequency instability is the variation in the second order Doppler effect shift with the variation in the number of trapped ions. Multipole traps present a built-in reduction of the micro-motion amplitude for a given spatial distribution of the ion cloud and are investigated as part of a double trap design. The motivation behind the work presented in this thesis is to conduct an experimental comparison of the reduction of the micro-motion contribution with higher order multipole designs. The chosen species for our experiment is the calcium ion, and our setup consists in a double linear trap with a quadrupole and an octupole section. We operate in the optical regime with laser cooled ions on the fluorescence line at 397 nm. The idea is to conduct a comparative study of the velocity distribution of the ions between a quadrupole and an octupole trap by analysing the changes in the lineshape of the fluorescence line. We finish by giving an overview of the experimental setup in which the measurements are intended.

Radio-frequency trapping devices

Radiofrequency (RF) trapping consists in using oscillating electric fields to apply a restoring force on the ion and keep it localized. The simplest kind of confining potential that can be considered for the purpose of trapping a charged particle is the 3D harmonic potential well:

Φ(x, y, z) = V 0 r 2 0 (αx 2 + β y 2 + γz 2 ) (1.1)
where V 0 would be the potential applied to the electrodes, with a sign opposed to the charge of the confined particle, and r 0 is the relevant length scale (inner radius of the trap). For a positive charge, this potential is confining if the three coefficients α, β and γ are positive, which is forbidden by Laplace's law:

∆Φ(x, y, z) = 0 (1.2)
This equation states the impossibility to confine a charged particle in all three directions of space with static electric fields as one coefficient needs to be negative. The idea behind RF trapping is to periodically flip the sign of each coefficient by imposing time oscillating potentials on the electrodes. For a fast enough switching, the particle cannot escape the trap along the deconfining direction before it turns into a confining one, and the potential as seen by the ion is an artificial 3D confining well.

In this section are first introduced two basic designs of RF trap : the historical Paul trap and the linear quadrupole trap used in our experiment. Then the theory of RF trapping is discussed in detail for the simple case of the quadrupole trap and then for any multipole trap, and the pseudo-potential approximation introduced. The pseudo-potential is a fundamental tool through this work that consists in calculating the shape of the time averaged trapping potential as seen by the ions.

Designs of basic quadrupole RF traps: the Paul trap and the linear trap

The traditional design for RF traps was first proposed in 1953 by Wolfgang Paul [START_REF] Paul | Electromagnetic traps for charged and neutral particles[END_REF]. A schematic is shown on fig. (1.1), where it can be seen it is a three electrode design with two endcap electrodes and one ring electrodes. The cut section of the electrodes is hyperbolic, to match the equipotential lines required to create a harmonic electric potential. This shape induces α = β = 1 and γ = -2 in eq. (1.1). The potential applied to the electrodes,

V 0 (t) = V st -V r f cos(Ωt) (1.3)
can also include a static contribution V st , and Ω/2π and V r f are respectively the frequency and amplitude of the oscillating potential. When the trapped particle is an ion, the radiofrequency is about a few megahertz.

The fast oscillating fields used in the RF trapping technique ensure the confinement of the charged particle by dragging it back toward the centre of the trap when the confining directions are switched. The induced motion driven by the RF oscillations is called micro-motion and is a source of heating of the trapped ions when combined with collisions or electric field inhomogeneities. This contribution grows with the distance of the particle to the centre of the trap, with the trap centre being a null point in the oscillating field, that is rid of this micromotion.

In a Paul trap the electric field oscillates in all three directions in space and there is only one null point in the centre of the trap. Since it is of interest for metrology purpose to reduce the contribution of the micro-motion to the dynamics of the ions, an alternative design called linear quadrupole trap, extending the micro-motion free area along an axis was proposed in 1989 [START_REF] Prestage | New ion trap for frequency standard applications[END_REF]. Because of the symmetry, the linear traps make use of oscillating electric fields in only two of the three directions in space, and the confinement along the third direction is ensured by a static potential. The Laplace equation imposes α = -β , γ = 0 for the RF potential, and it writes down as:

Φ r (x, y,t) = (V st -V r f cos(Ωt)) (x 2 -y 2 ) r 2 0 (1.4)
The DC potential designed to trap along the third direction does not obey the same symmetry and obeys the equation:

Φ dc (x, y, z) = κV dc 2z 2 -(x 2 + y 2 ) z 2 0 (1.5)
where 2z 0 is the distance between the DC electrodes in the z direction and V dc a static potential applied on these end cap electrodes ensuring the confinement along the z axis. κ is an efficiency factor that depends on the design of the end cap electrodes and of the overall trap. In order to respect the Laplace equation, eq.(1.5) induces a deconfining component in the radial plan, and the applied V dc must be chosen small enough so that it does not compete with the confining component imposed by the RF field. The total potential in the trap writes as a sum of both components:

Φ(x, y, z,t) = Φ r (x, y, z,t) + Φ dc (x, y, z) (1.6) 
An example of linear design can be seen on fig.

(1.2), where the chosen design for the end-caps electrodes is a ring and the RF electrodes are circular rods. Using RF electrodes of circular section instead of hyperbolic section is a choice often made in practice to lower the design complexity and the reader can refer to [START_REF] March | Fundamentals of ion trap mass spectrometry[END_REF] for more details about the impact of this simplification and how to make it negligible. In this device, the micro-motion free region is now stretched to a line along the direction of the RF electrodes. This design allows for a bigger region of low RF heating than in the Paul trap [START_REF] Prestage | New ion trap for frequency standard applications[END_REF]. This argument extends to higher order multipoles, making the linear structure the design of choice for our study. We now restrict our analysis to linear traps.

Dynamic of a single charged particle in a RF trap

Equation of motion in a quadrupole trap

Quadrupole traps are the simplest designs for the RF confinement of charged particle. In the linear design, an oscillating voltage is applied on 4 electrodes sitting at the four corners of a FIGURE 1.2: An example of design for a linear radio-frequency trap. The RF electrodes are in red and blue, with the potential applied on the blue electrodes phase opposition to the one applied on the red electrodes. The DC electrode in grey. Reprinted from [START_REF] Pedregosa | Anharmonic contributions in real RF linear quadrupole traps[END_REF][START_REF] Pedregosa | Erratum to Anharmonic contributions in real RF linear quadrupole traps[END_REF].

square, with a phase opposition between neighbouring electrodes. It generates the equivalent of a static harmonic confining well for the ions. The quadrupole design is the only one supporting an analytical solution for the trajectory of a single trapped particle. Throughout this work we index the potential with k, where 2k is the number of electrodes, or poles, used to build the potential well (2k = 4 in the case of the quadrupole). The instantaneous radial component of the quadrupole potential now writes:

Φ 2 (x, y,t) = Φ 2|r f (x, y,t) + Φ 2|st (x, y) + Φ 2|dc (x, y) (1.7) 
Let us start by considering V dc = 0. By using Newton's second law applied to a single particle of mass m and charge q subjected only to the restoring force F 2 = -q ∇Φ 2 , we can write down the following system of equations:

ẍ + 2q/(mr 2 0 ) (V st -V r f cos(Ωt)) x = 0 ÿ -2q/(mr 2 0 ) (V st -V r f cos(Ωt)) y = 0 (1.8)
which can be rewritten in a simplified manner with u = {x, y} as :

∂ 2 u ∂ τ 2 + (a u -2q u cos(2τ))u = 0 (1.9)
where the time variable is redefined as τ = Ωt/2, and (a u , q u ) are dimensionless parameters:

a x = -a y = 8q mr 2 0 V st Ω 2
(1.10)

q x = -q y = 4q mr 2 0 V r f Ω 2 (1.11)
The eq.(1.9) is known as the Mathieu equation [START_REF] Ghosh | Ion Traps[END_REF][START_REF] Gerlich | Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions[END_REF][START_REF] Mclachlan | Theory and application of Mathieu functions[END_REF][START_REF] Ruby | Applications of the Mathieu equation[END_REF]. The mathematical resolution of this equation is above the scope of this work, and only the relevant features in the context of RF traps are discussed in the following. We focus on the stability conditions of the equation for which the charged particle is trapped.

Stability domains of the Mathieu equation

The dynamics of the trapped particle is governed by the solution u(τ) of eq.(1.9) which has a behaviour controlled by a u and q u independently of the initial conditions. The stability domains of the u(τ) solution are plotted on the left panel of fig. (1.3). They correspond to the greyed areas, with the rest of the (a u , q u ) plan corresponding to unstable solutions. Since the stability of the solution must be guaranteed in both the x and y directions and (a x , q x ) = (-a y , -q y ) the parameters must belong to an overlap zone for both stability domains. The right panel of fig. (1.3) shows that several zones match these requirements, with the red and black lines corresponding to the y and x directions respectively. In practice the first stability region, which is closest to the origin of the (a u , q u ) frame is chosen to operate the traps. This domain corresponds to the smallest q u values and therefore the smallest RF voltages. With a positive particle charge, the trap operates in the right-hand section of the diagram. The stable u(τ) solutions write down as:

u(τ) = α ∞ ∑ n=-∞ (C u ) 2n cos((2n ± β u )τ) + α ∞ ∑ n=-∞ (C u ) 2n sin((2n ± β u )τ) (1.12)
where (α, α ) are real numbers depending on the initial conditions, and both β u and (C u ) 2n are real constants depending on the (a u , q u ) parameter set. Switching back to the original time scale (τ → t) shows that the stable solutions of u(t) take the form of an infinite sum of oscillating terms of frequency (ω u ) n /2π, with (ω u ) n = (2n ± β u )Ω/2. The lowest frequency, or secular frequency, ω u = β u Ω/2 is the frequency of the harmonic part of the particle motion in the first stability region. On fig. (1.4) is shown a close up view of the first stability domain. In this region the (a u , q u ) parameters are small, with 0 < a u q u < 1, and β u can be approximated by a Taylor development:

β u = q 2 u 2 + a u (1.13)

Micro and macro motion of the trapped particle

When working in the first stability region, it is possible to approach the dynamics of the particle as a sum of a fast oscillating component of frequency Ω/2π and amplitude µ u (micromotion) corresponding to the RF driven part of the motion, and a slow motion of greater amplitude M u (macro-motion) corresponding to the general description of the particle's trajectory:

u(τ) = M u (τ) + µ u (τ) (1.14) FIGURE 1.4:
Zoom on the first stability region of the (a u , q u ) diagram, usually selected in RF trap designs. Adapted from [START_REF] Marciante | Dynamique d'ions en piège radio-fréquences[END_REF].

To find the form of the two terms, we can insert this into the Mathieu equation, and work some simplified results by admitting the macro-motion is oscillating very slowly in regard of the micro-motion. It allow us to make the following approximations,

| ∂ 2 µ u ∂ τ 2 ∂ 2 M u ∂ τ 2 | and |a u M u | | ∂ 2 µ u ∂ τ 2 |
and write:

∂ 2 µ u ∂ τ 2 (τ) -2q u cos(2τ)M u (τ) = 0 (1.15)
Finally, if we consider M u a constant in the quasi-static approach, it is possible to integrate eq.(1.15) and get an equation for the micro-motion:

µ u (τ) = - q u 2 cos(2τ)M u (1.16)
By reinjecting this equation into eq. (1.15) and averaging over one RF period we get:

∂ 2 M u ∂ τ 2 (τ) + β 2 u M u (τ) = 0 (1.17)
This development shows that, within the validity boundaries of our approximations, the macro-motion is a harmonic oscillator at the secular frequency ω u /2π = β u Ω/2:

M u (t) = A u cos(ω u + φ u ) (1.18)
and the total motion of the particle writes:

u(t) = A u cos(ω u t + φ u ) 1 - q u 2 cos(Ωt) (1.19)
with (A u , φ u ) the initial amplitude and phase of the particle trajectory.

Impact of the DC deconfining term

So far, only the RF contribution to the potential was considered. Nevertheless, and as mentioned earlier, the axial confinement by static potentials imposes a deconfining component in the radial plan. This contribution can write as :

φ dc = 1 2 mω 2 z z 2 - x 2 + y 2 2 (1.20)
The radial contribution is isotropic and changes the parameter a u in the stability diagram to an effective value ãu [START_REF] Drewsen | Harmonic linear Paul trap: Stability diagram and effective potentials[END_REF]:

ãu = a u -a z with a z = 2 ω 2 z Ω 2 (1.21)
The stability diagram is modified to ( ãu , q u ). Usually in linear traps ω z is small (a few hundreds of kilohertz) when compared to Ω (a few megahertz). The a z contribution remains relatively small and does not change much the stability conditions from (a u , q u ), but can be a source of local instabilities [START_REF] Drewsen | Harmonic linear Paul trap: Stability diagram and effective potentials[END_REF][START_REF] Drakoudis | Instabilities of ion motion in a linear Paul trap[END_REF].

Interest of higher order traps

The exact development conducted so far is valid as far as one particle is trapped. If several particles are simultaneously trapped, the Coulomb interaction couples the x and y directions in eq. (1.8). The Coulomb interaction between the trapped particles coupled with the RF driven micro-motion raises the amplitude of the macro-motion, a phenomenon called RF heating. For metrological purpose it is desirable to reduce the amplitude of the fast oscillating micro-motion to lessen the various impacts of RF heating on the system. This can theoretically be achieved by increasing the number 2k of poles used to create the trapping potential well, which motivates the investigation of more complex designs for ion trapping.

In multipole traps the shape of the potential is not harmonic, and the analytical derivation for the solution u(t) of the motion of the trapped particle in the well is not possible anymore.

The potential in a multipole trap with 2k electrodes writes down as:

Φ k|r f = (V st -V r f cos(Ωt)) K k (1.22)
K k can be one of two polynomials of order k from a set {U k , V k } such as [START_REF] Friedman | Fundamentals of ion motion in electricradio-frequency multipole fields[END_REF]:

U k (x, y) + iV k (x, y) = 1 r k 0 (x + iy) k (1.23)
For the octupole trap (2k = 8), which is the multipole trap of interest in our experiment,

U 4 (x, y) = 1 r 4 0 (x 4 -6x 2 y 2 + y 4 ) (1.24) V 4 (x, y) = 1 r 4 0 4xy(x 2 -y 2 ) (1.25)
For commodity we like to work with U 4 (x, y) which corresponds to an octupole trap where four electrodes are positioned on the (x, y) frame as illustrated on fig. (1.5), so that the potential writes :

Φ 4 = (V st -V r f cos(Ωt)) (x 4 -6x 2 y 2 + y 4 ) r 4 0 (1.26)
The system of equation governing the motion of the charged particle in the (x, y) plan is then:

ẍ + 2q/(mr 4 0 ) (V st -V r f cos(Ωt)) (x 3 -3xy 2 ) = 0 ÿ -2q/(mr 4 0 ) (V st -V r f cos(Ωt)) (y 3 -3yx 2 ) = 0 (1.27)
in which the x and y directions are coupled, and no exact analytical solution can be calculated for the motion of the trapped charge. A simplified approach to the problem, in which the dynamics of the ion is simplified as the sum of its slow and fast oscillating component, can be extended to the multipole trapping. This approach is called the pseudo-potential approximation and is presented in the following. 

The pseudo-potential approximation

In the scope of the pseudo-potential approximation, the charged particle is considered trapped in a fictive static potential, called pseudo-potential. This section presents its formalism and its domain of validity. In the context of our interest in multipole traps, it is discussed in the light of the pseudo-potential approach how to choose the parameters (V r f , Ω) to ensure trapping.

The following work is largely inspired by the work of H.G. Dehmelt [START_REF] Dehmelt | Radiofrequency Spectroscopy of Stored Ions I: Storage**Part II: Spectroscopy is now scheduled to appear in Volume V of this series[END_REF] that introduced the concept for quadrupole traps and D. Gerlich [START_REF] Gerlich | Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions[END_REF] who generalised it for the multipoles.

Let us consider a charged particle in a uniform E field oscillating at a frequency Ω/2π. The temporal evolution of this particle is governed by Newton's equation and the initial conditions of the problem. For a particle with non-zero initial velocity and position (v 0 , r 0 ), resolution of Newton's equation shows the motion r(t) of the particle consists in oscillations around the free trajectory R 0 (t) = v 0 t + r 0 :

mr(t) = qE sin(Ωt) =⇒ r(t) = R 0 (t) -a sin(Ωt) (1.28) with a = q m E Ω 2 (1.29)
Averaging r(t) over a RF period smoothes out the oscillations due to the RF drive, and the solution then simplifies as the trajectory of the free particle R 0 (t).

In the more complicated case where the E field is not uniform, Newton's equation writes:

mr(t) = qE (r(t)) sin(Ωt) (1.30)
In the same fashion as previously, we write the solution as the sum of a slow and fast component. The slow component R(t) corresponds to the average trajectory of the particle over a RF period and the fast component to the RF driven motion:

r(t) = R(t) -a(t) sin(Ωt) (1.31)
Here the amplitude a(t) of the fast oscillating component is now a function of time. If we make the hypothesis the amplitudes of a(t) changes on a timescale longer than the RF period (ȧ Ωa), the acceleration of the particle writes:

r(t) R(t) + Ω 2 a(t) sin(Ωt) (1.32)
Finally if the amplitude of the fast oscillating component is small in regard to the amplitude of the slow component (a R), the local electric field can be developed to the first order around the trajectory of the slow component :

E(r) = E(R) -(a • ∇)E |R sin(Ωt) + O(a 2 ) (1.33) (a • ∇)E |R = 1 2 ∇(E 2 ) -E × (∇ × E) 1 2 ∇(E 2 ) (1.34)
Eq.(1.30) simplifies in the first order in a as:

m R(t) + mΩ 2 a sin(Ωt) = qE(R(t)) sin(Ωt) -q 1 2 ∇(E 2 ) sin 2 (Ωt) (1.35)
which can be further simplified by replacing a with its expression from eq.(1.29). The acceleration then writes in this regime of approximations:

R(t) = - 1 2 q 2 m 2 Ω 2 ∇(E 2 ) sin 2 (Ωt) (1.36) R(t)
is the slow component of the motion, that does not follow the RF drive. The expression can be further simplified by averaging it over a RF period:

R(t) = - 1 4 q 2 m 2 Ω 2 ∇(E 2 ) (1.37)
It is like the motion R(t) is controlled by a force derived from a pseudo-potential. The expression for the pseudo-potential Ψ k , in accordance with Newton's equation m R = -∇Ψ k , writes:

Ψ k = q 2 4mΩ 2 E 2 (1.38)
For the quadrupole, E 2 = 4V 2 r f x 2 + y 2 /r 4 0 , and the pseudo-potential writes:

Ψ 2 (x, y) = q 2 V 2 r f mr 4 0 Ω 2 x 2 + y 2 (1.39)
and the particle is confined in first approximation in the equivalent of a static harmonic potential well. The shape of the well can be found by writing the total potential from eq.(1.7) in the radial plan and replacing Φ 2|r f (x, y,t) by Ψ 2 (x, y) such as:

Ψ 2 (x, y) = 1 2 mω 2 x x 2 + 1 2 mω 2 y y 2 (1.40)
where ω u is redefined by replacing a u by ãu .

For higher order multipole, the use of cylindrical coordinates makes for a more compact notation. The RF potential for a linear multipole with 2k electrodes writes:

Φ k (r, Φ,t) = V r f cos(Ωt) r r 0 k cos(kθ ) (1.41)
and the corresponding expression of the pseudo-potential is:

Ψ k = k 2 4 q 2 V 2 r f mr 2 0 Ω 2 r r 0 2k-2 (1.42)
This expression, and the pseudo-potential approximation, are valid within a range of trapping parameters (V r f , Ω). The domain of validity of the pseudo-potential approximation is defined by the adiabatic criteria discussed below.

The pseudo-potential approximation gives an easy insight into the expected general motion of the confined particle in a multipole traps and into their organisation in the trap, but it ignores the radio-frequency driven part of the motion. It is applicable within the frame of approximation that the variation of a(t) is slow in comparison to the timescale of the RF period (ȧ Ωa). It is possible to give a practical criterion for this approximation to be valid, called the adiabaticity criterion. It is linked to the dynamics of the ion in the trap and especially the local variation of the RF field over the distance crossed by the ion during a period of its micro-motion, quantified by an adiabaticity parameter η ad (r) [START_REF] Gerlich | Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions[END_REF] that writes in the cylindrical coordinates:

η ad (r) = 2(a • ∇E) E = q mΩ 2 ∇(E 2 ) E = 4 ∇(Ψ/q ) E (1.43) η ad (r) = 2k(k -1) qV r f mΩ 2 r 2 0 r r 0 k-2 (1.44)
Quadrupole traps are the exception for which η ad does not depend on r as it reduces to the Mathieu parameter q u . For multipole traps, numerical and experimental simulations [START_REF] Gerlich | Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions[END_REF] show η ad (r) < 0.3 to be a safe condition for adiabaticity in most cases. A revised and more general model of effective trapping volumes for multipole [START_REF] Gerlich | Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions[END_REF][START_REF] Mikosch | Evaporation of Buffer-Gas-Thermalized Anions out of a Multipole rf Ion Trap[END_REF][START_REF] Mikosch | Evaporation of trapped anions studied with a 22-pole ion trap in tandem time-of-flight configuration[END_REF], combined to a more recent experimental study of the stability domains 1 conducted in a 22-pole trap [START_REF] Otto | How can a 22-pole ion trap exhibit ten local minima in the effective potential?[END_REF] extend this boundary up to η ad (r) < 0.36 ± 0.02. A safe criterion proposed in [START_REF] Champenois | About the dynamics and thermodynamics of trapped ions[END_REF] is η ad (r) < 0.34 (1.45) This limit guarantees the stability of the ion trajectory. For a given trapped particle of mass m and charge q, η ad (r) is a function of order k of the multipole, the voltage applied to the electrodes and the position in the radial plan where it is evaluated. This means that, for fixed trap parameters (k,V r f ), the pseudo-potential approximation is only valid in a specific area of the trap delimited by the limit adiabaticity radius r ad . If the ion explores a wider area of the trap (r > r ad ) the approximation is no longer valid and non-linear dynamics rules.

Within the boundaries of the adiabatic approximation, quantified by the adiabaticity parameter, it is possible to use the pseudo-potential approach to describe the confinement. The pseudo-potential well for different order k evolves from a harmonic shape for the quadrupole case toward a squared profile for higher orders k. The depth of the potential ∆Ψ k needs to be evaluated in regard to the adiabaticity radius acc. to ∆Ψ k = Ψ k (r ad ) -Ψ k (0). This implies that for an equal potential applied on the electrodes, the pseudo-potential well gets shallower as the order of trap increases. Lastly, the local micro-motion amplitude can be evaluated for any multipole in the adiabatic approximation by taking the norm of eq.(1.29):

a(r) = η ad (r) 2(k -1) r = k qV r f mΩ 2 r 0 r r 0 k-1
(1.46) 1 In this case the stability domain is assimilated to the trapping conditions fulfilling the adiabaticity condition.

The last step is to account for the addition of a static contribution on the RF electrodes and the axial confinement. The total pseudo-potential in a multipole trap writes in the radial coordinates:

Ψ k = k 2 4 q 2 V 2 r f mr 2 0 Ω 2 r r 0 2k-2 + qV st r r 0 k cos(kφ ) + 1 2 ω 2 z z 2 - r 2 2 (1.47)
In multipole traps the orders of the RF and static component are different, and adding a static contribution changes the profile of the total potential and imposes a dependence in φ . As a consequence, in general no static contribution is added and in the following we take V st = 0. The DC confinement also changes the profile but cannot be forfeited. In the case of a multipole of order k > 2 the minimum in the pseudo-potential is delocalised from the centre by the axial deconfining component and spreads in a ring of radius [START_REF] Champenois | Ion ring in a linear multipole trap for optical frequency metrology[END_REF]:

r 2(k-2) min = 1 k -1 2mΩω z r k 0 kqV r f 2 (1.48)
A radial section of the total confining potential in an octupole (V st = 0) is given on the left panel of fig. (1.6). The potential does not depend on the angle φ and the pseudo-potential thus obeys a centre-symmetry along the z axis. The consequent ring shape of the minimum is shown on the right panel of the figure, in which is plotted the pseudo-potential map of a perfect octupole potential (Ω/2π = 3.325 MHz, ω z /2π = 100 kHz, V r f = 300 V and r 0 = 4 mm). The darker areas correspond to the bottom of the pseudo-potential well and is a ring of radius r min = 0.818 mm. The expected structuration of the ions in such a potential depends on the kinetic energy of the ions and on the number of trapped ions, which is discussed in sec.(1.2.2). 

Thermodynamic of the trapped ions

In this section we discuss the different thermodynamic regimes of a trapped ion cloud depending on the temperature of the ions, and the expected structuration of the ions in these different regimes. When several charged particles are trapped simultaneously, the Coulomb interaction modifies the dynamics presented in sec.(1.1). In the following, we discuss the method used in the experiment to control the temperature of the ions, and the different thermodynamic regimes accessible to the ions.

Laser cooling

Depending on the nature of the trapped particles and the trapping technique there exists several methods to control and reduce the temperature of the system. For example, buffer gas cooling is a versatile technique used to slow down the species of interest by collision with a gas [START_REF] Gerlich | Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions[END_REF][START_REF] Vedel | Influence of space charge on the computed statistical properties of stored ions cooled by a buffer gas in a quadrupole rf trap[END_REF]. This method does not require lasers and is therefore not limited by requirements over the intern structure of the trapped species. It works for any species of interest, but the limit temperature is only on the order of a few kelvins. If lower temperatures are required, and the structure of the trapped ion allows it, laser cooling can be used. Laser cooling is a physical process based on the control of the trapped particle velocity with laser light. A conventional cooling scheme requires three pairs of laser beam to cover the three dimensions in space along both directions. In our setup the cooling axis is along the axis of the linear trap and the radial direction is cooled thanks to the Coulomb interaction coupling the radial degrees of freedom. This process can be applied on ions that can be simplified as two level systems and can bring down the temperature of the system down to a few millikelvins in conventional RF traps in ultra-high vacuum. We present below an overview inspired from [START_REF] Knoop | Trapped Charged Particles[END_REF] of the theory of laser cooling for a two-level system, to which the 40 Ca + ion can be approximated for now. A more complete description of the 40 Ca + atomic levels involved in our experiment is conducted in sec.(1.3.2).

We modelize the ion of interest as a two-level system. The ground state |g of energy E g is coupled to the excited state |e of energy E e and lifetime τ by an electric dipole transition. The ion is in motion with a velocity v i in the laser field characterised by its wavevector k L such as |k L | = 2π/λ , where λ is the lasers' wavelength. Absorption of a photon of energy ω L happens when the energy matches the energy gap ∆E between the two atomic levels, with ∆E = E e -E g = ω 0 . The excited ion can then relax into the ground state thanks to two mechanisms:

• Stimulated emission: this relaxation process comes from a coupling with the incident laser field. The emitted photon has the same direction as the wavevector of the laser field and the difference between the impulsion of the two photons is null (∆p = 0). There is no 'kick back' from the absorption/emission cycle and no change in the ion energy: this type of emission does not participate in the laser cooling process.

• Spontaneous emission : in this case the photon can be emitted in any direction. If this cycle of absorption and spontaneous emission continues, the contribution of the spontaneous emission to the momentum of the ion averages to zero because of the random distribution on the direction of the emitted photon. The net recoil for the ion is in average, ∆p = k L .

Let us write v f the velocity of the ion after the absorption of a photon and apply momentum and energy conservation:

v f = v i + k L m (1.49) E e + 1 2 mv f 2 = E g + ω L + 1 2 mv i 2 (1.50)
These two expressions combine into the following equality:

ω at L = ω 0 + k L 2 2m ; ω at L = ω L -v i • k L (1.51)
The term k L 2 /2m corresponds to the recoil energy, it is negligible in comparison to the natural linewidth γ = 1/τ e . ω at L /2π can be understood as the laser frequency seen by the atom, which is ω L shifted by the Doppler effect (-v i • k L ). From the momentum conservation expressed in eq. (1.49), it is possible to see that: either ω L < ω 0 and -v i • k L > 0 or ω L > ω 0 and -v i • k L < 0. In the first configuration (ω L < ω 0 ), absorption of contra-propagating photons is favoured and v f < v i . The recoil velocity k L /m is on the order of 2.5 cm.s -1 for the 40 Ca + ion (atomic mass 40 u.m.a) on its resonant transition at 397 nm. As this cycle repeats, the velocity reduces to reach the limit imposed by the random feature of spontaneous emission.

When the spontaneous emission is the limit to Doppler laser cooling, it has been demonstrated that for unsaturated excitations the optimal laser detuning is ω Lω 0 = -γ/2. The limit temperature then writes:

T lim = γ 2k B (1.52)
where k B is the Boltzmann constant. In the running hypothesis the 40 Ca + is a two-level system, the Doppler limit is reached at T lim = 0.55mK. In the case of RF trapped ion cloud, the RF frequency drive is a source of heating when combined with collisions or electric field inhomogeneities. This raises the limit temperature accessible to the ions to a few millikelvins [START_REF] Hornekaer | Formation process of large ion Coulomb crystals in linear Paul traps[END_REF].

In our experiment, detection of the ions relies on the collection of fluorescence photons emitted by spontaneous emission at 397 nm. This signal is proportional to the number of ions in the excited state.

Self-organisation of cold ions

When more than one charged particle is trapped, the Coulomb interaction needs to be considered to understand the dynamics of the ions and the structuration of the cloud. Details about how to treat the Coulomb-induced correlation between the ions can be found in [START_REF] Champenois | About the dynamics and thermodynamics of trapped ions[END_REF]. Depending on the temperature of the ions the importance taken by the Coulomb repulsion in the dynamics differs: for hot ions it is negligible in regard to the kinetic energy, but for colder cases it plays a paramount role in the organisation of the ions by coupling their dynamics.

The different thermodynamic regimes of the ion cloud are characterised by the plasma parameter Γ, which is the ratio between the Coulomb interaction between closest neighbours and the kinetic energy [START_REF] Baus | Statistical mechanics of simple coulomb systems[END_REF]:

Γ = q 2 4πε 0 a ws k B T (1.53)
where a ws is the Wigner-Seitz radius and is related to the density n of the cloud by 4π na ws /3 = 1.

If the system is evaluated with Γ ≤ 2, it can be qualified as a 'gas state' [START_REF] Pierre | Statistical Mechanics of Dense Ionized Matter. I. Equilibrium Properties of the Classical One-Component Plasma[END_REF], with a low density and delocalized ions. Higher values for Γ can be split between a liquid state (2 ≤ Γ ≤ 175) and a 'crystal state' if Γ > 175 [START_REF] Pollock | Statistical Mechanics of Dense Ionized Matter. II. Equilibrium Properties and Melting Transition of the Crystallized One-Component Plasma[END_REF][START_REF] Slattery | Improved equation of state for the classical one-component plasma[END_REF][START_REF] Farouki | Thermal energy of the crystalline one-component plasma from dynamical simulations[END_REF]. These limits were identified in simulated system of infinite length, and are slightly underestimated in regard to the properties of finite length systems. Pictures of the ion cloud in these three thermodynamic states, taken in the quadrupole section of the TADOTI experiment are shown on fig.

(1.7). In the crystal state, each ion is localised and oscillates around an mean position and the ion cloud organise in neat structures called Coulomb crystal. The liquid state is an intermediary state of high density where the ions are coupled through Coulomb interaction, but where they remain free to move about. Laser cooling techniques allows us to work in the liquid or crystal state with the density reached by RF trapping. In the crystal and liquid states, the Coulomb interaction cannot be ignored and there is no analytic development for the full description of the N ion system. Several methods propose different answers depending on the focus of the experiment. A Monte-Carlo method can be applied to calculate the position of each ion [START_REF] Pollock | Statistical Mechanics of Dense Ionized Matter. II. Equilibrium Properties and Melting Transition of the Crystallized One-Component Plasma[END_REF] when the statistical equilibrium is studied. If the dynamics of the ions toward equilibrium is also of interest, one needs to rather go for molecular-dynamics simulations [START_REF] Rahman | Structure of a One-Component Plasma in an External Field: A Molecular-Dynamics Study of Particle Arrangement in a Heavy-Ion Storage Ring[END_REF][START_REF] Dubin | Computer simulation of ion clouds in a Penning trap[END_REF][START_REF] Prestage | Dynamics of charged particles in a Paul radio-frequency quadrupole trap[END_REF]. To calculate analytically the global parameters of the cloud, like its size, shape and density rather than having specific knowledge over every ion, the non neutral plasma model is adapted [START_REF] Champenois | About the dynamics and thermodynamics of trapped ions[END_REF].

The trap has been designed to enable confinement of big ion clouds, with a number of ions up to 10 5 . The non neutral plasma approach can be used to collect the general properties of the cloud as soon as several hundreds ions are trapped. In this model the system is supposed to be at the thermodynamic equilibrium and assimilated to a cold fluid, and the Coulomb interaction is taken into account in a mean-field approach as a global field generated by the charge distribution. The N body problem is modified into a one body problem, and the shape and density of the ion cloud can be calculated. A general overview of this cold fluid approximation is detailed in [START_REF] Champenois | About the dynamics and thermodynamics of trapped ions[END_REF]. For the quadrupole case a cold ion cloud organises in an ellipsoid shape with a length ratio that depends on the steepness of the well [START_REF] Turner | Collective effects on equilibria of trapped charged plasma[END_REF], which was experimentally demonstrated in [START_REF] Hornekaer | Formation process of large ion Coulomb crystals in linear Paul traps[END_REF]. The density is uniform over the sample and depends only on the steepness of the RF contribution of the pseudo-potential well :

n = 2mε 0 q ω 2 u (1.54)
In the multipole case the competition between the trapping potential energy and the Coulomb interaction results in a non-uniform density that grows with the distance to the centre:

n(r, z) = 2mε 0 q k 2 (k -1) 8 qV r f mΩr 2 0 2 r r 0 2(k-2) (1.55)
and the ions organise in a tube whose radius is defined by the trapping parameters and the number of trapped ions per unit length N/2L [START_REF] Champenois | About the dynamics and thermodynamics of trapped ions[END_REF]:

R m = r 0 N 2L mΩ 2 r 2 0 πε 0 k 2 (k -1)V 2 r f 1/(2k-2) (1.56)
This organisation of the ions has been confirmed by molecular dynamics simulations. On fig.

(1.8) is shown such structure, for 1000 ions in an octupole trap [START_REF] Marciante | Dynamique d'ions en piège radio-fréquences[END_REF]. Within the scope of this work we have an interest in identifying the shape of the pseudopotential through the position of the ions. This requires using only a few ions, so that the Coulomb repulsion does not govern the radial organisation of the ions, and they instead are positioned in the pseudo-potential minimum. As discussed in sec. (1.1.3), this minimum is shaped as a ring of radius r min as defined by eq. (1.48). In this case molecular dynamics simulations have shown the structure formed is a one-sheet tube with staggered arrangement of the ions [START_REF] Marciante | Dynamique d'ions en piège radio-fréquences[END_REF], where the radius and length of the tube can be modified by playing on the trapping parameters and adjusting the ratio of the RF to DC amplitudes [START_REF] Okada | Crystallization of Ca + ions in a linear rf octupole ion trap[END_REF], with a limit case being a single ion ring.

Frequency metrology with an ion cloud

In this section we discuss the accessible measurements in our setup (TADOTI) that are relevant for microwave ion clocks. The probe signal corresponds to the fluorescence of the ions. We start by discussing how the second order Doppler effect can be a source of frequency instability in micro-wave ion clocks, and how using multipole traps of higher order is of interest to reduce this contribution. Then we present the intended measurement in our setup.

Doppler effect in a microwave ion clock

As mentioned in the introduction, in micro-wave ion clocks the clock transition and the fluorescence line correspond to two different atomic transitions. The involved atomic levels for the 199 Hg + isotope are shown on fig.(1.9) : the clock transition is the 40.5 GHz microwave transition, and the fluorescence line that corresponds to the actual gathered signal is at 194 nm. Microwave excitation corresponds to wavelength on the centimetre scale, and in the case of the mercury ion λ GHz = 0.783 cm. In the trapping device, the axial length of the trap is 17 cm against an outside diameter of 1.5 cm [START_REF] Prestage | One-Liter Ion Clock: New Capability For Spaceflight Applications[END_REF]. The length of the cloud can be on the order of ten centimetres, but the excitation wave propagates along the radial direction where the scale of the system is smaller than the wavelength. This places the system in the Lamb-Dicke regime where the first order Doppler effect broadening of the transition linewidth is cancelled. The remaining contribution is the second order Doppler effect, which has proven to be the main source of frequency instability in the device. The second order Doppler effect is the consequence of the relativistic dilatation in the rate of the passing time between the still observer and the moving ion. Let us write the natural frequency of the transition for an atom at rest ν 0 , and ν 0 this frequency on the moving atom, modified by the relativistic time dilatation:

ν 0 = ν 0 1 -v 2 /c 2 ≈ ν 0 1 - 1 2 v 2 c 2 (1.57)
Thanks to a Taylor development in v 2 /c 2 , the frequency offset ∆ν = ν 0ν 0 introduced by the relativistic contribution writes:

∆ν ν 0 = - 1 2 v 2 c 2 (1.58)
This contribution is responsible for a broadening of the linewidth and a shift in the measured frequency of the transition. The broadening deteriorates the precision of the measurement, but the shift affects its accuracy. The velocity distribution is the sum of the thermal contribution, which does not depend on the number of trapped ions, and the RF driven contribution, which does. The micro-motion depends on the amplitude E of the electromagnetic field, which grows with the distance of the ions to the centre of the trap, and therefore depends on the spatial distribution of the ion cloud, conditioned by the number of trapped ions.

The frequency instabilities come from a variation in the number of ions during the clock's operations, from the shuttling and the collisions with the buffer gas. The fluctuation in the number of ions induces changes in the radius of the cloud, and a variation in the average micro-motion amplitude. In the assumption of a very long cloud, this contribution is proportional to [START_REF] Champenois | Des atomes chargés et des photons : quelques phénomènes observables en piège radiofréquence[END_REF]:

∆ν ν 0 ∝ N ions L 1 (k -1) (1.59)
where N ions /L is number of ions per unit length. This shows that the fluctuation in the frequency shift induced by the second order Doppler Effect is smaller for higher order multipoles for a given variation in the number of ions. This is the motivation behind the choice of a multipole trap for the microwave interrogation of the ions.

The choice of a double trap structure, with a quadrupole trap and a multipole trap, with 16 electrodes in the last prototype of the JPL [START_REF] Prestage | One-Liter Ion Clock: New Capability For Spaceflight Applications[END_REF][START_REF] Prestage | Liter sized ion clock with 10-15 stability[END_REF] is justified by the small optical aperture of a 16 pole trap, motivating the shuttling of the ions to the quadrupole trap for optical detection. The quadrupole trap also presents the advantages of a deeper well for the creation of the ions and their optical interrogation. In the end, the opted system is a double structure where the ion cloud is shuttled between the quadrupole section for the creation, optical pumping and optical interrogation of the ions, and a low micro-motion section (the multipole) for the micro-wave excitation. Tests conducted with multipoles of increasing order (2k = 4, 12 and 16) have shown an increase in the stability with each new tested trap [START_REF] Prestage | Higher pole linear traps for atomic clock applications[END_REF][START_REF] Prestage | Atomic Clocks and Oscillators for Deep-Space Navigation and Radio Science[END_REF][START_REF] Burt | A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping[END_REF][START_REF] Burt | JPL Ultrastable Trapped Ion Atomic Frequency Standards[END_REF]. The question remains if this increase in stability is directly related to the increase in the order of the multipole trap or is simply a consequence of the improvement of the overall setup with each new version of the prototype. Furthermore, a direct experimental demonstration of eq.(1.59), proved in the cold fluid limit, remains to be done for mercury ions trapped at 300 K.

Laser spectroscopy

In this context, our team has constructed a two-section linear trap with a quadrupole and an octupole section, where the ions can be shuttled between the different trapping zones to conduct comparative measurements. The trapped species is the 40 Ca + ion of the alkaline-earth family, and the spectroscopy is conducted on the cooling transition at 397 nm. In the optical domain the ions are not in the Lamb-Dicke regime and the first order Doppler effect contribution is dominant, resulting in the broadening of the transition linewidth. Our objective is to use the lineshape of the transition to comparatively characterise the velocity distribution of the ions between the two traps.

The model presented in sec.(1.2.1) to introduce laser cooling assumed a simplified model of the 40 Ca + atomic structure as a two level system. The cooling protocol of the 40 Ca + implies a third level and a repumping laser at 866 nm. The relevant energy levels for our experiment are shown on fig. (1.10). Two metastable levels 3 2 D 3/2 (τ D 3/2 = 1.176 s [52] and 3 2 D 5/2 (τ D 5/2 = 1.168 s) [START_REF] Kreuter | Experimental and theoretical study of the 3d 2 D-level lifetimes of 40 Ca +[END_REF][START_REF] Knoop | Metastable level lifetimes from electron-shelving measurements with ion clouds and single ions[END_REF] constitute the first excited states of the 40 Ca + energy levels. They are respectively coupled to the ground state 4 2 S 1/2 by 732 nm and 729 nm quadrupole electric transitions. The excited state 4 2 P 1/2 (τ P 1/2 = 6.904 ns [START_REF] Hettrich | Measurement of Dipole Matrix Elements with a Single Trapped Ion[END_REF]) relaxes mainly toward the ground state through a 397 nm dipole electric transition with a probability of 0.936, but also onto the first metastable level 3 2 D 3/2 through a dipole electric transition at 866 nm and with a much lower probability of 0.064. The precise characteristics of these transitions are given in the table (1.1). Measurement on the ions are conducted by collecting light from the fluorescence line at 397 nm from the S 1/2 -P 1/2 transition, which is also the cooling transition. As the lifetime of the D 3/2 state is of the order of 1 s, a repumping laser is required to drive the electron out of this metastable state and keep the atome in the cooling cycle. The laser coupling scheme involves the three levels D 3/2 , S 1/2 , P 1/2 and two lasers (397 nm, 866 nm) and gives rise to a coherent population trapping (CPT) in a dark state for specific relative laser detuning. The conditon for the CPT writes:

Ion at rest:

-∆ R + ∆ B = 0 (1.60)
Ion in motion :

-∆ R + ∆ B + 2m (k 2 B -k 2 R ) + (k R -k B )v = 0 (1.61)
where the second equation accounts for the motion of the ion in the laser field. v is the velocity of the ion, k B , k R the wavevectors of the blue and red photons respectively. When the condition on the detunigs of the 866 nm laser (∆ R ) and the 397 nm laser (∆ B ) is satisfied the electronic population is decoupled from the laser interaction, and distributed between the D 3/2 and S 1/2 as the spontaneous emission from the P 1/2 falls onto the metastable D 3/2 level and the S 1/2 ground level. When the frequency of one of the lasers is continuously scanned, a drop in the fluorescence signal is observed when the detuning matches the coherent population trapping condition, hence the name 'dark resonance'. In the second equation, the motion of the ion raises two effects on the dark resonance properties. First, a recoil term independent on the velocity appears, that shifts the dark resonance. Second, in the case the motion of the ion can be characterised by a thermal velocity distribution, a Doppler broadening of the dark resonance proportional to an effective wavevector ∆k = k R -k B happens. This dependence of the dark resonance profile with the velocity distribution can be exploited for a diagnostic of single ion motion like in [START_REF] Lisowski | Dark resonances as a probe for the motional state of a single ion[END_REF] where the excess micro-motion was quantified and more recently in [START_REF] Sikorsky | Doppler cooling thermometry of a multilevel ion in the presence of micromotion[END_REF][START_REF] Roßnagel | Fast thermometry for trapped ions using dark resonances[END_REF][START_REF] Tugayé | Absolute single-ion thermometry[END_REF] where an absolute thermometry is proposed. It is nevertheless difficult to export the results established for a single trapped particle to ion clouds, as the micro-motion distribution over the cloud is inhomogeneous.

What we aim to do is conduct a comparative study of the lineshape of the 2-photon CPT between the quadrupole and the octupole trap. For the comparative measurement to be relevant, the same laser parameters need to be applied in both cases, to the same ion cloud (same number of ions). The first point requires the lasers to be finely controlled, but also for the spatial repartition of the ions in the laser beam to be restricted to areas of negligible intensity variation. The second point requires optimised transport protocols between the sections for reliable shuttling of the ions with minimal losses. The thermic and micro-motion contributions can be identified by playing with the wavevector k L of the laser. The broadening of the linewidth induced by the first order Doppler effect is proportional to k L • v : for laser propagating along the trap axis the micro-motion contribution is negligible, and by changing the angle of the laser beam to the axis of the trap it is possible to change the contribution of the micro-motion to the lineshape. Optical accesses are available for a laser light to come with a perpendicular incidence to the axis of the trap. In the hypothesis the temperature of the cloud is constant between the quadrupole and the octupole trap, the micro-motion contribution to the lineshape is expected to be smaller by a ratio 1/3 in the octupole.

In case the characteristics of the 2-photon dark resonance do not allow for a distinguishable change in the lineshape of the transition, the use of a narrower 3-photon dark resonance involving a third laser at 729 nm can be considered [START_REF] Collombon | Experimental Demonstration of Three-Photon Coherent Population Trapping in an Ion Cloud[END_REF][START_REF] Collombon | Résonance noire à trois photons sur un nuage d'ions Calcium confinés[END_REF]. The typical linewidth of the 3-photon dark resonance is from 10 to 100 kHz, against a linewidth on the order of the megahertz in the 2-photon CPT case, which gives access to the resolution of smaller Doppler effects.

Experimental setup

The setup in which the measurements are to take place is named TADOTI, an acronym for Thermodynamics And Dynamics Of Trapped Ions. This setup has been already used for the study of the thermodynamic and transport of a large ion cloud (up to 10 6 ions) [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF][START_REF] Kamsap | Fast and efficient transport of large ion clouds[END_REF][START_REF] Kamsap | Fast accumulation of ions in a dual trap[END_REF][START_REF] Pedregosa-Gutierrez | Ion transport in macroscopic RF linear traps[END_REF], as well as the study of a three photons dark resonance on a 40 Ca + ion cloud confined in the quadrupole section [START_REF] Collombon | Résonance noire à trois photons sur un nuage d'ions Calcium confinés[END_REF][START_REF] Collombon | Experimental Demonstration of Three-Photon Coherent Population Trapping in an Ion Cloud[END_REF][START_REF] Mathieu Collombon | Phase transfer between three visible lasers for coherent population trapping[END_REF]. The setup is a two section macroscopic RF linear ion trap, embedded in a ultra-high vacuum chamber (pressure of the order of 10 -9 mbar). The two sections correspond to a quadrupole and an octupole linear trap, aligned along the same axis. Five lasers are required to conduct the experiment : to the three lasers at 397 nm, 866 nm and 729 nm required for the measurements discussed in sec.(1.3.2) need to be added two lasers at 423 nm and 375 nm for the purpose of ionising neutral calcium to create the species of interest for the measurements ( 40 Ca + ). The fluorescence of the ions is collected from above the trap, along an axis perpendicular to the trap z axis and sent toward a camera for the imaging of the ions and a photo-multiplier for the study of the fluorescence signal (see fig. (1.11)). Two different RF power supplies are used for generating the quadrupole and the octupole field, with their respective radio-frequencies.

Confinement of the ions

The linear RF trap is built in two separate sections: a quadrupole and an octupole trap. The scale of both traps was optimised for the trapping and study of large ion clouds, with up to 10 7 ions. During the thesis the octupole section has undergone modifications detailed in the chapter 2 for reasons explained in sec. (1.4.4). As most benchmark experimental results have been acquired in the old setup, we choose to present here the historical trap as illustrated on fig.

(1.12). The quadrupole section is divided in two trapping zones of length 2z 0 = 21 mm, the first one is dedicated to ion creation and the second to measurements. The RF electrodes are cylindrical, of radius r d = 4.5 mm arranged so that the inner radius of the trap is r 0 = 3.93 mm. These values are chosen to respect the relation r d /r 0 = 1.1451 [START_REF] Reuben | Ion trajectories in exactly determind quadrupole fields[END_REF] ensuring that the deviation of the electrode profile to the ideal hyperbolic one introduces the least perturbation of the potential by anharmonic terms. In the octupole of length 2z 0 = 96 mm, the RF electrodes are also cylindrical with r d = 1.5 mm and r 0 = 4 mm. These values follow loosely the ratio r d /r 0 = 1/3 advised by the literature [START_REF] Rao | Electric hexapoles and octopoles with optimized circular section rods[END_REF], and were dictated by market availability for the electrodes and the practical requirement the quadrupole and octupole have roughly the same inner radius to avoid ion loss during shuttling between the sections.

The confinement in the radial plan is ensured by the application of oscillating potentials V 0 (t) = V r f cos(Ωt) on the RF electrodes, so that neighbouring electrodes are plugged with opposite phases ±V 0 (t). This technical choice was done to prevent a gradient of the electric RF potential on the axis of the trap between the quadrupole and the octupole section, which would make the ion transport between the two sections dependent on the relative phase of the two RF source. The quadrupole and the octupole trap have their own power supply, designed to generate both phases to plug the electrodes. Using one power supply to generate both phases has the advantage of preventing relative phase drift over time between the electrodes, as well as ensuring an even output amplitude V r f on all electrodes. The two RF power supplies were custom designed by Stahl-electronics to fit our requirement : each can produce an amplitude up to 2500 V pp . The radio-frequency in the quadrupole section is Ω/2π = 5.235 MHz and was in the octupole section : Ω/2π = 3.325 MHz. Recent modifications of the trap and related electronics discussed in chapter 4 have changed this last frequency to 2.774 MHz.

The axial confinement is realised by the application of static potentials on the electrodes noted DC1 to DC5 on fig. (1.12). Shuttling of the ions between the traps is realised by varying the potentials applied to the DC electrodes. The axial confinement and transport are extensively discussed in chapter 2, and we only give an overview here. The power generator used to address the DC electrodes can deliver from 0 to 2000 V. The effective potential as seen by the ions is much lower due to screening by the RF electrodes. The axial component of the potential at the position of the ions can by approximated to a harmonic contribution of steepness mω2 z . Fits of the numerically calculated potential have shown ω z /2π = 107.5 kHz in the quadrupole and ω z /2π = 2.3 kHz in the octupole for an applied potential V dc = 1000 V [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF]. The much lower value in the octupole is due to the larger number of RF electrodes and the wider spacing separating the DC electrodes.

Detection optics

The 397 nm florescence of the ions is the all purpose signal collected for the detection, imaging, and study of the system. The signal is collected perpendicularly to the axis of the trap and gives an integrated view of the ions along the radial direction. The detection axis defines the y axis of the trap. A Solid Works cut view of the setup is shown on fig. (1.13) : the RF electrodes of the trap are shown in orange, and above the trap is shown a mirror that directs the light left-wise toward a camera and a photomultiplier. The detection optics is mounted on a translation stage that enables the objective and the associated mirror to be moved above the centre of the quadrupole traps PI and PII, or above the centre of the octupole trap PIII depending on the need of the current experiment. The objective is a custom piece 2 with a numerical aperture of 0.28, of focal length of 66.8 mm. The fluorescence light is split in two paths, one going toward a photomultiplier 3 and the other toward an intensified CCD camera 4 cooled down to -25°to minimise detection noise. The photomultiplier works in the photon-counting mode. The magnification of the system is of 12.8, and the spatial resolution of the ion cloud on the camera is of 1 µm per pixel. For sufficiently cold ions, the boundaries of the cloud are distinct, and an analysis of the images taken by the camera combined to the study of the density distribution of the ions (see sec.(1.2.2)) allow for an estimation of the number of trapped ions. In the quadrupole case the number of ions can be estimated with an uncertainty of 5% [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF]. In the case where the ions organise out of the axis, as is expected in the octupole trap, it is possible to get the relative position of the ions in different points of the radial plan by moving the objective along the x and y axis. ). An oven containing neutral calcium is positioned so that, when heated up to 340°, it generates an effusive beam of neutral calcium between the RF electrodes. The ions are created through a two-step photoionization process [START_REF] Lucas | Isotope-selective photoionization for calcium ion trapping[END_REF] involving two lasers at 423 nm and 375 nm as illustrated on fig. (1.14). The 423 nm laser is resonant with the first transition in 40 Ca + and is obtained via. second harmonic generation of a 846 nm laser light by single pass in a ppKTP crystal. The produced power is about 80 µm and the wavelength is tuned to be resonant with the 4s 2 -4s4p transition. The second laser at 375 nm is used for the above threshold transition with an output power of 4 mW and provides enough energy to enable first ionisation of the calcium. During the ion creation step the lasers required for the cooling protocol are on. Part of the residual neutral calcium deposits on the electrodes, resulting in a slowly building up potential gradient between PI and PII. Measurements are conducted in PII which, as a 'clean' trap, does not see its properties changed with time. 

Confinement in the octupole trap

When operating the octupole, two distinct issues were identified in its design. First, the transport back from the octupole toward PII was not possible. This was due to the large spacing between the electrodes DC4 and DC5 combined with a large screening of the applied DC potential on the axis, resulting in a weak effect of the changes in the electrode voltages on the position of the ions. An alternative design was proposed and implemented during this thesis, which is discussed in detail in the chapter 2. Second, imaging of the ions in the octupole trap has shown they do not organise in the expected tube-like structure as discussed in sec.(1.2.2), but in three distinct ion clouds. This has been identified to be a consequence of a slight mechanical mispositioning of the RF electrodes in the radial plan [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. This issue is discussed and investigated in the chapter 3 and a protocol to restore the symmetries of the potential is proposed in the chapter 4.

Conclusion

In this chapter, a broad overview was given of the physics governing the different points and issues running through the work presented in this manuscript. The fundamentals of RF trapping were covered in quadrupole and multipole traps. Within the frame of the pseudopotential approximation and the adiabatic limit, the dynamics of a trapped charge is decoupled into a macro-motion corresponding to the oscillations of the particle in an effective static confining potential, and a fast oscillating motion called micro-motion and responsible for RF heating when more than one charge is trapped. Multipole traps present the advantage of a built-in micro-motion reduction which is of interest to reduce the RF induced effects such as the first and second order Doppler effects on the broadening and shift of fluorescence lines.

Depending on the temperature of the cloud the expected density and structuration of the ion cloud can be described by three thermodynamic states: gas, liquid and solid. In our experiment the trapped species is the 40 Ca + ion. The temperature of the ion is controlled by laser cooling and can be brought down to a few millikelvins. This brings the ions either in the liquid or solid state, where the Coulomb interaction cannot be ignored and couples the individual dynamics of the ions. Models are necessary to get insight into the organisation of the ions in the potential. The quadrupole case is a special case where the density is homogenous over the occupied volume and the centre of the potential is a stable point for the ions to accumulate. For multipole traps of higher order, a hollowed structuration of the cloud is expected, either as a consequence of the Coulomb repulsion between the ions or, for few trapped ions, because of the ring shape of the pseudo-potential minimum due to the DC deconfining term.

The running objective of this work is to do a comparative study of the velocity distribution of the ions between a quadrupole and an octupole trap to assert experimentally the interest of using multipole traps for the construction of microwave ion clocks. It has been identified in such clocks that the main systematic effect responsible for frequency instabilities is the variation of the second order Doppler effect with the fluctuation in the number of trapped charges. We operate in the optical regime on the fluorescence line of the 40 Ca + ion, and out of the Lamb-Dicke condition which means in our case the first order Doppler effect is dominant. The 40 Ca + ion can be considered as a three-level system, with the occurrence of a dark resonance on the levels involved with the cooling protocol. The intended measurement in our setup exploits the lineshape of this CPT dark line to estimate the reduction of the micro-motion contribution between the quadrupole and the octupole trap through the comparative study of the first order Doppler effect induced broadening on the dark resonance.

The last section of this chapter presents the historical setup of the TADOTI experiment in which the measurements are intended. The setup consists in a double trap with a quadrupole and an octupole section, with the possibility to shuttle the ions between the different trapping zones. Experiments have shown limitations in the historic octupole trap with the transport and symmetry of the potential, currently compromising the intended measurements. These limitations are addressed in the rest of the manuscript, with the transport being tackled in chapter 2, and the issues with the symmetry of the octupole being discussed through chapters 3, 4 and 5.

Chapter 2

Modification of the octupole trap to ensure ion shuttling Introduction This chapter is concerned with the practical aspect of the axial confinement of the ions and their transport between the different sections of the TADOTI experiment. As mentioned previously, the experiment is an association of a linear quadrupole section and a linear octupole section both aligned along the same axis. The axial confinement of the ions is realised by the application of a static potential on end-caps electrodes delimitating the different traps. Transport of the ions between the traps is realised by modulating voltages applied on the end-caps electrodes (DC). The properties of the axial confinement and transport therefore depend on the effective potential delivered by the electrodes at the position of the ion cloud, which is conditioned by the applied DC amplitude and the positions and shape of the electrodes.

The TADOTI experiment was originally designed with two main purposes: comparing the properties of the ions between the quadrupole and the octupole section and conducting measurement on big ion cloud trapped in the octupole section. The focus of our work is onto the first point and requires reliable and efficient shuttling of the ions between the quadrupole and octupole traps to make comparative measurements. The first design of the experiment suffered from a few issues that prevented the ions from being brought back from the octupole trap into the quadrupole section. To solve this problem, we have proposed a corrected design, respecting both the transport requirements and leaving the possibility to work with big ion clouds. The vacuum chamber was opened and modified to implement these changes during the thesis : the endcap electrodes in the octupole were replaced by a new design, and an additional electrode was positioned to separate the octupole section in a short trap dedicated to transport and a long trap dedicated to experiments with big ion clouds.

We first discuss the important points concerning the confinement and transport of the ions in linear radio-frequency traps. The reason why back shuttling from the octupole in the original design was not possible is clarified. Then we present the results of the simulations that supported the choices for the modifications implemented in TADOTI to solve the issues identified in the original design. A last section summarizes the results of early transport trials in the modified experiment.

Situation of the trap before modification 2.1.1 Confinement

The choice was made in TADOTI to use linear radio-frequency traps, where axial confinement of the ions is ensured by end-cap electrodes with an applied static potential. In the original version of the experiment there was an octupole and a quadrupole section, separated in three trapping zones : 2 in the quadrupole section and 1 in the octupole section, as illustrated on fig. (1.12). The design of the DC electrodes was conditioned by the requirement the z-axis of the trap was kept clear, to enable the shuttling of the ions between the traps and have the cooling lasers propagating along the z axis. The possible designs span from the ring electrode as illustrated on fig. (1.2) [START_REF] Nägerl | Ion strings for quantum gates[END_REF] to more 'penetrating' designs where the DC electrodes dips between the RF electrodes in a flowery pattern, as illustrated on fig. (2.1). The illustrated designs correspond to the ones that were adopted in the quadrupole section (left panel) and octupole section (right panel) of our set up. Since the RF electrodes pass through the DC electrode structure, as shown on the figure, the static potential involved in the confinement and transport physics is not directly the potential V dc applied on the electrode but a screened effective potential Ṽdc . In the same fashion the RF component is screened by the DC electrode at the position of the DC electrode which affects the dynamics of the ions during the shuttling. Because of the small radial extension of the ion cloud regarding the trap dimensions and since the axial confinement and transport are axial problematics, we approximate the static potential contribution over the spatial distribution of the ion cloud as uniform in the radial plan. The static potential φ dc (x, y, z) is approximated to its axial component φ dc (x, y, z) = φ dc (x = 0, y = 0, z) and is noted φ dc (z) in the following. The study of the electrodes potential along the z-axis was conducted with the SIMION 8.0 software [74]. This software solves the Laplace equation thanks to a 'Finite Difference Methods' to calculate the potential generated by each electrode positioned along the z-axis and sums the individual contributions to deliver the complete potential profile. In this section it is supposed the DC deconfining term is perfectly aligned with the radial centre of symmetry of the linear traps and that the RF contribution to the potential is zero (potential fully characterised by φ z (z)). The DC electrodes are numbered in accordance to fig. (1.12), so that number j = 1, 2, 3 are the quadrupole trap DC electrodes and number 4 and 5 the octupole trap. For conventional applied potentials in our traps V 1,2,3 = 1200 V and

V 4,5 = 2000 V 1 , the calculated potential φ z (z) on the axis is plotted on fig.(2.
2). The effective potential on the axis in the octupole is much lower than in the quadrupole. We call κ j the screening factor for each electrode in the setup:

Ṽj = κ j V j (2.1)
where V j is the applied potential on the electrode j and Ṽj is the corresponding effective potential amplitude on the axis at the position of the electrode. From the simulations of the axial potential realised with the SIMION software [74] can approximate κ1,2,3 = 2, 86.10 -2 and κ 4,5 = 3, 56.10 -3 , which shows the screening is about 10 time stronger in the octupole than in the quadrupole. The shape of the potential generated by one electrode along the z axis, was shown in [START_REF] Pedregosa-Gutierrez | Ion transport in macroscopic RF linear traps[END_REF][START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF] to be well fitted by a Lorentzian function to the fourth order:

f (z) = a j 1 + (z -z j ) 2 w 2 j -4 (2.2)
where w j is a characteristic width at half maximum, with w 1,2,3 = 8.9 mm and w 4,5 = 7.8 mm, a j is the maximum generated potential and z j the position of the electrode j.

The depth of the axial potential well between two electrodes is taken to be the difference between the maximum and the minimum of the summed contributions of both electrodes. It may occur that the tails of the potentials generated by each electrode overlap and raise the bottom of the potential well. Not only does this changes the effective depth, but it also introduces a step in the potential between different trapping sections and modifies the transport dynamics. The local shape of the potential well as seen by the ions is harmonic in first approximation, with a depth mω 2 z (zz j ) 2 /2 where mω 2 z is the steepness of the well. For conventional applied potentials in our traps, that is V 1,2,3 = 1200 V and V 4,5 = 2000 V as shown on fig.(2.2), the corresponding frequencies are ω z /2π = 127 kHz in the quadrupoles and ω z /2π = 3.0 kHz in the octupole. In the octupole the electrodes are positioned very far apart, which, combined with a small screening factor, explains the lower frequency in this section. The dependency of the frequency with the electrodes spacing and screening factor at the bottom of the potential well κ is given by the relation :

ω 2 z = 2qκV dc mz 2 0 (2.3)
The choice of the amplitude of the applied potential has several consequences. A strong axial confinement leads to more tightly packed ions cloud and to a higher heating rate in case of perturbation (for example at the start of a transport sequence). It also has an impact on the radial component of the potential since the static axial potential adds a deconfining term to the radial component of the potential, as already mentioned in sec. (1.1.3). In a quadrupole trap this is not critical since it mostly adds up to a reduced potential depth. This is far more important in an octupole trap since the amplitude of the DC deconfining term can define the position of the ions. In an octupole trap affected with mechanical defects, it can be desirable to finely control the amplitude of the deconfining term to correction and diagnostic ends, as is discussed in chapters 4 and 5 respectively.

Transport

Shuttling of the ions from one section to the other was studied by Pedregosa et al. [START_REF] Pedregosa-Gutierrez | Ion transport in macroscopic RF linear traps[END_REF] and is done by applying custom varying potentials on the DC electrodes that split the traps. One The blue line corresponds to the total potential, and the red dashed lines to the individual potentials of electrodes 1 and 2 when the others are at 0 V so as to make the end-tail overlap visible.

key element in transport is to avoid heating of the ion cloud: it modifies the dynamics of the ions and can be a cause of ion loss. It was discussed in chapter 1 why a change in the number of ions was a cause of a degradation of the frequency stability in micro-wave ion clocks and is therefore to minimize. There are several ways to reduce heating during transport. Cooling can be part of the transport protocol and the transport sequences, that is the time dependent applied voltages on the electrodes, can be adapted to induce a minimal variation in the energy of the ions.

In our setup, we are constrained in the type of transport functions that we can realistically apply on the ions by the position of the electrodes and the available electronics. The DC electronics used to address the DC electrodes can deliver up to 2000 V and signals shorter than 80 µm are not faithfully reproduced. Molecular dynamics simulations were conducted in [START_REF] Pedregosa-Gutierrez | Ion transport in macroscopic RF linear traps[END_REF] to try and find the best protocol to apply in our trap. The performances of several transport functions were evaluated in the case of a one ion problem. This corresponds to approximating the dynamics of the ion cloud to the dynamics of its centre of mass during the transport protocol and is valid as long as the steepness of the confining harmonic well is kept constant during the transport. The design of our trap and limits of DC supply imposes variations on ω z of several order of magnitudes, and doing these variations adiabatically, with the large spacing between the DC electrode and the limited available tensions, would require the transport times to be of several tens of seconds. This is about the interrogation time in microwave ion clocks and would therefore be a limiting factor in the frequency stability of the device. The adiabatic protocols were abandoned in favour of shorter transport sequences that minimize the energy gain. The chosen protocol [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF][START_REF] Pedregosa-Gutierrez | Ion transport in macroscopic RF linear traps[END_REF][START_REF] Kamsap | Fast and efficient transport of large ion clouds[END_REF] ensures the potential minimum moves from the middle of the starting trap to the middle of the end trap, and is discussed below in the cases of a PI ↔ PII and PII ↔ PIII transport.

Transport between the two traps of the quadrupole section : PI ↔ PII Let us start with the simple case of a transport between the traps PI and PII of the quadrupole section. The position z min of the minimum in the axial potential as a function of time follows a hyperbolic tangent function:

z min (t) = g(t)(H(t) -H(t -t g )) + LH(t -t g ) -L/2
(2.4)

g(t) = L 2   tanh 8 t t g -4 tanh(4) + 1   (2.5)
where H(t) is the Heaviside function, t g is the transport time and L = 23 mm is the distance between the centre of the two traps. To implement this function, different transport sequences were tried out on the electrodes. The transport sequence that was selected keeps fixed the potentials on the electrodes 1 and 3 and applies a varying potential V 2 (t) on the electrode 2.

The equilibrium condition at the bottom of the potential well in z min imposes :

∂ φ z ∂ z z min (t) = 0 (2.6)
V 2 (t) is computed from the equation of the potential generated by each electrode as stated in eq.( 2.2) and to ensure the continuity of eq.(2.6) across the position of the second electrode.

This protocol was validated by experimental studies by Marius Kamsap during his PhD, going over the ion losses and heating rate of the ion cloud depending on several parameters, like the initial number of ion and the transport time t g . The experimental implementation of these transport protocol has shown that the ions are not following the position of the minimum in the potential. When the transport is launched, the ion cloud oscillates between the two trapping zones PI and PII. The number of oscillations and the distribution of the ions between PI and PII were shown to depend on the parameters (t g ,V 1,3 ) of the transport sequence and the initial size of the cloud. It has been demonstrated that using a slight voltage offset between V 1 and V 3 to induce a slope between the different trapping zones could help optimizing the transport, which is assumed to be a consequence of the building contact potential between PI and PII due to neutral calcium deposit on the electrodes. This study has shown transport with an efficiency of around 100% for V dc = 1200 V, (Ω/2π,V r f ) = ( 5.235 MHz, 1045 V) and t g = 100 µs for ion cloud under 2000 ions. Due to neutral calcium accumulation on the electrodes of PI, theses performances had dropped of about 20% in a year, and a modification of the offset voltage was necessary to get the transport back to its initial performances.

Transport between the quadrupole section and the octupole : PII ↔ PIII

The situation of the transport between the quadrupole trap PII and the octupole trap PIII is a little more complicated than the PI↔PII transport. The two quadrupole traps are built from one body of RF electrodes simply split by one DC electrode (DC2), and the transport only requires V 2 (t) to be modified. In the PII↔PIII case, there is a discontinuity in the RF electrodes and potential between the two traps, and two DC electrodes (DC3 and DC4) separate the centres of PII and PIII (see fig. (1.12)). The same function as in eq.(2.5) is adopted to control the position z min of the minimum of the axial potential φ z , but the experimental implementation is complexified as now two variable DC potentials V 3 (t), V 4 (t) are required to move z min along the z-axis. A two-step transport sequence has been tried, where only one potential is modified at a time and the ion cloud is temporarily stored in the section between PII and PIII, but experimental results show such protocols are impossible as the gap between the quadrupole and the octupole section is not a stable confinement zone. The ions can only exist in this zone in passing which explains the need for a one-step transport from the middle of the two trapping zones and a protocol involving coordinated time variation of V 3 and V 4 . On the left panel of fig.

(2.

3) are shown the potential profiles that are required on the electrodes to have the position of the potential minimum follow z min acc. to eq.(2.5). As a result from the high screening of the RF electrodes on the DC potential in the octupole section, as well as the long distance between the centres of the two traps (L = 81.5 mm), tensions as high as 12000 V are required to implement the sequence as intended. As mentioned earlier our electronics can only deliver up to 2000 V, which imposes to normalise the V 4 (t) function in accordance to this threshold. The final transport sequence accounting for the technical limitations is represented on the right panel of fig. (2.3).

Despite the limitations imposing a transport sequence not respecting the desired deformation of the potential shape during the transport, transport of the ion cloud from PII to PIII has been experimentally demonstrated. The percentage of transported ions depends on a number of parameters like the amplitude of the RF voltages in both traps, the transport time, the initial number of ions and the contact potential. A complete and extensive experimental characterisation of the trap had been conducted in [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF]. Transport efficiency up to 100% has been demonstrated with

V Q r f = 820 V pp , V O r f = 1600 V pp , t g = 650
µs and for ion clouds smaller than 30 000 ions and an added bias voltage V cp = 1750 mV on the quadrupole trap DC electrode.

The transport from PII to PIII is therefore robust to the experimental limitations of the setup. Those experimental limitations are a much bigger problem in the case of a back transport of the ions from PIII to PII. It has been shown that once the ions are in the middle of PIII, they are located far enough from the DC electrodes that a change in the applied potential hardly moves the position of the potential minimum z min . For example, for V 5 = 2000 V and V 4 = 0 V, the minimum in the potential is displaced of only 8.7 mm against the required 49 mm to cross back to PII [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF]. Experimental tests concord with the simulation as no tested transport sequence succeeded in transporting any number of ions in the PIII → PII direction. The transport back from the octupole to the quadrupole, and any kind of shuttling between PII and PIII was impossible in the original version of the setup before modification. The results shown in the following develop the choices that have been made to modify the design of the experiment to solve this issue.

Modification of the design and positioning of the DC electrodes

The content of this section presents the simulations and results concerning the new design of the DC electrodes in the octupole trap and placement of an additional electrode to split the trap in a short trapping zone, dedicated to transport, and a long trapping zone dedicated to the study of big ion clouds. The main objective of these modifications was to ensure transport back from the octupole trap to PII. In order to do so, it was supposed the impact on the transport dynamics of the 'free flight' between the sections PII and PIII is symmetric. With this hypothesis in mind we have worked on the axial design of the octupole trap to reproduce the conditions of the PII → PIII transport in the PIII → PII direction. To this end the screening factor of the octupole trap electrodes was optimised and the octupole section shortened.

Optimising the screening parameter

The first undertaken task was the optimization of the screening parameter of the octupole trap DC electrodes. Replacing the electrodes was a requirement, as keeping the old design would have required to reduce the length of the octupole to just a few millimetres to ensure transport (see next section). As can be seen on fig. (2.1). The DC electrodes can go as far as embedding the RF electrodes for (r t < r 0 and r h < (r 0 + r d ). sin(π/8) ≈ 2.10 mm). The choice of the shape of the DC electrode is then a compromise between the screening of the RF electrodes on the DC potential, and the screening of the DC electrode on the RF potential. With an electrode penetrating farther into the trap, the screening of the DC potential is reduced, but the drawback is a higher screening of the RF potential which can result in a perturbated dynamics of the ions as they pass through the electrode. 

Constraints of the problem

Before launching into the study of the screening factor as a function of these parameters, we have identified and investigated several constraints limiting them.

• Mechanical precision :

The electrodes are home-made, and the available material constrains the machining and the positioning of the electrodes to a precision of 20 µm. This constrains the resolution of the design, but most of all the limit distance between the RF and DC electrodes. The mechanical precision imposes r t > r d + 0.02 mm = 1.52 mm.

• Breakdown voltage :

Since we are interested in increasing the area of the DC electrode close to the inner section of the trap, we need to know if there is a chance to reach the breakdown voltage between the DC and RF electrode. In the occurrence of a high electric field between two electrodes separated by a gas, the gas can come to be partially ionized and conducting. The voltage inducing the electrical breakdown of the gas is approximated by Paschen's law [START_REF]Capacitive Discharges[END_REF]:

V break = B.p.d ln(A.p.d) -ln ln 1 + 1 γ (2.7)
where p is the gas pressure, d the spacing between the electrodes. A, B and γ are experimentally determined coefficients: A and B depend on the nature of the gas and are found to be roughly constant over a restricted range of E/p for any given gas, where E is the electric field ; γ is the number of secondary electrons emitted per incident electron, also known as the 2 nd Townsend coefficient and depends on the gas density, the energy of the ions and the nature of the electrodes.

In our experiment, the pressure p is measured to be on the order of 10 -9 mbar, and we already know that, because of the limits imposed by the mechanical precision the distance d between the RF and DC electrode cannot be smaller than 20 µm. The Paschen's law is a function of the product p.d and admits a vertical asymptote for small values of p.d :

p.d = A -1 ln(1 + 1 γ ) (2.8)
For smaller values of p.d such as p.d < A -1 ln(1 + 1 γ ), the breakdown voltage is not defined and does not occur between the electrodes [START_REF]Capacitive Discharges[END_REF]. We want to get a rough estimation of our placement on the Paschen's curve to know if we are at a risk of breakdown voltage. We consider the residual gas in the chamber to be air then A ≈ 10 Torr -1 .cm -1 . We do not know the value of the γ coefficient in our setup, but we can estimate with eq.(2.8) the limit value of γ necessary for breakdown to happen. For the limit case where d = 20 µm, p.d ≈ 10 -12 Torr.cm. The corresponding number of secondary emitted electron per incident ion for a breakdown to occur would be on the order of 10 11 , which we can safely assume is not a realistic value for our electrodes and gas. We therefore conclude we are free to consider any value for r h so long as it respects the condition imposed by the machining : r h > 1.52 mm.

• Maximum screening of the RF voltage :

We define the screening κ r f of the DC electrode over the RF voltage at the position of the electrodes as :

κ r f = Vps,withoutDC Vps,withDC (2.9) 
It was limited to a maximum value of 95%. This threshold was set to limit the perturbation of the ion cloud dynamics when it passes the electrode position during transport.

Variation of r h

With these restrictions in mind, we start by studying the impact of varying r h in the DC electrodes design on the axial potential simulated with the SIMION software. The hollows in which the RF electrodes are embedded are tangent for r h = (r 0 + r d ) sin(π/8), which corresponds to a structure imposed r t = (r 0 + r d ) cos(π/8) ≈ 5.08 mm. We arbitrarily set r t to this value and have r h vary from 1.7 mm to 2.143 mm. The pixel size along the z axis and in the x, y plan of the electrode is 0.2 mm. The potential on the z axis was collected for an applied potential V dc = 1000 V and the results are presented on the left panel of fig.

(2.6). There are three slopes visible on this curve, displaying three regimes. For r h > 2.1 mm the effective r t is imposed by the cut of the hollows for the RF electrodes and is effectively smaller than the set value (r t = 5.08 mm). For 1.8 mm < r h < 2.05 mm, r t is equal to the set value and the peak voltage amplitude on the axis increases linearly with smaller r h . There is a third change of slope for r h < 1.8 mm, and the increase of the peak voltage tappers off in comparison of the previous part of the curve.

Because of the tapering behaviour on both curves presented here, r h = 1.85 mm was judged an interesting working value. In comparison to the initial value of r h = 2.143 mm the screening is already smaller by a factor 10. The threshold imposed by the mechanic manufacturing was 1.52 mm but we judged reasonable to let more space between the DC and RF electrode, so as to prevent any short circuit. 

Variation of r t

We work with r h = 1.85 mm, that is small enough for the penetration of the DC electrode in the trap to be fully characterised by r t . On the right panel of fig.

(2.6) is plotted the peak amplitude on the axis for various r t spanning from 4 mm to 7.35 mm with an applied potential V dc = 1000 V. The corresponding cuts of the electrodes for these two extreme values are shown on fig. (2.4). The profile of the curve is noticeably non-linear and grows sharply for smaller r t , that is for DC electrode penetrating deeper between the RF electrodes). This may be a consequence of the simple definition of the cut, that results in a flaring of the electrode profile as it penetrates deeper into the trap, which can be seen between the middle and right panels of fig. (2.4). The range of interest for r t corresponds to r t < 4.67 mm: in this case the screening is smaller than in the quadrupole trap. The closest configuration to the quadrupole is obtained for r t = 4.83 mm that gives a screening factor κ ≈ 30.

More penetrating designs mean more screening on the RF potential and we need to verify if the 5% allowance on the screening of the RF potential imposes a lower bound on the possible r t range. In order to do so the pseudo-potential in a trap with and without DC electrode is calculated along arcs of varying radii, and the screening factor of the DC electrode on the RF component is collected in each point of these arcs acc. to eq.(2.9). The probing radii are 300, 400, 500, 600 and 700 µm and the results show that κ r f does not depend on the probing arc radius. On fig.(2.7) is plotted the evolution of κ r f with r t varying from 4 to 5.675 mm for a fixed r h = 1.85 mm. The plotted curve corresponds to the results for all probed radii, that are superposed (no dependence on the probed radius). This curve shows that if we want to keep the screening of the DC electrodes over the RF component larger than 95%, r t cannot be taken to be smaller than 4.43 mm. In order to achieve the smallest screening factor κ we take r t = 4.43 mm as our working value for the new design of the DC electrodes. In this case the peak value on the axis for an applied potential V dc = 1000 V is 87.5 V and the new screening factor is κ = 8,75.10 -2 .This screening is smaller than the one in the quadrupole and is judged acceptable for our purpose. The parameters characterising the end design of the electrodes are summarized in the table.(2.1). 

Ensuring transport from the octupole

In this section we seek to determine the limit length of the octupole trap for which transport back to the quadrupole is possible. Even with the new electrode design offering an optimised screening factor, the potential generated by the electrode on the axis drops sharply away from the electrode position. Keeping the original spacing of DC4 and DC5 (81 mm) would not permit transport back to PII. We therefore investigate shorter spacing of the electrodes. To do so we keep as our reference the transport PII→PIII and try to reproduce the transport conditions for PIII→PII. It has been experimentally shown in the quadrupole section of the trap that during the transport the ions do not follow the exact position of the potential minimum. Instead, if the transport time is long enough, the ions oscillate between the two trapping zones PI and PII and can end up in either (or split between both) depending on the chosen transport parameters. Because of this dynamics, we have opted to use as a benchmark the gradient of the potential at the starting position of the cloud (middle of the trap) noted z c when the potential on the separation electrode between the two traps is dropped to zero.

We have conducted simulations comparing octupole traps of different lengths, to determine what spacing of the electrodes was adequate to reproduce the quadrupole configuration. The test setup was an octupole with three DC electrodes numbered 4, 5 and 6 as shown on fig. (2.8) : two are positioned in z 4 = 8 mm and z 6 = 106 mm, and one is moved over several positions z 5 to simulate different trap lengths. The trap of interest was taken to be delimited by the electrodes 4 and 5. The point of interest for the evaluation of the gradient when

V 5 = 0 V corresponds to z c = z 4 + (z 5 -z 4 )/2. On fig.
(2.9) are shown the results of the gradient evaluation with different values of z 5z 4 = 2z 0 , corresponding to spacings from 16 mm to 52 mm. It appears there is a critical zone for z 5z 4 ≤ 30 mm where the value of the gradient can be changed dramatically, but for bigger values the curve hits a threshold and the gradient is about zero. An equivalent gradient to the quadrupole if found for a trap length 2.z 0 = 21.8 mm. It can benefit the experiment to bring the electrodes closer together to have more tuning range over the initial slope in the potential with the applied potential. To ensure the transport back to the PII, we have opted for a shorter trap and taken 2.z 0 = 18 mm. This gives us the possibility to apply a starting slope up to 4.4 times bigger than in the quadrupole trap if necessary, by applying the maximum available potential on the electrodes (V 4,5 = 2000 V), as well as the same initial conditions by choosing V 4,5 = 453 V (basis of comparison for V 2,3 = 1200 V). The study of the electrodes spacing required to ensure the PII↔PIII transport has concluded on a length for the octupole trap of 2.z 0 = 18 mm. In the introduction we have mentioned the octupole trap was originally designed for the trapping of big ion clouds. This 

Sectioning the trap

Implementation in the experiment

Work in the vacuum chamber

The vacuum chamber containing the TADOTI double trap was opened during the thesis to implement the changes. The original DC electrodes in the octupole were replaced by electrodes fabricated according to the new plans, and an additional electrode was added to separate the octupole section in a short trap PIII and a long trap PIV acc. to fig.

(2.10) and as shown on fig.

(2.12). The details of the mounting of the RF electrodes can be seen on the fig.

(2.13) and is of interest, as it conditions the precision of the positioning of the RF electrodes. The mechanical error on the positioning of the RF electrodes in our traps is estimated at around 100 µm and has been shown to be a prime source of perturbations in the octupole potential, which is extensively discussed in the chapters 3 to 5. During the modifications of the setup we remarked that the end segment of the RF electrodes in the octupole trap were not in the same plan. The offset was about half a millimetre and was rectified in the section facing the quadrupole section, to limit the perturbations on the ions dynamics in this transition region. The machining of this rectification imposed a shortening of 1 mm of the PII to PIII section to keep the distance between the plan formed by the ending of the quadrupole RF electrodes and the begging of the octupole distant of 0.5 mm (in accordance with the original design). The length of this section is now 18 mm against 19 mm previously. At the same time, changes were implemented on the vacuum chamber and the trap to enable individual addressing of the octupole trap RF electrodes. Individual addressing of the RF electrodes is a requirement of our correction strategy for the compensation of the perturbations in the radial component of the octupole potential, which is further discussed in chapter 4, as we here simply go over the few technical changes that were impremented. The quality of the vacuum was restored to its previous value at P vac = 10 -9 mbar after 15 days of baking at 150°C. 

Transport to the octupole

After the changes implemented on the structure, preliminary tests for the transport were undertaken. It quickly appeared the transport in the quadrupole section (PI ↔ PII) was not affected by the implemented modifications, with only minor adjustment of the transport time and applied RF voltage necessary to recover the same transport performances as before. This does not come as a surprise since the quadrupole section has not been modified, just cleaned.

It was mainly ensured the transport PI → PII worked properly.

Tests were also conducted to transport the ions from PII to PIII. It is to be noted the RF source of the octupole trap has undergone some modifications since the transport characterisation work done by M. Kamsap [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF], and the new radio-frequency is Ω/2π = 2.774 MHz, against 3.325 MHz before modification. The transport functions applied to the electrodes have not yet been adapted to the new design of the octupole section, and the preliminary test were run with the old transport protocol bearing in mind efficient transport to the octupole will demand update of the transport protocol. In the transport protocol two parameters can be adjusted: the sequence temporal length t g and K the scaling of the amplitude of the DC potential on the electrodes 4 and 5. The potential on each electrodes is calculated as a function of time to respect eq.(2.5), but these functions are calculated according to the old screening factor of the octupole DC electrodes. To account for the new screening factor, we have simply dampened the calculated potentials V 4 (t) and V 5 (t) by K, with a reference value corresponding to the previous amplitude so that K = κ old /κ new ≈ 0.04. Two preliminary sets of experiment were conducted: a study of the rate of ions leaving PII and a study of the rate of ions arriving in PIII. In both cases a number of parameters were explored: variation of the amplitude of the RF and DC components V r f , V dc , of the contact potential V cp , and of the transport parameters t g and K.

Departure from PII

In a similar setup M. Kamsap had observed that the rate of departure of the ions from PII depended on t g in a pseudo-periodic fashion, which had been attributed to an oscillation motion of the ions between the trapping zones, with the population in PII and PIII depending on the gate time. To verify this property, the same kind of test was realised in our setup with K = 0.02, V cp = -3 V, (Ω/2π = 2.74 MHz, V r f = 1560 V pp ) in the octupole and (Ω/2π = 5.191 MHz, V r f = 833 V pp ) in the quadrupole. The tested transport times were t g = 380, 400, 420, 440, 450, 500, 550, 600 µs and in every case complete departure from PII was witnessed. This is in contradiction with the previous results of M. Kamsap who had observed two oscillation peaks in this parameter range already. But departure of the ions from PII is a good point in our experiment, since they possibly travel to PIII.

Transport in PIII

Transport was attempted to PIII despite the transport function not having been updated in accordance to the new octupole design. Transport and observation of a small number of ions has been done in PIII, but despite an extensive exploration of trapping and transport parameters, the number of ions was consistently small. An image of the cloud taken in crystal state in PIII is shown on fig. (2.16) where 8 to 9 ions can be counted. Only one ion cloud out of the expected three [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] was observed, which leads us to believe it corresponds to the deepest local pseudo-potential well and that very few ions are transported and trapped in PIII. Variation in the trapping parameters (V dc ,V r f ) has shown these ions to be trapped in a stable fashion.

Exploration of transport parameters has not yielded much improvement in the number of trapped ions. For V cp = -3 V, t g = 215 µs, V r f = 1604 V, K was explored from 0.01 to 0.05 with steps of 0.01 and an optimal K = 0.02 determined from the size of the ion cloud. With this K different transport times and contact potentials were tried (t g = 210, 212, 215, 420 µs and V cp = -2.7, -2.8, -2.9, -3, -3.1, -3.2 V without significant improvement of the transport rate.

All in all, this preliminary work in the octupole trap has shown transport PII → PIII to be possible but with very low transport rate. This is most certainly a consequence of the ill adapted transport protocol, that has not yet been updated to account for the new design of the octupole section. With as few ions transported to PIII, transport back to PII has not yet been attempted. 

Conclusion

In this chapter the thematic of the axial confinement of the ions and of their transport between the different trapping zones of our double trap has been introduced. In the context of the intended comparative measurement of the velocity distribution of the ions between the quadrupole and the octupole trap discussed in sec.(1.3.2), reliable shuttling of the ions is a requirement. In the initial version of the octupole trap, a high screening of the DC potential combined with a large spacing between the DC electrodes prevented from transporting the ions back from the octupole trap toward the quadrupole section. To solve this issue, the design of the electrodes and their spacing was modified. A new cut of the DC electrodes was proposed so that the effective potential on the axis was less dampened by the screening of the RF electrodes, with a new screening factor κ = 8,75.10 -2 against κ = 3.56.10 -3 with the old electrodes. With this new design, the trap was shortened to reproduces the transport conditions PII→PIII for the transport PIII→PII. The octupole trap was initially designed for the trapping and study of big ion clouds, and to keep this measurement possible, the octupole was split in two traps by the addition of a third DC electrode: the first trap facing the quadrupole section is short (2z 0 = 18 mm) and dedicated to experiments requiring shuttling of the ions ; the second trap is longer (2z 0 = 80 mm) for the trapping of big ion clouds. The modification were implemented in the experiment during the thesis. Preliminary experimental transport tests from PII to PIII have been conducted to verify the trapping properties of PIII and its new RF power supply. A small number of ions (<10) was successfully trapped but increasing the transport efficiency requires to update the transport protocol to account for the new positioning and efficiency of the DC electrodes.

Chapter 3

Analytical approach to the potential of an asymmetric octupole

Introduction

We have introduced in the first chapter the motivations behind the investigation of RFmultipole traps with (2n > 4) RF electrodes in the creation of trapping potential wells for the ions. In those traps, an increase in the complexity of the electrodes arrangement is justified by an in built lower micro-motion of the ions for a given distance to the trap centre. This is of special interest for microwave ion clocks since a major source of frequency instability in these devices is the variation in the second order Doppler Effect contribution, that depends on the micro-motion amplitude through variations in the number of trapped ions. Our octupole trap was built with the 'intention' to demonstrate experimentally the impact of an increased order in the trapping potential on the micro-motion velocity distribution. We do not operate in the microwave regime, but in the optical one and with laser cooled 40 Ca + ions (temperature ∼ mK). The intended measurements have been paused when observations conducted in this octupole trap pointed out a structural problem in the potential. Instead of the ion arrangement predicted by the theory (a corona or hollow tube along the symmetry axis), the ions arrange in three elongated clusters. These three distinct ion clouds, of different width and lengths, are centred on different positions in the radial plan of the trap, and have their axis aligned with the z-axis of the trap.

This clustering of the ions can be attributed to a breaking in the symmetry of the radial component of the octupole trap potential and the apparition of three local minima in the pseudo-potential. The origin of these local minima in the pseudo-potential is explained in sec.(3.1.2). The ions are effectively trapped in potential wells of unpredictable positions and depths, which compromises the interest of using a multipole trap to control the amplitude of the micro-motion. It is therefore a required necessity, if one persists in using multipole traps to this end, to restore the symmetry of the potential. Although several causes can be incriminated in the breaking of the octupole potential radial symmetry, the one we have investigated as a prime perturbation source is the mechanical misalignment of the RF electrodes in the trap [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. The trap was constructed in the lab, with a mechanical tolerance of about 100 µm.

Simulations of the pseudo-potential generated by octupole traps with such mechanical tolerance on the positioning of the RF electrodes have shown the occurrence of the same kind of local minima in the simulated potential as experimentally observed in our octupole trap [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF].

Numerical studies undertaken by the team have demonstrated the possibility to correct a deformation induced by mispositioned RF electrodes through the application of corrective RF voltages on the electrodes [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. The protocol presented in this publication either takes as an input the exact positions of the electrodes in the deformed octupole, or the positions of the minima in the pseudo-potential. The positions of the electrodes are not directly available from the experiment and to this day no protocol has been successful in diagnosing the positions of the electrodes from experimentally available data (see chapter 5 for further discussions on this matter). When relying on the positions of the minima in the pseudo-potential, the protocol proposed in the study presents the major drawback, from an experimental point of view, to require an important number of back and forth between the tuning of the applied corrective voltages and the measurement of the positions of the ions in the trap to converge toward a solution.

The work presented in this chapter focuses on gaining an in depth understanding of the defects impact on the pseudo-potential, in order to establish a more direct correction protocol.

To do so we have deconstructed the general deformation of the octupole trap over a basis of elementary defects and worked out an analytic expression characterising the potential in a deformed octupole trap. The correction protocol proposed from this study is presented in the next chapter. The chapter is divided in 6 parts. First, we give an overview of the experimental assessment of the deformations in the potential of our octupole trap, as a reference ground for the chapter content. Then we move on to the study of the impact of the deformations of the octupole structure in the potential and the proposition of our equation for the perturbed octupole trap. The last two sections are concerned with the validation of these results and the boundaries of the model. The positioning of our trap electrodes was guaranteed to a precision of 110 µm, which is 2% of the (r 0 + r d ) distance where r 0 is the inner radius of the trap (r 0 = 4 mm) and r d the radius of the RF electrodes (r d = 1.5 mm). A schematic view of the arrangement of the RF electrodes in the trap is shown on fig. (3.1). In the introduction we stated the mechanical mispositioning of the electrodes deformed the potential and introduce 3 local minima in the pseudo-potential. To check that the possible mechanical error can be responsible for the observed minima positions, the pseudo-potential for 200 deformed octupole traps was calculated and the positions of the minima in the (x, y)-plan collected. In all the test traps, the electrodes were displaced from their reference position in a random direction by a distance of 110 µm. The potentials were computed with the CPO software1 [START_REF]CPO-Charged Particle Optics Software[END_REF]. The results are shown on fig. (3.3), where the positions of all the local minima in all the test cases are represented simultaneously as dots. The minima observed by Marius Kamsap belong to the area populated by the minima for the expected mechanical error in our trap, which supports our hypothesis the observed local minima are the result of a mispositioning of the electrodes. 

Characterisation of asymmetry in our octupole

Shape of the local wells

The local shape of the pseudo-potential in these local minima is quadrupolar in the first order approximation. Measurements in our set up have shown that the ions in the three local minima oscillate with the same radial and axial frequencies ω r /2π and ω z /2π. Two methods have been employed: first, a parametric excitation measurement [START_REF] Alheit | Higher order non-linear resonances in a Paul trap[END_REF][START_REF] Vedel | Nonlinear effects in the detection of stored ions[END_REF] in the radial and axial direction, then a study of the aspect ratio of the cloud seating in min1 [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF].

The parametric excitation results have shown the squared radial oscillation frequency follows a linear dependency with V 2 r f , in accordance with the Mathieu equation in a quadrupole potential. It simplifies as:

ω r 2π = (157 ± 1) V r f 2000 [kHz] (3.1)
The gathered signal only showed one resonance frequency and no individual signature of a different resonant frequency for each local well. If there is a difference between the individual radial frequencies of the three local wells, it was out of reach of the measuring technique and they are assumed to have the same local shape in first approximation. This is further supported by a study of the density of the three ions clouds via the stacking distance of the ion sheets in the three local wells. It is evaluated to be the same within a 5% error margin [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF].

The axial confinement component is by far less steep than the radial one. The axial frequency ω z /2π is accessible through the exploration of another interval of frequencies. The results show the dependency of the frequency with the axial static potential V dc writes [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF]:

ω z 2π = (3.10 ± 0.05) V dc 2000 [kHz] (3.2) 
A further confirmation of the local quadrupole shape of the minima was achieved thanks to a study of the aspect ratio of the cloud in the minimum labelled min1. The aspect ratio is defined as α = R/L, where L is the half-length of the cloud and R its radius in its middle section. According to the model assimilating the ion cloud to a cold fluid in thermal equilibrium, the aspect ratio of the cloud in a 3D harmonic potential with cylindrical symmetry is a function of the steepness ratio ω2 z /ω 2 r of the quadrupole well acc. to : [START_REF] Turner | Collective effects on equilibria of trapped charged plasma[END_REF], [START_REF] Hornekaer | Structural Properties of Two-Component Coulomb Crystals in Linear Paul Traps[END_REF]]

ω 2 z ω 2 r = ρ = -2 sinh 1 (α -2 -1) 1/2 -α(α -2 -1) 1/2 sinh -1 (α -2 -1) -α -1 (α -2 -1) 1/2 (3.3)
This law has been verified in min1 for a cloud of about 12 mm in length [START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF].

Distribution of the ions between the local wells

Both these experiments point to a local harmonic shape for the minima in the pseudopotential of a deformed octupole trap. The shape of the three minima appears to be the same (same ω r , ω z ), yet the distribution of the ions between the local wells is different. As mentioned earlier the ions do not accumulate in the minima in equal proportions: the repartition of the number of ions in the minima over several experiments 2 show a population probability of 55 to 85% in min1, 12 to 50% in min2 and 0 to 10% in min3. Since the three local wells have the same steepness, this uneven repartition, as well as the observation of possible migration of population between the minima under perturbation of the system, has led to the conclusion the minima were of different depths. min1 would be the deeper minima and min3 the shallowest.

About the number of root expected in a multipole of order n

The number of local minima in the pseudo-potential of a multipole trap of order n is (n -1). This can be demonstrated through the study of the multipole trap potential Φ n , where Φ n is a n th order polynomial. The pseudo-potential is proportional to |E| 2 where E is the time dependent electric field in the trap, so that E = -∇Φ n . The zeros in the pseudo-potential correspond to the values where the norm |E|, as a polynomials of order (n -1), equals zero. In the particular case of a perfectly symmetrical structure, there is only one zero of order (n -1) in the centre of the trap. If the symmetries are broken, the degeneracy on the roots is lifted and the structure sees (n -1) positions where |E|, and henceforth the pseudo-potential, goes to zero.

In the octupole case, we have a multipole of order n = 4. The pseudo-potential is then a polynomial of order 6 and the corresponding norm |E| is a polynomial of order 3. If terms of order k < 4 appear in the polynomial development, breaking the perfect radial symmetry, 3 minima are expected in the pseudo-potential.

Experimental observation of such a behaviour has also been reported in the case of a 22pole trap. The apparition of local minima in the trapping pseudo-potential of the multipole has been observed through changes in the density distribution of the trapped ions and 10 local minima have been identified in the pseudo-potential [START_REF] Otto | How can a 22-pole ion trap exhibit ten local minima in the effective potential?[END_REF].

This property shows that lower order term in the polynomial development of a multipole potential are responsible for the experimentally observed organisation of the ions. It does not explain the difference in the repartition of the ions between the local wells, as mentioned in the prior section. This repartition cannot be readily explained by considering the RF component of the trapping potential alone. It possibly results from an offset between the symmetry centre of the radial DC deconfining component and the centre of the octupole trap RF component. This is further discussed in chapters 4 and 5.

Theoretical ground for the perturbation approach 3.2.1 Idea for the perturbation term expression

In order to better understand the physics governing the position and shape of the minima in an asymmetric octupole, we have set to develop an analytical expression for the potential in this type of deformed structures. The core of this work is to link the real positions of the electrodes to perturbative contributions in an equation. It is quite clear from the number of minima in the pseudo-potential that the perturbative terms in the potential polynomic development are of order k ≤ n with at least one term being of order k < n such as k = 0. Trying out all possible (x, y) combination of order k to figure out how they could correspond to structural defects while making sure they combine to respect the Laplace's theorem would be tedious: in the case of the octupole (n = 4) it would make for 14 terms to sort through already ((k + 1) terms per order k). This pool of perturbative terms can be reduced by considering the structure of the octupole trap and its potential equation.

Perfect multipole development

Let us start by recalling the expression for the instantaneous potential in a perfect multipole of order n:

Φ n (x, y,t) = V r f K n (x, y) cos(Ωt) (3.4)
where V r f is the amplitude of the potential applied on the electrodes, Ω/2π the radio-frequency and K n (x, y) a n th order normalised polynomial defining the 2D potential surface. For each order n, K n can be one of two functions {U n , V n } that, as recalled by Friedman in [START_REF] Friedman | Fundamentals of ion motion in electricradio-frequency multipole fields[END_REF], respect the following equality:

1 r n 0 (x + iy) n = U n (x, y) + iV n (x, y) (3.5)
where r 0 is the inner radius of the trap. This relation guarantees the {U n , V n } polynomials satisfy Laplace's equation. The {U n , V n }-set is a support for the exact same type of electrode arrangement, but at a different orientation in the (x, y) frame: where the U term is 'aligned' with the frame, the electrodes generating the V term are turned by an angle π/2n to the other set. Take as an example the case of the quadrupole field. The {U 2 , V 2 }-set writes:

U 2 (x, y) = 1 r 2 0 (x 2 -y 2 ) (3.6) V 2 (x, y) = 1 r 2 0 2xy (3.7)
To generate the term U 2 , as shown on panel (b) of fig. (3.4), the electrodes need to be positioned on the x and y axis. To generate V 2 they have to be along the diagonals (x + y), (xy), that is at a π/4 angle to the frame and the first set of electrodes.

Let us note that generating the U n , V n functions requires the electrodes surface to fit the shape of the iso-potentials. In our setup, cylindrical electrodes are used in both the quadrupole and the octupole section, as an approximation to the required shape (hyperbolic in the case of the quadrupole). The impact of this approximation in the generated potential is discussed in sec.(3.2.3). with an inscribed radius r 0 . Reprinted from [START_REF] Friedman | Fundamentals of ion motion in electricradio-frequency multipole fields[END_REF] It is interesting to notice in the scope of our study that eq.(3.6) and eq.(3.7) can be rewritten as a combination of the two dipole terms U 1 (x, y) = x/r 0 and V 1 (x, y) = y/r 0 :

U 2 (x, y) = U 2 1 (x, y) -V 2 1 (x, y) (3.8) V 2 (x, y) = 2U 1 (x, y)V 1 (x, y) (3.9)
In the very same fashion, the octupole polynomic functions K 4 can be written as a combination of quadrupole terms (and therefore, dipole terms):

U 4 (x, y) = 1 r 4 0 (x 4 -6x 2 y 2 + y 4 ) =⇒ U 4 (x, y) = U 2 2 (x, y) -V 2 2 (x, y) (3.10) V 4 (x, y) = 1 r 4 0 4xy(x 2 -y 2 ) =⇒ V 4 (x, y) = 2U 2 (x, y)V 2 (x, y) (3.11)
The same kind of imbricated decomposition can be continued for any higher order multipole. This comes from the fact that it is possible to derive from eq. (3.5) an induction between the K n functions and the lower order multipole terms:

U k+1 (x, y) = U k (x, y)U 1 (x, y) -V k (x, y)V 1 (x, y) (3.12) V k+1 (x, y) = V k (x, y)U 1 (x, y) + U k (x, y)V 1 (x, y) (3.13)
And any multipole can therefore be written as a combination of multipole terms of lower order.

Expression of perturbations

Let us now refocus on the case of the octupole. We select our electrode set so that, in the absence of perturbations, the U 4 (x, y) function characterises the potential surface. Our approach is to look for the perturbation term W(x, y), so that the equation for the 'real' asymmetric potential U R (x, y) writes down as:

U R (x, y) = h 0 . [U 4 (x, y) -W(x, y)] (3.14)
where the h 0 parameter is a scaling function of the radius ratio r d /r 0 proper to the cylindric electrode geometry (h 0 =-1.004 for r 0 = 4 mm, r d = 1.5 mm), that is discussed in details later on. The observations conducted in the previous section motivate the working hypothesis that W(x, y) can be mapped onto quadrupole and dipole perturbations:

W(x, y) = a 1 U 2 (x, y) + a 2 V 2 (x, y) + a 3 U 1 (x, y) + a 4 V 1 (x, y) (3.15)
This decomposition respects the Laplace's equation, since it is a linear combination of lower order multipole terms. It is further motivated by the very practical observation that, in terms of geometric structure and in the absence of applied potential on the electrodes, the octupole can be seen as a superposition of quadrupole-like and dipole-like sets of electrodes. Notwithstanding the electrode shape, the structure of an octupole is the combination of the two sets of electrodes corresponding to the U (3.15). These two pseudo-potential surfaces give the arrangement of the pseudo-potential minima in the radial plan, and display 'signature positions' of the minima depending on the order of the applied perturbation. A pure dipole perturbation yields a near equilateral arrangement of the minima. For a pure quadrupole perturbation, the three minima organise in a line with the central minima in the centre of the octupole and the two other minima symmetrically placed around it.

Method and validation protocol

The relevance and validity of our assumption on the form of the W(x, y) term can only be appreciated with the full knowledge of the construction of the {a 1 , a 2 , a 3 , a 4 } pondering coefficients from the trap geometry. The quality of the approach is therefore quantified and discussed a posteriori in sec.(3.5), after we have gone through with the full development of this model.

The heart of the problem is to link in an unambiguous fashion the {a 1 , a 2 , a 3 , a 4 } coefficients to the positions of the displaced trap electrodes. To do this, we need to express an appropriate parameter set to characterise the positions of the electrodes in the 2D-plan. Traditionally the positions of the electrodes for any octupole is given in the frame of the perfect octupole trap before the perturbations are applied. This frame is orthogonal, the centre of the octupole is in (0,0) and 4 out of 8 electrodes are positioned on the frame axis. The parameter set is then often taken to be the displacement of the electrodes to their reference positions, corresponding to the positions of the electrodes in the perfect case. This simple parametrisation can be error inducing if not properly understood. In the context of a numerical simulation it appears intuitive to fix as a reference the perfect octupole trap before perturbations are added, but this reference remains absolutely arbitrary and can lead to misinterpretations. Take as an example a perfect octupole that is simply rotated in the plan or translated: the parametrisation indicates that all electrodes are displaced, even though the octupole structure is not deformed. Moreover, as the reference octupole is technically an arbitrary choice, any reference octupole can be chosen to characterise the displacements of the electrodes and an infinity of parameters sets are available.

One solution to lift this degeneracy and singularise the reference is to introduce a calculated reference position taken to be 'the closest perfect octupole' to the deformed geometry. To do so one needs to define the centre of the reference frame as the barycentre of the deformed octupole trap electrodes

(x G , y G ) = (1/8)(∑ x k , ∑ y k ), where (x k , y k ) with k ∈ [0, 7]
are the electrodes' positions in any frame. It is now only a matter of choosing the right angle to position our 'closest perfect octupole'. This 'closest perfect octupole' is the one symmetric octupole of given (r 0 , r d ) which minimizes the average distance between the reference set and the positions of the electrodes. Once the centre of the frame is fixed in (x G , y G ), the angle ϒ is evaluated to place the reference in the (x, y) frame so that the deformed octupole is free of a general rotation. (see sec. Fixing the definition of the reference octupole makes the correspondence between the octupole geometry and the parameter set used to describe it unique and lifts some ambiguities from the problem. Nevertheless, this parameter set is not directly adapted to our decomposition. In order to express the {a 1 , a 2 , a 3 , a 4 } coefficients, we have worked on defining an unambiguous parameter set specifically adapted to this decomposition in terms of quadrupole and dipole contributions. This has led us to distinguish defect patterns according to the way they break the symmetry in the electrodes' arrangement on the octupole, quadrupole or dipole level, and to the identification of five canonical classes of defects. Three of them keep the orthogonality of the frame, and have been named: Compression, Sliding and Splitting. Two other classes, named Rotation and Shearing account for any angular deformation in the electrodes arrangement. Each class takes as an input the geometry of the deformed trap in any frame and yields as an output a number of parameters that are used to code the {a 1 , a 2 , a 3 , a 4 } coefficients. All together they ponder the perturbation terms in an exhaustive way and allow for the prediction of the pseudo-potential shape for any trap geometry, as is discussed in sec.(3.5).

In the coming section we discuss each defect class independently, first by reviewing the physical motivation behind the singularisation of the defect pattern, and then by describing the logic behind the parametrisation of the class. We then proceed in sec. (3.4) to detail the coupling mechanisms between the classes when the octupole is deformed by more than one type of defect. Our basis of comparison and source of validation are the potential maps computed by the CPO software, a code that uses a boundary element method to solve the Laplace's equation and compute the potential maps for a given structure. Most investigations are conducted in the calculated pseudo-potential of the trap, and especially with the positions of the local minima in the radial plan. We recall that in our experimental setup the only available information is the fluorescence signal and the imaging of the ions, as discussed in sec.(3.1.1). For low enough axial DC confinement (in this chapter V dc = 0 V for simplification), the ions cluster in the local minima of the pseudo-potential and the positions of the minima is therefore considered an experimentally assessable information. Therefore even if the {a 1 , a 2 , a 3 , a 4 } coefficients ponder the perturbation term in the U R polynomial surface defining the time dependent potential, most of the validation tests and indicators have been worked out from the corresponding pseudo-potential.

Limits of the study and impact of using cylindric electrodes

The rigorous experimental validity of Friedman's development [START_REF] Friedman | Fundamentals of ion motion in electricradio-frequency multipole fields[END_REF] for the crafting of a trapping potential of order n is conditioned by the fit of the electrodes shape to the isopotentials defined by the K n polynomial. This is never quite achievable in an experimental setup, be it because of manufacturing limits, windows in the structure of the electrodes for laser access, or the simple fact the electrodes must be of finite size. Deviation from the perfect electrode shape has been shown in [START_REF] Wang | Characterization of geometry deviation effects on ion trap mass analysis: A comparison study[END_REF][START_REF] March | Fundamentals of ion trap mass spectrometry[END_REF] to generate higher order terms in the potential of the trap and introduce nonlinearities in the equations of motion [START_REF] Wang | The non-linear resonance ion trap. Part 2. A general theoretical analysis[END_REF]. Resonant behaviour introduced by nonlinear coupling has been observed by several groups [START_REF] Alheit | Observation of instabilities in a Paul trap with higher-order anharmonicities[END_REF][START_REF] Vedel | Evidence of radial-axial motion couplings in an rf stored ion cloud[END_REF]. A popular solution to mitigate the complexity of the electrodes manufacturing and the impact of any deviation to the perfect design on the potential is to use cylindric electrodes with a specific radius. This radius is a function of the desired inner radius of the trap and of the multipole order n. In the case of a quadrupole trap with circular electrodes of infinite length, an analytical solution for the Laplace equation exists [START_REF] Reuben | Ion trajectories in exactly determind quadrupole fields[END_REF]:

Φ 2 (x, y) = Re{ ∞ ∑ m=1 C (4m+2) ξ (4m+2) }; ξ = x + iy (3.16)
where C (4m+2) are real coefficients. The 'magic' ratio R mr|n = r d /r 0 defining the structure of the trap is chosen to minimize the contribution of the lowest order extra term in eq.(3.16) by cancelling out the C 6 term. The value of the magic ratio in the quadrupole is R mr|2 = 1.14511 [START_REF] Reuben | Ion trajectories in exactly determind quadrupole fields[END_REF]. For higher order multipoles, the magic ratio roughly follows a law such as:

R mr|n = 1 (n -1) (3.17)
Simulations conducted in [START_REF] Rama Rao | Electric hexapoles and octupoles with optimized circular section rodes[END_REF] indicate using R mr|4 of 0.355 instead of 0.333 in the octupole trap induces less deviation from the ideal potential. In our experiment, technical constraints have imposed the choice for the electrode radius (market availability) and the inner radius of the trap (closeness to the inner radius of the quadrupole section) so that our experimental radius ratio is R mr|4 =1.5/4=0.375.

It is not the focus of this work to investigate the impact of higher order terms in the potential development, but the choice of the radius ratio is still of concern in our study. Let us illustrate this by taking a closer look at the impact of the radius ratio choice on the pseudopotential shape of a perfect octupole. As can be seen on fig. (3.7), the choice of the (r d , r 0 ) parameters has a scaling impact on the pseudo-potential shape and the steepness depends on the r d /r 0 ratio. Simulations comparing various combinations for the (r d , r 0 ) pair have shown the scaling factor h 0 , as defined in eq.(3.14) and plotted on fig. (3.8), depends only on the radius ratio. The protocol used to evaluate h 0 was to fit the CPO computed pseudo-potential shape along a longitudinal cut of the trap for every radius ratio from 0.1 to 1.9 by steps of 0.1. To do so the inner radius r 0 was kept constant and the electrode radius r d varied. The cross section was fitted by a 4 th order polynomial, either h 0 .x 4 or h 0 .y 4 depending on the chosen direction, according to the expected shape of the pseudo-potential in a perfect octupole. To experimental ends, the gathered values for the h 0 parameter can be fitted as a function of r d /r 0 by the following 6 th order polynomial: where the resolution of the coefficients is bounded by the pixel resolution of our potential map d px = 4 µm. The results were successfully tested afterward for different r 0 to verify the dependency is with the radius ratio only.

h 0 = -0.
The perturbation term W is going to be defined through a set of parameters that present the same kind of dependency with the radius ratio as the main term of the development. It is acknowledged in the coming section that we are not exactly fulfilling the boundary conditions on the electrodes shape required for a thorough application of Friedman's development. This is especially true for the perturbation terms of quadrupole and dipole nature that come into play when the electrodes are mispositioned, since the trap radius ratio is designed to reduce the contribution of the lowest order term higher than the octupole term in the potential expansion. The consequences of these approximations are studied and accounted for in every defect class by calibration coefficients h i , taken to be functions of the radius ratio only, and making the upcoming study valid for any trap design that uses cylindrical electrodes.

A last important thing to point out regarding the oncoming study is that the high degree of symmetry offered by the use of cylindric electrodes simplifies our defect analysis considerably. If the electrodes had any other shape, the number of unknown parameters in the problem would have been raised from 16 to 24, by adding to our current 16 unknown related to the positions of the electrodes in the 2D-plan 8 unknown accounting for a tilt on the electrodes. As it is, a cylindrical electrode does not require to take into account the orientation of the electrode and the problem is thus simplified to only 16 unknown parameters. Work has been undertaken in [START_REF] Wang | Characterization of geometry deviation effects on ion trap mass analysis: A comparison study[END_REF] to characterise the impact of a tilt for different types of asymmetric electrodes (hyperbolic, slabs, semi-cylinder) on the potential and can be referred to, if one wishes to get an insight on this problematic.

Decomposition of the trap defects

The topic of this section is to introduce the 5 deformation classes that were identified to decorrelate the trap defects. They yield parameters that can be easily affected to one or the 

Quadrupole-inducing deformations Compression

The Compression defect class describes the situation where there is, for two electrodes facing each other, a symmetrical change in the distance of the electrode to the centre of the trap. Fig. (3.10) gives a schematic representation of this defect: the centre of all axis is not displaced and only the distance between electrodes in regard is modified.

A compression in one or the other (or both) quadrupole subsets split the minima in the pseudo-potential along a line, with one minimum in the centre of the trap and the two others at an equal distance from the central one. This pattern is the exact same one as the one obtained by adding a quadrupole perturbative term to the potential in eq. (3.14). Three parameters, L S , L T , r0 , are necessary to code the compression into the {a 1 , a 2 } coefficients pondering the quadrupole part of the perturbation W. The parameter L S corresponds, in the S-quadrupole subset, to the length difference between the two constituting axis of the set, normalised by the average inner radius r0 : with

L s = 1 r0 (x 4 -x 0 ) 2 + (y 4 -y 0 ) 2 -(x 2 -x 6 ) 2 + (y 2 -y 6 ) 2 (3.19)
r0 = 1 4 3 ∑ k=0 (x 4+k -x k ) 2 + (y 4+k -y k ) 2 2 (3.20)
The L T parameter is defined in the same fashion with the electrodes from the T -set, and taken by convention positive if the length along the (xy) axis is larger than the one along the (x + y) axis. We introduce the perturbation induced in the instantaneous potential by a compression as:

W c (x, y) = h c [L S U 2 (x, y) + L T V 2 (x, y)] (3.21)
where h c is a parameter accounting for the r d /r 0 ratio rescaling on the perturbation, in the fashion of the h 0 parameter on the main term. For our trap dimensions, h c = 0.820 and the perturbation is coded into eq. (3.15) as

{a 1 = h c .L S , a 2 = h c .L T , a 3 = a 4 = 0}.
Perturbing the potential with W c as defined by eq.(3.21) allows for the reproduction to the pixel size (d px = 3.6 µm in this case) of the minima arrangement for compression defects up to 4% of the (r d + r 0 ) distance (i.e. the electrodes can be positioned as far as 220 µm from their reference positions). This covers the expected 2% mechanical uncertainty in the positioning of our electrodes, setting our setup in the validity domain of this study. On fig. (3.11) you can appreciate the quality of the fit between the positions of the minima calculated by CPO (black dots) and the results from our equation (red stars) for the same controlled input geometries, piloted to only present a compression-like defect characterised by the L S parameter. The L S parameter is increased from 0 to 0.11 by steps of 0.011, with the L S = 0.11 point corresponding to a 4% error on the electrodes positioning. Fig. (3.12) shows an example of pseudo-potential cut along the axis upon which the minima are split and illustrates the fit of the pseudo-potential shape between surface equation and CPO simulation.

To complete the study of the Compression class, one needs to consider the very special case where both the axes of one quadrupole set are shortened or lengthened in the same fashion. This results in the related parameter L S/T = 0, since both the axis keep the same length (see illustration on fig. (3.13)). This defect pattern keeps the general symmetry of the problem, and this is reflected in the pseudo-potential since the minima are not split and only one minimum remains in the trap centre. Nonetheless, this 'isotropic' compression does have an impact on the pseudo-potential shape: it scales the width of the well. This scaling can be easily accounted for by changing the normalisation factor, defined so far as r n 0 for every K n (see eq.(3.5)), and replace it with its averaged version r0 as defined in eq. (3.20). The impact of this update can be appreciated on fig. (3.14), that illustrates this kind of peculiar defect with a 4% amplitude on the S-set: the dotted lines correspond to the CPO computed pseudopotential, where the x and y-directions have the same shape. The green lines correspond to the case where the normalisation is kept as r 0 in the surface equation, and the yellow and cyan curves show how the normalisation by r0 allows for a better fit of the CPO surface. We consider now that every polynomial K n is redefined for further use acc. to:

U n + iV n ----→ r 0 → r0 1 r0 n (x + iy) n (3.22)
This redefinition of the normalisation is valid through this study, but the compression is the only defect class that imposes r0 = r 0 . The quality of the correspondence between the CPO simulations and the predicted potential surface raises the question of the choice made for the parameter h c . This parameter was taken to be a calibration constant for a given r d /r 0 ratio, meant to balance out the noncorrespondence between the electrodes shape and the potential lines on the lower order terms. In order to expand the reach of this study to other trap designs with different (r d , r 0 ), we have estimated this parameter for a large range of r d /r 0 ratio covering the values from 0.025 to 0.475 (the 'magic ratio' being around 0.333 in the octupole case [START_REF] Rama Rao | Electric hexapoles and octupoles with optimized circular section rodes[END_REF]). The accessible radius ratio range is limited by the volume of the electrodes, that cannot be allowed to touch each other. The result of this study is displayed on fig. (3.15), and can be fitted to a practical purpose by a 4 th order polynomial expansion: We have detailed in this section the method with which we have established the validity of the perturbation term W c in the case of one specific defect pattern (named Compression), and its validity for every radius ratio. The method is roughly the same for the other classes and we now concentrate on the results.

Shearing

The Shearing deformation class is a defect type that corresponds to the loss of orthogonality within the quadrupole subsets. One angle per set (β S , β T ) is required to characterise this defect pattern. In the case of a pure shearing, β S is the angle between the axis defined by the electrodes 2 and 6 of the S-set with the x-direction of the frame, the vertical trap axis being constrained to have a -β S angle to the y-direction of the frame (the angle sign-convention being by default the trigonometric one). A schematic depiction of shearing on the S-quadrupole set is shown on fig. (3.16). The β T angle is likewise defined to the (x + y) and (xy) directions.

A shearing on the octupole electrodes produces three aligned minima in the fashion of a quadrupole perturbative term and can be reproduced by the following analytical expression:

W h (x, y) = h h [β T .U 2 (x, y) + β S .V 2 (x, y)] (3.24)
with the coefficient h h =1.404 for our trap dimensions, and a polynomial expansion deduced according to the same method as h c (cf. fig.

(3.17 In contrast with the Compression results, those minima are not observed along the directions associated to the deformed quadrupole, but along the directions of the complementary quadrupole (see eq.(3.26)). A compression on the straight quadrupole raises a U 2 perturbation term and in the same fashion a compression on the tilted section raises a V 2 term, which is intuitive since those electrode patterns could produce the associated quadrupole potentials were the trap wired to do so. Surprisingly the shearing inverses this logic:

S-set compression → U 2 T -set compression → V 2 S-set shearing → V 2 T -set shearing → U 2 (3.26)
The interpretation of this phenomenon is not straightforward, and we suggest an explanation: it is possible the shearing of one quadrupole set affects the other as a kind of induced frame deformation seen by the complementary quadrupole set. The complementary quadrupole set is aligned with the median of the sheared set, and will see 'reinforced' and 'diminished' potentials along its own axis, not unlike what would happen if its own axis were shortened and lengthened (like in the case of a compression). This statement does not compromise the technical efficiency of eq.(3.24) in reproducing the CPO results potentials for this type of defects. The Sliding defect class is probably the most intuitive one to associate to a dipole perturbation. If its general definition is a little subtle, this defect pattern taken alone corresponds to the sliding of one pair of facing electrodes along the axis that supports them, without a change in the distance that separates them, as illustrated on fig. (3.18). Now for a general definition: in a sliding, the distance between facing electrodes within one set is conserved but the lines joining them do not cross at their centre (M S in the S-set and M T in the T -set).

Dipole-inducing deformations

The characteristic parameters (x S l , y S l ) and/or (x T l , y T l ) are defined by the positions of these lines centre relatively to M S (X S ,Y S ) and M T (X T ,Y T ), the crossing point of these two lines in the S and T -quadrupole sets. The definition of M S and M T is necessary in a general case, but for a sliding alone the two points are not separated. For a sliding in the S-set, x S l (resp y S l ) is the sum of the x (resp y) coordinates relatively to M S of the two line centres of this set. The same definition is transposed in the T -set. These coordinates are normalised by the distance between the centre of the facing electrodes. Here are the parameters in the simplified case where there is no frame deformation (it is competed in the next section):

x S l = f S (2) ; y S l = f S (0) (3.27) x T l = 1 √ 2 (f T (3) + f T (1)) ; y T l = 1 √ 2 (f T (3) -f T (1)) (3.28)
where f S , f T are normalisation functions of the distances difference acc. to:

f S (k) = l S 4+k -l S k l S 4+k + l S k (3.29) l S k = (X S -x k ) 2 + (Y S -y k ) 2 (3.30)
and l k is the distance of the electrode k to the centre M S of the S-set for the electrodes {0, 2, 4, 6} or M T of the T-set for the electrodes {1, 3, 5, 7}.

The expression from eq.(3.28) can be understood as the dipoles generated by the {1, 5} and {3, 7} electrodes along the (x + y) and (xy) directions being reported on the x and y directions to agree with the (U 1 , V 1 ) decomposition. This kind of deformation is responsible for a triangular organisation of the pseudo-potential minima, like induced by a dipole perturbation term. With our previous convention, this perturbation is then coded as {a 1 = a 2 = 0, a 3 = h l (x S l + x T l ), a 4 = h l (y S l + y T l )} and writes down as:

W l = h l x S l + x T l U 1 (x, y) + y S l + y T l V 1 (x, y) (3.31) 
The comparison between the positions of the minima in the pseudo-potential computed by CPO and the ones deduced from the proposed equation is shown on fig. (3.19) with h l = 2.566 and for the particular case of a sliding up to 4% of (r 0 + r d ) of the vertical pair of electrodes of the S-quadrupole set. To conduct this comparison, the position of the minima is corrected by substracting the barycentric offset of the triangle to the frame from the minima coordinates. This is a standard procedure for the comparison between the CPO pseudopotential and the equation results. It is justified by the fact the coordinates collected for the minima in CPO are bound to a frame arbitrarily chosen. When the central symmetry is broken (when there is participation of a dipole perturbation), the comparison must be conducted on the relative positions of the minima.

This comparison shows that a sliding up to 4% of r 0 can be completely accounted for, within the pixel size resolution (4 µm), by an added dipole term to the perfect octupole equation, and validates our choice for W l . The term h l whose dependency with r d /r 0 is displayed on fig. 

Splitting

The Splitting defect class corresponds to the separation of the centre of the S and T quadrupole sets, without any deformation of each set. The relevant parameters (x 0 , y 0 ) are the relative position of the T -set centre (X T ,Y T ) relatively to the S one (X S ,Y S ), normalised to r0 . The pattern formed by the three minima, when x 0 = y 0 = 0.019, is showed on the right panel of fig. (3.21) and is close to the characteristic equilateral arrangement induced by a dipole perturbation. For small enough splitting along the y-axis (x 0 = 0, y 0 = 0), each minimum settles along a direction (π/2, π/6, -π/6) that we use as a reference to plot their position on fig. (3.22). On this figure, only two out of the three minima are plotted, because their arrangement follows a symmetry about the y-axis of the frame. The perturbation induced by a splitting can be approximated by a dipole term acc. to :

x 0 = X S -X T r0 ; y 0 = Y S -Y T r0 (3.33)
W p (x, y) = h p [x 0 .U 1 (x, y) + y 0 .V 1 (x, y)] . (3.34) 
where h p = 1.586 in our trap. The comparison between this analytical description and the results of the CPO calculation for the pseudo-potential are shown on fig. (3.22) for a splitting between the T and S centres along the y axis. It shows a slight mismatch that increases with the size of the defect (CPO: black crosses and the equation results are the red dots). A better fit can be reached by adding a correcting term of the quadrupole kind and encoding the splitting as {a 1 = 0.1.(y 2 0x 2 0 )/ x 2 0 + y 2 0 , a 2 = 0.1.(2x 0 y 0 )/ x 2 0 + y 2 0 , a 3 = h p .x 0 , a 4 = h p .y 0 }. The total equation for a splitting perturbation that we use in the following is:

W p (x, y) = W p + 0.1 x 2 0 + y 2 0 (y 2 0 -x 2 0 ).U 2 (x, y) + 2.x 0 .y 0 .V 2 (x, y) . (3.35)
The added quadrupole contribution is rather small in comparison to the main term W p , but it allows for a better fit of the CPO results (blue stars on fig. (3.22)). The usual dependency with r d /r 0 of the scaling coefficient appears in the case of the added quadrupole term to be constant and fixed at 0.1 for all tested ratio. This is probably because the dependency on the ratio is so small it is not accessible at a 4 µm resolution. The coefficient is therefore taken to be constant with value 0.1. In order to understand better why this slight quadrupole term is necessary to the accuracy of the Splitting parametrisation, a closer look at the defect pattern is necessary. Where a sliding involves a quite straightforward pair of electrodes shifted along an axis, the splitting dipole contribution comes from the slope induced by the separation of the quadrupoles' centres. It is an indirect dipole, and the perturbation induced is only mainly dipolar. The quadrupole adjustment remains small in regard to the dipole contribution, and and the agreement between both calculations validates our analytical description of the splitting. 

Scaling only: Rotation

The Rotation class is the second type of angular defect. It corresponds to the rotation of one quadrupole subset in regard to the other, while the inner orthogonality of each subset is maintained. The parameter characterising the rotation is the angle δ , so that the smallest angle between two neighbour electrodes within the octupole trap is π/4 -2|δ |, δ being taken by convention positive for a counter-clockwise rotation of the S-set, as represented on fig. (3.24). It is very important at this point to clearly distinguish the rotation as a defect class of the octupole from a general rotation of the whole set of electrodes. A general rotation corresponds to the situation where both quadrupole subsets are rotated in the same direction, in this case the electrodes are out of place but the octupole is not deformed. Taken alone, a rotation defect does not split the octupole minima. It nevertheless cannot be ignored since it turns and scales the minima positions when coupled to other deformation classes, as we are going to see in the next section. In order to avoid confusion between a general rotation of the octupole in the 2D-plan, and the actual consequences of a rotation defect, we always make sure our trial octupole is free of any general rotation when we run our verification tests. 

β S = α S x -α S y 2 ; δ S = α S x + α S y 2 β S = α T x-y -α T x+y 2 ; δ T = α T x-y + α T x+y 2 (3.37) δ = δ T -δ S
This last defect class concludes the construction of our parameter set. We have identified 12 free parameters required to characterise the impact of the deformations on the potential. To fully characterise the system, (3+1) additional parameters are required. 3 parameters are necessary to position the octupole in the frame : they are the origin and the global angle ϒ. The last parameter is r d , required to position the electrodes centres to the inner radius r 0 . An interesting choice for the frame centre is to take the barycentre of the minima (x c , y c ), as a way to get rid of the artificial offsets between the positions of the minima in the CPO simulations and those of the surface equation. As mentioned earlier we ensure the general rotation of the trap to the frame ϒ equals zero. This decomposition does amount to 16 parameters even though no equivalence with the initial set defined by (x k , y k ), k ∈ [0, 7] has been demonstrated. It is of great help in all further developments that the parameters issued from the class approach and used to weight the perturbative terms are independent from the frame and only depend on the relative positioning of the electrodes.

Compression

L S , L T , r0 Sliding

x S l , y S l , x T l , y 

Combination of the trap defects and superposition of perturbations

In the previous section, an analytical expression is identified for singled out default patterns.

In the case of any perturbed octupole trap the defaults are not stand-alone perturbations and the positions of the electrodes can be discomposed over several perturbations. Let us take as an example the trivial case of one electrode (the electrode 0) moved by 220 µm toward the centre of the trap without any angle (that is along the y-axis). In this simple case two classes of defects are already involved: a sliding and a compression, characterised by L S ≈ 0.055, y S l ≈ 0.020 and r0 ≈ 3.97. It is therefore necessary to study the way the perturbations behave when several individual defect classes are required to characterise the trap deformations. We propose now to demonstrate that the perturbations corresponding to the individual default patterns can be combined when several defaults add up in the same octupole trap, and sec. (3.5) focuses on validating that any geometric configuration can be represented as a combination of the five identified defaults patterns.

The five identified classes can be grouped into two types: the defect patterns that keep the orthogonality of the frame (Compression, Sliding, Splitting) and the ones responsible for angular deformations in the frame (Shearing, Rotation). This distinction is of practical importance, since the contributions from the first group remain independent when splitting, sliding and compression defects are coupled in the trap structure. Coupling of the contributions does occur when an angular deformation is added to the lot.

Angle-free deformations

Let us start by combining defects that do not involve an angular deformation in the octupole structure, that is, the defect in the electrodes arrangement that can be discomposed onto the Compression, Sliding and Splitting deformation classes. The perturbative term simply writes as a sum of the three contributions W c , W l and W p as there is no cross-effect between these perturbations. The comparison between the numerical simulations by CPO and the analytical expression where the perturbation is taken as a simple sum of these three perturbation terms show an agreement at the pixel size (4 µm) for displaced electrodes up to 4% of the (r 0 + r d ) = 5.5mm distance. We propose as a support to our statement two examples. A first one is a combination of the dipole-kind sliding within the S-quadrupole set, defined by y S l = -0.004 superposed with a quadrupole-kind compression within the same set. The compression parameter L S is scanned from 0.108 to -0.111 with step of size -0.011. The positions of the three pseudo-potential minima calculated both by CPO and by the analytical description are shown on fig. (3.26). When the compression parameter is scanned, the organisation of the minima start from a triangle (labelled 1) through a nearly balanced triangle (labelled 10) to a line oriented along the compression and sliding axis (labelled 20). In comparison, in the second example on fig. (3.27), the compression parameter is now fixed at L T = -0.055 and the sliding parameter y S l scanned from -0.04 to 0.04 by steps of size 0.004. Both examples show an agreement between the analytical description and the numerical calculations with an accuracy of 0.1% (4 µm) of the inner radius and support the relevance of our method. This supports the linear approximation underlying our approach.

Angular deformations: coupling

If angular deformations are affecting the structure as well, the total perturbative term W is not a simple sum of the basic perturbative terms anymore. The parametrisation of the problem stands, but there is an influence of the angular deformations into the three other classes. We propose below a redefinition of the W c , W h , W l , W p terms that encompass this coupling phenomenon. This necessary update complexifies the equations but is not in contradiction with the previously established ones that are simply valid in isolate cases. The updated equations simplify to the same form as the 'isolated cases' in the absence of angular deformations. The {a 1 , a 2 , a 3 , a 4 } codes are not given at each step as there is no order of priority in the couplings and expressing the codes for each paired classes would be redundant and confusing to the reader. A general expression encompassing every class contribution is provided at the end of this part.

Coupled Rotation

The coupling of a rotation has two main impacts in the pertubation expressions of the other classes. It can modify the inner structure of the equation of each perturbation and impose a general scaling on the terms. We detail first how the equations rewrite when a rotation is involved, and at the end discuss the scaling effects.

To account for the coupling of a rotation of angle δ (as defined in eq.(3.37)) with a deformation rising a quadrupole contribution (that is a compression or a shearing), the induced quadrupole terms U 2 and V 2 have to be corrected in the previously established expression for the W c and W h perturbations. It is possible to understand the way the contributions get coupled by proceeding step by step. Let us start with the case of an octupole that is simply deformed by a compression. In this case a perturbation on the S-set (resp. T -set) raises a U 2 (resp.V 2 ) perturbation. Now if one also imposes one quadrupole to be at an angle with the other and effectively introduces a rotation defect in the structure, the axis of the S-set is now at an angle δ with the (x, y) frame and those of the T -set at an angle -δ with the (x + y, xy) frame. The two electrode subsets are no longer aligned with the direction supporting the U 2 (x, y) and V 2 (x, y) terms. To account for this change we introduce the modified functions

U c 2 , V c 2 : U c 2 (x, y) V c 2 (x, y) = U 2 (x S R , y S R ) V 2 (x T R , y T R ) (3.38) with x S R y S R = R(δ ) x y ; x T R y T R = R(-δ ) x y (3.39)
where R(θ ) is the conventional rotation matrix:

R(θ ) = cos(θ ) -sin(θ ) sin(θ ) cos(θ ) (3.40)
and U c 2 , V c 2 can be expressed with a modified rotation matrix R(θ ) so that :

U c 2 (x, y) V c 2 (x, y) = R(-2δ ) U 2 (x, y) V 2 (x, y) (3.41) 
R(θ ) = cos(θ ) sin(θ ) sin(θ ) cos(θ ) (3.42) 
R(θ ) is not a conventional rotation matrix since it acts directly on the quadrupole terms. In case of a (compression+rotation) configuration, it is then necessary to redefine the W c perturbation to account for the changes in the orientation of the axis supporting the quadrupole terms:

W c (x, y) = h c . L S . U c 2 (x, y) + L T . V c 2 (x, y) (3.43) 
In the case of a (shearing+rotation), we go through a similar process and redefine the quadrupole functions as :

( U h 2 , V h 2 ) = R(δ ).(U 2 , V 2 ). W h (x, y) = h h . β S . U h 2 (x, y) + β T . V h 2 (x, y) (3.44)
The change in the sign of the angle comes from the already mentioned fact a shearing on a quadrupole set affects the complementary quadrupole perturbation term (see eq.(3.26)). It is not exactly understood why the θ angle is halved in regard to the compression case, but simulations have shown agreement in terms of minima position and shape of the potential for this θ = δ angle. An example is shown on fig. (3.28), where the pseudo-potential in an octupole deformed by a shearing+rotation combination of defects acc. to β S = 2°, δ = 4°. The upper right box is a zoom on one of the two off-centre minima, and in it are represented the positions of the corresponding minimum calculated by the analytic equation for θ = 2δ (blue) and θ = δ (yellow). A large δ angle was chosen to illustrate the interest of choosing θ = δ , but the results are in better agreement with the CPO simulations for all δ of interest.

Concerning the dipole inducing perturbations : in a sliding the rotation effect is already included in the worded definition and the splitting description does not need any modification to remain accurate. An update of the definition of the parameters (x S l , y S l , x T l , y T l ) is needed, for a simplified one had been provided in the earlier case where no angles were involved. For compacity sake, we also including the shearing angles in the parameters update.

x S l y S l = cos(δ + β S ) -sin(δ + β S ) sin(δ -β S ) cos(δ -β S ) f S (2) f S (0) (3.45) x T l y T l = 1 √ 2 1 1 1 -1 cos(δ -β T ) -sin(δ -β T ) sin(δ + β T ) cos(δ + β T ) f S (3) f S (1) (3.46) 
The splitting does not require any inner change when coupled to a rotation. Only a scaling effect impacts its contribution.

The last effect we need to discuss concerning the rotation is a general scaling on every other classes. Altogether, the perturbation terms adding up to the octupole instantaneous potential write:

W(x, y) = 1 + |δ | π .W h (x, y) + 1 + 2|δ | π . [W c (x, y) + W l (x, y) + W p (x, y)] (3.47)
where W c , W h are redefined according to eq.(3.43), (3.44).

Coupled Shearing

The last step is to combine a shearing effect to the other deformations. In case of a (shear-ing+compression) default, the three potential minima still align around the trap centre but the modification in the effective inner radius (average radius r0 ) of the quadrupole sub sets has an impact on the scaling of the perturbation terms. More precisely, it is the difference ∆r between the effective inner radii in the T -quadrupole set and the S-quadrupole set (∆r = r0 T -r0 S ) that counts and W h must be modified as:

W h (x, y) = h h . [β T .(1 -h ch .∆r/r 0 ).U 2 (x, y) + β S .( 1 
+ h ch .∆r/r 0 ).V 2 (x, y)] (3.48)
This is a consequence of the frame coupling between the quadrupole sets. A shearing imposes a 'virtual' compression in the complementary quadrupole through frame deformation, as explained in section (3.3.1), and it raises a 'strong' and a 'weak' direction in the complementary quadrupole. A shearing depends only on the modification of the angle of the affected quadrupole through the (β S , β T ) parameters, and is therefore independent by construction of the distance of the electrodes to the centre of the trap. Now if there is a mismatch between the sheared quadrupole radius and the radius of the complementary quadrupole, it stands as necessary to account for the change in the 'strength' of the directions imposed by this modification in the shearing contribution. Namely the shearing sees a modification in the strength of its contribution corrected by the difference ∆r between the radii of the two subsets. This scaling slightly depends on the geometry of the trap acc. to:

h ch = 1.3681 r d r 0 + 2.4850 (3.49)
The dependency is plotted on fig. In the case of a shearing+sliding default, the minima organise in a triangle and the analytical expression depends on the involved quadrupole sets. If these two defaults are sported by the same set, the projection procedure described in the sec.(3.3.2) takes into account the shearing effect and there is no need for an extra calculation step. The full formula for the parameters is given in sec.(3.4.2). In the other case, where the defaults are not affecting the same quadrupole sets, the definition of the sliding parameter depends on the shearing of the other set. As an example, if the T -set is sheared by a β T angle and the sets are deformed by a sliding defined by (x S l , y S l ) and (x T l , y T l ), the perturbation term W l must be modified as:

W l (x, y) = h l 1 + β T (π/4) x S l + x T l U 1 (x, y) + 1 - β T (π/4) y S l + y T l V 1 (x, y) (3.50)
where the shearing once again contributes to a 'trade-off' between the amplitudes of the two quadrupole terms. This adjustment is simply the ratio of the shearing angle over the halfquarter section of the octupole trap that it can explore. As for a combination of shearing+splitting default, the minima also organise as any triangle and the calculated potential matches the numerical calculation if the main perturbation term W p is now written:

W p (x, y) = h p [(1 + sin(2β T ) cos(2β S )x 0 -sin(2β S )y 0 )U 1 (x, y) + (1 -sin(2β T ) cos(2β S )y 0 -sin(2β S )x 0 )V 1 (x, y)] (3.51)
This equation is complex, and this complexity rises from the fact the splitting contribution cannot be readily attributed to a pair of electrodes generating a dipole term. The splitting is not inherently a dipole, but it yields a dipole contribution (mainly). It has already been discussed in sec.(3.3.2) that a slight quadrupole contribution is necessary for a best fit and why, and the same reasoning outlines the difficulty to establish a clean explanation as to the form a coupled shearing takes into the equation. We thus acknowledge eq.(3.51) as our working equation by the quality of the correspondence between the surface equation and the CPO simulations it offers. On fig. (3.30), you can see the difference between the positions of the minima given by the initial expression for the W p term that does not account for the shearing (blue), the updated expression (red) and the positions of the minima from the corresponding CPO simulations (black) for a splitting of the two centres up to 220 µm with steps of 22 µm. We can see the fit loses quality as the defect reaches high values, but it is technically not much of a concern in our trap since the expected defect is in the 110 µm range. To illustrate a full case, we propose on fig. (3.31) to observe this matching for electrode positions that can be described by a compression+splitting+shearing acc. to L T = 0.55, x 0 = 0.007 and a shearing parameter β T scanned from 0.088 to -0.088. We also propose on fig. (3.32) another example where 3 parameters are modified on each point of the plot so that the rotation is scanned from δ = 0.087 (-5°) to -0.087 (5°) by steps of -0.009, the sliding from x S l = -0.02 to 0.02 by steps of 0.002 and the compression from L T = -0.108 to 0.111 by steps of 0.011. In both examples the match is ensured to the pixel size for the full parameter range.

Example of coupled defects with angular deformation

Validation of the approach

The result of the conducted study, in which the geometry of the octupole trap was deformed acc. to controlled patterns of interest, allows us to propose formula for the {a 1 , a 2 , a 3 , a 4 } coefficients. The complete expression for each coefficient, when all classes and couplings are accounted for writes as:

a 1 = h c 1 + 2|δ | π (L S cos(2δ ) -L T sin(2δ )) + h h 1 + |δ | π β T 1 -3 ∆r r 0 cos(δ ) + β S 1 + 3 ∆r r 0 sin(δ ) (3.52) -0.1 x 2 0 -y 2 0 x 2 0 + y 2 0 a 2 = h c 1 + 2|δ | π (L T cos(2δ ) -L S sin(2δ )) + h h 1 + |δ | π β T 1 -3 ∆r r 0 sin(δ ) + β S 1 + 3 ∆r r 0 cos(δ ) (3.53) + 0.1 2x 0 y 0 x 2 0 + y 2 0 a 3 = [h l 1 + 4 β T π x S l + x T l -4 β T π y T l + h p (1 + sin(2β T ) cos(2β S ))x 0 -sin(2β S )y 0 ] 1 + 2|δ | π (3.54) a 4 = [h l 1 -4 β T π y S l + y T l -4 β T π x T l + h p (1 -sin(2β T ) cos(2β S ))y 0 -sin(2β S )x 0 ] 1 + 2|δ | π (3.55)
The validity of these expressions is bound to the small perturbation regime: for the simple cases explored in the previous sections the correspondence between the pseudo-potential calculated from eq.(3.14) and the CPO simulations have been explored for mispositioning up to 4% of the (r 0 + r d ) distance (220 µm). This is twice the maximum expected error in our trap.

The focus of this section is to verify the validity of our decomposition for cases where there is no control on the geometry of the trap. The protocol is the same as previously: from the positions of the electrodes in the 2D-frame is calculated the adapted parameter set from table.(3.1), and then the {a 1 , a 2 , a 3 , a 4 } coefficients. These coefficients are used to compute the perturbed pseudo-potential of the octupole trap acc. to our proposed approach. The positions of the minima in this calculated pseudo-potential are collected for comparison with the reference pseudo-potential of the CPO simulations. This protocol is summarized on the diagram on fig. To explore more possibilities and discuss the success rate of the approach, we have realised five simulation batches, each batch corresponding to 200 simulated traps with random defects on all electrodes. In each batch the amplitude of the defect is fixed, and the directions of the displacement of the electrodes is random. The five batches correspond to the following defect amplitudes: 27.5, 55, 110, 165, 220 µm, spanning from 0.5% to 4% of the (r 0 + r d ) distance. The results of these simulations are given on fig. (3.35), where two metrics are used to quantify the quality of the equation results : the average distance d between the pseudopotential minima calculated with CPO and those of the analytical description, and the scaled average distance d N . To define these two metrics, let us write (x cpo i , y cpo i ) the coordinates of the minima in the CPO pseudo-potential, and (x sur i , y sur i ) the coordinates of the minima calculated from the surface equation. Both sets need to be defined in a frame centred on the respective barycentre of the minima (x g , y g ) in each case acc. to :

(x i , y i ) → (x i -x g , y i -y g ) ; x g = 1 3 2 ∑ i=0 x i , y g = 1 3 2 ∑ i=0 y i (3.56) (x i , y i
) being the positions of the minima of either the numerical or analytical results. The average distance d simply writes

d = 1 3 3 ∑ i=1 (x cpo i -x sur i ) 2 + (y cpo i -y sur i ) 2 (3.57)
The scaled average distance d N ,

d N = 100 d d cpo ; d cpo = 1 3 3 ∑ i=1 (x cpo i ) 2 + (y cpo i ) 2 (3.58)
gives an idea of the error relatively to the amplitude of the displacement of the minima, out of the trap centre. This allows to appreciate the difference between cases with same d but with very different defect amplitudes, as the flat distance between the CPO and calculated minima is more or less problematic depending on the size of the pattern. A big d with a big d N shows a disagreement between the simulated case and the calculated one, whereas if d N is small the results can simply be discussed as an uncertainty. Let us go back to the results of fig. (3.35). In all the simulations the pixel size is d px = 4 µm. For a position mismatch equal to 1% of r 0 +r d , 182 (respectively 198) cases out of 200 have a mean relative distance d N lower than 2% (respectively 4%). These ratios do not change much when the mis-positioning is 2% of r 0 + r d . When it reaches 4%, these numbers decrease to 132 cases out of 200 that have a mean distance d N lower than 2% and 173 cases with a mean distance lower than 4%. As the amplitude of the defects grows from 0.5% to 4%, the average distance between the minima grows from the pixel size to the tenth of pixel.

Where it is more robust for small defects (<2%), this very good statistic demonstrates nevertheless that for defect scaling up to a few % of the trap characteristic dimensions, any geometry can be mapped on our defect basis and that this description is relevant to reproduce the potential minima configuration. This limit is reachable to machined macroscopic trap of millimetre size. The main source of limitation of the model performances for growing defect amplitudes is the splitting defect, as it is the least understood. It is also the defect for which divergence between the simulations and calculated pseudo-potentials grows the fastest for increased defect amplitude. A better understanding of the defect and the way it is coupled with the other patterns would help push further the boundaries of this model and increase its performances.

Protocol to evaluate the polynomic coefficients.

The previous section of this chapter confirms the performances of our model for any random radial arrangement of the trap electrodes, for a small enough defect amplitude (<4%). It confirms as well the more general hypothesis that the equation for an asymmetric octupole potential writes as eq. (3.14), where the parameters characterising the deformations of the surface are { r0 , a 1 , a 2 , a 3 , a 4 }. This is especially important in the perspective of the coming chapter, concerned with the correction of the asymmetries in the potential: if the defect is seen in terms of electrode displacement, 16 unknown parameters (the (x k , y k ) set) are involved and necessary to characterise it. On the other hand if one is only concerned with the deformation of the potential, then only 5 unknown parameters ({ r0 , a 1 , a 2 , a 3 , a 4 }) are necessary to fully characterise the surface. This is the consequence, in terms of pseudo-potential, of the fact that different defect patterns on the electrodes can lead to the same perturbation. For example, a shearing on the S-set and a compression in the T -set both give minima aligned on the diagonal of the frame, and in the same position if h c L T = h h β T . This means that a given set of minima is not the signature of a unique deformation in the trap structure. This section focuses first on the properties of the { r0 , a 1 , a 2 , a 3 , a 4 } coefficient set, and then proceeds to introduce a protocol to collect the set from the positions of the minima in the pseudo-potential.

About the unicity of the set

We have established analytical expressions for the { r0 , a 1 , a 2 , a 3 , a 4 } coefficients characterising the perturbated potential surface. Our next objective is to characterise a perturbation in the potential directly, and for this purpose we need to verify the unicity of the decomposition of a given perturbation in terms of quadrupole and dipole terms. In our approach the perturbations in the potential are defined as multipole terms of lower order than the main term, and therefore are defined in the 2D polynomial subspace of degree k < 4. We call ε this subspace. In the previous sections we have identified the general equation for the perturbation of the potential, which we rewrite here :

W(x, y) = λ 1 (x 2 -y 2 ) + λ 2 2xy + λ 3 x + λ 4 y (3.59)
where λ 1,2 = a 1,2 / r0 2 , λ 3,4 = a 3,4 / r0 . It is defined to a constant, which disappear when the pseudo-potential is calculated. If F = {(x 2 -y 2 ), 2xy, x, y} is a basis of ε, the unicity of the set defined by {λ 1 , λ 2 , λ 3 , λ 4 } is guaranteed. For a set of vector to be a basis of a vectorial space ε, two conditions must be fulfilled: the vectors of the set must be linearly independent and every element of ε must write as a linear combination of the set vectors. The first point is true for our chosen set of vector, and the second point can be acknowledged in the light of the previous section results, where we have numerically shown any deformation of the trap can be mapped onto quadrupole and dipole terms. In the scope of our model, we can conclude the set of coefficients {λ 1 , λ 2 , λ 3 , λ 4 } is unique for a given perturbation. The {a 1 , a 2 , a 3 , a 4 } set is therefore not unique, but the { r0 , a 1 , a 2 , a 3 , a 4 } set is. This is comprehensible as one can assimilate the r0 parameter to a scaling effect, where the {a 1 , a 2 , a 3 , a 4 } organise the perturbation within the trap of average inner radius r0 .

Routine to determine the coefficients

To a given arrangement of the minima in the pseudo-potential of a perturbed octupole trap of inner radius r0 corresponds a unique set of coefficients {a} = {a 1 , a 2 , a 3 , a 4 } pondering the perturbation term W in eq. (3.15). Therefore if we find a set of coefficients {b} = {b 1 , b 2 , b 3 , b 4 } so that the same arrangement of minima is reproduced in a pseudopotential calculated with W({b}), we can assume the equality {a} = {b}.

In this part we propose a routine that evaluates the coefficient set {a} from the positions of the minima in the pseudo-potential alone, for a perturbation of unknown origin. The idea behind the routine is to change the value of the b 1 , b 2 , b 3 and b 4 coefficients progressively to reduce the distance between the trial potential calculated with these coefficients, and the target potential characterised by the unknown {a} coefficient set. The metric of the distance between the two potentials is taken to be the distance d (acc. to eq.(3.57)) between the target minima (their positions are noted M tar 1 , M tar 2 and M tar 3 ), and the trial pseudo-potential minima calculated at each step (M sur 1 , M sur 2 and M sur 3 ). In this part we make the approximation that r0 = r 0 , since the variation imposed on the inner radius by small deformations of the octupole trap is negligible in the first approximation. It is to be noted the minima must be defined in the appropriate frame, free of a global rotation 3 . This section is devoted to detail the code performing the identification of the {b} coefficients from the positions of the minima in the target pseudo-potential. Fig. (3.39) shows a schematic representation of whole code, with the inputs listed on the left and the outputs on the right. The inner box details the in-loop steps that are performed at each iteration of the code. They rely on sub tasks, represented as smaller coloured boxes (labelled CA(), GSACS) that we discuss individually. The stop condition for the code is the superposition to the pixel size of the target minima and the positions of the minima in the trial pseudo-potential calculated with the in-loop {b} coefficient set.

As illustrated on fig. (3.39), the code takes as an input:

• (M tar 1 , M tar 2 , M tar 3 ) : the experimentally evaluated positions of the minima in the target pseudo-potential. These minima need to be expressed in the right frame, free of a general rotation.

• (V r f , r 0 ) : the potential applied on the electrodes and the inner radius of the trap, supposed known. Better results are expected if the effective inner radius of the trap r0 is taken instead.

• ({b} 0 ) : a starting guess on the coefficient set. Usually we suppose the octupole trap is free of perturbation and take {b} 0 = {0, 0, 0, 0}.

• (α, γ) : a starting condition for the parameters responsible for the modifications of the trial set {b} in the CA() and GSACS blocs. Usually α = 0.01 and γ = 0.1.

• (α end ) : a fail-safe condition to prevent infinite reduction of the α parameter in case the condition d i < d px cannot be fulfilled. Usually we take α end = 10 -6 . 4The output is the coefficient set {b} end fulfilling the condition ( d < d px ). From the unicity of the set it is assumed {b} end = {a}. A fail-safe exit of the function for α < α end can be necessary, and a collection of the last calculated d allows to discriminate a 'success' ( d < d px ) from a 'fail-safe' interruption of the code.

The exploration on the {b} set coefficients is done in a smooth step by step method, as opposed to trials over randomised sets for example. It can be discomposed in two main blocs: an individual incrementation/decrementation of each coefficient and a general scaling of the set. The relevance of this rather naïve approach is a consequence of the smooth behaviour of the pseudo-potential minima in our perturbative approach: the displacement of the minima with a smooth variation of a coefficient is continuous. These two functions are called respectively CA() and GSACS. Their execution requires to evaluate the distance between the target an calculated minima, which is done by the DCMT function. All three functions are explained below, starting with the DCMT function which partakes in the other two.

A fundamental point of the routine is to evaluate the closeness of the {b}-set to the target {a}-set through the positions of the minima. This 'distance evaluation' takes as an input the parameters required to generate the potential surface ({b}, r 0 ,V r f ) and the positions of the target minima (M tar 1 , M tar 2 , M tar 3 ). The perturbed potential surface U SUR (x, y) is calculated acc. to the {b} coefficient set. The positions of the trial minima is collected (M sur 1 , M sur 2 , M sur 3 ). Since there is no physical criteria to pair minima to evaluate the distance separating the trial and target set, we calculate this distance d (see eq. The first function modifying the {b} set coefficients correponds to the CA() (for Coefficient Adjustment) bloc: it takes as an input a {b}-set that is going to undergo a modification, and a parameter α that quantifies the increment/decrement on a coefficient. The number between parenthesis indicates which coefficient of the set is modified (ex. CA(1) =⇒ b 1 is probed for modification). Let us set the description in a CA(1) bloc. From the input set {b} three trial sets are generated: an incremented set where b 1 → b 1 + α, a decremented set (b 1 → b 1α) and a reference set where b 1 is not modified. The DCMT bloc is applied on each set and yields one evaluate distance for each set (resp. d + , d -and d = ). The set yielding the smallest distance is picked to actualise the trial {b}-set. This actualised set is then going to be taken as an input in the CA(2) bloc, in which the second coefficient is going to undergo the same procedure, and so on as shown on fig. (3.39). When no improvement on the set is possible for a given α, but the exit condition d < d px (superposition to the target minima) is not yet met, the parameter α is reduced of an order of magnitude (i.e. α :→ 0.1α), and the process is allowed to continue. It can happen the procedure gets stuck in a local minima. This occurs for a specific configuration where the trial minima arrange in a triangle that is, to a scaling coefficient, the same as the target triangle. This situation prevents iterations of the CA() type to close the distance between target and trial minima, since any individual modification of a coefficient in the {b} set only increases the value of the distance d. This is where the GSACS (General Scaling of All Coefficients of the Set) bloc becomes necessary. In this bloc all coefficients are scaled at once, which amounts to scaling the triangle formed by the positions of the minima in the pseudo-potential. The process is the same than in the CA() with the same 'three-set choice' procedure and a parameter γ > 0 quantifying the scaling. The upscaled set writes {b} → (1 + γ){b}, the downscaled set ( {b} → (1γ){b}).

Estimation of the code performances.

In order to test the performances of the proposed code, we generate test cases from calculated potentials with randomised {a} coefficient sets. From these are calculated pseudo-potentials and the positions of the minima in these pseudo-potentials are taken as an input to the code. For each test, the code proceeds normally and returns an evaluated coefficient set {b}. These simulations do not involve using CPO to simulate actual deformations of the trap, but we have kept to realistic order of magnitude for the perturbations : from experience we know the amplitude of the coefficients {a} typically span across ±0.1 for a 4% amplitude on the defects and ±0.05 for a 2% case. We have chosen to test the code in a 4% case, and the coefficients in {a} can have any value in the interval [-0.1, 0.1].

We have tested the code on 50 randomised cases for three different pixel sizes : d px = 2 µm, 4 µm and 8 µm (50 tests each). Varying the pixel size is a way to evaluate the impact of the resolution on the positioning of the minima (determined by the optics) on the performances of the code. The results are presented on fig. (3.40). On the lower panel of the figure is plotted the distance d between the target minima and the minima in the pseudo-potential calculated from the output of the code. On the upper panel is represented the difference between the target coefficients and the output of the code. In the perfectly successful case this difference is zero, the spanning of this difference is indicative of the error on the coefficients. The results show that a smaller pixel size leads to a better precision and accuracy on the estimated coefficients. The error on the coefficients is about 1% of the amplitude of the coefficients. The increase in the pixel size is responsible for a degradation of the performances for bigger pixels, which is an important point to keep in mind for further uses. We conclude by validating the approach, keeping in mind any true validation of this protocol requires test in a real simulated octupole trap. This will be done and extensively discussed in the next chapter. 

Conclusion

In this chapter we have explored a perturbative approach to characterise the pseudo-potential in an asymmetric octupole. The working hypothesis was that the potential in a perturbed structure would write as the potential in the perfect octupole, with added lower order terms. Because of the geometric structure of the octupole, we have explored quadrupole and dipole terms. This choice was supported by further results. An in-depth study was conducted to ponder the perturbative terms from the positions of the electrodes in the trap. First by describing any deformation of the octupole trap on a set of 5 main types of deformation, named sliding, splitting, compression, shearing androtation which relate to the quadrupole and dipole terms in a simple fashion. Then these simple cases where recombined to account for coupling effects between the deformation types when they were involved at the same time. In the case of a real octupole trap, all deformation types are involved simultaneously. The output of this study is the proposition of an equation predicting the shape of the potential in a deformed octupole trap for any deformation (tested range : up to 4% of the (r 0 + r d ) distance allowed for the electrode mispositioning). The results were verified and extended to octupole traps with different (r 0 , r d ) than in our experiment, but no asymmetric shape of the electrodes was investigated.

With the purpose of applying the results in an experimental context, where the positions of the electrodes are not known, we have built a code that identifies the weight on the perturbations from the positions of the minima in the pseudo-potential alone. These positions are assumed to be known from the fluorescence imaging of the ions in the trap. Very good results show that it is possible to bypass the knowledge of the positions of the electrodes and simply rely on the positions of the local minima in the pseudo-potential to quantify the perturbation in the octupole potential. In the next chapter are discussed the limitations and issues arising in a real potential, where the DC deconfining component is not zero.

A last point of interest to be mentioned in this study is the possibility to extend these results to multipoles of any order. It is likely the same logic that has been applied in the octupole trap to identify which lower order terms are involved in the perturbation of the potential can be applied to higher order multipole traps. Depending on the purpose, the painstaking process of identifying the link between the structural defects and the coefficients pondering the perturbations is not necessary. For example, by admitting the development in lower order terms for any multipole, the same protocol as presented in sec.(3.6.3) can be applied to identify the perturbations in the potential. We see in the next chapter that a perturbation-oriented approach is enough to compensate the perturbations, or control the positions of the minima in the pseudo-potential by the application of controlled voltages on the electrodes. This opens a perspective for a more general applications of these results.

Chapter 4

Correcting the asymmetries in the octupole potential Introduction Higher order multipole traps present attractive features for frequency metrology but their use is limited by their structural complexity. Mis-positioning of the electrodes can provoke a break in the radial symmetry of the potential and lead to changes in the trapping potential shape and properties. Those can be severe enough to compromise the interest of using a multipole trap depending on the requirements of the application. In the perfect case of an unperturbed structure, with a trapped ion cloud of given dimensions, a higher order potential allows for a lower micromotion at a given distance from the trap centre. In a perturbed structure, the central minimum is split in (n -1) minima (for a trap with 2n RF electrodes), in which cold enough ions accumulate. The local shape of these minima is not in the likeness of the central minimum in a perfect multipole potential and, if used in this state, the benefits of a higher order trapping potential are lost. If one wishes to benefit from multipole properties, it is necessary to compensate the potential asymmetries.

In our octupole trap, the main reason for the mis-positioning of the electrodes is mechanical uncertainty. It has been demonstrated by the team that deformations of the octupole potential introduced by this type of defects can be compensated through the application of corrective voltages on the RF electrodes [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Applying custom RF potentials on the electrodes is also a point of interest in the scope of the study conducted by M. Marciante [START_REF] Marciante | Dynamique d'ions en piège radio-fréquences[END_REF][START_REF] Marciante | Parallel ion strings in linear multipole traps[END_REF] to control the relative positions of ion chains in the potential of multipoles traps with an added lower order contribution in their potentials. These works have motivated the individualisation of the feeds on the RF electrodes and the fabrication of an electronics for the application of custom tuning on the trap RF electrodes. The early proposed protocol in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] to experimentally implement the correction voltages shows some practical drawbacks. This chapter presents a new protocol relying on recent works presented in chapter 3. In this chapter it was established the structural defects in the radial arrangement of the octupole electrodes translate as added quadrupole and dipole contributions in the potential. The general idea is to identify those terms via. experimentally collectible data and tune the voltages on the electrodes to add the complementary contribution in the potential.

In this chapter we first recall previous choices and proof of concepts concerning the correction of the octupole potential, as well as cover the general working of the correction electronics. Then we discuss the new protocol, its limits, and implementation. A last part covers some issues raised by the impact of the static axial confinement to the radial potential.

Technical choices for the correction and preliminary studies 4.1.1 A strategy based on tuneable potentials

To understand the benefits of correcting the perturbations in the octupole potential by the application of tuneable potential on the trap electrode, one needs to take a step back and consider both the problem and technical constraints at play. We know a mechanical mispositioning of the electrodes is the main source of asymmetries in the potential that we want to compensate for. The first idea is to find a way to reduce this mechanical imprecision by either reducing it at the construction of the trap or implement a mechanical correction scheme to finely tune the position of the electrodes. We know that the mechanical precision of 2% of the (r 0 + r d ) distance in our trap is enough to induce local minima in the pseudo-potential that result in a clustering of the ions in the local wells, but this phenomenon happens for much smaller defect range. A study conducted in [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF] has shown that a defect of 0.2% is enough to create three visible minima in the pseudo-potential distant of about 280 µm of the centre of the octupole trap. The position and depth of the pseudo-potential minima raise sharply for small error on the positions of the electrodes before tapering off for bigger displacements. The system is therefore very sensitive to slight mechanical mispositioning of the electrodes. This compromises a 'direct' correction of the system by simply improving the mechanical precision in the trap construction. Moreover, this trap operates under high vacuum condition and the stress induced on the structure by the baking process necessary to reach a high vacuum quality is enough to provoke misalignments in a well-constructed trap. The second naïve idea is to design a mechanical compensation system to finely adjust the positions of the electrodes. Several points prevent the implementation of such compensation scheme. Comes first the complexity such design would entail, since it needs to be piloted from outside the vacuum chamber and to be compatible with the UHV requirements. The definite argument against such compensation scheme is once again the precision required from the mechanical compensation which must be at least smaller than the 0.2% of the trap inner radius r 0 (that is 8 µm in our trap where r 0 = 4 mm) shown in [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF] to split the minima in the potential.

The difficulty to implement a correction on the mechanical level has motivated our approach using tuneable potentials on the RF electrodes. This solution is developed in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] in the octupole case and already implemented in [START_REF] Herskind | Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision[END_REF], albeit for a different purpose. The need there was to tune the RF voltages on the electrodes of a quadrupole trap to superpose the bottom of the potential well with the axis of an optical cavity. These works have strongly inspired our own electronics design for the compensation and is further discussed in sec.(4.2.2). To clarify how this correction scheme applies to the set up, we can use the linearity of the electric potential and write the electric potential in the trap as the sum of the contribution of each electrode:

Φ 4 (x, y,t) = 7 ∑ k=0 (-1) k V r f k cos(Ωt) +V dc k Φ k (x, y) (4.1)
where V r f k and V dc k are respectively the amplitudes of the radio-frequency and static component of the potential applied to the RF electrode k (in a classic, symmetric octupole: ∀k, V r f k = V r f ), and Φ k (x, y) is the potential generated by the RF electrode k when 1 V is applied and all the other electrodes are grounded. Theses Φ k functions depend on the geometry of the trap (shape and positions of the electrodes) and are supposed not to change over time. For an electrode of given shape and position, there are only two free parameters per electrodes (V r f k , V dc k ) available for compensation purpose. Tuning the DC and RF components of the voltages has different impacts on the octupole potential. The static potential cannot be used to resolve the perturbation of the pseudo-potential. We recall the pseudopotential corresponds to the squared norm of the RF electric field, and the local minima in the pseudo-potential are the consequence of destructive interferences between the components of the electric field generated by each RF electrodes. Adding a static term to the potential cannot change the structure of the interference pattern and therefore cannot be used as a compensation tool for the RF potential perturbation. Adding a static potential can be of use in other contexts, for displacing or modifying the potential well seen by the ions. This is discussed in sec.(4.5) and chapter 5 in the context of our problematic, and M. Marciante can be otherwise cited for having used static voltage compensation to even out the potential depth of purposefully generated local minima in a simulated multipole to reduce excess micro-motion [START_REF] Marciante | Parallel ion strings in linear multipole traps[END_REF]. Since we are not, in the scope of this study, concerned with any static component we take ∀ k, V dc k = 0. Also, and for the sake of compacity in notations:

V r f k = V k .
We end this section by recalling that in the context of our experiment and because of the available optics, direct characterisation of the RF and DC electrode positions is impossible. The only characterisation tool available is the fluorescence signal of the trapped ions. The spatial organisation and spectral properties of the fluorescence signal are collected on a camera and photomultiplier, from above the trap, as detailed in sec.(1.4.2), and any compensation protocol needs to rely on these accessible data alone. We admit, unless otherwise specified, that the positions of the ion clouds in the radial plan of the octupole trap is the same as the position of the local minima in the pseudo-potential. The relative position of the pseudopotential minima is therefore considered experimentally known.

Proof of concept

Compensation of the radial potential by tuning of the V k voltages on the RF electrode amplitudes has been demonstrated by J. Pedregosa in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. We are going to detail some points of this publication as it is the starting point of our own correction scheme and is a ground of comparison of the performances of our protocol. It comes in two main segments. The first one is a proof of concept for the compensation by tuning of the RF electodes voltages based on numerical simulations and we discuss it in this section. The second part proposes an early protocol for the experimental implementation of the correction that we discuss in the next section.

The method employed to demonstrate the feasability of the compensation is based on a standard least squares minimisation with the V k voltages as parameters, the minimised quantity being the distance between a reference error free potential Φ sym and a potential calculated from a trap with mispositioned electrodes. The mapped potentials Φ sym and each individual Φ k are generated by the CPO software, used already throughout chapter 3. The minimised quantity χ can be written down as [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]:

χ 2 = ∑ i ∑ j Φ sym (x i , y j ) - 7 ∑ k=0 (-1) k V k Φ k (x i , y j ) 2 (4.2)
The performances of the minimisation strongly depend on the area used to calculate the χ value. The chosen area is an anulus of radius r χ and width δ r χ , and details about the optimisation of the this comparison area can be found in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. The demonstration of compensation of the radial component of the potential is discussed by J. Pedregosa in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] in two cases: (a) pure RF-potential and (b) a RF-potential with added DC deconfining component. The tool for the evaluation of the compensation is the depth of the local potential well as compared to the usual temperature of the ions. A comparatively shallow local minimum only marginally perturbates the dynamics of the ions and the potential is seen as effectively corrected. The same cases are explored for our proposed protocol in sec.(4.4) (a) and sec.( 4

.5) (b) respectively

In the first case (a) the minimisation protocol is applied and the positions and depths of the minima in the corrected pseudo-potential are discussed over an example. The example simulates the experimental data collected from our own octupole trap in a fac simile of its deformations, reproducing the same arrangement and local depths of the minima as experimentally observed. In the example the minima are brought within about 4 µm from each other and their potential depth is deemed negligible in comparison to any other energy scale of the system (2.10 -12 K against about 50 K for the uncompensated potential). The potential is judged effectively corrected.

The publication goes further by investigating situation (b) and considering the more realistic case where the radial potential writes as the sum of the RF and DC components acc. to Φ(x, y) = Φ 4 (x, y) + Φ dc (x, y). The corresponding trapping potential energy in the radial plan writes:

Ψ(x, y) = q 2 4mΩ 2 E 2 0 (x, y) - 1 4 mω 2 z (x + y) 2 (4.3)
where Ω/2π is the radio-frequency and E 0 the RF field. ω z /2π is the axial frequency of the potential and the DC term writes as the lower order approximation of the potential generated by the DC electrode on the axis (see sec.(2.1.1) and sec.(2.2.1) for details). In this case and in the absence of perturbation the minimum in the potential is shaped as a ring of radius r min [START_REF] Champenois | Ion ring in a linear multipole trap for optical frequency metrology[END_REF]. For few enough ions and as discussed in sec.(1.2.2) the ions organise at the bottom of this ring potential. The quality of the compensation is therefore discussed in terms of pseudopotential homogeneity along the bottom of the minimum ring. The expected ion temperature limit in an octupole trap where a few ions are cooled by laser cooling is about 10 mK, which is the limit we take for the inhomogeneities admitted in the pseudo-potential. The study identifies two critical parameters limiting the homogeneity: the amplitude of the electrodes mispositioning and the distance to the trap centre r min of the potential well ring minimum.

For the parameters chosen in the publication to define the trap and trapping, summarized in table.(4.1), the study concludes a variation of the potential of a few millikelvins is achievable for a mechanical resolution of 2% of the (r 0 + r d ) distance for small enough distance to the trap centre: r min < 0.1r 0 . r 0 3.93 mm V r f 300 V Ω/2π 3.5 MHz TABLE 4.1: Operating parameters in the octupole trap used to demonstrate the compensation feasibility in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. We assume r d = r 0 /3 for the RF electrode radius.

Concerning the requirements on the tunability of the electrode voltages for the compensation, a complementary study conducted in [START_REF] Champenois | Etude d'un piégé multipolaire pour la métrologie des fréquences[END_REF] gives more details about it. Results displayed on fig. (4.1) show the dependency of the maximal relative variation on the RF amplitude to the defect amplitude (the requirement being higher for a small comparison sample of the potential map). The percentage are given to the r 0 distance contrary to this manuscript where the distances are scaled by (r 0 + r d ). These results show that amplitude variations up to 12% are expected to be necessary to correct a potential with the estimated defect amplitude (2% of the (r 0 + r d ) distance). As for the required precision on the voltages, it is quite critic as can be seen on fig. (4.2). An error of about 0.1% on the applied corrections is already enough to raise local minima with a depth of about 1 K. 

Early proposed protocol

At the end of the publication [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] an early protocol was proposed to experimentally implement the correction. It had to be modified from the proof of concept, since the numerical demonstration relied on the full knowledge of the calculated potential mapped from the exact positions of the electrodes to realise the minimisation of eq.( 4.2) and finds the adequate tuning voltages to apply on the electrodes. These potential maps are not accessible in the experiment since the exact positions of the electrodes are unknown. For experimental purpose, the protocol was modified to take as an input the relative positions of the local minima in the pseudo-potential, assumed known from the positions of the ions. The minimisation protocol is reduced to closing off the distance between the minima by iterating on the V k potential with a non-linear minimization algorithm (Nelder-Mead type) [START_REF] Gao | Implementing the Nelder-Mead simplex alorithm with adaptive parameters[END_REF]. On the given example (defect amplitude is 1,3% of the inner radius) the code converges after 576 steps, and once the DC deconfining potential is added the temperature deviation along the r min = 0, 1.r 0 ring is about 3.6 mK for the trap parameters in table. (4.1). This shows it is technically possible to implement the correction scheme experimentally (given sufficient precision of the ion imaging), but the number of steps entailed by this protocol is a real drawback to any applications.

Another source of concern it that the DC deconfining potential is here added a posteriori, given as an input to the minimization protocol [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Reprinted from [START_REF] Champenois | Etude d'un piégé multipolaire pour la métrologie des fréquences[END_REF].

leaving the minima clear for the protocol to operate until the end. In a 'real' trap, the DC deconfining component is present from the beginning and complexifies any such like approach by modifying the positions and number of minima in the trap, as discussed in sec.(4.5).

Technical review of the compensation electronics

This section is dedicated to the compensation electronics. It was outlined at the end of sec.(4.1.2) how critical the tuning amplitude and resolution were to the compensation scheme. This section aims at giving useful data about the technical limits on the voltage tuning in the set-up before we proceed in the next sections with the new proposed compensation protocol.

First implementation in a quadrupole

The implementation of the adaptative voltages in our setup was strongly inspired by the one implemented by Herskind et al. as described in [START_REF] Herskind | Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision[END_REF]. It was not design with correction in mind, nor for multipole applications: their objective was to precisely position a chain of ions in a linear quadrupole trap along the axis of a resonant optical cavity surrounding the trap. Since they were faced with the same kind of difficulties as we do in terms of what was practically feasible (see sec. 3) [START_REF] Herskind | Cavity quantum electrodynamics with ion coulomb crystals[END_REF], onto which is also pictured the rough consequence of adding a static voltage to the trap, which illustrates why this is not an option to change the pseudo-potential shape.

In their case, adding a static potential would successfully displace the ions but they would then be located in a region of higher micro-motion, which is unsuitable to their purpose.

Our tuning device comes as an add-on of a classic octupole RF supply. The base electronics provides a master oscillation at the frequency Ω = 2.745 MHz, separated in two opposite phases. In a classical scheme the two phases are simply used to address four electrodes each with respect to the other. Reprinted from [START_REF] Herskind | Cavity quantum electrodynamics with ion coulomb crystals[END_REF].

to create the octupole potential. In our case they are used as input to the tuning unit, that individualises the potentials applied on the electrodes. This tuning unit, adapted from the scheme by Herskind et al., was designed and engineered by Stahl Electronics. The trap itself, plugged on the electronics, acts as a capacitive part in a LRC-circuit. Tuning the electrode voltages is achieved by adding to the trap 'built-in' capacitance through a set of variable capacitors controled by applied voltages. Changing the capacitance of the circuit to enable tuning of the applied potentials on the electrodes has the consequence (or drawback) to change the overall resonance frequency. The work presented in [START_REF] Herskind | Cavity quantum electrodynamics with ion coulomb crystals[END_REF] shows how to construct a tuning scheme using parallels and series capacitor to circumvent these problems and keep the resonance frequency of the circuit constant and avoid dephasing.

The method to adjust the individual RF voltages can be illustrated by first considering the circuit corresponding to one simple RF electrode. Without any added variable capacitance, the circuit summarises as a voltage divider and the voltage V e on the electrodes writes:

V e = 1 1 + C t C V in (4.5)
where V in is the potential delivered by the source, C t the capacitance of the electrode and C a circuit bound capacitor. A schematic of the circuit supporting these notations is given on Tuning of the electrode potential V e can be achieved by adding either a series (C s ) or parallel (C p ) capacitance load to the circuit. If the solutions are taken individually, it appears better to opt for the series load as it has a lower impact on the resonance frequency of the circuit. When both solutions are combined, the electrode capacitance in eq.(4.5) is modified according to :

C t → C t = C t +C p 1 + C t +C p C s (4.6)
Opting for this combined solution gives the possibility to select a (C p ,C s ) couple so as to keep the resonance frequency of the circuit the same when the voltage on the electrodes is modified. The LC-circuit resonance frequency for the electrode is modified according to:

Ω Ω ∼ C t C t = C t C t +C p + C t C s (4.7)
and with a proper pick for (C p ,C s ) so that C s C t C p it can be ensured that Ω Ω and that there is no phase shift between the two circuits with opposite phases after the load on the electrodes has been modified.

It is mentioned in [START_REF] Herskind | Cavity quantum electrodynamics with ion coulomb crystals[END_REF] that the system gets more complicated when all electrodes are considered since capacitive coupling happens between the electrodes of the circuit. In the case of the quadrupole trap, the circuit can be considered as two coupled oscillators and the resonance profile is modified. We do not develop further this point, as those are intimately bound to the structure, and proceed with the specifics of our own compensation electronics.

Specifics of the octupole electronics

In this section we present the original features of our own tuning electronics, and the key numbers characterising its performances. These are very important in the context of the compensation of the perturbations in the octupole potential, as they constrain the performances of the experimental correction. Due to a late arrival of the electronics, a characterisation of the 'in lab' performance has not been realised yet. The data discussed here are the ones provided by the manufacturer (Stahl Electronics), and the characterisation was conducted on replica of our octupole trap. These data were provided with a warning a calibration on the actual trap is a requirement for operating the electronics since the structure and real capacitance of the trap are bound to modify the calibration results. These details are consigned in the users manual [START_REF]Tuning Unit TFQ 1-8. Electronic Amplitude Adjustment for Ion Traps 8-channel device[END_REF].

Remote control of the tuning.

The tuning in [START_REF] Herskind | Cavity quantum electrodynamics with ion coulomb crystals[END_REF] was done manually. This seemed not to be adapted to the compensation of the octupole trap, given the increased number of electrodes and the requirement on the precision of the applied voltages. The electronics we have opted for allows for the tuning to be applied by a computer controlled voltage source. It also features control channels to monitor the real voltages applied on the electrodes. This system presents the advantages of a fast and accurate, repeatable way of tuning the voltages applied on the electrodes. This remote control is achieved by using as a variable capacitor SiC high voltage diodes. These are reverse biased, and the tuning is accomplished by applying an auxiliary DC voltage in the range [-150 V, 400 V]. A schematic of the tuning unit electronics is provided on fig. 

Tuning of the outputs

The tuning of the electrode voltages as a function of the applied control auxiliary DC voltage is given on fig. (4.6). The 'DC-Monitor' is the output control channel, with a voltage ratio of 1/1000 to the peak AC amplitude. There are three points of interest to be discussed from this plot. First of all is the accessible tuning range, being roughly ± 3% of the base amplitude, which makes for about 6% total amplitude tuning. The tuning range is not the same for each electrode, because of complications in the electronics and trap settings. The tuning range for each channel is detailed in table. (4.3). Second comes the mismatch between the channels output voltages, that are bigger than the compensation range. These can be adjusted by a fine choice of added capacitance to equalise the end load on each channel when the compensation is plugged onto the trap. Last comes the profile of the curves. Because of the type of diode used, the response of the tuning unit to the input voltage is non-linear. This is not a problem so long it is accounted for through the calibration. The resolution on the output AC amplitude voltages depends on the DC input resolution. It is said to be smaller than 0.0003% of the AC amplitude. Ch1 ± 2.8% Ch2 ± 3.4% Ch3 ± 2.8% Ch4 ± 4.1% Ch5 ± 3.0% Ch6 ± 3.5% Ch7 ± 2.7% Ch8 ± 3.3% 

Crosstalk between the channels

Measurements in the device have shown crosstalk between the channels. A desired operation, when tuning the voltage on one electrode, is that the piloted change on one channel only affects the corresponding electrode (ex. ch.1 → elec.0). The measurements have shown a piloted change on one channel changes the potential on the desired electrode, but also affects all other channels to a lesser degree. The impact is proportionally bigger on the channels of the opposite phase. Fig. (4.7) shows the measurement of such crosstalk realised by the manufacturer on a test trap. A variation of 45% of the tuning range (change of the control voltage from +75 V to +400 V) is applied on each channel successively and the content of the table corresponds to the percentual change of the output voltage on each channel (a perfect case with no crosstalk corresponds to a diagonal matrix). These results need to be actualised for working purpose on our own trap but give a good idea of the amplitude of the crosstalk between the channels, which can be as big as 70% of the main channel tuning. It can supposedly be made transparent to the user by calibrating the transfer matrix corresponding to the input to output voltages when the tuning unit is plugged onto the trap, and numerically computing the real voltages to apply on the electrodes according to the desired command voltage tuning. This is nevertheless bound to reduce the tuning range. We retain for further use a simplified version of theses numbers for contrasting the requirements in terms of precision and tuning range of the correction protocol to the electronics capacity. We take the tuning range to be ± 3% and the resolution on the tuning voltage to be roughly 3.10 -4 . We summarise these in table. (4.3). These limitations are fundamental to keep in mind in the elaboration of our correction protocol. The resolution, and especially the tuning range on the electrodes are prime boundaries of the achievable compensation of the perturbation in the octupole potential. 

Conversion of the potential perturbations into tuning voltages

Previous work results presented in sec.(4.1.2) have demonstrated that compensation of the mechanical mispositioning of RF electrodes in the radial plan was possible by tuning the voltages applied on those electrodes. An interesting corollary implied by this compensation scheme is that a non-trivial equivalence exists, in terms of potential perturbation, between a mechanical displacement of the electrodes and a set of applied potentials. This seems surprising as a set of 16 unknown numbers is necessary to define the positions of the electrodes in any frame, and there are only 8 tuning voltages available for compensation. We recall the form of the perturbation term, established in chapter 3:

W(x, y) = b 1 U 2 (x, y) + b 2 V 2 (x, y) + b 3 U 1 (x, y) + b 4 V 1 (x, y) (4.8)
where {b 1 , b 2 , b 3 , b 4 } are weights associated to the perturbations. The 'equivalence' between an applied voltage on, or a mechanical displacement of, the RF electrodes formally means that there is always a way to change the electrode potentials so that the potential in the trap is modified as to be characterised by a {b 1 , b 2 , b 3 , b 4 } coefficient set. The idea is then to establish the correspondence between individual tuning of the electrodes and coupled tuning patterns of several electrodes to generate specific quadrupole or dipole perturbations in the trap. In the case of a built-in deformation of the trap, characterised by a coefficient set {a}1 as defined in the previous chapter, correction can be implemented by imposing a set of opposite perturbations in the potential. More precisely, take a potential with deformations characterised by a {a 1 , a 2 , a 3 , a 4 } coefficient set, the coefficients generated for the compensation need to abide:

b 1 = -a 1 , b 2 = -a 2 , b 3 = -a 3 and b 4 = -a 4 .
The resultant perturbation is the sum of the structure induced perturbation W a and the potential induced perturbation W b , and W a + W b = 0. This implies that defects of different mechanical origin that generate the same kind of modification in the potential ought to be correctible in the same way by similar applied voltage patterns.

In this section we investigate these assumptions and see how to generate calibrated quadrupole and dipole perturbations by tuning the voltages on the RF electrodes.

Quadrupole term

Available tuning patterns

Here we detail the tuning voltage patterns that allow for the introduction of quadrupole perturbations in the potential. The idea was introduced by Marciante et al. [START_REF] Marciante | Parallel ion strings in linear multipole traps[END_REF][START_REF] Marciante | Dynamique d'ions en piège radio-fréquences[END_REF] to control the positions of several chains of ions in an octupole trap. We start by considering the simplified situation where perturbations in the potential are only introduced by tuned RF voltages on the electrodes. We assume the structure of the octupole is perfect in terms of geometry and the only source of asymmetry in the potential comes from the additional RF voltages only.

The electrodes involved in the generation of a U 2 (resp. V 2 ) term are the ones that would be needed to create the corresponding stand-alone quadrupole trap, that is the S-set (resp. T -set) electrodes. Starting from a balanced configuration where all electrodes are fed with a RF amplitude V r f , let us call throughout this section δ + v a voltage tuning of positive value and δ - v one of negative value, so that the total potential amplitude on the tuned electrode k writes

V k = V r f + δ + v or V k = V r f + δ - v .
To add a quadrupole perturbation to the potential, at least one pair of facing electrodes out of two of the quadrupole subset needs to be involved. The voltage on the selected pair(s) needs to be tuned up (δ + v ) or down (δ - v ) by the same value. The sign of the applied voltage on a pair of electrodes is chosen depending on the desired orientation of the quadrupole perturbation. For example and as illustrated on fig. (4.8), if one wishes to add a perturbation to the potential so that b 1 > 0, the electrodes numbered 0 and 4 need to be addressed with a δ + v tuning, and/or the electrodes 2 and 6 with a δ - v tuning. We recall the electrodes are numbered from 0 to 7 in a clockwise fashion with electrode number 0 at the bottom in the (x, y) frame. The balanced pattern where all four electrodes constituting the quadrupole sub-set are involved, with an equal repartition of the applied voltages on all electrodes |δ + v | = |δ - v | is the more straightforward. This pattern has the advantage of spreading the load on the electrodes and requires the smallest tuning range. This must not hide the fact it is not the only way to generate a quadrupole perturbation in the potential, as an infinite number of [δ + v , δ - v ] combinations work just as well.

As an example, a perturbation in the potential surface equation weighted by b 1 = 0.1 in eq.(4.8) raises three aligned minima, one in the centre and two along the x-axis at 894 ± 4 µm from the centre (with r0 = 4 mm). As a matter of comparison this corresponds to a defect a little over 4% of the (r 0 + r d ) distance if the defect were of a mechanical origin (compression on one axis). This perturbation can be reproduced in a perfect octupole trap by adding a positive tuning δ + v on electrodes 0 and 4 and/or δ - v on 2 and 6. For a base voltage V r f = 100 V on each electrode of the trap, the tuning voltages can be any of the following pairs in the convention

[δ + v , δ - v ]: (a) [12.6 V, -12.6 V ], (b) [0 V, -23.6 V ], ( 
c) [27.0 V, 0 V ] or any intermediary combination. These values are found by comparing the positions of the minima in the pseudo-potential of the perfect octupole trap with different applied voltages on the electrodes to the reference positions of the minima gathered from the pseudo-potential surface calculated from eq.(4.8) with b 1 = 0.1. This illustrates there is a wide variety of [δ + v , δ - v ] combinations to choose from in order to to induce a quadrupole perturbation in the potential. The variation in the total tuning amplitude required to implement the correction differs between the configurations (here (b) < (a) < (c)). This can be explained by the change in the average value of the potential on all electrodes Vk in each case. In the balanced case (a), Vk = V r f , but in the cases (b) and (c) it is decreased by 5.90% and increased by 6.75% respectively. This is about proportional to the change in the tuning amplitude required to produce the same perturbation for the different tuning patterns (-6.35% between (a) and (b), and +7.14% between (a) and (c)). These observations apply in the same fashion to the T -subset, a b 2 coefficient and a V 2 perturbation.

Calibration of the system response to a balanced tuning pattern

In order to implement correction, we need a precise control over the perturbations induced by tuning the voltages of the electrodes. From the previous example, we observe a difference in the system response depending on the tuning pattern. Therefore a tuning pattern must be selected before calibrating the system response to a specific applied voltage. In this work, the selected pattern corresponds to the balanced case (a) where the corrective load is equally shared between the positive and negative variations (|δ

+ v | = |δ - v |
). This has the advantage, from a practical point of view, of putting a maximum number of electrodes to contribution. Spreading the corrective load equally reduces the maximal amplitude per electrode necessary to implement the correction. It is an advantage since the individual amplitude is limited by the tuning electronics as explained in sec.(4.2.2).

Let us adopt some reduced notations adapted to the balanced tuning pattern:

δ S v = +δ 0,4 v = -δ 2,6 v (4.9) δ T v = +δ 3,7 v = -δ 1,5 v (4.10)
where the upper index are the concerned sets/electrodes. We have established through numerical simulations a linear dependency of the b 1 (resp. b 2 ) coefficient onto the δ S v (resp. δ T v ) value. This was done by generating surfaces acc. to eq.(4.8) with varying b 1 coefficients and collecting the positions of the minima as reference. The CPO software was then used to generate the potential map of a perfect octupole trap ((r 0 , r d )=(4, 1.5) mm) with individually tuneable potentials on the electrodes acc. to eq.( 4.1). The potentials on the electrodes of the simulated octupole trap were adjusted according to the balanced tuning pattern to reproduce the minima of the reference surface with a resolution defined by the pixel size (d px = 1 µm). The dependency of b 2 on δ T v is the same. An illustration of this point by point fit in our octupole is given on fig. (4.9). The mismatch of the points around the origin is due to a numerical error when no tuning voltages are applied and is of no consequence. The study shows that for our trap dimensions the dependency writes:

δ S v = b 1 V r f q cal ; δ T v = b 2
V r f q cal ; q cal = 0.796 ± 0.008 (4.11) where V r f /q cal is the fitted slope of the linear dependency of the δ S v , δ T v tuning voltages to the b 1 , b 2 coefficients. The calibration parameter q cal depends on the adopted tuning pattern to apply the corrective voltages and needs to be changed accordingly if one opts for another way to apply the quadrupole perturbation. The uncertainty on the calibration parameter q cal comes from the spreading of the values that allow for a superposition at the pixel size d px = 1 µm of the position of the minima between the CPO and surface simulations. The fit was ensured for values of b 1 , b 2 up to 0.1 which, for the sake of comparison, is a little larger than the amplitude expected for a single compression of 4% of the (r 0 + r d ) distance if the potential deformation were of mechanical origin. This ought to ensure we are not out of range of the validity domain of this fit when we apply the correction scheme in our trap where the defect amplitude is expected to be about 2% of the (r 0 + r d ) distance at most.

First guess compensation

We have already presented in sec.(3.6.2) a protocol that can determine the set {a 1 , a 2 , a 3 , a 4 } of coefficients characterising the potential deformation from the positions of the minima in the potential. In the previous part of this section we have established a relation between the b 1 , b 2 coefficients characterising a quadrupole perturbation and the voltages needed to reproduce the same perturbation in a perfect octupole trap. Now in an octupole trap with structural defects coded by the {a 1 , a 2 } coefficients, compensation ought to be achieved by tuning the electrode potentials so as to generate the 'counter-perturbation' b 1 = -a 1 and b 2 = -a 2 . If the variations of r0 can be considered small in first approximation, this ought to result in an error-free potential.

We test this concept on two practical situations, where the same potential perturbation is generated by (a) a compression and (b) a shearing. A compression described by L s = 0.055, which corresponds to a 1% positioning error on each axis of the S-set relative to the (r 0 + r d ) distance, creates the same pattern as a shearing described by β T = 0.0321, which corresponds to an angular mis-positioning of 0.0321 rad. In both these examples r0 is kept constant to r 0 in the calculations. In both cases the positions of the minima are the same to the pixel size d px = 4 µm. Both configurations raise the same perturbation described by a 1 = -0.04527 acc. to eq.( 3 This example outlines several fundamental points for the implementation of compensation in an octupole trap with structural defects. First, it illustrates how the same compensation scheme can be used to correct defects of different mechanical origins. The second point concerns the slight mismatch between the required compensation coefficient in the two configurations. It is due to the deformation of the octupole structure: since the electrodes are not quite in their proper place, they do not generate exactly the expected perturbation term. We see in sec.(4.4) how we can use an iterative process to go round the impact of the octupole trap deformation on the corrective terms.

Dipole term

Available detuning patterns

We can proceed in the same fashion to see and characterise how to induce a dipole perturbation in the potential. To spread the load on the electrodes, one needs to recall that in eq.( 4.8) all deformations inducing a dipole perturbation see their contribution projected onto the (U 1 , V 1 ) basis. In turn the weighted sum a 3 U 1 + a 4 V 1 characterises a dipole term of any direction and amplitude. Any dipole term can therefore be generated by modifying the voltages on the two pair of electrodes arranged along the x and y directions, numbered respectively {0, 4} and {2, 6}. Using the electrodes along the x and y axis is the direct translation of the equation formalism, but not necessarily the most efficient or straightforward compensation scheme : if the dipole term is along the (x + y) direction, it is more simple to apply the δ + v , δ - v tunings to the electrodes {1, 5} rather than spread it in a 50% way over the {0, 4}, {2, 6} pairs. This illustrates the fact that there are equivalent ways to generate the same dipole term in the octupole trap by involving different sets of electrodes, with two 'extreme' addressing patterns: 'in line' and 'spread'. In the trivial case of a dipole term aligned with two of the trap electrodes, it can either be generated by an 'in line' scheme involving two facing electrodes (ex. {1,5} for dipole along (x + y)), or a 'spread' scheme involving the four side electrodes (ex. {0,2} and {4,6}). Using both patterns in a weighted scheme increases the number of involved electrodes and therefore the complexity of the correction but presents the advantage of spreading the correction load to minimize the individual tuning amplitudes. We are going to see which pattern to adopt to address the electrodes to generate the best fitting dipole term. To do so I start by working with the simple case of a dipole term whose direction is along a pair of electrodes (i.e. x, y, x + y or xy), and then explain how to generate a dipole perturbation of any direction and amplitude. 

Calibration of the response of the system to a combined tuning pattern

In the same fashion as in the quadrupole case, we need to pick out of all possible δ v , δ v combinations one tuning pattern. The response of the system to this specific compensation scheme can then be calibrated so that we know what tunings δ v , δ v to apply for a given b 3 , b 4 input. In the case of the dipole term the choice of the tuning pattern has been dictated by two elements: the quality of the dipole perturbation delivered and the spread of the correction load on a maximum number of electrodes. About the quality of the generated dipole perturbation, it happens that the 'in line' and 'spread' configurations do not allow for a precise match of the minima generated by the b 3 , b 4 coefficients as they grow to higher values. The first configuration sees the minima triangle slightly elongated, and second slightly flattened. It is a matter of a couple of pixels for what would be defects on the order of 4% of the (r d + r 0 ) distance if the potential deformation were of a mechanical origin. On the other hand the combined configuration (c) is deviation-free for the complete explored coefficient range spanning from 0 to 0.1 with steps of 0.01. That covers the values that b 3 and b 4 take for individual sliding or splitting up to 4% of the (r 0 + r d ) distance and should therefore cover any defect combination in the 2% defect amplitude range expected in our trap. We therefore choose to work with the combined addressing scheme.

The combined tuning pattern corresponds to the case where the corrective load is shared between the 'in line' and 'spread' electrode sets with a (1, 1/ √ 2) ratio. Let us adopt some reduced notations in this specific case of interest. A b 3 coefficient requires a set of voltages x δ v such as :

x δ v = + x δ 6 v = - x δ 2 v = + √ 2 x δ 5,7 v = - √ 2 x δ 1,3 v (4.12) 
whereas b 4 = 0 is created by a y δ v set acc. to:

y δ v = + y δ 4 v = - y δ 0 v = + √ 2 y δ 3,5 v = - √ 2 y δ 1,7 v (4.13) 
We have established through numerical simulations a linear dependency of the b 3 (resp. b 4 ) coefficient onto the x δ v (resp. y δ v ) values. This was done by generating surfaces with varying b 3 coefficients and collecting the minima positions as a reference for r0 = 4 mm. Then in a perfect octupole trap, the minima were reproduced to the pixel size (d px = 1 µm) by adjusting the x δ v value. The dependency of b 4 with y δ v is the same. This point by point fit in our octupole trap (r 0 = 4 mm, r d = 1.5 mm) is given on fig. (4.11), and the study shows that for our trap dimensions the dependency writes:

x δ v = b 3 V r f d cal ; y δ v = b 4 V r f d cal ; d cal = 0.912 ± 0.008 (4.14) 
The uncertainty on the calibration coefficient d cal comes from the spreading of the values that allow for a superposition at the pixel size d px = 1 µm of the positions of the minima between the CPO and surface calculations. The d cal calibration coefficient depends on the adopted tuning pattern for the compensation (here the so-called combined pattern). The fit covers values of b 3 and b 4 up to 0.1 which is about the amplitude expected for a single sliding of 4% of the (r 0 + r d ) distance if the potential deformation were of mechanical origin. This ought to ensure we are not out of range for the 2% defects expected in our trap when we apply this fit to correction purpose.

In a general case of a dipole term that is not oriented along the x or y direction, one simply needs to use its decomposition as a 3 U 1 + a 4 V 1 where the coefficients a 3 , a 4 are determined from eq.(3.53) to eq.(3.55) or the protocol from sec.(3.6.2) in case of an unknown positioning 

δ 0 v = -y δ v δ 4 v = + y δ v (4.15) δ 1 v = - 1 √ 2 ( x δ v + y δ v ) δ 5 v = + 1 √ 2 ( x δ v + y δ v ) (4.16) 
δ 2 v = -x δ v δ 6 v = + x δ v (4.17) 
δ 3 v = - 1 √ 2 ( x δ v -y δ v ) δ 7 v = + 1 √ 2 ( x δ v -y δ v ) (4.18) 
We give for illustration purpose the tuning required for a dipole oriented along the x + y direction, which imposes x δ v = x δ v . This is interesting in the light of the previously discussed distribution of the load on the electrode pairings, since in this case the tuning per electrode writes:

δ 0 v = δ 2 v = -x δ v ; δ 4 v = δ 6 v = + x δ v (4.19) δ 1 v = -δ 5 v = - √ 2 x δ v ; δ 3 v = δ 7 v = 0 (4.20)
and the electrodes {1, 5} that are most detuned are the pair oriented along the direction of the dipole term, according to the natural intuition.

First guess compensation

Like in the quadrupole case, knowing the dependency from eq. (4.14), between the detuning of the electrode voltages and the equation pondering coefficient is the chosen tool for the correction of the potential asymmetries introduced by a mispositioning of the RF electrodes. We illustrate this compensation and compare three cases that generate the same dipole perturbation identified by the same a 4 coefficient: (a) a sliding on the {0, 4} pair of electrodes, (b) a double sliding on the {1, 5} and {3, 7} pairs and (c) a splitting defect. In these examples the defects are chosen to generate the same a 4 amplitude acc. to eq.(3.55).

For the (a) and (b) configurations, the minima cannot be merged by simple application of the calculated correction voltages on the electrodes like in the quadrupole case. In the dipole case the impact of the deformation of the octupole structure onto the compensation term is more problematic since a fine tuning of the added amplitudes x δ v and y δ v is not enough to correct it. By applying a dipole term acc. to the chosen tuning pattern (combined), one can only minimise the distance between the minima. It is possible to merge the minima by adjusting the relative weights between the 'in line' and 'spread' contributions in the correction pattern. As an example, a sliding described by y S l = 0.02 (a) corresponds to a 2% positioning error on the {0, 4} electrodes relative to the (r 0 + r d ) distance. It is equivalent in terms of potential deformation to a sliding described by x T l = -y T l = 0.01 √ 2 (b) since they raise the same a 4 = 0.051496 coefficient in the perturbation equation. In term of corrective voltages to apply, the correction in a perfect trap corresponding to b 4 = -a 4 requires y δ v = 5.64649 V. The coefficient effectively required for a minimisation of the distance between the minima are: (a) b 4 = -0.051273 and (b) b 4 = -0.051282, which differ from the theoretical case by less than 0.5%. The positions of the minima after the correction is applied is given on fig. (4.12) where it is clearly visible the minima are not successfully merged, as they are distant of: (a) 80 µm and (b) 20 µm. In situation (a), correction for V r f = 100 V requires the tuning to be modified to y δ v = 5.88006 V with the adjusted weights : (1, 0.645) ; (b) requires y δ v = 7.94926 V and the weights as (0, 1). Case (c) needs to be discussed since splitting deformations have been sorted into the 'dipole inducing' category. A splitting so that y 0 = 0.03234687 raises the same a 4 coefficient as cases (a) and (b), but also a quadrupole contribution so that a 1 = 0.003241, acc. eq. (3.35). In terms of correction, the minima are merged with an applied correction so that b 1 = 0.00068, b 4 = 0.0511076, which corresponds to δ S v = 0.085 V and y δ v = 5.60390 V. No change in the weight distribution between the 'in line' and 'spread' electrodes is needed. The examples given above, as well as in the section dedicated to the quadrupole term, show that the mispositioning of the electrodes affects the method used to compensate the potential perturbations. For a perturbation generated by a structural deformation of the trap, characterised by a parameter set {a}, the counter perturbation characterised by the coefficient set {b} is applied by tuning the RF amplitudes of the electrodes. The coefficient set characterised by {b} = -{a} is taken as the starting point. A fine tuning of these values by 1% at most (for defects as big as 2% of the (r 0 + r d ) distance is required to reach the best results for the compensation. For some defect configurations, the compensation applied acc. to our chosen tuning patterns does not achieve a total merging of the three minima to the pixel size. This is a consequence of the error induced by the mispositioned electrodes on the applied compensation term. To effectively merge the minima, custom fine tuning of the electrode voltages is necessary for each geometry. In an experimental set-up, this is not an option: the great sensitivity of the system to a slight tuning will not permit a blind 'push-pull' on the tunings to merge the minima, and predetermining the exact tunings through simulations requires the knowledge of the exact position of the electrodes, which is not accessible in the experiment. The next section presents a proposition for an experimental-friendly protocol that uses an iterative procedure with few steps to go round the error introduced by the mispositioning of the electrodes on the compensation potential.

General case in a perfect octupole

There is a last point of interest before concluding this section about the generation of controlled quadrupole and dipole perturbations in the potential. We have introduced calibrated tuning patterns to successfully generate, in a perfect octupole trap, an individual quadrupole or dipole perturbation. To generate a linear combination of both, expected in a general perturbation, one needs only to sum the compensation voltages necessary for each individual contribution on each electrodes. If we call δ k U 2 the tuning required on the electrode k to generate a given U 2 contribution, and henceforth for every perturbation, then the complete tuning required on the electrode k to generate the perturbation term W is:

δ k = δ k U 2 + δ k V 2 + δ k U 1 + δ k V 1 (4.21)
This is illustrated on fig. (4.13) where a fit to the pixel size d px =1 µm is shown between minima generated from the surface equation eq.(4.8) for varying {b} coefficients and the minima generated in the perfect octupole trap by converting the {b} coefficients into adapted RF voltages acc. to eq.(4.11) to eq.(4.14) and summing the contributions as written in eq.(4.21). The selected tuning patterns permit the calibrated generation of any perturbation in the octupole trap that writes as a sum of quadrupole and dipole patterns.

Proposition for a correction protocol without DC deconfinement

In the previous part we have illustrated how defects of different mechanical origin that generate the same type of perturbation in the potential can be compensated by calibrated RF voltages applied on a set of given electrodes. The residual perturbation is a consequence of the imperfect electrode positioning inducing an error in the compensation potential applied in the trap. This error can be considered small in first approximation: in the examples given in the previous section the error between the calculated and required voltages for the compensation was about 1% of the total tuning for defects in the positioning of the electrodes of 2% of the (r 0 + r d ) distance. By considering the error in the applied correction small in the first order approximation we have tested an iterative process: it is possible to collect the minima in the 'not yet compensated' pseudo-potential and apply the correction scheme again, and so on until the compensation is achieved. The purpose of this part is to discuss the scope of validity of this iterative procedure and the limiting factors in its application. 

Principle and first steps of the correction protocol

Let us from now on consider the octupole trap affected with structural deformations. The RF electrodes are technically mispositioned in an unknown, random fashion from their nominal position. It is nevertheless obligatory for the time being to impose on the randomised geometries that they are free of a 'global rotation' as defined in sec. (3.3.3). A general rotation is not a structural defect of the octupole trap and does not come into play in the definition of the perturbation equation, or any consequent results. But if the octupole trap is at an angle with the observation frame (defined by the observation optics for example) then so are the positions of the minima. This is of critical importance since the translation of the positions of the minima into the perturbation set characterising the octupole potential deformation is valid in the octupole frame where the global rotation angle is zero. Collecting the proper minima positions requires an unambiguous frame definition. An experimental tool to solve the indetermination on the frame positioning is discussed in sec.(5.2.1), and we impose in the meantime on the generated geometries that they are free of a general rotation.

The only experimentally accessible data in the trap are the positions of the ions through their imaged laser induced fluorescence. It is assumed, in the same fashion as in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF], that the ions cluster in the three pseudo-potential minima and that their imaging is enough to determine accurately the minima positions in the radial plan. From these gathered positions we apply the search protocol presented in sec.(3.6.2) that allows for the description of the potential deformations in terms of the {a} parameter set involved in the potential analytic equation. Since the positions of the electrodes is not known, we make the approximation that the averaged inner radius r0 remains constant to its assumed value r 0 in the search protocol 2 . The corresponding compensation set {b} writes

{b 1 = -a 1 , b 2 = -a 2 , b 3 = -a 3 , b 4 = -a 4 }
and can be converted into adapted voltages to apply on the electrodes thanks to the calibrations established in sec. (4.3). The complete correction to apply on each electrode writes as a sum of each dipole and quadrupole contribution:

δ 0 v = V r f + b 1 q cal - b 4 d cal δ 1 v = V r f - b 2 q cal - 1 √ 2 b 3 + b 4 d cal δ 2 v = V r f - b 1 q cal - b 3 d cal δ 3 v = V r f + b 2 q cal - 1 √ 2 b 3 -b 4 d cal (4.22) δ 4 v = V r f + b 1 q cal + b 4 d cal δ 5 v = V r f - b 2 q cal + 1 √ 2 b 3 + b 4 d cal δ 6 v = V r f - b 1 q cal + b 3 d cal δ 7 v = V r f + b 2 q cal + 1 √ 2 b 3 -b 4 d cal
where the upper right script is the number of the concerned electrode, q cal = 0.796 ± 0.008 and d cal = 0.912 ± 0.008. The total RF voltage amplitude on each electrode is

V k = V r f + δ k v
where V r f is the base RF voltage applied to all electrodes and k is the number of the electrode. 

Iteration for merging the minima

In order to go around the perturbation imposed on the correction by the trap structure, we propose to simply repeat the correction protocol several times. Each iteration ought to allow the potential to be brought closer to the ideal shape by getting finer information on the tuning voltages each time. More precisely, at each step j the correction protocol goes as follow: the positions of the minima is gathered from the fluorescence of the ions in the trap. The associated coefficients set {a} characterising the present potential deformations is determined via the search protocol of sec.(3.6.2). A correction set {b} j such as {b} j = -{a} is calculated and used to update the correction voltage on the electrodes by building up with the previous values. For each step j the total correction voltage on each electrode is cumulative with the previous steps so that the coefficient set characterising the applied tunings writes:

{b} = ∑ j {b} j (4.23) 
As an example, we operate the correction protocol on a test geometry with a random positioning error on the trap electrodes of 2% of the (r 0 + r d ) distance (same test case as fig. (4.14)). The protocol for the identification of the coefficients {a} is operated with the two exit conditions 3 : d < d px with d px = 4 µm, which corresponds to the required precision of the correspondence between the experimental minima positions and the positions of the minima obtained from the estimated {a} set ; and α end = 6, so that the final resolution on the {a} coefficients is 10 -6 . For the purpose of illustrating the step by step functioning of the correction protocol, ten iterations of the correction protocol are applied on the test trap. Fig. (4.15) shows the positions of the minima in the radial plan for each correction step, and the average distance of the minima to their barycentre is plotted on fig. (4.16). The first three correction steps reduce the average distance between the minima of about 93.5% and the next steps further reduce it of 3%. The average distance between the minima hits its lowest value (24 µm) at the seventh iteration, before rising a little and tappering off to 30 µm. Given the pixel size of 4 µm this variation is small and we can deduce the system hits a permanent regime after the seventh iteration, where iterating the protocol further rearranges the positions of the minima but does not bring them closer to merging. For reasons discussed in sec.(4.4.3) it appears the correction protocol cannot go as far as merging the three minima to the pixel size. In practice the iterative procedure can be stopped when there is no further reduction of the average distance between the minima over a couple iterations j : |d j+1d j | < d px , where in practice the equivalent of the pixel size is the resolution available with the imaging system. The corresponding refining of the coefficients {b} as formalised in eq.( 4.23) is illustrated on fig.(4.17). As for the average distance between the minima, the two first steps show a significant variation of the coefficients before their variations tapper off/stabilise and they are only adjusted further in the tenth of percent range. In this example the maximal and minimal variations induced by the iterative protocol on the first step coefficients are of 2.41 % and 1.27 % respectively, which illustrates the stringent requirements on the resolution of the coefficients for the implementation of the protocol. The resolution allowed on the {b} coefficients conditions the performances of the correction protocol and this issue is studied in details in sec. (4.4.3). The amplitude of the coefficients is better discussed after conversion into compensation voltages on the electrodes. The correction voltage on each electrode as a percentage of V r f is calculated from the coefficient set {b} with eq.(4.22) for each iteration and is given on fig. (4.18). In this example, the tuning range required to implement the correction is ∆δ v ≈ 9.3 -(-7.4) = 16.7%. This is way higher than the accessible range of our tuning unit which is around 6% of V r f (see sec. 

V r f so that V k = V r f (1 + δ k )
the proposed tuning patterns to generate quadrupole and dipole terms are not unique. We have optimised the repartition of the load on each electrode within each deformation pattern, but the individual contributions can sum in an unbalanced global repartition. Since values of the adapted voltage are mainly determined by the initial deformation, an interesting idea would be to adapt the voltage patterns used to implement the quadrupole and dipole compensation terms so as to spread the global load on the electrodes as homogeneously as possible, and reduce the tuning range required to implement the compensation.

The criteria used to follow the compensation of the potential perturbation is the average distance d between the minima, but it can be instructive to consider the complementary information that is the depth of the minima. This is technically a relevant information as the clustering of the ions in the local minima only happens for minima of sufficient depth. This information is nevertheless not taken as a general diagnostic tool of the performances of the protocol, as it is incomplete without the addition of the DC deconfining term contribution, which complexifies the situation and is not done until sec.(4.5). It is taken as a benchmark for the comparison of our protocol results with those from Pedregosa et al. [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. The depth of the minima is defined relatively to the local maximum in the pseudo-potential central area, and the pseudo-potential variation is converted into temperature. The correction protocol was this time executed on 10 different traps with a 2% perturbation in the structure. Fig. (4.19) shows the results of this protocol : on the left panel is shown the average potential depth of the minima before the correction protocol is applied, and on the right, after 10 iterations of the correction protocol are applied with the same operating conditions as previously, for each test case. The iterative correction protocol succeeds in drastically reducing the local depth of the minima : the potential variation converted in temperature is reduced to a few micro kelvins where the initial depth before correction is of a few hundreds of kelvins. If the DC deconfining component could be ignored, these temperature variations would be negligible in regard of the temperature of the ions (10 mK). This means that in the pure RF component, even if the minima are not merged to the pixel size, their potential depth is negligible and the potential can be considered corrected. The performances of the protocol in terms of reduction of the local minima potential depth is not quite as good as the one presented in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] that achieved minima depth of about 10 -12 K against a few 10 -7 K in our case. Nevertheless, the first protocol requires a few hundred steps to do so against 10 steps in our case. The next section is dedicated to discussing the iterative correction protocol performances and limits depending on the resolution allowed on the {b} coefficients and the uncertainty on the positioning of the minima in the pseudo-potential. It clarifies the domain of validity of this approach and the performances that can be expected from this code depending on the experimental limitations. We can already mention this irreducible distance between the minima appears not to be a numerical artefact due to the chosen simulation parameters but a consequence of the process getting out of bound of the 'small perturbation' approach as it grows closer to the compensated potential.

Optimum performances and limitations of the method

In this section the performances of the correction with the resolution of the {b} coefficients, and the uncertainty on the positioning of the minima are evaluated. The chosen diagnosing tool of the method performances is the average distance d between the minima in the pseudo-potential, as defined by eq. (3.57). We investigate these dependencies on a batch of ten randomly generated geometries with an error on the positioning of the electrodes of 2% of the (r 0 + r d ) distance. Unless otherwise specified, each case study is done with the same 10 geometries. In the best case scenario, the correction ought to merge the minima to the pixel size, which the previous example has shown is not the case. We discuss a possible reason for this limitation at the end of the section.

Requirement on the {b} coefficients resolution

The {b} coefficient set pilots the correction voltages through eq.(4.22), and the resolution of the correction voltages limits also the resolution accessible to the {b} coefficient set. From the calibrations presented in sec.(4.2.2) the resolution accessible on the tuning voltages with the electronics is on the order of 10 -4 % of the applied voltage on the electrodes V r f . Given the proportionality between the {b} coefficients and the correction voltages δ v ∝ V r f .b, 4 where V r f is usually a few hundred volts, the resolution on the voltage translates onto a limit resolution on the coefficients of about 10 -6 . Within the scope of the numerical simulations we investigate resolutions spanning from 10 -3 to 10 -8 . In the simulations, this resolution is manually imposed as an input command in the search protocol for the {a} coefficient set (see sec.(3.6.2)). This is done by setting the α end parameter that interrupts the search if the adjusted digit is below the 10 -α end resolution. To explore the impact of the coefficients resolution on the performances of the correction, we have run the iterative correction protocol on the test batch of 10 octupole geometries with a random arrangement of the electrodes (2% of the (r 0 + r d ) distance) with varying α end . The results can be seen on fig. Fig. (4.20) shows that a finer resolution allows for a smaller distance between the minima at the end of the iterative correction protocol. Having a fine resolution is nevertheless not sufficient to ensure successful merging of the three pseudo-potential minima to the pixel size, as the α end = 6, α end = 7 and α end = 8 data reach the same limit, where the minima keep a distance d of about 40 µm in average. This irreducible distance is to be distinguished from the other tapering thresholds obtained for lower resolutions (α end < 6). Those higher limits are a consequence of the lack of resolution on the coefficients. We conclude from this study that, at our mapping resolution of 4 µm, a resolution up to 10 -6 is interesting for the {b} coefficients: a lower resolution is detrimental to the performances of the code, and no notable improvement is observed for 10 -α end ≤ 10 -6 . This is a good thing in regard to our electronics that can provide this resolution. The second point is important practical information : in average, the tapering fulfils the condition | d j+1 -d j | < d px (with d px = 4 µm) from iteration j = 5 onward for all α end . In average for a pixel size of 4 µm, only five iterations of the correction protocol are useful to the compensation of the potential deformation.

Accuracy and uncertainty in the positioning of the minima

In this section we investigate the impact on the code performances with the uncertainty on the positioning of the minima. Since this positioning is going to be evaluated through the fluorescence imaging of the ions, several sources of uncertainty come into play. The main one is bound to the quality of the imaging system. It is also possible the spatial extension of the ion cloud, or deformation of its structure imposed by the pseudo-potential shape, makes it difficult to accurately pinpoint the cloud centre. A last source of uncertainty happens when the minima are brought sufficiently close together and their local depth is reduced: the Coulomb repulsion between the ions, then, forces them out of the actual minima. We ignore this last source of error for the time being and focus on measuring errors. To simulate their impact, the correction protocol is applied on the same batch of 10 simulated traps with a position error of 2% of the (r 0 + r d ) distance, and the pixel size d px in the mapping area is changed (d px = 2, 4, 8, 20, 40, 80 µm). This effectively introduces an uncertainty on the positions of the minima in our protocol since they are localised to the pixel size. The results are presented on fig. (4.21), where the dots represent the average value of d for the 10 cases, and the error bar the spanning of the values for all cases. The resolution on the coefficients {b} was set to 10 -6 according to the conclusions of the previous section. We see once again the same general behaviour taking place: the distance between the minima close off in a couple iterations, before the gain with the number of iterations starts to taper off. With the varying pixel size, the number of iterations required to fulfil, in average, the condition | d j+1 -d j | < d px varies: for d px = 2 µm seven iterations are necessary, for d px = 8, 20 and 40 µm, it takes four iterations and only two for d px = 80 µm. The results show a better precision in the positioning of the minima leads to better end performances for the code. Like in the previous study on the resolution of the {b} coefficients, we observe different limits for the end distance d of the minima depending on the available resolution, with no further progress from 4 µm to 2 µm.

Irreductible distance between the minima

The two previous studies have shown that even with a good imaging system and fine resolution on the {b} coefficients, the minima are not merged by the end of the iterative correction protocol. They keep a distance of about d = 40 µm to the barycentre of the triangle they form. The reason behind this accuracy limit may be that the system evolves out of the working hypothesis of the iterative correction protocol. We recall that this hypothesis, introduced in sec.(4.4.2), is that the impact of the octupole structural defect on the applied compensation term is small. Since this limitation is supposedly bounded to the structure deformation, the impact of the defect amplitude on the performances of the iterative correction protocol was studied. On fig. (4.22) is plotted the same type of results than on fig.(4.20) but this time for the ultimate tested resolution α end = 8 and varying defect amplitudes. This means that the electrodes are mispositioned randomly but the distance of each electrode to its reference position is 1%, 2% and 4% of the trap (r 0 + r d ) distance. There appears to be a slight dependency on the defect amplitude if one looks at the average values and the extremities of each spanning, with the 4% case having the highest average irreducible distance and the 1% case the lowest. This distinction is nevertheless small and within the margin of the error bars. The protocol can therefore be applied to higher amplitude defects without restriction. 

Impact of the axial confinement

In a first approach only the radial RF component of the potential was studied, to identify the limits of the compensation protocol. The practical application of the compensation protocol relies on the positions of the ions in the trap, which requires to consider the contribution of the axial deconfining component to the potential. The minima in the total potential are not necessarily positioned over the positions of the minima of the RF component, and the number of minima can even vary out of the three RF local minima. This section deals with the reach and limits of the correction protocol in this context. Let us start by evaluating the DC deconfining contribution expected in our trap for a conventional operation state. Experiments requiring a correction of the potential are conducted specifically in the PIII section, purposefully short (z 0 = 9 mm) so as to limit the impact of parallelism issues on the trap potential. The specifics of the octupole section are detailed in the chapter 2 and we only recall a couple points here. This trap was designed to have properties similar to the quadrupole section in terms of DC confinement, that is a reachable axial frequency of a few hundred of kHz. If we choose to apply about the same DC contribution as in the quadrupole trap, that is ω z 150 kHz for an applied RF field : V r f = 850 V, Ω/2π =2.744 MHz, this corresponds to a potential well arranged as a ring with a minimum at r min = 541 µm acc. to eq.(4.4) and are summarized in table. (4.4). A CPO simulation of the corresponding potential can be seen on the left panel of fig. (4.23). Most of these parameters are higher than the ones used in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] and we sometimes choose to operate the simulations with the parameters from table.(4.1) so as to compare the results of the iterative correction protocol to the ones achieved in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF].The second parameter of interest characterising the DC deconfining term is the position of its centre of symmetry in regard to the centre of the octupole pseudo-potential. In the case of a perfect octupole arrangement of the RF electrodes in a perfect trap, the centre of the octupole trap is aligned with the axis of the trap and therefore the centre of symmetry of the DC term. This arrangement respects a centre-symmetry in the radial plan and raises a ring-shaped minimum in the resulting pseudo-potential as introduced in sec.(1.2.2) and illustrated on the left panel of fig. (4.23). In the case of an offset between the two centres, the centre-symmetry of the structure in the radial plan is broken and so is the pseudo-potential arrangement. Such a case of an offset of [START_REF] Prestage | One-Liter Ion Clock: New Capability For Spaceflight Applications[END_REF][START_REF] Prestage | One-Liter Ion Clock: New Capability For Spaceflight Applications[END_REF] µm between the two centres is plotted on the right panel of fig. (4.23), where we observe the minimum is not shaped as a ring as in the offset-free case shown on the left panel, but rather a crescent. This observation is relevant to our study since in the perturbed octupole trap, the deformation of the structure can introduce an offset between the two centres. The notion itself of 'octupole centre' requires to be properly defined and is not trivial. One could propose evaluating the barycentre of the structure, but a closer idea would probably be the position on which to place the centre of symmetry of the DC deconfining term to induce the least variation in the potential seen by the ions. Both points are discussed in the following sections from a practical point of view. A lead on how to evaluate the offset of the DC deconfining term to the 'centre' of the perturbed octupole potential is discussed in sec. (5.2), but here we focus on outlining in a practical fashion the impact of this offset on the potential and the correction protocol.

Simulation

Ref We shall first discuss our method to evaluate the variations in the depth of the pseudopotential of a perturbed octupole with a DC deconfining component. Then we proceed with application of the correction protocol in two steps. In sec.(4.5.2) the correction protocol is applied on the pure RF potential, and the deconfining term is added on the corrected potential. This does not correspond to a real experimental situation but gives insight on the temperature variations expected in this simplified case, and gives ground for comparison with the results of [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Then in sec.(4.5.3) is discussed the problem of working with the DC deconfining term from the beginning, and what is the ground of application of our protocol in a real trap.

Probing the inhomogeneities in the pseudo-potential

Keeping in mind the spatial localisation of the ions is our diagnostic tool for the positions of the minima in the pseudo-potential, we are interested in evaluating the pseudo-potential inhomogeneities in the area they occupy. The pseudo-potential inhomogeneities, contrasted with the temperature of the ion cloud, are an indicator of the expected structuration of the ion cloud in the pseudo-potential minimum/minima. It is crucial to properly define the probing zone, since evaluating the pseudo-potential variations in the wrong area could lead to false diagnostics and conclusions (mainly overestimations of the pseudo-potential variations). The application of a DC deconfining term in a deformed RF potential makes it difficult to predict the shape of this area. For corrected potential it should tend toward a ring-shaped pseudopotential minimum of radius r min , or a crescent-shaped ones in the case of an offset between the centres of the RF and DC component. For this reason, we make the approximation the zone of interest is a circle of radius r and centre ( xc , ỹc ). Because of the residual error in the correction protocol there is no guarantee r = r min and we do not make this assumption. Let us define the temperature equivalent to the potential variation along the circle of radius r:

T ( x, ỹ)) = 1 k B (Ψ( x, ỹ) -Ψ(x min , y min )) (4.24)
where k B is the Boltzmann constant and Ψ( x, ỹ) is the pseudo-potential along the circle of radius r centred on ( xc , ỹc ) so that ( x, ỹ) = ( xc + r cos(θ ), ỹc + r sin(θ )) with θ ∈ [0, 2π]. (x min , y min ) is the point of lowest pseudo-potential on the circle for all angles θ . A mispositioning of the probing circle can easily lead to T on the order of the thousands of kelvins. This can lead to severe overestimations of the pseudo-potential inhomogeneities as seen by the ions. Therefore, the position of the centre of the probing area, as well as its radius is clarified below.

Centre of the probing circle

In the perfect symmetric case, the centre of the probing circle is the centre of the pseudopotential ring minimum. This position corresponds to both the centre of symmetry of the DC deconfining term and the centre of the octupole potential. In the perspective of treating the centre of symmetry of the DC deconfining term as an experimental unknown, it was arbitrarily chosen that the centre of the probing circle would be defined as the centre of the RF component. When the octupole is deformed, the centre of the RF component is taken to be the barycentre of the local minima in the pseudo-potential of the RF component, noted (x g , y g ).

Radius of the probing circle

The second point to settle is the choice of the radius r of the support circle ( x, ỹ) for it can differ slightly from the perfect radius r min calculated from eq.(4.4). It has been discussed in sec. (4.4.3) that by the end of our iterative correction protocol, the minima are not merged yet.

It is therefore likely the minimum ring does not have exactly a r min radius as the effective octupole has not completely been corrected to fit the ideal expected potential. We have chosen to calculate r from the positions of the minima detected in the total (RF+DC) pseudopotential. The number N det of minima detected can vary from 1 to about the number of pixels sampling the probing radius. 5 Let us note the position of the minima detected in the pseudo potential (M x , M y ). We define r:

r = 1 N det N det ∑ n=0 (M x n -x g ) 2 + (M y n -y g ) 2 (4.25)

Application of the DC term after correction of the RF component

We propose first to investigate the performances of the iterative correction protocol in the same fashion as described in sec.(4.1.2) [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. The protocol is applied on the pure RF pseudopotential and the DC deconfining component is added after the correction. The difficulties of running the protocol with the DC term from the beginning is discussed in sec. (4.5.3). In order to compare the results to those obtained with the previous protocol in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] the trapping parameters are taken to be Ω/2π = 3.5 MHz and V r f = 300 V in terms of applied RF potential and w z = 22.696kHz for the axial confinement. This ensures r min = 0.1 × r 0 in our trap of geometry characterised by (r 0 , r d ) = (4 mm, 1.5 mm).

To minimize the pseudo-potential variations induced by the offset between the centres of the DC and RF component and focus on the residual asymmetries of the RF potential alone, we position the centre of the DC deconfining term on the position of the barycentre (x g , y g ) of the minima in the RF component of the pseudo-potential after the correction protocol is applied 6 . The DC deconfining contribution then writes:

Φ dc = - 1 4 mω 2 z (x -x g ) 2 + (y -y g ) 2 (4.26)
It is to be noted the protocol presented in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] does not encounter the issue of the positioning of the DC term, as this protocol forces the merging of the minima in the centre of the frame. This protocol passively imposes the matching of the centre of symmetry of the DC component and of the RF component of the potential.

To evaluate the variations in the pseudo-potential profile, we: (a) generate the RF pseudopotential of a deformed octupole and collect the positions of the minima, (b) apply the correction protocol and collect the corresponding barycentre (x g , y g ) of the resulting minima, (c) calculate the DC deconfining term acc. to eq. In order to appreciate the pseudo-potential variation in a deformed octupole, it is compared to a perfect octupole working with these parameters. The results are shown on the left panel of fig. exception of case 8 that goes higher. The larger values in case 8 could be due to a slight mis-positioning of the support ring ( x, ỹ). To demonstrate how the positioning of the support ring is critical, we have collected the pseudo-potential variations in each case, on a ring centred on the frame but with an adapted radius r and on a ring centred on the barycentre of the minima but with an imposed radius r min = 0.1 × r 0 . The corresponding temperatures are shown on fig. (4.27). In this batch, r ≈ 404 µm and spreads over ±12 µm. The distance of the barycentre to the frame centre is x 2 g + y 2 g = 33 ± 17 µm. In the majority of cases the pseudo-potential variation is lower for a probing area defined by ( x, ỹ). In the case of the simulation (evaluation of the temperature after correction of the potential), it appears assuming r = r min is not too detrimental, which is a good point because we ought to be close to the fully corrected case where this equality is true. Not centring the probing area correctly proves to be a major source of overestimation of the temperature variation, by a factor 10.

The conclusion of these simulations is that the collected data merely give an upper bound for the expected potential variations at the end of the iterative correction protocol. The potential variations are higher than the ones obtained in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF], which were on the order of a few millikelvins where ours are more on the range of a few tens to hundreds of millikelvins. It is delicate to conclude if this difference is due to the probed area positioning or to actual residual deformations in the potential. Our correction protocol presents the added complexity in regard to the one presented in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] not to force the merging of the RF pseudo-potential minima in the centre of the frame. Therefore, the positioning of the DC deconfining term to minimize the variation in the pseudo-potential had to be formalized. In an experimental scenario, there is no control over the position of the DC deconfining term in regard to the octupole potential. Moreover, the position of this term is an unknown and the RF and DC terms are coupled from the beginning and cannot be observed separately. The next section shows what performances can be expected from the correction protocol in a realistic situation. . Blue: fitted radius r centred on (x g , y g ). Green: fitted radius r centred on frame (0, 0). Red : constrained radius r min and centred on barycentre (x g , y g ).

Impact of the DC potential on the routine

In this section we work by applying the correction protocol on the total potential, that is the deconfining component is added from the beginning and we consider the DC component known and constant. To emulate a realistic setup, the centre of symmetry of the DC term is fixed in the centre of the frame and we assume the DC confining potential is known, for example by parametric excitation experiments. (tuning unit), this test could not be performed. As a preliminary study we have transposed results from the quadrupole part of the trap, that have shown voltages as low as 50 V are sufficient to trap the ions along the z-direction. This corresponds in the quadrupole section PII to a ω z /2π = 26.0 kHz. To have the same ω z in the octupole section PIII and because of the different screening factor, 15.1 V only needs to be applied on the DC electrodes. This corresponds to a calculated r min ≈ 216µm. When we tried out the correction protocol with these parameters, no improvement was observed in the number of accessible iterations before the number of detected minima went below three. We tried to lower the DC contribution further to ω z = 4 kHz (about the value in the octupole section before the trap was reworked) and in this case an additional step is possible. The final total pseudo-potential and its variations in this trial case are given on fig. In conclusion, the contribution of the DC deconfining term to the potential limits our method of compensation of the perturbation in the pseudo-potential with our method. This comes from the fact the DC deconfining term can change the number of minima detected in the pseudo-potential where the execution of the routine requires three positions of minima as an input. Reduction of the DC deconfining term contribution has shown an improvement of the end performance of the code and it is advisable to reduce the DC confinement and increase the RF amplitude as much as possible when trying to diagnose and compensate for the trap asymmetries. In this section the offset between the centre of the RF and DC contribution was taken as an unknown and is partly responsible for the variation in the pseudo-potential as was discussed in sec.(4.5.2). Compensation for this offset has not been investigated during this thesis, but should be possible since it was realised in a passive fashion in the protocol presented in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Diagnosing the offset is the first step to be undertaken and insight on how to proceed is given in sec. (5.2). Compensation probably will involve tuning the RF potentials on the electrodes further, which is bound to add an additional load on the already well solicited adapted voltages.

Conclusion

In this chapter were covered the proposed compensation techniques and their reach for the correction of the octupole potential. The work conducted in this thesis was motivated by previous works and simulations that have demonstrated the feasibility of correcting the potential asymmetries by applying correction voltages on the RF electrodes of the trap. From these previous proofs of concepts and simulations was developed a custom compensation electronics, allowing for a precise tuning (0.0003% of the applied V r f ) of the RF electrodes radio-frequency voltages. This electronic uses a combination of capacitors to keep the phase between all the electrodes fixed and is remotely computer controlled, so as to ensure a precise control and good reproducibility of the tunings. Since it came in the lab quite late at the end of the thesis, the tuning unit has not yet been tested onto the trap and needs to be characterised on the experiment before further tests can be undertaken.

The difficulty in compensating for the asymmetries introduced in the potential by mechanical mispositioning of the electrodes is to find the right diagnostic tool to characterise them. Because of the requirements of the experiment, the only accessible diagnostics are based on the fluorescence of the ions. Those are assumed in first approximation to cluster in the local minima and therefore their positions is assumed to be the positions of the minima, accessible to imaging on a camera. The early proposed protocol was based on a minimisation of the distance between the minima and required a few hundreds experimental steps to successfully converge. Each one requires the observation of the minima positions in the device through the ions fluorescence. As the precise positioning of the clouds is very timeconsuming, this protocol was not deemed 'experimental-friendly'.

In this thesis I have developed a new protocol that allows the minima in the RF pseudopotential (studied without DC deconfining term) to be brought within about 40 µm (for a 2% mispositioning) of their barycentre. It relies on the defect analysis done in the chapter 3 to analyse the perturbations in the potential and apply adapted and controlled counterperturbation to correct the potential. Tunings of the potential to generate calibrated quadrupole and dipole terms in the potential have been investigated. A practical example (see sec.(4.4.2)) shows the direct application of these tuning schemes brings the compensation out of range of the compensation unit capabilities. Optimisation work to spread the load on the electrodes needs to be undertaken. The limit in the minima distance results from the amplitude of the defects and the protocol reaching the bounds of its working hypothesis. The performances do not quite reach the performances of the previous code that would bring the minima within a few micro-metres of each other, but now less than seven steps are required in average (for the tested resolutions and pixel sizes) in the newer protocol as opposed to a few hundreds in the older one. An application of both protocols one after the other can probably merge the minima completely in a minimal number of iterations.

Both the old and new protocol were demonstrated for potentials with no DC deconfining term (resulting from the axial confinement by static applied voltages), or a DC deconfining term added after the compensation was operated. This is because the positions of the three minima is the characterising tool of the potential deformation in both cases. If the DC deconfining term is added to the potential from the beginning, the reading of the potential is blurred as one or several minima can be smeared out by its contribution. The minima tend to disappear as they close on the areas of radius r min , the radius of the ring-shaped potential minimum in the compensated case. It is advised, in a naïve way, to ensure a r min as small as possible so that the minima disappear as late as possible in the iterative procedure. This problem requires further work and investigations to solve. Another problem requiring further work is the offset between the centre of the corrected octupole potential and the DC deconfining term, as a mismatch between these two components prevents the observation of a ring minimum in the potential with a corrected RF component and raises the potential variations as seen by the ions.

The reach of this work can be extended past the compensation of the pseudo-potential asymmetries and toward control of ion structures in the octupole trap. This idea was first introduced by Marciante et al. [START_REF] Marciante | Parallel ion strings in linear multipole traps[END_REF] to control the positions of ion chains trapped in the local minima of an octupole trap with an added quadrupole field. The work in this thesis complete this approach by considering the possibility of adding a dipole term, which enables a complete control over the positioning of the local minima in the octupole field. Moreover, the calibration work conducted in this chapter allows for the creation of a controlled perturbation in the pseudo-potential, and a custom positioning of the local minima. Given the smooth dependency of the positions of the minima with the applied perturbations, it is possible to work on moving the ions trapped in the three minima in a controlled fashion, which could prove interesting in fields like quantum logic and simulations [START_REF] Blatt | Entangled states of trapped atomic ions[END_REF][START_REF] Johanning | Quantum simulations with cold trapped ions[END_REF].

Introduction

The main focuses of this thesis are the comprehension, control, and compensation of the perturbations in an octupole potential. In chapters 3 and 4, these perturbations were characterised by the positions of the three local minima they induce in the octupole pseudopotential. In this chapter we discuss an alternative method that relies on an original addressing of the octupole trap as several quadrupole traps. The number of electrodes in the octupole structure makes it possible to only address part of them (4 out of 8) and still manage a trapping potential. A trivial example is shown on fig. (5.1) where the S and T -subsets of electrodes are addressed with potentials able to create a quadrupole potential well. These patterns look redundant in the perfect structure, but in a deformed octupole trap it is expected from the subsets to present distinctive properties. The modifications done in our set up to enable a tunability of the potentials on the electrodes also make it possible to select only four electrodes to be RF polarised (see sec. baptised 'strange quad, is that it has only one minimum in its potential and that the position of this minimum is off-centre with the octupole potential. In the perfect symmetric structure, the minimum is positioned along the axis of symmetry of the strange quad, and closer to the three grouped electrodes (ex. on fig( 5.2), the minima is positioned in x sq , y sq = 0, 1.1 mm). The strange quad pattern occurs 8 times in the structure, as illustrated on fig. (5.3) where the rough position of the corresponding strange quad minimum in the pseudo-potential is indicated. In the perfect octupole trap, each strange quad has the same properties and differ only by its orientation. The positions of the eight strange quad minimum are distinct, and organise on a circle of radius 1.1 mm every π/4 angle. In a deformed octupole trap there is a breaking in the centre symmetry and each strange quad is slightly different from the other and their properties are individualised. The idea is to use the positions of these minima to collect information over the octupole structure. The strange quads were first imagined as a diagnosing tool of the misplacement of the RF electrodes for correction purpose. As such, they failed. But the study of their properties have shown the strange quads can be used as characterisation tool of more global properties of the trap that are necessary for the application of the correction protocol presented through chapters 3 and 4. Some of these are : the global orientation of the trap, its effective inner radius r0 , the trapping parameters : ω u /ω z and the offset between the symmetry centre of the DC and RF components. In this chapter, I first discuss the properties of the strange quads as confining pseudo-potential wells, before proposing a diagnositic of the global properties of the octupole trap that relies on the positions of their pseudo-potential minima. In a third section I take the time to explain the reasoning behind using the strange quad as a direct diagnostic of the positions of the electrodes and clarify why it did not work.

The strange quad in a default-free octupole trap

Let us start by characterising the strange quad potential in a perfect octupole trap. The strange quad structure corresponds to a deformed quadrupole trap, and therefore presents The first question of interest concerning the strange quad is if the corresponding pseudopotential well can successfully confine the ions. To evaluate the stability of the ions in the local well we approximate the bottom of the strange quad pseudo-potential by a conventional quadrupole potential and apply q u = √ 8ω u /Ω (detail in sec.(1.1.2)) to find the stability parameter q u . Given the assymetric shape of the potential, this requires to decide the area over which the potential can be approximated to a quadrupole potential. Let us consider the case where V dc = 0 V for simplification. On fig. (5.4) are shown cuts of the pseudo-potential in a perfect octupole trap wired as an octupole (black) and wired as a strange quad (blue), in the x and y direction passing by the position of their respective minimum and normalised to the maximum value of the strange quad pseudo-potential for the same applied V r f . These cuts are clarified on fig. (5.5) and show the pseudo-potential in an octupole (left) and in a strange quad (right). Despite the asymmetric shape of the strange quad pseudo-potential along the y direction, numerical simulations show that the local shape of the well over an area of radius 100 µm around the minimum is harmonic, with the same steepness in the x and y directions (abides ∆V = 0). This can be further appreciated on fig. (5.7), that shows superimposed cuts along the x and y directions of the strange quad pseudo-potential for V r f = 100 V, Ω = 2.774 MHz, where the frame is centred on the position of the minimum. Because of the asymmetric structure of the strange quad trap, we want to make sure there are no unexpected directions of weak confinement out of the x and y directions. To do so the variations of the pseudo-potential were evaluated along rings of different radius and centred on the position of the potential minimum. The results for V r f = 100 V, Ω = 2.774 MHz are shown on fig. (5.6) for the probed rings of radius 100, 200, 300 and 400 µm. The variations are more important for larger radii, reaching 300 K for a radius of 300 µm, but they keep a smooth profile that respects the expected symmetry : a strong and weak confinement along the y axis at the 90°and 270°angles respectively, and an average and equal potential for the angles 0°and 180°(x direction). For a radius of 100 µm the variations with the angle are negligible. We consider that in an area of radius 100 µm around the position of the strange quad minimum, the potential can be considered harmonic. For Ω = 2.774 MHz and applied potentials on the electrodes going from V r f = 100 V to 250 V, the fitted radial frequency varies from ω u /2π = 168 kHz to 420 kHz. The corresponding q u parameter then spans from 0.171 to 0.428, which corresponds to stable regimes. For information q u ≈ 1 corresponds to V r f ≈ 600 V. These potentials are smaller than the ones conventionally applied to the octupole trap and for comparison sake between the octupole and the strange quad potential some simulations are conducted out of this stability domain. From a practical point of view, we assume that the position of the strange quad minimum can be deduced from the fluorescence imaging of the ions. Because of the asymmetric profile of the potential in one of the directions, there can be an offset between the centre of the observed ion cloud and the position of the minimum in the pseudo-potential. If the position of the centre of the cloud is estimated from its contour, the asymmetric profile of the potential in the y direction is going to induce a detrimental difference between the estimated position of the centre of the cloud and the position of the pseudo-potential minimum for bigger ion clouds. For a cloud of radius 100 µm the offset is about 2 µm against about 0.5 µm for a cloud of radius 50 µm. To avoid introducing this offset we advise working with small ion clouds (radius inferior to 100 µm), with a best option consisting in an ion chain (no Coulomb effect). 

The strange quad as a characterisation tool

In this section we focus on uses for the strange quad as a characterisation tool for some of the trap properties. In chapters 3 and 4 the presented work required to know the orientation of the octupole frame, or the characteristics of the DC-deconfining term. We discuss here how the strange quads can be used to evaluate theses aspects of the problem.

Orientation of the octupole frame

As demonstrated in sec.(3.6.2), characterisation of the perturbation in the octupole pseudopotential requires the 3 local minima induced in the pseudo-potential by the perturbations to be positioned in the frame of the octupole trap, as defined in sec.(3.2.2). Knowing the precise orientation of this frame relatively to the optical axis of observation is critical to implement the correction protocol and minimize the correction load on the electrodes. The orientation of the octupole frame can be deduced from the positions of the minima in the strange quads pseudo-potential, when the octupole trap is perfect and/or deformed. Let us start by considering the simple case of a perfect octupole trap. As mentioned earlier and summarized in table .(5.1), the minimum in a strange quad pseudo-potential is positioned out of the centre of the octupole trap and on the axis of symmetry of the potential. The minima of all eight strange quads organise on a circle of radius 1.11 mm every π/4 angle, centred on the centre of the octupole frame (see fig.

(5.3)). Therefore in the perfect case, the minima are positioned in the corners of a perfect octagon which is an homothety of the octagon defined by the positions of the electrodes. The angle of the octagone formed by the positions of the minima to the observation axis gives the orientation of the octupole frame to the observation axis.

Let us now consider the case of a deformed octupole trap. The trap is deformed by applying random offsets on the positions of the electrodes, and in this paragraph, we are interested in discussing the global angle induced by these mispositioning only. The perfect octupole trap before the mispositionings are applied is aligned with the octupole frame, and the only source of a global rotation to the octupole frame is the applied deformation of the trap. The only consequence of this global rotation is that the octupole frame must be rotated accordingly, so that the 3 local minima in the octupole pseudo-potential are positioned in the correct frame. It has already been defined in sec.(3.2.2), and we recall below how the global rotation angle is determined, by defining the 'closest perfect octupole' to the deformed structure and evaluating its angle to the simulation frame. The global rotation angle is defined by fitting an octagon of known size, and centred on the barycentre of the electrodes, to the positions of the electrodes. The fitting protocol minimises the distance between the corners of the octagon and the points by adjusting the angle of the fit-octagon to the frame. The angle of the fitted octagon to the (x, y) frame is the global rotation angle. Once again, the positions of the electrodes is not an experimentally accessible data. The idea to find the global rotation angle is then to rely on the positions of the minima in the eight strange quad pseudo-potentials instead of the positions of the electrodes. A comparison of the global rotation angle found by relying on the positions of the electrodes (black), and the positions of the minima (red) is shown on fig.

(5.8) for 10 simulated traps with positioning defects on the electrodes as big as 4% of the (r 0 + r d ) distance. The results are the same within the error bar, induced by the pixel size, and we conclude the global rotation angle in a deformed octupole trap can be deduced from the position of the eight strange quad minima. We also gather from the simulations that the induced global rotation angle is generally small, as for a defect range of 4% it is about less than 0.5°in the tested cases. We have here artificially distinguished two cases inducing a global rotation angle. The first is due to an angle of the octupole trap with the optical observation axis, that can happen in a deformation free octupole. The second is induced by the deformation of the octupole trap and is rather small. From an experimental point of view, the origin of the global rotation angle is indistinguishable and irrelevant. Collecting the position of the eight strange quads minima allows to evaluate the global angle and to position the octupole frame to the observation axis.

Dependence of the positions of the strange quads minima with the trapping parameters

Another key feature of the strange quads minima is that their relative positions can be used to characterise the application point and amplitude of the DC deconfining term. Proper characterisation of the DC deconfining component is capital in the light of the results presented in sec.(4.5), where it was discussed how an offset between the centre of the octupole pseudopotential and the centre of symmetry of the DC deconfining component was a prime source of degradation of the pseudo-potential regularity for a compensated RF component 1 . The diagnostic method uses exclusively the relative positions of the eight minima in the strange quads pseudo-potentials supposed experimentally accessible through fluorescence imaging of the ions, and general set up information like the applied V r f amplitude and the trap dimensions (r 0 , r d ) that are assumed known. We start by presenting an analytic development for the dependencies, and then verify the results with numerical simulations. We work with two situations : first with the simple case where there is no offset between the centre of symmetry of the octupole and DC deconfining component, and then with the general case where there is an offset between the two terms. In both cases we verify the analytical results in an octupole trap with a perfect positioning of the RF electrodes, before discussing extrapolation of the results to an imperfect octupole structure.

Position of the strange quad minimum

For an octupole trap with a perfect radial arrangement of the RF electrodes, the bottom of the strange quad pseudo-potential can be considered of quadrupole shape. In this frame of approximation, it is possible to establish an analytic dependency of the position of a strange quad minimum as a function of the trapping parameters. Let us consider the full pseudopotential Ψ taken in this section to be the sum of the strange quad RF component Ψ sq studied previously and the radial contribution of the static deconfining component φ dc resulting from the axial DC confinement:

Ψ(x, y) = Ψ sq (x, y) + φ dc (x, y) (5.1) 
Ψ sq (x, y) = q 2 4mΩ 2 E 2 0 (x, y) = 1 2 mω 2 u (x -x k ) 2 + (y -y k ) 2 (5.2) φ dc = - 1 4 mω 2 z (x -x 0 ) 2 + (y -y 0 ) 2 (5.3)
where Ω/2π is the radio-frequency, q is the charge of the electron, m the mass of the 40 Ca + ion and E 0 the RF field generated by the strange quad. ω u /2π = ω x,y /2π is the radial frequency in the RF componnt of the pseudo-potential, found by fitting the trapping area of the pure RF pseudo-potential by a harmonic function. The positions of the minimum in the pure RF pseudo-potential is (x k , y k ) as listed in table .(5.1) depending on the chosen strange quad labeled k. ω z /2π is the axial frequency as defined by the amplitude of the axial static confinement acc. to eq.(2.3), and (x 0 , y 0 ) the coordinates of the centre of symmetry of the DC deconfining component in the octupole frame. The two defining characteristics of the DC deconfining term are the amplitude of the term (ω 2 z ) and the application coordinates (x 0 , y 0 ). The minimum in the total pseudo-potential Ψ is positioned in (x, y) such that:

∂ Ψ ∂ x (x, y) = 0 and ∂ Ψ ∂ y (x, y) = 0 (5.4)
which is obeyed if this set of equations is fulfilled :

x ω 2 u -ω 2 z /2 = x k ω 2 u -x 0 ω 2 z /2 y ω 2 u -ω 2 z /2 = y k ω 2 u -y 0 ω 2 z /2
We note ∆x k = (xx k ), ∆y k = (yy k ) the position of the minimum in the total pseudopotential (x, y) relatively to the position of the minimum in the RF pseudo-potential (x k , y k ).

From the previous system of equation ∆x k , ∆y k write :

∆x k = (x k -x 0 ) 2 ω z ω u 2 1 - 1 2 ω z ω u 2 -1 = (x k -x 0 )A ∆y k = (y k -y 0 ) 2 ω z ω u 2 1 - 1 2 ω z ω u 2 -1 = (y k -y 0 )A (5.5) with A = 1 2 ω z ω u 2 1 - 1 2 ω z ω u 2 -1 (5.6)
The position of the minimum in the total pseudo-potential of the strange quad is a function of the relative amplitude of the RF and DC terms through ω z /ω u , of the position of the centre of symmetry of the DC deconfining term (x 0 , y 0 ) and of the structure of the trap through (x k , y k ).

Averaged indicators : ∆r sq , (x c , y c )

In the perspective of working with deformed octupole structures, in which each strange quad is slightly different, we introduce two averaged characteristic quantities in the perfect octupole structure that are the radius R sq and the centre (x c , y c ) of the circle defined by the positions of the eight strange quad minima. We note X k = x k + ∆x k , Y k = y k + ∆y k the coordinates of the minimum in the total pseudo-potential of the strange quad k. The coordinates of the centre of the corresponding circle write :

x c = 1 8 8 ∑ k=1 X k ; y c = 1 8 8 ∑ k=1 Y k (5.7)
This expression can be simplified. Let us work with x c , with the same reasoning being applicable for y c . X k = x k + ∆x k and in the perfect octupole trap, ∑ x k = 0 and therefore eq.(5.7) rewrites:

x c = 1 8 8 ∑ k=1 ∆x k (5.8)
It simplifies by replacing ∆x k with its expression from eq.(5.5) and by once again applying ∑ x k = 0. In the end:

x c = - x 0 2 ω z ω u 2 1 - 1 2 ω z ω u 2 -1 = -x 0 A y c = - y 0 2 ω z ω u 2 1 - 1 2 ω z ω u 2 -1 = -y 0 A (5.9)
and therefore the displacement of the barycentre of the minima scales with the offset (x 0 , y 0 ). On the other hand, a dependency with (ω z /ω u ) for the radius R sq of the circle can be similarly deduced. The radius writes:

R sq = 1 8 8 ∑ k=1 (X k -x c ) 2 + (Y k -y c ) 2
(5.10) can be of interest for experimental purpose to get a better contrast on the displacement of the minimum and therefore to work with bigger ω z /ω u . To this purpose a modified expression is proposed:

∆y = y k 2 ω z ω u 2 1 + 1 4 ω 2 z ω 2 u -1
(5.15) which corresponds to the black dashed lines on fig. (5.9). The error between the simulated positions and the predicted positions by this second equation is reduced by about a factor ten, and the error on the end tail of the curves is only about 2 to 3 pixels, which is acceptable to experimental purpose. To implement this measurement experimentally, parametric excitation experiments can be used for the precise evaluation of ω z and ω u , with ω u being extrapolated from very low applied V dc . ω z /ω u can be kept to values where the first order fit is valid, therefore simplifying the extrapolation of the points, but a better resolution will be gained with more contrasted positioning offsets, where the full equation is then necessary. In the general case of a deformed octupole trap, we are interested to see if the impact of the deformations is small and the dependency established in the perfect case can be extrapolated. The break in the centre-symmetry introduces a structural difference between the eight strange quads, and the resulting minima are not exactly positioned in a circle. This motivates the use of the averaged radius R sq from eq.(5.10) instead of the displacement (∆x k , ∆y k ) of just one strange quad minimum to characterise the dependency of the positions with (ω z /ω u ). We verify through simulations if eq.(5.13) can be applied in a deformed octupole structure. Our test batch consists in 10 simulated traps (r 0 = 4 mm, r d = 1.5 mm) in which all the electrodes are mispositioned from their reference position by 220 µm (4% of the r 0 + r d distance) in random directions. The potential applied on the electrode is V r f = 200 V which corresponds in the perfect case to ω u /2π = 336 kHz. For each test trap, the pseudo-potential of the 8 strange quads is calculated with a resolution d px = 4 µm. ∆r sq is estimated as a function of ω z /2π in the same fashion as in fig.

(5.9) and the results are plotted on the upper panel of fig. (5.10) where each colour corresponds to a test geometry and the error bar comes from the pixel size. On this figure, even though the curves for all 10 cases follow the same general tendency as previously, they do not superpose on each other within the error bar. The data points span around the expected profile more than can be attributed to the error bar. This behaviour comes from our protocol to determine ω u : for a given V r f the radial frequency is determined from the fit of the bottom of the strange quad pseudo-potential in the perfect octupole structure defined with r 0 = 4 mm and r d = 1.5 mm. ω u depends on the structure of the trap and in a deformed trap, the inner radius r 0 needs to be replaced by an effective inner radius r0 . The variation of r0 in the simulations, spanning from 3.922 to 4.044 mm in the test batch, is enough to induce the noticeable change between the plotted profiles. Rescaling the data by (r 0 / r0 ) 4 cancels out this profile mismatch, as is shown on the bottom panel of fig. (5.10). The fit equation in black corresponds to the modified equation:

∆r sq = r sq 2 ω z ω u 2 1 + 1 4 ω 2 z ω 2 u -1
(5.16) that accounts for the deformation of the profile out of the harmonic approximation in the same fashion as eq.(5.15). We conclude the results established in the case of a perfect octupole structure can be extrapolated to a deformed case, given the change in the definition of ω u to ωu , of the relevant radius r0 : ωu = r 0 r0 4 ω u (5.17)

General case (x 0 , y 0 ) = (0, 0)

In the case where the centre of symmetry of the octupole and DC deconfining term are not merged, that is (x 0 , y 0 ) = (0, 0), the symmetry of the total potential Ψ is broken. In this case the use of the averaged values ∆r sq and (x c , y c ) is once again relevant. The analytic study conducted in the perfect octupole structure has shown ∆r sq is independent of the offset (x 0 , y 0 ) and the only signature of this offset is the dependency of the position of the barycentre of the minima x c , y c with ω z /ω u . To verify these assertions, we have conducted simulations in a trap with a perfect positioning of the RF electrodes (r 0 = 4 mm, r d = 1.5 mm). First, we verify the independence of ∆r sq with (x 0 , y 0 ) and the results are shown on fig. (5.11). ∆r sq is evaluated as a function of ω z for two configurations : (x 0 , y 0 ) = (0, 0) (black) and (x 0 , y 0 ) = (200, 0) µm (red), for ω u = 336 kHz (V r f = 200 V, Ω = 2.774 MHz). The results show ∆r sq is independent of the offset x 0 as the results for the two cases are perfectly superposed.

The only diagnostic of the offset between the DC and RF component is therefore the displacement of the barycentre (x c , y c ) of the strange quads minima with ω z , /ω u . To verify the results of eq.(5.9), simulations with a controlled offset x 0 = 0 to 0.6 mm, with y 0 = 0, between the centre of symmetry of the octupole trap and the DC deconfining term were realised. A potential V r f = 200 V is applied on the electrodes, which corresponds to ω u = 336 kHz, and two ω z = 100 and 200 kHz are compared. The results plotted on fig. (5.12) show the dependency between x 0 and x c is linear as expected from eq.(5.9). Once again we plot the analytical profile corresponding to a first order approximation in (ω 2 z /ω 2 u ) of eq.(5.9) (dashed lines) and the results from a proposed modified equation (full line). The modified equation is this time :

x c = - x 0 2 ω z ω u 2 1 + ω z ω u 2 -1 ; y c = - y 0 2 ω z ω u 2 1 + ω z ω u 2 -1 (5.18)
which does not follow the same adjustment pattern as eq.(5.15) and eq.(5.16) in (1+0.25(ω z /ω u ) 2 ) -1 . Moreover for ω z = 200 kHz the adjusted equation is necessary for small displacements of the minima smaller than 100 µm where the harmonic approximation still ought to be applicable. The origin of the required adjustment is therefore not clear, but using the modified equation to interpret the experimental positions of the minima allows for a good prediction of the dependency between (x c , y c ) and (x 0 , y 0 ).

To close this section, we discuss the case of the deformed octupole structure. The difficulty in this case is to define what can be considered the centre of the octupole trap. In the perfect case the definition is obvious: the centre of symmetry of the structure corresponds to the centre of symmetry of the potential and to the position of the one minimum in the RF component of the octupole potential. Since we have no criterion for determining the centre of a deformed octupole potential, we cannot conduct the same kind of study as in the perfect octupole structure to verify the dependency of (x c , y c ) with (x 0 , y 0 ). Nevertheless, we can propose a few working hypotheses. Let us call O the point associated to the centre of the octupole field, of unknown position, and D the centre of symmetry of the DC deconfining term.

A criterion to verify that D is superposed with O is that there is no drift of the barycentre of the strange quad minima with a varying ω z /ω u . In regard of the results of the previous section we propose to use eq.(5.18) as a diagnostic of the offset between O and D, to enable the experimental compensation of this offset. In the scope of our compensation scheme for the perturbation in the RF component of the potential, it is interesting to point out that the offset of interest is the one between the D and O points in the compensated RF field. The diagnostic of the offset shall therefore require that the strange quad electrodes be addressed with the same adjusted potentials as the compensated octupole trap.

In this section, the strange quad pattern was used to identify some global properties of the trap. The orientation of the octupole frame to the observation frame can be deduced from the eight positions of the minimum of each strange quad in the structure. Varying the ratio ω z /ω u by changing the applied potentials V dc and V r f imposes a displacement of the position of these minima that can be used as a diagnosing tool for the offset between the RF and DC components.

Dependence of the positions of the strange quads minima with

the positions of the electrodes.

In the previous section general information about the trapping were deduced from the positions of the strange quads minima through the study of the radius and centre of the circle fitted on their position. In this section we explore further the dependency of the position of the minimum in the pseudo-potential of the strange quad of a deformed octupole trap as a function of the positions of the electrodes. The study is led in the pure RF pseudo-potential (ω z = 0). The idea of this investigation was to establish a diagnostic of the positions of the electrodes in the deformed structure by establishing a linear dependency between the displacement of the eight strange quads minima with the displacement of the electrodes. This enterprise was not successful. The details of this investigation and the reasons behind the failure of the protocol can be insightful to further works and are detailed through this section. We start by characterising the impact of one displaced electrode on the pseudo-potential, and the case of a structure with several displaced electrodes is not discussed until sec.(5.3.4).

Dependence of the position of the potential minimum with the electrode displacement

Because of the asymmetric shape of the strange quad, the displacement of the strange quad pseudo-potential minimum is expected to differ depending on which electrode is moved. In this first part, only one electrode is moved from its reference position at a time, so as to appreciate the individual impact of the electrodes displacement on the position of the strange quad pseudo-potential minimum. All observations are here conducted in the strange quad named 'Up' and noted U, illustrated on fig.

(5.2). The electrodes 0 and 3, 4 and 5 are addressed with ±V r f and the electrodes 1, 2, 6 and 7 are grounded.

In order to distinguish the electrodes according to their position in the strange quad pattern they are tagged B, R, W, P, T, S, E and C, for 'Bottom', 'River, 'West', 'Port-side', 'Top', 'Starboard' and 'East', as illustrated on fig. (5.13). These tags are independent of the referential, as opposed to the number affected to the electrodes of the octupole trap, and correspond to a functionalisation of the electrodes : the B, P, T, S electrodes are addressed with ±V r f and the R, W, E, C set is grounded ; the electrode tagged T is always the closest to the pseudopotential minimum. In the strange quad 'Up', as shown on fig.(5.2), the tags are affected to the electrodes as : (B, 0), (R, 1), (W, 2). . . To explore the impact of the displacement of one electrode on the position of the strange quad pseudo-potential minimum, the electrode is displaced in a circular pattern of radius r p centred on its reference position in the perfect octupole trap, and the corresponding positions for the strange quad minimum collected from the CPO simulation of the pseudo-potential. The positions of the concerned electrode and minimum are given as displacement to their reference position in the perfect octupole trap, and are noted ∆p = (∆p x , ∆p y ) and ∆m = (∆m x , ∆m y ) respectively. The reference positions of the minima in the eight strange quads pseudo-potential are given in table .(5.1). In U, the strange quad we have selected for the simulations in this section, this reference position is : (0, 1.11) mm. On fig.

(5.14) is plotted the displacement of the minimum when the electrodes T (blue), S (orange), E (red), C (purple) and B (green) are successively moved in a circular pattern of radius 110 µm around their reference position. The first general observation is that the displacement of one electrode along a circle centred on its reference position induces a displacement of the strange quad pseudo-potential minimum around its own reference position on a closed and regular shape looking like an ellipse. The size, shape and orientation of the strange quad minimum displacement depend on the displaced electrode (T, S, E . . . ). The electrode with the 'biggest' impact in terms of amplitude of the displacement is the electrode T , the closest electrode to the position of the minimum in the structure, that moves the minimum as far as 104 µm from its reference position. The smallest maximal displacement is the one induced by C that brings the minimum at 8 µm from its reference position. For the electrodes T and S the maximal displacement of the minimum is on the order of magnitude of the displacement of the electrode (100 µm), in the case of electrodes B and E it is about 10 time smaller, and a hundred time smaller for electrode C. The electrodes T and B that are aligned with the symmetry axis of the strange quad produce shapes that respect the same symmetry axis. The axial symmetry imposes that the shapes of the displacement imposed by S, E and C are mirror symmetries of thoses induced by P, W and R respectively (not plotted). It is interesting to note the electrodes E and C provoke a displacement of the minimum despite being grounded electrodes, even if this displacement remains proportionally smaller than the one induced by the farthest addressed electrode (B). We do not go further into details on the quantification of the shape, as a proper fit by ellipses is detailed in sec.(5.3.2) that covers this quantitative evaluation. .(5.2). The position of the minimum on the ellipse as a function of the displacement of the electrode is not trivial and does not follow a predictable pattern for the electrodes S, E and C that are off the symmetry axis of the strange quad. For example if we take as a reference the point corresponding to the displacement of the electrode at a π/2 angle (orange dot), the corresponding displacement of the minimum is at a π/2 angle to the frame in the case of the electrodes T and B, but at various angles for the other electrodes. Moreover, the electrodes are always displaced acc. to the pattern plotted in (a) and not changed to follow the symmetry of the strange quad: on fig. (5.16) it is shown that the shape for the displacement of the minimum corresponding to the P and S electrodes are mirror symmetries of each other acc. to the strange quad symmetry, but the 'rotation direction' are inverted, because the rotation direction of the electrode is not flipped acc. to the mirror symmetry of the problem. This discrepancy needs to be accounted for to convert the position of the electrode into a displacement of the minimum.

A last point of interest is the impact of scaling the electrode displacement. We now focus on one electrode type, and investigate the impact of varying the amplitude r p of the electrode displacement on the displacement of the strange quad minimum. The results are plotted on fig.

(5.17) for the S electrode, displaced on several circular patterns of radius r p varying from 5.5 µm to 159.5 µm by steps of 22.0 µm. The left panel shows the displacement of the electrode and the right panel the displacement of the strange quad minimum (colours associate curves, from small (blue) to large radii (green)). It appears the displacement of the strange quad minimum follows a scaling law with the amplitude of the displacement of the electrodes. The shapes seem to remain centred on the same position, which means that to one position of the minimum can be associated one position of the electrode in the simple case where one electrode is displaced, and reciprocally. The same scaling behaviour is observed for all electrode types. This correspondence shall be predictably more sensitive to error for displacement of the minimum along the short axis of the ellipse shape, as in this area the displaced electrode induces less spacing for different r p . The rough observations conducted in this section hint the possibility of establishing an analytic bijective function linking the position of the electrode to the position of the strange quad minimum when only one known electrode is displaced. In the next section we work on fitting the shapes followed by the displacement of the minimum by ellipses to quantitatively evaluate the results and confirm our intuition. Then in sec.(5.3.3) the results of the fits are used to establish the function that associates the displacement of one minimum to the displacement of the electrode for each electrode type. Finally in sec. (5.3.4), generalisation of the results for several displaced electrodes is discussed.

Quantitative evaluation of the displacement of the strange quad pseudopotential minimum

Because of the elliptical shape of the trajectories, we have decided to fit them by ellipses according to the approach by Fitzgibbon [START_REF] Fitzgibbon | Direct least square fitting of ellipses[END_REF]. Let us note x i = (x i , y i ) the coordinates of the points to be fitted by the ellipse, and F(a; x) the general equation for a conic in a plane:

F(a; x) = a • x = ax 2 + bxy + cy 2 + dx + ey + f = 0 (5.19)
where a = [a b c d e f ] T and x = [x 2 xy y 2 x y 1] T . The method minimizes the sum of the squared algebraic distance F(a; x i ) from the points (x, y) to the conic by adjusting the vector a. The method is constrained so that the fitted conic is necessarily an ellipse by imposing the condition 4acb 2 = 1. This equality imposes both the conic to be an ellipse (b 2 -4ac < 0) and a normalisation condition on the vector a. The protocol returns the centre, ellipticity and tilt angle of the closest ellipse to the points.

Let us take as an example for the fit protocol performances the case where the electrode S is displaced, as in fig. (5.16) and (5.17 in table .(5.4). To construct this table r p was explored over a range going from 5.5 µm to 148.5 µm by steps of 5.5 µm, and with the pixel size acc. to table .(5.2). The given error bar covers the fit results for all case. Within this error bar, the eccentricity, scaling parameter and tilt of the ellipse can be considered constant characteristics of the displaced electrode type. Concerning the drift of the centre of the fitted ellipse, it is generally small and can be considered negligible in first approximation. The legitimacy of this approximation depends on the application and will be discussed again later.

Analytic approach to the position of the minimum in the strange quad pseudo-potential when only one electrode is displaced

In the simple case where only one electrode is displaced, the previous section has shown the position of the minimum in the strange quad pseudo-potential is predictable. An electrode displaced along a circular pattern around its reference position induces a displacement of the minimum that can be approximated by an ellipse centred on its reference position. In this section we establish a transfer matrix M that gives the position of the strange quad minimum as a function of the displacement of the electrode, for one known electrode. Knowing this analytical expression for all electrode types is necessary to investigate if a linear dependency exists for the displacement of the minimum when several electrodes are displaced simultaneously. If this is the case, the position of the eight strange quads minima can be used to solve a linear system of equations to find the positions of the electrodes in the deformed octupole characterising the elliptical trajectories of each SQ minimum depending on the displaced functionalised electrode. The eccentricity corresponds to µ = l/L, and the scaling to g = L/r p where r p is the radius of the circular displacement of the electrode, L and l are the long and short axis of the ellipse respectively. The angle of the ellipse is taken in the angle between the long axis of the ellipse and the x-axis of the SQ-frame (see body of the text). To generate these values the electrodes are displaced on circular pattern centred on the reference position in the perfect octupole and r p is incremented from 5.5 µm to 159.5 µm by steps of 5.5 µm. The eccentricity, scaling parameter and tilt angle of the ellipse are averaged over all fitted trajectories for each r p (29 values).

trap (see. (5.3.4)).

The transfer matrix M required to pass from the position of the displaced electrode to the position of the minimum in the strange quad pseudo-potential is the product of three matrices: a scaling matrix G that uses the scaling parameter g, a matrix A for the transformation of the circular shape of the electrode displacement pattern into an ellipse, and finally a permutation matrix P to ensure the correspondence of the points between the trajectories, as discussed around fig. (5.15). This is true for all electrode types, and when a type needs to be specified, it is as an index to the matrix (ex. M B for electrode type B). The final system writes:

∆m x ∆m y = M. ∆p x ∆p y so that M = G.A.P (5.20) 
• The scaling matrix G depends only on the scaling parameter g = L/r p such as:

G = g 0 0 g (5 .21) 
• The elliptization matrix A depends on the tilt angle and the eccentricity of the ellipse so that a = cos(α e ), b = sin(α e ) and µ = l/L:

A = b 2 + µa 2 ab(1 -µ) ab(1 -µ) a 2 + µb 2 (5.22)
• The permutation matrix P is necessary to ensure the correspondence between the points of the input and output trajectories. This can be understood as making the correspondence between a position of the displaced electrode on its circular pattern and the associated position of the minimum on the ellipse (see fig. Up to now we have worked in the strange quad labelled U for 'up'. As mentioned in the introduction and illustrated on fig. (5.3) there are eight possible strange quads in an octupole trap. In each strange quad the electrodes are labelled T,S,E. . . according to the pattern orientation. For example, the B electrode is always the addressed, isolated one. The strange quads are named, for differentiation purpose, after the position of the T electrode in the pattern. They are: U, UR, R, RD, D, DL, L and LU for 'up', 'up-right', 'right', 'right-down'. . . An illustration of the strange quads denomination according to the position of the top electrode is given on fig. (5.22). Now what is important is that our study is of course valid in any strange quad, given the frame is appropriately chosen. The displacements ∆p and ∆m need to be given in the frame oriented 'along' the strange quad pattern. This strange quad frame rotates with the orientation of the strange quad, and can be defined as an orthogonal frame where the y-axis is oriented along the direction defined by the symmetry axis of the strange quad. The strange quad U is a particular case where the orientation of the frame is the same as the 'conventional' octupole frame, but in the other cases a rotation matrix is needed to account for the frame rotation of the strange quads. In order to always work in the conventional octupole frame and to make these rotations transparent, it is possible to work with modified matrices M sq in each strange quad that accounts for these frame rotation:

M sq = R -1
sq .M.R sq (5.24) where R sq is the conventional rotation matrix of angle θ , chosen depending on which strange quad sq we are applying the matrix to : (U, 0), (UR, -π/4), (R, -π/2)... To distinguish the minima displacements the corresponding strange quad is indicated as an index (ex. ∆m UR for the displacement of the minimum in the UR strange quad)). The final system writes:

∆m sq = M sq .∆p (5.25)

A last point to outline to avoid mistakes when working in any strange quad is that the proper matrix needs to be applied to the proper electrode according to the functionalisation of the electrodes in the strange quad. In U the matrix M T is applied to electrode 4, but in UR M T is applied to electrode 5 and so on. With these redefined matrices, the matrix approach can be applied to any strange quad in the octupole structure, with the displacements of the electrodes and minima defined in the octupole (x, y) frame.

In this section we have constructed a matrix that links the position of one displaced electrode to the induced strange quad displacement. This matrix is valid in the context of the approximation where the ellipse fit is considered accurate. The matrix is invertible and the position of the electrode can be obtained by solving the inverse system ∆p = M -1 .∆m. In the next section we investigate whether this concept can be generalised to an octupole trap where several electrodes are displaced, i.e. whether it is possible to construct a general transfer matrix taking as an input the positions of all the strange quads minima, to get as an output the real positions of the electrodes in the deformed octupole trap.

5.3.4

Idea for a direct diagnostic of the positions of the electrodes in a deformed octupole trap

The objective of this section is to explore the possibility of generalising the previous results to the case where not only one, but all electrodes in the octupole are displaced from their reference position. In the case of one known displaced electrode, there is a bijection between the position of the electrode and the position of the minimum. We are interested in seeing if, in the case of several displaced electrodes, their contribution in terms of displacement of the minimum in the pseudo-potential sums linearly. If this is the case, the position of the minimum depends analytically on the position of the eight electrodes of the octupole. Since one position of the minimum can correspond to several configuration of electrodes, as can be gathered from the intersection of the curves on fig. (5.14), it is not enough to conclude on which electrode(s) is or are displaced. The idea is then to use the positions of the minima in the pseudo-potential of the eight strange quads in the octupole trap to write a system of equation establishing a direct correspondence between the positions of the eight pseudopotential minima and the positions of the eight electrodes. This diagnostic would make a compensation of the structural defects of the octupole trap trivial, by applying the same kind of correction protocol that was presented by Pedregosa et al. in [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. It is interesting to note how this approach is fundamentally different from the one presented in chapters 3 and 4: here the focus is to know the positions of the electrodes, where the other method is only concerned with the resultant perturbation in the potential as the exact positions of the electrodes remain unknown through the correction protocol. The method presented in this section ended up not being successful, and the reasons why are discussed in the following. We proceed by making a couple hypothesis about the linearity of the problem and study the results of the application of the system with these hypotheses. If the results had shown promise we would have proceeded to verify each hypothesis properly, but given the inadequate results this was not judged necessary.

In sec. (5.3.3) it was shown that, to a fitting approximation, a bijective dependency between the position of the strange quad pseudo-potential minimum and the position of one given displaced electrode could be established. Now if we make the hypothesis that the contribution of several displaced electrodes on the position of the minimum sums linearly, the displacement of the strange quad minimum writes for U: where ∆p k is the displacement of electrode k to its reference position, and M sq type the transfer matrix associated to the electrode type : B,R,W... in the frame of the appropriate strange quad (sq). The problem would then write as a 16-equation linear system linking the positions of the electrodes to the positions of the minima. If the system is invertible this means the position of the electrode can be calculated from the position of the experimentally accessible minima in the pseudo-potential of the strange quad. It can be written in matrix form as :

∆m U = M U B .∆p 0 + M U R .
M LU C M LU B            
(5.28)

where a compact notation was adopted. It is to be well understood the M matrix is a 16 by 16 matrix where each 'sub-matrix represents a bloc of four matrix elements. The input and output vectors are of size 16.

The determinant of the matrix is numerically evaluated to be non-null and according to the coefficients the matrix is of rank 16, therefore the matrix is technically invertible. With the sub-matrices M B , M C , M W ... constructed from the ellipses fit where r p =110 µm, det(M) ≈ 10 -11 . This is very small, but the product of the matrix (M) with its inverse equals the identity if the coefficients of the product are rounded at 10 -14 . Now that we have constructed our matrix, we are interested in verifying and quantifying the results of its application. In the following we evaluate the system response in the direct : min = M.pos, and inverse : pos = M -1 .min cases. For the direct case the positions of the minima simulated by the CPO software (min cpo ) are compared to the positions of the minima calculated by the resolution of the matrix equation (min mat ). For the inverse system, the positions of the electrodes calculated from pos mat = M -1 .min cpo are compared to the positions of the electrode taken as an input of the CPO simulation. The error of the system is taken to be the difference between the calculated and simulated positions (pos matpos cpo , min matmin cpo ). The chosen test cases are simple ones involving only one displaced electrode to start with. The electrode number 4 is (a) vertically displaced acc. to ∆p 4 = (0, 104.5) µm, and (b) horizontally displaced acc. to ∆p 4 = (0, 104.5) µm. In case (a) the symmetry of the system is preserved, whereas case (b) breaks the mirror symmetry. Even if the two test cases are trivial, they suffice to expose the limits of the approach. To evaluate the impact of the precision of the input vector on the results of the matrix, several pixel sizes were tested to define the vector min cpo : d px = 4, 2, 1, 0.5 µm and for case (b) 0.25 µm as well. The pixel size of the CPO simulation can be understood as the precision with which the minima can be positioned in the experiment.

Let us start with case (a). The vector min cpo corresponding to the position of the strange quads minima calculated by CPO for d px = 0.5 µm is given in table. (5.6) for reference purpose. The resolution of the direct system min mat = M.pos cpo gives the same positions with a pixel size of tolerance for the explored resolutions (d px = 4, 2, 1, 0.5 µm). Now the error on the positions of the electrodes as calculated by the inverse system pos mat = M -1 .min cpo depends on the precision of the input vector min cpo (that is the pixel size). The results of the inverse matrix operation for different pixel sizes are given in table .(5.7) in terms of minimal, average and maximal error between the calculated and target position of the electrodes. For the lowest tried resolution (d px = 4 µm) the biggest error in terms of distance to the real position of the electrode is as large as 71 µm, that is 68% of the displacement on electrode 4, and 1.3% of the (r 0 + r d ) distance in our trap. This is as big as the error induced by the mechanical mispositioning of the electrode. For better resolutions the error between the calculated and simulated positions is reduced, and for d px = 0.5 µm it is as low as 6 µm in the worst case, which is about 0.1% of the (r 0 + r d ) distance and a much better performance.

x (µm) y (µm) . Evaluation of the distance between the positions of the electrodes taken as an input to the CPO simulation and the position calculated by solving the inverse system pos mat = M -1 .min cpo (see text). δ in f and δ max correspond to the shortest and biggest distance between the real and calculated positions of the electrodes, and δ is the average distance for all eight electrode positions.

∆m
The min cpo vector corresponding to case (b) is given in table. (5.8). As for the previous example, the direct and indirect resolutions of the system are evaluated. In the direct case the worst error is about 2.25 µm on the positions of the minima. In the inverse case the results are summarized in table.(5.9) for varying pixel sizes d px = 0.5, 0.25, 0.2 µm. Where in the previous example a pixel size of 0.5 µm was sufficient to have the error on the calculated positions of the electrodes below 0,1% of the (r 0 + r d ) distance, in this case and for the same resolution it is still as large as 40% of this distance. Moreover, this error is not reduced when the pixel size is diminished and no convergence is expected for a further increase in precision. . Evaluation of the distance between the positions of the electrodes taken as an input to the CPO simulation and the positions calculated by solving the inverse system pos mat = M -1 .min cpo (see text). δ in f and δ max correspond to the shortest and biggest distance between the real and calculated positions of the electrodes, and δ is the average distance for all eight electrode positions.

These two trivial examples show the demanding requirements of the system, and especially of the inverse system, in terms of the precision of the input vector. The results from case (a) show a slight error in the position of the strange quads pseudo-potential minima lead to a large error on the calculated position of the electrode, and this even in the simplest case where only one electrode is displaced. The second example hints at another problem: in this case increasing the resolution does not lower the error on the positioning of the electrodes. It is then possible that the error comes from the approximate evaluation of the matrix coefficients, and the ellipse approximation used to find the coefficients. Among the approximations was an averaging process for the calculation of the coefficients of the matrix, and we have neglected the drift of the ellipse centre. The impact of this approximation is more important in case (b) because the displacement of the electrode places the minima in area more sensitive to a small error in the fit. It was already mentioned in sec.(5.3.1) how the elliptic shape of the minimum displacement meant that for minima close to the short axis of the ellipse a slight error in the positioning of the minima induces a large error on the associated r p and the positioning of the electrode. This error therefore does not come from the precision of the positioning of the minima, that could be overcome experimentally, but from the very approximation required to build the matrix.

More tests could have been undertaken, with varying amplitudes of the displacement or with several electrodes displaced at the same time. Nevertheless, this trivial example was considered enough to deem the method inappropriate to the resolution of our problem. It is to be noted the hypothesis about the linear sum of the contribution of each electrode on the position of a strange quad minimum has therefore not been tested, as the question was rendered obsolete by the previous observations.

Conclusion

In this chapter we have investigated the properties of a deformed quadrupole pattern, named strange quad, that is present eight times in the octupole structure. It was estimated from numerical simulations that this deformed structure could trap ions, and the position of the minimum in the pseudo-potential is experimentally accessible by fluorescence imaging of the ions. The eight distinct positions of the minima of the strange quads pseudo-potential are an interesting tool for the evaluation of some of the trap properties. In the absence of a DC deconfining component, this position is defined by the trap structure and independent of the applied RF potential on the electrodes.

The strange quads can be used to evaluate some global properties of the octupole trap, that are required for the execution of the compensation protocol discussed in chapter 4. First the orientation of the octupole frame to the observation frame can be deduced from the position of the eight strange quad minima. Then, dependencies of the radius and centre of the circle that can be fitted on the positions of the eight strange quad minima with the ratio ω z /ω u were discussed. By applying various ω z /ω u ratio and collecting the corresponding positions of the strange quad minima it is possible to deduce the offset between the symmetry centre of the DC and RF components.

A direct diagnostic method for the positions of the electrodes relying on the positions of the eight strange quads minima was investigated, but the complete protocol proved a failure. This diagnostic would have been of great interest in the context of correcting the trap defects, as extensively discussed in chapters 3 and 4. It was shown that it is possible to establish a correspondence between the position of an electrode and the position of a strange quad minimum in the trivial case where only one known electrode is displaced. For more complex situations the resolution of the system gets too sensitive to errors in the positioning of the strange quads minima and to approximations in the correspondence protocol and this method was abandoned for experimental purpose.

The strange quads are a fundamental tool for the collection of information required in the execution of the compensation protocol proposed in chapters 3 and 4. The orientation of the frame to the observation axis and the offset between the RF and DC component especially motivates the use of these strange quad patterns.

Conclusion

Radio-frequency multipole traps are of interest for frequency metrology because of their built-in reduction of the micro-motion amplitude for a given spatial distribution of the ions. The Jet Propulsion Laboratory (JPL-NASA) has been working toward building a stable2 micro-wave mercury ion clock for deep space exploration, and a main source of instabilities in such clocks is the variations in the second order Doppler effect induced frequency shift, that depends on the number of trapped ions. The theory of multipole traps guarantees a reduction of these instabilities with 1/(k -1) [START_REF] Champenois | Des atomes chargés et des photons : quelques phénomènes observables en piège radiofréquence[END_REF] for a multipole with 2k electrodes. Multipole traps can also be used for experiments involving colder samples. There it was observed that the spatial distribution of the trapped charges was not regular, with pockets of higher density in a 22-poles trap [START_REF] Otto | How can a 22-pole ion trap exhibit ten local minima in the effective potential?[END_REF] and even clustering of the ions in an octupole trap [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. This inhomogeneities affect the micro-motion distribution all over the sample. This motivates an experimental assessment of the interest of using multipole traps of higher order for the reduction of the micro-motion induced second-order Doppler effect frequency shift. Our team works with laser cooled 40 Ca + ions and our setup consists in a two-part linear trap with a quadrupole and an octupole section, with the possibility to shuttle the ions between the sections. The intended measurement is a comparative study of the velocity distribution of the ions in the quadrupole trap and the octupole trap. The focus of this thesis has been to address a number of issues concerning the octupole, to prepare the setup for the measurement.

The first issue treated the shuttling of the ions between the quadrupole section and the octupole section. In a first version of the trap, transport was only possible from the quadrupole section (where the ions are created) to the octupole section, and once the ions had been moved to the octupole trap they could not be moved back to the quadrupole section. Transport protocols are implemented by imposing varying voltages on end cap DC electrodes delimiting the trapping zones in the axial direction. A combination of design choices for the octupole trap were responsible for this failing : the DC electrodes were positioned too far apart, and an important screening of their potential by the RF electrodes resulted in a weak static component at the position of the ions. To improve this situation the cut of the DC electrodes was optimised, and the octupole section was split in two trapping zones. This division allows for transport protocols to be implemented between the short section of the multipole trap and the quadrupole section, while keeping the possibility to trap and study big ion clouds in the second, longer trapping zone. During the thesis the vacuum chamber was opened to implement the modifications, before being returned to its high vacuum (P vac = 10 -9 mbar) operating value. Preliminary transport tests were conducted and showed transport of ions from the quadrupole section to the short octupole trap. The rate of transport is very low and optimisation work on the transport functions need to be done to account for the new geometry of the octupole trap, as well as the screening factor of the DC potential.

The trapped ions in our setup are laser cooled down to a few tens of millikelvins. Fluorescence imaging of the ions in the first version of the octupole trap have shown that they cluster in three distinct ion clouds. Studies have shown that the presence of local minima in the pseudo-potential of the multipole can be attributed to a break in the radial symmetry of the RF electrodes [START_REF] Pedregosa-Gutierrez | Symmetry breaking in linear multipole traps[END_REF]. The team has demonstrated the possibility to restore the symmetry of the potential by applying adapted voltages on the RF electrodes of the trap [START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. With correction of the potential's asymmetries in mind, the impact of the trap structural deformations in the pseudo-potential was studied. We have shown than within the scope of a perturbative approach the mispositioning of the trap electrodes results in extra terms of lower order in the potential of the octupole. The three local minima in the pseudo-potential can be associated to quadrupole and/or dipole terms. The deformations of the octupole structure were then decomposed into 5 classes according to their inner symmetries. The compression and shearing classes respect a form of centre-symmetry and result in the addition of a pure quadrupole term in the octupole development. The sliding and splitting classes break the centre-symmetry and result in a dipole perturbation. The last class is the rotation, which does not result in a lower order perturbation but scales the main term. Within each class, parameters were identified to characterise the deformation and weight the associated perturbation accordingly. In an experimental octupole trap, all the deformation classes are involved at the same time. A general equation for the potential of a deformed octupole is thus proposed. It relies on the parameter set identified from the individual classes to weight the perturbations, and account for coupling effects between the deformation classes when angular deformations are involved. The approach is tested and validated for mispositioning of the electrodes up to 4% of the distance of the electrodes to the trap centre 3 . The study is valid for a whole range of trap geometries with circular electrodes through a set of calibration coefficients. A code was developed that allows for the identification of the individual weights of the lower order terms in the time dependent potential from the position of the local minima in the pseudo-potential. For few enough cold trapped ions, the particles are expected to accumulate in the minima of the pseudo-potential, and we suppose the relative positions of the minima are accessible from the fluorescence imaging of the ions. This last step allows us to diagnose the perturbations in the RF potential from the position of the ions alone. This analysis is of great interest in the scope of restoring the symmetry of the potential, as it allows to bypass the identification of the position of the electrodes, which are not experimentally accessible, to diagnose the potential perturbations. Moreover, working directly with the potential deformation instead of the trap deformation reduces the complexity of the problem from 16 to 5 unknown parameters. The idea behind the compensation of the structure induced perturbations in the potential is to generate the counter-perturbation by tuning the RF potentials applied to the electrodes. A custom RF supply was built to this purpose by Stahl Electronics that enables remote computer controlled tuning of the voltages on the RF electrodes by ± 3% of the applied base voltage, with a resolution of about 10 -4 on the tuning voltage. Tuning patterns were identified in the perfect octupole trap to generate controlled quadrupole and dipole perturbations in the potential. Several tuning patterns are available to the same end result in terms of generated perturbation, and we have selected the two patterns that allows for the best spread of the tuning load on the involved electrodes in the quadrupole and the dipole case. These two patterns were thoroughly calibrated for the application of custom controlled perturbations in the potential, which allows the user to have complete control over the relative positions of the local minima in the pseudo-potential. In a deformed octupole trap, the correction protocol consists in : (1) Identifying the perturbations from the positions of the local minima, and (2) apply the correct counter-perturbation by tuning the electrode voltages. Simulations have shown complete compensation is not achieved by a direct application of this compensation scheme. This is due to the structural deformations of the octupole trap affecting the exactitude of the applied compensation potential. This error can be considered small in first approximation, and the correction protocol can be iterated to achieve compensation of the potential asymmetries. Simulations have shown a residual irreducible limit of 40 µm in the distance of the minima to the centre of the trap, and the associated local well depths were negligible in regard to the temperature of the ion cloud. Simulations have also shown that the optimal parameters for the execution of the iterative correction are a resolution of 10 -4 on the applied tuning voltages and a precision in the positioning of the minima at 4 µm (the pixel size in the simulations). In average, 5 iterations are required for the variation of the average distance of the minima to the trap centre to be below the pixel size. The performances of the iterative correction protocol when applied to the RF component of the potential are adequate, with few experimental steps to be undertaken to achieve correction through iteration.

A realistic approach to the confinement in RF linear traps requires to account for a DC deconfining component in the radial potential. In the perfect octupole this term delocalises the central minimum to a ring, where the ions are expected to organise in a circle for few enough trapped particles. In a deformed octupole trap, the DC deconfining component is a source of concern for two reasons. First, it limits the iterative correction protocol by affecting the shape, number, and positioning of the minima in the pseudo-potential. In average, it is still possible to iterate the correction protocol two or three times before the number of detected minima is less than three and the code cannot identify the perturbations 4 . An optimal compensation requires a minimal DC component, but the compensation results remain valid if the trapping voltages are changed to conduct the measurements. Second, there can be an offset between the effective centre of the octupole potential and the centre of symmetry of the DC deconfining term. This can be due to a mechanical mispositioning of the end cap electrodes, but can also be a consequence of the iterative correction protocol that does not force the merging of the local minima in any point in particular. The compensated radial RF component of the octupole trap can have an offset in regard to the axis of the trap. This offset is a source of asymmetry in the total potential that has not yet been investigated. The execution of the correction protocol requires a couple global information about the trap. The most important thing is to position the minima in the frame of the octupole, and therefore to know the orientation of this frame to the experimental observation axis. It can also be of use to evaluate the effective inner radius of the deformed trap, and the ratio of the RF and DC amplitudes quantified by the frequency ratio ω u /ω z . Last but not least is the diagnostic of the offset between the centre of symmetry of the DC deconfining term and the RF component, which is the first step in compensating this offset. To this end a multi-purpose diagnosing tool was proposed, based on the addressing of the electrodes in the octupole trap in a deformed quadrupole pattern named strange quad. Addressing only four out of the eight electrodes is possible with our modified RF supply and experiment that has now individualised feedthrough for the addressing of the electrodes of the octupole trap. Because the strange quad pattern does not respect a centre symmetry, it occurs eight times in the structure. In a perfect radial arrangement of the electrodes it was analytically shown that the position of the pseudo-potential minimum in the strange quads can be used to evaluate the global rotation of the octupole frame to the observation axis, evaluate the ratio ω u /ω z and the effective inner radius of the trap r0 and characterise the offset between the DC and RF terms. These results were confirmed by simulations in our trap with circular electrodes. In a deformed octupole trap, simulations have shown the results of the perfect case can be applied through averaging on the data collected from the eight strange quads. This makes the strange quad into a powerful and novel characterisation tool of the global parameters of the trap, that complement the information collected from the positions of the local minima in the octupole pseudo-potential.

The heavy characterisation work that was required to propose this new correction protocol, combined with a late delivery of the modified RF source for the application of adapted voltages on the electrodes have delayed the experimental implementation of this work. We are only now starting to setup the new RF supply and the refinement of the transport protocol in the new octupole trap. Calibration of the tuning unit is the next step to be undertaken that will provide real numbers in regard to the tuning amplitude and resolution available when the device is plugged on our trap. In the light of these delays, no comparative measurement of the velocity distribution between the quadrupole and octupole traps has been yet undertaken. The short-term perspective of the experiment is the implementation of the iterative correction protocol, with mid-term perspectives covering the intended comparative measurement of the velocity distributions as well as the observation and study of the organisation of the cold ions in a compensated octupole potential.

Where the work presented in this thesis has been focused on compensating the perturbations in the octupole pseudo-potential, the reach of the results goes past this purpose. The analysis that proposes a decomposition of the perturbations in lower order terms according to the symmetries of the problem can probably be extended to multipole traps of higher order. The identification of the link between the structural defects and the perturbation weights can be bypassed if the subject of one's concern is the perturbation in the pseudo-potential rather than the structural deformations of the trap. The code that identifies the weights on the perturbations from the positions of the local minima in the pseudo-potential can then be adapted with little difficulty to work in any multipole trap. Another point of interest is the control of the positions of the local minima in the pseudo-potential, that is equivalent to a control over the positions of the ions for a low enough density and temperature of the trapped particles. The tuning patterns that have been identified to generate calibrated quadrupole and dipole perturbations in the pseudo-potential can be used to gain a full control over the relative positions of the local minima in the RF component of the pseudo-potential. Similar schemes can be envisioned in higher order multipole traps. It is to be noted the reach of this control is somewhat affected by the impact of the DC deconfining component in the total potential, but a proper choice of trapping parameters still leaves range for original arrangement of the local minima in the pseudo-potential.

Les propriétés de stabilité des pièges radiofréquence en font une technologie de choix pour la conception d'horloges micro-ondes à ions confinés embarquées pour les applications de navigation en espace lointain. Le principal effet limitant la stabilité en fréquence de ces horloges est le décalage en fréquence induit par l'effet Doppler du second ordre qui fluctue avec le nombre d'ions piégés. L'utilisation de pièges radiofréquence multipolaires dans la conception d'horloges micro-ondes est motivée par une réduction structurelle de la composante du mouvement des ions entraînée par le champ radiofréquence avec l'augmentation de l'ordre du champ multipolaire. Les réalisations expérimentales (NASA-JPL) d'horloges micro-ondes à ions confinés impliquant des pièges multipolaires d'ordre supérieur ont démontré un gain en stabilité, mais aucune mesure directe n'a encore été entreprise pour distinguer si ce gain est une conséquence directe du nombre d'électrodes dans le piège ou d'une optimisation globale de l'ensemble de l'installation. L'un des objectifs de l'expérience TADOTI est de réaliser une mesure comparative de la distribution de vitesse d'un nuage d'ion Ca+ refroidi par laser et piégé dans un piège quadripolaire et dans un piège octupolaire. Les observations d'échantillons froids ont montré une distribution spatiale non homogène des particules piégées avec un regroupement des ions dans des puits de potentiel locaux. Les simulations attribuent cette organisation à une rupture de symétrie dans le piège, induite par une erreur réaliste du positionnement des électrodes. Une condition préalable de la caractérisation de la distribution de vitesse est de rétablir la symétrie du potentiel dans l'octupole en ajustant la tension RF appliquée à chaque électrode. Cette thèse se concentre sur la description analytique des perturbations du potentiel induites par la déformation structurelle du piège, et propose un protocole de caractérisation et de compensation des perturbations, basé sur la localisation des ions refroidis par laser dans le piège. Ces outils peuvent être utilisés pour contrôler entièrement la position radiale des trois nuages d'ions parallèles dans l'octupole.

Mots cléfs: Ions piégés, Métrologie des fréquences, Refroidissement laser, Effet Doppler, Piège radiofréquence, Octupole.

Abstract

The stability properties of radio-frequency traps make them a technology of choice for the design of embedded microwave ion clocks for deep space navigation applications. The main effect limiting the frequency stability of such clocks is the frequency shift induced by the second order Doppler effect which fluctuates with the number of trapped ions. The use of radio-frequency multipole traps in the design of microwave clocks is motivated by a built-in reduction of the radio-frequency driven motion of the ions with the increase of the order of the multipole field. Experimental realizations by NASA-JPL of ion clocks involving higher order multipole traps have demonstrated a stability gain, but no direct measurement has yet been undertaken to clarify wherever this gain is a direct consequence of the number of electrodes in the trap or from a global optimization of the whole setup. One of the objectives of the TADOTI experiment is to conduct a comparative measurement of the velocity distribution over a laser cooled Ca+ ion cloud trapped in a quadrupole and an octupole trap. Observations of cold samples have shown an inhomogeneous spatial distribution of the trapped particles with clustering of the ions in local potential wells. Simulations attribute this organization to a symmetry breaking in the trap, induced by realistic mis-positioning of the electrodes. A prerequisite for the velocity distribution characterization is to restore to symmetry of the potential of the octupole trap by tuning the RF voltage applied to each electrode. This thesis focuses on the analytical description of the potential perturbations induced by the structural deformation of the trap, and proposes a characterization and compensation protocol of the perturbations, based on the localization of the laser-cooled ion in the trap. These tools can be used to create any configuration of three parallel ion clouds in the octupole trap.

Keywords: Trapped ions, Frequency metrology, laser cooling, Doppler effect, Radio-frequency trap, Octupole trap.

  ) où 2n est le nombre d'électrodes RF du multipole et N ions /L le nombre d'ions par unité de longueur. La variation de fréquence induit par l'effet Doppler du second ordre est plus faible pour les multipôles d'ordre supérieur pour une variation donnée du nombre d'ions, ce qui a motivé le choix d'un piège multipolaire pour le prototype d'horloge micro-onde du JPL.

FIGURE 1 :

 1 FIGURE 1: Schéma des quatre niveaux d'énergie inférieurs du 40 Ca + .

FIGURE 2 :

 2 FIGURE 2: Représentation schématique du piège double de TADOTI (nouvelle version). Le piège consiste en un quadripôle et un octupole linéaire, chacun divisé en deux zones de piégeage. Les longueurs sont en millimètres. La figure supérieur montre une vue latérale des pièges, le long de l'axe z et la figure inférieur montre une vue frontale des électrodes avec les tensions appliquées.

FIGURE 3 :

 3 FIGURE 3: Détail de la découpe des électrodes DC. Gauche: ancien design ( κ = 3.56.10 -3 ), droite: nouveau design ( κ = 8,75.10 -2 ).

FIGURE 4 :

 4 FIGURE 4: Pseudo-potentiel de l'octupole pour deux cas simples de perturbation ajoutée (a) terme quadrupolaire avec a 1 = 0, 1, a 2 = a 3 = a 4 = 0, et (b) terme dipolaire avec a 3 = -0, 1, a 1 = a 2 = a 4 = 0, pour un piège r 0 = 4 mm.

FIGURE 5 :

 5 FIGURE 5: Positions des minima dans le pseudo-potentiel pour sept cas d'octupoles déformées. Dans chaque cas, l'amplitude de l'erreur est de 2% de la distance (r 0 +r d ), soit 110 µm et la direction du déplacement de chaque électrode est aléatoire. Sur la figure sont tracées simultanément les positions des minima dans les 7 cas. Les résultats CPO sont les points colorés, la même couleur indiquant les 3 minima d'une même géométrie. Les croix noires sont les positions des minima correspondants donnés par l'approche analytique. La correspondance en termes de positions des minima est bonne à la taille de pixel (4 µm) pour ces 7 cas.

FIGURE 6 :

 6 FIGURE 6: Positions des minima du pseudo-potentiel dans le plan radial pour chaque étape du protocole de correction itératif. 10 étapes ont été appliquées sur la même structure (2% d'erreur aléatoire sur la position des électrodes). Le panneau de droite est un zoom sur la région centrale du panneau de gauche. Les points noirs correspondent à la position des minima à la fin de la dixième itération du protocole.

3 .

 3 Detection of the excited population in |2 by induced fluorescence detection. The discharge lamp is used again to excite the atoms into the upper electronic state of the optical transition, and the induced fluorescence is proportional to the population of |2 at the end of stage 2.

FIGURE 8 :

 8 FIGURE 8: Atomic levels involved in the 40, 5GHz mercury ion clock.

FIGURE 1 . 1 :

 11 FIGURE 1.1: Schematic of a Paul trap. Reprinted from [21].

FIGURE 1 . 3 :

 13 FIGURE 1.3: (a) First four stability domains of the Mathieu equation solutions in the (a u , q u ) parameter plan (greyed areas). (b) Stability domain overlap for the x (black) and y (red) solutions. Reprinted from [29].

FIGURE 1 . 5 :

 15 FIGURE 1.5: Illustration of the radial cross section of an octupole.

FIGURE 1 . 6 :

 16 FIGURE 1.6: Left : cut of a calculated pseudo-potential with Ω/2π = 3.325 MHz, ω z /2π = 100 kHz, V r f = 300 V and r 0 = 4 mm, along the x axis of the frame (full red line). The black dashed lines correspond to the corresponding cuts of the RF and DC components. Right: corresponding pseudo-potential map, in logarithmic scale to enhance the contrast. The darker areas correspond to the lower points in the pseudo-potential.

FIGURE 1 . 7 :

 17 FIGURE 1.7: Pictures of the ion cloud taken in the quadrupole section of the experiment, in different thermodynamic states : (a) gas (b) liquid (c) liquid/crystal (d) Coulomb crystal. Reprinted from [44].

FIGURE 1 . 8 :

 18 FIGURE 1.8: 1000 calcium ions in the pseudo-potential of a linear octupole trap. The temperature of the ions is controlled by Doppler laser cooling, and the Doppler limit for the temperature is reached in all three directions in space. The structure is composed of three centred tubes, with different colouring for differentiation. Reprinted from [29].
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 19 FIGURE 1.9: Atomic levels involved in the 40, 5GHz mercury ion clock.

FIGURE 1 . 10 :

 110 FIGURE 1.10: Scheme of the four lower energy levels of a 40 Ca + ion.

FIGURE 1 . 11 :

 111 FIGURE 1.11: Schematic representation of the TADOTI setup. DM: dichroic mirror; DL: diode laser; ECDL: extended cavity diode laser ; SHG : frequency doubling by second harmonic generation ; iCCD : intensified CCD camera ; PM : photomultiplier ; PC : monitoring computer. Modified from [65].

FIGURE 1 . 12 :

 112 FIGURE 1.12: Schematic representation of the first design of the double trap in TADOTI. The left section is a linear RF quadrupole split in two trapping zones by a DC electrode, and the right section is one RF octupole trap. The lengths are in millimetre. The upper panel shows a side view of the traps, along the z-axis and the lower panel shows a front view of the electrodes with the applied voltage configuration.

FIGURE 1 . 13 :

 113 FIGURE 1.13: SolidWorks side view of the vacuum chamber, and detection optics. Courtesy of D. Guyomarc'h.

FIGURE 1 . 14 :

 114 FIGURE 1.14: Atomic levels implied in the photoionisation of the neutral calcium 40.

FIGURE 2 . 1 :

 21 FIGURE 2.1: Schematic of the DC electrode in the quadrupole section of TADOTI (in grey) in the radial plan, with the RF electrodes represented in blue and red. The electrode is a slab of thickness 2 mm (see fig.(1.12)).

FIGURE 2 . 2 :

 22 FIGURE 2.2: Static component of the potential along the z-axis of the trap, for applied potential on the electrodes : V 1,2,3 = 1200 V and V 4,5 = 2000 V.The blue line corresponds to the total potential, and the red dashed lines to the individual potentials of electrodes 1 and 2 when the others are at 0 V so as to make the end-tail overlap visible.

FIGURE 2 . 3 :

 23 FIGURE 2.3: Calculated potential required to move the minimum of the potential well from the middle of PII to the middle of PIII acc. to eq.(2.5) (a) and real potential generated by the electrodes after normalisation (b) as a function of the normalised transport time. The black vertical line shows the transfer by the centre of the section limited by DC3 and DC4, that separatesthe two steps in the transport sequence. Reprinted from[START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF] 

  (2.4), the electrode design can change from an annulus of any radius (left panel), to something penetrating between the electrodes in a flowery pattern (middle and right panel). The optimization of the screening factor depends on two geometric parameters (r h , r t ) that quantifies this behaviour, represented on fig.(2.5): the first one is the radius r h of the hole the RF electrodes pass through and the second is the radius r t of the inner circle cut out of the DC electrode. The parameters characterising the design of the original (and new) DC electrodes are recalled in the table.
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 2425 FIGURE 2.4: Radial cut section of the trap about the position of a DC electrode for different r t . Only one quarter of the trap is represented, as the geometry follows a centre symmetry. r h = 1.85 mm, (a) r t = 7.35 mm, (b) r t = 4 mm, (c) r t = 4.43 mm

FIGURE 2 . 6 :

 26 FIGURE 2.6: Peak values of φ z on the axis with different designs of DC electrodes. Left: r t = (r 0 + r d ) cos(pi/8) and r h varies from 1.7 mm to 2.143 mm by steps of 50 µm. Right : r h = 1.85 mm and r t varies from 4 mm to 7.35 mm. The potential is calculated in SIMION, with a grid resolution of 0.2 mm in all directions of space.

FIGURE 2 . 7 :

 27 FIGURE 2.7: Screening factor κ r f of the DC electrode on the RF pseudopotential for different designs of the DC electrode. r h is fixed at 1.85 mm and r t values span from 4 mm to 5.675 mm. The screening factor is calculated acc. to eq.(2.9).

FIGURE 2 . 8 :

 28 FIGURE 2.8: Illustration of the test positioning of the electrodes in the SIMION simulation for the evaluation of the gradient of the potential at the starting position of the ion cloud. The positions of the two black DC electrodes are fixed in z 4 = 8 mm and z 6 = 106 mm. The position z 5 of the red electrodes is variable.

FIGURE 2 . 9 :

 29 FIGURE 2.9: Potential gradient in z c = z 4 + (z 5z 4 )/2 for V 5 = 0 V for different spacing of the octupole trap electrodes in a test setup (see text). Spacings from 16 mm to 52 mm are explored, with a grid resolution in all direction of space of 0.2 mm. The parameters defining the DC electrodes cut are r h = 1.85 and r t = 4.43 mm.
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 210 FIGURE 2.10: 3D representation of the final trap design realised in Solid Works. The RF electrodes are in orange, the DC electrode of the octupole in green. Top : side view of the complete trap with the quadrupole section on the right and the octupole section on the left. The DC electrodes are mounted on rails to embed the trap in the vacuum chamber. The electrodes are isolated from the rail and spaced by ceramic, in yellow on all three images. Bottom : three-quarter view of the setup and the mounting. Courtesy of D.Guyomarc'h.

FIGURE 2 .

 2 FIGURE 2.11: 3D representation of the final trap design realised in Solid Works. Front view of the RF electrodes of the octupole (orange) passing through DC6 (grey). The RF electrode are fixed in the structure thanks to the represented ceramic (yellow), that is itself fixed on the DC electrode. A similar fixation exists on DC4. Courtesy of D. Guyomarc'h.
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 212 FIGURE 2.12: Picture of the full modified trap before embedding in the vacuum chamber.

FIGURE 2 . 13 :

 213 FIGURE 2.13: Detail of the mounting of the mounting of the RF electrode onto the structure. The RF are screwed into the ceramic from the side and fit into the arcs. Left: side view of the ceramics. Middle : front-view of the mounting of the ceramic on the DC electrode. Right : back-view, the ceramic imposes the distance between the RF and DC electrodes.

Fig.( 2

 2 .14) shows how the 8 RF electrodes of the octupole trap were individually wired with insulated copper (capton) to be connected to 8 feedthrough on the flange. The original (2+2) feedthroughs flange was replaced by a (8+2) feedthrough one to address the electrodes, as shown on fig.(2.15). The windows on the two flanges aligned with the axis of the trap were replaced by windows coated for high transmission of the 397 nm laser light, which corresponds to our cooling/fluorescence laser.
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 214 FIGURE 2.14: Picture of the individual wiring of the RF electrodes.

FIGURE 2 . 15 :

 215 FIGURE 2.15: Solid Work view of the new flange. The eight grouped feedthroughs are used to address the 8 electrodes of the octupole individually. The two bottom feedthroughs are unused. Courtesy of D. Guyomarc'h.

FIGURE 2 . 16 :

 216 FIGURE 2.16: Image of the laser cooled ion cloud transported in PIII, in a crystal state. 8 to 9 ions can be counted.
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 11 Experimental observations of the local minima in the pseudo-potential of a perturbed octupoleLet us start this section by recalling previous experimental results about our octupole trap, in order to clarify the reasons for the apparition of the minima in the pseudo-potential and the characteristics of the three ion clouds. The experimental characterisation was conducted by Marius Kamsap during his PhD[START_REF] Kamsap | Horloge micro-onde à ions : analyse et transport d'un nuage d'ions dans un piège à plusieurs zones[END_REF].Position of the ions in the trapWithin the octupole trap, ions are observed through the laser-induced fluorescence on the resonance line at 397 nm, driven by the Doppler-cooling laser. The ions are observed from 'above the trap' by an objective positioned perpendicularly to the axial direction of the linear trap, that makes an image of the ions onto a camera. The directions are recalled on the schematics of the fig.(3.1). Measurement of the ions positions is done by a lateral translation of the objective along the x-direction, and in the case of the y-direction the ions are brought into focus by micrometric vertical displacement of the objective. This system allows us to locate the ion clouds in the radial plan thanks to three lateral positions and three associated depths. The positions of the ions are associated to the positions of the local minima in the pseudo-potential. Observation of ions in the first version of the octupole trap was conducted by Marius Kamsap during his thesis : the ions clustered in 3 clouds of different sizes, and we call min1 the position of the largest cloud and min3 the position of the smallest. You can see on fig.(3.2) that min1 and min2 are separated by a distance of 890 ± 5 µm and are in the same plan in terms of depth. min3 sits at a different depth in the trap and is distant from min1 of about 1103 ± 11 µm. Observation of the end tail of the ion clouds show they do not meet in their end.

FIGURE 3 . 1 :

 31 FIGURE 3.1: Left: lateral illustration of the octupole section of the linear trap. The z-axis is taken to be the symmetry axis. Right: radial plan of the octupole. The objective is aligned with the y-direction of the plan: the ions are observed 'from above'. In our octupole the inner radius of the trap is r 0 = 4 mm and the electrodes radius is r d = 1.5 mm.

FIGURE 3 . 3 :

 33 FIGURE 3.3: On this figure are represented simultaneously the positions of all 3 local minima in the pseudo-potential of a deformed octupole for 200 examples of deformed octupoles. In each case the octupole structure is characterised by (r 0 , r d ) = (4, 1.5) mm. The electrodes are displaced from their reference position by 2% of the (r 0 + r d ) = 110 µm in a random direction, which corresponds to the mechanical precision assumed in our trap. The red discs correspond to the experimental positions of the minima found by M. Kamsap [44]. The potential are calculated with the CPO software and the positions of the minima in the pseudo-potential determined to the pixel size d px = 4 µm.

FIGURE 3 . 4 :

 34 FIGURE 3.4: (a) Dipole, (b) quadrupole, and (c) octupole isopotentials. The positive and negative equipotentials consist of two, four and eight surfaceswith an inscribed radius r 0 . Reprinted from[START_REF] Friedman | Fundamentals of ion motion in electricradio-frequency multipole fields[END_REF] 

  2 and V 2 polynomials, or of the 4 dipoles along the x, y, (x + y) and (xy) directions like illustrated on fig.(3.5).

FIGURE 3 . 5 :

 35 FIGURE 3.5: Schematic repartition of the octupole electrodes onto a (a) octupole set, (b) superposition of two quadrupole-sets and (c) superposition of 4 dipole-sets.

FIGURE 3 . 6 :

 36 FIGURE 3.6: Pseudo-potential shape for two simple cases of added perturbation (a) Quadrupole term with a 1 = 0.1, a 2 = a 3 = a 4 = 0, and (b) Dipole term with a 3 = -0.1, a 1 = a 2 = a 4 = 0, for a r 0 = 4 mm trap.

  (3.3.3) for more details).

FIGURE 3 . 7 :

 37 FIGURE 3.7: Shape of the pseudo-potential computed by CPO for octupoles with the same inner radius r 0 = 4 mm and same voltages applied on the electrodes (V r f = ± 100 V), but with different rod radii. The steepest well (red) has the largest electrodes (r d = 2 mm) where the flattest (blue) got the smallest ones (r d = 0.1 mm). The black dotted line corresponds to our setup dimensions (r d = 1.5 mm).

FIGURE 3 . 8 :

 38 FIGURE 3.8: Coefficient h 0 scaling the general equation vs the radius ratio r d /r 0 . The black crosses correspond to the direct results of the fit of the CPO computed cross section of the trap pseudo-potential by a 4 th order polynomial, as expected in an octupole. The dotted lines correspond to a polynomial fit of order 6 (red) and 4 (green). The 6 th order fit is slightly better on the end tails of the curve and corresponds to the expression of eq.(3.18).

  other perturbation (quadrupole, dipole) for any deformation of the trap, and allow us to code the {a 1 , a 2 , a 3 , a 4 } set according to the trap geometry. To get an intuition about what type of defect pattern is going to generate a quadrupole or a dipole perturbation, it is helpful to point out that the contributions have a different nature in terms of pseudo-potential symmetry: a quadrupole term keeps the centre-symmetry (as can be seen on the fig.(3.6) with the still present central minimum), where the dipole term adds a slope to the potential well. To better distinguish the origine of one or the other term, we shall refer to the 4 electrodes of the octupole aligned with the frame as the S-quadrupole subset (for straight) and to the 4 others that are at a 45°angle as the T -quadrupole subset (for tilted). These two subsets are represented on fig.(3.9) in respectively orange and green. The reader must not be confused into understanding quadrupole potentials are applied on the electrodes, as the S and T -sets only refer to geometric arrangements of the electrodes. Unless otherwise specified, the electrodes in the octupole are always addressed in a traditional fashion with alternating potentials on each consecutive electrode. Electrodes of the trap are numbered from 0 to 7 in a clockwise fashion with number 0 being affected to the bottom electrode in the 2D-plan. An associated set of (x k , y k ) with k ∈ [0, 7] references the positions of the electrodes in an arbitrary frame.

FIGURE 3 . 9 :

 39 FIGURE 3.9: Definition of the S and T -quadrupole subsets in orange and green respectively. The electrodes are numbered for reference purpose. The potentials applied on each subset have opposed signs.
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 310 FIGURE 3.10: Left: Schematic representation of a compression. Right: Typical arrangement of the minima in a compressed octupole with L S = -0.11 and a 1 = -0.09. The color scheme is in log 10 (Ψ 4 ) where Ψ 4 is the RF pseudo-potential, in order to enhance the contrast of the colormap.

FIGURE 3 .

 3 FIGURE 3.11: (a) Distance to the trap centre of the two outside minima vs the reduced compression parameter L S increased from 0 to 0.11 by step of 0.011. The black points are the results computed with the CPO software and the red points are calculated from the analytical equation eq.(3.21). The size of the error bar corresponds to the pixel size in the simulation, which is 3.64 µm. Trap inner radius r 0 = 4 mm and rod radius r d = 1.5 mm.

FIGURE 3 . 12 :

 312 FIGURE 3.12: Superposed representation of pseudo-potential cuts along the x and y-axis, computed by the CPO software (dotted line, black and red) and calculated from the surface equation (full lines, blue and yellow).

FIGURE 3 .

 3 FIGURE 3.13: Left: Schematic representation of a particular case of compression where L S/T = 0 and only the r0 parameter is modified. Right: Corresponding pseudo-potential. The color scheme is in log 10 (Ψ 4 ) where Ψ 4 is the RF pseudo-potential, in order to enhance the contrast of the colormap.

FIGURE 3 . 14 :

 314 FIGURE 3.14: Superposed representation of pseudo-potential cuts along the x and y-axis for a particular case of compression where L S/T = 0 and only the r0 parameter is modified. The defect pattern is as represented on fig.(3.13), with a 4% amplitude on the S-set. The dotted lines (black and red) correspond to the reference surface computed by the CPO software, the green full lines correspond to the case where the normalisation is kept as r 0 in the surface equation, and the yellow and cyan curves show how the normalisation by r0 allows for a better fit of the CPO reference.

  The coefficient h c has been evaluated in each point by comparing the positions of the minima from the CPO simulation to the positions of the minima issued from the surface equation. A range of h c parameters has been explored and those that resulted in a superposition of the minima to the pixel size were stored. This set of working h c parameters corresponds to the vertical error bar in fig.(3.15). An important feature of this coefficient is that it must depend only on the radius ratio (in the same fashion as h 0 ) and be decorrelated from the defect amplitude. To demonstrate this point we have repeated the h c collection procedure for two different defect amplitudes L S = (0.055, 0.11) corresponding to a 2% and 4% defect amplitude, plotted in blue and red respectively. Even if the two curves are slightly dissociated, the error bars overlap. The polynomial fit for h c in eq.(3.23) corresponds to a mean value between the respective fits of the two curves.

FIGURE 3 . 15 :

 315 FIGURE 3.15: Coefficient h c scaling the compression perturbative term vs the trap radius ratio r d /r 0 . The blue and red points correspond to a compression defect of respectively L S =0.055 and L S =0.11 which corresponds in the case of an octupole with (r d , r 0 ) =(1.5 mm, 4 mm) to a displacement of the electrodes involved in the compression of 110 µm and 220 µm (2% and 4% of the (r d + r 0 ) total length). The r d /r 0 error bar is due to the 4 µm pixel size of the simulated CPO surface. The h c error bar covers the different values that allow us to reproduce the positions of the minima within one pixel. The dashed lines are the best fitted polynomial curves.

FIGURE 3 . 16 :

 316 FIGURE 3.16: Left: Schematic representation of a shearing. Right: Typical arrangement of the minima in a sheared octupole with β S = 2°and a 2 = -0.098, β T = 0. The color scheme is in log 10 (Ψ 4 ) where Ψ 4 is the RF pseudopotential, in order to enhance the contrast of the colormap.

FIGURE 3 . 17 :

 317 FIGURE 3.17: Coefficient h h scaling the shearing perturbative term vs the trap radius ratio r d /r 0 . The blue and red points correspond to a shearing defect of respectively β T = 1°and β T = 4°. The r d /r 0 error bar is due to the 4 µm pixel size of the simulated CPO surface. The h h error bar covers the different values that allow us to reproduce the positions of the minima within one pixel. The dashed lines are the best fitted polynomial curves.

Sliding

  

FIGURE 3 . 18 :

 318 FIGURE 3.18: Left: Schematic representation of a sliding. Right: Typical arrangement of the minima in a slided octupole with y S l = 0.02 and a 1 = -0.0515. The color scheme is in log 10 (Ψ 4 ) where Ψ 4 is the RF pseudopotential, in order to enhance the contrast of the colormap.
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 319320 FIGURE 3.19: Position of two out of the three minima along the line over which they organise for small enough sliding of the electrodes set over the y-axis in the S quadrupole set. The reduced sliding parameter y T l is increased from 0 to 4 × 10 -2 by step of 4 × 10 -3 . The black points are the results computed with the CPO software and the red points are calculated from the analytical equation (3.31). The error bars correspond to the pixel size in the simulation, which is 4 µm. Trap inner radius r 0 = 4 mm and electrodes radius r d = 1.5 mm

FIGURE 3 . 21 :

 321 FIGURE 3.21: Left: Schematic representation of a splitting. Right: Typical arrangement of the minima in a splitted octupole with x 0 = 0.019, y 0 = 0.019 and a 2 = -0.003, a 3 = -0.031, a 4 = -0.031. The color scheme is in log 10 (Ψ 4 ) where Ψ 4 is the RF pseudo-potential, in order to enhance the contrast of the colormap.

  does not complexify too much the description. The principal scaling coefficient h p , shown on fig.(3.23), is given by: h p = +0.614 + 5

FIGURE 3 . 22 :

 322 FIGURE 3.22: Position of two out of the three minima along the line over which they organise for small enough splitting between the T and S quadrupole sets along the y-axis. The reduced splitting parameter y 0 is increased from 0 to 5.5 × 10 -2 by step of 5.5 × 10 -3 . The black crosses are the results computed with the CPO software and the red dots are calculated from the analytical eq.(3.34). The blue stars give the minimum position calculated with the corrected equation eq.(3.35). The error bars correspond to the pixel size in the simulation, which is 4 µm. Trap inner radius r 0 = 4 mm and rod radius r d = 1.5 mm
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 323324 FIGURE 3.23: Coefficient h p scaling the sliding perturbative term vs the trap radius ratio r d /r 0 . The blue and red points correspond to a splitting defect of respectively y 0 = 0.055 and y 0 = 0.11 which corresponds in the case of an octupole with (r d , r 0 ) = (1.5 mm, 4 mm). The r d /r 0 error bar is due to the 4 µm pixel size of the simulated CPO surface. The h p error bar covers the different values that allow us to reproduce the positions of the minima within one pixel. The dashed lines are the best fitted polynomial curves.
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 325 FIGURE 3.25: Schematic representation the angles as defined in eq.(3.37).
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 326327 FIGURE 3.26: Position in the radial plane of the three minima of the pseudopotential, computed by CPO (black cross) and by the analytical equation (red dots). The electrode position defects are described by a constant sliding effect within the S-quadrupole set, defined by y Sd S = -0.004, superposed to a compression within the same set, defined by L S scanned from 0.108 (minima label 1) to -0.111 (minima label 21) with step of size -0.011

FIGURE 3 . 28 :

 328 FIGURE 3.28: Radial pseudo-potential of an octupole deformed by a shearing+rotation combination, as calculated by the CPO software and parametrised by: β S = 2°, δ = 4°. The zoomed panel shows the position of the top minimum as predicted by the perturbation model in the case the θ angle in the R(θ ) matrix (eq.(3.42)) is defined as 2δ (blue) and δ (yellow). This last solution shows a distance between the simulation and the model of one pixel and corresponds to the W h definition in eq.(3.44).

  (3.29) and the value in our trap (r 0 , r d ) =(1.5 mm, 4 mm) is h ch 3.

FIGURE 3 . 29 :

 329 FIGURE 3.29: Coefficient h ch scaling the shearing perturbative term vs the trap radius ratio r d /r 0 (fixed r 0 = 4 mm and varying r d ). The blue and red points correspond to a compression defect of respectively L S = 0.055 and L S = 0.11. The vertical error is due to the 4 µm pixel size of the simulated CPO surface. The h ch error bar covers the different values that allow us to reproduce the positions of the minima within one pixel (4 µm). The dashed lines are the best fitted polynomial curves for each set and the black full line the equation chosen to fit the h ch parameter.

FIGURE 3 . 30 :

 330 FIGURE 3.30: Case of a shearing+splitting deformation. The shearing is fixed and characterised by β T = 4°, and the splitting varies from y 0 = 0 to 220 µm by steps of 22 µm. The corresponding positions of the minima in the pseudo-potential are plotted for three cases. The black crosses correspond to the CPO simulated case. The blue stars and the red dots correspond to the pseudo-potential calculated from the analytic equation, where the perturbation term W p is calculated acc. to eq.(3.34) and eq.(3.51) respectively. In the second case the expression is updated to account for the coupling between the shearing and the splitting terms.
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 331332 FIGURE 3.31: Positions in the radial plane of the three minima of the pseudo-potential, computed by CPO (black cross) and by the full analytical equation (red dots). The electrodes position defects are described by a fixed splitting effect defined by x 0 = 0.007, superposed to a compression within the T -quadrupole set, defined by L T = 0.55 and a shearing within the same set scanned from β T = 0.088 (minima label 1) to β T = -0.088 (minima label 20) with step of size -0.009

  (3.33) and an example of fit in terms of the positions of the minima in the 2D-plan is given on fig.(3.34) for random defects, with an amplitude of 2% of the (r 0 + r d ) distance. On this figure are plotted simultaneously the positions of the minima in 7 such cases. The CPO results are the coloured dots, with the same colour indicating the 3 minima from one simulation. The black crosses are the positions of the corresponding minima given by the equation. The correspondence in terms of the positions of the minima is good to the pixel size (4 µm) for these 7 cases.

FIGURE 3 . 33 :

 333 FIGURE 3.33: Diagram corresponding to the successive step of the validation protocol of the analytical equation for any octupole geometry. The protocol takes as an input the positions of the electrodes in the (x, y)-frame and calculates the parameter set and the coefficients in the perturbation term. The positions of the minima in the pseudo-potential are collected for comparison with the CPO simulations.

FIGURE 3 . 34 :

 334 FIGURE 3.34: Positions of the pseudo-potential minima for seven cases of deformed octupoles. In each case the defect amplitude is 2% of the (r 0 + r d ) distance, that is 110 µm and the direction of the displacement of each electrode is random. On the figure are plotted simultaneously the positions of the minima in all 7 cases. The CPO results are the coloured dots, with the same colour indicating the 3 minima from one geometry. The black crosses are the positions of the corresponding minima given by the analytical approach. The correspondence in terms of the positions of the minima is good to the pixel size (4 µm) for these 7 cases.

FIGURE 3 . 35 :

 335 FIGURE 3.35: Statistics of the distances d, dN between the analytical approach as conducted in fig.(3.33) and the CPO simulations in case of traps with random positioning of the electrodes. The five statistics correspond to five tests batch. In each batch the amplitude of the defect is fixed, and the directions of the displacements of the electrodes random. The five batches correspond to the following defect amplitudes: 27.5, 55, 110, 165, 220 µm, spanning from 0.5% to 4% of the (r 0 + r d ) distance. The two used metrics used to quantify the results are d acc. to eq.(3.57) and d N acc. to eq.(3.58).

  (3.57)) for all 9 possible pairings before selecting the smallest value. These steps are illustrated on fig.(3.36) and this function is referred to as DCMT (Distance of the Calculated Minima to the Target). When this function is involved, it is pictured as a blue box (see fig.(3.37) and fig.(3.38)).
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 336 FIGURE 3.36: Schematic representation of the DCMT function. It evaluates the distance of the trial {b} to the target {a} coefficient set via the positions of the minima in both pseudo-potential. It takes as an input the position of the target minima, the applied potential on the electrodes V r f , the inner radius of the trap r 0 and the trial coefficient set {b}. The output is the average distance between the minima acc. to eq.(3.57).

FIGURE 3 . 37 :

 337 FIGURE 3.37: Schematic representation of the CA(1) function (the number between parenthesis indicates the concerned b coefficient). It takes as an input the trial set {b} and a parameter α and the output is an updated parameter set closer to the target set. The function generates three parameter sets with and incremented, decremented and unchanged value of the coefficient of interest. The function DCMT is applied on each set and the set with the smallest distance to the target minima is taken to update the trial set {b}.

FIGURE 3 . 38 :

 338 FIGURE 3.38: Schematic representation of the GSACS function. It takes as an input the trial set {b} and a parameter γ and the output is an updated parameter set closer to the target set. The function generates three parameter sets with and upscaled, downscaled and unchanged value of the all the coefficients. The function DCMT is applied on each set and the set with the smallest distance to the target minima is taken to update the trial set {b}.

FIGURE 3 . 39 :

 339 FIGURE 3.39: Schematic representation of the whole code process (see text). On the left are represented the inputs of the code, and on the right the output. The middle box corresponds to the loop inner steps. The exit condition is that the distance d i calculated at the iteration i between the target minima and the one calculated from the coefficient set {b} i be smaller than the pixel size d px . The codes relies on sub functions represented as coloured box and detailed, for CA() in fig.(3.37) and GSACS in fig.(3.38)

FIGURE 3 . 40 :

 340 FIGURE 3.40: Upper panel : comparison between the output coefficients {b} calculated by the code and the real coefficients {a} used to generate the surface. Three pixel sizes were tested : d px = 2 µm (red), 4 µm (blue) and 8 µm (green). For each pixel size, 50 test cases were executed with values for the {a} coefficients randomly picked in the [-0.1, 0.1] interval. There are 4 points by case corresponding to the difference between the target coefficient set {a} and the one calculated by the code for each coefficient of the set (a 1b 1 , . . . ). Lower panel : distance between the target minima and the minima in the pseudo-potential generated by the estimated coefficient set {b}. The same simulations as in the upper panel were used.

FIGURE 4 . 1 :

 41 FIGURE 4.1: Relative variation of the maximal tuning voltages V k as a function of the mispositioning amplitude on the electrodes. The two curves correspond to different radius r χ (in unit of r 0 ), with δ r χ = 6 µm, for the comparison area given as an input to the minimization protocol[START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Reprinted from[START_REF] Champenois | Etude d'un piégé multipolaire pour la métrologie des fréquences[END_REF].

FIGURE 4 . 2 :

 42 FIGURE 4.2: Potential depth of the additional minima as a function of the error on the applied compensation voltages. The three curves correspond to different radius r χ (in unit of r 0 ), with δ r χ = 6 µm, for the comparison areagiven as an input to the minimization protocol[START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF]. Reprinted from[START_REF] Champenois | Etude d'un piégé multipolaire pour la métrologie des fréquences[END_REF].

  (4.1.1)), they opted to control the position of the bottom of the confining well by tuning RF voltages on the electrodes. The tuning was done by hand where we have opted for a remote control in the case of our setup. The basic principle is illustrated on fig.(4.

FIGURE 4 . 3 :

 43 FIGURE 4.3: Illustration of the basic principle behind moving the ions with respect to the geometric centre of the trap. The curves illustrate the rfpotential at two different times in the rf-cycle (out of phase by π). a) Ions in the minimum of the quadrupole potential at the geometric centre. b) Ions moved with respect to the geometric centre by application of a static dcpotential into a region of large micromotion amplitude. c) Ions moved with respect to the geometric centre by lowering the rf-amplitude on one electrode with respect to the other. Reprinted from [88].

fig.( 4 . 4 )

 44 fig.(4.4) [88].

FIGURE 4 . 4 :

 44 FIGURE 4.4: Schematic of the rf resonant circuit. Each electrode is represented by a capacitance C t . Adjustment of the load on each electrode can be achieved by adding series and parallel capacitances C s and C p (see dashed box). L is the inductance of the transformer. Reprinted from [85].

  (4.5).

FIGURE 4 . 5 :

 45 FIGURE 4.5: Bloch diagram of the device. The electrodes are numbered from 1 to 8 instead of 0 to 7. Reprinted from [89].

FIGURE 4 . 6 :

 46 FIGURE 4.6: Graph showing the effect of variation of the 8 DC control voltages on the 8 output amplitudes; curves are slightly shifted vertically for better visibility. Note that the AC output voltages (peak peak) are 1000x times higher than the DC-Monitor amplitude, with about 1% scaling error.Reprinted from[START_REF]Tuning Unit TFQ 1-8. Electronic Amplitude Adjustment for Ion Traps 8-channel device[END_REF] 

FIGURE 4 . 7 :

 47 FIGURE 4.7: Sensitivity/crosstalk table for an applied tuning of 45% of the tuning range (change of the control voltage from +75 V to +400 V), at 2.62MHz and a 1640 V pp amplitude on the electrodes.[START_REF]Tuning Unit TFQ 1-8. Electronic Amplitude Adjustment for Ion Traps 8-channel device[END_REF] 

FIGURE 4 . 8 :

 48 FIGURE 4.8: Schematic representation of the possible implementations of a quadrupole term U 2 in the potential characterised by b 1 > 0 by applying tuning voltages δ + v and/or δ - v on the electrodes.

FIGURE 4 . 9 :

 49 FIGURE 4.9: Red cross: positions of the pseudo-potential local minima generated from eq.(4.8) for b 1 coefficients spanning from 0 to 0.1 with steps of 0.01. Black dots: same minima in the simulated perfect octupole trap with an added voltage δ S v on the electrodes according to eq.(4.11). The resolution of the grid in both cases is d px =1 µm.

  .53) that converts mechanical mispositioning into the {a} coefficient set. If the exact opposite coefficient b 1 = -a 1 is created via. tuning of the electrode voltages, which corresponds to applying δ S v = 5.687 V, the minima in the resulting pseudo-potential are still split (distance superior to the pixel size d px = 4 µm). The exact coefficients required to compensate the traps defects and merge the minima (to the pixel size) are (a) b 1 = 0.04482 and (b) b 1 = 0.04500. These translate in terms of potential for V r f = 100 V to (a) δ S v = 5.631 V and (b) δ S v = 5.653 V. The error induced by the structure in regard to the expected b 1 and δ S v values is respectively 1% and 0.6% for (a) and (b).

FIGURE 4 . 10 :

 410 FIGURE 4.10: Schematic representation of the possible implementations of a dipole term along the y direction in the potential by tuning the RF voltages by δ v , δ v on specific electrodes.

FIGURE 4 . 11 :

 411 FIGURE 4.11: Red cross : position of the minima in the pseudo-potential generated from eq.(4.8) for b 3 coefficients spanning from 0 to -0.1 with steps of -0.01. Blackdots : corresponding minima in the simulated perfect octupole with an added voltage x δ v applied on the electrodes following eq.(4.12) plugging and according to eq.(4.14) dependency. The resolution of the grid in both cases is d px =1 µm.

FIGURE 4 . 12 :

 412 FIGURE 4.12: Positions of the minima in case (a) (left) and case (b) (right) after correction is implemented according to a strict 'combined' tuning pattern. See text for details.

FIGURE 4 . 13 :

 413 FIGURE 4.13: Red crosses: positions of the minima in the pseudo-potential generated from eq.(4.8) for a {b} set coefficients following the dependency : {0.4(0.1j), 0.2 j, -0.1(0.1j), 0.2 j} with j spanning from 0 to 0.1 with steps of 0.01. Black dots: corresponding positions of the minima for the simulated perfect octupole trap with the calculated RF voltages V k acc. to eq.(4.21) and eq.(4.22). The resolution of the grid in both cases is d px =1 µm.

Fig.( 4

 4 Fig.(4.14) shows a practical example of a correction applied according to this protocol in an octupole trap with a random displacements of the electrodes with a norm of 2% of the (r 0 + r d ) distance. The minima start with an average distance to their barycentre d = 830 µm and are, as expected, brought closer to the centre but not merged as they are still distant of d = 250 µm after this first correction step. Since the distance of the minima to the barycentre is not linear with the size of the perturbation, this distance must not be interpreted as a failure.

FIGURE 4 . 14 : ( 1 )

 4141 FIGURE 4.14: (1) Initial positions of the minima in the radial plan of an octupole with randomised mispositioning of the electrodes of 2% of the (r 0 + r d ) with r 0 = 4 mm, r d = 1.5 mm. (2) Positions of the minima after the first step of the iterative correction protocol.

FIGURE 4 . 15 :

 415 FIGURE 4.15: Positions of the pseudo-potential minima in the radial plan for each step of the iterative correction protocol. 10 steps were applied on the same structure as in fig.(4.14) (2% random error on the position of the electrodes). The right panel is a zoom on the central region of the left panel. The black dots correspond to the position of the minima at the end of the tenth iteration of the protocol.

FIGURE 4 . 16 :

 416 FIGURE 4.16: Average distance d of the minima to their barycentre calculated from the position plotted in fig.(4.15), for each step of the iterative correction protocol.

FIGURE 4 . 17 :

 417 FIGURE 4.17: Refining of the {b} coefficient set characterising the correction voltages as a function of the iteration number in the case illustrated on fig.(4.15). The error bar is due to the code running α parameter for each coefficient, and is smaller than the dot size for steps >1.

  (4.2.2)). As discussed in sec.(4.3.1) and sec.(4.3.2),

FIGURE 4 . 18 :

 418 FIGURE 4.18: Refining of the {δ k } detuning on all k electrodes as a function of the iteration number. These are translated from the {b} coefficient set from fig.(4.17) acc. to eq.(4.22) and correspond to the positions of the pseudo-potential minima of fig.(4.15). The detuning is here expressed as a percentage of the base voltage V r f so that V k = V r f (1 + δ k )

FIGURE 4 . 19 :

 419 FIGURE 4.19: Average local minima depth (left) before and (right) after 10 iterations of the correction protocol are applied. The minima depth is defined as the pseudo-potential variation between the local maxima in the central area of the pseudo-potential and the local minima. The pixel size is d px =4 µm. The parameters for the protocol of identification of the perturbations are 10 -α end = 10 -6 and d < d px (see text).

  (4.20), where the average value of the distance d for all trials is plotted for successive iterations of the code. The dot corresponds to the average value of d over the ten cases, and the error bar covers the excursion of d for all cases.

FIGURE 4 . 20 :

 420 FIGURE 4.20: Average distance d of the minima to their barycentre, as a function of the iteration number of the compensation protocol. The different curves correspond to different resolution α end allowed on the coefficients {b} j : α end = 10 -3 (red), α end = 10 -4 (blue), α end = 10 -5 (green), α end = 10 -6 (magenta), α end = 10 -7 (black) and α end = 10 -8 (cyan). The size of the pixel is d px =4 µm and the error on the electrode placement is 2% of the (r 0 + r d ) distance.

FIGURE 4 . 21 :

 421 FIGURE 4.21: Average distance d of the minima to their barycentre, as a function of the iteration number in the compensation protocol. The different curves correspond to different pixel sizes, in µm: d px = 80 (red), 40 (blue), 20 (green), 8 (magenta), 4 (cyan), 2 (black). The error on the electrodes placement is 2% of the (r 0 + r d ) distance and the resolution on the {b} coefficients is 10 -6 . The dot represent the average value of d for the 10 cases and the error bar the spanning of the values for all cases.

FIGURE 4 . 22 :

 422 FIGURE 4.22: Average distance d of the minima to their barycentre, as a function of the iteration number. The different curves correspond to different scaling of the same mispositioning defect with 1%, 2% and 4% of the (r 0 + r d ) distance. The pixel size is d px = 4 µm and the resolution on the {b} coefficients is 10 -8 .

FIGURE 4 .

 4 FIGURE 4.23: Left: pseudo-potential map in an octupole with no structural defects, with the RF and DC component centred on the frame. The trapping parameters used are those of table.(4.4). Right: corresponding pseudopotential map in the same octupole, with the RF component centred on the frame and the DC component centred on (x g , y g )=(50,50) µm. Ψ is calculated acc. to eq.(4.3).

  FIGURE 4.23: Left: pseudo-potential map in an octupole with no structural defects, with the RF and DC component centred on the frame. The trapping parameters used are those of table.(4.4). Right: corresponding pseudopotential map in the same octupole, with the RF component centred on the frame and the DC component centred on (x g , y g )=(50,50) µm. Ψ is calculated acc. to eq.(4.3).

  (4.26) and (d) add the corrected RF and DC components, and collect the pseudo-potential variation on the probing ring defined by ( x, ỹ) (see fig.(4.24)).

FIGURE 4 .

 4 FIGURE 4.24: (a) RF pseudo-potential before iterative correction is applied (b) RF pseudo-potential after iterative correction is applied (c) absolute value of the DC deconfining potential Φ dc from eq.(4.26) and (d) Total pseudopotential.

  (4.25), where T acc. to eq.(4.24) is plotted along the circle of radius r = 400 µm corresponding to the ring minimum shown on the right panel. For the usual pixel size d px = 4 µm (in orange on the figure), the pseudo-potential shows irregularities corresponding to temperature variations as large as ∆T = 2.93 mK. Investigations have shown a dependency of these variations on the pixel size chosen to map the potential, with the variations going up to 10 mK for d px = 8 µm (blue), and reduced to less than 1 mK for d px = 2 µm (green). These are likely sampling artefacts, that could be addressed via a smoothing of the profile if one was concerned with thorough characterisation of the profile. As we stand, we shall keep in mind the amplitude of this numerical error and proceed by comparison of the profiles in the case of the deformed octupole.Simulations over 10 cases of perturbated geometry with random displacement of all RF electrodes with a norm of 2% of the (r 0 + r d ) distance (same batch as used in sec.(4.4.3)) have been realised. The potential values along the pseudo-potential minimum ring as defined above are given on fig.(4.26) where the upper panel shows the T plot for each case and the lower panel gives the average, upper and lower bound temperatures for each case. Over this batch the average temperature is of a few tenth to a few hundreds of millikelvins with the

FIGURE 4 .

 4 FIGURE 4.25: Left: pseudo-potential variations converted in temperature along the ring of radius r = 400 µm, in trap characterised by (r 0 , r d ) = (4 mm, 1.5 mm) in terms of geometry and Ω/2π = 3.5 MHz and V r f = 300 V in terms of applied RF potential. The applied static potential required to impose this radius is w z = 22.696kHz. The three curves are the temperatures along the ring for three different pixel sizes d px in the simulated CPO potential after correction, with a resolution of 10000 points each time for the annulus sampling: d px = 8 µm (blue), d px = 4 µm (orange), d px = 2 µm (green). Right : total pseudo-potential in a perfect octupole with r min = 400 µm, in trap characterised by (r 0 , r d ) = (4 mm, 1.5 mm) in terms of geometry and Ω/2π = 3.5 MHz and V r f = 300 V in terms of applied RF potential, and w z = 22.696kHz.

FIGURE 4 . 26 :

 426 FIGURE 4.26: Upper panel: temperature T along the pseudo-potential ring minimum of radius r for all cases but the number 8 for scaling reasons (see below). Lower panel (the right panel is a zoom of the left one) : peak variation of the temperature along the ring.

FIGURE 4 . 27 :

 427 FIGURE 4.27: Temperature equivalent to pseudo-potential variations per case, for different positions of the probing area ( x, ỹ). Same trial batch as in fig.(4.26). Blue: fitted radius r centred on (x g , y g ). Green: fitted radius r centred on frame (0, 0). Red : constrained radius r min and centred on barycentre (x g , y g ).

FIGURE 4 . 28 :

 428 FIGURE 4.28: Evolution of the trapping potential along 3 iterations of the correction protocol applied on the complete radial potential of the trap, with both the RF and DC components. This simulation corresponds to the case number 4 of the test batch used until now. The electrodes are mispositioned at 2% of the (r 0 + r d ) distance. The trapping parametres are the one used in [8] and recalled in table.(4.1). ω z /2π =22.696 kHz to ensure r min = 0.1 × r 0 .

  FIGURE 4.28: Evolution of the trapping potential along 3 iterations of the correction protocol applied on the complete radial potential of the trap, with both the RF and DC components. This simulation corresponds to the case number 4 of the test batch used until now. The electrodes are mispositioned at 2% of the (r 0 + r d ) distance. The trapping parametres are the one used in [8] and recalled in table.(4.1). ω z /2π =22.696 kHz to ensure r min = 0.1 × r 0 .

FIGURE 4 . 29 :

 429 FIGURE 4.29: Illustration of how the DC deconfining term masks the minima, on the simple example of a quadrupole perturbation of 2% of the (r 0 + r d ) distance. The trapping parameters chosen here are V r f = ± 920 V, Ω = 2.744 MHz. The DC deconfining component amplitude is changed by applying terms with varying ω z : 0 Hz (red), 50 kHz (green), 100 kHz (orange) and 200 kHz (blue). The bottom panel is a zoom on the central region of the top figure.

FIGURE 4 . 30 :

 430 FIGURE 4.30: Potential variations converted in temperature T for each of the correction steps in fig.(4.28). Blue: step 1, orange: step 2 and green: step 3.

  (4.31), the minima in the RF only component are brought at d 55 µm against about 250 µm in the case presented on fig.(4.28) and the temperature variation is here of a few millikelvins. The reduction in the variation of the potential is correlated with the improvement of the RF potential regularity, but also with the reduction of the DC component. One can refer to[START_REF] Pedregosa-Gutierrez | Correcting symmetry imperfections in linear multipole traps[END_REF] for details.

FIGURE 4 . 31 :

 431 FIGURE 4.31: Final pseudo-potential after the fourth iteration in the iterative correction protocol of the same potential as in fig.(4.28) but with different DC trapping parametres. The r min value is minimized by taking ω z = 4 kHz and V r f = ± 920 V.

  (4.2.2)).

FIGURE 5 . 1 :

 51 FIGURE 5.1: Addressing the (a) S and (b) T -quadrupole subsets in the octupole trap as quadrupole traps allows for the generation of a conventional quadrupole potential acc. to (a) Φ(x, y) = V r f (x 2y 2 )/r 2 0 and (b) Φ(x, y) = V r f 2xy/r 2 0 .

FIGURE 5 . 2 :

 52 FIGURE 5.2: Schematic of one example of RF polarisation applied on the electrodes of the octupole trap when addressed in a strange quad fashion (strange quad U see fig.(5.22)). The colour scheme corresponds to the applied potentials: in red +V r f is applied on the electrode, in blue -V r f . The grey electrodes are grounded. The number affected to the electrodes is bound to the frame.

FIGURE 5 . 3 :

 53 FIGURE 5.3: Schematic of all 8 strange quads that can be addressed in the octupole trap. The centre of the octupole is indicated by a diamond and the position of the strange quad minimum by a cross. In the perfect octupole structure the minima of all strange quads organise on a circle of radius 1.1 mm. The tags distinguish the strange quads when the symmetry is broken. U: 'up', UR: 'up-right'. . . .

FIGURE 5 . 4 :

 54 FIGURE 5.4: Cuts along the x and y directions of the pseudo potential in a trap wired as an octupole (black dashes) and as a strange quad (blue line). The cuts are realised as shown on fig.(5.5), that is, they pass by the position of the minimum of the potential in each case : (0,0) in the case of the octupole and (0,1.11) mm in the case of the strange quad. The pseudo-potentials are normalised to the maximum value of the strange quad pseudo-potential taken in (0,4) mm (position of electrode 4 surface).

FIGURE 5 . 5 :

 55 FIGURE 5.5: Pseudo-potential in a perfect octupole structure, where the electrodes are addressed (a) in a conventional fashion and (b) in a strange quad pattern, acc. to fig.(5.2). The potential applied on the addressed electrodes in each case is V r f = 850 V and the resolution of the CPO simulation is d px = 8 µm.

FIGURE 5 . 6 :

 56 FIGURE 5.6: Variations in the pseudo-potential of a strange quad as shown on the right panel of fig.(5.5) converted into temperature, for circle shaped probing areas of different radii and centred on the position of the minimum in the pseudo-potential (0 mm,1.11 mm). The trapping parameters are V r f = 100 V and Ω = 2.774 MHz. The probing radii are : 100 µm (blue), 200 µm (orange), 300 µm (green) and 400 µm (red).

FIGURE 5 . 7 :

 57 FIGURE 5.7: Cuts along the x (blue) and y (red) directions of the pseudo potential of a strange quad, in a frame centred on the position of the pseudo-potential minimum. The trapping parameters are V r f = 100 V, Ω = 2.774 MHz. The geometry is defined by r 0 = 4 mm, r d = 1.5 mm.

FIGURE 5 . 8 :

 58 FIGURE 5.8: General rotation angles evaluated from the positions of the electrodes (black), and the positions of the minima in the strange quads pseudo-potentials (red) for 10 simulated traps with electrodes displaced in random directions by 4% of the (r 0 + r d ) distance, that is 220 µm. The error bar comes from the pixel size d px = 4 µm.

FIGURE 5 . 9 :

 59 FIGURE 5.9: Displacement ∆y of the minimum in the pseudo-potential of the strange quad U as a function of the applied static deconfining potential characterised by ω z /2π in a perfect octupole trap. The different curves correspond to different fixed values of ω u : 168 kHz (green), 336 kHz (blue) and 503 kHz (red). The black full lines corresponds to the estimated positions acc. to eq.(5.14), and the black dashed line to the adjusted equation eq.(5.15). The dimensions of the simulated trap are r 0 = 4 mm and r d = 1.5 mm, and the pixel size is d px = 2 µm.

FIGURE 5 . 10 :

 510 FIGURE 5.10: Upper panel: changes in the radius of the circle defined by the position of all the strange quads pseudo-potential minima ∆r sq evaluated as a function of the applied static deconfining potential characterised by ω z . The applied RF voltage is V r f = 200 V. The coloured curves correspond to 10 perturbed octupole geometries (r 0 = 4 mm and r d = 1.5 mm), where the electrodes are displaced from their reference position by 220 µm in random directions. The error bar corresponds to the pixel size d px = 4 µm. The black line is the predicted fit by eq.(5.16). Bottom panel: data from the upper panel rescaled by (r 0 / r0 ) 4 where r0 is evaluated for each geometry.

FIGURE 5 . 11 :

 511 FIGURE 5.11: Changes in the radius of the circle defined by the position of all the strange quads pseudo-potential minima ∆r ps evaluated as a function of the applied static deconfining potential characterised by ω z . The octupole structure is perfect with r 0 = 4 mm and r d = 1.5 mm, the trapping parameters are V r f = 200 V (ω u = 336 kHz), Ω = 2.774 MHz. Two cases are plotted : (x 0 , y 0 ) = (0,0) (black dots) and (x 0 , y 0 ) = (200 µm,0) (red dots). The pixel size is d px = 4 µm.

FIGURE 5 . 12 :

 512 FIGURE 5.12: Position of the centre of the fitted circle to the position of the strange quads pseudo-potential minima x c in a configuration where the centre of symmetry of the DC deconfining term (x 0 , 0) is displaced from the geometric centre of the perfect octupole trap. x 0 varies from 0 to 0.6 mm by steps of 50 µm. The simulation is conducted for V r f = 200 V i.e. ω u = 336 kHz, with two axial frequencies : ω z = 100 kHz (blue) and 200 kHz (red) and a pixel size d px = 2 µm. The predicted values acc. to eq.(5.9) correspond to the black dashed lines. The full black lines correspond to the adjusted equation eq.(5.18)

FIGURE 5 . 13 :

 513 FIGURE 5.13: Affectation of the name tags to the electrodes addressed in the strange quad fashion. In orange are the electrodes addressed with a potential ±V r f and in grey are the grounded electrodes. The tags are independent of the frame and correspond to a functionalisation of the electrodes in the asymmetric strange quad. The approximate position of the minimum in the pseudo-potential is indicated by the black cross.

FIGURE 5 . 14 :

 514 FIGURE 5.14: Displacement of the strange quad pseudo-potential minimum when one electrode is displaced in a circular pattern centred on its reference position and of radius r p = 110 µm. The different curves correspond to different displaced electrodes : T (blue), S (orange), E (red), C (purple) and B (green).

FIGURE 5 .

 5 FIGURE 5.15: (a) : Displacement of the electrode on a circle of radius r p = 110µm centred on the reference position in the perfect octupole. (b) to (f) : Associated displacement of the strange quad pseudo-potential minimum when the displaced electrode is : T (b), B (c), S (d), E (e) and C (f).The displacements are given in the conventional (x, y) frame as the study is conducted in the strange quad U. In our octupole (r 0 = 4 mm, r d = 1.5 mm) the reference position of the U strange quad minimum is (0,1.11) mm and the pixel size for each case is given in table.(5.2).

FIGURE 5 . 16 :

 516 FIGURE 5.16: Left panel: displacement of the electrode. Right panel: superimposed displacements of the strange quad pseudo-potential minimum in the case where the displaced electrodes are P and S. The conditions are the same as in fig.(5.15)

FIGURE 5 . 17 :

 517 FIGURE 5.17: Left panel: displacement of the electrode S for different applied r p , going from 5.5 µm to 159.5 µm by steps of 22 µm. Right panel: corresponding displacement of the strange quad pseudo-potential minimum. The colour scheme associates the electrode displacement to the corresponding minimum displacement.

  ). On fig.(5.18) is plotted the fitted ellipse to the strange quad minimum positions in the case the displacement of the electrode is conditionned by r p = 110 µm. The displacement is sampled in 192 points and the resolution of the pseudo-potential map is of d px = 400 pm. The fit is accurate to the pixel size in 166 cases and differs by one pixel in 26 cases, that corresponds to the farthest points of the ellipse to the centre. The fitted ellipse parameters, as well as the corresponding notations for the eccentricity, tilt angle and centre are summarized in table.(5.3).

FIGURE 5 . 18 :

 518 FIGURE 5.18: Trajectory of the strange quad pseudo-potential minimum when the electrode S is displaced along a circle of radius r p = 110 µm centred on the electrode position in the perfect octupole trap. In red is the ellipse fitted according to the Fitzgibbon approach [92], with the red star indicating the estimated centre of the ellipse.

FIGURE 5 . 20 :

 520 FIGURE 5.20: Drift of the fitted ellipse centre for each electrode type : (a) T , (b) B, (c) S, (d) E and (e) C. The drifts for the electrodes P, W and R are mirror symmetries about the y-axis of the S, E and C cases respectively. The resolutions are according to table.(5.2) and the size of the crosses correspond to the error bar due to the pixel size.

  (5.15) and fig.(5.16)). For example we know the electrode position ∆p = (55,0) µm corresponds to the strange quad minimum in ∆m (20,-4.4) µm, and the permutation matrix imposes this correspondence. The required angles β e for each electrode types were determined numerically and are summarised in

ABLE 5 . 5 :

 55 Angle for the concordance of the position of the points on the fitted ellipse to the input position of the electrode. See text. All matrices P, A and G are invertible and therefore so is M. It is possible to find the position of the electrode from the position of the minimum by applying: ∆p = M -1 ∆m. An example of the step by step transformation of the position of the electrode (following a circular pattern) into the position of the associated strange quad minimum (in blue) is shown on fig.(5.21). On panel (a) is represented in red the displacement of the electrode. On panel (b) the matrix P is applied onto the electrode displacement. On panels (c) and (d), the matrices A.P and G.A.P = M are respectively applied. In the end the correspondence between the position of the electrode and the minimum is accurately represented, with the matrix calculated transformation in red and the real positions of the minimum in blue. To make it perfectly clear the point by point correspondence is accurate, two associated positions are identified as points along the trajectories.

FIGURE 5 . 21 :

 521 FIGURE 5.21: Illustration of how the transfer matrix M = G.A.P that makes the correspondence between the strange quad pseudo-potential minimum displacement ∆m and the displacement of the electrode ∆p works. In blue is the CPO simulated position for the strange quad minimum when the S electrode is displaced on a circle of radius r p . On each panel is represented in red the application of a partial transfer matrix onto the ensemble ∆p of coordinates of the electrode position. The partials transfer matrix are: (a) Id, (b) P, (c) A.P and (d) G.A.P = M. The sampling of the fitted positions is the same as the CPO simulated one, and the dots represent the points number 0 and 10 in both cases. The superposition of the dots shows the correspondence of the fitted ellipse to the data point in terms of shape and values.

FIGURE 5 . 22 :

 522 FIGURE 5.22: Name of the different strange quads in the octupole trap according to the position of electrode T in each pattern, indicated by a triangle

  

  

  

  

  

  

TABLE 1 :

 1 Résumé des classes de déformation et des paramètres identifiés pour caractériser chaque classe.

TABLE 1 . 1 :

 11 Summary of the five transitions involved in the first four energy levels of the 40 Ca + ion. In bold are the transitions of interest in our setup. Γ/2π is the natural linewidth of the transition.

TABLE 2 .

 2 

1: Characteristic dimensions for the RF and DC electrodes design in the quadrupole and the octupole section. κ is the screening factor acc. to the definition of eq.(2.1).

TABLE 3 .

 3 

1: Summary of the defect class and parameter dependence.

TABLE 3 .

 3 2: Success rate of the code predicting the {a} coefficients pondering the perturbations from the positions of the minima in the resulting

pseudo-potential. It corresponds to the data of fig.(3.40). The last column gives the maximum error between the target and estimated minima for the 'successful cases' (d < d px ).

TABLE 4 .

 4 

	2: Individual tuning range for each channel, calibrated for a ca-
	pacitive load of approx 15 pF. Channels 1 to 8 adress in order electrodes 0
	to 7.

TABLE 4 .

 4 3: Tuning range and resolution of the octupole RF source, as per characterisation realised with 15 pF capacitors as a dummi for the trap electrodes, with Ω = 2.62 MHz and V r f = 820 V[START_REF]Tuning Unit TFQ 1-8. Electronic Amplitude Adjustment for Ion Traps 8-channel device[END_REF].

	Tuning range	± 3%
	Resolution	∼ 10 -4 %

  table.(5.1).

	Adressed strange quad x (mm) y (mm)
	U	0	1.11
	UR	0.787	0.787
	R	1.11	0
	RD	0.787	-0.787
	D	0	-1.11
	DL	-0.787 -0.787
	L	-1.11	0
	LU	-0.787	0.787

TABLE 5 .

 5 1: Reference position of the eight strange quads pseudo-potential minimum in the perfect octupole where the inner radius is r 0 = 4 mm and the electrodes radius is r d = 1.5 mm.

TABLE 5 .

 5 

	2: Resolution of the CPO simulation grids depending on the
	electrode type studied. Smaller displacement of the strange quad pseudo-
	potential minimum required higher resolution for an appropriate sampling
	of the position.

table . (

 . 5.5) and the P matrix writes:

	P =	cos(β e ) -sin(β e ) sin(β e ) cos(β e )	(5.23)
	Electrode type Angle β e
		T	0°B
			0°P
			160°S
			-20.0°W
			132°E
			-132°R
			-88.7°C
			88.7°T

  ∆p 1 + M U W .∆p 2 + M U P .∆p 3 + M U T .∆p 4 . . . (5.26) • • • + M U S .∆p 5 + M U E .∆p 6 + M U C .∆p 7

TABLE 5 .

 5 6: Displacement of the strange quads minima in the CPO simulated pseudo-potential in the octupole frame for one displaced electrode acc.to p 4 = (0,104.5) µm. The pixel size is d px = 0.5 µm.

	U	0.	99.	
	∆m UR	-61.	22.	
	∆m R	-3.5	-10.	
	∆m RD	7.	-3.	
	∆m D	0.	22.	
	∆m DL	-7.	-3.	
	∆m L	3.5	-10.	
	∆m LU	61.	22.	
	4	1	31	71
	2	1	15	30
	1	1	10	15
	0.5	0	3.5	6

d px (µm) δ in f (µm) δ (µm) δ max (µm)

TABLE 5 .

 5 

7: Results of test case (a)

TABLE 5 .

 5 8: Displacements of the strange quads minima in the CPO simulated pseudo-potential in the octupole frame for one displaced electrode acc. to p 4 = (104.5,0) µm. The pixel size is d px = 0.2 µm.d px (µm) δ in f (µm) δ (µm) δ max (µm)

		x (µm) y (µm)	
	∆m U	25.4	0.8	
	∆m UR	15.6	7.8	
	∆m R	1.2	6.2	
	∆m RD	3.4	-2.	
	∆m D	1.8	0.4	
	∆m DL	3.2	1.8.	
	∆m L	1.4	-6.4	
	∆m LU	16.6	-7.2	
	0.5	4	17	33
	0.25	4	18	42
	0.2	4	17	38

TABLE 5 .

 5 

9: Results of test case (b)

Almost. This little thingy at the end, involving writing it all down well and proper, it doesn't count.

L'idée de notre protocole de compensation des perturbations dans le potentiel radiofréquence induites par la déformation structurelle de l'octupole est de générer les contreperturbations appropriées en réglant les potentiels RF appliqués aux électrodes. Des motifs de réglage du potentiel des électrodes ont été identifiés dans un octupole parfait pour générer des perturbations quadripolaires et dipolaires contrôlées dans le potentiel. Plusieurs motifs de réglages sont disponibles pour obtenir le même résultat final en termes de perturbation générée, et nous avons sélectionné les deux motifs qui permettent une moindre sollicitation en termes de changement du potentiel appliqué sur les électrodes concernées. Il est donc possible de générer des perturbations quadripolaire et dipolaire finement contrôlées, ce qui permet à l'utilisateur d'avoir un contrôle complet sur les positions relatives des minima locaux dans le pseudo-potentiel. La conversion entre le potentiel V k appliqué sur chaque électrode k, tel que V k = V r f + δ k v , et les coefficients pondérant les perturbations du potentiel s'écrit:
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Electron Tube Limited P30CWAD-07

The limit voltages available is

V.

The CPO software is a code that solves the Laplace equation through a boundary element method. It calculates the electromagnetic field according to the condition imposed by the surface of the electrodes.

Experiments with different number trapped ions, different trapping and cooling parameters...

A protocol is proposed in sec.(5.2.1) to experimentally evaluate the orientation of the frame.

The experimental limitation on α comes from the resolution of the tuning electronics. This issue is discussed in the next chapter.

We distinguish the {a} coefficient set resulting from perturbation in the potential of unknown origin, and the {b} coefficient set of controlled applied perturbations through the tuning of the electrode potentials.

A protocol presented in sec.(5.2) gives a lead on how to experimentally evaluate r0 but the proposed protocol is technically demanding. On the other hand approximating r 0 = r0 yields satisfactory results in this section.

One or the other needs to be fulfilled for the protocol to stop and return an estimated coefficient set {a}. See sec.(3.6.2) for details

d cal and q cal can be approximated to 1.

The specific occurences where only one or two minima are detected are the reason why we do not define the probing ring as the circle fitting the positions of the minima.

In the ideal case the minima ought to be merged but it was discussed in sec.(4.4.3) the protocol could pass a certain threshold and the minima are kept at a certain irreducible distance from each other, depending on the simulation parameters.

By compensated component we refer to the state of the potential at the end of the iterative compensation protocol, where we recall that a full restoration of the symmetry has not been achieved. See sec.(4.4) for details.

Short term stability : 10 -13 τ -1/2 ; long term : 10 -16 .

In our trap the mechanical tolerance is about 100 µm which places us in the 2% range for r 0 + r d = 5.5 mm.

The code that identifies the perturbations from the positions of the minima is modified to account for the DC deconfining component, but less than three positions make for an indetermination in the identification.
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The fundamentals of the protocol are not changed: the comparison function in the DCMT bloc (see fig. (3.36) in sec.(3.6.2)) is updated to account for the addition of a known DC deconfining term. A complete pseudo-potential is generated by adding the φ DC component from eq.(4.26) to the Ψ cpo 4 CPO computed pseudo-potential. The minima gathered from this pseudo-potential are compared to those generated by a calculated pseudo-potential Ψ sur 4 + φ DC where the potential Φ sur 4 results from the {b} coefficient set optimisation. The results obtained along the execution of the iterative correction protocol in this case is illustrated on fig. (4.28), where we have plotted the pseudo-potential maps in the trap for each iteration of the correction protocol. The correction protocol is executed with the positions of the minima in the total potential, represented on the right column. The left column shows the RF component only, for reference purpose. The upper panel corresponds to the initial situation with no applied compensation, and the following lines to the pseudo-potential after the first, second and third iteration of the correction protocol. At the third iteration, only 2 minima (black cross) are detected in the total pseudo-potential. This illustrates the limit of the correction protocol since it is a requirement of the code to have three minima positions to execute the routine and identify the perturbations and correction voltages to apply. In the associated RF only pseudo-potential, we can see the minima are still about 250 µm from each other, that is we are far from the threshold of 40 µm identified for the same operating conditions when applying the correction protocol to the pure RF component.

The presence of the DC deconfining term limits the performance of the compensation by masking some of the minima as they close on the middle of the trap and the deconfining contribution competes with RF contribution to compensate the local depth of the pseudopotential minima. This is illustrated on fig. (4.29) where the central minima of a quadrupole perturbation is 'compensated' by the DC deconfining term and therefore only two minima remain in the potential. The curvature is inverted at the position of the central minimum making it an instable equilibrium point.

If three pseudo-potential minima can be detected in the potential, the application of the iterative correction protocol is possible. The application of the correction protocol improves the regularity of the pseudo-potential as can be appreciated from the potential variation along the probing ring plotted on fig. (4.30). The equivalent temperatures are collected at each of the three steps shown on fig. (4.28), and are reduced from T max ≈ 5 K after the first step to less than 1 K at the end of the third step. These temperatures are important and difficult to appreciate, as two contributions to the potential asymmetries are coupled: first there is the part of the RF component that remains uncompensated, and then there is the problematic of the unknown offset between the centre of the RF and DC components. Despite the DC term limiting the performances of the correction, applying the correction protocol in the trap does yield an improvement in the regularity of the pseudo-potential surface. It is therefore interesting to verify if a set of trapping parameters can allow for more correction steps to take place to yield better end results. The correction can be operated with a different set of parameters for the RF and DC confinement than the ones chosen to conduct the metrology experiments. Once the correction coefficients are found they are valid for any confinement parameters. Therefore, it is interesting to investigate optimal trapping parameters to execute the correction protocol.

Ensuring the DC deconfining component is as small as possible ought to allow for a few more iterations before the DC term becomes dominant and the number of minima in the pseudo-potential is affected. The ideal protocol to determine how low a V dc voltage can be applied while still keeping the ions trapped in PIII would be to experimentally identify the V dc value where the ion cloud is lost. As the RF electronics was out of the lab for modification Chapter 5 The strange quad, an original way to wire the octupole trap for characterisation purpose As X k = x k + (x kx 0 )A, acc. to eq.(5.9), X kx c = (1 + A)x k . We can write the radius R sq as: R sq = (1 + A)r sq (5.11) where r sq is the radius in the pure RF pseudo-potential (ω z = 0):

The radius R sq is independent of the offset (x 0 , y 0 ) between the RF and DC terms. In the following we work with the variation of the radius with DC and define ∆r sq = R sqr sq for which the full expression is found by replacing A with its expression:

It is interesting to point this expression is independent of the offset of the RF and DC centres of symmetry, and only depends on the ratio ω z /ω u .

In the following we verify numerically the validity of eq.(5.5), eq.(5.9) and eq.(5.13) in the case of a perfect octupole structure, with and without an offset between the centre of symmetry of the RF and DC components. The extrapolation of these results to a deformed octupole trap is discussed.

Offset-free case : (x 0 , y 0 ) = (0, 0) Let us first consider the simpler case where the centre of symmetry of the DC term and of the perfect octupole trap are merged, that is : (x 0 , y 0 ) = (0, 0). In this case the centre-symmetry of the problem is kept, and it is sufficient to work with the position of one minima to fully characterise the dependency in ω z /ω u . Eq.(5.5) simplifies in the first order approximation in (ω 2 z /ω 2 u ) as:

We test this dependency by collecting the position of the minimum in the simulated pseudopotential of the strange quad named U with varying trapping parameters ω u and ω z . Given the symmetry of the strange quad U, the displacement of the minimum is characterised by ∆y k , since ∆x k = 0 (x k = 0, see table. (5.9), where ∆y k is plotted as a function of ω z /2π for three applied potentials on the RF electrodes : V r f = 100 V (green), 200 V (blue) and 300 V (red). The corresponding radial frequencies, fitted from the bottom of the potential well when ω z = 0 V are : ω u /2π = 168 kHz, 336 kHz and 503 kHz. The black lines correspond to the predicted curves acc. to eq. (5.14). Without surprise the predicted curves with eq.(5.14) deviate from the experimental points for bigger ω z /ω u ratio where the first order approximation is no longer valid. Nevertheless using the full expression from eq.(5.5) only worsen the fit. We gather from the plot that the correspondence between the theoretical previsions and the simulated positions is good up to ∆y k 100 µm which is the limit radius of the area around the pseudo-potential minimum that can be assimilated to a quadrupole potential. When the DC deconfining term brings the position of the minimum out of this area, the harmonic description of the potential (eq.(5. All individual trajectories for varying r p can be fitted in the same fashion by ellipses. An example of superimposed trajectories and fitted ellipses for varying r p is displayed of fig. (5.19). The fitted ellipses for varying radii have the same eccentricity and tilt angle: for r p varying from 5.5 µm to 159.5 µm by steps of 5.5 µm, µ = 0.184 ± 0.005 and α e =(-27.37 ± 0.05)°, which confirms the trajectories are indeed homotheties of the same ellipse. A scaling law can be established between the size of the ellipse and the amplitude r p of the electrode displacement. Let us take the length of the long axis L of the ellipse to characterise its size, we can then introduce a scaling factor g so that g = L/r p . Simulations over a range of r p values have shown the scaling factor is constant and its value in the S case is: g = 0.636 ± 0.004. Close observation of the position of the estimated centre of the ellipse (see right panel of fig. (5.19)) shows that it drifts away from the reference position of the strange quad pseudo-potential minimum as r p gets bigger. This drift can be considered small in the first approximation, and whether or not it must be accounted for depends on the application. The central drift for all electrode types is given on fig. (5.20) for reference purpose. It can be noted from this figure the drift is always along the direction defined by the tilt angle of the ellipse, and from the reference position toward the displaced electrode. Now if the same protocol is applied to all electrode types, the results are the same. The angle and eccentricity of the fitted ellipses depend on the studied electrode, and there is always a linear dependency of the size of the ellipse to the amplitude r p of the electrode displacement. The characteristics of the fitted ellipses for all electrode types are summarized