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Abstract

Structural health monitoring (SHM) can extend the operation of bridges beyond their original life

span, increase the safety between scheduled inspections, and allow for a prioritized inspection after

extreme events. One of the major challenges is to assess which damages can or cannot be diagnosed

(i.e., detected or localized), which is essential to evaluate the value of a SHM system before it is

installed, and to optimize the sensor placement accordingly.

This work develops a framework to predict the minimum detectable damage, i.e., the minimum

change in local structural design parameters that can reliably be detected based on changes in

global damage-sensitive features. The diagnosis is considered “reliable”’ if the probability of false

alarms is low and the probability of detection is high. Equivalently, a damage is “detectable”

if it is significant under consideration of typical uncertainties related to ambient excitation and

measurement noise and empirical safety thresholds. The approach requires vibration data from the

undamaged structure in combination with a numerical model, and is universally applicable to a

wide range of structures and damage-sensitive features. Secondly, a method is proposed to analyze

the minimum localizable damage. The results show that optimal localizability is a compromise

between high localization resolution, high detectability, and few false localization alarms. Thirdly,

a sensor placement strategy is devised that takes as input the desired minimum diagnosable damage

and optimizes the sensor layout and the number of sensors accordingly. The method allows one

to focus the global damage diagnosis on local structural components. Ultimately, the monitoring

of prestressing forces and support displacements is incorporated into the diagnostic framework, so

that they can be analyzed and distinguished from changes in material properties or cross-sectional

values.

Besides the performance evaluation, the framework is suitable for quality control of existing

instrumentation on real structures. Therefore, self-validation strategies are implemented to verify

the input parameters, to validate the theoretical assumptions, and to check its effectiveness based

on non-invasive tests using extra masses. The proof of concept studies based on a laboratory steel

beam and a cable-stayed bridge show promising results regarding the practical application of the

theoretical contributions.
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Lay Summary

The structural health of bridges can be analyzed through vibration measurements, where the pri-

mary goal is to detect the presence of damage. Damage localization is more challenging but can

be achieved by combining the records with information from computer models of the examined

structures. Before installing a monitoring system, it is crucial to know which damage scenarios can

be detected and how small the minimum localizable damage is. The classical approach is to run a

large number of numerical simulations (in the damaged state) or to perform elaborate laboratory

experiments. However, this work derives a theoretical formula to predict the minimum diagnosable

damage based on the undamaged state. This formula finds numerous practical applications: it

helps to analyze the minimum diagnosable damages, to find the optimal sensor layout, to perform

quality control checks on existing instrumentation, and to evaluate the value of structural health

monitoring in general.
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Chapter 1

Background

“A society grows great when old men plant trees

whose shade they know they shall never sit in.”

— Greek Proverb

1.1 Introduction

The province of British Columbia (B.C.) is located in one of the most seismically active zones

in Canada and the world, and is dependent upon lifeline infrastructure that bridges the coastal

rivers and the Pacific inlets. Many of the existing links are designed according to outdated design

standards, e.g., the George Massey Tunnel, or are nearing the end of their design basis service

life, e.g., the Lion’s Gate Bridge and the Second Narrow’s Bridge. Since these structures cannot

be economically replaced, or because of their iconic value, techniques for bridge monitoring are

developed so their operation can be extended beyond their original lifespans.

In the context of civil engineering structures, the process of implementing a damage diagno-

sis strategy is referred to as structural health monitoring (SHM). Due to the existing monitor-

ing system, this work focuses on vibration-based damage diagnosis. This process involves the

observation of the structural vibrations through permanently installed sensors, the extraction of

damage-sensitive features, and their subsequent statistical evaluation (Farrar and Worden, 2012).

The statistical evaluation includes a data normalization step that removes the effect that changing

environmental and operational variables (EOVs) have on the vibration behaviour of the structure

(e.g., wind, traffic loads, temperature fluctuations, icing). Some features are robust to changes

to EOVs (Balmès et al., 2008a, 2009; Viefhues et al., 2020), which is why they are not explicitly

considered in this thesis. The damage diagnosis involves four consecutive steps with increasing

complexity, i.e., damage detection, localization, quantification, and the prediction of the remain-

ing lifetime (Rytter, 1993). The real-time information on the health state increases the structural

safety between periodically scheduled bridge inspections, and allows for a coordinated emergency

response after extreme events, such as storms, tsunamis, or earthquakes. For the urban communi-

ties in the Southwest of B.C., the advancement of a bridge monitoring network (and with it, the

theoretical developments in SHM) are particularly relevant because there is a one out of ten chance

that a megathrust earthquake will strike within the next 50 years (Onur and Seemann, 2004). All

emergency response and evacuation services depend on a few lifeline bridges that will turn into the

most critical and vulnerable infrastructural links.
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SHM poses multiple challenges specific to civil engineering structures. Firstly, no site and

bridge are identical, so a structure-specific training of the damage diagnosis algorithm is required,

and findings from one bridge cannot straightforwardly be applied to another. Therefore, it is

challenging to assess whether certain damages can or cannot be detected and localized querying

the value of implementing a SHM system. Secondly, due to the sheer size of bridges, a dense sensor

layout cannot be realized and local monitoring approaches cannot be applied, so global monitoring

approaches are to be applied in combination with sparse sensor layouts that are strategically laid

out for successful damage detection. For instance, the Port Mann Bridge exhibits a length and

width of 2,020 m and 65 m, respectively, and 288 stay cables, but the acquisition and maintenance

costs for monitoring each cable using local damage diagnosis methods are unreasonable. Thirdly, a

lack of real vibration data from damaged structures is impeding the research progress, as bridges

are vital links in primary infrastructure and damaging them for research purposes, as it was done in

the case of the Z24 Bridge in Switzerland and the S-101 Bridge in Austria, can only be justified after

exceeding their life expectancy. Equally, continuous operation is imperative, and bridge closures for

dynamic or static testing are unacceptable. Consequently, the damage diagnosis is to be performed

during normal operating conditions and under unknown force excitation. With this in mind, this

thesis pursues the following objectives:

� Objective I: Build a universal framework, which is applicable to a wide range of structures,

damage-sensitive features, and anticipated damage scenarios, to calculate the minimum de-

tectable and localizable damage based on global vibration monitoring

� Objective II: Devise criteria that describe the detectability and localizability of damage and

incorporate them into a sensor placement optimization scheme for large mechanical systems

� Objective III: Implement self-validation strategies to test the applicability of the algorithm for

real structures, to verify input parameter settings, and to non-invasively test its performance

in the absence of damage

All considerations are made for a damage diagnosis method, called the asymptotic local (AL)

approach using the subspace-based residual as a damage-sensitive feature. This method allows for

an online evaluation with diagnostic capabilities including detection, localization, and quantifica-

tion. However, all developed tools are universal in that they can be applied to any damage-sensitive

feature with Gaussian properties. The tools are of great value to predict the minimum detectable

and localizable damage, to optimize the sensor placement, and to assess the value of SHM for

bridge monitoring in general. Ultimately, all methods are readily applicable to other civil engineer-

ing structures, such as buildings, offshore structures, defence systems, mining structures, or power

plants, as well as mechanical structures such as ships, aircraft, and spacecraft.
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1.2. Motivation

(a) Significant historic earthquakes (b) Relative seismic hazard map

Figure 1.1: Seismic hazard in British Columbia (B.C.) (Earthquakes Canada, 2020)

1.2 Motivation

The Southwest of B.C., including Vancouver and the densely populated Fraser River delta, is one

of the most seismically active regions in Canada (Clague et al., 1998). About 150 km off the coast

of Vancouver, a locking mechanism at the tectonic plate interfaces causes strain to be built up

continuously. Geologic evidence has shown that the strain is released abruptly every 300 - 700

years through subduction interface earthquakes with magnitudes of up to 9.0, with the last one

occurring in 1700 (Goldfinger et al., 2012). The relative movement between the two plates since

then amounts up to 12 m. Smaller, but still damaging earthquakes within the overlapping crust, or

deep down in the subducting slab are omnipresent reminders of the seismic threat. The four most

recent and significant ones are the 2001 Nisqually earthquake (M = 6.8), the 1965 Puget Sound

earthquake (M = 6.7), the 1949 Olympia earthquake (M = 6.7), and the 1946 Vancouver Island

earthquake (M = 7.3), see Fig. 1.1. At the same time, the seaport city is located on a peninsula

that is wedged between the Pacific Inlet, coastal mountains and the Fraser River delta, causing

the two sea bridges and four river bridges across the 400 m wide main arm of the Fraser River to

be among the largest and widest in North America (Svensson, 2013), see Figure 1.2. For example,

when the Alex Fraser Bridge was opened to traffic in 1986, it was the longest cable-stayed bridge in

the world. The Golden Ears Bridge was opened to traffic in 2009, and is still the longest extra-dosed

bridge in North America. Last but not least, with a width of up to 12 traffic lanes (65 m), the Port

Mann highway bridge was the widest bridge ever built at the time of its inauguration in 2012, and

is still the second longest cable-stayed bridge in North America.

1.2.1 Lifeline Bridges

The bridge monitoring in B.C. follows the lifeline monitoring philosophy. The highway bridge in-

ventory of British Columbia was evaluated in 2017 (Siddiquee et al., 2017) and the report concludes
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Figure 1.2: Major-route and lifeline bridges of Metro Vancouver, Canada

that 80% of all highway bridges are between 20 m and 100 m long and exhibit simple structural

systems, such as simply-supported or continuous multi-span girders. The numbers suggest these

bridges are the most relevant infrastructures; however, more than 68% of the population lives in

the Southwest of B.C., and among those, two out of three live in Metro Vancouver (Foster et al.,

2011), where merely 20.4% of all bridges are located, see Fig. 1.2. The seismic hazard is the greatest

in the coastal areas (Earthquakes Canada, 2020), but only 26.5% of all bridges are located here,

Figure 1.1b. Since the area with the highest population density overlaps with the most seismically

active zone, the bridge design code categorizes the safety requirements for bridges with respect to

their importance. On the bases of social, economic and security requirements, the seismic design

guidelines distinguish between three importance categories: (a) lifeline bridges, (b) major-route

bridges, and (c) other bridges. Major-route bridges are part of the municipal and federal disaster

response network and are required to facilitate emergency response and defence purposes. In the

event of an earthquake or tsunami, they are designated for use by emergency personnel only, and

they are not used for evacuation purposes. Lifeline bridges, on the other hand, serve the general

public. They are vital to the integrity of the local transportation network and the ongoing econ-

omy. Moreover, particularly large (and expensive) or iconic bridges can be declared lifeline bridges.

The importance category determines the design approach and the analysis requirements. More

importantly for monitoring applications, it also determines the performance levels, which describe

the accepted level of damage as well as the serviceability requirements after an earthquake has
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Prob. Lifeline bridges Major-route bridges Other bridges

in 50 a Lvl. Serviceability Damage Lvl. Serviceability Damage Lvl. Serviceability Damage

10% (1) Immediate None (2) Immediate Minimal (3) Limited∗ Repairable∗

5% (2) Immediate Minimal (3) Limited∗ Repairable∗ (4) Disrupted∗ Extensive∗

2% (3) Limited Repairable (4) Disrupted Extensive (5) Life safety Replacement
∗Optimal performance levels unless required by the Regulatory Authority or the Owner

Table 1.1: Performance levels for bridges as per (S6-19, 2019)

occurred. In the case of a megathrust earthquake (with a probability of exceedance of 2% in 50

years), lifeline bridges are required to remain operational with minor service limitations and re-

pairable damage. In contrast, non-essential bridges are expected to be closed to traffic and replaced

in the aftermath of a megathrust earthquake, refer to Table 1.1. The maintenance effort of bridges

correlates with bridge area, and an estimation yielded that 24.3% of all lifeline bridges in Metro

Vancouver are already cable supported (neglecting the approach viaducts, this number increases to

53.2%) and additional cable-stayed bridges are in planning. Three out of the six disaster response

bridges (major-route bridges) are cable-stayed and so are all bridges across the main arm of the

Fraser River—the main evacuation route.

To summarize, the efficiency of disaster response services and the safety of evacuation procedures

for a majority of the population depend on the structural health state of cable-stayed bridges, and

the ability to assess them rapidly. It would be invaluable for the city of Vancouver and B.C. to have

an algorithm in place that can reliably detect and localize damage, and rank the bridges according

to the severity of damage sustained during an earthquake.

1.2.2 Monitoring System

In 2009, the B.C. Ministry of Transportation & Infrastructure embarked on a program called

the British Columbia Smart Infrastructure Monitoring System (BCSIMS). The resulting online

platform makes available the data of two monitoring networks, including a strong motion network

with 162 accelerometers and a structural health monitoring network with 15 bridges and one tunnel

(Kaya et al., 2017). The instrumentation on the bridges is designed to capture the global vibration

behaviour, in order to record strong ground motions and their effect on both the structures and the

soil. All sensors record the structural response of the bridges (< 200 Hz) to ambient excitation.

The primary objective of the SHM network is to provide a post-earthquake damage assessment

module which assesses the structural health state in real-time, and thus, enable prioritized bridge

inspections and rapid deployment or repair measures (Kaya et al., 2017). The second objective is

the long-term monitoring for cost-efficient operation over the entire life span of bridges and schools,

see Figure 1.3. The monitoring data is supposed to supplement the regular bridge inspections, and

aid with the estimation of the remaining lifetime. The existing monitoring system is an excellent

database for research in the field of vibration-based damage diagnosis but no damaging events have

been recorded to date.
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Figure 1.3: Architecture of the B.C. Smart Infrastructure Monitoring System (BCSIMS)

1.2.3 Anticipated Damage

The development of an efficient SHM system requires knowledge of probable damage scenarios dur-

ing earthquakes. This section summarizes the findings from a literature review on post-earthquake

damage on the five cable-stayed bridges in Japan, Taiwan, and Canada, listed in Table 1.3. All

documented damage scenarios are illustrated in Fig. 1.4.
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Figure 1.4: Anticipated earthquake damage on cable-stayed bridges, see Table 1.2
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Component ID Location Failure
mechanisms

Damage symptoms Severity*

Deck D.1 Deck-pylon
connection

Flexural hinging
shear failure

Stiffness reduction, concrete spalling,
yielding and buckling of reinforcement

(5)

D.2 Deck-pier
connection

Shear failure,
and pounding

Buckling and cracking of transverse beams
and end beams, crushing of main girders and
the concrete slab in the longitudinal direction

(4)

D.3 Main girder Fatigue crack
rupture

Stiffness reduction of main girders due to
partial or complete rupture

(4)

D.4 Girder
connection

Fatigue crack
rupture

Stiffness reduction of steel joints due to
partial or complete rupture

(3)

D.5 Shipping lane Ship and debris
impact

Large deformation of main girders and
transverse floor beams, buckled stiffeners,
concrete spalling

(5)

Deck bearings B.1 At main pylon Pounding Crushed wind shoes, concrete spalling on
deck and pylons

(3)

B.2 At pier Pounding Crushed wind shoes (3)

Main tower T.1 Pylon-deck
connection

Flexural hinging
and shear failure

Stiffness reduction, concrete spalling,
yielding and buckling of reinforcement

(5)

T.2 Pylon shaft Flexural hinging
and shear failure

Reduced cross section due to concrete
spalling

(5)

T.3 Pile caps Plastic hinging and
cracking due to
rocking or fence
posting

Horizontal cracking of pile caps (4)

T.4 Entire tower Ground failure due
to settlements,
liquefaction,
landslides, etc.

Vertical pylon settlement up to 6 m,
residual horizontal displacements, or
rotations

(5)

Stay cables C.1 Cable anchors Tension failure at
the main span

Cross section reduction (due to strand
failure), or slacking of entire cables near
anchors

(3)

C.2 Tie-down
rods at piers

Tension failure Loss of prestress in anchor cables, and uplift
of the deck from the pier support

(5)

End-span piers P.1 Pier supports Shear failure due to
horizontal and
vertical pounding

Crushing of bearings, cracking of transverse
pier beams, buckling or shear failure of
supporting columns

(5)

P.2 Approach
viaducts

Displacements and
rotations of the pier
foundations

Partial or total collapse of simply-supported
approach spans (unseating)

(5)

∗maximum expected damage potential expressed with respect to the performance classes defined in the Canadian highway bridge design code

Table 1.2: Anticipated earthquake damage on cable-stayed bridges, refer to Fig. 1.4

No. Bridge Location Earthquake event Magnitude Year

1 Yokohama Bay Bridge Japan Tohoku Earthquake M = 9.0 2011
2 Chi-Lu Bridge Taiwan Chi-Chi Earthquake M = 7.6 1999
3 Higashi-Kobe Bridge Japan Kobe Earthquake M = 6.9 1995
4 Rokko Island Bridge Japan Kobe Earthquake M = 6.9 1995
5 Shipshaw Bridge Canada Saguenay Earthquake M = 5.9 1988

Table 1.3: Examined cable-stayed bridges that sustained damage during earthquakes (see Table 1.2)

8



1.3. Methodology

Table 1.2 gives details on each damage scenario shown in Fig. 1.4. It includes the failure

mechanism and observed damage symptoms, and assesses the damage consequences with respect

to the performance levels in the bridge design code S6-19 (2019) from Table 1.1. For example,

the observed damage scenarios on stay cables are categorized into anchor failure (C.1) or failure of

tie-down rods (C.2). The failure mechanism is tension failure, and observable damage symptoms

include slack cables and strand failure or uplift of the deck from the pier supports, respectively.

Cable-stayed bridges are redundant structural systems, so individual cable anchorage failure may

lead to limited serviceability, but allow the damage to remain repairable—in other words, cable

anchorage failure satisfies performance level 3 of the bridge design code (see Table 1.1). On the

other hand, failure of tie-down rods, as it occurred on the Shipshaw Bridge in Canada, can lead to

bridge collapse, which affects the life safety and requires a bridge replacement (Level 5 in Table 1.1).

Consequently, the monitoring system should be tuned to become more sensitive to damages in local

key components with Level 5 consequences on the safety and serviceability of the structure, and the

sensor placement should be optimized accordingly. Another observation is that damage accumulates

at stiffness discontinuities, such as cable anchors and tie-down rods, joints between different bridge

components (tower, deck, foundations), and bearings. Such damage hotspots should be monitored

more closely.

1.3 Methodology

1.3.1 Damage Diagnosis

Vibration-based SHM is divided into three stages: (1) the observation of the dynamic system

through sensors, (2) the feature extraction, and (3) the statistical evaluation of the features. The

statistical evaluation is referred to as the damage diagnosis, where damage is understood as a de-

terioration of structural design parameters, such as material constants (Farrar and Worden, 2012),

cross-sectional values, prestressing forces (Chen and Duan, 2014), support conditions, and mass-

distribution parameters (Santos et al., 2013). The primary task of damage diagnosis is to detect

the presence of damage, and more advanced tasks include the narrowing down of the exact damage

location (localization) and the quantification of its extent. The selected damage diagnosis method

is based on the AL approach (Benveniste et al., 1987), with diagnostic capabilities including detec-

tion (Basseville et al., 2000), localization (Basseville et al., 2004), and quantification (Döhler and

Mevel, 2015). It is based on a similar framework as stochastic subspace-based system identification

(SSI), which has developed into a powerful algorithm for the system identification under unknown

excitation since the publication of the book by van Overschee and de Moor (1995). The diagnosis

method is applied in combination with the subspace-based residual, which circumvents the lengthy

estimation of dynamic properties (e.g., natural frequencies), and thus, allows for an online evalu-

ation in real-time. The measurement quantities can be accelerations, velocities, or displacements.

More reasons for the choice of this method are given in Section 2.1.2.
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1.3.2 Contributions

This thesis aims to build a framework to analyze the minimum diagnosable damage, i.e., the

minimum detectable and localizable damage. All considerations are made based on vibration data

from the undamaged structure in combination with a finite element model. This avoids empirical

and structure-specific experiments, and makes the framework universally applicable to a wide range

of civil and mechanical engineering structures, damage-sensitive features, and anticipated damage

scenarios from Fig. 1.4. Most considerations target the performance assessment before a SHM

system is installed. However, additional self-validation strategies are implemented to test the

applicability of the algorithm to real structures, to verify the input parameters, and to test its

performance based on non-invasive tests.

All contributions rely on the particular strength of the asymptotic local (AL) approach; it

allows for a comprehensive treatment of statistical uncertainties in the damage-sensitive feature,

and includes structural information from finite element (FE) models. Hence, the AL approach is

not a black box algorithm but considers the physical properties of the considered structure. All

contributions are listed in the following:

(1) Minimum Detectable Damage. The minimum detectable damage is defined as the mini-

mum change in structural design parameters that can be reliably detected based on changes

in the damage-sensitive feature. No site and structure are identical, so a structure-specific

training of the damage diagnosis algorithm is required and findings from one structure cannot

straightforwardly be transferred to another. Consequently, it is challenging to assess whether

or not certain damages can or cannot be detected and localized before the SHM system is

installed, making it hard to convince decision-makers of the benefits. Furthermore, statistical

uncertainties are typically quantified through empirical approaches or rules of thumb, but

they are challenging to validate. With this background, a formula is developed in this thesis

that allows for the prediction of the test response to damage based on vibration measure-

ments from the undamaged structure. When combined with a reliability concept, including

the probability of false alarms (PFA) and a minimum probability of detection (POD), the

minimum detectable damage can be predicted. Among other factors, the predictive frame-

work considers the signal-to-noise ratio of the vibration measurements, and the measurement

duration during testing. The prediction of the minimum detectable damage requires a FE

model, but is also valid for purely data-driven tests.

(2) Minimum Localizable Damage. Damage localization is more complicated than dam-

age detection. The minimum localizable damage is defined as the minimum change in a

structural design parameter that can be detected and distinguished from changes in other

parameters under an optimal damage localization resolution. A fundamental problem is the

over-parametrization of FE models. That means that multiple structural design parameters in

the model have a similar effect on the damage-sensitive feature, and, vice versa, it is challeng-

ing to identify the design parameters that have changed. The problem can be addressed by
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clustering the design parameters, which corresponds to a substructuring of the finite element

model into damage localization units, in which damage can be isolated. However, this thesis

shows that finding the optimal substructuring arrangement is a multi-objective optimization

problem: with an increasing number of substructures, the damage localization resolution

increases, but the damage detectability in each substructure decreases. Moreover, an inap-

propriate substructure arrangement can lead to false localization alarms, which can obscure

the actual damage location. The issue is addressed by expanding the predictive framework

for the minimum detectable damage to damage localization. Additional considerations are

made so the magnitude of false alarms can be predicted based on reference data. Ultimately,

a multi-objective optimization scheme is introduced (based on Pareto optimization) to auto-

matically find the optimal substructure arrangement as a compromise between localization

resolution, damage detectability, and false alarm susceptibility.

(3) Sensor Placement Optimization. Damage detectability and localizability based on global

structural vibrations critically depends on the sensor layout. The sensor layout determines the

observability of structural modes of vibration, which carry valuable information on local design

parameters. In particular, if a small number of sensors is used to monitor large structures,

an optimized sensor layout ensures optimal coverage of all monitored design parameters.

Many optimization criteria aim to precondition the signal and the signal-to-noise ratio. Some

criteria increase the quality of the system identification with minimum uncertainty. Only

a few criteria seem to optimize the damage detectability and the probability of detection.

However, none of the existing criteria appear to consider the relative decrease in material

strength, although this is the decisive quantity for structural design, structural health, and

thus, safety. Another issue is that most sensor placement strategies optimize the sensor

layout to capture the global vibration behaviour. Still, the structural safety and serviceability

typically depend on the integrity of local key components, such as joints, and damage tends

to accumulate at well-known hotspots, see Fig. 1.4. Therefore, a sensor placement strategy

is developed in this thesis that takes as input the requested detectable damage in individual

FE model components, and yields as output the corresponding optimal sensor layout. This

strategy maximizes the damage detectability and localizability, and can be employed to find

the optimal sensor layout as well as an appropriate number of sensors.

(4) Monitoring Boundary Conditions. Change in boundary conditions, i.e., a loss in pre-

tension or support displacements, is a typical damage scenario during extreme events such

as earthquakes, see Fig. 1.4. Moreover, excessive support settlements or loss of tension in

prestressing tendons (due to slippage or stress corrosion) are common problems in bridge

monitoring. Changes in boundary conditions have a global characteristic, as they lead to a

global re-distribution of stiffness. Detecting global changes in the dynamic response measures

based on global damage diagnosis methods is unproblematic, but distinguishing them from

local structural changes is a challenge. In this light, an approach is put forward to calculate
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the sensitivity of the damage-sensitive residual toward changes in boundary conditions. The

resulting sensitivity vectors can be incorporated into the existing damage diagnosis frame-

work of the AL approach, enabling both the localization of changes and the prediction of the

minimum diagnosable changes.

(5) Model Validation. Bridges are vital links in primary infrastructure and damaging them

for research purposes is generally not an option. Due to each structure’s uniqueness, it

is challenging to verify whether the theoretical assumptions are fulfilled and whether all

input parameters for signal processing are set appropriately. To address the issues, this

thesis proposes the application of extra masses as a non-invasive validation technique, and

demonstrates the effectiveness based on a laboratory experiment on a steel beam. Moreover,

another strength of the predictive framework is showcased by introducing a series of tools

and quick checks to verify the input parameter choice based on numerical simulations.

1.3.3 Thesis Organization

The thesis is organized into three parts. Part I. includes a state-of-the-art review of global damage

diagnosis methods and existing sensor placement strategies (Chapter 2). An introduction to struc-

tural dynamics from a control theory perspective is given (Chapter 3), as well as an introduction

to damage diagnosis using the asymptotic local approach (Chapter 4). Part II. presents the the-

oretical contributions of this research project and is divided into the minimum detectable damage

(Chapter 5), the minimum localizable damage (Chapter 6) and optimal sensor placement (Chap-

ter 7). In addition, an approach is outlined to incorporate changes in boundary conditions into the

damage diagnosis framework of the asymptotic local approach (Chapter 8). Part III. summarizes

practical investigations. First, two case studies are presented (Chapter 9), including a laboratory

steel beam and a laboratory cable-stayed bridge. Secondly, self-validation studies are summarized

(Chapter 10), and ultimately, the particular strength and limitations of all methods are highlighted

in the conclusions (Chapter 11).
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Chapter 2

Literature Review

“If I had eight hours to chop down a tree, I’d spend

the first six of them sharpening my axe.”

— Abraham Lincoln

This work develops a strategy to analyze the minimum detectable damage for vibration-based

structural health monitoring (SHM) and to optimize the sensor layout. Both fields are extensively

researched. The review is split into two parts: the first part (Section 2.1) revisits existing damage-

sensitive features and damage diagnosis methods, and gives reasons for the choice of the asymptotic

local (AL) approach. Moreover, existing strategies are touched upon to diagnose changes in bound-

ary conditions, together with previous attempts to quantify the minimum diagnosable damage. The

second part (Section 2.2) reviews existing performance criteria and smart optimization algorithms

to overcome the problem of combinatorial explosion in large mechanical structures.

2.1 Global Vibration-based Damage Diagnosis

The premise of vibration-based damage diagnosis is that damage alters the stiffness, mass, or

damping properties of the structure. Consequently, structural changes can be inferred based on

the global system response. The process of damage diagnosis is divided into data acquisition,

the extraction of damage-sensitive features, and their statistical evaluation (Farrar and Worden,

2012). Depending on the method, the removal of environmental and operational variables (EOVs)

on the damage-sensitive feature is considered a separate step, or integrated into the damage diag-

nosis method. Correspondingly, this section distinguishes between damage-sensitive features and

diagnosis methods. The literature review focuses on global vibration-based SHM, as this work is

motivated by the specific needs of the British Columbia Smart Infrastructure Monitoring System

(BCSIMS). It is based on recent reviews by An et al. (2019) and Moughty and Casas (2017b), and

preceding works by Fan and Qiao (2011), Carden and Fanning (2004), Chang et al. (2003), and

Doebling et al. (1996), with a comprehensive overview in Farrar and Worden (2012).

2.1.1 Damage-sensitive Features

For an overall picture, Table 2.1 categorizes the presented damage-sensitive features, where the

columns are sorted in ascending order with respect to the signal processing effort. Basic signal

statistics form the first category (column 1). Farrar and Worden (2012) summarize that damage

causes the peak amplitude to change, as well as the mean, the root mean, and the root mean square
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Global Damage-sensitive Features

Signal
statistics

Transient
signals

Waveform
compar-
isons

Times
series
models

Modal
parame-
ters

Modal
parameter
based

Peak
amplitude

Energy
(Arias
intensity)

Response
data

Auto-
regressive
models

Resonance
frequencies

Mode
shape
curvature

Mean, root
mean, root
mean square

Higher
temporal
moments

Covariance
function

State
space
marices

Mode
shapes

Strain
energy

Variance,
standard
deviation

Vibration
intensity

Power
spectral
density

Observ-
ability
matrix

Damping
ratios

Modal
flexibility

Skewness,
kurtosis

Destructive
potential
factor

Operating
deflection
shapes

Kalman
filter
innovations

Ritz-
vectors

Yuen
functions

Crest factor,
K-factor

Decay
measures

Modal
force
vector

Table 2.1: Damage-sensitive features (Farrar and Worden, 2012)

values. Mattson and Pandit (2006) argues that higher statistical moments (such as the standard

deviation, skewness, and kurtosis) are more sensitive to damage than the mean or the variance.

Pachaud et al. (1997) employs the crest factor and K-factor as measures of the signal’s deviations

from the sinusoidal response.

Transient signals form another group, including measures for energy and intensity (column 2).

Smallwood (1994) discusses energy measures and higher temporal moments. Moughty and Casas

(2017a) perform damage detection on the S-101 bridge using the Arias intensity, vibration intensity,

cumulative absolute velocity, destructive potential factor, and others. Farrar and Worden (2012)

summarize multiple measures based on the decay of vibration signals, including the 10% duration

time and the Hilbert transform.

Waveform comparisons can be made in either the time-domain or frequency-domain (column 3).

This includes power spectral density (PSD) as well as covariance functions, and the direct signal

response to random excitation. Yin and Tang (2011) evaluate the system response to passing

vehicles. Pascual et al. (1999) suggest operating deflection shapes for damage detection to avoid

modal identification. Basseville et al. (2000) form a damage-sensitive residual based on the covari-

ance matrix, and Döhler et al. (2014b) propose a similar feature that is more robust to changes

in the excitation characteristics. Ultimately, Gres et al. (2017) formulate a criterion based on the
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covariance function difference.

Time series models can be used as damage-sensitive features (column 4 in Table 2.1) after fitting

them to the vibration record using regression techniques. For example, Fanning and Carden (2001)

use the mean and the variance of the auto-regressive (AR) term as a damage-sensitive criterion.

Spiridonakos and Chatzi (2015) employ non-linear AR models and minimized the simulation error.

Equivalently, stochastic state space models can be employed. For example, Mehra and Peschon

(1971) propose the Kalman filter innovations as damage-sensitive criteria. Swindlehust et al. (1995)

use the observability as a damage-sensitive matrix for model updating. Time series-based models

are suited to detect damage scenarios with non-linear characteristics and to distinguish them from

linear changes due to EOVs (Figueiredo et al., 2011).

Modal parameters were among the first damage-sensitive features, and remain state-of-the-

art (column 5). Adams et al. (1978) and Cawley and Adams (1979) initialize damage detection

based on frequency changes. Since changes in mode shapes are less intuitive to track, Allemang

and Brown (1982) propose a correlation measure, called the modal assurance criterion (MAC)

for their evaluation, and Lieven and Ewins (1988) put forward a coordinate-by-coordinate MAC,

called the coordinate modal assurance criterion (COMAC). Yuen (1985) combines frequencies and

mode shapes into a criterion known as the Yueng function. Zouari et al. (2009) consider damping

estimates, and Cao and Zimmerman (1999) use load-dependent Ritz vectors (or Lanczos vectors).

Ojalvo and Pilon (1988) generate a modal force vector by confronting data-driven frequencies and

mode shapes with model-based mass and stiffness matrices. While frequencies are more sensitive

to damage than mode shapes (Cury and Cremona, 2012), mode shapes are less sensitive to EOVs

(Deraemaeker et al., 2008) and include spatial information (An et al., 2019). Damping is non-

linearly influenced by the vibration amplitude (Eyre and Tilly, 1997), and an accurate estimation

often fails under unknown force inputs (Brincker and Ventura, 2015). In general, quantifying

uncertainties in the modal parameters is equally as important as estimating them (Mellinger et al.,

2016).

Features derived from modal parameters constitute the last category of features (column 6).

Pandey et al. (1991) propose the mode shape curvature, which amplifies discontinuities in mode

shapes by deriving them. Pandey and Biswas (1994) follow-up on this by introducing the modal

flexibility method. Stubbs et al. (1992) employ the modal strain energy, which exhibits a higher

sensitivity to local damages than modal parameters (Yam et al., 1996).

2.1.2 Damage Diagnosis Methods

The presented damage diagnosis methods are categorized into statistical pattern recognition (in-

cluding supervised and unsupervised learning), finite element (FE) model updating, parametric

change detection, and stochastic load vectors. The diagnosis depth is generally divided into four

hierarchical steps with increasing complexity (Rytter, 1993):
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� Stage 1 : Detection

� Stage 2 : Localization

� Stage 3 : Quantification or classification

� Stage 4 : Lifetime prognosis

a) Unsupervised Learning

Outlier analysis is an unsupervised learning technique. The basic idea is to assume a particular

shape for the probability density function (PDF) and to detect changes that are significant in a

statistical sense. In the simplest case, the distance to the mean value can be quantified through

the number of standard deviations. Mahalanobis (1936) expands this idea to multivariate variables

through the Mahalanobis distance (MD). Rousseeuw and van Driessen (1999) advance the MD by

pairing it with the minimum covariance determinate (MCD) estimator, which reduces the influence

of outliers in the training phase. Moshtagh (2005) applies the minimum volume enclosing ellipsoid

(MVEE) for outlier detection. An application of the MD can be found in Worden et al. (2000), where

Dervilis et al. (2014) apply all three outlier detection algorithms to the Z-24 Bridge in Switzerland

under environmental influences and concludes that the MVEE performs the best, followed by the

MCD, and finally, the MD.

Statistical process control is another field of unsupervised learning. The methods include several

static and dynamic test statistics that are repeatedly evaluated and plotted in control charts for

visualization. For example, Page (1954) introduces a uni-variate approach, the cumulative sum

(CUSUM) chart. Roberts (1959) advances the tests through the exponentially weighted moving

average (EWMA) chart, which dynamically adapts to the gradual changes while detecting abrupt

changes. The Hotelling T2 or Shewhart control chart is a multivariate extension of the Mahalanobis

distance. Crosier (1988) and Lowry et al. (1992) put forward multivariate versions of the CUSUM

and the EWMA chart. An overview of statistical control charts is given by Montgomery (2007).

Kulla (2003) detects damage on the Z-24 bridge using the univariate and multivariate Shewhart

charts as well as the CUSUM and EWMA charts, applied to modal parameters. Magalhães et al.

(2010) apply the Shewhart chart to the natural frequencies of a long-span arch bridge. Kalman

filters can also be employed for statistical process control. Kalman filters observe past measurements

and predict future signals based on state space models. The difference between the predicted and

the measured signals is called “innovation.” Damage causes a change in the distribution properties

of the innovation, so it can be inferred based on statistical hypothesis tests. Mehra and Peschon

(1971) propose the idea of testing the innovation sequence for whiteness. The idea is revived by

Bernal (2013), who proposes a modified whiteness test that suppresses the effect of noise changes

and highlights the effect of damage, by adjusting the time lag intervals.

Multivariate statistical approaches are unsupervised learning techniques that are often applied

for dimensionality reduction. Yan et al. (2005a) demonstrate how to remove correlations within data
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sets using principal component analysis (PCA) and followed-up with a piece-wise linear approach

to remove non-linear trends (Yan et al., 2005b). Kulla (2004) achieves similar results using factor

analysis (FA). Kramer (1991) proposes non-linear PCA, known as auto-associative neural networks

(AANN). Nguyen et al. (2014) employ Kernel principal component analysis (KPCA) to remove

the non-linear effects. Cross et al. (2011) apply cointegration, which can also be applied without

measuring the influencing variables. Multivariate statistical approaches are suitable tools for data

normalization, i.e., the removal of the influence of EOVs on damage-sensitive features, without

having to measure them. They have been successfully applied to the Champangshiehl Bridge in

Luxembourg (Nguyen et al., 2014), the Yeongjong Grand suspension bridge in Seoul (Oh et al.,

2009), the Infante D.Henrique arch bridge (Magalhães et al., 2012), and many others.

Cluster analysis is another class of unsupervised learning techniques (Sohn and Oh, 2009). Using

cluster analysis, the data points are categorized into groups, and outliers can be detected regardless

of the underlying distributions. Santos et al. (2015) apply cluster analysis to the Samora Machel

Bridge for damage detection, and explain some shortcomings of the k-means clustering algorithm

in comparison to a cloud clustering algorithm.

b) Supervised Learning

Regression analysis is a supervised learning technique. It is a suitable means to remove linear

trends from data by fitting polynomial curves. Cornwell et al. (1999) employ a linear least-squares

regression model. Ding and Li (2011) increase the complexity of the regression models through non-

linear polynomials. Dervilis et al. (2015) apply the least trimmed square (LTS) estimator, which

includes an initial screening procedure to remove erroneous data points or outliers. Application

to bridge structures include the Runyang Suspension Bridge in China (Ding and Li, 2011), the

Infante D. Henrique arch bridge in Portugal (Magalhães et al., 2012), the Tamar bridge in the

United Kingdom, and the Z24 Bridge in Switzerland (Dervilis et al., 2015).

Artificial neural networks (ANN) constitute another group of supervised learning methods.

ANN go back to Rosenblatt (1962), who developed a 3-layered network structure inspired by the

architecture of the human brain (the perceptron). If a neural network exhibits more than three

layers, it is counted as a “deep” learning network. Patterson and Gibson (2017) divide deep learn-

ing approach into four classes: unsupervised pretrained networks, convolutional neural networks,

recurrent neural networks, and recursive neural networks. Conventional and deep learning ap-

proaches are supervised in the sense that they correlate given inputs to labelled outputs, where

deep learning approaches include the feature extraction in the learning process and can be fed with

raw data (Avci et al., 2021). A more recent development is the concept of transfer learning, where

the findings from damaged structures are transferred to other (possibly undamaged) structures.

Lee et al. (2005) apply ANN to detect mode shape changes on the Hannam Grand Bridge. Li et al.

(2009b) use ANN to assesses modal parameters under varying wind and temperature conditions.
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Jin et al. (2015) apply ANN to the Meriden Bridge (a composite steel girder bridge) in the U.S.,

and selected the weights based on a Kalman filter procedure.

Support vector machine techniques can be applied for supervised and unsupervised machine

learning. The main idea of support vector machine (SVM) techniques is to separate data points

through hyperplanes (straight lines in 2-D) with the largest margin possible. Applications to bridge

structures include the Z24 Bridge in Switzerland Shi et al. (2016).

c) Model Updating

In FE model updating, the information from data-driven features is used to update numerical mod-

els (Friswell and Mottershead, 1995). The objective is to set up the equation of motion in modal

coordinates, using the model-based mass, stiffness, and damping matrices, and the measured fre-

quencies and mode shapes. If the model-based matrices do not reproduce the data-driven features,

the system matrices or the underlying parameters are modified accordingly.

Direct updating methods directly solve for the matrix entries. If the model-based system ma-

trices do not reproduce the measured modal parameters, a modal force vector evolves. This term

can be understood as a harmonic force that is to be applied so the system matrices reproduce the

measured modal parameters (Ojalvo and Pilon, 1988). The goal of matrix updating is to modify the

matrix entries, so the modal force is minimized, for example, by evaluating the Euclidean norm.

The methods are computationally expensive, susceptible to noise (as noise smears the stiffness

changes over the whole stiffness matrix), and neglect the physical properties of the structure (Mar-

wala, 2010). That means that system matrices may loose their symmetry, may become populated

instead of banded, and nodes may loose their connectivity.

Optimal matrix updating methods employ analytical instead of numerical solutions to obtain

matrices from the damaged systems (Marwala, 2010). They employ a closed-form, direct solution

to compute the damaged model matrices or the perturbation matrices using Lagrange multipliers

or penalty-based optimization methods (Smith and Beattie, 1991; Hemez, 1993). Baruch (1978)

defines the modal force as the damage-sensitive residual, places symmetry constraints on the system

matrices, and minimizes the Frobenius norm of global system matrix perturbations. Instead of

minimizing the norm of the perturbation matrix, Kaouk and Zimmerman (1994) minimize the rank

of the perturbation matrix, which reduces the smearing effects. Finally, Kaouk et al. (2000) extend

the approach from the stiffness matrix to all dynamic system matrices, including the mass and

the damping matrix. The method has been applied to the I-40 Bridge data (Simmermacher et al.,

1995). However, a limitation (similar to direct model updating) is that the resulting matrices may

not be physically realistic (Marwala, 2010).

Eigenstructure-assignment methods are based on control theory, where a fictitious controller

is added to minimize the modal force residual. The method has been applied to a cantilever
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beam (Zimmerman and Kaouk, 1992), planar truss structures (Lindner and Goff, 1993), and three-

dimensional truss structures (Lim and Kashangaki, 1994). It assumes that the number of sensor

locations is equal to the number of degrees of freedom (DOF) (Marwala, 2010), so it can only

efficiently be applied in combination with a modal reduction technique, such as Guyan reduction,

dynamic reduction, or others.

Sensitivity-based methods update the mass and stiffness matrices after evaluating the sensitivity

of the error term (e.g., the modal force vector) using first-order sensitivity analysis. Hemez (1993)

initially proposes the method, which evaluates the sensitivities toward structural parameters instead

of system matrix entries. For this reason, it is now considered one of the most successful model

updating methods based on vibration measurements (Mottershead et al., 2011). Applications to

cable-stayed bridges include the Safti Link Bridge in Singapore (Brownjohn and Xia, 2000), the

Kap Shui Mun Bridge (Zhang et al., 2001), the Bill Emerson Memorial Bridge in the U.S. (Zárate

and Caicedo, 2008), the tower of the Runyang Bridge (Ding and Li, 2008), the Tatara Bridge in

Japan (Asgari et al., 2013), and many other suspension bridges, girder bridges, and a pontoon

bridge, as summarized by Petersen and Øiseth (2017).

Bayesian model updating allows one to obtain updated probabilities of system parameters

(modal or structural parameters) as well as probabilistic damage measures based on system mea-

surements. Based on the considerations in Beck and Katafygiotis (1998), Hemez and Doebling and

Vanik et al. (2000) are among the first to apply probabilistic approaches to SHM. Sohn and Law

(1997) and Sohn and Law (2000) compute probabilities of different damage scenarios and apply

the concepts to a bridge column. Papadimitriou et al. (2001) employ the framework to obtain

structural reliability updates. Beck and Au (2002) put forward an approach based on an adaptive

Markov chain Monte Carlo simulation. Papadimitriou and Papadioti (2013) increase the compu-

tational efficiency by introducing component mode synthesis techniques and applied them to the

simulated measurements of the Metsovo highway bridge in Greece. Kim et al. (2015) additionally

consider the EOVs while applying the method for long-term monitoring of a plate-Gerber bridge.

Additional applications include the Dowling Hall footbridge in the United States (Behmanesh and

Moaveni, 2015), the Rivière-aux-Mulets Bridge in Canada (Sanda et al., 2017), the Saraighat truss

bridge in India (Mustafa et al., 2015), and others. Bayesian-based model updating is considered

the most comprehensive technique to deal with uncertainties, but it is not particularly suited to

deal with epistemic uncertainty (Simoen et al., 2015).

Interval model updating is an alternate approach to uncertainty quantification. Instead of

PDFs, membership functions are employed to define the uncertainties associated with the measured

outputs. Zheng et al. (2020) divide the method into three categories: the interval algorithm, the

vertex solution, and global optimization methods. Fang et al. (2015) apply the interval algorithm

and improves it through interval response surfaces. Khodaparast et al. (2011) apply the parameter

vertex method to model updating. Liu et al. (2009), Haag et al. (2010), and Erdogan and Bakir

(2013) utilize approaches based on fuzzy arithmetic. Global optimization methods include but are
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not limited to the genetic algorithm (Pawar and Ganguli, 2003), the particle swarm optimization

(Meng et al., 2015), radial basis function neural networks (Deng et al., 2017), and Kriging methods

(Khodaparast et al., 2011). Simoen et al. (2015) conclude that fuzzy model updating is better

suited to handle epistemic uncertainties, and that it is computationally more efficient; however, it

only allows for an assessment of worst-case uncertainties, where Bayesian approaches provide more

detailed information.

Subspace fitting estimates the dynamic observability matrix in the subspace of covariance func-

tions, and updates the model-based observability through linear regression. Swindlehust et al.

(1995) initially develop the subspace fitting approach. Gautier et al. (2013) improve its accuracy,

and Gautier et al. (2015) introduce a modal truncation approach to increase numerical efficiency.

Moreover, Gautier et al. (2017) develop a method that quantifies the uncertainties in the data and

propagates them through the system identification process to the structural parameters.

d) Parametric Change Detection

Parametric change detection has evolved from unsupervised learning methods. The distinctive

feature is that the information from dynamic or structural system models is used to parametrize

data-driven tests but, in contrast to FE updating, the model is not modified during the damage

diagnosis, which makes the methods numerically efficient.

Kalman filter-based methods constitute the first group of parametric change detection methods.

Döhler et al. (2015) introduce the perturbed innovation test, which introduces a parametric per-

turbation term into the Kalman filter innovations, transforming it from an unsupervised learning

technique into a model-based test. The approach is extended by Döhler et al. (2017) to damage

localization.

Asymptotic local methods form the second group. They assume a Gaussian distribution for the

damage-sensitive feature and diagnose damage based on statistical hypothesis tests, such as the

generalized likelihood ratio (GLR) and the minmax test, which are linked to system parameters

through first-order sensitivity vectors. Benveniste et al. (1987) originally propose the asymptotic

local approach. Inspired by the book by van Overschee and de Moor (1995), Basseville et al. (2000)

reformulate the underlying concepts and pave the way for change detection in modal parameters.

Basseville et al. (2004) expand the method to damage detection in model-based parameters (in FE

models) and enabled damage localization. Balmès et al. (2008b) and Allahdadian et al. (2019) refine

the damage localization in over-parametrized systems using a k-means clustering and hierarchical

clustering approaches. Döhler et al. (2014b) reformulate the damage-sensitive feature to increase

the robustness toward changes in excitation properties, and Balmès et al. (2008a) propose methods

for data normalization together with Balmès et al. (2009) and Viefhues et al. (2020). Döhler et al.

(2016) increase the numerical efficiency of the statistical hypothesis tests for damage detection

and localization, and outline a damage quantification approach. The method has been applied for
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damage detection in the S101 Bridge in Austria (Döhler et al., 2014a), the Pitt River cable-stayed

bridge in Canada 2014 (Ventura et al., 2014), the Yonghe cable-stayed bridge in China 2016 (Zhou

et al., 2016), and numerous laboratory experiments (Siegert et al., 2010).

e) Stochastic Load Vectors

The stochastic dynamic damage locating vector (SDDLV) method sets up the transfer matrix in the

frequency domain for both the damaged and the reference state, and quantifies the difference using a

discrete load vector. Bernal (2010) first proposes the SDDLV for damage detection and localization,

and later expands it to damage quantification based on flexibility changes (Bernal, 2014). Marin

et al. (2012) conduct further studies to quantify the uncertainties, and Marin et al. (2015) propose

a more robust approach to evaluate the diagnosis results based on statistical aggregation. Bhuyan

et al. (2017b) lift multiple theoretical constraints and extend the method to multiple mode sets,

significantly reducing the number of required sensors. Ultimately, Bhuyan et al. (2017a) introduce

a sensitivity-based approach to damage quantification. The SDDLV has successfully been applied

to a laboratory model of a truss bridge (Jang et al., 2012) as well as the model of the St. Nazaire

cable-stayed bridge in France (Bhuyan et al., 2018).

Method Selection

All presented damage diagnosis methods can be classified into data-driven and model-based ap-

proaches (Fan and Qiao, 2011). Model-based approaches assume that a detailed numerical model

is available, where data-driven approaches depend on experimental response data or data-driven

system models (e.g., AR or state space models). Unsupervised learning is a powerful data-driven

approach, but it fails to provide diagnostic capability beyond detection in most cases (Farrar and

Worden, 2012). Supervised learning is also data-driven and allows for an in-depth damage diagno-

sis; however, obtaining a sufficient amount of training data for all anticipated damaged scenarios

is an unresolved challenge. On the other hand, model updating approaches exhibit multiple chal-

lenges related to the realistic modelling, the damage diagnosis in over-parametrized systems, and

the computational effort. Parametric change diagnosis evaluates model-based information in the

reference state, but the damage testing is based on data. This leads to a low computational burden

while preserving the localization and quantification capability. The AL approach is considered a

promising method to achieve the objectives of this thesis for the following reasons:

� It is applicable to a wide range of structures, damage scenarios, and damage-sensitive criteria

(Basseville et al., 2000; Döhler et al., 2014b; Gres et al., 2017).

� The damage diagnosis has real-time capabilities. In particular, the subspace-based residual

leads to short measurement durations, as it is formed in the time-domain and circumvents a

modal system identification. The damage diagnosis itself is numerically efficient because the

model is not updated.
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� Parametrization is optional, meaning damage detection can also be performed without a

FE model. One non-parametric test is available for data-driven damage detection and one

parametric test, where the data-driven features are linked to data-driven modal parameters.

� The problem formulation is comparatively simple due to the few input parameters and because

the problems of damage detection, localization, and quantification are split into individual

sub-tasks.

� Individual structural parameters can be selected for monitoring. Linking the damage de-

tection test to structural models focuses the damage diagnosis on local material properties,

cross-sectional values, geometrical properties, and mass properties.

� The damage localization resolution can be adjusted. Damage localization requires additional

information from FE models, which are typically over-parametrized. However, the parameters

can be clustered and the user can adjust the localization resolution.

� False localization alarms are considered. The minmax localization test considers the effect

that damage in some structural parameters has on others, and therefore, reduces false local-

ization alarms.

� Uncertainties in the damage-sensitive feature are considered through a profound theoretical

framework. This allows for the describing of the statistical properties of the damage diagnosis

tests in both the training and the damaged state through Gaussian distributions.

� The performance can be analyzed through the probability of detection. This shows to be a

promising performance measure for sensor placement optimization (Döhler et al., 2013).

More background on the discussed points from above is given in Chapter 5.

2.1.3 Changes in Boundary Conditions

Thus far, the AL method has only been used to detect and localize damage in material properties or

cross-sectional values. Changes in boundary conditions (support conditions or prestressing forces)

are typical damage scenarios on bridges (see Fig. 1.4). However, for localization and quantifica-

tion, such damage scenarios have to be parametrized using FE models. Therefore, the following

paragraphs review existing methods to parametrize changes in boundary conditions.

Teughels and de Roeck (2004) account for varying soil stiffness of the Z24 Bridge in Switzerland

through translational springs. Subsequently, the calibrated model is employed for damage detection

using model updating; however, the spring stiffness itself is not considered for damage detection.

Siddesha and Hegde (2017) consider support settlements and rotations where the soil reac-

tion forces are calculated based on empirical formulas. The study is based on two-dimensional
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frame structures with two and three storeys. The imposed displacement causes strains within the

structure, which are detected using the flexibility method.

Elsaid and Seracino (2014) model support displacements by placing a foundation pile under the

support and changing the corresponding beam length. This study aims to detect scour on bridges

using the mode shape curvature and flexibility-based deflections and curvatures. The authors

highlight the significance of horizontal modes of vibration for the detection of changes in support

conditions.

Mottershead et al. (1996) change multiple geometric properties to accurately model boundary

conditions and joints using model updating. Based on the model of a welded joint, the off-set

parameters for the beam centre lines are proposed for model updating. Moreover, the length and

thickness of FEs near clamped boundaries are suggested.

Gladwell and Ahmadian (1995) propose another model updating approach, which is known

as the generic element method. Herein, the eigenvalues and eigenvectors of individual FE are

modified in substructures near supports. Each eigenvalue can be understood as a spring coefficient

for a deflection defined by the mode shapes vector, as later summarized by Mottershead et al.

(2011).

Zhou and Song (2016) model changing boundary conditions using rotational springs and stress

stiffening effects. The study’s goal is to remove the effect of EOVs on the vibration data from a

pedestrian bridge. The influence of varying support conditions (due to soil saturation of freezing)

is modelled through rotational springs and the axial member forces (due to uniform temperature

changes) are considered through the geometric stiffness term in the global stiffness matrix. The

geometric stiffness term is also known as stress stiffening, and describes the stabilizing or destabiliz-

ing effect of axial member forces. The paper further indicates that the stiffness terms due to large

deflections and large deformations (strain) are negligible during ambient vibration monitoring.

Mordini et al. (2007) present a model updating approach to parametrize a loss of cable forces

based on the geometric stiffness parameters. The approach is based on a simply-supported beam

model, and the application to prestressed concrete beams is showcased. It is classified as a lo-

cal monitoring approach, as each cable/beam requires an individual sensor to measure transverse

oscillation.

Mordini et al. (2008) apply the same approach for the model updating of cable forces in two

full-scale bridges, the Lanaye Bridge and the Tulln Danube Bridge. The authors conclude that the

method should be further developed, so it is universally applicable to a wide range of structures—

and not just simply supported beams.

Lieven and Greening (2001) highlight the importance of prestressing forces in modal analysis

modelled through the geometric stiffness term. The study is based on a simple truss structure
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with prestressed diagonals. The study concludes that prestress significantly changes the dynamic

behaviour.

Breccolotti et al. (2009) critically discuss the monitoring of prestressing forces. The study

concludes that pretension forces should always be included for structures with external prestress-

ing tendons. For bonded tendons, the prestressing forces should only be considered if non-linear

material models are employed.

Change in support conditions can be modelled through changes in spring parameters, including

translational and rotational springs, elastic bedding, and subsoil stiffness. Geometrical properties

may also be used for modelling, including offset parameters of beams at joints, or the geometrical

lengths or thickness of support near elements. On the other hand, the parameters of the geometric

stiffness matrix appear to be appropriate for damage parametrization of changes in axial member

forces.

2.1.4 Minimum Diagnosable Damage

The AL approach can detect, localize, and quantify damage; however, no universal method exists to

evaluate whether anticipated damages can be detected before they occur. For that reason, previous

attempts to quantify the minimum diagnosable damage are revisited in this section.

Coppolino and Rubin (1980) propose a framework to predict the minimum detectable damage

for modular oil platforms based on empirical estimates for the uncertainties. The formula is based on

frequency changes estimated from ambient vibrations, and applies to modular offshore oil platforms

with a varying number of bays and damage scenarios in underwater trusses. It includes reliability

considerations and empirical uncertainty estimates regarding the varying sea state, deck mass (due

to the filling of oil tanks), maritime growth, and minor foundation changes. The resulting curves

link the frequency thresholds to the number of truss members that have failed, and the number of

effective bays on the platform.

Juneja et al. (1997) derive a formula to predict the minimum localizable damage based on a

supervised learning approach. The approach employs input-output measurements, and the damage-

sensitive features are the peak amplitudes, natural frequencies, and the flexibility matrix. Using

a contrast maximization approach and average angle technique, the measured features are com-

pared to features in the damage database, and the most likely scenarios are selected. Ultimately,

detectability of damage is quantified based on the damage and the error magnitude in the mea-

surements. For proof of concept, the method is applied to a laboratory truss structure.

Schoefs et al. (2009) focus on non-destructive testing methods and revisit reliability-based con-

cepts to define detectability. For verification of test results, the probability of false alarms (PFA)

and the probability of detection (POD) are used. The concepts are combined into what are known

as receiver operating characteristics (ROC) curves. The performance of the damage diagnosis is
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optimized by minimizing the PFA and maximizing the POD for a given detection threshold. This

approach is applied for the non-destructive testing of coastal and maritime structures, where a

threshold is set for the loss of thickness of the steel materials due to corrosion.

Afshari et al. (2009) attempt to quantify the minimum detectable fatigue crack size in Euler-

Bernoulli beam models. The approach is based on frequency changes and impedance measurements.

Experimental studies on a laboratory aluminum beam result in a minimum detectable frequency

change of 0.27 Hz and a minimum crack size of 0.5 mm. The authors conclude that impedance

measures cannot quantify damage as the damage index saturates.

Hoell and Omenzetter (2016) evaluate the minimum crack length due to disbonding in wind

turbine blades. Using a genetic algorithm (GA) and the Fisher information, the optimal AR model

coefficients are selected as damage-sensitive features and evaluated through the T 2−test. The nu-

merical results indicate that a minimum crack length of 2.2% can be detected. The authors further

indicate that the detectability depends on the AR coefficient subset selection, the measurement

duration, the signal-to-noise ratio, and the confidence level (reliability requirements).

Cavalagli et al. (2018) study the minimum detectable damage on a masonry bell-tower due to

earthquakes. Using natural frequencies as damage-sensitive features, the influence of EOVs are

removed through linear regression, and damage is detected through the T 2−test. The numerical

results claim that the minimum detectable frequency shift is 0.1%.

Methods to quantify the minimum detectable damage are mostly empirical, problem-specific,

restricted to specific element types (such as trusses or Euler-Bernoulli beams), or based on super-

vised learning strategies. Reliability-based measures, such as the PFA and the POD appear to be

suitable measures to assess the detectability. Finally, empirical studies imply that the reliability

of the damage detection can be increased through an increased measurement duration, but no

analytical relationship has been found.

2.2 Optimal Sensor Placement

This review focuses on sensor placement strategies for global vibration-based methods, and is

divided into performance criteria and optimization methods.

2.2.1 Performance Criteria

Mode Visualization. If no FE model is employed, mode shapes are the only visual means to

interpret the estimated modes of vibration. Hence, it is desirable to select measurement points

along the edges of the structure and points that sufficiently capture the structure’s deformed shape

for all considered modes of vibration.

25



2.2. Optimal Sensor Placement

Mode Shape Amplitude. The mode shape amplitude is a measure for the signal strength.

Ambient vibration testing is based on the idea that every structure tends to vibrate at their natural

frequencies in the absence of driving forces. Indeed, not frequencies but mode shapes are measured

through vibration sensors. Their amplitude can be measured through the mode shape summation

plot (de Clerck and Avitable, 1996)

MSSPi =

N∑
j=1

|Φij | (2.1)

where j = [1, 2, ..., N ] are the mode shape numbers and i is the DOF where the sensor is placed.

Equivalently, the driving point residue (DPR) (Chung and Moore, 1993) can be employed

DPRi =
N∑
j=1

Φ2
ij

ωj
, (2.2)

where ω is the natural (circular) frequency of the j-th mode, or the eigenvalue vector product

(EVP) (Larson et al., 1994)

EVPi =
N∏
j=1

|Φij |. (2.3)

Modal Kinetic Energy. The kinetic energy is another measure for the signal-to-noise ratio

(Kammer, 1991). In modal coordinates, the kinetic energy per mode is defined as

MKEij = Φij

∑
s

MisΦsj (2.4)

where Φij is the mode shape coordinate of mode j at location i and Mij is the corresponding mass

matrix entry. Unfortunately, the MKE depends on the mesh size of FE models, as DOFs in regions

with a coarser mesh accumulate more mass (Papadopoulos and Garcia, 1998). It could also be

assessed in power spectral density plots, where modes of vibration manifest themselves in distinct

energy peaks (Brehm et al., 2013).

Modal Assurance Criterion. The modal assurance criterion is a measure for the identifiability

of modes and their distinguishability (Allemang and Brown, 1982). It is defined as

MACij =
(ΦT

i Φj)
2

(ΦT
i Φi)(ΦT

j Φj)
, (2.5)

where T denotes the transpose of the vectors and i and j, are the column indices for the mode

shape matrix Φ. The MAC criterion yields one if two mode shapes are identical and zero if they

are orthogonal. An optimization goal is to minimize the off-diagonal terms, because if all modes

are fully distinguishable, the MAC matrix is equal to the identity matrix MAC = I . Several other
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criteria exist to measure the orthogonality of mode shapes, e.g., the modal scale factor, or the mass

weighed MAC (Penny et al., 1994).

Singular Value Decomposition Ratio. The singular value decomposition ratio (SVDR), or

condition number, is a measure for the distinguishability of modes. It is defined as

SVDR =
σmax
σmin

, (2.6)

where σmax and σmin are the largest and the smallest singular values. In an ideal case, the SVDR

is one, and for all other cases, it is greater than one. The SVDR is often applied to model updating

problems (Friswell and Mottershead, 1995), as a low value leads to a numerically stable condition

for mode shape expansion.

Fisher Information. The Fisher information matrix (FIM) quantifies the information on system

parameters that is contained in data. For a random variable X that approximates a multivariate

Gaussian distribution, it is defined as

FIMij = J TΣ−1J (2.7)

where J = ∂E[X]
∂θ is the sensitivity of the mean vector of the observed variables towards changes

in a system parameter vector θ, and Σ is the covariance matrix (the dispersion) of the observed

variable. Various criteria can be used for optimization, e.g., the absolute magnitude of the main or

off-diagonal terms, the matrix trace (the sum over the main diagonal), the determinant (Kammer,

1991), the minimum singular value of the matrix (Reynier and Abou-Kandil, 1999), or the SVDR

(Kim et al., 2001). A typical SHM application is to estimate the information that a vibration

signal carries on modal parameters. For example, the effective independence ratio (Kammer, 1991),

aims to maximize the distinguishability between mode shapes. Other studies evaluated the Fisher

information in combination with statistical damage detection tests to optimize the POD (Basseville

et al., 1987; Döhler et al., 2013).

Information Entropy. The information entropy may be understood as a measure for uncertainty

in estimated system parameters (Papadimitriou, 2004). It is defined as

IE = Eθ[− ln p(θ|X)], (2.8)

where Eθ is the expectation operator and X is a random variable that contains information on the

parameter vector θ. Previous applications involve the entropy of spectral density estimates (Yuen

et al., 2001), the entropy of stiffness-related parameters (Papadimitriou, 2004), and the entropy of

damage locations (Cantero-Chinchilla et al., 2020).
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Mutual Information. The mutual information criterion is a measure for the redundancy of

information within two sensor sets (Boller et al., 2009). It is defined as

MI = log2

(
PAB(ai, bj)

PA(ai)PB(bj)

)
, (2.9)

where ai and bj are the measurements of the two sets A and B, with the corresponding PDFs

PA(ai) and PB(bj), respectively. The term PAB(ai, bj) denotes the joint PDF between A and B.

The MI is zero if the information measured through bj and ai are not related. An optimization goal

could be to minimize the redundancy or to ensure a certain degree of redundancy, as this increases

the robustness towards sensor malfunction.

Dynamic Observability. The observability is a measure for how well internal dynamic states

can be inferred from sensor readings at distributed DOF. The vibration model can be observable

or not, a binary condition that can be checked by evaluating the observability rank (OR) (Morari

and Stephanopoulos, 1980)

OR = rank(Op+1) =
[
CT (CA)T · · · (CAp)T

]T
. (2.10)

where A and C are the state transition and the output matrices and p is the number of block

rows. A system is observable if the observability matrix’s rank is equal to the system order (Inman,

2017). The degree of observability can be quantified through the observability gramian (OG)

OG =

p∑
k=0

(AT )kCTCAk. (2.11)

Possible optimization goals are to maximize the minimum eigenvalue of the OG (Hać, A., & Liu, L.,

1993; Ko et al., 1994; Georges, 1995), its determinant, or matrix trace (Müller and Weber, 1972).

Another goal could be to achieve a balanced realization by selecting Gramians with equal values on

the main diagonal (Moore, 1981). This extends the primary purpose from basic signal processing

to uncertainty reduction in modal parameters, and improved FE model updating capabilities. In

subspace fitting (Swindlehust et al., 1995), for example, the data-driven observability is compared

to the model-based observability.

Representative Least Squares. The representative least squares method can be used in com-

bination with an arbitrary modal identification method to improve the mathematical model of the

vibrating structure, and thus, to reduce the uncertainties in the modal estimates (Li et al., 2009a).

The central equation reads

RLS = (q̂i − q̂opt)
T (q̂i − q̂opt), (2.12)

where the deviation of the mode shape coordinates q̂i from an optimal set q̂opt is evaluated. An

optimized sensor layout may be found for a minimum RLS, as this corresponds to minimal uncer-
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tainties regarding the modal parameters.

Kalman Filtering. Kalman filters (KF) are matrix operators that predict the future vibration

states based on past measurements. A criterion that may be used for sensor placement optimiza-

tion is the covariance of the state prediction error (Kumar and Seinfeld, 1978). The smaller the

covariance, the better the approximation of the vibrating structure, and the smaller the uncertainty

in the modal parameters. For methods where the characteristics of the prediction error are used as

damage-sensitive criteria, e.g., the innovation whiteness test and the perturbed innovation sequence

method (Bernal, 2013; Döhler et al., 2015), this optimization criteria increases the probability of

detecting damage.

Kriging Prediction Error. With origins in the gold mining industry, Kriging is a geo-statistical

interpolation technique that predicts response quantities and their covariances at unmeasured DOF.

The mean square error depends on the sensor positions and the covariance characteristics of the

wave pattern. It can be understood as a measure for the uncertainty and the spatial coverage of a

mathematical model (Papadimitriou et al., 2005).

Based on the Nottingham Suspension Bridge, Meo and Zumpano (2005) compare EVP, the

MKE, the EfI, the EfI-DPR, and Kriging. The mass weighed version of the effective independence

(EfI-DPR) was presented as the best criterion, as it resulted in a symmetrical sensor arrangement

with a convincing signal-to-noise ratio. Marano et al. (2011) confirm these findings by analyzing

the optimal sensor layout on a broadcasting antenna. The paper highlights the similarity in the

sensor geometry obtained through the EfI and the MKE approach. Moreover, it criticizes the EVP

and DPR because of the irregular sensor layout with an unreasonable concentration of sensors

at the free end of the antenna, while neglecting the mass concentration at its base. Gomes et al.

(2018) perform additional case studies on free and fully clamped plates, and Li et al. (2008) analyze

a ladder structure. All optimization criteria lead to distinctly different sensor layouts, and good

sensor layouts are usually close to large vibration amplitudes.

To summarize, Table 2.2 categorizes all presented performance criteria with respect to their

primary purpose. Many criteria aim to precondition the vibration signal by increasing the signal-

to-noise ratio and quantifying the redundancy of information. Some criteria optimize the quality

of the modal identification by reducing the uncertainties in modal parameters and maximizing the

mode distinguishability. A few performance criteria aim to optimize the detectability of damage.

None of the reviewed criteria appears to quantify the minimum detectable damage, for example, in

percent of a material strength or stiffness value, although this is the decisive quantity for structural

design, structural health, and thus safety.

One strategy that has shown to be efficient is to consecutively apply criteria of increasing

informative value. For example, in the effective independence method, the modal kinetic energy is

applied first, followed by the Fisher information (Kammer, 1991). On one hand, this guarantees that
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Lvl. Primary purpose Secondary purpose Criteria

1. Signal preconditioning Signal-to-noise ratio # Mode shape summation plot
# Eigenvalue vector product
# Driving point residue
# Modal kinetic energy
# Observability rank

Signal redundancy # Mutual information

2. Modal parameter ID Mode differentiability # Modal assurance criterion
# Singular value decomposition ratio
# Effective independence distribution

Uncertainty reduction # Mean square error using kriging
# Representative least squares
# Observability gramian

3. Damage diagnosis Detectability # Fisher information
# Kalman filter innovation

Localizability # Information entropy

Table 2.2: Optimization criteria categorized with respect to the primary purpose

the instrumentation can be used for several purposes. On the other hand, the sensor optimization

procedure becomes more efficient, as low-level optimization criteria (on Level 1 in Table 2.2) can

efficiently be calculated for a large number of sensor locations. High-level optimization criteria,

such as the Fisher information, should only be evaluated for a (relatively) small number of sensor

configurations, or when combined with a smart optimization method, with more information in the

subsequent section.

2.2.2 Optimization Algorithms

A fundamental challenge in sensor placement optimization is the problem of combinatorial explo-

sion. That means that the number of possible sensor locations is so large that it is infeasible to

evaluate the selected performance criterion for all combinations in an exhaustive search approach,

particularly if high-level criteria are used, such as the Fisher information. For a fixed number of

sensors, the number of combinations is

Nc(r, rpos) =
rpos!

(rpos − r)!r!
(2.13)

where r is the number of sensors and rpos is the number of possible sensor locations. For example,

if 20 sensors are to be placed and the candidate locations are narrowed down to 50 using low-level

criteria, the number of combinations is still Ns = 4.71 · 1013. For most performance criteria, this

disqualifies the exhaustive search. However, multiple smart optimization methods exist to find a

close-to-optimal solution within a reasonable time.

Deterministic optimization methods formulate an objective function based on optimization cri-

teria, and advance the sensor layout towards minima by evaluating the gradient or Hessian matrix
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(sensitivity) regarding the optimization variables (e.g., the Newton method, the steepest descent

method, etc.). They may be organized into constrained and unconstrained methods, as well as

linear and non-linear programming. Their suitability for smooth analytical problems with convex

objective functions, i.e., problems with exactly one optimal solution, is undisputed. However, none

of these conditions are given for sensor placement optimization. Moreover, the problem formu-

lation is discrete because natural frequencies and mode shapes of large dynamic systems cannot

be described analytically. It is possible to convert the problem formulation into continuous form

(Sepulveda et al., 1993), but the corresponding approaches are numerically inefficient. Besides,

there are issues related to local minima and convergence, which is why purely deterministic meth-

ods are rarely used (Yi and Li, 2012).

Sequential sensor placement methods iterate toward an acceptable sensor layout by systemically

removing or adding a subset of sensors in each iteration step. Correspondingly, the methods are

termed forward-SSP and backward-SSP. The solution may not be optimal, because it depends on

the initial choice and the number of sensors that are removed at a time. Moreover, the optimal

sensor location changes with a varying number of sensors, but once a sensor is removed from the set,

it will not be added again. An improved version is the combined backward-forward method, which

is a forward-SSP that overshoots the desired number of sensors, for example, by 10%, and then

reduces the number of sensors again in a backward-SSP fashion (Li et al., 2008). Depending on the

original choice, this method can lead to optimal results, while outperforming all other placement

schemes if a single optimization criterion is used (Papadimitriou, 2004). However, it is not suitable

for multi-objective optimization.

Genetic Algorithms (GA) mimic the natural evolution process of chromosomes by introducing

random properties, such as gene mutation and crossover (Holland, 1975). Originally, the sensor

configurations were understood as chromosomes that consist of multiple genes, i.e., binary strings

that indicate the presence of sensors through ”0” and ”1” entries at certain DOF (Yao et al., 1993).

The optimal solution is found by assigning a criterion-based fitness value to each chromosome. Gene

mutation is implemented by randomly changing sensor locations (swapping 0 and 1); however,

crossover is more challenging to implement because merging two sensor configurations changes

the number of sensors. One class of methods solved this issue by introducing a partheno-GA or

dual-structure encoding technique, where the mating is carried out by merely changing the order

of genes (sensor location) but not their number (Kang et al., 2008; Huang et al., 2009). Another

(more efficient) class of methods introduced real-float or integer numbers instead of binary encoding

(Roy and Chakraborty, 2009; Chow et al., 2011; Michaelewicvz, 1994).

Nature-inspired algorithms are inspired by the social behaviour of species, where the algorithms

adapt the coordinated travel paths animals take to progress toward a common goal. Combined with

the appropriate optimization problem, all algorithms have the capability to outperform the genetic

algorithms. This is because they combine local search techniques with coordinated global search

techniques, and randomized local and global elements. This speeds up convergence, in particular
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in early stages, and ensures that the local minima in the objective function can be overcome.

The particle swarm optimization algorithm, which is inspired by bird flocking or fish schooling,

deserves special attention due to its pioneering character and simple implementation (Eberhart

and Kennedy, 1995). Each particle is assigned to a velocity vector (trajectory), which is updated

as the particle moves through space. It is attracted to both local and global minima in the objective

function while keeping a specified distance to other particles, and includes a randomized component.

The distributed wolf method imitates the hunting and feeding behaviour of a wolf pack (Yi et al.,

2016). In the searching phase, individual wolfs seek for nearby prey (local optima in the objective

function) based on combined deterministic and random search criteria. In the attacking phase,

they use the information provided from the alpha-wolf to progress closer to the largest prey found

(global minima). In the sense of food distribution, wolfs with low search success are replaced

with randomly generated new wolfs. In ant colony optimization (Overton and Worden, 2004),

random ant agents search for optimal solutions while leaving behind pheromone-based information

to reinforce and promote certain travel paths. Other examples are the artificial bee colony method

(Scott and Worden, 2015), the firefly algorithm (Zhou et al., 2014), the micro-habitat frog leaping

method (Feng and Jia, 2018), and the monkey algorithm (Yi et al., 2015).

Simulated annealing describes the process of (repeatedly) heating metals beyond their recrys-

tallization point and cooling them down in a slow and controlled manner. Due to minimum energy

principles, the crystals asymptotically move towards a highly ordered state of minimal energy, which

exhibits desirable material properties. This process is imitated for sensor placement optimization

(van Laarhoven and Aarts, 1987; Corana et al., 1987), but instead of thermal motion, a perturba-

tion operator is applied to the sensor locations. Initially, the perturbation is highly random, but

with an increasing number of iterations, the intensity of the perturbation gradually reduces, so the

procedure converges toward the global minimum in the objective function. For each iteration step,

the new sensor arrangement is accepted if it performs better than the previous one. However, to

ensure that local minima in the objective function can be overcome, the algorithm has to be mod-

ified and the severity of the perturbation has to be increased at intermediate steps (corresponding

to a reheating of the material). The decision of whether a heat increase is acceptable or not is

based on statistic operators related to thermo-mechanics, so-called Boltzmann statistics.

2.3 Summary

This chapter summarizes the state-of-the-art in damage diagnosis methods and sensor placement

strategies for global vibration monitoring. First, an overview is provided for existing damage-

sensitive features (see Table 2.1). Secondly, the damage diagnosis methods are categorized into

supervised learning, unsupervised learning, model updating, and parametric change detection. The

review concludes that damage localization and quantification can only be achieved through model-

based approaches. The asymptotic local (AL) approach is selected for the studies in the thesis

due to its real-time capabilities, its diagnostic depth, its thorough treatment of uncertainties, and
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its universality. Since the AL method has never been applied for change detection in boundary

conditions (i.e., changes in support conditions or prestressing forces), the corresponding literature

is reviewed. Damage modelling based on the geometric stiffness matrix is found to be a uni-

versal approach to parametrize changes in boundary conditions. Moreover, previous attempts to

determine the minimum detectable damage are reviewed. Most existing strategies are empirical,

problem-specific, or restricted to specific element types. The findings further indicate that damage

detectability depends on the reliability requirements, expressed through the probability of false

alarms (PFA) and the probability of detection (POD), and the measurement duration; however, no

universal framework has been found to describe the relations for global vibration monitoring.

Sensor placement optimization is divided into performance criteria and optimization algorithms.

To provide an overview, the performance criteria are categorized with respect to the primary pur-

pose of the optimization (see Table 2.2). Low-level performance criteria aim to precondition the

vibration signal (Level 1) by optimizing the signal-to-noise ratio and quantifying the redundancy

of information. Other criteria optimize the quality of the modal system identification (Level 2),

which leads to minimum uncertainties in the estimated modal parameters and maximal mode dis-

tinguishability. Advanced criteria optimize the damage detectability or localizability (Level 3),

but none of the existing criteria appears to consider the relative changes in structural parameters

(such as material strength values), although these are the decisive quantities for structural design,

structural health, and thus, safety. Due to combinatorial explosion, an exhaustive search approach

(where each possible sensor configuration is evaluated) is not applicable to sensor placement on

large mechanical structures, and smart optimization algorithms have to be employed to find a

close-to-optimal solution within a reasonable time. Deterministic optimization methods (based on

gradients or Hessian matrices) are rarely used, due to the discrete nature of the optimization prob-

lem, but sequential sensor placement strategies offer efficient alternatives. The genetic algorithm

(GA), simulated annealing, and nature-inspired algorithms (e.g., the particle swarm optimization,

distributed wolf, ant colony, artificial bee colony) are particularly efficient, as they combine local

search techniques with coordinated global search techniques to overcome local minima.
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Chapter 3

Structural Dynamics in Control

Theory

“If you change the way you look at things, the things

you look at change.”

— Wayne Dyer

Control theory provides mathematical models to replicate vibration measurements while avoid-

ing numerical models of the examined structures. These models can be employed to identify modal

properties (e.g., resonance frequencies, mode shapes, and damping ratios), and to detect changes

in dynamic systems with known or unknown input forces. Most concepts go back to the 1950s

(Kalman, 1959), but gained attention with the publication of a book in 1995 (van Overschee and

de Moor, 1995) that unified the theoretical framework for mechanical systems with input-output

and output-only measurements. In 2014 and 2015, two books were published that are tailored to

civil engineers with no background in control theory (Rainieri and Fabbrocino, 2014; Brincker and

Ventura, 2015). This chapter is written in the same spirit, starting with the Newton equation of

motion. The introduced mathematical concepts are essential in order to understand the developed

tools in this thesis.

Section 3.1 focuses on mechanical systems with known input forces. Basic concepts of struc-

tural dynamics, such as the free decay and impulse response function of multi-degree of freedom

systems are translated into the equivalent control-theory based notations, i.e., the observability and

the block Hankel matrix. Section 3.2 explains that impulse response functions can be replaced by

covariance functions in block Hankel format for systems with unknown input forces, and how the

block Hankel matrix can be decomposed into the observability matrix using subspace decomposi-

tion. Section 3.3 touches upon subspace-based system identification.

3.1 Input-output Systems

3.1.1 State Space Model

Linear and time-invariant (LTI) mechanical systems with Nm degrees of freedom are routinely

modelled through the Newton equation of motion (Chopra, 2017)

Mü(t) + C1u̇(t) + Ku(t) = F · f(t). (3.1)
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where M,C1,K ∈ RNm×Nm are the mass, damping and stiffness matrix and u(t) ∈ RNm is the

displacement of the system under known external forces. The forces are split into a time-dependent

part f(t) ∈ RNi , where Ni is the number of input channels, and a matrix that assigns the input

channels to the corresponding degrees of freedom F ∈ RNm×Ni . Since linear behaviour is assumed,

any system state can be described through a state vector containing displacements and velocities

x(t) = [u(t)T u̇(t)T ]T (Rainieri and Fabbrocino, 2014). Equivalently, second-order derivatives in

Eq. (3.1) can be substituted through the first derivative of the state vector ẋ(t) reformulating the

mechanical system to[
u̇(t)

ü(t)

]
=

[
0 I

−M−1K −M−1C1

][
u(t)

u̇(t)

]
+

[
0

M−1F

]
f(t). (3.2)

The lower half of Eq. (3.2) is the equation of motion from Eq. (3.1) solved for the accelerations

ü(t), and the upper half is a true statement. Eq. (3.2) can be re-written as

ẋ(t) = Acx(t) + Bcf(t), (3.3)

where Ac ∈ Rn×n and Bc ∈ Rn×Ni are the state transition matrix and the input matrix, x ∈ Rn is

the state vector, and n = 2m is the new system order. To include the system response measured

through r sensors, a measurement equation is added. The measurement vector y(t) ∈ Rr contains

displacements, velocities, or accelerations superimposed with measurement noise e(t) ∈ Rr. It can

also include different measurement quantities if selection matrices La,Lv,Ld ∈ Rr×Nm are defined

to assign the degrees of freedom to the corresponding measurement quantity through

Laü(t) + Lvu̇(t) + Ldu(t) + e(t) = y(t). (3.4)

After substituting the second order derivative through ü(t) from Eq. (3.2), the measurement vector

is re-arranged to (Rainieri and Fabbrocino, 2014)

y(t) =
[
Ld − LaM

−1K Lv − LaM
−1C

] [u(t)

u̇(t)

]
+

[
0

LaM
−1F

]
f(t) + e(t). (3.5)

In the following, the matrix terms in the measurement vector from Eq. (3.5) are substituted,

y(t) = Ccx(t) + Dcf(t) + e(t), (3.6)

where Cc ∈ Rr×n is called the output matrix and Dc ∈ Rr×Ni the feed-trough term. Combining the

state and measurement vectors from Eq. (3.3) and (3.6) leads to the state space model (Lindquist

and Picci, 2015) of the following formatẋ(t) = Acx(t) + Bcf(t)

y(t) = Ccx(t) + Dcf(t) + e(t).
(3.7)
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3.1.2 Sampled System Response

Vibration measurements are only available at discrete time instants, so the state space model is to

be transformed from continuous-time to discrete-time. This is achieved by assuming a zero-order

hold and integrating over a time step t = k∆t. Therefore, the state space model in continuous-time

from Eq. (3.7) changes to the following model in discrete-time (van Overschee and de Moor, 1995),xk+1 = Axk + Bfk

yk = Cxk + Dfk + ek,
(3.8)

where A = eAc∆t is the state transition matrix, B = A−1
c (eAc∆t− I)Bc is the input matrix (Chen,

1999), and Cc = C and D = Dc are the output and the feed-through matrices in discrete-time.

Applying the equation recursively from a known initial state x0 with a known input sequence leads

to

x1 = Ax0 + Bf0

x2 = A2x0 + ABf0 + Bf1

x3 = A3x0 + A2Bf0 + ABf1 + Bf2

...

xk = Akx0 +
k∑
i=1

Ai−1Buk−i. (3.9)

Equivalently, the measurements are calculated recursively by substituting the state xk into the

measurement equation yk from Eq. (3.8) yielding (Glad and Ljung, 2000)

y1 = CAx0 + CBf0 + Df1 + e1

y2 = CA2x0 + CABf0 + CBf1 + Df2 + e2

y3 = CA3x0 + CA2Bf0 + CABf1 + CBf2 + DF3 + e3

...

yk = CAkx0 +

k∑
i=1

CAi−1Bfk−i + Dfk + ek. (3.10)

These equations can be tied back to classical structural dynamics, where the first terms in Eq. (3.9)

and (3.10) describe the free responses (i.e., the homogenous solution) and the remaining terms are

the forced responses, i.e., the particular solution (Chen, 1999).

3.1.3 Hankel Factorization

Where the previous section reviewed how the system state and the measurements of a LTI system are

recursively computed for any time instants k, this section explains how a complete vibration record
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with multiple time instances k = 1, . . . ,K can be modelled based on matrix-vector products. For

this purpose, the concepts of observability and controllability (Kalman, 1959, 1963) are introduced

and linked to the dynamic system response of a deterministic system in block Hankel matrix format.

Observability. The first term of the measurement equation from Eq. (3.10) describes the free

decay of a multi-degree of freedom system to the initial state x0 (i.e., an initial displacement

and/or velocity) in K time steps (Chen, 1999). The free decay can be captured in one matrix, the

observability matrix OK through
y0

y1

...

yK−1

 = OK · x0, where OK =


C

CA
...

CAK−1

 . (3.11)

Block Hankel Matrix. The second term of the measurement equation from Eq. (3.10) describes

the impulse response of a multi-degree of freedom system to K unit impulses. It can be captured

in one matrix, a block Hankel matrix H, through (Lindquist and Picci, 2015)


y0

y1

...

yK−1

 = H ·


fK−1

fK−2

...

f0

 , where H =



CB CAB . .
.

CAK−1B

CAB CA2B . .
.

CAKB

. .
.

. .
.

. .
.

. .
.

CAK−2B CAK−1B . .
.

CA2K−1B

CAK−1B CAKB . .
.

CA2K−2B


. (3.12)

It is called a “block Hankel matrix” due to its particular format, with identical blocks on the skew

diagonal from the bottom left to the top right. The matrix rank is equal to the system order n for

both the observability matrix and the block Hankel matrix with rank(OK) = rank(H) = n.

State Controllability. The block Hankel matrix is linked to the observability matrix through

the controllability matrix (Chen, 1999). The controllability transfers the system from the initial

state to another state in K time steps

xK = CK


fK−1

fK−2

...

f0

 , where CK =
[
B AB . . . AK−1B

]
. (3.13)

The product of the controllability from Eq. (3.13) and the observability from Eq. (3.11) yields the

block Hankel matrix from Eq. (3.12), with H = OKCK . Vice versa, the block Hankel matrix
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can be decomposed into the observability and controllability, for example, through singular value

decomposition (van Overschee and de Moor, 1995), with more details in Section 3.3.1.

3.2 Output-only Systems

3.2.1 State Space Model

For stochastic dynamic systems, where the input fk is unknown, the discrete state space model

from Eq. (3.8) simplifies to (van Overschee and de Moor, 1995)xk+1 = Axk + wk

yk = Cxk + vk,
(3.14)

where A and C are the state transition matrix and the output matrix in discrete-time. The

state noise wk = Bfk replaces the unknown force term in the state vector and the output noise

vk = Dfk + ek replaces the force and the measurement noise. Both terms are assumed to be white

noise with zero means. That means that the noise terms are assumed to be uncorrelated with the

internal states, and the covariances R are zero,

Rwv = E[xkv
T
k ] = 0 (3.15)

Rxw = E[xkw
T
k ] = 0. (3.16)

The term E[·] is the expectation operator. The excitation is assumed to be stationary, so the noise

covariances remain unchanged with

E

[[
wp

vp

] [
wT
q vTq

]]
=

[
Rww Rwv

RT
wv Rvv

]
δpq, (3.17)

where p and q are two arbitrary time instants and δpq is the Kronecker delta, which is δpq = 1 for

p = q and 0 otherwise. More information on the covariance follows in the next section.

3.2.2 Covariance Function

Cross-covariance functions measure the similarity of two signals and this section reviews how the

auto-covariance of the measurements are linked to the dynamic system from Eq. (3.14). Another

term for the cross-covariance function is the sliding inner product, as one signal X is slid along

another signal Y by a time lag i while multiplying the two signals (Muirhead, 1982)

RXY ,i = E[Xk+iY
T
k ]. (3.18)

If both signals are aligned for a certain time lag, their inner product maximizes, indicating the

similarity of the two signals. Where the cross-covariance compares two different quantities X and
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Y, the auto-covariance compares one quantity to itself at different time instants. The system is

assumed to be stationary, so the auto-covariances of the states Rxx assume the same matrix for

every time instant k and zero time lag

Rxx =E[xkx
T
k ]. (3.19)

Combining the state sequence and the measurement sequence from Eq. (3.9) and (3.10) with the

assumed noise properties from Eq. (3.16), the cross-covariance between the output and the states

Rxy,1 at time lag i = 1 can be re-written as:

Rxy,1 =E[xk+1y
T
k ]

=E[(Axk + wk) · (Cxk + vk)
T ]

=AE[xkx
T
k ]CT + E[wkv

T
k ]

=ARxxC
T + Rwv. (3.20)

So, the cross covariance Rxy,1 is linked to the auto-covariance Rxx from Eq. (3.19) and the noise

covariance Rwv from Eq. (3.17) (van Overschee and de Moor, 1995). The auto-covariance of the

output Ryy can be re-formulated in a similar way. For a time lag of i = 1, it follows:

Ryy,1 =E[yk+1y
T
k ]

=E[(CAxk + Cwk + vk)(Cxk + vk)
T ]

=E[CAxkx
T
kCT ] + E[Cwkv

T
k ]

=C
(
AE[xkx

T
k ]CT + E[wkv

T
k ]
)

=C
(
ARxxC

T + Rwv

)
=C ·Rxy,1. (3.21)

For an arbitrary time step i, the auto-covariance decomposes into

Ri =Ryy,i = CAi−1 ·Rxy,1. (3.22)

In other words, the auto-covariance Ryy,i of the measurements decomposes into the output matrix

C, the state transition matrix Ai−1, as well as the cross-covariance between the states and the

measurements Rxy,1 (van Overschee and de Moor, 1995). Where the right term Rxy,1 is load-

dependent, the left term is characteristic for the structure. Eq. (3.22) is a fundamental expression

for ambient vibration testing, as it proves that the mechanical model from Eq. (3.14) can be

retrieved from random vibration data using covariance functions.

3.2.3 Hankel Factorization

To retrieve the state transition matrix and the output matrix, A and C, from vibration measure-

ments, the covariance functions are arranged in block Hankel format (van Overschee and de Moor,

1995), refer to Section 3.2.3. The indices for block rows and block columns, p and q, are the time
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lag parameters for the covariance functions. The block Hankel matrix

Hp+1,q =


R1 R1 . .

.
Rq

R2 R1 . .
.

Rq+1

. .
.

. .
.

. .
.

. .
.

Rp+1 Rp+2 . .
.

Rp+q


= Op+1Cq (3.23)

can be interpreted as the unit impulse response matrix to white noise excitation, and decomposes

into the output observability and the output controllability

Op+1 =


C

CA
...

CAp+1

 , where Cq =
[
Rxy,1 ARxy,1 · · · Aq−1Rxy,1

]
. (3.24)

From a mathematical point of view, the time time lag parameters p and q have to be chosen

sufficiently high, so the block Hankel matrix and the observability are of full rank with the minimum

condition min{pr, qr} ≥ n. Since the matrix rank is determined by the shorter matrix dimension

of Hp+1,q, the time lag parameters are often set to p+ 1 = q.

3.2.4 Practical Considerations

The assumption of white noise excitation is made to allow for a simple presentation of the theoretical

derivations in this chapter. However, engineering practice has shown that the system matrices can

also be retrieved if the system excitation is coloured, band-limited, or non-stationary (Benveniste

and Mevel, 2007; Basseville et al., 2007), and if the measurement noise is non-white. Modelling

inaccuracies of this kind may introduce spurious noise modes, which can be accounted for by

increasing the system order beyond the minimum value of n > 2Nm. Equivalently, the selection

of appropriate time lag parameters p and q is often based on user experience rather than the

minimum condition from the previous section. The time lags have to be set sufficiently high, while

considering the physics of the wave propagation (Rainieri and Fabbrocino, 2014), so a sufficient

number of cycles of each mode of vibration is captured. Some authors proposed to set the time

lag to p = fs/(2fn,1) based on the sampling frequency fs and the frequency of the first mode of

vibration fn,1 (Reynders and de Roeck, 2008). This ensures that half a cycle of the fundamental

mode of vibration is captured (one sinus half-wave), where all wave components of lower frequency

are neglected. However, if damping estimates are not of interest, a lower value can be set and a

physical interpretation is challenging, because the physical wave propagation properties also depend

on structure-specific quantities, such as the distance between sensors and the speed of sound.
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3.3 Stochastic System Identification

3.3.1 Subspace Decomposition

The preceding sections have shown that the block Hankel matrix from Eq. (3.23) can be interpreted

as a unit impulse response matrix, and all that remains is to extract the observability (i.e., the

matrix that captures the free decay), and from it, the state transition matrix and the output

matrix A and C. The first step is to decompose the block Hankel matrix using singular value

decomposition (SVD)

Hp+1,q = USVT =
[
U1 U0

] [S1 0

0 0

][
VT

1

VT
0

]
= Op+1Cq, (3.25)

where U,S and V are the left singular vectors, the singular values, and the right singular vectors.

Structural modes of vibration are assumed to dominate the system response over noise. Hence, the

upper singular values S1 ∈ Rn×n and the corresponding singular vectors U1 represent structural

information, where the lower singular values represent noise. The observability is calculated as

Op+1 = U1S
−1/2
1 (3.26)

and the output matrix C is the first block row of the observability (see Eq. 3.24). Using the

shift-invariance property, which states that the state transition matrix is the component of the

observability that is consistent over multiple time steps (Magalhães and Cunha, 2011),

O↑p+1 = AOp+1↓, where O↑p+1 =


C

CA
...

CAK−1

 , Op+1↓ =


CA

CA2

...

CAK

 , (3.27)

the state transition matrix A can be approximated based on regression, with

A = (O↑p+1)†Op+1↓. (3.28)

3.3.2 Eigenvalue Problem

Once the system matrices A and C have been found, the way to derive modal parameters is

straightforward (Brincker and Ventura, 2015). The eigenvalue problem is expressed as AΦ = ΦΛ

where Λ = Φ−1AΦ = diag(λ2
1, . . . , λ

2
n) is a matrix holding the eigenvalues of the system on its

main diagonal, and Φ are the eigenvectors of the states that can be transformed into the observable

eigenvectors Ψ through

Ψ = CΦ =
[
Ψ1 · · · Ψn

]
. (3.29)
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The pole λj of every mode of vibration j can be back-transformed into the pole µj of the continuous-

time system, and subsequently decomposed into the corresponding natural circular frequency ωj

and damping ratio ζj with

µj =
log λj

∆t
= −ωjζj ± ωj

√
1− ζ2

j · i. (3.30)

where i =
√
−1 is the imaginary unit. Ultimately, the poles are decomposed into natural frequencies

and damping ratios

fj =
|µj |
2π

ζj = −Re(µj)

|µj |
. (3.31)

3.3.3 Diagonalization

Using similarity transformation, the state space model can be transformed into a new coordinate

system. By defining the transformation matrix as the inverse mode shape matrix

T = Φ−1, (3.32)

transforming the system states x̃k = Txk, and expanding the state space model as follows,Txk+1 = TAT−1Txk + Twk

yk = CT−1Txk + vk,
(3.33)

the state space model is obtained in modal basisx̃k+1 = Ãx̃k + w̃k

yk = C̃x̃k + vk.
(3.34)

In this case, the state transition matrix is equal to the eigenvalue matrix,

AΦ = ΦΛ

(TAT−1)TΦ = TΦΛ

Ã = Λ

(3.35)

and the output matrix is the mode shape matrix.

C̃ = CT−1 = Ψ. (3.36)

The modes of vibration can be manually selected to construct the corresponding state transition

matrix and the output matrix. Furthermore, the observability from Eq. (3.11) can be constructed

based on modal parameters. This is used in this thesis to reduce the model order, efficiently simulate

vibration data, and diagnose damage based on system matrices that are noise-free.
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3.4 Summary

In this chapter, structural dynamics of multi-degree of freedom systems are interpreted from a

control theory perspective. The first part explains how the Newton equation of motion can be

transformed into a state space model. To do so, a measurement matrix is added with combined

displacement, velocity, and acceleration records, and the second-order derivatives in the differen-

tial equation are substituted using a state vector. Moreover, fundamental concepts such as the

observability matrix and the block Hankel matrix are introduced, which can be interpreted as the

measured response sequence of a freely decaying multi-degree of freedom system and an impulse

response function, respectively. The second part deals with stochastic state space models, where the

input forces are unknown and replaced through white noise. Basic assumptions regarding the noise

properties are repeated and covariance functions are introduced as a measure for the similarity of

output signals. It is revisited that, when arranged in block Hankel format, the covariance functions

can be interpreted as unit impulse response functions, and they can be decomposed into dynamic

system matrices. The third part briefly reviews how to estimate the observability from the block

Hankel matrix using singular value decomposition (SVD). Once the observability is estimated, the

system matrices of the state space model can be retrieved and modal parameters (including natural

frequencies, damping ratios, and mode shapes) are calculated by solving the eigenvalue problem.

Ultimately, it is shown how to diagonalize the state space matrix, i.e., how to transform it into

modal coordinates.
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Chapter 4

Damage Diagnosis Using the

Asymptotic Local Approach

“Damage increases the complexity of a structure.”

— Axiom VIII of SHM

(Farrar and Worden, 2012)

This chapter is an introduction to damage diagnosis using the asymptotic local (AL) approach

(Benveniste et al., 1987). For many damage-sensitive features, the vibration state of the undam-

aged structure can be described through well-defined (and often Gaussian) distributions, but few

statements can be made about the distributions in the damaged state, which are more complex. In

this sense, the statistical framework of the AL approach is special, as it allows for the distribution

in the damaged state to be transformed into a Gaussian distribution, with the only difference to

the training state being a shift in the mean vector. Using the example of the stochastic subspace-

based residual, this chapter revisits how damage can be detected (Basseville et al., 2000), localized

(Basseville et al., 2004), and quantified (Döhler and Mevel, 2015) based on global structural vi-

brations under random excitation. Section 4.1 recaps how damage is defined based on parameter

changes in a finite element (FE) model. Section 4.2 reviews how the damage-sensitive residual is

formed in the subspace of the block Hankel matrix. Moreover, the uncertainties in the estimation

of the damage-sensitive residual are quantified, and its mean value is linked to structural design

parameters in a FE model through sensitivity analysis. Section 4.3 and Section 4.4 explain the

change detection method based on the AL approach and elaborate on how to adjust the approach

for the four available damage detection and localization tests. The last section (Section 4.5) gives

guidance on how to interpret the diagnosis results.

4.1 Damage Parametrization

To diagnose damage, the definition of damage must be clarified, both physically and mathemati-

cally. From an engineering perspective, structural damage is understood as a gradual or sudden

degradation of design parameters, such as material constants (Worden and Dulieu-Barton, 2004;

Farrar and Worden, 2012), cross-sectional values or pre-stressing forces (Chen and Duan, 2014),

boundary conditions, or mass-distribution parameters (Santos et al., 2013), as all these cases alter

the structure’s capacity. FE models offer a convenient way to model structural damage. Nodes
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and elements define the geometry of the structure and the capacity of the members depends on the

assigned element dimensions and material properties. The available monitoring parameters depend

on the element formulation. In theory, any subset of FE parameters can be defined as monitoring

parameters, but the monitoring vector

θ =
[
θ1 . . . θH

]T
(4.1)

has to include all parameters that possibly undergo changes due to damage. Hence, damage is

defined as a deviation of the current monitoring parameter θ from the reference vector θ0, so

∆θ = θ − θ0. (4.2)

Assigning different monitoring parameters to the finite elements within the same structural com-

ponents can lead to an over-parametrization, meaning the effect of individual parameters cannot

be distinguished from others. Later in this chapter, a clustering approach will be reviewed that

combines redundant parameters (Allahdadian et al., 2019), but it is advisable to manually define

substructures by assigning the same parameter θh to multiple FE. For example, the normal force

in a cable or truss is one constant even if the cable is discretized into multiple elements.

4.2 Damage-sensitive Residual

4.2.1 Subspace-based Residual

The employed damage-sensitive residual is the subspace-based residual (Basseville et al., 2000). It

is formed in the subspace of the block Hankel matrix, i.e., the output covariances Ri = E[yk+iy
T
k ]

at different time lags i = 1, ..., p+ q, see Section 3.2.3. Using singular value decomposition (SVD)

H =


R1 R2 . .

.
Rq

R2 R3 . .
.

Rq+1

. .
.

. .
.

. .
.

. .
.

Rp+1 Rp+2 . .
.

Rp+q


= USVT =

[
U1 U0

] [S1 0

0 0

][
VT

1

VT
0

]
, (4.3)

the matrix is decomposed into the left singular vectors and right singular vectors, U and V, as

well as the singular values S, refer to Eq. (3.25). The column space U1 ∈ Rp+1×n is limited by

the system order n and it is orthogonal to the left null space U0. Multiplying orthogonal vector

spaces yields zero UT
0 U1 = 0, and consequently, all structural information is eliminated by pre-

multiplying U0 to the block Hankel matrix it is derived from. After vectorizing the residual matrix

through the column stacking operator vec(·), an empty column vector ε ∈ Rq(p+1) is obtained,

ε = vec
(
UT

0 H
)

= 0. (4.4)
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Ultimately, a damage-sensitive residual is formed by pre-multiplying the left null space extracted

from reference data to the block Hankel matrix that is evaluated based on new incoming data. In

reality, however, measurement noise is present and covariance functions are calculated based on

finite measurement records (Muirhead, 1982)

R̂i =
1

N − i

N−i∑
k=1

yk+iy
T
k , (4.5)

meaning they are merely estimates, as is the block Hankel matrix. As a consequence, the lower

singular values in Eq. (4.3) beyond the cut-off n are close to but unequal to zero, and the subspace-

based residual is subject to uncertainties (which is indicated through the hat symbol1).

ε̂ = vec
(
UT

0 Ĥ
)

(4.6)

Alternatively, the null space can be extracted from the observability matrix, because the observ-

ability is derived from the block Hankel matrix through SVD so it has the same null space, see

Eq. (3.25). The observability can be constructed based on the modal parameters from operational

modal analysis (OMA) or finite element analysis (FEA) which allows one to select the modes of

vibration that the null space is orthogonal to, see Eq. (3.24), (3.35), and (3.36). However, estimat-

ing the null space based on the block Hankel matrix is more robust, because all signal components

(including spurious noise modes) are considered and eliminated, bringing the residual closer to its

theoretical properties.

4.2.2 Covariance Matrix

The aim of this section is to quantify the uncertainty of the residual from Eq. (4.6) through the

covariance matrix Σ. Uncertainties are inevitable due to stochastic loads, measurement noise, and

finite sample size N . Regardless of the underlying distribution of the feature, the sample mean

approximates the expected value (due to the law of large numbers), and subtracting the mean vector

from the samples yields a zero mean vector E [ε̂− E[ε̂]] = 0. Moreover, the sampling distribution

of output covariances approximates a multi-dimensional Gaussian distribution if the sample size

is large enough (due to the central limit theorem) with theoretically N −→ ∞ (Hannan, 1970).

Therefore, Gaussianity is not an assumption but a consequence from mechanical system properties.

In the case of the residual vector, the central limit theorem (CLT) can be written as (Basseville

et al., 2000)

ζ =
√
N(ε̂− E[ε̂]) −→ N (0,Σ). (4.7)

1For notational convenience, the hat symbol is dropped for all quantities that are derived from ε̂.
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This new vector is called the Gaussian residual ζ in the literature, and its covariance can be

estimated as a sample covariance based on nb data blocks with (Muirhead, 1982)

Σ =
1

nb − 1

nb∑
k=1

ζkζ
T
k . (4.8)

Where the above equations can be applied to any residual, the following considerations are specific

to the stochastic subspace-based residual from Eq. (4.6). Here, the covariance depends on the

covariance of the vectorized Hankel matrix

ΣH =
√
Nvec(Ĥ), (4.9)

which is approximated as a sample covariance (Döhler et al., 2014b)

ΣH =
Nb

nb − 1

nb∑
k=1

vec(Ĥ(k) − Ĥ)vec(Ĥ(k) − Ĥ)
T

. (4.10)

The superscript (k) indicates that the block Hankel matrix Ĥ(k)
is estimated based on a short

measurement segment of sample length Nb where Nb · nb = N0. Pre-multiplying the null space UT
0

to the first column of the sample covariance of the block Hankel matrix leads to Σ1 = UT
0 ΣH1 U0,

and pre-multiplying it to the entire matrix to

Σ = (I⊗UT
0 )ΣH(I⊗U0), (4.11)

where ⊗ is the Kronecker product.

4.2.3 Jacobian Matrix

Using sensitivity analysis, the deviation in the mean residual vector from Eq. (4.6) can be linked

to changes in any system parameter, for example modal parameters or structural parameters from

Eq. (4.2). Parametrization is optional but enhances the data-driven residual with physical infor-

mation and is a prerequisite for damage localization. Starting with the theoretical residual from

Eq. (4.4) and assuming an altered parameter vector θ = θ0 + ∆θ, a Taylor series expansion of ε(θ)

produces

ε(θ) = ε(θ0) +
∂ε

∂θ0
(θ − θ0) +

1

2!
(θ − θ0)T

∂2ε

∂(θ0)2
(θ − θ0) + . . . (4.12)

with the first term being zero due to Eq. (4.4). If terms of higher-order are neglected, the equation

boils down to the second term. Considering statistical variability, the Taylor series expansion still

applies to the mean residual. It can be proven that terms of higher-order converge towards zero at

a higher rate than the second-order term for large sample sizes N −→∞ (Benveniste et al., 1987).
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Figure 4.1: Chain of sensitivity analyses for Jacobian calculation

So, the mean residual converges toward

Eθ[ε(θ)] −→ J (θ − θ0) (4.13)

where J = ∂
∂θEθ[ε]

∣∣
θ=θ0

is the first-order sensitivity matrix evaluated based on reference parameter

θ = θ0 and Eθ is the expected value of a variable calculated under system parameter θ. By setting

up the sensitivity matrix, the changes in the residual are linked to changes in the parameter vector.

Whereas the link between modal parameters from OMA and structural parameters of a FE model is

well-documented in the literature on sensitivity-based modal updating (Heylen and Sas, 1997), the

link between the data-driven residual and modal parameters is unique to stochastic subspace-based

damage diagnosis.

a) Link to Operational Modal Parameters

Changes in the mean residual vector from Eq. (4.6) are linked to changes in modal parameters

through the sensitivity matrix

J (1) =
∂Eη[ε]

∂η

∣∣∣∣
η=η0

, where η =


Re(diag(Λ))

Re(vec(Ψ))

Im(diag(Λ))

Im(vec(Ψ))

 , (4.14)

where the parameter vector η holds the matrices with complex conjugate mode shapes Ψ =

[ϕ1, . . . ,ϕNm ] and poles Λ = diag(λ1, . . . , λm) in discrete-time and vectorized format. The modal

parameters are split into real and imaginary parts, using the operator Re(·) and Im(·), for consis-

tency with the following considerations. After substituting Eq. (4.6) into Eq. (4.14) and rewriting

the block Hankel matrix as a product of observability and controllability,

J (1) = E

[
∂

∂η
vec
(
UT

0 ·OC
)]∣∣∣∣

η=η0

, (4.15)
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4.2. Damage-sensitive Residual

the derivative of the bracket term is viewed for each individual monitoring parameter ηi. An

expansion according to the product rule

∂

∂ηi

(
UT

0 ·OC
)

= UT
0

∂O
∂ηi

∣∣∣∣
η=η0

C + UT
0 O

∂C
∂ηi

∣∣∣∣
η=η0

(4.16)

shows that the second term can be dropped since the observability has the same left null space

as the block Hankel matrix, so UT
0 O = 0, as explained at the end of Section 4.2.1. Substituting

the controllability by C = O†H and applying a standard calculation rule of the column stacking

operator (Basseville et al., 2000)

J (1) = E

[
vec

(
UT

0 ·
∂O
∂η

∣∣∣∣
η=η0

·O†H
)]

= E

((
O†H⊗U0

)T ∂

∂η
vec(O)

∣∣∣∣
η=η0

)
(4.17)

illustrates that the sensitivity calculation boils down to the derivative of the vectorized observability.

The analytical derivative of the observability in modal basis is available (Basseville et al., 2000),

but only in complex-valued format Omod
c , indicated through the subscript c. More details on the

similarity transformation of the observability into modal coordinates is given in Section 3.3.3. By

re-organizing the complex-valued poles and their derivatives

Λp
i =

[
1 λi λ2

i · · · λpi

]T
, Λ

′p
i =

∂

∂λi
Λp
i =

[
0 1 2λi · · · pλp−1

i

]T
, (4.18)

the derivative of the observability can be written as

∂

∂η
vec(Omod

c ) =


∆′p1 ⊗ϕ1 0 ∆p

1 ⊗ Ir 0

. . .
. . .

0 ∆′pNm ⊗ϕNm 0 ∆p
Nm
⊗ Ir

 . (4.19)

For consistency, a similarity transformation is applied to the state space model, leading to a real-

valued observability of

Omod =
[
Re(Oc) Im(Oc)

]
, (4.20)

and ultimately, the real-valued derivative is obtained as (Basseville et al., 2000)

∂

∂η
vec(Omod)

∣∣∣∣
η=η0

=

[
Re(Oc′) −Im(Oc′)

Im(Oc′) Re(Oc′)

]
(4.21)

and substituted into the Jacobian from Eq. (4.17). Exchanging the data-driven observability (in

modal basis) with the observability constructed based on numerical modal parameters allows one

to drop the expectation operator in Eq. (4.17), and alleviates all problems related to data-driven

modal system identification. The last calculation steps deserve special attention because they

determine the format of the final Jacobian matrix. The derivative of the observability is only

available in complex-valued format and the data-driven observability in Eq. (4.17) is real-valued.
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4.2. Damage-sensitive Residual

This can be remedied through a similarity transformation of the state space model, but leads to

a non-intuitive arrangement of the derivatives, and, with it, the modal vector and the Jacobian

matrix from Eq. (4.14).

b) Link to Structural Parameters

Changes in the mean residual can also be linked to changes in structural parameters. First, the

data-driven residual is linked to modal parameters in discrete-time through the sensitivity matrix

J (1). Secondly, modal parameters in discrete-time are linked to the modal parameters of a FE

model, which are in continuous-time, through another Jacobian matrix J (2). Thirdly, numerical

modal parameters are linked to structural parameters in the same model using J (3). Ultimately,

all sensitivity matrices are combined into one through the chain rule

J =
∂Eθ[ε]

∂θ

∣∣∣∣
θ=θ0

= J (1) ·J (2) ·J (3) (4.22)

as visualized in Fig. 4.1. The calculation of the first Jacobian matrix J (1) is explained in the

previous paragraph, see Eq. (4.14). The second Jacobian matrix links the poles and mode shapes

in discrete-time from Eq. (4.14) to poles and mode shapes in continuous-time Λc and Ψc. Mode

shapes are identical in both domains except that the imaginary part is missing in numerical mode

shapes because classical damping is assumed, so the Jacobian entries for mode shapes default to

unity or zero. However, each pole can be transformed from discrete-time into continuous-time

through λi = eµi∆t, so the first derivative is ∂λi/∂µi = ∆tλi. Ultimately, the Jacobian matrix

J (2) ∈ R2Nm(r+1)×2Nm(r+1) can be assembled

J (2) =
∂Eη[η]

∂ηc

∣∣∣∣
ηc=η0

c

=


∆t · Re(Λ) −Im(Λ)

I 0

∆t · Im(Λ) Re(Λ)

0 I

 , ηc =


Re(diag(Λc))

Re(vec(Ψc))

Im(diag(Λc))

Im(vec(Ψc))

 . (4.23)

The third Jacobian matrix links the poles and mode shapes in continuous-time to the structural

design parameters. This link could be established through finite differences, but analytical ap-

proaches are available as well, e.g., Nelson’s method (Sutter et al., 1988). In this thesis, the modal

approach is chosen, see (Heylen and Sas, 1997). The following equations are valid for systems

with symmetric stiffness, mass and damping matrices MT = M,C1T = C1,KT = K, and general

damping. The analytical derivative of the i−th eigenvalue only requires the i−th mode of vibration

as input, where the eigenvector derivative requires all N modes of vibration of the dynamic system
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in complex conjugate pairs, including non-observable modes, with

∂µi
∂θh

=− γiΨT
i

(
µ2
i

∂M

∂θh
+ µi

∂C1

∂θh
+
∂K

∂θh

)
Ψi,

∂Ψi

∂θh
=− 1

2
γiΨ

T
i

(
2µi

∂M

∂θh
+
∂C1

∂θh

)
ΨiΨi

+
2N∑

r=1,r 6=i

(
1

µr − µi
γrΨ

T
r

(
µ2
i

∂M

∂θh
+ µi

∂C1

∂θh
+
∂K

∂θh

)
ΨiΨr

)
,

(4.24)

but a good approximation is typically achieved after a reduced number of modes (Sutter et al.,

1988). The parameter γ is a scaling factor for unit mass scaling with 1
γi

= ΨT
i [2µiM + C1]Ψi.

In other words, the derivative of eigenvalues and eigenvectors is expressed through the derivatives

of the dynamic mass, damping and stiffness matrices, ∂
∂θh

M, ∂
∂θh

C1, ∂
∂θh

K. Those derivatives can

either be calculated analytically or, more practically, by evaluating the finite differences

∂K

∂θh
=

K(θ0
h)−K(θh + ∆θh)

∆θh
,

∂M

∂θh
=

M(θ0
h)−M(θh + ∆θh)

∆θh
. (4.25)

This approach is compatible with the output from standard FE software, but the step size ∆θh

affects the accuracy of the results unless the dynamic system matrices are linear functions of the

structural design parameters. Ultimately, the Jacobian J (3) ∈ R2m(r+1)×H is assembled

J (3) =


Re
(

∂
∂θ1

diag(Λc)
)
· · · Re

(
∂
∂θH

diag(Λc)
)

Re
(

∂
∂θ1

vec(Ψc)
)
· · · Re

(
∂
∂θH

vec(Ψc)
)

Im
(

∂
∂θ1

diag(Λc)
)
· · · Im

(
∂
∂θH

diag(Λc)
)

Im
(

∂
∂θ1

vec(Ψc)
)
· · · Im

(
∂
∂θH

vec(Ψc)
)

 . (4.26)

Sensitivity matrices link the residual vector to user-defined monitoring parameters. Historically,

data-driven modal parameter vectors η are used for monitoring (Basseville et al., 2000), in par-

ticular, for cases where no reliable FE model is available. However, most considerations in this

thesis are based on the model-based parametrization θ (Basseville et al., 2004). The sensitivity

calculation is split into three steps, see Fig. 4.1. Where linking structural parameters to modal

parameters through sensitivity vectors in the Jacobian matrices J (3) and J (2) is well-established

in engineering practice, as it is an essential part of model updating, the link to data-driven residuals

is unique to the stochastic subspace-based damage diagnosis through the Jacobian matrix J (1).

The individual sensitivities J (2) and J (3) are straightforwardly computed, but the assembly in

the Jacobian matrices is non-intuitive because the matrix structure is pre-determined through the

derivative of the observability matrix. To aid in the interpretation, the individual Jacobian matrices

are visualized in Fig. 5.5.
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4.3. Statistical Decision-making

4.3 Statistical Decision-making

This section summarizes how the distribution of the damage-sensitive residual is transformed into

a Gaussian distribution, even for vibration data from the damaged structure. Moreover, statistical

tests are reviewed to decide whether the Gaussian residual is a realization of the nominal structure

or the damaged structure.

4.3.1 Damage Hypothesis

During monitoring, the state of the parameter vector from Eq. (4.1) is unknown, but a hypothesis

is made that it changes from its known reference state with well-defined parametrization to the

damaged state with (Benveniste et al., 1987)

H0 : θ = θ0 (reference state)

H1 : θ = θ0 + δ/
√
N (damaged state).

(4.27)

The alternative hypothesis is part of a statistical framework known as the asymptotic local ap-

proach, where the statistical change vector δ is unknown but fixed. It implies that smaller changes

are detected with increasing sample size and is consistent with the CLT for the residual

ζ =
√
N(ε̂− E[ε̂]) −→

N (0,Σ) under H0

N (J δ,Σ) under H1.
(4.28)

As explained in Section 4.2.2, the distribution of the residual vector approximates a Gaussian

distribution with zero mean vector and covariance Σ, in the reference state. In the damaged state,

the mean of the residual changes from the zero vector to J δ with

δ =
√
N(θ − θ0). (4.29)

The mean vector notation results from a Taylor series expansion cut off after the linear term,

and multiplied by
√
N , compare Eq. (4.13) and (4.29). The CLT requires the covariance to be

recomputed if the excitation characteristics change, but practical applications often employ the

covariance from the reference state, thus assuming constant excitation characteristics. In essence,

the monitoring problem simplifies to monitoring the mean vector of the Gaussian residual, and

statistical hypothesis tests are applied to assess the significance of the deviation.

4.3.2 Generalized Likelihood Ratio

The generalized likelihood ratio (GLR) is a statistical hypothesis test. With the GLR, an informed

decision can be made on whether the Gaussian residual computed based on incoming data is more

likely to be a realization of the reference structure or the damaged structure. The starting point

for the following considerations is the probability density function (PDF) of a random variable ζ
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4.3. Statistical Decision-making

that follows a Gaussian distribution of dimension υ (Muirhead, 1982)

p(ζ) =
1

(2π)υ/2 det (Σ)1/2
exp

(
−1

2
(ζ −J δ)TΣ−1(ζ −J δ)

)
. (4.30)

The likelihood is calculated for both the null hypothesis H0 and the alternate hypothesis H1, where

the ratio determines whether it is more likely that the variable is drawn from the PDF corresponding

to the alternate hypothesis (Muirhead, 1982)

GLR(ζ) = −2 log
p(ζ|θ0)

supθ∈H1
p(ζ|θ)

. (4.31)

Substituting the PDF from Eq. (4.30), the GLR unfolds to

GLR = ζTΣ−1ζ + sup
θ∈H1

[
−(ζ −J δ)TΣ−1(ζ −J δ)

]
(4.32)

= sup
θ∈H1

[
(2δTJ TΣ−1ζ − δTJ TΣ−1J δ

]
,

where the supremum (or least upper bound) is reached for δ = (J TΣ−1J )−1J TΣ−1ζ. For this

case, the GLR reduces to (Benveniste et al., 1987)

GLR = ζTΣ−1J (J TΣ−1J )−1J TΣ−1ζ (4.33)

The non-parametric GLR is a special case of the parametric GLR where the Jacobian matrix is

set to unity J = I. This means that the Gaussian residual is not linked to any parameters but

monitored directly through

GLR = ζTΣ−1ζ. (4.34)

4.3.3 Test Distribution

This section gives insight into the statistical properties of the GLR and demonstrates that it

approximates a chi-squared distribution with a well-defined number of degrees of freedom ν and

non-centrality λ, with GLR −→χ2(ν, λ) .

Training State. In the reference state, the Gaussian residual follows a Gaussian distribution

with zero mean vector and covariance Σ. Pre-multiplying the term J TΣ−1

ζ −→ N (0,Σ) (4.35)

J TΣ−1ζ −→ N (0,J TΣ−1J ) (4.36)
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as well as (J TΣ−1J )−1/2, leads to a new vector z ∈ RH of equal size as the parameter vector from

Eq. (4.1) and standard Gaussian distribution

z = (J TΣ−1J )−1/2J TΣ−1ζ −→ N (0, I), (4.37)

and squaring up this vector yields the test statistic from Eq. (4.33).

t = zT z = ζTΣ−1J (J TΣ−1J )−1J TΣ−1ζ −→ χ2(ν, λ), (4.38)

Summing over the square of multiple zero mean and Gaussian-distributed variables through t = zT z

results in a central chi-square distribution with ν degrees of freedom. The number of degrees of

freedom represents the number of independent Gaussian processes that are present in the residual

which, for full rank Jacobians, is equal to the number of parameters H in the parameter vector

from Eq. (4.1). The PDF of the central χ2−distribution is formally defined as (Muirhead, 1982)

fχ2(ν)(t) =
xν/2−1e−t/2

2ν/2(ν/2− 1)!
. (4.39)

Damaged State. In the damaged state, the mean Gaussian residual is not zero but J δ, see

Eq. (4.28). That means that pre-multiplying the term J TΣ−1 not only alters the covariance but

also the mean value of the Gaussian distribution, and thus, the mean value of the χ2−distribution.

ζ −→ N (J δ,Σ) (4.40)

J TΣ−1ζ −→ N (J TΣ−1 ·J δ,J TΣ−1J ).

Correspondingly, the unit-variance vector z yields

z = (J TΣ−1J )−1/2J TΣ−1ζ −→ N ((J TΣ−1J )1/2δ, I) (4.41)

and squaring the vector results in

t = zT z = ζTΣ−1J (J TΣ−1J )−1J TΣ−1ζ −→ χ2(ν, λ). (4.42)

In other words, the test distribution approximates a non-central χ2−distribution with a non-

centrality λ, i.e., a shift in the mean value, by

λ = E[ζ]T · E[ζ] = ((J TΣ−1J )1/2δ)T ((J TΣ−1J )1/2δ) = δT (J TΣ−1J )δ. (4.43)

With respect to the central χ2−distribution, the PDF of the non-central distribution follows (Muir-

head, 1982)

fχ2(ν,λ)(t) =

∞∑
n=0

e−
λ
2

(λ/2)n

n!
fχ2(ν+2n,0)(t). (4.44)
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Figure 4.2: Central χ2-distribution for a varying number of degrees of freedom ν ∈ [1, . . . , 9]
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Figure 4.3: Non-central χ2-distribution for a fixed number of degrees of freedom and varying non-
centrality λ ∈ [0, 1, . . . , 10]

Non-parametric Case. The non-parametric test also follows a χ2−distribution with identical

non-centrality but a different number of degrees of freedom. First, a new vector z with unit variance

is defined by pre-multiplying Σ−1/2 to the residual of the damaged state, so

z = Σ−1/2ζ −→ N (Σ−1/2 · δ, I). (4.45)

Squaring up this vector yields the non-parametric test statistic

t = zT z = ζTΣ−1ζ −→ χ2(k, λ), (4.46)

with the non-centrality parameter

λ = E[ζ]T · E[ζ] = (Σ−1/2δ)T (Σ−1/2δ) = δT (Σ−1)δ (4.47)

and the PDF from Eq. (4.44). In summary, the GLR approximates a chi-squared distribution

χ2(ν, λ). Where the number of degrees of freedom ν depends on the residual’s covariance and

sensitivity, see Eq. (5.4), the non-centrality depends on the damage extent, see Eq. (4.43). The

non-centrality is the mean test response to damage, which is more meaningful than individual
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test results because they are widely scattered. For clarity, Fig. 4.2 visualizes the PDF and the

cumulative density function (CDF) of the central χ2 distribution for varying degrees of freedom.

In contrast, Fig. 4.3 plots the non-central χ2−distribution for a fixed number of degrees of freedom

and varying non-centrality.

4.3.4 Fisher Information Matrix

The Fisher information plays a key role as a scaling factor in the GLR from Eq. (4.33) as well as

the non-centrality in Eq. (4.43). It is defined as (Frieden, 2004)

F =

(
∂ζ

∂θ

)T
Σ−1

(
∂ζ

∂θ

)
= J TΣ−1J (4.48)

where the informative value depends on both the residual’s sensitivity and the uncertainty related

to its estimation. The main diagonal values should be seen as a measure for the detectability in

the corresponding monitoring parameter θh and the off-diagonal terms quantify how damage in a

certain parameter affects the test response of other parameters.

4.4 Damage Diagnosis Tests

The GLR is applied to detect damage in Gaussian residuals and to locate the monitoring parameter

that is most likely to be damaged. In total, four different tests are available, the parametric

detection test, the non-parametric detection test, the direct localization test, and the minmax

localization test.
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Figure 4.4: 6-DOF mass-and-spring system

For demonstration, the presented damage diagnosis tests are applied to a mass-and-spring

system with six degrees of freedom, see Fig. 4.4. The mass values are m = 1 t and the spring

stiffness is alternating with k = 2, 000 MPa. A modal damping ratio of 2% critical damping is

assumed for all modes. The natural frequencies are 2.03 Hz, 5.95 Hz, 9.28 Hz, 12.38 Hz, 15.62 Hz,

and 16.96 Hz. For excitation, a white noise input signal is applied along all six degrees of freedom,

and the velocities are measured at the degrees of freedom u1, u3, and u5.
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Figure 4.5: Damage detection of a 2% stiffness decrease in Spring 1

4.4.1 Parametric Detection Test

In the model-based version of the parametric detection test, structural parameters are tested for

damage. The test statistic is (Basseville et al., 2000)

t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ −→

χ2(ν, 0) under H0

χ2(ν, λ) under H1

(4.49)

and approximates a χ2−distribution with ν = H for full rank Jacobian matrices. For all detection

tests, damage manifests itself in a distinct jump in the test statistic, see Fig. 4.5. The parametric

detection test can also be data-driven, in which case modal parameters are tested for changes, i.e.,

poles and mode shapes from OMA (Basseville et al., 2004). The data-driven version is identical to

Eq. (4.49) except that the Jacobian matrix is replaced with J (1) from Eq. (4.14)

t = ζTΣ−1J (1)
(
J (1)TΣ−1J (1)

)−1
J (1)TΣ−1ζ −→

χ2(ν, 0) under H0

χ2(ν, λ) under H1,
(4.50)

which changes the number of degrees of freedom of the χ2−distribution to ν = 2mr for full rank

Jacobian matrices. Jacobian matrices that do not have a full-column rank will be discussed in

Chapter 5, see Eq. (5.4).

4.4.2 Non-parametric Detection Test

The non-parametric detection test includes the Gaussian residual and the covariance, but no Jaco-

bian matrix. It is defined as (Balmès et al., 2008b)

t = ζTΣ−1ζ −→

χ2(ν, 0) under H0

χ2(ν, λ) under H1.
(4.51)

The parametric detection test from Eq. (4.49) can be transformed into the non-parametric test by

setting the Jacobian matrix to unity J = I (Döhler et al., 2014b). Correspondingly, the number
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Figure 4.6: Damage localization of a 2% stiffness decrease in Spring 1

of degrees of freedom is ν = rank
(
Σ−1

)
, see Eq. (5.4). The test is purely data-driven, meaning

neither a modal parametrization nor a structural parametrization is required.

4.4.3 Direct Localization Test

In the direct localization test (Basseville et al., 2004), each monitoring parameter is individually

tested for damage, see Fig. 4.6. With the GLR, the alternate hypothesis H1 is tested against

the null hypothesis H0 from Eq. (4.27) for each parameter. This assumes that damage is either

restricted to one parameter J δ = J hδh or no damage is present. The test statistic (Döhler et al.,

2016)

th = ζTh F
−1
h ζh −→

χ2(1, 0) under H0

χ2(1, λ) under H1

(4.52)

is identical to Eq. (4.49) except that only one column of the sensitivity matrix J h is tested

ζh = J T
hΣ−1ζ −→ N (Fhδ, Fh) (4.53)

with the Fisher information

Fh = J T
hΣ−1J h. (4.54)

Consequently, the number of degrees of freedom of the test distribution is ν = 1. The parameter

with the greatest test response λh = E[ζ]TE[ζ] = δ2
hFh is likely to be the one that has changed

due to damage. Unfortunately, unchanged parameters also show a response due to the off-diagonal

terms of the Fisher information, see Parameter 2 in Fig. 4.6. An elegant way to diminish false

localization alarms is the minmax test, which is described in the subsequent paragraph.

4.4.4 Minmax Localization Test

The minmax localization test assumes the alternate hypothesis H1 from Eq. (4.27) for both the

tested and non-tested parameters (Basseville, 1997). It evaluates how much more likely the tested

partition is damaged compared to any other partition, and selects the least favourable scenario. To
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implement this, the Gaussian residual is projected onto the tested parameter θh and the untested

parameters θh̄ through the corresponding sensitivity vectors

ζh = J T
hΣ−1ζ −→ N (Fhδh, Fh) (4.55)

ζh̄ = J T
h̄Σ−1ζ −→ N (Fh̄hδh,Fh̄h̄), (4.56)

and then, each partitioned residual ζh is projected orthogonally to the non-tested partition ζh̄,

ζ∗h = ζh − Fhh̄F
−1
h̄h̄
ζh̄ −→ N (F ∗hδh,Σ

∗
h), (4.57)

preserving the residual’s sensitivity toward changes in the tested partition and making it blind to

changes in untested partitions, with the robust Fisher information

F ∗h = Fh − Fhh̄F
−1
h̄h̄

Fh̄h. (4.58)

The resulting minmax test statistic is (Döhler et al., 2016)

t∗h = ζ∗Th F ∗−1
h ζ∗h −→

χ2(1, 0) under H0

χ2(1, λ) under H1,
(4.59)

is χ2-distributed with one degree of freedom and non-centrality λh = δTh F
∗
hδh. In theory, the false

localization alarms are zero, see Fig. 4.6. However, the following section gives reasons why false

localization alarms are re-introduced for monitoring applications that are more complex than the

considered 6-DOF system.

Parameter Substructuring

Previous consideration regarding the minmax test assumed that the Fisher information is of full

rank, so the Jacobian matrix has full column rank. This is the case if the rank estimate from

Eq. (5.4) yields a value that is equal to the number of monitoring parameters, and for practical

applications, this means that the number of modes of vibration is high in comparison to the mon-

itoring parameters. The problem addressed in this section is that the minmax localization test is

not applicable to problems with (nearly) rank deficient Fisher information. Rank deficiency can

be caused by an over-parametrization, i.e., problem formulations where multiple parameters have

similar sensitivities toward the residual. Consequently, linear dependencies arise in the columns

of the Jacobian matrix and a basic condition for the projection in Eq. (4.57) is violated. The

problem can be remedied by removing individual parameters or combining redundant parameters

in one partition and averaging the sensitivity vectors (Basseville et al., 2004). This was first done

based on a k-means clustering approach (Balmès et al., 2008b), and later replaced by a hierarchical

clustering (Allahdadian et al., 2019). Hierarchical clustering has several advantages, for example,

convergence is guaranteed regardless of the starting point, potential issues related to local minima
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are alleviated, and it is less sensitive to outliers. The hierarchical clustering approach is explained

in the following. The first step is to normalize the Jacobian

J̃ = Σ−1/2J =
[
J̃ 1 · · · J̃H

]
(4.60)

so the following metrics are consistent with the damage localization test in Eq. (4.59) and the

Fisher information in Eq. (4.48). Secondly, the cosine between the vectors is used to measure the

dissimilarity

dij = 1− J̃ T
i J̃ j

||J̃ i|| · ||J̃ j ||
. (4.61)

If the two vectors are orthogonal, the cosine is one and the dissimilarity is zero, and it is one if

the two vectors are linearly dependent. At the start of the clustering algorithm, the number of

clusters K equals the number of parameters H. For each iteration, the distances between all pairs

of clusters are evaluated according to the complete-linkage cluster distance, defined as (Duda et al.,

2012)

D(Ca, Cb) = max{dij : i ∈ Ca, j ∈ Cb}. (4.62)

Gradually, the two clusters with the shortest distance d = min{D(Ca, Cb) : a 6= b} are combined,

until only one cluster is left, so K = 1. For each K, the cluster centres ck is determined through

averaging as

ck =
1

mk

∑
i∈Ck

J̃ i, (4.63)

where mk is the number of parameters in cluster Ck and k ∈ [1, . . . ,K] is the cluster number.

Finally, the cluster centres are arranged in the clustered Jacobian

J̃ c
=
[
c1 · · · cK

]
(4.64)

which is of full rank and thus fulfills the requirements for the minmax test.

Option 1: Testing Clusters. One approach is to replace the original Jacobian matrix with the

clustered Jacobian matrix from Eq. (4.64). In this case, the minmax test evaluates the likelihood

ratio that damage is contained within one cluster while taking the least favourable result for all

other clusters. In other words, the partition

J̃ k = ck (4.65)

is tested while projecting it orthogonally to the sensitivity vectors

J̃ k̄ =
[
c1 . . . ck−1 ck+1 . . . cK

]
. (4.66)

In this sense, J k and J k̄ are the tested and rejected partitions, respectively.
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Option 2: Testing Parameters. Another approach is to test the original Jacobian matrix

against the cluster centres in Eq. (4.64). The minmax test determines the likelihood that damage

is contained in one single parameter or column of the Jacobian matrix J h, while projecting the in-

formation orthogonal to the cluster centres of the clusters that do not contain the tested parameter.

J̃ c
h̄ =

[
c1 . . . ck(h)−1 ck(h)+1 . . . cK

]
. (4.67)

That means that the monitoring parameters are tested against cluster centres. The second approach

is the preferred one in this thesis because the damage location can be narrowed down.

4.5 Interpreting the Test Result

This section summarizes relevant metrics to interpret the test results. Due to the statistical nature

of the method, the test statistics for damage detection and localization are scattered, and it is

more reliable to evaluate test distributions instead of individuals samples. Hence, the statistical

tests are repeatedly applied to different data sets in a Monte Carlo experiment, and the empirical

distributions are plotted in histograms, see Fig. 4.5 and 4.6. The decisive measure is then the

non-centrality, i.e., the distance between the mean values of the test distribution in the training

state and the damaged state.

4.5.1 Empirical Reference Distribution

If all input parameters for the damage detection method are chosen appropriately, the histograms

approximate the theoretical properties of the χ2−distribution that are reviewed in Section 4.3.3.

Vice versa, the empirical training state distribution is a an appropriate means to verify the input

parameter settings. In theory, the test distribution that corresponds to an undamaged structure

follow a central χ2−distribution with the PDF in Eq. (4.39). The distribution has one variable, i.e.,

the number of degrees of freedom, so it can be fitted to the histogram using regression techniques.

If the number of degrees of freedom of the fitted distribution is equal to the theoretical value ν from

Eq. (5.4), the training state is validated. An alternate way, that avoids the use of the theoretical

PDF, is to average the test responses because the mean value of the central χ2−distribution is equal

to its number of degrees of freedom. Having said that, being able to compare the shape of the the-

oretical distribution function to the empirical histogram is another means of validation, because an

empirical distribution that is significantly wider than the theoretical function can indicate inappro-

priate signal processing. For the non-parametric detection test, the curve fitting plays a different

role. In most cases, the singular values of the covariance matrix do not show a distinct jump and

the numerical rank calculation ν = rank(Σ) leads to misleading results. Therefore, curve-fitting is

often the only way to correctly estimate ν.
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Figure 4.7: Probability of false alarms, safety threshold value, and probability of detection

4.5.2 Empirical Safety Threshold

In theory, there will always be an overlap between the distribution corresponding to the training

state and damaged state, so a safety threshold is to be defined to distinguish the distributions. If

a test falls beyond the safety threshold, it indicates that the structure is damaged, otherwise it is

undamaged. This approach inevitability leads to false alarms, meaning the test indicates that the

structure is damaged although no damage is present. Based on the acceptable probability of false

alarms (PFA)

α = P (t > tcrit|θ0), (4.68)

a safety threshold value is defined for the training state, see left side of Fig. 4.7. To do so, the CDF

from Fig. 4.2 is evaluated by integrating over the PDF from Eq. (4.39)

Fχ2(ν)(t) =

∫ ∞
0

fχ2(ν)(t)dt, (4.69)

and the complement of the desired PFA 1 − α is plugged into the CDF together with the fitted

number of degrees of freedom ν. Then, the safety threshold value can be solved for as

tcrit = F−1
χ2(ν)

(1− α). (4.70)

In other words, the safety threshold is the quantile value Q(1− α) of the central χ2−distribution.

Typically, the PFA is set to α = 5% or lower, meaning every 20th test is a false alarm. One

alternative is to skip the empirical curve fitting from the previous section and use the theoretical

value for the number of degrees of freedom instead. Another alternative is to discard the theoretical

χ2−distribution and simply adjust tcrit until the desired PFA is achieved.

4.5.3 Empirical Power of Detection

The empirical probability of detection (POD) evaluates the performance of the test. It is defined

as the relative number of test samples that fall beyond the safety threshold value, see the right side
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of Fig. 4.7. Where the theoretical value is POD = P (t > tcrit|θ), the empirical value

POD =
1

ns

ns∑
k=1

ak (4.71)

can simply be evaluated by summing up the number of damage alerts a and relating them to

the total number of test results ns. To conclude this section, the damage diagnosis method is

summarized in a flowchart, see Fig. 4.8. Note that a single evaluation run is sufficient in the damaged

state, and a Monte Carlo simulation is only necessary if the test results are to be interpreted based

on the empirical POD from Eq. (4.71).
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Figure 4.8: Flowchart for damage diagnosis

4.6 Summary

The asymptotic local (AL) approach is a statistical framework for vibration-based damage detection

and localization. Originally, it was developed for stochastic dynamic systems, where the excitation

is unknown, and applied in combination with the subspace-based residual. Having said that, the

method can be applied to any damage-sensitive residual that approximates a Gaussian distribution

(with well-defined covariance matrix) and can be linked to modal parameters or structural de-

sign parameters through sensitivity vectors (Jacobian matrix). What makes the presented version

promising is that structural parameters are linked to a damage-sensitive residual that is formed
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Damage detection Damage localization

Data-driven Non-parametric test
Parametric test (OMA-based)

Model-based Parametrized test (FEA-based)
Direct test (FEA-based)
Minmax test (FEA-based)

OMA: Operational modal analysis, FEA: Finite element analysis

Table 4.1: Classifying the available damage diagnosis tests

based on covariance functions in the time domain. Since many classical damage-sensitive residuals

are derived from covariance functions, the methodology presented herein is easily generalizable.

In the AL method, a decision regarding the health state of the structure is made by applying

a statistical hypothesis test to the damage-sensitive feature, i.e., the generalized likelihood ratio

(GLR) and the minmax test. A distinctive feature of the GLR is that the statistical properties of

the test distribution are defined for both the training state and the damaged state. The Fisher

information is a key element to link the damaged state to the reference state. It considers both the

sensitivity of the damage-sensitive residual toward monitoring parameters as well as its uncertainty.

Where each main diagonal value of the Fisher information is a measure for the detectability of

damage, the off-diagonal values quantify how damage in a certain parameter affects the test response

of others.

The available damage detection tests are divided into a model-based test and two data-driven

tests, where the data-driven tests are either non-parametric or parametrized with respect to modal

parameters, see Table 4.1. Where non-parametric damage detection is well-established and imple-

mented in commercially available computer software, parametric damage detection and damage

localization based on the AL method is a matter of ongoing research. Finite element (FE) mod-

els can be avoided during damage detection, but they are essential for damage localization. Two

different damage localization tests are available, i.e., the direct localization test and the minmax

localization test, see Tab. 4.1. The direct localization test directly tests each monitoring parameter

for damage, but does not consider the effect that changed parameters have on the test results for

unchanged parameters, which leads to false localization alarms. The minmax localization takes into

account the off-diagonal values of the Fisher information and significantly reduces false alarms. If

the Jacobian matrix is not of full rank, the monitoring parameters have to be clustered prior to the

damage localization, which corresponds to a substructuring of the FE model into damage localiza-

tion units. However, no guidance is given on how to find an appropriate number of substructures.
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Chapter 5

Minimum Detectable Damage

This chapter develops a reliability-based framework to predict the minimum detectable damage

based on ambient vibration data from the reference structure. The minimum detectable damage

is defined as the minimum change in a structural design parameter that can be reliably detected

based on changes in the damage-sensitive feature. The method is developed for statistical damage

diagnosis tests based on the asymptotic local (AL) approach. It can be applied to any damage-

sensitive residual ε̂ that approximates a Gaussian distribution with a mean value that can be linked

to structural parameters through sensitivity analysis. More precisely, the damage-sensitive residual

must satisfy the central limit theorem (CLT) (Benveniste et al., 1987)

ζ =
√
N(ε̂− E[ε̂]) −→

N (0,Σ) (reference)

N (J δ,Σ) (damaged)
(5.1)

where Σ is the sample covariance, J is the first-order sensitivity matrix that links the damage-

sensitive residual ε̂ to structural parameters, and δ is the statistical change vector

δ = (θ − θ0)
√
N, (5.2)

which is unknown, but fixed. Background information on the Gaussian residual is given in the

previous chapter, which focuses on the stochastic subspace-based residual, refer to Eq. (4.28).

The chapter is organized as follows: Section 5.1 introduces a reliability-based approach to

determine the minimum detectable damage based on measurement data from the reference state

and sensitivities from a finite element (FE) model, and Section 5.2 provides theoretical proof that

the prediction is also valid for data-driven tests. Section 5.3 addresses the numerical problems that

can arise when applying the damage detection test to large mechanical systems, and the last section

(Section 5.4) provides a proof of concept study using the numerical model of a steel beam.

5.1 Main Idea

A decision on whether the structure is damaged or not can be made by applying the generalized like-

lihood ratio (GLR) to the Gaussian residual. The definition of the test statistic from Section 4.4.1
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Figure 5.1: Statistical distribution of the test statistic

is repeated here for convenience (Basseville et al., 2000). The test statistic

t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ −→

χ2(ν, 0) (reference)

χ2(ν, λ) (damaged)
(5.3)

follows a χ2−distribution with a number of degrees of freedom of

ν = rank
(
J TΣ−1J

)
(5.4)

and a non-centrality of λ = δTFδ, where F is Fisher information matrix

F = J TΣ−1J . (5.5)

The distribution of the test statistic is visualized in Fig. 5.1, including the mean value in the training

state ν, the mean in the testing state ν + λ, and the non-centrality λ, i.e., the mean test response.

To clearly assign the test statistic to one distribution, a safety threshold value tcrit is defined, for

example, based on the allowable probability of false alarms (PFA). If the test statistic is below the

safety threshold for a damaged structure, it is a false-negative test result, and the complement of

the false-negative rate is the probability of detection (POD).

5.1.1 Predictive Formula

In the following, the effect of a single parameter change ∆θh = (θh−θ0
h) is analyzed, while assuming

no change in other parameters. Since damage is characterized by a shift in the mean vector by J δ,

see Eq. (5.1), the assumption of a single parameter change is equivalent to assuming that the mean

vector of the Gaussian distribution is E[ζ] = J hδh where J h is the h-th column of the Jacobian

matrix and δh is the h-th entry of the statistical change vector δ from Eq. (5.2) with

δh =
√
N(θh − θ0

h). (5.6)
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The corresponding mean test response to damage is λh = Fhhδ
2
h, where Fhh is the main diagonal

of the Fisher information. Substituting the change vector from Eq. (5.6) into the non-centrality

results in the predictive formula for the mean test response

λh = N · (θh − θ0
h)2 · Fhh. (5.7)

This formula predicts the mean test response to structural changes based on the sample size during

testing N , the magnitude of the parameter changes ∆θh squared, and the main diagonal value of

the Fisher information matrix Fhh.

5.1.2 Minimum Detectability

A clear test result is obtained if the mean test response is sufficiently large, because then, the test

distribution in the damaged state is well-separated from the training state with a minor overlap,

as displayed in Fig. 5.1. Therefore, defining a minimum value for the non-centrality λh = λmin is

equivalent to defining a minimum reliability. Rearranging Eq. (5.7) for the minimum parameter

change leads to

θh − θ0
h =

√
λmin

N · Fhh
. (5.8)

For user-friendliness, the formula is normalized by the reference parameter ∆h = (θh − θ0
h)/θ0

h

and the data length is substituted by the measurement duration during testing and the sampling

frequency N = Tfs. The resulting formula quantifies the minimum detectable damage in percent

of a reference parameter.

∆h =
1

θ0
h

√
λmin

Tfs · Fhh
[%]. (5.9)

The minimum detectable damage is inversely proportional to the square root of the measurement

duration T , and the formula can be re-arranged to

Th =
1

(∆θh)2

λmin

fsFhh
. (5.10)

This is the minimum measurement duration that is required to reliably detect a fixed parameter

change ∆θh = (θh − θ0
h). The subscript h indicates that this is not the measurement duration for

the monitoring system, but the examined monitoring parameter θh. The measurement duration for

the structure is the maximum measurement duration over all monitoring parameters

T = max
h
{T1, · · · , TH}. (5.11)

Since the probability density function (PDF) from Fig. 5.1 is mathematically defined for both the

training and the damaged state, the minimum non-centrality can be tied back to more intuitive

measures such as the PFA and POD. More details on this are given in the subsequent section.
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5.1.3 Reliability Concept

The minimum non-centrality quantifies the minimum required test response to damage (averaged

over multiple tests), so it can be understood as a reliability index for structural health monitoring

(SHM). This section lays out how the minimum non-centrality can be tied back to user-friendly

measures such as the PFA and the POD.

Probability of False Alarms (PFA). The PFA is also known as the false-positive rate or the

type I error, often denoted as α. It describes how often the test diagnoses a structure as damaged

although no damage is present. Based on the allowable false alarm rate, a safety threshold tcrit can

be defined as the 1 − α quantile value of the central χ2−distribution, see Section 4.5.2. The PFA

corresponds to the area under the PDF of the χ2−distribution beyond the safety threshold value,

see Fig. 5.1, and is calculated as follows

PFA = 1−
∫ tcrit

0
fχ2(ν,0)(t)dt. (5.12)

Probability of Detection (POD). The POD quantifies how often the structure is classified

as healthy although damage has occurred, so it is the complement of the false-negative rate (type

II error). It can be calculated by integrating over the area under the PDF of the non-central

χ2−distribution beyond the safety threshold value (see Fig. 5.1), with

POD =

∫ ∞
tcrit

fχ2(ν,λ)(t)dt. (5.13)

A minimum value could be set based on the anticipated damaged consequences. For components

that are critical for the safety or serviceability of the structure, the POD can be set based on the

existing safety standards for SHM. For Canada and the U.S., the code-based reliability index for

assessing civil engineering structures is 3.25 and 2.5. The Eurocode does not define a reliability

index for assessment, but the ISO norm defines a reliability index of 4.7 (Wenzel, 2009). The

reliability indices are typically used in combination with Gaussian-distributed processes, such as

material strength values, but can be translated into an equivalent POD according to Table 5.1.

Minimum Non-centrality. The non-centrality is the only variable in Eq. (5.13). The number of

degrees of freedom ν is known from the training state, the safety threshold tcrit is setup based on the

allowable PFA, and the POD is set by the user based on reliability requirements. The cumulative

density function (CDF) of the non-central χ2−distribution cannot be solved for λ straightforwardly,

but through numerical iteration. To determine the minimum non-centrality λmin, the non-centrality

λ is increased until the theoretical distribution is shifted beyond the safety threshold value and the

desired POD is achieved in Eq. (5.13) for λ = λmin.

The minimum non-centrality can be seen as a problem-specific reliability index. It is different

for every monitoring application, because the number of degrees of freedom ν of the χ2−distribution
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Figure 5.2: Minimum non-centrality as a code-based reliability index

varies. With increasing ν, the χ2−distribution in the training state becomes wider, and the min-

imum non-centrality has to be increased to guarantee a sufficient degree of separation with the

damaged state distribution. For clarity, the minimum non-centrality is plotted against the number

of degrees of freedom in Fig. 5.2. In this thesis, the PFA is often set to 5% to demonstrate that the

distributions overlap, but for most practical applications, a much lower value may be appropriate.

The four curves in Fig. 5.2 show the reliability index for a PFA of 5% and 0.3%, and a POD of

99.94% and 99.4%, with reference to the Canadian and U.S. American design codes. It can be

observed that the reliability index asymptotically increases for an increasing number of degrees of

freedom.

5.1.4 Interpretation

The minimum detectable damage from Eq. (5.9) depends on the measurement duration T during

testing, the sampling frequency fs, the magnitude of the monitoring parameter θh, the Fisher

information Fhh, and the reliability index λmin. The Fisher information is a concise quantity that

considers multiple factors at once. It includes the residual’s uncertainty (covariance) and sensitivity

toward structural parameters (Jacobian), see Eq. (5.5). In a broader context, the influence factors

for damage detectability can be categorized as follows:

ISO Canada U.S.

Reliability index 4.7 3.25 2.5
Type II Error [%] 0.0001 0.06 0.6
Probability of detection [%] 99.9999 99.94 99.4

Table 5.1: Interpreting code-based reliability indices
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1. Damage-sensitive residual and its sensitivity. Damage sensitivity depends on the damage-

related information content that is carried by the residual and the contribution of the moni-

toring parameter to the structure’s integrity. Obviously, removing a single screw will have a

different effect than removing an entire column. It also depends on the quality of the Jaco-

bian matrix, which depends on the number of modes of vibration that are used to screen the

structure for damage, as well as the number and locations of sensors.

2. Signal-to-noise ratio. Uncertainties due to limited data and measurement noise in the ref-

erence data are inevitable, but they are amplified in measurement records with strong noise

components and weak structural signals, i.e., records with a low signal-to-noise ratio (SNR).

The SNR is captured through the residual’s covariance, and a high SNR leads to higher

damage detectability.

3. Measurement duration. Uncertainties are also present in the test data, but they decrease with

increasing measurement duration. The measurement duration is a powerful tuning parameter

to increase the damage detectability, as the mean test response is directly proportional.

4. Diagnosis reliability. Setting a low PFA and a high POD may be convenient for the operator

of the monitoring system because the test result is very reliable; however, this also requires

the damage to be more severe for successful detection.

5. Complexity. The complexity of the monitoring problem depends on the number of monitoring

parameter in relation to the number of modes of vibration, quantified through the rank of

the Fisher information, see Eq. (5.4). A complex problem leads to a high number of degrees

of freedom of the χ2−distribution, a high minimum non-centrality, and lowered damaged

detectability.

Therefore, the derived formula demonstrates that the determination of the minimum detectable

damage requires an all embracing consideration of the measurement environment, the signal process-

ing parameters, the employed damage-sensitive residual, and the reliability requirements regarding

the damage detection results.

5.2 Application to Data-Driven Tests

Linking the damage-sensitive residual to structural design parameters through the Jacobian matrix

is a prerequisite to physically define the minimum detectable damage.

ζ =
√
N(ε̂− E[ε̂0]) −→ N (J δ,Σ) δ =

√
N(θ − θ0) (5.14)

In many cases, however, it is desirable to perform the damage detection based on data-driven

tests, without the use of a FE model. This section provides theoretical proof that the model-based

prediction also holds true for data-driven tests. Two data-driven tests are available, a parametric
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one and a non-parametric one. In the parametric test, the Gaussian residual is linked to data-driven

modal parameters, i.e., poles and mode shapes from operational modal analysis (OMA), through

the Jacobian matrix J (1) with

ζ =
√
N(ε̂− E[ε̂0]) −→ N (J (1)δ(1),Σ), δ(1) =

√
N(η − η0). (5.15)

The non-parametric detection test is purely data-driven, so no Jacobian matrix is required for

damage diagnosis. The non-parametric test is equivalent to the parametric test where the Jacobian

matrix is set to the unity matrix J non = I. Consequently, the mean vector of the Gaussian residual

in the damaged state simplifies to the statistical change vector δnon with

ζ =
√
N(ε̂− E[ε̂0]) −→ N (Iδnon,Σ), δnon =

√
N(ε̂− E[ε̂]). (5.16)

Comparing the damaged state distribution from Eq. (5.14) and Eq. (5.15) with the distribu-

tion of the non-parametric test in Eq. (5.16) clarifies that the mean vector is expressed through

different parametrizations but the same damage-sensitive residual is evaluated in every case (refer

to Fig. 4.1). So, the mean of the Gaussian residual changes by the same amount, regardless of the

parametrization that is used with

E[ζ] = δnon = J (1)δ(1) = J δ. (5.17)

Since the mean vectors are identical, the different tests have an equal mean test response, because

the non-centrality is calculated based on the mean vector. Equivalently, the test response can be

expressed based on the model-based Fisher information regardless of the parametrization

λ = E[ζ]TE[ζ] = δT
(
J TΣ−1J

)
δ = δTFδ (5.18)

and the model-based Fisher information can be used to predict the test response of data-driven

tests. Having said that, the number of degrees of freedom depends on the Jacobian matrix, see

Eq. (5.4), so the reliability index λmin changes for each test and, with it, the minimum detectable

damage, as discussed in Section 5.1.3.

5.3 Numerical Considerations for Large Systems

This section offers a numerically efficient approach to compute the GLR from Eq. (5.3) based

on a QR-decomposition with column pivoting. The presented approach is robust, even for badly

conditioned sensitivity matrices with both column rank deficiency and/or row-rank deficiency. First,

the matrix product Σ−1/2J is decomposed using QR-decomposition where the sensitivity matrix

is assumed to be badly degraded, i.e., column-rank deficient and row-rank deficient.

P
(
Σ−1/2J

)
= QR (5.19)
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The permutation matrix P is chosen so the main diagonal of R holds non-increasing values with

|r11| ≥ |r22| ≥ . . . Due to the rank deficiency, the equation can be reduced to

Σ−1/2J =
[
Q1 Q2

] [R11 R12

0 0

]
PT =

(
Q1R̃

)
PT . (5.20)

This eliminates any distortion due to rank deficiency and leaves behind the invertible matrix R̃ =[
R11 R12

]
as well as the the orthonormal matrix Q1 with QT

1 Q1 = I. Substituting Eq. (5.20)

into the GLR from Eq. (4.49), the statistical test unfolds to

t = ζT (Σ−1/2)TΣ−1/2J
(
J T (Σ−1/2)TΣ−1/2J

)†
J T (Σ−1/2)TΣ−1/2ζ

= ζT (Σ−1/2)TQ1R̃PT
(
PR̃

T
QT

1 Q1R̃PT
)†

PR̃
T
QT

1 Σ−1/2ζ

= ζT (Σ−1/2)TQ1R̃PT
(
R̃PT

)† (
PR̃

T
)†

PR̃
T
QT

1 Σ−1/2ζ

= ζT (Σ−1/2)TQ1R̃PTPR̃
†
(R̃

T
)†PTPR̃

T
QT

1 Σ−1/2ζ

= ζT (Σ−1/2)TQ1 ·QT
1 Σ−1/2ζ, (5.21)

where † is the pseudo inverse. Using a newly defined vector z = QT
1 Σ−1/2ζ, which describes

the standard Gaussian distribution of the damage-sensitive feature as well as their relation to

monitoring parameters, the global damage detection test simplifies to

t = zT z. (5.22)

This test can cope with sensitivity matrices that are both row-rank deficient and column-rank

deficient. This is crucial because the sensitivity matrix is rank deficient for most applications. The

sensitivity matrix becomes row-rank deficient if multiple residual entries exhibit similar sensitivities

toward a structural parameter, which is the case in almost every application and has already been

treated in the literature, see Appendix C.2 in (Döhler et al., 2014b). Column rank deficiency,

on the other hand, can occur if a low number of modes is used to monitor a large number of

structural parameters. Therefore, the presented test is essential when applying the statistical

damage detection test to large mechanical structures.

5.4 Proof of Concept

For proof of concept, the predictive formula is validated by means of a numerical case study using

MATLAB® and ANSYS®. The structure under consideration is a 4.11 m-long steel beam on

pin supports. It has a hollow structural steel (HSS) cross-section with a modulus of elasticity of

E = 210, 000 MPa and a total mass of m = 56.8 kg. The instrumentation consists of a single

vibration sensor that samples the velocity in the vertical direction, see Fig. 5.3. Damage is defined

as a change in material stiffness.
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Figure 5.3: HSS beam with nine material properties and one sensor
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Figure 5.4: Numerical mode shapes and power spectral density of the generated signal

For modelling, the beam is discretized into 19 nodes with six degrees of freedom (DOF) at each

node and 18 finite beam elements. At the supports, all degrees of freedom are restrained except the

rotation about the transverse axis, reducing the degrees of freedom to 104. Damage is defined as

a decrease in material stiffness, i.e., the modulus of elasticity. For simplification, two consecutive

FE elements are assigned to the same material (see Fig. 5.3), reducing the number of parameters

in the monitoring vector to nine

θ =
[
E1 . . . E9

]
. (5.23)

The damage detection method is data-driven but a numerical model is required to calculate the

analytical derivatives of structural parameters toward modal parameters, i.e., the Jacobian matrix

J (3). The results from a numerical modal analysis are summarized in Fig. 5.4. The first four

modes are considered for damage diagnosis with natural frequencies of 10.3 Hz, 41.4 Hz, 92.9 Hz,

and 164.8 Hz. The figure also shows the numerical mode shapes at the single sensor location. For

signal generation, a transient analysis is run while applying uniformly distributed white noise to all

vertical DOF. Moreover, uniformly distributed measurement noise is added to the output signal,

with a magnitude corresponding to 5% of the signal’s variance. The vibration signal is first sampled
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Data Segmenting Processing

Measured quantity velocity Training segments 240 No. of sensors r/r0=1/1
Sampling frequency 400 Hz Testing segments 200 Time lags p/q=10/11
Reference data length 120 min Samples/segment 12,000 System order n=10
Training/testing data 100 min Duration/segment 30 s No. of blocks nb=36,000

Table 5.2: Input parameter sheet

at a high rate and later filtered and down-sampled to 400 Hz to avoid aliasing. All other input

parameters for the damage diagnosis are summarized in Table 5.2. To visualize the signal-to-noise

ratio, the singular values of the power spectral density matrix are plotted in Fig. 5.4 although the

damage diagnosis is performed in the time domain.

To obtain the dynamic system matrices, an interface between MATLAB® and ANSYS® is

created. ANSYS® takes as input the structural parameters θ, and returns the full system matri-

ces M,C1, and K. Based on the direct sensitivity method (Heylen and Sas, 1997), MATLAB®

analytically computes the derivatives of modal parameters towards structural parameters, i.e., the

Jacobian J (3) from Sec. 4.2.3. The sensitivity matrix is set up using the poles and mode shapes

of the first four modes, see Fig. 5.4, but the mode shape derivatives consider the first 30 modes.

5.4.1 Monitoring Model-based Parameters

Since this is the first application of the stochastic subspace-based damage diagnosis method in this

thesis, the analysis procedure is thoroughly explained. The monitoring procedure is divided into

three monitoring states: the reference state, the training state, and the testing state.

Reference State. In the reference state, all quantities are determined that define the vibration

behaviour of the undamaged structure. First, the block Hankel matrix is estimated and the null

space U0 is extracted, see Eq. (4.3). Secondly, the covariance Σ of the damage-sensitive residual is

evaluated, see Section. (4.2.2). Using the observability in modal basis, the first sensitivity matrix

is calculated J (1), as in Eq. (4.17). In this study, this matrix links g = 11 residual entries to

2Nm(r + 1) = 16 modal parameters, where Nm and r are the number of modes and number of

sensors. The second Jacobian matrix has 2Nm(r + 1) rows and columns, as it links data-driven

modal parameters to numerical modal parameters. The third Jacobian matrix is available from the

FE model and links 2Nm(r + 1) modal parameters to H = 9 structural parameters, see Fig. 5.5.

The analytical Jacobian matrices are combined to one matrix that links the Gaussian residual

to structural parameters J = J (1)J (2)J (3). Ultimately, the Fisher information is calculated

and the main diagonal values are extracted to assess the damage detectability, see Fig. 5.6. The

measurement duration in the reference state T 0 is set so all matrices have converged, meaning it

does not influence the results of the damage diagnosis.

75



5.4. Proof of Concept

0
1

0.01

2

0.02

3

Jacobian jJ1j

16

0.03

4 15145 1312

1

6 1110

2

7 988 769 5410 3211 1

0

0.5

Jacobian jJ2j

165

1

15141312

2

1110

2c

10 987654315 21

0

2

#10-10

Jacobian jJ3j

4

5 987

2c

6

3

10 543215 1
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Training State. In the training state, the distribution of the test statistic is verified, and a safety

threshold value is set. For this purpose, another long data record from the undamaged structure

is divided into 240 data segments of 30 s length while applying the damage detection test from

Eq. (5.3) to each segment in a Monte Carlo experiment. The resulting histogram can be compared

to the theoretical distribution, and a safety threshold value is set based on the allowable PFA,

see Section 4.5. This is visualized in Fig. 5.7 where the empirical distribution of the test (grey

histogram) is identical to the theoretical distribution with six DOF, refer to Eq. (5.4). Based on a

PFA of 5%, the safety threshold is defined as the 95% quantile value, which is tcrit = 14.1. With

the safety threshold tcrit being determined, the non-central chi-square distribution χ2(ν, λmin) is

found by increasing the non-centrality parameter until the area under the PDF beyond the safety

threshold value is equal to the acceptable POD for λ = λmin, see Section 5.1.3. This is achieved for

a minimum non-centrality of λmin = 31.4. Consequently, all input parameters for the predictive

formula from Eq. (5.9) are available, as the sampling frequency fs, the measurement duration

T = 30 s and the magnitude of the structural parameters are problem-specific constants. The

minimum detectable damage is summarized in Table 5.3.

Validation State. The validation state is driven by vibration data from the damaged structure.

The primary goal is to validate that the response of the damage detection test is predicted accu-

rately, which can be done by setting the damage in one monitoring parameter to the minimum de-

tectable damage. In that case, the empirical non-centrality is equal to the minimum non-centrality

λ = λmin and the empirical probability of detection is equal to the required POD, in theory. The
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Figure 5.8: Validation state

distribution is again evaluated in a Monte Carlo experiment, meaning the vibration signal is di-

vided into 200 data segments and the damage detection test is applied to each segment. Figure 5.8

visualizes the empirical test distribution in the damaged state, where the stiffness of beam segment

5 is reduced by the minimum detectable damage of ∆5 = 5.0%. The mean test response appears

to be equal to the theoretical test response, as the histogram fills the area under the theoretical

distribution (solid black line). The POD of the Monte Carlo experiment is 100%, and thus, close

to the theoretical value of 99.94%, and the predictive formula is validated. For completeness, the

validation is repeated for the eight other beam segments, where the applied damaged is set to the

respective minimum detectable damage from Table 5.3. The results in Fig. 5.9 confirm that the

prediction is accurate for each beam segment with a POD that ranges between 99.5% and 100%.

5.4.2 Monitoring with Data-Driven Tests

This section demonstrates that the prediction of the minimum detectable damage is also valid

for data-driven tests. Two data-driven tests are analyzed, i.e., the parametric test and the non-

parametric test.

Study 1: Testing for Changes in Modal Parameters

In the parametric test from Eq. (4.50), the residual is linked to modal parameters so modal pa-

rameters can be tested for changes. The procedure in the reference state is identical to before, see

Section 5.4.1, and the Fisher information is evaluated with respect to structural parameters. In

the training state, the GLR is applied to multiple data sets from the undamaged structure, in a

Monte Carlo experiment, using the Jacobian matrix with respect to modal parameters J (1). The

Minimum Detectable Damage [%]

Monitoring parameter E1 E2 E3 E4 E5 E6 E7 E8 E9

Parameter change 9.6 4.1 6.3 6.2 5.0 6.2 6.3 4.1 9.6

Table 5.3: Minimum detectable change in the modulus of elasticity E for each beam segment
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Figure 5.9: Validation state for the structural parametrization
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Figure 5.10: Training state
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Figure 5.11: Training state

results from the Monte Carlo simulation are shown in Fig. 5.10. The empirical distribution (grey

histogram) fills the area under the theoretical distribution (solid line), so the theoretical value for

the number of degrees of freedom ν = 2mr = 8 is verified. Since the number of degrees of free-

dom increases in comparison to the model-based test (where ν = 5), the minimum non-centrality

increases to λmin = 32.6, and the resulting minimum detectable damages increase, see Table 5.4.

For validation, nine different damage scenarios are simulated where the applied damaged is set to

the minimum detectable damage, see Fig. 5.12. The probability of detection ranges between 99.0%

and 100% for all nine cases, so the prediction of the minimum detectable damage is correct also

when modal parameters are tested.
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Figure 5.12: Validation state for the modal parametrization

Study 2: Testing for Changes in the Residual

In the non-parametric test, the Gaussian residual is directly tested for damage without linking

it to other parameters through a Jacobian matrix. The reference state is, again, identical to

the model-based test. Technically, only the covariance matrix is required for monitoring, but

the prediction of the minimum detectable damage requires the model-based Fisher information.

Figure 5.11 shows the training state for the non-parametric test. The empirical test distribution

with a number of degrees of freedom of ν = 10 is close to the theoretical one with ν = 11. The

corresponding minimum non-centrality is λmin = 34.7, with the minimum detectable damages

tabulated in Table 5.4. Ultimately, nine Monte Carlo simulations are performed, where the damage

is set to the minimum detectable damage, see Fig. 5.13. The empirical POD ranges between 99.5%

and 100% for all cases, so the prediction of the minimum detectable damage is accurate, even if no

Jacobian matrix is used during monitoring.
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Figure 5.13: Validation state for the non-parametric test

Minimum Detectable Damage [%]

Monitoring parameter E1 E2 E3 E4 E5 E6 E7 E8 E9

Model-based test 9.6 4.1 6.3 6.2 5.0 6.2 6.3 4.1 9.6
Data-driven test (parametric) 9.7 4.2 6.4 6.3 5.1 6.3 6.4 4.2 9.7
Data-driven test (non-parametric) 10.0 4.3 6.6 6.5 5.2 6.5 6.6 4.3 10.0

Table 5.4: Minimum detectable change in the modulus of elasticity E for each beam segment

For comparison, the minimum detectable damage for all model-based and data-driven detection

tests are juxtaposed in Table 5.4. The results in this table clarify that the minimum detectable

damage assumes higher values for data-driven tests, meaning more severe damage is necessary for

a reliable detection. For example, for beam segment 5, the minimum detectable damage increases

from 5.0% over 5.1% to 5.2%. This finding may be surprising at first glance, as the theoretical

investigations showed that the mean test response is equal for all three damage detection tests, see

Equation (5.17). However, for each test, a different number of monitoring parameters is tested, so

the theoretical number of degrees of freedom of the χ2−distribution varies, and, consequently, a

different reliability index (i.e., minimum the non-centrality λmin) is to be applied. The relation is

visualized in Fig. 5.2.
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5.5 Summary

This chapter develops a reliability-based approach to predict the minimum detectable damage for

vibration monitoring using statistical tests. It demonstrates that the analysis of the minimum de-

tectable damage requires an overarching consideration of the measurement environment, the signal

processing parameters, the employed damage-sensitive residual, and the reliability requirements

regarding the damage detection results. Maximum detectability is given for a high sensitivity of

the damage-sensitive residual, a high signal-to-noise-ratio, a long measurement duration, and le-

nient requirements toward the test reliability, i.e., a high probability of false alarms (PFA) or a low

probability of detection (POD).

All considerations are condensed into one concise formula, see Eq. (5.9), which relates the

minimum detectable damage ∆h to the magnitude of the monitoring parameter θh, the sampling

frequency fs, the measurement duration T [s], the main diagonal values of the Fisher information

Fhh, and a reliability index λmin. A reliable test result is defined by a mean test response that is

sufficiently large, so the test distribution for the damaged state is well-separated from the distribu-

tion for the training state, see Fig. 5.1. Ultimately, the degree of separation is tied back to intuitive

measures such as the PFA or the POD. What is more, the formula can be solved for the minimum

measurement duration that is required to detect a specified damage extent.

The prediction of the minimum detectable damage requires a finite element (FE) model as well

as a vibration record from the undamaged structure. However, the prediction is also valid for

data-driven tests, where the damage-sensitive residual is tested directly or linked to operational

modal parameters. This is shown based on theoretical investigations and a numerical case study. In

conclusion, the developed formula is a helpful tool to assess the detectability of structural damage

before a structural health monitoring (SHM) system is installed.
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Chapter 6

Minimum Localizable Damage

This chapter proposes a method to predict the minimum localizable damage based on vibration

data from the reference state and a finite element (FE) model. The minimum localizable damage

is defined as the minimum change in a structural design parameter that can be detected and

distinguished from changes in other parameters under an optimal damage localization resolution.

Finding the minimum localizable damage means having to compromise, because with an increasing

number of parameter clusters, the damage localization resolution increases, but the detectability

in each cluster decreases, and the false alarm susceptibility changes. The theory is a continuation

of Chapter 5, so it can be applied to any damage-sensitive residual ε̂ that satisfies the central limit

theorem (CLT) (Benveniste et al., 1987)

ζ =
√
N(ε̂− E[ε̂]) −→

N (0,Σ) (reference)

N (J δ,Σ) (damaged),
(6.1)

where Σ is the sample covariance, J is the first-order sensitivity matrix that links the damage-

sensitive residual ε̂ to structural parameters in θ, and δ is the asymptotic change vector

δ = (θ − θ0)
√
N (6.2)

which is unknown, but fixed. More background information on the asymptotic change vector can

be found in Chapter 4. A major difference to the studies on the minimum detectable damage from

Chapter 5 is that damage localization can only be performed using model-based tests.

The chapter is organized as follows: in Section 6.1, the method to predict the minimum de-

tectable damage is expanded to the direct localization test. In Section 6.2, the minimum localizable

damage for the minmax localization test is analyzed. Both sections contain details on how to pre-

dict the test response of unchanged parameters, i.e., false localization alarms. In Section 6.3, an

automated approach is developed to substructure FE parameters for optimal damage localization

results, and Section 6.4 presents a numerical proof of concept study.

6.1 Direct Localization Test

The direct localization test is a straightforward expansion of the parametrized damage detection

test, with the only difference being that the parameters are individually tested for damage. From

a statistical standpoint, the direct localization test evaluates the likelihood ratio of the tested par-
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Figure 6.1: Statistical distribution of the test statistic for ν = 1

titions being damaged over the likelihood of them being undamaged, while neglecting all untested

parameters. In other words, the alternate hypothesis H1 is tested against the null hypothesis H0

for each parameter θh, refer to Eq. (4.27). Therefore, the prediction of the minimum localizable

damage is similar to the prediction of the minimum detectable damage, at least for the parameter

that has changed due to damage. A problem that remained untreated thus far is how the test

responds if an unchanged parameter is tested, while one of the untested parameters has changed

due to damage. This is were the off-diagonal values of the Fisher information come into play, as

they characterize how changes in one parameter influence the test response of others. The influence

can be considerable if changes in multiple parameters have a similar effect on the damage-sensitive

residual, which is the case for large mechanical structures.

6.1.1 Damage Identifiability

Assuming that damage is restricted to one parameter, and neglecting the off diagonal values of

the Fisher information, the generalized likelihood ratio (GLR) from Eq. (4.52) is rewritten in the

following format

th = ζTh F
−1
h ζh −→

χ2(ν, 0) (reference)

χ2(ν, λ) (damaged) ,
(6.3)

where ζh = J T
hΣ−1ζ is the Gaussian residual projected onto the tested and damaged partition and

Fh is the corresponding Fisher information

Fh = J T
hΣ−1J h. (6.4)

This is the same Fisher information that is used to predict the minimum detectable damage, see

Chapter 5. A major difference to damage detection is that parameters are individually tested

for damage using only one sensitivity vector J h at a time, so the number of parameters of the

χ2−distribution is one, due to Eq. (5.4). The corresponding distribution is visualized in Fig. 6.1
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and the predictive formula for the mean test response is

λh = Tfs · (θh − θ0
h)2 · Fh (6.5)

where T and fs are the measurement duration and sampling frequency, and θh−θ0
h is the parameter

change, cf. Eq. (5.7). Based on reliability considerations, the mean test response λh can be fixed

to a minimum value allowing for the formula to be solved for the minimum localizable damage

∆h =
1

θ0
h

√
λmin

Tfs · Fh
[%]. (6.6)

Consequently, the minimum measurement duration yields

Th =
1

(∆θh)2

λmin

fsFh
. (6.7)

In preparation for the subsequent sections, the following lines elaborate on the statistical properties

of the partitioned residual. As stated above, a basic assumption is that the deviation in the mean

vector of the Gaussian residual is caused by a single parameter change

ζ −→ N (J hδh,Σ). (6.8)

Pre-multiplying the term J T
hΣ−1 leads to a Gaussian distribution with the following properties

J T
hΣ−1ζ −→ N (J T

hΣ−1J hδh,J T
hΣ−1J h). (6.9)

The operation projects the Gaussian residual onto the parameter θh and transforms the distribution

so it exhibits a mean vector of Fhδh and a covariance of Fh.

ζh −→ N (Fhδh, Fh) (6.10)

Projecting the residual onto individual parameters can also be used to analyze the test response in

parameters that have not changed due to damage, but more on this follows in the next section.

6.1.2 False Localization Alarms

A false localization alarm is a significant test response of a parameter due to damage-related changes

in another parameter. False localization alarms are inherent to the direct localization test, because

the off-diagonal terms of the Fisher information matrix are ignored. Having said that, this section

illustrates that the magnitude of these false alarms can also be predicted for the direct localization

test, using vibration data from the reference state.

The starting point is the Gaussian residual vector from Eq. (6.1), so ζ −→ N (J δ,Σ). In the

following, the parameter that has changed due to damage is denoted as θh, where the unchanged
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6.1. Direct Localization Test

parameters are θh̄. Its mean value is a superposition of the response of the unchanged parameter

and false alarms J δ = J hδh + J h̄δh̄. Pre-multiplying J T
hΣ−1ζ and (J T

hΣ−1J h)−1/2 to the

residual yields a new vector z with unit variance

ζ −→ N (J hδh + J h̄δh̄,Σ)

J T
hΣ−1ζ −→ N (Fhhδh + Fhh̄δh̄, Fhh)

z = (J T
hΣ−1J h)−1/2J T

hΣ−1ζ −→ N (F
1/2
hh δh + F

−1/2
hh Fhh̄δh̄, I).

(6.11)

Squaring this vector yields the test statistic from Eq. (6.3) with th = zT z, so the non-centrality

decomposes into (Döhler et al., 2016)

λh = E[ζ]T · E[ζ] = δTh Fhhδh + 2δThFhh̄δh̄ + δTh̄ (Fh̄hF
−1
hh Fhh̄)δh̄. (6.12)

If an unaltered parameter θh is tested for changes but another, untested parameter θh′ has actually

changed due to damage, the mean test response is equal to the last term, so

λh,h′ = δTh̄ (Fh̄hF
−1
hh Fhh̄)δh̄. (6.13)

Assuming that damage is limited to a single untested parameter θh′ , while all other parameters

are undamaged (including the tested one), and taking advantage of the symmetry of the Fisher

information with Fh′h = Fhh′ , the non-centrality for the tested parameter simplifies to

λh,h′ = δ2
h′(F

−1
hh F

2
h′h). (6.14)

The bracket term is interpreted as the Fisher information for the test response of a tested but

unaltered parameter

Fh,h′ = F−1
hh F

2
h′h, (6.15)

i.e., false localization alarms. That means that the mean test response of parameters that have

not changed due to damage θh̄ can be predicted through the formula from Eq. (6.5) - (6.7) after

substituting Fh = Fh,h′ .

6.1.3 Reliability Despite False Localization Alarms

The minimum non-centrality λmin is a reliability index that can be determined based on acceptable

probability of false alarms (PFA) and probability of detection (POD), see Section 5.1.3. In contrast

to damage detection, the number of degrees of freedom ν of the χ2−distribution is lower for damage

localization (ν = 1), and a lower ν generally leads to a higher damage detectability, see Fig. 5.2.

However, the PFA is also higher because false alarms can occur in any monitoring parameter θh

with h = 1, 2, . . . ,H. The global PFA is equivalent to the probability that at least one false test

occurs, with

PFA = 1− (1− PFAh)H . (6.16)
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Figure 6.2: Comparing the minimum non-centrality for damage detection and localization

Equivalently, the probability of false negative results increases, so the minimum POD has to be

decreased to

POD = (PODh)H . (6.17)

Considering the updated PFA and the updated POD from Eq. (6.16) and (6.17), a fair comparison

between the damage detection and localization tests can be made. Figure 6.2 plots the minimum

non-centrality for damage detection tests for a PFA of 0.3% and a POD of 99.94% and 99.4%,

with respect to the Canadian and U.S. American reliability requirements. For the two cases,

the damage detection test is more sensitive than the damage localization test if the number of

monitoring parameters exceeds H = 5 (Canada) and H = 8 (U.S.).

6.2 Minmax Localization Test

The minmax localization tests parameters individually for damages but it additionally considers

the possibility that damage might also have occurred in untested parameters. Mathematically, it

tests the alternate hypothesis H1 for the tested partition against the least favourable H1 in untested

partitions, see Eq. (4.27). To implement this, a mathematical operation is employed that could be

interpreted geometrically as an orthogonal projection. The projection considers the off-diagonal

terms of the Fisher information and reduces false localization alarms; however, it introduces bias if

the problem is over-parametrized, i.e., if changes in multiple structural parameters have a similar

effect on the damage-sensitive feature or vice versa. To remedy this, a hierarchical clustering

approach is applied that combines redundant sensitivity vectors. Clustering monitoring parameters

is equivalent to substructuring the FE model into units in which damage can be isolated. Regardless

of the clustering, the parameters can still individually be tested for damage. This leads to a higher

damage localization resolution but may also cause false localization alarms if the cluster centres

are not representative of the included parameters, see Section 4.4.4.
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6.2. Minmax Localization Test

6.2.1 Damage Identifiability

This section explains how to derive the modified Fisher information Fh to predict the mean test

response of the minmax localization test. Testing the likelihood of parameters θh being dam-

aged against the likelihood of cluster centres ck being damaged leads to a notational challenge,

in particular, because the cluster centres ck are already normalized and the parameters are not,

see Eq. (4.60). The tested partition is indicated through the subscript h and the corresponding

sensitivity vector is J h. The untested partition is indicated through the subscript h̄, it includes

the sensitivity vectors of all cluster centres k = 1, 2, . . . ,K except the one that contains the tested

parameter, denoted as k(h). The corresponding sensitivity vectors are

J̃ c
h̄ =

[
c1 . . . ck(h)−1 ck(h)+1 . . . cK

]
, (6.18)

where the cluster centres are averaged sensitivity vectors ck = 1/mk
∑

i∈Ck J̃ i. Since the clustered

sensitivity vectors are normalized J̃ = Σ−1/2J , the Fisher information is now

F =

[
Fh Fc

hh̄

Fc
h̄h

Fc
h̄h̄

]
=

[
J T
hΣ−1J h J T

hΣ−1/2J̃ c
h̄

J̃ cT
h̄ Σ−1/2J h J̃ cT

h̄ J̃ c
h̄

]
. (6.19)

Assuming that damage is restricted to one parameter, the Gaussian residual is projected onto

the tested parameter by pre-multiplying it by J T
hΣ−1. The distribution of the tested residual is

characterized as follows:

ζ −→ N (J hδh,Σ)

J T
hΣ−1ζ −→ N (J T

hΣ−1J hδh,J T
hΣ−1J h)

ζh −→ N (Fhδh, Fh).

(6.20)

Secondly, the Gaussian residual is projected onto the untested partition. The distribution of the

rejected partition exhibits the following properties:

ζ −→ N (J hδh,Σ)

J̃ cT
h̄ Σ−1/2ζ −→ N (J̃ cT

h̄ Σ−1/2J hδh, J̃
cT
h̄ J̃ c

h̄)

ζch̄ −→ N (Fc
h̄hδh,F

c
h̄h̄).

(6.21)

Next the Gaussian residual is reduced to the information content of the tested partition. The

following operation

ζ∗h = ζh − Fc
hh̄F

c−1
h̄h̄
ζch̄ −→ N (F c∗h δh,Σ

∗
h,h) (6.22)

makes the tested residual blind to changes in the untested partition and can be interpreted geomet-

rically as a projection orthogonal to the sensitivity vectors of the cluster centres. The corresponding
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robust Fisher information is

F c∗h = Fh − Fc
hh̄F

c−1
h̄h̄

Fc
h̄h. (6.23)

Having derived the Fisher information, the mean test response of the minmax test can be predicted

by substituting Fh through F c∗h in the formulas from Eq. (6.5) - (6.7). As an alternative, the cluster

centres could be defined as the tested partition. This may lead to a more convenient notation, but

reduces the quality of the damage localization.

6.2.2 False Localization Alarms

For the minmax test, a false localization alarm is defined as a significant response of the test for a

parameter that is not within the same cluster as the parameter that has changed due to damage.

Originally, the minmax test was designed so false alarms could be diminished. However, false alarms

might be cause if the cluster centres are too similar or if they misrepresent some parameters. As a

consequence, the projection does not fully eliminate the effect that changes in the rejected partition

have on the tested partition. However, this section explains how to predict the Fisher information

related to false alarms.

For consistency, the tested parameter is denoted as θh, and the parameter that has changed due

to damage as θh′ . First, the Gaussian residual is projected onto θh by pre-multiplying J T
hΣ−1:

ζ −→ N (J h′δh′ ,Σ) (6.24)

J T
hΣ−1ζ −→ N (J T

hΣ−1J h′δh′ ,J T
hΣ−1J h) (6.25)

ζh,h′ −→ N (Fhh′δh′ , Fh). (6.26)

Secondly, the Gaussian residual is projected onto the rejected partition, i.e., the cluster centres J̃ c

which are already normalized, see Eq. (4.60):

ζ −→ N (J h′δh′ ,Σ) (6.27)

J̃ c
h̄
TΣ−1/2ζ −→ N (J̃ c

h̄
TΣ−1/2J h′δh′ , J̃

c
h̄
T J̃ c

h̄) (6.28)

ζc
h̄,h′
−→ N (Fc

h̄h′δh′ ,F
c
h̄h̄). (6.29)

Thirdly, an orthogonal projection is applied to project the information of the tested partition

orthogonally to the rejected cluster centres. The resulting expression is a robust Gaussian residual

ζ∗h that is sensitive to changes in the tested parameter θh and blind to changes in untested clusters

θh̄. The robust residual approximates the following distribution

ζ∗
h,h′

= ζh,h′ − Fc
hh̄F

c−1
h̄h̄
ζc
h̄,h′
−→ N (F ∗c

h,h′
δ′h′ ,Σ

∗
h,h′

) (6.30)
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and the robust Fisher information is

F ∗c
h,h′

= Fhh′ − Fc
hh̄F

c−1
h̄h̄

Fc
h̄h′
. (6.31)

By substituting Fh = F ∗ch,h′ , the test response of the false localization alarms can be predicted using

the same formulas as before, see Eq. (6.5) - (6.7).

6.2.3 Non-centrality Ratio

In this section, a metric is developed to predict false localization alarms for the minmax localization

test, i.e., the theoretical non-centrality ratio (NCR). The main idea is to calculate the Fisher

information for a tested but unaltered parameter F ∗c
h,h′

(Section 6.2.2) and to translate it into a

non-centrality (a mean test response) according to Eq. (6.5). Secondly, the Fisher information is

calculated for the parameter that has changed due to damage (Section 6.2.1) and translated into a

non-centrality. Ultimately, the non-centrality of the unaltered parameter is put into relation to the

non-centrality of the altered parameter, which yields the relative mean test response of unaltered

parameters (false localization alarms), with

NCR =
λh,h′

λh,h
=
F ∗c
h,h′

F c∗h
. (6.32)

If the parameters are clustered appropriately, meaning if the cluster centres are representative of

the included parameters, the NCR is zero as no false alarms occur. For inappropriate clusters, the

response is between zero and one, where a value of one means that the false localization alarm is

of the same magnitude as the mean test response for the parameter that has actually changed due

to damage. If the NCR is close to a value of one or beyond, identifying the parameter that has

changed is not possible. Interestingly, the magnitude of the parameter change θ − θ0 cancels out,

meaning the NCR does not depend on the damage extent, and the false alarm susceptibility can

be predicted based on vibration data from the reference state.

The implementation of the non-centrality ratio is straighforward: for each damage scenario

i, the Gaussian residual ζ(i) −→ N (J δ,Σ) with δ = (θ − θ0)
√
N is replaced by a Dirac delta

function with δi(i) = 1 and zero otherswise, as the magnitude of the damage is not important.

Subsequently, the minmax localization test is evaluated for all parameters and the test response is

divided by the test response of parameter i—the one that is actually damaged.

6.3 Optimal Damage Localization

The minmax localization test is a promising method for high-resolution damage localization, with

fewer false localization alarms as the direct localization test. A disadvantage is that the clustering

approach critically depends on one user input parameter, i.e., the minimum dendrogram distance

d from Eq. (4.61) that specifies how many substructures are considered. For visualization, the
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Figure 6.3: Visualizing the hierarchical clustering

dendrogram (or cluster tree) for damage localization of a pin supported beam is plotted in Fig. 6.3.

Cutting the cluster tree off at d = 0.9 (on the left side) leads to two parameter clusters, so damage

can be isolated in one of the two substructures (on right side). Choosing a lower cut-off value of

0.65 or 0.31 leads to four or 10 substructures, so the damage localization resolution significantly

increases. However, the previous sections demonstrated that a lower cut-off value affects the damage

detectability in each parameter cluster and the number and severity of false alarms. Therefore,

finding the optimal cluster setting is a multi-objective optimization problem. This section explains

how to weigh the three criteria by defining lower and upper bounds, and how to find the optimal

solution based on Pareto optimization.

6.3.1 Localization Resolution

The first optimization criterion is the damage localization resolution. It can be defined as the

number of substructures, as each substructure is individually tested for damage. The higher the

number of substructures, the higher the damage localization resolution. When formulated as a

minimization problem, the first objective functions reads

f1(K) =
K −Kb

Kg −Kb
, (6.33)

where K is the number of substructures and Kb and Kg is the lower and upper bound. The sub-

scripts b and g indicate a bad and a good number of substructures, respectively. Since damage

localization with a single substructure is meaningless, the lower bound for the number of sub-

structures should be set to Kb ≥ 2. The upper limit could be set to the maximum number of

distinguishable substructures, defined through the matrix rank Kg = rank(J TΣ−1J ). An alter-

nate way to define the damage resolution is to count the maximum number of parameters within

one substructure. This would avoid the formation of large substructures that include a majority

of monitoring parameters, and promote an equal damage localization resolution across the entire
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structure.

6.3.2 Damage Identifiability

The second optimization criterion is the minimum detectable damage, which is calculated based on

Eq. (6.6). The normalization by the magnitude of the reference parameter θ0
h leads to minimum

detectable damage in percent, and allows one to define a hard upper bound of Kb = 100%, where

the lower bound could be set to Kg = 0%. Hence, the weighed objective function is given as

f2(K) =
∆max(K)−∆g

∆b −∆g
, (6.34)

where ∆max(K) = max{∆1(K), ...,∆H(K)} is the largest value for the minimum detectable damage

over all monitoring parameters. If the proposed lower and upper bounds are used, the objective

function reduces to f2,a(K) = ∆max(K). Alternatively, the damage localizability could be defined

based on the minimum measurement duration. This would require the measurement duration to

be updated after the substructuring. More information on how to use the measurement duration

as a measure for the damage detectability is given in Chapter 8.

6.3.3 False-Alarms Susceptibility

The third optimization criterion is the false alarm susceptibility. It is quantified based on the non-

centrality ratio of the parameters that have not changed. There are numerous ways to define an

objective function based on the NCR. The proposed one is to count the number of scenarios Nsc in

which the maximum NCR exceeds a threshold value of, for example, NCRcrit = 0.5, for parameters

that have not changed due to damage. This means that false localization alarms with a magnitude

lower than 50% are tolerable. The weighed objective function can be expressed as

f3(K) =
Nsc(K)−Ng

Nb −Ng
, (6.35)

where Nb and Ng are user-defined parameters to define the worst and best cases. The total number

of damage scenarios equals the number of monitoring parameters, so the upper bound could be set

to Nb = H, and the lower bound to Ng = 0. Having said that, it might be desirable to further

diminish false alarms by setting stricter upper bounds. An alternate way to formulate the objective

function is based on so called blind spots. A blind spot is defined as a parameter with a false alarm

response that exceeds the response of the parameter that has actually changed due to damage, so

the damage location cannot be found. Even if blind spots are not used as optimization criterion,

they could still be employed as a knock-out criterion, meaning cluster configurations with blinds

spots are discarded.
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Figure 6.4: Multi-objective optimization with two objective functions

6.3.4 Optimal Compromise

After scaling the three performance criteria through lower and upper bounds, they are considered

equal, as damage detectability is equally as important as localization resolution, and the resolution

becomes meaningless if the false alarms exceed the actual test response. They all depend on

the dendrogram distance d and the associated number of clusters K in the clustering approach.

The lower the cut-off value dtrim is chosen, the higher the damage localization resolution K, and

the smaller the detectability in each substructure. The localization resolution and the minimum

detectable damage are conflicting, as with an increasing number of substructures, the detectability

∆ decreases inevitably. This is because the orthogonal projection from Eq. (6.23) is to be performed

with respect to more cluster centres, which reduces the information content on tested parameters.

Where neither the detectability nor the localizability can be improved without degrading the other

objective function, it is possible to simultaneously reduce the number of false alarms and one other

objective. However, the false alarm susceptibility seems to be uncorrelated to the localization

resolution and detectability, so it should be considered as a separate objective function.

Dealing with conflicting objective functions of equal importance is known as Pareto optimization

(Censor, 1977; Deb, 2001) with the basic concepts being visualized in Fig. 6.4. On the left side,

two scaled objective functions are plotted in what is called the weighed design space. On the

right side, the space of objective functions is shown where the objective function values are plotted

against each other after rejecting infeasible solutions with objective functions greater than one.

To assess the quality of a particular solution (Point A), a cross hair is drawn on top of it where

all solutions in the lower left quadrant are said to be dominant to A. Non-dominated solutions

typically form a front, also known as the Pareto frontier, which connects the two optimum points

of the individual objective functions. Each point on the Pareto frontier is an optimal solution.

To allow for a fair comparison, the utopia point U , i.e., the imaginary projection of the optimal

points of all objective functions, should be the origin of the coordinate system. This is achieved
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by defining appropriate bounds when weighing the objective functions. The concepts can easily be

expanded to optimization with three or more objective functions, but the plots are less intuitive.

In the particular case of finding the optimal parameter clustering, all possible solutions are

available and the decision-making can be done a posteriori. Multiple approaches are available to

select one solution on the Pareto frontier. The most straightforward one is to select the point with

the minimum distance to the origin, as this point optimizes all objective functions simultaneously.

Using the Euclidean distance in a three-dimensional design space, the minimization problem is

formally defined as

min
K

f =
√
f1(K)2 + f2(K)2 + f3(K)2 (6.36)

s.t. f1(K) ≤ 1, f2(K) ≤ 1, f3(K) ≤ 1.

where f is also referred to as the compromise function that is subject to (s.t.) the inequality

conditions from Eq. (6.36). Additional information on more advanced multi-objective optimization

algorithms is given in the next chapter, see Section 7.3.2.

6.4 Proof of Concept

For proof of concept, the minimum localizable damage is analyzed for the hollow structural steel

(HSS) beam. Both the structure and the diagnosis procedure have already been described in detail

in Section 5.4. Damage is defined as a change in the modulus of elasticity, and since nine material are

assigned to the beam, the parameter vector for monitoring is θ = [E1, . . . , E9]. The main difference

to the previous case study is that the number of sensors is increased to four, as shown in Fig. 6.5,

and the number of modes of vibration, which are considered in the calculation of the Jacobian

matrix, is increased to six to allow for a higher localization resolution, see Fig. 6.6. For conciseness,

all input parameters for the damage diagnosis are summarized in Table 6.1. The section is organized

in the same fashion as the chapter, elaborating on the direct localization test first, followed by the

minmax localization test, and finally, the minmax approach including automated susbtructuring.

6.4.1 Direct Localization Test

In this first study, the test response of the direct localization test is predicted for parameters that

have changed and others that have not changed due to damage. The damage diagnosis is divided

Data Segmenting Processing

Measured quantity velocity Training segments 240 No. of sensors r/r0=4/4
Sampling frequency 850 Hz Testing segments 200 Time lags p/q=4/5
Reference data length 120 min Samples/segment 12,000 System order n=14
Training/testing data 100 min Duration/segment 30 s No. of blocks nb=72,000

Table 6.1: Input parameter sheet
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Figure 6.6: Numerical mode shapes and power spectral density of the generated signal

into three states: the reference state, the training state, and the validation state.

Reference State. In the reference state, one long vibration record is generated based on the

system matrices from the undamaged structure. Next, the reference matrices are set up, including

the null space, the covariance, and the Jacobian matrix. At the end of the reference state, the

Fisher information is calculated, with a visualization on the left side of Fig. 6.7.

Training State. For the sake of variety, no Monte Carlo simulation is performed in the training

state. Instead, the theoretical value for the number of degrees of freedom of the χ2−distribution is

used, i.e., ν = 1. Based on reliability consideration, including a PFA of 5% and a POD of 99.994%,

the safety threshold is set to tcrit = 3.84 and the minimum non-centrality is fixed to λmin = 20,
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Figure 6.7: Fisher information for the direct test (left) and the minmax test (right)

see Section 5.1.3. At the end of the training phase, the minimum localizable damage is predicted

based on Eq. (6.6). Using the Fisher information from Eq. (6.4) and Eq. (6.15), the response is

predicted for altered and unaltered parameters.

Validation State. To validate the predictions, an additional vibration record is generated for

each monitoring parameter while setting the damage to the minimum localizable damage. For each

of the nine damage scenarios, the record is split up into 200 data segments of 30 s length, and the

direct localization test from Eq. (6.3) is applied to each data segment. The validation state for a

2.1% damage at the centre beam segment is visualized in Fig. 6.8a. For each data segment, the

damage localization test yields nine test statistics, one for each monitoring parameter. The results

can be displayed in nine 3-D histograms (left plot), but the most meaningful way to display the

histograms is from above in combination with their mean values (right plot). It can be observed

that the parameter θ5 shows the greatest response with a POD of 100%, which is close to the

theoretical value of 99.994%, meaning the prediction of the minimum localizable damage for the

direct localization test is accurate.

Figure 6.8a also allows for an analysis of false localization alarms. The damage location is

clear as the parameter that has changed due to damage exhibits the greatest mean test response,

but the mean test responses of all other parameters are also beyond the safety threshold value,

which makes the results from the direct localization test less meaningful. The predicted false

alarm magnitude is visualized through the black stairstep graph. It is calculated by evaluating

the modified Fisher information from Eq. (6.15) for each parameter, plugging it into the predictive

formula from Eq. (6.5), and adding the mean value of the training distribution, which is ν = 1.

The predicted mean values are close to the empirical mean values, so the prediction of the false

alarms is successful. For completeness, the validation of the false alarms and the actual test

response is repeated for the remaining eight monitoring parameters, see Fig. 6.9b. The results from

this numerical case study demonstrate that the behaviour of the direct localization test is fully
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predictable, for both parameters that have changed and parameters that have not changed due to

damage.
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Figure 6.8: Validation of the prediction for the direct localization test

96



6.4. Proof of Concept

0

Pr
ob

ab
ilit

y 
de

ns
ity

1

0.5

Scenario "5 = 3.5%

2 403 4

Parameter no.

5

Test statistic

206 7 8 9 0 1 2 3 4 5 6 7 8 9
Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "5 = 3.5%
PFA = 3%
PFA = 7%
PFA = 5%
PFA = 3%
POD = 98%
PFA = 6%
PFA = 5%
PFA = 5%
PFA = 5%
Safety threshold
Empirical mean
Predicted mean

(a) 3-D histograms (left) and top view (right) for damage scenario 5

1 2 3 4 5 6 7 8 9
Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "1 = 3.9%
POD = 100%
PFA = 5%
PFA = 4%
PFA = 4%
PFA = 8%
PFA = 4%
PFA = 6%
PFA = 2%
PFA = 4% 1 2 3 4 5 6 7 8 9

Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "2 = 3.6%
PFA = 5%
POD = 99%
PFA = 4%
PFA = 7%
PFA = 4%
PFA = 2%
PFA = 3%
PFA = 3%
PFA = 3%

1 2 3 4 5 6 7 8 9
Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "3 = 3.0%
PFA = 4%
PFA = 6%
POD = 97%
PFA = 4%
PFA = 6%
PFA = 7%
PFA = 6%
PFA = 5%
PFA = 6% 1 2 3 4 5 6 7 8 9

Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "4 = 3.7%
PFA = 8%
PFA = 8%
PFA = 4%
POD = 99%
PFA = 3%
PFA = 8%
PFA = 6%
PFA = 5%
PFA = 8%

1 2 3 4 5 6 7 8 9
Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "6 = 3.7%
PFA = 6%
PFA = 8%
PFA = 8%
PFA = 11%
PFA = 5%
POD = 100%
PFA = 3%
PFA = 5%
PFA = 7% 1 2 3 4 5 6 7 8 9

Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "7 = 3.0%
PFA = 8%
PFA = 6%
PFA = 5%
PFA = 9%
PFA = 6%
PFA = 6%
POD = 98%
PFA = 7%
PFA = 8%

1 2 3 4 5 6 7 8 9
Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "8 = 3.7%
PFA = 1%
PFA = 4%
PFA = 4%
PFA = 2%
PFA = 5%
PFA = 5%
PFA = 3%
POD = 100%
PFA = 3% 1 2 3 4 5 6 7 8 9

Parameter no.

0

10

20

30

40

Te
st

 s
ta

tis
tic

Scenario "9 = 4.0%
PFA = 2%
PFA = 3%
PFA = 8%
PFA = 6%
PFA = 9%
PFA = 5%
PFA = 5%
PFA = 7%
POD = 100%

(b) Top view for all other scenarios

Figure 6.9: Validation of the prediction for the minmax localization test
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6.4.2 Minmax Localization Test

In this second study, the test response of the minmax localization test is predicted and validated.

The analysis is setup in the same way as for the direct localization test, meaning the sensitivity is

calculated toward nine structural components with the material constants θ = [E1 . . . E9]. It is

important to note that the components are defined manually by assigning two consecutive beam

elements to the same material, so no clustering is applied. The Fisher information is calculated

based on Eq. (6.23) for every parameter, and by looking at the visualization on the right side of

Fig. 6.7, it can be appreciated that the off-diagonal terms are zero, due to the orthogonal projection

from Eq. (6.22). The validation procedure of the minimum detectable damages for the minmax

test is visualized in Fig. 6.9. The POD ranges between 97% and 100% for all nine components.

Moreover, the damage localization results are significantly improved in comparison to the direct

localization test (cf. Fig. 6.8) and the false alarms are indeed zero. This encouraging result is the

reason why all following considerations regarding the optimal damage localization are based on the

minmax localization test.

6.4.3 Optimal Damage Localization

Clustering monitoring parameters and substructuring the FE model is important to obtain an ac-

curate damage localization result. In the previous studies in this chapter, the HSS is substructured

manually by assigning the same material properties to two subsequent FE. The obtained damage

localization results are encouraging, mainly because the applied damage affected the entire segment

as assumed during the computation of the minimum detectable damage; however the substructuring

is certainly too coarse to identify small and local damages. The approach in this section is to assign

a separate material to each of the 18 FE, as shown in the top plot of Fig. 6.10, and subsequently

re-combine materials in an optimal way through hierarchical clustering. The optimal solution is

assessed with respect to the three developed optimization criteria, i.e., the damage detectability,

the localization resolution, and the false alarms susceptibility. False alarms are introduced because

each monitoring parameter (not cluster) is tested for damage.

All three objective functions for an optimal substructuring are summarized in one plot, see

Fig. 6.11. The first objective function f1 (dashed line) is the damage localization resolution, refer

to Section 6.3.1. For a single substructure, the localization test transitions into the parametric

detection test, and the objective is within the infeasible domain f1 > 1. With an increasing

number of substructures, the first objective function linearly decreases until it reaches its optimum

at K = rank(J TΣ−1J ) = 13. The second objective f2 is the detectability in each parameter

(solid black line), where the maximum value among all monitoring parameters is the decisive one,

i.e., ∆max = max(∆1, · · · ,∆18). The detectability gradually decreases up to a cluster number of

K = 11 where the objective function shows a distinct jump. Beyond this point, the minimum

detectable damage in some parameters exceeds 100%, and the objective function moves into the

infeasible domain with f2 > 1. The third objective function f3 quantifies the number of false alarm
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Figure 6.11: Objective functions for automated substructuring

scenarios (dotted line). The function is less intuitive; however, a significant increase is noticed

if more than seven clusters are used, and for cluster configurations with 12 and 13 clusters, the

false alarms are the most pronounced. The plot also shows the compromise functions (thick solid

line), which is the Euclidean distance of all weighed objective functions, compare Eq. (6.36). An

optimal compromise between damage resolution, detectability, and false alarms is reached for a

configuration with K = 10 clusters. The corresponding substructure arrangement is visualized in

the bottom plot of Fig. 6.10. The largest clusters are found near the supports and at midspan,

possibly because of the low vibration amplitudes of multiple modes of vibration at these points.

For completeness, the prediction of the mininum localizable damage and the false alarm mag-

nitude is repeated for the optimal substructure arrangement, see Fig. 6.12. The validation state

includes 18 Monte Carlo simulations, as each of the 18 FE can individually be tested for damage.

The POD ranges between 92% and 100%, so the prediction of the minimum localizable damage is

correct. Parameters that are within the same cluster typically show a similar response to damage,

but the parameter that has actually changed due to damage exhibits the greatest response, as seen

in Scenario ∆3 in Fig. 6.12. False alarms, i.e., a significant response of a parameter outside of the

cluster in which damage has occurred, are minimized and can be predicted well. Another observa-

tion is that the damage detectability decreases with an increasing number of substructures. The

difference between Fig. 6.12 and Fig. 6.9 is that 18 parameters are tested instead of nine, and the

minimum localizable damage in the first beam segment decreases from ∆1 = 3.9% to ∆1 = 12%
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Figure 6.12: Validation of the automated substructuring approach

and ∆2 = 4.7%, as the segment is split into two. This validates the automated substructuring

approach and concludes the proof of concept study.
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6.5 Summary

This chapter expands the theoretical investigations regarding the minimum detectable damage to

damage localization. Damage localization is more challenging, as the statistical tests are applied to

each individual monitoring parameter in the finite element (FE) model and changes in one parame-

ter due to damage can cause a response in unchanged parameters, so-called false localization alarms.

Based on the off-diagonal terms of the Fisher information, a framework is devised that predicts both

the test response of altered parameters as well as the magnitude of false localization alarms, using

vibration data from the undamaged structure. When combined with reliability considerations, this

framework allows one to predict the minimum localizable damage and the minimum measurement

duration for the direct localization test.

Subsequently, all considerations are applied to predict the minimum identifiable damage for the

minmax localization test. As outlined in previous sections, the minmax localization test signifi-

cantly reduces false localization alarms, but it critically depends on a user-defined input parame-

ter, which determines the number of substructures in which damage can be isolated. This chapter

demonstrates that finding the optimal substructure arrangement is a multi-objective optimization

problem: with an increasing number of substructures, the localization resolution increases, but

the damage identifiability in each substructure decreases, and the number of false alarms changes.

Since the minimum identifiable damage and the false alarm magnitude can be predicted based on

vibration data from the undamaged structure, an approach is put forward (based on Pareto opti-

mization) to weigh the optimization criteria (by defining appropriate lower and upper bounds) and

to automatically find a suitable substructure arrangement as the optimal compromise between the

three objective functions.
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Chapter 7

Sensor Placement Optimization

This chapter proposes a criterion for sensor placement optimization and combines it with a state-

of-the-art genetic algorithm (GA) to efficiently find a close-to-optimal solution in a large pool of

possible sensor combinations. Most of the existing criteria aim to pre-condition the signal and to

improve the quality of the modal identification, but a reliable modal identification does not guar-

antee a reliable damage diagnosis. Another issue is that most sensor placement strategies optimize

the sensor layout on a global vibration level, but the structural safety and serviceability typically

depend on the integrity of local components, such as joints, and damage tends to accumulate at

well-known hotspots, see Fig. 1.4. With this knowledge, a sensor placement strategy is developed

that takes as input the requested detectable damage in individual finite element (FE) model com-

ponents, and yields as output an optimal sensor layout. The primary purpose of the optimization

is to maximize the damage detectability and localizability, and to align the objectives of vibration

analysis with structural design requirements.

The methodology is developed for damage-sensitive residuals ε̂ that approximate a Gaussian

distribution with well-defined uncertainty (covariance Σ) and a mean vector that can be linked to

changes in structural design parameters θ through a first-order sensitivity matrix (Jacobian J ).

Such residuals satisfy the central limit theorem (CLT)

ζ =
√
N(ε̂− E[ε̂]) −→

N (0,Σ) (reference)

N (J δ,Σ) (damaged),
(7.1)

which is based on a statistical framework called the asymptotic local (AL) approach (Benveniste

et al., 1987), with the statistical change vector

δ = (θ − θ0)
√
N. (7.2)

The chapter is organized as follows: Section 7.1 proposes the measurement duration as a per-

formance criterion to optimize damage detectability. It outlines how to determine the optimal

sensor layout as well as an appropriate number of sensors. Section 7.2 develops a sensor placement

strategy for damage localization. In Section 7.3, the performance criteria are combined with a

single-objective and multi-objective GA, and the last section presents a proof of concept study on

a numerical steel beam as well as on a numerical cable-stayed bridge.
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7.1 Optimizing the Detectability

In the framework of the AL approach, a decision on whether the structure is damaged or not is

made by applying the generalized likelihood ratio (GLR) to the Gaussian residual ζ (Basseville

et al., 2000)

t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ −→

χ2(ν, 0) (reference)

χ2(ν, λ) (damaged).
(7.3)

This test statistic follows a χ2−distribution with ν = rank(J TΣ−1J ) number of degrees of freedom

and a non-centrality, i.e., a mean test response, of λ = δTFδ, where F is the Fisher information

matrix

F = J TΣ−1J . (7.4)

The Fisher information is a measure for damage detectability, defined as the sensitivity of the

damage-sensitive residual toward structural parameters (Jacobian J ) scaled by the uncertainties in

its estimation (covariance Σ). The magnitude of the Fisher information depends on the information

content of the damage-sensitive residual and the contribution of the monitoring parameter to the

structure’s integrity, see Section 5.1.4. Moreover, it depends on the sensor layout and the number

of sensors, which is addressed in this chapter.

7.1.1 Minimum Measurement Duration

The mean test response to damage can be quantified through λh = δ2Fhh if it is assumed that

changes are restricted to one parameter. Considering the definition of the statistical change vector

δh = (θh − θ0
h)
√
N , the mean test response to damage can be predicted based on vibration data

from the reference state through

λh = N · (θh − θ0
h)2 · Fhh. (7.5)

After replacing the sample size by the product of the measurement duration and the sampling

frequency N = Thfs, Eq. (7.5) can be solved for the minimum measurement duration that is

required to detect a prescribed parameter change successfully

Th =
1

(∆θh)2

λ

fsFhh
. (7.6)

The measurement duration depends on the desired mean test response λ, the sampling frequency

fs, the magnitude of the parameter change ∆θh squared, and the main diagonal value of the Fisher

information Fhh, see Eq. (7.4). An efficient sensor configuration leads to a high Fisher information

and a short measurement duration. Consequently, the measurement duration from Eq. (7.6) can

be employed as a performance criterion for sensor placement optimization, provided both the mean
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test response λ and the parameter change ∆θh are predefined by the user.

� Relative parameter change ∆θh. The relative parameter change is a tuning parameter for the

damage diagnosis. It enables the user to select a design parameter θh in a FE model and

to define the minimum change ∆h in this parameter that has to be sensed by the damage

diagnosis method. This feature is pivotal for global damage diagnosis based on a small number

of modes and a sparse sensor layout: irrelevant parameter changes in the global structure can

be neglected, and the sensor placement can be tuned to become more sensitive to damage

hotspots or changes in local components, which are critical for the safety or serviceability of

the structure.

� Minimum non-centrality λmin. Fixing the mean test response to a minimum value λ = λmin

is equivalent to requiring a minimum damage detectability. So, it can be interpreted as a

reliability index and fixed based on the acceptable probability of false alarms (PFA) and

probability of detection (POD), see Section 5.1.3.

7.1.2 Performance Criterion

This section explains how to calculate the performance criterion based on one vibration record from

the reference structure. The record Y contains N0 samples, rpos possible sensors locations, and is

typically generated based on numerical simulations, as it is challenging to capture the vibrations

at all possible sensor positions simultaneously.

Y(θ0) =


y1,1 . . . y1,rpos

...
...

...

yN0,1 . . . yN0,rpos

 (7.7)

To examine a specific sensor layout with r sensors, the corresponding columns are extracted from the

measurement matrix in Eq. (7.7). Subsequently, the statistical properties of the damage-sensitive

residual are evaluated (covariance matrix Σ), together with the sensitivity of the mean vector

toward structural design parameters (Jacobian J ), and ultimately, the Fisher information and the

measurement duration Th are calculated for each monitoring parameter according to Eq. (7.4) and

Eq. (7.6). The decisive measurement duration is the maximum measurement duration over all

parameters, so

T (c, r) = max
h
{T1, · · · , TH}. (7.8)

The indices clarify that the maximum measurement duration depends on both the sensor coordi-

nates c and the number of sensors r.
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7.1.3 Optimal Sensor Layout

For a fixed number of sensors, the number of possible configurations is

Nc(r, rpos) =
rpos!

(rpos − r)!r!
. (7.9)

One way to find the optimal sensor configuration is the exhaustive search (ES) or brute force

method, meaning the performance criterion from the previous section is calculated for each combi-

nation. That means that the corresponding columns are extracted from the measurement matrix

in Eq. (7.7) to re-calculate the covariance, the Jacobian matrix, the Fisher information, and ulti-

mately, the measurement duration. Finally, the optimal sensor layout is the one with the highest

damage detectability, i.e., the shortest measurement duration

Topt(r) = min
c
{T (c, r)}. (7.10)

When formulated as a minimization problem, the objective function formally reads

min
c

f1(c) =
T (c, r)

Tthres

s.t. f1 ≤ 1.

(7.11)

Normalizing the measurement duration through an upper bound Tthres and constraining the opti-

mization to values below f1 ≤ 1 is an efficient way to remove unsuitable sensor layouts, to normalize

the criterion (so it can be compared to other criteria), and to find an appropriate number of sensors.

7.1.4 Appropriate Number of Sensors

The preceding section showed that, for a fixed number of sensors, the most efficient sensor layout

can be determined as the one with the lowest optimal measurement duration. A convenient way

to decide on an appropriate number of sensors is to calculate the optimal measurement duration

Topt for a varying number of sensors r = 1, . . . , rpos, and to plot Topt over r. This plot is called

the performance curve, see Fig. 7.8 on page 114. With an increasing number of sensors, the slope

gradually decreases, so adding additional sensors hardly improves the damage detectability. The

elbow point, where the curve begins to flatten, is an indicator for an appropriate number of sensors.

Alternatively, the first best sensor configuration could be chosen that exhibits a measurement

duration below the maximum allowable measurement duration Tthres with

Topt < Tthres. (7.12)
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Using the objective function from Eq. (7.11), the optimization problem for finding the optimal

number of sensors can be expressed as

min
r

f(r) = 1−min
c
f1(c)

s.t. 0 ≤ f ≤ 1
(7.13)

7.2 Optimizing the Localizability

This section develops a sensor placement strategy for damage localization. Using the minmax

localization test, a decision can be made on the monitoring parameter that is most likely to be

damaged. The minmax test statistic is evaluated for each parameter θh and defined as

th = ζ∗h
TF c∗h

−1ζ∗h −→

χ2(ν, 0) (reference)

χ2(ν, λ) (damaged),
(7.14)

with the robust residual ζ∗h = ζh − Fc
hh̄

Fc−1
h̄h̄
ζc
h̄

and the corresponding Fisher information

F c∗h = Fh − Fc
hh̄F

c−1
h̄h̄

Fc
h̄h,

[
Fh Fc

hh̄

Fc
h̄h

Fc
h̄h̄

]
=

[
J T
hΣ−1J h J T

hΣ−1/2J̃ c
h̄

J̃ cT
h̄ Σ−1/2J h J̃ cT

h̄ J̃ c
h̄

]
. (7.15)

The minimum measurement duration is an intuitive performance criterion to find the optimal

sensor layout for damage detection tests. It can be calculated for damage localization tests as well,

but optimizing the damage localization is a multi-objective optimization problem (see Chapter 6).

With increasing damage localization resolution, the damage detectability decreases and the number

of false alarms changes. Moreover, a larger pool of solutions is available, because the monitoring

parameter must be clustered and there are as many cluster configurations as there are monitoring

parameters for each sensor layout. Instead of one, three criteria have to be considered, and they

have to be calculated multiple times for each sensor configuration.

7.2.1 Performance Criteria

This section summarizes the three criteria to optimize the sensor layout for damage localization

using the minmax test. Moreover, the objective functions are weighed by defining lower and upper

bounds. The approach is similar to the one described in Section 6.3.

Localization Resolution. The first objective function is the damage localization resolution. It

is quantified through the number of clusters K in which damage can be isolated. The objective is

defined as

f2(K) =
K −Kb

Kg −Kb
(7.16)

where Kb = 2 and Kg = rank(J TΣ−1J ) are the lower and upper bounds.
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Damage Identifiability. The second objective function is the identifiability of damage. For each

monitoring parameter, the damage identifiability is quantified through the minimum identifiable

damage

∆h =
1

θ0
h

√
λmin

Tfs · Fh
[%], (7.17)

with the minmax Fisher information Fh = F c∗h from Eq. (7.15). First, the minimum identifiable

damage is evaluated for all monitoring parameters, and then, it is divided by the desired detectable

damage ∆b. The decisive parameter is the one with the highest ratio and the corresponding

objective function is

f3(K) = max
h

(
∆h(K)−∆g,h

∆b,h −∆g,h

)
(7.18)

This makes the input vector ∆b a powerful tool to tune the sensor layout so it becomes more

sensitive to user-defined components in the FE model. In theory, a lower bound for the minimum

identifiable damage ∆g could be defined as well; however, this quantity defaults to a zero vector.

False Alarms. The third objective function is the false alarm susceptibility. False alarms are

quantified by evaluating the non-centrality ratio (NCR) from Eq. (6.32) and counting the number

of scenarios Nsc in which false alarms are expected to occur. The objective function is

f4(K) =
Nsc(K)−Ng

Nb −Ng
, (7.19)

where the lower and upper bounds can be set to Ng = 0 and Nb = H, with H being the number

of monitoring parameters. To further decrease false alarms, the upper bound could be set to a

fraction of the number of monitoring parameters, e.g., Nb = 0.5 ·H.

7.2.2 Optimal Compromise

Since the objective functions are already weighed through the definition of lower and upper bounds,

a compromise function can be set up as the Euclidean distance in the three-dimensional objective

space. To optimize the damage localization, the objective functions from Eq. (7.16) - (7.19) are

combined, that is, the localization resolution, the damage identifiability, and the false alarm sus-

ceptibility.

min
K

f =
√
f2(K)2 + f3(K)2 + f4(K)2 (7.20)

s.t. f2(K) ≤ 1, f3(K) ≤ 1, f4(K) ≤ 1

To optimize the damage localization and damage detection at the same time, a fourth objective

107



7.3. Implementing a Genetic Algorithm

function is added, i.e., the damage detectability from Eq. (7.11).

min
K

f =
√
f1(K)2 + f2(K)2 + f3(K)2 + f4(K)2 (7.21)

s.t. f1(K) ≤ 1, f2(K) ≤ 1, f3(K) ≤ 1, f4(K) ≤ 1

As an alternative to the compromise function, a population-based optimization method can be

employed that is capable of handling multiple objective functions simultaneously, e.g., the multi-

objective GA that is described in the subsequent section.

7.3 Implementing a Genetic Algorithm

A problem that has already been encountered in the literature review is the problem of combinatorial

explosion, see Eq. (7.9). The problem is that, even for a low number of possible sensor locations,

the number of possible sensor combinations is excessively large, making it infeasible to evaluate

the objective functions for each combination c in an exhaustive search (ES) approach. In this

thesis, the problem is overcome by employing the genetic algorithm (GA) that is pre-implemented

in the Global Optimization Toolbox in MATLAB® (Messac, 2015), and modified through custom

functions for generating, modifying, and merging sensor layouts.

7.3.1 Single-objective Optimization

Single-objective optimization means that one objective function is considered, e.g., the objective

function from Eq. (7.11) or the compromise function from Eq. (7.20) or (7.21). GAs are inspired

by the natural evolution process based on Darwin’s survival of the fittest principle. In this context,

the objective function is referred to as the fitness function, a single sensor layout is an individual

that consists of multiple genes (i.e., sensor numbers), and a population is an array of individuals.

In this work, the genes are encoded as integer sensor numbers, and each individual is a vector that

includes r entries, where r is the number of sensors, see Fig. 7.1. Evolution takes place over multiple

generations, where the parent population contributes its genes to its children through cross-over,

mutation, and elitism, with more information in the subsequent paragraph. A basic assumption

for successful evolution is a diverse gene pool, where diversity is defined as the average distance

between the fitness of individuals within one population.

2 11 5

2 11 5

1 7 4

1 227

7 2 5

7 1913

12 13 19

Elite child Mutation childCross-over child

Figure 7.1: Elements of reproduction of the GA with integer sensor encoding and r = 3 sensors
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Cross-over. Cross-over describes the merging of two sensor layouts, where each vector entry is

randomly selected from one of the two parents, see Fig. 7.1. Only parents with comparatively good

fitness values are chosen for cross-over, where individuals can be selected more than once as parents.

The custom cross-over function includes a restraint that does not allow for multiple sensors to be

placed at the same locations, comparable to a sudden death condition. A crucial input parameter

is the cross-over fraction, which defines the number of children within a population, not including

elite children, that are generated through cross-over.

Mutation. Mutation children are generated through the random permutation of individual genes

in a single parent, see Fig. 7.1. Mutation is an important stochastic element to maintain diversity

within the population and avoid premature convergence (Deb, 2001). For efficiency, the custom

mutation function is implemented so the mutation rate linearly decreases, meaning the number of

perturbed sensor numbers is high initially, but with increasing number of iterations (i.e., genera-

tions), the intensity of the perturbation gradually reduces, so the procedure converges toward the

global minimum in the objective function. This implementation combines the positive aspects from

another optimization method, called simulated annealing, with more information in Section 2.2.1.

To guarantee unique genes, the mutation function also includes a sudden death condition.

Elitism. Elite parents are particularly fit individuals that automatically survive to the next gen-

eration without genetic modification, comparable to a cloned child, see Fig. 7.1. Elitism is a

non-stochastic element that ensures that the found optimal solution cannot be lost. Elites can be

selected as parents for cross-over, and multiple identical elites are possible. A crucial input param-

eter is the elite count, i.e., the fraction of parents within the population that become elite members.

For the sake of diversity, this fraction should be kept low, so the population is not dominated by

elite members (Deb, 2001).

A flowchart of the algorithm is depicted in Fig. 7.2. The optimization is based on a single

vibration record and launches with a random initial population. For each generation, the fitness of

each individual is calculated and scaled using the lower and upper bounds. Based on the elite count,

the fittest individuals are passed on to the next generation without modification, and a cross-over

fraction determines the number of cross-over and mutation children. The selection of parents for

cross-over is made in a tournament selection (Yang and Soh, 1997), meaning a user-defined number

of individuals (e.g., two individuals) are randomly selected in the current population, and only

the fitter one is allowed to reproduce. The algorithm terminates if one of the following stopping

criteria is met: a maximum number of generations is exceeded, a maximum computation time is

exceeded, or the optimal solution has not improved (by more than a specified tolerance value) over

a certain period of time or number of generations. Additional stopping criteria are documented in

the referenced literature (Deb, 2001).
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Figure 7.2: Flowchart for the genetic algorithm with a single objective

7.3.2 Multi-objective Optimization

There are numerous variants of the GA that are capable of handling multiple objective functions at

the same time, with a good example being the 2nd generation of the non-dominated sorting genetic

algorithm (NSGA-II) (Deb, 2001) that is pre-implemented in MATLAB®. In previous sections, a

compromise function is employed to find the elite solutions in a multi-objective optimization space.

The compromise function favours sensor layouts that minimize all three objectives simultaneously.

However, a more meaningful way to present the pool of optimal solutions is the visualization of

the entire Pareto frontier, as all solutions on the Pareto frontier are optimal or non-dominated

solutions. The primary goal of the NSGA-II is to advance the Pareto frontier as a whole toward

better solutions while keeping a maximum distance between the different points, i.e., a diverse

population.

The element of mutation and cross-over are implemented in a similar way as for the single-

criterion GA, but the concept of elite members is re-defined. All solutions on the Pareto frontier

are considered optimal, and no objective functions can be improved without degrading another,

see Section 6.3.4 and Fig. 6.4. Therefore, all solutions on the Pareto frontier are considered elite

members, and to classify solutions that are not on it, different ranks are assigned: Rank 1 individuals

are not dominated by any other solutions, so they are on the Pareto frontier. Rank 2 individuals

are only dominated by solutions on the Pareto frontier, and so forth, see Fig. 7.3. To maintain

diversity, only a certain fraction of rank 1 members are kept, i.e., the Pareto fraction. Figure 7.3

also shows that, in each iteration step, the population is extended first through mutation and

cross-over children, so parents and children coexist. Subsequently, the individuals in the extended

population are ranked, and the population is reduced to its original size. In other words, parents
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Figure 7.3: Evolution of sensor layouts in the multi-objective GA

can survive on to the next generation without modification, even if they are not elite members. For

completeness, two more concepts have to be introduced, i.e., the crowding distance and the spread.

Crowding Distance. The crowding distance measures the distance between adjacent individuals

of the same rank, in all dimension of the optimization space (Deb, 2001). It is calculated through

distance(i) =
∑
k

x(k, i+ 1)− x(k, i− 1) (7.22)

where k is the dimension of the optimization space, x is the distance, and i + 1 and i − 1 are the

closest neighbours of individual i. The crowding distance is an appropriate tie-breaker when two

individuals have the same rank, as solutions with greater distance are favoured. To keep the Pareto

frontier wide, the distance of individuals at extreme points is set to infinity.

Spread. The spread is a measure of the convergence, as it measures the movement of the Pareto

set (Deb, 2001). Spread is defined as

spread = (µ+ σ)/(µ+Qd) (7.23)

where Q and d are the number of points on the Pareto frontier with finite distance and the distance

among them, respectively, and σ is the standard deviation of their crowding distance. The variable

µ is the distance between the current minimum points on the Pareto front to previous runs, summed

over all objective functions. The spread is small when the points on the Pareto frontier are spread

evenly (small σ), and when the extreme objective function values do not change much (small µ).

The spread is an excellent stopping criterion.
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7.4 Proof of Concept

For proof of concept, the sensor placement optimization strategy for damage detection is applied

to a hollow structural steel (HSS) beam similar to the one from Sections 5.4 and 6.4. The primary

goal is to find the optimal sensor layout and the corresponding measurement duration, so a damage

extent of 5% can be reliably detected in any beam segment. Damage is defined as a decrease in

the modulus of elasticity with the monitoring parameter θ = [E1, . . . , E9] and Ei = 210, 000 MPa.

The eight possible sensor locations P1 - P8 are visualized in Fig. 7.4, where the vibration data is

recorded in the vertical direction. For conciseness, all modal parameters are summarized in Fig. 7.5,

and the input parameters for the damage diagnosis are summarized in Table 7.3.
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Figure 7.4: Numerical HSS beam including the possible sensor locations P1 - P8
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Figure 7.5: Numerical mode shapes

7.4.1 Optimizing the Detectability

Study 1: Exhaustive Search

Measurement Duration. This section explains how the measurement duration is estimated for

a fixed sensor configuration, for instance, a single sensor at location P2 from Fig. 7.4. First, the

Fisher information is calculated based on a long vibration record from the reference structure, see

Section 5.4. Secondly, the reliability index is determined to λmin = 33.7 based on an acceptable

PFA of 5% and a POD of 99.4%. The sampling frequency fs is fixed to 360 Hz and each monitoring

parameter has a magnitude of θh = 210, 000 MPa. Using Eq. (7.6), the main diagonal value of the

Fisher information is translated into a measurement duration Th for each beam segment, with the

results being visualized in Fig. 7.6a. The minimum measurement duration is the longest near the
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Data Segmenting Processing

Measured quantity velocity Training segments 100 No. of sensors varying
Sampling frequency 360 Hz Testing segments 100 Time lags varying
Reference data length 60 min Samples/segment T.B.D. System order n=20
Training/testing data T.B.D. Duration/segment T.B.D. No. of blocks nb=20,000

Table 7.1: Input parameter sheet

pin-supports, with a maximum measurement duration of T1 = 101 s. For comparison, the results for

a second sensor configuration with two sensors at position P1 and P8 are summarized in Fig. 7.6b.

It can be appreciated that increasing the number of sensors from one to two reduces the decisive

measurement duration by a factor of 1.8 to T = 56 s.

Sym.

P1

T = 101 s T = 99 sT = 31 s T = 22 sT = 68 sT = 43 sT = 68 s T = 31 sT =  22 s

Tmax

P1

T = 56 s T = 55 sT = 21 s T = 11 sT = 39 sT = 40 sT = 39 s T = 21 sT =  12 s

Tmax

P8

(a)

(b)

Figure 7.6: Minimum measurement duration Th for (a) one sensor at position P2, and (b) two
sensors at P1 and P8

Optimal Sensor Layout. Following this train of thought, the decisive measurement duration

Topt(r = 1) is evaluated for all sensor layouts with one sensor, and the results are summarized in an

evaluation chart, see Fig. 7.7. Position P1 and P8 occur to be the optimal sensor locations, with a

minimum measurement duration of T = 101 s. In contrast, configuration C(3) and C(6) appear to

be the least favourable sensor configurations with sensors at P3 and P6 and a measurement duration

of Tmax = 280 s. The sensor locations coincide with the zero-vibration points of Mode 3, see Fig. 7.5.

Since Mode 3 is non-observable, it does not contribute to the Fisher information, and reduced

information results in a prolonged measurement duration. For multiple reasons, non-observable

modes have to be removed from the analysis (but more details on this follow in Section 10.2.3).

For the sake of comparison, the optimization is repeated for sensor configurations with two sensors,

see Fig. 7.9. Configuration C(3,6) exhibits the longest measurement duration as the sensors are

placed at P6 and P3, i.e., the zero-vibration points of Mode 3. The optimal sensor configuration

is C(1,8), with a measurement duration of T = 56 s. The sensor layouts that correspond to the

optimal measurement durations for one and two sensors are visualized in Fig. 7.6.

113



7.4. Proof of Concept

C
(1

)

C
(2

)

C
(3

)

C
(4

)

C
(5

)

C
(6

)

C
(7

)

C
(8

)

Configuration

0

100

200

300

400

D
ur

at
io

n 
T

[s
]

101

144

280

116 116

280

141
105

Figure 7.7: Measurement durations
T (c, r = 1) and standard deviations

1 2 3 4 5 6 7 8

Number of sensors r

0

50

100

D
ur

at
io

n 
T

[s
]

op
t

Performance curve
User threshold Tthres

Figure 7.8: Optimal measurement time
Topt(c) for a varying number of sensors

C
(1

,2
)

C
(1

,3
)

C
(1

,4
)

C
(1

,5
)

C
(1

,6
)

C
(1

,7
)

C
(1

,8
)

C
(2

,3
)

C
(2

,4
)

C
(2

,5
)

C
(2

,6
)

C
(2

,7
)

C
(2

,8
)

C
(3

,4
)

C
(3

,5
)

C
(3

,6
)

C
(3

,7
)

C
(3

,8
)

C
(4

,5
)

C
(4

,6
)

C
(4

,7
)

C
(4

,8
)

C
(5

,6
)

C
(5

,7
)

C
(5

,8
)

C
(6

,7
)

C
(6

,8
)

C
(7

,8
)

Configuration

0

100

200

300

D
ur

at
io

n 
T

[s
]

99
84 93

68 66 71 56
75

92
76 66 59 71 74 72

279

66 67 63 73 75 68 74
91 92

76
93 97

Figure 7.9: Measurement durations T (c, r = 2)

Appropriate Number of Sensors. An appropriate number of sensors leads to an optimal

measurement duration Topt that is shorter than the maximum allowable measurement duration

Tthres. The main idea is to gradually increase the number of sensors from r = 1 to r = 8 while

evaluating the optimal sensor configuration, as explained in the previous sections. Plotting the

optimal measurement duration over the corresponding number of sensors is a particularly intuitive

way to understand the effect that an added sensor has on the performance of the damage detection

method, and to decide on an appropriate number of sensors, see Fig. 7.8. This plot is also referred

to as the performance curve. In this study, the maximum allowable measurement duration is set

to 110 s, and the sensor layout with one sensor is chosen for monitoring.

Validating the Optimal Solution. The last step of the sensor placement strategy is to validate

the optimal sensor layout. This is done through a damage diagnosis based on simulated vibration

data from the damaged state. In total, nine validation runs are performed (one for each monitoring

parameter), while the applied damage is set to the requested minimum detectable damage of 5%,

and the measurement duration is set to the optimal measurement duration Topt = 101 s. The mean

test response is greater than the minimum non-centrality for all cases, with λ > λmin, except the

beam element near the support. This was the decisive element that led to a measurement duration

of 101 s, so the mean test response is equal to the theoretical one, see Fig. 7.10.
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Figure 7.10: Test distribution for a 5% stiffness decrease in stiffness parameter E1

Study 2: Genetic Algorithm

In the previous study, the maximum number of possible sensor combinations was Nc = 70 for

the case where four sensors are to be placed at eight locations, see Eq. (7.9). If the number of

candidate locations is increased to rtot = 24, with a tri-axial sensor instead of uni-axial sensor at

each location (as visualized in Fig. 7.11), and the number of sensors is set to r = 3, the number of

possible combinations increases to Nc = 2, 024. This is an appropriate case study to demonstrate

the efficiency of the GA, as the problem is small enough for the exhaustive search (ES) method to

cope with it and big enough for the GA to become efficient. Moreover, only modes of vibration in

the vertical direction are considered, so the optimal sensor positions are expected to be at vertical

degrees of freedom as well.

First, the ES method is applied, and the layouts are ranked with respect to the measurement

duration. The optimal performance is achieved for a sensor placement at positions P6, P9, and

P24 in Fig. 7.11.

Secondly, the GA is launched while assigning the final rank (from the ES) to the elite members

of each generation. For example, if an elite member contains the optimum sensor configuration from

the ES, it is tagged with a rank of one, where the least favourable solution has a rank of 2,024. This

way, it is possible to trace how long it takes for the GA to find the optimal solution with a rank of

one. The population size is set to 20 and the number of generations to 20. The elite count is set

to 25%, meaning the best five configurations survive to the next generation without modification.

The cross-over fraction is 25%, so a quarter of all children (other than elite children) are made

up of cross-over children, and the others are mutation children. The results are summarized in

the convergence chart in Fig. 7.12. The genetic algorithm finds the global minimum within five

generations, so 5 · 20 = 100 calculations of the objective function. That means the computation is

sped up by a factor of 2, 024/100 ≈ 20 in comparison to the ES. A close-to-optimal solution with

a rank of 10 is already found within four generations and 80 calculation steps. In conclusion, the

genetic algorithm outperforms the exhaustive search even for small combinatorial problems and

efficiently finds an appropriate sensor layout.
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Figure 7.12: Convergence chart for the genetic algorithm, showing the rank of elite members with
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7.4.2 Optimizing the Localizability

In this section, the sensor placement strategy for damage localization is applied to a schematic 2-D

model of a cable-stayed bridge, with two sensors and six possible sensor locations, see Fig. 7.13.

The objective is to highlight the particular strengths of the placement strategy, i.e., the capability

to tune the sensor layout to become more sensitive to damage hotspots at inaccessible locations.

Experimental Setup

Bridge Description. The structure is inspired by the Shipshaw Bridge in Canada. The deck of the

bridge model is split into six beam elements, each 10 m in length, with a fixed support on the left

side, no connection to the tower, and a roller support on the right side, see Fig. 7.13. The single

tower starts 5 m below deck and rises 10 m over it. Two steel hangers suspend the deck where the

forces are redirected over the tower into the backstay hanger, and finally into the tie-down anchor

at the fixed support.

Finite Element Model. Based on the model, the vibration record is generated, and the model-based

sensitivity matrix is calculated with numerical modal parameters. The FE model is built through

custom code in MATLAB®, and three different cross-sections and materials are assigned to the

tower, the deck, and the hangers, see Table 7.2. All elements are modelled as Bernoulli beams
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No. Description Height Width E-Modulus Mass density
[m] [m] [MN/m2] [kg/m3]

1 Deck 0.40 0.20 210,000 7,800
2 Tower 1.00 1.00 30,000 2,500
3 Hanger 0.03 0.03 110,000 7,800

Table 7.2: Finite element specifications
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Figure 7.13: Schematic bridge with six possible sensor locations P1 - P6
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Figure 7.14: Modes of vibration
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Data Segmenting Processsing

Measured quantity velocity Training segments 100 No. of sensors r/r0=2/2
Sampling frequency 20 Hz Testing segments 100 Time lags p/q=8/9
Reference data length 1,800 min Samples/segment 18,000 System order n=16
Training/testing data 1,800 min Duration/segment 15 min No. of blocks nb=2,000

Table 7.3: Input parameter sheet

with consistent mass matrices and rigid connections at all joints (but the tower is not connected

to the deck). For simplicity, the cable hangers are used instead of cables, which have tensile and

compressional stiffness. For conciseness, the results from numerical modal analysis are summarized

in Fig. 7.14, including the natural frequencies, the assumed damping ratios, and the mode shapes.

Damage is defined as a stiffness reduction in any of the six deck components or the hangers. The

respective modulus of elasticity is Ei = 210,000 MPa and Eci = 110.000 MPa with the monitoring

vector

θ =
[
E1 E2 E3 E4 E5 E6 Ec1 Ec2 Ec3

]T
.

Instrumentation. In total, six uni-axial sensors are considered, five on the deck and one on top of

the tower, see Fig. 7.13. The velocity records are simulated with a sampling frequency of 128 Hz

and subsequently down-sampled to 20 Hz. For transparency, the power spectral density (PSD) of

the output signal is depicted in Fig. 7.13 although the damage diagnosis is performed in the time

domain. The reliability requirements toward the test results are defined based on a PFA of 5% and

a POD of 99.4%. All other input parameters for the damage diagnosis are summarized in Table 7.3

with a measurement duration of T = 15 min during damage testing.

Study 1: Balanced Layout

This study aims to find the optimal sensor layout for damage localization with two sensors. The

main input parameter is the upper bound for the minimum detectable damage ∆b in each structural

component. Using a “balanced layout” means to set the same upper bound (for example 50%) for

all monitored components including the deck and the hangers, leading to

∆b =
[
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

]T
. (7.24)

Other input parameters include the upper bound for the magnitude of false alarms, which is set to

10%, as well as the worst number of false alarm scenarios in relation to the total number of damage

scenarios, which is set to 50%. Ultimately, the default values for the lower and upper bounds for

the number of clusters K are used, i.e., Kb = 2 and Kg = rank(J TΣ−1J ).

In total, there are 15 possible sensor combinations to place two sensors at six candidate locations.

Every layout has nine possible cluster configurations, expanding the pool of possible solutions from

15 to 135. After removing the infeasible layouts, 96 solutions remain, with 11 solutions that are
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Figure 7.15: Feasible optimization space with 11 Pareto optimal solutions

Damage Identifiability ∆ [%] K Nsc Score

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆mean

P1 7.1 10.7 15.9 13.3 9.4 7.1 5.1 10.1 12.6 10.1 8 0 0.35
P2 4.2 5.9 5.6 6.8 10.7 5.9 2.4 2.4 2.6 5.2 7 0 0.36
P3 4.0 5.9 4.7 5.3 6.1 3.4 2.3 2.2 2.6 4.1 6 0 0.45
P4 18.8 18.4 22.3 19.8 15.7 18.2 5.2 6.8 10.7 15.1 9 0 0.45
P5 10.7 14.4 15.0 15.3 11.5 13.8 2.8 4.7 6.8 10.6 8 2 0.56
P6 8.3 8.3 7.9 9.5 9.9 5.8 3.2 4.7 6.6 7.1 7 2 0.56
P7 3.4 4.4 5.5 4.2 3.6 3.0 2.5 3.5 4.8 3.9 5 0 0.58
P8 3.3 4.1 5.5 4.1 3.6 2.9 1.9 3.2 3.8 3.6 4 0 0.72
P9 1.9 2.5 2.2 3.5 1.8 1.5 1.4 2.5 3.0 2.3 5 2 0.73
P10 1.3 2.0 1.9 2.9 1.3 1.2 1.3 2.4 2.9 1.9 3 0 0.86
P11 1.7 2.1 1.9 3.1 1.8 1.5 1.3 2.4 2.9 2.1 4 4 1.14

∆i : = detectable damage, K := no. of substructures, Nsc := no. of false alarm scenarios

Table 7.4: Pareto optimal points P1 - P11 with unscaled objective functions

not dominated by any other solution. These non-dominated solutions form a three-dimensional

surface, called the Pareto frontier. The Pareto optimal points are highlighted in Fig. 7.15, and

the underlying objective functions are listed in Table 7.4. In the automated version, the optimal

solution is selected as the one with the shortest distance to the origin, as this exhibits the optimal

compromise between damage localization resolution, identifiability, and false alarms. However,

plotting the entire Pareto front in the presented format gives the user the chance to hand-pick

the preferred solution. For example, the second-best solution P2 exhibits K = 7 clusters instead

of K = 8, but a considerably higher damage identifiability with a maximum identifiable damage
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Figure 7.16: Empirically validating the mean test response to the minimum detectable damages

of 10.7% instead of 15.9%. On average, the minimum detectable damage increased from 10.1%

to 5.2%, where the number of false alarms remains unchanged. Now, the user can make the final

decision on whether to put emphasis on damage identifiability or localization resolution. In this

case study, point P1 is chosen, leading to an optimal sensor layout with sensors at P3 and P5, see

left side of Fig. 7.17. The benefit of the implemented multi-objective GA is that the results can be

presented in the same fashion.

To complete the sensor placement optimization, the optimal solution has to be validated. For

this purpose, nine damage diagnosis runs are performed, where the damage in each monitoring

parameter 1 - 9 is set to the minimum identifiable damage. Figure 7.16 shows the mean test

responses which, in all cases, are close to λ = 20. This is consistent with the theoretical value of

λmin = 19.98, which corresponds to a PFA of 5% and a POD of 99.4%, so the test response is

predicted correctly and the validation is completed.

Study 2: Tuned Layout for Hanger Monitoring

The sensor placement is now tuned to become particularly sensitive to stiffness decreases in the

hangers, by reducing the upper bound of the minimum detectable damages from 50% to 10%.

∆b =
[
0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.1

]T
(7.25)

As a consequence, the optimal sensor layout changes. Instead of placing the sensors on the deck

at P3 and P5, the optimization algorithm suggests placing them at P3 and P6, at the top of the

tower. Moreover, the response of the minmax localization test to damage in hangers increases, while
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Figure 7.17: Test response to damage in a deck element (Parameter 6) and a hanger (Parameter
9) for balanced and tuned sensor layouts

damage in the deck components leads to less pronounced responses. For example, for Parameter

9, i.e., the backstay hanger, the mean test response to a 20% damage increases from 60 to 933,

and the test response to damage in Parameter 6 (the 6th deck component) decreases from 209 to

38. In other words, the sensor layout can straightforwardly be tuned to become more sensitive to

user-defined components.

7.5 Summary

This chapter develops a sensor placement strategy with the primary goal of optimizing the de-

tectability of damage. It proposes the measurement duration as a performance criterion for sensor

placement optimization, and demonstrates how it can be combined with a (state-of-the-art) genetic

algorithm (GA) to efficiently find the optimal sensor layout for large structures. The performance

criterion is intuitive, as it takes as input the required minimum detectable damage and yields the

corresponding measurement duration. Since the minimum detectable damage can be defined differ-

ently for each structural component, it is possible to tune the sensor layout to become more sensitive

to changes in structural parameters that are decisive for the safety or serviceability of the struc-

ture, as well as damage hotspots. The measurement duration appears to reduce with an increasing

number of sensors, so a decision on an appropriate number of sensors can be made by defining an

upper bound for the measurement duration. For the analysis, vibration data from the undamaged

structure is required and a finite element model for the computation of the model-based sensitivity.

In the second part, the sensor placement strategy is extended to damage localization, with the

primary goal of maximizing the localizability of damage. As explained in the previous chapter,
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optimal localizability is a compromise, as with an increasing number of substructures, the damage

localization resolution increases, but the identifiability of damage in each parameter decreases, and

the number of false alarms changes. Ultimately, the 2nd generation of the non-dominated sorting

genetic algorithm (NSGA-II) is employed to solve the multi-objective optimization problem and de-

termine an optimal set of solutions when the number of possible sensor combinations is excessively

large.
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Chapter 8

Monitoring Boundary Conditions

This chapter puts forward an approach to detect and localize changes in the force (also called

natural) boundary conditions and displacement (also called essential) boundary conditions. All

previous studies involving the asymptotic local (AL) approach consider changes in the material

properties or cross-sectional values, but changes in boundary conditions have not been included into

the diagnostic framework. Having said that, being able to diagnose changes in boundary conditions

is relevant for post-earthquake damage assessment on bridges, and makes the predictive framework

more universal. A classical modelling approach would be to parametrize damage as a change in

local stiffness elements such as support springs or elastic bedding. However, local support stiffness

changes may be challenging to distinguish from stiffness changes in adjacent structural elements

and, in general, may not be a suitable way to consider the physics of the problem. Changes in

boundary conditions are local phenomena, but they lead to global geometry changes, a global

redistribution of mass and stiffness, and stabilizing or destabilizing effects. Following this train of

thought, an approach is introduced in this chapter that is based on the global geometric stiffness

matrix (stress stiffening). Consequently, the boundary condition parameters can be included in

the parameter vector θ and the sensitivities can be incorporated into the damage detection and

localization framework of the AL approach, which ultimately allows for a prediction of the minimum

change in boundary conditions.

The chapter is organized as follows: Section 8.1 reviews how changing boundary conditions are

modelled in finite element (FE) software, i.e., by updating the geometry and introducing a geometric

stiffness matrix that considers the stabilizing or de-stabilizing effects. Section 8.2 proposes two

approaches to link the stiffness changes to changes in the modal parameters using the modal

approach (Heylen and Sas, 1997). Ultimately, two case studies are presented in Section 8.3 for

proof of concept including a prestressing tendon and a cable-stayed bridge.

8.1 Effect on System Matrices

Axial member forces and imposed deformations, intended or accidental, alter the initial condition of

structures. The effect that such initial conditions have on the vibration behaviour can be modelled

through an altered stiffness matrix (Bathe, 2014). If non-linear effects are considered, i.e., changes

in the structure’s geometry due to large displacements, rotations, or strains, the mass matrix

changes as well. The goal of this section is to show how the altered stiffness and mass matrix

K∗ and M∗ are calculated for changing boundary conditions, so the modal parameters, including
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8.1. Effect on System Matrices

poles Ω = diag(λ2
1, . . . , λ

2
m) and mode shapes Ψ, can be obtained by solving the classical eigenvalue

problem for proportionally damped mechanical systems

(K∗ −ΩM∗) Ψ = 0. (8.1)

8.1.1 Linear Analysis (Stress Stiffening)

The starting point is the Newton equation of motion for a mechanical system with m degrees of

freedom, in global coordinates, and neglecting damping. The equation includes the assembled mass

and the stiffness matrices M,K ∈ Rm×m, as well as the displacement of the structure u ∈ Rm and

the nodal force vector f ∈ Rm, which only includes internal reaction forces, i.e., prestress.

Mü + Ku = f (8.2)

The degrees of freedom include the free degrees of freedom ua and the fixed degrees of freedom

ub at the supports, so the total displacement vector is u = [uTa ,u
T
b ]T . Equivalently, the matrix

equation can be re-formulated to (Bathe, 2014)[
Maa Mab

Mba Mbb

][
üa

üb

]
+

[
Kaa Kab

Kba Kbb

][
ua

ub

]
=

[
fa

fb

]
, (8.3)

where Maa, Kaa are the components of the mass and stiffness matrices at the free degrees of

freedom, which characterized the dynamic behaviour, see Eq. (8.1). Assuming a measurable, static

support displacement ub has occurred, i.e., the accelerations are zero at the supports with üb = 0,

the first line can be re-formulated to Maaüa + Kaaua = fa−Kabub. In other words, the effect of a

permanent support deformation ub on the system matrices is modelled through an equivalent force

vector −Kabub at the free degrees of freedom (Bathe, 2014), which is added to the existing forces

f̃a = fa −Kabub. (8.4)

The internal forces due to imposed displacements and pre-stressing forces lead to stress stiffening.

The stress stiffening describes the stabilizing or de-stabilizing effect that axial member forces have

on the system. For example, if a tension force is applied to a single member, it tries to straighten it

and counteract any lateral deformation. The effect can be considered through a geometric stiffness

matrix (Przemieniecki, 1968) that is added to the elastic stiffness matrix to obtain the total stiffness

K∗ = Kel + Kgeo(̃fa). (8.5)

Due to the assumption of linear system behaviour, the geometric stiffness is proportional to support

displacements ub and changes in the prestressing forces fa, see Eq. (8.4). The mass matrix, on the

other hand, remains unchanged with M∗ = Maa because the geometry does not change. The

dynamic behaviour of the pre-tensioned system can be characterized through Eq. (8.1).
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8.1.2 Non-linear Analysis (Large Displacements)

Changing boundary conditions violate the condition for linear finite element analysis (Bathe, 2014).

They lead to geometry changes that are not infinitesimally small (large displacements), so the mass

and stiffness matrix may have to be updated to M∗,K∗ using the new element lengths. Moreover,

the dynamic system cannot be solved straightforwardly because the stiffness matrix or, more pre-

cisely, the geometric stiffness matrix from Eq. (8.4) is a function of the system displacements, with

ua = Kaa(ua)
−1f̃a. A classic approach to solve for non-linear displacements is the Newton-Raphson

method (Bathe, 2014). Herein, the external force is applied incrementally using a scaling factor α.

In each iteration step i, a residual force vector

fres = fint,i − fext,i (8.6)

is set up as the difference between the external force fext,i = αif̃a and internal forces fint,i = K∗−1
aa u∗a,i

(which is zero at the beginning of the iteration), where

K∗aa,i = −∂fres
∂ua,i

(8.7)

is the tangent stiffness matrix. Next, the incremental displacement vector is solved for

∆ua,i = K∗−1
aa,i · fres (8.8)

and the residual force vector from Eq. (8.6) is recalculated based on the total system displacement

u∗a,i = u∗a,i−1 + ∆ua,i. The calculation steps from Eq. (8.6) to (8.8) are repeated until equilibrium

is achieved, meaning until the Euclidean vector norm of the force residual εf = ||fres|| falls below a

user threshold value of, for example, 10−16. While the damage event as such is a non-linear process,

the dynamic behaviour before and after it is assumed to be linear and time-invariant (LTI), with

the updated system matrices M∗ and K∗ and the characteristic equation from Eq. (8.1). If the

force is applied in one load step α = 1, and the resulting force residual remains under the specified

threshold without further iteration, a non-linear calculation was not necessary. More details on

how the updated geometry changes the dynamic system matrices are given in Example 8.1.

Example 8.1. This example shows the effect that axial prestress has on a 2-D Bernoulli beam

element. Figure 8.1 shows the undeformed beam in local coordinates with internal pretension force

T . The material constants E and ρ are the modulus of elasticity and the mass density, and the

cross-sectional parameters A and I are the area and the moment of inertia. The corresponding
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mass matrix is (Chopra, 2017)

Ml =
ρAL

420



140 0 0 70 0 0

156 22L 0 54 −13L

4L2 0 13L −3L2

140 0 0

sym. 156 −22L

4L2


, (8.9)

where the total stiffness matrix is split into an elastic stiffness and a geometric stiffness Kl =

Kl
el + Kl

geo with (Paultre, 2011)

Kl
el = E



A
L 0 0 −A

L 0 0
12I
L3 − 6I

L2 0 −12I
L3 − 6I

L2

4I
L 0 6I

L2
2I
L

A
L 0 0

sym. 12I
L3 − 6I

L2

4I
L


, Kl

geo =
T

L



0 0 0 0 0 0
6
5 − L

10 0 −6
5

−L
10

2L2

15 0 L
10 −L2

30

0 0 0

sym. 6
5

L
10

2L2

15


,

(8.10)

where T = EA · ε is the axial tension force, ε = (∆L/L) is the axial strain, and ∆L = ul4 − ul1
is the axial elongation due to the axial beam end displacement ul4 and ul1 in local coordinates,

see Fig. 8.1. On close inspection of the matrix entries of the geometric stiffness Kl
geo, it can be

understood that the axial tension force counteracts any lateral deformation of the beam due to

beam end displacements ul2 and ul5 or rotations ul3 and ul6. The stiffness entries are proportional to

the tension force, and thus, the displacements ul1 and ul4. Moreover, all three matrices (Kl
el, Kl

geo,

and Ml) non-linearly depend on the elongation ∆L, so non-linearities are introduced if the system

geometry is updated.
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Figure 8.1: 2-D Bernoulli beam in local coordinates (undeformed)
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8.2 Sensitivity Calculation

The stochastic subspace-based damage diagnosis method is data-driven, but a FE model is required

to calculate the sensitivity (Jacobian J ) that links the damage-sensitive residual to structural

parameters, such as support displacements or prestressing forces with the monitoring vector

θ =

[
fa

ub

]
. (8.11)

The Jacobian computation is split into three parts: first, changes in the damage-sensitive residual

are linked to data-driven modal parameters through J (1). Secondly, changes in data-driven modal

parameters are linked to numerical modal parameters through J (2), and ultimately, the numerical

modal parameters are linked to structural parameters through J (3), see Section 4.2.3. This section

puts forward two approaches to modify the Jacobian matrix J (3) so changes in boundary conditions

can be detected and localized in the same manner as other parameter changes.

8.2.1 Neglecting Geometry Changes

A simplified approach to calculate the sensitivities of poles and mode shapes to changes in boundary

conditions is to consider the stress stiffening effect on the geometric stiffness matrix Kgeo from

Eq. (8.5), and to neglect geometry changes of the structure. To be able to monitor the system

with and without initial forces, the stiffness matrix is assumed to change from its reference state

Kgeo(θ
0
h) to the altered state Kgeo(θ

0
h + ∆θh). The corresponding sensitivities can be calculated

analytically using the direct sensitivity method (Heylen and Sas, 1997)

∂µi
∂θh

=− γiΨT
i

(
K′geo,h

)
Ψi,

∂Ψi

∂θh
=

2N∑
r=1,r 6=i

1

µr − µi
γrΨ

T
r

(
K′geo,h

)
ΨiΨr,

(8.12)

where 1/γi = ΨT
i [2µiM+C1]Ψi is a scaling factor for unit mass scaling and K′geo,h is the derivative

of the geometric stiffness matrix with respect to a single change ∆θh. Since the geometric stiffness

matrix is a linear function of the axial forces (caused by a change in the boundary conditions), the

derivative of the stiffness matrix can be calculated based on finite differences

K′geo,h =
Kgeo(θ

0
h + ∆θh)−Kgeo(θ

0
h)

∆θh
(8.13)

without loss in accuracy. This approach is justified for structures where the effect of geometry

changes is negligible.
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8.2.2 Considering Geometry Changes

For applications, where the geometry changes cannot be neglected, the change in the boundary

conditions causes non-linear changes in both the global stiffness and the mass matrix from Eq. (8.2),

see Example 8.1. Consequently, the derivatives can be approximated through (Heylen and Sas,

1997)

∂µi
∂θh

=− γiΨT
i

(
µ2
iM
′
h + K′h

)
Ψi,

∂Ψi

∂θh
=− 1

2
γiΨ

T
i

(
2µiM

′
h

)
ΨiΨi

+

2N∑
r=1,r 6=i

1

µr − µi
γrΨ

T
r

(
µ2
iM
′
h + K′h

)
ΨiΨr,

(8.14)

where 1/γi = ΨT
i [2µiM + C1]Ψi is a scaling factor for unit mass scaling and M′

h and K′h are

the first derivatives of the mass matrix and the stiffness matrix with respect to a change in the

boundary conditions ∆θh with the finite differences

M′
h =

M(θ0
h + ∆θh)−M(θ0

h)

∆θh
, K′h =

K(θ0
h + ∆θh)−K(θ0

h)

∆θh
. (8.15)

The accuracy now depends on the change magnitude ∆θh, because the derivatives of the mass and

stiffness matrix non-linearly depend on the element length. The advantage of both approaches is

that they are compatible with the output from standard FE software, where the stiffness matrix

can be exported but the analytical derivatives are not available.

8.2.3 Discussion

The first approach to calculating the sensitivities is obviously an approximation, because geometry

changes are neglected, see Section 8.2.1. However, the second approach from Section 8.2.2 is

also an approximation that is accurate if the change magnitude is chosen sufficiently small. For

academic purposes and simple structures, it might be tempting to replace the finite differences from

Eq. (8.15) with the analytical derivatives of the mass and stiffness matrix M′
h = ∂

∂θh
M(θh) and

K′h = ∂
∂θh

K(θh). A major problem with this, however, is that the coordinate transformation, which

takes the mass and stiffness matrices from the local to the global coordinate system, also depends

on the displacements in u. This complicates the analytical derivatives to an extent that makes the

computation unreasonable.

8.3 Proof of Concept

For proof of concept, two numerical case studies are presented in the following, showcasing that

changes in the support conditions and in prestressing forces can be detected and localized.
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8.3.1 Pre-stressing Tendon

The first case study is a 35 m long metal string clamped on both sides, see Fig. 8.2. This could be

a cable or prestressing tendon. It exhibits a circular solid cross-section with a modulus of elasticity

of E = 160, 000 MPa and a mass density of ρ = 7, 800 kg/m3. Using custom-made FE code,

the string is modelled in MATLAB® and divided into eight nodes with six degrees of freedom at

each node and seven three-dimensional Bernoulli beam elements. Damage is defined as a support

displacement on the right side of the tendon or a decrease in the material stiffness in any element

with the monitoring vector

θ =
[
E1 E2 E3 E4 E5 E6 E7 u

]T
. (8.16)

The placement of the three uni-axial sensors is visualized in Fig. 8.2, sampling velocity data in

vertical direction at a frequency of 150 Hz. The numerical modal analysis is summarized in Fig. 8.3,

including natural frequencies, mode shapes, and damping ratios. The power spectral density (PSD)

is shown as well, although it is not used for the subsequent damage diagnosis. For the sensitivity

computation, all observable modes of vibration are used. The reliability requirements are based on

a probability of false alarms (PFA) of 5% and a probability of detection (POD) of 99.4% (refer to

Section 5.1.3). For conciseness, all other input parameters are summarized in Table 8.1. As shown

in the table, the measurement duration during testing is set to 10 s.

Study 1: Support Displacement (Neglecting Geometry Changes)

In the first study, the sensitivity is computed based on the stress stiffening effect on the stiffness

matrix, see Section 8.2.1, and geometry changes are neglected. The objective is to validate the

Jacobian approximation by predicting the minimum localizable damage for the minmax localization

test and verifying it through Monte Carlo simulations.

As explained in Section 5.4.1, the damage diagnosis procedure is divided into three states, i.e.,

the reference state, the training state, and the validation state. At the end of the training state,

the minimum localizable damage is predicted based on vibration data from the reference structure.

Following the method introduced in Chapter 6, the minimum localizable support displacement is

predicted to be ∆θ8 = 6.9 cm. For conciseness, only the validation state is summarized here, where

vibration data is generated after displacing the support by the minimum localizable amount. The

Data Segmenting Processing

Measured quantity velocity Training segments 100 No. of sensors r/r0=3/3
Sampling frequency 150 Hz Testing segments 100 Time lags p/q=6/7
Reference data length 16.7 min Samples/segment 1,500 System order n=16
Training/testing data 16.7 min Duration/segment 10 s No. of blocks nb=2,000

Table 8.1: Input parameter sheet
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Figure 8.2: Metal string with sensors S1 - S3 and support displacements u
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Figure 8.3: Numerical mode shapes and power spectral density of the generated signal

record is split up into 100 data segments of 10 s length, and the minmax localization test is applied

to each segment in a Monte Carlo experiment, with the empirical test distributions being visualized

in Fig. 8.4. The support displacement can be localized, as the test distribution for parameter θ8

exceeds the safety threshold value and other parameters θ1 − θ7 do not show a significant test

response. The mean value of the empirical distribution is close to the predicted one (solid black

lines) and the empirical probability of detection is 99%, which is close to the theoretical value of

99.4%. In other words, a support displacement can be distinguished from other damage scenarios,

and the sensitivity calculation presented in this chapter leads to an accurate prediction of the

minimum localizable damage.

To investigate the limitations of the sensitivity approximation, the predictions based on the

Jacobian matrix are compared to the actual behaviour of the structure. The Jacobian J (3) links
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Figure 8.4: Validation of the prediction for the minmax localization test
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Figure 8.5: Validating the Jacobian approximation

changes in structural parameters to changes in modal parameters, so modal parameter changes can

be approximated if the parameter changes are known through η = J (3)θ (refer to Section 10.4.1).

A suitable way to visualize the approximation is to re-combine the entries in the modal vector η

that correspond to the poles of the system, and to derive the corresponding natural frequencies.

Figure 8.5 shows the change of the natural frequencies of Mode 1, 4, and 6 over a support set-

tlement ∆θ8. Up to a support displacement of 20 cm, the Jacobian appears to yield an accurate

approximation. Beyond 20 cm damage localization is still possible, but the prediction becomes

inaccurate. This study suffices to prove that the Jacobian matrix is correct. More information on

the limitation of the entire Jacobian matrix J = J (1)J (2)J (3) is given in Section 10.4.

Study 2: Support Displacement (Considering Geometry Changes)

In the second study, the sensitivity is computed based on the changes in the mass and stiffness ma-

trices, see Section 8.2.2, while considering geometry changes. This approach is more sophisticated,

but the prediction of the minimum localizable damage for the minmax localization test is identical

with ∆θ8 = 6.9 cm, see Fig. 8.6. The probability of detection is 98%, so the prediction of the

minimum localizable damage is accurate. Comparing the approximated frequencies to the actually

measured frequencies over an increasing support displacement reveals that the Jacobian becomes

inaccurate for displacement of more than 20 cm, see Fig. 8.7. Consequently, the approach is not

more accurate than for the simplified approach from the previous section that neglected geometry

changes for the considered structure.
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Figure 8.6: Validation of the prediction for the minmax localization test
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Figure 8.7: Validating the Jacobian approximation

Study 3: Loss in Pretension

The third study assumes that the structure is pretensioned through an initial displacement of u0 =

10 cm, and the goal is to localize a loss in pretension due to a relaxation of the support. The minmax

localization test is applied for damage localization and the sensitivity is calculated considering

geometry changes, see Section 8.2.2. The initial support displacement leads to an axial tension

force of 898 kN and increases the geometric stiffness, quantified through the natural frequencies,

which increase to 3.4 Hz, 9.2 Hz, 17.7 Hz, 29.3 Hz, 44.0 Hz, and 61.4 Hz, cf. Fig. 8.3. Using

the same diagnosis procedure, the algorithm is now trained based on the pretensioned structure,

and the minimum detectable support displacement is predicted to be ∆θ8 = −7.4 cm. Then, the

support is relaxed by 7.4 cm and a Monte Carlo damage diagnosis is run. The validation plot

in Figure 8.8 shows that the support displacement can be localized with a POD of 98%, so the

Jacobian calculation is validated. Another way to pretension the tendon is to directly define a

pretension force, but this is demonstrated in the following section for a cable-stayed bridge.
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Figure 8.8: Validation of the prediction for the minmax localization test
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8.3.2 Cable-stayed Bridge

The second proof of concept study is a schematic 2-D model of a cable-stayed bridge, see Fig. 8.9.

The design is inspired by the Shipshaw Bridge in Canada, which attracted the attention of the

engineering community, as a tie-down anchor ruptured during the 1988 Saguenay earthquake and

remained undiscovered for three years (Filiatrault et al., 1993). The objective of this study is

to show that an uplift of the support can be localized for cable-stayed bridges. Other considered

damage scenarios include a rotation of the tower foundation, and a loss in pretension in one of three

cables. The experimental setup has already been described in Section 7.4.2. However, in contrast

to previous studies, the cables are now pretensioned with 300 kN each. Moreover, different input

parameter are used for signal processing (see Table 8.2).

Study 1: Support Settlements

In the first analysis, damage is defined as a abutment settlement at the tie-down rod or a rotation of

the tower foundation. To prove that damage can be detected and distinguished from other damage

scenarios, the material stiffness of the six deck elements are also defined as monitoring parameters.

Hence, the monitoring vector is defined as

θ =
[
E1 E2 E3 E4 E5 E6 u ϕ

]T
. (8.17)

As explained in Section 5.4.1 and Chapter 6, the algorithm is trained based on vibration data

from the reference structure, and the minimum localizable support settlement and tower tilt are

predicted to be 2.0 cm and 0.2◦. To validate the predictions, two different validation runs are

performed. In the first one, the abutment settlement is set to the minimum detectable value of

θ7 = 2.0 cm, so internal stresses build up. Subsequently, 100 data segments of 300 s length are

generated in the damaged state, while applying the minmax localization test to each segment. The

resulting distributions of the test statistic for each monitoring parameter, plotted on the left side of

Fig. 8.11, show that the settlement can be localized. Since the distribution mean value is close to

the predicted mean value, and the empirical POD of 99% is close to the theoretical one of 99.94%,

the prediction based on the sensitivity matrix is accurate. Repeating the validation for a tower tilt

of θ8 = 0.2◦, which corresponds to a lateral displacement on top of the tower by 5.24 cm, yields

similar results with a mean value close to the predicted one and a POD of 99%, see right plot in

Fig. 8.11.

Data Segmenting Processsing

Measured quantity velocity Training segments 100 No. of sensors r/r0=6/6
Sampling frequency 20 Hz Testing segments 100 Time lags p/q=3/4
Reference data length 500 min Samples/segment 6,000 System order n=16
Training/testing data 500 min Duration/segment 5 min No. of blocks nb=2,000

Table 8.2: Input parameter sheet
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Figure 8.9: Schematic cable stayed bridge with six sensors
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Figure 8.10: Modes of vibration

Ultimately, the limitations of the Jacobian matrix J (3) are visualized by plotting the natural

frequencies of Mode 4, 5, and 6 over the displacement θ7 and the rotation θ8, respectively, see

Fig. 8.12. The other modes are not plotted because their mode numbers within the FE model

changes. This plot clarifies that the prestressed system behaves non-linearly; however, the predicted

values for the support displacements and rotation are small enough, so a linearization is justifiable,

in particular, if the goal is to detect and localize small changes.
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Figure 8.11: Localization of abutment settlement (left) and tower tilt (right)
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Figure 8.12: Validating the Jacobian approximation

Study 2: Loss of Cable Prestress

In this second analysis, damage is defined as a loss in pretension in one of the three cables T1, T2,

or T3, see Fig. 8.9, or any of the stiffness values of the deck. Therefore, the parameter vector for

monitoring is re-defined as

θ =
[
E1 E2 E3 E4 E5 E6 T1 T2 T3

]T
, (8.18)

where the initial cable prestress is 300 kN. Based on the automated substructuring approach,

the structure is divided into eight substructures where the monitoring parameters T2 and T3

are combined into one cluster. Subsequently, the minimum localizable damage is predicted to be

∆θ7 = 34.3%, ∆θ8 = 4.9%, and ∆θ9 = 11.5%. The three validation runs are summarized in

Fig. 8.13. The predicted mean values of the damaged state test distributions are close to the

theoretical ones with PODs of 97%, 100%, and 100%. This concludes the proof of concept studies.
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Figure 8.13: Localization of a loss in pretension in cables T1, T2, and T3

8.4 Summary

This chapter develops a method to monitor support deformations and changes in prestressing forces

based on the geometric stiffness matrix, i.e., the stabilizing or destabilizing effect that large defor-

mations have on the stiffness of the structure. The method can be incorporated into the framework

of the asymptotic local (AL) approach, meaning it is possible to detect and localize support displace-

ments and to predict the minimum detectable or localizable damage as explained in the preceding

chapters. The main difference is that the Jacobian matrix, which links modal parameters to struc-

tural design parameters, is modified. For proof of concept, the method is applied to a prestressing

tendon and a schematic model of a cable-stayed bridge. The localization results confirm that, al-

though the support displacements change the stiffness in the entire structural system, they can be

distinguished from local structural changes, e.g., a degradation of material properties of individual

structural components. The results are encouraging, as the prediction of the minimum localizable

damage appears to be sufficiently accurate despite the first-order approximation for small changes

in the boundary conditions.
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APPLICATIONS
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Chapter 9

Experimental Case Studies

This chapter presents two case studies, including a laboratory steel beam on pin supports and a

laboratory model of the St. Nazaire Bridge in France. The primary goal is to apply the statistical

tests for damage detection and localization and to prove that the prediction of the test response

and false alarms is accurate and robust, even for real structures in noisy vibration environments.

Acquiring real damage-corrupted data is a major challenge of damage detection and localization

research, in particular for bridge health monitoring. Bridges are vital links in primary infrastructure

and damaging them for research purposes can only be justified after exceeding their life expectancy.

One approach to remedying this problem is to build laboratory prototypes, such as the model

of the St. Nazaire Bridge, and to perform validation studies for anticipated damage scenarios

(see Section 9.2). However, no bridge and no site are identical, and training the algorithm is

a structure-specific task, so findings from one study cannot straightforwardly be transferred to

another. Another avenue of research is to develop non-destructive validation methods, for example,

based on extra masses (Mottershead, 2001; Kim and Bartkowicz, 2001; Papatheou et al., 2010).

The application of non-structural masses modifies the dynamic properties of the structure, so

they can be sensed by the damage diagnosis module. This way, it can be verified whether the

theoretical assumptions are fulfilled and whether all input parameters for signal processing are set

appropriately, without having to damage the structure. This second approach is taken for the case

study with the hollow structural steel (HSS) beam (see Section 9.1).

9.1 HSS Beam (104 DOF)

The main objective of this study is to confirm that the prediction of the minimum diagnosable

damage is valid for real structures in noisy measurement environments. The case study is subdivided

into four objectives:

� Objective 1 : Demonstrate that the prediction of the minimum diagnosable damage is valid

for real data and both the model-based and data-driven detection tests (Section 9.1.2)

� Objective 2 : Confirm that the prediction for the minimum localizable damage is correct and

that false alarms can be predicted as well (Section 9.1.3)

� Objective 3 : Validate that the sensor layout with the strongest test response has the shortest

predicted measurement duration (Section 9.1.4)
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9.1. HSS Beam (104 DOF)

� Objective 4 : Define damage as a change in mass and show that the application of extra

masses is a suitable, non-invasive validation technique to verify that the algorithm has been

implemented correctly

9.1.1 Experimental Setup

Beam Description. The specimen is a 4.11 m laboratory steel beam with a HSS cross-section,

HSS 152×51×4.78 mm (6 x 2 x 3/16 inches), a modulus of elasticity of E = 210,000 MPa, and a

total measured mass of m = 56.8 kg. The beam is supported by two pin supports and bent about

the weak axis, see Fig. 9.1 and 9.2. This laboratory beam is identical to the numerical beam that

is used for the proof of concept studies in all chapters.

Instrumentation and Signal Processing. The beam is instrumented with one shaker and

eight vibration sensors. The shaker has a total mass of 3.6 kg and a moving mass of 360 g. It

is placed on top of beam segment 2, injecting white noise signals vertically into the beam, see

Fig. 9.2. The eight sensors are equally spaced at 46 cm, with a weight of 1.28 kg each. Wireless

seismic sensors (Tromino Tromographs) are used, and synchronized through radio communication.

The sensor choice allows for different data quantities to be analyzed, as each sensor module records

accelerometers, high-gain velocimeters, and low-gain velocimeters in all three dimensions. Having

said that, only vertical acceleration measurements are considered in this study. They are originally

sampled at 512 Hz and later down-sampled to 330 Hz using a linear interpolation method (Akima

H., 1970). Furthermore, a high-pass filter is applied to attenuate signal components below 4 Hz.

Additional signal processing parameters are summarized in Table 9.1.

(a) Instrumentation (b) Extra mass on Segment 5

Figure 9.1: Laboratory HSS steel beam on pin supports
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Damage Scenarios. Structural damage is defined as a change in mass, and during the exper-

iment, the mass of individual beam segments is increased by 5% for damage detection studies,

and 10% for damage localization studies by adding extra masses, see Fig. 9.1b. The two examined

damage scenarios are an extra mass at midspan (Segment 5) and an extra mass close to the support

(Segment 8), see Fig. 9.9. To validate whether the predictions are accurate, the damage is set to the

applied damage and the measurement time T is adjusted, so the empirical test response is equal to

the predicted one, and the empirical probability of detection (POD) is identical to the theoretical

one that is used for predicting the measurement duration.

Finite Element Model. The damage diagnosis test is data-driven, but a finite element model

is required to parametrize damage and to calculate the sensitivity matrix (Jacobian J (3)) of the

damage-sensitive residual toward mass changes in the beam. Using ANSYS®, the beam is dis-

cretized into 19 nodes with six degrees of freedom (DOF) at each node, and 18 finite beam ele-

ments (BEAM188 with linear shape functions). At the supports, all DOF are restrained except

the rotation about the transverse bolt, reducing the number of degrees of freedom to 104. Nine

components are defined by assigning the same material to two consecutive beam elements. Since

damage is defined as a change in mass, the monitoring vector is

θ =
[
m1 . . . m9

]T
. (9.1)

To link changes in structural masses to the damage-sensitive residual, the structural masses have

to be linked to changes in modal parameters first. The considered modal parameters are the poles

and mode shapes of the first four modes of vibration at the sensor locations P1, P2, P7, and P8,

which are visualized in Fig. 9.4, and all other modes are disregarded. The damping ratio is set to

1.0% critical damping for simplicity. The finite element (FE) model also considers the weight of

the instrumentation as point loads.

9.1.2 Detecting Mass Changes

Study 1: Model-based Detection

In the first study, the parametric version of the damage detection test from Eq. (4.49) is applied,

where the damage-sensitive residual is linked to model-based masses in the monitoring vector from

Eq. (9.1) through the Jacobian matrix J . As usual, the damage diagnosis procedure is split into

three states: the reference state, the training state, and the validation state.

Reference State. In the reference state, all matrices are set up based on a 110 min long vibration

record measured on the undamaged structure. First, the block Hankel matrix is computed and

the null space is extracted. This requires the definition of the time lag parameters p = 12 and

q = 13, as well as the system order n = 16. Using singular value decomposition (SVD), the

block Hankel matrix is decomposed into its subspace, and the left null space is extracted, with the
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Figure 9.2: Numerical HSS beam with eight sensor locations P1 - P8
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Figure 9.3: Experimental power spectral density from eight sensors
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Figure 9.4: Numerical modal analysis with four sensors at P1, P2, P7, and P8

singular values being visualized in Fig. 9.5. The first eight singular values correspond to structural

information followed by a clear jump that indicates the transition to noise modes. Ultimately, the

covariance matrix and the sensitivity matrix are computed and combined to the Fisher information,

see Fig. 9.7. The structure’s geometry is symmetrical, and so is the Jacobian matrix. However, the

main diagonal values of the Fisher information are not symmetrical because of the varying excitation

characteristics along the beam (the shaker is placed on one side), which is considered through the

covariance matrix. This clarifies that the Fisher information considers the signal-to-noise ratio.

Training State. The training is based on vibration data from the reference structure. For brevity,

the workflow is visualized in Fig. 9.8 and summarized in the following list:

� Step 1: Fix the measurement duration to a sufficiently large value. Divide the record into

100 data sets, apply the damage detection test to each segment in a Monte Carlo experiment,

and plot the histogram of the test distribution.
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Figure 9.7: Fisher information matrix and its singular values

� Step 2: Fit a central χ2−distribution to the histogram to verify that the number of degrees of

freedom of the training distribution is equal to the theoretical value of ν = rank(J TΣ−1J ),

see Eq. (5.4). Based on the fitted distribution and an acceptable probability of false alarms

(PFA), set the safety threshold value.

� Step 3: Determine the reliability index λmin by increasing the non-centrality of the χ2−distribution

until the area under the probability density function (PDF) and beyond the safety threshold

is equal to the desired POD for λ = λmin. Set the damage in the considered parameter to

the applied 5% damage, and calculate the corresponding minimum measurement duration

Th. Use this measurement duration for the entire structure, and continue with the validation

state.

Data Segmenting Processing

Measured quantity acceleration Training segments 100 No. of sensors r/r0=4/4
Sampling frequency 330 Hz Testing segments 100 Time lags varying
Reference data length 110 min Samples/segment varying System order varying
Training/testing data varying Duration/segment varying No. of blocks varying

Table 9.1: Input parameter sheet for detection
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Figure 9.8: Training procedure to determine the minimum measurement duration

Validation State. The validation state is based on vibration data from the damaged structure,

recorded after the extra mass of 5% is applied. Again, the vibration record is divided into 100

segments while applying the damage detection test to each segment in a Monte Carlo experiment.

Finally, the number of data points beyond the safety threshold is counted and put into relation to

the number of data segments—this yields the empirical POD which should be close to the required

POD of 99.4% from the prediction.

The entire monitoring procedure, including training and testing, can be summarized in one plot

that visualizes the test distribution in the training and damaged states, see Fig. 9.10. The top plot

of Fig. 9.10a shows the empirical distributions for the model-based detection test, with an extra

mass at beam segment 8. The three decisive quantities are the number of degrees of freedom, the

measurement duration, and the empirical POD, which are analyzed separately in the following.

� Fitting the χ2−distribution to the histogram results in a number of degrees of freedom of

six, which is close to the theoretical value of ν = rank(J TΣ−1J ) = 7. Both numbers are

smaller than the number of monitoring parameters, so the sensitivity matrix (the Jacobian

J ) is not of full rank, see Fig. 9.7. This demonstrates that column-rank deficiency is a

common problem, even for simple monitoring tasks such as the HSS beam, and highlights

the importance of the numerical considerations for rank-deficient Jacobian matrices (from

Section 5.3).

� The measurement duration to detect a 5% mass increase is T = 7 s. Such a short duration is

uncommon for ambient vibration tests and only feasible because the damage detection test
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circumvents a data-driven modal analysis. The information on modal parameters is included

in the sensitivity matrix, which is set up in the reference state. For statistical evaluation of

the test performance (and an accurate approximation of the POD), the test is applied to 100

data segments, increasing the measurement duration of the entire data set to about 12 min.

However, this is only necessary for validation purposes.

� The empirical POD of 94% is close to the theoretical value of 99.4%, so the test distribution

in the damaged state approximates the theoretical χ2−distribution. Considering the inac-

curacies due to sampling a χ2−distribution and possible modelling issues, the validation is

considered successful.

The top plot of Fig. 9.10b shows the validation for the damage scenario with an extra mass at

beam segment 5 (at midspan).

� With an empirical POD of 95%, the prediction of the minimum detectable damage can be

confirmed. That means that the prediction is accurate for multiple beam segments along the

beam.

� However, a longer measurement duration of T = 13 s is required to detect a 5% mass change

in Parameter 5 compared to Parameter 8. This is due to a lower Fisher information value F55

compared to F88 (see Fig. 9.7) and showcases that the main diagonal of the Fisher information

is a measure for the detectability of damage. Moreover, it shows that the measurement

duration is an appropriate tuning parameter to increase the test response to damage in

parameters with low damage detectability.

� The number of degrees of freedom of the χ2−distribution is close with ν = 7 instead of

ν = 6 despite the longer measurement duration. Therefore, an increased measurement does

not alter the test distribution in the training state of the model-based test. This verifies

the statistical properties of the parametric test distribution and confirms that the number

of degrees of freedom is an application-specific quantity that describes the complexity of the

problem. This completes the validation of the model-based damage detection test.

Study 2: Data-driven Tests

In the second study, the minimum measurement duration is predicted for data-driven tests. Two

data-driven tests are available, namely, the non-parametric test from Eq. (4.51) and a parametric

one from Eq. (4.50), where the damage-sensitive residual is linked to modal parameters. Regardless

of the employed damage detection test, the Fisher information is calculated based on the FE

model, as this is required to physically define (or parametrize) damage. Although the same Fisher

information is used for the prediction, the damage detectability changes because the number of

degrees of freedom of the χ2−distributions depends on the number of monitoring parameters,

which is different for each test.
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Figure 9.9: Damage scenarios with extra masses
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Figure 9.10: Validating the prediction for the damage detection tests

a) Validating the Parametric Test. This section focuses on the data-driven detection test

that is linked to modal parameters. The training and validation state is shown in the same figure

as for the model-based test, where the first analysis is performed for the damage scenario with an

extra mass on beam segment 8 (centre plot of Fig. 9.10a).

� The number of degrees of freedom of the fitted χ2−distribution is ν = 13, which is higher than

for the model-based test (ν = 6) due to the increased complexity of the monitoring problem.

Complexity is defined through a higher number of monitoring parameters in relation to the
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number of modes of vibration (see Section 5.1.4). At the same time, it is lower than the

number of vectorized modal parameters (H = 2Nm(r + 1) = 40), so the sensitivity matrix

(the Jacobian J (1)) is also column-rank deficient.

� The POD is not affected by the complexity of the monitoring task, because the developed

reliability index considers the number of degrees of freedom. An increased number of degrees

of freedom leads to an increase in the minimum non-centrality λmin. Consequently, an equally

reliable test performance can be achieved for data-driven tests with a POD of 97%.

� An increased reliability index (non-centrality λmin) leads to a decreased damage detectability

compared to the model-based tests. This is indicated through a longer measurement duration

T8 (10 s vs. 7 s). The finding that the data-driven test has a lower detectability is specific

to this structure, because the number of structural parameters is lower than the number of

modal parameters.

For completeness, the validation procedure is repeated for the damage scenario with an extra

mass on top of beam segment 5 (centre plot in Fig. 9.10b). The number of degrees of freedom is

ν = 16, the measurement duration is T5 = 18 s, and the empirical POD is 96%. The measurement

duration is longer because of the smaller Fisher information F55 compared to F88, and the number

of degrees of freedom attains the same value, even for a longer measurement duration. These results

confirm that the predictions of the minimum detectable damages based on a FE model are also

valid for the data-driven test using modal parameters (see Section 5.2).

b) Validating the Non-parametric Test. Now, the prediction for the non-parametric damage

detection test is validated starting with the damage scenario with a 5% extra mass on beam element

8 (bottom plot of Fig. 9.10a).

� The number of degrees of freedom of the χ2−distribution is ν = 1,657. This value is sig-

nificantly larger than for the parametric test using modal or structural parameters, so the

monitoring problem is more complex. However, this value is also higher than the dimension of

the covariance matrix (see Fig. 9.6), which is inconsistent with the theory, and indicates that

the test distribution of the non-parametric test based on real vibration data can be biased.

Since it is the only test that does not employ a sensitivity matrix, it can be concluded that

parametrization enhances the robustness with respect to measurement noise. The sensitivity

matrix can be understood as a transformation matrix that projects the mathematical problem

onto a lower-dimensional space. From this perspective, it is recommended that one choose

the parametric detection test over the non-parametric one, whenever possible.

� Due to the high complexity, the damage detectability is lower than for any other damage

detection test, with a measurement duration of T8 = 35 s.

� Despite the biased training state distribution, the empirical POD is 97%. This value is almost

identical to the other damage detection tests (with 97% and 94%) and close to the theoretical
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value of 99.4%. The results highlight the importance of the empirical curve-fitting developed

in this thesis. Where for the parametric damage detection tests, the theoretical value could

have been chosen, with ν = rank(J TΣ−1J ), the prediction of the non-parametric test is only

possible after empirically evaluating the number of degrees of freedom of the χ2−distribution.

The bias appears to equally affect the test distribution in the training and damaged states,

so the prediction of the minimum detectable damage is accurate.

For the damage scenario with a 5% extra mass on beam segment 5 (bottom plot in Fig. 9.10b),

a longer measurement duration of T5 = 107 s is required. Moreover, the number of degrees of

freedom increases (ν = 4, 237) indicating that the test distribution is affected by the measurement

duration, which is inconsistent with the theory. However, the model-based prediction based on the

empirical ν and the model-based Fisher information results in a POD of 93%, so the prediction is

still accurate.

Conclusions

The damage detectability varies across the structure, and the model-based Fisher information is a

measure for the detectability of damage (see Section 5.1.1). Based on reliability considerations, the

Fisher information can be translated into a minimum measurement duration for each component,

making the measurement duration an equivalent measure for detectability (Section 5.1.2). The

test distributions of the damage detection tests approximate χ2−distributions with a problem-

specific number of degrees of freedom. This confirms the underlying assumptions of the reliability

concept (Section 5.1.3). The predictive framework is valid for real structures and robust toward

noisy measurement environments. The prediction of the minimum detectable damages are valid

for model-based and data-driven tests, meaning the FE model is required for the prediction of the

minimum detectable damage but not in the active monitoring phase (see Section 5.2). This widens

the field of application, and makes the approach more universal. Parametrization is optional, but

enhances the robustness towards noise effects. In this sense, the model-based test is the most robust,

if the number of monitoring parameters is lower than the number of modal parameters. If data-

driven tests are to be employed, the parametric version is to be chosen over the non-parametric one

for robustness. Even for simple monitoring problems, the sensitivity matrix may be column-rank

deficient, underlining the importance of the numerical considerations (from Section 5.3).

9.1.3 Localizing Mass Changes

Identifying the entry in the monitoring parameter that has changed (damage localization) is more

challenging than damage detection, because damage in one parameter affects the test response of

others, which leads to false localization alarms. The developed framework can predict the test

response of parameters that have changed due to the damage and false localization alarms, and

this section showcases that the predictions are also valid for real structures in noisy measurement

environments.
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Damage localization tests are evaluated parameter-wise, so each diagnosis run yields as many

test statistics as there are monitoring parameters. For statistical evaluation of the test distributions,

the localization tests are applied to 100 data sets in a Monte Carlos simulation, and only the

distributions’ mean values are plotted. Figure 9.14 summarizes the training state (top plot) together

with the two validation states (centre plot and bottom plot) for an extra mass at Segment 5 and

8. For each damage scenario and localization, the measurement duration was adjusted so a 10%

extra mass causes a mean test response that is equal to the minimum non-centrality λ = λmin.

The plots visualize the safety threshold value (dashed line), the empirical mean test response (grey

bars), and the predicted test response (plus signs). Detailed descriptions for the direct localization

test and the minmax localization test follow in the subsequent paragraphs.

Study 1: Direct Localization Test

First, the direct localization test is applied, see Fig. 9.14a. In the training state (top plot of

Fig. 9.14a), all distributions approximate a mean value of one (grey bars). This confirms the

theoretical investigations (plus signs); in theory, the mean value of a central χ2−distribution is

equal to the number of degrees of freedom, which is one if parameters are individually tested for

damage.

For damage scenario ∆5 = 10% (centre plot of Fig. 9.14a), the minimum measurement duration

is T5 = 7 s. It appears that the test response of the unchanged parameter (grey bar at Parameter

5) is close to the predicted value (plus sign at Parameter 5). Since the direct localization test does

not consider the off-diagonal terms of the Fisher information, false alarms occur at all unchanged

parameters, which diminishes the meaningfulness of the damage localization. However, using the

predictive framework, the magnitude of false alarms can be analyzed. As shown in the plot, the

predicted mean test responses (plus signs) are close to the empirical mean test responses (grey bars)

for all parameters that have not changed due to damage. This confirms the developed theoretical

investigations for the minimum localizable damage (Section 6.1.1) and the false alarm predictions

(Section 6.1.2).

For damage scenario ∆8 = 10% (bottom plot of Fig. 9.14a), the measurement duration is

significantly shorter with T8 = 3.0 s. This is because the Fisher information value F88 is higher

than F55 (see Fig. 9.7), making it a measure for the localizability of damage. The predictions of the

test response to a 10% mass increase are correct for all Parameters except θ5, where an inexplicable

deviation is noticed.

Study 2: Minmax Localization Test

In a second study, the minmax localization test is applied. The objective is to validate the auto-

mated substructuring approach as well as the prediction of the minimum localizable damage and

false localization alarms.

148



9.1. HSS Beam (104 DOF)

2.06 m 2.06 m

Cross-section

Substructure 

number

1 1 665532 2 64 641111 3

P2P1 P8P7P3 P4 P6P5

Shaker

Figure 9.11: Optimal substructure arrangement for K = 6 clusters
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Figure 9.12: Automated parameter clustering

First, the monitoring parameters are clustered using the automated substructuring approach

(from Section 6.3), with the optimization procedure being summarized in Fig. 9.12. With an in-

creasing number of clusters, the damage localization resolution increases, as the objective function

f1 linearly decreases. Parameter clusters with one cluster are infeasible and the maximal cluster

number is K = 9. An increasing number of clusters reduces the damage identifiability in each

parameter (objective f2), with a distinct jump into the infeasible domain for configuration with

more than seven clusters. This abrupt change can be tied back to the Fisher information from

Fig. 9.7; due to the small main diagonal value for support-near parameters (Parameter 1 and 9),

it is challenging to localize damage in those parameters. This is also indicated by the eighth and

ninth singular values of the Fisher information, which are significantly smaller, see Fig. 9.7. The

number of false alarm scenarios (objective f3) is maximal for the cluster arrangement with seven

clusters, changing the optimal compromise (thick black line) from seven to K = 6 clusters. The

corresponding substructure arrangement is visualized in Fig. 9.11.

The clustered sensitivity matrix is handed over to the minmax localization test to predict the

minimum localizable damage and the false localization alarms. The results are summarized in

Fig. 9.14b. In the training state (top plot), the empirical test response approximates a mean value

of one (grey bars) for all parameters. This confirms the theoretical investigations regarding the

statistical distribution of the minmax test.
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Figure 9.13: Minmax Fisher information with six clusters K = 6 and its singular values

1 2 3 4 5 6 7 8 9
Parameter h

0

10

20

30

M
ea

n 
te

st

Training State

Actual
Predicted
Safety threshold

1 2 3 4 5 6 7 8 9
Parameter h

0

10

20

30

M
ea

n 
te

st

Damaged State, "5 = 10%, T = 7.0 s

1 2 3 4 5 6 7 8 9
Parameter h

0

10

20

30

M
ea

n 
te

st

Damaged State, "8 = 10%, T = 3.0 s

(a) Direct test

1 2 3 4 5 6 7 8 9
Parameter h

0

10

20

30

M
ea

n 
te

st
 

Training State

Actual
Predicted
Safety threshold

1 2 3 4 5 6 7 8 9
Parameter h

0

10

20

30

M
ea

n 
te

st

Damaged State, "5 = 10%, T = 32.0 s

1 2 3 4 5 6 7 8 9
Parameter h

0

10

20

30

M
ea

n 
te

st

Damaged State, "8 = 10%, T = 58.0 s

(b) Minmax test

Figure 9.14: Damage localization

For damage scenario ∆5 = 10% (centre plot), the minimum measurement duration is calculated

to T = 32 s, and the empirical mean test response (grey bars) is almost identical to the predicted

response (plus sign) for the changed parameters. Furthermore, the minmax localization test con-
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siders the off-diagonal terms of the Fisher information, which causes all false localization alarms to

disappear. This is reflected in both the empirically measured and predicted values.

For damage scenario ∆8 = 10% (bottom plot), the empirical mean test response for Parameter

8 (grey bar) is close to the predicted one (plus sign), so the prediction for the minmax localization

test is considered accurate. Since Parameters 8 and 9 are in the same cluster, the test response

of Parameter 9 is not a false alarm; however, Parameter 5 shows a false localization alarm that is

slightly more pronounced than anticipated (this was also the case for the direct localization test).

Nonetheless, the laboratory test shows that the magnitude of the minmax localization test can be

predicted (see Section 6.2), as well as the false alarm magnitude (see Section 6.2.2), which confirms

the theoretical investigations. Moreover, damage scenario ∆8 = 10% demonstrates the diagnostic

capabilities of the minmax localization test. Where the direct localization test could not reliably

localize the damage location due to significant false alarms (Fig. 9.14a), the minmax localization

test leads to clear results with almost no false alarms (Fig. 9.14b). However, a low false alarm

rate and increased damage localization resolution come at the cost of reduced identifiability. This

is shown through a long measurement duration of T8 = 58 s. In contrast to all other tests, the

measurement duration for scenario ∆8 = 10% is longer than for ∆5 = 10%, because the minmax test

utilizes the robust Fisher information from Fig. 9.13, and the main diagonal value F88 is smaller

than F55. This concludes the validation of the minmax localization test. The results verify all

findings regarding the optimal damage localizability (see Section 6.3).

Conclusions

The results from this section verified all theoretical investigations regarding the minimum localizable

damage (Chapter 6) based on real vibration measurements on the laboratory HSS beam in a

noisy measurement environment. Using the direct localization test, this section shows that the

model-based Fisher information is a measure for the localizability of damage (Section 6.1.1), and

that the behaviour of the damage localization test can be fully predicted for both the parameters

that have changed due to damage and parameters that have not, i.e., false localization alarms

(see Section 6.1.2). For damage localization, the empirical number of degrees of freedom of the

statistical distributions is one, which resonates with the theoretical investigations and leads to

a high damage detectability in combination with short measurement durations. The minimum

measurement duration to localize a 10% damage based on the direct localization test is 3.0 s. Such

short measurement durations are possible because the FE model is not updated during testing.

Having said that, the diagnosis results from the direct localization test are unusable for some

damage scenarios due to significant false alarm magnitudes. Using the minmax localization test,

false alarms can be eliminated and the mean test response can be predicted for changed parameters

(see Section 6.2), unchanged parameters in the same clusters, and false localization alarms (see

Section 6.2.2). The detectability for the minmax localization test is significantly lower than for

the direct localization test with measurement durations up to 58 s to detect a 10% mass damage.
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Figure 9.15: Probability of detection for sensor configurations with rank 70, 36 and 1
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Figure 9.16: Ranking all 70 configurations with r = 4 sensors
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Figure 9.17: Performance curve

This justifies all research efforts for the automated substructuring approach, which finds the optimal

compromise between a high damage localization resolution, high detectability, and a low false alarm

rate (see Section 6.3) .

9.1.4 Optimizing the Sensor Placement

The main idea of the sensor placement optimization scheme is to use the main diagonal of the Fisher

information as a measure for the detectability of damage, and to translate it into the minimum

measurement duration to detect a certain damage amount in different structural components. This

section sets out to verify the assertion empirically using real vibration data from the HSS beam.

The validation is performed for the model-based damage detection test. The main idea is to

evaluate the mean test response for each sensor configuration for a fixed measurement duration

of T = 7 s and a fixed damage extent ∆8 = 5%. To evaluate whether the predicted minimum

measurement duration is a measure for the detectability of damage, it is calculated for each sensor

configuration through

T8 =
1

(∆θ8)2

λmin
fsF88

. (9.2)
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Figure 9.18: Relation between the mean test response and the measurement duration

Figure 9.16 compares the predicted measurement duration to the mean test response, where the

sensor configurations are ranked according to T8 in both subplots. A shorter minimum measurement

duration is equivalent with a more pronounced mean test response, which validates the theoretical

investigations. For clarity, the best solution is plotted on the right side of Fig. 9.15 together with

the solution number 36 and 70. As expected, an improved sensor layout leads to a significantly

higher POD. This proves that the minimum measurement duration is a measure for the detectabil-

ity of damage and a suitable performance criterion for sensor placement optimization. Optimal

performance can be achieved for a sensor layout with four sensors at the positions [1, 4, 5, 7], fol-

lowed by the second best layout with sensors at [2, 4, 5, 7]. The lowest detectability was achieved

if the sensors are placed at the positions [1, 2, 3, 6]. The vibration measurements at these positions

carry the least information on the health state of the beam, most likely because positions P3 and

P6 are vibrational nodes of Mode 3, see Fig. 9.4.

Next, the optimal measurement duration is calculated for 1 - 4 sensors, see Fig. 9.17. It

appears that the measurement duration decreases with an increasing number of sensors, where the

measurement duration for the optimal layout with four vibration sensors is 3.9-times shorter than

for the optimal layout with a single sensor. This demonstrates that the measurement duration is

a helpful means to compare sensor layouts with a varying number of sensors, and to decide on an

appropriate number of sensors.

Ultimately, the optimal sensor configuration with four sensors is selected, and the mean test

response is plotted over a varying measurement duration, see Fig. 9.18. Increasing the measurement

duration by a factor of ten (from 7 s to 70 s) causes a mean test response that is ten times stronger

(left plot). Plotting the mean test response over the corresponding measurement duration (right

plot) leads to a straight line. Consequently, the mean test response λ is proportional to the

measurement duration T with λ = (∆θ2
hFhhfs) · T . This further validates the predictive formula

for the minimum detectable damage, and concludes the case study of the HSS steel beam.
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9.2. St. Nazaire Bridge Model (1,002 DOF)

9.2 St. Nazaire Bridge Model (1,002 DOF)

The primary purpose of the second case study is to apply the stochastic subspace-based damage

diagnosis method to a scaled-down model of a cable-stayed bridge with the following objectives:

� Objective 1 : Based on real data from a laboratory experiment, show that the complete failure

of cable pair 19 can be detected and localized (Section 9.2.2)

� Objective 2 : Based on simulated vibration data, demonstrate that the predictive framework

is valid for larger mechanical structures by predicting the mean test response (Section 9.2.3)

9.2.1 Experimental Setup

Bridge Description. The specimen is a scaled-down laboratory model of the St. Nazaire cable-

stayed bridge in France (scale 1:200), designed by the Department of Civil and Mechanical Engi-

neering at the University in Nantes (Cadoret et al., 2020), see Fig. 9.19. The specimen models

the cable-supported section of the bridge with a total length of 3.6 m. The structure is split into

the main span and two side spans with a length of 2.02 m and 79 cm, respectively. To mimic the

dynamic behaviour of the real bridge, the prototype exhibits higher density materials conforming

to the similitude requirements. The bridge deck is a steel box girder, continuous over all three

spans, with a width of 7.5 cm. The cross-section is composed of foam (with a density of 51 kg/m3

and a stiffness of 74 MPa) encased by a trapezoidal steel sheet with a thickness of 0.1 mm. The

piers at the cable end spans are made of aluminum, topped up with an H-shaped pier cap made

of steel. The two A-shaped towers, also made of aluminum, rise 33 cm over the steel deck, where

the two aluminum posts of each tower are connected at the top through a steel sheet that includes

fixtures for stay cables. Each tower sits on top of a monolithic tower pier that models two vertical

pillars (on top of which the tower rests), a transverse beam, and a solid piece that expands to the

foundations. The 72 steel cables, with a diameter of 0.38 mm, connect the upper part of the tower

to the deck and form two cable planes in fan-arrangement. More details on the cross-sectional

values are given in the modelling section and Table 9.2.

Instrumentation and Signal Processing. The instrumentation consists of one shaker and 10

uni-axial vibration sensors. The shaker—a converted speaker with an attached stinger—is placed

under the deck and vertically connected to the deck near cable pair P32, see Fig. 9.21. The

piezoelectric accelerometers (0.8 gm) with a sensitivity of 100 mV/g (PCB of reference ICP) are

aligned in the vertical direction and glued to the centre line of the deck at the positions shown in

Fig. 9.21. While white noise is vertically injected into the bridge, a two-minute acceleration record

is sampled at a rate of fs= 4,800 Hz and later down-sampled to 340 Hz. Furthermore, a low-pass

filter is applied before re-sampling the records to avoid aliasing, but no high-pass filter is used.

However, the signal components around 80.5 Hz are removed in all records, using an orthogonal

projection method (Greś et al., 2021), in order to reduce the observable modes of vibration to the
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9.2. St. Nazaire Bridge Model (1,002 DOF)

six modes used in the sensitivity matrix. More information on this is given in the section on the FE

model. In between the measurements, all sensors are removed and re-attached for the subsequent

run.

Finite Element Model. The subspace-based damage diagnosis method is data-driven, but a

FE model is required to parametrize damage, to calculate the sensitivities of the damage-sensitive

residual toward structural design parameters, and to generate vibration data for preliminary valida-

tion studies. The FE model was provided by the Department for Civil and Mechanical Engineering

in Nantes, see Fig. 9.21. It is designed in MATLAB® using custom-code for 3-D beam and truss

elements. The continuous deck is discretized into 51 nodes and 50 beam elements with identical

cross-sections and material properties over all three spans (see Group 1 in Table 9.2). The piers are

Figure 9.19: St. Nazaire Bridge (Janberg, 2020)

(a) Laboratory model (1:200) (b) Shaker point excitation

Figure 9.20: Experimental setup for the St. Nazaire Bridge
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Figure 9.21: Finite element model of the St. Nazaire Bridge in MATLAB®

No. Type Density E G A Iy Iz J

[ kg
m3 ] [MN

m2 ] [MN
m2 ] [m2] [m4] [m4] [m4]

1 Deck 37,000 210,000 81,000 2.0E-05 2.1E-08 1.8E-09 2.3E-08
2 Pier 2,700 69,000 27,000 2.0E-04 1.7E-09 6.7E-09 8.3E-09
3 Pier 7,800 210,000 81,000 2.4E-04 8.0E-09 2.9E-09 1.1E-08
4 Pylon 2,700 69,000 27,000 1.8E-03 1.2E-06 6.0E-08 1.3E-06
5 Pylon 2,700 69,000 27,000 9.0E-04 1.5E-07 3.0E-08 1.8E-07
6 Pylon 2,700 69,000 27,000 9.0E-04 1.5E-07 3.0E-08 1.8E-07
7 Pylon 2,700 69,000 27,000 2.4E-05 3.2E-11 7.2E-11 1.0E-10
8 Pylon 2,700 69,000 27,000 2.4E-05 3.2E-11 7.2E-11 1.0E-10
9 Pylon 7,800 210,000 81,000 2.4E-05 3.2E-11 7.2E-11 1.0E-10
10 Links 100 1.0E+10 5.0E+9 6.3E-08 3.3E-16 3.3E-16 6.5E-16
11 Links 100 1.0E+10 5.0E+9 6.3E-08 3.3E-16 3.3E-16 6.5E-16
12 Cables 7,800 210,000 7.7E-03

Table 9.2: Finite element specifications

split into pier pillars (Group 2) and pier caps (Group 3) and the pylons are split into six groups:

the piers (Group 4), the V-shaped pier caps (Group 5 and 6), the A-shaped towers (Group 7 and

8), and the vertical cable anchor elements (Group 9) made of metal. Group 10 are link elements at

the top of the A-shaped towers that link the steel components to the aluminum component. Group

11 are link elements that connect the deck beam to stay cables and piers. The stay cables (Group

12) are the only elements that are modelled as trusses. In total, the model exhibits 1,038 degrees

of freedom. All six degrees of freedom at the two tower foundations and the four pier foundations

are fixed, reducing the number of unrestrained degrees of freedom to 1,002.

a) Model Calibration. The considered natural frequencies and mode shapes of the MATLAB®
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9.2. St. Nazaire Bridge Model (1,002 DOF)

model are summarized in Fig. 9.22. The damping matrix is set up based on a damping ratio of

1% critical damping for each mode. In addition, the numerical model exhibits a repeated mode at

80.5 Hz (which is also observable in the vibration data); however, these two modes are excluded

from the analysis and removed during signal preprocessing to avoid numerical issues in the sen-

sitivity computation, see Fig. 9.23. For calibration, the modal parameters are compared to a FE

model in Abaqus, as well as the result from operational modal analysis (OMA), considering the

first 17 modes of vibration (Cadoret et al., 2020). Table 9.3 summarizes the natural frequencies and

damping ratios of the considered six modes from OMA. The mode shape of Mode 2 is similar to

Mode 3, but it exhibits no bending components in the towers and a more pronounced longitudinal

movement of the deck. This may cause the higher damping ratio of 3.36% as it interacts with the

piers at the end spans.

b) Damage Parametrization. Damage is defined as a change in the cross-section A of the cables.

The same monitoring parameters are assigned to the cables on both sides of the deck, reducing the

number of parameters from 72 to 36 with the monitoring vector

θ =
[
A1 . . . A36

]
. (9.3)

During the laboratory experiment, cable pair P19 is removed, which corresponds to a damage of

∆19 = 100%. The stiffness contribution of three-dimensional truss elements is a linear function

of the cross-section A, the modulus of elasticity E, and the cable length L, meaning a change

f1 = 35.7 Hz, 11 = 1.0 [%] f2 = 53.8 Hz, 12 = 1.0 [%] f3 = 61.2 Hz, 13 = 1.0 [%]

f4 = 91.5 Hz, 14 = 1.0 [%] f5 = 119.9 Hz, 15 = 1.0 [%] f6 = 150.9 Hz, 16 = 1.0 [%]

Figure 9.22: First six modes of vibration in the vertical direction (FE Model)

Operational Modal Analysis

Mode number 1 2 3 4 5 6

Frequency [Hz] 35.7 53.8 61.2 91.5 119.9 150.9
Damping ratio [%] 1.03 3.36 1.12 1.94 1.39 1.13

Table 9.3: Operational modal analysis results (covariance-driven SSI)
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9.2. St. Nazaire Bridge Model (1,002 DOF)

f1 = 80.49 Hz, 11 = 1.0 [%] f2 = 80.54 Hz, 12 = 1.0 [%]

Figure 9.23: Repeated mode at about 80.5 Hz

linearization through the Jacobian matrix does not introduce bias.

Kl
el = EA/L

[
1 −1

−1 1

]
(9.4)

c) Sensitivity Computation. The Jacobian matrix, which links the data-driven residual to structural

design parameters, is split into three parts, where the sensitivity of poles and mode shapes toward

structural parameters (i.e., Jacobian J (3)) is model-based. For its computation, the first six modes

of vibration are considered, see Fig. 9.22. The natural frequencies of the two modes at 80.5 Hz are

almost identical, which causes numerical issues in the derivative of the poles and mode shapes, see

Fig. 9.23. Hence, they are not included in the Jacobian matrix and removed from the measured

vibration records. The pole derivatives are computed analytically (using the modal approach), and

so are the mode shape derivatives. For the mode shape computation, the first 30 modes of vibration

are included.

d) Vibration Generation. For vibration generation, the mechanical system matrices K and M are

extracted from the model, the modal damping matrix C1 is set up based on an assumed value of

1% critical damping for each mode, and transformed into a state space model in modal coordinates.

This allows for the individual modes of vibration to be selected that contribute to the vibration

record. Subsequently, a white noise input signal is applied to the vertical degrees of freedom of

the deck beam, a transient analysis is run, and the output at the sensor locations is stored after

superimposing it with uniformly distributed measurement noise with a magnitude corresponding

to 5% of the output variance.

Data Segmenting Processsing

Measured quantity acceleration Training segments 6 No. of sensors r/r0=10/10
Sampling frequency 340 Hz Testing segments 6 Time lags p/q=4/5
Reference data length 120 s Samples/segment 6,800 System order n=12
Training/testing data 120 s Duration/segment 20 s Block length Nb= 10

Table 9.4: Input parameter sheet
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9.2. St. Nazaire Bridge Model (1,002 DOF)

9.2.2 Localization Cable Failure

Based on the vibration data from the reference state, the block Hankel matrix is computed with its

singular values shown on the left side of Fig. 9.26. A distinct drop is noticed after the 12th singular

value, so the system order is set to n = 12, with the minimum time lag parameters p+ 1 = q = 5.

Moreover, the null space is extracted and the sample covariance of the damage-sensitive residual

is estimated based on a block length that approximates one cycle of the fundamental mode of

vibration, i.e., Nb = 10. Ultimately, the sensitivity is calculated, i.e., the Jacobian J (3); however,

the Jacobian matrix occurs to be column-rank deficient, meaning it has to be clustered prior to

damage localization using the minmax localization test.

Automated Substructuring. Clustering the Jacobian matrix corresponds to a creation of sub-

structures in the FE model, in which damage can be isolated. Finding the optimal substructure

arrangement is a multi-objective optimization problem, with the optimization criteria being the

localization resolution (i.e., the number of clusters), the damage identifiability, and the false alarm

susceptibility (see Chapter 6). The maximum number of substructures is dictated by the rank of

the Fisher information, which is six in this case, as the singular values exhibit a clear jump after

the sixth singular value, as shown on the right side of Fig. 9.26. The minimum identifiable damage,

on the other hand, appears to be below 100%, even for a high number of clusters. This can be

seen in Fig. 9.24, where objective function f1 (the damage detectability) jumps into the infeasible

domain after 27 clusters. This figure also summarizes the other optimization criteria (resolution

and false alarms). The optimal compromise function is found for five or six clusters, as the compro-

mise function attains a global minimum, where the configuration with six clusters is chosen. The

substructure arrangement is symmetrical, meaning the damage localization test will likely not be

able to identify the semi-harp in which damage has occurred.

Damage Localization. The applied statistical tests for damage localization are the direct local-

ization test and the minmax localization test, and the input parameters for the damage diagnosis

are summarized in Table 9.4 with a short measurement duration of 20 s. The decisive measure for

interpreting the damage diagnosis results is the non-centrality, i.e., the distance between the mean

values of the test distribution in the training and the damage state, which is plotted in Fig. 9.25.

The direct test (top plot) indicates that the cable pairs P17 - P20 are the most likely to be dam-

aged, but false alarms occur close to the damaged cable pair and at remote cable pairs P9 and P28.

The minmax test manages to narrow down the damage localization to parameter P18 and P19

with insignificant false alarms. Although not shown here, it could be proven that the magnitude of

the test response is proportional to the measurement duration, which complies with the predictive

framework.
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Figure 9.24: Automated clustering of cable cross-section parameters
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Figure 9.25: Non-centrality of the minmax localization test for damage scenario P19
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Figure 9.26: Singular values of the Block Hankel matrix and the Fisher information

9.2.3 Additional Numerical Studies

The studies in this section are based on simulated vibration data. The damage diagnosis is per-

formed based on the same input parameters, see Table 9.4 except that the measurement duration

in the reference state is increased from 2 min to 30 min.

In previous studies with real data, the upper bound for the number of clusters was set to Kg =

6 because the rank of the Fisher information showed a distinct jump, see right side of Fig. 9.26. For

simulated data, the automated substructuring approach would yield a similar plot as in Fig. 9.24

(so the plots are not repeated). However, this time, the number of substructures is manually set

to K = 18. This was done to study why the objective functions f1 remained within the feasible

domain up to a cluster number of K = 27, meaning the minimum identifiable damage was below

100%. The resulting substructuring arrangement is symmetrical and assigns each cable pair within

one cable fan to a separate cluster, see Fig. 9.27.

For validation of the predictive framework, the mean test response to 50% damage in each cable

is predicted together with the corresponding false alarms. Subsequently, the damage is applied to

the bridge model and the empirical mean test response is measured. Figure 9.28 shows the results

for damage in cable pair P3. It appears that the predicted non-centrality (plus sign) is close to the

measured non-centrality for the damaged cable pair P3, as well as for all undamaged monitoring

parameters (bar plot), so false alarms are also predicted correctly. The white bars mark the

damaged cable pair as well as other parameters within the same cluster. For completeness, the

validation is repeated for all 36 possible damage scenarios with the results shown in Fig. 9.29.

This plot showcases that the relative magnitude of false alarms can be predicted accurately for all

scenarios. For some components with particularly high or low test responses (e.g., Parameter 9 or

16, respectively) minor discrepancies can be observed between the absolute values of the predicted

and the measured mean test responses, but this result is considered sufficiently accurate. In other

words, the predictive framework is valid even for large mechanical systems such as the modelled

cable-stayed bridge.

At the beginning of this study, the number of substructures was set to a value that exceeded

the numerical rank of the Fisher information matrix. However, the predictions of the mean test
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Figure 9.27: Substructure arrangement for 20 parameter clusters
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Figure 9.28: Comparing the predicted and the measured non-centrality for ∆3 = 50%

responses are still correct, meaning the numerical rank calculation might have been incorrect. A

possible explanation is that the jump in the singular values of the Fisher information was misinter-

preted as the matrix rank, although it describes the transition of the eigenvalues corresponding to

the six pole derivatives to the mode shape derivatives in the Jacobian matrix. On close inspection

of Fig. 9.26, the singular values appear to decrease more rapidly in magnitude after the 26th sin-

gular value, which may be the true matrix rank. Indeed, removing the eigenvector derivatives from

the sensitivity matrix results in an unambiguous matrix rank of six. On the other hand, removing

the eigenvector derivatives leads to gradually decreasing singular values. The contribution of the

mode shape derivatives appears to be less pronounced. To conclude, the rank computation can

be misleading and should always be verified (e.g., by looking at the singular value of the Fisher

information matrix). This concludes the case study of the St. Nazaire Bridge model.
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Figure 9.29: Validation state for all 36 damage scenarios

9.3 Summary

This chapter presents two case studies, a laboratory steel beam on pin supports and a laboratory

cable-stayed bridge. Based on the hollow structural steel (HSS) steel beam, it is demonstrated
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9.3. Summary

that the prediction of the minimum detectable damage is correct for both model-based and data-

driven tests. The prediction is also verified for damage localization tests, with the result that the

test response for changed and unchanged parameters (false localization alarms) can be predicted

correctly. Moreover, it is shown that the sensor configuration with the shortest measurement

duration exhibits the strongest test response to damage, which verifies the approach to sensor

placement optimization. Ultimately, damage is simulated by applying extra masses to the beam.

The results show that the application of extra masses is a suitable, non-destructive validation

method for applications where damaging the structure is not an option.

Applying the tests to the St. Nazaire cable-stayed bridge model showed that a complete failure

of a cable pair near midspan can be detected and localized with a measurement duration below 20

s. In-depth studies based on simulated data verified that the prediction of the mean test response

to cable failure is accurate, even for large mechanical systems.
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Chapter 10

Model Validation

“Basic research is what I’m doing when I don’t know

what I’m doing.”

— Wernher von Braun

In this chapter, another strength of the developed framework becomes apparent: the predictive

formula is a suitable tool for model validation studies. A great example is the verification of the

input parameters. If all parameters for signal acquisition, signal processing, and damage diagnosis

are set appropriately, the prediction of the minimum detectable damage and measurement duration

is accurate. This allows deep insights into the effects that individual input parameters have. Since

none of the previous studies on stochastic subspace-based damage diagnosis included a systematic

validation of the input parameters, a separate chapter is dedicated to this matter.

The chapter is organized as follows: Section 10.1 briefly summarizes the case study, which is

referred to throughout all parameter studies. Section 10.2 gives several examples that explain the

effect of the main input parameters, including the time lags p and q, the system order n, the number

of modes Nm, and the number of data segments for the evaluation of the empirical test distribution

Nseg. Section 10.3 elaborates on the lower bound for the measurement duration in the reference

state and testing state, and Section 10.4 proposes tools to validate the small damage assumption.

All findings are summarized in Table 10.4 on page 188, which also gives an overview over all studies

in this chapter.

10.1 Case Study

For demonstration purposes, all methods in this chapter are applied to the same case study that

was employed in previous chapters. The 4.11 m long simulated steel beam has a hollow structural

steel (HSS) cross-section, HSS 152×51×4.78 mm (6 x 2 x 3/16 inches), a modulus of elasticity

of E = 210,000 MPa, and a mass density of ρ = 7, 850 kg/m3. The beam is supported by two

pin supports and bent about the weak axis. For excitation, white noise is injected at all vertical

degrees of freedom, where the system velocities are sampled in the vertical direction at the two

sensor locations marked in Fig. 10.1. Damage is defined as a change in stiffness.

The applied test is the model-based detection test (from Section 4.4.1), as it is comparatively

simple but allows for the study of all input parameters that have not been discussed in detail in
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Figure 10.1: Numerical HSS beam with nine materials and two sensors
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Figure 10.2: Numerical modal analysis

the preceding sections. The test statistic

t = ζTΣ−1J
(
J TΣ−1J

)−1 J TΣ−1ζ −→

χ2(ν, 0) under H0

χ2(ν, λ) under H1

(10.1)

follows a χ2−distribution with ν degrees of freedom and non-centrality parameter λ. The damage

diagnosis test is data-driven, but a finite element (FE) model is required to calculate the sensitivity

matrix (Jacobian J ) of the damage-sensitive residual ζ toward changes in the stiffness of the beam.

Using ANSYS®, the beam is discretized into 19 nodes with six degrees of freedom (DOF) at each

node, and nine line elements to connect the nodes. At the supports, all DOF are restrained except a

rotation about the transverse bolt. The line division for meshing is a variable that can be adjusted

to refine the mesh size arbitrarily; however, if the examples give no information on the mesh and

monitoring parameters, the beam is divided into 18 FE elements and nine materials, so H = 9.
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Data Segmenting Processing

Measured quantity velocity Training segments 100 No. of sensors r/r0=2/2
Sampling frequency 400 Hz Testing segments 100 Time lags p/q=7/8
Reference data length 120 min Samples/segment 4,000 System order n = 12
Training/testing data 16.7 min Duration/segment 10 s No. of blocks Nb=57,599

Table 10.1: Default input parameters

Damage is defined as a change in stiffness, so the monitoring vector is

θ =
[
E1 . . . EH

]T
. (10.2)

To link changes in the monitoring parameters to the damage-sensitive residual, the monitoring

parameters have to be linked to changes in modal parameters first (through the sensitivity matrix

J (3)). The considered modal parameters are the poles and mode shapes of the first four modes of

vibration, which are visualized in Fig. 10.2. The damping ratio is set to 1.0 % critical damping for

simplicity.

The diagnosis is split into three states: the reference state, the training state, and the validation

state. In the reference state, all matrices for the damage diagnosis are calculated based on vibration

data from the undamaged structure, with the Fisher information matrix as the final result. In the

training state, the distribution of the test statistic from Eq. (10.2) is verified by comparing it to its

theoretical distribution with ν = rank(J TΣ−1J ), and a safety threshold value is set up based on

the allowable probability of false alarms (PFA) of 5%. Moreover, the minimum non-centrality λmin

and the minimum detectable damage ∆h are predicted for each monitoring parameter, based on an

acceptable probability of detection (POD) of 99.94%. The formula for the minimum detectability

is repeated here for convenience:

∆h =
1

θh

√
λmin
NFhh

. (10.3)

In the validation state, the change in one monitoring parameter is set to the minimum detectable

damage to confirm that the empirical test response coincides with the prediction. A key quantity

is the non-centrality ratio (NCR); it describes the ratio of the empirical non-centrality, i.e., the

shift in the mean value of the empirical distributions λ = E[χ2(ν, λ)]−E[χ2(ν)], over the minimum

non-centrality λmin, with

NCR =
λ

λmin
. (10.4)

If the prediction of the minimum detectable damage is accurate, the NCR is 100%, and a lower

NCR indicates that the predicted minimum damage is underestimated.
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10.2 Main Input Parameters

10.2.1 Time Lags

The time lag parameters p and q for the block Hankel matrix determine how accurate and how

redundant the dynamic system model is. Where p is the recursion parameter for the observability,

which captures the number of observed time steps of a freely decaying system, q is the shift pa-

rameter for the evaluation of the covariance functions in between different sensor positions (refer

to Chapter 3). The time lags obey the mathematical minimum condition of pr > n and qr > n to

guarantee that the block Hankel matrix captures all modes of vibration and that the left null space

exists. Since the rank is limited by the shorter matrix dimension, a symmetrical block Hankel ma-

trix is sought, with p+ 1 = q. However, the following examples show that the time lag parameters

also influence the damage detectability.

Example 10.1. Effect of Changing Time Lags

The goal of this example is to evaluate the relation between the minimum detectable damage

and the time lag parameters. During the analysis, the system order is fixed to n = 12 and the

time lag parameters p and q are varied separately, see Fig. 10.3. The first observation is that

the accuracy of the prediction is not affected by p and q, as the NCR remains equal for all runs.

Another observation is that increasing the time lag parameter p leads to higher damage detectability,

where q appears to have no influence on the results of the HSS beam. Increasing the time lag

parameters from the minimum value of p = 7 to p = 29 decreases the minimum detectable damage

by 12.8%, from 7.56% to 6.59%, and the minimum measurement duration by 24.0%, from 5.71 s

to 4.34 s. Slightly increasing the time lags over the minimum value can be beneficial; however,

the damage detectability appears to converge quickly, and little improvement can be achieved with

heavy computational burden. Increasing the time lags increases the dimensions of the block Hankel

matrix and all derived quantities, including the Gaussian residual, the covariance matrix, and the

Jacobian matrix. In the literature on subspace-based system identification (Reynders and de Roeck,

2008), a suggestion is put forward to set the time lag parameter sufficiently high, so one sinus half-

wave of the fundamental mode of vibration is captured, and all long-term effects are excluded. This

approach is not recommended for subspace-based damage diagnosis, as the measurement duration

further increases beyond this point, but could aid with the physical interpretation. The premise is

to keep the time lag parameter as high as necessary but as low as possible.

Since the time lags affect the measurement duration, the issue of finding an appropriate setting

is of paramount importance for sensor placement optimization, where the measurement duration is

employed as a performance criterion. The main issue arises when sensor configurations with varying

number of sensors are compared. With an increasing number of sensors r and fixed system order

n, the time lag parameter p can be reduced without violating the minimum requirement pr > n.

Setting the time lag parameters based on the minimum examined number of sensors and keeping it

constant throughout the analysis is not recommended. This leads to unfeasibly long computation

times of an already expensive objective function. The proposed approach is to set the time lags
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Figure 10.3: Effect of changing time lags

to the minimum values during the numerical optimization procedure, and to perform a parameter

study on the time lag parameter only for the optimal sensor layout, and vibration data from the

real structure.

10.2.2 System Order

The system order n defines the number of eigenvectors in the block Hankel matrix which the

left null space is orthogonal to. For damage diagnosis, it can be set significantly lower than for

stochastic system identification. The system order should be set based on the number of physical

modes of vibration Nm that are observable in the considered frequency band. Since modes of

vibration are contained as complex conjugate vector pairs, a theoretical lower bound is given by

the condition n = 2Nm; however, an over-determination is recommended to accommodate for

stable non-structural modes (Example 10.2) and to reduce the uncertainties in the null space

(Example 10.3). Setting the system order to low may manifest itself in a shift of the test statistic

towards higher values for the training and the damaged state probability density function (PDF).

Example 10.2. Noisy Measurement Environments

This example shows that noisy measurement environments require a higher system order. The

objective is to gradually increase the noise contamination and to study the effect on the minimum

detectable damage and the non-centrality ratio for a varying system order n. The noise contam-

ination is measured in percent of the output variance and, for the sake of example, the power

spectral density (PSD) for the cases with noise contamination of 5% and 55% are shown in the top

plots of Fig. 10.4. The same figure visualizes that the minimum detectable damage increases with

increasing noise contamination (bottom left plot), in particular, if the system order is set to the

minimum value of n = 2Nm = 8. However, the effect can be compensated by increasing the system

order n. The bottom right plot shows the NCR which should be equal to one for all cases for the

prediction to be accurate. Having said that, increasing noise contamination causes the NCR to

exceed 100% unless the system order is set sufficiently high. To summarize, an over-determined
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Figure 10.4: Minimum detectable damage and non-centrality ratio for increasing noise contamina-
tion. The noise is in percent of the output variance

system order makes it possible to achieve an accurate prediction with high detectability despite an

extreme noise contamination.

Example 10.3. Subspace Angles

This example gives reasons for why the system order should be over-determined, even in noise-free

measurement environments. The challenge in the estimation of the left null space is the estimation

uncertainty, which may impair the orthogonality condition for a low model order. This uncertainty

is due to measurement noise and due to the unknown excitation. The recommended way to set

up the damage-sensitive residual is to extract the left null space from the block Hankel matrix

in the reference state and to pre-multiply it to the block Hankel matrix of incoming data in the

testing state. This assumes that the column space of the block Hankel matrix, which contains the

structural modes of vibration, is orthogonal to the left null space, with a subspace angle of zero.

Due to a variation in the dynamic system model, the subspaces may deviate from zero. The effect

becomes apparent when the subspace angle between the Hankel column space and the observability

is evaluated, where the observability is constructed in modal coordinates based on the modes of

vibration from the FE model, which eliminates uncertainties (see Section 3.3.3). A small subspace

angle indicates that the subspaces are nearly linearly dependent, which is to be expected because

the observability can be derived from the block Hankel matrix. Figure 10.5 plots the subspace angle
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Figure 10.5: Subspace angles between the FEA-based observability and the data-driven column
space of the block Hankel matrix

over the system order n. In the damaged state (right plot), the subspace angles are unequal to zero,

as the structural health state has changed, so the column space of the block Hankel matrix is not

linearly dependent on the columns space of the observability from the reference state. However, a

deviation from zero can also be noticed in the reference state (left plot) with a discernible drop after

a system order of n = 12. That means that the uncertainty in the covariance computation (which

causes linear dependencies) can be compensated by increasing the model order over the minimum

value of n = 2Nm = 8.

10.2.3 Mode Selection

The sensitivity matrix should contain all observable modes of vibration. If the frequency band is

widened, and more modes are included in the damage diagnosis, the sensitivity toward structural

parameter changes, and the damage detectability increases, in most cases. A minimum number

of modes of vibration is required if the Jacobian has to be of full column-rank. In particular for

damage localization, the minimum number of modes of vibration is decisive, because it affects the

maximum localization resolution. The next three examples help to understand the effect that the

number of modes of vibration has on the damage detectability.

Example 10.4. Understanding the Fisher Information

The Fisher information matrix is a measure for the detectability of damage in each monitoring

parameter. In Fig. 10.6, the Fisher information is plotted using only the first mode of vibration

(top left). The plot also shows the Fisher information using the first two modes (top right), as

well as the first three and four modes (bottom plots). The sampling frequency is kept constant,

and a modal reduction technique is applied during the vibration generation, so only the considered

modes are present in the data and the sensitivity matrix. For demonstration, the beam is split

into 54 parameters, and the excitation source is placed on one quarter of the beam. The first two

cases with one and two modes (top row) clarify that the Fisher information represents superposed

mode shapes. The last two cases with three and four modes (bottom row) further indicate that

a higher excitation magnitude leads to an increased Fisher information. Ultimately, the absolute

magnitude of the Fisher information increases with an increasing number of modes. To summarize,
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Figure 10.6: Fisher information for a simply supported beam with asymmetrical excitation

detectability depends on the number of modes and the mode shape amplitude at the examined

structural parameters, as well as the signal-to-noise ratio.

Example 10.5. Damage Detectability Gain

This example calculates the minimum detectable damage for an increasing number of modes of

vibration. In Table 10.2 and Fig. 10.7, the predicted detectable damage is illustrated for 1 - 8

of modes of vibration. For example, the minimum detectable damage in Parameter 7 based on

a single mode of vibration is ∆7 = 128.1%. Since this is beyond the physical limit of 100%,

damage cannot be detected in this parameter. Increasing the number of modes to two causes the

minimum detectable damage to drop to ∆7 = 8.4%, which corresponds to a detectability gain of

119.8%. Adding a third mode causes the minimum detectable damage to increase to 9.8%, so

an increased number of modes does not lead to a higher detectability in all cases. For detecting

damages in monitoring parameter 7, Mode 6 appears to be crucial, as it exhibits the highest damage

detectability gain of 11.2%. For most other parameters, Mode 3 appears to be more important.

The takeaway from this study is that a minimum number of modes is required for the numerical

conditioning of the Jacobian matrix, and an increasing number of modes increases the damage
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Figure 10.7: Relation between the detectable damage and the number of modes

Minimum Detectable Damage [%]

Parameter 1 2 3 4 5 6 7 8 9

1 Mode 1675.7 290.4 128.1 85.9 76.0 85.9 128.1 290.4 1675.7
2 Modes 56.9 12.5 9.2 15.6 40.9 12.6 8.4 11.8 54.2
3 Modes 39.9 10.3 9.4 16.4 58.9 15.8 9.8 11.8 48.7
4 Modes 10.0 6.2 17.5 6.3 21.7 8.2 15.8 11.1 15.7
5 Modes 8.1 7.3 11.7 7.4 18.1 7.4 15.9 7.7 9.9
6 Modes 4.8 6.1 4.7 5.6 5.5 5.6 4.7 6.0 4.7
7 Modes 3.7 4.6 4.2 4.1 4.4 4.1 4.2 4.6 3.7
8 Modes 3.3 4.0 3.8 3.8 3.8 3.8 3.8 4.0 3.3

Damage Detectability Gain [%]

Parameter 1 2 3 4 5 6 7 8 9

2 Modes vs. 1 Mode 1618.8 277.9 119.0 70.3 35.1 73.3 119.8 278.6 1621.5
3 Modes vs. 2 Modes 17.0 2.2 -0.3 -0.8 -18.0 -3.2 -1.4 0.0 5.57
4 Modes vs. 3 Modes 30.0 4.1 -8.0 10.0 37.2 7.5 -6.0 0.7 33.0
5 Modes vs. 4 Modes 1.9 -1.0 5.8 -1.0 3.5 0.9 -0.1 3.4 5.7
6 Modes vs. 5 Modes 3.3 1.2 7.0 1.8 12.6 1.8 11.2 1.6 5.2
7 Modes vs. 6 Modes 1.1 1.5 0.6 1.5 1.1 1.5 0.5 1.4 1.1
8 Modes vs. 7 Modes 0.4 0.6 0.4 0.3 0.6 0.3 0.4 0.6 0.3

Table 10.2: Relation between the detectable damage and the number of modes
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detectability differently for each monitoring parameter.

Example 10.6. Unobservable Modes in the Reference State

Unobservable modes of vibration deserve special attention. A mode of vibration is defined as non-

observable if all sensors are placed at vibrational nodes, as sufficient excitation is always assumed.

Unobservable modes are inevitable during sensor placement optimization, where all possible sensor

combinations are explored. For example, placing two sensors at position P3 and P6 in Fig. 10.2

would cause Mode 3 to become non-observable. The first issue is related to the sensitivity matrix.

Non-observable modes cause the derivative of multiple modal parameters to be close to zero, and

thus, linear dependencies arise in the column space of the sensitivity matrix (Jacobian J (1)). The

redundancies are numerical in nature, so they mislead the automated substructuring approach and

falsify the damage diagnosis and prediction. Another issue is related to the left null space. If the

null space is extracted from the block Hankel matrix, it is not orthogonal to non-observable modes.

However, if modes become observable in the damaged state, because damage causes a shift of the

vibration nodes, the damage-sensitive residual does not approximate the Gaussian properties and

the prediction of the minimum detectable damage is biased. The issue related to the sensitivity

matrix can be remedied by over-writing the entries with zero values. Since this does not remedy

the issue regarding the left null space, it is generally recommended to remove sensor layouts with

non-observable modes from the analysis. Ultimately, these layouts are likely to have a low damage

detectability, because non-observable modes do not carry structural information.

10.2.4 Number of Data Segments

Based on the theoretical properties of the underlying χ2−distribution, meaningful statements re-

garding the minimum detectable damage can be made. The pursued approach is to split the

vibration record into multiple data segments, to repeatedly apply the test to each segment in a

Monte Carlo experiment, and to evaluate reliability-based quantities such as the PFA and the

POD. An interesting question is how many data segments it takes for the empirical distribution to

approximate the theoretical properties. This is important for practical applications, because the

number of data segments influences the data length requirements.

Example 10.7. Accuracy of the Empirical Distribution

This example analyzes how many samples are required for the NCR to converge toward 100%.

It is based on a idealized χ2− distribution with ν = 18 degrees of freedom, and a non-central

χ2−distribution with ν = 18 degrees of freedom and a non-centrality of λ = 52.5. The overlap

between the two distributions corresponds to a PFA of 5% and a POD of 99.6%. For the analysis,

the number of samples ns is gradually increased, while re-evaluating the number of degrees of

freedom as the sample mean νemp = E[χ2(ν)] and the empirical safety threshold tcrit based on

a PFA of 5%. Subsequently, the minimum non-centrality λmin is estimated based on a POD of

99.6%, and finally, the predicted non-centrality is divided by the actual non-centrality of 52.5 and

plotted over ns. On the left side of Fig. 10.8, the sample mean values (black dots) are plotted over
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the number of samples ns. The sample mean gradually converges, with acceptable results with

less than 5% deviation to the true mean value after 100 - 110 data segments. On the right side

of Fig. 10.8, the NCRs (black dots) are displayed over ns. The predicted non-centrality converges

faster than the mean value with acceptable results with less than 5% deviation after about 30

samples. Moreover, a 1 - 2% error in the non-centrality appears inevitable even for large sets with

1,000 data samples. To highlight this, the experiment is repeated 10 times, and a grey envelope is

drawn over all data points. To conclude, the number of data segments should exceed 30, but larger

sample sizes with ns = 100 are advisable.
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Figure 10.8: Convergence of the predictions for a varying number of data segments

10.3 Minimum Data Length

Damage detection and localization based on the asymptotic local (AL) approach is based on the

assumption of a large sample size N , which leads to the rather significant question of whether there

is a lower bound for N . In general, the residual’s distribution is approximated through a Gaussian

distribution, and the approximation becomes more accurate for larger N . All quantities, including

the test statistics, the Fisher information, and the formula for minimum detectability are based

on the normally distributed residual. Vice versa, there must be a lower bound for the sample size

below which the predictive framework is invalid because Gaussianity is not given anymore. This is

particularly relevant for sensor placement optimization, where the optimal sensor layout is found

as the one with the minimum measurement duration. The sample size N is the product of the

measurement duration and the sampling frequency

N = Tfs

meaning the sample size could be increased by increasing the sampling frequency or increasing the

measurement duration. The effect of both input parameters is studied in this section, starting with

the sampling frequency.
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Figure 10.9: Increasing the sampling frequency for a fixed measurement duration T (left side) and
a fixed sample size (right side). Refer to Table 10.3 for input parameters

Fixed Measurement Duration

Frequency fs [kHz] 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1,1 1,2 1,3 1,4
Duration T [s] 10 10 10 10 10 10 10 10 10 10 10
Sample size N/1000 [-] 4 5 6 7 8 9 10 11 12 13 14

Fixed Sample Size

Frequency fs [kHz] 0.4 0.5 0.6 0.7 0.8 0.9 1,0 1,1 1,2 1,3 1,4
Duration T [s] 10.0 8.0 6.7 5.7 5.0 4.4 4.0 3.6 3.3 3.1 2.9
Sample size N/1000 [-] 4 4 4 4 4 4 4 4 4 4 4

Table 10.3: Input parameters for the evaluation of the minimum detectable damage and the non-
centrality ratio in Fig. 10.9

10.3.1 Sampling Frequency

Increasing the sampling frequency does not increase the damage detectability if the same num-

ber of modes is considered. This is unsurprising, as the information on the structural parameters

primarily depends on the number of modes in the sensitivity matrix. The premise is to set the

sampling frequency (after downsampling) high enough, so the highest mode of vibration is suffi-

ciently captured—even in the damaged state—and low enough so no unwanted modes of vibration

are captured that are not considered in the sensitivity matrix.

Example 10.8. Increasing the Sampling Frequency

The effect of a changing sampling frequency can be shown by means of an example using the HSS

beam from Fig. 10.1. To avoid having high-frequency modes become observable, the vibration

data is generated based on a modal reduction approach that considers only the first four modes

of vibration. In the first case, the measurement duration is fixed to T = 10 s. Increasing the
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sampling frequency from 400 Hz to 1,400 Hz for a fixed measurement duration means that the

sample size increases as well, see Table 10.3. The resulting minimum detectable damage and the

non-centrality are shown on the left side of Fig. 10.9. The minimum detectable damage remains

unchanged if the sampling frequency is increased from 400 Hz to 1,000 Hz. Consequently, the

sampling frequency is not a tuning parameter for damage detectability, although it is part of

the predictive formula. Increasing the sampling frequency beyond 1,000 Hz leads to detectability

changes, but the predictions also become inaccurate (which is indicated through the non-centrality

ratio beyond 100%), so the results are biased for some reason. In the second case, the sample size

is fixed to N = 4,000, so varying the sampling frequency now changes the measurement duration,

see Table 10.3. The results for the minimum detectable damage and the non-centrality ratio are

shown on the right side of Fig. 10.9. The measurement duration appears to be a powerful tuning

parameter to increase the detectability for changes between 400 Hz and 1,000 Hz. More studies on

the effect of the measurement duration follow in the subsequent section.

10.3.2 Measurement Duration

The measurement duration during testing is a powerful tuning parameter for damage detectability.

According to the predictive formula, the mean test response is proportional to the measurement

duration, see Eq. (10.3). The minimum measurement duration varies for the reference state and the

testing state. In the reference state, a long measurement duration is required to guarantee that all

matrices converge toward their final matrix, where the measurement duration during training and

testing can be significantly shorter because the matrices are not re-evaluated. Consequently, the

measurement duration in the testing state depends on how fast the residual attains the Gaussian

properties. To analyze the lower bound for the measurement duration, two additional convergence

criteria are introduced, i.e., the induced matrix norms and the Gaussianity check.

The induced matrix norm is a standard measure to verify the convergence behaviour of matrices.

In the Euclidean vector space, the matrix norm of a matrix A can be approximated through its

maximum singular value σmax with (Atkinson, 1989)

||A||2 = σmax(A). (10.5)

The Gaussianity check is a method-specific technique to verify that the distribution of the damage-

sensitive feature approximates a Gaussian distribution. In theory, Gaussianity is only given if the

sample size is infinite, because then, the central limit theorem (CLT) from Eq. (4.28) holds true

with

√
N · (ε̂− E[ε̂]) −→ N (0,Σ). (10.6)

One way to validate that the Gaussian properties are well-approximated is to transform the residual

into standard Gaussian form and to check its mean vector and covariance. This is done by pre-
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multiplying the inverse square root of the covariance matrix

z =
√
N · Σ̂−1/2ε̂ −→ N (0, I). (10.7)

In the following, the index i is introduced to clarify that each residual entry approximates a standard

Gaussian distribution zi −→ N (0, 1). By evaluating the residual multiple times in a Monte Carlo

experiment, the mean value and the standard deviation can be plotted for each entry. Since the

standard deviation is a statistical quantity of higher order than the mean value, it converges slower.

Another way to verify the Gaussianity is to transform the residual into standard Gaussian form

while considering the parametrization and the estimated Jacobian matrix Ĵ :

√
N · Σ̂−1/2ε̂ −→ N (0, I)

√
N · Ĵ T

Σ̂−1/2Σ̂−1/2ε̂ −→ N (0, Ĵ T
Σ̂−1Ĵ )

z =
√
N · (Ĵ T

Σ̂−1Ĵ )−1/2Ĵ T
Σ̂−1ε̂ −→ N (0, I) (10.8)

with zi −→ N (0, 1). Repeatedly evaluating the residual from Eq. (10.8) and evaluating the mean

and the standard deviation of each entry gives insight into whether the Gaussian residual, the

covariance, and finally, the Jacobian matrix have converged. As the residual is projected onto the

monitoring parameters through the Jacobian matrix, the number of residual entries reduces to the

number of monitoring parameters. Ultimately, statistical hypothesis tests can be applied to verify

the Gaussianity with the null hypothesis H0 : zi −→ N (0, 1). For this purpose, the distribution is

divided into Nbin number of bins, so the χ2−goodness-of-fit test can be applied to each bin with

χ2 =

Nbin∑
i=1

(Oi − Ei)2/Ei. (10.9)

The test verifies whether the observed residual entries Oi in the bins are likely to be drawn from

a standard Gaussian distribution with expected bin count Ei. For clarification, Example 10.9

visualizes the mean and standard deviation of the non-parametric and parametric CLT, as well as

the goodness-of-fit tests.

Example 10.9. Gaussianity Checks in the Training State

For visualization, this example performs the non-parametric and the parametric zero mean check,

unit variance check, and Gaussianity check in the training state of the HSS beam. In the training

state, the test statistic from Eq. 10.1 is repeatedly applied to 100 data segments of 10 s length in

a Monte Carlo experiment, so the test distribution can be plotted in histograms. In the same way,

the residuals from Eq. (10.7) and (10.8) can be evaluated in a Monte Carlo experiment, so the mean

value and the standard deviation of each residual entry can be plotted. In the top left and the

bottom left plot of Fig. 10.10, the mean and the standard deviation of each residual entry is shown.

As expected, the mean values are close to zero but only a few entries of the standard deviation

approximate the expected value of one, because the covariance is not of full rank. The mean
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Figure 10.10: Zero mean and unit variance checks in the training state
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Figure 10.11: Gaussianity check, goodness-of-fit test on the parametric residual

values and the standard deviations of the parametric residual, where the residual is projected onto

the monitoring parameter through the Jacobian matrix, approximate the theoretical distributions

N (0, 1) for 8/9 residual entries, as shown on the right side of Fig. 10.10. The deviation in the

covariance of the ninth entry comes at no surprise, as the Jacobian matrix is column-rank deficient.

This demonstrates how relevant the newly developed damage detection test from Section 5.3 is, as it

can also handle Jacobian matrices with column-rank deficiency. Moreover, it demonstrates that the

Gaussianity check or unit variance check is a suitable tool to get insight into the conditioning of the

damage diagnosis problem. In Figure 10.11, the distributions for the parametric test are shown,

after QR-decomposition and column pivoting, see Section 5.3. The first observation is that the

number of distributions reduces from nine to seven, as the Fisher information has a rank of seven.
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Figure 10.12: Convergence of the minimum detectable damage

Applying the χ2−goodness-of-fit test to the distributions leads to ρ−values that range between 7%

and 95%. Using a standard threshold of ρ=5%, the goodness-of-fit test verifies the Gaussianity for

all seven entries, so the measurement duration of 10 s is long enough.

Example 10.10. Convergence of the Minimum Detectable Damage

This example studies the convergence behaviour of the minimum detectable damage in Parameter 5,

so ∆5. Where the measurement duration during testing is fixed to T = 10 s, the measurement

duration in the reference state is varied from 0.1 s to 300 s, which corresponds to one and 3,090

cycles of the fundamental mode of vibration with a period of T0,1 = 1/10.3 s. Moreover, the

block length for the covariance computation Nb (see Eq. 4.10) is varied from one cycle per block

to ten, because it affects the convergence behaviour. Fig. 10.12 shows the corresponding minimum

detectable damage (left plot). It converges toward the same value regardless of the chosen block

length, but it converges faster for a block length with one cycle per block compared to a block length

with 10 cycles per block. The observation is confirmed by the NCR (right plot), as it converges

faster toward the optimal value of one for a short block length with one cycle. For a large block

length with ten cycles, singularities occur, with NCRs up to three and higher. The singularities are

further discussed in the subsequent examples. For the structure under consideration, a measurement

duration of T 0 = 500 cycles (48.8 s) appears sufficient, provided the short block size of one cycle

is used. This example suggests it is beneficial to keep the block length low, where a block length

that corresponds to one cycle of the fundamental mode of vibration appears sufficient.

Example 10.11. Convergence of the Matrix Norm

To further analyze the convergence behaviour of the matrices from the reference state, this example

evaluates the matrix norm of all three matrices, i.e., the Fisher information, the covariance, and

the Jacobian matrix. The goal is to find out which matrix critically determines the measurement

duration in the reference state. This time, the measurement duration is varied from one cycle

to 1,000 cycles of the fundamental mode of vibration, and the block length is varied from one

cycle to ten. In Fig. 10.13, the norm of the Fisher information and the norm of the covariance are
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Figure 10.13: Convergence of the Fisher information matrix norm and the covariance matrix norm
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Figure 10.14: Convergence of the Jacobian matrix norm

plotted. The plot highlights singularities in the norm of the Fisher information (peaks), which form

a diagonal when plotted over the measurement duration and block length. That means that, for

varying block length, the singularities occur for varying measurement duration, but for the same

number of blocks, see Eq. (4.10). The number of blocks can be calculated by dividing the total

number of cycles by the number of cycles per block, where the peaks occur at nb = N/Nb = 66.

The Fisher information is calculated based on the covariance matrix, which shows the singularities

at the same locations, implying that the singularities are caused by the covariance matrix. If the

measurement duration is increased beyond the singularity, the matrix norm converges toward a

constant value for all block lengths, but the convergence is faster for a short block length with one

cycle compared to a block length with 10 cycles. This confirms the finding from Example 10.10.

For a block length of one cycle, the matrix norm of the Fisher information converges after 100

cycles, and the covariance matrix after 200.

The covariance is a statistical quantity of higher order in comparison to the mean value. There-

fore, it is expected that the Jacobian matrix converges faster than the covariance matrix, as it

links the mean value of the data-driven residual to modal parameters and structural parameters.
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However, the matrix norm on the right side of Fig. 10.14 clarifies that the Jacobian matrix J con-

verges after 600 cycles of the fundamental mode of vibration, so significantly slower compared to

the covariance matrix (with 100 cycles). On close inspection of the Jacobian matrix components, it

can be understood that the first Jacobian matrix J (1) (which links the data-driven residual to the

modal parameters) causes the slow convergence, see left side of Fig 10.14. In other words, although

a data-driven modal analysis is circumvented by taking the modal parameters from the model, the

Jacobian matrix only converges if the measurement duration is sufficiently long, due to the covari-

ance approximation in the estimated block Hankel matrix, see Eq. (4.17). For the considered HSS

beam, the minimum measurement duration is equivalent to 600 cycles of the fundamental mode

of vibration, which corresponds to 48.5 s and 19,400 data points. The same results are obtained

for the convergence studies regarding the minimum detectable damage, see Fig. 10.12. The find-

ings can be cross-checked with a rule of thumb from stochastic system identification, where the

measurement duration is approximated through T 0 ≈ 1000 cycles (Brincker and Ventura, 2015).

Another way to validate that the Jacobian matrix critically determines the measurement duration

in the reference state is to check the non-parametric and parametric Gaussianity check, which is

done in the subsequent example.

Example 10.12. Convergence Toward Gaussianity (Reference State)

In this example, the unit variance checks are applied to training data while varying the measurement

duration in the reference state. Figure 10.15 plots the standard deviation of the non-parametric

and parametric test, from Eq. (10.7) and (10.8), over the measurement duration (i.e., the number of

cycles of the fundamental mode) and the residual entries. For the non-parametric test, all residual

entries converge toward the standard Gaussian distribution with a standard deviation of one after

200 cycles. For the parametric test, the minimum measurement duration is equivalent to 300 cycles,

so a longer measurement duration is required if the Jacobian matrix is considered. Comparing this

measurement duration to the measurement duration from Example 10.10 and 10.11 shows that the

residual converges faster toward its assumed statistical properties than the minimum detectable

damage and the matrix norms, where convergence was achieved after T 0 = 600 cycles. Moreover,

this example illustrates that the residual converges slower toward its assumed statistical properties

if the parametric version is considered, confirming that the convergence behaviour of the Jacobian

matrix is decisive for the measurement duration in the reference state.

Example 10.13. Convergence Toward Gaussianity (Testing State)

In this example, the unit variance checks are applied to vibration data in the testing state, where

the mean value of the Gaussian distribution has changed. The covariance is taken from the reference

state and the non-parametric and parametric tests are applied to see when the standard deviation

approximates the theoretical value of one, see Eq. (10.7) and (10.8). Fig. 10.16 plots the standard

deviation over the residual entries and the number of cycles of the fundamental mode of vibration.

The non-parametric version converges within 10 cycles (left side), where the parametric version

required more than 80 cycles (right side). The NCR in Fig. 10.17 confirms that the residual

converges after T = 80 cycles. To conclude, for the Gaussian framework to come into effect, a lower
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Figure 10.15: Gaussianity convergence studies in the reference state

bound for the measurement duration in the testing state is to be considered. However, this lower

bound is sufficiently low, so it does not limit the theories developed in this thesis.

All studies regarding the minimum data length can be summarized as follows:

� The measurement duration in the reference state does not affect the damage diagnosis results

once the reference matrices have converged.

� The Jacobian matrix dictates the measurement duration in the reference state with a mini-

mum measurement duration corresponding to 600 cycles of the fundamental mode of vibration

(58 s or 23,300 data points).

� The covariance matrix converges fast if the block length is kept short. A block length that

corresponds to one cycle appears sufficient. Longer block lengths may cause non-structural

long-term effects to be considered.

� There is a lower bound for the measurement duration during testing. Below this threshold

the damage-sensitive residual does not attain the Gaussian properties.

� The lower bound for the examined HSS beam is 80 cycles (7.77 s or 3,100 data points), which

is sufficiently low, so it does not limit the predictive framework.
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Figure 10.16: Gaussianity convergence studies in the testing state
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Figure 10.17: Convergence of the non-centrality ratio in the testing phase

10.4 Small Damage Assumption

The AL approach assumes that the residual converges toward a Gaussian distribution, for a very

long measurement duration and small changes, and the Jacobian matrix is linearized. This lin-

earization allows for the minimum detectable damage to be predicted, but the prediction is only

accurate if the damage extent is small. Vice versa, there may be an upper bound for the mini-

mum detectable damage, and this section introduces validation techniques to identify this upper

bound. As explained in Chapter 4, the sensitivity matrix of the residual vector toward structural

parameters is split into three parts

J =
∂Eθ[ε]

∂θ

∣∣∣∣
θ=θ0

= J (1) ·J (2) ·J (3). (10.10)
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The first sensitivity matrix J (1) links the data-driven residual to modal parameters. The second

sensitivity matrix links data-driven modal parameter to model-based ones (through J (2)), and the

third on links model-based modal parameter to structural parameters through J (3).

10.4.1 Jacobian Prediction Error

The Jacobian prediction error (JPE) employs the Jacobian matrix to predict changes in modal

parameters based on changes in structural parameters, and subsequently evaluates the relative

deviation in the predicted and the measured frequencies and mode shapes. As shown in this section,

the JPE can be applied to verify individual components of the Jacobian matrix from Eq. (10.10),

making it the most universal validation technique for the small damage assumption. For the

prediction, the structural parameter change ∆θh = θh − θ0
h is multiplied with the corresponding

Jacobian matrix column J (3)
h to predict the modal parameter change vector

∆ηpred = J (3)
h ∆θh. (10.11)

Adding the modal parameter vector from the reference state

ηpred = η0 + ∆ηpred, (10.12)

and re-combining the vector components corresponding to poles (they are split into real and imag-

inary parts), the poles can be converted into predicted natural frequencies fpred. Subsequently, the

predicted natural frequencies can be compared to the measured ones from the FE model, using the

Jacobian prediction error

JPE =
fpred − f

f
[%]. (10.13)

Equivalently, the mode shape entries can be compared using the JPE. This is more tedious, in

particular when many sensors are considered, because the number of mode shape derivatives is

Nm× r, where Nm is the number of modes of vibration for damage screening, and r is the number

of sensor locations.

JPE =
Ψpred
ij −Ψij

Ψij
[%] (10.14)

The same idea can be applied to verify the Jacobian matrix for a data-driven parametrization

J (1). For that purpose, the mean residual vector has to be generated by running a Monte Carlo

simulation. Based on the inverted Jacobian matrix and the mean residual, the change in modal

parameters can be predicted to

∆ηpred = J (1)†
h (E[ε]− E[ε0])

√
N. (10.15)
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Figure 10.18: Jacobian prediction error (JPE) for the change prediction in natural frequencies
(shown for Parameter θ5)

Figure 10.19: Jacobian prediction error (JPE) for the change prediction in mode shape coordinates
(shown for Parameter θ5)

Ultimately, the steps in Eq. (10.12), Eq. (10.13), and Eq. (10.14) can be repeated to verify the

prediction based on the Jacobian matrix J (1).

Example 10.14. JPE for a Model-based Parametrization

In this example, the Jacobian prediction error is evaluated for the HSS beam from Fig. 10.1 to

verify the bias that is introduced through the linearization of the model-based Jacobian matrix

J 3. The example focuses on structural changes in Parameter 5 (the stiffness of the HSS beam at

midspan) and its effect on modal parameters. The applied parameter change in the FE model is

varied between 0% and 100%, and the predicted natural frequencies are compared to the measured

ones from the model in Fig. 10.18. The measured frequencies (dotted line) non-linearly change

with increasing damage extent, where the Jacobian matrix linearizes the curve at θ5 = θ0
5 (solid

line). The plot also shows the JPE (in the bar plots below) for all four modes of vibration. Up to

a damage extent of ∆5 = 50%, the error stays below 5%, so the Jacobian matrix J (3) introduces
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Figure 10.20: Jacobian prediction error (JPE) for the change prediction in natural frequencies
(shown for Parameter θ5)

little bias in the prediction of the minimum detectable damage. Fig. 10.19 illustrates the JPE for

mode shapes. Up to a damage extent of 75%, the JPE remains below 5%, so the mode shape

linearization is more accurate than the linearization of the natural frequencies.

Example 10.15. JPE for a Data-driven Parametrization

This example evaluates the JPE for the Jacobian matrix J 1, which links the data-driven mean

residual to data-driven modal parameters. A single parameter change in the FE model causes all

modal parameters to change, as well as multiple entries in the Gaussian residual to deviate from

the zero mean conditions. Therefore, none of the natural frequency curves form a straight line

when plotted over the structural parameter change in Parameter 5, which varies from 0% to 100%,

see Fig. 10.20. The JPE is meaningful nonetheless, and up to a damage extent of 50%, the JPE

stays below 5%, so the predictions are very accurate.

10.4.2 Degeneration Check

Another default test is the degeneration check. It analyzes whether the Jacobian matrix is of full

column rank. One way to verify this is to perform the parametric Gaussianity test from Eq. (10.8),

where the convergence of the standard deviation toward the theoretical value of one is analyzed

(see Example 10.9). Another way is to plot the singular values of the Fisher information and to

evaluate the Fisher matrix rank (FMR).

FMR = rank
(
J TΣ−1J

)
(10.16)

If the Jacobian matrix is column-rank deficient, i.e., if the number of dominant singular values is

smaller than the number of monitoring parameters, the damage detection test has to be modified

using a QR-decomposition with column pivoting. Moreover, the minmax localization test is not

applicable without previously substructuring the Jacobian matrix (see Chapter 6).
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Parameter Effect / Importance Recommendation

Time lag
parameter
p and q

- p captures the number of time steps of
a freely decaying system and q is the shift
parameter for the evaluation of the covari-
ance functions
- Affects the covariance matrix and the
minimum detectability

- Set as high as necessary to consider
the physics of the problem
- Set as low as possible for numerical
efficiency

System
order n

- Determines the size of the left null space
- Affects noise rejection capabilities

- Over-determine the system order
over the minimum value of n > 2Nm

Modes of
vibration
Nm in the
Jacobian
matrix

- The number of modes and mode shape
amplitudes at structural parameters affect
the detectability
- Affects the localization resolution
- A minimum number is required to obtain
full rank sensitivity matrices

- Ensure that all observable modes
are considered in the Jacobian
- Disregard sensor layouts with non-
observable modes

Number
of data
segments

- Affects the accuracy of the prediction
- Even for idealized processes, the accu-
racy varies by 1-2%

- Use 100 or more data segments
- Use no less than 30 data segments

Sampling
frequency fs

- It is an application-specific input param-
eter for signal processing
- Does not affect the detectability

- Set appropriately, so all modes in
the Jacobian matrix are captured,
even in the damaged state

Duration
in reference
state T 0

- Must be long enough for the Jacobian,
the covariance, and the Fisher information
matrix to converge
- Does not affect the damage diagnosis
once convergence is achieved

- Use sufficiently long data sets
- If only short data sets are avail-
able, consider running a numerical
simulation to evaluate the minimum
data length. Verify convergence of
the Jacobian matrix J (1), or the
Fisher information

Duration
in testing
state T

- Must be long enough for the Gaussian
framework to come into effect
- Is a tuning parameter for damage de-
tectability and localizability

- Consider applying the Gaussian-
ity check, in particular after sensor
placement optimization

Small
damage
assumption

- There is an upper bound for the mini-
mum detectable damage
- Beyond the threshold the predictions be-
come inaccurate
- Damage diagnosis is still possible

- Check the Jacobian prediction er-
ror for every application

Table 10.4: Best practices for stochastic subspace-based damage diagnosis
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10.5 Summary

This chapter demonstrates that the predictive framework can be employed for model validation

studies. Model validation includes the verification of crucial input parameters, such as the time lag

parameters, the system order, the number of modes of vibration, and the number of data segments

for the distribution evaluation. Moreover, several convergence criteria are introduced to study the

lower bound for the measurement duration in the reference state and in the testing state, e.g.,

the standard Gaussianity check. The results from numerical case studies are reassuring, as the

lower bound does not impose significant limitations to the theories developed in this thesis. The

results further illustrate that the convergence behaviour of the covariance matrix depends on the

block length, and the Jacobian matrix dictates the measurement duration in the reference state.

Ultimately, multiple analysis tools are developed to analyze the small damage assumption of the

asymptotic local (AL) approach, including the limitations of the change linearization through the

Jacobian matrix. It appears that there is an upper bound for the minimum detectable damage

beyond which the predictions become inaccurate. However, damage detection and localization is

still possible. All case studies are based on a numerical hollow structural steel (HSS) beam, but

the tools are universally applicable to other structures provided a finite element (FE) model is

available. In this sense, this chapter summarizes the best practices for stochastic subspace-based

damage diagnosis, with a concise summary in Table 10.4.
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Chapter 11

Conclusions

“Damage assessment requires a comparison between

two system states.”

— Axiom II of SHM

(Farrar and Worden, 2012)

This thesis builds a framework to analyze the minimum diagnosable damage, which is defined

as the minimum changes in local structural components that can be reliably detected and localized

based on changes in global damage-sensitive features under consideration of statistical uncertain-

ties related to ambient excitation and noise. All considerations are made based on vibration data

from the undamaged structure in combination with a finite element (FE) model. This avoids em-

pirical and structure-specific experiments, and makes the framework universally applicable to a

wide range of civil and mechanical engineering structures (all structures that can be modelled in

FE software). Damage is defined as a change in a model-based design parameter and numerous

damage scenarios are considered, including changes in material constants or cross-sectional values,

support displacements, or changes in prestressing forces. The framework is developed for stochastic

subspace-based residuals because of its real-time capabilities, but it is universally applicable to any

damage-sensitive feature whose distribution can be approximated through a Gaussian distribution.

Traditionally, vibration-based structural health monitoring (SHM) is divided into four stages: the

instrumentation of structures with vibration sensors, vibration measurements, the extraction of

damage-sensitive features, and the damage diagnosis. This thesis suggests adding two building

blocks to this procedure, i.e., the performance evaluation before a SHM system is installed and

the model validation to perform quality control checks on existing instrumentation. Performance

evaluation means that the diagnosability of damages can be assessed before they occur, even for

unique structures, such as bridges, and unprecedented damage events, such as megathrust earth-

quakes. Based on the results in this thesis, the value of a SHM system can be assessed even if no

vibration data from the damaged state is available, which is a powerful amendment to Axiom II of

SHM. Model validation means that by comparing the predicted to the measured test response to

extra masses, the effectiveness of existing instrumentation can be checked, input parameters can

be verified, and the limitation of underlying damage diagnosis methods can be analyzed.

The applied damage detection and localization tests are based on the asymptotic local (AL)

approach, which provides parametric and non-parametric tests. More importantly, the AL is not

a black-box machine learning tool, but can be linked to structural models of the examined struc-

tures through analytical sensitivity vectors. This allows one to evaluate the global vibration while
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focusing the damage diagnosis on local structural components that are critical for the safety and

the serviceability of the structure. Other advantages are that the damage localization resolution

can be manually adjusted and that false localization alarms can be quantified. In contrast to

other methods, the statistical uncertainties due to short measurement records and the unknown

system excitation can be quantified and propagated through the damage diagnosis, allowing for a

reliability-based approach to evaluate the damage diagnosis results.

This last chapter summarizes the contributions of this thesis and ties them back to the research

objectives from the introduction (see Section 11.1). Moreover, particular strengths and limitations

of the developed theories are highlighted (Section 11.2), and possible future research topics are

addressed (Section 11.3).

11.1 Contributions

This work’s objective was to resolve a series of practical issues related to vibration-based damage

diagnosis on civil engineering structures. Table 11.1 summarizes the main contributions, with more

comments on the significance and the degree of maturity of individual methods in the subsequent

paragraphs.

(1) Minimum Detectable Damage. The core of this thesis is a formula to predict the test

response to damage based on vibration measurements from the undamaged structure in com-

bination with a FE model. Moreover, it introduces a reliability concept for global vibration

monitoring based on the acceptable probability of false alarms (PFA) and the minimum

probability of detection (POD), where the latter is tied back to the national safety standards

for assessing engineering systems. By combining the predictive formula with the reliability

concept, the minimum detectable damage can be calculated. The predictive framework is

developed based on the subspace-based residual but is applicable to any damage-sensitive

feature whose distribution approximates a Gaussian distribution. According to the derived

formula, damage detectability depends on the following aspects:

� The sensitivity of the feature

� The signal-to-noise ratio

� The reliability requirements toward the test results

� The measurement duration

� The complexity of the monitoring problem

The formula can also be solved for the measurement duration if the user fixes the minimum de-

tectable damage. It is demonstrated that the prediction holds true for both model-based and

data-driven tests, so the FE model is only necessary for calculating the minimum detectable

damage, but not in the active monitoring phase. To avoid numerical issues, the damage

detection test is modified, so it can efficiently be applied to large mechanical structures in
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Contributions Methodology Ref.

(1) Proposed a method to determine
the minimum detectable damages

Derived a formula to predict the mean test response to
damage and developed a reliability concept for vibration-
based damage detection

Ch. 5

(2) Developed a method to determine
the minimum localizable damages

Proposed mathematical expressions to quantify the min-
imum identifiable damage, and the false alarm suscepti-
bility

Ch. 6

(3) Proposed a performance criterion
that optimizes damage detectabil-
ity

Derived a formula for the minimum measurement time
and used it as a measure for the detectability of damage
in local structural components

Ch. 7

Proposed a performance criterion
for optimal damage localizability

Proposed a compromise function to find the optimal com-
promise between damage localization resolution, damage
identifiability, and false alarm susceptability

Ch. 7

Combined the proposed perfor-
mance criteria with a genetic algo-
rithm to efficiently find an optimal
sensor layout for large structures

Implemented single-objective and multi-objective ver-
sions of the genetic algorithm including the 2nd gen-
eration of the non-dominated sorting genetic algorithm
(NSGA-II)

Ch. 7

(4) Expanded the damage detection
method to diagnose changes in pre-
stress and support displacements

Modified the direct sensitivity method based on the geo-
metric stiffness matrix (stress stiffening)

Ch. 8

(5) Proposed non-destructive valida-
tion techniques for quality control
of existing instrumentation

Proposed extra masses to verify the efficiency of the dam-
age diagnosis module and to verify the predicted mini-
mum diagnosable damages

Ch. 9

Developed tools to verify the input
parameter settings

Put forward tools to quantify the absolute minimum mea-
surement during training and testing, the system order,
the time lags, and the number of modes of vibration

Ch. 10

Devised tools to quantify the error
due to the small damage assump-
tion

Introduced the Jacobian prediction error as well as de-
generation checks

Ch. 10

Table 11.1: List of contributions of this thesis

combination with a low number of modes of vibration (this determines the “complexity” of

the monitoring problem).

The findings address multiple fundamental problems related to SHM. Firstly, the damage

detectability can be evaluated for unique structures, without having to perform resource-

consuming laboratory experiments, and remedies the issue of transferring findings from one

structure to another. Quantifying the detectable damage based on the POD alleviates doubts

on the sensitivity of global monitoring approaches to small and local damages (Brownjohn

et al., 2011). Therefore, it is a powerful tool to convince decision-makers of the benefit of

implementing a SHM system. Besides, the formula for the minimum measurement duration

may replace the existing rules of thumbs. Ultimately, the predictive framework links SHM to

structural reliability analysis (Thöns et al., 2018) and helps to evaluate the value of monitoring

information in general (Long et al., 2020).

Non-parametric damage detection based on the AL approach is a mature technology estab-

lished in commercially available computer software. The predictive formula has shown to be
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highly accurate in numerical simulations of various structures and applicable to laboratory

tests on a pin supported beam. The next step is to validate the predictions based on vibration

data from a full-scale bridge.

(2) Minimum Localizable Damage. Damage localization poses additional challenges com-

pared to damage detection. However, this thesis extends the predictive framework to damage

localization tests, enabling the mean test response, the minimum identifiable damage, and

the corresponding measurement duration to be predicted. Moreover, a method is devised to

predict the test response of parameters that have not changed due to damage (false local-

ization alarms). This is achieved for multiple damage localization tests, including the direct

localization test or the minmax localization test.

This addresses another fundamental issue of SHM, i.e., the over-parametrization of FE models.

The problem is that multiple monitoring parameters in the model have a similar effect on the

damage-sensitive feature, and, vice versa, it is challenging to identify the structural parameters

that have changed. A remedy is to cluster monitoring parameters with similar sensitivities

(Balmès et al., 2008b; Allahdadian et al., 2019). Clustering the monitoring parameters is

equivalent to dividing the FE models into substructures, in which damage can be isolated.

However, this thesis gives evidence that finding the optimal number of clusters is a multi-

objective optimization problem. It appears that with an increasing number of clusters, the

damage localization resolution increases, but the damage identifiability in each parameter

decreases, and the number of false alarms changes.

The method is robust when applied to numerical simulations and shows encouraging results

when optimizing the damage localization on a laboratory steel beam. Therefore, it constitutes

an important step toward real-time damage localization using the AL approach. However,

additional studies are required, including laboratory tests and full-scale tests on bridges to

increase its robustness and mature the technology.

(3) Sensor Placement Optimization. A criterion for sensor placement is proposed that opti-

mizes the damage detectability. It is combined with a state-of-the-art optimization method,

i.e., a genetic algorithm (GA), to efficiently find a close-to-optimal solution in large mechan-

ical systems, such as bridges. The sensor placement strategy takes as input the requested

detectable damage in individual FE model components, and yields as output the optimal

sensor layout. By combining the proposed criterion with the considerations regarding the

optimal substructure arrangement from the previous paragraph, a sensor placement strat-

egy is proposed to optimize the damage localizability. The developed framework is capable

of finding the optimal sensor layout and an appropriate number of sensors. Ultimately, a

multi-objective GA is implemented to overcome the problem of combinatorial explosion.

The sensor placement strategy addresses two primary issues. Firstly, only a few method-

specific criteria exist that directly optimize the damage detectability. None of the existing
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criteria appears to consider the relative degradation of engineering design parameters, al-

though this is the decisive quantity for structural design and safety. By proposing the min-

imum detectable damage as a criterion for sensor placement optimization, the purpose of

vibration analysis is brought in line with structural design philosophies. Secondly, most sen-

sor placement strategies optimize the criteria on a global vibration level, but the structural

health depends on the integrity of local components that are critical for the structural safety

and serviceability (such as joints), and damage tends to accumulate at well-known hotspots,

see Fig. 1.4. Since the minimum detectable damage is defined components-wise, the sensor

layout can be tuned to become more sensitive to damage hotspots.

The developed tools and the literature review on existing sensor placement strategies can

enforce a transition in the British Columbia Smart Infrastructure Monitoring System (BC-

SIMS) from sensor layout based on engineering judgment to highly efficient layouts with

optimal damage diagnosability tuned to address the specific service requirements of individ-

ual structures.

(4) Monitoring Boundary Conditions. Prior to this work, the damage diagnosis methods

from the previous paragraphs have focused on changes in structural parameters, while changes

in boundary conditions remained unconsidered. This thesis puts forward an approach to

diagnose support displacements or changes in prestress, by considering the geometric stiffness

matrix (stress stiffening) in the calculation of the sensitivity matrix. This way, changes in

boundary conditions can be incorporated into the established diagnosis framework, so they can

be localized and distinguished from changes in cross-sectional values or material properties,

and their minimum diagnosable change can be predicted.

Multiple damage scenarios during extreme events such as earthquakes cause changes in bound-

ary conditions, e.g., ground failure (see Fig. 1.4). Moreover, excessive support settlements

or loss of tension in prestressing tendons (due to slippage or stress corrosion) are common

problems in bridge monitoring, making the developments particularly relevant.

The monitoring of boundary conditions is studied based on numerical examples, such as an

individual prestressing tendon and the Shipshaw cable-stayed bridge. However, it has not

been applied to any laboratory or real-life applications. Further laboratory tests and real-life

applications are required to achieve a sufficient degree of maturity.

(5) Model Validation. This thesis’s more practice-oriented contributions are the non-invasive

validation technique using extra masses as well as a series of checks for model validation. The

employed damage diagnosis method is universal in that it can be applied to a wide range

of structures and any model-based parameter. This allows one to define damage as changes

in mass and to conduct non-invasive validation studies based on extra masses. Moreover, a

series of studies on the input parameter settings are conducted that give guidance on how to

set crucial signal processing parameters. Tools are introduced to verify the minimum data

length requirements and the minimum number of data segments for reliable damage diagnoses.
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Additional tools are introduced to verify the small damage assumption that is made in the

considered damage diagnosis method.

This remedies another fundamental issue of SHM systems and the BCSIMS. Bridges are vital

links in primary infrastructure, and damaging them for research purposes is not an option.

Due to each structure’s uniqueness, it is challenging to assess whether the theoretical assump-

tions are fulfilled and whether input parameters for signal processing are set appropriately.

To check this, the developed tools can be applied (without having to damage the structure

or interrupt its operation) and routinely scheduled tests based on extra masses could aid in

the evaluation of the fitness of aging instrumentation.

A laboratory experiment based on extra masses has shown encouraging results validating

the theoretical developments of this thesis. The next step to transition this approach into

engineering practice is to evaluate the magnitude of extra masses to real bridges and to

conduct a full-scale experiment.

11.2 Strengths and Limitations

Below, the particular strengths and limitations of the predictive framework are categorized.

Reliability. One of the main strengths of the developed method to analyze the minimum de-

tectable damages is its comprehensiveness, as it considers many aspects that are typically criticized

about global vibration monitoring: the sensitivity to local damages, the uncertainties in the esti-

mation of the data-driven features, and the reliability of the damage diagnosis results. A damage

diagnosis is considered “reliable” if the PFA is close to zero and the POD is close to one-hundred

percent. Likewise, a damage scenario is considered “detectable” if the test result is reliable–while

considering the uncertainties due to stochastic loads, measurement noise, and limited sample size.

In other words, the distributions of the data-driven features in the undamaged and damaged states

are considered, and a decision is made by comparing the tests against a safety threshold.

Universality. Another strength of the developed framework is its universality. In contrast to

most other approaches that analyze the minimum diagnosable damages, the predictive formula

is universally applicable to a wide range of structures and element types (i.e., to all structures

that can be modelled in FE software). Secondly, the framework can be applied to analyze a wide

range of damage scenarios, including changes in material constants, cross-sectional values, support

displacements, and prestressing forces. The framework is derived based on the subspace-based

residual vector, but it is applicable to numerous damage-sensitive features, the distribution of

which can be approximated by a Gaussian distribution.

Gaussianity. The methods in this thesis are developed for damage-sensitive features with Gaus-

sian distributions. It is important to keep in mind that the Gaussian framework is invalid if the
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damage-sensitive feature is not normalized, meaning if it changes due to environmental and op-

erational variables (EOVs) (where the next paragraph explains how to handle EOVs). Another

case, where the Gaussian assumption is violated is when the inputs are strongly correlated, e.g., if

rotating machinery is placed on or near the structure, so periodic signals are introduced. Weakly

correlated inputs (with temporal correlations) are unproblematic, because the system dissipates

energy, and the correlations decay over time. The fact that damage-sensitive features can be ap-

proximated by a Gaussian distribution after applying the central limit theorem (CLT) is shown

through several laboratory experiments. For output covariance estimates of stable linear systems,

Gaussianity is not an assumption but a consequence from the CLT, and it is not a limitation for

damage-sensitive features. Viewed from a different perspective, the assumption of Gaussianity is a

strong point because many features can be approximated by a Gaussian distribution, possibly even

features derived from a non-linear system response. The premise is that the Taylor series expansion

can be applied to the feature with respect to structural design parameters, and that higher order

terms can asymptotically be neglected.

Environmental and Operational Variables. Depending on the effect that changing opera-

tional loads (e.g., wind or traffic loads) or environmental changes (e.g., temperature fluctuations)

have on the statistical distribution of the features, the Gaussian distribution may no longer be

given. Moreover, the associated uncertainties are not captured in the covariance matrix, which

only considers the stochastic loads, measurement noise, and limited sample size. However, this

does not mean that the predictive framework cannot be applied to real structures under changing

EOVs; it means that the damage-sensitive features have to be normalized prior to the analysis of the

minimum diagnosable damages. Data normalization approaches have not been considered in this

thesis, but several solutions are available in the literature on stochastic subspace-based methods

(Balmès et al., 2008a, 2009; Magalhães et al., 2012; Oliveira et al., 2018; Viefhues et al., 2020). By

applying these approaches, the effect of EOVs can be eliminated and the Gaussian characteristics

of the features can be preserved. This widens the applicability of the predictive framework from nu-

merical simulations and laboratory studies to real world structures under changing environmental

conditions.

Excitation Properties. For damage diagnosis based on the subspace-based residual, the mini-

mal detectable damage and the optimal sensor placement depend on the excitation characteristics

and the extent of noise contamination. This is because the predictive framework considers the

sensitivity of the damage-sensitive feature and the uncertainty in its estimation. In general, this

means that bias is introduced if the excitation characteristics change significantly between training

and testing, or if the noise characteristics on the real structure are significantly different to the mod-

elled excitation environment. The fact that the excitation properties matter is also an advantage

because the application-specific signal-to-noise ratio can be considered when assessing the damage

detectability. What is more, this alleged weakness is compensated by another strength of the pre-

dictive framework, which is the universal applicability to different damage-sensitive features. One
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way to enhance the robustness is to use a different damage-sensitive residual that is more robust

to changes in the excitation characteristics (Döhler et al., 2014b).

Small Damage Assumption. Another point is the small damage assumption made in the AL

approach, including the change linearization through the first-order sensitivity matrix. The deci-

sive formula of the AL approach is the CLT stating that, for very large measurement durations

and small damages, the distribution of the damage-sensitive residual converges toward a Gaussian

distribution. On the downside, this means that system changes (in modal parameters or structural

parameters) cannot exceed a specific limit, otherwise, the prediction becomes inaccurate. In the-

ory, higher-order terms could be considered in the Jacobian (Adhikari and Friswell, 2001) but they

would require an entirely different framework for the prediction of the minimum detectable dam-

age. On the upside, this makes the AL approach highly sensitive to small and local damages, and a

slight modification of modal parameters may correspond to significant damage in structural design

parameters for large structures. The limitations of the small damage assumption underline the

importance of the developed validation techniques to verify that the predicted detectable damage

does not exceed the limitation superimposed by change linearization.

Data Requirements. One aspect is that the sensor placement strategy requires vibration data

from the undamaged structures (real data or simulated data), where many other approaches do not.

Another aspect is that the developed methods are reliability-based, meaning they focus on the in-

depth analysis of statistical test distributions rather than individual test samples for performance

evaluation. Because of this, more extended data sets might be required, in particular, for the

performance evaluation based on simulated data. Having said that, no vibration data from the

damaged state is required to analyze the performance of the damage diagnosis module, and the

diagnostic runtime during testing is one of the most compelling arguments to use the subspace-based

residual, as it is formed in the time-domain without a time-consuming modal system identification.

The shortest documented measurement time in this thesis is 3.0 s for damage localization in the

hollow structural steel (HSS) steel beam and diagnosis runs with less than 2 s have been successful

for the down-scaled laboratory model of the St. Nazaire bridge with considered natural frequencies

up to 150.9 Hz. Considering the dynamic similitude requirements, the measurement time for full-

scale bridges is longer; however, Monte Carlo experiments with 100 runs or more are feasible. In

summary, the approach is particularly suited for damage-sensitive features that can be evaluated

based on short measurement durations.

Multiple Damage Scenarios. The analysis of the minimum detectable damages is built on the

assumption of individual parameter changes. Suppose multiple damages occur simultaneously at

different locations across the structure. In that case, the minmax localization test should manage to

isolate parameters that have changed, and the direct localization test may fail because it does not

consider the interdependencies between different parameters. This does not mean that the predic-

tive framework is not applicable for multiple damage scenarios. For parametric and non-parametric
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damage detection tests, the prediction based on the individual parameter changes is conservative,

as multiple parameter changes usually cause the tests to respond stronger than the predictions for

individual damages. Moreover, the minimum detectability or localizability for multiple damage

scenarios can straightforwardly be derived based on the proposed framework if the damages have

equal magnitudes and if they are considered in the preprocessing stage. The interdependencies be-

come more complex if the damage magnitudes differ, and (although not shown in this thesis) they

could be described based on the off-diagonal terms of the Fisher information. To summarize, the

presented framework in this thesis has been derived for the analysis of damage scenarios that can be

described by individual parameter changes, to ease the exposition, and the minimum diagnosable

damages described by multiple parameter changes could be derived analogously.

Necessity of a FE Model. The prediction of the minimum diagnosable damage is based on data-

driven tests, but for the computation of the sensitivity matrix, a FE model is required. Hence, one

might argue that this causes additional modelling effort and introduces several problems that are

known from the FE model updating literature. That being said, the mismatch between the modelled

and the real structure may be less critical, as the quality of the sensitivities is more important than

the accuracy of the model itself. Moreover, the predictive framework is not restricted to specific

element types or components but can be applied in combination with FE models of arbitrary

structures. In this sense, the requirement of a “regular” FE model is an advantage compared to

other damage diagnosis methods that are tailored to specific types of structures, such as analytical

Bernoulli beams. Moreover, the use of FE models is advantageous because modal parameters can be

extracted from the model, and a data-driven identification can be circumvented, including typical

issues related to insufficient excitation or closely-spaced modes. For many applications, the number

of monitoring parameters in the model is lower than the number of (vectorized) modal parameters,

or residual entries, which leads to higher damage sensitivity of damage diagnosis tests. The reason

for this is that the developed reliability index depends on the number of monitoring parameters.

Ultimately, it is worth reiterating that parametrization in the active monitoring phase is optional,

as the prediction of the minimum detectable damage is also valid for non-parametric tests.

Completeness of the Parametrization. Another aspect is the requirement of a complete

parametrization for both modal parameters and structural parameters. The predictive framework is

only valid for damage scenarios modelled through changes in the predefined monitoring parameters,

and no statements can be made about unconsidered structural parameters. This does not mean that

damage detection is impossible, but leads to bias in the statistical properties of the parametrized

and non-parametrized detection test, as well as a loss of sensitivity. Moreover, it causes damage

localization tests to fail. So, it is up to the user to provide a complete parametrization for him or

her to be able to analyze the minimum detectability based on the devised tools from this thesis.

Equivalently, every mode of vibration that is observable in the data also has to be considered in the

null space and the sensitivity computation for the predictions to be accurate. However, this thesis

expands the diagnostic capabilities to all anticipated damage scenarios, including change in cross-
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sectional values, material properties, mass distribution values, change in prestress, and support

displacements—meaning a complete parametrization is possible. Besides, damage parametrization

is a suitable way to focus the damage diagnosis onto selective design parameters and to increase the

damage detectability in them, provided changes in other parameters can be excluded. A selective

parametrization reduces the number of monitoring parameters which, in turn, leads to a more

lenient reliability index and higher damage detectability. In addition, a selective parametrization is

crucial for sparse sensor layouts because it improves the numerical conditioning of the localization

problem. Among the considered parametrizations, the model-based one appears to be the most

sensitive to damage and robust toward noise effects. For data-driven monitoring, it is recommended

to choose the parametrization with respect to modal parameters over the non-parametric test for

robustness, whenever possible.

Efficiency of the Sensor Placement Strategy. Ultimately, the minimum measurement du-

ration is an expensive objective function for sensor placement optimization, particularly, in com-

parison to low-level criteria such as the mode shape amplitude or the kinetic energy per mode, see

Chapter 2. Consequently, it is impossible to assess all sensor configurations and to find the optimal

solution in an exhaustive search approach. However, this problem is common to many state-of-

the-art optimization criteria. It merely underlines the importance of a smart optimization method,

such as the implemented GA, to efficiently find a close-to-optimal solution within a reasonable time.

11.3 Future Research

Besides the future research topics that are specific to the stochastic subspace-based method and

that have already been discussed in the previous sections, the following points could be addressed.

Full-scale Case Study. An important step to transition the developed methods into engineering

practice is to perform full-scale tests on cable-stayed bridges using extra masses or existing damage

scenarios with single-damage scenarios and well-defined damage extent. Such case studies could

verify the efficiency of all developed tools, could help to improve the robustness of the automated

substructuring approach, and verify the practicability of extra masses for large structures. Fur-

thermore, the limitations regarding the assumed excitation properties could be analyzed, as well

as the effect of environmental and operational variables, and the numerical issues that might occur

for very large mechanical structures. Large structures generally exhibit lower natural frequencies,

lower sampling frequencies, a lower damage sensitivity (Jacobian), as well as higher noise compo-

nents (covariance). Consequently, the damage detectability is lower and the measurement duration

is longer, so the diagnostic runtime must be verified to ensure it is still practical.

Feature Comparison. The predictive framework for the minimum detectable damage is ap-

plicable to any damage-sensitive feature whose distribution can be approximated by a Gaussian

distribution. Several such features have been proposed in the literature to which the approach
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could be readily applicable, e.g., in (Parloo E. et al., 2003; Yan and Golinval, 2006; Döhler et al.,

2014b; Bhuyan et al., 2017c; Gres et al., 2017). Since the subspace-based residual is directly formed

in the subspace of the block Hankel matrix, which all modal parameters are derived from, many

more such residuals likely exist. An interesting research topic would be a comparative study, where

the minimum detectability for multiple such residuals is evaluated, and the most sensitive one is

determined.

Strain Monitoring. An interesting future research topic is the expansion of the predictive frame-

work to strain-based measurements. This thesis focuses on acceleration, velocity, or displacement

measurements, or combinations thereof, which are combined into a stochastic state space model.

Stochastic state space models for strain-based methods are available as well, and future research

should focus on the evaluation of appropriate sensitivity matrices with respect to structural design

parameters.
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Greś, S., Döhler, M., Andersen, P., and Mevel, L. (2021). Kalman filter-based subspace identifica-
tion for operational modal analysis under unmeasured periodic excitation. Mechanical Systems
and Signal Processing, 146:106996.
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