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This PhD thesis mainly addresses the dynamics and the robustness of a novel concept of mode locking in ultracompact semiconductor nanolasers. Such a nanolaser exhibits Hermite-Gaussian modes created by a harmonic photonic cavity to confine light. This maps the optical cavity into quantum mechanical harmonic oscillator, with evenly spaced eigenfrequencies, an essential requirement for mode locking. The possible nonlinear regimes are described by the Gross-Pitaevskii equation with a parabolic potential and nonlinear terms describing gain and absorption. To investigate these dynamical behaviors, direct numerical simulations are mainly implemented. Continuation calculations are also performed using pde2path. First, the mode competition for gain among Hermite-Gaussian modes in the absence of saturable absorption is investigated and shown to be very different from usual resonators. Second, mode locking is predicted to occur with instantaneous saturation of gain and absorption over a broad range of parameters, corresponding to the emergence of dissipative soliton. The mode locking period is controlled by the design of the photonic potential, and not by the cavity length. The dissipative soliton is well described by the coherent state of a quantum mechanical oscillator, namely a Gaussian envelope oscillating without deformation. Third, in the regime of noninstantaneous gain and absorption saturation, different dynamical behaviors of the nanolaser are obtained by varying the gain and the absorption. These different regimes, including Q-switching, Q-switched mode locking, and CW mode locking, are described in detail, illustrating the rich physics of this nonlinear system. The influence of the Henry factor on the mode locking is also discussed. Moreover, similar dynamical behaviors using spatially separated gain and absorber sections inside the cavity are obtained. Fourth, the robustness of mode locking of the Hermite-Gaussian modes to the disorder of the harmonic cavity is investigated in details. It includes the effect of non-parabolicity of the potential and the random errors in the shape of the potential.
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VII Résumé

L'apparition des nanolasers à faible consommation électrique et faible encombrement ouvre de nouveaux champs d'investigation et d'application. Cette thèse porte principalement sur la dynamique et la robustesse d'un nouveau concept de verrouillage de mode dans les nanolasers à semi-conducteurs ultracompacts. Un tel nanolaser présente des modes de Hermite-Gauss. Ces modes sont créés par une cavité photonique créant un potentiel de forme harmonique pour confiner la lumière. Cela permet de faire une analogie entre les modes de la cavité optique et les états propres d'un oscillateur harmonique quantique. En particulier, les fréquences propres des modes sont uniformément espacées, ce qui est une exigence essentielle pour le verrouillage des modes d'un laser basé sur une telle cavité.

Après introduction de termes non-linéaires décrivant le gain et l'absorption, le fonctionnement du nanolaser à cavité harmonique est décrit par une équation de type Gross-Pitaevskii modifiée. Ce modèle est à la base des simulations numériques que nous avons menées pour prédire les différents comportements dynamiques du laser. Nous avons de plus développé des calculs de continuité de solution basés sur le module pde2path d'analyse de stabilité des solutions d'équations aux dérivées partielles. Dans une première partie, nous avons analysé en détails la compétition entre les modes pour le gain dans le cas des modes de Hermite-Gauss de la cavité harmonique en l'absence d'absorption saturable. Nous avons montré qu'en raison de la structure spatiale de ces modes, la compétition est très différente de celle habituellement observée pour les modes des cavités standards de type Fabry-Perot. En effet, nous avons observé que la compétition est forte seulement entre des modes de Hermite-Gauss adjacents.

Ensuite, nous avons supposé qu'un absorbant saturable est également introduit dans le résonateur. Nous avons alors pu prédire, dans le cas d'une saturation instantanée du gain et de l'absorption, que le verrouillage du mode doit se produire pour un large éventail des valeurs des paramètres, correspondant à l'émergence de solutions dissipatives de type soliton unique ou soliton multiple. La période de répétition du train d'impulsions généré par verrouillage des modes est contrôlée par la cournure du potentiel photonique, et non par la longueur de la cavité. Poursuivant l'analogie avec l'oscillateur harmonique quantique, nous avons montré que le soliton dissipatif obtenu est bien l'équivalent d'un état cohérent dans un oscillateur quantique, à savoir une impulsion de forme gaussienne oscillant sans déformation dans le potentiel.

Troisièmement, nous avons introduit des durées de vie finies pour le gain et l'absorption. Nous avons alors pu prédire différents comportements dynamiques du nanolaser en faisant varier le gain et l'absorption. Parmi ces différents régimes, nous avons prédit la possibilité d'un fonctionnement déclenché, d'un fonctionnement à verrouillage de mode pendant l'impulsion déclenchée, ainsi que le verrouillage de modes continu prédit précédemment. Tous ces régimes sont décrits en détail, illustrant la riche physique de ce système non linéaire. L'influence du facteur Henry sur le verrouillage du mode est également discutée. De plus, nous avons prédit l'existence de comportements dynamiques sim- 

Background

Lasers continue to amaze us [START_REF] Bretenaker | Laser: 50 Years of Discoveries[END_REF] sixty years after the invention of the first functioning laser in 1960. Thanks to the remarkable properties of laser light, laser applications continue to expand. The semiconductor lasers, as a family of lasers, play not only an important role in research but have also fundamentally changed many aspects of our lives. They are used in a wide variety of applications around us ranging from barcode readers, high resolution laser printers, image scanning, the readout sources in CD/DVD and Blu-ray disk players, sports watch, cellphones and in the complex transmitters and receivers in optical fiber communication systems. High-power lasers are used in industrial applications such as heat processing, laser ignition, laser surgery, cladding, seam welding and for pumping other lasers.

Nanolasers have attracted intense interest, because they are more compact, integratable and power-efficient than conventional lasers [START_REF] Ma | Applications of nanolasers[END_REF]. The integration of ultra-compact laser sources on a silicon platform should strongly improve the energy efficiency in shortdistance and on-chip communication for future computers by suppressing a large volume of cables and components [START_REF] David | Device requirements for optical interconnects to silicon chips[END_REF][4][START_REF] Ning | Semiconductor nanolasers and the size-energy-efficiency challenge: a review[END_REF]. In this context, passively mode-locked semiconductor lasers [6,[START_REF] Avrutin | Monolithic and multi-GigaHertz mode-locked semiconductor lasers: Constructions, experiments, models and applications[END_REF] are a promising source of optical pulses at high repetition rates for integrated photonics, which are potentially compact, low-cost, and reliable. Besides, photonic crystal (PC) lasers, which exhibit appealing properties in terms of low volume, low threshold, and excellent energy efficiency [START_REF] Park | Electrically Driven Single-Cell Photonic Crystal Laser[END_REF][START_REF] Matsuo | High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted[END_REF][START_REF] Crosnier | Hybrid indium phosphide-on-silicon nanolaser diode[END_REF], have achieved significant progress since the first photonic crystal laser was demonstrated [START_REF] Painter | Two-dimensional photonic band-gap defect mode laser[END_REF]. By modifying the geometry of the PC, different cavity properties can be optimized, leading for example to ultrahigh quality factors [START_REF] Shik | Ultrahigh-Q photonic double-heterostructure nanocavity[END_REF] or high collection efficiency [START_REF] Vi | Directive emission from high-Q photonic crystal cavities through band folding[END_REF]. Moreover, nanolasers based on photonic crystal (PC) cavities are of great importance from the point of view of quantum optics due to their ability to tightly confine modes in three dimensions [START_REF] Ning | Semiconductor nanolasers and the size-energy-efficiency challenge: a review[END_REF].

Such a small light source requires an ultracompact cavity to confine the light. Strongly confining photons in dimensions of the order of an optical wavelength has attracted a lot of attention [START_REF] Painter | Two-dimensional photonic band-gap defect mode laser[END_REF][START_REF] Shik | Ultrahigh-Q photonic double-heterostructure nanocavity[END_REF][START_REF] Shik | Photonic devices based on in-plane hetero photonic crystals[END_REF][START_REF] Ogawa | Control of light emission by 3D photonic crystals[END_REF][START_REF] John | Strong localization of photons in certain disordered dielectric superlattices[END_REF]. Such optical cavities with high Q-factor and strong light confinement in a small volume are able to enhance the light intensity and nonlinear interactions. They are promising components for parametric oscillators [START_REF] Kippenberg | Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[END_REF], optical frequency combs [START_REF] Kippenberg | Microresonator-Based Optical Frequency Combs[END_REF][START_REF] Pasquazi | Microcombs: A novel generation of optical sources[END_REF], quantum information [START_REF] Preble | On-chip quantum interference from a single silicon ring-resonator source[END_REF][START_REF] Grassani | Micrometer-scale integrated silicon source of time-energy entangled photons[END_REF][START_REF] Reimer | Generation of multiphoton entangled quantum states by means of integrated frequency combs[END_REF] and metrology [START_REF] Huang | A broadband chip-scale optical frequency synthesizer at 2.7 × 10 -16 relative uncertainty[END_REF]. Optical harmonic cavities with whispering gallery modes in surface nanoscale axial photonics (SNAP) bottle resonators have attracted a lot of interest [START_REF] Sumetsky | Whispering-gallery-bottle microcavities: the three-dimensional etalon[END_REF][START_REF] Sumetsky | Theory of SNAP devices: basic equations and comparison with the experiment[END_REF][START_REF] Sumetsky | Nanophotonics of optical fibers[END_REF][START_REF] Sumetsky | Microscopic optical buffering in a harmonic potential[END_REF][START_REF] Dvoyrin | Bottle microresonator broadband and lowrepetition-rate frequency comb generator[END_REF][START_REF] Sergey | Frequency comb generation in SNAP bottle resonators[END_REF][START_REF] Oreshnikov | Multiple nonlinear resonances and frequency combs in bottle microresonators[END_REF]. The spatial profiles of the modes are Hermite-Gaussian functions, but are different from the longitudinal Hermite-Gaussian modes obtained here by photonic harmonic cavities.

With the objective of generating short pulses of light, self-pulsing operation of Fano photonic crystal lasers has been demonstrated [START_REF] Rasmussen | Theory of Self-pulsing in Photonic Crystal Fano Lasers[END_REF][START_REF] Yu | Demonstration of a self-pulsing photonic crystal Fano laser[END_REF]. Moreover, mode-locked operation has been considered for lasers based on PC cavities [START_REF] Liu | Modelocking of monolithic laser diodes incorporating coupled-resonator optical waveguides[END_REF][START_REF] Heuck | Theory of passively mode-locked photonic crystal semiconductor lasers[END_REF]. Recently, a new type of photonic crystal cavity forming a harmonic photonic potential leading to the possible oscillation of multiple longitudinal Hermite-Gaussian (HG) modes has been demonstrated [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF][START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF][START_REF] Vincent Poulton | Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology[END_REF]. Based on such harmonic potential cavity, a new concept of ultra-compact modelocked nanolaser has been proposed [START_REF] Sun | Mode Locking of the Hermite-Gaussian Modes of a Nanolaser[END_REF]. It is based on the fact that, in the presence of a 1.2.1 -Cavity modes harmonic potential cavity, the Hermite-Gaussian modes exhibit a periodic spectrum, which is a necessary condition for mode-locking. Moreover, the inhomogeneous intensity distribution of HG modes inside the cavity, compared to the standing waves of conventional Fabry-Perot cavities, and the compactness of the cavity, lead to different control parameters compared to conventional mode-locked lasers. In particular, the repetition rate of the laser pulse train is governed by the curvature of the photonic potential and not by the cavity length [START_REF] Sun | Mode Locking of the Hermite-Gaussian Modes of a Nanolaser[END_REF]. Beyond the initial prediction that such harmonic cavity lasers should exhibit a new mode-locking regime, the aim of the present thesis is to give a detailed account of the possible dynamical behaviors predicted for such lasers.

General Introduction: principle of laser mode locking

In this section, we give a brief general introduction to laser mode locking. This includes standing waves (longitudinal modes) of Fabry Perot cavities, locked and unlocked modes, laser gain principle, active mode locking, and passive mode locking [START_REF] Bretenaker | Laser physics[END_REF][START_REF] Paschotta | Field Guide to Laser Pulse Generation[END_REF][START_REF] Paschotta | Field Guide to Lasers[END_REF][START_REF] Weiner | Ultrafast Optics[END_REF].

Cavity modes

In order to understand the basic principle of a mode-locked laser, it is instructive to consider a passive optical resonator first. The simplest structure of such a resonator is formed by two mirrors. It is the Fabry Perot resonator, as shown in Fig. 1.1. The curvature of the mirror can prevent the light beam radius from getting wider and wider due to diffraction when the light circulates inside the resonator. Let us suppose that the light propagates in the longitudinal direction of the resonator and is reflected with normal incidence by the mirrors. The interference of two counterpropagating optical waves with the same frequency leads to the formation of the standing wave, as shown in Fig. 1.1. In this way, these standing waves belong to the same transverse mode, but to different longitudinal modes.

For such a resonator, the boundary conditions specify that nλ/2 = L must hold for standing waves to form, where n is an integer, λ is the wavelength and L is the length of the laser cavity. With the relation of λ = c/f , it is easy to know the frequencies of one mode f n = nc/2L, where c is the light speed. We can obtain a very important parameter for a resonator: free spectral range (FSR) ∆f = f n+1 -f n = c/2L. This simple relation reveals that: [START_REF] Bretenaker | Laser: 50 Years of Discoveries[END_REF] the frequencies of the modes are equally spaced; (2) the frequency spacing (FSR) of the axial modes of an optical resonator are inversely proportional to the cavity length L.

Brief introduction to laser principles

Now that we have detailed the structure of the modes, we can turn to the laser operation. An active medium is inserted inside the cavity to amplify the light at every round trip, as shown in Fig. 1.2. A laser beam is coupled out of the cavity in some way, such as a partially transmitting mirror. If the gain of the active medium is smaller than the whole loss, the decay of the intracavity intensity is only slowed down. On the contrary, if the gain exceeds the losses, the intensity increases. However, this process cannot be maintained forever. The high intensity of the light will saturate the gain so that gain is equal to the loss sooner or later. Thus, the power stays constant. The active medium is pumped by an outside source. Usually, such an energy source can be either optical pumping (e.g. gain medium absorbing the light at a typically shorter wavelength than the laser light) or electrical pumping (e.g. laser diode: injecting the electric current on the p-n junction.).

-Longitudinal mode locking

Inside the laser gain medium, there exists several energy conversion process: (a) Excitation through pumping; (b) Nonradiative deexcitation; (c) Spontaneous emission; (d) Absorption; (e) Stimulated emission. The active atoms (which can also be a molecule, an ion, etc...) can possess different energy levels. Thses energy levels can be modified by emitting or absorbing a photon. For the laser transition, absorption corresponds to an atom promoted from the lower level of transition to the upper level. On the contrary, stimulated emission corresponds to a transition from the upper to the lower level. Since these two processes have the same cross section, a net optical gain is achieved only in the presence of population inversion. Laser operation thus requires a pumping source that creates a population inversion large enough for the gain to exceed the losses. Optical amplification can only occur for a finite range of optical frequencies. Laser oscillation can only occur in the bandwidth where the unsaturated gain is larger than the cavity losses, as shown in Fig. 1.3(a). Therefore, not all the longitudinal cavity modes in Fig. 1.3(b) can become lasing modes. In addition, the number of oscillating modes also depends on the mode competition in the considered laser medium. In steady state, gain is equal to the cavity losses at each lasing frequency. Multimode operation is necessary for mode locking.

Longitudinal mode locking

Each mode has a certain frequency f n . The phases of the modes are the integrals of frequency over time: φ n = 2πf n t + φ initial,n , where φ initial,n is the initial phase of the mode n.

The evolution of the total field intensity inside the cavity is the result of the superposition of all the cavity modes. Fig. 1.4(a) shows a example when the initial phases of these modes are random. The total field results from the periodic beating of these modes. However, if we impose the that phase relation 2φ n -φ n+1 -φ n-1 = 0 among these modes (see Fig. 1.4(b)), which means that the phases of the modes are equally spaced, φ n+1 -φ n = φ n -φ n-1 , all the modes contribute synchronously to form only one pulse oscillating back and forth inside the cavity. The repetition rate of the pulse is exactly equal to the FSR.

Active mode locking

We have seen that a multimode laser can emit pulses when the phases of the modes are locked. In this section and next section, we introduce the two main methods to lock the modes of a laser.

We start by describing an actively mode-locked laser as shown in Fig. 1.5(a). Mode locking is achieved with an electrooptic modulator driven by an external electrical signal. This modulator modulates the losses periodically. The modulation frequency ω m of the signal should be equal to the mode spacing (FSR).

In time domain, the circulating pulse in steady-state always passes through the modulator when the losses are minimum over the period T , as shown in Fig. 1.5(b). The relative high losses in the leading and trailing edges of the pulse shorten the pulses. This shortening effect is compensated by pulse-broadening mechanisms, such as dispersion and limited gain bandwidth.

We can consider active mode locking in the frequency domain, as shown in Fig. 1.5(c). The modulation on the field intensity creates two side bands for each frequency in the Figure 1.5 -Actively mode locked laser: (a) Sketch of laser arrangement; (b) mode locked pulses under loss modulation in each period T ; (c) field spectrum before and after the modulator. comb, which are located at ±ω m of each frequency. Additionally, the modulation frequency is set exactly equal to the FSR: ω m = 2π/T . As a result of the modulation, each frequency acquires side bands that act as source terms for the adjacent cavity modes. Thus, the modulator couples the cavity modes together, leading to mode locking.

Passive mode locking

Active mode locking is limited by the speed of externally driven modulators. An alternative solution consists in letting the light pulse directly modulate the losses. This can be obtained by using a saturable absorber, whose absorption decreases as the input light intensity increases. As a result, the loss modulation is automatically synchronized with the laser pulses, as shown in Fig. 1 A suitable combination of saturable absorption and gain is required to achieve mode locking. Since the saturable absorption and gain are modulated by the field intensity, the key factor is that at one moment in each period the saturable gain should overcome the saturable and intrinsic losses while, outside this moment, the losses should be dominant. In simpler terms, this mechanism should open a positive net gain window for the high field intensity. Therefore, the saturable absorber must be saturated more easily than the gain medium by the field intensity. In other words, the saturation intensity (energy) of the absorber should be smaller than that of the gain medium.

Depending on the recovery time of the gain medium and the absorber, we can divide the passive mode locking in instantaneous and noninstantaneous cases. In the instantaneous saturation case (Fig. 1.6(a)), the recovery time is short enough, namely the saturation responds very fast, so that the amount of gain and absorption depends on the current field intensity. Due to different saturation intensities, the saturated loss is smaller than the saturated gain only for high field intensities, while at low intensities the loss is dominant. In this way, pulsed operation is maintained.

For the noninstantaneous saturation case of Fig. 1.6(b), the responses of the gain and the absorber vary in time. The absorber is bleached by the pulse first due to its low saturation energy, thus opening a positive net gain window. Then this window is closed by the pulse itself by bleaching the gain.

Thesis motivation

Conventional mode-locked lasers are based on longitudinally multimode lasers. In such lasers, all the modes have the same transverse spatial distribution, typically a Gaussian beam, and the only difference between the modes lies in their frequencies and the longitudinal mode index. One of the key points to obtain mode-locked operation is that the frequencies of the modes should be periodically distributed, i. e., forming a comb of modes. However, there are other cavity configurations in which such a comb structure can be obtained. For example, polarization self-modulated lasers rely on a mode structure made of two interlaced orthogonally polarized modes [START_REF] Brunel | Modal analysis of polarization self-modulated lasers[END_REF]. The same kind of mode structure occurs for forked eigenstate cavities [START_REF] Bretenaker | Laser eigenstates in the framework of a spatially generalized Jones matrix formalism[END_REF]. Similarly, the transverse modes of hemi-confocal or confocal cavities are also periodically distributed [START_REF] Sterman | Off-axis folded laser beam trajectories in a strip-line CO 2 laser[END_REF].

Recently, photonic crystal cavities with multiple Hermite-Gaussian modes have been demonstrated by 2D PhC membranes [START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF][START_REF] Marty | Efficient Photonic Crystal Parametric Source harnessing high-Q resonances[END_REF] and nanobeams [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF]. Based on Hermite-Gaussian modes in this kind of harmonic potential cavity, we propose a new concept of ultracompact mode-locked laser [START_REF] Sun | Mode Locking of the Hermite-Gaussian Modes of a Nanolaser[END_REF].

The advantage of this idea is that the repetition rate of the pulsed mode-locked pulse depends on the design of the dispersion and potential of the cavity instead of the cavity length. In addition, the analogy between the harmonic oscillator that we investigate and the coherent state of a quantum harmonic oscillator is interesting. This may bridge a gap between different domains of physics such as nonlinear dynamical systems, nonlinear optics, nanophotonics, and quantum physics.

Contribution

This thesis focuses on the dynamics of mode-locked nanolasers based on the Hermite-Gaussian modes. We start with the most simplistic system and add effects one by one in order to clarify their impacts on the dynamics. The steps of this investigation are: saturation properties of Hermite-Gaussian modes; gain competition for Hermite-Gaussian modes; mode locking in cases of instantaneous and noninstantaneous saturation; Henry factor; separation of gain and absorption; robustness of the mode locking under imperfections of the harmonic potential.

In these investigations, some interesting properties are discovered:

• Mode locking is predicted in a nanolaser cavity forming an effective photonic harmonic potential. In the limit of instantaneous gain and absorption saturation, mode OUTLINE OF THE THESIS locking corresponds to a stable dissipative soliton, which is very well approximated by the coherent state of a quantum mechanical harmonic oscillator.

• The laser is substantially more compact than a Fabry-Perot laser with a comparable pulsing period, which is here controlled by the potential.

• Rich dynamics of the laser are found: such as Q-switching, Q-switched mode locking, continuous-wave mode locking.

• The mode locking is robust against the Henry factor and imperfections in the harmonic potential including the effects of the non-parabolicity of the potential and of random errors in the shape of the potential. 

Outline of the thesis

This thesis is organized as follows.

In chapter 2, we describe the laser model based on the Hermite-Gaussian modes in the harmonic photonic cavity. First, we introduce the concept of photonic harmonic laser by comparing the harmonic photonic cavity with the Fabry-Perot cavity in Sec. 2.1.2. Then, the recent works related to photonic harmonic cavity including cavity design, structure and experiment are presented in Sec. 2.1.2. After that, the model is established in Sec. 2.2. To better understand the model, we first establish a simple model of photonic harmonic cavity based on a chirped Bragg grating. Furthermore, a general cavity model is established based on the Gross-Pitaevskii Equation (GPE) with dissipative terms. Finally, we introduce the numerical implementation for this model. Chapter 3 is devoted to the investigation of the mode competition for gain among Hermite-Gaussian modes in the absence of saturable absorption. Two methods are used to explore this mode competition. The first one is a static analysis in Sec. 3.1. This investigation focuses on the properties of Hermite-Gaussian modes instead of dynamical equations. A dramatic difference between Hermite-Gaussian modes in a photonic harmonic cavity and standard standing waves in a Fabry-Perot cavity is observed by investigating saturation matrix of the modes. In a second approach in Sec. 3.2, we analyze the model equations dynamically. First, a continuation calculation in pde2path is implemented to investigate the stability of one single mode solution. Then, direct numerical simulation, as introduced in Sec. 2.3, is performed to obtain the time evolution of the modes starting from initial fields. We statistically investigate the stable states from random initial fields by varying the gain window width. The influence of the gain lifetime on the final states is also investigated.

In chapter 4, we investigate the mode locking of Hermite-Gaussian modes for instantaneous saturation of the gain and absorber. First, a particular solution of the model is detailed in Sec. 4.2, which is very well approximated by the coherent state of a quantum mechanical harmonic oscillator. Then, different dynamical behavior of the laser and the corresponding phase diagrams are investigated in Sec. 4.3. Finally, a continuation calculation on the single-mode solution by pde2path is performed in Sec. 4.4.

In chapter 5, we show the dynamics of mode locking in the case of noninstantaneous saturable gain medium and absorber. First, we compare the coherent state with one particular mode-locked solution for noninstantaneous saturation in Sec. 5.1. Then, according to the phase diagram, we give detailed descriptions of the different dynamical regimes achievable in the harmonic cavity nanolaser, namely Q-switched operation, Q-switched mode locking, and cw mode locking (Sec. 5.2). Next, the influence of different parameters, such as absorption lifetime, the Henry factor, asymmetric configuration of gain and absorber, on the stability of the mode-locked soliton oscillation regime is investigated in Sec. 5.3. Finally, we perform a comparison with conventional semiconductor lasers.

In chapter 6, we theoretically analyze the robustness of the mode-locking in a harmonic cavity nanolaser sustaining oscillation of Hermite-Gaussian modes to the imperfections of the harmonic potential. We consider the effects of the non-parabolicity of the potential and of random errors in the shape of the potential. The influence of the different laser parameters on the robustness of the mode-locked regime is discussed in details.

Finally, the last chapter gives the conclusions and provides some perspectives.

Chapter 2

Modeling of Harmonic Photonic Cavity Lasers 

13

There have been tremendous efforts dedicated to the modeling of mode-locked lasers. The most famous and widely used models have been developed by Haus [START_REF] Haus | Theory of mode locking with a fast saturable absorber[END_REF][START_REF] Haus | Theory of Mode Locking with a Slow Saturable Absorber[END_REF][START_REF] Haus | A Theory of Forced Mode Locking[END_REF][START_REF] Haus | Mode-locking of lasers[END_REF][START_REF] Haus | Theory of mode locking of a laser diode with a multiplequantum-well structure[END_REF], in which a partial differential equation for the evolution of the pulse properties can be analytically expressed, under the assumption of small gain, loss and small pulse evolution per round trip. This approach gives many useful insights into the mode-locked laser dynamics. However, its assumptions are difficult to justify in semiconductor media [START_REF] Javaloyes | Mode-locking in semiconductor Fabry-Pérot lasers[END_REF][START_REF] Lüdge | Nonlinear laser dynamics : from quantum dots to cryptography[END_REF][START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF]. Numerical studies based on traveling wave models for semiconductor lasers have also been developed [START_REF] Javaloyes | Mode-locking in semiconductor Fabry-Pérot lasers[END_REF][START_REF] Bandelow | 40 GHz mode-locked semiconductor lasers: Theory, simulations and experiment[END_REF][START_REF] Ea Avrutin | Monolithic and multi-gigahertz modelocked semiconductor lasers: constructions, experiments, models and applications[END_REF][START_REF] Avrutin | Dynamics and spectra of monolithic mode-locked laser diodes under external optical feedback[END_REF][START_REF] Vladimirov | Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser[END_REF][START_REF] Radziunas | Pulse broadening in quantum-dot modelocked semiconductor lasers: Simulation, analysis, and experiments[END_REF][START_REF] Rossetti | Time-domain travelling-wave model for quantum dot passively mode-locked lasers[END_REF][START_REF] Rossetti | Modeling passive modelocking in quantum dot lasers: A comparison between a finite-difference travelingwave model and a delayed differential equation approach[END_REF]. Some models based on delay differential equations have also been proposed [START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF][START_REF] Vladimirov | Delay differential equations for mode-locked semiconductor lasers[END_REF][START_REF] Vladimirov | A new model for a mode-locked semiconductor laser[END_REF]. Developed for a ring cavity geometry and using the lumped element method, this reduces the computational cost and easily provides a bifurcation analysis, and also can include optical feedback effects [START_REF] Otto | Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback[END_REF].

Here, we consider the completely different situation of a photonic resonator made of a metamaterial with effective parabolic dispersion ω kk and parabolic effective photonic potential V (x). Due to the spatial inhomogeneity of the intensity distribution of Hermite-Gaussian modes, investigating the dynamical behavior of such parabolic cavity lasers cannot be performed using conventional methods commonly employed to model mode-locked lasers. For example, the gain and absorber cannot be treated as lumped elements due to the different spatial distributions of Hermite-Gaussian modes in this laser. Therefore, we describe in this chapter a model based on the Gross-Pitaevskii Equation (GPE) with dissipative terms. This chapter is organized as follows:

First, we introduce the concept of photonic harmonic laser by comparing the harmonic photonic cavity with the Fabry-Perot cavity through their respective mechanical analogies: a harmonic oscillator and a free particle in a box.

Next, recent work related to photonic harmonic cavity including cavity design, structure and experiment are presented. We first introduce the local density approach to design the harmonic cavity. Then the harmonic cavity made by 2D membrane photonic crystal and 1D nanobeam are separately introduced.

After that, to better understand the model, we establish a simple model of photonic harmonic cavity based on a chirped Bragg grating. Then, a general cavity model is established based on the Gross-Pitaevskii Equation (GPE) with dissipative terms. The cavity effect is described by the second order dispersion and the spatially dependent parabolic potential, and the dissipative terms describe the saturable gain and absorption in the active structure. In this framework, the spatial effects typical of Hermite-Gaussian modes, linked to the spatial distributions of the gain and the absorber inside the resonator, are properly taken into account.

Finally, we introduce the numerical implementation for this model. Two schemes are used to investigate the model. The first one solves the field equation, which is a partial differential equation. Another one solves the equations for the mode coefficients, which are a set of ordinary differential equations. Both of them give the same results. The parameters used in the model are given and discussed.

Introduction

2.1.1 Laser concept: mechanical analogies for Fabry-Perot and harmonic cavities

The Fabry-Perot cavity as shown in Fig. 2.1(a) is a very general model for an optical resonator. Resonance results from the constructive interference of propagating waves. In fact, this is also to a large extent true for other common resonators, e.g. racetracks, whispering gallery modes in microtoroids, spheres, etc.. The round-trip time T is directly related to the resonator length L through T = 2L/v g , where v g is the group velocity. If the modes are locked, the cavity round trip time materializes into a pulse propagating back and forth inside the cavity, suggesting a straight mechanical analogy with a free particle bouncing between two barriers. In this kind of structure, the repetition rate of the pulse or particle depends on the length L of the cavity and how fast the velocity v g is.

Fabry-Perot

L

Harmonic Oscillator Free particle in box L Chirped DBR Let us consider a particle with mass m in a simple classical harmonic oscillator configuration with a potential energy given by V (x) = 1 2 kx 2 , as shown in Fig. 2.1(b). Here k is the equivalent spring constant. One can recognize that in such a structure the repetition rate Ω = k/m does not depend on the oscillating amplitude of the particle, but depends on its mass m. This idea is inspiring if it can be implemented in the form of an optical cavity for a light pulse. This means that in such a cavity, given a fixed repetition rate Ω of the pulse, one can scale down the length of the cavity by engineering the curvature of the cavity potential. Such a concept would be helpful for the miniaturization of modelocked lasers. Actually such a cavity can be formed in chirped periodic structures, such as a chirped distributed Bragg reflector (DBR). We will introduce this in the next section. 

Recent work related to photonic harmonic cavity

Photonic crystals, as the artificial materials with a periodic modulation of their dielectric constant, display many properties analogous to solid-state physics. Therefore, the photonic crystal theories benefit and extend many attractive features of their semiconductor counterparts into the optical domain. There is a substantial theoretical effort focusing on periodic photonic structures [START_REF] Eggleton | Bragg solitons in the nonlinear Schrödinger limit: experiment and theory[END_REF], including the coupled mode method [START_REF] Yariv | Coupled-Mode theory for guided-wave optics[END_REF][START_REF] Yariv | Quantum Electronics[END_REF][START_REF] Haus | Coupled-Mode Theory[END_REF][START_REF] Yamamoto | Improved Coupled Mode Analysis of Corrugated Waveguides and Lasers-II: TM Mode[END_REF][START_REF] Yamamoto | Improved Coupled Mode Analysis of Corrugated Waveguides and Lasers[END_REF][START_REF] De Sterke | Coupled modes and the nonlinear Schrödinger equation[END_REF], the transfer-matrix method [START_REF] Yuan | Application of structural symmetries in the plane-wave-based transfer-matrix method for three-dimensional photonic crystal waveguides[END_REF][START_REF] Yuan | Photonic band structures solved by a plane-wavebased transfer-matrix method[END_REF] and the optical Bloch modes method [START_REF] Zhang | Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwells equations[END_REF][START_REF] Atkin | Photonic band structure of guided bloch modes in high index films fully etched through with periodic microstructure[END_REF][START_REF] Meade | Electromagnetic Bloch waves at the surface of a photonic crystal[END_REF][START_REF] St | Optics of Floquet-Bloch waves in dielectric gratings[END_REF][START_REF] John D Joannopoulos | Photonic crystals: molding the flow of light[END_REF], etc.

In periodic optical structures, the envelope approximation was first used to model the propagation of optical pulses in nonlinear periodic structures [START_REF] De Sterke | Envelope-function approach for the electrodynamics of nonlinear periodic structures[END_REF]. The periodic structure can support the solutions of the nonlinear Schrödinger equation, which is theoretically demonstrated by using the multiple scales method and Floquet-Bloch theory [START_REF] De Sterke | Coupled modes and the nonlinear Schrödinger equation[END_REF][START_REF] De Sterke | Envelope-function approach for the electrodynamics of nonlinear periodic structures[END_REF][START_REF] Sipe | Nonlinear Schrödinger solitons in a periodic structure[END_REF][START_REF] Busch | Periodic nanostructures for photonics[END_REF], as evidenced by following work [START_REF] Eggleton | Bragg solitons in the nonlinear Schrödinger limit: experiment and theory[END_REF]. The theory of graded photonic crystal resonator was also investigated as well [START_REF] Pol | Theory of chirped photonic crystals[END_REF][START_REF] Charbonneau-Lefort | Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture[END_REF] by using the envelope approximation formalism. Among these theories, in analogy with the situation in semiconductors, the very important concept of effective mass for the photonic crystal is introduced. The concept is not related to a physical mass, but it serves as a parameter in the dispersion relation encountered by photons. It determines the propagation properties of light in the crystal, in the same way as the effective mass affects electrons in a semiconductor.

The effective mass is also an important concept in photonic harmonic cavities formed by a chirped periodic dielectric medium. In such a device, the structural parameters of a unit cell progressively across nearest neighbours, which generates a slowly varying modulation of the effective refractive index affecting the field response. But the effective mass remains approximately constant. The field envelope can be modulated to obey a simple linear Schrödinger equation with a parabolic potential. The mode profiles are then exact Hermite-Gaussian modes.

In this section, the design and experimental work related to photonic harmonic cavities with longitudinal Hermite-Gaussian modes are introduced. First, we introduce a local density approach, which provides a useful way of designing photonic harmonic cavities instead of directly simulating the device by the finite-difference time-domain (FDTD) method. Then, two kinds of structures of photonic harmonic cavities obtained in 2D membrane photonic crystal and in a nanobeam, repectively, are introduced.

Local density approach for harmonic cavity design

The design and simulation of photonic crystal devices requires large computational resources. FDTD [START_REF] Taflove | Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems[END_REF][START_REF] Yee | Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media[END_REF] is the most famous method used for calculating photonic crystal devices. However, in order to well describe the effects of periodicity, it requires very dense spatial and temporal resolution grids on the structure. This leads to a very large computer memory usage and long simulation time. Ref. [START_REF] Dobbelaar | Large area photonic crystal cavities: a local density approach[END_REF] proposes a local density approach to design the photonic harmonic cavity instead of directly simulating the structures by the FDTD method.

In this method, one first needs to calculate the band structure of an unchirped periodic photonic crystal. The band structure can be efficiently obtained just from a single unit cell of the photonic crystal by using the MIT Photonic Bands software (MPB) [START_REF] John D Joannopoulos | Photonic crystals: molding the flow of light[END_REF], which is based on the plane wave method [START_REF] Johnson | Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis[END_REF]. Then, by extracting the curvature and frequency at the bottom of the band structure, one can express them in terms of the effective mass and minimum energy of the photon. Next, one repeats this process by varying one parameter of the photonic crystal. For example, one varies the slab width in a 1D structure as explained below or one adjusts the air hole radii in a 2D structure. One thus obtains the evolution of the effective mass and the minimum photon energy of the bottom of the band as a function of the adjustable parameter. This evolution shows that for a certain range of the varied parameter, the energy at the bottom of the band decreases linearly with the parameter, whereas the effective mass can be considered as constant to a good approximation. After that, when it comes to designing the chirped harmonic cavity, one can thus vary this parameter quadratically as a function of the position in the device, while keeping it in the range where the effective mass is constant. The field envelope is then the exact solution of the Schrödinger equation with a parabolic potential. In the end, the FDTD calculation of the electromagnetic field is transformed into the solution of a simple time-independent Schrödinger equation. In such way, one can conveniently design the cavity.

The authors of Ref. [START_REF] Dobbelaar | Large area photonic crystal cavities: a local density approach[END_REF] give an example of one-dimensional periodic dielectric slabs, which is a structure consisting of alternating layer of air and dielectric medium with ε = 12. It is sketched in Fig. 2.2(a). The band structure of such a one-dimensional photonic crystal consisting of dielectric slabs with a thickness w = 0.45a is shown in Fig. 2.2(b). To a good approximation, the first band above the band gap in the dispersion relation around the edge of the first Brillouin zone can be taken to be parabolic. The dispersion of the energy of the electromagnetic modes is similar to that of a massive particle E(k) = E 0 + 2 (k-k 0 ) 2 /m * , where E 0 denotes the energy of a photon at the minimum of the band, k 0 the wavenumber at the minimum of the band, and m * the effective mass.

The calculation of the effective mass has been performed for different one-dimensional dielectric slabs with a width varying from w = 0.1a to w = 0.9a, where a denotes the lattice constant, resulting in Fig. 2.2(c). It shows that the energy E 0 of a photon at the minimum of the band decreases for increasing slab width w. Fig. 2.2(d) shows the relation between the effective mass and the slab width.

At this stage, the important point is to find the range of widths where the effective mass m * is approximately constant and the minimum energy evolves linearly with the width. Thanks to this linear dependence, the authors design the parabolic cavity by decreasing the slab width away from the center, w(x) = w 0 -x η 2 with w 0 = 0.45a. η is a parameter for the chirping of the photonic crystal. This results in an increase of the minimal energy from center to the two sides of such a structure and in a trapping parabolic potential E 0 (x) ∝ x 2 for the fields. The authors also investigated a two-dimensional photonic crystal using the same method. They achieved a reasonable agreement with rigorous FDTD calculations for the systems of common interest. Thus this approach provides a useful way for designing a photonic harmonic cavity. 

2D photonic membrane cavity

Photonic harmonic cavities have been experimentally demonstrated by chirped periodic dielectric photonic crystals, such as 2D PhC membranes [START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF][START_REF] Marty | Efficient Photonic Crystal Parametric Source harnessing high-Q resonances[END_REF] and nanobeams [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF]. The 2D PhC membrane cavity is introduced here.

The design of an effective bichromatic potential in a 2D photonic crystal has been introduced by Alpeggiani [START_REF] Alpeggiani | Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities[END_REF], forming a perfect Gaussian envelope fundamental mode. Ref. [START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF] follows this concept and obtains a cavity with parabolic potential sustaining the multiple Hermite-Gaussian modes. The calculated Q factor is well above 10 7 .

The top view of the cavity is shown in Fig. 2.4(a). The PhC structure is based on a lattice of holes (green circles) with radius r = 0.27a etched in a 180nm thick slab of Ga 0.5 In 0.5 P with refractive index 3.17. A waveguide is created by removing a line of holes in the middle. The period of the first rows of holes (blue circle) is set at a = 0.98a. These two rows are further displaced inwards by ∆s. This design generates chirped periodic dielectric shifts from center to the both sides, which forms a potential. Adjusting the ratio a /a primarily affects the spatial length of the Hermite-Gaussian modes, so that the cavity size is also adjusted.

The extracted |H| 2 field mode pattern is reproduced in Fig. 2.4(b). The square of the field amplitude along the main axis (y = 0, z = 0) of the device is plotted in Fig. 2.4(c). It exhibits the resonance frequencies and Hermite-Gaussian modes (solid gray line) of the harmonic potential (dashed red line). Fig. 2.4(d) shows experimental results [START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF] of time-frequency (spectrogram) map of the signal reflected from a cavity obtained by the method of optical coherent tomography, which can give access to the complex amplitude of the reflected signal. The cavity resonances are clearly visible as long decay lines. It is apparent to see that more than 10 resonances are clearly distinguishable from accidental resonances due to disorder near the waveguide band edge [START_REF] Gyu | Electrically driven single-cell photonic crystal laser[END_REF][START_REF] Yong | Electrically driven nanobeam laser[END_REF][START_REF] Takeda | Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers[END_REF][START_REF] Ellis | Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[END_REF]. The statistical analysis carried over 68 resonators gives a most frequent value of the Q factor close to 3 million. Considering the free spectral range 450GHz and the size of the cavity (≈ 8µm for the first 3 modes), this yields an effective group index n g ≈ 40, which is about one order of magnitude larger than in a semiconductor ring cavity.

The structure achieves very high-Q resonances, close to ideal frequency spacing, and can form Hermite-Gaussian modes with very compact mode volume, around 0.9(λ/n) 3 . This could be a good candidate for nanolasers with parabolic potential cavity. 

Nanobeam cavity

Nanobeam cavities are a typical example of 1D photonic crystal resonator. They have attracted a lot of attention for their high Q resonance [START_REF] Vincent Poulton | Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology[END_REF][START_REF] Quan | Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide[END_REF][START_REF] Quan | Deterministic design of wavelength scale, ultrahigh Q photonic crystal nanobeam cavities[END_REF][START_REF] Crosnier | High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides[END_REF][START_REF] Saber | Photonic crystal nanobeam cavities with optical resonances around 800 nm[END_REF] and can be utilized to build single-mode nanolasers [START_REF] Crosnier | Hybrid indium phosphide-on-silicon nanolaser diode[END_REF][START_REF] Crosnier | Subduing surface recombination for continuous-wave operation of photonic crystal nanolasers integrated on Silicon waveguides[END_REF]. A photonic harmonic cavity with several modes has been realized in nanobeams, and has been used for achieving efficient four wave mixing in Ref. [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF]. This work is shortly introduced here.

The nanobeam cavity consists in a ridge waveguide drilled with circular holes. The hole to hole distance, a(x), is varied in order to build high reflectivity mirrors as shown in Fig. 2.5(a). With the effect of graded mirrors, the EM field in the cavity reads E ∝ e -A(x)x , where A(x) is the spatially dependent decay at the position x, which depends directly on the evolution of the lattice constant a(x) in the longitudinal direction. The authors calculate the dependence of the decay A(x) with a(x) and retrieve the evolution of a(x) with x in order to shape the first order resonant mode E-field envelope into a Gaussian. One example of the calculated dependence of a(x) on x is plotted in Fig. 2.5(b), with the parameters of 650 nm width, 290 nm thickness, r = 110 nm hole radius, refractive index n = 3.13 encapsulated in SiO 2 , and the FWHM = 4 µm of the fundamental mode.

The eigenmodes in this nanobeam cavity are the Hermite-Gaussian modes as shown in Fig. 2.5(c), and their mode frequencies are also equally spaced, as shown in Fig. 2

.5(d).

The envelope of the fundamental mode is characterized by its full width at half maximum (FWHM), which can be adjusted at will by changing a(x). The free spectral range is adjusted from 2.4THz to 130GHz by a(x) as the FWHM increases from 2µm to 14µm. The dependence of the free spectral range on the FWHM of the fundamental Gaussian mode is shown in Fig. 2.5(e).

The 3D schematics of the layers of the integrated structure is shown in Fig. 2.5(f). The nanobeam cavities are fabricated on top of a waveguide. The coupling between the silicon waveguide and the nanobeam can be tuned by changing the thickness of the adhesive silica layer or the width of the feeding waveguide. The laser source is coupled to SOI waveguides through grating couplers.

The properties in such a cavity, which is sustaining the Hermite-Gaussian modes, high Q resonances and a comb with constant FSR, match the requirements for mode-locked laser operation. Moreover, the coupling scheme can be used for coupling the laser light out of the cavity into the waveguide.

Model for photonic harmonic cavity lasers

In this section, for simplicity, we first establish a model of the photonic harmonic potential based on a simple chirped grating. It is based on the coupled mode theory. Then, a general model of mode-locked laser based on the Gross-Pitaevskii Equation (GPE) with dissipative terms is established. The cavity effects are described by the second order dispersion and the spatially dependent parabolic potential. The dissipative terms hold for the saturable gain and absorption in the active structure. The spatial effects typical of Hermite-Gaussian modes, linked to the spatial distributions of the gain and the absorber inside the resonator, are properly taken into account. A possible experimental implementation is given at last.

A simple example of photonic harmonic potential formed by a chirped Bragg grating

In this subsection, a very simple model of harmonic potential is established. It is based on a chirped Bragg grating. First, we get the dispersion relation near the bandgap of the Bragg grating from the coupled mode equation developed by Yariv [START_REF] Yariv | Coupled-Mode theory for guided-wave optics[END_REF]. Then, a time-dependent equation governing the evolution of the field taking into account dispersion at the edge of the bandgap is obtained. This is implemented by Fourier transforming the field envelope A(k, ω) in frequency domain and k space back into time and real spatial domain. Finally, following the local density approach introduced in the preceding section, the harmonic potential can be obtained by chirping the grating period from the center to the two sides of the device.

Dispersion relation of a Bragg grating

A simple example of a 1D periodic structure is provided by a distributed Bragg reflector (DBR) described by the coupled mode theory derived by Yariv [START_REF] Yariv | Coupled-Mode theory for guided-wave optics[END_REF][START_REF] Yariv | Quantum Electronics[END_REF].
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Perturbation Region Substrate Amplitude Guiding layer The dielectric structure consists in three layers with different dielectric constants as shown in Fig. 2.6. The bottom layer is a substrate with refractive index n 3 ; The top layer with refractive index n 1 is usually air or a low constant material for protection. The guiding layer is in the middle with a relatively high refractive index n 2 . A corrugated section of length L in the guiding layer has a periodic structure with period Λ. This periodic variation of the dielectric along x direction forms a perturbation region for the field.
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Following Yariv, we start from the wave equation,

∇ 2 E = µε 0 ∂ 2 E ∂t 2 + µ ∂ 2 P ∂t 2 . (2.1)
The total polarization is

P = P 0 + P pert , (2.2) 
where

P 0 = [ε -ε 0 ] E (2.3)
is the polarization induced by E in the unperturbed waveguide with dielectric constant ε.

The perturbation polarization P pert is defined in Eq. (2.2).

We consider a TE mode field with z polarization propagating in ±x direction in the perturbed region in Fig. 2.6. The field containing only an electric field component E z in the z direction can be expanded as

E z (x, y, t) = 1 2 m U (m) z (y)(A (+) m (x)e i(ωt-kmx) + A (-) m (x)e i(ωt+kmx) ), (2.4) 
where k m is the propagation constant and A 

d 2 dy 2 -k 2 m U (m) z (y) + ω 2 µε(x, y)U (m) z (y) = 0, (2.5) 
and the orthogonality condition

∞ -∞ U (l) z (y)U (m) z (y)dy = 2ωµ k m δ l,m . (2.6) 
Substitution of Eq. (2.4) into the wave equation for the z component,

∇ 2 E z -µε(x, y) ∂ 2 ∂t 2 E z = µ ∂ 2 ∂t 2 [P pert (x, y, t)] z (2.7) leads to µ ∂ 2 ∂t 2 [P pert (x, y, t)] z = e iωt 2 m (A (+) m + A (-) m ) d 2 U (m) z dy 2 -k 2 m U (m) z + ω 2 µεU (m) z e -ikmx + e iωt 2 m -2ik m dA (+) m dx + d 2 A (+) m dx 2 U (m) z e -ikmx + e iωt 2 m 2ik m dA (-) m dx + d 2 A (-) m dx 2 U (m) z e ikmx .
(2.8)

Here, assuming that the coupling is weak, the amplitudes should vary relatively slowly so that the second derivative terms are negligible in comparison to the others 

d 2 A m dx 2 k m dA m dx . ( 2 
dx e i(ωt-k l x) = - i 2ω ∂ 2 ∂t 2 ∞ -∞ P pert (x, y, t)U (l) z (y)dx. (2.11)
The periodic dielectric perturbation with period Λ can be expanded as a Fourier series with respect to x,

[P pert ] z = ∆εE z = ε 0 ∆n 2 (x, y)E z = ε 0 ∆n 2 (y) ∞ q=-∞
a q e ix(2qπ/Λ) E z .

(2.12) Substitution of Eq. (2.12) into Eq. (2.11), we find dA (-) l dx e i(ωt+k l x) -dA

(+) l dx e i(ωt-k l x) = - iε 0 2ω ∂ 2 ∂t 2 ∞ -∞ U (l) z (y)∆n 2 (y) ∞ q=-∞
a q e ix(2qπ/Λ) E z dy

= - iε 0 4ω ∂ 2 ∂t 2 ∞ -∞ ∆n 2 (y) ∞ q=-∞ a q e ix(2qπ/Λ) m U (l) z (y)U (m) z (y)(A (+) m (
x)e j(ωt-kmx) + A (-) m (x)e j(ωt+kmx) ) dy.

(2.13)

The choice of which modes couple is determined by ∆ 2 n(x, y). The two terms on the left-hand side of Eq. (2.13) can be influenced only by the terms on the right-hand side that possess the same x phase dependence, Thus, for the lth mode to couple to the mth mode, it is necessary to satisfy

k l = 2πq Λ -k m . (2.14) 
When m = l, the two terms on the left can be driven synchronously by the the same modes propagating in opposite directions:

dA (-) l dx = iε 0 ω 4 A (+) l ∞ -∞ [U (l) z ] 2 (y)∆n 2 (y)dy • a q e ix(2qπ/Λ-2k l ) , (2.15) 
dA (+) l dx = - iε 0 ω 4 A (-) l ∞ -∞ [U (l)
z ] 2 (y)∆n 2 (y)dy • a q e -ix(2qπ/Λ-2k l ) .

(2.16)

The coupling is written as

κ = iε 0 ωa q 4 A (-) l ∞ -∞ [U (l) z ] 2 ( 
y)∆n 2 (y)dy.

(2.17)

The counter-propagating amplitudes A (±) l (x) are thus coupled according to: dA

(-) l (x) dx = κA (+) l (x)e -i2∆kx , (2.18 
)

dA (+) l (x) dx = κ * A (-) l (x)e +i2∆kx , (2.19) 
where ∆k = k l -qπ/Λ. Considering the grating with length L in Fig. 2.6, an analytical solution of Eq. (2.18) and Eq. (2.19) for A -(x = L) = 0 can be obtained [START_REF] Yariv | Coupled-Mode theory for guided-wave optics[END_REF][START_REF] Yariv | Coupled-resonator optical waveguide: a proposal and analysis[END_REF], in which the propagation constant of the field propagating in the positive direction is

k = k 0 ± i κ 2 -(∆k(ω)) 2 , (2.20) 
where k 0 = qπ/Λ, q = 1, 2, 3, • • • . For a range of frequencies such that ∆k(ω) < κ, k has an imaginary part. This means that the incident field power decays along the perturbation region. This is not due to absorption but to the reflection into the backward field as shown in Fig. 2.6. Note that for each value of l, there exists a gap whose center frequency ω 0,q satisfies k(ω 0,q ) = qπ/Λ. The band structure in the vicinity of the gap corresponding to q = 1 is shown in Fig. 2.7. Near k 0 , we approximate k(ω) by k(ω) ≈ ω c/n eff , where n eff is an effective index of refraction. We get ∆k(ω

) = k(ω) -k 0 = n eff (ω -ω 0 ) c . Substituting this into Eq. (2.20) yields k = k 0 ± i κ 2 - n eff c 2 (ω -ω 0 ) 2 . (2.21)
Then, Eq. (2.21) can be rewritten as

ω =ω 0 ± cκ n eff 1 - 1 κ 2 (k -k 0 ) 2 . (2.22)
Eq. (2.22) describes the dispersion relation shown in Fig. 2.7. In the vicinity of k 0 , Eq. (2.22) can be further approximated as The width of the gap is the frequency difference between the edges of the two dispersion bands:

ω ≈ω 0 ± cκ n eff - c 2κn eff (k -k 0 ) 2 = ∓ c 2κn eff (k -k 0 ) 2 + ω 0 ± cκ n eff . ( 2 
∆ω g = 2cκ n eff . (2.24)
The second order dispersion is then

ω kk = d 2 ω dk 2 = c κn eff . (2.25) 
Considering one branch of the dispersion lines, Eq. (2.23) can be written as

ω + 1 2 ω kk (k -k 0 ) 2 -ω e = 0, (2.26) 
where ω e = ω 0 + cκ/n eff is the frequency at the band edge.

Field equation of evolution near the bandgap

In this subsection, we derive the time-dependent equation governing the field, taking into account the dispersion at the edge of the bandgap.

We suppose that the field A (k -k 0 , ω) in k and ω space satisfies the dispersion relation at the band edge:

ω + 1 2 ω kk (k -k 0 ) 2 -ω e • [A (k -k 0 , ω)] = 0. (2.27)
This can be expanded into

ω [A (k -k 0 , ω)] + 1 2 ω kk (k -k 0 ) 2 [A (k -k 0 , ω)] -ω e [A (k -k 0 , ω)] = 0. (2.28)
One can directly Fourier transform Eq. (2.28) back into time and real space domain, but this is inconvenient. A better way is to use several properties of the Fourier transform as follows.

MODEL FOR PHOTONIC HARMONIC CAVITY LASERS

Here if we consider the mapping relation of field between x space and k space, and between t space and ω space as

A (x, t) ⇔ A (k, ω).
(2.29)

Due to the frequency shifting property of the Fourier transform and Eq. (2.29), we can shift A (k, ω) to A (k -k 0 , ω) in k space, and get the new mapping relation for A (k -k 0 , ω):

A (x, t) • e ik 0 x ⇔ A (k -k 0 , ω). (2.30)
Using the differentiation property of the Fourier transform and Eq. (2.30), the Fourier transform of time derivative of A (x, t) • e ik 0 x is -iω • A (k -k 0 , ω). Then we get a new mapping relation:

i ∂ ∂t A (x, t) • e ik 0 x ⇔ ωA (k -k 0 , ω). (2.31)
Similarly, the Fourier transform of the second order derivative of A (x, t)•e ik 0 x with respect to x is

- ∂ 2 ∂x 2 A (x, t) • e ik 0 x ⇔ (k -k 0 ) 2 A (k -k 0 , ω). (2.32) 
Finally, by using Eqs. (2.30-2.32), we can transform Eq. (2.28) conveniently back to time and real space domain,

i ∂ A (x, t)e ik 0 x ∂t + 1 2 ω kk ∂ 2 A (x, t)e ik 0 x ∂x 2
-ω e A (x, t)e ik 0 x = 0 .

(2.33)

Taking A(x, t) = A (x, t)e ik 0 x leads to

i ∂A ∂t + 1 2 ω kk ∂ 2 A ∂x 2 -ω e A = 0 . (2.34)
In such a way, the partial differential equation governing the evolution of the field and taking into account dispersion at the edge of the bandgap is obtained.

Insertion of a harmonic potential

The effective potential can be formed by chirping a parameter in the structure. Here we can follow the local density approach introduced in the preceding section [START_REF] Dobbelaar | Large area photonic crystal cavities: a local density approach[END_REF]. One needs to find the range of grating width w where the effective mass m * is approximately constant and the minimum energy E 0 = ω e depends linearly on the width w. Within this region, the slab width w is varied quadratically away from the center of the structure, so that the frequency is a parabolic function of position:

ω e (x) ∝ w(x) ∝ x η 2 .
(2.35)

The parabolic potential formed by varying grating width w needs to be added to the Schrödinger equation (Eq. (2.34)).

As we can see, a simple structure can form a photonic harmonic potential cavity. However, the quality of the potential relies on many factors, such as the light confinement efficiency, the value of the effective mass, the tolerance range of the parameter to keep the effective mass unchanged, the material, the manufacturing errors, etc. One needs to consider all these and perform a trade off between the different factors. All these challenges for the cavity design are beyond the scope of our discussion. We focus on the deterministic properties of the cavity used for the mode-locked laser. Therefore, in the next section, the model of a general photonic harmonic cavity will be established, including the laser dissipative terms.

A general model for photonic harmonic cavities

In this subsection, a general model for a harmonic photonic cavity is established. First, we follow the work developed by Sipe and Winful who have developed a general model showing that the field envelope can be governed by the nonlinear Schrödinger Equation (NLSE) in a periodic structure. Then, we add the potential term on the NLSE to construct the Gross-Pitaevskii Equation (GPE), which can be used to describe the photonic harmonic oscillator. After that, for the benefit of those familiar with quantum mechanics, a comparison between the quantum harmonic oscillator and the photonic harmonic oscillator is given.

From the wave equation to the Schrödinger equation

Let us consider the wave equation in a unidimensional nonlinear medium with periodic relative permittivity ε r (x):

∂ 2 ∂x 2 - ε r (x) c 2 ∂ 2 ∂t 2 E(x, t) = µ 0 ∂ 2 P NL ∂t 2 , (2.36) 
where c is the light speed in vacuum and P NL is the nonlinear polarization. Sipe and Winful have theoretically demonstrated, using the multiple scales method and Floquet-Bloch theory [START_REF] De Sterke | Coupled modes and the nonlinear Schrödinger equation[END_REF][START_REF] De Sterke | Envelope-function approach for the electrodynamics of nonlinear periodic structures[END_REF][START_REF] Sipe | Nonlinear Schrödinger solitons in a periodic structure[END_REF][START_REF] Busch | Periodic nanostructures for photonics[END_REF], that, in the case of a Kerr nonlinearity, Eq. (2.36) can be replaced by the nonlinear Schrödinger equation (NLSE):

i ∂A ∂t + 1 2 ω kk ∂ 2 A ∂x 2 + α|A| 2 A = 0 . (2.37)
In this equation, A(x, t) is the slowly varying amplitude of the field related to E(x, t) through E(x, t) = A(x, t)u(x)e ikx e -iω 0 t + c.c. , (2.38) where u(x) is periodic with the same period as ε r (x), ω kk = ∂ 2 ω/∂k 2 is the group velocity dispersion, α is the effective non linearity seen by the field envelope, and ω 0 is the center frequency. The group velocity dispersion can be largely controlled by the PC structure [START_REF] Notomi | Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs[END_REF]. The band edge is located at a high-symmetry point in the reciprocal space in most cases. Therefore, within the spectral domain of interest, high order dispersion is controllable [START_REF] Sun | Mode Locking of the Hermite-Gaussian Modes of a Nanolaser[END_REF].

Harmonic photonic cavity description: Gross-Pitaevskii Equation (GPE)

One can create an effective potential for light by spatially varying one parameter of a dielectric guiding nanostructure, for example the period a of the confining holes, along a given direction x. This formalism holds in the limit of slow changes of a, as shown mainly by numerical and experimental verification [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF][START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF] but also by some theoretical arguments [START_REF] Pol | Theory of chirped photonic crystals[END_REF][START_REF] Dobbelaar | Large area photonic crystal cavities: a local density approach[END_REF]. A minimum in the effective photonic potential can thus be used as a resonator to confine light, whose evolution is then governed by the Gross-Pitaevskii Equation (GPE), which is constructed by adding the potential V (x) to the NLSE:

i ∂A ∂t + 1 2 ω kk ∂ 2 A ∂x 2 -V (x)A = α|A| 2 A . (2.39) 
One example of such a resonator design is the one of a chirped periodic dielectric material with a relative permittivity ε r (x) = ε + ∆ε cos(2πx/a(x)) in which the period a(x) slowly changes along x according to a parabolic evolution, namely a(x) = a 0 +ςx 2 . The limitation to small change of a leaves the normal modes approximately unchanged, as well as ω kk . Equation (2.39) still holds, but the spatial change of a induces a frequency offset

V (x) ∝ [a(x) -1 -a -1 0 ] ∝ -ςx 2 .
Hence, such a chirped periodic dielectric results into a harmonic photonic potential for the field envelope of the normal modes near the band edge. This idea was proposed in a slightly different implementation involving the modulation of the thickness of a patterned slab [START_REF] Dobbelaar | Large area photonic crystal cavities: a local density approach[END_REF].

Applying this to the GPE Eq. (2.39) for a "cold cavity" without any Kerr nonlinearity (α = 0) indeed leads to the Schrödinger equation for the 1D quantum harmonic oscillator:

i ∂A ∂t + 1 2 ω kk ∂ 2 A ∂x 2 - 1 2 Ω 2 ω kk x 2 A = 0 . (2.40)
The eigensolutions are the Hermite-Gaussian (HG) functions

Ψ n (x) = 1 √ 2 n n! π -1/4 exp -x 2 /2 H n (x) , (2.41) 
with

H n (x) = n! n 2 m=0 (-1) m m!(n -2m)! (2x) (n-2m) , (2.42) 
where n 2 denotes the largest integer less than or equal to n 2 . Such modes can exhibit high-Q values, as experimentally demonstrated [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF][START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF][START_REF] Vincent Poulton | Photonic crystal microcavities in a microelectronics 45-nm SOI CMOS technology[END_REF]. These localized states are the same as the solutions of the quantum harmonic oscillator, as shown in Fig. 3.1(a). Their electromagnetic energy distributions are very different from those of the homogeneous standing wave modes of standard Fabry-Perot cavities. Moreover, the frequency separation between the HG modes depends on the effective mass m -1 eff = -1 ∂ 2 k ω = -1 ω kk of the quasi-particle and is related to the potential stiffness

V (x) = m eff Ω 2 x 2 2 = Ω 2 2ω kk x 2 , instead
of the size of the oscillator. This can be an effective way to reduce the cavity size for a given desired value of the mode frequency separation Ω. The size of the cavity can be determined from the scaling factor

x Ω = ω kk /Ω, (2.43) 
which is the width of the fundamental HG mode. Setting for example Ω/2π = 100 GHz and taking a typical value for the dispersion ω kk = 2v 2 g /∆ω g = 45 m 2 • rad -1 • s -1 estimated from the typical photonic bandgap ∆ω/ω ≈ 20% of the PC cavity and the group velocity c 0 /4 in semiconductor waveguides, leads to a size x Ω = 8.4 µm.

The field A(x, t) inside the cavity can be expanded on the basis constituted by these Hermite-Gaussian modes

A(x, t) = ∞ n=0 C n (t)e -iωnt Ψ n (x), (2.44) 
where ω n = (n + 1/2)Ω. For a given field distribution A(x, t), the modal coefficient C n (t) can be calculated by projecting it on Ψ n :

C n (t) = e iωnt ∞ -∞ A(x, t)Ψ n (x)dx. (2.45)

Comparison with a quantum harmonic oscillator

For the benefit of those familiar with quantum mechanics, we can observe the similarities between photonic harmonic cavity in a dielectric medium and a quantum harmonic oscillator of noninteracting electrons, as shown in Table 2.1.

The Hamiltonian operators of two models have similar forms. In a quantum oscillator, at the atomic scale, particles (like the electron) begin to display wavelike properties. The wave function that contains the information about the particle obeys the Schrödinger equation. As for the photonic harmonic cavity described before, the field envelope in a periodic dielectric structure obeys the Schrödinger equation. The two potentials in both models are Quantum harmonic oscillator Photonic harmonic cavity

Hamiltonian operator

H 0 = - 1 2 2 m ∂ 2 ∂x 2 + 1 2 mω 2 x 2 H 0 = - 1 2 ω kk ∂ 2 ∂x 2 + 1 2 Ω 2 ω kk x 2 Eigenvalues E n = n + 1 2 ω Ω n = n + 1 2 Ω Eigenfunctions Hermite-Gaussian function Ψ n (x) Mass m m eff = ω kk Scaling length mω ω kk Ω = m eff Ω Table 2.
1 -Comparison of a quantum harmonic oscillator (QHO) and a photonic harmonic oscillator (PhC).

parabolic. This leads to the equally spaced discrete energy levels for the quantum oscillator and the equally spaced discrete frequency of the modes for the photonic harmonic cavity.

The eigenfunctions are Hermite-Gaussian modes and the eigenvalues increase linearly with the mode order in the two oscillators. By comparing the particle mass in a quantum harmonic oscillator, we can obtain the effective mass m eff = /ω kk of the quasi-particle in the photonic harmonic cavity. Thus, the scaling lengths are expressed in similar forms.

Harmonic cavity laser: dissipative terms

In this subsection, the model for a harmonic cavity laser is established. We give the gain and absorber equations in a semiconductor. Next, the modified GPE is constructed by adding the dissipative terms to the GPE. These dissipative terms hold for the effects of the saturable gain, saturable absorption, etc. Here we focus on the deterministic properties of the mode-locked lasers, therefore other effects such as spontaneous emission are not taken into account.

Gain and absorber

A passively mode locked laser generally consists of a gain medium and an absorber. The gain is achieved by stimulated emission at an interband transition under conditions of a high carrier density in the conduction band of a quantum well/dot. The pumping source can be an injected electrical current or absorbed light. An absorber is formed by reversebiasing the junction. This reverse bias reduces the energy barrier for carrier, allowing the carriers to escape from the quantum well/dots faster.

The general gain equation can be derived from carrier rate equation [START_REF] Govind | Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers[END_REF]. Generally, saturation of the gain and of the absorption is described by the following set of spatially local equations:

∂g(x, t) ∂t = - g(x, t) -g 0 (x) τ g - |A(x, t)| 2 τ g I sat,g g(x, t) , (2.46) ∂a(x, t) ∂t = - a(x, t) -a 0 (x) τ a - |A(x, t)| 2 τ a I sat,a a(x, t) , (2.47) 
where τ g and τ a are the lifetimes of the gain and the absorption, respectively, I sat,g and I sat,a their saturation intensities, and g 0 and a 0 the unsaturated values of g and a. In the case where the lifetimes τ g and/or τ a are much shorter than all the response times of the system, g and/or a can be considered to reach steady-state instantaneously, leading to:

g(x, t) = g 0 (x)/ 1 + |A(x, t)| 2 I sat,g , (2.48) 
a(x, t) = a 0 (x)/ 1 + |A(x, t)| 2 I sat,a . (2.49) 
Taking into account the changes in refractive index induced by changes of the carrier density leads to the coupling between amplitude and phase. The linewidth of the laser is then also increased. This linewidth enhancement factor (Henry factor) α g [START_REF] Henry | Theory of the Linewidth of Semiconductor Lasers[END_REF][START_REF] Henry | Theory of the Phase Noise and Power Spectrum of a Single Mode Injection Laser[END_REF] should be added to the gain g(x, t)(1 -α g ) to quantify this coupling. The relation between how the real and imaginary indices are affected by the carrier density is [START_REF] Milan L Coldren | Diode Lasers and Photonic Integrated Circuits[END_REF] 

α ≡ dn/dN dn i /dN = - 4π λ dn/dN dg/dn , (2.50) 
where n and n i are the real and imaginary parts of the complex index.

The Henry factor is a function of the carrier density, but in this thesis, we take it as fixed at typical values. The influence of the Henry factor on the mode locking will be investigated in the section 5 & 6.

Harmonic cavity laser: dissipative terms

The equations for cavity and for the active medium have now been established. In this subsection, the laser master equation for the harmonic cavity laser is established. The dissipative terms describe the saturable gain and absorption in the active structure. In this framework, the spatial effects typical of Hermite-Gaussian modes, linked to the spatial distributions of the gain and the absorber inside the resonator, are properly taken into account.

Moreover, the equations for mode coefficients, which are another scheme to describe the same model, are also given at the end of the present section.

The cold cavity described by Eq. (2.40) can be transformed into a laser by adding gain inside or hybridized to the cavity. Moreover, mode-locking can be favored by adding a saturable absorber. Adding these elements to Eq. (2.40) leads to the so-called modified GPE:

i ∂A ∂t + 1 2 ω kk ∂ 2 A ∂x 2 - 1 2 Ω 2 ω kk x 2 A -iH 1 (|A| 2 )A = 0 . (2.51)
The dissipative term H 1 describes the gain and absorption according to

H 1 = 1 2 g(x, t)(1 -iα g ) - 1 2 a(x, t)(1 -iα a ) - 1 2 γ 0 , (2.52) 
where α g and α a are the Henry factors for gain and absorber respectively. The term γ 0 holds for the intrinsic losses.

The use of the standard form of Eq. (2.52) for the gain and absorber term is based on the usual approximation that these effects are a small perturbation to the laser, which do not modify the shape of the modes. The modes are supposed to be defined by the "cold" resonator only. Substitution of Eq. (2.44) into Eq. (2.51), and taking the integral over the whole space leads to

∞ n=0 dC n (t) dt e -iωnt Ψ n (x) = Ĥ1 A. (2.53)
By projecting on mode m, we obtain

dC m (t) dt = e iωmt +∞ -∞ Ĥ1 A(t, x)Ψ m (x)dx = e iωmt ∞ n=0 C n (t)e -iωnt +∞ -∞ Ψ n (x) Ĥ1 Ψ m (x)dx.
(2.54)

Here we notice that we can solve two different kinds of equations to investigate the laser behaviors. The first method is to directly solve Eq. (2.51), which is a partial differential equation. And the second one is to solve the equations for the mode coefficients, Eq. (2.54), which are ordinary differential equations. The results of the two ways should be the same. A detailed comparison is given in Appendix A. The simulation methods that we use are introduced in the next section.

Discussion of the laser size

We can notice that the size of the mode-locked laser depends on two factors.

The first one is the scaling factor of the cavity as defined in Eq. (2.43)). The scaling factor mainly depends on the chirping ratio of the periodic parameters (see Eq. (2.35)), which is the main factor for the cavity size. If the scaling factor is fixed for a given cavity, the free spectral range is also fixed due to Ω = ω kk /x 2 Ω . Another factor for the laser size is the number of Hermite-Gaussian modes which oscillate. The harmonic photonic cavity sustains Hermite-Gaussian modes whose spatial extension ranges with the square root of the mode order, as shown in Fig. 3.1(a). The number of excited modes depends on the width of the gain area due to the spatial inhomogeneity of the modes. Therefore, the length of the laser is mainly determined by the length of the active medium and does not affect the FSR of the cavity. This is very helpful to reduce the size of the mode-locked laser while keeping a fixed value of the repetition rate, as we introduced before.

Numerical Implementation

After having established the physical model of the lasers, the next task is to solve it to deduce the laser behavior from the model. Obviously, solving the equations analytically is too complicated, especially when they contain the dissipative terms in H 1 , which are nonlinear. Therefore, a numerical approach is needed to investigate the laser dynamical behaviors.

In this section, the detailed descriptions of the numerical implementation of the two different approaches (partial differential equation and ordinary differential equations) are presented separately. At last, the parameters used in the calculations are listed and discussed.

Two schemes to simulate the model

To summarize the model proposed in the former section, let us remind the two schemes available to investigate the laser behavior, based either on the mode coefficient equations or on the field amplitude equation.

• The first one consists in solving the mode equations, Eq. (2.45), which form a set of coupled differential equations,

dC n (t) dt = e iΩnt ∞ m=0 C m (t)e -iΩmt +∞ -∞ Ψ n (x)H 1 Ψ m (x)dx, n = 1, 2, • • • . (2.55)
The solution consists in the time evolution of the mode coefficients C n (t). The space and time dependent field amplitude A(x, t) is the superposition of all modes calculated by Eq. (2.44). In this method, the spatial dependence is transformed into dealing with the summation and integral of the Hermite-Gaussian modes Ψ(x) with dissipative term H 1 (x, t) on the right-hand side of each equation.

• The second way consists in directly solving the master equation for field envelope, i.e. the MGPE (Eq. (2.51)), which is a partial differential equation. In order to be conveniently used for numerical calculation, we put the time derivative term on the left, and other terms on the right. Eq. (2.51) is then rewritten as follows:

∂A ∂t = i 2 ω kk ∂ 2 A ∂x 2 - i 2 Ω 2 ω kk x 2 A + H 1 A. (2.56)
The solution here is the space and time dependent field amplitude A(x, t). The mode coefficients C n (t) in time can be calculated by projecting A(x, t) on the basis of the Hermite-Gaussian modes, as expressed in Eq. (2.45).

The two different schemes listed here must be coupled with the instantaneous or noninstantaneous gain response. If the model is the instantaneous response, the gain and absorption are given by the explicit expressions (Eq. (2.48) and Eq. (2.49)), which can be directly added into H 1 . But if the saturation is non-instantaneous, gain and absorption obey implicit equations. We then need to combine the master equation (Eq. (2.55) or Eq. (2.56)) with the two additional gain and absorption equations (Eq. (2.46), Eq. (2.47)).

Mode equation calculation: Runge-Kutta fourth-order method

The first way to investigate the model is to solve Eq. (2.55). The Runge-Kutta fourthorder method is used to numerically integrate it. In this section, a brief introduction to the Runge-Kutta fourth-order method is given based on the equations of mode coefficients ( Eq. (2.55)). The algorithm is implemented using a standard ODEs solver with adaptive step size control in MATLAB.

Taking into account a limited number m of mode coefficients C n (t), where n = 0, 1, 2, • • • , m -1, we have m equations to be solved. We rewrite Eq. (2.55) with its initial condition C n (t 0 ) = C n,0 at starting moment t 0 as,

       dC n (t) dt =f n (t, C 0 (t), C 1 (t), C 2 (t), • • • , C m-1 (t)), C n (t 0 ) =C n,0 , (n = 0, 1, 2, • • • , m -1), (2.57) 
where f n represents the right-hand side terms of the equation n in Eq. (2.55). It contains all the coefficients C 0

(t), C 1 (t), C 2 (t) • • • , C m-1 (t).
Let us denote the time at the ith time-step by t i and the computed solution at the ith time-step by C n,i . For a time step

h = t i+1 -t i , C n,i+1 is the Runge-Kutta approximation of C n (t i+1
). The computation sequence shown in Fig. 2.8, is given by: is the slope at the beginning of the interval, using C n,i ; K n,2 is the slope at the midpoint of the interval, using C n,i and K n,1 ; K n,3 is again the slope at the midpoint using C n,i and K n,2 ; K n,4 is the slope at the end of the interval, using C n,i and K n,3 .

   C n,i+1 = C n,i + h 6 (K n,1 + 2K n,2 + 2K n,3 + K n,4 ), t i+1 = t i + h, (2.58) 
where four increments are used in each time step

               K n,1 = f n (t i , C 1,i , C 2,i , • • • , C m,i ) K n,2 = f n (t i + h 2 , C 1,i + h 2 K 1,1 , C 2,i + h 2 K 2,1 , • • • , C m,i + h 2 K m,1 ) K n,3 = f n (t i + h 2 , C 1,i + h 2 K 1,2 , C 2,i + h 2 K 2,2 , • • • , C m,i + h 2 K m,2 ) K n,4 = f n (t i + h, C 1,i + hK 1,3 , C 2,i + hK 2,3 , • • • , C m,i + hK m,3 ) (n = 0, 1, 2, • • • , m -1; i = 0, 1, 2, • • • ) (2.59)
The accuracy of the solution depends on the step size h. A too small step size h increases the computational cost. Advanced methods for adaptive step size control have been developed, such as ode45 solver in MATLAB, which is an example of Runge-Kutta method with error estimate based on the Dormand Prince method [START_REF] Dormand | A reconsideration of some embedded Runge-Kutta formulae[END_REF]. It uses six function evaluations to calculate fourth-and fifth-order accurate solutions. The difference between these solutions is then taken to be the error of the fourth-order solution. This estimate of the error is used to adapt the step size in order to keep the error below a desired value.

Another factor strongly influences the accuracy, i.e. the number of modes in the calculation. The number of coupled ODEs that we need to calculate is equal to the number of modes taken into consideration. In our calculation, generally, the intensities of modes with mode order larger than 10 are very small. Therefore 15 mode coefficients are used to simulate the model.

MGPE calculation: split-step-Fourier-integrated Runge-Kutta method

The split step Fourier method is a well know and powerful method in numerically solving the nonlinear Schrödinger equation [START_REF] Govind | Nonlinear fiber optics[END_REF], especially for pulse-propagation problems in nonlinear dispersive media [START_REF] Liu | A fast method for nonlinear Schrödinger equation[END_REF][START_REF] Sinkin | Optimization of the split-step Fourier method in modeling optical-fiber communications systems[END_REF][START_REF] Kremp | Fast Split-Step Wavelet Collocation Method for WDM System Parameter Optimization[END_REF][START_REF] Hardin | Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations[END_REF]. The relative speed of this method compared with most finite difference schemes can be attributed in part to the use of the Fast Fourier Transform (FFT) algorithm [START_REF] Cooley | An Algorithm for the Machine Calculation of Complex Fourier Series[END_REF].

The method used to solve the partial differential equation is the spectral method integrated with Runge-Kutta method. It is similar to the split step Fourier method, but the step size control is also performed by the ode45 solver in MATLAB and it benefits from the fourth order approximation of the Runge-Kutta method. The detailed calculation steps are introduced in the following.

Similar to the split step method, the linear and nonlinear terms in Eq. (2.56) are treated separately:

∂A ∂t = DA + NA, (2.60) 
where N is the nonlinear operator that contains the spatially dependent potential term and the dissipative terms. D is the linear operator which contains the spatial derivative terms, calculated through Fourier transform. A(x, t) is transformed into A(k, t) in k space, and the derivative term

∂ 2 A(x, t) ∂x 2
becomes the product (ik) 2 • A(k, t) in k space with k = 2π/x. It is transformed back to real space thanks to the differentiation properties of Fourier transforms. The whole process for the first term in Eq. (2.56) can be expressed as follows:

DA = FFT -1 [ i 2 ω kk (ik) 2 FFT(A)]. (2.61) 
Thanks to the efficient FFT algorithm, this numerical transformation is very fast. Then DA and NA are added up to get the time evolution operator which is used in a Runge-Kutta solver such as ode45 in MATLAB. The split-step algorithm is thus partly implemented through the ODE solver which controls the step size according to the accuracy. It is accurate to fourth order in the step size h. Therefore, it has higher order accuracy compared with the standard split step Fourier method, which is second order in the step size h.

The space grid contains N nodes and is defined as:

x n = n∆x, with n = [-N/2, N/2- 1]
, ∆x is the spatial interval of the grids and the reciprocal space is k n = 2πN n/∆x. Here we choose N = 2 7 . Finally each point in the spatial grid is one coefficient in ODEs and is calculated by a generic numeric ordinary differential equation solver. The calculation speed for the well optimized codes in MATLAB is that the intracavity temporal field evolution, over 1ns, requires approximately half a minute of computing time, on a personal computer (i.e. with a 6th generation Intel i7 processor).

The simulations are performed using a split-step Fourier method with adaptive step size control. The spatial discretization period is equal to 0.13x Ω . Time discretization is variable but has at least 100 samples per period 2π/Ω.

Comparison between the results from two methodsis useful. This makes it easier to find and correct the bugs in codes. By comparing the solutions of the two methods with the same initial parameters, we obtained nearly the same results. Detailed statistical comparisons are displayed in Appendix A.

Parameters of the model

The parameters used in the calculations are listed in Table 2.2. They are used throughout the thesis, unless specifically stated. Here, we choose typical values from semiconductor lasers. Henry factor α g , α a 0

Among the most important parameters for the semiconductor are the ratio of saturation intensities/energies between gain and absorber, and the lifetimes of the gain and absorber. The differential gain at high carrier density in the gain region is smaller than the differential gain in the absorber region. Since the saturation intensity/energy is inversely proportional to the differential gain, it is thus larger for the gain than that for the absorber [START_REF] Y C Xin | Reconfigurable quantum dot monolithic multisection passive mode-locked lasers[END_REF]. This SUMMARY leads to a saturation energy/intensity ratio larger than 1, as shown in Table 2.2. In addition, inverse bias voltage added on the absorber strongly decreases the lifetime of the absorber from nanoseconds to picoseconds [START_REF] Karin | Ultrafast dynamics in field-enhanced saturable absorbers[END_REF][START_REF] Malins | Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 µm[END_REF]. These two properties are helpful for achieving mode locking.

The intrinsic losses γ 0 we choose here are small, but feasible for a semiconductor cavity [START_REF] Santis | High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms[END_REF]. And we have observed that when we increase the losses, the laser behavior is unchanged if one keeps the ratio for gain r g = g 0 /γ 0 and absorber r a = a 0 /γ 0 constant. However, low intrinsic losses mean a higher Q-factor thus reducing the threshold to achieve stable mode locking.

The Henry factors for gain and absorber vary a lot for different gain materials and carrier densities. In most of the calculation in the thesis, they are set to be zero because we focus on the main dynamical behaviors under the influence of different factors. However the influence of the Henry factors on mode locking is also discussed independently in section 5 & 6.

Here the free spectral range Ω, second order dispersion ω kk , scaling factor x Ω are chosen from typical values. They are different for different structures, but the values that we choose here don't decisively influence the dynamical behavior of the mode-locked lasers due to the scaling properties of photonic harmonic cavity with Hermite-Gaussian modes. However, the gain length w g and absorber length w a are strongly related to the size of the Hermite-Gaussian modes. This leads to different mode competition behavior for different gain lengths, as will be discussed in chapter 3.

Summary

In conclusion, we have introduced the concept of photonic harmonic mode locked laser by comparison with a Fabry-Perot cavity. We proposed the idea that the repetition rate of the pulse formed by locking low order Hermite-Gaussian modes in a photonic harmonic cavity is independent on the cavity length, which is helpful for miniaturizing mode-locked lasers.

Recent work on harmonic photonic cavity is presented. The local density approach is introduced first. This method simplified design of the harmonic cavity. Then the harmonic cavity made by 2D membrane photonic crystal and 1D nanobeam are separately introduced.

Next, we introduce the model from a simple example of chirped harmonic cavity based on a 1D grating layer described by coupled mode theory and local density approach. Then the general model is established based on Gross-Pitaevskii Equation (GPE) with dissipative terms. The cavity effects are described by the second order dispersion and the spatially dependent parabolic potential. The dissipative terms hold for the saturable gain and absorption in the active structure. The equations for mode coefficient are obtained from the field equation by projecting the field on the basis on the Hermite-Gaussian modes, which gives us a second scheme to investigate the model of mode-locked lasers. After that, the numerical simulation methods are introduced for calculating the field equation and mode coefficient equations. The parameters used for the simulation are given and discussed.

Chapter 3

Gain saturation: Hermite-Gaussian mode competition 

43

It is well known that in the paraxial approximation, the transverse modes of a laser beam can be expanded on the basis of Hermite-Gaussian or Laguerre-Gaussian modes [START_REF] Siegman | Mode Calculations in Unstable Resonators with Flowing Saturable Gain 1:Hermite-Gaussian Expansion[END_REF][START_REF] Siegman | Hermite-gaussian functions of complex argument as optical-beam eigenfunctions[END_REF][START_REF] Tovar | Production and propagation of Hermite-sinusoidal-Gaussian laser beams[END_REF][START_REF] Laabs | Propagation of Hermite-Gaussian-beams beyond the paraxial approximation[END_REF][START_REF] Saghafi | The beam propagation factor for higher order Gaussian beams[END_REF][START_REF] Gori | Intensity-based modal analysis of partially coherent beams with Hermite-Gaussian modes[END_REF][START_REF] Nienhuis | Paraxial wave optics and harmonic oscillators[END_REF]. The superposition of these modes gives rise to partially coherent beams [START_REF] Gori | Intensity-based modal analysis of partially coherent beams with Hermite-Gaussian modes[END_REF][START_REF] Wang | Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[END_REF][START_REF] Gbur | Coherence vortices in partially coherent beams[END_REF][START_REF] Qiu | Paraxial propagation of partially coherent Hermite-Gauss beams[END_REF]. Many interesting beam profiles can be created [START_REF] Forbes | Structured Light from Lasers[END_REF]. However, in this section, instead of dealing with the transverse Hermite-Gaussian modes of laser beam, we investigate the longitudinal Hermite-Gaussian modes formed in the photonic harmonic potential cavity.

The aim of this chapter is to investigate the mode competition for gain among Hermite-Gaussian modes in the absence of saturable absorption. Two methods are used to explore this mode competition.

The first one is a static analysis. It focuses on the properties of Hermite-Gaussian modes instead of dynamical equations. First, we define the spatial modal gain of Hermite-Gaussian modes with different gain window widths. It indicates the amount of gain available for the Hermite-Gaussian mode within the limited gain window width. However, this is not enough to evaluate the cross saturation of the gain of one mode by another. We thus define the mode saturation matrix, which can effectively describe the impact of one mode on all the other modes. We then see the dramatic difference of saturation matrix between Hermite-Gaussian modes in a photonic harmonic cavity and standard standing waves in a Fabry-Perot cavity. The saturation matrix with limited gain width is also discussed.

In the second approach, we analyze the model equations dynamically. First, we use the continuation calculation in pde2path to investigate the stability of one single mode solution. The module pde2path is an advanced MATLAB package allowing us to perform continuation and bifurcation analysis for PDEs. The evolution of single mode solutions as a function of the gain window width is investigated through pde2path. It can reveal the origin of the instability of one Hermite-Gaussian mode by checking the eigenvalues of the Jacobian matrix. Then, we use the direct numerical simulation as introduced in chapter 2.3 to obtain the time evolution of the modes starting from initial fields. The stable states from random initial fields are statistically investigated while varying the gain window width. Multiple stable states are observed in the cases of instantaneous gain saturation. However, the final stable states obtained in the instantaneous saturation case are dramatically different from those obtained in noninstantaneous saturation case. Therefore, the influence of the gain lifetime on the final states is also investigated.

Static analysis of mode competition

The spatial distribution of the light intensity in Hermite-Gaussian modes is strongly different from the spatially homogeneous standing modes in a Fabry-Perot cavity. Since the HG mode size increases as mode order increases, the modal gains for different modes are different. This leads to a spatial dependence of the mode competition on the size of the saturable gain. Therefore the width of the gain region becomes a very important factor for mode competition.

To understand the peculiar spatial properties of Hermite-Gaussian mode competition, 3.1.1 -Spatial modal gain for Hermite-Gaussian modes in this section, we consider the static properties of the HG mode instead of dynamical laser equations. First, we define the spatial modal gain seen by Hermite-Gaussian modes to illustrate the ability of a single mode to benefit from gain with a fixed gain width. Next, the saturation matrix is defined in order to evaluate the cross saturation of the gain of one mode by another mode.

Spatial modal gain for Hermite-Gaussian modes

In this subsection, the spatial modal gain for Hermite-Gaussian modes is defined. The illustration of spatial modal gain clearly shows that given the gain region limited width, the modal gains of low order Hermite-Gaussian modes are relatively larger than those for higher order one. Therefore, changing the gain width can control the number of modes competing for gain.

The laser geometry that we consider is sketched in Fig. 3.1(a). The gain width w is represented by the semi-transparent pink area. Since the width of Hermite-Gaussian mode of order n scales roughly like √ n in Fig. 3.1 (b), we can control the number of modes that compete for the gain by changing w. Here since we only consider the influence of the gain width on the modes, we suppose that the gain spectrum is flat for the modes of interest. We know the field is amplified in the gain region due to stimulated emission, which in turn is proportional to the field intensity when neglecting saturation. Thus, the nodes and anti-nodes of a standing wave give very different contributions to the modal gain. Therefore, the modal gain for each mode depends on its spatial shape inside the cavity.

It is reasonable to use the mode pattern Ψ 2 n (x) as a weight function for the modal gain of mode n,

G n (w) = +∞ -∞ Ψ 2 n (x) • g 0 (x, w)dx, (3.1) 
where the mode function Ψ n (x) defined in Eq. (2.41) has been normalized:

+∞ -∞ Ψ 2 n (x)dx = 1. (3.2)
To avoid boundary effects, the gain g 0 (x, w), proportional to the pumping rate, is spatially confined through a profile delimited by this formula:

g 0 (x, w) = ḡ0 • W (x, w), (3.3) 
where ḡ0 corresponds to the unsaturated gain value in the gain region. The gain window function with width w is

W (x, w) = 1 2 erfc w 2 -x ∆x g + erfc x -w 2 ∆x g , (3.4) 
which defines a region -w 2 , w 2 with a smooth transition of size ∆x g , between the value 1 inside the window and 0 outside. Here, we use ∆x g = 0.5x Ω as an example. The smooth transition is used for preventing sharp truncation errors in numerical simulations. erfc(x) is the complementary error function of x defined as The normalized gain G n /ḡ 0 is plotted in Fig. 3.2 as a function of gain width w/x Ω . We can see that the gain window width is the key parameter for gain competition. The modal gain of all modes increases with the gain width. The low order modes with the smallest size can obtain larger modal gain compared with the relative higher order modes if the gain doesn't fully cover these modes.

erfc(x) = 2 √ π +∞ x e -t 2 dt. ( 3 
However, this is still not enough to explain the cases where several modes are fully covered by the gain region. In this case, the modal gain for all these modes should be ḡ0 , but the highest order modes can benefit more from gain, because low order modes can not experience the parts of gain outside of their widths. To better understand this situation of multimode cross saturation, we introduce the concept of mode saturation matrix in the next subsection.

Mode saturation matrix

In this subsection, the mode saturation matrix is introduced. It reveals the mode competition among the Hermite-Gaussian modes. A comparison between the shapes of Hermite-Gaussian modes in a harmonic cavity and standing wave modes in Fabry-Perot cavity is shown in Fig. 3.3. Although the mode frequencies are equally spaced in both cases, the field energy spatial inhomogeneous distribution of Hermite-Gaussian modes is very different from the homogeneous one of standing waves in Fabry-Perot lasers. To evaluate this cross-gain saturation, we define the saturation matrix as

Position Position

S n,m = ∞ -∞ Ψ 2 n (x)Ψ 2 m (x)dx ∞ -∞ Ψ 4 n (x)dx ∞ -∞ Ψ 4 m (x)dx , (3.6) 
where Ψ n (x) is the spatial dependence of the field envelope of mode of order n, i. e. a Hermite-Gaussian mode like in Eq. (2.41) for the harmonic photonic cavity or a standing wave for the Fabry-Perot cavity. In both cases the modes are normalized according to:

∞ -∞ Ψ n (x)Ψ m (x)dx = δ nm . (3.7)
The definition of Eq. (3.6) supposes that the gain medium homogeneously fills the resonator. In both cases, the values of the elements of the diagonal are equal to 1. In the case of the Hermite-Gaussian modes (see Fig. 3.4 (a)), the cross-saturation coefficients progressively decrease with the distance from the diagonal. This is consistent with the plot of Fig. 3.1 (b), which shows that the position of the main lobe of the Hermite-Gaussian mode of order n increases roughly like √ n. On the contrary, for the Fabry-Perot cavity modes (see Fig. 3.4 (a)), all non diagonal elements are equal to 0.667, which means that the cross saturation is the same for all pairs of modes in the Fabry-Perot cavities.

The plots of Fig. 3.4 permit us to predict that mode competition among Hermite-Gaussian modes will be different from the one experienced in usual Fabry-Perot lasers. Indeed, while in the latter case one the dominant mode will equally saturate the gain seen by all other modes, competition among Hermite-Gaussian modes will be fierce only among neighboring modes. Therefore, one can expect modes of very different orders to be quite easily able to oscillate simultaneously.

The saturation matrix reveals the cross saturation relation among the modes. But if the gain window has a limited width, there should be some changes in the saturation matrix, which are discussed in the next subsection.

Mode saturation matrix within limited gain width w

In this subsection, a new cross saturation matrix is defined, which is weighted by the gain window with a fixed width w. We investigate how the finite width of the gain window modifies mode competition.

If the Hermite-Gaussian modes are not fully covered by the gain, the saturation matrix should be weighted by the gain window function with width w,

S n,m (w) = ∞ -∞ Ψ 2 n (x)Ψ 2 m (x) • W (x, w) dx ∞ -∞ Ψ 4 n (x) • W (x, w) dx ∞ -∞ Ψ 4 m (x) • W (x, w) dx , (3.8) 
where W (x, w) is the window function defined in Eq. 3.4.

The saturation matrices with gain width equal to (a) w = 1x Ω , (b) w = 3x Ω , (c) w = 5x Ω , and (d) w = 9x Ω are plotted in Fig. 3.5.

In Fig. 3.5(a), the gain width is very small: the gain does not fully cover any mode. One can see that cross saturation among even (or odd) modes is stronger than among neighboring modes. This is obvious if one takes the even modes as a example. The central lobes of all even modes are partially covered by the gain. But for the odd modes, there is a node at the center. Therefore, the even modes should have strong cross saturation with even modes, and very little cross saturation with the odd modes. In this case, the mode 0 has the largest spatial modal gain (see Fig. 3.2) and strong cross saturation with the even modes. Hence we can predict in this situation that only mode 0 can oscillate, as will be verified in the next section.

In Fig. 3.5(b), the gain width is w = 3x Ω . It can cover modes 0, 1 and part of mode 2. In this case, for higher order modes (n ≥ 3), we notice that the cross saturation is strong among modes with the same parity. On the contrary, modes 0, 1, and 2 exhibit relatively close cross-saturation coefficients. The situation is also the same for w = 5x Ω in Fig. 3.5(c), but the gain now covers the first 5 modes. And for the case with larger gain width w = 9x Ω in Fig. 3.5(d), the cross saturation converges to the case of Fig. 3.4.

In fact, as shown in Fig. 3.2, the higher order modes whose sizes are larger than the gain region have small modal gains and are not expected to oscillate. But for the modes fully covered by the gain region, the cross saturation is still maximum among the neighboring modes. Therefore, we expect that the laser will oscillate in such a way that two neighboring modes do not easily oscillate simultaneously.

The dynamical saturation behavior of the Hermite-Gaussian modes is discussed in the next section. 

Dynamical analysis of mode competition

The static saturation properties of Hermite-Gaussian modes discussed in the preceding section are independent of the dynamical master equations. They cannot describe the way the modes evolve with time and which equilibrium solutions they finally reach. In this section, the mode competition is investigated by solving the master equation and checking the different states formed by the modes due to the gain saturation.

In the first part, we consider the case of instantaneous gain saturation. The stability of single-mode solutions is investigated using pde2path [START_REF] Uecker | Hopf Bifurcation and Time Periodic Orbits with pde2path -Algorithms and Applications[END_REF], which is a MATLAB-based package for investigating continuations and bifurcations for partial differential equations. We can clearly find the origin of the instability by checking the eigenvalues and eigenfunctions of the Jacobian matrix. We find that the results match the prediction from the saturation matrix of the former section, i.e. the neighboring modes are suppressed. In addition, by checking the single-mode solutions for mode 1 and mode 2, we find that mode 0 with the larger spatial modal gain is always the origin of instability for single-mode solutions for mode 1 and mode 2.

In the second part, the direct numerical calculation as described in chapter 2.3 is implemented to investigate the influence of the gain window width on the final stable states. Starting from random initial fields, the multiple steady-state solutions are obtained for instantaneous gain saturation. As a comparison, the case of non-instantaneous gain response is also investigated. It exhibits completely different stable states. The multi-stability disappears: only one steady-state solution is obtained for each value of the width w.

Furthermore, the influence of the gain lifetime is also investigated. As a result, the transition between instantaneous and non-instantaneous saturation occurs when the repetition period 2π/Ω is close to the gain lifetime.

Single mode stability analysis by using pde2path

In this subsection, we first give a brief introduction to the pde2path framework. Then, we rewrite the master equation (Eq. (2.51)) with instantaneous gain saturation in a form that can be injected into pde2path. After that, we investigate the mode competition for instantaneous gain saturation. Finally, we check the influence of the gain width on a singlemode solution of the model using the continuation technique in pde2path. The stability analysis is implemented by calculating the eigenvalues and eigenfunctions of the Jacobian matrix.

Brief introduction to transformation of PDEs to matrices operations by FEM in pde2path

Pde2path is a MATLAB-based package to investigate continuations and bifurcations in systems of elliptic partial differential equations [START_REF] Uecker | Hopf Bifurcation and Time Periodic Orbits with pde2path -Algorithms and Applications[END_REF][START_REF] Uecker | Pde2path -A matlab package for continuation and bifurcation in 2D elliptic systems[END_REF]. Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear differential equations. It does not calculate the time evolution of the system, therefore it provides a very efficient way to investigate the dynamical system behavior. Besides, since it calculates the solutions at the fixed points, the unstable solutions can also be obtained.

In terms of the model we have developed in the previous sections, pde2path can calculate the solution at the fixed points of the master equation in Eq. (2.56) (namely when ∂A(x, t) ∂t = 0) as a function of any parameter, starting from an initial guess solution. Also, it can detect the stability and bifurcations in these solutions by checking the eigenvalues of the Jacobian matrix at the new solutions.

In order to use pde2path to analyze the model conveniently, we need to rewrite the equation. Since pde2path cannot directly use complex variables, we also need to split A(x, t) into real and imaginary parts and split the master equation into two equations. In addition, the Jacobian matrix of the two equations is also derived analytically to inspect the stability of the solution. And all these equations need to be implemented into pde2path. The module pde2path converts these equations and boundary conditions into algebraic equations by the finite element method (FEM). Finally Newton's method is implemented to solve the algebraic equations and detect new stationary solutions with a new parameter for continuation.

The framework pde2path can treat elliptic systems of PDEs of the type [START_REF] Jens | The OOPDE setting of pde2patha tutorial via some Allen-Cahn models Introduction[END_REF] 

∂ t u = -G(u, λ c ), (3.9) 
and focus on the associated steady state equation

G(u, λ c ) = -∇ • (c ⊗ ∇u) + au -b ⊗ ∇u -f = 0, (3.10) 
where ⊗ is the tensor product, u = u(x, t) is the solution, x represents the space coordinate 1 , λ c is the continuation parameter in the PDEs, the different parameters c (diffusion), b (advection), a (linear term), and f (nonlinear terms) may depend on x, u and λ c . The boundary condition can support linear and nonlinear Dirichlet/Neumann and periodic conditions depending on the parameters g, c, q. It has the form

n • (c ⊗ ∇u) + qu = g, (3.11) 
where n is the outer normal. q and g may depend on z, u, ∇u.

The basic idea of FEM is to convert PDEs and boundary conditions into algebraic equations. Eq. (3.10) and Eq. (3.11) are assembled and transformed into big sparse matrices by FEM discretization2 :

G(u) = 0 ⇒ K total (u)u -F total (u) = 0, (3.12) 
where K total is the stiffness matrix, assembled from c, a, b and q in Eq. (3.10) and Eq. (3.11) and F total is assembled from f and g in Eq. (3.10) and Eq. (3.11). The matrices K total and F total are composed of several matrices:

K total = K + K adv + sQ BC , (3.13) 
F total = F + sG BC , (3.14) 
where K and K adv are stiffness and advection matrices corresponding to c and b in Eq. (3.10), the matrices G BC and Q BC correspond to q and g in Eq. (3.11), s is a spring stiffness factor.

Implementation of the laser model

In the case of the equations (Eq. (2.51)) we are interested in, these matrices [Eq. (3.13) and Eq. (3.14)] can be simplified: (1) There is no advection in the equation, therefore setting b = 0 leads to K adv = 0; (2) Since all the solutions we consider will be localized at the bottom of the potential, the field on the boundary is negligible and we can keep periodic boundary condition. Setting q = 0 and g = 0 results in Q BC = 0 and G BC = 0, corresponding to homogeneous Neumann boundary conditions;

(3) c = 1 in Eq. (3.10) is a constant, then K can be assembled exactly and the vector F can be directly obtained by the fast and convenient formula F = M f [START_REF] Jens | The OOPDE setting of pde2patha tutorial via some Allen-Cahn models Introduction[END_REF], where M is a mass matrix and vector f corresponds to the nonlinear term1 in Eq. (3.10). Therefore, in our laser model described in section 2, Eq. (3.12) can be simplified as Now the most important part is to implement the nonlinear terms f into pde2path. Since pde2path only can not deal with complex values, in the following, from master equation (Eq. (2.56)), we need to derive the nonlinear function f which can be used in pde2path. Thus we need to: (1) split the master equation into its real and imaginary parts; (2) derive the functions used in Jacobian matrix; [START_REF] David | Device requirements for optical interconnects to silicon chips[END_REF] give the auxiliary condition for the continuation.

G(u) = ∆u + f = 0 ⇒ Ku -M f = 0. ( 3 
The master equation (Eq. (2.56)) divided by Ω/2 on both sides is rewritten as

2 Ω ∂A ∂t = i ω kk Ω ∂ 2 ∂x 2 - Ω ω kk x 2 A + γ 0 Ω g(x, t) γ 0 - a(x, t) γ 0 -1 A . (3.16) 
Replacing ω kk /Ω by the scaling factor x Ω = ω kk /Ω, it can be rewritten as

2 Ω ∂A ∂t = i x 2 Ω ∂ 2 A ∂x 2 - x 2 x 2 Ω A + γ 0 Ω g(x, t) γ 0 - a(x, t) γ 0 -1 A . (3.17)
Then it can be spatially and temporally re-scaled by setting z = x/x Ω and τ = tΩ/2,

∂A ∂τ = i ∂ 2 A ∂z 2 -iz 2 A + γ 0 Ω g(z, t) γ 0 - a(z, t) γ 0 -1 A . (3.18) 
Substituting the instantaneous gain and absorption into Eq. (3.18), gives

∂A ∂τ = i ∂ 2 A ∂z 2 -iz 2 A+Γ γ r g W (z, w )(1 -iα g ) (1 + |A| 2 /I sat,g ) - r a W (z, w )(1 -iα a ) (1 + r I |A| 2 /I sat,g ) -1 A, (3.19) 
where Γ γ = γ 0 /Ω is the ratio of the loss rate and the FSR, r g = g 0 /γ 0 is the normalized gain, r a = a 0 /γ 0 is the normalized absorption, W (z, w ) is the gain window with normalized width w = w/x Ω , and r I = I sat,g /I sat,a is the saturation intensity ratio.

We can make an ansatz consisting in the oscillation of one mode:

A(z, τ ) = u(z)e -in Ω τ / I sat,g , (3.20) 
where n Ω = 1, 3, 5, • • • is a spectral parameter related to mode frequency:

n Ω τ = n Ω Ωt 2 . (3.21)
Here, isolating the term containing the mode frequency e -in Ω τ in A(z, t) allows us to remove any time dependence from u(z). Then, substituting Eq. (3.20) into Eq. (3.19), we are left with an equation at the fixed point:

G(u) = i ∂ 2 u ∂z 2 -iz 2 u+in Ω u+Γ γ r g W (z, w )(1 -iα g ) 1 + |u| 2 - r a W (z, w )(1 -iα a ) 1 + r I |u| 2 -1 u = 0.
(3.22) Since the module pde2path cannot directly deal with complex valuables, we need to split the equation into real and imaginary parts. Therefore, we substitute then

u = u 1 + iu 2 (3.23)
with real variables u 1 , u 2 (corresponding to real part and imaginary part of field amplitude) into Eq. (3.22). This equation can be split into real and imaginary components, which are rewritten as follows:

     - ∂ 2 u 2 ∂z 2 + f 1 = 0, + ∂ 2 u 1 ∂z 2 + f 2 = 0, (3.24) 
where f 1 and f 2 are the nonlinear contributions without the derivative terms,

f 1 = -n Ω u 2 + z 2 u 2 -Γ γ u 1 + r g Γ γ W (u 1 + u 2 α g ) 1 + I u - r a Γ γ W (u 1 + u 2 α a ) 1 + r I I u , (3.25) 
f 2 = +n Ω u 1 -z 2 u 1 -Γ γ u 2 + r g Γ γ W (u 2 -u 1 α g ) 1 + I u - r a Γ γ W (u 2 -u 1 α a ) 1 + r I I u , (3.26) 
where

I u = u 2 1 + u 2 2 .
To perform the continuation in pde2path, Eq. (3.24) is discretized by finite element method (FEM). As introduced before, the PDEs and boundary conditions are transformed into a big sparse matrix by FEM discretization in Eq. (3.12). If the number of spatial grid points for u is N , the size of K and M is N × N . The derivative term ∂ 2 u 2 ∂z 2 is taken into account when assembling K. The term M f (u) is deduced from the expression Eq. (3.25) and Eq. (3.26) for f 1 and f 2 . Taking into account the two equations (Eq. (3.24)), the final form of Ku -M f is

r = 0 -1 1 0 ⊗ K u 1 u 2 - 1 0 0 1 ⊗ M f 1 f 2 , (3.27) 
where r is a 2N × 1 vector called the residual. If the norm ||r|| of the residual, which is calculated from a guess solution u 1 , u 2 , is smaller than a tolerance tol that is set initially, then this can be regarded as a solution of the PDEs.

A new solution (u N , λ c,N ) with a new value of the continuation parameter λ c,N is calculated based on the previous solution (u, λ c ) by Newton method. The details can be checked in Ref. [START_REF] Uecker | Pde2path -A matlab package for continuation and bifurcation in 2D elliptic systems[END_REF].

However, to perform continuation with the control parameter λ c , one more constraint needs to be added to obtain a new solution u N . It originates from the phase symmetry of the model, meaning that any solution is invariant by a phase shift. Continuation calculation needs to move along the changes of the control parameter instead of trivially finding a new steady-state solution following the same orbit. Therefore, the auxiliary condition is added to break such a phase shift symmetry in the system [START_REF] Uecker | Hopf Bifurcation and Time Periodic Orbits with pde2path -Algorithms and Applications[END_REF][START_REF] Rademacher | Symmetries , freezing , and Hopf bifurcations of traveling waves in pde2path[END_REF]. The auxiliary condition that we use requires the estimated solution u 1,N , u 2,N to satisfy the following relation with the former solution u 1 , u 2 [START_REF] Dohnal | pde2path -version 2.0: faster FEM, multi-parameter continuation[END_REF],

u T 1,N , u T 2,N • -u 2 u 1 = 0. (3.28)
Here we basically project the estimated solution onto the corresponding Goldstone mode1 related to phase shift symmetry, which has components (-u 2 , u 1 ). 2To inspect the stability of one solution u, the Jacobian matrix G u (u 1 , u 2 ) is given by

G u = 0 -1 1 0 ⊗ K - 1 0 0 1 ⊗ M     ∂f 1 ∂u 1 ∂f 1 ∂u 2 ∂f 2 ∂u 1 ∂f 2 ∂u 2     , (3.29) 
where the derivatives of nonlinear contributions f 1 , f 2 with respect to u 1 and u 2 are,

∂f 1 ∂u 1 = -Γ γ + r g Γ γ W 1 + I u - r a Γ γ W 1 + r I I u - r g Γ γ W (u 1 + u 2 α g )2u 1 (1 + I u ) 2 + r a Γ γ W (u 1 + u 2 α a )2u 1 r I (1 + r I I u ) 2 , (3.30) 
∂f 2 ∂u 2 = -Γ γ + r g Γ γ W 1 + I u - r a Γ γ W 1 + r I I u - r g Γ γ W (u 2 -u 1 α g )2u 2 (1 + I u ) 2 + r a Γ γ W (u 2 -u 1 α a )2u 2 r I (1 + r I I u ) 2 , (3.31 
)

∂f 1 ∂u 2 = -n Ω +z 2 + α g r g Γ γ W 1 + I u - α a r a Γ γ W 1 + r I I u - r g Γ γ W (u 1 + u 2 α g )2u 2 (1 + I u ) 2 + r a Γ γ W (u 1 + u 2 α a )2u 2 r I (1 + r I I u ) 2 , (3.32) ∂f 2 ∂u 1 = +n Ω -z 2 - α g r g Γ γ W 1 + I u + α a r a Γ γ W 1 + r I I u - r g Γ γ W (u 2 -u 1 α g )2u 1 (1 + I u ) 2 + r a Γ γ W (u 2 -u 1 α a )2u 1 r I (1 + r I I u ) 2 .
(3.33)

The eigenvalues and eigenvectors of G u can be computed, thus allowing stability inspection for stationary solutions. If the dimension of the grid for u is N , then the size of G u is 2N × 2N . The size of the eigenvectors is 2N . The N first components of the eigenvector correspond to u 1 , while the N last ones correspond to u 2 . The eigenvectors shown in following subsections are the eigenvectors corresponding to u 1 . In addition, the convention chosen in Ref. [START_REF] Uecker | Hopf Bifurcation and Time Periodic Orbits with pde2path -Algorithms and Applications[END_REF] leads to the fact that an eigenvalue λ with a negative real part corresponds to an unstable solution. In order to remain consistent with usual linear stability analysis, we take the opposite convention: in the following an eigenvalue λ with a negative real part indicates a stable solution.

In this way, given a initial guess solution u 0 , pde2path can calculate the solution u of Eq. (3.22) as a function of any parameter of the system and inspect stability by calculating the eigenvalues of the Jacobian matrix G u of Eq. (3.30). In next subsection, we choose the gain window width w = w/x Ω as the parameter for continuation. We thus look for the solution u of G(u, w ) = 0 with varying values of w .

Stability analysis for the first three modes

We investigate the stability of single mode solutions as a function of the gain window width for the first three Hermite-Gaussian modes. To this aim, we use the continuation calculation in pde2path. By analyzing the critical eigenvalues and eigenfunctions of the Jacobian of Eq. (3.30), we can find the origin of the instability of the different eigenstates and connect them to Hermite-Gaussian modes. This can reflect the mode competition for the gain. The saturable absorption is not taken into account in the present section.

The parameters for these cases are the same: r I = I sat,g /I sat,a = 5, r g = g 0 /γ 0 = 10, γ 0 = 10 10 s -1 , Ω/2π = 100 GHz, x Ω = 8.4 µm, r a = a 0 /γ 0 = 0 and grid size N = 512. The initial guess solutions are mode 0, mode 1, and mode 2, corresponding to initial spectral parameters n ω = 1, n ω = 3, and n ω = 5.

Let us first focus on the single mode solution consisting in mode 0. The peak value max(|A| 2 /I sat,g ) of the intensity of the solution is plotted in Fig. 3.6(a) as a function of w/Ω. The solid and dashed lines respectively correspond to stable and unstable solutions. The red squares represent the Hopf bifurcation points, which correspond to a zero (sign change) of the real part of a pair of complex conjugate eigenvalues for this solution. A new branch of periodic solutions is generated at this point. The point at about w/x Ω = 3.8 separates the stable from the unstable situation for this solution. In fact, the stability of the solutions can be checked from the real parts of the eigenvalues of the Jacobian matrix of Eq. (3.30). As an illustration, the four subfigures

(a) (b) (c) (d) (2) 
(3)

(1) (3) (4) 
(1) (1-4) in Fig. 3.6(c) show the real and imaginary parts (Re(λ), Im(λ)) of the eigenvalues λ of the Jacobian corresponding to the solutions marked by the blue cross points (1-4) in Fig. 3.6(a).

The stability of the solution is related to the real parts Re(λ) of the eigenvalues as described in the preceding subsection. For stable solutions, all the real parts Re(λ) of eigenvalues must be smaller than 0, as shown in panel (1) of Fig. 3.6(c). This means that following a small perturbation in u, the solution will exponentially converge back to the steady solution.

The solutions become unstable1 for w/x Ω > 3.8. We can see from panel (2) of Fig. 3.6(c) that a pair of eigenvalues with imaginary parts equal to ±4 have crossed the vertical axis compared with panel [START_REF] Bretenaker | Laser: 50 Years of Discoveries[END_REF]. The instability is related to the positive real part of these eigenvalues. In other words, any instability grows exponentially with a rate given by real part of λ along the direction of the corresponding eigenfunction.

Further increasing the gain width, the eigenvalues with imaginary parts equal to ±6 cross the vertical axis in panel (3) of Fig. 3.6(c). There are now four eigenvalues marked as 1 -4 corresponding to the eigenfunctions marked as 1 -4 in Fig. 3.6(d). The eigenvalues are given above the panels. By comparing the oscillation rates and profiles of critical eigenfunctions with Hermite-Gaussian modes, one can recognize that the instability comes from eigenstates shown as 3 and 4 respectively corresponding to Hermite-Gaussian modes 2 and 3.

However, the eigenvalue labeled 2 in Fig. 3.6(d) has a negative real value and thus does not create any instability. This indicates that mode 1 is suppressed by mode 0 due to the strong cross saturation from mode 0 to mode 1. This was predicted from the saturation matrix in the former section: the mode competition is the strongest among the nearest modes. Further increasing the gain width at w/x Ω = 5 in (4) of Fig. 3.6(c), the eigenstate related to mode 1 still cannot start while higher order modes start to oscillate.

It is worth mentioning that, in this case, the eigenvalue related to mode n = 0 has always a real value, because this mode is used as a reference. By contrast, the imaginary parts of the eigenvalues of the two neighboring modes are 2 and 4, respectively corresponding to frequencies equal to 2 Ω 2 = Ω and 4 Ω 2 = 2Ω, as expected. Here, Ω 2 is the normalization value for mode frequencies as defined in Eq. (3.21).

To illustrate the evolution of the stability of modes with the gain window width, Fig. 3.7 plots the real parts of the eigenvalues Re(λ) of the Jacobian matrix as a function of the gain width w/x Ω for the solution corresponding to mode 0. The real parts of the eigenvalues labeled n = 1, 2, • • • , 8 represent the critical eigenfunctions corresponding to Hermite-Gaussian mode n.

We can see that as the gain window width increases, more higher order eigenstates become unstable. The mode competition for gain is quite complicated. In addition, under the suppression of mode 0, as the gain width increases, mode 1 becomes the subcritically stable state: its real part converges to 0.

Another example considering Hermite-Gaussian mode 1 as a solution is reproduced in Fig. 3.8. We use the same parameters as before except that the initial guess solution is mode 1.

Here the eigenstate corresponding to mode 1 is treated as the stationary solution for all the other eigenstates so that the corresponding eigenvalue is real. We can notice that the imaginary parts of the eigenvalues marked by 2 and 3 in Fig. 3.8(c) and (d) are ±2. These two eigenstates thus correspond to modes n = 0 and n = 2 because the difference of oscillation frequency between mode 1 and each of them is ±2 Ω 2 = ±Ω.

The branch of single mode solution for mode 1 is unstable. We can recognize from Fig. 3.8(e) that the instability comes mainly from mode 0. This is reasonable because the modal gain of mode 0 is larger than mode 1 in this range of gain window width, as shown in Fig. 3.2. Mode 2 is always suppressed by mode 1 due to the strong cross saturation. And all the other modes are initially suppressed by mode 1, and then become unstable as the gain width increases.

The situation considering the oscillation of mode 2 is plotted in Fig. 3.9 in the same way. Mode 0 and mode 1 are the origin of instability because of their larger modal gains. Moreover, when the relative gain width is smaller than 2.9, the cross saturation from mode 2 to mode 3 is very weak (we can see the saturation matrix with limited gain width in Fig. 3.5) so that mode 3 is unstable. Then mode 3, as a neighbor of mode 2, is always suppressed by mode 2 for larger gain widths.

In this section, the stabilities of the single mode solutions have been investigated for different gain widths by using continuation calculation in pde2path. By analyzing the eigenvalues and eigenfunctions of the Jacobian matrix, we could find the origin of the instabilities due to mode competition for the gain.

DYNAMICAL ANALYSIS OF MODE COMPETITION ① ② ③ (a) (b) (c) (d) ① ② ③ (e) 
Generally speaking, it is difficult to get single-mode oscillation for any arbitrary Hermite-Gaussian mode. Only mode n = 0 is found to be able to oscillate alone for w < 3.8x Ω .

The single-mode solution for mode 1 is always unstable, because mode 0 is favored due to its larger modal gain compared with mode 1. As the gain width increases, all the higher order modes become unstable. But mode 2 is always suppressed by mode 1. A similar situation occurs for the single-mode solution of mode 2. Modes 0 and 1 are always unstable. But mode 3 is stable due to the suppression from mode 2.

We thus reach here the same conclusion as from the saturation matrix of the preceding section: the neighboring modes are strongly competing for gain. But low-order modes are always favored because of their larger modal gain.

Direct numerical simulation: Instantaneous gain saturation

In this section, we perform direct numerical simulations of the model to investigate the mode competition by using the method introduced in chapter 2.3. The advantage of direct simulation is that we can exactly observe the time evolution of the laser from an initial condition. The quantities we can observe include the field intensity, the intensity or phase of Hermite-Gaussian modes, etc. However, sometimes such a simulation requires a long time to let the laser reach a stable state.

First, we investigate the influence of the gain window width on the final stable states for instantaneous gain response. Starting from a random initial condition, multiple final stable states are observed. Then, the mode competition for noninstantaneous gain response is investigated. This competition is very different from the case of instantaneous saturation. Finally, the influence of the gain lifetime on the final stable states is also investigated. The transition from instantaneous to noninstantaneous saturation is related to the free spectral range of the cavity.

Influence of the gain window width on final stable states

In this subsection, we investigate by direct numerical simulation the influence of the gain window width on the final stable states for instantaneous gain saturation. First, several typical cases of time evolution of modes are given. Multiple stable states are observed for one fixed gain width in the instantaneous response cases. Then, a statistical investigation of these solutions is also given.

We suppose that the gain region exhibits a homogeneous unsaturated gain coefficient coefficient g 0 = 10γ 0 centered on the bottom of the photonic potential with a width w, as shown by the semi-transparent region in Fig. 3.1(a). We also suppose that there is no saturable absorber inside the cavity, i. e. r a = a 0 /γ 0 = 0. The parameters used here are the same as in the preceding subsection: γ 0 = 10 10 s -1 and Ω/2π = 100 GHz.

We start by solving the master equation (Eq. (2.51)) for the case of instantaneous gain saturation (Eq. (2.48)). For a fixed gain width, the random initial field in the laser converges to a stable state. The different states are presented as a time evolution of the mode intensities and phases.

The first case corresponds to a gain width w = 3.5x Ω , as shown in Fig. 3.10. Starting from a random initial field with a maximum intensity of 0.0001I sat,g , the time evolution of mode intensities and phases from initial time t = 0 are plotted. Running the simulation 10 times, we finally find two different stable states reproduced in Fig. 3.10(a) and Fig. 3.10(b). We call (0) the state in (a) and (0,1) the state in (b), from their dominating mode orders.

In the preceding section, we know that stable single-mode oscillation exists for the mode 0 only when the gain window width is smaller than 3.8x Ω . This is also verified by the statistical results in next subsection: the single mode solution does not exist if w > 3.8x Ω . Moreover, for w = 3.5x Ω , we see that two solutions exist: the one with mode 0 only in Fig. 3.10(a), but also the state where three mode beats in Fig. 3.10(b).

We notice that, in many cases, the following relation occurs:

∆φ n = 2φ n -φ n-1 -φ n+1 = π. (3.34)
Let us take the state (0,1) in Fig. 3.10 as an example. The modes reach a fixed phase relation ∆φ 1 = π, ∆φ 2 = π due to the nonlinearity of gain saturation. Due to the rotation invariance of the phase, this can be rewritten as ∆φ 1 = -π, ∆φ 2 = π. These phase relations can be expanded as 

2φ 1 -φ 0 -φ 2 = -π, (3.35) 
φ 0 -φ 1 = φ 2 -φ 3 , (3.37) 
φ 0 -φ 2 = φ 1 -φ 3 . (3.38)
We can see that φ 0 has a fixed relation with φ 1 and φ 2 . This fixed relation forms a stable mode beating among these modes. If we check the mode intensity pattern, these modes are shown to exchange energy periodically. This type of locking operation does not corresponds to a pulsed solution. The nonlinearity of the gain can lock the phases of the modes, but the pulsed operation needs all the modes to interfere constructively at a given moment. This requires that the modes have equal phase difference, namely ∆φ n = 0. When the gain width is w = 4.7x Ω , three states are observed, as shown in Fig. 3.11. All of them have the same fixed phase relation. In fact, the state (0,1) in Fig. 3.10(b) and the state (0,1) in Fig. 3.11(a) belong to the same kind of states if we compare the intensity and phase difference. The phase relations are the same. The differences between them is that the intensity difference between mode 1 and mode 0 becomes larger. This fixed phase difference can also be seen for the other kinds of states. 

Statistical results: Influence of gain window width on final stable states

It is interesting to know how many and what kind of stable states can exist within a certain range of gain window width. In this subsection, we determine the evolution of those stable states with the gain window width.

Using the same method as in the preceding subsection, the steady-state laser fields are obtained by running the calculations with a fixed value of w and starting from random initial field amplitudes with a maximum intensity equal to 0.0001I sat,g . The simulation is run until the field amplitudes reach their steady-state values. The steady-state mode intensities |C n | 2 are then obtained by expanding the field A(x, t) using Eq. (2.45).

We start by considering the case of instantaneous gain saturation, as shown in Eq. (2.48). For each value of w ranging from 0 to 6 x Ω , the calculation is run 10 times. We can see that in the region 0 < w/x Ω < 3.3, only mode 0 oscillates, because the gain region is too narrow to sustain oscillation of higher order modes. Then, for 3.4 < w/x Ω < 3.8, two steady-state solutions prevail as in Fig. 3.10: one for which mode 0 oscillates alone, and one in which mode 0 and mode 1 oscillate simultaneously. Further, when w/x Ω ≥ 3.8, the solution for which mode 0 is alone is no longer stable. This is consistent with the continuation calculations of Fig. 3.6 because the instability of mode 2 breaks this stable state. Simultaneous oscillation of modes 0 and 1 is stable till w/x Ω ≥ 4.8. Then, for w/x Ω ≥ 4.4, simultaneous oscillation of modes 0 and 2 occurs and disappears for w/x Ω > 5.5. The simultaneous oscillation of mode 1 and mode 2 can occur in the region 4.6 ≤ w/x Ω ≤ 5.4.

We can thus see that, in the case of instantaneous gain saturation, the competition among HG modes leads to a complicated multi-stability situation. The general tendency is that higher order modes are favored when w is increased, but the number of stable steadystate solutions also increases with w.

In this subsection, the mode competition in the instantaneous saturation case with different gain window width was investigated by using direct numerical simulation. The different states were presented as time evolutions of the modes. Statistical investigation of these solutions shows that higher order modes are favored when w is increased. Multiple stable states are observed and the number of stable steady-state solutions also increases with w. The modes present in these states have a fixed relative phase.

Non-instantaneous gain saturation

In this section, we investigate the mode competition for a gain medium with noninstantaneous saturation response. We first consider the influence of the gain width on the final stable states. The final stable state is different from the instantaneous saturation case. Then the influence of the gain lifetime is also investigated. This reveals the transition between instantaneous and noninstantaneous gain saturation behaviors.

Influence of the gain width on the final stable states

In this subsection, for comparison, we first describe three cases with the same gain window widths as preceding subsection. Next, a statistical investigation is implemented to explore the states with noninstantaneous saturation.

The noninstantaneous response of the gain is described by Eq. (2.46). In comparison with Figs. 3.10 -3.12, Fig. 3.14 shows the evolution of the laser for a finite gain lifetime τ g = 1ns. After the pumping starts at t = 0, the gain increases till the laser threshold is reached at t = 0.5ns. The mode intensities then exhibit a spike and eventually converge to their steady state values. The phase differences slowly evolve with time within the 30 nslong simulation. Fig. 3.15 shows the evolution of the steady-state mode intensities for τ g = 1ns.

All other parameter values are kept equal to the case of instantaneous saturation of Figs. 3.13(a,b) and the simulation is also run 10 times starting from random initial conditions for each situation. We can see that in this situation the multi-stability of Fig. 3.15 disappears: only one steady-state solution is obtained for each value of w. For w/x Ω ≤ 2.6, only mode 0 oscillates. But it is clear that, for larger values of w, a larger number of modes can simultaneously oscillate than for instantaneous gain saturation. For example, for w = 6x Ω , all the five modes considered here oscillate simultaneously. This tendency is confirmed in Fig. 3.15(b) for w up to 10 x Ω : the 14 first modes can oscillate simultaneously. The effect of finite gain lifetime is thus clearly to reduce competition between the Hermite-Gaussian modes. We can expect this effect to be favorable to stable mode-locking operation in the presence of a saturable absorber.

We notice that the mode intensities exhibit the small variation with time, because the mode phases slowly evolve with time. However, the phase difference of modes can still reach stable states. The damping time is proportional to the gain lifetime. When the phase differences are fixed, the mode intensities are fixed. We see this for the longer time behaviors in the next subsection.

Influence of gain lifetime on the final stable states

Based on the difference between the results obtained for instantaneous and noninstantaneous saturation of the gain in Fig. 3.13 and Fig. 3.15, we can infer that the gain lifetime has a strong influence on the laser steady-state behavior. To further investigate this dependence, we choose a fixed gain width w = 5 x Ω and run the simulation 10 times starting from random initial fields with maximum intensity 0.0001I sat,g and excitation ratio equal to r e = g 0 /γ 0 = 10 for τ g ranging from 6 ps to 1000 ps.

The corresponding steady-state mode intensities are reproduced in Figs. [START_REF] David | Device requirements for optical interconnects to silicon chips[END_REF].16(a) and 3.16(b) for mode separation values of Ω/2π = 100 GHz and Ω/2π = 50 GHz, respectively. These results clearly show the transition between the two regimes, i. e., instantaneous gain saturation when τ g 2π/Ω and slow gain saturation when τ g 2π/Ω. For example, in Fig. 3.16(a), the transition between the two regimes occurs for 8 ps τ g 17 ps, which is consistent with the value 2π/Ω = 10 ps. This is confirmed by Fig. 3.16(b), for which we have taken 2π/Ω = 20 ps. Then the transition region is shifted accordingly to 17 ps τ g 33 ps. The mode separation Ω, which is the frequency of the beatnote between the modes, is thus a key factor to understand the influence of the gain dynamics on the laser competition behavior. If this frequency is much larger than 1/τ g , the gain saturation can no longer follow the beatnote between the modes, and conversely.

The transition between the two regimes can also be directly observed by looking at the spatiotemporal distribution of the gain inside the laser. This is done in Fig. 3.17, which reproduces the evolution versus x and t of the intensity and the gain inside the laser for dif- ferent values of τ g in the case 2π/Ω = 10 ps. One can clearly see that the pattern created by the beatnote between the modes (see Fig. 3.17(a)) is imprinted in the gain distribution (see Fig. 3.17(b)) only as long as τ g is shorter or of the order of 2π/Ω. On the contrary, when τ g is much longer than 2π/Ω, the gain is saturated more uniformly, and the spatiotemporal hole burning disappears.

In addition, we verified that the linear loss rate γ 0 is not a key parameter for this transition. Indeed, we checked that when we change γ 0 from 10 10 s -1 to 15 × 10 10 s -1 , the results of Fig. 3.16(a) are almost unchanged. In particular, the transition between the two regimes always occurs when τ g is close to 2π/Ω. Some multistability occurs at the transition region, i. e., when the repetition period 2π/Ω is close to the gain lifetime. Another multistability zone can be seen for τ g 75 ps in Fig. 3.16(a) and 160 ps in Fig. 3.16(b). These multiple states converge to the same one when the gain lifetime is increased. The details of the transition region between instantaneous and noninstantaneous saturation can be checked by observing the time evolution behaviors of the modes. Fig. 3.18(a,b) show two cases with a gain lifetime of 10 ps. The state of Fig. 3.18(a) is similar to the noninstantaneous saturation case, where the first 5 modes oscillate simultaneously. On the contrary, The state of Fig. 3.18(b) is similar to the (0,2) state in instantaneous saturation case (see Fig. 3.13), where mode 0 and mode 2 are dominant, and the phase difference of even modes is fixed. The state of Fig. 3.18(b) becomes unstable if the gain lifetime increases up to 20 ps, as shown in Fig. 3.18(c). The steady-state solution becomes similar to the one for noninstantaneous saturation. Finally, Fig. 3.19 shows the two types of solution obtained with a gain lifetime equal to 100 ps. The mode intensity distributions and phase differences of the two states are different, especially for the phase difference. However, as the lifetime increases up to 1 ns, these two solutions converge to the same one, as shown in Fig. 3.16(a). 

Summary

In this chapter, the mode competition for gain among Hermite-Gaussian modes in the absence of saturable absorption has been investigated in detail. Two approaches were used to explore this mode competition.

The first method is a static analysis of Hermite-Gaussian modes, based on the properties of these modes instead of dynamical equations. We defined the spatial modal gain of Hermite-Gaussian modes for different gain window widths. This shows the amount of gain available for such Hermite-Gaussian mode. Moreover, to evaluate the cross saturation of the gain of one mode by another, we defined the mode saturation matrix, which can effectively describe the impact of one mode on all the other modes. The saturation matrix reveals the dramatic difference between Hermite-Gaussian modes in a photonic harmonic cavity and standing waves in a Fabry-Perot cavity. The saturation matrix with limited gain width was also discussed.

In the second approach, we analyzed the mode competition for gain by solving the master equations dynamically.

First, the continuation calculation in pde2path was used to investigate the stability of a given single-mode solution. To implement the model in pde2path, the master equations are normalized and split into two equations for the real and imaginary parts of the solutions at a fixed point. The continuation calculation with a variation of the gain window width is investigated by pde2path. The Jacobian matrix is calculated from pde2path to inspect the stability of the solution. The eigenstates of the Jacobian matrix reveal the origin of insta- bility of one Hermite-Gaussian mode. We observed the same conclusion as the saturation matrix: the neighboring modes are strongly competing for gain. Second, a direct numerical simulation as introduced in chapter 2.3 was implemented to obtain the time evolution of the modes. The stable states, starting from random initial fields, are statistically investigated while varying the gain window width. Multiple stable

NET GAIN

In this chapter, we start to discuss the mode locking of Hermite-Gaussian modes in the case of instantaneous saturation of the active medium. To obtain soliton pulses, a saturable absorber must be added to the model. Different kinds of dynamical behaviors of the lasers in the limit of instantaneous gain and absorption saturation are predicted.

The content of this chapter is organized as follows:

First, the concept of net gain is introduced to describe the evolution of the saturable gain and absorber. This is the key factor for reaching a pulsed operation.

Then, an example of a coherent soliton solution predicted by the model is given. In the limit of instantaneous gain and absorption saturation, mode locking corresponds to a stable dissipative soliton, which is very well approximated by the coherent state of a quantum mechanical harmonic oscillator. Detailed comparisons between those two are provided.

Next, the phase diagram of the solutions is investigated by adjusting the gain and absorption coefficients. The different solutions in the phase diagram and the influence of the gain width are discussed.

Finally, the continuation calculation on the single-mode solution by pde2path is implemented. The results are compared with direct numerical simulation. In addition, inspection of stability of the eigenstates reveals the changes in dynamical behavior.

Net gain 4.1.1 Locking mechanism

Mode-locked lasers generate optical pulses by locking the phases of longitudinal modes, that is ∆φ n = 2φ n -φ n+1 -φ n-1 = 0. Mode locking requires a mechanism created by saturable gain and saturable absorption to modulate the fields. As introduced in Sec. 1.2.5, a positive net gain is essential to form passive mode locking. Since the saturable absorber and gain are modulated by the field intensity, the key factor is that at one moment in each period, the difference between saturable gain, the saturable and intrinsic losses is positive for high intensity field. For all other times, the difference must be negative. This mechanism should open a window with positive net gain for maintaining a high field intensity, and the total losses outside this window shape the pulse. Therefore, the saturable absorber must saturate more easily than the gain. In other words, the saturation intensity (energy) of the absorber should be smaller than that of the gain. The absorber is thus bleached by the field first, due to its low saturation intensity, thus opening a positive net gain window. Then this window is closed by the field itself by subsequently saturating the gain.

In the initial step of modeling, we suppose that the gain and absorber spatially overlap in the middle of the cavity and exhibit an instantaneous response. As shown in Fig. 4.1, the gain and absorber are saturated by the intensity of the field. A net gain created by the gain and absorber is essential to achieve passive mode locking.

Two condition are needed to create a net gain window in this scheme: (1) The absorber must be saturated more easily than the gain so that the saturated gain can become larger than the saturated absorption. In simpler terms, the saturation intensity ratio between gain and absorber R I must be larger than 1. (2) The unsaturated absorption and the intrinsic losses should be larger than the unsaturated gain. In other words, r a + 1 > r g . This means that the low intensity part of the pulse, which is unable to saturate the absorption, is attenuated due to the losses. On the contrary, the high intensity part of the pulse, which saturates the gain and absorber, leads to a positive net gain.

One can notice that if the unsaturated losses are larger than the unsaturated gain for instantaneous saturation, the laser cannot directly start. In the simulation, on the one hand, we can first switch on the gain to achieve lasing, and then switch on the absorber. On the other hand, if the goal is to investigate the dynamics of the steady state, a field with high intensity can be used as the initial field. 

Dissipative terms

More rigorously, the net gain in the case of instantaneous saturation can be investigated by directly calculating the dissipative term H 1 (Fig. 2.52) consisting of saturable gain, saturable absorber, and intrinsic losses.

We first focus on the normalized gain g/γ 0 and normalized losses (a + γ 0 )/γ 0 at a certain point in the cavity as a function of normalized field intensity |A| 2 /I sat,g . We plot the evolution of the saturated gain g/γ 0 and saturated losses a + γ 0 /γ 0 with the intensity based on the expressions of the gain (Eq. (2.48)) and absorption (Eq. (2.49)). The result, with parameters r a = 9, r g = 5.5, R I = 5, is plotted in Fig. 4.2(a). This leads to three The intensity range of positive net gain region (2) varies with these key parameters r a , r g , R I contained in H 1 . For example, in Fig. 4.2(a), it ranges for value of |A| 2 from 0.45I sat,g to 2.15I sat,g . To understand how this intensity range evolves with the key parameters of H 1 , we rewrite the instantaneous net gain normalized to the intrinsic losses as: gain and absorption need to satisfy the two conditions as mentioned before. In this way, in the low intensity region (1), the total losses are larger than the gain. The field in this region is attenuated. Since the gain is more difficult to saturate than the absorber, as intensity increases, there exists a positive net gain in the middle of the plot. The field intensity in region ( 2) can be amplified. Furthermore, if the intensity is larger than the maximum value in this region, the losses are larger than the gain again. The field is attenuated and decreases back to the region [START_REF] Ma | Applications of nanolasers[END_REF].

g net (|A| 2 ) = H 1 1 2 γ 0 = 1 2 g(x 0 ) - 1 2 a(x 0 ) - 1 2 γ 0 1 2 γ 0 = r g 1 + |A| 2 I sat,g -      r a 1 + R I |A| 2 I sat,g + 1      . (4.1)
The width of the region (2) for positive net gain decreases as r a increases, as shown in in Fig. 4.2(b). For the other parameters, on the contrary, this width increases as r g or R I increase, as shown in Figs. 4.2(c,d).

The characteristics of the positive net gain region (2) in Fig. 4.2(a) have a strong influence on the intensity and duration of the pulses and on the stability of the laser oscillation regime. The transition between regions ( 2) and (3) limits the peak power of the pulses, and the transition between regions (1) and ( 2) contributes to shaping the laser emission into a pulsed regime. One other issue of course is the stability of the different solutions, either cw or pulsed. Although the characteristics of region (2) in Fig. 4.2(a) are linked to this stability, in particular through the ratio between r a and r g , a detailed discussion requires more insight and will be given in the next sections.

One example of laser behavior

In this section, we discuss one example of solution in detail, with the same parameters as in Fig. 4.2(a). The solution is carefully compared with coherent state of a quantum harmonic oscillator.

Time evolution of the field

We can numerically solve Eq. 2.51 for different values of the parameters, and for different values of the widths of the windows into which g 0 and a 0 are supposed to be homogeneous distribution in the cavity center with a given width. A first example is given in Fig. 4.3, which was obtained when the gain and saturable absorber share the same region of width w = 5x Ω [see Fig. 3.1(a)]. The parameter values used in this simulation are γ 0 = 10 10 s -1 , r a = a 0 /γ 0 = 9, r g = g 0 /γ 0 = 5.5 and R I = I satg /I sat,a = 5. Such a value of the internal (nonsaturable) losses γ 0 is small, but feasible for a semiconductor cavity [START_REF] Santis | High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms[END_REF]. We also suppose here that α g = α a = 0. Equation 2.51 is solved, starting from random initial conditions, and the behavior of the different modes is obtained by projecting A(x, t) on the corresponding Hermite-Gaussian modes Ψ n (x). Here, φ n is the argument of the mode expansion coefficient C n calculated by Eq. 2.45. One can clearly see that after less than 10 ns all the lasing modes are phase-locked. Once steady state is reached, i.e., after about 30 ns, the laser behavior is shown in Fig.

4.3(c).

Closer inspection of the spatio-temporal behavior reveals a wobbling soliton [START_REF] Grelu | Dissipative solitons for mode-locked lasers[END_REF],

4.2.2 -Comparison between stable soliton and coherent state described by width and position varying sinusoidally in time. These quantities are plotted, normalized to x Ω , in Fig. 4.3(d) and coincide almost exactly, except for small residual oscillation (< 1%), with the superposition of the linear eigenstates (Eq. (2.44)), describing the coherent state of the harmonic oscillator in quantum mechanics. This is further apparent in Fig. 4.3(e) where the amplitude and phase of the field at a fixed time are compared with the coherent mode. A more detailed comparison is discussed in Section 4.2.2.

Comparison between stable soliton and coherent state

A more detailed comparison between the soliton solution of Eq. 2.51 (Fig. 4.3) with the coherent state of a quantum harmonic oscillator is carried out as follows. This completes the comparison already performed in Figs. 4.3(d) and 4.3(e).

In the same way as the coherent state of a quantum oscillator can be expanded on the basis of the Fock states of the system, a coherent state solution of our parabolic resonator can be expanded on the basis of the Hermite-Gaussian modes (Eq. (2.44)):

A coh (x, t) = ∞ n=0 C n (t)e -i(n+ 1 2 )Ωt Ψ n (x) , (4.2) 
where Ψ n (x) is the Hermite-Gaussian mode of order n and Ω is the free spectral range.

If the solution of Eq. ( 4.2) is a coherent state, then the coefficients C n must obey the following expression:

C n (t) = λ n n! e -λ 2 e inφ λ . (4.3)
With this relation, the state of the system is equivalent to a coherent state |α with α = √ λe (iφ λ ) . The mode intensities |C n | 2 follow a Poisson distribution with parameter λ:

|C n | 2 = λ n n! e -λ , (4.4) 
and the phase differences between the modes in Eq. ( 4.3) are 0:

∆φ n = 2nφ λ -(n + 1)φ λ -(n -1)φ λ = 0, (4.5) 
where n = 1, 2, • • • .

Following Ref. [START_REF] Gerry | Introductory Quantum Optics[END_REF][START_REF] Schiff | Quantum Mechanics (International Pure & Applied Physics Series[END_REF], the field of this coherent state can be rewritten as

A coh (x, t) = π -1/4 x -1/2 Ω e -1 2 x x Ω - √ 2λ cos(Ωt) 2 +iφ(x,t) , (4.6) with φ(x, t) = - x x Ω √ 2λ sin(Ωt) - 1 2 Ωt + 1 2 λ sin(2Ωt) , (4.7) 
where the quantity x Ω is the scaling factor defined in Eq. (2.43). The validity of this expression is confirmed by injecting Eq. 

√

2λx Ω = 1.45 x Ω according to Eq. (4.6). This is in very close agreement with the oscillation amplitude observed in Fig. 4.3(d).

The second way to compare the soliton of Fig. 4.3 with a coherent state consists in looking at its evolution with time. More precisely, we fit it with the function:

A fit (x, t) = A m (t)e -1 2 x-xo(t)
x Ω (t)

2 +iφ fit (x,t) , (4.8) with φ fit (x, t) = x x φ (t) + φ extra (t) . (4.9)
Through best fit at each time step, the parameters A m (t), x o (t), x Ω (t), and x φ (t) are extracted and plotted as a function of time in Fig. 4.4(b), which corresponds to Fig. 4.3(d). Within the considered 30 ps time window, we obtain x Ω (t)/x Ω = 1.009 ± 0.01µm, |A m (t)| 2 /I g = 2.189 ± 0.024, and max(x o (t)) = 1.46x Ω . Within the uncertainty corresponding to the small fluctuations around the average, this shows that the soliton coincides with a coherent state, as, in addition to that, all the parameters of the model function of Eq. 4.8 follow the prescribed time dependence. 

Fields propagating in the ±x directions

In this subsection, we check the evolution of the fields A ± (x, t) propagating in the ±x directions. We observe the fields A ± (0, t) at the cavity center x = 0 in time domain.

The fields A ± (x, t) can be calculated by the following steps: (1) the field A(x, t) is Fourier-transformed to A(k, t) in k-space; (2) the part of the field A(k, t) with k > 0 (or k < 0) is filtered and transformed back to A + (x, t) (or A -(x, t)) in real space.

The fields in Fig. 4.3 are processed in this way. The results are plotted in Fig. 4.5. Figs. 4.5(a,b) show that false color maps of the intensities of the fields A ± (x, t) propagating in the ±x directions. We can see that the two corresponding waveforms are periodic and alternate. From the field A ± (0, t) at the cavity center x = 0, we extract a pulse duration 2.3 ps, as shown in Figs. 4.5(c,d). 

Spectrum of the field

The spectrum and spatial distribution of the field can be obtained by Fourier-transforming A(x, t) with respect to t in steady state,

A(x, f ) = +∞ -∞ A(x, t)e i2πf t dt. (4.10)
The frequency distribution of |A(x, f )| 2 is plotted in Fig. 4.6(a). We can see that the frequency components are mainly located at (n + 1/2) × 100 GHz, n = 1, ..., 4. The shape of the corresponding spatial distributions are Hermite-Gaussian functions.

(a) (b)

f (GHz) f (GHz)
x/x Ω The spectrum of the field can be calculated as 

F A (f ) = +∞ -∞ |A(x, f )| 2 dx. ( 4 

Multistability of the solutions 4.3.1 Phase diagram

What we are most interested in is the condition of oscillation of the soliton solution. To obtain it, we fix the gain window width w = 5x Ω as before and set the coherent state pulse as the initial field. In this way, each stable solution is calculated by varying the gain r g = g 0 /γ 0 and absorption r a = a 0 /γ 0 .

The nonlinear dynamics of the laser undergoes several bifurcations separating different possible kind of behavior. This is illustrated in Fig. 4.7. The colors in Fig. 4.7(a) represent the regions, in the {r g = g 0 /γ 0 , r a = a 0 /γ 0 } plane, in which the different steady-state laser behavior dominates. One can see that the soliton-like [START_REF] Grelu | Dissipative solitons for mode-locked lasers[END_REF] pulsed operation of Figs. 4.3(ce) does not only require a sufficient amount of gain, but also a sufficient amount of saturable absorption. Our choice for R I = I sat,g /I sat,a = 5 larger than 1 is also extremely important to obtain this behavior. Besides the soliton solution in (1), we can see that it also includes the following regimes: (2) mode n = 1 alone, (3) mode n = 2 alone, and (4) mode beating between mode n = 0 and mode n = 2. However, there is no solution with mode n = 0 alone. This can be easily understood by using pde2path to analyze the stability of single-mode solutions, which will be introduced in Section 4.4.

Dependence of stable solutions on the spatial width of active medium

Although different shapes can be imagined for the gain and absorber regions, we limit the discussion here to the case of identical homogeneous gain and saturable absorption windows of width w centered on the minimum of the harmonic potential (see the transparent pink area in Fig. 3.1(a)).

To investigate the dependence of the laser behavior on spatial width w, we launch the simulation 40 times, starting from random values of the field, for each value of w ranging from 0 to 6x Ω . The system exhibits multistability: it can reach different steadystate regimes for a given set of parameters, depending on the initial values.

To gain some statistical insight into this multiattractor behavior, Fig. 4.8(a) displays the occurrences of each regime vs w. For w increasing from 0 to 3.2 x Ω , the laser is successively below threshold, in single-mode regime, and finally emits the soliton solution of Fig. 4.3(c). 1) and ( 2) in (a), obtained for w = 6x Ω , which respectively correspond to the oscillation of two or three pulses inside the cavity.

Interestingly, in the range 3.2 x Ω ≤ w ≤ 3.9 x Ω , soliton emission is the only stable solution. In this example, multistability happens for values of w larger than 3.9 x Ω . For example, for w = 6 x Ω , Fig. 4.8(a) shows that the laser dynamics can fall into three different stable ML regimes, in which one, two, or three pulses oscillate inside the cavity. If mode 0 is in phase and is locked with all the other modes, the solution is the single soliton solution of Fig. 4.3. On the contrary, we can see that the condition of the double soliton oscillation is that all modes are locked, but mode n = 0 is in antiphase. Therefore, the double soliton can be regarded as the evolution of a dark soliton for mode 0. Mode 0 gives a negative contribution to form a hole in the center of the field intensity distribution.

A similar phenomenon occurs for the triple soliton of Fig. 4.9(b). The phase relations are ∆φ n = 0 for n = 1, 3, 4, and ∆φ 2 = π. Expanding them in the same way, we obtain:

2(φ 1 + π) -φ 0 -φ 2 = 0, (4.15) 2φ 2 -(φ 1 + π) -φ 3 = 0, (4.16) 2φ 3 -φ 2 -φ 4 = 0. (4.17)
Here only the mode n = 1 is in antiphase compared with all other modes. Hence the dark soliton of mode 1 is imprinted in the center of the field intensity.

Stability analysis

In this section, we use the module pde2path to investigate the stability of single-mode solutions for different values of the parameters r g , r a , and w/x Ω characterizing the active region. From the inspection of the stability of the eigenstates, we can explain some details already observed in direct numerical simulations.

The assumptions are the same as in the preceding sections. The saturable gain and absorber are supposed to be homogeneous and located in the center of the cavity. The default values of the parameters are γ 0 = 10 10 s -1 , r a = a 0 /γ 0 = 9, r g = g 0 /γ 0 = 5.5 and R I = I satg /I sat,a = 5, if no other value is mentioned.

Analysis of soliton formation

In section 3.2.1, we investigated mode competition in the presence of saturable gain only. Now we focus on what happens if one adds a saturable absorber, which creates the positive net gain window shown in Fig. 4.2(a). In the present section we thus analyze the stability of several single-mode solutions in the presence of this net gain window. In particular, we wish to explore the transition between the n = 0 single-mode solution and the soliton solution.

We perform a continuation calculation along the branch of the single-mode (n = 0) solution by varying the parameter r a starting from 0, with r g = 5.5 and w = 5.0x Ω . The results are plotted in Figs. 4. 10(a,b,c). These figures respectively represent the evolutions of the peak intensity and the real parts Re(λ) of the eigenvalues versus r a . The result of a similar continuation calculation when r g is varied is shown in Figs. (d,e,f ) can be understood in the same way. When r a = 0 (no absorber in the cavity), the n = 0 single-mode solution is unstable because several other modes exhibit positive real parts of the corresponding eigenvalues. This corresponds to the situation already investigated in Figs. [START_REF] David | Device requirements for optical interconnects to silicon chips[END_REF].6(a) and 3.7 with w = 5x Ω . Now, when r a is increased, we can see that more and more high-order modes cannot start because the corresponding eigenvalues have negative real parts. For r a > 7.2, the only mode for which the zero intensity solution remains unstable is mode n = 1, as can be seen on the zoom of Fig. 3

.7(c).

We focus on the value r a = 9 (labeled by blue cross point in Fig. 4.10) as an example. The instability of mode 1 is the starting point of the transition between single-mode solution (n = 0) to the oscillating soliton. The instability of mode 1 shows that its intensity will start to increase and beat with mode n = 0. This situation corresponds to the initial stages of the evolution of the mode intensities in Fig. 4.3(a) at times between 1 ns and 2 ns. At this moment, mode n = 0 is dominant, and the intensities of all the other modes are decreasing except mode n = 1. This increase of mode n = 1 leads to oscillations of the field intensity in the center of the cavity. together triggers the instability of higher-order modes and eventually ends up in the soliton solution.

(a) (b) This transition between the single-mode n = 0 solution and the soliton can also be observed by performing the continuation calculation while varying the gain window width w. The values of the other parameters are R I = 5, r g = 5.5, and a 0 = 9γ 0 . The result is plotted in Fig. 4.11. The single-mode solution for mode n = 0 is stable for w < 3.2x Ω . There is a Hopf bifurcation at w = 3.2x Ω , due to eigenstate 1 becoming unstable. This generates a new branch of solutions corresponding to simultaneous oscillation of modes n = 0 and n = 1. We know from the bifurcation diagram of Fig. 4.8(a) that this value w = 3.2x Ω corresponds to the transition to the soliton solution. When w = 5x Ω , stable single-mode operation can be found for modes n = 1 and n = 2, but not for mode n = 0. In particular, comparison of Figs. 4.12(a) and (b) shows that there exists an overlap between the stability regions of the two solutions. The system thus exhibits bistability between the two single-mode solutions, a feature that was not observed in Fig. 4.7 due to the particular choice of initial conditions. But we still can find the stable solutions of mode n = 1 and n = 2 as shown in Fig. 4.7(a). This matches with the results calcualted by pde2path in Fig 4 .12. 

n = 0 n = 1 n = 2 n = 3 n = 4

Conclusions

In this chapter, we discussed the mode locking of Hermite-Gaussian modes for the instantaneous saturation of active medium. The saturable absorber is added into the model.

First, we introduced the concept of net gain in this configuration. We show that the intensity range of positive net gain evolves with different key parameters, such as R I , r g , r a . These are the determinant factors to produce pulses.

Then, an example of a coherent soliton solution predicted by the model is given. In the limit of instantaneous saturation of the gain and absorption, mode locking corresponds to a stable dissipative soliton, which is very well approximated by the coherent state of a quantum mechanical harmonic oscillator.

Next, the phase diagram of the different solutions is investigated by adjusting the gain and absorption coefficients. The different solutions in the phase diagram are discussed in detail. The influence of the gain width on the solutions is also given.

Finally, we use pde2path to do continuation calculation on the branches of single-mode solution. The results match the direct numerical simulations. The stability analysis of eigenstates can help us understand the changes in the dynamical behavior, such as the transition between single-mode solution and soliton solution.

Chapter 5

Mode locking for Non-Instantaneous Saturation Real semiconductor gain and saturable absorption media have typical response times τ g and τ a ranging from the picosecond to the nanosecond domain [START_REF] Karin | Ultrafast dynamics in field-enhanced saturable absorbers[END_REF][START_REF] Malins | Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 µm[END_REF][START_REF] Mecozzi | Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers[END_REF]. To investigate the nonlinear behavior of the laser in the general case, we need to solve the master equation (Eq. (2.51)) with noninstantaneous saturable gain (Eq. (2.46)) and absorber (Eq. (2.47)). The content of this chapter is consequently the following: First, following the case of instantaneous saturation, we show a detailed comparison between the coherent state and one mode-locked solution in case of noninstantaneous saturation.

Then, according to the phase diagram, we give a detailed description of the different dynamical regimes achievable in the harmonic cavity nanolaser, namely Q-switched operation, Q-switched mode locking, and cw mode locking.

Next, the influence of different parameters on the stability of the mode-locked soliton oscillation regime is investigated, such as the presence of a non-zero Henry factor in the semiconductor gain and absorber sections.

After that, we also investigate whether mode-locking can be obtained using spatially separated gain and absorber sections in the cavity, which could lead to more practical implementations.

Finally, a general comparison between harmonic cavity lasers and traditional FP cavity lasers is also presented.

One example of the soliton solution compared with the coherent state

In this section, we compare one example of the soliton solution for noninstantaneous saturable gain and absorber with the coherent state. The structure of the laser is the same as the instantaneous case (section 4.2). The only difference is noninstantaneous response of the gain and absorber.

The values of the lifetimes τ g = 1 ns and τ a = 10 ps [START_REF] Heuck | Theory of passively mode-locked photonic crystal semiconductor lasers[END_REF][START_REF] Vladimirov | Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser[END_REF] we choose are those typically mentioned in the literature for InP quantum well lasers [START_REF] Jones | Dynamics of Monolithic Passively Mode-Locked Semiconductor Lasers[END_REF]. Surface recombination has been recently improved in nanostructured lasers owing to advanced passivation techniques such that the carrier lifetime is a few nanoseconds [START_REF] Crosnier | Hybrid indium phosphide-on-silicon nanolaser diode[END_REF]. We also take a ratio of the saturation energies R E = I sat,g τ g /I sat,a τ a = 25 from the literature [START_REF] Heuck | Theory of passively mode-locked photonic crystal semiconductor lasers[END_REF]. This leads to the results of Fig. 5.1, computed with α g = α a = 0.

With a proper choice of a 0 and g 0 , one can still obtain cw passively mode-locked operation. The phase diagram of the different solutions will be introduced in next section. Further discussion of the discrepancies with respect to a perfect coherent state is provided in Fig. 5.2. First, the distribution of the mode intensities |C n | 2 at t = 20 ns in Fig. 5.1(a) are plotted as blue bars in Fig. 5.2(a), after normalization to their maximum value. A fit with a Poisson distribution (red circles) provides a parameter λ = 1.712, which is also normalized to their max value. We can see that there exists a small distortion with respect to a perfect Poisson distribution. With this value of λ, we can estimate the oscillation amplitude to be

√ 2λ x Ω = 1.86
x Ω according to Eq. (4.6). This is very close to the oscillation amplitude in Fig. 5.1(b). Figure 5.2(b) reproduces the parameters extracted from the results plotted in Fig. 5.1(b). The comparison is performed in the same manner as in the case of instantaneous saturation (see Fig. 4.4 in section 4.2.2). By fitting the solutions with Eq. (4.8) at each time step, the parameters A m (t), x o (t), x Ω (t), and x φ (t) are extracted and plotted as a function of time in Fig. 5.2. Within the considered 30 ps time window, they correspond to x Ω (t) = 8.46 ± 0.65 µm and |A m (t)| 2 /I g = 99.3 ± 6.1, and max(x o (t)) = 1.90 x Ω . Although the parameters fluctuate a bit more than in the case of instantaneous saturation, the solution is still close to the coherent state of a quantum harmonic oscillator. x Ω (t)/x Ω , x Ω /x φ (t), x 0 (t)/x Ω , A m (t)/I sat,g of Eqs. (4.8) and (4.9) such that these equations match the stable soliton state in Fig. 5.1(b).

Moreover, the simulations in the following sections indicate that the multistability of Fig. 4.8 disappears for finite response times, which is positive for practical applications of such nanolasers. Furthermore, self-starting mode locking is achieved in noninstantaneous saturation. The finite recovery time in such a device is helpful from a practical point of view.

Detailed description of the different oscillation regimes

In this section, the different oscillation regimes of the mode-locked laser for noninstantaneous saturation are described in detail.

We suppose here for the sake of simplicity that the gain and absorber share the same region centered on the potential minimum with a width w = 5 x Ω , as shown by the semi-transparent region of Fig. 3.1(a). The lifetime of the gain and the absorber are respectively 1 ns and 10 ps [START_REF] Heuck | Theory of passively mode-locked photonic crystal semiconductor lasers[END_REF][START_REF] Vladimirov | Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser[END_REF]. The ratio of saturation energies is taken to be R E = I sat,g τ g /I sat,a τ a = 25 [START_REF] Heuck | Theory of passively mode-locked photonic crystal semiconductor lasers[END_REF]. In such a non-instantaneous gain and absorber saturation situation, several different dynamical behavior are observed when the values of g 0 and a 0 are tuned, as summarized by the phase diagram of Fig. 5.3 (a). This diagram can be divided into 4 regions: (0) corresponds to no lasing (deep blue), (1) to Q-switching operation (light blue), (2) to Q-switched mode-locked operation (green), The influence of the linear loss rate γ 0 on the transition from Q-switched mode-locked operation to cw mode locking is investigated in Figs. 5.3(c,d). The critical value g c of g 0 at which it occurs (see Fig. 5.3(a)) increases with γ 0 and also with r a , as can be seen from These four different regions can also be visualized by plotting the peak intensity for the field traveling in the +x direction inside the cavity when the laser is in steady-state regime. This is presented in Fig. 5.3(b) as a function of g 0 for a fixed value of a 0 equal to 10 γ 0 . In each situation, after steady-state is reached in the simulation, the field A + (x, t) propagating in the +x direction is calculated by taking the spatial Fourier transform A(k, t) of A(x, t) in the k-space, then filtering the part of the field field with k > 0, and transforming it back into A + (x, t). The peak values of the field intensity |A p+ | 2 propagating in the +x direction at the cavity center x = 0 are then detected within a time duration of 10 ns and are plotted in Fig. 5.3(b), which is thus a bifurcation diagram of the laser dynamics. The different regimes are described in detail in the following subsections.

Q-switched operation

In the Q-switching region labeled (1) in Fig. 5.3(b), one can see that there are three points. This corresponds to a periodic series of three pulses of three different peak powers, as shown in Fig. 5.4.

One example of steady-state laser behavior in this region, corresponding to r g = g 0 /γ 0 = 12, r a = a 0 /γ 0 = 10, and x/x Ω = 5, is shown in details in Fig. 5.4. Q-switching happens here when the resonator losses are kept at a relatively high level compared with gain, allowing the active medium to accumulate a large gain before Q-switching occurs. Once the laser starts, the pulse builds up very quickly and suddenly saturates the absorber down to small absorption values. 2.45) by projecting field A(x, t) on the basis of HG modes. One can see the first three modes, corresponding to n = 0, 1, and 2, alternately oscillate. The delay between two pulses is about 10 ns, but it is slightly shorter between modes 0 and 2 than between the other modes. One can also notice that the intensity of mode 0 is slightly smaller than the other modes, because this mode is spatially smaller than the other ones (see Fig. 3.1) and thus bleaches the gain for smaller peak energies. Thus, after emission of a pulse in mode 0, some gain is left available for mode 2, which can oscillate a bit earlier. 2) and at x = 1.05 x Ω for pulse labeled (3). The detailed evolution of |A(x, t)| 2 versus x and t for these three pulses are shown in Fig. 5.4(c). The duration of each pulse is of the order of 0.1ns. The pulse rise time is shorter than its decay time, as is typically obtained in a Q-switched laser.

Q-switched mode-locking

By increasing the unsaturated gain g 0 , the recovery time of the gain between two Q-switch pulses is reduced, thus reducing the time between two such pulses. This then allows several modes to oscillate simultaneously during one Q-switch pulse, and the phases of these modes can lock, leading to the Q-switched mode-locked operation regime labeled (2) in Fig. 5.3. One example of such a behavior is shown in greater details in Fig. 5.5 for r g = g 0 /γ 0 = 45. Figure 5.5(a) reproduces the time evolutions of the intensities |C n | 2 of the 5 lowest order modes. It shows that the delay between two Q-switch pulses is now reduced to less than 1 ns, and that the 5 lowest order modes oscillate simultaneously during each pulse. Moreover, the relative phases ∆φ n = 2φ n -φ n+1 -φ n-1 between the modes with n = 1, 2, 3 are locked to values close to 0, as evidenced in Fig. 5.5(b).

The resulting intensities |A +,-| 2 = |A ± (0, t)| 2 for the part of the fields at the cavity center x = 0 propagating to the +x (red line) and -x (blue line) directions are plotted versus in Fig. 5.5(c). The shape of the Q-switch pulses is again asymmetric, like in Fig. 5.4, but one can see that every Q-switch pulse contains many much shorter pulses, which are formed by mode-locking. The zoom in Fig. 5. 5(d) shows that, as a result of the phase locking of the five HG modes, a single pulse with a duration of the order of 2 ps is bouncing back and forth inside the cavity during every Q-switch pulse. This is also clearly visible in the intensity color map of Fig. 5.5(e). Moreover, Fig. 5.5(f) shows that the period between two Q-switch pulses decreases with the laser excitation rate, as expected in standard Qswitched lasers.

Continuous-wave mode locking

By further increasing the pumping rate g 0 , cw mode-locking can be observed. One example with r g = g 0 /γ 0 = 49 is shown in Fig. 5.6. This figure shows the whole laser time evolution, from the noisy initial conditions to steady-state. The whole transient process can be divided into several steps:

Noise regime: the initial field is a random noise with very low intensities. The gain and absorber are activated at time of t = 0 ns. The gain thus starts to amplify the field after t = 450 ps, as shown in [START_REF] Bretenaker | Laser: 50 Years of Discoveries[END_REF]. The gain goes on increasing and leads to significant amplification at around t = 500 ps, as can be seen in ( 2).

Transient regime: from t = 700 ps to t 6 ns, the laser emits a series of spikes followed by relaxation oscillations. All first five modes oscillate simultaneously. The phase differences between the modes are locked around t = 3 ns, as can be seen from the inset in Fig. 5.6(a) or by comparing the snapshots labeled (4) and (5) in Fig. 5.6(c). One can see that the pulse is not yet present in (4) while it is clearly there in [START_REF] Ning | Semiconductor nanolasers and the size-energy-efficiency challenge: a review[END_REF]. Furthermore, we notice that mode-locking occurs at t 3 ns, much before the intensities of the modes reach their steady-state values (t 6 ns). For example, the snapshot labeled (5) in Fig. 5.6(c) shows that the pulsed mode-locked regime is already well established although the laser power is still increasing versus time. The duration of this transient damped oscillatory regime depends on the pump rate g 0 and the absorption a 0 . A stronger unsaturated gain g 0 leads to a faster transient, while a strong absorption a 0 reduces the damping, thus lengthening the duration of the transient regime. If the absorption rate a 0 becomes too strong, the transient regime does not damp anymore and one retrieves the Q-switched mode-locked regime of the preceding subsection (see Fig. 5.5).

Stable mode-locking: cw mode locking is formed, where all mode intensities reach time independent values, phase differences between the modes are equal to 0. A pulse with stable intensity oscillates inside the cavity, with a repetition rate equal to 10 ps, as shown in the snapshot labeled (6) in Fig. 5.6(c).

The cw mode locking is obtained thanks to an equilibrium between the effects of saturable gain and saturable absorber. As we have seen in Section 3, non-instantaneous gain saturation favors multimode operation, which is a very important first step towards selfstarting mode locking. Without any saturable absorber, mode locking can also occur [START_REF] Rosales | High performance mode locking characteristics of single section quantum dash lasers[END_REF] through the nonlinearity of the saturable gain. But such a phase-locked operation does not always mean pulsed operation, for which one needs the relative phase difference ∆φ between adjacent modes to be close to 0. This pulsed operation is strongly favored by the introduction of the saturable absorber. But if saturable absorption is too strong, the damping of relaxation oscillations doesn't occur, leading to instability of mode locking, i. e. appearance of Q-switched mode-locking.

Finally, let us mention that the buildup of a mode-locked soliton in the harmonic cavity has some similarities with the buildup of a soliton in mode-locked fiber lasers, which can also be divided as several steps: noise, beatnote, Q-switched beatnote, mode locking [START_REF] Liu | Revealing the Transition Dynamics from Q Switching to Mode Locking in a Soliton Laser[END_REF][START_REF] Liu | Revealing the behavior of soliton buildup in a modelocked laser[END_REF].

Discussion

In this section, we discuss several features related to the mode-locked oscillation regime of the harmonic photonics cavity nanolaser, namely i) the influence of the absorber lifetime on mode locking, ii) the role of the Henry factor in the gain and absorber media, iii) the possibility to spatially separate the gain and the absorber, and iv) the peculiarities of these lasers with respect to ordinary semiconductor lasers.

Influence of absorber lifetime on mode locking

The lifetime of the absorber is an important factor to lock the modes. The influence of the absorption lifetime τ a on mode locking is investigated in this subsection.

The calculations are done by sweeping the lifetime τ a , while the other parameters are fixed: g 0 /γ 0 = 70, a 0 /γ 0 = 10, α g = α a = 0, w = 5 x Ω , τ g = 1 ns. Each calculation runs for 100 ns. The data within last 10 ns is extracted to calculate the phase difference ∆φ n (t) = 2φ n (t) -φ(t) n+1 -φ(t) n-1 in time. The mean and standard variance of phase difference for each modes are calculated and plotted in Fig. 5.7, where the error bar represents the standard variance.

It is clear that the modes are locked when τ a < 50 ps. The phase differences ∆φ n are very close to 0 and the standard variance is very small. However, when τ a = 50 ps, only ∆φ 1 deviates from 0 and the variance increases. But other modes are still locked. It is obvious that mode 0 loses locking. As τ a increases, more phases deviate from 0, and variances increase. This indicates the locking capacity of the absorber decreases and eventually the locking is lost. Luckily, typical values of absorber are less than 50 ps [START_REF] Karin | Ultrafast dynamics in field-enhanced saturable absorbers[END_REF]. This recovery times strongly depends on the structure of the material.

Role of Henry's factor

The Henry factor quantifies the coupling between the variations of the real and imaginary parts of the active medium, which are respectively linked to the phase and amplitude vari- ations in the laser. In semiconductor lasers, it plays an important role due to the particular dependence of the refractive index on the carrier density. If it is too large, the Henry factor can impede mode locking [START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF].

The robustness of mode-locking to the Henry factor in the harmonic photonic cavity laser is investigated here by looking at the evolution of the spectrum of the laser in steadystate regime when the Henry factor increases.

To this aim, the laser field spectrum S(f ) is calculated by the following expression:

S(f ) = +∞ -∞ +∞ -∞ A(x, t)e i2πf t dt 2 dx.
(5.1)

The mode frequencies f n can be obtained by extracting the peaks of the spectrum S(f ).

We simulate the behavior of the laser with g 0 /γ 0 = 70, a 0 /γ 0 = 5, w = 5 x Ω , τ g = 1 ns, τ a = 10 ps, and for varying values of the Henry factors α g and α a of the gain and absorber media that we suppose to be equal (α g = α a ) for the sake of simplicity. 5. For larger values, the phases of the modes unlock, leading to the multiple blue dots. This behavior is confirmed by the evolution of the frequency differences ∆f n = 2f n -f n+1 -f n-1 between the modes reproduced in Fig. 5.8(b). Modelocking corresponds to ∆f n very close to 0. The corresponding evolution of the difference f n -f n,0 between the laser mode frequencies and the empty cavity frequencies f n,0 = (n + 1/2) × 100 GHz shows that the Henry factor shifts the comb frequencies towards high frequencies (see Fig. 5.8(c)). This corresponds to a reduction of the mode separation f n -f n-1 of the comb, as can be seen in Fig. 5.8(d).

Asymmetric scheme for the gain and the absorber

Implementing a nanolaser based on a harmonic photonic resonator in which the gain and the saturable absorber are located at the same place is not always easy to do. We thus wonder in this subsection whether a laser in which the gain and the absorber are spatially separated may exhibit similar properties, in particular when it comes to the mode-locked regime, as in the scheme where gain and absorber overlap. The new configuration of the laser is shown in Fig. 5.9.

With the same parameters as before, the gain is located in the region -2.5 x Ω ≤ x ≤ 0 and the absorber in the region 0 ≤ x ≤ 2.5 x Ω . Another interesting feature can be seen by comparing panels (3) with panels (4): since the absorber is much faster that the gain, the "tracks" of the pulse can be seen in the former one but only hardly in the latter one.

In the case where the gain absorber regions are separated, the phase diagram obtained by tuning the gain g 0 and absorption a 0 is shown in Fig. 5.11(a). It is very similar to the former one (see Fig. 5.3) and exhibits different kind of behavior, namely 0 no lasing , 1 multimode beating operation, 2 Q-switching, and 3 cw mode locking.

Region 1 , which corresponds to cw multimode operation, happens when r a and r g are small, because in this case the saturable absorption and the intracavity power are not sufficient to sustain self-pulsing operation. Although Q-switching is observed in region 2 , we notice that Q-switched mode-locked operation does not occur due to asymmetry between gain and absorption.

Compared with the case of Fig. 5.3 where the gain and absorber overlap, we also notice that the transition line between regions 2 and 3 is shifted a little bit to higher gain values. This is clear also on the bifurcation diagram shown in Fig. 5.11(b) with the fixed absorption 

Comparison with conventional semiconductor lasers

There exist significant differences between the harmonic photonic cavity laser and the conventional Fabry-Perot semiconductor laser. The first one comes from the spatially inhomogeneous energy distribution of HG modes. A Fabry-Perot cavity sustains standing modes with equally spaced frequencies, the same length as the cavity, and their intensity is, apart from the nodes and antinodes, homogeneously distributed inside the resonator.

On the contrary, the harmonic photonic cavity sustains HG modes whose spatial exten- sion ranges with the square root of the mode order as shown in Fig. 3.1(a). The number of excited modes also depends on the width of the gain area due to the spatial inhomogeneity of the modes. Therefore, the length of the laser is mainly determined by the length of the active medium and does not affect the FSR of the cavity. This second difference is very helpful to reduce the size of the mode-locked laser while keeping a fixed value of the repetition rate.

On the contrary, in a Fabry-Perot cavity, the FSR depends on the cavity length, and the orders of the excited modes are related to the gain spectrum. For example, a laser with FP cavity length equal to 430 µm, center wavelength of 1.55 µm, and refractive index equal to 3.5, can sustain oscillation of modes of order surrounding 1940.

Taking the same value for the FSR (100 GHz), we can illustrate the compactness of the concept of harmonic photonic cavity laser by considering that only very low order modes oscillate and are phase locked. This makes it feasible to reduce the scale of such a modelocked semiconductor laser from sub-millimeter to few tens of micrometers. For example, the size of the cavity in the preceding examples is equal to 5 x Ω = 42 µm.

Despite the strong differences between the modes of the two types of lasers, we find some similarities in their dynamic regimes, such as Q-switching, Q-switched mode locking, and cw mode locking [START_REF] Javaloyes | Mode-locking in semiconductor Fabry-Pérot lasers[END_REF][START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF][START_REF] Viktorov | Stability of the mode-locked regime in quantum dot lasers[END_REF]. The reason behind these similarities is that mode locking is induced by the same physical mechanism in the two types of systems.

To summarize this discussion, we believe that the interest of harmonic cavity nanolasers is that they are complementary to usual Fabry-Perot lasers, in the sense discussed above. Indeed, although different oscillation regimes, such as, e.g., passive mode-locking can be achieved in those nanolasers for the same reasons as in Fabry-Perot lasers (equally spaced modes and saturable absorption), the scaling of the pulse parameters (duration and repetition rate) with the cavity parameters are completely different in the two types of cavities.

Conclusions

In this chapter, the dynamics of the mode locking in the cases of noninstantaneous saturable gain and absorber is discussed in detail.

First, a detailed comparison between the coherent state and one mode-locked solution in case of noninstantaneous gain and absorption saturation is given. The pulse fluctuates a bit more than in the case of instantaneous saturation, the solution is still very close to the coherent state of a quantum harmonic oscillator.

Then, we have isolated the different possible dynamical behavior of the ML nanolaser obtained by varying the gain and the absorption. These different regimes, including the Q-switching, Q-switched mode locking, and cw mode locking, were fully described illustrating the rich physics of this nonlinear system.

Next, the influence of the absorption lifetime and the influence of the Henry factor on the mode locking has been discussed. Moreover, similar dynamical behavior using spatially separated gain and absorber sections inside the cavity have been observed, which can simplify practical implementations.

Finally, a general comparison between harmonic cavity lasers and the traditional FP cavity lasers has been given.

In practice, there exists different types of structural disorder in photonic devices, such as disorder in size and position of lattices [START_REF] Prasad | The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz timedomain spectroscopy[END_REF][START_REF] Gerace | Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs[END_REF][START_REF] Fan | Theoretical investigation of fabrication-related disorder on the properties of photonic crystals[END_REF][START_REF] Chong Kwan | Effects due to disorder on photonic crystal-based waveguides[END_REF][START_REF] Langtry | Effects of disorder in two-dimensional photonic crystal waveguides[END_REF][START_REF] Asatryan | Effects of geometric and refractive index disorder on wave propagation in two-dimensional photonic crystals[END_REF][START_REF] Liam O'faolain | Dependence of extrinsic loss on group velocity in photonic crystal waveguides[END_REF], and surface roughness [START_REF] Prasad | The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz timedomain spectroscopy[END_REF][START_REF] Gerace | Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs[END_REF][START_REF] Méndez | Design of one-dimensional random surfaces with specified scattering properties[END_REF][START_REF] Ferrini | Disorder-induced losses in planar photonic crystals[END_REF][START_REF] Leskova | Design of one-dimensional band-limited uniform diffusers of light[END_REF][START_REF] Rodriguez | Disorder-immune confinement of light in photonic-crystal cavities[END_REF]. These general, fabrication-related disorders [START_REF] Fan | Theoretical investigation of fabrication-related disorder on the properties of photonic crystals[END_REF] may influence the properties like the band structure [START_REF] Gerace | Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs[END_REF][START_REF] Rodriguez | Disorder-immune confinement of light in photonic-crystal cavities[END_REF][START_REF] Li | Two-dimensional disordered photonic crystals with an average periodic lattice[END_REF][START_REF] Li | Band-gap extension of disordered 1D binary photonic crystals[END_REF][START_REF] Sigalas | Effect of disorder on photonic band gaps[END_REF][START_REF] Vlasov | Different regimes of light localization in a disordered photonic crystal[END_REF][START_REF] Yuan | Fragility of photonic band gaps in inverse-opal photonic crystals[END_REF][START_REF] Lidorikis | Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials[END_REF], transmission properties [START_REF] Langtry | Effects of disorder in two-dimensional photonic crystal waveguides[END_REF][START_REF] Li | Two-dimensional disordered photonic crystals with an average periodic lattice[END_REF][START_REF] Vlasov | Different regimes of light localization in a disordered photonic crystal[END_REF][START_REF] Lidorikis | Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials[END_REF][START_REF] Patterson | Disorder-induced coherent scattering in slow-light photonic crystal waveguides[END_REF][START_REF] Braginsky | Light propagation in an imperfect photonic crystal[END_REF][START_REF] Kaliteevski | Disorderinduced modification of the transmission of light in a two-dimensional photonic crystal[END_REF][START_REF] Frei | Finite-element analysis of disorder effects in photonic crystals[END_REF]. Usually such a disorder is undesirable except to obtain random lasers operation [START_REF] Fujii | Study on transition from photonic-crystal laser to random laser[END_REF][START_REF] Leonetti | The mode-locking transition of random lasers[END_REF][START_REF] Antenucci | General phase diagram of multimodal ordered and disordered lasers in closed and open cavities[END_REF] or to observe Anderson localization [START_REF] Gerace | Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs[END_REF][START_REF] Vlasov | Different regimes of light localization in a disordered photonic crystal[END_REF][START_REF] Lahini | Anderson localization and nonlinearity in one-dimensional disordered photonic lattices[END_REF][START_REF] Schwartz | Transport and Anderson localization in disordered two-dimensional photonic lattices[END_REF][START_REF] Chabanov | Statistical signatures of photon localization[END_REF], or to induce new functionalities [START_REF] García | Physics of Quantum Light Emitters in Disordered Photonic Nanostructures[END_REF][START_REF] Yu | Engineered disorder in photonics[END_REF]. Some new methods to probe disorder induced distortion in photonic devices have been developed [START_REF] Rigal | Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots[END_REF][START_REF] Balasubrahmaniyam | Direct experimental determination of critical disorder in one-dimensional weakly disordered photonic crystals[END_REF]. Also, it has recently been shown that the intensity variations due to the disordered medium can be entirely suppressed by adding disorder-specific gain and loss components to the medium [START_REF] Konstantinos | Wave propagation through disordered media without backscattering and intensity variations[END_REF][START_REF] Brandstötter | Scattering-free pulse propagation through invisible non-Hermitian media[END_REF].

In the lasers that we consider, we can take most of these effects into account by introducing some distortion in the harmonic potential. Such a modification of the potential should be expected to lead to a modification of the Hermite-Gaussian modes and to a distortion of the cavity mode spectrum with respect to a perfect frequency comb. The question then arises to know whether the mode locking regime of operation will be robust with respect to such alterations of the cavity mode spectrum, which are unavoidable whatever the fabrication process. Thanks to the nonlinear nature of mode locking, in general, semiconductor mode-locked lasers are very robust. Even the locking of multi-mode fiber lasers is robust to disorder [START_REF] Wright | Mechanisms of spatiotemporal mode-locking[END_REF][START_REF] Wright | Spatiotemporal mode-locking in multimode fiber lasers[END_REF][START_REF] Wright | Self-organized instability in graded-index multimode fibres[END_REF][START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF]. But this question needs to be addressed in the peculiar case of harmonic cavity nanolasers.

The aim of this chapter is to investigate the robustness of mode locking of the Hermite-Gaussian modes in an harmonic cavity nanolaser from a theoretical and simulation standpoint. We focus on two different kinds of distortion of the harmonic potential. The first one is the non-parabolicity of the potential. A fourth order term is introduced in the potential to quantify its deformation. This distortion can strongly alter the Hermite-Gaussian modes and shift the initially equally-spaced frequencies. The second type of potential distortion we consider consists in random errors in the shape of the potential, somewhat simulating disorder due to different kinds of structural imperfections. To this aim, a Gaussian random function with zero mean value is added to the potential. In both cases, we compare the mode spectrum of the "cold" cavity with the laser spectrum, in order to isolate the capability of the laser nonlinearities to restore mode-locked operation. We also take into account the existence of a non-zero Henry factor for the gain medium and the absorber. This chapter is organized as follows: Section 6.1 introduces the model with the two kinds of disorder. Section 6.2.1 focuses on the investigation of the effect of the nonparabolicity of the potential. Section 6.2.2 describes the laser behavior in the presence disorder created using random errors in the shape of the potential. The evolution of the locking states is then statistically investigated, including the Henry factor. Section 6.3 gives the conclusions of the chapter.

6.1 The model with imperfect potential 6.1.1 Non-parabolicity of the potential If the potential of the cavity is not a perfect parabola, the HG modes in the potential get distorted. The frequency difference between successive modes is then no longer uniform, and the cavity spectrum does no longer form a perfect frequency comb. For example, the mode frequencies should decrease (increase) if the potential is wider (narrower) than a perfect parabola.

To investigate the influence of such an anharmonicity on the mode locking, we introduce extra terms to the term proportional to x 4 in the master equation (Eq. (2.51)). Since an asymmetry of the cavity would play only a minor role, as shown in Appendix C, we ignore here third-order term. We thus add a fourth-order term to the parabolic potential in order to quantify the distortion. Since the size of the cavity is determined from the scaling factor x Ω = ω kk /Ω, Eq. (2.51) in the presence of distortion can be written in the following normalized form:

i 1 Ω ∂A ∂t = - 1 2 x 2 Ω ∂ 2 A ∂x 2 + 1 2 ( x x Ω ) 2 + c 4 4! ( x x Ω ) 4 A + γ 0 2Ω g(1 -iα a ) γ 0 - a(1 -iα a ) γ 0 -1 A . (6.1) 
where c 4 is a dimensionless coefficient which controls the fourth-order distortion.

Disorder in the potential

We can follow a similar way to quantify the effect of random errors in the shape of the parabolic potential. A term D max R(x ) is added to the potential, where R(x) is a standard centered Gaussian random variable with variance of 1. The variance of disorder is adjusted by varying D max . The master equation can then be written as

i 1 Ω ∂A ∂t = - 1 2 x 2 Ω ∂ 2 A ∂x 2 + 1 2 ( x x Ω ) 2 + D max R(x) A + γ 0 2Ω g(1 -iα g ) γ 0 - a(1 -iα a ) γ 0 -1 A . (6.2)

Results and discussion

In this section we numerically simulate the models ( Eqs. (6.1) and (6.2)) with noninstantaneous active medium (Eqs. (2.46) and (2.47)) to predict the laser behavior in the presence of potential distortion. To this aim, like in Ref. [START_REF] Sun | Dynamics of mode-locked nanolasers based on Hermite-Gaussian modes[END_REF], we use the split-step Fourier methods. The spatial discretization period is equal to 0.13 x Ω . The time discretization period is equal to 10 fs for all simulations. We have checked that it is small enough to ensure a good accuracy for all the cases studied in this paper. As the gain width is fixed at w = 5x Ω , the intensities of only the first six modes are significantly different from zero. Therefore, in the following, only modes labeled n = 0 • • • 5 are taken into account.

In this section, we check whether the laser modes are locked using two different ways. The first one is to check the relative phase differences ∆φ n = 2φ n -φ n+1 -φ n-1 , which are obtained from the arguments of the C n (t)'s in Eq. (2.45). The second one consists in calculating the frequency separations between the modes under the distortion, in order to check whether the laser operation restores equally spaced frequencies.

Non-parabolicity of the potential

Three examples of distorted potentials with different values of c 4 are shown in Fig. 6.1(a). A positive value of c 4 leads to a narrower potential, and vice versa. The gain and absorber are supposed to spatially overlap in the middle of the cavity (transparent pink region of Fig. 6.1(a)). Now we investigate how the anharmonicity influences mode locking by varying c 4 .

In order to determine whether the laser modes are locked, we look at their frequency distribution. Indeed, mode-locked operation implies an equal frequency separation between the successive modes, while any shift with respect to perfectly periodic comb is a signature that the modes are unlocked. Here we first calculate the eigenfrequency of the "cold" cavity with the distortion.

To obtain the eigenfrequencies of the "cold" cavity, random noise fields are injected into the cavity as initial fields with the parameters of γ 0 = 0, a 0 = 0, g 0 = 0. In these conditions, the "cold" cavity works as a spectral filter. The calculations run 30ns. The spectrum F (2πf ) of the field in the cavity can be calculated by the following expression:

F (2πf ) = +∞ -∞ +∞ -∞ A(x, t)e i2πf t dt 2 dx. (6.3) 
The field A(x, t) within the last 24 ns is used to calculate the spectrum F (2πf ). The eigenfrequencies f n of the cavity can be obtained by finding the frequencies corresponding to the peaks in the spectrum F (2πf ).

To compare the eigenfrequencies f n with the perfect cavity comb f n,0 = (n + 1/2)Ω/2π, where n = 0, 1, 2, • • • , we plot the mode frequency shifts f n -f n,0 of the "cold" cavity as a function of c 4 in Fig. 6.1(b). The frequency shifts f n -f n,0 linearly increase as c 4 increases, but the slope increases with the mode order. By checking the mode frequency separation f n -f n-1 in Fig. 6.1(c), we notice that the potential distortion c 4 leads to an aperiodic frequency comb. The mode separation is larger than the initial value of 100 GHz if c 4 > 0, and vice versa. For a given c 4 , the increase between two successive mode separations 

∆f n = 2f n -f n+1 -f n-1 = (f n -f n-1 ) -(f n+1 -f n ) is independent of n,
= 2f n -f n+1 -f n-1 .
It is interesting to see the changes if the active medium is added into the cavity. We suppose that the gain and absorber with width w = 5x Ω spatially overlap in the cavity center, as represented by the transparent pink region in Fig. 6.1(a). The common parameters are: intrinsic loss γ 0 = 10 10 s -1 , gain g 0 /γ 0 = 70, absorption a 0 /γ 0 = 10, gain window width w = 5x Ω , gain lifetime τ g = 1ns, absorber lifetime τ a = 10ps, saturation energy ratio R E = E sat,g /E sat,a = 25. Here three examples are investigated in details.

Three examples of the time evolutions of the laser with the coefficients c 4 = -0.01, c 4 = 0.01, and c 4 = 0.02 are plotted in Fig. 6.2. In the first case of c 4 = -0.01 in Fig. 6.2(a), all mode intensities are modulated. Mode 0 is unlocked, which leads to ∆φ 1 evolving with a period of around 3 ns. The other modes are still locked. Obviously, mode 0 is more easily influenced by the distortion of the potential and then lose the locking. This leads to the modulation of the intensity |A + | 2 of the field propagating into the +x direction as shown in Fig. 6.2(b).

On the contrary, if c 4 = 0.01 and other parameters are the same as before, (the details From the above results, it is clear that there exists a locking region between c 4 = -0.01 and c 4 = 0.02, for which all modes can be locked. The same calculation is thus performed for varying values of c 4 . The frequencies f n of the modes are obtained by calculating the spectrum of the field within the last 24 ns of the simulation once the laser is in steadystate regime. The results are plotted in Fig. 6.3. 6.3(c) shows that there exists an asymmetric locking region between -0.007 and 0.019 where the mode separations are the same for a given c 4 and still linearly increase as c 4 increases. In addition, one can notice that the mode frequency separation for c 4 = 0 is shifted to 99.8GHz due to the nonlinearity of active media. Outside this locking region, some modes are still locked. This is obvious from Fig. 6.3(d) that still exhibits some mode separations ∆f n = 0 indicating that the mode frequencies are equally spaced. This is a qualitative difference with Fig. 6.1(d).

Based on the analysis above, there are two ways to observe the locking. The first one is to check the phase difference ∆φ n , such as the periodic rotation of φ 1 in Fig. 6.2(a). The second one is to check the frequency difference, such as ∆φ 1 = 0 when c = -0.01 in Fig. 6.3(d). In addition, another way to check the locking is to find the evolution of the peak intensities as in the three examples of Fig. 6.2(b,d,f). If all the modes are locked, the peak intensities |A p+ | 2 of the field propagating into the +x direction at x = 0 have a fixed value as in the example shown in Fig. 6.2(d). Outside the locking region, some modes are unlocked. Then a long period modulation appears like in the cases of Figs. The investigation of locking range evolution with the unsaturated gain and absorption rates is shown in Fig. 6.4. The two surfaces in this figure correspond to the two extremes values of c 4 between which all the laser modes are locked. In all cases, the upper limit for c 4 is larger than the lower limit, as already observed in Fig. 6.3(a). The locking range increases almost linearly with the absorption rate r a , except on the positive c 4 side where it decreases for large values of r a . This corresponds to situations where the laser is close to the border to Q-switching regime (see Fig. 5.3).

If the ratios g 0 /γ 0 = 120 and a 0 /γ 0 = 10 are fixed, varying the intrinsic losses γ 0 leads to the evolution of the locking region plotted in Fig. 6.4(b). The width of the region linearly increases with γ 0 . In fact, this increase is due to the increase in absorption a 0 . At the same time, the increase in gain g 0 ensures that the laser is far away from the Q-switching region.

Disorder in the potential

Here we want to investigate the robustness of mode locking influenced by the effect of random errors in the shape of the potential. A term D max R(x ) is added to the potential term to describe this disorder, where R(x) is a standard centered random Gaussian distribution with variance of 1. When the laser reaches its stable state, the method of Eq. 6.3 is implemented to calculate the mode frequencies f n .

To evaluate whether the laser remains locked in the presence of disorder, we define the Free Spectral Range (FSR) relative root mean square deviation δ,

δ = 1 ∆f 1 N N -1 n=0 |f n -f fit (n)| 2 , (6.4) 
where f fit (n) is a linear fit of the f n 's and ∆f = f fit (n) -f fit (n -1) is the mode separation obtained from the fit.

Since the non-parabolicity of the potential can be regarded as a special kind of disorder, we can use the former example of Fig 6 .1(b-d) and Fig. 6.3 to test this method. The FSR relative root mean square deviations δ C for the "cold" cavity (Fig. 6.1(b-d)) and δ L for the laser (Fig. 6.3(b-d)) are calculated and plotted in Fig. 6.5(a). δ C increases as the distortion increases. On the other hand, δ L remains very small in the locking region. The evolution of δ L versus δ C , when c 4 is varied, is plotted in Fig. 6.5(b). It is clear that there exists a threshold value for δ C below which locking is preserved.

The same method is implemented to calculate the deviation δ C for the "cold" cavity with random disordered potential. We run the simulation for 30 ns, removing the active media and losses, that is γ 0 = 0, a 0 = 0, g 0 = 0. The common parameters are τ g = 1ns, τ a = 10ps, spatial gain width w = 5x Ω , saturation energy ratio E sat,g /E sat,a = 25. The "cold" cavity behaves as a frequency filter. We calculate the spectra from 24 ns, so that the frequency resolution is around 0.042 GHz. The eigenfrequencies of the disordered potential are extracted from the peaks of the field spectrum. The evolution of δ C versus D max is plotted in Fig. 6.5(c). The calculation is run 50 times for each value of D max . Hence, To evaluate the robustness of the locking, δ L for the laser is calculated with the same parameters including the same disordered potentials, but the gain and absorber are added as described in preceding section.

The results with the parameters r a = 10, r g = 150 are shown in Fig. 6. 6(a-d). The values of δ L are plotted as a function of D max in Fig. 6.6(a). In total this figure contains 1150 solutions for 23 different values of D max . Some values of δ L drop to 0, contrary to Fig. 6.5(c). Especially, for D max = 0.005, all the values of δ L are close to 0. This indicates that an equally spaced comb is formed by mode locking.

If we plot the value of δ L versus δ C for exactly the same disordered potential, we obtain the results of Fig. 6.6(b). We notice that there exists a threshold value δ C,th of δ C below which the laser remains locked. This means the locking effect can compensate the disorder All other parameter values are the same as in Fig. 6.2. in the potential.

To define and find this threshold value δ C,th , we fist plot the histogram of δ L for all the solutions (see Fig. 6.6(c)). It is clear that the histogram of δ L can be divided into two different regions. The unlocked solutions distribute along a wide range of values of δ L (marked by red bars). However, there are 153 counts of solutions located in the first bin within the range of [0, 1.51 × 10 -4 ] (marked by blue bars), which are the locked solutions. These locked solutions are identified, in such a way that we can plot a histogram of the corresponding values of δ C as shown in blue in Fig. 6.6(d). The histogram corresponding to all types of solution, both locked and unlocked, is represented in red in the same figure. One can notice that only a portion of the solutions with small δ C are locked. From this figure, we can define δ C,th as the threshold value above which less than 50% of simulations lead to mode locking.

One way to directly find δ C,th would be to simply calculate the ratio between the number of locked solutions and total number solutions for each value of δ C . However, this strongly depends on the number and width of bins of the histogram. Therefore, we fit the histogram using a Weibull distribution 1 .

The results of these fits are shown as full lines in Fig. 6.6(d), where the fit parameters are λ = 5.61 and k = 1.37 for the ensemble of all solutions and λ = 0.98 and k = 1.53 for mode-locked solutions. This leads to the threshold value δ C,th = 1.2 × 10 -3 , evaluated as the value of δ C for which the ratio of the two distributions is 0.5.

The same calculations are performed for r a = 30, r g = 150. The corresponding results are plotted in Figs. 6.6(e-h). The fit parameters are unchanged for the ensemble of solutions and become λ = 2.7521 and k = 1.395 for the mode-locked solutions. We obtain in this case a larger threshold value δ C,th = 3.8 × 10 -3 for mode-locking.

Using this method, we calculate the evolution of δ C,th as a function of r a , which is shown in Fig. 6.7(a). The threshold δ C,th increases linearly with absorption rate r a . However, the solutions finally approach the border of Q switching when r a is increased. This leads to a sharp decrease in δ C,th . On the contrary, increasing r g can keep away from that border so that higher values of r a can be allowed. This indicates that the robustness of locking to the disorder increases with the absorption rate r a . The same technique is used to investigate the influence of the Henry factors α g and α a of the gain and the absorber medium, respectively. For simplicity, we take α g = α a and plot in Fig. 6.7(b) the evolution of δ C,th as a function of α g = α a , with r g = 150 and for different values of r a .

It is interesting to notice that the Henry factor first increases the threshold δ C,th . In 1 The probability distribution of a Weibull random variable is

f (x; λ, k) = k λ x λ k-1 e -(x/λ) k x ≥ 0, 0 x < 0,
where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. other words, it increases the robustness of mode-locking to disorder, especially for small values of r a . But, clearly, a large value of the Henry factors is detrimental to locking, as shown in Fig. 5.8 and reported in several references [START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF][START_REF] Vladimirov | Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser[END_REF][START_REF] Sun | Dynamics of mode-locked nanolasers based on Hermite-Gaussian modes[END_REF], so that the threshold CONCLUSION δ C,th eventually decreases.

We also investigate the robustness of mode locking to different values of the Henry factors for the gain medium and the absorber (see Fig. 6.7(c)). This result is reminiscent of previous works applied to standard semiconductor lasers [START_REF] Heuck | Theory of passively mode-locked photonic crystal semiconductor lasers[END_REF][START_REF] Vladimirov | Model for passive mode locking in semiconductor lasers[END_REF][START_REF] Vladimirov | Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser[END_REF][START_REF] Schelte | Dynamics of temporally localized states in passively mode-locked semiconductor lasers[END_REF][START_REF] Gurevich | Spatial instabilities of light bullets in passivelymode-locked lasers[END_REF], in which the difference between the Henry factors was found to be detrimental to mode locking. In our case, we find that this difference between the Henry factors reduces the robustness of the nanolaser mode locking to potential disorders. In Section 5.3.3, we found that the dynamical behaviors of the lasers were similar in the situations where the gain and the absorber overlap or are separated inside the cavity. We thus also investigate here the robustness of the laser mode-locking to potential disorder in the situation where the gain and the absorber do no longer overlap. The values of the parameters as the same as before, except that the gain region is located in the region -2.5 x Ω ≤ x ≤ 0 and the absorber in the region 0 ≤ x ≤ 2.5 x Ω . The results are plotted as dashed lines in Figs. 6.7(a,b,d). In Fig. 6.7(a), for separated gain and absorber regions, δ C,th is found to increase with r a for r g = 150. One significant difference with respect to the case where the two media overlap is that δ C,th is divided by a factor of 2. This is due to the fact that the pulse just stays only half of the time in the absorber region. The effective absorption for the whole field is then only one half of its value, leading to a reduction of δ C,th to one half of its value when the absorber fills both sides of the resonator. The same results are observed for the investigation of the robustness to the Henry factors with r g = 150 and r g = 10 in Fig. 6.7(b) and Fig. 6.7(d).

Conclusion

In this chapter, we theoretically analyzed the robustness of the mode locking regime of oscillation of a harmonic cavity nanolaser sustaining oscillation of Hermite-Gaussian modes. First, we considered the effect of non-parabolicity of the potential on the mode locking. A fourth order term was introduced to quantify the distortion of the potential, which leads to a shift of the eigenfrequencies. Locking the modes using a saturable absorber can compensate this distortion.

Moreover, the more general case of random errors in the potential has been statistically analyzed by calculating the relative root mean square deviation δ C of the comb frequencies. By comparing the distribution of δ C for the locked solutions with that for all the solutions, we find the evolution of the threshold value δ C,th with the laser parameters. The robustness of mode locking to disorder increases with the absorption rate on the condition that the gain is large enough to keep away from the Q-switching regime. A well-chosen value for the Henry factors has been shown to increase the robustness of the mode-locked regime.

Chapter 7 Conclusion and perspectives

In this thesis, we proposed a novel concept for mode locking in ultracompact semiconductor nanolasers, and investigated the dynamics and the robustness of this mode locking.

The nanolasers considered here sustain the oscillation of Hermite-Gaussian modes created by a harmonic photonic cavity that confines light. This maps the optical cavity to an equivalent quantum mechanical harmonic oscillator, with evenly spaced eigenfrequencies, an essential requirement for mode locking. The nonlinear laser behavior is described by the Gross-Pitaevskii equation with a parabolic potential and nonlinear terms describing gain and absorption. Mode locking occurs with Hermite-Gaussian modes, which are very different from the usual resonator modes, as they are strongly inhomogeneous spatial distribution of energy. Provided that saturable gain and absorption overlap with all the modes, mode locking occurs over a broad area in the phase space, corresponding to the emergence of dissipative soliton and multisoliton solutions. In the limit of instantaneous absorption and gain saturation, the dissipative soliton is well described by the coherent state of a quantum mechanical oscillator, namely a Gaussian envelope oscillating without deformation. The mode locking period is controlled by the design of the photonic potential, and not by the cavity length. Furthermore, to understand the saturation properties of the spatially inhomogeneous Hermite-Gaussian modes, we have compared the saturation matrices of the harmonic cavity nanolaser and the FP cavity laser, thus revealing that cross-saturation of Hermite-Gaussian modes is predominant for adjacent modes only. Direct numerical calculation and pde2path continuation are implemented to investigate the solutions of the model. This allowed us to understand the peculiarities of mode competition in such lasers. The steady-state behavior under non-instantaneous gain response depends on the gain length that limits the number of Hermite-Gaussian modes that can be excited and the mode intensity distribution. Strong differences have been observed with respect to the case of instantaneous gain saturation in which multi-stability has been observed. The transition from one regime to the other is related to the respective values of the gain lifetime and the laser repetition time 2π/Ω.

Next, we have isolated the different possible kind of dynamical behavior of the 125 nanolaser obtained by varying the gain and the absorption. These different regimes, including the Q-switching, Q-switched mode locking, and CW mode locking, were fully described illustrating the rich physics of this nonlinear system. In addition, the influence of the Henry factor on the mode locking has been discussed. Moreover, similar dynamical behavior using spatially separated gain and absorber sections inside the cavity have been observed, which can simplify practical implementations. A general comparison between harmonic cavity lasers and the traditional Fabry-Perot cavity lasers has been given.

Finally, the robustness of mode locking of the Hermite-Gaussian modes to the imperfection of the harmonic cavity was investigated. We focused on the effect of nonparabolicity of the potential and the random errors in the shape of the potential. By comparing the frequency comb of the lasers and "cold" cavities, the differences between locked and unlocked states are obvious. The influence of the different laser parameters on the robustness of the mode-locked regime is statistically investigated in details. Moreover, the Henry factor is also taken into account. Within a limited range, the Henry factor favors the robustness of the mode locking to disorder.

Overall, we believe the novel results reported in this thesis are meaningful for designing future ultracompact mode-locked lasers. The mode locking period is controlled by the design of the photonic potential, and not by the cavity length. The fact that the Hermite-Gaussian modes that are locked are the lowest-order ones, i. e. the smallest ones, is very helpful to reduce the size of the mode-locked laser. Besides, the analogy between the harmonic oscillator that we investigate and the coherent state of a quantum harmonic oscillator is interesting. This may connect different domains of physics such as nonlinear dynamical systems, nonlinear optics, nanophotonics, and quantum physics. Future work could be carried out along the following directions:

• Influence of spontaneous emission Spontaneous emission is a fundamental phenomenon connected to light generation. But it is undesirable in most optical coherent devices. In lasers, most photons generated by spontaneous emission do not couple to the lasing modes. This only reduces the lifetime of the population inversion. The random spontaneous emission coupled to the laser mode produces unwanted noise. For the photonic crystal cavity, spontaneous emission can be controlled by the bandgap of the photonic crystal [START_REF] Ogawa | Control of light emission by 3D photonic crystals[END_REF][START_REF] Peter Lodahl | Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[END_REF]. On the contrary, for a cavity with large quality factor and small mode volume, the coupling of the spontaneous emission to the cavity mode is enhanced through the Purcell effect [START_REF] Mills | Spontaneous emission probabilities at radio frequencies[END_REF][START_REF] Noda | Seeking the ultimate nanolaser[END_REF]. Therefore, it is important to investigate the influence of spontaneous emission on the mode locking, and analyze the different field noises such as timing jitter, intensity noise, and comb-line frequency noise [START_REF] Kim | Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[END_REF].

• Continuation and bifurcation analysis for the model

The numerical continuation is very efficient to find a solution of interest and then follow it when suitable parameters are varied. These solutions can be followed irrespectively of their stability. This means that information can be obtained also about solutions that are not attractors, which is a big advantage over direct numerical simulation. The continuation can be used to follow branches of many implicitly defined problems, including bifurcations [START_REF] K Alan Kane | Unlocking dynamical diversity: optical feedback effects on semiconductor lasers[END_REF]. With the help of analysis of continuation and bifurcation, one can better understand the dynamics of lasers.

In this thesis, the minimal continuation calculation for the instantaneous model is done. The single-mode solutions are obtained by continuation. However, a lot of efforts are needed to explore the dynamical behavior of the laser by using pde2path, such as, periodic orbit solutions from Hopf bifurcation points. On the other hand, the tool AUTO [START_REF] Eusebius | Auto 97: Continuation and bifurcation software for ordinary differential equations[END_REF] can also be used to do the analysis for the ODEs of our model.

• Kerr soliton solution

The development of optical frequency combs based on compact, chip-scale microresonators operating in the dissipative soliton regime and producing coherent, octavespanning frequency combs with microwave to terahertz repetition rates is a very hot topic [START_REF] Kippenberg | Dissipative Kerr solitons in optical microresonators[END_REF][START_REF] Gaeta | Photonic-chip-based frequency combs[END_REF]. Such a passive microresonator is injected near a cavity mode by a continuous-wave laser that produces gain via four-wave mixing at other cavity modes. A comb is thus generated with a spacing given by the free spectral range (FSR) of the microresonator. Dissipative solitons can be generated depending on the balance of nonlinearity and dispersion as well as parametric gain and loss in such driven dissipative nonlinear systems. The field evolution is governed by the Lugiato-Lefever equation (LLE) [START_REF] Lugiato | Spatial dissipative structures in passive optical systems[END_REF].

Similarly, in our cavity model with noninstantaneous gain and no absorber, if the Kerr nonlinearity is strong enough, numerical calculations for the master equation show that there exists a very good mode locking, leading to a pulse similar to a coherent state. The mode locking formation is linked to the Kerr nonlinearity instead of the absorber. This is a promising direction for simplifying the laser structure if the real physical parameters of Kerr nonlinearity, gain rate, and dispersion allow for the soliton formation.

• Experimental implementation

Experimental implementation of the harmonic cavity nanolaser is a challenging and exciting project, which can be envisaged as follows. The type of photonic crystal chosen to design the cavity can be either a 2D photonic membrane [START_REF] Sylvain Combrié | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF][START_REF] Marty | Efficient Photonic Crystal Parametric Source harnessing high-Q resonances[END_REF] or a nanobeam [START_REF] Marty | Hybrid In-GaP nanobeam on silicon photonics for efficient four wave mixing[END_REF], as introduced in Chapter 2. The active medium can be an n-i-p slab structure including multi-layer quantum well heterojunction [START_REF] Gyu | Electrically driven single-cell photonic crystal laser[END_REF][START_REF] Yong | Electrically driven nanobeam laser[END_REF][START_REF] Takeda | Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers[END_REF][START_REF] Ellis | Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser[END_REF][START_REF] Halioua | Hybrid III-V semiconductor / silicon nanolaser[END_REF]. The periodic holes in the nanocavity can be engineered vertically in such a heterojunction. For simplicity, the saturable gain and absorber can be located symmetrically with respect to the cavity center as we introduced in Section 5.3.3. The same active materials are used for the gain and absorber, separated by different metallic contacts. The saturable absorber is implemented by reverse voltage injection like in monolithic semiconductor mode-locked lasers [START_REF] Young | Monolithic Colliding-Pulse Mode-Locked Quantum-Well Lasers[END_REF][START_REF] Derickson | Comparison of timing jitter in external and monolithic cavity mode-locked semiconductor lasers[END_REF][START_REF] Morton | Monolithic hybrid mode-locked 1.3 µm semiconductor lasers[END_REF]. Current injection is one of the most challenging issues for PhC nanolasers, because metallic contacts can induce disastrous optical losses. It is very important that the optical properties of the nanocavity should not be spoiled by the injection of carriers. Therefore, a schematic design similar to Refs. [START_REF] Crosnier | Hybrid indium phosphide-on-silicon nanolaser diode[END_REF][START_REF] Crosnier | High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides[END_REF][START_REF] Halioua | Hybrid III-V semiconductor / silicon nanolaser[END_REF] would be a good candidate. In addition, the light pulses can be coupled out from a silicon waveguide below the cavity [START_REF] Crosnier | Hybrid indium phosphide-on-silicon nanolaser diode[END_REF][START_REF] Crosnier | High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides[END_REF][START_REF] Halioua | Hybrid III-V semiconductor / silicon nanolaser[END_REF]. [START_REF] Rademacher | Symmetries , freezing , and Hopf bifurcations of traveling waves in pde2path[END_REF] 

Instantaneous saturation in the presence of gain only

We first compare the steady-state results obtained by the two methods with instantaneous gain saturation without any absorber. In each case, the simulation is run 30 times. The same initial conditions are used to compare the two methods. The values of the parameters are: r g = 10, r a = 0, R I = 5 and gain spatial window (-2.5x Ω ≤ x ≤ 2.5x Ω ). 

Instantaneous saturation of both gain and absorber

A similar comparison has been performed for instantaneously saturable gain and absorber. The gain and absorber spatially overlap within the region (-2.5x Ω ≤ x ≤ 2.5x Ω ). The parameter values are r a = 9, r g = 5.5, R I = 5. The simulations are run 40 times with the same initial conditions for the two methods. Appendix B Analytic expression of a coherent soliton in a photonic harmonic oscillator

This section aims at checking the analytic expression of the coherent soliton state in the photonic harmonic oscillator. The expression was obtained by analogy with the coherent state of a quantum harmonic oscillator.

Consider the Schrödinger Equation with parabolic potential obtained from our model:

i ∂A ∂t + 1 2 ω kk ∂ 2 A ∂x 2 - 1 2 Ω 2 ω kk x 2 A = 0. (B.1)
The coherent state of the field can be expanded as a superposition of Hermite-Gaussian modes:

A coh (x, t) = The closed form coherent state can then be written as

A coh (x, t) = π -1/4 x -1/2 Ω e -1 2 
x
x Ω -√ 2λ cos(Ωt) where the scaling factor is x Ω = ω kk /Ω.
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We can see that the shape of the field amplitude is a Gaussian function. The phase φ also depends on the field position x. To check that this is indeed a solution of Eq. B. ).

(B.17)

Then substituting Eq. (B.17) into the right-hand side of Eq. (B.6), we have

- 1 2 x 2 Ω ∂ 2 |A coh | ∂x 2 + 1 2 ( x x Ω ) 2 A coh = |A coh |e iφ coh (-λe -2iΩt + 1 2 + √ 2λxe -iΩt x Ω - x 2 2x 2 Ω ) + 1 2 x 2 x 2 Ω |A coh |e iφ coh = |A coh |e iφ coh (-λe -2iΩt + 1 2 + √ 2λxe -iΩt
x Ω ). 

Introduction

To take into account an asymmetry of the potential, we introduce the dimensionless coefficient c 3 in the modified Gross-Pitaevski equation, which is similar to Eq. (6.1), leading to:

i 1 Ω ∂A ∂t = - 1 2 x 2 Ω ∂ 2 A ∂x 2 + 1 2 ( x x Ω ) 2 + c 3 3! ( x x Ω ) 3 A + γ 0 2Ω g(1 -iα a ) γ 0 - a(1 -iα a ) γ 0 -1 A . (C.1)

Cold cavity

The effect of this asymmetry on the cold cavity spectrum is shown in 

Laser operation

The consequences of this potential asymmetry on the laser operation are shown in We can see that thanks to the nonlinearity of the gain medium and the absorber, the laser remains mode-locked up to c 3 = 0.4. This shows that the potential asymmetry governed by c 3 is much less detrimental to mode locking than the anharmonicity coefficient c 4 studied in the main body of the paper. Abstract: This PhD thesis mainly addresses the dynamics and the robustness of a novel concept of mode locking in ultracompact semiconductor nanolasers. Such a nanolaser exhibits Hermite-Gaussian modes created by a harmonic photonic cavity to confine light. This maps the optical cavity into quantum mechanical harmonic oscillator, with evenly spaced eigenfrequencies, an essential requirement for mode locking. The mode locking period is controlled by the design of the photonic potential, and not by the cavity length. The possible nonlinear regimes are described by the Gross-Pitaevskii equation with a parabolic potential and nonlinear terms describing gain and absorption. To investigate these dynamical behaviors, direct numerical simulations are mainly implemented. First, the mode competition for gain among Hermite-Gaussian modes in the absence of saturable absorption is investigated. Second, mode locking is predicted to occur with instantaneous saturation of gain and absorption over a broad range of parameters, corresponding to the emergence of dissipative soliton. Third, in the regime of noninstantaneous gain and absorption saturation, different dynamical behaviors of the nanolaser are obtained by varying the gain and the absorption. These different regimes, including Q-switching, Q-switched mode locking, and CW mode locking, are described in detail. The influence of the Henry factor on the mode locking is also discussed. Fourth, the robustness of mode locking of the Hermite-Gaussian modes to the disorder of the harmonic cavity is investigated in details including the effect of non-parabolicity of the potential and the random errors in the shape of the potential.
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 14 Figure 1.4 -Random mode beating in (a) and mode locking in (b) at a specific time in the cavity. Top: Field distribution of the modes. Bottom: The total field intensity formed by these modes above.
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 16 Figure 1.6 -Passive mode locking in steady state in the cases of instantaneous saturation in (a) and noninstantaneous saturation in (b).
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INTRODUCTION

  

Figure 2

 2 Figure 2.2 -((b-d) reproduced from Ref. [86]) (a) One-dimensional periodic dielectric slabs, which is an alternating structure of layers of air and dielectric media (ε = 12). (b) Photonic band structure (blue) of a one-dimensional photonic crystal with a constant dielectric slab width w = 0.45a. Red dashed line: a local parabolic approximation. The vertical gray dashed line: the edge of the first Brillouin zone. (c,d) MPB calculations for the one-dimensional dielectric slab for a range of slab widths w, the lattice constant a = 500 nm and the dielectric constant ε = 12. (c) Energy of the bottom of the band E 0 (w) (red circles). A first order polynomial (blue) is fitted to the data points within the range depicted by the two vertical black dashed lines. (d) Effective mass m * (w) indicated by green triangles.

Figure 2 . 3 -

 23 Figure 2.3 -(Reproduced from Ref. [86]) (a-d) Results of the field patterns in one dimension chirped harmonic cavity for (a) the first, (b) the second, (c) the third, and (d) the fourth eigenmode. The intensities of the field patterns (blue) calculated by FDTD are plotted as a function of position x. The direct solutions (red dashed) of the Schrödinger equation are plotted. In the background the dielectric function ε(x) (gray) of the periodic dielectric slabs is plotted, its value being indicated on the right axis.
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 24 Figure 2.4 -(Reproduced from Ref. [36]) (a) PhC cavity design creating the harmonic potential. The first rows of holes with period a are in blue. (b) Field distributions of the first 8 modes calculated by FDTD. (c) Extracted field amplitudes along the main axis (y = 0, z = 0) with vertical offset corresponding to the resonant frequencies and solutions (solid gray line) of the harmonic potential (dashed red line). (d) Experimental result: Time-frequency (spectrogram) map of the signal reflected from the cavity.
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 25 Figure 2.5 -(Reproduced from Ref. [35]) (a) Schematic of the nanobeam cavity with a tapered mirror and a perfect periodic mirror. (b) Evolution of the distance between the holes. (c) Maps of the electric field amplitude |E y |2 of the first four modes in the Z = 0 plane. (d) Calculated first seven eigenmodes represented along the x-axis, Hermite-Gaussian enveloped (dashed), and the corresponding parabolic potential. (e) Evolution of the FSR with the FWHM of the fundamental mode and the corresponding length of the cavity. (f) 3D and YZ axis cut schematics of the layers of the integrated structure.
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 26 Figure 2.6 -(Top) Grating guiding layer. (Bottom) The forward field A + (x) decays as the backward field A -(x) grows. The backward wave is zero at x = L , and a portion of the forward field is transmitted.

m

  is the amplitude of mode m. The transverse function U (m) z (y) satisfies the unperturbed wave equation[START_REF] Yariv | Quantum Electronics[END_REF] 
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 2327 Figure 2.7 -Dispersion diagram in a distributed Bragg reflector (DBR).
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Figure 3 .

 3 Figure 3.1 -(a) Shape of the Hermite-Gaussian modes with parabolic potential. The semi-transparent pink area is the active medium. (b) Location (triangles), width (circles) of the outermost lobe as a function of the mode order n.
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 532 Figure 3.2 -Modal gain G n (w) as a function of gain window width w.
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 33 Figure 3.3 -Mode shape comparison between (a) Hermite-Gaussian modes in harmonic cavity and (b) standing wave modes in Fabry-Perot cavity.
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 334 Figure 3.4 -Saturation Matrix S n,m for (a) Hermite-Gaussian modes in harmonic photonic laser and for (b) sinusoidal modes Fabry-Perot laser. The saturation matrix in (a) will remain valid in the case of the gain medium filling only one half of the cavity.

Figure 3 . 5 -

 35 Figure 3.5 -Saturation matrix S n,m of Hermite-Gaussian modes in harmonic photonic laser and for gain in the center with length of (a) w = 1x Ω , (b) w = 3x Ω , (c) w = 5x Ω , (d) w = 9x Ω .

. 15 )

 15 Matrices K, M are easily obtained from the function of [K,M ,F ] = fem.assema(meshgrid, c, a, f ) provided in pde2path by setting c = a = 1, f = b = 0. Here a = 1 is only used to generate M , the term au in Eq. (3.10) is not considered in the matrices in Eq.(3.15).

Fig. 3 .

 3 6(b) shows the intensity profile for w/Ω = 4.2, marked as a blue cross point (3) in Fig.3.6(a).
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 36 Figure 3.6 -Stability of the branch of solution corresponding to HG mode n = 0. (a) Peak intensity of the solution as a function of gain width. The solid (dashed) line: stable (unstable) solution. The red squares correspond to Hopf bifurcation points. The blue cross points correspond to the detailed descriptions in (b) and (c). (b) The profile of field intensity corresponding to the the blue cross points (3) in (a). (c) Four panels corresponding to the eigenvalues calculated at the blue cross points (1-4) in (a). (d) The four panels are the real parts of the four critical eigenfunctions corresponding to the eigenvalues marked by 1 -4 in (c). The parameters are: r I = I sat,g /I sat,a = 5, r g = g 0 /γ 0 = 10, γ 0 = 10 10 s -1 , Ω = 100 GHz, and r a = a 0 /γ 0 = 0.
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 37 Figure 3.7 -Real parts of the critical eigenvalues Re(λ) of the Jacobian matrix as a function of the gain width w/x Ω for the solution corresponding to mode 0. The real parts of eigenvalues labeled n = 1, 2, • • • , 8 represent the critical eigenfunctions corresponding to Hermite-Gaussian mode n.
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 38 Figure 3.8 -Stability of the branch of the solution corresponding to HG mode n = 1. (a) Peak intensity of the solution as a function of gain width. The dashed line corresponds to unstable solutions. The red squares correspond to Hopf bifurcation points. The blue cross points correspond to the detailed descriptions in (b) and (c). (b) The profile of field intensity and gain corresponding to the the blue cross point in (a). (c) Eigenvalues calculated at the blue cross point in (a). (d) Critical eigenfunctions φ corresponding to the eigenvalues marked by 1 -3 in (c). (e) Real parts of the critical eigenvalues Re(λ) of the Jacobian matrix as a function of gain width w/x Ω for the solution of mode 1. The real parts of the eigenvalues labeled n = 1, 2, • • • , 6 correspond to the Hermite-Gaussian mode n. The parameters used in the calculation are the same as in Fig. 3.6.
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 39 Figure 3.9 -Real parts of the critical eigenvalues Re(λ) of the Jacobian matrix as a function of gain width w/x Ω for the solution corresponding to mode 2. The real parts of eigenvalues labeled n = 1, 2, • • • , 6 represent the Hermite-Gaussian modes n. The parameters used in the calculation are the same as in Fig. 3.6.
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 310 Figure 3.10 -Two cases of the time evolution of the mode intensities and phases when the gain width is w = 3.5x Ω . The intensity (left) and phase (right) of mode 0 are plotted in (a) for the state (0). The intensity (left) and phase differences ∆φ n = 2φ n -φ n+1 -φ n-1 (right) of modes are plotted in (b) for the state (0,1). The cases in (a) and (b) separately correspond to the states (0) and (0,1) in Fig. 3.13.
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 311 Figure 3.11 -Three cases for the time evolution of the mode intensity and phases when gain width is w = 4.7x Ω . The cases (a), (b) and (c) separately corresponds to the states (0,1), (0,2) and (1,2) in Fig. 3.13.
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 3312 Fig.3.12 shows the three states when the gain width is w = 5.3x Ω . Obviously, two

Figure 3 .

 3 Figure 3.13 (a) reproduces the evolution of the steady-state intensities of the first 5 modes as a function of w. The number of occurrences of the different steady-state solutions are summarized by color regions in Fig. 3.13 (b), in which the numbers marked in brackets represent the orders of the dominant modes for each region.
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 313 Figure 3.13 -Evolution of the steady-state mode intensities |C n | 2 as a function of the gain window width w. The simulation is run 10 times with random initial fields for each case. (a) Instantaneous gain saturation. Evolution of mode intensities versus w for n = 0..4. (b) Corresponding counts for each solution versus w. The numbers in parentheses represent the orders of oscillating HG modes. Each color in (a) and (b) represents one possible steady-state. Parameter values: g 0 = 10 γ 0 , a 0 = 0.

  (a) Time evolution of modes with gain width w = 3.5x Ω in comparison with Fig. 3.10. (b) Time evolution of modes with gain width w = 4.7x Ω in comparison with Fig. 3.11. (c) Time evolution of modes with gain width w = 5.3x Ω in comparison with Fig. 3.12.
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 314 Figure 3.14 -Three cases of time evolution of the mode intensities and phases for noninstantaneous gain saturation when gain width is w = 3.5x Ω in (a), w = 4.7x Ω in (b) and w = 5.3x Ω in (c). The other parameters are the same as in the instantaneous saturation cases in former chapter except gain lifetime τ g = 1 ns.
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 315 Figure 3.15 -Evolution of the steady-state mode intensities |C n | 2 as a function of the gain window width w. (a) Gain with finite lifetime τ g = 1 ns. Evolution of mode intensities versus w for n = 0..4. Simulation is run 10 times in each case. (b) Same as (a) for larger values of w. Each color in (d) represents one mode. There is no multistability in this case. Parameter values: g 0 = 10 γ 0 , a 0 = 0.

Figure 3 .

 3 Figure 3.16 -Steady-state mode intensities as a function of gain lifetime τ g . The simulation is run 10 times with random initial conditions and with w = 5 x Ω and g 0 = 10 γ 0 , a 0 = 0. Mode separation is (a) Ω/2π = 100 GHz and (b) Ω/2π = 50 GHz.
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 317 Figure 3.17 -False color plots of (a) the field intensity distribution |A(x, t)| 2 and (b) the gain distribution g(x, t) versus time (horizontal axis) and position x (vertical axis) in steady-state for different values of τ g . Two different states for τ g = 10 ps and for τ g = 100 ps are displayed, respectively. The values of the other parameters are the same as in Fig, 3.16 (a).

  (a) Steady state one when τ g = 10 ps. (b) Steady state two when τ g = 10 ps. (c) Steady state when τ g = 20 ps.
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 3 Figure 3.18 -(a,b) Two different time evolutions of the mode intensities and phases when gain lifetime is τ g = 10 ps. (c) Solution when gain lifetime is τ g = 20 ps. All of these correspond to the solutions in Fig. 3.16.
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 41 Figure 4.1 -Skeleton diagram of the field in the active media region consisting of spatially overlapping saturable gain and saturable absorption.

  NET GAIN regions for the field intensities: net gain is positive in transparent pink region (2) and negative in gray region (1) and (3) in Fig.4.2(a).Positive gain region

Figure 4 . 2 -

 42 Figure 4.2 -Net gain formed by saturable gain and absorber. (a) The normalized gain g/γ 0 and losses (a + γ 0 )/γ 0 at a given point in the active media as a function of field intensity |A| 2 /I sat,g . Net gain is positive in the transparent pink region (2) and negative in the transparent gray regions (1) and (3). (b-d) False color plot of the evolution of g net with field intensity and one of the parameters r a = 9, r g = 5.5, R I = 5. r a , r g , R I . The green line represents the border between positive and negative net gain. The green dashed line represents the evolution corresponding to (a).
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 4 Figures 4.2(b-d) show the evolution of the normalized net gain g net (|A| 2 ), in false color, as a function of r a , r g , R I , respectively. To open such a positive net gain region (2), the
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 443 Figure 4.3 -Behavior of the laser in the case of instantaneous gain and absorber saturation with common widths equal to 5x Ω . (a,b) Transient evolutions of the (a) normalized intensities and (b) relative phases between the modes after the simulation is started from random mode amplitudes. (c) Evolution of the intracavity intensity once steady-state regime is established. (d) Positions of the coherent state (black dashed line) and of the soliton (solid red line) and soliton width (solid cyan line) normalized to x Ω . (e) Amplitude (left axis, solid red line) and phase (right axis, solid green line) of the soliton at a fixed time and corresponding coherent state (dashed line) with amplitude 2.2I g
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 44 Figure 4.4 -(a) Comparison of the distribution of mode intensities |C n | 2 at 30 ns in Fig. 4.3(a) with a Poisson distribution with λ = 1.053. All values are normalized to their maximum. (b) Time dependence of the normalized parametersx Ω (t)/x Ω , x Ω /x φ (t), x 0 (t)/x Ω , A m (t)/I sat,g of Eqs. (4.8) and (4.9) such that these equations match the stable soliton state in Fig.4.3(d).x Ω = ω kk /Ω = 8.4346µm
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 24 Spectrum of the field 83 4.2.
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 45 Figure 4.5 -False color map of the intensities of the fields A + (x, t) and A -(x, t) propagating in the +x direction in (a) and -x direction in (b). The dashed red lines marked in (a,b) correspond to the time evolution of intensities |A + (0, t)| 2 and |A -(0, t)| 2 at cavity center x = 0 in (c) and (d).
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 46 Figure 4.6 -(a) Spectral distribution |A(x, f )| 2 for the field in Fig. 4.3. (b) Spectrum F A (f ) of the field.

. 11 )

 11 This frequency comb is plotted in Fig.4.6(b). The peak values in this spectrum F A (f ) correspond to the mode intensities |C n | 2 for the modes.

Figure 4 .

 4 Figure 4.7 -(a) Phase diagram showing the different steady-state regimes as a function of the unsaturated gain and absorption normalized to γ 0 . (b) Corresponding false color plots of the laser intensity spatial distribution versus time, illustrating the different regimes: (0) below threshold; (1) Soliton-like pulse; (2) Mode n = 1 alone; (3) Mode n = 2 alone; (4) Simultaneous oscillation of modes n = 0 and n = 2.

Figure 4 . 8 -

 48 Figure 4.8 -(a) Percentage of occurrences of the different oscillation regimes, when the simulation is ran 40 times with random initial conditions for each value of the gain and saturable absorption window width w. The values of the other parameters are R I = 5, g 0 = 5.5γ 0 , a 0 = 9γ 0 . (b) False color plot of the laser intensity as a function of x and t in the regimes labeled (1) and (2) in (a), obtained for w = 6x Ω , which respectively correspond to the oscillation of two or three pulses inside the cavity.

Figure 4 .

 4 Figure 4.8(b) gives examples of these two last behavior. The numerical study reveals that the width w of the gain region is the most important parameter determining the number of locked modes and therefore the spatial amplitude of the pulse oscillation, which is close to w.To understand the laser behavior of the double soliton and the triple soliton in Fig.4.8(b) we need to investigate the phase relations among the Hermite-Gaussian modes. Figure 4.9 gives the time evolutions of intensities and phases of (a) the double soliton and (b) the triple soliton corresponding to the solutions in Fig. 4.8(b).

Figure 4 .

 4 9 gives the time evolutions of intensities and phases of (a) the double soliton and (b) the triple soliton corresponding to the solutions in Fig. 4.8(b).

For

  the double soliton (Fig 4.9(a)), we notice that the phase difference lock at ∆φ n = 0 for n = 2, 3, 4, but ∆φ 1 = π. If we expand these relations, we obtain2φ 1 -(φ 0 + π) -φ 2 = 0, (4.12) 2φ 2 -φ 1 -φ 3 = 0, (4.13) 2φ 3 -φ 2 -φ 4 = 0.

Figure 4 . 9 -

 49 Figure 4.9 -Time evolutions of intensities and phases of (a) the double soliton and the (b) triple soliton corresponding to the solution in Fig. 4.8(b).

  4.10(d,e,f) with a fixed value r a = 9. Let us carefully describe only the situation of Figs. 4.10(a,b,c), since the results of Figs. 4.10

Figure 4 .

 4 Figure 4.11 -Stability of the branch of solution of mode n = 0 with gain width w. (a) The intensity peaks of single-mode solutions of mode n = 0 as a function of w. The solid (dashed) line represents stable (unstable) solution. (b) Evolution of real parts of eigenvalues with w. The common parameters are R I = 5, r g = 5.5, r a = 9.

4. 4 . 2 2 From Fig. 4 .

 4224 Branches of single-mode solutions for modes n = 1 and n = 10(a) and Fig.4.10(d), we can see there exists two branches of solution separated by a fold point. The existence of these two branches is related to the two borders of the positive net gain region as introduced in section 4.1.2 (see Fig.4.2). A similar feature is observed for the single-mode solutions of mode n = 1 and mode n = 2, which are shown in Fig.4.12.
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 412 Figure 4.12 -Stability of the branches of solutions for mode n = 1 and n = 2 as a function of r a . Peak intensity of single-mode solution for (a) mode n = 1 and (b) mode n = 2 as a function of r a . The solid (dashed) line represents stable (unstable) solution. The other parameter values are R I = 5, r g = 5.5, w/x Ω = 5.
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  Figures 5.1(a)-5.1(c) show one example of such a behavior. The solution is again very close to a coherent state, although the shape of the pulse gets slightly distorted close to its turning point [see Figs. 5.1(a) and 5.1(b)]. Between these points, Fig. 5.1(c) shows that the spatial pulse shape is quite well reproduced by a coherent state.

Figure 5 . 1 -

 51 Figure 5.1 -Behavior of the laser in the case of noninstantaneous gain and absorber saturation with common widths equal to 5x Ω , r g = g 0 /γ 0 = 70, r a = a 0 /γ 0 = 10. (a) Evolution of the intracavity intensity once the steady-state regime is established. (b) Positions of the coherent state (black dashed line) and of the soliton (solid red line) and soliton width (solid cyan line) normalized to x Ω . (c) Amplitude (left axis, solid red line) and phase (right axis, solid green line) of the soliton at a fixed time and corresponding coherent state (dashed line) with same amplitude.
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 52 Figure 5.2 -(a) Comparison of distribution of mode intensities |C n | 2 at 20 ns in Fig. 5.1(b) with a Poisson distribution with λ = 1.712. All values are normalized to their maxima. (b) Time dependence of the normalized parametersx Ω (t)/x Ω , x Ω /x φ (t), x 0 (t)/x Ω , A m (t)/I sat,g of Eqs. (4.8) and (4.9) such that these equations match the stable soliton state in Fig.5.1(b).
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 53 Figure 5.3 -(a) Phase diagram representing the different steady-state regimes as a function of unsaturated gain and absorption normalized to γ 0 : (0) below threshold; (1) Q-switched operation; (2) Q-switched ML operation; (3) cw mode locking. (b) Bifurcation diagram: peak values |A p+ | 2 of the field intensity propagating in +x direction at x = 0 in the steady-state as a function of r g . The absorption is fixed at r a = a 0 /γ 0 = 10. (c) The contours of gain pumping rate g c /γ 0 between the CW mode locking and Q-switched mode locking as a function of the ratio 2πγ 0 /Ω and absorption rate ratio r a for the saturation energy ratio of R E = 25. (d) The same situation with the saturation energy ratio R E = 15. The common parameter Ω/2π = 100GHz is fixed.

Fig. 5 .

 5 3(c). The vertical cross-section in Fig. 5.3(c) for 2πγ 0 /Ω = 0.1 corresponds to the line separating the green region labeled (2) from the red region labeled (3) in Fig. 5.3(a). The plot of Fig. 5.3(d) is similar to the one of Fig. 5.3(c) with a smaller value of R E .

Figure 5 .

 5 Figure 5.4(a) shows the time evolution of mode intensities |C n | 2 in the steady-state, calculated using Eq. (2.45) by projecting field A(x, t) on the basis of HG modes. One can see the first three modes, corresponding to n = 0, 1, and 2, alternately oscillate. The delay between two pulses is about 10 ns, but it is slightly shorter between modes 0 and 2 than between the other modes. One can also notice that the intensity of mode 0 is slightly smaller than the other modes, because this mode is spatially smaller than the other ones (see Fig.3.1) and thus bleaches the gain for smaller peak energies. Thus, after emission of a pulse in mode 0, some gain is left available for mode 2, which can oscillate a bit earlier.

Figure 5 .

 5 Figure 5.4(b) reproduces the time evolution of the total intensity |A(x, t)| 2 at the cavity center x = 0 for pulses labeled (1) and (2) and at x = 1.05 x Ω for pulse labeled[START_REF] David | Device requirements for optical interconnects to silicon chips[END_REF]. The detailed evolution of |A(x, t)| 2 versus x and t for these three pulses are shown in Fig.5.4(c). The duration of each pulse is of the order of 0.1ns. The pulse rise time is shorter than its decay time, as is typically obtained in a Q-switched laser.

Figure 5

 5 Figure 5.4 -Q-switched laser behavior. (a) Mode intensities as a function of time. (b) Time evolution of field intensity |A(x, t)| 2 at different locations x at three instants labeled 1), (2) and (3) in (a). (c) Corresponding time space map of the intensity |A(x, t)| 2 . The parameters are r g = g 0 /γ 0 = 12, r a = a 0 /γ 0 = 10, w = 5 x Ω , τ g = 1 ns, τ a = 10 ps.
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 55 Figure 5.5 -Q-switched mode locked regime. Time evolutions of (a) the intensities of modes n = 0..4 (b) the relative phases ∆φ n = 2φ n -φ n+1 -φ n-1 between these modes and (c) the intensities |A +,-| 2 propagating in the ±x directions (plotted in red and blue lines, respectively) at cavity center x = 0 in (c). (d) Zoom on one of the pulses of (c). (e) False color map of the intensity |A(x, t)| 2 versus t and x. The parameters are r g = g 0 /γ 0 = 45, r a = a 0 /γ 0 = 10, w = 5 x Ω , τ g = 1 ns, τ a = 10 ps. (f) Evolution of the Q-switching period with the gain.

Figure 5 .

 5 6(a) shows the evolution of the mode intensities and, in inset, the evolution of the phase difference of the modes, while Fig. 5.6(b) shows the corresponding evolution of the intensities |A +,-| 2 = |A +,-(0, t)| 2 at x = 0 propagating in both directions. The small figures labeled (1-6) in Fig. 5.6(c) give snapshots of the laser behavior at several moments during laser buildup.
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 56 Figure 5.6 -Laser behavior during buildup of cw mode locking. (a) time evolution of the modes intensity and phase differences (inset). (b) Time evolution of the intensity |A +,-| 2 at cavity center x = 0. (c) Snapshots at 6 successive instants labeled as numbers in (b). 3D plot of the intracavity intensity |A(x, t)| 2 versus x and t and time evolution of the counterpropagating intensities |A +,-| 2 at cavity center x = 0. Parameter values are r g = g 0 /γ 0 = 49, r a = a 0 /γ 0 = 10, w = 5 x Ω , τ g = 1 ns, τ a = 10 ps.

Figure 5 . 7 -

 57 Figure 5.7 -Influence of the lifetime of absorber on the laser steady-state behavior. The parameters are: g 0 /γ 0 = 70, a 0 /γ 0 = 10, α g = α a = 0, w = 5 x Ω , τ g = 1 ns, τ a = 10 ps.

Figure 5 .

 5 Figure 5.8 shows the evolution of the steady-state laser behavior as a function of α g = α a . Figure 5.8(a) reproduces the peak intensity |A p+ | 2 of the field propagating in the +x direction detected within a 10 ns time interval. It shows that the laser remains mode-locked as long as α g = α a5. For larger values, the phases of the modes unlock, leading to the multiple blue dots. This behavior is confirmed by the evolution of the frequency differences ∆f n = 2f n -f n+1 -f n-1 between the modes reproduced in Fig.5.8(b). Modelocking corresponds to ∆f n very close to 0. The corresponding evolution of the difference f n -f n,0 between the laser mode frequencies and the empty cavity frequencies f n,0 = (n + 1/2) × 100 GHz shows that the Henry factor shifts the comb frequencies towards

Figure 5 .

 5 Figure 5.8 shows the evolution of the steady-state laser behavior as a function of α g = α a . Figure 5.8(a) reproduces the peak intensity |A p+ | 2 of the field propagating in the +x direction detected within a 10 ns time interval. It shows that the laser remains mode-locked as long as α g = α a5. For larger values, the phases of the modes unlock, leading to the multiple blue dots. This behavior is confirmed by the evolution of the frequency differences ∆f n = 2f n -f n+1 -f n-1 between the modes reproduced in Fig.5.8(b). Modelocking corresponds to ∆f n very close to 0. The corresponding evolution of the difference f n -f n,0 between the laser mode frequencies and the empty cavity frequencies f n,0 = (n + 1/2) × 100 GHz shows that the Henry factor shifts the comb frequencies towards
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 3310558 Figure 5.8 -Influence of the Henry factor on the laser steady-state behavior. (a) Intensity peaks for the field propagating in the +x direction at cavity center x = 0 as a function of the Henry factor α g = α a . (b) Mode Frequency difference ∆f n = 2f n -f n+1 -f n-1 . (c) Mode frequency shifts from the empy cavity frequencies f n,0 = (n + 1/2) × 100 GHz. (d) Mode separation f n -f n-1 . The parameters are: g 0 /γ 0 = 70, a 0 /γ 0 = 5, w = 5 x Ω , τ g = 1 ns, τ a = 10 ps.
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 59 Figure 5.9 -The laser structure: The parabolic potential with the Hermite-Gaussian modes, the gain represented by semitransparent red region on the left side (-2.5x Ω , 0) and the absorber represented by semitransparent green region on the right side (0, -2.5x Ω ).

Figure 5 .

 5 Figure 5.10 shows a comparison of the laser steady-state mode-locked operation between the cases where the gain and absorber regions overlap (Fig. 5.10(a)) and where they are separated (Fig. 5.10(b)). All other parameters are the same, and in particular r g = 70 and r a = 10. In both cases, the panels labeled (1) show the time evolution of the intensities |A +,-| 2 of the fields traveling in the +x (red line) and -x (blue line) directions at cavity center (x = 0). Those labeled (2), (3), and (4) are false color maps of the intensity |A(x, t)| 2 , the gain g(x, t), and the absorption a(x, t), respectively.One can see that the behavior of the laser is similar for the two cases. The only significant difference is the difference between the peak values of |A + | 2 and |A -| 2 in case (b), and the reduction of the laser power due to the reduction of the size of the gain region.

Figure 5 .

 5 Figure 5.10 -Steady-state mode-locked laser behavior for (a) superimposed and (b) separated gain and absorber regions. All other parameters are the same, with r g = 70 and r a = 10. (1) Time evolutions of the intensities |A +,-| 2 of the fields traveling in the +x (red line) and -x (blue line) directions at cavity center (x = 0); (2-4) False color maps of (2) intensity |A(x, t)| 2 , (3) gain g(x, t) (4) absorption a(x, t). Other parameter values are w = 5 x Ω , τ g = 1 ns, τ a = 10 ps.

Figure 5 .

 5 Figure 5.11 -(a) Phase diagram representing the different steady-state regimes for separated gain and absorber regions as a function of the unsaturated gain and absorption: 0 below threshold; 1 multimode operation; 2 Q-switching; 3 cw mode locking. (b) Corresponding bifurcation diagram: peak values |A p+ | 2 of the field intensity propagating in +x direction at x = 0 in steadystate as a function of r g . The absorption is fixed at r a = 10. Other parameter values are w = 5 x Ω , τ g = 1 ns, τ a = 10 ps.

  as shown in Fig.6.1(d).
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 61 Figure 6.1 -(a) Hermite-Gaussian modes in a parabolic potential, with three different values of the non-parabolicity coefficient c 4 . Semi-transparent pink area: gain and absorption media. (b-d) Evolution of the steady-state modal characteristics of the "cold" cavity versus c 4 when γ 0 = 0, a 0 = 0, g 0 = 0. (b) Mode frequency shift f n -f n,0 from standard cavity resonance frequency f n,0 = (n+1/2)Ω/2π. (c) Frequency separations f n -f n-1 between successive modes. (d) Frequency differences ∆f n = 2f n -f n+1 -f n-1 .
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 62 Figure 6.2 -Steady-state time evolution of (a,c,e) the laser mode intensities and phase differences and (b,d,f) the laser intensity traveling in the +x direction at cavity center (x = 0) for (a,b) c 4 = -0.01: partial mode-locking,(c,d) c 4 = 0.01: perfect mode-locking, (e,f) c 4 = 0.02: partial mode-locking. Other parameter values: g 0 /γ 0 = 70, a 0 /γ 0 = 10, w = 5x Ω , τ g = 1 ns, τ a = 10 ps, γ 0 = 10 10 s -1 , Ω/2π = 100 GHz, , E sat,g /E sat,a = 25, α g = α a = 0.

Figure 6 .

 6 3(a) shows the peak intensities observed at the center of the cavity for light traveling in the +x direction, while Figs. 6.3(bd) are presented in a similar manner as the results for the cold cavity shown in Figs. 6.1(bd).
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 63 Figure 6.3 -Evolution of the steady-state laser characteristics versus c 4 . (a) Peak intensities of the field propagating in the +x direction at x = 0. (b) Mode frequency shift from ideal cavity resonance frequency f n,0 = (n + 1/2)Ω/2π. (c) Frequency separations f n -f n-1 between successive modes. (d) Frequency differences ∆f n = 2f n -f n+1 -f n-1 for n = 1..4. Same parameter values as in Fig. 6.2.

Figure 6 .

 6 Figure 6.3(b) shows that the mode frequencies f n increase as c 4 increases. The shift of higher order modes is larger than that for lower order modes. The comparison between Fig.6.3(b) and Fig.6.1(b) show that the mode frequency shifts f n -f n,0 from the perfect cavity resonance frequencies f n,0 = (n + 1/2)Ω/2π are clearly reduced by the nonlinearity

Figure

  Figure 6.3(c) shows that there exists an asymmetric locking region between -0.007 and 0.019 where the mode separations are the same for a given c 4 and still linearly increase as c 4 increases. In addition, one can notice that the mode frequency separation for c 4 = 0 is shifted to 99.8GHz due to the nonlinearity of active media. Outside this locking region, some modes are still locked. This is obvious from Fig.6.3(d) that still exhibits some mode separations ∆f n = 0 indicating that the mode frequencies are equally spaced. This is a qualitative difference with Fig.6.1(d).

  6.2(b,f). The evolution of the peak intensity |A p+ | 2 for various values of c 4 is reproduced in Fig. 6.3(a). For this plot, we use the last 10 ns of each simulation. More locking corresponds to only one value of |A p+ | 2 , as observed in the region -0.007 < c 4 < 0.019 (see the red dots). Outside this region, the peak values of |A p+ | 2 are distributed over a finite range, as shown by blue and green dots. This corresponds to unlocked behaviors, as confirmed by the evolutions of the frequencies f n in Fig. 6.3(c-d).

Figure 6 .

 6 Figure 6.4 -(a) Evolution of the mode-locking threshold values for c 4 versus r a . (b) Evolution of the locking region (red region) versus γ 0 . g 0 /γ 0 = 120 and a 0 /γ 0 = 10 are fixed. Same parameter values as in Fig. 6.2.
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 65 Figure 6.5 -(a) The deviations δ L and δ c as a function of c 4 . (b) Map of δ L versus δ C for the same values of c4 as in (a). The blue (green) triangles correspond to unlocked solution with c 4 < 0 (c 4 > 0). The data for (a) and (b) are from Fig 6.3 and Fig. 6.1(b-d). (c) Distribution of cold cavity FSR relative RMS deviation δ C versus D max . The calculation is run 50 times for each value of D max . (d) Example of histogram of δ C for D max = 0.07.
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 66 Figure 6.6 -(a,e) The deviation δ L versus D max . (b,f) Evolution of δ L versus δ C . (c,g) Corresponding histograms of δ L for all solutions (red) and solutions exhibiting mode locking (blue). (d,h) Same as (b,f) for δ C . The fits are obtained with a Weibull distribution. (a-d) r a = 10, r g = 150; (e-h) r a = 30, r g = 150.All other parameter values are the same as in Fig.6.2.
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 2212367 Figure 6.7 -Evolution of the mode-locking threshold value of δ C,th with different parameters: (a) δ C versus r a for α g = α a = 0 and several values of r g ; (b) δ C versus α g = α a for several values of r a and r g = 150; (c-d) δ C versus α g and α a for r a = 10 and r g = 150. The dashed lines in each subfigure represent the solutions for the case where the gain region is located in the region -2.5 x Ω ≤ x ≤ 0 and the absorber in the region 0 ≤ x ≤ 2.5 x Ω . Other parameter values: w = 5x Ω , τ g = 1 ns, τ a = 10 ps, 2πγ 0 /Ω = 0.1 and E sat,g /E sat,a = 25.

  The mode intensities after reaching steady-state are plotted in log scale in Figs. A.1(a) and (b) for the solutions obtained from Eqs. (A.1) and (A.3), respectively. Each color represents one particular kind of stable state. The blue , red, and green lines correspond to the states labeled (0,3), (1,2) and (0,2) respectively in Fig. 3.13(a,b). The histograms of the modes intensities for these states are shown in Fig. A.1(c). The negligible difference between the two methods proves the correctness of the simulations.

  Figure A.1 -Comparison of statistical distributions of stable states achieved with instantaneous gain saturation without any absorber. The mode intensity distributions obtained from 30 simulations are compared for (a) the field partial differential equation and (b) the mode coefficient equations of evolution. The same initial conditions are taken in both cases. Each line represents one steadystate. (c) Histogram of statistical counts for the mode intensities. FE: field equation; ME: mode equations. Overlapping results are displayed in purple. The parameters are: r g = 10, r a = 0, w = 5x Ω , and R I = 5.

  Figure A.2 -Comparison of statistical results of the stable states formed by instantaneous saturable gain and instantaneous saturable absorber. Mode intensity distributions obtained from 40 simulations. (a) Field equation; (b) Mode equations. Each line represents one stable state. (c) Histogram of statistical counts for the mode intensities. FE: field equation; ME: mode equations. Overlapping results are displayed in purple. The parameters are r a = 9, r g = 5.5, R I = 5 and w = 5 x Ω .

∞ n=0 C

 n=0 n (t)e -iΩnt Ψ n (x), (B.2)where Ω n = (n + 1/2)Ω. If this is a coherent state, the mode intensities must follow a Poisson distribution with parameter λ, i. e.|C n (t)| 2 = λ n n! e -λ . (B.3)

(B. 18 )

 18 Therefore, Eq. (B.18) corresponding to the right-hand side of Eq. (B.6) is equal to Eq. (B.10) corresponding to the left-hand side of Eq. (B.6). What we get is the amplitude and the phase of the field (Eq. B.4 and Eq. B.5), which are the closed form analytical coherent solution.
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 1371 Figure C.1 -(a) Hermite-Gaussian modes in a parabolic potential, with three different values of the non-parabolicity coefficient c 3 . Semi-transparent pink area: active medium. (b-d) Evolution of the steady-state modes characteristics of the "cold" cavity versus c 4 when γ 0 = 0, a 0 = 0, g 0 = 0. (b) Mode frequency shift f n -f n,0 from standard cavity resonance frequency f n,0 = (n+ 1/2)Ω/2π. (c) Frequency separations f n -f n-1 between successive modes. (d) Frequency differences ∆f n = 2f n -f n+1 -f n-1 for n = 1..4.

  Fig. C.2.

Titre:

  Théorie des lasers à mode verrouillé basés sur des modes de cavité non conventionnels Mots clés: Laser verrouillé en phase, modes de Hermite-Gauss, dynamique des lasers, soliton, saturation du gain, facteur de Henry Résumé: Cette thèse de doctorat porte principalement sur la dynamique et la robustesse d'un nouveau concept de verrouillage de mode dans les nanolasers semi-conducteurs ultracompacts. Un tel nanolaser présente des modes ermites-gaussiens créés par une cavité photonique harmonique pour confiner la lumière. Cela permet de mapper la cavité optique en oscillateur harmonique de mécanique quantique, avec des fréquences propres régulièrement espacées, une condition essentielle pour le verrouillage de mode. La période de verrouillage de mode est contrôlée par la conception du potentiel photonique, et non par la longueur de la cavité. Les régimes non linéaires possibles sont décrits par l'équation de Gross-Pitaevskii avec un potentiel parabolique et des termes non linéaires décrivant le gain et l'absorption. Pour étudier ces comportements dynamiques, des simulations numériques directes sont principalement mises en oeuvre. Tout d'abord, la compétition de mode pour le gain entre les modes ermites et gaussiens en l'absence d'absorption saturable est étudiée. Deuxièmement, on prévoit que le verrouillage des modes se produira avec une saturation instantanée du gain et de l'absorption sur un large éventail de paramètres, correspondant à l'émergence d'une soliton dissipative. Troisièmement, dans le régime de saturation non instantanée du gain et de l'absorption, différents comportements dynamiques du nanolaser sont obtenus en faisant varier le gain et l'absorption. Ces différents régimes, y compris la commutation Q, le verrouillage de mode à commutation Q et le verrouillage de mode CW, sont décrits en détail. L'influence du facteur Henry sur le verrouillage de mode est également abordée. Quatrièmement, la robustesse du verrouillage de mode des modes ermite et gaussien au désordre de la cavité harmonique est étudiée en détail, y compris l'effet de la non-parabolicité du potentiel et les erreurs aléatoires dans la forme du potentiel. Title: Theory of mode-locked lasers based on non-conventional cavity modes Keywords: Mode-locked laser, Hermite-Gaussian modes, laser dynamics, soliton pulse, gain saturation, Henry factor
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	Rate	
	net gain	saturable gain
	Intensity	
	Rate	
	net gain	saturable gain
	Intensity	

Table 2 .

 2 2 -Parameters used in the numerical calculations throughout the thesis, unless specifically stated.

	Definition	Symbol	Value
	Free spectral range		
	Scaling factor	x Ω	8.4 × 10 -6 m
	Gain length in the center	w g	5x Ω
	Absorber length in the center	w a	5x Ω
	Saturation intensity ratio for instan-	R I	5
	taneous case		
	Saturation energy ratio for non-	R E	25 [34]
	instantaneous case		
	Gain lifetime	τ g	10 -9 s [58, 62, 107-110]
	Absorber lifetime	τ g	10 -12 s [34, 58, 62, 107, 111, 112]
	Intrinsic losses	γ 0	10 10 s -1

Ω 2π × 100 × 10 9 rad/s Second order dispersion ω kk 45 m 2 • rad • s -1

  1, we rescale this latter equation by x Ω : In the following, we substitute Eq. (B.4) and Eq. (B.5) into the left and right-hand sides of Eq. (B.6) to check whether they are equal. The left-hand side of Eq. (B.6) can be expanded as The two derivative terms with respect to time on the right-hand of Eq. (B.7) are Now we need to expand the second order derivative term ∂ 2 A ∂x 2 with respect to x on the right-hand side of Eq. (B.6). The first and second derivative terms of field with respect to x are ∂A ∂x = ∂ ∂x |A coh |e iφ coh = e iφ coh i Substituting the former four Equations (Eq. (B.13), Eq. (B.14), Eq. (B.15), Eq. (B.16)) into Eq. B.12, we have ∂ 2 A ∂x 2 = e iφ coh (-2|A coh |λ(sin 2 (Ωt))

		∂ 2 |A coh | ∂x 2 = |A coh |	 	√	2λ(cos(Ωt)) x Ω	-	x x 2 Ω	2	-	1 Ω x 2	  ,	(B.14)
			i	1 Ω	∂A ∂t	= -∂φ coh 1 2 x 2 Ω ∂ 2 A ∂x 2 + ∂x = -√ 1 2 2λ(sin(Ωt)) ( x x Ω ) 2 A. x Ω	,	(B.6)	(B.15)
												∂ 2 φ coh ∂x 2 = 0.	(B.16)
	i ∂|A coh | 1 Ω ∂A coh ∂t ∂t = Ω|A coh | λ(sin(2Ωt)) -= i 1 Ω e iφ ∂|A coh | ∂t + i|A coh | √ 2λx(sin(Ωt)) ∂φ coh ∂t . x 2 Ω + |A coh |(( √ 2λ(cos(Ωt)) x Ω -2i|A coh | √ 2λ sin(Ωt) x Ω ( √ 2λ(cos(Ωt)) x Ω -x )) x 2 Ω x Ω ∂φ coh ∂t = Ω -√ 2λx(cos(Ωt)) x Ω + λ(cos(2Ωt)) -1 2 |A coh |e iφ coh (2λx 2 x 4 Ω Substituting the former two Equations into Eq. B.7 leads to -= i 1 Ω ∂A coh ∂t = i 1 Ω e iφ ∂|A coh | ∂t + i|A coh | ∂φ coh ∂t = |A coh |e iφ coh -λ (cos(2Ωt) -i sin(2Ωt)) + 1 2 + x √ 2λ x Ω (cos(Ωt) -i sin(Ωt)) (B.7) , (B.8) x x 2 Ω ) 2 -1 ) x 2 Ω . (B.9) . = |A coh |e iφ coh (2λx 2 Ω e -2iΩt -x 2 Ω -2x Ω √ 2λxe -iΩt + x 2 ) x 4 Ω = |A coh |e iφ coh x 2 Ω (2λe -2iΩt -1 -2 √ 2λxe -iΩt x Ω + x 2 ) x 2 Ω = -2 |A coh |e iφ coh x 2 Ω (-λe -2iΩt + 1 2 + √ 2λxe -iΩt x Ω x 2 -2x 2 Ω
	= |A coh |e iφ coh -λe -i2Ωt +		1 2	+	x	√ x Ω 2λ	e -iΩt .
												(B.10)
												∂φ coh ∂x	|A coh | +	∂|A coh | ∂x	,	(B.11)
	∂ 2 A ∂x 2 = e iφ coh 2i	∂|A coh | ∂x	∂φ coh ∂x	+	∂ 2 |A coh | ∂x 2 + |A coh | i	∂ 2 φ coh ∂x 2 -(	∂φ coh ∂x	) 2	. (B.12)
	We notice there are four derivatives terms on the right-hand side of Eq. (B.12), which can
	be expanded as:	∂|A coh | ∂x	= |A coh |		√	2λ(cos(Ωt)) x Ω	-	x Ω x 2	,	(B.13)

Ω (cos(2Ωt) -i sin(2Ωt)) -x 2 Ω -2x Ω √ 2λx(cos(Ωt) -i sin(Ωt)) + x 2 )

The different standing waves spatially overlap. Here the modes are plotted separately for clarity.

Pde2path can deal with 3 spatial dimensions, which we just write as x here for simplicity.

There are different meanings for u here: The u in G(u) represents the continuous solution, but the u on the right-hand side is a discrete vector obtined via a FEM discretization.

f in G(u) represents nonlinear terms. In contrast, f in M f represents the vector generated according to the nonlinear terms in G(u).

Goldstone mode is an eigenfunction corresponding to a neutral eigenvalue. These eigenfunctions can be identified with the first derivatives of the stationary solution, for example, with respect to the space (for translation symmetry) and phase (for the phase shift symmetry).

If the field amplitude is A = |A|e iφ , then ∂A ∂φ = i|A|e iφ = iA. Therefore, the real and imaginary components exchange their roles: iu = i(u 1 + iu 2 ) = -u 2 + iu 1 .

The word "stable" can take different meanings in the present context. For example, in Fig.3.6(a), we examine the stability of the n = 0 solution by checking that no other solution becomes "unstable". What we mean by the n = 0 solution being stable is that the n = 0 solution oscillates alone, because all other modes having zero intensity are also stable solutions. Conversely, when we say that another solution become "unstable", this means that another mode can start to oscillate.

This Appendix C discusses the influence of a potential asymmetry on the mode-locking regime of oscillation of the nanolaser.

states are observed in the case of instantaneous gain saturation. The stable states in the noninstantaneous saturation case are investigated as well. Several detailed comparisons show a dramatic difference between the results obtained in instantaneous and noninstantaneous saturation cases. At last, the influence of the gain lifetime on the final states was also discussed, in particular, concerning the transition between the behavior associated with slow and fast saturation of the gain.

Chapter 4

Mode locking in the presence of instantaneous saturation Further evolution of the system cannot be obtained from the continuation calculation of Fig. 4.10, but can be followed on Fig. 4.3(a). The oscillation of modes n = 0 and n = 1

Comparison of two numerical methods

Comparison of two different methods can help to correct many mistakes in coding. Here we show the comparison of the results of the two numerical method introduced in Chapter 2.3.1.

For the sake of convenience, we relist Eqs. ( 2 The first method of resolution consists in directly solving the partial differential equation governing the evolution of the field:

From one solution A(t), one can determine the mode coefficients C n using

The second method consists in solving the set of equations of evolution for the mode coefficients:

from which one can rebuild the solution according to

In case of instantaneous saturation, gain and absorber saturation are described by: g(x, t) = g 0 (x)/