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Contexte de la thése

La thèse aborde sur l’estimation et le contrôle d’équations aux dérivées partielles couplées (EDP).
La première application est dans le domaine de la cryogénie des systèmes de fluides au CERN.
Une nouvelle technologie de refroidissement est maintenant développée au CERN, utilisant le
CO2 comme réfrigérant. L’objectif d’un cycle de refroidissement est de faire circuler un liquide de
refroidissement froid dans les détecteurs au silicium chauds. Le cycle de refroidissement est con-
stitué avec d’éléments appelés échangeurs de chaleur. Ces dispositifs sont utilisés pour échanger
l’énergie du fluide chaud vers le fluide froid à travers une interface solide. La dynamique des
échangeurs est modélisée par des variables qui évoluent non seulement dans le temps, mais aussi
dans l’espace, telles que les températures, les pressions et les débits massiques. Nous abordons
dans cette thèse trois problèmes de contrôle automatique liés aux échangeurs de chaleur. Le pre-
mier consiste à synthétiser un observateur adaptatif pour estimer les températures distribuées
ainsi que le coefficient de transfert de chaleur d’un échangeur fonctionnant au CO2 monophasé
comme fluide de refroidissement. Le modèle mathématique est basé sur des équations hyper-
bolique aux dérivées partielles linéaires couplées dans le domaine. Le deuxième problème est de
concevoir un observateur de frontière pour estimer les états d’un échangeur de chaleur avec des
fluides qui changent de phase. Le modèle mathématique implique des équations hyperboliques
non linéaires décrivant les lois d’équilibre. Le troisième problème est d’étudier l’importance de la
propriété de diffusion dans les échangeurs de chaleur. Ceci implique l’étude de modèles mathé-
matiques impliquant le couplage entre différentes classes d’EDP: hyperboliques et paraboliques.
La deuxième motivation de la thèse est le système d’échappement de voiture équipé de doubles
boucles EGR pour moteurs diesel (Renault). Des limites d’émission pour les moteurs diesel ont
été imposées par la législation européenne pour minimiser la pollution des transports routiers,
qui reste la source la plus importante de pollution de l’air urbain en Europe en ce qui concerne les
NOx (oxydes d’azote) et CO (monoxyde de carbone). Les exigences environnementales obligent
les concepteurs de moteurs de voitures à développer de nouvelles technologies pour diminuer la
consommation de carburant et les niveaux d’émissions tout en satisfaisant les conditions de con-
duite du moteur souhaitées. L’une des nouvelles configurations, qui peut fournir des conditions
adéquates pour plusieurs modes de combustion, est la double régulation des gaz d’échappement
(EGR) avec recirculation à la fois haute pression (HP) et basse pression (LP). Le système EGR
est modélisé à l’aide d’un réseau d’EDP hyperboliques couplées à d’équations aux dérivées or-
dinaire (EDO) variant dans le temps. Le quatrième objectif de la thèse est de concevoir des
estimateurs adaptatifs aux frontières du domaine pour ce type de systèmes.
La thèse est composée de six chapitres:

xvii



xviii CONTEXTE

0.1 Chapitre 1: Énoncé du problème et les motivations

Nous introduisons dans ce chapitre les quatre problèmes de contrôle automatique qui sont abor-
dés dans cette thèse. Les trois premiers sont liés aux échangeurs de chaleur avec des applica-
tions dans la cryogénie des systèmes de fluides au CERN, tandis que le quatrième est motivé
par les réseaux d’écoulement des mélanges gazeux avec une application dans les moteurs de
voitures diesel équipés par un système de régulation des gaz d’échappement (EGR). Le cadre
mathématique implique des équations différentielles partielles de deux types: hyperboliques et
paraboliques, avec un couplage possible entre les deux types et également un couplage avec des
équations différentielles ordinaires (EDOs).

0.2 Chapitre 2: Conception d’observateurs adaptatifs aux fron-
tières pour les systèmes hyperboliques linéaires; Application
à l’estimation dans les échangeurs de chaleur

Dans ce chapitre, notre but est d’estimer les températures distribuées d’un échangeur de chaleur
concentrique fonctionnant au CO2 monophasés comme fluide de refroidissement. Le phénomène
de transport est modélisé par un système linéaire (2 × 2) des équations hyperboliques aux
dérivées partielles, une équation représente l’écoulement du fluide chaud vers la droite et l’autre
représente l’écoulement du fluide froid vers la guache. L’échange de l’énergie entre les deux flux
se fait à travers une interface solide, ce qui induit physiquement un couplage entre les deux
dynamiques. Notre objectif est d’estimer la température distribuée à partir des mesures aux
extrémités des tubes. Dans ce cadre, nous proposons un observateur adaptatif aux frontières qui
peuvent estimer non seulement l’état complet du système, mais aussi des paramètres inconnus
dans le domaine. La conception est basée sur la transformation du système d’erreur via une
transformation backstepping de dimension finie en un système filtré désiré, pour lequel des
techniques standard d’observation et des lois d’adaptation peuvent être utilisées. Les résultats
théoriques sont évalués par rapport aux mesures de températures prises à partir d’un cycle de
refroidissement fonctionnant au CO2 construit au CERN en Suisse.

0.3 Chapitre 3: Observateur aux frontiéres pour les échangeurs
de chaleur diphasique

Dans ce chapitre, notre but est d’estimer les variables thermodynamiques (pressions, enthalpies,
températures) et les débits massiques d’un échangeur de chaleur concentrique fonctionnant au
CO2 comme réfrigérant de refroidissement. Les phénomènes de transport sont modélisés à
l’aide d’équations Navier-Stokes en 1D pour les fluides chauds et froids, où nous considérer les
écoulements monophasés et biphasés. L’estimation est faite avec un observateur des EDPs qui
utilise des mesures prises aux extrémités du tube pour construire les profils thermodynamiques
distribuées. La convergence de cet observateur est prouvée en utilisant l’analyse de Lyapunov
et les résultats théoriques sont illustrés par des simulations.
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0.4 Chapitre 4: Contrôle Backstepping pour une classe de sys-
tèmes des EDPs hyperbolique-parabolique couplées

Dans ce chapitre, notre objectif est de stabiliser un système composé d’une équation de diffusion
linéaire couplée à une équation de transport en utilisant des correcteurs aux frontriérs. Ce type
des EDPs (équation aux dérivées partielles) hyperbolique-parabolique couplées s’apparaît dans
de nombreux systèmes biologique, chimiques et thermiques. Les deux équations sont couplées à
l’intérieur du domaine et à la frontière. L’architecture du couplage dans le domaine est considérée
bi-directionnelle, c’est-à-dire un terme source d’advection induit par l’EDP de transport et un
terme source intégral du type Volterra induit par l’EDP parabolique. En utilisant la méthode
de Backstepping, nous dérivons deux lois de contrôle asservies et nous obtenons des conditions
suffisantes pour la stabilité exponentielle du système couplé pour la norme L2. Les gains du
correcteur sont calculés en résolvant des équations de kernel du types hyperboliques -paraboliques
issus par les transformations de Backstepping. Les résultats théoriques sont illustrés par des
simulations numériques.

0.5 Chapitre 5: Conception d’observateurs adaptatifs pour de
systèmes EDOs-EDPs hyperbolique couplées

Le but de ce chapitre est l’estimation de l’état de nξ EDPs hyperboliques couplées à nX équations
différentielles ordinaires (EDOs) à la frontière du domaine. Le système hyperbolique est linéaire
et se propage dans la direction positive de l’axe x. Le système EDO est linéaire variante dans
le temps (LTV) et inclus un ensemble de nθ paramètres constants inconnus, qui doivent être
estimés simultanément avec les états des EDPs. Nous concevons un observateur d’état du type
Luenberger, et notre méthode est principalement basée sur le découplage d’erreur d’estimation
des EDPs de celui des EDOs via le swapping design. Ensuite, nous déduisons les gains de
l’observateur grâce à l’analyse de Lyapunov du système découplé. De plus, nous obtenons des
conditions suffisantes de convergence exponentielle de l’observateur adaptatif représentés par
des inégalités différentielles de Lyapunov (DLIs) et nous illustrons les résultats théoriques par
des simulations numériques.

0.6 Chapitre 6: Conclusion et perspectives
La thése se termine par les conclusion générales, les orientations futurs de recherche en vue
d’améliorer et de compléter les méthodes développés dans cette thése.
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Chapter 1

Problem statement and motivating
applications

We introduce the four automatic control problems which are tackled in this thesis. The first three
are basically related to heat exchangers with applications in the area of fluid systems-cryogenics
at CERN, while the fourth one is motivated by the flow networks of gas mixtures with possible
application in diesel car engines equipped with exhaust gas regulation (EGR) systems. The
mathematical framework involves partial differential equations of two main types: hyperbolic
and parabolic, with possible coupling between the two types and also coupling with ordinary
differential equation (ODEs).
The general interest in considering this networked aspect of PDE/PDE or PDE/ODE systems
is the lack of generalized control and estimation tools that can handle this type of coupling
architecture. Each networked problem may require special reasoning and a specific adapted
solution. For instance, when two stable PDEs of the same class or of different class are coupled
together in the domain or at the boundary, the stability of the coupled system is directly affected
as a result of the distributed nature of the PDEs. This leads to enormous technical complications
in the control design as well as the observer design regarding the actuators positions and also the
placement of the sensors. The ultimate objectives of this thesis is to provide solutions to certain
control and estimation problems of systems involving PDE/PDE or PDE/ODE networks.
In the next sections, we classify these problems by considering the main motivation behind each
application while defining clearly the mathematical models along with the objectives and the
main concerns.

1.1 CO2 cooling of silicon detectors at CERN
CERN, the European Organization for Nuclear Research, is one of the world’s largest and most
known centres for scientific research. Physicists and engineers at CERN use complex scientific
instruments to study the composition of matter. The instruments are particle accelerators and
detectors. Inside the accelerators, subatomic particles beams are boosted to reach the speed of
light and made to collide with each other. The LHC (Large Hadron Collider) built at CERN
is the world’s largest particle accelerator. The beams inside the LHC collide at four locations

1



2 CHAPTER 1. PROBLEM STATEMENT AND MOTIVATING APPLICATIONS

around the accelerator ring, corresponding to the positions of four particle detectors – ATLAS,
CMS, ALICE and LHCb. These detectors are used to observe and record the collisions, they
gather clues about the particles – including their speed, mass and charge – from which physicists
can work out a particle’s identity. During operation time, the silicon detectors heat up, and
they require efficient and sophisticated cooling to maintain their proper functionality. Cooling
of the silicon detector at CERN is the main motivation of problems 1, 2 and 3 of the thesis.
In what follows, we detail the cooling strategy proposed by the researchers at CERN, and we
specify our main points of interest on which we define the first three objectives of the thesis.
In detector applications, it is important to minimize the hardware used for cooling inside the
detectors while maximizing the heat transfer from the detectors to the cooling tubes. To get a
better insight, let us consider the sketch of a cooling loop depicted on Fig. 1.1.

Cooling

Cycle

Cooling tube

Hot 

detectors

Heat low

Figure 1.1: Cooling loop.

The cooling fluid propagates from the cooling cycle towards the detectors to absorb their gener-
ated heat energy. Two important specifications are required: 1) the cooling tubes should be of
small diameters at the detector site, 2) the cooling tubes should absorb the maximum amount
of heat from the detectors. To achieve these objectives, two questions must be answered. The
first one is "what is the type and the physical state of the cooling fluid?" and second "what
are the components of the cooling cycle that will pump into the detectors this suitable type
of fluid". The researchers at CERN proposed answers to the questions through a number of
articles [86],[78] and [77]. For detector applications, the authors in [77] show the superiority
of CO2 as an evaporative cooling fluid over fluor - carbons C2F6 and C3F8. The results are
obtained through a thermodynamic analysis which we summarize here:

• two phase (liquid +gas) cooling is more efficient that single phase (liquid or gas) cooling.
The heat transfer is higher for two phase fluids.

• CO2 has high latent heat, low viscosity and low vapor speed. A CO2 evaporator needs the
smallest diameter and it has the highest heat transfer coefficient.

Hence, the fluid circulating in the cooling tube (Fig. 1.1) is CO2 and it is evaporating i.e. it
is undergoing a phase change from liquid to gas. According to the authors in [77], to get this
proper two phase flow into the cooling tube, there are two methods: one is the traditional vapor
compression method and second is the two-phase accumulator controlled loop (2PACL) method
with pumped liquid system. The main advantage of the 2PACL over the traditional method is
that it requires no actuators or sensors in the inaccessible detector area. A schematic diagram
of the 2PACL refrigeration method is shown on Fig. 1.2.
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Figure 1.2: The 2PACL refrigeration method [77].

Before giving some brief details on the functioning of the 2PACL loop, it is useful to note the
comparison between Fig. 1.1 and Fig. 1.2. Every component to the left of the nodes 4 and 5
on Fig. 1.2 compose the cooling cycle on Fig. 1.1. The capillary tube between the nodes 4 and
5 on Fig. 1.2 stands for the cooling tube on Fig. 1.1 and the "Heat in" on Fig. 1.2 is the heat
generated by the detectors. We start the analysis of the 2PACL loop at node 1 where CO2 is in
the liquid phase. The pump increases the pressure and temperature of the fluid to have a high
pressure liquid at node 2, the outlet of the pump. Heat is then added by the heat exchanger
to reduce the sub-cooling (sub-cooling refers to a liquid existing at a temperature below its
normal boiling point). Between nodes 3 and 4, the restrictor expands the liquid into a saturated
liquid at the inlet of the evaporator. Passing through the evaporator capillary tubes, the heat
generated by the detectors is absorbed by the two phase (liquid+vapor) CO2. This leads to an
increase in the vapor to liquid ratio between the nodes 4 and 5. The downstream fluid between
nodes 5 and 6 is now undergoing a two phase condensation. It is exchanging energy with the
cold liquid flow, which is also passing through the exchanger but in the opposite direction. We
call this heat transfer configuration a two phase heat exchange. The condenser situated between
the nodes 6 and 1 ensures the sub-cooling of the flow at the inlet of the pump. Finally, the
accumulator helps in setting out the pressure of the entire cooling loop.
To manage energy efficiently in such a cooling cycle, each component should be precisely modeled
and accurately controlled. Our main focus in the thesis is between the nodes 2 and 3, i.e. the
heat exchanger line. This part of the cooling cycle is extremely important as it spreads along
large distances and leads to significant delays in the refrigeration loop. In contrary to the other
refrigeration components, the heat exchanger has a distributed nature where temperatures and
other thermodynamic variables vary not only in time but also in space. In order not to loose
the essential transients of the physical behavior of the system, the control and the estimation
algorithms must handle the distributed nature of the physical variables.
Heat exchangers are devices used to exchange energy between fluids. They are key components
present in any refrigeration system where they come in different construction geometries and also
in different flow configurations [52]. Problems 1, 2 and 3 are concerned with heat exchangers of
concentric geometrical shape and of counter-current direction for fluid propagation, as typically
shown on Fig. 1.3.
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Input hot luidOutput hot luid

Output cold luidInput cold luid
Energy transfer

R1

R2

Wall thickness

Figure 1.3: Concentric-tube heat exchanger in counter-current flows.

The exchanger in Fig. 1.3 is a schematic diagram of the heat exchanger line situated between
nodes 2 and 3 in Fig. 1.2. It is a double pipe, i.e. it is composed of two concentric pipes: an
inner pipe of radius R2 and an outer pipe of radius R1. The flows directions are counter-current:
the cold and the hot fluids propagate in the opposite directions (this is to maximize the energy
transfer). The flow of energy is always from the hot refrigerant to the cold one through the wall
interface. Passing through the exchanger, the hot refrigerant looses energy and becomes colder
at the output while the cold refrigerant gains energy and becomes more warmer.

1.2 Problem 1: CO2 single phase heat exchangers
We recall that the thermodynamic profile of the heat transfer line in the 2PACL loop (Fig. 1.2)
is two phase for the hot fluid (liquid+vapor) while the cold fluid is single phase (liquid only).
In Problem 1, we consider only liquid CO2 flows (no phase change inside the exchanger). This
means that CO2 enters and leaves in liquid phase for both the hot and the cold lines. A cross-
sectional view of the CO2 single phase heat exchanger is given in Fig. 1.4. We will consider the
two phase aspect later in Problem 2. Problem 1 is significantly less complicated than Problem
2 from a thermodynamical point of view.

TH(x,t)

TC(x,t)

x=0 x=L

TH
in(t)

TC
in(t)

: Temperature Sensors

Figure 1.4: CO2 single phase heat exchanger.

The hot CO2 liquid propagates in the positive x-axis direction while the cold one flows in the
negative direction. The flow of energy (green arrows on Fig. 1.4) is from the hot side to the
cold side. The two flows are driven by two control inputs: THin (t) and TCin(t). Based on a
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series of assumptions which we will state in Chapter 2, the system is modeled using two infinite
dimensional states: the temperature of the hot fluid TH(x, t) and the temperature of the cold
fluid TC(x, t). The dynamics of the temperature distributions is described using two coupled
hyperbolic PDEs of balance laws as follows, ∀x ∈ [0, 1]:

∂tT
H(x, t) + ṁH

LAHρH
∂xT

H(x, t) = − hπD1
AHρHCHp

(
TH(x, t)− TC(x, t)

)
(1.1)

∂tT
C(x, t)− ṁC

LACρC
∂xT

C(x, t) = hπD1
ACρCCCp

(
TH(x, t)− TC(x, t)

)
(1.2)

where ρk (kg/m3) is the density, k denotes the considered fluid (H or C), ṁk (kg/s) is the mass
flow rate, Ak (m2) is the tube surface area, D1 (m) is the inner tube diameter, L (m) is the
length of the exchanger, Ckp (J/kg.K) is the specific heat at constant pressure and h (W/m2.K)
is the heat transfer coefficient, all considered constants. This system has two-sided boundary
conditions:

TH(0, t) = THin (t) TC(1, t) = TCin(t) (1.3)

We can now directly pose the objective of Problem 1:

• design an adaptive observer that can simultaneously estimate the distributed temperatures
TH(x, t), TC(x, t) and the heat transfer coefficient h using only the available measurements
at the boundaries TH(1, t) and TC(0, t).

Problem 1 is an estimation problem. The overall objective is to estimate the temperature distri-
bution inside the domain using boundary measurements. However, the heat transfer coefficient h
is likely to be unknown. This necessitates an adaptive estimator. Here are the main motivations
in considering Problem 1:

1. Problem 1 coincides with practical demands. In practice, sensors are placed at the bound-
aries of the exchanger (only inputs and outputs are measured). Hence, we do not know
exact temperatures inside the domain. Also, we do not know what is the value of the heat
transfer coefficient h. h is responsible for the amount of energy flowing from the hot side to
the cold side. Unlike all the other parameters of the exchanger, the heat transfer coefficient
depends on many physical variables e.g. temperature, mass flow rates and fluids viscosity.
It is usually calculated from physical correlations that lead to uncertainty on its value.
Therefore, it is of great interest to also estimate h online using boundary measurements.

2. certain types of control laws (ex. Backstepping control) require to have full knowledge of
the distributed temperatures all over the domain. Knowing the full temperatures with the
real time estimation of h helps in efficiently controlling the refrigeration loop. This will
contribute to low rates of energy consumption while maximizing the heat transfer rates.

3. continuous monitoring of the temperatures distribution in real time over long distances
helps in detecting faults in case of energy leakage.
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4. various physical problems can be reformulated in the context of Problem 1. For example,
the linearized ARZ-model [16] for traffic has almost the same structure as the heat ex-
changer model (1.1)-(1.2) with density ρ(x, t) and velocity v(x, t) as systems states. The
ARZ model has also the unknown relaxation time τ similar to h in the heat exchanger
model. We also mention that other physical systems e.g. electrical power transmission
lines [34] and water flow in open canals (shallow water equations [32]) and many more,
include unknown in-domain parameters that are equivalent to h in the heat exchanger
model.

Our proposed solution to Problem 1 is presented in Chapter 2. The theoretical results of the
adaptive observer are accompanied by numerical simulations, and they are also evaluated against
the temperature measurements taken from the CO2 refrigeration apparatus at CERN.

1.3 Problem 2: CO2 two phase heat exchangers

In this problem, we consider the two phase aspect in CO2 heat exchangers. The heat exchange
scenario occurring in the heat transfer line of the 2PACL loop is replicated for the evaporation
phase. Hence, we consider a concentric tube heat exchanger where the hot flow is in the liquid
phase while the cold flow is evaporating and changing its phase from liquid to vapor, as shown
on the Fig. 1.5.

x=0 x=L

Liquid CO2 Liquid CO2

Liquid + Vapor CO2 Liquid + Vapor CO2

Figure 1.5: CO2 two phase heat exchanger.

Through the wall interface, energy is transferred from the hot liquid side to the cold evaporating
side. Problem 2 has two main objectives:

• obtain a control-oriented model for the CO2 two phase heat exchanger;

• based on the obtained model, design a boundary observer to estimate the vapor to liquid
ratio of the two phase flow inside the domain, while sensing its values at the boundary.

These objectives are motivated by the following issues:

1. as we have mentioned in the 2PACL loop explanation, the two phase evaporator-tube is
the key component for the developing CO2 cooling technology at CERN;
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2. the control-oriented modeling of the two phase line helps in integrating it easily inside the
control system of the cooling cycle;

3. estimating the vapor to liquid ratio inside the domain allows to minimize the energy
consumption used for cooling;

4. as we have already stated in Problem 1, boundary sensing is more practical than distributed
sensing. Sensors are usually placed at the extremities of the tube.

Unlike the configuration of Problem 1, the two phase line in Problem 2 introduces a significant
physical complication that necessitates careful modeling. Once the model is obtained, suitable
boundary estimation techniques can be applied. The solution details for Problem 2 will be
extensively detailed in Chapter 3.

1.4 Problem 3: Coupled hyperbolic-parabolic PDEs
It is mentioned above (see Fig. 1.3), that in heat exchangers energy flows from one fluid to the
other through a wall interface. So far, in Problems 1 and 2, we have neglected the effect of the
wall thickness. However, according to the authors in [77], the tube temperature and the fluids
temperature may have different values depending on the flow regime, as shown on Fig. 1.6.
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Figure 1.6: Fluid temperature vs tube temperature [77].

The lower part of the graph gives a complete scenario of what can happen in an evaporating
tube. The fluid starts in the liquid region, and then begins to evaporate to enter into the two
phase zone. Finally, all the liquid is evaporated and the fluid reach the gaseous state. The fluid
temperature is in black while the tube temperature is in red. First, we can notice a temperature
difference ∆T in the liquid region. This temperature difference decreases in the target flow
condition regime to increase again significantly in the dry-out and the super heated zones. The
sudden increase in ∆T is due to the fact that the remaining liquid is no longer touching the tube
wall, while in the dry-out zone. A high ∆T means that the dynamics of the wall temperature
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cannot be neglected any more in the modeling phase. This can introduce an interesting coupling
between two different classes of systems: transport equations (the fluid) and heat equations (the
wall). To help clarify the idea, we take a simple example: a tube containing hot liquid that is
placed in an environment of cold temperature Tamb as shown in Fig. 1.7.

Output hot

 liquid
Input hot

liquid

Energy transfer Wall thickness

Tamb

TH(x,t)

x=0 x=L

Figure 1.7: Hot line with wall thickness.

Energy is transferred from the hot flow to the wall through convection. Passing through the
wall thickness, energy is conducted to reach the outer surface of the tube. We represent the two
different types of physical phenomenons, namely convection and conduction, using two states:
TH(x, t) which is the liquid temperature and Tw(x, t) which is the wall temperature. Using the
principle of conservation of energy, and assuming 1D flows, the dynamics of the states are:

∂tT
w(x, t) = ε(x)∂xxTw(x, t) + hH,w

(
TH(x, t)− Tw(x, t)

)
+
(
Tw(x, t)− Tamb

)
(1.4)

∂tT
H(x, t) = − ṁH

LAHρH
∂xT

H(x, t)− hH,wπD1
AHρHCHp

(
TH(x, t)− Tw(x, t)

)
(1.5)

where ε(x) is the diffusion coefficient, hH,w and hw,amb are the heat transfer coefficients from the
liquid to the wall and from the wall to the environment, respectively. The transport equation
(1.5) is a hyperbolic PDE that is coupled with the heat equation (1.4) which is a parabolic PDE.
The coupling is inside the domain through the linear advection terms of the heat transfer energy.
Hence, if the wall thickness is not neglected, the mathematical models of the heat exchangers
will certainly involve an interesting coupling between different classes of systems (hyperbolic
and parabolic). The overall aim of Problem 3 is to study such kinds of systems. This helps in
understanding the effect of diffusion on the transport of energy from one fluid to the other. As
a result, in Problem 3 we consider the following class of mixed hyperbolic-parabolic system
evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

vt(x, t) = vxx(x, t) + λ(x)v(x, t) + σ(x)u(x, t) (1.6)

ut(x, t) = ux(x, t) +
∫ x

0
S(x, y)v(y, t)dy (1.7)

vx(0, t) = u(0, t) (1.8)
v(1, t) = F1(t) (1.9)
u(1, t) = F2(t) (1.10)

where v and u are the coupled parabolic and hyperbolic states of the system, respectively.
S(x, y) ∈ C∞ represents the coupling kernel from diffusion to transport, while σ(x) ∈ C1[0, 1]
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is the linear coupling from transport to diffusion. The reaction term λ(x) ∈ C1[0, 1] is consid-
ered arbitrary. The outflow of the transport equation also drives the parabolic equation at the
boundary x = 0. Furthermore, the two coupled states are actuated using the two control laws
F1(t) and F2(t) at x = 1. System (1.6)-(1.10) is motivated by the phenomena of extreme ultra-
violet light generation (EUV) for next-generation photolithography [80]. The EUV technology
involves a liquid metal droplet which is convecting through plasma. The plasma influences the
droplet and diffuses it in space. The convection phenomena is modeled by the hyperbolic PDE
while diffusion in space is modeled by the parabolic PDE. The main objective of Problem 3 is:

• design two feedback control laws F1(t) and F2(t) that can ensure the exponential stability
of the system (1.6)-(1.10) in the L2 ×H1 norm.

Note that equation (1.7) involves an integral coupling with diffusion, whereas (1.5) has only a
linear coupling term. Thus, the two systems differ in the type of coupling between the hyperbolic
and parabolic states. We will show in Chapter 4 that certain types of coupling topologies are
quite hard to be tackled from a control theory point of view. System (1.4)-(1.5) is a prime
example on this difficulty, and hence, we propose a solution based on the model (1.6)-(1.10).
Now, we state the main motivations in considering Problem 3:

1. system (1.6)-(1.10) is considered as an intermediate step to consider more complicated
types of coupling topologies in the future works (e.g. the linear advection coupling in
system (1.4)-(1.5));

2. investigating the control techniques that can work on mixed classes of hyperbolic-parabolic
systems. The existence of control designs such as Backstepping transformations or simple
Lyapunov functions for hyperbolic or parabolic systems is well known, but the application
of these techniques on systems of mixed classes is still under research.

The solution of Problem 3 is given in Chapter 4. The theoretical results are illustrated in details
and we also give some numerical simulations to demonstrate the application of the proposed
method.

1.5 Problem 4: Coupled ODEs-Hyperbolic PDEs networks
Many physical processes are modeled using linear hyperbolic partial differential equations cou-
pled with linear ordinary differential equations. The infinite state which is modeled by the PDE
represents the transport in space, and its value at the boundary is usually constrained to some
exterior dynamics represented by the ODEs. The mentioned coupling topology mostly appears
in networks, where the edges are modeled using transport PDEs and the nodes are modeled
using ODEs. Examples of such systems can be found in ventilation networks [69], road traffic
[44], gas flow in pipelines [46], flow in open channels [33], exhaust gas regulation (EGR) in cars
engines [27], etc. In Problem 4, we are interested more specifically in diesel car engines equipped
with (EGR) systems.
Over the years, the regulation of the emissions of diesel car engines has become more strict. Emis-
sion limits for Diesel engines [61] have been imposed by the European legislation to minimize
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the road transport pollution, which remains the most important source of urban air pollution
in Europe with respect to NOx (nitrogen oxides) and CO (carbon monoxide) [82]. The envi-
ronmental demands force the car engine designers to develop new technologies to decrease the
fuel consumption and the emission levels while satisfying the desired engine drivability condi-
tions. Many alternative combustion modes such as homogenous charge compression ignition,
low-temperature combustion, pre-mixed controlled compression ignition [4], [6] and [72] are in-
troduced to decrease the engine emissions level. These modes require specific fueling strategies
and in-cylinder conditions, thus creating a vital need for complex, reliable and accurate control
system technologies. One of the new configurations, that can provide adequate conditions for
multiple combustion modes is the Dual exhaust gas regulation (EGR) with both high-pressure
(HP) and low-pressure (LP) recirculations [49]. A schematic diagram of a dual EGR loop is
shown on Fig. 1.8.
The engine presented in Fig. 1.8 is a four cylinder (1.6 liter) diesel engine with dual-loop
EGR system (HP-EGR valve and LP-EGR valve) and a variable geometry turbine (VGT). It
is equipped with an exhaust treatment system: diesel particle filter (DPF) and diesel oxidation
catalyst (DOC). The general idea of an EGR system is that some portion of the exhaust gas at
the output of the engine are returned back to the intake manifold through the EGR valves. With
the high pressure (HP-EGR), the burned gases from the exhaust manifold are reintroduced into
the intake manifold. While, the burned gases in the LP-EGR are taken downstream through the
post-treatment filters and then mixed with the fresh air coming from outside to be reintroduced
upstream of the compressor. The mixing of the hot HP-EGR gas with the cold LP-EGR gas at
the intake can be set to reach the optimal temperature inside the cylinders, which reduces the
emissions of HC-CO gases.
It is difficult to achieve the adequate in-cylinder conditions due to the lack of measurements of
the EGR flow rates and also the air mass fractions (mass of air/total mass).
Indeed, several control and estimation techniques [29], [45], [81], [84] are proposed to estimate
the EGR rates and also to estimate and control the air-mass fractions. These schemes are built
on 0D models of the engine air-path. In 0D models, the air-path is decomposed into sets of
control volumes glued together with other different components such as compressors, valves,
coolers, etc. The conservation laws (mass conservation, momentum conservation, energy conser-
vation) are applied to each control volume and finally a 0D model of coupled ordinary differential
equations is obtained for the whole air-path (see the manuscript [28] and references therein).
One of the draw backs of 0D models is not considering the mass transport time inside the engine
admission air-path. During strong engine transients, the mass transport can cause a degradation
in the overall performance of the engine emissions rates. This fact is considerably persistent in
the LP-EGR path where the gas travels much longer distance than the one associated with the
HP-EGR path. To overcome this limitation, a delay representation is used by the authors in
[23] to model the transport time while others (e.g. [27]) have used linear parameter varying
(LPV)-hyperbolic systems. Let us focus on the model proposed by the authors in [27], as it is
the main inspiration of Problem 4.
The authors in [27] model the air-mass transport inside the LP-EGR path. The model consists
of three transport equations ξ(x, t) that model the air-fraction transport inside the tubes and
three ODEs X(t) to model the variation of the air-fraction in the control volumes connecting
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Figure 1.8: Schematic of the dual-loop EGR engine air-path.
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the tubes. The overall model is as follows:

∂tξ(x, t) + Λ(φ)∂xξ(x, t) = 0 (1.11)

ξ(0, t) = X(t) (1.12)

Ẋ(t) = A(φ)X(t) +B(φ)ξ(1, t) + ψ(φ)Qegrl +Qair (1.13)
where φ is the set of varying parameters of known bounds and Qegrl is the control variable
through the LP-EGR valve. It is not our aim to explain in details the modeling procedure of
the LP-EGR path (see [27] for more details). However, the model general structure is of great
importance for the continuity of the explanation. Model (1.11)-(1.13) is a set of hyperbolic
PDEs coupled with a parameter-varying set of ODEs at the boundary x = 0. The problem
considered in [27] is to synthesize a control law Qegrl in order to drive the states ξ(x, t) and
X(t) to a desired steady state using the measurements of ξ(1, t). In Problem 4, we consider
nearly the dual problem. It is an estimation problem. Let us introduce the system considered in
Problem 4. We consider the following class of cascade ODEs-hyperbolic PDEs systems evolving
in Ω=[0, 1]×[0,+∞):

∂tξ(x, t) + Λ+∂xξ(x, t) = Fξ(x, t) (1.14)

ξ(0, t) = C(t)X(t) +D(t)u(t) + ψ1(t)θ (1.15)
Ẋ(t) = A(t)X(t) +B(t)u(t) + ψ2(t)θ (1.16)

where ξ(x, t) : Ω 7−→ Rnξ is the PDE state vector, X(t) :[0,+∞) 7−→ RnX is the ODE state
vector, θ ∈ Rnθ is the vector of the unknown parameters, u(t) :[0,+∞) 7−→ Rnu is a known input
vector that possibly depends on ξ(1, t) and Λ+ ∈ Dnξ

+ is the matrix of the constant transport
speeds:

Λ+ =

λ1 0
. . .

0 λnξ

 with 0 < λ1 < .. < λnξ (1.17)

F ∈ Rnξ×nξ . We assume that all the time-dependent matrices: A(t) ∈ RnX×nX , B(t) ∈ RnX×nu ,
C(t) ∈ Rnξ×nX , D(t) ∈ Rnξ×nu , ψ1(t) ∈ Rnξ×nθ and ψ2(t) ∈ RnX×nθ are bounded and piece-wise
continuous in time.
The main objective of Problem 4 is:

• design an adaptive observer that can estimate ξ(x, t), X(t) and θ simultaneously assuming
that the measurement available is y(t) = Mξ(1, t) whereM ∈ Rny×nξ is the output matrix.

The main motivations in considering Problem 4 are:

1. in case of a slowly-varying LP-EGR mass flow rate, i.e Q̇egrl = 0, the adaptive observer of
problem 4 can be extended to give estimations of the air-fractions and the LP-EGR mass
flow rate Qegrl using end tubes sensing ξ(1, t). This is obvious from the close structure of
the two models (1.11)-(1.13) and (1.14)-(1.16) while considering θ ≡ Qegrl.
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2. system (1.14)-(1.16) can be considered an extension to the LTV case since it has an LTV
boundary conditions and also LTV ODEs. This is more general than the LPV case. The
transport speeds in system (1.14)-(1.16) can be time-varying, as we will show in Chapter
5.

3. although we focus on the EGR exhaust system as the principal application, the main the-
oretical results extend to large amount of industrial applications of significant importance
such as hydraulic netwoks [39], road traffic networks [47], gas flow in pipelines [7], etc.

The solution of Problem 4 is given in Chapter 5. The theoretical results of the adaptive estimator
are illustrated by numerical examples.

1.6 Conclusion
In this chapter, we show the four different automatic control problems that are solved in this
thesis. We directly state the problems with the main motivations. In the mathematical frame-
work, the problems involves coupled hyperbolic-hyperbolic PDE systems (Problems 1 and 2).
In Problem 3, we investigate a different type of couplings which is hyperbolic-parabolic PDEs.
The network aspect is investigated in Problem 4 with a different coupling topology, which is
hyperbolic PDEs coupled with ODEs. Problems 1, 2 and 4 are boundary estimation problems
with unknown parameters present in the domain and at the boundary, while Problem 4 is a
boundary control problem for different kinds of PDEs.
In the next chapters, we start by detailing the solutions of the problems. In each chapter, we
give the literature review related to each problem while clearly stating our contributions and
the added value for each of our methods. The mathematical derivations with the proofs are
discussed in details and finally numerical and experimental tests (when available) are offered to
evaluate the results.
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Chapter 2

Adaptive Boundary Observer Design
for Hyperbolic Systems; Application
to CO2 single phase heat exchangers

We consider the concentric tubes heat exchanger schematically depicted in Fig. 2.1. This ex-
changer is a counter-flows heat exchanger, in which hot and cold fluids flow in opposite directions
to maximize the heat transfer. Both the hot and the cold fluids enter in liquid phase and leave
in liquid phase (no change of phase inside the exchanger). The flow of heat from the hot side to
the cold side is done through the wall interface.

TH(x,t)

TC(x,t)

x=0 x=L

TH
in(t)

TC
in(t)

: Temperature Sensors

Figure 2.1: CO2 single phase heat exchanger.

The mathematical model of the exchanger is derived based on the following assumptions:

• the flow is 1-D unidirectional (the hot fluid flows in the positive x direction);

• the kinetic and potential energies of the flows entering and leaving the tubes are neglected;

• the wall thickness is neglected (no wall dynamics) and the heat transfer coefficient h is
uniform and quasi-steady i.e. using the classical "random walk" model, ḣ = 0 + e(t) where
e(t) is a white noise;

15
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• the flow is considered incompressible; i.e. no significant change in density and equivalently
in mass flow rate with time and along the length of the exchanger (only energy conservation
equations are considered);

• in our working range of pressures and temperatures, we can assume a linear relation
between enthalpy and temperature as follows:

HH = CHP T
H , HC = CCP T

C (2.1)

whereHk (J/kg) is the specific enthalpy, k denotes the considered fluid (H or C), Ckp (J/kg.K)
is the specific heat at constant pressure and T k (K) is the temperature.

Under these assumptions, the 1D flow transport can be described by a set of first order hyperbolic
partial differential equations of balance laws (see e.g. [83]) as follows, ∀x ∈ [0, 1]:

∂tT
H(x, t) + ṁH

LAHρH
∂xT

H(x, t) = − hπD1
AHρHCHp

(
TH(x, t)− TC(x, t)

)
(2.2)

∂tT
C(x, t)− ṁC

LACρC
∂xT

H(x, t) = hπD1
ACρCCCp

(
TH(x, t)− TC(x, t)

)
(2.3)

where ρk (kg/m3) is the density, ṁk (kg/s) is the mass flow rate, Ak (m2) is the tube surface
area, D1 (m) is the inner tube diameter, L (m) is the length of the exchanger, Ckp (J/kg.K) is the
specific heat at constant pressure and h (W/m2.K) is the heat transfer coefficient, all considered
constants. This system has two-sided boundary conditions:

TH(0, t) = THin (t) TC(1, t) = TCin(t) (2.4)

and initial conditions (assumed to be in L2[0, 1]):

TH(x, 0) = TH0 (x), TC(x, 0) = TC0 (x) (2.5)

The objective is to design an adaptive observer that can simultaneously estimate
the distributed temperatures TH(x, t), TC(x, t) and the heat transfer coefficient h
using only the available measurements at the boundary TH(1, t) and TC(0, t).

The classical approach used for solving control and estimation problems for hyperbolic par-
tial differential equations is to discretize the PDEs and then apply classical control methods
designed for finite dimensional systems. However, key information on the system transient be-
havior is lost, and the observability and controllability of the system will depend on the chosen
space-discretization method. This leads to the idea of extending finite dimensional control the-
ory to the infinite case. Hence, the PDE architecture is conserved and the goal is to design an
observer that can estimate the infinite dimensional states.
The main difficulty induced by the dynamics (2.2)-(2.5) is that it involves a bilinear parametric
nonlinearity i.e. the unknown parameter h multiplies the unknown states TH(x, t) and TC(x, t).
In fact, if h is known, Problem 1 is already solved in the literature and it has two categories of
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solutions: 1) is the work done by the authors in [85] via a PDE observer of Lunberguer type
that uses dissipative boundary conditions (standard static boundary output feedback) to sta-
bilize the estimation error. And 2) the backstepping observer design in [14] (among others for
instance [76]). The main idea of the backstepping method is to introduce an invertible Volterra
transformation that maps the original system into a target system with the desired stability
properties, for which static boundary controls and observer gains are synthesized to ensure the
system convergence to a desired set in finite time. However, to the best of our knowledge, if h
is unknown and in the infinite dimensional framework, Problem 1 has not been yet addressed in
the literature.

2.1 Linearization

We decrease the level of complexity by augmenting the vector of states of the system from
{TH , TC} to {TH , TC , h} with ḣ = 0. The augmented system is then linearized around the
nominal system {THN , TCN , hN} given by:

∂tT
H
N (x, t) + ṁH

LAHρH
∂xT

H
N (x, t) = − hNπD1

AHρHCHp

(
THN (x, t)− TCN (x, t)

)
(2.6)

∂tT
C
N (x, t)− ṁC

LACρC
∂xT

H
N (x, t) = hNπD1

ACρCCCp

(
THN (x, t)− TCN (x, t)

)
(2.7)

with boundary conditions:

THN (0, t) = THin (t), TCN (1, t) = TCin(t) (2.8)

and initial conditions (assumed to be in L2[0, 1]):

THN (x, 0) = THN0(x), TC(x, 0) = TCN0(x) (2.9)

such that: 
TH(x, t) = THN (x, t) + ∆TH(x, t),
TC(x, t) = TCN (x, t) + ∆TC(x, t),
h = hN + ∆h,

(2.10)

where ∆TH(x, t), ∆TC(x, t) and ∆h are perturbations around the nominal states. Using a
Taylor expansion of order 1, one can obtain the dynamics of the perturbed states:

∂t∆TH(x, t) + c1∂x∆TH(x, t) = −KN
1 (∆TH(x, t)−∆TC(x, t))

+ ∆h πD1
AHρHCHP

(−THN (x, t) + TCN (x, t))
(2.11)

∂t∆TC(x, t)− c2∂x∆TC(x, t) = KN
2 (∆TH(x, t)−∆TC(x, t))

+ ∆h πD1
ACρCCCP

(THN (x, t)− TCN (x, t))
(2.12)
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where c1= ṁH

LAHρH
, c2= ṁC

LACρC
, KN

1 = hNπD1
AHρHCHP

and KN
2 = hNπD1

ACρCCCP
. The boundary conditions of

the perturbed system are:

∆TH(0, t) = 0, ∆TC(1, t) = 0 (2.13)

The initial conditions ∆TH0 (x) and ∆TC0 (x) are assumed to be in L2[0, 1]. Using a simple

exponential transformation: ∆TH1 (x, t)=e
KN1
c1

x∆TH(x, t) and ∆TC1 (x, t)=e−
KN2
c2

x∆TC(x, t), we
can eliminate the homogeneous terms in (2.11)-(2.12) to get:

∂t∆TH1 (x, t) + c1∂x∆TH1 (x, t) = KN
1 e

(
KN1
c1

+
KN2
c2

)x∆TC1 (x, t)

+ ∆hπD1e
−KN1
c1

x

AHρHCHP
(−THN (x, t) + TCN (x, t))

(2.14)

∂t∆TC1 (x, t)− c2∂x∆TC1 (x, t) = KN
2 e
−(

KN1
c1

+
KN2
c2

)x∆TH1 (x, t)

+ ∆hπD1e
KN2
c2

x

ACρCCCP
(THN (x, t)− TCN (x, t))

(2.15)

and the boundary conditions remains the same

∆TH1 (0, t) = 0, ∆TC1 (1, t) = 0 (2.16)

The initial conditions ∆TH0,1(x) and ∆TC0,1(x) are assumed to be in L2[0, 1]. System (2.14)-(2.16)
has boundary measurements as:

yH1 (t) = e
KN1
c1 ∆TH(1, t) = e

KN1
c1 (TH(1, t)− THN (1, t))

yC2 (t) = ∆TC(0, t) = TC(0, t)− TCN (0, t)
(2.17)

In practice and especially in heat exchanger networks, it is common to have a prior knowledge
of the plant; e.g. ranges of pressures, ranges of temperatures, fluid speeds etc. This practical
understanding of the system can help in deriving inaccurate estimates of the systems parameters,
e.g. use correlations from the physics to calculate an estimate for the heat transfer coeffcient
as in [43]. These estimates are considered as the nominal values for the exchanger parameters
(c1, c2, KN

1 and KN
2 ) and they are used in constructing the nominal model (2.6)-(2.9). Hence,

synthesizing an adaptive observer for {∆TH1 (x, t), ∆TC1 (x, t), ∆h} will lead to an approximate
estimate for {TH(x, t), TC(x, t), h} according to the map depicted in Fig. 2.2. Therefore, by
knowing the operating point of the system and by measuring input/output temperatures, one can
use our adaptive observer scheme to have an online estimation of the distributed states TH(x, t),
TC(x, t) and also to recover the deviation of the heat transfer coefficient h from the correlation-
based nominal value hN . Now, we focus on the adaptive observer design for system (2.14)-(2.17).
In fact, the structure of the equations (2.14)-(2.17) inspires us to pose the estimation problem
on a more general class of systems.
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∆T̂H1 (x, t)
∆T̂C1 (x, t)

∆ĥ(t)

∆T̂H(x, t)
∆T̂C(x, t)

∆ĥ(t)

T̂H(x, t)=THN (x, t)+∆T̂H(x, t)
T̂C(x, t)=TCN (x, t)+∆T̂C(x, t)

ĥ(t)=hN + ∆ĥ(t)

Exponential
transformation

Linearization

Figure 2.2: State estimation map

2.2 Observation problem formulation

We consider the following class of linear hyperbolic systems evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

∂tu(x, t) + c1∂xu(x, t) = σ1(x)v(x, t) + θ1φ1(x, t) (2.18)

∂tv(x, t)− c2∂xv(x, t) = σ2(x)u(x, t) + θ2φ2(x, t) (2.19)

u(0, t) = qv(0, t) + U(t), v(1, t) = V (t) (2.20)

where u and v are the system states, [u, v] T : [ 0, 1] × [ 0,+∞) → R2. c1 > 0 and c2 > 0 are
the transport speeds, and σ1, σ2 are assumed to be C0([0, 1];R) known functions. Furthermore,
φ1 and φ2 are also bounded known functions of class C1([ 0, 1] × [ 0,+∞);R), and q, θ1 and θ2
are unknown real scalar parameters. The initial conditions, denoted u0 and v0, are assumed
to belong to L2([0, 1]). U(t) and V (t) are considered as known boundary inputs. Our goal is
to estimate the state of the system (2.18)-(2.20) and the unknown parameters q, θ1 and θ2,
assuming that the following measurements are available:

y1(t) = u(1, t), y2(t) = v(0, t) (2.21)

Remark 2.2.1. It is clear that the exact congruence of system (2.18)-(2.21) with system (2.14)-

(2.17) is achieved for: u(x, t) ≡ ∆TH1 (x, t), v(x, t) ≡ ∆TC1 (x, t), σ1(x) ≡ KN
1 e

(
KN1
c1

+
KN2
c2

)x,

σ2(x) ≡ KN
2 e
−(

KN1
c1

+
KN2
c2

)x, φ1(x, t) ≡ πD1e
−KN1
c1

x

AHρHCHP
(−THN + TCN ), φ2(x, t) ≡ πD1e

KN2
c2

x

ACρCCCP
(THN − TCN ),

θ1 ≡ θ2 ≡ ∆h and q ≡ U(t) ≡ V (t) ≡ 0.

Remark 2.2.2. While the method extends to spatially varying transport speeds c1(x) and c2(x),
we consider here constant transport speeds for the sake of technical simplicity.

System (2.18)-(2.20) is a 2×2 linear hyperbolic system. It is coupled inside the domain and at
the boundary. The system is two-sided actuated, and unknown parameters are present inside
the domain and at the boundary. The objective is to design an adaptive observer to estimate the
system states and the parameters. The literature review on control and estimation for hyperbolic
systems is as follows.
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2.3 Literature review

Hyperbolic systems and more specifically linear and quasi-linear hyperbolic systems are well
studied by the control community. These systems can model many physical processes, like road
traffic [44], gas flow in pipelines [46], flow of fluids in open channels [32], transmission lines
[34], multiphase flow [35], etc.. The early results on stability and controllability of such systems
can be dated back to the 70s [68], [71]. During that period, the stability issue was tackled by
computing the explicit solution of the equations along the characteristic curves in the framework
of the C1 norm. Afterwards, using Lyapunov-based functions, dissipative boundary conditions
(standard static boundary output feedback) are designed to guarantee exponential stability in
the L2, C1 and H2 norms [83, 26, 17]. One drawback of using this kind of boundary conditions
to stabilize the system is that it imposes some restrictions on the magnitude of the coupling
between the system states. However, this limitation can be overcome by the use of the so-called
backstepping-method. In [76], the authors solve the problem of one-sided boundary stabiliza-
tion (actuation only at one boundary) of a two by two quasilinear first-order hyperbolic system
in finite time. The approach is then generalized by the authors in [50] to a general system
of heterodirectional coupled hyperbolic equations. The backstepping method is also used for
two-sided boundary control (actuation on both boundaries) of heterodirectional hyperbolic sys-
tems. The authors in [14] derive control laws using a Fredholm transformation (unlike Volterra
transformation, Fredholm transformation is not always invertible) that also ensures convergence
in finite time. However, all the results mentioned so far do not allow unknown in-domain pa-
rameters or unknown boundary parameters to be present. In order to address this problem,
we consider adaptive boundary control for hyperbolic systems. The first results on adaptive
control for hyperbolic PDEs were obtained by the authors in [20], where a general first-order
hyperbolic partial integro-differential equation(PIDE) with one rightward convecting PDE is
adaptively stabilized by boundary sensing only. This result is extended by the authors in [8]
to 2 by 2 hyperbolic partial differential equations with unknown transport speeds, unknown
couplings and also unknown boundary parameters.

Infinite dimensional boundary observers are less investigated in the literature. The problem
with systems that have distributed parameters is that it is most of the time impossible to take
measurements at every point in space. It is more natural for the sensors to be located at the
boundaries of the domain, which led to the idea of boundary observers. Boundary control design
is achieved using boundary observers based on two methods: Lyapunov and backstepping-based
methods. Concerning Lyapunov methods, the authors in [25] design a boundary observer for n
rightward hyperbolic transport equations. The observer uses measurements taken from the right
boundary to correct the estimation error on the left one. This result is extended by the authors
in [85] to one rightward and one leftward transport equation for the plate heat exchanger. Never-
theless, both methods assume perfect knowledge of the model parameters. Backstepping-based
boundary observers are also well established in the literature. In fact, static control design using
backstepping requires a full knowledge of the distributed states. A collocated boundary observer
is thus synthesized to fulfill this requirement (see previously mentioned results such as [76], [50],
[14]). These designs also assume a perfect knowledge of the system. In many practical cases,
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some model parameters are unknown, which motivates the need for adaptive estimators.
The objective of an adaptive boundary observer is to simultaneously construct the system’s
distributed states and the unknown parameters from only boundary sensing. The problem of
adaptive boundary estimation was first addressed by the authors in [74] for parabolic PDEs
using backstepping techniques. Such method is applied to hyperbolic systems in [37], where
the authors design an adaptive observer for first-order hyperbolic systems with uncertain addi-
tive boundary parameters (the adaptive laws for these parameters are derived using Lyapunov
analysis). This result is extended by the authors in [21] to unknown additive and multiplica-
tive parameters in the boundary. We can also mention the results on disturbance rejection for
hyperbolic systems (see e.g. [2], [3]), which can be interpreted as results on adaptive observers
for hyperbolic PDEs. As a different approach, swapping design is also used in the derivation of
adaptive observers. This method relies on using K-filters to derive static relationships between
the system states and the unknown parameters: this relationship is used to build Lyapunov-
based adaptive laws to estimate the unknown parameters (see [55] and [53] for ODEs and [74]
for PDEs). In the work of the authors in [12], [13], and [11] swapping design is used to estimate
unknown boundary parameters for some classes of hyperbolic systems. However, few results
exist in the literature on in-domain parameter estimation. The works [20] and [8] on adaptive
control include in-domain parameter estimations based on swapping design methods. In these
works, an adaptive observer is designed for systems in the "canonical observable form" to serve
as an intermediate step in deriving the control law. However, the convergence of the in-domain
parameters to their true value is not guaranteed by the designs [20] and [8] as the objective is
to adaptively control the system and not to estimate the parameters.

2.3.1 Contribution

In Problem 1, we consider the problem of estimating the distributed states of a 2 × 2 hyperbolic
system, two-sided actuated with unknwon in- domain and boundary parameters. The motivation
behind considering such system is the application to heat exchanger networks. To the best of our
knowledge, this type of estimation problem is not addressed yet in the literature. We propose
an adaptive boundary observer that can estimate not only the full state of the system, but also
unknown-indomain and boundary parameters. We have used the swapping design method to
write the estimation error system as a linear combination of the parameters estimation errors.
This leads to the decoupling of the PDE estimation errors from the ODE estimation errors. As
a consequence, standard backstepping observer techniques and adaptation laws are used.
From the practical aspect, we contribute to an adaptive design that gives online estimates for
the heat transfer coefficient and for the distributed temperatures from only boundary sens-
ing. Furthermore, we validate our adaptive design against the experimental data taken from
a CO2 refrigeration apparatus built at CERN, and we also show its advantages over the pre-
existing observer designs that assume perfect knowledge of the model parameters (the dissipative
Luneberger observer [85] and two sided backstepping observer [14]).

The work presented in this chapter is published in:

M.Ghousein, E.Witrant, V.Bhanot, P.Petagne."Adaptive boundary observer design for linear
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hyperbolic systems; Application to estimation in heat exchangers". In: Automatica (2020), vol.
114 (108824), pp. 1–13.

2.4 Adaptive observer design
We introduce the following adaptive observer design:

∂tû(x, t) + c1∂xû(x, t) = σ1(x)v̂(x, t) + θ̂1(t)φ1(x, t)− p1(x)(û(1, t)− y1(t)) +m1(x, t) (2.22)
∂tv̂(x, t)− c2∂xv̂(x, t) = σ2(x)û(x, t) + θ̂2(t)φ2(x, t)− p2(x)(û(1, t)− y1(t)) +m2(x, t) (2.23)

û(0, t) = ω(v̂(0, t)− y2(t)) + q̂(t)v(0, t) + U(t) (2.24)

v̂(1, t) = V (t) (2.25)
where p1(x) and p2(x) are the observer gains, ω is a non-zero real parameter that can be chosen
arbitrarily, and m1(x, t) and m2(x, t) are additional feedback gains to be determined later. The
observer initial conditions are denoted by û0 and v̂0, and are assumed to belong to L2[0, 1].
The estimates are denoted by hat, and we define the error variables ũ(x, t) = u(x, t) − û(x, t),
ṽ(x, t) = v(x, t)− v̂(x, t), q̃(t) = q − q̂(t), θ̃1(t) = θ1 − θ̂1(t), θ̃2(t) = θ2 − θ̂2(t).
Forming the error system by subtracting (2.18)-(2.20) from (2.22)-(2.25) we have:

∂tũ(x, t) + c1∂xũ(x, t) = σ1(x)ṽ(x, t) + θ̃1(t)φ1(x, t)− p1(x)ũ(1, t)−m1(x, t) (2.26)

∂tṽ(x, t)− c2∂xṽ(x, t) = σ2(x)ũ(x, t) + θ̃2(t)φ2(x, t)− p2(x)ũ(1, t)−m2(x, t) (2.27)

ũ(0, t) = ωṽ(0, t) + q̃(t)v(0, t), ṽ(1, t) = 0 (2.28)
The observer designed in (2.22)-(2.25) is a PDE observer of Luenberger-type, which is a copy
of the system with output injection terms (y1(t), y2(t)) added in the domain and at the left
boundary. The problem is then to find the observer gains p1(x) and p2(x), and the proper
parameter update laws in order to guarantee the exponential convergence of the error system
(2.26)-(2.28) to zero.

2.5 Swapping Design
In this section, we derive a static relationship which connects the estimation error on the states
with the estimation error on the parameters. This relationship will then be used to derive the
parameters adaption laws. By writing the error system (2.26)-(2.28) using swapping filters we
have:

z1(x, t) = ũ(x, t)− λ11(x, t)θ̃1(t)− λ12(x, t)θ̃2(t)−Q1(x, t)q̃(t) (2.29)

z2(x, t) = ṽ(x, t)− λ21(x, t)θ̃1(t)− λ22(x, t)θ̃2(t)−Q2(x, t)q̃(t) (2.30)
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We can write (2.29)-(2.30) in the compact form:

Z(x, t) = E(x, t)− Λ(x, t)θ̃(t) (2.31)

where:

Z(x, t) =
(
z1(x, t)
z2(x, t)

)
, E(x, t) =

(
ũ(x, t)
ṽ(x, t)

)
, θ̃(t) =

 θ̃1(t)
θ̃2(t)
q̃(t)

 ,
Λ(x, t) =

[
λ11(x, t) λ12(x, t) Q1(x, t)
λ21(x, t) λ22(x, t) Q2(x, t)

]

The swapping filters λij(x, t) : [ 0, 1] × [ 0,+∞) → R, (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) and Qi(x, t) :
[ 0, 1] × [ 0,+∞) → R are to be defined later. Differentiating (2.29) with respect to time and
substituting with (2.30) we get:

∂tz1(x, t) = −c1∂xũ(x, t)+σ1(x)ṽ(x, t)+ θ̃1(t)φ1(x, t)−p1(x)ũ(1, t)−m1(x, t)−∂tλ11(x, t)θ̃1(t)

− λ11(x, t) ˙̃θ1(t)− ∂tλ12(x, t)θ̃2(t)− λ12(x, t) ˙̃θ2(t)− ∂tQ1(x, t)q̃(t)−Q1(x, t) ˙̃q(t) (2.32)

In order to keep (2.32) linear in θ̃1(t), θ̃2(t) and q̃(t), we choose the following feedback law
m1(x, t):

m1(x, t) = −λ11(x, t) ˙̃θ1(t)− λ12(x, t) ˙̃θ2(t)−Q1(x, t) ˙̃q(t) (2.33)

Now, differentiate (2.29) with respect to space, substitute in (2.32) with (2.30) to obtain:

∂tz1(x, t) + c1∂xz1(x, t) = σ1(x)z2(x, t)− p1(x)z1(1, t)
+ θ̃1

(
− ∂tλ11(x, t)− c1∂xλ11(x, t) + σ1(x)λ21(x, t)− p1(x)λ11(1, t) + φ1(x, t)

)
+ θ̃2

(
− ∂tλ12(x, t)− c1∂xλ12(x, t) + σ1(x)λ22(x, t)− p1(x)λ12(1, t)

)
+ q̃(t)

(
− ∂tQ1(x, t)− c1∂xQ1(x, t) + σ1(x)Q2(x, t)− p1(x)Q1(1, t)

) (2.34)

Similarly, deriving (2.30) with respect to time and following the same procedure, one gets for
the feedback law m2(x, t):

m2(x, t) = −λ21(x, t) ˙̃θ1(t)− λ22(x, t) ˙̃θ2(t)−Q2(x, t) ˙̃q(t) (2.35)

and the following dynamics:

∂tz2(x, t)− c2∂xz2(x, t) = σ2(x)z1(x, t)− p2(x)z1(1, t)
+ θ̃1

(
− ∂tλ21(x, t) + c2∂xλ21(x, t) + σ2(x)λ11(x, t)− p2(x)λ11(1, t)

)
+ θ̃2

(
− ∂tλ22(x, t) + c2∂xλ22(x, t) + σ2(x)λ12(x, t)− p2(x)λ12(1, t) + φ2(x, t)

)
+ q̃(t)

(
− ∂tQ2(x, t) + c2∂xQ2(x, t) + σ2(x)Q1(x, t)− p2(x)Q1(1, t)

) (2.36)
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Equations (2.34) and (2.36) suggest the following dynamics of the swapping filters:{
∂tλ11(x, t) + c1∂xλ11(x, t) = σ1(x)λ21(x, t)− p1(x)λ11(1, t) + φ1(x, t)
∂tλ21(x, t)− c2∂xλ21(x, t) = σ2(x)λ11(x, t)− p2(x)λ11(1, t)

(2.37)
{
∂tλ12(x, t) + c1∂xλ12(x, t) = σ1(x)λ22(x, t)− p1(x)λ12(1, t)
∂tλ22(x, t)− c2∂xλ22(x, t) = σ2(x)λ12(x, t)− p2(x)λ12(1, t) + φ2(x, t)

(2.38)
{
∂tQ1(x, t) + c1∂xQ1(x, t) = σ1(x)Q2(x, t)− p1(x)Q1(1, t)
∂tQ2(x, t)− c2∂xQ2(x, t) = σ2(x)Q1(x, t)− p2(x)Q1(1, t)

(2.39)

and we impose the following boundary conditions:

λ11(0, t) = ωλ21(0, t), λ21(1, t) = 0 (2.40)

λ12(0, t) = ωλ22(0, t), λ22(1, t) = 0 (2.41)

Q1(0, t) = wQ2(0, t) + v(0, t), Q2(1, t) = 0 (2.42)
with zero distributed initial conditions Λ(x, 0) = 0. It is important to notice that the systems
(2.37)-(2.40), (2.38)-(2.41) and (2.39)-(2.42) are independent from each other. Hence, we can
denote by:

Λ1(x, t) =
(
λ11(x, t)
λ21(x, t)

)
, Λ2(x, t) =

(
λ12(x, t)
λ22(x, t)

)
, Q(x, t) =

(
Q1(x, t)
Q2(x, t)

)
(2.43)

three separate subsystems of Λ(x, t). Doing so, and substituting equations (2.37)-(2.39) in (2.34)
and (2.36), the dynamics of the transformed state Z(x, t) becomes

∂tz1(x, t) + c1∂xz1(x, t) = σ1(x)z2(x, t)− p1(x)z1(1, t) (2.44)

∂tz2(x, t)− c2∂xz2(x, t) = σ2(x)z1(x, t)− p2(x)z1(1, t) (2.45)
Also, using the boundary conditions given in (2.40)-(2.42), we can then derive the boundary
conditions of Z(x, t) using transformation (2.31) as:

z1(0, t) = wz2(0, t), z2(1, t) = 0 (2.46)

In view of the transformation (2.31), the state estimation error E(x, t) splits into two parts. The
first component is the observation error represented by Z(x, t), which is totally decoupled from
the parameters estimation errors θ̃(t) and always present whether we have parameters to estimate
or not. The second component is the parameter-induced error represented by Λ(x, t)θ̃(t), which
is proportional to the parameters mismatch. It is important to mention that the idea of state
parametrization was was first introduced by the authors in [53] for ODEs. To sum up, the
problem of the exponential stability of the error system (2.26)-(2.28) is equivalent to address
three problems: the exponential stability of Z(x, t), the exponential stability of θ̃(t) and the
boundedness of Λ(x, t).
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2.6 Exponential stability of Z(x, t)
We start our analysis by considering the Z(x, t) system (2.44)-(2.46). Our goal is to select the
observer gains p1(x) and p2(x) such that the equilibrium z1 ≡ z2 ≡ 0 is exponentially stable
in the L2 sense. In fact, equation (2.31) allows a straightforward application of the results in
[76] (Section 4). The authors use a Volterra-backstepping transformation of the second kind to
map the system (2.44)-(2.46) into an exponentially stable target system. We present here the
transformation for the sake of completeness:

Z(x, t) = γ̃(x, t)−
∫ 1

x
P (x, ξ)γ̃(ξ, t)dξ (2.47)

P (x, ξ) =
(
P 11(x, ξ) P 12(x, ξ)
P 21(x, ξ) P 22(x, ξ)

)
,

γ̃(x, t) =
(
α̃(x, t)
β̃(x, t)

) (2.48)

The transformation evolves in the triangular domain Ω = {(x, ξ), 0 ≤ x ≤ ξ ≤ 1}, and maps the
Z(x, t) system (2.44)-(2.46) into the target system γ̃(x, t) given by:

∂tα(x, t) + c1∂xα(x, t) = 0 (2.49)
∂tβ(x, t)− c2∂xβ(x, t) = 0 (2.50)

α(0, t) = ωβ(0, t), β(1, t) = 0 (2.51)

To achieve this transformation, the kernel equations must satisfy the following equations:

c1P
11
x (x, ξ) + c1P

11
ξ (x, ξ) = σ1(x)P 21(x, ξ) (2.52)

c1P
12
x (x, ξ)− c2P

12
ξ (x, ξ) = σ1(x)P 22(x, ξ) (2.53)

c2P
21
x (x, ξ)− c1P

21
ξ (x, ξ) = −σ2(x)P 11(x, ξ) (2.54)

c2P
22
x (x, ξ) + c2P

22
ξ (x, ξ) = −σ2(x)P 12(x, ξ) (2.55)

with boundary conditions:

P 11(0, ξ) = ωP 21(0, ξ), P 12(x, x) = σ1(x)
c1 + c2

(2.56)

P 21(x, x) = − σ2(x)
c1 + c2

, P 22(0, ξ) = 1
ω
P 12(0, ξ) (2.57)

The observer gains p1(x) and p2(x) serve as additional conditions on the output injection kernels
as:

p1(x) = −c1P
11(x, 1), p2(x) = −c1P

21(x, 1) (2.58)
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It has been shown in [76] that the kernel equations (2.52)-(2.57) have a unique solution in C2(Ω)
and are invertible. The inverse transformation is denoted by R(x, ξ) and is given by:

γ̃(x, t) = Z(x, t) +
∫ 1

x
R(x, ξ)Z(ξ, t)dξ (2.59)

R(x, ξ) =
(
R11(x, ξ) R12(x, ξ)
R21(x, ξ) R22(x, ξ)

)
, (2.60)

with the following kernel equations:

c1R
11
x (x, ξ) + c1R

11
ξ (x, ξ) = −σ2(ξ)R12(x, ξ) (2.61)

c1R
12
x (x, ξ)− c2R

12
ξ (x, ξ) = −σ1(ξ)R11(x, ξ) (2.62)

c2R
21
x (x, ξ)− c1R

21
ξ (x, ξ) = σ2(ξ)R22(x, ξ) (2.63)

c2R
22
x (x, ξ) + c2R

22
ξ (x, ξ) = σ1(ξ)R21(x, ξ) (2.64)

with boundary conditions:

R11(0, ξ) = ωR21(0, ξ), R12(x, x) = σ1(x)
c1 + c2

(2.65)

R21(x, x) = − σ2(x)
c1 + c2

, R22(0, ξ) = 1
ω
R12(0, ξ) (2.66)

The derivation methodology of the kernel equations will be clarified in the next sections. We
orient the interested readers to [76] and [50] for further information on the kernel equations
developments, and proofs of the existence and uniqueness of solutions.

Remark 2.6.1. Using the direct and the inverse transformation (2.47)-(2.59), one can drive
the following relation between the direct kernel P (x, ξ) and the inverse kernel R(x, ξ) such that

P (x, ξ) = R(x, ξ)−
∫ ξ

x
R(x, y)P (y, ξ)dξ (2.67)

Using a quadratic Lyapunov function and the method of characteristics, one can easily show
that γ̃(x, t) is L2 stable and that α ≡ β ≡ 0 is reached in finite time for all 0 ≤ x ≤ 1. Referring
back to (2.47) and (2.59), the stability properties of the γ̃(x, t) and Z(x, t) are equivalent. The
following Theorem (which is Theorem 2 in [76]) states the stability results for the Z(x, t) system.

Theorem 2.6.1 ([76]). Consider the system (2.44)-(2.45) with boundary conditions (2.46),
initial conditions z0

1(x) ,z0
2(x) in L2[0, 1] and with observer gains (2.58). The equilibrium z1 ≡

z2 ≡ 0 is exponentially stable in the L2 sense, and the equilbrium is reached in finite time
tF = 1

c1
+ 1

c2
.
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2.7 Boundedness of Λ(x, t)

In this section, we prove the boundedness of the swapping filters Λ(x, t). This is necessary, as
introduced in Section 2.5 and shown in Section 2.9, to conclude on the exponential stability of
E(x, t).
Λ(x, t) is split into three subsystems: Λ1(x, t), Λ2(x, t) and Q(x, t). Looking into the dynamics
of the swapping filters (2.37)-(2.42), one can realize that Λ1(x, t) and Λ2(x, t) are symmetric by
their source terms (φ1(x, t) and φ2(x, t)) whereas Q(x, t) is different by its measurement signal
v(0, t) acting on the left boundary. As a result, we divide the boundedness analysis into two
parts: first the boundedness of {Λ1(x, t),Λ2(x, t)} and second is the boundedness of Q(x, t).

2.7.1 Boundedness of Λ1(x, t) and Λ2(x, t)

The results are inferred from the following theorem.

Theorem 2.7.1. Consider the two subsystems Λ1(x, t) and Λ2(x, t) with zero initial conditions
Λ1(x, 0) ≡ Λ2(x, 0) ≡ 0, the observer gains (2.58), and with φ1 and φ2 two bounded functions
of class C1([ 0, 1] × [ 0,+∞);R). Then we have that ||Λ1(., t)||L2[0,1] and ||Λ2(., t)||L2[0,1] are
bounded.

Proof. First, consider Λ1(x, t). We begin by decoupling the system through the following back-
stepping transformation:

a(x, t) = λ11(x, t) +
∫ 1

x

(
R11(x, ξ)λ11(ξ, t) +R12(x, ξ)λ21(ξ, t)

)
dξ (2.68)

b(x, t) = λ21(x, t) +
∫ 1

x

(
R21(x, ξ)λ11(ξ, t) +R22(x, ξ)λ21(ξ, t)

)
dξ (2.69)

where ∆(x, t)=
(
a(x, t)
b(x, t)

)
is the state of the transformed dynamics. Differentiating (2.68) with

respect to time and substituting in (2.37), we get

∂ta(x, t) = −c1∂xλ11(x, t) + σ1(x)λ21(x, t)− p1(x)λ11(1, t) + φ1(x, t)

+
∫ 1

x

(
− c1R

11(x, ξ)∂ξλ11(ξ, t) + σ1(ξ)R11(x, ξ)λ21(ξ, t)− p1(ξ)R11(x, ξ)λ11(1, t)

+ φ1(ξ, t)R11(x, ξ) + c2R
12(x, ξ)∂ξλ21(x, ξ) + σ2(ξ)R12(x, ξ)λ11(ξ, t)

− p2(ξ)R12(x, ξ)λ11(1, t)
)
dξ

(2.70)
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Integrating (2.70) by parts, and substituting by the boundary conditions (2.40) to get

∂ta(x, t) = −c1∂xλ11(x, t) + σ1(x)λ21(x, t)− p1(x)λ11(1, t) + φ1(x, t)− c1R
11(x, 1)λ11(1, t)

+ c1R
11(x, x)λ11(x, t)− c2R

12(x, x)λ21(x, t)

+
∫ 1

x

(
c1R

11
ξ (x, ξ)λ11(ξ, t) + σ1(ξ)R11(x, ξ)λ21(ξ, t)− p1(ξ)R11(x, ξ)λ11(1, t)

+ φ1(ξ, t)R11(x, ξ)− c2R
12
ξ (x, ξ)λ21(x, ξ) + σ2(ξ)R12(x, ξ)λ11(ξ, t)

− p2(ξ)R12(x, ξ)λ11(1, t)
)
dξ

(2.71)

Now, differentiate (2.68) with respect to space to compute

c1∂xa(x, t) = c1∂xλ11(x, t)− c1R
11(x, x)λ11(x, t)− c1R

12(x, x)λ21(x, t)

+
∫ 1

x

(
c1R

11
x (x, ξ)λ11(ξ, t) + c1R

12
x (x, ξ)λ21(ξ, t)

)
dξ

(2.72)

By adding equations (2.71) and (2.72), we obtain

∂ta(x, t) + c1∂xa(x, t) = φ1(x, t) +
∫ 1

x
R11(x, ξ)φ1(ξ, t)dξ

+
(
σ1(x)− (c1 + c2)R12(x, x)

)
λ21(x, t)

−
(
p1(x) + c1R

11(x, 1) +
∫ 1

x

(
p1(ξ)R11(x, ξ) + p2(ξ)R12(x, ξ)

)
dξ
)
λ11(1, t)

+
∫ 1

x

(
c1R

11
x (x, ξ) + c1R

11
ξ (x, ξ) + σ2(ξ)R12(x, ξ)

)
λ11(ξ, t)dξ

+
∫ 1

x

(
c1R

12
x (x, ξ)− c2R

12
ξ (x, ξ) + σ1(ξ)R11(x, ξ)

)
λ21(ξ, t)dξ

(2.73)

Hence, using equations (2.61)-(2.62)-(2.65) and the direct-inverse relation (2.67), we get the
following dynamics for a(x, t)

∂ta(x, t) + c1∂xa(x, t) = f1(x, t) (2.74)

where f1(x, t) = φ1(x, t) +
∫ 1
x R

11(x, ξ)φ1(ξ, t)dξ. Now, differentiate (2.69) in time, substitute in
(2.37) then integrate by parts and substitute the boundary conditions (2.40) to get

∂tb(x, t) = c2∂xλ21(x, t) + σ2(x)λ11(x, t)− p2(x)λ11(1, t)− c1R
21(x, 1)λ11(1, t)

+ c1R
21(x, x)λ11(x, t)− c2R

22(x, x)λ21(x, t)

+
∫ 1

x

(
c1R

21
ξ (x, ξ)λ11(ξ, t) + σ1(ξ)R21(x, ξ)λ21(ξ, t)− p1(ξ)R21(x, ξ)λ11(1, t)

+ φ1(ξ, t)R21(x, ξ)− c2R
22
ξ (x, ξ)λ21(x, ξ) + σ2(ξ)R22(x, ξ)λ11(ξ, t)

− p2(ξ)R22(x, ξ)λ11(1, t)
)
dξ

(2.75)
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We differentiate (2.69) in space to compute

c2∂xb(x, t) = c2∂xλ21(x, t)− c2R
21(x, x)λ11(x, t)− c2R

22(x, x)λ21(x, t)

+
∫ 1

x

(
c2R

21
x (x, ξ)λ11(ξ, t) + c2R

22
x (x, ξ)λ21(ξ, t)

)
dξ

(2.76)

By subtracting (2.76) from (2.75) we obtain

∂tb(x, t)− c2∂xb(x, t) =
∫ 1

x
R21(x, ξ)φ1(ξ, t)dξ

+
(
σ2(x) + (c1 + c2)R21(x, x)

)
λ21(x, t)

+
(
− p2(x)− c1R

21(x, 1)−
∫ 1

x

(
p1(ξ)R21(x, ξ) + p2(ξ)R22(x, ξ)

)
dξ
)
λ11(1, t)

+
∫ 1

x

(
c1R

21
ξ (x, ξ)− c2R

21
x (x, ξ) + σ2(ξ)R22(x, ξ)

)
λ11(ξ, t)dξ

+
∫ 1

x

(
− c2R

22
x (x, ξ)− c2R

22
ξ (x, ξ) + σ1(ξ)R21(x, ξ)

)
λ21(ξ, t)dξ

(2.77)

Then using (2.63)-(2.64)-(2.66) and the direct-inverse relation (2.67), we get the following dy-
namics for b(x, t)

∂tb(x, t)− c2∂xb(x, t) = f2(x, t) (2.78)

where f2(x, t) =
∫ 1
x R

21(x, ξ)φ1(ξ, t)dξ. The boundary conditions for the ∆(x, t) system are
derived using (2.68)-(2.69), (2.65)-(2.66) and (2.40), and we sum up the complete dynamics in
the following system of equations

∂ta(x, t) + c1∂xa(x, t) = f1(x, t) (2.79)
∂tb(x, t)− c2∂xb(x, t) = f2(x, t) (2.80)

a(0, t) = ωb(0, t), b(1, t) = 0 (2.81)

with zero initial conditions a(x, 0) = b(x, 0) = 0. Now, we start the boundedness analysis of
∆(x, t). By the invertability of the Volterra backstepping transformation (2.68)-(2.69), all the
derived boundedness properties for ∆(x, t) are equivalently applied to Λ1(x, t).
We define the L2 norm of a two state vector ∆(x, t) to be

||∆(., t)||L2[0,1] =
√∫ 1

0
a2(x, t) + b2(x, t)dx (2.82)

The objective is to find a positive constant G such that ||∆(., t)||L2[0,1] ≤ G for all t > 0. To do
so, we consider the following Lyapunov function:

V1(t) = 1
2

∫ 1

0

q1
c1
e−µxa2(x, t) + q2

c2
eµxb2(x, t)dx (2.83)
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where q1, q2 and µ are positive constants. Taking the time derivative of (2.83) we get:

V̇1(t) =
∫ 1

0

q1
c1
e−µxa(x, t)∂ta(x, t) + q2

c2
eµxb(x, t)∂tb(x, t) dx (2.84)

Using (2.79)-(2.81) and integrating by parts, one has:

V̇1(t) = −1
2q1e

−µa2(1, t) + 1
2(q1q

2 − q2)b2(0, t)− µ

2

∫ 1

0
q1e
−µxa2(x, t) + q2e

µxb2(x, t)dx

+
∫ 1

0

q1
c1
e−µxf1(x, t)a(x, t) + q2

c2
eµxf2(x, t)b(x, t)dx

(2.85)

Applying Young’s inequality to the last term of (2.85), we have, for all k1 > 0, k2 > 0, that:

V̇1(t) ≤ −1
2q1e

−µa2(1, t) + 1
2(q1q

2 − p2)b2(0, t) + (−µ2 + k1
2c1

)
∫ 1

0
q1e
−µxa2(x, t)dx

+ (−µ2 + k2
2c2

)
∫ 1

0
q2e

µxb2(x, t)dx+ 1
2k1

∫ 1

0

q1
c1
e−µxf2

1 (x, t)dx

+ 1
2k2

∫ 1

0

q2
c2
eµxf2

2 (x, t)dx

(2.86)

We can choose µ = 1, and q1 and q2 such that:

q1q
2 − q2 ≤ 0 (2.87)

Let Γ ∈ ]0,min{c1, c2}[, k1 ∈ ]0, c1 − Γ] and k2 ∈ ]0, c2 − Γ], then we have

V̇1(t) ≤ −ΓV1(t) + 1
2k1

∫ 1

0

q1
c1
e−xf2

1 (x, t)dx+ 1
2k2

∫ 1

0

q2
c2
exf2

2 (x, t)dx

≤ −ΓV1(t) + q1
2k1c1

F 2
1 + q2e

2k2c2
F 2

2︸ ︷︷ ︸
H

(2.88)

where F1 and F2 are the upper bounds on f1(x, t) and f2(x, t) respectively i.e. |f1(x, t)| ≤ F1
and |f2(x, t)| ≤ F2 for all (t, x) ∈ {(t, x) | t ≥ 0, x ∈ [ 0, 1] }. Using (2.88), we can deduce the
following bound on V1(t):

V1(t) ≤ e−ΓtV1(0) + H

Γ (1− e−Γt) (2.89)

We start all the filters from zero inital conditions. Hence, V1(0) = 0 and therefore V1(t) ≤ H
Γ for

all t ≥ 0. It follows that V1(t) is bounded, as a direct consequence of the boundedness of f1(x, t)
and f2(x, t). Since V1(t) serves as the weighted L2 norm of the ∆(x, t) system, then there exist
G > 0 such that ||∆(., t)||L2[0,1] ≤ G for all t > 0. Now by the invertability of the transformation
R(x, ξ), we can deduce that ||Λ1(., t)||L2[0,1] is bounded and the proof is complete.

Remark 2.7.1. The boundedness of ||Λ2(., t)||L2[0,1] is done in exactly the same way, since the
two systems Λ1(x, t) and Λ2(x, t) are symmetric.
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2.7.2 Boundedness of Q(x, t)
The boundedness of Q(x, t) in the L2 norms is done in a similar way to the boundedness of
Λ1(x, t). However, Q(x, t) involves a plant measurement signal v(0, t) at the left boundary.
In order to prove the boundedness of the filter Q(x, t), it is necessary to take the following
assumption on the plant (2.18)-(2.20).

Assumption 2.7.1. Assume that the plant (u,v) is bounded i.e. we assume that there exist
two positive constants Mu > 0 and Mv > 0 such that |u(x, t)| ≤ Mu and |v(x, t)| ≤ Mv for all
x ∈ [0, 1] and t ≥ 0.

Remark 2.7.2. Assumption 2.7.1 is only necessary for the estimation of the boundary parameter
q. If the value of q is known, the boundedness of the plant is no more needed. The estimation
of the parameters θ1 and θ2 is independent from the status of the plant (u, v).

The boundedness results of Q(x, t) are inferred from the following theorem.

Theorem 2.7.2. Consider the Q(x, t) system (2.39)-(2.42) with zero initial conditions Q(x, 0) ≡
0 and the observer gains (2.58). If assumption 2.7.1 holds, then we have that ||Q(., t)||L2[0,1] is
bounded.

Proof. As we did in section 2.7.1, the idea is first to decouple the two states Q1(x, t) and Q2(x, t).
Following the same procedure of section 2.7.1, it is easy to check that the same transformation
R(x, ξ) defined by equations (2.61)-(2.66) maps Q(x, t) to the following target system:

W (x, t) = Q(x, t) +
∫ 1

x
R(x, ξ)Q(ξ, t)dξ (2.90)

W (x, t) =
(
w1(x, t)
w2(x, t)

)
(2.91)

where the dynamics of W (x, t) are given by:

∂tw1(x, t) + c1∂xw1(x, t) = 0 (2.92)
∂tw2(x, t)− c2∂xw2(x, t) = 0 (2.93)

w1(0, t) = ωw2(0, t) + v(0, t), w2(1, t) = 0 (2.94)

Since we choose a zero initial conditions for the filters, then the trivial solution for the transport
equation w2(x, t) is zero for all times. As a result, we are left with the transport equation
w1(x, t):

∂tw1(x, t) + c1∂xw1(x, t) = 0, w1(0, t) = v(0, t) (2.95)

Now, we show the L2 boundedness of W (x, t) by considering the following Lyapunov function:

V2(t) = 1
2

∫ 1

0
e−xw2

1(x, t) (2.96)
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Differentiating (2.96) in time, substituting by (2.95) then integrate by parts to get:

V̇2(t) = − c1
2ew

2(1, t) + c1
2 w

2(0, t)− c1V2(t)

≤ −c1V2(t) + c1
2 v

2(0, t)

≤ −c1V2(t) + c1
2 M

2
v

(2.97)

It follows from (2.97) that V2(t) is bounded, as a direct consequence of the boundedness of the
plant (u, v) by assumption 2.7.1. Since V2(t) serves as the weighted L2 norm of the W (x, t)
system and since the transformation R(x, ξ) is invertible, we can deduce that ||Q(., t)||L2[0,1] is
bounded and the proof is complete.

2.8 Parameter adaptation laws and exponential stability of θ̃(t)
The authors in [51] synthesize adaptation laws for static regressors equations of this general
from:

y(t) = φT (t)θ (2.98)
where y is the vector of outputs, φ is the regressor and θ is the vector of unknown parameters.
The core of the designs is based on minimizing cost functions of the squared estimation errors.
Then, sufficient conditions for the exponential convergence of the estimates are given using
Lyapunov analysis considering persistent excitation assumptions. In this section, we adapt
the analysis of [51] to synthesize an adaptive law for our problem and prove that θ̂(t) → θ
exponentially fast.
In view of the available measurements given in (2.21), equations (2.29) and (2.30) are evaluated
at x = 1 and x = 0, respectively, and we have that:

Zp(t) = Ep(t)− Λp(t)θ̃(t) (2.99)
where:

Zp(t) =
(
z1(1, t)
z2(0, t)

)
, Ep(t) =

(
ũ(1, t)
ṽ(0, t)

)
,Λp(t) =

[
λ11(1, t) λ12(1, t) Q1(1, t)
λ21(0, t) λ22(0, t) Q2(0, t)

]
Zp(t) is the output of the PDE estimation error. We have shown in Theorem 2.6.1 that after
a delay time tF = 1

c1
+ 1

c2
, Z(x, t) reaches its zero equilibrium point, and hence, Zp(t) becomes

equal to zero. Therefore, after tF , the regressor equations (2.99) and (2.98) become equivalent
and this suggests the following normalized parameter adaptation law (continuous-time recursive
least squares estimator with a forgetting factor):

˙̂
θ(t) = s(t)

P (t)ΛTp (t)
1 + ||ΛTp (t)Λp(t)||2

Ep(t), (2.100)

Ṗ (t) = s(t)
[
βP (t)−

P (t)ΛTp (t)Λp(t)P (t)
1 + ||ΛTp (t)Λp(t)||2

]
, (2.101)

s(t) =
{

1 if t > tF

0 else
(2.102)
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where θ̂(t) is the estimated value of θ, P (t) ∈ R3×3, and β > 0 is the forgetting factor. The
initial conditions θ̂(0) = θ̂0, and P (0) = P0 = P T0 > 0 are chosen arbitrarily. The introduction
of the s(t) signal in the adaptation laws means that the estimation of the parameters will only
begin after the maximum time for transport tF is passed. In other words, the signal s(t) removes
the effect of the initial conditions of both the filters Λ(x, t) and the observer {û(x, t), v̂(x, t)} on
the overall adaptive scheme.
To prove that θ̂(t)→ θ exponentially fast, we assume the following:

Assumption 2.8.1. We assume that Λp(t) is persistently exciting i.e. for all t ≥ 0 there exist
positive constants T0, c0 and c1 so that:

c0I ≤
1
T0

∫ t+T0

t
ΛTp (τ)Λp(τ)dτ ≤ c1I (2.103)

where I ∈ R3×3 denotes the identity matrix.

The convergence of the estimate θ̂(t) is then given by the following Theorem.

Theorem 2.8.1. Consider the system (2.100)-(2.102) with initial conditions given by θ̂0 and
P0. If Λp(t), Λ̇p(t) are bounded and if (2.103) holds, then θ̂(t)→ θ exponentially fast.

Proof. First, we compute the dynamics of the estimation error on θ̃(t) using (2.99) and (2.100)
as:

˙̃θ(t) = − ˙̂
θ(t) = −s(t)

P (t)ΛTp (t)
1 + ||ΛTp (t)Λp(t)||2

Ep(t)

= −s(t)
P (t)ΛTp (t)

1 + ||ΛTp (t)Λp(t)||2
Zp(t)− s(t)

P (t)ΛTp (t)Λp(t)
1 + ||ΛTp (t)Λp(t)||2

θ̃(t)
(2.104)

it is also easy to check that (2.101) is equivalent to

d

dt
(P−1)(t) = s(t)

[
−βP−1(t) +

ΛTp (t)Λp(t)
1 + ||ΛTp (t)Λp(t)||2

]
(2.105)

where P−1(t) ∈ R3×3 is the inverse matrix of P (t). It can be shown (see e.g. [51]) that if Λp(t),
Λ̇p(t) are bounded and under Assumption 2.8.1, P−1(t) is positive definite and bounded for all
t ≥ 0. Now, we can define the following Lyapunov function:

V (t) = 1
2 θ̃

T (t)P−1(t)θ̃(t) (2.106)

Taking the time derivative of (2.106) we obtain:

V̇ (t) = 1
2 θ̃

T (t) d
dt

(P−1)(t)θ̃(t) + θ̃TP−1(t) ˙̃θ(t) (2.107)

Using (2.104)-(2.105), one gets from (2.106) that:

V̇ (t) = −s(t)
θ̃T (t)ΛTp (t)

1 + ||ΛTp (t)Λp(t)||2
Zp(t)−

β

2 s(t)θ̃
T (t)P−1(t)θ̃(t)− 1

2s(t)
θ̃T (t)ΛTp (t)Λp(t)θ̃(t)
1 + ||ΛTp (t)Λp(t)||2

(2.108)
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If t < tF , by (2.102) we have V̇ (t) = 0: the Lyapunov function is non-increasing. When t become
greater than tF (s(t) = 1), we have by Theorem 2.6.1 that Zp ≡ 0, then (2.108) becomes

V̇ (t) = −βV (t)− 1
2
θ̃T (t)ΛTp (t)Λp(t)θ̃(t)
1 + ||ΛTp (t)Λp(t)||2

≤ −βV (t) (2.109)

since the matrix ΛTp (t)Λp(t) is positive semi-definite. As a result, for all t ≥ tF , there exists
K > 0 such that V (t) ≤ Ke−βtV (0) and θ̃(t) is thus exponentially decaying to zero with a rate
β : θ̂(t)→ θ exponentially fast and the proof is complete.

2.9 Exponential stability of E(x, t)
In this section we prove the exponential stability of the error system E(x, t), referring to the
results in sections 2.6, 2.7 and 2.8.

Theorem 2.9.1. Consider the error system (2.26)-(2.27) with boundary conditions (2.28) and
initial conditions ũ0, ṽ0 in L2[0, 1], with observer gains p1(x) and p2(x) given in (2.58) and with
feedback gains m1(x, t) and m2(x, t) given in (2.33) and (2.35). Under Theorems 2.6.1-2.8.1 the
error system is exponentially stable in the L2 sense.

Proof. Using (2.31), one gets the following:

||E(., t)||L2[0,1] ≤ ||Z(., t)||L2[0,1] + ||Λ(., t)θ̃(t)||L2[0,1] (2.110)

By definition:

||Λ(, t)θ̃(t)||2L2[0,1] =
∫ 1

0

(
λ11(x, t)θ̃1(t) + λ12(x, t)θ̃2(t) +Q1(x, t)q̃(t)

)2
dx

+
∫ 1

0

(
λ21(x, t)θ̃1(t) + λ22(x, t)θ̃2(t) +Q2(x, t)q̃(t)

)2
dx

(2.111)

After expanding the squared parentheses in (2.111) and using basic identity inequalities we get:

||Λ(, t)θ̃(t)||2L2[0,1] ≤ 3θ̃1
2||Λ1(., t)||2L2[0,1] + 3θ̃2

2||Λ2(., t)||2L2[0,1] + 3q̃2||Q(., t)||2L2[0,1] (2.112)

Then by theorems 2.7.1-2.7.2, there exist 3 positive constants M1, M2 and M3 such that:

||Λ(, t)θ̃(t)||2L2[0,1] ≤ 3M1θ̃1
2(t) + 3M2θ̃2

2(t) + 3M3q̃
2(t)

≤M ||θ̃(t)||22
(2.113)

where M = 3max{M1,M2,M2}. Considering (2.110) along with (2.113) we have:

||E(., t)||L2[0,1] ≤ ||Z(., t)||L2[0,1] +
√
M ||θ̃(t)||2 (2.114)

Since ||Z(., t)||L2[0,1] and ||θ̃(t)||2 are exponentially decaying (referring to Theorem 2.6.1 and
Theorem 2.8.1, respectively), then so is ||E(., t)||L2[0,1].
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2.10 Numerical Simulation Results
The effectiveness of the adaptive estimator (2.22)-(2.25), whose convergence is ensured by the
theoretical results derived in Theorems 2.6.1-2.8.1, is evaluated on two separate scenarios: 1) on
a stable plant and 2) on an unstable plant. As mentioned in Remark 2.7.2, that in case there is
no boundary parameter q to be estimated, it is not necessary for the plant to be stable in order
to estimate the unstable distributed states {u(x, t),v(x, t)} and the other parameters θ1 and θ2.
Therefore, we show the convergence aspects on the following plant models.

2.10.1 Scenario 1: Stable plant

Consider the following plant toy example evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

∂tu(x, t) + 1
15∂xu(x, t) = 0.01v(x, t) + θ1cos(x) (2.115)

∂tv(x, t)− 1
5∂xv(x, t) = −0.01u(x, t) + θ2sin(x) (2.116)

u(0, t) = qv(0, t) + sin(t), v(1, t) = sin(0.25t) (2.117)

with θ1 = 1, θ2 = 2 and q = 0.5. The plant (2.115)-(2.117) is open-loop stable due to the chosen
small coupling values σ1(x) = 0.01, σ2(x) = −0.01 and also q = 0.5 < 1. The outputs of the
plant i.e. y1(t) = u(1, t) and y2(t) = v(0, t) are fed back to the adaptive estimator (Section 2.4)
as follows:

∂tû(x, t) + 1
15∂xû(x, t) = 0.01v̂(x, t) + θ̂1(t)cos(x)− p1(x)(û(1, t)− y1(t)) +m1(x, t) (2.118)

∂tv̂(x, t)− 1
5∂xv̂(x, t) = −0.01û(x, t) + θ̂2(t)sin(x)− p2(x)(û(1, t)− y1(t)) +m2(x, t) (2.119)

û(0, t) = ω(v̂(0, t)− y2(t)) + q̂(t)v(0, t) + sin(t), v̂(1, t) = sin(0.25t) (2.120)

where m1(x, t) and m2(x, t) are calculated using (2.33)-(2.35), the filters are computed using
(2.37)-(2.39) and the parameter estimates are updated using (2.100)-(2.102). Four variables are
still to be evaluated in order to simulate (2.118)-(2.120) which are: the weight w, the forgetting
factor β and the observer gains p1(x) and p2(x). The level of confidence in the measurement
y2(t) represented by w is set to 1 (w = 1). β is related to the speed of convergence of the
algorithm and it is set to β = 0.01. The calculation of p1(x) and p2(x) is done using (2.58).
This necessitates solving offline the P (x, ξ) kernel equations (2.52)-(2.57). The kernel P (x, ξ) is
solved using successive approximations [50]. The main idea of this method is to write the set
of PDEs (2.52)-(2.57) in the integral form using the method of characteristics. Afterwards, the
integral equations are solved using recursion up to an order of accuracy defined by the user. We
give here a brief explanation of the method.
Let us consider the kernel equations (2.52)-(2.53) with boundary conditions (2.56) of P 11(x, ξ)
and P 21(x, ξ) (The two other kernels P 12(x, ξ) and P 22(x, ξ) are completely similar). Using the
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method of characteristics on the domain Ω, we can write (2.52)-(2.53)-(2.56) in the integral form
as follows:

P 21(x, ξ) = −
σ2

(
xc1+ξc2
c1+c2

)
c1 + c2

+
∫ 0

x−ξ
c1+c2

(
σ2(x− c2s)P 11(x− c2s, ξ + c2s)

)
ds (2.121)

P 11(x, ξ) = ωP 21(0, ξ − x) +
∫ x

c1

0
σ1(x− c1s)P 21(x− c1s, ξ − c1s)ds

= ω

[
−
σ2

(
(ξ−x)c2
c1+c2

)
c1 + c2

+
∫ 0

x−ξ
c1+c2

(
σ2(−c2s)P 11(−c2s, ξ − x+ c2s)

)
ds

]

+
∫ x

c1

0
σ1(x− c1s)P 21(x− c1s, ξ − c1s)ds

(2.122)

System (2.121)-(2.122) can then be written in the following compact form:

H(x, ξ) = H0(x, ξ) + F [H](x, ξ) (2.123)

where:

H(x, ξ) =
(
P 11(x, ξ)
P 21(x, ξ)

)
, H0(x, ξ) =


−ω

σ2

(
(ξ−x)c2
c1+c2

)
c1+c2

−
σ2

(
xc1+ξc2
c1+c2

)
c1+c2



F [H](x, ξ) =

 ω
∫ 0
x−ξ
c1+c2

(
σ2(−c2s)P 11(−c2s, ξ − x+ c2s)

)
ds+

∫ x
c1

0 σ1(x− c1s)P 21(x− c1s, ξ − c1s)ds∫ 0
x−ξ
c1+c2

(
σ2(x− c2s)P 11(x− c2s, ξ + c2s)

)
ds


Given (2.123), we now use successive approximations i.e.

Hn(x, ξ) = H0(x, ξ) + F [Hn−1](x, ξ) (2.124)

withH0(x, ξ) = H0(x, t). We discritize the 2D domain Ω in rectangles, approximate the integrals
in F [H](x, ξ) using left Riemann sum for integrals and we simulate (2.124) for n iterations such
that |∆Hn(x, ξ) = Hn(x, ξ)−Hn−1(x, ξ)| < ε where ε is the degree of accuracy defined by the
user and it is very small. The sequence ∆Hn(x, ξ) is guaranteed to converge since the system
has a unique solution in C2(Ω) (see [50] for further details).
As all the observer parameters are set, we implement the plant (2.115)-(2.117) and the adaptive
observer (2.118)-(2.120) in Matlab 2018. We have used second order finite difference schemes to
approximate the first order derivative in space (∂x) and the fixed step ODE3 solver in Matlab
to approximate the time derivatives. The plant is started at {u0(x)=5sin(x), v0(x)=5cos(x)},
while the adaptive observer begins with {û0(x)=0, v̂0(x)=0, θ̂1(0)=5, θ̂2(0)=−3, q̂(0)=4}. Fig.
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Figure 2.3: In-domain state estimations at x = 0.25 and x = 0.75

2.3 shows the estimation of the states inside the domain at x = 0.25 and x = 0.75. These two
in-domain points are chosen just as an example to show the effectiveness of the adaptive observer
to estimate the in-domain states using only boundary sensing. The observer starts to converge
after the maximum delay time of transport tf = 15 + 5 = 20s is passed. The quality of the
parameter estimations is shown on Fig. 2.4. Before tf the estimations remain at the constant
initial values, but after that time, the algorithm starts to converge to the true parameter values
as predicted by the theoretical results in Theorem 2.7.2. Fig. 2.5 shows the convergence of
{ũ(x, t),ṽ(x, t)} in the L2 norm. Since the estimation of the parameters is not updated before
tf , the L2 norm increases from its initial value in the interval of time [0, tf ]. However, after tf ,
the parameters update algorithm starts and the L2 norm begins to decrease towards zero.

2.10.2 Scenario 2: Unstable plant

In this scenario, we consider an unstable plant evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

∂tu(x, t) + ∂xu(x, t) = 2.5v(x, t) + θ1cos(x) (2.125)

∂tv(x, t)− 2∂xv(x, t) = 2u(x, t) + θ2sin(x) (2.126)

u(0, t) = sin(t), v(1, t) = sin(0.25t) (2.127)
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Figure 2.4: Parameter estimations and parameter estimation erros
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Figure 2.5: The evolution of the L2 norm of {ũ(x, t),ṽ(x, t)}
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Figure 2.6: In-domain state estimations at x = 0.25 and x = 0.75

with θ1 = 1 and θ2 = 2. The system is unstable because of the large magnitude of the coupling
(σ1(x) = 2.5 and σ2(x) = 2) between the two dynamics u(x, t) and v(x, t). No unknown
boundary coupling q is involved in the system. As we mentioned in Remark 2.7.2, the estimation
of boundary parameters of this type qv(0, t) at the boundary is limited to bounded dynamics.
The main objective of Scenario 2 is to show that it is possible to estimate the states and the
parameters θ1 and θ2 for a plant that is diverging.
The simulation methodolgy is exactly the same as in Scenario 1, but it is important to pay
attention to remove the filter Q(x, t) from the set of filters as no boundary elements are present.
The initial conditions of the plant and the observer are: {u0(x)=5sin(x), v0(x)=5cos(x)}, while
for the adaptive observer, {û0(x)=0, v̂0(x)=0, θ̂1(0)=5, θ̂2(0)=4}. The results are shown on
Figures 2.6-2.8. The delay time tf = 1 + 1

2 = 1.5s is small compared to the order of magnitude
of the system simulation time and it is not showing on the figures. In all cases, we can observe
the convergence of the in-domain states as well as the parameters to their true values. Although
the plant is unbounded, the L2 norm of the error states start to converge to zero after the sharp
increase in its magnitude in the interval of time [0, 1.5s]. The results in both scenarios 1 and 2
shows that the stability of the estimation errors is guaranteed by the observer gains p1(x) and
p2(x) while the convergence of the parameters is related to the persistency in the parameter
excitations through the plant inputs U(t) = sin(t) and V (t) = sin(0.25t) and the bounded
functions φ1(x, t) = cos(x) and φ2(x, t) = sin(x).
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Figure 2.9: 15kW TIF plant at CERN

2.11 Experimental evaluation of the observer (CERN)

We evaluate our observer on the TIF plant, a 15kW cooling system built at CERN to run educa-
tive experiments for developing and improving CO2 cooling technology [65]. This refrigeration
system is shown on Fig. 2.9 and schematically depicted in Fig. 2.10. It consists of a circulation
system where the cold CO2 refrigerant is pumped by the pump (LP3004) to the transfer lines
(two concentric cylindrical tubes in vacuum isolation) and then heated by means of two heaters
(EH7027 and EH7028) to provide the hot CO2 refrigerant. Both hot and cold refrigerants ex-
change heat through the transfer lines, and finally the hot fluid is cooled down by the chiller
(HX3082) to be pumped again into the cold line. The accumulator is used to set a desired output
pressure at the hot side. We focus on the transfer line, as this part is particularly complex to
model and necessitates an advanced observation scheme for distributed systems. The plant is
equipped with four temperature sensors placed at the extremities of the tubes (shown in Fig.
2.10), which measure the input and output temperatures on both hot and cold sides. The control
input is through the two heaters (EH7027 and EH7028), where we can vary the temperature of
the hot input by adding and removing heat and thus create some transients in the system.
We recall that the overall objective of the theoretical study presented in Sections 2.2 - 2.10 is to
synthesize an adaptive observer to estimate the temperature states {TH(x, t), TC(x, t)} simulta-
neously with the heat transfer coefficient h of a single phase heat exchanger tube carrying CO2
as its working refrigerant (see Fig. 2.1) and the tansfer line on Fig. 2.10. The system is modeled
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by two hetero-directional transport equations (2.2)-(2.5). One key idea of our solution to the
problem is to augment the vector of states from {TH(x, t), TC(x, t)} to {TH(x, t), TC(x, t), h},
and then do a linearization around the nominal model {THN (x, t), TCN (x, t), hN} presented in
equations (2.6)-(2.9). The obtained dynamics of the perturbed states {∆TH(x, t), ∆TC(x, t),
∆h} are transformed by an exponential transformation to {∆TH1 (x, t), ∆TC1 (x, t), ∆h} given in
equations (2.14)-(2.16) with the measurements yH1 (t) and yC2 (t) in (2.17). We have mentioned in
Remark 2.2.1 that synthesizing an observer for {∆TH1 (x, t), ∆TC1 (x, t), ∆h} is just a special case
in the more general observation problem considered in Section 2.2. Since only the estimation of
the heat transfer coefficient is considered in the evaluation process, the over-parameterization
in system (2.18)-(2.20) is removed by letting θ1 = θ2 = ∆h, and as a consequence, the number
of necessary swapping filters drops from four to only two. More precisely, the adaptive observer
for {∆TH1 (x, t), ∆TC1 (x, t), ∆h} is:

∂t∆̂T
H

1 (x, t) + c1∂x∆̂T
H

1 (x, t) = KN
1 e

(
KN1
c1

+
KN2
c2

)x∆̂T
C

1 (x, t)− p1(x)(∆̂T
H

1 (1, t)

− yH1 (t)) + ∆̂h(t)πD1e
−KN1
c1

x

AHρHCHP
(−THN (x, t) + TCN (x, t)) +m1(x, t)

(2.128)

∂t∆̂T
C

1 (x, t)− c2∂x∆̂T
C

1 (x, t) = KN
2 e
−(

KN1
c1

+
KN2
c2

)x∆̂T
H

1 (x, t)− p2(x)(∆̂T
H

1 (1, t)

− yH1 (t)) + ∆̂h(t)πD1e
KN2
c2

x

ACρCCCP
(THN (x, t)− TCN (x, t)) +m2(x, t)

(2.129)

∆̂T
H

1 (0, t) = ω(∆̂T
C

1 (0, t)− yC2 (t)), ∆̂T
C

1 (1, t) = 0 (2.130)

The swapping filters are

∂tλ1(x, t) + c1∂xλ1(x, t) = KN
1 e

(
KN1
c1

+
KN2
c2

)x
λ2(x, t)− p1(x)λ1(1, t)

+ πD1e
−KN1
c1

x

AHρHCHP
(−THN (x, t) + TCN (x, t))

(2.131)

∂tλ2(x, t)− c2∂xλ2(x, t) = KN
2 e
−(

KN1
c1

+
KN2
c2

)x
λ1(x, t)− p2(x)λ1(1, t)

+ πD1e
KN2
c2

x

ACρCCCP
(THN (x, t)− TCN (x, t))

(2.132)

λ1(0, t) = ωλ2(0, t), λ2(1, t) = 0 (2.133)

with m1(x, t) = λ1(x, t) ˙̂
θ(t) and m2(x, t) = λ2(x, t) ˙̂

θ(t). θ̂(t) is calculated using the adaptive
law (2.100)-(2.102) but with Λp(t) = [λ1(1, t), λ2(0, t)]. Furthermore, there is no change in



44 CHAPTER 2. ADAPTIVE BOUNDARY OBSERVER DESIGN

the calculation of p1(x) and p2(x) as equation (2.58) is used. Once the estimates (∆̂TH1 (x, t),
∆̂TC1 (x, t), ∆̂h(t)) are obtained, one can use the linearization map in Section 2.1 to get the
estimates of {T̂H(x, t), T̂C(x, t), ĥ(t)} at each point in time.

2.11.1 In-domain evaluation of the observer through simulations

As shown in Fig. 2.10, temperatures can only be measured at the extremities of the tubes using
four input/output temperature sensors. Hence, we can’t validate experimentally the distributed
state estimation because we can’t take measurements from inside the domain. However, we
evaluate the estimation of temperatures inside the domain through numerical simulations. In
this section, we also discuss the effect of linearization done in Section 2.1.
First of all, assume that the model (2.2)-(2.5) represents the real dynamics of the exchanger under
study. We have built our own simulator to simulate (2.2)-(2.5). The simulator implements a
finite difference scheme of second order accuracy for the space derivatives, and ode15s (Matlab)
for the time derivatives. Since the observer is not built directly on system (2.2)-(2.5) but on the
linearized version (2.14)-(2.16), we expect the quality of the estimation to be better when the
nominal model (2.6)-(2.9) is chosen close to the real system. The simulations are done in the
following order:

1. Simulate system (2.2)-(2.5) with real measured inputs (see Section 2.11.3) and assume
that the real heat transfer coefficient is hreal = 290. We then consider the obtained
temperatures THreal(x, t) and TCreal(x, t) as the real distributed temperatures of exchanger.

2. Use THreal(1, t) and TCreal(0, t) as the real boundary measurements

3. Simulate the observer scheme starting with nominal heat transfer coefficient hN1 = 180,
hN2 = 230 and hN3 = 250.

4. Compute the estimation T̂ (x, t) = TN (x, t) + ∆T̂ (x, t) and the estimation error E(x, t) =
|Treal(x, t)− T̂ (x, t)| on both hot and cold sides.

In order to choose different operating points, we vary the nominal heat transfer coefficients; e.g.
hN1 = 180 corresponds to a far operating point (since hreal = 290) and so on. The results of
the steady state estimation errors are shown in Fig. 2.11. A first important remark is that the
estimation error inside the domain is greater than that at the boundaries for all the operating
points. A glimpse on the observer design can actually give us the reason. Considering the
linear case, the adaptation law uses only boundary outputs to estimate the parameters. If the
outputs are informative enough, the estimated values of the parameters will converge to the
real ones when the outputs agree. Since the observer is of Luenberger type and its stability is
guaranteed by the observer gains p1(x) and p2(x), the in-domain estimates should also converge.
When considering the real system, the adaptation law ensures the convergence of the boundary
outputs, but this does not necessarily imply an in-domain convergence since the observer is
built on the linearized version of the system and not on the real plant. We can see from Fig.
2.11 that as the nominal model approaches the real model (i.e. hN approaches hreal), the
estimation error in the domain is decreased. By looking into the order of error magnitude, we
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ating points
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Figure 2.12: Estimated heat transfer coefficient ĥ(t) for three different operating points

find that the maximum absolute estimation error on both sides is less than 0.018K in the whole
domain. This is significantly a negligible in-domain estimation error. We can then reasonably
deduce that the effect of linearization is almost negligible and does not affect the quality of
the in-domain estimation. The reason is mainly because the bilinear parameter nonlinearity
(K1(TH(x, t)− TC(x, t))) encountered in the plant is not a strong nonlinearity.
We now show the time series of the heat transfer coefficient on Fig. 2.12. We can see that
the estimations from the three different nominal operating points stabilize at steady states
that do not correspond to hreal = 290. The reason is clearly the linearization, since when the
nominal operating point is chosen close to the system’s real operating point, the estimation is
improved. This is more significant if we compute the relative steady state error: RSE(%) =
|hreal−ĥsteady |

hreal
∗ 100 for each operating point. The RSE decreases when hN approaches hreal as

shown in Table 2.1 and its magnitude is less than 10% even for a very far operating point
(i.e. hN = 180). It is also important to mention that there is always a physical limit on
the chosen values of the operating point hN (see Fig. 2.12). This limit is calculated using
thermodynamical correlations [43]. For the exchanger under study, the minimal calculated
physical limit is hN = 230, and we can notice on Table 2.1 that the corresponding RSE is less
than 3%. This is considered very small, and we can conclude that in the physical working ranges
of the exchanger, the effect of linearization on the estimation of the heat transfer coefficient is
reasonably small.
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Operating point RSE (%)
hN1 = 180 9.31
hN2 = 230 2.79
hN3 = 250 1.24

Table 2.1: RSE for three different operating points

2.11.2 Comparison with literature observers

Previously, several boundary observer designs for hyperbolic systems relying on an exact knowl-
edge of the parameters of the system have been designed. We intend to show the importance of
the adaptive design in the case where the nominal parameters differ from the real ones as this
is the main problem that we faced while designing an observer for our experiment. To compare
our results we choose two designs already present in the literature: the Lyapunov-based observer
proposed in [85] and the two-sided backstepping observer from [14].
We simulate the observers proposed in [85] and [14] at the three different operating points
(hN1 = 180, hN2 = 230, and hN3 = 250), following exactly the procedure explained in Section
4.3 (steps 1 to 3). We recall that the observer designs in [85] and [14] are built directly using
the nominal parameters of the system. The main objective of the comparison is to check if the
parameter adaptation improves the accuracy of the temperature estimates.
We simulate the three observers with real measured inputs (see Section 4.4) starting with the
same initial conditions. We have calculated the L1 norm of the estimation error on both hot
and cold sides for the three different operating points:

||εK(t)||L1[0,1] =
∫ 1

0
|TKreal(x, t)− T̂K(x, t)|dx (2.134)

The results are shown on Fig. 2.13. We can observe that in all the plots the estimation error using
the adaptive design is always less than that resulting from the observers in [85] and [14]. The
adaptive observer significantly ameliorates the estimation in transient states and contributes to
nearly 1K temperature improvement at steady states. These estimation enhancements provided
by the parameter adaptation are very important to the designers of the CO2 cooling technology
at CERN, since they work with highly accurate temperature sensors.

2.11.3 Experimental evaluation of the observer

Once the system has reached a steady state and liquid CO2 starts circulating in all parts of the
TIF plant, the experiment is done by modulating the input heating power by several increases
and decreases at different instants in time as shown in Table 2.2, thus inducing system transients
and exciting the system frequencies. Keeping in mind that we have only one parameter to
estimate, which is the heat transfer coefficient, the input in Table 2.2 is considered sufficiently
persistently exciting. The temperature is measured by the four sensors schematically depicted
on Fig. 2.10. They are PT100 RTD sensors. In particular, they are "in-flow" sensors, i.e., they
are mounted inside the tube to measure the temperature of the refrigerant itself, instead of
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Figure 2.13: Comparison of the L1 estimation error resulting from three different methods for
three different operating points
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Variation Time(s)
increase 0(s)
decrease 479(s)
increase 800(s)
increase 1391(s)
decrease 2050(s)

Table 2.2: Heating power modulation

being glued to the top of the tube. These PT100s output a resistance to a "Conditioner", which
is an object that converts the resistance signal into a 4-20 mA input for the PLC. The PLC
then has a range that determines what the minimum (4mA) and maximum (20mA) values for
that particular sensor are, and uses this to convert the 4-20 mA signal into a degree Celsius (C)
value. On the computer, we have a SCADA system called WinCCOA, which exchanges signals
from the PLC and displays it for the user. From the WinCCOA interface, we are able to export
the data to a CSV file. We import the data into Matlab where we make all the analysis. The
observer schemes are not implemented directly on the real plant. The experimental evaluation
of the observers is done in Matlab using the real data collected in the CSV files.
The TIF plant is 17.665m long (L = 17.665m) with cross-sectional areas AH = 7.6306×10−4 m2,
AC = 1.131 × 10−4 m2. During this experiment, the exchanger is operating in the liquid phase
and in the following working ranges: pressure between [5MPa, 6MPa], temperatures between
[253K, 288K] and mass flow rates close to 0.047Kg/s. With these given information, one can
use the equation of state (EoS) for CO2 [18] with the correlation in [43] to calculate the nominal
values for the exchanger parameters. We found: c1 = 0.0237 s-1, c2 = 0.0037 s-1, KN

1 = 0.0051 s-1

and KN
2 = 0.0351 s-1. The computed nominal heat transfer coefficient is hN = 230W/m2.K.

Afterwards, the nominal model (2.6)-(2.9) is simulated with the measured inputs. By comparing
the temperature outputs of the nominal model THN (1, t) and TCN (0, t) and the experimental
measures on Fig. 2.14, one can notice that the nominal model captures the main dynamics of
the real system. However, the temperatures predicted by the model involve a temperature shift
and this shift changes with time. We know from the physics that the heat transfer coefficient is
the parameter responsible for this shift in temperature magnitudes, since it affects the amount
of energy transfered from the hot side to the cold side. One can then draw two conclusions: first
the linear system (2.1)-(2.5) represents a good physical model for the exchanger, second the real
heat transfer coefficient is time -varying. In fact, the dynamics of h are very complex since h can
vary with the variation of many physical quantities and especially temperature. In our adaptive
design, we have assumed that h is quasi-steady (see the modeling assumptions list). Doing so,
we intend to use the parameter adaptation algorithm to recover the values of the heat transfer
coefficient in the intervals were we have slow variations in temperature (as we will show later in
the analysis).
As the nominal operating point is settled, we can proceed to the estimation part. Since we can’t
take measurements from inside the domain, we evaluate our theoretical results against the output
sensor measurements. We start all observers with the same initial condition. Fig. 2.15 show the
temperatures estimated by the three observers along with the experimental measurements. One
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Figure 2.14: Comparison between the reference model and experimental results
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can notice that the quality of the estimation is better using our proposed adaptive estimator
during both transient and steady states. The estimation error magnitude on both hot and
cold sides is presented on Fig. 2.16. Note that the error is decreased by nearly 5K during the
transient phase and 1K in the steady state, using the adaptive estimator. The estimations using
the two other designs (Lyapunov and two-sided backstepping observers) are comparable and
with an accuracy limited by their assumption of a perfect knowledge of the system’s parameters.
Considering a negligible contribution of the linearization error as illustrated in Section 2.11.1, we
can conclude that the adaptive observer can estimate the distributed state with enough degree
of accuracy.
The estimation of the heat transfer coefficient is shown on Fig. 2.17: the estimation starts at
the nominal value hN = 230 and then after the time tF = 1

c1
+ 1

c2
= 310.54 s the adaptation

law starts functioning. Since we have implicitly assumed that h is quasi-steady, we expect the
estimated heat transfer coefficient to converge to different steady states at different intervals
of time. We can infer from Fig. 2.17 approximately three different values of the heat transfer
coefficient in three different time intervals: h ≈ 312 for t ∈ [310 s,1235 s], h ≈ 325 for t ∈
[1625 s,2530 s] and h ≈ 295 for t ∈ [3550 s,8400 s].

2.12 Conclusion
We have developed an adaptive observer that estimates unknown parameters inside the domain
for 2-by-2 first-order 1-D hyperbolic PDEs. The observer is based on a swapping design, which
allows us to write the estimation error on the states as a static linear combination of the esti-
mation error on the parameters. Standard backstepping and parameter estimation techniques
can then used. We thus proved boundedness of regressors filters and obtained sufficient con-
ditions to ensure the exponential convergence of the estimation errors. The designed observer
uses only boundary sensing, and allows one to estimate the full distributed states. We have
shown through numerical simulations the effectiveness of the observer in estimating the states
of stable and unstable plants as well as the boundary and in-domain parameters. Our method
is evaluated experimentally on the TIF refrigeration system at CERN, and our results show
that the adaptive observer captures the main dynamics of the real system. For future works,
it would be interesting to consider the bilinear parameterization directly in (2.1)-(2.5), i.e. to
estimate h and TH(x, t), TC(x, t) directly without passing through the linearization step, using
boundary sensing only. We discuss here some insights on this future extension of the method.
The difficulty of Problem 1 is that the heat transfer coefficient h, which is unknown, multiplies
the temperature T (x, t) which is also unknown. One idea is to transform the system to the
"canonical observable form" similar to the works done in [20] and [8]. In this specific form, the
transformed parameters multiply the system measurements. The authors in [20] and [8] focus
on adaptive control for hyperbolic PDEs. Hence, extensive studies must be conducted to prove
the convergence of the parameters to their true values as well as proving the invertability of the
parameters transformations (this part is not necessary in adaptive control, since the overall goal
is stabilize the system in presence of uncertainties and not to estimate the parameters).



52 CHAPTER 2. ADAPTIVE BOUNDARY OBSERVER DESIGN

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
255

260

265

270

275

(a) Hot fluid temperature.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
255

260

265

270

275
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Figure 2.15: Comparison between the estimation laws for the hot and cold fluid temperatures.
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Figure 2.16: Comparison between the estimation errors for the hot and cold fluid temperatures.
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Chapter 3

Boundary Observer Design for CO2
two phase heat exchangers

In the previous chapter, we have considered the problem of estimating the temperatures and
the heat transfer coefficient in single phase heat exchangers. The thermodynamic state of the
circulating CO2 fluids was only liquid. As a result, the system is modeled using a set of 2-by-
2 linear hyperbolic PDE that describes the evolution of temperature along the length of the
exchanger. In this chapter, the modeling complexity is significantly increased by introducing
the two- phase aspect to one of the exchanger lines, as shown in Fig. 3.1.

x=0 x=L

Liquid CO2 Liquid CO2

Liquid + Vapor CO2 Liquid + Vapor CO2

Figure 3.1: CO2 two phase heat exchanger.

The cold line is gaining energy from the hot liquid line, and is evaporating. That leads to the
presence of liquid and vapor at the same time inside the cold tube. Hence, more dynamics are
needed to describe this two phase evolution in space and time. We recall that the objectives of
Problem 2 are:

1. obtain a control-oriented model for the two phase exchanger

2. use boundary sensing to estimate the liquid to vapor ratio inside the domain.

The next sections are divided in two main parts: 1) is the physical modeling of the two phase
line. This will allow us to deduce a control-oriented model for the two phase exchanger. And 2),

55
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the observer architecture that will use the obtained model to estimate some thermodynamical
variables of interest (e.g. the liquid to vapor ratio).

3.1 Physical modeling of the two phase line

3.1.1 Flow regimes

When liquid and vapor flow at a certain velocity inside a horizontal tube, different geometrical
shapes of the phase-changing flow emerge and occupy the area. These flow configurations are
called flow regimes. For instance, consider a typical example of what can happen inside a tube
in which fluids are undergoing a phase change, as depicted in Fig. 3.2.

Figure 3.2: Vapor-liquid flow regimes [38]

Different flow regimes can be divided into two groups: (a) those in which vapor flows as a
continuous stream, and (b) those in which vapor segments are separated from each other by
liquid. The time-averaged fraction of the tube that is occupied by vapor is the void fraction α.
From experiments it is observed that vapor flows continuously for α > 0.5. At high void fraction
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and low vapor flow rate, the liquid is smooth and stratified. As the vapor flow rate increases,
waves appear on the liquid-vapor interface, increase further will lead the liquid to climb up the
tube wall and the flow is annular. At high vapor flow rate, the liquid is still on the walls but
some liquid droplets are carried in the vapor flow and this flow is called an annular-mist flow.
At low void fraction α < 0.5, the continuity is broken (Slug flow); in this type of flow the slug
moves faster than the liquid. At lower void fractions, the vapor is contained in the liquid in the
form of elongated bubbles (Plug flow). Further decreasing the void induces the bubbly flow: in
this regime the interface between liquid and vapor is not significant, bubbles and liquid flow at
approximately the same speed. Hence, to sum the analysis up, there are different flow regimes
for two phase flows. Each one has its own characteristics and its own geometrical configurations.
A general methodology for physical modeling is thus needed.

3.1.2 3D Two-Fluid Model

In the literature, the basic modeling strategy for multi-phase flows is to consider a control volume
in which liquid and vapor are separated by an interface. Through this interface mass, momentum,
heat and volume exchange occurs: this is called the "Two-fluid Model". The derivation of the
most general equations comes from the basic laws of physics: conservation of mass, conservation
of momentum (Newton’s second law), conservation of energy (1st law of thermodynamics) and
the 2nd law of thermodynamics (Entropy never decreases). These models consider variations in
(x, y, z, t) and non-thermodynamic equilibrium between the phases (i.e. mass, momentum, heat
and volume exchange don’t happen instantaneously, there is some time for the transition). At
this step in modeling, only continuum assumptions are considered and all the state variables are
well defined. The derivations are done in [79] and [62], among others, for the multi-phase case
and we recall here the results.
Conservation of mass

∂ρk
∂t

+∇.(ρkvk) = 0 (3.1)

Conservation of momentum

∂(ρkvk)
∂t

+∇.(ρkvk ⊗ vk) = (−∇.pk +∇.τk + ρkbk) (3.2)

Conservation of Energy

∂(ρk(ek + 1
2v

2
k))

∂t
+∇.(ρk(ek + 1

2v
2
k)) = ∇.((τk − pkI).vk − qk) + ρk(rk + bk.vk) (3.3)

where k = g (gas, vapor) or k = l (liquid), and all the model variables are given in Table 3.1.
In [62], the authors proved that energy transport is equivalent to entropy transport. These
entropy relations are used by several authors to derive relaxation terms as we will see later.
Equations (3.1)-(3.3) are bulk equations for the phases, but in multi-phase flow, phases interact
with each other through an interface. The interface is assumed with no mass, then it has no
momentum and kinetic energy but it has internal energy. By taking a control volume attached
to the interface and also applying the basic laws of physics, one gets the following interface
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ρk : density of each phase vk : velocity of each phase
pk : pressure of each phase τk : stress tensor on each phase
ek : Internal energy of each phase qk : heat transfer between the the phases
rk : External heat source bk : Body forces on each phase (gravity for example)

Table 3.1: Variables definitions of the 3D Two-Fluid Model

relations:
1- Mass relation: mass entering interface = mass leaving the interface:

ρg(vg − vi).ng + ρl(vl − vi).nl = 0 (3.4)

2- Momentum relation: here we notice the appearance of the surface tension with its two
components: the tangential one (caused by curvature of the interface) and the normal one
(caused by temperature gradients). Applying the sum of forces on the interface:

0 = ρgvg ⊗ (vg − vi).ng + ρlvl ⊗ (vl − vi).nl − (τg − pgI).ng − (τl − plI).nl −∇sσ− 2σHs,g (3.5)

3- Energy relation: the interface has internal energy but no kinetic energy, hence the variation
of the internal energy inside the interface is given by:

∂(es)
∂t

+∇s.(vies) = −ρg(eg + 1
2v

2
g)(vg − vi).ng − ρl(el + 1

2v
2
l )(vl − vi).nl + (τg − pgI).vg.ng

+ (τl − plI).vl.nl − qgng − qlnl + rs + 2σHs,g.ng.vi + vi.∇sσ

(3.6)

where vi is the interface velocity, ng, nl are the unit vectors normal to the interface in the
direction outwards of phase g and l respectively, σ is the surface tension, Hs,g is the algebraic
value of the minimum curvature of the interface, es is the interface internal energy and rs is the
heat source.
Equations (3.1)-(3.3) and (3.4)-(3.6) are the basic equations for the multi-phase modeling. It
is noticed that the dimension of the system is very large: variations in (x, y, z, t) and interface
relations with a lot of unknowns. Averaging techniques are applied to reduce the complexity of
the system.

3.1.3 Averaging and the 1D Two Fluid Model

There exists various types of averaging. Spatial averaging consists of averaging the physical
quantities over a given domain (e.g. a cross-section of the tube as in [79]) i.e. instead of
having variations in (x, y, z, t), one can do area averaging along the cross-section of the tube to
have variations in (x, t) only. Time averaging consists in looking at a given point in space and
averaging the quantities over time. Ensemble averaging consists of averaging the quantities at a
given time and at a given location taking into account all the possible realizations of the flow [62].
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Averaging always implies a loss of information on the flow but in some applications, knowing
every detail of the flow in (x, y, z, t) is not of significant importance so averaging may reduce the
complexity of the equations. For 1D fluid models, area averaging is the technique that is most
used in the literature. The interface relations which describe the exchange of mass, momentum,
heat and volume between the liquid and gas phases are modeled by relaxation terms. So, before
stating the 1D two-fluid model equations, it is useful to consider the following definitions:

• relaxation time: time needed by the system to go into equilibrium after being perturbed;

• chemical potential: form of potential energy that can be absorbed or released during a
chemical reaction or phase change.

In a 1D two-fluid model, the two phases are assumed to have separate pressures pk, temperatures
Tk, chemical potentials µk and velocities vk. The system can be moved towards equilibrium by
employing relaxation terms. The model equations are given by:
Mass Conservation

∂(αgρg)
∂t

+ ∂(αgρgvg)
∂x

= K(µl − µg) (3.7)

∂(αlρl)
∂t

+ ∂(αlρlvl)
∂x

= K(µg − µl) (3.8)

Momentum Conservation

∂(ρgαgvg)
∂t

+
∂(ρgαgv2

g)
∂x

+αg
∂Pg
∂x

+ ∆Pig
∂αg
∂x

+F (vg− vl) = ρgαggx+ fw,g + viK(µl−µg) (3.9)

∂(ρlαlvl)
∂t

+ ∂(ρlαlv2
l )

∂x
+ αl

∂Pl
∂x

+ ∆Pil
∂αl
∂x
− F (vg − vl) = ρlαlgx + fw,l − viK(µl − µg) (3.10)

Energy Conservation

∂(ρgαgHg − αgPg)
∂t

+ ∂(ρgαgvgHg)
∂x

+ Pivi
∂αg
∂x

= ρgαgvggx +Qw,g −H(Tg − Tl)

−PiJ(Pg − Pl) + viF (vl − vg) + Eg,iK(µl − µg)
(3.11)

∂(ρlαlHl − αlPl)
∂t

+ ∂(ρlαlvlHl)
∂x

+ Pivi
∂αl
∂x

= ρlαlvlgx +Qw,l +H(Tg − Tl)

+PiJ(Pg − Pl)− viF (vl − vg)− Eg,iK(µl − µg)
(3.12)

Pressure Relaxation
∂αg
∂t

+ vi
∂αg
∂x

= J(Pg − Pl) (3.13)

where k=g (gas, vapor) or k=l (liquid). Hk is the total enthalpy (Hk = hk + 1
2v

2
k with hk the

specific enthalpy), Qw,k is the heat transfer from the wall to the phase k, αk is the void fraction
of the phase k, fw,k is the friction done by the wall, gx is the projection of the gravitational
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acceleration on the tube axis, (H,J ,F ,K) are relaxation constants, Pi is the interface pressure
and ∆Pik = Pk − Pi, Eg,i = µ∗ + 1

2v
2
i and µ∗ is the effective interface chemical potential. The

velocity of the interface vi can be taken as the average value of the two phase velocities:

vi = αgvg + αlvl (3.14)

Also, note that ∆Pik = Pk − Pi in the momentum equations is a correction pressure term. It
plays an important role in the model hyperbolicity, because in the absence of this term the model
becomes non-hyperbolic. This leads to a lack of existence of a stable mathematical model as
well as a loss of the stability of numerical methods [64]. This hyperbolicity condition is satisfied
(neglecting pressure relaxation) if [64]:

∆P = 0.2 αgαlρgρl
ρgαg + ρlαl

(vg − vl)2 (3.15)

In addition, it is necessary for the second law of thermodynamics to be satisfied. If the velocity
relaxation is neglected (F = 0), it is proved by the authors in [42] that the second law of
thermodynamics is obeyed if: H ≥ 0, J ≥ 0, K ≥ 0, min(Pg, Pl) ≤ Pi ≤ max(Pg, Pl) and
min(µg, µl) ≤ µ∗ ≤ max(µg, µl).
The general 1D two-fluid model presented in equations (3.7)-(3.15) describe the evolution of a
two phase flow in a horizontal tube. It is also studied by many authors with slight differences on
the modeling assumptions. For example, [60] studies the effect of all relaxation terms neglecting
the velocity, [63] provides a numerical study considerenig pressure and velocity relaxations. The
authors in [24] model CO2 depressurization pipelines and also [73] uses this model in studying
the transition in metastable liquids. In addition, [15] presents this general model to describe
CO2 transportation along pipelines.

3.1.4 Homogenous Equilbrium Model (HEM)

The HEM model is a simplified form of the above 1D two fluid model. The two phases are
assumed to travel together at the same velocity and behave as single phase with properties that
are defined as a weighted average of the properties of the individual phases. For instance, the
bubbly flow shown on Fig. 3.1 is an example of a flow regime that can be modeled by the HEM
model. To obtain the HEM model equations, the following assumptions on the two phase flow
should be taken:

1. no relative motion between the phases (v = vg = vl);

2. phase change, transfer of volume, heat transfer between the phases happen instantaneously
(i.e the thermodynamic equilibrium is attained instantaneously (P = Pg = Pl, T = Tg =
Tl, µ = µg = µl);

3. body forces are neglected (gravity).

Applying assumptions (1)-(3) to the 1D two fluid model in equations (3.7)-(3.15) leads to the
following dynamics of the HEM model:
Mass Conservation

∂ρ

∂t
+ ∂(ρv)

∂x
= 0 (3.16)
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Momentum Conservation
∂(ρv)
∂t

+ ∂(ρv2 + P )
∂x

= fw (3.17)

Energy Conservation
∂(ρH − P )

∂t
+ ∂(ρvH)

∂x
= Qext (3.18)

where ρ is the average density of the mixture (ρ = αgρg +αlρl), v is the two phase fluid velocity,
P is the pressure of the flow, H is the total enthalpy, Qext is the external heat source and fw is
the friction of the wall.

3.2 Modeling of the CO2 two phase heat exchanger

In the previous section, we have presented various classes of models that can describe a two
phase flow moving inside a horizontal tube. The models can be very complex as in the case
of 3D fluid models, where all 3D variations are considered, or less complicated as in the 1D
two-fluid models, where the phases are separated and conservation equations are written for
each phase in 1D.
The heat exchanger studied in Problem 2 has two concentric lines (see Fig. 3.1): a cold CO2
two phase line and a hot CO2 single phase line. Energy is passing from the hot flow to cold
one. If we consider the two phase line, the goal is to choose a model from those presented in
Section 3.1 that can sufficiently describe the two phase flows. The authors in [67] show that
for CO2 the ratio of the liquid density to vapor density (ρl/ρv) is small. This results in a more
homogeneous two phase flows for CO2. Hence, it is reasonable to assume that liquid and vapor
phases are mixed and propagate at the same velocity: this will allow us to consider the HEM
model to describe the dynamics of the two phase line in the CO2 exchanger. On the other
hand, in Problem 1, we have modeled the single phase flows by linear transport equations for
temperatures. The same equations can be used here. However in Problem 2 we intend to take
into account possible pressure drops along the length of the exchanger. This necessitates to
insert the dynamics of the momentum into the model of the single phase line. Therefore, also a
HEM model can be also associated to the liquid line. As a result, we derive the mathematical
model of the CO2 two phase exchanger based on the following assumptions:

• the flow is 1-D unidirectional (the hot fluid flows in the positive x direction);

• the two phase flow is homogeneous i.e. liquid and gas flow at the same velocity and they
are in thermodynamic equilibrium;

• the kinetic and potential energies of the flows entering and leaving the tubes are neglected;

• the wall thickness is neglected (no wall dynamics) and the heat transfer and friction coef-
ficients are constant and uniform;

• the heat exchanger is perfectly isolated and does not exchange heat with its surrounding
environment.
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Based on the above assumptions, the heat exchanger dynamics can be described by a set of first
order hyperbolic partial differential equations of balance laws (mass, momentum and energy
conservation) as follows, ∀x ∈ [0, 1] (normalized space):
- cold flow (two-phase):

AC
∂ρC(x, t)

∂t
− 1
L

∂ṁC(x, t)
∂x

= 0 (3.19)

∂ṁC(x, t)
∂t

− 1
L

∂

∂x
( ṁ2

C(x, t)
ρC(x, t)AC

)− AC
L

∂PC(x, t)
∂x

+ fCṁC(x, t)|ṁC(x, t)|
2DHρC(x, t)AC

= 0 (3.20)

AC
∂(ρC(x, t)HC(x, t)− PC(x, t))

∂t
− 1
L

∂(ṁC(x, t)HC(x, t))
∂x

= πD1h(TH(x, t)−TC(x, t)) (3.21)

- hot flow (single phase):

AH
∂ρH(x, t)

∂t
+ 1
L

∂ṁH(x, t)
∂x

= 0 (3.22)

∂ṁH(x, t)
∂t

+ ∂

∂x
( ṁ2

H(x, t)
ρH(x, t)AH

) + AH
L

∂PH(x, t)
∂x

+ fHṁH(x, t)|ṁH(x, t)|
2D1ρH(x, t)AH

= 0 (3.23)

AH
∂(ρH(x, t)HH(x, t)− PH(x, t))

∂t
+ 1
L

∂(ṁH(x, t)HH(x, t))
∂x

= −πD1h(TH(x, t)− TC(x, t))
(3.24)

where ρk (Kg/m3) is the density, Pk (Pa) is the pressure, Hk (J/Kg) is the enthalpy, ṁk (Kg/s)
is the mass flow rate, Tk (K) is the temperature, h (W/m2 · K) is the overall heat transfer
coefficient, Ak (m2) is the tube cross-sectional area, L (m) is the heat exchanger length, fk
is the wall friction coefficient and D1, DH (m) are the inner and hydraulic tube diameters,
respectively.
The model for the hot and cold lines in equations (3.19)-(3.24) is the HEM model in (3.16)-
(3.18) written in the mass flow rate variable ṁ = ρv instead of the velocity v. It consists of
three conservation equations for each line and involves the heat exchange term (πD1h(TH(x, t)−
TC(x, t))) that models the flow of energy from the hot fluid to the cold one. The system (3.19)-
(3.24) has boundary conditions of the following form:

ṁH(1, t) = ṁout
H (t),

PH(0, t) = P inH (t),
HH(0, t) = H in

H (t),

ṁC(0, t) = ṁout
C (t)

PC(1, t) = P inC (t)
HC(1, t) = H in

C (t)
(3.25)

The boundary conditions in (3.25) are of Dirichlet type and they constrain the input pressures
and enthalpies as well as the output mass flow rates to some known control signals. Although
equations (3.19)-(3.21) of the two-phase flow are similar to equations (3.22)-(3.24) of the liquid
flow due to the homogeneous flow assumption, they are thermodynamically different. In fact,
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Figure 3.3: CO2 Pressure-Enthalpy Diagram.

most refrigeration cycles are studied on a Pressure-Enthalpy diagram (P-H diagram); i.e. by
knowing the pressure and enthalpy of a fluid at time t, all the other thermodynamic variables
(temperature, density, etc..) can be calculated by an equation called the Equation of State
(EoS). For instance, the model in (3.19)-(3.25) is completed by four static equations that relates
temperature and density to pressure and enthalpy as follows:

Tk = fk(Pk, Hk), ρk = gk(Pk, Hk) (3.26)

with k=H or C and f and g are the equations of state. For the hot flow, fH and gH are
calculated in the liquid region while fC and gC are calculated in the two phase region of the
P-H diagram, as we will illustrate in the next section.

3.2.1 Equation of State (CO2)

Consider the P-H diagram of CO2 on Fig. 3.3. The diagram is composed of three main parts:
Liquid region (blue), two phase region (white) and vapor region (yellow). Given the states of
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a fluid (P , H) at a certain time t, one can localize the point on the graph and determine the
physical state of CO2. The three regions are separated by the saturation curve (parabolic shape
line on the diagram). Any point on this curve is either saturated liquid or saturated vapor
depending on its position with respect to the critical point. The points on the black lines are
of the same temperature whereas on the red ones have constant density and on the green ones
have constant entropy. If we consider the range of pressure [20 bar, 30 bar] (CERN application),
the objective is to approximate the equations of states: TH = fH(P,H) and ρH = gH(P,H) in
the liquid region and TC = fC(P,H) and ρC = gC(P,H) in the two phase region.

Liquid region

If we look carefully on the black and the red lines in the blue region on Fig. 3.3, one can notice
that the temperature and the density almost do not depend on pressure. Then taking a point
on the saturation curve in the interval [20 bar, 30 bar] and making a 1st order taylor expansion
along constant enthalpy lines is thus a good approximation of the equation of states. Hence, we
consider the following temperature and density approximations:

TH(PH , HH) = Tsat(HH) + dTsat
dp

(PH − Psat(HH)) (3.27)

ρH(PH , HH) = ρsat(HH) + dρsat
dp

(PH − Psat(HH)) (3.28)

where Psat(HH), Tsat(HH) and ρsat(HH) are the saturations pressure, temperature and density
respectively. dTsat

dp and dρsat
dp are the variations of the saturation temperatures and densities to

pressure. All the saturation variables are calculated using polynomial fitting of the look-up
thermodynamic tables of CO2 provided by Coolprop library [19] as follows:

Psat(HH) = −9.59× 10−21H5
H + 6× 10−15H4

H − 1.47× 10−9H3
H + 0.00003H2

H

− 18.583HH + 664747.14
(3.29)

Tsat(HH) = −3.97× 10−26H5
H + 2.93× 10−20H4

H − 1.015× 10−14H3
H

+ 1.49× 10−9H2
H + 0.0004HH + 178.322

(3.30)

ρsat(HH) = −3.02× 10−25H5
H + 2.21× 10−19H4

H − 7.15× 10−14H3
H

+ 9.81× 10−9H2
H − 0.0024HH + 1340.91

(3.31)

dTsat
dp

(HH) = 2.44× 10−32H5
H − 1.85× 10−26H4

H + 5.8× 10−21H3
H

− 8.83× 10−16H2
H + 6.75× 10−11HH − 2.2× 10−6

(3.32)

dρsat
dp

(HH) = 4.47× 10−31H5
H − 3.74× 10−25H4

H + 1.24× 10−19H3
H

− 2.02× 10−14H2
H + 1.61× 10−9HH − 4.74× 10−5

(3.33)

The necessary partial derivatives of TH or ρH with respect to pressure and enthalpy are derived
directly from equations (3.27)-(3.28).
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Two phase region

The white region on Fig. 3.3 corresponds to the two phase state. One can notice that the black
lines are constant all over the region. This means that the temperature in that region do not
depend on enthalpy but only on pressure, and it is always equal to the saturation temperature.
Hence, we can directly deduce the equation of state of TC(PC , HC):

TC(PC , HC) = Tsat(PC) (3.34)

where Tsat(PC) is calculated using polynomial fitting from the values of the Coolprop library as
follows:

Tsat(PC) = 6.06× 10−32P 5
C − 9.39× 10−25P 4

C + 6.04× 10−18P 3
C − 2.15× 10−11P 2

C

+ 5.51× 10−5PC + 194.26
(3.35)

Unlike temperature, density (represented by the red lines in the white region of Fig. 3.3) do
change with respect to pressure and enthalpy. This is intuitive, since the fluid is changing
phase and undergoing evaporation or condensation, so its density is increasing or decreasing
depending whether heat is added or removed from the system. The density is approximated
using the average of both the saturated liquid and vapor densities, as in the HEM model:

ρC(PC , HC) = αρvsat + (1− α)ρlsat (3.36)

where α is the void fraction defined by: α = 1
1− (HC−hvsat)ρvsat

(HC−hlsat)ρlsat

and (ρsatv , ρsatl , hsatl , hsatv ) are

the saturation enthalpies and densities for liquid and vapor. These stauration variables are
calculated by polynomial fitting using the Coolprop library as follows:

ρsatv (PC) = 7.75× 10−33P 5
C − 7.58× 10−26P 4

C + 5.2× 10−19P 3
C − 5.03× 10−13P 2

C

+ 2.52× 10−5PC + 0.76
(3.37)

ρsatl (PC) = −1.96× 10−31P 5
C + 3× 10−24P 4

C − 1.93× 10−17P 3
C + 6.72× 10−11P 2

C

− 0.00019PC + 1259.02
(3.38)

hsatl (PC) = 1.15× 10−28P 5
C − 1.78× 10−21P 4

C + 1.14× 10−14P 3
C − 4.03× 10−8P 2

C

0.1PC + 36436.2
(3.39)

hsatv (PC) = 3.57× 10−29P 5
C − 5.67× 10−22P 4

C + 3.62× 10−15P 3
C − 1.31× 10−8P 2

C

+ 0.02PC + 422294.8
(3.40)

It is also useful to define the quality q as follows:

q = HC − hsatl

hsatv − hsatl

(3.41)

q is always between 0 and 1 and it is the percentage of vapor present in a two phase mixture.
For instance, if q = 0 then the two phase mixture contains only saturated liquid, otherwise, if
q = 1, only saturated vapor is present. We recall that one of the objectives of Problem 2 is to
estimate q inside the domain of the two phase flow using boundary sensing.
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3.3 Model Implementation
The heat exchanger model in equations (3.19)-(3.25) and (3.34)-(3.36) is a nonlinear-hyperbolic
model of balance laws. It is implemented using the Finite Volume Method (FVM). This method
consists in dividing the space into a set of control volumes of equal or different sizes and then
integrating the conservation equations on each control volume [66]. FVM is an efficient method
when dealing with the conservation laws because it ensures that every conserved quantity (mass,
momentum, energy) is conserved in each control volume. Yet some problems may occur when
implementing the momentum equations since it involves a pressure gradient (A∂P

∂x ) that drives
the flow. The authors in [66] argued that implementing the velocity field on the same grid as
the pressure field may lead to a nonphysical solution in which we may have certain oscillations,
called the "Chequerboard Oscillations". The suggested solution is to implement the momentum
equations on a staggered grid; mainly for the velocity to be calculated from the difference of
pressures between two adjacent cells. The numerical grid is shown on Fig. 3.4.

Figure 3.4: Finite volume staggered grid

It consists of two grids: the upper grid is for mass and energy equations and the staggered grid is
for the momentum equations. ψi is the average thermodynamic property of enthalpy or pressure
in the control volume i and ψ̂i is the interface value, approximated using an upwind scheme as
follows:

ψ̂i = (1− δi)ψi−1 + δiψi and δi =
{

1 if ṁi ≤ 0
0 if ṁi > 0

(3.42)

The model is simulated in Matlab on a toy heat exchanger model. The exchanger is 18 meters
long (L = 18 m) with inner diameter D1 = 12 mm and outer diameter D2 = 33.4 mm. The
exchanger parameters are: h = 100 W/m2 · K, f1 = 10 and f2 = 15. The system is simulated
using constant boundary conditions:

ṁH(1, t) = 0.02 Kg/s,
PH(0, t) = 3 MPa,
HH(0, t) = 180 KJ/Kg,

ṁC(0, t) = 0.02 Kg/s
PC(1, t) = 2.2 MPa
HC(1, t) = 200 KJ/Kg

and Ode15s in Matlab is used to approximate the time derivatives. Fig. 3.5 shows the steady
state results for different thermodynamic profiles. On the hot side: both enthalpy and tempera-
ture decrease with the tube length. The reason is that the hot fluid is loosing energy to the cold
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fluid, this appears in the steady state plots where the hot inlet temperature was (THin = −8.577
◦C) and the outlet (THout = −14.5 ◦C). On the cold side, the cold fluid is gaining energy, so
its enthalpy should increase in the negative x-axis direction (cold fluid is flowing from x = 1 to
x = 0). Since the cold flow is changing phase, we expect its temperature to remain constant and
equal to the saturation temperature at constant pressure. This is verified as the cold fluid enters
at (-16.22 ◦C) and leaves at (-16.67 ◦C), which are approximately the same temperatures. The
small drop in the cold temperature is due to the small drop in cold pressure along the direction
of the flows as shown on the pressure plots on Fig. 3.5. The energy gained by the cold fluid
increases its enthalpy and as a consequence increases its quality. Hence, the cold fluid undergoes
evaporation and the percent of generated vapor must be increasing along the length of the tube.
This is what we see in the steady state plot of the quality.
Fig. 3.6 shows the transient behavior of the mass flow rates, pressure and temperatures. The
input mass flow rates stabilizes at 0.02 Kg/s, which is the value of the boundary output mass
flow rates. This result verifies the mass conservation law, since at steady state we expect the
entering mass flow rate to be equal to the output mass flow rate. By comparing the output
pressure plots to the output temperature and quality plots, we can observe that pressure stabi-
lizes in a very short amount of time, of order that is not appearing on the plots. Again, this is
physically understandable since energy waves propagate much slower than pressure waves.
To conclude on the model simulation results, we can say that the proposed exchanger model
shows a good behavior in simulation while conserving the laws of thermodynamics. Since we
have used fictitious values for the heat transfer and the friction coefficients, the pressure drop
values might not reflect the experimental pressure drops. However, these coefficients can be
approximated using physical correlations for single and two phase flows and inserted back into
the model. This requires careful knowledge of the experimental pressure and temperature ranges
as well as the real speed of the flow.

3.4 Boundary Observer Design
The transport phenomena and the exchange of heat on both hot and cold sides is modeled
using 1D Navier-Stokes equations. The exchanger model (3.19)-(3.26) falls into the category of
nonlinear hyperbolic systems of balance laws of the following form:

A(W (x, t))∂tW (x, t) +B(W (x, t))∂xW (x, t) + C(W (x, t)) = 0 (3.43)
B.C. D(W (0, t),W (1, t), t) = 0 (3.44)

whereW (x, t) = [ṁH(x, t), PH(x, t), HH(x, t), ṁC(x, t), PC(x, t), HC(x, t)]T is the vector of states.
A(W ), B(W ), C(W ) and D(W ) are the system matrices of appropriate dimensions. W (x, t)
represents the full thermodynamic profile of both flows. The objective is to estimate W (x, t)
from boundary measurements of the form:

y1(t) = W (0, t), y2(t) = W (1, t) (3.45)

In other words, if the input/output data (y1(t), y2(t)) are measured, the problem is to estimate
W (x, t) inside the domain. We recall that the quality ratio is given in (3.41), and hence it is
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Figure 3.5: Steady state distributions of different thermodynamic variables.
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directly estimated as a result of the estimation of W (x, t).
The model in (3.43)-(3.44) is similar to the Euler equations for gas dynamics applied to two
counter current flows. The authors in [17] in Chapter 1 shows that the Euler equations cannot
be transformed into a characteristic form by defining a set of so-called Riemann coordinates.
The characteristic form of a hyperbolic system is a diagonalized set of equations in which each
wave is propagating at a certain speed depending on its Eigen value. To the best of our knowl-
edge, most of the results on the control and estimation for hyperbolic systems are conditioned
to the fact that these systems can be written in the characteristic form. Therefore, our first step
in solving the problem is to linearize the system around a steady state profile. The linearized
version is then written in the characteristics form and the boundary observer is built on the
linearized dynamics. We have listed the various results on boundary observers for hyperbolic
systems in Chapter 1. In this framework, our contribution is a complete boundary state estima-
tion of the thermodynamic profile (pressure, enthalpy, mass flow rate) along the length of a CO2
heat exchanger built using concentric tubes that contain two-phase flows. We get the inspiration
from [85], extended to the case of three rightward and three leftward transport PDEs. Sufficient
conditions for the exponential convergence of the observer are derived in form of a linear matrix
inequality (LMI) and a bilinear one by using a Lyapunov functional similar to the one used in [58].

The work of this chapter is summarized and published in:

M.Ghousein, E.Witrant. “A Boundary Observer for Two Phase Heat Exchangers”. In: 18th
European Control Conference (ECC). IEEE (2019), pp. 2332– 2337.

To begin, we start by the linearization step.

3.4.1 Linearization

We first consider the linearization of (3.19)-(3.26) around the steady state WS(x), such that:

W (x, t) ≈WS(x) + ∆W (x, t) (3.46)

Using a Taylor expansion of order 1, the dynamics of the small perturbation ∆W (x, t) becomes:

AS1 (x)∂t∆W (x, t) +BS
1 (x)∂x∆W (x, t) + CS1 (x)∆W (x, t) = 0 (3.47)

where AS1 (x), BS
1 (x) and CS1 (x) are the steady state matrices computed as follows:

• AS1 (x) isM6,6(R) with all zeros except the entities:
a12 = AH( ∂ρ∂P |h)H , a13 = AH( ∂ρ∂h |P )H , a32 = −AH , a21 = 1, a33 = AHρH , a45 =
AC( ∂ρ∂P |h)C , a46 = AC( ∂ρ∂h |P )C , a54 = 1, a65 = −AC , a66 = ACρC .

• BS
1 (x) isM6,6(R) with all zeros except the entities:

b11 = 1
L , b21 = 2ṁH

LAHρH
, b22 = AH

L −
ṁ2
H( ∂ρ

∂P
|h)H

LAHρ
2
H

, b23 = − ṁ2
H( ∂ρ

∂h
|P )H

LAHρ
2
H

, b33 = ṁH
L , b54 = − 1

L ,

b54 = − 2ṁC
LACρC

, b55 = −AC
L + ṁ2

C( ∂ρ
∂P
|h)C

LACρ
2
C

, b56 = ṁ2
C( ∂ρ

∂h
|P )C

LACρ
2
C

, b66 = − ṁC
L .
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• CS1 (x) isM6,6(R) with all zeros except the entities:
c21 = fH

ṁH
AHρH

− 2 ṁHρHx
AHρ

2
H

c22 = −fH
ṁ2
H( ∂ρ

∂P
|h)H

2AHρ2
H
− ṁ2

H( ∂ρ
∂P
|h)Hx

AHρ
2
H

+ 2ρHxṁ2
H

( ∂ρ
∂P
|h)H

AHρ
3
H

c23 = −fH
ṁ2
H( ∂ρ

∂h
|P )H

2AHρ2
H
− ṁ2

H( ∂ρ
∂h
|P )Hx

AHρ
2
H

+ 2ρHxṁ2
H

( ∂ρ
∂h
|P )H

AHρ
3
H

c31 = (dHdx )H
c32 = hπD1( ∂T∂P |h)H = −c63
c33 = hπD1(∂T∂h |P )H = −c64
c35 = −hπD1( ∂T∂P |h)C = −c65
c36 = −hπD1(∂T∂h |P )C = −c66
c54 = fC

ṁC
ACρC

+ 2 ṁCρCx
ACρ

2
C

c55 = −fC
ṁ2
C( ∂ρ

∂P
|h)C

2ACρ2
C

+ ṁ2
C( ∂ρ

∂P
|h)Cx

ACρ
2
C

− 2ρCxṁ2
C

( ∂ρ
∂P
|h)C

ACρ
3
C

c56 = −fC
ṁ2
C( ∂ρ

∂h
|P )C

2ACρ2
C

+ ṁ2
C( ∂ρ

∂h
|P )Cx

ACρ
2
C

− 2ρCxṁ2
C

( ∂ρ
∂h
|P )C

ACρ
3
C

c62 = −(dHdx )C

( ∂ρ∂P |h)H is the partial derivative of density with respect to pressure at constant enthalpy for the
hot flow. All other partial derivatives are interpreted in the same sense.
Furthermore, one can notice that the matrix AS1 (x) is always invertible for the flows where the
density is changing either with pressure or with enthalpy. Hence, we can compute the matrices
AS(x) = (AS1 (x))−1BS

1 (x) and BS(x) = −(AS1 (x))−1CS1 (x) to obtain a simplified dynamics of
∆W (x, t):

∂t∆W (x, t) +AS(x)∂x∆W (x, t) = BS(x)∆W (x, t) (3.48)
with the following boundary conditions:

∆W1(1, t) = ∆ṁout
H (t),

∆W2(0, t) = ∆P inH (t),
∆W3(0, t) = ∆H in

H (t),

∆W4(0, t) = ∆ṁout
C (t)

∆W5(1, t) = ∆P inC (t)
∆W6(1, t) = ∆H in

C (t)
(3.49)

The system has the following perturbed input/ output measurements:

∆y1(t) = ∆W (0, t), ∆y2(t) = ∆W (1, t) (3.50)

The observer is constructed on the linearized dynamics ∆W (x, t) and the state estimation of
W (x, t) is approximated using the first order Taylor expansion in (3.46).

3.4.2 Characteristic Form and Diagonalization

We know from the physics of the system that the matrix AS(x) is diagonalizable and it has
6 eigen-values (3 positive and 3 negative), since for each fluid mass and energy flow in one
direction and momentum in the reverse direction (see e.g. [22]). So, we transform the system
(3.48)-(3.49) into the characteristic form using a linear transformation T (x) such that:

∆W (x, t) = T (x)∆Z(x, t) (3.51)
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Equation (3.48) can then be written as:

∂t∆Z(x, t) + Λ(x)∂x∆Z(x, t) = Σ(x)∆Z(x, t) (3.52)

where Λ(x)=T−1(x)AS(x)T (x)=diag{λ1(x)..λ6(x)} with (λ1(x) > 0, λ3(x) > 0, λ5(x) > 0) and
(λ2(x) < 0, λ4(x) < 0, λ6(x) < 0) for all x ∈ [0, 1]. Σ(x)=T−1(x)BS(x)T (x)−T−1(x)AS(x)T ′(x).
Let us introduce the following notation:

∆Z(x, t) = (∆Z+(x, t),∆Z−(x, t))

where ∆Z+(x, t) = (∆Z1(x, t),∆Z3(x, t),∆Z5(x, t)) and ∆Z−(x, t) = (∆Z2(x, t),∆Z4(x, t),
∆Z6(x, t)). ∆Z+(x, t) represents the waves that are propagating in the positive x-axis direc-
tion while ∆Z−(x, t) are the waves that are propagating in the negative x-axis direction. The
boundary conditions in (3.49) are transformed by (3.51) to the following form:

∆Z+(0, t) = M1∆Z−(0, t) +N1F1(t) (3.53)

∆Z−(1, t) = M2∆Z+(1, t) +N2F2(t) (3.54)

where M1, M2, N1, N2 are M3,3(R) calculated using the transformation T (x) and F1(t) =
(∆P inH (t),∆H in

H (t),∆ṁout
C (t))T and F2(t) = (∆P inC (t),∆H in

C (t),∆ṁout
H (t))T are the vectors of

inputs. System (3.52)-(3.54) is a hyperbolic system written in the characteristic form where at
each boundary point the incoming information is determined by the outgoing information. Our
aim is to build the observer on the transformed dynamics ∆Z(x, t) and then afterwards use the
transformation T (x) to construct the estimated state for ∆W (x, t).

3.4.3 Observer Architecture

Denote by ∆Ẑ(x, t) the estimated state of ∆Z(x, t). Considering that only boundary mea-
surements are available, i.e. ∆z1(t) = ∆Z−(0, t) and ∆z2(t) = ∆Z+(1, t) computed using
(3.50)-(3.51), a natural choice for the observer design is to set the dynamics of the estimator as,
∀x ∈ [0, 1]:

∂t∆Ẑ(x, t) + Λ(x)∂x∆Ẑ(x, t) = Σ(x)∆Ẑ(x, t) (3.55)

with boundary conditions:

∆Ẑ+(0, t) = M1∆Z−(0, t) +N1F1(t)− 13×3L
−(∆Ẑ−(0, t)−∆z1(t)) (3.56)

∆Ẑ−(1, t) = M2∆Z+(1, t) +N2F2(t)− 13×3L
+(∆Ẑ+(1, t)−∆z2(t)) (3.57)

The observer architecture is depicted on Fig. 3.7. The inflow boundary conditions are thus
corrected by the error of the outflows boundaries, and the same is done for the outflow observer
boundaries, which are corrected by the errors of the inflow boundaries. This type of boundary
conditions is called dissipative, and the authors in [17] dedicated an entire volume to explain the
stabilization of hyperbolic systems using such kind of boundary conditions. All the errors are
weighted by the observer gains L+ = diag{L1, L3, L5} and L− = diag{L2, L4, L6}. 13×3 is the
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Figure 3.7: Boundary observer architecture.

3 by 3 ones matrix. The observer in (3.55)-(3.57) is a Lunebeger-type observer wih boundary
corrections. The objective is to determine the proper gains L+ and L− that can drive the system
to zero exponentially.
Now, we prove the global exponential convergence of the observer (3.55) with boundary con-
ditions (3.56). This is done by proving the exponential convergence of the estimated error
ε(x, t) = ∆Z(x, t)−∆Ẑ(x, t) towards zero. Let us start by considering the error dynamics:

∂tε(x, t) + Λ(x)∂xε(x, t) = Σ(x)ε(x, t) (3.58)

with the following boundary conditions:

ε+(0, t) = −13×3L
−ε−(0, t)

ε−(L, t) = −13×3L
+ε+(L, t)

(3.59)

System (3.58)-(3.59) is said to be Globally Exponentially Stable (GES) in the L2 norm if there
exist γ > 0 and C > 0 such that for every initial condition ε0(x) ∈ L2((0, 1);R6) and for all
t ≥ 0, the solution of the system (3.58)-(3.59) satisfies:

||ε(t, .)||L2([0,1];R6) ≤ Ce−γt||ε0||L2([0,1];R6) (3.60)

The GES of (3.58)-(3.59) can be inferred from the following theorem.

Theorem 3.4.1. Consider the system of PDEs (3.58) with boundary conditions (3.59). Suppose
that there exist γ > 0, µ ∈ R, a positive definite matrix Q(x) > 0 and observer gains L+ and
L− such that for all x ∈ [0, 1] we have:

ΣT (x)|Λ(x)|−1Q(x) + |Λ(x)|−1Q(x)Σ(x)− 2µQ(x) ≤ −2γ|Λ(x)|−1Q(x) (3.61)
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−q0
2 + αL2

2 αL2L4 αL2L6 0 0 0
∗ −q0

4 + αL2
4 αL4L6 0 0 0

∗ ∗ −q0
6 + αL2

6 0 0 0
0 0 0 −q1

1 + βL2
1 βL1L3 βL1L5

0 0 0 ∗ −q1
3 + βL2

3 βL3L5
0 0 0 ∗ ∗ −q1

5 + βL2
5


≤ 0

(3.62)
where q0

i and q1
i for i ∈ {1, . . . , 6} are the diagonal entries of Q(0) and Q(1), respectively,

α = q0
1 + q0

3 + q0
5 and β = q1

2 + q1
4 + q1

6. Then system (3.58) with (3.59) is (GES).

Proof. Consider the following Lyapunov candidate, similar to the one used in [58]:

V (t) =
∫ 1

0
εT (x, t)|Λ(x)|−1Q(x)ε(x, t)dx (3.63)

where µ > 0, |Λ(x)|−1 = diag{1/|Λi(x)|} and Q(x) = diag{qie−sign(Λi(x))2µx} for all i ∈
{1, . . . , 6}.
Taking the time derivative of (3.63) we have:

V̇ (t) =
∫ 1

0
∂tε

T (x, t)|Λ(x)|−1Q(x)ε(x, t)dx+
∫ 1

0
εT (x, t)|Λ(x)|−1Q(x)∂tε(x, t)dx

=
∫ 1

0

(
εT (x, t)ΣT (x)− ∂xεT (x, t)ΛT (x)

)
|Λ(x)|−1Q(x)ε(x, t)dx

+
∫ 1

0
εT (x, t)|Λ(x)|−1Q(x)

(
Σ(x)ε(x, t)− Λ(x)∂xε(x, t)

)
dx

=
∫ 1

0
εT (x, t)ΣT (x)|Λ(x)|−1Q(x)ε(x, t)dx+

∫ 1

0
εT (x, t)|Λ(x)|−1Q(x)Σ(x)ε(x, t)dx

−
∫ 1

0
∂xε

T (x, t)ΛT (x)|Λ(x)|−1Q(x)ε(x, t) + εT (x, t)|Λ(x)|−1Q(x)Λ(x)∂xε(x, t)dx

Noting that |Λ(x)|−1Q(x) = Q(x)|Λ(x)|−1 and |Λ(x)|−1Λ(x) = Ǐ6 = diag[sign(Λi(x))], then

V̇ (t) =
∫ 1

0
εT (x, t)ΣT (x)|Λ(x)|−1Q(x)ε(x, t)dx+

∫ 1

0
εT (x, t)|Λ(x)|−1Q(x)Σ(x)ε(x, t)dx

−
∫ 1

0
∂xε

T (x, t)Ǐ6Q(x)ε(x, t) + εT (x, t)Ǐ6Q(x)∂xε(x, t)dx

Using the expansion:

∂x
(
εT (x, t)Ǐ6Q(x)ε(x, t)

)
= ∂xε

T (x, t)Ǐ6Q(x)ε(x, t) + εT (x, t)Ǐ6Q(x)∂xε(x, t)

+ εT (x, t)

−2µQ(x)︷ ︸︸ ︷
Ǐ6∂x(Q(x)) ε(x, t)
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implies that

V̇ (t) = −[εT Ǐ6Q(x)ε]10︸ ︷︷ ︸
≤0

+
∫ 1

0
εT (x, t)(ΣT (x)|Λ(x)|−1Q(x) + |Λ(x)|−1Q(x)Σ(x)− 2µQ(x)︸ ︷︷ ︸

≤−2γ|Λ(x)|−1Q(x)

)εdx

(3.64)

The constraints (3.61) and (3.62) guarantee that V̇ (t) ≤ −2γV (t) for t ≥ 0. Hence, we have
that V (ε(t, .) ≤ e−2γtV (ε0). To finalize the proof, equation (3.63) implies that:

λmin||ε||2L2([0,1];R6) ≤ V (ε) ≤ λmax||ε||2L2([0,1];R6) (3.65)

where (λmin, λmax) are the minimum and maximum Eigen-values of the matrix (|Λ(x)|−1Q(x))
for all x ∈ [0, 1], respectively. We obtain the GES since:

λmin||ε||2L2([0,1];R6) ≤ e
−2γtV (ε0) ≤ λmaxe−2γt||ε0||2L2([0,1];R6)

⇔ ||ε||L2([0,1];R6) ≤
√
λmax
λmin

e−γt||ε0||L2([0,1];R6)
(3.66)

which implies (3.60) and completes the proof.

Remark 3.4.1. An interesting fact about inequality (3.61) is that it does not include the observer
gains L+ and L−. The existence of solutions to (3.61) highly depends on the magnitude of
the states couplings Σ(x). Since the two phase exchanger is naturally stable, we expect the
magnitude of Σ(x) to be small enough so that the inequality (3.61) can be satisfied. Otherwise,
the backstepping techniques explained in Chapter 2 should be used to handle the magnitude of the
couplings Σ(x). Moreover, inequality (3.61) is an infinite matrix linear inequality. It is solved
to find the coefficients of the positive definite matrix Q(x), and it should be satisfied for all
x ∈ [0, 1]. The authors in [58] employ a polytopic approach to handle the space variations.The
polytopic approach is to define a polytope in the spatial domain. Then, to solve the inequality
on the extremities of that polytope. This will guarantee that a solution exist all over the space
domain.

3.5 Numerical Evaluation of the Obsever
The performance of the proposed observer architecture in (3.55)-(3.57) is evaluated by compar-
ing the output of the system’s model along with the results of the observer simulation. The
evaluation scenario is done in the following order:

1. The nonlinear model (3.19)-(3.25) and (3.34)-(3.36) is simulated using the finite volume
method under constant boundary conditions with toy values for the exchanger dimensions,
heat transfer coefficient and friction coefficients. The simulation is completely explained
in Section 3.3;

2. Once the system has reached the steady stateWS(x), the linearized system matrices AS(x)
and BS(x) are computed as illustrated in Section 3.4.1;
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3. The matrices Λ(x) and Σ(x) are constructed using the transformation T (x) in (3.51), then
(3.61) is solved using the polytopic approach proposed by [58] to find the matrix Q(x).
The equation is solved for µ = 1.05 and γ = 10−4 s−1;

4. The bilinear matrix inequality (BMI) (3.62) is solved by first ensuring that the diagonal
elements are negative and then adjust the gains to satisfy the BMI. The values obtained
are: L1 = 0.0092, L2 = 0.3276, L3 = 0.0104, L4 = 0.2141, L5 = 0.0058 and L6 = 0.3943.

After calculating all the observer gains in the offline mode, we can proceed to evaluate the
estimation in real time. We present here the worst case scenario, i.e. the observer is simulated
with the addition of additive Gaussian noises (signal to noise ratio SNR=100) to the boundary
measurements. We start the model at the steady state WS(x) then we do a step decrease of
15 KJ/Kg in the inlet hot enthalpy at T = 1000 s. The observer is started at the following
initial conditions:

Ŵ0(x) = WS(x) + ∆Ŵ 0(x)

where the values of ∆Ŵ 0(x) are: ∆Ŵ 0
1 (x) = 10−3, ∆Ŵ 0

2 (x) = 50 KJ/Kg, ∆Ŵ 0
3 (x) = 0.15 MPa,

∆Ŵ 0
4 (x) = 10−3 Kg/s, ∆Ŵ 0

5 (x) = 50 KJ/Kg and ∆Ŵ 0
6 (x) = 0.15 MPa. Keeping in mind that

the overall objective of the observer is to estimate the states inside the domain using boundary
sensing. We present in Fig. 3.8 and Fig. 3.9 the estimations at two points inside the domain
at x = 0.25 and at x = 0.75 (these two points are chosen arbitrarily just to show the quality
of the estimation). We can see that the observer converges close enough to the model after
exhibiting some oscillations in the transient periods. The effect of linearization is not showing
up since the observer initial conditions are chosen not very far from the linearization point
WS(x). Fig. 3.10 shows the convergence of the estimation error in the L2 norm. We can notice
that the norm of the error converges to a steady state and not to zero. The reason is obviously
the addition of white Gaussian noise to the measurements. The magnitude of the error norm
at steady state is proportional to the (SNR) of the measurements. If the measurements were
more noisy, we expect the steady state error to increase. But in all cases, we can conclude that
the observer is reasonably robust; the addition of noise does not affect the convergence of the
observer. This conclusion is simulation-based, but the theoretical proof of the the robustness of
the observer to measurement noises follows straightforwardly from the Lyapunov analysis done
in Section 3.4. We should also mention that increasing the observer gains L+ and L− lead to
poor robustness with respect to measurement noises, this can be easily concluded also from the
Lyapunov analysis done in Section 3.4.

3.6 Conclusion

We have proposed a boundary observer for the two phase heat exchanger with CO2 refrigerants.
The analysis is started in the modeling phase, in which we have presented various physical
models for fluids undergoing change in phase from liquid to gas. Then, the model equations
are chosen with a careful approximation of the equations of the states of CO2. The observer
is built on the linearized dynamics of the model assuming constant heat transfer and friction
coefficients. Afterwards, we have used a Lyapunov approach to derive sufficient conditions for
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Figure 3.8: Estimation of the complete thermodynamic profile (ṁ, P,H) at x = 0.25.
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Figure 3.9: Estimation of the complete thermodynamic profile (ṁ, P,H) at x = 0.75.
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Figure 3.10: Time variation of the L2 norm of the estimation error ε(x, t).
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the exponential convergence of the estimation error and to calculate the observer gains.
An important future work for us is to consider state dependent heat and friction coefficients:
this is more realistic specially when considering two phase flows. Also, keeping some model
nonlinearities in the observer design would be an important step towards a full quasilinear
observer.



Chapter 4

Backstepping control for a class of
coupled hyperbolic-parabolic PDE
systems

We consider the boundary stabilization of a linear diffusion equation coupled with a linear
advection equation. A schematic diagram of the system is given in Fig. 4.1.

Figure 4.1: Schematic diagram of the diffusive - advective system

The diffusion state is v(x, t) and the advective state is u(x, t). The two equations are coupled
inside the domain and at the boundary. The in-domain coupling architecture is considered
from both sides i.e. an advection source term (σ(x)) driven by the advection PDE and a
Volterra integral source term (S(x, y)) driven by the diffusion PDE . More precisely, the system

81
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is governed by the following equations evolving in {(t, x) | t ≥ 0, x ∈ [ 0, 1] }:

vt(x, t) = vxx(x, t) + λ(x)v(x, t) + σ(x)u(x, t) (4.1)

ut(x, t) = ux(x, t) +
∫ x

0
S(x, y)v(y, t)dy (4.2)

vx(0, t) = u(0, t) (4.3)
v(1, t) = F1(t) (4.4)
u(1, t) = F2(t) (4.5)

where λ(x) is the diffusion reaction term, considered arbitrary. The system parameters λ(x),
σ(x) and S(x, y) are considered smooth enough. The outflow of the advection equation drives
the diffusion equation at the boundary x = 0. The system is also actuated by two boundary
control laws: F1(t) on the diffusion side and F2(t) on the advection side.
We recall that the overall objective to design two boundary control laws F1(t) and F2(t) so that
the system (4.1)-(4.5) can achieve exponential stability in the L2 ×H1 norm.

4.1 Literature review
Coupled parabolic-hyperbolic systems naturally appear in many physical domains, such as
predator-prey population models, biological chemotaxis and EUV lithography. It is important
to note that many real processes that are modeled by hyperbolic equations (such as gas flow
in pipelines [46], multiphase flow [35], heat exchanger networks [83], and many more) include
a diffusive behavior that is neglected under specific hypotheses. As extensively illustrated in
Chapter 1, a clear example regarding this property is the thermal heat exchanger tube, where
heat is transfered from one fluid to another through a wall interface in which diffusion takes
place. Under certain conditions related to the thermodynamic characteristics of the fluid and
of the wall, the diffusion property cannot be neglected and the mathematical model involves a
coupling between two different classes of PDEs, diffusion and advection.
Generally speaking, the control of partial differential equations of the same class is widely inves-
tigated in the literature. Several results exist on the boundary control of hyperbolic systems [17,
50, 26], and also of parabolic systems [57], [74], among many others. However, the boundary
control of mixed hyperbolic-parabolic PDEs is less investigated by the community. The results
on the existence of solutions of the initial-boundary value problems of quasilinear hyperbolic-
parabolic coupled systems can be dated back to the 80s [59, 75]. Since then, few results emerges
on the control design of such classes of systems. For instance, we can first mention the results
of the authors in [5] on the optimal control of coupled hyperbolic-parabolic PDEs. In their
work, they have considered distributed control inputs i.e. the control signals are injected inside
the domain and not at the boundary. The core of the control design is based on minimizing a
quadratic cost function to obtain a set of Ricatti equations similar to the ODE case. However,
system stabilization by means of a boundary controller is harder than using a distributed one.
The presence of an unbounded control operator at the boundary complicates the overall design.
In this context, we can mention the work of the authors in [54] that investigates the stabilization
of an unstable reaction-diffusion PDE with a long input delay. The delay is represented by a
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U(t)

Figure 4.2: Schematic diagram of the diffusive - advective system considered in [54]

U(t)

Figure 4.3: Schematic diagram of the diffusive - advective system considered in [31]

transport equation that drives the diffusion equation at the boundary as shown in Fig. 4.2.
The controller U(t) that stabilizes the system is obtained using the backstepping method. One
can notice that, in comparison with the system we consider in Fig. 4.1, the authors in [54]
consider no interior coupling between the advection equation u(x, t) and the diffusion equation
v(x, t) i.e. σ(x) = 0 and S(x, y) = 0. This coupling configuration is later extended by the
authors in [30] to the case of multiple diffusion equations with distinct input delays, using also
the backstepping method for the controllers design. Afterwards, the authors in [31] introduced
a uni-directional coupling from diffusion to advection as shown in Fig. 4.3. Hence, S(x, y) 6= 0
but no advection-diffusion coupling is considered. The controller design is again based on the
backstepping transformations similar to the ones used by the authors in [54].

4.1.1 Contribution

To the best of our knowledge, the contributions [54, 30, 31] are the only works in the literature
that address the problem of boundary stabilizing a mixed hyperbolic-parabolic system. In this
framework, we consider the control of almost the same class of systems investigated in [31]. The
novelty in our work is to consider a bidirectional interior coupling between the two PDEs (i.e.
an advection source term σ(x) driven by the advection PDE and a Volterra integral source term
S(x, y) driven by the parabolic PDE) as shown in Fig. 4.1. This additional complexity in the
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model necessitates having two boundary control actuators F1(t) and F2(t) instead of only one
control input U(t).
The present chapter also explores the applicability of the backstepping technique on systems of
distinct families. For such class of systems, it is clear that the effectiveness of the backstepping
method depends on the coupling topology as certain topologies can be quite difficult to tackle
in theory. The coupling structure considered in this chapter is a prime example on this difficulty.

The work done in this chapter is published in:

M.Ghousein, E.Witrant. “Backstepping control for a class of coupled hyperbolic-parabolic PDE
systems”. In: 2020 American Control Conference (ACC), IEEE, pp. 1600-1605, Invited session.

The chapter is organized as follows. The control design is presented in Section 4.2. Section
4.3 is dedicated to the exponential stability of the closed loop system. Finally, Section 4.4 illus-
trates the effectiveness of the control design through simulations and some concluding remarks
are given in Section 4.5.

4.2 Backstepping Control Design

The overall objective is to design two feedback control laws F1(t) and F2(t) such that the
exponential stability of system (4.1)-(4.5) is achieved in closed loop. It is important to note the
two reasons which can cause system (4.1)-(4.5) to be unstable in open loop: one is the reaction
term λ(x) > 0 which shifts the poles of the diffusion equation to the right hand plane. The
second reason is the two couplings S(x, y) and σ(x) which, depending on their magnitude, may
drive the system to unstability regardless of the value of λ(x).
Our proposed idea of the control design is shown on Fig. 4.4. The diffusion equation (4.1) is first
stabilized using the controller F1(t) to eliminate the instability caused by λ(x). Hence, the plant
of states {v(x, t), u(x, t)} is transformed by a backstepping transformation (Transformation 1)
into the target system 1 of states {z(x, t), u(x, t)}. At this step in the design, change only occur
on the diffusion state v(x, t) which is transformed into z(x, t) while keeping the transport state
u(x, t) untouched. Afterwards, since the advection equation (4.2) can decay in finite time in
case of no coupling from the diffusion equation, the idea is to decouple equation (4.2) using
the controller F2(t), such that finite time decay is achieved for the advection PDE. Therefore,
the advective state u(x, t) in target system 1 is transformed into w(x, t) in target system 2
using another backstepping transformation (Transformation 2) while keeping the diffusion states
unchanged z(x, t)=η(x, t). The resulting system, which is target system 2, will eventually be
only diffusive and we give sufficient conditions that guarantees its stability in the L2×H1 norm
(as we will show in the next sections).
To apply the previous procedure, one must know the shape the backstepping transformations
and also the architecture of the target systems. We start by Transformation 1.
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(v, u)

Plant

(z, u)

Target system 1

(η, w)

Target system 2

Transformation 1
F1(t)

Transformation 2
F2(t)

Figure 4.4: Control design strategy

4.2.1 Transformation 1: Eliminate the effect of λ(x)

The plant of states {v(x, t), u(x, t)} is transformed into target system 1 of states {z(x, t), u(x, t)}
using the following backstepping transformation:

z(x, t) = v(x, t)−
∫ x

0
K(x, y)v(y, t)dy (4.6)

v(x, t) = z(x, t) +
∫ x

0
L(x, y)z(y, t)dy (4.7)

where the kernels K(x, y) and L(x, y) are the direct and inverse kernels, respectively, defined on
the triangular domain Ω1 = {(x, y), 0 ≤ y ≤ x ≤ 1}. We consider also the following dynamics
for target system 1:

zt(x, t) = zxx(x, t)− cz(x, t)−
∫ x

0
T (x, y)z(y, t)dy + σ(x)u(x, t) +K(x, 0)u(0, t)

−
∫ x

0
K(x, y)σ(y)u(y, t)dy

(4.8)

ut(x, t) = ux(x, t) +
∫ x

0
S1(x, y)z(y, t)dy (4.9)

zx(0, t) = u(0, t) (4.10)
z(1, t) = 0 (4.11)
u(1, t) = F2(t) (4.12)

where c > 0 and T (x, y) are two control design variables to defined later, and S1(x, y) is given
by:

S1(x, y) = S(x, y) +
∫ x

y
S(x, ξ)L(ξ, y)dξ (4.13)

Before calculating the equations of the kernels K(x, y) and L(x, y), let us focus on the choice of
target system 1 in equations (4.8)-(4.12). The parameter λ(x) is substituted by c in the dynam-
ics of z(x, t) while the dynamics of u(x, t) did not change. This means that if the advective state
u(x, t) is naturally stable, then the diffusion state z(x, t) will have no problems in its stability
since the effect of λ(x) is eliminated, and this is the overall objective of transformation 1 as we
mentioned earlier. The introduction of the variable T (x, y) will also serve its role later on, when
we give the sufficient conditions for stability of the system.
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We now derive the equations of the direct transformation K(x, y) only. The equations of L(x, y)
will follow in the same way. Differentiating (4.6) in time, substituting (4.1) and integrating by
parts we have

zt(x, t) = vxx(x, t) + λ(x)v(x, t) + σ(x)u(x, t)−K(x, x)vx(x, t) +K(x, 0)vx(0, t)

+Ky(x, x)v(x, t)−Ky(x, 0)v(0, t)−
∫ x

0
Kyy(x, y)v(y, t)dy

−
∫ x

0
K(x, y)λ(y)v(y, t)dy −

∫ x

0
σ(y)K(x, y)u(y, t)dy

(4.14)

We then differentiate (4.6) twice in space and we substitute in (4.8) to get

zt(x, t) = vxx(x, t)− d(K(x, x))
dx

v(x, t)−K(x, x)vx(x, t)−Kx(x, x)v(x, t)− cv(x, t)

−
∫ x

0
Kxx(x, y)v(y, t)dy + c

∫ x

0
K(x, y)v(y, t)dy + σ(x)u(x, t) +K(x, 0)u(0, t)

−
∫ x

0
T (x, y)v(y, t)dy −

∫ x

0
σ(y)K(x, y)u(y, t)dy +

∫ x

0
{
∫ x

y
T (x, ξ)K(ξ, y)dξ}v(y, t)dy

(4.15)

Equalizing (4.14) and (4.15), and posing the relevant boundary condition in (4.3) leads to the
following kernel equations of K(x, y)

Kxx(x, y)−Kyy(x, y) = (c+ λ(y))K(x, y)− T (x, y) +
∫ x

y
T (x, ξ)K(ξ, y)dξ (4.16)

Ky(x, 0) = 0 (4.17)

K(x, x) = −1
2

∫ x

0
(λ(s) + c)ds (4.18)

Following exactly the same procedure, one can calculate the kernel equations for the inverse
transformation L(x, y) using (4.7). This gives the following set of equations:

Lyy(x, y)− Lxx(x, y) = (c+ λ(x))L(x, y) + T (x, y) +
∫ x

y
L(x, ξ)T (ξ, y)dξ (4.19)

Ly(x, 0) = 0 (4.20)

L(x, x) = −1
2

∫ x

0
(λ(s) + c)ds (4.21)

The control law F1(t) is calculated to ensure that z(1, t) = 0 and is given by:

F1(t) =
∫ 1

0
K(1, y)v(y, t)dy (4.22)

It has been shown in [74] that the kernel equations (4.16)-(4.18) and (4.19)-(4.21) have a C2[Ω1]
unique solution. The method relies on writing the kernel equations in the integral form and then
to use the method of successive approximations (explained in Chapter 2/ Numerical simulations)
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to prove the convergence of the iterating sequence. Interested readers are oriented to check the
detailed proof in [74] in Chapter 2.
Target system 1 becomes a stable diffusion equation (with two free design variables c and T (x, y))
coupled with an advection equation. The objective of the controller F2(t) is then to decouple
(4.9) from diffusion. By doing so, the advection equation can achieve finite time stability.

4.2.2 Transformation 2: Eliminate the effect of σ(x) and S(x, y)
We consider the following backstepping transformation that maps target system 1 of states
{z(x, t), u(x, t)}to target system 2 of states {η(x, t), w(x, t)}:

η(x, t) = z(x, t) (4.23)

w(x, t) = u(x, t)−
∫ x

0
P (x, y)u(y, t)dy −

∫ 1

0
M(x, y)z(y, t)dy (4.24)

where the kernel P (x, y) is defined on the triangular domain Ω1 and M(x, y) is defined on the
rectangular domain Ω2 = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. We also postulate the inverse of
transformation 2 as:

z(x, t) = η(x, t) (4.25)

u(x, t) = w(x, t) +
∫ x

0
Q(x, y)w(y, t)dy +

∫ 1

0
R(x, y)η(y, t)dy (4.26)

where Q(x, y) and R(x, y) are the inverse kernels defined on Ω1 and Ω2, respectively. Transfor-
mation 2 has a specific form i.e. if we consider (4.24), one can notice that it is a superposition of
a Volterre integral in u(x, t) and a Fredholm integral in z(x, t). This architecture is not common
in the theory of backstepping design for PDEs of the same class. However, it has been used
by the authors in [54, 30, 31] on mixed classes of transport and diffusion equations in order to
handle the complexity introduced by the physical fact that the advection and diffusion equations
donot have the same number of spatial derivatives.
Now, we consider the following dynamics for target system 2:

ηt(x, t) = ηxx(x, t)− cη(x, t) + σ(x)w(x, t) +K(x, 0)w(0, t)

+
∫ 1

0
C1(x, y)η(y, t)dy +

∫ x

0
C2(x, y)w(y, t)dy

(4.27)

wt(x, t) = wx(x, t) (4.28)
ηx(0, t) = w(0, t) (4.29)
η(1, t) = 0 (4.30)
w(1, t) = 0 (4.31)

where C1(x, y) and C2(x, y) are two feedforward couplings defined on Ω1 and Ω2 respectively,
and they are to be defined later. Target system 2 is composed of an advective state w(x, t) that
is totally decoupled form the diffusion state η(x, t). This choice is extremely important as it ease
the stability analysis and permit us to obtain sufficient conditions for exponential convergence
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as we illustrate later. Now, we derive the kernel equations for transformation 2.

As we did in the derivations of transformation 1, we only derive the kernel equations for the
direct transformation while the inverse transformation follow in the same order. Differentiating
(4.24) in time, substituting (4.8)-(4.9) and integrating by parts we have

wt(x, t) = ux(x, t) +
∫ x

0
S1(x, y)z(y, t)dy − P (x, x)u(x, t) + P (x, 0)u(0, t)

+
∫ x

0
Py(x, y)u(y, t)dy −

∫ x

0
{
∫ x

y
P (x, ξ)S1(ξ, y)dξ}z(y, t)dy

−M(x, 1)zx(1, t) +M(x, 0)zx(0, t) +My(x, 1)z(1, t)−My(x, 0)z(0, t)

−
∫ 1

0
Myy(x, y)z(y, t)dy + c

∫ 1

0
M(x, y)z(y, t)dy

−
∫ 1

0
σ(y)M(x, y)u(y, t)dy − u(0, t)

∫ 1

0
M(x, ξ)K(ξ, 0)dξ

+
∫ 1

0
{
∫ 1

y
M(x, ξ)T (ξ, y)dξ}z(y, t)dy +

∫ 1

0
{
∫ 1

y
M(x, ξ)K(ξ, y)dξ}σ(y)u(y, t)dy

(4.32)

Differentiating (4.24) once in space gives

wt(x, t) = wx(x, t)

= ux(x, t)− P (x, x)u(x, t)−
∫ x

0
Px(x, y)u(y, t)dy −

∫ 1

0
Mx(x, y)z(y, t)dy

(4.33)

By equalizing (4.32) and (4.33) and enforcing the relevant boundary conditions (4.10) and (4.11)
we take: ∫ 1

0

(
Mx(x, y)−Myy(x, y) + cM(x, y) +

∫ 1

y
M(x, ξ)T (ξ, y)dξ

+ Iy≤x
(
−
∫ x

y
P (x, ξ)S1(ξ, y)dξ + S1(x, y)

))
z(y, t)dy = 0.

(4.34)

∫ 1

0

(
− σ(y)M(x, y) + σ(y)

∫ 1

y
M(x, ξ)K(ξ, y)dξ + Iy≤x

(
Py(x, y) + Px(x, y)

))
u(y, t)dy = 0.

(4.35)

(
P (x, 0) +M(x, 0)−

∫ 1

0
M(x, ξ)K(ξ, 0)

)
u(0, t) = 0. (4.36)

where Iy≤x(x, y) =
{

1 if y ≤ x
0 if y > x

is a piecewise function defined on Ω2. Using (4.35) and (4.36),

we get the following equations for P (x, y):Py(x, y) = −Px(x, y) + σ(y)
(
M(x, y)−

∫ x
y M(x, ξ)K(ξ, y)dξ

)
P (x, 0) = −M(x, 0) +

∫ x
0 M(x, ξ)K(ξ, 0)dξ

(4.37)
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Using (4.24), we have that w(0, t) = u(0, t)−
∫ 1

0 M(0, y)z(y, t)dy with zx(0, t) = ηx(0, t) = u(0, t).
Hence, enforcing (4.29) leads to a zero initial condition for the kernel M(x, y), i.e. M(0, y) = 0.
By imposing M(x, 1) = 0 and having M(0, y) = 0, we deduce that M(x, y) = 0 is a trivial
solution to equations (4.34)-(4.35) for y > x. By imposing My(x, 0) = 0 and using (4.34)-(4.36)
with M(x, y) = 0 for y > x, we directly obtain the following equations for M(x, y):



{
Mx(x, y) = Myy(x, y)− cM(x, y)− S1(x, y) +

∫ x
y P (x, ξ)S1(ξ, y)dξ

−
∫ x
y M(x, ξ)T (ξ, y)dξ

if y ≤ x

M(x, y) = 0 if y > x

My(x, 0) = 0

(4.38)

In order to find C1(x, y) and C2(x, y), we substitute (4.23)-(4.24) in (4.27) and get

zt(x, t) = zxx(x, t)− cz(x, t) + σ(x)u(x, t) +K(x, 0)u(0, t)

+
∫ x

0

(
− σ(x)P (x, y) + C2(x, y)−

∫ x

y
C2(x, ξ)P (ξ, y)dξ

)
u(y, t)dy

+
∫ 1

0

(
− σ(x)M(x, y) + C1(x, y)−

∫ x

0
C2(x, ξ)M(ξ, y)dξ −K(x, 0)M(0, y)

)
z(y, t)dy

(4.39)

By (4.8), we also have that

zt(x, t) =zxx(x, t)− cz(x, t) + σ(x)u(x, t) +K(x, 0)u(0, t)−
∫ x

0
T (x, y)z(y, t)dy

−
∫ x

0
K(x, y)σ(y)u(y, t)dy

(4.40)

By equalizing (4.39) and (4.40), and using (4.38) we have directly the following equations for
C1(x, y) and C2(x, y):

C1(x, y) =
{
σ(x)M(x, y)− T (x, y) +

∫ x
y C2(x, ξ)M(ξ, y)dξ if y ≤ x

0 if y > x
(4.41)

C2(x, y) = σ(x)P (x, y)− σ(y)K(x, y) +
∫ x

y
C2(x, ξ)P (ξ, y)dξ (4.42)

The control law F2(t) is calculated to ensure that w(1, t) = 0 and is given by:

F2(t) =
∫ 1

0
P (1, y)u(y, t)dy +

∫ 1

0
M(1, y)z(y, t)dy

=
∫ 1

0
P (1, y)u(y, t)dy +

∫ 1

0
Mc(1, y)v(y, t)dy

(4.43)
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with Mc(1, y) = M(1, y) −
∫ 1
y M(1, ξ)K(ξ, y)dξ. In the same way, one can calculate the kernel

equations for the inverse transformation using (4.26). This gives the following set of equations:{
Qy(x, y) = −Qx(x, y) + σ(y)R(x, y) +

∫ x
y R(x, ξ)C2(ξ, y)dξ

Q(x, 0) = −R(x, 0) +
∫ x

0 R(x, ξ)K(ξ, 0)dξ
(4.44)

Rx(x, y) = Ryy(x, y)− cR(x, y)− S1(x, y) +
∫ x
y R(x, ξ)C1(ξ, y)dξ if y ≤ x

R(x, y) = 0 if y > x

Ry(x, 0) = 0
(4.45)

The obtained kernel equations are of known types. For instance, the kernel equations for P (x, y)
is the linear transport equation solved on the triangular domain Ω1. Whereas, the kernel equa-
tions for M(x, y) is the reaction-diffusion equation solved on the rectangular domain Ω2. In
what follows, we discuss the wellposedness of these equations.

Well-posedness of kernel equations for transformation 2

Notice that the inverse equations (4.44)-(4.45) are similar to the direct transformation equations
(4.37)-(4.38), except that R(x, y) is uncoupled from Q(x, y). As a result, the well-posedness
of R(x, y) implies the well-posedness of Q(x, y), given the fact that Q(x, y) is the first order
transport equation. We start with the well-posedness of the direct transformation as the inverse
will follow exactly in the same way. The transport equation (4.37) can be explicitly solved as a
function of M(x, y) using the method of characteristics:

P (x, y) = −M(x− y, 0) +
∫ y

0
σ(ξ)M(x− y + ξ, ξ)dξ +

∫ x−y

0
M(x− y, ξ)K(ξ, 0)dξ

−
∫ y

0

∫ x−y+s

s
σ(s)M(x− y + s, ξ)K(ξ, s)dξds

(4.46)

Then, the existence ofM(x, y) is sufficient to show that both P (x, y) andM(x, y) exist. Inserting
(4.46) into (4.38), the M(x, y) kernel equations become:

Mx(x, y) = Myy(x, y)− cM(x, y)− S1(x, y)−H[M ](x, y) if y ≤ x
M(x, y) = 0 if y > x

My(x, 0) = 0
(4.47)

where the linear operator H[M ](x, y) is given by:

H[M ](x, y) =
∫ x

y
M(x, ξ)T (ξ, y)dξ −

∫ x

y

(
−M(x− ξ, 0)−

∫ ξ

0
σ(s)M(x− ξ + s, s)ds

−
∫ x−ξ

0
M(x− ξ, s)K(s, 0)ds+

∫ ξ

0

∫ x−ξ+v

v
σ(v)M(x− ξ + v, s)K(s, v)dsdv

)
S1(ξ, y)dξ

(4.48)

A schematic diagram of M(x, y) on Ω2 is shown on Fig. 4.5. The domain is partitioned into
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Figure 4.5: M(x, y) kernel representation
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two parts: the region y > x, where we have a diffusion equation of zero initial and boundary
conditions that results in a zero trivial solution (M(x, y) = 0), and the second region is y ≤ x,
where we have a reaction advection diffusion equation with a source term. The M(x, y) PDE
kernel equations (4.47) are nearly the same as the l(x, y) kernel equations obtained by the authors
in [31], except that M(x, y) has a zero initial condition (M(0, y) = 0, which gives M(x, y) = 0
if y > x, whereas in [31], l(0, y) 6= 0). M(x, y) also contains an additional linear integral terms
related to the coupling with the transport equation. To prove the existence of a weak solution,
the idea is to first compute energy estimates of the solution. These estimates depend only on
the initial conditions and the source terms. Afterwards, a Galerkin type argument can be used
to prove the existence of solutions (see Chapter 7 in [40]). We give only partial elements of the
proof as the rest is the same as in [31]. We state the energy estimates result in the following
lemma:

Lemma 4.2.1. Consider the M(x, y) PDE system (4.47). There exist a function F : R+ → R+

such that:
max
s∈[0,x]

||M(s)||H1[0,1] + ||M ||L2([0,x],H1[0,1]) ≤ F (S̄) (4.49)

where S̄= ||S1(x, y)||L2([0,1],H2[0,1]).

Proof. We define the H1 norm of M(x, y) in the y-direction as:

||M(x)||2H1[0,1] =
∫ 1

0
M2(x, y)dy +

∫ 1

0
M2
y (x, y)dy

= ||M(x)||2L2[0,1] + ||My(x)||2L2[0,1]

(4.50)

Using (4.47), integration by parts, and applying Young’s and Agmon’s inequalities [57] we get:

d

dx
||M(x)||2L2[0,1] ≤

(
− 2c+ 1

2 + T̄ + S̄1 + 1
2ΣS̄1 + 1

2KS̄1 + ΣKS̄1

)
||M(x)||2L2[0,1]

+ S̄2
1 + 1

2 T̄ ||M(x)||2H1[0,1] +
(
S̄1 + ΣS̄1 + KS̄1 + ΣKS̄1

)
max
s∈[0,x]

||M(s)||2H1[0,1]

(4.51)

where Σ = ||σ(x)||L∞[0,1], T̄ = ||T (x, y)||L2([0,1],H2[0,1]) and K = ||K(x, y)||L∞[Ω1]. In the same
way, using (4.47), one can derive the following bound on the derivative of ||My(x)||2L2[0,1]:

d

dx
||My(x)||2L2[0,1] ≤

(
− 2c+ 1

2 + 2T̄ + 3
2ΣS̄1 + 3

2KS̄1 + 2ΣKS̄1 + 2S̄1

)
||My(x)||2L2[0,1]

+ S̄2
1 + 1

2 T̄ ||M(x)||2H1[0,1] + T̄ ||M(x)||2L2[0,1]

+ 2
(

ΣS̄1 + KS̄1 + ΣKS̄1 + S̄1

)
max
s∈[0,x]

||M(s)||2H1[0,1]

(4.52)
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By adding (4.51) and (4.52), we get the following differential inequality in the H1 norm of
M(x, y):

d

dx
||M(x)||2H1[0,1] ≤

(
− 2c+ 1

2 + 3T̄ + 2S̄1 + 3
2ΣS̄1 + 3

2KS̄1 + 2ΣKS̄1

)
||M(x)||2H1[0,1]

+ 2S̄2
1 + 3

(
ΣS̄1 + KS̄1 + ΣKS̄1 + S̄1

)
max
s∈[0,x]

||M(s)||2H1[0,1]

(4.53)

We solve (4.53) by considering two separate cases: increasing and decreasing cases (the constant
case is obvious). Starting with the increasing case, we have that maxs∈[0,x]||M(s)||2H1[0,1] =
|||M(x)||2H1[0,1], and (4.53) becomes:

d

dx
||M(x)||2H1[0,1] ≤

(
− 2c+ 1

2 + 3T̄ + 5S̄1 + 9
2ΣS̄1 + 9

2KS̄1 + 5ΣKS̄1

)
||M(x)||2H1[0,1] + 2S̄2

1

(4.54)

Using the comparison principle, and recalling thatM(x, y) has zero initial conditionM(0, y) = 0,
one can derive the following H1 bound on M(x, y):

||M(x)||2H1[0,1] ≤
∫ x

0
2S̄1

2exp
((
− 2c+ 1

2 + 3T̄ + 5S̄1 + 9
2ΣS̄1 + 9

2KS̄1 + 5ΣKS̄1
)
(x− z)

)
dz

(4.55)

On the other hand, and in a quite similar way, we note in the decreasing case that
maxs∈[0,x]||M(s)||2H1 = |||M(0)||2H1 = 0, and (4.53) becomes:

d

dx
||M(x)||2H1[0,1] ≤

(
− 2c+ 1

2 + 3T̄ + 2S̄1 + 3
2ΣS̄1 + 3

2KS̄1 + 2ΣKS̄1

)
||M(x)||2H1[0,1] + 2S̄2

1

(4.56)

Following the same procedure, one can derive the following H1 norm on M(x, y):

||M(x)||2H1[0,1] ≤
∫ x

0
2S̄1

2exp
((
− 2c+ 1

2 + 3T̄ + 2S̄1 + 3
2ΣS̄1 + 3

2KS̄1 + 2ΣKS̄1
)
(x− z)

)
dz

(4.57)

By (4.55) and (4.57), one can find a mapping F such that (4.49) is fulfilled.

Theorem 4.2.1. The kernel PDE defined by (4.47) has a weak solution in L2([0, 1], H1[0, 1]).

Proof. Using a Galerkin construction of the solution and by applying Lemma 4.2.1, a weak
solution is guaranteed to exist due to the energy estimate obtained in (4.49) (see [31] for more
details).

In order to ensure the existence of a bounded solution for C1(x, y) and C2(x, y) in equations
(4.41) and (4.42), we take the following assumption on the weak solution of M(x, y) proved in
Theorem 4.2.1.
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Assumption 4.2.1. Assume that the weak solution M(x, y) of the kernel PDE defined by (4.47)
is bounded for all (x, y) in Ω2.

The boundedness of M(x, y) by assumption 1 implies the boundedness of P (x, y) by (4.46).
Since equation (4.42) is a Volterra equation in C2(x, y) with a bounded source σ(x)P (x, y) −
σ(y)K(x, y) and a bounded kernel P (x, y), then by the method of successive approximations,
C2(x, y) admits a bounded solution in Ω1. As a result, C1(x, y) also admits a bounded solution
in Ω2 using (4.41).

Remark 4.2.1. If σ(x) == 0, our results lead directly to the results obtained by the authors in
[31].

4.3 Stability of the closed loop system
We start by considering the exponential stability of the system {η(x, t), w(x, t)}, then use trans-
formations 1 and 2 to conclude on the exponential stability of the {v(x, t), u(x, t)} system. The
target system 2 is in a cascade form: a finite-time (tF = 1s) stable transport equation w(x, t)
which drives a diffusion equation η(x, t). After tF , the stability of η(x, t) is directly related to
the magnitude of the Fredholm integral variable C1(x, y). However, the magnitude of C1(x, y)
can be modified through the two design control variables c and T (x, y) embedded in C1(x, y)
(see equation 4.41). Moreover, the boundary connectivity of two different classes of PDEs at
x = 0 gives rise to an unbounded input operator in the interconnection, which necessitates a
high order norm in w(x, t). As a result, we prove the exponential stability of {η(x, t), w(x, t)}
in the L2 ×H1 sense.
We start by transferring the boundary coupling between η(x, t) and w(x, t) into the spatial
domain. Consider the following intermediate change of variable:

ξ(x, t) = η(x, t)− (x− 1)w(0, t) (4.58)

Differentiating (4.58) in space and time, and substitute in (4.27) to get the following dynamics
of the {ξ(x, t), w(x, t)} system:

ξt(x, t) = ξxx(x, t)− cξ(x, t) + σ(x)w(x, t) + (1− x)wt(0, t)

−
(
c(x− 1)−K(x, 0)−

∫ 1

0
C1(x, y)(y − 1)dy

)
w(0, t)

+
∫ x

0
C2(x, y)w(y, t)dy +

∫ 1

0
C1(x, y)ξ(y, t)dy

(4.59)

wt(x, t) = wx(x, t) (4.60)
ξx(0, t) = 0 (4.61)
ξ(1, t) = 0 (4.62)
w(1, t) = 0 (4.63)

Hence, the transport state w(x, t) drives the diffusion state ξ(x, t) only from inside the do-
main. The following lemma states the sufficient conditions for the exponential stability of
{ξ(x, t), w(x, t)} in the L2 ×H1 sense.
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Lemma 4.3.1. Consider the intermediate system {ξ(x, t), w(x, t)} in (4.59)-(4.63) with any
arbitrary initial condition {ξ(x, 0),w(x, 0)} satisfying the compatibility conditions. If there exist
δ1 > 0 and two control variables c > 0 and T (x, y) such that

−π
2

4 − c+ ||C1||L∞[Ω2] ≤ −δ1 (4.64)

then the system {ξ(x, t), w(x, t)} is exponentially stable in the L2 ×H1 sense.

Proof. Consider the following Lyapunov function

V1(t) = 1
2

∫ 1

0
ξ2(x, t)dx+ 1

2

∫ 1

0
p1e

axw2(x, t)dx+ 1
2

∫ 1

0
p2e

bxw2
x(x, t)dx (4.65)

with p1, p2, a, b > 0. V1(t) is the weighted L2 ×H1 norm of {ξ(x, t), w(x, t)}. Differentiating
(4.65) in time, we have

V̇1(t) =
∫ 1

0
ξ(x, t)ξt(x, t)dx+

∫ 1

0
p1e

axw(x, t)wt(x, t)dx+
∫ 1

0
p2e

bxw2
x(x, t)w2

tx(x, t)dx (4.66)

Substituting with (4.59)-(4.63) in (4.66), integrating by parts and applying Wirtinger inequality
[57] to bound the spatial derivative of ξ(x, t), one gets

V̇1(t) ≤ −(π
2

4 + c)||ξ||2L2[0,1] +
∫ 1

0
σ(x)w(x, t)ξ(x, t)dx+ wt(0, t)

∫ 1

0
(1− x)ξ(x, t)dx− p2

2 w
2
x(0, t)

+ w(0, t)
∫ 1

0
ψ(x)ξ(x, t)dx− p1

2 w
2(0, t)− 1

2

∫ 1

0
ap1e

axw2(x, t)dx− 1
2

∫ 1

0
bp2e

bxw2
x(x, t)dx

+
∫ 1

0

∫ x

0
C2(x, y)w(y, t)ξ(x, t)dydx+

∫ 1

0

∫ 1

0
C1(x, y)ξ(y, t)ξ(x, t)dydx

(4.67)

with ψ(x) = −
(
c(x−1)−K(x, 0)−

∫ 1
0 C1(x, y)(y−1)dy

)
. Now, applying Young’s and Cauchy-

Shwartz inequalities [57] to the last two integral terms in (4.67) and noticing that wt(0, t) =
wx(0, t), we have:

V̇1(t) ≤ ( 1
2ε3
||ψ||L∞[0,1] −

p1
2 )w2(0, t) + ( 1

2ε4
− p2

2 )w2
x(0, t)

−
∫ 1

0
A1(x)ξ2(x, t)dx−

∫ 1

0
A2(x)w2(x, t)dx−

∫ 1

0
A3(x)w2

x(x, t)dx
(4.68)

where:

A1(x) = π2

4 + c− ||C1||L∞[Ω2] −
ε1
2 ||σ||L∞[0,1] −

ε2
2 ||C2||L∞[Ω1] −

ε3
2 ||ψ||L∞[0,1] −

ε4
2

A2(x) = 1
2p1ae

ax − 1
2ε2
||C2||L∞[Ω1] −

1
2ε1
||σ||L∞[0,1]

A3(x) = 1
2p2be

bx
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with εi > 0 for i = 1, 2, 3, 4 are to be chosen. Given (4.64), we can then select all the εi small
enough to ensure that A1(x) ≥ δA1

2 for some δA1 > 0. Then p1 and p2 are chosen such that
( 1

2ε3 ||ψ(x)||L∞[0,1] − p1
2 ) < 0 and ( 1

2ε4 −
p2
2 ) < 0. Furthermore, we select a large enough to have

A2(x) ≥ δA2(1
2p1e

ax) for some δA2 > 0. By doing so, we can find the following bound V̇1(t):

V̇1(t) ≤ −min{δA1 , δA2 , b}V1(t) (4.69)

The inequality (4.69) gives the exponential decay of V1(t) in the L2×H1 norm with a convergence
rate γ = min{δA1 , δA2 , b} and concludes the proof of Lemma 4.3.1.

The following two lemmas are to prove the exponential stability of the system {η(x, t), w(x, t)}.

Lemma 4.3.2. Consider the following positive definite functions

P1(t) = 1
2

∫ 1

0
ξ2(x, t)dx+ 1

2

∫ 1

0
p2e

bxw2
x(x, t)dx (4.70)

P2(t) =
∫ 1

0
η2(x, t)dx+

∫ 1

0
w2
x(x, t)dx (4.71)

There exist two positive constants J1 > 0 and J2 > 0 such that

J2P2(t) ≤ P1(t) ≤ J1P2(t) (4.72)

Proof. We start by substituting (4.58) in (4.70) to have

P1(t) = 1
2

∫ 1

0

(
η2(x, t)− 2w(0, t)η(x, t)(x− 1) + w2(0, t)(x− 1)2)dx+ 1

2

∫ 1

0
p2e

bxw2
x(x, t)dx

≤ 1
2

∫ 1

0
η2(x, t)dx+ |w(0, t)|

∫ 1

0
|x− 1||η(x, t)|dx+ 1

6w
2(0, t) + +1

2

∫ 1

0
p2e

bxw2
x(x, t)dx

(4.73)

By using Cauchy-Shwartz inequality we get

P1(t) ≤ 1
2

∫ 1

0
η2(x, t)dx+ |w(0, t)|

(∫ 1

0
η2(x, t)dx

) 1
2
(∫ 1

0
|x− 1|2dx

) 1
2

+ 1
6w

2(0, t)

+ 1
2

∫ 1

0
p2e

bxw2
x(x, t)dx

≤ 1
2

∫ 1

0
η2(x, t)dx+ 1√

3
|w(0, t)|

(∫ 1

0
η2(x, t)dx

) 1
2

+ 1
6w

2(0, t) + 1
2

∫ 1

0
p2e

bxw2
x(x, t)dx

(4.74)

We have by Young’s inequality that

1√
3
|w(0, t)|

(∫ 1

0
η2(x, t)dx

) 1
2
≤ 1

6w
2(0, t) + 1

2

∫ 1

0
η2(x, t)dx (4.75)
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Hence, inserting (4.75) in (4.74) we get

P1(t) ≤
∫ 1

0
η2(x, t)dx+ 1

3w
2(0, t) + 1

2

∫ 1

0
p2e

bxw2
x(x, t)dx (4.76)

By Agmon’s inequality, we have that

1
3w

2(0, t) ≤ 4
3

∫ 1

0
w2
x(x, t)dx (4.77)

and (4.76) becomes

P1(t) ≤
∫ 1

0
η2(x, t)dx+

(4
3 + 1

2p2e
b) ∫ 1

0
w2
x(x, t)dx

≤ J1P2(t)
(4.78)

with J1 = 4
3 + 1

2p2e
b. In exactly the same way, but starting by P2(t) and substituting (4.58),

one can easily find the second constant J2 = 1
max(4, 11

3p2
) and this concludes the proof.

Lemma 4.3.3. Consider the target system 2 {η(x, t), w(x, t)} with arbitraty inital conditons
{η(x, 0), w(x, 0)} satisfying the compatibility conditions. If there exist δ1 > 0 and two control
variables c > 0 and T (x, y) such that condition (4.64) is satisfied, then the equilibrium η ≡ w ≡ 0
is exponentially stable in the L2 ×H1 sense.

Proof. Consider the Lyapunov function

V2(t) = 1
2

∫ 1

0
η2(x, t)dx+ 1

2

∫ 1

0
w2(x, t)dx+ 1

2

∫ 1

0
w2
x(x, t)dx

= P2(t) + 1
2

∫ 1

0
w2(x, t)dx

(4.79)

Noticing that

d

dt

(1
2

∫ 1

0
p1e

axw2(x, t)dx
)

= −p1
2 w

2(0, t)− a
(1

2

∫ 1

0
p1e

axw2(x, t)dx
)

(4.80)

which gives the exponential stability of the transport state w(x, t) in the L2 sense independently
from the diffusion state η(x, t). Then by using (4.72) and the results obtained in lemma 4.3.1,
the exponential decay of V2(t) follows directly and concludes the proof.

Remark 4.3.1. After the time tF = 1s, the target system 2 is only diffusive and its stability
depends on the magnitude of C1(x, y). It is useful to view C1(x, y) as a function of the parameters
as C1(λ, σ, S, c, T ). The parameter c is interpreted as a convergence rate parameter. If c = 0, the
free variable T (x, y) helps in finding δ1 such that (4.64) is satisfied. Otherwise i.e. if T (x, y) = 0,
the stability condition (4.64) will depend only on the magnitude of the system’s parameters (λ(x),
σ(x), S(x, y)). Since the dependency of C1(x, y) on c and T (x, y) is extremely convoluted, we
use a search algorithm to find the admissable values of c and T (x, y) that satisfy (4.64) (as
illustrated in Section 4.4).
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As the stability of the system {η(x, t), w(x, t)} is proven, we can go in the backward direction
using transformations 1 and 2 to prove stability of the initial system {v(x, t), u(x, t)}.

Theorem 4.3.1. Consider the system (4.1)-(4.5) with arbitrary initial conditions {v(x, 0), u(x, 0)}
satisfying the compatibility conditions, with feedback control gains F1(t) and F2(t) given in (4.22)
and (4.43), respectively. If there exist δ1 > 0 and two control variables c > 0 and T (x, y) such
that condition (4.64) is satisfied, the equilibrium u ≡ v ≡ 0 is exponentially stable in the L2×H1

sense.

Proof. Consider the Lyapunov function

V3(t) = ||(v(., t), u(., t))||2L2×H1 = 1
2

∫ 1

0
v2(x, t) + u2(x, t) + u2

x(x, t)dx (4.81)

Starting from the system {η(x, t), w(x, t)}, using the direct and inverse transformations (4.23)-
(4.26) with the boundedness of their kernels, also Young’s and Cauchy-Schwartz inequalities,
one can find a bound that relates the target system 1 to target system 2:

α1||(z(., t), u(., t))||2L2×H1 ≤ ||(η(., t), w(., t))||2L2×H1 ≤ α2||(z(., t), u(., t))||2L2×H1 (4.82)

with α1, α2 > 0. In the same way, and using the invertibility of transformation 1 with the
boundedness of the gain kernels, and applying Young’s and Cauchy- Schwarz inequalities, we
can derive the following bound that relates target system 1 to the plant (4.1)-(4.5)

α3||(v(., t), u(., t))||2L2×H1 ≤ ||(z(., t), u(., t)||2L2×H1 ≤ α4||(v(., t), u(., t))||2L2×H1 (4.83)

with α3, α4 > 0. By Lemma 4.3.3, we have that the target system 2 is exponentially decaying.
Then by applying (4.82) and (4.83), there exist two real positive constants q and M such that:

||(v(., t), u(., t))||L2×H1 ≤Me−qt||v(x, 0), u(x, 0)||L2×H1 (4.84)

which completes the proof.

4.4 Numerical Simulation Results

The performance of the control architecture is evaluated on its ability to stabilize an unstable
open loop system. We have performed simulations taking into consideration the two mentioned
reasons for instability (see Section 4.2) i.e. we choose λ = 3 > π2

4 , σ(x) = 4, S(x, y) =
5e1−ycos(x). As predicted from the chosen values of (λ, σ(x), S(x, y)), the plant is open loop
unstable and this is confirmed by the response in Fig. 4.6. The second step is to calculate the
two controllers F1(t) and F2(t) that stabilize the system. This requires solving offline the kernels
K(x, y), L(x, y), M(x, y) and P (x, y) to obtain the controller gains. Two unknowns are required
to solve the kernels: c and T (x, y).
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4.4.1 Calculation of c and T(x,y)

The two control variables c and T (x, y) are principally calculated to ensure that inequality (4.64)
is satisfied. We proceed in the following order:

• fix the variables c and δ1 as the speed of convergence parameters;

• T (x, y) is written using Legendre polynomials as follows, ∀(x, y) ∈ Ω1:

T (x, y) =
N∑
p=0

N∑
q=0

αp,qPp(x)Pq(y) (4.85)

where α0,0, ..., αN,N are some constant coefficients, Pq(x) is the qth order Legendre poly-
nomial, N is the order of the Legendre polynomials;

• we write the kernels K(x, y) and L(x, y) in the integral form (see [74]), these equations
are approximated using the left Rieman sum approximation. Afterwards, the M(x, y)
kernel is discretized and calculated using a finite differences scheme. The kernels P (x, y),
C1(x, y) and C2(x, y) are calculated using the integral equations (4.46), (4.41) and (4.42)
respectively;

• using a Monte-Carlo simulation method, we solve

max
αp,q
|C1| <

π2

4 + c− δ1 (4.86)

to find the values of the constants αp,q. We start the search algorithm with zero degree
of freedom polynomials i.e. T (x, y) = cst. The level of complexity can be increased to
include more degrees of freedom in case of difficulties in finding solutions.

For the values of the system parameters mentioned above, inequality (4.64) was solved for c = 1,
δ1 = 0.85 and a constant value for T (x, y) = T = −1.67. The controller gains are given on Fig.
4.7. Actuating the system with the two feedback control laws F1(t) and F2(t) shown in Fig. 4.8
quickly drives the system exponentially to zero after exhibiting some transient behavior due to
the initial conditions, as shown by the closed loop response on Fig.4.9.

4.5 Conclusion
We have presented in this chapter a boundary control architecture for a system of coupled
hyperbolic-parabolic equations. The plant under consideration has couplings in both directions,
i.e. from the hyperbolic side to the parabolic side and vice versa. The control design is based
on using backstepping transformations to map the initial system into an exponentially stable
target system. With a clever choice of the target systems, the resulting kernel equations were
very similar to the ones obtained in previous control designs [54, 30, 31] which makes the
presented structure simple and familiar to implement. We have also illustrated the effectiveness
of the boundary control on an unstable plant using numerical simulations.
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Figure 4.6: The unstable system in open loop.
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Figure 4.7: The control gain kernels.
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Figure 4.8: The two controllers F1(t) and F2(t).
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Figure 4.9: The exponentially stable closed loop system.
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The primary difficulty of using backstepping design on systems of mixed-classes is the different
number of space derivatives corresponding to each family in the overall plant. It is well known
that the backstepping method is very powerful when dealing with coupled systems of same class,
but the topic of stabilizing different classes of coupled systems is still under research.
The class of systems investigated in the paper is a step towards other interesting hyperbolic-
parabolic models resulting from various physical applications, that do not have an integral
term in the advective flow (just reactive coupling). Such systems appear in refrigeration cycles
and specially in heat exchanger networks as we have shown in Chapter 1. This adds more
importance in studying to which extent we can apply the backstepping technique on mixed
classes of hyperbolic-parabolic systems.
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Chapter 5

Adaptive Boundary Observer Design
for coupled ODEs-Hyperbolic PDEs
systems

We consider the state estimation of nξ hyperbolic PDEs coupled with nX ordinary differential
equations at the boundary. The hyperbolic system is linear and propagates in the positive x-
axis direction. The ODE system is linear time varying (LTV) and includes a set of nθ unknown
constant parameters, which are to be estimated simultaneously with the PDE and the ODE
states using boundary sensing. A schematic diagram of the system is given on Fig. 5.1.

Figure 5.1: PDE - ODE network

The system is governed by the following dynamics evolving in Ω=[0, 1]×[0,+∞):

∂tξ(x, t) + Λ+∂xξ(x, t) = Fξ(x, t) (5.1)

ξ(0, t) = C(t)X(t) +D(t)u(t) + ψ1(t)θ (5.2)
Ẋ(t) = A(t)X(t) +B(t)u(t) + ψ2(t)θ (5.3)

105
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where ξ(x, t) : Ω 7−→ Rnξ is the PDE state vector, X(t) :[0,+∞) 7−→ RnX is the ODE state
vector, θ ∈ Rnθ is the vector of the unknown parameters, u(t) :[0,+∞) 7−→ Rnu is a known input
vector that possibly depends on ξ(1, t) and Λ+ ∈ Dnξ

+ is the matrix of the constant transport
speeds:

Λ+ =

λ1 0
. . .

0 λnξ

 with 0 < λ1 < .. < λnξ (5.4)

F ∈ Rnξ×nξ . A(t) ∈ RnX×nX is the ODE state matrix, B(t) ∈ RnX×nu is the ODE input
matrix, C(t) ∈ Rnξ×nX is the ODE output matrix, D(t) ∈ Rnξ×nu is the PDE input matrix
and ψ1(t) ∈ Rnξ×nθ and ψ2(t) ∈ RnX×nθ are the parameters regressor matrices on the PDE
and ODE sides, respectively. We assume that all the time-dependent matrices are bounded and
piece-wise continuous in time.
Recall that the goal is to estimate ξ(x, t), X(t) and θ assuming that the following measurements
are available:

y(t) = Mξ(1, t) (5.5)

where M ∈ Rny×nξ is the PDE output matrix.

Remark 5.0.1. It is obvious that the problem is not feasible if C(t) = 0 or M = 0. It is also
not feasible if ψ1(t) = ψ2(t) = 0. Such conditions on system matrices will become more clear as
we proceed in the analysis in the next sections.

5.1 Literature review

In Chapter 1, we have stated the various physical systems that can be modeled by the networks
of coupled PDE-ODE dynamics, and we specifically focused on the exhaust systems of diesel
engines equipped with EGR loops. Practically speaking, boundary control and observation of
these kinds of systems is more realistic than the distributed ones, since actuators and sensors are
more frequently placed at the extremities of the domain. In addition, we may not have complete
knowledge of the system’s parameters on both the PDE and the ODE sides. This adds more
complexity to the control and the observer designs in view of the limited amount of available
measurements. In short, the idea of developing adaptive boundary controls and observers for
coupled ODEs-hyperbolic PDEs systems is a necessity if we consider the significant number of
physical applications.
Boundary control of ODEs coupled-hyperbolic PDEs systems is well established in the liter-
ature. Using Lyapunov design, the authors in [26] derived control laws to stabilize a system
of linear hyperbolic system with dynamic boundary conditions. Sufficient conditions for the
exponential convergence of the system were given by linear matrix inequalities (LMIs). In a
different approach, the authors in [56] have used the theory of backstepping to stabilize an LTI
system with an arbitrary input delay. The system is modeled as a transport equation coupled
with an LTI system at the boundary. Moreover, the authors in [1], [9] consider 2 × 2 linear
hyperbolic systems with boundary disturbances. In their work, they modeled the disturbance
using an LTI system and they applied backstepping control to the resulting coupled ODE-PDE
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system. In a recent work, the authors in [36] extended the mentioned approaches to systems of
heterodirectional hyperbolic PDEs coupled with ODEs at the boundary.
Boundary observers for ODEs-coupled hyperbolic PDEs are less investigated in the literature.
The authors in [25] designed a Luenberger observer for systems of linear and quasilinear hy-
perbolic systems with dynamic boundary conditions which are asymptotically stable. This
approach was later extended by the authors in [41] to linear hyperbolic systems coupled with
possibly unstable LTI systems. By keeping the same observer architecture in [25] but using
a non-diagonal quadratic Lyapunov function, the authors in [41] have derived sufficient condi-
tions for the exponential stability of the observer through bilinear matrix inequalities (BMIs).
On the other hand, backstepping boundary observer designs are also investigated for coupled
ODEs-hyperbolic PDEs systems. The authors in [56] synthesized an observer for LTI systems
with arbitrary constant delay in the sensor measurement. The delay is interpreted as a first
order transport equation and a backstepping observer design is used on the resulting coupled
LTI-PDE system. This work was later extended by the authors in [48] to a 2×2 hyperbolic
system coupled with a linear LTI system at the boundary.
All the results mentioned so far assume a perfect knowledge of the system. In many practical
cases, some model parameters are unknown, which motivates the need for adaptive estimators.
The objective of an adaptive boundary observer is to simultaneously construct the distributed
PDE states, the ODE states and the unknown parameters from only boundary sensing. In fact,
few results exist in the literature on the adaptive design for coupled ODEs-hyperbolic PDEs
system. The authors in [10] synthesize an adaptive observer for a 2×2 hyperbolic system cou-
pled with an uncertain LTI system. The design was done in several steps. The first step is to
estimate the unknown parameters by extracting some delayed measurements from the system.
The second step is to build a Lunberger state observer for the ODE states and the third step is
to use swapping filters to generate estimates of the PDE states.

5.1.1 Contribution

We consider the observer design of a system of linear positive speed transport equations coupled
with linear time varying ODEs at the boundary (model (5.1)-(5.3)). The system involves a set
of unknown constant disturbances to be estimated. As we have explained in Chapter 1, such
class of systems can be extended to model the air-path in exhaust gas systems equipped with
dual-loop (EGR) for diesel car engines (see e.g. [27]). We address the estimation problem using
a different methodology than the one presented in [10]. We propose an adaptive observer archi-
tecture that is built directly on the plant model, so that all states are estimated simultaneously
in one step and with no necessity to require asymptotic stability of the ODE states. Inspired
by the swapping design techniques (see [53] for ODEs and [74] for PDEs), we decouple the state
estimation error of the infinite PDE states from the finite dimensional states of the ODEs and
the parameters. Then we give sufficient conditions through differential lyapunov inequalities
(DLIs) to ensure the exponential convergence of the error system using Lyapunov analysis.

The work of this chapter is published in:

M.Ghousein, E.Witrant. “Adaptive Boundary Observer Design for coupled ODEs-Hyperbolic
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PDEs systems”. In: 21st IFACWorld Congress, IFAC (2020), Invited session.

The chapter is organized as follows: the adaptive observer architecture is presented in Section
5.2. In Sections 5.3 - 5.4 we show the convergence analysis of the estimation error system.
Section 5.5 is dedicated to the simulation results for a showcase example and some concluding
remarks are given in Section 5.6.

Notation
The symbols Sn+ and Dn

+ represent the set of real n×n symmetric positive definite matrices and
the set of real n×n diagonal positive definite matrices, respectively. For a symmetric matrix A,
positive and negative definiteness are denoted, respectively, by A � 0 and A ≺ 0. In partitioned
symmetric matrices, the • stands for symmetric blocks. For a vector z ∈ Rn,

∣∣z∣∣ is the euclidean
norm. Given a matrix A ∈ Rn×m, ||A||∞= max |aij | for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let
V ⊆ Rn and f : [0, 1] 7−→ V , we denote by ||f ||L2([0,1])n =

√∫ 1
0
∣∣f(x)

∣∣2dx the L2 norm of f . If
f ∈ L2([0, 1])n, then ||f ||L2([0,1])n < +∞.

5.2 Adaptive Observer Design

We introduce the following adaptive observer design:

∂tξ̂(x, t) + Λ+∂xξ̂(x, t) = F ξ̂(x, t) + p(x, t)(y(t)−Mξ̂(1, t)) +K1(x, t) (5.6)

ξ̂(0, t) = C(t)X̂(t) +D(t)u(t) + ψ1(t)θ̂(t) (5.7)
˙̂
X(t) = A(t)X̂(t) +B(t)u(t) + ψ2(t)θ̂(t) + L(t)(y(t)−Mξ̂(1, t)) (5.8)

where p(x, t):Ω 7−→ Rnξ×ny and L(t):[0,+∞) 7−→ RnX×ny are the observer gains. K1(x, t):Ω 7−→
Rnξ is an additional feedback gain to be defined later. We denote the estimates by hat, and we
define the estimation error variables ξ̃(x, t)=ξ(x, t)-ξ̂(x, t), X̃(t)=X(t)-X̂(t) and θ̃(t)=θ- θ̂(t).
By subtracting (5.6)-(5.8) from (5.1)-(5.3), we have the following error dynamics:

∂tξ̃(x, t) + Λ+∂xξ̃(x, t) = F ξ̃(x, t)− p(x, t)Mξ̃(1, t))−K1(x, t) (5.9)

ξ̃(0, t) = C(t)X̃(t) + ψ1(t)θ̃(t) (5.10)
˙̃X(t) = A(t)X̃(t) + ψ2(t)θ̃(t)− L(t)Mξ̃(1, t) (5.11)

The observer designed in (5.6)-(5.8) is of Luenberger-type, which is a copy of the original system
with output injections y(t), and an additional feedback gain K1(x, t). Our objective is then
to find the observer gains p(x, t) and L(t), and a proper parameter estimation law that can
guarantee the exponential convergence of the estimation error in (5.9)-(5.11).
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Remark 5.2.1. The measurement corrections are introduced in the PDE interior domain and
in the ODE dynamics only. The first correction which is multiplied by p(x, t) is used in the
PDE-ODE decoupling procedure as we will show in the next section. The second one which is
multiplied by L(t) is used in the ODE stabilization. Both observer gains are time varying since
the ODE dynamics are as such.

5.3 PDE-ODE Decoupling by Swapping Design

We parameterize the PDE state estimation error ξ̃(x, t) in (5.9)-(5.11) using K-filters (see [53]
for ODEs and [74] for PDEs) as follows:

ξ̃(x, t) = φ̃(x, t) + T (x, t)X̃(t) +R(x, t)θ̃(t) (5.12)

The swapping filters: T (x, t): Ω 7−→ Rnξ×nX and R(x, t): Ω 7−→ Rnξ×nθ will be defined later.
Equation (5.12) means that the PDE estimation error ξ̃(x, t) is a superposition of three errors:
1) the error due to the PDE unknown initial conditions, and is represented by φ̃(x, t), 2) the
error X̃(t) due to the ODE unknown initial conditions, filtered by T (x, t) and 3) the error θ̃(t)
due to the unknown parameters, filtered by R(x, t).
Differentiating (5.12) with respect to time and space we get

∂tξ̃(x, t) + Λ+∂xξ̃(x, t)− F ξ̃(x, t) + p(x, t)Mξ̃(1, t)) +K1(x, t) = ∂tφ̃(x, t) + ∂tT (x, t)X̃(t)

+ T (x, t) ˙̃X(t) + ∂tR(x, t)θ̃(t) +R(x, t) ˙̃θ(t) + Λ+∂xφ̃(x, t) + Λ+∂xT (x, t)X̃(t)
+ Λ+∂xR(x, t)θ̃(t)− Fφ̃(x, t)− FT (x, t)X̃(t)− FR(x, t)θ̃(t) + p(x, t)Mξ̃(1, t)
+K1(x, t)

(5.13)

Now, substituting with (5.11) and grouping the relative terms together

0 =
(
∂tφ̃(x, t) + Λ+∂xφ̃(x, t)− Fφ̃(x, t)

)
+
(
∂tT (x, t) + Λ+∂xT (x, t)− FT (x, t)

+ T (x, t)A(t)
)
X̃(t) +

(
∂tR(x, t) + Λ+∂xR(x, t)− FR(x, t) + T (x, t)ψ2(t)

)
θ̃(t)

+
(
p(x, t)− T (x, t)L(t)

)
Mξ̃(1, t) +

(
K1(x, t) +R(x, t) ˙̃θ(t)

) (5.14)

Equation (5.14) suggests to choose: K1(x, t)=−R(x, t) ˙̃θ(t)=R(x, t) ˙̂
θ(t), p(x, t)=T (x, t)L(t) and

the following dynamics for the swapping filters

∂tT (x, t) + Λ+∂xT (x, t) = FT (x, t)− T (x, t)A(t) (5.15)
∂tR(x, t) + Λ+∂xR(x, t) = FR(x, t)− T (x, t)ψ2(t) (5.16)

we also impose the following boundary conditions on the filters

T (0, t) = C(t), R(0, t) = ψ1(t) (5.17)
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Doing so, and using (5.14) and (5.15)-(5.17) the dynamics of φ̃(x, t) become

∂tφ̃(x, t) + Λ+∂xφ̃(x, t) = Fφ̃(x, t) (5.18)
φ̃(0, t) = 0 (5.19)

The dynamics of φ̃(x, t) in (5.18)-(5.19) are totally decoupled from X̃(t) and θ̃(t). This is to
confirm the fact that the estimation of the initial conditions of ξ(x, t) are not related to whether
there are ODEs or parameters to be estimated.
The objective is to find an adaptation law to update θ̂(t) and then to prove the convergence
{ξ̃(x, t), X̃(t), θ̃(t)} in the L2 sense.

5.4 Exponential convergence of {ξ̃(x, t), X̃(t), θ̃(t)} in the L2

sense
The plan for the convergence analysis is as follows. Since ξ(x, t) is written as a function of
φ̃(x, t), X̃(t) and θ̃(t) using (5.12), the idea is first to give sufficient conditions that guarantee
the exponential convergence of {φ̃(x, t), X̃(t), θ̃(t)} in the L2 sense along with the boundedness
of the filters T (x, t) and R(x, t), also in the L2 sense. In this way, by (5.12), we can conclude
directly on the exponential convergence of {ξ̃(x, t), X̃(t), θ̃(t)}. This is what we establish in the
following series of Lemmas.

Lemma 5.4.1. Consider the system (5.18)-(5.19) with initial condition φ̃0(x) ∈ (L2([0, 1]))nξ .
Then for all γφ > 0, there exists Cφ > 0 such that:

||φ̃(., t)||(L2([0,1]))nξ ≤ Cφe−γφt||φ̃0(x)||L2([0,1])nξ (5.20)

Furthermore, the equilibrium φ̃ ≡ 0 is reached in finite time tf = 1
λ1
.

Proof. Consider the following quadratic Lyapunov function

V1(t) =
∫ 1

0

(
φ̃T (x, t)P1φ̃(x, t)

)
e−µxdx (5.21)

where P1 ∈ D
nξ
+ and µ > 0. Deriving (5.21) in time, substituting with (5.18), integrating by

parts and then substituting with (5.19) yields to:

V̇1(t) = −φ̃T (1, t)Λ+P1e
−µφ̃(1, t) +

∫ 1

0
φ̃T (x, t)

[
− µΛ+P1 + F TP1 + P1F

]
e−µxφ̃(x, t)dx (5.22)

The matrix Λ+P1e
−µ is always positive definite for any P1 ∈ D

nξ
+ . In addition, for all γφ > 0

we can always choose µ large enough to have −µΛ+P1 + F TP1 + P1F ≤ −γφP1. Thus, V̇1(t) ≤
−γφV1(t), and since V1(t) is just the weighted L2 norm of φ̃(x, t), this shows the exponential
convergence of φ̃ in the L2 norm.
Given that Λ+ ∈ Dnξ

+ , we can change the status of t and x and rewrite (5.18) as:

∂xφ̃(x, t) + (Λ+)−1∂tφ̃(x, t) = (Λ+)−1Fφ̃(x, t) (5.23)
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and then (5.19) becomes a zero initial condition for (5.23). Then the uniqueness of solutions
of (5.23)-(5.19) and the order of the transport speeds given in equation (5.4) imply that φ̃(x, t)
vanishes after t ≥ 1

λ1
(see Lemma 3.1 in [50]) and this concludes the proof.

Lemma 5.4.2. Consider the filter systems T (x, t) and R(x, t) defined in (5.15)-(5.16) with
boundary conditions (5.17). Then for all initial conditions T0(x) ∈ (L2([0, 1]))nξ×nX and
R0(x) ∈ (L2([0, 1]))nξ×nθ , the PDE filters T (x, t) and R(x, t) are bounded in the L2 sense.

Proof. First, we start by T (x, t). We write (5.15)-(5.17) using the index notation: for all 1 ≤
i ≤ nξ, 1 ≤ j ≤ nX , we have

∂tTij(x, t) + λi∂xTij(x, t) =
nξ∑
k=1

FikTkj(x, t)−
nX∑
k=1

Tik(x, t)akj(t) (5.24)

Tij(0, t) = cij(t) (5.25)

Now, we consider the following Lyapunov function

VT (t) =
nξ∑
i=1

nX∑
j=1

VT,ij(t) = 1
2

nξ∑
i=1

nX∑
j=1

∫ 1

0
e−µxT 2

ij(x, t)dx (5.26)

with µ > 0. VT (t) is the weighted L2 norm of T (x, t). Deriving (5.26) with respect to time,
replacing by (5.24), integrating by parts and substituting by (5.25), one gets

V̇T (t) =
nξ∑
i=1

nX∑
j=1

[
− 1

2e
−µλiT

2
ij(1, t) + 1

2λic
2
ij(t)− µλiVT,ij(t) +

nξ∑
k=1

Fik

∫ 1

0
e−µxTkj(x, t)Tij(x, t)dx

−
nX∑
k=1

akj(t)
∫ 1

0
e−µxTik(x, t)Tij(x, t)dx

]
(5.27)

Applying Young’s inequality to the last two integral terms in (5.27), we get

V̇T (t) ≤
nξ∑
i=1

nX∑
j=1

[1
2λic

2
ij(t) +

(
− µλi +

nξ∑
k=1

(
|Fik|+ |Fki|

)
+

nX∑
k=1

(
|akj(t)|+ |ajk(t)|

))
VT,ij(t)

]
(5.28)

Denoting by Fmax=‖F‖∞ and Amax= max
t≥0
‖A(t)‖∞, we can further write (5.28) as

V̇T (t) ≤
nξ∑
i=1

nX∑
j=1

[1
2λic

2
ij(t) +

(
− µλ1 + 2nξFmax + 2nXAmax

)
VT,ij(t)

]
(5.29)
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We can choose µ large enough to have −µλ1 + 2nξFmax + 2nXAmax ≤ −γT for every γT > 0.
Doing so, (5.29) becomes

V̇T (t) ≤ −γTVT (t) +
λnξ
2 ‖C(t)‖22 (5.30)

with ‖C(t)‖22 = ∑nξ
i=1

∑nX
j=1 c

2
ij(t). Inequality (5.30) shows that VT (t) is bounded as a direct

consequence of the boundedness of the system matrices A(t) and C(t). Since VT (t) is the
weighted L2 norm of T (x, t), then by (5.30) we can deduce that T (x, t) is bounded in the L2

sense.
The boundedness of R(x, t) is done following the same methodology. Writing (5.16)-(5.17) using
the index notation: for all 1 ≤ i ≤ nξ, 1 ≤ j ≤ nθ, we have

∂tRij(x, t) + λi∂xRij(x, t) =
nξ∑
k=1

FikRkj(x, t)−
nX∑
k=1

Tik(x, t)ψ2,kj(t) (5.31)

Rij(0, t) = ψ1,ij(t) (5.32)

Now, we consider the following Lyapunov function

VR(t) =
nξ∑
i=1

nθ∑
j=1

VR,ij(t) = 1
2

nξ∑
i=1

nθ∑
j=1

∫ 1

0
e−µxR2

ij(x, t)dx (5.33)

Deriving (5.33) with respect to time, replacing by (5.31), integrating by parts, substituting by
(5.32) and using Young’s inequality, one gets

V̇R(t) ≤
nξ∑
i=1

nθ∑
j=1

[1
2λiψ

2
1,ij(t) +

(
− µλi +

nξ∑
k=1

(
|Fik|+ |Fki|

)
+

nX∑
k=1
|ψ2,kj(t)|

)
VR,ij(t)

]

+
nξ∑
i=1

nX∑
k=1

nθ∑
j=1
|ψ2,kj(t)|

(1
2

∫ 1

0
T 2
ik(x, t)dx

) (5.34)

Denote by ψ2,max= max
t≥0
‖ψ2(t)‖∞ and Tb the L2 bound on T (x, t), we can further write (5.34)

as

V̇R(t) ≤
nξ∑
i=1

nθ∑
j=1

[1
2λiψ

2
1,ij(t) +

(
− µλi + 2nξFmax + nXψ2,max

)
VR,ij(t)

]
+ nθψ2,maxTb (5.35)

We choose µ large enough to have −µλi + 2nξFmax + nXψ2,max ≤ −γR for every γR > 0. Then,
(5.35) becomes

V̇R(t) ≤ −γRV̇R(t) +
λnξ
2 ‖ψ1(t)‖22 + nθψ2,maxTb (5.36)

with ‖ψ1(t)‖22 = ∑nX
i=1

∑nθ
j=1 ψ

2
1,ij(t). By (5.36), VR(t) is bounded by the boundedness of ψ1(t)

and ψ2(t) and so is R(x, t) in the L2 sense, which concludes the proof.
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ODE error dynamics and the parameter adaptation law

The ODE dynamics are investigated as follows. We evaluate (5.12) at x=1, multiply by M
on both sides, and then substitute in (5.11) to have

˙̃X(t) = Ad(t)X̃(t) +
(
ψ2(t)− L(t)MR(1, t)

)
θ̃(t)− L(t)Mφ̃(1, t) (5.37)

with Ad(t)=A(t)-L(t)MT (1, t). We introduce the piece-wise continuous shift operator

s(t) =
{

1 if t ≥ tf
0 else

(5.38)

in the observer gain L(t) computation, i.e. we write L(t) = s(t)l(t). The main reason is to
remove the effect of the initial conditions of the filters T (x, t) and R(x, t) on the overall adaptive
design. Doing so, (5.37) becomes

˙̃X(t) =
(
A(t)− s(t)l(t)MT (1, t)

)
X̃(t) +

(
ψ2(t)− s(t)l(t)MR(1, t)

)
θ̃(t)− s(t)l(t)Mφ̃(1, t)

(5.39)

Equation (5.12) at x=1 also suggests the following normalized adaptation law:

˙̂
θ(t) = − ˙̃θ(t) = s(t)Pθ(t)ΦT (t)

1 + ‖ΦT (t)Φ(t)‖2Mξ̃(1, t) (5.40)

Ṗθ(t) = s(t)
[
βPθ(t)−

Pθ(t)ΦT (t)Φ(t)Pθ(t)
1 + ‖ΦT (t)Φ(t)‖2

]
(5.41)

where the regressor Φ(t) is given by Φ(t)=MR(1, t). Pθ(t): [0,+∞) 7−→ Rnθ×nθ and β > 0 is
the forgetting factor. The initial conditions θ̂(0) = θ̂0 and Pθ(0)=Pθ,0=P Tθ,0 are chosen arbitrary.
It is useful to illustrate that the adaptation law (5.40)-(5.41) is derived using the superposition
principle, i.e. we fix φ̃(1, t) and X̃(t) to zero in order to get the linear regressor equation

ỹ(t) = Mξ̃(1, t) = MR(1, t)θ̃ (5.42)

Then using (5.42), we choose the adaptation law (5.40)-(5.41) to estimate θ. The adaptive law
(5.40)-(5.41) is called continuous time recursive least square estimator with a forgetting factor
(see [51] for various linear regression estimation techniques). Using (5.40) and (5.12), we now
compute the dynamics of θ̃(t) as follows

˙̃θ(t) = − s(t)Pθ(t)
1 + ‖ΦT (t)Φ(t)‖2

[
ΦT (t)Φ(t)θ̃(t) + ΦT (t)MT (1, t)X̃(t) + ΦT (t)Mφ̃(1, t)

]
. (5.43)

Remark 5.4.1. The formulation of (5.39) and (5.43) as a function of s(t) implies that the ODE
error stabilization and the parameter adaptation start functioning when the maximum delay time
due to transport in space (tf= 1

λ1
) is passed. One can notice that the stabilization of the error due

to unknown PDE initial conditions φ̃(x, t) is obtained in finite time tf , this property is intrinsic
to transport equations. In order to obtain finite-time convergence for the ODEs, one should
introduce the specific architecture of finite-time observers for ODEs in the adaptive observer
design (5.6)-(5.8).
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We combine the ODE error dynamics and the parameter error dynamics in one vector X̃c(t) =(
X̃(t)
θ̃(t)

)
written in the following state-space representation:

˙̃Xc(t) = Ac(t)X̃c(t) +Bc(t)φ̃(1, t) (5.44)

where:

Ac(t) =
[
A(t)− s(t)l(t)MT (1, t) ψ2(t)− s(t)l(t)Φ(t)
− s(t)Pθ(t)ΦT (t)MT (1,t)

1+‖ΦT (t)Φ(t)‖2 − s(t)Pθ(t)ΦT (t)Φ(t)
1+‖ΦT (t)Φ(t)‖2

]
,

Bc(t) =
[
−s(t)l(t)M
− s(t)Pθ(t)ΦT (t)M

1+‖ΦT (t)Φ(t)‖2

]

Hence, the dynamics of the error system written interms of {φ̃(x, t), X̃(t), θ̃(t)} is a set of time-
varying ODEs X̃c(t) drived by the output of an exponentially stable PDE given by φ̃(1, t). We
are now at a point where we can state the stability result of the {φ̃(x, t), X̃(t), θ̃(t)} system.

Lemma 5.4.3. Consider the system (5.18)-(5.19) and (5.39)-(5.43) with initial conditions
(φ̃0(x) ∈ (L2([0, 1]))nξ , X̃0 ∈ RnX , θ̃0 ∈ Rnθ). If Φ(t) and Φ̇(t) are bounded and persistently
exciting (PE), i.e. for all t ≥ tf there exist positive constants T0, c0 and c1 so that:

c0I ≤
∫ t+T0

t
ΦT (τ)Φ(τ)dτ ≤ c1I (5.45)

In addition, if there exist an observer gain L(t) ∈ RnX×ny and a bounded matrix PX(t) ∈ SnX×nX+
such that, for all t ≥ tf :

Z(t) ≤ −Q(t) (5.46)
where Z(t) is given by

Z(t) =

 ṖX(t) +ATd (t)PX(t) + PX(t)Ad(t) PX(t)
(
ψ2(t)− l(t)MR(1, t)

)
− TT (1,t)MTΦ(t)

1+‖ΦT (t)Φ(t)‖2

• −βP−1
θ (t)− ΦT (t)Φ(t)

1+‖ΦT (t)Φ(t)‖2


(5.47)

and Q(t) is a predefined bounded positive definite matrix. Then for all t ≥ tf , the system (5.18)-
(5.19) and (5.39)-(5.43) is exponentially stable in the

∣∣X̃∣∣2+∣∣θ̃∣∣2+ ‖φ̃(., t)‖2(L2([0,1]))nξ norm.

Proof. Using (5.41), we compute the dynamics of P−1
θ (t) (the inverse of Pθ(t)) as:

d

dt
P−1
θ (t) = s(t)

[
− βP−1

θ (t) + ΦT (t)Φ(t)
1 + ‖ΦT (t)Φ(t)‖2

]
(5.48)

It can be shown (see [51]) that if (5.45) is satisfied, then Pθ(t) and P−1
θ (t) are both bounded

and positive definite for all t ≥ 0. Now, let us consider the following Lyapunov function:

V2(t) = X̃T
c (t)Pc(t)X̃c(t) +

∫ 1

0

(
φ̃T (x, t)P1φ̃(x, t)

)
e−µxdx (5.49)
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where Pc(t) =
(
PX(t) 0

0 P−1
θ (t)

)
. V2(t) is the L2 norm of {X̃c(t), φ̃(x, t)} weighted by Pc(t) for

the ODE dynamics of X̃c(t) and by P1 for PDE dynamics of φ̃(x, t). PX(t) corresponds to the
weight on X̃(t) while P−1

θ (t) correspond to the weight on θ̃(t). Deriving (5.49) with respect to
time, we have

V̇2(t) = ˙̃XT
c (t)Pc(t)X̃c(t) + X̃T

c (t)Ṗc(t)X̃c(t) + X̃T
c (t)Pc(t) ˙̃Xc(t) + V̇1(t) (5.50)

Replacing (5.44) in (5.50) leads to:

V̇2(t) = X̃T
c (t)

(
Ṗc(t) +ATc (t)Pc(t) + Pc(t)Ac(t)

)
X̃c(t) + φ̃T (1, t)BT

c (t)Pc(t)X̃c(t)

+ X̃T
c (t)Pc(t)Bc(t)φ̃(1, t) + V̇1(t)

(5.51)

If t < tf , equation (5.51) becomes

V̇2(t) = X̃T (t)
(
ṖX(t) +AT (t)PX(t) + PX(t)A(t)

)
X̃(t) + θ̃T (t)ψT2 (t)PX(t)X̃(t)

+ X̃T (t)PX(t)ψ2(t)θ̃(t) + V̇1(t)
(5.52)

By Lemma 5.4.1, V1(t) is exponentially stable for all times. Then if A(t) is uniformly exponen-
tially stable (UES) we can guarantee that there exists PX(t) such that ṖX(t) + AT (t)PX(t) +
PX(t)A(t) ≺ 0 (see Theorem 7.4 in [70])) and as a result, the Lyapunov function V3(t) is upper
bounded by the magnitude of ψ2(t) for all t<tf . Otherwise, i.e. if A(t) is not UES, we choose
PX(t)=PX∈SnX×nX+ arbitrary, and V2(t) can be growing for all t < tf .
However, the interesting part of the analysis is when the maximum delay time due to transport
in space is passed i.e. when t ≥ tf . Using (5.48) it is easy to verify that

Z(t) = Ṗc(t) +ATc Pc(t) + Pc(t)Ac(t) (5.53)

for t≥tf . Furthermore, using Lemma 5.4.1, φ̃(x, t) is L2 stable and φ̃(1, t) ≡ 0 is reached in
finite time tf = 1

λ1
. Hence, if (5.46) is satisfied, using (5.51) one gets

V̇2(t) ≤ −X̃T
c (t)Q(t)X̃c(t)− γφV1(t) (5.54)

for all t ≥ tf . Thus, by the boundedness of Q(t) there exists a positive constant γtot > 0 such
that V̇2(t) ≤ −γtotV2(t), which shows the exponential stability of (5.18)-(5.19) and (5.39)-(5.43)
in the

∣∣X̃∣∣2+∣∣θ̃∣∣2+ ‖φ̃(., t)‖2(L2([0,1]))nξ norm for t ≥ tf and completes the proof.

Remark 5.4.2. The existence of the Lyapunov function (5.49) on the interval [tf ,+∞) for our
observer architecture depends on two intrinsic properties of the system. One is the detectability
given by the existence of PX(t). The other is the persistency of parameter excitation given by
the existence of P−1

θ (t). To illustrate the point, let us reconsider inequality (5.46). A necessary
condition for (5.46) to have solutions is that the diagonal elements in Z(t) must be negative
definite. If we start by Z11(t), we must have

ṖX(t) +ATd (t)PX(t) + PX(t)Ad(t) ≺ 0 (5.55)
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which is the differential Lyapunov equation in Ad(t). It is well known that (5.55) has a unique
solution PX(t) if Ad(t) is UES. Any time-varying state matrix which is 1) continuously differ-
entiable, 2) bounded, 3) slowly varying and 4) the real part of its Eigen-values is negative for
all times, is UES (see e.g. Theorem 8.7 in [70]). For instance if we assume that the first three
conditions of Theorem 8.7 in [70] are satisfied for Ad(t) in the interval of time [tf ,+∞), we still
require the real part of its eigen-values to be negative. Let us recall that for t≥tf , Ad(t)=A(t)-
l(t)MT (1, t). We can always choose l(t) such that Ad(t) is Hurwitz if the pair {A(t),MT (1, t)}
is detectable. If we look into the T (x, t) filter (5.15)-(5.17), we can observe that T (1, t) is a
delayed version of C(t) with a change in magnitude due to the coupling F and A(t). Hence,
finding PX(t) is directly related to the detectability of the system {A(t), M , C(t)} through the
pair {A(t), MT (1, t)}. On the other hand, Z22(t) is always negative-definite, since P−1

θ (t) is
positive definite and bounded based on the (PE) assumption (5.45). It is important to mention
that the condition (5.45) is directly related to the values of ψ1(t) and ψ2(t) through R(1, t). For
instance, if ψ1 ≡ ψ2 ≡ 0 then by (5.16)-(5.17), after tf , R(1, t) ≡ 0 which gives Φ ≡ 0 then
(5.45) cannot be satisfied. This completely coincides with the logic that we cannot estimate θ if
ψ1 and ψ2 are zero (see equations (5.2) and (5.3)).

We can now state the stability result of the original error system {ξ̃(x, t), X̃(t), θ̃(t)}).

Theorem 5.4.1. Consider the error system (5.6)-(5.8) with initial conditions {ξ̃0(x) ∈ (L2([0, 1]))nξ ,
X̃0 ∈ RnX , θ̃0 ∈ Rnθ}. Under Lemma 5.4.1, Lemma 5.4.2 and if the conditions of Lemma 5.4.3
are satisfied, then the error system {ξ̃(x, t),X̃(t),θ̃(t)} is exponentially stable in the

∣∣X̃∣∣2+∣∣θ̃∣∣2+
‖ξ̃(., t)‖2(L2([0,1]))nξ norm for all t ≥ tf .

Proof. Consider the following Lyapunov function

V (t) = X̃T
c (t)Pc(t)X̃c(t) +

∫ 1

0

(
ξ̃T (x, t)P ξ̃(x, t)

)
e−µxdx (5.56)

In view of (5.12), the result falls directly from Lemma 5.4.3 with the L2 boundedness of the
filters T (x, t) and R(x, t) proved in Lemma 5.4.2.

5.5 Numerical evaluation of the observer

We implement the adaptive observer in MATLAB 2018 for the scalar case nξ = nX = 1 and
nθ = 1. The system is given by:

∂tξ(x, t) + 2∂xξ(x, t) = 0.02ξ(x, t) (5.57)

ξ(0, t) = X(t) +
√

3
2 θ (5.58)

Ẋ(t) = sin(t)X(t) + cos(t)u(t) + 1
2θ (5.59)
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The control input is constant u(t) = 2 and the parameter to be estimated is θ = 1. The system
initial conditions are

ξ0(x) = 10x and X0 = 5. (5.60)

The states ξ(x, t), X(t) and the parameter θ = 1 are to be estimated using the following available
measurement:

y(t) = ξ(1, t) (5.61)
The system (5.57)-(5.59) corresponds to a transport equation with first order time-varying
boundary conditions. It is clear that the plant is open loop - unstable looking into the ODE
dynamics A(t) = sin(t).
The adaptive observer is given by:

∂tξ̂(x, t) + 2∂xξ̂(x, t) = 0.02ξ̂(x, t) + T (x, t)L(t)
(
y(t)− ξ̂(1, t)

)
+R(x, t) ˙̂

θ(t) (5.62)

ξ̂(0, t) = X̂(t) +
√

3
2 θ̂(t) (5.63)

˙̂
X(t) = sin(t)X̂(t) + cos(t)u(t) + 1

2 θ̂(t) + L(t)
(
y(t)− ξ̂(1, t)

)
(5.64)

We start the observer from the following initial conditions

ξ̂0(x) = 9(x+ 1) and X̂0 = 10 (5.65)

The filter matrices T (x, t) and R(x, t) are computed using (5.15)-(5.17) with zero initial condi-
tions. θ̂(t) is updated using the adaptation law (5.40)-(5.41). Two variables are still to be set:
L(t) and β. The forgetting factor β sets the speed of convergence of the parameters, it is fixed
to β = 0.1 in this evaluation. The dynamic observer gain L(t) is calculated at each time step to
ensure that Z(t) is negative definite for t ≥ tf . This is done in the following order:

1. use a pole placement method to calculate L(t) that guarantees the existence of PX(t) that
satisfies (5.55);

2. verify that (5.46) is satisfied for a predefined value of Q(t).
Condition (5.46) was satisfied for all t ≥ tf for a constant value of PX(t)=PX=0.5 and for
Q(t)=0.0125Pc(t) where L(t) is calculated by locating the poles of Ad(t) at -1 for all t ≥ tf . The
values corresponding to L(t) are plotted on Fig. 5.2. The placement starts after tf=0.5 s and
L(t) exhibits an oscillatory behavior due to the dynamics of A(t).
A finite difference (FD) scheme in space and time is implemented to approximate both the
infinite dimensional states {ξ(x, t), ξ̂(x, t)} and the finite dimensional states {X(t), X̂(t), θ̂(t)}.
The exponential convergence of the estimation error on both the ODE and the PDE sides is
shown on Fig. 5.3. After tf=0.5 s, the estimation errors converge to zero after exhibiting some
oscillatory transients. Furthermore, as predicted by the theory, the Lyapunov function V (t)
shown on Fig. 5.4 increases on the interval of time [0, 0.5 s] due to the unstable dynamics
of A(t) and the presence of no observer gain L(t)=0, but afterwards it starts its exponential
decay towards zero when measurement corrections are introduced for t ≥ tf . Finally, we show
the estimation of the parameter θ starting from an initial condition θ̂0 = 6 on Fig. 5.5. The
adaptation starts after tf=0.5 s and θ̂(t) converges to θ in approximately 50 s.
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Figure 5.2: Calculated observer gain L(t).
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Figure 5.3: Estimation error of the PDE state ξ̃(x, t) and the ODE states X̃(t) and θ̃(t).
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Figure 5.4: Lyapunov function V (t).
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Figure 5.5: Estimation of the parameter state θ̂(t).
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5.6 Conclusion
We have proposed an adaptive observer for a system of linear transport PDEs coupled with
time-varying ODEs at the boundary. The system involves constant parameters that are to be
estimated together with the PDE-ODE states using boundary sensing only. We have used swap-
ping design to decouple the estimation error of the infinite states (PDEs) from the finite states
(ODEs). We thus proved boundedness of regressors filters and obtained sufficient conditions
for the exponential stability of the estimation error using DLIs. For future works, it would be
interesting to consider the heterodirectional case i.e. consider wave propagations not only in
the positive direction but also in both positive and negative directions, while keeping the time-
varying ODE connections at the boundary. It is also important to investigate the possibility of
having parameter unknowns not only as input disturbances but also in the system matrices, e.g.
A(θ, t).
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Chapter 6

Conclusion and Perspectives

The thesis investigates the boundary estimation and control of PDEs and PDEs-ODEs networks.
The PDEs are hyperbolic (transport) and parabolic (diffusion), and the ODEs are linear time
varying. In total, we have solved four problems: three boundary estimation problems and a
boundary control one. Problems 1, 2 and 4 are estimation problems and involve coupled hy-
perbolic PDEs and coupled hyperbolic PDEs-ODEs networks, while Problem 3 investigates the
boundary control of a mixed class of hyperbolic-parabolic PDEs. The control applications are
in the area of system cryogenics (CO2 cooling technology at CERN) and exhaust systems in
Diesel car engines (Renault).
Theoretically, in all the problems, we have tackled challenges in ensuring system stability (or
error system stability in the case of estimation problems) using boundary controllers and bound-
ary measurements and also to derive stable adaptation laws for parameters estimations. The
coupling of PDEs of the same class or of different classes can always trigger stability problems.
We have used Lyapunov methods to handle stability. It is well known that using Lyapunov
analysis, controllers and observer gains are designed to restrict the time derivatives of an energy
function (in a specific norm) to be strictly less than zero, and then, stability is achieved. Be-
cause of the complexity of the couplings architectures, it may become difficult to find a suitable
Lyapunov function. An intermediate step that facilitates the Lyapunov analysis is the Bacsk-
tepping method. The difficult part is to find an adequate target system and to show that the
transformation is well posed on the domain of definition and that is invertible. Two types of
backstepping transformations are famous in the literature: 1) the Volterra integral transforma-
tion, which is solved on the triangular domain and it is always invertible and 2) the Fredholm
integral transformation, which is solved on the rectangular domain and may require proof of
invertibility. Regarding the parameters estimations, we have used swapping design to decouple
the PDE estimation errors from the parameter adaptation errors. This helps in finding the
proper linear regressor equations to estimate the parameters directly using the standard online
methods. In what follows, we summarize the four problems solved in this thesis and we give for
each problem our conclusions and perspectives.

Problem 1 solves the boundary estimation of the distributed states, boundary unknowns and
in-domain parameters of a 2-by-2 hyperbolic system of PDEs using boundary sensing. The basic
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motivation is to estimate the temperatures and the heat transfer coefficient of a heat exchanger
pipe running CO2 as its working refrigerant. We have designed a Luneberger-adaptive observer
to solve the problem, and obtained its exponential stability using the backstepping-Lyapunov
method. The estimation of the parameters is done through the swapping design method. We
can conclude that the backstepping method is necessary to solve the stabilization/adaptation
problem. Unlike using only dissipative boundary conditions, the stabilization of the PDE error
system Z(x, t) by injecting distributed observer gains (p1(x) and p2(x)) in the domain, then
using the backstepping method, is extremely important in canceling the effect of the coupling
(σ1(x), σ2(x)) and in ensuring finite-time convergence. This means that the boundary estima-
tion errors of the PDEs vanish in finite-time allowing directly to start the parameter estimation
algorithm. On the experimental part, the observer shows a good response in enhancing the
temperature estimations by 1K. The improvement was appreciated by the researchers at CERN
working in highly accurate temperature ranges.
Our future work will be centered in estimating the heat transfer coefficient and the tempera-
ture directly without passing through the linearization step. Also we are planning to introduce
unknown uncertainties in the transport speeds. We are convinced that such kind of model com-
plexities will contribute to new theories in the field of parameter estimation for hetero-directional
transport PDEs using measurements sensed at the boundary.

In Problem 2, we have solved the problem of estimating the distributed thermodynamic profiles
(pressures, enthalpies, mass flow rates) of a two-phase CO2 heat exchanger. Only input/output
boundary measurements are available. We recalled the various models that can describe the
behavior of a two-phase flows. Then we concluded the modeling phase by choosing the ho-
mogeneous equilibrium model. The observer design is done in two steps: 1) the linearization
around a steady state point and diagonalization and 2) to synthesize a Luneberger observer with
dissipative boundary corrections. The exponential stability of the observer is analyzed using a
quadratic Lypauonv candidate where we give sufficient conditions that guarantee stability in the
form of matrix inequalities. We can conclude that Problem 2 can become more complex when
some input measurements are not available. For instance, the input enthalpy at the hot and cold
sides is very hard to measure practically. Also measuring the two-phase mass flow rate is also
difficult. Hence, our main interest in the future is to investigate the unknown input observers
for hyperbolic systems. Furthermore, adding some model nonlinearities to the observer is also
a good step in approaching the real dynamics far from steady states. We are also interested in
estimating the two-phase heat transfer and friction coefficients from measurements. This can
replace complex and inaccurate thermodynamical correlations.

Problem 3 studies the boundary stabilization of a mixed class of coupled hyperbolic-parabolic
PDEs. The motivation is the diffusion phenomena in heat exchangers. The system involves a
diffusion equation coupled with a transport equation in the domain as well as at the boundary.
Using the backstepping method and then Lyapunov analysis, we have designed two boundary
control laws and we give sufficient conditions that guarantee the exponential stability of the
system. However, we are still searching how the condition of stability (4.64) in Chapter 4 varies
as a function of the two control free variables T (x, y) and c. We predict that finding a bound
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on the growth rate of the kernel M(x, y) will be the first step in finding the solution.
The backstepping method applied to coupled systems of different classes of PDEs is still under
research. For now, we can prove the wellposedness of the kernel equations only in the weak
sense. The difficulty due to the different number of space derivatives present intrinsically in
the system. Our first task in the future is to widely study the existence of solutions of cou-
pled diffusion-transport equations on 2D domains. We will also try different type of coupling
topologies between advection and diffusion. Note that in Problem 3, the coupling topolgy was a
Volterra integral coupling from diffusion to advection and a linear advective one from advection
to diffusion. In fact, we are interested in the linear advection coupling in both directions as it
appears directly in heat exchangers networks. Also, it would be interesting if we can decrease the
number of controllers in Problem 3 from two to only one controller that can stabilize the system.

In Problem 4, we design a boundary adaptive observer for a system of coupled hyperbolic
PDEs-ODEs. The system is a set of linear transport PDEs propagating in the positive x-axis
direction and driven by a set of linear time varying ODEs at the boundary. The system has also
unknown parameters at the boundary and in the ODE dynamics. As stated in Chapter 1, the
objective behind considering this type of systems is the estimation of the EGR mass flow rates in
exhaust car system. The designed observer is of Lunberger type where boundary measurement
corrections are inserted in the PDEs space domain and in the ODEs dynamics multiplied by
time varying observer gains. The idea was to decouple the PDEs state estimation errors from
the ODEs estimation errors, achieved by using the swapping design method. Then we give suffi-
cient conditions that guarantee the exponential stability of the errors in the form of differential
Lyapunov matrix inequalities while respecting the persistence of excitation conditions. We can
draw the following conclusion: although the PDEs and the ODEs errors are decoupled, the
swapping design method give rise to a direct and intrinsic coupling between the errors on the
ODEs X̃(t) and the parameter estimation erros θ̃(t). This is obvious in the off diagonal entities
of the matrix Z(t) in (5.47). We are investigating to what extent we can found solutions to
the stability condition (5.46) apart from the detectability and the persistence of excitation con-
straints already discussed in Remark 5.4.2. For future works, it would be interesting to consider
the heterodirectional case i.e. consider wave propagations not only in the positive direction but
also in both positive and negative directions, while keeping the time-varying ODE connections at
the boundary. It is also important to investigate the possibility of having unknown parameters
not only as input disturbances but also in the system matrices e.g. A(θ, t).

Finally, the topic on boundary control and estimation of partial differential equations is gain-
ing significant attention. A lot can be still done in this area of research. The introduction
of system nonlinearities is one of the promising perspectives in this domain. The nonlinearity
may represent more accurately the physical state of the system. It can be through the coulping
between the PDEs or the coupling with nonlinear ODEs. This also can be accompanied with the
presence of unknown parameters in the system. Synthesizing adaptive boundary observers and
controllers for nonlinear PDE networks is a huge achievement considering the enormous amount
of physical applications.
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