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Part I

Introduction



Chapter 1

Biostatistics for transcriptome

analysis

1.1 History of transcriptome and transcriptomics

1.1.1 Microarrays and RNA-seq

The transcriptome is the complete set of Ribonucleic Acid (RNA) transcripts in a

given organism or subset of transcripts in a specific tissue or cell type, at a particular

stage and under a certain circumstance. Thus, understanding transcriptome not

only allows us to interpret the functional and structural elements of the genome,

but also provides a comprehension of human biology and diseases.

The whole transcriptome study was first introduced in the early 1990s, and thanks

to technological advances since late 1990, transcriptomics has become a widespread

discipline in biological sciences. There are two major techniques for transcriptome

analysis, including a Deoxyribonucleic Acid (DNA) microarray which express a set

of predetermined sequences and a high-throughput RNA sequencing (RNA-seq)

captures all sequences.
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General transcriptome analysis methodology undergoes two critical parts for both

DNA microarray and RNA-seq technologies: data processing and application (Fig-

ure 1.1). Processing microarray data includes typically image analysis, background

subtraction, normalization, and summarization, while RNA-seq undergoes prepro-

cessing with quality control and trimming, mapping, and assembly. The expression

levels of all transcripts so-called gene expression data are stored as a count matrix.

In this matrix, each row corresponding to a gene and each column representing a

specified condition that usually relates to environments, disease types or subtypes,

and tissues. The gene expression data after the fact are determined, which are

subject for differential expression (DE) analysis, survival analysis, gene patients

clustering, or disease patients classification according to biological questions.

1.1.2 Learning on transcriptomic data : problem and notations

With the rapid development of transcriptomic technologies, now it is possible to

simultaneously track the expression levels of thousands of genes or transcripts (fea-

tures) during critical biological processes and across collections of related samples.

However, the significant number of features and the complexity of biological net-

works account for the challenges of understanding and interpreting the result of

such massive data. In this section, we introduce the problem and notations in

learning on transcriptomic data; these notations are also applied uniformly in the

whole thesis.

Transcriptome sequencing data is converted into a gene expression measure (see

Chapter 2) and stored into an observed expression matrix x with p rows and n

columns where p is the number of features/variables (genes or other relevant fea-

tures) and n is the number of samples/observations. The index of each feature and

each sample are indicated by k and i, respectively (k = 1, . . . , p; i = 1, . . . , n). As a

result, xi is an observed vector of expression for sample i across p features (size of

the vector is p), while x(k) is an observed vector of expression for feature k across

3



Figure 1.1: General flowchart for transcriptome analysis. Both microarray and

RNA-seq technologies are undergone two parts. A. Data processing The raw data

from microarray experiments are obtained in a bunch of images. To turn these

images into probe-level values involves several steps: image analysis, background

substraction, normalization and summarization. Meanwhile, RNA-seq data often

stores in a list of FASTQ files, experiences processing with quality control and

trimming, mapping, and assembly. B. Application Microarray and RNA-seq data

are applied in various applications: differential expression analysis, survival anal-

ysis and transcriptome classification.
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n samples (size of the vector is n). Then, x(k)
i is an observed expression for feature

k in sample i. A random variable modeling the expression for feature k in sample

i is represented by X(k)
i . Finally, y is a vector of labels for the n samples, and yi is

the label of sample i.

1.2 Differential gene expression (DGE) analysis

Identifying genes that show differences in expression level between conditions is

the most popular use of transcriptome profiling. For example, in order to assess

the effect of a drug, we may ask which genes are up-regulated (increased in the

expression) or down-regulated (decreased in the expression) between treatment and

control groups.

1.2.1 Hypothesis testing

Assume we want to detect DE genes between two conditions (1 and 2) based on

their expression table. Statistical tests address this task by providing a mechanism

for making quantitative decisions. To make a decision, statistical tests evaluate the

evidence that the data provides against an hypothesis. This hypothesis is called

null hypothesis (labeled H0). In case of gene expresssion anaylsis, the statement

of H0 is: The mean expression between the two conditions is equal. The statement

of alternative hypothesis (labeled H1 or Ha) is: The mean expression between the

two conditions is different. To test whether gene x(k) is a diffentially expressed gene

between two conditions, we apply the procedure is described below:

1. Model the expression of gene k using a random variable X(k), with means µ1

and µ2 in condition 1 and condition 2 respectively.

2. Formalize the H0 and H1 hypotheses:

• H0: The mean expression between the two conditions is equal (µ1 = µ2)
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• H1: The mean expression between the two conditions is different (µ1 6= µ2)

3. Setup the significance level, α, defined as the probability of rejected H0 given

that H0 is true. The significance level is used in step 5 to take the final

decision.

4. Fit the model and estimate the parameters of the random variable X(k) for

each condition.

5. Computing the value of the test statistic on the observed data x(k), and the

probability of obtaining this value or a more extreme value when H0 is true

(called P-value). For example, P-value = 0.001 means that the probability of

seeing the experiment outcomes as extreme or more extreme than the observed

data is one in 1000 when the mean expression between two conditions is equal,

i.e., the H0 is true.

6. Determine to reject or not rejet H0 based on the P-value and α. Finally,

if P-value > α, the evidence against H0 is statistically significant, therefore

a test statistic gives a decision for rejecting H0. Conventionally, one often

chooses the level of significance equal to 5% or 1% or 0.1%.

In a hypothesis testing, one can make two type of errors.

1. Type I error or false-positive: The test statistic rejects the null hypothesis

while it is really true. For example, the gene k is not a differentially expressed

but the test statistic states that this gene is differentially expressed. As a

result, type I error introduces a false discovery.

2. Type II error or false-negative: conversely, the statistical test accepts the null

hypothesis while it is really false.

Although type I and type II errors cannot be entirely avoided, test statistics control

the probability of generating type I errors through the significance level α.
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1.2.2 Multiple testing

Conducting a single statistical test for each gene has several limitations, the most

important is that a large number of hypothesis tests are performed, potentially

introducing a substantial number of falsely significant results. For instance, say

we have 20 null hypotheses to test simultaneously and a given α = 0.05, i.e. the

probability of making a type I error is 5% for each individual test. Therefore, the

chance of generating at least 1 false-positive when performing 20 tests is calculated

as follows:

P (making at least 1 error in 20 tests) = 1− P (not making an error in 20 tests)

= 1− (1− 0.05)20

≈ 0.64

Thus, if the 20 tests are independent then the chance of generating at least one

incorrect rejection (so-called the family-wise error rate or FWER) is a round 64%,

even there is no significant differences to detect. That would be a serious problem

in the case of RNA-seq experiments, where we have to process tens to hundreds of

thousands of tests.

Several methods have been introduced to deal with multiple testing with the aim

of adjusting the α so that the probability of making at least one significant result

by chance is still lower than the significance level.

Bonferroni adjustment controls FWER. Bonferroni adjustment is the most straight-

forward method for multiple testing correction (Dunn, 1961; Bland and Altman,

1995). This adjustment method seeks to control the FWER when multiple hypoth-

esis tests are conducted simultaneously, as shown in Equation 1.1:

Adjusted α =
α

number of hypothesis tests.
(1.1)

Going back to our example of testing simultaneously 20 null hypotheses with a given
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α = 0.05. Applying Bonferroni adjustment correction, we have a new adjusted α of

0.0025 (i.e., 0.05/20)to take into account the multiple testing.

Benjamin-Hochberg adjustment controls False Discovery Rate (FDR). This

method, introduced by Benjamini and Hochberg (1995), aims to control the propor-

tion of falsely rejected hypotheses, i.e. controlling FDR. Benjamin-Hochberg (BH)

procedure was implemented step by step as described below.

1. Conduct all statistical tests in m hypothesis tests and extract the correspond-

ing p-value for each test.

2. Sort these p-values in ascending order assigning a rank for each p-value, start-

ing from 1.

3. Calculate the BH critical value for each individual p-value, as
i

m
×Q, where

i is the rank of p-value, while Q is the desired proportion FDR.

4. Find the largest p−value that is lower than its BH critical value.

5. Finally, all p-values lower than this p−value are considered significant.

The Benjamin-Hochberg has been designed to work for independent tests, although

it works in practice on dependent tests.

Suppose we conduct 20 hypothesis tests (m = 20) for about 500 genes with our

desired False Discovery Rate of 0.2 (Q = 0.2). Table 1.1 below shows the five

genes with the lowest p-value. We calculate the BH critical value for each gene as

presented in column 4.

The bold p-value (gene 4) is the highest p-value that is lower than its BH critical

value (i.e., 0.036 < 0.04). As a result, all genes that have a p-value lower than 0.036

are considered significant. Note that the p-value of gene 2 also is smaller than its

BH value. However, it is not the highest value among all p-values that justify this

criterion.
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Table 1.1: An illustration for Benjamin-Hochberg correction

Gene p-value Rank BH

1 0.015 1 0.01

2 0.018 2 0.02

3 0.032 3 0.03

4 0.036 4 0.04

5 0.051 5 0.05

1.2.3 Models for differential gene expression data

The first step of the statistical test is the choice of the a probabilistic model for

the expression data. Microarrays have been used systematically for differential

expression for over three decades, and quite a few well-established methods are

developed for this purpose, such as limma (Smyth, 2004) based on the normal

distribution. Unfortunately, because of the difference between the data obtained

from microarrays and RNA-seq, these methods cannot be directly applied to RNA-

seq data. The expression levels of microarray data are represented as continuous

intensity hybridization signals; in contrast, these measurements in RNA-seq data

are treated as discrete counts. Microarray data, as a result, commonly assumed to

follow a normal distribution (see Figure 1.2), while the Poisson and the negative

binomial (NB) distributions are two most suitable for modeling non-negative data

in an RNA-seq experiment (Wang et al., 2010; Auer and Doerge, 2011; Di et al.,

2011).

However, the assumption of Poisson distribution for the read counts is too tight be-

cause it does not reflect the biological variations in the data (Robinson and Smyth,

2007; Nagalakshmi et al., 2008). This disadvantage is derived from the simplicity

of Poisson distribution; it assumes that the variance of the model is equal to the

mean. Ignoring the biological replicates so-called over-dispersion problem the sta-

tistical analysis does, therefore, not control the false-positive rates because of the

underestimation of sampling error (Anders and Huber, 2010). To deal with this

problem, the NB distribution as a replacement for Poisson distribution in modeling

9



Figure 1.2: An illustration for distributions. A: Normal distribution with mean

equals to zero and variance equals to one; B: Poisson distribution with mean

equals to one

count data. The NB distribution is a family with two parameters, variance and

mean, which the former is greater than the later (Robinson et al., 2010; Anders

and Huber, 2010; Love et al., 2014). Another alternative is the transformation

of the RNA-seq data using a simple logarithm, a more complex variance stabiliz-

ing transformation (Anders and Huber, 2010) or the regularized logarithm (Love

et al., 2014). The voom and trend transformations, proposed in Law et al. (2014),

unlock the use of models developed for microarrays to RNA-seq (Ritchie et al.,

2015). Abundance of software supports statistical tests for detecting differentially

expressed genes based on the distribution assumption of RNA-seq count data :

DEGseq (Wang et al., 2010) based on Poisson distribution, DESeq (Anders and Hu-

ber, 2010), DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010) based on

NB distribution, and limma (Law et al., 2014) based on normal distribution. One

should consider normalization before performing statistical analysis. It is an essen-

tial procedure designed to identify and correct technical biases was presented due to

library preparation protocols and sequencing platforms. Normalization has a great

impact on differential expression results (Dillies et al., 2013; Bullard et al., 2010),

even more than the selection of test statistic applied in hypothesis tests for DGE

analysis. Some classical procedures for normalization of RNA-seq will be presented

in Section 2.1.3.
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1.3 Supervised learning methods

Supervised learning is an algorithmic process that learns a function mapping input

to output based on example input-output pairs. Therefore, the essential goal of

supervised learning is to best approximate the mapping function, and then when

one has new observations, this model can predict the output variables of these

data. According to the type of output data that models have to forecast, supervised

learning is typically classified into classification, and regression, which are used for

predicting categorical and continuous outcomes, respectively.

1.3.1 Traditional supervised learning models

We want a model f to predict yi based on xi : ŷi = f(xi). The value ŷi is the predic-

tion for sample i. Among numerous supervised machine learning (ML) algorithms,

we present some classical models, such as linear regression, logistic regression, Naïve

Bayes classifier.

Linear regression. One of the most basic algorithms of supervised learning pre-

dicts a real-valued output yi, it is also known as Linear Least Square. The linear

regression model has the form:

f(xi) = β0 +

p∑
k=1

x
(k)
i βk (1.2)

where:

• β0 is a constant, known as intercept or bias term.

• βk is the slope of the regression line.

The goal of linear regression model is to search the values for β0, βk, to provide

the best fit line for the data points. Least square is the most prevalent estimation
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method; coefficients β = (β0, β1 . . . βp) are calculated to minimize the sum of squares

error between ŷi prediction and the actual yi value (so-called residual sum of squares

- RSS)

RSS(β) =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − β0 −
p∑

k=1

x
(k)
i βk)

2 (1.3)

Logistic regression. Logistic regression trains a classifier to make a binary deci-

sion about the class of a new input observation. The sigmoid function is a classifier

that can help one to make this decision: it takes a real value and transforms it to

the range [0, 1].

• P (yi = 0 | xi) is the probability that the new observation xi belongs to class

0.

• P (yi = 1 | xi) is the probability that the new observation xi belongs to class

1.

Logistic regression makes the decision by learning, from a training set, the linear

functions in xi:

t = β0 +

p∑
k=1

x
(k)
i βk (1.4)

To create a probability, we use the sigmoid function: t→ 1

1 + e−t

Based on the decision boundary, one can make a decision

ŷi =

1 if P (yi = 1|xi) > 0.5

0 otherwise
(1.5)

Naïve Bayes classifiers. Naïve Bayes classifiers are a group of algorithms based

on the Bayes’ theorem for classification problems. There are two fundamental as-

sumptions in Naïve Bayes:
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1. Independent: All features are assumed to be independent, meaning that for

any pair of features randomly taken, the two features are not dependent.

2. Equal: The contribution of each feature to the model outcome is equal.

In ML classification problem, our interest is to find the best model f to predict class

label yi based on xi. The simple way is selecting the most probable model given by

the data that we have. Bayes’ theorem provides a way to compute the probability

of an event yi happening from prior knowledge.

P (yi|xi) =
P (xi|yi)P (yi)

P (xi)
(1.6)

where:

• P(yi|xi): is the probability of yi given the data xi (is-called posterior proba-

bility).

• P(xi|yi): is the probability of data xi given the yi was true.

• P(yi): is the probability of yi being true. This is called the prior probability

of yi.

• P(xi): is the probability of the data xi

Other supervised algorithms. Support vector machines, discriminant analysis,

k-nearest neighbor algorithm and neural networks are also widely used for super-

vised learning. We refer to James et al. (2013) for more details. Various popu-

lar packages were developed with different programming languages, such as the R

package caret (Kuhn, 2008), the Python package scikit-learn and TensorFlow

(Pedregosa et al., 2011; Abadi et al., 2016) which implement many supervised al-

gorithms and provides a unified framework for performing and assessing the perfor-

mance of supervised algorithms.
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1.3.2 Cross-validation

Validation set method. This method is a simple strategy that can estimate the

error when fitting a particular ML algorithm on a set of observations (called test

error). First, the available collection of observations is randomly split into two

parts, a training set and a validation set or hold-out set. Then, we fit the model

on the training set, and the fitted model is used to predict the outcome of the

observations in the validation set. Although simple and easy to implement, the

validation set method poses two significant limitations regarding the quality and

quantity observed in the training and validation set. The first drawback is that the

error rate depends on which observations are placed on the training set and the

validation set. Secondly, the fitted model was trained in a subset of observations,

and the ML models tended to perform worse on the training set with a small number

of observations. It also means that the error rate may be overestimated or higher

than the error rate obtained when the model is fitted on the whole dataset.

k-fold cross-validation. To solve the two problems raising by validation set method,

we present k-fold cross-validation (CV) as an improvement of this approach.

In the k-fold CV, the original dataset is randomly divided into k folds of approxi-

mately equal size. The first k-1 folds are used to train the model, and the last fold

is treated as the test set. In practice, one usually uses k-fold CV with k = 5 or k =

10 depending on the number of observations. This process is repeated until every

k-fold serves as the test set. Then, the error rate is aggregated by averaging the

error rate of each single estimation.

The validation set method may tend to overestimate the test error rate, because

according to this approach, the ML classifier is trained with the training set con-

taining only half of the observations of the whole dataset. In k-fold CV for, say, k

= 5 or k = 10, each training set includes (k - 1) × n / k observations - considerably

more than in the validation set approach. When several supervised learning models
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are assessed, a nested k-fold cross-validation is used, as detailed in Lever et al.

(2016).

1.3.3 Overfitting and regularization

The bias-variance trade-off. This section presents the problem of overfitting for

continuous variable prediction, also relevant for binary variable prediction. In the

case of continuous variable prediction (regression), the estimated Mean Squared

Error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)2

on the testing dataset can be used to assess the performance of a supervised learn-

ing algorithm. Other metrics for binary variable prediction are presented in Sec-

tion 1.3.6. The MSE can be written as a sum of two terms : the bias and the

variance. The bias refers to the error due to a fitted model far from the true un-

known model (James et al., 2013). The variance refers to the sensitivity of the

the model to the training data. The relationship between the MSE, the bias and

the variance is referred as the bias-variance trade-off: a model with a lot of pa-

rameters (lot of variables to predict the outcome) will have a low bias and a large

variance, a model with few parameters will have a large bias and a low variance.

A model with a low bias and a large variance overfits the data: the model works

well in training set but fails to generalize on future observations. To minimize the

MSE, we can choose to increase the bias (remove some variables from the predic-

tor) if we greatly decrease the variance. This is the goal of the regularization or

shrinkage techniques. The two best-known shrinkage methods are ridge regression

(Hoerl and Kennard, 1970) and Least Absolute Shrinkage and Selection Operator

(LASSO) regression (Tibshirani, 1996) and their hybridization, the elastic net

(Zou and Hastie, 2005). The LASSO and ridge penalizations are presented below for

the case of linear regression, but are also generalized to logistic regression (James

et al., 2013).
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Ridge regression. Ridge regression is quite similar to least squares estimation

method, except the coefficients are calculated to minimize a slightly different quan-

tity
n∑
i=1

(yi − β0 −
p∑

k=1

x
(k)
i βk)

2 + λ

p∑
k=1

β2
k = RSS(β) + λ

p∑
k=1

β2
k︸ ︷︷ ︸

`2penalty

(1.7)

Where λ ≥ 0 is a tuning parameter, which indicates the impact of the penalty term.

• λ = 0, Ridge regression produces the least squares estimate.

• λ → ∞, the strength of shrinkage penalty grows, and the ridge regression

coefficient estimates will reach zero. Each value of λ generates a different set

of coefficient βk estimates, therefore choosing a good value for λ is essential.

One commonly selects λ based on the bias-variance trade-off. Here is the

general trend between variance and bias when tuning λ: as λ increases, the

bias increases while the variance decreases.

LASSO regression. The penalty term in Equation (1.7) shrinks all coefficients

towards zero, but none of them are set to 0. This may not affect the prediction

accuracy, but it raises a challenge for model interpretation in which there are a

huge number of features. In this situation, LASSO is an alternative method for

ridge regression, replacing the `2 penalty by `1 penalty.
n∑
i=1

(yi − β0 −
p∑

k=1

x
(k)
i βk)

2 + λ

p∑
k=1

|βk| = RSS(β) + λ

p∑
k=1

|βk|︸ ︷︷ ︸
`1 penalty

(1.8)

When one tunes parameter λ to sufficiently large, the `1 penalty forces some coeffi-

cient estimates to equal zero exactly. Hence, the LASSO performs variable selection.

1.3.4 The curse of dimensionality

When the number of variables p exceeds the number of samples n (p � n), there

are infinite solutions to minimize RSS (see Equation 1.2 for linear regression), so
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it is impossible to use linear regression. To deal with that, we can shrink small

coefficients towards zero using regularization techniques presented above, to select

a smaller number of variables of size s to predict the outcome. However, the reg-

ularization techniques are not efficient when the number of variables p is too large

compared to n. In some cases, when p and s are too large compared to n, the

selection of the right subset of s variables will fail (Fan and Lv, 2008).

Unfortunately, in our real-life datasets, such as gene expression data, the number

of features could be more than 50,000, while the number of observations only a few

hundred. In this situation, one suffers the curse of dimensionality, initially detailed

in Bellman (1966): sampling a high dimensional space is hard and requires a large

number of observations. In ultrahigh dimensional settings, spurious correlation can

appear between totally independent variables.

To illustrate this phenomenon, we use the following toy simulated example: we

simulated a sample of size n from a p-multivariate normal distribution with a di-

agonal covariance matrix. We compute the empirical correlation between any pair

of variables and take the maximum absolute empirical correlation. We repeat the

simulation 5000 times and plot the distribution of the maximum absolute empirical

correlations for three settings: one low dimension setting (n = 1500; p = 100) and

two high dimension settings (n = 30; p = 100 and n = 10; p = 100).

As seen in Figure 1.3, in low dimension, the 5000 maximum absolute empirical

correlations are distributed between 0 and 0.15, which is expected given that all

variables are independent and the true correlation between any pair of variables is

equal to 0. However, in high dimension, the maximum absolute empirical corre-

lations are distributed between 0.5 and 0.85 when the number of observations is

n = 30, and between 0.8 and 1 when n = 10. In high dimension, we can find two

variables highly correlated (empirical correlation higher that 0.9) when their true

real correlation is actually 0. This simulation illustrates why we should be careful

when looking for association between variables in high dimension.
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Figure 1.3: Maximum absolute empirical correlation observed in 5000 datasets

generated under a multivariate normal distribution with a diagonal covariance

matrix for three settings : one low dimension setting (n = 1500; p = 100) and

two high dimension settings (n = 30; p = 100 and n = 10; p = 100). The true

correlation between any pair of the p variables is 0. However, in high dimension,

it is possible to find a pair of variables with high empirical correlation.

1.3.5 Feature selection for supervised learning

Feature selection is a preprocessing technique to identify a subset of features that

gives a better comprehension from the input data while providing a predictor is

not only faster, cost-effective, but also higher prediction performance (Guyon and

Elisseeff, 2003). Moreover, feature selection is one of the approaches for dimensional

reduction by selecting relevant features, eliminating irrelevant and redundant fea-

tures, therefore avoiding the curse of dimensionality (Guyon et al., 2008). The goal

of feature selection is also to increase the interpretability of the prediction. De-

pending on how one combines feature selection techniques with classifier modeling,

there are three types of feature selection including filters, wrappers and embedded

methods.
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Feature selection approaches

Filter methods. Filter methods evaluate the relevance of features based on the

intrinsic characteristics of data, independent of the learning method. This type of

feature selection, in general, calculates a score for each feature and then ranking

them. Selected features are obtained by a given threshold or a number of features

that one desires to keep. Filter methods include parametric methods such as the

classical t-test or non-parametric methods such as the Wilcoxon sum-rank statistics

(Haury et al., 2011; Wilcoxon, 1945). We refer to Lazar et al. (2012) for an overview

of filter methods.

The most outstanding advantage of filter approaches is that its computation is

fast and straightforward, which is often preferred as the first processing step in a

high-dimensional dataset. However, the influence of selected feature subsets on the

model performance is entirely ignored in these approaches.

Wrapper methods. Conversely, wrapper and embedded methods depend on the

learning method to employ feature selection. For wrapper methods, one regards

each feature subset as a search problem. They iteratively perform a ML algorithm

for each feature subset and then evaluate these subsets based on the model accu-

racy. The selected feature subset will be the optimal subset with the highest model

accuracy. As a result, the major disadvantage of wrapper methods is computation-

ally costly. But they generally tend to outperform other filter methods (Kohavi

et al., 1997). Recursive Feature Elimination (RFE) is the gold standard for

wrapper-type feature selection methods that was proposed by Guyon et al. (2002).

In addition, Genetic Algorithm (GA) is a typical algorithm for wrapper feature

selection methods that was applied in several bioinformatic projects (Petricoin III

et al., 2002; Li et al., 2004; Thomas et al., 2019).

Embedded methods. Embedded techniques incorporate feature subset selection

during the model is being built, thus reducing the computation time compared to
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wrapper-type techniques. Several popular embedded methods are random forest

or regressions or classification combined with LASSO regularization.

Stability selection

In high dimension, the feature selection methods are known to be highly unstable :

a slight change in the dataset used to select the feature can lead to a totally different

set of selected features (Ein-Dor et al., 2006; Michiels et al., 2005). Meinshausen

and Bühlmann (2010) proposed a method of stability selection, which improved the

performance of several different feature selection algorithms including LASSO regres-

sion. Instability is a well-known drawback of the LASSO : when two variables are

highly correlated, the LASSO randomly selects one out of the two. Stability selection

is a generic subsampling approach that repeatedly performs a feature selection al-

gorithm on several different subsamples. The selection results are aggregated from

all repetitions, for example, counting how many times each feature ended up being

selected in the important feature subset (as described in Algorithm 1.2).

Algorithm 1.2: Stability selection algorithm

Input: A dataset (xi, yi ), the maximum number of subsamples MAX_S,

a list of regularization parameters: Λ

Output: List probability of each feature to be selected

1: for every integer ∈ {1, . . . , MAX_S }

2: Create a random subsample I of {1, . . . , n} of size bn/2c without replacement

3: for λ ∈ Λ

4: Fit the feature selection algorithm on I using regularization λ.

5: Store the set of selected feature Ŝλ(I)

6: end for

7: end for

8: for k ∈ list of p features

9: for λ ∈ Λ

10: Compute the selection probability Πλk = P (k ∈ Ŝλ(I))

11: end for

12: end for

13: return Πλk

Applying the stability selection algorithm, we have the probability of each feature
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k to be selected Πλ
k . Therefore, the final list of stable features is defined based on

list of regularization parameters Λ and on a given cut-off πthr (0 < πthr < 1), in

practice, one often chooses πthr ∈ ( 0.6, 0.9) (Meinshausen and Bühlmann, 2010):

Ŝstable = {k : max
λ∈Λ

(Πλ
k) ≥ πthr}

Stability selection has the benefit of controlling the FWER (Meinshausen and

Bühlmann, 2010), which allows for an accurate statement about the significance

of selected features.

The selection bias

When assessing the performance of feature selection combined with supervised

learning model, we should be careful to avoid the selection bias described in Am-

broise and McLachlan (2002). A classical mistake is to perform feature selection

on the whole dataset, and work with the dataset restricted to the selected features

to perform cross-validation and assess the model performance. This strategy leads

to overestimate the prediction error, given that the dataset used to assess the per-

formance (testing set) was also used to select the variables. The performance of a

predictive model has to be evaluated on truly unseen data.

1.3.6 Supervised learning for prediction of binary variables

When the variable to predict is not continuous, the MSE presented in Section 1.3.3

is not adapted and other performance measures must be used. The general ideas

detailed in Sections 1.3.3 and 1.3.4 can be adapted to prediction for categorical

variables. Below, we present the performance measures for binary supervised learn-

ing when yi ∈ {0; 1} (classification) and the problem of learning on imbalanced

datasets.
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Performance measures for binary supervised learning

To find out how effective is the ML model, we use different performance measures,

such as Accuracy, Recall, F1-score . . . The selection of measure depends on the

purpose and significance of the study as well as the proportion of the number of

observations in each classification group.

• Confusion matrix: is one of the most intuitive and most straightforward

metrics used for assessing the correctness and accuracy of the model. Inter-

estingly, confusion matrix itself is not a performance measure, but almost all

of the performance metrics are derived from it. Where:

Table 1.3: Confusion matrix

Actual

Positives Negatives

Predicted
Positives TP FP

Negatives FN TN

– TP: the actual class of the observation was 1(True) and the predicted is

also 1(True).

– FP: the actual class of the observation was 0(False) but the predicted is

1(True).

– FN: the actual class of the observation was 1(True) but the predicted is

0(False).

– TN: the actual class of the observation was 0(False) and the predicted is

also 0(False).

• Accuracy:

Accuracy =
TP + TN

TP + FP + FN + TN
(1.9)

Accuracy is a good measure when a dataset is well balanced between classes.
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• Precision:

Precision =
TP

TP + FP
(1.10)

Precision is a measure that shows the percentage of correctly predicted posi-

tive observations out of the total number of predicted positive observations.

High precision reflects a low false positive rate.

• Recall or sensitivity or True Positive Rate (TPR):

Recall =
TP

TP + FN
(1.11)

This measure indicates the percentage of correctly predicted positive observa-

tions out of the total number of really positive ones. Therefore, Recall refers

to an algorithm’s sensitivity to precisely classify the positive observations.

• False Positive Rate (FPR):

FPR =
FP

TN + FP
(1.12)

FPR calculates the rate between negative observations that are misclassified

and the total number of truly negative observations.

• The Area Under the Receiver Operating Characteristics Curve: Various

researchers have adopted this measurement for assessing the classifier algo-

rithm’s performance. The Receiver Operating Characteristics (ROC) is a

curve showing the relation between TPR and FPR at different thresholds.

Thus, this curve describes the correlated trade-off between true and false pos-

itives. The Are Under the ROC Curve (AUC) is the total two-dimensions

place below ROC curve from (0,0) to (1,1) as pointed in Figure 1.4. The

higher AUC, the better classification algorithm is in predicting observations.

For more information on ROC analysis, we refert to Fawcett (2006).

• F1-score:

F1− score = 2× Precision×Recall
Precision+Recall

(1.13)
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Figure 1.4: AUC - Area Under the ROC Curve

Depends on the problem to be addressed in your research, one can maximize

precision or recall separately. However, if you’re really interested in maximiz-

ing both then the F1-score is a suitable measure. F1-score takes both FP (so

called a type I error) and FN (so called a type II error) into consideration.

Supervised learning on imbalanced datasets

Imbalanced datasets are a particular case for supervised learning where almost all

observations are labeled in one class (the majority class), while fewer observations

are labeled in the other class (the minority class), often more important.

When data is imbalanced, several problems can occur, such as the cost of mis-

classifying a minority class is typically much higher than that in a majority class.

Additionally, most traditional classifiers assume an equal distribution of classes;

thus, such models focus on learning characteristics of the majority class solely, ig-

noring the observations from the minority class that are, in fact, more meaningful

and whose predictions are more relevant.

A simple technique for handling imbalanced datasets is sampling the data that
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includes oversampling and undersampling.

• Over-sampling (Up-sampling) is the technique that adds observations to the

minority class in order to reduce the skew in the class distribution (Chawla

et al., 2002; Menardi and Torelli, 2014).

• Under-sampling removes observations from the training set that belong to

majority class in an effort to better balance the class distribution (Kubat

et al., 1997).

Both these techniques are implemented in caret and imbalanced-learn (Lema1̂tre

et al., 2017) packages.

Due to the development of deep learning, more recent techniques such as Generative

Adversarial Networks (GAN) (Goodfellow et al., 2014) are used to efficiently deal

with data imbalance. This deep-learning-based generative model includes two sub-

models: a generator and discriminator models. In details, the former generates

artificial samples from the existing data, while the latter classifies these generated

samples as either real or fake samples. Both models are trained simultaneously.

After each round, the discriminator is then updated to better distinguish real and

fake samples, and according to the feedback of the discriminator, the generator is

also updated.

1.3.7 Survival analysis

In logistic regression techniques, scientists are interested in studying models that

predict whether a patient is cancerous or healthy. However, in some cases, they

are interested in evaluating how a new treatment affects the duration of recovery

or recurrence. In these cases, the standard regression is not the appropriate choice.

Survival analysis is an alternative approach in which time until the event is concern.

This section gives a quick overview of survival analysis techniques.
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Censored observations

As discussed above, survival analysis concerns the expected duration when an event

occurs (recurrence or death). Though, this event may not have been observed during

the study period for some patients (so-called censored observations or censoring).

The label of a samples yi is not a continuous or categorical variable, such as pre-

sented in the previous sections. Here, yi = {ti, δi} where ti is the survival time,

time-to-event or follow-up time, and δi indicates if the event has been observed.

If δi = 1, the event (death, recurrence or relapse) has been observed. If δi = 0,

the observation has been censored. There are several types of censoring but mostly

right-censoring. Here are some reason for right-censoring:

• A patient đid not experience the event during the study period.

• A patient dropped out before the end of study.

• A patient was lost followup time within the study duration.

Survival and hazard functions

To describe survival data, one often uses the survival and hazard functions. The

survival function is the probability that a patient survives from the time start

(e.g., diagnosis of cancer) to a specific time in the future, also known as survival

probability. While the hazard is the probability that a patient experiences an event

at a certain point of time.

Various methods are used for estimating survival function or survival curve, which

differ due to the assumptions of survival time distribution, such as a classical non-

parametric estimator - Kaplan-Meier (Kaplan and Meier, 1958).

In Kaplan-Meier method, they assume that:

1. Censored patients have the same survival probability as patients who continue
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to be followed.

2. Participation timing in the study does not affect the probability of survival.

3. The event of interest happens at a specified time.

The Cox Proportional Hazards (CoxPH) model is useful to model follow-up times

and their links to expression data. Under this model, the hazard function is

h(t|xi) = h0(t) exp (xTi β) where h0(t) is the baseline hazard function, and β are

the coefficients chosen to maximize the fitness of the model to the observed data.

We refer to Witten and Tibshirani (2010a) to find methods to select features asso-

ciated with survival in the model CoxPH model presented above.

1.3.8 Interpreting supervised learning models

Supervised techniques have seen widespread adoption to classify and predict pa-

tient etiology or outcome. The list of interpretable models includes several simple

models, e.g., linear regression, decision trees, and naive Bayes classifier. However,

supervised learning models remain mostly as black-boxes. This leads to an obsta-

cle in deploying these predictive models because humans do not understand and

trust them. There are several techniques to help users understand the rationale be-

hind the back-box model’s predictions, such as Local Interpretable Model-Agnostic

Explanations (LIME) (Ribeiro et al., 2016). As a model agnostic technique, LIME

can explain the prediction of any classifier model. The mechanism of LIME is

that it modifies the input by creating permuted samples from the original data and

evaluate the changes in the prediction.

1.3.9 Supervised learning on gene expression data

Combining supervised learning and feature selection on transcriptomic data are

increasingly used in identifying transcriptome signatures associated with diseases
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(Jhun et al., 2017; Yoosuf et al., 2020). A signature is a set of genes/transcripts

whose behavior maximizes the prediction performance. We want to predict variables

such as the tumor status (normal or tumor), the types of the cancer or the prog-

nostic outcome. Perou et al. (2000); van ’t Veer et al. (2002) have used expression

data to classify samples into subclasses. However, it has been noticed that sev-

eral signatures derived on different datasets for the same prediction problem poorly

overlap (Michiels et al., 2005). The gold standard in supervised learning is to test

the prediction model on truly unseen data. In this chapter, we have given a quick

overview of the supervised learning and feature selection techniques. We have not

presented all existing techniques, such as Support-Vector machines or kernel meth-

ods, k-nearest neighbors, random forest or linear discriminant analysis. Given a

dataset, it would be easy to try as many supervised learning methods as possible,

as many feature selection techniques as possible to select the "best" method (i.e.

the set of choices leading to the results that we want to observe). However, it is not

an appropriate approach, given that we are likely to find over-optimistic results.

In this thesis, we have worked mainly with the logistic regression (and the LASSO

logistic regression to select features) because the model is well-understood from the

theoretical point of view, and the results are easy to interpret.

1.3.10 Differential analysis versus supervised learning

In section 1.2, we have presented an overview of differential analysis of gene ex-

pression data. In section 1.3, we have presented supervised learning techniques,

machine learning-based techniques. The rationale behind each approach are quite

different. Supervised techniques are used to classify and predict, usually patient

etiology or outcome. Differential analysis relates to statistics where our goal is

to draw inference on a population using observed data. Supervised learning tech-

niques relates to ML where our goal is to find predictive patterns to predict the

label of future, unseen observations. The most statistically significant DE genes

are not necessary the most predictive genes. The most predictive genes have good
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generalization performance, and are not necessary the ones with the highest mean

expression difference across experimental conditions or patient status. The two ap-

proaches do not use the same diagnostic metrics : classical statistics approaches

seeks the control of Type I and II errors using the whole dataset whereas super-

vised learning approaches use data split with training and test sets and metrics such

as MSE or ROC-AUC evaluated on the test set. We refer to Bzdok (2017) for a

discussion on the links and differences between classical statistical approaches and

machine learning approaches.

1.4 Unsupervised learning methods

Unsupervised learning is an algorithmic process that models the underlying struc-

ture or distribution in the data from (only) input data without corresponding output

variables, i.e., there is no correct answer. The algorithms realize an automatic ex-

ploratory analysis and present interesting structures in the data. In unsupervised

learning, there are various popular techniques, such as clustering, isolation forests,

and variational autoencoder. In this section, we focus on clustering techniques with

some classical clustering algorithms, on how to evaluate the clustering results, and

we present two main clustering approaches for gene expression data.

1.4.1 Traditional clustering techniques

Clustering techniques typically include four major following categories: partition-

ing, hierarchy, density-based, as well as grid-based (Han et al., 2011). Each category

has its own idea and also produces various typical algorithms. For example, the

centers of the data points regards as the centers of the respective clusters is the idea

behind partitioning clustering. Most partitioning algorithms are based on distance

and given the number of partitions that need to be constructed in advance, e.g.,

K-means (MacQueen et al., 1967), K-medoids (Park and Jun, 2009). In contrast,

hierarchical clustering methods tend to group data points into hierarchical clus-
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ters that are particularly beneficial for data visualization and generalization. BIRCH

(Balanced Iterative Reducing and Clustering using Hierarchies) (Zhang et al., 1997)

and Chameleon (Karypis et al., 1999) algorithms are famous for this type of clus-

tering technique.

Partitioning and hierarchical clustering, as mentioned, are both data-oriented tech-

niques, i.e. one partitions the set of data points to form a cluster and then accom-

modates to their distribution data in the space. The grid-based clustering method

alternatively employs a space-oriented approach since it splits the spatial data into

cells independent with data distribution. Several algorithm were implemented for

this idea, e.g., STING (Wang et al., 1997), CLIQUE (Agrawal et al., 1998). Among

four clustering categories, density-based algorithms allow to find clusters of different

shapes and sizes while remaining robust to noise in the data with several algorithms,

such as DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999).

In the next section, we will introduce K-means and DBSCAN, respectively that are

two most classical and well-known algorithms for unsupervised clustering.

Reminder, we are given a training set including n samples: x1,x2, . . . ,xn; where xi

is an expression vector of sample i across p features, i.e., xi = (x
(1)
i , x

(2)
i , . . . , x

(p)
i ).

Our target is to group n samples into several clusters.

K-means algorithm

This partition-based clustering is one the most popular and straightforward algo-

rithm. The number of clusters K are given and one uses them to define clusters. A

sample is assigned to a particular cluster if the Euclidean distance from it to that

cluster’s center is shortest.

K-means finds the best center based on two alternating steps (1) assigning samples

to their clusters according to the current centers (2) updating cluster centers ac-

cording to the current assignment samples. The pseudo-code of K-means clustering

algorithm is as below (Algorithm 1.4):

30



Algorithm 1.4: Pseudo-code of K-means clustering algorithm

Input: n samples: x1,x2, . . . ,xn, number of cluster: k, maximum number of iterations: MAX_ITER

Output: A partition P = [ C1, C2, . . . , Ck ]

1: cnt = 0; P = []

2: Initialize µi (i = 1, . . . , k)cluster center by choosing randomly k samples from n samples

3: while

4: cnt +=1

5: Cluster assignment: each sample xj assigns to the nearest cluster

6: C
(cnt)
i = [ xj if distance(xj , µi) ≤ distance(xj , µl) for l = 1, . . . , k ]

7: Update centers

8: µ
(cnt+1)
i =

1

|C(cnt)
i |

∑
xj∈C

(cnt)
i

xj

9: Update P

10: P (cnt) = [ C(cnt)
1 , . . . , C

(cnt)
k ]

11: if cnt ≥ MAX_ITER or P (cnt) = P (cnt−1)

12 return P (cnt)

13 end if

14 end while

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algo-

rithm

DBSCAN is a famous clustering algorithm, was the first introduced by Ester et al.

(1996). The basic idea behind DBSCAN is how it defines a cluster as a connected

dense region, therefore, samples in the high-density space tend to fall into the same

cluster.

In detail, DBSCAN determines clusters by evaluating the local density at each sam-

ple using two parameters: distance radius (ε) and minimum number of samples

(minPts) that are located in the neighborhood ε of the sample.

According to these two parameters, DBSCAN divides data samples into 3 type of

samples: core, border and noise samples as illustrated in Figure 1.5.

1. Core sample: a single sample has at least minPts samples within the neigh-

borhood ε of itself.

2. Border sample: a single sample has at least one core sample at its neighbor-
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hood ε.

3. Noise sample: a sample is neither a core nor a border sample.

Figure 1.5: An illustration about 3 type of samples in DBSCAN algorithm with

minPts = 3 and ε = 1 unit. Blue, orange and yellow points are represented for

the core, border and noise samples, respectively.
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There are two major procedures in the implementation DBSCAN algorithm as pre-

sented in Algorithm 1.5 and Algorithm 1.6, respectively.

Algorithm 1.5: Pseudo-code of DBSCAN(setSamples, ε,minPts)

Input: setSamples =[ x1, . . . ,xn ]; distance radius: ε; minimum number of

samples to form a cluster: minPts

Output: Clusters stores all groups

1: C = 0; Clusters = []

2: for xi ∈ setSamples and xi is not visited

3: Mark xi as visited

4: neighborsP ts = findNeighbors(xi, ε)

5: if sizeof(neighborsP ts) < minPts

6: Mark xi as noise sample

7: else

8: C = next cluster

9: Clusters = Clusters ∪ extendCluster(xi, neighborsP ts, C, ε, minPts)

10: end if

11: end for

12: return Clusters

Algorithm 1.6: Pseudo-code of extendCluster(s, C, ε,minPts)

Input: visited sample: s ; neighborsP ts: list neighbors of s; the real cluster: C;

distance radius: ε; minimum number of samples to form a cluster: minPts

Output: The real cluster C

1: Add s to cluster C

2: for s
′ ∈ neighborsP ts

3: if s
′

is not visited

4: neighborsP ts
′

= findNeighbors(s
′
, ε)

5: if sizeof(neighborsP ts
′
) >= minPts

6: neighborsP ts = neighborsP ts ∪ neighborsP ts′

7: end if

8: end if

9: if s
′

is not member of any cluster

10: Add s
′

to cluster C

11: end if

12: end for

13: return C

DBSCAN does not specify number of clusters as partition-based K-means. This algo-

rithm has the ability to discover clusters with arbitrary shapes, therefore DBSCAN
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algorithm has better performance on the more complex structures (Ronan et al.,

2016). In addition, it can deal with noise samples introduced in the dataset.

Nevertheless, this type of density-based clustering has some drawbacks. For ex-

ample, to perform DBSCAN one needs two input parameters, minPts and ε which

together form the local density for each generated cluster. However, setting the

right values of minPts and ε engages a number of trials and results assessing phase.

For each trial, DBSCAN algorithm runs with different values of these parameters in

several times that are costly in the case of high dimensional dataset.

In terms of computational complexity, DBSCAN algorithm is greatly impacted by

the number of times function findNeighbors(...) is invoked as shown in Al-

gorithm 1.5 and Algorithm 1.6. As a result, if this operation is designed with

optimization, the execution time of DBSCAN clustering will be significantly reduced.

1.4.2 Evaluation of unsupervised clustering

In the previous section, we have presented 4 fundamental categories of clustering

techniques and various corresponding algorithms. The question is if one utilizes a

clustering algorithm for their data, how do they evaluate whether the clustering

result of the algorithm is good or not. In general, clustering evaluation relies on

three major processes (Agarwal, 2013):

1. Estimating clustering tendency The purpose of this process is to discover

whether the non-random structure certainly manifests in the dataset to ensure

that clustering data makes sense.

2. Specifying the number of clusters in a dataset Few algorithms need to

define the number of clusters in advance, such as K-means, K-medoids; as a

result, it should be specified this value before applying a clustering technique.

3. Computing clustering quality based on the availability of the ground-truth

we have two type of computing methods (i) extrinsic methods (ii) intrinsic
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methods

1.4.3 Clustering approaches for gene expression data

The clustering of gene expression data has proven to be profitable in understanding

gene function, gene regulation, and subtypes of cancer (Armstrong et al., 2002;

Parker et al., 2009). An interesting aspect in the cluster analysis of gene expression

matrices is that one can subdivide both genes and samples - the determination of

applying gene-based or sample-based direction is centered on the crucial ambition

of clustering tasks (Jiang et al., 2004). For example, if the task aims to infer groups

of genes that are involved in the same cellular processes, gene-based clustering is

an excellent choice. In such an approach, genes share similar profiles (co-expressed

genes) across several treatment conditions that fall into the same clusters.

Gene-based clustering

Gene-based clustering is performed to group co-expressed genes, which may indicate

co-function and co-regulation. The intrinsic characteristics of gene expression data,

and the specific requirements from the biological domain take account to several

great challenges for gene clustering present and is still an open problem.

First, it is impossible to have a single best algorithm for clustering (Pirim et al.,

2012), and each algorithm imposes its own underlying structure biases on the data.

Second, as we discussed in Section 1.1.2, the gene expression matrix produced by

microarray or RNA-seq experiments is a messy data i.e., contains a tremendous

amount of noise. As a result, gene-based clustering algorithms should be scale-well

in order to obtain beneficial data from such a noisy environment.

Finally, a clustering algorithm does not only partition the dataset but also provides

the visualization of cluster structure. It should give the biologists the multi-view

about the gene clustering (e.g., the relation between the clusters, the connection
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between the genes within the same cluster)

Sample-based clustering

The aim of sample-based clustering is to partition samples into different groups. An

aggressive sample-based clustering algorithm needs to ensure that samples within a

group share similar expression patterns and vice versa; those from other groups pose

noticeably different. The idea of clustering sample lead to discover the phenotype

structures or sub-structures of the samples (e.g., new cancer/disease subtype), and

it was the first introduction in Golub et al. (1999) and Alizadeh et al. (2000).

The study from Golub and his colleagues is a demonstration that samples can be

distinguished by a small subset genes whose expression levels highly correlate with

the class outcome (is-labeled informative genes). For other remaining genes are

irrelevant to classify samples, and thus should be removed from the dataset.

There are two approaches in the selection of informative genes: supervised and

unsupervised, depending on whether using actual class label information during

this process. Though supervised gene selection techniques (Blum and Langley,

1997) are broadly applied, developing gene selection techniques using unsupervised

learning is gaining more attention from the research community (Dy et al., 2003).
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Chapter 2

Bioinformatics for RNA-seq analysis

Advances in RNA-seq has revolutionized measurement of transcriptome-wide gene

expression through its ability to capture the full diversity of transcripts produced

by each cell. It is a key to comprehend the functional and structural elements of

the genome. However, conducting an RNA-seq study properly is a challenge due to

the large number of published RNA-seq analysis protocols.

2.1 Conventional RNA-seq analysis

We present here the main bioinformatics processes used for conventional RNA-seq

analysis. The selection of an analysis strategy depends on the organism studied and

on research objectives. RNA-seq data analysis, in general, includes several steps as

shown on the right side of Figure 1.1 part A "Data processing" - including quality

control, alignment, and quantification.

2.1.1 Quality control

RNA-seq data are typically stored in FASTQ files that contain millions of raw

reads. A read is a sequence obtained after the end of the sequencing process.
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The limitations of each sequencing platform introduce errors, such as incorrect

nucleotides that can lead to bias for the interpretation of downstream applications.

As a result, sequence quality control is a crucial first step before doing any further

analysis.

One of the pioneer programs for handling quality control on raw FASTQ files was

FASTX-Toolkit (Hannon, 2010). This tool is capable of monitoring base quality and

nucleotide distribution by a collection of Linux command-line tools. Another tool is

the FastQC package developed by the Babraham Institute bioinformatics group at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. FastQC sup-

ports additional parameters to estimate sequence quality along all sequences, in-

cluding quality estimated collectively across all reads within a sample, GC content

distribution, and listing of over-represented sequences. As a general rule, sequence

quality drops at the end of the sequences, raising the number of potentially incor-

rectly called nucleotides. Sequences, therefore, must be treated by trimming bases

corresponding to low quality score regions. Also, if the reads are longer than the

fragments sequenced, adapter sequences may be present in raw reads, which is an

issue that reduces the aligned read rate (Criscuolo and Brisse, 2013). Software tools

are available to perform either or both of these tasks (quality trimming and adapter

removal); for example, Trimmomatic (Bolger et al., 2014) does both while Cutadapt

(Martin, 2011) does the second.

2.1.2 Alignment/Mapping

Sequencing produces a collection of reads without a genomic context, so one does not

know which part of the genome these reads belong to. Depending on the availability

of a reference assembled genome, one can choose between two alternative options:

• Reference-based transcriptomics: when a reference genome is available for

the organism, it is possible to infer a read’s corresponding region by mapping

it to the reference genome or transcriptome.
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• De novo assembly: when working on an organism without a reference genome

or incomplete reference genome, reads, first, can be extended into longer se-

quences called contigs. After that, these contigs are remapped to the assem-

bled transcripts for the next step, quantification.

Mapping is the process of finding out the location of reads in the genome. Assessing

mapping quality through checking the mapping statistics is a crucial step before

continuing any downstream analyses. Mapping statistics indicate how well reads

map to a reference. In case these statistics are not satisfying (e.g. the number of

uniquely mapped reads is low), one should investigate the cause of these errors by

looking into the Binary Alignment Map (BAM) file that stores the read alignments.

The reads can either map to a reference genome or a reference transcriptome. In the

context of alignment to genome, a reference genome and set of reads will be the input

data for mapping tools. These tools employ this data to align each read against set of

reads that are constitutive from a reference genome, allowing mismatches, insertion

or deletion of bases. However, the precise alignment of reads that have splice

junctions is the major challenge of genome alignment, specially when these junctions

are not pre-annotated. Multiple bioinformatics tools are available to perform the

alignment of short reads to a genome, including Bowtie (Langmead et al., 2009)

and STAR (Dobin et al., 2013), HISAT2 (Kim et al., 2019).

In case the organisms have a well-established transcriptome, the reads can directly

align to a reference transcriptome which includes a set of known transcripts with

most expressed isoforms. Consequently, reads align contiguously and various costly

computations have been abandoned in this approach. However, transcriptome align-

ment produces a high rate of multi-mapping reads, resulting in computational chal-

lenges in such alignment. Several programs are designed for mapping read to a

reference transcriptome, e.g. Bowtie, Stamby (Lunter and Goodson, 2011), Salmon

(Patro et al., 2017).

Genome alignment or transcriptome alignment, each approach has different advan-

39



tages and disadvantages as described in the section above. Additionally, the former

mapping allows for the discovery of novel genes or transcripts, meanwhile the lat-

ter is often faster and is the solely option when working on organisms without a

reference genome or incomplete reference genome (Conesa et al., 2016).

2.1.3 Quantification

Quantification is the abundance estimation of transcripts or gene expression. There-

fore, there are two levels of resolution, gene-level and transcript-level. The former

is more common than the latter, but the latter has recently been recommended for

all RNA-seq data analysis due to the significant improvement in gene expression

quantification accuracy (Zhao et al., 2015).

Aggregation of raw counts of mapped reads, which is performed with software pack-

ages such as featureCounts (Liao et al., 2014) and HTSeq-count (Anders et al.,

2015), is the simplest quantification method. This gene-level quantification takes

as input multiple BAM files that are cross-referenced with a Gene Transfer Format

(GTF) file, which stores the genome coordinates of exons and genes.

Transcript quantification involves the assignment of fragments (reads or pair reads)

to specific transcripts, which raises more challenges but also has several advan-

tages. The crucial challenge here is that significantly more reads align equally well

to multiple locations called multi-mapping reads. To tackle multi-mapping reads,

various transcript quantification tools used Expectation Maximization (EM) algo-

rithm (Dempster et al., 1977), such as Cufflink (Roberts et al., 2011), RSEM (Li

and Dewey, 2011), StringTie (Pertea et al., 2015), kallisto (Bray et al., 2016),

Salmon. The EM algorithm is an iterative maximization approach for inferring the

maximum likelihood estimation in problems with missing variables (so-called latent

variables). In the case of multi-mapping reads, our aim is to find each transcript’s

abundance (latent variables) from given read data. The EM method involves two

steps, first, it estimates the expected value for each latent variable, then optimizes
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the model. It then repeats these two steps until it reaches a best fit for joint

probability of data.

Despite rising significant multi-mapping reads, quantification of expression at the

transcript level produces a straightforward interpretation due to transcripts reflects

correctly what the cell expresses.

As said above standard quantification methods such as featureCounts, HTSeq-count,

Cufflinks and StringTie rely on mapping to identify reads’ positions in the

genome based on their alignment to a reference. The gene or its isoform expres-

sion values are calculated by checking the number of overlapping reads, eventually

with help of the EM algorithm. Meanwhile, software like kallisto, Salmon use

pseudo-alignment, which does not specify the reads’ positions in the transcripts,

but instead compute their compatible transcripts based on common k-mer contents

obtaining from k-mer analysis.

Raw read counts do not accurately reflect the expression level within or between

samples, since these values are influenced by transcript length, total number of

reads, and sequencing depth. For example, sequencing runs with more depth will

have more reads aligned to each gene. Therefore, normalization is applied to identify

and correct such technical biases. Some common normalization procedures are:

Reads Per Kilobase Million (RPKM). This normalization was first introduced

by Mortazavi et al. (2008). To measure the raw read counts x(k)
i of the sample i

mapped to gene k based on RPKM, there are 2 steps:

1. Normalize for read depth: calculate the "per million" factor (so-called RPM)

RPM(x
(k)
i ) =

x
(k)
i∑p

k=1 x
(k)
i

106

(2.1)

2. Normalize for gene length (scale per kilobase): Reads scaled for depth are

further normalized for gene length.
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As a result the formula for RPKM is as follows:

RPKM(x
(k)
i ) =

RPM(x
(k)
i )

geneLength(k)

103

(2.2)

where

• x(k)
i : is the raw read counts of sample i mapped to gene k

• geneLength(k): is the length of gene k

•
∑p

k=1 x
(k)
i : is total raw read counts of sample i mapped to all p genes

Fragments Per Kilobase Million (FPKM). The FPKM measure (Trapnell et al.,

2010) is a derivative of RPKM. However, RPKM is applied for single end RNA-

seq, while FPKM is used for paired end RNA-seq. FPKM normalization ensures

fragments that have two reads are not counted twice.

Transcripts Per Million (TPM). Normalization TPM (Li and Dewey, 2011) is

quite similar to R/FPKM, except for the reverse order of computation.

1. Normalize for gene length:

RPK(x
(k)
i ) =

x
(k)
i

geneLength(k)

103

(2.3)

2. Normalize for read depth: Reads scaled for gene length are further scaled for

depth.

The formula of TPM is as follows:

TPM(x
(k)
i ) =

RPK(x
(k)
i )∑p

k=1RPK(x
(k)
i )

106

(2.4)

where
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• x(k)
i : is the raw read counts of sample i mapped to gene k.

• geneLength(k): is the length of gene k

•
∑p

k=1RPK(x
(k)
i ): is total normalized raw read counts based on gene length

of sample i mapped to all p genes.

Recently, TPM has largely replaced R/FPKM, as this method is more consistent

across libraries (Soneson et al., 2015).

Other common normalization methods. Normalization of counts is crucial when

performing differential analysis. There are several approaches to compute normal-

ization scaling factors for differential analysis: DEseq scaling factor (Anders and

Huber, 2010), trimmed mean of M values (TMM) (Robinson and Oshlack, 2010) or

quantile normalization (Bolstad et al., 2003). We refer to Dillies et al. (2013) for

more details.

2.2 k-mer strategies

k-mer analysis is a paradigm in next-generation sequencing data analysis that in-

volves converting sequence files into k-mers (Pevzner, 1989), i.e., all possible sub-

sequences of length k obtained from reads produced by DNA or RNA sequencing

as illustrated in Figure 2.1.

Figure 2.1: An illustration of how a read can be broken down into k-mers, in this

case k = 6; Source: Hua and Zhang (2019)

Recently, k-mer-based methods have been utilized in several novel tools for alignment-
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free transcript quantification, e.g., kallisto, Salmon. The most noticeably is that

the alignment-free quantification pipelines are significantly faster in computation

than the alignment-based quantification pipelines. Since the former operates by

breaking down reads into k-mers, then a fast matching process is conducted against

a pre-indexed transcript databases.

Besides, k-mer approaches are used on genomic and metagenomic data. Wood and

Salzberg (2014) have developed a program to assign taxonomic labels to metage-

nomic data using k-mers. Ounit et al. (2015) have classified metagenomic and ge-

nomic sequences using k-mers. Drouin et al. (2016) have used k-mers and machine

learning to discover biomakers on genetic data.

2.3 Reference-free approaches for RNA-seq analysis

The reliance on a reference genome or transcriptome is a source of bias in conven-

tional analysis of RNA-seq data since it leads to ignore numerous RNAs produced

in disease tissues, notably through deficient RNA processing and genome alter-

ations. Furthermore, there are still many species for which no reference genome or

transcriptome is available. Hence, RNA-seq study independently of alignment or

transcript assembly in a reference-free manner is an interesting alternative.

Throughout this thesis, we will use terms "reference-free" or "gene-free" to describe

methods that do not rely on a reference genome or transcriptome, and "reference-

based" or "gene-based" to describe conventional methods.

Below we describe three RNA-seq analysis methods with distinct aims, but that all

work in a reference-free manner. DE-kupl performs differential expression analysis,

GECKO performs predictive modelling and MINTIE finds RNAs which are specific to

a sample by contrast to a set of control samples.
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2.3.1 DE-kupl: exhaustive capture of biological variation using

k-mers

Our laboratory contributed to the development of DE-kupl (Audoux et al., 2017),

a pipeline that aims at capturing the full diversity of transcripts produced by

each sample, e.g., novel splice variants, long non-coding RNA (lncRNA), repeti-

tive RNAs, through k-mer decomposition. This computational protocol has four

principal parts (Figure 2.2):

• Count k-mers: Raw sequences stored in FASTQ files are indexed by the

jellyfish count command of Jellyfish (Marçais and Kingsford, 2011)

tools. Next, the jellyfish dump command is used to count k-mers (k=31)

occurence in each library.

• Filter and mask: k-mers with counts lower than a preset threshold are re-

moved. Also, k-mers present in reference transcripts can be removed to focus

on "novel" k-mers.

• Differential abundance analysis: k-mers with significantly distinct abun-

dances between the conditions under study are selected. In the thesis, we use

the term "differential expression analysis" for k-mers, although it is a slight

misuse of language given that k-mers are not "expressed" in the same sense

than genes are expressed.

• Extending and annotating: k-mers are extended into contigs using the

dekupl-mergeTags procedure; then, these contigs are annotated based on

their sequence alignment.

The DE-kupl pipeline has several parameters to build and filter the k-mer counts

matrix. Parameter ctg_length sets the length of the k-mers to extract (usu-

ally 31). Parameter lib_type sets the type of library (stranded or unstranded).

Parameter min_recurrence sets the minimal number of samples and parameter
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Figure 2.2: The DE-kupl pipeline includes 4 major steps. A. Jellyfish tool is

used to create index and count k-mers present in all libraries. B. k-mer counts are

joined into a count matrix, then, solely k-mers are high recurrence and absent in

the reference transcriptome are retained. C. Remaining k-mer counts continually

normalize before applying differential expression testing. D. DE k-mers are ex-

tended into contigs based on their overlapping. These contigs are annotated to

different biological events.

min_recurrence_abundance sets a threshold: any k-mer with more than min_recurrence

samples below min_recurrence_abundance counts is removed from the analysis.

When the masking option is used, the user provides reference transcripts to the

pipeline and all k-mers found in the reference transcripts are removed from the

matrix.

Parameter diff_method sets the model used for differential analysis: DESeq2

or t.test. The DESeq2 option implements a testing procedure using a negative

binomial model, which is adapted to very long data matrices using a chunk-based

strategy. The t-test option implements a testing procedure based on normal distri-

bution of log-transformed counts. The P -values are subsequently corrected using the

Benjamin-Hochberg procedure described in 1.2.2. k-mers with adjusted P -values

below a given threshold are retained for further analysis.

The dekupl-mergeTags procedure in DE-kupl was designed to merge k-mers into
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contigs based on their overlapping sequence. Contigs overlapping by (k-1) to (k-

15) nucleotides are repeatedly merged into longer contigs until one of the following

conditions is fulfilled : (i) there is no more overlapping contig, or (ii) ambiguity is

introduced, i.e., occurring competing extension paths.

To understand how the procedure works, we give here an example. Consider the set

of 4 k-mers {ATG, TGA, TGC, CAT} shown in Figure 2.3. In this case, k=3, so

dekupl-mergeTags starts working with overlaps of size k− 1 = 2. k-mer 1 {ATG}

overlaps with k-mer 4 {CAT} in AT, and with k-mer 2 {TGA} and k-mer 3{TGC}

in TG. Only k-mers overlapping with a single other k-mer are taken into account

for merging. Therefore, k-mer 1 and k-mer 4 are merged together to create contig

4+1 CATG, but k-mer 2 and k-mer 3 are not merged with k-mer 1. The vector of

counts of the contig 4+1 CATG is set to be equal to the vector of counts of the

k-mer with the lowest P -value from the differential abundance test performed in

the second step of DE-kupl. In Figure 2.3, k-mer 1 has the smallest P -value among

k-mer 1 and k-mer 4. The count vector of contig 4+1 is equal to the count vector

of k-mer 1. For a given contig, the constitutive k-mer with the smallest P -value is

called the representative k-mer of the contig.

After merging differentially abundant k-mers into contigs, DE-kupl assigns them to

putative biological events. To do so, DE-kupl defines 11 classes corresponding to

11 potential biological events, including splicing, polyadenylation, long intergenic

non-coding RNA (lincRNA) . . . . The assignment rules for differentially abundant

contigs are described in Table 3 from Audoux et al. (2017). Two additional files are

generated by the DE-kupl annotation procedure which are a per locus table and a

contig locations file helpful for visualization.

By moving alignment to the final stage of the procedure, DE-kupl ensures to capture

the whole variation in the input sequences at the initial stage. Even unmappable

repetitive k-mers, low complexity regions that would not be retained by the con-

ventional reference-based approach, are also obtained until the final stage.
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Figure 2.3: The dekupl-mergeTags procedure for a set of 4 DE k-mers A. k-mer

count table and corresponding P-values from the differential abundance test per-

formed in DE-kupl. B. There are three overlapping pairs: (k-mer 1, k-mer 2),

(k-mer 1, k-mer 3) and (k-mer 4, k-mer 1). However, the two first pairs are am-

biguities: we don’t know if we need to merge k-mers 1 and 2, or k-mers 1 and 3.

Only one contig 4+1 is created by merging k-mer 4 and k-mer 1. The resulting

contigs are k-mer 2, k-mer 3 and the merged contig from k-mer 4 and k-mer 1.

The count of contig 4+1 is represented by k-mer with the lowest P -value: here,

the count of k-mer 1.

2.3.2 GECKO: a genetic algorithm to classify samples using k-

mers

Another program that adopts a reference-free approach to classify and explore RNA-

seq data is GECKO (Thomas et al., 2019). GECKO uses k-mer optimization with an

adaptive genetic algorithm for the classification of various biological conditions,

based on any type of sequencing data, such as microRNA, messenger RNA (mRNA)

. . . . Thomas and colleagues designed GECKO with two major stages:
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1. Data preparation: First, a k-mer count matrix is created by applying Jellyfish

from input FASTQ or BAM files. GECKO then removes k-mers below a noise

threshold, k-mers that are consistent across all samples and k-mers that are

redundant.

2. Adaptive Genetic Algorithm: this steps discovers groups of k-mers that can

correctly classify input samples via wrapper-type feature selection Genetic

Algorithm (GA). From the filtered k-mer matrix, GA creates a population

with thousands of randomly selected k-mers (called individuals). Then, indi-

viduals within this population replace one of their k-mers with another k-mer

through the mutation stage. This is followed by a crossing-over phase where

a portion of the k-mers in the individuals is exchanged, and selectively, those

that have not classified the input sample well enough are eliminated from the

population and altered.

2.3.3 MINTIE: reference-free approach combining de novo as-

sembly and differential analysis

Cmero et al. (2020) recently designed MINTIE as an integrated RNA-seq pipeline

that combines de novo assembly with differential expression to identify unique vari-

ations in a case sample. Contrary to the previous software packages, this pipeline

runs in "a single case versus N controls" concept. The novelty of MINTIE (com-

mon to DE-kupl and GECKO) is that this approach discovers novel sequence without

mapping to a reference genome. Instead, it uses DE analysis on equivalence classes

that are unique to the assembly, instead of doing the test on k-mers.

To do that, firstly, de novo assembly is performed on the case sample. All assembled

transcripts in this case and a set of controls are quantified based on a standard

reference transcripts (CHESS v2.2 (O’Leary et al., 2016) by default). As DE-kupl,

MINTIE solely retains the sequences absent in reference transcripts. These novel

sequences are then compared by performing differential expression testing between
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1 case and N controls. Finally, significant over-expressed transcripts in the case

samples are annotated based on their alignment to the human genome.

2.4 Conclusion

In this chapter we have presented two major strategies for RNA-seq data analysis:

referenced-based and reference-free. There are three major steps in reference-based

RNA-seq data analysis which are quality control, read alignment as well as gene

and transcript levels quantification. We have also introduced some software tools

related to each step.

The reference free software presented above differ by their aims: DE-kupl and

MINTIE identify novel transcript forms, e.g., splice variants, fusion transcripts,

. . . that are specific to or overrepresented in a set of samples, while GECKO creates

predictive classifiers composed of non-reference transcript fragments. Results pre-

sented in the corresponding publications suggest that the non-referential approach

is feasible both for the discovery of transcripts and for predictive modelling. Be-

sides, these results would not be limited by the alignment of mapped reads to the

reference genome or transcriptome.

However, there are still several limitations in current approaches, for instance,

DE-kupl was initially proposed to discover un-refererenced biological events in RNA-

seq, and was not design to perform prediction of samples status, while the set of

k-mers discovered by GECKO was validated without an independent dataset.

As a result, my thesis aim was to employ reference-free RNA-seq analysis with

machine learning-based approach for the discovery of prostate cancer (PCa) signa-

tures which were validated in independent datasets. Towards that goal, I will first

explore in the next chapter clinical information on PCa and the different predictive

signatures that were found in previously published studies.
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Chapter 3

Transcriptomics of Prostate Cancer

3.1 General introduction to Prostate Cancer

In France, prostate cancer (PCa) is one of the most prevalent malignancies amongst

men, accounting for 25% of the diagnosed cancer and 8.5% of cancer-related deaths

in males in 2018 as shown in Figure 3.1. However, PCa is indolent or grows slowly

in a large proportion of men, such that it may not become clinically significant

during the patient’s lifetime. Nearly all prostate cancers are adenocarcinoma that

starts in glandular cells.

For PCa, the most popular screening method is the prostate-specific antigen (PSA)

blood test. This is a useful test, especially in men with many risk factors through

early detection of cancer, giving patients a better chance of getting treatment or

surgery sooner before cancer develops and spreads. Nevertheless, the PSA test has

been somewhat controversial due to over-diagnosis and over-treatment in men with

no symptoms of the disease (Schröder et al., 2009; Andriole et al., 2009).

Once a biopsy confirms that a man has PCa, he will have to undergo the process of

determining the stage of the tumor and its grading: staging figures out where the

tumor is located, whether it has spread, and how far if so, while grading measures
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Figure 3.1: The distribution of new cases and deaths for the top 5 most popular

cancers in 2018 for french males. Source: https://gco.iarc.fr, GLOBOCAN

2018, (Bray et al., 2018; Ferlay et al., 2019).

how quickly the cancer will grow and spread. These are vital and essential processes

to assist doctors in making decisions about the right treatment for each case and

disease severity.

Stages of prostate cancer. A standard staging system is the Tumour, Node,

Metastasis (TNM) was designed by the American Joint Committee on Cancer. The

TNM system relies on 3 main factors:

• Tumor (T): the extent of the primary tumor.

• Node (N): whether the tumor spread to adjacent lymph nodes.

• Metastasis (M): whether the cancer metastasized to other parts of the body.

In brief, there are 4 primary stages in PCa from I(1) to IV(4) (some of them are

divided further, e.g., A, B . . . ), of which the lower the stage, the less the tumor has

spread.
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Gleason score for grading prostate cancer. The Gleason scoring system is the

most common PCa grading system. The pathologist looks at tumor cells from a

biopsy under a microscope and assigns scores to the two most frequent cell types

observed. Cell types scores range from 1 (normal) to 5 (aggressive). The sum of

these two scores gives an overall Gleason score (GS) that ranges between 6 and 10.

Prostate cancer risk groups. In 1998, based on the clinical TNM stage, biopsy

Gleason score, and pretreatment PSA level, D’Amico et al. (1998) proposed a strat-

ification model of PCa patients into low, intermediate, or high risk of Biochemical

Recurrence following surgery. Risk is calculated by a combination of the above

factors:

• Low risk: TNM stage T1c, T2a and PSA level ≤ 10 ng/mL and GS ≤ 6

• Intermediate risk: TNM stage T2b or GS of 7 or PSA level > 10 and ≤ 20

ng/mL

• High risk: TNM stage T2c or PSA level > 20 ng/mL or GS ≥ 8

Recurrent prostate cancer. Prostate cancer cells may still survive following the

initial treatment, such as surgery, radiation therapy, and/or hormone therapy, an

event referred to as recurrent or relapsed cancer. Recurrent PCa can be detected

through an increase in PSA levels to a certain threshold at any time after treat-

ment. This is known technically as a Biochemical Recurrence (BCR). Alternatively,

recurrence can be observed clinically through the observation of metastasis.

3.2 Diagnostic and Prognostic of Prostate Cancer

PCa diagnostic rates have increased over the decades due to an aging population,

increasing awareness, and PSA blood test application for screening and diagnosis.

However, prostate tumors have varying degrees of aggressiveness, and it is crucial
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to distinguish indolent tumors from aggressive ones to avoid unnecessary treatment.

Finding prognostic gene signatures would improve cancer diagnosis, especially if it

can help identifying cancer at an early stage disease when more treatment options

are available.

Since Gleason score is one of the best predictors of PCa prognosis (Humphrey, 2004),

various studies used gene expression data to derive signatures predicting Gleason

score (Bibikova et al., 2007; Penney et al., 2011; Sinnott et al., 2017; Jhun et al.,

2017). However, in principle prediction of actual clinical progression, recurrence

or metastasis would be more desirable. Several publications have used information

on disease progression obtained after several years of followup to provide such pre-

dictors. In these models, disease progression was assessed indirectly by monitoring

PSA levels (Latil et al., 2003; Long et al., 2014; Ren et al., 2018; Sinha et al., 2019)

or through direct clinical observations (Klein et al., 2015; Shahabi et al., 2016).

Some studies used the microarray technology which detects a predefined list of genes

(Singh et al., 2002; Erho et al., 2013; Klein et al., 2015) while more recent studies

used RNA-seq (Jhun et al., 2017; Stelloo et al., 2018; Sinha et al., 2019), but applied

a reference-based pipeline in which reads are aligned to the genome and assigned

to annotated genes before gene expression quantification.

3.3 Supervised learning on reference-based approach

for PCa

Supervised learning methods have been developed for various applications in prostate

cancer study, such as the identification of transcriptome signatures for PCa diagno-

sis or prognosis (Singh et al., 2002; Shahabi et al., 2016; Jhun et al., 2017). Several

researchers have employed different supervised learning models combining with fea-

ture selection on transcriptomic data to infer such RNAs signature. For instance,

in the article of Singh et al. (2002), they have used gene ranking based on the signal

to noise statistic combined with k-nearest neighbors algorithm to detect gene
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signatures of Gleason score. Another article revealed mRNA signature to predict

the lethality among men with GS of 7 (Sinnott et al., 2017). In this study, from the

panel of 157-gene signature that was developed in their previous published (Penney

et al., 2011), Sinnott and his colleagues have adopted a nearest shrunken centroids

PAM classifier for building a model prediction. Bibikova et al. (2007), Long et al.

(2014) and Klein et al. (2014) have applied survival models, e.g. Kaplan-Meier

analysis and CoxPH regression model for inferring signatures that correlated with

PCa recurrence. In addition, other well-established supervised learning methods,

the LASSO and Elastic net regression models have been used regularly in the

recent studies about PCa signatures (Shahabi et al., 2016; Jhun et al., 2017).

3.4 Conclusion

In this chapter, we have introduced prostate cancer with the PSA screening, several

clinical information about staging, grading . . . in this cancer as well as various pub-

lications using ML-based approaches for the identification of PCa signatures. How-

ever, none of the published signature mentioned above has explored the possibility

of finding new genes or transcript isoforms associated to risk or relapse. However, a

new generation of predictors using reference-free transcriptomic approaches, as de-

scribed in Section 2.3, could potentially identify new transcript present in a sample,

e.g., novel splice variants, lncRNAs or RNAs from repeated retroelements (Audoux

et al., 2017). My thesis aims to apply this type of predictors for the identification

of PCa signatures and gain some contributions which will be presented in the next

chapter.
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Chapter 4

Challenges and contributions

4.1 Adapting tools to the dimensionality of datasets

generated by gene-free approaches

k-mer analysis creates a very high number of features to consider, typically tens to

hundreds of millions k-mers per RNA-seq library. Many of those may result from er-

rors and/or technological artifacts (such as adapter contamination) (Section 2.1.1),

or may be highly correlated in their expression, leading to poorly informative or

redundant features. Very large numbers of redundant and irrelevant features can

result in over-fitting, low accuracy, and long training times. As a result, matrix

reduction is an essential step before applying ML techniques for downstream anal-

ysis, such as DE analysis, survival analysis or transcriptome classification. Part of

my PhD thesis was devoted to the development of different strategies for dimension

reduction based on k-mer counts.

In Chapter 5, I have studied a range of filtering and clustering strategies based on

k-mer counts and tested them with real datasets. Among filtering approaches, the

supervised signal-to-noise method produced the fastest and most effective method in

reducing low-expressed or irrelevant k-mers prior to differential analysis. However,
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this filtering approach is not an independent filter and cannot be used safely prior

to differential expression. Among filters that did not use sample label information,

normalized entropy proved to be the most efficient. Details of the filtering criteria

of each method, as well as their effects, are elaborated in Section 5.2.1.

In Section 5.3, I have explored the potential use of unsupervised clustering tech-

niques to cluster k-mers based on the similarity of their counts. The results of this

section have led to propose another approach to reduce the size of the k-mer ma-

trix: merging k-mers into contigs based on the similarity of their counts and on the

overlap of the k-mer sequences. This reduction process allows to reduce the k-mer

count matrix to a smaller contig count matrix with less correlated and redundant

features than in the initial matrix. This procedure, which is briefly summarized in

the discussion of Chapter 5, has been developed by Haoliang Xue in our lab. It was

applied to real data in Chapter 7.

4.2 Combining k-mer based reference-free approach

and predictive models

A major methodological aim of this thesis was to advance reference-free k-mer

methods one step further by applying k-mer decomposition to predictive models

with results assessed in independent datasets.

In Chapter 6, I have used results produced by DE-kupl in a prostate cancer (PCa)

dataset provided by collaborators to perform prediction of sample status. Since

DE-kupl was developed as a statistical pipeline, which captures all k-mers show-

ing significantly different abundances among conditions; it was not designed for

predictive modeling. I have applied a procedure to compute and test a predictive

signature from the k-mer contigs produced by DE-kupl, and to evaluate this sig-

nature in independent datasets. In an independent validation cohort, this model

reached an AUC score of more than 90% for PCa diagnosis. Chapter 6 is a first

demonstration of the feasibility of combining a k-mer based reference-free approach
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and predictive models.

In Chapter 7, my goal was to compare k-mer based classifiers to conventional gene-

based classifiers for risk and relapse prediction of PCa. Using a large public domain

RNA-seq dataset, the number of original features present in the k-mer expression

matrix vastly exceeded that in the gene-based matrix, i.e. about 94 million com-

pared to 60 thousand. To compare gene-based and gene-free model performances,

I needed a common pipeline. To this aim, my goal was to first reduce drastically

the k-mer matrix using tools such as presented in Chapter 5. However, as these

tools were either designed for filtering prior to differential analysis or otherwise not

satisfying, we opted to use the above mentioned reduction process based on k-mer

sequence overlap, combined with a drastic screening procedure. The screening step

was designed to single out important features and reduce feature space from a ul-

trahigh dimension to a lower dimension. This screening was applied both on the

gene count matrix and on the contig count matrix, as both problems suffer from the

curse of dimensionality. The resulting reduced feature matrices (reduced contig ma-

trix and reduced gene expression matrix) are subsequently submitted to the same

feature selection process (lasso logistic regression in my case). This allowed us to

compare gene-based and gene-free signatures on a fair basis. The rationale behind

my approach is detailed in the discussion of Chapter 6. The comparison between

the k-mer based and gene-based approaches is detailed in Chapter 7. Classifiers

built from either strategy had similarly high performances for risk prediction and a

noticeably lower performance for recurrence prediction.

4.3 Demonstrating the ability of gene-free approaches

to discover unreferenced RNA subsequences

In Chapter 2 (Section 2.3), we have shown that k-mer analysis can, in principle,

capture the full transcript variation present in a RNA-seq sample. This varia-

tion can be afterward assigned to biological events such as lncRNAs, splice and
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polyadenylation variants, introns, repeats (Audoux et al., 2017), which are ignored

by standard protocols based on reference gene annotations. Evidence suggests that

non-reference RNA is regularly present in diseased tissues and can form clinically

useful biomarkers (Morillon and Gautheret, 2019).

The clinical signature we found in Chapter 6 consisted of only nine unreferenced

lncRNAs and was more effective than the commercial prostate cancer biomarker

PCA3 in detecting high-risk tumors. Meanwhile, the reference-free signatures in

Chapter 7 contained a set of RNA sequences containing unannotated RNAs and

novel variant of annotated RNAs that were not part of gene-based signatures.

4.4 Measuring reference-free signatures across in-

dependent RNA-seq datasets

When inferring a prognostic classifier for PCa, contig signatures are derived from an

initial discovery set. How can we evaluate the robustness and generalization of this

signature? To do that, one needs to transfer contig information to a different clinical

cohort and obtain a comparable quantitative expression measure. However, this task

poses a real challenge as this requires a mechanism that allows an exact matching

of each nucleotide to ensure contigs from the signature are correctly identified in

the new dataset.

I have proposed two solutions for the measurement of signature contigs in the new

dataset, introduced in Chapter 6, Section 6.3 and Chapter 7, Section 7.2.8. These

two solutions were designed to suit different study contexts. In Chapter 6, the set of

candidates for contig signatures was a given panel extracted by expert knowledge.

As a result, contigs in the signature derived from this set were highly expressed, and

the task of finding them in other datasets was relatively easy. Conversely, the contig

signatures inferred in Chapter 7 were automatically identified from approximately

94 million k-mers generated from more than 400 libraries (risk prediction model) and

had highly variable expression levels. This required a careful matching procedure to
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ensure as many contigs as possible could be quantified in the independent dataset.
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Part II

Results



Chapter 5

Methods for dimension reduction in

k-mer analysis

5.1 Introduction

As described in Chapter 4 of this thesis (Section 4.1), the selection of a subset of

informative k-mers, which can be assimilated to a feature reduction, is an essential

task. Each k-mer is represented by its counts across samples and its sequence. In

this chapter, we investigate methods to reduce the dimension based on the counts

of each k-mers.

We explore two ideas in order to reduce the number of k-mers based on their counts:

filtering k-mers and clustering k-mers. The two strategies are presented respectively

in Sections 5.2 and 5.3 of this chapter.

5.2 Filtering k-mers based on their counts

In this section, we describe and evaluate the performances of a set of filtering

techniques in the context of differential expression analysis. The goal of the filtering
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techniques is to remove low expressed or irrelevant features prior to differential

analysis. Bourgon et al. (2010) have proposed independent filtering to increase

detection power of differential expression analysis. In a nutshell, a filtering strategy

is independent if the filter statistic and the statistic used to perform the tests are

independent under the null hypothesis, which implies that the filter statistics should

not take into account the labels of the samples. We refer to Bourgon et al. (2010)

for a more comprehensive overview of filtering strategies prior DE analysis.

5.2.1 Filtering strategies

All below filtering methods are uni-variate filters that evaluate each k-mer individ-

ually, and in particular do not take into account their interactions. Those methods

calculate a score for all k-mers, and either select the top m k-mers with the highest

scores, or all k-mers whose score exceeds a given threshold τ , for m ∈ N and τ ∈ R

some pre-defined values.

In the following, we consider a dataset with n samples and p k-mers x(1),x(2), . . . ,x(p).

For a given k-mer k, the vector of occurrence is x(k) = (x
(k)
1 , . . . , x

(k)
n ). The vector

class y = (y1, y2, . . . , yn) indicates the labels (conditions) for the n samples.

Here is an example, say, we have a dataset including 14 samples and 2 k-mers.

Our samples divide into two groups, e.g., normal patients and cancer patients. The

expression of each k-mer in this illustration as Table 5.1 below:

Table 5.1: An illustration of using notations in filtering strategies

Samples

Normal patients (is-labeled 0) Cancer patients (is-labeled 1)

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Kmers
x(1) 30 0 0 0 8 0 0 0 93 311 161 168 228 669

x(2) 14 12 14 12 14 14 12 12 12 12 12 12 14 12

As a result:
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• n = 14 ; p = 2

• x(1) = (30, 0, 0, 0, 8, 0, 0, 0, 93, 311, 161, 168, 228, 669)

• x(2) = (14, 12, 14, 12, 14, 14, 12, 12, 12, 12, 12, 12, 14, 12)

• y = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

We present four strategies based of diverse metrics: variance, entropy, Median

Absolute Deviation (MAD) and signal-to-noise ratio. The first three strategies are

independent filters since the score does not depend on the labels of the samples.

While the signal-to-noise strategies incorporates this information. It is permissible

to use the labels in order to filter k-mers in my case study since we only used the

signal-to-noise ratio as a base-line for comparison with other unsupervised filters.

In this section, we focus on filtering strategies prior to differential expression to in-

crease the power of the analysis. However, the filtering strategies presented here can

also be applied prior supervised learning. In practice, special consideration should

be given to applying supervised filters to construct the input data for a classifica-

tion model. In such a project, in order to correctly evaluate the classifier, the entire

process containing the supervised filter and model training must be evaluated in

an independent dataset, i.e. test set must be independent with supervised filtering.

Otherwise, the prediction performance of the classifier will be considered as overly

optimistic (Ambroise and McLachlan, 2002).

Variance

The variance filter uses the variance of each k-mer across samples as its score. Its

rationale is that low variance k-mers, whose counts are very similar across samples,

would not be helpful to discriminate the different types of outputs, and should

therefore be removed. Formally, the variance score of a k-mer x(k) is defined as:

Jvariance(x
(k)) =

1

n

n∑
i=1

(
x

(k)
i − µ(k)

)2

(5.1)
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where µ(k) is the sample mean of k-mer x(k), defined as µ(k) = 1
n

n∑
i=1

x
(k)
i .

Entropy

The idea of the entropy filter is to measure the uncertainty of a random k-mer

according to a series of samples. To that purpose, one computes the following

metrics:

Jentropy(x
(k)) =

−
n∑
i=1

f
(k)
i × log2 f

(k)
i

log2 n
(5.2)

where f (k)
i is the frequency of k-mer x(k) within the i-th sample, such that f (k)

i =

x
(k)
i∑n

i′=1 x
(k)

i′
.

Note that the entropy is maximized by the poorly informative uniform distribution.

Indeed, when all possible counts of x(k)
i occur with the same probability, its entropy

is maximized, and the k-mer should be removed from of the set of k-mers to submit

to differential analysis.

Median Absolute Deviation (MAD)

The MAD filter ranks all k-mers according to their median distance of their count

to the median count across samples. The underlying idea of this score is to keep

k-mers having higher variability in a dataset. The difference between variance and

MAD methods resides in the way of ranking a k-mer. The former relies on the

mean value of that k-mer across all samples while the latter takes into account

the median. The median is less sensitive to outliers than the mean. Therefore,

the MAD filter removes k-mer with outliers that would have been kept using the

Variance filter.

Jmad(x
(k)) = mediani

(∣∣∣x(k)
i −median(x(k))

∣∣∣) (5.3)
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Signal-to-noise ratio

This filtering method measures the correlation between each k-mer and the class

distinction (e.g., normal patients vs cancer patients) and materializes a "signal-to-

noise" ratio. This method was introduced by Golub et al. (1999).

Jsignal.noise(x
(k)) =

µ
(k)
1 − µ

(k)
2

σ
(k)
1 + σ

(k)
2

(5.4)

where:

• µ(k)
1 , µ(k)

2 denote the means of the log expression levels of k-mer x(k), for

samples in condition 1 and condition 2 respectively;

• σ(k)
1 , σ(k)

2 denote the standard deviation of the log expression levels of k-mer

x(k), for samples in condition 1 and condition 2 respectively.

Large values of |Jsignal.noise(x(k))| indicate a strong correlation between the k-mer

x(k) and the condition distinction. Its sign corresponds to which condition x(k) has

highest expression, e.g., the positive sign indicates this k-mer has highest expression

in the first condition.

5.2.2 Metrics to evaluate filtering performance

To evaluate the performance of the filtering strategies on a real dataset, we run

DE-kupl using the DEseq2 option for diff_method (Love et al., 2014) on the dataset.

The list of differentially expressed k-mers obtained is subsequently regarded as our

ground-truth, i.e. the list of k-mers we would like to retain in the filtering approach.

Our main rationale for using the outcome of DE-kupl with DEseq2 as the ground-

truth is that DESeq2 is one of the most used and powerful method to identify

differentially expressed genes on RNA-seq data. In the case of k-mer analysis, the

set of differentially abundant k-mers obtaining from DE-kupl with option DEseq2 are
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the set of k-mers adjusted P-values under 0.05 under Benjamin-Hochberg multiple

testing correction. These tests are performed on a large list of redundant and

correlated k-mers (several millions). As a result, this list of differentially abundant

k-mers contains false discoveries; this leads to the following goals for filtering: first,

to considerably reduce the number of k-mers to be further analyzed; and, second,

to retain in this reduced set only those that are significant to a downstream DE

analysis and improve power detection. Any independent filter can be safely run

prior to DE-kupl, greatly speeding up its performances while retaining its significant

differentially abundant k-mers.

For each filtering strategies, we consider as predicted the top-ranking m (m =

100, 1000, . . .) k-mers. For any given threshold m, we create a confusion table that

compares the top-ranking k-mers, found using a given filtering strategy, and the

k-mers detected as differentially-expressed by its obtained by DE-kupl with option

DESeq2, detailed in Table 5.2.

These table entries have the following meaning in the context of our study. TP

is the number of common k-mers between the k-mers detected as DE by DE-kupl

with option DESeq2 and the k-mers retained by the filtering strategy. While FP is

the number of k-mers detected as non-DE by DE-kupl but retained by the filtering

strategy. The number of k-mers detected as DE by DE-kupl but filtered by the

filtering strategy was defined as FN. Finally, TN indicates to number of k-mers

detected as non-DE by DE-kupl and also filtered by the filtering strategy.

Table 5.2: Confusion matrix created by DE-kupl with option DESeq2 and filtering

strategy.

DE-kupl with option DESeq2

DE k-mers non-DE k-mers

Filtering strategy
Retained k-mers TP FP

Filtered k-mers FN TN

From the confusion matrix we can define:

TPR =
TP

TP + FN
(5.5)
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and

FPR =
FP

FP + TN
. (5.6)

TPR represents the proportion of DESeq2-predicted k-mers that are retained by a

given filtering. Meanwhile, FPR is the proportion of k-mers that are predicted as

non-informative by DESeq2, but nevertheless retained by the filtering, and are thus

detrimental to the performances.

For each strategy, we draw a single graph - ROC curve which is created by plotting

TPR against FPR at different top-ranking m k-mers. Then, the best filtering

method is the method that has the biggest area under the ROC curve, i.e., has the

highest AUC score (as described in "Performance measures for binary supervised

learning" in Section 1.3.6).

5.2.3 Experiments and Results

Dataset

To evaluate the performance of the 4 filtering methods, we used a RNA-seq data

from a Diffuse Intrinsic Pontine Glioma (DIPG) study. This unpublished dataset

was communicated by Marie-Anne Debily (Institut Gustave Roussy). DIPG is a

pediatric cancer deriving from the brain stems that control most human abilities,

such as talking, walking, and hearing. Several studies (Castel et al., 2015; Nagaraja

et al., 2017) have pointed that up to 90% of DIPG patients have mutations in two of

the ten genes for histone H3. Histone is a basic protein that associates with DNA to

form chromatin. The two affected genes are Hist1H3B and H3F3A, hereafter named

H3.1, H3.3, respectively. In this project, we had access to 14 RNA-seq libraries from

tumors, linked to their clinical information. The samples were grouped according

to the mutation in histone H3. Six samples were mutated in H3.1, and eight in

H3.3.
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Setup

Methods were compared using AUC scores, as described in detail in Section 5.2.2.

The process to obtain our ground-truth was the following. We ran DE-kupl with

option DESeq2 on the DIPG dataset. Parameters were ctg_length 31, min_recurrence

4, min_recurrence_abundance 3 , pvalue_threshold 0.05, lib_type stranded,

diff_method DESeq2. The recurrence filters kept around 190 million k-mers, and

the reference Gencode V24 filter reduced the number of k-mers to 127,444,888. Af-

ter differential analysis, the number of remaining k-mers was 199,311 k-mers. All

experiments were performed in Python on a Dell desktop, Intel Xeon(R) processor,

CPU E5-1680 v4 @ 3.40GHz × 16 and 32G memory.

Results

The different filtering strategies were compared using the metrics defined in Sec-

tion 5.2.2, and the results were presented in Figure 5.1. Signal-to-noise ratio was

the method with the highest AUC score, followed by Entropy and MAD filtering

methods with AUC of 0.86 and 0.81, respectively. Variance was the method with

the lowest AUC score (AUC = 0.75).

We also noticed that the most efficient strategy was the signal-to-noise filtering,

which was not surprising given that this method incorporated sample labels. En-

tropy and MAD methods, although they did not require knowledge of the class

labels, still obtained good AUCs. Interestingly, the unsupervised entropy filter ap-

peared to be a highly promising filtering method. Indeed, as shown in the ROC

curve of Figure 5.1, using this filter with a well-chosen cutoff was able to accurately

filter 45% of the total differential expression k-mers, of which only 3% were associ-

ated with false discoveries. Moreover, a more liberal cutoff allows to recover 90% of

the DEseq2 k-mers while keeping the false positive rate at about 20%. As a result,

an aggressive filtering could be implemented using this filter.
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Figure 5.1: Filtering performance of the four filtering methods presented in Sec-

tion 5.2.1 evaluated as presented in Section 5.2.2 on the DIPG dataset.

Table 5.3: Running time for each filtering method and DE-kupl with DEseq2 op-

tion

Method CPU time (h:m:s)

Variance 0:33:35

Signal to noise ratio 0:36:38

Entropy 0:44:16

MAD 0:43:38

DE-kupl with DEseq2 option 8:17:30

In terms of running time, variance was the fastest method (as shown in Table 5.5);

it took about 33 minutes to complete filtering of 127 million k-mers. Signal-to-noise

ratio was three minutes slower, which was still 21-fold faster than our benchmark -

DE-kupl with DEseq2 option. Entropy and MAD methods showed similar running
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times of around 43 minutes.

5.2.4 Conclusion on count-based filtering

This work demonstrates the ability to use statistical filtering to, first, reduce the

number of k-mers considerably to be further analyzed, and, second, retain in this

reduced set only those that are relevant to a downstream DE analysis.

Signal-to-noise ratio was the fastest and most effective method out of 4 filtering

strategies. However, since the signal-to-noise ratio takes the class information into

account, it is not a independent filter as defined in Bourgon et al. (2010) and cannot

be used safely prior differential analysis. This filter plays a role of an upper bound.

For filtering prior supervised learning, the signal-to-noise ratio is only suitable for

filtering features in training process of a supervised classification problem. Mean-

while, entropy is a satisfactory independent and unsupervised filter that could be

used as a preliminary step before further analysis. However, I did not propose a

solution to chose the right cutoff of the filter: how many k-mers should be filtered?

Additional work is required to answer this question.
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5.3 Clustering strategies

In this section, we test another strategy to reduce the dimension of the k-mers

table using unsupervised learning. The idea is to replace individual k-mers with

smaller number of "exemplary" k-mers, each representative of a cluster of similarly-

behaving k-mers. Among various clustering algorithms as outlined in Section 1.4, we

selected DBSCAN for clustering k-mers based on their counts. We chose this method

because in density-based clustering DBSCAN represents one of the most broadly used

algorithms (Xu and Tian, 2015) and takes as input attribute data, i.e., each sample

is presented by a vector of numerical.

In order to avoid the brute-force computation of pairwise distances, and thus execute

DBSCAN in reasonable time, we use methods tailored to detect Approximate Nearest

Neighbors (ANN), which we remind in the first Section 5.3.1.

In the next section (Section 5.3.2), we present experiments performed to investigate

two questions:

1. Efficacy of the approximated neighbors algorithms: In order to speed

up the initial computation of approximate neighbors, many methods exist,

including ANNOY and LSHF. We ask here which algorithm is most suitable for

searching nearest neighbors k-mers.

2. Evaluation of clustering feasibility based on DBSCAN: Is the clustering per-

formed by DBSCAN useful?

5.3.1 Strategies to pre-compute distances for DBSCAN clustering

In this section, we consider strategies to precompute approximate neighbors based

on a clustering strategy whose aim is to group similar samples into the same cluster.

The term sample will refer in the following to a k-mer, and our main task is to group

p samples: x(1),x(2), . . . ,x(p), each sample includes n feature.
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As discussed in Section 1.4.1, the time complexity of the DBSCAN algorithm is essen-

tially dominated by the computation of pairwise distances, implemented in the in

function findNeighbors(x(i), ε). In the original DBSCAN, this function returns the

list of nearest neighbors of the sample x(i) within a given distance ε, each call having

complexity in O(p × n), where p is the number of samples and n is the number of

features representing in each sample. It follows that the execution of the function

on all p samples will induce a time complexity in O(p2 × n), quickly becoming in-

tractable for larger numbers of samples. Here, instead of exactly computing the

list of nearest neighbors, we aim to get the Approximate Nearest Neighbors (ANN),

avoiding a costly pairwise distance calculation in case of a large numbers of samples.

Towards that goal, we consider two algorithms: Approximate Nearest Neighbors Oh

Yeah (ANNOY) (Bernhardsson, 2015) - one of the most robust ANN algorithms based

on the benchmark of Aumüller et al. (2017) and the Local Sensitive Hashing Forest

(LSHF) (Bawa et al., 2005) algorithm.

To adapt Approximate Nearest Neighbors to our task, we are given a set S of

p samples in a n-dimensional space. The goal is, given a query sample q and a

distance ε, to return a set L of l samples, L ⊆ S, that satisfies distance d(l, q)
l∈L

≤ cε,

where an approximation ratio c > 1.

Approximate neighbors using tree-based ANNOY Random Projections

The idea of ANNOY is to perform spatial partitioning by using random projections

and building up a tree for searching l nearest samples from a query sample q.

Random projection is a special strategy to solve dimensionality reduction. By

using a random matrix, this technique projects high-dimensional vectors to a lower-

dimensional subspace. The main idea in random projection is based on the Johnson-

Lindenstrauss lemma, which was first introduced by William B.Johnson and Joram

Lin-denstrauss in 1984 (Johnson and Lindenstrauss, 1984). The lemma states that

any point in an n-dimensional space can be mapped to a low d-dimensional space

(d� n), while the Euclidean distance between any two points remains roughly the
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same.

In our own trials, the random projections were adopted as an intermediate step to

finding a list of nearest samples by a given sample in such a smaller space. To do

that, a tree-based ANNOY algorithm was designed with two main phases:

Building a tree-like data structure. First, from the set S of p samples, the

algorithm randomly selects two samples, and computes the hyper-plane that is

equidistant from them. Then, this hyper-plane is used to split this set of samples

into two parts. Each part is split into two, and so on until each part has at least

t predefined samples. Therefore, this process ends up with a binary tree with each

node defines an equidistant hyper-plane, while each leaf is a partition containing a

lower number of samples than t. The lower the t-value the higher the tree height,

in practice, Bernhardsson (2015) recommends using t ≈ 100. An interesting aspect

is that samples are close to each other in the space have a higher probability to be

close to each other in the tree.

In order to improve the precision and performance of searching nearest neighbors,

we can build a collection of trees, a.k.a. a forest. It is presented by the n_trees pa-

rameter in the ANNOY algorithm. This parameter affects the build time and the tree

size: The higher the value, the more accurate results, but also the more extensive

trees.

Searching the data structure. To search the set L of l nearest samples from the

query sample q in space, one uses tree traversal from root of the tree. Based on the

side of hyper-plane presented at each node, one can chose to go down to the right or

left. The search finishes with a leaf containing candidate neighbors and takes only

O(log(p)). However, going down by one side of the binary tree poses two questions:

(1) what if the number of nearest samples results from this side lower than desired

l (2) what if several actual nearest samples are outside of this leaf. Therefore, the

tree-based ANNOY allows traversal by both sides of the node. Additionally, in case
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we have several trees, each tree covers all samples, so when searching down those

trees simultaneously, some samples will be present in multiple trees. Samples that

are the union of the leaf nodes are the candidate neighbors of the query sample q.

The next step is to compute all distances, rank the samples, and return the set L

of l nearest neighbors. ANNOY scales well to datasets with up to 1,000 dimensions

(Bernhardsson, 2015).

One can specify the number of nodes to observe throughout searching in ANNOY

by setting up parameter search_k. This option affects search performance. The

higher the value the more accurate results, but also the longer time for searching.

Approximate neighbors using LSHF

Local Sensitive Hashing Forest is an indexing scheme proposed by Bawa et al.

(2005). This index is based on the well-known technique of local sensitive hashing

(Gionis et al., 1999), improved through: (a) removing the need for various data

dependent tuning parameters, and (b) improved accuracy of returned results.

The key idea of basic local sensitive hashing is to hash the samples in the dataset

(in our case, the count values of the samples) using several hashing functions. For

each function, ensure that the collision probability of two similar samples is higher

than that of two non-similar samples. In this index, each sample q is placed into

a bucket with label g(q) = (h1(q), h2(q)..., hm(q)), where h1, h2, . . . , hm are selected

randomly with replacement from some family of local sensitive hashing functions.

As a result, any given sample q is assigned a fixed-length label, including m-digit.

Instead of fixing a label for every sample, the lsh-based LSHF introduces a variable

length of g(q). The label length of each sample depends on the number of hash

functions needed to make sure this label is unique. After that, Bawa et al. (2005)

construct a (logical) prefix tree from all these labels (so-called a LSH tree), with

each leaf defining one sample. An illustration of a prefix LSH tree as shown in

Figure 5.2 below.
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Figure 5.2: A prefix tree created from a set of 4 LSH labels, with each hash func-

tion returning one bit as output. The tree leaves represent the 4 samples and

their labels. The internal nodes are shown with red circles, some of them have

two children but the root’s right child has only one child. Source Bawa et al.

(2005).

To improve the accuracy of query results, one can construct a set of LSH trees to

create a LSH Forest as implied in the name of this algorithm. This option is defined

in n_estimators parameter in LSHF.

To search l Approximate Nearest Neighbors of a given query sample q in a forest in-

cluding u number of LSH trees, one, first, needs to set parameters n_neighbors and

n_estimators to l and u, respectively. Then, the lsh-based algorithm is performed

in two phases.

The top-down phase. For each tree Ti (i = {1, . . . , u}) in the forest, one must find

the leaf b_i with the maximum prefix that matches the query label by traversing

the descending tree.

The bottom-up phase. Let b = max
i=1,...,u

{bi} be the deepest level in the set of leaf

nodes obtained from the top-down phase. Then, from the deepest level b towards
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the root node, samples are collected synchronously across overall prefix trees until

reaching the root node, or n_candidates number of candidates is collected.

5.3.2 Experiments and Results

Dataset

For this analysis of k-mers clustering, we used the TCGA prostate adenocarcinoma

(TCGA-PRAD) RNA-seq dataset as a discovery set (Abeshouse et al., 2015) which

totals 558 samples (which we considered as unlabeled).

Accuracy and efficiency of the approximated neighbors algorithms

Benchmark description. We first processed raw sequences (FASTQ files) in TCGA-

PRAD with the jellyfish count command of the Jellyfish software, which pro-

duced a Jellyfish index. Next, using the jellyfish dump command we created a

raw-counts text file, including two columns, each line containing a k-mer and its

frequency of occurrence. Finally, k-mers count were merged into a single matrix,

and filtered for low-recurrence by running the dekupl-jointCounts binary with

min_recurrence and min_recurrence_abundance set to 3 and 10 respectively.

The resulting matrix had around 15 millions k-mers. Due to the enormous size of

the matrix, we did not attempt to perform clustering directly on this table. In-

stead, we extracted 1% of the k-mers (150,000 k-mers) to investigate the potential

performance of clustering, prior to any test on the complete matrix.

LSHF and brute force search methods were both implemented in the sklearn Python

package, while ANNOY was built as a C++ library with Python bindings. All exper-

iments were implemented in Python on a Dell desktop, Intel Xeon(R) processor,

CPU E5-1680 v4 @ 3.40GHz × 16 and 32G memory.

Using the dataset reduced to the selected 150,000 k-mers from the TCGA-PRAD
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dataset, we evaluated the performance of tree-based ANNOY and lsh-based LSHF using

the following procedure:

• Query selection: We randomly selected 100 k-mers from total k-mers for

query selection set, and randomly picked up one k-mer from this set for one

query k-mer;

• Building tree: The remaining 149,900 k-mers were utilized in the preprocess-

ing step of the chosen indexing method.

These results were computed by running the same procedure 100 times.

Results To answer our first question on the respective impact of the two indexing

methods, we compared the performance of ANNOY and LSHF in term of accuracy and

speed. A brute force exhaustive search was used to provide a reference, iterating

over all possible items and computing the distance between them and our query

point.

For example, given a query k-mer K, one attempts to find 10 nearest neighbors

to K. First, we run a brute force search to obtain the list of the 10 exact nearest

neighbors (K1, K2 . . .K10). Then, ANNOY and LSHF are executed with the same

requirement, producing approximate lists over which we measure:

• Speedup, the responding time ratio between LSHF or ANNOY versus brute force

method when searching 10 nearest k-mers;

• Accuracy, the percentage of exact results (K1, K2 . . .K10) present in the set

of candidates retrieved from the ANNOY or LSHF query.

The results of this experiment are shown in Table 5.4 and Table 5.5. The ANNOY

algorithm largely outperformed the LSHF algorithm in accuracy score (96% vs. 63%).

In terms of speed, the tree-based method was faster than the lsh-based method. For

example, given a sample K, it took 0.137 seconds for finding 20 ANN to K from
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150,000 samples using LSHF, while it took only 0.008 seconds with ANNOY, i.e. about

17-fold faster.

As a result, ANNOY was chosen in combination with DBSCAN for clustering k-mers.

Table 5.4: Speed and accuracy of LSHF when querying a randomly given k-mer

K within a dataset of about 150,000 k-mers (558 dimensions).

Brute force time
n_estimator n_candidates n_neighbors

Query time Speedup
Accuracy

(seconds) (seconds) (times)

0.414 10 5,000 12 0.141 3.10 0.63 +/- 0.23

0.407 10 5,000 20 0.137 3.10 0.63 +/-0.2

0.414 10 5,000 50 0.149 2.80 0.59 +/-0.2

0.412 10 5,000 100 0.126 3.40 0.65 +/-0.19

Table 5.5: Speedup and accuracy of ANNOY when querying a random k-mer K

within a dataset of about 150,000 k-mers (558 dimensions)

Bruce force
n_trees

Build time
n_neighbors Search_k

Query time Speedup
Accuracy

time (seconds) (H:M:S) (seconds) (times)

0.414

200 0:02:42

12

35,000

0.008 56.6 0.95 +/-0.08

0.407 20 0.008 56.0 0.95 +/- 0.06

0.414 50 0.008 57.2 0.94 +/- 0.07

0.412 100 0.008 56.0 0.92 +/-0.07

0.416 12

45,000

0.009 47.8 0.96 +/-0.05

0.417 20 0.009 47.7 0.97 +/-0.04

0.417 50 0.009 47.6 0.96 +/-0.05

0.415 100 0.009 47.8 0.95 +/-0.05

0.410

250 0:03:24

12

35,000

0.008 55.6 0.96 +/-0.07

0.412 20 0.008 55.5 0.94 +/- 0.07

0.412 50 0.008 55.6 0.93 +/-0.08

0.414 100 0.008 55.7 0.92 +/-0.08

0.408 12

45,000

0.009 46.9 0.97 +/-0.06

0.412 20 0.009 46.9 0.96+/-0.06

0.412 50 0.010 46.7 0.96+/-0.06

0.408 100 0.009 46.8 0.95 +/-0.06
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Evaluation of clustering using DBSCAN with approximate neighbors

As discussed in the previous section, ANNOY beats LSHF in both speed and accuracy.

In this section, our aim is to test the feasibility of combining the density-based

DBSCAN with ANNOY in clustering k-mers.

Benchmark description for clustering assessment using DBSCAN and ANNOY.

We used for this task the TCGA-PRAD dataset generated in the previous experi-

ment (Section 5.3.2), i.e with about 150,000 k-mers .

ANNOY was used as in previous experiment, i.e, C++ libray with Python binding,

while DBSCAN was implemented in Python programming with two pseudo-code al-

gorithms (as shown in Algorithm 1.5 and Algorithm 1.6). Noted that instead of

calling the findNeighbors function we called the get_nns_by_item function which

is supported by ANNOY to return minPts closet samples within distance ε.

The approximate neighbors ANNOY algorithm was used with parameters n_trees

= 200, search_k = 35,000 and n_neighbors = 20 (called selected ANNOY). The

density-based clustering DBSCAN, meanwhile, was tuned with different values for

both ε and minPts parameters. As discussed in Section 1.4.1, selection the right

values of these parameters was an expensive process due to DBSCAN algorithm run

with a number of experiments and results exploration. To adapt the density-based

algorithm DBSCAN to our study, we set the initial value of ε to 0.6, and minPts with

3 different values of {20, 15, 12}.

The experiments were done on the same hardware as above. We ran DBSCAN with

parameter ε=0.6 and minPts=20. As previously, each time we found minPts

nearest k-mer within ε distance, we invoked the get_nns_by_item procedure from

selected ANNOY. The experimental results collected included elapsed time, number of

clusters and number of k-mers belonging to each cluster. This process was repeated

with two different values of minPts, (minPts = 15 and minPts = 12). Results are

shown in the Table 5.6.
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Description of results. As shown in Table 5.6, the number of clusters and the

number of k-mers considered noise showed opposite trends. For example, when

DBSCAN parameter ε was kept at 0.6, while minPts was decreased from 20 to 12.

The number of clusters was increased by about 1,000 clusters (from 23,476 to 24,482

clusters); meanwhile, the number of noise k-mers underwent a significant reduction

from 46,106 to 39,359 k-mers. Runtime did not vary significantly at about 49

minutes to complete the grouping of about 150,000 k-mer.

Table 5.6: Result of clustering 150,000 k-mers when combining DBSCAN and se-

lected ANNOY with different values of ε and minPts

DBSCAN Selected ANNOY
Clustering time

# Clusters
# k-mers

(H:M:S) in "noise" group

ε: 0.6 ; minPts: 20

n_trees: 200 ; search_k:

35,000 ; n_neighbors: 20

0:47:46 23,476 46,106

ε: 0.6 ; minPts: 15 0:50:51 24,053 42,182

ε: 0.6 ; minPts: 12 0:48:07 24,482 39,359

ε: 0.4 ; minPts: 12 1:04:27 3,006 114,635

ε: 0.3 ; minPts: 12 1:02:36 307 138,751

In order to evaluate the efficiency of the clustering task, we explored the result of

selected ANNOY in combination with DBSCAN with ε = 0.6 and minPts = 20. This

produced 24,053 clusters, including a cluster of "noise" k-mers.
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Figure 5.3: Pie chart - Distribution of clusters with more than 300 kmers, obtained

by running DBSCAN with ε = 0.6, minPts =15 and selected ANNOY in a 150,000

k-mers dataset

The clustering was strongly imbalanced, as shown in a pie chart representation

Figure 5.3. Cluster 1 was the biggest cluster (52,075 k-mers), accounting for 34.7%

of the total k-mers, and was about 135-fold larger than the second biggest cluster -

Cluster 511 (385 k-mers) (Figure 5.3). The number of kmers considered to be noise

was approximately 28% of the total k-mers.

Among the three clusters inspected for evaluating the performance of the DBSCAN

and ANNOY combination in the clustering task, Cluster 511 (the second largest) was

the most satisfactory (Figure 5.6). Indeed, k-mers in Cluster 551 shared similar

profiles across all samples, as could be expected from a correct clustering.

The expression of k-mers within the other clusters showed tendencies that we did

not anticipate. For instance, we expected k-mers in Cluster 1 to be relatively ho-

mogeneous in expression across samples, but an expression heatmap of 100 random

k-mers in this cluster (Figure 5.4) revealed substantially heterogeneous abundance
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levels.

Figure 5.4: Heatmap of log10 counts for 100 randomly selected k-mers among

52,075 k-mers in DBSCAN cluster 1.

Conversely, the expectation that k-mers categorized as noise should be noisy, i.e.,

appear with random count fluctuations was not really supported by the heatmap

representation (Figure 5.5). At first sight, noise k-mers appeared as they could be

grouped into a single real cluster due to their similar count profiles.

We hypothesize that this erratic behavior is induced by the agglomerating strat-

egy implemented by the DBSCAN algorithm. Indeed, the capacity of this method

to detect clusters of arbitrary geometry also allows it to repeatedly enlarge a clus-

ter in a given direction. As a result, two samples from the same cluster may be

substantially different, as long as there exists a sequence of regions of sufficiently

high density connecting them. This difficulty unfortunately appears to be shared

by most algorithms that are based on local (approximate) neighborhoods, and we

could not identify a way to overcome it.
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Figure 5.5: Heatmap of log10 counts for 100 randomly selected k-mers among

42,182 k-mers considering as noise in DBSCAN.

5.3.3 Conclusion of the clustering analysis

The lack of homogeneity of k-mer clusters was a severe limitation in the outcome

of DBSCAN-based k-mer clustering in combination with ANNOY, which unfortunately,

could not be overcome during this thesis.

Indeed, let us remind that our goal was to reduce k-mers using unsupervised learn-

ing. In our expectation, k-mers sharing similar expression across all samples would

be grouped into the same cluster, then, among them, one k-mer would be selected

as a representative of this cluster. This selected k-mer would represent all other

k-mers in its cluster. We did obtain a smaller set of selected k-mers, but we were

not convinced at all by the quality of the clustering.

In addition, the selection of initial values of the two tuning parameters, ε and

minPts notably affected the results obtaining by DBSCAN. For instance, setting ε

to 0.6 and minPts to values ranging from 20 to 12, we observed an increase of
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Figure 5.6: Heatmap of log10 counts for 100 randomly selected k-mers among

385 k-mers in DBSCAN cluster 511.

the number of clusters, while the number of noise k-mers was shown to noticeably

decrease. Conversely, keeping minPts at 12 and ε to values ranging from 0.6 to 0.3,

we saw a significant decrease of the number of clusters, and the opposite trend was

right for the number of noise k-mers. These two input parameters must be chosen

with a consideration between the running time, number of clusters, number of noise

k-mers, and also the quality of clustering results. Resulting in DBSCAN had to be

run several times, followed by an assessment of the results. This process turned out

to be computationally costly, especially in our task with about 150,000 k-mers in

a 558-dimensions space. Moreover, we remind that all this analysis was done with

only 1% of the actual number of k-mers.
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5.4 Discussion

In this chapter, we explored different solutions to reduce the dimension of the k-

mers matrices using their counts. The filtering strategies have shown their effective-

ness in significantly reducing number of low-expression k-mers prior to differential

expression analysis. The idea of k-mer clustering has shown undesirable results,

with k-mers in the biggest cluster showing heterogeneity across samples while the

noise k-mers should be grouped in the a real cluster. However, our clustering results

was based on one density-based clustering algorithm. We did not test other clus-

tering algorithms, i.e., from other density-based methods or from other categories,

such as hierarchy, grid-based . . . algorithms. These results indicated that DBSCAN

was not a suitable clustering method for our dataset which was able to have vary-

ing densities. The varying densities lead to the inefficient of DBSCAN; it probably

gathers "wrong" k-mers, i.e., dissimilarity expression when expanding cluster due

to DBSCAN only uses one global density threshold ε (Ertöz et al., 2003).

However, each k-mer is characterized not only by its counts, but also by its se-

quence. Therefore another idea for k-mer reduction is to merge k-mers based on

their overlapping sequences. In the DE-kupl pipeline, Audoux et al. (2017) de-

veloped an iterative procedure dekupl-mergeTags that merges k-mers into contigs

(described in Section 2.3.1). This procedure was not entirely satisfying as it did

not take into account the expression profiles of k-mers, which could lead to merging

unrelated k-mers or contigs. We considered upgrading the procedure by taking into

account the compatibility between merged k-mers or contigs. This procedure was

implemented by Haoliang Xue as part of his thesis, therefore I will just summarize

it here.

The compatibility between two contigs is measured by the Mean Absolute Contrast

(MAC) value between the counts of the two contigs across all samples.

MAC(x(1),x(2)) = meani∈samples

(∣∣∣∣∣x(1)
i − x

(2)
i

x
(1)
i + x

(2)
i

∣∣∣∣∣
)

(5.7)
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where

• x(1) and x(2) are count vectors of two contigs to be merged

• x(1)
i and x(2)

i are counts in sample i from the corresponding count vectors.

Contig extension is rejected if MAC > 0.25. By this intervention, all contigs are

guaranteed to have member k-mers with consistent sample count vectors. Finally,

the new contig’s sample count vector is set to the mean of composite k-mer’s sample

count vectors. This upgraded version of contig extension has been used in the study

presented in Chapter 7, and has contributed to finding transcriptome signatures for

prostate cancer prognosis.
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Chapter 6

Reference-free transcriptome

exploration reveals novel RNAs for

Prostate cancer diagnosis

Our article, published in 2019, aims to demonstrate the ability to find new RNA

biomarkers capable of predicting prostate cancer using DE-kupl, the reference-free

computational pipeline presented in Section 2.2. Below, I present a summary of the

article with an emphasis on my own contributions.

The biomarker discovery workflow consists of three main steps:

• Discovery of a set of candidate contigs on the PAIR cohort (discovery set : 8

normal and 16 tumor specimens from total stranded RNA-seq) using DE-kupl

and manual selection of contigs. This step leads to 23 candidate contigs.

• Selection of a smaller set of contigs among the set of 23 candidate contigs

using the NanoString assay of nine normal and 135 tumor specimens (selec-

tion set : expression of the 23 contigs, 6 housekeeping genes and PCA3, a

known PCa-associated lncRNA, measured using the NanoString technology

on an extended PAIR cohort with one additional normal specimen and 119
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additional specimens for tumor tissues). This step leads to a signature, i.e. a

set of contigs selected for their ability to predict a sample status.

• Validation of the predictive performance of the signature on the TCGA-PRAD

cohort (validation set: a poly(A)-selected and unstranded RNA-seq dataset

with 52 samples in normal tissues and 505 samples in tumor tissues). The

TCGA-PRAD cohort is independent from the PAIR and extended PAIR co-

hort used for discovery and selection. The performance of the signature is

evaluated on truly unseen data.

My contributions in this article includes 3 main tasks that are implemented in R

programming:

• Perform features selection on the selection dataset (NanoString assays on

the extended PAIR cohort) using LASSO logistic regression to select the best

predictive contigs (normal versus tumor) and assess the performance of the

predictive signatures on this dataset.

• Evaluate contig expression measurements in TCGA-PRAD dataset and assess

the performance of the signature on this dataset.

• Compare the gene-free classifier to a classifier inferred using conventional gene

expression.

6.1 Discovery of DE-kupl contigs associated to Prostate

cancer

In this section, I describe the discovery of contigs associated to PCa using DE-kupl.

This step has been performed by other co-authors of the paper, before the bench-

mark of filtering strategies I exposed in Chapter 5, Section 5.2.1. For this reason,

the entropy filter has not been used.
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Discovery on the PAIR cohort. The DE-kupl was applied on the PAIR co-

hort (discovery set) to identify tumor-specific transcripts. DE-kupl, described in

Section 2.3.1, was executed with parameters ctg_length 31, lib_type stranded,

min_recurrence 6, min_recurrence_abundance 5, pvalue_threshold 0.05, diff_method

DESeq2. k-mer masking was performed using the Gencode v24 reference transcrip-

tome. The DE-kupl pipeline identified 1,179 tumor up-regulated contigs in the

noncoding regions, longer than 200 nucleotides and showing an adjusted P-value

below 0.01 from the differential abundance test. The 1,179 tumor up-regulated

contigs are subsequently manually selected to retain a list of 23 PCa RNA contigs

embedded into putative lncRNAs. The Integrated Genome Viewer (IGV) (Robin-

son et al., 2011) was used to visualize contigs expression and performed the manual

selection using the following criteria. When several contigs are located in the same

genomic location (5 kb window), only the contig with the lowest adjusted P-value

is retained. Contigs which are contigs antisense to expressed exons, bidirectional

or positioned in close vicinity to other transcribed protein-coding genes are also

filtered out.

6.2 Selection of predictive DE-kupl contigs

Selection on the NanoString dataset. The NanoString technology was used to

measure the expression of the selected 23 DE-kupl contigs, 6 housekeeping genes and

PCA3 in the extended PAIR. The expression level of all DE-kupl contigs were lower

than PCA3, expect for two contigs that are subsequently removed from the analysis.

The NanoString dataset was used to select, among the set of 21 DE-kupl contigs and

PCA3, a smaller subset of non-correlated features able to predict the status normal

versus tumor. This selection was performed using the LASSO logistic regression,

with regularization parameters λ chosen by cross validation, as implemented in the

glmnet R package (Friedman et al., 2010). Given that the NanoString is also highly

unbalanced, with more than 10 times tumor samples than normal samples, the

dataset was upsampled as explained in Section 1.3.6. The selection was performed
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on 2 different set of variables : the set of 21 DE-kupl contigs and PCA3 (mixed

signature), and a restricted set of 15 contigs (selected among the DE-kupl contigs)

that were assigned to putative novel lncRNAs (new-lnc signature). The performance

of the two signatures are measured on the NanoString dataset using the AUC under

the ROC obtained with boosted logistic regression, on 100 datasets sampled from

the initial upsampled dataset, with 70% observations from training the model and

30% for testing the model. Given that the NanoString measurement was performed

on the same samples used in the PAIR cohort (plus additional samples), the dataset

obtained using the NanoString technology cannot be regarded as an independent

dataset from the PAIR cohort. Therefore, the performance of the selected signature

on the NanoString dataset is overly optimistic: a validation on an external dataset,

with no overlap with the discovery cohort, is necessary to conclude.

6.3 Measuring DE-kupl contigs in an independent

cohort

Contig expression measurements in TCGA-PRAD dataset. The two signatures

(mixed signature, new-lnc signature) are subsequently used to predict tumor status

on the independant dataset, the TCGA-PRAD cohort.

Computing the contig expression measurements of the selected contigs in an external

cohort is not an easy task because there is no common reference across the two

datasets, as in reference-based approaches. DE-kupl contigs were produced by the

dekupl-mergeTags procedure based on sequence overlaps. The count vector of each

differentially abundant contig corresponds to the count vector of its representative k-

mer (i.e. the constitutive k-mer with the lowest P-value in the differential abundance

test performed in DE-kupl, as detailed in Section 2.3.1). To obtain the abundance of

the DE-kupl in the TCGA-PRAD cohort, we use the representative k-mer for each

contig and measure the abundance of this k-mer in the TCGA-PRAD cohort. First,

the TCGA-PRAD FASTQ files were converted to k-mer counts using jellyfish
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count and representative k-mers were counted in each Jellyfish count file using the

jellyfish query command. Then, we normalized these counts using total number

of reads in corresponding libraries.

To determine whether this method was a secure method for assessing contig expres-

sion, we compared the vector of counts obtained with the average vector of counts

obtained when sampling k-mers along each contig (instead of taking the represen-

tative k-mer). The counts for all k-mers were obtained using the jellyfish dump

files created for each TCGA-PRAD library. We performed the sampling of k-mers

along each contig using the procedure described below:

1. Extract the list of all k-mers from the contig.

2. Sample 10 k-mers regularly spaced from this list, i.e. beginning with the first

10% and stopping at the last 10% of this list.

3. The step 2 is repeated 4 times. Each list of 10 sampled k-mers (noted SAM-

PLE 1 to 4) was obtained by shifting the beginning position of the first sam-

pled k-mer.

4. For each SAMPLE, we average the counts of 10 sampled k-mers corresponding

to each library to obtain an average count per library (named average sampled

k-mer for SAMPLE 1 to 4).

To compare the contig count vector obtained using the representative k-mer and

the contig count vector obtained by sampling along the contig, we compute the

Pearson correlation between each representative k-mer and the 4 average sampled

k-mers. Figure 6.1 shows the relationship between the counts of the representative

k-mers and the 4 average sampled k-mers for contigs P1 and P16. We see that the

counts are highly correlated, which supports the use of the representative k-mers

to measure the abundance of DE-kupl contigs across independent datasets.
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Figure 6.1: Evaluation of contig expression measurements in TCGA-PRAD dataset.

A: Counts of the 4 average sampled k-mer versus the counts of the representative

k-mer for contigs P1 (ctg_111348) and P16 (ctg_172917). B: Pearson correlations

between counts of representative k-mers and the counts of the 4 average sampled

k-mers from contigs P1 and P16, respectively. For each contig, we computed the

mean and standard deviation of the correlations between (1) the representative

k-mer and the 4 average sampled k-mers (2) any pairs of the 4 average sampled

k-mers.

6.4 Performance of DE-kupl predictive contigs in an

independent cohort

Performance of the signatures on the TCGA-PRAD dataset. To evalute the

performance of the set of selected contigs, we retrain the model on the valida-

tion dataset, given that the two datasets (NanoString and TCGA-PRAD) are not

obtained using the same technonology (NanoString versus poly(A)+ unstranded
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RNA-seq). The performances of the two signatures are evaluated using the same

method as on the Selection set. Both markedly out-performed PCA3 for tumor de-

tection with AUC of 0.92 for mixed and of 0.91 for new-lncRNA signatures against

AUC of 0.73 for PCA3. Notably, the new-lncRNA signature included only unanno-

tated lncRNA sub-sequences that predicted tumor status with performance similar

to that of the mixed signature. PCA3 was not retained within the mixed signature

set, instead contigs embedded into the well characterized PCAT1 lncRNA and into

two already annotated lncRNAs, LOC283117 and LINC01006. Note that we also

assessed the predictive performance of the signatures to predict risk prognosis and

tumor recurrence status, with success. For more details, we refer to the published

article included at the end of the chapter.

6.5 Comparing the gene-free classifier vs conven-

tional gene-based classifier

We also compared predictive performances of signatures retrieved by the gene-free

classifier to the one inferred using conventional gene expression counting. First, on

the Discovery Set, DE-kupl was used to produce a gene count matrix with all the

same parameters set as a gene-free classifier. The original gene expression matrix

includes around 56,000 genes compares with 24 observations (p� n). As a result,

DE-kupl with DESeq2 option was used to filter genes prior to building a classifier.

Only up-regulated genes with adjusted P-value lower than 0.05 and Log2FC higher

than 2 are kept. 520 genes are retained. To select a set of predictive genes among

the list of 520 genes, feature selection was performed on the gene count matrix of

the discovery set using LASSO penalized logistic regression combined with stability

selection as detailed in Section 1.2. Retained gene signatures were the 5 genes with

a probability of being selected above 0.5 on 2000 resamples from the initial dataset.

This signature was used to build ROC curves and compute the mean and standard

deviation of the AUC on the Validation Set as described above for the DE-kupl-

derived contigs, with a mean AUC of 0.91. The performance of the gene signature
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was similar to the performance of the signature derived using DE-kupl. Among the

5 genes, 4 correspond to noncoding trasncripts. PCA3 was not included in the list

of 5 genes.

6.6 Discussion

The DE-kupl pipeline, combined with visualization of expression contigs and manual

selection was able to retrieve RNA subsequences as powerful as the signature derived

from GENCODE-annotated genes. This demonstrates the ability of reference-free

approach to retrieve interesting unreferenced contigs.

However, the two approaches (gene-free and gene-based) are not fairly compared

in this work: the gene-free approach involves manual selection of contigs, based on

expert knowledge. The selection of contigs in the gene-free approach involves the

use of the NanoString dataset, with no equivalent in the gene-based approach. We

would like to compare the two approaches using a pipeline as similar as possible.

The reason why we want to compare the two approaches (gene-free and conventional

RNA-seq) is that the gene-free approaches highly increase the number of features

in the dataset (from 50 000 genes in conventional RNA-seq to millions of k-mers

or contigs in the gene-free approaches). Therefore, we may suspect that the k-mer

approach is more prone to overfitting. To address this question, we propose to

compare a gene-free and a gene-based classifier.

Besides, in both approaches (gene-free and gene-based), the preliminary step prior

to feature selection and supervised learning was performed using differential analysis

(finding differentially expressed k-mers or genes). One could think to pre-select fea-

tures based on their predictive performance instead of the output of the differential

analysis.

For the two reasons mentioned above, the goal of the next chapter is two-fold: to

propose a pipeline to perform prediction using k-mers and to compare this pipeline

to a conventional RNA-seq pipeline to discover gene signature using RNA-seq data.
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As presented in Section 1.3, there are many feature selection and supervised learning

techniques. We decided to use the lasso logistic regression combined with LASSO

penalty because they have been used in recent papers to discover PCa signatures

using conventional RNA-seq (Shahabi et al., 2016; Jhun et al., 2017). In both

cases, gene-based and gene-free, the number of features is too large to directly apply

LASSO logistic regression on the count matrix (see Section 1.3.4). For this reason,

we adopted a preliminary drastic screening step designed to reduce the number of

features to a lower number and avoid to run the LASSO logistic regression in an

ultrahigh dimensional setting. To single out important features, we use univariate

ranking of features based on their ability to predict new data using a Naïve Bayes

rule and a F1-score computed by cross-validation. Given the large number of k-

mers to rank, we choose the Naïve Bayes rule as suggested by authors from Thomas

et al. (2019) because the C++ implementation of the Naïve Bayes was the fastest to

run among the set of available tools. Other solutions are possible, such as the use of

other algorithms than Naïve Bayes to rank the features, and other feature selection

techniques and multivariate supervised learning than the LASSO logistic regression.

However, to perform a fair comparison between the gene-based and the gene-free

approaches, we selected the tools prior to running the comparison, independently

of external considerations: we did not try to optimize the set of tools used to bias

the comparison towards one approach or the other. Another issue is the choice of

tools for inferring the k-mer signature: Thomas et al. (2019) have proposed to use

a Genetic Algorithm and we have proposed the pipeline summarized above and

described in more detail in section 7.2.2. In this thesis, we have not addressed this

question. Instead we focused primarily on the comparison of gene-based and gene-

free approaches. In the proposed pipeline, we used a matrix reduction technique

based on k-mers extension into contigs proposed in section 5.4 to avoid working

directly on a matrix of k-mers full of correlated and redundant k-mers. We have

not use the filtering strategies prior univariate screening step for the following two

reasons. First, the filtering strategies exposed in Chapter 5 are primarily designed

to remove low-abundant k-mers prior to differential expression analysis. Second,

the screening step leads to a drastic reduction of the feature space (from thousands
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or millions to a few hundreds). In this context, filtering prior screening would only

slightly decrease the running time of the screening step, and would not change

the final set of features retained for subsequent feature selection and supervised

learning.

Chapter 7 corresponds to a preprint currently under review for publication.
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Methods

Reference-free transcriptome exploration reveals novel
RNAs for prostate cancer diagnosis
Marina Pinskaya1,* , Zohra Saci1,*, Mélina Gallopin2, Marc Gabriel1, Ha TN Nguyen2,3, Virginie Firlej4,5, Marc Descrimes1,
Audrey Rapinat6, David Gentien6 , Alexandre de la Taille4,5,7, Arturo Londoño-Vallejo8 , Yves Allory9,
Daniel Gautheret2 , Antonin Morillon1

The use of RNA-sequencing technologies held a promise of im-
proved diagnostic tools based on comprehensive transcript sets.
However, mining human transcriptome data for disease bio-
markers in clinical specimens are restricted by the limited power
of conventional reference-based protocols relying on unique and
annotated transcripts. Here, we implemented a blind reference-
free computational protocol, DE-kupl, to infer yet unreferenced
RNA variations from total stranded RNA-sequencing datasets of
tissue origin. As a bench test, this protocol was powered for
detection of RNA subsequences embedded into putative long
noncoding (lnc)RNAs expressed in prostate cancer. Through fil-
tering of 1,179 candidates, we defined 21 lncRNAs that were
further validated by NanoString for robust tumor-specific ex-
pression in 144 tissue specimens. Predictive modeling yielded a
restricted probe panel enabling more than 90% of true-positive
detections of cancer in an independent The Cancer Genome Atlas
cohort. Remarkably, this clinical signature made of only nine
unannotated lncRNAs largely outperformed PCA3, the only used
prostate cancer lncRNA biomarker, in detection of high-risk tu-
mors. This modular workflow is highly sensitive and can be ap-
plied to any pathology or clinical application.
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Introduction

RNA sequencing (RNA-seq) has revolutionized our knowledge of
human transcriptome and has been implemented as a pivot
technique in clinical applications for discovery of RNA-based
biomarkers allowing disease diagnosis, prognosis and therapy
follow-up. However, most biomarker discovery pipelines are blind

to uncharacterized RNA molecules because they rely on the
alignment of uniquely mapped reads to annotated references of
the human transcriptome, which are far from complete (Deveson
et al, 2018; Uszczynska-Ratajczak et al, 2018; Morillon & Gautheret,
2019). Indeed, unspliced variants, rare mRNA isoforms, RNA hybrids
originating from trans-splicing or genome rearrangements,
unannotated intergenic or antisense noncoding RNAs, mobile
elements, or viral genome insertions would be systematically
missed. A recent approach to RNA-seq data analysis, DE-kupl,
combines k-mer decomposition and differential expression
analysis to discover transcript variations yet unreferenced in the
human transcriptome (Audoux et al, 2017). Applied to poly(A)+
RNA-seq datasets of in vitro cell system, DE-kupl unveiled a large
number of RNA subsequences embedded into novel long non-
coding (lnc)RNAs. These transcripts of more than 200 nucleotides
in length transcribed by RNA polymerase II from intergenic,
intronic, or antisense noncoding genomic locations constitute a
prevalent class of human genes. Some lncRNAs are now rec-
ognized as precisely regulated stand-alone molecules partici-
pating in the control of fundamental cellular processes (Quinn &
Chang, 2015; Jarroux et al, 2017). They show aberrant and specific
expression in various cancers and other diseases promoting them
as biomarkers, therapeutic molecules and drug targets (Van
Grembergen et al, 2016; Leucci, 2018). Importantly, some lncRNAs
can be robustly detected in biological fluids (blood and urine) as
circulating molecules or encapsulated into extracellular vesicles,
hence, raising an attractive possibility of their usage as biomarkers in
non-invasive clinical tests (Wang et al, 2014; Silva et al, 2015; Deng
et al, 2017; Wang et al, 2018; Zhao et al, 2018). The only example of a
lncRNA-based biomarker so far introduced in clinical practice of
prostate cancer (PCa) is the PCA3 lncRNA (de Kok et al, 2002). PCA3 is
transcribed antisense to the tumor suppressor PRUNE2 gene and
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Research Center, Paris, France 2Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur
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promotes its pre-mRNA editing and degradation (Salameh et al,
2015). Being overexpressed in 95% of PCa cases, PCA3 is detected
in urine and helps diagnosis providing, in addition to other
clinical tests, more accurate metrics regarding repeated biopsies
(Groskopf et al, 2006; Galasso et al, 2010). However, it remains
inaccurate in discrimination between low- and high-risk tumors
because its expression may dramatically decrease in aggressive
PCa cases tempering its systematic usage (Loeb & Partin, 2011;
Alshalalfa et al, 2017).

Since PCA3 discovery and the development of RNA-seq tech-
nologies, the PCa transcriptome has been extensively explored by
The Cancer Genome Atlas (TCGA) consortium and others to identify
numerous PCa-associated lncRNAs (PCAT family) such as PCAT1,
PCAT7, or PCAT114/SChLAP1 (Prensner et al, 2014; Iyer et al, 2015).
However, none of them has been yet introduced into clinical
practice because of the variable expression incidence, as for
SChLAP1 detected in 25% of PCa cases presenting metastatic traits
(Prensner et al, 2013), or low specificity, as PCAT1 or PCAT7, thus
infringing their clinical value. Additional efforts are required for
more accurate and exhaustive RNA identification, as well as more
rigorous validations of clinical potency through independent RNA
measurement technologies and clinical cohorts. Regardless a large
number of transcriptomic studies and variety of clinical samples
analyzed, discovery of RNA-based biomarkers from publicly
available RNA-seq datasets is still limited at two levels: (i) most
experimental setups are based on poly(A) selected, unstranded
cDNA sequencing, and (ii) computational analyses are generally
focused on annotated genes and full-length RNA assemblies. This
impedes the detection of low and poorly polyadenylated RNAs but
also partially degradedRNAs from formalin-fixed paraffin-embedded
tissues or other clinical samples (Zhao et al, 2014; Zhao et al, 2018).
In addition, non-stranded RNA-seq reads counting is less accurate
at 59 RNA ends or even impossible for co-expressed paired sense/
antisense transcripts and for yet unannotated RNAs among non-
coding, fusion, repeat-derived transcripts (Davila et al, 2016; Audoux
et al, 2017).

Here, we propose a conceptually novel exploratory framework
combining the total stranded RNA-seq of clinical samples and the
reference-free DE-kupl algorithm for discovery of novel tumor-
specific transcript variations. As a proof-of-concept, we focused
on the least explored, noncoding portion of the genome devoid of
annotated protein-coding sequences to build an exhaustive cat-
alog of PCa associated subsequences (contigs) embedded into
lncRNA genes. The catalog was further refined through minimal
filtering to isolate the subset of contigs with best differential ex-
pression features and validate 21 of them by a custom NanoString
assay in the extended cohort of 144 prostate specimens. From this, a
predictive modeling derived a panel of nine yet unannotated
lncRNAs validated for robust expression in an independent TCGA
cohort. Importantly, its clinical performance surpassed the PCA3
lncRNA specifically in discrimination of high-risk tumors. The
proposed probe-set can be further used for development of a PCa
diagnostic test. Moving beyond this point, the proposed compu-
tational and experimental platform may serve as a tool for bio-
markers discovery of any disease and any clinical task aiming at
improved medical care and development of precision medicine
approaches.

Results

Identification of PCa-specific RNA variants in the Discovery Set by
DE-kupl

The biomarker discovery workflow included three major phases:
discovery, selection, and validation (Fig 1). First, for discovery, we
performed a deep total stranded RNA-seq of ribosomal RNA-
depleted RNA samples isolated from prostate tissues after rad-
ical prostatectomy (Discovery Set, PAIR cohort, Table S1). This
Discovery Set was processed by DE-kupl to identify tumor-specific
transcripts. DE-kupl directly queries FASTQ files for subsequences
(k-mers) with differential counts/expression (DE) between two
conditions (Fig 2A) (Audoux et al, 2017). Overlapping k-mers are
then assembled into contigs and, in a final step, mapped to the
human genome for annotation. In the aim to focus exclusively on
novel, yet unannotated RNA elements, k-mers exactly matching
GENCODE-annotated transcripts weremasked. We eventually retained
contigs within the noncoding regions (antisense to protein-coding
or noncoding genes, intergenic) longer than 200 nucleotides and
showing adjusted P-values below 0.01 to capture the most sig-
nificant expression changes linked either to new transcriptional or
processing events within known or putative lncRNA loci.

With these criteria, we identified 1,179 tumor up-regulated
contigs assigned to four main categories according to their map-
ping features: contiguous (uniquely mapped) contigs (N = 935),
splice variants (N = 54), repeats (N = 167), and unmapped contigs (N =
23) (Figs 2B and S1, and Table S2). Among them, 586 contigs were

Figure 1. Experimental and computational workflow for discovery and
validation of RNA-based clinical biomarkers.
Raw total stranded RNA-seq data of a small clinical cohort is processed by DE-
kupl to allow comparison of 8 normal against 16 tumor specimens (in this case,
formaldehyde-fixed paraffin-embedded tissues from radical prostatectomy)
and cataloguing of all differentially expressed RNA variations (contigs). The
whole set is filtered according to desired criteria and the top ranked contigs are
selected for an independent experimental validation by NanoString in the
extended clinical cohort. Finally, predictive modeling infers the best panel of
candidate RNAs for validation of its clinical potency in an independent cohort (in
this case TCGA).
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embedded into already referenced GENCODE lncRNA genes, but
represented new sequence variations or RNA processing events, as
PCAT7 (ctg_111158, P6) or CTBP1-AS (ctg_25348, P10). The restmapped to
intergenic noncoding locations (370 contigs) or antisense to refer-
enced protein-coding or noncoding genes (221 contigs) (Fig 2C). In-
tersection with existing annotations revealed 50% sequence overlap
of contigs with 400 (33.93%) GENCODE and 75 (6.36%) MiTranscriptome
lncRNA genes (Fig 2B). An unsupervised clustering of prostate spec-
imens based on contigs expression counts allowed proper discrimi-
nation of tumor from normal tissues of the Discovery Set (Fig 2D).

In conclusion, DE-kupl identified a thousand of PCa-associated
RNA variants for the majority embedded into yet unreferenced
transcripts which may represent putative novel lncRNAs. This de-
pository was further explored for clinical relevance.

Naı̈ve assembly of transcription units identifies novel prostate
cancer associated lncRNAs

To complement the reference-free protocol, we applied a reference-
based protocol to build a catalog of lncRNAs from the sameDiscovery
Set. Total RNA-seq produces much more intronic and exon–exon
junction reads than poly(A)–selected RNA-seq. This complexity
renders laborious in time and machine memory the data analysis by
splice graph–based assemblers such as Cufflinks (Hayer et al, 2015;
Kukurba&Montgomery, 2015). To bypass this difficulty, we developed
a more straightforward lncRNA annotation pipeline, HoLdUp, which
identifies transcription units (TUs) based on coverage analysis (Fig
3A). In this workflow, uniquely mapped reads were assembled into
TUs and mapped to the GENCODE annotation to extract intergenic

and antisense lncRNAs (see the Materials and Methods section for
details). They were further ranked according to their expression level,
presence of splice junctions, and existence of matched ESTs. In total,
we retained 168,163 TUs with above-threshold expression of 0.2
quartile ofmRNA expression (Class 2) and, within this group, themost
robust 2,972 TUs with at least one splice junction and one EST (Class 1)
(Fig 3B). Globally, newly detected transcripts were as much expressed
as GENCODE-annotated lncRNAs but lower thanmRNAs (Fig S2A). Only
0.33% of Class 1 lncRNAs were present with at least 50% nucleotide
sequence overlap in the recent GENCODE v27 catalog and 43.37% of
TUs in the MiTranscriptome lncRNA repertoire; the rest represented
putative novel lncRNA genes (Figs 3B andS2B). Of 2,972 TUs, DE analysis
retrieved 127 of Class 1 TUs significantly up-regulated in tumor
specimens (adjusted P-value below 0.01, DESeq), including multiple
intergenic transcripts and transcripts antisense to protein-coding
genes, such as HDAC9, TPO, and FBXL7 (Table S3 and Fig S2B).

Intersection of DE-kupl contigs with PCa up-regulated HoLdUp
TUs (N = 127) and the recent GENCODE lncRNA annotation (N = 206)
showed that 687 DE-kupl contigs of 1,179 make part of the stand-
alone transcripts. Moreover, up to 85.5% and 96.8% DE-kupl contigs
embedded into GENCODE and HoLdUp Class 1 lncRNA genes, re-
spectively, were also detected by DESeq as significantly up-
regulated transcripts in the same dataset, when the RNA-seq
reads were counted within the entire TU (Figs 3C and S2C). One
such example is the contig ctg_23999 (P22) embedded into a novel
HoLdUp assembled Class 1 TU antisense to the protein-coding
FBXL7 gene (Fig 3D).

In conclusion, the reference-based assembly protocol HoLdUp
is complementary to DE-kupl and allows attributing short RNA

Figure 2. K-mer decomposition protocol for
detection of differentially expressed RNA variants
in PCa.
(A) DE-kupl workflow with principle steps of contigs
counting, DE-test and filtering, assembly and
annotation. (B) Catalog of DE-kupl contigs of different
subgroups: contiguous—contigs mapped as unique
fragments; spliced—contigs mapped as spliced
fragments; repeat—multiply mapped contigs;
Inter—contigs mapping into intergenic regions; OL—at
least one nucleotide overlapping of GENCODE lncRNA
annotations; and AS—antisense to a protein-coding or
a noncoding gene. Contigs of each subgroup showing
50% sequence overlap with GENCODE v27 (GC)– and
MiTranscriptome v2 (MiT)–annotated genes are
counted. (C) Pie chart of 1,179 contigs distribution across
GENCODE-annotated features. (D) Unsupervised
hierarchical cluster heat map of Log10(normalized
counts) of 1,179 contigs assessed in 8 normal and 16
tumor specimens by total stranded RNA-seq of the
Discovery Set. NA stands for non-annotated in human
genome.
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subsequences towhole TUs. Nevertheless, DE-kupl wasmore powerful
illuminating much more transcriptomic variations not only within the
annotated genes but also within putative new noncoding regions in
highly complex and heterogeneous total RNA-seq datasets of clinical
origin.

Selection of a restricted set of 23 PCa RNA contigs showing the
highest differential expression

We further leveraged the DE-kupl contig catalog to define a robust
PCa signature among putative new lncRNAs using several filters (Fig
S3A). Hereafter, we will use the term signature to describe the set of
contigs or genes selected for their ability to predict a sample status.
First, contigs were sorted according to their adjusted P-value and,
second, were visually selected using the Integrative Genomic
Viewer applying the following criteria: (i) when several contigs were
present within the same genomic region (5 kb window) the contig
with the lowest adjusted P-value was retained, (ii) contigs antisense
to expressed exons, bidirectional or positioned in close vicinity to
other transcribed protein-coding genes were filtered out. We
retained several contigs embedded into already annotated PCa
associated lncRNA genes, such as CTBP1-AS (ctg_25348, P10), PCAT7
(ctg_111158, P6), and PCAT1 (ctg_105149, P18), or lncRNAs referenced
elsewhere as ctg_104447 (P11) mapped into LOC283177, ctg_123090
(P5) into AC004066.3, and ctg_73782 (P8) into LINC01006. It should be
noted that the GENCODE referenced genes enclosing these new
subsequences also showed differential expression when counting

on the whole gene annotation (Fig S3B). However, in contrast to DE-
kupl ranking, they were not among the strongest hits in the DESeq
analysis with exception of PCAT7 (Table S4). This observation points
to the fact that through expression counting within the small
subsequences, DE-kupl is more resolutive and hence sensitive in
the discovery of DE sequences. Visualization of RNA-seq reads and
junctions of a region embedding FBP2 and its antisense PCAT7
genes revealed a new contig ctg_28650 (P2) downstream of the
PCAT7 annotation and antisense to FBP2. The continuous coverage
and absence of splice junctions in reads profiling suggest that P2 is
enclosed into an extension of the last PCAT7 exon (Fig S3C and D).
This contig was retained in the restricted list as the strongest
candidate antisense to FBP2, overcoming ctg_111158 (P6) assigned
to the PCAT7 gene itself. Still, additional experiments are required to
validate this lncRNA variant, yet absent from the existing PCAT7
annotation.

In total, 23 candidates belonging to contiguous (N = 21), spliced
(N = 1), or repeat (N = 1) subgroups of contigs were selected for further
validation, all being expressed at least six times more in tumor
tissues than innormal prostate (Fig S3E and Tables S2 and S5). Among
them, 12 candidates mapped antisense to annotated protein-coding
or lncRNA genes and 11 located to intergenic regions. To facilitate
further reading, contigs’ identity are replaced by probes’ identity
fromP1 to P23 according to increasing P-values of DE of the Discovery
Set (Table S5).

After the manual filtering, we aimed to validate the expression of
selected 23 contigs in the extended PAIR cohort of nine normal and

Figure 3. Reference-based lncRNA discovery from
total stranded RNA-seq.
(A) HoLdUp protocol for the ab initio assembly of TUs
constituting putative lncRNA genes and their
classification into Class 2 and Class 1 TUs according to
robustness of detection. (B) HoLdUp catalog and TUs
overlap with GENCODE v27– (GC) and MiTranscriptome
(MiT)–annotated lncRNAs. DE stands for differentially
expressed transcripts (DESeq adj. P-value < 0.01).
(C) Pie chart representation of non-exclusive
distribution of DE-kupl contigs across different
lncRNA annotations: MiTranscriptome (violet), Class 1
(yellow), Class 2 (brown), GENCODE (red), and novel
(blue); number of contigs is marked in each section.
Proportion of DE-kupl contigs embedded into
up-regulated (UP) GENCODE (red) and Class 1 (yellow)
lncRNAs is expressed as a histogram. (D) VING-
generated RNA-seq profiling along plus (+) and minus
(−) strands of chr5:15,500,295-15,939,910 in tumor and
normal prostate specimens: the GENCODE-annotated
protein-coding gene FBXL7 (blue), antisense DE-kupl
contig ctg_23999 (P22), and antisense HoLdUp Class 1-TU
(orange). Arrow-lines and rectangles represent
introns and exons, respectively. DE, differentially
expressed; RPKM, reads per kilo base per million
mapped reads; and TU, transcription unit.
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135 tumor specimens (Selection Set) (Table S6). This cohort contained
one additional specimen for normal tissue and 119 additional tumor
specimens. To measure contigs expression, an alternative RNA
quantification procedure based on the NanoString nCounter platform
for direct enzyme-free multiplex digital RNA measurements was
carried out (Fig 4A). In addition to DE-kupl contigs, a probe for PCA3
was usedas a benchmark lncRNA.We alsomeasured the expression of
six housekeeping genes and selected three lowly expressed mRNAs
(GPATCH3, ZNF2, and ZNF346) as custom internal controls for relative
quantifications (Table S7 and Fig S4).

The NanoString assay revealed that all DE-kupl contigs were
expressed at a lower level than PCA3, but still 21 of 23 contigs were
significantly overexpressed (Wilcoxon P-value < 0.01) in tumor speci-
mens (Fig 4A and Table S8). Two contigs, intergenic P22 (ctg_119680)
and repeat P17 (ctg_36195), did not show significant difference in
expression between normal and tumor specimens. Ranking according
to P-values revealed 12 contigs better than PCA3. Among the top DE
contigs were those embedded into PCAT1 (ctg_105149, P18), CTBP1-AS
(ctg_25348, P10), and PCAT7 (ctg_111158, P6) genes, whereas the rest
were assigned to novel lncRNAs. Notably, apart from P17 (ctg_36195)
and P22 (ctg_119680), expression measurements were consistent be-
tween the two technologies, total stranded RNA-seq and NanoString,
although the P-value ordering was different (Fig S5 and Table S9).

Thus, 21 of 23 contigs were validated in the extended set of RNA
specimens using the independent single-molecule measurement
technology.

Validation of contig-based RNA candidates in an independent
clinical cohort

Independent validation of DE-kupl contigs was performed using the
biggest PCa clinical resource of 557 poly(A)+ RNA-seq datasets,
including 52 normal and 505 tumor tissues from radical prosta-
tectomy (TCGA-prostate adenocarcinoma [PRAD] cohort, Validation
Set) (Fig 1 and Table S10).

The occurrence of sequences representing 23 DE-kupl contigs
was measured and compared with PCA3. In total, 16 of 23 DE-kupl
contigs had significant support for overexpression in tumor speci-
mens in the TCGA-PRAD cohort (Wilcoxon P-value < 0.01, Fold Change
[FC] > 2) (Fig 4B and Table S11). Among the best scored candidates, the
two novel DE-kupl contigs, P16 (ctg_111348) antisense to DLX1 and
intergenic P1 (ctg_17297), surpassed PCA3 that ranked third. How-
ever, important discrepancies were observed between expres-
sion counts in poly(A)+ RNA-seq TCGA datasets and NanoString or
total RNA-seq PAIR datasets. First, P22 (ctg_119680) was detected as
DE in TCGA-PRAD but failed the DE test whenmeasured by NanoString
(Figs 4 and S5). Second, the expression of nine DE-kupl contigs were
near the base line in the TCGA dataset, including those showing
relatively high expression and low P-values in the PAIR cohort, such
as P14 (ctg_61528) antisense to TPO or the intergenic P9 (ctg_9446).
Detection of these contigs in TCGA-PRAD was compromised inde-
pendently of their genomic location (intergenic or antisense) or of
the expression level of a sense-paired gene. We hypothesized that
it is most likely due to a relatively low RNA-seq coverage and/or to a
loss of poorly or non-polyadenylated transcripts during cDNA li-
brary preparation in the TCGA experimental setup. Finally, ranking
of contigs according to increasing P-values was very different
between Selection and Validation Sets highlighting discrepancies
between technologies, clinical origins, and cohort sizes.

Regardless all experimental biases, 16 of 23 DE-kupl contigs were
validated in the independent clinical cohort as significantly overex-
pressed in tumors. This cohort was further used for validation of
clinical potency of contigs.

Expression of DE-kupl contigs is independent of tumor risk and
recurrence metrics

Several clinical studies have revealed high heterogeneity of ex-
pression and low efficiency of the PCA3 biomarker in detection of
high-risk tumors, questioning its robustness and reliability in PCa

Figure 4. Expression of lncRNA subsequences in PAIR
and TCGA-PRAD cohorts.
(A) Box-plot of Log10(norm.counts) of PCA3 and 23 DE-
kupl contigs in 144 PAIR specimens of the Selection Set
by NanoString. (B) Box-plot of Log10(norm.counts) of
PCA3 and 23 DE-kupl contigs in 557 TCGA-PRAD
specimens of the Validation Set by poly(A)+ unstranded
RNA-seq. Normal tissues: in blue, tumor tissues: in
red.
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diagnostics (Alshalalfa et al, 2017; Fenstermaker et al, 2017). We
assessed contig expression in tumors of different clinical metrics.
For risk prognosis, the most common metric is a three-group risk
stratification system established by D’Amico et al (1998), which
takes into account preoperative PSA level, biopsy Gleason Score,
and clinical TNM stage. As mentioned above, this scheme is highly
debated because of disagreements on the PSA score in relation to
PCa over-diagnosis (Carlsson et al, 2012; Loeb et al, 2014). To define a
molecular signature independent of PSA, we excluded this criterion
and categorized tumor specimens into low-, intermediate-, and
high-risk groups uniquely on the basis of Gleason and TNM fea-
tures, below referred to as naı̈ve indexing (Fig S6A and B). In ad-
dition to risk assessment, we also separated specimens in two
subgroups depending on the tumor recurrence status (Fig S6B).
Then, expression of PCA3 and the 23 DE-kupl contigs were com-
pared for each subgroup of the Selection Set.

To evaluate the robustness of contig expression, we ranked
probes by decreasing FC for high-risk against low-risk tumors and
positive against negative recurrence status (Fig 5). Most contigs
showed robust expression independently of the tumor classification.
In contrast, the PCA3 level was more disperse with the lower median
andmean expression and higher P-values in high-risk and recurrence
positive specimens (Table S12). While considering only 21 significantly
overexpressed contigs, 17 of them outperformed PCA3 in both con-
trasts (Table S12). Notably, among the best performe were contigs P6
(ctg_111158) and P2 (ctg_28650) both antisense to FBP2, P10 (ctg_25348)
embedded into CTBP1-AS, as well as the novel P16 (ctg_111348) an-
tisense to DLX1 and the intergenic P1 (ctg_17297).

In conclusion, most DE-kupl contigs showed robust expression
independent of tumor metrics. Hence, even if used alone, they may
offer a better clinical potency for PCa diagnosis than PCA3.

Inferring a multiplex RNA-probe panel and evaluation of its
performance in PCa diagnosis

To extract parsimonious probe signature predicting the tumor
status, we applied Least Absolute Shrinkage and Selection Operator

(LASSO) logistic regression on the Selection Set of 144 PAIR spec-
imens (Ghosh & Chinnaiyan, 2005). First, the initial 21 DE-kupl
contigs and PCA3 validated for expression by NanoString were
submitted to LASSO to define the best mixed signature comprised
of already known and yet unannotated lncRNA probes for dis-
crimination of tumor from normal tissues (Fig S7A). Then, LASSOwas
performed with the probe subset composed uniquely of contigs
assigned to putative novel lncRNAs (N = 15) to infer the best new-
lncRNA signature. It resulted in two panels of nine mixed and nine
new-lncRNA candidates (Figs 6A and S7B). Retrieved signatures
were then used to predict a tumor status in the Validation Set of the
TCGA-PRAD cohort using a leave-one-out cross-validated boosted
logistic regression. To assess the sensitivity of DE-kupl contigs in
PCa diagnosis, a predictive accuracy index, area under curve (AUC)
of the receiver-operating characteristic (ROC), was calculated for
each signature and PCA3 alone in the PAIR (Selection Set) and TCGA-
PRAD (Validation Set) datasets (Figs 6B and S7B). Remarkably, all
signatures still hold their predictive capacity in the independent
TCGA-PRAD cohort in spite of the important differences in exper-
imental setups between the two studies. Both markedly out-
performed PCA3 for tumor detection with AUC of 0.92 for mixed and
of 0.91 for new-lncRNA signatures against AUC of 0.73 for PCA3 (Fig
6B and C). In addition, these signatures were much better in
predicting high-risk tumors where PCA3 is particularly inaccurate
(Fig 6C). Remarkably, the new-lncRNA signature composed uniquely
of yet unannotated lncRNA subsequences predicted the tumor
status with the same performance as the mixed signature. Logistic
regression did not retain PCA3 within the mixed signature set,
instead contigs embedded into the well characterized PCAT1
lncRNA and into two already annotated but yet functionally
uncharacterized lncRNAs LOC283177 and LINC01006 were present.

We also compared predictive performances of signatures re-
trieved by the k-mer–based classifier to the one inferred using
conventional gene expression counting. Differential expression
analysis for GENCODE-annotated genes of the Discovery Set re-
trieved 520 up-regulated genes, protein-coding and noncoding,
with adjusted P-values lower than 0.05 and a logFC higher than 2

Figure 5. Expression of lncRNA subsequences in
prostate specimens of different clinical metrics in
the PAIR cohort (Selection Set).
(A, B) Box-plot of Log10(norm.counts) of PCA3 and 23 DE-
kupl contigs depending on tumor risk (A) and
recurrence status (B) assessed by NanoString. PCA3 is
marked in orange, and the contigs showing insignificant
expression change between normal and tumor
specimens are in blue. Contigs are ordered by the
decreasing FC of mean expression in high-risk versus
low-risk specimens in the (A) panel and in Yes versus
NO recurrence specimens in the (B) panel. HR, high-
risk; IR, intermediate-risk; LR, low-risk.
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(Table S4). These genes were then selected on the Discovery Set
using LASSO penalized logistic regression to extract a GENCODE
whole gene counting based (WGC) signature for further validation
(Fig S7B). Given the high dimensional setting (more variables than
observations available), we performed the stability selection
(Meinshausen & Bühlmann, 2010) and kept the five genes that had a
probability of being selected higher than 0.5 on 2,000 samplings of
the original dataset. Remarkably, the retrieved subset was com-
posedmajorly of noncoding transcripts (four of five), although PCA3
did not pass the selection. Of them, the protein-coding HPN mRNA,
the PCAT7 lncRNA, and the GLYATL1P4 pseudogene have been al-
ready associated with PCa in other studies (Willard & Koochekpour,
2012; Du et al, 2013; Kim et al, 2019). Notably, the GLYATL1P4 tran-
script makes part, together with 21 other RNAs, of the Decipher test
proposed in clinics to guide timing of radiation therapy after radical
prostatectomy in men with high-risk cancer (Alford et al, 2017). The
predictive performance in discrimination between normal and
tumor specimens of the WGC signature was tested by the ROC
analysis on the Validation Set and resulted in the mean AUC of 0.91
(Fig S7B). Hence, k-mer based signature discovery method re-
trieving yet unreferenced RNA subsequence was as powerful as the
signature derived from GENCODE-annotated genes. Although the
predictive modeling enabled to reach the same performance only
from 23 contig probes instead of 520 DE-genes and, remarkably, this
was achieved in TCGA-PRAD datasets where contigs expression
counting is most likely disfavored considering all aforementioned
drawbacks of poly(A)–selected datasets of low coverage.

Discovery of novel RNA signatures with high tumor predictive
potential also highlights both the incompleteness of current cancer
transcriptome datasets and the biological value of transcript in-
formation that can be extracted through different experimental (total
stranded RNA-seq and NanoString quantification) and computational
(DE-kupl) tools. De-kupl–derived novel signature demonstrated a
sensitivity and robustness towards tumor risk prediction surpassing
the state of the art for discrimination of prostate cancer. Furthermore,
established nine-probe RNA signature was performed not only in-
dependently of tumor origin and its clinicopathological characteristics
but also of the technology used for RNA measurements.

Discussion

Molecular biomarker assays are invaluable tools in cancer di-
agnosis, prognosis and treatment follow-up. Within this scope,
sequencing technologies unveiled the pervasiveness and diversity
of the human transcriptome, promoting lncRNAs as important
cancer signatures (Schmitt & Chang, 2016). These molecules are
highly dynamic and reflect cellular states in a sensitive and specific
way because of their involvement in genetic and regulatory flows of
information. However, the variety of RNA species and high het-
erogeneity of expression present a challenge for their detection
andproper quantification in clinical samples. Predominantmicroarray
and unstranded poly(A)+ RNA-seq–based approaches allowed iden-
tification of numerous lncRNAs with tumorigenic function. However,
their clinical performance as biomarkers stays rather poor because of
the aforementioned RNA features hindering RNA detection, quanti-
fication, and clinical validation under conventional experimental
setups. Here, we presented an innovative experimental and com-
putational platform that permits discovery of RNA biomarkers of high
clinical potency from total stranded RNA-seq datasets of clinical
origin.

As a proof-of-concept, we focused on PCa as the only type of
cancer using, so far, a lncRNA-based diagnostic test (Progensa). The
Discovery Set based on comparison of 8 normal with 16 tumor
specimens from total RNA-seq datasets was processed by DE-kupl
to extract themost significant differentially expressed subsequences
in the form of k-mer contigs. Further filtering based on contig length,
genomic position, and expression levels powered the pipeline to-
wards the discovery of putative lncRNAs, for the majority, yet
unreferenced in the human transcriptome. Then, the catalog of
contigs was manually refined and tested for expression using the
NanoString single-molecule RNA counting technology in the ex-
tended cohort of 144 specimens. Contig expression was next
assessed in the independent, publicly available TCGA-PRAD dataset
generated by the poly(A)+ unstranded RNA-seq technology. The
expression of contigs was systematically compared with that of the
benchmark biomarker lncRNA, PCA3. In total, 16 of 23 contigs were
validated in both setups but with important differences. Primarily,

Figure 6. Predictive performance of PCA3 and
multiplex mixed and new-lncRNA signatures
inferred from the LASSO penalized logistic
regression.
(A) Multiplex biomarker signatures composed of
either known and unannotated RNAs (mixed) or of only
unannotated RNAs (new-lnc). (B) ROC for the PCa
prediction in the TCGA dataset (Validation Set) using
two signatures and PCA3 alone. (C)Mean and SD of AUC
computed over 100 samplings of the Validation Set for
PCA3 and two signatures to classify samples
according to their tumor status. AS, antisense; AUC,
area under the curve; HR, high-risk; IR, intermediate-risk;
LR, low-risk tumors.
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RNA measurements were consistent between two different tech-
nologies: NanoString and total stranded RNA-seq. In contrast, the
TCGA poly(A)+ unstranded datasets revealed weakness and high
heterogeneity of contig counts over the selected regions, resulting
in unexpectedly low signals even for PCA3, considered as a highly
expressed lncRNA. Hence, our results promote the total stranded
RNA-seq as a first-choice strategy for discovery of RNA biomarkers
from clinical samples and when searching for transcripts others
than highly abundant mRNAs. It reflects far more precisely the
transcriptomic landscape of clinical samples and, hence, is more
advantageous as a Discovery Set for development of clinical tests.
At the same time, full-length transcript assembly from short-read
sequencing is inaccurate, time and computer memory consuming,
and this is aggravated by the added complexity of total (ribo-
depleted) RNA-seq libraries (Hayer et al, 2015). DE-kupl bypasses
this issue by directly extracting from raw data RNA subsequences
significantly overexpressed in a defined condition. In PCa tissues,
this allowed identification of 1,179 lncRNA-hosted candidates.
Further analysis isolated a restrained set of nine contigs either
within putative new lncRNAs or mixed annotated and novel lncRNAs
allowing PCa diagnosis independently of tumor risk classifications
with higher accuracy than the actual PCA3. Remarkably, the best
performingmixed signature did not include PCA3, consistent with the
low potency of this biomarker in detection of aggressive tumors.
Instead, both mixed and new-lncRNA signatures contained contigs
embedded into putative novel lncRNA genes. We strongly believe
that these signatures can complement the existing clinical tests
as lncRNA-based PCA3 (Progensa) or mostly mRNA-based De-
cipher to improve the accuracy of tumor stratification and
clinical decisions for better patient care (Alford et al, 2017). Still,
in this study, to compute signature coefficients, sample in-
formation (normal or tumor) was used because the extended
Selection and independent Validation Sets used two different
technologies for RNA measurements. This precluded us from
calculating an objective signature performance. An additional
cohort using the same NanoString technology as the Selection
Set should now be tested to explore the clinical potential of the
obtained signature.

In addition to the clinical value, functions of the newly dis-
covered lncRNA variants embedding DE-kupl contigs will be im-
portant to explore. Foremost, proper assignment of contigs to
stand-alone transcripts is required, and this task can be accom-
plished computationally through ab initio discovery and assembly
of novel transcripts as demonstrated here by HoLdUp or other
assemblers, and then through experimental validation at the
transcript-specific or transcriptomic level. In the latter case, high-
throughput RACE (rapid amplification of cDNA ends) or long-read
RNA-seq approaches can be useful. Among others, detailed ex-
amination of newly discovered contigs revealed a genomic locus on
chromosome 19 transcribed in PCa specimens in both directions
into the GENCODE-annotated AC011523.2 lncRNA and a novel, an-
tisense transcript embedding the P23 contig (ctg_29077). Located
between KLK15 and the PSA encoding KLK3 genes, this region makes
part of a super-enhancer annotated in several PCa cell lines (Jiang
et al, 2019). Moreover, bidirectionally produced enhancer RNAs from
this locus have been shown to regulate the expression of neigh-
boring KLK3 and KLK2 genes through Med1-dependent chromatin

looping in several PCa cell lines (Hsieh et al, 2014). Presence of the
P23 contig within the mixed and new-lncRNA signatures supports,
in addition to the clinical potency, possible regulatory functions of
the RNA contigs inferred by DE-kupl. More globally, most DE-kupl
contigs within co-transcribed sense–antisense pairs were anno-
tated as super-enhancers in prostate tissues and cell lines or other
biosamples, for example, P15 (ctg_512), P7 (ctg_117356), and P4
(ctg_63866) (Jiang et al, 2019). In most cases, their function in gene
expression regulation and chromatin configuration has not yet
been investigated and experimentally validated, but it is tempting
to speculate that defined sense-antisense transcripts may influ-
ence a super-enhancer activity and, consequently, may fine-tune
the expression of neighboring genes.

In this work, we propose DE-kupl as a tool for discovery of novel
disease-associated transcriptomic variations, which can be further
explored for biological and clinical relevance. As a pilot project, we
oriented the pipeline towards the discovery of novel lncRNAs, but
using proper masking and filtering criteria defined by the in-
vestigator, other variant transcripts, including single nucleotide
variations, novel splice events, gene fusions, circular RNAs, or
exogenous viral RNAs, could be probed. The workflow can be ap-
plied to any RNA-seq datasets of any clinical origin (tissue, blood,
and urine) to generate a probe panel that may be implemented as a
multiplex platform for simultaneous detection of RNAs in clinical
samples. Moreover, different experimental contrasts (normal ver-
sus pathology, low- versus high-risk grade, chemoresistant versus
sensitive, etc.) will define the biomarker usage in diagnosis,
prognosis, or other clinical applications, hence providing clinicians
and researchers with a simple and highly sensitive tool for genomic
and personalized medicine.

Materials and Methods

Tissue samples

Tumor and normal biopsy specimens were retrospectively col-
lected from prostate cancer patients who provided informed
consent and were approved for distribution by the Henri Mondor
institutional board (PAIR cohort). Tumor classification in low-,
intermediate-, and high-risk prognosis was performed according
to Gleason and TNM scores and regardless PSA values (Table S1
and Fig S6B).

RNA extraction, quantification, and cDNA library production

Total RNA was extracted using the TRizol reagent (Thermo Fisher
Scientific), according to the manufacturer’s procedure, quantified,
and quality-controlled using a 2100 Bioanalyzer (Agilent). RNA
samples with RNA Integrity Number (RIN) above six were depleted
for ribosomal RNA and converted into cDNA library using a TruSeq
Stranded Total Library Preparation kit (Illumina). cDNA libraries
were normalized using an Illumina duplex-specific Nuclease pro-
tocol before a paired-end sequencing on HiSeq 2500 (Illumina). At
least 20× coverage per sample was considered as minimum of
unique sequences for further data analysis.
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RNA-seq data

Raw paired-end strand-specific RNA-seq data were generated by
our laboratory from ribo-depleted total RNA samples of prostate
tissues (8 normal and 16 tumor specimens, Table S1) and can be
retrieved from the gene omnibus portal, accession number GSE115414.
TCGA prostate cancer poly(A)–selected RNA-seq and corresponding
clinical data were obtained from publicly available TCGA dataset
(http://cancergenome.nih.gov), 557 inputs in total (52 normal and 505
tumors of high- [N = 240], intermediate- [N = 128], and low-risk [N = 132]
groups). Among them, 369 patients showed no tumor recurrence, 108
presented a new tumor event (Table S10).

Computational workflow for k-mer contigs discovery from total
stranded RNA-seq dataset

DE-kupl run was performed from (June 2017) with parameters
ctg_length 31, min_recurrence 6, min_recurrence_abundance 5,
pvalue_threshold 0.05, lib_type stranded, diff_method DESeq2.
K-mer masking was performed against the GENCODE v24 annota-
tion. DE-kupl analysis of the 8 against 16 PAIR RNA-seq prostate
libraries yielded 124,809 DE contigs, in total. Contigs were annotated
by alignment on the hg19 human genome assembly using the DE-
kupl annotate procedure. We further selected contigs of size above
200 nucleotides and classified them into four categories (contig-
uous, repeat, spliced, and unmapped) based on their location and
mapping features (Table S2).

Computational workflow for reference-based ab initio transcripts
assembly from total stranded RNA-seq dataset (HoLdUP)

The human genome version hg19 and the GENCODE v14 annotation
were used in this study. First, we performed a quality control of all
sequencing data by FastQC Babraham Bioinformatics software.
Reads were mapped using TopHat 2.0.4, allowing three mismatches
and requesting uniquely mapped reads, which were further as-
sembled using the BedTools suite. Overlapping contigs from all
libraries were merged, and only contigs supported by at least 10
reads in either library were further assembled in segments if mapped
in the same strand and separated by less than 100 nucleotides. We
compared the segments with the GENCODE v14 annotation to extract
antisense and intergenic TUs longer than 200 nucleotides. To classify
lncRNAs, we applied the following criteria: (i) an expression level
above 0.2 quartile of mRNA expression in at least one condition per
tissue (Class 2); (ii) within this class, all TUs containing at least one
TopHat-identified exon–exon junction and at least one spliced EST
from UCSC mapped contigs were assigned to Class 1. The whole
catalog, the R code, and Data Tables can be downloaded from https://
github.com/MorillonLab/HoLDuP_pipeline.

Overlap between GENCODE, MiTranscriptome, DE-kupl, and
HoLdUp catalogues

Intersection between transcripts was counted only in the case of
50% overlap of nucleotide sequence between genomic coordinates
of each fragment.

Differential expression analysis

Read counting was performed on the compiled annotation (GENCODE
v27, HoLdUp Class 1 and Class 2) for each sample, using featureCounts
1.6.0 with the following parameters: -F “SAF” -p -s 2 -O and theDESeq R
package (Liao et al, 2014; Love et al, 2014). Only RNAs with adjusted
P-value below 0.01 were retained as differentially expressed to
constitute the prostate tumor signature (Tables S3 and S4). Gene
expression counts were normalized using the DESeq2 median of
ratio (Anders & Huber, 2010). Scripts are available at https://
github.com/MorillonLab/Prostate_additional_scripts.

NanoString nCounter expression assay

100 ng of total RNA was used for direct digital detection of 29 target
transcripts: six housekeeping genes (RPL11, GAPDH, NOL7, GPATCH3,
ZNF2, and ZNF346), 23 contigs and the one known PCa-associated
lncRNA, PCA3. Each target gene of interest was detected in RNA
samples of 144 specimens (9 normal and 135 tumor) of the PAIR cohort
(Table S6) on NanoString nCounter V2 using reporter and capture
probes of 35- to 50-nucleotide targeting sequences listed in Table S4.
Data was normalized through the use of NanoString’s intrinsic neg-
ative and positive controls according to the normalization approach
of the nSolver analysis software (https://www.nanostring.com/
products/analysis-software/nsolver) and then contig expression
was calculated relative to the average signal of three housekeeping
genes (GPATCH3, ZNF2, and ZNF346). Raw and normalized data for
each specimen, and mean and fold change expression in normal
against tumor samples are presented in Tables S7 and S8.

Contig expression measurements in TCGA-PRAD datasets

DE-kuplprovides representative k-mers for eachdifferentially expressed
contig. We converted the TCGA-PRAD FASTQ files to k-mer counts using
Jellyfish count and counted representative k-mers in each Jellyfish count
file using the Jellyfish query command (Marçais & Kingsford, 2011).
Counts were normalized by total number of reads in corresponding
libraries. To determine whether counts of DE-kupl derived represen-
tative k-mer were a reliable proxy for evaluating contig expression, we
compared representative k-mer counts to average counts from k-mers
sampled along each contig. All individual counts were obtained using
Jellyfish Dump files produced for each TCGA-PRAD library. Sampling was
performed as follows: (i) we extracted all k-mers from the contig that
were unique in the Ensembl human v91 transcript reference, and (ii)
from this list, we sampled 10 regularly spaced k-mers, starting from the
first 10% and ending in the last 10% of the list. This sampling procedure
was repeated four times for each contig. For the whole TCGA library and
each contig, the 10 k-mer counts obtained by Jellyfish were averaged,
yielding one average count per sample per library Table S13. Pearson
correlation analysis for two DE-kupl contigs P1 and P16 are shown in
Fig S8A and B. Jellyfish commands can be retrieved from https://
github.com/MorillonLab/Prostate-kmer-signatures.

RNA-seq data visualization

RNA-seq reads profiling along a locus of interest was performed
using our in-house R script VING using one “normal” and one
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“tumor” RNA-seq subsets build by random sampling of 10% of reads
from each raw data sample (Descrimes et al, 2015). The normal
samples were assigned to the group “controls” and the tumor
specimens–to the group “cases,” with the assumption that the
“cases” should have higher values than “controls.”

Unsupervised clustering of prostate specimens

Specimens were ranked based on the Log10(norm.counts) levels of
contigs assessed by the NanoString nCounter assay using a Com-
plexHeatmap R-package (Gu et al, 2016). Scripts are available from
GitHub: https://github.com/MorillonLab/Prostate_additional_scripts.

Variable selection using the LASSO penalized logistic regression
and external validation of signatures

Signature inference was performed in R using the normalized
Selection Set (23 probes in 144 observations) as a variable selection
dataset and contigs counts table of the Validation Set (23 probes in
557 observations) as an external validation dataset (R Core Team).
First, we performed penalized logistic regression using the glmnet R
package to select probes predicting the tumor status on the Se-
lection Set upsampled to correct the imbalance class distribution (9
normal versus 135 tumor specimens) (Friedman et al, 2010). Se-
lection was performed using all probes (signature_mixed including
PCA3) or using only new-lncRNA contigs only (signature_new-lnc)
(Fig S7). Second, we built predictors using the boosted logistic
regression from the caTools and caret packages (Kuhn, 2008;
Tuszynski, 2008). Note that the final gene subsets (signatures) do
not have coefficients computed on the Selection Set over the
Validation Set because in contrast to NanoString, the TCGA-PRAD
RNA-seq datasets are poly(A)–selected and unstranded. To build
the ROC curves, we sampled 100 datasets in two, for training (70%)
and testing (30%) preserving the relative ratio of labels in each. We
used boosted logistic regression with upsampling, setting the
number of boosting iterations to 100 and using leave-one-out cross
validation scheme on the training set. After training, we evaluated
the predictor on the testing set and repeated the procedure for
each one of the 100 training and testing sets described above to
obtain an average ROC curve, mean and SD for AUC scores. Contig
expression counts in the Validation Set (TCGA-PRAD) were obtained
as described above using the DE-kupl derived representative k-mer
for each contig. Quantifications based on 10 randomly sampled
k-mers per contig did not alter predictive performance (Fig S8C). To
build a classifier based on the conventional WGC procedure, we
used DESeq2 across the GENCODE annotation on the Discovery Set
and kept only up-regulated genes with adjusted P-value lower than
0.05 and Log2FC higher than 2. To perform gene selection on the
Discovery Set, we used LASSO penalized logistic regression com-
bined with stability selection. Only genes with probability above 0.5
on 2,000 up-regulated samples from the initial dataset were retained.
The remaining geneswere thenused to build ROC curves and compute
the mean and SD of the AUC on the Validation Set as described above
for the DE-kupl-derived representative k-mers. The results file, R
codes, and data tables are provided through the GitHub repository:
https://github.com/MorillonLab/Prostate-kmer-signatures.

Data access

Raw paired-end strand-specific RNA-seq data can be retrieved from
the gene omnibus portal, accession number GSE115414. TCGA prostate
cancer poly(A)–selected RNA-seq and corresponding clinical data can
be obtained from TCGA portal (https://www.cancer.gov/tcga).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900449.
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Abstract

Background. RNA-seq data are increasingly used to derive prognostic signatures

for cancer outcome prediction. A limitation of current predictors is their reliance

on reference gene annotations, which amounts to ignoring large numbers of non-

canonical RNAs produced in disease tissues. A recently introduced kind of tran-

scriptome classifier operates entirely in a reference-free manner, relying on k-mers

extracted from patient RNA-seq data.

Methods. In this paper, we set out to compare conventional and reference-free

signatures in risk and relapse prediction of prostate cancer. To compare the two

approaches as fairly as possible, we set up a common procedure that takes as input

either a k-mer count matrix or a gene expression matrix, extracts a signature and

evaluates this signature in an independent dataset.

Results. We find that both gene-based and k-mer based classifiers had similarly

high performances for risk prediction and a markedly lower performance for relapse

prediction. Interestingly, the reference-free signatures included a set of sequences

mapping to novel long non-coding RNAs or variable regions of cancer driver genes

that were not part of gene-based signatures.

Conclusions. Reference-free classifiers are thus a promising strategy for the iden-

tification of novel prognostic RNA biomarkers.

Keywords

Reference-free transcriptomic, supervised learning, prostate cancer signature
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7.1 Introduction

The outcome of human cancer can be predicted in part through gene expression

profiling (Perou et al., 2000; Singh et al., 2002; van ’t Veer et al., 2002). Outcome

prediction is particularly important in prostate cancer (PCa), where distinguishing

indolent from aggressive tumors would prevent unnecessary treatment and improve

patients’ quality of life. However, currently there is no reliable signature of ag-

gressive prostate cancer. Pathologists classify prostate tumor biopsies using scoring

systems such as the Gleason score that evaluates tumor differentiation and the

Tumour, Node, Metastasis (TNM) grade that evaluates tumor extent and propaga-

tion. Gleason, TNM and PSA levels can be combined into a low, medium or high

risk status (D’Amico et al., 1998). Several studies used gene expression profiles

to derive predictors of Gleason score or risk (Bibikova et al., 2007; Penney et al.,

2011; Sinnott et al., 2017; Jhun et al., 2017). Other studies predicted actual clinical

progression (tumor recurrence or metastasis) after several years of patient followup.

Clinical progression can be evaluated either indirectly through monitoring of PSA

levels (Biochemical Recurrence (BCR)) (Latil et al., 2003; Long et al., 2014; Ren

et al., 2018; Sinha et al., 2019) or upon direct clinical observation (Erho et al.,

2013; Karnes et al., 2013; Klein et al., 2015; Shahabi et al., 2016). Gene expression

predictors usually take the form a of signature, that is a set of genes or transcripts

and associated coefficients of a model that can be used to predict risk or outcome

from a patient sample.

Gene expression profiling of prostate biopsies is performed either using DNA mi-

croarrays (Erho et al., 2013; Karnes et al., 2013; Klein et al., 2015; Shahabi et al.,

2016) or high throughput RNA sequencing (RNA-seq) (Bibikova et al., 2007; Pen-

ney et al., 2011; Sinnott et al., 2017; Jhun et al., 2017). An important advantage of

RNA-seq is its ability to identify novel genes or transcripts, which can in principle

be incorporated into predictive signatures. However, RNA-seq analysis is usually

performed in a "reference-based" fashion, ie. by using RNA-seq reads to quantify

a predetermined set of transcripts. This amounts to using RNA-seq in the same
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way as a microarray that only quantifies a predetermined set of probes. Yet, there

is abundant evidence that non-reference RNAs are frequent in disease tissues and

may constitute clinically useful biomarkers (Morillon and Gautheret, 2019). There-

fore one may expect that prognostic models incorporating non-reference RNAs may

carry substantial benefits.

Our group (Audoux et al., 2017; Pinskaya et al., 2019) and others (Thomas et al.,

2019) introduced new k-mer based strategies to analyse RNA-seq data in a "reference-

free" manner, that is without mapping sequence reads to a predefined set of genes

or transcripts. K-mers are sub-sequences of fixed length which are extracted and

quantified from sequence files. When applied to medical RNA-seq datasets using

appropriate statistical methods, this strategy identifies any sub-sequence whose in-

creased abundance is associated to a given clinical label. This may include novel

splice variants, long non-coding RNAs or RNAs from repeated retroelements (Au-

doux et al., 2017; Pinskaya et al., 2019) which are ignored by conventional protocols

based on reference gene annotations.

Although attractive in principle, k-mer derived prognostic signatures pose two ma-

jor challenges. First, a single RNA-seq dataset commonly contains tens to hun-

dreds of millions distinct k-mers. Therefore false positive and replicability issues

encountered with gene expression profiles (Michiels et al., 2005; Ein-Dor et al., 2006;

Michiels et al., 2007; Venet et al., 2011) are expected to worsen with k-mer count

matrices. The second challenge is related to the transfer of a k-mer signatures

across independent datasets. Signatures inferred from an initial discovery set are

expected to generalize to any independent dataset. In the absence of a unifying

gene concept, independent validation requires matching signature k-mers to read

sequences from the new dataset. This may cause significant signal loss if sequencing

or library preparation technologies differ.

Our main objective here was to compare the characteristics and performances of

reference-based and reference-free classifiers for PCa risk and relapse prediction.

We built both types of classifiers using the same discovery dataset and assessed
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their performances in independent datasets using equivalent pipelines and parame-

ters. For the reference-free approach, this required special developments to reduce

the number of variables and to transfer expression measures between datasets. We

present below a detailed analysis of the relative performances and sequence con-

tents of the different classifiers and discuss possible future developments to improve

performances of models.

7.2 Materials and Methods

7.2.1 Data acquisition and outcome labelling

We used tumor samples from TCGA-PRAD (Abeshouse et al. (2015), N=505) for

signature discovery and from ICGC-PRAD (Fraser et al. (2017), N=284) and Stelloo

et al (Stelloo et al. (2018), N=91) for independent validation. All three datasets

used similar technologies for library preparation (frozen samples, poly(A)+ RNA

selection) and Illumina sequencing, however they differed by read-size, read depth,

strandedness and use of single or paired ends sequencing (Table 7.1).

TCGA-PRAD RNA-seq data were retrieved from dbGAP accession phs000178.v9.p8

with permission. ICGC-PRAD-CA RNA-seq data (EGAD00001004424) were down-

loaded from the European Genome-Phenome Archive (EGA) with permission. The

Stelloo et al. (2018) RNA-seq files ("Porto" cohort) were retrieved from GEO, under

accession GSE120741. Clinical information was retrieved from Liu et al. (2018a)

for TCGA-PRAD, from Fraser et al. (2017) for ICGC-PRAD and from sample

metadata of GEO accession GSE120741 for Stelloo et al. (2018).

We built predictors for risk and relapse using two-class prediction models. To

achieve a clear separation between the two classes, we only focused on high risk

(HR) samples versus low risk (LR) samples, ignoring the medium risk, and we

focused on relapse prior to a given year and non-relapse after a given year. For this

reason, only a fraction of samples could be labelled for a given class in each set.
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Table 7.1: Characteristics of prostate tumor RNA-seq datasets

Study RNA-seq library type Reads/sample
#Tumor

samples

Risk Relapse

LR HR NO YES

TCGA-PRAD Poly(A)+ unstranded 2x50nt 130M 505 134 240 56 58

ICGC-PRAD Poly(A)+ stranded 2x100nt 313M 284 40 23 49 7

STELLOO Poly(A)+ stranded 1x65nt 20M 91 43 48

Risk information was not available in the Stelloo dataset and relapse labelling on

the ICGC dataset led to a small validation set (only 7 relapse samples).

We classified tumor specimens into low-risk and high-risk groups using an adapta-

tion of d’Amico’s classification which does not take into account the PSA rate but

only the anatomo-pathological data on the basis of Gleason and TNM features as

performed previously (Pinskaya et al., 2019). Tumors with Gleason score 6/7 (3+4)

and TNM grade pT1/2 were classified as low risk. Tumors with Gleason score 8/9

and/or TNM grade pT3b/4 were defined as high-risk. 374 TCGA-PRAD tumors

and 63 ICGC-PRAD-CA tumors could be labelled for LR or HR. We could not

obtain Gleason/TNM scores for Stelloo et al, hence we did not annotate risk for

this cohort.

For relapse analysis, we distinguished patients with biochemical relapse (BCR) and

time to BCR < 2yr and patients with no BCR after 5 years or longer, except for

Stelloo et al. where only precomputed relapse data was available with cutoffs at

5yr and 10yr, respectively (Table 7.2). BCR information was obtained from table

S1 of Liu et al. (2018a) for TCGA-PRAD and from table S1 (PFS field) of Fraser

et al. (2017) for ICGC-PRAD. Precomputed relapse data for Stelloo et al. was

taken from SRA accession PRJNA494345.

Table 7.2: Relapse group definitions

Relapse group TCGA-PRAD ICGC-PRAD STELLOO

Relapse (YES) PFS = 1 and PFS.time < 2yr BCR = "Yes" and BCR.time < 2yr BCR = "Yes" and BCR.time < 5yr

Non relapse (NO) PFS = 0 and PFS.time > 5yr BCR = "No" and BCR.time > 5yr BCR = "No" and BCR.time > 10yr
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7.2.2 A generic framework to infer reference-based and reference-

free signatures

Risk and relapse predictors were derived using a combination of feature selection

and supervised learning (Figure 7.1). The predictive model was tuned over a discov-

ery (or training) dataset and its performance was then evaluated on an independent

validation (or testing) dataset, to avoid selection bias (Ambroise and McLachlan,

2002). The same procedure was used for reference-based and reference-free models,

however two extra steps were included to obtain and validate reference-free sig-

natures. First a procedure was implemented to reduce the k-mer matrix using a

sequence assembly-like algorithm to merge k-mers into contigs based on their se-

quence overlap and on the similarity of their count vectors. This step led to a contig

count table an order of magnitude smaller than the initial k-mer count table (see

results below). Feature selection and model fitting were performed over this contig

table. A second adaptation was necessary to validate the reference-free signature in

an independent dataset. This required extracting k-mers from both the signature

and the sequence files of the independent set, and compute the signature expression

in the independent set based on counts of matching k-mers. The pipeline is detailed

in Methods. Note that we select features and train a predictive model only on the

discovery dataset. The model is then applied to the validation set with no retraining

(i.e. with the same coefficients) for an unbiased evaluation of the signature.

7.2.3 Gene and k-mer count matrices

DEkupl-run (Audoux et al., 2017) was used to produce gene and k-mer count ma-

trices for each dataset. DEkupl-run converts FASTQ files to k-mer counts using

Jellyfish (Marçais and Kingsford, 2011), joins individual sample counts into a sin-

gle count table and filters out low count k-mers. K-mer size was set to 31, lib_type

to unstranded, and parameters min_recurrence and min_recurrence_abundance

were set for each dataset as in Supplementary Table S1. K-mer size was set to
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31 as commonly adopted for human transcriptome applications (Bray et al., 2016;

Audoux et al., 2017). Note that contrary to TCGA-PRAD, ICGC-PRAD uses

stranded RNA-seq libraries. However we could not use this information as signa-

tures were produced from unstranded libraries. We thus built all k-mer tables in

canonical mode, which amounts to consider all libraries as unstranded. Gene ex-

pression was computed using kallisto v0.43.0 (Bray et al., 2016) with Gencode

V24 as a reference transcriptome. Gene-level counts were obtained by summing

counts for all transcripts of each gene. Gene expression matrices were submitted to

the same recurrence filters as k-mer tables to remove low expression genes. After

count tables were generated and filtered, the k-mer merging and differential expres-

sion analysis module of DEkupl-run were not used. Instead, tables were further

processed as explained below.

7.2.4 Reduction of k-mer matrix via contig extension

k-mer occurence tables were converted into contig occurence tables using an exten-

sion procedure similar to that described in Audoux et al. (2017). We define here as

contig any sequence produced by merging 1 or more k-mers. Briefly, contigs over-

lapping by (k-1) to (k-15) nucleotide were iteratively merged into longer contigs till

any of the following condition was encountered. In a straightforward case, extension

stops when no more overlapping contig is available. Alternatively, extension stops

when ambiguity is introduced i.e. when competing extension paths occur. Lastly,

we applied here an intervention not included in Audoux et al. (2017) by consider-

ing sample count compatibility between contigs, as shown in Figure 7.2. Sample

count compatibility is measured by the Mean Absolute Contrast (MAC) between

the counts of the two contigs across all samples, i.e.

MAC(c1, c2) = means∈{samples}

(∣∣∣∣c1,s − c2,s

c1,s + c2,s

∣∣∣∣)
where c1 and c2 are count vectors of two contigs to be merged, and c1,s and c2,s are

counts in sample s from the corresponding count vectors. The extension is rejected

if MAC > 0.25. In this way, all contigs are guaranteed to have member k-mers with
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consistent sample count vectors. After the merging procedure, the new contig’s

sample count vector is set to the mean of composite k-mer’s sample count vectors.

The algorithm is implemented in C++ to be published (https://github.com/i2bc/

PCa-gene-based_vs_gene-free/tree/master/KaMRaT)
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Figure 7.1: Uniform procedure for signature inference based on k-mer or gene

expression. A. The discovery matrix is built from normalized k-mer counts or

gene expression counts. Samples are labelled by their outcome (risk or relapse)

status. Normalization is performed as count per billion for k-mers or count per

million for genes. B. Features are ranked according to their F1-score computed

by cross-validation using a Naïve Bayes classifier. The top 500 features are re-

tained. C. Among the top 500, features are selected using LASSO logistic regression

combined with stability selection. A logistic regression is tuned on the selected

features. D. Features from the signature are measured in the count matrix from

an independent dataset. E. Performance of the signature (selected features +

tuned logistic regression) is evaluated using Are Under the ROC Curve (AUC) on

the validation dataset. To deal with the specificity of k-mer matrices, extra steps

A’ and D’ are introduced: A’. the k-mer matrix in converted into a much smaller

contig matrix by merging overlapping k-mers with compatible counts. D’. k-mers

are extracted from the signature contigs and their counts in the validation matrix

are aggregated.
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Figure 7.2: Merging procedure of 3 example contigs: A. Count table of contigs

in samples. Both pairs (contig1, contig2) and (contig2, contig3) have good over-

laps shifting by only one nucleotide, but the sample count vectors of contig1 and

contig2 are not compatible. B. Merging intervention considering sample count

compatibility between contigs. The Mean Absolute Contrast (MAC) is calculated

for each pair, and merging of (contig1, contig2) is rejected due to a MAC value ex-

ceeding threshold. C. The resulting contigs are the initial contig1 and the merged

contig from the initial (contig2, contig3) pair.

7.2.5 Count normalization

To account for differences in sequencing depth among samples, we applied a nor-

malization step on feature counts (genes or contigs) in discovery and validation

datasets. Each feature count in a sample is divided by the sum of all feature counts

in this sample, then multiplied by a constant base number:

ef,s ←
ef,s∑

f∈{features} ef,s
· Cb,

where ef,s refers to count of feature f in sample s, and Cb is the base constant. For

genes, Cb = 106 resulting in a conventional count per million (CPM) normalization,
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while for contigs, we used Cb = 109, or count per billion (CPB). For contigs, nor-

malization is applied on the contig count table produced after contig extension and

for genes it is applied on the recurrence filtered gene expression matrix.

7.2.6 Univariate features ranking

Given the limited number of samples, it was necessary to reduce the number of

features (genes or contigs) in the dataset. We discarded irrelevant features to focus

on a subset of 500 top candidates for subsequent feature selection. To rank features,

we performed prediction of status (risk/relapse) using a Bayesian classifier on each

independent feature, after log transformation of the normalized counts (after adding

an offset 1 to avoid numerical problem). To assess the quality of the prediction, we

computed the average F1 score by 5-fold cross-validation (CV) (F1 = 2·precision·recall
precision+recall ,

where precision = TP/(TP+FP ) and recall = TP/(TP+FN) and FP, TP, FN are

respectively the False Positive, True Positive and False Negative). In cases where 5-

fold CV returned an undefined value, F1 score was set to 0 (the worst). The average

F1 score was used to rank features. The Bayesian classifier implementation was

taken from the MLPack library (Curtin et al., 2018). The C++ code to perform

feature ranking is available at https://github.com/i2bc/PCa-gene-based_vs_

gene-free/tree/master/KaMRaT.

7.2.7 Feature selection, model fitting and predictor evaluation

To select a subset of non-correlated features (genes or contigs) among the top 500

candidates, we performed penalized logistic regression using the implementation

from the glmnet R package (Friedman et al., 2010). We implemented stability se-

lection as described in Meinshausen and Bühlmann (2010): only features selected

with a frequency of being selected above 0.5 upon 2000 resamples of the input

dataset were retained. To evaluate the performance of the selected features on the

discovery (training dataset), we fitted a logistic regression and computed the using
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a 10-fold cross-validation scheme, repeated 20 times, as implemented in the caret

package. To assess the performance of the signature on the external validation

datasets, we fitted a logistic regression on the whole discovery dataset and applied

the predictor to the validation datasets. In the reference-free approach, some fea-

tures present in the signature were not found in the validation (see below). In this

case, the coefficient of the logistic regression corresponding to missing features were

set to zero. Signature contigs were annotated through BLAST alignment vs. Gen-

code V34 transcripts. HGNC symbols for signature genes were obtained from the

Ensembl EnsDb.Hsapiens.v79 R package (Rainer, 2017). R scripts to perform the

feature selection, model fitting and evaluation on the discovery and validation sets

are available at: https://github.com/i2bc/PCa-gene-based_vs_gene-free.

7.2.8 Matching signature contigs in the validation cohort

To measure contig expression in the validation cohort we implemented the procedure

schematized in Figure 7.3. The procedure comprises two main steps: (1) all k-mers

from signature contigs were extracted and identified in the k-mer count matrix gen-

erated from the validation cohort and (2) the resulting sub-matrix was used to esti-

mate each contig’s expression in the validation cohort, measured for each sample as

the median of extracted k-mer counts. Step 1 is implemented in C++ at: https://

github.com/i2bc/PCa-gene-based_vs_gene-free/tree/master/kmerFilter, step

2 is implemented in R at: https://github.com/i2bc/PCa-gene-based_vs_gene-free/

blob/master/infer_gene-free_risk_signature.R.
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Figure 7.3: Procedure for inferring signature contig expression in an indepen-

dent validation dataset. The colored contig from the signature is quantified in the

validation cohort by extracting all its constituent k-mers and retrieving the cor-

responding k-mer counts from validation k-mer count matrix. The count vector

of the contig in each sample of the validation dataset is taken as the median of

counts for k-mers in this sample.
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7.3 Results

7.3.1 A reference-free risk signature for prostate cancer

We first applied the gene-free and gene-based signature discovery procedures de-

tailed in Section 7.2.2 to infer PCa risk signatures. The k-mer table for 374 TCGA-

PRAD risk-labelled samples had 94M k-mers after low count filtering. The merging

step reduced it to 5.2M contigs, i.e. achieving a considerable 18-fold reduction in

size (Table 7.3). Contig sizes (mean=49nt, median=34nt, Table 7.4) were small

relatively to a typical human RNA, which is characteristic of the adopted contig

extension procedure (Audoux et al., 2017) (see Section 7.2.4).

Table 7.3: Result of filtering procedure on the k-mer and gene matrices for risk

analysis

Initial Low expression k-mer Naive Bayes Feature Selection Validation

matrix filter merging ranking by Lasso LR

k-mers (not generated) 94,539,338 5,234,940 500 26 contigs 21 contigs

or contigs k-mers contigs contigs (1,444 k-mers) (1,404 k-mers)

genes 60,554 38,382 NA 500 14 14

Table 7.4: Contig sizes (Risk model)

After k-mer After Naive Bayes

merging ranking

mean contig size (nt) 49.1 189

median contig size (nt) 34 61

The 5.2M contig matrix and the 38k gene expression matrix were submitted to

screening using univariate Naïve Bayes classification and the top scoring 500 fea-

tures were retained for feature selection (Section 7.2.6). Interestingly, the 500 top

scoring contigs were significantly longer than prior to selection (median 61nt vs.

34nt, Table 7.4), suggesting the procedure tended to eliminate spurious short con-

tigs.
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Finally, LASSO logistic regression produced a reference-free signature of 26 contigs

and a reference-based signature of 14 genes (Table 7.3, Figure 7.4, Suppl. Figure

S5). Ten-fold cross-validation performances of both signatures were very high on

the discovery dataset (0.90 and 0.93 for genes and k-mers, respectively) (Table 7.5),

which is an over-estimated performance since features here were tested on the same

dataset used to select features (Ambroise and McLachlan, 2002).

Figure 7.4. A shows the 26 contigs in the reference-free risk signature and their

abundance distribution in LR and HR samples. 24/26 contigs mapped Gencode

transcripts from 21 unique genes (Supplementary file 1). Eleven of the 21 genes

were also found in a list 180 genes compiled from published PCa outcome signatures

(Supplementary file 2), which is a highly significant enrichment (P-value = 7.9e-

9, Fisher’s exact test), especially when considering that no gene information was

used to infer our signature. The gene and contig signatures involved five shared

genes: MYBPC1, ASPN, SLC22A3, SRD5A2 and CD38 (Supplementary file 2,

Figure S6.A, Figure 7.4.A). The first four genes are part of published prostate

risk signatures. CD38 is particular in that it is the most downregulated in both

signatures and it is not part of previous signatures. However, downregulation of this

gene has been associated with poor outcome in prostate cancer (Liu et al., 2016),

supporting its status as a high risk biomarker. Risk signature contigs mapped

at least five other genes with established driver roles in PCa or other cancers:

CAMK2N1 (Wang et al., 2014), COL1A1 (Liu et al., 2018b), GTSE1 (Wu et al.,

2017) and PTPRN2 (Chen et al., 2013), supporting the relevance of these sequence

contigs in PCa etiology.

Of the two contigs that did not map any Gencode transcript, one aligned to an intron

of GMNN (ctg_20), a gene also mapped by an exonic contig, the other an intron

of LDLRAD4 (ctg_23). Contig ctg_23 corresponds to a 1.29 kb spliced transcript

located between exons 4 and 5 of LDLRAD4 and is strongly upregulated in HR

samples, as displayed in the Integrative Genomics Viewer (IGV) (Robinson et al.,

2011) in Supplementary Figure S1. Although ctg_23 partly maps short annotated

LDLRAD4 isoforms, its expression seems unrelated to that of the longer LDLRAD4
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transcripts whose coverage in flanking exons is 4-6 times lower than ctg_23 (Supple-

mentary Figure S2.) Therefore ctg_23 likely comes from an independent lncRNA.

The host gene LDLRAD4 is a negative regulator of TGF-beta signaling with roles

in proliferation and apoptosis and was recently associated to negative outcome in

other tumor types (Xie et al., 2020) (Mo et al., 2020). Lastly, one contig (ctg_11,

EFNA2) was probably misassigned to the EFNA2 gene since it maps to a highly

expressed discrete area just 3’ of EFNA2 while EFNA2 seems silent. Thus ctg_11

probably comes from an independent lncRNA as well (Supplementary Figure S3.).

To assess the replicability of risk signatures, we evaluated their performance in the

ICGC-PRAD independent dataset. To this aim, we developed a specific procedure

to estimate the expression of an arbitrary sequence contig across datasets using

matched k-mers (see Methods). The 26 contigs represented 1444 k-mers, of which

97% were present in the ICGC-PRAD validation dataset. Overall 5 contigs (SFRP4,

GTSE1, COL3A1, COL1A1.a, COL1A1.c) could not be quantified in the validation

set due to lack of supporting k-mers (see Table 7.3 and Figure 7.4B). In spite of

this, the reference-free signature had similar performance in the validation set as the

reference-based signature (0.85 and 0.86 respectively, Table 7.5), although the later

did not sustain any loss when transferred to the independent cohort (Table 7.3).

High validation AUCs indicate a strong replicability of both the reference-free and

reference-based risk signatures.

Table 7.5: Signature performances for risk prediction

AUC - risk prediction

TCGA Cross-validation ICGC Independent dataset

Reference-free 0.93 +/- 0.04 0.85

Reference-based 0.90 +/- 0.05 0.86
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Figure 7.4: Expression of risk signature contigs in LR and HR samples. A: TCGA-

PRAD discovery cohort. B: ICGC-PRAD validation cohort
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7.3.2 Relapse signatures contain key PCa drivers

Application of the gene-free and gene-based signature discovery procedures (Sec-

tion 7.2.2) to relapse analysis produced a 14-contig reference-free signature and

a 10-gene reference-based signature (Supplementary File 2, Figure 7.5A, Supple-

mentary Figure S6 A). The reference-free signature was populated by obvious PCa

drivers. Strikingly, 3 contigs matched KLK2, AR and KLK3, which are among

the most important genes in PCa onset and progression (Chen et al., 2004), the

androgen receptor (AR) and two of its main targets, KLK2 and KLK3, the later

encoding the PSA protein (Figure 7.5A). Another contig matched SPDEF, a gene

whose loss is associated to PCa metastasis (Chen et al., 2017).

Contigs matching KLK2 and AR were overexpressed 23-fold and 7-fold, respectively

in relapsed patients while the contig matching KLK3 was depleted 1.8 fold. The

AR contig matches exon 1 of AR and contains an non-templated poly-A end but no

visible polyadenylation signal. The KLK2 contig is intronic and harbours a common

SNP (rs62113074). The KLK3 contig is located in a distal part of the 3’ UTR region

present only in longer isoforms of KLK3. Its lower expression in relapsed patients

was unexpected as low expression of PSA is usually associated to a lower risk. It is

possible though that only this longer isoform is depleted in relapsing samples. The

expression boxplot shows the KLK2 contig occurs only in a few outlier patients

while the AR and KLK3 contigs are common (Figure 7.5A). The contig matching

SPDEF is a special variant of the 3’ exon including two nonsynonymous SNPs.

The SPDEF gene as a whole was highly expressed in both relapse and non-relapse

samples but the contig expression was twice lower in average in relapse samples.

Two contigs matched no known transcript: ctg_7 is a low complexity sequence of

unknown origin and ctg_1 matches an intron of RPL9.

The contig matching lncRNA AC069228.1 also raised our attention since AC069228.1

is the only gene mapped by contigs in both relapse and risk signatures. The

AC069228.1 lncRNA is antisense of PPFIA2, a protein tyrosine phosphatase that

is itself an alleged urine biomarker of PCa (Leyten et al., 2015). The contigs from
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risk and relapse models match different regions of AC069228.1 (Figure S4). One is

spliced, the other is a continuous 864 bp segment of a long exon. In both cases, a

negative outcome (HR or relapse) is associated to a clearly higher expression of the

contig, while the antisense gene PPFIA2 does not appear to follow the same trend

(Figure S4).

Of note, the 10 genes in the reference-based signature were also clearly PCa-related:

one was the major PCa biomarker PCA3 (Bussemakers et al., 1999) and 5 others

(DDC, RRM2, FEV, TSPAN1, HMGCS2) are involved in PCa etiology (Koutalellis

et al., 2012; Mazzu et al., 2019; Zhong et al., 2019; Munkley et al., 2017; Wan et al.,

2019). Therefore both gene-based and gene-free relapse signatures were significant

in terms of PCa related functions of their component genes or contigs.

7.3.3 Relapse signatures do not accurately classify indepen-

dent cohorts

Table 7.6: Signatures performances for relapse prediction

Method

AUC - relapse prediction

TCGA ICGC STELLOO

Cross-validation Independent dataset Independent dataset

Reference-free 0.93 +/- 0.1 0.51 0.62

Reference-based 0.84 +/- 0.11 0.66 0.59

Contrary to the risk signatures, relapse signatures showed little overlap with each

other and with published PCa signatures (Supplementary File 2). Only PCA3 and

KLK2 were found in prior signatures (Shahabi et al., 2016; Klein et al., 2014) and

the only gene found shared between relapse and risk signatures in this study was

AC069228.1. The poor overlap in this study was not unexpected as the discovery

samples for risk and relapse information were quite disjointed and not always con-

sistent: for instance only 25% of the high risk samples were labelled for relapse and

28% of these did not relapse. Conversely, 51% of non-relapse patients were labelled
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as HR. Therefore risk and relapse classifiers were trained to recognize quite different

phenotypes.

As in the risk model, both reference-based and reference-free signatures had ex-

cellent cross-validation performance on the discovery set (AUC of 0.84 and 0.93

respectively, Table 7.6). However this should again be considered as an overly op-

timistic estimation due to the experimental design. Indeed, performances of both

relapse signatures on the ICGC-PRAD and Stelloo validation sets were much lower

(AUC 0.51 to 0.66), bordering randomness and confirming overfitting of the trained

signatures. The reference-based model performed slightly better over ICGC-PRAD,

and the reference-free model was slightly better over the Stelloo dataset (Table 7.6).

Furthermore, several genes and contigs in the discovery signatures had inconsistent

expression variations in the validation datasets (Figure 7.5B,C, Supplementary Fig-

ure S6B,C, Supplementary File 3). Overall two genes from the reference-based sig-

nature (ALB and CTD-2228K2.7) and 5 contigs from the reference-free signature

(KLK2, AC069228.1, PDLIM5, RTN4, ctg_1) changed logFC sign between the dis-

covery and either validation cohort. This problem, which was not observed in risk

models, underlines the poor replicability of the relapse signatures, whether or not

reference-free.

Low replicability of the relapse model may be caused in part by weaknesses in

validation datasets: the ICGC dataset had only 7 samples labelled for non-relapse

(Table 7.1) and the Stello dataset had very low coverage (Table 7.1) which caused

considerable loss when computing contig expression. Only three of the 14 signature

contigs (AC069228.1, KLK2 and KLK3) could be quantified in the Stelloo dataset

(Table 7.7, Figure 7.5.C). Yet, we note that in spite of this loss the reference-

free model still outperformed the reference-based model on this set (AUC of 0.62

vs. 0.59, Table 7.6). Other limitations of the relapse model are addressed in the

discussion.
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Table 7.7: Result of filtering procedure on the k-mer and gene matrices for relapse analysis

Initial Low expression k-mer Naive Bayes Feature Selection Validation Validation

matrix filter merging ranking by Lasso LR in ICGC in Stelloo

k-mers or
(not generated) 97,731,857

6,184,108 500 14 contigs 12 contigs 3 contigs

contigs contigs contigs (219 k-mers) (215 k-mers) (71 k-mers)

genes 60,554 36,006 NA 500 10 10 10
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Figure 7.5: Expression of relapse signature contigs in relapse/non relapse sam-

ples. A: TCGA-PRAD discovery cohort. B: ICGC-PRAD validation cohort. C: Stel-

loo validation cohort. 135



7.4 Discussion

7.4.1 Properties of reference-free signatures

We evaluated here a method for building transcriptome classifiers that are totally

reference-free, i.e. that do not require prior knowledge of genes or genome. The ma-

jor interest of this approach lies in its ability to discover and incorporate in models

previously unknown RNA biomarkers. Multiple examples exist of such disease-

specific RNAs produced by genome alterations or deficient RNA processing and we

hypothetized their inclusion in predictive models would be beneficial (Morillon and

Gautheret, 2019). Applying a reference-free strategy to PCa outcome prediction,

we obtained signatures made of short RNA contigs (median size 33 to 45 nt). These

contigs are not full transcript models as can be produced by usual denovo assem-

bly procedures. Instead, they often match SNPs or splice variants thus describing

specific genetic or transcriptional events enriched in a patient group. Our strat-

egy thus identifies RNA variations independently instead of lumping them into a

full transcript model. Yet, the mapped genes were highly relevant to PCa etiology

and included known cancer drivers LDLRAD4, GMNN, COL1A1, CD38, PTPRN2,

GTSE1 and CAMK2N1 in the risk signature and KLK2, AR, KLK3, SPDEF in the

relapse signature. Furthermore the risk signature comprised contigs matching two

potential novel lncRNAs, located within LDLRAD4 and immediately downstream

of EFNA2.

To our knowledge the only other software using a reference-free approach for in-

ferring predictive signatures is GECKO (Thomas et al., 2019). GECKO uses machine

learning (Genetic Algorithm) directly on the k-mer count matrix while we first re-

duce the matrix by grouping k-mers into contigs, before classification and machine

learning. This enabled us to produce a signature composed of sequences larger than

k, hence easier to interpret and quantify in an independent dataset.

Transferring a reference-free model to a new dataset is challenging. This requires
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that important features, such as SNPs, are precisely evaluated in the independent

dataset. To this aim, we transferred signatures between datasets based on exact

k-mer matches. As k-mer contents vary a lot between library preparation protocols,

we expected this strategy to show poor sensitivity when discovery and validation

datasets differed substantially. Indeed, transfer of signatures trained on the TCGA-

PRAD dataset to the low coverage Stelloo dataset caused the loss of a majority of

contigs. However, in this particular case, the remaining contigs were sufficient

to maintain a prediction performance at the same level as that of the gene-based

signature.

7.4.2 Performances and generalization issues

To compare the reference-free and reference-based strategies, a common evaluation

framework was adopted. For both risk and relapse predictions, performances of

the reference-free classifiers were on a par with that of reference-based classifiers.

However while risk signatures showed satisfying reproducibility, relapse signatures

performed poorly in independent datasets.

A possible reason for the low performance of relapse models is our grouping of

patients in discrete relapse and non relapse categories as done in other studies

(Latil et al., 2003; Erho et al., 2013; Klein et al., 2015; Shahabi et al., 2016). This

allowed us to address relapse prediction using the same logistic regression method

as for risk, however this meant valuable patient information was left unused. A

more accurate prediction of relapse may be achieved using survival models (Witten

and Tibshirani, 2010b; Klein et al., 2014; Long et al., 2014; Karnes et al., 2013;

Sinha et al., 2019). Adaptation of survival analysis tools to large k-mer matrices

require additional developments that are certainly worth considering in the future.

A more general concern with relapse analysis is related to difficulty of predict-

ing an outcome occurring several years after a sample is biopsied and analyzed.

There might just be too little information available in the training data to infer
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a reliable classifier, a problem that would be independent of the use of contigs or

genes. However, both gene-level and contig-level signatures were highly enriched in

PCa driver genes, which suggests information about tumor progression was indeed

present in the primary tumor biopsy. The key problem with relapse analysis was

more likely related to sample heterogeneity. The diversity of relapse mechanisms

was not properly represented in a training set of 100 patients as we used here. Pa-

tient stratification have been proposed to deal with sample heterogeneity in omics

data (de Ronde et al., 2013; Campos-Laborie et al., 2019). Adaptations of these

solutions to large k-mers matrices will also be considered in the future.

7.5 Conclusion

For prediction of PCa risk and relapse, reference-free classifiers did not signifi-

cantly outperform reference-based classifiers, however they incorporated a distinct

set of RNA sequences including unannotated RNAs and novel variants of anno-

tated RNAs. It is likely that with other diseases and datasets, novel biomarkers

will be identified with an even greater impact on prediction performance. The

reference-free approach will be of particular interest in problems where unknown

RNAs are expected to play an important role, such as when studying rare diseases,

poorly studied tissue types or when analysing dual human-pathogen RNA-seq sam-

ples. Our strategy also permits to infer efficient transcriptome classifiers in species

lacking an accurate genome or transcriptome reference.
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Supplementary file 1: Contig sequences and mapping locations in the risk and relapse 
signatures. 
 
Supplementary file 2: Published PCa risk and relapse signatures. Genes in common between 
published and this publication's signatures. 
 
Supplementary file 3: Contents and expression characteristics of all signatures in the 
discovery and validation datasets.  
 
Table S1. Filtering parameters for count tables  
 

 Analysis min_recurrence min_recurrence_abundance 
TCGA-PRAD Risk 3 10 
ICGC-PRAD 5 5 
TCGA-PRAD 

Relapse 
3 5 

ICGC-PRAD 4 2 
STELLOO 3 5 

 
 
  



 
 
Figure S1. IGV view of RNA-seq reads from the TCGA-PRAD discovery set aligned at the 
genomic location of risk signature contig ctg_23 (red box). This contig is located in an intron 
of LDLRAD4. Frames LR and HR show reads sampled from all samples in the LR and HR 
subsets, respectively, at identical depth for each. Blue boxes and lines in the bottom frame 
correspond to Gencode annotations of LDLRAD4 transcript isoforms (thick lines: exons, thin 
lines with arrows: introns).  
 
 
 



 
 
Figure S2. IGV view of RNA-seq reads aligned on the LDLRAD4 exons flanking signature 
contig ctg_23 on the left (A) and right (B) side of the genomic location of the contig. HR and 
LR frames are as described above. Note the coverage depth about 6 times lower than ctg_23 
coverage in HR condition (red circles) and its lack of variation between LR and HR conditions. 
 
 



 
 
Figure S3. IGV view of RNA-seq reads aligned at risk signature contig ctg_11. Figure legend is 
as above. ctg_11 was assigned to EFNA2 based on an 3' extended isoform (not shown), but it 
appears it is more likely an independent transcript. 
 



 
 
Figure. S4. IGV view of RNA-seq reads aligned at locus AC069228.1, where two signature 
contigs (ctg_19 from the risk model and ctg_12 from the relapse model) are aligned. Figure 
legend is as above. Contigs match two different transcripts of the AC069228.1 lncRNA gene, 
located antisense of gene PPFIA2 (boxed transcripts). In spite of the unstranded nature of 
aligned reads, mapping to AC069228.1 is unambiguous as only this gene has annotated 
exons at the corresponding locations. 
 
 



 
Figure S5. Expression of risk signature genes in relapse/non relapse samples. A: TCGA-PRAD 
discovery cohort. B: ICGC-PRAD validation cohort.  
 
 



 
 
Figure S6. Expression of relapse signature genes in relapse/non relapse samples. A: TCGA-
PRAD discovery cohort. B: ICGC-PRAD validation cohort. C: Stelloo validation cohort. 
 



Part III

Discussion



Chapter 8

Discussion and perspectives

8.1 Applying unsupervised filtering methods with con-

tigs extension count data

The results obtained by filtering strategies in Chapter 5 show that unsupervised

filtering methods, such as variance, MAD, and especially entropy filter methods are

useful to remove low-expressed k-mers prior differential analysis. We have bench-

marked several filtering methods, and the entropy filter seems the most appropriate

to remove low-expressed k-mers.

Additionally, an advanced contig extension applied in Chapter 7 showing the ef-

fectiveness in reducing drastically k-mers while preserving predictive accuracy for

further analysis. As a result, we would apply the entropy filtering method with

contig extension counts instead of k-mer count matrix. We would also experiment

on a more complex design with multiple conditions.
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8.2 Other unsupervised learning algorithms for clus-

tering k-mers

The density-based clustering obtained undesirable results, e.g., k-mers within the

same clusters showed a lack of homogeneous. Though, all our experiments were

performed only with one density-based algorithm. It should be fair to try sev-

eral algorithms, either other density-based methods or other idea-based clustering

methods, e.g., partition, hierarchy . . . , which unfortunately, I could not implement

during my thesis.

Besides, as 34% of the total 150,000 k-mers were clustered within a cluster by

density-based DBSCAN, these k-mers were heterogeneous; this may suggest that our

dataset had several different density clusters. Therefore, future clustering algo-

rithms will tackle with varying density problem, e.g., Locally Scaled Density-based

Clustering (LSDBC) (Biçici and Yuret, 2007).

8.3 The characteristics of reference-free signatures

In Chapter 6, we found a predictive signature made of only nine unannotated

lncRNA that outperformed the lncRNA-based biomarker PCA3 in the prediction

of high-risk tumors. The reference-free signature consisting of 26 contigs inferred

in Chapter 7 had a similar AUC-based performance as the reference-based signa-

ture for risk prediction. The contigs in this signature were relevant to PCa (e.g,

MYBPC1, ASPN, COL1A1) and overlapped with other PCa signatures found in

previous articles, e.g., Erho et al. (2013); Shahabi et al. (2016); Jhun et al. (2017);

Sinnott et al. (2017). Noticeably, our signature also included two unannotated

contigs which could not have been found by a conventional RNA-seq analysis.

The sensitivity when transferring a signature to an external dataset is a potential

weakness of k-mer approaches. This weakness derives from k-mer contents which
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are affected by differences in library preparation protocols and sequencing platforms

used in discovery and external validation sets. Two solutions for measuring signa-

ture contigs in an external independent cohort were proposed in Chapter 6 and

Chapter 7. The solution proposed in Chapter 7, designed to match exactly each

nucleotide, could be upgraded to allow a fixed number of nucleotide mismatches km.

This solution would require change in the procedure for gathering k-mers related to

signature contigs in the new independent dataset. The number of mismatches km

could be a tuning parameter, allowing a trade-off between the number of k-mers

found in the independent cohort and the consistence in the abundance levels of

k-mers within the same signature contig. However, this procedure would amount to

erasing single nucleotide variants in contigs. Such variants may be part of important

biomarkers, as shown in the relapse and risk signatures in Chapter 7.

8.4 Performances of reference-free signatures

In our study presented Chapter 7, the predictive performances of the reference-

free RNA signatures did not significantly surpass the predictive performance of

the reference-based signatures. Especially, the relapse signatures in Chapter 7 per-

formed poorly in external independent datasets.

Our current approach aims to discover RNA signatures that classify samples into

groups. This performs well if patients within the same group (i.e. tumor, recur-

rence) show similar RNA expression levels and the average expression levels between

different groups (i.e. tumor or recurrence versus normal or non-recurrence) are dis-

similar (as shown in the case of risk signature in Chapter 7). This means samples

are homogeneous within the same group. The low performance of relapse signatures

observed in Chapter 7 may suggest that samples are highly heterogeneous, which is

a well known problem in prostate cancer (see for instance Berglund et al. (2018)).

One solution would be to stratify patients into subgroups before applying further

analysis. Several stratification solutions have been proposed for gene expression

analysis (de Ronde et al., 2013; Campos-Laborie et al., 2019). An adaptation of
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these solutions to reference-free approaches using k-mers would require non-trivial

developments.

Additionally, the way we grouped patients into discrete relapse and non relapse

categories lead us to drop a large number of samples from the analysis, as described

in Section 7.2.1. Future relapse models should take into account of the time-to-

relapse using survival models described in Section 1.3.7. To do so, we will need to

adapt survival models to the context of high-dimensional k-mer analysis.

Another factor that should be considered is adequacy of the model building strategy

to the size of the sample available. In Chapter 6, DE-kupl was applied to a small

discovery cohort (8 normal vs. 16 tumor speciments). In Chapter 7, our pipeline

was used on a larger cohort (more than 500 samples). To rank the features, we

adopted an univariate feature ranking based on the F1-scores obtained by 5-fold

cross validation with a Naïve Bayes classifier. This type of ranking was suitable

for large cohorts but would not be effective on smaller cohorts. For small datasets,

we still advise to combine DE-kupl (hence a strategy based on differential expression

analysis) with supervised learning as presented in Chapter 6.

In summary, if our reference-free approach did not surpass the the reference-based

approach in one specific application (PCa prognosis), it is important to notice that

we found predictive events without using prior knowledge on the genome and the

genes. Therefore, the approach can be useful for the analysis of species with no

reference genome or transcriptome.

Finally, a follow-up to this study should involve testing other reference-free classi-

fiers such as GECKO on the same datasets in order to compare predictive performances

and signature contents of the different methods.
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Résumé en français

Introduction: Chapitres 1 à 4

La technologie de séquençage d’ARN à haut débit (RNA-seq) a révolutionné notre

vision de l’expression génique grâce à sa capacité à capturer toute la diversité des

transcrits produits par chaque cellule. Les données RNA-seq sont de plus en plus

utilisées en médecine de précision pour établir les profils moléculaires des tumeurs

ou pour étudier les réseaux de gènes régissant l’adaptation d’une cellule à son en-

vironnement. Cependant, l’analyse informatique des données RNA-Seq, qui repose

généralement sur la comparaison avec des séquences de référence, ne parvient pas

à identifier une grande partie des ARN résultant d’altérations génomiques ou de

traitement de l’ARN. En outre, les méthodes existantes ne s’adaptent pas bien à

des centaines de milliers de bibliothèques générées par les études actuelles de tran-

scriptome à grande échelle.

Le projet général de l’équipe vise à développer un nouveau concept d’analyse du

transcriptome, en s’appuyant sur une information de "tags", ou k-mers, sélection-

nés pour représenter des événements spécifiques de variation d’ARN, et un sys-

tème d’indexation efficace permettant une identification rapide de ces variants dans

n’importe quelle banque de transcrits, sans nécessiter d’alignement. Ce système

présente deux avantages majeurs: Premièrement, il peut identifier et quantifier tout

type de variant de transcription (variants d’épissage, transcrits de fusion, ARN cir-

culaires, ARN de répétitions ou même ARN provenant de pathogènes) ainsi que
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les variations génomiques telles que les SNP, agissant soit au niveau de la séquence

des protéines (mutations non synonymes) ou de la structure secondaire (ARNm,

UTR). Deuxièmement, il est suffisamment efficace pour permettre la réanalyse de

grands ensembles publics de données RNA-seq. Ces propriétés nous permettront

d’identifier de nouveaux biomarqueurs et signatures (structurelles) qui ont échappé

à toutes les études précédentes.

La classification moléculaire des sous-types de maladies est une tâche essentielle

en médecine de précision. Les données de transcriptome sont probablement l’une

des méthodes les plus puissantes pour obtenir une telle classification. Cependant,

ces données sont le plus souvent résumées dans une liste de gènes surexprimés

et sous-exprimés. En utilisant notre approche de décomposition en k-mers, nous

montrons qu’une grande quantité d’informations génétiques et d’expression peut

être récupérée et contribuer fortement à enrichir les signatures de la maladie et à

obtenir une classification plus précise des patients. Dans ce but, le manuscrit est

organisé en trois parties principales: introduction, résultats et discussion.

La première partie du manuscript est introductive: elle présente le contexte bio-

statistique (Chapitre 1) et bioinformatique (Chapitre 2) de l’analyse des données

transcriptomique (comprenant l’analyse de type microarray et RNA-seq), les spé-

cificités du cancer de la prostate (Chapitre 3) ainsi que les défis de la thèse et

contributions associées (Chapitre 4).

Si la technologie RNA-seq a révolutionné la mesure de l’expression génique à l’échelle

du transcriptome et a permis de comprendre les éléments fonctionnels et structurels

du génome, mener correctement une étude RNA-seq reste un défi en raison du grand

nombre de protocoles d’analyse RNA-seq publiés. Nous présentons deux stratégies

principales pour l’analyse des données RNA-seq: basée sur les références et sans

référence. Il y a trois étapes principales dans l’analyse des données de référence

RNA-seq qui sont le contrôle de qualité, l’alignement des reads et la quantifica-

tion des niveaux de gène et de transcription. Nous introduisons des outils logiciels

impliqués dans chaque étape dans le chapitre 2. Les logiciels “sans référence” présen-
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tés diffèrent par leurs objectifs: DE-kupl et MINTIE identifient de nouvelles formes

de transcription, par exemple, des variants d’épissage, des transcripts de fusion,

. . . qui sont spécifiques ou surreprésentées dans un ensemble d’échantillons, tandis

que GECKO crée des classificateurs prédictifs composés de fragments de séquence sans

référence. Les résultats présentés dans les publications suggèrent que l’approche

sans référence est faisable à la fois pour la découverte de transcriptions et pour la

modélisation prédictive. Un gros avantage de ces approches est qu’elles ne sont pas

limitées par l’alignement des reads sur le génome ou le transcriptome de référence.

Cependant, il existe encore plusieurs limites dans les approches actuelles, par exem-

ple, DE-kupl a été initialement proposé pour découvrir des événements biologiques

non référencés dans les données RNA-seq, et n’a pas été conçu pour effectuer la

prédiction de l’état des échantillons, alors que l’ensemble des k-mers découvert par

GECKO a été validé sans jeu de données indépendant.

Le chapitre 3 présente les aspects cliniques du diagnostic des cancers de la prostate:

diagnostic par PSA, évaluation du grade et stratification des tumeurs. Nous présen-

tons aussi diverses publications utilisant des approches d’apprentissage pour l’identification

des signatures diagnostiques ou pronostiques de PCa. Cependant, aucune des sig-

natures publiées n’a exploré la possibilité de trouver de nouveaux gènes ou des

isoformes de transcription associés au risque ou à la rechute. La nouvelle généra-

tion de prédicteurs utilisant des approches transcriptomiques sans référence pour-

rait potentiellement identifier tout nouveau transcrit présent dans un échantillon,

par exemple, de nouveaux variants d’épissage, des lncRNA ou des ARN issus de

rétroéléments répétés. Ma thèse vise donc à appliquer ce type de prédicteurs pour

l’identification des signatures PCa.

Résultats

Cette section résume les trois chapitres de contributions de cette thèse. Le chapitre

5 détaille mes contributions à la réduction de la dimension. Le chapitre 6 détaille

mes contributions à la problématique d’analyse du transcriptome sans référence
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par rapport à l’analyse basée sur la référence (conventionnelle) pour révéler de

nouvelles signatures d’ARN pour les cancers de la prostate. Le chapitre 7 détaille

la comparaison des performances entre ces méthodes de prédiction (sans référence

versus approche conventionnelle) pour la prédiction du status des patients.

Chapitre 5: Méthodes de réduction de dimension dans l’analyse

k-mer

L’analyse k-mer implique un grand nombre de variables à prendre en compte,

généralement des dizaines à des centaines de millions de k-mers par banque RNA-

seq. Beaucoup de ceux-ci peuvent résulter d’erreurs et / ou d’artefacts tech-

nologiques (tels que la contamination de l’adaptateur), ou peuvent être fortement

corrélés dans leur expression, conduisant à des variables peu informatives ou redon-

dantes. Un très grand nombre de variables redondantes et non pertinentes peut

entraîner un surajustement, une faible précision et de longs temps d’exécution. En

conséquence, la réduction de la matrice est une étape essentielle avant d’appliquer les

techniques d’apprentissage pour l’analyse en aval, telles que l’analyse de l’expression

différentielle, l’analyse de survie ou la classification du transcriptome. Une partie

de ma thèse de doctorat était consacrée au développement de différentes stratégies

de réduction de dimension basées sur le nombre de k-mer. J’ai étudié une gamme

de stratégies de filtrage et de clustering basées sur le nombre de k-mer et les ai

testées avec des ensembles de données réels. J’ai exploré différentes solutions pour

réduire la dimension des matrices k-mers en utilisant leurs comptages. Les straté-

gies de filtrage ont démontré leur efficacité en réduisant de manière significative

le nombre de k-mers à faible expression avant l’analyse d’expression différentielle.

Parmi les approches de filtrage, la méthode signal-bruit supervisé a produit la méth-

ode la plus rapide et la plus efficace pour réduire les k-mers faiblement exprimés

ou non pertinents avant l’analyse différentielle. Cependant, cette approche de fil-

trage n’est pas un filtre indépendant et ne peut pas être utilisée en toute sécurité

avant l’expression différentielle. Parmi les filtres qui n’utilisaient pas les informa-
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tions préalables sur l’échantillon, l’entropie normalisée s’est avérée la plus efficace.

J’ai également exploré l’utilisation potentielle de techniques de clustering non su-

pervisées pour regrouper les k-mers en fonction de la similitude de leurs nombres.

L’idée de clustering des k-mer a montré des résultats indésirables, avec des k-mers

dans le plus grand cluster montrant une hétérogénéité entre les échantillons alors que

les k-mers “bruit de fond” devraient être regroupés dans un cluster réel. Cependant,

mes résultats de clustering étaient basés sur un algorithme de clustering sur critère

de densité. Je n’ai pas testé d’autres algorithmes de clustering, c’est-à-dire à partir

d’autres méthodes basées sur la densité ou d’autres catégories, telles que la hiérar-

chie, les algorithmes de grille. Ces résultats indiquent que DBSCAN n’était pas une

méthode de clustering appropriée pour notre ensemble de données qui pouvait avoir

des densités variables. Les densités variables conduisent à l’échec de DBSCAN qui

rassemble probablement des k-mers "faussement semblables", c’est-à-dire une ex-

pression de dissimilarité lors de l’expansion de cluster, dû au fait DBSCAN n’utilise

qu’un seul seuil de densité global ε. Cependant, chaque k-mer est caractérisé non

seulement par ses comptages, mais aussi par sa séquence. Ceci m’a conduit à pro-

poser une autre approche pour réduire la taille de la matrice k-mer: fusionner les

k-mers en contigs en fonction de la similitude de leurs comptages et du chevauche-

ment des séquences k-mer. Ce processus de réduction permet de réduire la matrice

de comptage de k-mer à une matrice de comptage de contig plus petite avec des

caractéristiques moins corrélées et redondantes que dans la matrice initiale.

Chapitre 6: L’exploration du transcriptome sans référence révèle

de nouveaux ARN pour le diagnostic du cancer de la prostate

Un objectif méthodologique majeur de cette thèse était de faire progresser les méth-

odes k-mer sans référence en appliquant la décomposition k-mer à des modèles pré-

dictifs avec des résultats évalués dans des ensembles de données indépendants. J’ai

utilisé les résultats produits par DE-kupl dans un ensemble de données PCa fourni

par des collaborateurs de l’institut Curie pour effectuer la prédiction de l’état de
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l’échantillon. Puisque DE-kupl a été développé comme un pipeline qui capture

tous les k-mers présentant des abondances significativement différentes selon les

conditions, il n’a pas été conçu pour la modélisation prédictive. J’ai appliqué une

procédure pour calculer et tester une signature prédictive obtenue à partir des con-

tigs k-mer produits par DE-kupl, et pour évaluer cette signature dans des ensembles

de données indépendants. Dans une cohorte de validation indépendante, ce modèle

a atteint un score AUC de plus de 90% pour le diagnostic de la PCa.

Le pipeline DE-kupl , combiné à la visualisation des contigs d’expression et à la

sélection manuelle, a permis de récupérer des sous-séquences d’ARN ayant une

capacité prédictive aussi puissante que la signature dérivée de gènes annotés par

GENCODE. Cela démontre la capacité d’une approche sans référence à récupérer

des contigs intéressants non référencés.

Cependant, les deux approches (sans gène et basée sur les gènes) ne sont pas

équitablement comparées dans ce travail: l’approche sans gène implique une sélec-

tion manuelle de contigs, basée sur des connaissances d’experts. La sélection des

contigs dans l’approche sans gène implique l’utilisation de l’ensemble de données

d’expressions mesurée par la téchnologie NanoString, sans équivalent dans l’approche

basée sur les gènes. J’ai voulu comparer les deux approches en utilisant un pipeline

aussi similaire que possible. La raison pour laquelle je voulais comparer les deux

approches (sans gène et RNA-seq conventionnel) est que les approches sans gène

augmentent fortement le nombre de variables à considérer dans l’ensemble de don-

nées (de 50000 gènes dans une analyse RNA-Seq conventionnelle à des millions de k

-mers ou contigs dans les approches sans gène). Par conséquent, je pouvais soupçon-

ner que l’approche k-mer est plus sujette au surajustement. Pour répondre à cette

question, j’ai proposé de comparer un classificateur sans gène et un classificateur

basé sur le gène. En outre, dans les deux approches (sans gène et à base de gène),

l’étape préliminaire avant la sélection des variables et l’apprentissage supervisé a

été réalisée à l’aide d’une analyse différentielle (recherche de k-mers ou de gènes

différentiellement exprimés). J’ai donc souhaité présélectionner les variables en

fonction de leurs performances prédictives au lieu du résultat de l’analyse différen-

157



tielle. Pour les deux raisons mentionnées ci-dessus, mon objectif du travail mené

et décrit dans le chapiptre suivant était donc double: proposer un pipeline pour

effectuer des prédictions à l’aide de k-mers et comparer ce pipeline à un pipeline

RNA-seq conventionnel pour découvrir une signature transcriptomique à l’aide de

données RNA-seq.

Chapitre 7: Une analyse comparative des signatures de tran-

scriptome sans référence et conventionnelles pour le pronostic

du cancer de la prostate

Comme présenté dans la partie Introduction, il existe de nombreuses techniques de

sélection de fonctionnalités et d’apprentissage supervisé. J’ai décidé d’utiliser la ré-

gression logistique lasso combinée à la pénalité LASSO car elles ont été utilisées dans

des articles récents pour découvrir des signatures PCa à l’aide de données RNA-

seq conventionnelles (Shahabi et al., 2016; Jhun et al., 2017). Dans les deux cas,

basé sur le gène et sans gène, le nombre de variables est trop grand pour appliquer

directement la régression logistique LASSO sur la matrice de comptage. Pour cette

raison, j’ai adopté une étape préliminaire de criblage drastique conçue pour réduire

le nombre de variables à un nombre inférieur et éviter d’exécuter la régression lo-

gistique LASSO dans un cadre dimensionnel ultra-élevé. Pour extraire les variables

importantes, j’ai utilisé une classification univarié basée sur la capacité des variables

à prédire de nouvelles données à l’aide d’une approche Bayesienne, calculant un F1-

score par cross-validation. Compte tenu du grand nombre de k-mers à classer, j’ai

choisi la règle de Naïve Bayes comme suggéré par Thomas et al. (2019) car l’ implé-

mentation C++ de Naïve Bayes était la plus rapide à exécuter parmi l’ensemble des

outils disponibles. D’autres solutions sont possibles, comme l’utilisation d’autres al-

gorithmes que Naïve Bayes pour classer les caractéristiques, et d’autres techniques

de sélection de variable et d’apprentissage supervisé multivarié que la régression

logistique LASSO. Cependant, pour effectuer une comparaison équitable entre les

approches génique et sans gène, j’ai sélectionné les outils avant de lancer la compara-
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ison, indépendamment des considérations externes: je n’ai pas cherché à optimiser

l’ensemble des outils utilisés pour biaiser la comparaison vers une approche ou une

autre. Un autre problème est le choix des outils pour déduire la signature k-mer:

Thomas et al. (2019) ont proposé d’utiliser un algorithme génétique et j’ai proposé

le pipeline résumé ci-dessus et décrit plus en détail au chapitre 7.

Dans cette thèse, je me suis principalement concentrée sur la comparaison des ap-

proches sans gènes et conventionnelle. Dans le pipeline proposé, j’ai utilisé une

technique de réduction matricielle basée sur l’extension des k-mers en contigs pour

éviter de travailler directement sur une matrice de k-mers pleine de k-mers cor-

rélés et redondants. Je n’ai pas utilisé les stratégies de filtrage avant l’étape de

dépistage univarié pour les deux raisons suivantes. Premièrement, les stratégies de

filtrage sont principalement conçues pour éliminer les k-mers peu abondants avant

l’analyse de l’expression différentielle. Deuxièmement, l’étape de filtrage conduit à

une réduction drastique de l’espace des variables (de milliers ou millions à quelques

centaines). Dans ce contexte, le filtrage préalable au criblage ne réduirait que légère-

ment le temps d’exécution de l’étape de criblage et ne changerait pas l’ensemble

final de variables retenues pour la sélection de variables ultérieure et l’apprentissage

supervisé.

La signature sans référence composée de 26 contigs déduits au chapitre 7 avait une

performance basée sur l’AUC similaire à la signature basée sur la référence pour

la prédiction des risques. Les contigs de cette signature étaient pertinents pour

PCa (par exemple, MYBPC1, ASPN, COL1A1) et se chevauchaient avec d’autres

signatures de PCa trouvées dans des articles précédents, par exemple Erho et al.

(2013); Shahabi et al. (2016); Jhun et al. (2017); Sinnott et al. (2017). Notamment,

notre signature comprenait également deux contigs non annotés qui n’auraient pas

pu être trouvés par une analyse classique d’RNA-Seq.
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Discussion

Dans la partie Introduction, j’ai montré que l’analyse k-mer pouvait, en principe,

capturer la variation de transcription complète présente dans un échantillon RNA-

seq. Cette variation peut ensuite être attribuée à des événements biologiques tels

que les ARNnc, les variants d’épissage et de polyadénylation, les introns, les répéti-

tions, qui sont ignorés par les protocoles standard basés sur les annotations de gènes

de référence. Il existe de nombreuses preuves de présence d’ARN non référencé dans

les tissus malades et celui ci peut former des biomarqueurs cliniquement utiles. La

signature transcriptomique que j’ai identifiée pour le diagnostic du cancer de la

prostate (chapitre 6) consistait en seulement neuf lncRNAs et s’est avérée plus effi-

cace que le biomarqueur commercial PCA3 pour la détection des tumeurs à risque

élevé. Mes signatures sans référence pour le pronostic du cancer de la prostate

(chapitre 7) contenaient un ensemble de séquences d’ARN contenant des ARN non

annotés et de nouveaux variants d’ARN annotés qui ne faisaient pas partie des

signatures basées sur des gènes.

Dans notre travail sur les modèles pronostiques pour le PCa, j’ai dérivé des sig-

natures de contigs à partir d’un jeu de données de découverte. Comment évaluer

la robustesse et la généralisation de ces signatures? Pour ce faire, il faut trans-

férer les informations contig à une cohorte clinique différente et obtenir une mesure

d’expression quantitative comparable. Cependant, cette tâche pose un réel défi car

cela nécessite un mécanisme qui permet une correspondance exacte de chaque nu-

cléotide pour garantir que les contigs de la signature sont correctement identifiés

dans le nouvel ensemble de données. J’ai proposé deux solutions pour la mesure

des contigs de signature dans un nouvel ensemble de données. Ces deux solutions

ont été conçues pour s’adapter à différents contextes d’étude. Dans le diagnostic du

cancer de la prostate, l’ensemble des candidats pour les signatures contig était un

panel donné extrait par des connaissances d’experts. En conséquence, les contigs

dans la signature dérivée de cet ensemble étaient fortement exprimés et la tâche de

les trouver dans d’autres ensembles de données était relativement facile. À l’inverse,
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les signatures contig inférées dans le pronostic du cancer de la prostate ont été au-

tomatiquement identifiées à partir d’environ 94 millions de k-mers générés à partir

de plus de 400 banques RNA-seq (modèle de prédiction du risque) et avaient des

niveaux d’expression très variables. Cela nécessitait une procédure d’appariement

minutieuse pour garantir que le plus de contigs possible puisse être quantifié dans

l’ensemble de données indépendant.

La dernière partie du manuscrit est consacrée à la discussion et aux perspectives.

Les résultats obtenus par les stratégies de filtrage montrent que les méthodes de

filtrage non supervisé, telles que la variance, Median Absolute Deviation, et en par-

ticulier les méthodes de filtrage d’entropie sont utiles pour éviter l’analyse différen-

tielle préalable de k-mers faiblement exprimés. J’ai comparé plusieurs méthodes

de filtrage et le filtre d’entropie semble le plus approprié pour éliminer les k-mers

faiblement exprimés.

En outre, un algorithme avancé d’extension de contig appliquée dans le pronostic

PCa a montré son efficacité à réduire considérablement les k-mers tout en préservant

la précision prédictive pour une analyse plus approfondie. En conséquence, j’ai ap-

pliqué la méthode de filtrage d’entropie suivie de la routine avancée d’extension des

contig, plutôt que d’utiliser directement ’une matrice de comptage de k-mer. Nous

expérimenterons également une conception plus complexe avec plusieurs conditions.

Le regroupement basé sur la densité a produit des résultats indésirables, par exem-

ple, des k-mers au sein des mêmes groupes ont montré un manque d’homogénéité.

Cependant, toutes mesexpériences n’ont été réalisées qu’avec un seul algorithme

basé sur la densité. Il serait justifié d’essayer plusieurs algorithmes, soit basés sur

la densité, soit d’autres méthodes de regroupement basées sur des concept tels que

la partition ou la hiérarchie, ce que je n’ai malheureusement pas pu mettre en

œuvre au cours de ma thèse. Le fait que 34% des 150 000 k-mers totaux étaient

regroupés par DBSCAN dans un seul cluster de densité et que ces k-mers étaient

hétérogènes peut suggérer que notre ensemble de données comprenait plusieurs ag-

grégats de densité différentes. Par conséquent, les algorithmes de regroupement de

futurs devraient aborder ces différents problèmes de densité, par exemple Locally
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Scaled Density-based Clustering (LSDBC).

La sensibilité lors du transfert d’une signature vers un ensemble de données ex-

terne est une faiblesse potentielle des approches k-mer. Cette faiblesse provient du

contenu k-mer qui est affecté par les différences dans les protocoles de préparation

des banques et les plates-formes de séquençage utilisées dans les jeux de données

de découverte et de validation externe. Deux solutions pour mesurer les contigs de

signature dans une cohorte externe indépendante ont été proposées au chapitre 6 et

au chapitre 7. La solution proposée au chapitre 7, conçue pour correspondre exacte-

ment à chaque nucléotide, pourrait être améliorée pour permettre un nombre fixe de

mésappariements de nucléotides km . Cette solution nécessiterait une modification

de la procédure de collecte des k-mers liés aux contigs de signature dans le nouvel

ensemble de données indépendant. Le nombre de mésappariements km pourrait

être un paramètre de réglage, permettant un compromis entre le nombre de k-mers

trouvés dans la cohorte indépendante et la cohérence des niveaux d’abondance des

k-mers dans le même contig de signature. Cependant, cette procédure reviendrait

à effacer les variants de nucléotides uniques dans les contigs. Ces variants peu-

vent constituer d’importants biomarqueurs, comme le montrent mes signatures de

rechute et de risque dans le pronostic de la PCa. Dans notre étude présentée au

chapitre 7, les performances prédictives des signatures ARN sans référence n’ont pas

dépassé significativement les performances prédictives des signatures basées sur la

référence. En particulier, les signatures de rechute ont mal fonctionné dans les en-

sembles de données externes indépendants. Notre approche actuelle vise à découvrir

des signatures ARN qui classent les échantillons en groupes. Cela fonctionne bien

si les patients du même groupe (c.-à-d. Tumeur, récidive) présentent des niveaux

d’expression d’ARN similaires et les niveaux d’expression moyens entre différents

groupes (c.-à-d. Tumeur ou récidive versus normale ou non-récidive) sont différents

(comme indiqué dans le cas de la signature du risque dans le pronostic du PCa).

Cela signifie que les échantillons sont homogènes au sein d’un même groupe. La

faible performance des signatures de rechute observée dans le pronostic du PCa

peut suggérer que les échantillons sont très hétérogènes, ce qui est un problème
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bien connu dans le cancer de la prostate (voir par exemple Berglund et al. (2018)).

Une solution serait de stratifier les patients en sous-groupes avant d’appliquer une

analyse plus approfondie. Plusieurs solutions de stratification ont été proposées

pour l’analyse de l’expression génique (de Ronde et al., 2013; Campos-Laborie et

al., 2019). Une adaptation de ces solutions à des approches sans référence util-

isant des k-mers nécessiterait des développements non triviaux. De plus, la façon

dont j’ai regroupé les patients en catégories discrètes de rechute et de non-rechute

m’a conduit à supprimer un grand nombre d’échantillons de l’analyse. Les futurs

modèles de rechute devraient prendre en compte le délai de rechute en utilisant des

modèles de survie. Pour ce faire, je devais adapter les modèles de survie au contexte

de l’analyse k-mer à haute dimension. Un autre facteur à prendre en compte est

l’adéquation de la stratégie de construction du modèle à la taille de l’échantillon

disponible. Au chapitre 6, DE-kupl a été appliqué à une petite cohorte de décou-

verte (8 échantillons normaux contre 16 tumeurs). Au chapitre 7, notre pipeline a

été utilisé sur une plus grande cohorte (plus de 500 échantillons). Pour classer les

caractéristiques, j’ai adopté un classement univarié des caractéristiques basé sur les

scores F1 obtenus par validation croisée 5 fois avec un classifieur Naïve Bayes . Ce

type de classement convenait aux grandes cohortes mais ne serait pas efficace pour

les cohortes plus petites. Pour les petits jeux de données, je conseille de combiner

DE-kupl (d’où une stratégie basée sur l’analyse différentielle des expressions) avec

un apprentissage supervisé comme présenté au chapitre 6. En résumé, si notre ap-

proche sans référence n’a pas surpassé l’approche basée sur la référence dans une

application spécifique (pronostic PCa), il est important de noter que j’ai trouvé

des événements prédictifs sans utiliser les connaissances préalables sur le génome

et les gènes. Par conséquent, l’approche peut être utile pour l’analyse d’espèces

sans génome ou transcriptome de référence. Enfin, un suivi de cette étude devrait

impliquer de tester d’autres classificateurs sans référence tels que GECKO sur les

mêmes jeux de données afin de comparer les performances prédictives et le contenu

des signatures des différentes méthodes.
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Titre : Combiner apprentissage automatique et analyse transcriptomique sans référence

pour l’identification de signatures du cancer de la prostate
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Résumé : Par sa capacité à capturer la diver-
sité complète des transcrits produits par chaque
cellule, la technologie de séquençage d’ARN
à haut-débit (RNA-seq) a révolutionné notre
vision de l’expression des gènes. Les don-
nées RNA-seq sont de plus en plus utilisées
en médecine de précision afin d’établir les pro-
fils moléculaires des tumeurs, ou pour étudier
des réseaux de gènes régissant l’adaptation
d’une cellule à son environnement. Cependant,
l’analyse RNA-seq qui classiquement se base sur
la comparaison avec des séquences géniques de
référence, est incapable d’identifier une grande
part des ARN aberrants produits dans les mal-
adies par altération du génome ou des processus
de maturation.

Notre projet vise à exploiter un nouveau con-
cept pour l’analyse du transcriptome fondé
sur des "étiquettes", ou k-mers, représentant
l’intégralité des variations de séquences ob-
servées dans un transcriptome. Nous avons ap-
pliqué ce concept à la découverte de signatures
diagnostiques ou pronostiques à partir de don-
nées RNA-seq du cancer de la prostate. A cette

fin, nous avons appliqué différentes méthodes de
réduction de dimension et de sélection de vari-
able utilisées dans l’analyse transcriptomique
classique. En raison de la très grande dimension
des matrices de k-mers, ces méthodes ont néces-
sité des adaptations afin de réduire de manière
drastique le nombre de variables à analyser.

Nous sommes parvenu à établir un protocole
informatique capable de réduire efficacement
une matrice de k-mers issue du séquençage de
plusieurs centaines de transcriptomes. A l’aide
de ce protocole, nous avons pû produire de nou-
velles signatures diagnostiques et pronostiques
pour le cancer de la prostate. Ces signatures
"sans référence" ne nécessitent pas de connais-
sance a priori sur le génome ou le transcrip-
tome humain et sont au moins aussi perfor-
mantes que les signatures géniques convention-
nelles. De plus ces signatures contiennent des
séquences d’ARN jamais identifiées, correspon-
dant notamment à des variants d’ARNm ou à de
nouveaux longs ARN non-codants qui pourront
orienter les biologistes vers de nouveaux mécan-
ismes d’oncogénèse.
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Title : Combining machine learning and reference-free transcriptome analysis for the iden-

tification of prostate cancer signatures

Keywords : Machine learning, Transcriptome, k-mers sequence, prostate cancer

Abstract : With its ability to capture the
full diversity of transcripts produced by each
cell, high-throughput RNA sequencing (RNA-
seq) has revolutionized our view of gene expres-
sion. RNA-seq data are increasingly used in pre-
cision medicine to establish the molecular pro-
files of tumors, or to study gene networks gov-
erning the adaptation of a cell to its environ-
ment. However, RNA-seq analysis, which is con-
ventionally based on comparison with reference
gene sequences, is unable to identify a large frac-
tion of abnormal RNA transcripts produced in
disease tissues, through defects in the genome
or in RNA processing.

Our project aims to exploit a new concept for
the analysis of transcriptomes based on short
sequence labels, or k-mers, representing all of
the sequence variations observed in a given tran-
scriptome dataset. We applied this concept to
the discovery of diagnostic or prognostic signa-
tures from RNA-seq data of prostate cancer. To

this end, we applied different dimension reduc-
tion and variable selection methods used in clas-
sical transcriptomic analysis. Due to the very
large dimension of the k-mer matrices, these
methods required specific adaptations in order
to drastically reduce the number of variables to
be analyzed.

We established a computer pipeline capable of
effectively reducing a k-mer matrix obtained
from the sequencing of several hundred tran-
scriptomes. Using this pipeline, we were able
to produce new diagnostic and prognostic signa-
tures for prostate cancer. These "reference-free"
signatures do not require a priori knowledge of
the human genome or transcriptome and are at
least as effective as conventional gene signatures.
In addition, these signatures contain novel RNA
sequences corresponding to mRNA variants or
new long non-coding RNAs. These novel RNAs
involved in cancer risk may orient biologists to-
wards new oncogenesis mechanisms.
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