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ABSTRACT

M
ultiple antennas at the base station side can be used to enhance the spectral efficiency
and energy efficiency of the next generation wireless technologies. Indeed, massive
multi-input multi-output (MIMO) is seen as one promising technology to bring the afore-

mentioned benefits for fifth generation wireless standard, commonly known as 5G New Radio
(5G NR). In this monograph, we will explore a wide range of potential topics in multi-user MIMO
(MU-MIMO) relevant to 5G NR,

• Sum rate maximizing beamforming (BF) design and robustness to partial channel state
information at the transmitter (CSIT)

• Asymptotic analysis of the various BF techniques in massive MIMO and

• Bayesian channel estimation methods using sparse Bayesian learning.

While massive MIMO has the aforementioned benefits, it makes the acquisition of the chan-
nel state information at the transmitter (CSIT) very challenging. Since it requires large amount of
uplink (UL) pilots for channel estimation phase. Moreover, each antenna has associated with a
radio frequency (RF) chain which in turn leads to high power consumption and hardware com-
plexity at the base station (BS) side. One promising technology to overcome these issues is to
utilize a hybrid beamforming (HBF) system. In HBF, the number of RF chains at the transmitter
side is reduced significantly compared to number of antennas. Hence, it involves a two stage
beamforming scheme. With the analog BF generates multiple beams in the spatial domain and
thereby providing BF gain. The digital BF is used at the baseband for multiplexing the different
user streams across the beams generated by the analog BF. Analog beamforming is implemented
at the RF chain using phase shifters. One of our main focus in thesis is to propose efficient phase
shifter design which can attain performance very close to that of the fully digital BF systems. For
this purpose, we proposed an efficient scheme for analog phasor design using the technique of
deterministic annealing.

Fully digital BF scheme becomes a special case of our HBF design and further for the per-
formance analysis, we focus on fully digital BF schemes itself. In a fully digital massive MIMO
system, it is important to consider low complexity BF solutions. With this direction in mind, we
proposed a low complexity but close to optimal (linear minimum mean square error-LMMSE)
BF solution termed as reduced order zero forcing (ZF). However, it is quite incomplete if we stop
with the various BF designs, we do require extensive theoretical analysis to evaluate the spectral
efficiency (SE) behaviour of the massive MIMO system which we consider in the next part of the
thesis.
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In the past decade, several academic research has been conducted on the asymptotic/large
system analysis of massive MIMO systems. Large system analysis helps to avoid tedious Monte-
Carlo simulations to evaluate the SE and provide simplified rate expressions as a function of the
very few parameters such as channel second-order statistics, antenna dimensions and channel
estimation error variance, etc. However, the majority of the existing research focus on simplified
Rayleigh channel models or multiple of identity channel covariance matrices for different users
to simplify the analysis. Moreover, those works which exploit distinct spatial channel covariance
matrices for users lead to highly cumbersome expressions which are not intuitive and hence not
much of use.

Motivated by the above issues, we propose a stochastic geometry inspired randomization of
the user covariance subspaces (which indeed has strong intuitive justification under large system
dimensions and for millimeter wave or massive MIMO systems). Our simplifications indeed
lead to very intuitive and elegant rate expressions and hence that forms one of the landmark
contributions in this thesis. We provide large system results for an upper bound of the expected
weighted sum rate and several other suboptimal BF schemes under partial CSIT. Moreover, we
analyze the SE under different channel estimation schemes such as least squares, LMMSE and
subspace projected channel estimate. However, it has to be noted that the LMMSE or subspace
projected channel estimates which give superior performance need the knowledge of the user
covariance subspace (low rank). Note that we do not consider explicitly an estimation method
for this subspace information. But we remark that our variational Bayesian inference techniques
which form the final part of the thesis can be an efficient and accurate method to estimate the
pathwise components in the MIMO channel. These pathwise information can be finally utilised
to form an accurate estimate of the user channel covariance subspace.

Finally, we also looked at a Bayesian approach to sparse signal recovery problem. The sparse
states can be considered to be either static or dynamic (where the temporal correlation is chosen
to be modeled as an autoregressive process). Sparse Bayesian learning (SBL) algorithm focuses
on formulating an appropriate hierarchical prior which can be modeled effectively the sparsity
properties of the underlying signal. We consider a joint sparse signal plus hyperparameter (asso-
ciated with the prior) estimation algorithm, which relies on variational Bayesian inference based
methods. Here the motivation is to achieve lower complexity without sacrificing much on the
signal recovery performance. One of the several applications of the SBL algorithm is in massive
MIMO or milli meter wave channel estimation where the underlying wireless channel is sparse
in angular or Doppler or delay domains. Apart from this, several applications exist in diverse
fields (not only communication systems) such as data science or medical imaging, and hence
this topic we considered assumes greater relevance.

A majority of the topics considered here indeed form a relevant contribution to massive MIMO
research community both by the proposition of new innovative algorithms and theoretical analy-
sis. However, much remains to be pursued and we hope that this throws up a few open questions
too which can inspire at least a few others to follow the road not taken yet.



RÉSUMÉ

P
lusieurs antennes du côté de la station de base peuvent être utilisées pour améliorer l’efficacité
spectrale et l’efficacité énergétique des technologies sans fil de nouvelle génération. En
effet, Multi-Input Multi-Output (MIMO) massif est considéré comme une technologie promet-

teuse pour apporter les avantages de la norme sans fil de cinquiéme génération, communément
appelée 5G New Radio (5G NR).

Dans cette monographie, nous explorerons un large éventail de sujets potentiels en multi-
utilisateurs MIMO (MU-MIMO) concernant la 5G NR,

• Conception de Techniques de Précodage Multi-Antenne maximisant la somme des débits
et la robustesse à l’imprécision des connaissances partielles du canal au transmetteur
(CSIT).

• Analyse asymptotique des différentes techniques de Précodage Multi-Antenne en Systémes
MIMO Massifs et

• Méthodes d’estimation de canal Bayésien utilisant un apprentissage Bayésien Parcimonieux.

Bien que le MIMO massif présente les avantages susmentionnés, il permet l’acquisition de la
connaissance du canal au transmetteur (CSIT) trés difficile. Puisqu’il nécessite une grande quan-
tité de pilotes de liaison montante (UL) pour la phase d’estimation de canal. De plus, chaque an-
tenne est associée à un chaîne de radiofréquence (RF) qui à son tour conduit à une consomma-
tion d’énergie élevée et à une complexité matérielle côté station de base (BS). Une technologie
prometteuse pour surmonter ces problémes consiste à utiliser un systéme Hybride Techniques
de Précodage (HBF). Dans HBF, le nombre de chaînes RF à l’émetteur côté est considérable-
ment réduit par rapport au nombre d’antennes. Par conséquent, il s’agit d’une étape en deux
schéma de précodage. Avec le BF analogique génére plusieurs faisceaux dans le domaine spatial
et fournissant ainsi un gain BF. Le BF numérique est utilisé en bande de base pour multiplexer
les différents l’utilisateur diffuse sur les faisceaux générés par le BF analogique. La formation de
faisceaux analogique est mise en œuvre au niveau de la chaîne RF à l’aide de déphaseurs. L’un
de nos principaux objectifs de thèse est de proposer une phase efficace conception de levier de
vitesses qui peut atteindre des performances trés proches de celles des systémes BF entiérement
numériques. Pour à cet effet, nous avons proposé un schéma efficace pour la conception de
phaseurs analogiques utilisant la technique de recuit déterministe.

Le schéma BF entiérement numérique devient un cas particulier de notre conception HBF et,
plus loin, pour l’analyse des performances, nous nous concentrons sur les schémas BF entiére-
ment numériques eux-mêmes. Dans un systéme MIMO massif entièrement numérique, il est
important d’envisager des solutions BF de faible complexité. Avec cette direction à l’esprit, nous
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avons proposé une solution BF de faible complexité mais proche de la solution optimale (erreur
quadratique moyenne minimale linéaire-LMMSE) appelée forçage d’ordre réduit (ZF). Cepen-
dant, il est assez incomplet si nous nous arrêtons aux différentes conceptions de BF, nous avons
besoin d’une analyse théorique approfondie pour évaluer le comportement d’efficacité spectrale
(SE) du systéme MIMO massif que nous considérons dans la partie suivante de la thése.

Au cours de la derniére décennie, plusieurs recherches universitaires ont été menées sur
l’analyse asymptotique / des grands systémes de systémes MIMO massifs. L’analyse des grands
systémes permet d’éviter les simulations Monte-Carlo fastidieuses pour évaluer le SE et de fournir
des expressions de taux simplifiées en fonction des trés rares paramétres tels que les statistiques
de second ordre de canal, les dimensions de l’antenne et la variance d’erreur d’estimation de
canal, etc. Cependant, la majorité des recherches existantes se concentrent sur des modéles de
canaux de Rayleigh simplifiés ou sur de multiples matrices de covariance de canaux d’identité
pour différents utilisateurs afin de simplifier l’analyse. De plus, ces travaux qui exploitent des
matrices de covariance de canal spatial distinctes pour les utilisateurs conduisent à des expres-
sions trés lourdes qui ne sont pas intuitives et donc peu utiles.

Motivés par les problémes ci-dessus, nous proposons une randomisation inspirée de la
géométrie stochastique des sous-espaces de covariance utilisateur (qui a en effet une forte jus-
tification intuitive sous de grandes dimensions de système et pour des systémes MIMO à on-
des millimétriques ou massives). Nos simplifications conduisent en effet à des expressions de
taux trés intuitives et élégantes, ce qui constitue donc l’une des contributions marquantes de
cette thése. Nous fournissons de grands résultats de systéme pour une limite supérieure du taux
de somme pondéré attendu et plusieurs autres schémas BF sous-optimaux sous CSIT partiel.
De plus, nous analysons le SE sous différents schémas d’estimation de canal tels que les moin-
dres carrés, LMMSE et l’estimation de canal projetée sous-espace. Cependant, il convient de
noter que les estimations de canal projetées LMMSE ou sous-espace qui donnent des perfor-
mances supérieures nécessitent la connaissance du sous-espace de covariance utilisateur (rang
bas). Notez que nous ne considérons pas explicitement une méthode d’estimation pour ces in-
formations de sous-espace. Mais nous remarquons que nos techniques d’inférence Bayésienne
variationnelle qui forment la derniére partie de la thése peuvent être une méthode efficace et
précise pour estimer les composantes pathwise dans le canal MIMO. Ces informations de chem-
inement peuvent finalement être utilisées pour former une estimation précise du sous-espace
de covariance du canal utilisateur.

Enfin, nous avons également examiné une approche Bayésienne du probléme de récupéra-
tion de signaux parcimonieux. Les états clairsemés peuvent étre considérés comme statiques
ou dynamiques (où la corrélation temporelle est choisie pour être modélisée comme un pro-
cessus autorégressif). L’algorithme d’apprentissage Bayésien parcimonieux (SBL) se concentre
sur la formulation d’un prior hiérarchique approprié qui peut être modélisé efficacement les
propriétés de parcimonie du signal sous-jacent. Nous considérons un algorithme d’estimation
conjoint signal clairsemé plus hyperparamétre (associé à l’ancien), qui repose sur des méthodes
basées sur l’inférence Bayésienne variationnelle. Ici, la motivation est de réduire la complexité
sans sacrifier beaucoup les performances de récupération du signal. Une des nombreuses appli-
cations de l’algorithme SBL est dans l’estimation massive de canal d’onde MIMO ou milli-métre
où le canal sans fil sous-jacent est clairsemé dans les domaines angulaires ou Doppler ou de re-
tard. En dehors de cela, plusieurs applications existent dans divers domaines (pas seulement
les systémes de communication) tels que la science des données ou l’imagerie médicale, et par
conséquent, ce sujet que nous avons considéré revêt une plus grande pertinence.

Une majorité des sujets abordés ici constituent en effet une contribution pertinente à la com-
munauté de recherche massive du MIMO à la fois par la proposition de nouveaux algorithmes in-
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novants et l’analyse théorique. Cependant, il reste encore beaucoup à faire et nous espérons que
cela soulévera également quelques questions ouvertes qui pourront inspirer au moins quelques
autres à suivre la voie qui n’est pas encore prise.
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Chapter 1

INTRODUCTION

During the last three years, we got to know and contribute on a plethora of topics related to signal
processing for next generation wireless communications. In short, we focus on three aspects of
the research on massive multiple-input multiple-output (MIMO) or millimeter Wave (mmWave)
systems, which are futuristic technologies, or novel paradigms in multi-antenna signal process-
ing.

• Hybrid beamforming (BF) techniques in massive MIMO (MaMIMO),

• Asymptotic analysis of the various BF techniques.

• MaMIMO channel estimation using sparse Bayesian learning.

Hybrid beamforming (HBF) is a promising solution to reduce the complexity of a multi-antenna
system by employing a reduced number of radio frequency (RF) chains compared to the number
of antennas. In a multi-cell multi-user MaMIMO system, we propose HBF design, which maxi-
mizes the sum of the spectral efficiency across all the users. Unit magnitude constraints on the
analog BF makes the problem highly non-convex and hence challenging to solve. Our objective
here is to avoid the issue of local optima and the over-dependence on the initialization, which
is plagued by the alternating optimization of the analog phasors in the conventional designs. As
an efficient solution, we introduce an innovative solution based on the concept of deterministic
annealing in machine learning. Further, we consider HBF design for more realistic scenarios like
per-antenna or per-RF power constraints (which is the first time in the literature on HBF). Our
algorithms perform significantly better than the state of the art designs, which are also aimed at
spectral efficiency maximization. It was extremely fruitful research, which eventually won us the
best student paper award at IEEE SPS conference, SPAWC 2018. However, it is not impossible
that a fully digital transceiver design may become feasible in the coming years since we live at
an age when the digital processor capabilities are increasing quickly. Still, HBF solutions may be
the winner in the initial stages of next generation technologies while moving to mmWave deploy-
ments due to its energy efficiency. Moreover, in a full-duplex (FD) system, hybrid solutions may
have much larger benefits since we can make spatial filtering before the signal hits the ADC. It
can be useful, example, when we have strong interferers in spatial directions (self-interference),
thereby reducing dynamic range problems. We also looked at the efficient hybrid or multi-stage
BF design using the same optimization principle as discussed above for FD systems which make
this work much more relevant.

It is to be noted that all the BF techniques discussed herein for HBF are applicable to fully
digital system also, which is indeed a special case. Moreover, due to the reason described in the
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CHAPTER 1. INTRODUCTION 4

paragraph, we further focus our attention on fully digital systems for our asymptotic analysis.
We remark here that for the HBF design, our proposed techniques are applicable to any general
channel models. In further related works, we start making certain assumptions on the wireless
channel model to facilitate the asymptotic analysis. In MaMIMO/mmWave systems, the under-
lying user channel is sparse in angle, delay, and Doppler domains. For the pathwise MaMIMO
channel model (which is a typical channel model where the propagation environment contains
limited scattering), we first consider optimal BFs in the case of partial CSIT and noted that path-
wise approach allows ZF of the interfering paths and that the ZF tasks get split between Trans-
mitter and Receiver antennas. In the partial channel model, we assume that all the slow fading
components such as AoA/AoD/delay/path attenuation remain constant over enough coherence
time interval such that they can be estimated perfectly. Only the path phases (which are fast
fading components) are assumed to change every channel use and hence are unknown. The es-
timation of the slow fading components can be done quite accurately using variational Bayesian
(VB) inference techniques described later in this thesis.

Asymptotic analysis with HBF systems becomes a straightforward extension using the large
system concepts described herein and it is left as future work. To start our asymptotic analysis,
we look at a simplified BF scheme inspired by the extreme SNR region behavior of the MMSE BF.
Moreover, it is to be mentioned that all the simplified results are for MaMISO case, even though
our derived BF expressions do apply or easily extendable for the MaMIMO case also. For the
MaMIMO (with multiple antenna users) case, we have some initial results under some simplifi-
cations on the MIMO channel model, but it is incomplete and requires further work. To reduce
the complexity and simplify the beamforming design, we proposed a reduced order zero forcing
(RO-ZF) BF solution, which has negligible performance loss compared to the optimal (linear) BF
design. Using simple asymptotic analysis (requiring only law of large numbers), we evaluated the
performance of RO-ZF, zero forcing (ZF), and optimal BFs for a realistic scenario of user chan-
nels with varying attenuation for varying levels of channel state information at the transmitter
(CSIT). Further, using the techniques from random matrix theory, we evaluated the large system
performance for various sub-optimal BF solutions in the case of partial CSIT. We formulated an
upper bound of ergodic capacity, which is shown to be very tight in the MaMIMO regime and
it is termed as Expected Signal and Interference Power based weighted sum rate (ESIP-WSR).
We considered randomized user channel subspaces (stochastic geometry) to simplify the anal-
ysis and provided analytical insight into the problem compared to the state of the art solutions,
which are cumbersome.

We obtained simplified sum rate expressions at low and high SNR regime, which gives intuitive
insights into the spectral efficiency (SE) for a MaMIMO system. We analyzed both theoretically
and numerically the system performance for various channel estimates (such as least squares,
linear MMSE, and subspace projected) for different BF solutions. It is to be mentioned that linear
MMSE or subspace projected channel estimates as expected give significant performance gains
compared to just using least squares channel estimates. However, those schemes would require
second order statistics of the user channels or channel subspace (and are low rank in MaMIMO
or mmWave systems) estimation also. This channel subspace proves to be challenging due to
a large number of antennas at the BS and hence require large overheads in the UL to obtain
a reasonable estimation performance. However, if we take into account the specific structure
of the pathwise channel model and exploit sparse signal processing techniques, this overhead
for channel estimation can be reduced significantly. Here our further work on VB based sparse
Bayesian learning algorithms described below becomes very useful.

Another interesting and relevant topic we started to work on is approximate Bayesian infer-
ence techniques for sparse signal processing. we focused on VB inference techniques whose un-
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derlying concept is to find an approximate posterior which minimizes the Kullback Liebler (KL)
divergence to the true posterior. Several existing techniques such as belief propagation (BP),
mean field (MF) approximation, expectation propagation (EP), and approximate message pass-
ing (AMP) algorithms are different variants of the VB family of methods. In particular, we con-
tributed to the theoretical performance analysis of these techniques using large system analysis
derived from random matrix theory results and proposed extensions to sparse Bayesian learn-
ing using AMP. In the combined BP/MF/EP based approximate family of inference techniques,
we conjectured that an optimal splitting of the unknown variables to estimated in the underly-
ing factor graph considered can be formulated using the Fisher information matrix (FIM) based
analysis. This indeed required us to consider mismatched Cramer Rao bound (CRB) based anal-
ysis, which deals with MSE bounds when the posterior information is not exact and note that the
research of it is still in its infancy.

In a MaMIMO/mmWave system, low rank channel impulse response can be written as the
Kronecker product of path components such as delay spread, Doppler, Transmitter (Tx) and
Receiver (Rx) spatial multi-antenna dimensions. We proposed a Bayesian method based on
Variational Bayesian inference called SAVE (space alternating Variational estimation), which has
much lesser complexity and better convergence rate in terms of the mean square error than the
existing state of the art low complexity solutions in sparse signal recovery. Moreover, our work
is an instance of gridless compressive sensing, which also utilizes tensor decomposition meth-
ods such as canonical polyadic decomposition and Tucker decomposition. Hence this topic on
approximate Bayesian inference has applications well outside the interest of communication so-
ciety such as data science or many other signal processing applications including medical imag-
ing or radar signal processing. To illustrate its significance, we refer to [3], where the authors
talk about classification of hyperspectral images (HSI) using tensor decomposition techniques.
HSI is a three way block of data, which is acquired when many two way images are taken over
multiple continuous spectral bands. HSI is used in several applications including but not lim-
ited to astronomy, Earth and planetary observation, monitoring of natural resources, precision
agriculture and biomedical imaging.

1.1 Motivation and State of the Art

Figure 1.1: Illustration of uplink and downlink in Massive MIMO. Source of the figure [1]
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MaMIMO [4] involves the use of a large number of antennas at the base station (BS) and access
points to increase the system throughput for next generation technologies such as 5G and be-
yond. The main selling points of MaMIMO are increased spectral efficiency through highly direc-
tive nature of transmission and reduced power consumption. MaMIMO is also apt for communi-
cation in the mmWave frequency bands, which are characterized by different channel properties
than that of the sub-6 GHz bands. Channel characteristics and hardware complexity differ from
a conventional multi-antenna technology for a MaMIMO system, thus posing many challenges
in the signal processing algorithm design. In this thesis, we try to address some of the challenges
associated with the MaMIMO technologies and advance the state of the art a bit by proposing
efficient solutions that are not only of interest to the academic community but possibly to the
industry too.

Regardless of the numerous publications in the MaMIMO community, it has to be mentioned
here that most of the existing works focus on suboptimal solutions for BF design or channel
estimation schemes. Since the computational complexity usually scales with the system dimen-
sions and it is not yet known in the literature how to find an optimal BF design for a multi-user
MaMIMO system. Moreover, under practical scenarios, in the case of MaMIMO with a large
number of antennas at the base station, it may not be feasible to have as many RF chains M as the
number of antennas Nt . One promising solution is hybrid beamforming, which is a two-stage
architecture where the beamformer (BF) is constructed by concatenation of a low-dimensional
precoder (digital BF) and an analog BF, with the number of RF chains less than the number of an-
tennas. This technique was first introduced in [5], with the analog precoder implemented using
phase shifters.

An optimal BF design for a multi-user MIMO system under a fully digital precoding scheme
itself is quite challenging. Several works have looked at this problem, for example, [6, 7]. Among
them, in the pioneering work by Caire and Shamai [6], they show that an achievable rate re-
gion for MIMO broadcast channel (BC) can be obtained using Costa’s Dirty Paper Coding (DPC)
scheme [8] at the transmitter. Till now, this remains the best scheme in the literature. However,
the complexity of the DPC scheme (which is nonlinear) is extremely high and not preferred in
practice. Hence it is preferred to look at linear BF solutions, of which the optimal scheme which
minimizes the MSE is the weighted sum MSE (WSMSE) based BF proposed by Christensen et. al.
in [9]. The WSMSE BF is shown to converge to a local optimum of the weighted sum rate (WSR)
maximization problem.

Moving to the hybrid BF case, the problem becomes highly challenging due to the nonconvex
constraints (unit amplitude) on the analog BF coefficients. This indeed motivates most of the
state of the art designs to use a suboptimal low complexity solution at the cost of degradation
in performance compared to a fully digital multi-antenna system. However, we focus on the
highly challenging weighted sum rate maximization problem itself. Nonconvex character of the
resulting cost function implies that even if it is possible to show convergence to a local optimum
[10], convergence to the global optimum cannot be guaranteed. To avoid the convergence to a
local optimum, [11] proposed Deterministic Annealing (DA) for digital BF design in the MIMO
interference channel. To avoid the issue of local optima plagued by alternating optimization of
phasors, we propose to use deterministic annealing (for the first time in the literature) which has
performance quite close to fully digital solution compared to the state of the art designs. Hence,
deterministic annealing helps to track the globally optimal phasor design for a fixed set of digital
BFs (of various users) and power allocation matrices. However, it remains to be mentioned that
the overall WSR problem can only be shown to converge to a locally optimum solution. As shown
in [11], deterministic annealing can be applied further to track the globally optimum solution for
the actual WSR problem.
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In massive multi-input multi-output (MISO) systems, the received signal and interference
powers converge to their expected value due to the law of large numbers. Evaluation of the per-
formance of the massive system usually involves extensive Monte-Carlo simulations to com-
pute the spectral efficiency over large number of channel realizations. In a practical multi-
user MaMIMO system, the expression for signal-to-interference-plus-noise-ratio (SINR) is quite
cumbersome due to the presence of user channel covariance matrices present. Hence, the SINR
expressions are not very intuitive and it is quite difficult to infer the system behavior from them.
However, random matrix theory results [12, 13] helps to compute deterministic equivalents for
the signal and interference power terms and helps to circumvent the need to do extensive Monte-
Carlo simulations to evaluate the system performance. Major work on large system analysis for
massive MISO (MaMISO) systems appears in [14]. The authors obtain deterministic (instead of
channel realization dependent) expressions for various scalar quantities, facilitating the analysis
and design of wireless systems. For example, it may allow us to evaluate beamforming perfor-
mance without computing explicit beamformers. The analysis in [14] allowed for example, the
determination of the optimal regularization factor in Regularized ZF (R-ZF) BF, both with perfect
and partial CSIT. In [15], the authors investigate the deterministic limits for optimal beamform-
ers, but only for the perfect CSIT MISO BC (broadcast channel) case. [16] proposes a large sys-
tem analysis for optimized BF with partial CSIT as considered here. Furthermore, the channel,
channel estimate, and channel error covariances can all be arbitrary and different for all users.
However, the resulting deterministic analysis is quite cumbersome and does not allow much an-
alytical insight. In this thesis, we introduce a stochastic geometry inspired randomization of the
channel covariance eigenspaces, leading to much simpler analytical results, which depend only
on some essential channel characteristics. We also introduce reduced complexity beamforming
termed as reduced order ZF (RO-ZF) BF, which has negligible performance loss compared to the
optimal BF and with reduced design complexity. This is motivated by the observation that opti-
mal MMSE BF converges to the ZF BF [17] at high SNR and reduces to matched filtering at very
low SNR. The form of the ZF BF considered herein is also motivated from the block diagonaliza-
tion based precoding technique discussed in [18].

MaMIMO which is originally conceived for sub-6 GHz frequency band is ideal for mmWave
frequency bands also, which is a potential target for future wireless technologies like 5G. The
propagation characteristics at mmWave band is significantly different compared to the sub-6
GHz bands, with limited scattering clusters. An appropriate channel model, in that case, would
be a pathwise MIMO channel model, characterized by few AoA/AoDs, path amplitudes, delay
response, and Doppler shifts. Our work is aimed at providing efficient low complexity and high
performance solutions for estimating the pathwise elements. We propose a Bayesian estimation
approach, denoted as SAVE, which uses techniques from variational inference.

1.2 Organization of the thesis

In this section, we would like to provide a brief overview of the organization of the thesis. This
thesis is divided into three parts justifying the title also. The Part II is about the research topic
on beamforming techniques in MaMIMO. In Chapter 2, we start with an overview of the state of
the art in HBF and motivates the various challenges in tackling HBF design at the BS side. We
then describe in detail the different hybrid beamforming techniques proposed for half-duplex
systems. We do consider a multi-cell multi-user MIMO system and the different BF techniques
proposed are focussed on maximizing the downlink sum rate. In Chapter 3, we start looking at
full-duplex systems, focus being on bidirectional backhaul link between two BSs. We state that
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the existing very few hybrid beamforming designs in the literature avoid more practical hard-
ware impairments at the RF side. We then derive multi-stage BF designs which can also tackle
practical noise models in the RF chain. In both chapters, we do provide simulation results that
depict the superiority of our BF designs compared to the state of the art.

In Chapter 4 of Part II, we look at robust BF designs for MaMIMO systems exploiting co-
variance CSIT. We start with a review of the BFs optimized using a weighted sum rate which
is approximated using the difference of convex functions programming. Further, we look at the
partial CSIT pathwise channel model, where only the path phases (fast fading components) are
unknown. Further, using a MaMIMO limit of the expected weighted sum rate, we derive the
transmit side and receive side BF expressions and finally illustrate the derived results with sim-
ulations. In Chapter 5, we look at a simple scheme to mitigate the pilot contamination effects in
a single cell MaMIMO system. For this purpose, we first propose a rate splitting scheme (where
the messages to UE is split into private and common message parts) and propose an efficient
power allocation scheme by optimizing the sum rate using the difference of convex functions
programming. We also derive exact expressions of SINR under maximum ratio precoding and
the elaborate Monte-Carlo simulations for different scenarios to illustrate the effectiveness of
rate splitting in mitigating pilot contamination (sum rate saturation at high SNR) to an extent.

In Part III, we move to the second aspect covered in this thesis, which is the asymptotic anal-
ysis of MaMIMO systems. In Chapter 6, we start looking at the deterministic equivalents of the
SINR expressions for a simple channel model with multiple of identity covariance matrix, with
the scalar factors (which represents the channel attenuation) are chosen as different for distinct
users. An extreme case of the channel models, but one which allows to analyze the asymptotic
limit expressions easily and provide very intuitive expressions. To analyze this scenario, we pro-
pose a simplified BF scheme called reduced order zero forcing (RO-ZF) and through simulations,
we validate its sum rate performance which is very close to the MMSE based BF solutions. We
derive asymptotic sum rate expressions of optimal BFs, RO-ZF, ZF and ZF-DPC under these sim-
plified channel models. However, one remark here is that the assumed channel model with mul-
tiple of identity covariance matrices for all users is not practical. This particular channel mod-
eling is more appropriate when the users are co-located. Moreover, the analysis (the resulting
deterministic SINR expressions) becomes quite simple and provide intuitive rate expressions.
We further extend the large system analysis to a more complex channel model with different
covariance matrices for different users, which is more practical in a massive MIMO system.

In Chapter 7, we look at large system analysis based on stochastic geometry inspired random-
ization of the user covariance matrices. Firstly, we give a detailed description of the motivation
behind our partial CSIT channel model and then review the BF expressions which are derived
using an upper bound of the expected weighted sum rate. Further, we review and derive the nec-
essary theory using random matrix theory results which will be used throughout the rest of the
chapter for the large system analysis. Further, we derive deterministic equivalents of the signal
and interference powers at various users side and then formulate the sum rate expressions. Fi-
nally, we provide very simplified sum rate expressions for certain special cases at high and low
SNR and also for varying levels of CSIT. Monte-Carlo simulations are then provided which vali-
date the accuracy of our large system expressions.

In the final Part IV, we look at approximate Bayesian inference techniques for sparse Bayesian
learning (SBL). Our main motivation behind this section is to provide low complexity solutions
for SBL and also advance the state of the art w.r.t the theoretical analysis in approximate Bayesian
inference techniques which have wide applicability. In Chapter 8, we start with reviewing the
original SBL algorithm and discuss its high complexity issues. Further, we derive the mean field
variational Bayes based SBL algorithm called space alternating variational estimation (SAVE).
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Through numerical simulations, we validate the superior signal recovery and fast convergence
of SAVE compared to existing fast SBL algorithms. Further, we also extend the SAVE to a time
varying sparse signal where the temporal correlation is modeled using a first order autoregres-
sive process. In Chapter 9, we propose static and dynamic SBL algorithms using a combination
of mean field, belief propagation, and expectaton propagation. Through, Fisher information
matrix (FIM) analysis, we propose an optimal way to partition the variables in a factor graph
such that optimal mean squared error (MSE) performance is obtained. Further, in Chapter 10,
we go one step forward and look at the problem of joint dictionary learning and sparse state vec-
tor estimation. We consider that the dictionary can be structured (but non parameterized), with
a Khatri-Rao or Kronecker factorization applied to the dictionary matrix. Further, combining
tensor algebra and variational Bayesian inference, we propose novel estimation schemes for the
considered problem. We also discuss identifiability issues under structured dictionary matrices.

1.3 Background Information

In this section, we would like to provide some background theory which will be useful also for
anyone who is not an expert in the topics discussed here in, so that he can gain some prerequi-
sites.

1.3.1 Background on Beamforming in MaMIMO

In this thesis, we use beamforming or precoding to represent the same concept. In short, they
represent the usage of an antenna array to transmit one or more spatially directive signals. BF
matrix is designed as a function of the estimated channel such that a directive signal (or a beam)
is formed towards each user canceling the interference from other user’s signals. First, we would
like to mention that in this thesis we are specifically focused towards the weighted sum rate
(WSR) maximization problem for the BF design. In fact, in the literature, we can find several op-
timization criteria such as WSR, SINR balancing (maximize the minimum SINR), weighted sum
energy efficiency (energy efficiency of any user is defined as the ratio of rate and the power con-
sumed per user), etc. In our case, we are specifically interested in maximizing the sum through-
put across the entire network, with the weights chosen to assign certain priorities to users. Even
though we are not interested in optimizing the weights in most of the work proposed here, it
is considered to make it more general. By a broadcast channel (BC), we refer to a communi-
cation system where a single transmitter (BS) sends independent information through a shared
medium to uncoordinated receivers (UEs). An interfering broadcast channel (IBC) refers to a
multi-cell network where each BS serves multiple UEs in its network and the UEs in a particular
cell are impacted by the inter-cell interference also. For a MaMISO IBC, the received signal at
any UE k (assuming the channel between BS and UE k is represented as hk,bk and the BF for user
k is gk , where bk represents the BS to which user k is associated) can be written as

(1.1) yk = pk hH
k,bk

gk xk +
∑
i 6=k

pi hH
k,bi

gi xi + vk , vk ∼N (0,σ2).

Further, the rate of any user k is defined as

(1.2)

Rk = ln(1+γk ),

where γk =
pk |hH

k,bk
gk |2∑

i 6=k
pi |hH

k,bi
gi |2 +σ2

,
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where γk denotes the instantaneous SINR (averaging only over the Gaussian Tx signal xk and
assuming that channel remains constant over the entire coherence interval) for user k. For a
MaMIMO BC, the channel between user k and BS gets represented as Hk and the BF gets de-
noted as Gk , assuming multiple streams can be decoded by the UE k. In this case, the capacity
expression can be represented (assuming independent Gaussian signaling) as [19]

(1.3)
Rk = lndet

(
R−1

k
Rk

)
= lndet

(
I+R−1

k
Hk,bk Gk GH

k HH
k,bk

)
where Rk is the interference plus noise power and Rk is the total signal power received at user k

1.3.2 Alternating Minorization

First, we would like to mention the concept of alternating maximization. We define the vector z
(M−length) to contain all the variables to be optimized by maximizing the scalar function f (z).
The generic iteration steps of an alternating maximization algorithm can be written as

(1.4)

Initialization: z0 given

For t = 1, ...till convergence

For i = 1, .., M

z t
i = argmax

z
f (zt

i−, zi ,zt−1
i+ ).

The above algorithm iterates between the maximization of each of the variables zi . If the objec-
tive function is concave w.r.t each of the variables (while fixing others), it can be easily verified
that the alternating maximization algorithm leads to a local optimum solution, since

(1.5) f (zt ) ≥ f
(
zt

i−, z t
i ,zt−1

i+
)≥ f (zt−1)

Figure 1.2: Concept of Alternating Minorization

The concept of minorization can be explained as follows. At every t th iteration, let us say that
we can find a function g t (z) which possess the following properties:

(1.6)
g t (zt ) = f (zt ),

g t (z) ≤ f (z)
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The introduction of g t (z) is necessary since this surrogate function is much easier to optimize
than the original function f (z). Or in this thesis (for BF optimization), f (z) is a non-concave
function which cannot be optimized using standard convex optimization techniques. Hence, we
formulate an approximate function g t (z) which is concave and hence can be optimized using
conventional convex optimization methods. Moreover, optimization of this approximate prob-
lem leads to updates of z which monotonically increases the original objective function f (z).

(1.7)
f (zt ) = g t (zt ) ≤ g t (zt+1)

≤ f (zt+1).

1.3.3 Background on Compressed Sensing

We start with a linear Gaussian model,

(1.8) y = Ax+v.

Given underdetermined y, A (A is of dimension M × N ), the compressed sensing optimization
problem can be written as

min
x

‖x‖0 subject to y = Ax.

We can recover x and its support for small N −‖x‖0 (small overdetermination if support were
known). In the noisy case, it gets rewritten as

min
x

‖x‖0 subject to
∥∥y−Ax

∥∥
2 ≤ ε.

l0 norm minimization is an NP-hard (non-deterministic polynomial-time hardness) problem.
Hence, there exists other approximate solutions such as LASSO, basis pursuit which relax the
l0 to l1 minimization and thus the problem becomes convex. This convex problems (though
they may not have a closed form solution) can be solved using numerical methods or coordinate
descent strategy.

We will now discuss briefly on the concepts of maximum a posteriori (MAP) or minimum
mean squared error (MMSE) estimation here. MAP estimator is obtained by the global maximum
of p(θ|y), where p(θ|y) represents the posterior distribution of θ.

(1.9) θ̂M AP = argmax
θ

p(θ|y)

While an MMSE estimator is obtained as the θ which minimizes the mean squared error of the
estimation, hence gets formulated as

(1.10) θ̂M MSE = argmax
θ

Eθ|y
(
θ− θ̂(y)

)2

Further it can be derived as [20]

(1.11) θ̂M MSE = E(θ|y)

which is the mean of the posterior distribution.
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Chapter 2

HYBRID BEAMFORMING

As Multi-Input Multi-Output (MIMO) systems allow spatial multiplexing, MaMIMO systems em-
ploy large numbers of antennas at the base station to increase the spectral efficiency of the sys-
tem and possibly simplify beamforming techniques. With a large number of antennas though, it
may not be feasible to have as many RF chains as the antennas due to the increased cost of the
number of RF chains required (which includes Analog- to-Digital and Digital-to-Analog convert-
ers (ADCs/DACs), power amplifiers, and low noise amplifiers). So signal processing techniques
called hybrid beamforming have been developed to take care of the case where the number of
RF chains is less than the number of antennas.

In hybrid beamforming, the baseband precoder or the digital precoder is a low dimensional
matrix which multiplexes the data streams to the number of RF chain which is much less than
the number of antennas. The analog precoder further converts the output from the RF chains
to the number of antennas. This technique was first introduced in [5]. In [5], a phase shifter
constraint(unit modulus) is applied to the analog precoder elements. And the optimal analog
precoder matrix is being derived for the case where there is only one data stream to be trans-
mitted. In this case, the maximum performance is obtained only when there are at least 2 RF
chains.

Most of the prior work on hybrid beamforming assume perfect channel knowledge (CSIT) at
the transmitter. In practice, this is very difficult to obtain at fast fading rate, since for a MaMIMO
system it increases the feedback in the uplink substantially reducing the spectral efficiency. In
[21], a scheme called joint spatial division and multiplexing (which is a two-stage precoding
scheme) is proposed such that a prebeamforming matrix is used which groups the users based
on the spatial channel covariance. Users are separated in the spatial domain through a pre-
beamforming matrix. Users in the same group are further multiplexed through a linear MU-
MIMO precoding which considers the effective channel as that including the prebeamforming
matrix. Some of the prior works on designing the hybrid beamformers are described in [22–25].
In [22], some compressed sensing based schemes are proposed to estimate the channel in a hy-
brid structure utilizing the sparsity of the channel.

In [23], the phase shifter analog precoding matrix is seen as a two-step problem. In the first
step, conditions for an unconstrained analog precoder matrix is derived assuming regularized
ZF precoder for the baseband. Also, it is assumed that in the large system analysis limit, the
SLNR for all users is equal. Also, the ZF precoding for digital beamforming makes it a suboptimal
scheme. Once the unconstrained precoder is obtained, the phase shifter constrained analog pre-
coder is obtained through an iterative algorithm by minimizing the Euclidean distance between
unconstrained and the phase shifter constrained matrices. In [26], various architectures for the
phase shifter matrix of analog precoder are given.

13
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Herein, first we consider the design of analog precoder matrix where all the elements are phase
elements by maximisation of the weighted sum rate. Each element of the phase shifter matrix
(analog precoder) is obtained through an iterative process similar to [24]. But in [24], for the dig-
ital beamformers, the authors assume ZF precoders with effective channels including the analog
precoder. With this approach, WSR problem simplifies to a water-filling algorithm for the power.
For the analog precoder, taking the minimization of power as an objective, they optimize each
element of the analog precoder matrix. Again, this is a suboptimal approach.

2.0.1 Summary of the Chapter

• In this chapter, firstly, for a multi-cell multi-user MIMO, we derive the hybrid digital and
analog beamformers based on the maximization of weighted sum rate (under perfect CSIT)
which is formulated as a weighted sum MSE (WSMSE) problem. The analog precoder is as-
sumed to have all elements with unit modulus (or only phase elements) and each of the
elements in this matrix are optimized iteratively in an alternating optimization fashion, as
also the digital beamformers and auxiliary quantities (receivers and weights).

• Simulations are performed by alternating between joint updating of analog and digital
beamformers using perfect CSIT. Further updating the digital beamformers on uncorre-
lated channel realizations (but with the same covariance) while the analog beamformers
are frozen. Results show that even with the analog precoder based on outdated CSIT, close
to optimal performance (WSR) is attained. This implies that CSIT feedback needs to be
made much less for a large antenna array system. Practically, this is even more of an inter-
est for OFDM system, where we cannot afford to loose throughput due to large feedback
for CSIT. The results suggest indeed that we could afford updating the analog beamformers
only once every so many channel uses across time or frequency in an OFDM system.

• Secondly, we propose a hybrid beamforming design based on the WSR criterion which is
simplified using the minorization approach [27]. The advantage compared to the WSMSE
solution [10] is that the iterative algorithm converges faster (no ping-pong between Tx and
Rx optimization, and direct power optimization).

• We derive conditions under which the HBF can attain the fully digital performance with
sufficient number of RF chains.

• To overcome the issue of local optima, we propose a deterministic annealing approach for
the design of the analog phasors. Simulation results suggest that the proposed alternating
optimization based WSR maximizing algorithm performs better than the state of the art
solutions. Moreover, it is interesting to observe that the proposed DA based HBF design
allows to narrow the gap to fully digital solutions [9].

• Finally, we also extend our HBF designs to more practical amplitude constraints such as
per-RF or per-antenna power constraints (first time in the literature to our best knowledge)
and show that our solutions have better scalability w.r.t the complexity compared to the
existing few state of the art solutions (which are fully digital also).

2.0.2 Phase Shifter Architecture

Before going into the mathematical details of the HBF design, we would like to discuss here about
the two different phase shifting architecture. In the fully connected phase shifting network, see
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Figure 2.1, the feeding signal to each antenna is a weighted (by phasors) combination of the all
the RF chain outputs. It requires Nt M phase shifters. While for a partially connected phase
shifting network as in Figure 2.2, it requires just Nt phase shifters. In a partially connected case,
each RF chain is connected to only a subset of antennas (Lt = Nt

M of them). However, the spectral
efficiency of the partially connected HBF will be degraded compared to a fully connected case
but a lower complexity and we validate this also in the coming simulation results section. It is
also worth mentioning that there exist several other phase shifting architectures in the literature
such as the one using switches instead of phase shifters [26]. However, our focus in this chapter
is to provide a benchmark on the performance of the HBF systems and not look at reducing the
complexity of such systems.

Figure 2.1: Fully Connected HBF

Figure 2.2: Partially Connected HBF

2.1 HBF Design using WSMSE for Multi-User MIMO

Consider a Multi-User MIMO system with N c
t transmit antennas in cell c and K multi-antenna

users. In this section, we shall consider a per stream approach (which in the perfect CSI case
would be equivalent to per user). In an IBC formulation, one stream per user can be expected to
be the usual scenario. In the development below, in the case of more than one stream per user,
we shall treat each stream as an individual user. So, consider an IBC with C cells with a total of K
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users. We shall consider a system-wide numbering of the users. User k is served by BS bk . User
k is equipped with Nk antennas. The Nk ×1 received signal at user k in cell bk can be written as

(2.1)

yk = Hk,bk Vbk gk sk︸ ︷︷ ︸
signal

+Hk,bk Vbk
∑
i 6=k

bi=bk

gi si

︸ ︷︷ ︸
intracell interf.

+ Hk,c Vc
∑

c 6=bk

∑
i :bi=c

gi si︸ ︷︷ ︸
intercell interf.

+vk

where sk is the intended (white, unit variance) scalar signal stream, Hk,bk is the Nk ×N bk
t channel

from BS bk to user k. Hk,bi represents the Nk ×N bi
t channel from BS bi to user k.

BS c serves Uc =∑
i :bi=c 1 users. We considered a noise whitened signal representation so that

we get for the noise vk ∼C N (0, INk ). The N bk
t ×1 spatial Tx filter or beamformer (BF) is gk . The

analog beamformer for base station c, V c is of dimension N c
t × M c . M c is the number of RF

chains at BS c. Treating interference as noise, user k will apply a linear Rx filter fk (of dimension
Nk × 1) to maximize the signal power (diversity) while reducing any residual interference that
would not have been (sufficiently) suppressed by the BS Tx. The Rx filter output is ŝk = fH

k yk ,
hence

(2.2) ŝk = fH
k Hk,bk Vbk gk sk +

K∑
i=1, 6=k

fH
k Hk,bi Vbi gi si + fH

k vk .

The transmit power constraints could be written as

(2.3) tr

(
Vc

(
K∑

i :bi=c
gi gH

i

)
Vbk H

)
≤ Pc

where Pc is the transmit power constraint at BS c.

2.1.1 WSR Optimization in terms of WSMSE

We consider the problem of maximizing the weighted sum rate of the MIMO IBC system. This
could be written as

(2.4)
[
gW SR

1 , ...,gW SR
K , V1,W SR , ...,VC ,W SR

]= argmaxg,V
∑K

k=1 uk Rk .

where the uk are rate weights. In this thesis, we do not consider the optimization of the weights
uk and hence are known. These weights can be used to represent the priority assigned to certain
users. For example, uk = 0 for any user k means k th user’s rate is excluded from the objective
function and k = 1,∀k means (2.4) reduces to sum rate maximization problem. In short, we have
the following constraints on uk .

(2.5) 0 ≤ uk ≤ 1.

Here the optimization is over analog beamformers for C cells and digital beamformers for the K
users. Under Gaussian signaling and optimal single user decoding, rate Rk for user k is defined
as

(2.6) Rk = max
fk

ln
(
1+γk

)
,

where γk is the SINR (Signal to Interference plus Noise Ratio) for user k. It can be written as

(2.7) γk =
∣∣fk Hk,bk Vbk gk

∣∣2∑K
i=1,i 6=k

∣∣fk Hk,bi Vbi gi
∣∣2 + ||fk ||2

.
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Solving the weighted sum rate is equivalent to solving the weighted sum MSE problem from
[9, 28]. Let us define wk (≥ 0) as the weights associated with the MSE of user k. The augmented
cost function for the WSMSE could be written as

W SMSE(V,g, f,w) =
K∑

k=1
uk (wk ek

(
fk ,V,g

) − ln(wk ))(2.8)

+
C∑

c=1
λc

[
tr

(
Vc H Vc

∑
i :bi=c

gi gH
i

)
−Pc

]
,(2.9)

where ek is the MSE, wk is the MSE weight and λc is the Lagrange multiplier associated with the
power constraint at BS c. Let us define the transmit SNR as ρc = Pc . The MSE is

ek
(
fk ,V,g

)= E
[(

sk − fH
k yk

)(
sk − fH

k yk
)H

](2.10)

= 1 − fH
k Hk,bk Vbk gk − gH

k Vbk H HH
k,bk

fk +
K∑

i=1
fH

k Hk,bi Vbi gi gH
i Vbi H HH

k,bk
fk +‖fk‖2(2.11)

assuming E
[|sk |2

]= 1. As in [9, 29], performing alternating optimization leads to solving sim-
ple quadratic or convex functions:

(2.12) min
wk

W SMSE =⇒ wk = e−1
k (fk ,V,g) = 1 + γk

(2.13) min
fk

W SMSE =⇒ fk =
(

K∑
i=1

Hk,bi Vbi gi gH
i Vbi H HH

k,bi
+ I

)−1

Hk,bk Vbk gk

(2.14)

min
gk

W SMSE =⇒ gk =
(

K∑
i=1

ui

ei (fi ,V,g)
Vbk H HH

i ,bk
fi fH

i Hi ,bk Vbk +λbk Vbk H Vbk

)−1

Vbk H HH
k,bk

fk
uk

ek (fk ,V,g)

where an analytical expression can be obtained for the Lagrange multipliers, viz.

(2.15) λc = 1

Pc

∑
i :bi=c

ui

ei (fi ,V,g)
||fi ||2 ,

and the beamformers are rescaled to make sure that the transmit power constraints are satisfied:

(2.16)

gk ← ξbk gk ,

ξc =
√

Pc /
∑

i :bi=c
||Vc gi ||2 .

So the algorithm performs alternating optimization between the MSE weights, the Rx MMSE
filters, and the digital and possibly the analog beamformers for which we shall discuss the opti-
mization now.
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2.1.2 Design of the Analog Beamformer with Perfect CSIT

Given g , f , and w , the analog beamformer V c can be found by performing alternating optimiza-
tion elementwise. Accounting of the unit modulus constraints of the entries of V c can be done
by parameterizing as

(2.17)
∣∣Vc

m,n

∣∣= 1 ⇒ Vc
m,n = e j θc

m,n .

Now, as shown in the Appendix B, the WSMSE can be written as

(2.18) W SMSE = 2ℜ{e jθc
m,n ac

m,n}+"terms not containing θc
m,n"

where the scalar ac
m,n is defined in (24) of Appendix B. Then the minimization of the WSMSE

w.r.t. θc
m,n yields

(2.19) θc
m,n =π−∠ac

m,n .

Note that one phase factor in V c is undetermined, hence example, θc
1,1 = 0. Then (2.19) can be

iterated for the other m = 1, ..., N c
t , n = 1, ..., M c . The complete derivation is given in the Ap-

pendix B. The steps of the complete iterative algorithm are given in table Algorithm 1. There
the Vc are initialized from the M c dominating generalized eigenvectors of the "signal" chan-
nel covariances

∑
k:bk=c Θ

c
k and the "interference" channel covariances

∑
i :bi 6=c Θ

c
i where Θc

k =
E

[
HH

k,c Hk,c

]
. Also, the operation e j∠A for a matrix A takes the elementwise phasors. Various

variations on the alternating optimization updating schedules are possible. For instance, the el-
ements θc

m,n could be updated only once in every sweep of updates of all quantities (as suggested
in the table), or these elements could be iterated separately until convergence before updating
again the other quantities.

2.1.3 Mixed Time Scale Adaptation

In this section, we consider two variants of the WSMSE iterative algorithm shown. In the first
variant, Fast Time Scale Adaptation, the WSR is maximized straightforwardly using Algorithm 1,
using (perfect) instantaneous CSIT for the computation of both analog and digital beamform-
ers V and g. This adaptation is repeated whenever the instantaneous CSIT (the channels Hk,c )
changes.

In the second variant, Mixed Time Scale Adaptation, the overall Fast Time Scale Adaptation
just mentioned gets executed only from time to time, whenever the slow CSIT, here captured by
the channel covariance matrices Θc

k , changes. In between those slow CSIT updates, the digital
beamformers g and all auxiliary quantities, but not the analog beamformers, get updated when-
ever the fast CSIT changes. This can be done using Algorithm 1, in which step 5), the update of
the analog beamformers, gets skipped. Hence, the values of the analog beamformers are frozen
over the slow fading coherence time, whereas only the digital parts get updated at the fast fading
rate. Whenever the slow fading CSIT is considered to have changed, all quantities are updated
using the instantaneous CSIT available at such time instant. No dynamics of the fast or slow
fading processes get exploited. When an update gets performed, all quantities to be updated get
recomputed from scratch. The information in the previous updates gets ignored, except for pro-
viding the initialization values. The initialization mentioned in Algorithm 1 gets performed only
once, at the very first initialization of the whole process.
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Algorithm 1 WSMSE Iterative algorithm

Given: Pc , Hk,c ,uk∀k,c.
Initialization: Vc = e j∠V1:Mc (

∑
k:bk=c Θ

c
k ,

∑
i :bi 6=c Θ

c
i )

The fk are taken as the dominant left singular vector of Hk,bk .
The gk are taken as the MMSEZF precoders for the effective channels fk Hk,c Vc .
Initialize SINR γ(0)

k from (2.7).
Iteration ( j )

1. Update ∀k, e( j )
k , w ( j )

k from (2.12)

2. Update ∀k, f( j )
k from (2.13)

3. Update ∀c, λ( j )
c from (2.15)

4. Update ∀k, g( j )
k from (2.14),(2.16)

5. Update ∀c, ∀(m,n), Vc( j )
m,n from (2.19)

6. Compute ∀k, γ( j )
k , from (2.7)

7. Check for convergence of the WSR, if not go to step 1.

2.2 Hybrid Beamforming for Globally Converging Phasor Design

As we saw in Section 2.1, the main issue with WSR/WSMSE optimization for an HBF hybrid de-
sign is the high non-convexity of the cost function. This implies that even if it is possible to show
convergence to a local optimum [10], convergence to the global optimum cannot be guaran-
teed. To avoid the convergence to a local optimum, [11] proposed Deterministic Annealing (DA)
for digital BF design in the MIMO interference channel.

In this section, we go one step further and consider a multi-stream approach with dk streams
for user k. So, consider an Interfering BroadCast (IBC) (i.e. multi-cell MU downlink) system of
C cells with a total of K users and N c

t transmit antennas in cell c. User k is equipped with Nk

antennas. Hk,c represents the Nk ×N c
t MIMO channel between user k and BS c and we define

E
[

HH
k,c Hk,c

]
= Θc

k . User k receives

(2.20) yk = Hk,bk Vbk Gk sk +
∑
i 6=k

Hk,bi Vbi Gi si +vk ,

where sk , of size dk ×1, is the intended signal stream vector (all entries are white, unit variance).
BS c serves Uc = ∑

i :bi=c
1 users. We are considering a noise whitened signal representation so

that we get for the noise vk ∼ C N (0,INk ). The analog beamformer Vc for base station c is of
dimension N c

t ×M c where M c is the number of RF chains at BS c. The M c×dk digital beamformer

is Gk , where Gk =
[

g(1)
k ... g(dk )

k

]
and g(s)

k represents the beamformer for stream s of user k. The

transmit power constraint at base station c can be written as tr{Vc H Vc ∑K
i :bi=c Gi GH

i } ≤ Pc .
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2.2.1 Alternating Minorization Approach

Consider the optimization of the hybrid beamforming design using WSR maximization of the
Multi-cell MU-MIMO system:

[V G] = argmax
V,G

W SR (G,V)

= argmax
V,G

K∑
k=1

uk lndet
(
R−1

k
Rk

)
,(2.21)

where the uk are the rate weights, G represents the collection of digital BFs Gk , V the collection
of analog BFs Vbk . From [9], we can write,

Rk =
K∑

i=1,i 6=k
Hk,bi Qi HH

k,bi
+ INk ,

Rk =
K∑

i=1
Hk,bi Qi HH

k,bi
+ INk ,

Qi = Vbi Gi GH
i Vbi H(2.22)

where Rk is the interference plus noise covariance matrix.With the definition of the Tx covariance
matrices Qi , the power constraints can be written as,

(2.23)
∑

k:bk=c tr {Qk } ≤ Pc .

The WSR problem is non-concave in the Qk due to the interference terms. Therefore finding the
global optimum is challenging. In order to render a feasible solution, we consider the difference
of convex functions (DC programming) approach as in [30] in which the WSR is written as the
summation of a convex and a concave term. Consider the dependence of the WSR on Qk alone:

W SR(G,V) = uk lndet
(
R−1

k
Rk

)
+ W SRk ,

W SRk =
K∑

i=1, 6=k
ui lndet

(
R−1

i
Ri

)
,(2.24)

where lndet(R−1
k

Rk ) is concave in Qk and W SRk is convex in Qk . Since a linear function is simul-

taneously convex and concave, consider the first order Taylor series expansion of W SRk in Qk

around Q̂ (i.e. all Q̂i ).

W SRk

(
Qk ,Q̂

) ≈ W SRk

(
Q̂k ,Q̂

)− tr
{(

Qk − Q̂k
)

Âk
}

,

Âk = − ∂W SRk

(
Qk ,Q̂

)
∂Qk

∣∣∣∣∣
Q̂k ,Q̂

=
K∑

i=1, 6=k
ui HH

i ,bk

(
R̂−1

i
− R̂−1

i

)
Hi ,bk .(2.25)

Note that the linearized tangent expression for W SRk constitutes a lower bound for it and hence
the DC approach (in Q) is also a minorization approach (in Q or G). Now, dropping constant



CHAPTER 2. HYBRID BEAMFORMING 21

terms, reparameterizing the Qk = Gk GH
k , performing this linearization for all users and augment-

ing the WSR cost function with the Tx power constraints, we get the Lagrangian,

(2.26)

W SR (G,V,λ) =
K∑

k=1
uk lndet

(
I + GH

k Vbk H B̂k Vbk Gk

)
− tr

{
GH

k Vbk H (
Âk +λbk I

)
Vbk Gk

}
+

C∑
j=1

λ j P j ,

where B̂k = HH
k,bk

R̂−1
k

Hk,bk . In what follows, we shall optimize the WSR with perfect CSIT by

alternating optimization between digital and analog beamformers.

2.2.2 Digital BF Design

The gradient w.r.t. Gk of (2.26) (which is still the same as that of (2.4)) leads to the solution as dk

dominant generalized eigenvectors

(2.27) G
′
k = V1:dk

(
Vbk H B̂k Vbk , Vbk H (

Âk +λbk I
)

Vbk

)
,

with associated generalized eigenvalues Σk = Σ1:dk

(
Vbk H B̂k Vbk ,Vbk H

(
Âk +λbk I

)
Vbk

)
. Let Σ(1)

k =
G

′ H
k Vbk H B̂k Vbk G

′
k and Σ(2)

k = G
′ H
k Vbk H Âk Vbk G

′
k . The advantage of formulation (2.26) is that it

allows straightforward power adaptation: introducing stream powers in the diagonal matrices

Pk ≥ 0 and substituting Gk = G
′
k P

1
2

k in (2.26) yields

W SR (P,λ) =
C∑
j
λ j P j +

K∑
k=1

[
uk lndet

(
I+PkΣ

(1)
k

)
− tr{Pk

(
Σ(2)

k +λbk Vbk H Vbk

)
}
]

,(2.28)

the optimization of which leads to the following interference leakage aware water filling (WF)
(jointly for the Pk and λc )

(2.29) Pk =
(
uk

(
Σ(2)

k +λbk Vbk H Vbk

)−1 −Σ−(1)
k

)+
,

where (x)+ = max(0, x) is applied to all diagonal elements, and the Lagrange multipliers are ad-
justed to satisfy the power constraints. This can be done by bisection and gets executed per BS.
Given the digital BFs, we update the analog beamformers Vc . First, we consider the case in which
the analog beamformer is unconstrained.

2.2.3 Design of Unconstrained Analog BF

To optimize Vc , we set the gradient of (2.26) w.r.t. Vc equal to zero. Using the results ∇ lndetX =
tr

(
X−1∇X

)
and det(IM +XY) = det(IN +YX) from [31], we get∑

k:bk =c
B̂k Vc Gk GH

k Wk −
∑

k:bk =c

(
Âk +λc I

)
Vc Gk GH

k = 0,

where Wk = uk

(
I+Gk GH

k Vbk H B̂k Vbk

)−1
.
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Now using vec (AXB) = (
BT ⊗A

)
vec (X) from [31], we get

(2.30)

Vc (a)= unvec (Vmax (Bc ,Ac )) with

Bc =
∑

k:bk =c

((
Gk GH

k Wk
)T ⊗ B̂k

)
,

Ac =
∑

k:bk =c

((
Gk GH

k

)T ⊗ (
Âk +λc I

))
.

In (a) above in (2.70), Vmax (Bc ,Ac ) represents the dominant generalized eigenvector of Bc ,Ac .
vec(X) represents the vectorization of any matrix X (by stacking the columns on top of each
other) and unvec(x) represents the reverse operation which converts the vector x to the ma-
trix X. The unconstrained BF derived here is used in Section 2.2.4.3 to design the deterministic
annealing based analog phasors.

2.2.4 Design of Phase Shifter Constrained Analog Beamformer

Given the digital BFs, the phase shifter analog beamformer Vc for BS c can be found by perform-
ing alternating optimization elementwise. Accounting for the unit modulus constraints of the
entries of Vc can be done by parameterizing as

(2.31)
∣∣∣Vc

p,q

∣∣∣ = 1 =⇒ Vc
p,q = e jθc

p,q .

Since the analog BF is common to all users in a cell c, from (2.26) we can write the WSR as a
function of θc

p,q as

f
(
θc

p,q

)
= ∑

k:bk=c

[
uk lndet

(
I+Ck

p,q e jθc
p,q +Dk

p,q e− jθc
p,q

+Tk,1
p,q

)
− tr

(
Ek

p,q e jθc
p,q +Fk

p,q e− jθc
p,q +Tk,2

p,q

)]
+ cp,q ,(2.32)

where cp,q are terms that are independent of θc
p,q . Also, the summation in (2.32) is over all the

users in cell c. The steps leading to these expressions are derived in Appendix C. The matrices
Ck

p,q ,Dk
p,q are defined in equation (30) of the Appendix C, respectively. The definition of Ek

p,q ,Fk
p,q

is similar to the matrices Ck
p,q ,Dk

p,q , with B̂k replaced by (Âk +λc I). Here Tk,1
p,q

,Tk,2
p,q

are matrices

with terms independent of θc
p,q . Setting the derivative of (2.32) w.r.t. θc

p,q to zero we get

e jθc
p,q

∑
k:bk=c

tr{W̃k Ck
p,q −Ek

p,q } = e− jθc
p,q

∑
k:bk=c

tr{W̃k Dk
p,q −Fk

p,q }

where W̃k = uk

(
I+GH

k Vbk H B̂k Vbk Gk

)−1
.(2.33)

This leads to two extrema for θc
p,q of which the best one needs to be chosen:

(2.34)

θc
p,q = arg max

θc 1
p,q ,θc 2

p,q

f
(
θc

p,q

)
,

θc 1
p,q = −∠a

2
,

θc 2
p,q = π − ∠a

2
,

a =

∑
k:bk=c

tr{W̃k Ck
p,q −Ek

p,q }∑
k:bk=c

tr{W̃k Dk
p,q −Fk

p,q }
.
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Alternating WSR maximization between digital and analog BF now leads to Algorithm 2.

Algorithm 2 Hybrid BF Design via Alternating Minorizer

Given: Pc ,Hk,c ,uk ∀k,c.

Initialization: Vc = e
j∠V1:Mc

(∑
k:bk=c Θ

c
k ,

∑
i :bi 6=c Θ

c
i

)
,

The Gk are taken as the ZF precoders for the effective channels Hk,bk Vbk with uniform powers.
Iteration ( j ) :

1. Compute B̂k , Âk , ∀k from (2.26).

2. Update G
′( j )
k , ∀k, from (2.27).

3. Update Pk and λc , ∀k,c from (2.29).

4. Update
(
Vc

p,q

)( j )
, ∀c, ∀(p, q), from (2.34) (phasor constrained) or from (2.30) (uncon-

strained).

5. Check for convergence of the WSR: if not go to step 1.

2.2.4.1 Mixed time scale HBF

In our first work on hybrid beamforming [10], we considered the hybrid beamforming design
using a weighted sum MSE (WSMSE) based approach and derived a similar iterative algorithm
as above. We consider two variants of the WSMSE iterative algorithm. In the first variant, Fast
Time Scale Adaptation, the WSR is maximized straightforwardly using Algorithm 1, using (per-
fect) instantaneous CSIT for the computation of both analog and digital beamformers V and g .
This adaptation is repeated whenever the instantaneous CSIT (the channels Hk,c ) changes.

In the second variant, Mixed Time Scale Adaptation, the overall Fast Time Scale Adaptation
just mentioned gets executed only from time to time, whenever the slow CSIT, here captured by
the channel covariance matrices Θc

k , changes. In between those slow CSIT updates, the digital
beamformers g and all auxiliary quantities, but not the analog beamformers, get updated when-
ever the fast CSIT changes. This can be done using Algorithm 1, in which step 5., the update of
the analog beamformers, gets skipped. Hence, the values of the analog beamformers are frozen
over the slow fading coherence time, whereas only the digital parts get updated at the fast fading
rate. Whenever the slow fading CSIT is considered to have changed, all quantities are updated
using the instantaneous CSIT available at such time instant. No dynamics of the fast or slow
fading processes get exploited. When an update gets performed, all quantities to be updated get
recomputed from scratch. The information in the previous updates gets ignored, except for pro-
viding the initialization values. The initialization mentioned in Algorithm 1 gets performed only
once, at the very first initialization of the whole process.

2.2.4.2 Hybrid Beamformer Capabilities

In this section, we analyze to what extent a hybrid BF can achieve the same performance as a
fully digital BF. In particular, we shall see that this is possible for a sufficient number of RF chains
and with the antenna array responses being phasors. Consider a specular or pathwise channel
model with say L multi-paths per link. For notational simplicity, we shall consider a uniform L
and Nk = Nr ,∀k. Let the antenna array response for BS c be hc

t (φ) for Angle of Departure (AoD)
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φ. We assume that all entries of hc
t (φ) have the same magnitude. This assumption is necessary

for the following theorem to be valid and it is necessitated by the unit magnitude constraints
on the analog BF. Then the collective Nt ×L multipath Tx array response Ht ,k for the downlink
channel of user k is

(2.35) Hc
t ,k = [

hc
t

(
φk,1

)
hc

t

(
φk,2

)
... hc

t

(
φk,L

)]∗ ,

and the concatenated antenna array response matrix to all users can be written as,

(2.36) H
c
t =

[
Hc

t ,1 Hc
t ,2 ... Hc

t ,K

]
,

of dimension Nt ×Np , where we denote the total number of paths Np = LK . Similarly, we define

H
c
r and A

c
for the concatenated Rx antenna array responses and complex path amplitudes. A

c
is

an Np ×Np block diagonal matrix with blocks of size L ×L and H
c
r is a K Nr ×Np block diagonal

matrix with blocks of size Nr ×L. Finally, we can write the K Nr ×Nt MIMO channel from BS c to
all a users as

(2.37) Hc H = H
c
t A

c H
H

c H
r .

Theorem 1. For a multi-cell MU MIMO system with M ≥ Np and phasor antenna responses, to
achieve optimal all-digital precoding performance, the analog beamformer can be chosen as the
Tx side concatenated antenna array response.

Proof: From [9] or [11, eq. (13)], the optimal all-digital beamformer is of the form

(Hc H Dc
1Hc + λc I)−1Hc H Dc

2 = Hc H Bc

= H
c
t A

c H
H

c H
r Bc

where Bc = (
λc I + Dc

1Hc Hc H )−1
Dc

2 ,(2.38)

Dc
1, Dc

2 are block diagonal matrices and we used the identity (I+XY)−1X = X(I+YX)−1. Under the
Theorem assumptions we can then separate the BFs as

(2.39)
Vc = H

c
t ,

Gc = A
c H

H
c H
r Bc .

Hence V depends only on the Tx antenna array responses. ä
Note that whereas the digital BF G in (2.27) is a function of the instantaneous CSIT, the analog
BF Vc is only a function of AoDs, hence only of the slow fading channel components. This ex-
plains why the outdated CSIT based update for V in a mixed time scale scenario in [10] has a
performance close to that of an instantaneous CSIT update based V. Also, the theorem above
motivates us to use the concatenated antenna array response matrix as the initialization of the
analog BF for the Algorithm 1, when the number of RF chains M is greater than Np or even when
it is not, by taking the M strongest paths.

2.2.4.3 Deterministic Annealing for Global Convergence

In this section, we analyze how to improve the performance of the alternating optimization al-
gorithm proposed (Algorithm 2) in the scenario in which the number of specular paths across all
users exceeds the number of RF chains. In the previous sections, we considered the hybrid beam-
forming design using the WSR cost function which is a non-convex function. Due to which the



CHAPTER 2. HYBRID BEAMFORMING 25

algorithm will converge to different local optima depending on the initialization. So we consider
here one approach called deterministic annealing (DA) to avoid the problem of local optima.
In DA, we use a temperature parameter to track the global optimum with a homotopy method
starting from a convex problem. Starting with a high temperature, where we know the optimal
solution, we slowly decrease the temperature to reach the desired solution. If at the high tem-
perature we know the global optimum value, then if the temperature variations are slow, at the
next value the global optimum will have the previous solution in its region of attraction. For the
analog beamforming design using phasors, simulation results show that it converges to a local
optimum and that it is very sensitive to the initialization used. In DA, we start from the opti-
mal unconstrained V (note that HBF with factored digital and analog BFs has its own convexity
issues that can be resolved with a separate DA strategy as in [11]). Then the gradual forcing of
the amplitude of the unconstrained V entries to 1 allows to approach the global optimum. Here
the amplitude relaxation parameter of each V entry is related to the temperature parameter. Note
that in resulting Algorithm 2, d is some constant smaller than 1, say 0.9. The number of iterations
required is a number of time constants of ed t .

Algorithm 3: Deterministic Annealing for Analog Beamformer

Let Vc
i , j = |Vc

i , j |e
jθc

i , j . Let the unconstrained Vc design (joint Vc and all Gk ) using Algorithm 2
converge first.

1. Scale ∀ (i , j ) : |Vc
i , j |← ed ln |Vc

i , j |.

2. Reoptimize all θc
i , j and all digital BFs using Algorithm 2.

3. Update stream powers and Lagrange multipliers.

4. Go to step 1 for a number of iterations.

5. Finally redo steps 2-3 a last time with all |Vc
i , j | = 1 in 1.

2.2.5 Simulation results

In this section, we evaluate the proposed algorithm using simulation results, which will be lim-
ited to a single cell MISO system. We used a simple channel model similar to [23], which is based
on a uniform linear array (ULA). Assume that there are L multi-path components between a
user and the base station. The channel between the base station and k th user can be written
as hk = ∑L

i=1αk,i at
(
φk,l

)
. Assuming λ/2 as the antenna spacing, the antenna array response is

written as

(2.40) at
(
φ

)= [
1 e jπsin(φ) ... e jπ(Nt−1)sin(φ)

]T
.

The complex path amplitudes are modeled as Rayleigh fading αk,l ∼ C N (0,σ2
αl

), where σ2
αl

is assumed to be from an exponential distribution with parameter 1. The φk,l are taken from a
Laplacian distribution with an angular spread as 10 degrees. These angle values and path powers
are fixed for all channel realizations (slow fading). In each channel realization, what changes is
the complex path gains αk,l (fast fading).
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Figure 2.4: Sum Spectral Efficiency vs No of Users, U = M − 1, M is no of RF Chains. Nt = 32,
SN R = 20dB and L = 6 paths.

Notations used for the figures: oCSIT refers to outdated CSIT, iCSIT means instantaneous CSIT
and CoCSIT implies covariance CSIT. V Fixed in the figures refers to the case where V is fixed to
be the M dominant eigenvectors of the sum of the users channel covariance matrix.

2.2.5.1 BF initializations for the algorithm

In this thesis, for the simulations, corresponding to fully or hybrid beamforming schemes, the
BFs are initialized as follows. We use the concept of deterministic annealing proposed for a fully
digital solution in [32]. At low SNR, an optimal BF solution corresponds to matched filtering.
Starting with this solution for the fully digital BF at low SNR, we optimize the BFs using the alter-
nating minorization concept proposed here. Further, at any SNR, the converged values from the
previous iterations are used as the initialization point. This process is followed in the simulations
of all other chapters (where BF techniques are discussed) in this thesis.
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Figure 2.3: Sum Spectral Efficiency vs No of Users U = M , M is no of RF Chains. Nt = 32, SN R =
20dB and L = 6 paths.
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2.2.5.2 Simulations for WSMSE based HBF

In all the figures, the simulations are done for SN R = 20dB , L = 6. Since single cell, C = 1 and the
number of users is denoted by U .

The sum spectral efficiency (sum of the rates of the U users) is plotted versus the number of
users and compared with the sub-optimal algorithms proposed in [23] and [25] ("‘MUBS Precod-
ing"’, MUBS refers to a multi-user beam steering scheme). In [23], V is computed using covari-
ance CSIT and the g are updated with instantaneous CSIT. The interesting part about our work is
in showing that the analog beamformer need not be adapted at the fast fading rate. For the com-
parison to be fair, the proposed update of the analog beamformer with outdated CSIT and digital
beamformer with instantaneous CSIT is compared with prior works which use covariance CSIT
for V and instantaneous CSIT for g . It is evident from all the figures that our approach based on
Mixed Time Scale WSMSE Adaptation outperforms those of [23] and [25]. In Figure 1, Nt = 32
and the number of users is equal to the number of RF chains (U = M). Simulations are done
for the two variants of CSIT. In the first case, V and g are iteratively updated w.r.t the instanta-
neous channel. In the second case, we consider two realizations of the channels (hk (1),hk (2)).
For hk (1), V and g are updated as per Algorithm 1. For hk (2), the result obtained with hk (1) is
used for V and is not updated, whereas the g are updated. So this is the case of outdated CSIT for
V . The results are averaged over 40 such pairs of channel realizations, each time with the same
channel covariances. From Figure 2.3 we can see that in the second case with outdated CSIT for
V , performance is slightly degraded but still much better than the suboptimal algorithms of [23]
and [25].
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Figure 2.5: Sum Spectral Efficiency vs No of Users, U= M -4, M is no of RF Chains. Nt = 32,
SN R = 20dB and L = 6 paths.

In Figures 2.4 and 2.5, we repeat the same simulation as described above with U = M −1 and
U = M − 4 respectively. It can be seen by comparing Figures 2.3 and 2.4 that when there is an
excess of RF chains over the number of users, the spectral efficiency increases. In Figure 2.6, we
have considered the case where Nt = 64 and U = M . In Figures 2.7 and 2.8, we consider Nt = 64
antennas with U = M −1 and U = M −4 respectively.
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Figure 2.6: Sum Spectral Efficiency vs No of Users, U = M, M is no of RF Chains. Nt = 64, SN R =
20dB and L = 6 paths.
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Figure 2.7: Sum Spectral Efficiency vs No of Users, U = M-1, M is no of RF Chains. Nt = 64,
SN R = 20dB and L = 6 paths.

2.2.5.3 Deterministic Annealing based HBF

In this subsection, we validate the simulation results for our proposed deterministic annealing
based HBF design compared to other state of the art solutions. Notations used in the figure: CoC-
SIT refers to covariance CSIT and EV refers to dominant eigenvectors of the sum of the channel
covariance matrices of all users. We compare the performance of the proposed algorithms with
the WSMSE based fully digital BF [9] (referred to as "WSMSE Fully Digital [Christensen et al]"),
approximate WSR based hybrid design [24] (referred to as "Approximate WSR [Sohrabi, Wei Yu]",
WSMSE based alternating optimization [10] (referred to as "WSMSE HBF") and the covariance
CSIT based scheme [23] (referred to as "V CoCSIT and G R-ZF [S.Park et al]"). "V Random Initial-
ization" refers to the case when Algorithm 1 starts with random phases for the analog BF.
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Figure 2.8: Sum Spectral Efficiency vs No of Users, U = M-4, M is no of RF Chains. Nt = 64,
SN R = 20dB and L = 6 paths.
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Figure 2.9: Sum Rate comparisons for, Nt = 32, M = 16,K = 8,C = 1,L = 4 paths.
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It is evident from the figures that the DA based approach (Algorithm 3) performs significantly
better than just alternating optimization (Algorithm 2) and also the state of the art methods. DA
also has a performance close to the fully digital performance.

2.3 Hybrid Beamforming under Realistic Power Constraints

In contrast to the conventional (sum-)power constraint (SPC) on the base station (BS), this sec-
tion considers a more realistic scenario with additionally per-RF or per-antenna power con-
straints (PRFPC/PAPC). In practice, each RF chain is equipped with a power amplifier and its
linear range of the PA combined with Peak to Average Power Ratio (PAPR) considerations lead
to a power constraint per power amplifier. Another scenario is the case of a distributed system
where a central BS is connected via a high speed backbone network to remote antennas. Fully
digital BF designs with PAPC can be found in [33–36]. [33] focuses on the design of BF vectors
for a MISO system to minimize the per-antenna power while enforcing a set of SINR constraints
for each user. ZF BF design with PAPC are discussed in [34], while [35] utilizes UL/DL dual-
ity of the sum MSE for the precoder design. Existing approaches for this problem are based on
either interior point methods that do not favorably scale with the problem size or subgradient
methods [37] that have a very slow convergence rate. We propose a novel HBF design (for both
fully or partially connected structures) based on the WSR criterion which is simplified using mi-
norization and alternating optimization. To our best knowledge, this is the first work to propose
HBF design under the more realistic scenario of per-RF or per-antenna power constraints. We
propose a novel interference leakage aware water-filling (ILA-WF) for the stream power opti-
mization, even for just SPC, but also augmented with PRFPC or PAPC. We propose to solve the
resulting convex Lagrange dual problem by alternating bisection but may other solutions can be
considered. The ILA-WF allows automatic discovery of the sustainable number of streams per
user in MIMO channels.

There exist two types of phased arrays at mmWave frequencies: (i) passive phased arrays and
(ii) active phased arrays [38]. Though passive phase shifters incur some power loss, they require
only the same number of power amplifiers as RF units, leading to PRFPC considerations. Since
there is a clear trend towards active systems, we also consider PAPC in section 2.3.4. Although
we do not model the power loss (which would complete the picture), simulations show that due
to the reduced number of power constraints, passive systems with PRFPC have some power ef-
ficiency gain over active systems with PAPC. The per-RF power constraints (PRFPC) at BS c can
be written as

(2.41)
∑

k:bk=c

[
Gk GH

k

]
i ,i ≤ ac

i , i = 1, ..., M c ,

where
[
Gk GH

k

]
i ,i

represents the i th diagonal element of Gk GH
k . Further, also total Tx power con-

straints need to be satisfied,
∑

k:bk=c
tr{Qk } ≤ P c . The WSR problem is non-concave in the Qk due

to the interference terms. Therefore finding the global optimum is challenging. To render a fea-
sible solution, we consider constructing a minorizer based on the difference of convex functions
(DC programming) approach. Consider the dependence of WSR on Qk alone.

(2.42)

W SR = uk lndet
(
R−1

k
Rk

)
+ W SRk ,

W SRk =
K∑

i=1, 6=k
ui lndet

(
R−1

i
Ri

)
,
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where lndet
(
R−1

k
Rk

)
is concave in Qk and W SRk is convex in Qk . Since a linear function is si-

multaneously convex and concave, DC programming [30] introduces the first order Taylor series
expansion of W SRk in Qk around Q̂ (i.e. all Q̂i ).

(2.43)

W SRk

(
Qk ,Q̂

) = W SRk

(
Q̂k ,Q̂

)− tr
{(

Qk − Q̂k
)

Âk
}

,

Âk =− ∂W SRk

(
Qk ,Q̂

)
∂Qk

∣∣∣∣∣
Q̂k

=
K∑

i=1, 6=k
ui HH

i ,bk

(
R̂−1

i
− R̂−1

i

)
Hi ,bk .

Note that the linearized tangent expression W SRk constitutes a (touching) lower bound for W SRk
via −tr{R−1∆} ≤ − lndet(R−1(R+∆)) and Rk ≥ Rk . Hence the DC approach is also a minoriza-
tion approach [27], regardless of the (re)parameterization of Q. Now let B̂k = HH

k,bk
R̂−1

k
Hk,bk ,

Ψc = diag
(
Ψc,1, ....,Ψc,M c

)
represents the Lagrange multipliers associated with the per-RF power

constraintsΦc = diag
(
ac

1, ..., ac
M c

)
. Ψ represents the set of allΨc and Λ= diag (λ1, ...,λC ). Then,

dropping constant terms, reparameterizing the Qk as in (2.22), performing this linearization for
all users, and augmenting the WSR cost function with the Tx power constraints, we get the La-
grangian (2.44) which gets maximized alternatingly [27] between digital and analog BF

(2.44)
L (V,G,Λ,Ψ) =

C∑
c=1

λc P c +
C∑

c=1
tr{ΨcΦc } +

K∑
k=1

uk lndet
(
I+GH

k Vbk H B̂k Vbk Gk

)
− tr

{
GH

k

(
Vbk H (

Âk +λbk I
)

Vbk +Ψbk

)
Gk

}
.

2.3.1 Digital BF Design

Maximizing (2.44) w.r.t. Gk leads to the KKT conditions

(2.45) Vbk H B̂k Vbk Gk = (
Vbk H

(
Âk +λbk I

)
Vbk +Ψbk

)
Gk

1
uk

(
I+GH

k Vbk H B̂k Vbk Gk
)

with solution dk dominant generalized eigenvectors (g.e.v.)

(2.46) G
′
k = V1:dk

(
Vbk H B̂k Vbk ,Vbk H (

Âk +λbk I
)

Vbk +Ψbk

)
with eigenvaluesΣk = 1

uk

(
I+GH

k Vbk H B̂k Vbk Gk
)
. The gradient in (2.45), which would be the same

with W SR replaced by W SR, leads to g.e.v. conditions whereas maximizing L in (2.44) leads to
select the dominant g.e.v. Let Sk = G′H

k Vbk H B̂k Vbk G′
k , Wk = G′H

k Vbk H Âk Vbk G′
k , and Tk (λbk ,Ψbk ) =

Wk +G′H
k

(
λbk Vbk H Vbk +Ψbk

)
G′

k . Note that g.e.v. diagonalize Sk , Tk

(
λ

( j−1)
bk

,Ψ( j−1)
bk

)
and Σk (see

further for iteration index ( j )). As g.e.v. are normalized, the stream powers Pk ≥ 0 (diagonal)

need to be optimized separately. But this is straightforward from (2.44): substituting Gk = G′
k P

1
2

k
in (2.44) yields,

(2.47)

L (V,G′,P,Λ,Ψ) =
C∑

c=1

(
λc P c + tr{ΨcΦc }

)+
K∑

k=1

[
uk lndet(I+Sk Pk )− tr{Tk

(
λbk ,Ψbk

)
Pk }

]
.
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2.3.2 Optimization of Power Variables

The optimization of (2.47) w.r.t. Pk leads to the following interference leakage aware water-filling
(ILA-WF)

(2.48)

(
uk

(
Wk +G′H

k

(
λbk Vbk H Vbk +Ψbk

)
G′

k

)−1 −S−1
k

)+ = Po
k

(
λbk ,Ψbk

)
=

(
uk T−1

k

(
λbk ,Ψbk

)−S−1
k

)+
where (X)+ denotes the positive semi-definite part of Hermitian X. We substitute the optimized
power distribution Po

k (λbk ,Ψbk ) in (2.47) yielding the Lagrange dual function

(2.49)

g (Λ,Ψ) =L
(
V,G′,Po (Λ,Ψ) ,Λ,Ψ

)
=

C∑
c=1

gc (λc ,Ψc )

gc (λc ,Ψc ) =λc P c + tr{ΨcΦc } + ∑
k:bk=c

[
uk lndet

(
I+Sk Po

k

)− tr{Tk
(
λbk ,Ψbk

)
Po

k }
]

where we omitted the dependence of g () on V,G′, which are currently fixed in the alternating
optimization process, as we maximize over P. Λ,Ψ should be chosen such that g (Λ,Ψ) is fi-
nite. Further, the non-negativity ofΛ andΨ imposes constraints on the dual objective function.
Formally, the Lagrangian dual problem per cell can be stated as follows:

(2.50) min
λc ,Ψc

gc (λc ,Ψc ) subject to λc ≥ 0,Ψc º 0, ∀c .

Since the dual function gc (λc ,Ψc ) is the pointwise supremum of a family of functions of λc ,Ψc ,
it is convex [39] and the globally optimal value λc ,Ψc can be found by a multitude of convex
optimization techniques. We propose to use the alternating bisection method as in Algorithm 4.

This requires to specify search ranges. We can take the lower bounds
(
λc ,Ψc,i

)
= (0,0). The up-

per bounds are obtained by finding the largest value over users such that the strongest mode of
that user loses power with the corresponding power constraint being the only active one:
λc = max

k:bk=c
(uk Sk −Wk )1,1 /

(
G′H

k VcH Vc G′
k

)
1,1

and Ψc,i = max
k:bk=c

(uk Sk −Wk )1,1 /|(G′
k

)
i ,1

|2. To sim-

plify the description of the method in Algorithm 4, we introduce Ψc,0 =λc . Also,Ψc,ī denotes all
components of Ψc except for Ψc,i and we take some liberty in ordering arguments of gc (). The
complexity could be reduced by reducing the bisection search ranges in consecutive sweeps of
overall alternating optimization sweeps.

With the optimized λbk andΨbk , Po
k

(
λbk ,Ψbk

)
is no longer diagonal. So consider its eigen de-

composition Po
k = Uk Pk UH

k leading to the new diagonal Pk and absorb the unitary Uk : G′
k ←

G′
k Uk . Note that the minorization approach, which avoids introducing Rxs, can at every BF up-

date allow to introduce an arbitrary number of streams per user by determining multiple domi-
nant generalized eigenvectors, and then let the ILA-WF operation decide how many streams can
actually be sustained. Given the digital BFs and the Lagrange multipliers, the analog BF Vc can
be found by alternating optimization.

2.3.3 Design of Unconstrained Analog BF

At first, we consider the case in which the analog BF is unconstrained. Hence the resulting design
would also apply to more general two-stage BF design [40] in which the outer BF stage (Vc ) is in
common to all users in a cell.
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Algorithm 4: Alternating bisection for Lagrange multipliers

Initialization: Ψc,i = 0,Ψc,i ,∀c, i .

for c = 1, ...,C
Repeat until convergence

for i = 0,1, ..., M c

Ψc,i =
(
Ψc,i +Ψc,i

)
/2

if gc

(
Ψc,ī ,Ψc,i

)
< gc

(
Ψc,ī ,Ψc,i

)
, Ψc,i =Ψc,i ,

else Ψc,i =Ψc,i

end for
end for

2.3.3.1 Fully Connected Case

To optimize Vc , we equate the gradient of (2.44) w.r.t. Vc to zero. Using ∂ lndetX = tr
(
X−1∂X

)
and

det(IM +AB) = det(IN +BA) from [31], we get

(2.51)

∑
k:bk =c

(
B̂k Vc Gkζk GH

k − (
Âk +λc I

)
Vc Gk GH

k

) = 0,

with ζk = uk

(
I+GH

k Vbk H B̂k Vbk Gk

)−1
.

Now with vec(AXB) = (BT ⊗A)vec(X) [31], we get

(2.52) Vc = unvec(Vmax (Bc ,Ac )) , with

(2.53)

Bc =
∑

k:bk =c

((
Gkζk GH

k

)T ⊗ B̂k

)
,

Ac =
∑

k:bk =c

((
Gk GH

k

)T ⊗ (
Âk +λc I

))
.

2.3.3.2 Partially Connected Case

As in [26], in a partially connected phase shifting network, each RF chain is connected to a sub-
set of antennas. Assuming each RF chain is connected to Lc

t = N c
t /M c antennas, the analog

precoder matrix can be written as a block diagonal matrix

(2.54) Vc =


vc

1 0 . . . 0
0 vc

2 0
...

...
. . .

...
0 0 . . . vc

M c


where vc

i ∈ CLc
t ×1 (with unit magnitude elements in the phasor case). The advantage of a partially

connected structure is that we need only N c
t phase shifters. But at the cost of degradation in

performance compared to a fully connected structure where there is more phase control. We
define B̃c,k as the N c

t M c×N c
t matrix obtained by concatenating the following subsets of columns:
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(i − 1)N c
t + 1 : (i − 1)N c

t + Lc
t , i = 1, ..., M c of

(
Gkζk GH

k

)T ⊗ B̂k . We define Ãc,i similarly and let

Ṽc = [
vc T

1 ,vc T
2 , ...,vc T

M

]T
. Then optimizing (2.44) w.r.t. Ṽc yields

(2.55) Ṽc = Vmax

( ∑
k:bk =c

B̃c,k ,
∑

k:bk =c
Ãc,k

)
.

Alternating WSR maximization between digital BF and an unconstrained analog BF now leads to
Algorithm 5.

Algorithm 5: Hybrid BF Design via Alternating Minorizer

Given: P c ,Φc ,Hk,c ,uk , ∀k,c.
Initialization: (Vc )(0) = V1:M c (

∑
k:bk=c Θ

c
k ,

∑
i :bi 6=c Θ

c
i ),

The G(0)
k are taken as the ZF precoders for the effective channels Hk,bk Vbk with uniform powers

(from SPC).
Iteration ( j ) :

1. Compute Q̂( j )
k , B̂( j )

k , Â( j )
k , ∀k from (2.22), (2.43), (2.44).

2. Update G
′( j )
k , ∀k, from (2.46).

3. Update λ( j )
c ,Ψ( j )

c ∀c using Algorithm 4 and thus P( j )
k ∀k, from (2.48).

4. Update (Vc )( j ) , ∀c, from (2.52) for fully connected case or from (2.55) for partially con-
nected case.

5. Check for convergence of the WSR: if not go to step 1.

2.3.4 Hybrid Beamforming Design with Per-Antenna Power Constraints

Per-antenna power constraints for HBF can be written as

(2.56)
∑

k:bk=c

[
Vc Gk GH

k Vc H ]
i ,i ≤ ac

i , i = 1, ..., N c
t .

Substituting the above modified power constraints, WSR alternating maximization through mi-
norization leads to the following expressions for the BFs (fully connected case)

(2.57)

G
′
k = V1:dk

(
Vbk H B̂k Vbk ,Vbk H

(
Âk +λbk I+Ψ′

bk

)
Vbk

)
Vc = unvec

(
Vmax

(
Bc ,A′

c

))
,

where A′
c =

∑
k:bk =c

((
Gk GH

k

)T ⊗
(
Âk +λc I+Ψ′

bk

))
,

and Ψ′
c = diag

(
Ψc,1, ....,Ψc,N c

t

)
.

The ILA-WF can be modified similarly. Note that as for PRFPC, the maximum number of power
constraints that can be satisfied with equality is the number of streams (stream powers).



CHAPTER 2. HYBRID BEAMFORMING 35

2.3.5 Algorithm Convergence

The convergence proof of [28] does not apply directly because the power constraints here are
not separable in the BF variables. The ingredients required are minorization [27], alternating
or cyclic optimization [27] (also called block coordinate descent), Lagrange dual function [39],
saddle-point interpretation [39] and KKT conditions [39]. For the WSR cost function W SR(Q) in
(2.42) we construct the minorizer as in (2.43), (2.44) leading to

(2.58) W SR (Q) ≥W SR
(
Q,Q̂

)= K∑
k=1

[
uk lndet

(
I+ B̂k Qk

)− tr{Âk
(
Qk − Q̂k

)
}
]

where W SR
(
Q̂,Q̂

) = W SR
(
Q̂

)
. The minorizer, which is concave in Q, still has the same gradi-

ent as W SR(Q̂) and hence KKT conditions are not affected. Now reparameterizing Q in terms
of P,G′,V as in (2.22), and adding the power constraints to the minorizer, we get the Lagrangian
(2.47). Every alternating update of L w.r.t. V, G′, or (P,Λ,Ψ) leads to an increase of the WSR,
ensuring convergence (within each of these 3 parameter groups, we further alternate between
each user or BS). For the KKT conditions, at the convergence point, the gradients of L w.r.t. V
or G′ corresponds to the gradients of the Lagrangian of the original WSR. For fixed V and G′, L

is concave in P, hence we have strong duality for the saddle point maxP minΛ,ΨL . Also, at the
convergence point the solution to minΛ,ΨL

(
Vo ,G′o ,Po ,Λ,Ψ

)
satisfies the gradient KKT condi-

tion for P and the complementary slackness conditions for c = 1, . . . ,C

(2.59)

λo
c

(
P c − ∑

k:bk=c
tr{VcoG′o

k Po
k G′o H

k Vco H }

)
= 0,

tr{Ψo
c

(
Φo

c −
∑

k:bk=c
G′o

k Po
k G′o H

k

)
} = 0

where all individual factors in the products are nonnegative (and forΨo
c , the sum of nonnegative

terms being zero implies all the terms being zero).
In the proposed approach, g

(
Λ,Ψ|V,G′) = maxP L

(
V,G′,P,Λ,Ψ

)
. In contrast, in [30], La-

grangian duality and alternating optimization are interchanged with dual function
g (Λ) = maxV,G′,P L

(
V,G′,P,Λ

)
(no PRFPC or PAPC), leading to more complex iterations and a

power optimization that is further away from classical water filling.
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2.3.5.1 Simulation results
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Figure 2.11: Sum rates, Nt = 64, M = 16,K = 8,C = 1,L = 4.
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Figure 2.12: Execution time comparison.

It is clear that the proposed unconstrained HBF solution has the same performance as the fully
digital solution. With phase shifter constrained analog precoder, the proposed DA based design
narrows the gap to the fully digital performance and performs much better than state of the art
solutions such as WSMSE which suffer from the issue of local optima. In Fig. 2.11, we compare
our fully digital and HBF designs based on SPC and/or PAPC and/or PRFPC. Imposing PAPC
or PRFPC in addition to the SPC degrades the sum rate but less for PRFPC as there are fewer
constraints. Our digital SPC+PAPC designs performs identically to that in [35]. The optimized
designs for PAPC or PRFPC outperform naive designs in which the SPC BF is scaled down to
satisfy the PAPC or PRFPC constraints, esp. at intermediate SNR.

In Fig. 2.12, for the fully digital PAPC, we compare the execution time in Matlab for the pro-
posed solution to that of the geometric programming (GP) approach in [35] for the power allo-
cation (which is solved using interior point methods). The digital BF computation has similar
complexity (O (N 3

t )) between SMSE in [35] and the proposed solution. The complexity (Nt +1)x
of the alternating bisection is linear in the number of power constraints, where x represents the



CHAPTER 2. HYBRID BEAMFORMING 37

complexity associated with the evaluation of g (Λ,Ψ)). GP has a worst case polynomial time com-
plexity. Faster convergence of the minorization approach compared to the SMSE solution and
the reduced complexity of the alternating bisection vs the GP lead to a much shorter execution
time for the proposed algorithm as shown in Fig. 2.12.

2.3.6 Conclusion

We presented a WSR maximizing algorithm for HBF, with unconstrained amplitude or phasor
analog BF, fully or partially connected, in a Multi-User Multi-Cell MIMO system. First we con-
sidered a mixed time scale approach for HBF with analog BF varied according to the slow fading
and digital BF being changed w.r.t the fast fading or instantaneous CSIT. Later we proved using
theorem 1 that, to reach that of fully digital performance (WSMSE based), analog BF can be cho-
sen as the concatenated antenna array reponse matrix (slow fading components) if the number
of RF chains are greater than the total number of user paths. We considered for the first time the
more realistic scenario of per-RF or per-antenna power constraints for a HBF system. Conver-
gence of the alternating minorization approach was shown and adding deterministic annealing
allowed to attain the global optimum.

2.4 Hybrid Beamforming Design for Multi-User MIMO-OFDM
Systems

We consider a multi-cell MU downlink (i.e. Interfering BroadCast Channel (IBC) ) OFDM system
of C cells with a total of K users. We constrain the total transmit power to be Pc at BS c and
N c

t transmit antennas in cell c. Ns represents the total number of subcarriers which is shared
across all the users. User k is equipped with Nk antennas. The number of streams intended
for user k is dk . Let Hk,c [n] represents the Nk × N c

t MIMO downlink channel between user k

and BS c and we define the channel covariance to be E
(
HH

k,c [n]Hk,c [n]
)
= Θc

k [n]. n represents

the subcarrier index throughout the chapter. It is important to emphasize here that the analog
precoder is assumed to be frequency flat (same for all subcarriers) and digital precoder to be
frequency selective. Note that we consider the Rx to be a fully digital system since Nk is not very
high at the UE. User k receives

(2.60)
yk [n] = Hk,bk [n]Vbk Gk [n]sk [n]+∑

i 6=k
Hk,bi [n]Vbi Gi [n]si [n]+vk [n],

where sk [n], of size dk ×1, is the transmit symbol vector with sk [n] ∼ C N (0,I). bi refers to the

serving base station of user i . BS c serves Uc users and K =
C∑

c=1
Uc . Assuming that yk [n] represent

a noise whitened signal model, we get for the noise vk ∼ C N (0,INk ) (circularly complex Gaus-
sian random vector). The analog BF which is same across all the subcarriers, Vc for base station
c is of dimension N c

t × M c where M c is the number of RF chains at BS c. The M c ×dk digital

beamformer is Gk [n], where Gk [n] =
[

g(1)
k [n] ... g(dk )

k [n]
]

and g(s)
k [n] represents the beamformer

for stream s of user k.

2.4.1 MIMO OFDM Channel Model

In this sub-section, we omit the user and cell indices for simplicity. We consider a geometric
channel model for a mmWave propagation environment [41] with Ls scattering clusters and Lr
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scatterers or rays in each cluster. In a more compact form, we can represent the channel matrix
at a subcarrier n as,

(2.61) H[n] = Hr

D∑
d=1

Ad [n]HH
t , where

where

(2.62)

Hr =
[
hr (θ1,1), ...,hr (θLs ,Lr )

]
,

Ht =
[
ht (φ1,1), ...,ht (φLs ,Lr )

]
,

Ad [n] = diag
(
α1,1p(dTs −τ1 −τr 1), ...,αLs ,Lr p(dTs −τLs −τr Lr )

)
e− j 2π nd

Ns .

Here φs,l ,θs,l represent the angle of departure (AoD) and angle of arrival (AoA), respectively for
the l th path in the s th cluster. hr (·),ht (·) represent the antenna array responses at Rx and Tx
respectively. The complex path gain which is an indicator of the channel power in each path
is modeled as, αs,l ∼ C N (0, Nt Nr

Ls Lr
) and p(τ) is the band-limited pulse shaping filter response

evaluated at τ seconds. Each cluster has a time delay τs ∈R and each ray has a relative time delay
τr l . Note that our HBF design which follows, is applicable for general MIMO channel models
and the channel model outlined here is utilized for the simulations in Section 2.4.7. Another
remark here is that, even though for an HBF system, at the baseband we have access to only the
low-dimensional effective channel resulting from the combination of the propagation channel
and the analog precoder, it is still possible to estimate the individual components in a pathwise
channel model as we consider here, for example [22, 42].

2.4.2 WSR Maximization via Minorization and Alternating Optimization

For the convenience of analysis, we define the Tx covariance matrix as Qi [n] = Vbi Gi [n]Gi [n]H Vbi H .
HBF design using WSR maximization of the multi-cell MU-MIMO OFDM system can be formu-
lated as follows,

(2.63)

[V G] = argmax
V,G

W SR (G,V)

= argmax
V,G

K∑
k=1

uk

Ns∑
n=1

lndet
(
Rk [n]−1Rk [n]

)
,

s.t.
∑

k:bk=c

Ns∑
n=1

tr{Qk [n]} ≤ Pc .

where the uk being the weight for user k (can represent the priority), G represents the collection
of digital BFs Gk [n] and V the collection of analog BFs Vbk . From [9, 28], we can write,

(2.64)

Rk [n] =
K∑

i=1,i 6=k
Hk,bi [n]Qi [n]HH

k,bi
[n] + INk ,

Rk [n] =
K∑

i=1
Hk,bi [n]Qi [n]HH

k,bi
[n] + INk ,

where Rk [n] is the interference plus noise covariance matrix. Further, we utilize the alternat-
ing minorization concept outlined in Section 2.2. The derivation follows the same steps as be-
fore (optimization across the subcarriers can be decoupled) and hence due to repetition can be
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skipped here. We define the following auxiliary variables which appear in the BF expressions.

(2.65)
Âk [n] =

K∑
i=1, 6=k

ui HH
i ,bk

[n]
(
R̂i [n]−1 − R̂i [n]−1)Hi ,bk [n] .

B̂k [n] = HH
k,bk

[n]R̂−1
k

[n]Hk,bk [n].

Also, the resulting Lagrangian from the alternating minorization can be written as

(2.66)

L (G,V,Λ) =
K∑

k=1

Ns∑
n=1

[
uk lndet

(
I + GH

k [n]Vbk H B̂k [n]Vbk Gk [n]
)

− tr{GH
k [n]Vbk H (

Âk [n]+λbk I
)

Vbk Gk [n]}
]
+

C∑
j=1

λ j P j ,

2.4.3 Digital BF Design

By Hadamard’s inequality [43, p. 233], it can be seen that for the maximization problem above,
GH

k [n]Vbk H B̂k [n]Vbk Gk [n] should be diagonal and thus maximizing w.r.t Gk [n] leads to the fol-
lowing dominant generalized eigenvector solution. Also, note that the gradient w.r.t. Gk [n] of
(2.66) is still the same as that of (2.63).

(2.67) G
′
k [n] = V1:dk

(
Vbk H B̂k [n]Vbk ,Vbk H

(
Âk [n]+λbk I

)
Vbk

)
,

with associated generalized eigenvalues Σk [n] = Σ1:dk

(
Vbk H B̂k [n]Vbk ,Vbk H

(
Âk [n]+λbk I

)
Vbk

)
.

λbk represents the Lagrange multiplier associated with the power constraint at BS bk . LetΣ(1)
k [n] =

G
′ H
k [n]Vbk H B̂k [n]Vbk G

′
k [n] and Σ(2)

k [n] = G
′ H
k [n]Vbk H Âk [n]Vbk G

′
k [n]. Intuitively, (2.67) repre-

sents a compromise between increasing the signal part and reducing the interference. Now we
introduce stream powers in the diagonal matrices Pk [n] ≥ 0. The Lagrangian formulation (2.66)

allows us to optimize the stream powers. Further substituting Gk [n] = G
′
k [n]P

1
2

k [n] in (2.66) yields
the following interference leakage aware water filling (WF) (jointly for the Pk [n] and λc )

(2.68) Pk [n] =
(
uk

(
Σ(2)

k [n]+λbk Vbk H Vbk

)−1 −Σ−(1)
k [n]

)+
,

where (X)+ denotes the positive semi-definite part of Hermitian X (so by removing the terms
with negative eigenvalues to zero) and the Lagrange multipliers (per BS) are computed using
bisection to satisfy the power constraints.

2.4.4 Design of Unconstrained Analog BF

At first, we investigate the case in which the analog BF is unconstrained. One remark here is that
the resulting HBF design is also applicable to general two-stage BF design [40], where the higher
dimensional outer BF stage (Vc ) is common to all users in a cell. To optimize Vc , we equate
the gradient of (2.66) w.r.t. Vc to zero. Using the result ∂ lndetX = tr(X−1∂X) and det(IM +AB) =
det(IN +BA) from [31], we get

(2.69)

∑
k:bk =c

Ns∑
n=1

(
B̂k [n]Vc Gk [n]ζk [n]GH

k [n] − (
Âk [n]+λc I

)
Vc Gk [n]GH

k [n]
)
= 0,

with ζk [n] = uk

(
I+GH

k [n]Vbk H B̂k [n]Vbk Gk [n]
)−1

.
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Now with vec (AXB) = (
BT ⊗A

)
vec (X) [31], where ⊗ represents the Kronecker product between

the two matrices, we get

(2.70)

Vc = unvec (Vmax (Bc [n],Ac [n])) , with

Bc [n] = ∑
k:bk =c

Ns∑
n=1

(
Gk [n]ζk [n]GH

k [n]
)T ⊗ B̂k [n],

Ac [n] = ∑
k:bk =c

Ns∑
n=1

(
Gk [n]GH

k [n]
)T ⊗ (

Âk [n]+λc I
)

.

We emphasize here that the extension to the partially connected HBF architecture is quite straight-
forward and we include the comparison of both in Section 2.4.7.

2.4.5 Algorithm Convergence

The convergence proof follows in the same direction as in [44]. For the WSR cost function for a
wideband system, we construct the minorizer as in (2.65), (2.66) leading to

(2.71) W SR(Q) ≥W SR(Q,Q̂) =
K∑

k=1

Ns∑
n=1

[
uk lndet

(
I+ B̂k [n]Qk [n]

)− tr{Âk [n]
(
Qk [n]− Q̂k [n]

)
}
]

,

where W SR
(
Q̂,Q̂

)=W SR
(
Q̂

)
. The resulting minorizer above is a concave function in Q̂ and has

the same gradient as W SR(Q̂). Hence the KKT conditions are unaffected. Now reparameterizing
Q in terms of P,G′,V as in (2.64) and adding the power constraints to the minorizer, we get the
Lagrangian (2.66). Every alternating update of L w.r.t. V, G′, or (P,Λ) increases the WSR since
the approximate problem is a concave function, which ensures convergence within each of these
3 parameter groups and we further alternate between each user or BS. Also, at the convergence
point, the gradients of L w.r.t. V or G′ corresponds to the gradients of the Lagrangian of the
original WSR and hence the KKT conditions remain unaffected. For fixed V and G′, L is concave
in P, hence strong duality is satisfied for the saddle point maxP minΛL . Also, at the convergence
point, the solution to minΛL (Vo ,G′o ,Po ,Λ) satisfies the gradient KKT condition for P and the
complementary slackness conditions for c = 1, . . . ,C

(2.72) λo
c (P c − ∑

k:bk=c

Ns∑
n=1

tr{VcoG′o
k [n]Po

k [n]G′o H
k [n]Vco H } = 0,

where all individual factors in the products are nonnegative. In the proposed approach, g
(
Λ|V,G′)=

maxP L
(
V,G′,P,Λ

)
.

2.4.6 Analysis on the number of RF Chains and HBF Performance

In this section, we derive an analytical solution for the analog phasors to achieve a fully digital
BF performance. In short, we prove that it is possible to achieve using a sufficient number of
RF chains under certain conditions on the MaMIMO channel being considered. For notational
simplicity, we shall consider a uniform L = LsLr and Nk = Nr ,∀k, N c

t = Nt , M c = M ,∀c. Let
us represent the concatenated antenna array response matrix of all user channel from BS c as,

H
c
t =

[
Hc

t ,1 Hc
t ,2 ... Hc

t ,K

]
, of dimension Nt ×Np , where we denote the total number of paths Np =

LK . We define Ac
d ,k [n] as the diagonal path amplitude matrix for the channel from BS c to user

k for subcarrier n. Similarly, we define H
c
r and A

c
[n] = diag

(
D∑

d=1
Ac

d ,1[n], ...,
D∑

d=1
Ac

d ,K [n]

)
of size
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Np ×Np for the concatenated Rx antenna array responses and complex path amplitudes. H
c
r is

a K Nr ×Np block diagonal matrix with blocks of size Nr ×L. Finally, we can write the K Nr ×Nt

MIMO channel from BS c to all a users as Hc H [n] = H
c
t A

c H
[n]H

c H
r .

Theorem 2. Consider a multi-cell MU MIMO OFDM system with the number of RF chains be-
ing less than the total number of paths across all user channels from any BS and assume phasor
antenna responses. In order to achieve optimal all-digital precoding performance, an analytical
solution for the analog beamformer can be obtained as the Tx side concatenated antenna array
response and thus frequency flat assuming no beam squint effect.

Proof: From [9], the optimal all-digital beamformer for any subcarrier n is of the form

(2.73)

(
Hc H [n]Dc

1[n]Hc [n] + λc I
)−1

Hc H [n]Dc
2[n]

= Hc H Bc

= H
c
t A

c H
[n]H

c H
r Bc [n],

where Bc [n] = (
λc I + Dc

1[n]Hc [n]Hc H [n]
)−1

Dc
2[n], Dc

1[n], Dc
2[n] are block diagonal matrices and

we used the identity (I+XY)−1X = X(I+YX)−1. Under the Theorem assumptions we can then
separate the BFs as

(2.74) Vc = H
c
t , Gc [n] = A

c H
[n]H

c H
r Bc [n] .

Hence V is a function of only the frequency flat antenna array responses which are slow fading
components. So it is independent of the subcarrier number and this explains why it is optimal
to consider a frequency flat design for analog BF. However, note that the digital BF G in (2.67)
is a function of the instantaneous CSIT and needs to be updated every channel use in the time
and frequency domain. Also, while the spatial angles in antenna array responses may include a
frequency dependency called beam-squint in the literature [45], we do not consider this factor
at the moment.

For the case when M < Np , we utilize the DA based approach proposed earlier in our work
[46]. We refer the reader for a more detailed discussion on this to our paper. In the below table
Algorithm 6, we describe in detail the HBF algorithm which combines minorization and DA.

2.4.7 Simulation Results

In this section, we validate the performance of the proposed HBF algorithms for a single cell and
multi-cell system (Figure 2.14) with K single antenna users and for an OFDM system with Ns = 32
subcarriers using extensive Monte-Carlo simulations. We use the pathwise channel model in
(2.61). We consider a Uniform Linear Array (ULA) of antennas with ht ,k

(
φc,l

)
, the AoDφc,l are re-

stricted to the interval [0o ,30o] and uniformly distributed. For the multi-cell case in Figure 2.14,
the parameters used are the same for both the cells, i.e. M 1 = M 2 = M , N 1

t = N 2
t = Nt ,U1 =U2 =

K /2,Ls = 1,Lr = 4,D = LsLr . Our system dimensions are such that the number of RF chains
satisfies the condition, M < LK such that alternating optimization of phasors results in local op-
tima issues. For simplicity, a rectangular pulse shape is used. Notations used in the figure: “ABF"
refers to the analog BF. “EV phasors" refers to the HBF design with analog phasors being chosen
as the projection of eigenvectors of the sum of the user channel covariance matrices onto the
unit modulus constraints. We compare the performance of the proposed algorithms with the
WSMSE based fully digital BF [9] (referred to as “WSMSE Fully Digital"), approximate WSR based
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Algorithm 6: Minorization and DA based HBF design

Given: Pc ,Hk,c [n],uk ∀k,c,n, b is a constant < 1, say 0.9.
Initialization: Vc = e j∠V1:Mc (

∑
k:bk=c Θ

c
k [n],

∑
i :bi 6=c Θ

c
i [n]),

The G(0)
k [n] are initialized to be ZF precoders for the effective channels Hk,bk [n]Vbk , with uniform

power distribution across the streams. Iteration ( j ) :

1. Compute B̂k [n], Âk [n], ∀k,n from (2.65), (2.66).

2. Update G
′( j )
k [n] from (2.67), and Pk [n] from (2.68), ∀k,n.

3. Update (Vc
p,q )( j ) , ∀c, ∀(p, q), using DA (phasor constrained) or from (2.70) (uncon-

strained).

4. If the algorithm is converged, exit the loop, otherwise go to step 1.

5. Scale ∀ (i , j ) : |Vc
i , j |← eb ln |Vc

i , j | (Vc
i , j = |Vc

i , j |e
jθc

i , j ).

6. Reoptimize all θc
i , j and all digital BFs using steps 1-4.

7. Update stream powers and Lagrange multipliers.

8. Go to step 5 for a number of iterations.

9. Finally redo steps 6-7 a last time with all |Vc
i , j | = 1 in step 5.

hybrid design [47] (referred to as “HBF with ABF based on Channel Average". For the multi-cell
version of [47], channel average with only the direct user channels in a cell are considered. “HBF
with Alternating Optimization of Phasors" refers to our algorithm in the paper [10], but extended
to an OFDM system.

It is evident from Figure 2.13 and Figure 2.14 that our proposed unconstrained HBF has almost
the same performance as that of the WSMSE based fully digital BF. With phase shifter constrained
analog precoder, the proposed DA based design narrows the gap to the fully digital performance
and performs much better than state of the art solutions such as WSMSE which suffer from the
issue of local optima for analog phasors. Also, the performance degrades for a partially con-
nected architecture compared to the fully connected system. However, it is to be noted that the
complexity of the proposed HBF design is slightly on the higher side and it is O(N 3

t Ni t ), where
Ni t represents the number of iterations required for Algorithm 1 to converge.

In Figure 2.15, we demonstrate the sum SE per subcarrier for 256 subcarriers and with the
delay tap of the frequency selective channel increased to D = 12. Note that we see a slight perfor-
mance degradation for the HBF system w.r.t the fully digital case when the frequency selectivity
is increased. Hence, it is of interest to relook at the HBF design for wideband OFDM system
which can close the gap to the fully digital case.
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Figure 2.13: Sum rate, Nt =32, M =16,K =16,C =1,L=4, Ns = 32.
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2.4.8 Conclusions and Perspectives

Conclusions and Perspectives 1

• In this chapter, we derived and presented an optimal BF algorithm for the HBF sce-
nario in a multi-cell MU-MIMO single carrier and OFDM system.

• We optimized the WSR objective function using a difference of convex functions ap-
proach (which is also an instance of minorization) and the BF solutions are alterna-
tively computed till convergence.

• We noted that alternating optimization of analog phasors using WSMSE or WSR ob-
jective function leads to bad local optima, convergence depends on the initialization
used. Hence, to arrive at a globally optimal phasor design, we proposed an innovative
solution based on the concept of deterministic annealing.

• Convergence to a local optimum is shown and through extensive simulations, we show
that our DA based approach for analog BF design performs far better than the existing
state of the art solutions based on WSMSE or other suboptimal objective functions.

• We would like to remind here that the complexity of our proposed alternating mi-
norization algorithm is very high and may not be much appreciated as a practical
solution. Nevertheless, our solution can act as a performance benchmark for other
suboptimal solutions in the literature. Moreover, it would be advisable to look at a low
complexity solution and under imperfect channel knowledge scenario, which is left as
future work.



Chapter 3

HYBRID BEAMFORMING FOR FULL-DUPLEX SYSTEMS

3.1 Introduction

In-band full-duplex (FD) wireless, which allows each node to transmit and receive simultane-
ously has the potential to double the spectral efficiency and is one of the prominent candidates
for 5G. It avoids the use of two independent channels for bi-directional communication, by al-
lowing more flexibility in spectrum utilization, improving data security, and reduces the air in-
terface latency and delay issues. Unfortunately, it suffers from severe self-interference (SI) which
could be 110 dB higher than the Rx signal power, and canceling it is not a trivial task due to non-
linearities and imperfections in the Tx chains, as identified in [48].

However, advancement in cancellation techniques has made FD operation possible. A com-
bination of analog, digital, and passive SIC techniques is required to reduce SI near the noise
floor, by allowing signal reception with a high signal-to-self-interference-plus-noise ratio. The
first design and implementation of FD WiFi radio were introduced in [49]. In [50], SIC in FD is
investigated experimentally and a practical FD system is proposed. In [51], the authors com-
bine analog and digital SIC techniques and study the effect of residual SI together with clipping
plus-quantization noise due to the limited dynamic range (LDR) of ADCs is studied. The analog
cancellation stage is fundamental to reduce the SI sufficiently to ensure that it does not saturate
the ADCs in the RX chains. Its complexity remains a serious challenge for upcoming massive
MIMO FD scenarios, as it scales very poorly with the number of antennas. As discussed in [52],
the next-generation base stations (BS) will deploy 64-256 antenna elements. Therefore, the ana-
log cancellation stage may become infeasible for upcoming communication scenarios, due to
the large complexity associated. Also, the cost of hardware components required to mimic the SI
signal may become unattractive.

The use of separate Tx/Rx antenna arrays combined with various spatial precoding tech-
niques has also been proposed to mitigate SI. In [53], two sequential convex programming (SCP)
based algorithms for the joint optimization of beamforming (BF) and SIC are proposed. Recent
studies on fully digital BF schemes under LDR using weighted sum rate (WSR) criteria for FD
systems can be found in [54, 55].

3.1.1 Summary of the Chapter

• We propose a two-stage BF design for a bidirectional FD MIMO OFDM system based on
the WSR criterion which is solved using the alternating minorization approach the main

45
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Figure 3.1: Bidirectional FD MIMO OFDM System with Multi-Stage/Hybrid BF. Only a single
node is shown for simplicity in the figure.

advantage of which compared to the weighted sum mean square error (WSMSE) approach
is its faster convergence. The minorization approach also involves user stream power op-
timization which also implicitly selects the number of supportable streams for a user.

• At the Tx side, we propose to use a two-stage BF at the baseband where the higher dimen-
sional precoder is applied to the time domain signal which aims to mitigate the SI and the
lower dimensional precoder in the OFDM domain provides spatial multiplexing gain. At
the Rx side, we introduce an HBF design. The objective of the time domain phase shifter
analog BF stage is to suppress the SI before the ADC while preserving the dimension of the
desired signal space.

• Compared to the only existing state of the art design on HBF for FD systems [56], we con-
sider a more realistic LDR noise model at both the Tx and Rx. Our previous work [57]
on multi-stage BF design for FD systems uses weighted sum mean square error (WSMSE)
based method to design the BFs at Tx/Rx. However, we observe that alternating minoriza-
tion based approach as we consider here leads to much faster convergence than WSMSE
based methods. Moreover, our proposed approach also is readily extendable to a partial
CSIT case and leads to much efficient design than WSMSE under imperfect channel knowl-
edge. Also, we would like to remark that our previous works on HBF [44] are for half-duplex
systems and does not take into account the more practical noise model as LDR which is
considered herein.

• Through Monte Carlo simulations, we validate the performance of our proposed multi-
stage/HBF design. Simulations demonstrate that using an analog combiner stage at Rx
(which operates before the Rx side LDR noise) has better sum rate performance compared
to using a two-stage BF at Tx side for SI nulling.
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3.2 Full-Duplex Bidirectional MIMO System Model

In this chapter, we shall consider a multi-stream approach with d j streams intended for the base
station (BS) j . Two BSs are represented by the indices i and j respectively. So, consider a single

user bidirectional FD backhaul system as depicted in Figure 3.1, with N i
t or N j

t Tx antennas at the
BS i or j , respectively. We may also use index 1 or 2 instead of i or j in the chapter. Furthermore,
we consider an OFDM system with Ns subcarriers. BSs are equipped with N 1

r or N 2
r receive

antennas. Hi , j , i 6= j represents the N i
r ×N j

t MIMO direct channel between node i and node j .
Let Hi ,i represent the SI channel from the Tx of node i to the Rx of node i . User i receives

(3.1)
yi [n] = FRF,i Hi , j [n](V j G j [n]d j [n]+c j [n])

+FRF,i Hi ,i [n](Vi Gi [n]di [n]+ci [n])+ei [n]+FRF,i ni [n],

where d j [n], of size d j ×1, is the intended signal stream vector (all entries are white, unit vari-
ance) to node i . At the Tx side, we have a two-stage beamformer (inner BF, G j of lower dimen-
sion, and an outer BF, V j of higher dimension), both the beamformers being at the digital (base-
band) side. The outer BF will be applied to the time domain signal at the Tx side, so after the
IFFT and it will be common to all the subcarriers. The inner BF will be different for different sub-
carriers. We are considering a noise whitened signal representation so that we get for the noise
ni ∼ C N (0,IN i

r
). The higher dimensional outer precoder V j at Tx of node j is of dimension

N j
t ×M j

t . The digital beamformer is G j which has dimensions M j
t ×d j , where G j =

[
g(1)

j ... g
(d j )
j

]
and g(s)

j represents the beamformer for stream s. ci ,ei represents the noise at the Tx or Rx anten-
nas of node i respectively, which models the effect of LDR. LDR noise at Tx or Rx closely approx-
imates the effects of non-ideal amplifiers, oscillators, and ADCs/DACs. The covariance matrix of
ci is given byαi (αi ¿ 1) times the energy of the transmitted signal at each antenna. ci is approx-

imated as the Gaussian model, ci [n] ∼ C N (0, αi
Ns

diag(
Ns∑

n=1
Qi [n])), where Qi [n] is the Tx signal

covariance matrix at subcarrier n of node i and can be written as Qi [n] = Vi Gi [n]GH
i [n]Vi H and

ci [n] is statistically independent of xi [n]. ei [n] is the LDR noise at the Rx side and can be ap-

proximated as ei [n] ∼ C N (0, βi

Ns
diag(Z)), where Z is the sum of the covariance matrix of the

undistorted Rx signal across all subcarriers [58] assuming the subcarrier signals are decorre-

lated, Z =
Ns∑

n=1
E(zi [n]zH

i [n]),zi [n] = yi [n]− ei [n] and ei [n] is statistically independent of zi [n].

Also, βi ¿ 1. The Tx power (sum of all subcarrier powers) constraint at node j can be written

as
Ns∑

n=1
tr{V j H V j G j [n]GH

j [n] } ≤ P j . We introduce a digital self-interference canceller at the base-

band which subtracts the residual interference signal Hi ,i xi from the received signal. Assuming
that Hi ,i is perfectly estimated at the baseband and since xi is already known to node i , we can
rewrite the received signal at the baseband as

(3.2)
y′i [n] = yi [n]−FRF,i Hi ,i [n]xi [n]

= FRF,i Hi , j [n]x j [n]+vi [n],

where

(3.3) vi [n] = FRF,i Hi , j [n]c j [n]+FRF,i Hi ,i [n]ci [n]+ei [n]+FRF,i ni [n]

is the unknown interference plus noise component after SI cancellation. In this chapter, for our
BF design, we assume that all the channel matrices and scaling factors in (3.1) are known. Also,
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another point worth noting here is that the dependence of the signal model (3.2) on the SI power
is only through the LDR noise and the BF design in the next section try to reduce the LDR noise
significantly.

3.2.1 Channel Model

In this sub-section, we omit the node indices for simplicity. Considering a delay-d geometric
direct channel model for a mmWave propagation environment [41] with Ls scattering clusters
and Lr scatterers or rays in each cluster, we have

(3.4) Hd =
Ls∑

s=1

Lr∑
l=1

αs,l hr (θs,l )ht (φs,l )H p(dTs −τs −τr l )

Here θs,l ,φs,l represent the angle of arrival (AoA) and angle of departure (AoD) respectively for
the l th path in the s th cluster. hr (·),ht (·) represent the antenna array responses at Rx and Tx
respectively. The complex path gain, αs,l ∼ C N (0, Nt Nr

Ls Lr
) and p(τ) represents the band-limited

pulse shaping filter response evaluated at τ seconds. Each cluster has a time delay τs ∈ R and
each ray l = 1, ..Lr has a relative time delay τr l . 1

Ts
represents the sampling rate. The total delay of

any path is dTs −τs −τr l . Now, we write the (m,n)−the element of the channel in the subcarrier
n as

(3.5) H[n] =
D∑

d=1
Hd e− j 2π nd

Ns .

In a more compact form, this can be represented as,

(3.6)

H[n] = Hr

D∑
d=1

Ad [n]HH
t , where

Hr = [hr (θ1,1), ...,hr (θLs ,Lr )],

Ht = [ht (φ1,1), ...,ht (φLs ,Lr )],

Ad [n] = diag(α1,1p(dTs −τ1 −τr 1),αLs ,Lr p(dTs −τLs −τr Lr ))e− j 2π nd
Ns .

Note that our HBF design which follows, is applicable for general MIMO channel models and the
channel model outlined here is utilized for the simulations in Section VI. Further considering
the SI channel, as the distance between the transmit and receive arrays does not satisfy the far-
field range condition, we need to employ the near-field model which has a spherical wavefront.
In such a case, the SI channel coefficients highly depend on the placement of the transmit and
receive arrays and can be written as

(3.7) (Hi ,i )m,n = ρ
rm,n

exp(− j 2π rm,n

λ ),

where rm,n is the distance between m−th element of the receive array and n−the element of the
transmit array and ρ being the SI channel power normalization factor. Note that, (3.7) is a simple
model which does not take into account the mutual antenna coupling or signal reflections in the
SI channel.
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3.3 WSR maximization through WSMSE

Consider the optimization of the two-stage BF/hybrid combiner design using WSR maximization
of the Multi-cell MU-MIMO system:

(3.8)

[V G FRF FBB ] = arg max
V,G,

FRF ,FBB

W SR(G,V,FRF ,FBB )

= argmax
V,G

2∑
i=1

Ns∑
n=1

ui lndet
(
R−1

i
[n]Ri [n]

)
,

where the ui are the rate weights, G represents the collection of digital BFs Gi [n], V the collec-
tion of analog BFs Vi . For the BF design considered in this section, the underlying assumption
is that all the channels are perfectly known at the Rx and Tx side. In addition to this, the Tx sig-
nal covariance matrix E(d j [n]d j [n]H ) = I is assumed to be known at the Rx side. At the receiver,
we apply a hybrid combiner with analog BF denoted by FRF,i of size M i

r ×N i
r , where M i

r repre-
sents the number of RF chains at the Rx side. FBB ,i [n] represent the baseband digital combiner
of size d j ×M i

r . For notational convenience, we define the received signal covariance matrices
Θi , j [n] = Hi , j [n]Q j [n]HH

i , j [n],Φi , j [n] = Hi , j [n]diag(Q j [n])HH
i , j [n]. Similarly the self interence

parts Θi ,i [n],Φi ,i [n] are also defined. The covariance matrix of the effective noise part at the
output of the RF chains, Ri [n] can be approximated under αi ¿ 1,βi ¿ 1 as follows [59]
(3.9)

Ri [n] = FRF,i (α jΦi , j [n]+αiΦi ,i [n])FH
RF,i +βi diag(FRF,i (Θi , j [n]+Θi ,i [n])FH

RF,i )

Also define, Ri [n] = Rī [n]+FRF,iΘi , j [n]FH
RF,i ,

where Ri [n] is the signal plus interference plus noise covariance matrix. Further after the re-
ceive combining, we obtainΣī [n] = FBB ,i [n]Rī [n]FH

BB ,i [n] andΣi [n] = FBB ,i [n]Ri [n]FH
BB ,i [n]. Di-

rect maximization of (3.8), however, requires a joint optimization over the four matrix variables
(V,G,FRF ,FBB ). Unfortunately, finding a global optimum solution for similarly constrained opti-
mization is found to be intractable. So we decouple the joint transmitter-receiver optimization
and focus on the design of the Rx combiners first. We assume that the node i applies the hybrid
combiner Fi [n] = FBB ,i [n]FRF,i to estimate the signal transmitted from node j . The analog com-
biner FRF,i serves to reduce the SI component from the received signal, while the digital com-
biner FBB ,i decouples the streams (d j ) intended for user i from j . The estimated signal d̂ j [n] can
be written as

(3.10) d̂ j [n] = Fi [n]Hi , j [n]x j [n]+FBB ,i [n]vi [n].

At the Rx side, maximizing the WSR is equivalent to minimizing the weighted MSE with the MSE
weights being chosen as Wi [n] = ui Rd̃ j d̃ j

[n]−1 [9,54]. Further, we can obtain the error covariance

matrix for the detection of d j at node i as

(3.11)
Rd̃ j d̃ j

[n] = E{(d̂ j [n]−d j [n])(d̂ j [n]−d j [n])H }

= (Fi [n]Hi , j [n]V j G j [n]− I)(Fi [n]Hi , j [n]V j G j [n]− I)H +FBB ,i Rī [n]FBB ,i [n]H .

The MMSE Rx combiner can be alternatively optimized as follows

(3.12)
[FRF,i , FBB ,i [n], ∀n] = arg min

FRF,i ,FBB ,i [n]

Ns∑
n=1

tr{Rd̃ j d̃ j
[n]},

FBB ,i [n] = GH
j [n]V j H HH

i , j [n]FH
RF,i Ri [n]−1
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Optimization of the digital BF in (3.12) can be done independently across different subcarri-

ers, as it is evident. We define FH
BB ,i [n]FBB ,i [n] = PB ,i [n],

Ns∑
n=1

[(Θi , j [n])T ⊗PB ,i [n]+ ((α jΦi , j [n]+
αiΦi ,i [n])T ⊗PB ,i [n])+ (βi (Θi , j [n]+Θi ,i [n])T ⊗ diag(PB ,i [n])) = Bi . To derive the unconstrained
analog BF matrix, we take the gradient of (3.12) w.r.t F∗

RF,i

(3.13)

Ns∑
n=1

PB ,i [n]FRF,iΘi , j [n]−FH
BB ,i [n]GH

j [n]V j H HH
i , j [n]+

PB ,i [n]FRF,i (α jΦi , j [n]+αiΦi ,i [n])+βi diag(PB ,i [n])FRF,i (Θi , j [n]+Θi ,i [n]) = 0,

Bi vec(FRF,i )
(a)= vec(

Ns∑
n=1

FH
BB ,i [n]GH

j [n]V j H HH
i , j [n]).

Note that the gradient calculation is done through Wirtinger Calculus [60]. In (a), we use the
result vec(AXB) = (BT ⊗A)vec(X) [31]. Further, we obtain the expression for the analog combiner
as

(3.14) vec(FRF,i ) = BH
i vec(

Ns∑
n=1

FH
BB ,i [n]GH

j [n]V j H HH
i , j [n]),

where (·)H represents the pseudoinverse.

3.3.1 Two-stage transmit BF design

In this section, we consider the design of two-stage Tx BFs V j ,G j [n] under a sum power con-

straint at the Tx. To facilitate the gradients, we use the result
∂tr{Adiag (CXD)B}

∂X = [Ddiag(BA)C]T .
The derivations for this gradient result are provided in Appendix D. We propose to design the Tx
BFs using weighted sum MSE and can be formulated as follows

(3.15)

min
Vi ,Gi [n],
V j ,G j [n]

Ns∑
n=1

tr{Wi [n]E(d̂ j [n]−d j [n])(d̂ j [n]−d j [n])H }+

tr{W j [n]E{(d̂i [n]−di [n])(d̂i [n]−di [n])H },

s.t.
Ns∑

n=1
tr{Qi [n]} <= Pi ,∀i .

Here Wi [n] represents the weight matrix of size di ×di . Augmenting the power constraints, the
Lagrangian function can be written as

(3.16)

L =
Ns∑

n=1

2∑
i=1

2∑
j=1, j 6=i

tr{Wi [n](I−GH
j [n]V j H HH

i , j [n]FH
i [n]

−Fi [n]Hi , j [n]V j G j [n]+Fi [n]Hi , j [n]Q j HH
i , j [n]FH

i [n]

+FBB ,i [n]Rī [n]FH
BB ,i [n])}+ (

2∑
i=1

λi (
Ns∑

n=1
tr{Qi [n]})−Pi ),

For convenience of the analysis, we define

(3.17)
A j [n] = FH

j [n]W j [n]F j [n],

Â j [n] = FH
BB , j [n]W j [n]FBB , j [n].
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Taking the partial derivative of (3.16) with respect to the inner BF G j [n], we obtain

(3.18)
−V j H HH

i , j [n]FH
i [n]Wi [n]+V j H HH

i , j [n]Ai [n]Hi , j [n]V j G j [n]

+ tr{FBB ,i [n]H FBB ,i [n]∂Rī [n]}
∂G j [n] + tr{FBB , j [n]H FBB , j [n]∂R j [n]}

∂G j [n] +λ j V j H V j G j [n] =0, where, i 6= j .

Using the expression for Rī [n] in (3.9), we can write

(3.19)

tr{FBB ,i [n]H FBB ,i [n]∂Rī [n]}

∂G j [n]
=α j V j H diag(HH

i , j [n]Ai [n]Hi , j [n])V j G j [n]

+βi V j H HH
i , j [n]FH

RF,i diag(Âi [n])FRF,i Hi , j [n]V j G j [n],

tr{FBB , j [n]H FBB , j [n]∂R j [n]}

∂G j [n]
=α j V j H diag(HH

j , j [n]A j [n]H j , j )V j G j [n]

+β j V j H HH
j , j [n]FH

RF,i diag(Â j [n])FRF,i H j , j [n]V j G j [n],

By substituting (3.19) in (3.18), we obtain the optimal G j [n] as

(3.20) G j [n] = (S j [n]+λ j V j H V j )−1V j H HH
i , j [n]FH

i [n]Wi [n],

where S j [n] can be interpreted as the signal plus interference power seen by the digital BF at the
Tx side and is expressed as
(3.21)

S j [n] = V j H HH
i , j [n]Ai [n]Hi , j [n]V j +α j V j H diag(HH

i , j [n]Ai [n]Hi , j [n])V j

+βi V j H HH
i , j [n]FH

RF,i diag(Âi [n])FRF,i Hi , j [n]V j +α j V j H diag(HH
j , j [n]A j [n]H j , j [n])V j

+β j V j H HH
j , j [n]FH

RF, j diag(Â j [n])FRF, j H j , j [n]V j

The values of the Lagrangian multipliers λ j ≥ 0,∀ j are chosen such that the respective power
constraint is satisfied (3.15). To compute this, we follow a similar approach as in [28] but ex-
tended to two-stage BF here. Considering the eigen decomposition of S j [n] = U jΛ j [n]UH

j ,V j H V j =
U j∆ j UH

j and let

(3.22) Φ[n] = UH
j V j H HH

i , j [n]FH
i [n]Wi [n]Wi [n]H Fi [n]Hi , j [n]V j U j

and expanding the power constraint

(3.23)
Ns∑

n=1
tr{V j G j [n](λ j )GH

j [n](λ j )V j H } = P j ,

we get the simplified expression

(3.24)
Ns∑

n=1

M j
t∑

k=1

Φ[n]k,k (∆ j )k,k

((Λ j [n])k,k+λ j (∆ j )k,k )2 = P j .

Here Xk,k represents the k th diagonal element of the matrix X. Note that the λ j ≥ 0 and the left-
hand side of (3.24) is a decreasing function of λ j for λ j > 0. Hence we can compute the values
of λ j using one-dimensional linear search techniques such as bisection. Further, we consider
the optimization of the outer BF at the Tx side, V j . Given the inner BFs, we update the outer
beamformers V j . Taking the partial derivative of (3.16) with respect to the inner BF V j , we obtain

(3.25)
−HH

i , j [n]FH
i [n]Wi [n]GH

j [n]+HH
i , j [n]FH

i [n]Wi [n]Fi [n]Hi , j [n]V j G j [n]GH
j [n]

+ tr{FBB ,i [n]H FBB ,i [n]∂Rī [n]}
∂V j [n]

+ tr{FBB , j [n]H FBB , j [n]∂R j [n]}

∂V j [n]
+λ j V j G j [n]GH

j [n] = 0,where, i 6= j .
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For notational convenience, we define PG , j [n] = G j [n]GH
j [n]. Using the expression for Rī [n] in

(3.9), we can write

(3.26)

tr{FBB ,i [n]H FBB ,i [n]∂Rī [n]}

∂V j [n]
=α j diag(HH

i , j [n]Ai [n]Hi , j [n])V j PG , j [n]

+βi HH
i , j [n]FH

RF,i diag(Âi [n])FRF,i Hi , j [n]V j PG , j [n],

tr{FBB , j [n]H FBB , j [n]∂R j [n]}

∂V j [n]
=α j diag(HH

j , j [n]A j [n]H j , j [n])V j PG , j [n]

+β j HH
j , j [n]FH

RF, j diag(Â j [n])FRF, j H j , j [n]V j PG , j [n]],

By substituting (3.26) in (3.25) and using the result vec(AXB) = (BT ⊗A)vec(X), we obtain the
optimal V j as
(3.27)

vec(V j ) = BH
j

Ns∑
n=1

HH
i , j [n]FH

i [n]Wi [n]GH
j [n], where

B j =
Ns∑

n=1
(PG , j [n]⊗HH

i , j [n]Ai [n]Hi , j [n])+α j PG , j [n]⊗ diag(HH
i , j [n]Ai [n]Hi , j [n])

+βi PG , j [n]⊗HH
i , j [n]FH

RF,i diag(Âi [n])FRF,i Hi , j [n]+α j PG , j [n]⊗ diag(HH
j , j A j H j , j [n])

+β j (PG , j [n]⊗ (HH
j , j [n]FH

RF, j diag(Â j [n])FRF, j H j , j [n])).

Alternating WSR maximization between digital and analog BF or the two-stage BFs at Tx/Rx
now leads to Algorithm 7. We remark that we propose to either use a two-stage BF at Tx or hy-

Algorithm 7: LDR Multi Stage BF Design via WSMSE

Given: Pi ,Hi , j ,Hi ,i ,ui ∀i , j .
Initialization: FRF,i = e j∠V1:Mi (Ht ,i , j ), The Gi are taken as the ZF precoders for the effective chan-
nels Vi H j ,i with uniform powers.
Iteration (t ) :

1. Update the Rx side HBF, i.e F(t )
BB ,i [n],F(t )

RF,i∀i using (3.12), (3.14) respectively.

2. Update G′ (t )
i [n] , ∀i , from (3.20).

3. Update Vi (t ),∀i from (3.27) and λi using bisection method from (3.24).

4. Check for convergence of the WSR: if not go to step 1.

brid combiner at the Rx to null the SI power and both stages are not required if the antenna or
BF/combiner dimensions are sufficient as discussed in Section 3.3.2.

Directly optimizing the phasor values of the analog combiner alternatively using the WSR cost
function, which is a non-convex function, results in a lot of local optima depending on the ini-
tialization [10]. So we utilize here one approach called deterministic annealing (DA) to avoid the
problem of local optima and it is discussed in detail in our papers [44, Algorithm 3], [46].

3.3.2 Hybrid Combiner/Two-Stage BF Capabilities for SI Power Reduction

In this section, we analyze to what extent a hybrid combiner can achieve the same performance
as a fully digital BF and reduce the LDR noise originating from both the direct and SI channels.
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In particular, we shall see that this is possible for a sufficient number of RF chains and with the
arbitrary antenna array responses. Consider a specular or pathwise channel model with say Ld

multi-paths per link for the direct channel and L I for the SI channel. For notational simplicity,
we shall consider a uniform Ld ,L I and Nk = N i

t = N i
r ,∀i .

Theorem 3. For a bidirectional full-duplex MIMO system with the number of Rx RF chains M i
r ≥

Ld or the number of Tx RF chains M i
t >= Ld and arbitrary antenna responses for the direct chan-

nel, to achieve optimal all-digital precoding performance at high SNR and mitigation of LDR
noise, the unconstrained analog combiner or the time domain Tx BF can be chosen as matched
filtered to the direct link channel projected on the orthogonal complement of the low rank SI chan-
nel.

Proof: From [9] or [11, eq. (13)], the optimal all-digital beamformer is of the form

(3.28)

Fi [n] = GH
j [n]V j H HH

i , j [n](Hi , j [n]Q j [n]HH
i , j [n]+Rī [n])−1

= GH
j [n]V j H Ht ,i , j

D∑
d=1

Ad ,i , j [n]H HH
r,i , j (Hi , j [n]Q j [n]HH

i , j [n]+Rī [n])−1,

where Rī [n] is the interference plus noise power received. For the mmWave channel model (3.6),
when Nk →∞, the terms of the form Hi , j [n]Q j [n]HH

i , j [n] can be simplified as

(3.29)

Hi , j [n]Q j [n]HH
i , j [n] = Hr,i , j (

D∑
d=1

Ad ,i , j [n])HH
t ,i , j Q j [n]Ht ,i , j (

D∑
d=1

AH
d ,i , j [n])HH

r,i , j

(a)= 1

N j
t

Hr,i , j (
D∑

d=1
A2

d ,i , j )tr{Q j [n]}HH
r,i , j ,

where
D∑

d=1
A2

d ,i , j =
D∑

d=1
Ad ,i , j [n]AH

d ,i , j [n] is independent of the subcarrier index. In (a), we made

the assumption that the Tx array response becomes asymptotically orthogonal. Further as-
suming that at high SNR the power transmitted across each subcarrier becomes same, then

tr{Q j [n]} = P j

Ns
and thus Hi , j [n]Q j [n]HH

i , j [n] becomes independent of the frequency. Similarly
Rī [n] also becomes independent of the frequency since the terms in Rī [n] are also of similar
form as Hi , j [n]Q j [n]HH

i , j [n]. We denote Ri = Hi , j [n]Q j [n]HH
i , j [n]+Rī [n]. Thus we can separate

the BFs as

(3.30)

FRF,i = HH
r,i , j R−1

i ,

FBB ,i [n] = GH
j [n]V j H Ht ,i , j

D∑
d=1

Ad ,i , j [n] .

Similarly, considering the Tx side BF design, the optimal fully digital BF can be written as (3.20)

(3.31) G j [n] = (S j [n]+λ j I)−1HH
i , j [n]FH

i [n]Wi [n],

As N i
r → ∞ and substituting the pathwise model for the direct channels similar to the discus-

sions above, we can observe that the quadratic term (
D∑

d=1
Ad ,i , j [n]H )HH

r,i , j Ai Hr,i , j (
D∑

d=1
Ad [n]) =

Pi
r [n], where Pi

r [n] can be interpreted as the effective received power in subcarrier n, Pi
r [n] =

1
N i

r
(

D∑
d=1

Ad ,i , j [n]2)trAi . (
D∑

d=1
Ad ,i , j [n]2) is independent of the subcarrier index (3.6) and hence ef-

fective received power in all the subcarrier becomes the same in the large antenna limit. Further,
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substituting the (
D∑

d=1
Ad ,i , j [n]H )HH

r,i , j Ai Hr,i , j (
D∑

d=1
Ad [n]) in (3.21), we can see that S j [n] is inde-

pendent of the subcarrier index. Further defining Ŝ j = S j [n]+λ j I, we obtain, V j = Ŝ−1
j Ht ,i , j and

G j = (
D∑

d=1
Ad ,i , j [n]H )HH

r,i , j [n]FH
i [n]Wi [n]. Hence we can conclude that V j ,FRF, j depends only on

the Tx/Rx antenna array responses. ä
Note that whereas the digital BF or combiner G,FBB in (3.30) is a function of the instantaneous
CSIT, the analog combiner FRF or the outer precoder V is only a function of antenna array re-
sponses of the direct and SI channels, hence only of the slow fading channel components. Hence
analog BF can be the same across all the subcarriers. We also remark that at high SNR, R̂i or Ŝ j

converges to the projection matrix for the null space of the SI channel’s Rx or Tx antenna array
response matrix respectively. We remark that the main advantage of adding an analog BF stage is
to suppress the SI before reaching the ADC and still preserving the signal dimensions by choos-
ing a sufficient number of RF chains. Also, note that the analytical analog BF solution discussed
here is unconstrained and further it requires the DA method to reach a phasor BF solution.

3.3.3 Simulation Results

Extensive Monte-Carlo simulations are conducted to validate the performance of the proposed
hybrid BF algorithms that are presented for a bidirectional FD system under the LDR noise
model. We follow the pathwise channel model Hi , j as in Section II.A, where the complex path
gains are assumed to be Gaussian with variance distributed according to an exponential profile.
For the SI channel, we ignore the near field effect of amplitude variation with distance and the
near field effects in the phase variation. In the Uniform Linear Array (ULA), the AoD or AoA φ,θ
are assumed to be uniformly distributed in the interval [0o ,30o].
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The dimensions of the two-stage BF and hybrid BF are such that the zero forcing capabilities
at both sides are comparable. However, the number of LDR noises is the number of antennas
at the Tx side, whereas, for the analog Rx stage, the number of LDR noises is the number of
analog BF outputs, which is less. We conjecture that the analog BF reduces the LDR noise to a
significant level and this would explain the better performance of the analog stage at Rx (in both
figures) compared to the two-stage architecture at Tx. In Figure 3.2, we compare against the
eigen beamforming (where the left and right singular vectors of the corresponding channels are
used as the Combiner/BF and fully digital) and shows that its performance is inferior compared
to our proposed design. However, one issue which remains to be investigated is shown by the
performance in Figure 3.4, where we extend the number of subcarriers to 256. For higher number
of subcarriers, the performance decrease due to the usage of common hybrid or time domain BF
across all the subcarriers. It has to be mentioned that most of the state of the art works on hybrid
beamforming solution (for half duplex systems) assumes a common hybrid beamforming stage
for all subcarriers and hence it remains as an open problem for wideband OFDM systems to
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design an efficient HBF solutions for large number of subcarriers.

3.3.4 Conclusion

In this chapter, we looked at beamforming solutions to null the SI power under a more practical
noise model called as limited dynamic range. We proposed a multi-stage beamforming design
(whose performance is validated through simulations), with a frequency flat analog or time do-
main combiner/BF stage and a frequency dependent baseband precoder/combiner. We decou-
pled the beamforming design for the Tx and Rx side. An iterative algorithm is obtained which
jointly optimizes both analog/time domain and digital beamformers at the Tx/Rx side. We also
discussed the dimensions of the BFs or combiners designed (for example, the minimum number
of RF chains required) such that the SI power can be mitigated fully at high SNR.

3.4 Robust Beamforming Design under Partial CSIT

Note that Ĥi ,i is the estimated SI channel at the baseband and since xi is already known to node
i , we can rewrite the received signal at the baseband as

(3.32)
y′i [n] = yi [n]−FRF,i Ĥi ,i [n]xi [n]

= FRF,i Hi , j [n]x j [n]+vi [n],

where vi [n] = FRF,i (Hi , j [n]c j [n]+Hi ,i [n]ci [n])+ ei [n]+FRF,i H̃i ,i [n]xi [n]+FRF,i ni [n] is the un-
known interference plus noise component after SI cancellation. Note that our BF design under
partial CSIT proposed here is applicable only for flat fading Kronecker channel models (details
of the channel model follows later). Considering the SI channel, as the distance between the
transmit and receive arrays does not satisfy the far-field range condition, we need to employ the
near-field model which has spherical wavefront, see example [57]. Further, we assume that at
both nodes, we have available a deterministic least squares (LS) channel estimate, which can be
parametrized as follows

(3.33)
ĤLS = H+ H̃LS ,

H = C1/2
r Hv C1/2

t .

where each element of the estimation error matrix, H̃LS is distributed as circularly symmet-
ric complex Gaussian random variable, H̃LS ∼ C N (0, σ̃2I) and also each element of Hv is dis-
tributed as ∼ C N (0,1). Also, H̃LS is independent of H. Note that throughout the thesis, wher-
ever we consider partial CSIT, we start from a deterministic LS estimate. How can we arrive at
this? This can be arrived at after an LS estimate of the DL channel from the received signals in the
pilot transmission phase. Assuming TDD reciprocity, the DL channel can be estimated using UL
pilots. During the pilot transmission, assuming that all the UEs use orthogonal pilot sequences
(with SSH = INr under the condition that τp ≥ Nr )

(3.34) Yp = HH S+N.

After doing an LS estimate

(3.35) Yp SH = HH +NSH ,

where NSH has the same statistical distribution as N and Yp SH = ĤH
LS . The positive semidefinite

matrices Cr ,Ct represent the Rx and Tx side covariance matrices respectively. Assuming that
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the full covariance information is known at both the nodes, we can construct an MMSE channel
estimate for vec(H) = (C1/2

t ⊗C1/2
r )vec(Hv ) as follows (Ĥ representing the MMSE estimate)

(3.36) (Ct ⊗Cr )(Ct ⊗Cr + σ̃2I)−1vec(ĤLS) = vec(Ĥ).

More detailed derivation of the LMMSE estimate under Kronecker channel model described
above (3.36) appears in the Appendix A. However, one question here is that how would doing an
MMSE estimate from the LS channel estimate perform compared to doing an MMSE estimate
directly from the received signals in the pilot transmission phase (equation (3.34)). In fact, it can
be shown that LS estimate is a sufficient estimate for MMSE estimate of the channel from (3.34).
The proof for this appears in [61, Appendix C.2.1]. To simplify further, we consider the eigen de-
composition of Ct = UtΛt UH

t ,Cr = UrΛr UH
r . It is straightforward to show that (Ct ⊗Cr +σ̃2I)−1 =

(Ut⊗Ur )[Λt⊗Λr +σ̃2INt ⊗INr ]−1(UH
t ⊗UH

r ). It follows from using the identity (A⊗B)−1 = A−1⊗B−1,
if A−1,B−1 exists. Further, we can simplify (Ct ⊗Cr )(Ct ⊗Cr + σ̃2I)−1 = (Ut ⊗Ur )(Λtr )(UH

t ⊗UH
r ),

where Λtr = (Λt ⊗Λr )[(Λt ⊗Λr )+ σ̃2INr Nt ]−1. We define Λ′
tr = [(Λt ⊗Λr )+ σ̃2INr Nt ]−1. Λtr =

Nt∑
i=1

(Λt )i ,i (ei eH
i ) ⊗ (ΛrΛ

′
tr,i ). We denote Λ′

tr,i or Λtr,i as the diagonal matrix which forms i th

Nr × Nr block of Λ′
tr or Λtr . Here (A)i ,i represents the i th diagonal element of any matrix A.

Further we can write

(3.37)

Ĥ =
Nt∑

i=1
Ĉr,i HLS Ĉt ,i ,

Ĉt ,i = Ut Λ̂t ,i UH
t ,

Ĉr,i = Ur Λ̂r,i UH
r ,

Λ̂t ,i = (Λt )i ,i (ei eH
i ),

Λ̂r,i =ΛrΛ
′
tr,i .

The estimation error covariance matrix can be obtained as

(3.38) (Ct ⊗Cr )− (Ct ⊗Cr )(Ct ⊗Cr + σ̃2I)−1(Ct ⊗Cr ),

which gets simplified as
Nt∑

i=1
C̃t ,i⊗C̃r,i , where C̃t ,i = (Λt )i ,i Ut (ei eH

i )UH
t , C̃r = Ur (Λr (INr −Λtr,i ))UH

r .

Thus we finally obtain the estimation error as, H̃ =
Nt∑

i=1
C̃r,i H̃v C̃t ,i and H = Ĥ+ H̃. In the massive

MIMO limit, where Nr , Nt →∞, we get convergence for any terms of the form HQHH as below
[62]. This result gets used extensively in the following sections.

(3.39) HQHH M→∞−−−−→
a.s

EH|ĤHQHH = ĤQĤH + tr{QC̃t }C̃r .

3.4.1 EWSR maximization through alternating minorization

In this section, consider the optimization of the two-stage BF/hybrid combiner design using
WSR maximization of the Multi-cell MU-MIMO system. Since the CSIT is imperfect, we con-
sider here the optimization of the ergodic capacity. First, the WSR is averaged over the channels
given a particular channel estimate, which leads to a cost function in the MaMIMO limit and it is
denoted as Expected Signal and Interference Power WSR (ESIP-WSR). ESIP-WSR is optimized to
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compute the BFs and then it is again averaged over the channel estimates, to evaluate the final
ergodic WSR. The results in this section are discussed in our paper [63].

(3.40)

[V G FRF FBB ] = arg max
V,G,

FRF ,FBB

EW SR(G,V,FRF ,FBB )

= argmax
V,G

2∑
i=1

Ns∑
n=1

EH|Ĥ(ui lndet
(
R−1

i
[n]Ri [n]

)
)

= argmax
V,G

2∑
i=1

Ns∑
n=1

(ui [lndet
(

EH|ĤRi [n]
)
)− lndet

(
EH|ĤRi [n]

)
)]

= ESI P −W SR (G,V,FRF ,FBB ) ,

where the ui are the rate weights (used to denote priorities assigned to users, refer Section 2.1.1
for more details), G represents the collection of digital BFs Gi [n], V the collection of analog BFs
Vi . We remark that in the massive MIMO limit, the ESIP-WSR represents an upper bound as is
shown in [64] (also in Chapter 7), where the channels are MISO. However, to extend the same for
the MIMO case is straightforward and involve the same argument that the interference power
converge to its expectation and further using the Jensen’s inequality. At the receiver, we apply
a hybrid combiner with analog BF denoted by FRF,i of size M i

r × N i
r , where M i

r represents the
number of RF chains at the Rx side. FBB ,i represent the baseband digital combiner of size d j×M i

r .
The covariance matrix of vi [n], Ri [n] can be approximated under ki ¿ 1, li ¿ 1 as follows [59]
(3.41)

Ri [n] = k j FRF,i Hi , j [n]diag(Q j [n])HH
i , j [n]FH

RF,i +ki FRF,i Hi ,i [n]diag(Qi [n])HH
i ,i [n]FH

RF,i

+ li diag(FRF,i Hi , j [n]Q j [n]HH
i , j [n]FH

RF,i )+ li diag(FRF,i Hi ,i [n]Qi [n]HH
i ,i [n]FH

RF,i )

+FRF,i H̃i ,i [n]Qi [n]H̃i ,i [n]H FH
RF,i +FRF,i FH

RF,i ,

Also, Ri [n] = Rī [n]+FRF,i Hi , j [n]Q j [n]HH
i , j [n]FH

RF,i ,

where Ri [n] is the signal plus interference plus noise covariance matrix. For notational simplic-
ity, we define Ĥi , j [n]Q j [n]ĤH

i , j [n] = Θ̂i , j [n], which can be interpreted as the effective Rx signal
covariance matrix before the analog combiner given a particular channel estimate. Also,

(3.42)

Ĥi , j [n]diag(Q j [n])ĤH
i , j [n] = Ψ̂i , j [n],

Θ̂i , j [n]+ tr{Q j [n]C̃t ,i , j }C̃r,i , j =Θi , j [n],

Ψ̂i , j [n]+ tr{diag(Q j )C̃t ,i , j }C̃r,i , j =Ψi , j [n].

Further, we obtain the expected signal and interference plus noise power (Ri [n]) and expected
interference plus noise power (Ri [n]) as

(3.43)

Ri [n] = k j FRF,iΨi , j [n]FH
RF,i +ki FRF,iΨi ,i [n]FH

RF,i

+ li diag(FRF,iΘi , j [n]FH
RF,i )+ li diag(FRF,iΘi ,i [n]FH

RF,i )

+ tr{Qi [n]C̃t ,i ,i }FRF,i C̃r,i ,i FH
RF,i +FRF,i FH

RF,i ,

Also, Ri [n] = Rī [n]+FRF,iΘi , j [n]FH
RF,i .

Direct maximization of (3.40), however, requires a joint optimization over the four matrix vari-
ables (V,G,FRF ,FBB ). Unfortunately, finding a global optimum solution for similarly constrained
optimization is found to be intractable. So we decouple the joint transmitter-receiver optimiza-
tion and focus on the design of the Rx combiners first. We assume that the node i applies the
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frequency selective hybrid combiner FBB ,i [n] at the output of the Rx RF chains and after the IFFT,
to estimate the signal transmitted from node j . The analog combiner FRF,i serves to reduce the
SI component from the received signal, while the digital combiner FBB ,i decouples the streams
(d j ) intended for user i from j .

(3.44) d̂ j [n] = FBB ,i [n]yi [n]+FBB ,i [n]vi [n].

At the Rx side, maximizing the WSR is equivalent to minimizing the weighted MSE with the MSE
weights being chosen as Wi [n] = ui

ln2 Rd̃ j d̃ j
[n]−1 [9, 54]. However, with partial CSIT, we chose to

minimize the expected weighted MSE (EWSMSE) for the Rx side digital combiner. We can write
the error covariance matrix for the detection of d j at node i as

(3.45)

Rd̃ j d̃ j
[n] = EH|Ĥ{(d̂ j [n]−d j [n])(d̂ j [n]−d j [n])H }

= (Fi [n]Ĥi , j [n]Q j [n]Ĥi , j [n]H Fi [n]H + tr{Q j [n]C̃t ,i , j }Fi [n]C̃r,i , j Fi [n]H

−Fi [n]Ĥi , j [n]V j G j [n]−G j [n]H V j Ĥi , j [n]H Fi [n]H +Σī [n].

The MMSE receive combiner at the baseband side can be alternatively optimized, ∀n, as follows

(3.46)
FBB ,i [n] = arg min

FBB ,i [n]
tr{Rd̃i d̃i

[n]},

= GH
j [n]V j H ĤH

i , j [n]FH
RF,i Ri [n]−1 .

Optimizing the digital BF in (3.46) above can be done independently across different subcarriers,
obviously. Further, to optimize the analog combiner, we directly optimize the ESIP-WSR. We
make use of certain results on matrix differentiation. It was shown in [65] that ∂ lndet(A+BXC)

∂X =[
C(A+BXC)−1B

]T
. Taking the gradient of (3.40) w.r.t. FRF,i

(3.47)
Ns∑

n=1
R−1

i [n]FRF,i (Θi , j [n]) =
Ns∑

n=1
(R−1

ī
[n]−R−1

i [n])FRF,i

(
k jΨi , j [n]+kiΨi ,i [n]

)
+ li diag(R−1

ī
[n]−R−1

i [n])FRF,i

(
Θi , j [n]+Θi ,i [n])

+ tr{Qi [n]C̃t ,i ,i }(R−1
ī

[n]−R−1
i [n])FRF,i (C̃r,i ,i )+ (R−1

ī
[n]−R−1

i [n])FRF,i

)
,

Vectorizing both sides, we obtain

(3.48)

Ns∑
n=1

(
(Θi , j [n])T ⊗R−1

i [n]
)
vec(FRF,i )

(a)=
Ns∑

n=1

[(
k jΨi , j [n]+kiΨi ,i [n]

)T ⊗ (R−1
ī

[n]−R−1
i [n])

+ li (Θi , j [n]+Θi ,i [n])T ⊗ diag(R−1
ī

[n]−R−1
i [n])

+ tr{Qi [n]C̃t ,i ,i }[C̃r,i ,i ⊗ (R−1
ī

[n]−R−1
i [n])]

+ IN i
r
⊗ (R−1

ī
[n]−R−1

i [n])
]

vec(FRF,i )
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In (a), we use the result vec(AXB) = (BT ⊗A)vec(X) from [31]. Further, this leads to a generalized
eigenvector solution for the analog combiner

(3.49)

vec(FRF,i ) = Vmax (B̂i ,Ai ),

B̂i =
Ns∑

n=1
(Θi , j [n])T ⊗R−1

i [n],

Âi =
Ns∑

n=1

[(
k jΨi , j [n]+kiΨi ,i [n]

)T ⊗ (R−1
ī

[n]−R−1
i [n])

+ li

(
Θi , j [n]+Θi ,i [n]

)T ⊗ diag(R−1
ī

[n]−R−1
i [n]

+ tr{Qi [n]C̃t ,i ,i }[C̃r,i ,i ⊗ (R−1
ī

[n]−R−1
i [n])]+ IN i

r
⊗ (R−1

ī
[n]−R−1

i [n]))
]

3.4.2 Two-stage transmit BF design

We define the following Lemma below which proves the concavity of a part of the EWSR (3.40).

Lemma 1. For each i ∈ 1,2,n ∈ 1, .., Ns , fi

(
Q j [n],Q j [n]

)
= lndet

(
R
−1
ī [n]Ri [n]

)
is concave w.r.t

Q j [n], where Q j [n] is a positive semidefinite matrix.

Proof: Using the technique from [65, Th. 2], the concavity of fi

(
Q j [n],Q j [n]

)
w.r.t Q j [n] can

be proved by showing that f̃i (t ) = fi

(
X j + tY j ,Q j [n]

)
is concave w.r.t t ∈ [0,1], where Xi is positive

semidefinite and Yi being Hermitian. The derivative of f̃i (t ) w.r.t t can be written as

(3.50)

∂

∂t
f̃i (t ) = tr{R

−1
i [n](

∂Rī [n]

∂t
+FRF,i Ĥi , j [n]Y j ĤH

i , j [n]FH
RF,i )

+ tr{Y j C̃t ,i , j }FRF,i C̃r,i , j FH
RF,i )−R

−1
ī [n]

∂Rī

∂t
}

where

(3.51)

∂Rī [n]

∂t
= k j FRF,i Ĥi , j [n]diag(Y j [n])ĤH

i , j [n]FH
RF,i

+k j tr{diag(Y j [n])C̃t ,i , j }FRF,i C̃r,i , j FH
RF,i + li diag(FRF,i Ĥi , j [n]Y j [n]ĤH

i , j [n]FH
RF,i )

+ li tr{Y j [n]C̃t ,i , j }diag(FRF,i C̃i , j FH
RF,i ) does not depend on t .

Further

(3.52) ∂2

∂t 2 f̃i (t ) = tr{−R
−1
i [n](

∂Rī [n]
∂t +Ni )R

−1
i [n](

∂Rī [n]
∂t +Ni )+R

−1
ī [n]

∂Rī [n]
∂t R

−1
ī [n]

∂Rī [n]
∂t }

where Ni = FRF,i Ĥi , j Y j ĤH
i , j [n]FH

RF,i + tr{Y j C̃t ,i , j }FRF,i C̃r,i , j FH
RF,i . Since we assume that ki , li ¿ 1,

the second term inside the trace in (3.52) will contain quadratic terms in ki or li and thus be-
comes negligible. Further, we can show similar as in [65, Th. 2] that the first term in (3.52) is
negative and thus we can conclude that f̃i (t ) is concave. Here ends the proof.

Consider the dependence of EWSR on Q j [n] alone.

(3.53)
EW SR = ui lndet

(
R
−1
i [n]Ri [n]

)
+EW SRi [n]+

Ns∑
m=1,m 6=n

EW SRi [m], where

EW SRi [n] = u j lndet
(
R
−1
j [n]R j [n]

)
, j 6= i
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From Lemma 1, we can see that the first term in the above summation is a concave function
in Q j [n]. However, the rest of the terms are convex due to the dependency of Q j [n] through the
interference terms. To solve this non-convex problem, we further consider a difference of convex
(DC) function approach [30]. DC approach linearizes the convex part through a first order Taylor
series expansion (around Q̂ j [n] and R̂i [n] represents the corresponding Ri [n]) as below

(3.54)

EW SR i (Q j [n],Q̂[n]) = EW SRi (Q̂ j [n],Q̂[n])− tr{(Q j [n]− Q̂ j [n])Â j [n]},

Â j [n] =− ∂EW SRi

(
Q j [n],Q̂[n]

)
∂Q j [n]

∣∣∣∣∣
Q̂ j [n]

(a)= u j k j diag(ĤH
j , j [n]FH

RF, j (R̂−1
j

[n]− R̂−1
j [n])FRF, j Ĥ j , j [n])

+ l j u j ĤH
j , j [n]FH

RF, j diag(R̂−1
j

[n]− R̂−1
j [n])FRF, j Ĥ j , j [n]

+u j l j tr{diag(FRF, j C̃r, j , j FH
RF, j )(R̂−1

j
[n]− R̂−1

j [n]}C̃t , j , j

+u j k j tr{(FRF, j C̃r, j , j FH
RF, j )(R̂−1

j
[n]− R̂−1

j [n])}diag(C̃t , j , j )

+u j tr{FRF, j C̃r, j , j FH
RF, j (R̂−1

j
[n]− R̂−1

j [n])}C̃t , j , j .

In the above equation, for the trace term, we made use of the gradient result derived in the Ap-
pendix, ∂ lndetY

∂X = [DT tr{BT Y−1}], where, Y = tr{XD}B. The Taylor series expansion is done around
the point Q̂ j [n] (which represent the computed previous iteration values) and the corresponding
Ri [n] is R̂i [n]. Then, dropping constant terms, reparameterizing the Q j [n] as in (3.43), perform-
ing this linearization for all users, and augmenting the EWSR cost function with the Tx power
constraints, we get the Lagrangian (7.17) which gets maximized alternatingly [27] between digi-
tal and analog BF.
(3.55)

L (V,G,Λ) =
2∑

i=1
λi Pi +

2∑
i=1

Ns∑
n=1

ui lndet
(
R
−1
ī [n]Ri [n]

)
− tr{GH

i [n](Vi H (Âi [n]+λbk I)Vi )Gi [n]} .

In Appendix E, we derive the gradient expressions when there are terms of the form lndet(Y+F(X))
where Y = Adiag(CXD)B+F(X). Using this result, we take the derivative of (7.17) w.r.t the digital
BF G j which leads to

(3.56)

V j H Ĥi , j [n]H FH
RF,i (R̂−1

i [n]+ li diag(R̂−1
i [n]− R̂−1

ī
[n]))FRF,i Ĥi , j [n]V j G j [n]

+k j V j H diag(Ĥi , j [n]H FH
RF,i (R̂−1

i [n]− R̂−1
ī

[n])FRF,i Ĥi , j [n])V j G j [n]

+V j H (tr{FH
RF,i R̂−1

i [n]C̃r,i , j }C̃t ,i , j + li tr{diag(FRF,i C̃r,i , j FH
RF,i )(R̂−1

i
[n]− R̂−1

i [n])}C̃t ,i , j

+k j tr{(FRF,i C̃r,i , j FH
RF,i )(R̂−1

i
[n]− R̂−1

i [n])}diag(C̃t ,i , j ))V j H G j [n]

= V j H Â j [n]V j G j [n]

This can be interpreted as the dominant generalized eigenvectors solution for the digital BF

(3.57) G j [n] = V1:d j (V j H B̂ j [n]V j ,V j H (Â j [n]+ Ĉ j [n]+λ j I)V j ),
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where

(3.58)

B̂ j [n] = Ĥi , j [n]H FH
RF,i R̂−1

i [n]FRF,i Ĥi , j [n]+ tr{FH
RF,i R̂−1

i [n]C̃r,i , j }C̃t ,i , j .

Ĉ j [n] =−Ĥi , j [n]H FH
RF,i (li diag(R̂−1

i − R̂−1
ī

))FRF,i Ĥi , j

+k j diag(Ĥi , j [n]H FH
RF,i (R̂−1

i [n]− R̂−1
ī

[n])FRF,i Ĥi , j [n])

+ li tr{diag(FRF,i C̃r,i , j FH
RF,i )(R̂−1

i
[n]− R̂−1

i [n])}C̃t ,i , j

+k j tr{(FRF,i C̃r,i , j FH
RF,i )(R̂−1

i
[n]− R̂−1

i [n])}diag(C̃t ,i , j ).

Further considering the derivative of (7.17) w.r.t the analog BF V j , we get

(3.59) (B̂ j [n]− Ĉ j [n])V j G j [n]GH
j [n] = (Â j [n]+λ j I)V j G j [n]GH

j [n].

Further utilizing the result vec(AXB) = (BT ⊗A)vec(X) [31], we get

(3.60)
Ns∑

n=1
((G j [n]GH

j [n])T ⊗ B̂ j [n])vec(V j ) =
Ns∑

n=1
((G j [n]GH

j [n])T ⊗ Ê j [n])vec(V j ).

where we define Ê j [n] = Â j [n]+ Ĉ j [n]+λ j I. This leads to the generalized eigenvector solution

and can be written as vec(V j ) = Vmax ((
Ns∑

n=1
(G j [n]GH

j [n])T ⊗ B̂ j [n]),
Ns∑

n=1
((G j [n]GH

j [n])T ⊗ Ê j [n])).

3.4.3 Optimization of stream powers

One advantage of the Lagrangian formulation (7.17) is that it allows introducing stream powers
for each BS, so G j [n] = G′

j [n]P1/2
j [n], where the diagonal matrix P j [n] represents the power allo-

cated to an unknown number of supportable streams for BS j . To render a feasible solution for
the stream powers, we approximate the concave part of the EWSR by a first order local minorizer
function.

(3.61)

lndet(I+GH
j [n]V j H B̂ j [n]V j G j [n]) = lndet(I+P j [n]Ŝ j [n])+ tr{(P j [n]− P̂ j [n])T̂ j },where,

T̂ j [n] = GH
j [n]V j H Ê j [n]V j G j [n],

Ŝ j [n] = GH
j [n]V j H B̂ j [n]V j G j [n]

For the concave local minorization considered above, this works well as long as the next opti-
mum is within the minorization range. Note that Ŝ j [n], T̂ j [n] are diagonal since G j [n] diago-
nalizes the matrices V j H B̂ j [n]V j and V j H Ê j [n]V j . Further optimizing w.r.t P j [n] leads to the
self-interference and LDR aware water-filling (SILA-WF) solution for the stream powers

(3.62) P j [n] =
(
u j T̂−1

j [n]− Ŝ−1
j [n]

)+
where (x)+ = max(0, x) is applied to all diagonal elements and the Lagrange multipliers are ad-
justed to satisfy the power constraints. This can be done by bisection and gets executed per BS.

3.4.3.1 Analog Phase Shifter Design

For the constrained analog BF case, where the BF coefficients are chosen to be phasors, we uti-
lize the DA based approach proposed earlier in our work [44, 46]. We refer the reader for a more
detailed discussion on this to our paper [44, Algorithm 3]. We remark here that in this chapter, we
consider only a case of two backhaul nodes for simplicity. The extension to the multi-user case
with multiple FD or half-duplex nodes, example [55] (which is fully digital), is quite straightfor-
ward and left as future work.
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Algorithm 8: Minorization based multi-stage/HBF design

Given: P j ,Hi , j [n],ui ,Hi ,i [n]∀i , j ,n.
Initialization: V j is selected as the eigenvectors of the direct channel covariance matrix,
The G(0)

j [n] are initialized to be ZF precoders for the effective channels Hi , j [n]V j , with uniform
power distribution across the streams. Iteration (t ) :

1. Compute the Rx side digital combiner F(t )
BB ,i from (3.46).

2. Update the Rx side analog combiner F(t )
RF,i using (3.49).

3. Compute B̂ j [n], Â j [n],from (3.54) and Ĉ j [n] ∀ j ,n.

4. Update G
′(t )
j [n] from (3.57), and P j [n] from (3.62), ∀k,n. Compute λ j using bisection.

5. Update (V j )(t ),∀ j , using DA (phasor constrained) or from (3.60) (unconstrained).

6. If the algorithm is converged, exit the loop, otherwise go to step 1.

3.5 Simulation Results

Simulations to validate the performance of the proposed hybrid BF algorithms are presented for
a bidirectional FD system under the LDR noise model. We follow the partial CSIT model Hi , j

as in Section II.A. For the SI channel, we ignore the near field effect of amplitude variation with
distance and the near field effects in the phase variation. In the Uniform Linear Array (ULA), the
AoD or AoA φ,θ are assumed to be uniformly distributed in the interval [0o ,30o].
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In Figure 3.5, Eigen BF corresponds to the sub-optimal BF (fully digital) with the BFs at both
sides selected as the right or left singular vectors of the direct channel which is projected onto
the orthogonal complement of the SI channel, respectively. The superior performance of our
proposed approach is due to the fact that our BFs are optimized to take into account the LDR
noise on both sides. In Figure 3.5, we look at ergodic capacity analysis with the proposed ESIP-
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WSR based BF design here. Notations: “paCSIT” corresponds to partial CSIT and “iCSIT” cor-
responds to perfect or instantaneous CSIT. Naive BFs in the case of partial CSIT corresponds to
the case when we treat the estimated channel as true channel and the BFs being optimized us-
ing the WSR. So error covariance information is not exploited for the naive BFs. So Figure 3.5
clearly shows the advantage in exploiting the error covariance information which the proposed
ESIP-WSR does. Also, the curve “Naive Fully Digital BF:iCSIT” is the scenario where we ignore
the presence of LDR noise in the design of BFs. Ignoring the LDR noises results in a significant
reduction in the sum rate. The dimensions of the two-stage BF and hybrid BF are such that the
zero forcing capabilities at both sides are comparable. However, the number of LDR noises is the
number of antennas at the Tx side, whereas, for the analog Rx stage, the number of LDR noises is
the number of analog BF outputs, which is less. We conjecture that this would explain the better
performance of the analog stage at Rx (in both figures) compared to the two-stage architecture
at Tx for SI nulling.

3.6 Conclusion

In this chapter, we looked at BF solutions to null the SI power under a more practical noise model
termed limited dynamic range. We proposed a multi-stage BF design (whose performance is
validated through simulations), with a frequency flat analog or time domain combiner/BF stage
and a frequency dependent baseband precoder/combiner. We optimized the EWSR using an al-
ternating minorization approach which converges to a local optimum. We considered a Massive
MIMO limit approximation of the EWSR termed as ESIP-WSR which has significant performance
gains compared to an Expected Weighted Sum MSE (EWSMSE) based BF design (which repre-
sents a lower bound to the ergodic capacity) [64].



Chapter 4

NONCOHERENT MULTI-USER MIMO COMMUNICATIONS
USING COVARIANCE CSIT

4.1 Introduction

Till now, we looked at beamforming design for a hybrid MaMIMO system under perfect channel
knowledge. However, the practical importance of fully digital systems cannot be fully overshad-
owed by HBF systems as detailed in the introductory chapter. Moreover, it becomes quite sim-
plistic to analyze the spectral efficiency behavior for a fully digital system as we show later in the
thesis. Moreover, perfect channel knowledge is very impractical and from here on we start look-
ing at imperfections in the channel estimate. As a starting point, we look at robust BF designs
under partial CSIT. Note that, the BF designs outlined in this chapter can easily be extended to
HBF system also, for partial CSIT case.

The Multi-User downlink, particularly in a Multi-Cell Massive MIMO setting, requires enor-
mous amounts of instantaneous CSIT (Channel State Information at the Transmitter(s)), iCSIT.
Here we focus on exploiting channel covariance CSIT (coCSIT) only. In particular multipath in-
duced structured low rank covariances are considered that arise in Massive MIMO and mmWave
settings, which we call pathwise CSIT (pwCSIT). The resulting non-Kronecker MIMO channel
covariance structures lead to a split between the roles of transmitters and receivers in MIMO
systems. For the beamforming optimization, we consider a minorization approach applied to
the Massive MIMO limit of the Expected Weighted Sum Rate. Simulations indicate that the pwC-
SIT based designs may lead to limited spectral efficiency loss compared to iCSIT based designs,
while trading fast fading CSIT for slow fading CSIT. We also point out that the pathwise approach
may lead to distributed designs with only local pwCSIT, and analyze the sum rates for iCSIT and
pwCSIT in the low and high SNR limits.

Interference is the main limiting factor in wireless transmission. Base stations (BSs) disposing
of multiple antennas are able to serve multiple Mobile Terminals (MTs) simultaneously, which
is called Spatial Division Multiple Access (SDMA) or Multi-User (MU) MIMO. However, MU sys-
tems have precise requirements for Channel State Information at the Tx (CSIT) which is more
difficult to acquire than CSI at the Rx (CSIR). Hence we focus here on the more challenging down-
link (DL).

The recent development of Massive MIMO (MaMIMO) [66] opens new possibilities for in-
creased system capacity while at the same time simplifying system design. We refer to [67] for
a further discussion of the state of the art, in which MIMO Interference Alignment (IA) requires
global MIMO channel CSIT. Recent works focus on intercell exchange of only scalar quantities,
at fast fading rate, as also on two-stage approaches in which the intercell interference gets zero-

65



CHAPTER 4. NONCOHERENT MULTI-USER MIMO COMMUNICATIONS USING
COVARIANCE CSIT 66

forced (ZF). Also, massive MIMO in most works refers actually to MU MISO.
Whereas the exploitation of covariance CSIT (coCSIT) may be beneficial, in a MaMIMO con-

text it may quickly lead to high computational complexity and estimation accuracy issues. Com-
putational complexity may be reduced (and the benefit of coCSIT enhanced) in the case of low
rank or related covariance structure, but the use and tracking of subspaces may still be cumber-
some. In the pathwise approach, these subspaces are very parsimoniously parameterized. In a
FDD setting, these parameters may even be estimated from the uplink (UL). As opposed to the
instantaneous channel CSIT (iCSIT), the pathwise CSIT (pwCSIT) is not affected by fast fading.

Massive MIMO makes the pathwise approach viable. Indeed, with enough antennas, pwCSIT
by itself may allow zero forcing (ZF) [68], which is of interest at high SNR. However, we are par-
ticularly concerned here with maximum Weighted Sum Rate (WSR) designs accounting for finite
SNR. ZF of all interfering links leads to significant reduction of useful signal strength. We briefly
allude to the general case of Gaussian partial CSIT (paCSIT), in which the combined availability
of channel estimates (mean CSIT) and coCSIT can be exploited. Such general paCSIT scenario
can example be particularized as in [69] to the case of perfect iCSIT for intracell channels and
pwCSIT for intercell channels. This leads to 2-stage BF expressions, similar to hybrid beamform-
ing. The slow stage handles intercell interference, and is frequency-flat. It can be exploited also
to separate the cells for channel estimation purposes. In what follows we consider in more detail
pwCSIT for all channels (both intercell and intracell). Also, in this (as any) case of paCSIT, the
WSR criterion needs to be modified. We shall consider the Expected WSR (EWSR). Furthermore,
we shall take advantage of a Massive MIMO setting to exploit a simple Massive EWSR limit that
results from the law of large numbers. This MaEWSR limit leads to a loss of all (narrowband)
frequency-selectivity in the channel and also leaves no utility for space-time coding, though this
can be expected to bring some benefits.

4.2 Streamwise IBC Signal Model

We start with a per stream approach (which in the perfect CSI case would be equivalent to per
user). In an IBC formulation, one stream per user can be expected to be the usual scenario. In
the development below, in the case of more than one stream per user, treat each stream as an
individual user. So, consider again an IBC with C cells with a total of K users. We shall consider
a system-wide numbering of the users. User k is served by BS bk . The Nk ×1 received signal at
user k in cell bk is

(4.1) yk = Hk,bk gk xk︸ ︷︷ ︸
signal

+ ∑
i 6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+ ∑
j 6=bk

∑
i :bi= j

Hk, j gi xi︸ ︷︷ ︸
intercell interf.

+vk

where xk is the intended (white, unit variance) scalar signal stream, Hk,bk is the Nk×Mbk channel
from BS bk to user k. BS bk serves Kbk = ∑

i :bi=bk
1 users. We considering a noise whitened

signal representation so that we get for the noise vk ∼ C N (0, INk ). The Mbk ×1 spatial Tx filter
or beamformer (BF) is gk . Treating interference as noise, user k will apply a linear Rx filter fk to
maximize the signal power (diversity) while reducing any residual interference that would not
have been (sufficiently) suppressed by the BS Tx. The Rx filter output is x̂k = fH

k yk .
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4.3 Max WSR with Perfect CSIT

Consider as a starting point for the optimization the weighted sum rate (WSR)

(4.2) W SR =W SR(g) =
K∑

k=1
uk ln

1

ek

where g represents the collection of BFs gk , the uk are rate weights, the ek = ek (g) are the Mini-
mum Mean Squared Errors (MMSEs) for estimating the xk :

(4.3)

1

ek
= 1+gH

k HH
k,bk

R−1
k

Hk,bk gk

= (1−gH
k HH

k,bk
R−1

k Hk,bk gk )−1

Rk = Hk,bk Qk HH
k,bk

+Rk , Qi = gi gH
i ,

Rk = ∑
i 6=k

Hk,bi Qi HH
k,bi

+ INk .

Rk , Rk are the total and interference plus noise Rx covariance matrices resp. and ek is the MMSE
obtained at the output x̂k = fH

k yk of the optimal (MMSE) linear Rx fk ,

(4.4) fk = R−1
k Hk,bk gk = R−1

k hk,k .

The WSR cost function needs to be augmented with the power constraints

(4.5)
∑

k:bk= j
tr{Qk } ≤ P j .

4.3.1 From Max WSR to Min WSMSE

For a general Rx filter fk we have the MSE

(4.6)

ek (fk ,g) = (1− fH
k Hk,bk gk )(1−gH

k HH
k,bk

fk ) + ∑
i 6=k

fH
k Hk,bi gi gH

i HH
k,bi

fk +||fk ||2

= 1− fH
k Hk,bk gk −gH

k HH
k,bk

fk +
∑

i
fH

k Hk,bi gi gH
i HH

k,bi
fk +||fk ||2.

The W SR(g) is a non-convex and complicated function of g. Inspired by [9], we introduced [70],
[11] an augmented cost function, the Weighted Sum MSE, W SMSE(g, f, w)

(4.7) =
K∑

k=1
uk (wk ek (fk ,g)− ln wk )+

C∑
i=1

λi (
∑

k:bk=i
||gk ||2 −Pi )

where λi = Lagrange multipliers. After optimizing over the aggregate auxiliary Rx filters f and
weights w , we get the WSR back:

(4.8) min
f,w

W SMSE(g, f, w) =−W SR(g)+
K∑

k=1
uk
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The advantage of the augmented cost function: alternating optimization leads to solving simple
quadratic or convex functions:

(4.9)

min
wk

W SMSE ⇒ wk = 1/ek

min
fk

W SMSE ⇒ fk = (
∑

i
Hk,bi gi gH

i HH
k,bi

+ INk )−1Hk,bk gk

min
gk

W SMSE ⇒

gk = (
∑

i
ui wi HH

i ,bk
fi fH

i Hi ,bk +λbk IM )−1HH
k,bk

fk uk wk

UL/DL duality: the optimal Tx filter gk is of the form of a MMSE linear Rx for the dual UL in which
λ plays the role of Rx noise variance and uk wk plays the role of stream variance.

4.3.2 Minorization (DC Programming)

In this section, we look at the BF design using alternating minorization concept proposed for
the hybrid beamforming in Section 2.2. The digital BF derived here is a special case with the
number of RF chains equal to the number of antennas. Hence, by substituting for Vc = IM , we
obtain the all digital BF expressions and hence we can skip the detailed derivation here. We
define the transmit covariance matrix as Qk = Gk GH

k and the auxiliary quantities involved in the
BF expressions as

(4.10)

Bk = HH
k,bk

R−1
k

Hk,bk ,

Ak =
K∑

i 6=k
ui HH

i ,bk
(R−1

ī
−R−1

i )Hi ,bk

Further, the digital BF (Gk = Gk P
1
2

k )expression can be obtained as

(4.11) Gk =Vmax (Bk ,Ak +λbk I)

are the (normalized) "max" generalized eigenvectors of the two indicated matrices, with eigen-

values Σk = Σmax (Bk ,Ak +λbk I ). Let Σ(1)
k = G

H
k Bk Gk and Σ(2)

k = G
H
k Ak Gk . The optimization of

power leads to the following interference leakage aware water filling (WF) (jointly for the Pk and
λc )

(4.12) Pk =
(
uk (Σ(2)

k +λbk I)−1 −Σ−(1)
k

)+
,

∑
k:bk=c

tr{Pk } = Pc

where the Lagrange multipliers are adjusted to satisfy the power constraints. This can be done
by bisection and gets executed per BS. Note that some Lagrange multipliers could be zero. Note
also that as with any alternating optimization procedure, there are many updating schedules
possible, with different impact on convergence speed. The quantities to be updated are the gk ,
the Pk and the λc . Note that the minorization approach, which avoids introducing Rxs, can
at every BF update allow to introduce an arbitrary number of streams per user by determining
multiple dominant generalized eigenvectors, and then let the WF operation decide how many
streams can actually be sustained.
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In contrast, in [30], for given λ, the G get iterated till convergence and the λ are found by
duality (line search):

(4.13)
min
λ≥0

max
G

[
C∑
j
λ j P j +

∑
k

{uk lndet(R−1
k

Rk )−λbk tr{Pk }}]

= min
λ≥0

W SR(λ).

This typically leads to higher computational complexity for a given convergence precision.

4.3.3 Pathwise Wireless MIMO Channel Model

In this section we drop the user index k for simplicity. The MIMO channel transfer matrix at any
particular subcarrier n of a given OFDM symbol can be written as [71], [72]

(4.14)

H[n] =
L∑

i=1
Ai e jψi [n]hr (φi )hT

t (θi )

= Hr Ψ[n] D HH
t ,

Hr =
[
hr (φ1)hr (φ1) · · ·] ,

Ψ[n] =

 e jψ1[n]

e jψ2[n]

. . .

 ,

D =

 A1

A2
. . .

,

HH
t =

 hT
t (θ1)

hT
t (θ2)

...


where there are L (specular) pathwise contributions with

• Ai > 0: path amplitude

• ψi [n]: path phase

• θi : angle of departure (AoD)

• φi : angle of arrival (AoA)

• ht (.)/hr (.): M/N ×1 Tx/Rx antenna array response

with ||ht (.)|| = 1, ||hr (.)|| = N . For wideband scenarios, all factors may become frequency-dependent.
The antenna array responses are just functions of angles AoD, AoA in the case of standard an-
tenna arrays with scatterers in the far field. The fast variation of the phases ψi (due to Doppler)
corresponds to the fast fading. All the other parameters vary on a slower time scale and cor-
respond to slow fading. In the pathwise CSIT (pwCSIT) model, we shall assume the ψi to be
i.i.d. uniformly distributed and all slow parameters to be known. Note that the pathwise channel
model, which leads here to a type of Tx covariance CSIT, does not lead to the usual separable
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covariance case, which is discussed example in [67]. In previous work, we essentially modeled
the whole of HrΨ as i.i.d. random, which leads to a special case of the MIMO channel with sep-
arable correlation structure. Here the knowledge of Hr is exploited, leading to an appearance of
(implicit) Rxs who contribute to the interference management.

DoD 

DoA complex 
path gains Intracell path 

Intercell path 

Figure 4.1: Pathwise Multi-User Multi-Cell scenario.

4.4 MIMO Interference Alignment (IA)

ZF (IA) feasibility for both the general reduced rank MIMO channels case and the pathwise
MIMO case has been discussed in [68], in particular also when only based on Tx side covari-
ance CSIT. It is shown how the IA responsability gets shared between Tx and Rx, requiring only
local CSI. Also the role of Rx antennas is highlighted, leading to reduced (Tx covariance) rank
channels.

4.5 Expected WSR (EWSR)

For the WSR criterion, we have assumed so far that the channel H is known. The scenario of
interest however is that of partial CSIT. Once the CSIT is imperfect, various optimization criteria
could be considered, such as outage capacity. Here we shall consider the expected weighted sum
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rate

(4.15)
EH|HW SR(g,H) = EW SR(g)

= EH|H
∑
k

uk ln(1+gH
k HH

k,bk
R−1

k
Hk,bk gk )

where we now underlign the dependence of various quantities on H and H is a channel estimate.
The EWSR in (4.2) corresponds to perfect CSIR since the optimal Rx filters fk as a function of the
aggregate H have been substituted, namely W SR(g,H) = maxf

∑
k uk (− ln(ek (fk ,g))).

In the MaMIMO limit, we obtain the Massive EWSR limit in which

(4.16) EH|H lndet(I+HQHH ) → lndet(I+ EH|H{HQHH })

when M →∞ for finite N . The gap between both sides in (4.16) can be analyzed and is bounded
for any MIMO size by γ (Euler-Mascheroni) in the worst case of only a single Rayleigh fading
entry. The RHS also corresponds to the Expected Weighted Sum Unbiased MSE (EWSUMSE)
approach introduced in [73], which is a useful formulation by itself. The RHS also becomes the
exact mutual information if we consider Gaussian channel outputs instead of Gaussian channel
inputs.

For the case of mean (channel estimate) and covariance CSIT being jointly captured by the

Gaussian CSIT, vec(HT ) = h ∼C N (h,Chh) where h = vec(H
T

), we get

(4.17) E{HggH HH } = HggH H
H + (IN ⊗gT )Chh(IN ⊗g∗) .

This general paCSIT model, even with a pathwise channel model, could account for unmodeled
paths, estimation errors on the path parameters, etc. Here we shall consider that all paths are
modeled and perfectly known, except for the path phases.

4.5.1 Massive EWSR with pwCSIT

For the special case of pwCSIT (4.14) considered here, if the total number of paths (all users)
becomes very large, the path phases average out and by the law of large numbers

(4.18)

EΨ lndet(I+R−1
k

Hk,bk Qk HH
k,bk

) ≈ lndet(I+R−1
k

EΨHk,bk Qk HH
k,bk

)

Hk,bk Qk HH
k,bk

−→ EΨHk,bk Qk HH
k,bk

= Hr,k,bk Dk,bk di ag (HH
t ,k,bk

Qk Ht ,k,bk )Dk,bk HH
r,k,bk

which is now frequency-independent, and where diag(.) denotes the diagonal matrix obtained
by taking the diagonal part of the matrix argument. Hence we get the following MaMIMO limit
matrices

(4.19)

Rk [n] = INk +
K∑

i=1
Hr,k,bi D2

k,bi
di ag (HH

t ,k,bi
Qi Ht ,k,bi )HH

r,k,bi

Rk [n] = INk +
∑
i 6=k

Hr,k,bi D2
k,bi

di ag (HH
t ,k,bi

Qi Ht ,k,bi )HH
r,k,bi

This leads to example (with Qi = Gi GH
i ) :

(4.20)
∂ lndet(Rk )

∂G∗
i

= Ht ,k,bi di ag (HH
r,k,bi

R−1
k Hr,k,bi )D2

k,bi
HH

t ,k,bi
Gi ,
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and we can introduce

(4.21)

B̄k = Ht ,k,bk di ag (HH
r,k,bk

R−1
k

Hr,k,bk )D2
k,bk

HH
t ,k,bk

,

Āk =
K∑

i 6=k
ui Ht ,i ,bk di ag (HH

r,i ,bk
(R−1

ī
−R−1

i )Hr,i ,bk )D2
i ,bk

HH
t ,i ,bk

.

It suffices now to replace the matrices Ak , Bk in the minorization approach in Section 4.3.2 by
the matrices Āk , B̄k above to get a maximum EWSR design:

(4.22)

G
′
k =V1:dk (B̄k , Āk +λbk I).

With Σ(1)
k = G

′H
k B̄k G

′
k ,

Σ(2)
k = G

′H
k Āk G

′
k ,Gk = G

′
k P

1
2

k ,

where

(4.23) Pk =
(
uk (Σ(2)

k +λbk I)−1 −Σ−(1)
k

)+
,

∑
k:bk=c

tr{Pk } = Pc .

Further in this paragraph, we provide some intuitive interpretation of the above BF expressions.
For a multi-user MIMO case, given the channel matrices, the optimal beamforming expressions
as in [9] or the alternating minorization based approach derived in Chapter II is clearly under-
stood. However, when the channel matrix can be accurately captured by a physical (geometric)
scattering model across multiple clusters/paths as is the case in mmWave or massive MIMO sys-
tems, the structure of the optimal BF expressions are not clear. Towards this direction, in this
chapter, using the derived expressions in (4.22), we provide a physical interpretation for this op-
timal structure, i.e., beam steering across the different paths with appropriate power allocation.
Basically, B̄k represents a linear combination of the transmit antenna responses of the direct
channel to user k and the weighting coefficients are proportional the path powers. Similarly,
Āk represents a weighted combination of the Tx side antenna array responses of all the leakage
channels (channels to which BF Gk cause interference). Hence, we can conclude that the BF
expression above is an optimal compromise (in terms of maximizing the massive MIMO limit
of the ergodic capacity) between maximizing the direct channel power part and minimizing the
leakage power part. The weighting coefficients in the BF expressions are oblivion to the path
phases, since they are treated as unknown here.

4.5.2 Interference management by Tx/Rx

In this section, we discuss about the interference management by either Tx/Rx. First looking at
the expression for Rk [n]

(4.24) Rk [n] = INk +
K∑

i=1
Hr,k,bi D2

k,bi
di ag (HH

t ,k,bi
Gi︸ ︷︷ ︸GH

i Ht ,k,bi︸ ︷︷ ︸)HH
r,k,bi
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where the underbraced terms would be zero for i 6= k in case of a ZF design (high SNR optimal)
for the Tx BF Gk . Also, one can identify implicit Rxs from the expression of Āk as follows
(4.25)
diag(HH

r,i ,bk
(R−1

ī
−R−1

i )Hr,i ,bk )

(a)= diag(HH
r,i ,bk

R−1
i Hr,i ,bi︸ ︷︷ ︸

Fi

(Di −HH
r,i ,bi

R−1
i Hr,i ,bi )−1HH

r,i ,bi
R−1

i Hr,i ,bk )

= diag(HH
r,i ,bk

Fi︸ ︷︷ ︸D̃i FH
i Hr,i ,bk︸ ︷︷ ︸)

where the Fi are implicit Rxs and again the underbraced terms would be zero for i 6= k in case
of a ZF design. To reach (a), we defined D−1

i = D2
i ,bk

diag(HH
t ,i ,bk

Gk︸ ︷︷ ︸GH
k Ht ,i ,bk︸ ︷︷ ︸) and Rī = Ri −

Hr,i ,bi D−1
i HH

r,i ,bi
. Further, we used matrix inversion lemma (A + BCD)−1 = A−1 − A−1B(C−1 +

DA−1B)−1DA−1 to arrive at (4.25). This indeed tells us that we can either use the Tx BF Gk or
the Rx filter Fi to cancel the interference to the leakage channels.

4.5.3 Comparison of instantaneous CSIT and pathwise CSIT WSR at low SNR

We have the original WSR expression

(4.26) W SR =
K∑

k=1
uk lndet(I+GH

k HH
k,bk

Fk (FH
k Rk Fk )−1FH

k Hk,bk Gk )

where Rk = I for low SNR (or high SNR below) for both iCSIT and pwCSIT cases. At low SNR, the
optimal Tx/Rx are matched filters (right or left singular vectors of Hk,bk ). We get WSR at low SNR
for iCSIT as follows

(4.27) W SR =
K∑

k=1
uk lndet(I+Σ2(Hk,bk )Pk ),

where Σ(Hk,bk ) represents the singular value matrix of Hk,bk and WSR at low SNR for pwCSIT can
be simplified as

(4.28) W SR =
K∑

k=1
uk lndet(I+HH

r,k,bk
Hr,k,bk D2

k,bk
di ag (HH

t ,k,bk
Qk Ht ,k,bk ))

Optimizing (4.28) w.r.t Gk leads to the following solution for the BF Gk under pwCSIT.

(4.29) G′
k = V1:dk

(
Ht ,k,bk di ag (HH

r,k,bk
Hr,k,bk )D2

k,bk
HH

t ,k,bk
.
)

4.5.4 Comparison of instantaneous CSIT and pathwise CSIT WSR at high SNR

Starting from the WSR in (4.26), at high SNR the G, F satisfy FH
k Hk,bi Gi = 0, i 6= k which reflects

joint Tx/Rx ZF. . On the other hand, WSR at high SNR for pwCSIT behaves differently.

(4.30) Hr,k,bi =

Hr,k,bi ,r︸ ︷︷ ︸
by UE

Hr,k,bi ,t︸ ︷︷ ︸
by BS

 , Ht ,k,bi =

Ht ,k,bi ,r︸ ︷︷ ︸
by UE

Ht ,k,bi ,t︸ ︷︷ ︸
by BS


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where the underbraces indicate which nodes handle the interference of the indicated channel
portions, and

(4.31)

Fk = P⊥
Hr,k,r

Hr,k,bk (HH
r,k,bk

P⊥
Hr,k,r

Hr,k,bk )−
1
2

G
′
k = P⊥

Ht ,k,t
Ht ,k,bk (HH

t ,k,bk
P⊥

Ht ,k,t
Ht ,k,bk )−

1
2

W SR =
K∑

k=1
uk lndet(I+Σ(S

1
2

k D2
k,bk

di ag {Tk }S
1
2

k )Pk )

Sk = HH
t ,k,bk

P⊥
Ht ,k,t

Ht ,k,bk , Tk = HH
r,k,bk

P⊥
Hr,k,r

Hr,k,bk .

In the pathwise case, the ZF task of all paths gets split between Tx and Rx, in which each does
zero forcing of paths from either Tx or Rx side.

4.6 Simulation Results

Simulations are provided for the case of C = 2 cells, 2 users/cell, L = 3 paths in all channels, and
varying Tx/Rx antenna numbers M , N . The expected sum rate is compared between the cases of
perfect instantaneous CSIT (iCSIT) and (global) pathwise CSIT (pwCSIT). The loss is limited as
soon as pathwise ZF is possible.
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Figure 4.2: Expected sum rate comparison for M = 3, N = 3.

From, Figure 4.2 and Figure 4.3, we can make the following conclusions. The degraded perfor-
mance of pwCSIT is due to the fact that the number of BS antennas are not enough to suppress
or ZF the interference at high SNR. The interference subspace dimension sums up to 9 and the
number of BS antennas used are less than 9.

In Figure 4.4, we have sufficient number of antennas (= 10) at the BS to do a ZF across the in-
terfering subspace dimension which is 9. This accounts for the improved performance achieved
by pwCSIT which overlaps with that of the iCSIT case. While in the other two cases above, there
is sufficient gap between the performances of pwCSIT and iCSIT.
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Figure 4.3: Expected sum rate comparison for M = 4, N = 4.
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Figure 4.4: Expected sum rate comparison for M = 10, N = 4.

4.6.1 Conclusions and Perspectives

Conclusions and Perspectives 2

• In this chapter, we looked at robust BF design under partial CSIT for massive MIMO
systems. In particular, we looked at a flat fading massive MIMO channel (a pathwise
channel model parameterized by AoA, AoD and complex path coefficients). We as-
sumed that the slow fading components (including AoA, AoD) and path amplitudes
are perfectly known at the Tx side. Only the path phases are assumed to be unknown,
which indeed correspond to the fast fading component. We denote the partial CSIT in
this scenario as the pwCSIT.

• To optimize the BFs, we looked at an upper bound of the EWSR, which can be shown
to be tight in the massive MIMO limit.
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Conclusions and Perspectives 2 (cont.)

• Through Monte-Carlo simulations, we validated the performance of our pwCSIT
based BF design. In the simulations, it became clear that when the number of an-
tennas are high enough at the Tx and Rx side, the pwCSIT based design becomes close
to optimal (optimal refers to the case of iCSIT based design). Intuitively, this means
that the number of antennas are enough such that doing ZF across the various paths
become optimal.

• An extension to the frequency selective case becomes straight forward, since in this
case the pathwise channel model can be written as in the previous chapter, see for
reference (3.6). The BF design gets separable across the subcarriers and at high SNR,
pwCSIT based BF design converges to a ZF BF with ZF task gets split between Tx and
Rx.

• We also remark that in order to extend the design here to the case when amplitude is
also unknown becomes straightforward if we restrict to the case where complex path
coefficients are i.i.d. C N (0,1) random variables.



Chapter 5

RATE SPLITTING FOR PILOT CONTAMINATION

5.1 Introduction

Massive MIMO (MaMIMO) is a wireless technology where the base stations (BSs) are equipped
with a large number M of antennas to serve a multitude of single-antenna K user equipments
(UEs) by spatial multiplexing [4]. The acquisition of channel state information (CSI) is the lim-
iting factor in MaMIMO [4]. In a time-division duplex (TDD) mode, channel reciprocity allows
to acquire all the necessary CSI for uplink (UL) and downlink (DL) transmissions from a finite
number of UL pilot signals [4]. Thanks to the intense research performed over the last decade,
MaMIMO is today a mature technology [74, 75], which has been adopted into the 5G NR stan-
dard [76].

One phenomenon that is tightly connected with MaMIMO is pilot contamination, which can
be briefly explained as follows [4]. UEs that transmit the same pilot signal contaminate each
others’ channel estimates. This ”pilot interference” not only reduces the CSI quality but also
creates the so-called ”coherent interference”, which has been believed to fundamentally limit
the spectral efficiency (SE) of MaMIMO, even when M → ∞ [4, 74]. Recently, [77] showed that
with optimal signal processing and spatially correlated channels, the SE increases without bound
as M →∞ while K is fixed. The fact that there is no fundamental SE limit does not imply that the
pilot contamination effect disappears; there is still an SE loss caused by estimation errors and
interference rejection [78]. The aim of this chapter is to deal with this effect for a finite M .

Observe that, when the estimation error variance decays with the signal-to-noise-ratio (SNR)
as O (SNR−δ) for some 0 ≤ δ < 1, conventional precoding techniques result in a sum degrees of
freedom (DoF) of Kδ. This in turn reveals that as δ→ 0 (implies constant channel estimation
error), the system becomes interference limited. A possible solution to this issue is to take a
rate splitting (RS) approach [79] that splits the UEs’ messages into common and private parts,
encode the commmon parts into a common stream, and private parts into private streams and
superpose in a non-orthogonal manner the common stream on top of all private streams. The
common stream is drawn from a codebook shared by all UEs and is intended to one only, but
is decodable by all UEs. On the other hand, the private streams are to be decoded by the corre-
sponding UEs only. The sum DoF achieved by RS in the DL is 1+ (K −1)δ [80], which is higher
than Kδ and matches the upper bound obtained from the Aligned Image Sets in [81]. Interest-
ingly, RS not only achieves the optimal sum-DoF but the entire DoF region of the K -UE channel
with imperfect CSI [82].

Motivated by the above results, the design and optimization of RS at finite values of SNR has
been investigated and was found to provide significant benefits in the DL with imperfect CSI,

77
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compared to multi-user MIMO and NOMA [80, 83, 84], but also to Dirty Paper Coding [85]. The
application of RS to an FDD MaMIMO system has been investigated in [86, 87]. Particularly, [86]
shows that a two-layer RS architecture, so-called hierarchical RS (HRS), can bring significant
benefits in MaMIMO.

5.1.1 Summary of this Chapter

• In this chapter, we focus on a TDD single-cell MaMIMO network and assume that all the
UEs use the same pilot signal for channel estimation.

• Novel expressions for the SE achieved in the DL by a single-layer RS strategy are derived by
applying the hardening bound to both common and private messages [74].

• A maximum ratio (MR) precoding scheme is used for private streams while a precoder
based on a weighted combination of the channel estimates of all UEs is adopted for the
common stream.

• A novel algorithm is proposed to allocate the power among the common and private streams.

5.2 System model

We consider a single-cell MaMIMO network where the BS is equipped with M antennas and
serves K UEs. We denote hi ∈ CM the channel from UE i to the BS, and consider a correlated
Rayleigh block fading model hi ∼C N (0,Ri ) where Ri ∈CM×M is the covariance matrix [75, Sec.
2.2]. The Gaussian distribution is used to model the small-scale fading variations, while Ri de-
scribes the macroscopic propagation characteristics. The normalized trace βi = 1

M tr(Ri ) is the
average channel gain from the BS to UE i .

The UEs are perfectly synchronized and operate according to a TDD protocol with a data
transmission phase and a pilot phase for channel estimation [75]. We consider the standard
block fading TDD protocol in which each coherence block consists of τ channel uses, whereof
τp are used for UL pilots, τu for UL data, and τd for DL data, with τ= τp +τu +τd . Only the DL is
considered in this chapter, i.e., τu = 0.

5.2.1 Assumptions on the user channel

In this subsection, we describe certain assumptions on the channel between UE and BS.

• The channel covariance matrix Ri for any user i is assumed to be perfectly known at the
BS.

• For the SINR expressions derived here to be valid, the matrix Ri should be invertible for all
i .

5.2.2 Channel estimation

We assume that a single pilot sequence of length τp is used. For a total uplink pilot power of ρtr

per UE, the BS obtains the MMSE estimate of hi as

ĥi = Ri Q−1
( K∑

k=1
hk +

1p
ρtr

ni

)
∼C N (0,Φi )(5.1)
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γk,c =
ρc |E{hH

k wc }|2
K∑

i=1
ρiE{|hH

k wi |2}+ρc

(
E{|hH

k wc |2}−|E{hH
k wc }|2

)
+σ2

(11)

γk = ρk |E{hH
k wk }|2

K∑
i=1

ρiE{|hH
k wi |2}−ρk |E{hH

k wk }|2 +ρc

(
E{|hH

k wc |2}−|E{hH
k wc }|2

)
+σ2

(12)

where ni ∼C N (0,IM ) is noise,Φi = Ri Q−1Ri and Q =∑K
k=1 Rk+ 1

ρtr
IM . The estimation error h̃i =

hi − ĥi ∼ C N (0,Ri −Φi ) is independent of ĥi . The mutual interference generated by the pilot-
sharing UEs is known as pilot contamination and has two main consequences in the channel
estimation process. The first is the reduced estimation quality, whereas the second is that the
estimates {ĥi } become correlated. If Rk is invertible, we have that [75, Sec. 3.2]

ĥi = Ri R−1
k ĥk(5.2)

from which it follows that E{ĥi ĥH
k } = Ri Q−1Rk .

5.2.3 Rate Splitting in Downlink transmissions

The RS scheme is used in the DL for transmission. The message intended to UE k is split into
two parts, Wk = (Wk0, Wk1). We assume that Wk0 ∈ Wk0 represents the common part and Wk1 ∈
Wk1 is the private part. All the common parts are packed into one common message, Wc =
(Wk0, ..., WK 0) ∈ Wc , which is encoded into a common stream ςc using a common codebook.
The private message Wk1 is encoded in the conventional manner into the private stream ςk . The
resulting transmitted DL signal is:

x = wcςc︸ ︷︷ ︸
Common message

+
K∑

i=1
wiςi︸ ︷︷ ︸

Private messages

(5.3)

where ςi ∼ C N (0,ρi ) is assigned to a precoding vector wi ∈ CM that determines the spatial di-
rectivity of the transmission and satisfies E{‖wi‖2} = 1 so that ρi represents the average transmit
power of UE ∀i . Similarly, ςc ∼C N (0,ρc ) denotes the common message, which is assigned to a
precoding vector wc ∈CM with E{‖wc‖2} = 1 so that ρc represents its average transmit power. We
assume that

ρc +
K∑

i=1
ρi ≤ ρT(5.4)

where ρT is the total transmit power in the DL. The received signal yk ∈C at UE k is given by

yk = hH
k wcςc +hH

k wkςk +
K∑

i=1,i 6=k
hH

k wiςi +nk(5.5)

where nk ∼ C N (0,σ2) is the receiver noise. At each UE k, the common stream is first decoded
into Ŵc , by treating the interference from the private streams as noise. Then, successive in-
terference cancellation (SIC) is performed, which removes the common message part from the
received signal. Further, the private stream ςk is decoded into Ŵk1 by treating the intra-cell inter-
ference as noise. UE k reconstructs the transmitted message by extracting Ŵk0 from Ŵc . Further,
combining with the decoded private stream to form Ŵk = (Ŵk0,Ŵk1).
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5.2.4 Spectral efficiency

Characterizing the SE in the DL is hard since it is unclear how UE k should best estimate the
effective precoded channels hH

k wc and hH
k wk that are needed for decoding the common signal

ςc and the private signal ςk . A common approach in classical MaMIMO is to resort to the hard-
ening bound [75, Sec. 4.3]. This bound relies on the assumption that the deterministic average
precoded channels E{hH

k wc } and E{hH
k wk } are known at UE k. The received signals for the com-

mon and private messages can then be expressed as

yk,c = E{hH
k wc }ςc +

(
hH

k wc −E{hH
k wc }

)
ςc

+
K∑

i=1
hH

k wiςi +nk(5.6)

and (after SIC)

yk,p = E{hH
k wk }ςk +

(
hH

k wk −E{hH
k wk }

)
ςk

+ (
hH

k wc −E{hH
k wc }

)
ςc +

K∑
i=1,i 6=k

hH
k wiςi +nk .(5.7)

The following bounds can be computed.

Lemma 2. Achievable rates for the common and private messages of UE k can be computed as

(5.8) SEk,c =
τd

τ
log2(1+γk,c )

and

(5.9) SEk = τd

τ
log2(1+γk )

with γk,c and γk given by (11) and (12). The expectations are computed over channel realizations.

It can be proved from (5.6) and (5.7) by using standard results in MaMIMO (example, [75, App.
C.3.6]). Here ends the proof. The achievable rate of the common message is defined as

(5.13) SEc = τd

τ
log(1+γlmin,c )

where

(5.14) lmin = argmink γk,c

Observe that the above achievable rates can be utilized along with any precoding scheme. More-
over, each of the expectations in γk,c and γk can be computed separately by means of Monte
Carlo simulations. Closed forms will be provided next for the proposed precoding schemes.

5.3 Power optimization and precoding design

A common and popular choice for wk is MR precoding, defined as

wMR
k = ĥk√

E{|ĥk |2}
= ĥk√

tr{Φk }
(5.15)
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which has low computational complexity and allows to compute some of the expectations in
closed form. MR precoding is also called as conjugate beamforming (since the BF is proportional
to the conjuagte of the estimated channel) [88]. For an operating point which yields low spectral
efficiency and high energy efficiency, MR precoding outperforms ZF precoding. Particularly, we
have that (example, [75, App. C.3.7])

|E{hH
k wMR

k }|2 = tr{Φk }(5.16)

E{|hH
k wMR

i |2} =
tr{RkΦi }+

∣∣∣tr{Rk Q−1Ri }
∣∣∣2

tr{Φi }
.(5.17)

In the remainder, we assume that MR precoding is used for private messages. Next, we look for
the transmit powers that maximize the sum SE of the network and design the precoding vector
for the common message.

5.3.1 Power optimization

From the above section, the sum SE, for any given precoding scheme, can be computed as:

SE= SEc +
K∑

k=1
SEk(5.18)

where SEk and SEc are given in (5.8) and (5.13), respectively. The power allocation problem can
thus be formulated as:

max
{ρc≥0,ρ≥0}

SEc (ρc ,ρ)+
K∑

k=1
SEk (ρc ,ρ)(5.19)

s.t. ρc +
K∑

i=1
ρi ≤ ρT(5.20)

with ρ= [ρ1, . . . ,ρK ]T. Finding the solution to the above problem is a challenge since it is not in a
convex form. A possible way out consists in using the method in [30], and linearize the sum SE
in (5.18) using a first order Taylor series approximation. The optizimation is then carried out by
adopting an iterative approach in which the variables ρc and {ρi : i = 1, . . . ,K } are alternatively
optimized. In Appendix F, it is shown that at iteration t the powers must be updated as follows

(5.21) ρ(t )
k =

(
1

µ(t ) +σ(2,t )
k

− 1

σ(1,t )
k

)+

and

(5.22) ρ(t )
c =

(
1

µ(t ) +σ(2,t )
c

− 1

σ(1,t )
c

)+

where (x)+ = max(x,0) and the quantities {σ(1,t )
k ,σ(1,t )

c } and {σ(2,t )
k ,σ(2,t )

c } are defined in Appendix F.
The former represent the signal powers of private and common messages at iteration t , respec-
tively, while the latter can be interpreted as the corresponding leakage powers. This is why (5.21)
and (5.22) are called interference leakage-aware water-filling (ILA-WF) power allocations [46].
Note that the Lagrange multiplier µ(t ) needs to satisfy the power constraint in (5.20) and can be
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Algorithm 9: ILA-WF power allocation

1: initialize t = 0 and ρ(0)
c = 0 (no RS) and ρ(0)

k = ρT /K . Also, µ(0) = 1
2 (µ(0)

u +µ(0)
l ) with µ(0)

u = 105

(or some very large value) and µ(0)
l = 0.

2: repeat
3: for k = 1 to K do
4: compute σ(1,t )

k and σ(2,t )
k

5: use µt to update p t
k in (5.21)

6: end for
7: compute σ(1,t )

c and σ(2,t )
c

8: use µt to update p t
c in (5.22)

9: if ρ(t )
c +∑

k
ρ(t )

k > ρT then

10: µ(t+1)
l =µ(t ), µ(t+1)

u =µ(t )
u

11: else
12: µ(t+1)

u =µt , µ(t+1)
l =µ(t )

l
13: end if

14: update µ(t+1) = µ(t+1)
u +µ(t+1)

l
2

15: update t = t +1
16: until convergence

computed by a bisection method [39]. The entire procedure is summarized through Algorithm
1.

As done for γk,c and γk , we observe that all the quantities involved in the computation of
{σ(1)

k ,σ(1)
c } and {σ(2)

k ,σ(2)
c } are deterministic and can be computed by means of Monte Carlo sim-

ulations for any choice of the precoding scheme for the common message. Closed form expres-
sions are provided below for a MR-inspired precoding scheme.

5.3.2 Precoding design for common message

The optimal design of the precoding vector wc for the common message requires to solve a multi-
objective problem involving γlmin,c and {γi : ∀i }. To overcome this issue, we assume that the
difference E{|hH

k wc |2}−|E{hH
k wc }|2 in (11) is small so that it can be neglected. The precoding vector

is then suboptimally selected as the solution to the following problem:

(5.23) max
wc

min
k
πk |E{hH

k wc }|2 s.t. E{‖wc‖2} = 1

where

(5.24) πk = 1
K∑

i=1
ρiE{|hH

k wi |2}+σ2

.

Following [86], we heuristically select wc as a linear combination of the estimated channel vec-
tors {ĥi : ∀i }:

(5.25) wc =α
K∑

i=1
ai ĥi
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where α is needed to satisfy the constraint E{‖wc‖2} = 1. Plugging (5.25) into E{hH
k wc }, we may

rewrite (5.23) as:

(5.26) max
{ai }

min
k
πk

∣∣∣∣∣ K∑
i=1

ai tr{Ri Q−1Rk }

∣∣∣∣∣
2

where we have neglected the scaling factor α2. We now observe that (5.26) can be reformulated
as a geometric programming problem [39]:

(5.27) max
t>0

t , s.t. aTui ≥ t , ∀ i = 1, ..,K

where we have defined a = [a1, ..., aK ]T and ui = [ui (1), . . . ,ui (K )]T with entries ui (k) = tr{Ri Q−1Rk }.
Once the solution a? to (5.27) is computed, the optimal w?

c is obtained as:

w?
c =

K∑
i=1

a?i ĥi√
K∑

i=1

K∑
j=1

a?i a?j tr{Ri Q−1R j }

.(5.28)

The expectations that depend on w?
c can be computed in closed form as follows. By using (5.2)

into (5.28) yields

E{hH
k w?

c } =

K∑
i=1

a?i tr{Ri Q−1Rk }√
K∑

i=1

K∑
j=1

a?i a?j tr{Ri Q−1R j }

.(5.29)

To compute E{|hH
k w?

c |2}, observe that it can be rewritten as

E{|hH
k w?

c |2} = 1
K∑

i=1

K∑
j=1

a?i a?j tr{Ri Q−1R j }

×

(
K∑

i=1
(a?i )

2
E{|ĥH

i hk |2}+
K∑

i=1

K∑
j=1, j 6=i

a?i a?j E{hH
k ĥi ĥ j hk }

)
.(5.30)

The first term in (5.30) becomes (example, [75, Eq. (C.65)])

E{|ĥH
i hk |2} = tr{RkΦi }+

∣∣∣tr{Rk Q−1Ri }
∣∣∣2

(5.31)

while the second one in (5.30) reduces to

E{hH
k ĥi ĥH

j hk }
(a)= E{hH

k ĥi ĥH
i R−1

i R j hk }(5.32)

(b)= tr
{

R−1
i R jE{ĥk ĥH

k ĥi ĥH
i }

}
+ tr

{
R−1

i R jE{h̃k h̃H
k }E{ĥi ĥH

i }
}

(5.33)
(c)= tr

{
R−1

i R jE{ĥk ĥH
k ĥi ĥH

i }
}

+ tr
{

R−1
i R j (Rk −Φk )Φi }

}
(5.34)
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where (a) uses ĥ j = R j R−1
i ĥi (as it follows from (5.2)), (b) follows from hk = h̃k +ĥk and the inde-

pendence between the estimate ĥk and estimation error h̃k , whereas (c) uses E{h̃k h̃H
k }E{ĥi ĥH

i } =
(Rk −Φk )Φi . In Appendix G, it is shown that

E{ĥk ĥH
k ĥi ĥH

i } = tr{Bi k }Φk

+Φ1/2
k

(
diag(Bi k )+Bi k

)
(Φ1/2

k )
H

(5.35)

where Bi k = (Φ1/2
k )

H
Ri R−1

k Φ1/2
k and diag(·) indicates the main diagonal of the enclosed matrix.

Note that, by using the above expressions and those in (5.16) and (5.17), we can eventually
compute in closed form all the expectations involved in (11) and (12).

5.4 Simulation Results

To quantify the SE that can be achieved in MaMIMO with RS, we consider a cell of size 250 m
×250 m. The UL pilot power is ρtr = 20 dBm, whereas the noise power in UL and DL is σ2 =
−94 dBm. The samples per coherence block are τ= 200 with τp = 10. Each BS is equipped with
a uniform linear array with half-wavelength antenna spacing. Each channel consists of S = 6
scattering clusters, which are modeled by the Gaussian local scattering model [75, Sec. 2.6].
Hence, the (m1,m2)th element of Ri is

[Ri ]m1,m2
=βi×

1

S

S∑
s=1

e jπ(m1−m2)sin(ϕi ,s )e−
σ2
ϕ

2 (π(m1−m2)cos(ϕi ,s ))2

(5.36)

where βi is the large-scale fading coefficient given by (in dB)

βi |dB =−34.53−38 log10

(
di

1km

)
+Fi(5.37)

with UEs being placed uniformly at random and di (>= 35m) represents the distance of UE i
from the BS. Fi ∼N (0,10) is the logarithm of the shadow fading between UE i and BS. Also, letϕi

be the geographical angle to UE i as seen from the BS. Cluster s is characterized by the randomly
generated nominal angle-of-arrival ϕi ,s ∼ U [ϕi −40◦,ϕi +40◦] and the angles of the multipath
components are Gaussian distributed around the nominal angle with standard deviation σ2

ϕ =
10◦.

Fig. 5.1 plots the sum SE as a function of the total transmit power defined as ρT (in dBm) with
M = 100 and K = 10. Comparisons are made with a classical MaMIMO system with MR precod-
ing and power allocated through Algorithm 1 with ρc fixed to 0. As seen, RS improves the sum SE
significantly for values of ρT higher than 5 dBm. Moreover, the sum SE with RS does not saturate
at high ρT values. This in contrast to what happens without RS, due to pilot contamination.

Fig. 5.2 illustrates the sum SE as a function of number of antennas, M , with K = 10 and trans-
mit power ρT = 20 dBm. We observe that the RS scheme does help to mitigate the pilot contam-
ination effect for a finite number of antennas.

Finally, in Fig. 5.3 we report the sum SE as a function of K with M = 100 and ρT = 20 dBm. As K
increases, the gain provided by RS decreases. The larger K , the lower the common rate since the
common message has to be decoded by all UEs. This issue can be solved by using HRS approach
as in [86]; this is an interesting topic left for future work.
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Figure 5.1: Sum SE versus transmit power, with M = 100 and K = 10.
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Figure 5.2: Sum SE versus number of antennas with K = 10 and ρT = 20 dBm.

5.5 Concluding Remarks

Remarks 3

• This chapter focused on a single-cell MaMIMO system in which all the UEs use the
same pilot signal in the training phase. To deal with the reduced channel estimation
quality, caused by pilot contamination, a single layer RS approach was proposed and
shown to improve the SE at high SNR values. The results of this section appear in the
paper [89].

• As the number of users (K ) increases, the gain provided by RS decreases. The larger K ,
the lower the common rate since the common message has to be decoded by all UEs.
We conjecture that a two layer RS would be a solution in this case and remains to be
checked.

• However, we remark that much remains to be done, for example, extension of the cur-
rent work to a multi-cell setting and the design of an efficient RS message scheme to
mitigate the inter-cell and intra-cell interference.
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Figure 5.3: Sum SE versus number of UEs with M = 100 and ρT = 20 dBm.

Remarks 3 (cont.)
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Stochastic Geometry based Large System
Analysis
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Chapter 6

ASYMPTOTIC ANALYSIS OF REDUCED ORDER ZERO FORC-
ING BEAMFORMING

6.1 Introduction

Optimal linear transmitter beamformers in multi-antenna multi-user systems are of the Mini-
mum Mean Squared Error (MMSE) type (dual uplink MMSE receivers). MMSE designs make an
optimal compromise between noise enhancement and interference suppression and reduce to
matched filters at low SNR and zero-forcing at high SNR. We consider a realistic scenario of user
channels of varying attenuation and constrain the beamformers to either zero-force or ignore
each interference term. This leads to a reduced-order zero-forcing (RO-ZF) design in which the
number of interference sources being zero-forced increases with SNR. We apply a simple large
systems analysis (applicable to Massive MIMO) to determine the asymptotic performance of RO-
ZF designs, determine the optimal ZF orders, and compare to optimal and ZF linear and Dirty
Paper Coding (DPC) designs. RO-ZF designs lead to variable reductions of computational com-
plexity and channel state information (CSI) requirements (esp. in future multi-cell extensions),
both important considerations in Massive MIMO systems.

Massive MIMO [90] which utilizes large number of antennas at the base station (BS) offers
immense possibilities for increased system capacity. Multi-user MIMO (MU-MIMO) systems
requires the global knowledge of the CSI at the Tx (CSIT) which is more difficult to acquire than
CSI at the Rx. However, this leads to increased computational complexity owing to the large
number of antennas. Recently, a number of research works have proposed to exploit the channel
hardening in Massive MIMO (MaMIMO) to reduce global instantaneous CSIT requirements to
local instantaneous CSIT plus global statistical CSIT [91]. Channel hardening occurs when the
number of antennas at the BS are very high such that a fading channel behaves as if the effect
of the randomness in the channel to spectral efficiency will be negligible. Extensive work on BF
designs for BC (broadcast channel) or IBC (Interfering BC) with perfect or partial CSIT can be
found in [11, 62, 70, 92, 93].

A significant contribution for large system analysis in MaMIMO systems appeared in [14]. It
allows to compute deterministic (instead of fast fading channel dependent) expressions for var-
ious scalar quantities, facilitating the analysis and design of wireless systems. E.g. it may al-
low to conduct the performance analysis without computing explicit beamformers. Through
large system analysis, [14] compute the optimal regularization factor in Regularized ZF (R-ZF)
BF, both with perfect and partial CSIT. A little known extension appeared in [15] for weighted
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Sum MSE (WSMSE) based optimal beamformers, but only for the perfect CSIT MISO (Multiple-
Input Single-Output) BC case. Some other extensions appeared recently in [94] where MISO IBC
is considered with perfect CSIT and weighted R-ZF BF, with two optimized weight levels, for in-
tracell or intercell interference. [16] considers the large system analysis of the MIMO IBC with
optimized BF under partial CSIT. [95] studied the energy consumption dynamics in a MISO BC
with users moving around according to a random walk model.

6.1.1 Summary of this Chapter

In this chapter:

• We introduce the concept of reduced-order ZF BF and propose a greedy approach to opti-
mize the reduced ZF orders.

• We propose a large system analysis for optimal BF and DPC with omnidirectional but dif-
ferently attenuated user channels.

• We consider a novel simple large system analysis for ZF BF or DPC transmitters with om-
nidirectional channel covariances.

• We illustrate with numerical evaluations the complexity-performance tradeoff that RO-ZF
permits.

6.2 Multi-User MIMO System Model

Consider a transmitter (BS) equipped with M antennas communicating with K single antenna
users (MISO BC). Furthermore, under narrowband transmission, the received signal at user k
can be written as,

(6.1) yk = hH
k x+nk , k = 1,2, ..., K ,

where hk ∈ C M is the downlink channel between user k and BS, x ∈ C M is the transmit vector
and the noise terms nk ∈C N (0,σ2) are independent. The channel covariance matrix is defined
as Θk and thus correlated channel model can be written as, hk =p

MΘ1/2
k zk , where zk has i.i.d.

complex entries of zero mean and variance 1/M andΘ1/2
k is any Hermitian square root ofΘk . The

correlation matrix Θk is non-negative Hermitian and of uniformly bounded spectral norm w.r.t.

M . The transmit signal x can be written as, x =
K∑

i=1
gi si , where gk ∈ C M represents the transmit

precoder matrix for user k and si is the i th user symbol, with si ∼C N (0,1). The transmit power

constraint can be written as, E(xH x) = tr(
K∑

i=1
gi gH

i ) ≤ P . Under optimal single user decoding, the

user rate can be defined as, Rk = log(1+γk ), where the signal to interference plus noise ratio
(SINR), γk is defined as,

(6.2)
γk = |hH

k gk |2
K∑

i=1,i 6=k
|hH

k gi |2 +σ2

.

The transmit SNR is defined as ρ = P
σ2 and β = K

M . In the large system limit, we assume that
M ,K → ∞ at a fixed ratio β < 1. Further we assume that the channel covariance matrices are
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represented by multiple of identity, Θk = θk
M I, with different user channel covariance matrices

differentiated by the varying attenuation factor θk . Multiple of identity covariance structure re-
flects the fact that the user subspaces are randomly oriented even though we do not assume the
knowledge of subspaces. Further it helps to analytically evaluate the RO-ZF BF and compare it to
optimal BF. Moreover, we define the ordering of the multiple of identity for the covariance matri-
ces as, θ1 ≥ θ2 ≥, ....,≥ θK , which means user 1 represents the strongest user and K is the weakest
user.

6.3 Large System Analysis of Optimal BF-WSMSE

In this section, we refer to the iterative algorithm in [9] for the optimal linear transmit BF and
superscript ( j ) refers to the iteration stage j . We simplify the large system analysis results of
the optimal BF in [15] for the case of multiple of identity covariance matrices for the user chan-
nels and the result is stated below. Since a detailed derivation (for general covariance matrices)
already appears in [15], we skip the details and simplify the results therein for our simplified
channel model. In the following sections, we denote (x2)( j ) = (x( j ))2.

Theorem 4. Let γ( j )opt−W SMSE
k be the SINR of user k (6.2) under optimal linear precoding, i.e.,

at the end of iteration j , g( j )
k =

√
P
ψ( j )

(
HD( j )HH +α( j )I

)−1
hk a( j )

k w ( j )
k , ak is the MMSE Rx filter, wk

is the MSE weight for user k, ψ( j ) being the normalization constant and α( j ) = tr(D( j ))
ρ with the

(k,k)th element of the diagonal matrix D( j ),d ( j )
k = (a2

k )( j )w ( j )
k . H represents the channel matrix of

all users, H = [h1, ...,hK ]. Then γ( j )opt−W SMSE
k −γ( j )opt−W SMSE

k
M→∞−−−−→ 0, almost surely, where,

(6.3) γ
( j )opt−W SMSE
k = θ2

k w ( j )
k (e2)( j )

Υ
( j )
k + σ2d

( j )
k

ψ( j )

P (1+d
( j )
k θk e( j ))2

,

where w ( j )
k ,d

( j )
k ,ψ( j ) represent the deterministic equivalents for w ( j )

k ,d ( j )
k ,ψ( j ) respectively, the ex-

pressions of which are given below. Further we can show that, since the logarithm is a continu-
ous function, by applying the continuous mapping theorem [96], it follows from the almost sure

convergence of γ( j )opt−W SMSE
k that, R( j )

k − R
( j )
k

M→∞−−−−→
a.s

0, where R( j )
k is the rate of user k, with

R
( j )
k = ln(1+γ( j )opt−W SMSE

k ).

Normalization term: A deterministic equivalent ψ( j ) such that ψ( j ) −ψ( j ) M→∞−−−−→ 0, almost
surely, is given by

(6.4) ψ
( j ) = 1

M

K∑
k=1

w ( j )
k

d
( j )
k θk e( j )′

(1+d
( j )
k θk e( j ))2

,

Using theorem 1 [14], e( j )is given as the unique positive solution of the following equation,

(6.5) e( j ) = (
K∑

i=1

d
( j )
i θi

1+d
( j )
i θi e( j )

+α( j ))−1.

e( j ) ′, the derivative of e( j ) w.r.t −α( j ), is obtained as,

(6.6)
e( j )′ = (e2)( j )

1−(e2)( j )

K∑
i=1

(d
2
i )( j )θ2

i

(1+d
( j )
i θi e( j ))2

.
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Signal Power: A deterministic equivalent for the square root of the signal power,
√

P
( j )
S,k gets

simplified as,

(6.7)
√

P
( j )
S,k =

√
P
ψ

( j )
d

( j )
k θk e( j )

a( j )
k (1+d

( j )
k θk e( j ))

.

Interference Power: Following [14, 15], the deterministic equivalent for the interference power
can be obtained as,

(6.8)

K∑
i=1, 6=k

hH
k g( j )

i g( j ) H
i hk = P

d
( j )
k ψ

( j )

Υ
( j )
k

(1+d
( j )
k θk e( j ))2

,

where, Υ
( j )
k = 1

M

K∑
i=1,i 6=k

w ( j )
i

d
( j )
i θi e( j )′

(1+d
( j )
i θi e( j ))2

.

Substituting the signal and interference powers, the deterministic equivalent of the SINR leads

to (6.3).The deterministic equivalents for the a( j )
k , w ( j )

k ,d ( j )
k are given by [15], a( j )

k = σ√
P

( j−1)
S,k

γ
( j−1)
k

1+γ( j−1)
k

,

w ( j )
k = uk (1+γ( j−1)

k ), and d
( j )
k = (a2

k )( j )w ( j )
k .

6.4 Large System Analysis of Optimal DPC

The received signal at user k with DPC [6] (which achieves the capacity region of MIMO BC) at
the BS is

(6.9)
yk = hH

k gk sk︸ ︷︷ ︸
signal

+
K∑

i=k+1
hH

k gi si︸ ︷︷ ︸
interf. from weaker users

+nk .

In optimal DPC, users are ordered in decreasing strength, as in RO-ZF. The interference that a
user will cause to weaker users gets canceled non-linearly at the Tx (in other words, in the Rx
SINR it does not need to be considered), and the BF handles only interference to stronger users.
As usual, optimal BF does something in between ZF and matched filter (MF). So there will be
residual interference at the stronger users.

Let γDPC
k be the SINR of user k under optimal DPC, i.e., at the end of iteration j , γ( j )DPC

k −
γ

( j )DPC
k

M→∞−−−−→ 0, almost surely, where, the expression for γ( j )DPC
k is same as (6.3). However, the

expressions for each of the scalars got modified as,

(6.10)

e( j ) = (
K∑

i=k

d
( j )
i θi

1+d
( j )
i θi e( j )

+α( j ))−1,

Υ
( j )
k = 1

M

K∑
i=k+1

w ( j )
i

d
( j )
i θi e( j )′

(1+d
( j )
i θi e( j ))2

.

Note that the only change compared to the optimal WSMSE BF is that each summation term get
replaced from k to K or k +1 to K .
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6.5 Reduced Order ZF

In this section, we consider the BF to be a reduced order ZF (RO-ZF). This can be interpreted as
the number of interfering channels to be zero-forced for a user k is much less than K . The RO-ZF
BF gk can be written as,

(6.11) gk =
P⊥

HIk
hk

||P⊥
HIk

hk ||
.

Here, PH = H(HH H)#HH represent the projection onto the column space of H, P⊥
H = I−PH is the

projection onto its orthogonal complement (# represents the Moore-Penrose pseudo-inverse).
For the convenience of analysis, we define the following: Kk represents the strongest interfering
channel zero-forced by the BF of user k and Ik denotes the set of user indices for which the ZF
is done. HIk represents the matrix of all the user channels in Ik . Complexity in the RO-ZF case
will be about half of that of full ZF (multiplying the M ×K H by a triangular K ×K instead of a
full K ×K , computation of the K ×K inverse or triangular factor takes O(K 3) operations, with a
smaller factor if only a triangular factor is needed and not a full inverse).

6.6 Large System Analysis for RO-ZF, Full Order ZF and ZF-DPC

In this section we consider the large system analysis for the RO-ZF scheme proposed in this
chapter and also the full order ZF (full order means |Ik | = K − 1,∀k). In this section, we split
gk =p

pk g′
k , where pk is the power allocated to user k.

(6.12)

γRO−Z F
k = PS,k

PI ,k +σ2
k

= pk |hH
k g′

k |2
K∑

i=1,i 6=k
pi |hH

k g′
i |2 +σ2

k

,

g′
k =

P⊥
HIk

hk

||P⊥
HIk

hk ||
=⇒

hH
k g′

k =
∥∥∥P⊥

HIk
hk

∥∥∥ .

Further, by the law of large numbers, PS,k −P S,k
M→∞−−−−→

a.s
0, where,

(6.13)

P S,k = E(|hH
k g′

k |2)

= EHIk
Ehk tr(P⊥

HIk
hk hH

k )

= θk

M
tr(IM −HIk (HH

Ik
HIk )#HH

Ik
)

= θk (1− |Ik |
M

),

where we use the property of the projection matrices that P⊥
HIk

P⊥
HIk

= P⊥
HIk

. Next, we consider the

terms in PI ,k ,

(6.14) |hH
k g′

i |2 =
|hH

k P⊥
HIi

hi |2∥∥∥∥P⊥
HIi

hi

∥∥∥∥2 .
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(6.15)

Ifk ∈ Ii , then |hH
k g′

i |2 = 0, else,

E(|hH
k P⊥

HIi
hi |2) = E(tr(P⊥

HIi
hi hH

i P⊥
HIi

hk hH
k ))

= θkθi

M 2 tr(P⊥
HIi

)

= θkθi

M 2 tr(IM −HIi (HH
Ii

HIi )#HH
Ii

)

= θkθi

M
(1− |Ii |

M
).

Finally we obtain E(|hH
k g′

i |2) =
θkθi

M (1− |Ii |
M )

θi (1− |Ii |
M )

= θk
M . Further, we get the deterministic equivalent of the

SINR in the large system limit as,

(6.16)
γRO−Z F

k = pkθk

1
M θk

K∑
i=1,k 6∈Ii

pi +σ2

(
1− |Ik |

M

)
.

For the full order ZF, the interference power vanishes from the SINR terms,

(6.17) γZ F
k = pkθk

σ2

(
1− K −1

M

)
.

ZF-DPC combines zero-forcing and DPC technique. While DPC cancels the interference for
users i < k, the interference of users i > k are eliminated by designing the BF gi such that hH

k gi =
0.The large system analysis for the ZF-DPC (|Ik | = k−1) is as follows : We define Jk = {1,2, ...,k−1}.

(6.18)

γZ F−DPC
k = PS,k

PI ,k +σ2
k

= pk |hH
k g′

k |2
σ2

k

, since, PI ,k = 0,

g′
k =

P⊥
HJk

hk

||P⊥
HJk

hk ||
,

=⇒ hH
k g′

k =
∥∥∥P⊥

HJk
hk

∥∥∥ ,

P S,k = E(|hH
k g′

k |2)

= EHJk
Ehk tr(P⊥

HJk
hk hH

k )

= θk

M
tr(IM −HJk (HJk HH

Jk
)#HJk )

= θk (1− k −1

M
).

Therefore, the deterministic equivalent of the SINR becomes,

(6.19) γZ F−DPC
k = pkθk

σ2

(
1− k −1

M

)
.
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6.6.1 Optimization of user powers pk

We consider here the approximation of the WSR according to the difference of convex (DC) func-
tions approach as in [30]. Solving DC, we get the Lagrangian for the WSR,

(6.20)

W SR(g,λ) =λP +
K∑

k=1
uk lndet(1+gH

k Bk gk )−gH
k (Ak +λI)gk ,

where, Bk = hk r−1
k

hH
k ,

Ak =
K∑

i 6=k,i 6∈Ik

ui hi (r−1
ī

− r−1
i )hH

i ,

rk =
K∑

i=1,i 6=k,k 6∈Ii

|hH
k gi |2 +σ2,

rk = rk +|hH
k gk |2.

Here g represents the set of BFs gk . Let σ(1)
k = g′H

k Bk g′
k and σ(2)

k = g′H
k Ak g′

k . For full order ZF,

Ak = 0, thus σ(2)
k = 0 and (6.20) reduces to standard waterfilling. The advantage of formulation

(6.20) is that it allows straightforward power adaptation: introducing stream powers pk ≥ 0 and
substituting gk = g′

k
p

pk in (6.20) yields

(6.21) W SR(P,λ) =λP +
K∑

k=1
[uk ln(1+pkσ

(1)
k )− tr(pk (σ(2)

k +λ))],

where P represents the set of powers pk . Since this is a concave function w.r.t pk , taking the
derivative leads to the following interference leakage aware water filling (WF) (jointly for the pk

and λ)

(6.22) pk =
(
uk (σ(2)

k +λ)−1 −σ−(1)
k

)+
,
∑
k

pk = P,

where the Lagrange multiplier is adjusted to satisfy the power constraints. This can be done by
bisection.

6.7 Optimization of the ZF Order

In this section, we consider an alternating optimization algorithm (Algorithm 10) which com-
putes the reduced ZF order for each user (Ik ,Kk ). In Algorithm 10, the text “if uk Rk +uK ′

k
RK ′

k
is

increased" is meant to be understood “by adding the ZF from k to K ′
k ". In Algorithm 1, we con-

sider the ordering for the case of, Ik = {Kk ,Kk + 1, ...,Kk + |Ik | − 1} if k < Kk , else Ik = {Kk ,Kk +
1, ...,Kk + |Ik |}. |Ik | represents the cardinality of the set Ik . Also, HIk = [hKk , ...,hKk+|Ik |−1] or
HIk = [hKk , ...,hKk+|Ik |]. Note that at finite dimension MIMO, not only the channel strengths but
also the relative orientation of the channel vectors count. However, in MaMIMO with multiple of
identity covariances, there is no orientation issue, only the channel strengths count. So the user
ordering is simple.

6.8 Simulation Results

In this section we illustrate the simulation results to validate our theoretical results. We compare
the sum rate performance of RO-ZF BF scheme (which has the least complexity) to the optimal
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Algorithm 10: Reduced Zero-Forcing Order Determination

Given: K , M ,σ2,θi ,∀i , with ordering θ1 ≥ θ2 ≥ ... ≥ θK .
Initialization: Start with Kk = k +1,∀k = 1, ...,K −1 and for user K , |IK | = 0.

for k = 1 : K
K ′

k = Kk .
while (K ′

k > 1)
K ′

k = K ′
k −1.

if(K ′
k 6= k)

if uk Rk +uK ′
k
RK ′

k
is increased

Kk = K ′
k , else exit while loop

else end if
end while
K ′

k = Kk .
while (K ′

k < K )
K ′

k = K ′
k +1.

if(K ′
k 6= k)

if uk Rk +uK ′
k
RK ′

k
is increased

Kk = K ′
k , else exit while loop

else end if
end while

end for
Continue until convergence of Ik ,∀k.
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Figure 6.1: Accuracy of large system approximation M = 64,K = 30.

BF-WSMSE [9], optimal DPC and to the large system approximations of optimal BF-WSMSE, full
order ZF and the ZF DPC. For the SNR ranges of interest, it can be seen that RO-ZF performs close
to the optimal schemes with much lower complexity, see Figure 6.2. Figure 6.3 illustrates the sum
rate difference of the various BF designs from the optimal DPC. In Figure 6.1, We first validate our
large system approximation. It clearly shows that the rate expression resulting from large system
approximation for RO-ZF BF matches exactly with that of the Monte-Carlo simulations.
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Figure 6.2: Sum rate comparison for M = 64,K = 30.
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Figure 6.3: Sub-optimality compared to Optimal DPC for M = 64,K = 30.

Concluding Remarks 4

• In this chapter, we investigate the performance-complexity tradeoffs for the reduced
order ZF BF. We propose the large system analysis for the RO-ZF BF, optimal BF, op-
timal DPC, ZF-DPC and full order ZF for the case of omnidirectional but differently
attenuated user channels.

• Simulation results indicate that our RO-ZF BF scheme has a performance very close to
the optimal BFs such as WSMSE and DPC, but with much lesser complexity compared
to the full order ZF. We also propose an alternating optimization algorithm which com-
putes the optimal ZF order for each user.

• We conjecture here one special scenario where the RO-ZF indeed can bring lower com-
putational complexity. Consider a MISO single cell where channel H is K ×M and G
is M ×K . We actually obtain MMSE-ZF by argminG ‖G‖2 s.t. HG = IK which leads to
G = HH (HHH )−1. Since we can still adjust the stream powers, the correct ZF require-
ment would be only offdiag(HG) = 0 where offdiag(·) is the off-diagonal part of the
matrix argument. This leads to G = HH (HHH )−1P where P is a diagonal matrix of
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Concluding Remarks 4 (cont.)

stream powers. Then argminG ‖G‖2 criterion gets replaced by argmaxP W SR to op-
timize the power. For RO-ZF in which a user gets ZF’d to or not, but when he does,

he gets ZF’d to by all (other) BFs. Let after permutation HH =
[

HH
z HH

n

]
, where Hz =

user channels to be ZF’d to, Hn are the others. Let G =
[

Gz Gn

]
. Then G = HH A where

A is K ×K . As in traditional ZF, Hz G =
[

IKz 0
]

, where K = Kz +Kn . In principle, have

to do argminG ||G||2 under the ZF constraint in the line above. The solution of the re-
structured problem above will be: Gz = HH

z (Hz HH
z )−1 and Gn = P⊥

HH
z

HH
n This leads to

A =
[

(Hz HH
z )−1 −(Hz HH

z )−1Hz HH
n

0 IKn

]
. The key point is that there is only one matrix

inverse to be computed: (Hz HH
z )−1.

• RO-ZF is motivated by being simpler than MMSE BF and having performance close to
it. For that to be true, the computation (including the optimization of the RO in fact) of
RO-ZF should be simpler than the computation of the full-order ZF, ideally. Hence, a
simplified algorithm for the RO-ZF order optimization still remains an open problem.
That is not simple to achieve, especially the RO optimization, but that gets simpler if
we require any user either to be ZF’d to by all or none.

6.9 Extension of RO-ZF BF to IBC under Partial CSIT

We consider an IBC with C cells with a total of K single antenna users. We shall consider a
system-wide numbering of the users. User k is served by BS bk . The received signal at user k
in cell bk is

(6.23) yk =hH
k,bk

gk xk︸ ︷︷ ︸
signal

+ ∑
i 6=k

bi=bk

hH
k,bk

gi xi

︸ ︷︷ ︸
intracell interf.

+ ∑
j 6=bk

∑
i :bi= j

hH
k, j gi xi︸ ︷︷ ︸

intercell interf.

+vk

where xk is the intended (white, unit variance) scalar signal stream, hk,bi is the Mbk ×1 channel
from BS bi to user k. The Rx signal (and hence the channel) is assumed to be scaled so that we
get for the noise vk ∼C N (0,1). BS bk serves Kbk =

∑
i :bi=bk

1 users. The Mbk ×1 spatial Tx filter
or beamformer (BF) is gk .

6.9.1 Channel and CSIT Model

For simplicity, we omit all the user indices k. We start from a deterministic Least-Squares (LS)
channel estimate

(6.24) ĥLS = h+ h̃,

where h is the true MISO channel, and the error is modeled as circularly symmetric white Gaus-
sian noise h̃ ∼C N (0, σ̃2I). Now each MISO channel is modeled according to a correlation struc-
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ture (Karhunen-Loeve representation [21]) as follows,

(6.25)
h = C c,

c = D1/2c′,

where c′ ∼ C N (0,IL) and D is diagonal. Here C is the M ×L eigenvector matrix of the reduced

rank channel covariance Rhh = CDCH . The total sum rank across all users Np =
K∑

k=1
Lk,c is as-

sumed to be less than Mc , where Lk,c is the channel rank between user k and BS c. Assum-
ing the channel covariance subspace is known, the LMMSE channel estimate can be written as

ĥ = CDCH
(
CDCH + σ̃2I

)−1
ĥLS . Applying the matrix inversion lemma and exploiting CH C = IL ,

this simplifies to

(6.26)
ĥ = C

(
σ̃2D−1 + I

)−1
CH ĥLS

= CD̂1/2ĉ,

where

(6.27)
D̂ = (

σ̃2D−1 + I
)−1

D,

and ĉ = D−1/2(σ2D−1 + I)−1/2CH ĥLS .

Note that a detailed derivation of the LMMSE estimate here appears in Appendix A (where (6.26)
follows immediately by substituting for Cr = 1).The posterior error covariance becomes

(6.28) Rh̃h̃ = CDCH −CDCH (
CDCH + σ̃2I

)−1
CDCH ,

which the matrix inversion lemma allows to simplify to,

(6.29)
Rh̃h̃ = C

[
D− (

σ̃2D−1 + I
)−1

D
]

CH

= CD̃CH .

So we can write for S = Eh|ĥ
(
hhH

)= ĥ ĥH +Rh̃h̃ = CWCH , where W = D̂1/2ĉĉH D̂1/2 + D̃.

6.9.2 Partial CSIT BF based on Different Channel Estimates

In the MaMIMO limit, BF design with partial CSIT will depend on the quantities S = Eh|ĥ
(
hhH

)=
ĥ ĥH +Rh̃h̃. We shall consider three possible channel estimates.
(i) LS Channel Estimate
We have ĥLS = h+ h̃, where h and h̃ are independent. In the LS case, Rh̃h̃ = σ̃2I.
(ii) LMMSE Channel Estimate
We have h = ĥ+ h̃ in which ĥ and h̃ are decorrelated and hence independent in the Gaussian
case. In the LMMSE case, Rh̃h̃ is the posterior covariance. The resulting S = ĥĥH +Rh̃h̃ now forms
an unbiased estimate of hhH : EĥS = Rhh.
(iii) Subspace Projection based Channel Estimate
We also investigate the effect of limiting channel estimation error to the covariance subspace
(without the LMMSE weighting, this is a simplification of the LMMSE estimate). The subspace
channel estimate is given as,

(6.30)
ĥS = PC ĥLS = h+PC h̃LS ,

Rh̃S h̃S
= σ̃2PC ,

where PC = C(CH C)−1CH represents the projection onto the covariance subspace. Here, S =
ĥS ĥH

S +Rh̃S h̃S
= C(ĉĉH + σ̃2I)CH .
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6.9.3 BF with Partial CSIT

Three types of BF design with partial CSIT can be analyzed. In the case of partial CSIT we get for
the Rx signal,

(6.31)
yk = ĥH

k,bk
gk xk + h̃H

k,bk
gk xk︸ ︷︷ ︸

sig. ch. error

+
K∑

i=1, 6=k
(ĥH

k,bi
gi xi + h̃H

k,bi
gi xi︸ ︷︷ ︸

interf. ch. error

)+ vk .

1) Naive BF EWSR: just replace h by ĥ in a perfect CSIT approach. Ignore h̃ everywhere. 2)
Optimal BF EWSR: accounts for covariance CSIT in the signal and interference terms.

6.9.4 Max EWSR ZF BF in the MaMISO limit (ESEI-WSR)

The scenario of interest here is to design optimal beamformers when there is only partial CSIT.
Once the CSIT is imperfect, various optimization criteria such as outage capacity can be consid-
ered. Here the design is based on expected weighted sum rate (EWSR) (and in a first instance
with LMMSE channel estimates). The actual EWSR represents two rounds of averaging. In a
first stage, the WSR is averaged over the channels given the channel estimates and covariance
information (i.e. the partial CSIT), leading to a cost function that can be optimized by the Tx.
The optimized result then needs to be averaged over the channel estimates to obtain the final
ergodic WSR. In the MaMISO limit, due to the law of large numbers, a number of scalars con-
verge to their expected value, facilitating averaging the WSR. From the law of total expectation
and motivated from the ergodic capacity formulations [97] (point to point MIMO systems), [98]
(multi user MISO systems),

(6.32)

EW SR = Eĥ max
g

EW SR(g),

EW SR(g) = Eh|ĥW SR(g )

=
K∑

k=1
uk Eh|ĥ ln(sk /sk )

(a)=
K∑

k=1
uk ln((Eh|ĥsk )/(Eh|ĥsk ))

=
K∑

k=1
uk ln(r−1

k
rk ),

where transition (a) represents the MaMISO limit leading to ESEI-WSR (Expected Signal Ex-
pected Interference WSR), uk are the rate weights, g represents the collection of BFs gk . sk is
the (channel dependent) interference plus noise power and sk is the signal plus interference
plus noise power. Their conditional expectations are

(6.33)

rk = 1+ ∑
i 6=k

Eh|ĥ|hH
k,bi

gi |2

= 1+ ∑
i 6=k

gH
i Sk,bi gi ,

rk = rk +gH
k Sk,bk gk , Sk,bk

= Ck,bk Wk,bk Ck,bk .

For optimal ZF BF, all the interfering powers gH
i Sk,bi gi = 0 and thus gk should belong to the

orthogonal complement of the eigenvector subspace of all the interfering users. For this pur-
pose, we define Ck as the eigenvector space of all the users (except k) channel from bk , Ck =
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[C1,bk , ...,Ck−1,bk ,Ck+1,bk , ..,CK ,bk ]. Further we split gk = g′
k p1/2

k , where pk is the power allocated

to user k, and ||g′
k || = 1. By adding the Lagrange terms for the BS power constraints,

C∑
c=1

µc (Pc −∑
k:bk=c

||gk ||2), to the EWSR in (6.32), we get the gradient (with αk = uk
rk

),

(6.34)
∂EW SR

∂g∗
k

=αk Sk,bk gk −µbk gk = 0,

leading to gk ∝ Vmax (Sk,bk ). Finally we obtain the ZF BF as, g′
k = P⊥

Ck
Vmax (Sk,bk ), where P⊥

Ck
rep-

resents the projection onto the orthogonal complement of Ck . To further simplify, consider the
eigen decomposition of Wk,bk = Vk,bkΛk,bk VH

k,bk
. Then we can write Sk,bk = Ck,bk Vk,bkΛk,bk VH

k,bk
Ck,bk .

Multiplication of the semi-unitary matrix Ck,bk with the unitary matrix Vk,bk results in a semi-
unitary matrix itself and thus the eigenvalues of Sk,bk are same as that of Wk,bk and the corre-
sponding eigenvectors become same as that of Wk,bk left multiplied by Ck,bk . Finally we rewrite
gk as,

(6.35) g′
k = P⊥

Ck
Ck,bk Vmax (Wk,bk ) .

Further optimizing w.r.t pk leads to the following water filling solution for the power,

(6.36) pk =
(

uk

µbk

− 1

g′H
k Sk,bk g′

k

)+
,

where (x)+ = max{0, x} and the Lagrange multipliers µc are adjusted (example by bisection) to
satisfy the power constraints.

6.9.5 Reduced Order ZF with Partial CSIT

In this section, we consider the BF to be a reduced order ZF (RO-ZF) which is introduced in
[99]. This can be interpreted as the number of interfering channels to be zero-forced for a user

k is much less than K . The RO-ZF BF gk can be written as, gk =
P⊥

CIk
Ck,bk

Vmax (Wk,bk
)

||P⊥
CIk

Ck,bk
Vmax (Wk,bk

)|| . Here,

PC = C(CH C)#CH represent the projection onto the column space of C, P⊥
C = I−PC is the pro-

jection onto its orthogonal complement (# represents the Moore-Penrose pseudo-inverse). For
the convenience of analysis, we define the following: Ik denotes the set of user indices for which
the ZF is done. CIk represents the matrix of all the user eigenvector space in Ik . Complexity in the
RO-ZF case will be about half of that of full ZF (multiplying the M ×LK C by a triangular LK ×LK
instead of a full LK ×LK , computation of the LK ×LK inverse or triangular factor takes O((LK )3)
operations, with a smaller factor if only a triangular factor is needed and not a full inverse).

6.9.6 Large System Analysis for RO-ZF and Full Order ZF

In this section we consider the large system analysis for the RO-ZF scheme proposed in this chap-
ter and also the full order ZF (full order means |Ik | = K −1,∀k). We assume that the LS channel
estimation error σ̃2 remains finite with SNR. If for instance the error variance on the channel es-
timate would be inversely proportional to SNR, then at high SNR the channel estimate becomes
exact and the covariance information does not bring any improvements. The channel estima-
tion error remaining finite can be representative of the UL power being much less than the DL
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power (channel estimation from UL pilots and using TDD reciprocity). The ESEINR (Expected
Signal to Expected Interference plus Noise Ratio) can be written as,

(6.37)

γRO−Z F
k = PS,k

PI ,k +1

= pk g′H
k Sk,bk g′

k
K∑

i=1,i 6=k
pi g′H

i Sk,bi g′
i +1

,

=⇒ g′H
k Sk,bk g′

k =
vH

k,bk
CH

k,bk
P⊥

Ck
Sk,bk P⊥

Ck
Ck,bk vk,bk∥∥∥P⊥

Ck
Ck,bk vk,bk

∥∥∥2 .

Consider the eigen decomposition of Wk,bk = Vk,bkΛk,bk VH
k,bk

and we denote Vmax (Wk,bk ) = vk,bk ,

(6.38)

vH
k,bk

CH
k,bk

P⊥
Ck

Sk,bk P⊥
Ck

Ck,bk vk,bk

(a)= 1

M 2
bk

tr{P⊥
Ck

}2vH
k,bk

Wk,bk vk,bk

(b)= 1

M 2
bk

tr{P⊥
Ck

}2λmax (Wk,bk ),

g′H
k Sk,bk g′

k = 1

Mbk

(Mbk −
K∑

i=1,i∈Ik

Li ,bk )λmax (Wk,bk ),

where we substituted
∥∥∥P⊥

Ck
Ck,bk vk,bk

∥∥∥2 =
∥∥∥vH

k,bk
CH

k,bk
P⊥

Ck
Ck,bk vk,bk

∥∥∥ using the property of projec-

tion matrices, P⊥
Ck

P⊥
Ck

= P⊥
Ck

. Also, (a) in (6.38) follows from Lemma 4 in Appendix VI of [14], that

xH
N AN xN

N→∞−−−−→ (1/N )tr AN when the elements of xN are i.i.d. with variance 1/N and independent

of AN , and similarly when yN is independent of xN , that xH
N AN yN

N→∞−−−−→ 0. Using this Lemma,
CH

k,bk
P⊥

Ck
Ck,bk = 1

Mbk
tr{P⊥

Ck
} and (b) follows from the fact that vk,bk (max eigenvector from Vk,bk )

is orthogonal to all the other columns of Vk,bk except the one corresponding to λmax (Wk,bk ).

Further, by the law of large numbers, PS,k −P S,k
M→∞−−−−→

a.s
0, where,

(6.39)
P S,k = (1−

K∑
i=1,i∈Ik

Li ,bk

Mbk
)λmax (Wk,bk )pk

Next, we consider the terms in PI ,k ,

(6.40) g′H
i Sk,bi g′

i =
vH

i ,bi
CH

i ,bi
P⊥

C
i

Sk,bi P⊥
C

i
Ci ,bi vi ,bi∥∥∥∥P⊥

C
i

Ci ,bi vi ,bi

∥∥∥∥2 .

If k ∈ Ii , then P⊥
Ci

is orthogonal to the columns of Ck,bi and thus gH
i Sk,bi gi = 0 else, using Lemma

4, we obtain vH
i ,bi

CH
i ,bi

P⊥
Ci

Sk,bi P⊥
Ci

Ci ,bi vi ,bi = 1
Li ,bi

tr{CH
i ,bi

P⊥
Ci

Sk,bi P⊥
Ci

Ci ,bi }.

(6.41)

1

Li ,bi

tr{CH
i ,bi

P⊥
Ci

Sk,bi P⊥
Ci

Ci ,bi }
(c)= 1

Mbi

tr{P⊥
Ci

Sk,bi P⊥
Ci

}

1

Mbi

tr{Wk,bi CH
k,bi

P⊥
Ci

Ck,bi }
(d)= 1

M 2
bi

tr{P⊥
Ci

}tr{Wk,bi }

= 1

Mbi

(1−

K∑
r=1,r∈Ii

Lr,bi

Mbi

)
Lk,bi∑
l=1

ζ(l )
k,bi

,
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where (c) and (d) are obtained by using Lemma 4 from [15]. Further we obtain g′H
i Sk,bi g′

i =
1

Mbi

Lk,bi∑
l=1

ζ(l )
k,bi

. Finally, we obtain the ESEINR in the large system limit as, γRO−Z F
k −γRO−Z F

k
M→∞−−−−→

a.s

0,

(6.42) γRO−Z F
k =

(1−
K∑

i=1,i∈Ik
Li ,bk

Mbk
)λmax (Wk,bk

)pk

1
Mbi

K∑
i=1,k 6∈Ii

Lk,bi∑
l=1

ζ(l )
k,bi

pi+1

For the full order ZF, the interference power vanishes from the ESEINR terms,

(6.43) γZ F
k = (1−

K∑
i=1,i 6=k

Li ,bk

Mbk

)λmax (Wk,bk )pk

The power updates for the RO-ZF BF can be shown to be as similar to the interference aware
water filling as shown in [99] and the simplified expressions directly follow from the above equa-
tions as,

(6.44) pk = ( uk

µbk
+σ(2)

k

− 1
σ(1)

k

)+,

where, σ(2)
k = 1

Mbk

K∑
i=1,i 6∈Ik

βi

Li ,bk∑
l=1

ζ(l )
i ,bk

, σ(1)
k = (1−

K∑
i=1,i∈Ik

Li ,bk

Mbk
)λmax (Wk,bk ),βi = uk ( 1

rk
− 1

rk
).

Computation of eigenvalues ζ(r )
k,bi

of Wk,bi : from Section III,

(6.45)
Wk,bi = c̆k,bi c̆H

k,bi
+ D̃k,bi ,

c̆k,bi = D̂1/2
k,bi

ĉk,bi ,∀i ,k

In (6.25), we assume that all the eigenvalues are equal and positive, i.e Dk,bi = ηk,bi I, D̃k,bi =
η̃k,bi I. Thus the eigenvalues of Wk,bi can be shown to be ζ(1)

k,bi
= λmax (Wk,bi ) = ∥∥c̆k,bi

∥∥2 + η̃k,bi

and ζ(2)
k,bi

= .... = ζ
(Lk,bi )

k,bi
= η̃k,bi , where η̃k,bi =

σ̃2
k,bi

ηk,bi

σ̃2
k,bi

+ηk,bi
, using the definition of D̃k,bi from (6.29).

λmax (Wk,bi ) is random since c̆k,bi is random. By the law of large numbers (assuming Lk,bi is
large but finite and << Nt ) we replace it by the expectation which can be computed as follows.
E(λmax (Wk,bi )) = E(ĉH

k,bi
D̂k,bi ĉk,bi )+ η̃k,bi . This gets simplified as, E

(
λmax (Wk,bi )

)= Lk,bi d̂k,bi +
η̃k,bi , where d̂k,bi =

η2
k,bi

ηk,bi +σ̃2
k,bi

from (6.26) (D̂k,bi = d̂k,bi I) and E(ĉH
k,bi

ĉk,bi ) = Lk,bi from (6.26).

6.9.7 Optimization of the ZF Order

In this section, we consider an alternating optimization algorithm (Algorithm 11) which com-

putes the reduced ZF order for each user (Ik ). We define here θi ,b j =
Li ,b j∑
l=1

ζ(l )
i ,b j

, as the channel

strength from BS b j to user i . Note that at finite dimension MIMO, not only the channel strengths
but also the relative orientation of the channel vectors count. However, in MaMIMO with mul-
tiple of identity covariances, there is no orientation issue, only the channel strengths count. So
the user ordering is simple.
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Algorithm 11: Reduced Zero-Forcing Order Determination

Given: K , M ,σ2,θi ,b j ,∀i , j , with ordering θ1,b j ≥ θ2,b j ≥ ... ≥ θK ,b j . Start with Ik = ;,∀k, i.e.,

g(0)
k = hk,bk .

for c = 1,..,C
Compute the interference powers received at all users
from BS c. Find the link causing the maximum inter
ference. Let it be BF gk to user l .
Add ZF for the corresponding maximum interference
causing channel link. i.e. Ik = Ik ∩ l .
Update g(t )

k (gk corresponding to the updated Ik ) , such
that bk = c.
Update the user powers pk using (6.44).
Compute the WSR. If the WSR is decreased, exit the
loop. Otherwise continue with next iteration (t +1).

end for

6.9.8 Simulation Results

In this section, we present the Ergodic Sum Rate Evaluations for BF design for the various chan-
nel estimates. Monte Carlo evaluations of ergodic sum rates are done, where we consider a path-
wise or low rank channel model as in section 6.9.1, with number of paths = channel covariance
rank L = 4. In the figures, “LSA” refers to large system approximation and “Chnl Est” refers to
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Figure 6.4: Sum Rates, M = 64,K = 10,L = 4, σ̃2 = 0.1.

channel estimate. In these simulations, the deterministic channel estimation error (i.e, σ̃2) does
not go to zero as SNR − > ∞ but remains constant. Otherwise, at high SNR it is the channel
estimate that dominates, and the partial CSIT at high SNR will just become perfect CSIT. The
simulations in Figure 6.4 show that exploiting also the channel error covariance information can
lead to substantial performance gains compared to just using LS channel estimate. The naive
channel estimate based partial CSIT BF approaches are suboptimal. We also compare optimal
BF and full and reduced order ZF BF, based on LMMSE channel estimates plus error covariance.



CHAPTER 6. ASYMPTOTIC ANALYSIS OF RO-ZF BEAMFORMING 104

0 5 10 15 20 25 30 35 40 45 50

Transmit SNR in dB

0

20

40

60

80

100

120

S
u

m
 S

p
e
c
tr

a
l 
E

ff
ic

ie
n

c
y

Optimal WSR BF : Perfect CSIT

Optimal EWSR BF: LMMSE Chnl Est

Optimal EWSR ROZF BF: LMMSE Chnl Est

Optimal EWSR ROZF BF LSA: LMMSE Chnl Est

Optimal EWSR ZF BF: LMMSE Chnl Est

Optimal EWSR  ZF BF LSA: LMMSE Chnl Est

Optimal EWSR ROZF BF: Subspace Chnl Est

Optimal EWSR BF: Only LS Chnl Est
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Note that in the case of reduced-rank channel covariances considered here, ZF BF may still be
possible, even with partial CSIT. At high SNR, ZF BF is optimal. At low and intermediate SNRs,
RO-ZF is able to outperform (full order) ZF and it is quite close to the optimal BF [100]. Figure 6.5
are for increased dimensions. Further these simulations suggest that the large system approxi-
mations for ROZF and ZF are accurate even for finite values for M ,K ,L.

6.9.9 Conclusions

Concluding Remarks 5

• In this chapter, we extend the concept of reduced order ZF BF to partial CSIT. Simu-
lation results indicate that our RO-ZF BF scheme has a performance very close to the
optimal BFs, but with much less complexity compared to the full order ZF.

• We also propose an alternating optimization algorithm which computes the optimal
ZF order for each user.

• Moreover, we show (elsewhere) the improvement in performance by using an LMMSE
channel estimate compared to just having LS estimates, and by furthermore properly
exploiting all covariance information.

• Further work will include the exploitation of the large system analysis for the optimiza-
tion of the reduced order for lesser complexity in RO-ZF BF.



Chapter 7

STOCHASTIC GEOMETRY BASED LARGE SYSTEM ANALY-
SIS

The development of Massive Multi-Input Multi-Output MIMO (MaMIMO) technology [66] en-
ables high throughput for the next generation of wireless systems. However, MaMIMO systems
have precise requirements for Channel State Information at the Tx (CSIT) which is more difficult
to acquire than CSI at the Rx (CSIR). One of the pioneering works which talks about the effect of
imperfect channel knowledge on the capacity is [101]. Indeed, in Massive Multiple-Input Single-
Output (MaMISO) systems, the received interference and possibly signal powers converge to
their expected value (channel hardening effect) due to the law of large numbers. The large sys-
tem analysis becomes an important topic to consider since Monte-Carlo simulations involving
large numbers of antennas and user equipments (UEs) become cumbersome in a MaMISO sys-
tem. Also, simulations do not allow to see immediately how performance depends on various
system parameters. A major breakthrough in the large system analysis (LSA) of MaMISO systems
came in [14], where Wagner et al. develop results in random matrix theory to obtain determinis-
tic equivalents for the signal-to-interference-plus-noise ratio (SINR) and thus the rate expression
for regularized zero forcing (R-ZF) precoding under partial channel knowledge. Further to this,
quite a few papers that build on the results from [14] for LSA appeared in [95, 102–105]. The very
recent work [105] extends the LSA results in [14] to a Rician fading channel with perfect CSIT.
However, to simplify the analysis, the authors therein consider identical correlation matrix for
all the users in the system which is impractical in MaMIMO or mmWave system. Some of our
own recent studies on large system analysis can be found in [99, 106, 107]. In [99], we focus on
the asymptotic analysis for ZF and reduced order ZF BF under a simplified case of user channel
covariances which are multiple of identity (with distinct scale factors for different users).

It is true that the asymptotic analysis results for MaMIMO system have evolved a lot since [14]
with more practical channel models involving Rician fading etc. However, we observe that none
of these works give analytical insights into the behavior of the system with respect to the different
types of partial CSIT and different (including optimal) BF designs. Note that assumptions on
the quality of the CSIT greatly impact the low or high signal-to-noise ratio (SNR) behavior of
the ergodic capacity. The impact of quantized CSIT in the case of finite rate feedback channels
is reported in [108, 109], where they analyze the per-user spectral efficiency (SE) for the MISO
broadcast channel (BC) for conventional ZF BF.

An introduction to the literature on stochastic geometry can be found in [110]. In stochastic
geometry, generally the location of the nodes in the wireless network is modeled as random, fol-

105
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lowing for example a poisson point process. In stochastic geometry based methods [111,112], the
location of the users being random, their geographic distribution then induces a certain proba-
bility distribution for the channel attenuation. This leads to results on the coverage probability,
the capacity, the outage probability and other fundamental limits in wireless networks. Whereas
most stochastic geometry work focuses on the distribution of the attenuation, here we consider
an extension to multi-antenna systems. The multipath propagation for the various users leads to
randomized angles of arrival at the base station (BS) which can be translated into spatial channel
response contributions that depend on the antenna array response. In the MaMISO regime, it
has been observed and exploited that despite complex multipath propagation, the channel co-
variance matrix tends to be low rank. Exploiting the randomized nature of the user and scatterer
positions and making abstraction of the antenna array response, we propose to model the user
channel subspaces as isotropically randomly oriented. This allows us to assume the eigenvec-
tors of the channel covariance matrix to be Haar distributed. Moreover, this is identically and
independently distributed for all users. The experimental studies conducted in [113, 114] show
that for a typical cellular configuration with a tower-mounted BS, the angular spread of the in-
coming or outgoing rays from the BS to a UE is very small, resulting in a sparse representation
of the user channel in the virtual angular domain. This has been observed even in below 6−GHz
bands [113]. To further justify the channel model used in this chapter, we refer to [115], where
they evaluate the sum rate performance of ZF precoding in MU-MIMO system with diverse cor-
relation patterns across the UEs. The correlation models used there are parameterized by the
measured data from a recent 2.53 GHz urban macrocellular compaign conducted in Cologne,
Germany. Their measurements show the diverse angular patterns across different user termi-
nals and their analysis further validated the importance of having more physically motivated
models to evaluate accurately the SE performance.

The majority of the existing work on MaMISO SE analysis focus on spatially uncorrelated user
channel covariance matrices [116, 117]. While this assumption makes the asymptotic analysis
very simple, a more realistic approach in a MaMISO or a mmWave system is when the user chan-
nel covariance matrix is spatially correlated. Even though for a single user MIMO system, the
spatial correlation can be detrimental to the system performance, for a multi-user MISO system
having different channel covariance matrices spanning mutually orthogonal subspaces can be
advantageous [118, 119]. The authors in [118] introduce the term transmit correlation diversity
to capture this effect. The spatial correlation can be induced by either the significant multipath
components originating from some spatial direction or by spatially dependent antenna patterns
and polarization at the BS. The achievable SE of MaMIMO systems are studied under spatially
uncorrelated [120] or spatially correlated Rayleigh fading [61,102]. In a very recent study done by
Özgecan Özdogan et al. in [121], the authors go one step further in analyzing MaMIMO system
with Rician fading channels. The channel model being considered is composed of a determin-
istic line of sight component and a stochastic non-line-of-sight component modeled using the
spatially correlated covariance matrices. They analyze the large system SE behavior of linear
minimum mean square error (LMMSE), EW LMMSE and LS channel estimates and shows that
the LMMSE estimate performs better than other sub-optimal estimates through simulations.
Nevertheless, they consider the simpler and sub-optimal BF, maximal ratio precoding, for the
DL SE analysis. In [16] we have extended the LSA of [14] to a scenario with users having different
channel covariance matrices and BF techniques with partial CSIT. However, due to the abun-
dance of different covariance matrices, the resulting deterministic analysis does not allow for
much insight. The multi-antenna stochastic geometry aspect introduced here reduces such LSA
analysis back to the simplicity of the case of multiple of identity covariance matrices.
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7.0.1 Summary of this Chapter

In this chapter, we focus on two important questions:
1) Under transmit correlation diversity in a multiuser multicell MaMIMO system, how is the SE
affected by channel estimation error for different MaMISO limit approximations of the ergodic
capacity under different schemes for channel estimation?
2) How do the random matrix theory tools can be exploited to analyze the SE behaviour under
extreme SNR regions?
Following are the contributions in the chapter to tackle these questions:

• We first consider the various channel estimates: linear minimum mean square error
(LMMSE), least squares (LS) and subspace projection. Further we review the Expected
Signal and Interference Power WSR (ESIP-WSR) BF design for the expected weighted sum
rate (EWSR) criterion in the MaMISO limit.

• We evaluate the ergodic sum rate performance for LS, LMMSE and subspace projection
channel estimators with an upper bound of the EWSR BF (which we call ESIP-WSR) which
is tight in (a certain) massive MISO limit. Simulation results suggest that there is substan-
tial gain by exploiting the channel covariance information compared to just using the LS
estimates.

• The analysis presented in the chapter provides accurate (also validated in the simulations)
SE expressions under realistic channel estimation quality which are useful at any operating
SNR. Moreover, these SE expressions are very simple and provide analytical insights into
the system behavior and depends only on few system parameters such as channel power
across multipaths, Tx power, rank of the channel covariance matrix and number of Tx an-
tennas. Compared to our previous work [106], we derive simplified sum rate expressions
at low and high SNR for the various BFs (ESIP-WSR, naive and EWSMSE) for the various
channel estimates, which clearly shows the SNR offset for the sub-optimal BFs compared
to the proposed optimal EWSR BF.

• We furthermore provide certain illustrative examples which are special cases of the ESIP-
WSR BF such as perfect channel CSIT case and covariance only CSIT (CoCSIT) scenario
where only the channel covariance information is known at the BS. We show that we can
obtain analytical expressions for the implicit equations which need to be solved as part
of the large system analysis, which in fact provide analytical insights into the system be-
havior. We also provide simplified sum rate expressions at high SNR for the CoCSIT case
and obtain the rate offset with respect to the perfect CSIT case under different channnel
estimation quality.

• For the sum rate analysis at extreme SNR regions, we consider two scenarios. One where
the channel estimation error is inversely proportional the SNR and the second scenario is
where the channel estimation error remains constant with SNR (finite rate feedback chan-
nels). When the channel estimation error is inversely proportional to the SNR, at high
SNR, ESIP-WSR/EWSMSE/naive BFs converge to the perfect CSIT BF performance since
channel estimation error converges to zero. With constant channel estimation error, it is
observed that the EWSMSE and naive BFs with LMMSE/Subspace channel estimates sat-
urate at high SNR which is explained by the derived SNR offset. The SNR offset for the
EWSMSE or naive BFs shows that at high SNR, the interference power also increases along
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with the SNR, since no ZF to the interfering channels happen at high SNR. However, the
ESIP-WSR design does not exhibit a saturation.

In addition, since the publication of the conference version of this work [64, 106], another
work on MaMISO SE analysis using similar stochastic geometry based randomization has been
noted [122] and we would like to discuss the differences of our work from them. We observe
that [122] deals with the deterministic equivalents of the upper and lower bounds to the ergodic
capacity and not on the asymptotic tightness of the approximations. Moreover, for the simula-
tions, they consider a random partial Fourier correlation model which is motivated by the typical
uniform linear array (ULA) in MIMO systems. However, this channel model is too approximate.
We remark that, the analysis presented here can be readily extended to the case of a Rician fading
channel model as is considered in [121].

7.1 Massive MISO Stochastic Geometry based Large System Analysis

7.1.1 MISO IBC Signal Model

We consider here an Interfering Broadcast Channel (IBC) with C cells and a total of K single
antenna users. We shall consider a system-wide numbering of the users. User k is served by BS
bk . hk,bi is the Mbk × 1 channel from BS bi to user k. For notational convenience, we use an
abbreviated notation for the direct channels (channel from BS bk to the serving user k), i.e., hk,bk

will be denoted as hk . The received signal at user k in cell bk is

(7.1) yk = hH
k gk xk︸ ︷︷ ︸
signal

+ ∑
i 6=k

bi=bk

hH
k gi xi

︸ ︷︷ ︸
intracell interf.

+ ∑
j 6=bk

∑
i :bi= j

hH
k, j gi xi︸ ︷︷ ︸

intercell interf.

+vk

where xk is the intended (white, unit variance) scalar signal stream, The Rx signal (and hence the
channel) is assumed to be scaled so that we get for the noise vk ∼ C N (0,1). BS c serves Kc =∑

i :bi=c 1 users. The Mbk ×1 spatial Tx filter or beamformer (BF) is gk . The Tx power constraint at

BS c is,
∑

i :bi=c

∥∥gi
∥∥2 ≤ Pc .

7.1.2 Channel and CSIT Model

For simplicity, we omit all the user indices k. Each zero mean MISO channel is modeled accord-
ing to Karhunen-Loeve representation [21] as

(7.2)
h = CD1/2c ,

Rhh = CDCH ,

where Rhh is the covariance matrix and c ∼ C N (0,IL) are the Rayleigh fading multipath gains
in the eigen domain. Here C is the M ×L eigenvector matrix of the reduced rank channel co-
variance Rhh with diagonal eigenvalue matrix D. This reduced rank covariance matrix of user
channels typically occurs in realistic MaMISO channels due to the limited angular spread of the
multipath components [123]. The rank corresponds to an equivalent number of linearly inde-
pendent multipath components. The total sum rank across all user channels from BS c,

∑K
k=1 Lk,c

is assumed to be less than Mc , where Lk,c is the channel rank between user k and BS c.
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Since the focus of this chapter is to study the effect of channel estimation error, we assume
that we are given a deterministic Least-Squares (LS) channel estimate

(7.3) ĥLS = h+ h̃,

where h is the true MISO channel, and the error is modeled as circularly symmetric white Gaus-
sian noise h̃ ∼C N (0, σ̃2I). The error σ̃2 is given a priori. Now, assuming the channel covariance
subspace is known, the LMMSE channel estimate can be obtained as

(7.4) ĥ = CDCH (
CDCH + σ̃2I

)−1
ĥLS .

As in the previous chapters, we refer to the Appendix A for a detailed derivation of the LMMSE
channel estimate above. Applying the matrix inversion lemma and exploiting CH C = IL , this
simplifies to

(7.5)
ĥ = C

(
σ̃2D−1 + I

)−1
CH ĥLS

= CD̂1/2ĉ,

where D̂ = (
σ̃2D−1 + I

)−1
D and ĉ = D−1/2(σ2D−1 + I)−1/2CH ĥLS with Rĉĉ = I.

(7.6)
Rh̃h̃ = CD̃CH

= C[D− (
σ̃2D−1 + I

)−1
D]CH .

Further exploiting the orthogonality property of the LMMSE channel estimate, we can write

(7.7)

S = Eh|ĥ
(
hhH )= ĥ ĥH +Rh̃h̃

= CWLCH , where

WL = D̂1/2ĉĉH D̂1/2 + D̃.

For the convenience of analysis in the following sections, we define the following quantities,
CH hLS = d̂ = d+ d̃, where d = CH h ∼C N (0,D) and d̃ ∼C N (0, σ̃2IL).

In this chapter, we analyze two scenarios where the channel estimation quality indicated by
σ̃2 behaves differently. First, we consider the case when the channel estimation error is inversely
proportional to the SNR, so σ̃2 ∝ 1

P since noise variance is assumed to be 1. However, it is dif-
ficult to meet the required CSIT quality particularly in the frequency division duplexed (FDD)
systems. At the UE, DL training can be used to obtain the CSIT. But obtaining CSIT in the uplink
requires feedback from the UE due to the lack of channel reciprocity. This leads to the finite rate
feedback model [108], where each UE feedbacks the estimated channel information through fi-
nite number of bits. Motivated by this, we also consider the case of constant channel estimation
error in the uplink. Even though in this chapter, we do not explicitly consider the pilot contami-
nation effects in the channel estimation phase as in [121], the constant channel estimation sce-
nario considered herein can also be interpreted as representing the case of pilot contamination
assuming UL powers are lesser than or not proportional to that of the DL Tx power.

7.1.3 Various Channel Estimates for Partial CSIT

In the MaMISO limit, the EWSR upper bound based BF design with partial CSIT will depend on
the quantities S = Eh|ĥ

(
hhH

) = ĥ ĥH + Θ̃, which will be shown in Section 7.1.4. Θ̃ represents the
estimation error covariance matrix. In this chapter, we evaluate the SE performance for three
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possible channel estimates which depend on different levels of statistical channel knowledge.

(i) LS Channel Estimate: We have Θ̃= σ̃2I, ĥLS =h+h̃ where h and h̃ are independent. In this case,
we do not assume any statistical knowledge of the channel.
(ii) LMMSE Channel Estimate: In this case, the channel covariance matrix is known (both the
covariance subspace C and eigenvalue matrix D). Then from Section 7.1.2, we have h = ĥ+ h̃
in which ĥ and h̃ are decorrelated and hence independent in the Gaussian case. Θ̃ = Rh̃h̃ is
the posterior covariance. The resulting S = Eh|ĥhhH = ĥĥH + Θ̃ is the (nonlinear) MMSE esti-

mate of hhH (nonlinear because quadratic in ĥ = ĥLS plus a constant). It is unbiased : EĥS =
EĥEh|ĥhhH = EhhhH and it is MMSE, hence minimum variance since unbiased. In particular, it

also minimizes the variance of |gH h|2 = gH hhH g = gT ⊗gH vec(hhH ) where vec(hhH ) = h∗⊗h.
Furthermore, we assume that BS c has a prior knowledge on the covariance subspaces C as well
as the eigenvalue matrix D of its own users and that of the user channels causing inter-cell inter-
ference. The user channel covariance subspaces and the eigenvalue matrix can be estimated if
the multipath parameters in a mmWave or a MaMIMO channel can be estimated. Multipath pa-
rameter estimation can be effectively computed using advanced tensor signal processing based
methods as outlined in [124] or in our own work [125] which utilizes variational Bayesian infer-
ence methods applied to tensor signal model.
(iii) Subspace Projection based Channel Estimate: We also investigate the effect of limiting chan-
nel estimation error to the covariance subspace (LMMSE without weighting). The subspace
channel estimate is given as

(7.8)
ĥS = PC ĥLS = h+PC h̃LS ,

Rh̃S h̃S
= σ̃2PC ,

where PC = CCH represents the projection onto the covariance subspace. Further we can write
the estimate for hhH

(7.9)

S = ĥS ĥH
S +Rh̃S h̃S

= CWS CH with

WS = d̂d̂H + σ̃2I.

One remark here is that subspace channel estimator represents a simplification of the LMMSE
channel estimator, since it does not require the knowledge of the eigenvalue matrix D and with-
out negligible performance loss as is validated in our numerical simulations. Another point to
be noted is that, combining subspace channel estimator and LMMSE estimator, from (7.5), we
can write ĥ = CUCH ĥLS = CUd̂, where for LMMSE UL = (

I+ σ̃2D−1
)−1

and for subspace US = I.
This observation also hints at the possibility of optimizing U (LMMSE is not necessarily the best)
to maximize the ergodic capacity, but this is left for future work.

7.1.4 Beamforming with Partial CSIT

In the following hk,bi , ĥk,bi , h̃k,bi denote the actual channel, channel estimate and estimation er-
ror, respectively between user k and BS bi . Similarly, we define the quantities, d̂k,bi , d̃k,bi , Uk,bi ,
Ck,bi , Wk,bi , Sk,bi for the channel between user k and BS bi . Again, for notational convenience,
variables corresponding to the direct channels, d̂k,bk , d̃k,bk , Dk,bk , D̃k,bk , Uk,bk , Ck,bk ,
Wk,bk , Sk,bk will be denoted as d̂k , d̃k , Dk , D̃k , Uk , Ck , Wk , Sk , respectively. Once the CSIT is im-
perfect, various optimization criteria such as outage capacity can be considered. Motivated by
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the ergodic capacity formulations in [97] for point to point MIMO systems, and in [98] for multi-
user MISO systems, the design here is based on expected weighted sum rate (EWSR) (and nor-
mally with LMMSE channel estimates). In a first stage, the WSR is averaged over the channels
given the channel estimates and covariance information (i.e. the partial CSIT), leading to a cost
function that can be optimized by the Tx. The optimized result then needs to be averaged over
the channel estimates to obtain the final ergodic WSR. From the law of total expectation, we
formulate the BF design with a sum power constaint at each BS (Pc ) as follows,

(7.10)

EW SR = Eĥ max
g

EW SR(g), with
Ki∑

i=1,bi=c

∥∥gi
∥∥2 ≤ Pc , where

EW SR(g) = Eh|ĥW SR(g )

=
K∑

k=1
uk Eh|ĥ ln

(
sk /sk

)
= Eh|ĥ

K∑
k=1

uk ln

(
1+ |hH

k gk |2
sk

)
(a)≈ Eh|ĥ

K∑
k=1

uk ln

(
1+ |hH

k gk |2
Eh sk

)
(b)≤

K∑
k=1

uk ln

(
1+

Eh|ĥ|hH
k gk |2

Eh|ĥ sk

)

=
K∑

k=1
uk ln(r−1

k
rk )

= ESI P −W SR(g)

where uk are the rate weights, g represents the collection of BFs gk . Transition (a) is due to the
MaMISO limit (K →∞) and (b) is due to the concavity of ln(.) and Jensen’s inequality. This leads
to the ESIP-WSR upper bound. sk is the (channel dependent) interference plus noise power and
sk is the total received power, with conditional expectations rk , rk :

(7.11)

sk = 1+ ∑
i 6=k

|hH
k,bi

gi |2,

sk = sk +|hH
k gk |2,

rk = Eh|ĥsk = 1+ ∑
i 6=k

gH
i Sk,bi gi ,

rk = Eh|ĥsk = rk +gH
k Sk gk ,

Sk = Ck Wk Ck .

The ESIP-WSR upper bound can be somewhat loose (gap is maximal at high SNR, see [126]),
because inspite of hk being MISO, gH

k hk is only a simple complex Gaussian scalar. Nevertheless,
this gap is upper bounded by the Euler constant γ= 0.58, regardless of SNR. And for the case of
only coCSIT (ĥ = 0), the gap is exactly γ, which means that it has no influence on the optimal gk .

By adding the Lagrange terms for the BS power constraints,
C∑

c=1
µc (Pc −

∑
k:bk=c

||gk ||2), to the EWSR

in (4.15), we get the gradient (with αk = uk
rk

, βk =uk ( 1
rk
− 1

rk
))

(7.12)
∂EW SR

∂g∗
k

=αk Sk gk − (
∑
i 6=k

βi Si ,bk +µbk I)gk = 0,
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with Si ,bk = Ci ,bk Wi ,bk CH
i ,bk

. This leads to the generalized eigen vector,

(7.13) g′
k = Vmax (Sk ,

∑
i 6=k

βi Si ,bk +µbk I) .

While (7.12) can be interpreted many ways, (7.13) comes from the following DC programming.
Introducing the Tx covariance matrices Qi = gi gH

i , the power constraints can be written as∑
k:bk=c tr {Qk } ≤ Pc . The EWSR problem is non-concave in the Qk due to the interference terms.

Therefore finding the global optimum is challenging. In order to find at least a local optimum, we
consider the difference of convex functions programming (DCP) approach as in [30]. Whereas
[30] however solves the Lagrange multipliers by Lagrangean duality, here we solve them together
with the powers (as in standard water filling) in an alternating optimization approach (alternat-
ing with optimizing the g′

k ). In DCP one keeps the concave signal term and linearizes the convex
term, leading to a concave cost function in the Qi (or a minorizer actually in the g′

i and pi ), which
can be optimized iteratively.

(7.14)

EW SR = uk lndet(r−1
k

rk ) + EW SRk ,

EW SRk =
K∑

i=1, 6=k
ui ln(r−1

i
ri ),

where ln(r−1
k

rk ) is concave in Qk and W SRk is convex in Qk . Since a linear function is simul-

taneously convex and concave, consider the first order Taylor series expansion of W SRk in Qk

around Q̂ (i.e. all Q̂i ).

(7.15) EW SRk (Qk ,Q̂) ≈ EW SRk (Q̂k ,Q̂)− tr
{
(Qk − Q̂k )Âk

}
,

(7.16)

where, Âk = − ∂EW SRk

(
Qk ,Q̂

)
∂Qk

∣∣∣∣∣
Q̂k ,Q̂

=
K∑

i=1, 6=k
β̂i Si ,bk .

Note that the linearized tangent expression for EW SRk constitutes a lower bound for it and
hence the DC approach is also a minorization approach. Now dropping the constant terms and
reparameterizing the Qk in terms of the gk , we can write the original WSR as the Lagrangian,

(7.17)

EW SR(g) =
K∑

k=1

[
uk ln

(
1 + gH

k B̂k gk
)

− tr
{

gH
k

(
Âk +µbk I

)
gk

}]
+

C∑
j=1

µ j P j ,

B̂k = r̂−1
k

Sk .

(7.17) leads again to (7.12) and esp. (7.13). The advantage of formulation (7.17) is that it allows
straightforward power adaptation: substituting gk =p

pk g′
k in (7.17) and optimizing leads to the

following interference leakage (σ(2)
k ) aware water filling

(7.18) pk =
(

uk

σ(2)
k +µbk

− 1

σ(1)
k

)+
,
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where (x)+ = max{0, x} and the Lagrange multipliers µc are adjusted (e.g. by bisection) to satisfy
the power constraints. Also, σ(1)

k = g′H
k B̂k g′

k , σ(2)
k = g′H

k Âk g′
k . With σ(2)

k = 0 this would be stan-
dard waterfilling. (7.13) comes from the difference of convex functions programming (DCP) [30]

and βk = uk

(
1
rk
− 1

rk

)
. Substituting gk =p

pk g′
k and optimizing using DCP leads to the following

interference leakage (σ(2)
k ) aware water filling (ILA-WF)

(7.19) pk =
(

uk

σ(2)
k +µbk

− 1

σ(1)
k

)+
,

where (x)+ = max{0, x}, σ(1)
k = g′H

k B̂k g′
k , σ(2)

k = g′H
k Âk g′

k , and the Lagrange multipliers µc are ad-
justed (example by bisection) to satisfy the power constraints. Note that intuitively the BF expres-
sion (7.13) and the power updates (7.19) represents a optimal compromise between minimizing
the leakage power part (leakage channels represent the channels to which gk causes interfer-
ence) and the desired signal power part. Also, this BF design can easily be extended to a MIMO
case with multiple streams per-user and ILA-WF power optimization step implicitly selects the
required number of streams to be transmitted per-user. We present below in Algorithm 12 the
alternating optimization algorithm for BF design using ESIP-WSR. Note that the steps outlined
are applicable to EWSMSE/naive BFs, except that the computation of the auxiliary variables Sk,c

differ as explained in Section 7.1.5. In the following sections, we represent σ̃2
k to be the channel

estimation error for all the channels to user k (hk,c ,∀c). Next, we consider the case of CoCSIT
(Covariance only CSIT), which corresponds to the case of channel estimate part being absent, so
S = Eh|CCDCH . The corresponding BF optimization problem in (7.10) becomes

(7.20) max
g

K∑
k=1

uk ln

(
1+ Eh|C|hH

k gk |2
Eh|C sk

)
.

Directly optimizing (7.20) leads to the BF expression as,

(7.21)

g′′
k = Vmax (B̂k , Âk +µbk I),

where, Âk =
K∑

i=1, 6=k
βi Ci ,bk Di ,bk CH

i ,bk
,

B̂k = r−1
k

Ck Dk CH
k

For the perfect CSIT case, we optimize the WSR w.r.t g, which leads to

(7.22)

g′
k = Vmax (B̂k , Âk+µbk I),

where, Âk =
K∑

i=1, 6=k
βi hi ,bk hH

i ,bk
, B̂k

= s−1
k

hk hH
k .

For these two special cases, the power optimization expression remains the same as the ILA-WF
(7.19) with B̂k , Âk replaced by the expressions in (7.21), (7.22).

7.1.5 Further Considerations on EWSR Bounds

Also, note that the BF expression above (7.34) is quite generic and holds for all the cases 0)-4)
described below, with different Ak for each case.
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Algorithm 12: BF Design via ESIP-WSR Optimization

Given: Pc , σ̃2
k , ĥk,c,LS ,Ck,c ,Dk,c ,uk , ∀k,c.

Initialization:
The g(0)

k are taken as the ZF precoders with uniform powers. Compute the channel estimates

(LS/LMMSE/Subspace projected) ĥk,c ,∀k,c as in Section 7.1.2. Compute Sk,c from Section 7.1.3.
Iteration ( j ) :

1. Compute B̂k , Âk from (7.13).

2. Update g′′( j )
k , ∀k, from (7.13).

3. Update µ( j )
c ∀c using bisection and update the user powers pk from (7.19).

4. Check for convergence of the WSR: if not go to step 1).

0) Perfect CSIT: This corresponds to the case when we replace h̃k = 0,∀k in the optimizing func-
tion EW SR(g). For the perfect CSIT case, we can obtain

(7.23) Ak = ∑
i 6=k

βi hi ,bk hH
i ,bk

.

1) Naive BF EWSR: In the optimizing function EW SR(g), just replace h by ĥ in a perfect CSIT
approach, i.e., ignore h̃ everywhere. For naive BF

(7.24) Ak = ∑
i 6=k

βi ĥi ,bk ĥH
i ,bk

.

2) EWSMSE BF [29]: It accounts for covariance CSIT in the interference terms, but also associates
the signal h̃ term with the interference. EWSMSE, also called the ”use and forget lower bound”
in [127], can indeed be shown to be a lower bound for EWSR. For EWSMSE, we just have to
replace

(7.25) Ak = ∑
i 6=k

βi Si ,bk −βk Ck D̃k CH
k .

For EWSMSE criterion, it is suboptimal in that it exploits the rate-MSE (mean squared error)
relation to transform weighted sum rate (WSR) in weighted sum MSE (WSMSE) but the order of
expectation and optimization over weights is reversed, to simplify the cost function.
3) EWSR upper bound ESIP-WSR: It also accounts for covariance CSIT in the interference term
but, unlike EWSMSE, associates the signal h̃ term with the signal power.
4) Covariance CSIT (CoCSIT): CoCSIT represents the case when only the channel covariance
information (of all the users in the system) is known at the BS, i.e the knowledge of C and D. For
the CoCSIT case, we obtain

(7.26) Ak = ∑
i 6=k

βi Ci ,bk Di ,bk CH
i ,bk

, vk = ei ,max

In fact, (7.23) tells us that BF is along only one of the unitary vectors (or dominant eigenvector)
in the covariance subspace Ck , which leads to a reduction signal power which accounts for the
rate offset for the CoCSIT case, see Section 7.1.10.4.



CHAPTER 7. STOCHASTIC GEOMETRY BASED LARGE SYSTEM ANALYSIS 115

Figure 7.1: COST2100 MIMO Channel Model.

7.1.6 Asymptotic Analysis: Stochastic Geometry MaMISO Regime

In this section, we analyze the asymptotic SE behaviour of MaMISO systems using ESIP-WSR
BFs solved using ergodic capacity formulation under partial CSIT. Our analysis is based on the
following technical assumptions.

Assumption 5. ∀k,c, lim
M→∞

inf tr{Dk,c }
Mc

> 0,

Assumption 6. 0 <
Kc∑

k=1
Lk,c

Mc

∆=αc ≤ 1,∀c.

Assumption 7. The long term channel energy captured by tr{Dk,c } (representative of the large
scaling fading factors such as path loss and shadowing) is a constant for a fixed number of BS

antennnas Mc , i.e. tr{Dk,c } = ηk,c (Mk,c ),∀k,c. Also, we assume that lim
M→∞

tr{Dk,c }
Mc

∆= δk,c <∞.

The first assumption (uniform boundedness on the spatial covariance matrix) is essential for
the computation of deterministic equivalents using large system analysis results from [14]. This
assumption also means that the antenna array gathers an amount of energy which is propor-
tional to the number of antennas and moreover they come from different spatial directions. In

the following sections, we use an abuse of notation for convenience, when we refer to
M→∞−−−−→

a.s
, we

refer to the almost sure convergence in the large system limit where M ,L,K →∞ at a fixed ratio
(Assumption 6).

The channel model (7.2) results from multipath propagation and the use of BS side antenna
arrays. An example of a geometry based stochastic channel model is provided by the COST2100
channel model [128], and can be depicted as in Figure 7.1. This model represents the propaga-
tion channel between a BS and user through multipath components (MPCs) arriving at the user
terminals and are resulting from the interaction of the transmitted waveform with a set of objects
(also called as scatterers). More recent studies with valid measurement data to justify the signif-
icance of the COST2100 channel model can be found in [129, 130]. One particular application
of this model for the user covariance matrices is considered in [131]. Wherein, the authors con-
sider the scenario in which the support of the multipath angle of arrival or departure (AoA/AoD)
for any desired user does not overlap with that of the interfering users. The authors show that
the multipath components with AoA/AoD outside the angular support of the desired user tend
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to fall in the null space of its covariance matrix in the large antenna limit, leading to orthogo-
nal subspaces C in the MaMISO regime. Here we add a stochastic geometry regime, in which
the random positions of users and scatterers lead to antenna array responses at random angles.
In reality, the antenna array responses will be more complex than the Vandermonde vectors for
Uniform Linear Arrays considered in [131] due to mutual antenna coupling and various other
effects. As a result of this randomness of angles and antenna array responses, and due to limited
angular support, the multipath channels live in subspaces that are of limited dimension and uni-
formly randomly oriented in array response space. As a result, an appropriate random model for
the semi-unitary matrices C spanning these subspaces is a Haar distribution. We shall consider
that as the number of antennas M grows unboundedly, the subspace dimensions L also go to
infinity (leading to hardening of the signal power), but slower than M . As a result, for the large
system analysis we may equivalently consider the elements of C as i.i.d. with zero mean and vari-

ance 1/M so that asymptotically such a C is still semi-unitary: CH C
M→∞−→ IL . The subspaces C of

different channels will be considered independent.
Before we proceed further, in this section, we recall some of the large system results from [14]

we use.

Theorem 8 ( [14, Theorem 1]). Let QN ∈ C N×N be a deterministic matrix and AN = XN XH
N +SN ,

with XN contains n independent columns with covariance matrix Θi for i th column and SN ∈
C N×N is a Hermitian non-negative definite matrix. Also, assume that QN ,Θi have uniformily
bounded spectral norms. Then, for any z > 0,

(7.27)

1

N
tr{QN (AN − zIN )−1}− 1

N
tr{QN T(z)}

M→∞−−−−→
a.s

0,

with, T(z) =
(

1

N

n∑
i=1

Θi

1+δi (z)
− zIN

)−1

, where,

δi (z) = δ(∞)
i (z) is defined as the unique positive solution of

δ(t )
i (z) = 1

N
tr{Θi

(
1

N

n∑
i=1

Θi

1+δ(t−1)
i (z)

− zIN

)−1

}.

We briefly summarize the Lemma’s here.

Lemma 3 ( [14, Lemma 4, Appendix VI]). xH
N AN xN − 1

N tr{AN }
N→∞−−−−→ 0 when the elements of xN

are i.i.d with zero mean and variance 1/N and independent of AN , and similarly when yN is inde-

pendent of xN , that xH
N AN yN

N→∞−−−−→
a.s

0.

Lemma 4 ( [14, Lemma 6, Appendix VI]). Let AN be a deterministic matrix with uniformly bounded
spectral norm and B1, ...,BN be random Hermitian matrices with BN ∈ C N×N and eigenvalues
λ1 ≤ ....≤λN . Then rank 1 perturbation lemma states that for v ∈ CN ,

(7.28)
1

N
tr{AN B−1

N }− 1

N
tr{AN

(
BN +vvH )−1

}
N→∞−−−−→

a.s
0,

where we assume that B−1
N and

(
BN +vvH

)−1
exist with probability 1.

Lemma 5 ( [14, Lemma 1, Appendix VI]). We also use the matrix inversion lemma (MIL) through-
out the paper. Let A,C are invertible matrices of size N ×N and K ×K , with B being of size N ×K ,
then MIL states that,

(7.29) (A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)
DA−1.
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Theorem 9. In Theorem 8, let Qk = Ck Dk CH
k ∈C Mbk

×Mbk be a Hermitian deterministic matrix and

Γk =
K∑

i=1
Ci ,bk Vi ,bkΛi ,bk VH

i ,bk
CH

i ,bk
, with Ci ,bk Vi ,bk contains Li ,bk independent columns with covari-

ance matrix Θi ,bk = 1
M IM for r th column. Λi ,bk is a diagonal matrix, with r th diagonal element

being λ(r )
i ,bk

. Then, for any z > 0

(7.30)

1
Mbk

tr{Qk (Γk + zIM )−1}− 1
Mbk

tr{Dk }ec
M→∞−−−−→

a.s
0,

with, bk = c, ec , is defined as the unique positive solution of

ec =
(

1
Mbk

K∑
i=1

Li ,c∑
r=1

βiλ
(r )
i ,c

1+βiλ
(r )
i ,c ec

+ z

)−1

.

From (7.13), we can see that g′
k will be of the form

[∑
i 6=k βi Si ,bk +µbk I

]−1 Ck bk , where bk ∝
Wk CH

k g′
k is of size Lk,bk ×1. bk can be seen to satisfy,

(7.31)
bk ∝ Wk CH

k Γ
−1
k Ck bk ,

Γk = ∑
i 6=k

βi Si ,bk +µbk I.

Hence, bk is the the eigenvector corresponding to the maximum eigenvalue, or max eigenvec-
tor for short, of Wk CH

k

(∑
i 6=k βi Si ,bk +µbk I

)−1 Ck . Asymptotically CH
k

(∑
i 6=k βi Si ,bk +µbk I

)−1 Ck

converges to a deterministic limit which is a multiple of identity, ebk I, where ebk is obtained as
follows, by applying Theorem 1 and other Lemmas described above. First, we consider the eigen

decomposition of Wk,bi = Vk,biΛk,bi VH
k,bi

, whereΛk,bi = diag(λ(1)
k,bi

, ...,λ
(Lk,bi )

k,bi
) and let Ck,bi Vk,bi =

C′
k,bi

. We remark that C′
k,bi

as the product of a Haar matrix and a unitary matrix remains Haar,
so Theorem 1 remains applicable. Since the columns of Ck are independent, we use Lemma 3

to obtain CH
k Γ

−1
k Ck

M→∞−−−−→
a.s

1
Mbk

tr{Γ−1
k }ILk,bk

(non-diagonal elements converge to zero). Further,

we use Lemma 4 to approximate terms of the form Γ−1
k ≈ [

Γk +βk Ck Wk CH
k

]−1
. Further us-

ing Theorem 8, we obtain a deterministic equivalent as 1
Mc

tr{Γ−1
k }− 1

Mc
tr{Tc (z)}

M→∞−−−−→
a.s

0 (with

bk = c, z =µc ),

(7.32)

Tc (z) =
(

1

Mc

K∑
i=1

Li ,c∑
r=1

βiλ
(r )
i ,c

1+δi r,c (z)
+ z

)−1

IMc ,

δi r,c (z) =βiλ
(r )
i ,c

(
1

Mc

K∑
i=1

Li ,c∑
r=1

βiλ
(r )
i ,c

1+δi r,c (z)
+ z

)−1

,

Define, ec (z) =
(

1

Mc

K∑
i=1

Li ,c∑
r=1

βiλ
(r )
i ,c

1+δi r,c (z)
+ z

)−1

, =⇒

δi r,c (z) =βiλ
(r )
i ,c ec (z).

Note that in (7.32) above, Tc (z) = ec (z)I, hence we obtain 1
Mbk

tr{Γ−1
k } = ec (z), which is obtained

as the unique positive solution of the last expression above, i.e.

(7.33) ec =
(

1

Mc

K∑
i=1

Li ,c∑
r=1

βiλ
(r )
i ,c

1+βiλ
(r )
i ,c ec

+µc

)−1

.
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Computation of analytical solution of ec is not feasible except in a simplified case of multiple
of identity eigenvalue matrix D for all users, as we do in Appendix I. However, we remark that if
we consider randomized position of users across the multi-cell system, we can assume a proba-
bility distribution for the user location information (possibly poisson distributed as in classical
stochastic geometry [110]). Then this randomized location induces different attenuation (rep-
resented by the eigenvalues in D) for the UE channels due to different path loss between them
and the BS and can be modeled as having a spatial distribution. In this case, in the MaMISO

limit, we can replace the summation over users by its expectation, i.e. 1
Mc

K∑
i=1

Li ,c∑
r=1

βiλ
(r )
i ,c

1+βiλ
(r )
i ,c ec

M→∞−−−−→
a.s∑

i
Li ,c

Mc
E

(
βiλ

(r )
i ,c

1+βiλ
(r )
i ,c ec

)
, where the expectation is over the probability distribution of the attenuation

factor. We remark that it would be of sufficient interest to analyze the SE behaviour with a ran-

dom attenuation factor and it is left for future work. Further, this leads to bk = Vmax (Wk )
∆= vk,bk .

Finally, we write the optimized BF w.r.t. partial CSIT, in the stochastic geometry MaMISO regime
as,

(7.34) g′
k = g′′

k∥∥g′′
k

∥∥ , g′′
k = [

∑
i 6=k

βi Si ,bk +µbk I]−1Ck vk,bk .

It can be intuitively interpreted as follows: The term Ck vk,bk represents beamforming (matched
filtering) in the covariance subspace Ck of the channel from BS bk to user k. The first term Γk

represents a weighting matrix which converges to the projection matrix on the orthogonal com-
plement of the covariance subspace of the leakage channels at high SNR. At any intermediate
SNR, BF choses to approximately ZF to a subset of leakage channels. A more detailed interpre-
tation using the concept of reduced order ZF BF can be found in [99]. At low SNR, Γk reduces to

1
µbk

I. Thus at low SNR, BF reduces to Ck vk,bk , which is just the matched filter. Further, we deduce

the optimized BF under the special cases such as perfect CSIT and CoCSIT case. For the perfect
CSIT case,

(7.35)
g′

k = g′′
k∥∥g′′
k

∥∥ ,

g′′
k = [

∑
i 6=k

βi hi ,bk hH
i ,bk

+µbk I]−1hk .

For the CoCSIT case, we obtain,

(7.36)
g′

k = g′′
k∥∥g′′
k

∥∥ ,

g′′
k = [

∑
i 6=k

βi Ci ,bk Di ,bk CH
i ,bk

+µbk I]−1Ck ei ,max ,

where ei ,max represents the unit vector ei corresponding to Di ,i which is the maximum among
all the eigenvalues. In fact, (7.35) tells us that BF is along only one of the unitary vectors in the
covariance subspace Ck , which leads to a reduction signal power which accounts for the rate
offset as in described in the Corollary 12.4.

7.1.7 Computation of eigenvalues of Wk,bi

To compute ec (z) in the large system expressions as in (7.32), the eigenvalues of Wk,bi need to
be known which we discuss here. For the convenience of analysis we omit the user and BS index
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here. We represent W by WL ,WS for LMMSE and subspace channel estimators respectively. From
Section III, for the LMMSE,

(7.37) WL = UL
(
d̂d̂H + σ̃2I

)
UH

L + (I−UL)D (I−UL)H

where UL = (
I+ σ̃2D−1

)−1
, ULd̂ = ĉL for short and we obtain WL = (

I+ σ̃2D−1
)−1

d̂d̂H
(
I+ σ̃2D−1

)−1+
D−D

(
σ̃2I+D

)−1
D. At both high and low SNR, we can replace the error covariance D−D

(
σ̃2I+D

)−1
D

by its dominating term D1,1σ̃
2/

(
D1,1 + σ̃2

)
e1eH

1 , assuming D1,1 is the largest diagonal element of
D. Thus WL becomes the sum of two rank one matrices and we propose the resulting rank 2
approximation of WL for all SNR. It will be all the more precise at intermediate SNR if D1,1 dom-
inates the rest of D. Further we look at the computation of the eigenvalue matrix Λ of WL . At
high SNR, we can approximate

(
I+ σ̃2D−1

)−1 = I− σ̃2D−1. So up to first order in σ̃2, we obtain
WL ≈ ĉL ĉH

L + σ̃2I, where the first term contains first-order terms also. At low SNR, UL ≈ σ̃−2D
and we can obtain WL ≈ ĉL ĉH

L +D. For any SNR, these two extremes can be connected by the
following approximation:

(7.38)
Λ = σ̃2D

(
σ̃2I+D

)−1 +||ĉL ||2e1eH
1

= σ̃2D
(
σ̃2I+D

)−1 + tr{D
(
I+ σ̃2D−1

)−1
}e1eH

1

where the last equality is due to the law of large numbers. For subspace channel estimator, WS =
d̂d̂H + σ̃2I, the eigenvalue matrix becomesΛ= σ̃2I+ tr{D}e1eH

1 .
Further we look at the deterministic equivalent of the SINR and rate. Using the BF expression

derived under partial CSIT and stochastic geometry regime (7.34), we evaluate the WSR using
the actual channel distribution and arrive at the following result.

Theorem 10. In the large system limit, the quantities γk −γk
M→∞−−−−→

a.s
0, where γk is the determin-

istic equivalent of the SINR. Similarly, the quantities defined in (7.11) also converges to their de-

terministic equivalents, rk − r k
M→∞−−−−→

a.s
0,rk − r k

M→∞−−−−→
a.s

0. Further we can show that, since the

logarithm is a continuous function, by applying the continuous mapping theorem [96], it follows

from the almost sure convergence of γk that, Rk −Rk
M→∞−−−−→

a.s
0, where Rk is the rate of user k, with

Rk = ln(1+γk ). By using similar argument, we state that βk −βk
M→∞−−−−→

a.s
0. The deterministic limits

for the ESIP-WSR BF with LMMSE and subspace channel estimates are obtained as,

(7.39)

γ
(Opt )
k,L =

pk

(
1−x(L,Opt )

c

)
tr{Dk }

1
Mbi

∑
i 6=k

pi tr{Dk,bi B−2
k,bi

}+1
, bk = c

βk = uk

(
1

r k

− 1

r k

)
,

where, x(L)
c = e2

c

Mc

K∑
i=1

Li ,c∑
r=1

β2
i λ

(r ),2
i ,c(

1+βiλ
(r )
i ,c ec

)2 ,

γ
(Opt )
k,S =

(
1−x(S,Opt )

c

)
(tr{Dk })2

tr{
(
Dk + σ̃2

k I}
)( 1

M

K∑
i 6=k

tr{B−2
k,bi

Dk,bi }

tr{Di+σ̃2
k I}

pi +1

) .

In the above expression, in the notation γ
(Opt )
k,L , subscript L indicates LMMSE channel estimator

and superscript (Opt ) indicates ESIP-WSR BF. Similarly, in the notation γ
(Opt )
k,S , subscript S indi-
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cates Subspace channel estimator and superscript (Opt ) indicates ESIP-WSR BF. Similarly for the
naive BF, we obtain the deterministic equivalent for SINR as,

(7.40)

γ(N )
k,L =

(
1−x(L, N )

c

)
tr{D2

k

(
Dk + σ̃2

k I
)−1

}pk(
K∑

i=1

1
M pi tr{Dk,bi }+1

) ,

x(L, N )
c = e2

c

Mc

K∑
i=1

β2
i λ

(1),2
i ,c(

1+βiλ
(1)
i ,c ec

)2 .

Proof: The proof is very much involved and is given in Appendix I for various BF and channel
estimator combination. In Appendix, we evaluate the actual sum rate using the BFs designed
by the optimization of various egodic capacity bounds. For the values of r k , r k which define the
deterministic equivalent of βk , for the proof, we refer to Theorem 12, where we evaluate the deter-
ministic equivalent of the EWSR.

In the above SINR expression, the quantities
(
1−x(L,Opt )

c

)
,
(
1−x(L, N )

c

)
represents the loss in

signal power due to the amount of ZF happening at any SNR, which varies from no ZF at very

low SNR to ZF to all the paths (
K∑

i=1
Lk,c of them, case of constant channel estimation error) to

which gk cause interference or all the user channels (K of them, case of estimation error varying
with SNR). The details of this analysis will be dealt in the following sections. Also, note that from
(7.39), we can conclude that for the subspace channel estimator the signal power gets reduced by

a factor tr{Dk }
tr{Dk+σ̃2

k I}
compared to the LMMSE. This is attributed to the absence of weighting which

is present in the case of LMMSE channel estimator.

7.1.8 EWSMSE BF in the MaMISO Stochastic Geometry Regime

From the definition in Section 7.1.5, by moving desired user channel interference power to the
interference power terms, the EWSMSE BF expression can be written as,

(7.41)

gk ∝ F−1
k Ck Uk d̂k d̂H

k UH
k CH

k gk

(a)∝ F−1
k Ck Uk d̂k ,

So, g′′
k = F−1

k ĥk , where,

Fk =Γk +βk Ck d̃k CH
k ,

Γk = ∑
i 6=k

βi Ci ,bk Wi ,bk CH
i ,bk

+µbk I,

ĥk = Ck Uk CH
k ĥk,LS = Ck Uk d̂k .

(a) follows from d̂H
k UH

k CH
k gk being a scalar. Let us denote γ(E)

k,L as the SINR for user k under

LMMSE channel estimator and EWSMSE BF. Similarly, γ(E)
k,S indicates the SINR for user k under

Subspace channel estimator and EWSMSE BF.

Theorem 11. In the large system limit, the SINR of an EWSMSE BF with LMMSE and subspace

channel estimator converges to a deterministic limit, γ(E)
k,L −γ(E)

k,L
M→∞−−−−→

a.s
0,γ(E)

k,S −γ(E)
k,S

M→∞−−−−→
a.s

0. Fur-

ther using the continuous mapping theorem, we can say that the rate of user k converges, Rk −
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Rk
M→∞−−−−→

a.s
0.

(7.42)

γ(E)
k,L = γ(E)

k,L −
PSk

Υ1k +Υ2k −2Υ3k +1
M→∞−−−−→

a.s
0, where,

PSk =
(
1−x(L,E)

bk

) (
tr{Uk

(
I−E−1

k ebk

)
Dk }

)2
pk

tr{U2
k

(
I−ebk E−1

k

)2 (
Dk + σ̃2

k I
)
}

,

Υ1k = ∑
i 6=k

1
Mbi

tr{Dk,bi B−2
k,bi

} tr{U2
i ,bi

(
Di + σ̃2

i I
)
}pi

tr{U2
i ,bi

(
I−ebi E−1

i

)2 (
tr{Di + σ̃2

i I}
)
}

,

Υ2k = ∑
i 6=k

(
1−x(L,E)

bk

)
1

Mbi
tr{Dk,bi B−2

k,bi
} tr{U2

i ,bi
E−2

i

(
Di + σ̃2

i I
)
}pi

tr{U2
i

(
I−ebi E−1

i

)2
tr{Di + σ̃2

i I}}
,

Υ3k = ∑
i 6=k

(
1−x(L,E)

bk

)
1

Mbi
tr{Dk,bi B−2

k,bi
} tr{U2

i ,bi
E−1

i

(
Di + σ̃2

i I
)
}pi

ebi tr{U2
i

(
I−ebi E−1

i

)2
tr{Di + σ̃2

i I}}
,

with Ui =
(
I+ σ̃2

i D−1
i ,bi

)−1
for LMMSE and

Ui = I for Subspace channel estimator.

Proof: The proof is given in Appendix IV. We also derive the deterministic equivalents for the ESIP-
WSR and naive BFs with LS channel estimate in Appendices V and VI, respectively.

7.1.9 Deterministic Equivalent of Auxiliary Quantities

In this section, we derive under large system limit, with Mc ,Kc →∞ at a fixed ratio Kc
Mc

< 1,∀c,
approximations to the scalar quantities involved in the rate expression, which we denote as the
deterministic equivalent.

Theorem 12. In the large system limit, the quantities σ(1)
k −σ(1)

k

Mbk
→∞−−−−−−→

a.s
0, σ(2)

k −σ(2)
k

Mbk
→∞−−−−−−→

a.s
0,

rk − r k

Mbk
→∞−−−−−−→

a.s
0 and rk − r k

Mbk
→∞−−−−−−→

a.s
0, where σ(1)

k ,σ(2)
k ,r k ,r k are the deterministic equivalents.

Here
Mbk

→∞−−−−−−→
a.s

denotes almost sure convergence. Further we can show that, since the logarithm

is a continuous function, by applying the continuous mapping theorem [96], it follows from the

almost sure convergence of rk and rk that, Rk −Rk
Mbk

→∞−−−−−−→
a.s

0, where Rk is the rate of user k, with

Rk = ln( r k
r k

). By using similar argument, we state that βk −βk

Mbk
→∞−−−−−−→

a.s
0 and αk −αk

Mbk
→∞−−−−−−→

a.s
0.

The deterministic limits are obtained as,

(7.43)

σ(1)
k = e2

bk
λmax (Wk,bk

)

e ′
bk

(
1+Υk

) ,

σ(2)
k = 1

Mbk

K∑
i=1,i 6=k

βi

Li ,bk∑
r=1

ζ(r )
i ,bk(

1+βiζ
(r )
i ,bk

ebk

)2

 ,

r k = 1+Υk ,

r k = 1+Υk +pk
e2

bk
λmax (Wk,bk

)

e ′
bk

,
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where,

(7.44)
Υk =

K∑
i=1,
i 6=k

pi
1

Mbi

Lk,bi∑
r=1

ζ(r )
k,bi(

1+βkζ
(r )
k,bi

ebi

)2

 ,

βk = uk

(
1

r k
− 1

r k

)
, αk = uk

r k
,

Proof: Main steps leading to this using standard results from random matrix theory [14] are
outlined in Appendix I.
All the deterministic equivalents described above depend just on the scalar parameters such as
eigenvalues of the channel covariance matrices, transmit powers and channel estimation error
variances. Note that the BF computation algorithm based on EWSR still remains iterative in
pi ,βi and µbi .

7.1.10 Simplified Sum Rate Expressions with Different BF and Channel Estimators

7.1.10.1 Sum Rate Analysis at any SNR

Even though in general, the true channel eigenvalues may be distinct, it is illustrative to consider
an extreme case where the eigenvalues are all equal. In this section, using the results from the
Appendix I, we discuss the simplified sum rate expressions for naive, EWSMSE and ESIP-WSR
BFs for LMMSE/Subspace/LS channel estimators under multi cell (C cells), with identical pa-
rameters, σ̃2

k,c = σ̃2, Lk,c = L, Dk,c = ηk,c

L I, Pc = P,∀c and Mc = M ,∀k,c. Number of users in cell c
is denoted as Kc = K /C ,∀c. For ESIP-WSR BF with LMMSE channel estimate, substituting these
values in (7.38), we obtain,

(7.45)

lλ(1)
k,c = ζk,c +λ(2)

k,c ,

ζk,c =
η2

k,c

Lσ̃2 +ηk,c
,

λ(2)
k,c =

σ̃2ηk,c

Lσ̃2 +ηk,c
,

and rest of the eigenvalues λ(r )
k,c =λ(2)

k,c , ∀r = 2, ...,L. In the case of naive BF with LMMSE channel
estimate, there will only be one eigenvalue and that will be ζk,c . For the subspace channel esti-
mator, the eigenvalues are λ(1)

k,c = (
ηk,c +Lσ̃2

)+ σ̃2, λ(r )
k,c = σ̃2, ∀r 6= 1. Similarly for the naive BF

with subspace channel estimator, the only one eigenvalue is, λ(1)
k,c = ηk,c +Lσ̃2. For ESIP-WSR BF

with LS only channel estimate, the only eigenvalue will be λ(1)
k,c = ηk,c +Mσ̃2.

Moreover, in order to simplify the analysis, we consider the case of same attenuation for all
the channels, Dk,c = η

L I,∀k,c, α = K L
M hence βi = β,∀i . In this case, we denote the eigenvalues

(which are the same for all the Wk,c ) are of the form λ(1)
k,c = λζ+λ2λ

(r )
k,c = λ2∀r > 1, where ζ1,ζ2

are defined below. Further we can write the equation for solving ec from (7.32) as,

(7.46)

1

ec
= K

M

βλ1

1+βλ1ec
+ K L

M

βλ2

1+βλ2ec
+µc ,

ζ= η2

Lσ̃2 +η , λ2 = σ̃2η

Lσ̃2 +η ,

λ1 = ζ+λ2.
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We consider below certain special cases for which the implicit equation of ek can be analytically
solved.

Corollary 12.1. For the naive BF with LMMSE channel estimate (or with LS or Subspace estima-

tor), 1
ec

= K
M

βλ1

1+βλ1ec
+µc , after some algebraic manipulations, it can be shown to be the solution of

a quadratic equation and the positive ec can be obtained as,

(7.47) ec =
−(
µc +βλ1(α−1)

)+√(
µc +βλ1(α−1)

)2 +4βλ1µc

2βλ1µc
.

At extreme SNR regions (where µc ∝ 1/P), it can be deduced that lim
P→0

ec = 0, lim
P→∞

ec =∞. Further

by substituting for ec in (62) leads to x(LS, N )
c = x(L, N )

c = x(S, N )
c = K

M at high SNR and x(LS, N )
c =

x(L, N )
c = x(S, N )

c = 0 at low SNR for the naive BFs.

Corollary 12.2. For WSR based BF design with perfect CSIT, which represents a special case of
ESIP-WSR BF considered in this chapter (D̃ = 0), the implicit equation for ec gets simplified as, 1

ec
=

K
M

βη
1+βηec

+µc . Note that there is only one eigenvalue corresponding to the true rank one channel
vector which is η. Hence we obtain a positive solution by solving the resulting quadratic equation,

(7.48) ec =
−(
µc +βη

(
α
L −1

))+√(
µc +βη

(
α
L −1

))2 +4βηµc

2βηµc
.

Again, at extreme SNR regions, it can be deduced that lim
P→0

ec = 0, lim
P→∞

ec =∞. Further substituting

these values in (62) leads to the ZF dimension of K (interfering user channels) and hence the rate
expression can be written as R = K ln

(
(1− K

M )SN RηC P
K

)
.

Corollary 12.3. In the case of CoCSIT, the implicit equation for ec gets simplified as, 1
ec

=α βη
1+βηec

+
µc and a positive solution can be obtained as,

(7.49) ec =
−(
µc +βη(α−1)

)+√(
µc +βη(α−1)

)2 +4βηµc

2βηµc
.

At extreme SNR regions, it can be shown that lim
P→0

ec = 0, lim
P→∞

ec =∞. Further by substituting for

ec in (62) leads to x(C )
c = K L

M at high SNR and x(C )
c = 0 at low SNR for the naive BFs.

7.1.10.2 High SNR Analysis (σ̃2 ∝ 1
P )

We derive in detail the high SNR analysis simplifications for various BF and channel estimator
combination in Appendix K. It is clear from those derivations that the eigenvalues (λ(r )

k,c ) will
determine the evolution (w.r.t SNR) of the large system approximation values such as ec or xc

which is defined in (62). The value xc is also an indication of the ZF dimensions of the various
BF design and varies w.r.t the channel estimation quality and the BF optimization along with the
particular channel estimate being considered. We define ρk,c = ηk,c pk , where ρk,c is the received
SNR at user k from BS c (with bk = c). Substituting these values, we observe that the sum rate
expressions at high SNR can be expressed as,

(7.50) R =
K∑

k=1
ln(1+ωkρk,c ),
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Table 7.1: High SNR Rate Offset for Various BFs (Dk,c = ηk,c

L I, σ̃2 ∝ 1/P )

ω naive EWSMSE ESIP-WSR

LS

(
1− K

M

) ηk,c
ηk,c+σ̃2 M

σ̃2C P+1

(1− K
M )

ηk,c
ηk,c+σ̃2 M

σ̃2C P+1

(
1− K

M

) ηk,c
ηk,c+σ̃2 M

σ̃2C P+1

LMMSE/Subspace
(
1− K

M

) (
1− K

M

) (
1− K

M

)
where ω = z

1+yP represents the rate offset, where z, y varies w.r.t the channel estimator and the
type of BF design. For those BF which saturates at high SNR, the saturation level is represented
as zP

1+yP ≈ z
y . The correspondingω for the 9 different combinations of channel estimator and BFs

are depicted in the Table 8.1 below. Also, we assume that the coherence interval Tc is sufficiently
large such that the prelog factor (1−T −1

c ) appearing in the rate expression [122] can be neglected.
If we consider the simplified case of identical channel attenuation for all users in the system,
ηk,c = η,∀k,c, for which the sum rate simplifies to R = K ln(1+ωρ) ≈ K ln(ωρ),ρ = η P

Kc
. For

the ESIP-WSR BF, the sum rate can be written as, R = K ln
(
(1− K

M )SN R Cη
K

)
, where we define

the Tx SN R = P . This in fact tells us how the capacity scales with the system parameters such as
M ,K ,SN R,η and for the ESIP-WSR BF, it can be interpreted that the capacity scales with the rank
of the channel under very strong spatial correlation regime. Note that at high SNR, ESIP-WSR BF
with subspace channel estimator converges to the performance of the LMMSE estimator, hence
we have merged the values of subspace and LMMSE estimator in the tables. Another remark
is that the ZF dimension of all the BFs are K . n ESIP-WSR/Naive EWSR BF does project the LS
channel estimate to the covariance subspace and the noise part is also reduced to the subspace.
However, in the case of LS channel estimate, since there is no projection to the subspace, the
estimation error present in the remaining M − L spatial dimensions get multiplied by the Tx
power to give a constant rate offset at high SNR. This explains the degraded performance of LS
estimates w.r.t LMMSE/Subspace channel estimators.

Corollary 12.4. From Corollary 12.3 and the deterministic equivalent derived in Appendix VII, we
obtain the sum rate at high SNR for the case of CoCSIT as,

(7.51) RCoC SI T = K ln((1− K L
M )SN R η

L
C
K ),

and this represents a constant rate offset (per-user) of ln (M−K )
M−K L +lnL for the CoCSIT compared to the

perfect CSIT at high SNR. This rate offset is attributed due to the lack of perfect channel knowledge.
The best CoCSIT can do is to transmit along the dominant eigenvector of the direct channel in the
covariance subspace resulting in the factor of lnL reduction in the rate offset. Also, the BF does ZF
to the L independent paths of the leakage channels and this results in the signal power reduction
of ln (M−K )

M−K L compared to the perfect CSIT.

7.1.10.3 Sum Rate Analysis at Low SNR (σ̃2 ∝ 1
P )

In Appendix J, we provide the detailed derivation of the low SNR analysis of ESIP-WSR, naive and
EWSMSE BFs for the various channel estimates. We observe that the sum rate can be written as
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Table 7.2: Low SNR Rate Offset for Various BFs (Dk,c = ηk,c

L IL)

χ naive EWSMSE ESIP-WSR

LS ηk,c

(ηk,c+σ̃2M)
ηk,c

(ηk,c+σ̃2M)
ηk,c

(ηk,c+σ̃2M)

LMMSE/Subspace 1
L

1
L

1
L

Table 7.3: Low SNR Rate Offset for Various BFs (with distinct values in Dk,c )

χ naive EWSMSE ESIP-WSR

LS tr{Dk,c }
tr{Dk,c+σ̃2IM }

tr{Dk,c }
tr{Dk,c+σ̃2IM }

tr{Dk,c }
tr{Dk,c+σ̃2IM }

LMMSE
tr{D3

k,c }

tr{Dk,c }tr{D2
k,c }

1 1

Subspace 1
L

1
L

1
L

follows,

(7.52)
R =

C∑
c=1

ln(1+χcρc )
a≈

C∑
c=1

χcρc ,

where, ρc = ηk,c P,

where in (a), we made the approximation ln(1+ x) ≈ x, when x ¿ 1 and χ represents the SNR
offset for various BFs. With ηk,c = η,∀c, the rate becomes R ≈ Cχρ,ρ = ηP . In Table 7.2 and
Table 7.3 (distinct eigenvalues in D), we show the χc for different BF and channel estimator com-
bination to explain the SNR offset for sub-optimal BFs compared to the ESIP-WSR BF. Note that
at low SNR, ILA-WF allocates all the power to the strongest (in terms of channel attenuation) user
resulting in the received SNR ρ = ηP for the corresponding user.

Few remarks which follow from the Table 7.2 are: 1) From Appendix J, the different BF ex-
pression with LMMSE/Subspace channel estimators have the expression g ∝ Cd̃. This can be
interpreted as random beamforming direction in the covariance subspace. This leads to an SNR
offset of 1/L for the BFs with LMMSE/Subspace channel estimators compared to the case of dis-
tinct eigenvalues in D. In the case of distinct diagonal values in D, the BF expression is g ∝ CDd̃,
which can be seen as a weighted random beamforming direction in the covariance subspace. 2)
For the LS channel estimate, since it does not involve any subspace projection, the estimation
error is present along all the M dimensions which explains the reduction in signal power arising
from the term σ̃2M in the denominator. 3) For the subspace channel estimate, the BF expression
remains the same in both the case of multiple of identity D and when there is distinct eigenval-
ues, g ∝ Cd̃. This explains the performance loss compared to the LMMSE case when there are
distinct eigenvalues in D, wherein which the LMMSE does a weighting for the BF direction.

For the CoCSIT case, using the analysis in Appendix VII, the sum rate at low SNR can be written
as, RCoC SI T = C Pη

L . This represents an offset of 1
L compared to the perfect CSIT case, whose sum

rate can be written as R iC SI T =C Pη.
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7.1.10.4 High SNR Analysis under Constant Channel Estimation Error

In the Appendix L, we derive in detail the high SNR simplifications for the SE under constant
channel estimation error regime. Under constant channel estimation error, the ESIP-WSR BF
does pathwise zero forcing and hence the reduction in signal power is (1− K L

M ). With LMMSE
channel estimate, since the estimation error is also reduced to the covariance subspace, ZF to the
covariance subspace of the interfering channels imply that the interference power gets reduced
to zero. Hence, K L spatial dimensions are used to suppress the inter-cell and intra-cell interfer-
ence. However, for the LS channel estimate, since the estimation error is present in the entire M
dimensional space, interference power still remains. For the naive BF, where the estimation error
is not considered in the BF design, ZF to all the interfering user channel estimates ((K −1) ≈ K of
them) does happen and hence the signal power reduction due to ZF is (1− K

M ). For the naive BF
also, the interference power still remains and the sum rate saturates at high SNR. This explains
the drastic improvement in performance between ESIP-WSR BF with LMMSE/Subspace channel
estimate compared to the ESIP-WSR BF with LS channel estimate and naive BFs.

Corollary 12.5. For the ESIP-WSR BF with LMMSE channel estimate, the sum rate can be written
as,

(7.53) R = K ln

(
(1− K L

M
)SN R

Cη2

K (η+ σ̃2L)

)
,

where the Tx SN R = P. So we can conclude that the offset with the perfect CSIT case at high SNR
is due to the difference in ZF dimensions and a small attenuation factor in the signal power, η

η+σ̃2L
which is due to the non-vanishing channel estimation error. Also, for the CoCSIT case, the sum
rate can be obtained as,

(7.54) RCoC SI T = K ln

(
(1− K L

M
)SN R

Cη

K L

)
.

This represents a rate offset (per-user) of ln M−K
M−K L + ln L w.r.t the perfect CSIT.

Corollary 12.6. For the finite rate feedback model (which is one instance of the constant channel
estimation error regime as discussed initially), [108] shows that under RVQ (random vector quan-
tization), the distortion is upper bounded as σ̃2 < 2− B

M−1 ,B being the number of feedback bits.
Further comparing Table 8.1 and 7.4, in order to maintain a rate offset no larger than a specified
limit, say log2(b) (per-user) between WSR with perfect CSIT and ESIP-WSR, we can obtain that it
is sufficient to scale the number of bits per-user as, B = (M −1)log2 Lb−(M −1)log2(η( M−K

M−K L −b)).

7.1.11 Simulation Results

In this section, we present the Ergodic Sum Rate Evaluations for BF design for the various chan-
nel estimates. Monte Carlo evaluations of ergodic sum rates are done with the following parame-
ters: C , number of cells. Kc , number of (single-antenna) users in cell c and K =∑

c
Kc . M , number

of transmit antennas in each cell. We consider a path-wise or low rank channel model as in sec-
tion 7.1.2, with L = number of paths = channel covariance rank. The elements of the eigenvalue
matrix D is generated from an exponential distribution with mean 1. Further, all the entries are
scaled such that tr{D} = 1. The eigenvectors, C of user channel covariance matrix are generated
as random unitary matrices. We do evaluate the sum rate performance under channel estima-
tion error inversely proportional to SNR and also the case of constant channel estimation error
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Table 7.4: High SNR Rate Offset for Various BFs (Dk,c = ηk,c

L IL) under Constant Channel Estima-
tion Error

α naive EWSMSE ESIP-WSR

LS
(1− K

M )
ηk,c

ηk,c+σ̃2 M

σ̃2C P+1

(1− K
M )

ηk,c
ηk,c+σ̃2 M

σ̃2C P+1

(1− K
M )

ηk,c
ηk,c+σ̃2 M

σ̃2C P+1

LMMSE/Subspace
(1− K

M )
ηk,c

(ηk,c+σ̃2L)

C P
K M

K∑
i 6=k

ηk,bi +1

(1− K L
M )

ηk,c
(ηk,c+σ̃2L)

C P
K M

∑
i 6=k

ηk,bi +1
(1− K L

M ) ηk,c

ηk,c+σ̃2L

regime. Notations: in the figures, iCSIT refers to the optimal BF design for the instantaneous (or
perfect) CSIT case [9]. “LSA” refers to Large System Approximation. In all the figures, we compare
the various BF designs such as ESIP-WSR, EWSMSE and naive under different channel estimates.
For the multi-cell simulations, we multiply the inter-cell channels by a random scalar factor (< 1)
to represent the attenuation in channel power for inter-cell channels from any BS.

7.1.12 Channel Estimation Error ∝ 1/P

Here, d denotes the scale factor in the LS channel estimation error variance σ̃2 = d/SN R. When
d = 1, all the BFs with LMMSE/Subspace channel estimates converge to the optimal WSR based
BF design with instantaneous CSIT. In Figure 7.2 and Figure 7.3, we also plot the ESIP-WSR BF
performance with LMMSE channel estimator comparing to the ESIP-WSR BF performance for
the case of large system approximation. It is evident that the deterministic approximations are
accurate even for finite M ,K . It is evident from the figure that exploiting the channel estimation
error covariance information has significant performance gain compared to the sub-optimal
methods such as EWSMSE and naive BFs when d deviates from 1. When d = 1, the BFs ESIP-
WSR, EWSMSE and Naive EWSR converges to the perfect CSIT case at very high SNR. Also, as
discussed in Section 7.1.10, the performance of LS only channel estimate is worse compared to
other BFs since the estimation error being present in all the M spatial dimensions.
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Figure 7.2: EWSR for C = 1 cell, K1 = K = 20 users, M = 64, L = 2, σ̃2 = c/SN R,c = 30.
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Figure 7.3: EWSR for C = 2 cells, K1 = K2 = 10 users, M = 64, L = 2, σ̃2 = c/SN R,c = 60.
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Figure 7.4: EWSR for C = 1 cell, K1 = K = 20 users, M = 64, L = 3, σ̃2 ∝ 1/SN R.

In Figure 7.4, we just plot the high SNR behaviour of the various BF and channel estimator
combinations when d = 1. It clearly shows the convergence of ESIP-WSR BFs with LMMSE/Subspace
and Naive EWSR BFs with LMMSE/Subspace channel estimators to the perfect CSIT sum rate
performance. For the BFs with LS channel estimators, from Table 8.1, there is an offset of around
13 bits/sec/Hz which exactly matches the offset seen from the simulations. Similarly for the
CoCSIT, there is a sum rate offset of aroung 50 bits/sec/Hz which closely approximates the value
predicted by the Corollary 12.4. The huge difference with perfect CSIT is due to the difference in
the ZF dimensions for the CoCSIT.

7.1.13 Constant Channel Estimation Error

The constant channel estimate regime looks the most interesting scenario in terms of the supe-
rior performance improvement of ESIP-WSR based BF design compared to the very suboptimal
schemes such as naive or EWSMSE BFs. The naive and EWSME BFs are observed to saturate at
high SNR as seen in Figure 7.6. In the same figure, we also compare the performance of CoCSIT
based BF with the ESIP-WSR BF. From the Figure 7.6:a) we deduce that there is a sum rate offset
of 17 bits/sec/Hz for the CoCSIT compared to the perfect CSIT which is very close to the rate off-
set predicted by the large system approximations in Section 7.1.10.4. The BFs with LMMSE and
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Figure 7.5: EWSR for C = 1 cell, K1 = K = 15 users, M = 100, L = 4, σ̃2 = 0.1.
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Figure 7.6: EWSR for C = 4 cell, Ki = 7,∀i , So, K = 28 users, M = 64, L = 2, σ̃2 = 0.1.

subspace channel estimators converge to the same performance at high SNR in the simulations
which is also analytically proved in the chapter.

7.1.14 Conclusion

Concluding Remarks 6

• This chapter investigated the optimal linear precoder based on partial CSIT in the
multi-cell MU-MISO DL. We considered an upper bound of the ergodic capacity to
solve the BF design and the tightness of this upper bound in the large antenna limit is
also pointed out.

• We introduced a stochastic geometry inspired randomization of the channel covari-
ance eigen spaces of the different users and analyzed the large system behavior. In
particular, we focused on a spatial correlation regime where the ratio of the sum of the
rank of the channels from a BS to the number of antennas remains a constant. In fact,
this condition can capture the strong spatial correlation regimes where the rank of the
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Concluding Remarks 6 (cont.)

channel (or the number of multipaths with distinct AoA) scales sublinearly with the
number of antennas.

• Moreover, we show the improvement in performance by using an LMMSE channel
estimate compared to just having LS estimates, and by furthermore properly exploit-
ing all covariance information. LMMSE channel estimate assumes that the channel
covariance matrix is known perfectly at the BS side. Numerical simulations suggest
that the large system approximations are accurate even for finite values of M ,K . We
provided simple and elegant expressions for the sum rate at high and low SNR, provid-
ing useful analytical insights into the SNR offsets between different sub-optimal BFs
which matches with our simulations. It is also worth noting that we consider two sce-
narios where the channel estimation error scales differently w.r.t the Tx SNR and the
extreme SNR region sum rate expressions derived justify the simulation behaviour.

• However, we remark that few things remains to be done, which is kept as future work.
For example, the apparent difference in behaviour at high SNR for EWSMSE and naive
EWSR BF under constant channel estimation regime is not captured by the large sys-
tem simplified results.

• In this chapter, we considered a rather simplified assumption in the channel model
that the total number of paths seen by a BS is less than that of the number of Tx anten-
nas. This in turn facilitates the full ZF across the interfering paths, however, it will be
more interesting to check the system behaviour when the number of paths exceed the
number of Tx antennas.
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Chapter 8

STATIC AND DYNAMIC SPARSE BAYESIAN LEARNING
USING MEAN FIELD VARIATIONAL BAYES

8.1 Introduction

Sparse Bayesian Learning (SBL), initially proposed in the Machine Learning literature, is an ef-
ficient and well-studied framework for sparse signal recovery. SBL uses hierarchical Bayes with
a decorrelated Gaussian prior in which the variance profile is also to be estimated. This is more
sparsity inducing than example a Laplacian prior. However, SBL does not scale with problem
dimensions due to the computational complexity associated with the matrix inversion in Linear
Mimimum Mean Squared Error (LMMSE) estimation. To address this issue, various low com-
plexity approximate Bayesian inference techniques have been introduced for the LMMSE com-
ponent, including Variational Bayesian (VB) inference, Space Alternating Variational Estimation
(SAVE) or Message Passing (MP) algorithms such as Belief Propagation (BP) or Expectation Prop-
agation (EP) or Approximate MP (AMP). These algorithms may converge to the correct LMMSE
estimate. In this chapter, we provide a detailed overview of the low complexity approximate
Bayesian inference techniques and their superiority (in terms of convergence, computational
complexity and robustness w.r.t measurement matrices) compared to the other state of the art
techniques.

Sparse signal reconstruction and compressed sensing (CS) has received an enormous amount
of attraction in recent years. Few applications include massive multi-input multi-output (MIMO)
channel estimation [132], direction of arrival estimation [133], biomagnetic imaging [134], image
restoration and echo cancellation. The compressed sensing (CS) problem can be formulated as

(8.1) y = Ax+w,

where y is the observations or data, A is called the measurement or the sensing matrix which
is known and is of dimension N ×M with N < M , x is the M-dimensional sparse signal and w
is the additive noise. x contains only K non-zero entries, with K << M . w is assumed to be
a white Gaussian noise, w ∼ N (0,γ−1I). To address this problem, a variety of algorithms such
as the orthogonal matching pursuit [135], the basis pursuit method [136] and the iterative re-
weighted l1 and l2 algorithms [137] exist in the literature. Compared to these algorithms, using
Bayesian techniques for sparse signal recovery (SSR) generally achieves the best performance. It
is worth mentioning that [138] provides a detailed overview of the various SSR algorithms which
fall under l1 or l2 norm minimization approaches such as Basis Pursuit, LASSO etc, and SBL

132



CHAPTER 8. STATIC AND DYNAMIC SPARSE BAYESIAN LEARNING
USING MEAN FIELD VARIATIONAL BAYES 133

methods. The authors justify the superior recovery performance of SBL compared to the above
mentioned conventional methods. In a Bayesian setting, the aim is to calculate the posterior
distribution of the parameters given some observations (data) and some a priori knowledge. The
SBL algorithm was first introduced by [2] and then proposed for the first time for SSR by [139].

Compared to other state of the art techniques, the critical point about SBL is the hierarchi-
cal prior modeling which results in a sparsifying states x. It is also worth mentioning that the
Bayesian LASSO [140], uses similar hierarchical modeling which is Gaussian-Exponential prior
(equivalent to Laplace prior) and it turns out to be a special case of the Student-t prior in SBL.

In SBL, an estimate of the hyperparameters α,γ and sparse signal x is performed iteratively
using evidence maximization. The hyperparameters are estimated first using an evidence max-
imization, which is referred to as Type II maximum likelihood (ML) method [138]. For a given
estimate of α,γ, the posterior of x is formulated as p(x/y,α̂, γ̂) and the mean of this posterior
distribution is used as a point estimate of x̂. In [141], the authors propose a Fast Marginalized
ML (FMML) by alternating maximization of the hyperparameters ξi . Both previous approaches
allow for a greedy initialization (OMP-like) which improves convergence speed and handles ini-
tialization issues. Recently approximate message passing (AMP) [142], generalized AMP and vec-
tor AMP [143–145] were introduced to compute the posterior distributions in a message passing
(MP) framework and with less complexity. The fundamental idea behind the derivation of AMP
is the central limit theorem and Taylor series expansions, which reduces the number of messages
to be exchanged in MP. However, so far, the Bayes optimality of these AMP algorithms are shown
only for i.i.d. or right orthogonally invariant A, which severely limits the applicability of them.

SBL involves a matrix inversion step at each iteration, which makes it a computationally com-
plex algorithm even for moderately large datasets. An alternative approach to SBL is using a vari-
ational approximation for Bayesian inference [146,147]. VB inference tries to find an approxima-
tion of the posterior distribution which maximizes the variational lower bound on ln p(y). [148]
introduces a Fast version of SBL by alternatingly maximizing the variational posterior lower
bound with respect to single (hyper)parameters.

We also consider the extension of the proposed low complexity algorithms to the dynamic
sparse signal case, where the time varyness of the sparse vector is modeled using an autore-
gressive process of order one (AR(1)). Dynamic autoregressive SBL (DAR-SBL) considered here
is a case of joint Kalman filtering (KF) with a linear time-invariant diagonal state-space model,
and parameter estimation, which can be considered an instance of nonlinear filtering. In the
literature, variations on the KF theme have been derived to handle the joint filtering and pa-
rameter estimation problem, such as example the widely used EM-KF algorithm ( [149–151])
which uses the famous Expectation Maximization technique (EM), an alternating optimization
method of solving ML for the unknown parameters in the AR model. Another well-known varia-
tion is the extended KF (EKF) algorithm, which can handle general nonlinear state space models.
In this case, the states are extended along with the unknown AR coefficients and hence the new
state update equation becomes nonlinear. Another version is the truncated Second-Order EKF
(SOEKF) introduced by [152,153] in which nonlinearities are expanded up to second order, third
and higher order statistics being neglected. However, [154] noted that the derivation of SOEKF
contains errors due to illogical approximations and a corrected derivation is provided in Henrik-
sen’s paper. In ( [153, 155]), the Gaussian SOEKF is derived in which fourth-order terms in the
Taylor series expansions are retained and approximated by assuming that the underlying joint
probability distribution is Gaussian. In [156], Villares at al. introduced the Quadratic Extended
KF (QEKF) where they extend the EKF to a new algorithm using quadratic processing and in-
corporating fourth order statistics of the input signal. The problem of unknown process noise
and measurement noise covariance matrices was also tackled in [157]. Here, firstly a statistical
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check is done to know whether a particular filter is suboptimal or not. Further, an identification
scheme is proposed to obtain asymptotically unbiased and consistent estimates of the unknown
variance parameters. The performance of some of these Adaptive KF (AKF) approaches was stud-
ied in the literature. In [158], the EM approach was shown to converge to the ML performance.
The asymptotic behavior of the EKF for AKF has been treated in [159] where it is proved that no
global convergence is guaranteed. The performance analysis of linear and nonlinear KF has also
been treated in terms of Cramer Rao Bound (CRB) computations. In [160], the Posterior CRB
(PCRB) is developed for the discrete nonlinear KF. Recursive Bayesian CRBs were also developed
for continuous and discrete nonlinear filtering for many problems. We can refer to [161] for an
overview.

8.1.1 Summary of the Chapter

This chapter of the thesis can be summarized as follows:

• In Section 8.2, the hierarchical prior model for static SBL is introduced. Further, we review
the original SBL algorithm proposed by Tipping.

• Followed by that, we give an overview of the existing fast SBL algorithms, by which the
readers should get a clarity on the existing methods in the literature and their drawbacks.

• Motivated by the low complexity requirements, we give an overview of our space alter-
nating variational estimation algorithm and the convergence points or guarantees in Sec-
tion 8.4.2.

• Finally, we extend the SAVE to dynamic sparse states, which integrates hyperparameter
estimation also.

8.2 Signal Model-SBL

In Bayesian compressive sensing, a two-layer hierarchical prior is assumed for the x as in [2]. The
hierarchical prior is chosen such that it encourages the sparsity property of x. x is assumed to
have a Gaussian distribution parameterized by ξ = [ξ1 ξ2 ... ξM ], where ξi represents the inverse
variance or the precision parameter of xi .

(8.2)

p(x/ξ) =
M∏

i=1
p(xi |ξi )

=
M∏

i=1
C N (0,ξ−1

i ).

Further a Gamma prior is considered over ξ

(8.3)

p(ξ) =
M∏

i=1
p(ξi |a,b)

=
M∏

i=1
Γ−1(a)baξa−1

i e−bξi .

The inverse of noise variance γ is also assumed to have a Gamma prior, p(γ) = Γ−1(c)d cγc−1e−dγ.
Now the likelihood distribution can be written as

(8.4) p(y|x,γ) = (2π)−NγN e−γ‖y−Ax‖2

.
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8.3 SBL using Type-II ML

First, we give a brief overview of the original SBL algorithm to exemplify the motivation behind
the low complexity version described in this chapter. Type-I and Type-II ML are two Bayesian
approached towards solving the SSR problem. However, Type-II has superior performance as
elucidated in [162]. The major factor being that Type-I method seeks the mode of the posterior
distribution of x. However, in Type-II, instead of searching for the mode of the true posterior
fx(x|y), it is approximated as fx(x|y,α̂, γ̂), where α̂ being obtained by maximizing the true poste-
rior over the subspaces spanned by non zero coefficient indexes. This in turn leading to a better
estimate of x, when the true posterior has a skewed peak. For a fixed estimate of the hyperpa-
rameters (denoted as γ̂, Γ̂), the posterior of x will be Gaussian, i.e.

(8.5) fx(x|y,α̂, γ̂) =C N (x̂,ΣL),

leading to the MMSE estimate for x as follows

(8.6)
x̂ = γ̂(γ̂AH A+ Γ̂)−1AH y,
ΣL = (γ̂AH A+ Γ̂)−1.

ΣL represents the posterior covariance matrix (with i th diagonal element beingσ2
i ) under MMSE

estimation. The computational complexity of the above step is O (M 3), due to the matrix inver-
sion step. Further, the hyperparameters are estimated from the likelihood function by marginal-
izing over the sparse coefficients x, the marginalized likelihood being denoted as fy(y|α,γ). α,γ
are estimated by maximizing fy(y|α,γ) and this procedure is called as Type-II ML. Type-II ML
is solved using EM, which leads to the following updates for the hyperparameters. Note that we
represent the point estimates (MMSE) for ξi , γ, respectively as ξ̂i , γ̂. σ2

i represents the posterior
error variance for xi .

(8.7)

ξ̂i = a +1(
E(x2

i ) + b
) ,

where E(x2
i ) = x̂2

i + σ2
i .

γ̂= c +N(
E(

∥∥y − Ax
∥∥2) + d

) ,

where, E(
∥∥y − Ax

∥∥2)

= ∥∥y
∥∥2 − 2yT Ax̂ + tr

(
AT A(x̂x̂T + Σ)

)
,

Σ = di ag (σ2
1, σ2

2, ..., σ2
M ),

x̂ = [x̂1, x̂2, ..., x̂M ]T .

VB also gives similar result as above, if all the components of x are considered jointly in the ap-
proximate posterior [148]. However, Shutin et. al. note that by computing the stationary points
of the variational updates (which is same as that from EM in (8.7)), a fast version of SBL can
be constructed. Further analysis of the computed stationary points reveals that SBL with Gaus-
sian priors and noninformative hyperparameters corresponds to pruning components of x with
signal-to-noise-ratio below some threshold. Hence the fast version of SBL in [148] leads to exact
sparsity for the estimates x̂. However, the per-iteration complexity of the resulting algorithm is
still high, O (L3), where L corresponds to the number of non-zero coefficients of x retained at any
stage of the algorithm. L can be very close to M in the initial iteration stages. Hence, the scope of
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the fast SBL by Shutin et. al. is limited as a method of boosting the convergence rate of the origi-
nal SBL. Furthermore, we note that the same technique can be applied to boost the convergence
rate of the low complexity algorithms based on SAVE and BP, which are detailed in the following
sections.

Before going further, it is important to also review Type I ML inference method for sparse
signal recovery and outlines the difference with Type II described above. Type I is standard MAP
estimation (involves integrating out the hyperparameters)

(8.8) x̂ = argmax
x

[log py(y|x)+px(x)],

while in Type II hyperparameters (Ψ = {ξ, γ}) are estimated using an evidence maximization
approach

(8.9)

Ψ̂= argmax
Ψ

pΨ(Ψ|y)

= argmax
Ψ

pΨ(Ψ)
∫

py(y,x|Ψ)dx

= argmax
Ψ

pΨ(Ψ)
∫

py(y|x,γ)px(x|ξ)dx.

Why Type II is better than Type I? In [138], the authors mention that in the evidence maximiza-
tion framework instead of looking for the mode of the true posterior px(x|y), the true posterior
is approximated as px(x|y;Ψ̂), where Ψ̂ is obtained by maximizing the true posterior mass over
the subspaces spanned by the non zero indexes. Type I methods seek the mode of the true pos-
terior and use that as the point estimate of the desired coefficients. Hence, if the true posterior
distribution has a skewed peak, then the Type I estimate (Mode) is not a good representative of
the whole posterior.

8.3.1 Variational Interpretation of SBL

Figure 8.1: Comparing Gaussian and Student-t distributions, source of the figure is [2]. The Gaus-
sian distribution peaks around zero and decays very fast, along all directions, while the student-t
have a very sharp peak around zero and falls slowly along the axes. Hence, sparse solutions are
favored.

For clarity, we provide here a variational interpretation of the SBL, which tries to address few
questions. What exactly is the relationship between the parametrized prior and the presumed
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sparse prior (Student-t) derived after the marginalization over the hyperparameters? How does
the evidence maximization framework in SBL lead to sparse solution even after using a parametrized
Gaussian prior which is not sparsifying? More detailed derivations can also be found in the
book [163, Chapter 13]. One popular sparsifying distribution is the Laplacian one.

(8.10) p(x) =
M∏

i=1

λ

2
e−λ|xi |.

Gaussian likelihood function p(y|x,γ) leads to the MAP estimation identical to the objective
function in LASSO [140] (which is with an l1 norm regularizer function). However, the prob-
lem with the Laplacian distribution is that it makes the integral in the computation of p(y) in-
tractable. Indeed, in basis pursuit [136], the cost function involves an l1 norm regularizer. In a
Bayesian sense, this can be interpreted as a Laplacian prior for the sparse vector x. In fact, basis
pursuit algorithm is devoid of local minimum and converges always to the global minimum of
the cost function. However, one significant shortcoming of basis pursuit is that this converged
solution does not necessarily correspond to the sparsest solution for x. A more better sparsify-
ing distribution is the student-t. The probability distribution for student-t can be expressed as
follows

(8.11) p(xi ) = baΓ(a + 1
2 )

(2π)
1
2Γ(a)

(b +x2
i /2)−(a+ 1

2 )

a,b are deterministic parameters which determine the shape of the student-t distribution. In
Figure 8.1, we depict a pictorial view of the student-t and Gaussian distributions. From the figure,
it is clear that student-t favors coefficients very close to zero, compared to for example, a Gaus-
sian case. Hence, it is a sparsifying distribution. However, with student-t also, it is intractable to
compute a closed form expression of the LMMSE estimator for x. To facilitate the estimation in
this case, we resort to variational approximation.

(8.12)

p(y) =
∫

C N (y|Ax,γ−1I)p(x)dx

≥
(∫

C N (y|Ax,γ−1I)C N (0,Ξ)dx
) M∏

i=1
p(ξi )

=C N (y|0,γ−1I+AΞ−1A)
M∏

i=1
p(ξi ) = p̂(y).

Further the posterior of x becomes

(8.13) p(x|y,γ,Ξ) ≈ p̂(x|y,γ,Ξ) = C N (y|Ax,γ−1I)C N (0,Ξ)

p̂(y)

Clearly this approximate posterior above is not a bound since normalization w.r.t p̂(y) has also
taken place. In fact, this approximate posterior is a Gaussian, with p̂(x|y,γ,Ξ) =C N (x̂,Σ), where
x̂,Σ got defined before in (8.7). An alternative interpretation for the hyperparameter estimation
using EM algorithm can be given as follows. At each iteration, the EM algorithm maximizes
E(p(y|x,γ)p̂(x,ξ)) (follows from the monotonicity of the logarithm function). This can be equiv-
alently written as the following minimization task

(8.14) ξ̂ = argmin
ξ

E(p(y|x,γ)|p(x)− p̂(x,ξ)|).

Few intuitive interpretations follow from (8.14).
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• The hyperparameters ξ are found out such that the it tries to find a best fit of the actual
prior for x.

• SBL results in good performance even if the approximation of the prior for x, p(x) is not a
good one.

• The major constraint in the approximation of the prior is that the |p(x)− p̂(x,ξ)| should be
less wherever p(y|x,γ) is large.

• The approximation of the prior for x does not matter in regions where the likelihood func-
tion p(y|x,γ) approaches zero.

• Compared to the Laplacian prior (which is the case algorithms like LASSO), SBL provides
the flexibility of optimizing extra parameters (ξ) to improve the final estimation perfor-
mance.

8.3.2 Overview of Fast SBL Algorithms

Before discussing further our low complexity VB inference based solutions, we would like to dis-
cuss here an overview of the existing state of the art fast SBL algorithms. A first of such algorithms
is a fast SBL using Type II ML by Tipping in [141]. This is based on a greedy approach of handling
one xi at a time, plus replacing precisions by their convergence values, leading to pruning of
the small xi components, i.e. explicit sparsity. Fast SBL using VB by Shutin et. al. [148] is an-
other variant inspired from [141]. Shutin uses VB while Tipping is Type II ML as in the original
SBL. They do both replace precisions by their convergence values. Shutin also added some ex-
tra viewpoints in terms of the pruning condition being interpreted as relating between sparsity
properties of SBL and a measure of SNR. Main message of the both being faster convergence
compared to original SBL and both do not lead to much reduction in per iteration complexity.
BP-SBL [164] uses BP to compute the MMSE estimate of x, while retaining EM for the hyperpa-
rameter estimates. In SBL, with fixed hyperparameters, MAP or MMSE estimate (follows from the
Gaussian posterior) of x can be efficiently computed using BP, since all the messages involved are
Gaussian (without any approx.). Hyperparameter free sparse estimation [165] does not require
hyperparameter tuning compared to SBL. It uses the technique of covariance matching and is
equivalent to a weighted version of square root LASSO. In Figure ??, a comparison of the differ-
ent fast SBL versions is provided.

8.3.3 Variational Bayes

The computation of the posterior distribution of the parameters is usually intractable. In order
to address this issue, in VB framework, the posterior distribution p(x,ξ,γ|y) is approximated by
a variational distribution q(x,ξ,γ) that has the factorized form:

(8.15)
q(x,ξ,γ) = qγ(γ)

M∏
i=1

qxi (xi )
M∏

i=1
qξi (ξi )

=∏
k

qk (θk ).

We denote by θ = (x,ξ,γ) the vector of unknown parameters and θk represents each scalar pa-
rameter in θ. qk (θk ) represents the approximate posterior marginal of θk . Variational Bayes
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Table 8.1: Complexity Comparisons-SBL Algorithms.

Algorithm Complexity Convergence Sparsity Optimization Local Optimum
per iteration (No.) of Function

iterations

Type I O (M 3) Exact sparsity Type I ML (Depending
upon the prior used type I
ML corresponds to LASSO

or re-weighted l1/l2 min. problems

Type II SBL O (M 3) Exact sparsity (ξi Type II ML solved using EM
converges to ∞

Fast SBL using Type II ML O (L3),L ≤ M ¿ L Exact sparsity ξi are computed Convergence to a local optimum
(Tipping’03, focus (using an entry dependent to accelerate convergence

more on convergence speed) thresholding condition
which follows from
the computation of

stationary point of ξi )

Fast SBL using VB O (L3),L ≤ M ¿ L Exact sparsity (using a pruning Maximization of ELBO Convergence to a local optimum
by Shutin (focus more on condition similar as in Tipping’s in VB of ELBO (MFFE)

convergence speed)

Hyperparameter free SBL O (M 2) ¿ M The final objective function LMMSE estimator for x, with Convergence to a local optimum
(Zachariah, Stoica’15) is a weighted square root Covariance matching

LASSO. So the sum of for PDP finally
l2 norm of (y and Ax) giving rise to an

and weighted l1 norm of x objective function
which promotes sparsity here. which can be interpreted as

weighted square root LASSO.

BP-SBL (Tan, Li’10) O (M N )1 log(M N ) Does not give exact sparsity Posterior of x computed using BP Convergence to local optimum

of Bethe Free Energy (BFE)

GAMP-SBL O (M N ) ¿ M Does not give exact sparsity Using GAMP for posterior of x, Convergence to local optimum
(Shoukairi, Schniter, Rao’18) EM for hyperparameters of LSL-BFE

SAVE-SBL O (M N ) ¿ M Does not give exact sparsity Maximization of ELBO Convergence to local optimum
(Shoukairi, Schniter, Rao’18) in VB of ELBO

Inverse Free SBL O (M N ) ¿ M Does not give exact sparsity Maximization of an approximate Convergence to a local optimum
(Duan, Yang, Fang, Li’17) ELBO in VB of the approximate ELBO

compute the factors q by minimizing the Kullback-Leibler distance between the true posterior
distribution p(x,ξ,γ|y) and the q(x,ξ,γ). From [146]

(8.16) K LDV B = K L
(
p(x,ξ,γ|y)||q(x,ξ,γ)

)
The KL divergence minimization is equivalent to maximizing the evidence lower bound (ELBO)
[147]. To elaborate on this, we can write the marginal probability of the observed data as

(8.17)

ln p(y) = L(q)+K LDV B , where,

L(q) =
∫

q(θ) ln
p(y,θ)

q(θ)
dθ,

K LDV B =−
∫

q(θ) ln
p(θ|y)

q(θ)
dθ.

Since K LDV B ≥ 0, it implies that L(q) is a lower bound on ln p(y). Moreover, ln p(y) is indepen-
dent of q(θ) and therefore maximizing L(q) is equivalent to minimizing K LDV B . This is called
ELBO maximization and doing this in an alternating fashion for each variable in θ leads to

1(Similar complexity as xAMP,see matrix form of the BP-SBL)
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(8.18)
ln(qi (θi )) =< ln p(y,θ) >k 6=i +ci ,

p(y,θ) = p(y|x,ξ,γ)p(x|ξ)p(ξ)p(γ).

where θ = {
x,ξ,γ

}
and θi represents each scalar in θ. Here <>k 6=i represents the expectation

operator over the distributions qk (θk ) for all k 6= i .

8.4 SAVE Sparse Bayesian Learning

In this section, we propose a Space Alternating Variational Estimation (SAVE) algorithm based
on alternating optimization between each elements of θ. For SAVE, not any particular structure
of A is assumed, in contrast to AMP which performs poorly when A is not i.i.d. or sub-Gaussian.
The joint distribution can be written as

(8.19)
ln p(y,θ) = N lnγ−γ∥∥y−Ax

∥∥2 +
M∑

i=1

(
lnξi −ξi x2

i

)+ M∑
i=1

((a −1)lnξi +a lnb −bξi )

+ (c −1)lnγ+ c lnd −dγ+constants,

In the following, cxi ,c ′xi
,cξi and cγ represents normalization constants for the respective pdfs.

Update of qxi (xi ): Using (8.18), ln qxi (xi ) turns out to be quadratic in xi and thus can be repre-
sented as a Gaussian distribution as follows

(8.20)

ln qxi (xi ) =−< γ>
{
< ∥∥y−Aī xī

∥∥2 > − (y−Aī < xī >)H Ai xi −
xi AH

i (y−Aī < xī >) + ‖Ai‖2 x2
i

}
− < ξi > x2

i + cxi

= − 1

σ2
i

(
xi − µi

)2 + c ′xi
.

Note that we split Ax as, Ax = Ai xi + Aī xī , where Ai represents the i th column of A, Aī represents
the matrix with i th column of A removed, xi is the i th element of x, and xī is the vector without xi .
The mean and the variance of the resulting Gaussian distribution (xi ∼N (< xi >,σ2

i )) becomes

(8.21)
σ2

i = 1

< γ> ‖Ai‖2 + ξi
,

< xi >=µi = σ2
i AH

i

(
y − Aī < xī >

)< γ>,

where µi represents the point estimate of xi .
Update of qξi (ξi ): The variational approximation leads to the following Gamma distribution for
the qξi (ξi )

(8.22)
ln qξi (ξi ) = a lnξi − ξi

(< x2
i > +b

) + cξi ,

qξi (ξi ) ∝ ξa
i e−ξi (<x2

i >+b).

The mean of the Gamma distribution is given by

(8.23)
< ξi > = a +1(< x2

i > +b
) ,

where < x2
i >=µ2

i + σ2
i .
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Update of qγ(γ): Similarly, the Gamma distribution from the VB approximation for the qγ(γ) can

be written as qγ(γ) ∝ γc+N−1e
−γ

(
<‖y−Ax‖2>+d

)
. The mean of the Gamma distribution for γ is

given by

(8.24)

< γ> = c +N(
< ∥∥y − Ax

∥∥2 > +d
) ,

where, < ∥∥y − Ax
∥∥2 > = ∥∥y

∥∥2 − yH Aµ −µH AH y+
tr

(
AH A(µµH + Σ)

)
,

Σ = di ag (σ2
1, σ2

2, ..., σ2
M ),

µ = [µ1, µ2, ..., µM ]T .

From (8.21), it can be seen that the estimate of x = µ converges to the L-MMSE equalizer, x̂ =
µ=(AH A+ 1

<γ>Σ
−1)−1AH y.

8.4.1 Computational Complexity

For our proposed SAVE, it is evident that we do not need any matrix inversions compared to
[148, 166]. Our computational complexity is similar to [167]. Update of all the variable x,α,γ
involves simple addition and multiplication operations. We introduce the following variables,
q = yH A and B = AH A. q,B and

∥∥y
∥∥2 can be precomputed, so only computed once. We also

introduce the following notations, xi− = [x1...xi−1]T ,xi+ = [xi+1...xM ]T . Also, we represent γt =<
γ >, ξt

i =< ξi >, x t
i = µi and Σt = Σ in the following sections, where t represents the iteration

stage.

Algorithm 13: SAVE SBL Algorithm

Given: y,A, M , N .
Initialization: a,b,c,d are taken to be very low, on the order of 10−10. ξ0

i = a/b,∀i ,γ0 = c/d and

σ2,0
i = 1

‖Ai ‖2γ0+ξ0
i

,x0 = 0.

At iteration t +1,

1. Update σ2,t+1
i , x t+1

i =µi ,∀i from (8.21) using xt+1
i− and xt

i+.

2. Compute < x2,t+1
i > from (8.23) and update ξt

i .

3. Update the noise variance, γt+1 from (8.24).

4. Continue steps 1−4 till convergence of the algorithm.
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8.4.2 Convergence Analysis of SAVE or Mean Field Approximation

For MF or SAVE (space alternating variational estimation) [168], to obtain the free energy F (q) =
U (q)−H(q)

(8.25)

U (q) =−Eq ln p(x|y)

= Eq (xHΣ−1
L x−yH Ax−xH AH y)

=µHΣ−1
L µ−yH Aµ−µH AH y+∑

i
σ2

i (Σ−1
L )i ,i + c1,

H(q) =−∑
i

Eqi ln qi

= 1

2

∑
i

lnσ2
i + c2,

ci being constants, independent of µ and σ2
i , also qi (xi ) = N (µi ,σ2

i ),µ = x̂ = [µ1, ..,µM ]T . Now
the MF free energy can be written as

(8.26) F (q) =µHΣ−1
L µ−yH Aµ−µH AH y+∑

i
σ2

i (Σ−1
L )i ,i + 1

2

∑
i

lnσ2
i + c.

It can be noticed that F (q) is a convex function w.r.t µ and σ2
i , further optimizing this w.r.t µ

leads to µ=ΣLAH y and σ2
i = 1

(Σ−1
L )i ,i

. So we can conclude that the mean converges to LMMSE in

the case of SAVE while the variance is not exact. Further, we analyze the convergence conditions.
The SAVE iterations forµ follow

(8.27)

Let D = diag(γAH A+Γ),

H = offdiag(γAH A),

x(t+1) =−D−1Hx(t ) +D−1γAH y,

Note that MF can also be implemented as message passing in a factor graph. Hence, it is ev-
ident from the above expression that the factor graph representation for SAVE corresponds to
the case when all the yi ’s are treated jointly and all the xi ’s at the scalar level. Noting that
LMMSE estimate of x can be written as the solution of Jx = b, with J = γAH A+Γ and b = γAH y.
In fact, SAVE corresponds to the Jacobi iterations [169] for solving this linear system with the
splitting of J = D − H, which converges to the true value only if ρ(D−1H) < 1, where ρ repre-
sents the spectral radius. Further, we observe that if we rewrite the SAVE iterations as, x(t+1)

i =
σ2

i AH
i

(
y − A ¯i−x(t+1)

¯i− −A ¯i+x(t )
¯i+
)
γ,, where in the update of xi at iteration (t +1) we include the up-

dated values of xk ,k = 1, ..., i −1. These updated recursions correspond to Gauss-Siedel method
[169] for solving the linear system Jx = b. In Gauss-Siedel version, J is split as J = D − L − U,
where L is a matrix that represents the lower triangular portion of H and U representing the up-
per triangular portion. Hence for Gauss-Siedel, the SAVE iterations (8.27) can be rewritten as,
x(t+1) = (D−L)−1Ux(t )+ (D−L)−1γAH y. Certain remarks on the convergence behavior (assuming
A is real) follow as below,
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Remarks 7

• From [169], if J is an M−matrix, then Jacobi and Gauss-Siedel iterations for SAVE
converge to the true values x∗ = J−1b, for any arbitrary b. For J to be an M−matrix,
it should be nonsingular and J−1 >= 0. Moreover the off-diagonal elements, Ji j <
0,∀i , j , j 6= i . Also, the diagonal elements of J represented by D is nonnegative and
nonsingular.

• Another sufficient condition for convergence follows from the diagonal dominance
theorem in [169], which says that if J is strictly or irreducibly diagonally dominant then
x̂ converges to x∗.

• Gauss-Seidel iterations (iterated linear SIC) converges for any J = JH > 0 ! Because
these iterations correspond to minimizing xH Jx−xH b−bH x by alternating optimiza-
tion sweeps over the components of x. Alternating minimization with diag(J) > 0 is
guaranteed to lead to a local minimum and since the cost function is convex (J > 0), it
is even the global minimum.

• To further accelerate the convergence, one possibility is to employ the successive over-
relaxation method (SOR) [169], in which case, the SAVE iterations gets modified as
follows. x(t+1) = x(t ) +ω(x(t+1) −x(t )), where x(t+1) corresponds to the Jacobi SAVE iter-
ations (8.27) or the Gauss-Siedel iterations.

• To fix the convergence of SAVE (when ρ(D−1H) > 1), we can use the diagonal loading
method similar to [170]. The modified iterations (with a diagonal loading factor matrix
Λ) can be written as

(8.28)
(D+Λ)x(t+1) =−(H−Λ)x(t ) +γAH y, =⇒

x(t+1) =−(D+Λ)−1(H−Λ)x(t )+(D+Λ)−1γAH y,

The convergence condition gets modified as ρ((D+Λ)−1(H−Λ)) < 1. Another point
worth noting here is that, if the power delay profile Γ is also estimated using VB as
in [168], then we can write D = γdiag(AH A)+ Γ̂, where Γ̂ = Γ+ Γ̃. In this case, Γ̃ may
represent an automatic correction factor (diagonal loading) to force convergence of
SAVE for cases where ρ(D−1H) > 1.

8.4.3 Sparsity Analysis with SAVE

In this subsection, we focus on the sparsity analysis of the SAVE iterations described above. Be-
fore going into the technical details, we would like to first throw some insights into how spar-
sification happens in SBL. With a Gamma prior on the precision parameters ξi , the marginal
pdf of xi becomes a sparsifying distribution (Student-t), so, in the case of an under determined
noiseless system, this will tend to a sparse solution for x. But more generally, in the presence
of noise, or if the system is not underdetermined, how does "sparsification" happen? In some
techniques of by Tipping [141], or Shutin [148], they set values below a certain threshold to zero.
However, such a process of setting to zero whatever is below some threshold may not be optimal
according to SBL (i.e it is not inherent in the solution of SBL). Note that in variations of LASSO,
there are hard or soft thresholding techniques, which come out automatically of the problem
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formulation. Apart from setting stuff to zero, there can be other forms of sparsification. E.g., in
Bayesian techniques, the estimate is drawn towards the prior mean. So, if the prior mean is zero,
they are drawn to zero, leading to bias. This already happens with Gaussian prior. But it is not
clear whether other types of prior (example Student-t) lead to a stronger "shrinking" effect.

We use the approach described in [141, 148], where they compute the stationary point of the
precision components ξi . The expression for the mean value of ξi (for the resulting Gamma

posterior from [168]) is, ξ̂i = a+ 1
2(

<x2
i
>

2 +b

) ,where, < x2
i >= x̂2

i + σ2
i . Further substituting for x̂2

i in ξ̂i

(8.29) ξ̂−1
i

(a)= γ2

(γAH
i Ai+ξ̂i )2 [tr{yyH Ai AH

i }+ tr{AH
i AīΣī Aī Ai }]+ 1

γAH
i Ai+ξ̂i

,

We define ci = tr{yyH Ai Ai },di = tr{AH
i AīΣī AH

ī
Ai }, where Σī is a diagonal matrix with entries

σ2
n ,∀n 6= i . Also, we made the large system approximation (M , N → ∞) that AH

i yx̂H
ī

AH
ī

Ai →
tr{E(x̂H

ī
AH

ī
Ai AH

i y)} = 0. After some algebraic manipulations, solving (8.29) which is of the form

ξ−1
i =F (ξi ) leads to the following stationary point for ξi

(8.30) ξ̂i =
{

γ(AH
i Ai )2

γ(ci+di )−AH
i Ai

, if, γ(ci +di ) > AH
i Ai

∞, if, γ(ci +di ) ≤ AH
i Ai

The above threshold condition can be intuitively interpreted as follows: ci +di can be interpreted
as the signal power in y′ = y−Aī xi . Hence the threshold above checks whether the signal-to-
noise ratio of the residual signal (after the matched filtering by Ai ) is greater than 1. As observed
in [148], this should further accelerate the convergence of the SAVE iterations.

8.4.4 Simulation results

For the observation model, yt is of dimension 100×1 and xt is of size 200×1 with 30 non-zero
elements. All signals are considered to be real in the simulation. All the elements of At (time
varying) are generated i.i.d. from a Gaussian distribution with mean 0 and variance 1. The rows
of At are scaled by

p
30 so that the signal part of any scalar observation has a unit variance. Taking

the SNR to be 20dB, the variance of each element of vt (Gaussian with mean 0) is computed as
0.01. We compare our algorithm with the Fast Inverse-Free SBL (Fast IF SBL) in [167], the G-AMP
based SBL in [166] and the fast version of SBL (FV SBL) in [148].
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Figure 8.2: NMSE vs the number of observations.
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Figure 8.3: Execution time vs the number of observations.

Few remarks follow:

Remarks 8

• The performance of FV-SBL is exactly that of SBL.

• For a sufficient amount of data, SAVE has significantly lower MSE than the other fast al-
gorithms. This is because while a priori, performing component-wise VB for x whereas
joint VB can be done may seem like a bad idea for performance. However, not only the
parameters x but also the hyperparameters ξ and γ need to be estimated simultane-
ously. The resulting problem appears to be characterized by many local optima. Ap-
parently, the component-wise approach VB appears to allow to avoid a lot of bad local
optima, explaining the better performance, apart from lower complexity. At a very low
amount of data, suboptimal approaches such as AMP which do not introduce individ-
ual hyperparameters per x component and assume that the xi behave i.i.d., behave
better because of the lower number of hyperparameters to be estimated.

8.4.5 Conclusion

We presented a fast SBL algorithm called SAVE, which uses the variational inference techniques
to approximate the posteriors of the data and parameters. SAVE helps to circumvent the matrix
inversion operation required in conventional SBL using EM algorithm. We showed that the pro-
posed algorithm has a faster convergence rate and better performance in terms of NMSE than
even the state of the art fast SBL solutions.

8.4.6 Open Issues: Reduced Complexity Linear Tx/Rx Computation

An optimal linear Tx/Rx filter in MU MIMO is of the form

(8.31) F = (A D1 AH +λI)−1A D2.

Other sub-optimal beamformers are special cases of this, where, for the R-ZF, D1 = I and ZF
λ→ 0. LMMSE Tx/Rx can also be found by SAVE. Consider the case of a multi-user UL system,
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with A ∈ C N×M SIMO channel, x as the M ×1 transmit signal from all users and y ∈C N×1 is the
received signal at the BS. From the convergence analysis of SAVE, it can be seen that the estimate
of x =µ converges to the L-MMSE equalizer,

(8.32)
σ2

vµi +σ2
i AH

i Aµ=σ2
i AH

i y ⇒
x̂ =µ= (AH A+σ2

vΣ
−1)−1AH y.

SAVE recursions are similar to PE [171]. However, PE only converges in case of sufficient diag-
onal dominance of AH A, whereas SAVE is guaranteed to converge, employing implicitly varying
damping factors (the σ2

i ).

8.5 Dynamic SBL-System Model

In this section, we start looking at the dynamic SBL case. Sparse signal xt is modeled using an
AR(1) process with a diagonal correlation coefficient matrix F, which can be written as follows

(8.33)
State Update: xt = Fxt−1 +wt ,

Observation: yt = A(t )xt +vt ,

where xt = [
x1,t , ..., xM ,t

]T . Diagonal matrices F and Γ are defined with its elements, Fi ,i =
fi , fi ∈ (−1,1) and Ξ = diag(ξ),ξ = [ξ1, ...ξM ]. Here ξi represents the inverse variance of xi ,t ∼
C N (0, 1

ξi
). Further, wt ∼ C N (0,Λ−1), where Λ−1 = Ξ−1(I − FFH ) = diag( 1

λ1
, ..., 1

λM
) and vt ∼

C N (0, 1
γ I). wt are the complex Gaussian mutually uncorrelated state innovation sequences.

Hence we sparsify the prediction error variance wt also, with the same support as x0 and hence-
forth enforces the same support set for xt ,∀t . One remark here is that If we apply SBL now to
the prediction error variances of xt , then trying to sparsify a prediction error variance actually
encourage both that the actual variance gets sparse and that the variation gets sparse because a
prediction error variance is small if either the quantity variance is small or its variation is small.
vt is independent of the wt process. Although the above signal model seems simple, there are
numerous applications such as

• Bayesian adaptive filtering [172] (or wireless channel estimation [150], [173]):
in this case, xk = FIR filter response, and θ contains example the Power Delay Profile (diag-
onal of a diagonal filter coefficient covariance matrix P0 = Pk , and the AR(1) dynamics in
example diagonal F and Q.

• Position tracking (GPS) (see [174] and references therein):

the state contains position, velocity and possible acceleration and θ contains acceleration
model parameters (example white noise, AR(1))

• Blind Audio Source Separation (BASS) [175]: xk = source signals, θ: (short+long term) AR
parameters, reverb filters
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In Bayesian compressive sensing, a two-layer hierarchical prior is assumed for the x as in [2].
The hierarchical prior is chosen such that it encourages the sparsity property of xt or of the in-
novation sequences vt . The state update gets represented as

(8.34) p(xt /xt−1,F,Γ) =
M∏

i=1
C N ( fi xi ,t−1,

1

λi
).

For the convenience of analysis, we reparameterize ξi in terms of λi and assume a Gamma prior

for Λ, p(Λ) =
M∏

i=1
p(λi /a,b) =

M∏
i=1

Γ−1(a)baλa−1
i e−bλi . The inverse of noise variance γ is also as-

sumed to have a Gamma prior, p(γ/c,d) = Γ−1(c)d cγc−1
i e−dγ, such that the marginal pdf of xt

(Student-t distribution) becomes more sparsity inducing than example, a Laplacian prior. The
advantage is that the whole machinery of linear MMSE estimation can be exploited, such as
example, the Kalman filter. But this is embedded in other layers making things eventually non-

Gaussian. Now the likelihood distribution can be written as, p(yt /xt ,γ) = (2π)−NγN e−γ‖yt−A(t )xt‖2

.
To make these priors non-informative (Jeffrey’s prior), we choose them to be small values a = c =
b = d = 10−5. For the AR(1) coefficients fk , we do not assume any prior distribution. We define
the unknown parameter vector θ = {

x,Λ,γ,F
}

and θi represents each scalar in θ.

8.5.1 Gaussian Posterior Minimizing the KL Divergence

In [176], for any distribution p(x), the Gaussian distribution q(x) ∼ C N (µ,Σ) which minimizes
the Kullback-Leibler divergence, K L(p||q), reduces to matching the mean and covariance

(8.35)
µ=< x >p(x),

Σ=< xxH >p(x) −< x >p(x)< x >H
p(x) .

8.6 SAVE SBL and Kalman Filtering

For the system model in (8.33), a classical method is to estimate the sparse states (for given hy-
perparameter estimates, possibly using EM) using Kalman filtering (KF). KF is an efficient itera-
tive algorithm whose steps can be summarized as follows,
The prediction step:

(8.36)
x̂t |t−1 = F̂x̂t−1|t−1,

P̂t |t−1 = F̂Pt−1|t−1F̂H + 1

λ̂
I.

The measurement step:

(8.37)

Kt = Pt |t−1AH (APt |t−1AH + 1

γ̂
)−1,

x̂t |t = x̂t |t−1 +Kt (yt −Ax̂t |t−1),

Pt |t = (I−Kt A)Pt |t−1.

Note that due to the matrix inversion operation in the measurement stage, the computational
complexity of the original KF does not scale with the problem size. Our novel contribution here is
a low complexity KF using VB inference techniques, which we describe in the following sections.
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In this section, we propose a Space Alternating Variational Estimation (SAVE) based alternat-
ing optimization between each element of xt or γ. For SAVE, no particular structure of At is
assumed, in contrast to AMP which performs poorly when At is not i.i.d. or is sub-Gaussian. The
joint distribution w.r.t the observation of (8.33) can be written as

(8.38) p(yt ,xt ,θ/y1:t−1) = p(yt /xt ,θ)p(xt ,θ/y1:t−1).

In the following, cxk,t ,c ′xk,t
,cξk , cλk , cx−1, cxt , c ′xt

and cγ represents normalization constants for
the respective pdfs.

8.6.1 Diagonal AR(1) ( DAR(1) ) Prediction Stage

In this stage, we compute the prediction about xt given the observations till time t −1, x̂k,t |t−1.
This involves the computation of the posterior p(xt ,θ/y1:t−1). The joint distribution for the state
space model can be written as

(8.39)

ln p(xk,t , xk,t−1, fk ,λk |y1:t−1) =−λk (xk,t − fk xk,t−1)H (xk,t − fk xk,t−1)−
1

σ2
k,t−1|t−1

|xk,t−1 − x̂k,t−1|t−1|2 + ((a −1)lnλk +a lnb −bλk ) .

The prediction about xt can be computed from the time update equation of the standard Kalman
filter

(8.40) xk,t = f̂k|t−1xk,t−1 + f̃k|t−1xk,t−1 +wk,t .

Here we denote f̂k|t−1 as the estimate of fk given the observations till t −1 and f̃k|t−1 represents
the error in the estimation. Similary we can represent xk,t−1 = x̂k,t−1|t−1 + x̃k,t−1|t−1, x̃k,t−1|t−1

being the estimation error.

(8.41)

x̂k,t |t−1 = f̂k|t−1x̂k,t−1|t−1,

x̃k,t |t−1 = f̂k|t−1x̃k,t−1|t−1 + f̃k|t−1xk,t−1 +wk,t ,

=⇒ σ2
k,t |t−1

(a)= | f̂k|t−1|2σ2
k,t−1|t−1 +σ2

fk
(|x̂k,t−1|t−1|2 +σ2

k,t−1|t−1)+ 1

λ̂k |t −1
,

In the variational approximation, we assume that the posterior of fk and xk,t are independent.
(a) in (8.41) follows from this argument. Further the predictive distribution p(xt /y1:t−1) can be
approximated to be Gaussian distributed (refer to the discussion in section 8.5.1) with mean
x̂t |t−1 = [x̂1,t |t−1, ..., x̂M ,t |t−1]T and diagonal error covariance P̂t |t−1 = diag(σ2

1,t |t−1, ...,σ2
M ,t |t−1).

Actually this parametric q() fitting, we only need it for the prediction stage of xt , all other q’s (fil-
tering or smoothing of xt , all hyperparameters) come out simple due to the choice of conjugate
priors. Further the joint distribution in (8.38) can be obtained as

(8.42)
ln p(yt ,xt ,θ/y1:t−1) = N lnγ−γ∥∥yt −At xt

∥∥2 −M lndet(P̂t |t−1)−(
xt − x̂t |t−1

)H P̂−1
t |t−1

(
xt − x̂t |t−1

)+ (c −1)lnγ+ c lnd −dγ+constants,
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8.6.2 Measurement or Update Stage

Update of qxk,t (xk,t ): Using (8.18), ln qxk,t (xk,t ) turns out to be quadratic in xk,t and thus can be
represented as a Gaussian distribution as follows

(8.43)

ln qxk,t (xk,t ) =−< γ>
{

(yt −At ,k < xk,t >)H At ,k xk,t − xH
k,t AH

t ,k (yt −At ,k < xk,t >)

+ ∥∥At ,k
∥∥2 ∣∣xk,t

∣∣2
}
− 1

σ2
k,t |t−1

(∣∣xk,t
∣∣2 −xH

k,t x̂k,t |t−1 −xk,t x̂H
k,t |t−1

)
+ cxk,t

=− 1

σ2
k,t |t

∣∣xk,t − x̂k,t |t
∣∣2 + c ′xk,t

.

Note that we split At xt as, At xt = At ,k xk,t + At ,k xk,t , where At ,k represents the k th column of At ,

At ,k represents the matrix with k th column of At removed. Clearly, the mean and the variance of
the resulting Gaussian distribution becomes

(8.44)

σ−2,(i )
k,t |t =< γ> ∥∥At ,k

∥∥2 + σ−2,(i−1)
k,t |t ,

< x(i )
k,t |t > = σ2,(i )

k,t |t

(
AH

t ,k

(
yt − At ,k < x(i−1)

k,t
>

)
< γ>+ x̂k,t |t−1

σ2
k,t |t−1

)
,

where i represents the iteration stage with limi→∞ < x(i )
k,t |t >= x̂k,t |t represents the point estimate

of xk,t . However, in (8.44) the computation of < x(i )
k,t |t > requires the knowledge of < x(i )

k,t
>. So

we need to perform enough iterations between the components of < xk,t |t > till convergence.
Moreover, we initialize < x(0)

k,t |t > by x̂k,t |t−1and σ−2,(0)
k,t =σ−2

k,t |t−1, which is obtained in the predic-
tion stage. One remark is that forcing a Gaussian posterior q with diagonal covariance matrix on
the original Kalman measurement equations gives the same result as SAVE. Note that the deriva-
tions in [177] for VB-KF are not correct as it does not have the correct variance expressions that
vary with iteration! For the convenience of the derivations in the following sections, we define
P̂t |t = di ag (σ2

1,t |t , ..., σ2
M ,t |t ), x̂t |t = [x̂1,t |t , ..., x̂M ,t |t ]T .

8.6.3 Fixed Lag Smoothing

Kalman filtering in the EM-KF is not enough to adapt the hyperparameters, instead we need
atleast a lag 1 smoothing [178]. Motivated by this result, we propose fixed lag smoothing with
delay 1 for SAVE-KF. We rewrite the state space model as follows

(8.45)

yt = At Fxt−1 +At wt−1 +vt︸ ︷︷ ︸
ṽt

,

p(yt ,xt−1,θ/y1:t−1) = p(yt /xt−1,θ)p(xt−1,θ/y1:t−1),

where ṽt ∼ C N (0, R̃t ), R̃t = AtΛAH
t + 1

γ I. The posterior distribution p(xt−1/y1:t−1) is approxi-
mated using variational approximation as q(xt−1/y1:t−1) with mean and covariance as x̂t−1|t−1

and P̂t−1|t−1.

(8.46)

ln p(yt ,xt−1,θ/y1:t−1) = −1
2 lndet R̃t−

(yt −At ,k fk xk,t−1 −At ,k Fk xk,t−1)H R̃−1
t (yt −At ,k fk xk,t−1 −At ,k Fk xk,t−1)

−1
2 det(P̂t−1|t−1)− (

xt−1 − x̂t−1|t−1
)H P̂−1

t−1|t−1

(
xt−1 − x̂t−1|t−1

)+ cx−1,

where Fk represents F with k th column and row removed.
Prediction of xt−1:Using (8.18), ln qxt−1 (xt−1/y1:t ) turns out to be quadratic in xt−1 and thus can
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be represented as a Gaussian distribution with mean and covariance as x̂t−1|t and P̂t−1|t respec-
tively

(8.47)

σ−2,(i )
k,t−1|t = ( f̂ 2

k|t +σ2
fk |t )AH

t ,k R̃−1
t At ,k + σ−2,(i−1)

k,t−1|t ,

P̂t−1|t = diag(σ2
1,t−1|t , ..., σ2

M ,t−1|t ),

< x(i )
k,t−1|t > = σ2,(i )

k,t−1|t ( f̂ H
k|t AH

t ,k R̃−1
t (yt − At ,k Fk|t < x(i−1)

k,t−1|t >)+ x̂k,t−1|t−1

σ2
k,t−1|t−1

).

Note that, in the algorithm implementation as shown in Algorithm 1 below, we introduce an
iterative procedure (with i denoting the stage number) for the smoothing updates unlike [177]
where there is no iteration for the covariance part. Note that we initialize the mean and variance
in (8.47) from the converged values from the filtering stage.

8.6.4 Estimation of Hyperparameters

Update of qγ(γ): The Gamma distribution from the VB approximation for the qγ(γ) can be writ-
ten as

(8.48)
ln qγ(γ) = (c −1+N ) lnγ − γ

(
< ∥∥yt − At xt

∥∥2 > +d
)
+ cγ,

qγ(γ) ∝ γc+N−1e
−γ

(
<‖yt −At xt‖2>+d

)
.

The mean of the Gamma distribution for γ is given by

(8.49)

< γ>= γ̂t =
c + N

2

(ζt + d)
,

ζt =βζt−1 + (1−β) < ∥∥yt − At xt
∥∥2 >, where,

< ∥∥yt − At xt
∥∥2 > = ∥∥yt

∥∥2 − 2ℜ(yH
t At x̂t |t ) + tr

(
AH

t At (x̂t |t x̂H
t |t + P̂t |t )

)
,

where we introduced temporal averaging also and β denotes the weighting coefficients which
are less than one.
Update of q fk ( fk ): Using variational approximation we get a quadratic expression for ln q( fk |y1:t ) ∼
Eq(xt ,xt−1,Λ/y1:t ) ln p(xt ,xt−1,Λ,y1:t ). Finally we write the mean and variance of the resulting Gaus-
sian distribution as

(8.50)

σ2
fk |t =

1

λk < x2
k,t−1 >|t

,

f̂k|t =
< xk,t |t xH

k,t−1|t >|t
< x2

k,t−1 >|t

Here <>|t represents the temporal average given the observations till time t . We introduce tem-
poral averaging here to approximate terms of the form < xk,t |t xH

k,t−1|t >. This is done using

the orthogonality property of LMMSE. So < xk,t |t xH
k,t−1|t >=< x̂k,t |t x̂H

k,t−1|t > + < x̃k,t |t x̃H
k,t−1|t >.

The Kalman filter (in linear state-space models and Gaussian noise) provides instantaneous
x̂k,t |t , x̂H

k,t−1|t and σ2
k,t |t ,σ2

k,t−1|t . This explains why we do temporal averaging (sample average

replacing statistical average). We define P̂F|t = diag(σ2
f1|t , ...,σ2

fM |t ). Also we define the following
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covariance matrices, Rm,n
t =< xt−nxH

t−m >|t and ξt represents the temporal weighting coefficient
which is less than one [178]

(8.51)

R0,0
t = (1−ξt )R0,0

t−1 +ξt (x̂t |t x̂H
t |t + P̂t |t ),

R1,0
t = (R0,1

t )H = (1−ξt )R1,0
t−1 +ξt F(x̂t−1|t x̂H

t−1|t + P̂t−1|t ),

R1,1
t = (1−ξt )R1,1

t−1 +ξt (x̂t−1|t x̂H
t−1|t + P̂t−1|t ).

In (8.51), if we do not use lag-1 smoothing, at time 0, combining with (8.50), it is clear that
F̂ = R0,1(R0,0)−1 = F. In other words, we would need the knowledge of the true F to estimate
it. This indeed is a sufficient condition to show that filtering is not sufficient to estimate the hy-
perparameters. Further, we denote the (i , j )th element of Rm,n

t as Rm,n
t (i , j ).

Update of qλk (λk ): Using variational approximation
ln q(λk |y1:t ) ∼ Eq(xt ,xt−1, fk /y1:t ) ln p(xt ,Λ, fk |y1:t ), leading to

(8.52)
lnλk −λk (< ∣∣xk,t − fk xk,t−1

∣∣2 >+b)+ (a −1)lnλk + cλk ,

qλk (λk ) ∝λa
k e

−λk

(
<|xk,t− fk xk,t−1|2>+b

)
.

The resulting gamma distribution is parameterized just by one quantity, the mean value, which
gets used in the prediction stage and can be written as

(8.53) <λk >= (a+1)
(<|xk,t− fk xk,t−1|2>|t+b)

.

The temporal average < ∣∣xk,t − fk xk,t−1
∣∣2 >|t can be written as

(8.54) < ∣∣xk,t − fk xk,t−1
∣∣2 >|t= R0,0

t (k,k)−2ℜ{ f̂ H
k|t R1,0

t (k,k)}+ (| f̂k|t |2 +σ2
fk |t )R1,1

t (k,k).

In Algorithm 1, we describe the GSAVE-KF algorithm in detail.

8.7 VB-KF for Diagonal AR(1) (DAR(1))

In this section, we treat the components of the state xt jointly, with all the hyperparameters
λk , fk ,γ assumed to be independent in the q’s. So the expressions for the estimates of the hy-
perparameters can be shown to be the same as in the previous section on SAVE-KF.

8.7.1 DAR(1) Prediction Stage

The prediction about xt can be computed from the time update equation of the standard Kalman
filter, xt = F̂|t−1xt−1|t−1 + F̃|t−1xt−1|t−1 +vt , F = F̂|t−1 + F̂|t−1, where F̂|t−1 = diag( f̂1|t−1, ..., f̂M |t−1).
We also define Λ̂|t−1 = diag( 1

λ̂1|t−1
, ..., 1

λ̂M |t−1
). Substituting xt−1|t−1 = x̂t−1|t−1 + x̃t−1|t−1

(8.55)

x̂t |t−1 = F̂|t−1x̂t−1|t−1,

x̃t |t−1 = F̂|t−1x̃t−1|t−1 + F̃|t−1xt−1|t−1 +wt , =⇒
P̂t |t−1 = F̂|t−1P̂t−1|t−1F̂ H

|t−1 + P̂F|t−1 diag(x̂t−1|t−1x̂H
t−1|t−1 + P̂t−1|t−1)+ Λ̂|t−1.
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Algorithm 14: The GSAVE-KF Algorithm

Given: At ,yt , N , M ,λk|0 = a/b ∀k,γ0 = c/d ,σ2
k,0|0 = 0, x̂k,0|0 = 0 ∀k, t > 0.

Prediction Stage
σ2

k,t |t−1 = (| f̂k|t−1|2 +σ2
fk|t−1

)σ2
k,t−1|t−1 + 1

λ̂k |t−1
, x̂k,t |t−1 = f̂k|t−1x̂k,t−1|t−1,

Update Stage
Initialization: σ2,(0)

k,t |t =σ
2,(0)
k,t |t−1, x̂(0)

t ,k|t = x̂t ,k|t−1

for i = 1, ...until convergence

σ2,(i )
k,t |t = σ2,(i−1)

k,t |t (σ2,(i−1)
k,t |t γ̂t−1

∥∥At ,k
∥∥2 + 1)−1, Kalman Gain: Kk,t =σ2,(i )

k,t |t AH
t ,k γ̂t−1,

x̂(i )
k,t |t = σ2,(i )

k,t |t
σ2

k,t |t−1
x̂k,t |t−1 +Kk,t

(
yt − At ,k x̂(i−1)

t ,k|t

)
,

end for

Smoothing Stage
Initialization: P̂(0)

t−1|t = P̂t−1|t−1, x̂(0)
t−1|t = x̂t−1|t−1

for i = 1, ...,until convergence

P̂−(i )
t−1|t = (F̂H

|t AH
t R̃−1

t At F̂|t + diag(AH
t R̃−1

t At )P̂F|t + P̂−(i−1)
t−1|t ),

x̂(i )
t−1|t = P̂(i )

t−1|t (P̂−1
t−1|t−1x̂(i−1)

t−1|t + F̂H AH
t R̃−1

t yt ).

end for

Estimation of Hyperparameters
Compute ζt ,Rm,n

t from (8.49), (8.51).

σ2
fk |t =

1
λk R1,1

t (k,k)
, f̂k|t = R1,0

t (k,k)

R1,1
t (k,k)

.

γ̂t = c+ N
2

(ζt+d) , λ̂k|t = a+1
(R0,0

t (k,k)−2ℜ{ f̂ H
k|t R1,0

t (k,k)}+(| f̂k|t |2+σ2
fk |t )R1,1

t (k,k)+b)
.

8.7.2 Measurement or Update Stage

Using (8.18),

(8.56)

ln qxt (xt ) =−< γ>
{
−yH

t At xt − xH
t AH

t yt +xH
t AH

t At xt

}
− xH

t P̂−1
t |t−1xt

+xH
t P̂−1

t |t−1x̂t |t−1 + x̂H
t |t−1P̂−1

t |t−1xt + cxt

=−(xt − x̂t |t )H P̂−1
t |t (xt − x̂t |t )+ c ′xt

,

where the mean and variance are written as

(8.57)
P̂−1

t |t =< γ> AH
t At + P̂−1

t |t−1,

x̂t |t = P̂t |t (< γ> AH
t yt + P̂−1

t |t−1x̂t |t−1).
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8.7.3 Fixed Lag Smoothing

The posterior distribution p(xt−1/y1:t−1) is approximated using variational approximation as
q(xt−1/y1:t−1) with mean and covariance as x̂t−1|t−1 and P̂t−1|t−1.
(8.58)

ln p(yt ,xt−1,θ/y1:t−1) = −1

2
lndet R̃t − (yt −At Fxt−1)R̃−1

t (yt −At Fxt−1)

− 1

2
det(P̂t−1|t−1)− (

xt−1 − x̂t−1|t−1
)H P̂−1

t−1|t−1

(
xt−1 − x̂t−1|t−1

)+ cx−1,

Prediction of xt−1:Using (8.18), ln qxt−1 (xt−1/y1:t ) turns out to be quadratic in xt−1 and thus can
be represented as a Gaussian distribution with mean and covariance as x̂t−1|t and P̂t−1|t respec-
tively

(8.59)
P̂−(i )

t−1|t = (F̂H
|t AH

t R̃−1
t At F̂|t + diag(AH

t R̃−1
t At )P̂F|t + P̂−(i−1)

t−1|t )−1,

x̂(i )
t−1|t = P̂(i )

t−1|t (P̂−1
t−1|t−1x̂(i−1)

t−1|t + F̂H
|t AH

t R̃−1
t yt ).

8.7.4 Simulation Results

For the observation model, yt is of dimension 100×1 and xt is of size 200×1 with 30 non-zero
elements. All signals are considered to be real in the simulation. All the elements of At (time
varying) are generated i.i.d. from a Gaussian distribution with mean 0 and variance 1. The rows
of At are scaled by

p
30 so that the signal part of any scalar observation has unit variance. Taking

the SNR to be 20dB, the variance of each element of vt (Gaussian with mean 0) is computed as
0.01.

Consider the state update, xt = Fxt−1 +wt . To generate x0, the first 30 elements are chosen
as Gaussian (mean 0 and variance 1) and then the remaining elements of the vector x0 are put
to zero. Then the elements of x0 are randomly permuted to distribute the 30 non-zero elements
across the whole vector. The diagonal elements of F are chosen uniformly in [0.9,1). Then the
covariance of wt can be computed as Λ(I−FFH ). Note that Λ contains the variances of the el-
ements of xt (including t = 0), where for the non-zero elements of x0 the variance is 1 and for
the zero elements it is 0. In Fig. 8.4, the blue curve corresponds to the case of a standard Kalman
Filter with known state-space model parameters. The red curve corresponds to GSAVE-KF with
again all these hyperparameters known. The green curve corresponds to the case of GSAVE-KF
with all the hyperparameters also estimated with lag-1 smoothing. Further, we show that filter-
ing for AR(1) coefficients (black curve) does not converge to the basic KF. NMSE is the normalized
mean squared error at time t computed as ||xt − x̂t ||2, averaged over 100 different realizations of
At , F, and of course the noise realizations. The simulations show that in the scenario considered,
GSAVE-KF exhibits hardly any MSE degradation over the more complex standard Kalman Filter
in steady-state, but takes time to reach steady-state. Adding the estimation of the parameters
leads to further slight degradations in steady-state and transient.

Concluding Remarks on GSAVE-KF and Joint VB-KF 9

• We presented a fast SBL algorithm called GSAVE-KF, which uses the variational infer-
ence techniques to approximate the posteriors of the data and parameters and track a
time varying sparse signal.
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Figure 8.4: NMSE as a function of time (i.e. number of measurements or iteration index).

Concluding Remarks on GSAVE-KF and Joint VB-KF 9 (cont.)

• GSAVE-KF helps to circumvent the matrix inversion operation required in conven-
tional SBL using the EM algorithm.

• We showed that in spite of the significantly reduced computational complexity, the
proposed algorithm with estimation of the unknown model parameters has similar
steady-state performance compared to the standard Kalman filter, at the price of a
significantly increased transient.

• Joint VB-KF has better steady state performance compared to SAVE-KF. Moreover, with
estimated hyperparameters, both versions of the proposed algorithm slightly degrades
in performance compared to the case when hyperparameters are known.

• One open issue worth exploring would be to compare the MSE performance when
hyperparameters are estimated using Type-II ML (which corresponds to empirical
Bayes).



Chapter 9

SPARSE BAYESIAN LEARNING USING MESSAGE PASSING
ALGORITHMS

In the previous chapter, we looked at mean field (MF) approximation based low complexity so-
lutions for SBL. However, we observed that the predicted posterior variance by SAVE is incorrect
compared to the LMMSE posterior covariance. Hence, it makes sense to look at other better vari-
ational approximations than MF and this in turn inspired us to look at other alternatives which
are the focus of this chapter. In [164], they introduce a BP based SBL algorithm which is more
computationally efficient than the original algorithm. The authors use BP to infer the posterior
pdf of x and the hyperparameters are estimated using the EM algorithm. The authors in [179]
propose a message passing (MP) approach for inferring the posteriors combining BP and mean
field (MF) approximations. MF is a special case of Variational Bayes (VB) in which the parti-
tioning of variables is pushed to the scalar granularity. The advantages of the MF approach are
that it always admits a convergent implementation while BP yields a good approximation of the
posterior marginals if the factor graph has no cycles. The authors show that the MP fixed-point
equations for a combination of BP and the MF approximation correspond to stationary points
of one single constrained region-based free energy approximation and provide a clear rule stat-
ing how to couple the messages propagating in the BP and MF part. Hence, it is advantageous
to apply BP and the MF approximation on the same factor graph in such a combination that
their respective virtues can be exploited while overcoming their drawbacks (complexity for BP,
potential suboptimality for MF). However, [6] does not treat at all the topic of how to split nodes
between BP and MF. We also note that the approximate message passing algorithms [142, 143]
suffer from the limitation that the large system limits assume i.i.d. Gaussian or right rotationally
invariant A(t ), and the algorithms may exhibit convergence problems.

Another point worth mentioning here is that, combining BP on one hand and MF (or other
variations such as EM) on the other hand has a long history since example [180]. Now, in [180]
and in all other papers since then on BP-MF combinations, including the example in [181], the
application is joint iterative detection and channel estimation with invariably BP being applied
to the detection part (with discrete variables) and MF or EM to the estimation part (continuous
variables).

9.0.1 Summary of this Chapter

• SBL Space Alternating Variational Estimation (SAVE) provides (largely) underestimated
variance estimates. AMP style algorithms may provide more accurate variance informa-
tion. The existing State Evolution analysis of xAMP (variants of AMP) may show conver-

155
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gence of the (sum) MSE to the MMSE value. In this chapter, xAMP refers to AMP or its
variants. But we are interested also in the MSE of the individual components.

• We propose new low complexity SBL algorithms for the static and dynamic cases based on
message passing algorithms, with joint hyperparameter estimation.

• Building on the framework of [179], we combine BP and MF approximations in such a way
as to optimize the message passing framework, unlike most of the existing applications of
the framework, which apply BP and MF to the variable subsets with discrete and continu-
ous distributions resp.

• Using Fisher Information Matrix (FIM) analysis, we propose an optimal partitioning of the
unknown parameters in the factor graph such that we can combine BP and (EP) VB in an
efficient way, with low complexity and no suboptimality in terms of Laplace approximation
(FIM).

• Various new algorithms in this chapter are an application of these parameter partition-
ing and BP/VB split guidelines. For both a static (classic) compressed sensing model or
a dynamic case with autoregressive evolution of the unknown x (corresponding to a clas-
sical linear state-space model apart from sparsity considerations). We furthermore show
in Lemma 1, in another application of the FIM analysis, that identifiability of the hyper-
parameters (state space model parameters) requires smoothing (filtering is not sufficient).
Although (regardless of sparsity) KF with joint parameter estimation has been the subject
of many approaches over decades, this smoothing requirement has never been pointed
out or certainly not been analyzed before.

• However, we note that our BP or SAVE based algorithms may not be robust to general A
matrices, similar to SBL solutions based on xAMP algorithms. This leads to the motivation
behind the derivation of generalized SwAMP (GSwAMP) SBL in §9.8, which indeed is an
extension of the SwAMP to more general priors [182]. In our numerical simulations, we did
not observe any divergence for GSwAMP for deviation from i.i.d A, such as ill-conditioned
or rank deficient or non-zero mean cases.

9.1 Approximate Inference Cost Functions: An Overview

Maximum likelihood (ML) can be interpreted as the minimization of KLD of py(y|θ) to empirical
distribution of y (py(y)=δ(y− y))

(9.1)
θmi n,K L = argmin

θ
DK L(py(y)||py(y|θ))

= argmax
θ

ln(py(y |θ)) = θMLE .

As noted before, VB minimizes KLD of factored approximate posterior (q(θ) =∏
i

qθi (θi )).

(9.2) K LDV B = DK L
(
q(θ)||p(θ|y)

)
.

However, it can be shown that VB can be reformulated as the minimization of Variational Free
Energy (VFE) (U (q) = Average System Energy, H(q) = Entropy), which is defined as follows. As-



CHAPTER 9. SPARSE BAYESIAN LEARNING USING MESSAGE PASSING ALGORITHMS 157

Figure 9.1: A small factor graph representing the posterior p(x1, x2, x3, x4) =
1
Z f A(x1, x2) fB (x2, x3, x4) fC (x4).

sume actual posterior p(θ|y) = p(θ,y)
p(y) =

∏
a pa (θa )

Z and FH = − ln Z (Helmholtz Free Energy or log-
partition function).

(9.3)

F (q(θ)) = DK L(q(θ)||p(θ|y))+FH

=−∑
θ

q(θ)
∑
a

lnpa(θa)︸ ︷︷ ︸
U (q)

+∑
θ

q(θ) ln q(θ)︸ ︷︷ ︸
−H(q)

= DK L(q(θ)||∏
a

pa(θa)).

From (9.3), it is clear that F (q) ≥ FH , with equality only if q(θ) = p(θ|y). It may not be feasible
to directly minimize the VFE at all times due to the complexity associated with the actual poste-
rior factorization. A more practical approach would be upper bound FH by minimizing F (q) over
a restricted class of probability distributions leading to Kikuchi, BP or MF approximations. BP
minimizes Bethe Free Energy (BFE) while Mean Field (MF) minimizes MFFE (MF Free Energy).
BP converges to exact posterior when the factor graph is a tree. For MF (VB pushed to scalar

level), q(θ) =
M∏

i=1
qθi (θi ). In general, it can be conjectured that the following inequality holds

MF F E ≥ BF E ≥ V F E .

Note that in [183], the authors consider region based Free Energy approximations (RFE). The
intuitive idea behind a RFE approximation is to break up the factor graph into a set of large
regions that include every factor and variable node, and say that the overall free energy is the
sum of the free energies of all the regions. BP is a special case of this. Expectation Propagation
(EP) can be derived using BFE under moment matching constraints.

9.1.1 Region Based Free Energy

A region R of a factor graph to be a set VR of variable nodes and set AR of factor nodes, such that
a ∈ AR =⇒ all variable nodes connected to a are in VR . θR is defined as the set of all variable
nodes belonging to the region R. Region energy is defined as ER (θR ) = − ∑

a∈AR

ln pa(θa). Region
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based free energy can be expresed using region entropy and region average energy

(9.4)

UR (qR ) =∑
θR

qR (θR )ER (θR ),

HR (qR ) =∑
θR

qR (θR ) ln qR (θR ).

and FR (qR ) =UR (qR )−HR (qR ).

Region-based free energy using region-based entropy and region-based average energy

(9.5)

UR({qR }) = ∑
R∈R

cRUR (qR ), HR({qR })

= ∑
R∈R

cR HR (qR ).

and FR({qR }) =UR({qR })−HR({qR }).

The intuitive idea is to break up the factor graph into a set of large regions that include every
factor and variable node, and say that the overall VFE is the sum of the VFEs of all the regions. If
some of the large regions overlap, then we will have erred by counting the free energy contributed
by some nodes two or more times, so we then need to subtract out the free energies of these
overlap regions in such a way that each factor and variable node is counted exactly once (weight
cR takes care of this). In BP, each factor node (and its neighbouring variable nodes) form one set
of regions. Another set of regions which contain only one variable node.

9.1.2 Combined BP/MF Approximation

The fixed points of the standard BP algorithm are shown to be the stationary points of the Bethe
free energy (BFE) [179]. However, for the MF approximation in VB, the approximate posteriors
are shown to be converging to a local minimum of the MF free energy which is an approximation
of the BFE. Moreover, we observe in [168,184] that for estimation of the signals from interference
corrupted observations, MF is a poor choice since it does not give the accurate posterior variance
(posterior variance of xi is observed to be independent of the error variances of other xl , l 6= i ).
Assume that the posterior be represented as, p(θ)= 1

Z

∏
a∈ABP

fa(θa)
∏

b∈AMF

fb(θb), where ABP ,AMF

represent the set of nodes belonging to the BP part and MF part respectively with ABP ∩AMF =
;. Z represents the normalization variable. Throughout the chapter, the vector θi represents
a subset of θ and θi represents a scalar parameter in θ. N (i ),N (a) represent the number of
neighbouring nodes of any variable node i or factor node a. NBP (i ) represents the number of
neighbouring nodes of i which belong to the BP part, similarly NMF (i ) is defined. Also, we define
IMF =⋃

a∈AMF
N (a),IBP =⋃

a∈ABP
N (a). The resulting free energy obtained by the combination

of BP and MF are written as below (Note that we use an abuse of notation and let qi (θi ) represents
the belief about θi (the approximate posterior))

(9.6)

FBP,MF = ∑
a∈ABP

∑
θa

qa(θa) ln
qa(θa)

fa(θa)
− ∑

a∈AMF

∑
xa

∏
i∈N (a)

qi (θi ) ln fa(θa)

− ∑
i∈I

(|NBP (i )|−1)
∑
θi

qi (θi ) ln qi (θi ).
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The beliefs have to satisfy the following normalization and marginalization constraints

(9.7)

∑
θi

qi (θi ) = 1, ∀i ∈IMF \IBP ,∑
θa

qa(θa) = 1,∀a ∈ABP ,

qi (θi ) = ∑
θa \θi

qa(θa), ∀a ∈ABP , i ∈N (a).

Let ma→i represents the message passed from any factor node a to variable node i and ni→a rep-
resents the message passed from any variable node i to factor node a. The fixed point equations
corresponding to the constrained optimization of (9.6) can be written as follows [179]

(9.8)

qi (θi ) = zi
∏

a∈NBP (i )
mBP

a→i (θi )
∏

a∈NMF (i )
mMF

a→i (θi ),

ni→a(θi ) = ∏
a∈NBP (i )\a

ma→i (θi )
∏

a∈NMF (i )
ma→i (θi ),

mMF
a→i (θi ) = exp(< ln fa(θa) > ∏

j∈N (a)\i
n j→a (θ j )),

mBP
a→i (θi ) = (

∫ ∏
j∈N (a)\i

n j→a(θ j ) fa(θa)
∏
j 6=i

dθ j ),

where <>q represents the expectation w.r.t distribution q .

9.1.2.1 What do the MP Expressions Indicate?

BP-MF combo can be written as the alternating optimization of Lagrangian [183]:
(9.9)
L = FBP,MF +∑

a
γa[

∑
θa

qa(θa)−1]+∑
i
γi [

∑
θi

qi (θi )−1]+∑
i

∑
a∈N (i )

∑
θi

λai (θi )[qi (θi )− ∑
θa \θi

qa(θa)].

At any iteration or convergence, the following fixed points can be obtained.
(9.10)
qa(θa) = pa(θa)(

∏
i∈N (a)

qi (θi )exp[−λai (θi )])exp
[
γa −1

]
= 1

za
pa(θa)

∏
i∈N (a)

qi (θi )

ma→i (θi )︸ ︷︷ ︸
ni→a (θi )

, a ∈ABP

qi (θi ) =
exp

[|NBP (i )|−1+ IIMF \IBP (i )γi
]︸ ︷︷ ︸

1/zi

∏
a∈NMF (i )

exp(< ln pa(θa) >q j (θ j ), j∈N (a)\i )︸ ︷︷ ︸
mMF

a→i (θi )

∏
a∈NBP (i )

exp(λai (θi ))︸ ︷︷ ︸
mBP

a→i (θi )

.

where IA (i ) = indicator function for i ∈ A . Applying the marginalization constraint qi (θi ) =∑
θa \θi

qa(θa), ∀a ∈ABP leads to the expression for mBP
a→i (θi ) as in (9.8). The Lagrange multipliers

λai are indeed the log of the BP messages and γa , γi lead to the normalization constants za , zi

for the beliefs qa(θa), qi (θi ), respectively.

λai (θi ) = lnmBP
a→i (θi ).
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Figure 9.2: Factor Graph for the dynamic SBL. Note that messages from the smoothing stage are
not shown here.

9.2 Dynamic SBL System Model

Sparse signal xt is modeled using an AR(1) process with a diagonal correlation coefficient matrix
F, which can be written as follows

(9.11)
State Update: xt = Fxt−1 +wt ,

Observation: yt = A(t )xt +vt ,

where xt = [
x1,t , ..., xM ,t

]T . Diagonal matrices F and Ξ are defined with its elements, Fi ,i =
fi , fi ∈ (−1,1) and Ξ = diag(ξ),ξ = [ξ1, ...ξM ]. Here ξi represents the inverse variance of xi ,t ∼
C N (0, 1

ξi
). Further, wt ∼ C N (0,Λ−1), where Λ−1 = Ξ−1(I − FFH ) = diag( 1

λ1
, ..., 1

λM
) and vt ∼

C N (0, 1
γ I). wt are the complex Gaussian mutually uncorrelated state innovation sequences.

Hence we sparsify the prediction error variance wt also, with the same support as x0 and hence-
forth enforces the same support set for xt ,∀t . vt is independent of the wt process. Although the
above signal model seems simple, there are numerous applications such as 1) Bayesian adaptive
filtering [185], 2) Wireless channel estimation: multipath parameter estimation as in [186]. In
this case, xt = FIR filter response, andΞ represents example the power delay profile.

In Bayesian compressive sensing, a two-layer hierarchical prior is assumed for the x as in [2].
The hierarchical prior is chosen such that it encourages the sparsity property of xt or of the in-
novation sequences vt . The state update gets represented as

(9.12) p(xt |xt−1,F,Ξ) =
M∏

i=1
C N ( fi xi ,t−1,

1

ξi
).
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For the convenience of analysis, we reparameterize ξi in terms of λi and assume a Gamma prior

for Λ, p(Λ) =
M∏

i=1
p(λi |a,b) =

M∏
i=1

Γ−1(a)baλa−1
i e−bλi . The inverse of noise variance γ is also as-

sumed to have a Gamma prior, p(γ|c,d) = Γ−1(c)d cγc−1
i e−dγ, such that the marginal pdf of xt

(student-t distribution) becomes more sparsity inducing than example, a Laplacian prior. The
advantage is that the whole machinery of linear MMSE estimation can be exploited, such as
example, the Kalman filter. But this is embedded in other layers making things eventually non-
Gaussian. Now the likelihood distribution can be written as

(9.13) p(yt |xt ,γ) = (2π)−NγN e−γ||yt−A(t )xt ||2 .

To make these priors non-informative (Jeffrey’s prior), we choose them to be small values a = c =
b = d = 10−5. For the AR(1) coefficients fk , we do not assume any prior distribution. We define
the unknown parameter vector θ = {

x,Λ,γ,F
}

and θi represents each scalar in θ.

9.2.1 BP-MF based Static SBL

The figure 9.5 represents the factor graph (note that static case is a special case with the state
update nodes being not present), where it is divided into two disjoint subsets ABP = fδn,t ∀n, l , t
and AMF represents rest of the factor or variable nodes. To combine BP and MF, we introduce
the new variables hn,t = A(t )

n,:xt , sl ,t = fl xl ,t−1 and the hard constraint factor nodes

(9.14)
fδn,t = δ(hn,t −A(t )

n,:xt ),∀n ∈ [1 : N ], t , f∆l ,t

= δ(sl ,t − fl xl ,t−1),∀l ∈ [1 : M ], t .

For the static case, the system model will be y = Ax + v, so fl = 0,λl = ξl ,∀l . We omit sub-
script t for simplicity. The message m fδn →xl from the hard factor fδn to variable node xl is com-
puted by the BP rule with the incoming messages to the node, nhn→ fδn

(hn) = m fyn →hn (hn) and
nxl ′→ fδn

(xl ′),∀l ′ 6= l , later defined in (9.19). So

(9.15) m fδn→xl
(xl ) =

∫
fδn nhn→ fδn

(hn)
∏
l ′ 6=l

nxl ′→ fδn
(xl ′)

∏
l ′ 6=l

d xl ′ .

For notational brevity, we denote subscript (l ,n) or (n, l ) to represent the messages passed from
l to n or viceversa. All the messages (beliefs or continuous pdfs) passed between them can be
shown to be Gaussian [164] and thus it suffices to represent them by the mean and variance of
the beliefs. With the hard constraints, the equivalent observation model can be written as

(9.16)
yn −∑M

l ′ 6=l An,l ′ x̂l ′,n = An,l xl +
∑M

l ′ 6=l An,l ′ x̃l ′,n + vn ,

where, x̃l ′,n ∼C N (0,νl ′,n), and m fδn→xl
∝C N (x̂n,l ,νn,l ),

We obtain the message, m fδn→xl
(xl ) ∼N (x̂n,l ,νn,l ), where the mean and variance of the resulting

posterior can be represented as

(9.17)

x̂n,l = A−1
n,l (yn −pn + An,l x̂l ,n),

pn =∑M
l ′=1 An,l ′ x̂l ′,n ,

νn,l = |An,l |−2(γ̂−1 +νn −|An,l |2νl ,n),

νn =∑M
l ′=1|An,l ′ |2νl ′,n .
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We define

(9.18)

dl = (
N∑

n=1
ν−1

n,l )−1 ,

rl = dl (
N∑

n=1

x̂n,l

νn,l
).

Given the messages, m fδn →xl (xl ), the belief q(xl ) can be obtained as ( fλi (λi ) = p(λk |a,b)), q(xl ) ∝
fλi (λi )

N∏
n=1

m fδn →xl ∝C N (x̂l ,σ2
l )

(9.19)

where σ−2
l =λl +d−1

l ,

x̂l =
rl

1+dlσ
−2
l

.

One remark here is that compared to our previous work using VB [168], combining BP and MF
gives a more accurate approximation of the error variance as shown in (9.19), where σ2

l incor-
porates the effect of all σ2

l ′ , l ′ 6= l . Since the factor node fδn ∈ABP , the message nxl→ fδn
(xl ) from

variable node xl to fδn is updated by the BP rule as follows

(9.20)

nxl ,t→ fδn
(xl ) = q(xl )

m fδn→xl
(xl )

∝C N (x̂l ,n ,νl ,n),

where, ν−1
l ,n = (σ−2

l −ν−1
n,l ),

x̂l ,n = νl ,n(
x̂l

σ2
l

− x̂n,l

νn,l
).

9.2.2 Dynamic BP-MF-EP based SBL

The joint distribution of all the observations and parameters can be written as, p(yt ,θ|y1:t−1) =
p(yt |θ)p(θ|y1:t−1), where p(θ|y1:t−1) denotes the predictive distribution. Similar as in KF, first we
compute the posterior distribution of θi given the observations till (t −1), which is called as the
prediction stage. Since the correlation coefficient matrix F is diagonal, all the xi ,t are decoupled
in the state update model and we exploit this fact to predict the states and the hyperparameters
in the state update model using MF.

9.2.2.1 Diagonal AR(1) ( DAR(1) ) Prediction Stage

Assuming that the belief q(γ) at time t , of noise precisionγ is known, the message m fyn,t →hn,t (hn,t )
from the factor node fyn,t ∈AMF is calculated using the MF rule m fyn,t →hn,t (hn,t ) =
< exp

(
ln fyn,t (hn,t ,γ)

)>q(γ), which becomes, m fyn,t →hn,t (hn,t ) ∝C N (yn,t , γ̂−1
t ). Here γ̂t =< γ>q(γ).

For more detailed derivation, we refer to our paper [187]. With the hard constraints f∆l ,t , the
equivalent state space model can be re-written as, The joint distribution for the state space
model can be xl ,t = f̂l |t−1xl ,t−1 + f̃l |t−1xl ,t−1 + wl ,t , with wl ,t ∼ C N (0, λ̂−1

k|t ). Here we denote

f̂l |t−1 as the estimate of fl given the observations till t −1 and f̃l |t−1 represents the error in the
estimation. Similarly we can represent xl ,t−1 = x̂l ,t−1|t−1 + x̃l ,t−1|t−1, x̃l ,t−1|t−1 being the estima-
tion error. Now the mean and variance of the message passed from f∆l ,t to the variable node xl ,t

can be computed as

(9.21)
x̂l ,t |t−1 = f̂l |t−1x̂l ,t−1|t−1,

σ2
l ,t |t−1 = | f̂l |t−1|2σ2

l ,t−1|t−1 +σ2
fl |t−1(|x̂l ,t−1|t−1|2 +σ2

l ,t−1|t−1)+ λ̂−1
l |t−1.
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m f∆l ,t
→xl ,t (xl ,t ) is not a tractable distribution and thus using EP [188], we project it into the class

of Gaussian distribution (φ), where the projection operator can be represented as Projφ[p] =
argminq∈φK L(p||q). This leads to moment matching (approximated q ∈C N (µ,ν) has the same
mean and variance as p). So we approximate,
m f∆l ,t →xl ,t

(xl ,t )=q(xl ,t |t−1) ≈C N (x̂l ,t |t−1,σ2
l ,t |t−1).

9.2.2.2 Measurement Update Stage

In the measurement update stage, the posterior for xt is inferred using BP as in Section 9.2.1.and
we represent the messages by x̂(t )

n,l ,ν(t )
n,l and the beliefs by x̂l ,t |t ,σ2

l ,t |t . In the measurement stage,
the prior for xk,t gets replaced by the belief from the prediction stage and thus the term rl need

to be rewritten as, rl ,t=dl ,t (
N∑

n=1

x̂(t )
n,l

ν(t )
n,l

+ x̂l ,t |t−1

σ2
l ,t |t−1

).

(9.22)

m fδn,t →xl ,t ∝C N (x̂(t )
n,l ,ν(t )

n,l ),where,

x̂(t )
n,l =

yn,t −pn,t + A(t )
n,l x̂(t )

l ,n

A(t )
n,l

,

ν(t )
n,l =

γ̂−1
t +νn,t −|A(t )

n,l |2ν(t )
l ,n

|A(t )
n,l |2

,

pn,t =
M∑

l=1
At

n,l x̂(t )
l ,n ,

νn,t =
M∑

l=1
|A(t )

n,l |2ν(t )
l ,n .

Given the messages, m f∆l ,t
→xl ,t (xl ,t ) ∝ C N (x̂l ,t |t−1,σ2

l ,t |t−1), which comes from the prediction

stage, the belief q(xl ,t |t ) ∝ C N (x̂l ,t |t ,σ2
l ,t |t ), (the posterior marginal of xl ,t given the observa-

tions till t ) can be obtained as

(9.23)

σ−2
l ,t |t =σ−2

l ,t |t−1 +
N∑

n=1
ν−(t )

n,l ,

dl ,t = (
N∑

n=1
ν−(t )

n,l )−1.

x̂l ,t |t =
rl ,t

1+dl ,tσ
−2
l ,t |t−1

,

rl ,t = dl ,t

(
N∑

n=1

x̂(t )
n,l

ν(t )
n,l

+ x̂l ,t |t−1

σ2
l ,t |t−1

)
.

Further, we can obtain the message from xl ,t to δn,t as follows

(9.24)

nxl ,t→ fδn,t
(xl ,t ) ∝C N (x̂(t )

l ,n ,ν(t )
l ,n),

ν−(t )
l ,n =

(
σ−2

l ,t |t −ν−(t )
n,l

)
,

x̂(t )
l ,n = ν(t )

l ,n

(
x̂l ,t |t
σ2

l ,t |t
−

x̂(t )
n,l

ν(t )
n,l

)
.
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9.2.2.3 Lag-1 Smoothing Stage

We show in Lemma 6 that KF is not enough to adapt the hyperparameters, instead we need
to do at least a lag 1 smoothing (i.e. the computation of x̂k,t−1|t ,σ2

k,t−1|t through BP). All the

hyperparameters λl , fl ,γ belong to AMF . Note that the notations f̂k|t , λ̂k|t , γ̂t refers to mean of
the posteriors (which is equal to the LMMSE point estimates) for the respective hyperparameters
at time t and σ2

fk |t represents the posterior variance of fk at time t . For the smoothing stage, we
use BP with Gaussian Markov Random Fields (GMRF) based factorization. GMRF refers to the
representation of BP [183], when the underlying Gaussian distribution is expressed in terms of
pairwise connections between scalar variables xi ,t . Substituting the state update equation into
the observation model (9.11), we obtain the system model for the smoothing stage as follows

(9.25)
yt = A(t )Fxt−1 + ṽt , where

ṽt = A(t )wt +vt ,

where ṽt ∼ C N (0, R̃t ) with R̃t = A(t )Λ−1A(t ) H + 1
γ I. The joint distribution can be factorized as,

p(yt ,θ|y1:t−1) = p(yt |θ)p(xt−1|y1:t−1)p(F,Λ,γ|y1:t−1).

(9.26)
ln p(yt ,θ|y1:t−1) = −1

2
lndet R̃t −| fi |2|xi |2A(t ) H

i R̃−1
t A(t )

i

+2ℜ( f H
i xH

i A(t ) H
i R̃−1

t (yt −A(t )
ī

Fī xī ,t ))+ c f ,

where c f being the terms independent of fi , A(t )
ī

,xī ,t represents the matrix A(t ) or the vector xt

with i th column or element removed. Note that we propose to compute R̃t by substituting the
point estimates of Λ,γ. We also define F̂ī |t = diag( f̂ j |t , j 6= i ) with i th element removed. Fur-
ther applying the MF rule from (9.8), we write the mean and variance of the resulting Gaussian
distribution as

(9.27)
σ−2

fi |t = (|x̂i ,t−1|t |2 +σ2
i ,t−1|t )A(t ) H

i R̃−1
t A(t )

i ,

f̂i |t =σ2
fi |t x̂H

i ,t−1|t A(t ) H
i R̃−1

t (yt −A(t )
ī

F̂ī |t x̂ī ,t−1|t ).

The entire algorithm (a combination of BP, MF and EP, we call it as Combined BP-MF-EP DAR-
SBL) is described in Algorithm 15. Also we remark that for the estimation of λk ,γ, we follow
the same approach as in our paper [187] and we refer to it for more details. One remark here is
that another version called as Combined Vector BP-MF-EP DAR-SBL follows immediately from
the derivations for Algorithm 15, where all the components of xt are considered jointly in the
factor graph. Even though the performance will be higher (as observed in the simulations) for
the vector case, it comes at the cost of a higher complexity due to the matrix inversion involved.
Note that in Algorithm 15, we introduce temporal averaging for certain quantities (represented
by <>|t ) in hyperparameter estimates and β being the temporal weighting coefficient which is
less than one, see [187] for more details.

9.3 Optimal Partitioning of BP and MF nodes

In this section, we show that the partitioning of BP and MF nodes can be characterized through

the computation of FIM = E(∂ ln p(y,θ)
∂θ

∂ ln p(y,θ)
∂θ

H
). For our analysis, we will allude briefly to an ex-

tended concept of Cramer-Rao bound (CRB), the mismatched CRB (mC RB) [189] of VB (mC RBV B ),
which is a version of the CRB under model misspecification, and corresponds to the Laplace ap-
proximation covariance. Let CRB corresponds to the proper Bayesian CRB and mC RBBP refers
to the mC RB for the BP.
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Algorithm 15: Combined BP-MF-EP DAR-SBL

Initialization f̂l |0, λ̂l |0 = a
b , γ̂0 = c

d , x̂l ,0|0 = 0,σ2
l ,0|0 = 0,∀l . Define Σt−1|t−1 = diag(σ2

l ,t |t−1).
for t = 1 : T do
Prediction Stage:

1. Compute x̂l ,t |t−1,σ2
l ,t |t−1 from (9.21).

Filtering Stage:

1. Compute x̂(t )
n,l ,ν(t )

n,l from (9.22) and update x̂l ,t |t ,σ−2
l ,t |t from (9.19).

2. Compute ν(t )
l ,n , x̂(t )

l ,n from (9.24). 3. Continue steps 1) to 2) until convergence.

Smoothing Stage:
Initialization: Σ(0)

t−1|t =Σt−1|t−1, x̂(0)
t−1|t = x̂t−1|t−1. Define

B(t ) = FH A(t ) H R̃−1
t A(t )F+Σt−1|t−1,ht = FH A(t ) H R̃−1

t yt .

1. Pi , j =
−B (t )2

i , j

B (t )
i ,i +

∑
k∈N (i )\ j

Pk,i
, µi , j = (hi ,t+ ∑

k∈N (i )\ j
Pk,iµk,i ),∀i , j .

2. σ−2
i ,t−1|t = B (t )

i ,i +
∑

k∈N (i )
Pk,i , x̂i ,t−1|t =σ2

i ,t−1|t (hi ,t+ ∑
k∈N (i )

Pk,iµk,i )

Estimation of hyperparameters (Define: x ′
k,t = xk,t − fk xk,t−1,ζt = βζt−1 + (1 − β) <∥∥yt −A(t )xt

∥∥2 >) :

1. Compute f̂l |t ,σ2
fl |t

from (9.27), γ̂t = c+N
(ζt+d) and λl |t = (a+1)

(<
∣∣∣x ′

k,t

∣∣∣2>|t+b)
.

Theorem 13. If the parameter partitioning in VB is such that the different parameter blocks are
decoupled at the level of Fisher Information Matrix, then VB is not suboptimal in terms of (mis-
matched) Cramer-Rao Bound. If a finer partitioning granularity is used (such as up to scalar level
as in MF), then VB becomes quite suboptimal, which can be alleviated by using BP instead.

(9.28)

mC RBBP = blkdiag(C RB) = blkdiag(F I M−1),

mC RBV B = (blkdiag(F I M))−1,

So,

mC RBBP = mC RBV B ifF I M = blkdiag(F I M).

Proof: We briefly outline the proof here. Laplace approximation refers to the evaluation of
marginal likelihood or free energy using Laplace’s method [190]. This is equivalent to a Gaussian
approximation of the posterior q(θi |y) around a maximum a posteriori (MAP) estimate (θ(0)

i ),
motivated by the fact that in the asymptotic limit (large amount of data or high SNR), the poste-
rior approaches a Gaussian around the MAP point. Under the Laplace approximation, the belief
becomes q(θi ) = C N (θ(0)

i ,Σ(0)
i ). Further we evaluate the free energy [183] (F denotes the free
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energy and L = ln p(y,θ))

(9.29)

F = L(θ(0))+ 1

2

M∑
i=1

(Gi + lndetΣ(0)
i +ki ln(2πe)),

ln qi (θi ) = L(θi ,θī )+ 1

2

M∑
j=1, j 6=i

Gi ,

Gi = tr{Σi
∂

∂θi
(
∂L

∂θi
)H }.

Here ki refers to the number of scalars inθi and ln(2πe) is the entropy of a Gaussian random vari-
able. Now by differentiating ln qi (θi ) w.r.t the posterior covariance, we obtain the approximate
covariances as

(9.30)
Σi =−(

∂

∂θi
(

L(θ(0))

∂θi
)H )−1

= (blkdiag(F I M))−1

The posterior covariance in (9.30) is computed by evaluating the Hessian at the variational mode
or maximum a posteriori (MAP) point. This variational mode can be obtained asθ(0)

i = maxθi ln q(θi ).
In the Laplace approximation, all pdfs are Gaussian with CRB (portions) as covariance and LMMSE
estimates as means. So in the too fine partitioning case, the VB partitioning is applied to the FIM,
taking a too fine blockdiagonal part, and since that partitioning is finer than the blockdiagonal
FIM structure, then the inverse of the too fine blockdiagonal part of the FIM does not give the
correct CRB. So mC RBV B 6=C RB . So the nodes in the factor graph are decided based on the par-
titioning of the blocks in the FIM block diagonal structure, such that the mC RBV B =C RB . Here
ends the proof.

9.3.1 Optimal Partitioning for Static SBL:

We define Jθiθ j = E(∂ ln p(y,θ)
∂θi

∂ ln p(y,θ)
∂θ j

H
), which represents the part of the FIM which shows the

correlation of θi ,θ j . For brevity of notation, we denote Jθiθi = Jθi . First we consider the static
case when fl = 0,∀l . We omit the index t for simplicity. fξi (ξi ) = p(ξi |a,b),ξi =λi represents the
prior distribution of the precision parameter ξi which is chosen as Gamma.

(9.31) F I M = Js =
AH A+ I 0M

0M Jξξ 0M

0M 0M Jγγ


The non block diagonal elements of the FIM are crosscorrelation as follows,

(9.32)
Jγx = E(

∂ ln p(y,x,γ,Ξ)

∂γ

ln p(y,x,γ,Ξ)

∂x

H

)

= (N /γ−vH v)(γAH v−Ξx) = 0.

Similarly the crosscorrelation between x andΞwill be zero and also forΞ and γ. The cross corre-
lations are zero because of zero mean circularly symmetric complex Gaussian variables because
3rd order moments of zero mean v and x are zero. Thus the resulting FIM will be block diag-
onal. In this block diagonal structure, the crosscorrelation matrix Jxx = AH A+ I will be full and
thus requires the estimation of x using BP, while scalar factors which are decoupled γ,ξi can
be estimated using MF. This explains the optimality of our BP-MF partitioning as shown in the
Figure 9.5.
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9.3.2 Optimal Partitioning for DAR-SBL:

In this section we formulate the optimal partitioning between VB and BP for the dynamic SBL
case. Here we need to consider the FIMs recursively, i.e. FIM of the time update stage followed by
the measurement stage. For the time update stage, we abbreviate p(xk,t , xk,t−1, fk ,λk |y1:t−1) = p
for convenience here.

(9.33) ln p = lnλk −λk |xk,t − fk xk,t−1|2 −σ−2
k,t−1|t−1|xk,t−1 − x̂k,t−1|t−1|2 +

M∑
k=1

ln qλk (λk ).

The measurement FIM (9.31) is the prior FIM for the next time update. Thus it follows that BP is
needed for the inference of xt and MF for γ. One remark here is that the prior xt covariance for
the measurement update is the inverse FIM of the time update and is diagonal here.

Lemma 6. The AR(1) model parameters require (at least lag 1) smoothing for identifiability.

Proof: Considering, with augmented state θt = [xt ; f; diag(Λ);γ] (3M +1 dimensional), we ob-
tain the FIM, Jt =
blkdiag(Jx,t ,JF,t ,JΛ,t ,Jγ,t ). In [191], Tichavský et al. derived an elegant recursive approach to cal-
culate the FIM recursions for a general discrete-time nonlinear filtering problem. Based on a
similar derivation, we arrive at the following recursions for the sequence Jθi ,t of posterior infor-
mation submatrices for estimating θi

(9.34)

Jx,t =Λ+γA(t ) H A(t ) +ΛF(FΛFH + Jx,t−1)−1ΛFH ,

JF,t = JF,t +D− JFx,t (FΛFH + JF,t−1)−1JT
xF,t

with D = (I−FFH )−1,

JxF,t = FΛ[Jx,t +FΛF]−1JxF,

JΛ,t = D−D(D+ JΛ,t−1)−1D

with D =Λ−2, Jγ,t = N /γ2.

Note that i f JxF,−1 = 0, then JxF,t = 0,∀t ≥ 0. FIM recursions show that filtering may be enough for
the estimation of AR(1) parameters. However, closely looking at the expressions for f̂k|t derived
in our work [187, eq. (24-25)] shows that f̂k|t = fk . This implies that we need to know the true fk

to estimate it, in the joint estimation framework. Further to prove the unidentifiability, we use
the concept of global identifiability provided in [192].

(9.35)

p(f|xt ,yt ) = p(yt |xt )p(xt |f)p(f)/p(yt ,xt )

= p(xt |f)p(f)/
∫

p(xt |f)p(f)df

= p(f|xt )

The above expression (9.35) suggests that posterior of f given xt does not depend on yt or in
other words the observations does not provide any extra information about f other than the prior
p(f|xt ) and hence f is globally not identifiable. This proves the Lemma. (9.35) also shows that f,xt

are coupled in the estimation unlike the decoupling property shown by the FIM analysis.
Few remarks follows: Th mC RB analysis in Theorem 13 indicates that the x part needs to be

treated jointly, motivating joint VB or BP. We conjecture that whatever local identifiability analy-
sis indicates as necessitating joint treatment for optimality requires indeed joint treatment. But
local analysis may not capture all dependencies. The local analysis (recursive CRB) shows that
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filtering would be sufficient for local identifiability of f and that the fi and the xi are decoupled.
However, global identifiability analysis reveals that filtering is not enough for identifiability of f
and that the estimation of xi and fi is coupled. The gap between local and global analysis may
perhaps be reflected in the observation that the hyperparameters could be estimated (in what
corresponds to filtering) by Type-II Maximum Likelihood (ML) [162] (ie ML for hyperparameters,
with the random parameters x integrated out). Such Type-II ML approach for hyperparameter
estimation in the dynamic problem considered here will be investigated further in future work.

Corollary 13.1. For the smoothing stage (9.25), an optimal partitioning is to apply BP for estima-
tion of the sparse vector, x̂t−1|t and MF for the correlation coefficient F.

Proof: The FIM recursions for smoothing stage can be obtained as (detailed derivation is
skipped due to space constraints)

(9.36) Jt = blkdiag(Jx,t ,JF,t ,Jp,t ),

where Jp,t representing the information submatrix for the precision parameters Λ,γ. We obtain
Jx,t =
FT A(t ) H R̃−1

t A(t )F+Λ−ΛF(FΛFH + Jx,t−1)−1ΛFH , which is a full matrix.

(9.37)

JF,t = JF,t−1 +Ξdiag(A(t ) H R̃−1
t A(t ))+D− JFx,t (D+ JF,t−1)−1JxF,t ,

withD = (I−FFH )−1,

JxF,t =ΛF[Jx,t +FΛF]−1JxF,t ,

Jp,t =
[

JΛ,t JΛγ,t

JΛγ,t Jγγ

]
where, Jγγ = 1

γ4 tr{R̃−1
t R̃−1

t },

JΛ,t = CΛ,t +D−D(D+ JΛ,t−1)−1D

with D =Λ−2,

(CΛ,t )i , j = 1

λ2
i λ

2
j

tr{R̃−1
t A(t )

i A(t ) H
i A(t )

j A(t ) H
j R̃−1

t },

JΛγ,t = cΛγ,t ,

(cΛγ,t )i = 1

λ2
i γ

2
tr{R̃−1

t A(t )
i A(t ) H

i R̃−1
t }.

(cΛγ,t )i represents the i th element of the vector cΛγ,t . Here also, if JxF,−1 = 0, then JxF,t = 0,∀t .
Thus the FIM for xt is full and it follows from Theorem 13 that optimal partitioning is to apply BP
for xt and MF for the correlation coefficient F (since JF,t is diagonal and also positive definite at
any time instant t ) in the smoothing stage. Here ends the proof.

9.4 Simulation Results

For the observation model, the parameters chosen are N = 100, M = 200,K = 30. All signals are
considered to be real in the simulation. All the elements of A(t ) (time varying) are generated i.i.d.
from a Gaussian distribution with mean 0 and variance 1. The rows of A(t ) are scaled by

p
30 so

that the signal part of any scalar observation has unit variance. Taking the SNR to be 20dB, the
variance of each element of vt (Gaussian with mean 0) is computed as 0.01.
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Figure 9.3: Static SBL: NMSE as a function of N .
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Figure 9.4: DAR-SBL: NMSE as a function of time.

Consider the state update, xt = Fxt−1 +wt . To generate x0, the first 30 elements are chosen
as Gaussian (mean 0 and variance 1) and then the remaining elements of the vector x0 are put
to zero. Then the elements of x0 are randomly permuted to distribute the 30 non-zero elements
across the whole vector. The diagonal elements of F are chosen uniformly in [0.9,1). Then the
covariance of wt can be computed as Ξ(I−FFH ). Note that Ξ contains the variances of the ele-
ments of xt (including t = 0), where for the non-zero elements of x0 the variance is 1. Following
observations can be made from the simulations. In Figure 9.3, for SBL with estimated hyperpa-
rameters, there is substantial improvement in normalized MSE (NMSE) by using BP instead of
MF method for estimating x. Bayesian SAGE (Space Alternating Generalized EM) corresponds
to the application of [186] to SBL. In Figure 9.4, we evaluate the performance of the proposed
BP-MF-EP DAR SBL and show that the parameter estimation benefits from BP. Also we show that
there is a drastic improvement in performance with lag-1 smoothing for hyperparameter estima-
tion compared to just using filtering. The gap in performance compared to the basic KF, when
hyper parameters are also estimated is attributed to the estimation error in hyperparameters.
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Figure 9.5: Factor Graph for the static SBL.

9.4.1 Conclusions

We presented a fast SBL algorithm called BP-MF-EP DAR-SBL, which uses a combination of BP,
MF and EP techniques to approximate the posteriors of the data and parameters and track a time
varying sparse signal. BP-MF-EP DAR-SBL helps to circumvent the matrix inversion operation
required in the original SBL algorithm. We propose for the first time in the literature an optimal
way to select the partitioning of BP and MF nodes with CRB as a performance evaluation crite-
ria. Future work include extension of the combined BP-MF framework for Kronecker structured
dictionary learning [125].

9.5 Posterior Variance Prediction: Large System Analysis for SBL
using BP

We first review the BP messages being passed between the variable nodes and factor nodes cor-
responding to the factor graph in Figure 9.5. All the messages (beliefs or continuous pdfs) passed
between them are all Gaussian [164]. So in message passing (MP), it suffices to represent them
by two parameters, which are the mean and variance of the beliefs. Also, for the first instance,
we assume that all the hyperparameters are known. We remark that the estimation of hyperpa-
rameters can be done using VB as in [168]. Below, indices m,n is used for representing variable
nodes and i ,k is used for representing factor nodes. We represent Sn,k as the inverse variance
(precision) of the message passed from variable node n (corresponding to xn) to factor node k
(corresponds to yk ) and Mn,k be the mean of the message passed from n to k, total N M of them.
Similarly Sk,n , Mk,n for messages from k to n. Let Ak,n represents the (k,n)th element of A. We
restrict to the case of real variables here. We start with the message passing expressions derived
in [164].

(9.38)

Sn,k = ξn+
∑
i 6=k

Si ,n ,

Mn,k = S−1
n,k

∑
i 6=k

Si ,n Mi ,n .

Sk,n = A2
k,n(

1

γ
+ ∑

m 6=n
A2

k,mS−1
m,k )−1,

Mk,n = A−1
k,n(yk−

∑
m 6=n

Ak,m Mm,k ).
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Interpretation of mn→k (xn) ( as Bayesian information combining): First, define the matrix S
with entries σ−2

k,n . At variable node n, we have

(9.39)
x̂n =

 M1,n
...

MN ,n

 =

 1
...
1

 xn +N (0, diag(S:,n)−1)

with prior N (0,ξ−1
n ) .

Interpretation of mk→n(xn) (as Interference Cancellation): Substituting xm = Mm,k + x̃m,k ("ex-
trinsic" information from variables m 6= n for measurement k) in yk =∑

m
Ak,m xm+vk leads to the

1-1 measurement

(9.40)

(yk −
∑

m 6=n
Ak,m Mm,k ) = Ak,n xn + (vn + ∑

m 6=n
Ak,m x̃m,k ) ,

with total "noise" vn + ∑
m 6=n

Ak,m x̃m,k of variance γ−1 + ∑
m 6=n

A2
k,mS−1

m,k .

So the (deterministic) estimate and variance from this measurement by itself are

Mk,n = A−1
k,n(yk −∑

m 6=n Ak,m Mm,k ) and Sk,n = A2
k,n( 1

γ +
∑

m 6=n
A2

k,mS−1
m,k )−1. This is like Bayesian

SAGE! Except BSAGE did not split into messages going each way. The reason why this seemingly
approximate approach, in which all correlations between all xn and all measurements yk are ig-
nored, works is with i.i.d A indeed all xn and all yk get completely decorrelated, once one starts
considering A as random. Note that instead of BP, if we use MF for the estimation of x, the expres-
sions above would remain the same except Sk,n which gets written as Sk,n = A2

k,nγ. This can be
interpreted as, MF does not take into account the error variances in other xm ,m 6= n while pass-
ing the belief about xn from any factor node yk and hence it is suboptimal. Further, substituting
Sn,k in Sk,n

(9.41) Sk,n = A2
k,n(

1

γ
+ ∑

m 6=n
A2

k,m(ξm + ∑
i 6=k

Si ,m)−1)−1,

so this is now only in terms of the message variances in the direction k to n. Finally, the belief
(estimates) computed for each xn is

(9.42)

σ2
n = (ξn +∑

i
Si ,n)−1,

µn =σ2
n(

∑
i

Si ,n Mi ,n).

Further we simplify the messages and beliefs using the results from random matrix theory, for
the simplest case of i.i.d A in the large system regime where M , N → ∞ at a fixed ratio N

M > 0

(represented in short as
M→∞−−−−→

a.s
. For the large system analysis, we use Theorem 1 and Lemma

4 from [14]. We briefly summarize the Lemma’s here. Lemma 4 in Appendix VI of [14] states

that xH
N AN xN

N→∞−−−−→ (1/N )tr AN when the elements of xN are i.i.d with variance 1/N and inde-

pendent of AN , and similarly when yN is independent of xN , that xH
N AN yN

N→∞−−−−→ 0. Theorem 1
from [14] implies that any terms of the form 1

N tr{(AN − zIN )−1}, where AN is the summation of
independent rank one matrices with covariance matrix Θi is equal to the unique positive solu-

tion of e j = 1
N tr{(

K∑
i=1

Θi
1+ei

−zIN )−1}. Under the LSL simplifications using these results, we arrive at

the following theorem,
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Theorem 14. In the LSL, under i.i.d entries in A, the predicted (by BP or xAMP algorithms) per
component MSE (or the posterior variance σ2

n) converges exactly to the Bayes optimal values (i.e.
the diagonal elements of the posterior covariance matrix for LMMSE). This result being applicable
for AMP (GAMP also under i.i.d A), since the derivation of AMP follows from BP under the LSL.

Proof: In the large system limit, we can approximate (neglecting terms of O (A2
i , j )) Sn,k = ξn +∑

i Si ,n = Sn , independent of k. Further we define S = diag(Sn). Considering the term Sk,n =
A2

k,n( 1
γ +

∑
m 6=n A2

k,mS−1
m,k )−1, in the large system it can be approximated by

(9.43) Sk,n = A2
k,n(

1

γ
+Ak,:S

−1AT
k,:)

−1.

Also

(9.44) Ak,:S
−1AT

k,:
M→∞−−−−→

a.s

1

M
tr{S−1} = τ′BP .

From (9.42), it follows that MSE = τBP = tr{S−1}. Ak,: represents the k th row of A. Further we
obtain,

(9.45)

Sn = ξn + (
1

γ
+τ′BP )−1

∑
i

A2
i ,n ,∑

i
A2

i ,n
M→∞−−−−→

a.s
1,

thus Sn = ξn + (
1

γ
+τ′BP )−1.

Finally we can conclude that, τ′BP can be obtained as the unique positive solution of the following
fixed point equation

(9.46) τ′BP =
M∑

n=1
(ξn + ( 1

γ +τ′BP )−1)−1.

Next step is to simplify the expression for LMMSE posterior covariance in the large system limit
using similar techniques as above. The posterior covariance can be written as

(9.47)

ΣL =Ξ−1 −Ξ−1AT (AΞ−1AT + 1

γ
)−1AΞ−1,

AT (AΞ−1AT + 1

γ
)−1A

M→∞−−−−→
(a)

D,

Di ,i = e

1+ e
ξi

,

where (a) follows from Theorem 1 in [14] and e is defined as the unique positive solution of the
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following fixed point equation

(9.48)

e = (
1

N

M∑
i=1

ξ−1
i

1+ e
ξi

+ 1

γ
)−1,

tr{ΣL} = MSE =
M∑

i=1

ξ−1
i e

1+ e
ξi

,

Frome,
1

e
− 1

γ
= 1

N

M∑
i=1

ξ−1
i

1+ e
ξi

= 1

N
MSE = τ

N
= τ′,

1

e
= 1

γ
+τ′,

τ′ = 1

N

M∑
i=1

ξ−1
i ( 1

γ +τ′)
1
γ +τ′+ 1

ξi

= 1

N

M∑
i=1

1

ξi + ( 1
γ +τ′)−1

.

Comparing (9.46) and (9.48), it can be observed that the MSE under BP, τBP and the MMSE τ can
be obtained as a unique positive solution of the same fixed point equation. This implies that in
the large system limit, under i.i.d A, if BP converges, the MSE of SBL (assuming the hyperparam-
eters are fixed or known) converges to the exact MMSE. Moreover, it can be observed from (9.48)
that, the per component MSE predicted by BP matches the diagonal elements of the LMMSE
covariance, which has never been pointed out before in the literature. Here ends the proof.

One remark here is that the above large system analysis based on [14] can be applied to more
general measurement matrices case, with rows of A being restricted to have different covariance
matrices, i.e. E(AT

i ,:Ai ,:) = Θi . Certain remarks comparing the existing convergence conditions
for BP is as follows. In [193], Jian Du et al. shows that depending on the underlying graphical
structure (GMRF or factor graph based factorization) GaBP may exhibit diffferent convergence
properties. They prove that the convergence condition for the mean provided based on the factor
graph representation encompasses much larger class of models than those given by the GMRF
based walk-summable condition [194]. Further they show that GaBP always converges if the fac-
tor graph is a union of single loop and a forest. Moreover, they also analyze the convergence of
the inverse of the message variances (message information matrix) and analytically show that
with arbitrary positive semidefinite matrix initialization, the message information matrix con-
verges to a uniques positive definite matrix. So we can conclude that for BP there is a decoupling
between the dynamics of the variance updates and that of the mean updates. And that we know
that the mean converges to the LMMSE estimate under certain conditions. But it is to be men-
tioned that the convergence conditions and convergence values for the variance are more tricky,
still requires rigorous analysis to characterize its behaviour, which is the main motivation behind
this section.

9.5.1 Iterations in Matrix Form

Let us denote d(A) as the vector with entries as the diagonal elements of A. B is defined as the
matrix with entries as A2

i , j . Let L(of size M ×N ), S,M (of size N ×M) be the matrix with entries
Sn,k Mn,k , Sk,n and Mk,n , respectively. Defining T to be a matrix of size M ×N , with entries as the
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inverse variance of the Gaussian messages transmitted from the variable nodes, Sn,k , we obtain

(9.49)

T = (d(Ξ)+ST 1N )⊗1T
N −ST ,

L = d(ST M)⊗1T
N − (S◦M)T ,

L′ = T−1 ◦L.

We denote any matrix Ai nv as a matrix with entries as the element wise inverse of the matrix A.
Similarly, for the messages at the factor nodes, define C to be the matrix with entries A2

k,nS−1
k,n

(9.50)

C =
(

1

γ
1N +d(BTi nv )

)
⊗1T

M −B◦TT
i nv ,

S = Ci nv ◦B,

V = (y−d(AL′))⊗1T
M +A◦L′T ,

M = Ai nv ◦V,

where V being the matrix with entries Ak,n Mk,n . The computational complexity of all the matrix
operations above is O (M N ), since the number of computations in the Hadamard product or
Kronecker products in the above expressions is only M N . Assuming the number of iterations
required to converge is Ni t , the total complexity of the BP algorithm can be written as Ni t O (M N ).

9.5.2 Convergence Analysis of BP

In this subsection, we consider the convergence analysis of the mean and variance of the mes-
sages passed in BP. For the ease of analysis, we consider a simplified case, where we neglect terms
of the order O (A2

i , j ) under the large system limit M , N →∞. Hence the precisions of the posteri-

ors passed A−1
k,nSk,n ,Sn,k in (9.38) can be approximated as Sn = ξn +∑

i
Si ,k and

A−2
k,nSk,n = ( 1

γ +
∑
m

A2
k,mS−1

m,k )−1 ∆= Sk . In fact, Sn , A−2
k,nSk,n represent the precision variables in the

input and output stages of the GAMP algorithm derived in [195, Algorithm 1]. Using theorem
1 in [195], we can show that for any non-negative matrix B >= 0, Sn ,Sk converge to a positive
value. However, we remark that it remains to be understood to which value these precision vari-
ables converge (and hence the posterior variance σ2

n) and it is left as a future work.
Further we look at the convergence behaviour of the mean value of the posteriors passed

across the graph Mk,n . Substituting the value of Mm,k in the expression of Mk,n in (9.38), we
obtain

(9.51) Mk,n = A−1
k,n(yk −

∑
m 6=n

∑
i 6=k

Ak,m A2
i ,mS∗−1

m S∗
i Mi ,m),

where S∗
i ,S∗

m are the converged values of the precision variables Si ,Sm , respectively. Defining
m(t ) as a vector of length M N , representing the values Mk,n at iteration t . So m(t ) =
[M1,1, M1,2, ...1,M , ..., MN ,M ]T . Also, we define N to be a diagonal matrix of length M N ×M N with
entries A−1

k,n and M to be a M N ×M N matrix with ((i −1)M+m)th entry of the k th row of M being

defined as Ak,m A2
i ,mS−1

m Si , but equal to zero when either i = k or m = n or i = k and m = n.

(9.52) m(t+1) =−Mm(t ) +N(y⊗1M ).

The above iterations (9.52) converges if ρ(M) < 1.
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9.5.3 Scalar Iterations

Further defining the following terms

(9.53)
Zk,n = (yk −

∑
m 6=n

Ak,m Mm,k ),

So Mk,n = A−1
k,n Zk,n .

Also, assume that in the large system limit, Mn,k can be written as, Mn,k = Mn +δn−>k , where
δn−>k is of the O( 1p

N
). This approximation follows from writing

(9.54)

Mn,k = S−1
n,k

∑
i 6=k

Si ,n Mi ,n

= S−1
n,k

∑
i

Si ,n Mi ,n −Mk,n .

Substituting Mn,k in Zk,n

(9.55) Zk,n = (yk −
∑
m

Ak,m Mm −∑
m

Ak,mδm−>k + Ak,n Mn +O(
1

N
)) = Zk +δk−>n ,

all the terms containing A2
i , j or Ai , jδ j−>i becomes O( 1

N ) and δk−>n = Ak,n Mn , also here

(9.56) Zk = (yk −
∑
m

Ak,m Mm −∑
m

Ak,mδm−>k ).

(9.57)

Mn,k = S−1
n,k (

1

γ
+τ′BP )−1

∑
i 6=k

Ai ,n Zi ,n

= S−1
n (

1

γ
+τ′BP )−1

∑
i 6=k

Ai ,n Zi ,n .

As in the papers by Montanari et. al. [196], for general priors, it is possible to write Mn,k =
fn(

∑
i 6=k Ai ,n Zi ,n). Here fn is a linear function for the Gaussian case (i.e. fn(x) = S−1

n ( 1
γ +τ)−1xn).

So if we consider the case of Gamma priors for ξ etc, then this parameterization in terms of an f
becomes easy to write the recursions. Now doing a first order Taylor series approximation of f
around

∑
i

Ai ,n Zi ,n , Mn,k = fn(
∑
i

Ai ,n Zi ,n)− Ak,n Zk,n f ′
n(

∑
i

Ai ,n Zi ,n), f ′
n being derivative evaluated

at∑
i

Ai ,n Zi ,n . Further substituting for Zi ,n from (9.53)

(9.58)

Mn,k = Mn +δn−>k ,

Mn = fn(
∑

i
Ai ,n Zi +

∑
i

Ai ,nδi−>n)

and δn−>k =−Ak,n Zk f ′
n(

∑
i

Ai ,n Zi ).

Note that term Ak,nδk,n becomes O( 1
N ). Substituting for δi−>n and with the large system approx-

imation
∑

i A2
i ,n−> 1

(9.59)

Mn = fn(
∑

i
Ai ,n Zi +

∑
i

A2
i ,n Mn)

= fn(
∑

i
Ai ,n Zi +Mn).
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Now further writing as a vector M (with each element Mn ,∀n). M = f (AT Z +M), which is the
AMP recursion for the mean and fn(·) represents each of the scalar components in f (·). Also in
(9.53), substituting for δn−>k from (9.58)

(9.60)

Zk = (yk −
∑
m

Ak,m Mm)+ (
1

δ
)Zk (

1

n
)
∑
m

f ′
m(

∑
i

Ai ,m Zi )

= (yk −
∑
m

Ak,m Mm)+ 1

M
Zk

∑
m

f ′
m(

∑
i

Ai ,m Zi ),

where ( 1
M )Zk

∑
m f ′

m(
∑
i

Ai ,m Zi ) is the Onsager term.

9.5.4 Original AMP Iterations and SBL-AMP

The difference in AMP vs SBL-AMP is that in AMP the denoising function (or called as the shrink-
age function in AMP literature) fm(x) = f (x), i.e the same function for every component. The
original AMP iterations (for any Lipschitz-continuous component-wise shrinkage function f and
i.i.d x) can be written as

(9.61)
zt = y−Ax̂t + 1

δ
zt−1 < f′(x̂t−1 +AT zt−1) >,

x̂t+1 = f(x̂t +AT zt ).

Onsager correction serves to decouple the input to AMP [196], rt = x̂t +AT zt = x+N (0,τt IM ).

(9.62)

in case of N (0,
1

ξ
I),we get LMMSE x̂t+1 = f(rt ) = bt rt ,

bt =
1
ξ

1
ξ +τt

,

and State Evolution (SE) τt+1 = 1

γ
+ 1

δ
(1−bt )2 1

ξ
+ 1

δ
b2

t τt

= 1

γ
+ 1

δ
(ξ+τ−1

t )−1.

However, in SBL-AMP (for SBL x ∼ N (0,Ξ−1)), iterations decouple for rt as follows, rt = x +
N (0,τt I) leading to x̂t+1 = f(rt ) = Ft rt , with diagonal Ft = (IM +τtΞ)−1. Define Am as the mth

column of A and Am̄ as the matrix excluding column m, vector δm̄→k contains as entriesδn→k ,n 6=
m :

(9.63)

Consider mth noise element nm,t = AT
mAm̄ x̃m̄,t −AT

m∆m +AT
mv,

∆m,k = Ak,m̄δm̄−>k ,

leading to τt+1 = 1

γ
+ 1

δ

1

M

M∑
n=1

(ξn +τ−1
t )−1.

9.6 Bayesian SAGE (BSAGE)

In this section, we consider a Bayesian version of the space alternating generalized EM (SAGE)
algorithm proposed in [186, 197]. In BSAGE, we consider the estimation of xi by fixing the other
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variables and splitting xk = x̂k + x̃k ,∀k 6= i . We define Σī is the diagonal matrix with entries as
the posterior variances σ2

k ,k 6= i . So we write the observation model as

(9.64) y−Aī x̂ī
∆= yi = Ai xi +Aī x̃ī +v,

Further we obtain the LMMSE estimate of xi as

(9.65)

σ2
i = ξi +AT

i (AīΣī AT
ī
+ 1

γ
IN )−1Ai ,

x̂i =σ2
i AT

i (AīΣī AT
ī
+ 1

γ
IN )−1yi

We further define, Ei as the diagonal matrix with i th entry 1
ξi

and rest of the elements same as

Σ. Also, define Vi = A(E−1
i γ−1 +AT A)−1AT . Further applying matrix inversion lemma [14] and

substituting for yi , we obtain

(9.66) x̂i = γ
ξi

AT
i y−AT

i Vi
γ
ξi

y− γ
ξi

AT
i Ai x̂ī +AT

i Vi
γ
ξi

Aī x̂ī .

Further, in order to write it in the vector form, we define the matrix BT (of size M ×N ) with the
rows as AT

i Vi . We obtain the expressions in the vector form as

(9.67)

x̂(k+1) =−Mx̂(k) +Ny,

where, M = γΞ−1(H−L),

L = (BT A− diag(BT A)),

H = (AT A− diag(AT A)),

N = γΞ−1(A−B)T .

The per-iteration complexity of BSAGE is also O (M 2N ), hence same as BP. The convergence con-
dition can be written as ρ(M) < 1. Further comparing the convergence conditions for SAVE and
BSAGE, ρS AV E = ρ([γdiag(AT A)+Ξ]−1offdiag(γAT A)) and ρBS AGE = ρ(Ξ−1offdiag(γ(A−B)T A)).
It can be observed that if AT A is diagonally dominant (which is also one of the conditions for
the convergence of SAVE to the true means), then the effect of the offdiagonal terms of (A−B)T A
or AT A is negligible and the dominating factor is the first term in the expression of ρ. Since
[γdiag(AT A)+Ξ]−1 < Ξ−1, we can conclude that ρS AV E < ρBS AGE explaining the faster conver-
gence of SAVE as noted in [168] and [198].

9.7 Concluding Remarks on Combined BP-MF-EP DAR-SBL

Motivated by the need for low complexity solutions for sparse signal recovery, we looked at var-
ious approximate inference techniques for SBL whose complexity is of the order of the length
of the sparse signal. In this chapter, we attempt to provide convergence analysis for SBL under
approximate inference techniques such as VB, BP or EP. However, much remains to be done. The
convergence values of the posterior variances for BP still needs to be understood. One possi-
ble future direction is to analyze the convergence behaviour with estimated hyperparameters.
Another extension of the present work is when the dictionary matrix is unknown, for example
structured dictionary matrices as in [199, 200].
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9.8 Towards a Convergent AMP-SBL Solution

It is of great importance to analyze the convergence conditions of approximate message passing
based algorithms. State evolution (SE) analysis done on the class of i.i.d matrices ( [196, 201])
show that the mean square error converges to the Bayes optimal value in the large system limit.
Unfortunately, while AMP performs well for zero-mean i.i.d. projections, performance tends
to drastically decline if the measurement matrix deviates even slightly from this case. The au-
thors in [202] have shown even for i.i.d non-zero mean measurement matrix, the AMP algorithm
tends to diverge. Hence to overcome these issues several techniques have been proposed in the
literature including adaptive damping, mean removal [203] and sequential AMP (called Swept
AMP) [204]. However, issues with damping is that it may further slow down the convergence
rate, thus making the algorithm highly complex. Also, it is not yet sure how to determine an
optimal damping factor.

First, we look at a small variation of our AMP-SBL algorithm detailed in the previous section,
where we avoid approximating

∑
i A2

i j ≈ 1. Here is the outline of the derivation, which starts from
BP expressions and follows the similar lines as AMP-SBL. We start from the BP-SBL message
passing expressions in Section 9.5. In the large system limit, we can approximate (neglecting
terms of O (A2

i , j )) σ−2
n,k = ξn +∑

i σ
−2
i ,n = σ−2

n , independent of k. Further we define Σ = diag(σ2
n).

Considering the term σ−2
k,n = A2

k,n( 1
γ +

∑
m 6=n A2

k,mσ
2
m,k )−1, in the LSL it can be approximated by

σ−2
k,n = A2

k,n( 1
γ+Ak,:ΣAT

k,:)
−1. Ak,:ΣAT

k,: = τk . Ak,: represents the k th row of A. From posterior belief

variances, it follows that MSE = tr{Σ}. Further we obtain, σ−2
n = ξn +∑

i ( 1
γ +τi )−1 A2

i ,n . Further,
we write the variance recursions in matrix form as

(9.68)
Σ−1

t =Ξ+ diag(AT [diag(
1

γ
IN +AΣt−1AT )]−1A),

MSE = tr{Σt }

Further, we define Zk,n and arrive at the approximate expression in terms of Zk , which will be
the same as in Section 9.5.3. Substituting for σ2

n,k =σ2
n and σ2

k,n = A2
k,n( 1

γ +τk )−1, the expression

of x̂n,k =σ2
n,k

∑
i 6=k σ

−2
i ,n x̂i ,n becomes

(9.69) x̂n,k ≈σ2
n
∑

i 6=k Ai ,n( 1
γ +τi )−1zi ,n .

We can write x̂n,k = fn(
∑

i 6=k Ai ,n( 1
γ +τi )−1zi ,n). Here fn is a linear function for the Gaussian case

(i.e. fn(x) =σ2
n x and fn(x)′ =σ2

n , also si = ( 1
γ +τi )−1).

Performing a first order Taylor series approximation of f around
∑
i

Ai ,n si zi ,n

(9.70) x̂n,k = fn(
∑

i
Ai ,n si zi ,n)− Ak,n si zk,n f ′

n(
∑

i
Ai ,n si zi ,n),

f ′
n being derivative evaluated at

∑
i

Ai ,n si zi ,n . Further substituting for zi ,n from (9.53)

(9.71)

x̂n,k = x̂n +δn→k ,

x̂n = fn(
∑

i
Ai ,n si zi +

∑
i

Ai ,n siδi→n)

and δn→k =−Ak,n sk zk f ′
n(

∑
i

Ai ,n si zi +
∑

i
Ai ,n siδi→n).
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Define S = diag(si ). Substituting for δi→n = Ai ,n x̂n , x̂n = fn(
∑
i

Ai ,n si zi +∑
i

si A2
i ,n x̂n).

In vector form: x̂ = f(AT Sz + diag(AT SA)x̂), which is the AMP recursion for the mean, where
(f(x))n = fn(xn). Also from (9.56), substituting δn→k from (9.71) and defining zt = [z1, · · · , zN ]T

at iteration t :

(9.72) zt = (y−Ax̂t )+
(
S(A◦A)f′

(
AT Szt−1 + diag(AT SA)x̂t

))
◦zt−1,

where
(
S(A ◦A)f′(AT Szt−1 + diag(AT SA)x̂t )

)
◦ zt−1 is the Onsager term. Finally, we arrive at the

modified AMP-SBL iterations (which is same as the GAMP-SBL in [166])

(9.73)

zt = (y−Ax̂t−1)+
(
St−1(A◦A)f′

(
diag(AT St−1A)−1AT Szt−1 + x̂t−1

))
◦zt−1,

St = [diag(
1

γ
IN +AΣt−1AT )]−1,

Σ−1
t =Ξ+ diag(AT [diag(

1

γ
IN +AΣt−1AT )]−1A),

x̂t+1 = f([diag(AT St A)]−1AT St zt + x̂t︸ ︷︷ ︸
rt

) = Ft rt ,

Ft = diag(AT St A)
(
Ξ+ diag(AT St A)

)−1
.

One remark here is that GAMP-SBL does not converge without damping or mean removal pro-
cedure (for non-zero mean A) as is noted in [166]. Hence we are inclined to explore other alter-
natives which are converging.

9.8.1 Fixed Points of Bethe Free Energy and GSwAMP-SBL

When the computation of the posterior distribution becomes intractable, our aim would be-
come to perform probabilistic inference by minimizing the variational free energy (VFE) over an
approximate posterior q(θ). The VFE can be written as [205]

(9.74) F (q) = K LD(q(θ)||P0(θ))−< log py|θ(y|θ) >q

where K LD denotes the Kullback-Leibler divergence and <>q represents the expectation over
the approximate distribution q and the prior P0(θ) = px(x|Ξ)pξ(ξ)pγ(γ|c,d). We shall further
discuss here briefly the mean field VFE and Bethe free energy (BFE). Under the mean field (MF)
approximation, where we consider that the q factorizes over the individual scalar parameters, we
can obtain the approximate distribution as qθi (θi ) ∝ exp(< log py|θ(y|θ)P0(θ) >qθī

(θī )). In [205],
the authors show that the fixed points of the GAMP MP equations are the stationary points of
the cost function termed approximate Bethe Free Energy, which is written below. This simplified
form of the Bethe free energy is obtained using the same approximations which lead to GAMP
from BP in the large system limit. We denote the MMSE estimate of xi as x̂i and the posterior
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Algorithm 16: GSwAMP-SBL

Input: y,A
Initialize: γ̂0 = c

d , ξ̂0 = a
b , σ2

m = 1/(‖Am‖2γ+ ξ̂m),∀m, x̂ = AT y, Vk = 0,∀k, wk = 0.
repeat

for k = 1 to M do

g (t )
k = yk−w (t ;N+1)

k
1
γ̂
+V t ;N+1

k

V (t+1;1)
k =∑

m A2
kmσ

2(t )
m

w (t+1;1)
k =∑

m Ak,m x̂(t )
m −V (t+1;1)

k g (t )
k

end for
S = RandomPermute([1,2..., N ])
for n = 1 to N do

m = Sn

τ(t+1)
m =

[∑
k

A2
km

1
γ̂
+V (t+1;k)

k

]−1

r (t+1)
m = x̂(t )

m +τ(t+1)
m

∑
k Akm

yk−wk
1
γ̂
+V (t+1;k)

k

x̂(t+1)
m = f1(r (t+1)

m ,τ(t+1)
m )

σ2(t+1)
m = f2(r (t+1)

m ,τ(t+1)
m )

end for
Hyperparameter Estimation (using MF [168, Section 3]
for m = 1 to N do
ξ̂(t+1)

m = a+1/2
|x̂(t+1)

m |2+σ2(t )
m

, γ̂(t+1) = c+N /2
‖y−Ax‖2

2 +d
.

end for
until convergence

variance as σ2
i .

(9.75)

F Bethe
G AMP (rm ,τm , wk , x̂m ,σ2

m) =−∑
k

logZk −
∑
m

σ2
m + (x̂m − rm)2

2τm

−∑
k

(wk −
∑

m Akm x̂m)2

2Vk
−∑

m
log Z (rm ,τm)

with Vk =∑
m

A2
k,mσ

2
m ,

Zk =
∫

e
− (wk−zk )2

2Vk√
2πVk

Pyk |zk (yk |zk )d zk

where z = Ax, with zk being the k th element. Z (rm ,τm) represents the normalization constant,
which gets defined as

(9.76) Z (rm ,τm) =
∫

Pxm (xm |ξm)e−
(xm−rm )2

2τm d xm .

By optimizing (9.75) alternatingly w.r.t rm ,τm , wk , x̂m ,σ2
m , we reach the Algorithm 16, which is

termed as sequential GAMP or Swept GAMP based SBL (GSwAMP-SBL). In Algorithm 16, the
functions f1, f2 are defined as follows (which represent MMSE estimate in the Gaussian case as
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in SBL)

(9.77)
f1(rm ,τm) = rm

ξ−1
m

ξ−1
m +τm

,

f2(rm ,τm) = (ξm +τ−1
m )−1.

9.9 GSwAMP-SBL based Dynamic AR-SBL

Time varying sparse signal xt is modeled using an AR(1) process with a diagonal correlation co-
efficient matrix F, which can be written as follows

(9.78)
State Update: xt = Fxt−1 +wt ,

Observation: yt = A(t )xt +vt ,

where xt = [
x1,t , ..., xN ,t

]T . Diagonal matrices F and Ξ are defined with its elements, Fi ,i =
fi , fi ∈ (−1,1) and Ξ = diag(ξ),ξ = [ξ1, ...ξN ]. Further, wt ∼ C N (0,Λ−1), where Λ−1 = Ξ−1(I−
FFH ) = diag( 1

λ1
, ..., 1

λN
) and vt ∼C N (0, 1

γ I). wt are the complex Gaussian mutually uncorrelated
state innovation sequences. Hence we sparsify the prediction error variance wt also, with the
same support as x0 and henceforth enforces the same support set for xt ,∀t . vt is independent of
the wt process. Although the above signal model seems simple, there are numerous applications
such as 1) Bayesian adaptive filtering [185], 2) Wireless channel estimation: multipath parameter
estimation as in [186]. In this case, xt = FIR filter response, and Ξ represents example the power
delay profile. We also denote the unknown parameter vector θt = {

xt ,Λ,γ,F
}

and θi represents
each scalar in θ. Note that we only estimate the reparametrized innovation sequence precision
instead of the precision variables ξi .

9.10 GSwAMP-SBL for Nonlinear Kalman Filtering

The joint distribution p(yt ,θt |y1:t−1) can be written as (Σt |t−1 represents the diagonal prediction
covariance matrix)
(9.79)

ln p(yt ,θt |y1:t−1) = N

2
lnγ− γ

2

∣∣|yt −At xt
∣∣ |2 +−M det(Σ̂t |t−1)− 1

2

(
xt − x̂t |t−1

)T
Σ̂
−1
t |t−1

(
xt − x̂t |t−1

)
+ (c −1)lnγ+ c lnd −dγ+constants.

9.10.1 Diagonal AR(1) ( DAR(1) ) Prediction Stage

In the prediction stage, similar as in KF, we compute the posterior, p(xt |y1:t−1), where y1:t−1

refers to the observations till time t − 1. For more detailed derivation, we refer to our previ-
ous work [187] or to Section 9.2.2.1 in this thesis. This part gets computed using MF, however,
the interation between xm,t and fm requires Gaussian projection, using expectation propagation
(EP) [187]. The resulting Gaussian distribution is parameterized as xl ,t ∼N (x̂l ,t |t−1,σ2

l ,t |t−1).

9.10.2 Measurement Update (Filtering) Stage

For the measurement update stage, the posterior for xt is inferred using GSwAMP-SBL in Algo-
rithm 16. The posterior mean and diagonal covariance matrix of the estimate computed at xt
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are denoted by x̂t |t ,Σt |t . We denote each entries in x̂t |t as x̂l ,t |t respectively. In the measurement
stage, the prior for xt gets replaced by the posterior estimate from the prediction stage. We refer
to our previous work [198] for detailed discussions on the fitering stage. One remark here is that
compared to our previous work using BP in [198], using GSwAMP gives a more computationally
feasible implementation and accurate posterior variances, where σ2

l ,t |t incorporates the effect of

all σ2
l ′,t |t , l ′ 6= l . σ2

l ,t |t represents the diagonal elements of the posterior covariance matrice Σt |t .

9.10.3 Lag-1 Smoothing Stage

We obtain the system model for the smoothing stage (by combining the AR(1) stage in the mea-
surement model) as follows

(9.80)
yt = A(t )Fxt−1 + ṽt ,

where ṽt = A(t )wt−1 +vt ,

where ṽt ∼ C N (0, R̃t ) with R̃t = A(t )Λ−1A(t ) H + 1
γ I. We show in [198, Lemma 1] that KF is not

enough to adapt the hyperparameters, instead we need at least a lag 1 smoothing (i.e. the com-
putation of x̂t−1|t ,Σt−1|t through GSwAMP-SBL). Here, we first do a noise whitening by multiply-
ing yt with R̃−1/2

t . Hence, we can rewrite the observation model as

(9.81)

ŷt = Â(t )xt−1 + v̂t ,

where v̂t = R̃−1/2
t ṽt ,

Â(t ) = R̃−1/2
t A(t )F.

The joint distribution can be factorized as, p(yt ,θ|y1:t−1) = p(yt |θt )p(xt−1|y1:t−1)p(F,Λ,γ|y1:t−1).

(9.82)
ln p(yt ,θt−1|y1:t−1) = −1

2
lndet R̃t −| fm |2|xm |2A(t )T

m R̃−1
t A(t )

m

+2ℜ( f H
m xH

mA(t ) H
m R̃−1

t (yt −A(t )
m̄ Fm̄xm̄,t ))+ c f ,

where c f being the terms independent of fm , A(t )
m̄ ,xm̄,t represents the matrix A(t ) or the vector xt

with mth column or element removed. Note that we propose to compute R̃t by substituting the
point estimates of Λ,γ. We also define F̂m̄|t = diag( f̂n|t ,n 6= m) with mth element removed. Fur-
ther applying the MF rule, we write the mean and variance of the resulting Gaussian distribution
for fm as

(9.83)
σ−2

fm |t = (|x̂m,t−1|t |2 +σ2
m,t−1|t )A(t )T

m R̃−1
t A(t )

m ,

f̂m|t =σ2
fm |t x̂H

m,t−1|t A(t ) H
m R̃−1

t (yt −A(t )
m̄ F̂m̄|t x̂m̄,t−1|t ).

9.11 Simulation Results

To elucidate further the excellent convergence proporties of the GSwAMP-SBL algorithm from
other state of the art AMP-SBL versions, we evaluate the normalized MSE (NMSE) performance
under different scenarios of A matrices such as ill-conditioned, non-zero mean matrices for
static SBL. We also illustrate the performance of the BP based DAR-SBL compared to our sub-
optimal methods which are based on MF. Note that simulations are performed with dimensions
of A, M = 150, N = 250. The power delay profile (variances of xi ) for the SBL model in Section 9.9
is chosen as d i−1, with d = 0.93 and starting with index i = 1. Further we analysis the following
scenarios in the simulations. In Figure 9.6 and Figure 9.7, we also assume that the hyperparam-
eters are unknown and get estimated as proposed in our Algorithm 17.
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Algorithm 17: GSwAMP based DAR-SBL

Initialization f̂l |0, λ̂l |0 = a
b , γ̂0 = c

d , x̂l ,0|0 = 0,σ2
l ,0|0 = 0,∀l . Define Σt−1|t−1 = diag(σ2

l ,t |t−1).
for t = 1 : T do
Prediction Stage:

1. Compute x̂l ,t |t−1,σ2
l ,t |t−1 using EP and MF [198], x̂l ,t |t−1 = f̂l |t−1x̂l ,t−1|t−1, σ2

l ,t |t−1 =
| f̂l |t−1|2σ2

l ,t−1|t−1 +
σ2

fl |t−1(|x̂l ,t−1|t−1|2 +σ2
l ,t−1|t−1)+ λ̂−1

l |t−1.

Filtering Stage:

1. Compute x̂l ,t |t ,σ−2
l ,t |t using GSwAMP (iterated convergence).

Smoothing Stage:
Initialization: Σ(0)

t−1|t =Σt−1|t−1, x̂(0)
t−1|t = x̂t−1|t−1. Update R̃t , Â(t ).

1. Compute x̂t−1|t ,Σt−1|t using GSwAMP (iterated until convergence)

Estimation of hyperparameters (Define: x ′
k,t = xk,t − fk xk,t−1,ζt = βζt−1 + (1 − β) <∥∥yt −A(t )xt

∥∥2 >) :

1. Compute f̂l |t ,σ2
fl |t

from (9.83), γ̂t = c+N
(ζt+d) and λl |t = (a+1)

(<
∣∣∣x ′

k,t

∣∣∣2>|t+b)
.

9.11.1 ill-conditioned A case:

We construct the matrix A with condition number κ> 1. Let A = UΣVT , where U,VT are the left
and right singular vectors of an i.i.d-Gaussian matrix. Further, we select the singular values such
that Σi ,i

Σi ,i+1
= κ1/(M−1), for i = 1,2..., M −1 and Σi ,i is the i th diagonal element of Σ. The more the

condition number, the more A deviates from the i.i.d-Gaussian case. In Figure 9.6, we plot the
NMSE values as a function of the condition number for different algorithms such as original SBL
(LMMSE-SBL), SAVE-SBL [168], proposed GSwAMP-SBL and damped GAMP-SBL [166]. In fact,
in the simulations we observed that GAMP-SBL does not converge without using damping and
there does not exist any closed form solution for the optimal damping value. Hence depending
on the particular scenario being considered and also on the dimensions, the damping value may
change. However, the proposed GSwAMP-SBL is more robust in the sense that it does not require
any damping and convergence to a local optimum is guaranteed.

9.11.2 Non-zero mean A case:

In this case, we generate each entries of A as i.i.d Gaussian with a non-zero mean, Ai , j ∼N (µ, 1
M ).

We plot the NMSE performance for different algorithms in Figure 9.7 as a function of the mean
of A. We observe that GAMP-SBL does not converge, in this case apart from damping we may
require mean removal procedure also as in noted in [203]. However, SAVE-SBL and the proposed
GSwAMP-SBL converges without any mean removal procedure. Hence, GSwAMP-SBL would be
preferred from an implementation complexity perspective. SAVE-SBL has the incorrect posterior
variance issue which we have observed in our previous papers.
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Figure 9.6: NMSE vs Condition number of the measurement matrix A.
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Figure 9.7: NMSE vs the mean of A.

9.11.3 Rank Deficient A case (Figure 9.8):

We generate a rank deficient A by A = 1
N HG, with H ∈RM×R ,G ∈RR×N and R < M . The entries of

H,G are generated as i.i.d Gaussian with zero mean and unit variance. The rank ratio R
N indicates

the deviation of A from i.i.d Gaussian case.

9.12 Conclusions

In this chapter, we look at the robustness of the SBL algorithm under deviations from i.i.d Gaus-
sian assumptions of measurement matrix. Towards this direction, we propose a GSwAMP-SBL
algorithm which implements the GAMP sequentially rather than parallel as in the original GAMP
version by Rangan [143]. Among the many techniques proposed for improving the convergence
properties of AMP algorithms, GSwAMP stands out due to the low cost per iteration, compared
to the highly complex nature of damping or mean removal based algorithms in the literature. We
also integrate hyperparameter estimation (by MF) and an extension of the GSwAMP-SBL for a
time varying sparse signal is also proposed.
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9.12.1 Conclusions and Perspectives

Conclusions and Perspectives 10

• There are many Bayesian estimation problems, many of which are LMMSE (Wiener,
Kalman), which contain hyperparameters to be tuned, using various approaches.

• BP-SBL computational complexity is similar to AMP (except that BP-SBL may have
more memory requirements due to large number of messages being passed at any it-
eration) if we consider Gaussian BP. In SBL, it is Gaussian BP for a fixed estimate of
hyperparameters. But BP will have higher computational complexity if we go to more
general measurement models or prior distributions. xAMP variants does not start with
Gaussian prior or posterior. Hence we remark that for possibly nonlinear measure-
ment model or more general priors or even for the case of joint hyperparameter plus
sparse state vector estimation (x̂,ξ), our MP based SBL algorithms are more relevant.

• In message passing (approximate iterative) based inference techniques, we can con-
clude that it is easy to get the mean (estimate) correct but more difficult to get correct
posterior variances.

• MP based approximate inference algorithms can be unified under free energy opti-
mization framework. We used mCRB formulation for split in various MP simplification
levels and it allows performance-complexity trade-off.

• We relied on large system analysis for yielding simplified asymptotic performance
analysis, allowing to show Bayes optimality for some special cases and to justify al-
gorithmic simplifications.

• Proposed new versions of AMP for SBL such as GSwAMP-SBL which is seen to con-
verge for measurement matrices which deviate from i.i.d model for A.

• A very good overview of the state of the art on fast sparse Bayesian techniques pro-
posed here can also be found in [206]. Apart from the topics discussed here in, the pa-
per also gives an overview of other competing methods (similar to SBL) such as Stein’s
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Conclusions and Perspectives 10 (cont.)

unbiased risk estimator (SURE), empirical Bayes and kernel based hyperparameter es-
timation.



Chapter 10

SPARSE BAYESIAN LEARNING FOR TENSOR SIGNAL PRO-
CESSING

In many applications such as Multiple Input Multiple Output (MIMO) radar [207], massive MIMO
channel estimation [132], image, and video processing, etc., the received signals are multidimen-
sional (i.e tensors). Moreover, these signals can be represented as a low rank tensor. To fully ex-
ploit the structure of such signals, tensor decomposition methods such as CANDECOMP/PARAFAC
(CP) [208, 209] or Canonical Polyadic Decomposition (CPD) [210] have been introduced. Ex-
plicitly accounting for this tensorial structure can be more beneficial than the matricized or
vectorized representations of the data since the matrix decomposition cannot fully exploit the
multi-dimensional subspace structure of the data. One initial work in this direction is based on
the concept of multi-dimensional SVD applied to multi-dimensional harmonic retrieval prob-
lems [211]. In this paper, we consider a generalized problem in which the dictionary matrix can
be factorized as a Kronecker product [212], the received tensor signal Y can be represented as

(10.1) y = (A1 ⊗A2....⊗AN )x+w,

where y = vec(Y), ⊗ represents the Kronecker product between two matrices, vec(·) represent-
ing the vectorized version of the tensor or matrix (·), Y ∈ C I1×I2...×IN is the observations or data,
A j ,i ∈ C I j , the factor matrix A j = [A j ,1, ...,A j ,P j ] which is unknown and the tensor product is

represented by [[A1, ...,AN ;x]], x is the M(=
N∏

j=1
P j )-dimensional sparse signal and w is the ad-

ditive noise. x contains only K non-zero entries, with K << M and thus the dictionary matrix
to be learned allows a low rank representation. w is assumed to be a white Gaussian noise,
w ∼ N (0,γ−1I). To address this problem when the dictionary matrix is known, a variety of al-
gorithms such as the orthogonal matching pursuit [135], the basis pursuit method [136] and
the iterative re-weighted l1 and l2 algorithms [137] exist in the literature. The SBL introduced
by [2, 139], is developed around a sparsity-promoting prior for x, whose realizations are softly
sparse in a sense that most entries are small in magnitude and close to zero.

CPD can be viewed as a general extension of the singular value decomposition (SVD) to the
high-order tensors, with the difference that the factor matrices need not be orthogonal. In cer-
tain applications such as wireless channel estimation, these factors have specific forms such as
Vandermonde or Toeplitz or Hankel. To find the tensor factor matrices, the most popular so-
lution is the alternating least squares (ALS) [213], which iteratively optimizes one factor matrix
at a time while keeping the others fixed. Most of the existing algorithms [214–218] focus on ei-
ther maximum likelihood based schemes, LS or K-SVD algorithms. Knowledge of tensor rank is
a prerequisite to implement these algorithms and it takes large number of iterations for them to

187
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converge. Moreover, classical algorithms do not take account the potential statistical knowledge
of the factor matrices. While we focus on a Bayesian approach to the estimation of the factor
matrices in this chapter, with automatic relevance determination.

Many research papers had looked at various model mismatches and impairments affecting
channel estimation over the last couple of decades. These mismatched models and hardware
impairments (such as clock offsets, timing advance jitter) are the motivation for the rather non-
parametric approach that we follow in this tensor work. For the antenna array responses, there
is the calibration, mutual coupling, individual antenna responses, etc that make those academic
models such as the Vandermonde vectors for ULAs deviate significantly from reality. A resid-
ual carrier offset can be handled by the AR(1) temporal model for the multipath complex gains,
though a parsimonious parameterization would dictate that the phase in the AR(1) prediction
coefficient would be the same for all multipath components, if they are affected by a common
frequency offset. The path delay which would lead to a Vandermonde vector of phase shifts in the
subcarrier domain, is affected by the unknown Tx/Rx filter diagram which within its passband
can perhaps be ignored. In any case, clock drift would lead to temporal variation of that delay
component, which can be handled non-parametrically by introducing some forgetting factor in
the Kalman filter to allow for (slower) temporal variations in the model (dictionary) that are not
captured by the AR(1) model of the path gains. Of course, a (more) parsimonious parameteriza-
tion would always lead to better estimation quality, but then one has to be sure of the parsimo-
nious model accuracy. We feel that in a (doubly) dispersive MIMO channel estimation scenario,
the many dimensions to the problem already lead to the potential of good quality estimation by
just exploiting the Kronecker structure.

Another interesting point here is about the better identifiability results by exploiting the Kro-
necker or Khatri-Rao structured factor matrices. If we have 3 factors, each of dimension Ni , then
exploiting the Kronecker structure reduces the number of parameters per rank 1 term in a CPD
model from (

∏3
i=1 Ni )− 1 to

∑3
i=1(Ni − 1). If each Ni is for example, 10, this goes down from

1000 to 30. The surprising thing is that starting at 3 factors, the CPD becomes essentially unique,
i.e., identifiable, which is pretty amazing by itself. Other possibilities are to use parametric ex-
pressions for some factors, example, for the delay dimension. It is also to be noted that even
though in our work here, we do not consider any parametric forms for the factor matrices, these
factors could have a more parsimonious representation with parametric factors such as Vander-
monde. We do start with the Khatri-Rao structured matrices which can correspond to the case
of a discretized (grid based) version of the dictionary matrix [200] and further refine this model
to consider Kronecker structured dictionary matrices. In this thesis, we restrict our attention to
the Kronecker structured case only.

10.1 Summary of this Chapter

• We propose novel Space Alternating Variational Estimation based SBL techniques with
Khatri-Rao structured and KS dictionary learning called SAVED [200] and SAVED-KS [125,
219], respectively, advancing the SAVE methods which we introduced in [168, 220, 221]
which assumed a known dictionary.

• We also propose a joint VB version for the KS dictionary matrix factors which has a bet-
ter performance compared to SAVED-KS, but at the cost of an increase in computational
complexity.
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• We also discuss the local identifiability using the non-singularity of the Fisher information
matrix (FIM) for KS DL in an SBL setting.

• Simulation results suggest that the proposed solution has a faster convergence rate (and
hence lower complexity) than (even) the classical ALS and furthermore has lower recon-
struction MSE in the presence of noise.

10.1.1 Tensor Notations

An N-way tensor is represented using a calligraphic font. For example, X ∈ C I1×···×IN , where I j

represents the dimension along the j − th mode. A Tucker model for the tensor model here can
be represented as [213]

(10.2)
Y =X ×1 A1 ×2 A2 · · ·×N AN +W

= [[X ; A1, A2 · · · AN ]] .

Each A j is of dimension I j ×P j . The matricized version of (10.2) (after unfolding along n − th
mode) can be represented as

(10.3) Y(n) = AnG(n) (AN ⊗·· ·⊗An+1 ⊗·· ·⊗A1)T +W(n).

CP can be viewed as a special case of Tucker above with P1 = P2 = ·· · = PN .

10.2 Hierarchical Probabilistic Model

≈

��,1

�1,1

��,1
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.

.

��

��

��,��

�1,�1

��,��

=
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In the following sections, we represent (10.1) using the tensor decomposition properties from
[213]. Let Yi1,...,iN represents the (i1, i2, ..., iN )th element of the tensor and
y = [y1,1,...,1, y1,1,...,2...., yI1,I2,...,IN ]T , then it can be verified that [222]

(10.4) y = (A1 ⊗A2...⊗AN )x+w,

where ⊗ represents the Khatri-Rao product between two matrices, y ∈ C
(

N∏
i=1

Ii )×1
and we denote

A = A1⊗A2...⊗AN . Factor matrix A j is of dimension I j ×P j . In the tensor representation, the nota-
tions Y ,X represent y,x, respectively. Compared to the case of Khatri-Rao structured dictionary
matrices [200] (which indeed would correspond to CPD), the KS case can represent the possi-
ble coupling between different factor matrices. To illustrate this, consider the massive MIMO
channel estimation problem outlined in Section 10.2.1. It is possible that there exists two paths
with same delay response but have different AoA/AoD. This kind of correlation or coupling be-
tween different paths can be represented by the KS (Tucker representation) case we consider
here. Moreover, not all the possible couplings or path combinations will be present which in-
deed leads to a sparsification of the tensor X . Since the sparsity measure (number of nonzero
components) of x is unknown, the following VB-SBL algorithm performs automatic rank deter-
mination. In Bayesian compressive sensing, a two-layer hierarchical prior is assumed for the x
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as in [2]. The hierarchical prior is chosen such that it encourages the sparsity property of x. x
is assumed to have a Gaussian distribution parameterized by ξ = [ξ1 ξ2 ... ξM ] ,ξi > 0 and real,
where ξi represents the inverse variance or the precision parameter of xi .

(10.5)

p(x|ξ) =
M∏

i=1
p(xi |ξi )

=
M∏

i=1
C N (0,ξ−1

i ).

Further a Gamma prior is considered over ξ

(10.6)

p(ξ) =
M∏

i=1
p(ξi |a,b)

=
M∏

i=1
Γ−1(a)baξa−1

i e−bξi .

The inverse of noise variance, γ > 0 and real, is also assumed to have a Gamma prior, p(γ) =
Γ−1(c)d cξc−1

i e−dγ. Now the likelihood distribution can be written as

(10.7) p(y|x,γ) = (2π)−NγN e−γ||y−Ax||2 .

We consider factor matrices to be unstructured because the parametric forms are uncertain. For
example, in massive MIMO channel estimation [223], the array response at the mobile station
(MS) is not exploitable. Even the array response at the base station (BS) will typically require cal-
ibration to be exploitable. Doppler shifts are clear Vandermonde vectors. Delays could be more
or less clear if one goes to the frequency domain in OFDM, and one only takes into account the
range of subcarriers for which the Tx/Rx filters can be considered f-flat. Then over those sub-
carriers, it is also Vandermonde. Let A j ,i represents the i th column of A j . For the unstructured
factor matrices also, we consider A j ,i = [1aH

j ,i ]H and further a j ,i is unconstrained and determin-
istic (in all the Vandermonde cases, it is perfect, or in all cases of phasors). Assuming first entry
to be 1 is even better than

∥∥A j ,i
∥∥= 1 because

∥∥A j ,i
∥∥= 1 still leaves a phase ambiguity. With first

entry= 1, the factors are unique, up to permutation in the sum of terms of course.
We define the unfolding operation on an N th order tensor Y = [[A1, ...,AN ;x]] as [213] (Y(n) is of

size In ×
N∏

i=1,i 6=n
Ii below, X = diag(x))

(10.8) Y(n) = AnX(AN ⊗AN−1...An+1 ⊗An−1...⊗A1)T .

10.2.1 Application-Multipath Wireless Channel Estimation

We get for the matrix impulse response of a time-varying frequency-selective MIMO channel
H(t ,τ) [148], In the case of distributed antenna systems (near field), or very wideband regime,
the array responses become a function of the position parameters of the (last) path scatterers.
The fast variation of the phase in e j 2π fi t and possibly the variation of the Ai (when the nominal
path represents, in fact, a superposition of paths with similar parameters) correspond to the fast
fading. All the other parameters (including the Doppler frequency) vary on a slower time scale
and correspond to slow fading.
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The channel impulse response H has per path a rank one contribution in four dimensions
(Tx and Rx spatial multi-antenna dimensions, delay spread, and Doppler spread) [223]. Hence,
going to the frequency domain, we get

(10.9) vec(H(1 : t , f1 : f2)) =
L∑

i=1
Ai ht (ψi )⊗hr (φi )⊗v f (τi )⊗vt ( fi ).

where v f (.), vt (.) are appropriate Vandermonde vectors (possibly subsampled in the case of
v f (.)). Hence we get a sum of rank one 4D tensors. hr , ht could themselves have a Kronecker
structure in the case of polarization or the case of 2D antenna arrays with separable structure
[224]. In the model above, each of the four Kronecker factors is assumed to be parametric. For
instance, ht (.) is also a Vandermonde vector in the case of a basic Uniform Linear Array depend-
ing on azimuth only, neglecting antenna coupling. Whereas more generally ht (.) may be known
or learned at the BS side, it is less reasonable to assume a parametric form for hr on the UE side,
especially in the case of a hand-held device (orientation, way of holding it). In the following
sections, we represent (10.9) using the tensor decomposition properties from [213]. Let Yi1,...,iN

represents the (i1i2...iN )th element of the tensor (after correlating with the pilot symbols) and
the vectorized version y = [y1,1,1,,1, y1,1,1,2...., yI1,I2,I3,I4 ]T , then it can be verified that [222]

(10.10)

y = (Ht ⊗Hr ⊗V f ⊗Vt )x+w

= Ax+v,

where A = (Ht ⊗Hr ⊗V f ⊗Vt ),

x = [A1, ..., AM ]T ,

where Ht ,Hr ,V f ,Vt represent the matrices with sizes I1×M , I2×M , I3×M , I4×M respectively and
the columns represent the vectors ht (ψi ),hr (φi ),v f (τi ),vt ( fi ). Since the actual number of multi-
paths is not known, we assume that M À L and the following SBL based compressed sensing

method performs automatic rank determination. Also, we denote N =
4∏

i=1
Ii .

10.3 Variational Bayesian Inference for Joint Dictionary Learning
and Sparse Signal Recovery

The computation of the posterior distribution of the parameters is usually intractable. In order to
address this issue, in VB framework, the posterior distribution p(x,ξ,γ,A|y) is approximated by
a variational distribution q(x,ξ,γ,A) that has the factorized form (we define θ = (x,ξ,γ, vec(A))
as the vector of all parameters to be estimated and θk represents any subset which is statistically
independent from others in the approximate posterior below):

(10.11)
q(x,ξ,γ,A) = qγ(γ)

M∏
i=1

qxi (xi )
M∏

i=1
qξi (ξi )

M∏
i=1

N∏
j=1

qa j ,i (a j ,i )

=∏
k

qk (θk )

In the equation (10.11) above, which describes the form of the approximate posterior, the pa-
rameters γ, xi ,ξi ,a j ,i ,∀ j , i are assumed to be independent. If all the path responses are inde-
pendent, this factorization may become optimal or match the true posterior. On the other hand,
once the path responses become correlated, for example, two paths with same delay but with
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different AoA/AoD can be correlated. In this case, the above factorization may be quite sub-
optimal leading to a performance gap compared to more complex methods such as joint VB
based DL which we consider in the later sections here. VB compute the factors q by minimiz-
ing the Kullback-Leibler distance between the true posterior distribution p(x,ξ,γ,A|y) and the
q(x,ξ,γ,A). From [146]

(10.12) K LDV B = K L
(
p(x,ξ,γ,A|y)||q(x,ξ,γ,A)

)
The KL divergence minimization is equivalent to maximizing the evidence lower bound (ELBO)
[147]. To elaborate on this, we can write the marginal probability of the observed data as

(10.13)

ln p(y) = L(q)+K LDV B , where,

L(q) =
∫

q(θ) ln
p(y,θ)

q(θ)
dθ,

K LDV B =−
∫

q(θ) ln
p(θ|y)

q(θ)
dθ.

whereθ = {
x,ξ,γ,A

}
and θi represents each independent factor inθ. Since K LDV B ≥ 0, it implies

that L(q) is a lower bound on ln p(y). Moreover, ln p(y) is independent of q(θ) and therefore
maximizing L(q) is equivalent to minimizing K LDV B . This is called as ELBO maximization and
doing this in an alternating fashion for each variable in θ leads to

(10.14)
ln(qi (θi )) =< ln p(y,θ) >k 6=i +ci ,

p(y,θ) = p(y|x,ξ,γ)p(x|ξ)p(ξ)p(γ).

Here <>k 6=i represents the expectation operator over the distributions qk (θk ) for all k 6= i .

10.4 Kronecker Structured Dictionary Learning

In the following sections, we represent (10.1) using the tensor decomposition properties from
[213]. Let Yi1,...,iN represents the (i1, i2, ..., iN )th element of the tensor and y =
[y1,1,...,1, y1,1,...,2...., yi1,i2,...,iN ]T , then it can be verified that [222, 225]

(10.15) y = (A1 ⊗A2...⊗AN )x+w = (
N⊗

j=1
A j )x+w,

where we denote A =
N⊗

j=1
A j . Since the sparsity measure (number of nonzero components) of x is

unknown and the following VB-SBL algorithm performs automatic rank determination.
We emphasize that the presented algorithm do not exploit parametric forms, because those

parametric forms are uncertain. For example, considering the massive MIMO channel estima-
tion problem [223], the array response at the mobile station (MS) is not exploitable. Even the ar-
ray response at the base station (BS) will typically require calibration to be exploitable. Doppler
shifts lead to Vandermonde vectors. Delays could be more or less clear if one goes to the fre-
quency domain in OFDM, and one only takes into account the range of subcarriers for which
the Tx/Rx filters can be considered frequency-flat. Then over those subcarriers, it is also Vander-
monde. We consider A j ,i = [1aH

j ,i ]H and further a j ,i is unconstrained and deterministic (in all
the Vandermonde cases, it is perfect, or in all cases of phasors). Assuming first entry to be 1 is
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even better than
∥∥A j ,i

∥∥= 1 because
∥∥A j ,i

∥∥= 1 still leaves a phase ambiguity. With first entry= 1,
the factors are unique, up to permutation in the sum of terms. It is to be noted that one major
difference compared to the DL for Khatri-Rao structured matrix factors as looked upon in our
paper [200] is that we avoid considering a discretized dictionary and instead of the sparsity for x
comes from considering the cases of multi-paths with same delay having different AoA or AoDs.

10.4.1 SAVED-KS Sparse Bayesian Learning

In this section, we propose a Space Alternating Variational Estimation (SAVE) based alternat-
ing optimization between each elements of θ. For SAVE, not any particular structure of A is as-
sumed, in contrast to AMP which performs poorly when A is not i.i.d. or sub-Gaussian. Based on
a quadratic loss function, the Bayesian estimator of a parameter is the posterior mean; we there-
fore define the VB estimators of parameters θ as the means of the variational approximation to
the posterior distribution. The joint distribution can be written as

(10.16)

ln p(y,θ) = N lnγ−γ ∣∣|y−Ax
∣∣ |2 + M∑

i=1

(
lnξi −ξi |xi |2

)
+

M∑
i=1

((a −1)lnξi +a lnb −bξi )+ (c −1)lnγ+ c lnd −dγ+constants.

In the following, cxi ,c ′xi
,cξi , cγ,ca j i etc. represents normalization constants for the respective

pdfs.
Update of qxi (xi ): Using (10.14), ln qxi (xi ) turns out to be quadratic in xi and thus can be repre-
sented as a Gaussian distribution as follows. Note that we split Ax as, Ax = Ci xi + Ci xi , where

Ci represents the i th column of A, Ci represents the matrix with i th column of A removed, xi is

the i th element of x, and xi is the vector without xi . In fact, we can represent Ci = (
N⊗

j=1
A j ,p j i ).

To show the relation to the columns of the KS factor matrices (p1, p2, ..., pN ) which generates Ci ,

i = 1+
N∑

k=1
(pk −1)Jk , Jk =

k+1∏
m=N ,m 6=i

Pm ,PN+1 = 1. So we denote A j ,p j i as the column vector from

A j which generates Ci . From the property of the Kronecker products [222] that (A⊗B)(C⊗D) =
AC⊗BD, we can verify that ‖Ci‖2 = (

N⊗
j=1

A j ,p j i )H (
N⊗

j=1
A j ,p j i ) =

N∏
j=1

∥∥A j ,p j i

∥∥2. Clearly, the mean and

the variance of the resulting Gaussian distribution becomes

(10.17)

σ2
i = 1

< γ>
N∏

j=1
< ∥∥A j ,p j i

∥∥2 > + < ξi >
,

< xi >= x̂i

= σ2
i ((< CH

i > y−< (CH
i Ci ) >< xi >) < γ>,

where x̂i represents the point estimate of xi and Â j ,i = [1 < aH
j ,i >]H , < a j ,i > being the mean

of a j ,i which follows from the below derivation for a j ,i . Also, note that in < (CH
i Ci ) >, there are

cross terms of the form <
N∏

j=1
AH

j ,pi
A j ,pk >, i 6= k which can be written as =

N∏
j=1

< AH
j ,pi

>< A j ,pk >
because of the independence of the approximate distribution q of each columns of the factor
matrices.
Update of qa j ,i (a j ,i ): Here we go back to the tensor representation. For simplicity, we define
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V j =< X( j ) >< (
1⊗

k=N ,k 6= j
Ak )T >,W j =< X( j )(

1⊗
k=N ,k 6= j

Ak )T (
1⊗

k=N ,k 6= j
Ak )∗X( j ) H >. The variational ap-

proximation for the vector a j ,i results in

(10.18)
ln qa j ,i (a j ,i ) =−< γ><

{
‖Y − [[X ;A1, ...,AN ]]‖2

}
>

(a)= −< γ> tr
{
−Y( j )VH

j AH
j +A j V j Y( j ) +A j W j AH

j

}
+ ca j i .

In (a), we used the fact that [213] ‖A‖2 = tr{A(k)(A(k))H } for a tensor A and further we denote

AN ⊗ ...A j+1 ⊗A j−1...⊗A1 =
1⊗

k=N ,k 6= j
Ak . In (10.18), tr{A j W j AH

j } can be written as, tr{A j ,i W j AH
j ,i }+

“terms independent of a j ,i ”, which gets simplified as tr{W j }
∥∥a j ,i

∥∥2+ “others”. Finally, the mean
(< a j i >= â j i ) and covariance (Υ j ,i ) of the resulting Gaussian distribution can be written as (after
expanding V j ,W j )

(10.19)

â j i = (b j )1,

b j = (Y( j ) < X( j ) >< (
1⊗

k=N ,k 6= j
Ak )T >)i ,

Υ j ,i =β j ,i I,

β j ,i = tr{(
1⊗

k=N ,k 6= j
< AT

k A∗
k >) < X( j ) H X( j ) >},

where (·)i represents the i th column of the matrix (·) and (b j )1 represents the vector formed by
all the elements except the first one of the vector b j . For the computation of the elements of the
matrix < X( j ) H X( j ) >, the diagonal elements contain terms of the form < |xl |2 > the expressions
for which are provided below in (10.20). The non-diagonal terms contain terms of the form <
xl xk >, l 6= k which gets simplified due to the independence of the corresponding q distributions,
< xl xk >= x̂l x̂k . Also, we can write < ∥∥A j ,i

∥∥2 >= 1+∥∥â j ,i
∥∥2 +β j ,i I j , which gets used in (10.17).

Update of qξi (ξi ), qγ(γ): The variational approximation leads to the Gamma distribution for
the qξi (ξi ) and qγ(γ), which are parameterized by its mean. The detailed derivation for this is
omitted here, since it is provided in our paper [168]. The mean of the Gamma distribution for
qξi (ξi ), qγ(γ) is given by

(10.20)

< ξi > = a + 1
2(< |xi |2 > +b

) ,

< γ> = c + N
2

(<
∥∥∥∥∥y − (

N⊗
j=1

A j )x

∥∥∥∥∥
2

> +d)

,

where

(10.21)

< ‖y − (
N⊗

j=1
A j )x‖2 > = ∥∥y

∥∥2 − 2yH (
N⊗

j=1
< Â j >)x̂ + tr((

N⊗
j=1

< AH
j A j >)(x̂x̂H + Σ)),

Σ = diag(σ2
1, ..., σ2

M ),

x̂ = [x̂1, x̂2, ..., x̂M ]H .

and

(10.22) < |xi |2 >= |x̂i |2 + σ2
i , .
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From (10.17), it can be seen that the estimate x̂ converges to the L-MMSE equalizer x̂ = (AH A+
1

<γ>Σ
−1)−1AH y. This version of the SAVE where each columns of the factor matrices are updated

independently is called as SAVED-KS (SAVE with KS Dictionary learning).

10.4.2 Joint VB for KS Dictionary Learning

In this section, we treat the columns of the factor matrix A j jointly in the approximate pos-
terior using VB. We also define for the convenience of the analysis, A j = [1 AH

1, j
]H , where A1, j

represents all other rows except the first and 1 represents a column vector (of size P j ) with all
ones. ln qA j (A j ) = tr{−Y( j )VH

j AH
j −A j V j Y( j ) H +A j W j AH

j }+cA j , Defining B j as with the first row of

(Y( j )VH
j ) removed. So tr{−Y( j )VH

j AH
j } =

M∑
i=1

(Y( j )VH
j )1,i+tr{B j AH

1, j
}, (Y( j )VH

j )1,i represents the (1, i )th

element of the matrix. Now expanding the term A j W j AH
j = [1 AH

1, j
]H W j [1 AH

1, j
] which simplifies

ln qA j (A j ) as

(10.23) ln qA j (A j ) =< γ> tr{B j AH
1, j

}+ < γ> tr{A1, j BH
j }−< γ> tr{A1, j W j AH

1, j
}.

This corresponds to the functional form of a circularly-symmetric complex matrix normal distri-
bution [226]. This can be represented for a random matrix X ∈ Cn×p as p(X) ∝ exp(−tr{Ψ−1(X−
M)HΦ−1(X−M)}), which is denoted as C MN (X|M,Φ,Ψ). Thus the variational approximation
for A1, j gets represented as C MN (A1, j |M j ,IM ,Ψ j ).

(10.24)

M j = Â1, j =< γ> B jΨ j ,

Ψ j = (< γ>< X( j )(
1⊗

k=N ,k 6= j
< AT

k A∗
k >)X( j ) H >)−1.

Note that vec(A1, j ) ∼ N (vec(M j ),Ψ j ⊗ IM ), so the terms of the form < ∥∥A j ,i
∥∥2 > in (10.17) be-

comes, < ∥∥A j ,i
∥∥2 >= 1 + ∥∥M j ,i

∥∥2 + (Ψ j )i ,i . (Ψ j )i ,i is the i th diagonal element of Ψ j and M j ,i

represents the i th column of M j . Also, we can represent AH
j A j = 11H +MH

j M j + (I j −1)Ψ j .
For our proposed SAVED-KS, it is evident that we do not need any matrix inversions com-

pared to [148, 166]. Update of all the variable x,ξ,γ involves simple addition and multiplication
operations. We also introduce the following notations, xi− = [x1...xi−1]T ,xi+ = [xi+1...xM ]T .

10.5 Identifiability of KS Dictionary Learning

The local identifiability (upto permutation ambiguity) of the KS DL is ensured if the FIM is non-
singular [228]. We can write A j ,i = F(i )

j θ j , θ j = vec(A j ) and F(i )
j = [0I j×I j (i−1) II j 0I j×I j (P j−i )] and

we define Fr = ⊗
p j i ,∀ j

F
(p j i )
j ,r =

N∑
j=1

(p j i −1)J j +pNi , J j =
N∏

r= j+1
Pr . We observe that we can separate

the contributions of θ and x in (10.15) as,

(10.25) y = (
M∑

r=1
xr Fr )︸ ︷︷ ︸

F(x)

(
N⊗

j=1
θ j )︸ ︷︷ ︸

f(θ)

+w.

Writing ln p(y,θ,x) = ln p(y|x,ξ,γ,A)+ ln p(x|ξ)p(ξ)p(γ), it is clear that the FIM can be split as
F I M = F I My +F I Mpr i or . For F I My , extending the derivation of the CRB for the KS dictionary
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Algorithm 18: SAVED-KS SBL Algorithm

Given: y,A, I j ,P j ∀ j .
Initialization: a,b,c,d are taken to be very low, on the order of 10−10, thus p(ξi ) ∝ ξ−1

i , p(γ) ∝
γ−1 which corresponds to a non-informative Jeffrey’s prior [227]. ξ0

i = a/b,∀i ,γ0 = c/d andσ2,0
i =

1
||C0

i ||2γ0+ξ0
i

,x0 = 0. Random initialization for the dictionary matrix A j ∼C N (0,I).

At iteration t +1 (superscript t is used to denote the iteration stage),

1. Update σ2,t+1
i , x̂ t+1

i ,∀i from (10.17) using xt+1
i− and xt

i+.

2. Update Ât+1
j ,i ,Υ j ,i ∀i , j from (10.19) or Ât

j ,Ψ j from (10.24).

3. Compute < x2,t+1
i > from (10.20) and update ξt

i ,γt+1.

4. Continue steps 1−4 till convergence of the algorithm.

matrices in [228] to the high-order tensor SBL case, we define the Jacobian matrix of S = F(x)f(θ)
as

(10.26)

J(θ,x) = [J(θ) J(x)], J(θ) = [J(θ1) .....J(θN )]

where,

J(θ j ) = F(x)(θ1 ⊗ ...II j P j ....⊗θN ),

J(x) = [F1(
N⊗

j=1
θ j ), ...., FM (

N⊗
j=1
θ j )) ].

We defineΞ= diag(ξ). Further, the FIM for the case of SBL can be written as

(10.27) F I M =


E(γ)J(θ)H J(θ) 0 0 0

0 E(γ)J(x)H J(x)+ E(Ξ) 0 0
0 0 a E(Ξ−2) 0
0 0 0 (N + c −1)E(γ−2)


Here, γJ(x)T J(θ) = 0, since x is zero mean. Further using the expression for the inverse of the
block FIM above, for non-singularity, J(θ) should be full rank. For the FIM analysis, we assume
that the support (no. of non-zero elements of x) is known, then E(γ)J(x)H J(x)+E(Ξ) and a E(Ξ−2)

becomes invertible if
N∏

j=1
I j > K . Assuming

N∏
j=1

I j >
N∑

j=1
(I j − 1)P j (I j − 1 since the columns are

scaled to make the first entry 1), i.e. no. of degrees of freedom in the dictionary <
N∏

j=1
I j , then it

is clear FIM is non-singular. Another remark is that here we consider only single measurement
vector case and it is evident from the FIM expression that it can be non-singular even in this case
under certain conditions on the dimensions of the KS factor matrices. We also observe that iden-
tifiability results for a mix of structured (Vandermonde matrices) and unstructured KS matrices
for 3−way tensors are discussed in [229]. Note that algorithms which deal with KS dictionary
matrices are very recent and fundamental limits of the estimation accuracy for such systems in
a minimax setting can be seen in [230].

10.5.1 Identifiability for mix of parametric and non-parametric KS factors

We briefly outline the results for the case of mixture of parametric and non-parametric KS fac-
tors. We assume that the parameters A j , j = 1, ...,P,P < N are Vandermonde matrices parame-
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Figure 10.1: NMSE vs SNR in dB.

terized by the spatial response φ j ,l , l = 1, ...,P j and A j ,l = [1e i g j (φ j ,l ) ....e i (I j−1)g j (φ j ,l )]T , i = p−1,
where for example g j (φ j ,l ) = πsin(φ j ,l ) and angles are sufficiently separated such that each
of the columns A j ,l becomes linearly independent. This corresponds to the case of antenna
array response for ULA or frequency response parameterized by a delay. Further vectorizing
θ j = vec(φ j ,1, ...,φ j ,P j ), so the degrees of freedom reduces to P j instead of I j P j for the unstruc-
tured case. So, ∀ j = 1, ...,P

(10.28) J(θ j ) = Fpa(x)(θ1 ⊗ ...E j A j F j ...θP ⊗θP+1....⊗θN ),

where Fpa(x) has the same expression as F(x) with F(i )
j ,∀ j = 1, ..,P becomes a matrix with all ones

of size I j ×I j , E j = diag(0,1, ..., (I j −1)) and F j = i diag(g ′
j (φ j ,1), ..., g ′

j (φ j ,P j )). Thus for parametric
factors, J(θ j ) becomes a vector of size

∏
j

I j ×P j . The identifiability conditions can be restated as,

assuming
N∏

j=1
I j >

P∑
j=1

P j +
N∑

j=P+1
(I j −1)P j , i.e. no. of degrees of freedom in the dictionary <

N∏
j=1

I j ,

then it is clear FIM is non-singular.

10.5.2 Simulation Results

In this section, we present the simulation results to validate the performance of our SAVED-
KS SBL algorithm (Algorithm 1) compared to state of the art solutions. For the simulations, we
consider a 3−D tensor with dimensions (4,4,4) and the number of non-zero elements of x or
the rank of the tensor (no of non-zero elements of x) is fixed to be 4. All the elements of the
dictionary matrix A1,A2,A3 and non-zero elements of x are generated i.i.d. complex Gaussian,
C N (0,1) and the singular values are modified to convert the matrices such that they have a
particular condition number (= 2). This is done to ensure that the system identifiability is not
affected by the Krushkal ill-conditioning [213]. Normalized Mean Square Error (NMSE) is de-
fined as N MSE = 1

M ||x̂−x| |2, x̂ represents the estimated value, N MSEdB = 10log10(N MSE). In
Figure 10.1, we depict the normalized MSE (NMSE) performance of our proposed SAVED-KS al-
gorithm with the classical ALS algorithm which does not utilize any statistical information about
the dictionary or sparse coefficients. Our SAVED-KS algorithm has much better reconstruction
error performance compared to the ALS [213] and our joint VB version performs better than the
SAVED-KS version, but comes with a higher computational complexity due to the matrix inver-
sion. It is clear from Figure 10.2 that proposed SAVE approach has a faster convergence rate than
the ALS.
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Figure 10.2: Execution time in Matlab for the various algorithms.

10.5.3 Conclusions and Perspectives

Conclusions and Perspectives 11

• We presented a fast SBL algorithm called SAVED-KS, which uses the variational infer-
ence techniques to approximate the posteriors of the data, hyperparameters and the
factor matrices of the dictionary.

• We showed that the proposed algorithm has a faster convergence rate and better per-
formance in terms of NMSE than even the state of the art ALS solutions for dictionary
learning.

• Possible extensions to the current work might include: i) Convex combination of struc-
tured and unstructured KS factor matrices, for example, DoA response closeness to
the vandermonde. ii) Asymptotic performance analysis and mismatched Cramer-Rao
bounds [231] for the SAVED-KS algorithm.

• One of the disadvantage with our algorithm is that in the simulations it is observed
that it may not converge when the condition number of the factor matrices is high.
However, it is observed that the method proposed in [232] seems to avoid the sensitiv-
ity of ALS algorithms to ill-conditioned data. The proposed solution therein is based
on semi-algebraic approach that algebraically reformulate the CPD into a set of a si-
multaneous matrix diagonalization (SMD) problems. However, one drawback of their
method is that the rank of the tensor be known in advance. Hence, it would be worth
looking at a combination of SBL and such SMD methods to avoid the convergence is-
sue associated with our proposed dictionary learning in this thesis. This is left as a
future work.

10.6 Joint Dictionary Learning and Dynamic Sparse State Vector
Estimation

The signal model for the recovery of a time varying sparse signal under Kronecker structured
(KS) [212, 225] dictionary matrix can be formulated as

(10.29)
Observation: yt = (A(t )

1 ⊗A(t )
2 ....⊗A(t )

N )xt +vt ,
State Update: xt = Fxt−1 +wt ,
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10.6.1 Dynamic BP-MF-EP based SBL

The figure 9.2 represents the factor graph (FG) (note that static case is a special case with the state
update nodes being not present), where it is divided into two disjoint subsets ABP = fδn,t ∀n, l , t
and AMF represents rest of the factor or variable nodes. To combine BP and MF, we introduce
the new variables hn,t = A(t )

n,:xt , sl ,t = fl xl ,t−1 and the hard constraint factor nodes, fδn,t = δ(hn,t −
A(t )

n,:xt ),∀n ∈ [1 : N ], t , and f∆l ,t = δ(sl ,t − fl xl ,t−1),∀l ∈ [1 : M ], t . We can compute m fδn,t →xl ,t
(xl ,t ) =∫

fδn,t nhn,t→ fδn,t
(hn,t )

∏
l ′ 6=l

nxl ′ ,t→ fδn,t
(xl ′,t )

∏
l ′ 6=l

d xl ′,t . For notational brevity, we denote subscript (l ,n)

or (n, l ) to represent the messages passed from l to n or viceversa. All the messages (beliefs or
continuous pdfs) passed between them can be shown to be Gaussian [164] and thus it suffices to
represent them by the mean and variance of the beliefs. The joint distribution of all the observa-
tions and parameters can be written as, p(yt ,θt |y1:t−1) = p(yt |θt )p(θt |y1:t−1), where p(θt |y1:t−1)
denotes the predictive distribution. Similar as in KF, first we compute the posterior distribution
of θi ,t given the observations till (t −1), which is called as the prediction stage.

10.6.1.1 Diagonal AR(1) ( DAR(1) ) Prediction Stage

Since there is no coupling between the scalars in the state update (10.29), it is enough to update
the prediction stage using MF. However, the interation between xl ,t and fl requires Gaussian
projection, using expectation propagation (EP). For more detailed derivation, we refer to our
previous work [221] due to space limitations.

10.6.1.2 Measurement Update (Filtering) Stage

For the measurement update stage, the posterior for xt is inferred using BP. Note that we rep-
resent the mean of the messages by x̂(t )

n,l ,ν(t )
n,l . The mean and variance of the beliefs computed

at xl ,t are denoted by x̂l ,t |t ,σ2
l ,t |t . In the measurement stage, the prior for xl ,t gets replaced by

the belief from the prediction stage. We refer to our previous work [198] for detailed deriva-

tions and expressions for the messages. We define dl ,t = (
N∑

n=1
ν(t )−1

n,l )−1 ,rl ,t = dl ,t (
N∑

n=1

x̂(t )
n,l

ν(t )
n,l

+ x̂l ,t |t−1

σ2
l ,t |t−1

).

Given the messages, m fδn,t →xl ,t (xl ,t ), the belief q(xl ,t ) can be obtained as ( fλi (λi ) = p(λk |a,b)),

q(xl ,t ) ∝ fλi (λi )
N∏

n=1
m fδn,t →xl ,t ∝N (x̂l ,t |t ,σ2

l ,t |t ), where

(10.30)

σ−2
l ,t |t =λl ,t +d−1

l ,t , x̂l ,t |t

= rl ,t

1+dl ,tσ
−2
l ,t |t

.

One remark here is that compared to our previous work using VB [168], combining BP and MF
gives a more accurate approximation of the error variance as shown in (10.30), where σ2

l ,t |t in-

corporates the effect of all σ2
l ′,t |t , l ′ 6= l .

10.6.1.3 Lag-1 Smoothing Stage

We show in [198, Lemma 1] that KF is not enough to adapt the hyperparameters, instead we need
at least a lag 1 smoothing (i.e. the computation of x̂k,t−1|t ,σ2

k,t−1|t through BP). For the smooth-
ing stage, we use BP with Gaussian Markov Random Fields (GMRF) based factorization. GMRF
refers to the representation of BP [183], when the underlying Gaussian distribution is expressed
in terms of pairwise connections between scalar variables xi ,t . We skip the detailed derivation
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and instead refer to our paper [198]. Applying the MF rule from (9.8), the resulting Gaussian dis-
tribution has mean,σ−2

fi |t and variance, f̂i |t , the detailed derivations for which are in [198, Section
3.2.3]. The entire algorithm (a combination of BP, MF and EP, we call it as Combined BP-MF-EP
DAR-SBL) is described in Algorithm 15. Also we remark that for the estimation of λl ,γ, we follow
the same approach as in our paper [221] and we refer to it for more details. One remark here is
that another version called as Combined Vector BP-MF-EP DAR-SBL follows immediately from
the derivations for Algorithm 15, where all the components of xt are considered jointly in the
FG. Even though the performance will be higher (as observed in the simulations) for the vector
case, it comes at the cost of a higher complexity due to the matrix inversion involved. Note that
in Algorithm 19, we introduce temporal averaging for certain quantities (represented by <>|t )
in hyperparameter estimates and β being the temporal weighting coefficient which is less than
one, see [221] for more details. For the KS DL, the algorithm remains same as in our previous
work [125], which is denoted as space alternating variational estimation with Kronecker struc-
tured DL (SAVED-KS DL).

Algorithm 19: Combined BP-MF-EP DAR-SBL with KS DL

Initialization: f̂l |0, λ̂l |0 = a
b , γ̂0 = c

d , x̂l ,0|0 = 0,σ2
l ,0|0 = 0,∀l . Define Σt−1|t−1 = diag(σ2

l ,t |t−1).
for t = 1 : T do
Prediction Stage: 1. From [221], x̂l ,t |t−1 = f̂l |t−1x̂l ,t−1|t−1, σ2

l ,t |t−1 =
| f̂l |t−1|2σ2

l ,t−1|t−1 +σ2
fl |t−1(|x̂l ,t−1|t−1|2 +σ2

l ,t−1|t−1)+ λ̂−1
l |t−1.

Filtering Stage:

1. Compute x̂(t )
n,l ,ν(t )

n,l from [198, eq. (5)] and update x̂l ,t |t ,σ−2
l ,t |t from (10.30).

2. Compute ν(t )
l ,n , x̂(t )

l ,n from [198, eq. (7)]. 3. Continue steps 1) to 2) until convergence.

Smoothing Stage:
Initialization: Σ(0)

t−1|t = Σt−1|t−1, x̂(0)
t−1|t = x̂t−1|t−1. Define B(t ) =< FT A(t )T R̃−1

t A(t )F >
+Σt−1|t−1,ht =< FT A(t )T > R̃−1

t yt .

1. Pi , j =
−B (t )2

i , j

B (t )
i ,i +

∑
k∈N (i )\ j

Pk,i
, µi , j = (hi ,t + ∑

k∈N (i )\ j
Pk,iµk,i ),∀i , j .

2. σ−2
i ,t−1|t = B (t )

i ,i +
∑

k∈N (i )
Pk,i , x̂i ,t−1|t =σ2

i ,t−1|t (hi ,t + ∑
k∈N (i )

Pk,iµk,i )

Estimation of hyperparameters (Define: x ′
k,t = xk,t − fk xk,t−1,ζt = βζt−1 + (1 − β) <∥∥yt −A(t )xt

∥∥2 >), b′
t = (<

∣∣∣x ′
k,t

∣∣∣2 >|t +b).

1. Compute f̂l |t ,σ2
fl |t

from [198, eq. (11)], γ̂t = c+N
(ζt+d) and λl |t = (a+1)

b′
t

.

SAVED-KS DL: â j i = (b j )1, b j = (Y( j ) < X( j ) >< (
1⊗

k=N ,k 6= j
Ak )T >)i ,

Υ j ,i =β j ,i I, β j ,i = tr{(
1⊗

k=N ,k 6= j
< AT

k A∗
k >) < X( j )T X( j ) >}.
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10.6.2 Suboptimality of SAVED-KS DL and Joint VB

First, we define the unfolding operation on an N th order tensor Yt = [[A(t )
1 , ...,A(t )

N ;x]] as [213] (Y(n)
t

is of size In ×
N∏

i=1,i 6=n
Ii )

(10.31) Y(n)
t = A(t )

n X(n)
t (A(t )

N ⊗A(t )
N−1...A(t )

n+1 ⊗At
n−1...⊗A(t )

1 )T .

From the expression for the error covariance in the estimation of the factor a j i (tr{(
1⊗

k=N ,k 6= j
<

AT
k A∗

k >) < X( j )T X( j ) >}I), it is clear that it does not take into account the estimation error in the
other columns of A j . The columns of A j can be correlated, for example if we consider two paths
(say i , j ) with same DoA but with different delays, the delay responses v f (τi (t )) and v f (τi (t ))
may be correlated. However, since it is not clear how to model this dependency, we indeed keep
it as a future work. This suboptimality in the error covariance estimate using SAVED-KS resulting
from the correlation between the columns, can be avoided by using a joint VB [125]. The joint
VB estimates (mean and covariance) can be obtained as

(10.32)

MT
j = ÂT

1, j
=< γ>Ψ−1

j BT
j ,

Ψ j = (< γ>< X( j )(
1⊗

k=N ,k 6= j
< AT

k A∗
k >)X( j )T >),

where V j =< X( j ) >< (
1⊗

k=N ,k 6= j
Ak )T > and B j is defined as with the first row of (Y( j )VT

j ) removed.

However, the joint VB involves a matrix inversion and is not recommended for large system di-
mensions. Nevertheless, it is possible to estimate each columns of A j by BP, since each col-
umn estimate can be expressed as the solution of a linear system of equation from (10.32),
âT

j ,i = Ψ−1
j b j ,i . b j ,i represents the i th column of BT

j . The message passing expressions under
BP (using a GMRF based FG) for the factor matrices can be written as

(10.33)

ζm,n =−(Ψ j )2
m,n/(ζm,m + ∑

k∈N (m)\ j
ζk,m),

κm,n =
(ζm,mκm,m)+ ∑

k∈N (m)\ j
ζk,mκk,m

(Ψ j )m,n
,

where we initialize ζm,m = (Ψ j )m,m , κm,m = (b j ,i )m

(Ψ j )m,m ,ζm,n
= 0,κm,n = 0. Finally the mean (κm) and

variance (ζm) of the posterior belief can be computed as

(10.34)
κm =

ζm,mκm,m + ∑
k∈N (m)

ζk,mκk,m

ζm,m + ∑
k∈N (m)

ζk,m
,

ζm = ζm,m + ∑
k∈N (m)

ζk,m .

We remark that, the above BP based low complexity scheme for KS DL represents a major inno-
vation compared to our previous work [125], apart from the extension to the dynamic SBL case.
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10.7 Optimal Partitioning of the Measurement Stage and KS DL

In [125], we derived the Fisher Information Matrix (FIM) for the KS DL where the sparse vector
is static. Here, we reuse the FIM expressions to derive the optimal partitioning of the variables
in the measurement stage. We refer to our paper [233, Lemma 1], where the main message was
that if the parameter partitioning in VB is such that the different parameter blocks are decou-
pled at the level of FIM, then VB is not suboptimal in terms of (mismatched) Cramer-Rao Bound
(mCRB). More detailed overview on mCRB can be found in [234]. If a finer partitioning granular-
ity is used (such as up to scalar level as in MF), then VB becomes quite suboptimal, which can be
alleviated by using BP instead.

Lemma 7. For the measurement stage, an optimal partitioning is to apply BP for the sparse vector
xt and VB (SAVED-KS) for the columns of the factor matrices A(t )

j ,i assuming the vectors A(t )
j ,i are

independent and have zero mean. However, if the columns of A(t )
j are correlated, then a joint VB,

with the posteriors of the factor matrices assumed independent, should be done for an optimal
performance.

Proof: Let us define

(10.35)
F(i )

j = [0I j×I j (i−1) II j 0I j×I j (P j−i )],

Φ j ,t = vec(A(t )
j ).

We observe that we can separate the contributions of A(t ) and xt in (10.29) as

(10.36) yt = (
M∑

r=1
xr,t Fr )︸ ︷︷ ︸

F(xt )

(
N⊗

j=1
Φ j ,t )︸ ︷︷ ︸

f(Φt )

+wt .

We define

(10.37)

Fr =
⊗

p j i ,∀ j
F

(p j i )
j ,

r =
N∑

j=1
(p j i −1)J j +pNi ,

J j =
N∏

r= j+1
Pr .

Further, we can write the FIM as

(10.38)

J(Φt ,xt ) = [J(Φt ) J(xt )],

J(Φt ) = [J(Φ1,t ) .....J(ΦN ,t )]

where,J(Φ j ,t ) = F(xt )(Φ1,t ⊗ ...II j P j ....⊗ΦN ,t ),

J(xt ) = [F1(
N⊗

j=1
Φ j ,t ), ...., FM (

N⊗
j=1

Φ j ,t )) ].

Further, the FIM for the case of SBL can be derived as [125]

(10.39) F I M =


E(γ)J(Φt )T J(Φt ) 0 0 0

0 E(γ)J(xt )T J(xt )+ E(Ξ−1) 0 0
0 0 a E(Ξ−2) 0
0 0 0 (N + c −1)E(γ−2)


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Here, γJ(xt )T J(Φt ) = 0, since xt is zero mean. If the all columns of A(t )
j are independent and

zero mean, then E(J(Φt )T J(Φt )) becomes a diagonal matrix with no coupling between the free
variables of any two different columns of the factor matrices. However, if any factor matrix is A(t )

j

is correlated, it is suboptimal to factorize the columns of A(t )
j independently in the approximate

posterior. Hence, in this case, a joint VB method (which has higher complexity) would be optimal
to estimate the posterior distributions and this indeed justify the superior performance of joint
VB approach described in Section 10.6.2.

10.8 Simulation Results

For the observation model, the parameters chosen are N = 256, M = 200. For the simulations,
we consider a 3−D tensor with dimensions (4,8,8) and the number of non-zero elements of xt

or the rank of the tensor (no of non-zero elements of xt ) is fixed to be K = 16. All signals are
considered to be real in the simulation. All the elements of the factor matrix A(t )

j (time varying)

are generated i.i.d. from a Gaussian distribution with mean 0 and variance 1. The rows of A(t ) are
scaled by

p
16 so that the signal part of any scalar observation has unit variance. Taking the SNR

to be 20dB, the variance of each element of vt (Gaussian with mean 0) is computed as 0.01.
Consider the state update, xt = Fxt−1 +wt . To generate x0, the first 16 elements are chosen

as Gaussian (mean 0 and variance 1) and then the remaining elements of the vector x0 are put
to zero. Then the elements of x0 are randomly permuted to distribute the 30 non-zero elements
across the whole vector. The diagonal elements of F are chosen uniformly in [0.9,1). Then the
covariance of wt can be computed as Ξ−1(I−FFT ). Note that Ξ contains the variances of the
elements of xt (including t = 0), where for the non-zero elements of x0 the variance is 1. Follow-
ing observations can be made from the simulations. In Figure 10.3, which is for static SBL case
with DL, there is substantial improvement in NMSE compared to our previous work [125]. Our
proposed low complexity algorithm using BP has similar performance as that of joint VB which
has higher complexity.
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Figure 10.3: Static SBL: NMSE as a function of N .
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10.9 Conclusions and Perspectives

Conclusions and Perspectives 12

• We have presented here a low complexity algorithm for KS DL using a combination of
BP, VB and EP.

• The motivation behind the proposed algorithm is to circumvent the suboptimality as-
sociated with incorrect posterior covariance computation for the columns of the factor
matrices in our initial work based on mean field variational Bayes.

• However, we are still unclear whether the proposed algorithm is robust enough to per-
form comparably with the variations in the model of KS A(t ), which is left as a future
work.

• We remark here that even though we do not consider any parametric forms for the kro-
necker factor matrices, these can have further parsimonious parameterization such as
Vandermonde, which may improve the identifiability.

• Moreover, it is an interesting observation that the couplings between different path
components can be efficiently handled by BP compared to mean field VB.



Chapter 11

SPARSE BAYESIAN LEARNING FOR A BILINEAR CALIBRA-
TION MODEL AND MISMATCHED CRB

11.1 Introduction

VB estimation allows for approximate Bayesian inference. It determines the closest approxima-
tion in the factored form of the posterior distribution by minimizing the Kullback-Leibler dis-
tance to the posterior distribution even if this last one is difficult to determine. Despite this well
motivated derivation, the performance of VB techniques is not very clear, especially compared to
more classical performance bounds. In this chapter, we explore recently introduced mismatched
Cramer-Rao bounds (mCRB) for Bayesian estimation in the context of VB estimation. We focus
on the case of bilinear signal models. One particular application of these models arises in the
context of internal relative reciprocity calibration of Massive antenna arrays, in which the re-
ceived signals are linear in terms of an intra array channel and the relative calibration factors.
A VB approach allows for particularly improved estimation performance that goes beyond the
classical CRB, which is now confirmed by the mCRB.

Massive MIMO (Multiple Input Multiple Output) requires CSIT (Channel state information at
Tx) acquired using channel reciprocity for a TDD (Time Division Duplexing) system. However,
Radio Frequency (RF) components are not reciprocal and we need to calibrate to compensate
for this. This calibration is typically achieved by a simple complex scalar multiplication at each
transmit antenna. Initial approaches to calibration relied on explicit channel feedback from a
user equipment (UE) during the calibration phase to estimate the calibration parameters. This is
typically referred to as UE aided calibration. However, what is popular today [235] is to perform
the calibration across the antennas of the base station (BS) only and is referred to as internal
calibration. In [236], the authors propose a generalized approach towards reciprocity calibration
of which the existing estimation techniques are special cases.

Both the classical deterministic estimation theory and Bayesian framework are based on the
assumption that the assumed data model and the true data model (pdf) are the same. How-
ever, in practice, either we may only have imperfect knowledge of the true data model or due to
computational complexities associated with the computation of the true posterior distributions,
we prefer approximate Bayesian inference (VB). In such a misspecified estimation framework,
it is important to quantify the performance of the estimator using a mismatched Cramer-Rao
bounds (mCRB) [231].

205
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Figure 11.1: Reciprocity Model

11.1.1 Summary of this Chapter:

• We first review the constrained CRB for the case of a bilinear system model (linear in terms
of the relative calibration factors and reciprocal channel coefficients).

• We propose a VB (and other variants like AMAP, EC-VB) based estimation algorithm for the
joint estimation of the calibration parameters, reciprocal channel coefficients, and hyper-
parameters (precisions of the bilinear factors).

• Simulations demonstrate that the mean square error (MSE) of the VB can be lower than
that of the deterministic CRB. Motivated by this result, we derive simple and elegant ex-
pressions for the mCRB using Laplace approximation for the relative calibration factors.

11.2 Reciprocity Calibration System Model

Consider a system as in Fig. 11.1, where A represents a BS and B represents a UE, each containing
MA and MB antennas, respectively. The channel as observed in the digital domain, HA→B and
HB→A can be represented by,

(11.1)
HA→B = RB CA→B TA ,

HB→A = RACB→ATB ,

where (diagonal) matrices TA , RA , TB , RB model the response of the transmit and receive RF
front-ends, while CA→B and CB→A model the propagation channels, respectively from A to B and
from B to A. Let us consider an antenna array of M elements partitioned into G groups denoted

by A1, A2, . . . , AG . Group Ai contains Mi antennas such that
G∑

i=1
Mi = M . Each group Ai transmits

a sequence of Li pilot symbols, defined by matrix Pi ∈ CMi×Li where the rows correspond to
antennas and the columns to successive channel uses. After all G groups have transmitted, the
received signal for each resource block of bidirectional transmission between antenna groups i
and j is given by

(11.2)

{
Yi→ j = R j Ci→ j Hi Pi +Ni→ j ,
Y j→i = Ri C j→i H j P j +N j→i .

We define Fi = R−T
i Hi and F j = R−T

j H j to be the calibration matrices for groups i and j . Also,
fi = vec(Fi ) represents the vectorized version. This needs to be augmented with a constraint
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C ( f̂ , f) = 0. Typical choices for the constraint are

1) Norm plus phase constraint (NPC):
norm: Re{C ( f̂ , f)} = ||f̂||2 − c , c = ||f||2,
phase: Im{C ( f̂ , f)} = Im{ f̂ H f} = 0.

(11.3) 2) Linear constraint: C ( f̂ , f) = f̂H g− c = 0 .

If we choose the vector g = f and c = ||f||2, then the Im{.} part of (11.3) corresponds to (11.3).
The most popular linear constraint is the First Coefficient Constraint (FCC), which is (11.3) with
g = e1, c = 1. From (11.2), we have

(11.4)
Yi→ j = R j Ci→ j RT

i︸ ︷︷ ︸
H i→ j

Fi Pi +Ni→ j .

We define H i→ j = R j Ci→ j RT
i to be an auxiliary internal channel (not corresponding to any phys-

ically measurable quantity) that appears as a nuisance parameter in the estimation of the calibra-
tion parameters. Note that the auxiliary channel H i→ j inherits the reciprocity from the channel
Ci→ j : H i→ j =H T

j→i . Upon applying the vectorization operator for each bidirectional transmis-
sion between groups i and j , we have

(11.5) vec(Yi→ j ) = (PT
i ∗H i→ j ) fi +vec(Ni→ j ).

In the reverse direction, using H i→ j =H T
j→i , we have

(11.6) vec(YT
j→i ) = (H T

i→ j ∗PT
j )f j +vec(N j→i )T .

Alternatively, (11.5) and (11.6) may also be written as

(11.7)
vec(Yi→ j ) = [

(Fi Pi )T ⊗ I
]

vec(H i→ j )+vec(Ni→ j )

vec(YT
j→i ) =

[
I⊗ (PT

j F j )
]

vec(H i→ j )+vec(N j→i ).

Stacking these observations into a vector

y = [
vec(Y1→2)T vec(YT

2→1)T vec(Y1→3)T . . .
]T

, the above two alternative formulations can be sum-
marized into

(11.8)
y =H (h,P)f+n

=F (f,P)h+n,

where h = [
vec(H 1→2)T vec(H 1→3)T vec(H 2→3)T . . .

]T
, and n is the corresponding noise vector.

The expressions for the composite matrices H and F are the same as given in [237, equation
(18)]. The scenario is now identical to that encountered in some blind channel estimation sce-
narios and hence we can take advantage of some existing tools [238], [239], which we exploit
next.
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11.2.1 Cramér-Rao bound

Treating h and f as deterministic unknown parameters, and assuming that the receiver noise n
is distributed as C N (0,σ2I), the Fisher Information Matrix (FIM) J for jointly estimating f and h
can immediately be obtained from (11.8) as

(11.9) J = 1

σ2

[
H H

F H

][
H F

]
.

The computation of the CRB requires J to be non-singular. However, for the problem at hand,
J is inherently singular. In fact, the calibration factors (and the auxiliary channel) can only be
estimated up to a complex scale factor since the received data (11.8) involves the product of
the channel and the calibration factors, H f = Fh. As a result the FIM has the following null
space [240], [241]

(11.10) J
[
fT −hT

]T = 1

σ2

[
H F

]H
(H f−Fh) = 0.

To determine the CRB when the FIM is singular, constraints have to be added to regularize the
estimation problem. As the calibration parameters are complex, one complex constraint cor-
responds to two real constraints. Another issue is that we are mainly interested in the CRB for
f, the parameters of interest, in the presence of the nuisance parameters h. Hence we are only
interested in the (1,1) block of the inverse of the 2×2 block matrix J in (11.9). Incorporating the
effect of the constraint (11.3) on f, we can derive from [241] the following constrained CRB for f

(11.11) CRBf =σ2Vf
(
V H

f H H P ⊥
F H Vf

)−1
V H

f ,

where P X = X (X H X )H X H and P ⊥
X

= I−P X are the projection operators on resp. the col-
umn space of matrix X and its orthogonal complement, and H corresponds to the Moore-
Penrose pseudo inverse. Note that in some group calibration scenarios, F H F can be singular
(i.e, h could be not identifiable even if f is identifiable or even known). The M × (M−1) matrix Vf

is such that its column space spans the orthogonal complement of that of ∂C ( f )
∂f∗ , i.e., P Vf =P ⊥

∂C
∂f∗

.

It is shown in [240], [241], [242] that a choice of constraints such that their linearized version
∂C
∂f∗ fills up the null space of the FIM results in the lowest CRB, while not adding information in
subspaces where the data provides information. One such choice is the set (11.3) (NPC). An-
other choice is (11.3) with g = f. With such constraints, ∂C

∂f∗ ∼ f which spans the null space of
H H P ⊥

F
H . The CRB then corresponds to the pseudo inverse of the FIM and (11.11) becomes

CRBf = σ2
(
H H P ⊥

F
H

)H
. If the FCC constraint is used instead (i.e., (11.3) with g = e1, c = 1),

where e1 is an all zero vector with only the first coefficient one, the corresponding CRB is (11.11)
where Vf corresponds now to an identity matrix without the first column (and hence its column
space is the orthogonal complement of e1).

11.2.2 Variational Bayes (VB) Estimation

In VB, a Bayesian estimate is obtained by computing an approximation to the posterior distri-
bution of the parameters h, f with priors f ∼ C N (0,α−1IM), h ∼ C N (0,β−1INh ) and α,β are
assumed to have themselves a uniform prior. Nh is the number of elements in h. This ap-
proximation, called the variational distribution, is chosen to minimize the Kullback-Leibler dis-
tance between the true posterior distribution p(h, f,α,β|y) and a factored variational distribu-
tion q(h, f,α,β|y) = qh(h) qf(f) qα(α) qβ(β). The factors can be obtained in an alternating fashion
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as [243],

(11.12) ln(qθi (θi )) =< ln p(y,h, f,α,β) >k 6=i +ci ,

where θi refers to the i th block of θ = [h, f,α,β] and <>k 6=i represents the expectation operator
over the distributions qθk for all k 6= i . ci is a normalizing constant. Further considering the con-
straints on f (f⊥ represents the component of f in the null space of the constraint) and applying
VB (11.12)

(11.13)

f = f′+V f f⊥,

f′ = g
c∥∥g
∥∥2 ,

fH g = c > 0,

V H
f V f = I,

ln qf(f) = 1

σ2 (f′H + fH
⊥V H

f ) <H H > y+ 1

σ2 yH <H > (f′+V f f⊥)

− 1

σ2 (f′H + fH
⊥V H

f ) <H H H > (f′+V f f⊥)−<α> ‖f⊥‖2 + c f ,

ln qh(h) = hH <F H > y+yH <F > h−hH <F HF > h

σ2 −<β> hH h.

Here, Ny refers to the number of elements in y and c is a constant. Here cp ,c f represents the
normalization constants for the respective pdfs. We shall assume here that the noise variance
σ2 is known (or estimated in a separate training procedure). It is now straightforward to see that
proceeding as in (11.12), α,β would have a Gamma distribution and a complex normal distri-
bution for f ∼ C N ( f̂ ,C f̃ f̃ ) and h ∼ C N (ĥ,Ch̃h̃). The detailed expressions are summarized in

Algorithm 20. When G = M , C f̃ f̃ and Ch̃h̃ are diagonal and <F H (f̃)F (f̃) >, <H H (h̃)H (h̃) >
can be computed easily (diagonal). However, when G < M , these matrices are block diagonal.
An approximate version of Algorithm 20, EC-VB (Expectation Consistent [244] VB) [237] where

Algorithm 20: VB Estimation of calibration parameters

1: Initialization: Initialize f̂ using existing calibration methods. Use f̂ to determine ĥ,<α>,<
β>, with g = e1.

2: repeat
3: <H H H >=H H (ĥ)H )(ĥ)+<H H (h̃)H (h̃) >.
4: f̂⊥ = (V H

f (<H H H >+σ2 <α> I)V f )−1V H
f (<H H > y−<H H H > f′)

5: C f̃ f̃ = V f (V H
f ( 1

σ2 <H H H >+<α> I)V f )−1V H
f

6: <F H F >=F H ( f̂ )F ( f̂ )+<F H (f̃)F (f̃) >
7: ĥ = (< F H F > +σ2 < β > I)−1F Hy, Ch̃h̃ = ( 1

σ2 < F H F > + < β > I)−1, < α >= M
<‖f⊥‖2> ,

< ‖f⊥‖2 >= f̂ H
⊥ f̂⊥+ tr {C f̃⊥ f̃⊥} .

8: <β>= Nh+1
<‖h‖2> , < ‖h‖2 >= ĥ

H
ĥ+ tr {Ch̃h̃}.

9: until convergence.

the error covariance matrix are approximated to be multiple of identity is also considered in the
simulations. Note here that by forcing the matrices C f̃ f̃ , Ch̃h̃ to zero and α,β to zero, this algo-
rithm reduces to the Alternating Maximum Likelihood (AML) algorithm [238, 239] which itera-
tively maximizes the likelihood by alternating between the desired parameters f and the nuisance
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parameters h for the formulation (11.8). The penalized ML method used in [245] uses quadratic
regularization terms for both f and h which can be interpreted as Gaussian priors and which may
improve estimation in ill-conditioned cases. In our case, we arrive at a similar solution from the
VB perspective and more importantly, the regularization terms are optimally tuned.

11.3 Mismatched CRB’s

As can be seen in Fig. 11.2, VB allows us to attain lower MSE than the CRB (for deterministic
parameters). One possibility to evaluate the performance is to consider the Bayesian CRB. How-
ever, VB is an approximate Bayesian estimation technique. Also, a Bayesian CRB is valid only
if the (Gaussian) priors for f and h are the correct priors. However, the interest of the VB tech-
nique is that it will converge to the most appropriate priors even if the parameters f and h are
deterministic! This requires Mismatched CRBs. In this chapter, we explore the Bayesian mCRB
exposed in [234, 246].

Under a mismatched distribution model, it is important to define the convergence point θ
(also called as a pseudo true parameter) which is used to evaluate the effectiveness of the es-
timator, since no true parameter vector may exist under the assumed distribution q . The VB
convergence point (of complete θ) is the MAP of Ep (

∑
i ln(qθi (θi ))) (assuming large amount of

data), so ln of a product of q’s = sum of ln of q’s and converges to its expected value according
to actual pdf p (law of large numbers). Similar to [234] (misspecified CRBs) which considers de-
terministic case, we do it also for random θ, but not neglecting priors in the asymptotic regime
(considering some fictitious asymptotic regime in which prior information scales similarly as in-
formation in data, so that both continue to count, but get a Gaussian concentration around the
convergence point).

11.3.1 mCRB Bilinear Model

CRB corresponds to Laplace approximation of MAP or VB. Laplace approximation [243] refers to
the evaluation of marginal likelihood or free energy using Laplace’s method. This is equivalent
to a Gaussian approximation of the posterior q around a maximum a posteriori (MAP) estimate,
motivated by the fact that in the asymptotic limit (a large amount of data or high SNR), the pos-
terior approaches a Gaussian around the MAP point [234]. Gradients of ln q can be taken from
the recursions for ln q (11.12), so it is the gradients of ln p as usual, except with averaging over qī
for gradient and Hessian as we will show here. But the final error covariance matrix of Laplace
approximation (2nd order Taylor) is the expectation with p. Let θ̂ be an estimator of θ based on
the approximate posterior q and the assumed prior. Let ζ = θ̂−θ, where the estimator mean is
evaluated at the point θ. First, we need to find θ. This corresponds to the peak of the posterior
pdf in an asymptotic scenario of a large amount of data or high SNR, computation of which is de-
rived in 11.3.2. Throughout the chapter, the vector θi represents a subset of θ and θi represents
a scalar parameter in θ. In this section θ (a column vector) contains the parameters h, f and ψ
the precision parameters, α,β and θ0 denote the true value of θ. θ (orψ) can be evaluated as

(11.14)
θi = argmax

θi

Ep(y,θ0) ln q(θi )

= argmax
θi

Ep(y|θ0) ln < p(y,θ) >ī .

Even though the parameters are modeled as random for estimation, but we assume that in reality

they are deterministic. So the expectation over p(θ) disappears in (11.14). Also, we define θ̃ =
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θ−θ0, θ̃ = θ̂−θ0 = ζ+ θ̃. For any choice of score function η using a matrix generalization of the
Cauchy Schwartz inequality [231, 246], the error correlation matrix can be written as

(11.15) mCRB = Rθ̃θ̃ = Ep θ̃ θ̃
H ≥ RζηR−1

ηηRηζ + θ̃ θ̃
H

,

where Rζη = E(ζηH ) and Rζζ = E(ζζH ).
The score function can be written as

(11.16)
η = ∂

∂θ∗
ln q(θ) |θ −Ep(y|θ0)

∂

∂θ∗
ln q(θ) |θ

= ∂

∂θ∗
ln q(θ) |θ −Ep(y|θ0)(

∂

∂θ∗
ln q(θ) |θ).

The choice of the score function is motivated by the requirements for the tightness of the CRB
detailed in [231] that it should be zero mean and depends on the sufficient statistic for estimating
θ. So the score function here is the score function for the deterministic CRB minus its possibly
non zero-mean under the true model p(y,θ0). Also, the particular choice score function (11.16)
results in Ep(y|θo )(

∂
∂θ∗ ln q(θ) |θ) = 0, due to the Laplace approximation of θ around the asymp-

totic estimate θ. Further, under concentration conditions (data asymptotics or SNR asymptotics,
or perhaps prior asymptotics (becoming very precise)), we can do a 2nd order Taylor series of
misspecified posterior. The Taylor series expansion of the data likelihood around θ is given by

(11.17)
log q(y,θ+∆θ) = log q(y,θ)+∆θH ∂ log q(y,θ)

∂θ∗
|θ +

∆θH ∂
2 log q(y,θ)

∂θ∗θT
|θ ∆θ+o(‖∆θ‖2).

Further neglecting the higher order terms and equating the derivative w.r.t ∆θ∗ to be zero yields
an approximation of the error term ζ as

(11.18) ζ=−(
∂2 log q(y,θ)

∂θ∗θT
|θ)−1 ∂ log q(y,θ)

∂θ∗
|θ .

Note that we can replace the Hessian and ∂ log q(y,θ)
∂θ∗ in (11.18) by Ep(y|θ)(

∂2 log q(y,θ)
∂θ∗θT ) and Ep(y|θ)(

∂ log q(y,θ)
∂θ∗ )

respectively in the asymptotic limit. Taking the derivative of the data log-likelihood gives

(11.19)

∂ log q(θ)

∂θ∗
=− 1

σ2

 0
V H

f <H H H > f−V H
f <H > y+<α> f⊥

<F H F > h−<F H > y+<β> h

 ,

Ep(y|θ)
∂2 log q(θ)

∂θ∗θT
=−V H QV ,

Q = 1

σ2 blkdiag(0,V H
f <H H H > V f +<α> I,<F H F >+<β> I).

where blkdiag(·) represents the block diagonal matrix formed by the respective matrix elements

in the block. The evaluation of Q at the asymptotic limit, θ, be denoted as Q. Let E(∂ log q(y,θ)
∂θ∗ ) |θ=

f (θ). The error term ζ can then be expressed as, ζ = V (V H QV )−1V H f (y,θ). Note that V = [0 I].
The cross correlation matrix between ζ and η becomes

(11.20)
Rζη =−V (V H QV )−1V H f (y,θ) f (y,θ)H

=−(V (V H QV )−1V H f (y,θ) f (y,θ)H ).
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Here f (θ) f (θ)H = Jq . Finally substituting (11.20) in (11.15), we obtain (define MFIM to be the
corresponding mismatched FIM)

(11.21) mCRB = V (V H QV )−1V H JqV (V H QV )−1V H + θ̃ θ̃
H

.

Further we derive the mCRB for VB (mCRBV B ) with the posteriors of h, f being factorized.

Lemma 8. If the parameter partitioning in VB is such that the different parameter blocks are de-
coupled at the level of the Fisher Information Matrix, then VB is not suboptimal in terms of (mis-
matched) Cramer-Rao Bound. If a finer partitioning granularity is used (such as up to scalar level
as in mean field), then VB becomes quite suboptimal.

So in the too fine partitioning case, the VB partitioning is applied to the MFIM, taking a too fine
block diagonal part, and since that partitioning is finer than the block diagonal MFIM structure,
then the inverse of the too fine block diagonal part of the FIM does not give the correct CRB. So
mCRBV B = (blockdiag(MFIM))−1 6= mCRB.

(11.22)
mCRBV B = V f (V H

f (Af,f)
−1V f )−1V H

f + θ̃ θ̃
H

A = V (V H QV )−1V H JqV (V H QV )−1V H ,

A evaluated at θ, Aff = (f, f) block of A (here it is the product of block diagonal of 3 factors), mCRB
above for given θo . Some remarks which follow from our mCRB analysis are stated below.

• mCRB in this chapter are along the lines of [231] and it is applicable to all estimators with
same bias and cross-correlation matrix.

• This mCRB, is mismatched because we introduce an artificial prior. Asymptotically (i.e. at
high SNR), the MSE of either alternating MAP (AMAP) or VB or EC-VB should match this
mCRB.

• Asymptotically, the suboptimality of VB is not in its mean, it is only in the approximation of
the error covariance, which should underestimate the actual error covariance: [(Jq )−1]1,1 >
((Jq )1,1)−1.

• Our view point of first working for given θ is compatible with the view that actually the θ
may be be deterministic (prior for θ = δ(θ−θ0), dirac delta function at true value) and the
idea of doing Bayesian or VB is just to create a bias so that the biased estimator would reach
lower MSE, in particular below the CRB. James-Stein estimator [247] was the first instance
of this. In case of James-Stein, they are able to show that the deterministic MSE is lowered
by adding the prior (with optimized/estimated variance hyperparameter). Then VB (with
estimated = optimized hyperparameters) is a way of making sure that this bias is useful,
optimizes MSE in some sense, within the class of estimators determined by the stucture of
the prior chosen. In other words, these Bayesian estimators provide a way to introduce a
useful bias (shrinkage) that allows to lower MSE (from the point of view of deterministic
parameters, with a single true value).

11.3.2 Computation of Convergence Point

Starting from (11.14), the resulting (deterministic) θ is obtained by running alternating MAP
(initialized by the true θo). Or one can also run the VB, by putting n = 0 in y, and considering
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h̃ = 0, f̃ = 0,hence also Ch̃h̃ = 0,C f̃̃f = 0. So, the VB converges to θ. For computing f, substituting

for y = H 0f0 +n in (11.14) (similarly for the computation of h, need to consider the alternative
representation of y (11.8))

(11.23)
Ep(y|θ) ln<p(y,θ,ψ) >ī =−Ny lnσ2 − 1

σ2 (< ∥∥H 0f0 −H f
∥∥2 >+σ2,0Ny )

+ (M −1) < lnα>−<α> ‖f⊥‖2 +Nh < lnβ>−<β>< ‖h‖2 >+c.

The derivative of (11.23) w.r.t f,α,β,h leads to Algorithm 21. Note that the Algorithm 21 applies

Algorithm 21: Computation of Asymptotic Estimates, θ

1: Initialization: Initialize f using existing calibration methods (f = f′+V f f⊥).
2: repeat

3: f⊥ = (V H
f H

H
H V f +σ2αI)−1(V H

f H
H

H 0f0 −V H
f H

H
H f′).

4: h = (F
H

F +σ2βI)−1(F
H

F 0h0).

5: α= M

<
∥∥∥f⊥

∥∥∥2>
, β= Nh+1

<
∥∥∥h

∥∥∥2>
, σ2 =σ2,0 + 1

Ny

∥∥∥H 0f0 −H f
∥∥∥2

.

6: until convergence.

to any partitioning of the variables in the approximate posterior q , where for VB (11.12), there

will only be one iteration with the initial values for H
H

H =< H H H > or H =< H > (by the
converged values of VB).

11.4 Simulations

In this section, we assess numerically the performance of various calibration algorithms and also
compare them against their CRBs. The Tx and Rx calibration parameters for the BS antennas are
assumed to have random phases uniformly distributed over [−π,π] and amplitudes uniformly
distributed in the range [1− δ,1+ δ]. SNR is defined as the ratio of the average received sig-
nal power across channel realizations at an antenna and the noise power at that antenna. In
Fig. 11.2, it is clear that VB MSE can go lower than the determinsitic CRB and close to the mCRB.
In Fig. 11.3, we compare the MSE performance of various VB variants with mC RBV B and deter-
ministic CRB. It shows the performance improvement of VB w.r.t deterministic CRB or AML at
all SNR and also the accurate behaviour of our derived mCRB expressions. We consider transmit
schemes that transmit from one antenna at a time (G = M) and compare their MSE performance
with the CRB. The MSE with FCC for Argos, Rogalin [248] and the VB method in Algorithm 20 is
plotted. The curves are generated over one realization of an i.i.d. Rayleigh channel and known
first coefficient constraint is used. These curves are compared with the CRB derived in 11.2.1 for
the FCC case and it can be seen that the AML curve overlaps with the CRB at higher SNRs. Also
plotted is the CRB as given in [245] assuming the internal propagation channel is fully known
(the mean is known and the variance is negligible) and a (small) underestimation of the MSE can
be observed as expected.

11.5 Conclusions

In this chapter, we came up with a simple and elegant derivation of the mCRB for a general cal-
ibration framework that includes as subsets all existing calibration techniques. For the case of
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Figure 11.2: Convergence of the various iterative schemes for M =G = 16.
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Figure 11.3: Comparison of single antenna transmit schemes with the CRB (G = M = 16,Li =
1,∀i ,δ= 0.5).

groups involving a single antenna, the conventional CRB derivation assuming the first coefficient
known has also been provided. An optimal estimation algorithm based on VB is also introduced
along with its variants. We further derived mismatched CRB to validate the performance im-
provement over deterministic CRB. All these techniques have been compared via simulations in
terms of both MSE performance and speed of convergence.



Chapter 12

CONCLUSIONS AND FUTURE WORK

In this thesis, we looked at various aspects of massive MIMO communications. In this final chap-
ter, we provide some concluding remarks for each of three parts of this thesis. Furthermore, we
look at various possible straightforward extensions to the current work here and also some future
topics which needs to be explored. We try to highlight both the pros and cons of our various pro-
posed solutions and some possible future directions to circumvent the disadvantages associated
with them.

12.1 Beamforming Techniques for Massive MIMO

The first part of the thesis focused on beamforming techniques for massive MIMO, focusing on
maximizing the sum throughput across all users in the network. One potential solution to cir-
cumvent the hardware complexity and power consumption issues in MaMIMO is hybrid beam-
forming. First part of the thesis started with efficient HBF solutions based on optimizing the
WSR. Further, we moved to fully digital solutions under partial CSIT. It has to be mentioned that
all the digital BF solutions proposed here can be easily extended to HBF case. We specifically
looked at pathwise CSIT, where only the fast fading components are assumed to be unknown.
We also looked at pilot contamination issue in MaMIMO networks. We proposed an efficient so-
lution based on the concept of rate splitting to mitigate the pilot contamination issue. Following
are the main conclusions on the first part on BF techniques.

• Hybrid beamforming (HBF) provides both beamforming (BF) gain (using analog phase
shifters) and spatial multiplexing using digital beamformer.

• For a multi-cell multi-user MIMO system, we proposed a joint beamforming design and
power allocation algorithm by maximizing the weighted sum rate (WSR). Weighted sum
rate maximization is highly non convex due to the objective function being non convex
and non convex constraints (unit modulus constraints on analog BF). Hence existing works
mostly focus on suboptimal approaches whereas we try to solve the original WSR problem.

• For the analog phasors, we used a technique called deterministic annealing which can
track the global optimum solution starting from the unconstrained analog BF. Our solution
surpasses (in terms of spectral efficiency) the existing state of the art designs which are
suboptimal.

• In the follow up works, we also extended our design to the case of 1) wideband OFDM
system, 2) HBF under per-antenna power constraints which are more realistic and 3) full
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duplex backhaul link under a limited dynamic range noise model (which approximates the
non linearities in the RF chain).

• For the full duplex system, we considered for the first time in the literature an analog BF
which mitigates the self interference such that it avoids the ADC saturation in the receive
chain.

• One disadvantage of our above mentioned HBF designs is high computational complexity
which may not be practically feasible to implement. However, our algorithms are still use-
ful as a benchmark solutions for the existing suboptimal solutions in the literature. So one
possible future direction is to look at a low complexity design, possible approach could be
based on deep learning techniques or an efficient minorizer for the WSR which leads to a
low complexity BF solution.

• Our HBF solutions can be easily extended for the case of partial CSIT and one possible
direction is to use the upper bound of EWSR (ESIP-WSR) to optimize the precoders.

• Another future direction is to look at efficient channel estimation schemes in the case of
hybrid systems under mmWave OFDM systems. This can be challenging since at the base-
band side, we only observe a low dimensional channel. One possible strategy will be to
look at sparse Bayesian learning techniques discussed in this thesis.

• In the next chapters, we move to fully digital BF solutions in MaMIMO. As the digital pro-
cessing capabilities continue to increase tremendously, it is possible that in the future fully
digital solutions may still become feasible for MaMIMO. Moreover, for the spectral effi-
ciency analysis, it becomes more simplistic to consider fully digital solutions. Firstly, we
consider a robust BF design under pwCSIT, wherein the BFs are optimized using an upper
bound of the EWSR (called ESIP-WSR). We show through analysis and simulation results
the extreme SNR behaviour of the pwCSIT based BF design. It can be shown that at high
SNR, the ZF across the paths occur (assuming antenna dimensions are enough) and the
task gets split between Tx and Rx precoders.

• In the uplink of MaMIMO TDD system, UEs that transmit the same pilot signal contami-
nate each others channel estimates. This pilot interference not only reduces the CSI qual-
ity but also creates the so-called coherent interference, which has been believed to funda-
mentally limit the spectral efficiency (SE) of MaMIMO, even when M →∞.

• The aim of our work is to deal with the pilot contamination effect for a finite M in a single
cell multi-user MIMO system.

• A possible solution: A rate splitting (RS) approach that splits the UEs messages into com-
mon and private parts, encode the commmon parts into a common stream, and private
parts into private streams and superpose in a non-orthogonal manner the common stream
on top of all private streams. Common stream carriers a part of the message of all or a sub-
set of UEs in the cell. At each UE, the common stream is first decoded, by treating the
interference from the private streams as noise. Further successive interference cancella-
tion (thus partially canceling the interference) is done to decode the private stream of the
user.

• A maximum ratio (MR) precoding scheme is used for private streams while a precoder
based on a weighted combination of the channel estimates of all UEs is adopted for the
common stream.
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• A novel algorithm is proposed to allocate the power among the common and private streams.
In simulations: we observe that the RS scheme does help to mitigate the pilot contamina-
tion effect for a finite number of antennas. As K increases, the gain provided by RS de-
creases. The larger K , the lower the common rate since the common message has to be
decoded by all UEs. First time in the literature to consider RS scheme to mitigate the pilot
contamination.

12.2 Asymptotic Analysis for Massive MIMO

In MaMIMO systems, the signal and interference powers converge to deterministic quantities
(this is called as channel hardening) due to the law of large numbers. This in turn leads to deter-
ministic expressions for the SINR and rate. In this part, we look at spectral efficiency computa-
tion using large system analysis results in random matrix theory. Our aim here is to obtain sim-
plified sum rate expressions which give intuitive understanding of the network behavior. Here
are the main results and some future perspectives on this topic which we looked at.

• As a starting point for large system analysis, we looked at a simplistic scenario wherein
the user channel covariance matrices are treated as a multiple of identity. This scale factor
indeed represents the channel attenuation and can be different for different users. One
direct implication of this assumption (which may not be very practical) is that different
users may have the same scattering geometry around it and this can occur possibly in the
case when all users are colocated. Further, we proposed a simplified BF scheme called RO-
ZF BF. We showed that the SE performance of RO-ZF BF is quite close to that of the optimal
MMSE BF. We obtained simplified sum rate expressions for RO-ZF, ZF and ZF-DPC BFs for
both perfect CSIT and partial CSIT case. In the later chapters, we started looking at more
complex channel models, where the user channel covariance matrices are all distinct.

• Why large system analysis? Monte-Carlo simulations involving large numbers of antennas
and user equipments (UEs) become cumbersome in MaMIMO. Existing large system re-
sults on multi-user massive MIMO systems consider spatially uncorrelated fading, which
is quite unrealistic.

• In a multi-user MaMIMO system, transmit correlation diversity (different users may have
different covariance matrices spanning mutually orthogonal subspaces or at least linearly
independent) can be beneficial.

• We consider a stochastic geometric inspired randomization of the user covariance sub-
spaces, i.e. users are randomly placed across the network and this random placing leads
to AoA at the BS which are non overlapping for different users.

• We consider a partial CSIT model at the BS side. We consider for our analysis two case
of channel estimation error, 1) error being inversely proportional to SNR and 2) constant
channel estimation error scenario (finite rate feedback systems (FDD) and pilot contami-
nation).

• We propose a BF design for maximizing an upper bound of the ergodic capacity which is
tight in certain massive MIMO limit (M and K →∞, M being BS antennas and K users).
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• We uses an extension of the random matrix theory results in the literature to derive de-
terministic equivalents of the SINR and rate of different users. We compare both analyt-
ically and numerically the spectral efficiency performance of our proposed partial CSIT
BF design and other suboptimal designs in the literature under different kind of channel
estimates, for e.g. least squares (LS), LMMSE and a subspace projected version of the LS
estimate.

• Our simulation results show that the large system approximations we derived are quite
accurate even for finite system dimensions and provide useful insights about the system
behaviour. The resulting asymptotic expressions are very simple and depends only on few
system parameter such as channel covariance rank, M ,K , transmit SNR and large scale
fading coefficients.

• So many open issues remain here. We are currently looking at an extension of the large
system analysis to the case of massive MIMO (hence with multiple antennas at the UE
side).

• It would be of interest to extend the current analysis to the case when the number of mul-
tipaths exceed that of the number of antennas. In this case, ZF (for CoCSIT or ESIP-WSR
based BF designs) will not be possible at high SNR.

• In classical stochastic geometry, state of the art works assign certain random distributions
to the user location. Further, they derive the random channel attenuations based on the
assumed distribution. In this thesis, we assume that the channel attenuation part (rep-
resented by λk,c ) are known. However, it would be of great interest to understand the
system performance when the number of paths exceed that of the number of antennas
(overloaded systems).

• Stochastic geometry based large system analysis for the case of potential next-generation
technologies like cell-free massive MMO and rate splitting.

12.3 Approximate Bayesian Inference for Sparse Bayesian Learning

As remarked before, even though the main motivation behind the SBL algorithms proposed
herein are for sparse wireless channel estimation, it has multiple application even beyond the
realm of communication technologies. Another remark here is that unlike the state of the art
solutions which restrict the measurement matrices to be parametrized in terms of channel path
responses (which are Vandermonde), we do not consider a parametrized matrices in the first
stage. Motivation behind this consideration is the practical hardware issues which make the
path responses to be far from Vandermonde. Below are the main conclusions on this part of the
thesis.

• Massive MIMO or mm Wave channels are sparse in the angular or delay domain (consider
an OFDM system) due to the limited number of scattering components in the environ-
ment. Leveraging on the sparsity assumptions in the underlying channel which is based
on scattering geometry of the propagation environment, we propose a Bayesian compres-
sive sensing algorithm called as space alternating variational estimation (SAVE).

• Original Bayesian compressive sensing algorithm termed as sparse Bayesian learning (SBL)
does not scale with the data dimensions due to the underlying matrix inversion associated



CHAPTER 12. CONCLUSIONS AND FUTURE WORK 219

with it. Hence we consider a Variational Bayesian inference (VBI) based method called
SAVE. In VBI, we try to compute an approximate posterior such that it minimizes the KL
divergence between the true posterior and the approximate posterior which is assumed to
be factorized (independent) at the scalar level. Compared to the state of the art methods
our solution has better normalized MSE performance and has faster convergence, which
makes it a practically viable solution.

• Extensions considered: 1) Time varying sparse multi path complex fading coefficients,
temporal correlation modeled by a first order auto-regressive process. 2) Dictionary learn-
ing (in which we learn the AoA, AoD and the delays also) Disadvantage of SAVE method:
SAVE is quite suboptimal in terms of the posterior variance computation. Hence we pro-
posed belief propagation based posterior approximation which can be efficiently imple-
mented using approximate message passing algorithms (AMP) which became popular in
the literature in recent years.

• However, we observe that BP may not always converge. When BP converges, it always
converge to the true LMMSE solution. Moreover, under certain conditions on the mea-
surement matrix (under i.i.d. Gaussian entries in A), we show that the per-component
MSE converges to the true posterior variance. Even though, it is shown in the literature
that AMP converges to the true MMSE value under i.i.d. Gaussian A, it is the first time in
the literature that the Bayes optimality in terms of per-component MSE is shown. Still, BP
has its issues. It is quite sensitive to the characteristics of the measurement matrix.Even a
slight deviation from i.i.d. Gaussian assumptions lead to very poor performance of AMP.
Motivated by this, other extensions of AMP appeared in the literature such as GAMP and
VAMP. However, the Bayes optimality for these algorithms are shown only for either i.i.d.
Gaussian or right rotationally invariant A matrices case. These algorithms need not con-
verge for every variations of A matrix.

• Motivated by the above arguments, several studies have appeared in the literature looking
at convergent AMP alternatives. Among them, the most prominent one is the GSwAMP
algorithm. In this thesis, we propose static and dynamic SBL algorithms using GSwAMP.
Indeed, in the simulations, we were not able to arrive at a case when it diverges. GSwAMP
variant is seen to be converging for non-zero mean, rank deficient and ill-conditioned A
matrices, which itself is an interesting result.

• However, much remains to be done. What remains elusive here is which cost function
(possibly a variant of BFE) leads to the alternating optimization as is done in GSwAMP.
This is an interesting avenue for future work. One possibly direction is to check whether
the concave-convex procedure (combined with an appropriate majorizer function for the
non-convex part of the BFE) initially proposed in [249] can lead to GSwAMP or a better
convergent alternative (with provable guarantees).

• Another future direction would be to explore the potential of deep learning for sparse lin-
ear inverse problems. This stream of research started with [250], which proposes a learned
iterative soft thresholding algorithm (LISTA). This is derived by unfolding the iterations
into the deep neural network (DNN) layers. In [251], the authors propose a learned AMP
(LAMP) algorithm which has better performance than LISTA. The major benefit by moving
to DNN as is noted down by all these papers is of faster convergence (by using far few DNN
layers compared to the number of iterations in sparse linear inverse problems). Hence,
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motivated by these methods, it will be of greater interest to analyze the potential of learned
SBL algorithms.



Chapter 13

APPENDICES

A Derivation of LMMSE Estimation

In this section, we look at the derivation of the LMMSE estimate for a MIMO channel between
user and the BS. The below derivation is used to obtain the LMMSE channel estimate through-
out the thesis. We start from a deterministic least square estimate, ĤLS which gets expressed as
follows.

(1)
ĤLS = H+ H̃LS ,

where, H = C1/2
r Hv C1/2

t .

H̃LS represents the estimation error which is independent of H and its entries are distributed as
i.i.d. C N (0, σ̃2). Further vectorizing all the matrices above

(2) vec(ĤLS)︸ ︷︷ ︸
ĥLS

= vec(H)︸ ︷︷ ︸
h

+vec(H̃LS)︸ ︷︷ ︸
h̃LS

.

The vectorized channel h can be written as

(3)
h

(a)= (C1/2
t ⊗C1/2

r )vec(Hv )

E(hhH ) = Ct ⊗Cr , since vec(Hv ) ∼C N (0,I).

where in (3), we used the property vec(ABC) = (CT ⊗A)vec(C). Further, computing the correla-
tion matrix of ĥLS

(4)

E(ĥLS ĥH
LS)

(b)= Rhh + E(h̃LS h̃H
LS)

= Rhh + σ̃2I

= Ct ⊗Cr + σ̃2I.

Note that (b) is obtained by using the assumption that H and H̃LS are both zero mean and statis-
tically independent. From standard principles of LMMSE estimation [20], the LMMSE estimate
ĥ can be obtained as

(5) ĥ = RhĥLS
R−1

ĥLS ĥLS
ĥLS .

Now, we compute the cross-correlation term RhĥLS

(6)

RhĥLS
= E(hĥH

LS)

(c)= E(hhH )

= Rhh = Ct ⊗Cr .

221
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In the above equation, (c) is obtained using the statistical independence of h and h̃LS (E(hh̃LS) =
0). By combining (4), (5), (6), we arrive at

(7)
ĥ = (Ct ⊗Cr )

(
Ct ⊗Cr + σ̃2I

)−1
ĥLS

or, vec(Ĥ) = (Ct ⊗Cr )
(
Ct ⊗Cr + σ̃2I

)−1
vec(ĤLS),

where Ĥ represents the LMMSE estimate in the matrix format.
Next, we look at the computation of the estimation error covariance matrix. Again, this follows

from standard LMMSE principles [20].We denote H̃ as the LMMSE estimation error.

(8)
H = Ĥ+ H̃ =⇒

h = ĥ+ h̃,

where ĥ and h̃ are uncorrelated, E(ĥh̃H ) = 0. Further, we can write the estimation error covari-
ance matrix as

(9)
E(h̃h̃H ) = Rh̃h̃

= Rhh −RhĥLS
R−1

ĥLS ĥLS
RĥLS h,

where, it can be shown that

(10) RĥLS h = Rhh = Ct ⊗Cr .

Finally, by substituting the expressions in (4), (10) into (9), we obtain

(11) Rh̃h̃ = (Ct ⊗Cr )− (Ct ⊗Cr )
(
Ct ⊗Cr + σ̃2I

)−1
(Ct ⊗Cr )

B Derivation of analog phasor design using WSMSE

Consider the terms involving V in the WSMSE.

(12)
K∑

k=1

[
uk wk ek (fk ,V,g) + λbk |Vbk gk |2

]
where ek (fk ,V,g) is specified in (2.11). Now rewrite each term as a function of V bk

m,n . Consider e.g.
the generic term

fH
k Hk,bi Vbi gi =

∑
j ,l

(fH
k Hk,bi ) j V bi

j ,l gi ,l

=V bi
m,n gi ,n(fH

k Hk,bi )m +C k,i
m,n

where C k,i
m,n = ∑

( j ,l ) 6=(m,n)
(fH

k Hk,bi ) j V bi

j ,l gi ,l .(13)

where (fH
k Hk,bi ) j denotes entry j of the row vector fH

k Hk,bi . gi ,n denotes the nth term of the

vector gi . Substituting Vbi
m,n = e jθ

bi
m,n now yields∣∣∣fH

k Hk,bi Vbi gi

∣∣∣2 = e jθ
bi
m,n gi ,n(fH

k Hk,bi )m C k,i ∗
m,n(14)

+e− jθ
bi
m,n g∗

i ,n(fH
k Hk,bi )∗m C k,i

m,n +”terms”(15)
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where ”terms” denotes terms that do not depend on θbi
m,n . Expanding the MSE ek (fk ,V,g) gives

ek (fk ,V,g) =−e jθ
bk
m,n gk,n(fH

k Hk,bk )m −e− jθ
bk
m,n g∗

k,n(fH
k Hk,bk )∗m

+
K∑

i=1
[e jθ

bi
m,n gi ,n(fH

k Hk,bi )m C k,i ∗
m,n(16)

+e− jθ
bi
m,n g∗

i ,n(fH
k Hk,bi )∗m C k,i

m,n]+”terms”(17)

where ”terms” denote terms that do not depend on θbk
m,n . Let us define the following quantities

(18)
αk

m,n = gk,n(fH
k Hk,bk )m

βk,i
m,n = gi ,n(fH

k Hk,bi )m C k,i ∗
m,n

then we can rewrite (17) as

ek (fk ,V,g) =−e jθ
bk
m,n αk

m,n −e− jθ
bk
m,n αk∗

m,n +
K∑

i=1
[e jθ

bi
m,n βk,i

m,n +e− jθ
bi
m,n βk,i∗

m,n ]+”terms”

=−e jθ
bk
m,n αk

m,n −e− jθ
bk
m,n αk∗

m,n +e jθ
bk
m,n βk

m,n +e− jθ
bk
m,n βk∗

m,n +”terms”(19)

where βk
m,n =∑

i :bi=bk
βk,i

m,n . Now consider the power constraint term

||Vbk gk ||2 =
N∑

l=1

[
M∑

i=1
V bk

l ,i gk,i

][
M∑

j=1
V bk ∗

l , j g∗
k, j

]

=V bk
m,n gk,n

Mbk∑
i=1,i 6=n

V bk ∗
m,i g∗

k,n +V bk ∗
m,n g∗

k,n

Mbk∑
j=1, j 6=n

V bk

m, j gk,n + ”terms”.(20)

Defining ξk
m,n as

(21) ξk
m,n =λbk gk,n

Mbk∑
i=1,i 6=n

V bk ∗
m,i g∗

k,n .

Then we can write

(22) λbk ||Vbk gk ||2=ξk
m,n e jθ

bk
m,n +ξk ∗

m,n e− jθ
bk
m,n +”terms”.

Now summing the terms (19) and (22) over all k, we get

K∑
k=1

[
uk wk ek (fk ,V,g) + λbk

∣∣∣|Vbk gk

∣∣∣ |2]=
∑

k:bk=c
[e jθc

m,n (uk wk (βk
m,n −αk

m,n)+ξk
m,n)

+e− jθc
m,n (uk wk (βk∗

m,n −αk∗
m,n)+ξk ∗

m,n)]+ ”terms”(23)

where ”terms” denote terms that do not depend on θc
m,n . Defining the terms ac

m,n as

(24) ac
m,n = ∑

k:bk=c
[uk wk (βk

m,n −αk
m,n)+ξk

m,n]

we can rewrite the term of interest in the cost function (23) as

(25) e jθc
m,n ac

m,n +e− jθc
m,n ac∗

m,n = 2ℜ{e jθc
m,n ac

m,n}

where ac
m,n = |ac

m,n |e j∠ac
m,n . To minimize (25), e jθc

m,n ac
m,n has to made real and negative, hence

(26) θc
m,n =π−∠ac

m,n .

This completes the derivation for θ.
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C Derivation of analog phasors using WSR

Adding the phase shifter constraint, we identify the dependence of (7.17) on a single element
Vc

p,q . We simplify each of the quadratic terms in the expression for WSR. First let us consider

each element (r, s) of the matrix GH
k Vc H B̂k Vc Gk (for k : bk = c)

(27)

g(r ) H
k Vc H B̂k Vc g(s)

k = ((Vc g(r )
k )p )H (B̂k )p,p (Vc g(s)

k )p

+ ((Vc g(r )
k )p )H (B̂k )p,p (V c g(s)

k )p + ((Vc g(r )
k )p )H (B̂k )p,p (Vc g(s)

k )p

+ ((Vc g(r )
k )p )H (B̂k )p,p (Vc g(s)

k )p ,

where (x)p represents the p th element of vector x, (x)p represents all other elements, (B)p,p rep-
resents element (p, p) of matrix B, (B)p,p represents all elements in column p except for row p,

etc. Note that
(
Vc g(r )

k

)
p

does not contain Vc
p,q . The p th term of Vc g(r )

k can be written in terms of

Vc
p,q as :

(28)
(
Vc g(r )

k

)
p
= Vc

p,q g(r )
k,q +Vc

p,q g(r )
k,q

,

where Vc
p,l represents element (p, l ) element of Vc and gr

k,q represents the q th element of g(r )
k ,

g(r )
k,q

represents all other elements, etc. Now substituting Vc
p,q = e jθc

p,q , (27) can be written as :

(29)

g(r ) H
k Vc H B̂k Vc g(s)

k = (Vc H
p,q g(r )

k,q
)H (B̂k )p,p e jθc

p,q g(s)
k,q

+ (Vc
p,q g(s)

k,q
)(B̂k )p,p e− jθc

p,q g(r ) H
k,q + ((Vc g(r )

k )p )H (B̂k )p,p e jθc
p,q g(s)

k,q

+ (B̂k )p,p (Vc g(s)
k )p e− jθc

p,q g(r ) H
k,q + “terms".

Here “terms" denote the terms which are independent of Vc
p,q . Define the following matrices

Cp,q
k and Dp,q

k whose entries are

(30)
(Dp,q

k )r,s = (Vc H
p,q g(r )

k,q
)H (B̂k )p,p g(s)

k,q + ((Vc g(r )
k )p )H (B̂k )p,p g(s)

k,q ,

(Cp,q
k )r,s = (Vc

p,q g(s)
k,q

)(B̂k )p,p g(r ) H
k,q + (B̂k )p,p (Vc g(s)

k )p g(r ) H
k,q .

Then we can rewrite GH
k Vc H B̂k Vc Gk as

(31) GH
k Vc H B̂k Vc Gk = Dp,q

k e jθc
p,q +Cp,q

k e− jθc
p,q +Tk,1

p,q
.

Similarly we can write

(32) GH
k Vc H (Âk +λc I)Vc Gk = Ep,q

k e jθc
p,q +Fp,q

k e− jθc
p,q +Tk,2

p,q
.

Here Tk,1
p,q

,Tk,2
p,q

are matrices with terms independent of θc
p,q .

D Gradient Derivation - Part I

In this section we derive an expression for the gradient for the terms of the form tr{Y} w.r.t X,
where Y is

(33)
Y = Adiag(CXD)B,

R = CXD,
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where F(X) represents any matrix function in X. Each diagonal element of Y can be written as

(34)

Yi ,i =
∑
m,n

Ai ,mRm,nBn,iδm−n ,

Rm,n = ∑
p,q

Cm,p Xp,q Dq,n ,

Yi ,i =
∑
m,n

Ai ,m(
∑
p,q

Cm,p Xp,q Dq,n)Bn,iδm−n ,

where δk represents the Kronecker delta function. The derivative of tr{Y} w.r.t Xp,q gives

(35)
∂tr{Y}

∂Xp,q
=∑

i ,i

∑
m,n

Ai ,m(Cm,p Dq,n)Bn,iδm−n = [
Ddiag(BA)C

]T .

E Gradient Derivation - Part II

In this section we derive an expression for the gradient for the terms of the form

(36)
Y = Adiag(CXD)B+F(X),

R = CXD,

where F(X) represents any matrix function in X. Each element of Y can be written as

(37)

Yi , j =
∑
m,n

Ai ,mRm,nBn, jδm−n +F(X)i , j ,

Rm,n = ∑
p,q

Cm,p Xp,q Dq,n ,

Yi , j =
∑
m,n

Ai ,m(
∑
p,q

Cm,p Xp,q Dq,n)Bn, jδm−n +F(X)i , j ,

where δk represents the Kronecker delta function. We define Vr,s as zero-valued matrix except
for a unity element at row r and column s and we obtain

(38)

∂det(Y)

∂X
=∑

r,s
Vr,s

∂det(Y)

∂Xr,s

=∑
r,s

Vr,s
∑
i , j

∂det(Y)

∂Yi , j

det(Yi , j )

∂Xr,s

=∑
r,s

Vr,s
∑
i , j

∂det(Y)

∂Yi , j
[
∑
m,n

Ai ,mCm,r Ds,nBn, jδm−n + det(F(X)i , j )

∂Xr,s
]

=∑
r,s

Vr,s(
∑
m,n

Cm,r Ds,n(
∑
i , j

∂det(Y)

∂Yi , j
Ai ,mBn, j )δm−n +∑

i , j

∂det(Y)

∂Yi , j

det(F(X)i , j )

∂Xr,s
)

= [Ddiag(B(
∂det(Y)

∂Y
)T A)C]T +F′

For simplicity we call the second term in the summation F′ since that is not of interest here
or the required gradients (needed forms of F(X)) are derived in [59]. Further using the result,
∂det(Y)
∂X = det(Y)(Y−1)T we can simplify it as

(39) ∂det(Y)
∂X = det(Y)[Ddiag(BY−1A)C]T +F′.
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F Derivation of Common and Private Stream Powers using Difference
of Convex Functions Programming

Let’s consider without loss of any generality the optimization of ρ(t )
k for given values of {ρ(t )

i : ∀i 6=
k} and ρ(t )

c . For simplicity, we drop the iteration index t . We begin by rewriting the SE of UE k as
(by explicating its dependence from ρk )

SEk (ρk ) = τd

τ
log2

(
NUMk (ρk )

DENk (ρk )

)
= τd

τ

(
log2

(
NUMk (ρk )

)− log2

(
DENk (ρk )

))
(40)

whereDENk (ρk ) represents the denominator ofγk in (12) whileNUMk (ρk ) =DENk (ρk )+ρk |E{hH
k wk }|2.

Observe that − log2

(
DENk (ρk )

)
is a non-concave function of ρk . By linearizing it around a ten-

tative value ρ̂k , the following approximation is obtained:

log2

(
DENk (ρk )

)≈ E{|hH
k wk |2}−|E{hH

k wk }|2
DENk (ρ̂k )︸ ︷︷ ︸

,αk

(ρk − ρ̂k )

where the terms independent of ρk have been neglected for simplicity. Similarly, we can rewrite
SEi as

SEi (ρk ) = τd

τ

(
log2

(
NUMi (ρk )

)− log2

(
DENi (ρk )

))
.(41)

By linearizing both terms around ρ̂k

log2

(
NUMi (ρk )

)≈ E{|hH
i wk |2}

NUMi (ρ̂k )
(ρk − ρ̂k )(42)

log2

(
DENi (ρk )

)≈ E{|hH
i wk |2}

DENi (ρ̂k )
(ρk − ρ̂k )(43)

we obtain the following approximation for SEi (ρk )

SEi (ρk ) ≈ τd

τ

(
E{|hH

i wk |2}

NUMi (ρ̂k )
− E{|hH

i wk |2}

DENi (ρ̂k )

)
︸ ︷︷ ︸

,ζi

(ρk − ρ̂k ).

Following the same approach for the SE of the common message yields

SEc (ρk ) ≈ τd

τ

(
E{|hH

lmin
wk |2}

NUMc,min(ρ̂k )
−
E{|hH

lmin
wk |2}

DENc,min(ρ̂k )

)
︸ ︷︷ ︸

,ζc

(ρk − ρ̂k )

where NUMc,min(ρk ) =DENc,min(ρk )+ρc |E{hH
lmin

wc }|2 and DENc,min(ρk ) represents the denomi-
nator of γlmin,c in (5.14). Putting all the above together, an approximation of the sum SE in (5.18)
is

SE(ρk ) = τd

τ

(
log2

(
NUMk (ρk )

)−σ(2)
k (ρk − ρ̂k )

)
(44)
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where

(45) σ(2)
k = ζc +αk +

K∑
i=1,i 6=k

ζi .

σ(1)
k = E{|hH

k wk |2}

σ2 + ρ̂c

(
E{|hH

k wc |2}−|E{hH
k wc }|2

)
+

K∑
i=1,i 6=k

ρ̂iE{|hH
k wi |2}

(46)

Taking the derivative of its Lagrangian (obtained after adding the power constraint in (5.20)) and
equating it to zero yields

(47)
E{|hH

k wk |2}

NUMk (ρk )
−σ(2)

k −µ= 0

from which one obtain (5.21) in the text, with σ(1)
k given in (46). A similar approach for ρc yields

(46)
E{|hH

lmin
wc |2}

NUMc,min(ρc )
−σ(2)

c −µ= 0

where σ(2)
c can be obtained as done for σ(2)

k in (45); details are omitted for space limitation. Solv-

ing (46) yields (5.22) in the text, where σ(1)
c is

σ(1)
c =

E{|hH
lmin

wc |2}

σ2 +
K∑

i=1
ρ̂iE{|hH

lmin
wi |2}

.(47)

G Derivation of Common Stream SINR

Rewrite ĥk =Φ1/2
k c, with c ∼C N (0,I) and define the deterministic matrix Bi k = (Φ1/2

k )
H

Ri R−1
k Φ1/2

k .

By recalling that ĥi = Ri R−1
k ĥk yields

E{ĥk ĥH
k ĥi ĥH

i } =Φ1/2
k E{ccHBi k ccH}(Φ1/2

k )
H

.(48)

It then follows that

E
{
[ccHBi k ccH]mn

}= M∑
j=1

M∑
l=1

[Bi k ]l jE
{
cmc∗l c j c∗n

}
.(49)

If m = n, then (49) is always zero except for l = j :

M∑
l=1

[Bi k ]l lE
{|cm |2|cl |2

}= 3[Bi k ]mm +
M∑

l=1,l 6=m
[Bi k ]l l(50)

where we have taken into that E
{|cm |4} = 3. If m 6= n, then (49) is always zero except for l = m

and j = n

[Bi k ]mnE
{
cmc∗mcmc∗n

}= [Bi k ]mn .(51)

Putting the above results together yields E{ĥk ĥH
k ĥi ĥH

i } = tr{Bi k }I+ diag(Bi k )+Bi k .
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H Deterministic Equivalent of Auxiliary Quantities

I Proof of Theorem 12

First we compute the deterministic equivalent for σ(1)
k

(52)
σ(1)

k = r̂−1
k

g′H
k Ŝk,bk g′

k

= r̂−1
k

g′H
k Ck,bk Wk,bk CH

k,bk
g′

k .

Using the eigen decomposition of Wk,bk = Vk,bkΛk,bk VH
k,bk

(53)

g′H
k Sk,bk g′

k = g′H
k Ck,bk Wk,bk CH

k,bk
g′

k ,

g′
k = g′′

k /
∥∥g′′

k

∥∥ ,

g′′
k =Γ−1

k Ck,bk vk,bk ,

CH
k,bk

g′
k = CH

k,bk
Γ−1

k Ck,bk vk,bk /||g′′
k ||,

whereΓk = ∑
i 6=k

βi Si ,bk+µbk I. Using large system analysis simplifications shown in (81), CH
k,bk
Γ−1

k Ck,bk =
ebk I

(54)

g′H
k Sk,bk g′

k =
e2

bk
vH

k,bk
Wk,bk vk,bk∥∥g′′
k

∥∥2

=
e2

bk
λmax (Wk,bk )∥∥g′′

k

∥∥2 ,

We define Γbk = Γk +βk Sk,bk . Further we consider simplifying
∥∥g′′

k

∥∥2 = vH
k,bk

Ck,bkΓ
−2
k Ck,bk vk,bk .

By using Lemma 4 from [14] leads to
∥∥g′′

k

∥∥2 = 1
Mbk

tr{Γ−2
k }

∥∥vk,bk

∥∥2 = 1
Mbk

tr{Γ−2
k }. Further, by using

Lemma 6 we approximate Γ−1
k ≈ (Γk +βk Sk,bk )−1 = Γ−1

bk
. From [14], in the large system limit, for

(1/Mbk )tr{Γ−2
bk

}, we have an almost sure convergence value as e ′bk
, where e ′bk

is the derivative of

ebk w.r.t. µbk , and thus
∥∥g′′

k

∥∥2 = e ′bk

(55)

e ′bk
= e2

bk
(

1

Mbk

K∑
i=1

Li ,bk∑
r=1

β2
i ζ

(r ),2
i ,bk

e ′bk

(1+βiζ
(r )
i ,bk

ebk )2
+1)

=⇒ e ′bk
=

e2
bk

1− e2
bk

Mbk

K∑
i=1

Li ,bk∑
r=1

β2
i ζ

(r ),2
i ,bk

(1+βiζ
(r )
i ,bk

ebk )2

.

Deterministic limit for rk ,rk : Each term in rk is of the form pi g′′
i Sk,bi g′′

i /
∥∥g′′

i

∥∥2, where g′′H
i Sk,bi g′′

i =
v′H

i ,bi
Γ−1

i Ck,bi Wk,bi CH
k,bi
Γ−1

i v′i ,bi
and we defined v′i ,bi

= Ci ,bi vi ,bi . Since v′i ,bi
is independent of

all other random quantities in this expression, we apply Lemma 4 and then Lemma 6 to get,
v′H

i ,bi
Γ−1

i Ck,bi Wk,bi CH
k,bi
Γ−1

i v′i ,bi
= 1

Mbi
tr{Γ−1

bi
Ck,bi Wk,bi CH

k,bi
Γ−1

bi
}. Applying Lemma 1 to each of the

rows of VH
k,bi

CH
k,bi
Γ−1

i , then Lemma 4 and 6, we obtain the following simplified expression

(56)

1

Mbi

tr{Γ−1
bi

Sk,biΓ
−1
bi

} = 1

M 2
bi

tr{Γ−2
bi

}tr{Λk,bi B−2
k,bi

},

where, Bk,bi = diag(1+βkζ
(1)
k,bi

ebi , ...,1+βkζ
(L)
k,bi

ebi ).
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Finally we obtain,

(57)

K∑
i=1,
i 6=k,

pi g′H
i Sk,bk g′

i =
K∑

i=1,
i 6=k

pi
1

Mbi

[
Lk,bi∑
r=1

ζ(r )
k,bi

(1+βkζ
(r )
k,bi

ebi )2
]

=Υk ,

Thus we can write r k and r k

(58)

r k = 1+Υk ,

r k = 1+Υk +pk

e2
bk
λmax (Wk,bk )

e ′bk

,

Also, βk = uk

(
1

r k

− 1

r k

)
,

αk = uk

r k
.

Finally, combining (54), (55), (58), we can write the deterministic equivalent for σ(1)
k as, σ(1)

k =
e2

bk
λmax (Wk,bk

)

e ′
bk

(
1+Υk

) . Each term in σ(2)
k is of the form β̂i g′ ′H

k Si ,bk g′ ′H
k /

∥∥g′ ′
k

∥∥2, which gets simplified as

follows:

(59)

g′ ′H
k Si ,bk g′ ′H

k = v′H
k,bk
Γ−1

k Ci ,bk Wi ,bk CH
i ,bk
Γ−1

k v′k,bk

(a)= 1

Mbk

tr{Γ−1
k Ci ,bk Wi ,bk CH

i ,bk
Γ−1

k },

where (a) follows from Lemma 4 (since v′k,bk
is independent of all other matrices involved). By

following the same steps as in (56)-(57), this gets simplified and we write σ(2)
k as

(60)

σ(2)
k =

K∑
i=1,i 6=k

βi g′ ′H
k Si ,bk g′ ′H

k /
∥∥g′ ′

k

∥∥2

= 1

Mbk

K∑
i=1,i 6=k

βi [
Li ,bk∑
r=1

ζ(r )
i ,bk

(1+βiζ
(r )
i ,bk

ebk )2
].

I Sum Rate Evaluation (At any SNR)

In this section, let γ(s)
k,L ,γ(s)

k,S denotes the SINRs for user k in the case of LMMSE and subspace
channel estimators respectively. The superscript s can be ’Opt’ or ’N’ or ’E’ which represents the
ESIP-WSR/naive/EWSMSE BFs respectively. By the large system limit, we implies that L, M ,K →

∞ at a finite ratio αc =
K∑

i=1
Li ,c

M .

I Analytical Solution for µc , βk , ec

First we consider the value of the Lagrange multiplier at high SNR. From ILA-WF (7.18), at high
SNR, if BF does ZF, then σ(2)

k , which is the leakage power part converges to zero. Hence, pk =
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1
mu − 1

σ(1)
k

. σ(1)
k ≈ tr{Dk } and it will be a finite constant that becomes negligible at high SNR. Hence,

pk → uk
µc

.
∑

k:bk=c pk = Pc = 1/µc
∑

k:bk=c uk . So, µc =
∑

k:bk=c uk

Pc
. If uk = 1, then µc = Kc /Pc at

high SNR. However, if Kc is finite, since the total power →∞, 1
µ →∞. Hence, lim

P→∞
µ = 0. Next,

we consider the deterministic equivalent for βk , which is defined in (7.39). At high SNR, if ZF
happens, then r k = 0, henceβk = uk (1− 1

r k
). At high SNR, r k →∞, henceβk = uk (1−0) = uk =βk .

If uk = 1, βk = 1.
Further we derive an approximate analytical solution for the implicit equation of ec in (7.46).

Writing e−1
c = f (ec ), it is obvious that f (ec ) is a monotonically decreasing function for any SNR

and hence ec is a monotonically increasing function. So we first evaluate the analytical solution
of ec at the extreme points. At very low SNR, all the interference terms can be neglected, so from

(7.31), Γk ≈ µc I,bk = c. Hence ec I = CH
k Γ

−1
k Ck

M→∞−−−−→
a.s

µ−1
c CH

k Ck = 1
µc

I = e0
c I. For high SNR, we do

a first order perturbation analysis in σ̃2, thus from (7.45), λ2
M→∞−−−−→

a.s
σ̃2. So we can approximate

the term βλ2

1+βλ2ec
≈βσ̃2(1−βσ̃2ec ) ≈βσ̃2. Hence, we obtain

(61)

1

ec
= α

L

βλ1

1+βλ1ec
+µ′

c , αβσ̃2 +µc

=µ′
c , solving this leads to,

e∞c =
−(µ′

c −λ′
1)+

√
(µ′

c −λ′
1)2 +4βλ1µ

′
c

2βλ1µ
′
c

, λ′
1

=βλ1(1− α

L
).

Further we can deduce from e0
c and (61) that at extreme SNR regimes, lim

P→0
e0

c = 0 and lim
P→∞

e∞c =
∞.

II ESIP-WSR BF with LMMSE Channel Estimator

For the convenience of analysis, we write the BF expression (7.34), gk = Γ−1
k Ck vk,bk . Here Γk =∑

i 6=k
βi Si ,bk+µbk I. For the asymptotic analysis below, we first determine the value of (1/Mbk )tr{Γ−2

bk
}

in the large system limit. From [14], in the large system limit, for (1/Mc )tr{Γ−2
c }, we have an al-

most sure convergence value as e ′c , where e ′c is the derivative of ec w.r.t. µc

(62)

e ′c = e2
c (

1

Mc

K∑
i=1

Li ,c∑
r=1

β2
i λ

(r ),2
i ,c e ′c

(1+βiλ
(r )
i ,c ec )2

+1) =⇒

e ′c =
e2

c

1− e2
c

Mc

K∑
i=1

Li ,c∑
r=1

β2
i λ

(r ),2
i ,c

(1+βiλ
(r )
i ,c ec )2

,

xc =
e2

c

Mc

K∑
i=1

Li ,c∑
r=1

β2
i λ

(r ),2
i ,c

(1+βiλ
(r )
i ,c ec )2

,

e ′c =
e2

c

1−xc
.

For the ESIP-WSR BF with LMMSE channel estimate, the computation of max eigenvector, vk,bk

in (7.34) is not analytically feasible. Hence we consider the simplification that the first element
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in Dk dominates the rest of the elements and we write Dk = tr{Dk }e1eH
1 . Substituting this in Wk

leads to vk,bk = e1. First we look at the deterministic equivalent for the signal power PSk

(63)

|g′′H
k hk |2 = eH

1 CH
k Γ

−1
k Ck dk dH

k CH
k Γ

−1
k Ck e1

M→∞−−−−→
a.s

e2
bk

eH
1 dk dH

k e1e2
bk

E(eH
1 dk dH

k e1)

= e2
bk

tr{Dk },∥∥g′′
k

∥∥2 = eH
1 CH

k Γ
−2
k Ck e1

M→∞−−−−→
a.s

e ′bk
.

Further we look at the interference power.

(64)

|g′H
i hk,bi |2 = eH

1 CH
i Γ

−1
i Ck,bi dk,bi dH

k,bi
CH

i Γ
−1
i Ci e1

(a)
M→∞−−−−→

a.s

1

Mbi

tr{Γ−1
i Ck,bi dk,bi dH

k,bi
CH

k,bi
Γ−1

i }
(b)= 1

Mbi

tr{Γ−1
i k Ck,bi B−1

k,bi
dk,bi dH

k,bi
B−1

k,bi
CH

k,bi
Γ−1

i k }

M→∞−−−−→
a.s

1

Mbi

tr{Σ−2
i k }

1

M
tr{B−2

k,bi
Dk,bi },

where, Σi k =Γi k −βk Ck,bi D̃k,bi CH
k,bi

,

Γi k =Γi −βk ĥk,bi ĥH
k,bi

,

where we define Bk,bi = diag(1+βk ebiλ
(1)
k,bi

), ....,1+βk ebiλ
(Lk,bi )

k,bi
). In order to simplify it, for the

transition (a), we apply Lemma 3 since Ci is independent of Γi ,Ck,bi ,dk,bi . In (b) above, we ap-
proximate tr{Γ−1

i Ck,bi B−1
k,bi

dk,bi dH
k,bi

B−1
k,bi

CH
k,bi
Γ−1

i } = tr{Γ−1
i k B−1

k,bi
Ck,bi dk,bi dH

k,bi
B−1

k,bi
CH

k,bi
Γ−1

i k } by ap-
plying Lemma 4. Further we applied matrix inversion lemma to convert each row of the ma-

trix CH
k,bi
Γ−1

i k to C(r ) H
k,bi

Γ−1
i k = C(r ) H

k,bi
Σ−1

i k

1+βkλ
(r )
k,bi

ei
, where we denote C(r )

k,bi
as the r th column of Ck,bi and

λ(r )
k,bi

being the r th diagonal element of D̃k,bi . In the above equation (64), we define Bk,bi =
diag(1+βk ebiλ

(1)
k,bi

, ..,1+βk ebiλ
(r )
k,bi

). Finally, we obtain the SINR as

(65) γ
(Opt )
k,L = pk (1−x(L,Opt )

bk
)tr{Dk }

1
Mbi

∑
i 6=k

pi tr{Dk,bi B−2
k,bi

}+1
.

In the case of subspace channel estimator, where US = I, from (7.37), Vmax (WS) = d̂k and hence
the derivations provided in (II) is valid for any SNR and hence the SINR expression is the same
as (102).

III Naive EWSR BF with LMMSE/Subspace Channel Estimators

For the naive BF with LMMSE/Subspace channel estimate, Wk = Uk d̂k d̂H
k Uk we can write Vmax (Wk ) ∝

Uk d̂k . Hence g′′
k =Γ−1

k Ck Uk d̂k . First considering the signal power part

(66)
g′′H

k hk = d̂H
k Uk CH

k Γ
−1
k Ck dk

M→∞−−−−→
a.s

ebk tr{Uk Dk },

|g′′
k |2 = d̂H

k Uk CH
k Γ

−2
k Ck Uk d̂k

M→∞−−−−→
a.s

e ′bk
tr{U2

k (Dk + σ̃2I)}.
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Next we look at the interference power part. Since Ci is independent of Γi ,Ck,bi ,dk,bi , we can
apply Lemma 3 to obtain

(67)
|g′′H

i hk,bi |2 = d̂H
i Ui CH

i Γ
−1
i Ck,bi dk,bi dH

k,bi
CH

k,bi
Γ−1

i Ci Ui d̂i

M→∞−−−−→
a.s

d̂H
i UH

i Ui d̂i
1

M
tr{Γ−2

i Ck,bi dk,bi dH
k,bi

CH
k,bi

}.

We define Ξi = Γi −βk Ck,bi Uk,bi d̂k,bi d̂H
k,bi

Uk,bi CH
k,bi

. Further we apply the Lemma 4 twice and

then Lemma 3 to convert CH
k,bi
Ξ−2

i Ck,bi

M→∞−−−−→
a.s

1
Mbi

tr{Ξ−2
i } which converges to e ′bi

(68)

1

M
tr{Γ−2

i Ck,bi dk,bi dH
k,bi

CH
k,bi

}
M→∞−−−−→

a.s

1

M
tr{Ξ−2

i Ck,bi dk,bi dH
k,bi

CH
k,bi

}

M→∞−−−−→
a.s

e ′bi

1

M
tr{Dk,bi }.

Thus combining (67), (68), we obtain, |g′′H
i hk,bi |2

M→∞−−−−→
a.s

1
M tr{Dk,bi }. Finally, the SINR can be

written as for LMMSE/Subspace channel estimators

(69)

γ(N )
k,L −

(1−x(L, N )
bk

) tr{D2
k (Dk + σ̃2

k I)−1}pk

(
K∑

i=1

1
M pi tr{Dk,bi }+1)

M→∞−−−−→
a.s

0,

γ(N )
k,S −

(1−x(S, N )
bk

) (tr{Dk })2pk

tr{(Dk + σ̃2I)}(
K∑

i=1

1
M pi tr{Dk,bi }+1)

M→∞−−−−→
a.s

0.

Note that x(S, N )
bk

> x(L, N )
bk

since the eigenvalues of Wk for the subspace estimator is greater than
that of the LMMSE channel estimator. This leads to a reduction in signal power for the subspace
channel estimator case at low to mid SNR range (while the interference power remains approx-
imately the same for both) which explains the sub-optimal performance of subspace channel
estimators.

IV EWSMSE BF with LMMSE/Subspace Channel Estimators

We denote superscript (E) to denote the SINRs for the case of EWSMSE BFs (for example, γ(E)
k,L).

Also, x(EL )
bk

, x(ES )
bK

represents xbk for the respective channel estimates. In this section, we consider
the deterministic equivalent for the SINR expression of the EWSMSE BF with LMMSE/subspace
channel estimators. So from (7.41), we can rewrite the BF expression as, g′′

k = F−1
k Ck Uk d̂k . Fur-

ther we compute the signal power part

(70)

|g′′H
k hk | (a)= d̂H

k Uk CH
k

(
Γ−1

k −Γ−1
k Ck

(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−1
k

)
Ck dk ,

d̂H
k Uk ebk

(
I−E−1

k ebk

)
Uk d̂k

M→∞−−−−→
a.s

ebk tr{Uk
(
I−E−1

k ebk

)
Dk },

where Ek =β−1
k D̃−1

k +ebk I.

In (a) above, we applied matrix inversion lemma to the term F−1
k and also simplified CH

k Γ
−1
k Ck =

ek I by first applying Lemma 3 and then Theorem 8. Further, we look at the normalization factor
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for the BF gk

(71)∥∥g′′
k

∥∥2 =
d̂H

k Uk CH
k

(
Γ−1

k −Γ−1
k Ck

(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−1
k

)
(
Γ−1

k −Γ−1
k Ck

(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−1
k

)
Ck Uk d̂k

= d̂H
k Uk CH

k

(
Γ−2

k −Γ−1
k Ck

(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−2
k −Γ−2

k Ck
(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−1
k

+Γ−1
k Ck

(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−2
k Ck

(
β−1

k D̃−1
k +ebk I

)−1
CH

k Γ
−1
k

)
Ck Uk d̂k

(a)= d̂H
k Uk

(
e ′bk

I−2e ′bk
ebk E−1

i +e ′bk
ebk E−2

k

)
Uk d̂k

= e ′bk
d̂H

k Uk
(
I−ebk E−1

k

)2
Uk d̂k .

In (a) above, we applied Lemma 3 to convert CH
k Γ

−2
k Ck

M→∞−−−−→
a.s

1
Mbk

tr{Γ−2
k }ILk,bk

and then applying

Theorem 2 from [102], we arrive at 1
Mbk

tr{Γ−2
k }

M→∞−−−−→
a.s

e ′bk
. Combining (70), (71), we can write the

signal power as

(72) PSk =
(
1−x(L,E)

bk

) (
tr{Uk

(
I−ebk E−1

k

)
Dk }

)2
pk

tr{U2
k

(
I−ebk E−1

k

)2 (
Dk + σ̃2

k I
)
}

.

We define Ck,bi dk,bi dk,bi CH
k,bi

= Θk,bi , β−1
i D̃−1

i + ebi I = Ei . Considering the interference power
part

(73)

∥∥g′′H
i hk,bi

∥∥2 = d̂H
i Ui CH

i F−1
i Θk,bi F−1

i Ci Ui d̂i

(a)= d̂H
i Ui CH

i

(
Γ−1

i −Γ−1
i Ci E−1

i CH
i Γ

−1
i

)
Θk,bi

(
Γ−1

i −Γ−1
i Ci E−1

i CH
i Γ

−1
i

)
Ci Ui d̂i

= d̂H
i Ui CH

i Γ
−1
i Θk,biΓ

−1
i Ci Ui d̂i +e2

bi
d̂H

i Ui E−1
i CH

i Γ
−1
i Θk,biΓ

−1
i Ci E−1

i Ui d̂i

−ebi d̂H
i Ui CH

i Γ
−1
i Θk,biΓ

−1
i Ci E−1

i Ui d̂i −ebi d̂H
i Ui E−1

i CH
i Γ

−1
i Θk,biΓ

−1
i Ci Ui d̂i

From the analysis done for ESIP-WSR BF, note that we already derived in (64), CH
i Γ

−1
i Θk,biΓ

−1
i Ci =

e ′bi

1
Mbi

tr{Dk,bi B−2
k,bi

}. Hence, first simplifying the first term above for multiple of identity of eigen-

value matrix Dk,bi case

(74) d̂H
i Ui CH

i Γ
−1
i Θk,biΓ

−1
i Ci Ui d̂i = e ′bi

1
Mbi

tr{Dk,bi B−2
k,bi

}tr{U2
i

(
Di + σ̃2

i I
)
}.

Further dividing by the
∥∥g′′

i

∥∥2 and then summing across all the users, we can write

(75) Υ1k = ∑
i 6=k

1
Mbi

tr{Dk,bi B−2
k,bi

}tr{U2
i (Di + σ̃2

i I)}pi

tr{U2
i (I−ebi E−1

i )2
(
Di + σ̃2

i I
)
}

.

Next, we try to simplify the second term in (73) and then divide by the normalization factor.
Further by summing across all the users, we obtain
(76)
e2

bi
d̂H

i Ui E−1
i CH

i Γ
−1
i Θk,biΓ

−1
i Ci E−1

i Ui d̂i = e2
bi

tr{Dk,bi B−2
k,bi

}tr{U2
i E−2

i

(
Di + σ̃2

i I
)
},

Υ2k = ∑
i 6=k

(
1−x(L,E)

bk

)
1

Mbi
tr{Dk,bi B−2

k,bi
}tr{U2

i E−2
i

(
Di + σ̃2

i I
)
}pi

tr{U2
i

(
I−ebi E−1

i

)2 (
Di + σ̃2

i I
)
}

.
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Next, we try to simplify the third term in (73) and after normalizing the resulting term after sum-
ming across all the interfering users is denoted as Υ3k

(77)
ebi d̂H

i Ui CH
i Γ

−1
i Θk,biΓ

−1
i Ci E−1

i Ui d̂i = ebi tr{Dk,bi B−2
k,bi

}tr{U2
i E−1

i

(
Di + σ̃2

i I
)
},

Υ3k = ∑
i 6=k

(
1−x(L,E)

bk

)
1

Mbi
tr{Dk,bi B−2

k,bi
}tr{U2

i E−1
i

(
Di + σ̃2

i I
)
}pi

ebi tr{U2
i

(
I−ebi E−1

i

)2 (
Di + σ̃2

i I
)
}

.

Note that the third and fourth term is the same and by combining (72), (75),(76) and (77), we
further obtain the deterministic equivalent for the SINR as

(78) γ(E)
k,L −

PSk
Υ1k+Υ2k−2Υ3k+1

M→∞−−−−→
a.s

0.

V ESIP-WSR BF with LS Channel Estimate

For LS only estimation, optimizing EW SR(g) (4.16) leads to the following generalized eigenvalue
problem

(79)

(
ĥk,LS ĥH

k,LS + σ̃2
k I

)
gk = νk

(∑
i 6=k

Si ,bk +µbk I

)
gk ,

ĥk,LS ĥH
k,LS gk = νk

(∑
i 6=k

Si ,bk +
(
µbk −

σ̃2
k

νk

)
I

)
gk .

where Si ,bk = ĥi ,bk ,LS ĥH
i ,bk ,LS + σ̃2

i I here. Since ĥH
k,LS gk is a scalar, this leads to gk ∝ (

∑
i 6=k

Si ,bk +

(µbk −
σ̃2

k
νk

)I)−1ĥk,LS . We Define Ŝi ,bk = ĥi ,bk ,LS ĥH
i ,bk ,LS . To find νk , we multiply by gk on both sides

of (79) and obtain νk

(80)

gH
k ĥk,LS ĥH

k,LS gk = νk gH
k

(∑
i 6=k

Si ,bk +
(
µbk −

σ̃2
k

νk

)
I

)
gk ,

So, νk
(a)= ĥH

k,LS

(∑
i 6=k

Ŝi ,bk +
∑

i 6=K
σ̃2

i +
(
µbk −

σ̃2
k

νk

)
I

)−1

ĥk,LS ,

(a) follows directly from substituting for gk = c(
∑

i 6=k
Ŝi ,bk +

∑
i 6=K

σ̃2
i +(µbk −

σ̃2
k

νk
)I)−1ĥk,LS , c being some

constant. First we compute the deterministic equivalent for νk . We define Γk = ∑
i 6=k

Si ,bk + (µbk −
σ̃2

k
νk

)I. In the large system limit, νk
M→∞−−−−→

a.s
E(tr{ĥH

k,LSΓ
−1
k ĥk,LS}) = tr{Γ−1

k E(ĥk,LS ĥH
k,LS)} =

1
Mbk

tr{Γ−1
k }tr{Dk }+ σ̃2

k E(tr{Γ−1
k }) = tr{Dk }ebk + σ̃2

k Mbk ebk , where ec (bk being c) is defined as

(81) ec =
(

1

Mc

K∑
i=1

βiλ
(1)
i ,c

1+βiλ
(1)
i ,c ec

+
K∑

i=1
σ̃2

i +µc −
σ̃2

k

νk

)−1

,

where λ(1)
i ,c in (81) is tr{Dk,c }+ σ̃2

k Mc . Now g′′
k = Γ−1

k ĥk,LS , considering the signal part and substi-

tuting for ĥk,LS = hk + h̃k and using the fact that hk and h̃k are independent

(82)

g′′H
k hk = ĥH

k,LSΓ
−1
k hk

M→∞−−−−→
a.s

E
(
tr{CH

k Γ
−1
k Ck dk dH

k }
)

= ebk tr{Dk },

g′′H
k hk hk g′′

k = e2
bk

tr{Dk }2.
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Further,
∥∥g′′

k

∥∥2 = ĥH
k,LSΓ

−2
k ĥk,LS

M→∞−−−−→
a.s

tr{Γ−2
k (Ck Dk CH

k + σ̃2
k I)} = e ′bk

tr{Dk }+ σ̃2
k Mbk e ′bk

. Substi-

tuting for e ′bk
= e2

bk

1−x(LS,Opt )
bk

from (62), finally we obtain the deterministic equivalent of the signal

power as

(83) PSk = pk

(
1−x(LS,Opt )

bk

)
(tr{Dk })2

tr{Dk }+σ̃2
k Mbk

.

Note that x(LS,Opt )
bk

has the same definition as in (62), but with the eigenvalues, λ(1)
k,bi

= tr{Dk,bi +
σ̃2

k I}+ σ̃2
k , λ(r )

k,bi
= 0,∀r = 2, ...,Lk,bi . Further considering the interfering user channel powers

(84) g′′H
i hk,bi hH

k,bi
g′′

i = ĥH
i ,bi ,LSΓ

−1
i hk,bi hH

k,bi
Γ−1

i ĥi ,bi ,LS

Now, we split the true channel as hk,bi = hLS,k,bi − h̃k,bi . Then we obtain

(85)

g′′H
i hk,bi hH

k,bi
g′′

i = ĥH
i ,LSΓ

−1
i ĥk,bi ,LS ĥH

k,bi ,LSΓ
−1
i ĥi ,LS + ĥH

i ,LSΓ
−1
i h̃k,bi ,LS h̃H

k,bi ,LSΓ
−1
i ĥi ,LS

(a)= 1

Mbi

(
tr{Di }+ σ̃2

i Mbi

) [
tr{Γ−1

i ĥk,bi ,LS ĥH
k,bi ,LSΓ

−1
i }+ tr{Γ−1

i h̃k,bi h̃H
k,bi
Γ−1

i }
]

(b)= e ′bi

1

Mbi

(
tr{Di }+ σ̃2

i Mbi

)  tr{Dk,bi }+ σ̃2
k Mbi(

1+βkλ
(1)
k,bi

ebi

)2 + σ̃2
k Mbi

 ,

where (a) follows from the convergence of ĥH
i ,LSΓ

−1
i ĥk,bi ĥH

k,bi
Γ−1

i ĥi ,LS

M→∞−−−−→
a.s

tr{Γ−1
i ĥk,bi ĥH

k,bi
Γ−1

i E(ĥi ,LS ĥH
i ,LS)} and substituting E(ĥi ,LS ĥH

i ,LS) = tr{Ci Di CH
i + σ̃2

i I}. Fur-

ther we apply the matrix inversion lemma and Lemma 3 to convert ĥH
k,bi ,LSΓ

−1
i to

ĥH
k,bi ,LSΓ

−1
i k

1+βk ebi
, where

Γi k =Γi −βk ĥk,bi ,LS ĥH
k,bi ,LS . In the next step, we convert tr{Γ−1

i k ĥk,bi ,LS ĥH
k,bi ,LSΓ

−1
i k }

M→∞−−−−→
a.s

(tr{Dk,bi }+ σ̃2
k Mbi ) 1

Mbi
tr{Γ−2

i k }
M→∞−−−−→

a.s
(tr{Dk,bi }+ σ̃2

k Mbi )e ′bi
using Lemma 3 and then The-

orem 8. Finally dividing by the normalization term
∥∥gi

∥∥2, we write the interference power as

(86) PIk =
∑

i 6=k

pi

Mbi

[
tr{Dk,bi }+σ̃2

k Mbi(
1+βkλ

(1)
k,bi

ebi

)2 +Mbi σ̃
2
k }

]
.

Finally combining (83), (86), we obtain the SINR expression as

(87) γ
(Opt )
k,LS −

pk

(
1−x(LS,Opt )

bk

) tr{Dk }2

tr{Dk }+σ̃2
k

Mbk∑
i 6=k

pi
Mbi

tr{Dk,bi
}+σ̃2

k
Mbi(

1+βkλ
(1)
k,bi

ebi

)2 +σ̃2
k

∑
i 6=k

pi+1

M→∞−−−−→
a.s

0.

From (87), it can be observed that with LS only channel estimator, signal power gets decreased
by a factor tr{Dk }+σ̃2

k Mbk . For the interference power part, there exists two terms. The first term
decreases with increasing SNR and it represents the ZF to the LS estimates of the interfering user
channels. The second term remains a constant with increasing SNR and it leads to an SNR offset
w.r.t the perfect CSIT at high SNR in the case of estimation error being ∝ 1/SN R.

VI Naive BF with LS Channel Estimate

Now we consider the naive BF for the LS only channel estimator. We observe that the SINR
expression has the similar form as the ESIP-WSR BF with LS channel estimate, with only change
being in the value of x(LS, N )

bk
. Note that x(LS, N )

bk
has the same definition as in (62), but with the

eigenvalues, λ(1)
k,bi

= tr{Dk,bi }+ σ̃2
k Mbk ,λ(r )

k,bi
= 0,∀r = 2, ...,Lk,bi .
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Figure .1: EWSR for C = 1 cell, K1 = K = 20 users, M = 64, L = 3, σ̃2 ∝ 1/SN R, unequal eigenval-
ues (D) .

VII Sum Rate Analysis for Covariance only CSIT case

From the BF expression in (7.36) for CoCSIT case, the deterministic equivalent for signal power
part can be written as

(88)
|g′′H

k hk |2 = eH
i ,max CH

k Γ
−1
k Ck dk dH

k CH
k Γ

−1
k Ck ei ,max

M→∞−−−−→
a.s

e2
bk

max(Dk ),∥∥g′′
k

∥∥2 = eH
i ,max CH

k Γ
−2
k Ck ei ,max

M→∞−−−−→
a.s

e ′bk
,

where max(Dk ) represents the maximum value among the diagonal elements of Dk . Further we
obtain the signal power part as, PSk = pk (1− x(C )

bk
)max(Dk ). The analysis for the interference

power part remains the same as in Section I for the ESIP-WSR BF with LMMSE channel estimate
case.

J Low SNR Analysis (σ̃2 ∝ 1
P )

In the Figure .1, we depict the low SNR behaviour of the various BFs with different channel esti-
mates. Further below, we simplify the SINR expressions at low SNR which validate the simulated
behaviour. To simplify the analysis, in this section, we consider Mbi = M , σ̃2

i = σ̃2,Lk,bi = L,∀i ,k.

I ESIP-WSR BF with LMMSE/Subspace Channel Estimate (D = η
L IL)

In this subsection, we omit the user and BS indices for simplicity. First we consider the simpli-
fied case, D = η

L IL . In this case, the optimal and naive BFs with LMMSE/LS channel estimate

converges to the same. Also, we make the approximation that d̂ = d+ d̃ ≈ d̃ which is accurate at
very low SNR.

(89)

WL = σ̃−2 η

L

(
σ̃−2d̃d̃H + IL

) η
L
+ η

L
I

= σ̃−4 η

L
d̃d̃H +

(
σ̃−2(

η

L
)2 + η

L

)
I,Vmax (WL) ∝ d̃,

WS = d̃d̃H + σ̃2IL ,Vmax (WS) ∝ d̃.
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Figure .2: EWSR for C = 1 cell, K1 = K = 20 users, M = 64, L = 3, σ̃2 ∝ 1/SN R, Dk,c = ηk,c

L I.

So g′′
k = Cd̃ for both LMMSE and subspace in the case of optimal. In the case of naive, WL =

σ̃−4 η
L d̃d̃H and WS = d̃d̃H and thus g′′

k = Cd̃ for both channel estimates. Hence finally computing
the signal power part

(90)
|g′′H h|2 = d̃H CH CddH CH Cd̃

M→∞−−−−→
a.s

σ̃2tr{D}.∥∥g′′∥∥2 = d̃hCH Cd̃
M→∞−−−−→

a.s
σ̃2L.

Hence the SINR becomes γ(Opt )
k,L = γ

(Opt )
k,S = ηk,c

L P . Also, we observe that for the naive BFs with
LMMSE/Subspace channel estimators, Vmax (WL) = Vmax (WS) remains the same as the case for
ESIP-WSR BF and hence the SINR expressions.

II ESIP-WSR/Naive BFs with LMMSE Channel Estimate (distinct eigenvalues in D)

For simplicity of notation, we drop user and BS indices in this section. So, at low SNR, all the in-
terference are negligible and the BF gets simplified as, g = Vmax (ĥĥH +Rh̃h̃) = CVmax (W), where,
W = U(d̂d̂H + σ̃2IL)UH + (U− I)D(U− I)H and d̂ = CH ĥLS = d+ d̃. And at low SNR, the following
simplifications can be done for U and W for LMMSE estimator

(91)
UL = (

I+ σ̃2D−1)−1 ≈ σ̃−2D,

So, WL = σ̃−2D
(
σ̃−2d̃d̃H + IL

)
D+D.

There is no signal concentration along h or d, Vmax (WL) remains a random projection in the
channel subspace C, if D is a multiple of identity. If D is not a multiple of identity, Vmax (WL) is
a function of d̃, D and σ̃2, independent of d which appears in h. Further considering the signal
part, E(|gH h|2) = tr{DEVmax (WL)Vmax (WL)H } , for example, in the extreme case, D = tr{D}e1eH

1 .
Then WL is proportional to e1eH

1 , hence g = Ce1. Then E(|gH h|2) = tr{D} but with
∥∥g

∥∥ = 1. For
subspace channel estimator, WS = d̃d̃H + σ̃2IL and Vmax (WS) = d̃. Substituting for g = Cd̃ in the

signal part and applying law of large numbers leads to E(|gH h|2)
L,M→∞−−−−−−→

a.s
d̃H Dd̃

L→∞−−−−→
a.s

σ̃2tr{D}.

Similarly computing
∥∥g

∥∥2 = d̃H d̃
L→∞−−−−→

a.s
tr{σ̃2IL} = σ̃2L. So, we conclude that the signal power
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equals tr{D} for optimal EWSR BF with LMMSE instead of tr{D}/L for subspace channel estima-
tor. This explains why LMMSE performs better than subspace estimator at low SNR, also illus-
trated by our simulations. For naive BF with subspace estimator, the BF has the same expression
as that of the ESIP-WSR BF, since the Vmax (WS) remains the same as d̃ and hence g = Cd̃. Thus
the performance at low SNR will be the same.

Further considering the naive BF, with the LMMSE channel estimate

(92)

Vmax (WL) ∝ Dd̃,

g′′ = CDd̃,

|g′′H h|2 = d̃H DddH Dd̃
M→∞−−−−→ σ̃2tr{D3},∥∥g′′∥∥2 = d̃H DDd̃

M→∞−−−−→
a.s

σ̃2tr{D2},

Further we can write the SINR expressions as γ(Opt )
k,L − tr{Dk }pk

M→∞−−−−→
a.s

0,γ(Opt )
k,S = γ(N )

k,S ,γ(Opt )
k,S −

tr{Dk }
L pk

M→∞−−−−→
a.s

0,γ(N )
k,L − tr{D3

k }pk

tr{D2
k }

M→∞−−−−→
a.s

0. Note that
tr{D3

k }pk

tr{D2
k }

< tr{Dk }pk , so the naive BF with

LMMSE performs slighly worse than the ESIP-WSR BF.

III BFs with LS Channel Estimate

From (87), at low SNR, since the interference power part is negligible, gk ∝ ĥk,LS . The deter-

ministic equivalent of the signal part simplifies as follows, g′′H
k hk = ĥH

k,LS hk
M→∞−−−−→ tr{E(hk hH

k )} =
tr{Dk }. Thus the signal power becomes |g′′H

k hk |2 = tr{Dk }2. Similarly, the normalization part for

gk ,
∥∥g′′

k

∥∥2 = ĥH
k,LS ĥk,LS

M→∞−−−−→
a.s

tr{Dk + σ̃2IL}. Finally, we can write the SINR as

(93) γ
(Opt )
k,LS = γ(N )

k,LS = tr{Dk }2pk

tr{Dk }+σ̃2
k Mbk

.

Naive BF has the same expression since at high SNR BF expression computed above for ESIP-
WSR case, gk ∝ ĥk,LS depends only on the LS channel estimator.

IV EWSMSE BF with LMMSE/Subspace Channel Estimate

For the simple case which we evaluate of varying channel attenuations, Dk = ηk

L I , d̃k = d̃k I =
σ̃2ηk /(σ̃2L+ηk )I, so g′′

k becomes, g′′
k ∝Γ−1

k Ck Uk d̂k (1−ebk /(ebk + d̃−1
k )) =Γ−1

k Ck Uk d̂k .

Now in the case of Dk = ηk

L I, the BF expression for ESIP-WSR BF is also gk ∝ Γ−1
k Ck Uk d̂k . So

the BFs are same for ESIP and EWSMSE at any SNR.
Further considering the case of distinct eigenvalues in Dk , we use the fact that ebk = 1

µbk
at low

SNR. Also, from (7.6), we can approximate (I+ σ̃2
k Dk )−1 ≈ σ̃−2

k Dk , d̃k ≈ Dk − σ̃−2
k D2

k ≈ Dk . Hence

we can approximate, β−1
k d̃−1

k +ebk ≈β−1
k d̃−1

k and we further obtain gk ∝Γ−1
k Ck (I−βk d̃k ebk )Uk d̂k .

Since ebk → 0 at low SNR, gk ∝ Γ−1
k Ck Uk d̂k , which is the same expression as the ESIP-WSR BF

and this explains the observed performance as seen in the simulations.

K High SNR Analysis (σ̃2 ∝ 1
P )

In Figure .3, we plot the comparison of various BF performance at high SNR when the channel
estimation error is inversely proportional to the Tx SNR. Below we provide detailed high SNR
analysis for the various BFs with different channel estimates and the SNR offsets are depicted in
the table 8.1.
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Figure .3: EWSR for C = 1 cell, K1 = K = 20 users, M = 64, L = 3, σ̃2 ∝ 1/SN R.

I BFs with LS Channel Estimate

Considering each of the terms in the interference power part in (86) for the ESIP-WSR BF, the

summation term
∑

i 6=k

pi

Mbi

tr{Dk,bi }+σ̃2
k Mbi

(1+βkλ
(1)
k,bi

ebi )2
∝ K L

M
1

SN R and hence tends to zero. Thus the BF gi does

ZF to all the interfering LS channel estimates hk,bi ,LS at high SNR. Also, we make use of the high

SNR result that ebi ∝ 1/µbi →∞. With Dk,bi =
ηk,bi

L I, Mbi = M , σ̃2
i = σ̃2, pi = P

K ,Lk,bi = L,∀i ,k, the
SINR can be written as

(94)
γ

(Opt )
k,LS =

P
K

(
1− K

M

) η2
k,bk

ηk,bk
+σ̃2

k
Mbk

σ̃2C P+1 ,

where we made use of the fact that x(LS)
bk

M→∞−−−−→
a.s

K
M since the (L −1) eigenvalues λ(r )

i ,bk
→ 0 and the

largest eigenvalue λ(r )
i ,bk

= tr{Di ,bk }+ 2σ̃2M which makes the term
β2

i λ
(r ),2
i ,c

(1+βiλ
(r )
i ,c ec )2

≈ 1. Thus x(LS)
bk

=
K
M ,∀k. The signal and interference power parts for the naive BF remains the same. Also, note

that x(LS)
bk

remains the same as that of the ESIP-WSR BF since the (L −1) eigenvalues for λ(r )
i ,c are

zero and the largest eigenvalue λ(1)
i ,c will be the same as that of the ESIP-WSR BF. Hence the SINR

expression remains the same, γ(Opt )
k,LS = γ(N )

k,LS .

II ESIP-WSR/Naive BFs with LMMSE/Subspace Channel Estimate

Considering the simplifications at high SNR, from (61), we observe that ec increases with SNR
since µc converges to zero with high SNR and ec À 1. So βi d̃ (r )

i ,c ec →∞. Now considering each
terms in the interference power part,

(95) 1
Mbi

tr{Dk,bi B−2
k,bi

} = 1
Mbi

[
Lk,bi∑
r=1

η(r )
k,bi(

1+βiλ
(r )
k,bi

ebi

)2

]
.

As µc → 0, it is clear from (95) that, 1
Mbi

tr{Dk,bi B−2
k,bi

} → 0, since each of the summation term be-

comes proportional to 1/SN R or 1
Mbi

tr{Dk,bi B−2
k,bi

} → K
∑

i Lk,bi
M

1
SN R . At high SNR, for the LMMSE
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channel estimate, the weight matrices WL = (I+ σ̃2D−1)−1 ≈ I = WS . Hence the optimal or naive
BF expression for both LMMSE or Subspace channel estimate can be represented as g′′

k ∝Γ−1
k Ck d̂k .

Further considering the signal power part

(96)

|g′′H
k hk |2 = d̂H

k CH
k Γ

−1
k Ck dk dH

k CH
k Γ

−1
k Ck d̂k

= e2
bk

d̂H
k dk dH

k d̂k
M→∞−−−−→

a.s
e2

bk
tr{Dk }tr{Dk + σ̃2IM },∥∥g′′H

k g′′
k

∥∥2 = e ′bk
d̂H

k d̂k
M→∞−−−−→

a.s
e ′bk

tr{Dk + σ̃2IM }.

Substituting for e ′bk
, the SINR becomes

(97)
γ

(Opt )
k,L = γ(Opt )

k,S =
(
1−x(L)

bk

)
tr{Dk }

P

K

=
(
1− K

M

)
tr{Dk }.

where we made the approximation that x(L)
bk

= K
M .

III EWSMSE BF with LMMSE/Subspace Channel Estimate

Starting with the EWSMSE expression derived in Section IV, g′′
k = Γ−1

k Ck Uk d̂k − Γ−1
k Ck (d̃−1

k +
ebk I)−1ebk Uk d̂k . At high SNR, d̃−1

k = σ̃−2I. Thus we can approximate d̃−1
k +ebk I ≈ (σ̃2+ebk )I. Thus

g′′
k ∝ Γ−1

k Ck Uk d̂k , which is same as that of optimal/naive BFs with the subspace and LMMSE
channel estimates.

L Sum Rate Analysis with Constant Channel Estimation Error

In this section, to simplify the analysis, we consider identical system parameters, Mc = M ,Lk,c =
L, σ̃2

k = σ̃2,Kc = K /C ,∀k,c.

I Naive BFs with LMMSE/Subspace Channel Estimate

The SINR expression remains the same as that derived in (69). Note that the terms x(L, N )
bk

, x(S, N )
bk

does converge to K
M . This results due to the fact that L−1 of the eigenvalues of Wi ,bk are zero and

the only nonzero eigenvalue remains a constant, tr{U2
i ,bk

(Di ,bk + σ̃2I)}. Also, from (61), we know

that ebk →∞ at high SNR. Further substituting ebk in (62), x(L, N )
bk

, x(S, N )
bk

converge to K
M .

II ESIP-WSR BFs with LMMSE/Subspace Channel Estimate

To simplify the analysis, we only consider the case, Dk,bi =
ηk,bi

L IL . In this case, vk,bk = d̂k . Also
the BF expression with LMMSE and subspace estimators are the same. We start with the deter-
ministic equivalent of the signal power part

(98)

g′′H
k hk = d̂H

k CH
k Γ

−1
k Ck dk

M→∞−−−−→
a.s

ebk tr{Dk },∥∥g′′
k

∥∥2 = d̂H
k CH

k Γ
−2
k Ck d̂k

M→∞−−−−→
a.s

e ′bk
tr{Dk + σ̃2I}.
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Next we look at the interference power part

(99)
|g′′H

i hk,bi |2 = d̂H
i CH

i Γ
−1
i Ck,bi dk,bi dH

k,bi
CH

k,bi
Γ−1

i Ci d̂i

M→∞−−−−→
a.s

d̂H
i d̂i

1

M
tr{Γ−2

i Ck,bi dk,bi dH
k,bi

CH
k,bi

}.

Here also, we apply the Lemma 4 twice to convertΓ−1
i to C−1

i , whereΞi =Γi−βk Ck,bi d̂k,bi d̂H
k,bi

CH
k,bi

.

(100) 1
M tr{Γ−2

i Ck,bi dk,bi dH
k,bi

CH
k,bi

}
M→∞−−−−→

a.s
1

M tr{Ξ−2
i Ck,bi dk,bi dH

k,bi
CH

k,bi
}

Further we apply Lemma 3 on each row of CH
k,bi
Ξ−1

i such that CH
k,bi
Ξ−1

i = B−1
k,bi

CH
k,bi
Ξ−1

i ,k̄
, where

Ξi ,k̄ =Ξi −βk Ck,bi D̃k,bi CH
k,bi

. Bk,bi is defined as, Bk,bi = I+βk ei D̃k,bi . Finally we obtain

(101)

1

M
tr{Ξ−2

i Ck,bi dk,bi dH
k,bi

CH
k,bi

}
M→∞−−−−→

a.s

1

M
tr{Ξ−2

i ,k̄
Ck,bi B−1

k,bi
dk,bi dH

k,bi
B−1

k,bi
CH

k,bi
}

M→∞−−−−→
a.s

1

M
tr{B−2

k,bi
Dk,bi }e ′i

Thus the interference power can be written as, PIk = 1
M

K∑
i 6=k

tr{B−2
k,bi

Dk,bi }

tr{Di+σ̃2I} pi +1. Thus the SINR can

be written as

(102)

γ
(Opt )
k,L = γ(Opt )

k,S =
(
1− K L

M

)
(tr{Dk })2

tr{
(
Dk + σ̃2I}

)( 1
M

K∑
i 6=k

tr{B−2
k,bi

Dk,bi }

tr{Di+σ̃2I} pi +1

)
(a)= (1− K L

M ) (tr{Dk })2

tr{(Dk + σ̃2I})
,

where (a) follows from: since tr{Di +σ̃2I} is a constant and ei ∝ SN R, each of the term in B−2
k,bi

∝
1

SN R2 . Since we consider K L
M as a constant, the interference power PIk ≈ 1

SN R +1 = 1. Thus ZF to
all the interfering paths happen at high SNR for the case of ESIP-WSR BF with LMMSE/Subspace
channel estimate. The SINR of the subspace estimate is the same as that of the LMMSE here
since the BF expressions are equal when Dk,bi is a multiple of identity.

III BFs with LS Channel Estimate

For the ESIP-WSR BF with LS channel estimate, we look at how the SINR expression derived
in (87) evolves with SNR. In the constant channel estimation error case also, the summation

term
∑

i 6=k

pi

Mbi

tr{Dk,bi }+σ̃2
k Mbi

(1+βkλ
(1)
k,bi

ebi )2
∝ K L

M
1

SN R . However the second term σ̃2C P increases with SNR which

explains the saturation at high SNR. Also, note that x(LS)
bk

= K
M due to the ZF to interfering LS

channel estimates.

(103)
γ

(Opt )
k,LS =

(
1− K L

M

) (tr{Dk })2

tr{Dk }+σ̃2
k

Mbk

P
K

σ̃2C P+1

Note that for the naive BF, there is only one eigenvalue for W and hence the number of ZF com-
ponents is K (ZF to the interfering LS channel estimates which is rank one).
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IV EWSMSE BF with LMMSE/Subspace Channel Estimator

To simplify further, considering the simplified case of Dk,bi =
ηk,bi

L I, where D̃k,bi = d̃k,bi I, we ob-
tain the simplification

(104)

(
I−ebk E−1

k

)2 = 1

(1+βk d̃k ek )2
I,

So,
∥∥g′′

k

∥∥2 =
e ′bk(

1+βk d̃k ek
)2 tr{U2

k

(
Dk + σ̃2

k I
)
}.

Next, we look at further simplifications when Dk,c = ηk,c

Lk,c
,∀k,c. The first term in the interfer-

ence power, (75) becomes (1+βi d̃i ,bi ei )2tr{Dk,bi B−2
k,bi

}. The second term (76) can be simplified as

(1− x(L,E)
bi

)βi d̃i ,bi tr{Dk,bi B−2
k,bi

}. And the third term (77) becomes,
(1−x(L,E)

bi
)(1+βi d̃i ,bi ei )

ebi
tr{Dk,bi B−2

k,bi
}.

Note that the fourth term is equivalent to the third term and thus have the same simplified ex-
pression. Finally, combining, we obtain the SINR expression as

(105) γ(E)
k,L −

(
1−x(L,E)

bk

) η2
k,bk(

ηk,bk
+σ̃2

k
L
) pk

1
M

∑
i 6=k

pi tr{Dk,bi B−2
k,bi

}[
(
1+βi d̃i ,bi ebi

)2+(1−xL,E
bi

)βi d̃i ,bi −2

(
1−x(L,E)

bi

)(
1+βi d̃i ,bi

ebi

)
ebi

]+1

M→∞−−−−→
a.s

0.

From Section I, we know that ec →∞ at high SNR, so we can simplify further the above equation
at high SNR. The second term in the denominator P

K M

∑
i 6=k

(1− xL,E
bi

)βi d̃i ,bi tr{Dk,bi B−2
k,bi

} becomes

proportional to 1
SN R , similarly the third term P

K M

∑
i 6=k

tr{Dk,bi B−2
k,bi

}2
(1−x(L,E)

bi
)(1+βi d̃i ,bi ebi )

ebi
also is pro-

portional to 1
SN R . Hence all terms except the first term in the interference power part goes to

zero. The first term can be simplified as

(106)
C P

K M

∑
i 6=k

tr{Dk,bi B−2
k,bi

}
(
1+βi d̃i ,bi ebi

)2 M→∞−−−−→
a.s

C P

K M

∑
i 6=k

tr{Dk,bi B
−2
k,bi

}
(
βi d̃i ,bi

)2
,

where

(107) Bk,bi = diag(βkλ
(1)
k,bi

, ....,βkλ
(r )
k,bi

).

Finally we obtain

(108) γ(E)
k,L −

(
1−x(L,E)

bk

) η2
k,bk(

ηk,bk
+σ̃2

k
L
) pk

C P
K M

∑
i 6=k

tr{Dk,bi B
−2
k,bi

}
(
βi d̃i ,bi

)2+1

M→∞−−−−→
a.s

0.

Note that d̃i ,bi is a constant since the channel estimation error is constant. Hence the term
(1+βi d̃i ,bi ebi )2 ∝ SN R2. The only term remaining as part of the interference power in the de-
nominator, 1

M

∑
i 6=k

pi tr{Dk,bi B−2
k,bi

}[(1+βi d̃i ,bi ebi )2] ∝ K L
M SN R. Hence this term grows as SNR in-

creases and this explains why the rate saturates at high SNR for EWSMSE BFs.
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