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Abstract

This thesis is focused on the generation and understanding of particular

kinds of quantum randomness. Randomness is useful for many tasks in

physics and information processing, from randomized benchmarking [1], to

black hole physics [2], as well demonstrating a so-called quantum speedup

[3], and many other applications. On the one hand we explore how to gener-

ate a particular form of random evolution known as a t-design. On the other

we show how this can also give instances for quantum speedup - where clas-

sical computers cannot simulate the randomness efficiently. We also show

that this is still possible in noisy realistic settings.

More specifically, this thesis is centered around three main topics. The

first of these being the generation of ε-approximate unitary t-designs. In this

direction, we first show that non-adaptive, fixed measurements on a graph

state composed of Ω(n(nt + log(
1

ε
))) qubits, and with a regular structure

(that of a brickwork state [4]) effectively give rise to a random unitary ensem-

ble which is a ε-approximate t-design. This work is presented in Chapter 3.

Before this work, it was known that non-adaptive fixed XY measurements

on a graph state give rise to unitary t-designs [5], however the graph states
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used there were of complicated structure and were therefore not natural

candidates for measurement based quantum computing (MBQC), and the

circuits to make them were complicated. The novelty in our work is show-

ing that t-designs can be generated by fixed, non-adaptive measurements on

graph states whose underlying graphs are regular 2D lattices. These graph

states are universal resources for MBQC. Therefore, our result allows the

natural integration of unitary t-designs, which provide a notion of quantum

pseudorandomness which is very useful in quantum algorithms, into quan-

tum algorithms running in MBQC. Moreover, in the circuit picture this

construction for t-designs may be viewed as a constant depth quantum cir-

cuit, albeit with a polynomial number of ancillas.

We then provide new constructions of ε-approximate unitary t-designs

both in the circuit model and in MBQC which are based on a relaxation

of technical requirements in previous constructions [6]. These constructions

are found in Chapters 4 and 5.

The second topic of this thesis deals with sampling from the output

probabilities of quantum devices which demonstrate a quantum speedup, in

the sense that no classical polynomial time algorithm can sample from these

probabilities given some complexity theoretic conjectures - which are widely

held to be true - hold. In this direction, we present new examples of such

sampling problems defined by non-adaptive fixed angle measurements on 2D

graph states with a regular structure. Our sampling problems possess de-

sirable properties for experimental implementation such as nearest neighbor

interactions, fixed non-adaptive measurements. These sampling problems

are presented in Chapters 4 and 6.
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The third topic of this thesis concerns observing quantum speedup in a

realistic, noisy setting. We present a new example of a sampling problem

defined by measurements on a poly(n) sized 2D graph state with n-input

qubits. Again, we show that this sampling problem cannot be performed

efficiently on a classical computer unless complexity-theoretic conjectures

which are widely believed to be true, turn out to be false. Crucially, this

sampling problem is robust against general noise models, by virtue of quan-

tum error correction, and also posseses desirable properties for experimental

implementation such as low overhead, nearest neighbor interactions, regular

structure, and fixed angle, non-adaptive Pauli measurements. Furthermore,

when viewed in the circuit model, this result can be understood as con-

stant depth circuits giving rise to a fault tolerant quantum speedup. This

robustness result is found in Chapter 6.
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Chapter 1

General Introduction

The great promise offered by quantum technologies is getting ever closer to

a reality. Indeed, quantum technologies promise revolutionary developments

in various fields, from breaking RSA encryption in polynomial time [10], to

simulating quantum mechanics as originally suggested by Feynman [11], as

well as advances in sensing [12], metrology [13], combinatorial optimization

[14], and many other areas.

Critical to many of these developments is the building of the so-called

quantum computer, which is a device which uses the laws of quantum me-

chanics to process information, analogous to how a classical computer pro-

cesses information by using the laws of classical physics. Of course one

should mention that the processing of information is a physical process [15]

which involves the evolution of a physical state. The evolution in quantum

mechanics being more general than that of classical physics opens up the

possibility that quantum computers could be more powerful than their clas-

sical counterparts [16].
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The pioneering works of Shor [10] and Grover [17] were the first to pro-

vide compelling evidence for the above mentioned claim by giving examples

of quantum algorithms 1 to solve particular computational tasks which

demonstrate a quantum advantage − in the sense that quantum algorithms

can solve the computational task faster − over the best known classical al-

gorithms to solve these tasks. These seminal results have sparked a surge

of research in the field of quantum algorithms leading to the discovery of

a plethora of quantum algorithms which outperform their classical counter-

parts for particular computational tasks. Active research is also being con-

ducted to understand the resources unique to quantum theory which are

at the heart of quantum-over-classical-advantage in computing and commu-

nication tasks (see for example [18, 19, 20]). It is worth mentioning that

quantum computers, even though they seem to provide an advantage over

classical computers for particular computational tasks, are not expected to

solve every computational task more efficiently than a classical computer,

nor are they expected to solve problems which are generally thought to be

truly intractable such as, say, NP-complete problems [21].

In classical computing, randomness and pseudo-randomness play key

roles in developping new and faster classical algorithms [16]. Therefore,

it makes sense to pursue the quantum analogues of classical randomness,

or simply quantum randomness with the same goals in mind. Indeed,

quantum randomness has found many applications across quantum informa-

1Which are algorithms that can be performed on an ideal universal quantum com-
puter. Where it is meant by ideal that the quantum computer is isolated from the effects
of noise, which irrevocably damage the precious quantum information. By universal it is
meant that the quantum computer can perform any quantum operation, more about this
is to be said in the coming chapters.
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tion and physics in general, ranging from randomized benchmarking [1], se-

cure private channels [22], to understanding how quantum systems thermal-

ize [23], as well as modeling black holes [2], and recently as providing natural

candidates for devices demonstrating a quantum speedup [24, 25, 26, 27].

Unfortunately, genuine (Haar) quantum randomness is computationally inef-

ficient, as it requires exponential quantum resources [28]. This fact naturally

leads us to search for efficient alternatives to genuine quantum randomness.

These alternatives have been shown to exist, and are known as pseudo-

random quantum unitary ensembles, or more formally as unitary t-designs

[29]. 2 One of the goals of this thesis will be to explore the problem of

generating unitary t-designs. We will present novel advancements in this

area by providing new constructions of random quantum circuits giving

rise to unitary t-designs which remove rigid requirements in previous con-

structions [6]. We will also show that unitary t-designs can be generated by

non-adaptive fixed angle measurements on 2D cluster states, which arguably

is of important practical relevance [30].

Although, to date, there are examples of quantum algorithms which

outperform classical algorithms, on the practical level, these algorithms in

general require quantum computers with a suitable level of fault-tolerance

and scalability [3], the likes of which appear to be out of the reach of cur-

rent technological developments [31]. An interesting question is thus, what

can be done with so-called sub-universal quantum devices which are not

universal in the sense that they can perform any quantum operation, are

realizable in principle by our current technologies, but nevertheless capture

2The reason behind this nomenclature will be made clear in forthcoming chapters.
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the power of quantum computing. Examples of such devices are those of

[3, 32, 24, 25, 26, 27]. Sampling from the output probability of these devices

has been shown to be classically impossible efficiently, provided widely be-

lieved complexity theoretic conjectures hold [3, 32]. Thus, these devices

demonstrate what is known as an exponential quantum speedup. This

speedup is based on strongly believed complexity theoretic conjectures, and

thus there is compelling evidence to believe it. The same cannot be said of

some quantum algorithms, for which no such complexity theoretic evidence

exists. In this thesis, we will add to the established literature new examples

of sub-universal devices demonstrating a quantum speedup, and obtained

by practically relevant means; namely fixed non-adaptive measurements on

2D cluster states.

A main road block in the way of building a fully-fledged universal quan-

tum computer is noise. Indeed, there is evidence that whatever quantum

advantage a particular quantum device gives, disappears when this device

is noisy [33, 34, 35]. To counter this problem, in this thesis, we provide an

example of a 2D graph state architecture with practically desired properties

such as nearest neighbor interactions, which when measured at fixed angles

non-adaptively gives rise to output probabilities whose sampling shows a

quantum speedup. Crucially, this quantum speedup is robust to noise, be-

cause the qubits of this graph state are based on a particular quantum error

correcting code.

This thesis is divided into seven chapters. Chapter 2 gives some back-

ground into the various ideas and technicalities used in this thesis. Our
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contributions begin in Chapter 3 where we show that non-adaptive, fixed

angle measurements on efficiently preparable graph states with a regular

structure can give rise to so-called unitary t-designs [30, 29, 36]. In Chapter

4, we provide new efficient constructions of unitary t-designs both in the

circuit model [37] and in the measurement based model [30] which go be-

yond standard constructions of these t-designs [6]. We also find examples of

new sampling problems, based on these constructions, which demonstrate

a quantum speedup, up to standard complexity theoretic conjectures [33].

In Chapter 5, we present a new efficient construction for unitary t-designs

which also goes beyond the standard constructions [6], and proves a conjec-

ture raised in [6]. In Chapter 6, we present an example of a sampling problem

which is robust to general noise models, and which can be viewed as a con-

stant depth-circuit acting on a polynomial number of ancillas. This sampling

problem also posseses desirable properties such as nearest-neighbor gates,

non-adaptivity, and single instance hardness [38], among others. Chapter

7 is a general conclusion which also discusses some open questions to be

treated.

For ease of reading and accessibility, each Chapter is written to be largely

self contained, which means some notions will be repeated, and where nec-

essary we will refer back to earlier parts of the thesis or external material.
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Chapter 2

Background

In this chapter, we introduce some basic concepts which will be made use of

in the later chapters of this thesis where we will present our research results.

The concepts introduced here will be a brief mix of each of the mathe-

matical formalism of Quantum Mechanics (QM), Complexity Theory (CT),

measurement based Quantum Computing (MBQC), the theory of exact and

approximate unitary t-designs, as well notions of classical simulability and

quantum speedup.

2.1 Quantum Mechanics

In this section we present a brief introduction to QM. More detailed intro-

ductions can be found in references like [37, 39] (see also [40]).

QM is based on mathematical axioms. The first being that a quan-

tum system is completely defined by specifying its state vector, called a

wavefunction. The wavefunction is a complex vector with unit norm de-
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fined on the Hilbert space H = Cd, which is just the usual d-dimensional

complex space Cd endowed with an inner product. We will use Dirac

notation and denote a wave function of a physical system as

|ψ〉 ∈ H. (2.1)

|ψ〉 can be thought of as a column vector with d complex entries, and it is

commonly referred to as a pure state in the quantum information literature

[37]. The corresponding conjugate row vector is then denoted as 〈ψ|. We

also write the inner product of two pure states |ψ1〉 and |ψ2〉 as

〈ψ1|ψ2〉. (2.2)

Systems can also be in states which are probabilistic mixtures of pure states,

and are called mixed states, we describe mixed states using their density

matrix ρ as

ρ =
∑
i

pi|ψi〉〈ψi|, (2.3)

where pi ∈ [0, 1] and
∑

i pi = 1, and where |ψi〉 are pure states.

The second axiom deals with physical properties such as energy, mo-

mentum,... To every physical property A, we associate a linear, Hermitian

operator A which acts on states |ψ〉 ∈ H, and whose eigenvalues are the

possible values taken by physical property A.

The third axiom is known as Born’s rule, and relates the mathematical

formalism of QM to experiment. Born’s rule states that, given a system

in the state |ψ〉, the probability of measuring this system in a state |φ〉 is
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given by

p = |〈φ|ψ〉|2. (2.4)

It is said that the wave function |ψ〉 of the system collapses to the state

|φ〉 after measurement. This axiom also gives us a way of finding the prob-

abilities of observing the different values of physical properties A. Indeed,

using the spectral theorem [41] and the second axiom, one finds that the

Hermitian operators A, associated to physical properties A can be written

as

A =
∑
i

λi|i〉〈i|, (2.5)

where λi are the eigenvalues of A, and |i〉 are the eigenstates corresponding

to the eigenvalues λi. For a system in a state |ψ〉, the probability of observing

eigenvalue λi is given by

p = |〈i|ψ〉|2. (2.6)

The fourth axiom deals with the evolution of the state of a physical

system 1, and says that this evolution is unitary for closed quantum systems.

More precisely, the state of a quantum system at time t, |ψ(t)〉, is derived

from the initial (at time t0) state |ψ(t0)〉 by

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, (2.7)

where U(t, t0) is a unitary matrix. In QM, this unitary evolution is governed

by, and determined from a linear partial differential equation called the

1Note that the projection may also be thought of as a form of, non-unitary, evolution.
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Schrödinger Equation [42]. It is worth noting that QM has been derived

by extending probability theory to vectors of complex amplitude [43], as

well as from arguably more reasonable axioms [44].

The axioms of QM give rise to a rich mathematical structure which

can be exploited to gain computational advantages on the practical level.

These advantages are in the sense that quantum protocols, or quantum

algorithms can perform some computational tasks faster than any of their

known classical counterparts, a feature we will call quantum advantage 2.

Before elaborating on this idea, let us define the basic unit of quantum

information processing, the quantum bit, or qubit. The qubit is a 2-level

quantum system, for example the up and down spin states of an electron, or

the horizontal and vertical polarizations of a photon [37]. The Hilbert space

of a qubit is H = C2, the qubit at any point in time can be in either the two

states |0〉 and |1〉 which are, for example, the two spin states of an electron,

or in a superposition of these two states (by the fourth axiom) given by

|ψ〉 = α|0〉+ β|1〉, (2.8)

2In this thesis we will mainly use two terms to refer to computational advantages of-
fered by QM. The first of these terms is quantum advantage which we take to mean
any advantage offered by quantum devices over there classical counterparts for particu-
lar tasks, whether it be a polynomial advantage (in the sense that the quantum device
requires polynomially less resources than its classical counterpart to perform a particular
given task) as in [20] for example, or an exponential one (in the sense that the quantum
device requires exponentially less resources to perform a particular given task) as in [3].
Whereas the second term, quantum speedup, we reserve for tasks demonstrating an expo-
nential advantage, and where this exponential advantage is backed up by widely believed
complexity theoretic conjectures, as in [3].
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with α and β two complex numbers related by

|α|2 + |β|2 = 1. (2.9)

Equation (2.8) is called the principle of superposition, and is the first strik-

ing departure from the laws of classical information theory (where binary

digits are always either 0 or 1, and never in superposition). When the num-

ber of qubits is n − which would correspond to a quantum system defined

on a Hilbert space H = H1 ⊗ H2... ⊗ Hn, where Hi = C2 − the state of

such an n-qubit quantum system can be in a superposition of 2n states of

the form

|i1...in〉 := |i1〉 ⊗ |i2〉 ⊗ ...⊗ |in〉, (2.10)

where ij ∈ {0, 1}. One would be tempted to say at this point that a quantum

computer made up of n qubits can perform 2n computations simultaneously,

this is, however, an erroneous assumption. Particularly because to extract

useful information out of a quantum computation, one would need to per-

form a measurement which collapses the wavefunction of the system to a

single state, by the third axiom. Nevertheless, the superposition principle

can be used to extract some quantum advantage, along with other tech-

niques in quantum computing which ensure a destructive interference of all

but the good state corresponding to the desired computation [21], as is done

for example in [10].

Another striking feature of QM is entanglement [45]. As an example

of this feature for the bipartite case, the mathematical structure of the

Hilbert space of a bipartite system H1 ⊗ H2 allows the existence of pure
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states which cannot be written as a single product of the form |ψ1〉 ⊗ |ψ2〉,

where |ψ1〉 ∈ H1, and |ψ2〉 ∈ H2. These bipartite qubit states which can-

not be written as a single product of one-party states are called entangled

states. A more general formulation of (bipartite) entanglement which en-

compasses mixed states as well as pure states is as follows. A (pure or mixed)

state whose density matrix cannot be written as a convex combination of

product state density matrices, which are density matrices having the form

ρ = ρ1 ⊗ ρ2 where ρi = |ψi〉〈ψi| with |ψi〉 ∈ Hi and i ∈ {1, 2}, is said to be

entangled with respect to partitions 1 and 2 [45]. One can also generalize the

concept of entanglement to a multipartite setting using similar arguments as

those seen above [45]. Entanglement, and the intimately related concept of

non-locality [46] are more and more being understood as a main resource be-

hind the quantum advantage found for example in communication protocols

[47], as well as the universality of measurement based quantum computing

[48]. Morever, the phenomenon of contextuality [49] (of which non-locality

is understood as being a special case of [50]) arises naturally when trying to

understand how commuting quantum observables act on quantum states, at

the level of their eigenvalues [49]. Contextuality, which has been generalized

to a broad extent [51, 52], is now being understood to lie at the heart of

quantum computational advantage [19, 20, 51, 53].

Perhaps, what is even more bizarre is that there is evidence that quan-

tum theory may turn out to be an island in theory space [54, 55, 56]. Indeed,

changing the axioms of QM only slightly results in perverse physical con-

sequences, such as signalling [54]. Also, considering slightly more general

correlations than those allowed by QM leads to the violation of, arguably,
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fundamental principles [55, 56].

The above mentioned facts make the study of QM, quantum information,

and quantum computing fascinating topics 3, and it is in the wise words of

Eugene Wigner [57] that I choose to end this paragraph : The miracle of

the appropriateness of the language of mathematics for the formu-

lation of the laws of physics is a wonderful gift which we neither

understand nor deserve. We should be grateful for it and hope

that it will remain valid in future research and that it will extend,

for better or for worse, to our pleasure, even though perhaps also

to our bafflement, to wide branches of learning.

2.1.1 Basic Tools

In this subsection we define some of the basic tools, relevant to this thesis,

used in quantum computation. More detailed expositions can be found in

references like [37].

A qubit in a pure state can be thought of as a point on the surface of

a sphere of radius one, called the Bloch sphere. Or equivalently as a Bloch

vector which starts at the origin of the Bloch sphere and terminates on a

point of the sphere [37]. Mixed states in this picture correspond to points

inside the Bloch sphere. In this way, single qubit unitaries (or gates) can

be thought of as norm-preserving rotations on the Bloch sphere, around

particular axes. As an example, the Pauli matrices

3At least to the author of this thesis.
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X =

0 1

1 0

 ,

Y =

0 −i

i 0

 ,
and

Z =

1 0

0 −1

 ,
can be thought of as rotations by an angle π around the X, Y , and Z axes

of the Bloch sphere respectively. In this thesis, we will often use rotations

around the Z axis at specified angles θ ∈ [0, 2π]. We will denote these

rotations as Z(θ), and their corresponding unitaries have the form

Z(θ) =

1 0

0 eiθ

 .
We will similarly denote rotations by θ around the X and Y axes as X(θ)

and Y (θ). Another single qubit gate which we will make frequent use of is

the Hadamard gate H, which is given by

H =


1√
2

1√
2

1√
2
− 1√

2

 .
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H acts on the basis states {|0〉, |1〉} as

H|0〉 =
|0〉+ |1〉√

2
,

and

H|1〉 =
|0〉 − |1〉√

2
.

We will denote

|+〉 :=
|0〉+ |1〉√

2
,

and

|−〉 :=
|0〉 − |1〉√

2
.

Single qubit gates do not suffice for universal quantum computation, and

must be complemented with at least one entangling 2-qubit gate to achieve

this universality [58]. Whenever we refer to universality in this thesis, we

mean approximate universality where products of unitaries from a (usually

finite) set of fixed unitaries can approximate any unitary up to arbitrary

precision (see [58] for example for a more formal definition). A particularly

useful 2-qubit entangling gate which we will frequently use is the controlled

Z gate, which is denoted as CZ and whose unitary matrix is given by

CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


.
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Indeed, the CZ gate, together with the Hadamard gate are used in generat-

ing graph states for MBQC [30], as we will see in Section 2.3. We end this

subsection by describing a type of measurement which we will use frequently

in our MBQC protocols, namely a (single-qubit) measurement at an angle

θ in the XY plane. In the Bloch sphere picture, this means projecting the

Bloch vector of a qubit onto an axis having an angle θ with respect to the

X axis. More details on this are found in Section 2.3.

2.2 Complexity Theory

In this section, we present a very brief overview of Complexity Theory (CT).

More detailed introductions can be found in references like [37], for exam-

ple. The purpose of this section is to familiarize the reader with complexity

classes such as P, NP, ]P, BQP,... as well as notions of hardness which

will be made use of in forthcoming chapters.

The goal of CT is to study the spatial and temporal resources needed to

solve computational problems, and give lower bounds on these resources re-

quired by an algorithm which solves these problems optimally. Before going

any further, it is convenient to define a computational problem. In a com-

putational problem we are given an input, and we want to return an output

which must satisfy some property, given the input. Computational problems

can either be decision problems, search problems, counting problems, or

optimization problems 4. A decision problem is a yes-no answer to a given

question. For example, given a number n, is it even? Other problems are

4Note however that every type of these problems can be viewed as a search problem.
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a little bit trickier to define, and require the introduction of some math-

ematical machinery first. Computational problems can be rather cleanly

defined in terms of strings, languages and alphabets. An alphabet is a

non-empty finite set Σ. For our purposes, let Σ = {0, 1}. An element x ∈ Σ

is called a symbol. A string s is a finite sequence of symbols from Σ. The

set of all possible strings will be denoted as S. A language L over Σ is

a subset of S. In this sense, any decision problem can be formulated as

follows : Decide whether a given input string s ∈ S belongs to the language

Lf = {s ∈ S | f(s) = 1}, where f : S → {0, 1} is a boolean function

defining the decision problem. An algorithm solves a decision problem by

accepting any input string s ∈ Lf , or rejecting any input string s
′ 6∈ Lf .

In a search problem, given an input s1 ∈ S, we want to compute an output

s2 ∈ S which is a solution (if one exists) to the search problem, such that

s1 and s2 are related by some search relation R ⊆ S × S, where s2 is an

accepted solution to the search problem iff (s1, s2) ∈ R. A counting prob-

lem counts the number of solutions of a search problem. More precisely, if

R is a search relation, then the corresponding counting problem is defined

by CR(x) = |{y | (x, y) ∈ R}|.

With the relevant (to this thesis) types of computational problems being

defined, we will now define some well-known complexity classes, we will of-

ten make use of these classes in later parts of this thesis. Let the complexity

class P be the class of decision problems solvable in polynomial time by a
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classical algorithm.5 NP is the class of decision problems whose accept

instances can be verified in polynomial time by a classical algorithm. One

of the deepest questions in Mathematics (and worth a million bucks! [59])

is whether P=NP. Although it is strongly believed that P 6= NP [60] ,

yet it appears that the proof of this claim is beyond the scope of what is

considered a natural proof [61] (see also [62]). The proofs of hardness of

classical simulability presented in this thesis rely on the fact that P 6= NP

6. Among the problems in NP, are the so-called NP-complete problems

which are in a sense the hardest problems to solve in NP, since solving

these problems in time poly(n), allows to solve any problem in NP in time

poly(n) [37]. NP-hard problems are decision problems, not necessarily in

NP (in contrast to NP-complete problems), but to which every problem

in NP can be reduced to by a polynomial time classical algorithm, given

oracle access to the function f defining the NP-hard problem [64]. Clearly,

the set of NP-hard problems contains all the NP-complete problems. The

notions of hard and complete extend also to other complexity classes, in

the same manner as they are defined for NP. The class ]P is the class of

counting problems associated with decision problems in NP [65]. That is,

]P is the set of all functions which count the number of accepting paths of

any given NP-problem [64]. BQP is the class of decision problems solvable

by a polynomial time quantum algorithm (which is an algorithm which runs

on a quantum computer [37]), with bounded probability of error [37].

5We mean by classical algorithm, an algorithm which runs on a classical deterministic
Turing machine [37].

6Actually, we will rely on a slightly weaker conjecture, that the so-called polynomial
heirarchy does not collapse [63], as seen in later chapters
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Postselection, which is defined as the ability to discard all computations

in which a given event does not occur, is a powerful theoretical tool in com-

plexity theory. Although postselection is not practical, in the sense that one

cannot, in general, assume in a computation that one has the ability to post-

select, nevertheless it can be used as a tool to get insight about the power

of a computation. An interesting result in this direction which is relevant to

this thesis is that quantum circuits which are universal under post-selection

give rise to probability distributions whose relative error approximation is

]P-hard [66].

We will illustrate how the proof of [66] proceeds. The proof begins by

noting that if one can approximate up to relative error the output probabili-

ties (which are the probabilities obtained by measuring the output qubits of

a quantum device) {p} of a quantum device (which is universal under postse-

lection), one can use these probabilities to get a relative error approximation

of the postselected output probabilities {ppost}. Next, consider the power of

postselected universal quantum computation, Scott Aaronson showed that

PostBQP=PP [67], where PP is the class of decision problems solvable by

a probabilistic Turing machine [68] in polynomial time with a probability

of error of less than 1/2 for all instances. Using this result, together with

the fact that P]P = PPP [66], with AC meaning the complexity class A,

with oracle access to C, it can be shown that, given access to a relative

error approximation of the probabilities {p}, and a polynomial time clas-

sical algorithm, it is enough to solve a ]P-complete problem. Therefore,

the probabilities {p} are ]P-hard (by definition of hard in this section) to

compute up to relative error, thereby completing the proof (more details in
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[66]).

2.3 Measurement Based Quantum Computation

(MBQC)

MBQC is a model of universal quantum computation which proceeds in

general by performing adaptive single qubit measurements on a highly en-

tangled multi-partite quantum state [30]. This model allows for universal

quantum computation [30], as is the case for the conventional circuit model

of quantum computing [37], which we will not discuss here. MBQC is a nat-

ural landscape for the generation of random unitary ensembles [5], which

are one of the main objects of interest in this thesis.

Definition 1. A random unitary ensemble in U(N) is a couple

{pi, Ui ∈ U}i=1,...|U| (or simply {pi, Ui} for ease of notation), where each

unitary Ui ∈ U is drawn with probability pi ≥ 0, and
∑

i pi = 1, with

U ⊂ U(N).

This section shows how one can generate such ensembles in the language

of MBQC. We begin by introducing graph states (see e.g. [69]), a main

component of MBQC.

Graph states are a family of multipartite quantum states, with simple

descriptions in terms of graphs [69]. They are very useful resources for

quantum information, with applications in measurement based quantum

computing [30], fault tolerance [70], cryptographic multiparty protocols [71],

quantum networks [72] and recently for generating t-designs [5, 36] and
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instances of quantum speedup [25, 26]. They represent the cutting edge in

terms of size of entangled states that can be generated and controlled in

experiments, with implementations demonstrated in optics [73, 74, 75], [76,

77] including on chip [78], in ion traps [79, 80], super conducting qubits [81]

and NV centres [82]. Remarkably, in continuous variable quantum optics

graph states of up to 104 parties have been created [77]. Furthermore there

are several techniques that have been developed to verify the quality of

graph states in various settings of trust [25, 51, 38, 83, 84] which can often

be translated into verification of their applications. More formally, one can

define graph states as follows.

Definition 2. A graph state |G〉 is a pure entangled multipartite state of n

qubits in one-to-one correspondance with a graph G = {E, V } of n vertices.

Every vertex i ∈ V represents a qubit, and each edge (i, j) ∈ E can be

understood as a preparation entanglement.

|G〉 =
∏

(i,j)∈E

CZi,j |+〉⊗n, (2.11)

where |+〉 = 1√
2
(|0〉+ |1〉) and CZi,j is the controlled Z gate applied to qubits

i and j (see e.g. [37]).

For the purposes of computation, a subset of qubits I ⊂ V is defined as

the computational input with initial input state |ψin〉I , and the associated

open graph state has the form

|G(ψ)〉 =
∏

(i,j)∈E

CZi,j |ψin〉I ⊗ |+〉V/I . (2.12)
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A cluster state [85] is a particular type of graph state whose corresponding

graph is a regular two dimensional square lattice. In MBQC, computation

is carried out by performing measurements on all but a subset O ⊂ V of

qubits. In general one has |O| ≥ |I|, though here we are concered only

with the case |I| = |O| in this thesis. By performing the measurements

adaptively on a universal resource state (such as the cluster state) - via

some corrective strategy such as the gflow [86] - one can implement any

desired unitary U ∈ U(2|O|) on the input state, which is teleported to the

(unmeasured) output position by the end of the computation. At the end

of the computation, we are left with the following state

|OUT 〉 = |M〉V/O ⊗ U |ψin〉O, (2.13)

where |M〉V/O represents the measurement outcomes, performed adaptively.

Cluster states are universal resources for measurement based quantum com-

putation (MBQC) [30, 85], even when all the measurement angles are chosen

from the XY plane [87].

On the other hand, performing the measurements non-adaptively (that

is, simultaneously and without a corrective strategy) generates a random

unitary ensemble {pi, Ui}, seen from noting that we can (for an appropriate

choice of measurement bases) write |G(ψ)〉 as,

|G(ψ)〉 =
∑
i

√
pi|Mi〉V/O ⊗ Ui|ψin〉O. (2.14)

|Mi〉V/O denotes a possible string of measurement results which implements
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unitary Ui on the input state. This measurement result occurs with proba-

bility pi. In our case [88], the probability distribution is uniform, pi = 1
2|V/O|

.

Figure 2.1 shows an example of a non-adaptive MBQC scheme on a 2-row,

2-column cluster state at XY plane measurements α, β, |V | = 4, and |O|=2.

This non-adaptive scheme generates the random unitary ensemble,

{1

4
, CZ(HZ(α+m1π)⊗HZ(β +m2π))}, (2.15)

where H is the Hadamard gate, Z(α) is a rotation by angle α around the

Z axis, CZ is the controlled-Z gate and mi ∈ {0, 1} represents the mea-

surement outcome of qubit i, following the convention that m1 = 0 is

taken to mean measurement outcome corresponding to a projection onto

|+α〉 = |0〉+eiα|1〉√
2

(respectively |+β〉 = |0〉+eiβ |1〉√
2

for m2 = 0) and m1 = 1 a

projection onto |−α〉 = |0〉−eiα|1〉√
2

(respectively |−β〉 = |0〉−eiβ |1〉√
2

for m2 = 1).

𝛼 

𝛽 

Figure 2.1: MB scheme on a 2-row, 2-column cluster state. The input qubits
(squared circles) when measured non-adaptively at XY angles α and β apply
to the unmeasured output qubits (empty circles) a random unitary of the
ensemble of Equation (2.15) chosen with a uniform probability of 1

4 . The
horizontal and vertical lines are preparation entanglements.
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2.4 Unitary t-designs

2.4.1 t-wise Independence

As mentioned in the introduction to this thesis, randomness is an extremely

useful resource in generating new, faster algorithms both classically [89],

and quantumly [37]. However, the generation of genuine random resources

is usually computationally inefficient [89, 28]. In [89], an efficient construc-

tion for sampling from so called t-wise independent random variables was

presented. Perhaps an intuitive way to think of a quantum t-design is that

it is the quantum analogue of t-wise independence [90, 16]. A collection of n

random variables X = {X1, ..., Xn}, where Xi ∈ {0, 1} (for our purposes) is

said to be t-wise independent, if for any subset {X1, ..., Xj} with j ≤ t < n,

where Xj ∈ X , it holds that

P (X1 = x1, .., Xj = xj) = P (X1 = x1)...P (Xj = xj), (2.16)

where P (Xi = xi) is the probability that random variable Xi takes the value

xi ∈ {0, 1} [89]. There are also notions of approximate t-wise independence

[91]. t-wise independent random variables are resources which save ran-

domness, in the sense that the number of independently random bits is less

in t < n-wise independent random variables than that in L = {Y1, ..., Yn},

where Yi ∈ {0, 1}, and where each of the Yi’s is an idependent random vari-

able [16]. It is in the same sense that quantum t-designs save quantum

randomness. The notion of quantum randomness which has been stud-

ied extensively for its usefullness, and which will be studied in this thesis,
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is sampling from the Haar measure on the unitary group U(N) [92]. The

Haar measure can be thought of as the most natural group theoretical def-

inition of random, and chosing unitaries from the Haar measure has wide

applications [1, 22, 23, 93, 24, 25, 26, 27, 94]. However, the construction

of Haar distributed unitaries requires exponential resources to be realized

[28], and is thus computationally inefficient. On the other hand, quantum

t-designs (like t-wise independent sets, their classical analogues) can be gen-

erated efficiently, and act exactly as the Haar measure up to tth order in

the statistical moments, which is often sufficient for the application in mind

[1, 22, 23, 93, 24, 25, 26, 27, 94]. Quantum t-designs are of two types,

projective or state t-designs [95, 96, 97], and their generalization, unitary

t-designs [29, 98, 6, 99, 24, 5, 36, 100, 101, 102, 103, 94] which will be the

focus of this thesis. In the next sections we will define exact [29, 5, 99, 102]

and ε-approximate [29, 98, 6, 99, 24, 5, 36, 100, 101, 102, 103, 94] unitary

t-designs. In this thesis we concentrate on studying ε-approximate t-designs.

2.4.2 Exact Unitary t-designs

Let H = (C2)⊗n be the n-qubit Hilbert space. A random unitary ensemble

{pi, Ui ∈ U} (see Definition 1), where Ui ∈ U(2n) is called an exact unitary

t-design if the following relation holds [29, 102, 103]

∑
i

piP(t,t)(Ui) =

∫
U(2n)

P(t,t)(U)µH(dU), (2.17)

where µH denotes the Haar measure on the n-qubit unitary group U(2n),

and P(t,t)(U) is any polynomial of degree exactly t in the matrix elements
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of U , and of degree exactly t in the complex conjugates of these matrix

elements 7. Equation (2.17) allows us to easily see the following property

Proposition 1. [103] Any exact unitary t-design is also an exact unitary

t-1 design.

To see why Proposition 1 is true, consider the particular choice of

P(t,t)(U) = Tr(
U.U †

2n
).P(t−1,t−1)(U) = P(t−1,t−1)(U), (2.18)

where P(t−1,t−1)(U) is any polynomial of degree at most t− 1 in the matrix

elements of U , and degree at most t − 1 in the complex conjugate of these

matrix elements. Then, replace Equation (2.18) in Equation (2.17). Propo-

sition 1 then follows straightforwardly. Note that Proposition 1 holds also

for ε-approximate unitary t-designs which will be defined explicitly in the

next section.

Not much is known about the structure of ensembles giving rise to ex-

act unitary t-designs. In [102], a group theoretic criterion based on the

characters of group representations was derived which allowed one in prin-

ciple to crunch through the character tables of finite groups in search for

t-designs. [29] and [103] derived lower bounds on the cardinality |U| of en-

sembles U which can give rise to weighted and unweighted exact unitary

t-designs. The uniform distribution over the Clifford group has been shown

7In our case, the random ensembles are generated by measurements on unweighted
graph states [69], meaning that our unitary t-designs are unweighted [29, 103] in the

sense that pi =
1

|U| .

41



to be an exact unitary 3-design on U(2n) [29, 99], but not a 4-design [104].

In [5], a 32 element exact unitary 3-design on U(2) was found. Also, several

constructions of exact unitary t = 2, 3, 5-designs on U(2) were reported in

[103] (as well as various exact unitary t = 2, 3-designs on U(d) for various

values of d [103]). Only very recently was an exact unitary 4-design on U(4)

found [105], albeit numerically. There is also an apparent difficulty in us-

ing group theoretic constructions directly when searching for exact unitary

t > 3-designs on U(d) when d ≥ 3 [105].

As conveyed in the previous paragraph, the study of exact t-designs is

an extremely formidable task. Moreover, for most applications, one only

requires a notion of approximate unitary t-designs [29, 1, 22, 93, 24, 25, 26,

27, 23, 94]. Furthermore, approximate unitary t-designs can usually be im-

plemented using sets of lower cardinality than their exact counterparts [16].8

The previously mentioned points motivate the study of ε-approximate uni-

tary t-designs [29, 98, 6, 99, 24, 5, 36, 100, 101, 102, 103, 94], which are the

main focus of this thesis, and which will be defined explicitly in the next

subsection.

2.4.3 ε-approximate Unitary t-designs

We now formalize the definition of ε-approximate unitary t-designs (or just

ε-approximate t-designs for simplicity) which are the main objects of study

in this thesis.

8Although in this thesis we do not focus on generating t-designs with an optimal
number of elements, indeed as will be seen in some parts of this thesis, the number of
elements in our designs is of higher order than the optimal lower bound.
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Definition 3. [6, 101] Let H be the n-qubit Hilbert space (C2)⊗n. A random

unitary ensemble {pi, Ui} (Definition 1) with Ui ∈ U(2n) is said to be an

ε-approximate t-design if the following holds

(1− ε)
∫
U(2n)

U⊗tρU †⊗tµH(dU) ≤
∑
i

piU
⊗t
i ρU †⊗ti ≤

(1 + ε)

∫
U(2n)

U⊗tρU †⊗tµH(dU), (2.19)

for all ρ ∈ B(H⊗t), where µH denotes the Haar measure on U(2n). For

positive semi-definite matrices A and B, B ≤ A means A − B is positive

semi-definite, ε is a positive real, and t is a positive integer.

Definition 3 is sometimes referred to as the strong definition of a ε-

approximate t-design [6, 24]. Note that when ε = 0, one recovers a definition

of an exact unitary t-design which is equivalent to the definition of Equation

(2.17) [106]. Similarly, one can define an approximate t-design in terms of

various (inequivalent) norms, depending on the application in mind [6, 24].

All results shown in this thesis concerning approximate t-designs are with

respect to the strong definition of a ε-approximate t-design.

To prove our results, we will study the properties of an operator referred

to as the moment superoperator Mt[µ] defined as follows [100, 98, 6].

Definition 4. For a random unitary ensemble {pi, Ui ∈ U},

Mt[µ] =
∑
i

piU
⊗t,t
i , (2.20)
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where µ is the probability measure 9 over the set U which results in choosing

Ui ∈ U with probability pi, and U⊗t,t = U⊗t ⊗ U∗⊗t, and U∗ is the complex

conjugate of U .

A useful concept we will frequently make use of is that of an (η, t)-tensor

product expander [107, 108] (TPE) defined as follows.

Definition 5. [107, 108] A random unitary ensemble {pi, Ui} is said to be

an (η, t)-TPE if the following holds,

||Mt[µ]−Mt[µH ]||∞ ≤ η < 1, (2.21)

where Mt[µH ] =
∫
U(2n) U

⊗t,tµH(dU).

In particular, we will adopt the usual path [6, 98, 101, 36, 5, 94] of

showing that our random unitary ensembles are (η, t)-TPE’s, then use the

following proposition to obtain statements about t-designs.

Proposition 2. [6, 98, 101] If {pi, Ui ∈ U} is an (η, t)-TPE, then the

k-fold concatenation of {pi, Ui}: {
∏
j=1,...k pπ(j),

∏
j=1,...k Uπ(j)} 10 is an

ε-approximate t-design when

k ≥ 1

log2( 1
η )

(4nt+ log2(
1

ε
)). (2.22)

Here π is a function acting on {1, ..., k}, resulting in a set {π(1), ...π(k)}
9As shown in [98] one can shift between a probability distribution over a discrete

ensemble {pi, Ui} and a continuous distribution by defining the measure µ =
∑
i piδUi .

10Note that the random ensemble {
∏
j=1,...k pπ(j),

∏
j=1,...k Uπ(j)} has a moment super

operator Mt[µk] = (Mt[µ])k [100].
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where π(j) ∈ {1, ..., |U|}, the π(j)′s can be identical. There are |U|k such

functions π and the k-fold concatenation includes all of them.

Proof. [6, 101] The k-fold concatenation of {pi, Ui} satisfies ||δµk − δµH ||� ≤

22ntηk, where ||.||� is the diamond norm [6], and δµ is defined as δµ(X) =∫
U∼µ U

⊗tXU †⊗tdµ(U). Furthermore, if ||δµk − δµH ||� ≤ ε
22nt

, then

{
∏
j=1,...k pπ(j),

∏
j=1,...k Uπ(j)} is an ε approximate t-design in the strong

sense (cf . Definition 3) [6]. The value of k in Proposition 2 is thus obtained

by setting: ε
22nt
≥ 22ntηk.

We will often make use of the following fact proven in [98].

Proposition 3. [98] If µ is a probability measure with support on a universal

gate set U ⊂ U(2n) 11, then the following inequality holds for any positive

integer t.

||Mt[µ]−Mt[µH ]||∞ < 1. (2.23)

In recent work, ε-approximate t-designs have been shown to anti-concentrate

[26, 27]. Fundamentally, anti-concentration is a statement about probability

distributions. For circuits that anti-concentrate, the probability of occur-

rence of most outcomes is reasonably large [109]. The property of anti-

concentration, plays a key role in proofs of hardness approximate classical

sampling [25, 26, 27, 109], and we will use it in our proof of hardness of

classical sampling seen in later chapters. We now present a theorem on the

anti-concentration of t ≥ 2 -designs, shown in [26] ( a similar result was

derived independently in [27]).

11In other words, for all U ∈ U , µ(U) 6= 0.
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Proposition 4. [26] Let {pi,Ui} be an ε-approximate 2-design on U(2n).

Let |0〉⊗n:=|0〉 be an n-qubit input state to which we apply a unitary Ui from

the 2-design. Then, for any x ∈ {0, 1}n there exists a universal constant

0 ≤ α ≤ 1 such that:

PrUi∼µ(| 〈x|Ui |0〉 |2 >
α(1− ε)

2n
) ≥ (1− α)2(1− ε)

2(1 + ε)
. (2.24)

µ being the probability measure over the t-design that results in choosing Ui

with probability pi.

2.5 Notions of Simulability and Structure of a Stan-

dard Hardness of Approximate Classical Sam-

pling Proof

Let {Cn} be a family of quantum circuits with n input qubits. Suppose also

that this family satisfies some uniformity condition (e.g. [3, 110]) to ensure

no computationally unreasonable preparations are required with varying in-

puts of the family. Let Pn denote the probability distribution associated

with measuring the outputs of Cn in the computational (Z) basis. We say

that the circuit family {Cn} is classically simulable in the strong sense if any

output probability in Pn, and any marginal probability of Pn can be approx-

imated up to m digits of precision by a classical poly(n,m) time algorithm

[3].

Because the output probabilities of universal-under-post-selection quan-

tum circuits are ]P-hard to exactly compute in worst-case [111] (and even
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]P-hard to approximate up to relative error 1/4 in worst-case [66, 112] ), this

makes the task of strong classical simulability formidable even for quantum

computers. In order to find tasks where one clearly sees a quantum speedup,

one needs to introduce the notion of classical simulability in the weak sense.

Classical simulability in the weak sense means that the classical algo-

rithm can sample, i.e output x (one of the possible outputs of circuit Cn)

with probability px ∈ Pn, in poly(n) time. For practical purposes (due to

experimental imperfections), one usually requires a notion of approximate

classical simulability in the weak sense (henceforth referred to as approxi-

mate classical sampling), of which many exist [111, 3]. In our work we

adopt the following definition of approximate classical sampling (taken from

[3]).

Definition 6. We say that a family of circuits {Cn} on n-qubits where

each Cn has a set of possible outputs x with an associated output probability

px is approximately classically simulable in the weak sense (i.e admits an

approximate classical sampling), up to an l1-norm distance σ (or equivalently

up to total variation distance σ/2), if there exists a poly(n) time classical

algorithm A sampling x with probability pAx for which the following holds

∀Cn ∈ {Cn},
∑
x

|px − pAx | ≤ σ. (2.25)

The expression of quantum speedup is precisely that no classical poly(n)

time algorithm A exists which can approximately sample (in the sense of

Equation (2.25) ) given that some complexity theoretic conjectures hold.

The argument for quantum speedup comes from two directions. Firstly
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consider the power of a classical algorithm which is able to approximately

sample from the distribution px as defined above. The trick is to boost this

up from sampling px, to approximating px (that is a simulation in the strong

sense). This is the role of Stockmeyer’s counting theorem, and it does this at

the third level of the polynomial hierarchy (PH) [113]. In particular it says

that there is an algorithm at the third level (concretely in FBPPNP ) which

takes the classical algorithm for sampling px and outputs an approximation

of px, up to additive error. The remaining steps on the classical side are to

make this approximation stronger, and work for relative errors, which is

what one wants in order to establish complexity theoretic statements on the

hardness of approximating px, which are needed in the proof [114, 25, 26].

To do this step we rely on the fact that the output distributions of our

families of circuits are not too peaked, this is exactly the anti-concentration

property discussed in the previous subsection [115]; where this cannot be

proven, this is where one of the standard conjectures of the proofs appears

((Conjecture III) in Section 4.2.2). The final statement is that for a fraction

f of the family of circuits considered, the output distrubution px can be

approximated up to a relative error.

The other direction comes from the known hardness of sampling quantum

distributions. The first statement in this direction says that appoximating px

(exactly, or up to relative error) is ]P hard in the worst case (that is, for one

or more of the circuits in the family), as mentioned earlier. This is standard

following universality of the circuit families [114, 33, 38, 26, 25, 27, 66, 116,

115]. The difficulty here is to match this to the statement about the fractions

of the circuits considered, in order to match the relative error approximation
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we would have classically from above. To this end we are forced to add an

assumption about the hardness of the average case (over the circuit family).

This is the content of another of the standard conjectures in such proofs

(see Conjecture II) in Section 4.2.2.). There are various justifications for

this conjecture, depending on which families of problems it is related to

[26, 25, 114, 66, 33, 27]. Bringing these together we have that the existence

of a classical algorithm approximately sampling px (in the sense of Equation

(2.25) ) implies that solving a ]P hard problem can be achieved at the third

level of the PH. This implies the collapse of the PH to its 3rd level by a

theorem of Toda [117]. Thus, if one believes this cannot be possible (the

final standard conjecture, and conjecture I) in Section 4.2.2.) one is forced

to give up the possibility of such a classical sampling algorithm.
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Chapter 3

Efficient Quantum

Pseudrandomness With

Simple Graph States

3.1 Introduction

As described in Section 2.3, MBQC [30] allows for universal quantum com-

puting by measuring individual qubits prepared in entangled multipartite

states, known as graph states [69]. Unless corrected for, the randomness of

the measurements leads to the generation of ensembles of random unitaries

(see Definition 1 in Section 2.3), where each random unitary is identified

with a string of possible measurement results.

In this chapter, we show that repeating a measurement based (MB)

scheme, which we define as an assignment of fixed measurement angles on a
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graph state of fixed size, an efficient (in the input size) number of times, on a

simple graph state, with measurements at fixed angles and no feed-forward

corrections, produces a random unitary ensemble that is an ε-approximate

t-design on n input qubits (or an n-qubit t-design, as we will sometimes

refer to here) [29, 6] (see Section 2.4 for full definitions). Unlike previous

constructions for t-designs in MBQC [5], the graph state is regular and is

also a universal resource for measurement based quantum computing, closely

related to the brickwork state [4]. Following [5] our approach is to harness

the quantum randomness arising from applying an MB scheme to produce

approximate designs. If one does not apply the adaptive feedforward correc-

tions required for universal deterministic computation (see Section 2.3 for

details), the inherent randomness of the measurements effectively samples

from ensembles of random unitaries (see Section 2.3).

In [5] it was shown that starting with a graph state with polynomial

(in n) number of qubits, and applying fixed angle, translationally invariant,

measurements (with no need for feedforward corrections), effectively sam-

ples from an approximate t-design. Furthermore this process is efficient in

the number of qubits, preperation and measurements, following from the ef-

ficiency of the construction of Brandao et al. [6]. Indeed, the construction of

the graph state essentially mimics the random circuit construction of Bran-

dao et al. [6]. However, in doing so, the graph itself is rather complicated,

and moreover is not a simple regular lattice.

A natural question is then, can simple, regular lattices (such as those

useful for universal measurement based computation [85], [4]) be applied to

generate t-designs? As well as being more convenient from a practical point
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of view (in terms of generating the graph state), this connects the question

of optimal generation of ensembles to standard measurement based quantum

computation. Furthermore it requires a new proof that it is an approximate

t-design (though the techniques we use also follow along the lines of [6] it

does not follow directly from their results).

In this chapter we show that it is possible. In particular we show that

fixed, translationally invariant, measurements on a regular graph state with

poly-log (in n, t, and
1

ε
) number of qubits, with no feed-forward, results in

an ensemble of random unitaries which forms a ε-approximate t-design en-

semble. The graph state we use is very similar to the brickwork state known

to be a universal resource for MBQC [4]. The proofs presented here rely

principally on the G-local random circuit construction (GLRC) of Brandao

et al. [6], and the detectability lemma (DL) of Aharonov et al [118].

3.2 Preliminaries

3.2.1 Many Body Physics and t-designs

A well established technique for estimating the scaling rate (number of itera-

tions needed to reach a desired accuracy ε) of an ε- approximate t-design can

be reduced to a problem of finding the spectral gap (the difference of energy

between the ground and first excited state) of some many-body Hamilto-

nian [6, 100, 98]. Here we give an overview of these techniques, in particular

as used in [6]. This technique requires some conditions on the ensemble of

unitaries, which we will reduce in Chapters 4 and 5. The results presented

in this section are based on the work of [6].
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An extensive body of research ([119, 120, 121, 122] and many others)

has been devoted to the case of 1D spin chains, with local Hamiltonians

(we assume a finite interaction range) with translational symmetry (see Fig-

ure3.1). We will focus exclusively on this case, and more precisely on

a type of 1D Hamiltonian (the one we use in our proof) consisting of local

terms acting on nearest neighbor spins i and i+1 with translational sym-

metry, which are frustration free (the entire Hamiltonian can be minimized

by minimizing each of its local terms individually) as well as verifying the

Nachtergaele criterion ([119], condition C.3). This family of Hamiltonians

was used by Brandao et al. [6] to study their local random circuit (LRC)

construction, and later the so-called G-local random circuits (GLRC). We

will briefly define these families of circuits and review these proofs.

The local random circuits (LRC) in [6] generate random circuits on n-

qubits as follows. For each run of the LRC, a unitary U ∈ U(4) is chosen

from the Haar measure on U(4), then an index i is chosen uniformly at

random from the set {1,. . . ., n-1} , finally U is applied to qubits i and i+1.

The LRC defines a couple {µLRC ,U} where µLRC is the probability measure

induced by one LRC run, and U is the set of all the possible unitaries which

can be generated by one LRC run. We arrive at the following moment super

operator associated to one run of the LRC

Mt[µLRC ] =
1

n− 1

n−1∑
i=1

∫
U(4)

U⊗t,ti,i+1µH(dU) =
1

n− 1

n−1∑
i=1

Pi,i+1, (3.1)

where Ui,i+1=1⊗i−1⊗U ⊗ 1⊗n−i−1, U ∈ U(4), Pi,i+1 :=
∫
U(4) U

⊗t,t
i,i+1µH(dU),
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1 2 3 4

h1,2 h2,3 h3,4

Figure 3.1: Example of a 4 spins 1D system. The local Hamiltonians hi,i+1

have a range of 2 (i.e. act on nearest neighbor spins). For example h1,2 acts
on spins 1 and 2. Translational invariance means that any hi,i+1 has the same
form on all 2 qubit systems (i, i+1). In this case the total Hamiltonian of
the system of 4 spins can be written as a sum of local Hamiltonians, i.e.
H=h1,2+h2,3+h3,4.

and µH is the Haar measure on U(4), 1 denotes the 2× 2 identity matrix.

Since each of the Pi,i+1’s is Hermitian, then Mt[µLRC ] is itself Hermitian.

Now consider the Hamiltonian

H =
∑
i

hi,i+1, (3.2)

where hi,i+1=I − Pi,i+1, I is the 4nt × 4nt identity matrix. Then

Mt[µLRC ] = I − H

n− 1
. (3.3)

The ground space of H has an eigenvalue of 0 and the gap between its ground
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and first excited spaces gives the second highest eigenvalue of Mt[µLRC ].

This H is a 1D spin chain Hamiltonian with nearest neighbor local terms

which are translationally invariant. It is also frustration free by construction

because the Hamiltonian can be minimized simply by minimizing all of its

local terms (taking their ground state of energy 0) individually. Brandao

et al. also proved that this Hamiltonian verifies the Nachtergaele criterion,

then also bounded the Nachtergaele Bound using techniques from [123]. In

this way they show that the spectral gap ∆H of H admits the following

(polynomial in t) bound for n ≥ b2.5log2(4t)c :

∆H ≥ (1700.blog2(4t)c2.t5.t

3.1

log(2) )−1,
(3.4)

where bxc denotes the floor function acting on variable x.

We now move to G-local random circuits, which are the finite set counter

parts of LRC [6]. One run of the GLRC follows exactly as the LRC case, but

instead of choosing a unitary U from the Haar measure of U(4), we choose

with uniform probability from a finite set G of SU(4) which is universal and

contains inverses. One can show from the beautiful result of Bourgain and

Gamburd [122] that the Hamiltonian HGLRC=
∑

i h
′
i,i+1=

∑
i(I−P

′
i,i+1) with

P
′
i,i+1 =

1

|G|
∑

U∈G(1⊗i−1⊗U ⊗ 1⊗n−i−1)⊗t,t admits the following bound for

its spectral gap:

∆HGLRC ≥ α.∆H, (3.5)

with α a constant and ∆H the spectral gap of the LRC Hamiltonian.

Note that because the set G contains unitaries and their inverses and

samples them uniformly, then µG(U)=µG (U †), for all U , U † ∈ G. This
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means that P
′
i,i+1 (hence HGLRC ) is a Hermitian operator, and the above

definition of a GLRC Hamiltonian makes sense. We will see in Chapters 4

and 5 how the restrictions on the unitary ensembles and the Hermiticity of

the moment superoperators discussed in this section can be circumvented,

but in this chapter, we will construct examples which satisfy these proper-

ties. We can rewrite Equation (3.5) as follows:

∆HGLRC ≥ (C.blog2(4t)c2.t5.t

3.1

log(2) )−1 = PGLRC ,
(3.6)

C being a constant depending on the gate set G.

These spectral gaps directly give the second highest eigenvalue of the

corresponding moment super operators (LHS in Equation (2.21), see [100])

confirming the TPE conditions, which through Proposition 2 then allow

statements about their efficiency as t-designs [6].

In the coming parts of this chapter, we will construct a random unitary

ensemble satisfying the conditions of a GLRC construction [6], and we will

use this ensemble in a non-adaptive MBQC formed by concatenating a fixed

MB scheme a polynomial (in n and t) number of times, and which we will

show gives rise to an approximate t-design. The circuit analogue of this

MBQC construction, which is discussed in detail in Section 4.3 in Corollary

2, is new and–unlike the constructions in [6]– does not require any classical

randomness in the choice of nearest neighbor pair (see Chapter 4 for details).

We will also, in Chapters 4 and 5, show how to use our developped circuit

construction (and its MBQC analogue) on unitary ensembles not verifying

the conditions of the GLRC construction.
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3.3 Main Results

In order to state the main results, we define some simple graph states for

two input qubits. We will hence forth refer to a graph state with an MB

scheme applied to it as a gadget. These will act as the building blocks for

our construction. Consider the 5-column 2-row brickwork states with a fixed

angle MB scheme in Figure 3.2 and Figure 3.3 which we call SI1 and SI2

(Note, the numbers inside the circles denote the measurement angles. See

Figure 2.1 for conventions of graph states and measurement in figures).

Figure 3.2: The 2-row, 5-column brickwork state gadget giving rise to SI1

SI1 and SI2 give rise respectively to 2 random MB ensembles (see Defi-

nition 1) { 1

28
,U1i} and { 1

28
,U2i}. The number of unitaries generated by the

MB scheme on the 2-row, 5-column brickwork state is 28.

It can be easily checked [5] that each unitary of the ensembles SI1 and

SI2 contains (up to a global phase) an inverse in the ensemble. That is,
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Figure 3.3: The 2-row, 5-column brickwork state gadget giving rise to SI2

denoting USI1 as the set of unitaries generated by SI1 (and similarly for

SI2), for all U1i∈ USI1 there exists U1j∈ USI1 such that U1i = U †1j . Simlarly

for SI2 .

Consider now a 13-column brickwork gadget: B= SI1 ◦ SI2 ◦ SI1 , where

we mean by W ◦ V a concatenation which identifies the output of graph W

as an input of graph V. We are now in a position to state our main results:

Theorem 1. The gadget B gives rise to an ensemble of unitaries which is

(i) universal on SU(4)

(ii) contains elements and their inverses, and

(iii) is sampled with uniform probability.
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This theorem means that the set of unitaries generated by B (call it

UB) satisfies the conditions necessary to form a GLRC. Though this is not

exactly how our construction works, it will be important in proving our

construction works in the proof of Theorem 2.

Now consider the gadget on n-qubits given in Figure3.4 which we call Gn.

The horizontal line with a circle in the middle means a direct link between

output and input performed only on the 1st and last rows. The square with

the letter B is our 13-column brickwork gadget B, and the empty 3 sided

square means that there is no vertical entanglement.

  B

  B

  B

  B

1

2

3

4

n-1

n

Figure 3.4: The graph gadget Gn pictured here for even n (the odd n case
follows straightforwardly)
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The first and last rows of Gn are made up of 13 qubits, and all rows

in between are made up of 25 qubits. This gives rise in total to a graph

composed of 26+25(n−2) = 25n−24 qubits. We now state our second main

result.

Theorem 2. The k(n,t,ε)-fold concatenation of Gn,

En = Gn ◦ Gn◦... , results in an ensemble of unitaries which forms an ε-

approximate t-design on n-qubits ( n ≥ b2.5log2(4t)c ), with:

k(n,t,ε) ≥ 3

log2(1 +
PGLRC

2
)
(4nt+ log2(

1

ε
)).

3.4 Proofs

3.4.1 Proof of Theorem 1

Before going on to universality, let us briefly explain why the set of unitaries

generated by B, UB contains inverses ((ii) in Theorem 1). Any element U

∈ UB may be written as: U=U1.U2.U
′
1, where U1 , U

′
1 ∈ USI1and U2 ∈ USI2 .

Since USI1and USI2 contain unitaries and their inverses, we can always find

U †=U
′†
1 .U †2 .U †1 ∈ UB. Furthermore, each unitary U{m} ∈ UB associated to

a specific binary string {m} is sampled with a uniform probability of
1

|UB|
,

proving (iii) in Theorem 1.

The remainder of this subsection is devoted to proving universality ((i)

in Theorem 1), and we will use the approach outlined in [124, 125] for do-

ing so. Following [124, 125], one can show that the group generated by the
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set of unitaries {A,A†,C,C†,E,E†,F ,F †} is dense (universal) on U(4) if the

following conditions are satisfied:

C1 : H1:=
log(A)

i
, H2:=

log(C)

i
, H3:=

log(E)

i
and H4:=

log(F )

i
and their

commutators contain a set of 16 linearly independent Hamiltonians which

span the Lie algebra [126] of U(4).

C2 : H1, H2, H3 and H4 have eigenvalues that are irrationally related to π.

We first consider C1. We found 4 distinct unitaries A=U{m}, C=U{m′},

E=U{m′′}, and F=U{m′′′}, where U{m}, U{m′}, U{m′′} and U{m′′′} ∈ UB are

associated to the binary strings {m}={0,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0,0,1,1,0,1,1,1,0},

{m′}={0,0,0,1,1,1,1,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,0,0},

{m′′}={0,0,0,1,1,1,1,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,0,0}, and

{m′′′}={0,1,1,1,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0}.

We adopt the convention that the first 12 binary numbers appearing in a

given binary string represent the measurement results on qubits of the first

row of B from left to right (input towards output), and the last 12 binaries

represent the measurements performed on the qubits of the second row of B

from left to right.

We then construct 16 Hamiltonians H1 ,. . . , H16 as follows

H1 =
log(A)

i
,

H2 =
log(C)

i
,
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H3 =
log(E)

i
,

H4 =
log(F )

i
,

H5 = i.[H1, H2],

H6 = i.[H1, H3],

H7 = i.[H1, H4],

H8 = i.[H2, H3],

H9 = i.[H2, H4],

H10 = i.[H2, H5],

H11 = i.[H2, H6],

H12 = i.[H3, H4],

H13 = i.[H3, H5],

H14 = i.[H3, H6],

H15 = i.[H4, H5],

H16 = i.[H4, H6].

After that, we expand each of the 16 Hamiltonians in the basis: P={Pij}

i,j=0,..,3, where P is a basis of the Lie algebra of U(4). In other words, we

write each: Hk=a
ij
k .(Pij) (Einstein summation convention adopted over i

and j), where the aijk ’ s are real numbers. Since P is a basis of the Lie algebra

of U(4) (over the field of real numbers ), proving linear independence of the

16 Hamiltonians {Hk} k=1,..16 in the basis P means that the set {Hk} is

itself a basis of the Lie algebra of U(4). The linear independence of the 16

generators {Hk} is equivalent to the non-vanishing of the determinant of a

16 by 16 matrix M, where each of the 16 columns of M are made up of the
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16 coefficients{aijk } for a given k. We found that the 16 Hamiltonians of

our above constructed scheme give rise to a matrix M with non-vanishing

determinant 1, thus this scheme forms a basis of the Lie algebra of U(4) and

C1 is verified for a subset of UB (and hence for UB itself ).

Proving C2 requires the use of a result in algebraic number theory called

Lehmer’s theorem [127]. Its context is described in the following lemma:

Lemma 1. [127] If n > 2 and k and n are coprime integers, then 2cos(
2kπ

n
)

is an algebraic integer.

An algebraic number is a complex number which is a solution of a poly-

nomial equation with integer coefficients. The minimal polynomial of an

algebraic number z is the polynomial of lowest degree with integer coeffi-

cients for which z is a solution. An algebraic integer is an algebraic number

whose minimal polynomial is monic (that is, the coefficient in front of the

highest degree variable is 1) [127].

Lehmer’s theorem states that angles α =
2kπ

n
which are rationally re-

lated to π must have 2cos(α) an algebraic integer. So, if we can find instances

of angles α in which 2cos(α) is not an algebraic integer, then α has to be

irrationally related to π as a consequence of Lehmer’s theorem. Each of

the eigenvalues λ of A, C, E or F is a complex number with unit norm

(because they are unitary matrices). Thus, λ=eiθ. We calculated the ex-

pression 2cos(θ) and constructed its minimal polynomial. We found that

for each of the eigenvalues λ of A , C, E and F , 2cos(θ) does not verify

a monic minimal polynomial (not an algebraic integer) and thus all the θ’s

1this was done numerically however well within numerical precision
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are irrationally related to π by Lehmer’s theorem. Further, because A, C,

E and F are diagonal in the same basis as their Hamiltonians H1, H2, H3

and H4 [125], the θ’s we calculated are the eigenvalues of these Hamiltoni-

ans. Hence, the eigenvalues of the Hamiltonians are irrationally related to

π which proves C2.

Proving C1 and C2 means that the subset {A,A†,C,C†,E,E†,F ,F †} of

UB is universal on U(4), and thus so is UB. But (i) further requires that

the set be on SU(4). Fortunately, the moment super operator of a set sam-

pled from U(4) can always be thought of as a sampling from SU(4). This

can be seen by noting that for all U ∈ U(4) we have det(U) 6= 0, hence

U⊗t,t=|det(U)|
t

2 .U
′⊗t,t=U

′⊗t,t, where U
′ ∈ SU(4).

3.4.2 Proof of Theorem 2

Our approach for proving Theorem 2 can be summarized by two steps. In the

first step, we prove that the ensemble generated by the gadget Gn is an (η,t)-

TPE with η = poly(t) < 1 (see Definition 5). We do so by using Aharonov

et al.’s detectability lemma [118]. The second step uses Proposition 2 (see

Section 2.4) to establish the bound on k(n, t, ε).

Consider a GLRC n-qubit Hamiltonian

HGLRC =
∑
i

h
′
i,i+1

=
∑
i

(1− P ′i,i+1), (3.7)

with G = UB, and
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P
′
i,i+1=

1

|UB|
∑

U∈UB (1⊗i−1⊗U⊗1⊗n−i−1)⊗t,t. Define Podd=P
′
1,2.P

′
3,4. . . and

Peven=P
′
2,3.P

′
4,5. . . .Podd and Peven can be considered as projectors onto the

”odd” and ”even” ground spaces of HGLRC . Let P0 be the projector onto the

entire ground space of HGLRC . Further, because HGLRC is constructed from

universal sets on U(4), then its ground space projector is nothing but the t’th

Haar moment super operator [100], In other words P0=
∫
U(2n)U

⊗t,tµH(dU)

; U ∈ U(2n) and µH being the Haar measure on U(2n).

The statement of the detectability lemma is the following :

Lemma 2. [6]

|| Peven.Podd − P0 ||∞≤ (1 +
∆HGLRC

2
)
−

1

3 . (3.8)

To relate this to the ensemble generated by the gadget Gn we prove the

following lemma:

Lemma 3.

Mt[µGn ] = Peven.Podd. (3.9)

Proof of Lemma 3 : We first note that because all unitaries are drawn

independently, we can think of the moment super operator as being com-

posed of 2 layers (an odd layer (left part of the gadget of Figure3.4) and an

even layer (right part of the gadget of Figure3.4 ), this is similar to reasoning

found in [101]). Then:

Mt[µGn ]=(
1

|UB|
)δeven

∑
U23∈UB ,U45∈UB ,...(U23 ⊗ U45 ⊗ . . . )⊗t,t.
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(
1

|UB|
)δodd

∑
U12∈UB ,U34∈UB ,...(U12 ⊗ U34 ⊗ . . . )⊗t,t,

where δodd={
n

2
if n mod 2=0 or

n− 1

2
if n mod 2 =1 }

and δeven={ n
2
− 1 if n mod 2=0 or

n− 1

2
if n mod 2=1 }.

Note that since the Uii+1 ’ s are independently drawn from UB, one can

rewrite this as:

Mt[µGn ]= (
1

|UB|
∑

U23∈UB (1⊗ U23 ⊗ 1⊗n−3)⊗t,t .

1

|UB|
(
∑

U45∈UB (1⊗3 ⊗ U45 ⊗ 1⊗n−5)⊗t,t...) .

(
1

|UB|
(
∑

U12∈UB (U12 ⊗ 1⊗n−2)⊗t,t.

1

|UB|
∑

U34∈UB (1⊗2 ⊗ U34 ⊗ 1⊗n−4)⊗t,t...)

=(P
′
2,3.P

′
4,5...).(P

′
1,2.P

′
3,4...)

=Peven. Podd. �

Then, as a direct consequence of the detectability lemma we obtain:

g(t, µGn) =||Mt[µGn ]− P0 ||∞≤ (1 +
∆HGLRC

2
)
−

1

3 . (3.10)

All that remains now is to bound the RHS of Equation (3.10). Using Equa-

tion (3.6) one directly obtains:

(1 +
∆HGLRC

2
)
−

1

3 ≤ (1 +
PGLRC

2
)
−

1

3 . (3.11)

Equation (3.10) along with Equation (3.11) directly leads to the following
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corollary:

Corollary 1. The ensemble { 1

|UG |
,UG} generated by the gadget Gn is an

(η,t)-TPE with :

η = (1 +
PGLRC

2
)
−

1

3 = poly(t) < 1.

Plugging Corollary 1 into Proposition 2 with:

{ pi, Ui }={
1

|UG |
,UG} , d=2n and η=(1 +

PGLRC
2

)
−

1

3 allows one to obtain

Theorem 2.

3.5 Conclusion

In this chapter, have found a simple n-qubit graph gadget which implements

an ε-approximate t-design under repeated concatenations with fixed mea-

surement and no feedforward. The number of concatenations k(n, t, ε)=Ω(nt+

log(
1

ε
)) required is linear in both the input qubit number n, and order t of

the design. The n dependence of the number of concatenations is opti-

mal, whereas one can suspect the t dependance can be improved, even to

get a number of concatenations independant of t [6]. Because the number

of qubits in the graph gadget scales linearly with n, we thus only require

Ω(n2t+ nlog(
1

ε
)) qubits in total to implement the gadget En=Gn ◦Gn ◦ ....

Furthermore, the choice of the 2-qubit gadget B is not at all unique. In

fact, Gn could be made even more practical provided simpler (less num-

ber of qubits, less needed entanglements,...) 2-qubit gadgets possessing the

properties of B can be found. Indeed, we do not claim our construction of

B to be optimal, mainly because 3 CZ’s (as opposed to 6 CZ’s in our gadget
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B) are sufficient to realize any unitary in SU(4). Furthermore, in the next

chapter we will show different examples of gadgets which work, but require

different proof techniques.

Our construction is very similar to the brickwork state, which is a univer-

sal resource for MBQC [4] - it is basically the brickwork state but with regu-

lar holes. In MBQC these holes would simply teleport the inputs through, so

that the proofs of universality of [4] easily extend to our graph - that is, con-

catenations of the graph used in Gn is also a universal resource for MBQC.

In addition to being pleasing from a practical point of view, this opens the

door to applications of techniques for delegation of ensemble generation, as

done for computation [4, 128], and indeed the possibility to hide whether

one is sampling unitaries or performing some deterministic computation.
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Chapter 4

Efficient Approximate

Unitary t-designs From

Partially Invertible Universal

Sets and Their Application

to Quantum Speedup

4.1 Introduction

In this chapter, we construct new families of quantum circuits on n-qubits

giving rise to ε-approximate unitary t-designs efficiently in O(n3t12) depth.

These quantum circuits are based on a relaxation of technical requirements

in previous constructions, including that of Chapter 3. In particular, the
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construction of circuits which give efficient approximate t-designs by Bran-

dao, Harrow and Horodecki [6] (and our construction in Chapter 3, and other

constructions following their technique [5, 36]) required choosing gates from

ensembles which contained inverses for all elements, and that the entries of

the unitaries are algebraic. In this chapter, we reduce these requirements

to sets that contain elements without inverses in the set, and non-algebraic

entries, which we dub partially invertible universal sets.

We then adapt this circuit construction to the framework of measurement

based quantum computation (MBQC) and give new explicit examples of n-

qubit graph states with fixed assignments of measurements (graph gadgets)

giving rise to unitary t-designs based on partially invertible universal sets,

in a natural way. Our work opens up the set of graph states where we can

demonstrate t-designs to more graphs, of which we give an example in Figure

4.4.

We further show that these graph gadgets demonstrate a quantum speedup,

up to standard complexity theoretic conjectures. The proofs of quantum

speedup presented here can also be directly applied to show that our brick-

work construction in Chapter 3 also demonstrates a quantum speedup.

We provide numerical and analytical evidence that almost any assign-

ment of fixed measurement angles on an n-qubit cluster state give efficient

t-designs and demonstrate a quantum speedup. Therefore, our techniques

developped here show the potential of cluster states, which are widely used

resources in many applications, to form t-designs and demonstrate a quan-

tum speedup.
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4.2 Overview of Chapter

The prevalent technique for generating a t-design is through random circuits,

where gates are randomly chosen from some ensemble of small, typically two

qubit gates, and put together in a specific way to form a circuit [98, 6, 24,

5, 36, 100]. Though essentially any universal set of two qubit gates can

be used to generate this ensemble, the precise conditions on this ensemble

are somewhat strict (due to technical reasons in the proofs, see for example

Chapter 3) - they require that each gate has an inverse in the ensemble and

that their entries are algebraic. The former condition is also imposed on

universal ensembles when proving the Solovay Kiteav theorem for efficient

approximate universality [129]. Though usually this is not an issue, it can be,

particularly when these sets of unitaries are generated in a restricted manner

- for example arising from measurements on graph states [5, 36, 26, 25] (see

Section 2.3 of Chapter 2 for a definition of graph states, and the pictoral

conventions used in their use for our schemes.).

Our work connects these different questions and approaches, first by

proving a general relaxation of the conditions on a set of ensembles used to

generate a t-design, leading to new constructions for circuits, which we then

translate to the graph state, measurement based approach. We then give

explicit examples where the relaxation to partially invertible sets is useful in

graph state constructions. Following along the lines of [26, 25] we then show

that these examples give rise to natural instances of provably hard sampling

problems demonstrating quantum speedup.

We now give a bit more background into the three areas of our main
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results.

4.2.1 t-designs in Partially Invertible Universal Sets

Exact t-designs, where the condition on the tth order moments are satisfied

exactly, are only known for a few cases [29, 99, 5, 103] (as seen in Chapter 2).

We are thus often interested in approximate versions, where conditions hold

up to some error ε - we call these ε-approximate t-designs [98, 6, 24, 5, 36,

100, 101]. We say a circuit construction is efficient if the size of the circuit,

k does not scale exponentially in n, t or 1/ε. Previous work showed that

random n-qubit quantum circuits formed of k applications of 2-qubit gates

form efficient ε-approximate t-designs with k = poly(n, t, log(1
ε )) [98, 6],

where these 2-qubit gates are chosen from the Haar measure on U(4) [6, 98],

or uniformly randomly from a universal 1 set UB ⊂ U(4) which contains

unitaries and their inverses 2, and is made up of unitaries with algebraic

entries [6] (as seen in Chapters 2 and 3).

The first question we ask here is whether the restriction that UB contains

unitaries and their inverses can be avoided. Such a possibility opens up

different possible constructions, which are notably important considering

measurement based approaches, where one does not easily have full control

over the whole ensemble. The answer to this question, as we will show,

turns out to be positive, provided (I): we can find sets UB containing a

subset UM ⊂ UB formed of unitaries with algebraic entries [6], such that UM

contains unitaries and their inverses, and (II) both UM and its complement

1A set U ⊂ U(N) is said to be universal in U(N), when the group generated by U is
dense in U(N).

2We mean by this that for every U ∈ UB, there exists U1 ∈ UB , such that U1 = U†.
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in UB - denoted by UB/M - which need not nescessarily contain unitaries and

their inverses nor have algebraic entries are universal in U(4). For simplicity,

we refer to sets UB verifying (I) and (II) as partially invertible universal sets.

Thus, a partially invertible universal set can be defined as follows.

Definition 7. A partially invertible universal set UB ⊂ U(4) is a (universal

in U(4)) set which can be partitioned into two sets, UM ⊂ UB which contains

unitaries and their inverses and is composed of unitaries with algebraic en-

tries, and its complement UB/M ⊂ UB which need not nessesarily contain

unitaries and their inverses nor be composed of unitaries with algebraic en-

tries. Both UM and UB/M are universal in U(4).

Based on this we derive a construction of n-qubit quantum circuits

formed of blocks of 2-qubit unitaries chosen uniformly from any partially

invertible universal set in U(4), and show that these circuits are efficient

ε-approximate t-designs in depth O(n3t12). In our proofs, we use technical

tools such as the Detectibility lemma [118], and techniques from [98, 6].

We then adapt this circuit construction to MBQC [30, 85], where par-

tially invertible universal sets arise quite naturally, since it is not possible

to choose freely all the unitaries in this ensemble. As discussed in Chapter

2, in MBQC, measuring the non-output qubits of an n-qubit graph state at

particular angles in the XY , XZ, or Y Z planes of the Bloch sphere, and

performing a corrective strategy, for example given by the g-flow [86], is

sufficient to implement any unitary U ∈ U(2n) on the n unmeasured output

qubits. On the other hand, and as seen in Chapter 2 and 3, performing
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non-adaptive 3 measurements on graph states effectively implements on the

(unmeasured) output qubits unitaries sampled uniformly from an ensemble

of random unitaries [5, 36].

Here, we find examples of small graph states along with measurement

angles which generate ensembles of random unitaries which are partially

invertible universal sets. This means that the proof techniques of [6], and

of the previous chapter do not work. Nevertheless, with our new proof

technique developed in this chapter, we see that by concatenating this seed

construction in a specific way we generate ensembles from non-adaptive fixed

measurements on regular graph states with O(n4t12) qubits which form an

ε-approximate t-design on U(2n).

Translated into the circuit model, these MBQC circuits have constant

depth, albeit with a O(n4t12) number of ancilla qubits. This observation

could be very beneficial from the point of view of experimental implemen-

tation.

4.2.2 Connection to Quantum Speedup

There is currently a tremendous effort being made to build a quantum com-

puter, and develop quantum technologies more generally. An important

benchmark for this ambitious project will be proving a computational ad-

vantage over what can be done with classical computers. Two results in this

direction have sparked a surge in research. Boson sampling [130, 62] and IQP

[3] are subuniversal families of computation which can be shown to be impos-

3Non-adaptive means, as seen in Chapter 2, with no corrective strategy, non-adaptive
measurements can be performed simultaneously.
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sible to replicate efficiently classically assuming some standard, and strongly

believed, complexity theoretic conjectures hold. This is often referred to as

quantum speedup. Since then, there have been many developments of these

and related models [25, 26, 38, 27, 3, 33, 114, 66, 130, 62, 131, 116] to state

a few. A review can be found in [115]. In all of these cases two features are

significant. Firstly, they do not require the full capabilities of a universal

quantum computer and so are expected to be much simpler to implement,

and second they are all what is known as sampling problems. That is, the

statements of difficulty are that a classical computer cannot efficiently sam-

ple from the same distribution as what can be achieved in these quantum

architectures efficiently.

More concretely, the statements run somewhat as follows (see also Sec-

tion 2.5). Each of these computational models is essentially a family of

circuits followed by measurements, the results of which follow a particular

probability distribution. If it is possible for a classical computer to efficiently

sample from this distribution, then, certain strongly believed complexity

conjectures would be proved invalid. For proofs which hold for approximate

sampling, the standard conjectures are of the form [25, 26, 38, 33, 114, 27, 3]

I) the polynomial hierarchy does not collapse to the third level [132].

II) the average case of the associated problem (usually ]P) is also hard (]P).

III) the quantum circuit families considered output distributions which are

not too peaked - technically known as anti-concentration [116, 26, 33, 114,

27].

One of the goals of the field now is to reduce the number of required

assumed conjectures, or justify them, and understand their relationship to
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other properties of a given architecture such as universality. There are many

architectures demonstrating quantum speedup, suited to different implemen-

tations with different versions of the conjectures which link them in different

ways to different problems. The average case complexity can be linked to

conjectures of average case hardness of solving certain Ising problems [66],

or of Jones polynomials [27] for example. For several architectures anticon-

centration can be proven explicitly [26, 27]. The work of [26, 24, 27] shows

an interesting link between t-designs and anticoncentration.

In this work, and as an application to our t-design graph gadgets, we

use techniques from [26, 25] and introduce new families of MBQC architec-

tures showing a quantum speedup. We show that every MBQC 2-design

constructed from partially invertible universal sets is hard to sample from

classically, and we give a new explicit example that can be prepared effi-

ciently using n-qubit cluster states with O(n3) columns - thereby presenting

a quantum speedup. Because our architectures are t-designs by construc-

tion, Conjecture (III) is proven [26, 27], thus we only require 2 complexity

theoretic conjectures in our proofs (namely, Conjectures I) and II) ). Also,

because our gadgets have quite a regular structure, they can be translated

into a constant depth quantum circuits as seen above. This makes these

architectures desirable for near-term experimental implementation.

4.2.3 Families of Universal Ensembles

In the final part of this work we explore how common universal ensembles

are in the measurement based framework, and how they can be used for

t-designs. We present two results in this direction, one analytical and the
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other numerical.

Analytically, we show that almost any 4 assignment of fixed XY angle

measurements on a n = 2γ-row, 2-column cluster state (where γ is an inte-

ger) gives a random unitary set UB which is universal in U(2n). We use a Lie

algebraic approach outlined by [58], and observations in [124, 125] to prove

this result. In particular, when γ = 1 we get that almost any assignment of

fixed XY angle measurements generates universal sets UB ⊂ U(4), which in

general can be invertible, partially invertible or non invertible.

We then provide numerical evidence that for almost any fixed assign-

ment of XY measurements, the subdominant eigenvalue of the operator

Mt[µ] = 1
|UB|

∑
i=1,...|UB| U

⊗t
i ⊗U

∗⊗t
i scales efficiently with t. 5 If the numer-

ical result is true, then together with the analytical result on universality,

one can show from our techniques developed for the partially invertible case,

that cluster state gadgets with almost any fixed XY angle assignment give

an efficient n-qubit t-design under concatenation. Further, the results imply

that these gadgets are also hard to sample from classically under concate-

nation, and thus these gadgets may also be used as architectures presenting

a quantum speedup.

In the previous chapter, a particular set of fixed non-adaptive measure-

ments on a brickwork state gave rise to an ensemble which is an approximate

t-design, and which demonstrates a quantum speedup. This chapter goes

significantly beyond this result in two ways. First, by showing that graph

states other than the brickwork state, such as the graph state in Figure 4.4

4Meaning that the set of angles which don’t work form a set having zero Lebesgue
measure [133].

5Ui ∈ UB. Mt[µ] is usually called the moment superoperator.
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and the cluster state, can also give rise to t-designs and demonstrate quan-

tum speedup under fixed non-adaptive measurements. Second, it shows

that the choice of fixed measurements can be varied widely, with almost any

choice working (see the next section for more details).

4.3 Main Results

Let UB ⊂ U(4) be any partially invertible universal set in U(4) (see Defini-

tion 7). Let UM ⊂ UB, with UM containing unitaries and their inverses and

with unitaries composed of algebraic entries, and its complement UB/M ⊂ UB

such that UM and UB/M are both universal in U(4). Define

B = { 1

|UB|
, Ui ∈ UB}. (4.1)

Denote the k-fold concatenation of B by

Bk = { 1

|UBk |
,
∏

j=1,...k

Uπ(j) ∈ UBk}, (4.2)

where Uπ(j) ∈ UB, and π is a function defined as in Proposition 2. Define 6

block(Bk) = { 1

|UBk |n−1
, (12×2 ⊗ U j12,3 ⊗ U

j2
4,5 ⊗ ...⊗ U

jn
2−1

n−2,n−1 ⊗ 12×2).

(U
jn
2

1,2 ⊗ U
jn
2 +1

3,4 ⊗ ...⊗ U jn−1

n−1,n) ∈ Ublock(Bk)}, (4.3)

6This definition of block(Bk) is for even n , the odd n case follows straightforwardly.
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where U ji,i+1 ∈ UBk , i ∈ {1, ..., n− 1} and j ∈ {1, ..., |UBk |}. Let blockL(Bk)

be the L-fold concatenation of block(Bk), defined as

blockL(Bk) = { 1

|UBk |(n−1)L
,
∏

j=1,...,L

Uπ(j) ∈ UblockL(Bk)}, (4.4)

where here also π is defined as in Proposition 2, and Uπ(j) ∈ Ublock(Bk).

Finally, let a = |UM|
|UB| . Our first main result is the following theorem

which holds for the above defined partially invertible universal set UB:

Theorem 3. For any 0 < εd < 1, and for some 0 < C < 1, if :

k ≥ 1

log2( 1
1+(C−1)a)

(10t+ n2t− nt+ n+ log2(
1

ε′
)), (4.5)

and

L ≥ 1

log2( 1
ε′+P (t)

)
(4nt+ log2(

1

εd
)), (4.6)

where

P (t) = (1 +
(425blog2(4t)c2t5t3.1/log(2))−1

2
)−1/3, (4.7)

ε
′
< 1−P (t), and n ≥ b2.5log2(4t)c, then blockL(Bk), formed from partially

invertible universal set UB, is a εd− approximate t-design on U(2n), for any

t, where εd is a positive real.

Here b.c denotes the floor function. An Immediate corollary to the above

theorem is the following less technical statement.

Corollary 2. Let B be the random unitary ensemble formed by chosing uni-

formly at random from a partially invertible universal set. Random quantum
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circuits on n-input qubits of depth D = 2.k.L = O(n3t12) 7 and described as

follows (for n even, odd n case follows straightforwardly.)

1. For steps 1 to k (layer j = 1), apply unitaries of the form U1,2⊗U3,4...⊗

Un−1,n, where the Ui,i+1’s are random unitaries sampled independently

from the random unitary ensemble B, and acting non-trivially on input

qubits i and i+1.

2. For steps k+ 1 to 2k (layer j = 2), apply unitaries of the form U2,3⊗

U4,5... ⊗ Un−2,n−1, where the Ui,i+1’s are random unitaries sampled

independently from the random unitary ensemble B, and acting non-

trivially on input qubits i and i+1.

3. Repeat 1. for every odd numbered layer j formed of k steps, and repeat

2. for every even numbered layer j formed of k steps, for j = 3, ..., 2L.

are εd-approximate t-designs, for any t and for n ≥ b2.5log2(4t)c.

As shown in Chapter 3, one can generate random ensembles in MBQC

by connecting 2-qubit graph gadgets in a regular way. Given a graph gadget

GB, which gives an ensemble over a partially invertible universal set, we

will see that Figures 4.1, 4.2 and 4.3 show how to compose copies of GB to

get the n-qubit cluster state gadget LGblock(Bk) giving rise to the ensemble

blockL(Bk). In this way, we go beyond the results of the previous chapter

(which uses the same block(.) construction) in the sense that the underlying

gadgets GB may be chosen so as not to follow the conditions of the GLRC

7Note that, as in [6],
1

log2(
1

P (t) + ε′
)
∼ O(t9.47log2(t)) < O(t10), as t → ∞ and thus

k.L ∼ O(t10).O(n3t2) = O(n3t12).
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construction [6]. Indeed, we give explicit examples of such gadgets GB be-

low (see Figure 4.4). We also give numerical and analytical evidence that

GB can also be a cluster state gadget, with almost any fixed assignment

of measurement angles (not nessesarily giving rise to a partially invertible

universal set even) giving approximate t-designs and demonstrating a quan-

tum speedup. Obtaining the k-fold concatenation Bk of the random unitary

ensemble B translates in MBQC to constructing a graph state gadget kGB

which is formed of sticking together k copies of GB. More precisely, if GB is

a cluster state gadget formed of m columns and 2-rows, then kGB is a cluster

state gadget formed of k(m − 1) + 1 columns and 2-rows, where the mea-

surement angles are repeated after each block of m columns, see Figure 4.1.

Then, connecting these kGB gadgets in a brickwork like fashion gives rise

to the block(Bk). We call this the graph state gadget Gblock(Bk) and it is

represented in Figure 4.2. Finally, taking L copies of these, concatenated

after each other as in Figure 4.3 gives rise to a t-design, as is captured in

the following corollary - which is a direct consequence of Theorem 3, and

the graph state translation to MBQC.

Corollary 3. If GB is a 2-qubit graph state gadget giving rise to a ran-

dom unitary ensemble B over a partially invertible universal set UB, then,

for any 0 < εd < 1, and for some 0 < C < 1, the graph state gadget

LGblock(Bk) applies to its unmeasured n output qubits a unitary sampled from

a εd-approximate t-design on U(2n) when,
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k ≥ 1

log2( 1
1+(C−1)a)

(8t+ (nt+ 2t+ n2t− 2nt+ n) + log2(
1

ε′
)),

L ≥ 1

log2( 1
ε′+P (t)

)
(4nt+ log2(

1

εd
)),

ε
′
< 1− P (t) , and n ≥ b2.5log2(4t)c, for any t. 8

The graph state gadget GB in Figure 4.4 generates a random unitary

ensemble where elements of a partially invertible universal set are selected

uniformly at random. This is proven in Section 4.6.

……….

𝐺𝐵 𝐺𝐵

k times

Figure 4.1: Graph state gadget kGB giving rise to the random ensemble Bk.

8A particular choice of ε
′

can be ε
′

= a(1 − P (t)), where 0 < a < 1 is a constant
independent of t.
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𝑘𝐺𝐵

𝑘𝐺𝐵

𝑘𝐺𝐵

1

2

3

4
.
.
.

n-1 times

Figure 4.2: Graph state gadget Gblock(Bk) giving rise to the random ensemble

block(Bk). The squares are 2-qubit gadgets kGB.The empty 3 sided square
means that there is no vertical entanglement.

.

.

.

k𝐺𝐵 k𝐺𝐵

k𝐺𝐵

k𝐺𝐵 k𝐺𝐵

. . .

L times

n-1 times

1

2

3

4

Figure 4.3: Graph state gadget GE := LGblock(Bk), giving rise to the ensem-

ble E = blockL(Bk). The horizontal red line is a preparation entanglement
(see also Figure 3.4 in Chapter 3 where this horizontal red line is denoted
as a horizontal line with a circle in the middle).
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𝜋
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𝜋
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𝜋

6

0 𝑎𝑐𝑜𝑠
1

3

𝑎𝑐𝑜𝑠
1

3

Figure 4.4: Graph state gadget GB giving rise to a partially invertible
universal set.

Our next main result concerns sampling problems and quantum speedup

using graph state gadgets LGblock(Bk), Figure 4.3. For ease of notation, we

denote E = blockL(Bk), UblockL(Bk) = UE and GE := LGblock(Bk). Note that

the total number of qubits of GE is O(n.L.k), out of which n qubits are

identified input, and another n qubits as output. The expressions of L and

k are given in Theorem 3. We will fix εd to a specific value (which we will

calculate in later sections) and t = 2, which gives O(n.L.k) = O(n4).

Consider the sampling problem consisting of measuring the output qubits

of GE in the computational basis, with the input state of GE being |0〉⊗n :=

|0〉 and let x be a bit string representing the outcomes of measurement of

the output qubits of GE , and y a bit string representing the outcomes of

measurements performed on the non-output qubits. All measurements are

non-adaptive, with angles defined by the graph state gadgets, and can be
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performed simultaneously. Let

|ψ〉 :=
∏
i,j

CZi,j(|+〉⊗O(n4)−n ⊗ |0〉⊗n) :=
∏
i,j

CZi,j(|+〉⊗O(n4)−n ⊗ |0〉),

denote the graph state corresponding to the graph state gadget GE before

any measurements are performed. This sampling gives rise to a probability

distribution over x ∈ {0, 1}n and y ∈ {0, 1}|V |−n, with |V | = O(n4) is the

number of vertices in the graph state, defined by :

D(x, y) = {p(x, y) = |〈x, y|ψ〉|2 =
1

2O(n4)−n | 〈x|Uy |0〉 |
2}, (4.8)

where Uy ∈ UE , |UE | = 2O(n4)−n, and |x, y〉 = |y〉 ⊗ |x〉. The relation

|〈x, y|ψ〉|2 =
1

2O(n4)−n | 〈x|Uy |0〉 |
2,

is obtained by noting that

|ψ〉 =
1√

2O(n4)−n

∑
y

|y〉 ⊗ Uy |0〉 ,

(see Equation(2.14)), where |y〉 is a string of measurement results of non-

output qubits sampling the random unitary Uy ∈ UE which is applied to the

n-qubit input state |0〉 now teleported to the output position.

In order to relate this to hardness, we first note that by construction

our graph gadgets GE give rise to universal sets under post-selection UE

in U(2n) 9. This fact means that outputs x are ]P-hard to approximate

9To see this, note for large enough k in Bk we can generate any unitary in U(4) under
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up to relative error 1/4 + O(1) in worst-case [66, 114]. In the language of

our MBQC gadgets, this translates to the fact that for some Uy ∈ UE there

exists outputs x such that approximating |〈x|Uy|0〉|2 up to a relative error

of 1/4 + O(1) is ]P-hard. This property is often referred to as worst-case

]P hardness [25, 114] (or, for brevity, worst-case hardness), and is usually

taken as a stepping stone for claiming average-case hardness conjectures of

the likes of Conjecture 2 stated below. Hence, to obtain a working hardness

proof (see Sections 4.2.2 and 4.3), we assume the 2 following complexity

theoretic conjectures hold:

1. Conjecture 1 : The widely believed conjecture that the polynomial

hierarchy (PH) does not collapse to its 3rd level. [132]

2. Conjecture 2 : Approximating the output probabilities

1

2O(n4)−n | 〈x|Uy |0〉 |
2 up to relative error 1

4 +O(1) for a constant fraction

of unitaries Uy ∈ UE is ]P-hard.

Conjecture 2 seems plausible because one can relate the sampling problem

D(x, y) to an IQP* sampling problem [110], and thus associate to it an

appropriate Ising partition function [66, 112]. These Ising partition func-

tions are known to be ]P-hard to approximate in worst case up to rela-

tive error 1
4 + O(1) for circuits which are universal under post selection

[66, 112, 114, 25]. In this way, Conjecture 2 can be viewed as an average-

case complexity conjecture on the approximation of Ising partition functions

which is present in the usual hardness proofs [38, 25, 26, 114].

post-selection, because of universality of UB. In particular, we can generate to arbitrary
accuracy the universal gate sets in [134, 135] for example, and SWAP’s which are needed
for universal quantum computation on U(2n).
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We are now ready to precisely state our second main result in the form

of the following theorem:

Theorem 4. Assuming Conjectures 1 and 2 hold, a classical computer can-

not sample from the distribution D(x, y) ( Equation (4.8)), formed from the

concatenation of sampling partially invertible universal sets described above,

up to l1-norm error 1
22 in time poly(n).

Our last analytical contribution concerns the universality of sets associ-

ated with random unitary ensembles generated by non-adaptive fixed XY

angle measurements on cluster states. As seen in [5, 36, 87] and for example

in Figure 4.4, non adaptive fixed XY angle measurements on cluster states

suffice for generating random unitary ensembles {pi, Ui ∈ U}, with U uni-

versal in U(2n). Here we show that this universality is generic, meaning

that almost any assignment of non-adaptive fixed XY angle measurements

on cluster states gives random unitary ensembles with support on universal

gate sets U ∈ U(2n), when n = 2γ , where γ is a positive integer.

Our starting point is the random unitary ensemble,

CGEN = { 1

2n
, CZ1,2...CZn−1,n(HZ(α1 +m1π)⊗ ....⊗HZ(αn +mnπ))},

(4.9)

with mi ∈ {0, 1}. We show that this is an (η < 1, t)-tensor product expander

(TPE) [108, 100, 36, 107], meaning that (see Equation (2.21) )

||Mt[µCGEN ]−Mt[µH ]||∞ ≤ η < 1. (4.10)
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CGEN in Equation (4.9) can be generated by an n-row, 2-column cluster

state with n output qubits-the last column is the (unmeasured output), and

with n XY plane measurement angles αi, see Figure 4.5. We denote the set

UCGEN = {CZ1,2...CZn−1,n(HZ(α1 +m1π)⊗ ....⊗HZ(αn+mnπ))}. As seen

in [98, 100], showing that Equation (4.10) holds amounts to showing that

the set UCGEN is a universal set in U(2n) [124, 125, 58]. Our result about

the universality of UCGEN can be summarized in the following theorem.

Theorem 5. UCGEN is a universal set in U(2n) for almost all choices of

α1, ..., αn, for n = 2γ, where γ is a positive integer.

Two immediate corrolaries follow from Theorem 5 and the results of

[100, 98].

Corollary 4. CGEN is an (η < 1, t)-TPE for almost all choices of α1, ..., αn.

Corollary 5. CGENk is an ε-approximate t-design for almost all choices

of α1, ..., αn, and sufficiently large k.

CGENk can be easily seen to generated by an n row, k + 1 column

cluster state, with measurement angles αi, as illustrated in Figure 4.6.

A particularly interesting observation is the case when γ = 1. The result

of Theorem 5 in this case says that almost any 2-qubit cluster state gadgets

GB generate random unitary ensembles B, with universal sets UB ⊂ U(4) 10,

where UB can be invertible, partially invertible, or non-invertible 11. What

remains in order to obtain efficient t-designs is to show that the moment

10This is not surprising, since it was shown in [124, 125] that almost any 2-qubit gate
is universal for quantum computing.

11We mean by non-invertible that for all U ∈ UB , U† /∈ UB; We mean by invertible that
for all U ∈ UB, U† ∈ UB
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superoperator Mt[µB] of B has a subdominant (second largest) eigenvalue

λ, and

• Conjecture A: |λ| does not scale badly (inefficiently) with t.

If Conjecture A is true, then we can apply the techniques we used in Theo-

rem 3 to show that we can construct n-qubit cluster state gadgets LGblock(Bk)

which sample from t-designs for efficient L and k from almost all 2-qubit

cluster state gadgets GB. Then, as a consequence of Theorem 4, these n-

qubit cluster state gadgets can be used in quantum speedup proposals.

𝛼1 

𝛼2 

𝛼𝑛 

. 

. 

. 

. 

. 

. 

Figure 4.5: Cluster state gadget generating CGEN . Corollary 4 states
that almost any choice of measurement angles α1, ..αn give rise to a TPE.
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𝛼1
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𝛼𝑛
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𝛼2

𝛼𝑛

.

.

.

. . .

. . .

. . .

.

.

.

k times

Figure 4.6: Graph gadget giving rise to CGENk. Corollary 5 states that
almost any choice of measurement angles α1, ..αn give rise to a t − design.
Numerics suggest this is also an efficient construction.

Concerning Conjecture A, we performed numerical calculations on lin-

ear cluster states composed of 3 qubits, and on 2-row, 2-column cluster

states like those of Figure 2.1. The random unitary ensembles of the 3 qubit

linear cluster state have the form {1
4 , HZ

mZ(α)HZm
′
Z(α) ∈ U(2)} where

m,m
′ ∈ {0, 1}. These random ensembles are generated by measuring two

of the qubits of the linear cluster state at an angle α in the XY plane. The

random unitary ensembles corresponding to the 2-row, 2- column cluster

states have the form of Equation (2.15), and are generated by XY plane

measurements performed as in Figure 2.1. The numerics are based on cal-

culating the subdominant eigenvalue |λ| of the moment superoperator (see

Definition 4) corresponding to each of the above random unitary ensembles,

for various values of t, and for various choices of the XY plane measure-

ment angles. For the 3 qubit linear cluster states the values of t tested
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were t = 2, 3, 4, 5, and for the 2-row, 2-column cluster states we tested for

t = 2, 3. Beyond these values the numerical investigation becomes unfeasible

as our numerical algorithms scale exponentially with n and t. 12. For all

the choices of fixed angle, non-adaptive XY measurements tested, we found

that the subdominant eigenvalue |λ| was independent of t for t = 2, 3 for

both the 3 qubit linear cluster states and the 2-column, 2-row cluster states,

which is in line with calculations in [136]. On the other hand, for the 3 qubit

linear cluster states some angles tested showed a |λ| independent of t for

t = 2, 3, 4, 5, which is in line with the result of [122], other angles showed

that |λ| changes values from t = 3 to t = 4, but remains the same for t = 4

and t = 5. These numerical calculations seem to support Conjecture A, at

least for small values of t. (see Section 4.5 for further discussion.)

As a final remark, note that in our numerics we assume η ∼ |λ| (see

Definition 5) for moment superoperators of random ensembles defined on

universal sets U . We mean by this that the rate at which t-designess is at-

tained is determined asymptotically by |λ|. This is indeed true, and common

practice, when this moment superoperator is Hermitian and, more impor-

tantly, diagonalizable [100]. This corresponds to the case when U contains

unitaries and their inverses. However, this approximation also works for

general moment superoperators Mt[µ], namely because the set of diagonal-

izable square N by N matrices is dense in the set of N by N square matrices

[137]. This means that any non-diagonalizable Mt[µ] is arbitrarily close in

norm to a diagonal matrix, and in particular their eigenvalues are arbitrarily

12Note that in the t = 1 case, we obtained exact 1-designs (|λ| = 0) for both linear
cluster states and 2-row, 2-column cluster states. This is in line with numerical calculations
performed in [5].
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close.

4.4 Proof of Theorems

4.4.1 Proof of Theorem 3

We begin by proving the following lemma regarding the ensemble B which

samples from the partially invertible set UB (see Equation (4.1)).

Lemma 4. B is an (η, t)-TPE with η = 1 + (C − 1)a < 1 where 0 < C < 1,

and a = |UM|
|UB| .

Proof.

Mt[µB] =
∑

i={1,...,|UB|}

1

|UB|
U⊗t,ti = aMt[µM ] + (1− a)Mt[µB/M ],

where

Mt[µM ] =
∑

i={1,...,|UM|}

1

|UM|
U⊗t,ti , Ui ∈ UM,

and

Mt[µB/M ] =
∑

i={1,...,|UB/M|}

1

|UB/M|
U⊗t,ti , Ui ∈ UB/M.

Since, by our definition of a partially invertible universal set, UB/M is uni-

versal in U(4), meaning by Proposition 3, that [98]

||Mt[µB/M ]−Mt[µ̃H ]||∞ ≤ 1, (4.11)
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where µ̃H is the Haar measure on U(4) (as opposed to µH in Equation (2.19)

which refers to the Haar measure over U(2n)), andMt[µ̃H ] =
∫
U(4) U

⊗t,tµ̃H(dU).

Furthermore, Mt[µM ] is the moment superoperator associated to a random

ensemble sampling uniformly from a universal set in U(4) having unitaries

with algebraic entries 13, and which contains inverses, M = { 1
|UM| , Ui ∈

UM}. Then, from the result of [122], there is a constant 0 < C < 1 inde-

pendent of t such that the following relation holds

||Mt[µM ]−Mt[µ̃H ]||∞ ≤ C. (4.12)

Now,

||Mt[µB]−Mt[µ̃H ]||∞ = ||aMt[µM ]−aMt[µ̃H ]+(1−a)Mt[µB/M ]−(1−a)Mt[µ̃H ]||∞,

thus

||Mt[µB]−Mt[µ̃H ]||∞ ≤ a||Mt[µM ]−Mt[µ̃H ]||∞

+ (1− a)||Mt[µB/M ]−Mt[µ̃H ]||∞ = η. (4.13)

Replacing Equations (4.12) and (4.11) in Equation (4.13) allows to obtain

the desired value of η.

13In [122], one requires sampling from SU(4). Fortunately, the moment super op-
erator of a set sampled from U(4) can always be thought of as a sampling from
SU(4). This can be seen by noting that for all U ∈ U(4) we have det(U) 6= 0, hence

U⊗t,t=|det(U)|
t

2 .U
′⊗t,t=U

′⊗t,t, where U
′
∈ SU(4).
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Using Proposition 2 and Lemma 4 we have the direct corollary concerning

the k-fold concatenation of B, denoted by Bk (see Equation (4.2)).

Corollary 6. Bk is a ε-approximate t-design in U(4) for

k ≥ 1
log2( 1

1+(C−1)a
)
(8t+ log2(1

ε )).

The next step is to consider the random unitary ensemble block(Bk)

(Equation (4.3)) whose associated moment superoperator is Mt[µblock(Bk)].

We will prove the following lemma.

Lemma 5. Mt[µblock(Bk)] = P
′
evenP

′
odd, where

P
′
even = P

′
2,3.P

′
4,5...,

P
′
odd = P

′
1,2.P

′
3,4...,

and

P
′
i,i+1 =

1

|UBk |
∑

j={1,...,|UBk |}

(1⊗i−1
2×2 ⊗ U

j
i,i+1 ⊗ 1⊗n−i−1

2×2 )⊗t,t,

where U ji,i+1 ∈ UBk .

Proof.

block(Bk) = { 1

|UBk |n−1
, (12×2 ⊗ U j12,3 ⊗ U

j2
4,5 ⊗ ...⊗ U

jn
2−1

n−2,n−1 ⊗ 12×2).

(U
jn
2

1,2 ⊗ U
jn
2 +1

3,4 ⊗ ...⊗ U jn−1

n−1,n)},

where U ji,i+1 ∈ UBk .
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Mt[µblock(Bk)] =
∑

j1,j2,..,jn−1=1,...|UBk |

1

|UBk |n−1

(
(12×2 ⊗ U j12,3 ⊗ U

j2
4,5⊗

...⊗ U
jn
2−1

n−2,n−1 ⊗ 12×2).(U
jn
2

1,2 ⊗ U
jn
2 +1

3,4 ⊗ ...⊗ U jn−1

n−1,n)
)⊗t,t

. (4.14)

Mt[µblock(Bk)] can be rewritten as :

Mt[µblock(Bk)] =

 1

|UBk |
∑

j1=1,...|UBk |

(12×2 ⊗ U j12,3 ⊗ 1⊗n−3
2×2 )⊗t,t


×

 1

|UBk |
∑

j2=1,...|UBk |

(1⊗3
2×2 ⊗ U

j2
4,5 ⊗ 1⊗n−5

2×2 )⊗t,t

 ...×

 1

|UBk |
∑

jn
2

=1,...|UBk |

(U
jn
2

1,2 ⊗ 1⊗n−2
2×2 )⊗t,t...

 = [P
′
2,3.P

′
4,5...].[P

′
1,2.P

′
3,4...]

= P
′
evenP

′
odd. (4.15)

Next, we would like to bound ||P ′evenP
′
odd − PHeven.PHodd||∞, where

PHeven = PH2,3.P
H
4,5...,

PHodd = PH1,2.P
H
3,4...,
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and

PHi,i+1 =

∫
U(4)

(1⊗i−1
2×2 ⊗ U ⊗ 1⊗n−i−1

2×2 )⊗t,tµ̃H(dU).

We start by bounding each P
′
i,i+1 individually. Recall the 2 following well

known and easily provable facts. Fact 1 : for complex N by N matrices A

we have

1√
N
||A||∞ ≤ ||A||2 ≤

√
N ||A||∞. (4.16)

Fact 2 : For Complex matrices A and B,

||A⊗B||2 = ||A||2.||B||2. (4.17)

Now,

||P ′i,i+1 − PHi,i+1||∞ ≤ 2nt.||P ′i,i+1 − PHi,i+1||2 ≤

2nt|| 1

|UBk |
∑

j={1,...,|UBk |}

(U ji,i+1)⊗t,t −
∫
U(4)

U⊗t,tµ̃H(dU)||2.

The rightmost term is obtained using Fact 2 (Equation (4.17)) and noting

that ||1||2 = 1. Using Fact 1 (Equation (4.16)) again, we get:

||P ′i,i+1 − PHi,i+1||∞

≤ 2nt+t|| 1

|UBk |
∑

j={1,...,|UBk |}

(U ji,i+1)⊗t,t −
∫
U(4)

U⊗t,tµ̃H(dU)||∞.
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Note that,

Mt[µ
k
B] =

1

|UBk |
∑

j={1,...,|UBk |}

(U ji,i+1)⊗t,t,

and

Mt[µ̃H ] =

∫
U(4)

U⊗t,tµ̃H(dU).

Now, because Bk is a ε-approximate t-design on U(4) (see Corollary 6), we

have from [6] that:

||Mt[µ
k
B]−Mt[µ̃H ]||∞ ≤ 2t+1ε.

Substituting this inequality in ||P ′i,i+1 − PHi,i+1||∞ gives,

||P ′i,i+1 − PHi,i+1||∞ ≤ 2nt+2t+1ε. (4.18)

Choosing ε = ε1
2nt+2t+1 we get that,

||P ′i,i+1 − PHi,i+1||∞ ≤ ε1, (4.19)

when

k ≥ 1

log2( 1
1+(C−1)a)

(10t+ nt+ 1 + log2(
1

ε1
)). (4.20)

Equation (4.20) is found by plugging the value of ε in Corollary 6. Now we

are ready to bound

||P ′evenP
′
odd − PHeven.PHodd||∞.
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We claim

Lemma 6. ||P ′evenP
′
odd − PHeven.PHodd||∞ ≤ 2n

2t−2nt+n−1ε1.

Proof. From Equation (4.19), we can write for all i , P
′
i,i+1 = PHi,i+1 + γi,

where ||γi||∞ ≤ ε1.

||P ′evenP
′
odd − PHeven.PHodd||∞ = ||(PH1,2 + γ1)(PH3,4 + γ3)...− PH1,2PH3,4...||∞.

Thus,

||(PH1,2 + γ1)(PH3,4 + γ3)...− PH1,2PH3,4...||∞ =

||PH1,2PH3,4..+ PH1,2γ3..+ γ1P
H
3,4..+ γ1γ3...− PH1,2PH3,4...||∞.

Thus,

||(PH1,2+γ1)(PH3,4+γ3)...−PH1,2PH3,4...||∞ ≤ ||PH1,2γ3..||∞+||γ1P
H
3,4..||∞+||γ1γ3..||∞+...

||PH1,2γ3..||∞+ ||γ1P
H
3,4..||∞+ ||γ1γ3..||∞+ ... is a sum of 2n−1− 1 terms, each

containing at most a product of n − 2 PHi,i+1’s. Noting that, ||PHi,i+1||∞ ≤

2nt||PHi,i+1||2 using Fact 1 (Equation (4.16)), and - using Fact 2 (Equa-

tion (4.17))- that ||PHi,i+1||2 = ||Mt[µ̃H ]||2 = 1, then every term of the

sum is individually less than (2nt)n−2ε1
14, which means the whole sum (i.e

||P ′evenP
′
odd−PHeven.PHodd||∞) is less than (2n−1−1)(2nt)n−2ε1, or equivalently

14Noting that ε1 < 1, so εm1 < ε1 for all m > 1
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less than 2n
2t−2nt+n−1ε1.

Again, choosing ε1 = ε
′

2n2t−2nt+n−1
, we get

||P ′evenP
′
odd − PHeven.PHodd||∞ ≤ ε

′
, (4.21)

when

k ≥ 1

log2( 1
1+(C−1)a)

(10t+ n2t− nt+ n+ log2(
1

ε′
)). (4.22)

Finally, we prove the following lemma.

Lemma 7. For n ≥ b2.5log2(4t)c, block(Bk) is an (η, t)-TPE on U(2n)

with η = P (t) + ε
′
, where P (t) is a polynomial in t given by Equation (4.7)

Proof. We need to bound ||Mt[µblock(Bk)] − Mt[µH ]||∞, where Mt[µH ] =∫
U(2n) U

⊗t,tµH [dU ], and µH is the Haar measure on U(2n). from Lemma 5,

||Mt[µblock(Bk)]−Mt[µH ]||∞ = ||P ′evenP
′
odd −Mt[µH ]||∞.

By a triangle inequality,

||Mt[µblock(Bk)]−Mt[µH ]||∞ ≤ ||PHevenPHodd−Mt[µH ]||∞+||P ′evenP
′
odd−PHeven.PHodd||∞.

Plugging in Equation (4.21) we get :

||Mt[µblock(Bk) −Mt[µH ]||∞ ≤ ||PHevenPHodd −Mt[µH ]||∞ + ε
′
.

Finally, from the Detectibility lemma [118] (see also Lemma 2 in Chapter
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3) and the result of [6] we get that when

n ≥ b2.5log2(4t)c,

||PHevenPHodd −Mt[µH ]||∞ ≤ (1 +
(425blog2(4t)c2t5t3.1/log(2))−1

2
)−1/3 := P (t),

and hence,

||Mt[µblock(Bk)]−Mt[µH ]||∞ ≤ P (t) + ε
′
.

Using Lemma 7 and Proposition 2 one obtains directly the value of L

in Theorem 3 with k given by Equation (4.22), and n ≥ b2.5log2(4t)c. This

Completes our proof of Theorem 3.

4.4.2 Proof of Theorem 4

We will follow the standard technique of applying Stockmeyer’s theorem

[113] along with some average-case hardness conjecture [38, 25, 26, 114] to

prove hardness of approximate classical sampling up to a constant l1-norm

error. These techniques are the same as those used in [25, 26] (see also

Chapter 2 Section 2.5 for an overview of these techniques). However, we

will provide below a detailed proof of Theorem 4 in order to show how tech-

nical ingredients, such as anti-concentration for example, fit into our MBQC

picture. Also, in our case the anti-concentration property is explicitly proven

due to the 2-design property that our architectures possess [26], and we used

a fixed assignment of measurement angles. In some sense, our result can be

viewed as combining the two desirable properties of anti-conconcentration
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(which was conjectured in [25], and which used fixed angle assignments)

and fixed angle measurements (which was absent in [26] where they used

variable angles, but had a provable anti-concentration). In our proof we will

rely only on the 2 conjectures mentioned in Section 4.3.

Let D(x, y) be the distibution given by probabilities p(x, y) = |〈x, y|ψ〉|2

as defined in Equation (4.8). Suppose there exists a classical poly(n) =

poly(O(n4))- time algorithm C which can sample from a probability distri-

bution that approximates D(x, y) up to an additive error µ in l1-norm. In

other words (following Equation (2.25) ) :

∑
x,y

|p(x, y)− pC(x, y)| ≤ µ, (4.23)

where pC(x, y) is the output probability of the classical algorithm C. Then

by Stockmeyer’s theorem [113] there exists an FBPPNP algorithm that

computes an estimate p∼C(x, y) of p(x, y) such that:

|p∼C(x, y)− p(x, y)| ≤ p(x, y)

poly(O(n4))
+ |pC(x, y)− p(x, y)|(1 +

1

poly(O(n4))
).

(4.24)

Using Markov’s inequality:

Prx,y(|pC(x, y)− p(x, y)| ≥ E(|pC(x, y)− p(x, y)|)
δ

) ≤ δ, (4.25)

where 0 < δ ≤ 1 and |x, y〉 picked uniformly at random. Noting that Equa-

tion (4.23) implies E(|pC(x, y)− p(x, y)|) ≤ µ

2O(n4)
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we get:

Prx,y(|pC(x, y)− p(x, y)| ≥ µ

δ2O(n4)
) ≤ δ. (4.26)

Equation (4.26) means that the following relation holds with probability

1− δ:

|p∼C(x, y)− p(x, y)| ≤ p(x, y)

poly(O(n4))
+

µ

δ2O(n4)
. (4.27)

We now use the following anti-concentration property for 2-designs (see

Equation (2.24)):

PrUy∼µ(| 〈x|Uy |0〉 |2 >
α(1− εd)

2n
) ≥ (1− α)2(1− εd)

2(1 + εd)
, (4.28)

where 0 < α ≤ 1. Note that measurement of the O(n4) − n non-output

qubits simply induces a uniform 1

2O(n4)−n distribution, and one can recast

Equation (4.28) to reflect anti-concentration on the entire O(n4) measured

qubits:

PrUy∼µ(p(x, y) >
α(1− εd)

2O(n4)
) ≥ (1− α)2(1− εd)

2(1 + εd)
. (4.29)

Equation (4.29) implies:

µ

δ2O(n4)
≤ µ

δα(1− εd)
p(x, y). (4.30)

Equation (4.30) holds with probability (1−α)2(1−εd)
2(1+εd) . Plugging Equation

(4.30) into Equation (4.27) we obtain:

|p∼C(x, y)− p(x, y)| ≤ (O(1) +
µ

δα(1− εd)
)p(x, y). (4.31)
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Equation (4.31) is an approximation of p(x, y) by p∼C(x, y) with relative error

O(1)+ µ
δα(1−εd) .We claim, by a similar reasoning as can be found in [114, 25],

that Equation (4.31) holds with probability (1 − δ) (1−α)2(1−εd)
2(1+εd) , or in other

words Equation (4.31) is true for a (1 − δ) (1−α)2(1−εd)
2(1+εd) fraction of unitaries

Uy ∈ UE . Choosing µ = 1
22 , δ = α = εd ∼0.1132, we get that p∼C(x, y)

approximates p(x, y) to a relative error of 1
4 + O(1) for an ∼ 0.28 fraction

of unitaries Uy ∈ UE . Assuming Conjecture 2 to be true, we now have an

FBPPNP algorithm which solves a ] P-hard problem. But, this would imply

by Toda’s theorem [117] that the PH collapses to its 3rd level. Because we

conjecture (Conjecture 1 ) the PH collapse to be impossible, we thus obtain

a contradiction. As a conclusion, D(x, y) cannot be sampled from up to

a constant l1-norm error by a classical polynomial time algorithm. This

concludes our proof of Theorem 4.

4.4.3 Proof of Theorem 5

We start with γ = 1, then

{pi, Ui} = {1

4
, CZ(HZ(α1 +m1π)⊗HZ(α2 +m2π))},

where m1,m2 ∈ {0, 1}, and

UCGEN = {CZ(HZ(α1 +m1π)⊗HZ(α2 +m2π))}.

We suppose α1 ∈ [0, 2π] and α2 ∈ [0, 2π] are fixed angles irrationally related

to π. Note that almost any angle is irrationally related to π, meaning that
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the set of angles rationally related to π in the interval [0, 2π] have Lebesgue

measure zero [133] 15. Denote by Lie(U(4)) the Lie algebra of U(4) and

Lie(U(2)×U(2)) that of U(2)×U(2) [127] 16. We want to prove, following

[124, 125], that one can find at least two unitaries U1 and U2 in the random

ensemble that have eigenvalues having arguments irrationally related to π

and whose Lie algebra spans Lie(U(4)), and not any subalgebra. In that way

we can construct any element of U(4) from products of U1 and U2 [124, 125].

For our purposes, consider

U1 = CZ1,2(HZ(α1)⊗HZ(α2)),

and

U2 = CZ1,2(HZ(α1 + π)⊗HZ(α2 + π)).

The requirement of eigenvalues having arguments irrationally related to π is

fulfilled by our choice of angles. We still need to prove we can find unitaries

whose Lie algebras are in Lie(U(4)) and not any subalgebra.We begin by

proving the following lemma.

Lemma 8. log(HZ(α1)⊗HZ(α2))
i and log(HZ(α1+π)⊗HZ(α2+π))

i are generic ele-

ments of Lie(U(2)× U(2)) for α1, α2 irrationally related to π.

Proof. It suffices to prove that HZ(α) (or equivalently HZ(α)HZ(α) )is a

15Note also that the Lebesgue measure of the set of all points of the form {α1, ..., αn},
where each of the αi’s are rationally related to π is also zero. That is because the Lebesgue
measure of a cartesian product of sets is equal to the product of Lebesgue measures of
individual sets, and each of the individual sets (i.e a set of angles which is rationally
related to π) has Lebesgue measure zero [133].

16We mean by this that Lie(U(2)×U(2)) is the Lie algebra of unitary matrices S ⊗ T ,
where S, T ∈ U(2)
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generic element of U(2) (and not any subgroup), for α generically chosen.

Direct calculation gives

HZ(α)HZ(α) = eiα

1+e−iα

2
1−eiα

2

e−iα−1
2

1+eiα

2

 ,
where

R =

1+e−iα

2
1−eiα

2

e−iα−1
2

1+eiα

2

 ∈ SU(2).

A well known fact about SU(2) is that a generic element can be represented

as eiδ~n~σ [37], where ~n = a~x+ b~y+ c~z. a, b and c are real numbers such that

|a|2 + |b|2 + |c|2 = 1.

σ = X~x + Y ~y + Z~z, X, Y and Z are the Pauli matrices. Again, a di-

rect calculation for R gives δ = cos2(α2 ), a = c = − sinα

2
√

1−cos4(α
2

)
, and

b = − 1−cosα
2
√

1−cos4(α
2

)
. None of δ, a, b or c are zero for generically chosen

α, this means that R is a generic element of SU(2). Since

det(HZ(α)HZ(α)) = det(eiα

1+e−iα

2
1−eiα

2

e−iα−1
2

1+eiα

2

) = e2iα 6= 1,

for generically chosen α, it means HZ(α)HZ(α) (and hence HZ(α)) is a

generic element of U(2) for generic α.

Now, since CZ /∈ Lie(U(2)⊗U(2)) because CZ is not decomposable into

a product of 1-qubit gates. Thus, log(U1)
i and log(U2)

i ∈ f , where Lie(U(2)⊗

U(2)) ⊂ f . By Lemma 6.1 in [58] we have that there is no intermediate Lie

algebra between Lie(U(d)⊗U(d)) and Lie(U(d2), hence f = Lie(U(4)), and
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thus log(U1)
i and log(U2)

i are generic elements of Lie(U(4)). This concludes

the proof of the γ = 1 case 17. Note that the proof we found is for angles

irrationally related to π, however it extends to instances of angles rationally

related to π. This is due to the fact that these angles give U1 and U2 whose

eigenvalues have arguments irrationally related to π or eigenvalues equal to

1 18, thereby fulfilling the requirements in [124, 125]. The proof for any

n = 2γ can be extended by induction from the γ = 1 case, using the same

methods, while noting that an element of UCGEN in this case can be written

as U = CZn
2
,n
2

+1(A⊗B) where

A⊗ 1
⊗n

2
2×2 = CZ1,2...CZn

2
−2,n

2
−1(HZ(α1 +m1π)⊗ ...⊗HZ(αn

2
+mn

2
π)),

and

1
⊗n

2
2×2⊗B = CZn

2
+1,n

2
+2...CZn−1,n(HZ(αn

2
+1+mn

2
+1π)⊗...⊗HZ(αn+mnπ)),

where A,B ∈ U(d) = U(2
n
2 ), and CZn

2
,n
2

+1 ∈ U(2n) = U(d2).

4.5 Comment on Conjecture A

At some point in the Main Results section, we mentioned that if Conjecture

A (see Section 4.3) is true, then we can use techniques from Theorem 3 to

prove that n-qubit cluster state gadgets LGblock(Bk) effectively give rise to ef-

17A similar proof of this is found in [138], while noting that Lemma 5 along with results
of [124, 125] implies < HZ(α1) ⊗HZ(α2)), HZ(α1 + π) ⊗HZ(α2 + π) >= U(2) ⊗ U(2)
for generically chosen α1 and α2, with < S > denoting the group generated by set S.

18more precisely some integer powers of U1 and U2 give these eigenvalues.
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ficient t-designs for almost all choices of 2-qubit cluster state gadgets GB. In

what follows, we illustrate how this can be done for the particular version of

Conjecture A suggested by our numerics - which are performed on 1-qubit

and 2-qubit cluster state gadgets. Namely that the subdominant eigenvalue

|λ| of Mt[µB] is upper bounded by a constant independent of t for almost all

2-qubit cluster state gadgets GB. This version of Conjecture A is inspired

from our numerics, as well as from the result of [122] which showed that

|λ| is upper bounded by a constant independent of t when the universal set

is invertible and composed of algebraic entries, and also from the results of

[107] which showed a |λ| upper bounded by a constant independent of t (up

to large values of t scaling with the dimension of the unitaries) for finite gate

sets chosen from the Haar measure. In other words, if the above version of

Conjecture A is true, then as a direct corollary

Lemma 9. B is an (η,∞)-TPE with η ∼ |λ| ≤ C < 1, and C is indpendent

of t.

Now, replacing Lemma 4 in the proof of Theorem 3 by Lemma 9, then

performing the exact same steps as in the proof of Theorem 3 allows us

to obtain the required result. Then, the corresponding statement for gad-

gets LGblock(Bk) follows straightforwardly from the translation to MBQC

developped in previous sections.

As a final remark, if Conjecture A is true, we would not require UB to

be composed of unitaries with algebraic entries in our proofs anymore. The

only reason we require unitaries with algebraic entries is to use techniques

in [6, 122] in order to arrive at Lemma 4.
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4.6 Proof of Example Sampling From a Partially

Invertible Set

For simplicity, let α = π
6 and β = acos(

√
1
3). The graph gadget GB in

the example of Figure 4.4 gives rise to a random unitary ensemble UB with

random unitaries of the form

Um = (HZ(β+m8π)⊗HZ(β+m7π))CZ(HZ(m6π)HZ(α+m5π)HZ(m4π)⊗

HZ(α+m3π)HZ(m2π)HZ(α+m1π)),

where mi ∈ {0, 1} for i = 1, ..., 8. Let

Um = Bm.Am,

where

Bm = HZ(β +m8π)⊗HZ(β +m7π)

Am = CZ(HZ(m6π)HZ(α+m5π)HZ(m4π)⊗

HZ(α+m3π)HZ(m2π)HZ(α+m1π)).

Brute force calculation shows that UB is partially invertible (up to a global

phase). What remains to be shown is that UB is universal. This amounts to

showing that products of unitaries Um, U
′
m ∈ UB can generate any unitary

in U(4), in line with the results of [124, 125]. Thus, as for Theorem 5, we

will show that
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(I) the Hermitian matrices log(Um)
i are elements of Lie(U(4)), and

(II) that eigenvalues of integer multiples Ukm of Um have eigenvalues with

arguments irrationally related to π.

For (II), notice that det(Um) = ei(−4β+rπ), where r is a rational number.

Then, at least one of the eigenvalues eiθ of Um has θ irrationally related to

π, since β is iraationally related to π. This means that for some integer

k, V = Ukm has eigenvalues 1 or eigenvalues with arguments irrationally

related to π. Then, for all real numbers λ, there exists an integer m such

that V m = V λ+O(1), fulfilling one of the two requirements in [124, 125]. (I)

follows straightforwardly from techniques in Theorem 5. log(Bm)
i is a general

element of Lie(U(2) ⊗ U(2)) by Lemma 8, since β is an angle irrationally

related to π. Furthermore, Am is an entangling gate not expressible as a

single product of 1-qubit gates, which means that log(BmAm)
i is a general

element of Lie(U(4)) by Lemma 6.1 in [58]. Note that a multitude of other

sets of angles α and β we tested also gave partially invertible universal sets.

The choice of elements uniformly at random from this set is due to the

uniform probability of the different measurement results to occur.

4.7 Conclusion

In this chapter, we have relaxed the strict conditions on the sets of unitaries

used for generating t-designs. This relaxation has natural relevance when

considering t-designs derived from measurements on graph states - i.e. in the

MBQC regime. We further showed that such constructions can also be used

for providing new and interesting candidates for architectures demonstrating
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quantum speedup.

Using these techniques we have provided explicit constructions of regu-

lar graph states, such that measuring on fixed angles generates efficient t-

designs, and classically hard to sample distributions demonstrating quanutm

speedup. Thus, we go beyond the results of the previous chapter in two ways

(as seen earlier). First by showing that graph states other than the brick-

work state, such as the cluster state, can be used to generate t-designs and

demonstrate a quantum speedup. Second, by showing that various fixed an-

gle assignments (we conjecture that almost every such assignment) give rise

to t-designs and demonstrate a quantum speedup. These techniques and

graph state architectures open up more opportunities for developing and

demonstrating new and simple speedup architectures. In addition, the well

developed verification techniques for graph states [26, 51, 38, 83, 84] provide

a natural path for verification. Moreover, graph states are broad resource

across quanutm information in netwoks including computing [30], fault tol-

erance [70], cryptographic multiparty protocols [71]. Indeed, the same graph

state gadgets used here are universal for quantum computation [30] and can

be used to distill optimal resources for quantum metrology [139]. In this

context, our results lend themselves to the integration of these ideas into

future quantum networks.

An open question is whether the O(n3t12) bound on efficiency of t-

designness shown here can be enhanced to the (optimal in n) bounds in

[6, 5, 36]. Another open question would be an analytical demonstration of

efficiency of t-designness for cluster state gadgets with almost any assign-

ment of non-adaptive fixed XY angle measurements.
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Chapter 5

On Unitary t-designs From

Relaxed Seeds

5.1 Introduction

In this chapter, we show that random quantum circuits with support over a

particular family of finite sets of unitaries which are approximately universal

in U(4) (which we call relaxed seeds), converge towards t-designs efficiently

in poly(n, t) depth, where n is the number of inputs of the random quantum

circuit, and t is the order of the design. We show this convergence for

particular families of seeds which are relaxed in the sense that they do not

satisfy the standard constraints [6]. These constraints are that every unitary

matrix in the seed need not have an inverse in the seed, nor be composed

entirely of algebraic entries in general.

Our families of seeds are derived from the partially invertible universal

sets seen in the previous chapter, therefore these seeds are constructed in a
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particular way and cannot be viewed as Haar sampled unitaries.

This result is novel in the sense that it removes completely the need

for inverses in the seed ((i)) and the need for unitaries in the seed to be

composed of algebraic entries ((ii)), thereby complementing the results of

the previous chapter which managed to partially remove the requirements

(i) and (ii).

We believe this result is not optimal, and can be improved. Particularly

because the number of gates in the relaxed seeds introduced here grows with

n and t. We conjecture that constant sized seeds such as those in [6, 94],

and previous chapters, are sufficient.

5.2 Summary of the Results

In [6], it was shown that n−qubit random quantum circuits composed of

layers of nearest neighbor unitaries U ∈ U(4) drawn uniformly at random

from a seed UB ⊂ U(4) 1, sample from an ε-approximate unitary t-design

[29] efficiently in poly(n, t, log(
1

ε
)) depth. However, their proof required the

following technical requirements to be verified.

• Requirement (i): Every U ∈ UB has an inverse U † ∈ UB.

• Requirement (ii): The unitaries U ∈ UB are composed entirely of al-

gebraic entries.

Ref. [6] also conjectured that the algebraic entry requirement is a technical

issue (due mostly to using a result of [122]), and therefore could be dropped.

1As mentioned in the abstract, a finite set of unitaries which is approximately universal
in U(4) will be referred to as a seed.
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In the previous chapter (see also [94]), we showed that these requirements

can be reduced to seeds UB composed partially of a seed UM made up of

unitaries with algebraic entries, and inverses in UM; and its complement in

UB denoted as UB/M which need not nessesarily contain unitaries and their

inverses nor be composed of algebraic entries.

In this chapter, we remove completely the requirements (i) and (ii) by

giving examples of seeds in which every unitary in these seeds does not

in general have an inverse in these seeds, nor are the unitaries in these

seeds composed of algebraic entries in general, and yet we show efficient

convergence to t-designs in a particular random circuit model we will define

explicitly below. Thereby proving, and ultimately extending the scope of,

the conjecture proposed in [6]. We will refer to these seeds as relaxed seeds

throughout this chapter. However, it is to be noted that we do not mean

that these seeds are arbitrary in the sense that the unitaries making up

these seeds are chosen from the Haar measure on U(4). Indeed, because

our proofs are based on the partially invertible universal sets of Chapter 4,

this endows the unitaries composing our relaxed seeds with some structure

which makes them different from Haar distributed unitaries or indeed other

ensembles not having this structure. The notation we will use in this chapter

is the same as that in the previous chapter, but we will restate it here for

the sake of using it in our proofs.

The seed UB ∈ U(4) is a partially invertible universal set composed of

a seed UM which contains unitaries and their inverses, and is composed of

unitaries with algebraic entries, and its complement, the seed UB/M which

is not in general composed of unitaries and inverses, nor unitaries with
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algebraic entries. Define the random unitary ensemble 2

B = { 1

|UB|
, Ui ∈ UB}. (5.1)

Denote the k-fold concatenation of B by

Bk = { 1

|UBk |
,
∏

j=1,...k

Uπ(j) ∈ UBk}, (5.2)

where Uπ(j) ∈ UB, UBk = {
∏
j=1,...k Uπ(j)|Uπ(j) ∈ UB}. π is a function acting

on {1, ..., k}, resulting in a set {π(1), ...π(k)} where π(j) ∈ {1, ..., |UB|}, the

π(j)′s can be identical. There are |UBk | = |UB|k such functions π and the

k-fold concatenation includes all of them. Define 3

block(Bk) = { 1

|UBk |n−1
, (12×2 ⊗ U j12,3 ⊗ U

j2
4,5 ⊗ ...⊗ U

jn
2−1

n−2,n−1 ⊗ 12×2).

(U
jn
2

1,2 ⊗ U
jn
2 +1

3,4 ⊗ ...⊗ U jn−1

n−1,n) ∈ Ublock(Bk)}, (5.3)

where U ji,i+1 ∈ UBk , i ∈ {1, ..., n− 1} and j ∈ {1, ..., |UBk |}. Let blockL(Bk)

be the L-fold concatenation of block(Bk), defined as

blockL(Bk) = { 1

|UBk |(n−1)L
,
( ∏
j=1,...,L

Uπ(j)

)
∈ UblockL(Bk)}, (5.4)

where here also π is as defined previously, and Uπ(j) ∈ Ublock(Bk).

2A random unitary ensemble is a set of unitaries with a probability distribution over
these unitaries. It was defined explicitly in the previous chapter.

3This definition of block(Bk) is for even n , the odd n case follows straightforwardly.
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Finally, let

a =
|UM|
|UB|

. (5.5)

One of the main results of the previous chapter was Theorem (3), say-

ing that one can obtain approximate unitary t-designs efficiently from par-

tially invertible universal sets in poly(n, t, log(
1

ε′
), log(

1

εd
)) = O(n3t12 +

log(
1

ε′
)log(

1

εd
)) depth. Define

Uk = UBk − UMk , (5.6)

to be the seed consisting of unitaries of the form

U = U1....Uk,

where for all j ∈ {1, ..., k}, Uj ∈ UB, and such that ∃ l ∈ {1, .., k} such

that Ul ∈ UB/M. k is as defined in Equation (4.5) in Theorem (3). Uk

in Equation (5.6) is the relaxed seed we will consider in this chapter. We

will first show that, in general, Uk truly is relaxed by proving the following

theorem which is the first main result of this chapter.

Theorem 6. For a given value of k, there is a choice of the seed UB/M such

that Uk does not satisfy requirement (ii), and completely violates requirement

(i) .

It is meant by completely violates requirement (i) that, for some choices

of UB/M, every unitary in Uk does not have an inverse in Uk.
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Then, as promised, we will show that a particular random quantum circuit

with seed Uk converges to an ε-approximate t-design efficiently in O(nt +

log(
1

ε
)) depth. But first, define the random unitary ensemble

B1 = { 1

|Uk|
,Uk}. (5.7)

It is straightforward to see that

|Uk| = (1− ak)|UBk |, (5.8)

since

|UMk | = ak|UBk |, (5.9)

and by looking at Equation (5.6). UMk being the set formed of unitaries of

the form

W = W1....Wk, (5.10)

where Wi ∈ UM, ∀ i ∈ {1, ..., k}, k as defined in Equation (4.5). The random

quantum circuits considered will be random unitaries in blockL(B1) defined

for the random unitary ensemble B1 ( Equation (5.7)) in the exact same way

as blockL(Bk) in Equation (5.4) is defined for the random unitary ensemble

Bk in Equation (5.2). We will show that blockL(B1) is a ε-approximate t-

design, first by showing that block(B1), which is defined for B1 of Equation

(5.7) in the exact same way as block(Bk) of Equation (5.3) is defined for the

random unitary ensemble Bk in Equation (5.2)), is an (η < 1, t)−TPE (see

previous chapters and [107, 108] for a precise definition of an (η, t)−TPE),
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then using Proposition 2 4.

We now state the three theorems which establish that relaxed seeds can

give rise to efficient approximate t designs, and which are the second, third,

and fourth main results of this chapter.

Theorem 7. block(B1) is an (η, t)− TPE with

η =
P (t) + ε

′

(1− ak)n−1
+

1− (1− ak)n−1

(1− ak)n−1
. (5.11)

Theorem (7) holds, as Theorem (3) , when n ≥ b2.5log2(4t)c, P (t), ε
′
,

k, are exactly as defined in Theorem (3). a is as defined in Equation (5.5).

Theorem 8. ∀ t, ∃ n0 ≥ b2.5log2(4t)c such that ∀ n ≥ n0

P (t) + ε
′

(1− ak)n−1
+

1− (1− ak)n−1

(1− ak)n−1
≤ 1. (5.12)

Theorem 9. ∀ t, ∃ n0 ≥ b2.5log2(4t)c such that ∀ n ≥ n0, blockL(B1)

is an ε-approximate t-design in U(2n) in the strong sense, with L given by

Equation (2.22) 5, and η given by Equation (5.11).

Note that Theorem (9) means, as Theorem (3), that one can obtain ef-

ficient approximate t-designs efficiently from relaxed seeds Uk.

The intuition behind why Theorems (7), (8), and (9) are true is quite

straightforward. In the previous chapter, block(Bk) was shown to be an

(η ≤ 1, t)-TPE [107, 108]. An overwhelmingly large fraction of random uni-

taries (tending to one in the n, t→∞ limit, see Equation (5.8)) in block(Bk)

4Again, we emphasize the k in Proposition 2 is taken to mean L here.
5we take the k in Equation (2.22) to be L
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are also contained in block(B1). Therefore, one should expect block(B1) to

be an (η ≤ 1, t)-TPE. Section 5.3 will be devoted to technical proofs of The-

orems (6)−(9).

As a final remark in this section, note that Equations (5.8) and (4.5)

tell us that the number of unitaries in the relaxed seed Uk (Equation (5.6))

grows with n and t. This technical issue is due to us using the results on

partially invertible universal sets in our proofs. This is in contrast with

the seeds used in [6] and in Chapter 4 where these seeds were finite and

were composed of a constant number of elements. We believe the results

presented here are not optimal, and that finite constant sized sets not verify-

ing requirement (ii), and completely violating requirement (i) are sufficient

to give approximate unitary t-designs in a random quantum circuit model

efficiently in poly(n, t) depth.

5.3 Proofs

5.3.1 Proof of Theorem 6

Proving requirement (ii) is not verified by Uk is straightforward. By our

definition of the relaxed seed Uk (Equation (5.6)) , any unitary U ∈ Uk can

be written as a product of k unitaries in UB (with k defined in Equation

(4.5)) U = U1...Uk with at least one Uj ∈ UB/M, and since in general UB/M

contains unitaries with non-algebraic entries, then the unitaries U ∈ Uk are

in general composed of non-algebraic entries. To see this more clearly, let k
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be odd, and consider for example

U = U1....U k−1
2
.U k−1

2
+1...Uk−1.Uk ∈ Uk,

where U k−1
2

+i = U †k−1
2
−i+1

for i ∈ {1, ..., k−1
2 }, and Uk ∈ UB/M is a unitary

with non-algebraic entries. Then

U = Uk ∈ Uk,

and is thus composed of non-algebraic entries.

We will now prove that (i) is completely violated in general by Uk,

this proof will be done by contradiction. Suppose, by contradiction, that ∀

choices of UB/M and for a fixed choice of UM, ∃ U,U ′ ∈ Uk such that

U
′

= U †. (5.13)

Without loss of generality, we can write

U =
∏

i=1,..,k

V mi
i Wni

i , (5.14)

U
′

=
∏

j=k+1,..,2k

V
mj
j W

nj
j , (5.15)

where Vi, Vj ∈ UB/M, and Wi,Wj ∈ UM for i ∈ {1, .., k}, and where

mi,mj , ni, nj ∈ {0, 1} with ni 6= mi and nj 6= mj , ∀ i ∈ {1, ...k}, ∀

j ∈ {k + 1, .., 2k}, and such that ∃ i1 ∈ {1, .., k} and j1 ∈ {k + 1, .., 2k}
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such that mi1 = mj1 = 1. Equations (5.14), (5.15), and (5.13) imply

Vj1 =
∏

j=j1−1,...,k+1

W
†nj
j V

†mj
j .

∏
i=k,...,1

W †nii V †mii .
∏

j=2k,...,j1+1

W
†nj
j V

†mj
j .

(5.16)

Now, we will prove that Equation (5.16) does not hold for some choices of

UB/M, thereby establishing a contradiction. We will consider all the possible

cases as follows.

• Case 1: Vj 6= Vj1 ∀ j 6= j1 in Equation (5.16).

W.l.o.g, let UM = {W1, ...,Wn} and UB/M = {V1, ...., Vm}, with m,n ∈

N, and let Vj1 = Vm. Fix {W1, ...,Wn, V1, ..., Vm−1}, and list all the

possible relations of the form of the R.H.S of Equation (5.16), where

Wj ∈ {W1, ...,Wn}, ∀j ∈ {k + 1, .., 2k}, and Vi, Vj ∈ {V1, ..., Vm−1},

∀i ∈ {1, ..., k}, ∀j ∈ {k + 1, ..., j1 − 1, j1 + 1, ...2k}. Since there are

countably many relations of the form of the R.H.S of Equation (5.16)

6, choose Vj1 = Vm such that it is not equal to any of the listed relations

of the R.H.S of Equation (5.16). Therfore, Equation (5.16) does not

hold in general in Case 1.

• Case 2: ∃ j 6= j1 such that Vj = Vj1 in Equation (5.16).

Here it will be convenient to rewrite Equation (5.16) as

Vj1 =
∏

i=1,...,2k−1

C
π(i)
i (V †j1)1−π(i), (5.17)

where again we take that Vj1 = Vm, Ci ∈ {V †1 , ..., V
†
m−1,W

†
1 , ...,W

†
n},

6and uncountably many choices of Vm.
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and {V †1 , ..., V
†
m−1,W

†
1 , ...,W

†
n} are fixed (as in Case 1.). π(.) is a map

i = {1, ..., 2k − 1} → π(i) ∈ {0, 1}.

We consider the two following subcases

• Case 2a: π(i) = 0, ∀i ∈ {1, ..., 2k − 1}.

Equation (5.17) becomes in this case

Vj1 = (V †j1)2k−1. (5.18)

Equation (5.18) does not hold exactly for general choices of Vj1 = Vm,

since products of the form of the R.H.S of Equation (5.18) can only

approximate Vj1 up to a given precision in general [108].

• Case 2b: ∃ i1 such that π(i1) = 1.

Equation (5.17) can be rewritten in this case as

Ci1 =
∏

i1−1,...,1

V
1−π(i)
j1 j1C

†π(i)
i .Vj1 .

∏
i=2k,...,i1+1

V
1−π(i)
j1 j1C

†π(i)
i . (5.19)

Since Ci1 ∈ {V
†

1 , ..., V
†
m−1,W

†
1 , ...,W

†
n}, and these unitaries are fixed,

therefore Equation (5.19) cannot hold for a general choice of Vj1 = Vm.

In order to complete the proof of Theorem (6), we should show that a

Vm exists which simultaneously violates the relations imposed in Case

1 and Case 2. For a given fixed integer k, and fixed {W1, ...,Wn, V1, ..., Vm−1}

there is only a finite number of unitaries Vm satisfying Equation (5.16)

in Case 1. Unitaries Vm satisfying Equations (5.18) and (5.19) (Case
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2a and 2b) also satisfy the relation

det(Ci1 −
∏

i=i1−1,...,1

V
1−π(i)
j1

C
†π(i)
i Vj1

∏
i=2k,...,i1+1

V
1−π(i)
j1

C
†π(i)
i ) = 0.

(5.20)

Using the analysis of [140], the set of unitaries Vm satisfying rela-

tions of the form Equation (5.20) has zero Haar measure on U(4).

This follows from the fact that one can show that there is a one-to-

one mapping between these (non-identically zero) polynomial equa-

tions in the matrix elements of Vm, and the intersection 7 of the zero

sets of two real analytic functions on R16. Each such zero set has a

Lebesgue measure zero, therefore their intersection (which is a sub-

set of the two) also has Lebesgue measure zero (see [140] for more

details). Therefore, the set of unitaries generated by relations of the

form of Equation (5.20) has Haar measure zero [140]. The number of

possible relations of the form of Equation (5.20) is countable (for fixed

k and fixed {W1, ...,Wn, V1, ..., Vm−1}), thus the Haar measure of the

set of unitaries Vm satisfying Equations (5.18) or (5.19) is also zero,

as the countable union of measure zero sets is also measure zero. This

means that we can chose Vm to be outside a measure zero set (which is

the set of unitaries satisfying Equations (5.16) in Case 1,(5.18), and

(5.19)), and we would therefore have that Vm simultaneously violates

the relations imposed by Case 1 and Case 2. This completes the

proof of Theorem (6).

7Corresponding to partitioning the determinant into real and imaginary parts, each
of which can be expressed as a trigonometric function of 16 real valued angles in [0, 2π]
parametrizing Vm [140].
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5.3.2 Proof of Theorem 7

Define the moment superoperators 8

Mt[µblock(Bk)] =
∑

i=1,...|UBk |n−1

1

|UBk |n−1
U⊗t,ti , (5.21)

where Ui ∈ Ublock(Bk).

Mt[µblock(B1)] =
∑

i=1,...|Uk|n−1

1

|Uk|n−1
V ⊗t,ti , (5.22)

where Vi ∈ Ublock(B1).

Mt[µblock(B2)] =
∑

i=1,...|Ublock(B2)
|

1

|Ublock(B2)|
W⊗t,ti , (5.23)

where Wi ∈ Ublock(B2). Ublock(B2) is the complement of Ublock(B1) in Ublock(Bk).

Straightforward calculation using Equation (5.8), leads to the following re-

lation

Mt[µblock(Bk)] = (1− ak)n−1Mt[µblock(B1)] + (1− (1− ak)n−1)Mt[µblock(B2)].

(5.24)

Recalling from the previous chapters that Mt[µblock(B1)] is an (η, t)-TPE if

[108, 107]

||Mt[µblock(B1)]−Mt[µH ]||∞ ≤ η, (5.25)

8Refer to the previous chapters for a precise definition of moment superoperator.
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where Mt[µH ] =
∫
U(2n) U

⊗t,tµH(dU), µH being the Haar measure on U(2n),

and using Equation (5.24) and a triangle inequality for norms we get

||Mt[µblock(B1)]−Mt[µH ]||∞ ≤
1

(1− ak)n−1
||Mt[µblock(Bk)]−Mt[µH ]||∞+

1− (1− ak)n−1

(1− ak)n−1
||Mt[µblock(B2)]−Mt[µH ]||∞. (5.26)

Thus, block(B1) is an (η, t)− TPE with

η =
1

(1− ak)n−1
||Mt[µblock(Bk)]−Mt[µH ]||∞+

1− (1− ak)n−1

(1− ak)n−1
||Mt[µblock(B2)]−Mt[µH ]||∞. (5.27)

From a result in the previous chapter,

||Mt[µblock(Bk)]−Mt[µH ]||∞ ≤ P (t) + ε
′
, (5.28)

where P (t) and ε
′

are as defined in Theorem (3). Also, because Ublock(B2) is

approximately universal on U(2n) (because its composed of unitaries which

are approximately universal on U(4)), then by a result of [98],

|Mt[µblock(B2)]−Mt[µH ]||∞ ≤ 1. (5.29)

Replacing Equations (5.28) and (5.29) in Equation (5.27) allows to obtain

the value of η in Theorem (5).

124



5.3.3 Proof of Theorem 8

The proof of Theorem (8) will also proceed by contradiction.

Suppose ∃ tm , such that ∀ n ≥ b2.5log2(4t)c,

P (tm) + ε
′

(1− ak)n−1
+

1− (1− ak)n−1

(1− ak)n−1
> 1. (5.30)

Notice that,

lim
n→∞

(1− ak)n−1 = 1, (5.31)

with a and k as given in Equations (4.5) and (5.5), with t replaced by tm.

Thus, for large enough n, and by using Equation (5.31), Equation (5.30)

reduces to

P (tm) + ε
′ ∼> 1. (5.32)

Equation (5.32) leads to a contradiction, since by Theorem (3), P (t)+ε
′ ≤ 1,

∀ t. This concludes the proof of Theorem (8).

5.3.4 Proof of Theorem 9

The proof of Theorem (9) follows directly from replacing Theorems (7) and

(8) in Proposition (2).

5.4 Conclusion

In this chapter, we have shown that one can obtain efficient approximate

unitary t-designs from random quantum circuits with support over families

of seeds which are relaxed in the sense that any unitary in the seed need not
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in general have its inverse in the seed, nor are the seed unitaries composed

entirely of algebraic entries. This result, to the best of our knowledge, is

novel, and it also proves and extends the scope of a conjecture proposed in

[6].

The relaxed seeds presented here have a cardinality which increases with

n and t (see Equation (5.8)). These seeds, we believe, are not optimal, and

we conjecture that arbitrary seeds with a constant number of elements as

in [6, 94] suffice to get efficient t-designs.
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Chapter 6

Fault-Tolerant Quantum

Speedup With Constant

Depth Circuits

6.1 Introduction

In Chapter 4, we introduced new examples of sampling problems demon-

strating a quantum speedup, the proof of which can also directly be used

to show that sampling from the output distribution of our construction in

Chapter 3 demonstrates a quantum speedup. However, it is not clear that

the bounds found in these kind of results are meaningful in terms of the

realistic noise in any implementations. Thus, noise is an obstacle in the

way of achieving quantum speedup. Indeed, in [33], it was shown that a

simple noise model - each output bit undergoes a bit flip with probability

127



ε - renders the output probabilities of IQP circuits 1 efficiently simulable

classically, meaning that a classical polynomial time algorithm can approx-

imately sample from these probability distributions, the quantum speedup

is thus lost to noise. However, using classical error correction, this quantum

speedup can be recovered [33]. More precisely, it was shown in [33] that

encoding every qubit in the n-qubit IQP circuit [3] with O(log(n)) physi-

cal qubits, then measuring and performing a majority vote error correction,

allows to recover quantum speedup even in the presence of noise, for the

above defined simple noise model. The question of the treatment of general

noise remained open [33]. There have been attempts to treat general noise

in the work of [141], however, the exponentially small bounds on success

mean that these do not currently offer a practical solution (see Section 6.7

for a deeper discussion of this work).

In this chapter, we are interested in general noise models, and in the

question of whether we can recover quantum speedup in their presence,

using relatively simple and experimentally motivated means. Our desiderata

are mainly local gates (through transversality), regular structure, relatively

low overhead, and fixed angle, non-adaptive Pauli measurements, amongst

others [37].

We do so by building on the architectures for quantum speedup based

on non-adaptive measurement based quantum computing (MBQC) [30] in

[25, 26, 38, 94] and Chapters 3 and 4. Essentially we incorporate fault toler-

1Which are in the ideal case, when noise is neglected, hard to approximately sample
from efficiently classically [114].
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ant techniques using the color code [142] and efficient magic state distillation

[143, 7]. The first of our desiderata is naturally fulfilled by our choice of the

quantum error correction code, namely the 2D color code, which allows

a transversal implementation of the entire Clifford group [142], and has a

good fault-tolerance threshold [8]. The non-Clifford part needed for com-

putational universality, and consequently quantum speedup, is supplied via

magic state distillation (MSD) [143, 144, 7, 145, 146], albeit fault-tolerantly

[147]. Our second desiderata is ensured by our choice of graph states [69],

namely the cluster state and brickwork state [4] which are 2D lattices of

qubits with nearest neighbor interactions,regular structure, and which are

universal resources for MBQC [30, 85, 4]. Concerning our third desiderata,

our construction achieves a quantum speedup using an overhead of at most

O(log3(n)) physical qubits per logical qubit (including magic state distilla-

tion overhead [7]).

Thus, our architecture requires a slightly increased overhead as compared

to the O(log(n)) overhead in [33], but provides a quantum speedup in the

presence of general noise models [8]. Our architecture consists of measuring

the qubits of our 2D graph states at fixed angles non-adaptively in the Pauli

X, Y , and Z bases, thereby automatically fulfilling our last desiderata, and

providing additional advantages such as single instance hardness [38, 94],

and translational invariance [38, 36, 94].

A striking feature in our architecture is that it can be thought of as

a sort of quantum circuit of constant depth acting on a polynomial in n

number of ancillas. Indeed, our entire sampling procedure can be executed

in a constant number of rounds, as seen in the previous paragraphs, and is
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also robust to general noise models by virtue of quantum error correction

[37]. Furthermore, the overhead required to achieve fault-tolerant, robust

quantum speedup is ∼ O(log3(n)) per qubit in our case (including distilla-

tion and logical encoding of qubit in a color code), which is not much worse

than the O(log(n)) overhead per qubit in the model of [33], which only cor-

rects for bit-flip errors. The total number of physical qubits needed for our

construction is O(n3log3(n)), as will be seen in later parts of this chapter.

In Section 6.2 we give an overview of our construction for the robust

sampling architecture showing quantum speedup. In Section 6.3 we will

bound the size of the error correction code required for our construction to

work. We bound the size of overhead for the distillation of the magic states

in Section 6.4. In Section 6.5 we will present an overview of our proof of

quantum speedup. In Section 6.6 we will show that our sampling problem

shows a quantum speedup. Finally, we discuss our results in Section 6.7.

6.2 Overview of the Construction

Our construction is essentially a fault-tolerant version of the measurement

based construction of Chapters 3 and 4 (see also [36, 94]). In Chapter 3, and

by direct analogy to the proof of hardness in Chapter 4 (see Section 4.2.2), it

can be shown that performing non-adaptive measurements of local Pauli X,

Y , and Xπ

4

(at an angle π/4 in XY plane of the Bloch sphere) on an n-row,

k-column brickwork state |G〉 [4] of polynomial length (see Figures 6.1, 3.2,

3.3, and 3.4) give statistics demonstrating quantum speedup. Our strategy

for making this fault tolerant is, first, to make a fault tolerant version of
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the graph state, and then second, to replace replace the π/4 measurements

by instead injecting so called magic states, in our case the T -state, and

teleporting in a rotated measurement, also in a fault tolerant way [8, 147].

Since graph states can be constructed by Clifford circuits, the encoding of

the graph state can be done transversally using the color code [142], which

is also used to do a fault tolerant version of the distillation of the T -state

[147, 7, 8]. Furthermore, by applying measurement based versions of the

fault tolerance procedures, we can achieve this using constant depth circuits.
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𝑘 

Figure 6.1: The brickwork state |G〉 with n-rows and k columns, and with an
assignment of fixed angles as in Chapter 3. As per our standard convention,
in the zoom in of each gadget B, the circles represent qubits. Inside is
written the measurement basis to be applied, empty ones are unmeasured
outputs and inputs have a square over them (see also Figures 3.4, 3.2, 3.3
and 2.1).

The graph state |G〉, which is the basis of our construction, is depicted in

Figure 6.1, where the appropriate measurement angles are also indicated. It

is built up by tiling of small graph states, which, together with the measure-

ment angles, we call gadget B (see Figures 6.1, 3.4, 3.2, 3.3, and Chapter

3). These B gadgets provide the universality and structure which, when
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combined in this way, give rise to quantum speedup, in an exact analogy to

the examples in Chapters 3 and 4 (some of which differ only by the choice

of measurement angles). Since the π/4 measurements are not Pauli, it is

troublesome to do them fault tolerantly using standard stabiliser codes. A

common strategy to address this is so called magic state distillation and

injection [143, 7, 145, 146, 144]. In particular, given copies of the resource

T state , defined as

|T 〉 :=
1√
2

(
|0〉+ eıπ/4|1〉

)
, (6.1)

the π/4 measurements in our gadgets can be replaced by entangling the

T -states and measuring them in a Pauli basis. In our case the entangling

can be done by CZ and the measurement is Pauli X, so it can be viewed as

an altered graph state as depicted in Figure 6.2. In this way the problem

of performing a non-Pauli measurement is replaced by a Pauli measurement

and the problem of generating a T -state. This, in turn, can be done by

standard distillation procedures, which can be done fault tolerantly [143, 8,

147].
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Figure 6.2: (Right) : Part of the state |GL〉 showing various entanglements
with the output T -state qubits of succesful MSD protocols (green unfilled
circles). Each of the qubits of |GL〉 (blue unfilled circles) and the output
T -states is a logical qubit which is a 4.8.8 2D triangular color code composed
of O(log2(n)) physical qubits. The orange lines are CZL gates. Qubits are
measured at the angles indicated by letters inside the circles. Subscript L
represents logical measurements. The entanglements with the T -states in
the way presented in this figure and their measurement in the XL bases is
in order to effectively implement a measurement at an angle π/4 in the XY
plane of the Bloch sphere.

We begin by considering the preparation of the logical encoding of the

n-row, k = poly(n)-column graph state, |GL〉. To get |GL〉, each qubit of

|G〉 is replaced by a logical qubit which is a triangular 2D 4.8.8 color code,

whose number of physical qubits is O(log2(n)) [8] (thus the number of phys-
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ical qubits per logical qubit of |GL〉 is O(log2(n))), and each CZ replaced by

a the logical CZL gate, performed by implementing CZ gates tranversally

between the physical qubits of two logical qubits [142]. The preparation of

|GL〉 can be done fault-tolerantly in a constant number of rounds. Here, by

round we mean either a parallel execution of measurements (i.e measure-

ments which can be performed in a single time step), a parallel execution of

one or two qubit gates, or a parallel preparation of qubits. This follows from

the fact that the preparation of logical qubits of a color code in the logical

|+〉 state can be performed fault-tolerantly in a constant number of rounds

[8], and because the brickwork state has a regular structure, its prepara-

tion can be thought of as a constant depth quantum circuit executed on

k.n = poly(n) ancillas [25, 94], where at each step of the circuit (or round)

one implements a parallel sequence of nearest-neighbor logical CZ gates.

After each round, we perform a full sequence of syndrome measurements

(error detection), followed by error correction. The procedure of error de-

tection we will use is that of [8] which consists of using one ancilla qubit to

measure each X or Z-type stabilizer of the color code, followed by applying

a certain decoding algorithm to extract the error [8]. Error correction will

consist of applying the appropriate multi-qubit Pauli operators which coun-

ters the detected error. This procedure of error detection and correction is

also done in a constant number of rounds [8]. Throughout the rest of this

chapter, we will assume, as in the code capacity noise model of [8], that the

syndrome qubits are perfect, thus the error detection needs to be performed

only once. Note that if we were to relax this assumption, the error detection

procedure would have to be repeated a number of times of the order of the
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code distance [8] (which scales as O(log(n))), and therefore our quantum

circuits would no longer be constant depth. For the moment, we leave as an

open question whether one could retain the constant depth property while

assuming noisy syndrome qubits, however it is worth mentioning that there

is strong evidence that the answer to this question is ”yes” [148].

The Clifford part of the |GL〉 measurements can be implemented by mea-

suring transversally X or Y on each of the (physical) qubits of the color code

[142] (this effectively implements logical logical XL or YL measurements, due

to the transversality properties of the color code [142].), along with error cor-

rection and detection. As mentioned, the non-Clifford part (which provides

universality under post-selection; a key ingredient in hardness proofs [3]) is

provided by (fault-tolerantly) injecting T -states [143].

Next, in parallel to constructing |GL〉, we also fault-tolerantly prepare

k.n copies of graph states which we will call |zMSDL〉. These |zMSDL〉 are

logical versions of graph states we call |zMSD〉, which encode a measure-

ment based version of the concatinations of the distillation of magic states in

[7]. The distillation circuits of [7] are circuits on O(d) qubits, which injects

O(d2) noisy T -states of fidelity f = 1 − ε and returns O(d) noisy T -states

with increased fidelity f = 1 − ε′ , with ε′ = O(εd). The noisy T -states are

injected at regular intervals in the circuit. These distillation circuits can be

implemented in a measurement based way [30, 85] by creating a 2D cluster

state |1MSD〉 (which through universality can implement any circuit) and

injecting the T -states into it, resulting in 2D cluster states where some nodes
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are the noisy injected T -states (see Figure 6.3 2.).

…. 𝑂(𝑑) 

Figure 6.3: The graph state |1MSD〉 which performs, when its qubits are
measured non-adaptively, the magic state distillation protocol of Theorem
4.1 in [7]. Blue and green filled circles are qubits measured in the Pauli
X, Y or Z at fixed pre-assigned angles non-adaptively. The blue colored
qubits perform the Clifford part of the distillation circuit in [7]. The green
qubits are the noisy T -states injected at regular intervals (see main text)
which, when measured at Pauli angles, provide the non-Clifford part of the
distillation protocol of [7]. The orange horizontal and vertical lines are CZ
gates. Purple filled qubits are the output qubits of the protocol which are
T -states of fidelity 1−O(εd) if the MSD is succesful.

In order to get the level of fidelity we require, whilst keeping resources

low, we concatenate this process several (z) times. In the measurement

2Note that in the fault-tolerant version of our protocol in the first layer, noisy (physical)
T states are encoded onto the (logical) qubits of |1MSDL〉 at regular intervals, resulting in
noisy logical T -states which are used in the MSD protocol. The encoding is as in [8, 147].
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based picture this corresponds to layers of cluster states connected by long

range CZ gates, which is what we denote as the graph state |zMSD〉 (see

Figure 6.4). We will see that in order to achieve a good number of good

enough T -states, these graph states are composed of a total of O(log(n))

qubits.

As before, moving to the logical version |zMSDL〉 is the same as |zMSD〉,

but with each qubit of |zMSD〉 replaced with a logical qubit which is a 4.8.8

triangular color code composed of O(log2(n)) physical qubits, and the CZ

gates between qubits of |zMSD〉 replaced by CZL gates (see Figure 6.4).

The overhead of physical qubits per logical qubit needed to go from |zMSD〉

to |zMSDL〉 is thus O(log2(n)). Being of regular structure and having con-

stant degree (each qubit is entangled to a constant number of qubits), the

fault tolerant circuit to generate these states can be implemented in a con-

stant number of rounds. Also, as with the construction of |GL〉, error cor-

rection and detection is performed after every round, using the procedure

of [8].

In MBQC local measurements drive the computation [30, 85]. In par-

ticular, a circuit is carried out by the correct choice of measurements on

the associated graph state - in our case |zMSD〉. Normally these are done

in an adaptive way, with the choice of measurements at any one time in

the computation depending on previous results (see Section 2.3 in Chapter

2). In particular universality can be achieved by adaptive measurements on

the 2D cluster states, with measurements at certain angles on the X − Y

equator. In our case, since we have injected the T -states, the circuit is all

Clifford, so the measurements are only Pauli. Furthermore, in order to keep
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time and depth resources low, we will not require corrections. A large part

of our calculations in Section 6.4 is to show that this still provides enough

good T -states for quantum speedup. Since the measurements are all Pauli,

they can be also be done fault tolerantly, transversally, on the logical state

[142].

In this way we then measure the non-output qubits of all the copies of

|zMSDL〉 non-adaptively at fixed angles either in the XL, YL or ZL bases,

and we perform a classical error correction of the outcomes (because we

assume faulty measurements), as in [8, 9]. Effectively, these non-adaptive

measurements perform, for each of the |zMSDL〉, z iterations of the magic

state distillation (MSD) protocol of Theorem 4.1 in [7], up to random Pauli’s

which are due to the non-adaptivity of the measurements [30]. We keep

only those copies where the MSD protocol was successful, that is, when

the measurement results correspond to correct implementation of needed

Clifford gates, and the obtaining of trivial MSD syndromes in the protocol

of [7].

Finally, we entangle (using CZL gates) the output qubits of successful

MSD protocols (i.e. the high fidelity logical T -states) onto |GL〉 at pre-

cise positions (this can also be done in a constant number of rounds, see

figure 6.2), and then measure non-adaptively all these output qubits, as

well as the logical qubits of |GL〉 at fixed XL, ZL or YL angles (which are

transversaly local Pauli on the physical qubits). The position that the dis-

tilled logical T -states are attached is illustrated in Figure 6.2, filling from

the side closes to the inputs. Once attached these are then measured in
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XL. When the distilled T -states are depleted by this process, we measure

all the remaining qubits of |GL〉 in the XL basis, note however that all

of these measurements are non-adaptive and therefore can be implemented

simultaneously. These measurements provide the distributions which are

our hard sampling problems. That is, we show that the output probabili-

ties corresponding to measurement of qubits of |GL〉 and the output qubits

of successful MSD protocols are impossible to sample from classically effi-

ciently, given widely-believed standard complexity theoretic conjectures are

true [66, 149, 114, 3, 38]. Thus these output probabilities demonstrate a

quantum speedup.
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Figure 6.4: Part of the |zMSDL〉 gadget showing |1MSDL〉 states in the
first layer, and |1MSDL〉 states in the second layer of |zMSDL〉. Each of the
blue, green or purple filled circles is a logical qubit which is a 4.8.8 triangular
2D color code composed of O(log2(n)) physical qubits (see main text). The
green filled circles are encoded [8, 9] noisy input T -states of fidelity 1-ε
which are injected at regular intervals onto the graph states |1MSDL〉. The
purple filled circles are the output qubits of |1MSDL〉 which in the case
where the MSD is succesful are T -states with fidelity 1-O(εd) [7] (see main
text). The vertical, horizontal, and curved orange lines are nearest-neighbor
(straight orange lines) or long range (curved orange lines) CZL gates. The
qubits of |zMSDL〉 (blue, purple, and green filled circles) are measured non-
adaptively at fixed XL, YL, or ZL angles in such a way as to, non-adaptively,
implement multiple rounds of the MSD protocol of [7] (see main text).
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6.3 Size Requirements of the Color Code

In this section we will find the size overheads of the color code needed for

our architecture to show quantum speedup. To simplify things the overheads

of the distillation part are treated separately in the next section. We will

start by some notation. Let y be a bit-string representing the measurement

results of all the physical qubits composing the non-output logical qubits

of all the k.n copies of |zMSDL〉. Let x be a bit-string representing the

measurement results of all the physical qubits composing the output logical

qubits of successful MSD protocols (which are entangled onto |GL〉), and

of measurement results of the (physical) qubits composing the logical qubits

of |GL〉. pe(x, y) is taken to mean the probability of getting bit-string y and

bit-string x. One can similarly define pe(x|y) to be the probability of getting

bit-string x, conditioned on getting bit-string y. We will often be interested

in logical bit strings representing the results of logical measurements. We

define the probability pe(xL, yL) as

pe(xL, yL) =
∑

x∈SxL ,y∈SyL

pe(x, y), (6.2)

where SxL (respectively SyL) is the set of bit strings x (respectively y) cor-

responding to the logical bit string xL (respectively yL). Also, we define

pe(xL|yL) as

pe(xL|yL) =
∑
x∈SxL

pe(x|yL) =
∑
x∈SxL

pe(x|y ∈ SyL). (6.3)
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Let {p(xL, yL)} be the output probabilities corresponding to the ideal

case where the error correction and detection procedure in our sampling

problem is perfect (that is, the failure probability of the error detection

and correction procedure is exactly zero). Similarly for {p(x, y)} which is

the distribution over physical qubit bit-strings corresponding to {p(xL, yL)}

( distributions over physical and logical bit-strings are related by Equations

of the form of Equation (6.2)). Our strategy will be to calculate the size

of the color code encoding a logical qubit such that the l1−norm difference

between these two distributions

∑
xL,yL

|pe(xL, yL)− p(xL, yL)|, (6.4)

tends asymptotically (in the n→∞ limit; n is the number of rows of |GL〉)

to zero. This will allow us in the coming sections to use p(xL, yL) in our proof

techniques, because it is simpler to do so. The hardness of the probabilities

{pe(xL, yL)} of our sampling problem is then ensured (for large enough n)

by the asymptotically vanishing l1−norm of Equation (6.4).

A well known fact about Toric and color codes is that the failure prob-

ability pfail (i.e the probability that the error detection and correction pro-

cedure performed fails to correct an error occuring in the code) decreases

exponentially with the code size (that is, the number of physical qubits

composing the code) when the error rate (i.e errors on physical qubits, the

errors of preparations, gates, measurements,....) is below the threshold of

fault-tolerant computing with the code [9, 8, 150]. This threshold has been

calculated both analytically and numerically for the color code, and using
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various general noise models [8, 9]. Given a color code of size m, the prob-

ability of success psuccess = 1− pfail is given by [150, 8, 9]

psuccess ∼ 1− e−O(
√
m). (6.5)

As is commonly done, we will assume that the probabilities of failure or

success of each code block (i.e each logical qubit) and over each round are

independent. Because our construction consists of a constant number C of

rounds, where after each round we perform an error detection and correction

on each of the O(k.n.O(log(n)) ≤ poly(n) logical qubits of |GL〉 and the k.n

copies of |zMSDL〉, then we can write pe(xL, yL) as 3

pe(xL, yL) = (1− e−O(
√
m))C.O(k.n.O(log(n)).p(xL, yL)+∑

i

pi.p
ẽi(xL, yL), (6.6)

with ∑
i

pi = 1− (1− e−O(
√
m))C.O(k.n.O(log(n)),

and where {pẽi(xL, yL)} represents a probability distribution corresponding

to a sampling problem where a logical error ei has occured, and which the

error detection and correction procedure could not correct. This logical error

could have occured in one or more rounds either in |GL〉 or in the copies of

|zMSDL〉, and the probability of it occuring is denoted pi. The first term

in the RHS of Equation (6.6) represents the case where the error detection

3We have implicitly set the total number of error correction and detection procedures
performed on all qubits of |GL〉 and |zMSDL〉 over all rounds as CO(k.n.O(log(n) +
C.k.n = C.O(k.n.O(log(n)).
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and correction procedure on all rounds was succesful, whereas the second

part in the RHS represents the case where the procedure failed at least once.

Replacing Equation (6.6) in the l1-norm of Equation (6.4) we get

∑
xL,yL

|pe(xL, yL)− p(xL, yL)| =

∑
xL,yL

|
(
1− (1− e−O(

√
m))C.O(k.n.O(log(n)))p(xL, yL) +

∑
i

pi.p
ẽi(xL, yL)| ≤

2
(
1− (1− e−O(

√
m))C.O(k.n.O(log(n))), (6.7)

where the rightmost part of Equation (6.7) is obtained by observing that

∑
xL,yL

|
(
1− (1− e−O(

√
m))C.O(k.n.O(log(n)))p(xL, yL)

+
∑
i

pi.p
ẽi(xL, yL)| ≤

∑
xL,yL

|
(
1− (1− e−O(

√
m))C.O(k.n.O(log(n)))p(xL, yL)|

+
∑
i

pi
∑
xL,yL

pẽi(xL, yL)

≤
(
1− (1− e−O(

√
m))C.O(k.n.O(log(n))) +

∑
i

pi

≤ 2
(
1− (1− e−O(

√
m))C.O(k.n.O(log(n))).

We now fix

m = r.log2(n) = O(log2(n)), (6.8)

and we choose r is a positive constant chosen large enough so that the
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following inequality holds

deg(eO(
√
m)) > deg(C.O(k.n.O(log(n))), (6.9)

where deg(.) represents the highest power of n contained in the expressions

of eO(
√
m) and

C.O(k.n.O(log(n)). We can now use (for large enough n) the approximation

2
(
1 − (1 − e−O(

√
m))C.O(k.n.O(log(n))) ∼ 2e−O(

√
m).C.O(k.n.O(log(n)).

Plugging this approximation together with the value of m (Equation (6.8))

in Equation (6.7), we obtain

∑
xL,yL

|pe(xL, yL)− p(xL, yL)| ≤ O(
1

ng
), (6.10)

where

g = deg(eO(
√
m))− deg(C.O(k.n.O(log(n))) > 0.

Equation (6.10) means that our sampling distribution {pe(xL, yL)} ap-

proaches the distribution with perfect error correction procedure {p(xL, yL)}

in the n→∞ limit, when the size of the color code encoding a single logical

qubit scales as O(log2(n)). Thus, Equation (6.10) allows us to shift back

and forth between the distributions {p(xL, yL)} and {pe(xL, yL)}, and guar-

antees the hardness of one, given the hardness of the other (for large enough

n). In the coming sections, we will work with the distribution {p(xL, yL)}

which is easier to manipulate using our techniques, and we will shift back to
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{pe(xL, yL)} when needed by using Equation (6.10) and a triangle inequality.

6.4 Size Requirements for |zMSDL〉

In this section we find the required size of the states |zMSDL〉 used for the

distillation of the T -states in order to show quanutm speedup. As explained

in Section 6.2 the state |zMSDL〉, along with the described injections of

noisy T -state, effectively implements the distillation circutis of Theorem

4.1 in [7] in MBQC. In MBQC, however, feedforward measurements are

required. In this work we do not do feedforward for this part, and measure-

ments are done non-adaptively, which means that only certain measurement

outcomes will be guaranteed to give a good implementation of the distil-

lation circuit. Furthermore, the distillation circuits [7] themselves contain

syndrome measurements, and good distillation is only guaranteed upon the

correct syndrome measurement within the circuit (these, however occur with

high probability). We say that the MSD was succesful when we obtain such

measurement results for a given copy of |zMSDL〉. The goal in this section

will be to calculate the number of qubits of |zMSDL〉 which will guarantee

a sufficient fidelity, and a sufficient supply of output T -states with high fi-

delity (succesful MSD outputs) to ensure hardness of classical simulability

of our model.

We will begin by calculating the number of qubits of |1MSDL〉. In The-

orem 4.1 in [7], the MSD circuit consists of O(d) qubits, where d is a positive

integer, uses O(d2) noisy input T -states with fidelity 1-ε with respect to an

ideal (noiseless) T -state, and outputs O(d) distilled magic states with fi-
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delity 1-O(εd) with respect to an ideal T -state. Each time a noisy T -state

is inserted it affects a noisy T -gate, inducing a so-called T -gate depth [7].

The depth of the entire circuit is O(d2.log(d)), where O(d) is the T -gate

depth, and O(d.log(d)) is the depth of an encoding Clifford circuit of the

protocol, which is composed of long-range Cliffords [7]. Therefor, the MSD

circuit is an O(d)-qubit circuit of depth O(d2.log(d)). For implementations

in MBQC, one must transform the Clifford circuit composed of long range

gates, to that composed of nearest neighbor and single qubit Clifford gates,

since these single qubit and nearest neighbor two-qubit gates can be imple-

mented by measuring O(1) qubits in MBQC [30, 85]. An arbitrary m-qubit

Clifford unitary can be implemented in depth O(m2) by a circuit composed

of {CNOTi,j ;Hi;Zi(
π

2
)}i,j∈{1,...,m} [151, 152], where Hi and Zi(

π

2
) are the

single qubit Hadamard and π/2 phase gates, which can be implemented

by Pauli XL, YL, and ZL measurements on O(1) qubits in a cluster state

[30, 85]. CNOTi,j is a long range controlled not acting on qubits i and j

which can be implemented on a cluster state in depth O(i − j) ≤ O(d) by

using nearest neighbor CNOT’s (each of which can be implemented using

O(1) qubits on a cluster state [30, 85]) [87]. m = O(d) in our case, thus the

number of columns of |1MSDL〉 is

nc = O(d2log(d)).O(d2).O(d) = O(d5log(d)), (6.11)

where the O(d2log(d)) comes from the depth of the MSD circuit with long

range Cliffords, O(d2) is the depth needed to implement an arbitrary Clifford

using Hadamards, phase gates, and long range CNOT’s, and the O(d) is an
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overestimate and represents the number of nearest neighbor CNOT’s needed

to give a long range CNOT. The total number of qubits of |1MSDL〉 is then

nT = O(d).nc = O(d6.log(d)). (6.12)

Now we will calculate the required number of qubits of |zMSDL〉. As

noted in Section 6.2, one can think of |zMSDL〉 as composed of z layers

of multiple |1MSDL〉 states connected together by long range CZL gates

(this is in order to transport the output T -states of layer j onto different

positions in layer j + 1 where they will be used as inputs, see Figure 6.4),

with each of these |1MSDL〉’s composed of nT = O(d6log(d)) logical qubits,

and upon non-adaptive measurement effectively implementing one round of

MSD, up to random Paulis.

Let us suppose the first layer is composed of N |1MSDL〉 states (with

N.O(d2) noisy input T -states encoded [8, 147] onto the qubits of each of

the |1MSDL〉 states at precise positions), and this layer outputs, upon

measurement and in the case the MSD on each |1MSD〉 states are suc-

cessful, N.O(d) =
N

d
.O(d2) distilled T -states with fidelity 1 − O(εd) (or

output error O(εd) = C.εd, where C is a positive constant [7]. These dis-

tilled T -states will be used as noisy T -state inputs in the next layer, which

is composed of
N

d
|1MSD〉’s, and which will output, when the MSD is

succesful as above,
N

d
.O(d) =

N

d2
.O(d2) distilled T -states with output er-

ror C.(C.εd)d = Cd+1.εd
2
. 4 Similarly, the zth layer will consist of

N

dz−1

4In the protocol of Theorem 4.1 in [7], we have that for large enough d the ratio of
(noisy) input magic states to (distilled) output magic states is ∼ d, since γ → 1 asymp-

totically (see Section 6.7) [7]. This is what allowed us to say that N.O(d) =
N

d
.O(d2),
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|1MSD〉’s, and will output, upon successful measurements,
N

dz−1
.O(d) T -

states with output error (for d large enough)

εout ∼ Cd
z−1
.εd

z
. (6.13)

The total number of qubits of |zMSDL〉 is then given by

nNMSD = (N +
N

d
+
N

d2
+ ...).nT = O(N). (6.14)

We choose z to be the last layer, therefore
N

dz−1
= 1 and thus

N = dz−1. (6.15)

In summary, if we have a |zMSDL〉 which is made up of taking z rounds

starting with NO(d2) T -states with noise ε, we obtain (when the MSD is

succesful) O(d) output T -states state with noise εout (Equation (6.13)).

In what remains of this section, we will show how to choose z and N

as a function of n (the number of rows of |GL〉), such that the final round

outputs (upon a succesful MSD of |zMSDL〉) O(d) T -states with error εout

sufficiently small so as to demonstrate quantum speedup of our problem. We

will calculate N such that the following condition, which will be justified in

meaning that N groups of O(d) distilled outputs, can be thought of as
N

d
groups of O(d2)

inputs (for the next layer), with O(d2)/O(d) = d.
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Section 6.4 and 6.5, holds for all bit strings y

∑
x

|p(x|y)− pid(x|y)| ≤ c, (6.16)

where c is an arbitrarily small constant, p(x|y) = p(x, y)/
∑

x p(x, y), py :=∑
x p(x, y), and {p(x, y)} is as defined in Section 6.2. pid(x|y) is defined

similarly to p(x|y), with the exception that the T -states entangled onto |GL〉

are ideal (noiseless), as opposed to the case of p(x|y) where the injected T -

states are the output qubits of |zMSDL〉. Note that this implies the same

for the logical version of Equation (6.16), for all bit strings yL

∑
xL

|p(xL|yL)− pid(xL|yL)| ≤
∑
x

|p(x|y)− pid(x|y)| ≤ c. (6.17)

Indeed, Equation (6.17) can be found directly by using Equation (6.3) in

the LHS of Equation (6.17), then using a triangle inequality.

Now, remember that in our construction we use k.n copies of |zMSDL〉.

Supposing that we obtain l copies of |zMSDL〉 are succesful (i.e that l.O(d) =

O(l) output T -states with error εout were entangled with the qubits of |GL〉),

then p(x|y) and pid(x|y) are given by

p(x|y) = 〈x|ρl|x〉, (6.18)
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with

ρl :=

CZT ⊗i=1,...,O(l)

(
(1− εout)|TL〉i〈TL|i + εout.ηi

)
⊗ |GL〉〈GL|CZT , (6.19)

where CZT =
∏
{i,j}∈ET CZLi,j represents the controlled Z gates needed for

entangling all the output T -states with the qubits of |GL〉, ET is the set of

all pairs of logical qubits {i, j} where i is an output qubit of a successful

MSD protocol in the state (1 − εout)|TL〉〈TL|i + εout.ηi which is entangled

with qubit j of |GL〉. CZLi,j acts as the identity on all but qubits i and j.

Also

pid(x|y) = 〈x|CZT
((
⊗i=1,...,O(l) |TL〉i〈TL|i

)
⊗ |GL〉〈GL|

)
CZT |x〉,

(6.20)

where εout and |TL〉 are as defined in Equations (6.13) and (6.1), ηi is an

arbitrary one qubit state. Note that the value of y is largely fixed by the fact

it there are l succesful MSD outputs. strictly speaking the places where

i appear here, depend on y as do the possbile strings for the unsuceesful

MSD, but we do not include them in Equation (6.20) for ease of reading.

A standard relation linking the probabilities p(x|y) and pid(x|y) and the

fidelity F (ρl, ρ
id
l ) between ρl (Equation (6.19)) and

ρidl = CZT
(
⊗i=1,...,O(l) |TL〉i〈TL|i

)
⊗ |GL〉〈GL|CZT , (6.21)
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is given by [37]

∑
x

|p(x|y)− pid(x|y)| ≤ 2
√

1− F 2(ρl, ρ
id
l ). (6.22)

From Equations (6.19) and (6.21) we have

F (ρl, ρ
id
l ) ≥ (1− εout)O(l). (6.23)

Using Equations (6.16), (6.22), and (6.23) we can set

2
√

1− (1− εout)O(l) ≤ c. (6.24)

Requiring Equation (6.24) to hold for the maximum value of l, lmax = k.n

(we do this is so that Equation (6.24) holds for lmax which gives a maximal

value of 2
√

1− F 2, thus it will also hold for all l ≤ lmax. This will be needed

in our hardness proof in Section 6.6.), which corresponds to the case where

we obtain succesful MSD on all of the k.n copies of |zMSDL〉 we created,

and using the approximation (1− εout)O(l) ∼ 1−O(l).εout we obtain

εout ≤ O(
1

k.n
) ≤ O

( 1

poly(n)

)
. (6.25)

Using the expression of εout in Equation (6.13), we get, for big enough n 5,

5From Equations (6.13) and (6.25), Cd
z−1

.εd
z

≤ O(1/poly(n)). Taking the
logarithm of both sides and rearranging we get dz.log(Cεd)≤. − O(log(poly(n)) ∼
−O(deg(poly(n)).log(n)) = −O(log(n)) for large enough n, where deg(poly(n)) is the
value of the highest power of n in poly(n). Equation (6.26) follows from observing that
C.εd < 1 [7].
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that

dz ≥ O(log(n)). (6.26)

Replacing Equation (6.26) in Equation (6.15), we have

N ≥ O(log(n)). (6.27)

The success probability psucc, which is the probability that |zMSDL〉 will

output magic states with error probability εout when measured non-adaptively,

is given by

psucc ≥
1

2nNMSD
, (6.28)

where nNMSD is given by Equation (6.14) 6. For small enough constant

(independent of n) 7 ε , we have

psucc ≥
1

n
. (6.29)

Now we want to calculate ptotfail, which is the probability of getting more

6Indeed, there is at least one string S of measurement results which corresponds to a
successful distillation protocol. The total number of possible measurement strings corre-
sponding to measurements of qubits of |zMSDL〉 is≤ 2nNMSD . Also, given a measurement
of a particular qubit of |zMSDL〉, the probability that this measurement result is success-
ful ( that is, the measurement result corresponds to a bit of S ) is ≥ 1/2, since this bit
either corresponds to the successful implementation of a Clifford, which occurs with prob-
ability 1/2 as in usual MBQC, or it is a bit of the trivial measurement syndrome which
one usually post-selects on in MSD routines, this bit appears with probability close to one
[7]. The lower bound in Equation (6.28) follows straightforwardly from these observations.

7Indeed, choosing εout =
1

nβ
, with β a positive constant chosen so that Equation (6.25)

is verified, then using the expression of εout in Equation (6.13), we get dz =
β.d.log(n)

log(1/C.εd)
.

Replacing this in Equation (6.14) we obtain nNMSD = γ.
β.d.log(n)

log(1/C.εd)
, with γ a positive

constant. Equation (6.29) follows directly by choosing ε =
e−γ.β

C1/d
.
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than lmax− k1.(n− 1) = k.n− k1.(n− 1) failures out of lmax = k.n copies of

|zMSDL〉 measured (which translates to getting less than k1 B gadgets per

row pair of |GL〉). The calculation of ptotfail is performed in Section 6.6.2.

Choosing k such that

k.n

k1.(n− 1)
≥ O(n.log(n)). (6.30)

one obtains

lim
n→∞

ptotfail = 0. (6.31)

Equation (6.31) is derived in the Section 6.6.2

To summarize, for |GL〉 which is composed of k = poly(n) columns (with

k chosen such that Equation (6.30)) holds) and n rows, creating k.n copies

of |zMSDL〉, encoding N.O(d2) noisy input T -states onto the qubits of each

of these copies, and measuring the non-output qubits of each of these copies

non-adaptively at fixed XL, YL or ZL
8, one is guaranteed almost surely for

high enough n to get at least k1.(n − 1) = poly(n) successful instances of

distillation, and therefore be able to implement, by entanglement of output

T -states of successful instances onto qubits of |GL〉, followed by measurement

these output states and of qubits of |GL〉 non-adaptively and at fixed Pauli

angles, a quantum circuit composed of at least k1 B gadgets per each row

8Note that these ZL measurements are harmless, since when executed the graph we ob-
tain still has gflow [86] (see Figure 6.2), meaning that we still obtain, after non-adaptively
measuring at XL, YL, and ZL, random unitary ensembles of the same form as those in
Chapters 3 and 4, by arguments of [88].
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pair. The significance of this last statement will be made clear in the next

section.

Finally, we emphasize that it is the choice of distillation protocol of [7]

which allowed Equations like (6.27) and (6.29) to hold. Indeed, choosing

other MSD protocols may not lead to desired results. More about this is to

be said in Section 6.7.

6.5 Approach to Our Proof of Hardness

Our proof of hardness of approximately classically sampling will be based on

the standard technique of applying Stockmeyer’s theorem [113], and Toda’s

theorem [117], along with an average-case hardness conjecture inspired from

worst-case hardness of our problem [114, 33, 38, 25, 26, 94]. The proof tech-

nique will be essentially the same as that in Chapter 4 (see also Chapter

2 for an overview of this type of proof), but there are additional details

such as a different proof for anti-concentration (see Section 6.6.1), and shift-

ing between the probability distribution {pe(x, y)} and {p(x, y)} which will

be described below, in addition to several technicalities in the calculations

which we perform in Section 6.6.

We will prove that the probability distribution {pe(xL, yL)} (see Section

6.3) cannot be sampled from efficiently classically, assuming two complexity

theoretic conjectures hold. This is (to date) the minimal possible number

of conjectures one can make in these types of proofs. In our proof, we will

use Equation (6.10) to transform the sampling problem from sampling over

{pe(xL, yL)}, to sampling over {p(xL, yL)}, which is easier to manipulate in
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our proofs. This is feasible because the difference between these two distribu-

tions vanishes in the limit of large n. This will allow us to make statements

along the lines of : If sampling from {p(xL, yL)} is hard to do classically

up to l1−norm error c1 (where c1 is a positive constant). Then for large

enough n ≥ nf , where nf is an appropriately large integer, sampling from

{pe(xL, yL)} up to l1−norm error c1−
1

D
> 0 where D is a positive constant

is also hard to do classically, since this sampling implies the previous one by

using a triangle inequality and Equation (6.10).

In our proofs also, there are many non-trivial subtleties which need to

be dealt with. The first of these is that measuring the copies of |zMSDL〉

and then using only the outputs of the succesfull ones to entangle with

qubits of |GL〉 reveals to the sampler which instances (with respect to the

measurement of the non-output qubits in |zMSDL〉) are hard (] P) to ap-

proximate. This was not a problem in previous works where single round

non-adaptive measurements led to a hiding of these hard to approximate

instances [25, 38, 26, 94].

To illustrate, let us partition the set of bit-strings {y} into {y}hard and

{y}easy. {y}hard represent the instances of y bit-strings characterized by a

sufficient amount of T -states with output error εout. By sufficient, we mean

a number of T -states which when injected onto |GL〉 will lead to probabilities

p(x|y) which are worst-case hard to approximate up to relative error 1/4 +

O(1). The probabilities p(x|y) are in this case the outputs of quantum cir-

cuits, where these circuits are universal under post-selection [66, 149] (that

is, the probabilities p(x|y) can be used to calculate the post-selected proba-

bilities [66]). On the contrary, {y}easy represent the instances of bit-strings
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y which are characterized by a number of T -states which is not sufficient

for universality under post-selection, and therfore it is expected that the

p(x|y) are efficiently approximately classically samplable in this case. In

principle, by looking at a bit string {y} one can directly determine whether

it belongs to {y}hard or {y}easy. Indeed, a succesful MSD protocol is usually

characterized by a copy of |zMSDL〉 where the logical MBQC measurement

binaries [30] are all zero’s, indicating a correct implementation of Cliffords

of the MSD circuit and the obtaining of trivial syndromes. Thus, the sam-

pler knows before hand which p(x|y) are worst-case hard to approximate,

they are simply those where y ∈ {y}hard. If the contribution of these hard

instances is negligible, that is, if

lim
n→∞

∑
y∈{y}hard

py = 0, (6.32)

where py =
∑

x p(x, y), then the sampler can simply sample p(x|y) where y ∈

{y}hard using some arbitrary efficiently classically computable probability

distribution, then sample accurately from the p(x|y) where y ∈ {y}easy,

and one would have sampled in this case from our distribution classically

efficiently up to a given constant l1-norm error. Equation (6.31) shows that

we have avoided this scenario, since the contribution of the hard instances

in our case cannot be neglected. Indeed, ptotfail can be written as

ptotfail = 1−
∑

y∈{y}hard

py. (6.33)
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Therefore, in our case we have, from Equations (6.31) and (6.33) that

lim
n→∞

∑
y∈{y}hard

py = 1. (6.34)

Although, it should be noted that in our case we have underestimated the

number of hard instances, since one can expect hard instances with less that

k1 = poly(n) B gadgets per row pair (as in our case), however these under-

estimated cases can only add positive values to
∑

y∈{y}hard py, and therefore

Equation (6.34) remains true.

Another subtlety arises when looking at p(x|y). These probabilities are

the outputs of quantum circuits with noisy T -gates, with noise rate given by

εout (Equation (6.13)). How can one be sure that these probabilities are not

efficiently samplable from classically? The condition imposed by Equations

(6.16) and (6.17) ensures that the probabilities p(x|y) are indeed hard to

sample from classically. Since, as will be seen in the next section, we will

use Equation (6.17) and to transform our sampling problem from a sam-

pling of probabilities p(x|y), to a sampling of probabilities pid(x|y) which

are definitely hard to sample from classically [36, 38, 66, 149].

The last point we would like to address in this section is more an am-

biguity rather than a problem. It concerns the values of k and k1. We will

use a value of k1 ≥ O(n), and that of k which verifies Equation (6.30). The

reason we chose this particular value of k1 is because we will need it to prove

the anti-concentration property [26, 27] of pid(x|y), which is a technical in-

gredient needed in our proof in the next section. The anti-concentration

property relevant to our case will be proven in Section 6.6.1. We will use
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results from [36, 26, 27] to prove it.

6.6 Proof of Hardness of Classical Simulability

In this section we prove that our architecture gives quantum speedup. As-

sume that the error rates of individual qubits, preparations, two qubit

gates, and measurements are below the threshold of fault-tolerant comput-

ing with the color code [8, 9]. More precisely, the error rate er must verify

er ≤ min(εth,
e−γ.β

C1/d
) ( min(f, g) being the minimum of two values f and

g), where εth is the threshold for fault-tolerant computing with the color

code [8], and
e−γ.β

C1/d
is the value of the error rate on the noisy input T -states

(calculated in footnote 7) so that we can get a psucc of the form of Equation

(6.29). Also, assume that each logical qubit of |GL〉 and |zMSDL〉 is a 4.8.8

2D triangular color code of size O(log2(n)). Suppose a classical poly(n)

time algorithm C can sample from a probability distribution {pc(xL, yL)}

approximating {pe(xL, yL)} to l1-norm error µ− 1

D
> 0, where µ and D are

positive constants. That is,

∑
xL,yL

|pc(xL, yL)− pe(xL, yL)| ≤ µ− 1

D
. (6.35)

Using Equation (6.10) and a triangle inequality, we have

∑
xL,yL

|pc(xL, yL)− p(xL, yL)| ≤
∑
xL,yL

|pc(xL, yL)− pe(xL, yL)|+ u

ng
,

where u is a positive constant. For n ≥ nf , where nf is a positive integer

chosen so that ngf/u ≥ D. Replacing Equation (6.35) in the above Equation,
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one obtains ∑
xL,yL

|pc(xL, yL)− p(xL, yL)| ≤ µ. (6.36)

We will show that the existence of such a classical algorithm is highly un-

likely, based on widely believed complexity theoretic conjectures, which is

the standard method in proving quantum speedup [33, 38, 27, 25, 26, 94].

The complexity theoretic conjectures we will rely on are the following.

Conjecture 1. The polynomial Heirarchy (PH) does not collapse to its third

level [132].

We will also rely on the following average-case conjecture, the likes of

which is present in the usual proofs of hardness [33, 38, 27, 25, 26, 94].

Conjecture 2. Approximating the probabilities pid(xL|yL) for a given yL ∈

{yL}hard up to relative error 1/4 + O(1) for a constant fraction γ of the

pid(xL|yL) is as hard as worst-case, and thus ]P-hard.

Here {yL}hard is the set of logical bit-strings yL giving rise to a hard

instance. By hard instance we mean an instance where a number of T -

states ≥ O(k1) with error εout are entangled onto qubits of |GL〉 so that we

get at least k1 B gadgets applied per each row pair of |GL〉, i ∈ {1, .., n−1}.
9 We will also use the following anti-concentration property [26, 27] which

we can show holds when k1 ≥ O(n). We will prove this property in Section

6.6.1.

9Again, we emphasize that we underestimate the number of hard instances, since one
would expect that there are hard instances with less than k1 B gadgets per row pair of
|GL〉.
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Theorem 10. For a given yL ∈ {yL}hard

prxL

(
pid(xL|yL) ≥ α

2k.n+O(l)

)
≥ β. (6.37)

α and 0 < β ≤ 1 are positive constants, 2k.n+O(l) is the number of bit-strings

xL.

In the rest of this section, we will prove the following theorem which

shows quantum speedup of our sampling problem.

Theorem 11. Assume that the error rates of individual qubits, preparations,

two qubit gates, and measurements verify the conditions stated at the begin-

ning of this section. Then there exists positive constants µ, D, and c such

that, assuming Conjecture 1 and 2 are true, there is no poly(n) time classical

algorithm C which can sample from the probability distribution {pe(xL, yL)}

up to l1-norm error µ− 1

D
(see Equation (6.35)).

We now go on to prove Theorem 11, by starting with the sampling

problem of Equation (6.36). Since if we can prove that this sampling is hard

to do classically, then it also implies that the sampling problem in Theorem

11 is also hard to do classically, by the arguments in Section 6.5 and the

beginning of this section.

Equation (6.34) implies 10 that ∃ integer no, and a constant 0 < ζ ≤ 1 such

that ∀ n ≥ no > nf ∑
yL∈{yL}hard

pyL ≥ ζ. (6.38)

10Note that
∑
y∈{y}hard

py =
∑
yL∈{yL}hard

pyL .
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pyL =
∑

xL
p(xL, yL). Equation (6.36) implies

∑
yL∈{yL}hard

pyL
∑
xL

|pc(xL, yL)

pyL
− p(xL|yL)| ≤ µ. (6.39)

Plugging Equation (6.38) in Equation (6.39) gives

∑
xL

|pc(xL, yL)

pyL
− p(xL|yL)|min ≤

µ

ζ
. (6.40)

∑
xL
|pc(xL, yL)

pyL
−p(xL|yL)|min meaning the minimum value of

∑
xL
|pc(xL, yL)

pyL
−

p(xL|yL)|, where yL ∈ {yL}hard. Equivalently, Equation (6.40) can be ex-

pressed as Corollary

Corollary 7. ∃ yL ∈ {yL}hard such that

∑
xL

|pc(xL, yL)

pyL
− p(xL|yL)| ≤ µ

ζ
. (6.41)

Corollary 7 and Equation (6.17) imply, by using a triangle inequality 11,

∑
xL

|pc(xL, yL)− pid(xL, yL)| ≤ (
µ

ζ
+ c)pyL . (6.42)

Let µ
′

=
µ

ζ
+ c. Applying Stockmeyer’s theorem [113] to the probabilities

of Equation (6.42), and a triangle inequality [25] we get that there is an

algorithm in the third level of the PH producing an approximation p̃c(xL, yL)

11pid(xL, yL) = pyL .p
id(xL|yL).
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of pid(xL, yL) such that

|p̃c(xL, yL)− pid(xL, yL)| ≤ pid(xL, yL)

poly(n)
+

|pc(xL, yL)− pid(xL, yL)|(1 +
1

poly(n)
). (6.43)

Summing over xL on both sides of (6.43), then using Equation (6.42), and

the fact that p̃c(yL) =
∑

xL
p̃c(xL, yL) we get that

1− µ′ < p̃c(yL)

pyL
< 1 + µ

′
. (6.44)

Choosing µ
′

(and thus µ and c) to be small enough, one has

p̃c(yL)

pyL
∼ 1. (6.45)

Dividing Equation (6.43) by pyL , then using Equation (6.45) we obtain

|p̃c(xL|yL)− pid(xL|yL)| ≤ pid(xL|yL)

poly(n)
+

|pc(xL, yL)− pid(xL, yL)|
pyL

(1 +
1

poly(n)
). (6.46)

Using Equation (6.42) and Markov’s Inequality, we get that for 0 < δ ≤ 1

PrxL(
|pc(xL, yL)− pid(xL, yL)|

pyL
≤ µ

′

δ.2k.n+O(l)
) ≥ 1− δ. (6.47)

with PrxL being the probability over the uniform choice of xL. Replacing

Equation (6.47) in Equation (6.46) we get the following Equation which
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holds with probability at least 1− δ

|p̃c(xL|yL)− pid(xL|yL)| ≤ pid(xL|yL)

poly(n)
+

µ
′

δ.2k.n+O(l)
. (6.48)

Again, we emphasize that in Equation (6.48) yL ∈ {yL}hard, by Corollary

7.Now, using the anti-concentration property (Theorem 10) in Equation

(6.48) we get the following equation which we assume holds with probability

β.(1− δ), by similar arguments as in [26, 25, 94, 114]

|p̃c(xL|yL)− pid(xL|yL)| ≤ (O(1) +
µ
′

δ.α
)pid(xL|yL). (6.49)

Choosing µ, c such that
µ
′

δ.α
≤ 1

4
, Equation (6.49) means that an algo-

rithm in the 3rd level of the PH can approximate the probabilities {pid(xL|yL)}

for a yL ∈ {yL}hard up to relative error 1/4+O(1). This means by Conjec-

ture 2 and Toda’s theorem [117] that the PH has collapsed to its third level,

which is impossible by Conjecture 1. This concludes our proof of Theorem

11.

6.6.1 Proof of Theorem 10

In this subsection we prove Theorem 10. First off, suppose that we get l

succesful |zMSDL〉 measurement instances, or equivalently O(l) = O(d2).l

|TL〉 states with output error εout (Equation (6.13)). We will suppose, so

that we get yL ∈ {yL}hard, that we have obtained at least k1 (successive) B

gadgets per row pair (i, i+ 1), i ∈ {1, .., n− 1}, with k1 ≥ O(n).
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We can write

p(xL|yL) =
1

2kn+O(l)−n |〈x
out
L |Uj .Vi|xoutL 〉|2, (6.50)

where xoutL is a bit-string representing the measurement results of qubits

of the rightmost column of |GL〉. Uj is a random unitary which is applied

to the qubits of the rightmost column of |GL〉 after measuring the first k1

columns of |GL〉, and Vi a unitary applied to these qubits after measuring the

remaining k − k1 − 1 columns, j ∈ {1, ..., 2k1.n+O(l)}, i ∈ {1, ..., 2(k−k1−1).n}.

Sampling from the uniform distribution over {Uj}j∈{1,...,2k1.n+O(l)} effec-

tively samples from an approximate unitary 2-design [29], since as men-

tioned earlier, these unitaries are products n-qubit unitaries of length k1 ≥

O(n) composed of two-qubit unitaries chosen from a set which is univer-

sal on U(4) and contains inverses, as seen in Chapter 3 [6, 36]. For a

given fixed i ∈ {1, ..., 2(k−k1−1).n}, the uniform distribution
1

2k1.n+O(l)
over

{Vi.Uj}j∈{1,...,2k1.n+O(l)} is also an approximate unitary 2-design , which means

it satisfies the following anti-concentration property [27, 26]

PrU (|〈xoutL |Uj .Vi|xoutL 〉|2 ≥
αi
2n

) ≥ βi, (6.51)

where αi and βi ≤ 1 are positive constants independent of n, and PrU is

taken to mean the probability over the choice of Uj .Vi with uniform proba-

bility from {Vi.Uj}j∈{1,...,2k1.n+O(l)}. Equation (6.51) shows that, for a given
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i, a fraction of at least βi.2
k1.n+O(l) unitaries {Vi.Uj} satisfy

PrU (|〈xoutL |Uj .Vi|xoutL 〉|2 ≥
αi
2n

).

Summing over all the i, we get that there is at least a

∑
i

βi2
k1.n+O(l) ≥ mini(βi)2k.n+O(l)−n,

of unitaries {Vi.Uj}j∈{1,...,2k1.n+O(l)},i∈{1,...,2(k−k1−1).n satisfying

PrU (|〈xoutL |Uj .Vi|xoutL 〉|2 ≥
mini(αi)

2n
) ≥ mini(βi), (6.52)

where mini(βi) and mini(αi) are the minimum values of βi and αi over all

possible values of i, PrU is taken to mean the probability over the choice of

Uj .Vi with uniform probability from {Vi.Uj}j∈{1,...,2k1.n+O(l)},i∈{1,...,2(k−k1−1).n}.

Taking α = mini(αi) and β = mini(βi), then replacing Equation (6.52) in

Equation (6.50) allows to obtain Theorem 3.

6.6.2 Calculation of ptotfail

The purpose of this subsection is to arrive at Equations (6.30) and (6.31).

ptotfail is the probability of getting at most k1.(n − 1) successful instances

out of lmax = k.n instances (copies of |zMSDL〉). Therefore, ptotfail can be

directly calculated as follows

ptotfail =
∑

m=0,...,k1.(n−1)

pk1.(n−1)−m
succ .(1−psucc)lmax−k1.(n−1)+m.

(
lmax

k1.(n− 1)−m

)
.

(6.53)
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psucc < 1−psucc (Equation (6.29)), therefore Equation (6.53) can be bounded

as

ptotfail <
∑

m=0,...,k1.(n−1)

(1− psucc)lmax .
(

lmax
k1.(n− 1)−m

)
. (6.54)

Using Equation (6.29), we get that

ptotfail < (1− 1

n
)lmax

∑
m=0,...,k1.(n−1)

(
lmax

k1.(n− 1)−m

)
. (6.55)

A direct calculation shows that 12

∑
m=0,...,k1.(n−1)

(
lmax

k1.(n− 1)−m

)
≤ (k1.(n− 1) + 1)

(
lmax

k1.(n− 1)

)
.

Plugging this into Equation (6.55), and noting that

(
lmax

k1.(n− 1)

)
< lk1.(n−1)

max ,

we get that

ptotfail < (k1.(n− 1) + 1).lk1.(n−1)
max .(1− 1

n
)lmax . (6.56)

Recall the well known fact

lim
n→∞

(1− 1

n
)n =

1

e
.

12Assuming lmax > 2.k1.(n− 1).
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Plugging this into Equation (6.56) we get that the following holds for large

enough n

ptotfail < (k1.(n− 1) + 1).(
1

e
)

lmax
n .lk1.(n−1)

max . (6.57)

Let

lmax
n

= p.k1.(n− 1). (6.58)

Equation (6.57) can be rewritten as

ptotfail < (k1.(n− 1) + 1).(
lmax
ep

)k1.(n−1).

Choosing p ≥ log(lmax) = O(log(n)), we get that
lmax
ep

< 1. Plugging the

value of p chosen into Equation (6.58) allows to obtain Equation (6.30).

Also, plugging
lmax
ep

< 1 into Equation (6.57), then calculating the limit as

n goes to ∞ allows us to obtain Equation (6.31).

As a final remark, the O(log(n)) factor in Equation (6.30) is a slight

overestimate due to us using various approximations to arrive to Equation

(6.30), as can be seen through the claculations done in this section. In-

deed, by looking at Equation (6.29), a simple heuristic argument would

tell us that for each n copies measured, at least one should be succseesful.

Therefore, if we desire k1.(n − 1) successful instances we should measure

lmax ≥ O(n.k1.(n− 1)) copies. This gives, as expected,
lmax

k1.(n− 1)
≥ O(n).
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6.7 Conclusion

In summary, we have presented an example of a sampling problem which

proceeds by performing non-adaptive, fixed Pauli measurements on poly(n)

sized 2D graph states with noisy non-Clifford inputs, and whose outputs are

likely hard to approximately sample from classically, given some complex-

ity theoretic conjectures−which are widely believed to be true−hold. This

sampling problem is robust against general types of noise, and has experi-

mentally desirable features like low overhead, nearest neighbor interactions,

translational invariance, single instance hardness, and the fact that it can

be executed in a constant number of rounds (i.e a constant depth circuit).

Closest to our work is that of [141]. However, there are many significant

differences between our work and that of [141]. Indeed, the work of [141]

treats general noise but uses for error correction the 3D RHG lattice [70],

whereas we use the 2D color code [142]. Also, in [141], the anti-concentration

property was conjectured, whereas in our case we prove it. Therefore, the

number of complexity-theoretic conjectures we use in our proofs is less. The

non-adaptive magic state distillation protocol used in [141] might lead to

post-selecting an exponential number of times in order to get magic states

of sufficiently high fidelity so as to enable quantum speedup to be observed.

This might imply that, in practice, the sampling procedure must be repeated

an exponential number of times in order to observe a hard instance. In our

work, we use a special type of magic state distillation protocol, based on the

work of [7], which when performed non-adaptively a polynomial number of

times outputs enough magic states of sufficiently high fidelity so as to enable
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quantum speedup to be oserved. Because these polynomial number of non-

adaptive distillations are performed in parallel in our construction (as seen

previously in this chapter), this gives rise in our case, with high probability,

to the desirable single-instance hardness feature [38]. Finally, [141] rely on

techniques of trap based verification, which we do not study here.

One might ask, why do other MSD protocols like those of [143, 144], for

example, not work (using our proof techniques)? The answer to this ques-

tion has to do with the number of noisy input T states nnoisy with fidelity

1 − ε with respect to an ideal T -state, needed to distill a single T -state of

sufficiently high fidelity 1 − εout with respect to an ideal T -state. nnoisy is

usually given by [143]

nnoisy = O
(
logγ(

1

εout
)
)
. (6.59)

Here γ is a constant which depends on the error correcting code from which

the MSD protocol is derived [145]. In the protocol of [7], γ ∼ 1. This

is what allowed us to get a psucc of the form of Equation (6.29). On the

other hand, the protocols of [143, 144] have a γ > 1, which leads to a lower

bound of psucc which looks like 1/qp(n)-from Equation (6.28) and by using

similar arguments for calculating nNMSD as in Section 6.4 - where qp(n) is

quasi-polynomial in n. Indeed, N in Section 6.4 is proportional to α.nnoisy,

where α is the number of output T -states with error εout. Therefore, it

follows that nNMSD = O(N) = O(nnoisy), and that 2nNMSD = 2O(nnoisy),

which is a quasi-polynomial when γ > 1. This would mean, using our proof

techniques, that we would need a quasi-polynomial in n (which is greater
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than polynomial in n) number of |zMSDL〉 copies, thereby taking us out

of the scope of what is considered quantum speedup 13. Other protocols

which we could have used and could have worked are those of [146] which

gives γ ∼ 1, or that of [145] which gives γ < 1, albeit with a huge constant

overhead of 258 qubits [145].

13Since quantum speedup is usually defined with respect to quantum devices using
polynomial quantum resources [37].
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Chapter 7

General Conclusion

In this thesis, we have provided new constructions of unitary t-designs, some

of which are based on relaxations of strict technical requirements in previous

constructions [6, 94]. We have also shown that these unitary t-designs can

be implemented by fixed, non-adaptive measurements on graph states whose

underlying graph is a 2D regular lattice [36]. We have given new examples

of sampling problems defined by non-adaptive, fixed angle measurements

on 2D graph states with a regular lattice structure which demonstrate a

quantum speedup. Finally, we have presented a sampling problem, showing

a quantum speedup, which proceeds by non-adaptive fixed angle measure-

ments on a 2D graph state, and which is robust to general noise models

[37]. This sampling problem in the circuit model can be viewed as a con-

stant depth fault-tolerant quantum circuit acting on a polynomial number

of ancillas.

Several interesting open questions come to mind, in addition to the ones

in the Conclusion sections of previous chapters. Concerning Chapters 4 and
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5, an interesting direction to pursue would be trying to find a link between

approximate t-designs, and the Solovay-Kitaev (SK) construction [129]. If

such a link can be found, then the results of Chapters 4 and 5 may be used

to make partial progress onto an inverse-free version of the SK Theorem,

albeit without additional assumptions [153, 154]. Indeed, there are already

hints at relations between the SK construction and unitary t-designs [155],

and our construction is the first (to our knowledge) to remove the need for

inverses in the base set generating the t-design.

Concerning Chapter 6, an interesting question would be calculating the

fault-tolerance threshold for our model in the pre-threshold region, where

hardness of approximate classical sampling is guaranteed by post-selecting

on the non-reliable error correction to simulate a reliable one [156]. We

expect this should significantly enhance the fault-tolerance threshold of our

model. An interesting direction also would be adapting our ideas to work

with other error correcting codes [157], which may provide better fault-

tolerance thresholds, or even lower the overhead significantly [158]. One

could also think of a technique to avoid multiple rounds in our construction.

Perhaps by using the 3D RHG lattice [70] one can reduce our construction

to a single round of non-adaptive measurements on a single (3D) poly(n)

sized graph state.

More broadly, an important direction to pursue would be verifying that

our fault-tolerant construction demonstrates a quantum speedup. In this

direction, the work of [51, 84] can be used for this purpose when the mea-

surements (both Clifford and non-Clifford) as well as the CZ and Hadamard
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gates (needed for the preparation of the graph states [69]) are assumed

perfect (noiseless). Indeed, in this case the verification amounts to verify-

ing that the graph state was correctly prepared, for which [51, 84] provide a

natural path to do so, by giving good lower bounds (with high confidence)

on the fidelity (with respect to the ideal graph state corresponding to the

sampling problem) of the prepared graph state in the case where a sufficient

amount of stabilizer tests pass [51, 84]. These lower bounds on the fidelity,

tending asymptotically to one [51, 84], allow one to verify that quantum

speedup is being observed, as long as one trusts the local masurement de-

vices (which, being small, can be checked by other means efficiently). This

verification of quantum speedup can be done by using the standard relation

between the fidelities of two quantum states (which in our case are the ideal

state and the state accepted by the verification protocol) and the l1-norm

of the two output probability distributions corresponding to measuring the

qubits of these two states [37].

These techniques, however, do not easily extend to the case where the

measurements and gates needed for preparation are noisy; since for graph

states of size n, even for an arbitrarily small (but constant, for example be-

low the threshold for fault-tolerant computing.) noise strength the verifica-

tion protocol might fail (not accept a good state) in the asymptotic (n→∞)

limit (see for example [84] where the verification accepts with probability

one asymptotically only if the noise strenght scales as 1/poly(n)). This is a

topic we are currently looking at.

One could also think about the quantum resources underlying the quan-
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tum speedup in our case [52], along the lines of work on qudit magic states

in [19], or even deriving a figure of merit for hardness of classical simulability

in terms of mimimum T -gate count, as is done for example in [159].
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Navascués. Almost-quantum correlations violate the no-restriction hy-

pothesis. Physical review letters, 120(20):200402, 2018.

[57] Eugene P Wigner. The unreasonable effectiveness of mathematics in

the natural sciences. In Mathematics and Science, pages 291–306.

World Scientific, 1990.

[58] Jean-Luc Brylinski and Ranee Brylinski. Universal quantum gates. In

Mathematics of quantum computation, pages 117–134. Chapman and

Hall/CRC, 2002.

[59] https://www.claymath.org/millennium-problems.

[60] W. gasarch. the p=?np poll. sigact news, 33(2):34–47, june 2002.

[61] Alexander A Razborov and Steven Rudich. Natural proofs. Journal

of Computer and System Sciences, 55(1):24–35, 1997.

[62] Scott Aaronson. Guest column: Np-complete problems and physical

reality. ACM Sigact News, 36(1):30–52, 2005.

184



[63] Barbara M Terhal and David P DiVincenzo. Adaptive quantum com-

putation, constant depth quantum circuits and arthur-merlin games.

arXiv preprint quant-ph/0205133, 2002.

[64] Ryan Lee Mann. Quantum computation and combinatorial structures.

PhD thesis, 2019.

[65] Leslie G Valiant. The complexity of computing the permanent. The-

oretical computer science, 8(2):189–201, 1979.

[66] Keisuke Fujii and Tomoyuki Morimae. Commuting quantum circuits

and complexity of ising partition functions. New Journal of Physics,

19(3):033003, 2017.

[67] Scott Aaronson. Quantum computing, postselection, and probabilistic

polynomial-time. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 461(2063):3473–3482, 2005.

[68] Jean H Gallier. Harry r. lewis and christos h. papadimitriou. elements

of the theory of computation. prentice-hall software series. prentice-

hall, inc., englewood cliffs, nj, 1981, xiv+ 466 pp. The Journal of

Symbolic Logic, 49(3):989–990, 1984.

[69] Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, M Nest,

and H-J Briegel. Entanglement in graph states and its applications.

arXiv preprint quant-ph/0602096, 2006.

185



[70] Robert Raussendorf and Jim Harrington. Fault-tolerant quantum

computation with high threshold in two dimensions. Physical review

letters, 98(19):190504, 2007.

[71] Damian Markham and Barry C Sanders. Graph states for quantum

secret sharing. Physical Review A, 78(4):042309, 2008.

[72] Clément Meignant, Damian Markham, and Frédéric Grosshans. Dis-

tributing graph states over arbitrary quantum networks. arXiv

preprint arXiv:1811.05445, 2018.

[73] Xi-Lin Wang, Luo-Kan Chen, Wei Li, H-L Huang, Chang Liu, Chao

Chen, Y-H Luo, Z-E Su, Dian Wu, Z-D Li, et al. Experimental ten-

photon entanglement. Physical review letters, 117(21):210502, 2016.

[74] Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F Fitzsimons,

Anton Zeilinger, and Philip Walther. Demonstration of blind quantum

computing. science, 335(6066):303–308, 2012.

[75] BA Bell, D Markham, DA Herrera-Mart́ı, A Marin, WJ Wadsworth,

JG Rarity, and MS Tame. Experimental demonstration of graph-state

quantum secret sharing. Nature communications, 5:5480, 2014.

[76] Y Cai, J Roslund, G Ferrini, F Arzani, X Xu, C Fabre, and N Treps.

Multimode entanglement in reconfigurable graph states using optical

frequency combs. Nature communications, 8:15645, 2017.

[77] Shota Yokoyama, Ryuji Ukai, Seiji C Armstrong, Chanond Sorn-

phiphatphong, Toshiyuki Kaji, Shigenari Suzuki, Jun-ichi Yoshikawa,

186



Hidehiro Yonezawa, Nicolas C Menicucci, and Akira Furusawa. Ultra-

large-scale continuous-variable cluster states multiplexed in the time

domain. Nature Photonics, 7(12):982, 2013.

[78] Mario Arnolfo Ciampini, Adeline Orieux, Stefano Paesani, Fabio Scia-

rrino, Giacomo Corrielli, Andrea Crespi, Roberta Ramponi, Roberto

Osellame, and Paolo Mataloni. Path-polarization hyperentangled and

cluster states of photons on a chip. Light: Science & Applications,

5(4):e16064, 2016.

[79] Julio T Barreiro, Markus Müller, Philipp Schindler, Daniel Nigg,

Thomas Monz, Michael Chwalla, Markus Hennrich, Christian F Roos,

Peter Zoller, and Rainer Blatt. An open-system quantum simulator

with trapped ions. Nature, 470(7335):486, 2011.

[80] Thomas Monz, Philipp Schindler, Julio T Barreiro, Michael Chwalla,

Daniel Nigg, William A Coish, Maximilian Harlander, Wolfgang

Hänsel, Markus Hennrich, and Rainer Blatt. 14-qubit entanglement:

Creation and coherence. Physical Review Letters, 106(13):130506,

2011.

[81] Chao Song, Kai Xu, Wuxin Liu, Chui-ping Yang, Shi-Biao Zheng, Hui

Deng, Qiwei Xie, Keqiang Huang, Qiujiang Guo, Libo Zhang, et al.

10-qubit entanglement and parallel logic operations with a supercon-

ducting circuit. Physical review letters, 119(18):180511, 2017.

[82] Julia Cramer, Norbert Kalb, M Adriaan Rol, Bas Hensen, Machiel S

Blok, Matthew Markham, Daniel J Twitchen, Ronald Hanson, and

187



Tim H Taminiau. Repeated quantum error correction on a continu-

ously encoded qubit by real-time feedback. Nature communications,

7:11526, 2016.

[83] Marcus Cramer, Martin B Plenio, Steven T Flammia, Rolando

Somma, David Gross, Stephen D Bartlett, Olivier Landon-Cardinal,

David Poulin, and Yi-Kai Liu. Efficient quantum state tomography.

Nature communications, 1:149, 2010.

[84] Yuki Takeuchi, Atul Mantri, Tomoyuki Morimae, Akihiro Mizutani,

and Joseph F Fitzsimons. Resource-efficient verification of quantum

computing using serfling’s bound. npj Quantum Information, 5(1):27,

2019.

[85] Robert Raussendorf, Daniel E Browne, and Hans J Briegel.

Measurement-based quantum computation on cluster states. Physi-

cal review A, 68(2):022312, 2003.

[86] Daniel E Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix.

Generalized flow and determinism in measurement-based quantum

computation. New Journal of Physics, 9(8):250, 2007.

[87] Atul Mantri, Tommaso F Demarie, and Joseph F Fitzsimons. Uni-

versality of quantum computation with cluster states and (x, y)-plane

measurements. Scientific reports, 7:42861, 2017.

[88] Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya, and Pe-

ter S Turner. Which graph states are useful for quantum information

188



processing? In Conference on Quantum Computation, Communica-

tion, and Cryptography, pages 174–187. Springer, 2011.
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