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Chapter 1

General Introduction

The measurement of the ratio h/mX of any particle has long drawn attention as
the Rydberg constant R∞ defined as:

R∞ = mecα
2

2h , (1.0.1)

where me is the mass of the electron, c the speed of light, h the Planck constant,
can be rewritten as:

α2 = 2R∞
c

mX

me

h

mX

(1.0.2)

allowing for a determination of α, the fine structure constant, first introduced by
A. Sommerfeld in 1916, which writes:

α = e2

4πε0~c
. (1.0.3)

In equation (1.0.2), the relative uncertainty on R∞ is 5.9 · 10−12 with the 2014
CODATA adjustment[Mohr, 2016]. The mass of the electron is known with a re-
cently improved measurement method[Sturm, 2014] to 2.9 · 10−11 in atomic units.
The mass of X is determined through precision measurement of cyclotrons fre-
quencies in a Penning trap. For example, the relative atomic mass of 87Rb is
known to 6.9 · 10−11[Wang, 2017].

On the other hand, the relative precision on the ratios h/mX for 87Rb and 133Cs
evaluate respectively to 1.3 · 10−9[Bouchendira, 2011] and 4.0 · 10−10[Parker, 2018],
making this term the limiting factor in the α determination based on equation
(1.0.2).

The first measurements of h/mX for an α determination were performed with
neutrons, and based on the measurement of their de Broglie wavelength through

1



2 CHAPTER 1. GENERAL INTRODUCTION

their scattering on silicon crystals[Kruger, 1999]. In the 1990s, the development
of atom interferometry techniques has led to a renewed interest in the h/mX de-
terminations with atomic masses[Wicht, 2002].

Nowadays, the h/mX determinations are useful in two contexts. Firstly, the α
determination deduced from h/mX allows a computation of the anomalous moment
of the electron ae using Quantum ElectroDynamics (QED) calculations, with con-
tributions from the Standard Model (SM). The comparison with an experimental
value of ae[Hanneke, 2008] then provides a stringent test of the SM[Parker, 2018].
The second interest is linked to the redefinition of the kilogram in the frame of the
new Système International d’Unités (SI). We start by presenting the latter before
returning to the test of the SM.

1.1 Redefinition of the kilogram - New SI
The redefinition of the SI, implemented in May 2019, fixed the values of funda-
mental constants to define units. In particular, the Planck constant h as been
fixed and a mass is measured through the ratio h/mX . The relative atomic mass
is defined by

Ar(mX) = mX

mu

, (1.1.1)

where mu is the unified atomic mass. This quantity is known with relative uncer-
tainty lower than 10−10 for most atomic species such as 87Rb. The measurement
of h/mX then allows to link the mu to the SI through the relation:

h

mu

= Ar(mX) h

mX

(1.1.2)

Moreover, the elementary charge e has also been fixed for the definition of the
ampere. As the speed of light c is also fixed for the definition of the meter, a
determination of α allows to determine as well the vacuum permittivity ε0 (or the
vacuum permeability µ0) from equation (1.0.3).

1.2 Test of the Standard Model
QED expresses the anomalous moment of the electron as a power series of the fine
structure constant α:

ae = ge − 2
2 =

∑
n

C(2n)
(
α

2π

)n
, (1.2.1)
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180 181 182 183 184
(ae 0.001159652000) 1012

ae Harv-08

h/mRb - LKB-11
h/mCs - Berkeley-18

Figure 1.1: Comparison between values of ae obtained by a direct measure-
ment[Hanneke, 2008](in orange) and the combination of an h/mX determination
and QED+SM calculations(LKB[Bouchendira, 2011], Berkeley[Parker, 2018])(in
blue)

where ge is the electron Landé factor. The power series coefficients are given
through QED calculations and the leptons mass ratio[Aoyama, 2019] as following:

C(2n) = A
(2n)
1 + A

(2n)
2

(
me

mµ

)
+ A

(2n)
2

(
me

mτ

)
+ A

(2n)
3

(
me

mµ

,
me

mµ

)
(1.2.2)

Up to now five terms have been computed. The latest term A10
1 requires the

computation of more than 12, 000 Feynman diagrams and can only be determined
numerically.

In addition to this power series expansion, the theoretical prediction of ae
accounts for a hadronic and a weak contribution:

ae(th) = ae (QED) + ae (Hadron) + ae (Weak) (1.2.3)

Moreover, ae has been measured with extreme precision at Harvard in 2008[Han-
neke, 2008] in the group of G. Gabrielse. We plot in figure (1.1) the comparison
between this experimental value and the values obtained from the theoretical cal-
culations presented above[Aoyama, 2019] and the experimental determinations of
h/mX from our team with 87Rb [Bouchendira, 2011] and the group of H. Müller
at Berkeley with 133Cs [Parker, 2018].

The precision of theoretical calculations is better than the experimental deter-
minations involved in the α/ae comparison, such that in 2011, the experimental
value ae was used to extract the most precise value of α by inverting equation
(1.2.3) and yielded a relative precision of 2.3 · 10−10 on α. The measurement of
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our team, with relative uncertainty of 6.6 · 10−10 was important as it performed a
test of QED calculations, thus validating the α value1.

This situation has changed in 2018 with the measurement of h/mCs by the
group of H. Müller at Berkeley obtained by atom interferometry. The achieved
relative precision is 2.0 · 10−10 on α. Moreover, the comparison with the Harvard
measurement exhibits a discrepancy of 2.5σ, which raises the question of contri-
butions beyond the SM in expansion series (1.2.3).

Search for new physics beyond the SM is nowadays a pressing matter. Although
SM has great success, among them the prediction of the magnetic moment of the
electron ge at the part per trillion level (figure (1.1)), the SM cannot explain
the matter/antimatter asymmetry that our world exhibit. Moreover, cosmological
observations suggest the existence of not yet directly observed matter and energy
known respectively as Dark Matter (DM) and Dark Energy.

Recently, atomic and molecular physics have drawn the attention as a platform
to test the SM in a multitude of ways. A recent review[Safronova, 2018] quotes
a large number of experiments in this field. We can quote experiments aiming
at measuring the electron electric dipole moment with molecular beams[ACME
Collaboration, 2018] or searching for variations of fundamental constants with
space and/or time with the comparison of atomic clocks[Huntemann, 2014].

In the context of the search of DM, the α/ae comparison is of particular inter-
est as a discrepancy would indicate the coupling between the electron with a not
yet observed particle. However, the current 2.5σ discrepancy is not yet sufficient
to conclude on that matter. The group of G. Gabrielse now at Northwest-
ern University has recently announced their plans towards a new measurement of
ae[Gabrielse, 2019].

Moreover, we have worked in our team towards a new determination on α with
a competitive uncertainty with respect to the Berkeley determination. During my
thesis, I worked on this measurement with 87Rb on the new experimental setup of
our team, which I contributed to develop.

1.3 New experimental setup for the determina-
tion of h/mRb

The principle of our determination of h/mRb is based on the measurement of the
recoil velocity vr of an atom, i.e. the velocity an atom acquires when it absorbs

1We should note that in 2011, the errorbars of the Harvard measurement and the h/mRb deter-
mination overlapped. The situation changed with CODATA fundamental constants reevaluation
in 2014 and corrections in the computation of ae.
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a photon. As a photon carries a momentum ~k, where k is its wavevector, and
through momentum conservation, we obtain:

vr = ~
m
k (1.3.1)

For a plane wave in vacuum, we have k = 2πν/c, where ν is the frequency of
the laser that drives the momentum transfer process. Thanks to the technology
of frequency combs[Diddams, 2000], ν can be known with a better precision than
the recoil velocity. Then, the combined measurement of vr and of ν allows for the
determination of h/m.2

The recoil velocity is measured through the measurement of the acquired ve-
locity by the atom upon the photon absorption in a differential velocity sensor
based on the compensation of Doppler effect.

With the absorption of a single photon, the atom ends in an excited state and
decays incoherently through spontaneous emission. In order to avoid this effect,
we use two-photon transitions in a Λ scheme: the atom absorbs a photon from
a laser field and decays through stimulated emission in a second laser field. The
process is now coherent and the atomic motion controlled. We place ourselves in
counterpropagating configuration for the two laser fields, such that the two-photon
transitions are sensitive to Doppler effect.

First, Raman transitions (see section 2.1) couple the two hyperfine states of
the 87Rb atom and are used to build the differential velocity sensor. With these
transitions, the recoil velocity vr ∼ 5.9 mm · s−1 translates into a Doppler shift of
∼ 15 kHz.

With 30 ms interferometric interrogations, where the effective duration on the
velocity measurement is TRamsey = 10 ms, the Ramsey duration, we typically ob-
tain precision on the recoil velocity of 1

1000
1

TRamsey
∼ 0.1 Hz, which corresponds to a

relative precision of ∼ 7 ·10−6 on the recoil velocity. This corresponds to a velocity
sensitivity of ∼ 40 nm·s−1. The duration of interrogation imposes the use of laser
cooled atoms.

Secondly, Bloch Oscillations (BO) (see section 2.3) transfer an even number
of recoils to the atoms while leaving their internal state unchanged. We typically
transfer a 1000 recoils, which corresponds to an enhancement in the measurement
performance up to ∼ 7 · 10−9. Moreover, the atoms acquire a velocity of 6 m · s−1

with the BO process. With the 30 ms interrogation duration above, the magnetic
field should be controlled on a few tens of centimeters.

2We now drop the subscript Rb, which is the atom used in our experiments.
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This is one of the major improvement of the new experimental setup, described
in section 3.3.3. The excellent magnetic field control that extends over 45 cm allows
for the reduction of this contribution to systematic errors, which was one of the
largest in the latest measurement of our team[Bouchendira, 2011].

This also allowed us to increase the interrogation duration with TRamsey =
20 ms, thus doubling the sensitivity of our determination. Combined with a bet-
ter control of vibration noise induced by a simpler vibration isolation setup, we
exhibited unprecedented statistical uncertainty on h/m (see chapter 5).

The other major error source of the latest measurement is related to the gaus-
sian beam correction to the wavevector k. Indeed, the photon wavevector is per-
fectly known only in the case of a plane wave in vacuum. In order to reduce the
effect, an as such the error, we increase the waist of the laser beams as they tend
to a plane wave.

However, the intensity of the beam scales as P/w2 with P the laser power.
In order to maintain the intensity constant and as such increase the laser power,
our team has worked with a new laser technology based on high power lasers at
1.5 µm that are doubled in PPLN crystals[Andia, 2015b]. This technology, now
fully deployed on the new setup, allows for larger beams but also increased the
stability of the setup.

Finally, as the α/ae comparison promises to yield useful information in the
search for new physics, the new experimental setup is also intended to run next
generation interferometers with even increased sensitivity[Cladé, 2009]. Such in-
terferometers are very sensitive to intensity inhomogeneities induced by the atomic
motion in the laser beams.

In order to implement them, the setup is equipped with a Bose Einstein Con-
densate (BEC) production setup in an optical dipole trap. Indeed, BEC sources
present a smaller velocity spread and as such reduced sensitivity to intensity in-
homogeneities. The setup has been described in [Jannin, 2015a] and [Courvoisier,
2016], and the effect of interactions in a BEC on an interferometer modeled in
[Jannin, 2015b]. In this work we have improved the BEC production process and
observed experimentally the effect of atom-atom interactions (see section 4.1).

1.4 Outlook of this manuscript
Aiming at providing precise determinations of the fine structure constant α, our
work aims to a new determination with competitive uncertainty in order to pro-
vide an alternative value to the comparison α/ae in order to confirm the recent
discrepancy. While working on the installation of the interferometry laser system
of our new experimental setup, we have worked on the long term BEC use.
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In order to present this work, the remaining of the manuscript is divided in
two parts and five chapters. The first part contains two chapters and is focused
on the presentation of the experiment:

- In chapter 2, we will explain the fundamental concepts underlying our
experiment: stimulated Raman transitions, atom interferometry and Bloch
Oscillations.

- Chapter 3 presents the implementation of these concepts on the experiment.

The second part presents the results that we have obtained during this thesis
work:

- In chapter 4, we discuss the difficulties that arise when using either BEC as
an atom source or atoms at the output of an optical molasse. This discussion
allows us to defend our choice of atomic source for the h/m measurement.

- Chapter 5 presents the exact protocol for the measurement of the h/m ratio
and the data analysis associated. We also discuss the statistical performance
of the setup, which has not been reached in another experiment to the best
of our knowledge.

- In chapter 6, we detail our study of systematic error sources. This study,
although yet incomplete, shows that the current measurement campaigns
can allow to reach a competitive uncertainty.
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Part I

The experiment

9





Chapter 2

Fundamentals

Introduction
A few tools are needed in order to measure the recoil velocity of an atom. The aim
of this chapter is to present in detail these tools, and their associated concepts. In
a few words, we simply need to transfer photon momenta to atoms and measure
the velocity they have acquired.

We start by studying stimulated Raman transitions which are two-photon tran-
sitions in a Λ scheme: a particle is subjected to two laser beams, absorbs a photon
from one, and emits through stimulated emission another photon in the second
laser beam, thus reaching its final state.

Immediately following, counterpropagating Raman transitions, a particular case,
will be detailed. This will allow us to introduce the concepts of atom interferom-
etry. In the frame of this thesis, this part is essential as it will introduce a core
part of our work.

Finally, we will present the phenomenon of Bloch Oscillations which is respon-
sible for the transfer of a large number of recoils to the atoms.

2.1 Stimulated Raman transitions

2.1.1 General considerations
Two-photon transitions have proven to be extremely useful in spectroscopy. They
may be used to either suppress or enhance Doppler effect. Using Raman tran-
sitions, we are able to control the atomic wavefunction between two electronic
ground states, which allows us to reach coherent manipulation of the atoms quan-
tum states.

11
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In order to present the features of these transitions, we assume that we can
describe atoms through a three level system with two ground states |α〉, |β〉 and
an excited state |e〉. Its internal Hamiltonian can be written:

Hinternal = ~ωHFS |β〉 〈β|+ ~ωe |e〉 〈e| , (2.1.1)

with the energy of |α〉 taken as reference and ωe > ωHFS as the couplings be-
tween the ground states and the excited state are induced by optical transitions.
The notation ωHFS is related to the hyperfine structure of the atom (see next
paragraph).

An energy level diagram of a Raman transition is displayed on figure (2.1,
left). Two laser fields

{(
ω1, ~k1

)
,
(
ω2, ~k2

)}
couple the excited state |e〉 to the ground

states. A realistic atomic model would assume that the excited state spontaneously
decays. In order to prevent such a process, the one-photon laser coupling is detuned
from resonance by an amount ∆ (∆ ∼ 60 GHz in our experiment), such that the
excited state is not populated.

The geometric configuration of the beams is given by the two beam wavevectors
~k1 and ~k2. At this point, we make no assumptions on the relative orientations of
the beams. As we shall see in section 2.1.3, two particular configurations are
of interest: the two beams are aligned and travel whether in the same direction
(co-propagating) or in opposite directions (counterpropagating).

2.1.1.1 Justification of the three level atom

We work with 87Rb atom, which is an alkali atom. In the electronic ground state
(52S1/2), the total angular momentum of the electrons is J = 1/2. The coupling
with the nuclear magnetic moment I = 3/2 induces a hyperfine structure in the
atomic levels. Then the total angular momentum of the atom in the ground state
is F = 1 or F = 2, and we have:

EF=2 − EF=1 = ~ωHFS. (2.1.2)

Each of these atom angular momentum values contains 2F + 1 Zeeman sub-
levels, for which the degeneracy can be lifted by the application of a constant mag-
netic field. Typically, a 30 mG magnetic field separates the levels by 42 kHz[Steck,
2001].

As we will see in the following, the frequency linewidth of Raman transitions
that we use is typically . 5 kHz such that the Zeeman sublevels are resolved. As a
consequence, we can choose for each hyperfine level a Zeeman sublevel to address.
For interferometry, we choose |α〉 = |F = 1,mF = 0〉 and |β〉 = |F = 2,mF = 0〉
as they are insensitive to magnetic field at the first order.
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(a)

0

(b)

∆

δ

ω

ωe

ωHFS

ωα

(
ω1, ~k1

)
(
ω2, ~k2

)

|α〉

|β〉

(
ω1, ~k1

)

(
ω2, ~k2

)
|e〉

Figure 2.1: (a): Three level system for the description of Raman transitions.
The excited state is coupled to the two ground states through two beams that
are detuned by ∆ from the one photon transition. The mismatch between the
two-photon frequency ω1 − ω2 and the atomic internal energy ωHFS is written
δ. The scaling with respect to our experimental conditions is not respected since
∆ ∼ 60 GHz, ωHFS ∼ 6.8 GHz and δ ∼ 0− 20 MHz.
(b): Example of a geometric configuration where an atom is subjected to two
beams.
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The excited state that we adress is 52P3/2 (D2 line) for which the total angular
momentum of the electron is J ′ = 3/2. Its hyperfine structure displays four energy
levels (F ′ = 0, 1, 2, 3). The reduction of this complex structure to a single level is
an approximation that will be shortly treated after the reduction of the three level
system to a two level system, and the computation of their transition probabilities.
This treatment reveals the selection rules of the Raman process.

2.1.1.2 Resonance condition

Before turning to the explicit writing of the coupling Hamiltonian of the system,
we write the resonance condition of the Raman process. To this aim, we consider
the system

{
atom + field

}
as quantized.

We assume that initially, the atom is in state |α, ~pi〉, where ~pi is the momentum
of the atom, placing ourselves in a plane wave modeling. Moreover, there are
n1 and n2 photons in each field. The initial state is then defined by the ket:
|ψi〉 = |α, ~pi, n1, n2〉.

The Raman process is defined as follows: the atom absorbs a photon from field
(1) and emits one in field (2) while its quantum state changes to |β, ~pf〉, where
~pf is the final momentum of the atom. The final state of the system is then:
|ψf〉 = |β, ~pf , n1 − 1, n2 + 1〉.

The resonance condition is given by verifying both momentum and energy
conservation. The former simply writes:

~pf = ~pi + ~~k1 − ~~k2. (2.1.3)

For the latter, we start by writing the free Hamiltonian of the system:

H0 = Hinternal + ~̂p2

2m + ~ω1N̂1 + ~ω2N̂2, (2.1.4)

where N̂ι is the number operator for each field. Writing 〈ψi|H0 |ψi〉 = 〈ψf |H0 |ψf〉,
we obtain energy conservation:

~pi
2

2m + ~
(
n1ω1 + n2ω2

)
= ~pf

2

2m + ~ωHFS + ~
(
(n1 − 1)ω1 + (n2 + 1)ω2

)
. (2.1.5)

By injecting equation (2.1.3), we obtain the resonance condition:

δ = ω1 − ω2 − ωHFS = ~pi · ~ke
m

+ ~~k2
e

2m , (2.1.6)

where ~ke = ~k1 − ~k2 is the Raman transition effective wavevector and δ the two-
photon detuning has also been defined on figure (2.1).
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The interpretation of this equation is straightforward: by controlling the fre-
quencies of the lasers and thus the detuning δ, one can address the Raman transi-
tion to atoms with a given velocity. In other words, one can associate the atomic
internal state to information on the atomic velocities.

In particular, if we assume that all atoms have the same velocity, by scanning
the detuning and observing the transition, one can measure this given velocity. The
effective wavevector ~ke controls the properties of this measurement as its direction
controls the measured component of the velocity. In order to characterize precisely
this measurement method, and discuss in detail its sensitivity, we first need to
describe the coupling operator associated to Raman transitions.

Remark In equation (2.1.6), it is worth pointing out that the detuning δ and
the effective wavevector ~ke are not independent parameters. Indeed, for each laser,
we have in vacuum kι = ωι/c, with c the speed of light ∼ 3 · 108 m · s−1.

Taking into account the variations of the wavevectors, we find corrections of
the order of pi/(mc) = vi/c. The typical atomic velocities in our experiment do
not exceed 10 m · s−1, such that this correction can be considered negligible when
treating Raman transitions. In the following of the development, we assume that
the wavevectors are constant and consider their variations as a refinement (see
section 5.1.5).

2.1.2 Quantum mechanical description of the coupling
We model the ideal case described in figure (2.1). The field (1) couples the atomic
state |α〉 with the excited state |e〉, and the field (2) couples |β〉 with |e〉. A
more realistic model would take into account the action of field (1) on |β〉 and
vice versa. Such treatment has been presented in previous works[Cladé, 2005;
Bouchendira, 2012; Andia, 2015a]. We choose not to do so here to simplify the
equations. However, they will be taken into account in the model that considers
the hyperfine structure of the excited state (section 2.1.2.2, equation (2.1.40)),
that replicates the results reported in [Battesti, 2003].

We place ourselves in the dressed atom picture, and we consider the initial state
|ψi〉 with initial momentum ~pi = ~p. Then the following set of states forms a almost
resonant subset under the action of the Raman Hamiltonian due to momentum
conservation:

|α〉 = |α, ~p, n1, n2〉 (2.1.7)
|β〉 =

∣∣∣β, ~p+ ~~ke, n1 − 1, n2 + 1
〉

(2.1.8)

|e〉 =
∣∣∣e, ~p+ ~~k1, n1 − 1, n2

〉
, (2.1.9)
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where the left hand side of each equation are simplified notations for the remaining
of this section.

In this frame, the free Hamiltonian of the subset {|α〉 , |β〉 , |e〉} reads:

H0 = ~


δ + ~p2

2m 0 0

0 (~p+~~ke)2

2m 0

0 0 ∆ + (~p+~~k1)2

2m

 (2.1.10)

In experimental situations, the first two diagonal terms differ by less than a few
MHz. On the contrary, ∆ ∼ 60 GHz in order to avoid spontaneous emission. This
hierarchy on the energy levels indicates that the excited state can be eliminated
from the problem, and as such that we can reduce the system to a two level system.
We detail this treatment in the following lines:

The coupling induced by the laser fields is described with the dipole interaction:

V̂ = − ~̂d · ~̂E (2.1.11)

where ~̂d is the dipole operator associated to the atom and ~̂E the electric field
operator associated to the field which can be written[Grynberg, 2010]:

~̂E =
∑
i=1,2

~Ei
(
eikix̂ai − e−ikix̂a†i

)
, (2.1.12)

where ai are the annihilition operator of laser mode i.
We write the Rabi frequencies describing the coupling:

ΩΩΩ1

2 = 1
~
〈e| V̂ |α〉 (2.1.13)

ΩΩΩ2

2 = 1
~
〈e| V̂ |β〉 (2.1.14)

which are complex numbers1. The amplitude of the Rabi frequencies is of the
order of 10 MHz, which is also small compared to the one photon detuning ∆.

This leads to the following coupling Hamiltonian V̂ :

V̂ = ~

 0 0 ΩΩΩ1/2
0 0 ΩΩΩ2/2

ΩΩΩ∗1/2 ΩΩΩ∗2/2 0

 (2.1.15)

1This is indicated by the bold font
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The total Hamiltonian is then given by:
H = H0 + V̂ (2.1.16)

= ~


δ + ~p2

2m 0 ΩΩΩ1/2

0 (~p+~~ke)2

2m ΩΩΩ2/2

ΩΩΩ∗1/2 ΩΩΩ∗2/2 ∆ + (~p+~~k1)2

2m

 (2.1.17)

The procedure to reduce of the three level Hamiltonian to an effective Hamil-
tonian He on the two ground states subset {|α〉 , |β〉} is given by [CohenTannoudji,
2001] (equation (26) of complement BBBIII). In our case, with ∆ dominating over the
other terms of the Hamiltonian, we obtain:

〈κ|He |ι〉 = 〈κ|H0 |ι〉 −
1
∆ 〈κ| V̂ |e〉 〈e| V̂ |ι〉 (2.1.18)

for κ, ι being either α or β.
Using this formula, and with a redefinition of the energy origin, we obtain the

effective Hamiltonian:

He = ~
(
δ + ΩLS

α ΩΩΩ/2
ΩΩΩ∗/2 ΩLS

β + δDoppler

)
, (2.1.19)

where we have introduced different terms:

ΩLS
α = −|Ω

ΩΩ1|2

4∆ (2.1.20)

ΩLS
β = −|Ω

ΩΩ2|2

4∆ (2.1.21)

are the light shifts which correspond to the energy shift induced by an off resonant
coupling and

ΩΩΩ = −ΩΩΩ1ΩΩΩ∗2
2∆ (2.1.22)

is the two-photon complex Rabi frequency. Finally,

δDoppler = 1
~


(
~p+ ~~ke

)2

2m − ~p2

2m

 (2.1.23)

=
~ke · ~p
m

+ ~~k2
e

2m = ~ke · ~v + ~~k2
e

2m (2.1.24)

exhibits the Doppler sensitivity of the transition.

We have now reduced the Raman Hamiltonian to a two level system. This sim-
plification allows us to detail the transition probabilities associated to the Raman
coupling.
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2.1.2.1 Transition probabilities

In order to simplify the discussion, we redefine the detuning δ with an extended
detuning δt (~v) that accounts for the Doppler effect and light shifts:

δt (~v) = δ + ΩLS
α − ΩLS

β − δDoppler (~v) , (2.1.25)

and the two-photon complex Rabi frequency that we split in modulus and phase:

ΩΩΩ = Ωe−iφ, (2.1.26)

where Ω is the Rabi frequency and φ the phase of the transition. The phase sign
convention is guided by the definition of the Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
, (2.1.27)

and it evaluates to:

φ = φ2 − φ1, (2.1.28)

where φi describes the intrinsic phase of the two lasers.
Finally, we set an appropriate energy origin such that the total Hamiltonian is

written under the simple form:

H

~
=
(
δt (~v) /2 Ωe−iφ/2
Ωeiφ/2 −δt (~v) /2

)
(2.1.29)

= δt (~v)
2 σz + Ω

2
(

cos(φ)σx + sin(φ)σy
)
. (2.1.30)

The evolution operator of the total Hamiltonian can be simply expressed using the
formula

exp(ia~n · ~σ) = cos(a)1 + i sin(a)~n · ~σ, (2.1.31)

where a is real and ~n is a normal vector. We get from equation (2.1.30):

U(τ) = cos
(

Ωeτ

2

)
1− i

sin
(

Ωeτ
2

)
Ωe

(
δt (~v) Ωe−iφ
Ωeiφ −δt (~v)

)
, (2.1.32)

with Ωe =
√

Ω2 + δt (~v)2, the effective Rabi pulsation (2.1.33)
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With an initial state |ψi〉 = |α〉, we can compute the transition probability:

P|α〉→|β〉 =
∣∣∣∣ 〈β|U(τ) |α〉

∣∣∣∣2 (2.1.34)

= Ω2

Ω2 + δt (~v)2 sin2
(√

Ω2 + δt (~v)2 τ

2

)
(2.1.35)

Scaling the above formula with the Rabi frequency by defining the reduced
detuning δ′t (~v) = δt (~v) /Ω and the pulse area θ = Ωτ , we can rewrite it:

P|α〉→|β〉 = 1
1 + δ′t (~v)2 sin2

(
θ

2

√
1 + δ′t (~v)2

)
(2.1.36)

The above formula is plotted on figure (2.2) for two particular pulse areas that
we will encounter in the following section discussing atom interferometry. This
formula (2.1.36) and the figure exhibit that the width of the coupling in terms of
agreement with the resonance condition scales proportionally with Ω.

In term of Doppler effect, we have seen in equation (2.1.25) that the detuning
scales linearly with atomic velocity such that the width of the Raman transition
in velocity space is given by:

∆v ∼ Ω
ke

, (2.1.37)

where ke is the norm of the effective wavevector which depends on the geometry
of the laser beams.

2.1.2.2 Selection rules

The excited state of the D2 line splits in four hyperfine states, with for each a
Zeeman sublevels substructure. As a consequence, a complete treatment of the
Raman transitions should take into account all the excited states |F ′,mF ′〉.

The formula (2.1.18) becomes:

〈κ|He |ι〉 = 〈κ|H0 |ι〉 −
∑

F ′,mF ′

1
∆F ′,mF ′

〈κ|Hc |F ′,mF ′〉 〈F ′,mF ′ |Hc |ι〉 . (2.1.38)

This sum simplifies by considering that the ∆F ′,mF ′
∼ ∆ as the hyperfine structure

energies extends over 500 MHz � ∆. Moreover, as V̂ = − ~̂d · ~̂E, one can account
for the laser polarizations in the computation.

The calculation of this effective Hamiltonian as been performed in Rémy Bat-
testi PhD thesis[Battesti, 2003]. Its conclusions are the following for copropa-
gating and counterpropagating transitions (see next section):
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Figure 2.2: The transition probability of a single Raman pulse for given pulse
duration.

1. The selection rules states that only two hyperfine sublevels of same mF

(∆mF = 0) can be coupled with two linearly polarized lasers if their polar-
izations are orthogonal, provided the bias magnetic field is aligned along the
propagation direction of the laser beams.

2. The effective two photon Rabi frequency of the |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉
coupling writes:

Ω =
√
I1I2

Is

Γ2

16∆ , (2.1.39)

where Ii represents the intensity of each laser i seen by the atoms, Γ = 2π ·
6.06 MHz is the natural line width of the excited state and Is = 2.50 mW·cm−2

is the saturation intensity of D2 line for linearly polarized light[Steck, 2001].

3. The light shifts are also extracted. For each laser present in the system and
for each level:

ΩLS
i = Ii

Is

Γ2

8∆ , (2.1.40)
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where the detuning ∆ depends on the considered hyperfine level. Thus, we
are sensitive the differential displacement between the two levels:

ΩLS
diff,i = Ii

Is

Γ2

8(∆− ωHFS) −
Ii
Is

Γ2

8∆ (2.1.41)

' Ii
Is

Γ2

8∆ ×
ωHFS

∆ , (2.1.42)

when the detuning ∆ is large with respect to the hyperfine structure splitting.

We point out that the selection rule ∆mF = 0 is a consequence of the approxi-
mation ∆F ′,mF ′

∼ ∆ which amounts to not resolving the hyperfine structure of the
excited state. Strictly speaking, transitions with ∆mF = ±2 are not strictly forbid-
den. As we restrict ourselves to the subspace {|F = 1,mF = 0〉 , |F = 2,mF = 0〉}
for interferometry, it is interesting to compute the order of magnitude of the Rabi
frequency of the |F = 1,mF = 0〉 → |F = 2,mF = ±2〉 transitions.

This calculation, which is a generalization of the one presented in [Battesti,
2003], states that:

Ω(|F = 1,mF = 0〉 ↔ |F = 2,mF = ±2〉)
Ω ∼

A52P3/2

h∆ ∼ 10−3, (2.1.43)

where A52P3/2 is the magnetic dipole constant of the considered excited state and
evaluates to h·84.7 MHz[Steck, 2001] and Ω defined by equation (2.1.39) represents
the coupling constant between the magnetically insensitive states (mF = 0). The
numerical value is given for our experimental parameters (∆ ∼ 60 GHz).

In our experimental setup, we apply a bias magnetic field that displaces the
states |F = 2,mF = ±2〉 by ∼ ±40 kHz by Zeeman effect such that the transitions
|F = 1,mF = 0〉 → |F = 2,mF = ±2〉 are off resonance. As a consequence, the
amplitudes of probability associated with these couplings are negligible. Moreover,
the light shifts on the |F = 1,mF = 0〉 state induced by this coupling evaluate
below the mHz range with our experimental conditions, and thus can also be
safely neglected.

2.1.3 Co- and counter-propagating transitions
Two geometrical configurations show a particular interest when using Raman tran-
sitions: the co-propagating and the counterpropagating. Their name are quite
straightforward: in the first case the two laser beams propagate in the same di-
rection, or in opposite direction for the second one. We denote them respectively
with the superscripts ↓↓ and ↓↑.
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Their respective effective wavevector are given by:

k↓↓e = k1 − k2 (2.1.44)
k↓↑e = k1 + k2, (2.1.45)

Using the resonance condition, we can link those two effective wavevectors to the
atomic energy levels:

k↓↓e '
ωHFS
c

(2.1.46)

k↓↑e ' 2ωe
c
, (2.1.47)

where c is the speed of light, and we have reused the three level system notations.
For 87Rb, we have ωβ ' 2π · (6.8 GHz) and ωe ' 2π · (384 THz). From these
numbers we can estimate the velocity difference between the two coupled states
given by ~ke/m. For copropagating transitions, this yield ∼ 100 nm · s−1. The
typical durations involved in our experiment being less than a second, we can
neglect this difference.

However for counterpropagating transitions, the velocity difference evaluates
to vR ∼ 1.2 cm · s−1. Using them, an atomic wavefunction can then be put in a
superposition between two states whose spatial separation is given by vRδt. For
δt = 1 ms, the separation is 12 µm, macroscopic with respect to the atomic size.
As such counterpropagating transitions appear as excellent candidates to prepare
atoms in a spatially separated superpositions.

In order to evaluate the width of the transferred velocity class, translating our
ability to address atom gases, we need to compare those wavevectors to the Rabi
frequency Ω of the coupling. In our experimental conditions, Ω ∼ 2π · (5 kHz). We
can now compute order of magnitude for the width of the transition in velocity
space for those two cases:

∆v↓↓ ∼ 220 m · s−1 ⇐⇒ T ↓↓ ∼ 505 K (2.1.48)
∆v↓↑ ∼ 2 · 10−3 m · s−1 ⇐⇒ T ↓↑ ∼ 40 nK, (2.1.49)

where we have also expressed the width using the one dimensional temperature
(1

2m∆v2 = 1
2kT ).

In the laboratory, as we will see in chapter 3, we produce atom gases using the
optical molasses techniques, which allows to reach temperatures of ∼ 4 µK. Alter-
natively, we can produce Bose-Einstein condensate which exhibits a temperature
∼ 100 nK. In this context, copropagating transitions can address to whole atomic
sample, while counterpropagating transitions are extremely velocity selective.



2.1. STIMULATED RAMAN TRANSITIONS 23

However, copropagating transitions are not completely insensitive to the Doppler
effect. The Doppler shift ~ke ·~v evaluates to ∼ 2 · π · (20 Hz)/ (m · s−1). Performing
a Rabi spectrum whose width is of the order of the Rabi frequency, a few kHz, this
shift is almost undetectable. Using the Ramsey clock technique that are presented
in next section, one may reach sub-Hertz precision and observe this Doppler shift.

Thus, as copropagating transitions allow to address a large velocity class, and
their associated Doppler shift is small with respect to the Rabi frequency, we can
use them to probe the atomic internal states. Nevertheless, they cannot be con-
sidered as completely Doppler insensitive.

On the other hand, the two-photon wavevector of counterpropagating transi-
tions exhibit a Doppler shift of ∼ 2.6 MHz/ (m · s−1). For lasers in vertical configu-
ration, and with atoms subjected to the gravitational acceleration g = 9.81 m ·s−2,
the frequency sweep that is necessary to maintain the resonance condition evalu-
ates to ∼ 25 MHz·s−1. This number is large compared to typical Rabi frequencies:
gravity sets the atoms out of resonance in a few hundreds of microseconds. Op-
erating counterpropagating Raman transitions requires a careful compensation of
this shift. This also exhibits that these transitions can be used to measure the
gravitational acceleration.

Moreover, the small width of the transition in velocity space allows to select a
narrow velocity class from an atomic sample, or to measure its velocity distribution.
This technique has been used by our team in the earlier stages of the experiment
to implement a velocity sensor based on two π-pulses[Cladé, 2006]. The principle
of operation goes as follow:

After the production and release of a sample from optical molasses, one applies
a narrow Raman pulse (Ω < 2π · (1 kHz)) to select a sub-recoil velocity class.
Following, a given number of Bloch Oscillations (see section 2.3) is applied to
the selected atoms to transfer a known number of atomic recoils. Finally, a final
Raman pulse is applied to atoms. By repeating the process and scanning the fre-
quency of this last pulse, one performs a measurement of the velocity distribution
at the output of the Bloch Oscillations process. The velocity transferred by Bloch
Oscillations can then be extracted from the comparison of this measurement and
the knowledge of the initially selected velocity class.

This method has now been supplanted by atom interferometry since 2008[Cadoret,
2008b] following the proposal by the team of S. Chu[Wicht, 2002]. This technique
takes advantage of the already announced property of velocity transfer induced by
counterpropagating Raman transitions in order to prepare atoms in a superposi-
tion of spatially separated states.
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2.2 Atom Interferometry
In a very general scope, atom interferometry denotes the experimental techniques
that prepare atoms in a superposition of internal and/or momentum (or external)
states in order to perform measurements.

The development that is presented here takes the form of a few stages: we first
discuss Ramsey sequences which will allow us to present the basic concepts of the
technique. Immediately following, the optical Mach-Zehnder analog of external
atom interferometry will be introduced.

To refine this presentation, we will consider the effect of gravity which will lead
us to the presentation of the path integral formalism for the computation of the
output state of the interferometer.

This exposition of the basic concepts will allow us to present our differential
velocity sensor, which is also called Ramsey-Bordé interferometer. This interfer-
ometer is used for the measurement of the recoil velocity.

Finally we will discuss the noise sensitivity of the interferometric based mea-
surement process.

However, before we get to the heart of the matter, let me present and discuss
an approximation that we use along this part.

π and π/2 pulses
Two particular pulses deduced from equation (2.1.32) have a particular interest.
At resonance (δt (~v) = 0):

• The π-pulse (Ωτ = π):

Uπ =
(

0 −ie−iφ
−ieiφ 0

)
(2.2.1)

• The π
2 -pulse (Ωτ = π

2 ):

Uπ/2 = 1√
2

(
1 −ie−iφ
−ieiφ 1

)
(2.2.2)

In the first case, the initial state is flipped and the transformation can be seen as
a mirror, while the second case corresponds to a beam splitter : if the initial state
can be described |ψi〉 = |α〉 or |β〉, then the final state will be a superposition
between those two states. Inversely, if the input state is a superposition:

|ψi〉 = cα |α〉+ cβ |β〉 , (2.2.3)
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then we can write the output state:

|ψf〉 = 1√
2
{(
cα − ie−iφcβ

)
|α〉+

(
−ieiφcα + cβ

)
|β〉
}
, (2.2.4)

such that the probability to be projected in either |α〉 or |β〉 exhibits an interference
pattern which depends on the phase of the quantum coefficients and the phase
associated to the transition.

Infinitely short pulses hypothesis
The above pulse are simplifications of equation (2.1.32) but, as we will see below,
they contain the heart of atom interferometry signals.

In order to use them, we first assume that δt (~v) � Ω, which places us in the
case of resonant pulses. With our experimental parameters this hypothesis can be
seen as unjustified in particular because the light shifts are of the same order of
magnitude than the Rabi frequency. Our method is to treat them as a perturbation
from the ideal case given by the infinitely short pulses. These perturbations are
treated both theoretically and experimentally in section 4.2.

Finally, we assume infinitely short pulses τ → 0, such that the laser pulses
happen at a very well defined timing. This corresponds to Ω → ∞, so that the
pulse area θ = Ωτ is constant. We detail in this part a treatement beyond the
infinitely short pulses hypothesis (section 2.2.5) that justifies it.

2.2.1 Ramsey sequences
Until section 2.2.3, we will suppose that the atoms are not subjected to gravity.

We consider an atomic two level system whose free Hamiltonian can be written:

H0 = δ0 (~v)
2 σz (2.2.5)

in the lasers frame. The detuning δ0 (~v) takes into account the internal energy and
the Doppler sensitivity. It simply expresses:

δ0 (~v) = δ − δDoppler (2.2.6)

= ω1 − ω2 −

ωHFS + ~ke · ~v + ~~k2
e

2m

 . (2.2.7)

The interferometric sequence that we consider is a Ramsey sequence: the initial
atomic state is either |α〉 or |β〉 and it is subjected to two π

2 separated by a duration
TRamsey. We then measure the transition probability of the sequence.
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Figure 2.3: Ramsey fringes for two interferometer duration. The x axis has been
scaled such that its unit is in Hertz. We notice that in this unit the period of the
fringes is indeed T−1

Ramsey. Moreover, only the central fringe exhibits a superposition
of the maxima.

We identify the two pulses by index I and II. By composition of the evolution
operators we can compute the total evolution operator of the sequence:

URamsey = Uπ/2,IIU0 (TRamsey)Uπ/2,I , (2.2.8)

where U0 is easily obtained from H0:

U0(t) =
exp

(
−i δ0(~v)

2 t
)

0
0 exp

(
i δ0(~v)

2 t
) (2.2.9)

The transition probability:

P|α〉→|β〉 = |〈β|URamsey |α〉|2 , (2.2.10)

is independent of the input state and writes:

P|α〉→|β〉 (~v) = 1
4 |1 + exp (−i (δ0 (~v)TRamsey + φI − φII))|2 (2.2.11)

= 1 + cos (δ0 (~v)TRamsey + φI − φII)
2 (2.2.12)

We can define the phase of the Ramsey sequence: ΦRamsey = δ0 (~v)TRamsey+φI−φII .
For the following discussion, we assume φI = φII for simplicity.
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The central fringe is defined as ΦRamsey = δ0 (~v)TRamsey = 0, i.e. δ0 (~v) = 0
where we recover the resonance condition (equation (2.1.6)).

We plotted equation (2.2.12) on figure (2.3) for a Ramsey duration of 10 and 25
ms. The period of the signal scales as T−1

Ramsey, such that we observe a succession of
maxima. With a single TRamsey, one cannot discriminate the central fringe and the
ones for which ΦRamsey = n2π for n 6= 0. However, combining the measurement
from two TRamsey allows to lift this undetermination.

In our experiment, the typical performance of our interferometers allow a de-
termination of the central fringe with a sensitivity of δφ = 5 mrad. In terms of
δ0 (~v), this yields a precision of δφ/TRamsey ∼ 2π · (100 mHz) for TRamsey = 10 ms.
The interferometric method allows for more precise measurements than the single
pulse measurement, by means of an increased interrogation duration.

Additionally, in the infinitely short duration hypothesis, it is insensitive to the
light shifts ΩLS

diff. If we were to take into account their contribution, we would expect
the correction to scale as ∼ ΩLS

diffτ/TRamsey. In the single pulse configuration, this
correction would simply be given by ΩLS

diff. Typically, using Ramsey sequences this
effect is reduced by a factor 100.

Thus, not only Ramsey sequences allow for more precise determinations due
to increased interaction duration, but the quantity that is measured presents less
perturbation induced by the transitions.

By performing this measurement, one compares two quantities of equation
(2.2.7):

1. ωlaser = ω1 − ω2, which is an experimental parameter, usually controlled by
a phase lock of the beatnote signal of the two lasers. In our experiment, this
phase lock is performed with respect to a stable microwave reference, itself
referenced to the atomic clock signal from SYRTE.

2. ωatom = ωHFS + ~ke · ~v + ~ ~ke
2

2m is the energy difference between the two atomic
levels and characterizes both the atomic internal and external states.

Placing ourselves in the frame of the atom, we can interpret a Ramsey sequence
as a phase matching experiment over the phase difference between the atomic states
induced by free evolution during the interrogation duration:

Φatom =
∫ TRamsey

0
dt ωatom(t), (2.2.13)

and the accumulated phase of the lasers for the same duration:

Φlaser =
∫ TRamsey

0
dt ωlaser(t). (2.2.14)
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Assuming no time dependence and Φatom = Φlaser, one recovers the expression of
the central fringe.

Let us now suppose that we run this sequence with copropagating transitions
on an atomic sample produced from optical molasses. The width in velocity space
of the transition allows to address all the atoms. Moreover, the Doppler term lin-
ear in velocity induces inhomogeneous phase shifts of the order σvk↓↓e TRamsey over
the atomic sample, where σv is the width of its velocity distribution. Typically
σv ∼ 3 cm · s−1, yielding phase shifts of σΦ ∼ 4 mrad per ms of interrogation.
These phase shifts may result in a loss of contrast but at this order of magnitude,
they do not damage the fringes signal. Moreover, assuming that the mean velocity
of the cloud is 0, this term does not shift the central fringe.

Alternatively, if the Ramsey sequence is ran in counterpropagating configu-
ration, we would expect that the Doppler sensitivity of transition to allow for a
precise measurement of the atomic velocity. However, we should also estimate the
phase shifts over the atomic sample. Since the transitions are now velocity selec-
tive, the width of the atomic sample in velocity space is given by the width of the
Raman transition Ω/k↓↑e . We then obtain that the inhomogeneous phase shifts over
the selected atomic sample scale as ΩTRamsey, a few radians per ms of interroga-
tion, which completely washes out the fringes. As a consequence no interferometric
signal would be observed using a single Ramsey sequence in counterpropagating
configuration.

In order to implement interferometry on atomic external states, we should use
more elaborate schemes that we present in the following sections.

2.2.2 Atom interferometry: Mach-Zehnder configuration
We start by describing the Mach-Zehnder interferometer whose name comes from
its close analogy to the optical Mach-Zehnder. Although rarely used in our exper-
iment, the conceptual simplicity of this interferometer eases the presentation of
interferometry principles. It is represented in figure (2.4, top). The pulse sequence
goes as follow:

1. The atomic initial state |ψi〉 = |α, ~pi〉 is split by a π/2 counterpropagating
Raman transition. After this pulse, the state is:

1√
2
(
|α, ~pi〉 − ie−iφI

∣∣∣β, ~pi + ~~ke
〉)

(2.2.15)

2. After a duration T , a π-pulse which flips the quantum states is applied.
For this duration the free Hamiltonian has governed the evolution of the
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wavefunction such that the incoming state before the π pulse writes:

1√
2
(
eiδ0(~v)T/2 |α, ~pi〉 − ie−i(φI+δ0(~v)T/2)

∣∣∣β, ~pi + ~~ke
〉)

(2.2.16)

After applying the pulse, the state is:

−i√
2
(
ei(δ0(~v)T/2−φII)

∣∣∣β, ~pi + ~~ke
〉
− ie−i(φI+δ0(~v)T/2−φII) |α, ~pi〉

)
(2.2.17)

3. After a second waiting period of the same amount T , the two states overlap
in space and can interfere with one another. Once again, we start by writing
the wavefunction after the free evolution:

−i√
2

(
ei(δ0(~v)T/2−φII−δ0(~v)T/2)

∣∣∣β, ~pi + ~~ke
〉

− ie−i(φI+δ0(~v)T/2−φII−δ0(~v)T/2) |α, ~pi〉
) (2.2.18)

We immediately see that the terms corresponding to the free evolution cancel
out. This result can be expected from the symmetry of the interferometer:
the two arms spend the same duration in each state. After the application
of the third pulse, the state is given by:

−i
2

{(
e−iφII − e−i(φI−φII+φIII)

) ∣∣∣β, ~pi + ~~ke
〉

− i
(
e−i(φI−φII) + e−i(φII−φIII)

)
|α, ~pi〉

} (2.2.19)

Now that we have obtained the state at the output of the three pulses sequence,
we can compute the transition probability as we did for the Ramsey sequence:

P|α〉→|β〉 (~v) = 1− cos (φI − 2φII + φIII)
2 , (2.2.20)

where, compared to the single Ramsey sequence, the phase of the output is dis-
placed by π which is a consequence of the fact that this interferometer correspond
to two concatenated Ramsey sequences.

The main result of this analysis is that the output state of this interferometer
does not depend on the atomic velocity but only on the relative phases of the lasers
during the pulses.

In particular, when using counterpropagating Raman transitions, we have seen
that the Doppler sensitivity washes out the fringes of a Ramsey transitions. The
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Mach-Zehnder configuration compensates these inhomogeneous phases and allows
to recover the interferometric signal.

This result will still be verified when we will take into account for constant
gravity in the atomic equation of motion. Moreover, gravitational acceleration
will govern the laser phases through the atom positions (term ~ke · ~z) during the
interferometer.

Pulse area imperfections
Before taking into account gravity, I would like to discuss the situations where the
pulse area of the beam-splitters and mirrors are not perfectly π/2 and π. In the
infinitely short pulse hypothesis, for a pulse area θ, the evolution operator of a
pulse is given by (equation (2.1.32)):

U(θ, φ) =
(

cos(θ/2) −ie−iφ sin(θ/2)
−ieiφ sin(θ/2) cos(θ/2)

)
(2.2.21)

Considering that the free evolution terms cancel, we are left to multiply the
evolution operators to get the transition probability of the pulse sequence. How-
ever, we should be careful with the middle pulse:

At the temperature of 2 µK, the de Broglie wavelength is of the order of 300 nm.
The wavepacket separation at the time of the middle pulse is given by (~ke/m) ·T ,
and is typically greater that 100 µm. Thus, the two wavepackets can not interfere
with each other and we should apply the pulse evolution operator separately.

Another possibility is to define a ad hoc evolution operator for with the diagonal
terms are set to 0:

U ′(θ) =
(

0 −ie−iφ(A) sin(θ/2)
−ieiφ(B) sin(θ/2) 0

)
, (2.2.22)

where we distinguish the two laser phases to take into account for the spatial shift
between the two arms. This operator is not unitary, so that the norm of the
wavefunction is not conserved. This loss can be interpreted as a loss of atomic
signal (dashed lines of figure 2.4). Experimentally, this will appear as a loss of
contrast in the fringes signal. The evolution operator of the three pulse sequence
is then:

U = U(θIII) · U ′(θII) · U(θI), (2.2.23)
for which the transition probability reads:

P|α〉→|β〉 =
sin2( θII2 )

2

1+ cos (θI) cos (θIII) (2.2.24)

− sin (θI) sin (θIII) cos
(
φI − φ(A)

II − φ
(B)
II + φIII

)
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When replacing θI = θIII = π/2 and θII = π, we find the previous formula
(2.2.20).

This analysis allows us to exhibit the impact of the spatial splitting between
the two arms on the interferometric phase since the term 2φII was replaced by
φ

(A)
II + φ

(B)
II . However, the pulse area imperfections do not contribute to the inter-

ferometric phase, but modify the contrast of the fringes.
First, the sin2( θII2 ) prefactor is a consequence of the non-unitarity of the ad hoc

middle pulse evolution operator. The atom loss induced by the imperfect pulse
area of this pulse limits the amplitude of the fringe signal.

We can then define the contrast of the interferometer:

C = Pmax.
|α〉→|β〉 − Pmin.

|α〉→|β〉, (2.2.25)

which corresponds to twice the amplitude of the fringes2. With the input of equa-
tion (2.2.24), we find:

C = sin2
(
θII
2

)
sin (θI) sin (θIII) (2.2.26)

To conclude this discussion on the pulse area imperfections, let us develop this
formula around the nominal values of the pulse, and then assume that the pulse
area imperfections have a common origin (such as low frequency laser intensity
variation), and write the imperfection δθ for a π/2 pulse. The contrast them
becomes:

C = 1− 2δθ2 (2.2.27)

Assuming a normal distribution with width σδθ, we find the contrast mean and
standard deviation:

〈C〉 = 1− 2σ2
δθ and σC = 2

√
2σ2

δθ (2.2.28)

To give an order of magnitude of the contrast fluctuations, we can consider an
upper bound of 5% of laser intensity fluctuations. Since the Rabi frequency and
thus the pulse area is proportional to the intensity, we can estimate δθ ∼ 80 mrad.
This yield σC < 2%.

This study shows that, at least in simple scheme Raman based interferometry,
pulse area imperfections do not shift the central fringe. Moreover, the scaling of
their contribution to noise indicates that, in a certain limit, interference fringes
are shielded from shot to shot pulse area fluctuations.

2In optical interferometry, the contrast (or visibility) is usually defined as the ratio between the
amplitude and the mean optical intensity. In quantum mechanics based interferometry, we deal
with probabilities whose sum is one. As a consequence, the contrast of an atom interferometer
reduces to twice the fringes amplitude.
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Figure 2.4: Top: the Mach Zehnder interferometer. Bottom: a Ramsey Bordé in-
terferometer in differential velocity sensor configuration. The black vertical dashed
lines indicates the optical pulses with their associated pulse area. The colored lines
display the atomic trajectories. The dashed colored lines show the loss channels.
The effect of gravity has not been represented for clarity.
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2.2.3 Interferometry in a gravitational field
When treating the motion of atoms, gravity is not negligible such that a treatment
of atom interferometry should take it into account. The starting point of such a
treatment is to use the action of Lagrangian dynamics. In a constant gravitational
field:

L (~r,~v) = m~v2

2 −mgz, (2.2.29)

where ~v the velocity of the considered particle and z its position on the vertical
direction. For simplicity, we will restrict ourselves to a one dimensional treatment
along the vertical direction.

In classical Lagrangian mechanics, the principle of least action states that con-
sidering a particle which passes through the space-time points (za, ta) and (zb, tb),
then the path Γcl that is taken by the particle is the one that extremizes the action
S (Γ):

S (Γ) =
∫ tb

ta
L(z(t), vz(t))dt. (2.2.30)

This principle leads to Newton equation of dynamics through Euler-Lagrange equa-
tions.

Additionally, in the quantum regime, we want to give an expression of the
evolution operator that allow to compute the state |ψ(tf )〉 from the initial state
|ψ(ti)〉:

|ψ(tf )〉 = U(ti, tf ) |ψ(ti)〉 (2.2.31)

Projecting on the position basis and inserting a completeness relation, we ob-
tain:

〈zb|ψ(tf )〉 =
∫

dzi 〈zb|U(ti, tf ) |zi〉 〈zi|ψ(ti)〉 (2.2.32)

The term K(zi ti, zf tf ) = 〈zb|U(ti, tf ) |zi〉 is the quantum propagator. The
composition property of the evolution operator U(tf , ti) = U(tf , t)U(t, ti) extends
to the propagation operator through the insertion of a completeness relation in
equation (2.2.32).

Moreover, by dividing the space-time interval (zi, ti) to (zf , tf ) in infinitesimal
steps, one builds a path Γ and its corresponding action.[Feynman, 1965]

The Feynman formulation of quantum mechanics proves that the quantum
propagator can be written:

K(zi ti, zf tf ) = N
∑
Γ

exp
(
−iS(Γ)

~

)
, (2.2.33)
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where N is a normalization factor.
In the classical limit, i.e. when S(Γcl)� ~, the phase of the exponential term

varies very rapidly with the paths variations and vanish in the sum, except for the
classical path contribution which extremizes the action. We then obtain:

〈zf |ψ(tf )〉 = e−i
S(Γcl)

~ 〈zi|ψ(ti)〉 (2.2.34)

2.2.3.1 Classical limit

With initial conditions (z0, v0) at t = 0, the equation of motions v(t) = v0 − gt
and z(t) = z0 + v0t− gt2/2 leads to the classical action for a duration T :

S(Γcl) =
∫ T

0
dt
m

2 (v0 − gt)2 −mg(z0 + v0t− gt2/2) (2.2.35)

= mT

(
v2

0
2 − gz0 − v0gT + g2T 2

3

)
(2.2.36)

In our experimental conditions, typical values are T = 10 ms and v0 = 1 m·s−1,
we obtain S(Γcl)/~ ∼ 5 · 106 rad such that the classical limit is indeed reached.

As a consequence, we perform a semi-classical treatment of the interferometers
where the external state of the atom is treated classically and the transition pulses
are treated through quantum mechanics. We then treat the atoms external motion
as a classical trajectory, i.e. with complete knowledge of position and velocity.

The equation of motion for the two arms of the Mach-Zehnder, taking into
account the atomic recoil induced by the laser transitions, are given by:

z(A)(t) = z0 + v0t−
gt2

2 + ~ke
m

(t− T )Θ(t− T )

z(B)(t) = z0 +
(
v0 + ~ke

m

)
t− gt2

2 −
~ke
m

(t− T )Θ(t− T ),
(2.2.37)

where Θ is the Heaviside function.
In order to integrate the Lagrangian on each path, one separates them in two

around the π pulse time T . After carrying each integral, we find S(A) = S(B), and:

φpropagation = 0 (2.2.38)

Because the propagation induced differential phase cancels, it is independent
of the initial position and velocity of the atoms. The consequence of which is that,
again, this contribution to the output phase of the interferometer is identical over
the atomic sample.

This result holds even in the non classical limit for Lagrangian that are at most
quadratic in position and velocity. First, the phase shift due to propagation was
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computed in [Storey, 1994] and applied to atom interferometry. This work was
then extended in [Wolf, 2011] where it is shown that the differential phase shift in
a Mach-Zehnder atom interferometer cancels.

2.2.3.2 Laser phases

The phase difference induced by the wavefunction propagation in a gravitational
field cancels, so that we are left with evaluating the phase shift induced by the
imprinted laser phases (equation (2.2.20)). We can write the laser phase at all
times:

φ(z(t), t) = kez(t)−
∫ t

0
ω(t′)dt′ + φ0, (2.2.39)

where φ0 is an arbitrary phase. By taking the phase reference at the start of the
interferometer, we have φ0 = 0

Due to gravitational acceleration, the resonance condition of Raman transitions
will not be met if the frequency difference is not swept along the interferometer.
We assume a linear sweep:

ω(t) = ω(0)− keg0t, (2.2.40)

where g0 > 0 is an experimental parameter which corresponds to an estimation of
the gravitational acceleration. With this linear sweep, the frequency contribution
to the laser phase is:

−
∫ t

0
ω(t′)dt′ = −ω(0)t+ 1

2keg0t
2 (2.2.41)

On the other hand, the wavepackets positions are governed by the gravity
acceleration. Using the formulas (2.2.37), we have for the two arms:

φ(A) = φ(z(A)(T ), T )

= ke

(
z0 + v0T −

gT 2

2

)
− ω(0)T + 1

2keg0T
2,

(2.2.42)

and
φ(B) = φ(z(B)(2T ), 2T )− φ(z(B)(T ), T ) + φ(z(B)(0), 0)

= ke

(
z0 + v0T −

3gT 2

2

)
− ω(0)T + 3

2keg0T
2 (2.2.43)

The phase difference between the two arms is hence:

φlasers = −keT 2 (g − g0) (2.2.44)
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The interpretation of this formula is quite straightforward. The term (g − g0)
displays the physical quantity to be measured g and an experimental parameter g0
to which it is compared. Similarly to the discussion on Ramsey sequences where
the frequency of a local oscillator was compared to the atomic internal frequency,
the Mach-Zehnder interferometer measurement can be interpreted as a comparison
between the local oscillator sweep rate and the atomic resonance condition sweep
induced by their external motion.

The sensitivity of the measurement scales with keT 2 = keT · T , and is propor-
tional to the space-time area that the interferometer arms enclose.

In terms of performance, for a given detectable phase shift δφ, the smallest
detectable gravity variation is given by

δg = δφ

keT 2 . (2.2.45)

For typical values δφ = 5 mrad and T = 100 ms, at 780 nm, one finds a relative
sensitivity on g of ∼ 10−8 illustrating the long known performance of gravimetry
based on atom interferometry[Ménoret, 2018].

2.2.3.3 Perturbative Lagrangians

In the presence of a perturbative Lagrangian Lpert � L small enough such that
the trajectories are unperturbed, the phase shift relative to a path is given by
[Storey, 1994]:

φpath = 1
~

∫
Γcl

dtLpert (2.2.46)

In order to apply this formalism to atom interferometry, one would imagine
subdivide the path between the optical pulses. Then, one should propagate the
initial and final positions for each sub-path. This procedure promises to be cum-
bersome. However, it is possible to write an effective Lagrangian that factorizes
the sub-paths and allows to evaluate the effect of the perturbation by writing a
single integral.

Let us consider a single path with a velocity kick in the middle, result of an
optical transition (see figure (2.5)). Then the phase shift of the wavefunction along
this path is given by:

φpath = S (Γ1) + S (Γ2)
~

+ φlaser(tpulse), (2.2.47)
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Figure 2.5: Division of a path Γ around a laser pulse that performs a velocity kick.

where φlaser = kez. Writing the action in integral form, we find:

φpath = 1
~

∫
Γ

dt
(
L+ ~φlaser (tpulse) δ (t− tpulse)

)
, (2.2.48)

where δ is the Dirac delta.
From this equation, we define the effective Lagrangian Leff :

Leff = L+ ~
∑
pulses

φlaser(tpulse)δ(t− tpulse), (2.2.49)

where the sum is carried on the pulses that induced a velocity kick.
First, with this Lagrangian, the Euler Lagrange equation is written:

d
dt

(
∂L
∂v

)
= ∂L
∂z

+ ~
∂φlaser

∂z
δ (t− tpulse) (2.2.50)

m
dv
dt = ∂L

∂z
+ ~keδ (t− tpulse) , (2.2.51)

where the most right-handed term displays the velocity kick. In particular, the
integration of this equation exhibits a Heaviside function that we have already
encountered in equation (2.2.37).

Secondly, in the treatment of the interferometric phases that we have made
above, we separated the phase shift induced by the propagation of the wavefunc-
tion and by the laser beams. With this effective Lagrangian, both terms appear.

Example: linear gravity gradient
As an application, we treat a simple perturbation case: the linear gravity gradient.
Assume that the gravity acceleration is not constant but varies with the position:

g(z) = gc − γz. (2.2.52)
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Then the potential associated is given by:

−mgcz +m
γ

2z
2, (2.2.53)

where we have the usual gravity term of the Lagrangian and the perturbation:

Lpert = m
γ

2z
2 (2.2.54)

The phase induced by the perturbation is given by the phase difference between
the two paths:

φperturbation = φpath(B) − φpath(A) (2.2.55)

=
∫

Γ(B)
cl

dt mγ

2z
2(t)−

∫
Γ(A)
cl

dt mγ

2z
2(t) (2.2.56)

The trajectories correspond to the unperturbed ones, given by equations (2.2.37).
Before including these solutions, we manipulate the above expression:

φperturbation = mγ
∫ 2T

t=0
dt12

(
z(B)(t)2 − z(A)(t)2

)
(2.2.57)

= mγ
∫ 2T

t=0
dtz

(B)(t) + z(A)(t)
2

(
z(B)(t)− z(A)(t)

)
(2.2.58)

The interpretation of this formula is quite straightforward: the phase shift induced
by gravity gradients is proportional to the integral of the product of the mean
interferometer position with the position difference between the two arms. The
first term controls the local value of the gravity acceleration. For the second, it
is intuitive that the phase shift induced by a linear spatial inhomogeneity scales
with the relative difference of the two positions.

With the input of equations (2.2.37):z
(B)(t)− z(A)(t) = ~ke

m

(
t− (t− T )Θ(t− T )

)
z(B)(t)+z(A)(t)

2 = z0 +
(
v0 + ~ke

2m

)
t− gct2

2
(2.2.59)

The Heaviside function requires to split the integral. After performing the calcu-
lation we find:

φperturbation = γkeT
2
(
z0 +

(
v0 + ~ke

2m

)
T − 7

12gcT
2
)
, (2.2.60)

which agrees with the literature3. In particular, it is in agreement with the exact
result derived in [Peters, 1998] at the first order in γ.

3The ~ke

2m is sometimes not present, thanks to an alternative definition of the initial velocity
that was not followed here
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We are now able to treat perturbations that we can express in a Lagrangian
form. Moreover, we have provided an effective Lagrangian that allows to reduce
the amount of computation necessary to obtain formula or estimates.

2.2.4 Ramsey-Bordé in differential velocity sensor config-
uration

As we have already exposed, the aim of our research is the measurement of the
velocity transferred by optical transitions (section 2.3).

To build an interferometer sensitive to such a transfer, it is sufficient to split the
Mach-Zehnder π pulse in two π/2 and separate them for a duration Tdelay−TRamsey
(see figure (2.4, bottom)).

In this context the parameter Tdelay represents the delay between the two Ram-
sey sequences that now form the interferometer. Because this interferometer is
built out of two Ramsey sequences, the nature of the signal is modified. However,
it conserves the Mach-Zehnder property that the phase shift at the output of the
sequence depends only on the phases imprinted during the Raman transitions,
such that we can write:

Φinterferometer = φ(B)(TRamsey + Tdelay)− φ(B)(Tdelay) + φ(B)(0)
− φ(A)(TRamsey) (2.2.61)

In order to exhibit the differential velocity sensitivity of this interferometer,
let us suppose that the atoms are subjected to a process in between the Ramsey
sequences that induced a velocity shift ∆v and a position shift ∆z at time TRamsey <
t′ < Tdelay. For example, for a constant additional acceleration a between ta and
ta + Ta, with ∆v = aTa, ∆z = aT 2

a /2 and t′ = (ta + Ta)/2.
Such a process changes the positions at the second Ramsey sequence by an

amount:

δz(t > t′) = ∆z + ∆v(t− t′), (2.2.62)

We can then extract the kez contribution to the interferometric phase:

ke (∆vTRamsey − gTRamseyTdelay) , (2.2.63)

where we observe that the interferometer signal retains only the amount of trans-
ferred velocity.

Additionally, we need to keep the Raman resonance condition along the inter-
ferometer. Similarly to the Mach-Zehnder case, we assume a linear ramp for each
of the Ramsey sequences and treat them separately. Indeed the velocity transfer
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process leads to an additional frequency jump (or sweep, . . . ) on which we make
no assumption. Computing the contribution of this term, we get:

ω(0)TRamsey −
keg0T

2
Ramsey

2 −
(
ω(Tdelay)TRamsey −

keg0T
2
Ramsey

2

)
(2.2.64)

=− δωTRamsey, where δω = ω(Tdelay)− ω(0). (2.2.65)

Unlike the case of the Mach-Zehnder, the signal at the output of this interferometer
is independent of the explicit value of the frequency ramp, i.e. it is not limited by
our a priori knowledge of the gravitational acceleration.

The total phase of the interferometer can then be expressed:

Φinterferometer = TRamsey
(
ke(∆v − gTdelay)− δω

)
(2.2.66)

By scanning the parameter δω and determining the value for which the phase
shift is 0, one measures the velocity difference between the first and second Ram-
sey sequence. This behavior justifies the denomination differential velocity sensor
configuration.

The g sensitivity of this interferometer scales as keTRamseyTdelay, where we find
that it is proportional to the space-time area enclosed by the interferometers are,
similarly to the Mach-Zehnder case. However, the sensitivity of the ∆v measure-
ment scales proportionally with the distance between the two arms keTRamsey.

We can interpret the Ramsey-Bordé measurement process as a comparison
between the Doppler effect induced by the atomic external motion (∆v − gt) and
the laser frequency difference (δω) between the two Ramsey sequences. We exhibit
here the main difference between the Ramsey-Bordé and Mach-Zehnder, which
compares the atomic acceleration to a sweep rate.

However, this signal still depends on the gravitational acceleration. If it is
possible to reverse the direction of the velocity transfer, one may finally eliminate
the contribution of gravity by combining the output of two interferometers.

Eliminating the contribution of gravitational acceleration from the signal, one
meets the condition to be sensitive to a velocity transfer process.

In terms of performance, with typical values TRamsey = 10 ms, δφ = 5 mrad,
we get a velocity sensitivity of ∼ 10−7 m · s−1. In terms of recoil velocity vr ∼
1.2 cm · s−1, this correspond to a 10−5 relative sensitivity. In practice, we are able
to transfer a thousand atomic recoils in between the interferometer. We are then
to expect a relative sensitivity better than 10−8 for each measured spectra.
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Atomic survival and contrast
Because the Ramsey-Bordé interferometer combines four beam splitters, there are
12 paths4 at the output of the interferometer. We first reduce this number to 6 by
applying at the output of the first Ramsey sequence an optical pulse resonant with
atoms in the internal state |β〉, which is the initial intral state. This pulse projects
the atoms on the

{
|α〉 , |β〉

}
basis and removes the atoms that were projected

onto |β〉. It does not affect the spatial superposition coherence in state |α〉.
After this pulse, if the pulse areas of the beam splitters were perfectly π/2,

half the initial atoms are removed from the interferometer. They will not be de-
tected simultaneously with the remaining atoms and will not affect the contrast
of the fringes. However, when running the differential velocity sensor, we lose by
construction half the input atoms.

Let us move along to the computation of the contrast considering pulse area
imperfections. When computing the contrast of the Mach-Zehnder interferome-
ter, we wrote the complete output probability formula. Because there are now
four pulses in the interferometer, as well as suppressed paths, this approach is
cumbersome. We then follow an alternative method:

The idea is to write the projection of the atomic wavefunction on one of the
outputs as the sum of the two path dependent amplitudes. For instance: 〈α|ψf〉 =
c(A) + c(B).5 Computing the norm of this coefficient:

|〈α|ψf〉|2 =
∣∣∣c(A)

∣∣∣2 +
∣∣∣c(B)

∣∣∣2 +
∣∣∣c∗(A)c(B)

∣∣∣ cos
(
arg

(
c∗(A)c(B)

))
. (2.2.67)

From this equation we have Φinterferometer = arg
(
c∗(A)c(B)

)
, and the contrast C =

2
∣∣∣c(A)c(B)

∣∣∣.
These coefficients are given by the product of matrix elements of the pulses evo-

lution operator. The specific matrix element depends both on the path and on the
pulse index and are given by the matrix (2.2.21). Computing those coefficients,
one should furthermore renormalize the wavefunction after the first Ramsey se-
quence since half of the coherences are removed with a resonant pulse. After some
trigonometric simplification, we obtain:

C =
sin

(
θI
)

sin
(
θII
)

1− cos
(
θI
)

cos
(
θII
) · sin

(
θIII

)
sin

(
θIV

)
2

(2.2.68)

In this equation, we observe that there is an asymmetry between the two Ram-
sey sequences. The term relative to the second Ramsey sequence is quite alike the

4One could expect 24 = 16 paths. This number is reduced due to the recombinations at the
interferometer output.

5We do not consider here the loss channels.
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contrast terms of the Mach-Zehnder. Moreover, its maximum is reached when the
pulse are perfect π/2 and evaluates to 1/2. This result is expected considering the
loss channels of the third pulse.

Concerning the first Ramsey sequence, when θI = θII , the term evaluates to
1. Indeed, even if not π/2, when the two first pulses are equilibrated, they only
control the number of atoms that are transferred through the Ramsey sequence.
Moreover, if we develop the formula around π/2 for the two pulse area, we find
that this term is alike to cos

(
θI − θII

)
, confirming the lower contrast sensitivity

on the first Ramsey sequence than on the second.
Finally and similarly to the Mach-Zehnder discussion, if the pulse area variation

have a common source, the contrast writes C = 1 − δθ2, which shows that the
Ramsey-Bordé interferometer is twice as less sensitive to pulse area variations
than the Mach-Zehnder.

2.2.5 Sensitivity function approach: phase noise transfer
function and pulses finite duration corrections

Earlier in the development, we discussed the impact of pulse area imperfections
and translated their variation into contrast noise. Moreover we were able to show
that this noise was not impacting the phase at the output of the interferometer.

However, phase noise contributes directly to the output of the interferometer
and we can then anticipate that it is a major source of noise that needs to be
controlled.

In order to estimate the sensitivity of our differential velocity sensor with re-
spect to phase noise, we will use the formalism of the sensitivity function, developed
in the frame of microwave clocks[Dick, 1987]. In this context where the frequency
of a local oscillator is compared to a physical frequency, phase noise on the local
oscillator may translate into systematic errors that damage the stability and ac-
curacy of the clock. Because the clocks are made out of a Ramsey interrogation,
the formalism extends immediately to atom interferometry.

Moreover, we will see that this formalism provides an alternative way to com-
pute the output phase of the interferometer. Finally, our earlier analysis assumed
infinitely short optical pulse. This approach will allow us to estimate corrections
taking into account the duration of the pulses6 and conclude on the validity of this
approximation.

6but maintaining the hypothesis that the coupling Hamiltonian diagonal elements are negli-
gible before its non-diagonal elements
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2.2.5.1 Definition

The phase at the output of the differential velocity sensor can be written:
Φ0 = φIV − φIII − φII + φI , (2.2.69)

where the phases correspond to the absolute phases of the transitions and no
assumptions are made on the atomic trajectories, or on the laser phase behavior.
The sensitivity function is defined in the following way. Assume that an infinitely
small phase jump δφ is applied to the Raman lasers at a time t. Then the output
phase varies and we write the modified value Φ0(δφ, t). We can then write the
sensitivity function gφ:

gφ(t) = lim
δφ→0

Φ0(δφ, t)− Φ0

δφ
(2.2.70)

This function is the impulse response of the interferometer phase. It is a real
number by construction and finite from a continuity argument. In order to evaluate
it, let us assume that 0 < t < TRamsey. Then the phases of the second and following
pulses are incremented by δφ, such that we have:

Φ0(δφ, t) = (φIV + δφ)− (φIII + δφ)− (φII + δφ) + φI (2.2.71)
= Φ0 − δφ (2.2.72)

From such reasoning, we immediately deduce the sensitivity function:

gφ(t) =



0 if t < 0
−1 if 0 < t < TRamsey
0 if TRamsey < t < Tdelay
1 if Tdelay < t < Tdelay + TRamsey
0 else

. (2.2.73)

We immediately observe that the interferometer is sensitive to phase noise only dur-
ing the Ramsey sequences and with opposite sign for each of them. Thus, by setting
the origin of time at the middle of the interferometer t = (TRamsey + Tdelay) /2, the
function becomes odd, a property that will be useful.

2.2.5.2 Preliminary treatment

During the operation of the interferometer, the laser phase is not constant with
time due to the atomic motion and the laser frequency sweeps. Using the defini-
tion of the sensitivity function, we can write the output phase of the interferome-
ter[Cheinet, 2006]:

Φ0 =
∫
gφ(t)dφ(t) =

∫ ∞
−∞

gφ(t)dφ
dt dt. (2.2.74)
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With the same notations as earlier, we have dφ
dt = kev(t) − ω(t) = kev0 − ω0 −

ke(g − g0)t. We compute the integral separately for the two Ramsey sequences.
For one sequence:

ΦRamsey = ±
∫ TRamsey

0

dφ
dt dt (2.2.75)

= ±
(
TRamsey(kev0 − ω0)−

ke(g − g0)T 2
Ramsey

2

)
(2.2.76)

We can parametrize the initial conditions as (v0, ω0) for the first Ramsey sequence
and (v0 + δv, ω0 + δω) for the second, where δv correspond to

δv = ∆v − gTdelay. (2.2.77)

Lastly, replacing the ± by the sign of the sensitivity function for each sequence,
we find the same earlier result for the output phase of the interferometer (equation
(2.2.66)).

In the presence of a sinusoidal perturbation7 φ(t) = A cos(ωt + ψ), the sensi-
tivity function gives the phase shift induced by the perturbation:

δΦ = −Aω cos(ψ)
∫ ∞
−∞

gφ(t) sin(ωt)dt, (2.2.78)

where the origin of times has been defined such that the sensitivity function is odd,
property which was used to eliminate the cos(ωt) term from the development. For
simplicity, we assume ψ = 0.

The above integral is related to the Fourier transform of the sensitivity function
g̃φ(ω):

g̃φ(ω) = −2i
∫ ∞

0
sin(ωt)gφ(t)dt, (2.2.79)

where, again, we have taken advantage of the oddness of gφ. We have that the
transfer function of the perturbation on the interferometer phase H(ω) = |δΦ/A|
is given by:

H(ω) =
∣∣∣ωg̃φ(ω)

∣∣∣ (2.2.80)

With the input of equation (2.2.73), we find:

H(ω) = 4
∣∣∣∣sin(ωTRamsey

2

)
sin

(
ωTdelay

2

)∣∣∣∣ . (2.2.81)

7The development of this paragraph is based on the presentation of [Cheinet, 2006].
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When ω → 0, i.e. for a constant perturbation, the transfer function tends to 0 as
ω2: the perturbation is canceled over the interferometer. This is not the only case
for which it happens:

Let us consider a perturbation at a frequency f = ω/(2π). If the product
f · TRamsey is an integer, then the accumulated phase over a Ramsey sequence
sums up to zero and the perturbation is canceled. If the product f · Tdelay is an
integer, then the phase of the perturbation at the beginning of both sequences
is identical such that the accumulated phase over the Ramsey sequences is also
identical. Thanks to the oddness of the sensitivity function, the perturbation is
then canceled.

On the other hand, if the considered product are half an integer, then the
perturbation phase is whether maximally transmitted by a Ramsey sequence or
changes sign over the two sequences. In these cases, the perturbation is fully
transmitted to the interferometer output phase.

Product of two oscillating function whose periods are given by the characteristic
durations of the interferometers, the transfer function exhibits that a perturbation
needs to be out of phase with the interferometer to produce a phase shift. This is
indicated by the factor 4 which corresponds to a addition on each pulse.

Finally, the transfer function allows us to evaluate the phase noise at the output
of the interferometer as a function of the spectral power density of the input phase
noise Sφ(ω)[Papoulis, 1991]:

σ2
δΦ =

∫ ∞
0

dω
2π Sφ(ω) |H(ω)|2 , (2.2.82)

where we have taken into account the cos(ψ) term earlier ignored with 〈cos2(ψ)〉 =
1/2.

2.2.5.3 Pulses finite duration

However, the sensitivity function on which we based our analysis is not continuous,
which is not physical, and lead us to over estimate the phase noise in equation
(2.2.82). In order to make it continuous, we need to refine the above treatment by
considering the effect of a phase shift during a light pulse. The transfer function
will then present a low-pass filter behavior.

If a phase shift occurs during a light pulse, the associated evolution operator is
modified as the product of two evolution operators with different phases. In order
to translate this modification into the sensitivity function, we use the complex
coefficients associated to each path

{
c(A), c(B)

}
that we used for the study of the

interferometer contrast. Using these coefficients we can write the phase of the
interferometer: Φ0 = arg

(
c∗(A)c(B)

)
.
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A phase jump during a pulse impacts those coefficients, and we write them
with the same notation as the output phase:

{
c(A) (δφ, t) , c(B) (δφ, t)

}
. We can

write the sensitivity function with respect to those coefficients:

gφ (t) = lim
δφ→0

arg
(
c∗(A) (δφ, t) c(B) (δφ, t) c∗(A)c(B)

)
δφ

. (2.2.83)

Thanks to the limit of δφ to 0, we can limit the calculation to the first order in δφ.
In particular, at this order and using the finite and real properties of the sensitivity
function, we have:

c∗(A) (δφ, t) c(B) (δφ, t) c∗(A)c(B) = B (1 + igφ (t) δφ) +O(δφ2), (2.2.84)

where B is a real number, and we have immediately identified the sensitivity
function out of the development.

We should now compute the modified coefficients. We start by computing the
evolution operator associated with a pulse defined by an area θ during which a
phase jump occurs. Its computation is based on the combination of two pulses
with pulse areas θ′ and θ−θ′ and phases φ and φ+δφ. With the input of equation
(2.2.21), and at the order one in δφ:

Uphase jump(θ, θ′, φ, δφ) = U(θ − θ′, φ+ δφ) · U(θ′, φ) (2.2.85)

=
 cos( θ2 )(1− iδφ2 (1−cos(θ′)−sin(θ′) tan( θ2 ))) −ie−iφ sin( θ2 )

(
1−iδφ cos(θ′/2) sin((θ−θ′)/2)

sin(θ/2)

)
−ieiφ sin( θ2 )

(
1+iδφ cos(θ′/2) sin((θ−θ′)/2)

sin(θ/2)

)
cos( θ2 )(1+ iδφ

2 (1−cos(θ′)−sin(θ′) tan( θ2 )))


By treating the problem pulse per pulse, selecting the appropriate matrix ele-

ments and propagating the phase jump on the following transitions, one obtains
the sensitivity function as a function of θ′. For each pulse:

gφ(θ′) = (2.2.86)

−1 + sin(θI − θ′)/ sin(θI) if the phase jump occurs during the first pulse
−1 + sin(θ′)/ sin(θII) " " " " " " " second "
1− sin(θIII − θ′)/ sin(θIII) " " " " " " " third "
1− sin(θ′)/ sin(θIV ) " " " " " " " forth "

We now need to unify this equation and equation (2.2.73). The limits θ′ → 0 and
θ′ → θ ensure the continuity of the sensitivity function. However, this computation
was made under the infinitely short pulse formalism, such that no explicit time
dependence appear.
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We assume that the four pulses share the same duration τp, such that θ′ can
be rewritten

θ′ = θi
t

τp
(2.2.87)

for i = I, II, III or IV

for each pulse. We can now write the sensitivity function for all times, which is
plotted on figure (2.6):

gφ(t) =



0 if t < 0
−1 + sin(θI(1−t/τp))

sin(θI) if 0 < t < τp
−1 if τp < t < TRamsey + τp
−1 + sin(θII t/τp)

sin(θII) if TRamsey < t < TRamsey + τp
0 if TRamsey + τp < t < Tdelay
1− sin(θIII(1−t/τp))

sin(θIII) if Tdelay < t < Tdelay + τp
1 if Tdelay + τp < t < Tdelay + TRamsey

−1 + sin(θIV t/τp)
sin(θIV ) if Tdelay + TRamsey < t < Tdelay + TRamsey + τp

0 else
(2.2.88)

Now that we have written an explicit duration for the laser pulses, we should
notice that the phase of the transition is a dynamical parameter and the evolution
operator of equation (2.2.21) cannot be used directly. Here, the sensitivity func-
tion reveals itself as a powerful tool as this framework allows to take into account
phase variations all along the interferometer, and in particular during the pulses.
Moreover, the behavior of the sensitivity function is not trivial with the pulse area.
In particular, when it exceed π/2, the function changes sign during the pulses. As
a consequence, we need to evaluate the effect of pulse area imperfections in this
context.

Taking into account the modification induced by the pulses finite duration
on the sensitivity function, we compute the output phase of the interferometer as
earlier by integrating the product of the sensitivity function and the time derivative
of the phase and obtain:

Φinterferometer =(
keδv − δω

)(
TRamsey + τp

(
1 + f (θIV ) + f (θIII)− f (θII)− f (θI)

))
−ke

(
g − g0

)
τp

((
TRamsey (f(θIV )− f(θII))

+ τp (h (θIV )− h (θIII)− h (θII) + h (θI))
))

(2.2.89)
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Figure 2.6: Plot of the phase sensitivity function for different pulse areas. The
different time scales indicated with double arrows and no proper origin of times
is defined. Indeed, depending on the calculation, we will either need to make the
function odd (Fourier transform) or to split the function in two part, one for each
Ramsey sequence (interferometer output phase). The ratio τp/TRamsey as been
exaggerated for visualization purposes.

The computation is similar to the derivation of equation (2.2.76) and of the
correction functions f and h are given by:

f(θ) = cos(θ)− 1
θ sin(θ) (2.2.90)

h(θ) = θ cos(θ)− 1
θ2 sin(θ) (2.2.91)

Around θ = π/2, we have |f(θ)| , |h(θ)| . 1. If the pulse areas remain con-
stant along the interferometer, the f and h terms cancel, and the consideration
of the pulses duration is reduced to a modification of the fringes periods through
TRamsey ← TRamsey + τp which does not change the central fringe condition. More-
over, we typically have in our experiment τp/TRamsey ∼ 10−2, such that this cor-
rection cannot be considered large.

Variations of the pulse area impacts the output phase in two different ways.
First the term that is factor of keδv− δω does not affect the position of the central
fringe, and produce negligible displacements typically three order of magnitudes
below the dominant term in TRamsey.



2.2. ATOM INTERFEROMETRY 49

Secondly the term factor of ke(g− g0)τp produces an absolute phase shift. The
dominant term is the one in TRamsey, such that estimating this term gives an order
of magnitude of the phase shift. We assume that we can write all pulse areas as
θι = θ + δθι with θ ∼ π/2. We then develop the expression around θ and find

δΦinterferometer = ke(g − g0)τpTRamsey (δθIV − δθII) fc(θ), (2.2.92)

where fc is derived from f and evaluates to ∼ 10−1 around π/2. With keg ∼
2π · (25 MHz·s−1), and typical values TRamsey = 10 ms and τp = 200 µs, we have:

δΦinterferometer ∼ 10 · πg − g0

g
(δθIV − δθII) . (2.2.93)

The magnitude of this expression is controlled by the a priori knowledge of the
gravitational acceleration. With g − g0 ∼ 10−7g, it is completely negligible.

The analysis based on the sensitivity function allows to take into account the
finite duration of the laser pulses. Apart from a variation of the fringes period,
we exhibited the importance of controlling precisely the gravity compensation
frequency ramp. This aspect was absent from the path integral based treatment.
The precision of this control hence gives a criteria for the viability of neglecting
the pulse duration in the treatment of the differential velocity sensor. For a phase
shift < 1 mrad, and pulse area fluctuations ∼ 10% around π/2 pulse areas, we find
that the frequency ramp should be exact within a few 10−4 relative precision.

In our experimental conditions this precision is easily obtained, such that the
criteria is met and the approximation is valid.

Let us move now to the transfer function of the interferometer with respect
to phase noise. For simplicity, we assume that the four pulses have a common
pulse area of π/2. As a consequence, the sensitivity function can be made odd and
we can focus the discussion on the impact of taking the pulse finite duration into
account.

As earlier, through the computation of the Fourier transform of the sensitivity
function, we deduce the interferometer transfer function:

H(ω) = 4π∣∣∣4τ 2
pω

2 − π2
∣∣∣ (2.2.94)

×
∣∣∣∣2τpω cos

(
ω
TRamsey − τp

2

)
− π sin

(
ω
TRamsey + τp

2

)∣∣∣∣
×
∣∣∣∣sin(ωTdelay2

)∣∣∣∣ ,
where we find the infinitely short pulses expression of equation (2.2.81) when
substituting τp by 0. Moreover, we find the infinitely short pulse result that a
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constant perturbation cancels over the interferometer (H(ω) ∼ ω2, for ω → 0), as
shown in figure (2.7).

Interpreting this equation from bottom to top, we first observe that the term
associated to Tdelay is unchanged with respect to the infinitely short pulse expres-
sion. This term cancels perturbations that are in phase with the two Ramsey
sequences delay, which is not modified when accounting for the pulse duration.

However, the cancellation on a Ramsey sequence has been modified to be given
by a sum of two oscillating terms whose period are now given by the duration
between the pulses TRamsey − τp and to duration of the sequence with pulses
TRamsey + τp. This term exhibit that the phase sensitivity during a light pulse
is not trivial when the perturbation is sinusoidal. This non trivial behavior was
observed experimentally on the Mach-Zehnder interferometer in[Cheinet, 2008].

Finally, the top term seems to indicate a resonance at ω = π/(2τp) = Ω, the
Rabi frequency which is not observed on the plot. Indeed, at this point, the second
term tends to 0. Combined, the two terms tend to a finite value, such that the
transfer function evaluates:

H(Ω) =
∣∣∣∣∣2 sin

(
π

4τp
(TRamsey + τp)

)
− π cos

(
π

4τp
(TRamsey + τp)

)∣∣∣∣∣×
∣∣∣∣∣sin

(
πTdelay

4τp

)∣∣∣∣∣ .
(2.2.95)

At frequencies large compared to T−1
Ramsey and T−1

delay, the transfer function os-
cillates such that its behavior is better captured by taking its mean with respect
to the trigonometric functions whose argument are whether ωTRamsey or ωTdelay.
It is easily done by evaluating the square of the transfer function and we obtain:

H2(ω) =
4Ω2

(
Ω2 + ω2 − 2Ωω sin

(
πω
2Ω

))
(ω2 − Ω2)2 , (2.2.96)

where, because it is the only duration parameter left, we have replaced τp by
the Rabi frequency Ω which produces a simpler formula. From this equation, we
deduce that the transfer function as a first order low pass filter. Indeed the high
frequency limit of the above equation gives:

H(ω) ∼
ω→∞

2Ω
ω

. (2.2.97)

When the frequency of the perturbation is large before the Rabi frequency, the
effect of the perturbation is averaged many times over a single light pulse and
therefore is not translated on the atomic wavefunction.
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Figure 2.7: Plot of the Ramsey-Bordé phase transfer function (equation (2.2.94))
for TRamsey = 20 ms, Tdelay = 30 ms and τp = 100 µs. In blue, the exact function
which display an oscillating figure. In orange, the average value that captures the
high frequency behavior (equation (2.2.96)). The black vertical dashed dotted line
marks ω = Ω.

2.2.6 Conclusion

We have developed our framework to model atom interferometry. This develop-
ment led us to exhibit an effective Lagrangian that represents well the atomic
trajectories including the velocity kicks induced by infinitely short light pulses.
This formalism allows us to compute easily the effect of perturbations that can be
modeled through perturbative Lagrangians.

Moreover, this effective Lagrangian exhibits the origin of the interferometric
signal: the laser phases at the light pulses moments. These phases are controlled
by two quantities, the atomic motion and the frequency control of the Raman
lasers necessary to ensure the resonance condition of the pulses.

The former is governed by the physics of the system while the latter is an
experimental parameter. Through its control, one operates the interferometer in
order to determine the central fringe and extract information on the physical prop-
erties of the system. In particular, we discussed the Ramsey-Bordé interferometer
in differential velocity sensor, paving the way to a recoil velocity measurement
technique.
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Finally, we discussed a complementary formalism to the Lagrangian mechanics
treatment: the sensitivity function. This formalism enabled the determination of
the behavior of the Ramsey-Bordé interferometer with respect to phase noise. In
particular, its frequency cutoff is determined by the duration of the light pulses.

Moreover, the Lagrangian formalism was very effective since we considered in-
finitely short light pulses which allows us to model their effect as Dirac deltas
velocity kicks associated with a phase shift. The sensitivity function formalism
gave us the tools to evaluate the validity of the approximation and we showed that
the criteria was easily verified in our experimental conditions.

Our treatment relies on the hypothesis that the diagonal terms of the total
Hamiltonian are negligible with respect to its coupling terms. The effect of those
diagonal terms is represented in the evolution operation (equation 2.1.32). The
pulse areas are modified, but as we stated this does not impact the central fringe
condition and produces small variations of the interferometer contrast. However,
they also induce a phase shift whose physics is not straightforward. Their related
study is postponed to section 4.2.

Finally, our toolbox for the recoil velocity measurement is not complete yet as
we did not treat our method to transfer atomic recoils. This constitutes the next
part of this dissertation.

2.3 Bloch Oscillations
The Ramsey-Bordé interferometer in differential velocity sensor configuration be-
ing our tool to measure the transferred velocity to the atoms in between the two
Ramsey sequences, we need a tool to transfer a well defined number of atomic
recoils.

One of the simplest solution we could imagine is multiple counterpropagating
Λ transitions with atoms remaining in the same internal state. This would require
two lasers whose frequency difference would be governed by Doppler effect (∼
30 kHz). At this frequency difference, and if we assume coherence between them,
the laser beams would form a moving optical lattice.

We have displayed in figure (2.8) an energy momentum diagram of such a
process. By applying a succession of laser pulses with incrementing frequency dif-
ference, one can transfers recoils by a succession of Bragg π pulses. This technique
has been used to realize atom interferometers with a large enclosed space-time area
using sequential multi-photon Bragg transitions as beam splitters[Chiow, 2011].

Alternatively, the principle of Bloch Oscillations (BO) is to trap the atoms
in the optical lattice and linearly chirp the frequency difference between the two
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Figure 2.8: Energy momentum diagramm of repeated Raman transitions in the
same internal state.

lasers that drive the lattice. The velocity transfer is then based on an adibatic
passage and reaches higher efficiency.

We will first detail the potential induced by the optical lattice on the atoms,
and write the eigenstates of the problem (known as the Bloch states). We will
then present a treatment that takes into account the chirping of the lasers and
describe the velocity transfer mechanism.

This development is inspired by previous treatments written in our team[Cadoret,
2008a; Cladé, 2015]. We refer the reader to these references for more details.

2.3.1 Optical lattice potential
We have seen when studying Raman transitions that detuned optical fields dis-
place the atoms ground states energy levels through the non-resonant coupling
mechanism. One can show[Grimm, 2000] that the light shift is given as a function
of the laser intensity:

V (~r) = 3πc2

2ω3
atom

Γ
∆I(~r), (2.3.1)

where ωlaser is the frequency of the driving laser and the sign of the detuning
∆ = ωlaser − ωatom controls the sign of the potential. If the laser is blue detuned,
i.e ωlaser > ωatom, then the light shift behaves as a repulsive potential and the
atoms are trapped at the minima of intensity. Inversely, a red detuned laser traps
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the atoms at the intensity maxima. In our experiment, we use a blue detuned
lattice to limit scattering processes with ∆ ' 40 GHz.

Studying two counterpropagating coherent monochromatic plane waves with
scalar electric fields, with identical linear polarizations so that we can ignore them:

E± = E0 exp
(
i(±kz − ωt+ φ)

)
, (2.3.2)

the intensity pattern they produce presents a standing wave interference pattern

I(x, y, z) = I0 cos2 (kz) . (2.3.3)

This laser configuration creates a one dimensional sinusoidal potential with spatial
period d = λ/2.

The height of the lattice potential V0 given by

V0 = 3πc2

2ω3
atom

Γ
∆4I0 (2.3.4)

is usually compared to the recoil energy

Er = ~2k2

2m , (2.3.5)

which is the characteristic energy of the system as it corresponds to the kinetic
energy acquired upon the absorption of a single photon.

When the weak binding limit V0 � 4Er condition is fulfilled, the lattice poten-
tial can be treated as a perturbation to the free case.

Alternatively, in the tight binding limit when V0 � 4Er, the atoms are trapped
in the potential wells.

2.3.2 States in a periodic potential
Let us study the problem addressed by F. Bloch in 1928[Bloch, 1928] which cor-
responds to the description of the state of a particle in a periodic potential in the
frame of quantum mechanics. The case of an atom trapped in an optical lattice is
included in the problem.

We restrict ourselves to the one-dimensional description of the system. Its
Hamiltonian is given by:

H = p2

2m + V (z) (2.3.6)

with V (z) = V (z + d), (2.3.7)

where d is the periodicity of the potential.
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The spatial translation operator of the quantity d given by

T̂d = ei
p̂d
~ (2.3.8)

commutes with the above Hamiltonian according to Bloch theorem. As such, we
can search eigenstates of the Hamiltonian that are also eigenstates of the transla-
tion operator.

Such states can be written as Bloch waves which are the product of a plane
wave and of a d-periodic function:

〈z|Ψq〉 = eiqz · uq(z) (2.3.9)
with uq(z) = uq(z + d) (2.3.10)

and where q is the quasi-momentum of the particle in the lattice. To avoid double
counting of states, we restrict q to

]
− π

d
, π
d

]
, which corresponds to the first Brillouin

zone.
Evaluating the product of the Hamiltonian on such a state in z representation,

we obtain the condition on uq such that |Ψq〉 is an eigenstate of the periodic
Hamiltonian:

Hquq(z) = Equq(z) (2.3.11)

with Hq = (p̂+ ~q)2

2m + V (z) (2.3.12)

For a given value of q, because uq(z) is periodic, this equation provides an infi-
nite discrete series of solutions

{
En(q), un,q(z)

}
. For each solution, we write the

quantum state: |n, q〉.
We can then diagonalize numerically the Hamiltonian and obtain its energy

spectrum[Dalibard, 2013]. The result of such a procedure is displayed on figure
(2.9). The spectrum is formed by energy bands well known in solid state physics.
In particular, in the weak binding limit, we observe that the lattice potential only
acts on the edges of the first Brillouin zone where the degeneracy between the
states |p = ±~k〉 is lifted by the two photons coupling.

2.3.3 Principle of Bloch Oscillations
The Hamiltonian of Bloch Oscillations[Zener, 1934] is given by adding a force F
to the Hamiltonian (2.3.6):

H = p2

2m + V (z)− Fz (2.3.13)
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Figure 2.9: Energy spectrum of a particle trapped in a blue detuned lattice for
two potential heights. We have reduced the horizontal axis to the first Brillouin
zone.

With atom trapped in an optical lattice in vertical configuration, gravitational
acceleration drives this Hamiltonian with F = −mg. Alternatively, to implement
Bloch Oscillations, we chirp linearly the lasers frequency in opposite directions
so that the two photons wavevector remains constant one obtains from equation
(2.3.2):

E± = E0 exp
(
i(±(k ± δω(t)/c)z − (ω ± δω(t))t+ φ)

)
, (2.3.14)

where dδω
dt is the chirping rate. We then obtain the interference pattern:

I = I0 cos2 (kz − δω(t)t) , (2.3.15)

from which one creates a moving optical lattice at a constant acceleration a:

a = d

π

dδω
dt . (2.3.16)

The frame where the lattice is at rest is not inertial. As such the Hamiltonian
in this frame is given by the equation (2.3.13) with F = ma.8. Using this chirp-
ing principle, one can compensate the motion of the free falling atoms by setting

8The transformation that links the Hamiltonian in the laboratory frame written using the
optical potential of equation (2.3.15) and the Hamiltonian in the frame in which the lattice is at
rest is not trivial. It is detailed in [Cadoret, 2008a].
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a = −g and also take gravity into account during the acceleration of the lattice.
This compensation is used on the experiment when performing BO.

The Hamiltonian (2.3.13) is no longer periodic. However, the commutator
between the Hamiltonian and the translation operator evaluates to

[H, T̂d] = FdT̂d, (2.3.17)

from which one can show that the wavefunction of the atom can be described with
wavefunctions similar to Bloch states:

〈z|Ψ(t)〉 = eiq(t)du(z, t), (2.3.18)

where u(z, t) is a periodic function of z with period d, and the quasi-momentum
obeys to:

q(t) = q0 + Ft

~
. (2.3.19)

This equation remains valid regardless of the lattice height or of the strength of
the acceleration. After a duration:

τB = ~
Fd

, (2.3.20)

we have

q(τB)− q(0) = 2π
d
, (2.3.21)

which corresponds to the same quasi-momentum in the first Brillouin zone.

The principle of Bloch Oscillations is represented in figure (2.10). An atomic
wavefunction is loaded in the first energy band of the lattice:

|Ψ(0)〉 = |0, q0〉 . (2.3.22)

and follows adiabatically this energy band. The adiabatic condition yields an
upper bound for the lattice acceleration[Ben Dahan, 1997]:

a� a0
π

64

(
V0

Er

)2
in the weak binding limit (2.3.23)

a� a0
√

2
(
V0

Er

)3/4
in the tight binding limit, (2.3.24)
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Figure 2.10: Top: band structure on two concatenated first Brillouin zones. Red
dots: evolution of the state quasi-momentum with time, which reads from left to
right. Green dots: interband transition which is a loss channel. Bottom: Evolution
of the quasi-momentum in the first Brillouin zone. The dashed lines are placed for
visualization.

where a0 = ~2k3/m2 is a natural acceleration built from the system parameters
and evaluates to 278 m·s−2 for 87Rb. With our typical lattice depth V0 ∼ 80Er, in
the tight binding limit, we obtain a critical acceleration of ∼ 104 m·s−2.

If the adiabatic condition is respected, the duration τB represents the duration
after which the system is back in its initial state, which justifies the term Oscil-
lations. In the frame of the accelerated lattice, an atom initially in the first band
n = 0 remains in this band, which means that the atom follows the lattice. In the
laboratory frame, the atom is then accelerated through a two photon process, and
it performed a Bloch Oscillation.

Experimentally, we choose the duration of one Bloch Oscillation τB ∼ 12 µs.
As the atom is kicked by two atomic recoils during this duration, it corresponds
to an acceleration a = 2~k/mτB ∼ 9.8 · 102 m·s−2 which is one order of magnitude
below the critical acceleration.

Let us rapidly discuss the loss mechanism through interband transitions. In
the weak binding limit, the optical lattice potential induces an avoided crossing at
the edges of the Brillouin zone, where the interband transitions then preferentially
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occur, as the gap between bands is minimal. The losses are then well captured
through the Landau-Zener formula.

In the tight binding limit, the energy bands are almost flat (see figure (2.9,
right)) such that the above analysis does not hold. Instead the efficiency is cap-
tured through a numerical simulation of the process. This work has been realized
in our team[Cladé, 2017], and we comment it in the next section. In this regime,
the gap between the band is higher and the adiabaticity criterion allows us to use
stronger acceleration.

2.3.4 Bloch Oscillations in the tight binding regime
Because the lattice can only couple states separated by 2~k, one can show[Cadoret,
2008b] that a Bloch state can be decomposed on the plane wave basis |~q + 2l~k〉,
where the l-s are integers. For example, in the first Bloch band:

|0, q〉 =
∑
l

Φ̃0
(
~q + 2l~k

)
|~q + 2l~k〉 , (2.3.25)

The decomposition Φ̃0 is not straightforward and is linked to the Wannier represen-
tation of the lattice eigenstates[Wannier, 1937; Dalibard, 2013]. In the following,
we denote Φ̃0 as the Wannier function in momentum space.

In the absence of a lattice (V0 = 0), the Wannier function in momentum space
evaluates to 1 in the first Brillouin zone and 0 else where. In the tight bind-
ing limit, the potential wells can be approximated by harmonic oscillators with
frequency ω = 2

√
|V0|Er/~ and the Wannier function in momentum space is then

proportional by the p-representation of the ground state of the harmonic oscillator:

Φ̃0(p) ∝
( 1
πm~ω

)1/4
exp

(
− p2

2m~ω

)
. (2.3.26)

As the initial state of the atom presents a single momentum component initially,
it would be loaded in a superposition between bands if the lattice were to be turned
on abruptly. Alternatively, we can increase linearly the lattice potential so that
the atomic wavefunction follows adiabatically the first energy band n = 0. The
evolution of the wavefunction has been represented in figure (2.11).

The duration τ of the linear ramp is constrained by the adiabatic condition
that we obtain from[Ben Dahan, 1997]:

τ � 1
32
√

2
~
Er

V0

Er
in the weak binding limit (2.3.27)

τ � 1
16
√

2
~
Er

(
Er
V0

)1/2
in the tight binding limit, (2.3.28)
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Figure 2.11: Adiabatic loading to the first Bloch band through linearly increase of
the lattice potential from top to bottom. In red, linear ramp of the lattice height.
In blue, momentum components of the wavefunction.
The figure can also be read from bottom to top with a time reversal and then
represents the unloading of the atomic wavefunction from the lattice.
The Wannier functions have not been precisely computed and are illustrations of
the concept.

Both criteria depend on the typical duration ~/Er ∼ 42 µs for Rubidium atoms.
The dependence in V0 changes with the binding limit, such that we estimate the
duration at V0 = 4Er and obtain 93 µs from the tight binding limit condition.
During the loading, the optical lattice is not at rest in the laboratory frame but
mimics the gravitational acceleration. We set the loading duration at 200 µs, by
optimizing the unloading process (see below).

After the loading is completed, the acceleration is turned on and the quasi-
momentum obeys equation (2.3.19), such that the state given by equation (2.3.25)
evolves as:

|0, q(t)〉 =
∑
l

Φ̃0
(
~q + Ft+ 2l~k

)
|q + Ft+ 2l~k〉 . (2.3.29)



2.3. BLOCH OSCILLATIONS 61

Figure 2.12: Evolution of the Bloch state during the acceleration through its de-
composition on the plane wave basis. Top: after the adiabatic loading. Middle:
during the acceleration. Bottom: after the acceleration, beginning of the adiabatic
unloading.
The width of the Wannier function in momentum space as been artificially re-
duced. The horizontal displacements indicate that the origin of the horizontal axis
is shifted towards increasing p from top to bottom.

The evolution of the wavefunction is represented on figure (2.12). The teeth com-
ponents of the wavefunction are unchanged with the evolution, but the amplitude
of each contribution varies accordingly with the evolving Wannier function.

Our team studied numerically the acceleration process in [Cladé, 2017] where
they computed the evolution operator associated with one Bloch Oscillation using
the time-independent Hamiltonian from equation (2.3.13):

U = exp
(
−iHτB

~

)
, (2.3.30)

where the Hamiltonian is given by equation (2.3.13). An eigenstate of this operator
with an eigenvalue of modulus 1 performs a Bloch Oscillation without losses. This
study showed that in the tight binding limit the Bloch state is actually not an
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eigenstate of the evolution operator and as a consequence is not optimal with
respect to losses by interband transitions. The interpretation of this result is that
when the acceleration starts, the local minima of the potential are slightly shifted
because of the Fz term. Because of this, the trapped atoms exhibit a micro-motion
at the bottom of the wells. Experimentally, we solve this issue by applying a phase
shift to the laser beams during the acceleration, such that the minima with and
without acceleration overlap.

At the end of the acceleration, i.e. after a duration TB = NτB, the wavefunc-
tion has been translated in momentum space by 2N~k. We then unload the atoms
from the lattice with a linearly intensity ramp which is the time reverse of the
loading ramp. The adiabatic unloading maps the final Bloch states on a single
momentum component. It is by minimizing the number of atoms at ±2~k that we
optimized the loading/unloading duration at 200 µs. These velocity components
were observed using velocity selective Raman transitions.

2.3.5 Application to the h/m measurement
The usefulness of Bloch Oscillations comes from two properties

1. It performs a coherent acceleration, i.e. without scattering, such that they
can be embedded in an atom interferometer

2. Their efficiency have been estimated to 99.97% per recoil[Cladé, 2006]. The
limitation to this efficiency come from spontaneous emission and interband
transitions. Nevertheless, it corresponds to an 86% survival probability over
a 500 BO process.

As a consequence, we use them as the process in between the Ramsey sequences
of the differential velocity sensor (section 2.2.4). The velocity transfer is given by:

∆v = 2NB
~kB
m

, (2.3.31)

where we denote the BO related quantities by the subscript B. The parameter
N is well known, as it is controlled by the duration of one BO τB and the total
duration of the acceleration TB. Typically, for NB = 500 and τB = 12 µs, we
have TB = 6 ms, such that BO can be integrated in an atom interferometer. As
a consequence, we obtain a signal that is proportional to h/m (gravity excluded)
with a proportionality factor 2NkB which is precisely known. We will discuss
precisely the h/m determination protocol in chapter 5.

A difficulty that can occur with BO is that for NB = 500, the velocity of the
atoms is shifted by 6 m·s−1. As such, even with our one meter tall vacuum cell, it
is easy to make the atoms reach a window. However, BO are also the solution to



2.3. BLOCH OSCILLATIONS 63

this issue as a combination of two pulses allows to control both the position and
velocities of the atoms:

For simplicity, we assume that the BO process happens in a infinitely short
duration. We apply two Bloch pulses at times t1, t2 with N1, N2 BO each. We take
here the convention the number of BO can be negative to mark accelerations in
both direction. Assuming z0 = 0, v0 = 0 at t = 0, and that the atom is subjected
to gravity g, we obtain that the velocity and positions obey for t > t2:

v(t) =
(
N1 +N2

)2~kB
m
− gt (2.3.32)

z(t) =
(
N1(t− t1) +N2(t− t2)

)2~kB
m
− gt2

2 . (2.3.33)

We control the velocity of the atoms through the number of BO of each pulse and
their position through the delay between the two pulses. This technique, called
atom elevators, will be developed in detail for the study of systematic effects (sec-
tion 6.1.2) for which the positioning of the atoms prior to the interferometry se-
quence is critical.

Our toolbox is now complete as we can transfer a large number of atomic recoils
to the atoms (BO) and measure their velocities (Raman transitions, interferome-
try). The present thesis work was focused on implementing those tools on the new
experimental setup, which is presented in the following section.
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Chapter 3

Experimental implementation

The research interest towards measurements of the h/m ratio in the metrology
team of the laboratory started in 1998. Since then, three versions of the experiment
have been implemented. This work has been essentially focused on the third and
last version of the experiment.

The previous setup issued the last determination of the team[Bouchendira,
2011] with a relative uncertainty on α of 6.6 · 10−10. In order to improve this
result, our group a built a new experimental setup. The construction of this setup
started in 2013 and has been detailed in the PhD thesis of R. Jannin[Jannin,
2015a] and C. Courvoisier[Courvoisier, 2016].

It presents several improvements:

1. An improved control of the magnetic field during the interferometers

2. Higher-power laser sources

3. Ultracold atomic sources

4. A better control of vibration noise

In this chapter, we start by presenting the vacuum cell and the setup to produce
atomic clouds. Then, we will turn to the presentation of the interferometry lasers
implementation. This part describes one of the main contributions of my PhD
work to the development of this setup. Finally, we will discuss the operation of
the setup, in particular on two examples: the measurement of the magnetic field
in the interferometry area and the measurement of the gravity gradient.

65
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3.1 Atomic sample production

3.1.1 Vacuum cell
The vacuum cell design and preparation have been extensively detailed on the
previous thesis[Jannin, 2015a; Courvoisier, 2016]. We start by recalling here its
main features. A schematic presentation is displayed on figure (3.1): the vacuum
cell is L-shaped with three distinct areas: the corner, or main chamber, where the
atomic samples are prepared, the horizontal part which is responsible for loading
atoms in the corner part and the vertical part which is the interferometry region.

The requirements for the vacuum cell were a pressure below 10−9 mbar in order
to allow trapped atom lifetimes ∼ 10 s. Under this condition, no residual atomic
vapor can be placed in the main chamber. In order to load atoms in the main
chamber, the atomic source is placed at the tip of the horizontal part and a two
dimensional magneto-optical trap (2DMOT) is responsible of primary trapping
(see section 3.1.3). In between the 2D-MOT cell and the main chamber, a vacuum
cross gives access to the cell for primary pumping, and continuous pumping with
an ion pump.

In order to prevent a pollution of the main chamber by the rubidium vapor in
the 2DMOT cell, the connections are made through two perforated disks whose
holes diameter are ∼ 4 mm, realizing a differential vacuum between the two parts
of the chamber.

The vacuum cell was furthermore manufactured from titanium, an amagnetic
material in order to avoid stray magnetic fields. Finally, the vertical part is a tube
surrounded by a solenoid that defines a bias magnetic field along the vertical axis
and a two layer cylindrical 2 mm thick µ-metal magnetic shield. The diameters of
the shield cylinders are 12 and 16 cm. We used 3D-printed spacers to ensure the
stability of the inner cylinder. The residual magnetic field has been estimated to
100 µG.

The tube and the main chamber are separated by a cubic cell which is used
to detect the atoms. A detailed description of the vertical laser path and the
detection is reserved for sections 3.2.4 and 3.3.2.

Finally, the vacuum cell is embedded in an aluminum profile system, and we
have surrounded it with wood panels for environmental shielding. Pictures of the
setup are shown in figure (3.2).

In order to maintain the vacuum inside the chamber, two SAES NEXTorr
D200-5 systems, combining an ion pump and a getter surface, are installed on the
chamber.

The chamber was machined by the mechanical workshop of our lab. In particu-
lar, two crosses were welded under an Argon atmosphere. This noble gas saturates
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Figure 3.1: Schematics of the vacuum cell and its main components. The solenoid
that generates a vertical bias magnetic field is wrapped around the tube of the
interometry area. The magnetic shield surrounding it is not represented.
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Magnetic
shield

Figure 3.2: Pictures of the experimental setup. On the left: the wood panel box
that shields to experiment from environment induced perturbation (mainly the air
conditioning system). On the right: inside the wood panels: the interferometry
area solenoid is hidden by the magnetic shield. Furthermore, the vacuum cell is
surround by Elcom aluminum bars that allow for agile access.

the SAES NEXTorr pumps and leads to periodic sharp pressure increases. In order
to prevent this Argon instability[Courvoisier, 2016], a supplementary Agilent ion
pump was installed.

This system was in place at the beginning of this work. However, after a few
months, the pressure in the vacuum chamber was unstable around a mean value
of a few 10−9 mbar. This value was limiting our experiments with Bose-Einstein
Condensates. In order to solve it, we have replaced one of the vacuum cross, the
farthest from the Agilent pump, by a commercial cross which contained no Argon.

After re-baking the vacuum chamber for three weeks, we obtained a vacuum
quality of ∼ 2 · 10−10 mbar, continuously for now two years.

3.1.2 Atom trapping laser system
We use usual techniques based on optical molasses and Sisyphus cooling to produce
cold atoms sources[Dalibard, 1989; Ungar, 1989], based on illuminating a given
location with 6 laser beams, one for each direction.

The experimental implementation on atomic levels is based on a cycling transi-
tion (|F = 2〉 → |F ′ = 3〉 for 87Rb) such that the atoms cannot fall back to |F = 1〉
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and remain trapped. We denote the laser that excites this transition the trapping
laser.

However, the |F = 2〉 → |F ′ = 2〉 transition is not forbidden, and from this
level, atoms may decay to |F = 1〉, state which is not trapped. In order to
avoid this process, a secondary laser, known as repump, is set resonant to the
|F = 1〉 → |F ′ = 2〉 transition.

We then need two lasers with well controlled frequencies. Moreover, the prop-
erties of the trap can be controlled through the frequency of the trapping laser.
For the preparation of the atomic sample, a dynamic control of this parameter is
necessary.

3.1.2.1 Cooling laser system

The two lasers are generated through laser diodes (Thorlabs L785P090 ) in Ex-
tended Cavity Diode Laser (ECDL) configuration[Baillard, 2006]: the laser diode
is embedded in a Fabry-Pérot cavity. One end of the cavity being a mirror and the
other the diode itself. Inside the cavity, we place an interferential filter in order to
choose a lasing mode at 780 nm because the nominal value of the diode wavelength
is 785 nm. This systems output ∼ 25 mW per diode.

The optical power passes through a Faraday isolator to protect the diode from
feedback light and is then fiber coupled for further manipulation. This method
of fiber coupling presents the drawback of power loss. However, it provides for
modularity and for a better control of laser propagation mode. Indeed, collimating
the output of a fiber tip produces a circular gaussian mode while the output of an
ECDL produces an elliptical mode, harder to manipulate.

The frequency of each laser is set through three degrees of freedom:

1. The temperature of the diode, which is controlled by a Peltier device and
stabilized through a PID lock.

2. The current of the diode, which provides a fast retroaction on the frequency.

3. A piezoelectric transducer placed on the mirror of the ECDL cavity which
allow us to have a long-term frequency control.

The two lasers are then sent to a module where they are split and combined in
order to achieve the control of their frequencies. From this module, they are also
sent to an optical table where we prepare them for trapping.

This module is represented in figure (3.3). For compactness, the device (Thor-
labs FT114X149, PAF-X-5-B and derivatives) was chosen. While its stability is



70 CHAPTER 3. EXPERIMENTAL IMPLEMENTATION

quite satisfying, its alignment is a long and hardly repeatable procedure as it is
based on the precise positioning of fiber collimator lenses.

The system was modified since [Courvoisier, 2016] through the addition of
mirror based fiber coupling. This modification reduced the long-term stability of
the system, but simplified its alignment.

Let us first describe the optical paths. The trapping beam is simply split
through a half-waveplate (λ/2) and Polarizing Beam Splitter (PBS) system. The
main part of the power (∼ 8 mW) is sent to the manipulation table, while the
remaining part is sent to a fast photodiode on which we produce a beatnote with
the repump beam.

Concerning the repump beam, it is directly split and ∼ 2 mW are sent for
manipulation in the auxiliary output. Splitting very early in the propagation, we
make sure that the trapping laser does not mix with this repump.

The remaining part (∼ 8 mW) is further split in two. One part (∼ 6 mW) is
combined on a PBS with the trapping laser to be sent to the manipulation table,
and the other part is sent to the frequency control systems. The part that is
superposed to the trapping laser can be shut off through the use of a mechanical
shutter. When this occurs, the repump auxiliary output controls what is sent to
the atoms.

The other part of the repump is again split in two: one part contains almost ex-
clusively repump beam and is sent to a saturated absorption spectroscopy[MacAdam,
1992] cell where we generate a signal to lock on the |F = 1〉 → |F ′ = 1〉 to the
|F = 1〉 → |F ′ = 2〉 crossover.

The spectral difference between the levels F ′ = 1 and F ′ = 2 of the 87RbD2 line
is ∼ 160 MHz, such that the crossover lies 80 MHz below the |F = 1〉 → |F ′ = 2〉
transition. This 80 MHz difference is compensated through the Acousto-Optic
Modulators (AOM) that we use to control the dynamical properties of the beams.

The second part is sent to the fast photodiode in order to produce a beatnote
with the trapping laser. This beatnote is then phase locked with a variable refer-
ence signal such that we have a dynamic control on the trapping laser frequency.
We refer the reader to [Courvoisier, 2016] for more details on the frequency locks
and control.

3.1.2.2 Manipulation

The manipulations output of the splitting module (figure 3.3) is sent to the MOT
optical table (figure 3.4). At the output of the fiber transport, the repump and
trapping beam have orthogonal polarizations.

Those two beams pass through an optical isolator that prevents feedback to
the lock system. Since an optical isolator allows only one linear polarization to
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Figure 3.3: Module for trapping lasers frequency control. Two mirrors for the
alignment of repump between its first splitting and the cube square are not rep-
resented. Also, the filtering polarizers right after the input fibers are absent from
this schematic.

pass through, we place an half-waveplate before its input to balance the relative
powers between trapping and repump.

After the isolator, the laser beams are amplified with a tapered amplifier. This
system provides us with ∼ 700 mW of trapping laser and ∼ 200 mW of repump.
The output of the amplifier is collimated with cylindrical lenses to correct its ellip-
tical shape and is sent to a second isolator to protect the amplifier from feedbacks.

The remaining of the optical table consists firstly of splittings with half-waveplate
and PBS module and AOM-control/fiber coupling. A first splitting feeds another
splitter that outputs 6 beams for the 3D-MOT. A second splitting on the optical
table divides the remaining power between the 2D-MOT and an auxiliary output.
After each splitting, we placed an AOM for dynamical control of the laser beams.

The auxiliary repump comes in at this level. It passes through an AOM and is
split with one output sent to the light sheets detection (section 3.3.2). The second
output is superposed to the main beam auxiliary output.

The end-use of this auxiliary part of the beams is when the repump part of the
main beam is shut off with the splitting module mechanical shutter. At this stage,
we have temporal independent control of both the trapping beam and the repump
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beam. The trapping laser can be set resonant so that it can be used whether to
detect the atoms (section 3.1.4) or to blow them away (section 3.2).

The auxiliary combination cube provides two outputs. One is sent to the
interferometry optical table (see section 3.2.5), while the other one is split in two
to be sent to the two absorption imaging channels. Since the two lasers have
orthogonal polarizations after the combination cube, this last splitting is quite
constrained. However, the AOMs provide us with a fine tuning of the timings that
compensate this imperfect splitting configuration.

Let us now zoom in on the 2D-MOT part of the table. As we will see in
next section we need to sample a fraction of the light for the 2D-MOT pusher
which is again performed with a half-waveplate/PBS splitting. Furthermore, the
non diffracted order of the AOM is deflected by the edge of a mirror and passes
through an another AOM. We also use this path to feed the light sheet detection
(section 3.3.2) with resonant light.

Finally, we added on each path a mechanical shutter that ensures that no
leakage light reach the atoms when the AOM is off. The response time of the
shutters is ∼ 10 ms. Through their calibration, we can control their opening
and closing with a precision of ∼ 1 ms. Thus, they are not meant to be used
in conjunction with the AOMs but with the steps of the experimental sequence
(molasse, evaporation, interferometry, . . . )

3.1.3 Magneto-optical traps

Optical molasses allow to reach temperatures ∼ 4 µK with 87Rb atoms. However,
because the atoms are not spatially trapped, the density of the gas they form is
quite low. As a consequence, the atomic signal at the output of the experiment
would be low, or maybe undetectable.

To reach higher density, one combines the laser cooling process with a magnetic
field gradient1, and circularly polarized beams. This forms a magneto-optical trap
(MOT)[Dalibard, 1983; Raab, 1987]. This configuration allows for higher densities
and trap loading rate, which also enables a reduction of the experimental cycle
duration.

As the atoms are now trapped where the magnetic field cancels, the density
of the gas is quite high. Furthermore, the laser cooling process induces series of
spontaneous emissions. These photons may be reabsorbed by other atoms. As
their direction is random, this reabsorption process is a heating mechanism that
increases the equilibrium temperature of the gas.

1In fact, a quadrupole field
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Figure 3.4: MOT beams manipulations table. The top of the figure displays the
amplification setup. On the left-hand corner, from top to bottom: splitting of the
main beams to the 3D-MOT, 2D-MOT and light sheet detection. On the right,
mixing of the main beams with the auxiliary repump for use during interferometers
and for absorption imaging.
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In order to combine the advantages of both techniques, the loading of the MOT
is followed by an optical molasses phase which produces a gas at a temperature
∼ 4 µK, containing 108 atoms with a 1/e radius of 600 µm.

The magnetic field is generated from a pair of coils in anti-Helmholtz config-
uration, powered by a low response time power supply. The current through the
coils is controlled by an analog signal, which allows to switch from the MOT to
optical molasses.

At the output of the 6-beam splitter, the laser beams are collimated through
a 4 lens system, which is followed by a quarter waveplate to produce circularly
polarized beams. This collimator allows for a large beam (of waist ∼ 5 mm) which
enhances the trapping power of the MOT. The typical power in each of the beam
is 12 mW.

The 3D-MOT is loaded by atom beam produced by a two dimensional magneto-
optical trap (2DMOT)[Riis, 1990]: horizontally to the main chamber is placed a
vacuum element (2DMOT chamber) connected to a rubidium cell. The 2DMOT
chamber is hence filled with rubidium. We there produce a MOT in two dimen-
sions, the third being used to push the atoms from the 2DMOT chamber to the
main chamber. The optical setup around the vacuum cell to produce the 2DMOT
is presented in figure (3.5).

3.1.3.1 Optical molasses operation

The conversion from a MOT to an efficient optical molasses sequence is performed
through a few steps of manipulations. A scheme of these steps is presented on figure
(3.6). The loading of the MOT takes ∼ 600 ms and is limited by the programming
duration of the sequence (see section 3.3.1), the detuning of the trapping laser
with respect to the optical transition ∆ is set to ∼ −1.9Γ while the magnetic field
presents a gradient of ∼ 9 G·cm−1. For 5 ms, the magnetic field is ramped up to
∼ 15 G·cm−1 while the laser is detuned by −3.3Γ. With these parameters, the
cloud is slightly compressed. This compression stage lasts for 25 ms and maximizes
the density of the atom cloud.

Subsequently, the magnetic field command is swept to 0 in ∼ 20 ms. Simulta-
neously, the laser is detuned by ∼ −6Γ. We now reach the molasse phase which
lasts 20 ms and during which the laser is set to ∼ −22Γ in 5 ms. Finally, we shut
down the lasers power and release the cloud by ramping down the lasers intensity
to 15% of its maximum value in 10 ms, before an abrupt shutoff. The total dura-
tion of this stage is approximately 80 ms, such that we produce an atom gas from
an optical molasse in ∼ 700 ms.
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Figure 3.5: Top view of the 2DMOT. A large beam, with both trapping and
repump, is split in two parts, an horizontal one and a vertical one (not represented).
Then the beams are split in two to increase the 2DMOT captured range. The
atoms that are cooled are pushed towards the main chamber with a pusher beam.
Adapted from [Courvoisier, 2016].

After the production of the cloud, the atom cloud is positioned to the interfer-
ometry area with an elevator based on two Bloch Oscillations pulses (see section
2.3.5).

3.1.3.2 Residual magnetic field compensation

For the optical molasses process to take place at its utmost efficiency, the magnetic
field at the position of the atom trap should be rigorously 0. Thus, three pairs of
coils, each for one spatial direction and placed around the main chamber, produce a
magnetic field that is aimed to compensate for the residuals magnetic field induced
by either the Earth magnetic field or by our instruments.

The colder the atom cloud, the higher its density in velocity space, such that
the higher the transmission through a narrow Raman pulse. Using this principle,
we were able to optimize the magnetic field compensation and observe atom clouds
with a temperature of ∼ 4.3 µK, by a measurement of their velocity distribution,
displayed on figure (3.7). The size of the atom clouds upon their release from the
molasse is ∼ 1 mm, which we extraced from absorption imaging (see next section).
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Figure 3.6: Sequential steps for the MOT to molasses conversion.
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Figure 3.7: Velocity distribution at the output of the molasse stage. Data (blue
dots) was taken by scanning the addressed velocity of an elevator-selection se-
quence (see section 3.3) and measuring the atom number at its output. Data is
fitted by a gaussian (orange line), from which we extract a 1/e velocity width of
∼ 3.5 one photon recoil velocity. This corresponds to a temperature of ∼ 4.3 µK.
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3.1.4 Absorption imaging

During the MOT stage of the experiment, the atoms experience cycles of absorption-
emission. Because the direction of emission is random, the output photons of those
cycles are observed with a simple lens-photodiode-amplifier setup, where the lens
is placed at a window of the vacuum cell. This setup provides an observation sig-
nal that characterizes the MOT loading rate and the repeatability of experimental
cycles.

As the cooling process advances to a molasse stage, the atom density and laser
intensity get lower, and thus the signal onto this photodiode does as well, such
that others observation techniques shall be used. In the experiment, two kind of
observation process are set up:

1. Time of flight detection, based on the collection of the atomic fluorescence
in laser sheets. This method is used to measure the number of atoms in each
hyperfine levels (|F = 1〉 , |F = 2〉), and thus its presentation (section 3.3.2)
will be made after the interferometry setup has been introduced.

2. Imaging, which is based on the observation of the laser absorption by an
atom cloud, and is detailed on the following paragraphs.

3.1.4.1 Principle

By exposing an atomic sample to a resonant laser probe beam, and imaging with
a telescope system onto a CCD camera, one observes the absorption of the laser
beam by the atoms. In the low saturation regime, where the laser intensity is small
with respect to the addressed transition saturation intensity, the ratio between the
input and output intensity are given by the Beer-Lambert law:

Iout(x, y)
Iin(x, y) = e−n(x,y)σ, (3.1.1)

where σ is the absorption cross section, and n(x, y) the local density, integrated
over the laser direction of propagation. The product of those two quantities is call
optical density: OD = n(x, y)σ.

A second measurement with no sample allows to determine the input inten-
sity, and as such the optical density. Through the knowledge of the cross section
and the integration of the optical density over the camera region, one may esti-
mate the detected number of atoms. Furthermore, this technique provides spatial
information on the atomic sample.
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3.1.4.2 Operation

On the experimental setup, we have two cameras available. One (Sony XCD-V60 )
and its telescope system are placed directly on a window of the vacuum cell. The
telescope tube part Thorlabs SM1NR1 allows a longitudinal displacement of the
camera in order to perform clear images of the atomic sample. On the opposite
window of the cell, we placed a collimator fed with one the auxiliary output of the
MOT optical table. The direction of this imaging system is neither horizontal of
vertical, so that we denote it diagonal.

The second system is placed on the optical tables surrounding the cell on a
horizontal axis. The camera (IDS UI-5240CP-NIR-GL) is placed on two horizontal
translation stages for fine positioning and focusing. The corresponding collimator
is fed with another auxiliary output of the MOT table.

The laser feed of the two cameras provide a resonant (from the trapping laser)
and repump beam. The former is used as the probe beam. As it is only resonant
with atoms in |F = 2〉, the observation of atoms in |F = 1〉 is only enabled through
a preliminary pulse of repump beam.

Due to the re-emission of the absorbed photons, the cloud is heated by the probe
beam. As such the imaging technique is a destructive measurement. Moreover,
when operating, we should limit this heating process that would damage the spatial
information that could be extracted from the imaging process. To this end, the
probe pulse duration are of the order of ∼ 100 µs. The repump pulses duration
is of the same order of magnitude and is placed as close as possible prior to the
probe beam such that we do not observe the heating that it induces.

3.1.5 Evaporative cooling
In 2009, it was observed that that the transverse expansion of the cloud was a
limiting factor to build a more complex and sensitive interferometer geometry
based on Large Momemtum Transfer Beam Splitter combining Raman transitions
and Bloch Oscillations[Cladé, 2009].

As such, the new experimental setup that we present in this thesis is equipped
with an optical dipole trap in which the cloud is cooled by evaporation. The choice
of an optical trap versus a magnetic trap is motivated by the absence of strong
magnetic fields which can perturb the interferometers during their relaxation.

In our setup, the optical dipole trap is loaded from the MOT through spe-
cific cooling steps (see figure (4.1)). As a consequence, we can either perform
experiments with cold atomic sources generated from optical molasses or ultracold
sources produced by evaporative cooling. A comparison of the use of these two
atomic sources in our experimental setup is presented in chapter 4.
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Figure 3.8: Potential landscape seen by the atoms with the evolution of the evo-
lution process. The atom number in the trapped gas and its temperature are
reduced, as well as the potential height and confinement frequency. Extracted
from [Courvoisier, 2016]

The evaporation technique and the setup are presented in detail in [Jannin,
2015a] and [Courvoisier, 2016] and we present its main characteristics.

First, the principle of the evaporation in an optical dipole trap is presented
in figure (3.8). An atom cloud is trapped in a harmonic trap generated by laser
beams in a crossed configuration. The use of this configuration is motivated by
the fact that the trap generated by a single laser beam does not provide strong
confinement along its direction of propagation.

The evaporation cooling principle goes as follows: as the power of the laser
beam is reduced, the more energetic atoms escape the trap. The total energy of
the cloud is then lowered. Through a collisions mediated energy redistribution (or
thermalization), the temperature of the cloud is then reduced.

One can show[CohenTannoudji, 1997; Courvoisier, 2016] that the evaporation
process is governed by a power law:

(
Nf

Ni

)2q
= Tf
Ti

, (3.1.2)

where N represents the number of trapped atoms, T the temperature of the gas
they form, and the subscripts i and f the initial and final states, respectively.
Finally q represents the efficiency of the evaporation and depends on the config-
uration of the laser beams. The best performance of obtained on our setup is
2q ∼ 1.5.

As a consequence, the initial conditions of the evaporation govern its final
state. In particular, a Bose-Einstein Condensate (BEC), where the atoms macro-
scopically populate the ground state of the harmonic trap, can be observed at
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Figure 3.9: Schematic representation of the optical tables surrounding the main
chamber (top view). The setup mainly correspond to the dipole beam setup for
evaporative cooling (dark red lines), but also contains the horizontal MOT beams
(large red) and the horizontal camera path (dashed red lines). Inset: image of
the three dipole beams through the observation of atoms that are trapped at very
short time of flight (1 ms). The image is saturated so that the tails of the trap are
distinguishable.
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Figure 3.10: Images of the atom cloud at the end of the evaporation obtained after
18 ms time of flight. From left to right, the evaporation duration increases, so that
we start with a thermal gas on the left. In the middle, the characteristic peak of
a BEC appears with a thermal background. On the right picture, we observe only
the BEC peak.

temperature below[Courvoisier, 2016]:

Tc = 0.94 · ~ω
k
N1/3, (3.1.3)

where ω is the trap frequency and k is in this context the Boltzmann constant.
The temperature of the transition scales with the remaining number of atoms in
the trap, which indicates that the initial number of atoms is a critical parameter
in order to produce BECs.

One of the challenges of evaporating in a optical dipole trap is the reduction
of the trap frequency ω as the laser power is reduced. Indeed, the harmonic po-
tential is an approximation of the gaussian potential created by the laser. The
harmonic frequency deduced from the approximation scales linearly with the laser
power. Finally, the collision rate γ inside the trap scales with its harmonic fre-
quency[Dalibard, 2006]:

γ = mσcoll
2π ω3 N

kT
, (3.1.4)
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where σcoll = 6.5 · 10−16 m2 is the two body collision cross section for 87Rb. The
collision rate governs the thermalization rate, so that the higher the collision rate,
the faster the thermalization.

Finally, both the transition temperature and the collision rate reduce as we
proceed with the evaporation process. The constraints on the laser setup are then
to provide a large number of atoms initially and maintain a large enough trap
frequency. As the trap frequency scales as the inverse of the laser waist, but their
capture range scales quadratically with it, we use a three beams setup with two
collectors of large waist (∼ 100 µm) and a dimple beam of smaller waist (∼ 30 µm),
in a crossed configuration.

The optical setup that produces this configuration is displayed on figure (3.9).
We start from the output of a infrared IPG Photonics laser at 1070 nm that
produces a power 50W. This beam is first split and collimated to a smaller size in
order to increase the efficiency of the diffraction through the AOMs.

We use the order 1 and −1 of the AOMs to control the powers of the collectors
and the dimple. As such, the frequencies of the beams are separated by 160 MHz,
such that they do not interfere at their crossing points.

Then, the dimple beam passes through another telescope system that increases
its waist, and is then focused by a lens on a translation stage which allows for a
fine positioning of the laser waist. Secondly, the collector part is split in two on a
PBS. The two parts have orthogonal polarization and then cannot interfere with
each other. They are then made parallel and are focused similarly to the dimple
beam at the center of the vacuum cell.

The laser arrangement can be observed in the vacuum cell thanks to absorption
imaging of the trapped atoms, which we display as an inset on figure (3.9). Using
this setup, we are able to observe BECs as shown in figure (3.10) which displays
their formation as the laser power is reduced. In particular, one can observe the
contrast between the width of the left picture (thermal cloud) and right picture
(BEC).

At the beginning of this thesis work, the performance of the setup was the
production of BEC of 50000 atoms at 35 nK within 4s of evaporation[Courvoisier,
2016]. The improvements that were made during this thesis on this part of the
experiment, presented in section 4.1, allowed to double the number of atoms while
dividing by 2 the evaporation duration. In the others parts of this chapter (mainly
section 3.3.3), the results that we present were obtained with optical molasses
solely.
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3.2 Interferometry lasers
The interferometry lasers name includes all beams that are travelling along the
vertical axis. There are four types of them and they share a dedicated optical
table, which is represented on figure (3.21).

The lasers that we are to describe are:

1. The Raman lasers

2. The Bloch lasers

3. A blow away laser, derived from the MOT trapping laser

4. A repump laser, derived from the MOT repump laser

We start with a description of the laser production and frequency control of the
Bloch and Raman lasers. We will then describe the vertical optical path. After
discussing the laser manipulations on the optical table, we will present examples
of experimental cycles in order to illustrate the role of each laser element.

The production of the Raman and Bloch lasers is derived from telecom tech-
nologies. We present it first.

3.2.1 Amplification and doubling technology
The laser production scheme is displayed on figure (3.11). We use amplifier-
doubling modules seeded with a narrow bandwidth laser at 1560 nm. This config-
uration allows us to obtain high power at 780 nm.

The amplifier is an Erbium Doped Fiber Amplifier (EDFA)[Naji, 2011]: Erbium
ions are placed as defects inside the glass of the fiber core and amplify an incoming
laser through a stimulated emission process. The Erbium ion can be modeled as
a three level system. The ions are excited by a pump at 980 nm, and decay to a
lower lying excited state in ∼ 1 µs through a non radiative transition. From this
state, the ions may emit an infrared photon, falling back to its ground state.

However, the ions may also decay through a spontaneous emission process. Al-
though the emission direction is random, some of the photons are guided through
the fiber and are subsequently amplified. This process, known as Amplified Spon-
taneous Emission (ASE), produces a large noise spectrum.

The amplified laser beam is then sent to propagate along a Periodically Poled
Lithium Niobate (PPLN), and is doubled through Second Harmonic Generation
(SHG). For the conversion to occur both energy and momentum must be preserved.
Inside the material, the dispersion relation (refractive index) governs momentum
conservation, such that the temperature of the crystal should be carefully adjusted.
This is also known as the phase matching condition.
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Figure 3.11: Scheme of the amplification and doubling of a 1560nm laser source
to a high power 780 nm source. On the bottom of of the figure are represented an
approximative power spectrum at each step which display the ASE background
and its filtering by the doubling process.
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Figure 3.12: Output power of the amplifier-doubling module as a function of the
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is constant, such that this figure represent the width of the crystal acceptance.
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Figure 3.13: The two Raman lasers preparation, which constitutes a superposition
for further manipulation (top middle arrow, unmarked), and a superposition for
phase locking (right). The laser Raman 1 is furthermore picked off for absolute
frequency stabilization.

The frequency width of the phase matching condition depends of the geometry
of the crystal. We have performed a measurement of this quantity and found
a width of ∼ 40 GHz (see figure (3.12)) for the modules that we use on the
experiment, which were built by the companyMuQuans. This figure is particularly
interesting when estimating the impact of the ASE background on our experiments.

3.2.2 Raman Lasers
In order to perform Raman transitions, we need two lasers whose frequencies are
separated by the hyperfine splitting. Additionally, the frequency of each laser
should be controlled precisely as well as the phase between the two lasers.

One of the lasers is seeded with a NKT laser while the second with a RIO diode.
I denote them respectively Raman 1 and 2. We phase lock Raman 2 to Raman
1. The RIO diode has a fast response time which meets the requirements to run
an interferometer. On the other hand, the NKT laser presents a narrow frequency
power spectrum. We lock the absolute frequency of this laser with techniques
presented in section 3.2.6.
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Figure 3.14: Raman Phase Lock Loop frequency chain. See text for detail. We
did not represent the laser path between the RIO laser diode (bottom right-hand
corner) and the photodiode beatnote (top left-hand corner).

The schematic of the Raman preparation is presented on figure (3.13). Both
lasers are polarization filtered with PBS at the output of the lasers. Raman 1 is
furthermore picked off with a half-waveplate/PBS combination. This picked off
light is sent to the frequency stabilization module.

Finally, the two beams are combined on a PBS which provides two outputs
with superposed Raman beams, with orthogonal linear polarizations, meeting the
requirement we have stated in section (2.1.2.2). One the output is further manip-
ulated before being sent to the atoms (see section 3.2.5). The other is sent to a
fast photodiode for phase locking.

The frequency chain of the Raman Phase Lock Loop (PLL) is displayed on
figure (3.14). The fast photodiode (Hamamatsu G4176-03 ) produces a signal at
frequency ∼ 6.834 GHz, which is amplified by ∼ 35 dB. A small fraction (−20
dB) of the signal is sampled with a coupler and used for observation. We usually
observe its trace on a spectrum analyser (figure (3.15)).
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Figure 3.15: Typical trace of the Raman lasers beatnote obtained on a spectrum
analyser.

In order to transport the main part of the signal with minimum losses, it is di-
rectly mixed with the output of Rohde&Schwartz SMF100A to lower its frequency
at ∼ 320 MHz. This signal is then divided by 4 and sent to the Phase Comparator
device.

The synchronization input of the phase comparator is fed with a RedPitaya
output set in direct digital synthesizer. This device outputs a 40 MHz signal which
is frequency doubled. We obtain two 80 MHz signals to implement phase locking.
The PLL is then completed with a PID controller to feedback on the RIO diode
laser and lock its phase to the first Raman laser.

The PID parameters are carefully set to minimize the low frequency phase
noise, as displayed in figure (3.15). Indeed, as we have developed when studying the
sensitivity function (section 2.2.5), the transfer function of an atom interferometer
behaves as a low pass filter whose cutoff frequency is given by the duration of the
Raman pulses.

3.2.3 Bloch Lasers
For the Bloch lasers, we need two coherent laser beams at 780 nm whose frequen-
cies can be controlled independently: when running the optical lattice inside the
interferometer in order to measure the recoil velocity of an atom, it is required that
the 2 photon recoil remains constant, i.e. the mean frequency of the two lasers is
unchanged.
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Figure 3.16: Laser system for the implementation of the Bloch Oscillation process.
A single source feeds two amplification-doubling modules. The control of the
frequency of the lasers at 780 nm is achieved by the frequency command of AOMs
placed before the amplifiers.

The usual technique to achieve this control was to split the 780 nm source, and
place a double pass AOM for each splitted beam. The double pass AOM allows
a frequency shift without steering, and thus a constant coupling through a fiber
collimator.

However, the efficiency of a double pass AOM is limited to 50%, and it de-
pends on the AOM driving signal frequency. When operating a double pass AOM
for Bloch Oscillations, the frequency of the driving signal changes by typically
±10 MHz, which is slightly larger than the frequency range on which the AOM
efficiency is flat. As a consequence, the optical power will not be constant over the
Bloch Oscillations pulse.

In order to circumvent this issue, an AOM at 1560 nm is placed before the
EDFA in the amplifier-doubling module. This AOM is single pass but the design
by MuQuans was carefully made to minimize the impact of steering. Due to the
fast response time of the EDFA output power lock, this system provides a 1.5 W
laser with dynamically variable frequency and constant power over the frequency
range. This system is represented in figure (3.16)

In order to run Bloch Oscillations, we have two of such modules and we seed
them with a 50/50 splitted single source produced by a second NKT laser. The
frequency of the lasers is given by

fBloch = 2 (fNKT + fAOM) (3.2.1)

We recall that the two photon Bloch frequency is made constant by changing the
frequency of the two lasers by the same absolute value but with opposite sign.



3.2. INTERFEROMETRY LASERS 89

As a consequence, we control the lasers frequency around a central value for the
AOMs f 0

AOM :

f±Bloch = 2
(
fNKT + f 0

AOM ± δf
)

(3.2.2)

During the Bloch Oscillations process in the interferometric sequence, if a part
of the ASE background is resonant with an atomic transition, it will lead to spon-
taneous emission, which induces decoherence during an interferometric sequence.
This decoherence leads to a dramatic decrease in the contrast of the interference
fringes and reduces the sensitivity of the measurement. This phenomenon has been
studied previously in our team[Andia, 2015b], and we apply the technique that was
then implemented and characterized to overcome it: we place on the path of the
lasers a heated cell that contains Rubidium atoms which absorbs the resonant part
of the ASE spectrum. This preparation scheme is presented in figure (3.17).

Since the Bloch lasers are far detuned from the resonance (∆ ∼ −40 GHz), it
is not attenuated by the heated cell. On the other hand, we checked the proper
functioning of the cell by passing a beam resonant with Rubidium atoms through
it. We observed an absorption or 99% of the beam power from a cell temperature
of 40◦C. In continous operation, the cell temperature is maintained around 85◦C.

The reason why this filtering is necessary for the Bloch system and not for the
Raman one is related to the duration of the light pulses: a few milliseconds for
Bloch pulses and a fraction of millisecond for Raman pulses. Finally, this laser
system, that produce optical lattices with variable velocities can also be used to
perform Bragg transitions.

3.2.3.1 Relative frequency control

One of the main drawbacks of such a system is the RF generator discontinuations
during frequency ramps which can result in a breakage of the laser system: during
frequency ramps, some generators may stop for a duration of ∼ 10 µs. During
this period, the input AOM is shutoff, and no input light enters the EDFA. This
duration is too short to be detected by the control photodiodes, and the EDFA
accumulates excited Erbium ions. As soon as the input light comes back, these
ions emit a strong light pulse that might damage the fiber itself or the doubling
crystal.

In order to avoid such phenomenon, the 1560 nm AOMs are fed with the two
fast output of a RedPitaya. Their programming ensures a fixed amplitude of the
radiofrequency signal with controllable frequency.



90 CHAPTER 3. EXPERIMENTAL IMPLEMENTATION

3.2.3.2 Absolute Frequency control

The second drawback of this system is that the laser frequency at 780 nm is
not constant with time, and in particular during the Bloch Oscillations pulse.
Moreover, the stabilization process locks the NKT seeder laser frequency. In this
context, it is preferable to sample a laser corresponding to twice the frequency of
the NKT laser2, without offset coming from the 1560nm AOM.

In order to meet such a requirement, we have picked off a fraction of one the
lasers, similar to the Raman laser pickoff. However, before sending it the frequency
stabilization setup, the laser beam goes through a double pass AOM system (see
figure (3.17)), where the AOM is fed by the same frequency of the 1560 nm AOM.
Moreover the alignment is set such that the laser is diffracted to the −1 order of
the AOM, such that its output frequency evaluates to:

f = 2 (fNKT + fAOM)− 2fAOM = 2fNKT . (3.2.3)

This solution meets the requirement that we stated in the above paragraph.
However, as we have exposed previously, the output frequency of a double pass
configuration varies sharply with the input frequency of the AOM. Moreover, the
frequency stabilization procedure is based on the Pound-Drever-Hall technique
that slightly depends on the laser intensity. In the context of high precision mea-
surement, this can lead to a systematic effect.

To circumvent this issue, we have set up a more expensive solution: we collect
from the NKT laser 10% of its power and send this pickoff to another amplifier-
doubling module and lock the NKT frequency with the output of this laser. This
solution possesses the advantage on relying directly on a laser whose frequency
2fNKT is constant.

In conclusion, we have presented a new laser system for the production of op-
tical lattices at 780 nm based on amplification-doubling modules and where the
frequency variation is performed before the amplification. Compared to usual dou-
ble pass AOM systems, this one is compact and provides constant optical power
at 780 nm over the whole frequency range. However, for applications demanding
a frequency stabilization, this system requires an additional module. We have
presented two solutions, one, cheaper based a double pass AOM that can be used
if high accuracy in the knowledge of the laser frequency is not needed. The sec-
ond, more expensive, based on the use of a third amplification-module system, is
currently used on the experiment for the current work we are doing towards the
measurement of the h/m ratio as it ensures accuracy on the laser frequency that
is sent to the stabilization table.

2As our stabilization process is designed to work with signals at 780 nm
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Figure 3.17: Schematics of the Bloch lasers preparation. The beam colors are
meant for visualization purposes and do not represent the lasers frequency. One
of the beam (in red) is picked off to a double pass AOM that erases the frequency
shift induced by the 1560 nm AOM and can then be sent to frequency stabilization.
Both beam pass through a Rubidium cell for ASE background filtering

3.2.4 Vertical path description
Before turning to the interferometry optical table design that aims to the final
control of the lasers to interrogate atoms, we describe the optical path of those
lasers in the vacuum chamber. This presentation will allow us to discuss the
characteristic of the setup, and will exhibit the requirements for the interferometry
lasers preparation. A schematics of this path is displayed on figure (3.18)

The choice of a vertical configuration for the interferometry lasers is guided
by the fact that the atoms are subjected to the gravitational acceleration. As
such, any horizontal configuration would be limited by this acceleration. With the
vertical acceleration, we ensure that gravity does not move the atoms out of the
laser beams.

Moreover, because Bloch Oscillations are implemented during the interferome-
ter, we should ensure that the Bloch beams induce as little decoherence as possible.
On top of the blue detuning that induces a trapping at the minima of intensity
within the lattice, we should use a configuration that limits residual lattices as
they would translate in a non zero mean intensity perceived by the atoms.

As a consequence, we use a configuration that makes each Bloch beam travel
only once through the vacuum cell. The downwards going beam is deflected by
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Figure 3.18: Scheme of the interferometry lasers path. The two Bloch beams are
distinguished by their direction of propagation (Downwards (D) or Upwards (U)).
Each interferometry beam is indicated next to its input fiber with its corresponding
axis of linear polarization.
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a PBS at the output of the vacuum cell and sent to the upwards going beam
collimator to ensure proper alignment.

Moreover, the beams at the output of the collimators have a gaussian shape.
In order to place ourselves in a configuration that is as close a possible to a plane
wave, we need to use large beams. To achieve this, we use commercial (SK 60FC-
T-4-M75-02 ) collimators that produce a beam with 6.25 mm waist. However, the
beams are there not strictly gaussian as they present non-negligible intensity at
their wings. In the interferometry region, which is a 5 cm diameter tube, these
wings reflect on the edges producing parasitic reflections that induce decoherence
of the atomic states during the interferometer.

We hence place reverse apodizing filters (Thorlabs NDYR10A) at the output
of the collimators that cuts the beam wings and produce beams with a ∼ 5 mm
waist. Because these filter are metallic, they cause back reflections to the cell.
This issue is solved by tilting the filters by a few degrees.

For the measurement of the recoil velocity, the beams alignments (counterprop-
agating condition) is an important parameter to be controlled within a few µrad.
The alignment drifts will prevent us to reach such a precision over a extended
period of time. We use PZT transducers on mirror mounts and the observation
of the transmitted (or reflected) power through the input fiber. We set the PZTs
at the maximum of observed power to ensure the best alignment possible between
the different beams. This procedure is ran approximately every 45 minutes, so
that the alignment is continuously optimized.

During the interferometers, Bloch acceleration is currently only used for com-
mon mode acceleration and we do not need phase coherence of the two beams.
This is not the case for the Raman beams as their phase coherence is necessary to
run the interferometer.

If the Raman beams were sent through different fibers, each fiber would induces
a differential phase shift. This phase shift would not be constant over time as it
would depend on environment fluctuations such as temperature. In the early stages
of the experiments, a compensation of this phase noise was tried. However, it does
not reach a sufficient stability.

As a consequence, the two Ramans beams should be sent to the vacuum cell
through the same fiber. For counterpropagating configuration, we then need the
beams to be retroreflected. Due to selection rules of the Rubidium atom, the polar-
ization of the Raman beams should be orthogonal. As we use linear polarization,
we may split the beams with a PBS. As such, above the retro reflecting mirror
we place a PBS, in order to reflect only one of the Raman beams. As we have
seen, this PBS is also used to send the upwards going Bloch beam and discard the
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downwards going one, such that the polarization of the Bloch beams should be
linear and is dictated by the PBS.

It should be noted that the presence of an additional beam increases the light
shifts during the Raman pulses. Moreover, copropagating Raman transitions are
also induced by the arrangement of the beams, which generates an additional en-
ergy level displacement. The effect of this displacement on the measurement of
h/m is considered in section 6.3.1.3.

Let us now discuss the Raman phase noise of the system. The retroreflected
beams travels an additional distance 2z induced by the back and forth in the cell.
Any noise on z would then translate to the interferometric phase as 2kιz, where
kι is the wavevector of the retroreflected Raman beam. This noise is related to
the ground acceleration. We estimate its impact using the sensitivity function
formalism and deduce the interferometer velocity sensitivity function gv.

Indeed, we can measure the acceleration of the retroreflection mirror a(t) and
deduce from it dv = a(t)dt, and then compute an estimation the phase shift on
the interferometer with:

δΦ =
∫ +∞

−∞
gv(t)dv =

∫ +∞

−∞
gv(t)a(t)dt, (3.2.4)

where gv describes the impulsional response of the interferometer to a velocity
jump of the retroreflecting mirror.

We recall that the interferometer phase shift with respect to a perturbation is
given by:

δΦ =
∫ +∞

−∞
gφ

dφ
dt dt =

∫ +∞

−∞
gφ2kι

dz
dt dt (3.2.5)

in our case. We can obtain the acceleration d2z
dt2 through an integration by part

and deduce the velocity sensitivity function:

gv(t) = −2kι
∫ t

−∞
gφ(t′)dt′ (3.2.6)

For simplicity, we limit the discussion the to infinitely short pulse hypothesis,
such that for the Ramsey-Bordé interferometer this function is given by (equation
(2.2.73)):

gv(t) = 2kι



0 if t < 0
t if 0 < t < TRamsey
TRamsey if TRamsey < t < Tdelay
TRamsey − (t− Tdelay) if Tdelay < t < Tdelay + TRamsey
0 else

.

(3.2.7)
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Considering the interferometer transfer function to a sinusoidal acceleration a(t) =
a0 cos(ωt + ψ), we may obtain easily that Ha(ω) = |g̃v(ω)|. Moreover, from the
properties of Fourier transform and derivatives, we have g̃v(ω) = −i(2kι/ω)g̃φ(ω),
such that we have the simple relation:

Ha(ω) = 2kι
ω2 H(ω), (3.2.8)

because the phase transfer function of the interferometer writes H(ω) = |ωg̃φ(ω)|
(equation (2.2.81)). Thus, the velocity sensitivity function decreases sharply with
the perturbation acceleration frequency. Indeed, considering a sinusoidal acceler-
ation with constant amplitude a0, as its frequency increases, it induces displace-
ments that decrease as ω−2 from the integration of the equation of motion. As a
consequence, the phase noise associated to this acceleration, proportional to the
position shift of the mirror decreases with the same scaling factor.

For an explicit expression, we have from equation (2.2.81):

Ha(ω) = 8kι
ω2

∣∣∣∣sin(ωTRamsey

2

)
sin

(
ωTdelay

2

)∣∣∣∣ . (3.2.9)

The limit ω → 0 yields

Ha(ω) =
ω→0

2kιTRamseyTdelay. (3.2.10)

We find here a result similar to the gravitational acceleration sensitivity of the
output phase of the interferometer that takes into account the atomic motion. As
such, a constant acceleration of the retroreflection mirror appears as a systematic
shift in the determination of the central fringe. Moreover, because 2kι ∼ ke, the
Raman effective wavevector, one may factorize the expression of the output phase
in the presence of a constant acceleration a0 from equations (2.2.66) and (3.2.4):

Φinterferometer = TRamsey (ke(∆v − (g − a0)Tdelay)− δω) . (3.2.11)

As a consequence, the retroreflecting mirror can be seen as the referential in which
the measurement is performed, and its control is of critical importance.

Furthermore, thanks to the limit in ω → 0 of the transfer function given by
equation (3.2.10), we can obtain that the acceleration cutoff frequency is of the
order of fc ∼

√
TRamseyTdelay

−1
. In practical purposes, we can assume that we are

only sensitive to acceleration noise in the band 0− 100 Hz.
Unfortunately, this frequency band is quite populated in typical laboratory

conditions. In order to isolate the retroreflecting mirror from this vibration noise, it
is placed on a passive isolation table (Minus-K BM4 ), which has a cut-off frequency
of 0.5 Hz when properly set.



96 CHAPTER 3. EXPERIMENTAL IMPLEMENTATION

101 102 103

Frequency (Hz)

10 8

10 7

10 6

10 5

10 4

Ac
ce

le
ra

tio
n 

sp
ec

tra
l d

en
sit

y
(g

/
Hz

)

Vibration spectrum

On Minus K table
On Minus K table - sub optimized
On floor

Figure 3.19: Acceleration power spectral density: without isolation (green), with
sub optimized isolation (orange) and optimized isolation (blue). We obtained the
data from an oscilloscope measurement. The high frequency (& 1 kHz) component
of these power density is attributed to electronic noise.

In order to get the best isolation possible, a minimal number of optical elements
are placed onto the table. However, because of this choice, the isolation platform
is quite light and a such very sensitive to air flow from the air conditioning system.
To reduce this sensitivity, the whole vacuum cell is embedded in a wood panels
box that shield in particular from air flow.

Moreover, we place on the isolation table, beneath the retroreflecting mirror,
an accelerometer (Nanometrics Titan) from which we can obtain the acceleration
power spectral density, displayed in figure (3.19). This plot shows the importance
of the adjustment of the isolation table. We estimate the phase noise induced
by the acceleration noise to ∼ 7 mrad using equation (2.2.82), with this data at
optimal adjustement.

This phase noise is not negligible and we use the accelerometer to measure
the vibrations during the interferometer and compensate them in the phase com-
putation using the sensitivity function (equation (3.2.7)). The difficulty in such
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a method is the calibration of the accelerometer. Currently, we use an ad hoc
calibration constant based on minimizing the statistical uncertainty of a large in-
terferometer fringes dataset.

Now that we have discussed the main source of noise in the phase induced by
the Raman beams during the interferometer, we may discuss less important sources
of phase noise. The top collimator from which both Raman beams are inputted to
the vacuum cell is not isolated from environmental vibrations. However, the phase
noise that these vibrations induce scales with an effective wavevector |k1 − k2|,
which correspond to a sensitivity 10−5 less important than the retroreflection in-
duced noise. The common propagation mode reduction is actually better than the
isolation table!

Moreover, because the Raman beams are sent through the same fiber, one
may expect that this cancels all transport phase noise. However, we send two
beams with orthogonal polarization through a polarization maintaining fiber. The
core of this kind of fiber is birefringent such that they do not share a common
refractive index, either a common sensitivity to environmental perturbations. In
order to limit phase noise from this effect, we place the fiber in a thermal sheath.
Moreover, thermal fluctuations also affect the polarization at the output tip of
the fiber. Concerning the Bloch beams, this translates as fluctuations of the main
lattice height and creation of a residual lattice.

To conclude this description, we also need a blow-away that removes atoms in
the |F = 2〉 hyperfine state and a repump that transfer all atoms in |F = 1〉 to
|F = 2〉. These beams are obtained from the MOT optical table (see figure 3.4),
and their polarization are orthogonal, similarly to the Raman beams case. In order
to meet the behavior described, the blow away polarization is chosen so as that the
beam is transmitted by the PBS. As a consequence, the repump is retroreflected
and heats the atoms, unlike the blow away that pushes them.

3.2.5 Interferometry preparation
After the basic operations that we presented in sections 3.2.2 and 3.2.3, the laser
beams should be manipulated in order for them to reach in a dynamically controlled
way the vertical path described in the last section.

The bottom collimator is quite straightforward as it is the path of only one
Bloch beam. However, the top collimator is fed with the second Bloch beams, the
Raman beams, the blow-away and the repump lasers which correspond to three
separated laser paths. Moreover, in the latter paths are superposed laser beams
with orthogonal polarizations. As such, the beam superposition cannot be made
with PBSs.
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Figure 3.20: Principle of temporal superposition of two beams with an AOM.

Alternatively we can superpose beams in an AOM. The principle of the tech-
nique is displayed in figure (3.20). On the left we have displayed the usual AOM
use as a switch. On the right, the AOM is off but we added a second beam that
travels on the diffracted order path. Then both beams are superposed, and for
example can be coupled to the same fiber port, but cannot be used simultane-
ously. This temporal separation is not an issue to us as the interferometer we
perform rely on separate operation of Bloch Oscillations, Raman transitions and
other manipulations.

We use this technique twice on the alignment towards the top collimator as
can be seen in figure (3.21) that summarizes the manipulations made on the in-
terferometry lasers. The top Bloch beam is diffracted through an AOM and then
coupled. The Raman beams are diffracted with their own AOM, and the diffracted
order is aligned to the Bloch diffracted path. Finally, the blow-away and repump
lasers, obtained from the MOT table (figure (3.4)), are there controlled with their
own AOM, and their path is superposed to the diffracted order of the Raman
AOM.

Finally, in the superposed Raman beams path, we place a movable half-waveplate
that rotates the polarization by 90◦. This waveplate is placed on a translation stage
whose motion is controlled by a servo motor. On the vertical path, this waveplate
controls the beam that is deflected by the bottom PBS and as a consequence the
Raman direction.
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figures (3.13) and (3.17) and are put for comprehensiveness of the table description.
The remaining of the table feed the vertical path collimators with the necessary
beams.
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3.2.6 Frequency stabilization
The measurement of the h/m ratio requires a perfect knowledge of the Raman and
Bloch lasers frequencies. The first step is to stabilize their frequencies, and then
measure them.

The stabilization process has been described in [Jannin, 2015a] and is based
on Pound-Drever-Hall technique on an ultra stable cavity which is itself locked to
a two photon transition of 85Rb.

The measurement process is based on the comparison with a frequency comb[Diddams,
2000] located on the second floor of the Jussieu building thanks to a fiber link be-
tween our laboratory and the frequency comb platform. We send in both lasers
thanks to a fiber power splitter that we use as a combiner. Thanks to the agility
of the frequency comb parameters, we can obtain separable beatnote RF signals
for each laser, and measure them independently.

The time reference for this measurement is obtained from a 100 MHz signal
issued by the SYRTE laboratory from their atomic microwave clock. This signal
locks a quartz oscillator that outputs a 10 MHz signal which is used as a reference
for the frequency counters. We also use this reference signal in our lab to control
precisely the output frequency of our generators.

3.3 Operation of the experimental setup

3.3.1 Sequence programming
We have detailed in the last two sections the setup that produces cold atom gases
and the laser system to interrogate them. We now describe the control system
that synchronizes these elements.

Our control computer is connected to a National Instrument card that has
32 Digital Outputs (DO), 4 Analog Outputs (AO) and 4 Analog Inputs (AI),
which we use to record the atomic time of flight signal that are described in
the following section. The high number of DOs allow us to synchronize all the
instruments, however the 4 AOs are not sufficient to run the experiment. As such,
we have second NI card with 2 AOs. We also use its AIs for laser power monitoring
purposes.

The dynamical control of the interferometry laser intensities (AOMs at 780 nm)
and relative frequencies (phase lock for Raman, AOMs at 1560nm for Bloch) is
performed through the use of Direct Digital Synthesizer (DDS) based on RedPitaya
modules developed by Pierre Cladé. These DDS are agile and thus give us the
possibility to change easily the experimental parameters.

Finally, we program the instruments with an interface based on the Python lan-
guage. The back-end of this interface consists in the definition of the instruments
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and the creation of the tools to manipulate them. On the front-end program, we
build experimental sequences through a series of instructions based on the defi-
nitions in the back-end. These instruction are read and sent to the instruments
by the Python interface within a few hundreds of milliseconds. The loading of
the MOT is done during this dead time, in order to optimize the efficiency of the
setup.

Once all the instruments are ready, the experiment can start. After the ex-
ecution of the instructions, the program is read again with possible parameter
change.

3.3.2 Light sheets detection
After the laser pulses have been applied to the atomic cloud, we have to detect their
internal state. To this end, we use a setup based on the collection of fluorescence
photons emitted by the atoms in a resonant laser field. A scheme of the setup is
displayed on figure (3.22)).

In order to present its operation, let us assume that a cloud of atoms passes
through it. In the cloud, some atoms are in |F = 2〉 and the others in |F = 1〉.
The first sheet that the atoms encounter as they fall down is set to be resonant
with the cycling transition |F = 2〉 → |F ′ = 3〉, and as such is circularly polarized
with a quarter waveplate. It does not affect atoms in |F = 1〉. The beam is
furthermore reflected, which places the atoms in conditions close to an optical
molasse and extends their lifetime in the beams and as a consequence, increases
the fluorescence signal.

At the bottom of the sheet, a cache blocks the reflection and atoms in |F = 2〉
are blown away from the detection system. The photons that were emitted dur-
ing their travel are collected with a simple imaging system: we use two Thorlabs
AC508-080-B achromatic lenses to limit aberrations with present a 50 mm diame-
ter in order to maximize the solid angle of the collection. At the focal point of the
system, in a 4f configuration for compact size, we place a large photodiode (10 mm
square side, Hamamatsu S1337-1010BR) whose output current is then amplified
and converted to a voltage with a transimpedance amplifier with an operational
amplifier.

The remaining atoms in |F = 1〉 then pass through a repump sheet, resonant
with the |F = 1〉 → |F ′ = 2〉 transition that transfer the atoms to |F = 2〉. They
are furthermore detected in the third light sheet and a second photodiode, similar
the first sheet setup, which allows for close detection characteristics for both in-
ternal states.

An example of signal is plotted on figure (3.23). The top plot shows the raw
data produces by the two photodiodes. In order to reduce the noise on those
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Figure 3.22: Scheme of the detection setup. On top, a view from the side that
shows the counterpropagating circularly polarized light sheets. As the atom falls,
the figure reads from top to bottom. The atoms in |F = 2〉 are detected in the first
light sheet and blown away thanks to the cache on the retroreflecting mirror. The
remaining atoms, in |F = 1〉, are then repumped and detected. On the bottom, a
view of the imaging system from the top: the atom cloud is imaged on photodiodes
(one for each state, only one is represented), whose signals are then amplified and
recorded.
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signal, we analyse the difference of the two which eliminates common noise on the
two photodiodes. The differential signal is then fitted with a gaussian difference:

fit(t) = −a2 exp
(
−(t− t0,2)2

w2
2

)
+ a1 exp

(
−(t− t0,1)2

w2
1

)
+ offset, (3.3.1)

from which we extract the relative populations of atoms. In particular, we find that
the width of the signal are similar w1 ∼ w2 so that we assimilate the amplitudes
a1 and a2 to the atom number.

Currently, the main source of noise on the interferometer readout comes from
frequency noise on the stabilization of the repump and cooling lasers. As the
sensitivity we obtain with this limitation is satisfying, we did not yet reworked the
stabilization system.

3.3.3 Operation and characterization
We have presented the building blocks of our experiment. With them, we can
manipulate the atoms in order to extract information. We usually start an ex-
perimental sequence with a launch pulse 10 ms after the release of the molasse.
This launch pulse is made of 650 BO, and the atoms reach the interferometry area
within ∼ 100 ms. We can then position them precisely with a second Bloch pulse.

Furthermore, we can also perform a longitudinal velocity selection (see figure
(3.26)). At the output of the molasse, the atoms are distributed on the Zeeman
sublevels of |F = 2〉. We apply a counterpropagating Raman π pulse that transfers
atoms in |F = 2,mF = 0〉 to |F = 1,mF = 0〉, provided their longitudinal velocity
satisfies the resonance condition. The remaining atoms in |F = 2〉 are blown away
with resonant light. The atoms that were transferred by the Raman pulse are then
transferred back with a second Raman π pulse.

This set of pulses constitutes also a Zeeman sublevel selection. Using copropa-
gating transitions, we can select the Zeeman sublevel without performing a velocity
selection. With counterpropagating transitions, the width of the velocity selection
is controlled by the duration of the first π pulse, that we can change easily through
the amplitude of the radiofrequency signal sent to the AOM.

We give below two characterizations that illustrate these techniques: the mea-
surement of the magnetic field inside the interferometry area and the measurement
of the gravity gradient.

3.3.3.1 Magnetic field measurement

When running interferometers, we use the magnetically insensitive Zeeman sub-
levels mF = 0. On the other hand, the measurement of the magnetic field
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Figure 3.23: Signals obtained with the light sheets detection. Top: raw signals of
each photodiodes. Bottom: differential signal for processing and its fit with two
gaussians.
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Figure 3.24: Measurement of the magnetic field. Top: laser pulses arrangement.
The Bloch and Raman intensity scales are different for visibility. Bottom: Zeeman
sublevels population and addressed transition. The horizontal axis represents the
longitudinal velocity distribution.

requires a transition on magnetically sensitive states. The crossed linear po-
larization of the Ramans beam and selection rules in Rubidium atom impose
that the transitions can only occur between state of same mF . Finally, since
the Landé g-factors of the 87Rb hyperfine have opposite signs, the transitions
|F = 1,mF = ±1〉 → |F = 2,mF = ±1〉 are sensitive to the magnetic field with a
sensitivity of 1.4 MHz·G−1[Steck, 2001].

We chose to address the mF = −1 transition. A scheme of the protocol is
described on figure (3.24). The atoms are placed with two Bloch pulses, which
work as an elevator. Over the repetition of the measurements, the number of
Bloch Oscillations is unchanged, but the timing of the second Bloch pulse controls
the altitude of the atoms at the Raman pulse, placed at a fixed timing. As a
consequence, the parameters of the cloud (size, velocity, . . . ) during the Raman
pulse are independent of its position.

In order to measure the magnetic field, we use copropagating transitions, whose
Doppler sensitivity is highly suppressed. As we aim to measure the transition in the
mF = −1 states performing an internal state selection is difficult as it demands
an a priori knowledge of the magnetic field. We use instead the output of the
molasses where all the sublevels of |F = 2〉 are populated.
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Figure 3.25: Measurement (blue dots) of the magnetic field as a function of the
position. The orange line corresponds to an interpolation of the data by an uni-
variate spline. As explained in the text, the absolute value of the magnetic field
estimation is perturbed by systematic errors. In the plot, the displayed uncertainty
does not takes them into account to exhibit the estimation of the magnetic field
inhomogeneities. The error bars are smaller than the points for most data.

We then scan the frequency difference of the Raman lasers at each position,
performing a Rabi spectra. From the fit of these spectra, we deduce the resonance
condition and as such a magnetic field estimation. However, the accuracy of the
measurement is limited by the lack of knowledge on the light shifts during the Ra-
man pulses that displaces the resonance condition. As a consequence, the absolute
value of the magnetic field indicated on figure (3.25) is precise within 5%.

Nevertheless, the systematic errors induced by light shifts are independent of
the position, and we can use these data to estimate the magnetic field gradients
within the setup. The results are displayed in figure (3.25).

On the edges of the interferometry area, and as such of the solenoid and of
the magnetic shield, the magnetic field exhibit large variations. However, in the
center of this area, in a 45 cm long distance, we have a well controlled magnetic
field with local gradients less than 4 mG·m−1.

In particular, the lower region (50-60 cm altitude) presents the higher inhomo-
geneities. If we exclude this region, then the local gradients can be estimated as
less than 2 mG·m−1. The source of these gradient is attributed to variations of
the coil density in the solenoid.
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This study exhibits one the improvements of the new experimental setup. On
the previous setup, a detailed study of the effect of the magnetic field was per-
formed[Andia, 2015a]. On this setup, the magnetic field gradients reached 4 G·m−1

at their maximal value. Moreover, a detailed confrontation between experiments
on the previous and appropriate simulations showed a discrepancy. This discrep-
ancy was interpreted as the signature of a transverse magnetic field.

If the direction of the magnetic field is not parallel to the Raman lasers prop-
agation direction, then their effective polarization is modified, and as such the
selection rules. In particular, the mF = 0 → mF = ±1 transitions may be ob-
served. In the new setup, prior to installing the magnetic shield, we were able to
observe such transitions. After the installation, they are forbidden.

As a conclusion, we have demonstrated that the magnetic field in the interfer-
ometry area is longitudinal, and that its value is well controlled. In particular, we
can run the experiments with magnetic field gradients three order of magnitude
smaller than on the previous setup.

3.3.3.2 Gravity gradient measurement

When we treated interferometry, we computed the phase difference between the
two arms if the gravitational acceleration depends linearly with the altitude. We
obtained that in the presence of gravity gradient γ such that g(z) = gc − γz, the
phase difference between the two arms scales linearly with the position (equation
(2.2.60)). In particular, comparing interferometers at different altitude but with
the same initial velocity, we expect to observe a linear variation of the measured
acceleration.

This reasoning holds with a differential velocity sensor interferometer. More-
over, thanks to the elevator technique based on Bloch Oscillations, we are able to
run interferometers which differ only by their altitude. We were then able to mea-
sure the linear gravity gradient using the pulse arrangement displayed on figure
(3.26).

After the elevator sequence, we perform a differential velocity sensor with
TRamsey = 45 ms and Tdelay = 50 ms in order to enhance the sensitivity to g.
Moreover, we place two Raman π pulses that perform a velocity selection. The di-
agram at the bottom of figure (3.26) shows the evolution of the atomic states along
the selection pulses. In particular, the Rabi frequency of the first Raman pulse
is reduced in order to perform a narrow velocity selection. The Rabi frequency
of the second pulse is then increased in order to ensure a very high efficiency for
transferring back the atoms to |F = 2,mF = 0〉.

We plotted the results of this study in figure (3.27), which indeed display a
linear decrease of the gravitational acceleration with the altitude. In particular,
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Figure 3.26: Measurement of the gravity gradient. Top: lasers pulses arrange-
ment. A Raman based velocity selection sequence is placed in between of a Bloch
based atom elevator. This sequence is then followed by an atom interferometer (in
gray). Bottom: Zeeman sublevels population during the velocity selection. The
horizontal axis represents the longitudinal velocity displayed. Solid lines of the ve-
locity distribution represent the transfer by Raman pulses. Dashed lines represent
the remaining atoms that are eliminated by a blow away (left) or a repump pulse
(right)

the gravity gradient is estimated to

γ = (2.24± 0.15) · 10−6 s−2. (3.3.2)

This value is in disagreement with the prediction obtained by developing Newton’s
law F = −GmM⊙/R2⊙ above the Earth surface3 which yields γ ∼ 3 · 10−6 s−2.
Obtaining a prediction of the gravity gradient is a difficult task because it requires
a precise knowledge of the laboratory environment.

However, we can note that in a spherical model of the Earth, the gravity
gradient is discontinuous at its surface. Such an observation was performed in
this study [Bidel, 2013], where the authors placed a gravimeter based on atom
interferometry in an elevator and observed such a discontinuity at the basement
transition. This study shows a lower gradient in the underground, with a value
of γ = (2.626 ± 0.016) · 10−6 s−2, attributed to the mass of the soil above the
measurement points.

3The
⊙

indicates Earth related quantity. The centrifugal acceleration is negligible in this
context.
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Figure 3.27: Variation of the measured gravity with respect to the altitude (blue
dots). We can estimate the gravity gradient parameter γ from the linear fit (in
orange). The relative precision on this parameter is 6.7%.

Even if our laboratory is located in the basement of the Jussieu campus, with
a five-story building above, the lower value of the gravity gradient we obtained is
a surprising result. We did not investigate this measurement further. Moreover,
the relative precision of the measurement 6.7% limits our ability to correct the
perturbation induced by the gravity gradient.

As we will see in section 6.2, we developed a protocol to cancel the systematic
error induced by the gradient of gravity in the determination of h/m. The develop-
ment of this protocol was motivated by the fact that our experimental setup is not
adapted to a very precise measurement of the gravity gradient. The application of
this protocol relies on the assumption of a constant gravity gradient, as observed
in this study.

Following the presentation of the experimental setup, we detailed its operation.
In particular, we showed two characterizations that enabled us to present our
techniques to prepare the atoms before the interferometer: the atom elevator based
on Bloch Oscillations and the velocity selection based on Raman pulses. Moreover,
these studies allowed us to draw to conclusions:

1. The magnetic field in the interferometry area is well controlled, which is a
dramatic improvement with respect to the previous setup.
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2. The linear gravity gradient is not easy to measure with a high precision in
our setup and should be canceled using a suitable experimental protocol.

The new experimental setup features several additional improvements with
respect to the setup used for the 2011 measurement[Bouchendira, 2011]: the tech-
nology derived from 1560 nm has been used to provide an agile laser with constant
output power for Bloch Oscillations. Moreover, we can produce gases in a large
temperature range ∼ 40 nK—∼ 4 µK thanks to the optical dipole trap. However,
our current studies are limited to the two limits of the range.

We will now turn the presentation of the operation of this setup. We will
start with the optimization of the condensation process and its application to the
investigation of inter-atomic interactions in a BEC. This work has been performed
in the main chamber of the vacuum cell and not in the interferometry area. Then
we will describe the results that we obtained by elevating thermal gases produced
by optical molasses in the interferometry area. We will explicit velocity dependent
phase shift with Raman transitions and how we have taken advantage of them to
compensate for the expansion of the molasse.

Finally, we set up the protocol for the h/m measurement which features un-
precedented sensitivity and advance on the study of related systematic effects.
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Chapter 4

Atom sources comparison

As we have announced in the introduction and seen in last chapter, the experiment
can produce cold atom sources either at low temperature (∼ µK) from optical
molasses or ultra-cold at lower temperature (a few tens of nK) through evaporative
cooling. With the latter process, we can achieve BEC regime.

The choice of the atom source is critical for the h/m measurement. On the
one side, running interferometers for precision measurements with a BEC as an
atom source requires to deal with some challenges. Among them, the number of
atoms must be sufficiently high. In theory, in a BEC, phase space density has been
highly increased so that the question of the signal-to-noise ratio remains open.

Moreover, in precision measurements, the statistical uncertainty is limited by
the production rate of the atomic source. As the evaporation process takes a
few seconds, it is the limiting factor of the experiment cycle time. Finally, in a
BEC, atom-atom interactions are not negligible, and should be evaluated precisely.

On the second side, running interferometers with optical molasses has the ad-
vantage of a better integration potential as the production process takes place in
less than a second.

However, the duration between the production of the cloud and the start of
the interferometer is & 150 ms. In this context, the cloud has expanded and the
interferometer phase might be sensitive to the reduction of the mean intensity seen
by the atoms.

We have seen in section 2.2.5 that the interferometer phase can be considered
insensitive to intensity variations along the interferometer if the Raman transitions
can be considered resonant. This is however not the case because of the one-photon
light shifts induced by the lasers driving the Raman transitions. In this chapter,
we present a theoretical and experimental study of the contributions of resonance
mismatch during Raman transitions to the interferometer output phase.
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This chapter is composed of two parts. The first part is devoted to the op-
timization of the BEC production in an optical dipole trap. At this stage of
the experimented, the setup was not equipped with interferometry lasers sources.
We have then realized Ramsey sequences based on microwave transitions between
the two hyperfine states of 87Rb. This work was motivated by a model previ-
ously developed in our team based on the Gross-Pitaevskaii equation to evaluate
the contribution of the interactions at the output of an atom interferometer se-
quence[Jannin, 2015b].

After installing the interferometry lasers setup, we tested the experiment with
optical molasses. We obtained rapidly a better sensitivity on h/m (section 5)
than the one of the last measurement (4.4 · 10−10 in 15h[Bouchendira, 2011]).
At this point, we investigated the impact of the expansion of the cloud on the
interferometer.

I would like to point out that I have chosen to present these two surveys together
to discuss the choice of atomic source. This remains a non-exhaustive study.

4.1 Optimization of the Bose Einstein Conden-
sates production process

4.1.1 Sequence for the production of a BEC
4.1.1.1 Dipole trap loading

Performing an optical molasse and loading atoms into a dipole trap are related
has they both start from a MOT, and use the same laser system1. However, the
setting of the lasers parameters are quite different.

The output atomic hyperfine state of the optical molasses that we produce is
|F = 2〉, but we choose to load atoms in |F = 1〉 in the dipole trap. The choice of
|F = 1〉 is guided by the fact that atoms in |F = 2〉 can decay to |F = 1〉 through
non elastic two-body collisions that liberates energy, and as a consequence heats
the trapped gas[Grimm, 2000].

As a consequence, the loading of the dipole trap requires specifics cooling steps
that are displayed on figure (4.1). It starts similarly as the molasse preparation
with a compression stage, which is followed by two molasses stages during which
the dipole trap laser is turned on. When this appends, the repump beam that gets
amplified in the MOPA of the MOT table (figure 3.4) is mechanically shut, and
the repump amplitude is controlled through the auxiliary channels shared with the
imaging system. This amplitude gets lowered in the final stage of the loading such

1At the exception of the high power infrared laser that generates the dipole trap
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Figure 4.1: Steps sequence for the efficient loading of the dipole trap. At the end
of the sequence, the trapping and repump laser are abruptly shut off while the
dipole laser powers are then ramped for the evaporation sequence.

that atoms fall in |F = 1〉, trapped in the dipole trap and no longer sensitive to
the cooling laser.

4.1.1.2 Genetic algorithm

The parameters of this sequence need to be carefully adjusted. Moreover, their
number, 27, is quite large, and we found empirically that they are highly correlated
among them. As a consequence, it is highly probable that the parameters space
presents a large number of local minima that we may mistaken with an optimal
setting during a manual search.

In order to circumvent this issue, we developed the implementation of an op-
timization of the setup based on a genetic algorithm. The choice of a genetic
algorithm was guided by the fact that it is relatively simple compared to machine
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learning based method[Wigley, 2016], and by the fact that it relies on random
numbers to explore maximally the parameters space.

The principle of the algorithm goes as follow:

1. A collection of parameter sets
{
X(J) =

{
x

(J)
k

}
k

}
is randomly generated from

initial conditions.

2. Each of these parameters set is tested on the experiment. From a combina-
tion of observables, we determine a fitness of the parameters set F (J) that
should be maximized2. The parameters set are sorted by their fitness.

3. The generation of a new collection of parameters set starts with a selective
breeding phase. We randomly choose two parameter sets X(J1) and X(J2).
The higher the fitness, the higher the probability to be chosen. We then
draw a random number linearly distributed in [−β, 1 + β] with β > 0,3 from
which we perform a linear interpolation to generate a new parameter set:

X(new) =
{
βx

(J1)
k + (1− β)x(J2)

k

}
k

(4.1.1)

Because β 6= 0, the interrogation of the parameters space is made larger.
Finally, this renewal of the collection is not total, as we usually keep the
∼ 40% best sets in the population.

4. Once the breeding phase is performed, we enter the mutation phase during
which each parameter of the sets might be altered individually. We use a
20% probability that the mutation occur, and use gaussian distribution on
the alteration value. This phase is critical to ensure a large scan of the
parameters space.

5. Go back to step 2.

When running the algorithm, the choice of the fitness function is critical. As we
have seen in section 3.1.5, the evaporation is governed by a power law such the ini-
tial number of atoms N should be as high as possible and the sample temperature
T as low as possible. We chose to use:

F = N

T
. (4.1.2)

Because of the power law scaling, one may consider fitness function as N/T γ.
Empirically, we observe no improvement when setting γ 6= 1.

2Another formulation for algorithm is to describe the fitness as a cost function of the parameter
set. The difference between the two is that the cost function should be minimized

3We use β = 0.4
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In order to extract the number of trapped atoms and the temperature of the
gas, we load the dipole trap with the parameter set, then wait for 200 ms such that
the atoms that were not trapped fall under the effect of gravity. We then release
the cloud, let it expand for 18 ms and observe it with an imaging sequence. The
typical image that reconstruct from this process is displayed on figure (4.2, left).
The images are fitted with a two dimensional asymmetric gaussian fit from which
we extract estimator for the atom number and the temperature.

The results of the algorithm are given on figure (4.2, right), where the algorithm
was left to run for an hour. At the beginning of the algorithm, we observe a sharp
rise of the fitness function in∼ 10 minutes. After this duration, the improvement of
the algorithm determination happens at a slower rate. After an hour, it seems that
it has not converged yet. We can draw some conclusions from these considerations.

First, upon clearly suboptimal parameters, one may run the algorithm for a few
minutes to get improved parameters. Although not optimal, those parameters may
be sufficient for some procedures on the experiment. This feature is particularly
interesting in the hypothesis of a sudden change of the experimental parameters
(for example a loss of laser power). By running the algorithm and comparing the
new parameter set to the old one, one may rapidly get insight on the experimental
issue that occurred.

Secondly, the algorithm needs more than an hour (and a thousand repetitions)
to converge. This confirms that the parameters space of the dipole trap loading
present a complex structure, and shows that the parameters of the algorithm are
set so that it does not converge too rapidly to a local minima of the parameter
space.

After a few hours of algorithm interrogation (which can be performed over
night), we obtain a set of parameters that allow us to load typically 1.5 ·107 atoms
at ∼ 25µK in the dipole trap. Compared to previous results, we double the number
of atoms loaded at the same temperature. As a consequence, the performance of
the condensation process has been improved as we are able to produce BEC with
120, 000 atoms at ∼ 40 nK.

Moreover, we applied the algorithm on the evaporation ramps sequence with
the objective of reducing the duration of the evaporation. The algorithm provided
with two seconds long ramps with the same atom number in the BEC at their
output. Loading the MOT and the dipole trap takes also ∼ 1.5 seconds, such that
the performance of the setup is the production of 120, 000 atoms BECs every 3.5
seconds.
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Figure 4.2: Top: Image of the cloud loaded in the dipole trap after 18 ms time of
flight with parameters obtained with genetic optimization. The maximum optical
density is 1. Bottom: Results of the algorithm on the loading of the dipole trap
as a function of time. After a sharp rise in the setup performance, the algorithm
based-enhancement increases of the hour timescale.
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4.1.2 Atom-atom interactions phase shift
4.1.2.1 Spin distillation

The optimization of the production process paved the way to the observation
of phase shifts induced by atom-atom interactions. However, an optical dipole
trap is insensitive to the hyperfine Zeeman sublevels. As a consequence the three
mF = 0,±1 levels are present in the trap.

Performing a Stern-Gerlarch experiment by applying a magnetic field gradient
with the MOT coils at the end of the evaporation sequence, we are able to sepa-
rate the three hyperfine states. We present a set of images taken doing such an
experiment in figure (4.3).

When performing atom interferometry, we prefer to work with the magnetically
insensitive sublevel mF = 0. If the three Zeeman sublevels are populated, the
contrast of the interferometric signals will be reduced. More importantly, as we
can see in figure (4.3), the relative population between the sublevels varies shot to
shot with fluctuations up to ±30% of the mean atom number. As a consequence,
we will face high contrast noise in the fringes signal.

We have chosen to use the technique of spin distillation([Couvert, 2008]). The
idea of spin distillation, represented in figure (4.4), is to apply a magnetic field
gradient during the evaporation that lowers the depth of the trap selectively for the
magnetically sensitive states. As such, these states are preferentially evaporated,
and we can optimize the value of the gradient and its time of application to be left
only with atoms inmF = 0 at the end of the evaporation and thus obtain polarized
BECs. Similarly to the Stern and Gerlarch experiment, we use the MOT coils to
implement the gradient.

We will present our method to reconstruct interferometer fringes with the BEC
setup in the next section. However, we can already observe the performance of the
spin distillation technique in figure (4.5, right) where we can observe an almost
perfect contrast on an interferometer fringe, indicating a complete polarization of
the BEC.

4.1.2.2 Microwave-based Ramsey interferometry

At the time at which the work that we present here was done, the experimen-
tal setup was not as complete as presented in chapter 3. There was neither no
Raman nor Bloch laser systems, such that the observation of the BEC state was
constrained to remain in the main chamber of the vacuum system. Moreover, as
Raman beams were not available, we performed interferometry with microwave
transitions mediated with a Rohde&Schwarz SMF100A generator connected to a
wire half-wave antenna placed close to the vacuum chamber.
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Figure 4.3: Images of the BEC after a Stern-Gerlach experiment that spatially
separates the hyperfine Zeeman sublevels. The four images are sequential shots
of the experiment. In particular, one can observe that the relative population in
each sublevels varies shot to shot.
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Figure 4.4: Principle of the spin distillation technique. Adding a magnetic field
gradient does not change the shape of the potential for atoms in mF = 0 (in blue,
solid), but does for magnetically sensitive states and lowers the potential height
by an amount ∆U

Unlike the case of light-pulse based interferometry, where the wavepackets are
separated by 2~koptique, with microwave interferometry the atom trajectories do
not depend on their internal state. This feature poses a challenge for the detection
of the interferometer output state. Indeed, we are able to observe the spatial
distribution of the atoms, but if atoms in |F = 1〉 and |F = 2〉 are overlapped, we
cannot distinguish them.

In order to spatially separate them, we set up an imaging technique based
on taking two images in a short duration (∼ 5 ms). The delay between images
with a CCD camera is limited by the duration in which the CCD transfers the
pixels information to the computer. Thanks to the Area Of Interest feature of the
horizontal camera, we can reduce the area over which the image is taken, and as
such reduce the delay between images.

The imaging process then goes as follow. A pulse of resonant light with the
|F = 2〉 state is sent to the imaging path. The atoms in |F = 1〉 are not affected,
so that we observe only atoms in |F = 2〉. These atoms are then removed from the
camera range with a second pulse resonant with |F = 2〉. Finally, a repump pulse
transfers the remaining atoms from |F = 1〉 to |F = 2〉, which are then observed
similarly to the atoms initially in |F = 2〉. Typical images resulting from this
process are displayed in figure (4.5, left).
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Figure 4.5: Left: separate images of the BEC output state of a microwave pulse
sequence. First, atoms in |F = 2〉 are observed and subsequently removed. Then
a second image is taken ∼ 5 ms after which detects atoms in |F = 1〉. Right:
through the analysis of set of images, one can reconstruct Ramsey fringes.

As a final remark on this technique, one may notice the similarity with the light
sheets time of flight technique (section 3.3.2). Indeed, both of them are based on
a detection→blow away→repump→detection sequence.

Thanks to this technique, we are able to reconstruct the relative population
of the BEC at the output of an interferometric sequence. The limitations here
a related to the atom fall in the gravitational field. The maximal time of flight
between the release from the dipole trap and the observation was 18 ms. This
duration is sufficient to run Ramsey sequences with interfringe . 100 Hz. We plot
the result of such an interrogation performed by scanning the frequency of the
microwave generator on figure (4.5). The precision on this fringe center is 74 mHz,
which allowed us to study the contribution of atom-atom interactions with such a
pulse sequence.

4.1.2.3 Interaction in the context of a Ramsey sequence

We present in this paragraph the effect of atom-atom interaction in the context of
a microwave based Ramsey sequence. This presentation is based on the detailed
study that our team published[Jannin, 2015b]. This study was devoted to the
more general context of light-pulse based interferometry and the model takes into
account interactions between atoms in the same internal state (self interactions),
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and in different internal states (mutual interactions), as well as cloud expansion
and overlapping between the superposed clouds along the interferometer duration.
Here, we restrict ourselves to presentation of the conclusions that are useful for us.

First, this study showed that the effect of the interactions is negligible during
the interferometer pulses, and that it is sufficient to consider their effect during
the free evolution period. The effect of the interactions is to displace the energy
levels.

For simplicity, we assume that the beam splitter pulses are perfect π/2. As
the clouds overlap, the phase shift induced by mutual interactions between the
hyperfine states cancels. We also write |F = i,mF = 0〉 = |i〉 for i = 1, 2, which
can also be written as subscript. Then, at the output of the first beam splitter,
the wavefunction of the atoms can be written:

|Ψ〉 = 1√
2

(|1〉+ |2〉) (4.1.3)

and the atom-atom interactions perturbations can be described by (equations (2)
and (7) of [Jannin, 2015b]):

〈i|Hpert |j〉 = δij
1
2~

N

~
√
πw

∑
k=1,2

2~2aik
mw2 (4.1.4)

= δij
~2
√
πm

N

w3

∑
k=1,2

aik, (4.1.5)

where δij is the Kronecker symbol, N is the number of atoms in the BEC, w its 1/e
radius assuming it can be represented by an isotropic gaussian ansatz, and the aik
are the s-wave scattering length. They depend on the internal states with a11 ∼
100a0, a22 ∼ 95a0 and a12 = a21 ∼ 98a0, where a0 is the Bohr radius[Egorov, 2013].
This expression shows through the N/w3 that the perturbation is proportional to
the atomic density in the BEC.

One may then compute the differential phase shift induced by the interactions
in a Ramsey sequence and obtain, as the mutual interaction (∝ a12) terms com-
pensate:

φpert = ~√
πm

N

(∫ TRamsey

0

1
w3(t)dt

)
(a22 − a11) (4.1.6)

The difficulty in the theoretical estimation of the phase shift comes from the in-
tegration of the cloud size w over the Ramsey sequence, as its initial parameters
and evolution are not straightforward to determine experimentally. Indeed the
expansion rate of a BEC is governed by the repulsive interactions that the atoms
experience. When the atom density is high at the output of the dipole trap, the
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BEC expands at a high rate. Then, its density reduces and the expansion rate as
well.

It is necessary to improve the experimental model of the cloud expansion to
perform precise a priori evaluations. However, the phase shift is proportional to
the number of atoms, such that by changing the atom number without modifying
the shape of the cloud, one may observe a simple behavior of the perturbation
phase shift.

In order to obtain such a process, we apply a microwave pulse at the output of
the BEC release. This pulse has a variable area, and subsequently to it, we apply a
blow away pulse resonant with atoms in |F = 2〉. This pulse does not affect atoms
in |F = 1〉 such that the shape of the remaining cloud is unchanged. Through
the variation of the pulse area of the microwave pulse, we have an experimental
parameter to scan the number of atoms in the BEC.

However, as we remove atoms from the BEC, we also reduce the signal that we
observe and as such are more sensitive to noise in the measurement process. The
interrogation beam being a laser, a highly-coherent source, interference patterns
appear on the CCD images. In our setup, the beam collimator and the camera
are placed on two separate tables, such that vibrations of the setup translate into
shifts of these fringe patterns and cause noise on the detection process.

In order to reduce this noise, we have treated the images with a Fringe Removal
Algorithm[Ockeloen, 2010], which is based on defining a large set of reference im-
ages4. Then, we consider the image on which the atom cloud was detected and
reconstruct an optimal reference image from the set. The result of this technique
can be seen in figure (4.6), as the uncertainty in the fringe determination has been
divided by 2 at the lowest atom number parameter.

After the atom removal process, we apply a Ramsey sequence with TRamsey =
13 ms and measure the central frequency of the interferometric process. Indeed,
equation (4.1.6) can be interpreted as an energy shift and as we discussed in
section 2.2.1, a Ramsey sequence can be interpreted as a comparison between the
internal energy difference of the atoms and the frequency of driving generator.
As a consequence, this measurement is directly sensitive to the energy difference
induced by the atom-atom interactions.

Moreover, as a22 < a11, we expect that the higher the effect of the interactions,
the lower the energy splitting between the two hyperfine levels. This is the behavior
that we observe when running such an experiment. Its results are displayed on
figure (4.6). We obtain that the data (blue dots) agree with a linear law. From
a fitting procedure, we can obtain an extrapolation of the resonance frequency

4i.e. images without atoms
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Figure 4.6: Variation of the resonance frequency of Ramsey sequence with the
number of atoms in a BEC. The raw data (green diamonds) presents more noise
than the data treated with a Fringe Removal Algorithm on the absorption images
(blue dots). We observe a good agreement with a linear from which we extract
the frequency shift per atom in the BEC.

without the effect of interactions. Moreover, we can estimate the energy shift
induced by a single atom from the slope. With 130, 000 atoms in the BEC we
observe a displacement of the fringe center by−400 mHz, or−2.93 µHz per atom in
the BEC. Inverting equation (4.1.6) and assuming a mean size 〈w〉 and a22−a11 =
5a0, we obtain that 〈w〉 ∼ 18 µm, compatible with the imaging observations.

4.1.2.4 Conclusion

This observation of the atom-atom interaction induced phase shift confirmed that
this perturbation should be carefully treated in order to perform accurate precision
measurements. However, our experiment was performed right at the output of the
dipole trap with no implementation of any technique that increases the size of
the BEC. As such, the effect of the interactions was exalted by our experimental
conditions.

The performance of our evaporation setup with the production of 120000 atoms
in a BEC with a 3.5s cycle time (1.5 second loading of the MOT, 2s evaporation)
does not match the performance obtained with evaporation setups based on atom
chips[Rudolph, 2015], but compares to performance of similar setups based on
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optical dipole trap5. It is conceivable to enhance the perfomance of our setup
using the technique described in [Roy, 2016], based on dynamically shaping the
dipole trap through time-averaging of the potential created by a laser beam moving
rapidly.

Moreover, one of the main drawback of the BEC production system is its
reliability as it requires daily adjustements. Since using a BEC comes with a
supplementary error source, we oriented our work towards studying the possibility
of using clouds produced by optical molasses. Indeed this production protocol is
shorter (∼ 700 ms in our experiment) and its adjusment is very reliable as they
are stable over several months.

4.2 Resonance mismatch during light pulses

Compared to using a BEC and its low velocity dispersion, the main drawback of
using clouds produced by optical molasses originates from the expansion of the
cloud during the interferometer which induces a reduction of the intensity seen by
the atoms over the interferometer.

This phenomenon was already identified as a limitation to build beam splitters
combining Raman transitions and Bloch Oscillations[Cladé, 2009]. In the context
of beam splitters based on a single Raman transition, we were able to demonstrate
an experimental calibration of the cloud expansion. By increasing the intensity of
the Raman driving lasers along the interferometers, we reduced the variations of
the intensity seen by the atoms.

In order to understand one of the implications of the cloud expansion on the
interferometer phase, we make a detour through a finer modeling of the interfer-
ometer beam splitters.

4.2.1 Phase shifts

The earlier treatment of the interferometers was made under the assumption of
that δ � Ω, where Ω is the coupling Rabi frequency and δ the energy difference
between the two levels. In our experimental conditions, this requirement does not
hold because the differential light shift, which contributes to δ is of the order of
magnitude of Ω.

5See figure 6 of [Rudolph, 2015].
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Let us first model the two level system
{
|α〉 , |β〉

}
with its free and coupling

Hamiltonians:

H0 = ~
(
δ/2 0
0 −δ/2

)
(4.2.1)

Hc = ~
(

0 Ωe−iφ
Ωeiφ 0

)
, (4.2.2)

where all quantities are real. Ω is the Rabi frequency between of the coupling and
δ the bare energy diffenrence between the two levels. In the context of counter-
propagating Raman transitions, it corresponds to the Doppler shift.

We first assume that the coupling does not induce energy shift for clarity. We
can the deduce the evolution operators associated the free Hamiltonian and to the
total Hamiltonian H = H0 +Hc:

U0(τ) =
exp

(
−i δτ2

)
0

0 exp
(
i δτ2

) (4.2.3)

U(τ) = cos
(

Ωeτ

2

)
1− i

sin
(

Ωeτ
2

)
Ωe

(
δ Ωe−iφ

Ωeiφ −δ

)
, (4.2.4)

Taking into account the energy splitting contribution to the evolution operator
translates as a modification of the amplitudes of the projection of the wavefunction
onto the atomic states. We have seen that the absolute values of these amplitudes
impacts the contrast of the fringes without inducing a shift of the central fringe.
However, as the interferometric signal originates from the phase difference between
those amplitudes, perturbations of the amplitude phases shift the central fringe.

From equation (4.2.4), the phase of the off-diagonal elements is the same for
infinitely short and finite duration pulses. However, the diagonal terms carry an
additional pure imaginary number that induces a phase shift.

Since we are interested in the phase shift induced by the transition, we compare
the phase of the total evolution operator matrix element to the free evolution one:

δφ|α〉→|α〉 = arg (〈α|U(τ) |α〉 / 〈α|U0(τ) |α〉) and (4.2.5)
δφ|β〉→|β〉 = arg (〈β|U(τ) |β〉 / 〈β|U0(τ) |β〉) . (4.2.6)

Putting the reference to the free evolution case isolates the contribution of the
coupling.
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Figure 4.7: Plot of equation (4.2.9). Top plot: phase shift as a function of the
reduced detuning for different pulse areas. Bottom plot: phase shift for a given
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represent the prediction of first order perturbation theory
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With the input of equations (4.2.3) and (4.2.4), we get:

δφ|α〉→|α〉 = − arctan
(
δ

Ωe

tan
(

Ωeτ

2

))
+ δτ

2 (4.2.7)

δφ|β〉→|β〉 = + arctan
(
δ

Ωe

tan
(

Ωeτ

2

))
− δτ

2 (4.2.8)

The two phase shifts have opposite sign, which is also the case if we consider
free evolution only and their dependency in δ exhibit the shape of a dispersion
relation (see figure (4.7) top).

In order to get some insight of this formula, we reexpress equation (4.2.8) with
adimensional parameters: the reduced detuning δ′ = δ

Ω and the pulse area θ = Ωτ .

δφ = arctan
(

δ′√
1 + δ′2

tan
(
θ
√

1 + δ′2

2

))
− δ′θ

2 (4.2.9)

For δ′ → 0, i.e. in the infinitely short pulse assumption, we find as expected
δφ→ 0.

Moreover, for δ′ � 1, we can develop the arctan in equation (4.2.9) in two
steps which yields δφ ∼ Ω2

4δ τ that corresponds to the result obtained from the
computation of the energy displacement in the first order perturbation theory
framework. This correspondence shows that what we calculated as a phase shift
can also be seen as an energy shift induced by the coupling.

The behavior for intermediate cases is represented in figure (4.7). The top
figure shows the behavior by scanning the detuning for different pulse areas. The
width of the dispersion figure scales inversely with the pulse duration, which can
be interpreted as a consequence of the time-energy equivalent Heisenberg princi-
ple (∆δ∆τ = ∆δ′∆θ > 1/2): as the pulse duration (θ) increases, its resonance
frequency gets defined with a better precision.

We notice a discontinuity at θ = π: assuming the initial state is |ψ〉 = |α〉, when
doing a resonant (δ′ = 0)π pulse, the amplitude of the wavefunction projection to
the initial state 〈α|ψ (θ = π)〉 reaches 0 and thus its phase cannot be defined.

The bottom plot displays the behavior of the phase shift with respect to the
pulse area for different reduced detunings. At small pulses area, the phase shift
increases with the pulse area for all reduced detunings. However, as the pulse area
keep increasing, and for large reduced detuning, the phase shift oscillates around
the prediction obtained by a perturbative approach.

As we have developed previously, the parameter that is not kept constant
during the interferometer is the pulse area through variations of the laser intensity
induced by the atom cloud expansion. This plot shows the sensitivity of this phase
shift with pulse area variations. In particular, around θ = π/2, we notice that this
sensitivity is highly dependent of the detuning.
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4.2.1.1 Effect of diagonal terms in the coupling

Revoking the assumption that the coupling Hamiltonian diagonal terms are zero,
we can rewrite it:

Hc =
(

δ|α〉 Ωe−iφ/2
Ωeiφ/2 δ|β〉

)
(4.2.10)

= δm1 + δc
2 σz + Ω

2 (cos(φ)σx + sin(φ)σy) , (4.2.11)

where δm = δ|α〉 + δ|β〉
2 , and δc = δ|α〉 − δ|β〉 (4.2.12)

When treating the case of Raman transitions δc corresponds to the differential
light shift: δc = ΩLS

diff.
The evolution operator of the total Hamiltonian is then modified:

U(τ) = e−iδmτ1

cos
(

Ωeτ

2

)
1− i

sin
(

Ωeτ
2

)
Ωe

(
δ + δc Ω

Ω −δ − δc

) , (4.2.13)

with Ωe =
√

Ω2 +
(
δ + δc

)2
. (4.2.14)

The global phase term can be safely ignored in the context of interferometry as it
modifies globally the phase function. However, as we compare the coupling case
to the free case, this phase term appears as a leftover.

In the formula (4.2.8), the presence of diagonal terms in the coupling operator
modifies the argument of the arctan function in which the δ should be replaced by
δ + δc:

δφ = arctan
(
δ + δc

Ωe

tan
(

Ωeτ

2

))
− δτ

2 , (4.2.15)

the term δτ/2 being unchanged since it represents the evolution without the cou-
pling.

The effect of this modification is plotted on figure (4.8). The coupling operator
displaces differently the two levels, which has two consequences: first, the relative
phase evolution between the to levels is changed which induces a vertical displace-
ment of the dispersion figure. Secondly, this changes also the resonance condition
which results to an horizontal displacement of the figure.

4.2.1.2 Conclusion

We have treated in detail the effect of phase shifts induced by the transitions when
their duration can not be modeled as infinitely short.
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displacement of the dispersion figure.

These phase shifts, induced by the diagonal terms of the evolution operator
exhibit a non trivial behavior with the resonance deviation, either when scanning
the pulse area or when considering the energy shifts induced by the coupling.

4.2.2 Application to atom interferometry
4.2.2.1 Counterpropagating Raman transitions

In order to discuss the impact of these phase shifts to our interferometers, we recall
the expression of the Rabi frequency and of the light shifts as a function of the
lasers intensity:

Ω = Γ2

16∆

√
I1I2

IS
(4.2.16)

ΩLS
i = Γ2

8∆
Ii
IS

, (4.2.17)

where the index i references the laser beams.
If the lasers are well equilibrated (i.e I1 = I2), the light shift on a single level

is twice as big as the Rabi frequency! Fortunately, the light shift applies on the
two hyperfine levels, where the difference is only controlled by the detuning which
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differs by ωHFS. As a consequence, the differential light shift for a single laser
beam is given by:

ΩLS
diff,i = Γ2

8∆
Ii
IS
× ωHFS

∆ (4.2.18)

With our parameters, ∆ = 65 GHz, the differential light shift is typically ten
times smaller than the direct light shift. Since we apply three laser beams to the
atoms, the order of magnitude of the light shift is then 60 percent of the effective
Rabi frequency, which is far from negligible.

In the following of the development, we assume that the differential light shift
is proportional to the Rabi frequency.

As we have seen during the presentation of counterpropagating Raman transi-
tions, these are sensitive to Doppler effect.

Thus, to identify terms of the modelization presented above to the experimental
terms, we have:

δ ↔ δDoppler = (~v − ~v0) · ~ke (4.2.19)
δc ↔ ΩLS

diff =
∑
i

ΩLS
diff,i, (4.2.20)

where ~v0 correspond to the velocity class addressed by the Raman transition.

4.2.2.2 Effect in a Ramsey-Bordé interferometer

The interferometric signal of an atom interferometer comes from the non-diagonal
terms of the evolution operator. Since the correction induced by the finite duration
of the pulse applies to the diagonal terms of this operator, we deduce that the total
phase shift over a Ramsey-Bordé interferometer is given by:

δφfinite = −δφIV + δφIII + δφII − δφI (4.2.21)

Over the Ramsey sequences, the diagonal term that we should consider switch
from pulse to pulse. Since the correction changes sign with the matrix element of
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the evolution operator (see equation (4.2.8)), we obtain:

δφfinite =− arctan
(
δDoppler + ΩLS

diff,IV

Ωe,IV

tan
(

Ωe,IV τ

2

))

− arctan
(
δDoppler + ΩLS

diff,III

Ωe,III

tan
(

Ωe,IIIτ

2

))

+ arctan
(
δDoppler + ΩLS

diff,II

Ωe,II

tan
(

Ωe,IIτ

2

))

+ arctan
(
δDoppler + ΩLS

diff,I

Ωe,I

tan
(

Ωe,Iτ

2

))
,

(4.2.22)

where we have identified with a pulse index the parameters that depend on the
laser intensity and are then assumed to vary over the interferometer.

First, we observe that if the laser intensity is kept constant along the interfer-
ometer then all terms cancel and this effect can not be observed.

4.2.2.3 Velocity dependence

Each term of equation (4.2.22) behaves as a dispersion relation, such that we
expect to observe a dispersion relation at the output of the Ramsey-Bordé.

The experimental result is displayed on figure (4.10). The Ramsey duration
TRamsey was 10 ms and the delay between the Ramsey sequences was 70 ms.

In order to observe the dispersive nature of equation (4.2.22), we scanned the
initial mean velocity of the atom cloud on which the interferometric sequence was
applied. This is performed through the setting of the addressed velocity class of
the preselection pulse by changing the frequency of the Raman selection pulse.
The experimental conditions are presented in figure (4.9).

The Rabi frequency was 2π ·(2.5 kHz), and the initial velocity was scanned on a
[−6.0, 7.0] kHz in Doppler shift units, with a 1 kHz step. The velocity distribution
full width at the output of the preselection sequence was estimated to be less
than 1 kHz. The consequence of this large velocity scan with respect to the Rabi
frequency is that we performed interferometry with low contrast.

Moreover, when presenting the Ramsey-Bordé interferometer, we have seen
that the natural variable to scan was the frequency of the second Ramsey sequence.
However, in these conditions, the Rabi spectra that is probe by the atomic velocity
distribution may vary sharply with the pulse frequency. Hence, by scanning the
frequency, the Rabi spectra shape may induce an additional shift of the central
fringe. In order to prevent this effect, we scanned the phase of the last pulse.

On figure (4.10), the experimental data was fitted with equation (4.2.22), with
the following parameters: the initial Rabi frequency, a ramp parameter character-
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Figure 4.9: Experiment to observe the phase shift predicted by equation (4.2.22).
Top: pulses arrangement. The frequency of velocity selection in between the atom
elevator is our parameter to change the velocity of the atoms in the interferometer.
Middle: In blue, interferometer pulses Rabi envelope (without light shifts). The
dashed curves represents initial velocity distribution, and the solid curve their
selection by the interferometer pulses. Bottom: interferometer signal at the output
of the light pulses sequence. When the Doppler shift associated to the atomic
velocity reaches the edge of the Rabi enveloppe (middle plot, blue curve), the
fringe contrast is degraded (middle and bottom plots, red curves).
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Figure 4.10: Dispersion behavior of the output phase of a Ramsey-Bordé interfer-
ometer by scanning the initial velocity of the atoms. The orange line corresponds
to a fit with equation (4.2.22), with an intensity variation over the interferometer.

izing the reduction of the Rabi frequency over time and a proportionality constant
C so that ΩLS

diff = CΩ.
The fitted Rabi frequency is 10% higher than the one obtained through a esti-

mation based on Rabi Oscillations. However the reduction of the Rabi frequency
is estimated to 2% over 50 ms, which is far from the value expected from consid-
erating a 4 µK expanding gas (' 20%). We can attribute this discrepancy as a
consequence of the large velocity scan:

As the atoms are further from resonance when performing the interferometer,
their contribution to the interferometer signal is not uniform over their velocity
distribution. Because of this the mean Doppler detuning on the horizontal axis
might be overestimated, and as such the amplitude of the dispersion curve under-
estimated.

Even though the experimental conditions to observe (4.2.22) are challenging to
put in place because of the width of the Rabi spectra, we are able to confirm the
dispersive nature of the finite pulse duration correction.

4.2.2.4 Calibration of the intensity variation

As we have seen above, the dependence in initial velocity displays a dispersive
behavior. Additionally, if we were to reduce the intensity variation over the pulses,
we would observe a decrease in the dispersion curve amplitude.
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Figure 4.11: Center phase of a Ramsey Bordé interferometer with intensity ramps
on the interferometry pulses. The green points displays a compensation of the
intensity variation induced by the expansion of the atom cloud. The labels of each
data set correspond the intensity reduction of the first interferometer pulse. For
example, for the blue points, the intensity of the first pulse was 30% smaller that
for the last pulse. The intensity of the pulses is then swept linearly with respect
to time.

By applying an intensity ramp during the interferometer, i.e. increasing the
Raman power to compensate for the cloud expansion, we can compensate experi-
mentally such a reduction of the intensity variation.

We scanned the output phase of a Ramsey Bordé interferometer without Bloch
Oscillations between the Ramsey sequences. In order to place ourselves as close
as possible to the h/m measurement interferometer, TRamsey was set to 20 ms and
the delay between the Ramsey sequences Tdelay was 30 ms such that the total
interferometer duration was 50 ms.

Two parameters were changed: the initial velocity of the atoms and the am-
plitude of the linear intensity ramp. The result of this experiment is displayed on
figure (4.11). We observe that when the intensity sent to the vacuum chamber is
10% smaller for the first pulse than for the last pulse, the slope of the variation
with the initial velocity is greatly reduced by ∼ 80%, and as such the systematic
error induced by such phase shifts.
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4.2.3 Conclusion
Drawbacks and advantages of both kind of atomic sources have been studied. It
must be pointed out that the phase shift studied using optical molasses is present
when using BECs. However it is greatly reduced thanks to the lower transverse
expansion rate.

Using a BEC as an atom source involves an additional systematic effect and
that their production reduces the cycling rate of the experiment and are more
elaborated, thus less stable.

These considerations, combined with the fact that we were able to calibrate
the intensity variations over the cloud expansion, led us to choose clouds produced
by optical molasses for the h/m determination.

Finally, as we will see in section 6.5.2, local fluctuations of the intensity profile
can shift the interferometric output phase. This effect, firstly reported in [Andia,
2015a], was explained in [Bade, 2018]. This effect has been studied experimentally
with optical molasses on the new setup (section 6.5.2).

Because of the local intensity sensitivity, it is necessary to average out the inten-
sity fluctuations. In this context, optical molasses appears as a better production
process than the evaporative cooling to Bose Einstein Condensation.
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Chapter 5

Determination of the h/mRb ratio

The principle of the measurement of the atom recoil velocity was exposed in chapter
2, with the combination of atom interferometry and Bloch Oscillations.

In this chapter, we describe in detail the experimental and analysis protocols
that aims to the determination of the h/mRb ratio. We then discuss the implemen-
tation of these protocol and present the performance of the experimental setup.

To simplify the notations, we drop the subscript of the Rubidium atom mass
symbol.

5.1 Experimental protocol
Let us start with a brief reminder of the previously exposed measurement principle.
Bloch Oscillations allows to transfer to atoms an arbitrary number of atom recoil
2vB = 2~kB/m, where kB is the Bloch beams wavevector. Thus, with a process of
NB Bloch Oscillations, one transfers the following velocity:

∆v = NB · 2vB = 2NB
~
m
kB (5.1.1)

By embedding the process in a differential velocity sensor Ramsey-Bordé in-
terferometer, which is characterized by the 2 photons wavevector of the Raman
based beam splitters kR and its two durations, TRamsey the Ramsey sequences du-
ration and Tdelay the delay between the two Ramsey sequences, one obtains an
atom interferometer whose output phase shift is given by:

Φinterferometer = TRamsey

(
kR

(
εB2NB

~
m
kB − gTdelay

)
− δω

)
, (5.1.2)

where δω is the Raman beams detuning shift between the two Ramsey sequences
and εB = ±1 describes the direction of the acceleration. Figure (5.1) displays a
schematic of such an interferometer.

139
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Figure 5.1: Bloch Oscillations embedded in a differential velocity sensor. For
clarity, gravity was not represented and the beam splitter recoil was exaggerated.
The dashed lines represent the loss channels.
At the input of the interferometer, the atoms are in |F = 2〉. After the first
Ramsey sequence, a blow away pulse removes the |F = 2〉 coherences. After the
Bloch Oscillations process, a second Ramsey sequence is applied. The central fringe
condition corresponds to a maximum |F = 1〉 → |F = 2〉 transfer probability by
the second Ramsey sequence.

We typically set the interferometer parameters to NB = 500, and TRamsey =
20 ms. We discuss the choice of those parameters in section 5.1.4.

5.1.1 Gravity elimination
The determination of the fringe center defined by Φinterferometer = 0, and the δωc
parameter that realizes it allows to deduce the velocity shift between the two
Ramsey sequences. By building a single interferometer one gets a signal that
depends on gravity. However, by combining the two Bloch acceleration directions,
one may eliminate the impact of the gravitational acceleration and obtains the
h/m ratio:

h

m
= π (δωc(εB = +1)− δωc(εB = −1))

2NBkRkB
. (5.1.3)

This formula displays the critical importance of the determination of the effective
wavevectors of both the Bloch and Raman transitions.
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5.1.2 Raman inversion technique
However, equation (5.1.2) describes an ideal situation where the atomic systems are
unperturbed. The interferometer treatment of chapter 2 exhibited that the phase
induced by the internal energy difference of the atomic levels would cancel, but
it was made under the implicit assumption that this energy difference is constant
over the entire interferometer. As such magnetic field inhomogeneities produces
an additional phase shift.

Moreover, we have seen in section 4.2 that the Raman transition induced light
shifts that also add a phase shift to the output of the interferometer. As a con-
sequence we should add to the right hand side of equation (5.1.2) an additional
phase δφ.

The Bloch velocity transfer inside the interferometer reaches ∼ 6 m · s−1 for
500 Bloch Oscillations. This high amount leads to quite different atom trajectory
(see figure (5.3) below) as a function of the Bloch direction such that the phase
shift δφ depends on εB. Thus they do not cancel in equation (5.1.2).

The technique to compensate these phase shifts is to invert the Raman direc-
tion, i.e. alternatively diffract atoms upwards or downwards with the light pulses.
In the equations, this corresponds to replacing kR with εRkR, with εR = ±1, simi-
larly to the Bloch direction.

The light shifts induced by the Raman beams are independent of the tran-
sition direction. Moreover, inverting the direction slightly displaces the atomic
trajectories, such that we can assume with a good approximation that the effect of
magnetic field inhomogeneities is unchanged with the Raman inversion. We hence
assume that δφ depends only on εB.

The measurements of the central fringe parameter on the four situations yield
four equations derived from equation (5.1.2):

0 = TRamsey

(
εRkR

(
εB2NB

~
m
kB − gTdelay

)
− δωc (εR, εB)

)
+ δφ (εB)

for εR = ±1, εB = ±1. (5.1.4)

Combining these four equations, we obtain:

h

m
= π

4NBkBkR

∑
εR,εB

εRεBδωc (εR, εB) (5.1.5)

In terms of systematic effects, without performing the Raman inversion, we
would need to estimate the phase shifts δφ(εB) to ensure the accuracy of the
measurement. Thanks to this inversion technique, we only have to estimate the
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difference of light shifts between the two Raman directions. This estimation will
be treated in a dedicated section 6.3.

With these four measurements, we can also estimate the gravity acceleration g
and the phase shifts δφ(εB)

g = − 1
4kRTdelay

∑
εR,εB

εRδωc (εR, εB) (5.1.6)

δφ (εB) = TRamsey

2
∑
εR

δωc (εR, εB) (5.1.7)

5.1.3 Fringe extraction procedure
The measurement of the central fringe condition, and as such the determination
of δωc, goes as follow. From the initial knowledge of the phase formula parame-
ters, we deduce an estimation of δωc. We then scan the parameter δω around this
value in order to obtain phase shifts in the [−π, π] interval. This correspond to
δω/(2π) in [−1/TRamsey,+1/TRamsey] around δωestc /(2π). We use for the measure-
ment TRamsey = 20 ms, and we check that we are indeed close to the central fringe
by changing this parameter.

In order to extract the fringe pattern, we perform 51 evenly spaced measure-
ments within this interval. At the output of the interferometer, we measure the
atom numbers in the two hyperfine states N1 and N2 from which we obtain the
relative population in |F = 2〉: y2 = N2/(N1+N2). At the central fringe condition,
we have a constructive interference that maximizes y2.

We then fit the fringe pattern with a sinusoidal function and extract an esti-
mation of the δωc parameter with its associated uncertainty. The result of such a
protocol is displayed in figure (5.2).

Because we have to build four fringe patterns in order to estimate h/m, a single
run is 204 points. The sampling of these points is performed randomly in order
to avoid drifts during the data collection. Finally, we measure the acceleration of
the retroreflecting mirror during the interferometer and apply a correction on the
x-axis of the fringe in order to compensate the vibration noise.

5.1.4 Discussion
From the plot of the fringes (figure (5.2)), we see that the values of δωc/(2π) are
within the range of 15 MHz: an atom recoil velocity transfer results into a 15
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Figure 5.2: Typical spectra set for a determination of the h/m ratio. The left
column corresponds to εB = 1 and the top row to εR = 1. The data is plotted as
blue dots. The uncertainty on the central fringe condition is deduced from the fit-
ting procedure, whose output is plotted as orange solid lines. We do not estimate
uncertainty of the y2 measurement. From the combination of the four spectra, we
deduce a value of h/m with an estimated 1.5 · 10−9 uncertainty.
The data points are not evenly spaced on the horizontal axis because of the vibra-
tion correction.
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kHz Doppler shift for the Raman beams. Here, we transferred a thousand recoils
through 500 Bloch Oscillations.

For each spectra, the typical uncertainty ∼ 50 mHz gives a relative uncertainty
of a few 10−9 and the combination of the four spectra subsequently divides by a
factor ∼ 2 the one spectra relative uncertainty for the h/m determination.

Finally, in order to increase the precision of the measurement, one would imag-
ine increasing the number of Bloch Oscillations. However, this number is limited
by two factors. First, the frequency range of the lasers and the fact that we can-
not cross the zero velocity during the interferometer because of a residual lattice
that damages the interferometer coherence and washes the fringes. Secondly, one
needs to obtain well controlled experimental conditions along the entire interfer-
ometer trajectory. Its minimal extension in space along the vertical direction is
approximately given by

2NB
~kB
m

TRamsey + g

2 (TRamsey + Tdelay)2 , (5.1.8)

which for our experimental parameters evaluates to ∼ 15 cm. However, the real
extension is larger:

We have plotted in figure (5.3) the typical atom trajectories for the h/m mea-
surement. After the release from the optical molasses stage, the atoms, in |F = 2〉,
are subjected to a 650 Bloch Oscillations pulse upwards in order for them to reach
the interferometry region. A second Bloch pulse closes the atom elevator and is
responsible for the precise positioning of the atom cloud during the interferometer
sequence. We thus prepare the atoms at a given altitude z0(εB) and at a velocity
v0(εB).

This positioning is important for the control of some systematic effects:

1. The atoms should remain in the area where the magnetic field is well con-
trolled (∼ 45 cm height) during the interferometer (see section 6.3.2).

2. The trajectories corresponding to the two Bloch acceleration directions should
be carefully placed in order to reduce the effect of gravity gradient (see sec-
tion 6.2).

3. The copropagating transition induces an additional coupling that shifts the
energy levels during the Raman pulses. Their effect scales inversely with the
atom velocities (see section 6.3.1.3). As such, the trajectories cannot feature
velocities close to zero during the interferometric process.

These three reasons extend the minimal size required for running our h/m
determination protocol. The required spatial extension over the vertical direction
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Figure 5.3: Trajectories of the atom clouds for the two Bloch accelerations direc-
tions (top: εB = +1, bottom: εB = −1). We separated the plots to highlight the
differences between the two cases. The blue line corresponds to the trajectory of
the Bloch direction indicated in the title. The green dashed line corresponds to
the other and has been plotted to ease the comparison.
The red area indicate the Bloch Oscillations pulses and the yellow lines the posi-
tion of the Raman pulses. The first two correspond to the preselection stage. The
four other form the interferometer.
Finally, the horizontal dashed-dotted line indicates the altitude of the detection
device and the black line the ceiling of the vacuum cell. The gray area is the region
in which we estimate that the control of the magnetic field is optimal.
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is made ∼ 40 cm, almost the full extension of the interferometry area. As such
500 Bloch Oscillations appear as a limit that will be difficult to overcome.

Alternatively, at constant phase sensitivity, the precision of the δωc determi-
nation scales inversely with TRamsey. As we have seen in section 3.2.4, the low fre-
quency vibration noise sensitivity scales linearly with TRamsey (equation (3.2.10)).
As a consequence, increasing TRamsey requires an increased precision in the vibra-
tion measurement. Furthermore, the spatial extension of the interferometers also
scales with TRamsey, which is ultimately the main limitation to the tuning of this
parameter.

Finally, in between those two elevator Bloch pulses, we use a long Raman π
pulse (∼ 500 µs) that selects a narrow longitudinal velocity class. The selected
atoms are thus placed in |F = 1〉 and the non selected atoms are removed with a
blow away pulse. The selected atoms are subsequently placed in |F = 2〉 with a
shorter π pulse. This preselection stage reduces the impact of velocity dependent
phase shifts with Raman transitions as it reduces inhomogeneous phase shifts on
the atomic sample and as such preserves contrast.

5.1.5 Raman wavevector variation
To obtain equation (5.1.5), we assumed that the wavevector of the Raman transi-
tions was constant along the interferometric sequence. However, the Doppler shift
varies by 15 MHz between its beginning and end, resulting in a variation of the Ra-
man wavevector that must be considered to extract h/m from the measurements
of the four central fringes δωc (εR, εB). We will then use the Lagrangian formalism
to account for these variations. This treatment leads to an explicit definition of
the Raman wavevector, given in equation (5.1.17), to use in equation (5.1.5) for
the h/m determination.

We recall that with regard to the Bloch Oscillations process, the two lasers
are chirped symmetrically so that the two photon wavevector remains constant.
This is not the case for Raman transtions where the frequency of a single laser is
changed.

We write ~u the normal vector pointing upwards, opposite to the gravity accel-
eration. For the Raman transitions we have two lasers:{

ω1, ~k1 = εR
ω1
c
~u

ω2, ~k2 = −εRω2
c
~u
. (5.1.9)

We recall that the effective wavevector of the transition writes ~kR =
(
~k1 − ~k2

)
=

εR~u (ω1 + ω2) /c. In our experiment, ω1 is a fixed parameter while ω2 is set to a
specific frequency using the frequency chain described in section (3.2.2). We use a
frequency ramp at a rate β to compensate for gravity during the Ramsey sequences
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ωoff/(2π) 6 834 847 522.277 Hz
β/(2π) 25 148 419.694 Hz/s

δ0(εB = 1)/(2π) −18 449 959.483 Hz
δ0(εB = −1)/(2π) −3 362 388.127 Hz
δω(εB = 1)/(2π) 14 292 881± 50 Hz

δω(εB = −1)/(2π) −15 882 261± 50 Hz

Table 5.1: Raman frequency parameters for an experimental sequence with 500
Bloch Oscillations during the interferometer.

and a frequency jump δω to maintain the resonance after the Bloch Oscillations
pulse.

More precisely, the sequence program into the synthesizer is:

ω2(t) = ω1 − ωoff − δω2(t), (5.1.10)

with

δω2(εR, εB, t ∈ [tI , tII ]) = εR(δ0(εB)− β(t− tI)) (5.1.11)

and

δω2(εR, εB, t ∈ [tIII , tIV ]) = εR(δ0(εB) + δω − β(t− tIII)), (5.1.12)

where tI , tII , tIII and tIV are the times of the four π/2 Raman pulses.
In order to be resonant with the atoms, one should have:

ωoff ' ωHFS + ωrec (5.1.13)
δ0(εB) ' kRv0(εB) (5.1.14)

β ' kRg (5.1.15)
δω ' kR(2εBNBvB − gTdelay), (5.1.16)

where ωrec = ~2k2
R

2m corresponds to the recoil energy.
In the time sequence, approximate values are used to calculate these first three

parameters, as well as δω which is scanned around the estimated value. Table 5.1
compiles the numerical values used for the sequences presented in figure (5.3).

In the calculation of the interferometer phase, two terms appear, the terms in
ωt and kz (see section 2.2.3.2). It is important to note that when calculating the
term in ωt, the δ0, ωoff and β quantities cancel out and do not have any effect.

In the following paragraph, we evaluate the corrections related to the term in
kz. It should be noted that what is relevant in the calculation is the synthesized
experimental value.
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The (kz) term in the phase of the lasers writes:

φ(z) = εR(k1 + k2)z = εR(kR + δk2(t))z, (5.1.17)

where

kR = 2ω1 − ωoff

c
(5.1.18)

δk2(t) = −δω2(t)
c

(5.1.19)

We define the Lagrangian of equation (2.2.49) with a constant Raman wavevec-
tor ke = εRkR. The term εRδk2(t)z leads to a perturbation of this Lagrangian:

δL = εR
∑
pulses

δk2(t)z(t)δ(t− tpulse) (5.1.20)

With this formalism, we do not have to calculate the perturbation to the tra-
jectories due to the change in the recoil, and we simply obtain the phase shift
induced by this perturbative Lagrangian:

∆Φ(εR, εB) = εR
−δω2(tI)zI + δω2(tII)zII + δω2(tIII)zIII − δω2(tIV )zIV

c
(5.1.21)

In order to calculate the phase shift of the interferometer, it should be noted
that the same linear sweep is used between tI and tII as well as between tIII and
tIV . We then have δω2(tII)− δω2(tI) = δω2(tIV )− δω2(tIII). Thus, the phase shift
is independent of the initial position of the atoms.

From the atom trajectories, we can calculate this correction. We can notice
that δω2 changes sign with εR while the atom positions do almost not change. ∆Φ
is then almost constant when the Raman direction is changed, and thus cancels
out in the calculation of h/m.

More precisely, we have:

∆Φ(εR, εB) = TRamseyζ(εB)− εR
TRamseyβ

c
∆z, (5.1.22)

where the main part is TRamseyζ(εB), with:

ζ(εB) = −1
c

((
2εBNBvB − gTdelay

)(
δ0(εB) + βTRamsey

)
+ βδzm(εB) (5.1.23)

+ δω
(
v0(εB) + 2εBNBvB − gTdelay −

gTRamsey

2
))

,
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where δzm(εB) is the variation of position between the two Ramsey sequences,
averaged over the inversion of the Raman direction:

δzm = (zIII(εR = 1)− zI(εR = 1)) + (zIII(εR = −1)− zI(εR = −1))
2 (5.1.24)

This term proportional to ζ(εB) cancels in the calculation of h/m.
The second part is proportional to the distance ∆z = 2TdelayvR, where vR is

the two photon Raman recoil. This term evaluates to ∼ 10−5 rad and is therefore
negligible.

With this approximation, equations (5.1.5) and (5.1.6) remain valid provided
that the Raman wavevector is defined by equation (5.1.17). The equation to use
to determine the phase shift is now

δφ(εB) = TRamsey

(∑
εR δωc(εR, εB)

2 − ζ(εB)
)
. (5.1.25)

The interferometer is no longer closed, since the recoil is not the same with
each Raman pulse. As as a consequence, the phase depends on the initial velocity
v0(εB) of the atoms. It is therefore necessary to evaluate it precisely in order to
estimate the phase shift.

The effect of the Raman wavevector variation is illustrated in figure (5.4). We
have recorded the four spectra with different number of Bloch Oscillations during
the interferometer. From each measurement we extracted the phase using either
equation (5.1.7) or (5.1.25), on respectively the top and bottom plots.

The solid line on the top plot is an estimation of the TRamseyζ(εB) derived from
the a priori knowledge of the trajectory parameters.

We have presented the measurement protocol for the h/m determination. The
discussion treated the improvement possibilities in term of parameter set to in-
crease to sensitivity and we showed that we are exploiting fully the potential of
the experimental setup. Moreover, we studied in detail the output phase of the
interferometers and extracted precise formulas for the h/m ratio, the gravitational
acceleration and the common perturbations over the Raman direction inversion.

Finally, we have displayed an example of the four spectra fringes, but we did
not discussed in detail the sensitivity performance of the setup. We turn to the
treatment of this point now.

5.2 Statistical performance
We have seen that performing four spectra we can reach a typical relative precision
of σ = 2 · 10−9 on h/m. In order to gain an order of magnitude we repeat the
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Figure 5.4: Observation of the phase shift induced by Raman wavelength variation.
Top: For different number of Bloch Oscillations during the interferometer, we
recorded the four spectra. The dots represent the phase δφ(εB) obtained using
equation (5.1.7). The errorbars are smaller than the dots. The solid line is the
evaluation of TRamseyζ(εB).
Bottom: Residuals, which correspond to evaluating δφ(εB) with equation (5.1.25).
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Figure 5.5: Set of h/m 678 determinations taken over a week-end. Each point
correspond to ∼ 5 minutes of integration.

experiment. After N repetitions of the experiment, and provided that the deter-
minationof the h/m value are independent and identically distributed, we have
that the precision over the integration is given by:

σtotal = σ√
N

(5.2.1)

In order to present the statistical performance of our setup, we present the
result of a 48 hours integration that was performed over a week-end. The data set
is composed of N = 678 determinations of h/m, which are collected in figure (5.5).
This data set was obtained with TRamsey = 20 ms and 500 Bloch Oscillations for
the acceleration.

The Allan deviation σy(τ) of the values is a powerful tool to study the statistical
distribution of the determinations. Introduced to characterize the stability of
atomic clocks, the Allan deviation is also an accurate tool to observe drifts of the
experimental apparatus. For a measured quantity y, it is defined as:

σ2
y(τ) = 1

2
〈
(ȳn+1 − ȳn)2

〉
, (5.2.2)

where 〈. . . 〉 designs the mean operation, and ȳn the n-th determination of y ob-
tained over an integration duration τ . We obtain these values by performing
packets of determination and taking the mean value of those packets. It is possi-
ble to show that if the determinations are independent and identically distributed,
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Figure 5.6: Comparison between the data Allan deviation and the expected be-
havior in the case of a white noise induced data distribution.

then the Allan deviation will scale with 1/
√
τ . In this context, it can be seen as a

standard deviation averaged over time.
We plotted in figure (5.6) the Allan deviation of the data set. It behaves with

the power law of a white noise so that we can estimate the performance of the
experimental setup to a relative precision of 1.7 · 10−10 on h/m over 12 hours of
integration. One of the limit of the Allan deviation span is that it is limited to a
quarter of the total integration duration. As a consequence, it cannot be use to
characterize the full data set.

However, we may split the data set in 4 subsets that corresponds to 12 hours
of integration each. From the Allan deviation, we have that the distribution of
the 4 weighted mean values of the subsets are governed by a white noise. These
four values are plotted in figure (5.7). As they agree with each other, we obtain
the raw value of the h/m determination by taking the weighted mean of these four
values. We then obtain a relative precision of 8.5 · 10−11 on h/m over 48 hours of
integration.

Compared to the precedent determination of our team with a statistical un-
certainty of 4.4 · 10−10 and the statistical uncertainty of the recent Berkeley deter-
mination of 3.2 · 10−10, the performance of our setup is particularly interesting to
provide a new determination of the fine structure constant.

Using the same dataset, we extract the determinations of g using equation
(5.1.6). The results of these determinations are plotted in figure (5.8). The solid
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Figure 5.7: Four integrated h/m values. Each points corresponds to 12h of inte-
gration.
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Figure 5.8: Determination of g extracted from the same dataset as figure (5.5).
Blue dots: experimental determinations. Orange line: Predictions obtained from
a model of Earth’s tides.
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line has been obtained using PETGTAB software which models Earth’s tides, and
our measurements are in agreement with this model.

By subtracting the tidal effect from our dataset, we compute the Allan variance
of the g measurements. We then obtain a sensitivity of about 5·10−6 m·s−2·Hz−1/2.
This performance is about 100 times worse than the best sensitivity obtained
with a gravimeter based on atom interferometry reported in [Hu, 2013]. This
performance ratio corresponds roughly to the phase sensitivity ratio between the
two interferometers. It should be noted, however, that to achieve this performance
on our experimental setup, it is necessary to control vibrations much better than
is currently the case.

Thanks to our sensitivity on h/m, we have run various parameters scans that
are represented in figure (5.9). As it can be observed, the current status of the
experiment is at the identification of systematic error sources, either technical
or fundamental. For example, the fast shutters presented in figure (3.21) were
implemented to prevent leakage from the Bloch beams, diffracted by a residual
RF signal in the AOMs.

Besides this experimental surveys, we have also developed a theoretical analysis
of the systematic effects that will be accounted for in the error budget of the
determination. This theoretical analysis constitutes the following and final part of
this thesis.
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Figure 5.9: Collection of h/m determination for ten days some with parameter
change.
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Chapter 6

Analysis of systematic effects

6.1 Introduction

6.1.1 General considerations
The analysis of systematic error sources requires a careful method towards their
estimation. Indeed, an error source may induce a correction, which has to be
carefully estimated, with its associated uncertainty.

Let us present the framework of this analysis. We recall that the central fringe
condition that we used for the derivation of the h/m formula was obtained by
computing the difference between the phase of path (B) and the one on path
(A)1. As a consequence, evaluating the effect of a perturbation that induces a
path dependent perturbation φpert, the central fringe condition becomes:

0 = TRamsey
(
kRδv(εB)− δωc(εR, εB)

)
+ φ

(B)
pert(εR, εB)− φ(A)

pert(εR, εB) (6.1.1)

Unlike the above development on the treatment of the four spectra, the variation
of the wavevector is here not represented. Indeed, we have seen that by choos-
ing the appropriate Raman wavevector kR defined by equation (5.1.18), then the
wavevector variation effect in cancel on h/m. It will not be considered in the
following.

To simplify the notations, we write

δφpert(εR, εB) = φ
(B)
pert(εR, εB)− φ(A)

pert(εR, εB). (6.1.2)

Performing the four spectra weighted sum of equation (6.1.1), we obtain:
∑
εR,εB

εRεBδωc(εR, εB) = 4NBkRkB
π

h

m
+ 1
TRamsey

∑
εR,εB

εRεBδφpert(εR, εB) (6.1.3)

1Path (B) being the one that correspond to a transition at the first beam splitter.

157
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We can from this equation deduce a correction to h/m. Let us first define
them: from the four spectra set, we deduce a raw value of h/m given by equation
(5.1.5). However, because of the perturbation, this value is displaced from the true
h/m: (

h

m

)
raw

= h

m
−∆

(
h

m

)
. (6.1.4)

Inversely, knowing the correction induced by a perturbation and the raw value,
we can estimate the true value by summing the two:

h

m
=
(
h

m

)
raw

+ ∆
(
h

m

)
. (6.1.5)

We can now give the formula for a correction induced by a differential phase
shift on the interferometer arms from equation (6.1.3):

∆
(
h

m

)
= − π

4NBkRkB

∑
εR,εB εRεBδφpert(εR, εB)

TRamsey
. (6.1.6)

We can also express the relative correction:

∆
(
h
m

)
h
m

= −
∑
εR,εB εRεBδφpert(εR, εB)

TRamsey
∑
εR,εB εRεBδωc(εR, εB) . (6.1.7)

Setting in this equation the weighted sum of the pulsation centers to
(
2π
)
· 4 ·(

15 MHz
)
, and with TRamsey = 20 ms, we obtain that for a control of the residual

phase at 1 mrad, the relative precision of the h/m determination is limited to
∼ 1.3 · 10−10, which is the order of magnitude that we aim.

Moreover, the sum of the phase shifts weighted by the product of the Raman
and Bloch direction exhibit the cancellation potential of our protocol: even if an
effect changes sign with the Bloch direction, it will be compensated if it remains
constant with the Raman direction, and inversely.

Of course, all the error sources that we have to estimate are not computed
through a phase perturbation. However, in these cases, which mostly correspond
to a correction to the effective wavevector of the laser beams, the sign of the
correction is usually unambiguous.

Nevertheless, through equations (6.1.5) and (6.1.7), we defined the framework
of our analysis.
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6.1.2 Description of the trajectories
The knowledge of the atomic trajectories during the interferometric sequences is
a prerequisite to the estimation of some systematic effects. In order to lighten the
discussion of the systematic effect estimation, we choose to present the trajectories
and their parametrization at first.

6.1.2.1 Beginning of the interferometer

In between the end of the optical molasses stage and the beginning of the in-
terferometer, the atoms a prepared with two Bloch Oscillations pulse to position
them and two counterpropagating Raman pulses, positioned in between the Bloch
pulses, that perform a velocity selection.

We can model a Bloch pulse as a succession of velocity kicks. However, the
manipulation of such kicks as a sum can be cumbersome and one can show that it
is strictly equivalent to model the Bloch Oscillations as an additional acceleration
aB applied for a duration TB with:

aB = εB
vB
τB

and TB = NBτB, (6.1.8)

where vB is the two-photon atomic recoil vB = 2~kB/m, and τB the duration of a
Bloch Oscillation, NB the number of Bloch Oscillations and εB its direction.

We denote the first Bloch pulse as the launch pulse, characterized by the num-
ber of Bloch Oscillations Nl and its time of application tl. Its direction is upwards
(εl = +1), and it is common to the four spectra.

We then obtain, by setting the position reference at the position of the molasse
stage, the position and velocity after the launch pulse:

v(t) = −gt+NlvB (6.1.9)

z(t) = −gt
2

2 +NlvB
(
t− (tl + Tl/2)

)
(6.1.10)

where the last line shows that in term of position, after the Bloch pulse, it can be
modeled as a single velocity kick placed at the middle of its duration.

We now move to the description of the velocity selection, also common to the
four spectra. At a time ts, a Raman pulse is applied to the atoms. On top of
transferring a narrow velocity class of the atomic distribution, it kicks the velocity
by −εRvR,2 where vR is the two photon Raman recoil. After a duration Ts, we
apply a second Raman pulse that transfers back the atoms and kick them by εRvR.

2The minus signs is induced by the fact that the atoms are in |F = 2〉 at the end of the
molasses stage
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As a consequence, the velocity of the atoms is unchanged but their position has
been displaced by ∆z0 = −εRvRTs.

Finally, the positioning Bloch pulse depends on the direction of acceleration
during the interferometer εB in terms of number of oscillations Np(εB) and timing
tp(εB) but is always directed downwards: εp = −1. We finally obtain that the
equation of motion after the preparation stage is given by:

v(t) = −gt+
(
Nl −Np(εB)

)
vB (6.1.11)

z(t) = −gt
2

2 + vB

((
Nl −Np(εB)

)
t−Nlt

′
l +Np(εB)t′p(εB)

)
− εRvRTs (6.1.12)

where we have compacted the timing of the Bloch pulses with t′k = tk + Tk/2
for each of them. These equation shows that the velocity at the beginning of
the interferometer depends only on the Bloch acceleration direction during the
interferometer. Furthermore, the corresponding position depends also mainly on
εB, with a correction depending only on εR. As a consequence, at the beginning of
the interferometer tstart, the initial position and velocity are given by z = z0(εB)−
εR∆z0 and v = v0(εB).

The following tables give typical parameters of this preparation stage, and
values of the initial position and velocities, which were also used to present the
trajectories during the previous chapter in figure (5.3).

Parameter tl Nl ts Ts
Value 9 ms 650 70 ms 10 ms
Parameter tp(εB = +1) Np(εB = +1) tp(εB = −1) Np(εB = −1)
Value 155 ms 1185 131 ms 635

Parameter tstart ∆z0
Value 175 ms 120 µm
Parameter z0(εB = +1) z0(εB = −1)
Value 93 cm 81 cm
Parameter v0(εB = +1) v0(εB = −1)
Value -8.1 m · s−1 -1.5 m · s−1

6.1.2.2 During the interferometer

The two arms of the interferometer can be described independently with position
z(A)(t) and z(B)(t), but we rather adopt a description through the mean position
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zm(t), and position difference δz(t) given by:

zm(t) = z(A)(t) + z(B)(t)
2 (6.1.13)

δz(t) = z(B)(t)− z(A)(t) (6.1.14)

The position difference can be obtained immediately:

δz(t) =


−εRvRt if t < TRamsey

−εRvRTRamsey if t < Tdelay
−εRvR(Tdelay + TRamsey − t) else

(6.1.15)

The trajectories separate continuously during the first Ramsey sequence. In be-
tween the two, their respective velocities are the same and the position difference
remains constant, and is finally linearly reduced to 0 during the second Ramsey
sequence.

The mean position on the other hand obeys the evolution law of a particle
subjected to the gravitational field with initial position z′0(εR, εB) = z0(εB) −
εR∆z0(εR) and velocity v0(εB) − εRvR/2 because of the velocity kick of the first
beam splitter. We should also take into account the Bloch pulse in between the
Ramsey sequences and obtain:

zm(t) = z′0(εR, εB) + v0(εB)t− gt2

2 (6.1.16)

+



εR
vR
2 t if 0 < t < TRamsey

εRvR
(
t− TRamsey

2

)
if TRamsey < t < tB

εRvR
(
t− TRamsey

2

)
+ εBaB(t−tB)2

2 if tB < t < tB + TB

εRvR
(
t− TRamsey

2

)
+εBaBTB

(
t− t′B

)
if tB + TB < t < Tdelay

εR
vr
2 (t+ Tdelay − TRamsey)

+εBaBTB
(
t− t′B

)
else

,

where tB is the time at which the Bloch acceleration starts, and t′B = tB + TB/2
its middle point.
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Finally, the decomposition of the trajectories in mean position and position
difference can be extended over the Raman direction inversion with the definitions:

Zm(t) = zm(εR = 1, t) + zm(εR = −1, t)
2 (6.1.17)

∆Z(t) = zm(εR = 1, t)− zm(εR = −1, t) (6.1.18)

whose expression can be easily deduced from the above equations. In particular,
we find that:

∆Z(t) = −2∆z0 −


vRt if 0 < t < TRamsey

2vR
(
t− TRamsey

2

)
if TRamsey < t < Tdelay

vr (t+ Tdelay − TRamsey) else
,

(6.1.19)

which shows that the interferometer mean trajectories deviate from each other with
linear branches over the interferometer duration as we invert the Raman direction.
This behavior may limit the effectiveness of the Raman inversion technique.

One may notice the contrast on the level of details for the trajectories de-
scription between the extraction of the interferometric signal and the treatment
of systematic effects. This is because the four terms ~ke · ~z term over one interfer-
ometer do not retain information on the initial conditions of the atomic motion.
However, this information can no longer be discarded when analyzing systematic
error sources.

We now turn to these estimations. We start by the effects that we can control
through the positioning of the interferometer: gravity gradients, then light shift
(in particular, the one induced by copropagating transitions) and then the effect
of magnetic field inhomogeneity.

We will then turn to the estimation of the lasers effective wavevector, which
constitutes of the measurement of their frequency, the corrections induces by the
non plane wave profile of the beam and their relative alignment. Because it is
technically linked to this last point, we will also discuss the compensation of the
Earth rotation. Finally, we will discuss phase shifts induced by the Raman phase
lock device.

For numerical applications, we use the interferometer presented in figure (5.3),
for which the Ramsey duration is TRamsey = 20 ms, the delay between the Ramsey
sequences is Tdelay = 32.6 ms, and the number of Bloch Oscillations is NB = 500,
with a duration per oscillation τB = 12 µs.
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6.2 Effect induced by the gradient of gravity
We have already presented the gradient of gravity in two contexts: first as a
perturbation on the interferometer output phase in section 2.2.3 and secondly as
a measured quantity in the characterization of the experimental setup in section
3.3.3.2.

The latter gives us an estimation of the gravity gradient that we should account
for and the former the method to compute phase shift that it induces. However,
in the context of the determination of h/m, as we perform spectra with inverted
Bloch acceleration direction in order to cancel the gravity acceleration, we show
that we can place precisely the interferometers with respect to one another in order
to cancel the phase shift induced by gravity gradients.

First, we start by recalling that the expression of the phase shift induced by
gravity gradients expresses as:

φgrav. grad = mγ

~

∫
interferometer

zm(t)δz(t)dt, (6.2.1)

where γ is the linear correction to the constant gravity. We may already notice
that the position difference δz changes sign with the Raman direction inversion,
such that the phase shifts add on the h/m determination. As a consequence, the
cancellation can only occur over the Bloch direction inversion.

Feeding the trajectories information into equation (6.2.1), we obtain:

φgrav. grad = −εR
mγTRamseyvR

12~ × (6.2.2)εBTBaB
(
T 2
B

2 + 2T 2
Ramsey + 6(Tdelay − t′B)(TRamsey + Tdelay − t′B)

)

+ 6Tdelay (Tdelay(v0 − εRvR) + TRamseyv0 + 2z0)

− 2gTdelay
(

(TRamsey + Tdelay)2 − TRamseyTdelay
2

),
where we have replaced tB + TB/2 by t′B to simplify the notations. We simplify
formally the notations of this equation in order to compute the four spectra com-
bination. Noting that only z0 and v0 depend of εB, we rewrite it:

φgrav. grad (εR, εB) = εRA
(
εBB + C(εB) + εRD + E

)
. (6.2.3)

For the h/m determination, we perform the sum of each central frequency weighted
by the product of the Bloch and Raman direction, such that the effective phase
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shift induced by the gravity gradient can be written:

φgrav. gradh/m =
∑
εR,εB

εRεBφ
grav. grad (6.2.4)

= 2A
(
2B + C(εB = 1)− C(εB = −1)

)
. (6.2.5)

Taking into account the four spectra, we see that half of the terms cancel. We can
now undo the formal identification, and by writing ∆z0 = z0(εB = 1)−z0(εB = −1)
and ∆v0 = v0(εB = 1)− v0(εB = −1), we obtain:

φgrav. gradh/m = −2mγTRamseyTdelayvR
~

× (6.2.6) TBaB
6Tdelay

(
T 2
B

2 + 2T 2
Ramsey + 6(Tdelay − t′B)(TRamsey + Tdelay − t′B)

)

+ 1
2(TRamsey + Tdelay)∆v0 + ∆z0

.
As a consequence, we can cancel the effect of the gradient of gravity by care-
fully positioning the two interferometer trajectories with respect to each other. In
particular, we have put the above expression in a form that is the product of a
prefactor in mrad·m−1 multiplied by a distance.

Using our typical values for the interferometer, and γ = 3 · 10−6 s−2 we can
estimate the prefactor to 64 mrad·m−1, which correspond to a systematic error on
h/m of 8.5 · 10−9 m−1. As a consequence, in order to cancel the effect induced by
the gradient of gravity it is sufficient to control the positioning of the interferometer
at the level of the mm.

In order to achieve such a control, we use the positioning pulses and we set
the number of oscillations of each pulse as well as the timing of one of them and
cancel equation (6.2.6) with the timing of the second one, with a precision of 1 µs,
which correspond to a positioning precision at the level of 10 µm. This allows us
to cancel the gravity gradient error below 10−13 in relative h/m unit.

6.3 Effects on the atomic energy levels

6.3.1 Phase shift during Raman pulses
We have treated in detail phase shifts induced by a resonance deviation during the
atom-laser coupling in section 4.2. The estimation of the detuning of the transition
is hence fundamental. We described the contribution of the light shifts induced
by one photon transitions and of the Doppler effect. However, the Ramans lasers
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configuration is such that a far off resonance copropagating Raman coupling is
applied to the atoms. This two photons coupling leads to an internal energy shift
that we also estimate.

6.3.1.1 One-pulse phase shift

We start by recalling the formula that gives the phase shift that applies on the
non diffracted arm of the interferometer for one Raman pulse:

δφ = arctan
(
δ

Ωe

tan
(

Ωeτ

2

))
, (6.3.1)

where δ is the detuning of the transition and Ωe its effective Rabi frequency.
In our case, the detuning is given by Doppler effect δDoppler and the one photon

and two photons light shifts (ΩLS
diff and δ2ph., with ΩLS

diff � δ2ph.). The two photons
light shift is induced by copropagating transitions and will be introduced shortly
(section 6.3.1.3).

We assume δDoppler = 0, which corresponds to treating only the center of the
velocity distribution, and that the one photon light shift is proportional to the
Rabi frequency: ΩLS

diff = CΩ. Finally, we develop the pulse area Ωeτ around π/2.
The phase shift now writes:

δφ = arctan
(
CΩ + δ2ph.

Ω
√

1 + C2
tan

(
π

4 + δθ

2

))
, (6.3.2)

formula that we develop with δθ and δ2ph. to obtain:

δφ = arctan
(

C√
1 + C2

)
+
√
C2 + 1

2C2 + 1

(
Cδθ + δ2ph.

Ω

)
. (6.3.3)

The constant term in arctan describes the phase induced by the one photon light
shift if the pulse area is perfectly π/2, and cancels over the four pulses of the in-
terferometer. The second term gives the sensitivity to pulse area fluctuations and
to the two photons light shift. In particular, we can separate their treatment.

6.3.1.2 One-photon light shifts

Measuring the frequency centers of Rabi spectra for different Rabi frequency, we
estimated:

C = 0.337± 0.013 (6.3.4)
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which is a mean value over the four spectra. Indeed, as we invert the Raman
direction, C is slightly modified as the retroreflected beam is inverted. By a careful
balancing of the laser powers, we are able to limit the variation δC below 5%.

Moreover, using the technique of section 4.2.2.4 to reduce beams intensity
variations along the interferometer, we estimate that the pulse area fluctuations
are contained with εθ = 3% of a π/2. By estimating the effect over the four
interferometer pulses, we obtain:

φ1γ = C
√
C2 + 1

2C2 + 1 (δθI + δθII − δθIII − δθIV ) (6.3.5)

= C
√
C2 + 1

2C2 + 1
π

2 εθ. (6.3.6)

which yields phase shifts of ∼ 15 mrad.
Assuming that C depends on εR with C(εR) = C + εRδC, we obtain:

φ1γ
2 spectra(εB) = δC√

C2 + 1(2C2 + 1)2

π

2 εθ (6.3.7)

The numerical application yields residual phase shifts over the Raman inversion
of ∼ 700 µrad.

Finally, the compensation with the Bloch inversion is not straightforward. In
particular, the number of BO in the preparation of the two Bloch acceleration
direction differs by 500, which can cause a modification of the cloud shape. In
particular, we do not know the sign of εθ which might change. As a consequence,
we treat the two Bloch direction as independent variables, and we obtain a final
formula:

φ1γ
h/m =

√
2δC√

C2 + 1(2C2 + 1)2

π

2 εθ (6.3.8)

We then obtain the correction on h/m, with formula (6.1.7):

∆
(
h
m

)
h
m

= 0± 1.3 · 10−10 (6.3.9)

The uncertainty associated with the one photon light shift coupled to pulse area
fluctuations is quite large. In order to reduce it, we plan to study the compensation
over the Bloch direction with Monte Carlo simulations to estimate more precisely
the contribution of this effect.
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6.3.1.3 Two-photon light shifts

Counterpropagating Raman pulses couple the subspaceA =
{
|F = 1, ~p〉 ,

∣∣∣F = 2, ~p+ ~~kR
〉 }

.
On the other hand, copropagating transitions act in the subspace

{
|F = 1, ~p〉 , |F = 2, ~p〉

}
,

where we neglected their recoil velocity equivalent to a microwave photon. Those
transitions are present because the Raman lasers are brought with the same fiber.

As a consequence, each state of A experience a coupling to the other hyperfine
state with the same velocity, described by the Hamiltonian:

H = ~
(
δ/2 ΩΩΩ/2

ΩΩΩ∗/2 −δ/2

)
, (6.3.10)

where the Rabi frequency Ω is expected to be the same as the counterpropagating
transition one. The detuning of transition is given by δ = ω1 − ω2 − ωHFS which
is governed experimentally as we set the laser frequency so that the counterprop-
agating transition is resonant. We then have

δ = εRkRv + ~k2
R

2m (6.3.11)

The recoil term in this equation ~k2
R

2m (∼ 15 kHz) is negligible compared to the
Doppler term, which evaluates to a few MHz. Moreover, we then have Ω� δ such
that we treat the copropagating coupling with perturbation theory.

This treatment yields that the state |F = 1, ~p〉 experiences an energy displace-
ment of−~δ2ph./2, while the energy of

∣∣∣F = 2, ~p+ ~~kR
〉
is displaced by the opposite

amount ~δ2ph./2 with:

δ2ph. = −Ω2

2δ , (6.3.12)

which clearly displays that as the atoms get slower the light shift induced by
the copropagating transition increases as its resonance deviation decreases. The
velocity of the atoms changes by a large amount during the interferometers such
that this effect does not compensate. In particular δ2ph. evaluates to typically
2π · 5 Hz for an atom moving at 1 m · s−1.

We expect from this order of magnitude phase shifts of the order of a few mrad.
Furthermore, equation (6.3.11) shows that this effect changes sign as the Raman
direction is inverted. As a consequence, it is not compensated over the four spectra.

Approximating δ to εRkRv, we find that the contribution of this term to a single
spectra is given by:

φ2γ = −εR
√
C2 + 1

2C2 + 1
Ω

2kR

( 1
vI

+ 1
vII
− 1
vIII
− 1
vIV

)
(6.3.13)
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As we have already stated, the slower the atoms, the greater the phase shift. In
particular, when inverting the Bloch direction, the most contributing terms are
also inverted, so that this effect adds on the four spectra.

The total phase contribution to h/m is given by:

φ2γ
h/m = −

√
C2 + 1

2C2 + 1
Ω
kR

∑
εB=±1

εB

(
1

vI(εB) + 1
vII(εB) −

1
vIII(εB) −

1
vIV (εB)

)
(6.3.14)

The sources of uncertainty in this formula come from C and Ω. We have given the
former in equation (6.3.4), known with a 4% precision, while the latter evaluates
to:

Ω = 2π · 2.07± 0.10 kHz, (6.3.15)

which corresponds to a 5% precision. From the knowledge of the atomic trajecto-
ries, we can compute the effect of the two photons light shifts. For example on the
atomic trajectories presented in chapter 5 and section 6.1.2 we obtain a shift of:

∆
(
h
m

)
h
m

= +(7.07± 0.39) · 10−11 (6.3.16)

Finally, there are other two-photon transitions that we have not taken into
account, as their contribution is negligible. First, the energy displacements as-
sociated with the |F = 1,mF = 0〉 ↔ |F = 2,mF = ±2〉 transitions are negligible
as stated in section 2.1.2.2. Secondly, there are two other counterpropagating
transitions that couple the states |F = 1,mF = 0, ~p〉 to |F = 2,mF = 0, ~p− ~kR〉
and |F = 2,mF = 0, ~p+ ~kR〉 to |F = 1,mF = 0, ~p+ 2~kR〉. However, these tran-
sitions are off resonance by the hyperfine splitting (∼ 6.8 GHz) and produce neg-
ligible light shifts in the mHz range.

6.3.2 Magnetic field inhomogeneities
Our interferometer is insensitive to the atom internal states energies by its sym-
metry. However, magnetic field inhomogeneities over the atom trajectories during
the interferometer break this symmetry.

In our experimental setup, we have an interferometry region where the magnetic
field control is driven by a solenoid, which is furthermore embedded in a magnetic
shield. We can then treat it as a scalar and we develop it around its mean value:

B(z) = B0 + b(z), (6.3.17)
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where B0 = 31.7 mG and |b(z)| < 200 µG.
Since we perform interferometers with atoms in the mF = 0 Zeeman sublevels,

only sensitive to the second order Zeeman effect, we have:

∆E(z) = ±hK2 B2(z), (6.3.18)

where the shift is positive for atoms in |F = 2〉 and negative for |F = 1〉. The
result of the following treatment is that the contribution of this term in negligible
on the h/m determination, so that we do not make particular care for its sign.

Developing the square of the magnetic field with expression (6.3.17), and
putting the constant term in the energy levels, we obtain that the magnetic field
inhomogeneities can be treated with the perturbative Lagrangian:

Lmag = ∓hKB0b(z) (6.3.19)

In order to obtain the phase shift over a trajectory, we should integrate the
above expression. However, as we are sensitive to the phase shift difference between
the two arms, we first describe the two trajectories. We can put them in the form:

z(A)(t) = zm(t)− δz(t)/2 (6.3.20)
z(B)(t) = zm(t) + δz(t)/2, (6.3.21)

where zm is the mean trajectory and the position difference δz reads: We then
develop the effective Lagrangian around the mean trajectory, and obtain:

Lmag = ∓hKB0

(
b(zm)± δz

2
db
dz (zm)

)
, (6.3.22)

where the ± in the parenthesis depends on the trajectory. Provided that the
magnetic field gradients are sufficiently small, we can restrict the development to
the leading order and neglect the term proportional to the position difference δz.

We decompose the interferometer in its three phases: the first Ramsey se-
quence, the duration in between the two Ramsey sequences and the second Ramsey
sequences.

During the first Ramsey sequence, path (B) corresponds to atoms in |F = 1〉.
As a consequence, we have:

L(B)
mag = +hKB0b(zm) (6.3.23)
L(A)
mag = −hKB0b(zm) (6.3.24)

We recall that the phase shift induced by a perturbative Lagrangian is given by:

φpert = 1
~

∫
Lpertdt, (6.3.25)



170 CHAPTER 6. ANALYSIS OF SYSTEMATIC EFFECTS

such that the phase shift during the first Ramsey sequence is given by:

δφRamsey1
mag = 2πKB0

∫ TRamsey

0
b(zm(t))dt. (6.3.26)

Immediately, we have that the phase shift during the second Ramsey sequence is
given by:

δφRamsey2
mag = −2πKB0

∫ Tdelay+TRamsey

Tdelay
b(zm(t))dt. (6.3.27)

Inversely, in between the Ramsey sequences, the two paths correspond to atoms
in |F = 1〉, and the two term cancel.

In the worst case scenario where the two phase shift add, we find a contribution
to the output interferometer phase . 1 mrad. Moreover, the phase shifts com-
pensate over the Raman direction inversion, such that we can expect a negligible
contribution to the h/m determination.

The imperfect compensation of the magnetic field originates from the slight
difference between the atomic trajectories when inverting the Raman directions.
Using equations (6.1.17) and (6.1.18), we obtain that the phase contribution of
the two spectra:

δφmag(εB) = 2πKB0

( ∫ TRamsey

0
∆Z(t) db

dz (Zm(t)) (6.3.28)

−
∫ Tdelay+TRamsey

Tdelay
∆Z(t) db

dz (Zm(t))
)
.

Assuming the worst case scenario of a constant gradient with opposite sign with
the two Ramsey sequences, we have from equation (6.1.19):

δφmag(εB) = −4πKB0
db
dz (2∆z0 + vRTdelay)TRamsey. (6.3.29)

With our interferometer parameters and a magnetic field gradient at 4 mG·m−1, we
obtain residual phase shifts of ∼ 10 µrad. Then, again in the worst case scenario
where the shifts do not compensate over the Bloch direction inversion, we obtain
a total contribution of ∼ 20 µrad, which correspond to a relative error on h/m of
2.6 · 10−12.

This corresponds to a dramatic reduction of the contribution of the second
order Zeeman effect compared to the previous setup of our team[Bouchendira,
2011].
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The precise computation using equation (6.3.28), equations (6.1.17) and (6.1.19)
for the trajectories and results from section 3.3.3.1 for the magnetic field charac-
teristics, we obtain an phase contribution to h/m of 6.6 µrad, we corresponds
to:

∆
(
h
m

)
h
m

= −8.8 · 10−13. (6.3.30)

This contribution is indeed negligible. We set a conservative uncertainty at 10−12

and apply no correction.

6.4 Effect induced by the rotation of the Earth
The terrestrial referential in which our experiment takes place is not strictly
Galilean because of the rotation of the Earth. This imperfection is well captured
through the Coriolis acceleration:

~aC = 2~ΩE × ~v, (6.4.1)

where ~ΩE is the vector describing the Earth rotation. In the lab frame, this vector
possesses both a vertical and horizontal component. Let us choose a normal vector
set

{
~ux, ~uy, ~uz

}
to describe our problem. The vector ~uz represents the direction of

the Raman beams, on which the differential velocity measurement is performed.
We furthermore choose the orientation of the remaining axis such that:

~ΩE = ΩE,x~ux + ΩE,z~uz, (6.4.2)

where x corresponds the East-West direction and y to South-North. Since we are
only sensitive to the ~uz component of aC , we deduce that we have to account for
an additional acceleration that depends on the transverse velocity along ~uy which
reads:

aC,z = ~aC · ~uz = 2ΩEvy. (6.4.3)

As the effect of the Earth rotation expresses as an acceleration, it translates on
the output as of the interferometer as:

δφCoriolis (~v) = kRTRamseyTdelayac (~v) (6.4.4)
= 2kRTRamseyTdelayΩEvy. (6.4.5)

As a consequence, a phase shear appears on the cloud velocity distribution along
the y axis. As our detection method of the atomic cloud is insensitive to spa-
tial information, such a phase inhomogeneity may wash out the fringes especially
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Figure 6.1: Top: relative populations at the output of the interferometer for two
PZT ramps. Bottom: fringes contrast as a function of the two axis ramps ampli-
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Figure 6.2: Integrated h/m raw determinations with and without Earth rotation
compensation. Each point correspond to 400 sets of 4 spectra. The total interro-
gation duration is 60 hours.

if the interferometer sensitivity (in our case ∝ TRamseyTdelay) is large[Lan, 2012;
Sugarbaker, 2013].

With ΩE = 48 µrad·s−1, our typical interferometer durations (TRamsey = 20 ms,
Tdelay = 33 ms), we obtain a Coriolis acceleration induced phase of:

δφCoriolis ∼ 500mrad/
(
m · s−1

)
. (6.4.6)

The typical width of the velocity distribution of the atoms that participate to the
interferometer being of the order of 1 cm · s−1, we estimate that the amplitude of
the phase shear to 5 mrad.

In principle this effect should average over the velocity distribution. At the
time of the detection, the atoms positions depends mostly on their velocities. As
such, any inhomogeneous spatial efficiency of the detection translates in a not
perfect averaging over the velocity distribution.

Moreover, as we eliminate gravity with the Bloch direction inversion, we also
eliminate any supplementary acceleration. However, any change in the detection
process over the Bloch inversion translates in a systematic shift. In particular,
and as can be seen in figure (5.3) that describes the atomic trajectories, the time
of the detection varies over the Bloch direction inversion, and as such the spatial
distribution of the cloud.

As the spatial dependence of the detection efficiency is a difficult quantity to
evaluate, we have turned to a method that allows us to compensate experimen-
tally the phase shear induced by Coriolis acceleration. We take advantage of the
fact the retroreflection mirror is driven by PZTs to dynamically mimic the Earth
rotation[Lan, 2012]. This corresponds to slightly misaligning the Raman beams
which also induces a phase shear proportional to the atomic transverse velocity
(see section 6.5.1).
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In order to extract the rotation rate of the mirror that compensate the Earth’s
rotation, we use the phase shear property of the effect. Using TRamsey = 350 ms
and Tdelay = 355 ms, we increase the output phase sensitivity to the Earth rotation.
Here, we are not interested in a accurate determination of the fringe center so that
the effect of vibration noise is not a limitation.

However, we can process the atomic relative populations y2 = N2/(N1 +N2) to
extract the contrast of the fringes. We obtain a sample of the y2 distribution by
repeating the experiment a hundred times. On figure (6.1, top), we have plotted
results of such a procedure for efficient and inefficient Coriolis compensations.

Because the experiment is rotated with respect to the cardinal direction can-
vas3, we need to rotate the mirror along its two axis X and Y . Estimating the
contrast for a two dimensional random sampling of (X, Y ), we obtain the plot of
figure (6.1, bottom).

Fitting the results with a two dimensional gaussian, we obtain the sweep rates
to apply to maximize the fringe contrast and as such the compensation of Earth
rotation induced phase shifts. We estimate the error on these sweep rates by
repeating the fitting procedure on data subsets. We obtain sets of estimates,
whose standard deviations give an estimate of the error on the sweep rates. We
find that their relative errors are below 5%. Treating each axis of the PZT as an
independent variable, we estimate the accuracy of the compensation that we apply
to 7%.

Finally, we have measured h/m with the compensation of Earth rotation and
without. The results of this survey on figure (6.2). The discrepancy between the
two values being at worst 5.7·10−10. As we apply experimentally the compensation
for the h/m measurement, we apply no correction. The uncertainty on the Earth
rotation compensation is estimated by the product of this discrepancy and the
estimated accuracy of the compensation. We finally obtain:

∆
(
h
m

)
h
m

= 0± 4 · 10−11 (6.4.7)

6.5 Effects on the lasers wavevectors

6.5.1 Beams misalignment

The treatment of the interferometers assumed perfect alignment between the lasers
beams. If the beams are not perfectly aligned, as represented in figure (6.3) then

3because of the orientation of the Jussieu campus
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Downwards Bloch
and Ramans

Figure 6.3: Beam alignment notations. The z axis is defined by the downwards
going beams, and the y axis by the plane formed by those beams and the reflected
Raman beam. The out of plane angle φB of the upwards Bloch beam is not
represented.

the Raman wavevector is changed to:

~kR = kR
2
(
(1 + cos(θR))~uz + sin(θR)~uy

)
, (6.5.1)

where we have performed the simplification k1 ' k2 ' kR/2. Then, the phase
imprinted to the atoms during the interferometer Raman pulses is changed to:

~kR · ~r = kR
2
(
1 + cos(θR)

)
z + kR

2 sin(θR)y (6.5.2)

Similarly, the velocity transferred with Bloch Oscillations writes:

−→∆v = ∆v
(

1 + cos(θB)
2 ~uz + sin(θB)

2 (cos(φB)~ux + sin(φB)~uy)
)

(6.5.3)

with ∆v = NBvB and φB describes the relative angle between the wavevectors of
the upwards going Bloch and the upwards going Raman in the horizontal plane
(~ux, ~uy).

By combining equation (6.5.2) and the equations of motion, one obtains in the
leading order in θR, θB, the relative correction on h/m with given angles:

∆
(
h
m

)
h
m

= +θ2
R + θ2

B − θRθB sin(φB)
4 . (6.5.4)
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The beams alignment is ensured through continuous optimization with PZT
transducers on mirror mounts. From the calibration of the PZT and the shot to
shot variations on the optimization procedure we obtain:

θR < 3 µrad (6.5.5)
θB < 4.5 µrad (6.5.6)

Because φB is unknown, the maximal correction is given by the worst case
scenario φB = π which corresponds to opposite angles on the Bloch and Raman
upwards going beams. The minimal correction is given by perfectly aligned beams
θR = θB = 0, such that the alignment correction on h/m is given by:

∆
(
h
m

)
h
m

= +(5.34± 5.34) · 10−12. (6.5.7)

The compensation of the Earth rotation induces a supplementary misalignment
on the Raman wavevector as the angle between the two Raman beams is linearly
ramped:

θR(t) = θR + β
(
t− TRamsey + Tdelay

2

)
, (6.5.8)

where β is the angular sweep rate. The ramp is symmetrized with respect to the
interferometer duration such that the maximal angle between the Raman beams is
minimized. We have assumed that the misalignment θR is placed along the ramp
direction. The more general calculation does not change the following result.

Computing the output phase of the interferometer with the equations of motion
the time dependent misalignment, we first find a single term in vy, the initial atom
velocity along the y-axis:

δφ = kRTRamseyTdelayβvy, (6.5.9)

which explains that applying a linear ramp on the Raman beams angle can com-
pensate Coriolis phase shift (equation (6.4.5)).

The other terms, in the first order in β, yield an additional correction to h/m:

∆
(
h
m

)
h
m

= β

2

((
θR −

θB sin(φB)
2

)(
TRamsey

2 + 3Tdelay
2 − t′B

)
+ 2TdelayθR

vz
∆v

)
,

(6.5.10)

where we recall that t′B is the middle point of the Bloch acceleration. Embar-
rassingly, the calculation yields a term that depends on the initial velocity of the
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atoms of the same order of magnitude than the other terms. Computing this term
with the parameters of our interferometer parameters and the ramp that we apply
β = 66 µrad·s−1, we obtain:

∆
(
h
m

)
h
m

= +(5.42± 5.42) · 10−12. (6.5.11)

Combining the alignment correction (equation (6.5.7)) and the ramp correc-
tions, we obtain the final correction of the effect induced by beam misalignment:

∆
(
h
m

)
h
m

= +(1.08± 1.08) · 10−11. (6.5.12)

6.5.2 Beam profile corrections
So far, we have assumed a well define wavevector k for the laser beams. This is
only correct in the case of plane waves. Experimentally, we use gaussian beams of
finite size. This part is devoted to the estimation of the relative correction to the
wavevector δk/k induced by the beam profile.

Note that this correction applies on both the Raman and Bloch wavevectors
such that the correction on h/m writes:

∆
(
h
m

)
h
m

= −2δk
k

(6.5.13)

This work has not been finalized yet. As it will be explained in the conclusion
of this chapter, we observe discrepancies on the measured h/m upon changing
experimental parameters. However, the correction induced by the beam profile is
not modified as we change these parameters. As a consequence, we have focused
our work on the study of those discrepancies rather than on the completion of the
beam profile correction estimation.

6.5.2.1 Ideal gaussian beam

With a gaussian beam, the effective wave vector along its direction of propagation
z is given by[Cladé, 2005]:

keffz (r, z) = k − 2
kw2(z)

(
1− r2

w2(z)

)
− kr2

2R2(z) , (6.5.14)
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where k is the plane wave wavevector, r and z are respectively the transverse
and longitudinal positions, w(z) is the waist of the beam and R(z) its radius of
curvature at position z.

The waist w(z) obeys:

w(z) = w0

√
1 +

(
z

zR

)2
, (6.5.15)

where w0 is the minimal waist of the beam and zR its Rayleigh length defined by:

zR = kw2
0

2 . (6.5.16)

In our experimental conditions with w0 ∼ 5 mm, the Rayleigh length evaluates to
∼ 40 · 103m. As we implement our interferometers over distances of a few tens of
centimeters, we can neglect the variations of the waist with the position.

Finally, the radius of curvature is given by:

R(z) = z

(
1 +

(
zR
z

)2
)
. (6.5.17)

In equation (6.5.14), the relevant parameters are the waist and the radius of
curvature at the position of the interaction with the atoms. We estimate the waist
using images from a CCD camera (see figure 6.5), and the radius of curvature
from the interference pattern obtained with a shearing interferometer[Riley, 1977]
which yielded R > 1 km.

From the correction term independent of the transverse position r, we obtain
the order of magnitude of the correction:

δk

k
= keffz − k

k
= − 2

k2w2
0

(6.5.18)

= −1.2 · 10−9. (6.5.19)

This number should be corrected with the other terms that depend on the mean
value of the cloud size 〈r2〉. The estimation of this quantity relies on the knowledge
of the initial size of the cloud, of its temperature and of the spatial filtering induced
by the elevator-velocity selection sequence. We use a Monte-Carlo simulation to
evaluate such a term.

Finally, the motivation for a Monte-Carlo simulation comes also from the ne-
cessity to estimate the impact of wavefront distortions.
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6.5.2.2 Effective wavevector in a distorted wavefront

In the latest measurement of our team[Bouchendira, 2011], the contribution of the
gaussian wavefront correction to the systematic errors was one of the main limiting
factors. The waist of the laser beam was then 3.6 mm. By increasing the waist by
∼ 40% to 5 mm, the effect is decreased by a factor ∼ 2.

After setting up more powerful lasers sources (see section 3.2) with larger
beams, our team discovered a new systematic effect that appeared when reduc-
ing the Bloch lasers intensity. The relative effect was of the order of 2.10−8 for
a 25% reduction of the Bloch pulse efficiency, ten times higher than the gaussian
wavefront correction[Andia, 2015a].

This effect was then interpreted as a manifestation of the wavefront distor-
tion[Bade, 2018]. In particular, in this reference, our team generalized the formula
(6.5.14) to the case of a laser field ansatz:

~E(~r, t) = ~E0(~r)ei(Φ(~r)−ωt), (6.5.20)

where ~E0(~r) is the local amplitude of the laser field and Φ(~r) its spatial phase.
The effective momentum of the photon can be deduced from the spatial phase

with ~p = ~
−→
∇Φ[Antognozzi, 2016]. Using Helmholtz equation with the ansatz of

equation (6.5.20) one can extract the wavevector correction:

δk = − 1
2k
∥∥∥−→∇⊥Φ

∥∥∥2
+ 1
k

∆⊥I
I

, (6.5.21)

where I =
∥∥∥ ~E0

∥∥∥2
is the local intensity of the field and −→∇⊥ and ∆⊥ are respectively

the transverse gradient and Laplacian at a fixed position z0.
The second term, that depends on intensity variations, induces negative cor-

rections to the wavevector at local intensity maxima and positive corrections at
positive intensity maxima. Moreover, the first term which corresponds to local
fluctuations of the phase has been found negligible with respect to the second
term[Bade, 2018].

The efficiency of Bloch Oscillations depends on the local laser intensity. At
the output of the interferometer, we are sensitive to the average 〈δk〉 over the
atoms that survived the Bloch pulse. Writing P (I) this survival probability (or
efficiency), we can obtain the average wavevector correction with a spatial inte-
gration:

〈δk〉 = 〈δk(~r)P (I(~r))〉
〈P (I(~r))〉 (6.5.22)

Assuming that we are not limited by spontaneous emission, the efficiency in-
creases with the intensity. By lowering the intensity of the Bloch lasers, one filters
preferentially atoms placed at local maxima of intensity, and observe a negative
shift.
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Figure 6.4: Relative h/m obtained by changing the intensity of the Bloch lasers
for interferometer pulse. The text indicate the setpoint for each value.

6.5.2.3 Effect on h/m

The effect of the wavefront distortion scales with the square of the intensity fluctu-
ations amplitude, as both the correction and the local variations of efficiency scale
with it. Secondly, the short-scale fluctuations are dominant in equation (6.5.21)
but are filtered out by the propagation in free space. As a consequence we increase
as much as possible the distance between the interferometry lasers collimators and
the atoms up to ∼ 2 meters.

We display in figure (6.4) the variation of h/m obtained when reducing the
laser power of the Bloch pulse during the interferometer. At a 75% efficiency, we
observe a negative effect of 2.5 ·10−9, which corresponds to a reduction by a factor
of 10 of the initially observed effect[Andia, 2015a]. Moreover, at higher power,
there is no resolvable shift between the data at a relative precision of 2.5 · 10−10.

The evaluation of this effect requires precise knowledge of the beam profile,
which we obtain with a CCD camera (IDS UI-5340CP-NIR-GL). We avoided the
problem of interference fringes that form on the camera by using a laser diode
below its threshold. We present on figure (6.5) a typical image obtained using
this method, and the local wavevector correction using equation (6.5.21). We took
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Figure 6.5: Top: Image of the beam profile obtained with a CCD camera. Bottom:
relative wavevector correction deduced from the image.
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several images at different positions to consider the beam profile at the distance
at which they interact with the atoms.

Our team has developed a Monte-Carlo simulation that uses these images. I
present our preliminary results displayed in figure (6.6), obtained with the laser
profile presented in figure (6.5). The simulation program uses the local wavevector
correction obtained from formula (6.5.21) and evaluates a mean correction using
equation (6.5.22).

The bottom plot of figure (6.6) shows that the relevant parameter to extract the
correction is the efficiency of the Bloch pulse independently of the Bloch potential
depth. Comparing these predictions and the experimental observations of figure
(6.4), there is a discrepancy as experimentally at 75% efficiency we observe a
−2.5 · 10−9 that is not reproduced by the Monte Carlo simulation.

We expect from our experimental parameters: P = 350 mW per beam and
∆ = −40 GHz, V0 ∼ 65 Er. This expectation is supported by the fact that the
survival probability decreases by ∼ 25% when the lasers intensity is divided by
two. The discrepancy might be due to an additional dust that has been deposited
on an optical element in between the time the picture was taken and the data (∼ 4
months).

Nevertheless, we can estimate a provisional recoil correction from figure (6.6)
with:

δk

k
= (−1.0± 0.1) · 10−9. (6.5.23)

Further work is planned in the operation of the Monte Carlo simulation in order
to confirm this number. For example, we intend to reproduce the results of section
4.2 that exhibited the dispersive nature of the Raman pulses. Such a work will
also be useful to reduce the contribution of one-photon light shifts in the final error
budget.

Finally, because it is based on equation (6.5.21) which a generalization of the
Gaussian beam correction (6.5.14), the above correction can be used for Bloch and
Raman wavevectors, so that we obtain the provisional correction on h/m:

∆
(
h
m

)
h
m

= +(2.0± 0.2) · 10−9 (6.5.24)

This number does not take into account errors in the beam profile image analysis
related to the CCD characterization, and as such should be considered with caution
because it is likely to be modified by subsequent analysis. It is however an indicator
of the final accuracy that we expect on this effect.
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Figure 6.6: Preliminary results of the Monte Carlo simulation. Top: Variations
of the averaged effective recoil with respect the laser intensity. Middle: predicted
of the global efficiency of the Bloch pulse with respect to laser intensity. Bottom:
plot of the effective recoil with respect to the Bloch pulse efficiency. On each plot
we display result for three Bloch-lattice potential height.
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6.5.3 Laser frequencies
The knowledge of the lasers frequencies is critical as they are used to determine
the bare wavevector. R. Jannin presented in is PhD thesis[Jannin, 2015a] im-
provements of the laser frequency stabilization setup with a relative short term
precision at 1.5 · 10−11 on the frequencies which correspond to a 6 kHz precision.

However, we tracked the frequencies of our lasers with the frequency comb
setup and observed long term variations of the lasers frequencies by ∼ 10 kHz,
which induces an error source of

∆
(
h
m

)
h
m

= 0± 5.2 · 10−11 (6.5.25)

From the short term performance of the stabilization system, we expect that
we can reduce this number by a factor ∼ 2. Two strategies can be applied, together
or not: implement additional improvements on the stabilization system to reach
better long term stability and continuously measure the lasers frequencies during
the h/m measurement.

6.6 Phase shift in Raman radiofrequency chain
As we have presented in section 3.2.2, the Raman PLL works through the com-
parison of ωbeatnote − ωMW, the frequency difference between the lasers beatnote
and a microwave generator, and ωRF generated by a RedPitaya around 40 MHz.
Accounting for the frequency manipulations, the beatnote angular frequency is
given by

ωbeatnote = ωMW + 8ωRF (6.6.1)

= ωHFS + εRkRv + ~k2
R

2m . (6.6.2)

During an interferometer, ωMW is kept constant and ωRF is the dynamical parame-
ter used to compensate gravity and implement the frequency jump δω for the h/m
determination.

There is a low-pass filter with a 1 GHz cutoff in the RF part of the PLL
frequency chain. Such a filter can produce a phase shift of a few mrad during the
frequency ramps along a single Ramsey sequence. This phase shift depends on the
start ωstart and stop point ωstop of the ramp and on its duration. Since we use a
single duration for all ramps, we ignore this dependence and write the phase shift:

φRF(ωstart, ωstop) (6.6.3)
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Figure 6.7: Frequency ramps performed by the RedPitaya generator for εB = 1.
Left: ωMW is constant with the Raman inversion and the ωRF ramps are not
symmetric. Right: ωMW is shifted when inverting the Raman direction such the
ωRF ramps are symmetric.

Thanks to time reversal symmetry, we can assume:

φRF(ωstart, ωstop) = −φRF(ωstop, ωstart) (6.6.4)

We then obtain the interferometer shift induced by this effect with:

φ = φRF(ωIII , ωIV )− φRF(ωI , ωII) (6.6.5)

Keeping ωMW constant for the four spectra, then the ωι parameters of the ramp
are not symmetric as displayed in figure (6.7, left). In these conditions, the phase
shift (6.6.5) must be estimated.

Recording the beatnote and demodulating it with the frequency ramp com-
mands, we were able to estimate these phase shifts to ∼ ±60 mrad for two spectra
and ∼ 0 for the others for the TRamsey = 20 ms, NB = 500 interferometer. These
shifts compensated on h/m so that it would have been possible to correct them
with a precision of the order of the mrad. It required however a careful characteri-
zation of the phase shift estimation setup. Moreover, for example with NB = 250,
these phase shifts did not compensate anymore.

As a consequence, we preferred to put in place symmetric ramps that takes
advantage of the property of equation (6.6.4) to enhance the compensation over
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the Raman direction inversion. The condition for the compensation of the phase
(6.6.5) is deduced from equation (6.6.4) and given by:

ωI(εR) = ωIV (−εR) (6.6.6)
ωII(εR) = ωIII(−εR) (6.6.7)

Such a condition is achieved by changing ωMW with the Raman direction. Exper-
imentally, we ensure that the mean value of ωRF is the same for the two Raman
directions, as displayed in figure (6.7, right).

The modification of ωRF occurs with a frequency jump, that is placed ∼ 250 ms
before the interferometer. We checked that no modification of the measured phase
shift occurred by reducing this duration by 100 ms. We estimate the uncompen-
sated phase shift to ±500 µrad using the demodulation of the beatnote signal.
This yields on h/m:

∆
(
h
m

)
h
m

= 0± 6.6 · 10−11 (6.6.8)

6.7 Current error budget and survey of system-
atic effects

We have listed and estimated various error sources that we have compiled in the
provisional table (6.1). The main contributions to the final uncertainty are the
beam profile, then the one photon lights shifts and the laser frequencies. We
expect to reduce the first two using a Monte-Carlo simulation and the last with
experimental improvements.

The final expected relative uncertainty is currently 2.7 · 10−10. Considering
the fine structure constant α, we can expect a relative precision of 1.4 · 10−10,
which would make our determination the most accurate. However, this table is not
complete as we are still running surveys to check for systematic errors. Uncovering
a previously non considered error could reduce the accuracy of our determination.

In order to check for systematic effects, we perform parameters variations on
the measurements. Some of those surveys are displayed in figure (6.8), for dif-
ferent parameters. We have a relatively good agreement when changing TRamsey.
However, the integration duration was not there sufficient and we plan to repeat
this interrogation. One of the difficulties with changing TRamsey is that we re-
duce the sensitivity of the measurement, which in turn requires a longer period of
integration.

Moreover, upon identifying a new error source, we may not be able to correct
the previous surveys. Lately, we uncovered the issue of phase shift in Raman
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radiofrequency chain (section 6.6). Before the modification of the experimental
protocol to reduce this effect, we did not observe an agreement between the two
values for different TRamsey at this level of precision.

Similarly, the treatment of this effect reduces the disagreement between NB =
250 and NB = 500. However, this survey still exhibits a slight discrepancy. Fur-
thermore, we resolve another discrepancy when changing the initial velocity of the
atoms (third plot of the figure). The initial velocity is here changed only for two
spectra (εB = +1), by 50 BO which corresponds to ∼ 0.6 m · s−1. We are currently
investigating this discrepancy to identify its origin. This particular surveys ex-
hibits the versatility of the technique of atom elevators through which we control
the position and velocities of the atom. Indeed, we use it to eliminate the gravity
gradient effect and to investigate the exactness of our measurement.

Finally, we also change the duration of Bloch Oscillations. This cannot be done
at NB = 500 with a large amplitude for practical reasons, which is why we run it
at NB = 250. This parameter modifies the efficiency of Bloch Oscillations and as
such indicates if the effect induced by beam distortions is well understood.

As a conclusion on the systematic errors analysis, the current estimation of
the error budget is quite promising. We have extended the protocol for the h/m
determination such that some effects (gravity gradient, Earth rotation) are com-
pensated.

However, this work has not yet been concluded. For example, the correction
accounting for the beam profile requires additional studies. As we observe discrep-
ancies with respect to some parameter modifications for which the contribution
of the beam profile is identical, we are delaying this estimation in favor of the
identification of the remaining error sources.
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Figure 6.8: Check for systematic errors through parameter change. The values
are corrected for systematic shifts. The reference is arbitrary but common to the
four plots. Common error sources such as laser frequencies or beam profile has not
been propagated such that the discrepancies that we observe are preserved.
The bottom plot has been taken from a different series than the others. For
example, the error induced by the Raman frequency chain was not yet identified
and cannot be corrected, which explains the discrepancy between this set of data
and the others.
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Systematic error source Relative correction
(×10−11)

Relative uncertainty
(×10−11)

Gravity gradient 0 0.01
One photon light shifts 0 13
Two photons light shifts +7.07 0.39
Second order Zeeman effect 0 0.10
Earth rotation 0 4.0
Beams alignment +1.08 1.08
Beams profile +200 20
Laser frequencies 0 5.2
Raman frequency chain 0 6.6
Total systematic errors 208 26
Statistical uncertainty (48h) 8.5
Total uncertainty 27

Table 6.1: Provisional error budget on h/m. We have highlighted in red the
contribution of the beam profile for which the estimation has not been finalized.
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Conclusion and outlooks

We have presented in this manuscript our work on the new experimental setup of
our team. We implemented atom interferometry techniques and Bloch Oscillations
of cold atoms on the setup. We applied the combination of the two techniques to
the measurement of h/m for the determination of the fine structure constant α.

We demonstrated an excellent control of the magnetic field over a 45 cm long
area which, combined with a better control of vibration noise. This allowed to
increase the interferometer duration and as a consequence to reach unprecedented
sensitivity on this measurement with statistical relative uncertainty on h/m of
8.5 · 10−11 with 48 hours of integration.

Simultaneously, we have developed the analysis of systematic error sources
which relies on two approaches. Firstly, a fine modeling of the interferometer and
the atomic trajectories. Secondly, we have taken advantage of the setup sensitiv-
ity to perform experimental surveys. In particular, the latter exhibits that the
assessment of the error budget is not finished as we can still observe unexplained
discrepancies upon experimental parameter variations (number of Bloch Oscilla-
tions, initial velocity of the atoms).

The completion of this measurement campaign will be a milestone for the ex-
perimental setup as it goes with the control of systematic errors at the 10−10.
Moreover, we will then contribute to the test of the Standard Model through the
α/ae comparison.

Furthermore, we have improved the production protocol of ultra-cold atom
sources based on evaporative cooling in an optical dipole trap. We demonstrated
the ability to produce Bose Einstein Condensates (BEC) in a single magneti-
cally insensitive hyperfine sublevel with 120000 atoms. Such ultra-cold sources,
characterized by a smaller transverse expansion, would be used in the future to
implement more sensitive interferometer geometries with large separation between
the two arms.

After the measurement of h/m with cold atom clouds, the short term per-
spectives of the setup are the study of interferometry with a BEC source and in
particular the development of experimental methods to measure the shift induced
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by atom-atom interactions. We have performed such a study with microwave pulse
based Ramsey sequences, which will be extended to interferometers based on light
pulses.

Once the finalization of the error budget of the h/m measurement is completed,
we plan to use the sensitivity of our setup to measure the phase shift induced by
atom-atom interaction in a BEC using a Ramsey-Bordé interferometer. Following
this work, we will reproduce the h/m measurement with colder atom sources.
Finally we will check the comprehensiveness of the error budget by using 85Rb for
the measurement of h/m.
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Interférométrie à haute sensibilité sur onde de matière : vers une
détermination de la constante de structure fine au niveau de 10−10

Résumé : La constante de structure fine α peut être déterminée à partir de la mesure du rapport
h/m entre la constante de Planck h et la masse d’un atome m. La comparaison de la valeur
expérimentale de l’anomalie du moment magnétique de l’électron ou du muon à leurs valeurs
théoriques prédites par le Modèle Standard et utilisant cette valeur de α permet d’accomplir un
test très précis de ce modèle.
Mon travail de thèse a porté principalement sur la mesure du rapport h/m de l’isotope 87 du
rubidium en utilisant un nouveau dispositif expérimental conçu pour produire une source ultra-
froide par évaporation dans un piège dipolaire tout-optique chargé par une mélasse optique.
Nous avons optimisé les paramètres du dispositif à l’aide d’un algorithme génétique, ce qui nous
a permis de produire un condensat de Bose Einstein, contenant 120.000 atomes, polarisé dans
l’état |F = 1,mF = 0〉, avec un temps de cycle de 3,5 secondes.
Nous avons ensuite installé le dispositif laser d’interférométrie atomique, pour interroger un nuage
d’atomes froids produit dans une mélasse optique. En combinant un interféromètre utilisant des
transitions Raman et la technique des oscillations de Bloch, nous avons démontré une sensibilité
sans précédent sur la mesure de h/m correspondant à une incertitude statistique relative de
8,5 · 10−11 en 48h de temps d’intégration, soit 4,3 · 10−11 sur α.
Cette sensibilité nous a permis d’étudier expérimentalement de nombreux effets systématiques.
Nous avons de plus mené un travail de modélisation qui a contribué à la mise en place de
protocoles visant à compenser les biais induits par les effets systématiques. Nous présentons un
bilan provisoire du budget d’erreurs associé à ces effets.

Mots clés : Métrologie, atomes froids, interférométrie atomique, constante de structure fine,
transitions Raman, oscillations de Bloch

High sensitivity matter-wave interferometry: towards a determination
of the fine structure constant at the level of 10−10

Abstract: The fine structure constant can be determined from the measurement of the ratio
h/m between the Planck constant, h, and the mass of an atom, m. The comparison of the
experimental value of the anomalous magnetic moment of the electron or the muon with their
theoretical values predicted by the Standard Model using this value of the fine structure constant
allows a very precise test of this model.
My thesis work focused principally on the measurement of the h/m ratio of rubidium-87 using
a new experimental device. This device has been designed to produce an ultra-cold source
by evaporation in an all-optical dipole trap loaded from optical molasses. We optimized the
parameters of the experimental device using a genetic algorithm, which allowed us to produce
a Bose Einstein condensate, containing 120,000 atoms, polarized in the state |F = 1,mF = 0〉,
with a cycle time of 3.5 seconds.
We then installed the laser device for atom interferometry, to interrogate a cloud of cold atoms
produced by optical molasses. Combining an interferometer using Raman transitions and the
technique of Bloch Oscillations, we demonstrated an unprecedented sensitivity on the measure-
ment of h/m corresponding to a relative statistical uncertainty of 8.5 · 10−11 in 48 hours of
integration, or 4.3 · 10−11 on the fine structure constant. This sensitivity has allowed us to study
experimentally a variety of systematic effects. We simultaneously carried out modelling work
that contributed to the implementation of protocols to compensate for the biases induced by sys-
tematic effects. We present a preliminary assessment of the error budget associated with these
effects.

Keywords : Metrology, cold atoms, atom interferometry, fine structure constant, Raman tran-
sitions, Bloch Oscillations


