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 Résumé - Abstract 
La Sclérose Latérale Amyotrophique (SLA) est une maladie dégénérative et incurable des 

neurones moteurs conduisant à une paralysie musculaire et une perte quasi-totale des commandes 

motrices. Cela conduit au décès du patient en l’espace de 2 à 5 ans après l’apparition des premiers 

symptômes. La présentation clinique de la maladie est assez hétérogène. Cependant, la signature 

histopathologique de la SLA est la présence d’inclusions cytoplasmiques ubiquitinées insolubles dans 

les neurones atteints, ce qui indique une défaillance de l’homéostasie protéique. Dans la grande 

majorité des cas, la protéine de liaison aux ARNs TDP-43 est retrouvée en agrégats dans ces inclusions.  

Le profil génétique de la maladie est complexe et de nombreux gènes mutés ont été identifiés 

dans la pathologie, chacun ne représentant qu’une portion relative faible de la totalité des cas. 

Pourtant, deux groupes de gènes ressortent : un constitué de gènes impliqués dans le métabolisme 

des ARNs et un autre de gènes de l’homéostasie protéique, plus particulièrement de l’autophagie, un 

processus de dégradation des protéines. De manière logique aux vues de l’histopathologie et de la 

génétique, les perturbations du métabolisme des ARNs ainsi que de l’autophagie sont particulièrement 

étudiées dans la SLA. De plus, ces deux processus sont intimement liés dans l’homéostasie globale de 

la cellule. 

 Pour mieux comprendre les interactions pouvant exister entre ces deux mécanismes impliqués 

dans la maladie, j’ai cherché à identifier de nouveaux rôles que pourrait jouer TDP-43, acteur majeur 

du métabolisme des ARNs, dans l’autophagie. De plus, la relation entre TDP-43 et les récepteurs de 

l’autophagie p62/SQSTM1 et OPTN ainsi que de leur activateur TBK1, tous identifiés mutés chez des 

patients, est peu connue.  

 J’ai développé des modèles de modulation de l’expression de TARDBP, le gène codant pour 

TDP-43. Chez l’embryon de poisson zèbre, nous avions déjà rapporté que la sous-expression de tardbp 

conduisait à un déficit moteur ainsi qu’à une axonopathie. Nous associons maintenant cela avec une 

régulation négative de tbk1. De manière intéressante, de l’ARN de TBK1 humain permet un sauvetage 

partiel de ce phénotype. La sous-expression de tardbp s’accompagne aussi par une altération du profil 

d’expression de gènes clés de l’autophagie, qui est en contradiction avec ce que nous, et d’autres 

équipes, obtenons sur des modèles cellulaires humains. Toutefois, le modèle de cellules de 

neuroblastome SH-SY5Y permet l’existence de tels profils antagonistes après déplétion de TDP-43, 

selon que nous modulons l’activité autophagique via de la Torine 1, un puissant activateur de 

l’initiation de l’autophagie. De manière concomitante, la Torine 1 inhibe la liaison de TDP-43 aux ARNs 

de RAPTOR et OPTN mais promeut la liaison à de nouveaux partenaires, les ARNs de TBK1 et 

p62/SQSTM1. De plus, nous rapportons l’observation d’effets antagonistes sur p62/SQSTM1 lors de la 

surexpression progressive de TARDBP dans ces cellules. Plus généralement, ces modulations de 

l’expression de TARDBP se sont traduites par l’apparition de certains phénomènes pathologiques qui 

accompagnent l’agrégation de TDP-43 chez les patients SLA : la déplétion nucléaire de TDP-43 lors de 

la sous-expression ; son clivage et sa localisation anormale dans le cytoplasme pour la surexpression. 

Comme la fonction de liaison aux ARNs de TDP-43 semble capitale dans ces mécanismes, nous avons 

développé de nouvelles techniques de visualisation des ARNs in vivo et in vitro.  

 Cette thèse renforce donc les liens entre métabolisme des ARNs et autophagie dans le contexte 

de la SLA. De plus, nous mettons la lumière sur la faculté de TDP-43 de s’adapter au contexte cellulaire 

et d’influer différemment sur l’autophagie. 
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Amyotrophic Lateral Sclerosis (ALS) is a late-onset uncurable degenerative disease of the 

motor neurons which leads to muscle paralysis and loss of nearly all motor commands. Patients die 

within 2-5 years after appearance of first symptoms. The clinical presentation of the disease is quite 

heterogeneous. However, the histological hallmark of the disease is the presence of insoluble 

ubiquitin-positive inclusions in the cytoplasm of affected neurons. Such a phenomenon is a sign of 

protein homeostasis failure. In the vast majority of cases, the inclusions are positive for TDP-43, an 

RNA-binding protein which is found aberrantly aggregated.  

The genetic etiology of ALS is complex and numerous mutated genes have been identified in 

patients and each account for a rather small percentage of cases. However, two important groups 

stand out: a group of genes involved in RNA metabolism and another involved in protein homeostasis 

and more particularly in a key degradative process called autophagy. Logically, based on 

histopathologic and genetic evidence, defects in these two processes are widely investigated in ALS 

pathogenesis. Moreover, RNA metabolism and autophagy are interestingly intertwined in the global 

maintenance of cellular homeostasis.  

In order to understand the potential interactions between these two ALS-relevant processes, 

I sought to define novel roles that TDP-43, a key actor of RNA-metabolism, could play in the autophagy 

pathway. Of note, TDP-43 interaction with ALS-associated p62/SQSTM1 and OPTN, both identified as 

autophagy receptors, as well as TBK1, their upstream activator, is poorly known.  

Here, I developed models to modulate TARDBP, the gene that encodes for TDP-43. In the 

zebrafish embryo, we report that an already established transient knockdown of tardbp that leads to 

motor deficits and axonopathy, is associated with a downregulation of tbk1. Interestingly, human TBK1 

RNA was able to ameliorate these motor deficits and axonopathy which indicate an epistatic 

interaction between tardbp and tbk1. The knockdown of tardbp was also accompanied with changes 

in the expression profile of key autophagy genes that were in opposition with what we, and other 

teams before, report when depleting TDP-43 levels in human cell lines. However, the SY-SH5Y 

neuroblastomal cellular model also revealed that such antagonist effects on autophagy obtained upon 

TDP-43-depletion could be observed depending on the initial modulation of autophagy, notably 

through treatment with Torin 1, a potent activator of autophagy initiation. Concomitantly, Torin 1 

inhibited binding to known RNA targets RAPTOR and OPTN but also promoted binding to novel targets 

p62/SQSTM1 and TBK1. Furthermore, antagonist effects on p62/SQSTM1 were also obtained upon 

gradual overexpression of TARDBP in cells. Overall, both modulation of TARDBP triggered the 

appearance of certain pathological traits of TDP-43 proteinopathy that are found in patients along with 

the aggregation of the protein: nuclear depletion for the knockdown; truncation and mislocalization in 

the cytoplasm for overexpression. As TDP-43’s RNA-binding function appeared deeply involved in 

these mechanisms, we developed promising RNA-tracking techniques for in vivo and in vitro 

applications. 

Therefore, this thesis strengthens the link between RNA metabolism and autophagy in the context of 

ALS and unveils the TDP-43’s ability to adapt to cellular context and influence autophagy in different 

manners.  
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I) Amyotrophic Lateral Sclerosis 
 

 

 

A) History and definition 
 

 

In the 1860’s, French neurologist Jean-Martin Charcot 

(1825-1893; Fig i 1) was the first to describe a correlation of 

clinical features namely progressive muscle atrophy, muscle 

spasticity, neuropathologic loss of anterior horn cells as well as 

sclerosis in the lateral columns of the spinal cord (Charcot et al, 

1869) and named the disease accordingly, Amyotrophic Lateral 

Sclerosis.  

As a result, ALS is also referred as Charcot’s disease. 

Interestingly, even before Charcot’s work, the first clinical case 

reports seem to be attributed to Charles Bell and date back to 

1824 and were followed by several other case descriptions 

during the 1850’s notably by other Frenchmen Guillaume 

Duchenne de Boulogne (1806-1875) and Jean Cruveilhier (1791-

1974) (Cruveilhier et al. 1863; Duchenne de Boulogne et al. 

1851). In the United States, as ALS caused the death of baseball 

Hall of Famer Henry Louis Gehrig (1903-1941; Fig i 2) the pathology is often called Lou Gherig’s 

disease.  

Figure i 1 : Jean-Martin Charcot 

National Library of Medecine 

Figure i 2 : Lou Gehrig, 1923 

Pacific and Atlantic photos 
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ALS can be described as a late onset motor neuron disease where degeneration of both 

upper and lower motor neuron systems is observed (UMN and LMN) and leads to a rapidly 

progressive and ultimately lethal muscular paralysis. “Lateral Sclerosis” is related to UMN 

damage as it translates hardness of the lateral columns of the spinal cord. This hardening is 

due to gliosis, which appears after degeneration of the corticospinal tracts. “Amyotrophic”, 

on the other hand, indicates LMN damage as it refers to muscle fiber atrophy causing overall 

muscle weakness and fasciculation, which is a consequence of their denervation. 

 

Reminder:  

A minimum of two motor neurons are required in somatic motor pathways: an upper 

motor neuron and a lower motor neuron. The body cell of the upper one is in the central 

nervous system. It projects from the cortex to the brainstem and spinal cord (corticospinal 

tracts). For the lower motor neuron, its cell body relies in the brainstem for cranial nerves or 

in the spinal cord for peripheral nerves and innervates a single motor unit. LMN axons are the 

only one extending in the peripheral nervous system in order to innervate skeletal muscles 

(Fig i 3). 
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             Figure i 3:  Organization of the human motor system; modified from Shaw 2001. 

 

B) The clinic 
 

(1) Symptoms, diagnosis and prognosis 
 

 On a clinical point of view, the initial presentation of ALS holds great heterogeneity. 

Some patients first present muscle weakness of the limbs, which is referred to a spinal-onset, 

while other present dysarthria and dysphagia (respectively difficulty of speech and 

swallowing), which indicate a bulbar-onset (Hardiman et al., 2017). More globally, the 

spectrum of symptoms is quite wide considering any voluntary muscle can suffer damage. In 

the majority of cases, the onset is focal and clinical signs progressively spread locally but also 
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to other regions that show anatomical connections (van Es et al., 2017). There is no definitive 

diagnostic test to demonstrate ALS but according to El Escorial and Awaji criteria, patients 

must present combined evidence of UMN and LMN being affected that cannot be explained 

by any other pathology. In that purpose, clinical, electrophysiological, muscle biopsies, 

serological or cerebrospinal fluid (CSF) testing and neuroimaging studies can be performed 

(Campanari, Bourefis and Kabashi, 2019). Moreover, the progression must be comparable to 

a neurodegenerative disorder (Wijesekera and Leigh, 2009). Apart from muscle weakness, 

speech and swallowing difficulties, clinical features supporting ALS diagnosis also include 

abnormal larynx and/or pulmonary function as patient ultimately develop respiratory 

insufficiency and pulmonary complications which are the usual cause of death. 

 Even though ALS first symptoms concern the motor behavior, phenotyping studies 

reveal that up to 50% of patients also show behavioral and cognitive defects (Phukan et al., 

2012). Interestingly, ALS and frontotemporal dementia (FTD, a progressive neurodegenerative 

disorder affecting both frontal and temporal cortices and causing gradual cognitive 

impairment) share pathobiological features and genetic causes. It is estimated that up to 15% 

of ALS patients show symptoms consistent with FTD while around the same portion of FTD 

patients also meet ALS criteria (Ringholz et al., 2005; Wheaton et al., 2007; Phukan et al., 2012) 

giving rise to an ALS-FTD clinical spectrum of disease. Behavioral signs are mostly related to 

apathy and loss of sympathy while cognitive defects often translate into language, social 

cognition, executive function and more rarely memory impairments (Beeldman et al., 2016). 

 As diagnosis takes up to one year after the first signs appear (Zoccolella et al., 2006), 

the fact that ALS is a rapidly progressing disease makes the discovery of a reliable molecular 

biomarker critical for earlier diagnosis. Although quantification of neurofilament light chain 
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NEFL was described as relevant in order to support a diagnosis, no biomarker has been 

validated and integrated into standard procedure for ALS diagnosis. More precisely, NEFL 

serum levels were efficient to distinguish ALS patients from healthy individuals and also FTD, 

Alzheimer’s and Parkinson’s diseases (Verde et al., 2019) but only cerebrospinal fluid (CSF) 

levels were shown to be accurate to differentiate ALS patients from patients suffering from an 

“ALS mimic” syndrome (Steinacker et al., 2016; Xu et al., 2016). 

 Although for the previously described reasons prognosis is highly variable, from onset 

the median survival is around 2 or 3 years for bulbar onset and 3 to 5 years for spinal onset 

(Sejvar et al., 2005). Overall, large cohort study show that survival of 3 years for 48% of 

patients, 5 years for 24% and only 4% survive for more than 10 years (Turner et al., 2003; Testa 

et al., 2004). Algorithms have been developed in order to try to predict prognosis (Hothorn 

and Jung, 2014; Elamin et al., 2015). Two different systems are currently used to stage the 

disease, the King’s and Milano-Torino (MITOS) systems (Tramacere et al., 2015). They are 

respectively based on the number of anatomical regions or body functions that are being 

affected. King’s staging is known to be more accurate in the earlier stages of the disease and 

MITOS in the later. As combined FTD and associated symptoms have a negative influence on 

the prognosis, one could argue that these staging methods should integrate cognitive or 

behavioral changes. Weight loss has also been correlated to shortened life expectancy of 

patients (Körner et al., 2013). 

Stephen Hawking: exceptional survival for an exceptional man. 

On March 14, 2008, Stephen Hawking (Fig i 4), one of the world’s most famous physicists, 

cosmologist and ALS patient passed away at the age of 76 years old. After he was diagnosed 

with ALS in 1963, he was given a life expectancy of only 2 years. That is to say, he outlived this 
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tragic but yet logical estimation by more than 50 years. Hawking showed the first signs of the 

disease in his 20s, which could partly explain this exceptional life span as younger patients 

tend to show slower progression and thus longer survival. Besides the length, it is the stability 

of his condition that was also peculiar. Long surviving patients usually still show gradual 

deterioration whereas Hawking was relatively stable even after severe disabling paralysis had 

spread to his body. It was also speculated Hawking displayed a rare variation of the disease 

but overall the physicians and researchers of the ALS community fall short of explaining why 

he went on to live several decades where he brilliantly theorized on black holes and quantum 

gravity. Although statistics do account for such exceptional ALS patients (Westeneng et al., 

2018), they are unfortunately too rare to allow a significant study. They however illustrate the 

need to adapt and personalize medical care for each patient (Dobson, 2002). 

 

Figure i 4: Stephen Hawking, 1974, NASA 

 

(2) Treatments and patient management 
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As to date, there is no cure for ALS. However, Riluzole and Edaravone have shown 

efficiency in positively modifying ALS normal course of action in patients and have come to 

the market (Beghi et al., 2011; Jaiswal, 2019). Heterogeneous clinic and pathogenetic have 

made research for compounds quite challenging. Indeed, more than 50 compounds, 

implicating various mechanisms of action have been tested and discarded after clinical trials 

(Beghi et al., 2011). Riluzole was the first compound to be approved by the FDA in the 

treatment for ALS. The molecule may inhibit glutamatergic neuro-transmission but the precise 

mechanism of action remains unclear. The pioneer clinical trial for riluzole (Lacomblez et al., 

1996) outlined that after 18 month of treatment, patients survival was increased by 3 months 

as compared to a placebo group. For Edaravone, presumably a antioxydating agent, showed 

positive results in terms of disease progression but it is important to highlight the cohort was 

exclusively composed of selected early onset ALS patients displaying rapid progression 

(Hardiman and van den Berg, 2017). FDA approved edaravone but the European Medicine 

Agency did not. A controversy remains as whether the drug should be given to all ALS patients 

considering the selectivity of the patients that participated in the trial (Hardiman and van den 

Berg, 2017). 

Apart from these disease-modifying therapies, ALS patients mainly receive 

symptomatic treatments and interventions (pharmacological or non-pharmacological). As 

previously described, the spectrum of symptoms that patient display is large hence treatments 

targeting dysphagia, dysarthria, hypersalivation (sialorrhoea), spasticity, cramps, pain, 

thrombosis, respiratory insufficiency as well as behavioral and cognitive impairments. 

Management of ALS thus require multidisciplinary approach for optimal survival and quality 

of life (Traynor et al., 2003; Rooney et al., 2015). Indeed, considering the inevitable fatality of 

ALS, much of the patient management is not only focused on treatment and survival but on 
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ameliorating the quality of life of the patient especially in the “end-of-life management”. 

Multidisciplinary approach requires a multitude of health professionals and caretakers 

without discarding psychological therapy as patients are very likely to experience 

powerlessness facing the rapid decay of their body towards near death.  

Among life-prolonging procedures, and in case of menacing respiratory failure, 

tracheostomy (incision of the neck and trachea to open a direct airway) can be performed for 

long-term mechanical ventilation. Few patients agree to the procedure as it definitely ensures 

total immobility and loss of oral communication as well as extreme discomfort. When kept 

alive in such conditions, patients eventually enter a state of profound paralysis with loss of all 

voluntary muscle command called “totally locked-in state” (Hayashi and Kato, 1989; 

Wijesekera and Leigh, 2009). Communication often relies on their remaining oculomotor 

capacities and adapted technological devices. Weight loss is a serious issue in ALS and a well-

established negative prognosis factor (Reich-Slotky et al., 2013). In case of severe dysphagia 

resulting in important weight loss, the patient can choose to be fed by insertion of a 

gastrostomy tube (enteral nutrition). Even though no precise criteria has been established, 

this technique is generally considered after a weight loss superior to 5% (Miller et al., 1999). 

The procedure relieves the patient and care takers from the stress of difficult meals as it 

ensures safe route for food and medication but are counterbalanced by practical and 

psychological complications (Stavroulakis et al., 2016). However, weight loss isn’t only caused 

by difficulties to swallow. Loss of appetite and muscle mass as well as hypermetabolism are 

also responsible. As a result, high calorie diets, nutritional supplements and overall 

supervision by a nutritionist are highly recommended and show significant results (Körner et 

al., 2013). 
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(3) Epidemiology and risk factors 
 

Remainder: 

-  Prevalence: proportion of the population presenting the said condition. It refers to all 

existing cases. 

-   Incidence: proportion of the population that newly contract the said condition. It refers to 

the new cases that appear. 

 

 Global ALS epidemiology knows limitations. First of all, the vast majority of studies 

concern populations from Europe and the United States (about 80%) and mainly integrate 

cohorts of patients from European descent. Populations with greater ancestral and genetic 

diversity show lower incidence and prevalence of ALS (Cronin, Hardiman and Traynor, 2007; 

Bucheli et al., 2014). For example, the median age of onset is about 10 years earlier in such 

heterogeneous populations as compared to European ancestry populations. In order to fully 

elucidate ALS epidemiology studies will have to integrate data from admixed populations from 

all continents. Epidemiological studies also suffer from recent evolution of our understanding 

on the disease (notably ALS’s link to FTD), heterogeneity of cases and complexity to establish 

a diagnosis and thus a precise onset. These factors must be taken into account for more 

rigorous studies (Rooney, Brayne, et al., 2017).  

 The prevalence of the disease in populations of Europe or of European ancestry is of 

2,6 to 3 cases per 100 000 people (Logroscino et al., 2010; Huisman et al., 2011). Interestingly, 

studies regularly depict a gender difference in terms of lifetime risk as for women it is about 
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1:400 and 1:350 for men (Johnston et al., 2006; Al-Chalabi and Hardiman, 2013). Furthermore, 

when men mostly display spinal-onset ALS, the majority of women seem to develop a bulbar-

onset (Logroscino et al., 2010). Geographic localization seems to play an important role. For 

example, populations from Asia show reduced incidence as compared to Europe (0.79 and 

0.89 per 100 000 people respectively in East and South Asia versus 1.89 for northern Europe) 

and proportionally lower bulbar-onset. Overall survival is twice as short in Europe than in Asia 

(24 months versus 48 months) (Marin et al., 2017; Logroscino and Piccininni, 2019). Latitude 

gradient may also correlate with data. Within the European continent, a north to south 

gradient has been described as percentage of spinal-onset was higher in the south. In Italy, 

northern areas of the country have higher incidence than in the south (Chiò et al., 1999). 

Sporadic and Familial form of the disease respectively show peak onset at 58-63 years 

and 47-52 years (Logroscino et al., 2010; Al-Chalabi and Hardiman, 2013). Data show 

increasing age-specific incidence over the years, as population of Western countries have 

been aging over the past decades. ALS records a peak of incidence around 75 years old (Marin 

et al., 2017). Some studies have attempted to estimate future distribution of ALS and have 

predicted an increase of 69% of total number of patients going toward 2040 (Arthur et al., 

2016).   

A few risk factors were outlined from epidemiologic studies. Athletes seem to show 

higher frequency of ALS cases than the rest of the population, but the reason remains unclear. 

Preliminary data suggest that while type 2 diabetes, high levels of circulating lipids and female 

contraceptive hormones may be protective, smoking and overall exposure to smoking tend to 

be detrimental (Rooney et al., 2017; Wang et al., 2017). 
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The Island of Guam: 

Located in Micronesia in the Pacific Ocean, the small island of Guam, which is under 

US sovereignty, presented in the 1950’s the highest ALS incidence in the world thus focusing 

great interest from the ALS community. When about 3 cases per 100 000 people were 

reported in Europe and North America, almost 100 per 100 000 people were affected by ALS 

on this island (Plato et al., 2003). More globally, the island was also home to high incidence of 

Alzheimer’s and Parkinson’s diseases which, combined with ALS, was sometimes referred to 

as “Guam disease”.  For reasons that remain unclear, in the following decades, this number 

drastically dropped to become equivalent to western country standards (Wiederholt, 1999). 

However, in such a short period of time, and as the island gradually adopted a westernized 

life-style, genetics could not explain these statistical changes. A role from a neurotoxic 

compound, β-methylamino-l-alanine, was suggested. The molecule is found in cycad seeds, 

which served in the preparation of “tortillas” in local cuisine after being dried and grounded 

into a flour. Similarly, the same seeds were used in traditional medicine in the Japanese Kii 

peninsula, which also ranked at the top of the list of areas with the highest ALS incidence. 

Exposure to water containing high concentration of cyanobacterias producing β-

methylamino-l-alanine was also thought to increase risk of ALS (Bradley et al., 2013). 

(4) Genetics 
 

 In all previously described aspects of the disease, ALS showed a complex profile. The 

genetic aspect is no exception. Certain ALS patients display a Mendelian pattern of inheritance 

whereas the majority do not show any identifiable family history. They are traditionally 

referred to as familial ALS (fALS) and sporadic ALS (sALS) and account for around 5-10% and 

90-95% of cases respectively (Rowland and Shneider, 2001; Hanby et al., 2011). Around 70% 



 24 

of fALS cases can be explained by the presence of a presumably pathogenic mutation. Most 

commonly, the mutated gene is C9orf72 (40%), SOD1 (20%), TARDBP or FUS (each accounting 

for 1 to 5%). In sporadic cases, 10% carry a mutation already identified in fALS. (Chiò et al., 

2014; Chia, Chiò and Traynor, 2018). As of yet, more than 30 genes have been associated with 

ALS (Fig i 5). The particulars of key ALS-associated genes will be discussed further in the 

following sections of this introduction: SOD1 in section I.C.3) “Implicated cellular 

mechanisms”; TARDBP and FUS in section II. “TARDBP and RNA metabolism: a central role in 

ALS”; C9orf72, OPTN, p62/SQSTM1 and TBK1 in section III.B. “Autophagy’s implication in 

ALS”. 

 

Figure i 5: Genetic landscape of ALS; modified from Chia et al. 2018. 
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GWAS: genome-wide association study; WGS: whole-genome sequencing; WES: whole-exome 

sequencing; NGS: next generation sequencing; RP-PCR: repeat-primed PCR; ASO: antisense 

oligonucleotide 

 

These genes are now identified as major risks of ALS but studies based on 

mathematical models reveal a tendency for oligogenic inheritance (Heiman-Patterson et al., 

2011, 2015). This model of inheritance would explain cases of incomplete penetrance. It is 

also consistent with the fact that genetically heterogeneous populations show reduced 

incidence of ALS as previously described (Byrne et al., 2012; van Blitterswijk, van Es, 

Hennekam, et al., 2012; van Blitterswijk, van Es, Koppers, et al., 2012).  

Oligogenic versus polygenic: 

An oligogenic trait is caused by more than one but relatively few genes and each of 

them have a detectable effect with a variable importance on the final phenotype. Wide effect 

genes (or susceptibility genes) act in a dominant pattern but final phenotype is buffered or 

aggravated through the interaction with other smaller effect genes and possibly 

environmental factors. The remaining steps linking these dominant risk factors to the final 

phenotypic presentation of ALS, that can include epigenetics, remain globally unknown.  A 

polygenic trait is caused by several genes but the effect of each individual one is not 

detectable. Their additive effect is responsible for the appearance of the particular trait. ALS 

seem to show an oligogenic profile which separates it from several common disorders such as 

schizophrenia which displays a polygenic architecture (Loh et al., 2015).  

However, this simplified dichotomous “familial versus sporadic” representation is now 

considered outdated as genome-wide studies depict similar genetic architecture between 

fALS and sALS (van Rheenen et al., 2016). Furthermore, respective definition show limitations 
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that do not account for the heterogeneity of cases. First-degree relatives of sALS patients are 

eight times as likely to develop the disease than any other individual (Hanby et al., 2011). In 

familial cases, Mendelian inheritance is not perfect as the penetrance is inferior to 50% and 

evidence suggests genetic pleiotropy (multiple phenotypic presentations for a single 

incriminated mutation). Pleiotropy of incriminated genes can cover a multitude of phenotypic 

presentation within the ALS-FTD spectrum with variable severity but also completely distinct 

pathologies. For example, C9orf72 is linked to cases of ALS, FTD, Parkinson’s and Alzheimer’s 

diseases, Huntington phenocopies, as well as psychiatric disorders (Cooper-Knock, Shaw and 

Kirby, 2014).  

Concurrently to this complex genetic profile and heterogeneity of ALS, studies in mice 

described an effect of the genetic background on the phenotyping presentation of the disease 

(Heiman-Patterson et al., 2011, 2015). Overall, the genetic contribution to sporadic ALS is 

estimated at around 60% in two different studies working on twins (Al-Chalabi et al., 2010; 

Graham, Macdonald, & Hawkes, 1997).  

Genetic investigations can also be limited by practical details and lack of information. 

For example, some familial cases are believed to be falsely considered sporadic because of 

missing information or premature deaths in the familial history of patients (Al-Chalabi and 

Lewis, 2011).  

 

(5) Histopathology 
 

  Gross abnormalities are not constantly found in ALS patients however, several 

characteristic traits can be observed. As previously described skeletal muscle show atrophy 

and signs of denervation but can also show aberrant reinnervation with clustering of atrophic 
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fibers (Hardiman et al., 2017). Logically, abnormalities can be observed in UMN and LMN 

systems. For UMN features, the motor cortex may present atrophy with degeneration of Betz 

cells (Hammer, Tomiyasu and Scheibel, 1979; Nihei, McKee and Kowall, 1993) potentially 

combined with astrocytic gliosis. In patients with signs of dementia or established overlapping 

FTD, frontal and temporal atrophy may be observed (Chang et al., 2005; Murphy et al., 2007). 

Some cases of atrophy of the central gyrus have been reported (Kiernan and Hudson, 1994; 

Saberi et al., 2015). Axonal loss and subsequent gliosis of descending corticospinal tracts are 

particularly showing in the lateral and anterior horns of the spinal cord. Myelin pallor can also 

be associated. For overall UMN and LMN, spinal cord may reveal more than 50% of depletion 

as well as microglial infiltration but show disparities within cases. Ventral horn motor neurons 

seem to be particularly affected concerning LMN pathology (Wijesekera and Leigh, 2009). 

Other ALS associated pathological features also comprise vacuolization and spongiosis (Saberi 

et al., 2015). These terms respectively depict large empty spaces adjacent of neurons and 

sponge-like appearance due to the presence of microscopic holes.  

 

Spared motor neurons: 

 ALS causes degeneration and loss of all types of motor neurons but show relative 

sparing of 2 particular nuclei: Onufrowicz’s and oculomotor nuclei (Iwata and Hirano, 1978; 

Okamoto et al., 1991; Murayama, Bouldin and Suzuki, 1992). They respectively command 

sphincter and eye movement control. The reason for this particularity remains unclear but 

presence of Calcium-binding proteins may protect the neurons from toxic high calcium 

concentrations (Elliott and Snider, 1995; Vanselow and Keller, 2000). In any case, relative 

preservation of eye movement can be used as a mean of communication after the loss of oral 

expression (Beukelman, Fager and Nordness, 2011; Lenglet et al., 2019).   
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Regardless of their frequency, these abnormalities do not compare with cytoplasmic 

inclusions or aggregates that are indisputably the pathological hallmark of ALS.  Before key 

protein constituent were identified, the inclusions were classified into different subsets 

(according to appearance and required staining method to detect them), Lewy body-like, 

skein-like or Bunina bodies being the predominant forms. Inclusions are mainly reported in 

degenerating motor neurons of the spinal cord but also, to a lesser degree, in various brain 

regions (frontal cortex, temporal cortex, hippocampus, cerebellum, striatum…) and 

occasionally in other cell types namely oligodendrocytes and glial cells (Arai et al., 2003; Piao 

et al., 2003; Saberi et al., 2015). 

                        

Figure i 6 Ubiquitin-positive inclusions in ALS; modified from Saberi et al. 2015  

Ubiquitin skein-like inclusions (arrows) in spinal MN of the lumbar anterior horn (A) and Betz 

cells of the motor cortex (C) in ALS but not control (B, D). 
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The first important step towards characterization of ALS related inclusions was when 

the majority of inclusions (Lewy body-like and skein-like) were described as ubiquitin-positive 

protein aggregates (Leigh et al., 1988; Lowe et al., 1988) (Fig i 6).  

 

As ubiquitination is known to mark specific substrates for degradation, ALS started to 

be considered as a potential proteinopathy. Indeed, ubiquitin suggested the presence in the 

inclusions of other proteins displaying misfolding and aggregating behavior. Since these 

landmark studies, the ALS research community has been driven by the identification of protein 

constituents that have fed discoveries in the genetic aspects of the disease and the 

deciphering of pathological mechanisms. Ubiquitin-positive inclusions, regardless of their 

subtype, are close to be universal in ALS patients as they are thought to be present in 95% of 

cases (Leigh et al., 1991).  

The first aggregating protein to be identified in inclusions was SOD1 (D R Rosen et al., 

1993). SOD1 is prone to aggregation and found in inclusions in both fALS and sALS patients. 

SOD1 importance in the disease is also to be linked with another characteristic cellular 

abnormality of ALS being markers of oxidative stress and mitochondrial defects. More details 

about SOD1’s implication in ALS will be further discussed throughout this introduction and 

notably in section I.C.3) “Implicated cellular mechanisms”. Within ubiquitin-positive 

inclusions, SOD1 inclusions were found to be TDP-43-negative which distinguish them from 

the vast majority of ALS cases (Tan et al., 2007). Indeed, TDP-43 is by far the major protein 

component of pathological inclusions estimated to represent 97% of cases (Arai et al., 2006; 

Neumann et al., 2006; Ling, Polymenidou and Cleveland, 2013). Full-length TDP-43 but also its 

cleaved forms, TDP-35 and TDP-25 are prone to aggregate (Neumann et al., 2006; Y.-J. Zhang 

et al., 2007). Other TDP-43-negative inclusions mainly are FUS-positive (Kwiatkowski et al., 
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2009; Vance et al., 2009). On an interesting note, TDP-43 and FUS immunoreactivity is also 

observed in 45 and 9% of pathological inclusions in FTD patients hence confirming both 

diseases belong in a common histopathologic spectrum (Mackenzie, Rademakers and 

Neumann, 2010). Apart from these 3 proteins, the cytoplasmic inclusions occasionally show 

simultaneous immunoreactivity for proteins involved in protein clearance and homeostasis 

pathways (UBQLN2, VCP, p62, OPTN, CHMP2B…) (Ling, Polymenidou and Cleveland, 2013).  

C9orf72 repeat expansion patients show particular histopathological traits (C9orf72 

and its implication in ALS will be described in section III.B.2) “Autophagy in ALS”). They 

present typical TDP-43-positive inclusions but also TDP-43-negative p62-positive inclusions 

(Al-Sarraj et al., 2011). Furthermore, colocalizing with p62 but not TDP-43, dipeptide repeats 

proteins (DPRs) resulting from aberrant non-ATG translation of the C9orf72 gene repeat 

expansions (Ash et al. 2013). The expanded repeats also cause signature neuropathological 

foci of RNA (Wojciechowska and Krzyzosiak, 2011; T. Zu et al., 2013) found in various cell types 

(motor neurons, microglia and astrocytes) (DeJesus-Hernandez et al., 2011) of the spinal cord, 

motor, frontal and temporal cortices, hippocampus and cerebellum (Mackenzie, Frick and 

Neumann, 2014). These RNA foci seem to accumulate in cells presenting TDP-43 pathology 

(Cooper-Knock et al., 2015).  
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Table 1: The various pathologies reported in the spectrum of ALS/FTD; modified from Van Es 

et al. 2017 

 

C) State-of-art in ALS research 
 

 

 As described previously, ALS is an incurable disease displaying great clinical complexity. 

Studies on patients offer limited understanding of disease mechanisms that lead to motor 

neuron degeneration which is crucial for the development of a potential treatment. This 
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section will review the different models used in ALS research including the ones used in this 

study and then expose our current knowledge on ALS pathological mechanisms.  

 

(1) Modeling ALS 
 

Animal models have been unable to fully reproduce the complex aspects of ALS but 

decades of development throughout various model systems have allowed to emulate certain 

traits of the disease, highlight pathological mechanisms and elaborate potential therapeutic 

strategies. Modeling can focus on the reproduction of ALS-related phenotypes, axonopathy, 

aggregation-related mechanisms, expression of mutant protein or full or partial TDP-43 

pathology (which will be thoroughly discussed in section II.B TARDBP in ALS) and include a 

wide range of models including pure in vitro biochemical systems, small non-mammalian 

animal models whether invertebrates or vertebrates, rodent models and cell cultures with 

notably the promising use of patient-derived stem cell models (Van Damme, Robberecht and 

Van Den Bosch, 2017; Lutz, 2018). The selection of a suitable model has to be question-

oriented and should be made in accordance with the intrinsic advantages and disadvantages 

of each system (Fig i 7).  We will be briefly elaborate the specifics of some of these systems 

and key advances that have been made with their use. 

 The yeast model Saccharomyces cerevisiae has been successfully used for its wide 

range of available genetic tools and its resulting capacity to allow efficient genetic screening 

(whether overexpression or deletion of gene) notably through simple growth assay in the 

context of ALS (Elden et al., 2010; H.-J. Kim et al., 2013; Jovičić et al., 2015). About a third of 

yeast genes have homologous genes in human which has allowed successful translation of 

data. This model has notably allowed identification of ATXN2 as a genetic risk factor in ALS by 
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unveiling ATXN2’s capacity to interact with TDP-43 and modify TDP-43-related toxicity (Elden 

et al., 2010).   

 

Figure i 7: Model systems in ALS research; modified from Van Damme et al. 2017. 

 

 A variety of cell lines have been used in ALS research notably in the study of disease-

associated gene function through their depletion or overexpression (mutant or wild-type). For 

example, our understanding of C9orf72’s implication in autophagy has beneficiated from 

cellular systems (Webster et al., 2016). Cell cultures have been particularly useful in the 

mechanistic deciphering of aggregation and notably the importance of low-complexity 
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domains of key ALS proteins such as TDP-43 (Molliex et al., 2015). Showing reduced 

practicability but enhanced context-relevance, primary cultures of rodent neurons and more 

particularly motor neurons have helped unveil their vulnerability to several factors and ALS 

mutant-related mechanisms (Nagai et al., 2007; Van Damme et al., 2007; Song et al., 2016) 

and possible neuroprotective factor (Bordet et al., 2007). The generation of induced 

pluripotent stem cells (iPSCs) from patient tissues and their differentiation in neurons (Son et 

al., 2011) or even spinal motor neurons (Maury et al., 2014) appears very promising for ALS 

research. iPSCs have the unique ability to model sporadic ALS which cannot be achieved in 

other model systems (Matus, Medinas and Hetz, 2014). iPSC ALS-models were successful in 

recapitulating multiple aspects of the pathology as well as in highlighting disease-related 

functional phenotypes (Bilican et al., 2012; H. Chen et al., 2014; Kiskinis et al., 2014; Matus, 

Medinas and Hetz, 2014; Zhang et al., 2015) that will hopefully allow genetic screening in the 

future (Li-Juan et al., 2016). By combining this stem cell system to the use of genetic tools such 

as gene-editing techniques, iPSCs offers the possibility to study the effects of disease-related 

mutation correction (Kiskinis et al., 2014; Sances et al., 2016) . Nonetheless, iPSC ALS modeling 

still need improvement (Sances et al., 2016; Van Damme, Robberecht and Van Den Bosch, 

2017) and would benefit from the integration of disease-relevant components such as 

improved cellular context with realistic interactions with non-neuronal cells or an aging 

component. For these reasons, the translational potential of iPSCs are still questioned (Van 

Damme, Robberecht and Van Den Bosch, 2017). However, they show great promises for the 

future of ALS research notably for potential therapeutic strategies (Egawa et al., 2012; Lagier-

Tourenne et al., 2013; Sareen et al., 2013).  

 Observations made in cellular models are limited by the lack of a realistic biological 

context and integration of the complex mechanistic interplays found in a living animal model. 
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Among the models used in ALS research, the vast majority of published studies are conducted 

in rodent models (Fig i 7). There are rodents models for all of the most prevalent genetic 

mutations in ALS including SOD1, TARDBP, FUS and C9orf72 (Turner and Talbot, 2008; 

Gendron and Petrucelli, 2011; Philips and Rothstein, 2015; Nolan, Talbot and Ansorge, 2016)  

displaying certain aspects of the disease such as hallmark TDP-43 pathology or ALS-like motor 

phenotype (Lutz, 2018). Our current understanding of pathological mechanisms leading to 

motor neuron degeneration mostly results from the use of rodent models (Ferraiuolo et al., 

2011). For example, the “dying-back” hypothesis was revealed through the use of mutant 

SOD1 mice (Fischer et al., 2004). These mechanisms will be discussed in section I.C.3) 

“Implicated cellular mechanisms”. Being a mammalian model, they show great genetic 

homology to humans. Overall, it is the dominant ALS-modeling system before translation to 

the clinic (Van Damme, Robberecht and Van Den Bosch, 2017). The main drawbacks of these 

rodent models are the inbred nature of mouse colonies, the high cost and extensive time 

required in order to generate a rodent model (Lutz, 2018). 

 As a result, there has been an increasing interest for several alternative vertebrate and 

invertebrate models in ALS research. These “small animal” models may lose in genetic 

homology and protein conservation to humans as compared to rodents but gain in throughput 

and convenience to obtain statistical relevance (Van Damme, Robberecht and Van Den Bosch, 

2017). Drosophila Melanogaster, or fruit fly, is the most widely used among these alternative 

animal models as studies take advantage of the relative simplicity of its 4 chromosome-

genome (McGurk, Berson and Bonini, 2015), the great range of genetic tools available (Ugur, 

Chen and Bellen, 2016), its rapid life cycle and rather sophisticated nervous system (Pandey 

and Nichols, 2011). Among other ALS-related genes, models of deletion and/or overexpression 

of human wild-type or mutant SOD1 (Watson et al., 2008), TARDBP (Feiguin et al., 2009; Estes 
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et al., 2011; Vanden Broeck et al., 2013), FUS (Chen et al., 2011; Lanson  Jr et al., 2011) and 

C9orf72 (Xu et al., 2013; Mizielinska et al., 2014) efficiently display toxicity in drosophila and 

have helped strengthen our knowledge of pathological mechanisms in ALS (Van Damme, 

Robberecht and Van Den Bosch, 2017).  

Caenorhabditis elegans models of these four main ALS-related mutations have also 

been generated (Therrien and Parker, 2014). This nematode model is extremely convenient 

for genetic pathways studies and has revealed interplays between ALS-related genes (Vérièpe, 

Fossouo and Parker, 2015), allowed the identification of disease modifying factors for motor 

neuron degeneration (Aggad et al., 2014; Jablonski et al., 2015) and TDP-43 proteinopathy 

(Liachko, Guthrie and Kraemer, 2010; Liachko et al., 2016). C. elegans displays an even shorter 

life cycle than the drosophila (4 days) and its 302-neuron nervous system is precisely mapped 

and referenced (Therrien and Parker, 2014). Along the spectrum of available animal models, 

in between these two invertebrate models, that show reduced genetic homology to humans, 

and rodent models, which development is rather costly, time-consuming and incompatible 

with high throughput screenings, is the zebrafish model that will be used in this study (see 

section I.C.2)a) “The zebrafish ”). 

Even though these models have greatly contributed to ALS research, no successful 

translation to the clinic has been achieved as of yet. In this context, a cross-model strategy 

may be adequate to ameliorate translation to patients (Van Damme, Robberecht and Van Den 

Bosch, 2017).  

 

(2) The models of this study 
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(a) The zebrafish 
 

Overview:  

 Danio rerio, commonly called zebrafish, is a small freshwater tropical fish originating 

from South Asia (Fig i 8). It belongs to the Danio genus, a class a teleost fish of the greater 

Cyprinidae family (Meyers, 2018). Apart from being a common aquarium pet fish it has been 

used for research purposes for more than 40 years for its ease of care and manipulation, small 

size, high fecundity (Hisaoka and Firlit, 1962) and rapid development (Kimmel et al., 1995).  

 

Figure i 8: Danio rerio; Aquaportail.com 

 The development of the zebrafish has been extensively described (Kimmel et al., 1995) 

notably due to the convenient transparency of the cells and surrounding protective chorion. 

As it shows variability according to temperature, the timing of developmental stages is 

standardized to a temperature of 28,5°C (Kimmel et al., 1995). Male and female show 

courtship behavior to synchronize release of oocytes and sperm in water and allow 

fertilization (Darrow and Harris, 2004). Several hundreds of eggs can be laid by a single gravid 

female (Hisaoka and Firlit, 1962). After fertilization, the development is rapid. 10 hours post 

fertilization (hpf), epiboly is complete and distinct head and tailbud are forming. Every 20 

minutes, the trunk undergoes segmentation into a new somite thus expanding rapidly 
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(Kimmel et al., 1995). Neurulation begins and leads to formation of the nervous system. At 36 

hpf, most major organs are formed. The motor system is already functional at 2 days post 

fertilization (dpf) (Kimmel et al., 1995; Drapeau et al., 2002; Schmidt, Strähle and Scholpp, 

2013), the larvae hatches from its chorion between 48 to 72 hpf, acquires the capacity for 

upright swimming (Kimmel et al., 1995) and around 4 dpf, it develops a feeding behavior 

(Muto and Kawakami, 2013). The larvae will be called a juvenile after 4 weeks and achieve 

sexual maturity at about 12 weeks (Parichy et al., 2009). 

If research on the zebrafish historically concerned genetic, toxicology and 

development studies (Meyers, 2018) with notably a focus on its regenerating capacities 

(Bernardos et al., 2007; Gemberling et al., 2013), the model is becoming a model system for 

studying human diseases of increasing importance (Seth, Stemple and Barroso, 2013). The 

genome of the zebrafish has been fully sequenced and shows great homology (between 80 

and 90%) and protein conservation (around 75%) to humans (Howe et al., 2013). The 

transparency of the zebrafish is of great use as it enables whole-mount live imaging notably 

allowing tracking of fluorescent labeled compounds (Kimmel et al., 1995; Kabashi et al., 2010; 

Kabashi, Brustein, et al., 2011). A collection of transgenic lines expressing fluorescent proteins 

under promoters specific for a population of cell (Higashijima, Hotta and Okamoto, 2000; 

Flanagan-Steet et al., 2005; Bradford et al., 2010; Naumann et al., 2010; Zelenchuk and Brusés, 

2011; Satou et al., 2013). A great range of genetic modifications can be performed in zebrafish 

such as gene editing strategies based on ZFN (zinc-finger nuclease) and TALEN (transcription 

activator-like effector nuclease) systems (Doyon et al., 2008; Foley et al., 2009; Bedell et al., 

2012; Dahlem et al., 2012; Y. Zu et al., 2013) or the most recent CRISPR/Cas9 system (Hruscha 

et al., 2013; Hwang et al., 2013; Jao, Wente and Chen, 2013), conditional gene activation or 
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inactivation techniques (Ni et al., 2012) and the widely used morpholino-mediated transient 

knockdown technique (Stainier, Kontarakis and Rossi, 2015; Stainier et al., 2017). 

Morpholino-mediated knockdown:  

Morpholinos (or AMOs) are chemically modified antisense oligonucleotides that are 

able to bind nucleic acids. They block translation of mRNAs in vitro and in vivo in a RNase-H-

independent manner. By binding to their target mRNA, AMOs block the recruitment of the 

translational machinery through steric inhibition (Summerton and Weller, 1997). They thus 

allow specific and transient knockdown of a targeted gene and have been used extensively in 

both Xenopus and zebrafish (Heasman, Kofron and Wylie, 2000; Nasevicius and Ekker, 2000). 

The method offers a rapid way to observe physiological consequences of gene knock down as 

F0 morphants (embryos injected with AMO) can be analyzed. This rapid observation allows 

direct visualization of knock down consequences without installation of genetic compensatory 

mechanisms that can occur during generation and selection of classic loss-of-function mutant 

(Rossi et al., 2015) thus explaining potential phenotypic differences observed when comparing 

the two methods (Kok et al., 2015). Potential side effects of AMO use was evoked (Gentsch et 

al., 2018) but recent data tend to refute these observations (Paraiso et al., 2019). 

They are key controls to ensure the specificity of a phenotype obtained upon AMO-

based knockdown. A dose-dependent assay is performed to select the lowest dose of AMO 

that is effective and avoid the toxic effects of excessive dosage. The use of a control mismatch 

AMO that does not bind to any region of the model’s genome is also required. It is necessary 

to use AMOs that target different regions of the same gene (such as one that binds the initial 

ATG (ATG-AMO) and one splice-blocking AMO) to confirm that the observed phenotype is 

specific of the knockdown. Finally, rescue of the induced phenotype through co-injection of 
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RNA or cDNA of the targeted gene (either of the human orthologue or a modified zebrafish 

version untargeted by the AMO) constitutes a strong proof of the specificity of the phenotype. 

 

Behavioral tests can be conducted on both adult and larval zebrafish (Meyers, 2018). 

For example, early motor activity can be assessed at 48 hpf classically due to the larvae touch-

evoked escape response or TEER and as soon as 17hpf when the embryo displays stereotyped 

motor activity within its chorion (Drapeau et al., 2002). Danio rerio is the only vertebrate 

model that enables high-throughput screening of chemical compounds for altered behavioral 

patterns (Zon and Peterson, 2005; Rihel et al., 2010; Orger and de Polavieja, 2017). 

 

The zebrafish in ALS research: 

Danio rerio is increasingly being used in ALS research for its many advantages and 

vertebrate model qualities (Babin, Goizet and Raldua, 2014; Patten et al., 2014). Studies have 

been conducted on adults, notably for in mutant SOD1 (Ramesh et al., 2010) , but most of the 

use of the zebrafish concern embryonic models (Van Damme, Robberecht and Van Den Bosch, 

2017). Transient knockdown of an endogenous zebrafish orthologue can eventually be 

combined with transient expression of the corresponding or a different wild type or mutant 

human protein through injection of corresponding human mRNA or cDNA. This has allowed 

the generation of zebrafish models for the main ALS-related genes SOD1, TARDBP, FUS and 

C9orf72 among others. These strategies have notably helped in the demonstration of gain-of-

function mechanisms for mutant SOD1 (Sakowski et al., 2012; Van Hoecke et al., 2012) and 

combined loss-of-function and gain-of-function mechanisms for pathogenesis concerning 
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TARDBP, FUS and C9orf72 (Armstrong and Drapeau, 2013b; Ciura et al., 2013; Hewamadduma 

et al., 2013; Lee et al., 2013; Schmid et al., 2013) through the observation of neuronal toxicity 

and motor deficits. Moreover, a common pathogenic pathway was suggested for TARDBP and 

FUS (Kabashi, Bercier, et al., 2011). Screening tests conducted on ALS zebrafish models 

permitted identification of genetic modifiers of the disease such as EphA4 (Van Hoecke et al., 

2012) and confirmation of potentially therapeutic compounds (McGown et al., 2013). 

These mechanisms will be further described in the next sections of this introduction 

(I.C.3) “Implicated cellular mechanisms”, II. “TARDBP and RNA metabolism: a central role in 

ALS” and III.B.2) “Autophagy in ALS”).   

 

(b) SH-SY5Y cells 
 

This thesis will present data conducted both zebrafish and human cells to benefit from 

the advantages of a cross-model approach. The SH-SY5Y cell line is a cloned subline of SK-N-

SH cells that was developed from a bone marrow biopsy of neuroblastoma on a 4-year old 

female in the 1970’s (Biedler, Helson and Spengler, 1973; Biedler et al., 1978). Contrarily to 

SK-N-SH cell line that contains different cellular phenotypes, SH-SY5Y cell line is a homogenous 

population of neuroblast-like cells. They can proliferate in culture for long periods with little 

risks of contamination. As they derive from immature neural crest cells, SH-SY5Y exhibit stem 

cell properties thus allowing potential differentiation protocols (Påhlman et al., 1981; Singh 

and Kaur, 2007; Guarnieri et al., 2009). Because they display biochemical and functional 

properties of neurons, this cell line has been widely used in neurological studies and notably 

in neuronal differentiation and neurodegenerative mechanisms, neurotoxicity and 

neuroprotection processes (Xie, Hu and Li, 2010; Xicoy, Wieringa and Martens, 2017). 
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While investigating novel interactions between TDP-43 and ALS-related autophagy 

genes, the zebrafish model will provide an insight into integrative whole-organism functional 

interplay while the SH-SY5Y human cell line will help us in the description of the underlying 

molecular and cellular mechanisms at play while staying in a neuronal context. 

 

siRNA-mediated knockdown: 

In this study, siRNA will be used in SH-SY5Y cells to achieve transient knockdown 

through direct transfection. Small interfering RNA are double stranded ribonucleic acid of 

around 20 base pairs that will form a complex with the RISC (RNA-induced Silencing Complex) 

and unwound into single strand RNA that will be able to bind its complementary endogenous 

RNA target with high specificity and induce its cleavage. The cleavage will cause degradation 

of the target RNA thus preventing translation into protein (Carthew and Sontheimer, 2009).   

 

(3) Implicated cellular mechanisms 
 

Several defective cellular mechanisms have been incriminated for ALS pathogenicity. 

Their discovery directly benefited from advances in the genetic etiology (Fig i 9) and ALS 

modeling. Although witnessed in animal models or patients, these mechanisms are not 

necessarily relevant in all presentation of ALS and their relative impact is still under debate. 

Among these mechanisms, impaired autophagy and RNA metabolism, two major incriminated 

processes in ALS, will each benefit from in-depth descriptions in their dedicated sections later 

in this introduction (respectively in sections III.B “Autophagy’s implication in ALS” and II.C.2) 

“RNA metabolism defects in ALS”).  
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Figure i 9: Biological processes implicated in ALS; modified from Chia et al. 2018. 

Ideogram of the human karyotype showing location of each implicated genes. 

 

Impaired protein homeostasis:  
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A healthy and functional cell requires maintenance of its protein homeostasis or proteostasis. 

This equilibrium is achieved by multilevel balancing between protein synthesis, folding, 

trafficking but also degradation (Kurtishi et al., 2019). 

Numerous genes found mutated in ALS patients, encode for proteins involved in several 

mechanisms of protein degradation namely autophagy, UPS (ubiquitin proteasome system), 

ER stress and stress granule (SG). These mechanisms have been clearly related to 

neurodegeneration when impaired (Medinas, Valenzuela and Hetz, 2017). As described 

previously, some of these proteins such as p62/SQSTM1, OPTN, VCP or UBQLN2 can also be 

found in the cytoplasmic proteinaceous aggregates and inclusions (Ling, Polymenidou and 

Cleveland, 2013), a hallmark of ALS pathology, which concurrently, is a clear sign of impaired 

proteostasis (for more information on these proteins, see section III.B “Autophagy’s 

implication in ALS”). 

 Protein clearance is mainly endorsed by two pathways that are both relevant to ALS: 

autophagy (which will be thoroughly described later in this introduction) and Ubiquitin 

Proteasome System (UPS). 

Ubiquitin Proteasome System: 

UPS is a eukaryote intracellular system in which, proteins targeted for degradation are 

tagged by a small protein called ubiquitin. The polyubiquitinated substrate will then undergo 

degradation by an enzymatic complex, the proteasome, through proteolyse (Tanaka, 2013).  

ALS related mutations have been associated with impaired UPS (Ruegsegger and 

Saxena, 2016). Mutant UBQLN2 and VCP alter substrate delivery to the proteasome 

(Barthelme et al., 2015; Deng et al., 2011; Le et al., 2016; Nalbandian et al., 2012; Seok Ko et 
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al., 2004). In a mouse model (Kabashi et al., 2004) or in neuronal cell cultures (Urushitani et 

al., 2002), SOD1 mutation cause global decrease of UPS activity.  

Intracellular accumulation of misfolded proteins locally causes endoplasmic reticulum 

stress (ER stress). This triggers the activation of the UPR, the unfolded protein response that 

will, depending on the importance of the stress, help with degradation and recovery of normal 

ER function or will engage in apoptosis (Lee and Chae, 2015). Once again, this protective 

proteostasis mechanism has been implicated in ALS (Matus et al., 2013). Mutant SOD1 has 

been shown to inhibit ER stress related degradation through direct binding to the ER 

membrane (Nishitoh et al., 2008). Interestingly, in a mouse model of ALS, drug-mediated 

reduction of ER-stress attenuated the symptoms and delayed progression of the disease while 

chronic enhancement promoted ALS manifestations (Saxena, Cabuy and Caroni, 2009).  

Cellular stress can also trigger another protective mechanism, the formation of stress 

granules (SG). They are membrane-less granules composed of both protein and RNAs that are 

able to assemble and disassemble quickly to suppress translation of non-essential proteins 

and sequester unnecessary mRNAs (Lin et al., 2015). However, aberrant accumulation of SG 

has been reported in ALS and reflects impairments at a crossroad between proteostasis and 

RNA metabolism (Taylor, Brown and Cleveland, 2016; Weishaupt, Hyman and Dikic, 2016). 

ALS-related mutations in VCP have been reported to alter SG dynamics and clearance (Buchan 

et al., 2013; Seguin et al., 2014). RNA-binding proteins (RBPs) such as ALS-related TDP-43 or 

FUS are components of SG (Lin et al., 2015; Monahan, Shewmaker and Pandey, 2016).  

Mitochondrial damage and oxidative stress: 
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 Several mutations in genes involved in mitochondrial function have been linked to ALS 

among which CHCHD10, SIGMAR1, C21orf2, NEK1 and ALS very first associated gene SOD1 

(Hardiman et al., 2017). 

 

 

Superoxide dismutase 1: 

SOD1 is a dimeric antioxidant enzyme containing a Cu and a Zn ion in its core. Its main 

function is the conversion of superoxide radicals into hydrogen peroxide thus reducing the 

quantity and toxicity of reactive oxygen species (ROS) (McCord and Fridovich, 1969; Fridovich, 

1995; Wang et al., 2018). The protein is abundant and located in various cellular compartment 

including cytosol, nucleus but also in the inner membrane space of the mitochondria (Chang 

et al., 1988; Crapo et al., 1992; Liou et al., 1993; Okado-Matsumoto and Fridovich, 2001; Sturtz 

et al., 2001). SOD1 is logically believed to be involved in protection against oxidative stress 

and mitochondrial metabolism. SOD1 was the first protein identified in ubiquitin-positive 

inclusion in ALS and the first identified genetic cause of the disease (Daniel R Rosen et al., 

1993). As of yet, it is still one of the main genetic cause identified in ALS accounting for around 

12% of fALS and up to 2% of sALS (Chiò et al., 2008). Among the more than a hundred SOD1 

mutations identified, only a few show evidences of pathogenicity which indicate two potential 

gain-of-function mechanisms: specific protein cytotoxicity and protein aggregation (Andersen, 

2006). Overall, SOD1-related ALS is now recognize as a distinct form of the disease as their 

peculiar histopathologic profile without TDP-43-positive inclusions indicate (Mackenzie et al., 

2007) (see section I.B.5) “Histopathology”). 
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ALS has been related to multiple mitochondrial impairments: production of ROS 

(reactive oxygen species), altered oxidative phosphorylation and calcium buffering as well as 

abnormal apoptotic signaling (Pasinelli et al., 1998, 2000; Wiedemann et al., 1998, 2002; Li et 

al., 2000; Parone et al., 2013). Such defects are critical in motor neurons as their length and 

activity particularly requires efficient mitochondrial function. In patients and mouse models 

(SOD1 and TDP-43 ALS models), changes in morphology and distribution of mitochondria have 

been reported (Vande Velde et al., 2011; Magrané et al., 2013). Mice with mutant SOD1 

present aggregates of the mutated protein that colocalize with VCP in the inner-membrane 

space of mitochondria thus impairing protein import (Higgins, Jung and Xu, 2003) but also 

show oxidative damage to mitochondria resulting in defective respiratory chain function 

(Parone et al., 2013). Defective axonal transport of mitochondria, concurrent with axonopathy 

in ALS, was observed in several animal models (Laird et al., 2008; Bilsland et al., 2010).  

 Other ALS-related proteins are related to mitochondrial defects. Both FUS and TDP-43 

were reported to cause perturbations in ER/mitochondria signaling by inhibiting binding of 

VAPB, an ER protein, to PTPIP51, a regulatory mitochondrial protein (De Vos et al., 2011; Stoica 

et al., 2014, 2016). As described previously, TDP-43 is prone to aggregation in cytosol but also 

in mitochondria where it also leads to defects. In yeast, its mitochondrial localization is linked 

with disturbed electron transport chain and overall respiratory function impairment (Ralf J. 

Braun et al., 2011) while it activates mitophagy and alter general mitochondrial function in 

murine motor neurons (Lu et al., 2012). TDP-43 and particularly ALS mutant is able to enter 

mitochondria where it can bind to mitochondrial mRNAs. Mutant TDP-43 (and to a lesser 

degree wild type TDP-43) inhibits translation of two respiratory chain complex I subunits 
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mRNAS (ND3 and ND6) through direct binding thus impairing assembly of the complex and its 

function. Inhibiting TDP-43 localization in mitochondria interestingly reduced its related 

toxicity (W. Wang, Li, W. L. Lin, et al., 2013; W. Wang et al., 2016). 

 Furthermore, C9orf72 derived DPRs seem to disturb mitochondrial function and cause 

oxidative stress as well as DNA damage (Lopez-Gonzalez et al., 2016). ALS associated CHCHD10 

mutation had an deleterious impact on mitochondrial genome, altered apoptosis signaling and 

promoted loss of mitochondrial cristae junctions (Genin et al., 2016). 

 Accumulation of ROS leads to oxidative stress which causes damages to cell structure, 

protein, DNA and RNA and is linked to motor neuron loss (McCord and Fridovich, 1969; Daniel 

R Rosen et al., 1993; Rao et al., 2008; Tsang et al., 2014). Sub-products of these oxidative stress 

damages are increased in CSF and serum from both fALS and sALS patients (Lyras et al., 1996; 

Smith et al., 1998; Simpson et al., 2004; Mitsumoto et al., 2008), as well as in cellular or animal 

model of the disease (Barber and Shaw, 2010; Parakh et al., 2013).  

Impaired cellular trafficking: 

TDP-43 is involved in regulation of endosomal trafficking (Schwenk et al., 2016). Its 

loss-of-function was reported to alter traffic of dendritic endosomes which affected global 

neuronal health. As described previously, mitochondrial transport throughout the axon was 

reduced by ALS-related proteins TDP-43, FUS, VAPB and SOD1 (Y.-F. Xu et al., 2011; Mórotz et 

al., 2012; Magrané et al., 2013; W. Wang, Li, W. L. Lin, et al., 2013; Baldwin et al., 2016) in 

several ALS models. Motor neuron degeneration, due to defective anterograde/retrograde 

transport, was also reported in SOD1 transgenic mice (Ligon et al., 2005; Bilsland et al., 2010). 

Axonal transport, a mechanism of crucial importance for lengthy motor neuron 

function, relies on proteins that were found to be mutated in ALS patients and associated to 
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defective axonal transport: DCTN, PFN1, CHMP2B and TUBA4A (Puls et al., 2003; Urwin et al., 

2010; Wu et al., 2012; Smith et al., 2014). Two other ALS-related mutated gene, ALS2 and 

UNC13A were related to trafficking defects as they are respectively involved in endosome 

trafficking and fusion (Topp et al., 2004; Devon et al., 2006) and synaptic release of vesicles 

for neurotransmission (Böhme et al., 2016). Mutations in NEFH (neurofilament heavy 

polypeptide) is present in few ALS patients but direct link to axonal dysfunction isn’t clear 

(Garcia et al., 2006). Similarly, rare mutations in PRPH are involved in neurofilament function 

such as protein cargo trafficking (Gros-Louis et al., 2004; Corrado et al., 2011). TDP-43 

mutations alters the axonal transport of its RNA partners both in vitro and in vivo (Alami et al., 

2015). 

Apart from genetic evidence, defective axonal transport in ALS also benefited from 

histopathological observations made in patients motor neurons such as abnormal 

accumulation of phosphorylated neurofilament, mitochondria and lysosomes (Hirano, 

Donnenfeld, et al., 1984; Hirano, Nakano, et al., 1984; Okada et al., 1995; Rooke et al., 1996).

  

Altered function of glial cells and neuroinflammation: 

Neuronal loss has been associated with several non-cell-autonomous mechanisms in ALS, 

whether it is in animal models or in ALS patients. Interestingly, these mechanisms have been 

observed early on in the disease, before the appearance of symptoms (Endo, Komine and 

Yamanaka, 2016). For example, autopsies performed on ALS patients demonstrated activation 

of astrocyte, microglia and infiltration of T cells at degenerating motor neurons (Engelhardt 

and Appel, 1990; Engelhardt, Tajti and Appel, 1993; Henkel et al., 2004; Brettschneider et al., 

2012), suggesting the implication of  neuroinflammation. Evidence of neuroinflammation was 
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indeed found in both patients and mice (Corcia et al., 2013; Brites and Vaz, 2014). In mutant 

SOD1 mouse model, activation of astrocytes and microglia exacerbates pathology (Yamanaka 

et al., 2008; Haidet-Phillips et al., 2011) while specific loss of mutant SOD1 in astrocytes 

delayed disease onset and progression (Wang, Gutmann and Roos, 2010). Interestingly, 

specific expression of mutant SOD1 in motor neurons didn’t show such impact on the 

progression of the disease (Wang, Gutmann and Roos, 2010). 

Mouse C9orf72 loss of function model displays hyperactivated immune responses of 

macrophage and increased  circulating proinflammatory cytokines (O’Rourke et al., 2016). 

Loss of function of TBK1, a known cause of ALS (Cirulli et al., 2015; Freischmidt et al., 2015), is 

a other concurrent sign of immune response impairments as it plays a role in innate immunity 

and inflammation by interacting with mTOR complex (Hasan et al., 2017; Bodur et al., 2018) 

and ALS-related SQSTM1/p62 and OPTN (Richter, Danielle A. Sliter, et al., 2016; He, Chen and 

Li, 2017; Li et al., 2018) (interactions also involved in autophagy). TBK1 is indeed linked to 

several autoimmune diseases and stands at a crossroad between autophagy and 

neuroinflammation (Oakes, Davies and Collins, 2017). 

Oligodendrocytes provide metabolic support and allow healthy neuronal function 

(Rinholm et al., 2011; Lee et al., 2012), their dysfunction, degeneration and failure to 

regenerate have been observed in ALS (Kang et al., 2013; Philips et al., 2013) thus contributing 

to axonopathy. In mutated SOD1 mice, oligodendrocytes seem to contribute to motor neuron 

death in a SOD1-dependant manner (Ferraiuolo et al., 2016). If correlation is evident, 

oligodendroglia impairments clear contribution to the pathogenesis in ALS patients is still 

under debate.  
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Excitotoxicity (Kretschmer, Kratzer and Schmidt, 1998; Wang, Wang and Wang, 2004) 

and failure of DNA repair (W.-Y. Wang et al., 2013; Sama, Ward and Bosco, 2014) are other 

notable pathological mechanisms investigated in ALS. 

The identified key molecular actors of ALS and their related pathologic mechanisms 

reveal a paradoxical trait of the disease: the specific vulnerability of motor neurons to defects 

presumably caused by ubiquitous proteins. The nature and morphology of motor neurons are 

thought to play a role but partially explains the phenomenon which widely remains a mystery 

for the ALS community (Hardiman et al., 2017). However, on a grosser scale, animal models 

allowed insights into the early stages of the disease which was inaccessible in patients leading 

to the hypothesis of pathogenesis through distal axonopathy in ALS. In the “dying-back” 

hypothesis, axonal retractation from neuromuscular junctions and degeneration would 

happen prior to the degeneration of the cell body of neurons in the spinal cord (Fischer et al., 

2004). This process may involve several molecular mechanisms that we evoked in this section 

as well as defects in RNA metabolism and autophagy that will be extensively described later 

in this introduction (see sections II.C “RNA metabolism and ALS” and III.B “Autophagy’s 

implication in ALS”). 

 

II) TARDBP and RNA metabolism: a central role in ALS 
 

 

 

TDP-43 holds a central role in ALS pathology and is essential to this study as we 

investigate novel aspects of its interaction with autophagy. In this section, I will review its 
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normal function and implication in ALS before tying it to more global RNA metabolism defects 

in ALS. 

 

A) TARDBP 
 

(1) Discovery and initial characterization 
 

TDP-43 is now mainly known for its RNA-binding activity but it was not its first 

attributed function when it was characterized in 1995. It was described as a repressive 

transcription factor of HIV1 (Human Immunodeficiency Virus type 1) gene expression (Ou et 

al., 1995). TDP-43, which was reported to be 43kDa, binds to a polypyrimidine-rich motif in 

HIV’s transactive response DNA element, TAR. The authors thus decided to designate it TAR 

DNA binding protein (TARDBP encoding for TDP-43).  

 The TARDBP gene, located on chromosome 1p36.22, is composed of six exons (five 

coding and one non-coding). It encodes for TDP-43, a highly conserved and ubiquitously 

expressed protein (Ayala et al., 2005) (Fig i 10). Although there is some exceptions (pathologic 

or not), TDP-43 is predominantly nuclear (Buratti et al., 2001). In its N-terminal region, the 

peptide contains two RNA recognition motifs, RRM1 and RRM2, that allow binding to RNA but 

also single stranded DNA (Buratti and Baralle, 2001; Buratti et al., 2001; Wang et al., 2004; 

Ayala et al., 2005). These motifs are flanked by a nuclear localization and a nuclear export 

signal that allow the protein to shuttle between nucleus and cytosol (Ayala et al., 2008; 

Matthew J. Winton et al., 2008). Interestingly, the N-terminal domain was found to be crucial 

for the RNA-binding activity as it enabled TDP-43 dimer and oligomer formation that are 

distinct from pathological aggregates and necessary for physiological TDP-43 function (Afroz 
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et al., 2017; Jiang et al., 2017). The C-terminal region, which contains a Gly-rich domain, allows 

recognition of proteins including other RNA-binding proteins (Buratti et al., 2005). The region 

is also called Low Complexity domain (LCD) or prion like domain as the protein is prone to 

pathological aggregation (King et al. 2012). A role of the prion-like domain in RNA granule 

assembly has been proposed (Kato et al., 2012; T. W. Han et al., 2012). 

 

 

Figure i 10: TDP-43’s domains; modified from Shynrye Lee et al. 2015. 

NLS: Nuclear Localization Signal; NES: Nuclear Extraction Signal; RRM: RNA Recognition motif 

 

(2) TDP-43’s normal function 
 

 TDP-43, being able to bind to RNA, DNA and proteins, is involved in numerous 

interactions and serves a wide range of cellular processes. Early developmental expression of 

the protein was reported in both brain and spinal cord of zebrafish (Shankaran et al., 2008). 

In mice, TDP-43 was described to be widely expressed at embryonic stages with particularly 

high levels in the CNS. The study indicated that TDP-43 was developmentally regulated and 

vital in early development as full knock-out of the protein was lethal at embryonic stage 

(Sephton et al., 2010). 

 TDP-43 is able to act on gene expression in several ways. Although the complete 

spectrum of target genes is poorly known and requires genome wide studies, TDP-43 can act 
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as a transcription repressor (Ling et al., 2010; Sephton et al., 2011). It also interacts with other 

transcription protein including, among others, MeCP2 (Ling et al., 2010; Sephton et al., 2011). 

TDP-43 displays a splicing activity on pre-mRNAs that is linked to its C-terminal domain and 

binding to other nuclear splicing factors (Buratti et al., 2005; Buratti and Baralle, 2010). 

Another way TDP-43 can act on transcriptional regulation is by promoting microRNA 

biogenesis (Kawahara and Mieda-Sato, 2012). TDP-43 promoting effect comes from direct 

binding to particular primary microRNAs or later on through interaction with nuclear complex 

Drosha which acts on precursor microRNAs. The interaction follows through even later as 

cytoplasmic TDP-43 interacts with the Dicer complex thus promoting the processing of 

precursor microRNAs (Kawahara and Mieda-Sato, 2012). Long noncoding RNA are also bound 

by TDP-43 thus implicating the protein in their various regulatory functions (Tollervey et al., 

2011; Ling, Polymenidou and Cleveland, 2013). 

 More globally, the ribonucleoprotein TDP-43 is involved in nearly all steps of RNA 

metabolism which includes splicing, maturation, transport, stability and translation but also 

SG formation whether acting alone or in complexes with other proteins (Lagier-Tourenne, 

Polymenidou and Cleveland, 2010; Buratti and Baralle, 2012; Lagier-Tourenne et al., 2012). 

Unlike DNA targets, the range of target RNAs of TDP-43 has beneficiated from numerous 

studies in various models (Sephton et al., 2011; Xiao et al., 2011; Colombrita et al., 2012) 

including genome-wide approaches notably in human and mouse brain (Polymenidou et al., 

2011; Tollervey et al., 2011). We now know that TDP-43 binds to about a third of total 

transcriptome, which in the brain comprises about 6000 RNAs targets. The studies confirmed 

the importance of TDP-43 for the CNS as regulated and spliced RNA targets include transcripts 

encoding for neuronal development regulating proteins or proteins implicated in various 

neurological disorders. These studies have shown that TDP-43 binds preferentially to long 
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clusters of UG-rich sequences (Tollervey et al., 2011; Colombrita et al., 2012) mostly found in 

the 3’UTR of bound transcripts. Importantly, TDP-43 has been reported to bind to its own 

mRNA hence outlining self-regulation through a negative feedback loop (Ayala et al., 2011; 

Polymenidou et al., 2011; Tollervey et al., 2011). By interacting with similar RNPs and notably 

the transcript of ALS-related FUS, TDP-43 can also act on RNA metabolism without any direct 

binding. It was estimated that roughly 300 RNAs that do not bind TDP-43 were indirectly 

affected by reduced levels of TDP-43. TDP-43 has been associated with cytoplasmic RNA 

granules of several sorts including processing bodies (P bodies, involved in RNA decay), stress 

granules (involved in translation regulation) and transporting RNP granules containing 

transcripts for local translation (Kiebler and Bassell, 2006; Anderson and Kedersha, 2009; 

Buchan and Parker, 2009).  

Overall, antisense oligonucleotide mediated knock-down of TDP-43 resulted in more 

than 600 transcripts having affected levels and 950 having affected splicing patterns in mouse 

nervous system (Polymenidou et al., 2011). Numerous RNA metabolism impairments have 

been observed in the context of ALS notably some directly related to TDP-43. They will be 

described in section II.C.2) “RNA metabolism defects in ALS”. 

 TDP-43’s influence surpasses sole gene expression and RNA metabolism as its 

interactors are known to be involved in various mechanisms including protein degradation, 

cytoskeleton, cell cycle, trafficking, signaling and morphology, synaptic function, neuronal 

development, and metabolic function (Sephton et al., 2011; Tollervey et al., 2011; Colombrita 

et al., 2012). Furthermore, its interaction with the key cellular process of autophagy will be 

discussed in section IV.B “TARDBP and autophagy”. This large spectrum of influence and key 

role in cell health justifies the scrutinous investigation of TDP-43 pathology in ALS. 
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B) TDP-43 in ALS 
 

(1) TDP-43 pathology 
 

 As mentioned in section I.B.5) “Histopathology”, ALS histological hallmark is the 

presence of pathological inclusions of TDP-43 in neurons and glia in the majority of ALS cases 

and a good portion of FTD cases (Ling, Polymenidou and Cleveland, 2013). These inclusions 

are predominantly observed in the cytoplasm and correlate with nuclear depletion of TDP-43 

(Arai et al., 2006; Neumann et al., 2006) (Fig i 11). 

 

 

Figure i 11: TDP-43-positive inclusions in ALS patients (Neumann et al., 2006) 

Immunostaining with anti TDP-43 labeled Lewy body-like (G), round (H), and skeinlike 

inclusions (I) in motor neurons of the spinal cord. Cytoplasmic ubiquitin-positive inclusions in 

hippocampal dentate granule neurons (J) and frontal cortex (K) were stained by TDP-43. 

Asterik: normal nuclear staining; Arrows: absence of nuclear staining 
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TDP-43 nuclear aggregates: 

 However rare, the pioneer studies that unveiled the presence of TDP-43 in aggregates 

of ALS-FTD patients (Arai et al., 2006; Neumann et al., 2006) described the presence of nuclear 

ubiquitin-positive inclusions that were also positive for TDP-43. Both studies reported that 

these nuclear inclusions were related to particular subset of FTD cases but one of the studies 

described (without showing data) a single case of ALS presenting nuclear TDP-43-positive 

inclusions (Arai et al., 2006). In Hela cells, nuclear but reversible aggregation of TDP-43 after 

Heat-shock treatment was reported (Udan-Johns et al., 2014). Although interesting, these 

cases should not overshadow the strong tendency of TDP-43 to stay soluble in the nucleus and 

prone to aggregation in the cytoplasm. A tendency also shared with other prion-like RBPs like 

FUS. The fact that these proteins show physiological high concentrations in the nucleus but 

yet weak tendency to aggregate in this compartment as compared to cytosol may seem 

paradoxical. High nuclear RNA concentration was shown to buffer aggregation tendencies of 

prion-like RBPs like TDP-43. Reduction of nuclear RNA concentration or genetic inhibition of 

their RNA-binding abilities cause phase separation and trigger solid-like aggregation of these 

RBPs (Maharana et al., 2018). 

 

In these aggregates, both full-length TDP-43 (FL TDP-43) and truncated C-terminal 

fragments are present and display characteristic modifications: abnormal phosphorylation 

and ubiquitylation (Arai et al., 2006; Neumann et al., 2006). ALS-related truncation of TDP-43 

is caspase-mediated and theoretically leads to various forms depending on the site of cleavage 

(Y.-J. Zhang et al., 2007; Li et al., 2015). However, the ALS community widely focuses on the 

forms that are found in patients, TDP-35 and TDP-25 (named according to their reported 
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molecular weights). These two forms have in common a total or partial loss of the N-terminal 

domain of the protein. TDP-35 still contains the RRMs and thus ability to bind and affect RNAs 

(Kitamura et al., 2016) but misses its nuclear localization signal. The fragment is thus localized 

in cytosol where it is highly prone to aggregate (Bozzo et al., 2016). The TDP-25 fragment no 

longer contains any functional RNA binding motif. Caspases activation has been linked to ALS-

related mutations in patient tissues, cellular and animal models and is related to pro-apoptotic 

signaling observed in the disease (Pasinelli et al., 1998, 2000; Li et al., 2000; Guégan et al., 

2001; Wengenack et al., 2004). The relevance of TDP-43 truncation to ALS pathogenesis is still 

poorly understood. Truncation of TDP-43 is not required to observe nuclear depletion, 

cytoplasmic aggregation and toxic behavior (Wobst et al., 2017) however, sole over-

expression of C-terminal fragments is sufficient to exert toxicity (Wang et al., 2015) with each 

fragment presenting specificities (Kitamura et al., 2016; Salvatori et al., 2018). They show 

enhanced aggregating behavior and overall cellular toxicity (Zhang et al., 2009) and are 

believed to drive co-aggregation of FL TDP-43 and dominantly impair its normal function (Yang 

et al., 2011). 

 Aggregation of TDP-43, the defining trait of ALS histopathology, is toxic on its own 

(Yang et al., 2011) but doesn’t seem to be a requirement for TDP-43-mediated toxicity (Igaz et 

al., 2011). Nevertheless, patients with unusual long duration disease present relatively few 

TDP-43 aggregates as compared to the average rapidly progressing case (Nishihira et al., 

2008). In addition, pathologic TDP-43 aggregates have been reported to display prion-like 

spreading properties both in vitro (Nonaka et al., 2013) and in vivo (Porta et al., 2018).  TDP-

43 localization and shuttling in the cell is a key element of its normal function. Its aggregation 

is in direct link with its mislocalization that seem to be influenced by several factors. Increased 

cytoplasmic levels of TDP-43 were observed in response to genetic factors (Matthew J Winton 
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et al., 2008; Barmada et al., 2010; Ritson et al., 2010), chemical stressors that will notably lead 

to formation of granules (I.-F. Wang et al., 2008; Colombrita et al., 2009; Volkening et al., 2009; 

Freibaum et al., 2010; Nishimoto et al., 2010; Dewey et al., 2011) or physical neuronal injury 

(Moisse, Mepham, et al., 2009; Moisse, Volkening, et al., 2009; Sato et al., 2009). Even the 

rare cases of nuclear inclusions are the reflect of a mislocalization within the nucleus as the 

RBP is normally located in euchromatic regions of nucleoplasm (Thorpe et al., 2008; Casafont 

et al., 2009).  

 In an intriguing manner, cells displaying aggregates of mislocalized TDP-43 also present 

nuclear clearance of normal TDP-43 (Neumann et al., 2006; Giordana et al., 2010). This trait is 

not necessarily observed in other cases of pathological mislocalization and aggregation of 

protein (DiFiglia et al., 1997) and may be related to TDP-43’s ability to self-regulate (Ayala et 

al., 2011; Igaz et al., 2011; Polymenidou et al., 2011; Tollervey et al., 2011). Nuclear depletion 

of TDP-43 leads to partial or total loss of function causing a variety of defects (Igaz et al., 2011; 

Polymenidou et al., 2011) and is likely to play a role in degeneration. However, TDP-43’s range 

of direct or indirect interactors is so important that it buffers the identification of precise 

disease mechanisms linking its loss of normal nuclear function to pathogenesis. 

 While ubiquitylation is related to protein degradation mechanisms (and will be 

discussed later in section III.A “Autophagy: an overview”), the role of aberrant 

phosphorylation of FL TDP-43 and its C-terminal fragments in disease mechanisms is still 

unclear. However, it is consistently found in patients with TDP-43 proteinopathy and observed 

in various TDP-43 over-expression models (Matthew J. Winton et al., 2008; Igaz et al., 2009, 

2011; Nonaka, Arai, et al., 2009; Nonaka, Kametani, et al., 2009; Xu et al., 2010; Zhang et al., 

2010). Phosphorylation may enhance TDP-43’s already extensive half-life, tendency to 
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aggregate and toxicity (Liachko, Guthrie and Kraemer, 2010; Zhang et al., 2010) but isn’t 

necessarily required for toxicity (Dormann et al., 2009; Zhang et al., 2009).  

 Nuclear clearance appears quite early in the disease pathogenesis  (Fig i 12). 

Mislocalized in the cytoplasm, progressive phosphorylation intervenes seemingly before 

ubiquitylation and TDP-43, and its newly truncated forms, are described in a state of pre-

inclusions. Mature round and dense inclusions or skein-like inclusions then form and 

correlates with high phosphorylation and ubiquitylation of TDP-43 and C-terminal fragments 

(Davidson et al., 2007; Mori et al., 2008; Pamphlett et al., 2009; Giordana et al., 2010; Lee, Lee 

and Trojanowski, 2012). 

 

Figure i 12: Chain of events of TDP-43 pathology; modified from E. B. Lee et al. 2012. 

Schematic TDP-43 immunostaining shown in red. p409 and p410: phospho-TDP-43 epitopes. 

 

Even though they account for a rather small portion of ALS cases with about 4% of fALS 

and 1% of sALS (Kabashi et al., 2008; Sreedharan et al., 2008; Van Deerlin et al., 2008; Chiò et 

al., 2014; Renton, Chiò and Traynor, 2014) and few rare cases of FTD (Borroni et al., 2009; 

Kovacs et al., 2009), more than 40 different mutations have been related to ALS and FTD and 
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are massively clustered in the C-terminal region of the protein with the exception of a few 

being adjacent to it and only one known mutation in the RRMs (Fig i 13) (Lagier-Tourenne et 

al. 2010; Lattante et al. 2013). Logically, mutations are not necessary to observe TDP-43 

neuropathology (Pamphlett et al., 2009) but seem to increase TDP-43’s tendency to be 

cleaved (Chiang et al., 2016), to aggregate (Nonaka, Kametani, et al., 2009) and form inclusions 

that may display even more toxic properties (Gopal et al., 2017). 

 

Figure i 13: TDP-43 ALS-related mutations; modified from E. B. Lee et al. 2012. 

NLS: Nuclear Localization Signal; NES: Nuclear Extraction Signal; RRM: RNA Recognition motif 

 

(2) TDP-43’s ALS-related partners of interaction 
 

 TDP-43 has been shown to interact with several ALS-related genes either at the protein 

level or at the RNA level. In pathological inclusions, TDP-43 can be found colocalized in 

aggregates with several proteins found mutated in ALS cases such as protein clearance-related 

p62 (Brady et al., 2011), OPTN (Maruyama et al., 2010; Deng, Bigio, et al., 2011) and UBQLN2 

(Deng, Chen, et al., 2011; Groen et al., 2013) as well as other RNA-binding protein FUS (Ling 

et al., 2010; Keller et al., 2012) and stress-granule related TIA-1 (Volkening et al., 2009; Liu-
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Yesucevitz et al., 2010). Ataxin2, involved in RNA metabolism, has been reported to colocalize 

with TDP-43 in inclusions in FTD cases but not ALS (Farg et al., 2012). 

 Pathology aside, physiological TARDBP and FUS appear to be involved in an epistatic 

interaction. TARDBP seem to act upstream of FUS as overexpression of human RNA of the 

later can rescue the altered motor phenotype caused by knock-down of tardbp in zebrafish 

(Kabashi, Bercier, et al., 2011). TDP-43 was shown to bind to FUS mRNA as well as several 

other ALS-related transcripts encoding proteins involved in RNA metabolism namely Ataxin2, 

Matrin 3, hnRNPA1, hnRNPA2B1, TIA-1 among others (Sephton et al., 2011). Interestingly, 

Ataxin2 has been described as a modifier of TDP-43-mediated toxicity and a genetic risk factor 

for ALS (Elden et al., 2010). Consistent with its RNA-binding function, TDP-43 also associates 

and form granules with several proteins of the hnRNP family (Buratti et al., 2005; Freibaum et 

al., 2010; Ling et al., 2010). 

 TDP-43 shares an intriguing relation with VCP (valosin contening protein) which is 

involved in various functions notably in protein degradation and stress granule formation (J. 

S. Ju et al., 2009; Tresse, Florian A. Salomons, et al., 2010; Seguin et al., 2014; Wang et al., 

2019) and found mutated in some ALS cases (Janel O. Johnson et al., 2010) that will be 

discussed later in this introduction. TDP-43 interacts with PGRN or progranulin mRNA 

(Sephton et al., 2011) which is a major cause of FTD when mutated (Mackenzie et al., 2006; 

Beck et al., 2008). Interestingly, PGRN seem to mediate caspase-dependent cleavage of TDP-

43 (Y.-J. Zhang et al., 2007) and protect against mutant TDP-43-mediated axonopathy in 

zebrafish (Laird et al., 2010). 

 Although evidence for direct binding isn’t consistent (Sephton et al., 2011), TDP-43 was 

found to colocalize in ribonucleoprotein granules with NEFL mRNA and affect its transport 
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when mutated (Alami et al., 2014). NEFL isn’t found mutated in patients but as previously 

explained, it is one the most relevant candidate in the search of a molecular biomarker of ALS 

(Steinacker et al., 2016; Xu et al., 2016; Verde et al., 2019). 

 

(3) Modeling TDP-43 pathology 
 

Since the description of TDP-43 as a key pathological feature of ALS and FTD and the 

discovery of its pathology-related mutations (Arai et al., 2006; Neumann et al., 2006), 

numerous studies have tried to model TDP-43 pathology in various host systems including 

yeast, cell cultures and animal models (Wegorzewska and Baloh, 2011; Van Damme, 

Robberecht and Van Den Bosch, 2017) as described in section I.C.1) “Modeling ALS”. 

Considering the multitude of traits that characterize TDP-43 pathology and, as evidence for 

both loss of function and gain of function mechanisms are reported, modeling has been 

attempted through different strategies that include knock-down and over-expression of WT 

or mutated FL or C-terminal fragments of TDP-43 under various promoters (Wegorzewska and 

Baloh, 2011; Van Damme, Robberecht and Van Den Bosch, 2017). These attempts have 

highlighted the multiple ways in which TDP-43 modulation can be toxic. Maintaining TDP-43 

levels within normal parameters seems crucial as full knock-out has been reported to be lethal 

at early stages (Fiesel et al., 2010; Sephton et al., 2010), knockdown displays clear toxicity 

(Feiguin et al., 2009; Kabashi et al., 2009; Lu, Ferris and Gao, 2009; Li et al., 2010) and 

increased levels of TDP-43 by overexpression of the wild-type or ALS-causing mutant protein 

is highly deleterious (Ash et al., 2010; Hanson et al., 2010; Li et al., 2010; Ritson et al., 2010; 

Wils et al., 2010; Igaz et al., 2011). In fact, simple overexpression of TDP-43 and its related 

toxic effects observed in both animal and cellular models are under debate concerning their 
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relevance to ALS pathology (Wegorzewska and Baloh, 2011). However, overexpression rodent 

models have highlighted the specific vulnerability of spinal motor neurons as compared to the 

rest of nervous system (Wegorzewska et al., 2009; Wils et al., 2010; Zhou et al., 2010).  

Animal models have globally failed to emulate key histopathological traits such as 

formation of TDP-43 aggregates and TDP-43 nuclear depletion thus impacting our 

understanding of their respective implication in disease mechanisms (Wegorzewska et al., 

2009; Hanson et al., 2010; Laird et al., 2010; Wils et al., 2010; Zhou et al., 2010; Joyce et al., 

2011; Devoy et al., 2017; White et al., 2018). In rodents, ubiquitin-positive inclusions were 

found in spinal motor neurons of the animals but rarely contain TDP-43 (Wegorzewska et al., 

2009; Wils et al., 2010; Zhou et al., 2010). Drosophila models show contradicting results as 

overexpression models display either aggregates of FL TDP-43 (Li et al., 2010), soluble C-

terminal fragments (Fiesel et al., 2010) or do not show any of these traits despite overall 

toxicity of overexpression (Hanson et al., 2010). Several cellular models have however been 

successful in reproducing histopathological hallmarks notably unveiling the toxicity of C-

terminal fragments and their role in promoting aggregation of the protein (Igaz et al., 2009; 

Zhang et al., 2009; Yang et al., 2011) but full phenocopy of TDP-43 pathology remains 

challenging (Van Damme, Robberecht and Van Den Bosch, 2017). 

There are paradoxical challenges in generating TDP-43 pathology models: reproducing 

the numerous aspects of TDP-43 pathology to gain in realism and individualizing each aspect 

to understand its relevance for pathogenesis.  

 

(4) TDP-43 pathogenesis 
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 Nearly all cases of ALS or FTD display TDP-43 proteinopathy, with the exception of 

SOD1 or FUS mutation ALS patients and FTD patients presenting tauopathies (Ling, 

Polymenidou and Cleveland, 2013). This puts the protein at the center of attention of disease 

pathogenesis. Nevertheless, the precise mechanisms through which neuronal malfunction, 

degeneration and death occur is still not known. Much progress has however been made since 

the focus was made on TDP-43 in 2006 (Arai et al., 2006; Neumann et al., 2006). It is now 

believed that several pathways may be involved in neurodegeneration. The different aspects 

of TDP-43 pathology that were described above play in favor of a probable combination of 

both gain- and loss-of-function (Lee, Lee and Trojanowski, 2012; Ling, Polymenidou and 

Cleveland, 2013).  

Indeed, gain of toxic function appears to be linked to aggregation, prion-like properties 

and abnormal cytoplasmic function of mislocalized and truncated TDP-43. Loss of function, on 

the other hand, is highlighted by nuclear clearance, partial or total loss of RNA-binding 

function of C-terminal fragments and loss of high impact interactions. The challenge in 

understanding TDP-43 proteinopathy is in direct correlation with the complexity of its normal 

function, adaptability to cellular and environmental context and vast interactome. Indeed, the 

number of RNAs and proteins that interact with TDP-43, and are potentially affected by TDP-

43 pathology, is so extensive that it makes the pinpointing of disease-relevant candidates 

complex (Lee, Lee and Trojanowski, 2012). Although one could argue that reproduction of 

TDP-43 pathology was overly simplified, an interesting study attempted to quantify the 

respective contribution of loss-of-function (represented by nuclear depletion of TDP-43) and 

gain-of-function (represented by cytoplasmic TDP-43 aggregates) mechanisms in TDP-43 

pathology. They were respectively estimated to contribute to 55% and 45% of induced 

cytotoxicity (Cascella et al., 2016). 
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 Besides wild-type TDP-43 pathology, ALS-related mutations may not only display 

increased tendencies to generate the aspects of TDP-43 pathology but also show specific toxic 

gain-of function properties affecting RNA metabolism (Fratta et al., 2018; Rouaux, Gonzalez 

De Aguilar and Dupuis, 2018). In section II.C.2) “RNA metabolism defects in ALS”, we will 

describe the overall defects of this key homeostatic function in ALS in which TDP-43 is heavily 

involved. However, TDP-43-related pathogenesis may also involve other potential 

mechanisms of action. 

 

Defective endocytosis: 

Impairments in this crucial process in which various substances are internalized in the 

cellular compartment may contribute to TDP-43 pathogenesis. Colocalization of TDP-43 to 

endocytosis-associated proteins such as Rab5 was observed in both patients and cellular 

models (G. Liu et al., 2017). Inhibition of endocytosis correlates with TDP-43 aggregation while 

increased endocytosis ameliorates TDP-43 toxicity (G. Liu et al., 2017). In human iPSC-derived 

neurons, TDP-43 knockdown reduced the number and functionality of endosomes and TDP-

43 overexpression causes the opposite effect (Schwenk et al., 2016).  

 

Role of TDP-43 in mitochondrial function and oxidative stress: 

Over-expression of both mutant or wild-type TDP-43 lead to abnormal colocalization 

at the mitochondria and was linked with mitochondrial dysfunction (Ralf J Braun et al., 2011; 

W. Wang, Li, W.-L. Lin, et al., 2013; Stribl et al., 2014). TDP-43 pathology also correlates with 

the inducement of oxidative damage (Duan et al., 2010; Bharathi et al., 2016; Bharathi, 
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Girdhar and Patel, 2017). Depletion in endogenous anti-oxidant factors has been reported to 

aggravate TDP-43 insolubility and aggregating behavior (Iguchi et al., 2012). Subjecting TDP-

43 to oxidative agents promotes its aggregation (Cohen et al., 2012) and loss of its nucleic acid 

binding activity  (Chang et al., 2013). Mutant SOD1 aggregates have been reported to cause 

TDP-43 mislocalization and promote its aggregation (Zeineddine et al., 2017). Mitochondria-

related and ALS protein CHCHD10 was described to interact with TDP-43 (Lehmer et al., 2018). 

Finally, TDP-43 normally penetrates mitochondria and interact with mitochondrial mRNAs 

involved in the respiratory function and its truncated forms show differential sub-

mitochondrial localization and toxicity (Salvatori et al., 2018). 

 

Defective chromatin remodeling: 

 Impairments in this process have been studied in several neurodegenerative diseases 

including ALS (Berson et al., 2018; Bastle and Maze, 2019). TDP-43 was linked with impaired 

nucleosomal traffic (Berson et al., 2017). It was also reported to bind CHD1 (chromodomain 

helicase DNA binding protein 1), a protein which modifies TDP-43-mediated toxicity (Berson 

et al., 2017). Nuclear depletion of TDP-43 and FUS correlates with retention of mRNAs, 

including transcripts corresponding to proteins involved in the formation of nBAF complex (an 

important chromatin remodeling protein complex). Furthermore, mutant TDP-43 are 

associated with altered expression of key epigenetic markers (Masala et al., 2018). 

 

 Overall, several mechanisms may be involved in TDP-43-mediated pathogenesis and 

alternatively reflect implication of both LoF and GoF components (Fig i 14). The protein, its 
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homeostasis and correct localization play a crucial role in cellular health and notably for its 

key role in RNA metabolism, a process that displays important impairments in ALS. 

 

Figure i 14: Schematics of TDP-43 induced pathology; modified from Prasad et al. 2019. 

 

C) RNA metabolism and ALS  
 

(1) ALS-related genes involved in RNA metabolism 
 

Alterations in RNA metabolism is a highly recurrent theme in ALS pathogenesis that 

was driven by the identification of several mutated genes in patients that are involved in this 

crucial cellular process. At the basis of this hypothesis of pathogenesis was, naturally, the 

discovery of mutations in TARDBP and FUS, both encoding for RNA-binding proteins 

containing low-complexity domains that render them prone to aggregation (Arai et al., 2006; 
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Neumann et al., 2006; Kwiatkowski et al., 2009; Vance et al., 2009). For TDP-43, its 

involvement in RNA metabolism has been thoroughly highlighted by the previous description 

of its normal function in the process (see section II.A.2) “TDP-43’s normal function”).  

Much like TDP-43, FUS (or fused in sarcoma), is a protein composed of an RNA-

recognition motif, a low-complexicity/prion-like domain and a nuclear localization signal (NLS) 

that is able to shuttle between nucleus and cytoplasm and can bind RNA, DNA and proteins 

(Iko et al., 2004). It was found mutated in approximately 4-5% of fALS and in a lower 

percentage of sALS (Kwiatkowski et al., 2009; Vance et al., 2009; Corrado et al., 2010; DeJesus-

Hernandez et al., 2010). ALS-related mutations of FUS can be categorized in two groups as 

they seem to cluster in the low-complexity domain or in the NLS at the C-terminal part of the 

protein. This later group of mutations was reported to lead to abnormal cytoplasmic 

accumulation of the protein in patients (Kwiatkowski et al., 2009; Vance et al., 2009) as 

discussed in section I.B.5) “Histopathology”. FUS was reported to bind to thousands of RNAs 

in studies conducted in brain tissues or in cell lines (Hoell et al., 2011; Colombrita et al., 2012; 

Ishigaki et al., 2012; Lagier-Tourenne et al., 2012; Rogelj et al., 2012) and is involved in multiple 

steps of RNA metabolism notably by interacting with other proteins in RNP complexes. In 

particular, the role of FUS in splicing regulation is directly in relation with its ability to interact 

with key splicing factors (hnRNP A1, YB-1, U1 snRNP) (Rapp et al., 2002; Meissner et al., 2003; 

Yamazaki et al., 2012; Yu et al., 2015; Kamelgarn et al., 2016) and integrate spliceosomal 

complexes (Rappsilber et al., 2002; Zhou et al., 2002). FUS seems to be involved in 

transcription regulation via its interactions with RNA polymerase II and III (RNAP2 and RNAP3) 

or cyclin D1 (X. Wang et al., 2008; Tan and Manley, 2010; Brooke et al., 2011; Schwartz et al., 

2012; Tan et al., 2012). Interestingly, FUS and TDP-43 seem to mostly bind different RNA 

targets (Lagier-Tourenne et al., 2012; Rogelj et al., 2012).  
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Besides from TARDBP and FUS, mutations in several other genes involved in RNA 

metabolism have been reported in ALS patients. Indeed, mutations in angiogenin (ANG) 

(Greenway et al., 2006; Yamasaki et al., 2009), ataxin-2 (ATXN2) (Ostrowski, Hall and Mekhail, 

2017), matrin-3  (MATR3) (Coelho et al., 2015), heterogeneous nuclear ribonucleoprotein A1 

and A2 B1 (hnRNPA1 and hnRNPA2B1) (Dreyfuss et al., 1993; Alarcón et al., 2015), stress-

granule related T-cell-restricted intracellular antigen-1 (TIA-1) (Förch et al., 2000) have been 

associated with ALS and all play a role in RNA processing (Butti and Patten, 2019). 

Furthermore, mutations in TATA-box binding protein associated factor 15 (TAF15) (Ibrahim et 

al., 2013) and Ewing’s sarcoma breakpoint region 1 (EWSR1) (Duggimpudi et al., 2015), coding 

for two proteins that show structural and functional similarities with FUS and have been 

implicated in regulation of transcription and splicing (Q. Han et al. 2008; Huang et al. 2005), 

were also identified.  

 

(2) RNA metabolism defects in ALS 
 

Evidence for alterations in various steps of RNA metabolism have been observed in the 

context of ALS (Butti and Patten, 2019). Both FUS and TDP-43 models show alterations of 

transcriptome. Indeed, iPSC-derived motoneurons from patients carrying mutant FUS display 

transcriptomic changes (De Santis et al., 2017). Similar differences were reported in both 

mutant FUS transgenic mice (Scekic-Zahirovic et al., 2016) and FUS knockdown in cell culture 

(Lagier-Tourenne et al., 2012; Nakaya et al., 2013). In several of these FUS models, expression 

of other RNA metabolism-related TAF15 was altered as well as genes involved in synaptic 

development and neurodegenerative mechanisms (Fujioka et al., 2013; Scekic-Zahirovic et al., 

2016; De Santis et al., 2017). Concerning TDP-43, a simple oligonucleotide-mediated knock-



 71 

down resulted in more than 600 transcripts having affected levels (Polymenidou et al., 2011). 

Among the range of TDP-43 RNA targets, some are key to synaptic development, function and 

neurotransmission (Godena et al., 2011; Sephton et al., 2011; Colombrita et al., 2012; 

Narayanan et al., 2013; Chang et al., 2014; Coyne et al., 2014). Dysfunctional regulation of 

their expression might be relevant to ALS pathology as it may explain synaptic dysfunction due 

to expression of ALS-related TDP-43G348C in zebrafish (Armstrong and Drapeau, 2013a), 

reduced synaptic formation and dendritic branching in drosophila TDP-43 depletion models 

(Feiguin et al., 2009; Lu, Ferris and Gao, 2009), altered dendritic development, spine 

morphology and synaptic transmission in TDP-43A315T mice (Handley et al., 2016)  and reduced 

dendritic branching in mammalian primary neuronal cultures with depletion or 

overexpression of TDP-43 (Herzog et al., 2017). TDP-43 may also cause neurodegeneration via 

dysregulation of NEFL mRNA. TDP-43 was reported to bind and stabilize this transcript (Strong 

et al., 2007) for which we have found that stoichiometry imbalance caused motor neuron 

degeneration and development of an ALS-related phenotype in animal models (Xu et al., 1993; 

Julien, Côté and Collard, 1995). In ALS patients, NEFL mRNA is interestingly abnormally 

regulated (Wong, He and Strong, 2000). More globally, TDP-43 mutations are associated with 

impaired axonal transport of RNAs (Alami et al., 2014) and the protein is known to be involved 

in RNA stability (Strong et al., 2007; Fiesel and Kahle, 2011). 

microRNAs play a key role in expression regulation as they impact RNA and subsequent 

protein levels (Catalanotto, Cogoni and Zardo, 2016) and are involved in ALS-relevant cellular 

mechanisms such as the development of the nervous system (Johnston and Hobert, 2003) and 

notably of motor neurons for which they also play a role in normal function and survival (Asli 

and Kessel, 2010; Haramati et al., 2010; Chen and Wichterle, 2012; Luxenhofer et al., 2014; 

Thiebes et al., 2015; Bhinge et al., 2016). Altered expression of disease-relevant microRNAs 
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was reported in CNS of fALS and sALS patients (Helferich et al., 2018) as well as in iPSC-derived 

motor neuron progenitors from ALS patients (Rizzuti et al., 2018). Both FUS and TDP-43 (as 

discussed in section II.A.2) “TDP-43’s normal function”) are known to be implicated in 

microRNA biogenesis and regulating activity (Freibaum et al., 2010; Da Cruz and Cleveland, 

2011). Depletion of TDP-43 leads to changes in the profile of expression of microRNAs in cell 

culture (Buratti et al., 2010) while mutations in TARDBP lead to altered expression of several 

microRNAs key to motor neurons (Kawahara and Mieda-Sato, 2012; Z. Zhang et al., 2013). FUS 

depletion also impacts expression of key microRNAs (Morlando et al., 2012). 

Splicing regulation seems altered in both TDP-43 and FUS models. TDP-43 depletion or 

over-expression models cause alternative splicing of numerous targets (Polymenidou et al., 

2011; Tollervey et al., 2011). In CNS tissues from TDP-43 ALS patients, alternative splicing of 

several genes has been reported (Shiga et al., 2012; Yang et al., 2014). Alterations of RNA 

metabolism is often attributed to a loss of TDP-43 normal function, notably hinted by nuclear 

depletion and truncation-mediated loss of RNA-recognition motifs (Chiang et al., 2010; Wu, 

Cheng and Shen, 2012; Iguchi et al., 2013; Yang et al., 2014). For instance, in a mouse 

embryonic stem cell model, depletion of TDP-43 caused the abnormal splicing of cryptic exons 

(exons which splicing into mRNA is normally repressed by TDP-43) which lead to toxicity (Ling 

et al., 2015). However, gain-of-function of mutant TDP-43 involving abnormal splicing has also 

been described (Fratta et al., 2018; Rouaux, Gonzalez De Aguilar and Dupuis, 2018). Indeed, 

mice expressing TDP-43 mutated in its low-complexity domain suffered from 

neurodegeneration that correlated with the consistent skipping of constitutive exons normally 

spliced by wild-type TDP-43 into mRNAs (named skiptic exons) (Fratta et al., 2018; Rouaux, 

Gonzalez De Aguilar and Dupuis, 2018). In both phenomena, the abnormal splicing leads to 

altered stability and translation of the mRNA. A role of loss of FUS splicing function in 
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pathogenesis has been suggested as ALS-related mutation in NLS of FUS, causing cytoplasmic 

retention of the protein (Dormann et al., 2010), results in splicing defects (Reber et al., 2016). 

Moreover, FUS LoF in mice brains leads to altered splicing in more than 300 genes (Lagier-

Tourenne et al., 2012). These splicing defects may have repercussions on neuronal 

development, signal transmission to skeletal muscles (Reber et al., 2016), cytoskeleton and 

subsequent effects on axonal growth and function (Ishigaki et al., 2012; Orozco et al., 2012; 

Rogelj et al., 2012; Nakaya et al., 2013). 

Markers of stress granules (SG) have been identified in ubiquitin-positive inclusions in 

ALS and FTD patients as well as in cell culture (Liu-Yesucevitz et al., 2010; Wolozin, 2012). In 

response to various stressors, eukaryotic cells form SG, cytoplasmic foci of RNAs and RNPs 

(notably RNA-binding proteins, translation initiation factors and small ribosomal subunits) to 

temper with RNA metabolism, stock RNAs and prevent unnecessary translation (Kedersha and 

Anderson, 2007; Protter and Parker, 2016). Numerous ALS-related proteins are known 

components of SG such as TDP-43 (Colombrita et al., 2009; Liu-Yesucevitz et al., 2010; 

Bentmann et al., 2012), FUS (Sama et al., 2013), ANG (Emara et al., 2010; Thiyagarajan et al., 

2012), ATXN2 (Nihei, Ito and Suzuki, 2012), EWS, TAF15 (Andersson et al., 2008; Blechingberg 

et al., 2012) or TIA-1 (Kedersha et al., 1999). Interestingly, prolonged stress and subsequent 

sequestration of RNA-binding proteins, other protein partners and their RNA targets is 

thought to be relevant to ALS pathology (Bentmann, Haass and Dormann, 2013; Li et al., 2013; 

Ramaswami, Taylor and Parker, 2013; Yasuda et al., 2013). For example, expression of Pur-

alpha interacts with FUS and is a disease modifier of FUS-mediated pathology. The protein was 

found sequestered with mutant FUS in SG in ALS patient-derived cell culture (Di Salvio et al., 

2015; Daigle et al., 2016). Mutant TDP-43 has been shown to be recruited more efficiently to 

SG than wild-type TDP-43 (Liu-Yesucevitz et al., 2010). 
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Interestingly, RNA metabolism defects are also associated with two other key ALS 

proteins, C9orf72 and SOD1. An hexanucleotide repeat expansion in C9orf72 has been 

identified as the major known cause of ALS (DeJesus-Hernandez et al., 2011; Renton et al., 

2011). The genetic abnormality leads to the formation of C9orf72 dipeptide repeats (DPRs) 

(Ash et al. 2013) but also C9orf72 repeat RNA foci (T. Zu et al., 2013) in ALS patients (see 

section III.B.2) “Autophagy defects in ALS” for more description concerning C9orf72 

pathology). The formation of such RNA foci promotes recruitment of RNA-binding proteins 

such as TDP-43, FUS or hnRNP A1 among others (Donnelly et al., 2013; Lee et al., 2013; Sareen 

et al., 2013; Xu et al., 2013; Cooper-Knock, Shaw and Kirby, 2014; Haeusler et al., 2014) and 

alters RNA metabolism by disturbing their normal function (Simón-Sánchez et al., 2012; 

Donnelly et al., 2013; Lee et al., 2013; Mori, Lammich, et al., 2013; Gitler and Tsuiji, 2016). In 

C9orf72-ALS motor neurons derived from iPSCs, suppressing RNA foci formation reduces 

sequestration of RNA-binding proteins and subsequent impairments in gene expression 

(Donnelly et al., 2013; Lagier-Tourenne et al., 2013). DPRs may also influence RNA 

metabolism. Mice expressing a C9orf72-related DPR revealed altered expression of more than 

6000 genes through RNA sequencing. Certain types of DPRs have been associated with altered 

splicing of several RNAs (Kwon et al., 2014) and seem to colocalize and potentially sequester 

proteins involved in RNA translation such as ribosomal subunits and transcription factor elF3n 

(Zhang et al., 2018) and lead to reduced levels of ribosomal RNAs resulting in neuronal death 

(Suzuki et al., 2018). The DROSHA protein, a key protein of microRNA biogenesis, was found 

colocalized in DPRs in tissues of C9orf72 ALS/FTD patients (Porta et al., 2015). Mutant C9orf72 

has also been reported to interfere with the transcription and splicing of its own RNA (Mori, 

Weng, et al., 2013; Haeusler et al., 2014; Highley et al., 2014) which supports a C9orf72-
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haploinsufficiency model for pathogenesis (Ciura et al., 2013). C9orf72 has been associated 

with SG regulation (Maharjan et al., 2017) and a particular DPR specie has been directly 

implicated in their formation (Zhang et al., 2018). Overall, several studies highlighted major 

transcriptome alteration in C9orf72-ALS context (Donnelly et al., 2013; Prudencio et al., 2015; 

Selvaraj et al., 2018).  

Concerning SOD1, the mutant protein has been found to gain the faculty to bind 

particular RNAs (Kenan, Query and Keene, 1991; Tiwari, Xu and Hayward, 2005) such as VEGF 

and NEFL causing altered expression, stability and ultimately altered function of the proteins 

(Menzies et al., 2002; Lu et al., 2009; H. Chen et al., 2014). In addition, reduced levels of NEFL 

mRNA was observed in motor-neurons of SOD1-ALS patients and in transgenic mice (Menzies 

et al., 2002). The interaction between mutant SOD1 and NEFL mRNA may involve an 

interaction with TDP-43 (Volkening et al., 2009). Mutant SOD1 mice also display upregulated 

expression of disease-relevant microRNA-9 (Zhou et al., 2013). More broadly, transcriptomic 

studies revealed altered gene expression including some involved in neuroinflammation, 

oxidative stress, mitochondrial, synaptic and neurodevelopmental pathways in mutant SOD1 

models and patient sample (Hedlund et al., 2010; Lincecum et al., 2010; Bandyopadhyay et 

al., 2013; Kumimoto, Fore and Zhang, 2013; Sun et al., 2015; D’Erchia et al., 2017). 

Interestingly, these changes seem to be mostly different from the one observed in a mutant 

TDP-43 model (Rotem et al., 2017). 

In other words, several ALS-related genes, whether normally implicated in RNA 

metabolism or not, affect various steps of RNA metabolism (Fig i 15). Together with defective 

autophagy (see section III. “Autophagy and its implication in ALS”), with which converging 

mechanisms exist (see section IV. “ALS: at a crossroad between autophagy and RNA 
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metabolism”), RNA homeostasis is one of the most incriminated dysregulated machinery in 

ALS pathogenesis.  

 

Figure i 15: Affected RNA metabolism functions in ALS; modified from Butti and Patten 2019. 

 

III) Autophagy and its implication in ALS 
 

 

 

A) Autophagy: an overview 
 

(1) Definition 
 

In 1963, future Nobel Prize winner and Belgium biochemist Christian de Duve, made the 

first description of lysosomes and their mediated intracellular degradation process. By pure 
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accident, while aiming to study insulin and carbon hydrates metabolism, he isolated by 

centrifugation a membraned structure containing various acid hydrolases to which he logically 

attributed a “digestive function” and dedicated his work to, despite his previous focus on 

biochemistry (de Duve, 1963, 2005). This catabolic process was widely studied and later found 

to be highly conserved and of crucial importance for homeostasis (Takeshige et al., 1992; 

Tsukada and Ohsumi, 1993). The autophagic process was found to be depending on a class of 

ATG genes (for “autophagy related”) encoding for proteins that regulate the process 

throughout its multiple steps (Mizushima, Yoshimori and Ohsumi, 2011). These ATG genes 

were first described in yeast and the names of their orthologues may vary among species.  

Autophagy can be divided in several subtypes: macroautophagy, microautophagy and CMA or 

chaperone-mediated autophagy (Klionsky, 2007). In CMA, proteins are targeted to the 

lysosome by cytosolic chaperones (Kaushik and Cuervo, 2012). Microautophagy consists in 

direct engulfment of cytosolic proteins and degradation by the lysosome (Li, Li and Bao, 2012). 

Macroautophagy is the most characterized subtype and is often referred simplistically, and 

hereafter in this thesis, as autophagy. It refers to the forming of the autophagosome, a double-

membrane vesicle that entraps proteins, organelles and various other cytosolic materials, and 

its trafficking and fusing with the lysosome for degradation of its content through 

hydrolyzation (Mizushima, 2007; Ravikumar et al., 2009; Rubinsztein, Shpilka and Elazar, 2012) 

(Fig i 16).  
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Figure i 16: Overview of the autophagic pathway; modified from Budini et al. 2017. 

 

For a long time, autophagy was thought to be a non-selective pathway of cellular 

degradation activated by nutrient deprivation (de Duve and Wattiaux, 1966). The cell “digest” 

its own content to recycle nutrients when energy supplies are limited. The catabolic process 

has then been linked to several pathological mechanisms including cancer, 

neurodegeneration, immune response and ageing that ameliorated our understanding of 

autophagy (Liang et al., 1999; Mizushima et al., 2008; Levine, Mizushima and Virgin, 2011; 

Choi, Ryter and Levine, 2013). Autophagy is now known to also serve as an intracellular quality 

control system and allow selective degradation of various cargoes such as misfolded and 

aggregated proteins or damages organelles (Shaid et al., 2013). Autophagy is highly active 

during differentiation and development (Mizushima and Levine, 2010). Conventional 

knockout of numerous ATG genes cause neonatal lethality in animal models (Kuma et al., 

2004; Komatsu et al., 2005; Saitoh et al., 2008, 2009; Sou et al., 2008). 

The autophagic process comprises several steps: initiation and nucleation (which 

results in the formation of phagophore, precursor of the autophagosome), elongation, 
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autophagosome maturation and degradation of its cytosolic content through fusion with the 

lysosome (Choi, Ryter and Levine, 2013). 

 

(2) The stages of autophagy 
 

Initiation and nucleation: 

The mechanisms required for initiation of autophagy are complex and not fully 

understood as a multitude of multifunctional proteins, involved in various pathways, are at 

play. However, initiation of formation of the phagophore starts with the activation of the ULK 

complex and its translocation to a precise membrane source site (Yu, Chen, and Tooze 2018; 

Egan et al. 2011; Chan et al. 2007). This “budding” site will more likely be on the ER and seem 

to be marked by ATG9 (Karanasios et al., 2016). This autophagy initiation complex ULK is 

composed of ULK1 (UNC51-like Ser/Thr kinase and ATG1 orthologue), ULK2, ATG13, FIP200 

(Kinase-family-interaction protein and ATG17 orthologue) and ATG101 (Wirth, Joachim and 

Tooze, 2013) (Fig i 17).  

Although independent pathways have been described (Sarkar et al., 2008; He and 

Klionsky, 2009; Stephan et al., 2009), the recruitment of ULK1 for autophagy appears to be 

mainly regulated by other kinases mTORC1, AMPK and ubiquitination (Egan et al., 2011; Kim 

and Guan, 2013; Yuan, Russell and Guan, 2013; Reidick et al., 2015). Indeed, ULK1 was 

reported to work directly downstream of mTORC1 for autophagy induction (Kamada et al., 

2000; Yin, Pascual and Klionsky, 2016) (Fig i 17). 
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mTORC1:  

 mTOR (mechanistic Target of Rapamycin) is a protein coordinating eukaryotic cell 

growth, proliferation, survival (thus having great implication in cancerous mechanisms) as well 

as metabolism (including protein synthesis and degradation) and in response to 

environmental inputs like growth factors, stress signals, insulin signaling and through its 

nutrient sensor ability (Mortimore and Pösö, 1987; Saxton and Sabatini, 2017; Paquette, El-

Houjeiri and Pause, 2018). It is the main actor of kinase mTOR Complex 1 which is autophagy’s 

most characterized regulator. mTORC1 is composed of mTOR, RAPTOR (regulatory-associated 

protein of mTOR, which will be mentioned in this thesis), mLST8, DEPTOR and PRAS40 (Saxton 

and Sabatini, 2017). The kinase activity of mTORC1 directly influences autophagy as it will be 

described hereafter but also indirectly. Inactivation of mTORC1 allows translocation of TFEB 

(transcription factor EB) to the nucleus. TFEB is a master transcriptional regulator of genes 

involved in the biogenesis of both autophagosome and lysosome (Settembre et al., 2011, 

2012). 

Kinase activity of mTORC1 causes binding and inactivation of ULK1 and consequently 

inhibits autophagy in basal conditions (nutrient rich conditions) (Kim et al., 2011; Meijer et al., 

2015). In a situation of nutrient deprivation, ULK1 is freed from its inhibitory binding with 

mTORC1 and rendered able to initiate autophagy. Energy starvation also leads to ULK1 

activation. Low ATP/AMP ratio causes activation of AMPK (AMP-activated protein kinase), 

which will in turn activate ULK1. ULK1 is then able to inhibit the mTORC by phosphorylating 

its subunit RAPTOR and thus initiate autophagy (J. W. Lee et al., 2010; Bach et al., 2011; Egan 

et al., 2011). Concerning ubiquitination, mTORC1 is known as an inhibitor of AMBRA1 (PI3KIII 

complex subunit) in basal conditions. Upon starvation, inactive mTORC1 enables AMBRA1 to 



 81 

promote poly-ubiquitylation of ULK1 which fosters its mediated initiation of autophagy 

(Grumati and Dikic, 2018). Consistently with the fact that mTOR has a close link to 

mitochondrial function, ROS have been described to induce autophagy and mitophagy (Desai, 

Myers and Schreiber, 2002; Kim et al., 2002). 

Upon induction, several molecular actors gather on location to promote formation of 

the phagophore. This is referred as nucleation and it primarily involves the recruitment of the 

PI3K-III kinase complex or class III phosphatidylinositol 3-kinase complex 3, which is composed 

of tumor suppressor Beclin-1 (ATG6 orthologue), ATG14, AMBRA1, p150/VPS15, VPS34 (Schu 

et al., 1993; Kihara et al., 2001). Activation of this complex relies on activation of VPS34 by 

Beclin-1, itself being activated upon release from Beclin-2, an anti-apoptotic protein (Di 

Bartolomeo et al., 2010; He and Levine, 2010; Budini et al., 2017) (Fig i 17). 

 The site of nucleation of the phagophore, called omegasome (Roberts and Ktistakis, 

2013), is most likely sprouting from the ER but can also be from Golgi, mitochondria, 

endosomes or plasma membrane (Dunn, 1990; Ueno, Muno and Kominami, 1991; Axe et al., 

2008; Vaccaro et al., 2008). The birthing phagophore is made of a lipidic bilayer membrane 

enriched in phosphatidylinositol 3-phosphate, PI(3)P (Budini et al., 2017) (Fig i 17). 

 

Elongation: 

 The newly sprouting phagophore expands to form an isolation membrane. In order to 

engulf the cellular contents that will be degraded, two ubiquitin-like conjugation systems are 

required to be integrated to the membrane (Polson et al., 2010): the ATG12-ATG5-ATG16L1 

system (which formation is ATG7 and ATG10-dependent (Itakura and Mizushima, 2010; 

Hamasaki et al., 2013; Walczak and Martens, 2013)) and the ATG8 family system. The ATG8 
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family is notably comprised of LC3 (microtubule-associated protein 1A/1B light chain 3), 

GABARAP and GATE16. These proteins from the ATG8 family need to undergo lipidation in 

order to serve their ubiquitin-like conjugating function, which requires ATG4b-dependent 

cleavage of their C-terminal domain and integration within the autophagic vesicle by ATG7 

and ATG3-mediated conjugation with a lipid phosphatidylethanolamine (PE) (Tanida et al., 

2004; Katahira et al., 2007). During lipidation, the most characterized ATG 8 family member, 

LC3, is transformed in LC3 I after cleavage and in LC3 II after its integration in the membrane 

(Otomo et al., 2012) (Fig i 17). It allows cargo sequestration by associating with autophagy 

receptors (Mizushima, Yoshimori and Ohsumi, 2011). In its lapidated form, LC3 seems to 

mediate membrane tethering and hemifusion, drive expansion and control the size of the 

autophagosome (Xie et al. 2008; Nakatogawa et al. 2007). 



 83 

 

Figure i 17: Schematics of the autophagic machinery; modified from Budini et al, 2017. 

Representation of the key molecular actors of the different stages of autophagy  
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Cargo selection and targeting to the autophagosome: 

The selective ability of autophagy was highlighted by the characterization of autophagy 

receptors. Unlike bulk autophagy, selective autophagy needs to differentiate the cell content 

that need to be targeted to the autophagosome and degraded. This targeting process mainly 

involves ubiquitylation of the cargo. 

Ubiquitin, the “kiss of death”: 

 Ubiquitin is a small globular protein (8 kDa) that is found in all tissues of eukaryotes 

(thus the term “ubiquitous”) and shows great conservation (Hershko and Ciechanover, 1998). 

Ubiquitin covalently conjugates to a lysine substrate and act as a modifier. This tagging process 

is called ubiquitylation (or ubiquitination) and serves multiple cellular mechanisms such as 

gene transcription, DNA repair, cell cycle, signaling and death but is also the most prevalent 

form of substrate targeting in degradation pathways. Ubiquitylated proteins or organelles can 

be targeted to the proteasome (UPS), lysosome or the autophagosome (Grumati and Dikic, 

2018). The type of ubiquitylation can act on the targeting as a substrate can undergo single or 

multiple mono-ubiquitylation but also binding of chains of ubiquitin. Furthermore, the nature 

of the poly-Ubiquitin chain seems to play a role on the substrate fate and activation of a 

preferred degradation pathway (Kirisako et al., 2006; Husnjak and Dikic, 2012; Grumati and 

Dikic, 2018). Importantly, ubiquitin is the key substrate of the overwhelming majority of 

inclusion bodies in neurological diseases; and has been used for the past decades as the 

keystone marker for pathological studies (Grumati and Dikic, 2018).  

 

Autophagy receptors are responsible for the recognition of ubiquitylated substrates 

(Fig i 18). Two dozen of autophagy receptors have been identified but only a few have been 
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well characterized, among which, SQSTM1/p62, OPTN, UBQLN2 have been associated with 

ALS when mutated (Maruyama et al., 2010; Deng, Chen, et al., 2011; Fecto, Yan, P. Vemula, et 

al., 2011). These proteins share in common two particular structures: ubiquitin-binding 

domains (UBA or UBAN) that allow recognition of the cargo; and LC3-interacting region (LIR) 

that permits binding to lipidated proteins from the ATG8 family and thus engulfment into the 

autophagosome (Lippai and Low, 2014; Rogov et al., 2014; Stolz, Ernst and Dikic, 2014; Wild, 

McEwan and Dikic, 2014). TBK1 (Ser/Thr Tank-binding kinase 1) was shown to phosphorylate 

and thus activate SQSTM1/p62 and OPTN to promote autophagy (Wild et al., 2011; Komatsu, 

Kageyama and Ichimura, 2012b; Pilli et al., 2012; Matsumoto et al., 2015; Richter, Danielle A 

Sliter, et al., 2016). The role in ALS of TBK1, p62/SQSTM1 and OPTN will be further in section 

III.B.3 “Focus on p62/SQSTM1, OPTN and TBK1: key ALS-related genes”. 

 

Figure i 18: Schematic model of the role of p62/SQSTM1, OPTN and UBQLN2 as autophagy 

receptors; modified from Majcher et al. 2015. 
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Maturation and Degradation: 

As cargo selection occurs, the phagophore expands until it closes on itself and forms an 

independent and double-membraned vesicle, the autophagosome. The autophagosome 

matures and is able to traffic using the microtubule network. It will eventually encounter the 

lysosome and fuse with it to form the autolysosome. The enzymatic lysosomal content enables 

hydrolytic degradation of the sequestered content and inner membrane of the 

autophagosome (Mizushima, 2007). Fusion is mediated by a series of tethering factors among 

which is the HOPS complex (homotypic fusion and protein sorting) (Rieder and Emr, 1997; 

Seals et al., 2000; Wurmser, Sato and Emr, 2000) and adapting proteins called SNAREs (soluble 

N-ethyl-maleimide-sensitive fusion attachment protein receptor) (Moreau, Renna and 

Rubinsztein, 2013). The specificity of fusion between autophagosome and lysosome is still 

unclear but LC3 may play a role (McEwan et al., 2015; Z. Wang et al., 2016). The 

macromolecules resulting from degradation are released in the cytosol through the action of 

permeases and recycled by the cell (Suriapranata et al., 2000; Yang et al., 2006). 

 

(3) Mitophagy 
 

Mitophagy is the process of degradation of mitochondria. Their removal can be part of 

normal turnover, to accommodate metabolic conditions and meet the cellular requirements 

of particular steps of development (Schweers et al., 2007; Palikaras, Lionaki and Tavernarakis, 

2018). It can also serve as a quality control and selectively degrade damaged or exhausted 

mitochondria (Kim, Rodriguez-Enriquez and Lemasters, 2007; Novak et al., 2010). 

Mitochondria enter in contact with the autophagosome through lipidated LC3-docking via 

receptors that have LIR domains but not necessarily the faculty to bind ubiquitin (Palikaras, 
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Lionaki and Tavernarakis, 2018). Overall, mitophagy can be classified into ubiquitin-dependent 

or -independent (Khaminets, Behl and Dikic, 2016). Ubiquitin-dependent mitophagy is 

regulated by the PINK1/Parkin pathway as it catalyzes the attachment of ubiquitin chains on 

mitochondrial outer membrane (MOM or OMM) and promotes their autophagy (Clark et al., 

2006; Park et al., 2006; Narendra et al., 2008). Several autophagy receptors have been 

described to occasionally participate in mitophagy such as p62/SQSTM1, NDP52 or TAXIBP1 

(Moore and Erika L.F. Holzbaur, 2016) but only OPTN was shown to be sufficient for mitophagy 

and promoted engulfment of mitochondria in the autophagosome via LC3 binding (Wong and 

Holzbaur, 2014; Heo et al., 2015; Moore and Erika L. F. Holzbaur, 2016; Richter, Danielle A 

Sliter, et al., 2016). In these studies, OPTN and TBK1 (Ser/Thr Tank-binding kinase 1) were 

described to form an axis essential for mitochondrial quality control and cellular homeostasis 

(He, Chen and Li, 2017). 

 

(4) Measuring autophagy 
 

Decades of scientific advances have outlined the essential role of autophagy in normal 

physiology as well as in pathological mechanisms. Hence, the need to monitor and measure 

autophagy is crucial for our understanding of this process. Unfortunately, available methods 

often give partial information, are complex and can be subjects of misinterpretation. These 

methods can be separated in two different type of approaches: simple observation of 

autophagy-related structures; and quantification of the degradation of proteins and 

organelles (also known as assessing the autophagic flux) (Yoshii and Mizushima, 2017). 

Observation of autophagic structures. 
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 Being the most upstream autophagy specific actor, ULK1 complex subunits as well as 

ATG9 can be used as markers to visualize the site of initiation of autophagosome formation 

(Itakura and Mizushima, 2010). Later on, markers of the ULK1 complex, PI3KIII complex or 

autophagy conjugation systems such as LC3 allow visualization of the protruding isolation 

membrane (Kishi-Itakura et al., 2014). The omegasome site is also characterized by the 

presence of the DFCP1 protein (Axe et al., 2008). Completion of the autophagosome will mark 

the detachment of these early ATG proteins but not LC3 and other ATG8 family members. 

Although it also localizes to ER and mitochondria, STX17, an autophagosomal SNARE can be a 

marker of closed autophagosomes (Itakura, Kishi-Itakura and Mizushima, 2012). The LC3-

positive, STX17-positive mature autophagosomes fuse, and thus colocalize, with lysosomes 

that can be marked by LAMP1/2 or LysoTracker. The LysoTracker will give more temporal 

information on the autolysosome as it will mark differently early fusion vesicles from later 

ones that already suffered from inner membrane degradation (Tsuboyama et al., 2016). 

Accumulation of these structures can indicate degradation defects.  

 These molecular markers are good evidences of the presence of autophagosomes but 

not definitive proof. Although incorrect identification is possible, electron microscopy can 

allow direct visualization of double-membrane vesicles that are autophagosomes and single-

membrane ones that are autolysosome (Eskelinen, 2008b, 2008a). However successfully used 

on cell cultures, electron microscopy is challenging on tissues (Kishi-Itakura et al., 2014). 

Measurement of autophagic flux: 

 In order to quantify the degradation of autophagosomes, in other words the end result 

of autophagy, LC3 is by far the most widely used marker because of its useful characteristics. 

The preform of LC3 is cleaved to form LC3 I and LC3 II after integration in the autophagosome 
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membrane (Otomo et al., 2012). After this lipidation process, LC3 II is present in both outer 

and inner membranes of the autophagosome and as the inner membrane is degraded, a 

portion of LC3 II is also degraded (Kabeya et al., 2000). The amount of LC3 II can hence reflect 

the number of autophagosomes. A ratio between LC3 I and LC3 II is often used to quantify 

LC3’s integration in autophagosomes as compared to its cytosolic presence but variable 

efficiency to detect LC3 I by immunoblotting in comparison with LC3 II renders any 

interpretation difficult (Mizushima and Yoshimori, 2007). The autophagy receptor 

p62/SQSTM1 is also used to quantify autophagosomes as it binds to LC3 and is degraded by 

autophagy (Bjørkøy et al., 2005; Pankiv et al., 2007). In tissues especially, a deficiency in 

autophagy is indicated by accumulation of soluble p62/SQSTM1 and p62-positive puncta. 

Nevertheless, as p62 expression is transcriptionally regulated, a combined quantification of 

protein and RNA levels is advised (Jamart et al., 2013; Sanchez et al., 2014). 

However, at a given time point, an accumulation of LC3 II or p62/SQSTM1 and by extent 

autophagosomes can mean an activation of autophagy as well as an inhibition of their 

degradation thus leading to misinterpretation. To actually quantify the autophagic flux, one is 

required to determine the lysosome-dependent degradation of these autophagosomal 

markers. This can be achieved by comparing accumulation of the markers in a control 

condition to a condition where lysosomal degradation is inhibited, by using Bafilomycin A1 or 

B1 for example. The difference in amount of autophagosomes represents the autophagic flux 

(Yoshii and Mizushima, 2017).  

Various techniques using exogenous constructs and reporters are also used to assess 

autophagic flux (extensively reviewed in (Yoshii and Mizushima, 2017)) and some of them use 

LC3 properties. One example is the GFP-LC3-RFP-LC3∆G probe. This single fusion protein can 
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be cleaved by ATG4b on the C-terminal of the first LC3 but not on the second modified LC3 

resulting in the equivalent production of GFP-LC3 that can be integrated into the membranes 

of autophagosomes and RFP-LC3∆G that will stay in the cytosol and unintegrated to 

autophagosomes. As autophagosomes and a portion of GFP-LC3∆G undergo degradation, its 

levels can be compared to the internal control that is cytosolic RFP-LC3∆G and give an estimate 

of the autophagic flux (Kaizuka et al., 2016). 

 

(5) Modulating autophagy 
 

As previously discussed, autophagy is an highly adaptative system that integrates 

inputs from various signaling pathways and stress signals that are mainly integrated by 

autophagy’s upstream master regulators mTORC1 and AMPK as well as ubiquitylation but also 

through cross-signaling events that involve autophagy-related proteins that also have roles in 

other pathways. The importance of autophagy in normal and pathological mechanisms has 

also powered the characterization of pharmacological and nutritional modulators notably for 

their therapeutic potential. As the process is complex and spreads out in several stages that 

involves at least 100 different proteins (Noda and Inagaki, 2015) it provides numerous targets 

of modulation for both inhibition or activation at each step of autophagy (Galluzzi et al., 2017) 

(Fig i 19).  

In this section, we will focus on drugs that will be used in this study. Bafilomycin is a 

family of macrolide antibiotics produced by gram-positive bacteria, Streptomycetes (Dröse 

and Altendorf, 1997). The different compounds of the family exhibit various biological 

functions such as anti-tumoral, -parasitic, -fungal and immunosuppressant activities (Hayashi 
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et al., 2000; Marchesini et al., 2005; Padrón, 2010; Keller, Schmidt and Lünemann, 2017; 

Whitton et al., 2018). As mentioned in section III.A.4) “Measuring autophagy”,  

 

Figure i 19: Schematics of pharmacological or nutritional modulators of autophagy; modified 

from Galluzzi et al. 2017. 

 

Bafilomycin B2 is a known inhibitor of lysosomal degradation (Fig i 19). More precisely, and 

similarly to the widely used Bafilomycin A1, the molecule inhibits vacuolar or V-ATPase 

(Hayashi et al., 2000) which normally promotes acidification and normal function of the 

lysosome (Yamamoto et al., 1998; Vinod et al., 2014). In addition, several studies have shown 

that the molecule also blocks fusion of autophagosomes with lysosome (Shacka, Klocke and 

Roth, 2006) with variability depending on treatment (Klionsky et al., 2008). Use of Bafilomycin 

A1 or B2 thus induce accumulation of autophagosomes (Boya et al., 2005; Shacka, Klocke and 

Roth, 2006) and related markers, such as p62 and LC3 notably in neurons (Lumkwana et al., 
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2017). Strong inhibition of autophagy via Bafilomycin is however concomitant with toxicity, 

autophagic stress and apoptosis (Shacka, Klocke and Roth, 2006). 

Also used in this study, Torin1 in a powerful autophagy activator (Kaizuka et al., 2016; 

Galluzzi et al., 2017). It is an ATP-competitive inhibitor of kinase activity of mTOR-related 

complexes mTORC1 and mTORC2 (Thoreen et al., 2009; Liu et al., 2010) (Fig i 19). Torin1 

presents high selectivity towards mTOR (a 1000-fold selectivity over PI3KIII complex) and, as 

compared to Rapamycin, a commonly used inhibitor of mTOR and activator of autophagy, 

disrupts mTORC1-dependant phenotypes with more completion. Concerning the 

transcriptional machinery notably, Torin1 can affect Rapamycin-resistant (or partially 

resistant) transcription factors and mTORC1 substrates TFEB, 4EBP, S6K that feed autophagy, 

lysosome biogenesis but also protein synthesis, cell proliferation and inflammation (Thoreen 

et al., 2009; Kim and Guan, 2015; Napolitano et al., 2018). Torin1 is indeed vastly used in the 

field of cancer (Sun, 2013; Xie, Wang and Proud, 2016).  

Altogether, these 2 autophagy modulators are used in this study to evaluate 

autophagic flux but also appreciate TDP-43’s effect on autophagy and adaptability to 

autophagy modulations. 

 

B) Autophagy’s implication in ALS 
 

(1) Autophagy in neurons 
 

Neurons are particularly vulnerable to defective proteostasis and organelle damage. 

Several neurodegenerative diseases such as ALS, Alzheimer’s, Parkinson’s and Huntington’s 

diseases, are characterized by accumulation of misfolded proteins (Cushman et al., 2010; 
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Nixon, 2013). Aging being a major risk factor for such diseases, it reflects the struggle of 

neurons to maintain their viability and functionality for a lifetime (Carroll, Hewitt and 

Korolchuk, 2013). Apart from their long life, neurons face other challenges that justify this 

vulnerability. As post-mitotic cells, they cannot undergo division to discard some of their 

damaged and dysfunctional content (Tooze and Schiavo, 2008; Kulkarni, Chen and Maday, 

2018). Their morphology and complex polarized structure present a logistic challenge that 

require important trafficking of vesicles. Autophagosomes are able to form and engulf cargoes 

in the entirety of the neuron and notably distally (Maday and Holzbaur, 2014). However, 

lysosomal activity seems to be concentrated in the soma which requires retrograde transport 

of distal autophagosomes (Lee, Sato and Nixon, 2011; Maday, Wallace and Holzbaur, 2012; 

Cheng et al., 2015; Maday and Holzbaur, 2016) (Fig i 20).  

 

Figure i 20: Mechanism of neuronal autophagy; modified from Kulkarni et al, 2018. 

Anterograde transport of autophagosomes towards lysosomes concentrated at the cell body. 

 

Efficient autophagy is essential for homeostasis and survival of neurons (Yamamoto 

and Yue, 2014; Ariosa and Klionsky, 2016; Kulkarni and Maday, 2018). In mice, specific genetic 

depletion of ATG 7 and 5 in neurons leads to axonal degeneration and cell death (Komatsu et 
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al., 2007; Nishiyama et al., 2007). This neuronal death is associated with increased ubiquitin-

positive protein aggregates indicating defective proteostasis and more specifically autophagy 

as no UPS dysregulation was observed (Hara et al., 2006; Komatsu et al., 2006). Autophagy 

was described to play a key role in synaptic development, maintenance and function (Shen 

and Ganetzky, 2009; Hernandez et al., 2012; Tang et al., 2014; Stavoe et al., 2016; Rudnick et 

al., 2017). Surrounding glia might play a role in regulating autophagy and notably in 

neuropathologic mechanisms but clear evidence is still missing (Kulkarni, Chen and Maday, 

2018). 

As autophagy appears crucial for normal neuronal function and implicated in 

neuropathologic mechanisms, the degradative process may be a potential therapeutic target 

in neurodegenerative disorders (Sarkar et al., 2007; Vidal et al., 2014; Maiuri and Kroemer, 

2019). 

 

(2) Autophagy defects in ALS 
 

Defective autophagy appears as one of the most recurring theme in ALS pathology as  

the presence of ubiquitin-positive proteinaceous inclusions is close to universal in patients 

(Nguyen, Thombre and Wang, 2019). Protein misfolding, aggregation and subsequent 

proteotoxicity has been linked to mutations in key actors TDP-43, SOD1, FUS and C9orf72 

(Peters, Ghasemi and Brown  Jr., 2015). Proteinopathy is interestingly not only related to 

mutant but also to wild-type proteins such as TDP-43 in a large portion of ALS cases (Arai et 

al., 2006; Neumann et al., 2006; Kwong et al., 2007) and to wild-type SOD1 to a lesser degree 

(Bosco et al., 2010; Forsberg et al., 2010). All these inclusions can also be positive for 

numerous autophagy-related proteins such as p62/SQSTM1, OPTN, VCP or UBQLN2 (Ling, 



 95 

Polymenidou and Cleveland, 2013). C9orf72 patients, in addition to the presence of DPRs and 

TDP-43-positive inclusions, also present unique p62/SQSTM1 inclusions that are negative for 

TDP-43 (Al-Sarraj et al., 2011; Mackenzie, Frick and Neumann, 2014). Autophagy may be a 

starting point of pathogenesis as these observations suggest that formation of these inclusions 

appears to be secondary to autophagy and overall protein quality control failure (Levine and 

Kroemer, 2008; Tooze and Schiavo, 2008; Menzies, Fleming and Rubinsztein, 2015). 

The histopathological hallmark that is protein aggregation has already been described 

in section I.B.5) Histopathology and is not the only striking evidence for autophagy defects in 

ALS. Indeed, an important portion of ALS genes are directly involved in the autophagic process 

and associated pathways and have helped in the development of animal models that highlight 

autophagy related pathological mechanisms such as C9orf72, p62/SQSTM1, OPTN, UBQLN2, 

TBK1, CHMP2B, VCP or DCTN among others and will be discussed hereafter. However, 

concerning the two autophagy receptors p62/SQSTM1 and OPTN and their upstream activator 

TBK1, section III.B.3) “Focus on p62/SQSTM1, OPTN and TBK1: key ALS-related genes” will 

be entirely focused on them as they have an important role to play in this study.  

 

C9orf72:  

The hexanucleotide GGGGCCC repeat expansion in the first intron of the C9orf72 gene is the 

most common genetic cause for the development of ALS/FTD with 23-47% of fALS and 4-21% 

of sALS (DeJesus-Hernandez et al., 2011; Renton et al., 2011). C9orf72 patients present unique 

histopathologic traits apart from TDP-43-positive inclusions which is the presence of TDP-43-

negative but p62-positive inclusions (Al-Sarraj et al., 2011), C9orf72 DPRs (Ash et al. 2013) and 

RNA foci (T. Zu et al., 2013) that were previously described in section I.B.5) “Histopathology”. 
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Since its unveiling in 2011, three C9orf72-related mechanistic explanation have been 

proposed in the contribution of pathogenesis: 1) Haploinsufficiency and thus reduction or loss 

of C9orf72 protein (Belzil et al., 2013; Ciura et al., 2013; Therrien et al., 2013; Waite et al., 

2014); 2) C9orf72 RNA foci-mediated toxicity (Donnelly et al., 2013; Haeusler et al., 2014); 3) 

C9orf72 DPR-mediated toxicity (Ash et al. 2013; Mizielinska et al. 2014; Tao et al. 2015) (Fig i 

21).  

 

Figure i 21: The proposed mechanisms for C9orf72-mediated pathology; modified from Gitler 

et al, 2016. 

C9orf72 hexanucleotide repeat expansion could be toxic through three mechanisms: loss-of-

function (B); gain of toxic function of RNA foci (C) and Dipeptide repeats (D). 
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As of today, C9orf72’s exact function remains unclear, but evidence point towards a 

multifunctional role and a particular involvement in autophagy. C9orf72 was found to affect 

autophagy initiation through ULK1 in several potential ways. First, by interacting with the ULK1 

complex directly, by binding to SMCR8 (a regulator of ULK1 activity and gene expression) and 

by interacting with several autophagy related small GTPases, Rabs. C9orf72 may affect 

trafficking and activation of the ULK1 complex and compromise its downstream effects in a 

Rab-dependent manner (Szatmári and Sass 2014; M. Yang et al. 2016; Sellier et al. 2016; Amick 

et al, 2016; Ugolino et al. 2016; Jung et al. 2017; Sullivan et al. 2016; Webster et al. 2016). By 

interacting with multiple Rabs (Aoki et al., 2017; Farg et al., 2017) and F-actin (Sivadasan et 

al., 2016) notably, C9orf72 might affect the autophagy-lysosome pathway through an effect 

on dynamic and structure of the cytoskeleton (J.-Y. Lee et al., 2010; Aguilera, Berón and 

Colombo, 2012; Zhuo et al., 2013). Upstream of ULK1, loss of C9orf72 function seem to inhibit 

mTOR (Amick, Roczniak-Ferguson and Ferguson, 2016; Ugolino et al., 2016) and promote 

autophagy by translocation of TFEB, the transcription factor inducer of autophagy and 

lysosome biogenesis (Ugolino et al., 2016; Yang et al., 2016). C9orf72 presents a starvation-

induced localization at the lysosome and seem to modulate lysosomal function (Amick et al. 

2016; Farg et al. 2017; O’Rourke et al. 2016). Overall, C9orf72’s implication in autophagy 

seems complex and will benefit from future studies. 

Ubiquilin 2:  

 UBQLN2 is another example of autophagy receptor found mutated and present in 

neuronal cytoplasmic inclusions in ALS patients (Deng, Chen, et al., 2011). The mutation is 

relatively rare as it is estimated to represent about 0,4% of sALS cases (Daoud et al., 2012; 

Millecamps et al., 2012). The protein is able to bind both ubiquitin and autophagosome-
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integrated LC3 (Rothenberg et al., 2010). In animal models, expression of ALS-related mutant 

UBQLN2 leads to dysfunctional proteostasis, aberrant accumulation of p62 and LC3-II, 

promotion of protein aggregation and neurodegeneration (Ceballos-Diaz et al., 2015; Hjerpe 

et al., 2016; Huang et al., 2016; Picher-Martel et al., 2019). These studies however underlined 

that some of these aspects are due to impairments of the proteasomes. UBQLN2 precise role 

in autophagy remains poorly characterized as compared to other autophagy receptors 

p62/SQSTM1 and OPTN (Nguyen, Thombre and Wang, 2019).  

Valosin containing protein: 

VCP is a AAA+-ATPase involved in protein clearance with clear implication in 

proteasomal degradation (DeLaBarre et al., 2006) and emerging evidence of an involvement 

in autophagy (J.-S. Ju et al., 2009; Tresse, Florian A Salomons, et al., 2010). It also plays a role 

in multiple cellular processes such as cell cycle regulation, DNA repair and replication 

(Kakizuka, 2008). VCP mutations account for approximately 1 to 2% of fALS (Janel O Johnson 

et al., 2010; Renton, Chiò and Traynor, 2014). Additionally, VCP mutations are causal in other 

diseases like FTD, Paget’s disease of bone and inclusion body myopathy (Watts et al., 2007). 

In these diseases, VCP patients show colocalized accumulation of autophagosomes, 

p62/SQSTM1 and LC3 (J.-S. Ju et al., 2009; Tresse, Florian A Salomons, et al., 2010). VCP was 

described to inhibit mTOR activity and thus promoting autophagy initiation and 

autophagosome biogenesis. VCP could also play a later role in the autophagic process as 

expression of ALS or other VCP-related disease mutations where shown to alter 

autophagosome maturation and promoted ubiquitin-positive aggregate accumulation in mice 

(J.-S. Ju et al., 2009; Tresse, Florian A Salomons, et al., 2010) and interfere in autophagosome-

lysosome fusion and degradation in cells (Tresse, Florian A Salomons, et al., 2010). An 
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implication in SG clearance was also suggested as Cdc48, VCP’s orthologue in yeast, promotes 

SG targeting for autophagy (Buchan et al., 2013). In cell culture, VCP seem to regulate the 

amount of TDP-43-positive SG where mutant VCP promoted their accumulation (Buchan et 

al., 2013). 

Charged multivesicular protein 2B: 

Mutations in CHMP2B accounted for 1% of ALS cases in a large cohort study (Cox et al., 

2010). The protein is a subunit of ESCRT-III, endosomal sorting complex required for transport 

III, which enables autophagic degradation of membrane proteins through the formation of 

multivesicular bodies (Rusten and Simonsen, 2008; Bodon et al., 2011). Examination of 

CHMP2B ALS patients’ brains revealed accumulation of immature autophagosomes and high 

levels of p62/SQSTM1 and LC3-II (Parkinson et al., 2006; Cox et al., 2010). Mutations lead to 

truncation of the C-terminal part of the protein (J.-H. Han et al., 2012) and were associated 

with inhibition of autophagy and subsequent formation of p62- and ubiquitin-positive 

inclusions (Filimonenko et al., 2007; Lee et al., 2007; Ghazi-Noori et al., 2012) as well as altered 

autophagosome-lysosome fusion (Lee et al., 2007; J.-Y. Lee et al., 2010), inhibited 

autophagosome maturation via alteration of SNARE activity (Lu et al., 2013) and impaired 

endocytic trafficking (J.-H. Han et al., 2012). 

 

Dynactin: 

DCTN is estimated to account for 0,5 to 3% of sALS (X. Liu et al., 2017) and, by binding 

to molecular motor dynein, is required for retrograde transport of autophagosomes (Laird et 

al., 2008). Indeed, DCTN mutations have been associated with reduced affinity for 

microtubules hence repressing retrograde transport and resulting in aggregation (Levy et al., 
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2006). In mice, mutant DCTN alters vesicular trafficking and causes accumulation of 

autophagosomes enriched in LC3-II and ubiquitin (Laird et al., 2008). Retrograde transport of 

autophagosomes was also decreased upon knockdown of DCTN in C. elegans and lead to their 

accumulation and incomplete maturation resulting in degeneration of motor neurons 

(Ikenaka et al., 2013). 

 

 Other notable ALS-related genes that appear to be involved in autophagy are VAPB, 

PFN1, ALS2 and FIG4 (Nguyen, Thombre and Wang, 2019). Interestingly, key ALS genes like 

SOD1, TDP-43 or FUS, which primary function does not consist in regulating autophagic 

machinery, also exhibit an effect on autophagy in the context of ALS. 

 Indeed, induction of autophagy has been observed in transgenic mutant SOD1 mouse 

model (Morimoto et al., 2007) as well as in the spinal cord of SOD1 ALS patients. Further post 

mortem examination of patients revealed signs of perturbed autophagy (Sasaki, 2011). ALS-

related SOD1G85R mice display reduced levels of Ser757-phosphorylated ULK1 (an inhibited 

form of the protein) suggesting mTOR repression and AMPK activation (Kim et al., 2011; 

Bandyopadhyay et al., 2014) while SOD1G93A was linked to increased production and turnover 

of LC3-II in mice (Morimoto et al., 2007; Li, Zhang and Le, 2008; An et al., 2014; Chen et al., 

2015) and motor neuron cultures (Wei, 2014), both of which are consistent with autophagy 

induction. In addition, this later mouse model showed up persisting upregulation of 

autophagy-promoting transcription factor TFEB (Settembre and Ballabio, 2011) and 

autophagy initiation-related protein Beclin 1 (Kang et al., 2011). Furthermore, aberrant 

interaction and clustering of mutant SOD1 with dynein lead to impaired retrograde axonal 

transport of autophagosomes thus contributing to failure of autolysosome formation (F. 
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Zhang et al., 2007; Bilsland et al., 2010). Modulation of autophagy to counteract on SOD1-

related pathology showed contrasting result as promoting autophagy seems protective in 

early SOD1 ALS pathology but aggravating in later stages (K. Zhang et al., 2013; Rudnick et al., 

2017). 

 As these two major mechanistic hypotheses for pathogenesis in ALS are at the center 

of the thesis, the interaction between autophagy and the RNA-binding proteins FUS and more 

particularly TDP-43 will be thoroughly discussed in section IV “ALS: at a crossroad between 

autophagy and RNA metabolism defects”. 

 

(3) Focus on p62/SQSTM1, OPTN and TBK1: key ALS related genes 
 

Mutations in autophagy receptors p62/SQSTM1 and OPTN and their activating kinase 

TBK1 were all identified in forms of ALS (Maruyama et al., 2010; Fecto, Yan, S. P. Vemula, et 

al., 2011; Cirulli et al., 2015). These three proteins share in common a multi-functional nature 

and are key actors of the autophagic pathway reinforcing the importance of the process in ALS 

pathology. They will take on a significant role in this thesis as we will investigate new 

interactions between autophagy and TDP-43.  

 

p62/SQSTM1: 

sequestosome 1, or SQSTM1, encodes for p62 which mutations are estimated to cause 

approximately 1% of ALS cases (Fecto, Yan, S. P. Vemula, et al., 2011; Renton, Chiò and 

Traynor, 2014) and about 2% of FTD cases (Le Ber et al., 2013). As previously mentioned in 

section III.A.2) “The stages of autophagy”, it is one of the most characterized autophagy 



 102 

receptor and is highly expressed in spinal motor neurons (Arai et al., 2003). Indeed, its 

structure allows it to act as an important molecular adaptor during cargo selection and 

engulfment into the autophagosome. Its C-terminal UBA domain enables binding to 

ubiquitylated substrates while its LIR domain binds ATG8 family proteins such as LC3 

(Johansen and Lamark, 2011) (Fig i 22). As compared to similar autophagy receptor, 

p62/SQSTM1 can oligomerize as it also contains a PB1 domain (Protein Binding 1) at the N-

terminal part that is essential for its autophagic function (Gal et al., 2007) (Fig i 22). In addition, 

this domain can allow binding to other autophagy receptors OPTN and NBR1 (Johansen and 

Lamark, 2011; Liu et al., 2014). p62/SQSTM1 was reported to have a regulating effect on 

mTORC1’s nutrient-sensing pathway that feeds autophagy. The autophagy receptor can bind 

RAPTOR, key subunit of mTORC1, and mediates activation of downstream S6K1 and 4EBP1. In 

addition, by binding to specific lysosomal Rags, p62/SQSTM1 permits translocation of mTORC1 

to the lysosome and interaction with the Rags, a key process for mTOR signaling in autophagy 

(Duran et al., 2011). Apart from its determinant role in autophagy, the multifunctional 

p62/SQSTM1 is implicated in UPS-degradation notably through activation of Nrf2; and 

inflammation-related NF-kB pathway through its TRAFI-binding sequence (TBS) and KIR 

domain (Keap1 interacting region) (Komatsu, Kageyama and Ichimura, 2012a; Rea et al., 2013; 

Bitto et al., 2014) (Fig i 22), all of which are also investigated in ALS pathology and logically 

ties p62/SQSTM1 to other pathological mechanisms. The protein is linked to Paget’s disease 

of bone (mutations in p62/SQSTM1 being the most commonly identified genetic cause), 

several age-related diseases and notably cancer (Moscat and Diaz-Meco, 2012; Rea et al., 

2013, 2014; Bitto et al., 2014; Moscat, Karin and Diaz-Meco, 2016). 
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Figure i 22: The structure of p62/SQSTM1; modified from Rea et al, 2014. 

 ALS-related mutations can be found relatively anywhere on the protein but seem to 

concentrate on key domains, UBA, LIR, TBS and p62/SQSTM1 promoting region and if several 

are truncating mutations, most of them are missense mutations (Fecto, Yan, S. P. Vemula, et 

al., 2011; Rubino et al., 2012; Hirano et al., 2013; Kwok, Morris and de Belleroche, 2013; Le 

Ber et al., 2013; Shimizu et al., 2013; Teyssou et al., 2013; van der Zee et al., 2014; Y. Chen et 

al., 2014). Mutations in these respective domains logically impairs ubiquitin binding, substrate 

delivery, autophagosome formation (through inhibition of TRAF1) and p62/SQSTM1 

expression (Pankiv et al., 2007; Ichimura et al., 2008; Rea et al., 2013). The promoting region 

of p62/SQSTM1 was reported to be prone to oxidative damage that lead to reduced 

expression in several neuropathological disorders (Du, Wooten and Wooten, 2009). 

 As mentioned in I.2.e) Histopathology and consistently with p62/SQSTM1’s role in 

targeting substrates to degradation and specifically protein inclusions (Wooten et al., 2006) , 

p62/SQSTM1 is found in neuronal and glial inclusions in ALS patients, carrying p62/SQSTM1 

mutations or not, notably in typical TDP-43-positive inclusions but also in unique TDP-negative 

inclusions in C9orf72-related ALS cases (Arai et al., 2006; Mizuno et al., 2006; Hiji et al., 2008; 

Al-Sarraj et al., 2011; Troakes et al., 2012; Mackenzie, Frick and Neumann, 2014). Inclusions 

enriched in p62/SQSTM1 are found in other inclusion-related pathologies such as in some 

cases of Parkinson’s and Alzheimer’s diseases thus strengthening p62/SQSTM1 implication in 

neurodegenerative mechanisms (Kuusisto, Salminen and Alafuzoff, 2002; Zatloukal et al., 

2002). 
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 p62/SQSTM1 also holds a noteworthy relationship with SOD1 in the context of ALS and 

may contribute to mutant SOD1-related pathology. The autophagy receptor interacts with 

mutant SOD1 in inclusions through its UBA but also in a direct manner. A precise domain of 

p62/SQSTM1 was reported to bind mutant SOD1 and target it to LC3 and for degradation in a 

ubiquitin-independent manner: the SMIR or SOD1 mutant interacting region (Gal et al., 2009).  

SOD1G93A is linked to higher expression and accumulation of p62/SQSTM1 in model systems, 

contrarily to wildtype SOD1 (Gal et al., 2007). Loss of p62/SQSTM1 lead to shorter lifespan of 

SOD1G93A and SOD1H46R mice and was accompanied with aggravated ALS-related symptoms. A 

mechanism that seem to involve other autophagy and ALS-related protein Alsin 2 (Hadano et 

al., 2016). The intricacies of p62/SQSTM1 with TDP-43 will be discussed in section IV.2 

“TARDBP and autophagy” and further investigated in this thesis. 

Optineurin: 

The autophagic receptor OPTN participates in several cellular processes such as NF-kB 

activation, antibacterial host defense, vesicle trafficking, Golgi function and traffic or secretory 

pathway (Kachaner et al., 2012). It is also a well characterized autophagy receptor (Wild et al., 

2011) that possesses both UBA and LIR domains (Majcher et al., 2015; Slowicka, Vereecke and 

van Loo, 2016) (Fig i 23). As previously mentioned in section III.A.3) “Mitophagy”, OPTN plays 

a key role in mitophagy. Among the other autophagy receptors that were found involved, only 

OPTN was described to be sufficient to trigger mitophagy and promoted autophagosome 

formation around mitochondria via its LIR domain (Wong and Holzbaur, 2014, 2015; Lazarou 

et al., 2015). OPTN’s function in mitophagy is intimately linked to TBK1 phosphorylation of 

OPTN and formation of a TBK1-OPTN complex at the mitochondria (Heo et al., 2015; Moore 

and Erika L. F. Holzbaur, 2016; Moore and Erika L.F. Holzbaur, 2016). TBK1 phosphorylation of 
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OPTN enhances its interaction with LC3 hereby promoting substrate clearance by selective 

autophagy (Wild et al., 2011). Moreover, this TBK1-OPTN axis seem to play a role in another 

pathogenesis mechanism investigated in ALS, inflammation (Mankouri et al., 2010; Gleason et 

al., 2011; Weil, Laplantine and Génin, 2016). The LIR domain of OPTN may also play a role in 

this pathway as a deleterious artificial mutation of this region altered OPTN’s inhibition of NF-

kB-mediated transcriptional activity (Maruyama et al., 2010). Of note, OPTN may be one of 

the key actors in NF-kB-mediated regulation of autophagy, relevant to ALS, Paget’s disease of 

bone and cancer (Levine, Mizushima and Virgin, 2011; Trocoli and Djavaheri-Mergny, 2011; 

Rea et al., 2014). OPTN involvement in autophagy also involves its interaction with 

p62/SQSTM1. Attachment of polyubiquitin chains to OPTN was reported to promote binding 

to p62/SQSTM1 and cargo recruitment to the autophagosome (Liu et al., 2014). Similarly to 

p62, OPTN can target substrates for autophagy in a ubiquitin-independent manner as direct 

binding to mutant SOD1 was described (Wild et al., 2011; Korac et al., 2013).  

 

 

Figure i 23: The structure of OPTN; modified from F. Li et al, 2018. 

OPTN was found in TDP-43-positive inclusions in some cases of sALS and in some 

mutant SOD1 patients (Maruyama et al., 2010; Ling, Polymenidou and Cleveland, 2013). 
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Studies conducted on ALS patient cohorts indicate that 3% of fALS and around 1% of sALS are 

linked to OPTN mutations (Ling, Polymenidou and Cleveland, 2013) of various type but mostly 

target the UBA region (Maruyama et al., 2010; Weishaupt et al., 2013). Even if the exact 

pathogenesis is still unknown, these mutations may lead to a loss-of-function mechanism as 

they are linked to loss of ubiquitin-binding activity and seem to occur in a heterozygous 

manner indicating pathological haploinsufficiency (Slowicka, Vereecke and van Loo, 2016). In 

zebrafish, a morpholino-mediated knockdown of OPTN orthologue resulted in a motor 

axonopathy phenotype comparable with expression of mutant SOD1 (Korac et al., 2013).  

 

TANK-binding kinase 1: 

The TBK1 protein is composed of four key domains: a Ser/Thr kinase domain at the N-

terminal (KD), a ubiquitin-like domain (ULB) and two different coiled-coil domains CCD1 

(notably allowing dimerization and binding to other proteins) and CCD2 (also called ABM for 

adaptor-binding motif) (Oakes et al, 2017) (Fig i 24).  

 

Figure i 24: The structure of TBK1; modified from Oakes et al, 2017. 

It is a multifunctional protein and is involved in innate immunity, inflammation, nucleic 

acid sensing and autophagy (Pedros et al., 2016; Zhang et al., 2017). In order to be active, TBK1 

needs to be recruited by adaptor proteins through CCD2-binding at discreet locations or in 

complexes and be phosphorylated by itself through dimerization (Hou et al., 2011) or by other 
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kinases (Clark et al., 2011). Autophosphorylation is required for proper TBK1 function and 

allows rapid activation of locally recruited TBK1 pools. But it is nonetheless structurally 

partially inhibited by TBK1’s other domains to avoid aberrant and unwanted phosphorylation 

(G. Xu et al., 2011; Ma et al., 2012). Concerning its role in autophagy, TBK1 phosphorylates 

autophagy receptors NDP52, OPTN and p62 resulting in promotion of autophagic clearance 

by enhancing their ability to link LC3-II and ubiquitylated substrates (Wild et al., 2011; Pilli et 

al., 2012; Heo et al., 2015; Lazarou et al., 2015). In the case of mitophagy, as mentioned 

earlier, TBK1 is recruited at damaged mitochondria to phosphorylate OPTN and promote 

mitophagy by enhancing OPTN to bind ubiquitin. Interestingly, attachment of polyubiquitin 

chains on OPTN promotes the recruitment and retention of TBK1 at mitochondria which 

reflects a feed-forward amplification loop between TBK1 and OPTN promoting mitophagy 

(Heo et al., 2015; Richter, Danielle A Sliter, et al., 2016).  

TBK1 was reported to colocalize with its upstream regulator Rab8b and with LC3 on 

autophagosomes. This mechanism was proposed to explain TBK1’s role in autophagosome 

maturation as depletion of TBK1 altered the process in cells (Pilli et al., 2012). The fact that 

TBK1 regulates dynein levels in cytoplasm and that phosphorylation of microtubule-binding 

protein CEP170 by TBK1 is required for proper microtubule activity, also implicates the kinase 

in autophagosome maturation, retrograde transport and fusion with lysosome along the 

microtubule network (Kimura, Noda and Yoshimori, 2008; Pillai et al., 2015). Also related to 

autophagy, TBK1 activates SMCR8 allowing it to bind to C9orf72 which modulate mTOR and 

ULK1 activity in initiation of autophagy (Sellier et al., 2016) as evoked earlier in C9orf72 

overview in section III.B.2) “Autophagy defects in ALS”. TBK1 seem to share another, more 

direct link to mTOR as several studies report that TBK1 can directly bind and phosphorylate 
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mTOR and modulate mTORC1 activity (J. K. Kim et al., 2013; Hasan et al., 2017; Bodur et al., 

2018). However, these studies reported antagonist effects on mTORC1 signaling hence 

exposing a potential context-specific modulation of mTORC1 by TBK1 where environmental 

clues and localization of the TBK1-mTORC1 complex are believed to be crucial. In a cancerous 

context, TBK1 was reported to be able to physically bind and affect activity of mTORC1 

regulatory elements such as RAPTOR, S6K and RagD which indicated direct role of TBK1 in 

mTOR signaling, localization and nutrient-sensing (Vaden et al., 2017).  

TBK1 mutations have been revealed in ALS-FTD patients. They are estimated to 

account for 4% of fALS, a very small portion of sALS (less than 0,1%) and around 1% of FTD 

cases (Cirulli et al., 2015; Freischmidt et al., 2015; Gijselinck et al., 2015). TBK1-ALS patients 

were reported to display classical TDP-43-positive inclusions and occasional colocalization 

with p62/SQSTM1 in these ubiquitin-positive inclusions in brain,  motor neurons or glia 

(Freischmidt et al., 2015; Pottier et al., 2015; Van Mossevelde et al., 2015). Once again, the 

presence of pathological ubiquitylated protein aggregates together with p62/SQSTM1 

indicate TBK1 mutations may lead to ALS through impairments of the autophagic process. The 

reported mutations seem to indicate a loss-of-function mechanism for TBK1-mediated 

pathogenesis in ALS. Indeed, pathogenicity of Ser/Thr kinase domain mutations seem to be 

the result of haploinsufficiency (Le Ber et al., 2013). Furthermore, another type of mutation 

that resulted in the truncation of the CCD2 of TBK1 lead to its inability to bind OPTN in vitro, 

which may be sufficient to cause ALS-FTD (Freischmidt et al., 2015). However, the complex 

range of action of TBK1 and the relative importance of each of its domains is still unclear 

(Helgason, Phung and Dueber, 2013; Oakes, Davies and Collins, 2017). The data is missing to 

understand the precise mechanisms that link TBK1 loss-of-function to the development of ALS.  
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Both genetic and functional evidence have put the stress on autophagy and its defects 

in ALS research. Interestingly there appears to be a mechanistic convergence between 

autophagy and RNA metabolism which presents particular relevance for the disease. 

 

 

IV) ALS: at a crossroad between autophagy and RNA 

metabolism 
 

 

 

A) The links between autophagy and RNA metabolism 
 

 

Genetic and histopathological evidence indicate that altered RNA metabolism and 

autophagy seem to be converging mechanisms in ALS (Ling, Polymenidou and Cleveland, 2013; 

Mandrioli et al., 2019a). Indeed, as evoked in the previous sections, most of the identified 

genes in patients encode for proteins that are implicated in protein degradation systems such 

as autophagy or RNA-metabolism (Chia, Chiò and Traynor, 2018). Ubiquitin-positive inclusions 

containing aggregated and misfolded mutant or wild-type TDP-43, FUS (2 proteins widely 

involved in RNA metabolism) or SOD1 (that is also linked to RNA-metabolism defects when 

mutated) are the hallmark of ALS and a clear indicator of protein quality control failure (Klaips, 

Jayaraj and Hartl, 2018). Of note these inclusions can also be positive for proteins involved in 

protein clearance and autophagy (UBQLN2, VCP, p62, OPTN, CHMP2B, LC3…) (Ling, 
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Polymenidou and Cleveland, 2013). Moreover, C9orf72 is deeply involved in the autophagic 

process and its repeat expansion mutation, which is the major known genetic cause of ALS, is 

linked to RNA metabolism defects as described previously (see section II.C.2) “RNA 

metabolism defects in ALS”).  

The two processes also converge at a crossroad homeostatic mechanism that is SG 

formation (Li et al., 2013; Monahan, Shewmaker and Pandey, 2016). As previously mentioned, 

SG are membrane-less granules that form in the cytoplasm upon stress conditions via liquid-

liquid phase separation and that are primarily composed of RNA-binding proteins and RNAs 

which translation is therefore postponed (Anderson and Kedersha, 2009). Numerous SG 

components are RNA-binding proteins such as TDP-43 (Colombrita et al., 2009; Liu-Yesucevitz 

et al., 2010; Bentmann et al., 2012), FUS (Sama et al., 2013), ANG (Emara et al., 2010; 

Thiyagarajan et al., 2012), ATXN2 (Nihei, Ito and Suzuki, 2012), EWS, TAF15 (Andersson et al., 

2008; Blechingberg et al., 2012) or TIA-1 (Kedersha et al., 1999) that were found mutated in 

ALS patients (Chia, Chiò and Traynor, 2018). The dynamic of assembly and disassembly of SG 

is a key homeostatic cellular mechanism and SG that have incorporated RNA-binding proteins 

with disease-associated mutations have been reported to display slower disassembly kinetics 

and solid-like properties (Liu-Yesucevitz et al., 2010; Molliex et al., 2015; Patel et al., 2015; 

Taylor, Brown and Cleveland, 2016; Mackenzie et al., 2017). In vitro, such aberrant SG were 

observed to mature into ubiquitin-positive aggregates that contained phosphorylated TDP-43, 

p62/SQSTM1 or VCP giving rise to the hypothesis that ALS-hallmark protein inclusions may 

derive from aberrant SG (Neumann et al., 2009; Zhang et al., 2019). Furthermore, several 

autophagy-related ALS genes have been implicated in SG dynamics. More particularly, VCP 

has been implicated in SG disassembly, a process mediated via its upstream phosphorylation 
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by ULK1 (Wang et al., 2019), but also in targeting aberrant SG to selective autophagy together 

with p62/SQSTM1 and C9orf72 (Buchan et al., 2013; Chitiprolu et al., 2018; Turakhiya et al., 

2018). Mutations in these genes have been reported to alter SG dynamics and potentially lead 

to their insolubility (Buchan et al., 2013; Seguin et al., 2014; Maharjan et al., 2017; Chew et 

al., 2019). Interestingly, SG have been shown to sequester mTORC1, master regulator of 

numerous cellular processes including autophagy, presumably to inhibit unnecessary 

induction of cell growth and prevent cell death during stress induction (Thedieck et al., 2013; 

Wippich et al., 2013). 

 

B) TARDBP and autophagy 
 

(1) Regulation of TDP-43 by autophagy 

Autophagy related p62/SQSTM1, OPTN, VCP and LC3 colocalize with TDP-43 

aggregates (Mizuno et al., 2006; Hiji et al., 2008; Ling, Polymenidou and Cleveland, 2013). 

Furthermore, ALS-related mutations in autophagy genes (such as VCP (J.-S. Ju et al., 2009), 

UBQLN2 (Deng et al. 2011) or p62/SQSTM1 (Tanji et al., 2012) among others) result in 

defective autophagy and general TDP-43 proteinopathy and aggregation. This suggest that 

autophagy is involved in degradation of TDP-43 pathological inclusions which is coherent with 

autophagy’s role in the clearance process of protein aggregates called aggrephagy (Hyttinen 

et al., 2014; Scotter et al., 2014). More importantly, autophagy seems implicated in global 

turnover of both wild-type and mutant TDP-43 (Barmada et al., 2014) and its induction, 

whether genetically (Gitcho et al., 2009; J. S. Ju et al., 2009; Ritson et al., 2010; Brady et al., 

2011) or pharmacologically (I.-F. Wang et al., 2012; Barmada et al., 2014; Cheng, Lin and Shen, 

2015; Crippa et al., 2016), ameliorates TDP-43 aggregation and related toxicity. Autophagy 
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activation also seems to ameliorate clearance and toxicity of the truncated forms of TDP-43 

(I.-F. Wang et al., 2012; Zhou et al., 2018). More globally, the UPS system and autophagy, 

which share common key molecular components such as p62/SQSTM1, OPTN, TBK1, UBQLN2 

or VCP (Tanaka, 2013) as well as an implication in ALS (Mandrioli et al., 2019b), seem to work 

collectively for the turnover of normal and pathological TDP-43 (Urushitani et al., 2010; Wang 

et al., 2010; Huang et al., 2014; Scotter et al., 2014). Thus, TDP-43 levels are regulated by these 

degradative pathways and keep in check the toxic effects of its altered levels (Ayala et al., 

2011; Avendaño-Vázquez et al., 2012). Autophagy’s control over TDP-43 levels may also be 

mediated by heat-shock proteins (Crippa, Carra, et al., 2010; Crippa, Sau, et al., 2010; Jinwal 

et al., 2012; Crippa et al., 2016). 

(2) Regulation of autophagy by TDP-43 

If autophagy is implicated in TDP-43 turnover and clearance of its pathological forms, 

TDP-43 appear in return to regulate autophagy (Budini et al., 2017) (Fig i 25). Indeed, TDP-43 

has been described to bind to ATG7 mRNA (Bose et al. 2011). As a reminder, ATG7 is essential 

for integration of the two ubiquitin-like conjugation systems (ATG12-ATG5-ATG16L1 and 

LC3/ATG8 family systems) into autophagosome membrane (Tanida et al., 2004; Katahira et 

al., 2007; Itakura and Mizushima, 2010; Hamasaki et al., 2013; Walczak and Martens, 2013) 

(Fig i 25). Oligonucleotide-mediated knockdown of TDP-43 in cells resulted in a diminution of 

atg7 mRNA and of its protein. The study reported that it lead to reduced levels of LC3-II but in 

an accumulation of p62/SQSTM1 and autophagosomes and concluded that autophagy thus 

appeared stimulated, in both control and pharmacologically-inhibited autophagy conditions 

(Bose et al. 2011). The RNA-binding protein also binds raptor mRNA, encoding for key mTORC1 

subunit RAPTOR, as a similar depletion of TDP-43 in vitro caused reduced stability and level of 
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raptor mRNA and decrease levels of its protein (Xia et al., 2016) (Fig i 25). This was associated 

with inhibited mTORC1 activity and accumulation of LC3-II, p62/SQSTM1 and 

autophagosomes. This increase in autophagy-related proteins upon depletion of TDP-43 could 

be explained by inhibition of mTORC1 activity, translocation of transcription factor TFEB to the 

nucleus and corresponding increased expression of autophagy and lysosomal biogenesis 

genes (Xia et al., 2016). This study however concluded that autophagosome accumulation 

reflected failure of autophagy to go through completion. This might be explained by failure of 

autophagosome-lysosome fusion. Indeed, TDP-43 is able to bind dynactin1 mRNA and its 

depletion caused reduced stability of the mRNA and thus potentially disrupt autophagosome 

trafficking and maturation (Xia et al., 2016) (Fig i 25).  

In addition, in a similar in vitro oligonucleotide-mediated knockdown model, TDP-43 

loss-of-function was reported to cause abnormal p62/SQSTM1 accumulation through 

aberrant splicing of an ATG4b cryptic exon in both control and nutrient-deprived cells (Torres 

et al., 2018). Interestingly, this cryptic exon was found augmented in ALS patient CNS tissues. 

Of note, direct binding of TDP-43 to atg4b mRNA could not be proved (Torres et al., 2018). 

Interestingly, TDP-43 was reported to bind optn and vcp mRNAs in a large scale CLIP-seq based 

approach but no mechanistic conclusions was made from this analysis (Polymenidou et al., 

2011).   
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Figure i 25: Schematics of the modulation of autophagy by TDP-43; modified from Budini et 

al, 2017. 
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Overall, several cellular models tend to show that loss of TDP-43 function caused an 

accumulation of p62. However, as mentioned in section III.A.4) “Measuring autophagy”, 

conclusions on the end impact on autophagic flux is challenging and repression of autophagy-

promoting ATG7, ATG4b and DCTN1 appears contradictory with RAPTOR-dependent 

inhibition of mTORC1 activity. Despite the unveiling of mechanistic interplays between ALS 

genes, one could argue that such in vitro models may not be relevant for conclusive 

understanding of TDP-43’s impact on autophagy, particularly in an ALS-relevant context. 

Indeed, there is limited evidence of TDP-43’s regulatory impact on autophagy in vivo.  

However, these in vitro observations potentially depict a model of feed-forward loop 

mechanism aggravating TDP-43 pathology. Through key interactions, TDP-43 is required for 

the autophagic process which, in turn, is responsible for TDP-43 turnover (Budini et al., 2017). 

In a pathological context, TDP-43 cytoplasmic aggregation is thought to lead to TDP-43 nuclear 

depletion and loss-of-function (Budini et al., 2015; De Conti et al., 2015), which alters 

autophagy function thus aggravating TDP-43 proteinopathy and related toxicity. 

 

C) Hypothesis and objectives of this thesis 
 

 

TDP-43 proteinopathy remains an almost universal constant in ALS, a disease that 

displays great heterogeneity among patients and complexity in the potential pathological 

mechanisms reported in models. This contrast highlights the importance of deciphering TDP-

43 normal and pathological function in the hope of understanding the complex profile of ALS. 

More particularly, unveiling new roles for TDP-43 in autophagy would strengthen the link 

between two major defective process in the disease and key homeostatic mechanisms, RNA 
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metabolism and proteinostasis. This thesis was aimed to further elucidate TDP-43’s 

implication in the autophagic process through modulation of TDP-43 protein levels. 

Overexpression of TDP-43 will be performed to attempt reproducing some aspects of the 

proteinopathy and establish their effect on autophagy. However, modeling TDP-43 loss-of-

function via knockdown will be our primary approach. Although not reproducing TDP-43 

related pathological traits, this method allows to unveil potential disease modifiers, genetic 

interplays (Kabashi, Bercier, et al., 2011) and identify new partners of action strengthening 

our understanding of TDP-43-mediated neurodegeneration. Furthermore, we hypothesize 

that TDP-43 may interact with key autophagy actors that were identified as genetic causes of 

ALS. This strategy will rely on the complementarity of our two models: the zebrafish, a 

vertebrate animal model that will help us unveil functional interplays; and SH-SY5Y cells, a 

simple human cellular model that will allow better characterization of the underlying 

biomolecular mechanisms. Because TDP-43 may interact with these novel partners via its 

RNA-binding function, potentially affecting the stability and dynamic of certain transcripts, we 

simultaneously started the development of techniques to visualize and track target RNAs in 

time through live-imaging. 
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I) An epistatic interaction between tardbp and tbk1 in the 

zebrafish 
 

 

A) Introduction 
 

 

As previously discussed, emulating loss-of-function of TDP-43 via knockdown 

permitted identification of several of its RNA partners of interaction that are involved in 

autophagy. However, impact of binding to the two ALS-related Optn and Vcp has not been 

established on a mechanistical level (Polymenidou et al., 2011) and interactions with Raptor 

(Xia et al., 2016) and Atg7 (Bose et al. 2011) were shown to lead to altered expression of 

several autophagy genes, and more specifically accumulation of autophagy receptor 

p62/SQSTM1, upon depletion of TDP-43 but also lead to contradictory conclusions on its 

overall impact on autophagy. Furthermore, the link between TDP-43 and TBK1, activator of 

both p62/SQSTM1 and OPTN (Wild et al., 2011; Komatsu, Kageyama and Ichimura, 2012b; Pilli 

et al., 2012; Matsumoto et al., 2015; Richter, Danielle A Sliter, et al., 2016), partner of 

interaction of RAPTOR (Vaden et al., 2017), modulator of mTORC1 activity (J. K. Kim et al., 

2013; Hasan et al., 2017; Bodur et al., 2018) and recently associated with ALS/FTD (Cirulli et 

al., 2015; Freischmidt et al., 2015; Gijselinck et al., 2015), has not been investigated. 

The Kabashi lab has already shown the relevance of the zebrafish model and the use 

of morpholinos to study autophagy and its implication in ALS (Ciura et al., 2013; Lattante et 

al., 2015). Moreover, preliminary data that was obtained by our team indicate an epistatic 

interaction between TDP-43 and p62/SQSTM1. As previously described, AMO-mediated 

knockdown of p62/SQSTM1 leads to a locomotor deficit in zebrafish embryos (Lattante et al., 
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2015) that can be ameliorated by co-injecting human wild-type TARDBP RNA. Interestingly, 

mutant G348C TARDBP RNA failed to rescue this phenotype (Fig i 26). 

 

Figure i 26: sqstm1-AMO leads to motor deficits in zebrafish embryo that are ameliorated by 

human wild type TARDBP RNA. 

 

In this study I used a zebrafish embryo model of morpholino-induced knockdown of 

TDP-43 that has already been well-established in our lab and efficiently leads to motor deficits 

(Kabashi et al., 2009). We hypothesized that knockdown of tardbp in our zebrafish model 

would allow identification of altered expression of autophagy genes, with a particular interest 

for p62/SQSTM1 and TBK1, and unveil novel interplays that would reinforce our knowledge of 

TDP-43’s interaction with the autophagic process. 

 
 

B) Transient knockdown of tardbp leads to decreased tbk1 protein and 

RNA levels 
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Transient knockdown of tardbp was induced via injection of tardbp-AMO and fish 

displayed a locomotor deficit at 50hpf as previously established. Upon observation of this 

reproducible phenotype, embryos were collected to extract both proteins and RNAs in order 

to observe any quantifiable differences among expression of  autophagy genes (Fig 1). tardbp-

AMO fish display significantly reduced levels of p62/Sqstm1 and of its upstream activating 

kinase, Tbk1, as seen on immunoblotting (Fig 1 A) and resulting band quantification (Fig 1 B) 

as compared to control mismatch-injected fish. Indeed, p62/Sqstm1 levels are approximately 

depleted by half and only 35% of control Tbk1 levels remain in tardbp-AMO fish. At the RNA 

level, RT-qPCR analysis revealed a significant decrease in tbk1 mRNAs (about 65% of mismatch 

levels). On the other hand, p62/sqstm1 mRNA levels tend to be augmented (127% of mismatch 

levels) but not in a significant manner. However, optn, coding for another autophagy receptor 

and substrate of Tbk1, is greatly up-regulated upon depletion of TDP-43 as its RNA levels were 

doubled as compared to control fish (Fig 1 C). We next quantified transcripts that code for 

proteins involved in autophagy initiation. No significant differences were caused by 

knockdown of tardbp. This includes transcripts that were reported to be negatively affected 

by TDP-43 depletion atg7 and atg4b (Fig 1 D). Hence, these first results are in contradiction 

with what was reported in cellular models (Bose, Huang and Shen, 2011; Xia et al., 2016; 

Torres et al., 2018) and highlight a decrease in both protein and RNA levels of tbk1. 
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Figure 1: KD of tardbp disrupts expression of autophagy genes in zebrafish. (A) 

Immunoblotting and (B) its relative quantification showing that 50hpf tardbp AMO-injected 

fish embryos (in blue) have decreased protein levels of p62/sqstm1 and tbk1 as compared to 

control miscmatch-injected fish (in grey). n=6 samples of 10-30 embryos each for both 

mismatch and tardbp-AMO. At the RNA level, (C) RT-qPCR results show tardbp AMO fish 

display a downregulation of tbk1 and upregulated optn expression while (D) expression profile 

of genes involved in the initial steps of autophagy remains unchanged. n=12 samples of 10-30 

embryos for each mismatch and tardbp-AMO. All results are mean ± SEM. *P<0,05, **P<0,01, 

***P<0,001 from Mann-Whitney’s test. 
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C) Human TBK1 RNA ameliorates tardbp-AMO-induced motor phenotype 
 

 

As a response to these lowered tbk1 RNA levels, human TBK1 RNA was synthesized in-

vitro and coinjected with tardbp-AMO at the one-cell stage in zebrafish embryos of the wild-

type AB and TL strains. At 50hpf, the motor phenotype of injected fish was assessed by 

recording and analysis of their touch-evoked escape response trajectory pattern. “tardbp-

AMO + TBK1 RNA” fish present swim trajectories that are greatly ameliorated and appear 

similar to all control conditions (“non injected”, “mismatch” and “mismatch + TBK1 RNA”) as 

compared to sole injection of tardbp-AMO (Fig 2 A). This amelioration of tardbp-AMO-induced 

motor phenotype by human TBK1 RNA is confirmed in terms of mean distance made by the 

fish: there is no significant difference between “tardbp-AMO + TBK1 RNA” and control groups, 

unlike with “tardbp-AMO” (Fig 2 B). Of note, “tardbp-AMO + TBK1 RNA” fish swim for an 

equivalent amount of time as control groups and significantly more than “tardbp-AMO” (Fig 2 

C) but do not display a sensible amelioration of their speed (Fig 2 D). In other words, human 

TBK1 RNA ameliorates tardbp-AMO-induced motor phenotype as seen in this partial rescue of 

their touch-evoked escape response swimming behavior. 
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Figure 2: tardbp KD leads to altered motor phenotype that is partially rescued by human 

TBK1 mRNA. (A) Graphic representation of injected 50hpf embryos escape trajectories in 

response to gentle touch of their tail (TEER test) and quantification of (B) distance, (C) time 

and (D) velocity parameters showing that co-expression of human TBK1 RNAs significantly 

ameliorates the locomotor defects caused by tardbp KD. n=16 for non injected, 20 for 

mismatch, 30 for mismatch + TBK1 RNA, 32 for tardbp-AMO and 29 for tardbp-AMO + TBK1 

RNA fish. All results are mean ± SEM. *P<0,05, **P<0,01, ***P<0,001, #P<0,0001 from 

Kruskall-Wallis test followed by Dunn’s posthoc analysis. 
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D) Human TBK1 RNA ameliorates tardbp-AMO-induced motor neuron 

axonopathy 
 

 

I next wanted to see if this partial rescue of tardbp-AMO-induced motor phenotype by 

TBK1 RNA was accompanied by an amelioration of its altered motor neuron morphology, 

which has been established by our lab. For this purpose, the transparency of zebrafish 

embryos was put at use and the same injections were performed in eggs from the Hb9:GFP 

transgenic line (for Homeobox gene Hb9) which selectively expresses a membrane-adressed 

fluorescent protein GFP in motor neurons allowing their imaging in live animals. As expected, 

“tardbp-AMO” fish display abnormal motoneuron morphology with aberrant branching and 

visible shortened axonal length in comparison with all control groups and “tardbp-AMO + 

TBK1 RNA” fish, as seen in Caudal primary motor neurons in the presented confocal images 

(Fig 3 A). Quantification of the MN axonal length/spinal cord thickness ratio confirms that 

TBK1 RNA significantly lead to a recuperation of axonal length to a level that is comparable 

with control groups (Fig 3 B). The fact that all groups present akin spinal cord thickness (Fig 3 

C) indicate that there is minor neuronal developmental delay in these conditions.  



 125 

 

Figure 3: tardbp KD leads to axonopathy that is rescued by human TBK1 mRNA. (A) Images 

of motor neuron (MN) projections of injected 50hpf embryos of the transgenic Hb9:GFP line 

and resulting (B) quantification of MN axonal length/spinal cord thickness ratio, showing that 

co-injection of human TBK1 RNA ameliorates MN morphology alterations obtained through 

tardbp KD (n=24 neurons or 4 caudal primary neurons per fish on a total of 6 fish per 

condition).  Of note, (C) quantification of spinal cord thickness indicate that MN axonal length 

of injected fish can be compared. All results are mean ± SEM. *P<0,05, **P<0,01, ***P<0,001, 

#P<0,0001 from one-way ANOVA followed by Tukey’s posthoc analysis. 
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E) Discussion 
 

 

Overall, these data are the first evidence of a functional interplay between the two 

ALS-related genes TARDBP and TBK1. First, knockdown of tardbp in our zebrafish model leads 

to a decrease of both protein and RNA levels of tbk1. Yet, it is widely accepted that TBK1 

pathology is based on a loss-of-function mechanism. Indeed, it was shown that sole 

haploinsufficiency of TBK1 was sufficient to cause ALS which adds relevance to these findings. 

The other important information suggested by these results is that the effect of tardbp-

knockdown appears to be, at least partly, mediated by tbk1 in our model as TBK1 mRNA 

partially rescues both the motor phenotype and axonopathy of tardbp-AMO fish. Even if 

morphological defects are clearly visible, the study could benefit from further qunatification 

of the observed axonopathy and its amelioration, notably an analysis of axonal branching. The 

fact that human TBK1 RNA was used strengthens a potential translation of this observed 

interplay to other models. However, the details of this interaction remain unknown. The 

decrease in tbk1 mRNA levels upon depletion of TDP-43 may indicate a potential effect of the 

RNA-binding protein on the transcript.  

Apart from TDP-43’s interaction with TBK1, the effects obtained on other autophagy 

genes upon transient knockdown of tardbp are intriguing. Indeed, we report reduced protein 

levels of p62/SQSTM1 and no significant changes on the autophagy initiation transcripts such 

as atg7 and atg4b. These results appear in total contradiction with what has been observed 

in human cell lines (Bose, Huang and Shen, 2011; Xia et al., 2016; Torres et al., 2018). Thus, it 

brings the question of the relevance of our animal model and of these cellular models to study 

TDP-43’s normal function and implication in ALS. Of note, the fact that reduction of 
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p62/Sqstm1 was not accompanied by a decrease of its RNA levels in our model, but rather by 

a tendency for an increase, may suggests a compensatory mechanism to restore protein 

levels. It also reveals that TDP-43 loss-of-function may have a deleterious impact on tbk1 

mRNA quantity but not on sqstm1 or optn. It however doesn’t discard a perturbation on their 

dynamic, localization and translation. 

Next, as TBK1 interacts and activates both p62/SQSTM1 and OPTN, it would be 

interesting to verify if TBK1 RNA leads to restored p62/Sqstm1 protein levels in our model and 

if Optn protein levels follow the same trend in this model. Considering the importance of the 

TBK1/OPTN axis, the strong up-regulation of optn that we observe in tardbp-AMO fish appears 

worthy of further investigation. This would allow us to compare the impacts of TDP-43 

depletion on both autophagy receptor and indicate if these impacts are Tbk1-dependent or 

solely due to tardbp modulation. 

The zebrafish model has allowed the unveiling of another genetic interplay between 

TARDBP and TBK1 with functional and phenotypic insights. However, complementary studies 

on a cellular model would help us detailing this interaction on the molecular level. 

 

F) Materials and methods 
 

 

Zebrafish Maintenance: 

Adult and larval zebrafish (Danio rerio) were maintained both at the ICM (Institut du Cerveau 

et de la Moelle épinière, Paris) and Institut Imagine (Paris) fish facilities and bred according to 

the National and European Guidelines for Animal Welfare. Experiments were performed on 

wild-type and HB9:GFP transgenic lines from AB and TL strains.  
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Microinjections of oligonucleotides in zebrafish embryos: 

Microinjection of both morpholinos and human RNA sequences were performed in wild-type 

or HB9:GFP zebrafish embryos at the one-cell stage using a PV 820 Pneumatic PicoPump 

injector (World Precision Instruments, USA) and heat-pulled borosilicate glass needles. 

Antisens morpholino oligonucleotide (AMO) was synthetized by GeneTools (Philomath, USA) 

and targeted against the initial ATG of tardbp (AMO-tardbp: 5′-

GTACATCTCGGCCATCTTTCCTCAG-3′) zebrafish mRNA to realize transient knockdown of 

tardbp. A control morpholino (mismatch), containing a standard mismatch nucleotide 

sequence that do not bind anywhere in the zebrafish genome, was also used to assess the 

specific effects of AMOs on embryos. Microinjections were performed at 0.4 mM for AMO-

tardbp and at an equal concentration for control Mismatch depending. 

Human WT TBK1 RNA was synthesized from AgeI-linearised PCM6 TBK1 WT-myc&flag-tag 

plasmid (gifted by Dr. Nicolas Charlet-Berguerand) using T7 polymerase with the mMESSAGE 

Machine Kit (Ambion). WT and mutant G348C TARDBP RNAs were synthetized from NotI-

linearized pCS2 TDP-43 WT GU2 and pCS2 TDP-43G348C  GX12 plasmids using SP6 polymerase 

with the mMESSAGE Machine kit. RNAs were purified through Trizol-chloroform extraction 

(TRIzol Reagent from Sigma, USA) according to the manufacturer’s protocol and resuspended 

in Milli-Q water. WT TBK1 RNA was used at 100nM 

Final injection mixes were prepared by diluting AMOs and RNAs in injection buffer (KCl 

120Mm, Hepes 20Mm, pH 7,2 in Milli-Q water) complemented with Fast green dye (Sigma-

Aldrich, USA) at a final dilution of 0,05%. 
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Injected embryos were then raised at 28°C in an embryo medium called “blue water” (0.06 

g/L aquarium salt (Instant Ocean, Blacksburg, VA) in Milli-Q water +0.01 mg/L methylene blue) 

until 50hpf and further experiments proceed. However, the embryos were manually 

dechorionated using fine forceps at 24 hpf. 

 

Locomotion analysis of zebrafish embryos: 

At 50 hpf, motor behavior of zebrafish embryos was assessed by performing a TEER test 

(Touch-evoked escape response). Embryos were touched lightly at the level of the tail with a 

tip and there flee pattern was scored as previously described (Ciura et al., 2013; Lattante et 

al., 2015). The motor responses were recorded with a Grasshopper 2 digital camera (Point 

Grey Research) at a rate of 30 frames/s and quantified using ImageJ. Of note, only embryos 

that appear morphologically normal are selected for assessment of motor phenotype. 

 

Live-imaging of whole-mount zebrafish embryos and measurement of motor neuron axonal 

length: 

At 50 hpf, injected embryos from the HB9:GFP line that appear morphologically normal were 

anesthetized in “blue water” supplemented with Tricaine (final concentration of 0,16 mg/mL) 

and embedded in agarose (1% UltraPure LMP Agarose (Invitrogen, USA) in “blue water” 

supplemented with tricaine) laying on their flank in a glass bottomed imaging dish. Motor 

neurons of the animals were visualized using Zeiss Spinning Disk (Carl Zeiss, Germany), a CSU-

W1 head (Yokogawa, Japan), an ORCA-Flash 4.0 S-CMOS (C1144022CU) camera (Hamamatsu, 
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Japan) and through a X10 Plan Apo objective (Mitutowo, Japan). Images were taken using ZEN 

software from Zeiss and analysed using ImageJ software (Sun Microsystems, USA). 

For each fish, four caudal primary motor neurons (CaP), located between the 5th and 8th 

somites were selected in order to measure axonal length. Distance was taken from the axonal 

root to their lowest point of projection down the ventral myotome, that is before they turn 

back up around the ventral musculature. Spinal cord thickness was measured between the 

first and second selected CaP.  Six fish per condition were analysed. 

 

Immunoblotting: 

Protein extraction: Zebrafish embryos that appear morphologically normal were selected (50 

hpf, 10-30 per tube) and put on ice for the rest on the protocol in order to anesthetize the 

embryos and inhibit protein degradation. The embryos are deyolked through gentle up and 

down pipetting in a deyolking buffer (EDTA 1mM, PMSF 0.3mM in Calcium-free Ringer 

solution). Excess yolk debris are discarded by two washes in Calcium-free Ringer solution. The 

deyolked embryos were homogenized on ice through sonication (Sonics Vibracell VC505) in 

Lysis Buffer (Tris-HCl 50mM pH 7.5, NaCl 500mM, EDTA 5mM, Nonidet p-40 1%, Triton 0.5% 

supplemented with a cocktail of protease inhibitors (Complete mini, Roche, Switzerland)). A 

20 min centrifugation at 4°C and 14000 rpm was made to recover supernatant. Concentration 

of the protein extracts were established through BCA assay.  

Western blot: 30µg of protein extract per condition was mixed with 5X SDS Loading buffer 

(Bromophenol blue 0.25%, dithiothreitol 0.5M, glycerol 50%, Sodium dodecyl sulfate 10%, Tris-

Cl (pH 6.8) 0.25M in Milli-Q water) and denatured at 98°C during 7min in a dry bath. Samples 

were loaded in a 4-20% Mini-Protean TGX Gel (BioRad, USA) for electrophoresis. The 



 131 

separated proteins were transferred to a nitrocellulose membrane (0,45µm, Life Sciences) and 

probed with the following antibodies: 

- Anti-NAK/TBK1 (rabbit, ab109735) from Abcam, UK. 

- Anti-SQSTM1/p62 (rabbit, PM045) from MBL International, USA. 

- Anti-GAPDH (mouse, ab8245) from Abcam, UK. 

Blots were incubated with corresponding fluorescent secondary antibodies and detection of 

protein bands was made using ODYSSEY CLx system (LI-COR Biosciences, USA). Analysis of 

bands was carried out using ImageJ software.  

 

RNA extraction and qPCR: 

Zebrafish embryos that appear morphologically normal were selected (50 hpf, 10-30 per tube) 

and put on ice for deyolking and washing as previously described. Fish were homogeneized in 

TRIzol reagent (Sigma, USA) by rough up-and-down pipetting and TRIzol-Chloroform based 

RNA extraction was performed according to manufacturer’s instructions. Resulting pellets of 

RNA were washed in ethanol and resuspended in sterilized Milli-Q water. RNA concentrations 

were determined using Lunatic system (Unchained Labs, USA). 

First-strand cDNAs were obtained by reverse transcription of 1µg of total RNA per sample 

using High Capacity cDNA Reverse Transcription Kit (Roche, Switzerland) according to 

manufacturer’s instructions. Quantitative-PCR amplification was performed with 2X SYBR 

Green (Bymake, USA). Primers were ordered from Sigma-Aldrich (USA) SYBR Green Primers 

Library and sequences are available upon request. Data were analyzed transforming raw Cq 

values into relative quantification data using the delta Cq method. 



 132 

 

Statistical analysis:  

All data values for the zebrafish experiments are represented as average standard error of 

mean (SEM) with significance determined using bilateral Mann-Whitney’s, Kruskall-Wallis 

(followed by Dunn’s posthoc analysis) and One-way ANOVA (followed by Tukey’s posthoc 

analysis) tests. Analyses were performed using Excel (Microsoft, USA) and Prism 7.0 (Graph 

Pad, USA). Significance level was set at p<0.05. 

 

 

II) Antagonist effects of TARDBP modulation on key autophagy 

genes in SH-SY5Y cells 
 

 

 

A) Introduction 
 

 

Several models have highlighted that modulating TDP-43 levels, either via knockdown 

(Feiguin et al., 2009; Kabashi et al., 2009; Lu, Ferris and Gao, 2009; Li et al., 2010) or 

overexpression (Ash et al., 2010; Hanson et al., 2010; Li et al., 2010; Ritson et al., 2010; Wils 

et al., 2010; Igaz et al., 2011), lead to toxicity thus showing the importance of maintaining the 

protein, which is also able to self-regulate via binding of its own mRNA (Ayala et al., 2011; 

Polymenidou et al., 2011; Tollervey et al., 2011). Its ability to shuttle between nucleus and 

cytoplasm is essential to its normal function and both nuclear depletion as well as cytoplasmic 

mislocalization are characteristic traits of its proteinopathy and have been identified in toxic 

mechanisms (Lee, Lee and Trojanowski, 2012). TDP-43’s complex role in RNA metabolism and 
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translation has been reported to be adaptative to stress-induction as TDP-43 is recruited to 

SG (Colombrita et al., 2009; Liu-Yesucevitz et al., 2010; Bentmann et al., 2012) and to stalled 

ribosome within SG via its RNA-binding function upon oxidative-stress induction and 

contributes to cell survival (Higashi et al., 2013).  

Interestingly, TDP-43’s adaptability to the autophagic context is poorly known and 

more particularly its potential changes in interactome have not been explored. Our previously 

evoked tardbp-knockdown zebrafish model was successful in identifying a novel interplay with 

tbk1, yet, it presented a contradictory profile of expression among autophagy related genes 

as compared to TARDBP-KD cellular models that unveiled interaction with RAPTOR and ATG7 

mRNAs (Bose, Huang and Shen, 2011; Xia et al., 2016). We hypothesize that drug-mediated 

modulation of autophagy may help us understand the inconsistency of these data and provide 

us with a better grasp of TDP-43’s normal function and consequences of its modulation. 

In this set of experiments, I used the human neuroblastoma SH-SY5Y cell line to further 

investigate the TDP-43/TBK1 interaction but also focus on p62/SQSTM1 as results in similar 

cellular models and in our zebrafish model reveal antagonist yet significant effects on this key 

autophagy protein after knockdown of TARDBP. Overexpression of TDP-43 has also been 

performed to observe a potential effect on p62/SQSTM1.  

 

B) Knockdown of TARDBP leads to altered expression of key autophagy 

genes 
 

 

Transient knockdown of TARDBP was performed on SH-SY5Y cells via transfection of a 

specifically targeted siRNA-TARDBP. 48h after transfection, we analyzed protein and RNA 

levels of several autophagy genes and compared them to siRNA-Control cells. Immunoblotting 
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reveals that siRNA-TARDBP is efficient in reducing TDP-43 levels. Interestingly it correlates 

with bands of higher intensity for both p62/SQSTM1 and TBK1 as compared to control (Fig 4 

A). A significant depletion of TDP-43 (about 38% of control levels) and increase in p62/SQSTM1 

(141% of control levels) was observed in these cell lines. Mean levels of TBK1 are at 155% of 

control but this increase is not significant (Fig 4 B). Quantification of RNA levels reveal that 

TBK1 isn’t affected by TDP-43 depletion contrarily to what we reported in zebrafish. Transcript 

levels of autophagy receptors p62/SQSTM1 and OPTN are increased in a significant manner 

(respectively 124% and 114% of control levels) (Fig 4 C). I next assessed the effect of siRNA-

TARDBP on autophagy initiation genes. As previously reported in similar cellular models, 

quantity of RAPTOR and ATG7 transcripts is significant decreased upon TDP-43 depletion as 

well as for ULK1, BECN1 and ATG5 (Fig 4 D). Single-molecule Fluorescent in-situ hybridization 

(smFISH) was performed and confirms the upregulation of p62/SQSTM1 in siRNA-TARDBP cells 

as compared with siRNA-Control (Fig 4 E). Indeed, number of SQSTM1 mRNA puncta appear 

augmented when depleting TDP-43. siRNA-SQSTM1 treated cells served as a control of the 

technique to evaluate the semi-quantitative aspect of smFISH. However augmented, no 

apparent mislocalization of SQSTM1 mRNA is visible in siRNA-TARDBP cells (Fig 4 E). 

Altogether, the profile of expression of autophagy genes appears comparable to what has 

been described in similar models but in opposition with our previous data in zebrafish.More 

importantly, TBK1 protein and RNA levels are not negatively affected by knockdown of 

TARDBP unlike in the zebrafish model indicating mechanistic differences. 
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Figure 4: KD of TARDBP leads to altered expression of autophagy genes in SH-SY5Y cells. (A) 

Immunoblotting and (B) its relative quantification showing that siRNA-mediated knockdown 

of TARDBP (in blue) leads to increased protein levels of p62/SQSTM1 and a strong tendency 

of increase in TBK1 as compared to control siRNA (in grey). At the RNA level, (C) RT-qPCR 

results show that siRNA TARDBP transfected cells don’t display TBK1 downregulation but 

upregulated expression of autophagy receptors p62/SQSTM1 and OPTN while (D) expression 

profile of genes involved in the initial steps of autophagy are globally decreased. n=6 for each 

siRNA-Control and siRNA-TARDBP conditions. All results are mean ± SEM. *P<0,05, **P<0,01, 

***P<0,001 , #P<0,0001 from unpaired Student t test. (E) Images of smFISH labeling SQSTM1 

RNA confirming siRNA TARDBP seem to increase SQSTM1 RNA levels. 

 

 

C) Drug-induced modulation of autophagy leads to antagonist effects of 

TDP-43 depletion on p62/SQSTM1 and TBK1 
 

 

In order to understand the differences between zebrafish and cell lines, two potent 

autophagy modulating drugs have been used in addition to siRNA treatments. Bafilomycin B1 

(Baf B1) is an inhibitor of autophagosome fusion with the lysosome and degradation often 

used to help estimate autophagic flux. Torin 1 is an inhibitor of mTOR signaling and thus 

activator of autophagy induction. In Baf B1 or Torin 1 conditions, siRNA-TARDBP still shows 

significant efficiency in depleting TDP-43 as seen on immunoblotting (Fig 5 A) and its relative 

quantification (Fig 5 B). When we look at the sole effect of drugs on siRNA-Control levels, we 

can see that Baf B1 induces a great augmentation of protein levels (285% of control levels) 

that suggests accumulation of p62/SQSTM1 in undegraded autophagosomes, as expected (Fig 

5 C). As for TBK1, sole effect of drug treatment doesn’t affect protein levels in a significant 

manner (Fig 5 E). 

Concerning the effect of siRNA-TARDBP within each treatment, the increase in 

p62/SQSTM1 and TBK1 we observe in untreated cells is abolished in Torin 1 cells (Fig 5 D and 
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F). In fact, it is the only condition where band intensity appear decreased for p62/SQSTM1 and 

TBK1 (Fig 5 A) and respective mean quantification are at 90% and 81% of control levels (Fig 5 

D and F). Those decreases are however not significant. Yet, they highlight different impacts of 

TDP-43 depletion in untreated and Torin 1 cells. Hence, TDP-43 seems to act in different 

manners depending on modulation of autophagy. 
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Figure 5: Drug-induced modulation of autophagy leads to antagonist effects of TARDBP KD 

on ALS-related autophagy protein levels in SH-SY5Y cells. (A) Immunoblotting and relative 

quantifications of (B) TDP-43, that confirms knockdown, and of autophagy-related (C and D) 

p62/SQSTM1 (n=12 for each siRNA Control and siRNA-TARDBP in untreated cells and n=6 in 

Bafilomycin B1 and Torin 1-treated cells) and (E and F) TBK1 protein levels (n=6 for each siRNA-

Control and siRNA-TARDBP treatment in all drug conditions) which show different effects of 

siRNA-TARDBP in Torin 1-treated cells as compared to untreated and Bafilomycin B1 cells. All 

results are mean ± SEM. *P<0,05, **P<0,01, #P<0,0001 from two-way ANOVA followed by 

Sidak’s posthoc analysis (B), Kruskall-Wallis test followed by Dunn’s posthoc analysis (C and E) 

and Mann-Whitney’s test (D and F). 

 

 

D) siRNA-TARDBP may differentially impact autophagosome dynamics 

and correlates with a nuclear depletion of TDP-43 
 

Immunoblotting of the LC3 protein reveals its two forms LC3-I and LC3-II, that are 

respectively unintegrated and integrated into autophagosome membrane. As expected, LC3-

II is augmented after Baf B1 treatment and Torin 1 leads to reduced LC3-II as compared to 

control cells (Fig 6 A). As LC3 immunoblotting is generally difficult to interpret due to different 

affinity of the antibody against each form, we calculated a relative LC3-I/LC3-II band intensity 

ratio normalized on what is obtained for untreated siRNA-Control cells. When this ratio goes 

down, it translates a shift of balance towards LC3-II and thus accumulation of 

autophagosomes, as logically observed with Baf B1 treatment (Fig 6 B). When it goes up, it 

shows a shift towards LC3-I it indicates that fewer LC3 are integrated in autophagosome like 

in Torin 1 cells (Fig 6 B). This could either depict a reduction of autophagosome formation or 

improved degradation (autophagic flux). The ratio confirms that depleting TDP-43 could 

impact autophagosome formation in a different way depending on modulation of autophagy. 

Indeed, in control and Baf B1 treated cells, the ratios show respective mean drops of 30% and 

16% from their siRNA-Control while it is not the case with Torin 1 treatment (8% increase from 
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siRNA-Control) (Fig 6 B). This data may indicate that depletion of TDP-43 promotes 

autophagosome accumulation in control and Baf B1 cells but not in Torin 1 cells.  

We next performed immunofluorescence to visualize another marker of 

autophagosome p62/SQSTM1 as well as TDP-43 depending on the same treatments. A 

plasmid expressing GFP has been used in combination with siRNAs to identify which cells have 

been transfected. Concerning p62/SQSTM1, the accumulation of the autophagy receptor into 

puncta of higher intensity may reveal the formation of autophagosome. p62/SQSTM1 puncta 

are particularly visible in cells treated with Baf B1, a condition where accumulation of 

autophagosome is indeed highly expected (Fig 6 C). Within untreated cells, more p62/SQSTM1 

puncta can be observed upon TDP-43-depletion versus siRNA-Control. In Baf B1 and Torin 1 

cells, any conclusion concerning the effect of TDP-43 depletion on autophagosome formation 

is difficult, contrarily to untreated cells. There is variability in the number and distribution of 

puncta (Fig 6 C). In parallel, TDP-43 immunofluorescence reveals a comparable effect of 

TARDBP knockdown in both drug-treated and untreated cells. Indeed, while cytoplasmic signal 

seems rather unaffected, TDP-43 is not as strongly located in the nucleus in siRNA-TARDBP 

cells as compared to siRNA-Control. Nuclear TDP-43 seems specifically depleted and up to a 

point where TDP-43 appears homogenously localized between nucleus and cytoplasm (Fig 6 

C).  
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Figure 6: Pharmacological modulation of autophagy leads to antagonist effects of TARDBP 

KD on autophagosome markers in SH-SY5Y cells. (A) Immunoblotting of LC3-I and LC3-II, (B) 

relative quantification of LC3-I/LC3-II ratio and (C) immunofluorescence in SH-SY5Y cells 

showing siRNA-mediated TDP-43 depletion may promote autophagosome accumulation in 

control and Bafilomycin B1 conditions but not upon Torin 1 treatment. n=6 for each siRNA-

Control and siRNA-TARDBP in all control, Bafilomycin B1 and Torin 1-treated cells. All results 

are mean ± SEM. *P<0,05, **P<0,01 from Kruskall-Wallis test followed by Dunn’s posthoc 

analysis. 

 

 

E) Drug-induced modulation of autophagy leads to conditional binding of 

TDP-43 to autophagy-related transcripts. 
 

 

After observing such antagonist effects of TDP-43 depletion depending on autophagy 

modulation, we focused on Torin 1 and untreated cells and performed an 

immunoprecipitation of TDP-43. We aimed to identify any potential protein or RNA interactors 

among our autophagy genes of interest that could explain the phenomenon. As 

immunoblotting of the precipitated proteins in both control and Torin 1 cells reveal, neither 

TBK1, OPTN or p62/SQSTM1 seem to bind to TDP-43 at the protein level. The membrane does 

confirm that immunoprecipitation was efficient as TDP-43 itself is detectable (Fig 7 A). 

Regarding RNA immunoprecipitation, we confirm that the experiment was well performed as 

strong binding to positive control TARDBP RNA is obtained in all conditions (Fig 7 B). Detection 

of target transcript corresponds to a relative quantification that is superior to 1 unit, which is 

the level of detection of this particular RNA via RT-qPCR in a control immunoprecipitation with 

αIgG antibody. We report for the first time a binding of TDP-43 to the two ALS-related TBK1 

and p62/SQSTM1 mRNAs. These interactions seem to be close to inexistent in control cells but 

promoted by autophagy activation via Torin 1 treatment (Fig 7 C and D). In an opposite 
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manner, binding of TDP-43 to OPTN and RAPTOR mRNAs is logically detected in control cells, 

as it was already reported, but is completely inhibited in Torin 1 cells (Fig 7 E and F). Logically, 

the significant decrease in total RAPTOR mRNA that we reported upon depletion of TDP-43 in 

untreated cells, isn’t present when cells are treated with Torin 1. This confirms the loss of 

binding of TDP-43 to the transcript in this condition. This loss of binding does not appear to 

be caused by a rarefication of the transcript as RAPTOR levels are comparable in both siRNA-

Control untreated and Torin 1 cells (Fig 7 G). The conditional binding of TDP-43 to these key 

RNAs depending on autophagy modulation is consistent with the observed antagonist effects 

of TARDBP KD on autophagy genes and may explain these mechanistically.  
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Figure 7: Conditional binding of TDP-43 to key autophagy transcripts in response to drug-

induced autophagy modulation in SH-SY5Y cells. (A) Immunoblotting after 

immunoprecipitation of TDP-43 showing no direct interaction with p62/SQSTM1, TBK1 or 

OPTN proteins. RNA immunoprecipitation of TDP-43 confirming control binding to (B) 

TARDBP RNA and revealing that Torin 1 treatment promotes binding of TDP-43 to novel ALS-

related mRNAs (C) TBK1 and (D) SQSTM1 but inhibits binding to (E) OPTN and (F) RAPTOR 

mRNAs. n=3 for each control and Torin 1-treated cells. (E) RT-qPCR results showing Torin 1 

treatment suppresses the decrease of RAPTOR mRNA levels induced by TARDBP KD. n=6 for 

each siRNA-Control and siRNA-TARDBP in control and Torin 1-treated cells. All results are 

mean ± SEM. *P<0,05, from two-way ANOVA test followed by Tukey’s posthoc analysis. 
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F) Gradual overexpression of TARDBP leads to appearance of ALS-related 

truncation and mislocalization of TDP-43 
 

 

To further investigate the impact of TDP-43 modulation on key autophagy actor 

p62/SQSTM1, we transiently overexpressed the wild-type and untagged RNA-binding protein 

in SH-SY5Y. We used a starting concentration of 0,5µg/mL to extract proteins and perform 

western immunoblotting. The blotting membrane reveals a band of higher intensity for TDP-

43, thus indicating overexpression, but also for p62/SQSTM1 as compared to control levels 

obtained with transfection of the control vector pCS2 empty (Fig 8 A). They respectively show 

mean increase of 68% and 32% as compared to control levels. However, these results are not 

significant as great variability was observed among replicates (Fig 8 B). At this same 

concentration, smFISH targeting SQSTM1 mRNA was performed and indicate that transcript 

levels are also increased upon overexpression of TDP-43. Each individual punctum reflects the 

presence of a single SQSTM1 mRNA. They are visible in higher amounts with pCS2+ TDP-43.  

They however do not appear to be abnormally distributed in cells (Fig 8 C).  

To understand the variability observed in the previous conditions, I performed a 

gradient of overexpression of TARDBP extending going from 0,25 up to 5µg/mL. Results of 

protein quantification were normalized to mean TDP-43 and p62/SQSTM1 levels acquired in 

both minimum and maximum concentrations of pCS2 empty of each replicate. TDP-43 levels 

appear gradually augmented throughout the range of increasing pCS2+ TDP-43 concentration 

until it reaches a maximum of 151% of control levels. Nevertheless, this augmentation is not 

proportional to plasmid concentration and seem to plateau rapidly. Furthermore, the lowest 

concentration interestingly tends to display lower TDP-43 levels than mean of controls. These 
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aspects of TDP-overexpression could be explained by TDP-43 ability to self-regulate which 

would buffer our exogenous modulation of its levels. The first concentrations that display 

augmented TDP-43 levels are 0,5 and 1 µg/mL and are accompanied by a mean increase in 

p62/SQSTM1 of 20% and 18% (Fig 8 D). However, in higher concentrations of pCS2+ TDP-43, 

this dynamic of increasing p62/SQSTM1 appears reversed. It gradually diminishes until final 

plasmid concentration is reached and p62/SQSTM1 levels are diminished by 14% as compared 

to control levels (Fig 8 D). However, variability is still strong and none of these results are 

significant. 

We next tried to pinpoint events happening along this range of pCS2+ TDP-43 

concentrations that would help us understand the peculiar dynamics at play. Immunoblotting 

against the C-terminal part of TDP-43 reveals the appearance of ALS-related pathological C-

terminal fragments of TDP-43 namely TDP-35 and TDP-25 upon overexpression of the wild-

type protein. These pathological truncated forms appear as soon as 0,5 µg/mL of plasmid and 

in, what seems to be, a dose-dependent manner (Fig 8 E). We then performed an 

immunofluorescence to localize TDP-43 in certain selected concentrations of pCS2+ TDP-43. 

The protein is normally distributed and thus predominantly nuclear in control 5 µg/mL of pCS2 

empty and minimum pCS2+ TDP-43 concentration of 0,25 µg/mL. However, from 1 µg/mL to 

final 5 µg/mL of pCS2+ TDP-43, TDP-43 is gradually and massively mislocalized into the 

cytoplasm of SH-SY5Y cells. This corresponds to another histopathological trait of TDP-43 

proteinopathy in ALS (Fig 8 F). Hence, expression of p62-SQSTM1 seem to fluctuate upon 

appearance of TDP-43 truncated forms and its mislocalization. 
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Figure 8: TARDBP overexpression leads to appearance of cleaved forms and mislocalization 

of TDP-43 in a dose-dependent manner in SH-SY5Y cells. (A) Immunoblotting and (B) relative 

quantification of TDP-43 and p62/SQSTM1 protein levels and (C) images of smFISH labeling 

SQSTM1 RNA showing that overexpression of pCS2+ TDP-43 GU2 at a concentration of 

0,5µg/mL could lead to increased protein and RNA levels of p62/SQSTM1. (D) Normalized 

quantification of TDP-43 and p62/SQSTM1, (E) immunoblotting and (F) immunofluorescence 

of TDP-43 throughout a gradient of increasing pCS2+ TDP-43 GU2 expression revealing the 

appearance of cleaved forms and mislocalization of TDP-43 in a dose-dependent manner. 

n=10 for 0,5µg/mL of pCS2+ TDP-43 GU2 and n=6 for the rest. All results are mean ± SEM.  

 

 

G) Discussion 
 

 

Altogether, these data are the first report of: 1) antagonist effects of TARDBP 

knockdown on autophagy genes depending on activation of autophagy; 2) binding of TDP-43 

to ALS-related TBK1 and p62/SQSTM1 mRNAs; 3) conditional binding of TDP-43 to key target 

mRNAs (namely OPTN, RAPTOR, TBK1 and p62/SQSTM1). Furthermore, siRNA-mediated 

knockdown of TARDBP lead to nuclear depletion of TDP-43 while overexpression lead to its 

mislocalization in the cytoplasm, as reported previously (Cascella et al., 2016). However, this 

last study did not report the appearance of TDP-43 C-terminal fragments we observed upon 

overpression of TARDBP. Each of these ALS-related pathological traits could affect 

p62/SQSTM1 and other key autophagy genes in different ways. Overall, this unveils new links 

between TDP-43 and autophagy and bring details to TDP-43’s complex normal function and 

possible contribution to ALS pathological mechanisms. However, each of these novel reports 

remain incomplete and would greatly benefit from further investigation. 

First of all, several of the results presented here show strong tendencies but still lack 

statistical significance. It appears essential to repeat experiments even more to gain in 

robustness and confirm our data. However, these tendencies all appear to follow a common 
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dynamic that is consistent with the proposed mechanisms. For example, the antagonist effects 

that were witnessed upon TDP-43 depletion are not isolated phenomena, they are shared by 

multiple actors, namely p62/SQSTM1, TBK1 and LC3. They also correlate with the conditional 

binding of TDP-43 to OPTN, RAPTOR, TBK1 and p62/SQSTM1 mRNAs. Moreover, our data on 

untreated cells concerning the profile of expression of autophagy initiation genes, the increase 

in p62/SQSTM1 and in LC3 proteins in response to TDP-43 depletion as well as binding of TDP-

43 to RAPTOR and OPTN mRNAs are all coherent with the previous reports on similar cellular 

models by other teams (Bose, Huang and Shen, 2011; Polymenidou et al., 2011; Xia et al., 

2016). In fact, sole binding to RAPTOR mRNA was described to be the cause of these changes 

(Xia et al., 2016). Its loss in Torin 1 treated cells could, on its own, logically explain their 

disappearance. That is why the exact effect of all conditional bindings we report here should 

be further detailed. In order to do so, an analysis of the effect of TARDBP knockdown on the 

stability of each of these transcripts remains to be conducted.  

The fact that we report conditional binding of TDP-43 to key RNA targets puts in 

perspective our current knowledge of TDP-43’s RNA interactome. It also highlights a novel 

aspect of TDP-43’s ability to adapt to cellular context that should be further explored to better 

understand its normal function and implication in pathogenesis. Based on the results of this 

thesis, I hypothesize that TDP-43 is involved in autophagy modulation through its conditional 

binding to autophagy genes. TDP-43 binds RAPTOR mRNA and feeds mTORC1 inhibitory 

control over the degradative pathway, which defines basal autophagy in cell lines. Torin 1 

treatment leads to the binding of TDP-43 to TBK1 and SQSTM1 mRNAS thus shifting the 

equilibrium towards the promotion of autophagy. This may fuel the activity of the p62/TBK1 

axis, which is key for cargo engulfment into autophagosome and feeds the autophagic process.   

(Fig H 1). The role of OPTN in this potential mechanism needs further investigation. 



 149 

 

Figure Hypothesis 1: Proposed mechanism for TDP-43 conditional regulation of autophagy 

The mechanism through which Torin 1 induces such changes in TDP-43’s RNA-binding 

function is unknown but may be particularly relevant to ALS as several autophagy modulating 

drugs are currently being tested for their therapeutic power in clinical trials. In the future, the 

effects observed upon Torin 1 treatment should be compared to other autophagy induction 

methods. Interestingly, Torin 1 treated cells appeared larger and morphologically different 

from the rounder untreated and Baf B1 cells. As mTOR is involved in cell growth, Torin 1 may 

be responsible for this change of aspect. 

Furthermore, clarifying the mechanisms at play, especially the conditional binding of 

TDP-43 to autophagy-related mRNAs and its consequences, may help us understand the 

fluctuation in p62/SQSTM1 expression that seemed to accompany TARDBP overexpression. 

This set of experiments needs further investigation and precision as results were inconclusive 
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and displayed variability. However, as TDP-43 levels are gradually augmenting, we observe an 

intriguing sequence of correlating events. First the appearance truncated and mislocalized 

TDP-43 with a potential increase in p62/SQSTM1 RNA and protein levels. Then the progressive 

aggravation of these TDP-43 pathological traits with a decrease in p62/SQSTM1. As 

mislocalized and truncated TDP-43 are known substrates of autophagy, we hypothesize that 

their appearance may first induce an autophagic response that we now suggest has the 

potential to condition TDP-43’s RNA partners of interaction. By extent, this could then 

influence autophagy genes in different manners via further alteration of TDP-43 normal 

function. To verify this, the loss-of-TDP-43-RNA-binding-function, even if suggested by the 

progressive truncation and sequestration of TDP-43 in cytoplasm, has to be demonstrated in 

this TARDBP-overexpression model.  

 Overall, both knockdown and overexpression of TARDBP cause ALS-related TDP-43 

defects. Indeed, siRNA TARDBP leads to nuclear depletion of TDP-43 while gradual 

overexpression caused its progressive cleavage and cytoplasmic mislocalization. In that sense, 

considering the challenge that is TDP-43 modeling, emulating such ALS-related hallmarks is 

encouraging. These ALS-related traits are known to affect TDP-43’s normal function including 

its RNA-binding function which requires N-terminal RRMs and correct nucleus/cytoplasm 

shuttling. The key to linking all of these results may reside in understanding the exact 

consequences of such alterations of TDP-43 to key RNA targets. For this purpose, the 

development of reliable RNA tracking techniques could be determinant.  

 

H) Materials and methods 
 

 

Cell culture, transfection and drug treatment: 
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The human cells SH-SY5Y were grown in DMEM Media-GlutaMAX™ (Dulbecco’s Modified 

Eagle medium; Gibco®, Life technologies Paisley, UK) supplemented with 10% fetal bovine 

serum (FBS; SIGMA, USA) and 1% of penicillin/streptomycin solution (10.000U/mL;pen/strep; 

Gibco). Cells were seeded at an approximate density of 3x105 cells in COSTAR 12 well Cell 

Culture Plate (3512, Corning, USA) and transfected the next morning with the following siRNAs 

and/or plasmids using Lipofectamine™ 2000 (Invitrogen™, Life technologies Paisley, UK) 

according to manufacturer's instructions.  

- siGENOME SMART pool siRNA Human TARDBP M-012394-01-0005 (Dharmacon, USA)  

at a final concentration of 50 nM for transient knockdown of TDP-43.  

- siGENOME SMART pool siRNA Human SQSTM1 M-010230-00-0005 (Dharmacon, USA)  

at a final concentration of 50 nM for transient knockdown of p62/SQSTM1. 

- siGENOME non-targeting siRNA #2 D-001210-02-05 (Dharmacon, USA) at a final 

concentration of 50 nM for control siRNA transfection. 

- pCS2+ GFP plasmid at a final concentration of 800ng/mL for siRNA transfection control 

in immunochemistry experiments. 

- pCS2+ TDP-43 GU2 at a range of concentration going from 100 ng/mL to 5µg/mL to 

overexpress wild-type and untagged human TDP-43. 

- pCS2+ empty at a range of concentration going from 100 ng/mL to 5µg/mL for pCS2+ 

TDP-43 GU2 transfection control. 

Transfection mixes are made in Opti-MeM Reduced Serum Medium (ThermoFischer Scientific, 

USA) and added to DMEM Media-GlutaMAX™, 10% FBS to reach desired final concentrations. 

Transfection medium is left to incubate cells during 6 hours and changed back to DMEM 

Media-GlutaMAX™, 10% FBS, 1% pen/strep.  
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If required, cells are treated with autophagy modulating drugs at 24 hours after transfection. 

Medium is changed for new DMEM Media-GlutaMAX™, 10% FBS, 1% pen/strep supplemented 

with Torin1 or Bafilomycin B1 at final concentrations of 250nM and 100nM respectively, as 

previously described (Kaizuka et al., 2016). As stock solution of Torin1 and Bafilomycin B1 are 

made in DMSO (D8418; Sigma Aldrich, USA), control conditions are incubated with vehicle 

DMEM Media-GlutaMAX™, 10% FBS, 1% pen/strep supplemented with a corresponding 

quantity of DMSO.  

After 48 hours of transfection, cells are recuperated for Immunohistochemistry, 

Immunoblotting, RNA extraction or Immunoprecipitation protocols that will be described 

hereafter. 

 

Immunohistochemistry (IHC): 

IHC were performed on 10mm-diameter cover glasses that were placed before cell were 

seeded as previously described. After transfection protocol was carried out, cover glasses are 

recuperated and put in agitation at room temperature for the following steps: 

1) 5min wash in PBS 1X 

2) 20min fixation in a 4% formaldehyde solution (252549; Sigma Aldrich, USA; stock at 37% 

diluted in PBS 1X) 

3) three 5min washes in PBS 1X 

4) 10min permeabilization in PBS 1X supplemented with 0.1% Triton (from stock Triton X-100, 

Sigma-Aldrich, USA) 

5) three 5min washes in PBS 1X 
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6) 1 hour blocking in Blocking Buffer (PBS Triton 0.1% supplemented with 5% Bovine Serum 

Albumine (A2153; Sigma-Aldrich, USA)) 

 

Cover glasses are then incubated overnight at 4°C in agitation with the following antibodies 

diluted at desired concentrations in Blocking Buffer: 

- Anti-TDP-43 C-terminal (rabbit, 12892-1-AP) from Proteintech, USA. 

- Anti-SQSTM1 (mouse, sc-28359) from Santa Cruz Biotechnologies, USA. 

- Anti-GFP (chicken, GTX13970) from GeneTex, USA. 

The next day, protocol continued with the following steps in agitation and at room 

temperature: 

1) three 5min washes in PBS 1X 

2) 1-hour incubation with appropriate fluorophore-conjugated secondary antibodies 

diluted into Blocking Buffer at a 1/500 ratio from stock solutions (Alexa Fluor series 

from ThermoFischer, USA). For this incubation and the rest of the protocol, cover 

glasses are carefully kept in the dark 

3) three 5min washes in PBS 1X 

4) 10min incubation in PBS 1X supplemented with DAPI diluted at 1/1000 from stock 

solution (D3571; Invitrogen™, Life technologies Paisley, UK) 

5) A series of 5 min washes in PBS 1X, PBS Triton 0.1%, PBS 1X and in Milli-Q water. 

Cover glasses were then mounted on Microscope Slides (J1800AMNZ; ThermoFischer, USA) in 

VECTASHIELD Mounting Medium (H-1000; Vector Laboratories, USA) and sealed with standard 

transparent nail polish.  
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Single molecule Fluorescent in Situ Hybridization: 

smFISH was performed on previously described cover glasses using a ViewRNA ISH Cell Assay 

Kit (QVC0001; ThermoFischer, USA) and according to manufacturer’s instructions. In order to 

specifically detect human sqstm1 mRNAs, SQSTM1 Alexa Fluor 488 ViewRNA Cell Probe Set 

(VA4-3084431-VC; ThermoFischer, USA) was used. Cover glasses were mounted on 

Microscope slides as previously described. 

 

Fluorescent microscopy: 

Immunochemistry or smFISH performed on SH-SY5Y cells were visualized using Leica SP8 STED 

system and both PMT and Hybrid detectors (Leica, Germany) through a 63X HC PL APO 

objective from Leica. Images were taken with LAS X software from Leica and analysed using 

ImageJ software (Sun Microsystems, USA). 

 

Immunoblotting: 

Protein extraction: Cells at full confluence in Falcon® 100mm Cell Culture Dish (353003, 

Corning, USA) are briefly washed in PBS 1X, put in Lysis Buffer (Tris-HCl 50mM pH 7.5, NaCl 

500mM, EDTA 5mM, Nonidet p-40 1%, Triton 0.5% supplemented with a cocktail of protease 

inhibitors (Complete mini, Roche, Switzerland)) recuperated using a scrapper in tubes. They 

were then homogenized on ice through sonication (Sonics Vibracell VC505) in Lysis 

Buffer (Tris-HCl 50mM pH 7.5, NaCl 500mM, EDTA 5mM, Nonidet p-40 1%, Triton 0.5% 

supplemented with a cocktail of protease inhibitors (Complete mini, Roche, Switzerland)). A 
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20 min centrifugation at 4°C and 14000 rpm was made to recuperate supernatant. 

Concentration of the protein extracts were established through BCA assay.  

Western blot: 30µg of protein extract per condition was mixed with 5X SDS Loading buffer 

(Bromophenol blue 0.25%, dithiothreitol 0.5M, glycerol 50%, Sodium dodecyl sulfate 10%, Tris-

Cl (pH 6.8) 0.25M in Milli-Q water) and denatured at 98°C during 7min in a dry bath. Samples 

were loaded in a 4-20% Mini-Protean TGX Gel (BioRad, USA) for electrophoresis. The 

separated proteins were transferred to a nitrocellulose membrane (0,45µm, Life Sciences) and 

probed with the following antibodies: 

- Anti-NAK/TBK1 (rabbit, ab109735) from Abcam, UK. 

- Anti-SQSTM1/p62 (rabbit, PM045) from MBL International, USA. 

- Anti-TDP-43 C-terminal (rabbit, 12892-1-AP) from Proteintech, USA. 

- Anti-Optineurin C-term (rabbit, #100000) from Cayman Chemical, USA. 

- Anti-LC3B (rabbit, ab51520) from Abcam, UK. 

- Anti-histone H2B (A-6) (mouse, sc-515808) from Santa Cruz Biotechnologies, USA. 

- Anti-Tubulin (mouse, T5168) from Sigma-Aldrich, USA. 

- Anti-GAPDH (mouse, ab8245) from Abcam, UK. 

Blots were incubated with corresponding fluorescent secondary antibodies and detection of 

protein bands was made using ODYSSEY CLx system (LI-COR Biosciences, USA). Analysis of 

bands was carried out using ImageJ software.  

 

RNA extraction and RT-qPCR: 
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Cells are briefly washed in PBS 1X, put in TRIzol reagent (Sigma-Aldrich, USA) and recuperated 

using a scrapper in tubes. Cells are homogeneized by up-and-down pipetting and TRIzol-

Chloroform based RNA extraction was performed according to manufacturer’s instructions. 

Resulting pellets of RNA were washed in ethanol and resuspended in sterilized Milli-Q water. 

RNA concentrations were determined using Lunatic system (Unchained Labs, USA). 

First-strand cDNAs were obtained by reverse transcription of 1µg of total RNA per sample 

using High Capacity cDNA Reverse Transcription Kit (Roche, Switzerland) according to 

manufacturer’s instructions. Quantitative-PCR amplification was performed with 2X SYBR 

Green (Bymake, USA). Primers were ordered from Sigma-Aldrich (USA) SYBR Green Primers 

Library and sequences are available upon request. Data were analyzed transforming raw Cq 

values into relative quantification data using the delta Cq method. 

 

RNA immunoprecipitation: 

RNA immunoprecipitation was carried out using EZ-Magna RIP RNA-binding Protein 

Immunoprecipitation Kit (Merck Millipore, USA) and according to manufacturer’s instructions 

and with positive control anti-SNRNP70 antibody (rabbit, CS203216) and negative control 

anti-IgG antibody (rabbit, PP64B) both included in Merck Millipore’s kit and anti-TDP-43 C-

terminal antibody (rabbit, 12892-1-AP from Proteintech, USA). TRIzol-Chloroform based RNA 

extraction was performed according to manufacturer’s instructions. Resulting pellets of RNA 

were washed in ethanol and resuspended in sterilized Milli-Q water. First-strand cDNAs were 

obtained by reverse transcription of immunoprecipitated RNAs using High Capacity cDNA 

Reverse Transcription Kit (Roche, Switzerland) according to manufacturer’s instructions. 

Quantitative-PCR amplification was performed with 2X SYBR Green (Bymake, USA). Primers 
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were ordered from Sigma-Aldrich (USA) SYBR Green Primers Library and sequences are 

available upon request. Data were analyzed transforming raw Cq values into relative 

quantification data (by comparing to negative control anti-IgG data) using the delta Cq 

method. 

 

Statistical analysis:  

All data values are represented as average standard error of mean (SEM) with significance 

determined using bilateral Student t-test, Mann-Whitney’s, Kruskall-Wallis (followed by 

Dunn’s posthoc analysis), one-way ANOVA (followed by Tukey’s) and two-way ANOVA 

(followed by Sidak’s posthoc analysis) tests. Analyses were performed using Excel (Microsoft, 

USA) and Prism 7.0 (Graph Pad, USA). Significance level was set at p<0.05. 

 

III) The development of novel live-imaging RNA tracking 

techniques 
 
 

A) Introduction 
 

 

The field of RNA research has beneficiated from great biotechnological advances that 

allowed RNA quantification, sequencing and identification of targets of RNA-binding proteins 

on a high-throughput scale thus opening the transcriptomic era (Schena et al., 1995; 

Niranjanakumari et al., 2002; Mortazavi et al., 2008; Jiang et al., 2015). However, these 

techniques do not give detailed information on transcript localization, a key parameter to 

understand normal metabolism of an RNA and its potential implication in a pathological 

mechanism.  
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 Historically, in-situ hybridization has been used to localize specific mRNAs (Bauman et 

al. 1980; Poulsen et al. 1993). The technique relies on the binding of complementary anti-

sense-RNA probes that are coupled with a detection system to a target transcript in a fixed 

tissue. However, in its empiric form, the technique does not allow detection of transcripts with 

sufficient precision to observe individualized RNA molecules and thus their exact location in 

the cell. More recently, the technique has been updated and is able to detect RNAs at the 

single molecule level (single molecule or smFISH) by multiplying the number of fluorescent 

probes that bind the specific RNA to ameliorate signal-to-noise ratio (Femino et al., 1998). We 

have successfully used a variation of smFISH, based on a system of high signal amplification 

(F. Wang et al., 2012), to detect and quantify p62/SQSTM1 mRNAs in SH-SY5Y cells as 

described in sections II “Antagonist effects of TARDBP modulation on key autophagy genes 

in SH-SY5Y cells” of Results and Discussion.  

 The technique is however restricted to fixed tissues which can lead to biochemical 

alterations and cannot reveal the subcellular dynamic of a target transcript in time through 

live-imaging. Several strategies relying on different biomolecular systems have been 

investigated to solve this problem. We have selected two of the techniques that appeared the 

most promising: the MS2 system and a modified CRISPR/Cas9 system (George et al., 2018). 

 The MS2 system comes from the bacteriophage and takes advantage of a simple 

interaction. The MS2 coat protein (MCP) has high binding affinity towards unique 

bacteriophage RNA hairpin structures also called MBS (MCP binding site) (Peabody, 1993; 

Stockley et al., 2016). In order to detect a specific RNA sequence in another organism, the 

MCP protein is fused to a fluorescent protein such as GFP, and the target RNA has to integrate 

several MBS sequences. Moreover, the MCP protein is tagged with a nuclear localization signal 
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(NLS) that confines it to the nucleus until it binds a target nucleic acid and can be detected in 

the cytoplasm. This ensures that visualization of MCP-GFP corresponds to an MCP/MBS 

complex and not to an MCP that did not bind the RNA sequence of interest. In other words, 

the system requires the transfection of both an exogenous target RNA/MBS sequence and a 

fusion MCP-GFP protein (Fig i 27).  

The system has first been used in yeast (Sheth and Parker, 2003) but was then adapted 

to Drosophila (Forrest and Gavis, 2003), cell culture (with noteworthy ALS-related studies on 

preferential recruitment of certain RNAs to granules containing mutant FUS) (Sama et al., 

2013; Yasuda et al., 2013) and more recently to zebrafish (Campbell et al., 2015; Sun et al., 

2018). Our strategy to develop the system in zebrafish is based on this last study by Campbell 

et al. 2015. 

 

 

Figure i 27: Principle of the RNA tracking MS2 system derived from the bacteriophage 

The other technique in development is based on the CRISPR/Cas9 system. As a 

reminder, the original high precision genome editing system is based on the cleavage of 

genomic DNA by the Cas9 enzyme on two conditions: 1) its recruitment at a precise locus by 
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a single guide RNA (sgRNA) that is complementary to the target strand; 2) the presence of a 

PAM (protospacer adjacent motif) on the opposite non-target strand (Doudna and 

Charpentier, 2014). In this modified RNA tracking system, the Cas9 is unable to cleave the 

target RNA as it is enzymatically inactive. This deadCas9 (dCas9) still binds to the transcript of 

interest through its recruitment by an sgRNA. However, because RNA is single-stranded, the 

PAM is now integrated into another complementary oligonucleotide called PAMmer (Nelles 

et al., 2016). The dCas9 associates with the sgRNA and PAMmer in a complex with the targeted 

RNA with high affinity. In a similar manner to the MS2 system, dCas9 is fused to a fluorescent 

protein, for detection, and an NLS, for sequestration into the nucleus until it binds to a 

transcript and is transported (Fig i 28).   

Contrarily to  MS2, the RNA tracking CRISPR/Cas9 system has not been used in other 

models than live cell culture (Nelles et al., 2016). Furthermore, the design of an adequate 

PAMmer can be complex. However, this strategy presents the advantage of targeting 

endogenous transcripts (George et al., 2018).  

Figure i 28: Principle of the RNA tracking CRISPR/Cas9 system 
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B) Expression of MCP-GFP and RNA MBS sequences in the zebrafish 

embryo 
 

 

Our strategy is based on the generation of two stable transgenic zebrafish lines 

expressing the MCP-GFP (Fig 9 A) through Tol2-mediated transgenesis. One expressing the 

protein under the βactin promoter while the other uses the inducible Hsp70 promoter. 

Tg(Hsp70:MCP-GFP) fish do not express MCP unless a 1 hour 37°C heat shock is performed. 

The embryos however express GFP in their lens as a reporter of transgenesis (white arrow of 

Fig 9 B), that can be easily detected in 72hpf fish. On the other hand, the βactin:MCP-GFP line 

expresses the bacteriophage protein in a ubiquitous manner as soon as 24hfp (Fig 9 B). Indeed, 

MCP-GFP is strongly expressed and is visible in all regions of the animal as seen in selected 

images of expression of the fusion protein in somitic muscles, midbrain and forebrain (Fig 9 

C). A more detailed observation of the expression pattern of Tg(βactin:MCP-GFP) fish show 

that the MCP protein appears to be exclusively nuclear, as expected. However, MCP-GFP is 

not distributed homogeneously within the nucleus. Round structures display higher signal 

intensity (white arrows of Fig 9 D). This particular trait was not evoked in the study of 

reference from which the constructs were obtained (Fig 9 D).  

The βactin:MCP-GFP line was chosen to go further in the development of the MS2 

system as we attempt to express RNA MBS sequences. More precisely, our construct is aimed 

at expressing an RNA mCherry sequence that is flanked with 24 repeats of MBS (mCherry-

24xMBS) in order to allow identification of cells expressing the transcript and optimize binding 

of the MCP protein (Fig 9 A). Overall, several techniques of transient expression were tested 

including one-cell stage injections of circular plasmid, linear plasmid or in-vitro synthesized 

RNA containing the construct. The yield of transfection of these methods revealed to be rather 
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low as few cells display mCherry fluorescence. However, injection of the full circular plasmid 

was the most efficient method. Confocal microscopy on live 24hpf embryos reveal that 

mCherry-24xMBS can be expressed in various type of cells including somitic muscle cells, 

epidermal cells (respectively the elongated rectangular cell and the round cells indicated by 

white arrows in upper panels of Fig 9 E) and neuronal cells (white arrow of the lower panels 

of Fig 9 E). Based on its location and morphology, this neuron that presents long longitudinal 

projections along the animal may be a Lateralis afferent neuron which is known to project its 

axon dorsally to Mauthner cells in the hindbrain. Interestingly, these mCherry expressing cells 

display MCP-GFP in their cytoplasm (better seen at blue and red arrows of upper panels of Fig 

9 E). This export of MCP-GFP outside the nucleus indicate the successful formation of a 

complex with RNA MBS repeats that is able to be transported and detected throughout the 

cell.  

 

 

 

 

 



 163 

 



 164 

Figure 9: Expression of MCP-GFP and MBS RNA sequences from the MS2 system in the 

zebrafish embryo. Pattern of expression of GFP as seen (A) at the macroscopic and (B and C) 

microscopic levels in ß-actin:MCP-GFP and Hsp70:MCP-GFP zebrafish transgenic lines. 

Tg(Hsp70:MCP-GFP) does not express the MCP-GFP protein in the absence of heat-shock but 

displays its fluorescent transgene reporter in the lens of the embryo at 72hpf (white arrow of 

A), as expected. Tg(ß-actin:MCP-GFP) shows strong, ubiquitous expression of MCP-GFP as 

early as 24hpf that appear strictly nuclear and particularly stronger in acute points within the 

nucleus (white arrows). (D) Confocal microscopy performed on live 24hpf Tg(ß-actin:MCP-

GFP) embryos injected with pTol-βactin:mCherry-24xMBS at the one-cell stage. The transient 

expression of MBS RNA sequences is visible in MCP-GFP expressing cells of various subtype 

and morphology (white arrows) and appear to trigger delocalization of MCP-GFP in the 

cytoplasm (blue and red arrows) thus indicating formation of the MCP/MBS complex that can 

migrate in the cytoplasm. 

 

 

C) Expression of dCas9-GFP in SH-SY5Y cells 
 

 

Concerning the development of the RNA tracking CRISPR/Cas9 system, the pCS2 

deadCas9-GFP plasmid was transfected in SH-SY5Y cells for transient expression of the fusion 

dCas9-GFP protein. In live-imaging, transfected cells express the protein in their nucleus as 

expected. However, similarly to the MCP-GFP protein in the zebrafish, the pattern is not 

homogeneous within nuclei as cells present round structures of stronger intensity (red arrow 

of Fig 10). These structures are interestingly inversely complementary to the staining pattern 

obtained with DAPI. This suggests dCas9-GFP is predominantly located at nucleoli. The 

selected image also shows the presence of a cell presenting an unexpected localization of 

dCas9-GFP in the cytoplasm (white arrow of Fig 10). Such phenomenon was rare among 

transfected cells but could lead to misinterpretation in the next steps towards RNA tracking. 

Overall, the yield of transfection was low and was not ameliorated through transfection of in-

vitro synthesized RNA of the dCas9-GFP construct.  
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Figure 10: Expression of deadCas9-GFP from the RNA Crispr/Cas9 system in SH-SY5Y cells. 

(A) Fluorescent microscopy performed on SH-SY5Y cells transfected with pCS2 deadCas9-GFP 

revealing transient expression of the deadCas9 protein in the nucleus, as expected, but also 

acute point of stronger intensity within the nucleus (red arrow) and occasional abnormal 

cytoplasmic GFP signal (white arrow). 

 

 

D) Discussion 
 

 

We were successfully able to express MCP-GFP and RNA MBS sequences in the 

zebrafish and dCas9-GFP in SH-SY5Y cells on our way to developing the two respective RNA-

tracking systems MS2 and CRISPR/Cas9. Two promising strategies that could help us elucidate 

RNA metabolism defects in the context of ALS.  

 Concerning the MS2 system in the zebrafish, while expression of MCP-GFP in our stable 

transgenic lines was successful, the yield of transfection of MBS repeats was unsatisfactory 

and may compromise tracking of RNA targets into cells of great relevance for ALS such as 

motor neurons. Indeed, the random expression of the two functional components of the MS2 

system into such cells seems unlikely concerning their reduced number. The Tol2 gateway-
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compatible system could be used in order to ameliorate transfection efficiency of MBS 

repeats.  

 The development of the RNA tracking CRISPR/Cas9 was also attempted in the 

zebrafish. The dCas9-GFP construct was integrated into another vector that used the 

Gal4/UAS expression system. Expression of dCas9-GFP in embryos was not achieved as 

injection of the plasmid caused unwanted toxicity. Such a strategy could allow us to express 

dCas9-GFP in a specific cell population like motor-neurons. In SH-SY5Y cells, transfection 

should be optimized as few cells expressed dCas9-GFP. Furthermore, the occasional aberrant 

cytoplasmic localization of the protein could be greatly problematic for the tracking of RNAs. 

One could also argue that such undifferentiated cells might be less relevant than cells 

presenting more complex morphological features like differentiated neurons, in which precise 

subcellular localization may be of greater interest. By comparing dCas9-GFP localization to 

DAPI staining, and as MCP-GFP presented similar heterogeneous localization in nuclei, we 

hypothesize that both proteins are preferentially located in nucleoli which is where ribosomal 

RNAs are transcribed. Such a pattern was not reported in neither of the studies from which 

our systems are based. 

 Both RNA tracking systems present technical limitations that may interfere with the 

specific requirements of our projects. It is important to note that neither strategies allow 

localization of target RNAs within the nucleus. Yet, TDP-43 is known to be particularly located 

and participating in RNA-metabolism in the nucleus. Furthermore, depending on the targeted 

regions of the RNAs of interest, the formation of either RNA tracking complex may compete 

and disturb the interaction with endogenous RNA-binding protein such as TDP-43. For the 

MS2, one could argue the introduction of an exogenous RNA sequence may exhibit unwanted 
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effects or even fail to mimic transport of the endogenous target. Finally, the design of 

adequate exogenous RNA sequences for the MS2 system and of PAMmers for the CRISPR/Cas9 

system is complex and requires scrutinous testing and validation through comparison of RNA 

localization with in-situ techniques. 

 Nevertheless, tracking RNAs in live tissues and analyzing their dynamic in time through 

the development of these systems appears greatly promising. Of note, updated version of 

these systems or alternative strategies should be explored. For example, an alternative 

Cas13a-based system (that do not require PAMmers but solely sgRNAs) has recently been 

reported (Abudayyeh et al., 2017). Our team has also explored an in-vivo compatible RNA-

labeling technique that uses anti-sense probes called “molecular-beacons” (Catrina, Marras 

and Bratu, 2012; Zhao et al., 2016). This long-established but recently optimized system 

presents the advantage of not requiring any transfection. However, designing a set of probes 

that guaranties specificity for the autophagy transcripts of interest appears challenging for the 

moment. Future updates of the probe-design algorithms may solve this issue in the near 

future. 

 

E) Material and method 
 

 

Zebrafish Maintenance: 

Adult and larval zebrafish (Danio rerio) were maintained both at the ICM (Institut du Cerveau 

et de la Moelle épinière, Paris) and Institut Imagine (Paris) fish facilities and bred according to 

the National and European Guidelines for Animal Welfare. Experiments were performed on 

wild-type fish from AB and TL strains.  
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MCP stable transgenic lines:  

Plasmid transfection was performed using the Tol2 Transposase system via microinjection in 

wild-type zebrafish embryos at the one-cell stage using a PV 820 Pneumatic PicoPump injector 

(World Precision Instruments, USA) and heat-pulled borosilicate glass needles. 

 

Both pTol-ß-actin:NLS-tdMCP-eGFP and pTol-Hsp70:NLS-tdMCP-eGFP plasmids (gifted by Dr. 

Marlow; Albert Einstein College of Medecine, USA) were linearized through AgeI digestion and 

coinjected with Tol2 Transposase RNA (synthesized from Tol2 transposase kit optimized for 

zebrafish) at a final concentration of 25ng/µl each. 

Final injection mixes were prepared by diluting plasmid and RNA in Injection Buffer (KCl 

120Mm, Hepes 20Mm, pH 7,2 in Milli-Q water) complemented with Fast green dye (Sigma-

Aldrich, USA) at a final dilution of 0,05%. 

 

Injected embryos were then raised at 28°C in an embryo medium called “blue water” (0.06 

g/L aquarium salt (Instant Ocean, Blacksburg, VA) in Milli-Q water +0.01 mg/L methylene 

blue). GFP-expressing embryos were selected at 5dpf and raised to generate founders.  

 

Transient expression of MBS RNA sequences: 

mCherry-24xMBS RNA sequences have been expressed by direct microinjection of the pTol-

βactin:mCherry-24xMBS plasmid (gifted by Dr. Marlow; Albert Einstein College of Medecine, 

USA) in ß-actin:NLS-tdMCP-eGFP zebrafish embryos at the one-cell stage using a PV 820 
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Pneumatic PicoPump injector (World Precision Instruments, USA) and heat-pulled borosilicate 

glass needles. Final plasmid concentration of 50ng/µl was obtained by dilution in Injection 

Buffer. 

 

Live-imaging of zebrafish embryos: 

For gross detection of fluorescence expression, 24hpf ß-actin:NLS-tdMCP-eGFP or 72hpf 

HSP70:NLS-tdMCP-eGFP embryos were anesthetized in Blue water supplemented with 

Tricaine (0,16 mg/mL) and pictures were taken directly in the medium under a fluorescent 

stereomiscroscope (Zeiss, Germany) coupled with a Grasshopper 2 digital camera (Point Grey 

Research).  

Expression of fluorescence at the cellular level was visualized in 24hpf ß-actin:NLS-tdMCP-

eGFP zebrafish embryos using Leica SP8 STED system and both PMT and Hybrid detectors 

(Leica, Germany) through 10X, 20X or 40X HC PL APO objectives from Leica. Images were taken 

with LAS X software from Leica. Prior to confocal imaging, embryos that appear 

morphologically normal were anesthetized in blue water with 1X Tricaine and embedded in 

agarose (1% UltraPure LMP Agarose (Invitrogen, USA) in “blue water” supplemented with 

tricaine 25X) laying on their flank in a glass bottomed imaging dish. 

All pictures were analysed using ImageJ software (Sun Microsystems, USA). 

Cell culture and transfection: 

The human cells SH-SY5Y were grown in DMEM Media-GlutaMAX™ (Dulbecco’s Modified 

Eagle medium; Gibco®, Life technologies Paisley, UK) supplemented with 10% fetal bovine 

serum (FBS; SIGMA, USA) and 1% of penicillin/streptomycin solution (10.000U/mL;pen/strep; 
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Gibco). Cells were seeded at an approximate density of 3x105 cells in COSTAR 12 well Cell 

Culture Plate (3512, Corning, USA) and transfected the next morning with pCS2 deadCas9-GFP 

or control pCS2+ GFP plasmids at a final concentration of 800ng/mL using Lipofectamine™ 

2000 (Invitrogen™, Life technologies Paisley, UK) according to manufacturer's instructions. 

To obtain the pCS2 deadCas9-GFP plasmid, double digestion of 5UAS:deadCas9-GFP vector 

(synthetized on command by GenScript, USA) by EcoRI/XhoI was performed and loaded in an 

electrophoresis gel in order to recuperate the deadCas9-GFP construct through band selection 

and DNA purification using QIAquick gel extraction kit (28 706; Qiagen, Germany) according 

to manufacturer’s instructions. The construct was ligated into EcoRI/XhoI digested host pCS2+ 

empty vector using T4 DNA Ligase (M0202S; New England BioLabs, USA) according to 

manufacturer’s instructions. 

Transfection mixes are made in Opti-MeM Reduced Serum Medium (ThermoFischer Scientific, 

USA) and added to DMEM Media-GlutaMAX™, 10% FBS to reach desired final concentrations. 

Transfection medium is left to incubate cells for 6 hours and changed back to DMEM Media-

GlutaMAX™, 10% FBS, 1% pen/strep. 

 

Live-imaging of SH-SY5Y cells: 

24 hours after transfection, medium was changed for 1X PBS and cells are visualized directly 

into their 12 well Cell Culture Plate using an inverted Apotome.2 system and an Imager.M2 

stand (Carl Zeiss, Germany) via a 40X objective from Zeiss. Images were taken using ZEN 

software from Zeiss and analysed using ImageJ software (Sun Microsystems, USA). 
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IV) Conclusion and future directions 
 

 

 

As we conclude this thesis, it appears important to put in perspective the results 

obtained throughout the different projects that were presented. Associating the studies 

conducted on the zebrafish and SH-SY5Y cells highlights key conclusions strengthening TDP-

43’s interaction with autophagy.  

First, I characterized a novel link between ALS-associated TDP-43 and TBK1. Indeed, 

TDP-43 could bind to TBK1 mRNA in cell lines. By extent, this could justify the fact that 

depletion of TDP-43 caused a downregulation of tbk1, an event that mediated the appearance 

of motor deficits and axonopathy in our zebrafish model. This data corroborates with the fact 

that TBK1 loss-of-function was reported to be sufficient to cause ALS and ties it with TDP-43. 

The second conclusion of this thesis is that TDP-43 may conditionally bind to its RNA targets 

depending on cellular context. More specifically, Torin 1-induced activation of autophagy 

inhibited binding to known RNA targets RAPTOR and OPTN but also promoted binding to novel 

targets p62/SQSTM1 and TBK1. Finally, TDP-43 could impact autophagy in opposite manners 

depending on the cellular context. Indeed, I described that drug-induced modulation of 

autophagy lead to antagonist effects of TDP-43-depletion on the profile of expression of 

autophagy genes and autophagosome markers. Results were less conclusive when 

overexpressing TARDBP but a potential comparable impact on autophagy appears worthy of 

investigation. I hypothesize that these complex mechanisms could be due to the combination 

of several phenomena: 1) TDP-43 antagonist impacts are the result of its adaptive RNA-binding 



 172 

function to autophagic context (as illustrated by our description of TDP-43 conditional binding 

to autophagy transcripts); 2) Truncated and mislocalized TDP-43 induce autophagy and, by 

extent, force TDP-43 RNA-binding function to adapt to the context; 3) Modulation of TDP-43 

causes altered TDP-43 RNA-binding function notably through the appearance of ALS-related 

TDP-43 pathological traits in both our knockdown (nuclear depletion) or overexpression 

(truncation and mislocalization) models.  

These assumptions could be verified by determining: 1) the subcellular localization for 

the binding of TDP-43 to key autophagy transcripts; 2) the outcome of TDP-43 modulation on 

those specific RNAs; 3) the consequences of emulated TDP-43 pathologic traits on the 

autophagic context and loss of RNA-binding function. In this context, the development of RNA 

tracking strategies that we detailed in this thesis could help tackle these questions. 

Meanwhile, more traditional RNA studies using RT-qPCR, smFISH and nuclear RNA 

immunoprecipitation experiments as well as a better characterization of autophagic context 

are already under way in order to find the final piece of the puzzle. 

 

Besides highlighting novel aspects of TDP-43’s interaction with autophagy, this study 

more globally unveils a new aspect of TDP-43 role in normal physiology and pathology. 

Pinpointing that TDP-43 function, and more specifically its interactome, may adapt to cellular 

context, puts in perspective the vast amount of data the community has collected on the 

protein. More than ever, the relevance of the model we use to the pathology of ALS should 

be questioned. For example, TDP-43-depletion without any modulation of autophagy in our 

cellular model, which was in line with the results obtained in recent studies on similar cells, 

presented data that was in total contradiction with our zebrafish model (Bose, Huang and 



 173 

Shen, 2011; Xia et al., 2016; Torres et al., 2018). This raises the question of the relevance of 

these models to ALS pathology. Of note, as both zebrafish embryos and Torin 1 treated cells 

displayed a similar profile of expression of autophagy genes, the differences are likely to be 

explained by the fact that embryos display important basal autophagy levels. Autophagy is 

indeed crucial for the development. More than the model of the study, the relevance of the 

physiological or pathological context within each model has to be examined. This foreshadows 

a complexification of the already convoluted field of research around TDP-43. Up to now, 

reproducing all of TDP-43 pathological traits, that are present in the vast majority of ALS 

patients, has been more than challenging in animal or cellular models. A better understanding 

of the importance of the context in which TDP-43 proteinopathy is being introduced could 

potentially help with the matter. It appears crucial to bear in mind that ALS is a late-onset 

pathology of highly specialized cells that are motor neurons. Finally, as the disease is defined 

by a heterogeneous clinical presentation, understanding the potential plasticity of TDP-43 

function could be insightful. 

These results concerning TDP-43 could also fit into other areas of research. Indeed, 

TBK1, p62/SQSTM1 and OPTN are also involved in the inflammatory pathway (Mankouri et al., 

2010; Gleason et al., 2011; Komatsu, Kageyama and Ichimura, 2012a; Rea et al., 2013; Bitto et 

al., 2014; Weil, Laplantine and Génin, 2016), another investigated mechanism in 

neurodegeneration and ALS (Corcia et al., 2013; Brites and Vaz, 2014; Endo, Komine and 

Yamanaka, 2016). Moreover, these molecular actors are implicated in tumorigenesis (Trocoli 

and Djavaheri-Mergny, 2011; Komatsu, Kageyama and Ichimura, 2012b; Moscat, Karin and 

Diaz-Meco, 2016). This thesis reports that TDP-43 is able to conditionally bind to RAPTOR or 

TBK1 transcripts, which interaction at the protein level is of great relevance in cancer research 
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(Vaden et al., 2017; Bodur et al., 2018). Therefore, exploring the incidence of these novel 

interactions that implicate TDP-43 to such pathological mechanisms could be instructive. 
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