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Résumé 
 

Selon le principe de codage efficace introduit par Horace Barlow en 1961, le traitement visuel de l’information 

par les systèmes sensoriels primaires devrait être optimisé et adapté aux propriétés statistiques de 

l’environnement sensoriel. Ce principe affirme que (i) l’exposition à des statistiques naturelles devrait réduire 

la redondance de populations de neurones individuels présente dans les suites de potentiels d'action, qui sera 

associée à (ii) une diminution de la variabilité des réponses liées aux stimuli et (iii) une parcimonie de l’activité 

de la population globale. Cependant, la plupart des études du cortex visuel primaire (V1) se sont limitées à 

des fonctions visuelles artificielles telles que des points, des barres, des grilles et du bruit épars, qui sont utiles 

dans les systèmes linéaires d’identification mais rarement rencontrées dans l’environnement naturel. Dans les 

cas de telles simulations artificielles, les réponses des neurones de V1 montrent une variabilité très importante 

pour des présentations répétées du même stimulus. Cette variabilité a généralement été expliquée par 

différents facteurs tels que l’état général du réseau cortical, les propriétés stochastiques des neurones V1 ou 

le recrutement de neurones inhibiteurs responsables de la réalisation d’une opération appelée « divisive 

normalization » (Heeger, 1990). 

 

Pour répondre aux questions relatives au paradigme de codage efficace, une étude réalisée sur le chat 

anesthésié et paralysé (Baudot et al., 2013) a comparé les réponses intracellulaires de neurones V1 à des 

stimuli de différentes complexités (réseaux dérivants (DG), réseaux dérivants animés à l’aide de mouvement 

des yeux artificiels (GEM), des images naturelles animées à l’aide de mouvement des yeux artificiels (NI) et 

du bruit dense (DN). Ils ont observé que les images naturelles induisaient des réponses neuronales 

reproductibles, précises et éparses alors même que les stimuli artificiels causaient des réponses denses, 

imprécises et peu reproductibles. Par ailleurs, une étude deux photons dans V1 de la souris (Rikhye & Sur, 

2015) a montré que la reproductibilité des réponses corticales à des scènes naturelles varie d’une part en 

fonction des basses fréquences contenues dans une image naturelle, d’autre part en fonction de la puissance 

de ses corrélations spatiales. Ces observations restent cependant à confirmer chez les mammifères 

supérieurs. L’étude mentionnée précédemment était centrée sur les statistiques spatiales de scènes 

naturelles. En effet ; les stimuli naturels sont généralement composés d’un spectre fréquentiel de 1/fα à la fois 

dans les domaines spatiaux et temporels. Si les effets des statistiques spatiales ont été étudiés, il n’existe que 

peu de données quant au rôle des statistiques temporelles. 

 

Les études susmentionnées étudiaient les différents aspects de la théorie du codage efficace, d’une part dans 

un échantillon de cellules restreint mais également au sein d’une couche corticale. Lors de ce travail de thèse 

nous avons enregistré l’activité neuronale dans toutes les couches de V1, chez le chat anesthésié et paralysé, 

à l’aide une électrode linéaire dense à 64 canaux. Nous avons enregistré la réponse de l’activité unitaire (SUA), 

multi-unitaire (MUA) ainsi que le potentiel de champ local (LFP) en réponse à DG, GEM, NI et DN — stimuli 

qui furent précédemment utilisés par Baudot et al (2013). Nous avons cependant enrichi ces stimuli à l’aide 

de différents contrôles. En effet, nous avons développé des images naturelles où nous avons manipulé les 

statistiques des trajectoires du mouvement oculaire (i.e. les statistiques temporelles) et les statistiques 

spatiales. Les stimuli ont tous été présenté sur le centre du champ récepteur (condition « centre seul »), 

uniquement sur le pourtour du champ récepteur (condition « pourtour seul » ou bien sur le centre et le pourtour 

simultanément (condition « plein champ ») 

 

 

L’enregistrement de l’activité neuronale à l’aide d’une électrode linéaire dense à nombreux canaux, couplé 

aux méthodes de tri automatique des potentiels d’action, nous a permis d’enregistrer, de distinguer et de 

caractériser les sous-classes d’un grand nombre de neurones (« regular » ou « fast spiking » neurones 

(neurones RS et FS)) à travers toutes les couches corticales. En procédant ainsi, nous avons cherché à 

comparer la reproductibilité des signaux mésoscopiques (LFP et MUA) et microscopiques (neurones SUA, RS 

et FS) en fonction des différentes conditions de stimulation ainsi qu’à explorer la dépendance laminaire de la 

réponse. Nos résultats montrent que des images naturelles animées par le mouvement des yeux évoquent 
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des réponses plus reproductibles que les autres stimuli, quelle que soit la couche ou l’échelle d’enregistrement. 

Parmi la population de neurones isolés, les neurones FS ont induit des réponses plus reproductibles que les 

neurones RS. De façon générale, le LFP a présenté les plus hauts niveaux de reproductibilité alors que le 

SUA a présenté les plus bas niveaux. Si les réponses à des images naturelles présentaient un haut niveau de 

fiabilité à travers toutes les couches, elles l’étaient le plus dans les couches recevant des entrées thalamiques, 

c’est-à-dire les couches 4 et 5/6. 

 

La baisse de variabilité des réponses observées dans le cas des images naturelles est fortement modulée par 

les interactions centre-pourtour. En effet, la stimulation du centre seul résulte en une reproductibilité plus faible 

que celle du centre-pourtour, dans toutes les couches et à toutes les échelles d’enregistrement. La stimulation 

du pourtour seul à l’aide de scènes naturelles évoque également un LFP reproductible dans toutes les 

couches. De plus, le pourtour seul évoque une réponse LFP plus reproductible que le centre seul dans les 

couches où les connexions horizontales sont présentes (2/3 et 5/6), ce qui met en évidence le rôle crucial des 

propriétés anatomiques de V1 dans le traitement de scènes naturelles. 

 

En manipulant les statistiques temporelles et spatiales de la stimulation naturelle au niveau LFP, nous avons 

démontré que les statistiques temporelles ayant un spectre de 1/fα sont cruciales dans la génération de 

réponses reproductibles. Nos résultats montrent que le pourtour est essentiel dans le traitement de ces 

données temporelles, et ce à toutes les échelles neuronales. 

 

Nous nous sommes particulièrement intéressés au rôle des corrélations entre les neurones en étudiant la 

corrélation de la réponse et la corrélation de la variabilité de la réponse de neurones situés dans une même 

couche ou dans des couches différentes. Nous avons observé que les images naturelles suscitent 

systématiquement une corrélation plus forte que des stimuli artificiels alors même qu’aucune différence n’était 

observée dans le cas de la corrélation de la variabilité de la réponse. Par ailleurs, la présentation de scènes 

naturelles dans les conditions centre-pourtour a provoqué une décorrélation de la corrélation de la variabilité 

par rapport aux conditions du centre uniquement. Enfin, nous avons montré que les corrélations sont plus 

importantes au sein des couches qu’entre elles. 

 

Nous n’avons pas observé de forte décorrélation au niveau du neurone individuel, mais plutôt à l’échelle d’un 

groupe de neurones ; les plus proches étant plus corrélés et les plus éloignés l’étant moins. Cela va dans le 

sens d’un regroupement des neurones en une « masse neurale » cohérente. Ces groupes de neurones 

pourraient encoder des morceaux d’une scène visuelle contenant des informations significatives (comme 

suggéré par Rikhye & Sur, 2015). Ainsi, ces résultats appuient fortement la nécessité d’une version modifiée 

de la théorie du codage efficace où la décorrélation de l’activité neuronale n’agirait pas au niveau du neurone 

individuel mais plutôt à celui d’un groupe de neurones spatialement proches.  

 

Mots Clés : Électrophysiologie ; Cortex Visuel Primaire ; Reproductibilité ; Corrélations ; Interactions Centre-

Pourtour ; Enregistrements Laminaires 

  



 

vii 

 

 

Abstract 
 

The principle of efficient coding introduced by Horace Barlow in 1961 suggests that visual processing in early 

sensory systems should be optimized and adapted to the statistical properties of the sensory environment. It 

asserts that (i) exposure to natural-like statistics should reduce the redundancy present in the spike trains of 

populations of individual neurons, which will be associated with (ii) a decrease in stimulus-locked response 

variability at the single neuron level and (iii) an increase in the sparseness of the global population activity. 

However, most studies on the primary visual cortex (V1) have been restricted to artificial visual features such 

as spots, bars, gratings and sparse noise, which are useful in linear systems identification but not often 

encountered alone in the natural environment. For such artificial stimulation types, the responses of single 

neurons in V1 show a considerable amount of variability for repeated presentations of the same stimulus. This 

variability has typically been explained by several factors such as the global state of the cortical network 

(ongoing activity), the stochastic properties of V1 neurons, or the recruitment of a diffuse inhibitory intracortical 

pool of neurons responsible for carrying out a computation called divisive normalization (Heeger, 1990). 

 

In order to address these questions in the efficient coding framework, one study performed on the anesthetized 

and paralyzed cat (Baudot et al., 2013) compared intracellular responses of V1 neurons to full field stimuli of 

different complexity (Drifting Gratings (DG), Gratings animated with eye movements (GEM), Dense Noise (DN) 

and Natural images animated with eye movements (NI)). They observed that natural images trigger sparse, 

precise and reliable membrane potential dynamics and spiking activity, whereas artificial stimuli induce dense, 

imprecise and unreliable responses. Additionally, a two-photon study in mouse V1 (Rikhye & Sur, 2015) found 

that the reliability of cortical responses to natural scenes depends on the low frequency content of the natural 

image, and on the strength of its spatial correlations. However, these observations remain to be confirmed in 

higher mammals. The study mentioned above focused on the spatial statistics of natural scenes. Indeed, 

natural stimuli are generally comprised of power law frequency spectra (1/fα) in both spatial and temporal 

domains. While the impact of spatial statistics has been investigated, very limited data about the role of 

temporal ones is available.  

 

The aforementioned studies investigated the different aspects of efficient coding theory either on a small 

sample of cells or within one cortical layer. In this PhD project, we recorded across all layers in V1 in the 

anesthetized and paralyzed cat with a 64-channel high-density linear silicon probe. Single unit and multi-unit 

activity (SUA, MUA), as well as local field potential (LFP) were examined in response to DG, GEM, DN and 

NI. These stimuli were previously used in the intracellular study of Baudot et al (2013). Yet, we enriched their 

stimulus set with additional controls. We incorporated natural images where we manipulated the statistics of 

the eye movement trajectories (i.e. the temporal statistics) and the spatial statistics. All stimuli were presented 

either on the center of the receptive field only (center condition), in the surround only (surround condition), or 

on both simultaneously (full field condition). 

 

Choosing a high-channel count silicon probe coupled with automated spike sorting methods allowed us to 

record, discriminate and label the subclasses of a large number of neurons (regular or fast spiking cells) across 

all cortical layers. In this way, we aimed to compare the reliability of the mesoscopic signal (LFP and MUA) 

across the different stimulus conditions with the microscopic signal (SUA, RS and FS neurons) and to explore 

its laminar dependency. Our results show that natural images animated with eye movements evoked more 

reliable responses, across all layers and at all scales, than the other stimuli. Among the single units, FS 

neurons evoked more reliable responses than RS. In general, the LFP displayed the highest levels of reliability 

while the lowest was observed for the SUA. Although responses to natural images were highly reliable across 

all layers, they were the highest in the layers receiving thalamic inputs, i.e. layers 4 and 5/6.  

We observed that the decrease in the variability of the responses observed for natural images is strongly 

mediated by center surround interactions. Indeed, the stimulation of the center alone results in a lower 

reliability, in all layers and at all recording scales, than the center surround condition. The stimulation of the 

surround alone with natural scenes also evoked a reliable LFP across all layers. In addition, the surround alone 
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condition evoked a more reliable LFP response than the center condition in the layers where horizontal 

connections are present (2/3 and 5/6), which highlights a crucial role of the anatomical properties of V1 in the 

processing of natural scenes.  

 

We were able to identify which statistical features are important to drive reliable responses. By manipulating 

the spatial and the temporal statistics of the natural stimulation, we demonstrate that, at the LFP level, temporal 

statistics following a power law of 1/fα are crucial in the generation of a reliable response. Our results also 

highlight the fact that, at all scales, the surround is essential in the processing of these temporal features.  

 

We specifically addressed the role of the correlations between neurons (within and between layers) by 

measuring the amount of shared variability and signal (i.e. the noise and signal correlations, respectively) of 

the neuronal population in response to artificial and natural stimuli. We observed that natural images always 

evoked a higher signal correlation than artificial stimuli while almost no difference was observed for noise 

correlations. In addition, the presentation of natural scenes in the center surround condition decreased the 

noise correlations compared to the center alone condition. Finally, we show that the correlations are higher 

within layers than between layers. 

 

We did not observe a strong decorrelation at the single cell level but instead at the scale of groups of neurons, 

with those that are close together being more correlated and farther apart less correlated. This argues for a 

functional clustering of the neurons into a coherent “neural mass”. These clusters could encode for a piecewise 

decomposition of the visual scene into meaningful features (as suggested by Rikhye & Sur, 2015). Thus, these 

findings strongly argue for a modified version of the efficient coding theory where the decorrelation of neuronal 

activity does not happen at the single cell scale but instead at the scale of spatially local neuronal clusters.  

 

Keywords : Electrophysiology; Primary Visual Cortex; Reliability; Correlations, Center-Surround Interactions; 

Laminar Recordings 
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I. INTRODUCTION 

1. STRUCTURAL ORGANIZATION OF CAT EARLY VISUAL SYSTEM 

Brain is one of the most complex structures known to exist. Over many millions of years, it evolved 

to form a highly complex connected network composed of many distinct regions, forming an 

elaborate mosaic of specialized areas at the cortical level (Felleman and Van Essen, 1991). This 

elaborated cortical organization allows the extraction of useful multimodal sensory information from 

our environment. One of the most important brain areas in carnivores and primates is the area linked 

to visual processing. 

 

Visual processing is a phenomenon that requires network interactions. The fact that neocortex is 

organized according to unique cortical layers and that each laminar compartment receives different 

connections coming from different areas (Scannell et al., 1995), raises the possibility that visual 

information could be processed differently in distinct layers (i.e. different networks). In the visual 

system, information is initially transmitted from the retina, to the lateral geniculate nucleus, this latter 

sending inputs to primary visual cortex (V1). Thalamic inputs project to layers 4 and 6, once visual 

information reaches V1, this latter projects feedback inputs, originating from layers 5 and 6 to 

thalamus while feedforward inputs (projecting to other cortical regions) originate from layers 2 and 

3, arguing for a laminar processing of the visual information. The actual knowledge about the laminar 

organization of primary visual cortex mainly relies on anatomical and functional studies. However, 

the understanding about the functional properties of each layer is far from complete. 

 

Despite the incomplete knowledge about V1 laminar functional properties, primary visual cortex has 

been extensively investigated. The first pioneering studies, performed in the primary visual cortex of 

cats (Hubel and Wiesel, 1959, 1962) demonstrated that, within V1, neurons could be referred to as 

simple cells and complex cells. Both types responded to black or white bars, presented at different 

orientations. However, complex cells had a greater latitude in position of the bar and gave little 

response to spots of light. They argued that the properties of complex cells could more logically 

result from combining input from similarly oriented simple cells. Along the years, other functional 

properties of primary visual cortex have been discovered, such as the laminar properties of the 

receptive fields  

An extracellular study, performed in the awake primate, showed that as a function of the presented 

stimulus, the receptive fields of neurons in layer 2/3 were different. This was not observed in layer 4 

where the receptive fields were not stimulus dependent (Yeh et al., 2009). 

Another striking functional property observed in V1 is the surround modulation. The center of the RF 

is considered as the region that is going to elicit a response while stimulated. The region around the 

RF center is called the surround and is by definition the region where a stimulus presentation is not 

going to elicit any neuronal response. Different studies observed a suppressive or a facilitatory 

modulation when different stimuli are presented both in the center and in the surround of the 

receptive field (Angelucci et al., 2017).  

The diversity of functional properties observed in V1 has been investigated with artificial stimuli (i.e. 

mathematically well-characterized stimulus, in opposition to natural stimuli which are representations 

of our environment, poorly characterized). Based on the knowledge gathered with artificial stimuli, 
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many models reproducing the V1 responses to these stimuli were developed. However, these 

models poorly predicted the visual response to natural stimuli. 

 

Indeed, in the past twenty years, several studies demonstrated that primary visual cortex responds 

to natural scenes in a very different way than what was observed with artificial stimuli. The principle 

of efficient coding introduced by Horace Barlow in 1961 suggests that visual processing in early 

sensory systems should be optimized and adapted to the statistical properties of the sensory 

environment. It asserts that exposure to natural-like statistics should reduce the redundancy present 

in the spike trains of populations of individual neurons through a decrease in stimulus-locked 

response variability at the single neuron level, and an increase in the sparseness of the global 

population activity.  

 

A few groups started to investigate how primary visual cortex respond to natural images, Vinje & 

Gallant (2000), were among the first ones to do so. They observed extracellularly, in the awake 

primate, that the stimulation of both the center and the surround of the receptive fields with natural 

images increased the sparseness and decorrelated the activity of V1 neurons in comparison to a 

center only stimulation. Their findings support Barlow’s theory. Others, such as Frégnac, 

demonstrated that visual processing seems optimized for natural statistics. By recording 

intracellularly, in the anesthetized and paralyzed cat, they observed that natural scenes evoke, at 

the subthreshold (membrane potential) and at the spiking level, a sparser and more reliable response 

than artificial stimuli (Baudot et al., 2013). Unfortunately, these two studies only investigated the 

response to natural scenes in a restricted number of neurons (less than 40 for both studies), which 

limits the conclusions that can be drawn about how V1, is modulated by natural statistics at the 

population level. Moreover, these studies did not investigate the laminar dependency of the response 

to natural scenes.  

 

Therefore, in this PhD we decided to investigate how cat primary visual cortex (area 17) encodes, at 

the population level, these natural stimuli. Moreover, we looked into how these stimuli, which are a 

combination of spatial and temporal statistics, affect the correlations, the sparseness and the 

reliability. Recent technological advances now allow us to record simultaneously a great number of 

neurons across all layers. We are also able to extract more mesoscopic signals, such as the multi-

unit activity and the local field potential. Finally, we explored the laminar dependency of the response 

to natural scenes. 

1.1. Organization of cat primary visual cortex 

Visual processing is one of the most complex and important tasks humans can achieve. Because of 

the importance of vision, this sensory modality has been extensively studied but our understanding 

about it remains incomplete. In humans, one fourth of the cortical surface is allocated to vision. Visual 

processing is performed through a highly complex connected network composed of many brain 

regions, forming an elaborate mosaic of specialized areas at the cortical level (Angelucci et al., 

2017). 

Nevertheless, primitive species having smaller brains and less specialized visual centers are capable 

of detecting simple visual cues and extracting useful information from these cues. In very primitive 

species such as Drosophila, that are only able to discriminate between black and white bars but fail 

at complex visual tasks (Paulk et al., 2013), much of the elaborate processing takes place at the 

level of the retina and optic lobes. Structures responsible for the processing of visual information 
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have evolved into more and more complex information-handling units. For example, retinal ganglion 

cells in the frog respond to small moving objects, and this feature is referred to as “bug detector” 

(Barlow, 1953). If we look a few steps higher on the evolutionary ladder, turtles have a three-layered 

visual cortex that is sensitive to complex visual stimuli (Fournier et al., 2018; Hall et al., 1977; 

Mulligan and Ulinski, 1990). However, they do not analyze visual scenes as higher mammals do, i.e. 

through elaborate retinotopic maps (Mulligan and Ulinsky, 1990; Fournier et al., 2018). As we 

progress through the evolutionary tree, cortex takes over a major role in vision and the number of 

dedicated functional areas increases in non-human primates all the way to 35 in humans. Of note, 

not all mammals share the same organization of the visual pathway. For example rodents present a 

visual pathway dedicated to visuomotor integration that has not been observed in higher mammals 

such as primates or cats (Beul et al., 2015).  

Therefore, deep understanding of the specific visual organization of the studied species and the 

consideration of previous results in this framework is critical. 

 

The work presented in this thesis was performed on cats, a higher mammal that possesses an 

extremely developed visual system. Indeed, cats are carnivorous predators and display a visual 

system very close to primates (Van Hooser, 2007). The similarities of their visual system are 

observed both at the anatomical level and at the functional level. As shown in table 1.1.1, like 

primates, cats have their eyes positioned in a frontal position and possess a large binocular field. 

Despite differences in the lamination of the lateral geniculate nucleus (LGN) between cats and 

monkeys, similar functional properties are observed in these subcortical structures (Usrey and Alitto, 

2015). Finally, cats and primates show an important cortical surface allocated to visual processing 

and share crucial functional properties such as orientation maps and ocular dominance (Table 1.1.1). 

Importantly, these anatomical and functional properties are not observed in prey such as rodents or 

three shews. Therefore, the use of higher mammals, such as cats (i.e. the model of this thesis work), 

as a model for investigating visual processing is justified. An open question is if rodents are adapted 

for the study of vision (Table 1.1.1). 
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Table 1.1.1. Major features of primary visual cortex in different mammals (reprinted from Van Hooser, 2007) 

Regarding the connectivity, cats have 22 cortical areas involved in visual processing (see Fig 1.1.1, 

Scannell et al., 1995; see also Beul et al., 2015). This graph shows 224 connections, of which 168 

are reciprocal, between the 22 cortical areas, highlighting the complexity of the intercortical 

connections dedicated to visual processing. 

 

  

Figure 1.1.1: Hierarchical structure of cat visual system. The lower the area is on the figure the lower it is in the visual 

hierarchy (reprinted from Scannell et al., 1995). 

 

Information flow for visual processing is predominantly organized in a hierarchical manner. Indeed, 

this flow initiates when light hits the photoreceptors in the retina, which transmits the sensory 

information to the visual region of the thalamus, the Lateral Geniculate Nucleus (LGN). LGN mainly 

projects to two cortical areas: Area 17 (A17) and area 18 (A18) that are both considered as primary 

visual cortices. These two areas send visual information to higher visual areas (see Figure 1.1.1). 



 

5 

 

 

Although the visual information propagates dominantly in a feedforward manner through the early 

visual system and then across the cortical mantle, processing is enriched by cortico-thalamic and 

cortico-cortical feedback as well as intrinsic intra-area projections (see Figures 1.1.1, 1.1.2 and 

1.1.3). 

 

 
 
Figure 1.1.2. The early visual system. The PGN and main layers of the LGN drawn as rectangles including populations of 

excitatory (light fill) and inhibitory neurons (dark fill). Glutamatergic synapses (open arrows); GABAergic synapses (filled 
circles) and electrical synapses (resistor). (Reprinted from Soto-Sánchez et al., 2017) 
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Figure 1.1.3. Example of connectivity within one layer of V1. Excitatory cells are in red and inhibitory cells in blue. A, B, C 

and D represent different neurons. (reprinted from Douglas and Martin, 2010) 

 

The implication of the inputs projecting to V1 on visual processing will be developed in depth in 

section 3 of this chapter, but first it is important to describe the role of the two early visual areas 

preceding area 17. 

1.2. The Early Visual System 

1.2.1 The Retina 

The retina, which is the first relay of the visual pathway, is composed of 80 different cell types 

distributed across three different layers (Cajal, 1883; Gollisch and Meister, 2010) At the output of the 

retina, the retinal ganglion cells perform essential visual processing and propagate information to 

higher visual centers. When visual information falls into their receptive field (RF), which is the 

particular region of the visual space in which a stimulus modifies the firing of that neuron (receptive 

fields are described in detail in section 5), the membrane potential of the cell changes and triggers 

a depolarization or a hyperpolarization. Two main types of ganglion cells are present in the retina: 

ON center-OFF surround and OFF center-ON surround (Sterling, 1983). A cell is considered as ON-

center when a depolarization is triggered by a positive contrast change in its RF. Conversely, an 

OFF-center cell will be hyperpolarized by a negative contrast change in the RF (Kuffler, 1953) 

Ganglion cells are divided into three morphologically distinct classes: alpha (α), beta (β) and gamma 

(γ). The approximate proportion of α, β and γ ganglion cells in the cat retina are 5%, 55% and 60%, 

respectively. These cells are also referred to as Y, X and W based on their spatial linear/non-linear 

summation properties, described hereafter. Y cells have large cell bodies and large dendritic trees. 
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They are also characterized by a complex spatio-temporal RF that cannot be linearly separated 

(Humphrey et al., 1985). The RF is large (0.5° to 2.5°) and responds preferentially to low spatial 

frequencies, high temporal frequencies, and high luminance contrast visual stimuli (Troy, 1987). Y-

cells are involved in global aspects of spatial vision, in the detection of rapid visual transients in 

illumination and movement.  

Conversely, X cells have small cell bodies, small dendritic trees and smaller receptive fields (0.2° to 

1°). They have low luminance contrast and temporal frequency selectivity. X cells are able to report 

the position of a stimulus with great accuracy (Shapley and Victor, 1986). They also possess linear 

spatio-temporal receptive fields. These can be approximated by two linearly separable components: 

A spatial component modeled as a difference of two Gaussian functions for the concentrically 

opposing center and surround (Rodieck, 1965) and a temporal component modelled as the sum of 

two functions (Rodieck, 1965). 

Finally, W cells have small cell bodies and are composed of a wide variety of dendritic trees. Their 

complex spatio-temporal receptive fields present very heterogeneous sizes (from 0.4° to 2.5°). To 

date, their contributions to vision are not well-defined (Rowe and Palmer, 1995). 

The visual information processed by the retinal ganglion cells will be transmitted through their axons 

to the LGN via the optic tract.  

Visual pathways emerge with the properties of these ganglion cells (Payne & Peters, 2002) 

1.2.2 The Lateral Geniculate Nucleus 

The signal coming from the optic tract is then directed to three main targets: the superior Colliculus, 

the pretectum and the LGN. Only LGN, which sends projections to primary visual cortex, the area of 

interest of this thesis, is considered here. 

LGN is a sub-cortical structure composed of two main regions, the magnocellular region and the 

parvocellular region (in primates, a third region called koniocellular exists).  

The magnocellular region is organized into three layers located on the dorsal part of LGN. These 

three main layers are named A, A1 and C. These layers are the ones classically considered in the 

study of the LGN (Figure 1.1.2). 

The parvocellular region, located ventrally, is composed of three layers located under the C lamina. 

These three layers are referred as layers C1, C2 and C3 (Sherman and Spear, 1982). Each layer 

receives different types of inputs coming from retina. Fibers carrying Y-cell signals project to layers 

A, A1 and C. X-cells send their projections to layers A and A1. Finally, W cells project to layers C1, 

C2 and C3 (Sherman & Spear, 1982). Hence, the functional differences that are initiated in retina 

are preserved in LGN, as exemplified by the conservation in LGN of the circular shape (isotropy) 

and ON-OFF structure of retinal RFs. Thus, the properties of thalamic cells emerge from the 

properties of retinal ganglionic cells. Indeed, thalamic Y-cells respond more strongly to fast 

movements than X-cells, whereas X-cells are more sensitive to slow movements than Y-cells (Orban 

et al., 1985). 

However, when considering geniculate Y and X cells, a novel functional property (compared to 

retina) emerges. They can respond to a visual stimulation in two different ways, X and Y cells either 

respond to a visual stimulus with a lag, they are then called “lagged cells”, or without a lag, and are 

called “non-lagged cells” (Sherman & Spear, 1982). One unique visual property that emerges from 

the thalamus is the higher spatial resolution for dark than light stimuli. This property is passed on to 

higher visual areas. 
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Thalamic cells project to three different areas: the X pathway projects to area 17, the Y pathway 

projects to areas 17 and 18 and the W pathway projects to areas 17, 18 and 19 (Sherman & Spear, 

1982). 

1.3. Structural and functional organization of cat primary visual cortex 

In cat, areas 17 and 18 can both be considered primary visual cortices. because they both receive 

direct LGN inputs. However, area 18 also receives a strong input from area 17. This dual wiring is 

no longer found in V1 and V2 in non-human primates, where V2 receives most of its visual input 

from V1, becoming serially activated in the Felleman and Van Essen functional hierarchy. Area 19 

also receives LGN inputs, but the number of projections is small, and connections are very weak, 

thus area 19 is not considered as a primary cortex (Payne & Peters, 2002).  

Even if these two visual regions are primary visual cortices, they do not share equivalent functional 

properties. Area 17 is more selective to low temporal and high spatial frequencies with a dominance 

of “Simple” linear receptive fields, while area 18 is more selective to high temporal and low spatial 

frequencies with a dominance of Complex non-linear receptive fields. Moreover, area 18 receptive 

fields are bigger than those from area 17 (Friend and Baker, 1993). 

 

As part of this thesis, we will only focus on area 17, hence from now on we will refer to it as primary 

visual cortex (V1). The next sections will aim to describe the structural and functional organization 

of cat primary visual cortex. Indeed, as described previously for early visual areas, the way V1 

processes visual information is intrinsically linked to various factors such as the morphology and the 

intrinsic functional properties of the cells.  

1.3.1 Cortical neuronal diversity 

Cat primary visual cortex is organized into six layers, ranging from layer 1 (the most superficial) to 

layer 6 (the deepest) (Laminar organization is discussed in section 3). Three main classes of neurons 

have been distinguished based on their morphology and electrophysiological properties (Kelly and 

Van Essen, 1974; Nowak et al., 2003). Spiny stellate cells and pyramidal cells (that are dominantly) 

are the two kinds of excitatory neurons and inhibitory interneurons. Spiny stellate cells are mainly 

located in layer 4, pyramidal cells in layers 2, 3, 5 and 6 and interneurons in all layers. Excitatory 

cells represent about 70-80% of the cortical neurons and inhibitory cells the 20-30% remaining 

(Gabbott and Somogyi, 1986). This distribution is discussed in section 2.1.  

 Excitatory Neurons 

-Spiny stellate cells 

Cat layer 4 is actually subdivided into two compartments: layer 4A and layer 4B that are respectively 

the superior and the inferior part of Layer 4 (Lund et al., 1979). The separation of layer 4 into two 

sub-layers is justified by the terminal location of the projections coming from LGN. The Layer 4A 

inputs are mainly composed by fibers carrying Y-visual signals, whereas layer 4B receives inputs 

almost exclusively from fibers carrying X-visual signals. Lamina 4A contains small and medium spiny 

stellate cells and few pyramidal cells. Lamina 4B contains small spiny stellate cells and a few 

pyramidal cells. Neurons are more spaced in layer 4A than in layer 4B. Stellate cells have spiny 

dendrites that extend radially from their cell bodies and they do not possess apical dendrites (Meyer 
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and Albus, 1981). Their axonal projections form a diffuse projection of collaterals that can reach 

either layers 2/3 or layers 5/6. 

 

-Star pyramidal cells 

Star pyramidal cells have a shape in between stellate cells and pyramidal cells (Lorente de No, 

1949). They possess a thin apical dendrite in addition to basal dendrites surrounding their cell body 

and wide axonal projections (Martin and Whitteridge, 1984). 

According to Peters & Payne (1993) only a small amount of star pyramidal cells are located in the 

upper portion of layer 4. However, in electrophysiological recordings in layer 4 Martin & Whitteridge 

(also Tarczy-Hornoch et al., 1998) observed a higher number of star pyramid cells than those stated 

by Peters & Payne.  

 

-Pyramidal cells 

Pyramidal cells are present in all cortical layers except in layer 4. The pyramidal cell is a class of 

excitatory neurons that sends projections to sub-cortical areas or other cortical regions. 

 

Layers 2/3 Pyramidal cells: 

Small pyramidal cells are located at the top of layer 2. With increasing depth, the size of the pyramidal 

cells increases. Because of this linear increase in size, it is very difficult to determine a clear border 

between layers 2 and 3, hence these two layers are considered together. However, according to 

O’Leary (1941) a difference between layer 2 and layer 3 pyramidal cells can be made. Indeed, layer 

2 cells have short axons, whereas layer 3 cells have axons that extend into the white matter. 

Many studies have showed that layer 2/3 pyramidal neurons have complex projections. Indeed, they 

send projections to other visual areas (ipsilateral projections) but also towards the other hemisphere 

(callosal projections) (Einstein and Fitzpatrick, 1991). In addition to these projections, axons from 

pyramidal cells form collaterals that extend horizontally inside layer 2/3 (Kisvárday et al., 1986). 

These horizontal connections target other layer 2/3 pyramidal cells (the functional impact of these 

horizontal connections is discussed in sections 3 and 5.5 of this thesis) and local inhibitory 

interneurons. 

 

Layer 5 Pyramidal cells: 

Two classes of pyramidal cells are present in layer 5:  

o Small pyramidal cells, which have axons that extend basally for a short distance 

before arching upwards into layer 2/3 (Hübener et al., 1990). 

o Large pyramidal cells, which have apical dendrites that connect in layer 4 and layer 

2/3 and form a large terminal tuft in layer 1. Basal dendrites emerge from these neurons and make 

connections in layers 5 and 6 (Hübener et al., 1990). 

 

Layer 6 Pyramidal cells: 

Three sub-populations of pyramidal cells have been identified in layer 6 (Katz, 1987). 

o The first population (about 50% of the cells) sends projections to LGN and has 

collaterals in layer 4. 

o The second population (about 30% of the cells) sends axonal projections to a sub 

cortical structure called the claustrum. They also have collaterals that arborize in layer 6 and in lower 

layer 5. 

o The third population (about 30% of the cells) sends its axonal projections only to 

layers 6 and 4. 
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 Inhibitory neurons 

Inhibitory interneurons represent between 20% and 30% of the cortical neurons in V1 (Gabbott and 

Somogyi, 1986). These non-pyramidal neurons are present in every cortical layer and use GABA as 

their principal neurotransmitter. Their diversity is manifested in every aspect of their phenotype. 

Differences are found in morphological, electrophysiological and biochemical features (Markram et 

al., 2004; Petilla Interneuron Nomenclature Group et al., 2008). Because of these numerous 

features, in 2006, a group of studies (i.e. “The Petilla Interneuron Nomenclature Group”) proposed 

a nomenclature in order to allow a precise and universal classification of the various interneurons 

found in cortex (The Petilla Interneuron Nomenclature Group, 2008). The Petilla group classified the 

interneurons based on three main features: morphological, molecular and physiological. Each 

feature is organized in a logical hierarchical fashion. Figure 1.1.4 gives a summary of how the 

nomenclature is organized. 

 

Despite this vast number of different classes, a simpler classification linking both morphology and 

synaptic target criteria has been made (Tamás et al., 1997). From this classification, three main 

groups of inhibitory interneurons appear. Because of the complexity of the interneuron classification, 

we will only focus on these three main groups. 

 

-Chandelier cells  

The defining property of this neuronal type is the axon, which is very extensive and gives rise to a 

vertically oriented string of boutons (about 300 hundred) located in layer 2/3. These boutons will 

synapse with the initial axon segment of pyramidal cells (because of these connections, chandelier 

cells are also called axo-axonic cells). One cell makes about 10 axo-axonic contacts in the initial 

segment and one cell contacts around 150 pyramidal cells (Somogyi et al., 1985). 
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Figure 1.1.4. Summary of morphological, molecular and physiological features adopted by the Petilla classification. 

  



 

12 

 

 

-Basket Cells 

Basket cells can be divided into two categories: Large basket cells and small basket cells: 

 

-Large basket cells are located from layer 2 to layer 6, have an oval and elongated cell body, 

spineless dendrites and a long axon (Somogyi et al., 1998). Their main target is the soma of 

pyramidal cells (Kisvarday et al., 1993). However, they also target other basket cells. Therefore, it 

has been suggested that the inhibition of basket cells could facilitate the activation of sets of 

pyramidal cells (Kisvárday et al., 1993). 

 

-Small basket cells, also called “clutch cells”, are mainly located in layer 4. Their dendrites are 

smooth and their axons form clusters around cell bodies in layer 4. 

 

-Double bouquet cells 

Double bouquet cells are multipolar cells located in layer 2/3. They have smooth dendrites and their 

axons give rise to several descending bundles that go from layer 2 to layer 4 (Peters and Regidor, 

1981). Because of this descending axon, it is assumed that double bouquet cells are involved in 

vertical inhibition. Somogyi and colleagues (1998) have shown that this type of cell forms synapses 

with dendritic spines (about 70% of them) and with dendritic shafts (about 30% of them). 

 

In this first section, we described the early visual pathway, from the retina to the primary visual cortex. 

We looked in particular detail at the neuronal anatomy of V1, the visual area that is going to be 

studied in this thesis. As stated above, in addition to their morphological differences, both 

interneurons and excitatory neurons present segregating intrinsic properties. These intrinsic 

properties are more easily available to the experimenter than the morphology, thereby the 

description of these properties is a key point for the understanding of the results obtained during 

electrophysiological experiments.  

  



 

13 

 

 

2. ELECTROPHYSIOLOGICAL RECORDINGS OF CORTICAL ACTIVITY 

2.1. Diversity of discharge types among cortical neurons 

As discussed in the section above, neurons can be characterized by their morphology. However, 

each type of neuron also has its own physiological properties. During in vivo recordings of V1, only 

the physiological properties of the recorded neurons are immediately available to the experimenter.   

Therefore, by linking the neuronal morphology to its discharge type, evoked by injecting a pulse of 

depolarizing current and observing its current-voltage transfer function, one can more easily identify 

the type of cell being recorded.  

 

Two main classifications, linked to the recording technique, exist: An intracellular classification and 

an extracellular one. 

As described in annex 1, intracellular recordings allow the experimenter to inject a controlled amount 

of current, which in return, gives precise measurements of the electrical variations of a neuron. 

Hence, a very accurate characterization of the different spiking behavior is possible. However, it is 

important to keep in mind that intracellular solutions in the recording pipettes can perturb the firing 

of a neuron during whole cell patch recordings, and mechanical pressure of the tip on the membrane 

can alter firing recorded with sharp electrodes. Moreover, independently of the recording technique, 

the discharge type is not invariant. Indeed, the state of depolarization of the neuron can change its 

expressed conductance repertoire, thus changing the discharge type. On the other hand, 

extracellular recordings measure the potential difference between a reference and the extracellular 

medium. Therefore, a less precise description of the action potential of a single neuron can be made. 

In this section, we will describe the different neuronal characterizations that have been established 

for intracellular and extracellular recordings. 

2.1.1 Intracellular Classification 

In order to characterize the different discharge modes of V1 cells in the anesthetized cat, Nowak and 

colleagues (2003) performed a very precise and methodic classification that took advantage of the 

fact that intracellular sharp recordings allow the injection of a controlled amount of current or voltage. 

They were able to clearly distinguish four classes of neurons: 

 Regular Spiking neurons (RS) 

 Fast Spiking neurons (FS) 

 Intrinsic bursting neurons (IB) 

 Chattering neurons (CH) 

An example of firing behavior for each neuron is shown in Figure 1.2.1 

Their classification is based on the following criteria. First, they divided neurons into bursting and 

non-bursting neurons. Then, multiple variables were required to accurately discriminate the different 

cell classes. Indeed, using only one variable like the action potential width resulted in a big overlap 

between populations. In order to separate RS and FS neurons they examined the spike width and 

the spike frequency adaptation. Finally, to separate CH neurons from IB neurons (that both are 

bursting classes) the two-variable criteria applied was the careful examination of both action potential 

width and intra-burst frequency (another two-variable test that meticulously separates CH from IB is 

the intra-bust frequency and the burst inactivation indices).  
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Their careful analysis of the physiological properties of these four classes of neurons gave rise to 

different conclusions. Before discussing their results, it is important to note that the intracellular in 

vivo classification of neuronal classes is more complex than the in vitro one. Indeed, intracellular in 

vivo recordings are very complicated to perform, therefore reducing the number of recorded cells. 

Moreover, it is more complicated to have a good intracellular recording in vivo than in vitro. Finally, 

the synaptic activity (for example the neuromodulation) present in vivo can modulate the neuronal 

activity, in particular the bursting (Monier et al., 2008). The specificities of each recording technique 

can lead to a difference in the neuronal classification. Thus, when characterizing the 

electrophysiological properties of cortical interneurons, the advantages and limitations of every 

technique should be considered. 

 

-Regular Spiking neurons 

Regular spiking cells, like fast spiking cells are non-bursting neurons. In order to separate these two 

neuronal groups, a two-variable criterion has to be applied. When a train of action potentials is 

generated, RS cells show spike frequency adaptation and have spike widths that are, on average, 

broader than those of FS (or CH neurons). Their two-variable classification method allowed them to 

divide RS cells into two subclasses: Thin RS cells and “classic” RS cells. Thin RS cells have briefer 

action potentials and show less adaptation. 

 

Intracellular recordings allow the injection of biocytin, a neuronal stain that labels the soma, the 

dendrites and the axons of the recorded cell. By injecting biocytin many authors have been able to 

identify the cell type and locate the recorded RS cells across the cortex (Tamás et al., 1997)  

RS cells represent a vast variety of excitatory neurons: pyramidal cells in layers 2-6, spiny stellate 

cells in layer 4 and polymorphic cells in layer 6. 

 

However, this classification may lead to an overestimation of the % of excitatory cells, since it has 

been shown, in vitro, that inhibitory interneurons can have the characteristics of a RS cell (Markram 

et al., 2004) 

 

-Fast Spiking neurons 

Another identified electrophysiological class are the fast spiking neurons.  

They are non-bursting cells, with trains of action potentials that shows very little spike frequency 

adaptation, have a spike width thinner than RS cells and present a steep slope when the firing rate 

vs. current intensity is plotted (f-I curves). Two subclasses of FS cells, based on the differences of 

the f-I curve, have been identified: The classic FS cells that have a steep f-I curve and the “less steep 

f-I” FS cells. 

FS neurons seem to be only GABAergic neurons, in particular basket cells and paravalbumin positive 

neurons (Nowak et al., 2003).  However, it is important to keep in mind that all FS cells seem to be 

interneurons, but not all interneurons are FS cells (Markram et al., 2004).  

 

-Chattering neurons 

As stated in the section above, chattering cells are a subclass of bursting neurons. They are 

characterized by a spike width less than 0,5 ms and an intra-burst frequency greater than 350 Hz. 

By blocking ionic channels in visual cortex slices, Brumberg et al. (2000) showed that chattering is 

mediated by sodium and potassium currents and does not rely on calcium currents. Two subclasses 

of chattering neurons, CH1 and CH2, have been identified with a two-variable criteria. CH cells have 

been identified in many different areas and species like raccoon, ferrets or other cat cortices 
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(Brumberg et al., 2000; Istvan and Zarzecki, 1994; Steriade et al., 1998). They do not seem to be 

very common in rodents, however an in vitro study reported CH cells (called “fast rhythmic bursting 

neurons”) in slices of rat primary and secondary auditory cortices (Cunningham et al., 2004). 

Chattering cells have been mostly identified as pyramidal cells in layer 2/3. These cells send their 

projections to higher cortical areas or to many cortical regions in the contralateral hemisphere. 

Chattering cells can also be identified extracellularly and seem to be linked with the generation of 

synchronous gamma oscillations in networks of cortical neurons (Gray and McCormick, 1996). The 

extracellular classification of CH neurons will be discussed in the following section. 

 

-Intrinsic Bursting neurons 

Intrinsic Bursting cells, like chattering cells, are bursting neurons. These groups are separated based 

on two criteria. IB neurons have a spike width greater than 0.5 ms and an intra-burst frequency less 

than 350 Hz. The burst itself is very stereotyped, with a high amplitude first action potential followed 

by smaller amplitude action potentials. In vitro results seem to indicate that bursting is linked to the 

activation of an intrinsic sodium current (Nishimura et al., 2001) whereas the end of bursting is linked 

to the inactivation of potassium and sodium channels (McCormick et al., 1985). Their two-variable 

classification method separated IB neurons into three different subclasses: IB1, IB2, IB3 (Nowak et 

al., 2003). 

Intrinsic bursting cells have been identified as pyramidal cells in many cortical regions of different 

species, in layers 2/3, 5 and 6 (Agmon and Connors, 1989; Chen et al., 1996; Nishimura et al., 2001).  

Even though IB neurons are found in many layers, they are essentially present in layer 5. These 

pyramidal neurons possess an apical dendrite extending to layer 1 and horizontal axon collaterals 

in layers 5 and 6. Some of these neurons send their projections to subcortical areas. 
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Figure 1.2.1: example of action potential responses to depolarizing currents (reprinted from Nowak et al., 2003). Aa: 
Regular spiking cells recorded intracellularly. Ab: averaged spiking activity. Ba: Fast spiking cells recorded intracellularly. 
Bb: averaged spiking activity. Ca: Chattering cells recorded intracellularly. Cb: averaged spiking activity. Da: Intrinsically 
bursting cells recorded intracellularly. Db: averaged spiking activity (reprinted from Nowak et al., 2003) 
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2.1.2 Extracellular Classification 

As discussed in annex 1, extracellular recordings measure the potential difference between the local 

recording site in the extracellular medium and a “ground” reference and cannot be used to inject 

current in the neighboring cell as can be done intracellularly. The capacitive derivation of the 

recorded and injected currents depends greatly on the distance from the axon hillock and the 

geometry of the axon relative to the electrode (Houk et al., 1995). Hence, the classification of 

extracellular spiking activity into the four subtypes described above becomes a “risky business” since 

many criteria rely on direct measures of I/V relationships in response to test current patterns 

(McCormick et al., 1985; Nowak et al., 2003). 

 

However, Nowak and colleagues (2003) suggest that some of their two-variable criteria can be used 

to separate CH cells and IB cells even when recorded extracellularly. Indeed, extracellular studies 

in the past identified CH-like neurons (Gray and McCormick, 1996) and described cells possessing 

the bursting properties of CH cells (Friedman-Hill et al., 2000; Gray and Singer, 1989). With the 

emergence of silicon probes, allowing simultaneous recordings of dozens of neurons, neuron 

classification has become more and more common (Barthó et al., 2004; Cardin et al., 2009; in 

rodents; Peyrache et al., 2012 in humans; but see Bachatene et al., 2012; Chen et al., 2015 for a 

classification in cat primary visual cortex). Yet, these extracellular studies only classified two types 

of cells: regular spiking and fast spiking neurons.  

 

The bursting activity of the cells can vary depending on what anesthetic, depth of anesthesia, or type 

of stimulation is used. Unlike intracellular recordings, extracellular recordings do not allow a 

modulation of the spiking activity by current injection. Therefore, it is impossible to rely on the bursting 

activity to reliably classify neurons, hence reducing the number of neuronal classes (Bartho et al., 

2004). In addition, CH cells are very rare in primary visual cortex (Nowak et al., 2003). Because of 

this methodological constraint, in this section, we will only focus on the two main neuronal classes 

described in extracellular studies: Regular Spiking neurons and Fast Spiking neurons. 

 

-Regular Spiking Neurons 

Extracellularly, RS neurons are identified using many parameters. Like the intracellular classification, 

two-variable criteria are always used. Many different measures can be paired in order to efficiently 

discriminate RS cells. The most commonly used two-variable criteria are spike width vs firing rate 

(Guo et al., 2014, study performed on rodents), peak to peak value vs firing rate (Chen et al., 2015, 

study performed on cats) and peak to peak vs half peak width (Peyrache et al., 2012, study 

performed on humans). All the measurements made on the waveforms are detailed in Figure 1.2.3. 

It is important to note that some studies only use peak to peak to determine if neurons are RS of FS 

(Isett et al., 2018 study performed on rodents). Despite the fact that the intrinsic properties of the 

cells are not equivalent across species (Mochizuki et al., 2016), these criteria allow a discrimination 

between RS and FS neurons in all species. Indeed, in all species, regular spiking neurons present 

a lower firing rate, a higher peak to peak value, and a higher half peak width than fast spiking 

neurons. 

 

Extracellularly, regular spiking neurons are commonly accepted as excitatory neurons (Peyrache et 

al., 2012; Chen et al., 2015) but as described in the above section, some interneurons can display 

characteristics of an RS cell. Risks for this potential mistake highlight the requirement for controls, 

such as the one performed by Peyrache and colleagues (2012). Indeed, by computing the cross-
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correlations between cells, these authors were able to evaluate if the recorded FS or RS cells were 

inhibitory or excitatory, respectively. 

 

-Fast Spiking Neurons 

Extracellularly, FS neurons are identified by applying the same set of parameters used for RS 

classification. 

Fast spiking neurons present a higher firing rate, a lower peak to peak value and a lower half peak 

width compared to FS neurons. Fast Spiking neurons are often thought of as inhibitory neurons. 

Indeed, as we described above, when the classification is made intracellularly, all the FS cells are 

inhibitory neurons (Nowak et al., 2003). Yet, since extracellular classification focuses mainly on the 

waveform and its shape, because of their very close width at half height, chattering cells can easily 

be classified as fast spiking cells (see Figure 1.2.1 for the waveforms and Nowak et al., 2003 for the 

spike width). Considering that, it is very important to be careful when drawing conclusions about the 

recorded cells. One cannot state that they are recording exclusively inhibitory neurons when 

speaking about FS cells. 

 

 

Figure 1.2.3: Examples of extracellular RS/FS classification. A. Measurements used in order to classify the recorded 
neurons. B. Regular spiking neurons (in blue) and fast spiking neurons (in red) recorded with a Utah array. C. Example of 
classification using a two-criteria test. D. Regular spiking neurons (in blue) and fast spiking neurons (in red) recorded with 
a silicon probe (in black, waveforms not classfied). E. Example of classification using another two-criteria test. (A, B, C: 
modified from Peyrache et al., 2012; D, E: modified from Guo et al., 2014) 

 

In Figure 1.2.3, we show a panel of classical plots obtained when different two-criteria tests are 

applied to separate FS neurons from RS neurons. In Figure 1.2.3-B, these waveforms have been 

obtained with the Utah array (Peyrache et al., 2012), whereas the waveforms in 2.2-D are obtained 

with silicon probes (Guo et al., 2014). These figures highlight the fact that the waveform shape also 

depends highly on the type of probe that is used. Indeed, waveforms recorded with Utah arrays and 
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silicon probes are different (Lewicki, 1998). As the classification relies on the waveform shape, 

variations of the tools complicate the comparison of neuronal classification used across different 

studies. 

Despite the described criteria being the most popular ones, other methods allow neuronal 

classification. In this thesis, we used a novel technique based on principal components analysis 

(PCA). The PCA is a statistical procedure that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly uncorrelated variables. 

We performed this PCA on seven different features present in the waveforms. This novel technique 

is described in detail in the methods section. 

 

The above description of intrinsic properties of V1 neurons is not sufficient per se to understand how 

V1 works. In this regard, one needs to understand how the cortical microcircuitry is organized. 

Indeed, the different neuronal types in V1 are connected together into complex but partially 

stereotyped circuits. This connectivity was first studied by Douglas and Martin (1991). By performing 

intracellular recordings in cat primary visual cortex, they developed a model of V1 microcircuitry that 

simulated their experimental data. Since this first publication, the knowledge about these 

microcircuits has been updated (see Frégnac and Bathellier, 2015; Harris and Mrsic-Flogel, 2013 for 

review). These authors showed that visual processing implies other circuits such as the thalamic and 

intra-cortical ones but also the feedback connectivity from higher areas. Thus, in order to understand 

how microcircuits participate in visual processing, a description of these is necessary.  
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3. FUNCTIONAL MICROCIRCUITS OF CAT PRIMARY VISUAL CORTEX 

In this section, we will describe the general organization of the cortical microcircuit and the different 

steps of visual processing linked to this organization. We will first focus on how the visual information 

flows from the thalamus to V1, then how this information is processed within V1. Finally, we will 

describe primary visual cortex feedforward and feedback inputs.  

3.1. Visual processing intrinsic to V1   

3.1.1 Thalamic inputs 

Neocortical circuits have been extensively studied in the past 60 years. Cat and primate sensory 

cortices have been the most studied models. From these studies, a general pattern of cortical 

organization and functional architecture in primary sensory areas, developed hereafter, has 

emerged. 

 

Cat primary visual cortex receives visual information from LGN (Wilson and Cragg, 1967). Three 

visual streams come from this structure and project to V1: X-visual stream, Y-visual stream and W-

visual stream. X-cells located in layers A and A1 of LGN send their projections to layer 4, in particular 

layer 4B, and layer 6. Y-cells which are also located in layers A and A1 of LGN, project to the bottom 

of layer 3, layer 4A and layer 6.  

X-cell and Y-cell inputs compose the majority of the thalamic inputs received by V1, about 40% each, 

with the remaining 20% being W-cell projections. These W-cells are located in thalamic layers C1, 

C2 and C3 and send their projections to layer 1, the bottom of layer 3 and the top of layer 5 (LeVay 

and Gilbert, 1976) in V1. Figure 1.3.1 illustrates the thalamic inputs coming to V1. 

Despite being the principal recipient of thalamic projections, only 5% of layer 4 synapses are derived 

from LGN. However, these synapses drive very strongly the visual response in V1, implying that they 

are potent effectors of excitation (Peters and Payne, 1993). 

3.1.2 Intra V1 inputs 

Based on their intracellular recordings and intracellular staining, Gilbert and Wiesel, 1983 provided 

one of the first descriptions of the “vertical” information flow intrinsic to the anatomy of each columnar 

subunit.  
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Figure 1.3.1: Diagrams of thalamic innervation in area 17 of cat visual cortex (reprinted from Payne and Peters, 2002). X 

corresponds to X-cell thalamic inputs, Y corresponds to Y-cell thalamic inputs, W corresponds to W-cell thalamic inputs. 
A, A1 and Cp correspond to the different thalamic layers. 

 

Visual information arrives in layer 4 and layer 6 through thalamic inputs coming from LGN. The 

excitatory cells in layer 4 project to superficial layers. Layer 2/3 pyramidal neurons project to layer 5 

which in turn projects to layer 6 and superficial layers. The loop is closed with projections from layer 

6 to layer 4, but also to superficial layers (Gilbert and Wiesel, 1983, 1989; Hirsch et al., 1998; Lund 

et al., 1979).  

 

In addition to these “vertical” connections, a plexus of horizontal connections linking distant columns 

across the V1 network is found originating mostly in layers 2/3, layers 5 and 6. In layer 2/3, pyramidal 

neurons have collaterals that extend horizontally and connect to other pyramidal neurons up to 8mm 

apart (Gilbert & Wiesel, 1989). Intracellular studies by the group of Frégnac showed, on the basis of 

electrophysiological measurements, that these long-distance connections intrinsic to V1 most likely 

send their message through unmyelinated axons (Bringuier et al., 1999; Frégnac, 2012; Gerard-

Mercier et al., 2016). The apparent propagation speed of the message through horizontal 

connections is around 0.1-0.4 m/s. This speed of propagation is around ten times slower than the 

one observed for X-thalamic axons and one hundred times slower than what is observed for Y-

thalamic axons (for review see Fregnac, 2012). Initially, the lateral connections were thought to make 

connections with neurons sharing the same functional properties. This has been proved to be more 

complicated. A recent study performed by Martin and colleagues (2014) showed, intracellularly and 

with optical recordings, that lateral connections also exist between neurons that do not share the 

same functional properties. In addition, a study performed by the laboratory (Gerard-Mercier et al., 
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2016) showed that neurons receive predominantly iso-oriented inputs from neighboring V1 

hypercolumns, with gradually weaker and more radially biased inputs the further away from the RF 

center. A more recent study from Frégnac’s laboratory has inferred that precise spatiotemporal 

constraints can lead to the boosting of sensory responsiveness that depends on the relative timing 

(imposed by the visual input pattern) of the feedforward and horizontal inputs to the same V1 neuron 

(Le Bec, 2017). These subthreshold responses could play a role in the genesis of different visual 

processes such as figure-ground segregation, collinearity detection, and global motion flow 

sensitivity at saccadic speeds.  

In parallel with supra-granular connections, some horizontal connections arise from laterally 

extending axons of layer 6 pyramidal cells that arborize in layers 5 and 6 (Katz, 1987) and may be 

fast conducting. The functional role of all the horizontal connections is described in sections 5 and 7 

of this introduction. 

3.2. Feedforward and feedback connectivity 

We have described so far, the connectivity intrinsic to cat primary visual cortex, however some 

projections involve different areas. They are usually classified in two types: Feedforward and 

feedback connections.  

 

Feedforward projections to other cortical areas originate from layer 2/3 pyramidal neurons and target 

layer 4 of higher visual areas, such as A18, 19, A20 or A21a (Einstein & Fitzpatrick, 1991; Scannell 

et al., 1995; Huan et al., 2007). 

Layer 5 pyramidal neurons send their feedback projections to subcortical structures like the superior 

colliculus, whereas layer 6 pyramidal cells project to the LGN (Thomson and Lamy, 2007). 

Cat primary visual cortex also receives feedback inputs coming from higher visual areas. These 

inputs target layers 2/3 and layers 5/6 (Binzegger et al., 2004). Primary visual cortex receives 

feedback inputs from areas 18, 19, 20 and 21a but also from the posteromedial lateral suprasylvian 

area (PLMS; Bullier et al., 1984). In addition, it has been found that other sensory cortices, such as 

primary auditory cortex project to V1 (Hall and Lomber, 2008). Callosal projections also connect the 

primary visual cortices of the two cortical hemispheres (Houzel et al., 1994). The interactions 

between two cortical areas are summarized in Figure 1.3.2. 
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Figure 1.3.2:  Graph of the dominant interactions between significant excitatory cell types in neocortex and their subcortical 

relations (reprinted from Douglas and Martin, 2004).Area A and B refer to two different cortical areas, with area A being 
the lowest in the visual hierarchy. LX refers to the layer, P refers to excitatory neurons, Thal to the thalamus and Sub to 
other subcortical structures.  

3.3. LAMINAR PROCESSING WITHIN THE CORTICAL COLUMN  

Depending on the type of stimulus used, the anatomical organization of the cortical circuitry can 

result in a very stereotyped visual response. Indeed, a strong activation of the thalamic inputs, either 

electrically or visually, will lead to strong responses in the layers receiving thalamic inputs followed 

by a response in the other layers (Watabe et al., 1966; Mitzdorf, 1985). With the emergence of multi-

electrode arrays, in particular linear silicon probes, recordings across all cortical layers have become 

more and more common, allowing the instantiation of current source density (CSD) analysis (Jin et 

al., 2011a, 2008; Mitzdorf, 1985). Linear silicon probes allowed experimenters to easily identify each 
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layer by recording the LFP across the whole cortex during simple stimulation protocolsand then 

computing the CSD of the responses (see Annex 1). We will describe the classical CSD pattern in 

cat V1 and link it to the anatomical data we described.  

 

The most common way to identify cortical layers in a primary cortex is to take advantage of the 

geniculate inputs coming to layers 4 and 6. These projections create an early and stereotypical “sink” 

signature in these two layers and a strong “source” signal in layer 5 (layer 2/3 is deducted based on 

these clues, see Figure 1.3.3). It is then necessary to strongly activate the thalamic neurons 

projecting to V1. Two possible methods can be used to fulfill this purpose. The first one resides in 

the electrical stimulation of the LGN which leads to a strong activation of thalamic inputs projecting 

to primary visual cortex. This stimulation is characterized by a strong sink in layers 4 and 6 but also 

by a source current in layer 5 (Jin et al., 2011 and Figure 1.3.3). The second option consists in the 

use of a visual stimulation that will activate the LGN fibers projecting to V1 in a stereotypical manner. 

The most commonly used stimuli are fast flashes of white or black squares (see the results section 

of this thesis for examples in cat V1). 

 

 
Figure 1.3.3: Current source density on cat primary visual cortex (reprinted from Jin et al., 2011). In red sink currents, in 

blue source currents. Time 0 correspond to the electrical stimulation of the LFN. 

 

Even though CSD is often used to perform an experimental layer identification, this technique can 

be exploited for other analysis. For example, in primates, Bijanzadeh and colleagues (2018) revealed 

with a CSD analysis how horizontal connections were activated after a surround visual stimulation, 

that was designed in order to preferentially activate these horizontal connections (Figure 1.3.4; the 

impact of the surround on visual processing is discussed in section 5.3).  

 

 

 

 

 

 

 



 

25 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.3.4: Example of current source density on primate primary visual cortex after a stimulation activating preferentially 

L2/3 and L5/6. In blue: sink (reprinted from Bijanzadeh et al., 2018). 

 

In this section, we described the organization of the visual cortical microcircuit. We showed that 

these microcircuits are composed of different anatomical pathways from which different cortical 

responses could emerge. The stimulation of this circuitry with very simple stimuli such as black and 

white squares induces a very stereotyped response reflecting a well-identified circuit. However, other 

stimuli will likely evoke different patterns of activation, relying on other mechanisms and circuits like 

those recruited by the center surround interactions (described in detail in section 5). The use and 

characterization of more complex stimuli is then necessary to deepen our understanding of the visual 

circuitry. The next section will aim at deciphering how these complex stimuli lead to the identification 

of new functional mechanisms and an explanation of these mechanisms will take place in the next 

sections. Important points about the features that need to be tested and how they can be tested will 

follow these descriptions in all following sections.  
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4. VISUAL STIMULATION 

The pioneering work of Hubel and Wiesel (1959), that revealed the existence of RFs in V1, was 

performed with very simple visual stimuli like bars and dots. For almost 30 years, this type of visual 

stimulation was repeatedly used (Olshausen, 2013). However, at the end of the 1980’s, more 

complex stimuli, such as natural images, emerged in the field. Every stimulus has its own statistical 

properties and can be defined mathematically. We will distinguish, somewhat arbitrarily, four types 

of visual stimulation. 

 

The first one is the artificial stimuli that have been widely used for the past 60 years by sensory 

electrophysiologists. The most common ones are point-like light or dark impulses, bars, dots, sine 

waves or noise. The choice of such stimulus obeys principles of linear systems theory for impulse-

like stimuli, since if the system is linear, the response will be the transfer function. Moreover, Fourier 

analysis can be used for characterizing the modulation transfer function, as employed in optical 

systems. One important aspect of artificial stimulation is that the experimenter can define and control 

parametrically the statistics of the stimulus, allowing the precise knowledge of the features that 

modulate the neuronal response 

 

A second class of stimulus is derived from ethological biology principles and is based on the working 

assumption that some features represent invariant universals shared in a given species (see for 

instance (Eckert and Zeil, 2001)). These highly specific features regroup low-level features known 

to imprint social behavior or trigger feeding, mating and survival reflexes in a species-specific way. 

The “worm” is a stereotypical shape encoded by retinal and collicular trigger features. The “predator” 

feature encoding can be suppressed by inverting the direction of movement of the stimulus, 

transforming it, for example, from a frightening hawk to a friendly goose. Such stimuli have been 

used across lower vertebrates with great success in retina, colliculus and other subcortical 

structures. 

 

The third type is defined by natural scene statistics which correspond to scenes from our 

environment. A singular characteristic of natural scenes is that their spectral power falls with 

frequency “f”, according to a power law “α”, which leads to a power spectrum of 1/ fα (Tolhurst et al., 

1992). Different theories emerged in order to explain why natural images follow this power law. The 

most common one is the scale invariance of the visual world. This means that the statistical 

properties of the image should not change if one changes the observation scale (Simoncelli and 

Olshausen, 2001). Spatially rescaling the coordinates of an image by a factor of α leads to a rescaling 

of the corresponding Fourier domain axes by a factor of 1/α. Only a spectrum that falls as a power 

law will retain its shape under this transformation. Another common theory is that the power spectrum 

of natural scenes emerges from the presence of edges in images since their power spectrum follows 

a 1/f² power law (Simoncelli and Olshausen, 2001). The edges present in natural images hold also 

another interesting property. Indeed, Geisler et al., (2001) reported that edges present in natural 

images showed a strong co-occurrence. These co-occurrences form a “binding strength” allowing 

the visual processing of the image.  

 

A fourth category of stimulus can also be defined by its closeness to natural statistics. As described 

earlier, one important aspect of artificial stimuli is the fact that the experimenter can define and 

control parametrically the statistics of the stimulus. However, performing this fine control with natural 

images is impossible. Therefore, when studying natural scenes, the experimenter has few cues 
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about the key feature of the visual statistics that induced the response and new composition methods 

for creating “artificial” with partial natural statistics need to be developed (Rust and Movshon, 2005). 

New stimuli containing some features of natural images have been developed in the past years 

(Goris et al., 2015; Leon et al., 2012; Vacher et al., 2018). These stimuli, such as motion clouds 

(MC), which have been implemented in our laboratory (Vacher et al., 2018), allow the dynamic 

control of texture movies where many parameters such as speed, direction, orientation are 

parametrized experimentally in order to match the statistics of natural scenes. Therefore, these 

stimuli allow the precise study of naturalistic features but cannot be considered as natural stimuli nor 

artificial stimuli. 

 

In this section, we will review more in depth three of the four types of stimuli (since they apply to the 

experimental work of the thesis) and their use in visual cortical neurosciences. We will describe 

studies performed in cats, but when needed we will also mention primate (both human and non-

human) and rodent studies. 

4.1. Artificial Stimuli 

One of the major studies performed in cat primary visual cortex is the RF study by Hubel and Wiesel 

(1959; 1962; 1968). They discovered many functional properties in V1 by using very simple artificial 

stimuli: bars and squares. Rather than using isotropic stimuli (dots and annuli) used in retinal and 

thalamic sutides, they discovered by accident (slip of the negative film border in the slide projector) 

that anisotropic stimuli such as white or black bars were much more efficient at triggering spiking 

activity in visual cortical neurons. By flashing and moving small black or white squares on a grey 

screen, the existence of receptive fields in cat primary visual cortex was revealed. The bars that 

were shown at different orientations and moved in different directions allowed them to highlight two 

important functional properties of V1: Orientation and direction preference of V1 neurons (these 

functional properties will be discussed in section 5 of this manuscript). 

 

With two very simple artificial stimuli, Hubel and Wiesel made fundamental discoveries about V1. 

However, despite being a primary sensory region, V1 is a highly complex visual area. In order to be 

able to study its other functional properties, more complex visual stimuli were needed. The most 

common artificial stimuli in vision are Drifting Gratings (DG) and Dense Noise (DN). 

DG are sinusoidal gratings that drift in a direction perpendicular to the orientation of the grating. Like 

bars, they permit to test the orientation and the direction preference of the recorded cells but also to 

explore other functional properties like temporal frequency, spatial frequency, contrast, or phase 

(these functional properties will be discussed in detail later on the next section of this thesis).  

 

DN, also called pixel white noise, is a stimulus where the luminance of each pixel on a screen is 

chosen randomly and independently of all other pixels in the same or any other stimulus frame. DN 

is used for the identification of receptive fields. The luminance’s alternation of the dense noise can 

be binary (black and white), ternary (black, grey (mean luminance) and white) and even more 

discretized. However, researchers have mainly used binary and ternary dense noise. 

 

Figure 1.4.1 gives a both description of the spatio-temporal properties of the DG and DN and their 

frequency content. DG have a very simple spatio-temporal content and show high power spectral 

density (PSD) only on the frequency of the grating (and its harmonics). On the other hand, DN have 

a very complex spatio-temporal profile and a flat PSD.  
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Figure 1.4.1 A. Left column: Example of two artificial stimuli. Middle column: Temporal variation of a given pixel. Right 

column: Spatio temporal power spectrum for each stimulus. Yellow arrow: direction of the drift. B. Average power spectrum 
of the luminance for one pixel (modified from Baudot et al., 2013). 
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4.2. Natural Stimuli 

Despite the complexity of artificial stimuli, their statistical properties are far from those observed in 

natural images. Indeed, the latter are a complex mixture of many different visual features present in 

artificial stimuli like orientation, contrast, luminance or spatial and temporal frequencies. Among 

these statistics we can separate first order statistics (i.e. the local luminance distribution), and higher 

order statistics (i.e. the covariance; Geisler, 2008; Simoncelli and Olshausen, 2001). The first 

insights into complex statistics of visual stimuli came from a study by Brunswik (1943). His 

psychophysical experiments, in humans with natural images, demonstrated that size estimates were 

more related to object measurements than retinal size and hence provided evidence for the 

phenomenon of size constancy, implying that the visual system is adapted to the natural statistics of 

the environment. 

Indeed, the hidden assumption is that the functional features of our visual system adapt to the 

“natural environment” through adaptive changes, most of which occur during one or several “critical” 

periods of postnatal development (Pecka et al., 2014). 

 

Since the end of the 1990’s, interest in the statistics of natural scenes has grown. Three main 

characteristics of natural images have emerged and will be explained hereafter. 

4.2.1 Luminance and contrast 

Contrast of edges, luminance polarity and to a lesser extent luminance level are visual features that 

are encoded by V1 neurons. Many studies have focused on the effects of local contrast and 

contextual luminance changes on neurons. In Figure 1.4.2-A, an example of luminance and contrast 

across a natural image is shown. The distribution of local luminance within a natural scene is 

classically obtained by dividing the luminance at each pixel by the average luminance of the whole 

image. Figure 1.4.2-B shows a classical luminance distribution. Relative to the mean luminance, 

there are more dark pixels than bright pixels (Brady and Field, 2000). There are many definitions of 

local contrast. One of the most used is the distribution of local root-mean-squared contrast, which 

corresponds to the standard deviation of luminance divided by the mean luminance (Mante et al., 

2005). Figure 1.4.2-C shows a typical contrast distribution for a natural scene.  

 

As shown in Figure 1.4.2-A there are large variations of contrast and luminance in a natural image. 

These variations in local luminance and contrast are nearly statistically independent. (Mante et al., 

2005). For example, the joint distribution of luminance and contrast of the natural scene in Figure 

1.4.2-A has a small positive correlation (r = 0.15; see Figure 1.4.2-D). This statistical independence 

is directly linked to the typical phase of natural images, indeed 1/f noise does not have this property 

(Mante et al., 2005). 
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Figure 1.4.2. A. Example of a natural image and its contrast and luminance distribution. B. Typical luminance distribution 
for a natural scene. C. Typical contrast distribution for a natural scene. D. Joint distribution of luminance and contrast. (A: 
reprinted from Mante et al., 2005; B,C,D: reprinted from Geisler, 2008). 

4.2.2 Spatial Statistics 

The majority of the visual information extracted by the retina is contained in the spatial pattern of 

luminance (Geisler, 2008). A spatial characteristic of natural images, which is consistent across 

scenes, is the Fourier amplitude spectrum. The classical amplitude power spectrum obtained for 

natural images is 1/fα where f is the spatial frequency and α is the value of the slope (Field, 1987; 

Rikhye and Sur, 2015a; Ruderman and Bialek, 1994). Based on this finding, a simple spatial model 

of natural images will be one with a 1/f amplitude spectrum and a random phase spectrum. This 

artificial image is also called 1/f noise because it corresponds to a sample of filtered Gaussian noise. 

Such an image does not contain any edges, orientation or any other structure expected in a natural 

scene (Figure 1.4.3-A). One can wonder if this type of image is adapted to the study of natural 

scenes. When we compare the response of a Gabor filter (a simple model of V1 neurons) to the 1/f 

noise and a natural image the distribution is not a Gaussian for the natural image. Indeed, if natural 

images were Gaussian, their whitening would result in an image without any correlations. Yet, a 

whitened natural image still contains obvious structures like edges, lines or contours (Figure 1.4.3-

B).  
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Figure 1.3.4. A. 1/f Gaussian noise. B. Whitened natural image (reprinted from Simoncelli & Olshausen, 2001) 

 

Because of all this remaining structure, a more complete description of the spatial structure of natural 

images can be obtained by examining the joint statistics of responses from pairs of local sensors. 

For example, if there is a large response from an oriented edge sensor, then it is likely, because of 

the regularities found in natural scenes, that a neighboring collinear edge sensor also has a large 

response. Indeed, natural scenes contain many contours that tend to be relatively smooth and to 

have a significant spatial extent. Edges that are parallels but not collinear are also observed. This is 

linked to the fact that natural images have a strong occurrence of parallel features. However, even 

when there is no correlation between the responses, these parallel features are often statistically 

dependent (Geisler, 2008). The responses of two sensors, RF1 and RF2, are uncorrelated but RF2’s 

variance increases as a function of RF1’s magnitude. This shows that strong features tend to cluster 

in natural scenes. Therefore, when a strong response happens, other strong responses tend to occur 

nearby. 

 

Another way to produce a complete description of natural images is to examine the joint statistics of 

the natural image (Felsen et al., 2005; Geisler, 2008). For example, if we compare the orientation of 

a central patch (or pixels) to the orientation of surrounding patches, the probability that their 

orientation is the same is high (Figure 1.4.4-A; 4.4-B). Dimensionality reduction approaches such as 

PCA and ICA (independent component analysis) are used for characterizing these joint statistics 

(Geisler, 2008). 

 

A study performed by Rikhye and Sur (2015) showed that spatial correlations are necessary in order 

to obtain a reliable response in mouse V1. In addition, Coen-Cagli and colleagues (2015) found that 

the spatial correlations have a strong impact on the center-surround modulations. These results 

highlight the crucial role of spatial correlations in the encoding of natural scenes. 
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Figure 1.4.4 A. Example of a natural image. Magenta corresponds to the target patch and blue to the context patches. B. 

Probability that the context and the target patches have the same orientation (reprinted from Schwartz et al., 2007). 

4.2.3 Temporal Statistics 

The measurement of temporal statistics in natural scenes is much more difficult and trickier than for 

spatial statistics. Indeed, in order to obtain realistic time varying description of the retinal input, it 

requires tracking of the eye, head and body while the animal explores its environment. Additionally, 

one needs to account for the motion effects of the visual scene unrelated to the observer. 

 

Some studies managed to fulfill some of these requirements. Kayser and colleagues (2001) mounted 

a camera on a cat’s head in order to obtain movies capturing the temporal statistics of a cat 

environment. Despite the difficulty to obtain exact representations of temporal statistics, reasonable 

approximations have been made using video clips from movies or cameras. Dong and Atick (1995) 

computed the three-dimensional Fourier transform on short movie segments in order to estimate the 

spatio-temporal power spectrum of natural scenes and highlighted a dependency between spatial 

and temporal frequencies. For both spatial and temporal frequencies, the slope of the power 

spectrum becomes shallower for high frequencies (Figure 1.4.6).  
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Figure 1.4.6. Spatiotemporal power spectra of natural images. Left panel: Spatial power spectra measured at different 

temporal frequencies (1.4, 2.3, 3.8, 6, and 10 Hz, from top to bottom). Right Panel: Temporal spectra measured at different 
spatial frequencies (0.3, 0.5, 0.8, 1.3, and 2.1 cpd, from top to bottom). The solid curves show the expected spectra if the 
world is modeled as collection of patches of spatial 1/ f noise that are each undergoing translation locally at some random 
velocity. Reprinted from Geisler (2008) 

 

Similar to spatial statistics, temporal statistics are highly correlated in neighboring pixels. If we 

compare the orientation of a central patch (or pixels) to the orientation of surrounding patches across 

time, the probability that their orientation is the same is high (Figure 1.4.7-A; 1.4.7-B). 

 

 
Figure 1.4.7. A. Example of a natural image. Magenta corresponds to the target patch and blue to the context patches. B. 
Probability that the context and the target patches have the same orientation (reprinted from Schwartz et al., 2007). 

 

One very important aspect that should not be neglected is the reflex (nystagmus) or voluntary 

movements linked to eye-head-body coordination. Indeed, mammals, from primates to rodent, 

perform eye and head movements while exploring a visual scene (Samonds et al., 2018). Eye 

movements are composed of drifts, tremors, micro-saccades and saccades (Baudot et al., 2013), 

that drastically influence the visual inputs. Indeed, making a saccade will bring a new visual input 

uncorrelated with the previous one (Samonds et al., 2018). The saccades are thought to be 

calibrated as a function of the environment in order to optimize the visual processing of the scene 

(Samonds et al., 2018). All mammals perform saccades and head movements to process a visual 

scene. However, the exploration strategy can differ depending on the species. Higher mammals, 

such as cats or primates use head movements for very large shifts in gaze (Guitton et al., 1984; 
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Morasso et al., 1973). However, marmosets also use head movements for small shifts in gaze, 

similar to the ones performed with saccades (Mitchell et al., 2014).  

Contrary to higher mammals that explore their surroundings in a binocular manner, rodents (which 

are prey), disconjugate their eyes in a natural environment (Wallace et al. 2013). To do so, one eye 

processes the information coming from the close environment, while the other one processes the 

information coming from the visual field above the animal, to anticipate predator  attacks. 

Because cats, the experimental model of this work, only perform head movements for large shifts, 

we will not look at their impact on visual processing. However, previous studies (Baudot et al., 2013; 

Samonds et al., 2018 but also Vinje & Gallant, 2000) showed the importance of eye movements for 

visual processing. These studies showed in anesthetized and awake animals that eye movements 

have a strong impact on the efficiency of the coding (results commented in section 7). Therefore, it 

is essential to develop a model of natural stimuli where these eye movements are simulated in order 

to account for the natural behavior of the studied model.  

 

In a paper called A natural approach to studying vision, Felsen and Dan (2005) claim that the best 

way to understand how V1 responds to natural images is to use natural stimuli. By using these 

stimuli, one can identify which features of natural scenes drive the neuronal response. 

This approach, namely the exploratory approach, allows the observation of the system in its natural 

state. It leads to the development of new theories that will be tested with the development of stimuli 

containing precise features that showed to be relevant to explain the observed behavior. Moreover, 

the exploratory approach gives us the possibility to discover surprising new phenomena. One famous 

example of the exploratory approach is the somewhat opportunistic discovery of orientation 

selectivity.  

Contrary to Felsen and Dan, in a paper called In Praise of Artifice, Rust and Movshon (2005) affirm 

that the best way to understand natural images is to develop stimuli containing some of the 

naturalistic features present in natural scenes. By understanding how V1 responds to each of these 

individual features, one will be able to understand how V1 encodes natural scenes.  

This approach, that has been used for years in neuroscience, requires different parameters to be 

reunited in order to efficiently answer a question. Indeed, in order to define a hypothesis, one needs 

to identify features that are shown to be relevant. An example of a well-formed hypothesis is present 

in the work Rikhye and Sur (2015). They hypothesized that spatial correlations have an impact on 

the levels of reliability, which proved to be true. However, the formulation of this hypothesis was only 

possible because other studies (Baudot et al., 2013a; Haider et al., 2010; Vinje and Gallant, 2000) 

investigated, in an exploratory manner, how primary visual cortex responds to natural scenes. 

Another important issue raised with this approach is that sometimes the questions asked are so 

precise that the obtained data is not useful when investigating other issues. Therefore, an interplay 

between a hypothesis-driven approach and a second approach is essential for the understanding of 

visual processing (Olshausen, 2013). 

In summary, both approaches are essential and complementary. The exploratory approach will allow 

the emergence of new theories that will be tested with the hypothesis-driven approach. This is 

particularly true for natural images, since our knowledge about how V1 responds to them is limited. 

 

Therefore, different studies performed with natural images opted for an exploratory approach. One 

of the most famous studies performed in V1 with natural images, performed by Vinje & Gallant, was 

exploratory. We can also cite other studies such as Haider et al., (2010), Baudot et al., (2013), and 

Froudarakis et al., (2014). All these studies investigated the impact of unaltered natural scenes on 
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visual processing and used simple controls like the randomization of the phase in order to confirm 

what they observed (these studies are discussed in detail in section 7).  

Many new findings were made with the hypothesis-driven approach, based on results obtained with 

the exploratory approach. Notably, by using the hypothesis-driven approach, Movshon’s group made 

significant contributions to the understanding of responses to natural images (Freeman et al., 2013; 

Ziemba et al., 2016, 2018). For this purpose and based on Portilla and Simoncelli (2000), they 

developed two sets of synthetic stimuli using a novel algorithmic approach (i.e. a model of naturalistic 

textures).  

-The first set consists of spectrally matched noise images. The original texture is analyzed with linear 

filters and energy filters (corresponding to V1 simple and complex cells, respectively) tuned to 

different orientations, spatial frequencies and spatial positions. Noise images contain the same 

spatially averaged orientation and frequency structure as the original but lack many of the more 

complex features i.e. the high order statistics such as correlations between features in the image 

(Figure 1.4.8). 

-The second set represents naturalistic textures. Here, correlations are computed by taking products 

of linear and energy filter responses across different orientations, spatial frequencies and positions. 

Images are synthesized to match both the spatially averaged filter responses and the spatially 

averaged correlations between filter responses. The resulting texture images contain many more of 

the naturalistic features from the original (Figure 1.4.8). With these different types of stimuli, the 

groups of Movshon and Simoncelli were able to show that the two synthetic stimuli elicited the same 

response in V1, while V2 responded more strongly to naturalistic stimuli. By using these two sets of 

stimuli, they showed that V2 has a particular functional role for the representation of natural image 

structure.  

 
 

Figure 1.4.8. Generation of synthetic stimuli. A. Original natural textures. B. Spectrally matched noise images. C. 

Naturalistic texture images (Reprinted from Freeman et al., 2013). 
 

Recently, new algorithms for natural-like stimulus design have been developed (Galerne et al., 2011; 

for a natural-like stimulus developed in the laboratory see Vacher et al., 2018). These stimuli, called 

motion clouds, allow the dynamic control of texture movies where many parameters such as speed, 

direction, and orientation are parametrized experimentally in order to match the statistics of natural 

scenes. Therefore, the experimenter can dynamically modify one specific parameter such as 

direction and directly address its impact on the response.  
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Other techniques to generate synthetic stimuli were also developed. Indeed, with the new deep 

convolutional models, new types of naturalistic stimuli can be synthetized (Gatys et al., 2015). 

Indeed, unlike Portilla & Simoncelli’s (2000) model, which worked only with textures, deep networks 

are able to generate naturalistic images from complex images such as paintings (Figure 1.4.9). This 

allows the testing of a new class of stimuli, containing more naturalistic features than the ones 

previously generated. Because of this increased control of naturalistic features present in the 

generated stimulus, the experimenter can easily test more hypotheses than what was possible with 

the classic synthetic stimuli. 

 

 
Figure 1.4.9. Generation of natural images based on deep convolutional networks (reprinted from Gatys et al., 2015). 

 

In conclusion, the exploratory approach led to a first characterization of the functional organization 

of the primary visual cortex, thereby allowing the emergence of hypothesis-driven studies. In the 

next section, we will describe these functional properties and how a functional organization emerged 

from them. 
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5. FUNCTIONAL ORGANIZATION OF CAT PRIMARY VISUAL CORTEX 

The functional study of cat primary visual cortex started with the work of Hubel and Wiesel (1959, 

1961). This seminal work showed that V1 neurons have different types of receptive fields. 

Additionally, these neurons are sensitive to different orientations, directions, spatial frequencies and 

contrast. In the following years, many other functional properties of V1 neurons have been 

discovered. Among them, spatial frequency selectivity (Enroth-Cugell and Robson, 1966); temporal 

frequency selectivity (Ikeda and Wright, 1975) and contrast selectivity (Ikeda and Wright, 1974; 

Movshon et al., 1978) emerged as remarkable hallmarks. Another notable, but not exclusive, 

functional feature of V1 resides in the organization of neurons sharing functional properties into 

functional columns (Hubel and Wiesel, 1969; Mountcastle, 1957). The functional properties of 

primary visual cortex, described above, emerge directly from the receptive field properties. 

5.1. Receptive fields 

The concept of receptive field has evolved over the years. It was introduced 70 years ago by Hartline 

(1938) who defined the RF as the region of the retina where a change in light brightness modifies 

the firing rate of a retinal ganglion cell. This definition is now applied to all visual structures. By 

stimulating with black and white bars, Hubel and Wiesel (1962) described two types of receptive 

fields in primary visual cortex: simple receptive fields and complex receptive fields. Their description 

of the receptive field was purely spatial. However, since the spatial structure of RFs is dynamic 

(DeAngelis et al., 1995), the complete characterization of the functional properties of a visual neuron 

has to include the temporal aspect. 

 

The study of the receptive field became a standard procedure in understanding V1. Indeed, many 

studies considered the RF as a system that will transform the visual stimulus (the input) into a 

neuronal activity (the output) through a transfer function. Here the RF is considered as a “black box”:  

the focus is not on what happens inside the system but rather on how the input will induce the output. 

This approach allows a functional study of the system. Since the RF can be defined within 

spatiotemporal dimensions, the transfer function has to be characterized in both space and time.  

 

We will describe below how simple and complex receptive fields have been characterized, both 

mathematically and experimentally, over the years. 

5.1.1 Simple receptive fields 

Both ganglion cells in the retina and thalamic cells in the LGN display circular receptive fields 

organized as a pair of concentric opponent sub-regions, defining a center (ON or OFF) and its 

antagonist surround (respectively OFF or ON). These two regions are defined by the fact that the 

OFF sub-region is sensitive to a negative contrast change (such as introducing a dark stimulus on a 

uniform background) while the ON sub-region is sensible to a positive contrast change (i.e. bright 

stimuli). In their pioneering papers on cat primary visual cortex, Hubel and Wiesel (1959, 1962), 

described two classes of receptive fields in cat V1 by recording extracellularly the neuronal 

responses to flashed stimuli: Simple and Complex.  
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According to their seminal work, simple cells are composed of spatially segregated ON and OFF 

regions of the same main axis orientation and are identified according to four criteria: 

1. They are subdivided into distinct ON and OFF regions. 

2. There is spatial summation within the separate ON and OFF regions. 

3. There is an inhibitory antagonism between ON and OFF regions (also called push-

pull; i.e within each subregion, stimuli of the opposite contrast evoke synaptic responses of the 

opposite sign). 

4. It is possible from the spatial arrangement of ON and OFF regions to predict 

responses to any stimulus  

 

All cells that do not adhere to these four criteria are considered as complex cells. However, Hubel 

and Wiesel did not provide a quantitative test to clearly separate simple and complex receptive fields. 

In order to overcome this problem, many quantitative classifications have been tested. These 

classification methods are based on new parameters such as the overlap of ON and OFF regions, 

spontaneous activity levels, response to moving light and dark bars and many others (Martinez and 

Alonso, 2003). Yet, these techniques were not able to clearly classify simple and complex cells. 

Indeed, for the same response some would classify them as simple RFs, while others as complex 

RFs. For example, simple cells presenting a partial overlap between ON and OFF subregions are 

considered as nonlinear simple cells and would have been called complex by Hubel and Wiesel. 

 

A different quantitative test was introduced by De Valois and colleagues (1982) and later improved 

by Skottun and colleagues (1991). These authors used larger grating stimuli covering the RF 

(imposing a sinusoidal luminance contrast pattern, whose phase, spatial and temporal frequencies 

could be controlled by the experimenter), without changing the mean luminance of the view field. 

Although static gratings were first used in the retina and the thalamus by Enroth-Cuggel and Robson 

(1966) to test the linearity or non-linearity of spatial summation, De Valois et al. used sinusoidal 

drifting gratings and quantified simple and complex cells based on their response modulation index. 

The modulation index (F1/F0) is given by the ratio between the first Fourier harmonic (F1) of the 

response and the mean spike rate (F0). Simple cells modulate their firing rate in phase with the 

stimulus, while complex cells are not (or very little) modulated. Hence, when F1/F0 is above one, 

cells are considered as simple. Despite being used to discriminate between simple and complex 

cells in V1, the “response modulation” quantitative test failed to provide any information about the 

receptive field geometry. Therefore, in order to classify simple cells, it is necessary to include more 

than one parameter.  

 

While Hubel and Wiesel proposed a spatial characterization of the receptive field, other studies 

showed that the RF can also be described spatiotemporally. Indeed, space and time can interact in 

two different ways, RFs can be space-time separable or space-time inseparable. Defined formally, 

space time separability means that the three dimensional RF, R(x,y,t) can be described as a product 

of two independent functions. A spatial profile, G(x,y), and a temporal profile, H(t), where the 

response, R(x,y,t), is equal to G(x,y) x H(t). In practical terms, this means that the spatial 

arrangement of RF subregions is fixed but their strength and polarities are modulated over time. In 

order to effectively map a simple receptive field, sparse noise (which consists of a pattern of black 

and white dots or squares presented alternatively on the screen) and dense noise stimulation are 

classically used. Therefore, if a cell has is space-time inseparable, it is not possible to subdivide it 

into a spatial and a temporal component (DeAngelis et al., 1995). Spatiotemporal profiles are 

described in Figure 1.5.1. 
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The spatiotemporal organization of the RF is linked with other functional properties, like orientation 

or direction selectivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.1. Spatiotemporal receptive fields. Y axis represents time and X axis space. Green contours correspond to light 

excitatory regions. Red contours correspond to dark excitatory regions. A. Two types of simple receptive fields. Left panel 
represents a separable RF, right panel represents an inseparable RF. B. Complex Receptive Field (reprinted from 
DeAngelis et al., 1995) 

 

It is well established that RFs are not static invariant structures. Indeed, Fournier and colleagues 

(2011, 2014) from Frégnac’s lab demonstrated that the Simple/Complex nature of the RF depends 

on the visual statistics used to probe it. For each cell (intracellularly recorded), they computed the 

Volterra first and second order kernels and defined a “simpleness index” (SI). This index measures 

the spatiotemporal energy of the linear first kernel relative to the sum of the first and diagonal of the 

second kernel. If the SI is higher than 0.5 the cell is considered simple, whereas if the SI is lower 

than 0.5 the cell is complex. They found that, for the same cell, this index changes according to the 

test stimulus: if the stimulus is of high dimensionality (dense noise), the receptive field looks 

dominantly linear (simple-like), whereas if the stimulus is of lower dimensionality (sparse noise), the 

receptive field looks dominantly non-linear (complex-like). According to their decomposition scheme, 

the functional expression of the receptive field in a given context relies on the relative weights 

between simple-like and complex-like synaptic contributions. This stimulus dependence of the 

receptive field is discussed in section 6 of this chapter. 

 

In their original study, Hubel and Wiesel (1962) proposed a hierarchical model explaining how simple 

and complex receptive fields emerge in V1. According to their model, simple receptive fields are 

constructed from the convergence of geniculate inputs with receptive fields of the same type (ON or 

OFF) aligned in the visual space. In turn, complex receptive fields are constructed from the 

convergence of simple cells sharing the same orientation preference but partially overlapping regions 

(Figure 1.5.2-A). However, over the years the scientific community has criticized this model and 

questioned the nature of the cortical microcircuit. Indeed, as previously described in section 1.3, only 

10% of layer 4 synapses in V1 are thalamocortical. Therefore, cortical responses should also be 

shaped by cortical inputs and not only by geniculate inputs.  

 

A 

B 
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Based on a series of heroic intracellular studies, Douglas and Martin (1991) developed a new 

conceptual framework for receptive fields, known as the recurrent model. This model rests on three 

key assumptions 

1. Only 10% of synapses in layer 4 are thalamocortical 

2. Cortical excitation from neighboring neurons is very strong. 

3. Cortical inhibition controls the gain of excitatory neurons. 

Despite these three statements being true, one cannot reduce the contribution of LGN in the 

construction of simple receptive fields. Indeed, thalamic synapses represent only 10% of the 

synapses in layer 4 but they strongly drive cortical cells. In addition, an inactivation of a small region 

of LGN is enough to silence the activity of the majority of cortical cells in layer 4 (Martinez & Alonso, 

2003).  

 

Therefore, a new experimental framework has started to emerge. New models are taking into 

account both cortical recurrence and hierarchical organization (Figure 1.5.2-B; Antolík et al., 2016). 

In these new models, cortical recurrence is taken into account as well as other very important 

parameters like push-pull connectivity, untuned cells in layer 4, and also the ON-OFF relationship 

that gives rise to simple receptive fields (Kremkow et al., 2016a). 

Many insights from both models (i.e. the old hierarchical model and its revision) came from 

computational studies. Indeed, responses from simple cells, both spatial and temporal, can be 

predicted with a linear function and have been widely used to validate different hypotheses about 

V1. A more detailed description of the results obtained with these models will be discussed later in 

this manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.2. A. Hierarchical model of V1 receptive fields as described by Hubel and Wiesel. B.  New model for the 

emergence of receptive fields in V1, taking into account the hierarchical, parallel and recurrent theories (Modified from 
Martinez and Alonso, 2003). 
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5.1.2 Complex Receptive Fields 

According to Hubel and Wiesel (1962), all the cells that do not match their four-criteria classification 

are complex cells. As for simple receptive fields, their classification does not give a quantitative test 

to clearly separate simple and complex cells. A good way to classify complex cells is to use the test 

developed by Skottun and colleagues (1991). In response to a sinusoidal drifting grating, complex 

cells will show no, or very little, modulation. Hence, the modulation ratio will be less than one for 

complex cells. This test classifies complex cells in a very reliable way. Yet, in order to obtain the 

spatial and temporal structure of the complex RF, a spatiotemporal mapping technique is necessary. 

The spatiotemporal profile of complex cells is very different from those obtained with simple cells. 

They present non-elongated, overlapping ON and OFF regions (DeAngelis et al., 1995; Figure 1.5.1-

B).  

 

Based on the hierarchical model of Hubel and Wiesel (1962), complex cells are generated from the 

convergence of simple cells sharing the same orientation preference. However, many studies found 

that some complex cells received direct thalamic inputs (Bullier and Henry, 1979; Martin and 

Whitteridge, 1984; Tanaka, 1983). This criticism of the purely serial/hierarchical Hubel and Wiesel 

model gave rise to a new class of V1 models, (Martinez and Alonso, 2003). This so-called “parallel 

model” proposed that simple and complex cells are generated through concurrent activation of 

separate thalamocortical pathways (Stone, 1965). In the retina, X-cells are simple-like cells and Y 

cells are complex-like cells. Retina projects to thalamus and geniculate projections converge in V1. 

The parallel model states that simple cells are built from the convergence of thalamic X-cells inputs 

while complex cells are built from the convergence of thalamic Y-cells inputs.  

 

As discussed above, the scientific community could not ignore the findings that go against the 

hierarchical model. Therefore, a consensus taking into account the hierarchical model, the parallel 

model and the recurrent model has emerged (Martinez and Alonso, 2003; Figure 1.5.2). Many 

insights into complex cells came from computational studies. Indeed, both spatial and temporal 

responses of complex cells can be predicted with nonlinear functions and have been widely used to 

validate different hypotheses about V1. A more detailed description of the results obtained with these 

models will be discussed in section 6. 

All the receptive field properties discussed above were obtained from single unit studies. However, 

their study can also be performed at multi-unit or mesoscopic scales. 

5.1.3 Mesoscopic receptive fields  

Receptive fields can also be obtained with the multi-unit activity (MUA) and the local field potential 

(LFP) that are mesoscopic signals (Land et al., 2013; Xing et al., 2009; see Annex 1 for a description 

of these measurements). Since these signals correspond to a local aggregate of neuronal 

responses, classifying them as simple or complex is not appropriate. A direct consequence of the 

fact that these signals capture global activity is that the size of the receptive fields are higher than 

the ones observed for isolated single units. A description of their functional properties and the 

differences between single unit activity, MUA and LFP will be done later in this section. 
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5.2. Laminar distribution of receptive fields 

Functional studies have investigated the location of simple and complex receptive fields. A large 

body of evidence indicates that anatomical organization and laminar distribution of simple and 

complex receptive fields are correlated. Since simple cells originate from thalamic inputs, based on 

V1 anatomical studies, they should be located in layers 4 and 6 whereas complex cells should be 

located in layers 2/3 and 5 (See section 1.3 of this chapter). Indeed, the majority of spiny stellate 

cells (located in layer 4 of cat V1, see section 1.3) are simple cells (Martinez et al., 2002). Moreover, 

an intracellular study performed by Martinez and colleagues (2005) explored carefully the laminar 

distribution of simple and complex receptive fields. By coupling intracellular staining and whole-cell 

recordings they were able to determine the laminar localization of simple and complex receptive 

fields and established a classification using two criteria, the index of overlap between ON and OFF 

subregions and a push-pull index. According to this classification, if a stimulus of the opposite 

contrast evoked comparable amounts of push and pull, the index value is equal to 0, a value of 1 

indicates push-null and a score of 2 denotes push-push. Cells showing ON/OFF subregion 

separation and a push-pull index lower than 1 are considered as simple. Their results indicate that 

simple cells are only located in layers 4 and 6 that receive thalamic inputs (Figure 1.5.3; Figure 

1.5.4), whereas complex cells are located in all layers of the cortical microcircuit (Figure 1.5.3). 

The characterization of the complex and simple cells is possible because a stimulus presented on 

the visual field is going to elicit a visual response. The region responding to this stimulation is called 

the center of the receptive field. However, the receptive field is a more complex structure that is also 

composed of a supposedly silent region, called the surround. 
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Figure 1.5.3. Laminar distribution of simple Receptive Fields in Cat primary visual cortex. Simple cells are only located in 

layers 4 and 6. Except for one cell in layer 2/3. In blue: OFF region; In red: ON region. Scale bar: 5°. (Reprinted from 
Martinez et al., 2005). 

 

 
Figure 1.5.4. Laminar distribution of simple and complex cells in cat primary visual cortex. NR: no response. (reprinted 
from Martinez et al., 2005). 
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5.3. Receptive field surround 

The center of the RF is considered as the region that is going to elicit a response while stimulated. 

When probed with an impulse-like stimulus minimizing spatial summation, its extent defines the 

minimum discharge field (MDF). The region around the RF center is called the surround and is by 

definition the region where a stimulus presentation is not going to elicit any neuronal response (this 

region is also called the non-classical RF or “silent surround” (review in Frégnac and Bringuier, 1996; 

Seriès et al., 2003). Therefore, center-surround interactions are nonlinear because the sum of the 

surround response and the center response is not equal to the response of a simultaneous 

stimulation of the center and the surround. Because of these properties, many studies investigated, 

with a large number of different stimuli, the effect of simultaneous center-surround stimulation.  

Different functional features emerge directly from the properties of the receptive field described in 

previous sections, for example, simple cell orientation selectivity originates from the organization of 

the ON and OFF subregions. In the next section, we describe V1 functional properties and how they 

are linked to the receptive field spatio-temporal characteristics. 

5.4. Neuronal Functional Selectivity  

Hubel and Wiesel’s pioneering studies (1959, 1962) showed that V1 neurons have simple and 

complex receptive fields, but also that neurons are selective to particular directions and orientations. 

V1 neurons are also sensitive to other parameters. Among them, there are spatial frequency (Enroth-

Cugell & Robson, 1966) and temporal frequency (Ikeda & Wright, 1975).  

5.4.1 Spatial Frequency Selectivity 

The best way to measure spatial frequency selectivity is to present, at the preferred orientation of 

the cell, various sinusoidal drifting gratings having different spatial frequencies.  

 

In cat primary visual cortex, neurons are sensitive to spatial frequencies (SF) ranging from 0.7 to 3.2 

cycles per degree (c/deg). Whereas Movshon and colleagues (1978) reported that the mean spatial 

frequency selectivity is around 0.9 c/deg for both simple and complex cells. Other studies, like the 

one conducted by Chavane and colleagues (2011), performed visual stimulation with sinusoidal 

drifting gratings having a spatial frequency set at 0.6 c/deg (see Figure 1.5.5 for an example of 

responses to various SF). These discrepancies across studies show that a large range of spatial 

frequency sensitivity exists in V1. In this regard, Molotchnikoff and colleagues (2007) showed that 

nearby neurons do not necessarily exhibit the same optimal SF, thus highlighting the necessity to 

compute the spatial frequency tuning curve of the recorded neuron. 

 

The spatial structure of simple receptive fields is correlated with the spatial frequency tuning. Indeed, 

by determining the width of the ON and OFF areas, the optimal SF can be computed. Several 

methods exist to predict the optimal SF. The first one consists of computing the responses to simple 

bright and dark bars presented at different positions in the visual field. These responses are then 

compared with the responses predicted by the inverse Fourier transform of the selectivity curve to 

spatial frequencies obtained with sinusoidal drifting gratings (Movshon et al., 1978; Dean and 

Tolhurst, 1983). This function can be expressed as a Gabor function. The latter is a Gaussian 

function multiplied either by a sine or by a cosine. The pass band of the SF tuning curve determines 

the envelope of the Gaussian function, whereas the optimal frequency determines the width of the 
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cosine or sine function (i.e. the number of ON and OFF subregions; see examples of Gabor functions 

in Figure 1.5.6). For simple cells with non-overlapping subregions, this function gives an accurate 

description of the RF profile (Movshon et al., 1978; Dean & Tolhurst, 1983). However, for nonlinear 

simple cells (with overlapping subregions) the result is less precise because of the RF non-linearity. 

 

Another method for studying the spatial frequency tuning consists of computing the RF spatial profile 

with moving bars. These spatial profiles are then used to predict the SF tuning curve (Kulikowski and 

Bishop, 1981). Finally, with the combination of these two methods, Jones and Palmer (1987a, 1987b) 

investigated the correlation between the SF and the RF structure. They found that simple receptive 

fields can be modeled by 2D Gabor filters and that these filters can be used to measure the simple 

cell’s linearity.  

 

Unlike simple cells, complex cells are nonlinear. Movshon and colleagues (1978) investigated the 

complex cell response to the interaction between two bars presented at the same time but in different 

locations of the RF. According to the authors, the obtained response profile defines the RF sub-units. 

These spatial properties of these sub-units determine the SF selectivity. To model these complex 

responses with Gabor functions one needs to sum them in quadrature. 
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Figure 1.5.5. Influence of spatial and temporal frequencies on neuronal responses to sinusoidal drifting gratings. Left 

panel: Responses of one neuron to a DG at different spatial frequencies. Right panel: Responses of one neuron to a DG 
at different temporal frequencies (reprinted from DeAngelis et al., 1993). 

 

 
Figure 1.5.6. Examples of different Gabor functions at different spatial frequencies (reprinted from Vacher, 2017). 
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5.4.2 Temporal Frequency Selectivity 

V1 cortical cells are selective for the temporal frequency (TF) of a stimulus. The tuning curve for 

spatial frequency ranges from 0.25 to 12 Hz (DeAngelis et al., 1993b). However, the optimal TF 

ranges between 2 and 4 Hz (Movshon et al., 1978; Chavane et al., 2011; See Figure 1.5.5, right 

panel, for a response to different temporal frequencies) 

 

De Angelis and colleagues (1993b) have studied the linear aspect of TF. By performing a Fourier 

transform of the space-time graph, they were able to define a linear transfer function in the frequency 

domain. This function allows the prediction of the TF tuning curve. They compared the predicted 

results to the experimental ones and the correlation between the two of them was generally high. 

Indeed, some cells showed a difference between the predicted and the measured response. Their 

results show that a linear function can predict most of the simple cell responses. 

 

Many studies have shown that both simple and complex cells are selective to speed. Cells that have 

a small receptive field tend to prefer slower speeds, whereas cells that have a large receptive field 

prefer high speeds (Baker, 1988; see Figure 1.5.7).  

 
Figure 1.5.7. Relationship between receptive field size and speed preference. White dots: simple cells; Black dots: complex 

cells (Reprinted from Baker, 1988). 

 

There is a direct link between spatial frequency and speed. Indeed, the speed of a sinusoidal drifting 

grating is defined by the ratio between temporal frequency and spatial frequency. Therefore, if cells 

are selective to SF and TF instead of speed, their sensitivity functions should be independent. Many 

studies proved this assumption to be true (Foster et al., 1985; Hamilton et al., 1989; Tolhurst and 

Movshon, 1975). However, Baker (1990) found that cells sensitive to low spatial frequencies tend to 

be sensitive to low temporal frequencies. This study also showed that, as expected, cells responding 

preferentially to high SF prefer high speeds, whereas cells sensitive to low SF prefer low speeds. 
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Baker also shows that we can predict the optimal speed of a moving bar by computing the ratio 

between the preferred TF and the preferred SF 

5.4.3 Orientation Selectivity 

There are many ways to determine a neuron’s orientation selectivity. Hubel and Wiesel presented  

static bars at different orientations on the receptive field. Another classical way to measure 

orientation selectivity is to use moving bars. A moving bar displays a speed and a direction, in 

addition to an orientation. This will have an influence on the response, since, as mentioned before, 

receptive fields are sensitive to these parameters. Indeed, the way that ON and OFF subregions are 

organized determines cell’s selectivity. 

 

Sinusoidal drifting gratings or Gabor functions can also be used to determine the preferred 

orientation of a cell (DeAngelis et al., 1993; see the results section of this manuscript). Both simple 

and complex cells are orientation selective. Among cortical populations, some cells respond only to 

a narrow range of orientations and are therefore considered sharply tuned. Conversely, other cells 

respond to a wide range of orientations, these cells are considered broadly tuned. Figure 1.5.8-A 

shows an example of sharply and broadly tuned cells. This difference in selectivity is quantified by a 

measure called: Orientation Selectivity Index (OSI). A sharply tuned cell exhibits an OSI close to 1 

and a broadly tuned cell has an OSI close to 0 (Figure 1.5.8-B illustrates three different OSI). Primary 

visual cortex neurons exhibit a variety of OSIs as illustrated in Figure 1.5.8-C).  

 

 

 

Figure 1.5.8. A. Polar plot of two V1 cells. Left panel represents a sharply tuned cell. Right panel represents a broadly 

tuned cell (reprinted from Scholarpedia-Receptive Field web page). B. Example of three cells having different OSIs in V1. 
C. Distribution of OSI for simple and complex cells in V1 (reprinted from Goris et al.,2015). 
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As discussed before, simple and complex cells can be quantified by looking at the response to 

sinusoidal drifting gratings. Indeed, when presented at the preferred orientation these two types of 

cells are going to respond in a very different manner to the stimulus. Simple cells are going to be 

modulated by the sinusoidal changes in luminance (described in Figure 1.5.9). Their response to DG 

is a rectified sinusoidal response (which is a linear replica of the stimulus). On the other hand, at the 

preferred orientation, complex cells only increase their mean firing rate (Figure 1.5.9 illustrates 

simple and complex cell responses to a DG at the optimal orientation). 

 

 
Figure 1.5.9. Example of simple and complex cell responses to a sinusoidal drifting grating (reprinted from Scholarpedia-

Receptive Field web page). 

 

Since the receptive field structure varies according to the layer, we can expect a difference in the 

laminar processing of stimulus orientation in V1. Martinez and colleagues (2002) investigated it with 

intracellular recordings. They found that for all layers, except layer 5, the excitatory and inhibitory 

inputs share the same orientation preference. In layer 5, the inhibitory and excitatory peaks are 

displaced.  

 

Simple cells receiving direct thalamic inputs are modeled with a Gabor function (Jones & Palmer, 

1987). However, simple cells also receive cortical inputs, and some studies claim these inputs play 

a role in orientation selectivity (Sillito, 1975; Somers et al., 1995). Because of this combination of 

different inputs, Gardner and colleagues (1999) investigated the linear and nonlinear contributions 

to orientation tuning in simple cells. They first defined the RF profile with dense noise. With a linear 

function, they predicted an orientation-tuning curve, representing the linear contribution of the RF. 

The nonlinear contribution is estimated as the difference between the predicted tuning curve and the 

experimental one, obtained by recording simple cell responses to DG. They found that measured 

tuning curves are more sharply tuned than the predicted ones. This indicates that linear mechanisms 
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are insufficient to account for the response to DG. They explained the non-linear mechanisms by 

adding an exponential to the linear function. This nonlinear mechanism is very homogenous. Indeed, 

the exponent varies between 0.15 and 15. They also showed that the nonlinearity makes the 

orientation tuning less dependent on the shape and size of the RF. Therefore, linearities do not 

explain orientation selectivity and non-linearities are needed to fully capture simple cell responses. 

 

The complex cell responses can be predicted with a nonlinear function (Gaska et al., 1994; Goris et 

al., 2015; Szulborski and Palmer, 1990). Gaska and colleagues (1994) showed that experimental 

tuning curves for orientation, direction and SF could be predicted by computing the Fourier transform 

of second order spatio-temporal responses obtained with a dense noise stimulation.  

5.4.4 Direction Selectivity 

In order to study direction selectivity, two types of stimuli are classically used, namely moving bars 

passing through the receptive field in all directions and sinusoidal gratings drifting in all directions. In 

1984, Orban stated that a neuron shows direction selectivity if the response to the optimal direction 

is 3 times higher than the response to its opposite direction. In a series of papers, Orban and 

colleagues (Orban et al., 1981a, 1981b) showed that the speed of the moving bar (or the DG) 

influences direction selectivity. According to their results, 30% of cells in area 17 are direction 

selective and are modulated by speed whereas 70% of cells in area 18 are modulated by speed. As 

described before (section 3.1), area 18 receives more thalamic inputs from Y-cells than area 17. As 

Y-cells display sensitivity to movement, this could explain the difference observed between these 

two areas.  

 

Direction selectivity is partly dictated by the type of stimulus. Indeed, Casanova and colleagues 

(1992) showed that simple cells show a higher direction selectivity index (DSI) when a moving bar 

is used. A cell that shows a direction selectivity with gratings shares the same selectivity with a 

moving bar, but the opposite is not true. For complex cells, the stimulus has no influence on the DSI. 

In order to explore direction selectivity, the choice of the stimulus matters and has to be considered.  

 

Direction and orientation selectivity are generally not observed in cat LGN (but see Kelly et al., 2014; 

Vidyasagar and Urbas, 1982), which means that these functional properties emerge from specific 

arrangements of thalamic afferents or are generated by intra-cortical inputs (Thompson et al., 1994). 

Many models of direction selectivity have been proposed and linearity of the response has been 

assumed (De Valois et al., 2000; Peterson and Freeman, 2004). However, when predicted with a 

linear function, direction selectivity is generally weaker than the one obtained experimentally with 

DG (DeAngelis et al., 1993; Peterson and freeman 2004). This shows that nonlinear mechanisms 

are involved in direction selectivity. Moreover, a study by Kim and Freeman (2016) showed that this 

non-linearity is layer dependent. In layer 4, predicted linear responses generally matched the 

experimental one. Yet, in supragranular and infragranular layers, the predicted DSI was lower than 

the measured one. 

 

As discussed above the linear predicted response of simple cells direction selectivity does not fit 

perfectly with all the measured responses. Many studies noted that a proportion of simple cell 

direction selectivity is explained by a linear function (Hamilton et al., 1989; Kim and Freeman, 2016; 

Peterson et al., 2004). In order to explain accurately the DSI obtained, a nonlinearity needs to be 

added to the prediction function. By adding, an exponent to the linear function that takes into account 



 

51 

 

 

the temporal phase differences, Peterson and colleagues (2004) were able to predict a DSI that 

matched the measured direction selectivity. 

 

The study of complex cell direction selectivity has been performed after mapping receptive fields 

with dense noise. This allows the experimenter to extract the first and second order interactions. The 

second order interactions participate in the direction selectivity of V1 complex cells (Emerson et al., 

1987) and the predicted DSI based on these interactions matches the experimental DSI. 

In this section, we described the principal functional properties of cat primary visual cortex. We also 

explained how it is possible to predict them with linear functions directly derived from the simple RF 

structure. All the results described above have been obtained by analyzing extracellular single units 

or intracellular recordings.  

 

However, mesoscopic signals also present functional properties, similar or not, to the ones observed 

for microscopic signals (Berens et al., 2008; Lashgari et al., 2012). While the multi-unit activity shows 

functional properties similar to single units, this is not always the case for the local field potential. 

 

Berens and colleagues (2008) show that, in the gamma range (see annex 1 for the description of 

frequency decomposition of the mesoscopic signal), the MUA and the LFP show very weak 

correlations in their preferred orientation. Moreover, the OSI obtained with LFP is always lower than 

the one obtained with SUA or MUA. However, they observed a strong correlation between MUA and 

LFP when they compared the ocular preferences. Lashgari et al. (2012) showed that LFP signals 

are tuned to orientation, direction, size, spatial phase and temporal frequencies. They divided the 

LFP into low and high frequency bands and observed that high frequency bands match the SUA 

stimulus preferences while this is not the case for low frequencies. They claim that this is linked to 

the fact that gamma frequencies come from locally synchronized neurons while low frequencies 

come from another population of cells.  

5.5. Cortical maps in cat primary visual cortex 

In the previous section, we described the feature selectivity that emerges from the functional 

properties of V1 neurons. However, as described in section 3, primary visual cortex has complex 

microcircuitry from which different properties might emerge. In the next section, we will focus on the 

mesoscopic functional organization of V1 that arises from the individual neuronal properties and the 

organization of the cortical microcircuit.  

5.5.1 Retinotopy 

One very important dimension to map in the visual cortex is the retinal position of the stimulus. In 

cats, a large portion of V1 is devoted to mapping central retina, with a nearly equal split between 

upper and lower visual fields (Figure 1.5.10-A). These retinotopic arrangements are possible 

because regions represented nearby in the retina are represented nearby in LGN and in V1. The 

cortical retinotopy is strongly determined by the density of thalamic afferents sampling different parts 

of the visual cortex (Azzopardi & Cowey, 1996). These thalamic afferents replicate the density of 

retinal afferents sampling the whole visual field (Adams and Horton, 2003; Azzopardi and Cowey, 

1996). Figure 1.5.10-B illustrates the fact the foveal region is represented in a larger cortical area 

than the periphery. 
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Figure 1.5.10. A. Visual field in cats where the binocular (yellow), monocular (orange), and blind (black) fields are 

represented. The bar graphs on the right show the percentage of V1 devoted to central vision (white, central 10◦) and the 
lower (green) and upper (blue) visual fields. B. Retinotopic map of V1 in cat primary visual cortex. VM: vertical meridian. 

HM: horizontal meridian (adapted from Kremkow and Alonso, 2018). 

5.5.2 Ocular Dominance 

Another crucial dimension to map in the visual cortex is eye inputs. Ocular dominance was first 

observed by Hubel and Wiesel along with orientation selectivity (1959). They showed that the 

majority of cells in cat primary visual cortex are binocular but respond strongly when one eye is 

masked. They also found that some cells in Layer 4 only respond to one eye. Cats (and primates) 

have most of their cortex devoted to binocular vision, yet the ratio of contralateral and ipsilateral 

axonal projections shows a bias toward the contralateral eye (Anderson et al., 1998; Adams et al., 

2007). Later on, Hubel and Wiesel (1969) demonstrated by recording neuronal activity with 

perpendicular penetrations to the cortical surface, that ocular dominance is organized in columns. 

This was confirmed with anatomical and optical imaging studies (Anderson et al., 1988; Crair et al., 

1998).  

5.5.3 Light-Dark polarity  

Another important map in cat visual cortex that has been identified only very recently, is the 

alternation of light-dark polarity domains. Indeed, cats discriminate patterns of dark and light in 

addition to the stimulus. An accurate map of light-dark polarity requires the splitting of the retinotopic 

map in four different copies: one for each eye and one for each polarity (Figure 1.5.11; Kremkow 

and Alonso, 2018). In cat primary visual cortex, eye input changes approximately every 0.5 mm 

along the eye axis and polarity also changes every 0.5 mm along the polarity axis (Figure 1.5.11). 

This means that within 1 mm² of primary visual cortex almost all combinations of polarity and eye 

input are represented for each position of visual space. Moreover, retinotopy changes within the 

cortex at a rate of 0.5 RF per millimeter (Kremkow et al., 2016), implying that among this 1 mm² of 

cortical space, all neurons can represent the same region of visual space.  

In addition to the bias toward the contralateral eye, there is a bias toward OFF geniculate inputs. 

OFF cortical responses are stronger, have a better spatiotemporal resolution, and show less scatter 

A B 
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in cortical retinotopy than ON cortical responses (Jin et al., 2008; Kremkow et al., 2014; Wang et al., 

2015). 

These ON-OFF asymmetries in spatial resolution could originate from the retina. Indeed, for both V1 

and retina, the luminance-response saturation within the ON pathway causes a neuronal blur 

(Chichilnisky and Kalmar, 2002; Kremkow et al., 2014). Therefore, just like for retinotopy the ON-

OFF polarity map amplifies visual phenomena already present in the retina. 

 
Figure 1.5.11. Eye–polarity grid and the multidimensional map of stimulus space. Cortical organization for retinotopy, eye 

input, and ON–OFF contrast polarity. Retinotopy illustrated as circular RFs changing position on the vertical axis at a slow 
rate of 0.5 RF/mm. The orthogonal arrangement of geniculate afferents sorted by eye input and ON–OFF polarity forms 
ocular dominance columns and ON–OFF cortical domains (reprinted from Kremkow and Alonso, 2018). 

5.5.4 Orientation Map 

Hubel and Wiesel (1977) observed that neurons in V1 are orientation selective, they also reported 

that this property was mapped at the cortical surface as a continuous gradient of orientation 

preference in space. These findings were confirmed later with optical imaging experiments 

(Bonhoeffer and Grinvald, 1991, 1993). Intrinsic imaging and voltage sensitive dye imaging (VSDi) 

allow the recording of neuronal activity in a whole cortical area. With these techniques, it was shown 

that neurons with similar orientations are clustered together and form orientation columns that are 

organized in a crystal-like orientation map (see Figure 1.5.12, where each color corresponds to a 

region tuned to a particular orientation; Bonhoeffer and Grinvald 1991, 1993). 

 

The orientation maps are composed of “linear zones”, which represent the continuity in orientation 

of orientation columns. These linear zones are segregated by discontinuity regions. Discontinuities 

smaller than 90° are “one dimensional fractures”, whereas discontinuities greater than 90° are called 

pinwheels (Bonhoeffer and Grinvald 1991, 1993). Orientation domains rotate from 0° to 180° around 

the pinwheel. This large range of orientation selectivity arises from the fact that neurons at the center 
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of the pinwheel are clustered into different orientation preferences (Ohki et al., 2005). However, it is 

important to keep in mind that the computation of the orientation is invariant across the cortical 

surface. Indeed, Nauhaus et al., (2008) confirmed the proposal of Mariño et al., (2005) that in both 

cats and monkeys the neurons are more sharply tuned for orientation outside pinwheels than inside 

them. This result, i.e. the location of neurons (and its associated properties) within functional maps, 

explains the fact that we observe heterogeneity in the receptive field properties. 

 

 
Figure 1.5.12. Layout of orientation preference observed in area V1 of macaque monkey. Scale bar = 1 mm. Modified 

from Blasdel & Salama (1986). 
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5.5.5 Direction Map 

Despite the fact that direction selectivity is a well-described property of V1 cells, its clustering has 

been debated. Some studies found that direction-selective cells are not clustered in V1 (Bonhoeffer 

et al., 1995; DeAngelis et al., 1999) whereas other studies reported that a weak clustering exists 

(Swindale et al., 1987; Shmuel and Grinvald, 1996). 

Many optical imaging studies (Shmuel and Grinvald, 1996; Kisvárday et al., 2001; Swindale et al., 

2003) showed that direction maps do exist in cat primary visual cortex. In V1, regions that are 

selective to two opposite directions are separated by sharp direction fractures. In area 18, Okhi et 

al. (2005) observed that boundaries between two regions are one or two cells wide and the cells in 

these dividing regions are not direction selective. A recent two-photon study observed the presence 

of direction maps in cat area 17 and gave new insights into their origin (Mariño et al., (2005)). 

Direction maps are composed of highly ordered direction columns, which are formed by clusters of 

direction-selective neurons. However, they observed that direction maps are not homogeneously 

distributed across V1. They tend to be located in cortical domains more sensitive to low spatial 

frequencies.  

5.5.6 Spatial Frequency Map 

Another dimension that organizes itself in maps is spatial frequency. Indeed, several reports found 

that SF selectivity may be clustered in cat primary visual cortex (Shoham et al., 1997). Spatial 

frequency domains are organized continuously along the cortical surface. Some studies (Everson et 

al., 1998) suggest that spatial frequency regions are organized around pinwheels while others claim 

that is not the case (Issa et al., 2000).  

However, recent findings confirmed the presence of spatial frequency maps in cat primary visual 

cortex (Ribot et al., 2013; Sirovich and Uglesich, 2004). These authors reported that spatial 

frequency is topographically organized in primary visual cortex. In addition, they developed a model 

showing that this organization arises from the properties of X and Y thalamic cells, which are 

sensitive to high and low spatial frequencies, respectively. In addition to these results, modeling work 

suggests that orientation, direction and spatial frequency maps are a direct consequence of the eye-

polarity grid formed by the geniculate inputs. Cortical regions can be dominated either by ON or OFF 

regions. In regions dominated by OFF inputs, ON subregions rotate around the OFF subregions, 

and in regions dominated by ON inputs, OFF subregions rotate around the ON subregions (Kremkow 

et al., 2016). This rotation has an influence on the emergence of the orientation and direction maps 

(Figure 1.5.13-B). In addition, the balance between weak and balanced ON-OFF response 

antagonism shapes both orientation and spatial frequency selectivity (Figure 1.5.13-A; Kremkow & 

Alonso, 2018). 
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Figure 1.5.13. A. Cortical responses within the eye–polarity grid can be OFF dominated (blue), ON dominated (red), or 

ON–OFF balanced (green). Changes in ON–OFF balance should be associated with changes in OR, SF, and spatial 
resolution (spatial frequency cutoff). The OR, SF, and spatial resolution should be lowest at the center of ON and OFF 
domains and increase in surrounding regions. (B) Changes in ON and OFF retinotopy (red and blue circles) are associated 
with changes in orientation (lines above circles) and direction preference (lines with arrows above circles) within the cortex.  
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6. STIMULUS DEPENDENCE OF THE FUNCTIONAL RESPONSE 

The diversity of contextual effects present in V1 does not allow the reduction of the receptive field to 

an ensemble of invariant filters.  Multiple experimental approaches proved that strong gain control 

phenomena complexify or renormalize V1 receptive fields (Carandini et al., 1999; Schwartz and 

Simoncelli, 2001). These gain control phenomena can happen at the scale of the network or at the 

scale of the single cell. At the network scale for each stimulus class, the complete network is modified 

and the coupling between cells is changed. At the single cell scale, each cell is associated to a 

multipotent receptive field that is going to be recruited in a different way for each stimulus class 

(Fournier et al., 2011, 2014: see section 5.1.1).  

 

In the previous section, we described V1 functional responses to simple features of artificial stimuli. 

These responses have been intensively investigated and linear-nonlinear (LN) models of V1 neurons 

emerged (Carandini et al., 2005). Despite their good performance in predicting responses to simple 

artificial stimuli, these models performed poorly in predicting the response to more complex stimuli 

(Carandini et al., 2005, Baudot et al., 2013), as stated above. 

 

 
Figure 1.6.1 Toward a complete model of V1 simple cells that includes nonlinear phenomena modulating its response 
(reprinted from Carandini et al., 2005) 

 

Indeed, as soon as the stimulus becomes more complex, additional neuronal mechanisms will shape 

the response of both simple and complex cells. Figure 1.6.1 gives an example of all additional 

nonlinear phenomena that can modulate the response of a simple cell. Because of this increase in 

nonlinearity, the prediction of the response becomes more complicated. According to Rust & 

Movshon (2005), simple cells are predicted with a linear spatiotemporal filter and complex cells are 

predicted with two linear functions that have a quadrature phase relationship in both space and time. 

For both simple and complex cell models, a nonlinearity transforms the membrane potential into 

spikes. Yet, to predict all the nonlinear phenomena present in more complex stimuli it is necessary 

to add many spatiotemporal filters, combine them with a nonlinearity and finally add all the additional 

mechanisms that modulate the response (see Figure 1.6.2). 

Because of the mechanisms modulating the neuronal activity, both computational neuroscientists 

and experimenters build new models in order to predict the responses to these complex artificial and 

natural stimuli.  
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Figure 1.6.2. Examples of V1 models. A. Simple and complex cell standard models. B. New models taking into account 

nonlinearity induced by complex stimuli (reprinted from Rust & Movshon, 2005; see also Frégnac and Bathellier, 2015; 
Figure 2). 

6.1. Artificial Stimuli and functional responses 

6.1.1 Surround Modulation 

One of the most studied nonlinear interactions occurring in primary visual cortex is the modulation 

of the response by the “silent surround”. Surround Modulation (SM) can either facilitate or suppress 

the response of V1 neurons. In this section, we will describe  results obtained in both cats and 

macaques. The effects of stimulating both center and surround with artificial stimuli can be 

summarized in five main properties (Angelucci et al., 2017).  

 

1. Surround modulation is spatially extensive. In primates, surround can be divided into 

the near surround and the far surround. Different cortical circuits generate the properties of these 

two surrounds. Contributions from near surround are thought to originate from thalamic inputs, 

horizontal connections and feedback projections from higher cortical areas, whereas far surround 

only reflects feedback projections (Angelucci et al., 2002, 2017). This difference in circuitry gives rise 

to different functional properties. Near surround modulation is more strongly suppressive and more 

sharply tuned than far surround modulation (Shushruth et al., 2009, 2013). 
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2. In both primates and cats, surround modulation is tuned to specific parameters. 

Suppression or facilitation of the neuronal response is induced when both center and surround are 

stimulated. A strong suppression occurs when the stimulus in the center and surround have the 

same orientation, spatial frequency, direction and speed. A weak suppression or a facilitation occurs 

when stimuli of orthogonal parameters are presented (DeAngelis et al., 1994; Li & Li, 1994; Durand 

et al., 2007; Angelucci et al., 2017). The surround also modulates Local Field Potential. Indeed, both 

surround suppression and facilitation have been reported in cat primary visual cortex (Zhang and Li, 

2013). 

 

3. A lone stimulation of the surround is considered to not elicit any spiking response, 

although synaptic responses can be elicited 4 to 8° outside the classical RF (Bringuier et al., 1999; 

Gerard-Mercier et al., 2016). Surprisingly, our results (chapter III) show that surround-only 

stimulation, using natural scenes, can modulate the spiking activity. On the other hand, it is 

documented that LFP is modulated by a surround-only stimulation (Angelucci et al., 2017).  

 

4. Surround modulation is contrast-dependent. When the center stimulus is of high 

contrast and at the same orientation as the surround, the stimulation of the latter is suppressive but 

can be facilitatory when the center stimulus is of low contrast (DeAngelis et al., 1994a; Levitt and 

Lund, 1997). 

 

5. Surround modulation is layer dependent. In layer 4C of primates (receiving direct 

thalamic inputs), surround modulation is weaker and untuned for orientation, in contrary to 

supragranular and infragranular layers where surround modulation is strong and sharply tuned 

(Sceniak et al., 2001; Ichida et al., 2007; but see the results section of this manuscript for data 

obtained in cat primary visual cortex). 

 

Because surround modulation is a fundamental property in primary visual cortex, many 

computational models tried to understand the mechanisms underlying it. Numerous models (Series 

et al., 2003; Haider et al., 2010; Schushruth et al., 2012) took into account V1 anatomical 

organization. Indeed, a local recurrent network composed of excitatory and inhibitory neurons 

constitutes each orientation column. Far and near surround stimulation activates feedback and 

horizontal connections that directly modulate the activity of inhibitory neurons and indirectly modulate 

the activity of the excitatory ones (Figure 1.6.3. describes the model of orientation-tuned surround 

suppression). 
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Figure 1.6.3. Model of orientation-tuned surround suppression. Left Panel: Mechanisms underlying the response to a 

grating in the RF. Right Panel: Mechanisms underlying the response to a grating both in the center of the RF and its 
surround. FF: feedforward projections; H: horizontal connections; FB: feedback projections. Line thickness indicates input 
strength (modfied from Angelucci et al., 2017) 

 

Even if this model predicts many biological responses (Fino and Yuste, 2011; Hofer et al., 2011; 

Ozeki et al., 2009), it does not predict all of them. For example, surround modulation induced by 

natural images or layer dependency of the center-surround interactions are not well-predicted 

because they are not well characterized (Angelucci et al., 2017). The layer dependency of the 

surround modulation evoked by natural scenes will be addressed in the results section of this thesis.  

6.1.2 Linear nonlinear models 

As described above, we cannot consider V1 receptive fields as a sum of invariant filters. Many other 

mechanisms modulate the receptive field. Some of these mechanisms have been mathematically 

described as gain controls. However, adding gain controls does not explain the underlying structure 

of the observed physiological responses. Therefore, in the recent years computational scientists 

have elaborated complex models capable of predicting and explaining the biological response to 

complex artificial stimuli. 

 

These advanced models have been developed in order to capture complex V1 responses (Touryan 

et al., 2002; Rust et al., 2005). Touryan and colleagues used a method called spike-triggered 

covariance (STC), which computes the eigenvalues and eigenvectors of the second-order moments 

of the spike-eliciting stimulus events. They were then able analyze the responses of cortical complex 

cells to random-bar stimuli aligned to the preferred orientation of the cell.  

They extracted two types of features: relevant and null. In particular, they found a small number of 

relevant features and a large number of null features. They claim that the basic operations in visual 

cortical processing originates from the observed additive and divisive interactions between these 

two features. Yet, their method only focused on the analysis of the responses to bar-stimuli and did 

not investigate the responses to more complex stimuli.  
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A recent example of how these advanced models are used to predict complex responses to complex 

stimuli can be found in the work of Goris and colleagues (2015). They investigated how cells in V1 

(and V2) respond to classic DG and gratings with different orientation mixtures (Figure 1.6.4 gives 

an example of their stimuli). It appears that neurons with different degrees of selectivity are adapted 

to encode information from particular types of image contents. Indeed, they found that neurons with 

high orientation selectivity index responded better to stimuli containing one orientation while less 

selective neurons responded better to stimuli containing a mixture of orientations. They hypothesized 

that this diversity in the neuronal population is essential for the processing of complex visual stimuli.  

In order to test their hypothesis, they developed a linear-nonlinear-linear-nonlinear (LN-LN) cascade 

model.  

 

 

 

Figure 1.6.4. Each stimulus consisted of a windowed sum of drifting sinusoidal gratings, with drift directions drawn from 

one of five unimodal distributions (colored histograms), centered around a randomly selected primary direction. All gratings 
had the same spatial frequency, optimized for the cell (Reprinted from Goris et al., 2015) 

 

The initial linear stage creates orientation tuning, which is then modulated by nonlinearities that 

capture the effects of untuned suppression and spike threshold. As described in Figure 1.6.2 many 

filters and nonlinearities are added in order to explain a complex cortical behavior. Their model 

predicted accurately the diversity of orientation selectivities in V1 and V2. Then, they investigated if 

their model, containing a heterogeneous range of orientation selectivity, provides a better 

discrimination of natural images (i.e. complex stimuli) than models containing homogeneous 

populations of any particular selectivity. Their results argue that orientation diversity is beneficial for 

visual coding because their model allowed a better discrimination of patches of natural images. Their 
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study favors a model whereby, as claimed by Rust and Movshon (2005), the understanding of natural 

scene processing by V1 has to be studied through the use of artificial stimuli. However, the 

discriminability index of the model was not always the same according to the tested natural image. 

Indeed, natural images are composed of a mixture of orientations (i.e. what has been tested by Goris 

and colleagues) but also other features that are encoded by V1 neurons, such as spatial and 

temporal frequencies, phase or size. All these attributes interact together and shape how V1 

responds. Their patches of natural images contained different statistics that interacted differently, 

thus modifying the discrimination performance of the model. A detailed analysis of the statistical 

content of the natural images, in particular of the orientations, would have been necessary in order 

to draw clearer conclusions about how their model (and V1) performs.  

 

Other models take advantage of different design features of primary visual cortex, such as the 

functional properties emerging from the anatomy. One of them is the Hierarchical Structural Model 

(HSM), inspired by Hubel & Wiesel’s hierarchical model. This model, developed by Antolik and 

colleagues (2016) in Mrsic-Flogel and Frégnac’s labs, takes advantage of the functional hierarchy 

imposed by feedforward connections. It considers constraints from the anatomy of visual cortex, 

specifically the fact that only a limited number of thalamic inputs project to simple cells. The simple 

cells are considered as a first layer composed of the center-surround thalamo-cortical inputs. The 

second layer is composed of neurons that sum the linear inputs from simple cells to form both simple 

and complex-like RFs (Figure 1.6.5). This population model was developed in order to work with a 

population of simultaneously recorded neurons. It takes advantage of the receptive field 

redundancies among nearby V1 neurons, by simultaneously fitting the entire local population of 

recorded cells. The model was initially tested on mouse primary visual cortex using two-photon 

imaging (Antolik et al., 2016). The authors obtained better predictions of the measured response to 

natural scenes than other models. This increase in performance also originates from the hierarchical 

features of the model that accounts for a great diversity of receptive field structures (within and 

between simple and complex cells), as observed in V1. 

This model has also been used to predict extracellular neuronal responses in cat primary visual 

cortex (Larroche et al., poster at FENS, 2018). Results obtained in cat primary visual cortex show 

that, depending on the set of images used to train the network, this model performs better than 

classical LN models to predict the measured response both for complex artificial and natural stimuli. 

Generalization is better achieved on new stimuli after training with animated natural scenes 

(respecting spatial and temporal coherence across successive frames).  

Despite following the anatomical layout of primary visual cortex, the hierarchical model discussed 

above only considered feedforward connections. As presented in section 3, the neuronal activity is 

modulated by other cortical inputs such as horizontal and feedback connections. In the future, 

models need to include V1 anatomical features in order to improve their prediction performance. 

Another way to improve critically the HSM is by considering the invariant properties of the receptive 

field and its stimulus dependence (work in progress by Larroche and colleagues). 
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Figure 1.6.5. Architecture of the HSM. The model consists of a limited number of difference-of-Gaussian kernels. The LGN 

layer is followed by two cortical layers. Layer 1 is composed of linear filters and layer 2 contains nonlinearities. The two 
layers are inter-connected by all-to-all connections and the first layer has all-to-all connections from the LGN units 
(reprinted from Antolik et al., (2016). 

6.1.3 Stimulus dependence of Simple and Complex cells. 

A neuron in primary visual cortex can adapt its response to different types of stimuli. However, few 

studies investigated if the functional properties of a receptive field can be modulated by the 

spatiotemporal statistics of the presented stimulus. Fournier and colleagues (2011) performed an 

intracellular study in cat primary visual cortex where they showed that receptive fields change 

according to the statistical properties of the visual input. While recording the same cell, they 

presented three types of stimuli: Sparse noise, ternary dense noise and Gabor noise. In order to 

show that the RF is modified by the stimulus statistics, they computed the relative power of the 

simple-like (linear) and the complex-like (non-linear) excitatory and inhibitory subcomponents of the 

RF. They also computed a modified simpleness index (SI*), which measures the balance between 

the compound synaptic contributions of simple-like and complex-like subunits once the stimulus-

dependent receptive fields have been convolved with the corresponding stimulus sequences. Their 

results indicate that for all stimuli, the SI* was identical for the three stimuli. Their intracellular 

recordings indicate that, a normalization of the simpleness of the visually evoked synaptic activity 

happens in V1 cells. In a more recent papier, Fournier et al., (2014) showed that the functional 

expression of the simple or complex nature of changes according to the test stimulus: if the stimulus 

is of high dimensionality (dense noise), the receptive field looks dominantly linear (simple-like), 

whereas if the stimulus is of lower dimensionality (sparse noise), the receptive field looks dominantly 

non-linear (complex-like). According to their decomposition schema, the functional expression of the 

receptive field in a given context relies on the relative weight between simple-like and complex-like 

synaptic contributions. 

 

They developed different models in order to predict this adaptive response. Their first model was a 

parallel Linear-nonlinear cascade receptive field architecture composed of many linear filters. Each 

filter corresponds to a feature of the stimulus. The outputs of these filters are then passed through a 
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nonlinearity (as described by Rust & Movshon, 2005; Figure 1.6.2). This first model failed to capture 

the adaptive response measured experimentally. In order to overcome this problem, they added gain 

control mechanisms to their model, which account for the branch-specific division of the simple-like 

and complex-like receptive field components, respectively, when switching from sparse to dense 

noise. They were able to predict the reorganization of simple-like and complex-like spatiotemporal 

profiles between sparse and dense noise by adding more filters to the model. However, they claim 

that more advanced models, capturing the computations occurring in V1 (inhibition, adaptation, 

depression) are necessary to predict complex responses. 

 

This stimulus dependence of the RF also reflects some layer dependency. Yeh et al., (2009) 

stimulated the primary visual cortex of primates with two types of stimuli: sparse noise and Hartley 

stimuli, which are a particular set of sinusoidal grating patches. They showed that receptive fields of 

neurons in layer 2/3 (i.e. in “output layers” that receive cortical inputs) were stimulus-dependent 

unlike neurons in layer 4C (i.e. in “input layers” that receive thalamic inputs). They argue that the 

difference observed in layer 2/3 arises from the fact that Hartley stimuli drive both inhibitory and 

excitatory cells more strongly than sparse noise. In addition, as confirmed by the findings obtained 

in Frégnac’s group (Fournier et al., 2011, 2014), their results support the idea that even simple cells 

can be highly nonlinear (i.e. “complex-like”). In addition, they conclude that to model the responses 

to more complex stimuli, in particular in output layers, one must consider rich models containing 

features such as recurrent nonlinear networks that can modify the spatiotemporal profile of the 

receptive field. 

These studies showed, with simple and complex artificial stimuli, that the structure of the receptive 

field varies. However, how the structure of the receptive field changes in response to natural scenes 

was not investigated. Indeed, natural scenes contain a mixture of spatio-temporal statistics (section 

3), thus based on the results previously discussed, one can expect that the receptive field structure 

will be different between an artificial and a natural stimulation. In the next section, we will describe 

and discuss the receptive field features obtained with natural stimulations. 

6.2. Natural stimuli and functional responses 

Barlow (1961) hypothesized that V1 should be optimized to treat natural statistics. Thus, it is 

legitimate to wonder how natural scenes shape V1 receptive fields and how one can model them.  

In a study performed by Frégnac’s group, using intracellular responses to dense noise, Baudot and 

colleagues (2013) tried to predict the responses to natural images animated with eye movements, 

drifting gratings, gratings animated with eye movements and other dense noise (a different stimulus 

seed than the one used for prediction). By computing the expected and predicted coherence, they 

determined the percentage of the coherence that the model explained. The linear prediction 

explained more than 80% of the response to drifting gratings but less than 20% of the response to 

natural images and animated gratings. Thus, they demonstrated that the response to natural images 

is not simple linear transformations of the eye-movement animated stimuli. Rather, eye-movement 

statistics appear particularly efficient for activating V1 non-linearities. This study investigated both 

spatial and temporal statistics of the stimuli. 

 

Other studies, but this time based on extracellular recordings, looked at the linear and nonlinear 

properties of the RF in response to the spatio-temporal statistics of natural scenes and then 

performed a cross prediction (David et al., 2004; Felsen et al., 2005; Touryan et al., 2005). David 

and colleagues (2004) investigated how natural stimuli alter the receptive field structure of V1 
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neurons in primates. They concluded that natural scenes and DG do not induce the same 

spatiotemporal receptive field (STRF) structure. Based on these measurements, two nonlinear STRF 

models were developed, one based on the RF structure when DG were presented and the other 

based on the RF structure after natural scene presentation. The model based on the STRF obtained 

with natural images predicted the response to natural scenes significantly better than the STRF 

obtained with gratings (the natural images presented to compute the RF are not the same set of 

images that were used for the response prediction). Notably, some sets of natural scenes were very 

poorly predicted even with the STRF model based on natural images. These poor predictions could 

be linked to the fact that natural scenes evoke a very sparse neuronal activation in primary visual 

cortex. Indeed, a recent two-photon study (Tang et al., 2018) showed that different natural scenes 

activate small and different subsets of the neuronal population. David and colleagues (2004) only 

recorded 74 well isolated single units, this small population might not have been activated by the 

poorly predicted sets of natural scenes. Finally, by controlling the temporal and the spatial properties 

of their natural stimuli, they demonstrated that natural temporal stimulus statistics modulate both 

spatial and temporal response properties. Natural spatial statistics modulate spatial response 

properties, but do not influence temporal response properties (Figure 1.6.6). These results imply a 

crucial role for temporal statistics, yet they are often neglected because it is difficult to mathematically 

characterize them (see section 4.2). New studies need to take into account the temporal aspects of 

the natural stimulation in order to improve the understanding of their visual processing. Additionally, 

even if their model predicts better the measured response to some natural scenes, it is far from 

predicting it accurately. In this thesis, we explored V1 responses to the spatio-temporal statistics of 

natural scenes in order to provide a better characterization of visual processing. 

 

 
Figure 1.6.6. Sources of stimulus-dependent modulation. They compared the mean prediction of their STRF model to 

different stimuli where temporal and spatial properties where modulated (reprinted from David et al., 2004). 

 

Yang Dan’s laboratory investigated extracellularly how spatial statistics of natural images impact the 

spatial structure of the receptive field (Touryan et al., 2005). By using a modified spike-triggered 

covariance technique (STC), that takes into account the spatial correlations in the natural images, a 

detailed analysis of the complex receptive field spatial structure was computed. The fine spatial 

structure allowed a better prediction of the orientation and the spatial frequency preferences of the 

recorded cell than the one predicted with artificial stimuli.  
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As performed by Touryan and colleagues (2005), other extracellular studies focused on the benefits 

of natural scenes to the estimation and prediction of complex stimuli. Talebi and Baker performed 

two studies (2012, 2016) on cat primary visual cortex. They probed the receptive fields of neurons 

with artificial and natural stimuli. The natural image-derived receptive field models were better at 

predicting responses to other stimuli than other models based on RFs estimated with artificial stimuli. 

Notably, these predictions also provided good tuning curves for sinewave gratings.  

Another modulation factor, evoked by both artificial and natural stimuli, is surround modulation 

(Haider et al., 2010a; Pecka et al., 2014; Vinje and Gallant, 2000). In order to increase the prediction 

to all classes of stimuli, this modulation needs to be better understood. Coen-Cagli and colleagues 

(2015) made a step towards it. By extracellularly recording the activity of hundreds of neurons in 

macaque V1 in response to 270 static natural images and optimized DG, they were able to 

understand why, compared to gratings, natural images induce less surround suppression. Despite 

the reduced amount of suppression observed for natural scenes, depending on the presented image, 

surround modulation either induces a suppression or a facilitation (Figure 1.6.7-B. Modulation ratio 

values smaller than 1 correspond to surround suppression; values larger than 1 to facilitation). They 

tried to predict the observed response with a model, also used by others (Cavanaugh et al., 2002; 

Webb et al., 2005), that takes into account divisive normalization (Figure 1.6.7-A, left panel) but 

failed to capture the diversity of responses to different natural images, particularly surround 

facilitation (Figure 1.6.7-B). By analyzing the statistics of the image, they concluded that regions in 

visual stimuli can be considered homogenous or heterogeneous. A homogenous image implies that 

neighboring locations in this image contain spatially redundant information. A heterogeneous image 

is characterized by the absence of spatial correlation between two neighboring regions. 

Heterogeneous natural images induce surround facilitation (“ON surround”) while homogenous 

natural images induce surround suppression (“OFF surround”). Based on these results, a new model 

was developed, in which the flexible neuronal responses linked to homogenous/heterogeneous 

regions are taken in account (Figure 1.6.7-A, right panel). The prediction improved greatly, 

particularly when the presented images were a mixture of homogenous and heterogeneous ones 

(Figure 1.6.7-B-C). In summary, their results argue in favor of the addition of a gain control 

mechanism, taking into account the homogeneity of the stimulus, in order to predict the response to 

natural images. 

 

While their approach is purely functional, a hypothesis of the mechanisms underlying surround 

modulation with orientated gratings could be drawn when both center and surround have the same 

orientation, the image is spatially redundant i.e. homogenous, thus activating the same normalization 

pool. To the contrary, when center and surround orientation do not match, the spatial correlation is 

not present anymore, the image is heterogeneous and activates two different normalization pools. 

This could explain the surround context dependency of suppression and facilitation observed with 

oriented gratings. 
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Figure 1.6.7. Standard and flexible normalization models and their performance. A. Left panel: Standard normalization 
model. Right panel: Flexible normalization model where surround can be considered as ON or OFF. B. Model performance 
for one neuron in response to an ensemble of images (MR: Modulation ratio). C. Prediction quality of the two models as a 

function of the proportion of homogenous and heterogeneous images (Reprinted from Coen-Cagli et al., 2015). 
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The work of Coen-Cagli and colleagues (2015) showed how a particular feature of spatial statistics 

impacts the response. However, other spatial statistical features, such as its correlations also 

modulate the visual response.  

Rikhye and Sur (2015) explored in mouse primary visual cortex, with 2-photon imaging, how spatial 

correlations impact neuronal trial-to-trial reliability. By taking advantage of the 1/ fα power spectrum 

of natural images, they were able to either increase or decrease their spatial correlations (Figure 

1.6.8). Images with strong spatial correlations induced reliable responses in mouse V1 neurons and 

increased the correlation between ensembles of neurons. These differences in reliability mainly 

originate from low spatial frequency content. Indeed, the alteration of these has a stronger effect on 

the response than the alteration of the high spatial frequency content. They developed two linear-

nonlinear cascade models in order to predict the neuronal response to the different types of natural 

scenes. The first model, called “independent model” because it does not include a normalization 

phenomenon, failed to predict accurately the measured responses. The second model, called 

“normalization model” because it does include a normalization phenomenon, predicted more 

accurately the measured responses. They concluded that strong stimulus correlations activate 

strongly V1 neurons and changing their correlations changes the normalization pool, which induces 

reliable responses (Figure 1.6.9). 

 

 
 

Figure 1.6.8. Perturbing spatial correlations in movies. By changing the slope of the spatial frequency power spectrum, 

the authors were able to reduce or increase spatial correlations (reprinted from Rikhye & Sur, 2015). 



 

69 

 

 

 
Figure 1.6.9. Schematic summarizing the findings of Rikhye & Sur (2015) when spatial correlations are increased or 

decreased in natural scenes. 

 

We discussed the fact that receptive fields are stimulus dependent and how they have been 

modeled. Different studies demonstrated that receptive field models based on natural images result 

in a better prediction of the neuronal response than the ones based on artificial stimuli. However, 

despite the increased performance, these models did not fully capture V1 behavior. These mixed 

performances originate from the fact that we do not fully understand how natural images are encoded 

by primary visual cortex. This was very clear in David and colleagues’ study (2004), where their 

model predicted very poorly the response to some sets of natural scenes, without any identified 

reason. Therefore, in order to model accurately the response to natural scenes, new research needs 

to investigate how they modulate visual activity. In this manuscript, we investigated carefully how 

natural images modulate the neuronal activity in cat V1. Others, such as Coen-Cagli et al. (2015), 

made a step towards this understanding by demonstrating some mechanisms underlying center-

surround modulation for both natural and artificial conditions. However, other modulatory processes 

take place in V1, such as the impact of natural images in response variability. As studied by Rikhye 

& Sur (2015), spatial correlations activate strongly V1 neurons and change their correlations, which 

leads to a more reliable response, mediated by a change in the normalization pool. However, one 

cannot reduce the reliability modulation to a normalization process. Indeed, other mechanisms are 

actively involved in the variability changes observed in V1. The characterization of the mechanisms 

underlying cortical variability dynamics, and how they are affected by artificial and natural stimuli, is 

a mandatory step towards the understanding of visual processing. In this thesis work, we tried to 

understand some of these mechanisms (see results section). 
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7. CORTICAL VARIABILITY DYNAMICS  

Cortical neurons are often considered “noisy” and have been compared to the communication 

channel described by Shannon (1948). In this communication channel, a message is converted into 

a signal. This signal is sent through the channel to a receiver. However, in the communication 

channel, the signal is mixed with some noise. Therefore, the received message is a combination of 

the signal plus an added noise. This is true when the neurons are in a silent network (in vitro slices 

for example) and their membrane potential is at a voltage value distant from the spiking threshold. 

This situation will generate a highly variable response. However, when the membrane potential is 

just below the spiking threshold, its spiking pattern becomes more reliable, as observed in vitro by 

Mainen and Sejnowski (1995). They maintained the neuron close to the depolarization threshold, 

added a pseudo-noise similar to synaptic activity, and compared it to a continuous stimulation. The 

addition of the pseudo-noise induced very reliable spike trains while the continuous stimulation 

elicited variable responses (Figure 1.7.1) 

 

 

Figure 1.7.1. Reliability of firing patterns of cortical neurons evoked by two types of currents. A. Firing pattern evoked by 

a continuous dc current pulse. The response is very variable. B. Firing pattern evoked by a pseudo-noise. The response 
is very reliable (reprinted from: Mainen & Sejnowski 1995). 
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In another in vitro study, Nowak and Bullier (1997) injected different types of currents and 

investigated how the frequency content of these currents affected the reliability and the precision of 

the response. When the injected current contained a mixture of low and high frequencies, the spiking 

activity was more reliable and more temporally precise than a current containing only high or low 

frequencies. This indicates that reliable spiking activity is elicited when a cell receives a reproducible 

mixture of low and high frequencies. However, since these studies were performed in vitro, it is 

legitimate to wonder if neurons behave similarly in vivo, and which visual stimulations elicit reliable 

and precise responses. 

 

A popular computational hypothesis called efficient coding suggests that visual processing in early 

sensory systems is optimized and adapted to the statistical properties of the sensory environment. 

This should result in a redundancy reduction between neurons (a decorrelation between neuronal 

response), associated with an increase in the sparseness of the population activity and a decrease 

in the response variability (Barlow, 1961). Thus, one could expect to observe the in vitro results 

obtained by Mainen & Sejnowski (1995) and Nowak and colleagues (1997) in primary visual cortex. 

Indeed, since artificial and natural stimuli are composed of a mixture of high and low frequencies, as 

the injected currents previously described, different stimulus statistics should evoke different levels 

of reliability. 

In this section, we will describe the impact of both artificial and natural stimuli on V1 cortical variability 

and how these results match (or not) the efficient coding theory.  

7.1. Stimulus-independent sources of neuronal variability 

Due to the influence of neuronal variability on the encoding of visual information, a first step towards 

its understanding is to identify how this variability is shaped by intrinsic and evoked cortical dynamics. 

How much is driven by the stimulus or reflects covariations shared across the network, reflecting its 

internal state or predictions from higher cortical areas?   

The sources of variability are numerous, internal signals such as attention or arousal can have an 

impact on the variability. Another important source of variability is the brain state. Indeed, if the 

animal is awake, lightly or deeply anesthetized the cortical dynamics are likely to vary. The visual 

stimulation also constitutes a source of variability. Two different stimuli will activate the system in 

two different ways and modulate the cortical variability. For example, natural images and drifting 

gratings do not have the same statistics, thus do no stimulate the inputs in the same way. This results 

in a visual context-dependent modulation of the cortical variability (Baudot et al., 2013). 

In a recent study, Goris and colleagues (2014) showed that internal signals in the brain, which are 

not purely sensory in origin, could affect the neuronal response. These signals are for example, 

adaptation, arousal or attention. A simple model provided a new view on cortical response variability. 

Whereas classical models assume that variability of an average sensory response is a random noise 

arising from presynaptic neurons or local circuits (Shadlen and Newsome, 1998; van Vreeswijk and 

Sompolinsky, 1996), Goris et al. hypothesized that variability is induced by a multiplicative 

modulatory gain. The simulation concludes that their model predicts accurately the variability along 

primate visual areas (LGN, V1, V2 and MT). Under anesthesia, the classical Poisson model predicts 

20-30% of the variability while their gain fluctuation model predicts 70% of the cortical response 

variability in primary visual cortex. Fluctuations in excitability are less strong and have higher 

frequency content in awake animals performing an attentional task than they are in anesthetized 

animals, implying that different mechanisms occur during these two brain states. Goris et al., (2015) 

proposed that the correlations between neurons are generated by two components, point process 
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correlations, which are the result of shared inputs within local cortical circuits and gain correlations 

which arise from fluctuations in the modulatory signal, that are shared across large population of 

neurons. This study pointed out the mechanisms underlying the variability caused by internal signals.  

 

Although Goris et al. showed that anesthesia had no impact on the reported effects, one cannot 

neglect the impact of anesthesia, and brain states in general, on the cortical variability. Indeed, a 

study conducted by Ecker et al., (2014) compared the correlation structure of V1 neurons in 

anesthetized monkeys or awake monkeys performing a fixation task. They investigated how noise 

correlations i.e. the shared variability of pairs of neurons not related to the stimulus (this method is 

described in detail in section 7.2.1 and in the results section of this manuscript) was influenced by 

the state of the animal. Both experimental and modelling results indicate that, under anesthesia, 

noise correlations are dominated by a common modulatory factor, impacting all cells, explaining the 

high values of noise correlation that they obtained. On the other hand, during fixation, noise 

correlations are very low, and this common modulatory factor is absent, confirming that different 

cortical states induce different modulatory factors and modulate the variability of cortical dynamics. 

During anesthesia, brain activity can change spontaneously from a synchronized to a 

desynchronized state (or from a desynchronized to a synchronized state). Spacek and Swindale 

investigated how noise correlations are impacted by the ongoing changes in brain states and found 

for both states rather low values of noise correlation (although significantly lower during the 

desynchronized state (0.015 vs 0.031)). The impact of the cortical synchronization relates directly to 

the common modulatory factor described by Goris et al. 

This argues for the fact that brain states need to be monitored and taken into account during 

experiments. Indeed, between two brain states, the values of noise correlation were doubled. One 

can wonder how many similar experiments drew different conclusions because the brain was in 

different states (see Cohen and Kohn, (2011) and section 7 for a review of various noise correlation 

values across studies). 

These latter studies drew conclusions about variability by focusing on single units or pairs of units. 

Others (Cui et al., 2016; Lin et al., 2015) investigated how variability is shared across a large 

neuronal population.  

- Lin et al. analyzed the variability of a neuronal population recorded in the primary visual cortex of 

anesthetized cats and awake mice. In both species, they recorded simultaneously the responses of 

hundreds of neurons to sinusoidal drifting gratings. Their results show that response variability is 

shared across neurons in primary visual cortex. However, in contrast to Goris et al., they claim that 

this variability is explained by an additive and a multiplicative gain modulation and that these two 

gain factors determine neuronal correlations. 

- Instead of recording hundreds of neurons, Cui and colleagues (2016) took advantage of the fact 

that LFP and MUA provide population signals reflecting variability sources unrelated to the sensory 

drive. The model, based on recordings in primate MT, performs five times on predicting better cortical 

variability than models only taking into account predictions obtained from the stimulus. 

 

All the previously mentioned studies investigated the stimulus-independent variability when visual 

cortex was stimulated with simple artificial stimuli (i.e. drifting gratings). As described in section 4, 

DG are simple stimuli with very simple spatio-temporal statistics. Yet, different studies showed that 

the stimulus-dependent variability changes as a function of the stimulus statistics (Martin & Schröder, 

2008: Baudot et al., 2013). Thus, we can suppose that the non-stimulus dependent variability will 

also be impacted, since an interplay between these two sources of variability occurs in cortex (Goris 
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et al., 2014). Therefore, in order to understand the non-stimulus dependent variability, a better 

understanding of the stimulus dependent variability is mandatory.  

7.2. Stimulus-dependent sources of variability 

Since drifting gratings are very simple stimuli, one could suppose that their impact on the variability 

is limited. However, Kohn and Smith (2005) proved that assumption to be false. By presenting DG 

at different contrasts while recording in the primary visual cortex of awake monkey, they reported 

that noise correlations between pairs of neurons change as a function of the stimulus, highlighting 

the stimulus dependence of the cortical variability, even for simple stimuli. 

 

Additionally, an intracellular study performed on the primary visual cortex of the anesthetized and 

paralyzed cat investigated how stimuli of increasing complexity affected the sparseness and the 

reliability of the response (Baudot et al., 2013). Four different stimuli were presented: drifting 

gratings, dense noise, gratings animated with artificial eye movements and natural images animated 

with artificial eye movements. They demonstrated that both the sparseness and the variability of the 

neuronal activity is stimulus-dependent and that this modulation of the variability is linked to the 

global statistics of the full field visual stimulation.  

 

Taken together, the aforementioned studies investigated cortical variability in three ways, by 

computing the correlations, the sparseness and the variability of the neuronal activity. In order to 

describe the stimulus dependence of the cortical variability, these three aspects of the cortical 

response require a thorough investigation. Additionally, as previously stated, efficient coding implies 

a modulation of these three factors, and this theory is directly linked to cortical variability. Therefore, 

it is crucial to discuss how experimenters investigated the sparseness and the reliability of the 

response, the cortical dynamics and how their results match, or not, Barlow’s efficient coding theory.  

7.2.1 Correlations 

Correlation is a simple statistical measure of association between two variables. Thereby, different 

types of correlations can be computed. Brain activity dynamics are mainly studied with three types 

of correlation: 

- The first one, signal correlation, is used to quantify the degree to which different neurons have 

similar functional properties. For instance, one can quantify the similarity between the tuning curves 

of two different V1 neurons. In order to measure these correlations, many presentations of the same 

stimulus is needed. Indeed, signal correlation is the correlation between the mean responses of two 

neurons (Kohn et al., 2016). 

- The second type of correlation is called noise correlation. This type of correlation captures the 

degree of response variability shared between pairs of neurons. Noise correlation is computed as 

the correlation of the remaining spike counts after mean subtraction to repeated presentations of the 

same stimulus (Kohn et al., 2016). 

- The last type of correlation, pattern correlation, is the correlation of the mean response of two 

neurons to different stimuli. Pattern correlation is used to capture the similarity in the response to 

two different stimuli (Kohn et al., 2016). This type of correlation has been used in studies investigating 

the dynamics of olfactory cortex (Friedrich, 2013). 
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Primary visual cortex studies have focused primarily on signal and noise correlations. As described 

in this manuscript (see sections 2 and 5 of this chapter), the anatomical properties of primary visual 

cortex are linked to its functional properties. Indeed, primary visual cortex is organized into functional 

columns, while, within these columns, each layer can be considered as an individual functional unit. 

Because of this anatomical organization, we should expect that neurons spatially close or far (i.e. 

inside or outside of the same functional unit) show different values of correlation. 

Tanaka and colleagues (2014) investigated the spatial range of signal correlations in the cat primary 

visual cortex. They recorded both horizontally (within the same layer) and vertically (within the same 

column), in cat primary visual cortex with a multi-shank linear silicon probe (similar to the one shown 

in Annex 1). Their results showed that correlated responses to drifting gratings are spatially 

dependent. Indeed, between pairs of neurons separated horizontally, the correlations tend to drop 

drastically within 400µm (see table 1.7.1). While similar values of correlation were found for pairs of 

neurons located 400 or 800µm, it was not the case for neurons separated by 1200µm. It has been 

proven that for short distances (less than 500-800µm, i.e. within the hypercolumn), horizontal 

connections preferentially link neurons that are not iso-oriented, while they link iso-oriented neurons 

for higher distances (i.e. outside the hypercolumn; Kisvárday et al., 1993 a,b). Therefore, the 

correlation is higher for neurons separated by 1200µm because they share functional properties, 

which is not the case for neurons located at 800µm or less.  

Vertical correlations also dropped sharply within 400µm. However, unlike what has been reported 

horizontally, the correlations did not increase for very distant pairs (1200µm apart; see table 1.7.1). 

Indeed, each layer is a functional unit with different properties (see sections 2 and 5), and unlike 

what is observed horizontally, distant neurons are less likely to share functional properties.  

 

Tanaka et al. (2014) only investigated the signal correlations in response to drifting gratings. 

However, as discussed previously in this manuscript (section 6), V1 responses are stimulus-

dependent. Are the correlations, and the spatial decay, observed by Tanaka and colleagues similar 

with complex stimuli?  

Martin and Schröder (2013) explored extracellularly, in cat primary visual cortex, the impact of 

different stimuli on the signal correlations. Their study on cat primary visual cortex compared the 

synchrony of the response to drifting gratings, visual noise and natural images. Some neighboring 

pairs gave a very high value of signal correlation for these three types of stimuli (above 0.8). On 

average, natural images induced a higher value of synchrony than the other stimuli (values of signal 

correlation are gathered in table 1.7.1). However, the signal correlations between all pairs gave a 

median value close to zero for the three classes of stimuli. Moreover, the absolute strength of signal 

correlations for 50% of the pairs (interquartile range) stayed well below 0.5, no matter which stimulus 

class was presented. Martin and Schröder reported signal correlation values in cat V1 in response 

to natural movies in the same range as those observed , by Yen et al., (2007) (see table 1.7.1).  

Their findings confirm that the level of synchrony between two neurons is stimulus-dependent. 

However, heterogeneous responses where some pairs of neurons are highly correlated and others 

are uncorrelated were also observed. This lack of correlation tends to confirm the efficient coding 

theory. Yet, the very low correlations observed for artificial stimuli, tends to contradict Barlow’s 

theory. Another result in contradiction with the efficient coding hypothesis is the very high correlation 

values of some pairs (above 0.5), observed for all stimuli, in particular for natural movies. The fact 

that only a small neuronal population was recorded (46 pair of neurons), makes it difficult to conclude 

if their results supportthe efficient coding theory. Moreover, no link between the statistics of the 

different movies and the values of correlations was made. One could suppose that some pairs of 
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neurons were very responsive to many movies while others only to a few, leading to these differences 

in correlation.  

This was shown in a two-photon study, performed in mouse primary visual cortex. Rikhye and Sur 

(2015) investigated how the properties of natural scenes affect signal correlations in a large number 

of neurons. Natural images with strong spatial correlations evoke stronger signal correlations than 

the ones displaying low spatial correlations. In addition, across the population of neurons, different 

clusters in the population, based on the mean signal correlation between neurons, were established. 

They observed clusters displaying high correlations, while others displayed very low ones (see table 

1.7.1). This correlation clustering could also explain the high and low correlations observed by Martin 

& Schröder. Indeed, some pairs of neurons might have been recorded within highly correlated 

clusters while others in poorly correlated clusters. However, these results need to be confirmed in 

higher mammals. 

 

Other studies investigated, in higher mammals, the impact of the visual statistics on the signal 

correlation. Vinje and Gallant (2002) investigated, in awake behaving primates (fixation task), the 

impact of the center surround interactions on the heterogeneity of the response. To do so, a 

stimulation of both the center and the surround of the receptive field was performed. Different natural 

images were presented, while the response of V1 neurons was recorded extracellularly. When both 

center and surround were stimulated, the responses of pairs of neurons were more decorrelated 

than the response obtained with a stimulation restricted to the RF center (see table 1.7.1). 

Consequently, the increase of the stimulation size appears to enhance the statistically independent 

information carried by each neuron. However, unlike in a following study of Gallant’s group (David 

et al., 2004), they did not comment if all presented images evoked the same degree of decorrelation. 

Based on the results of David and colleagues (and others such as Rikhye & Sur (2015); Tang et al., 

(2018)), one can expect that not all natural images presented by Vinje & Gallant (2000) evoked the 

same response in V1, hence not all pairs displayed the same degree of synchrony.  

We discussed how signal correlations have been studied in primary visual cortex However, studies 

mainly focused on the correlated trial-to-trial response variability, namely, the noise correlations. 

  



 

76 

 

 

 

 

Study Model State  Values of signal correlation  Comments 

Tanaka et al., (2014) Cat Anesthetized 

Horizontal correlations: 

Visual stimulation: Gratings. 

They subtracted the shift 

predictor from the signal 

correlation. Leading to low 

values of correlation 

0.01 (for pairs separated by 0µm) 

0.05 (for pairs separated by 0.4 

and 0.8µm) 

0.07 (for pairs separated by 

1200µm) 

Vertical correlations: 

0.01 (for pairs separated by 0µm) 

0.05 (for pairs separated by 0.4 

and 0.8µm) 

0.001 (for pairs separated by 

1200µm) 

Yen et al., (2007) Cat Anesthetized Natural Images: 0.18   

Martin and Schröder 

(2013) 
Cat  Anesthetized 

Gratings: 0.2 

  

Visual noise: 0.3 

Natural Images: 0.4 

Vinje and Gallant 

(2000) 
Primate  

Awake 

(Fixation) 

Center stimulation: 67° Signal correlation computed 

as the separation angle 

between neurons Center Surround stimulation: 51° 

Rikhye and Sur (2015) Rodent Awake 
High correlation cluster: 0.45 Values of signal correlation 

for natural scenes Low correlation cluster: 0.05 

Table 1.7.1. Values of signal correlations across different studies. 

 

  



 

77 

 

 

Noise correlations are thought to originate from common synaptic inputs (Goris et al., 2014). In 

section 7.1, we described different studies that evaluated the non-stimulus dependence of cortical 

dynamics, by computing the noise correlation. However, noise correlation is also very useful when it 

to comes to evaluating the stimulus-dependent variability. Many studies investigated the noise 

correlations in primary visual cortex, leading to different reported values, ranging from 0.01 to 0.3 

(see table 1.7.2 and Cohen & Kohn, 2011 for a review). A study performed by Ecker et al., (2010) in 

awake monkeys reported surprising noise correlation values. They recorded the activity of 

neighboring pairs of V1 neurons in response to drifting gratings. The noise correlation values that 

they reported are almost 10 to 30 times lower than the ones reported in the literature. They affirm 

that their recordings are better than the ones performed previously by other groups, and that these 

differences rely on technical improvements. Indeed, by recording with chronically implanted tetrodes 

they obtain more stable recordings while the tetrodes allow optimal single unit isolation. However, 

another study performed in the awake monkey in similar conditions as the ones of Ecker and 

colleagues, extended their results. In this study, despite evidence ofthe laminar processing of visual 

information, Ecker and colleagues did not consider the laminar position of their electrode as a factor 

that could influence the noise correlations.  

This issue was studied by Hansen et al., (2012) by recording in the awake monkey the single unit 

activity across all layers with a linear silicon probe chronically implanted. The responses were 

recorded during a fixation task, where drifting gratings were presented. In this study, the cortical 

layers were divided into three compartments, supragranular layers corresponding to layer 2/3, the 

granular layer corresponding to layer 4, and infragranular layers corresponding to layers 5 and 6. 

The granular layer, which receives the majority of the thalamic inputs, has very low noise correlations 

(according to their own terms, “Granular layer showed virtually no correlated variability”) close to the 

ones observed by Ecker et al. In contrast, supragranular and infragranular layers exhibited strong 

noise correlations (Figure 1.7.2; table 1.7.2), closer to the ones classically observed in the literature. 

A model based on these results was developed, and it suggests that the low values of noise 

correlations observed in the granular layer decreases the orientation discrimination threshold. This 

decrease in decorrelation in the trial-to-trial variability should be beneficial for sensory discrimination.  

In light of the results obtained by Hansel and colleagues, one can assume that the very low noise 

correlations observed by Ecker and colleagues originates from an oversampling of the granular layer. 

The laminar differences observed by Hansel et al. could originate from the anatomical properties of 

V1. Indeed, layer 4 receives inputs from the thalamus, which are known to be very reliable (Kumbhani 

et al., 2007; Reinagel and Reid, 2000). Since noise correlations are a measure of the trial-to-trial 

variability caused by the neuronal presynaptic activity (Ecker et al., 2014), noise correlations should 

be reduced if the synaptic inputs are less variable. To the contrary, layers 2/3 and 5/6 receive less 

reliable inputs (Hirsch et al., 2002), which can lead to these higher correlation values. 
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Study Model State  Values of Noise correlation  Comments 

Kohn and Smith 

(2005) 
Primate 

Anesthetized  Drifting Gratings: 0.2   

Rasch et al., (2011) Primate Anesthetized  Natural stimuli: 0.26   

Ecker et al., (2010) Primate 
Awake 

(fixation) 

Drifting gratings: 0.01   

Natural images: 0.001   

Ecker et al., (2013) Primate Anesthetized  Drifting gratings: 0.05   

Hansen et al., (2012) Primate  
Awake 

(fixation) 

Layer 2/3: 0.27 They computed noise correlation in 

response to drifting gratings, in 3 

different laminar compartments 

Layer 4: 0.05 

Layer 5/6: 0.26 

Martin and Schröder 

(2013) 
Cat Anesthetized  

Gratings: 0.05 They found a very heterogeneous 

distribution of noise correlations in 

a very small sample of neurons (15) 

Visual noise: 0.05 

Natural Images: 0.05 

Rikhye and Sur (2015) Rodent Awake 
High correlation cluster: 0.07 Values of noise correlation for 

natural scenes Low correlation cluster: 0.03 

Table 1.7.2. Values of noise correlations across different studies. 
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Figure 1.7.2. Each scatter plot represents the Z-score-transformed responses for three example pairs of cells recorded 

simultaneously in supragranular (A), granular (B), or infragranular (C) layers during the presentation of a particular stimulus 
orientation. The trend line represents the linear regression fit for each pair of cells; rSC for each layer represents the noise 
correlation extracted from all eight-stimulus orientations (reprinted from Hansen et al., 2012) 

 

In their study, Ecker et al. (2013) also investigated the noise correlations in response to natural 

images. They reported even lower values than the ones observed for a drifting grating stimulation 

(0.001 for natural images vs 0.01 for DG), arguing for a maximization of the coding efficiency as 

suggested by Barlow. 

 

Surprisingly, Martin and Schröder (2013), who compared, in anesthetized cats, the values of noise 

correlations for different stimuli, did not find the same results. Drifting gratings, visual noise and 

natural images evoked similar noise correlation levels (table 1.7.2). However, even if the mean noise 

correlations were similar for different stimuli, a major difference was observed in the tails of the 

distribution of noise correlations. Indeed, unlike natural movies, artificial stimuli evoked, in some 

pairs of neurons, noise correlations above 0.1. Therefore, the similarities in the noise correlation 

levels might come from a low sampling of the neuronal population (only 15 pairs were used to 

compute the noise correlations evoked by natural scenes). New techniques, such as two-photon 

microscopy, can overcome the low sampling observed in Martin and Schröder study. 

 

Rikhye & Sur (2015) also investigated the noise correlations in response to different types of natural 

scenes. They observed that natural images with strong spatial correlations induce lower levels of 

noise correlation than images with less spatial correlations. In addition, clusters of high signal 

correlations showed a higher noise correlation than the clusters of low signal correlation. These 

ensembles of highly correlated neurons (which represents 30% of the population) performed as well 

as the entire population in encoding various movies, supporting the notion of a sparse population 

code.  
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7.2.2 Sparseness 

The efficient coding hypothesis predicts that neuronal population activity should be sparse. Indeed, 

a sparse code implies that single action potentials carry a lot of information. A perfectly sparse code 

has a sparseness value of 1 while a non-sparse code has a value of 0. Two types of sparseness can 

be computed: Lifetime sparseness, which is the sparseness of one neuron for many stimuli and 

Population sparseness, which is the sparseness of many neurons for one stimulus (Willmore and 

Tolhurst, 2001). Most of the studies that investigated sparseness measured lifetime sparseness 

(Baudot et al., 2013; Haider et al., 2010; Spacek and Swindale, 2016; Vinje and Gallant, 2000; 

Willmore et al., 2011; Yao et al., 2007) and then inferred population sparseness. However, some 

studies investigated population sparseness either with electrophysiological recordings (Weliky et al., 

2003; Yen et al., 2007a) or 2-photon microscopy (Froudarakis et al., 2014; Tang et al., 2018). Due 

to its importance in the efficient coding hypothesis, researchers mainly focused on the sparseness 

of the response to natural scenes. Yet, in order to be able to determine if the sparseness of the 

response is optimized for natural scenes, it is necessary to determine  the sparseness of the 

response to other stimuli as well. 

 

Vinje & Gallant (2000) performed one of the first studies to investigate the sparseness. By presenting 

natural scenes on the receptive field but also on the receptive field and its surround, they observed 

that the concomitant stimulation of the center and the surround of the receptive field increases the 

sparseness of the response, implying an increase in the efficiency of the response as defined by the 

efficient coding theory. They hypothesized that this increase in sparseness was linked to the 

attentional effects caused by the fixation task. However, an extracellular study and two intracellular 

studies performed on the anesthetized and paralyzed cat showed that the sparseness is linked to 

the statistics of the stimuli (Baudot et al., 2013; Haider et al., 2010; Yao et al., 2007). Among these 

studies, the one of Haider and colleagues (2010) investigated intracellularly, in the cat, the effect of 

a center and surround natural stimulation on lifetime sparseness. As observed by Vinje & Gallant, 

the stimulation of the surround increases the sparseness of the response. However, the intracellular 

recordings allowed the discrimination of the mechanisms underlying this modulation. Indeed, the 

center surround stimulation increased the activity of fast spiking inhibitory neurons and increased 

the Inhibitory postsynaptic potentials in regular spiking cells, which leads to an inhibition of the 

response, thus an increase of the sparseness. 

Additionally, the fact that the recordings were performed in anesthetized cats proved that the 

increase of the sparseness is not linked to the attentional effects. It is important to note that in this 

study Haider and colleagues reported an increase of sparseness only for classical RS neurons.  

Their study identified the mechanisms underlying the increase in coding efficiency, mediated by 

center surround interactions (i.e. the statistics of the stimulus as described by Coen-Cagli et al. 

(2015)).  

 

An intracellular study performed in the anesthetized and paralyzed cat, in Frégnac’s lab (Baudot et 

al., 2013), went a step further and investigated if sparseness is impacted in the same way by artificial 

and natural stimuli. By computing the lifetime sparseness of the response for each stimulus, they 

demonstrated that natural images animated with eye movements induces a sparser response than 

the other stimuli (Figure 1.7.3). The sparseness evoked by natural images arises from irregular and 

highly reproducible membrane potential trajectories.  
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Figure 1.7.3. Sparseness index computed for each condition. Left panel: Sparseness temporal evolution is shown for bin 

durations ranging from 1 to 100 ms (step of 1 ms). Right panel: the sparseness mean values, averaged over the whole 
stimulus presentation for a bin equal to twice the refresh rate of the screen. DG: sinusoidal drifting gratings; GEM: gratings 
animated with simulated eye movements; NI: natural images animated with simulated eye movements; DN: ternary dense 
noise (reprinted from Baudot et al., 2013) 

 

Haider et al. (2010) and Baudot et al. (2013) both investigated intracellularly the sparseness in 

response to natural images. However, Baudot et al. found a higher mean sparseness value than 

Haider et al. This could be caused by many factors. First, the anesthesia is not the same in the two 

studies (Althesin for Baudot et al. and Isoflurane for Haider et al.). It is known that anesthetics have 

different effects on cortical dynamics, hence this difference in anesthesia could affect sparseness. 

In addition, the two studies differ by the type of presented natural images, especially in the temporal 

frequency content. Indeed, the images used by Haider et al. are not animated with eye movements 

and these could have an important impact on sparseness. Notably, in Baudot’s study, the natural 

image was presented on the whole screen, meaning that the surround of all cells was stimulated 

(even those with bigger receptive fields), implying a stimulation of both near and far surround, while 

Haider and colleagues only stimulated the near surround. This larger stimulation of the surround 

could also explain the different sparseness between these two studies. Additionally, Baudot and 

colleagues did not classify the recorded cells into different RS/FS/IB/CH subtypes. 

Finally, another factor is the low amount of recorded cells in both studies. Indeed, intracellular 

recordings are labor intensive and not as efficient in terms of quantity of recorded cells as 

extracellular ones. Thus, the differences between these two studies could arise from the low 

neuronal sampling in both situations. 

 

Additional limitations caused by the number of recorded cells resides in the fact that these studies 

could only compute the lifetime sparseness. However, with the emergence of the imaging techniques 

such as two photon microscopy, the population sparseness can now be easily computed. Therefore, 

it is legitimate to wonder if the results observed for the lifetime sparseness are reproduced when 

population sparseness is computed. 

 

In this line, Froudarakis and colleagues (2014) recorded with 2-photon recordings the neuronal 

activity in both anesthetized and awake mouse primary visual cortex. They wanted to investigate if 

population sparseness was higher when natural movies or when phase-scrambled movies were 

presented. Natural movies induced a sparser code at the population level and this sparseness 

facilitated the readout of natural scenes. In the same study, Froudarakis et al., (2014) also developed 

a model that takes into account the brain state of the animal and concluded that brain state can 

increase or decrease the population sparseness, i.e. the encoding of natural scenes. This confirms 

our previous statement, in which we affirm that brain states need to be monitored continuously 

throughout experiments.  
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Similar results were found in higher mammals, arguing for a mechanism shared across species. 

Indeed, a study, performed on awake monkeys, investigated the sparseness of thousands of V1 

neurons recorded with 2-photon imaging (Tang et al., 2018). The recording of the neuronal 

responses to 2250 different natural images showed that only 0.5% of neurons respond strongly to 

any given natural image. However, this population activity is sufficient to discriminate visual stimuli 

with high efficiency. According to these authors, primary visual cortex is “super-sparse” because of 

these extremely high values of sparseness. These findings highlight the absolute necessity for the 

experimenters to characterize the response to every natural scene used for stimulation.  

 

Notably, Froudarakis and colleagues (2014) did not find such high sparseness values. One possible 

explanation for such discrepancies may reside in the fact that Tang and colleagues’ two-photon 

recordings were performed with GCaMP6 that saturates when firing rates are above 60Hz. They 

overcame this technical issue by using GCamP5, which allows a precise measurement of neuronal 

response and their sparseness. The two-photon results also differ from those obtained with 

electrophysiological recordings because unlike electrophysiology, two-photon recordings can even 

track cells that are not responding to the stimulus.  

 

All the studies discussed in this section investigated either the population sparseness or the lifetime 

sparseness, very few of them compared directly the two measurements. Indeed, the lifetime 

sparseness studies always assume that, by computing it on a high number of neurons, one could 

estimate the population sparseness.  

In a recent report, the Allen institute (De Vries et al., 2018) compared the lifetime and population 

sparseness evoked by artificial and natural stimuli in the primary visual cortex of awake mice and 

confirmed the assumptions made about lifetime and population sparseness. Indeed, the correlation 

the two measurements turned out to be very high, which allows the experimenter to draw similar 

conclusions. Thus, they observed that natural scenes evoked a higher population and lifetime 

sparseness than drifting gratings. These findings argue for a very well-preserved mechanism of 

cortical processing across mammals.   

 

De Vries and colleagues (2018), along with other studies (Haider et al., (2010); Baudot et al., (2013)), 

observed that the increase in sparseness is always associated with an increase in the reliability of 

the response. Remarkably, Baudot and colleagues found that the increase in sparseness is mediated 

by an increase in reliability of the membrane potential trajectories. 

7.2.3 Reliability 

One can consider that a neuron is extremely reliable if the repeated presentation of the same 

stimulus always evokes the same response. However, due to inherent variability present in primary 

visual cortex, one needs to present the same stimulus many times in order to obtain probabilistic 

estimates (mean, variance) of the stimulus-locked response. Figure 1.7.4 illustrates the response of 

a simple cell to a DG presented at the preferred orientation. It is clear that if we only analyze different 

trials (one row on the figure) the response is never the same, but we can observe that the temporal 

pattern of the response is modulated by the temporal frequency of the stimulus. However, if we 

average the responses across trials, a deterministic functional response emerges (black curve at the 

bottom of the figure). By computing the mean firing rate, experimenters can overcome the additional 

variability of cortical dynamics. 
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Figure 1.7.4 Response of a simple cell to a DG presented at the preferred orientation. Each row represents a trial. Black 

curve represents the mean of all the trials (reprinted from Cyril Monier, personal communication) 

 

In order to further quantify the variability of the firing rate, different techniques have been developed.  

Among them we can cite the Fano Factor which is the variance of the response divided by its mean. 

Notably, the Fano Factor is biased by the firing rate of the cell (Churchland et al., 2010; Ecker et al., 

2014). Thus, this method has to be used carefully. For example, in Baudot and colleagues (2013) 

work, cells below a certain firing rate were not included in the Fano Factor analysis. Yet, in the 

previous section, we discussed the fact that neuronal activity can be sparse, which leads to low firing 

rates. Excluding these cells from their analysis might have biased their results. Despite this technical 

limitation, neuronal responses in many cortical areas have been modeled with a Poisson process, 

which assumes that the Fano factor is equal to 1.  

Yet, experimental reality is more complex than the theoretical one. Indeed, the Fano Factor can be 

modulated by different influences such as the global excitability state of the cortex. Indeed, since FF 

is a variability measure, it seems natural to think that the modulatory factors evoked by Goris et al. 

influences it. Ecker and colleagues (2014) compared the FF values between awake and 

anesthetized animals. They recorded the single unit activity in response to DG and observed that for 

both anesthetized and awake animals, neuronal responses display a great variety of Fano Factors. 

In awake animals, cells have Fano Factors above and below 1, but the mean FF of the population is 

above 1. In anesthetized animals, very few cells have a Fano Factor under 1 and the mean FF is 

higher than the one observed in awake animals (Figure 1.7.5).  
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Figure 1.7.5 Fano Factor of V1 cells in awake and anesthetized primates. A. Distribution of Fano Factors (arrow indicates 

mean).  (reprinted from Ecker et al., 2014)  

 

Thus, demonstrating that anesthesia has a great impact on the variability of the response is crucial 

and implies that reliability studies should include this modulatory factor. Surprisingly, a study 

performed by Kara et al., (2000) found very different results from those of Ecker and colleagues. 

Indeed, Kara and colleagues recorded in anesthetized and paralyzed cats, simultaneously, from 

retinal, thalamic and cortical (V1) cells and found that in these three structures, the Fano Factor was 

sub-Poissonian (below 1) but increased along the visual hierarchy (retina: 0.15; LGN: 0.33; V1: 0.52). 

These surprising results can be explained by the fact that they only recorded cells receiving 

monosynaptic inputs from the LGN. Indeed, layer 4 receives inputs from the thalamus, which are 

known to be very reliable (Vries et al., 2018). This leads to very reliable responses in cells 

monosynaptically connected to LGN. On the contrary, layers 2/3 and 5/6 receive less reliable inputs 

(Hirsch et al., 2002), which can lead to these higher reliability values. Therefore, the Fano Factors 

below 1 observed by Ecker and colleagues (2014) could originate from neurons receiving 

monosynaptic inputs from the LGN 

 

The previous studies investigated V1 variability with drifting gratings as a visual stimulation. Yet, as 

shown throughout this manuscript, visual responses are modulated differently as a function of the 

stimulus statistics. An intracellular study performed on cat primary visual cortex investigated the 

stimulus dependency of the reliability by presenting a set of artificial and natural stimuli (Baudot et 

al., 2013). According to the results of these authors, all stimuli evoked a sub-Poissonian Fano Factor, 

with natural images evoking the most reliable response. However, only cells with a firing rate above 

5Hz were considered in this study. Kara and colleagues (2000) demonstrated that variability 

decreases when firing rate increases. Thus, by eliminating 5 cells for the natural stimulation and 11 

cells from the artificial stimulation, they might have biased their results towards low Fano Factor 

values. Another explanation for their low Fano Factors could be an oversampling of cells in layer 4 

receiving monosynaptic thalamic inputs. However, Baudot and colleagues overcame the problems 

linked to the Fano Factor analysis by measuring the reliability with another method, the trial-to-trial 

correlation of the response. This method allowed the confirmation of the results obtained with the 

Fano Factor, i.e. natural movies animated with eye movements evoke a more reliable response than 

the artificial stimuli, both at the subthreshold (membrane potential) and spiking level. To determine 

which statistics were the most important in this increase in reliability, they randomized either the 
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spatial (altering spatial correlations) or the temporal statistics (altering temporal correlations) of the 

natural scene. Based on the Rikhye & Sur (2015) findings, a difference in reliability between the 

unaltered image and the one with altered spatial correlations is expected. Surprisingly, no difference 

in reliability between the three stimuli was observed, possibly originating from the small number of 

neurons used for this comparison (11 cells). 

 

An interpretation of the increase of variability evoked by natural statistics is given by Baudot and 

colleagues, that natural animated scenes change the dynamics of the instantaneous balance 

between excitation and inhibition by creating highly selective “temporal windows of spiking 

opportunity” allowing reliable events to happen. This feature is reminiscent of the demonstration in 

vitro by Nawrot et al., (2009) Synaptic signals originating from spatially distinct sources in specific 

temporal sequences are integrated in a very reliable and precise manner. Thus, natural images, with 

their mixture of low and high frequencies may allow the integration of the synaptic signals in a very 

deterministic manner leading to a very reliable response. 

 

A slightly different interpretation is put forward by Haider and colleagues (2010). They investigated 

intracellularly, in the anesthetized and paralyzed cat, how natural images and center surround 

interactions affect the reliability of the response. To do so, the trial-to-trial correlation of the response 

was computed. Regarding classic regular spiking cells, the concomitant stimulation of the center and 

the surround increases the reliability of the response, both at the spiking and subthreshold level. On 

the other hand, fast spiking neuron reliability is not modulated by center surround interactions. This 

increase in reliability may originate from an increase in the amplitude of inhibitory postsynaptic 

potentials (IPSPs) and an increase in the trial-to-trial reliability of excitatory postsynaptic potentials 

(EPSPs). Interestingly, these synaptic events were mirrored by spiking activity recorded in thin RS 

cells and FS cells. 

 

Strikingly, Haider and colleagues found quite different values of reliability for the spiking activity than 

Baudot et al. (2013) (0.2 vs 0.04). Similar results, on a bigger population, have already been 

observed in mouse primary visual cortex (Kampa et al., 2011). In this study, following presentation 

of different natural scenes to anesthetized mice and recording the neuronal activity with two-photon 

imaging, the observation was made that among hundreds of neurons, only a fraction of the 

population displayed high levels of reliability in response to the natural stimulation. Based on these 

findings, it is likely that among their small sample of recorded cells, Baudot and colleagues recorded 

a higher fraction of less reliable cells while Haider and colleagues recorded a higher fraction of 

reliable cells. Because of the heterogeneity of the reliability observed in Kampa’s work, in this thesis 

work we used a more adapted representation of the variability by using box plots instead of 

histograms. In this PhD, we investigated this issue by recording hundreds of neurons, the results are 

reported in Chapter III. 

 

Throughout this manuscript, we reported different results proving the stimulus dependence of the 

neuronal response. However, one property that has been set aside is how the frequency content of 

the visual response matches the statistics of the stimulus. As discussed above, Baudot et al. showed 

that natural images animated with eye movements induced a more reliable response than artificial 

stimuli (i.e. drifting gratings, dense noise, gratings animated with eye movements). In addition to this 

reliability analysis, a wavelet analysis of their recordings was performed, which allowed the 

computation of the signal to noise ratio (SNR, which is a measure of reliability) for each stimulus. 

This analysis leads to two observations. On one hand, neurons responding to natural scenes have 
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a strong SNR for low frequencies (natural scenes have a strong power spectrum density in the low 

frequency range). Note that the natural scenes can be seen as an input generator mixing 

reproducible low and high frequency events, in a way similar to the current pattern injected by Nowak 

and colleagues (1997) or Mainen and Sejnowski (1995). 

On the other hand, in response to DG, the SNR value was very high only for the frequency of the 

grating. This confirms that the stimulus statistics have an important influence on the response of V1 

neurons. Indeed, these statistics recruit the inputs of the neurons and constrain their responses. 

Natural scenes induce a more reliable response than DG because they are statistically richer and 

induce a higher constraint on the neuronal activity. This higher constraint prevents the modulatory 

factors described in the previous section from increasing the variability of the response. These 

findings are consistent with the results obtained by Rikhye and Sur (2015) that highlighted the link 

between low frequencies and reliable responses (Figure 1.6.9). 

 

In this introduction, we described the anatomical and functional properties of primary visual cortex. 

We focused our discussion on the fact that V1 is a highly complex structure, composed of different 

functional units (i.e. the laminar compartments), and that within these structures the visual responses 

are strongly modulated by the statistics of the visual input.  We reported the fact that the dynamics 

of cortical variability are different if artificial or natural stimuli were presented. The results obtained 

so far tend to confirm and contradict some of the predictions of Barlow’s efficient coding theory. For 

example, natural statistics increase the sparseness of the response but also evoke high correlations 

between pairs of neurons. In order to understand visual processing, the characterization of these 

responses is crucial. This comprehension of visual processing requires different steps of 

investigation. Indeed, how the different layers process natural statistics remains unknown. Moreover, 

which are statistics that modulate the cortical variability dynamics? An exploratory approach 

investigating these aspects would pave the way for many hypothesis-driven studies, which will 

deepen our understanding of primary visual cortex.  

The work reported in this PhD manuscript investigated the laminar dependency of cortical dynamics 

of variability and how this is modulated by the spatio-temporal statistics of natural stimuli.  
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II. METHODS 
 

In this section, we will review all the experimental and technical procedures used in the Results 

section of this PhD work. 

1. ANIMAL PREPARATION  

All experiments were performed in anesthetized and paralyzed adult cats of either sex, according to 

the American Physiological Society’s Guiding Principles for the Care and Use of Animals. The 

animals used in the experiments were bred in the Central Centre National de la Recherche 

Scientifique Animal Care facilities of the Campus of Gif-sur-Yvette (French Agriculture Ministry 

Authorization: B91-272-105) under required veterinary and National Ethical Committee supervision. 

 

Cats were hosted in the animal facility of Gif sur Yvette in specific rooms. The facility is composed 

of free spaces where the animals can move freely. The environment is supplemented with natural 

and artificial platforms, toys and balls for their well-being. They have access to natural light. Males 

and females are separated by a metallic grid. For reproduction, the light cycle is fixed at 14 hours of 

light per day and two females in heat are mated with a male in a separate room. Females and their 

litter are kept isolated until the new-borns are weaned. A quarantine room allows separating exterior 

animals arriving to the facility from the rest of the colony until a veterinarian confirms the absence of 

pathogens. Animals are in contact with humans daily, their food, water and litter box are changed 

every day. A veterinarian keeps up to date the vaccination of each animal, visiting the facility every 

two months.  

 

In all experiments, adult cats of either sex weighing between 2 and 4kg were initially anesthetized 

with an intramuscular injection of Alfaxolone (1mL/kg). An intravenous catheter was inserted in the 

femoral vein in order to maintain the anesthesia during the rest of the surgical procedure. After 

tracheotomy, animals were placed onto a stereotaxic apparatus and head-fixed with ear bars coated 

with Xylocaine (5%), eye bars and a palate bar were also placed to maintain optimal head-fixation. 

The stereotaxic apparatus was mounted on a pneumatically controlled air table to avoid vibrations. 

 

Once in the apparatus, paralysis was induced and maintained during the experiment with an 

intravenous injection of a synthetic curare: rocuronium bromure (4mg/kg/h), mixed with glucose 

(10%) and sodium chloride (0,9%). Animals were placed under artificial respiration, and anesthesia 

was maintained with Isoflurane (0.5-1.5%) in a mixture of 70% N2O and 30% O2.1. Body temperature 

was monitored with a rectal probe and maintained at 38°C by a thermal blanket. Expired PCO2, EEG 

and EKG are informative about the physiological state and anesthesia of animals and were 

monitored during the whole experiment. PC02 was maintained between 3.5 and 4.5%. Contact 

lenses filled with “viskyal” (Sodium hyaluronate) were placed immediately after paralysis in order to 

avoid any drying of the cornea and were later filled with atropine.  

 

A local anesthetic (Xylocaine) was injected subcutaneously at the top of the head before cutting the 

skin in order to expose the skull. Stereotaxic coordinates of the area centralis were determined 
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according to the atlas of Tusa and Rosenquist (1979) and bilateral craniotomy was achieved by 

drilling holes (3-4 mm diameter) on the skull surface above Brodmann’s area A17 (coordinates 

between P=-2, L=2 and P=-5, L=3), following the curvature of the cat primary visual cortex. A 

chamber was placed on the skull and fixed with dental cement. The chamber was filled with ACSF 

in order to keep the cortex hydrated. Finally, in order to access the cortex, the dura mater and other 

membranes were removed with a micro-surgical knife.  

2. EXTRACELLULAR RECORDINGS  

Extracellular data was recorded using three different types of silicon probes manufactured by 

Neuronexus. The three Neuronexus probes that we used are: 2x16 (A2x16-10mm-100-500-177) and 

1x64 (A1x64-Poly2-6mm-23s-160) The electrodes were lowered through the cortex using a 

micromanipulator (Luigs & Neumann). In order to minimize tissue damage as much as possible, 

advancement through the brain was made very slowly 1µm at a time (~0.4 µm per second). 

 

Data was acquired with a Blackrock Cerebus system. Signal from the probes was amplified, filtered 

and digitized by an amplifier, then transmitted to a Neural Signal Processor (NSP) via an optical 

fiber. The amplifier filters the signals with a first order Butterworth high pass filter at 0.3 Hz and a 

third-order Butterworth low-pass filter at 7.5 kHz. The filtered neural signals from each electrode are 

digitized with 16-bit resolution at 1 uV per bit with a sampling rate of 30,000 samples/sec. The analog 

filtering of the electrode signals allows both low frequency local field potentials and extracellular 

spike signals to pass through. The neural signals are later separated into low frequency (filtering 

between 1-250Hz) and spike signals (filtering high pass filter at 1 kHz) by digital filtering in the Neural 

Signal Processor (NSP). The NSP does an online analysis and then transmits the processed data 

to a host system via an Ethernet cable. On the host PC, a homemade software, Elphy (G.Sadoc, 

CNRS), was in communication with the Blackrock system in order to save the acquired data. 

3. VISUAL STIMULATION 

Nictitating membranes were retracted with Phenylephrine (1%) and pupils were dilated with atropine 

(0.5%) to perform a fundus examination. Projection of the fundus allowed us to perform a visual 

correction with additional contact lenses positioned in front of the eyes, if needed, and to precisely 

draw the blind spot of each eye and then determine the coordinates of the area centralis. 

 

An LCD screen with a resolution of 1920x1080 pixels and a refreshing rate of 144Hz was placed 57 

cm from the animal (distance for which 1cm on the screen is equal to one visual degree). All visual 

stimuli were generated with ELPHY, maximum and background luminance were set at 40cd/cm² and 

12cd/m² respectively. 
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• Sparse Noise stimulation  

 

The precise position and spatial organization of the RF was measured with sparse binary noise 

presented in a square matrix encompassing the identified area of interest. This matrix was divided 

into100 regions (10x10) where visual responses were identified (hence approximately 0,5 by 0,5° of 

visual angle for a square of 5°). This formed a grid in which bright (40 cd/m²) and dark (1 cd/m²) 

small squares were sequentially flashed in each position, one position and luminance at a time, in a 

pseudo random fashion against a uniform background luminance (20 cd/m²). The duration of 

presentation of each square was 48 ms. 

The map of visually evoked responses was obtained using a forward correlation method. Each trial 

sequence was repeated between 10 and 30 times. Several successive mappings were often 

necessary to adjust the size and position of the area totally enclosing the local field potential and 

multi-unit receptive fields.  

Once the location and spatial extent of the RF were assessed, the ocular dominance was probed 

and the following stimulation sequences were restricted to the dominant eye only (monocular 

viewing). 

 

• Drifting Gabor stimulation 

 

To determine the preferred orientation, spatial frequency and temporal frequency of the receptive 

fields, Gabor patches (GP) were obtained by convolving sinusoidal gratings with a Gaussian 

envelope. GP that covered the receptive fields were drifted at 12 orientations ranging from 0 to 360° 

by 30° incremental steps for 6 spatial periods: 0.2, 0.4, 0.6, 0.8, 1.2 and 1.6 cycles per degree of 

visual angle. 

 Dense Noise Stimulation  

White noise consisted of a dynamic sequence (13.3 ms refresh period) of high spatial definition (50 

* 50 pixels of 0.39°) ternary dense noise. This formed a grid in which bright (40 cd/m²), dark (1 cd/m²) 

and grey (20 cd/m²) small squares were simultaneously flashed in each position, in a pseudo random 

form. The duration of presentation of each square was of 48 ms.  

 

• Natural Image Stimulation 

 

The following stimulation sequences consisted of two main protocols. 

For the first protocol, four types of stimuli with increasing complexity were used: Drifting Gratings 

(DG), Gratings with simulated Eye Movements (GEM), Natural Images with simulated eye 

movements (NI) and Dense Noise (DN) (Figure 2.1.1). 

 

Eye-movements are classically decomposed into intermittent ballistic movements, i.e. saccades, of 

large but variable amplitude, separated by fixation episodes. During fixation, the mean position of 

the eye drifts slowly in time, with superimposed very low amplitude tremors at high frequency (40–

100 Hz range) as well as microsaccades. In order to simulate in a realistic way the continuous 

changes imposed by eye-movements during natural scanning of visual scenes, we built a model of 

the retinal flow (example in Figure 1C) whose kinematic parameters were fitted on the basis of 
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measurements previously made in the freely behaving cat (Pritchard and Heron, 1960; Collewijn, 

1977; Olivier et al., 1993). A more detailed description follows: 

 

Saccades 

 

The saccade amplitudes and intersaccadic intervals were chosen randomly from the distribution 

established for saccadic and head gaze movements in the freely behaving cat (Collewijn, 1977). An 

estimate of the duration of the saccade (DS) was made by using the best linear fit between saccadic 

amplitude (AS) and duration: 

 

DS=1.9×AS+63     (1) 

 

where DS is expressed in ms and AS in steradian degrees (°) of visual angle. The saccadic spatio-

temporal profile was modeled by the following sigmoidal function F(t): 

 

F(t)=−λAS+(AS+2λAS)/(1+e(−2−λ)/(DS(DS/2−t)))      (2) 

 

where λ is a constant threshold fixed at 5%. The direction of the movement was chosen randomly 

from a uniform [0°, 360°] distribution. Since most saccadic paths present small drifts of directional 

angle during their execution (Yarbus, 1967; Rucci and Desbordes, 2003), an ad-hoc sinusoidal 

variation of direction during the drift path was fitted to real recordings: 

 

f(t)=Δθsin(2.πt.τ/DS)      (3) 

 

where the amplitude of direction change (Δθ) was chosen randomly from a uniform distribution 

between 0° and 4°, and the fraction of during which it operated (τ) was chosen randomly between 

0.5 and 1 (relative to the full saccade duration). 

 

Drifts 

 

The drift amplitude (AD) was chosen randomly from a Gaussian distribution with a mean of 1.21° 

and a standard deviation of 0.63°. The duration (DD) was derived from the best linear fit with AD. 

These parameter values were taken from measures in the behaving cat (Olivier et al., 1993): 

 

DD=41.7×AD+53.7     (4) 

 

where DD is expressed in ms and AD in °. 

 

The direction of drift movement was chosen randomly from a uniform [0°, 360°] distribution. The 

same ad-hoc sinusoidal variation of direction during the drift path (Equation 3) was fitted to real 

recordings, but with direction change chosen randomly between 0 and 29°. 
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Tremors (during drifts) 

 

Tremor eye-movements are typically of miniature amplitude, ranging from 0.001 to 0.017° [0.006–

0.013° in Rucci and Desbordes (2003); 0.005° in Ratliff and Riggs (1950); 0.001°–0.004° in 

Ditchburn and Ginsborg (1952); Ditchburn (1973)], with a mean amplitude of 0.007° in the cat 

(Pritchard and Heron, 1960). The simulation of tremor was constrained by the spatial discretization 

of the screen (1024 × 768 pixels) and the imposed viewing distance (57 cm). In the present 

experiments, the smallest programmable distance between two neighboring pixels was 0.039°. For 

spectral characteristics, we chose to remove most of the tremor energy due to low amplitude micro-

movements while keeping its highest amplitude components. This was achieved by using a white 

noise signal through a Bessel filter, between 40 and 80 Hz (Eizenman et al., 1985). The sequence 

movement thus obtained was then discretized, using only three possible inter-pixel amplitude values 

(−1, 0, 1), and low-pass filtered. 

 

Microsaccades 

 

Microsaccades are particularly rare in cats (Körding et al., 2001) and our modeled “frozen” eye 

movement sample sequence contains only three of them positioned at the end of a tremor. Their 

amplitude was chosen randomly from a Gaussian distribution with mean and standard deviation both 

set to 1°, thresholded for amplitudes less than 0.02°, as found in humans (Ditchburn, 1973). An 

estimate of their duration (Dms) on the basis of Ditchburn's observations in humans (Ditchburn, 

1973), was given by the best linear fit between micro-saccadic amplitude Ams and duration: 

 

Dms=2.25×Ams+20     (5) 

where Dms is expressed in ms and Ams in ° of visual angle. 

 

The microsaccadic spatio-temporal profile, direction and variation of angle during the microsaccade 

were modeled as for saccades. 
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Figure 2.1.1: Temporal profile of the X and Y coordinates of the modeled eye-movement sequence. Saccadic episodes 

are indicated by a shaded box. Scan path generated by the modeled eye movement sequence. The natural scene image 
is centered on the RF center at the start of the animation and the same displacement pattern is applied to all experiments. 

 

Each stimulus was presented at least 20 times, in three different conditions:  

-The center only stimulation (C), stimuli were only showed on the RF.  

-The surround only stimulation (S), stimuli were showed on the whole screen except for the 

RF center, which was masked. 

-The full field stimulation (CS), stimuli were showed both on the center and on the surround 

of the RF. 

The mean luminance and contrast of each movie were equalized to differ only in their higher-order 
statistics.  
For the second protocol, we developed four control natural images where the spatial and temporal 
frequencies were modified. 
- Natural images where the spatial frequencies, i.e. the phase, were randomized in order to remove 
the high order correlations from the image (NI-RS). 
- Natural images where the temporal frequencies, i.e. the pattern of the eye movements, were 
randomized in order to remove its high order correlations (NI-RT). 
- Natural images where both temporal and spatial frequencies were randomized in order to remove 
their high order correlations (NI-RST).  
- Natural images where eye movements were only saccades (NI-SAC). 
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Figure 2.1.2 Spatio-temporal statistics of the four stimuli that were presented (reprinted from Baudot et al., 2013). 

4. HISTOLOGY 

For all experiments, probes were covered with DiI (DiIC18(3)), a lipophilic membrane dye that stains 

the cells and allows us to locate where the probe was in the cortex.  At the end of the experiment, 

animals were euthanized with a lethal dose of T61 (Embutramide, 0.3mL/kg). Then an intracardiac 

perfusion was made with paraformaldehyde (4%) in order to fix brain tissue. After perfusion the 

pertinent part of the brain is removed, sliced and a DAPI or cytochrome oxidase staining is made on 

all the slices in order to mark neurons. Cytochrome oxidase stains the cell bodies in layer 4 and 

allows a more precise layer identification than DAPI. DiI and DAPI staining were visible under 

fluorescence with an adapted microscope. These procedures allow us to precisely locate the position 

of the probe in the cortex. 
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5. SPIKE SORTING 

Spike sorting was performed automatically with the klusta suite (Rossant et al., 2016). The quality of 

separation was based on a clear refractory period and cluster separation. Unit stability, in terms of 

waveforms, amplitude and drifting, was also checked across the whole recording session. All clusters 

were checked manually after the automatic sorting. 

 

 
Figure 2.1.3. Example of manual curation after spike sorting with the klusta suite. On the left: spacing between the 

recording sites of the 1x64 probe. The other panels illustrate the sorting of a neuron based on a clear refractory period and 
cluster separation. 

6. NEURONAL CLASSIFICATION 

Neuronal classification from extracellular recordings relies on the careful quantification of the spike 

waveform shape. This classification separates units into the usually denominated fast spiking (FS) 

and regular spiking (RS) units. FS cells are normally thought of as inhibitory neurons, while the RS 

cells are recognized as dominantly excitatory. Using high impedance tungsten electrodes allows the 

clustering of the recorded spiking units by their bimodal distribution of spike widths, which is the peak 

to trough time (Goldin and Mindlin, 2017). Sometimes, the use of another variable is needed for 

better separation, and the firing rate is often selected as the second measure. However, this rate 

can be dependent on the type of stimulus used or may change during long experiments, so many 

studies have selected different measures. For example, the afterhyperpolarization width (Bruno and 

Simons 2002, high impedance tungsten electrodes) or the peak to trough amplitude ratio (Cardin et 

al. 2009, tetrodes or stereotrodes) have been successfully used for unit separation. Some studies 

have tried to further separate neuronal types within the mentioned RS and FS, for which they looked 

for more subtle differences. Using as many as 7 spike shape features followed by a principal 

component analysis (PCA) and subsequent clustering (Rauske et al. 2003, Pt-Ir electrodes), units 

have been classified into five different families.  
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The advent of silicon probes has enhanced the capacity of researchers to measure with multiple 

electrodes simultaneously. Whereas the spikes measured with these devices retain their prominent 

shape characteristics, a quick glance at their shapes shows a much bigger overlap between spikes 

of the RS and FS type than what is found with tungsten electrodes. For this reason, in order to have 

separated groups, ambiguous units have to be discarded from the analysis (Zengcai et al. 2014, 

silicon probes). 

In our work, we decided to make a conservative classification of the units recorded, for which we 

quantified seven spike features. Five of the seven features are widths, all referenced to the time at 

the minimum peak of the spike. The five features are: the peak to peak width (prel2), the total width 

(width p2p), the width of first and second peaks relative to the minimum (peak1 and peak1-2) and 

the width between the two crossing points (crel1). Finally, the two peak values normalized to the 

minimum were used (peak trough ratio). An example for an RS and an FS with the mentioned 

features can be seen in figure 2.1.4-B.  

 

 
Figure 2.1.4. Features and PCA of our classification method. A. left panel: Percentage of variance explained by the PCA 

components. Right panel: Weights of each feature in these three eigenvectors. B. Selected features for spike classification. 
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7. SIGNAL ANALYSIS 

In this section, we will describe the analysis performed for this PhD work. Unless specified all these 

analyses have been performed on all extracellular signals (SUA, MUA and LFP). 

7.1. Current Source Density 

We computed the current source density (CSD) based on the work of Mitzdorf (1985). He formulated 

a one-dimensional CSD based on the following equation:  

 

 

Where  is the voltage, 𝑥 is the point at which CSD is calculated, ℎ is the spacing of electrodes for 

computation, and 𝜎 is the conductivity of cortical tissue. In order to be able to use this equation, the 

electrode must be perpendicular to the cortical surface. We took advantage of the black and white 

squares of the sparse noise stimulation to compute the CSD and experimentally identify cortical 

layers. We estimated layer 4 as the region where the earliest sink occurred after visual stimulation.  

7.2. Trial-to-trial Cross Correlation 

The reliability of the responses is measured by computing the cross-correlation (CC)—across trials—

of the spiking responses (Multi unit and single unit activity), and of local field potential responses. 

The reliability was given by the CC peak amplitude at time zero and the temporal precision by the 

standard deviation of the Gaussian fit. 

7.3. Correlations 

-Signal correlation (SC) is the correlation between the mean response of two different neurons (SUA 

or MUA) in response to the same stimulus. The SC defined as: 

𝑆𝐶 =  𝑟1̅  ∙  𝑟2̅ 
Where �̅� is the mean response of the neuron. 

 

-Noise correlation (NC) is the correlation of each trial response (after mean subtraction) between 

two different neurons (SUA or MUA) in response to the same stimulus. Noise correlation is defined 

as:  

𝑁𝐶 =  ∑(𝑟1
𝑖 − 𝑟1̅)  ∙ 

𝑁

𝑖=1

(𝑟2
𝑖 − 𝑟2̅)  

Where �̅� is the mean response of the neuron, 𝑁 is the number of trials and 𝑟𝑗
𝑖 is the firing rate of cell 

𝑗 in trial 𝑖. 
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7.4. Power Spectral Density 

LFP frequency analysis was performed using a fast Fourier transform analysis. The magnitude of 

the spectrum was computed using Welch’s method. The signal was split into Hamming windows, the 

magnitude of each window was then computed and averaged in order to obtain the power spectral 

density (PSD). To obtain the relative power spectral density (R-PSD), we divided the mean PSD at 

each recording site by the mean PSD of the spontaneous activity across all channels. 

7.5. Coherence 

The coherence, 𝐶𝑜ℎ(𝑓) , measures the degree of the linear relationship between two LFP 

signals s1(𝑡) and s2(𝑡) in the Fourier space, and is defined by: 

 

 

where S1 and S2 are the Fourier transforms of s1 and s2. The angular brackets symbolize window 

averaging (1 s-long Hann windows shifted by 1 s steps in the present study). The coherence equals 

one for linearly related signals and decreases below one when the signals are non-linearly related, 

and/or corrupted by noise. A coherence of 1 implies a very synchronized signal while a coherence 

of 0 a very desynchronized one. 

7.6. Sparseness 

To quantify sparseness on SUA and MUA, we used a non-parametric index (Vinje and Gallant, 

2000): 

 

where 𝑟 𝑖 is the response to the 𝑖th frame of a movie (averaged across trials) and 𝑛 is the number of 

movie frames. S values range between 0 (0%) for a dense code, to 1 (100%) for a sparse code. The 

duration of the movie frame is 13.3 ms. The sparseness index was calculated also as a function of 

bin width values ranging between 1 and 250 ms (with a step of 1 ms). 
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7.7. Fano Factor 

To quantify the Fano Factor, spike counts were computed by dividing the time axis in successive 15 

ms bins. We then computed the variance (across trials) and the mean of the spike count. A scatter 

plot of the variance vs. the mean was compiled, with one point per time window, for the whole 

duration of the stimulation (10 s). The raw Fano factor was given by the slope of the regression line 

relating the variance to the mean. 

7.8. Stimulus-Locked Time-Frequency Analysis 

We applied here measurement methods developed by Baudot et al (2013) for intracellular and 

extracellular signals. Extracellular signals were convolved for each trial (one repeat of the same 

movie clip) with an array of complex-valued normalized Gabor functions ψ𝑓 (𝜏) 

 

where 𝑎 is a constant such that the energy of the wavelet is equal to 1. To improve the readability of 

the time-frequency representation, the Gabor decomposition presented here is largely oversampled: 

the Gabor filter bank is non-orthogonal, with wavelet frequencies ranging from 1 to 150 Hz (with 

incremental steps of 1 Hz), and a temporal sampling period of 1 ms. To achieve a fine temporal 

resolution (important for spike events), the normalized Gabor function had a Gaussian window 

variance equal to two Gabor periods (𝜎. 𝑓  = 2). This time-frequency decomposition allows the 

extraction of Signal power, Noise power, and Signal to Noise ratio (SNR) power. This analysis can 

be viewed as an extension of the Signal and Noise estimation method proposed by (Croner et al., 

1993) to the time-frequency domain. 

 

We define 𝑆(𝑡, 𝑓) as the complex result, at time 𝑡 and frequency 𝑓, of the convolution between the 

wavelet and the response 𝑋(𝑡) for each trial: 

 

The Signal power 𝑆𝑒𝑠𝑡  (𝑡, 𝑓) of the stimulus-locked waveforms is given by: 

 

where angular brackets 〈〉 indicate the average across all trials 𝑖 of the wavelet transform in the 

complex domain and straight brackets indicate the squared modulus. 

The Noise power 𝑁(𝑡, 𝑓) is measured as the average distance between the individual trial vectors 

and the average vector of the wavelet transform in the complex domain: 
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The Signal to Noise ratio 𝑆𝑁𝑅(𝑡, 𝑓) is calculated as: 

 

In the case of spike train signals, SNR was assigned a zero value for the times and frequencies 

when a total absence of activity was observed for all trials (𝑆𝑖 (𝑡, 𝑓)  =  0, ∀ 𝑖). Signal, Noise, and SNR 

power spectra are obtained by averaging the squared functions over time: 

 

These measures represent the average energy of the Signal, Noise and SNR at a given frequency 

7.9. Results representation 

Some analysis will result in a heterogeneous number of results. In order to represent, in the most 

authentic way, we will use boxplots. 

A random distribution and the boxplots of this distribution are shown in figure 2.1.5.  

On this boxplot the central black line represents the median, the extremities of the box are the first 

and third quartiles respectively. The whiskers represent the maximum and the minimum. In some 

cases, crosses will also be plotted, they represent the outliers (not show). Finally, a red square will 

indicate the mean (not shown) 

 

 
Figure 2.1.5: Example of a boxplot representation of a random distribution. 
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III. RESULTS 
 

As described in the introduction, our aim is to investigate, in the cat primary visual cortex, the laminar 

dependency of cortical dynamics of variability and how this is modulated by the spatio-temporal 

statistics of natural stimuli. In order to answer these questions, we presented artificial (gratings and 

dense noise) and natural stimuli. Our stimulus set was presented on the whole screen (full field 

stimulation), on the receptive field (center stimulation) or only on the surround of the receptive field 

(surround stimulation). The neuronal activity evoked by these stimuli presented in these different 

conditions was recorded with high-density silicon probes. These probes allowed the recording of the 

spiking activity (single and multi-unit activities) and of the local field potential.  

For each experiment, the first step was to determine the different receptive field properties of the 

recorded spiking activity and the laminar location of the probe. 

1. CHARACTERIZING THE NEURONAL ACTIVITY 

1.1. Receptive Field Mapping  

We used 2x16 or 1x64 (shanks x sites per shank) silicon probes to record simultaneously local field 

potential (LFP), multi and single unit activity (MUA & SUA) across all cortical layers in cat primary 

visual cortex (V1). For each experiment, we determined the receptive fields (RFs) of the multi-unit 

activity along the silicon probe. The precise position and spatial organization of the RFs were 

measured with sparse binary noise presented in a square matrix encompassing the identified area 

of interest. This matrix was divided into 100 regions (10x10) where visual responses were identified 

(hence approximately 1° by 1° of visual angle for a square of 10°). Then, a map of visually evoked 

responses was obtained using a forward correlation method. Figure 3.1.1-A illustrates the receptive 

fields obtained across layers. Figure 3.1.1-B shows the overlap of the contour of all the receptive 

fields. Despite a small positional shift, all multi-unit and LFP receptive fields are co-registered, 

indicating that the recordings remain within a hypercolumn. After determining the RFs, a square 

mask of 5x5° covering all multi-unit receptive fields was defined. The purpose of this mask is to 

perform visual stimulation only inside the mask (“C” Center condition), which will only stimulate the 

aggregate spiking RFs of all the cells simultaneously recorded by the electrode. Stimulations outside 

the mask will stimulate their surround (“S”, surround condition). We also presented the visual stimuli 

on the whole screen (full field stimulation to stimulate simultaneously RF’s center and surround (“Full 

Field” condition)). 

Because the LFP captures the neuronal activity from 500µm to 1mm around the recording site 

(Einevoll et al., 2013), it is legitmimate to wonder if we are also observing the response of cells that 

have their receptive fields in the surround? This is not the case. Indeed, our masks have a size of 

5x5° (see results section) and are centered on the receptive fields. The first pixel of the surround 

stimulation is then located at 2.5°. In addition, our recordings are always performed in the area 

centralis ± 2-4° with the screen placed at 57cm from the cat. Based on the retinotopic map made by 

Tusa et al. (1978), at this cortical location the magnification factor is such that one visual degree is 

equal to 1mm. Since the first pixels of our stimuli are located a 2.5° and the maximum reach of our 

LFP signal is 1mm, we can exclude the fact that we are recording the activity from cells that have 

their receptive field in the surround. We also computed the size of the receptive field across layers 

(Figure 3.1.3). We observed that when we recorded within the area centralis, the bigger receptive 

fields were located in layer 5/6 and the smallest in layer 2/3 (p < 0.01, Kruskal-Wallis test).  
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We also computed the temporal profile of the receptive fields (Figure 3.1.1-C). We computed the 

temporal RF for different positions of the 10 x 10 matrix where the sparse noise was presented 

(Figure 3.1.1-B & C). As displayed in the figure, the positions that stimulated the center of the 

receptive field elicited a stronger response than the other positions. Based on this response, we 

were able to compute the current source density (CSD). We obtained a sink-source profile close to 

the one observed by Jin et al., (2011) with a sink in layer 4. However, in order to obtain a good CSD 

profile, the probe needs to be inserted perpendicularly to the cortical surface. Thus, in order to 

validate our electrophysiologically determined laminar profile, a histological confirmation was made 

after each experiment. Each probe was coated with fluorescent DiI before insertion in the cortex and 

cortical layer 4 location was labelled with cytochrome oxidase (Wong-Riley, 1979). As a result, we 

were able to determine with precision in which layers the probe was located (Figure 3.1.2). However, 

laminar identification was not always possible. Indeed, when the probe was not inserted 

perpendicularly to the cortical surface, laminar identification with CSD was impossible. Moreover, we 

were not always able to extract the cortical slice in order to perform the histological staining. 

Therefore, out of our 29 experiments, only 11 experiments meet the needed criteria in order to be 

included in our study. Table 3.1.1 illustrates the laminar position of each channel for every selected 

experiment and the number of recorded cells per experiment. It is important to note that the single 

units were identified after spike sorting which was performed after the experiments. This is why we 

only computed the receptive fields during the experiments using he multi-unit activity. 
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Figure 3.1.1: Receptive field mapping. Receptive Fields are mapped across all channels, spanning all layers.  A. Spatial 

receptive field of the MUA recorded across 64 channels. B. Overlap of all the computed receptive fields. A mask 
corresponding to the center stimulation is then defined.  C. Laminar Temporal profiles of the receptive field obtained for 
different positions of the sparse noise stimulation. The CSD correspond to the stimulation performed in position 6-6 i.e. the 
RFs center.  

 

 

 
Figure 3.1.2. Histological Identification. Histological layer identification for two different experiments: Histological 

labelling with cytochrome oxidase. The probe was covered with DiI(red) (Histology performed by Guillaume Hucher) 
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Figure 3.1.3. Receptive fields size. Differences in receptive sizes across layers. The RFs are the biggest in layer 5/6. 

 

 

  Recordings 
(w/y/side) 

Electrodes  Recorded cells per layer 
Layer 

2/3 Layer 4 Layer 5/6  Layer 2/3 Layer 4 Layer 5/6 

49 13 RIGHT 1--7 9--16 xxx  No SUA No SUA No SUA 

17 14 LEFT 1--7 9--16 xxx  No SUA No SUA No SUA 

15 16 RIGHT 1--12 13--37 38--64  No SUA No SUA No SUA 

22 16 LEFT 1--12 13--37 38--64  No SUA No SUA No SUA 

29 16 RIGHT 1--12 13--37 38--64  0 18 26 

46 16 RIGHT 1--19 20--40 41--64  2 7 28 

09 17 LEFT 1--13 14--40 41--64  17 59 49 

28 17 LEFT 1--10 11--40 41--64  0 14 22 

43 17 LEFT 1--16 17--50 51--64  0 16 21 

03 18 LEFT 1--15 16--46 47--64  2 29 17 

13 19 LEFT 1--20 21--42 43--64  14 40 22 
Table 3.1.1. Laminar position of each channel for every selected experiment and the number of selected isolated single 

units after the semi-automatic spike sorting analysis 

1.2. Characterizing the receptive field functional properties 

After determining the spatial profiles of the receptive fields and their laminar locations, we 

investigated their functional properties. First, using gratings which elicit strong responses, we 

determined the orientation/direction and spatial frequency selectivities. To do this, we presented 

drifting Gabor functions on the RF at 12 different directions and 6 different spatial orientations (Figure 

3.1.4). Figure 3.1.4-A shows the response (raster and PSTH) of one multi-unit site to the twelve 

different directions for one spatial frequency, while figure 3.1.4-B shows the response of the same 

multi-unit site to 6 different spatial frequencies for one direction. These results are summarized in 

figure 3.1.4-C. For this multi-unit site, the preferred orientation was 270° while the preferred spatial 

frequency was 0.8 Hz. This analysis was performed for all multi-unit sites along the probe (Figure 

3.1.5). The population analysis allowed us to determine the functional properties that were shared 

by a majority of multi-unit sites along the probe. These shared properties were the ones that were 

used for the gratings stimulations in our later protocols.  
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Figure 3.1.4: Estimation of the tuning properties for one site. Estimation of the preferred direction and spatial frequency 

for one recording site along our high-density silicon probe. A. Direction/Orientation selectivity. B. Spatial Frequency 
selectivity. C. Tuning curves of the preferred direction and spatial frequency. Each color corresponds to a different spatial 
frequency. 

 
Figure 3.1.5: Estimation of the tuning properties across a population. Estimation of the preferred orientation/direction 

and spatial frequencies for all recording sites of the high-density silicon probe. A. Best orientation for two spatial 
frequencies. B. Best spatial frequency for the preferred orientation. 
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  Recordings 
(w/y/side) 

Direction 
 (°)  

Spatial Frequency 
 (cycles/°)  

Temporal Frequency 
 (Hz) 

Layer 
2/3 

Layer 
4 

Layer 
5/6  

Layer 
2/3 Layer 4 Layer 

5/6  
Layer 

2/3 Layer 4 Laye
r 5/6 

49 13 RIGHT 20 20 xxx  0.42 0.42 xxx  2 2 xxx 

17 14 LEFT 240 240 xxx  0.42 0.42 xxx  2 2 xxx 

15 16 RIGHT  140  140  140  0,42 0,42 0,42  2 2 2 

22 16 LEFT 150 200 200  0,6 0,6 0,6  3 3 3 

29 16 RIGHT 150 150 300  0,8 0,8 0,6  4 4 4 

46 16 RIGHT 150 150 150  0,8 0,8 0,8  4 4 4 

09 17 LEFT 260 290 290  0,4 0,4 0,4  2 2 2 

28 17 LEFT 200 200 200  0,8 0,8 0,8  4 4 4 

43 17 LEFT 300 300 300  1,2 1,2 1,2  5 5 5 

03 18 LEFT 120 120 120  0,6 0,6 0,6  6 6 6 

13 19 LEFT 270 270 270  0,8 0,8 0,8  5 5 5 

Table 3.1.2: Tuning properties obtained with MUA within each layer, for each experiment. In bold, the chosen values for 

each experiment 
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1.3. Neuronal Classification 

As described above, we also recorded the single unit activity. However, the precise single unit 

classifications were not available during the experiments. Indeed, a supplementary step (i.e. the 

spike sorting) was necessary in order to isolate the recorded single units. Our semi-automatic spike 

sorting analysis (see methods) allowed us to isolate 403 single units across the laminar 

compartments of cat primary visual cortex. However, among these 403 neurons some of them 

represent the activity recorded close to an axon. In addition, as described in chapter 1, the single 

unit population can be subdivided in two neuronal classes: regular and fast spiking neurons. It has 

been shown in cats (but also in rodents) that these two subclasses do not have the same intrinsic 

properties (Bachatene et al., 2011 and Chen et al., 2015). Therefore, we decided to perform this 

classification among our single unit population and to discard the axonal waveforms, that correspond 

to the thalamic activity coming from axons projecting to V1 (Sun et al, 2019; Society for Neuroscience 

conference). However, the available techniques in the literature rely too strongly on the firing rate 

and the peak-to-peak latency of the waveforms, which can lead to bad classifications. In order to 

overcome this problem, we developed with Matias Goldin and Evan Harrell (Shulz lab, ICN) a new 

classification method that uses several waveform features. We extracted seven features from the 

waveforms (see methods). The first three PCA components explain 90% of the variance of the spike 

shapes (Figure 3.1.6). The weights of each feature in these eigenvectors are shown in Figure 3.1.6. 

Then, a k-means clustering was made forcing the grouping of 12 clusters, followed by a manual 

merging step to ease the separation into two clusters. After plotting the projection of the twelve 

clusters into the first two PCA components, a manual assignment was made into the RS or the FS 

group, and to the middle unclassified group (i.e. axonal waveforms and single units finally classified 

as multi-units). The final resulting clusters and their waveforms are displayed in figure 3.1.7. There, 

we show that two separated clusters appear, whose waveform shapes match the ones encountered 

previously using silicon probes (Zengcai et al. 2014). With this method, we encountered 63% (225 

cells) of RS neurons and 37% (131 cells) of FS neurons.  

 

 
Figure 3.1.6 Features and PCA of our classification method. A. left panel: Percentage of variance explained by the 

PCA components. Right panel: Weights of each feature in these three eigenvectors 
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Figure 3.1.7. Cluster separation of regular spiking and fast spiking cells. 
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2. QUANTIFICATION OF THE VISUAL RESPONSE.  

A previous intracellular study of the laboratory investigated the V1 responses to four different stimuli. 

These stimuli, calibrated both in their spatial and temporal domains, included classical artificial 

stimuli used to probe neuronal selectivity (drifting grating (DG), dense noise (DN)). They also 

contained more complex stimuli ((GEM) and natural images (NI), both animated with natural 

temporal statistics) that mimic the global retinal flow that occurs during the exploration of the natural 

environment. They showed that the retinal flow statistics imposed by simulated eye-movements 

evoke reliable, non-linear responses in V1, and that sparse spiking responses to natural stimuli arise 

from irregular but highly reproducible Vm trajectories. However, due to the difficulty imposed by 

intracellular recordings, they were able to only record 30 cells. The stability of the extracellular 

preparation allowed us to test additional parameters that were feasible in the intracellular study. We 

were able, with a linear silicon probe spanning all layers, to increase almost by a factor of 10 the 

number of recorded neurons (221 neurons), but also to record the neuronal activity at different scales 

by recording the multi-unit activity (377 sites) and the local field potential. These simultaneous 

recordings also allowed us to perform new analyses such as the computation of the correlations. 

Moreover, we were able to present a set of control stimuli that was absent in the intracellular study. 

This set was composed of a natural image where the phase (spatial statistics) was randomized, a 

natural image where the eye movements (temporal statistics) were randomized, a natural image 

where both the phase and the eye movements were randomized and finally a natural image where 

the eye movements were only made of saccades. 

The first step of this thesis was to validate the intracellular results previously obtained by the 

laboratory. Then, the geometry of the silicon probe allowed us to investigate the laminar dependency 

of the response variability at different scales. Finally, we wanted to link the responses to the natural 

image and its spatio-temporal statistics.  

2.1. Impact of the full field response on the neuronal activity 

2.1.1 Quantification of the spiking response  

As described in section 3.1, we isolated 356 neurons. However, not all cells responded to visual 

stimulation. When a cell did not respond to natural images, no response to the other stimuli was 

observed either. Therefore, we excluded all the cells that did not display a visual response and 

showed activity similar to the spontaneous firing. In order to separate the responsive and 

unresponsive cells, we performed a selection based on the levels of reliability. Cells that displayed 

a reliability two times lower than the reliability of the spontaneous activity were not included in our 

study. The distribution of the spontaneous reliability is displayed in figure 3.2.1. Among our 356 

neurons, 221 were included in the study (63%). One could expect a higher number of visually 

responsive cells. This ratio of responsive cells was also observed in rat somatosensory cortex 

(Goldin, Harrell, et al., 2018). This could be a signature of sensory cortices that was masked by 

single recording site probes. Another explanation of this ratio is that silicon probes are very big and 

cause damage in the brain when lowered, thus some functional connections might be destroyed 

during the probe descent and abolish the functional activity of some neurons. It is important to keep 

in mind that non-visually responsive cells are captured by the multi-unit activity.  
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Figure 3.2.1: Distribution of two times the maximum standard deviation of the spontaneous activity reliability. Neurons 

presenting a reliability lower than the maximum 2*SD were not included in this study.  
 

 Comparison with the intracellular recordings 

As performed in the intracellular study we first characterized the spiking activity by computing the 

firing rate of the single and multi-unit activity. Figure 3.2.2 shows the response of a well-isolated 

neuron (Fast spiking cell) and of a multi-unit site to our four main stimuli presented 30 times. For 

both signals, the bin size of the PSTH was 5 ms. 

As observed intracellularly, the presentation of an optimal DG (Figure 3.2.2 A & B, top row) evoked 

a strong modulation of the single unit response at the grating temporal and spatial frequencies (5Hz 

and 0.8 cycles/degree for this example; but see section 3.1 for the table containing all the preferred 

FS and FT). However, only simple cells are modulated by the frequencies of the drifting gratings. 

The presentation of a natural scene evoked strong and synchronized responses across the stimulus 

presentation (Figure 3.2.2). Figures 3.2.3 and 3.2.4 show the responses of many neurons (FS and 

RS) to both natural images and drifting gratings. We can observe that we have two classes of 

neurons. Those that do not respond to the visual stimulation and that are not selected by our criteria 

and neurons that are driven by the visual stimulation. Among the responsive neurons we observed 

different levels of response. This is particularly true for DG since, unlike what is performed 

intracellularly, it is impossible to choose the best parameters (phase, spatial and temporal 

frequencies) for all neurons simultaneously. We also computed the response of all neurons for each 

trial and plotted them in the same raster (Figures and 3.2.5 & 3.2.6). These raster plots show that 

across trials, the response is not always the same. This suggests that during our protocols, intrinsic 

processes, such as anesthesia, can modulate the responses (Ecker et al., 2014). 
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The same pattern was observed for the multi-unit but with increased activity compared to the SUA. 

This is not surprising since the MUA contains the activity of many neurons (Einevoll et al., 2007; 

Gray and Singer, 1989; Pettersen et al., 2008). As explained in the methods section, our MUA 

recordings correspond to all the events crossing the automatic threshold of our recording system for 

frequencies between 250Hz and 5Khz.  

 
Figure 3.2.2 : Spiking Dynamics of the single unit and multi-unit responses as a function of visual input complexity. 
On the raster, each line represents a trial with the corresponding PSTH below (bin 5ms) A. Single unit response to our set 
of stimuli. B. Multi-unit response to our set of stimuli. Grey bars represent saccades. 
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Figure 3.2.3: Spiking dynamics of the single unit activity evoked by Natural images animated with eye movements. Each 

raster represents a neuron. 
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Figure 3.2.4: Spiking dynamics of the single unit activity evoked by Drifting Gratings. Each raster represents a neuron. 
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Figure 3.2.5: Spiking dynamics of the single unit activity for each trial evoked by Natural Images animated with eye 

movements. Each raster represents a trial and each line of the raster represent a neuron. 
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Figure 3.2.6: Spiking dynamics of the single unit activity for each trial evoked by Drifting Gratings. Each raster represents 

a trial and each line of the raster represent a neuron. 
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 Comparison of the intracellular and extracellular results 

We then compared, at the population level, the firing rate of the SUA and the MUA to the one 

obtained in the intracellular study (Figure 3.2.7-A). For the first comparison the single unit activity 

was composed of 78 neurons responding both to the optimal DG and GEM (52 regular spiking 

neurons: 1 located in Layer 2/3, 30 in layer 4 and 21 in layer 5/6; 26 fast spiking neurons: 20 in layer 

4 and 6 in layer 5). The mean response rate was the highest for the DG, the lowest for DN, while 

GEM and NI evoked similar firing rates (see table 3.2.1 located at the end of the section). This is 

different from the intracellular results where DG and GEM evoked a higher firing rate than the other 

stimuli. However, the MUA gave a similar response pattern to the intracellular study, but with higher 

firing rates (Figure 3.2.7-A, center and left; table 3.2.1). This difference might originate from the 

differences between intracellular and extracellular recording techniques. Indeed, intracellularly, one 

of the first steps of characterization of the cell, is the determination of the orientation tuning, the 

preferred spatial and temporal frequencies. Cells with smaller responses might have been discarded. 

On the other hand, since extracellularly, we recorded simultaneously dozens of neurons, we 

recorded cells for which the temporal and spatial frequencies were not optimal, as shown in figure 

3.2.4. Moreover, low firing rate cells were not discarded, this results in a lower average firing rate. 

The pattern is probably the same between the intracellular spiking activity and the MUA because the 

latter gathers the response of many neurons, with some of them optimally responding to the gratings, 

therefore increasing the recorded activity (Gray and Singer, 1989; Einevoll et al, 2007; Pettersen et 

al., 2008). We can rule out a difference caused by the anesthesia. Despite being performed with two 

different anesthetics (Alfaxolone and isoflurane respectively), the two studies resulted in similar 

values of firing rate for NI (5.5 Hz intracellularly vs 4.2 ± 0.8 Hz extracellularly). In summary, our 

extracellular results are similar to the ones obtained intracellularly despite a different anesthesia and 

a different recording technique. 

 

 Laminar results 

We also performed the same quantification on the single unit (221 neurons) and the multi-unit (377 

sites) populations without GEM. Indeed, in some experiments the GEM, due to an error, were not 

presented at the optimal orientation. Thus, among our 221 neurons, only 78 neurons responded 

optimally to GEM. These 78 neurons do not allow us to perform a laminar and a neuronal subtype 

analysis. Thus, we performed supplementary analysis on the single-unit population without GEM. To 

do so we only focused on the response to DG, NI and DN. 
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Figure 3.2.7: Single and multi-unit mean firing rate. A. Multiscale comparison of the mean evoked spike rates. Our 

extracellular results match the intracellular ones. Left: Single unit activity (n = 78), center: intracellular results. Right: Multi-
unit activity (77 sites). B. Comparison of the mean evoked spike rates. DG evokes the highest firing rate. Left: single unit 
activity (n = 221), right: multi-unit activity (377 sites). C. laminar comparison of the mean evoked spike rates. Layer evokes 

the highest firing rates. Left: single unit activity (L2/3 = 10; L4 = 111; L5/6 = 99 neurons), right: multi-unit activity (L2/3 = 
52; L4 = 187; L5/6 = 138 sites). Red squares: mean. Black line: median. Extremities of the box: first and third quartile. 
Whiskers: minimum and maximum. Crosses: outliers; Stars indicate values significantly different from NI. ***: p < 0.001 
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Within layers 4 and 5/6, drifting gratings evoked a higher firing rate than the other stimuli (p < 0.05 

& p < 0.001; Friedman test). In layer 2/3, this low firing rate observed for DG can be explained by 

the fact that cells tend to adapt and reduce their firing rate very quickly. Since our visual stimulation 

lasts 10 seconds, the mean firing rate is reduced (Figure 3.2.9). Figure 3.2.9 shows the exponential 

fit of the response decay for the mean MUA in all layers (a + exp^(b +x) +c; where a is the value of 

the peak minus the baseline, b the value of the slope between the maximum peak and 500ms and 

c the baseline value). The higher b is the stronger the adaptation is. Our results show that b and c 

are the lowest in layer 2/3, thus we can conclude that the reduced firing rate evoked by DG in this 

layer is linked to a lower baseline firing rate but also to a faster adaptation of the response. Natural 

images and dense noise only exhibited a difference in firing rates in layer 5/6 (Figure 3.2.7-C, left 

panel; Table 3.2.1). Regarding the firing rate between layers, both NI and DG evoked different mean 

firing rates between layers; the highest firing rate was found in layer 4 and the lowest in layer 2/3 

(Figure 3.2.7-C, left panel; Table 3.2.1; Kruskal-Wallis test). 

The firing rate across the 377 multi-unit sites (52 sites in layer 2/3, 187 sites in layer 4, 138 sites in 

layer 5/6) exhibited the same pattern, with higher firing rates, as in the single unit activity. One 

difference was found in layer 4 where NI and DN were significantly different (p < 0.001; Friedman 

test; Figure 3.2.7-C, right panel; Table 3.2.1). 

In summary, our results show that DG induce a higher firing rate in layers 4 and 5/6. On the other 

hand, natural images and dense noise evoke similar firing rates. The highest firing rates were found 

in layer 4. 

 

As described in section 3.1, we developed an algorithm that classifies the single unit population into 

two subgroups: fast spiking and regular spiking cells. We recorded 83 FS cells (4 in layer 2/3, 61 in 

layer 4 and 18 in layer 5/6) and 138 RS cells (7 in layer 2/3, 50 in layer 4 and 81 in layer 5/6). Both 

FS and RS cells displayed the same firing rate pattern as the complete single unit population (Figure 

3.2.10-A). However, for all stimuli respectively, FS neurons exhibited a higher mean firing rate than 

the RS cells and the total population (p < 0.05, Kruskal-Wallis test, Figure 3.2.10-A; table 3.2.2). 

For the FS cells, we only observed a higher firing rate for DG in layer 4, this is probably linked to the 

number of cells recorded in layer 2/3 and 5/6. On the other hand, as observed for the whole 

population, DG evoked a higher spiking activity than the other stimuli while DN elicited the lowest 

one (Figure 3.2.10-B; table 3.2.2). 

For both RS and FS cells and for all stimuli respectively, no laminar differences in the firing rate were 

observed (p > 0.05; Kruskal-Wallis test) 
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Figure 3.2.8: Firing Rate scatter plots. A. Single unit activity firing rate. Left: Natural images vs Drifting gratings. Right: 

Natural images vs Dense Noise. B. Multi-unit activity firing rate. Left: Natural images vs Drifting gratings. Right: Natural 
images vs Dense Noise. Empty symbols = FS. Full Symbols = RS or MUA. 

 

 
Figure 3.2.9: Firing rate adaptation. Mean firing rate for each layer and its level of adaptation quantified by an 

exponential fit. 
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Figure 3.2.10: Single unit mean firing rate. A. Mean evoked spike rates for different subclasses of single units. Fast 

Spiking Neurons evoke a higher firing rate than regular spiking neurons. Left: Fast spiking neurons (n = 83), center: regular 
spiking neurons (n = 138). Right: single unit activity (n = 221). B. laminar comparison of the mean evoked spike rates 

across the single unit classes. Left: Fast spiking neurons (L2/3 = 4; L4 = 61; L5/6 = 18 neurons), center: regular spiking 
neurons (L2/3 = 7; L4 = 50; L5/6 = 81 neurons), right: single unit activity (L2/3 = 10; L4 = 111; L5/6 = 99 neurons). Black 
line: median. Extremities of the box: first and third quartile. Whiskers: minimum and maximum. Crosses: outliers; Stars 
indicate values significantly different from NI. *: p < 0.05; ***: p < 0.001 
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 Impact of the natural statistics on the firing rate 

Finally, we investigated the impact of the spatio-temporal statistics of the natural image on the firing 

rate (Figure 3.2.10 & 3.2.11). 

Figure 3.2.10 shows a response example for one cell and one multi-unit site in response to our 

control stimuli. In this example cell, Natural images (NI) and the natural images with randomized 

phase (NI-RS), natural images with randomized eye movements (NI-RT) and natural images where 

both phase and eye movements were randomized (NI-RST) seem to evoke a similar response 

pattern. On the other hand, the natural image animated only with saccades (NI-SAC) induced a 

reduced spiking activity compared to the other stimuli. The same observations were made for the 

multi-unit site. 

We presented the control stimuli in 4 experiments and were able to record 124 well-isolated single 

units and 150 multi-unit sites. We computed the mean firing rate from these populations. 

Our results on the population analysis showed that for both single unit and multi-unit activity, NI-SAC 

evoked a lower spiking activity than NI, implying that the other eye movements (drift, tremors, 

microsaccades) play a significant role in the neuronal activity (p < 0.05, Friedman test; Figure 3.2.12, 

table 3.2.3). The importance of the temporal structure of the eye movements in the generation of a 

spike is confirmed by the lower mean firing rate elicited by NI-RT (p < 0.001). In addition, NI and NI-

RS have similar firing rates. This could mean that temporal statistics are more important than the 

spatial ones in the generation of the spiking activity. 

However, since NI-RST and NI evoked similar firing rates for the SUA, one could argue that neither 

the spatial nor temporal frequencies are important. This absence of a difference could be linked to 

the number of recorded cells. Indeed, the firing rate obtained for the MUA is close but significantly 

higher for NI (p < 0.001, Friedman test). Another explanation could be That despite the absence of 

significance, NI-RS evokes a higher mean firing rate than NI, while NI-RT evokes a lower one. On 

the other hand, NI-RST evokes a higher firing rate than NI-RT. The reduction of activity induced by 

the randomization of the temporal statistics is compensated by the increase in activity evoked by the 

randomization of the spatial phase. 

 

The pattern of response observed for the SUA was also observed for the regular spiking neurons (n 

= 79; Figure 3.2.12, table 3.2.3). However, for the fast spiking neurons (n = 45), only NI-RS showed 

a significantly different firing rate than NI (p < 0.05, Friedman test). This could be either linked to the 

number of cells or by the fact that fast spiking cells are less affected by the center surround 

interactions present in natural scenes (Haider et al., 2010). This will be tested in the section 3.2.2 of 

this manuscript. 

 

In summary, our results showed that both the single unit and the multi-unit activity exhibit a similar 

mean firing pattern (similar to the one obtained with intracellular recordings by Baudot et al.). Drifting 

gratings evoke a higher mean firing rate than the other stimuli. Regarding the layer specificity, layer 

4 exhibits higher firing rates than the other layers. Finally, we showed that all the eye movements 

and not only saccades seem important for the generation of a spiking activity. 
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Figure 3.2.11: Spiking dynamics of the single unit and multi-unit responses for natural images and its controls. 
On the raster, each line represents a trial with the corresponding PSTH below A. Single unit response to our set of stimuli. 
B. Multi-unit response to our set of stimuli. 
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Figure 3.2.12: Single and multi-unit mean firing rate evoked by the control stimuli. A. Comparison of the mean 
evoked spike rates. Left: Single unit activity (n = 124), right: Multi-unit activity (150 sites). B. Comparison of the mean 

evoked spike rates across the single unit subtypes. Left: Fast spiking neurons (n = 45), center: regular spiking neurons (n 
= 79). Right: single unit activity (n = 124).  * : p < 0.05; ** : p < 0.01; *** : p < 0.001 
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FULL FIELD SUA 

  DG GEM NI DN 

Mean (w/ GEM) 7.1 ± 1.4 5.3 ± 0.8 4.2 ± 0.9 3.5 ± 1.0 

Mean (w/o GEM) 6.3 ± 1.1   2.7 ± 0.4 1.9 ± 0.4 

Layer 2/3 -0.3 ± 0.2   0.6 ± 0.4 1.1 ± 0.4 

Layer 4 7.9 ± 1.6   3.2 ± 0.5 2.2 ± 0.4 

Layer 5/6 5.0 ± 1.5   2.5 ± 0.7 1.7 ± 0.8 

     
FULL FIELD MUA 

  DG GEM NI DN 

Mean (w/ GEM) 28.6 ± 2.3 26.3 ± 2.1 21.2 ± 1.3 17.1 ± 1.5 

Mean (w/o GEM) 22.5 ± 1.2   15.0 ± 0.6 11.2 ± 0.6 

Layer 2/3 0.3 ± 0.6   6.3 ± 0.7 5.9 ± 1.0 

Layer 4 28.7 ± 1.9   17.1 ± 0.9 13.9 ± 0.9 

Layer 5/6 23.2 ± 1.5   15.2 ± 1.0 9.5 ± 0.8 

Table 3.2.1: Mean firing rate values for the single and multi-unit activity (mean ± SEM) 

 

 

FULL FIELD FS 

  DG NI DN 

Mean  10.1 ± 2.5 4.8 ± 1.0 3.9 ± 1.1 

Layer 2/3 0.4 ± 0.5 1.6 ± 0.7 2.2 ± 0.7 

Layer 4 9.7 ± 2.5 4.4 ± 0.9 3.2 ± 0.6 

Layer 5/6 14.9 ± 9.2 7.3 ± 4.0 7.1 ± 5.1 

    
FULL FIELD RS 

  DG NI DN 

Mean  3.7 ± 0.5 1.6 ± 0.2 0.7 ± 0.2 

Layer 2/3 0.2 ± 0.1 0.1 ± 0.2 0.4 ± 0.3 

Layer 4 5.2 ± 1.1 1.7 ± 0.5 0.9 ± 0.4 

Layer 5/6 3.1 ± 0.4 1.7 ± 0.3 0.7 ± 0.2 

Table 3.2.2: Mean firing rate values for the single unit activity 

and its subclasses (fast spiking and regular spiking cells; mean ± SEM) 

 

 

FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 3.9 ± 0.7 4.2 ± 0.8 2.9 ± 0.5 3.6 ± 0.7 2.8 ± 0.5 

RS 1.9 ± 0.3 2.1 ± 0.4 1.5 ± 0.3 1.7 ± 0.4 1.4 ± 0.3 

SUA 2.6 ± 0.3 2.8 ± 0.4 2.0 ± 0.3 2.4 ± 0.3 1.9 ± 0.3 

MUA 17.3 ± 0.9 18.3 ± 1.2 14.0 ± 0.8 16.2 ± 0.9 13.3 ± 0.7 

Table 3.2.3: Mean firing rate values for the multi-unit activity, single unit activity and its subclasses 

(fast spiking and regular spiking cells; (mean ± SEM) 
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2.1.2 Quantification of the local field potential 

As described in the methods section, the silicon probe allows the recording of the spiking activity 

(SUA, MUA) but also of a more global signal, the local field potential (LFP). The LFP is the combined 

activity of small neuronal populations located hundreds of microns around the electrode tip (Einevoll 

et al., 2013; Xing et al., 2009). It is important to note that a close correspondence between LFP and 

synaptic potentials has been found (Kamondi et al., 1998; Okun et al., 2010). Therefore, LFP has 

been considered as the summed activity of synaptic currents coming from cortical neurons, hundreds 

of microns around the recording site. However, recent papers (Meir et al., 2018; Tan et al., 2014), 

showed that this view needs to be reconsidered. These studies showed that the membrane potential 

and the LFP can either be correlated and decorrelated and that the correlation level depends on 

many factors such as the state of the animal or neuromodulation. The fact that the LFP switches 

from synchronous to asynchronous states has also been observed in the anesthetized cat (Spacek 

and Swindale, 2016). In addition to the different levels of correlation between the Vm and the LFP, it 

is important to keep in mind that even if synaptic currents are the major LFP contributors, action 

potentials (fast sodium spikes, slow calcium spikes and spike afterhyperpolarization) also participate 

in the signal formation (Einevoll et al., 2013). Thus, a high amplitude in the response is characteristic 

of highly synchronized neuronal activity while a low amplitude corresponds to poorly synchronized 

activity. An illustration of the mean LFP in response to all stimuli is shown in figure 3.2.13. This 

illustration shows that a very responsive SUA does not imply a strong LFP.  

A better overview of the LFP across layers is shown in Figure 3.2.14. The mean response to NI 

seems to contain high amplitudes i.e. a more synchronized response. However, this observation 

needs to be quantified. A simple way to do it is to compute the energy of the mean stimulus-locked 

response and subtract the energy of the spontaneous activity. A highly synchronized response would 

result in high energy levels while an unsynchronized one would result in low energy levels. Figure 

3.2.15 shows an example of the energy evoked by natural images and dense noise for two different 

experiments. For both experiments, NI evoked a higher energy than DN, however each experiment 

resulted in different values of energy. This is linked to the fact that the LFP is strongly dependent on 

the state of the animal (Spacek and Swindale, 2016) but also on how the ground reference is placed 

(Parabucki and Lampl, 2017). A determination of the synchronous and asynchronous states will be 

needed in the future. 

We then computed the energy at the population level. We also computed the LFP of the GEM, even 

for the sites where it was not presented at the preferred orientation. Indeed, as shown in figure 

3.2.16, the GEM elicited a similar response for the preferred and orthogonal orientations (we used 

the coherence as a marker of similarity, but the mean energy was also similar: 3.6x106 and 3.5 x106 

for the two responses). 

 

 
Figure 3.2.13: Example of the LFP and SUA response evoked by our set of stimuli. 
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Figure 3.2.14: Mean LFP across layers. Mean LFP across layers in response to natural images. 

 

 
Figure 3.2.15: Scatter plot of the energy evoked by natural images and dense noise. The scatter plot represents two 

different experiments (black and red dots). 
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Figure 3.2.16: Comparison of the mean evoked LFP for two different animated gratings. Comparison of the LFP 

response when two animated gratings were presented at orthogonal orientations (top: mean LFP; bottom: mean 
coherence) 

 Mean Energy 

The computation of the energy mostly matches our observations. Indeed, we obtained a significantly 

higher energy when NI were presented compared to other stimuli, while and GEM elicited the highest 

energy among the artificial stimuli (p < 0.001; Friedman test; Figure 3.2.17, table 3.2.4). We also 

observed that drifting gratings evoked a much lower energy than the other stimuli. The LFP is a 

mean field signal that records the activity of many neurons, yet neurons responding to DG display 

are regrouped in phase columns and display a phase preference (Wang et al., 2015). Thus, the LFP 

correspond to a mixture of neurons displaying different phase preferences, which leads to a very 

desynchronized signal. Moreover, the neurons strongly adapt their response to DG as shown in the 

previous section, which is not the case for the other stimuli. This result in a total desynchronization 

of the LFP despite a spiking activity and a membrane potential locked to the stimulus (as shown in 

Baudot et al., 2013; Figure 2). This suggests that the mesoscopic information carried by LFPs and 

the local integration of synaptic input activity realized by a single cell are clearly dissociated unlike 

what was claimed by Kamondi and colleagues (1998). 
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 Energy across layers 

We then computed the energy of the LFP signal within each layer (Figures 3.2.17 and 3.2.18; table 

3.2.4). Within each layer, we obtained the same pattern as the one observed for the mean energy 

(p < 0.001, Friedman test). However, we found a difference between layers (p < 0.001, Mann Whitney 

U test). For all stimuli, the lowest energy was found in layer 2/3. For NI and DG, the highest one was 

located in layer 5/6 while for DN and GEM it was layer 4. The great difference observed between 

layer 2/3 and the other layers can be explained by the fact that cells in the supragranular layer tend 

to spike in a sparser way than in other layers, therefore reducing the synchronization of the neuronal 

activity (Clancy et al., 2015; Tang et al., 2018). In addition, this high energy observed in granular and 

infragranular layers matches the strong sinks and sources that we observe when the CSD is 

computed. 

A striking result that we obtained is the great heterogeneity of the energy for all stimuli and in all 

layers. As explained above, this can be caused by the placement of the electrode’s reference during 

the experiment and by the state of the animal.  

In summary, we found that natural images evoke a more synchronized signal than the other stimuli. 

These results are different from the intracellular findings of the laboratory (Baudot et al., 2013), in 

particular for the mean LFP in response to DG that does not match the intracellular findings. This 

difference is the result of the intrinsic properties of the LFP. 
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Figure 3.2.17: Mean energy of the LFP. Natural Images evoke the highest energy levels. A. Mean energy of the LFP in 

response to our set of stimuli. B. Mean laminar energy of the LFP in response to our set of stimuli. Red square: mean. 
Black line: median. Extremities of the box: first and third quartile. Whiskers: minimum and maximum. Crosses: outliers. ***: 
p < 0.001 
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Figure 3.2.18: Energy correlation plots. Top left: Natural images vs drifting gratings; Top right: Natural images vs gratings 

animated with eye movements. Bottom: Natural images vs dense noise. 
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 Impact of the natural statistics on the energy 

Finally, as performed for the spiking activity, we computed the energy from the responses to our 

control stimuli (Figure 3.2.19, table 3.2.5). 

We did not obtain any differences between the unaltered natural image and the one where the spatial 

statistics were altered (p > 0.05; Friedman test). However, the natural image only animated with 

saccades elicited a higher mean energy than all the other stimuli while the NI and NI-RS evoked a 

higher energy than NI-RT and NI-RST (p < 0.001, Friedman test). The increase observed for NI-SAC 

is linked to the sole presence of saccades, which leads to a more synchronized response but also 

to reduced adaptation. 

As mentioned in the previous section, the spiking activity does not seem to be impacted by the 

absence of higher order correlations in the spatio-temporal statistics. This is maybe not the case for 

LFP, thus for the synaptic activity, which might be impacted by the correlations in the temporal 

statistics. 

 

 
Figure 3.2.19: Mean energy of the LFP. Mean LFP energy in response to our control stimuli. Red squares: mean. Black 

line: median. Extremities of the box: first and third quartile. Whiskers: minimum and maximum. Crosses: outliers. n.s: non-
significant; *** : p < 0.001 

  



 

131 

 

 

FULL FIELD LFP 

  DG GEM NI DN 

Mean  1.1e+06 ± 4.9e+04 5.8e+06 ± 2.2e+05 7.8e+06 ± 2.5e+05 4.3e+06 ± 1.7e+05 

Layer 2/3 6.3e+05 ± 5.4e+04 2.4e+06 ± 2.4e+05 3.7e+06 ± 4.3e+05 1.4e+06 ± 1.1e+05 

Layer 4 1.2e+06 ± 4.5e+04 7.0e+06 ± 3.3e+05 8.3e+06 ± 3.3e+05 5.5e+06 ± 2.4e+05 

Layer 5/6 1.5e+06 ± 1.4e+05 6.5e+06 ± 3.1e+05 1.0e+07 ± 4.3e+05 4.5e+06 ± 2.6e+05 

Table 3.2.4: Evoked mean energy by our stimulus set (mean ± SEM) 

 
 

  NI NI-RS NI-RT NI-RST NI-SAC 

FULL FIELD 
7.9e+06 ± 
3.5e+05 

8.5e+06 ± 
3.7e+05 

6.4e+06 ± 
2.9e+05 

6.2e+06 ± 
2.9e+05 

1.2e+07 ± 
6.7e+05 

Table 3.2.5: Evoked mean energy by our control stimulus set (mean ± SEM) 
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2.2. Impact of the center surround interactions on the neuronal activity 

We investigated the impact natural and artificial full field stimulation on the neuronal activity. The full 

field (FF) stimulation is defined by the fact that both the center and the surround of the receptive field 

are stimulated simultaneously. Many studies showed that the concomitant stimulation of both center 

and surround induced a different response than the stimulation of the center alone (DeAngelis et al., 

1994; Guo et al., 2005; Haider et al., 2010; Vinje and Gallant, 2000, see Angelucci et al., 2017 for a 

review).  It is however important to note a lone stimulation of the surround is considered to not elicit 

any spiking response, although synaptic responses can be elicited 4 to 8° outside the classical RF 

(Bringuier et al., 1999; Gerard-Mercier et al., 2016). Despite this absence of response for a surround 

only stimulation, center surround interactions shape the response differently as a function of the type 

of stimulus.   

Firstly, compared to the center stimulation, suppression or facilitation of the neuronal response is 

induced when both center and surround are stimulated with gratings. A strong suppression occurs 

when the grating in the center and surround have the same orientation, spatial frequency, direction 

and speed. A weak suppression or a facilitation occurs when stimuli of orthogonal parameters are 

presented (DeAngelis et al., 1994; Li & Li, 1994; Durand et al., 2007; Angelucci et al., 2017). 

Second, compared to the center stimulation, suppression of the neuronal response is usually 

induced when both center and surround are stimulated with natural images (Vinje and Gallant, 2000; 

Haider et al, 2010). However, a study on primates found that a facilitation or an absence of 

modulation of the neuronal response can also be induced when both center and surround are 

stimulated with natural scenes (Guo et al., 2005). 

This stimulation of both center and surround with natural scenes also impacts other aspects of the 

visual response. Indeed, it has been shown that the concomitant stimulation of the center and the 

surround with natural scenes increases the sparseness and the reliability of the spiking activity both 

at the single and multi-unit levels (Vinje & Gallant, 2000; Haider et al., 2010) and decorrelates the 

single unit activity (Vinje & Gallant, 2000). 

Despite these important results, in our knowledge, no study compares simultaneously the impact of 

the center surround interactions in both natural and artificial stimuli. In addition, none of the above-

mentioned studies investigated the laminar distribution of the coding efficiency (i.e. the sparseness, 

the reliability and the correlation of the response) induced by natural image center surround 

interactions. Therefore, in this chapter we will investigate how the center surround interactions shape 

the neuronal response at the spiking level but also at the mesoscopic level (i.e. the LFP). Moreover, 

since a synaptic response can be elicited 4 to 8° outside the classical receptive field, we should 

expect a strong LFP response for a surround only stimulation. In order to answer these questions, 

we computed the same indices as in the previous sections. 
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2.2.1 Quantification of the spiking activity 

As performed in the previous section, we will first quantify the firing rate of the single and multi-unit 

activity when only the center was stimulated with our stimulus set. Since we also investigated the 

impact of the lone stimulation of the surround on the LFP, we will also describe it for the spiking 

activity. As described in section 3.1, the center stimulation (C stimulation) was performed on a 5x5° 

square that was determined from the MUA receptive fields. The surround stimulation (S stimulation) 

was performed outside this mask and the center surround stimulation covered both the center and 

surround. In order to avoid any misunderstanding, the center surround stimulation, which 

corresponds to a full field stimulation will be named this way along this manuscript and will be 

abbreviated “FF stimulation”. 

 

Haider and colleagues (2010), who performed intracellular recordings in cat primary visual cortex 

also investigated the impact of natural scene center surround interactions on the neuronal response. 

They showed that the concomitant stimulation of both center and surround with natural scenes 

resulted in a suppression of the neuronal activity.   

Figure 3.2.20 shows an example of single unit activity evoked by all stimuli presented in the FF, C 

and S conditions. Unlike what is observed by others, compared to the center stimulation, the 

stimulation of the full field with natural images seems to increase the spiking activity of the neuron. 

However, for DG, the full field and center stimulations seem to induce the same activity. It has been 

shown that the suppression evoked by gratings’ center surround interactions tend to reach a plateau 

after a certain size of the surround (Ozeki et al., 2004). Surprisingly, the NI surround only stimulation 

evoked a small response across the duration of the stimulation also present for the FF and C 

conditions. However, this response was only observed in a very small number of neurons and did 

not change the mean firing rate of the response evoked by NI that stayed at the same level as the 

one evoked by the other stimuli. Therefore, we will not further comment this stimulation for the SUA 

and MUA. 
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Figure 3.2.20: Example of a single unit and LFP response to our set of stimuli presented full field, center or surround.  

 Impact of the center surround interactions 

In order to be able to evaluate the impact of the center surround interactions on the firing rate we 

first computed the mean firing rate evoked by the center stimulation (figure 3.2.21; table 3.2.6). As 

observed for the full field stimulation, drifting gratings evoked the highest firing rate and dense noise 

the lowest one, for both SUA and MUA (p < 0.001; Friedman test).  

We then compared the firing rates evoked by the full field and center stimulations. For the SUA, all 

stimuli evoked the same firing rate for the FF and the C stimulations (p > 0.05, Wilcoxon test). Again, 

as explained above, this is not surprising for drifting gratings. However, the lack of a difference for 

the NI condition is more surprising. Within our population, some neurons displayed a suppression 

while other a facilitation when both center and surround where stimulated (figure 3.2.21). This is 

probably linked to the size of our center stimulation. Indeed, in their paper, Haider and colleagues 

(2003) showed that natural images also evoke a plateau of maximum suppression. This plateau is 

reached for stimulations 3 times bigger than the size of the receptive field. However, they stopped 

their analysis at a stimulation 4 times higher than the size of the RF. Thus, with a 5° stimulation, we 

are above this 3-times limit. Surprisingly, the full field stimulation with dense noise evoked a higher 

firing rate than the center one (p < 0.05). 

For all our multi-unit recordings, the full field stimulation induced a higher firing rate than the center 

stimulation (p < 0.001). However, the difference between the two conditions is small (table 3.2.6). 

Non-linear mechanisms might shape the response when a certain size of stimulation is reached. In 

addition, despite the absence of significance for the NI and DG conditions at the single unit level, the 

mean firing rates evoked by the FF stimulation tend to be higher than the one evoked by the C 
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condition. By increasing the number of recorded neurons, we might reach a pattern of response 

similar to the multi-unit one.  

We also observed the impact of the center surround interactions on the FS and RS cells (Figure 

3.2.21; table 3.2.7). Among RS cells, no difference was observed between the FF and C conditions 

for NI and DG (p > 0.05) while one was present for DN (p < 0.01). While FS cells displayed the same 

pattern of response as the single unit population. The absence of differences for RS neurons could 

be linked, as explained above, to the size of the center stimulation.  

 Laminar impact of the center surround interactions 

It is known that neurons in layers 2/3 and 5/6 receive horizontal connections coming from other 

neurons. These horizontal connections are strongly activated by the stimulation of the surround 

(Bringuier et al., 1999; Frégnac, 2012; Gerard-Mercier et al., 2016). Thus, we wondered if the laminar 

mean firing rate pattern evoked by the center stimulation was different from the one evoked by the 

full field one. The laminar pattern was the same except for the SUA, in layer 4, where NI evoked a 

higher firing rate than DN (p < 0.001; Friedman test). Regarding the laminar impact of the full field 

and center stimulations on the SUA, NI and DG evoked the same firing rate for both conditions, 

respectively (p > 0.05). However, dense noise evoked a higher firing rate for the C stimulation in 

layers 2/3 and 5/6, while no difference was observed in layer 4. This suggests that responses to 

dense noise are modulated by the horizontal connections present in these layers. On the other hand, 

for the MUA, for all stimuli respectively, the center stimulation evoked a lower firing rate than the full 

field one in all layers (p < 0.001). 

 

For both RS and FS neurons, layer 2/3 will be excluded from this comparison because the number 

of neurons for each class does not allow us to perform any statistical analysis (Figure 3.2.21). 

Fast spiking and regular spiking neurons showed no differences between the FF and the C 

conditions for each layer and each stimulus, respectively (p > 0.05, Wilcoxon test). The fact that for 

the whole SUA population, dense noise showed a difference in layer 5/6 (and 2/3) implies that among 

FS and RS neurons, some cells were sensitive to center surround interactions while others were not. 

In their intracellular paper, Haider and colleagues (2010) only recorded a small population of FS and 

RS cells and might have missed this greater diversity that is unveiled by dense extracellular 

recordings.  
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Figure 3.2.21: Firing rates evoked by the full field vs the center conditions. The center surround interactions have a 

small impact on the firing rate. Left column: single unit activity; Right column: multi-unit activity. Empty symbols = FS; Full 
symbols = RS or MUA. 
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 Impact of the natural statistics on the center surround interactions  

In their work, Guo and colleagues (2015) showed that the center surround modulations are 

dependent of the spatial statistics of the surround and its higher order spatial correlations. However, 

their work was performed in the awake monkey. We wondered if these effects were also observed 

in cats. Based on our previous results, we can suppose that the temporal and spatial higher order 

correlations will have different levels of impact on the response. We first computed the mean firing 

rate for our spiking activity and investigated if the center stimulation elicits the same response pattern 

as the full field one (Figure 3.2.23; table 3.2.8). We found different patterns of response between the 

full field and center stimulations. Indeed, unlike what was observed for the FF condition, for the SUA 

when presented in the center only all stimuli evoked the same firing rate (p > 0.05; Friedman test). 

Regarding the MUA, all stimuli evoked a different response from NI except the natural image where 

both spatial and temporal statistics were altered. NI-RS evoked a higher firing rate than NI, while NI-

RT and NI-SAC a lower one (p < 0.05).   

We then compared the responses evoked by the FF and C conditions for both SUA and MUA (Figure 

3.2.23). For the SUA, no difference was observed between the center and full field conditions for 

each stimulus, respectively (p > 0.05; Wilcoxon test).  

For the MUA, all altered stimuli evoked a higher response for the center condition, respectively (p < 

0.001; Wilcoxon test). However, the difference in firing rates remain small between two conditions. 

Only the unaltered natural images did not display any difference between the two conditions (p > 

0.05). As explained previously, for NI the difference was very small between the FF and C 

stimulations. Since we performed our analysis on a reduced multi-unit population compared to the 

one in figure 3.2.21, there are not enough multi-unit sites to reach a significant response. These 

results suggest that the higher order correlations tend to have an impact on the center surround 

interactions that lead to an increase of the firing rate.  

We also investigated the impact of the center surround interactions on the RS and FS neurons. No 

difference between the FF and C conditions was observed (p > 0.05: table 3.2.8). 
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Figure 3.2.23: Firing rates evoked by the full field vs center stimulation. Left panel: Single unit activity firing rate. Right 

panel: Multi-unit activity firing rate. Red line: polynomial fit. Circles: Layer 2/3; Triangles: Layer 4; Squares: Layer 5/6. 
Empty symbols = FS. Full Symbols = RS or MUA. 
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FULL FIELD SUA 

  DG NI DN 

Mean (w/o 
GEM) 

6.3 ± 1.1 2.7 ± 0.4 1.9 ± 0.4 

Layer 2/3 -0.3 ± 0.2 0.6 ± 0.4 1.1 ± 0.4 

Layer 4 7.9 ± 1.6 3.2 ± 0.5 2.2 ± 0.4 

Layer 5/6 5.0 ± 1.5 2.5 ± 0.7 1.7 ± 0.8 

    
CENTER SUA 

  DG NI DN 

Mean (w/o 
GEM) 

5.6 ± 1.2 2.4 ± 0.3 1.5 ± 0.4 

Layer 2/3 -0.1 ± 0.2 0.4 ± 0.3 0.5 ± 0.4 

Layer 4 7.1 ± 1.6 2.8 ± 0.4 1.7 ± 0.3 

Layer 5/6 4.4 ± 2.0 2.1 ± 0.6 1.4 ± 0.8 

    

FULL FIELD MUA 

  DG NI DN 

Mean (w/o 
GEM) 

22.5 ± 1.2 15.0 ± 0.6 11.2 ± 0.6 

Layer 2/3 0.3 ± 0.6 6.3 ± 0.7 5.9 ± 1.0 

Layer 4 28.7 ± 1.9 17.1 ± 0.9 13.9 ± 0.9 

Layer 5/6 23.2 ± 1.5 15.2 ± 1.0 9.5 ± 0.8 
    

CENTER MUA 

  DG NI DN 

Mean (w/o 
GEM) 

20.6 ± 1.1 13.7 ± 0.6 9.8 ± 0.6 

Layer 2/3 2.6 ± 0.5 5.4 ± 0.7 3.8 ± 0.7 

Layer 4 27.3 ± 1.7 16.4 ± 0.9 13.0 ± 0.9 

Layer 5/6 19.1 ± 1.7 13.0 ± 0.7 7.6 ± 0.8 

Table 3.2.6: Mean firing rate values for the single and multi-unit activity. 
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FULL FIELD FS 

  DG NI DN 

Mean  10.1 ± 2.5 4.8 ± 1.0 3.9 ± 1.1 

Layer 2/3 0.4 ± 0.5 1.6 ± 0.7 2.2 ± 0.7 

Layer 4 9.7 ± 2.5 4.4 ± 0.9 3.2 ± 0.6 

Layer 5/6 14.9 ± 9.2 7.3 ± 4.0 7.1 ± 5.1 
    

CENTER FS 

  DG NI DN 

Mean  9.8 ± 2.8 4.1 ± 0.8 3.4 ± 1.0 

Layer 2/3 0.4 ± 0.2 1.3 ± 0.5 1.9 ± 0.6 

Layer 4 9.0 ± 2.5 3.5 ± 0.6 2.5 ± 0.5 

Layer 5/6 15.7 ± 12.0 6.9 ± 3.6 7.0 ± 4.7 
    

FULL FIELD RS 

  DG NI DN 

Mean  3.7 ± 0.5 1.6 ± 0.2 0.7 ± 0.2 

Layer 2/3 0.2 ± 0.1 0.1 ± 0.2 0.4 ± 0.3 

Layer 4 5.2 ± 1.1 1.7 ± 0.5 0.9 ± 0.4 

Layer 5/6 3.1 ± 0.4 1.7 ± 0.3 0.7 ± 0.2 

        

CENTER RS 

  DG NI DN 

Mean  2.7 ± 0.4 1.4 ± 0.2 0.4 ± 0.2 

Layer 2/3 0.4 ± 0.1 0.1 ± 0.3 0.3 ± 0.3 

Layer 4 4.0 ± 0.9 1.9 ± 0.4 0.7 ± 0.4 

Layer 5/6 2.3 ± 0.4 1.2 ± 0.2 0.3 ± 0.2 

Table 3.2.7: Mean firing rate values for the Fast and Regular spiking neurons. 

 

 

FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 3.9 ± 0.7 4.2 ± 0.8 2.9 ± 0.5 3.6 ± 0.7 2.8 ± 0.5 

RS 1.9 ± 0.3 2.1 ± 0.4 1.5 ± 0.3 1.7 ± 0.4 1.4 ± 0.3 

SUA 2.6 ± 0.3 2.8 ± 0.4 2.0 ± 0.3 2.4 ± 0.3 1.9 ± 0.3 

MUA 17.3 ± 0.9 18.3 ± 1.2 14.0 ± 0.8 16.2 ± 0.9 13.3 ± 0.7 
      

CENTER   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 3.6 ± 0.6 3.5 ± 0.7 2.8 ± 0.5 3.4 ± 0.7 3.0 ± 0.5 

RS 1.7 ± 0.3 2.1 ± 0.4 1.4 ± 0.3 1.6 ± 0.3 1.8 ± 0.3 

SUA 2.4 ± 0.3 2.6 ± 0.4 1.9 ± 0.3 2.3 ± 0.3 2.2 ± 0.3 

MUA 17.6 ± 0.9 20.8 ± 1.1 15.5 ± 0.8 17.4 ± 1.0 17.2 ± 0.9 

Table 3.2.8: Mean firing rate values evoked by our control stimuli. 
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2.2.2 Quantification of the local field potential  

In the previous section, we showed that natural images evoke a higher energy than the artificial 

stimuli. We also showed that the spiking activity is modulated by the center surround interactions. 

Moreover, an intracellular study performed on the anesthetized and paralyzed cat showed that the 

evoked membrane potential by natural images is modulated by center surround interactions (Haider 

et al., 2010). Even if we showed that LFP and Vm are similar but different signals we wondered if we 

would observe an increase in energy for the LFP when natural scenes, but also artificial stimuli are 

presented in the full field condition compared to the center condition. In addition, while spiking activity 

evoked no response for the surround only stimulation, a lone stimulation of the surround can elicit a 

synaptic response (Bringuier et al., 1999; Chavane et al., 2011; Gerard-Mercier et al., 2016). Thus, 

we wondered if the sole stimulation of the surround also evokes a response. Our previous results 

also showed that the levels of energy are layer dependent. Will we observe a laminar dependence 

of the center surround interactions? 

 Impact of the center surround interactions 

Figure 3.20 (in the previous section) illustrates the LFP evoked by our set of stimuli in the full field, 

center and surround conditions.  

In figure 3.2.24 (and table 3.2.9) we investigated the LFP energy evoked by of our set of stimuli 

presented on the center and surround conditions. We then compared the energy evoked by the full 

field, center and surround conditions for each stimulus, respectively. As observed for the full field 

condition, when presented in the center, natural images evoked the highest energy and DG the 

lowest, confirming our observations made in figure 3.2.17 (p < 0.001; Friedman test; Figure 3.2.24; 

table 3.2.9).  We then wondered if the center surround interactions had an impact on the LFP energy 

(Figure 3.2.24). All LFPs displayed a higher energy when the stimulus was presented in the full field 

condition (p < 0.001; Wilcoxon test). However, natural images were more impacted by the center 

surround interactions than other stimuli. Indeed, as shown in figure 3.2.24 (and table 3.2.9), the 

difference between the FF and C conditions was higher for NI than for the other stimuli. For NI, the 

energy of the FF stimulation was about 2 times higher than the C stimulation. On the other hand, for 

artificial stimuli this difference was only about 1.5 times (Table 3.2.9).  

Surprisingly, the surround condition also evoked a very synchronized LFP response, in particular 

when natural images are presented. Indeed, when only the surround is stimulated, natural images 

still evoked the highest energy among all the stimuli (p < 0.001; Friedman test). In this condition, the 

difference in energy between natural images and the other stimuli is increased while the difference 

between the artificial stimuli is decreased. This highlights a specific effect of the surround in the 

processing of natural scenes. Despite the strong response evoked by natural images when 

presented on the surround, the full field evoked the highest energy (p < 0.001; Wilcoxon test; Figure 

3.2.24; table 3.2.9). This was also observed for the artificial stimuli. However, the difference in the 

evoked energy between the surround and full field conditions was higher for the artificial stimuli than 

the natural one (Table 3.2.9). We also investigated the difference in energy between the center and 

surround conditions. Unsurprisingly, the three artificial stimuli evoked a higher response for the 

center condition. However, natural images evoked the same energy for the surround condition as for 

the center one (p < 0.05; Wilcoxon test; Figure 3.2.24).  

This was not observed for all LFP sites. Indeed, some sites displayed a higher energy for the center 

condition while others for the surround. 
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 Laminar Impact of the center surround interactions 

Because each layer has its own properties, in particular layers 2/3 and 5/6 that are known to be more 

sensitive to surround interactions because of the horizontal connections present in these layers, we 

wondered if each laminar compartment is impacted the same way by the center surround interactions 

(figure 3.2.24; table 3.2.9). For both center and surround stimulations, we observed the same pattern 

of response as in the full field one (table 3.2.9). We computed, for each layer, the difference between 

the full field and center conditions. Again, the impact of the center surround modulation is stronger 

for natural images than for the artificial stimuli. 

When presented on the surround, unlike what was observed for the center condition, natural images 

evoked the highest energy in layer 5/6 and the lowest one in layer 2/3. The fact that layer 5/6 displays 

a higher energy could be linked to the horizontal connections present in this layer. Layer 2/3, which 

also contains horizontal connections might display a lower energy because of the sparser activity of 

this layer. Within all layers, the natural images presented in the full field condition evoked a higher 

energy than the surround condition (p < 0.001; Wilcoxon test). Surprisingly, within all layers the 

surround condition evoked a higher energy than the center condition (p < 0.001; Wilcoxon test). The 

difference between the center and surround conditions was the highest in layers 2/3 and 5/6, which 

contain horizontal connections, suggesting an important role of these in the processing of the 

surround natural statistics. 

In summary, we showed that when natural images are presented on the surround, a strong response 

is elicited. This response is higher than the one evoked by a center stimulation, highlighting the 

importance of the surround in the processing of natural scenes.  
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Figure 3.2.24: Correlation plots of the mean energy. LFP energy evoked by full field, center and surround stimulations. 

The surround of Natural images evokes high energy levels, in particular in layers 2/3 and 5/6. Left column: Full field vs 
center. Center column: Full field vs surround. Right column: center vs surround 
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 Impact of the Natural Statistics on the center surround interactions 

Our previous results showed that the surround of natural images evokes a strong LFP response. 

This response is not only linked to the temporal statistics of the image since GEM did not show the 

same energy levels as NI. We wondered how spatio-temporal statistics shape the response and 

what their impact is on the energy levels. In order to answer this question, we computed the energy 

evoked by our set of control stimuli (figure 3.2.25; table 3.2.10). 

Our results show that for the center condition, the unaltered and the altered natural scenes evoked 

the same energy (p > 0.05, Friedman test). In addition, all stimuli evoked a higher energy when 

presented full field. This confirms the importance of the full field on the processing of natural scenes, 

even if they have altered statistics. 

However, for the surround condition, all stimuli except NI-RS evoked a different energy than the 

unaltered natural image. The natural image animated only with saccades evoked a higher energy 

than the unaltered natural image, while NI-RT and NI-RST evoked a lower energy than NI (p < 0.001; 

Wilcoxon test). This result highlights the importance of the surround in the processing of unaltered 

temporal statistics. In addition, the surround seems more suited to the processing of high-speed 

transitions, i.e. the saccades.  

The full field condition evoked a higher energy than the center condition for all stimuli(p < 0.001). 

However, there is no difference in energy between the center and surround conditions for NI, NI-RS 

and NI-SAC (p > 0.05). On the other hand, NI-RST and NI-RT evoked a higher energy for the center 

condition (p < 0.001). This suggests that the center is also suited to process the eye movements but 

that the surround processing of altered temporal statistics is not optimal.  

In summary we showed that at the LFP level, the surround is not suited to the processing of altered 

temporal statistics unlike the center.  

 

In this section we quantified the response of both spiking activity and local field potential. The spiking 

activity is the direct measurement of the neuronal activity while the LFP corresponds to a mean field 

that contains the summed transmembrane currents. This functional difference led to diverse 

behaviors between these two signals. Two striking aspects of these signals were observed. The first 

one is that a stimulus that evokes a strong response at the spiking level, such as drifting gratings, 

can induce a very small LFP. This is linked to the mean field properties of the local field potential. 

The second one is that the LFP is more sensitive to the center surround interactions than the spiking 

activity. This could be linked to the fact that the LFP gathers the activity of many cells, thus by 

increasing the number of responses we increase the visibility of the effect. Another explanation is 

that, since we know the membrane potential is strongly modulated by the surround (Bringuier et al, 

1999; Chavane et al., 2011; Gerard-Mercier et al, 2014) the LFP might reflect the Vm response. A 

comparison of the spiking activity and the LFP will be needed in order to evaluate, in our data, the 

impact of the spiking activity on the LFP response. The recording of the membrane potential in 

response to our set of stimuli could also highlight the impact of this on the LFP. 
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Figure 3.2.25: Correlation plots of the mean energy. LFP energy evoked by full field, center and surround stimulations. 

Left column: Full field vs center. Middle column: Full field vs surround. Right column: center versus surround. Red line: 
polynomial fit.  
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FULL FIELD LFP 

  DG GEM NI DN 

Mean  
1.1e+06 ± 
4.9e+04 

5.8e+06 ± 
2.2e+05 

7.8e+06 ± 
2.5e+05 

4.3e+06 ± 
1.7e+05 

Layer 2/3 
6.3e+05 ± 
5.4e+04 

2.4e+06 ± 
2.4e+05 

3.7e+06 ± 
4.3e+05 

1.4e+06 ± 
1.1e+05 

Layer 4 
1.2e+06 ± 
4.5e+04 

7.0e+06 ± 
3.3e+05 

8.3e+06 ± 
3.3e+05 

5.5e+06 ± 
2.4e+05 

Layer 5/6 
1.5e+06 ± 
1.4e+05 

6.5e+06 ± 
3.1e+05 

1.0e+07 ± 
4.3e+05 

4.5e+06 ± 
2.6e+05 

     

CENTER LFP 

  DG GEM NI DN 

Mean  
9.7e+05 ± 
4.4e+04 

3.7e+06 ± 
1.7e+05 

4.1e+06 ± 
1.5e+05 

3.4e+06 ± 
1.3e+05 

Layer 2/3 
5.8e+05 ± 
5.1e+04 

1.5e+06 ± 
1.5e+05 

1.6e+06 ± 
1.8e+05 

1.3e+06 ± 
9.8e+04 

Layer 4 
1.0e+06 ± 
3.7e+04 

4.8e+06 ± 
2.4e+05 

5.2e+06 ± 
2.1e+05 

4.5e+06 ± 
1.9e+05 

Layer 5/6 
1.2e+06 ± 
1.4e+05 

3.6e+06 ± 
3.3e+05 

4.2e+06 ± 
2.6e+05 

3.2e+06 ± 
2.0e+05 

     

SURROUND LFP 

  DG GEM NI DN 

Mean  
8.4e+05 ± 
4.4e+04 

2.2e+06 ± 
1.2e+05 

4.8e+06 ± 
2.3e+05 

1.7e+06 ± 
8.2e+04 

Layer 2/3 
5.7e+05 ± 
4.8e+04 

1.2e+06 ± 
1.1e+05 

2.2e+06 ± 
2.2e+05 

9.6e+05 ± 
7.5e+04 

Layer 4 
7.3e+05 ± 
2.4e+04 

2.1e+06 ± 
1.4e+05 

4.4e+06 ± 
3.0e+05 

1.6e+06 ± 
8.1e+04 

Layer 5/6 
1.3e+06 ± 
1.5e+05 

3.3e+06 ± 
3.0e+05 

7.5e+06 ± 
5.0e+05 

2.4e+06 ± 
2.4e+05 

Table 3.2.9: Mean energy evoked by the presentation of our stimulus set on full field, on the center or the surround 

(mean ± SEM) 

 

 

  NI NI-RS NI-RT NI-RST NI-SAC 

FULL FIELD 
7.9e+06 ± 
3.5e+05 

8.5e+06 ± 
3.7e+05 

6.4e+06 ± 
2.9e+05 

6.2e+06 ± 
2.9e+05 

1.2e+07 ± 
6.7e+05 

CENTER 
5.1e+06 ± 
2.4e+05 

4.9e+06 ± 
2.4e+05 

5.3e+06 ± 
3.0e+05 

5.0e+06 ± 
2.4e+05 

6.5e+06 ± 
3.6e+05 

SURROUND 
5.5e+06 ± 
4.3e+05 

5.4e+06 ± 
4.2e+05 

3.2e+06 ± 
2.1e+05 

2.9e+06 ± 
2.1e+05 

7.4e+06 ± 
6.4e+05 

Table 3.2.10: Mean energy evoked by the presentation of our control stimulus set on full field, on the center or the 

surround (mean ± SEM) 
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3. SPARSENESS AND RELIABILITY OF THE NEURONAL RESPONSE 

The principle of efficient coding suggests that visual processing in early sensory systems is optimized 

and adapted to the statistical properties of the sensory environment. This should result in a 

redundancy reduction between neurons (a decorrelation between neuronal response), associated 

with an increase in the sparseness of the population activity and a decrease in the response 

variability (Barlow, 1961). In this section we will focus on the sparseness and the reliability of the 

response. Different studies showed that natural images increase the sparseness and the reliability 

of the response (Vinje and Gallant, 2000; Haider et al, 2010). However, in our knowledge, no 

multiscale laminar recordings performed in response to both artificial and natural stimuli have been 

performed. 

3.1. Impact of the full field stimulation  

3.1.1 Sparseness of the spiking activity  

The analysis of the extracellular spiking activity highlighted the stimulus dependence of the firing 

rate. As shown in figure 3.2.2 the recorded neurons can display a dense or a sparse discharge 

pattern, which affects the mean firing rate. In their intracellular study, Baudot et al. (2013) showed 

that this discharge pattern is stimulus dependent. In order to quantify the density of the discharge 

pattern of the recorded activity we computed the sparseness of the single unit and multi-unit activity 

in response to our set of stimuli (and their controls) and compared it to the intracellular results 

obtained in the laboratory. We used the same sparseness measure as in the intracellular study (i.e. 

lifetime sparseness). The sparseness mean values were averaged over the whole stimulus 

presentation with a bin equal to the refresh rate of stimuli (15 ms). Figure 3.3.1 shows the sparseness 

evoked by our stimuli for a highly responsive neuron, a not very responsive neuron and the multi-

unit activity. As observed intracellularly, the sparseness tends to decrease with the increase of the 

PSTH bin size. In these examples we also observed that natural images evoked the highest 

sparseness levels. Unsurprisingly, the MUA evoked a lower sparseness than the SUA.  

 

 
Figure 3.3.1: Sparseness vs bin size obtained for two single units (FS & RS cells) and multi-unit activity. 
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 Comparison with the intracellular recordings 

As explained earlier we investigated the sparseness among two neuronal populations, one with GEM 

and one without GEM. At the level of the population with GEM, the single-unit sparseness and the 

one obtained with intracellular recordings displayed the same pattern i.e. natural images evoked the 

sparsest response while DG the lowest one (Figure 3.3.2-A; Table 3.3.1; p < 0.001, Friedman test). 

However, the intracellular study reported higher sparseness values. This is probably linked to the 

recording technique. As explained in the previous section, by not recording less responsive cells, 

intracellular recordings introduce a bias that is not present in the simultaneous recordings of the 

extracellular technique. The rasters and PSTHs displayed in figures 3.2.4 and 3.2.5 show that these 

cells are taken into account in our study. Another possible explanation is the difference in the 

anesthetics used. Indeed, Haider et al. (2010) who also recorded intracellularly the responses of cat 

V1 neurons to natural movies, presented on the center and the surround of the receptive field, but 

used Isoflurane as an anesthetic, found sparseness values similar to ours. Indeed, Althesin, the 

anesthetic used by Baudot and colleagues (2013), induces a higher post synaptic depression than 

isoflurane (El-Beheiry and Puil, 1989).Therefore, higher inhibition leads to a sparser spiking activity. 

 

On the other hand, the MUA exhibited a much lower and different pattern of sparseness (Figure 

3.2.2-A). Admittedly, as observed for the SUA and the intracellular recordings, natural images 

evoked the sparsest response. However, DG and GEM evoked an equivalent sparseness, higher 

than the one elicited by the dense noise stimulation (Figure 3.3.2-A, table 3.3.1). As explained in the 

previous section, our MUA measurement corresponds to all the signals between 250Hz and 5Khz, 

crossing an automatic threshold. Thus, the MUA corresponds to the summed activity of many single 

units, which densifies the response. We compared the sparseness of the summed activity of 4 single 

units and to the multi-unit and found very similar results. The sparseness reduction observed for 

MUA comes from a densification of the response. Regarding the sparseness evoked by dense noise, 

these results are explained by the response of some cells to white pixels while others respond to 

black ones. Since the MUA regroups these two types of cells, it will regroup these responses, leading 

to a densification of the response.   

In summary, our extracellular results are close to the ones found with intracellular recordings by 

Baudot and colleagues (2013). Some differences are present that can either be explained by the 

number of cells recorded in our study or the difference in anesthetics between the two studies. It is 

important to note that our results are closer to another intracellular study (Haider et al., 2010) where 

the cats were anesthetized with isoflurane, as we do.   
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Figure 3.3.2: Single and multi-unit mean sparseness. A. Multiscale comparison of the mean sparseseness. Natural 

images evoke the sparsest responses. Left: Single unit activity (n = 78), center: intracellular results. Right: Multi-unit activity 
(77 sites). B. Comparison of the mean sparseness. Left: single unit activity (n = 221), right: multi-unit activity (377 sites). 
C. laminar comparison of the mean sparseness. Left: single unit activity (L2/3 = 10; L4 = 111; L5/6 = 99 neurons), right: 

multi-unit activity (L2/3 = 52; L4 = 187; L5/6 = 138 sites). Red squares: mean. Black line: median. Extremities of the box: 
first and third quartile. Whiskers: minimum and maximum. Crosses: outliers. Stars indicate values significantly different 
from the NI condition * : p < 0.05; ** : p < 0.01; *** : p < 0.001 
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Figure 3.3.3: Sparseness correlation plots. A. Single unit activity sparseness. Left: Natural images vs Drifting gratings. 

Right: Natural images vs Dense Noise. B. Multi-unit activity sparseness. Left: Natural images vs Drifting gratings. Right: 
Natural images vs Dense Noise. Empty symbols = FS. Full Symbols = RS or MUA. 

 Mean Evoked Sparseness 

As described in the previous section, our extracellular recordings allow us to explore the sparseness 

across all layers. Therefore, we computed it on our 221 cells, without GEM (figure 3.3.2-B-C and 

figure 3.3.3 but see also table 3.3.1). We found the same pattern of sparseness as in our population 

of 78 single units i.e. natural images evoked the highest sparseness and drifting gratings the lowest 

one (p < 0.001, Friedman test; table 3.3.1). However, for each stimulus, the mean sparseness of the 

221 cells was higher than the one with 78 cells. As shown in figure 3.3.3, different neurons display 

different sparseness levels. If the high sparseness cells are not present in both populations, this can 

affect the mean. In general, a cell displaying a low or high sparseness in response to one stimulus 

will display a high or low sparseness in response to the other stimuli (Figure 3.3.3). The same MUA 

sparseness pattern was observed when we increased the number of sites.  

In their intracellular study, Haider and colleagues observed that RS and FS cells evoked different 

sparseness levels. Thus, we wondered if the same observations would be made with our 

extracellular classification. Despite a significant difference in their firing rates, the RS and FS 

populations displayed the same sparseness values as the mean SUA population (p > 0.05, Mann 

Whitney U test; Figures 3.3.3 and 3.3.4; table 3.3.2). 
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 Laminar Sparseness 

We wondered if the observed heterogeneity was linked to a layer expressing a higher sparseness 

than the others. The laminar sparseness of the single unit activity presented a similar pattern as the 

mean population (table 3.3.1, Figure 3.3.2). Indeed, within all layers, natural images evoked the 

sparsest response (p < 0.001, Friedman test). However, in layer 2/3 we did not observe any 

differences between DG and NI. This is probably linked to the small number of cells recorded in this 

layer (n = 10). Regarding the artificial stimuli, they elicited an equivalent sparseness in layer 5/6 (p 

= 0.06), while in layer 4, DN evoked the sparsest response. Layer 4 and layer 5/6 cells showed high 

and low values of sparseness respectively (Figure 3.3.2-A), this heterogeneity lead to no significant 

differences in sparseness evoked by the same stimulus between layers (p > 0.05; Mann Whitney U 

test; table 3.3.1). 

Regarding the multi-unit activity, natural images also evoked the sparsest activity within all layers (p 

< 0.001, Friendman test; Figures 3.3.2-C and 3.3.3; 3.3.1). Unlike the SUA, we observed a difference 

in sparseness between layers. Indeed, for all stimuli, the sparseness was higher in layer 4 than in 

layer 5/6 (p < 0.05, Mann Whitney U test).  

Regarding RS and FS cells, the same absence of differences observed for the mean response was 

observed across layers. This difference might come from the low number of cells that they recorded. 

Indeed, for each neuronal subclass they recorded less than 15 neurons. As shown in figure 3.3.3 

natural images evoke a great diversity of sparseness for both FS and RS cells. Thus, they could 

have recorded more cells with high sparseness for one population than the other, leading to this 

difference. 
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Figure 3.3.4: Single unit mean sparseness. A. Mean sparseness for different subclasses of single units. Left: Fast 
spiking neurons (n = 83), center: regular spiking neurons (n = 138). Right: single unit activity (n = 221). B. Laminar 

comparison of the mean sparseness across the single unit classes. Left: Fast spiking neurons (L2/3 = 4; L4 = 61; L5/6 = 
18 neurons), center: regular spiking neurons (L2/3 = 7; L4 = 50; L5/6 = 81 neurons), right: single unit activity (L2/3 = 10; 
L4 = 111; L5/6 = 99 neurons). Red squares: mean. Black line: median. Extremities of the box: first and third quartile. 
Whiskers: minimum and maximum. Crosses: outliers. Stars indicate values significantly different from the NI condition. n.s 
: non significant;  * : p < 0.05; *** : p < 0.001 
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 Impact of the natural statistics on the sparseness 

Finally, we investigated with our control stimuli the impact of the spatio-temporal natural statistics on 

the sparseness (figure 3.3.5). For both the single unit and the multi-unit activity we did not observe 

any significant difference in the sparseness between the control stimuli and the unaltered NI. This 

absence of difference was also observed among the RS and FS subpopulations (p > 0.05; Friedman 

test; table 3.3.3). However, it is important to note that all unaltered stimuli evoked a higher 

sparseness than the artificial ones. Therefore, we can conclude that the high order correlations 

present in the natural spatio-temporal statistics have no impact on the sparseness of the neuronal 

activity. 
 

 
Figure 3.3.5: Single and multi-unit sparseness evoked by the control stimuli. A. Multi-scale comparison of the mean 
sparseness. Left: Single unit activity (n = 124), right: Multi-unit activity (150 sites). B. Comparison of the mean sparseness 

across the single unit subtypes. Left: Fast spiking neurons (n = 45), center: regular spiking neurons (n = 79). Right: single 
unit activity (n = 124). Red squares: mean. Black line: median. Extremities of the box: first and third quartile. Whiskers: 
minimum and maximum. Crosses: outliers n.s: non-significant 
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FULL FIELD SUA 

  DG GEM NI DN 

Mean w/ GEM 39.6 ± 1.8 47.0 ± 2.0 56.8 ± 2.1 49.2 ± 2.3 

Mean w/o GEM 47.5 ± 1.4   61.6 ± 1.3 51.8 ± 1.5 

Layer 2/3 58.3 ± 5.6   61.2 ± 4.8 46.7 ± 4.7 

Layer 4 45.0 ± 2.0   60.4 ± 1.8 52.5 ± 2.1 

Layer 5/6 49.3 ± 2.3   63.2 ± 2.1 51.6 ± 2.4 

     

FULL FIELD MUA 

  DG GEM NI DN 

Mean w/ GEM 24.3 ± 1.0 24.3 ± 1.0 29.3 ± 1.0 19.7 ± 0.8 

Mean w/o GEM 22.7 ± 0.6   28.9 ± 0.8 18.3 ± 0.5 

Layer 2/3 14.3 ± 1.1   30.4 ± 2.2 16.3 ± 1.1 

Layer 4 25.6 ± 0.9   30.4 ± 1.1 20.7 ± 0.6 

Layer 5/6 21.6 ± 1.1   26.3 ± 1.3 15.7 ± 0.8 

Table 3.3.1: Mean SUA and MUA sparseness evoked by our set of stimuli presented full field (Mean ± SEM) 

 

 

FULL FIELD FS 

  DG NI DN 

Mean 45.1 ± 2.5 60.7 ± 2.4 50.8 ± 2.8 

Layer 2/3 51.0 ± 9.1 60.0 ± 5.3 42.9 ± 6.0 

Layer 4 44.8 ± 2.8 62.3 ± 2.6 51.5 ± 3.1 

Layer 5/6 45.0 ± 7.0 54.6 ± 6.9 50.1 ± 7.7 

    

FULL FIELD RS 

  DG NI DN 

Mean 48.9 ± 1.8 62.2 ± 1.6 52.4 ± 1.8 

Layer 2/3 63.2 ± 7.0 62.0 ± 7.5 49.2 ± 7.0 

Layer 4 45.2 ± 2.7 58.0 ± 2.6 53.7 ± 2.8 

Layer 5/6 50.2 ± 2.3 64.8 ± 2.1 51.9 ± 2.4 

Table 3.3.2: Mean FS and RS sparseness evoked by our set of stimuli presented full field (Mean ± SEM) 

 

 

FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 61.3 ± 3.5 60.1 ± 3.6 59.9 ± 3.7 60.5 ± 3.5 61.1 ± 3.7 

RS 62.8 ± 2.1 60.2 ± 2.2 59.7 ± 2.3 61.8 ± 2.2 61.9 ± 2.3 

SUA 62.3 ± 1.8 60.2 ± 1.9 59.7 ± 1.9 61.4 ± 1.9 61.6 ± 2.0 

MUA 26.0 ± 0.8 24.7 ± 0.9 21.4 ± 0.9 27.0 ± 1.0 23.9 ± 1.1 

Table 3.3.3: Mean sparseness evoked by our set of control stimuli presented full field (Mean ± SEM) 
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3.1.2 Fano Factor 

According to Barlow’s theory of efficient coding, an increase of the evoked sparseness should be 

linked to an increase of the response reliability. A classic way to evaluate the variability of a neuronal 

response is to compute its Fano Factor. The fano factor (FanoFa) of the spiking activity corresponds 

to the spike-count variance divided by the spike-count mean. However, there are many ways to 

compute this ratio. In our study, we divided the time axis in successive 15 ms bins. We then 

computed the variance (across trials) and the mean of the spike count. A scatter plot of the variance 

vs. the mean was compiled, with one point per time window, for all the duration of the stimulation 

(10 s). The raw Fano factor was given by the slope of the regression line relating the variance to the 

mean (Baudot et al., 2013; Kara et al., 2000). Figure 3.3.6 shows an example of the scatter plots 

and the regression slope obtained for two cells in response to NI (bin 15ms). Figure 3.3.7 shows the 

impact of the bin on the evoked Fano Factor of these two same cells. The bin increase tends to 

increase the Fano Factors. Thus, before comparing the Fano Factors obtained in two different 

studies it is crucial to know the chosen bin. This explains the difference in Fano Factors between our 

(and Baudot’s) studies and others (Ecker et al., 2014; Goris et al., 2014; Ouelhazi et al., 2019). 

 

 
Figure 3.3.6: Mean firing rate vs Variance of the firing rate evoked by NI for two cells (PSTH bin = 14ms). Red line: 

regression curve. Left Panel: Fano Factor = 1.2; Right Panel: Fano Factor = 0.8 

 
Figure 3.3.7: Example of the Fano Factor computed in function of the bin of the PSTH for two different cells. 
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 Comparison with the intracellular recordings 

In their intracellular study, Baudot and colleagues (2013) obtained a mean sub-poissonian Fano 

Factor, in response to all stimuli. They chose a bin similar to ours (13.3 ms), therefore the comparison 

between our results and theirs is possible. We first computed the Fano Factor on the neuronal 

population without GEM (Figure 3.3.8-A). The Fano Factor values, of the SUA, that we obtained are 

different to theirs i.e. Natural images and animated gratings evoked a Fano Factor below 1 yet higher 

than the ones obtained intracellularly while DN and DG evoked values almost equal to 1 (see table 

3.3.4). In addition, only DG evoked a FanoFa different from NI (p < 0.05; Friedman test). On the 

other hand, at the multi-unit level, all stimuli evoked Fano Factors below 1 (table 3.3.4). Animated 

gratings evoked the lowest FanoFa while DN the highest one (p < 0.05).  

The difference between the intracellular and extracellular results has possible sources. The first one 

is, as stated in the previous sections, the number of cells between the two studies. As shown in 

figures 3.3.8 and 3.3.10 (but also in Ecker et al., 2014), among an important neuronal population 

some cells will exhibit a low Fano Factor (below 1) while others will exhibit a high one (above 1). The 

other source of variability between our two studies can come from the difference anesthetics 

(Isoflurane vs Alfaxolone). In their extracellular study on the anesthetized monkey (with fentanyl), 

Ecker et al., (2014) reported values of Fano Factor, in response to gratings, around 2. Anesthesia, 

by increasing the variance of the response, has a strong impact on the Fano Factor values.  

Notably, the values of Fano Factor for the SUA and MUA are close but lower for the MUA, this is 

linked to the fact that despite a higher mean variance we also obtained an even higher mean firing 

rate at the multi-unit level (table 3.3.4, figure 3.3.8). 

 Mean Evoked Fano Factor 

We then computed the analysis on the population without GEM (Figure 3.3.8 and 3.3.10; table 3.3.4). 

Unlike what was observed for the population with GEM, both at the single and multi-unit levels 

Natural images evoked the lowest Fano Factors (p < 0.001; Friedman test). At the single unit level, 

all stimuli evoked a Fano Factor above 1 while at multi-unit the Fano Factors were below 1. As 

observed by Ecker et al (2014), we obtained a variety of Fano Factor values ranging from very low 

ones (0.4) to high ones (2.0). By increasing the number of recorded cells, we also increased the 

number of higher Fano Factors, which lead to the observed difference between the two populations. 

It is important to note that both the mean and median evoked values were around 1 (figure 3.3.8). 

As shown in Figure 3.3.9 the increase in firing rate is correlated with decrease in the Fano Factor.  

In their intracellular study, Haider and colleagues (2010) showed that the reliability depends on the 

recorded cell type. In addition, we observed that Fano Factor is correlated with the firing rate. Since 

FS neurons displayed a higher firing rate than RS ones, we wondered if we would observe an impact 

on the Fano Factor. We first computed the Fano Factor within each neuronal subclass (Figure 3.3.11; 

Table 3.3.5). The regular spiking neurons displayed the same pattern as the single unit population. 

However, among FS neurons no difference was observed between the FanoFa evoked by NI and 

DN (p > 0.05; Friedman test). In addition, for each stimulus respectively, no difference was observed 

between the complete single unit population and the regular and fast spiking neurons (p > 0.5; 

Kruskal-Wallis test). 
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Figure 3.3.8: Single and multi-unit mean Fano Factor. A. Multiscale comparison of the mean Fano Factor. Natural 

images evoke the lowest Fano Factor. Left: Single unit activity (n = 78), center: intracellular results. Right: Multi-unit activity 
(77 sites). B. Comparison of the mean Fano Factor. Left: single unit activity (n = 221), right: multi-unit activity (377 sites). 
C. laminar comparison of the mean Factor. Left: single unit activity (L2/3 = 10; L4 = 111; L5/6 = 99 neurons), right: multi-
unit activity (L2/3 = 52; L4 = 187; L5/6 = 138 sites). Red square: mean. Black line: median. Extremities of the box: first and 
third quartile. Whiskers: minimum and maximum. Crosses: outliers. Stars indicate values significantly different from the NI 
condition * : p < 0.05; ** : p < 0.01; *** : p < 0.001 
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Figure 3.3.9: Impact of the firing rate on the Fano Factor evoked by NI at the single unit level 

 

 
Figure 3.3.10: Fano Factor correlation plots. A. Single unit activity Fano Factor. Left: Natural images vs Drifting gratings. 

Right: Natural images vs Dense Noise. B. Multi-unit activity Fano Factor. Left: Natural images vs Drifting gratings. Right: 
Natural images vs Dense Noise. Empty symbols = FS. Full Symbols = RS or MUA. 
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 Laminar Fano Factor 

The population without GEM allow us to explore the evoked Fano Factor within each layer. In their 

work, Kara and colleagues (2000) obtained very low Fano Factor values. They assumed that this 

was probably linked to the fact that their recordings were only performed in layer 4. We wondered if 

we would obtain lower Fano Factors value in layer 4 as observed by Kara et al (2000) (Figure 3.3.8 

and 3.3.10). We first investigated the evoked Fano Factors within layers. At the single unit level, all 

stimuli evoked a similar FanoFa (p > 0.05; Friedman test). In layer 4, no difference was observed for 

the dense noise and natural images stimulation (p > 0.05), while DG evoked the lowest Fano Factor 

(p < 0.001; Table 3.3.4). Finally, in layer 5/6, NI evoked the lowest values (p < 0.001). The same 

response pattern was observed for the MUA, except in layer 2/3 where DN evoked the highest Fano 

Factor (p < 0.001).  

We then investigated the Fano Factor between layers. At the single unit level, all stimuli evoked the 

highest FanoFa in layer 2/3 (p < 0.001; Kruskal-Wallis test). Both artificial stimuli evoked the highest 

reliability in layer 4 (p < 0.001). On the other hand, in response to NI, despite a lower mean Fano 

Factor evoked layer 5/6, no difference was observed between layers 4 and 5/6 (p = 0.6). At the multi-

unit level, the same pattern was observed for artificial stimuli. However, in response to NI the highest 

values were observed in layer 2/3 and the lowest in layer 5/6, confirming the tendency observed at 

the single unit level (p < 0.001). It is important to note that in all layers we observed high a low Fano 

Factor values (figures 3.3.8 and 3.3.10). For both SUA and MUA, the differences between layers are 

small.  

Regarding Fast and Regular spiking neurons, we observed within and between layers, a similar 

pattern as the one of the single unit population (Figure 3.3.11; table 3.3.5). 

In summary, we showed that natural images evoke a more reliable response than the other stimuli. 

In addition, we do have a layer dependency of the Fano Factor, however this latter does not explain 

the heterogeneity observed among the populations. 
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Figure 3.3.11: Single unit mean Fano Factor. A. Mean Fano Factor for different subclasses of single units. Left: Fast 
spiking neurons (n = 83), center: regular spiking neurons (n = 138). Right: single unit activity (n = 221). B. laminar 

comparison of the mean Fano Factor across the single unit classes. Left: Fast spiking neurons (L2/3 = 4; L4 = 61; L5/6 = 
18 neurons), center: regular spiking neurons (L2/3 = 7; L4 = 50; L5/6 = 81 neurons), right: single unit activity (L2/3 = 10; 
L4 = 111; L5/6 = 99 neurons). Red square: mean. Black line: median. Extremities of the box: first and third quartile. 
Whiskers: minimum and maximum. Crosses: outliers. Stars indicate values significantly different from the NI condition. n.s 
: non significant;  * : p < 0.05; *** : p < 0.001 
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 Impact of the natural statistics on the Fano Factor 

Finally, we investigated the impact of the spatio-temporal statistics on the reliability of the response. 

Indeed, our previous results showed that the response is differently modulated by the randomization 

of not of the spatio-temporal statistics. Our results are reported in figure 3.3.11 and table 3.3.6. At 

the single unit level (and its subpopulations) all stimuli evoked the same Fano Factor (p > 0.05; 

Friedman test). However, at the multi-unit level, the natural image were both spatial and temporal 

statistics were randdomozed evoked a lower fano factor than the unalted natural image (p < 0.001) 

while the natural image animated only with saccades evoked a higher one. This tendency was also 

observed at the single unit level. 

 
Figure 3.3.11: Single and multi-unit Fano Factor evoked by the control stimuli. A. Multi-scale comparison of the mean 
Fano Factor. Left: Single unit activity (n = 124), right: Multi-unit activity (150 sites). B. Comparison of the mean sparseness 

across the single unit subtypes. Left: Fast spiking neurons (n = 45), center: regular spiking neurons (n = 79). Right: single 
unit activity (n = 124). Red square: mean. Black line: median. Extremities of the box: first and third quartile. Whiskers: 
minimum and maximum. Crosses: outliers n.s: non-significant 
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FULL FIELD SUA 

  DG GEM NI DN 

Mean w/ GEM 1.032 ± 0.027 0.993 ± 0.022 0.997 ± 0.024 1.005 ± 0.028 

Mean w/o GEM 1.043 ± 0.014   1.011 ± 0.012 1.031 ± 0.016 

Layer 2/3 1.175 ± 0.039   1.107 ± 0.042 1.128 ± 0.041 

Layer 4 1.031 ± 0.023   1.018 ± 0.019 1.014 ± 0.030 

Layer 5/6 1.044 ± 0.015   0.997 ± 0.014 1.040 ± 0.015 

     

FULL FIELD MUA 

  DG GEM NI DN 

Mean w/ GEM 0.963 ± 0.010 0.958 ± 0.012 0.950 ± 0.010 0.937 ± 0.011 

Mean w/o GEM 0.947 ± 0.006   0.921 ± 0.006 0.949 ± 0.007 

Layer 2/3 0.999 ± 0.011   0.990 ± 0.013 1.020 ± 0.014 

Layer 4 0.939 ± 0.010   0.921 ± 0.009 0.915 ± 0.010 

Layer 5/6 0.939 ± 0.007   0.895 ± 0.007 0.969 ± 0.010 

Table 3.3.4: Mean SUA and MUA Fano Factor evoked by our set of stimuli presented full field (Mean ± SEM) 

 

FULL FIELD FS 

  DG NI DN 

Mean 1.040 ± 0.030 1.029 ± 0.025 1.011 ± 0.038 

Layer 2/3 1.151 ± 0.093 1.075 ± 0.086 1.061 ± 0.061 

Layer 4 1.027 ± 0.036 1.045 ± 0.030 1.017 ± 0.048 

Layer 5/6 1.067 ± 0.065 0.958 ± 0.048 0.981 ± 0.045 

    

FULL FIELD RS 

  DG NI DN 

Mean 1.045 ± 0.012 1.001 ± 0.011 1.042 ± 0.014 

Layer 2/3 1.189 ± 0.038 1.127 ± 0.049 1.168 ± 0.049 

Layer 4 1.036 ± 0.027 0.982 ± 0.020 1.011 ± 0.028 

Layer 5/6 1.040 ± 0.013 1.004 ± 0.014 1.051 ± 0.015 

Table 3.3.5: Mean FS and RS Fano Factor evoked by our set of stimuli presented full field (Mean ± SEM) 

 
FULL 
FIELD 

  

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 1.051 ± 0.034 1.031 ± 0.033 1.051 ± 0.035 1.021 ± 0.038 1.079 ± 0.037 

RS 0.994 ± 0.016 0.997 ± 0.016 1.010 ± 0.018 0.976 ± 0.013 0.998 ± 0.013 

SUA 1.014 ± 0.016 1.009 ± 0.016 1.025 ± 0.017 0.992 ± 0.016 1.027 ± 0.016 

MUA 0.903 ± 0.007 0.893 ± 0.007 0.901 ± 0.007 0.872 ± 0.008 0.919 ± 0.007 

Table 3.3.6: Mean Fano Factor evoked by our set of control stimuli presented full field (Mean ± SEM) 
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3.1.3 Reliability of the spiking activity 

The Fano-Factor is a reliability measure that relies on the mean and the variance of the firing rate. 

This measure can be biased, and two different stimuli can lead to similar results if the ratio variance 

over mean is similar despite the fact that these two stimuli elicit very different firing rates. Therefore, 

as performed by Baudot and colleagues (2013) in their intracellular study we decided to compute 

another measure of reliability: the cross-correlation of the spiking response between trials. The 

reliability is given by the CC peak amplitude at time zero (Baudot et al., 2013; Butts et al., 2007).  

Figure 3.3.12 show the trial to trial cross correlation for two cells (one fast spiking and one regular 

spiking neuron). Both cells elicited different values of reliability. One neuron evoked a very reliable 

response, for all stimuli, while the other one a much lower one. This result is not surprising, it has 

been observed V1 is composed of cells exhibiting different levels of reliability (Kampa et al, 2011; 

Rikhye and Sur 2015). However, no study investigated at the population level the levels of reliability 

evoked by artificial and natural stimuli. 

 

 
Figure 3.3.12: Example of the levels of reliability evoked by our set of stimuli on two different cells.  

 Comparison with the intracellular recordings 

In their intracellular study, Baudot and colleagues (2013) found that NI and GEM evoked a higher 

reliable spiking activity than the other stimuli. However, they did not observe a significant difference 

between NI and GEM. We found, for both SUA and MUA, a similar pattern of reliability as the one 

observed intracellularly (Figure 3.3.13-A; Table 3.3.7; p < 0.01, Friedman Test). Natural images and 

gratings animated with eye movements evoked the highest level of reliability for the single unit 

activity. However, the levels of reliability were different between the intracellular and the extracellular 

spiking activities. As explained for the other indexes quantifying the spiking activity, the extracellular 

recordings allowed us to record simultaneously a great number of cells, even those that tend to 

display a low response therefore low levels reliability. The barplots in figure 3.3.13 and the scatter 

plots in figure 3.3.14 give a good overview of the different levels of reliability that are found in V1. On 

the other hand, these low spiking cells were probably not taken in account in the intracellular study, 
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leading to this difference in reliability. We can eliminate a difference caused by the anesthesia 

because Haider et al. (2010), who used the same anesthetics as we did (Isoflurane) and also 

performed intracellular recordings in cat V1, found levels of reliability evoked by NI similar to those 

observed by Baudot and colleagues (2013).  

Interestingly, the MUA reliability followed the same pattern as the one observed for the SUA. 

However, we obtained higher levels of reliability for all stimuli. This reliability was also higher than 

the one observed intracellularly (Figure 3.3.13-A; Table 3.3.7). This result is in agreement with the 

theories stating that the stimulus is efficiently encoded by the population and not by a single neuron 

(Deneve and Chalk, 2016; Yuste, 2015). Indeed, as described in the previous sections the MUA, 

particularly in our study, correspond to the spiking activity of many single neurons. In addition, these 

results correspond to our previous observations made with another the reliability measure, the Fano 

Factor.  

In summary, we found similar results as the ones observed intracellularly, thus validating at different 

scales the observations previously made by the laboratory. We also showed that the multi-unit 

activity evokes a more reliable response than the single neuron. 

 Mean Evoked Reliability 

As described in the previous section, our extracellular recordings allowed us to record cells across 

all layers. Therefore, we computed the trial-to-trial correlation on the 221 recorded cells and the 377 

multi-unit sites, without GEM (figure 3.3.13-B-C and figure 3.3.14 but see also table 3.3.7). 

We first computed the mean reliability levels for both SUA and MUA. We obtained similar results as 

the ones reported in Figure 3.3.13-A. The boxplots and the scatter plots in figure 3.3.13-B show that 

our populations are composed of very reliable and very unreliable cells and multi-unit sites. Kampa 

et al. (2011) also observed this heterogeneity in layer 2/3 of mouse primary visual cortex. They 

reported that, in response to different stimuli, 20% of their cell population can be considered as 

reliable. We computed the reliability in function of the firing rate and observe that for a proportion of 

cells a high reliability is correlated to the firing rate. However, cells exhibiting a low firing rate can 

also induce high levels a reliability (Figure 3.3.15). The reliability of the spontaneous activity was 

always equal to 0, thus we decided to not plot it for this analysis (figure 3.2.1) 

As performed for the other quantification indexes we computed the trial-to-trial cross correlation of 

our two neuronal subclasses: the regular and fast spiking cells (Figures 3.3.14 and 3.3.16-A; Table 

3.3.8). We wondered if we would observe a difference in reliability between these two subclasses. 

The different stimuli evoked the same reliability in the regular spiking and fast spiking cells as in the 

complete SUA population (p > 0.05; Kruskal Wallis test). However, fast spiking cells displayed, for 

the same stimulus, higher levels of reliability than regular spiking cells (p < 0.001). 
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Figure 3.3.13: Single and multi-unit mean reliability. Natural Images evoke the highest levels of reliability. A. Multiscale 

comparison of the mean reliability Left: Single unit activity (n = 78), center: intracellular results. Right: Multi-unit activity (77 
sites). B. Comparison of the mean reliability. Left: single unit activity (n = 221), right: multi-unit activity (377 sites). C. laminar 

comparison of the mean reliability. The most reliable response is in layer 4. Left: single unit activity (L2/3 = 10; L4 = 111; 
L5/6 = 99 neurons), right: multi-unit activity (L2/3 = 52; L4 = 187; L5/6 = 138 sites). Red square: mean. Black line: median. 
Extremities of the box: first and third quartile. Whiskers: minimum and maximum. Crosses: outliers. Stars indicate values 
significantly different from NI. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 



 

166 

 

 

 
Figure 3.3.14: Reliability correlation plots. A. Single unit activity reliability. Left: Natural images vs Drifting gratings. 

Right: Natural images vs Dense Noise. B. Multi-unit activity reliability. Left: Natural images vs Drifting gratings. Right: 
Natural images vs Dense Noise. Empty symbols = FS. Full Symbols = RS or MUA. 

 

 
Figure 3.3.15: Reliability of the response in function of the cell firing rate (r: Spearman Correlation) 
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 Laminar reliability 

We, and others (Hansen et al, 2012) showed that the reliability of the response is layer dependent. 

We wondered if this reliability analysis would result in the same laminar dependency as the one 

observed with the fano factor. For the SUA, our results show that within all layers, natural images 

evoked a more reliable spiking activity than the other stimuli (p < 0.001, Friedman test). DN displayed 

a higher reliable response than DG in layers 2/3 and 4 (p < 0.001). All stimuli evoked the highest 

level of reliability in layer 4 and the lowest one in layer 2/3 (p < 0.05; Mann-Whitney U test). This 

higher reliability observed in layer 4 could be linked to the dense and reliable thalamic inputs 

projecting to this layer (Wilson & Cragg, 1967; Kumbhani et al., 2007) or to inhibitory mechanisms 

(Zhu et al., 2015). We observed the same exact pattern for the multi-unit activity, apart from the 

reliability that was higher than the one observed for the SUA. Despite a significant difference, it is 

important to note that for both signals, NI evoked close reliability levels in layers 4 and 5/6. 

Regarding the laminar reliability of the single unit subpopulations, natural images evoked the most 

reliable response within layers 4 and 5/6 among regular and fast spiking cells (p < 0.01; Friedman 

test). The number of cells recorded in layer 2/3 for both RS (n = 4) and FS (n= 7) cells did not allow 

us to perform a statistical analysis. However, if we increased the number of recorded cells in this 

layer, we could expect that NI would evoke a more reliable response than the other stimuli. For 

regular spiking cells, NI and DG evoked similar levels of reliability between layers 4 and 5/6, only 

DN evoked a more reliable response in layer 4 than in layer 5/6. Regarding fast spiking cells, the 

same stimuli evoked the same reliability in layers 4 and 5/6 (figures 3.3.14 and 3.3.16; table 3.3.8). 

In summary, we showed that for the MUA and the SUA (and its subclasses) natural images evoked 

a more reliable response than the other stimuli. In addition, for the MUA, SUA and RS cells, layer 4 

evoked the most reliable response for all stimuli. 
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Figure 3.3.16: Single unit mean reliability. A. Mean reliability for different subclasses of single units. Fast spiking neurons 

evoke the highest reliability levels. Left: Fast spiking neurons (n = 83), center: regular spiking neurons (n = 138). Right: 
single unit activity (n = 221). B. laminar comparison of the mean reliability across the single unit classes. Left: Fast spiking 

neurons (L2/3 = 4; L4 = 61; L5/6 = 18 neurons), center: regular spiking neurons (L2/3 = 7; L4 = 50; L5/6 = 81 neurons), 
right: single unit activity (L2/3 = 10; L4 = 111; L5/6 = 99 neurons).Red square: mean. Black line: median. Extremities of the 
box: first and third quartile. Whiskers: minimum and maximum. Crosses: outliers. n.s : non-significant;  * : p < 0.05; *** : p 

< 0.001 
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 Impact of the natural statistics on the reliability 

Finally, we investigated, with our control stimuli, the impact of the spatio-temporal natural statistics 

on the reliability of the response (figure 3.3.17; table 3.3.9). For both the single unit and the multi-

unit activity we did not observed any significant difference in the reliability. This absence of difference 

was also observed among the RS and FS subpopulations (p > 0.05; Friedman test; table 3.3.9). This 

absence of difference between the stimuli containing high order correlations in their spatio-temporal 

statistics or not matches the results of Freeman et al., 2013. They observed, in the primary visual 

cortex of awake primates, that V1 responds the same way to natural stimuli containing or not high 

order correlations in their spatial statistics. Based on our results, it seems that V1 reliability is 

modulated the same way by natural spatio-temporal frequencies containing or not high order 

correlations. 

 

 
Figure 3.3.17: Single and multi-unit reliability evoked by the control stimuli. A. Multi-scale comparison of the mean 

reliability. Left: Single unit activity (n = 124), right: Multi-unit activity (150 sites). B. Comparison of the mean reliability across 
the single unit subtypes. Left: Fast spiking neurons (n = 45), center: regular spiking neurons (n = 79). Right: single unit 
activity (n = 124). Red square: mean. Black line: median. Extremities of the box: first and third quartile. Whiskers: minimum 
and maximum. Crosses: outliers n.s: non-significant 
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FULL FIELD SUA 

  DG GEM NI DN 

Mean w/ GEM 0.035 ± 0.005 0.054 ± 0.006 0.049 ± 0.008 0.051 ± 0.006 

Mean w/o GEM 0.017 ± 0.002   0.043 ± 0.003 0.028 ± 0.004 

Layer 2/3 0.001 ± 0.001   0.019 ± 0.005 0.011 ± 0.004 

Layer 4 0.022 ± 0.004   0.048 ± 0.005 0.038 ± 0.006 

Layer 5/6 0.014 ± 0.002   0.041 ± 0.005 0.019 ± 0.005 
     

FULL FIELD MUA 

  DG GEM NI DN 

Mean w/ GEM 0.096 ± 0.007 0.135 ± 0.009 0.126 ± 0.011 0.148 ± 0.011 

Mean w/o GEM 0.054 ± 0.003   0.099 ± 0.004 0.070 ± 0.003 

Layer 2/3 0.011 ± 0.002   0.063 ± 0.007 0.032 ± 0.005 

Layer 4 0.066 ± 0.004   0.113 ± 0.006 0.093 ± 0.006 

Layer 5/6 0.055 ± 0.004   0.093 ± 0.007 0.052 ± 0.004 

Table 3.3.7: Mean SUA and MUA reliability evoked by our set of stimuli presented full field (Mean ± SEM) 

 

FULL FIELD FS   

  DG NI DN 

Mean w/o GEM 0.026 ± 0.005 0.055 ± 0.006 0.045 ± 0.008 

Layer 2/3 0.000 ± 0.001 0.032 ± 0.010 0.022 ± 0.008 

Layer 4 0.028 ± 0.006 0.057 ± 0.007 0.047 ± 0.008 

Layer 5/6 0.024 ± 0.010 0.051 ± 0.017 0.044 ± 0.025 
    

FULL FIELD RS 

  DG NI DN 

Mean w/o GEM 0.012 ± 0.002 0.036 ± 0.003 0.018 ± 0.003 

Layer 2/3 0.001 ± 0.001 0.011 ± 0.002 0.006 ± 0.002 

Layer 4 0.015 ± 0.003 0.036 ± 0.004 0.028 ± 0.007 

Layer 5/6 0.012 ± 0.002 0.039 ± 0.005 0.013 ± 0.002 

Table 3.3.8: Mean FS and RS reliability evoked by our set of stimuli presented full field (Mean ± SEM) 

 

FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.056 ± 0.008 0.060 ± 0.010 0.052 ± 0.008 0.069 ± 0.011 0.048 ± 0.008 

RS 0.044 ± 0.005 0.043 ± 0.005 0.034 ± 0.004 0.048 ± 0.006 0.040 ± 0.005 

SUA 0.048 ± 0.004 0.049 ± 0.005 0.040 ± 0.004 0.056 ± 0.005 0.043 ± 0.004 

MUA 0.085 ± 0.005 0.085 ± 0.005 0.078 ± 0.005 0.096 ± 0.006 0.076 ± 0.005 

Table 3.3.9: Mean reliability evoked by our set of control stimuli presented full field (Mean ± SEM) 
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3.1.4 Reliability of the local field potential 

In the previous sections, we quantified the reliability of the spiking response. In addition, we 

quantified the energy of the local field potential and showed that this mesoscopic signal integrates 

the synaptic information in a very different way than the single cell. Therefore, in order to continue 

our LFP quantification and the multiscale study of the evoked response we computed the reliability 

of the local field potential. 

 

Figure 3.3.18-A shows an example of the mean LFP and all its trials for all stimuli. The mean LFP 

obtained in response to NI and GEM seem to follow the trial-to-trial response, while the mean DG is 

completely flat, but with a reduced standard deviation, as observed with the trials (in grey). As 

explained in the previous sections this is linked to the neuronal activity responding to the different 

phases of the grating. The reliability of this example shows that DG evokes low reliability levels while 

NI induce a reliable LFP (Figure 3.3.18-B). As performed for the energy, we computed the difference 

in reliability between NI and DN for two different experiments. As observed previously, each 

experiment result in different reliability levels (Figure 3.3.18-C). 

 
Figure 3.3.18: Mean and trials LFP. A: Mean LFP and its 30 trials in response to our set of stimuli. B: Trial-to-trial cross 

correlation of the LFP example C:  Example of reliability values evoked by DN and NI for two experiments. 
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 Comparison with the intracellular recordings 

The first step was to compare the reliability of the LFP and the Vm (Figure 3.3.19-A; table 3.3.10). 

For this analysis, we only took in account the sites where the 78 single units responded to GEM. We 

obtained a similar pattern of reliability intracellularly and extracellularly: Natural images elicited the 

most reliable LFP while GEM evoked the higher level of reliability among the artificial stimuli (p < 

0.001, Friedman test). The reliability evoked by DG was very low. This confirm our observation made 

with the examples in figure 3.3.18 and corroborates our previous explanation, where we claimed that 

the energy evoked by DG is very low because the LFP captures the activity from many cells, 

responding to different phases. This mixture of signals lead to a very low reliability, lower than the 

one observed by the MUA (0.096 ± 0.007 for the MUA & 0.048 ± 0.002 for the LFP).  

 Mean evoked reliability 

We then investigated the reliability across all the recorded LFPs. As explained in the previous section 

we can use the LFP locked to the GEM, even when this latter was not presented at the preferred 

orientations. We obtained a similar pattern as the one observed for the reduced LFP population 

(Figures 3.3.19 and 3.3.20, table 3.3.10). However, the reliability levels were higher when computed 

across all the LFP sites. This is probably be caused by the fact that in this analysis we included sites 

from experiments were the global level reliability was a higher because of the electrode’s reference 

placement. 

 Laminar reliability 

We obtained within layers, the same reliability pattern as the one observed for the mean population 

(Figures 3.3.19-C and 3.3.20; table 3.3.10).  For all stimuli, the lowest levels of reliability were found 

in layer 2/3 (p < 0.001, Mann Whitney U test). While GEM and DN elicited their most reliable 

response in layer 4, we did not observe any difference in reliability between layers 4 and 5/6 for NI 

and DG (p > 0.05, Mann Whitney U test). As observed for the mean LFP, the laminar reliability is 

also highly stimulus dependent.  

 

In summary, we found that natural images evoke a more reliable LFP response than the other stimuli. 

This result matches the intracellular findings of the laboratory (Baudot et al., 2013) and our 

extracellular results. In addition, the very low levels of reliability evoked by DG confirms the fact that 

the integration at the LFP and the cellular level are different. With complementary analysis, Baudot 

and colleagues (2013) showed that the reliability needed to be measured in other ways. Indeed, they 

also observed a low level of reliability in response to gratings with the trial-to-trial correlation analysis 

but with a time frequency analysis they showed that gratings do evoke a reliable response but only 

at the grating frequency. Further in this manuscript, we will investigate the frequency-dependent 

reliability and put it in parallel with the results obtained in this section. 
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Figure 3.3.19: Local field potential mean reliability. Natural images evoke the most reliable response.  A. Multiscale 

comparison of the mean reliability Left: intracellular results. Right: Local field potential. B. Comparison of the mean LFP 
reliability evoked by our stimulus set. C. laminar comparison of the mean reliability evoked by our stimulus set. The highest 
levels of reliability were observed in layer 4. Red square: mean. Black line: median. Extremities of the box: first and third 
quartile. Whiskers: minimum and maximum. Crosses: outliers; ***: p < 0.001 
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Figure 3.3.20: Reliability correlation plots. Top left: Natural images vs drifting gratings; Top right: Natural images vs 

gratings animated with eye movements. Bottom: Natural images vs dense noise. Circles: Layer 2/3; Triangles: Layer 4; 
Squares: Layer 5/6. 
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 Impact of the natural statistics on the reliability 

Finally, as performed for the spiking activity, we computed the reliability levels obtained in response 

to our control stimuli (Figure 3.3.12, table 3.3.11). We did not obtain any difference between the 

unaltered natural image and the ones where the spatial and/or temporal statistics were altered (p > 

0.05; Friedman test). Only the Natural image only animated with saccades evoked a higher reliability 

than the other stimuli (p < 0.01). 

Unlike what was previously hypothesized, by looking at the LFP energy, it seems that the LFP is not 

strongly impacted by the absence of high order correlations in the spatio-temporal statistics. 

However, the increase of LFP reliability observed for the NI-SAC and its absence on the spiking 

activity could imply a saccadic impact on the neuronal activity that is only visible on a large 

population. 

 
Figure 3.3.20: Mean reliability of the LFP evoked by the control stimuli. Mean LFP reliability in response to our control 

stimuli. Red square: mean. Black line: median. Extremities of the box: first and third quartile. Whiskers: minimum and 
maximum. Crosses: outliers. n.s: non-significant; ** : p < 0.01 
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FULL FIELD LFP 

  DG DN GEM NI 

Mean tuned GEM 0.048 ± 0.002 0.243 ± 0.006 0.304 ± 0.007 0.236 ± 0.006 

Mean all sites 0.063 ± 0.003 0.257 ± 0.006 0.317 ± 0.008 0.391 ± 0.008 

Layer 2/3 0.019 ± 0.002 0.129 ± 0.010 0.195 ± 0.015 0.256 ± 0.019 

Layer 4 0.072 ± 0.003 0.310 ± 0.008 0.358 ± 0.010 0.419 ± 0.010 

Layer 5/6 0.080 ± 0.007 0.252 ± 0.012 0.331 ± 0.015 0.437 ± 0.015 

Table 3.3.10: Mean LFP reliability evoked by our set of stimuli presented full field (Mean ± SEM) 

 

  NI NI-RS NI-RT NI-RST NI-SAC 

FULL FIELD 0.230 ± 0.007 0.241 ± 0.007 0.231 ± 0.007 0.228 ± 0.008 0.272 ± 0.009 

Table 3.3.11: Mean LFP reliability evoked by our set of control stimuli presented full field (Mean ± SEM) 
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3.2. Impact of the Center Surround Interactions 

As observed when quantifying the spiking activity and the local field potential responses, the 

concomitant stimulation of both center and surround has an impact on response. In addition, many 

studies showed that center surround interactions, in particular in natural images have modulate 

others aspect of the neuronal response. In their seminal study, Vinje and Gallant (2000) showed, in 

the primate, that the stimulation of both center and surround with a natural scene increases the 

response sparseness at the single unit level. This has also been observed, intracellularly and at the 

multi-unit level, on the cat by Haider and colleagues (2010). In addition, they showed that the 

stimulation of the surround with a natural scene increased the reliability of the spiking response. 

Based on these results, and ours, we decided to investigate the impact of the center surround 

interactions on the sparseness, reliability and precision of the response. In addition, we will be able 

to measure the impact of the center surround modulations evoked by artificial stimuli. Moreover, our 

dense recordings allowed us to record simultaneously across all layers.  

3.2.1 Sparseness of the Spiking Activity 

As described above, the center surround interactions have a strong impact on the sparseness of the 

response. We wondered if we would observe, across our single and multi-unit populations, the same 

sparseness increases between the FF and C stimulations. Moreover, since each layer has its unique 

properties, will the sparsening of the response be the same across layers? In addition, no study 

investigated the sparseness and the impact of the center surround interactions evoked by artificial 

stimuli. Figure 3.3.21 shows an example of sparseness evoked by the natural image presented on 

the full field, center conditions. We can observe that the FF stimulation evoked a sparser response 

than the center one. We observed no difference between the FF and C condition for drifting gratings. 

The spontaneous activity evoked a sparseness close to the stimulus. As stated in the previous 

section, the surround response evokes almost no response, thus will not be mentioned.  

 
Figure 3.3.21: Example of evoked sparseness by natural images and drifting gratings for the full field, center and surround 

conditions. 
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 Impact of the center surround interactions on the evoked sparseness 

At the single unit level, in response to NI, a sparsification of the response was observed when both 

center and surround were stimulated compared to a lone stimulation of the center (Figure 3.3.22; p 

< 0.001; Wilcoxon test). However, the difference between the FF and the C stimulation was very low 

(Table 3.3.12). This could be linked to the size of the center stimulation that we used. Indeed, a 5° 

stimulation already covers the surround of many cells. Regarding the artificial stimuli, no difference 

in sparseness between the full field and center conditions was observed. This suggests that the 

sparsening of the response is linked to the naturalness of the visual statistics. 

We also compared the sparseness of the multi-unit activity (Figure 3.3.22). As observed for the SUA, 

natural images evoked a sparser response in the full field than in the center condition (p<0.001; 

Wilcoxon test). Surprising, the artificial stimuli evoked different sparsenesses between the FF and C 

conditions. While drifting gratings evoked a sparser response for the center condition (p < 0.001), 

dense noise evoked a sparser response the full field condition (p < 0.001). For all three stimuli, the 

difference between the center and center surround stimulations was very low (table 3.3.12). The fact 

that the artificial stimuli evoke a different sparseness between the FF and C conditions for the MUA 

but not for the SUA might come from the number of responses that is recorded in the MUA. Indeed, 

since the difference in sparseness between the two conditions is very low, a great number of 

responses is needed to reach a significant response. Another explanation could be that the 

sparsening of the response for artificial stimuli is present at a population level.  

In their intracellular study, Haider et al. (2008) reported that, for natural images, the center surround 

interactions reduced the sparseness of FS and RS thin spike neurons compared to the center 

condition. On the other hand, RS neurons see their sparseness increase for the center and surround 

condition, compared with center condition. Therefore, we decided to compare the center surround 

and center only sparseness induced by natural images for both FS and RS neurons (Figure 3.3.22; 

table 3.3.12). As observed for the full field population, no difference in sparseness was observed 

between the two populations. We compared, for each stimulus, the sparseness evoked by the full 

field and the center conditions. The center surround interactions had no impact on the sparseness 

of FS cells (table 3.3.12; p > 0.05; Wilcoxon test). These results differ from those of Haider and 

colleagues (2010). However, among our FS population we do observe neurons displaying a higher 

sparseness for the center condition (figure 3.3.22). Only 9 neurons were recorded in Haider et al 

(2010) study, their results are not representative of the fast spiking population.  Regarding the regular 

spiking population, we observed the same pattern as in the complete single unit, i.e. no difference 

between the FF and the C condition were observed for the artificial stimuli while NI evoked a higher 

sparseness when presented in the FF condition (p < 0.001; Wilcoxon test).  

 Laminar impact of the center surround interactions 

We showed that the sparseness is modulated by center surround interactions at the level of the 

complete population. However, since each layer display unique properties will we observe the same 

modulations within them. We first computed the sparseness of the spiking activity evoked by a center 

stimulation across layers (figure 3.3.22). We found the same pattern of response as in the full field 

condition. For the SUA and MUA, within all layers, natural images evoked the sparsest response. At 

the single unit level, for each stimulus, no difference in sparseness was observed in layer 2/3 (p > 

0.11: Wilcoxon test). In layer 4, only DG were impacted by center surround interactions. Indeed, the 

center condition evoked a higher sparseness than the FF (p < 0.05). Finally, in layer 5/6, only NI 

were impacted by center surround interactions. Indeed, the full field condition evoked a higher 
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sparseness than the center (p < 0.05). Neurons in layer 5/6 are connected by horizontal connections. 

These latter are activated by surround stimulations. These results suggest that natural images 

evoked sparseness is modulated by these connections. These connections are also present in layer 

2/3. However, the small number of neurons recorded on this layer might bias the response. It is 

important to note that for each stimulus, the difference of sparseness between the center and full 

field conditions is low (table 3.3.12).  

At the multi-unit level, we observed the same pattern as in the global population for DG and NI. 

Indeed, natural images evoked a sparser response within all layers when a full field stimulation was 

performed (p < 0.001; Wilcoxon test), while gratings evoked a sparser response within all layers 

when a center stimulation was performed (p < 0.001). However, for DN, a difference between the FF 

and the C condition was only observed in layer 4 (p < 0.001). In this layer, the FF condition evoked 

a sparser response than the C condition. Again, for each stimulus, the difference of sparseness 

between the center and full field conditions is low (table 3.3.12). 

For RS cells, as observed for the SUA, the only layer impacted by the natural images and its center 

surround interactions is layer 5/6. On the other hand, across layers, FS cells were not impacted by 

the center surround modulation (table 3.3.12).  

 

Despite, this significant increase in sparseness evoked by NI when they were presented full field, 

the difference with the center condition remains low. Our results differ from the ones observed in the 

literature (Vinje and Gallant, 2000; Haider et al., 2010). This is probably linked to the difference in 

the size of the center stimulation between our study and theirs. Indeed, our center stimulation is 

performed on a mask of 5x5°. In Haider and colleagues studie, the center stimulation is performed 

on a mask of more or less 2°. Therefore, the small difference, that we observe, between the center 

surround and center firing sparseness might come from the fact that a 5° center stimulation also 

stimulates the surround. We are probably close to a limit where the sparseness will not be strongly 

modulated anymore by an increase of the stimulation size. A preliminary examination of the influence 

size of the stimulation mask and the sparseness values has been performed on the multi-unit activity. 

We computed a normalized sparseness with 100% being the value obtained for the full field condition 

(Figure 3.3.23). We observed that between a mask of 2x2° and 3x3° the difference in the normalized 

sparseness is about 20% (64% vs 84%). Then, a plateau is reached. Indeed, the sparseness values 

are very similar (3x3° = 84%; 5x5° = 85%; 7x7° = 90%). This tends to confirm that the increase in 

sparseness is not strongly modulated when we reach a certain stimulation size.   

 

In conclusion, we showed that natural images are affected by center surround interactions. These 

interactions result in a sparsening of the response. However, the effect is very small. This effect was 

probably stronger at multi-unit level because of the higher number of responses that we recorded for 

this signal, compared to the SUA.  
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Figure 3.3.22: Full field vs center stimulation sparseness. The center surround interactions have a small impact on the 

sparseness. Left: Single unit sparseness Right: Multi-unit activity sparseness. Top row: Drifting Gratings. Middle row: 
Natural images. Bottom row: Dense Noise. Red line: polynomial fit. Empty symbols = FS. Full Symbols = RS or MUA. 
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Figure 3.3.23: Normalized sparseness as a function of the stimulation size of the center condition. The sparsification of 

the response reach a plateau when the center stimulation reaches a certain size.  
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 Impact of the natural statistics on the center surround interactions 

In their study, Guo and colleagues (2005) showed that the spiking activity of the cell is modulated by 

the naturalness of the surround statistics. Therefore, we wondered if the absence of spatial and/or 

high order correlations had an impact on the sparseness of the response (Figure 3.3.24 and table 

3.3.13). As observed for the full field condition, all stimuli evoked the same level of sparseness for 

each signal (p > 0.05; Friedman test). At single unit level, all stimuli evoked a higher sparseness for 

the full field condition compared to the center one (p > 0.05; Wilcoxon test). However, at the multi-

unit level only NI and NI-RST displayed a higher sparseness for the full field condition. The other 

stimuli (NI-RT and NI-SAC) displayed a higher sparseness for the center condition. As observed for 

the normal stimulus set, full field and center conditions evoked very similar values of sparseness, 

despite a significant difference.  No difference between the FF and C condition was observed for the 

FS neurons (p > 0.05) while RS neurons displayed the same pattern as the complete SUA 

population. 
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Figure 3.3.24: Full field vs center stimulation sparseness evoked by the control stimuli. Left panel: Single unit activity 

firing rate. Right panel: Multi-unit activity firing rate.  Red line: polynomial fit. Empty symbols = FS. Full Symbols = RS or 
MUA. 
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FULL FIELD SUA  FS 

  DG NI DN  DG NI DN 

Layer 2/3 58.3 ± 5.6 61.2 ± 4.8 46.7 ± 4.7  51.0 ± 9.1 60.0 ± 5.3 42.9 ± 6.0 

Layer 4 45.0 ± 2.0 60.4 ± 1.8 52.5 ± 2.1  44.8 ± 2.8 62.3 ± 2.6 51.5 ± 3.1 

Layer 5/6 49.3 ± 2.3 63.2 ± 2.1 51.6 ± 2.4  45.0 ± 7.0 54.6 ± 6.9 50.1 ± 7.7 

Mean 47.5 ± 1.4 61.6 ± 1.3 51.8 ± 1.5  45.1 ± 2.5 60.7 ± 2.4 50.8 ± 2.8 

        
CENTER SUA  FS 

  DG NI DN  DG NI DN 

Layer 2/3 53.6 ± 5.5 60.4 ± 4.4 47.5 ± 5.5  44.6 ± 7.4 60.8 ± 6.9 45.7 ± 4.6 

Layer 4 46.6 ± 1.9 59.2 ± 1.9 52.3 ± 2.1  45.8 ± 2.7 59.6 ± 2.8 51.2 ± 3.1 

Layer 5/6 49.1 ± 2.2 60.0 ± 2.2 51.8 ± 2.4  44.8 ± 6.8 55.6 ± 7.0 50.0 ± 7.8 

Mean 48.1 ± 1.4 59.6 ± 1.4 51.9 ± 1.5  45.5 ± 2.4 58.9 ± 2.5 50.7 ± 2.8 

        
FULL FIELD MUA  RS 

  DG NI DN  DG NI DN 

Layer 2/3 14.3 ± 1.1 30.4 ± 2.2 16.3 ± 1.1  63.2 ± 7.0 62.0 ± 7.5 49.2 ± 7.0 

Layer 4 25.6 ± 0.9 30.4 ± 1.1 20.7 ± 0.6  45.2 ± 2.7 58.0 ± 2.6 53.7 ± 2.8 

Layer 5/6 21.6 ± 1.1 26.3 ± 1.3 15.7 ± 0.8  50.2 ± 2.3 64.8 ± 2.1 51.9 ± 2.4 

Mean 22.7 ± 0.6 28.9 ± 0.8 18.3 ± 0.5  48.9 ± 1.8 62.2 ± 1.6 52.4 ± 1.8 

        
CENTER MUA  RS 

  DG NI DN  DG NI DN 

Layer 2/3 16.9 ± 1.3 27.7 ± 2.0 17.1 ± 1.3  59.5 ± 7.2 60.2 ± 6.2 48.7 ± 9.0 

Layer 4 27.3 ± 1.0 28.7 ± 1.1 18.9 ± 0.7  47.7 ± 2.8 58.6 ± 2.6 53.6 ± 2.9 

Layer 5/6 22.1 ± 1.5 23.8 ± 1.3 16.0 ± 1.1  50.0 ± 2.3 60.9 ± 2.2 52.2 ± 2.5 

Mean 24.0 ± 0.8 26.8 ± 0.8 17.6 ± 0.6  49.5 ± 1.8 60.0 ± 1.6 52.6 ± 1.8 

Table 3.3.12: Mean SUA (and its subpopulations) and MUA sparseness evoked by our set of stimuli presented full field 

and center (Mean ± SEM) 

 
FULL 
FIELD 

  

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 61.3 ± 3.5 60.1 ± 3.6 59.9 ± 3.7 60.5 ± 3.5 61.1 ± 3.7 

RS 62.8 ± 2.1 60.2 ± 2.2 59.7 ± 2.3 61.8 ± 2.2 61.9 ± 2.3 

SUA 62.3 ± 1.8 60.2 ± 1.9 59.7 ± 1.9 61.4 ± 1.9 61.6 ± 2.0 

MUA 26.0 ± 0.8 24.7 ± 0.9 21.4 ± 0.9 27.0 ± 1.0 23.9 ± 1.1 

      
CENTER   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 58.5 ± 3.7 57.8 ± 3.8 58.2 ± 3.7 57.5 ± 3.6 59.9 ± 3.7 

RS 60.4 ± 2.3 58.5 ± 2.3 58.2 ± 2.3 59.0 ± 2.4 60.2 ± 2.2 

SUA 59.7 ± 2.0 58.2 ± 2.0 58.2 ± 2.0 58.5 ± 2.0 60.1 ± 1.9 

MUA 24.7 ± 1.0 24.2 ± 0.9 21.8 ± 1.0 25.0 ± 1.0 25.0 ± 1.1 

Table 3.3.13: Mean SUA (and its subpopulations) and MUA sparseness evoked by our set of control stimuli presented 

full field and center( Mean ± SEM) 
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3.2.2 Fano Factor  

In the previous section, we showed that the Fano Factor, i.e. the reliability of the response was 

stimulus dependent. In their study, Haider and colleagues (2010) also showed that this reliability was 

modulated by the concomitant stimulation of both center and surround with natural images. However, 

they did not compute the Fano Factor. We wondered if we would observe an impact of the center 

surround interactions on the Fano Factor, when natural images are presented but also when artificial 

stimuli are presented. In addition, will we observe a laminar dependency of the center surround 

modulations of the Fano Factor? In order to test the impact of the center surround interactions we 

computed the Fano Factor when we presented our set of stimuli in the center and in the full field 

conditions.  

 Impact of the center surround interactions on the Fano Factor 

Before comparing the response evoked by the center and full field conditions, we compared the Fano 

Factors evoked by the different stimuli presented on the center (Figure 3.3.25; Table 3.3.14). For 

both single and multi-unit activities the center and the full field conditions evoked the same response 

pattern, i.e. natural images evoked the lowest Fano Factor for each signal p < 0.001; Friedman test). 

The comparison of the evoked Fano Factors by the full field and center conditions showed that 

Natural Images and Dense Noise displayed lower values for the Full field condition (i.e. a more 

reliable response), for both SUA and MUA (Figure 3.3.25; p < 0.001; Wilcoxon test). On the other 

hand, no significant difference was observed for DG (p > 0.05). Within layers, at the single unit level, 

no difference was observed between the conditions in layer 2/3. On the other hand, in layer 4 and 

5/6, NI evoked a more reliable response for the FF condition (p < 0.001). At the multi-unit level, NI 

evoked, in all layers, a lower fano factor when presented full field (p < 0.001). This was also observed 

for DN in layers 4 and 5/6. 

In their study, Haider and colleagues (2010) showed that FS and RS neurons were differently 

impacted by center surround interactions. Thus, we computed the Fano Factor among our RS and 

FS populations in order to evaluate how the concomitant stimulation of the center and the surround 

modulate their Fano Factors (Figures 3.3.25 and table 3.3.14). The center condition evoked a similar 

response pattern for each subclass as the one observed for the complete single unit population. We 

then compared the full field and center conditions. 

Natural images evoked for both RS and FS cells a lower Fano Factor for the full field condition (p < 

0.001). On the other hand, dense noise evoked a lower Fano Factor for the full field only among FS 

cells (p < 0.001). Within layers 4 and 5/6, for both RS and FS cells, natural images evoked a higher 

fano factor for the center condition than the full field. 

 Impact of the natural statistics on the center surround interactions 

Finally, we asked ourselves if the alteration of the spatial and temporal statistics would have an 

impact on the center surround interactions and on the response reliability (figures 3.3.26 and table 

3.3.15). At the single unit level, only NI and NI-RST displayed a lower FanoFa for the full field 

condition (p < 0.001; Wilcoxon test), while no difference was observed for the other stimuli (p > 0.05). 

At the multi-unit level, all stimuli evoked a lower Fano Factor for the full field than the center condition 

(p < 0.01; Wilcoxon test). This suggest that reliability of natural images is modulated by the surround. 
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Figure 3.3.25: Full field vs center stimulation Fano Factor. Left: Single unit Fano Factor Right: Multi-unit activity 

sparseness. Top row: Drifting Gratings. Middle row: Natural images. Bottom row: Dense Noise.Red line: polynomial fit. 
Empty symbols = FS. Full Symbols = RS or MUA. 
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Figure 3.3.26: Full field vs center stimulation Fano Factor evoked by our set of control stimuli. Left panel: Single 

unit activity firing rate. Right panel: Multi-unit activity firing rate.  Red line: polynomial fit. Empty symbols = FS. Full Symbols 
= RS or MUA. 
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FULL FIELD SUA  FS 

  DG NI DN  DG NI DN 

Mean 1.051 ± 0.015 1.026 ± 0.013 1.047 ± 0.014  1.057 ± 0.033 1.047 ± 0.032 1.069 ± 0.030 

Layer 2/3 1.148 ± 0.039 1.177 ± 0.066 1.162 ± 0.044  1.119 ± 0.090 1.111 ± 0.092 1.093 ± 0.060 

Layer 4 1.047 ± 0.026 1.023 ± 0.024 1.049 ± 0.023  1.046 ± 0.038 1.051 ± 0.039 1.077 ± 0.035 

Layer 5/6 1.047 ± 0.015 1.017 ± 0.012 1.036 ± 0.018  1.086 ± 0.074 1.020 ± 0.055 1.036 ± 0.064 

        
FULL FIELD MUA  RS 

  DG NI DN  DG NI DN 

Mean 0.953 ± 0.007 0.940 ± 0.005 0.963 ± 0.006  1.047 ± 0.013 1.014 ± 0.010 1.034 ± 0.014 

Layer 2/3 1.017 ± 0.014 0.997 ± 0.012 1.022 ± 0.014  1.165 ± 0.039 1.217 ± 0.093 1.204 ± 0.057 

Layer 4 0.951 ± 0.012 0.933 ± 0.008 0.941 ± 0.009  1.048 ± 0.032 0.985 ± 0.018 1.011 ± 0.023 

Layer 5/6 0.932 ± 0.008 0.928 ± 0.006 0.971 ± 0.009  1.040 ± 0.012 1.016 ± 0.011 1.036 ± 0.019 

Table 3.3.14: Mean SUA (and its subpopulations) and MUA Fano Factor evoked by our set of stimuli presented full field 

and center (Mean ± SEM) 

 

 

FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 1.051 ± 0.034 1.031 ± 0.033 1.051 ± 0.035 1.021 ± 0.038 1.079 ± 0.037 

RS 0.994 ± 0.016 0.997 ± 0.016 1.010 ± 0.018 0.976 ± 0.013 0.998 ± 0.013 

SUA 1.014 ± 0.016 1.009 ± 0.016 1.025 ± 0.017 0.992 ± 0.016 1.027 ± 0.016 

MUA 0.903 ± 0.007 0.893 ± 0.007 0.901 ± 0.007 0.872 ± 0.008 0.919 ± 0.007 

      

CENTER   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 1.075 ± 0.039 1.040 ± 0.033 1.045 ± 0.032 1.030 ± 0.032 1.089 ± 0.043 

RS 0.998 ± 0.011 1.001 ± 0.014 1.013 ± 0.014 0.989 ± 0.013 1.009 ± 0.014 

SUA 1.025 ± 0.016 1.015 ± 0.015 1.024 ± 0.014 1.004 ± 0.014 1.037 ± 0.018 

MUA 0.915 ± 0.005 0.906 ± 0.007 0.913 ± 0.007 0.908 ± 0.007 0.923 ± 0.006 

Table 3.3.15: Mean SUA (and its subpopulations) and MUA Fano Factor evoked by our set of control stimuli presented 

full field and center (Mean ± SEM) 
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3.2.3 Reliability of the Spiking Activity 

In the previous chapter, we showed that natural images evoke a more reliable response than the 

artificial stimuli. These results were in agreement with the literature (Yao et al., 2007; Baudot et al., 

2013). As shown in the previous sections, the spiking activity is modulated by the center surround 

interactions of natural statistics. An intracellular study performed on the anesthetized and paralyzed 

cat showed that the reliability evoked by natural images is modulated by center surround interactions 

(Haider et al., 2010). This modulation occurs both at the spiking and at the membrane potential level. 

They showed that levels of reliability evoked by classic regular spiking neurons are increased when 

both center and surround are stimulated with a natural scene. This reliability increase of the spiking 

activity is accompanied of an increase of the membrane potential reliability. On the other hand, they 

showed that thin spike regular spiking neurons display a decrease in reliability when both center and 

surround are stimulated while fast spiking neurons’ reliability is not modulated by center surround 

interactions. They also showed that the reliability of the multi-unit activity is increased when both 

center and surround are stimulated. Based on these results we wondered if we would observe an 

increase in reliability for the spiking activity when natural scenes, but also artificial stimuli are 

presented in the full field condition compared to the center condition. Moreover, our previous results 

showed that the levels of reliability are layer dependent. We can wonder if this is the case for the 

center surround interactions. Finally, will we observe a different impact of the center surround 

modulations in function of the neuronal subclass? 

Figure 3.3.27 shows an example of trial-to-trial correlation computed for single unit activity in 

response to DG and NI presented on the full field, center and surround conditions. The level of 

reliability corresponds to the peak at zero. On this example, both stimuli evoked higher levels of 

reliability for the full field condition than for the center. The surround stimulation and the spontaneous 

activity induced similar levels of reliability, almost equal to zero. 

 
Figure 3.3.27: Example of trial-to-trial cross correlation evoked by natural images and drifting gratings presented on the 

full field, center and surround conditions. 
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 Impact of the center surround interactions on the reliability 

The pattern of reliability that we obtained for the center condition is similar to the one obtained for 

the full field condition. We investigated the impact of the center surround interactions on the reliability 

(figure 3.2.28 and table 3.3.16). At the single unit level, both natural images and dense noise evoked 

higher levels of reliability when both center and surround were stimulated, compared to a center 

stimulation alone (p < 0.001; Wilcoxon test). On the other hand, despite a higher mean evoked by 

the center stimulation, DG showed no difference in reliability between the two conditions (p > 0.05). 

As observed for the full field condition, the levels of reliability are very heterogeneous with a group 

of cells being very reliable and another displaying very low values of reliability. This has already been 

observed on mice by Kampa and colleagues (2011). At the multi-unit level, both natural images and 

dense noise evoked higher levels of reliability when both center and surround were stimulated, 

compared to a center stimulation alone (p < 0.001; Wilcoxon test). Regarding DG, we confirmed the 

tendency observed at the single unit level since the center stimulation evoked a higher reliability than 

the full field one (p < 0.001). This increase observed for the center condition might be linked to the 

suppressive effect observed for gratings when both center and surround are stimulated. Indeed, the 

plateau observed for the sparseness (and possibly the firing rate) does not seem to be true for the 

reliability. This suggest that the reliability of spiking activity is less impacted by the size of the 

surround than the sparseness. 

In their intracellular study, Haider and colleagues (2010) showed that center surround interactions 

do not modulate in the same way regular spiking neurons and fast spiking neurons reliability. In 

addition, we showed in the previous section that these two subtypes show different modulations to 

the center surround interactions. Will we observe a different modulation of the reliability for these 

two neuronal subclasses? 

As observed for the full field condition, natural images evoked the highest mean reliability for both 

regular and fast spiking cells (p < 0.001; Wilcoxon test; Figure 3.3.28; table 3.3.16). Based on Haider 

and colleagues results natural images should evoke the same level of reliability between the two 

conditions for FS cells and higher one for the full field condition for RS cells. However, for both FS 

and RS cells, when natural images were presented the full field condition evoked higher levels of 

reliability compared to the center condition (Table 3.3.16; p < 0.001; Wilcoxon test). The difference 

between our two studies could be linked to the fact that they only recorded 9 FS cells. As shown in 

figure 3.3.28 some cells are not at all modulated by the center surround interactions while others 

show an increase in reliability for the center condition. Therefore, among these 9 cells they might 

have recorded some non-modulated cells combined with cells displaying a higher reliability for the 

FF and the C condition, which lead to an equal mean.  

In summary, we showed that the reliability evoked by natural images is higher for the full field 

condition than the center condition. 

 Laminar impact of the center surround interactions 

We then wondered if the impact of the center surround interactions would be the same within each 

layer or if the different properties of the laminar compartments would lead to different center surround 

modulations. As observed for the full field condition, for both single and multi-unit activities, natural 

images evoked the highest level of reliability within all layers (p < 0.001, Friedman test; Figure 3.3.28; 

Table 3.3.16). At the single and multi-unit levels, all stimuli evoked their highest level of reliability in 

layer 4 and the lowest one in layer 2/3 (p < 0.01; Kruskal-Wallis test). We then wondered if the center 

surround interactions impacted the laminar reliability in an equivalent way (figure 3.3.28; table 
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3.3.16). At the single unit level, Natural images evoked a more reliable response for the full field 

condition in layers 4 and 5/6 (p < 0.001, Wilcoxon test). No difference was found in layer 2/3, despite 

a higher mean for the full field condition (p = 0.07). The absence of significance is probably linked to 

the small number of cells recorded in this layer (10). The difference in the single unit reliability 

between layers 4 and 5/6 was higher for the center condition than the full field condition (Table 

3.3.16). As described in section 3.1, neurons in layer 5/6 are connected to each other by horizontal 

connections. Neurons that have their receptive field on the surround are stimulated by the surround 

stimulation and their horizontal connections project to the recorded neuron. This suggest that during 

the full field stimulation, layer 5/6 neurons’ reliability is modulated by horizontal connections. Thus, 

when the surround is not stimulated the reliability is reduced. Within all layers, dense noise displayed 

a higher reliability for the full field condition while DG only displayed a higher reliability for the center 

condition in layer 4 (p < 0.001).  

At the multi-unit level, both Natural images and dense noise evoked a more reliable response for the 

full field condition within all layers, respectively (p < 0.001; Wilcoxon test). This confirms the tendency 

observed in layer 2/3 for the single unit activity. 

Another explanation of the difference observed for FS cells between our two studies could be the 

fact that their recordings oversampled one particular layer. Indeed, we showed that the center 

surround interactions evoked a stronger modulation in layer 5/6 than in layer 4. Therefore, the 

neurons that they recorded might have been located mainly in this layer. As observed for the full field 

condition, natural images evoked the most reliable response in layers 4 and 5/6 for both RS and FS 

neurons (p < 0.01; Wilcoxon test). No statistical analysis was possible in layer 2/3 because of the 

reduced number of cells recorded in this layer. Among the fast spiking neurons, no difference in 

reliability was observed between layers, for each stimulus respectively (p > 0.1; Mann Whitney U 

test). Among regular spiking cells, unlike what was observed for the full field condition where the two 

values were equal, natural images evoked higher levels of reliability in layer 4 than in layer 5/6 (p > 

0.001; table 3.3.16). These results suggest that RS cells are modulated by horizontal connections 

while FS are not.  

In summary, we showed that both FS and RS neurons are modulated by center surround interactions 

when natural images are presented. This modulation is present in all layers. The fact that this 

modulation is stronger in layer 5/6 for RS cells than FS cells combined to the fact that horizontal 

connections target only excitatory neurons suggest that regular spiking cells are modulated by 

horizontal connections while fast spiking neurons are modulated by intrinsic connections. 

 

In conclusion, we showed that we also observe a center surround modulation across layers. For 

natural images this modulation seems more important, at the single unit level, in layer 5/6 where 

neurons are connected by horizontal connections. 
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Figure 3.2.28: Full field vs center stimulation reliability. The center surround interactions increase the reliability in 

response to natural images. Left: Single unit reliability Right: Multi-unit activity reliability. Top row: Drifting Gratings. Middle 
row: Natural images. Bottom row: Dense Noise. Empty symbols = FS. Full Symbols = RS or MUA. 
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 Impact of the natural statistics on the center surround interactions 

In their study, Guo et al, (2005) showed that the response of V1 neurons in primates were modulated 

by the alteration of the spatial statistics of the surround. Thus, will we observe a different modulation 

of the reliability if the spatial or temporal statistics are altered? 

First, as observed for the full field condition, all stimuli displayed the same level of reliability, for all 

signals respectively, when they were only presented in the center (p > 0.05; Friedman Test; Figure 

3.3.29 and table 3.3.17). Despite this absence of difference, at the single unit level, all unaltered 

images except NI-RT, evoked a higher level of reliability for the full field condition (p < 0.01; Wilcoxon 

test). The same observation was made for the regular spiking cells but not for the fast spiking ones. 

Indeed, for fast spiking cells only NI and NI-RST displayed a higher reliability for the full field 

condition, no difference was observed for the other stimuli. These results suggest that high order 

temporal correlations are more important than spatial ones for the reliability but also that spatial and 

temporal statistics lacking high order correlations interact in a similar way as unaltered spatial and 

temporal statistics. In addition, FS neurons need to have similar spatial and temporal statistics in 

order to be modulated by the center surround interactions.  Similar observations were made for the 

multi-unit activity except that NISAC evoked no difference between the full field and center 

conditions.  
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Figure 3.3.29: Full field vs center stimulation reliability evoked by the control stimuli. Left panel: Single unit activity 

firing rate. Right panel: Multi-unit activity firing rate. Red line: polynomial fit. Empty symbols = FS. Full Symbols = RS or 
MUA. 
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FULL FIELD SUA  FS 

  DG NI DN  DG NI DN 

Layer 2/3 0.001 ± 0.001 0.019 ± 0.005 0.011 ± 0.004  0.000 ± 0.001 0.032 ± 0.010 0.022 ± 0.008 

Layer 4 0.022 ± 0.004 0.048 ± 0.005 0.038 ± 0.006  0.028 ± 0.006 0.057 ± 0.007 0.047 ± 0.008 

Layer 5/6 0.014 ± 0.002 0.041 ± 0.005 0.019 ± 0.005  0.024 ± 0.010 0.051 ± 0.017 0.044 ± 0.025 

Mean 0.017 ± 0.002 0.043 ± 0.003 0.028 ± 0.004  0.026 ± 0.005 0.055 ± 0.006 0.045 ± 0.008 

        
CENTER SUA  FS 

  DG NI DN  DG NI DN 

Layer 2/3 0.003 ± 0.001 0.015 ± 0.004 0.008 ± 0.003  0.004 ± 0.001 0.029 ± 0.008 0.018 ± 0.007 

Layer 4 0.025 ± 0.004 0.041 ± 0.004 0.033 ± 0.005  0.031 ± 0.007 0.047 ± 0.006 0.043 ± 0.008 

Layer 5/6 0.014 ± 0.002 0.028 ± 0.004 0.017 ± 0.005  0.026 ± 0.010 0.043 ± 0.017 0.048 ± 0.025 

Mean 0.019 ± 0.002 0.034 ± 0.003 0.025 ± 0.003  0.029 ± 0.005 0.054 ± 0.006 0.043 ± 0.008 
        

FULL FIELD MUA  RS 

  DG NI DN  DG NI DN 

Layer 2/3 0.011 ± 0.002 0.063 ± 0.007 0.032 ± 0.005  0.001 ± 0.001 0.011 ± 0.002 0.006 ± 0.002 

Layer 4 0.066 ± 0.004 0.113 ± 0.006 0.093 ± 0.006  0.015 ± 0.003 0.036 ± 0.004 0.028 ± 0.007 

Layer 5/6 0.055 ± 0.004 0.093 ± 0.007 0.052 ± 0.004  0.012 ± 0.002 0.039 ± 0.005 0.013 ± 0.002 

Mean 0.054 ± 0.003 0.099 ± 0.004 0.070 ± 0.003  0.012 ± 0.002 0.036 ± 0.003 0.018 ± 0.003 

        
CENTER MUA  RS 

  DG NI DN  DG NI DN 

Layer 2/3 0.015 ± 0.002 0.050 ± 0.006 0.029 ± 0.004  0.002 ± 0.002 0.007 ± 0.001 0.003 ± 0.001 

Layer 4 0.070 ± 0.003 0.096 ± 0.005 0.079 ± 0.005  0.018 ± 0.004 0.033 ± 0.005 0.021 ± 0.005 

Layer 5/6 0.059 ± 0.006 0.074 ± 0.006 0.050 ± 0.004  0.012 ± 0.002 0.025 ± 0.004 0.010 ± 0.002 

Mean 0.058 ± 0.003 0.082 ± 0.003 0.061 ± 0.003  0.013 ± 0.002 0.027 ± 0.003 0.014 ± 0.002 

Table 3.3.16: Mean SUA (and its subpopulations) and MUA Reliability evoked by our set of stimuli presented full field 

and center (Mean ± SEM) 

 
FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.056 ± 0.008 0.060 ± 0.010 0.052 ± 0.008 0.069 ± 0.011 0.048 ± 0.008 

RS 0.044 ± 0.005 0.043 ± 0.005 0.034 ± 0.004 0.048 ± 0.006 0.040 ± 0.005 

SUA 0.048 ± 0.004 0.049 ± 0.005 0.040 ± 0.004 0.056 ± 0.005 0.043 ± 0.004 

MUA 0.085 ± 0.005 0.085 ± 0.005 0.078 ± 0.005 0.096 ± 0.006 0.076 ± 0.005 
      

CENTER   

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.049 ± 0.007 0.059 ± 0.010 0.052 ± 0.008 0.062 ± 0.010 0.047 ± 0.008 

RS 0.036 ± 0.005 0.037 ± 0.005 0.031 ± 0.004 0.040 ± 0.005 0.033 ± 0.005 

SUA 0.041 ± 0.004 0.045 ± 0.005 0.038 ± 0.004 0.048 ± 0.005 0.038 ± 0.004 

MUA 0.076 ± 0.005 0.081 ± 0.005 0.077 ± 0.006 0.084 ± 0.006 0.076 ± 0.005 

Table 3.3.17: Mean SUA (and its subpopulations) and MUA Reliability evoked by our set of control stimuli presented full 

field and center (Mean ± SEM) 
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3.2.4 Reliability of the Local Field Potential 

In the previous section, we showed that natural images evoke a more reliable response than the 

artificial stimuli at the local field potential level. In addition, we showed that the spiking activity is 

modulated by the center surround interactions. An intracellular study performed on the anesthetized 

and paralyzed cat showed that the reliability of the evoked membrane potential by natural images is 

modulated by center surround interactions (Haider et al., 2010). We observed that the LFP shows a 

similar, but not identical response, as the membrane potential. Based on these results we wondered 

if we would observe an increase in reliability for the LFP when natural scenes, but also artificial 

stimuli, are presented in the full field condition compared to the center condition. In addition, while 

spiking activity evoked no reliable response for the surround only stimulation, a lone stimulation of 

the surround can elicit a synaptic response. The surround only stimulation evoked a strong energy 

for the NI and GEM conditions. Thus, we wonder if this surround response is also reliable. Moreover, 

our previous results showed that the levels of reliability are layer dependent. We can wonder if this 

is the case for the center surround interactions. Figure 3.3.30 illustrates the trial-to-trial correlations 

(for one LFP site) evoked by our set of stimuli presented the full field, center and surround conditions. 

The reliability corresponds to the peak of the correlation at time 0. On this example, natural images 

evoke the highest correlations for all conditions. Interestingly, NI, evokes a higher reliability when 

presented in the surround condition than in the center. 

 
Figure 3.3.30: Example of LFP levels of reliability evoked in one recording site by our set of stimuli presented on the full 

field (left panel), center (middle panel) or surround (right panel) conditions. 
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 Impact of the center surround interactions on the reliability 

Figure 3.3.31 compares the reliability evoked by the full field, center and surround conditions for 

each stimulus, respectively. Our results showed that both center and surround conditions evoked a 

similar pattern of reliability as the full field. when only the center was stimulated, natural images 

evoked the most reliable response (p < 0.001; Friedman test; Figure 3.3.31; table 3.3.18). Among 

the artificial stimuli, GEM evoked the most reliable response and DG the lowest one (p < 0.001). 

Compared to the full field stimulation, all stimuli evoked a lower reliability when presented in the 

center (p < 0.001; Wilcoxon test; Figure 3.3.31). This confirms the importance of the surround in the 

generation of a reliable response, in particular for natural images. We also investigated the impact 

of the lone stimulation of the surround. Indeed, since the LFP show a synchronized response when 

a surround stimulation is performed it might also impact the reliability. Our results show that for all 

stimuli the full field condition evoked a higher level of reliability than the surround condition (p < 

0.001; Wilcoxon test). Interestingly, for natural images the difference between the full field and 

surround conditions is not as important as the one evoked by artificial stimuli (Figure 3.3.31; table 

3.3.18). This confirms the key role of the surround in the processing of natural scenes, especially at 

a synaptic level. We also observed that the difference in reliability between NI and GEM was higher 

for the surround condition than for the center condition (table 3.3.18). Based on these results we 

wondered if the stimulation of the surround only will be higher than the center only. Natural images 

displayed higher levels of reliability for the surround condition compared to the center condition (p < 

0.001). This was not the case for the artificial stimuli, arguing in favor to the fact that the processing 

of natural statistics is greatly mediated by the surround. It is important to note that we can exclude 

the fact that we are recording the LFP activity that has its receptive field on the surround. Indeed, 

one could legitimately ask itself: since the LFP captures the neuronal activity from 500µm to 1mm 

around the recording site (Einevoll et al., 2013) are they not observing the response of cells that 

have their receptive fields in the surround? This is not the case. Indeed, our masks have a size of 

5x5° (see section 3.1) and are centered on the receptive fields. The first pixel of the surround 

stimulation is located at 2.5° from the center. In addition, our recordings are always performed in the 

area centralis ± 2-4° with the screen placed at 57cm of the cat. Based on the retinotopic map made 

by Tusa et al. (1978) at this cortical location the magnification factor is such that one visual degree 

is equal to 1mm. Thus, the first pixels of our stimuli are located a 2.5°, i.e. it stimulates a cortical 

region 2,5mm apart from our recordings, and since the maximum reach of our LFP signal is 1mm 

we can exclude the fact that we are recording the activity from cells that have their receptive field on 

the surround.  

 Laminar impact of the center surround interactions 

We also computed the reliability evoked by the center condition across layers (Figure 3.3.31; table 

3.3.18). Within all layers, natural images evoked the most reliable response (p < 0.001). In layer 2/3 

NI and GEM evoked similar levels of reliability (p = 0.8). This suggests that horizontal connections 

are important in the generation of reliable response. The increased reliability that we observed for 

the full field condition at the population level is also present for each laminar compartment. Indeed, 

within all layers and for each stimulus, the full field condition evoked a more reliable response than 

the center condition (p < 0.001; Wilcoxon test). 

We also investigated the laminar pattern of the surround only reliability. Indeed, since horizontal 

connections are present in layer 2/3 and 5/6 and that their effect is visible at the synaptic level 

(Bringuier et al., 1999) we wondered if all the layers would be impacted equally by surround 
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stimulation. For each layer, in response to natural scenes, the full field condition evoked a higher 

reliability than the surround condition (Figure 3.3.31; table 3.3.18; p < 0.001). When we compared 

the reliability evoked by the center and surround conditions, we observed that the surround condition 

evoked higher levels of reliability in layers 2/3 and 5/6 while no difference was observed in layer 4 

(p = 0.26). This suggests that the increase in reliability observed for the surround condition is 

mediated by the horizontal connections present in these layers. In addition, the absence of difference 

in layer 4 underlies the importance of the surround in the processing of natural scenes. In summary, 

we showed that natural images reliability is increased by center surround modulations. In addition, 

the surround participates greatly at the natural scenes processing. This processing is mediated by 

horizontal connections in layers 2/3 and 5/6. 
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Figure 3.3.31: LFP reliability evoked by full field, center and surround stimulations. The center surround interactions 

increase the reliability in response to natural images. In addition, the surround only of NI evoke higher levels of reliability 
than the center, in layers 2/3 and 5/6. Left column: Full field vs center. Middle column:  Full field vs surround. Right column: 
center versus surround. Red line: polynomial fit 
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 Impact of the natural statistics on the center surround interactions 

Finally, we asked if the alteration of the spatial and temporal statistics would have an impact on the 

center surround interactions and on the response reliability. For the center condition all stimuli 

evoked the same levels of reliability (Figure 3.3.32; Table 3.3.19; p > 0.05; Mann Whitney U test). 

However, all stimuli evoked a higher reliability for the full field condition than the center (p < 0.001; 

Wilcoxon test). On the other hand, for the surround condition, the natural images containing altered 

temporal statistics (NI-RS and NI-RST) displayed a lower reliability than the unaltered natural image 

(p < 0.001; Friedman test). In addition, the natural image animated only with saccades evoked a less 

variable response than NI (p < 0.001). Finally, NI and NI-RS responses were equally reliable (p = 

0.9). These results suggest that the surround mainly process the temporal statistics and that the high 

order correlations are necessary in order to elicit a reliable response. Moreover, the surround is also 

suited to the processing of fast movements, i.e. the saccades. The full field stimulation evoked a 

more reliable response than the surround one, as expected (Figure 3.3.32). However, unlike what 

we observed on a complete set of LFPs, for NI the center and surround conditions evoked the same 

levels of reliability (p > 0.1). This is probably caused by an increased number of LFPs recorded in 

layer 4 (55% of the sites were located in layer 4).  

We did not observe any difference between the center and surround conditions for NI-RS while NI-

RT and NI-RST evoked a higher reliability for the center condition (p < 0.001). This suggests that the 

center is also suited to process natural temporal statistics and altered spatial and temporal statistics 

while the surround cannot.  NI-SAC evoked a higher reliability for the surround than the center 

condition, suggesting that the center is less suited to process fast movements (p < 0.001)  

In summary we showed that surround is more sensitive the temporal statistics than the center that 

is suited to more efficiently process altered and unaltered statistics. Our results also showed that the 

center surround interactions do not have the same effect on the spiking activity and on the LFP. 

First, as observed for the full field stimulation the LFP is more reliable than the SUA and MUA for all 

stimuli. While on the SUA we observed a small (if no) impact of the center surround interactions the 

LFP was strongly modulated by the latter. In addition, the surround evoked almost no reliable spiking 

activity while a highly reliable LFP was observed. This suggest that the reliability observed for the 

LFP is mainly originating from the synaptic activity.  
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Figure 3.3.32: LFP reliability evoked by the control stimuli presented full field, center and surround. Left column: 

Full field vs center. Middle column:  Full field vs surround. Right column: center versus surround. Red line: polynomial fit 
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FULL FIELD LFP 

  DG GEM NI DN 

Layer 2/3 0.019 ± 0.002 0.195 ± 0.015 0.256 ± 0.019 0.129 ± 0.010 

Layer 4 0.072 ± 0.003 0.358 ± 0.010 0.419 ± 0.010 0.310 ± 0.008 

Layer 5/6 0.080 ± 0.007 0.331 ± 0.015 0.437 ± 0.015 0.252 ± 0.012 

Mean 0.063 ± 0.003 0.317 ± 0.008 0.391 ± 0.008 0.257 ± 0.006 

     
CENTER LFP 

  DG GEM NI DN 

Layer 2/3 0.014 ± 0.002 0.112 ± 0.011 0.110 ± 0.010 0.086 ± 0.006 

Layer 4 0.049 ± 0.002 0.274 ± 0.009 0.292 ± 0.007 0.237 ± 0.006 

Layer 5/6 0.041 ± 0.004 0.225 ± 0.012 0.258 ± 0.010 0.173 ± 0.007 

Mean 0.040 ± 0.002 0.227 ± 0.007 0.245 ± 0.006 0.188 ± 0.005 
 

 
  

 
SURROUND LFP 

  DG GEM NI DN 

Layer 2/3 0.015 ± 0.003 0.109 ± 0.011 0.211 ± 0.018 0.070 ± 0.008 

Layer 4 0.031 ± 0.004 0.169 ± 0.009 0.306 ± 0.012 0.115 ± 0.007 

Layer 5/6 0.057 ± 0.008 0.193 ± 0.016 0.329 ± 0.019 0.140 ± 0.014 

Mean 0.035 ± 0.003 0.163 ± 0.007 0.293 ± 0.009 0.112 ± 0.006 

Table 3.3.18: Mean LFP Reliability evoked by our set of stimuli presented full field, center and surround (Mean ± SEM) 

 

 

  NI NI-RS NI-RT NI-RST NI-SAC 

FULL FIELD 0.230 ± 0.007 0.241 ± 0.007 0.231 ± 0.007 
0.228 ± 
0.008 

0.272 ± 0.009 

CENTER 0.181 ± 0.008 0.164 ± 0.008 0.179 ± 0.008 
0.168 ± 
0.008 

0.183 ± 0.009 

SURROUND 0.163 ± 0.007 0.161 ± 0.008 0.117 ± 0.005 
0.116 ± 
0.004 

0.200 ± 0.009 

Table 3.3.18: Mean LFP Reliability evoked by our set of control stimuli presented full field, center and surround (Mean ± 

SEM) 
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4. TIME FREQUENCY ANALYSIS OF THE VISUAL RESPONSE 

In their intracellular study, Baudot and colleagues (2013) quantified the reproducibility of the 

response by performing a time-frequency wavelet analysis of Vm responses. This analysis was 

performed because their reliability analysis depended on the timescale of the analyzed response. 

By computing this analysis, they were able to unveil some results that were not visible with the non-

frequency dependent analysis. Therefore, we decided to perform the same analysis in our spiking 

and LFP recordings. In order to compute this analysis (method illustrated in figure 3.4.1), each of the 

individual trial-responses to a given stimulus was filtered by an array of complex Gabor wavelets 

whose temporal frequencies ranged from 1 to 150 Hz (It is important to note that in the Intracellular 

paper, Baudot and colleagues only computed the analysis from frequencies ranging from 1 to 75Hz) 

Then, a set of ten complex numbers (one for each trial of the same stimulus) was computed for each 

frequency band and point in time. The mean (the Signal) and standard deviation (the Noise) in the 

complex plane were used to build SNR matrices. The SNR measure captures transient and 

reproducible fluctuations that appear as “hot peaks” in the corresponding SNR matrix (Figures 3.4.1 

and 3.4.4). This decomposition allows the extraction of several time-frequency dependent measures: 

Signal power, Noise power, and SNR power and the inforate of the signal, noise and SNR, as 

illustrated in Figure 3.4.2. The inforate is obtained by integrating the values over the frequencies 

(figure 3.4.2) while the power spectrum is obtained by integrating it over time. 

We first investigated the frequency-based response evoked by the full field activity on both spiking 

activities and local field potential. 

 

 
Figure 3.4.1. Time Frequency analysis of the reliability. Time-frequency analysis of the evoked Signal (upper matrix), 

the Noise (middle), and the SNR (bottom matrix), following the method of Croner et al. (1993). The repetition of the vectorial 
operations (detailed in the right panels) at all times and frequencies yields the Signal and Noise matrices. The SNR matrix 
is obtained from point-by-point division of the Signal matrix by the Noise matrix. Reliable events are signaled by hot (red) 
peaks straddling from low to high frequencies (1–150 Hz). Upper left panel: each red vector represents the result (in the 
complex plane) of the convolution of the signal with a given wavelet frequency for one particular point in time and a given 
trial. The blue vector represents the mean vector, averaged across all trials, and its squared modulus gives the estimated 
Signal power. Lower left panel: Noise is measured in the complex plane as the average distance (dispersion) of the 
individual trial vectors (blue vectors) from the mean (red). 
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Figure 3.4.2. Obtaining of the SNR power spectra and inforate. Integration of the values over time or over frequencies 

in order to obtain the power spectra and the Inforate of the signal to noise ratio. 
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4.1. Impact of the Full Field Stimulation 

4.1.1 Time Frequency Analysis of the Spiking Activity 

In their study, Baudot and colleagues showed that the SNR displayed the same response pattern for 

the Vm and the spiking activity (Figure 3.4.3). In their results we can observe that the higher reliability 

evoked by natural images results from a lower signal but also a lower noise than animated gratings. 

In addition, they show that DG do elicit a reliable response but at the grating frequency.  

 
Figure 3.4.3: Mean SNR obtained intracellularly by Baudot and colleagues for both spiking activity and membrane potential 

(n =20). The inforate was computed from the voltage analysis. 

 

We first wondered if we would observe the same responses in a large population of neurons. Unlike 

Baudot and colleagues we subtracted the Signal, Noise and SNR of the spontaneous activity to the 

mean response. Indeed, since we recorded the spontaneous activity, we were able to subtract the 

mean spontaneous activity from the mean stimulus locked response. Figure 3.4.4 shows two 

matrices, their corresponding spectra and the response of the neuron used as example. The DG and 

the NI result in very different SNR patterns. Drifting gratings elicited a “hot peak” at the grating 

frequency while NI elicited a hot peak across different frequencies (Figure 3.4.4). We then computed 

the SNR across the complete single unit and multi-unit population. 
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Figure 3.4.4: Example of signal, noise and SNR matrices and PSD evoked by NI, DG and for the spontaneous activity. 
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 Comparison with the intracellular recordings  

As stated above, we focused on the SNR response after blank subtraction. Figure 3.4.5 shows an 

example of the mean Signal, Noise and SNR after and before subtraction of the blank (we only 

showed the mean MUA response because the SUA displayed the same response pattern). 

We first computed the SNR of the population with GEM. As performed in Baudot’s work, we divided 

the frequency into two main groups. The first one contains all the frequencies between 0.01 and 10 

Hz, which correspond to Delta, Theta and Alpha rhythms. This frequency band will be referred as 

“low frequency band”. The second one contains all the frequencies between 10.01 and 40 Hz i.e. 

Mu and Beta rhythms and will be referred as “high frequency band”. Finally, we can also evoke a 

third band that will not be described in this section (but will be used in others), the “very high 

frequency band” that regroups the frequencies between 40.01 and 120 Hz (i.e. low and high gamma; 

Galambos, 1992; Rougeul-Buser and Buser, 1997; Steriade et al., 1993). We plotted the means 

signal/noise/SNR for these two frequencies band (Figure 3.4.6-A and B left panel). The Multi-unit 

activity displayed a noise, a signal and a SNR about two to three times higher than the ones 

computed for the SUA (table 3.4.1), yet for both SUA and MUA we found similar responses’ patterns 

to our stimulus set.  

Indeed, for both signals we observed that natural images evoked the highest signal in the low 

frequency band (p < 0.01; Friedman test; table 3.4.1). However, the difference in signal between the 

NI and GEM conditions was higher for the MUA. Indeed, for the MUA the mean signal of the NI 

condition was about two times higher than the GEM condition (table 3.4.1). We also observed a clear 

signal peak evoked by DG at the grating frequency. For the SUA, this peak was the maximum signal 

value obtained among all conditions (Figure 3.4.6-A). This maximal peak evoked by DG was also 

present in the noise, for both single and multi-unit activities. For both signals, drifting gratings evoked 

the highest noise values while dense noise the lowest ones (at all frequency bands). For the SUA 

no difference in noise was observed between the NI and GEM conditions (p > 0.05; Friedman test). 

However, for the MUA natural images evoked a higher noise than gratings animated with eye 

movements. 

This led to a higher SNR, in the low frequency bands, for the NI condition compared to the other 

ones (p < 0.001; Friedman test). This was true for the two spiking signals (Figure 3.4.6). These 

results differ from the intracellular observations made by Baudot and colleagues (2013). Indeed, they 

also observed a higher reproducibility in response to NI. However, this increase was linked to a lower 

noise and not a higher signal. These results highlight a strong difference between the spiking activity 

observed intracellularly and the spiking activity recorded extracellularly. This difference could come 

from the difference in anesthetics between the two studies. Indeed, it has been shown that 

anesthesia affects the variability of the response thus two different anesthetics could affect the noise 

differently (Ecker et al; 2014). 

Interestingly, the response to DN is more reliable than the other stimuli in the high frequency band. 

This is caused by the fact that dense noise evokes a higher signal than the other stimuli (p < 0.01; 

Friedman test). Finally, unlike what was observed for our other reliability indexes, when we computed 

the SNR of the spiking activity, NI evoke a more reliable response than GEM in the low frequency 

band, while no difference was observed for higher frequencies. We can conclude that our previous 

measurements are biased by the timescale of the response (i.e. the bin of the PSTH). The higher 

reliability observed for the multi-unit activity is in agreement with the population coding theory 

(Deneve & Chalk, 2016; Yuste, 2015). This theory states that the coding of the stimulus is performed 

at the population level (i.e. a group of neurons) and not at the single unit level. This aspect will be 

combined with our previous results and discussed at the end of this manuscript. 
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Figure 3.4.5: Signal, noise and SNR with or without blank subtraction 

 

 
Figure 3.4.6: Signal, Noise and SNR of the single and multi-unit activities in response to our set of stimuli. Natural 
images evoke a reliable response in the low frequency range. A. Left: Mean signal (left), noise (center) and SNR (right) 
obtained for the single unit activity (n =78). Right: Bar plots of the low and high frequency means signal (left panel), noise 
(center) and SNR (right) obtained for the single unit activity in response to our set of stimuli. B. Left: Mean signal (left), 
noise (center) and SNR (right) obtained for the multi-unit activity (n =177 sites). Right: Bar plots of the low and high 

frequency means signal (left panel), noise (center) and SNR (right) obtained for the multi-unit activity in response to our 
set of stimuli. *: significantly different from NI low frequency;  
# : significantly different from NI high frequency. * : p < 0.05; ** p < 0.01; *** : p < 0.001; # : p < 0.05; ## p < 0.01; ### : p 
< 0.001. Error bars & shaded area: SEM. 
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 Mean evoked SNR 

The previous results have been computed on a restricted population (78 cells and 138 multi-unit 

sites) that displays a strong response to our stimulus set (see previous sections). Will we observe 

the same SNR across the complete population (221 cells and 377 multi-unit sites)? 

We computed the signal to noise ratio on both single unit and multi-unit activities (Figure 3.4.7 to 

3.4.10). For both SUA and MUA, the mean signal, noise and SNR computed on the population 

without GEM were similar to the one computed on the population with GEM.   

In the previous sections, we reported that these two single unit subtypes exhibited different 

properties, in particular fast spiking neurons evoked a higher firing rate and a more reliable response 

than regular spiking neurons. Since we showed that the SNR and our other analysis give similar but 

yet different results, will we observe a difference among the FS and RS cells? We did observe a 

difference between these two subtypes. Indeed, the fast spiking cells exhibited a higher signal, noise 

and SNR than the regular spiking cells (p > 0.01; Mann Whitney U test; Figures 3.4.11 to 3.4.14; 

table 3.4.2). Both subtypes displayed the same pattern of response as the complete SUA population. 

 Laminar Signal to Noise ratio  

Do we obtain the same patterns across layers? Indeed, as shown previously and by others 

(Bijanzadeh et al., 2018; Hansen et al., 2012) layers possess a unique signature at the spiking level. 

This left us wondering if we would observe a different SNR pattern across layers. The signal to noise 

ratio across all layers was computed for both spiking activities. We first focused on the signal across 

layers. As observed previously, the MUA’s signal was about 2 to 3 times higher than the one obtained 

with the SUA. For both signals, within all layers, natural images evoked the strongest signal in the 

low frequency range (p < 0.001; Friedman test; table 4.3.1). However, the difference between the 

low frequency signal elicited by NI and the other stimuli was higher for the MUA than the SUA (almost 

2.5 times higher for the MUA vs 1.5 times for the SUA). Remarkably, DG evoked a very low signal 

in layer 2/3. This is linked to the adaptation that we observed in the PSTH and the increased number 

of complex cells in this layer (figure 3.2.9). This strong adaptation of the signal is confirmed by the 

inforate, which evaluates the information sent by the response (Figures 3.4.15 and 3.4.16). The 

inforate will be discussed in detail later in this section. In layers 4 and 5/6 the strong peak at the 

grating frequency is still present (Figures 3.4.7 and 3.4.8). This peak originates from a higher number 

of simple cells in these two layers and corresponds to the modulation of these cells at the grating 

frequency. Between layers, at both SUA and MUA scales respectively, natural images evoked the 

same mean low frequency signal in granular and infragranular layers (p > 0.35), higher than the one 

observed in layer 2/3 (p < 0.001). This absence of difference between layers 4 and 5/6 was also 

observed for the DG and DN conditions (figures 3.4.7 to 3.4.10; table 3.4.1). These results are in 

line with the ones observed for the mean population.  

We can wonder if the noise will also exhibit a similar pattern. Regarding the SUA, as observed for 

the mean noise, in layers 4 and 5/6 we did not observe any difference in the low frequency noise 

evoked by DG and NI while dense noise condition evoked the lower noise (p < 0.001). On the other 

hand, layer 2/3 exhibited a different behavior. Within this layer, DG evoked the lowest noise while NI 

and DN conditions were equal (p > 0.05). The laminar MUA also displayed a different pattern than 

the mean one (Figures 3.4.9 and 3.4.10). Indeed, in layers 4 and 5/6, drifting gratings and natural 

images evoked the same low frequency noise. Only layer 2/3 displayed the same pattern as the 

mean population. However, unlike the other stimuli, the noise evoked by DG in layer 2/3 is below the 

one evoked by the spontaneous activity. Again, it is important to keep in mind that, for both SUA and 
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MUA, the differences in noise evoked by the stimuli are very low, in particular in layers 4 and 5/6 

(figures 3.4.7 to 3.4.10; table 3.4.1). When we compared noise values evoked by a stimulus across 

layers, we observed that for the SUA, natural images and dense noise evoked the same noise values 

between all layers. However, DG evoked its lowest noise in layer 2/3, while layers 4 and 5/6 did not 

exhibit any difference (table 3.4.1). On the other hand, the MUA responded in a very different way. 

Layers 4 and 5/6 evoked similar values in response to NI. Despite the absence of significance, the 

natural stimulation evoked the higher mean low frequency noise in layer 4 and the lowest in layer 

5/6. This was also (significantly) true for DG and DN (p < 0.01; Friedman test).  

These results allow us to refine the statements previously made about the SNR. As observed for the 

mean populations, at all spiking levels, natural images evoked the most reliable low frequency 

response within all layers and drifting gratings the lowest one (p < 0.001; table 3.4.1). On one hand, 

at both SUA and MUA levels, NI images evoked similar levels of reliability in layers 4 and 5/6. This 

is not surprising since the values of signal and noise were equal between these layers, leading to an 

equivalent ratio. On the other hand, we observed that both DG and DN evoked their highest levels 

of reliability (in the low frequency range) in layer 4 (table 3.4.1). The fact that neurons in layer 4 show 

higher levels of reliability in response to gratings has already been observed in awake monkeys. 

Indeed, Hansen et al. (2012) showed that the variability of the response to gratings is lower in layer 

4 compared to the other layers. However, no study tested the laminar dependency of the reliability 

in response to natural scenes. We can imagine that neurons in layer 5/6 are recruited in a better way 

by natural statistics than by artificial ones, leading to this increase in reliability. 

Regarding regular and fast spiking cells, we observed the same response pattern as for the SUA 

population and FS cells evoked a higher SNR than RS cells (Figures 3.4.11 to 3.4.14; table 4.3.2). 
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Figure 3.4.7: Mean and laminar SNR of the single unit activity. Natural images evoke a reliable response in the low 

frequency range. Mean signal (left), noise (center) and SNR (right) obtained for the single unit activity in response to our 
set of stimuli.  (Number of neurons: L2/3 = 10; L4 = 111; L5/6 = 99 neurons; total= 221) Shaded area: SEM 
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Figure 3.4.8: Bar plots of the low and high frequency single unit SNR. Signal (left panel), noise (center) and SNR 

(right) obtained for the single unit activity in response to our set of stimuli. (Number of neurons: L2/3 = 10; L4 = 111; L5/6 
= 99 neurons; total= 221). *: significantly different from NI low frequency; # significantly different from NI high frequency. * 
: p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. Error bars : SEM. 
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Figure 3.4.9: Mean and laminar SNR of the multi-unit activity. Mean signal (left), noise (center) and SNR (right) obtained 

for the multi-unit activity in response to our set of stimuli.  (Number of sites: L2/3 = 52; L4 = 187; L5/6 = 138 sites; total= 
378). Shaded area: SEM 
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Figure 3.4.10 Bar plots of the low and high frequency multi-unit SNR. Signal (left panel), noise (center) and SNR 

(right) obtained for the multi-unit activity in response to our set of stimuli. (Number of neurons: L2/3 = 10; L4 = 111; L5/6 = 
99 neurons; total= 221). *: significantly different from NI low frequency; # significantly different from NI high frequency. * : 
p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. Error bars: SEM. 
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Figure 3.4.11: Mean and laminar SNR of the fast spiking neurons.  Mean signal (left), noise (center) and SNR (right) 

obtained for the fast spiking neurons in response to our set of stimuli.  (Number of neurons: L2/3 = 4; L4 = 61; L5/6 = 18 
neurons; total= 83) Shaded area: SEM 
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Figure 3.4.12: Bar plots of the low and high frequency fast spiking neurons SNR. Signal (left panel), noise (center) 

and SNR (right) obtained for the multi unit activity in response to our set of stimuli. (Number of neurons: L2/3 = 4; L4 = 61; 
L5/6 = 18 neurons; total= 83). *: significantly different from NI low frequency; # significantly different from NI high frequency. 
* : p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. Error bars : SEM. 
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Figure 3.4.13: Mean and laminar SNR of the regular spiking neurons. Mean signal (left), noise (center) and SNR (right) 

obtained for the regular spiking neurons in response to our set of stimuli. (Number of neurons: L2/3 = 10; L4 = 111; L5/6 = 
99 neurons; total= 138) Shaded area: SEM 
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Figure 3.4.14: Bar plots of the low and high frequency regular spiking neurons SNR. Signal (left panel), noise (center) 

and SNR (right) obtained for the regular spiking neurons in response to our set of stimuli. (Number of neurons: L2/3 = 10; 
L4 = 111; L5/6 = 99 neurons; total= 138). *: significantly different from NI low frequency; # significantly different from NI 
high frequency. * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. Error bars : SEM. 
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 Information rate 

The principle of efficient coding introduced by Horace Barlow in 1961 suggests that visual processing 

in early sensory systems should be optimized to natural-like statistics. This will result, among others, 

in a decrease in stimulus-locked response variability at the single neuron level and an increase in 

the information carried by a single neuron. According to our results, the first statement appears to 

be true, but is it the case for the information carried by the neurons? In order to test this, we computed 

the information rate (inforate) carried by the spiking activity on the signal, noise and signal to noise 

ratio (Figures 3.4.15, 3.4.16 and table 3.4.3). As observed for the signal, the MUA exhibit a higher 

info rate than the SUA. In addition, our results show that for both SUA and MUA the mean information 

rate carried by the signal is similar between all stimuli. This is also true within all layers. Moreover, 

the different stimuli did not elicit a significant difference between layers 4 and 5/6. Regarding the 

noise inforate, the pattern of response was similar was the one observed for the signal, except for 

DG that evoked a higher noise (table 3.4.3). This led to a similar SNR inforate elicited by NI and DN, 

higher than the one evoked by DG. Our results contradict Barlow’s theory regarding the amount of 

transmitted information. Yet, since the SNR is frequency dependent the inforate analysis should also 

be computed across our two main frequency ranges. Indeed, we observed that the DN condition is 

more reliable than the NI condition in the high frequencies while the opposite is true for low 

frequencies. Therefore, these two stimuli carry the information in two different frequency bands. In 

the future, a decomposition of the inforate into high and low frequency ranges will be performed.  
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Figure 3.4.15: Information rate of the Signal, Noise and SNR of the single unit activity in response to our set of 
stimuli. Mean signal (left), noise (center) and SNR (right) obtained for the single unit activity in response to our set of 

stimuli (Number of neurons: L2/3 = 10; L4 = 111; L5/6 = 99; total = 221) 
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Figure 3.4.16: Information rate of the Signal, Noise and SNR of the multi- unit activity in response to our set of 
stimuli. Mean signal (left), noise (center) and SNR (right) obtained for the multi- unit activity in response to our set of 

stimuli (Number of sites: L2/3 = 52; L4 = 187; L5/6 = 138; total = 378) 
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 Impact of the natural statistics on the signal to noise ratio 

Finally, we wondered if the wavelet analysis would allow us to have another insight on the reliability 

evoked by our control stimuli. Indeed, we did not find any difference in reliability between the 

unaltered natural image and its controls. However, among our set of stimuli the SNR analysis 

highlighted differences that were not visible when we computed the trial-to-trial correlation and the 

fano factor. 

For the single unit and its subclasses, we did not find any difference between the signal, noise and 

SNR evoked by natural images and its controls (figures 3.4.17 and 3.4.18; table 3.4.4). However, a 

difference was observed for the multi-unit activity. Indeed, NI-RS and NI-RST evoked a higher low 

frequency signal than NI (p < 0.001; Friedman test) while NI-RT and NI-SAC evoked a lower one (p 

< 0.001). A difference was also observed for the noise. On one hand, NI-RS evoked a higher low 

frequency noise than the other stimuli. On the other hand, all the other altered natural images evoked 

a lower low frequency noise than the unaltered one (p < 0.001). This resulted in a lower low frequency 

SNR evoked by NI-RT and NI-SAC compared to the other stimuli, which evoked similar levels of 

reliability. This implies that V1 is actually sensitive to the high order correlations in the spatio-

temporal statistics. Surprisingly, the natural images containing both spatial and temporal statistics 

and only spatial statistics lacking high order correlations showed a reliability similar as the unaltered 

natural image. Yet, the natural image lacking temporal high order correlations evoked a less reliable 

response than the other stimuli. The interaction between the spatio-temporal statistics probably plays 

a role in the response. Finally, NI-SAC was less reliable than the other stimuli, implying that not only 

saccades but that all eye movements are important in the generation of a reliable response. 

However, due to the small difference that we observed it is difficult to draw strong and definitive 

conclusions about the impact of the spatio-temporal statistics.  

The fact that we observe a difference for the MUA and not the SUA, might be the effect of a 

population response that is not visible at the single cell level. Another option is that the effect is so 

small that the latter is only visible on a large number of cells. An increase in the number of recorded 

neurons and multi-unit sites is needed in order to clarify these results.  
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Figure 3.4.17: Mean SNR of the spiking activity in response to the control stimulus set. 

Mean signal (left), noise (center) and SNR (right) obtained for the multi-unit activity, the single unit activity and its 
subclasses obtained in response to our set of control stimuli. Shaded area: SEM 
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Figure 3.4.18: Bar plots of the low and high frequency SNR of the spiking activity evoked by the control stimuli. 

Signal (left panel), noise (center) and SNR (right) obtained for the multi-unit activity, the single unit activity and its 
subclasses in response to our set of control stimuli. (Number of neurons: L2/3 = 10; L4 = 111; L5/6 = 99 neurons; total= 
138). *: significantly different from NI low frequency; # significantly different from NI high frequency. * : p < 0.05; ** : p < 
0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. Error bars : SEM. 
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Table 3.4.1: Mean low and high frequency Signal, Noise and SNR of the single and multi-unit activities in response to our 

stimulus set (Mean ± SEM) 

  

FULL FIELD LOW FREQUENCY SIGNAL (SUA)  HIGH FREQUENCY SIGNAL (SUA) 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 
0.000 ± 
0.000 

  0.010 ± 0.002 
0.007 ± 
0.001 

 -0.001 ± 
0.000 

  
0.002 ± 
0.000 

0.004 ± 
0.001 

Layer 4 
0.012 ± 
0.001 

  0.026 ± 0.002 
0.012 ± 
0.001 

 0.006 ± 
0.001 

  
0.006 ± 
0.001 

0.007 ± 
0.001 

Layer 5/6 
0.012 ± 
0.004 

  0.022 ± 0.005 
0.014 ± 
0.003 

 0.004 ± 
0.001 

  
0.005 ± 
0.002 

0.008 ± 
0.003 

Mean w/o GEM 
0.012 ± 
0.001 

  0.024 ± 0.001 
0.011 ± 
0.001 

 0.005 ± 
0.000 

  
0.006 ± 
0.000 

0.007 ± 
0.001 

Mean w/ GEM 
0.021 ± 
0.003 

0.018 ± 
0.002 

0.026 ± 0.003 
0.014 ± 
0.002 

 0.009 ± 
0.001 

0.006 ± 
0.001 

0.007 ± 
0.001 

0.010 ± 
0.002 

          

FULL FIELD LOW FREQUENCY NOISE (SUA)  HIGH FREQUENCY NOISE (SUA) 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 
-0.005 ± 

0.002 
  0.014 ± 0.000 

0.017 ± 
0.001 

 -0.007 ± 
0.000 

  
0.008 ± 
0.001 

0.014 ± 
0.002 

Layer 4 
0.018 ± 
0.002 

  0.018 ± 0.001 
0.007 ± 
0.001 

 0.021 ± 
0.003 

  
0.016 ± 
0.001 

0.008 ± 
0.002 

Layer 5/6 
0.011 ± 
0.003 

  0.011 ± 0.002 
0.006 ± 
0.001 

 0.012 ± 
0.003 

  
0.009 ± 
0.002 

0.007 ± 
0.002 

Mean w/o GEM 
0.015 ± 
0.001 

  0.015 ± 0.001 
0.006 ± 
0.001 

 0.017 ± 
0.001 

  
0.013 ± 
0.001 

0.007 ± 
0.001 

Mean w/ GEM 
0.032 ± 
0.003 

0.017 ± 
0.002 

0.018 ± 0.002 
0.010 ± 
0.001 

 0.032 ± 
0.003 

0.016 ± 
0.002 

0.016 ± 
0.002 

0.011 ± 
0.002 

          

FULL FIELD LOW FREQUENCY SNR (SUA)  HIGH FREQUENCY SNR (MUA) 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 
0.014 ± 
0.001 

  0.102 ± 0.025 
0.063 ± 
0.015 

 0.006 ± -
0.001 

  
0.016 ± 
0.002 

0.027 ± 
0.006 

Layer 4 
0.091 ± 
0.011 

  0.231 ± 0.011 
0.124 ± 
0.009 

 0.027 ± 
0.004 

  
0.040 ± 
0.003 

0.055 ± 
0.004 

Layer 5/6 
0.068 ± 
0.020 

  0.182 ± 0.034 
0.109 ± 
0.023 

 0.011 ± 
0.005 

  
0.029 ± 
0.007 

0.050 ± 
0.017 

Mean w/o GEM 
0.085 ± 
0.007 

  0.211 ± 0.009 
0.106 ± 
0.006 

 0.018 ± 
0.002 

  
0.036 ± 
0.002 

0.050 ± 
0.003 

Mean w/ GEM 
0.130 ± 
0.021 

0.170 ± 
0.020 

0.244 ± 0.028 
0.142 ± 
0.020 

 0.033 ± 
0.007 

0.037 ± 
0.005 

0.041 ± 
0.007 

0.072 ± 
0.012 
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FULL FIELD LOW FREQUENCY SIGNAL (MUA)  HIGH FREQUENCY SIGNAL (MUA) 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 
0.001 ± 
0.000 

  
0.059 ± 
0.007 

0.025 ± 
0.003 

 0.000 ± 
0.000 

  
0.009 ± 
0.001 

0.013 ± 
0.002 

Layer 4 
0.038 ± 
0.002 

  
0.101 ± 
0.003 

0.054 ± 
0.002 

 0.013 ± 
0.001 

  
0.021 ± 
0.001 

0.033 ± 
0.002 

Layer 5/6 
0.032 ± 
0.001 

  
0.090 ± 
0.004 

0.036 ± 
0.001 

 0.010 ± 
0.000 

  
0.016 ± 
0.001 

0.021 ± 
0.001 

Mean w/o GEM 
0.031 ± 
0.001 

  
0.089 ± 
0.001 

0.043 ± 
0.001 

 0.011 ± 
0.000 

  
0.018 ± 
0.000 

0.025 ± 
0.001 

Mean w/ GEM 
0.065 ± 
0.003 

0.070 ± 0.004 
0.132 ± 
0.008 

0.065 ± 
0.002 

 0.019 ± 
0.001 

0.021 ± 
0.001 

0.025 ± 
0.001 

0.039 ± 
0.003 

          

FULL FIELD LOW FREQUENCY NOISE (MUA)  HIGH FREQUENCY NOISE (MUA) 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 
-0.015 ± -

0.003 
  

0.024 ± 
0.000 

0.015 ± 
0.001 

 -0.002 ± -
0.001 

  
0.017 ± -

0.000 
0.016 ± 
0.001 

Layer 4 
0.036 ± 
0.002 

  
0.038 ± 
0.001 

0.017 ± 
0.001 

 0.048 ± 
0.002 

  
0.031 ± 
0.001 

0.022 ± 
0.000 

Layer 5/6 
0.030 ± 
0.002 

  
0.022 ± 
0.002 

0.010 ± 
0.001 

 0.037 ± 
0.002 

  
0.026 ± 
0.002 

0.017 ± 
0.001 

Mean w/o GEM 
0.029 ± 
0.001 

  
0.030 ± 
0.001 

0.015 ± 
0.001 

 0.039 ± 
0.001 

  
0.027 ± 
0.000 

0.019 ± 
0.000 

Mean w/ GEM 
0.055 ± 
0.003 

0.008 ± 0.004 
0.031 ± 
0.003 

0.017 ± 
0.002 

 0.061 ± 
0.003 

0.022 ± 
0.001 

0.036 ± 
0.001 

0.026 ± 
0.001 

          

FULL FIELD LOW FREQUENCY SNR (MUA)  HIGH FREQUENCY SNR (MUA) 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 
0.013 ± -

0.000 
  

0.232 ± 
0.015 

0.089 ± 
0.004 

 -0.001 ± -
0.001 

  
0.023 ± -

0.000 
0.044 ± 
0.002 

Layer 4 
0.123 ± 
0.006 

  
0.382 ± 
0.010 

0.229 ± 
0.008 

 0.017 ± 
0.001 

  
0.060 ± 
0.002 

0.133 ± 
0.008 

Layer 5/6 
0.103 ± 
0.004 

  
0.342 ± 
0.016 

0.152 ± 
0.003 

 0.011 ± 
0.001 

  
0.047 ± 
0.002 

0.085 ± 
0.003 

Mean w/o GEM 
0.101 ± 
0.002 

  
0.344 ± 
0.005 

0.184 ± 
0.003 

 0.013 ± 
0.001 

  
0.051 ± 
0.001 

0.101 ± 
0.003 

Mean w/ GEM 
0.201 ± 
0.010 

0.297 ± 0.016 
0.466 ± 
0.023 

0.268 ± 
0.009 

 0.026 ± 
0.002 

0.073 ± 
0.005 

0.071 ± 
0.003 

0.158 ± 
0.013 

Table 3.4.1: Mean low and high frequency Signal, Noise and SNR of the single and multi-unit activities in response to our 

stimulus set (Mean ± SEM) 
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FULL 
FIELD 

LOW FREQUENCY SIGNAL (FS)  HIGH FREQUENCY SIGNAL (FS) 

  DG NI DN  DG NI DN 

Layer 2/3 -0.001 ± 0.001 0.017 ± 0.004 
0.011 ± 
0.002 

 -0.001 ± 0.000 0.004 ± 0.001 0.007 ± 0.001 

Layer 4 0.016 ± 0.001 0.035 ± 0.003 
0.016 ± 
0.001 

 0.009 ± 0.001 0.009 ± 0.001 0.010 ± 0.001 

Layer 5/6 0.018 ± 0.007 0.031 ± 0.011 
0.022 ± 
0.007 

 0.006 ± 0.002 0.008 ± 0.003 0.015 ± 0.006 

Mean w/o 
GEM 

0.018 ± 0.001 0.034 ± 0.003 
0.017 ± 
0.001 

 0.008 ± 0.000 0.009 ± 0.001 0.012 ± 0.00 

        

FULL 
FIELD 

LOW FREQUENCY NOISE (FS)  HIGH FREQUENCY NOISE (FS) 

  DG NI DN  DG NI DN 

Layer 2/3 -0.006 ± 0.004 0.024 ± 0.001 
0.024 ± 
0.001 

 -0.007 ± 0.002 0.015 ± 0.002 0.021 ± 0.003 

Layer 4 0.024 ± 0.002 0.022 ± 0.001 
0.010 ± 
0.001 

 0.030 ± 0.003 0.019 ± 0.001 0.012 ± 0.001 

Layer 5/6 0.015 ± 0.005 0.015 ± 0.003 
0.008 ± 
0.002 

 0.015 ± 0.005 0.012 ± 0.004 0.010 ± 0.003 

Mean w/o 
GEM 

0.021 ± 0.001 0.020 ± 0.001 
0.010 ± 
0.001 

 0.026 ± 0.002 0.018 ± 0.001 0.012 ± 0.001 

        

FULL 
FIELD 

LOW FREQUENCY SNR (FS)  HIGH FREQUENCY SNR (FS) 

  DG NI DN  DG NI DN 

Layer 2/3 0.002 ± -0.001 0.150 ± 0.043 
0.090 ± 
0.026 

 0.004 ± 0.000 0.019 ± 0.005 0.042 ± 0.013 

Layer 4 0.112 ± 0.012 0.287 ± 0.017 
0.160 ± 
0.011 

 0.040 ± 0.006 0.059 ± 0.003 0.082 ± 0.005 

Layer 5/6 0.093 ± 0.036 0.214 ± 0.062 
0.146 ± 
0.038 

 0.020 ± 0.009 0.044 ± 0.012 0.083 ± 0.031 

Mean w/o 
GEM 

0.114 ± 0.010 0.272 ± 0.015 
0.151 ± 
0.008 

 0.031 ± 0.003 0.057 ± 0.003 0.083 ± 0.005 

Table 3.4.2: Mean low and high frequency Signal, Noise and SNR of the regular and fast spiking neurons in response to 

our stimulus set (Mean ± SEM) 
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FULL FIELD LOW FREQUENCY SIGNAL (RS)  HIGH FREQUENCY SIGNAL (RS) 

  DG NI DN  DG NI DN 

Layer 2/3 
0.000 ± 
0.000 

0.003 ± 
0.000 

0.003 ± 
0.001 

 -0.001 ± -
0.000 

0.001 ± -
0.000 

0.002 ± 
0.000 

Layer 4 
0.008 ± 
0.001 

0.017 ± 
0.001 

0.007 ± 
0.001 

 0.003 ± 0.001 
0.004 ± 
0.000 

0.003 ± 
0.000 

Layer 5/6 
0.005 ± 
0.000 

0.013 ± 
0.001 

0.006 ± 
0.001 

 0.002 ± 0.000 
0.003 ± 
0.000 

0.002 ± 
0.000 

Mean w/o GEM 
0.006 ± 
0.000 

0.014 ± 
0.000 

0.004 ± 
0.000 

 0.002 ± 0.000 
0.003 ± 
0.000 

0.002 ± 
0.000 

        

FULL FIELD LOW FREQUENCY NOISE (RS)  HIGH FREQUENCY NOISE (RS) 

  DG NI DN  DG NI DN 

Layer 2/3 
-0.005 ± -

0.001 
0.004 ± 
0.000 

0.009 ± 
0.001 

 -0.007 ± -
0.002 

0.002 ± -
0.000 

0.007 ± 
0.001 

Layer 4 
0.012 ± 
0.002 

0.014 ± 
0.001 

0.003 ± 
0.002 

 0.012 ± 0.003 
0.012 ± 
0.001 

0.004 ± 
0.002 

Layer 5/6 
0.007 ± 
0.001 

0.007 ± 
0.001 

0.003 ± 
0.000 

 0.009 ± 0.001 
0.007 ± 
0.001 

0.003 ± 
0.000 

Mean w/o GEM 
0.007 ± 
0.001 

0.009 ± 
0.001 

0.001 ± 
0.001 

 0.008 ± 0.001 
0.008 ± 
0.000 

0.002 ± 
0.001 

        

FULL FIELD LOW FREQUENCY SNR (RS)  HIGH FREQUENCY SNR (RS) 

  DG NI DN  DG NI DN 

Layer 2/3 
0.025 ± 
0.005 

0.055 ± 
0.007 

0.037 ± 
0.003 

 0.008 ± -
0.001 

0.012 ± -
0.001 

0.013 ± -
0.000 

Layer 4 
0.070 ± 
0.011 

0.175 ± 
0.006 

0.089 ± 
0.008 

 0.015 ± 0.003 
0.021 ± 
0.002 

0.028 ± 
0.003 

Layer 5/6 
0.043 ± 
0.005 

0.149 ± 
0.007 

0.072 ± 
0.008 

 0.002 ± 0.001 
0.015 ± 
0.001 

0.018 ± 
0.002 

Mean w/o GEM 
0.057 ± 
0.004 

0.150 ± 
0.003 

0.060 ± 
0.003 

 0.004 ± 0.001 
0.015 ± 
0.001 

0.017 ± 
0.001 

Table 3.4.2: Mean low and high frequency Signal, Noise and SNR of the regular and fast spiking neurons in response to 

our stimulus set (Mean ± SEM) 
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FULL FIELD SIGNAL (SUA)  SIGNAL (MUA) 

  DG NI DN  DG NI DN 

Layer 2/3 0.003 ± 0.001 0.006 ± 0.002 0.007 ± 0.002  0.023 ± 0.001 0.028 ± 0.002 0.028 ± 0.002 

Layer 4 0.011 ± 0.001 0.010 ± 0.001 0.009 ± 0.001  0.039 ± 0.001 0.043 ± 0.002 0.043 ± 0.002 

Layer 5/6 0.011 ± 0.002 0.012 ± 0.003 0.012 ± 0.004  0.041 ± 0.001 0.046 ± 0.002 0.042 ± 0.001 

Mean w/o 
GEM 

0.010 ± 0.001 0.010 ± 0.001 0.010 ± 0.001  0.037 ± 0.001 0.043 ± 0.001 0.040 ± 0.001 

        

FULL FIELD NOISE (SUA)  NOISE (MUA) 

  DG NI DN  DG NI DN 

Layer 2/3 0.017 ± 0.010 0.032 ± 0.013 0.036 ± 0.011  0.117 ± 0.007 0.129 ± 0.008 0.127 ± 0.008 

Layer 4 0.050 ± 0.007 0.044 ± 0.006 0.037 ± 0.005  0.186 ± 0.007 0.168 ± 0.006 0.159 ± 0.006 

Layer 5/6 0.048 ± 0.010 0.046 ± 0.010 0.041 ± 0.010  0.192 ± 0.006 0.183 ± 0.005 0.172 ± 0.005 

Mean w/o 
GEM 

0.047 ± 0.005 0.043 ± 0.005 0.037 ± 0.004  0.178 ± 0.004 0.169 ± 0.004 0.160 ± 0.003 

        

FULL FIELD SNR (SUA)  SNR (MUA) 

  DG NI DN  DG NI DN 

Layer 2/3 0.037 ± 0.006 0.049 ± 0.008 0.047 ± 0.008  0.074 ± 0.005 0.089 ± 0.005 0.085 ± 0.005 

Layer 4 0.065 ± 0.005 0.074 ± 0.008 0.073 ± 0.006  0.085 ± 0.003 0.118 ± 0.004 0.123 ± 0.005 

Layer 5/6 0.065 ± 0.008 0.078 ± 0.019 0.078 ± 0.012  0.086 ± 0.004 0.116 ± 0.005 0.106 ± 0.006 

Mean w/o 
GEM 

0.064 ± 0.004 0.073 ± 0.007 0.073 ± 0.005  0.084 ± 0.002 0.114 ± 0.003 0.111 ± 0.004 

Table 3.4.3: Mean inforate of the Signal, Noise and SNR of the single and multi-unit activities in response to our stimulus 

set (Mean ± SEM) 

 

 

 

FULL FIELD SIGNAL 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.027 ± 0.007 0.030 ± 0.008 0.021 ± 0.006 0.028 ± 0.009 0.023 ± 0.007 

RS 0.017 ± 0.001 0.018 ± 0.001 0.015 ± 0.001 0.017 ± 0.001 0.013 ± 0.001 

SUA 0.022 ± 0.004 0.024 ± 0.004 0.018 ± 0.003 0.022 ± 0.005 0.018 ± 0.004 

MUA 0.061 ± 0.004 0.066 ± 0.004 0.051 ± 0.003 0.061 ± 0.003 0.054 ± 0.004 

      
FULL FIELD NOISE 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.016 ± 0.002 0.019 ± 0.003 0.012 ± 0.001 0.015 ± 0.002 0.014 ± 0.003 

RS 0.012 ± 0.001 0.015 ± 0.001 0.011 ± 0.001 0.011 ± 0.001 0.009 ± 0.001 

SUA 0.014 ± 0.001 0.017 ± 0.002 0.011 ± 0.001 0.013 ± 0.001 0.012 ± 0.002 

MUA 0.036 ± 0.001 0.045 ± 0.001 0.028 ± 0.001 0.034 ± 0.001 0.031 ± 0.001 

      
FULL FIELD SNR 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.199 ± 0.038 0.215 ± 0.039 0.169 ± 0.034 0.220 ± 0.045 0.172 ± 0.036 

RS 0.183 ± 0.006 0.189 ± 0.008 0.160 ± 0.009 0.185 ± 0.010 0.139 ± 0.008 

SUA 0.191 ± 0.022 0.202 ± 0.024 0.164 ± 0.022 0.202 ± 0.027 0.156 ± 0.022 

MUA 0.226 ± 0.015 0.232 ± 0.014 0.202 ± 0.014 0.233 ± 0.013 0.203 ± 0.016 

Table 3.4.4: Mean low frequency Signal, Noise and SNR of the spiking activity in response to our control stimulus set 

(Mean ± SEM) 



 

230 

 

 

4.1.2 Time Frequency Analysis of the Local Field Potential  

LFP is not a measure of the neuronal activity but it indicates it synchronization level. We obtained a 

highly synchronized signal in response to NI and unsynchronized one in response to DG. This 

resulted in poor reliability levels evoked by DG. However, as shown with our spiking results and the 

intracellular results of Baudot and colleagues (2013), drifting gratings do evoke a reliable response 

but only at the grating frequency. Thus, we can wonder if the wavelet analysis of local field potential 

will unveil some specific frequential aspects of the reliability. As performed for the spiking activity, 

we subtracted the SNR of the spontaneous activity to the evoked one. Figure 3.4.19 shows the SNR 

response without and with blank subtraction. 

Our previous results showed that only choosing the LFP sites of the population with GEM or choosing 

all the sites, resulted in the same mean responses evoked by the animated gratings. Thus, for the 

time frequency analysis we decided to only perform our analysis on all the sites and not only the 

ones of the population with GEM. Since the LFPs were recorded across all layers, we will be able to 

investigate if, as observed for our previous indexes (sections 2 and 3 of this chapter),  the different 

stimuli elicit different responses across layers. Moreover, we observed, at the spiking level, a 

difference between the SNR and the timescale dependent analysis. Yet, will these differences also 

be present at the LFP level (which was not the case for Vm in Baudot’s study (2013)). In order to 

answer these questions, we computed the wavelet analysis across our recordings (Figures 3.4.20 

to 3.4.22, table 3.4.5).  

 
Figure 3.4.19: Signal, Noise and SNR with or without blank subtraction 

 Mean Evoked SNR 

As observed for the SUA and MUA, natural images are the stimulus that evoked the highest mean 

signal in the low frequency band (p < 0.001, Friedman test; Figures 3.4.20 and 3.4.21; table 3.4.5). 

Among the artificial stimuli, GEM evoked the highest signal and DG the lowest one (p < 0.001). The 

signal peak observed at the spiking level in the DG condition was almost absent for the LFP. This 

peak was present for the membrane potential. This result argues in favor of our previous 

observations and can be refined. Indeed, as stated before our results suggest that the mesoscopic 
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information carried by LFPs and the local integration of synaptic input activity realized by a single 

cell are clearly dissociated. This frequency-based analysis also suggests that during drifting grating 

stimulation, the response of each neuron is mainly driven by the stimulus (i.e. the peak) and that 

stochastic activity for frequencies different from the driving frequency are also present. In addition, 

at the LFP level, the peak is reduced since we also record the activity simple neurons that do not 

respond to the same phases and complex cells that do not display this modulation, thus no peak 

(Benucci et al., 2007). Regarding the high frequency signal, the GEM and DN condition were higher 

than NI (p < 0.001; Friedman test; Figures 3.4.20 and 3.4.22). However, it is important to note that, 

as observed intracellularly, the low frequency signal is usually ten times higher than the high 

frequency one.  

The noise analysis resulted in very different results from the ones obtained intracellularly (Figure 

3.4.20; table 3.4.5). Indeed, while Baudot and colleagues observed that DG and GEM evoked a 

higher low frequency noise than NI we observed the opposite. For the local field potential, natural 

images evoked the highest mean noise in the low frequency range (p < 0.001; Friedman test). Among 

the artificial stimuli, GEM evoked the highest mean low frequency noise, while DG the lowest. 

Surprising, DG and DN noise were much lower than the one obtained for the spontaneous activity 

(figure 3.4.20). At high frequencies, DG and DN still evoked negative values of noise yet close to 0. 

It is important to note that both the signal and the noise obtained for the LFP are in similar range of 

values as the ones obtained for Vm but almost 1000 times higher than the ones obtained for both 

SUA and MUA.  

This led to different values of SNR both in high and low frequencies. First, as expected by the noise 

and signal values, natural images evoked the highest SNR in the low frequency range (p < 0.001; 

Friedman test). This result differs from the one obtained intracellularly. Indeed, Baudot and 

colleagues (2013) did not find any difference between the SNR evoked by the animated gratings and 

the natural images. Second, among the artificial stimuli, animated gratings evoked the highest low 

frequency levels of reliability while drifting gratings evoked the less reliable response (p < 0.001). 

The higher reliability obtained in response to GEM originates from the high signal evoked by the 

stimulus. Indeed, despite a lower noise, the dense noise condition did not evoke a signal strong 

enough to increase the reliability at the same level as GEM (GEM’s mean signal being almost two 

times higher than the one elicited by DN whereas the difference in noise is not as important). Third, 

dense noise evoked the highest high frequency SNR (p < 0.001), this value was close to one 

observed for the low frequencies. This is not surprising since dense noise contain an important 

amount of high frequencies (see Chapter II: methods). 

In conclusion, as observed for the spiking activity and with our other indexes of reliability we showed 

that natural images evoke a strong and reliable response. In addition, during the dense noise 

stimulation, a high SNR is observed for high frequencies. Finally, in some cases the analysis of LFP 

and the Vm allowed to draw similar conclusions while in the others no, arguing in favor for a 

fundamental difference between the Vm and the LFP.  

 Laminar Signal to Noise Ratio 

As stated before, our probes allowed us to perform laminar recordings. Our previous results showed 

a laminar processing of the visual inputs. Yet, we can wonder if we will observe the same laminar 

differences. In addition, will we observe a layer-specific frequency content? Within all layers, the 

signal, the noise and the SNR displayed the same pattern as the one observed for the mean over 

the population. Yet, we observed a clear laminar dependency of the response (Figures 3.4.20 to 

3.4.22 table 3.4.5). 
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Indeed, natural images evoked its highest low frequency signal value in layer 5/6 and the lowest one 

in layer 2/3. However, the difference in signal between layers 4 and 5/6 is small (Table 3.4.5). On 

the other hand, the same artificial stimuli elicited an equivalent response in layers 4 and 5/6 (p > 

0.05; Mann Whitney U test), higher than the ones observed in layer 2/3 (p < 0.001). For all stimuli, 

layers 4 and 5/6 showed a signal almost two times higher than the one observed in layer 2/3 (Table 

3.4.5). Regarding the high frequency noise, dense noise evoked the highest value in layer 4 and the 

lowest in layer 2/3 (p < 0.001; Figure 3.4.22). The noise analysis did not reveal any difference 

between layers (p > 0.05; Mann Whitney U test). However, the highest mean noise values were 

found in layer 5/6. Therefore, one could suppose that the laminar values of the stimulus locked SNR 

are linked to the variations of the evoked signal. Yet, natural images evoked an equivalent low 

frequency SNR in layers 4 and 5/6 (p = 0.95), higher than the one in layer 2/3 (p < 0.001; confirming 

the results obtained with our other indexes). This result from a higher signal in layer 5/6 but a higher 

noise, while in layer 4 NI evoked a lower signal and a lower noise. Drifting gratings and dense noise 

stimulation evoked their highest levels of reliability in layer 4 and the lowest in layer 2/3 (p < 0.001). 

Only animated gratings elicited a SNR “matching” the signal and noise values (i.e. highest SNR in 

layer 4 and lower in layer 2/3).  Dense noise evoked a higher high frequency SNR than a low 

frequency in layer 4 (p < 0.01). These results match the ones obtained with our previous (see section 

3 of this chapter). 

In conclusion, we confirmed the results that we obtained previously, i.e. natural images evoke a 

higher reliability than the other stimuli, across all layers. This originates from a high signal that 

overcomes the fact that NI are the stimuli eliciting the highest noise. In addition, we observed, for all 

stimuli, a laminar dependency of the signal but not for the noise. Therefore, the highest evoked signal 

and SNR were observed in layer 4. These strong signal and SNR might come from the numerous 

thalamic inputs present in this layer. Indeed, it is known that thalamic send strong and reliable inputs 

leading to this strong response in layer 4 (Kumbhani et al., 2007). Another explanation could be that 

the differences are linked to the intrinsic properties of the layers. 
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Figure 3.4.20: Mean and laminar SNR of the local field potential. Natural images evoke the most reliable response in 

the low frequency range. Signal (left), noise (center) and SNR (right) obtained for the single unit activity in response to our 
set of stimuli (shaded area : SEM) 
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Figure 3.4.21: Bar plots of the low frequency local field potential SNR. Signal (left panel), noise (center) and SNR 

(right) obtained for the local field potential in response to our set of stimuli. *: significantly different from NI low frequency; 
# significantly different from NI high frequency. * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : 
p < 0.001. Error bars : SEM. 
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Figure 3.4.22: Bar plots of the high frequency local field potential SNR.  Signal (left panel), noise (center) and SNR 

(right) obtained for the local field potential in response to our set of stimuli. *: significantly different from NI low frequency; 
# significantly different from NI high frequency. * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : 
p < 0.001. Error bars : SEM. 
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 Information rate 

As performed for the spiking activity, we quantified the amount of information by computing the 

information rate (inforate) of the local field potential (figure 3.4.23) 

Regarding the signal, Natural images and animated gratings evoked a similar signal, higher than 

dense noise and drifting gratings. The same pattern was found across layers, except for the DN 

condition in layer 4, which induced a similar inforate as GEM and NI. Again, one need to keep in 

mind that the inforate is computed for frequencies up to 150Hz (while Baudot and colleagues limited 

their analysis to 75Hz). Therefore, some stimuli, such as DN, can send the same amount of 

information as NI since they display a stronger signal for higher frequencies. Dense noise and drifting 

gratings evoked a similar mean inforate noise lower than NI and GEM. The same pattern was found 

across layers (figure 3.4.23). Finally, we obtained the highest SNR inforate for the DN while NI and 

GEM were equivalent and higher than the one induced by DG. These results come from the fact that 

the inforate is computed from frequencies ranging between 1 and 120Hz and as shown in figures 

3.4.20 and 3.4.22, dense noise evokes a high SNR in the higher frequencies, while GEM’s high 

frequency SNR is higher than the one evoked by NI. As stated in the previous section, an analysis 

of the inforate for our different frequency bands would confirm the results that we observed. 

 

As performed by Baudot and colleagues (unpublished results; Figure 3.4.24), we compared the 

inforate of the SNR for our different signals. This allows to directly compare our different signals 

(Figure 3.4.25). Our results show that the local field potential was the most informative signal while 

the SUA was the lowest. Surprisingly, both the LFP and the MUA evoked a similar inforate in 

response to DG. For the three signals we can observe that the traces are very similar but at different 

amplitudes. A filtering between the LFP and the spiking activity seem to be performed. This was also 

observed intracellularly between the membrane potential and the spiking activity 

We also plotted the different inforates for each layer (Figure 3.4.26). While layers 4 and 5/6 produce 

similar levels of information, an important decrease is observed in layer 2/3. This layer is the one 

sending projections to higher areas. Yet, our results suggest that a filtering of the pertinent 

information is performed. This reduction in the amount of information transmitted between two areas 

is also observed between the LGN and V1 (Sedigh-Sarvestani et al., 2019). Thus, the filtering of 

pertinent information might be a shared property in order to maximize information processing.   
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Figure 3.4.23: Mean information rate of the signal, noise and SNR of the local field potential in response to our stimulus 

set. 

  



 

238 

 

 

 
Figure 3.4.24: Mean information rate and power spectra of the membrane potential and intracellular spiking in response 

to our stimulus set.  

 

 
Figure 3.4.25: SNR power spectra and inforate of our three different signals. The local field potential evokes the 

highest inforate and the SUA the lowest one. LFP (red), MUA (green) and SUA (blue) in response to three stimuli of our 
stimulus set. A. Mean inforate evoked by drifting gratings. B. Mean inforate evoked by Natural images. C. Mean inforate 

evoked by Dense noise.  
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Figure 3.4.26: Mean laminar SNR power spectra and inforate of our three different signals. The local field potential 

evokes the highest inforate and the SUA the lowest one. LFP (red), MUA (green) and SUA (blue) in response to three 
stimuli of our stimulus set. A. Mean inforate evoked by drifting gratings. B. Mean inforate evoked by Natural images. C. 

Mean inforate evoked by Dense noise. 
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 Impact of the natural statistics on the signal to noise ratio 

Finally, we wondered if the wavelet analysis would allow us to have another insight on the reliability 

evoked by our control stimuli. Indeed, we only found a difference in reliability between the Natural 

image animated only with saccades (NI-SAC) and the unaltered image. Moreover, do we observe 

different levels of signal and noise leading to a similar ratio or do the control stimuli evoke the same 

values of noise and signal? 

We first computed the signal (Figure 3.4.27; table 3.4.6). The natural images where the spatial 

statistics were altered (NI-RS) evoked the same levels of signal as the unaltered natural image, for 

both low and high frequencies (p > 0.05). However, all the other stimuli evoked different signal 

values. On one hand, the natural images where the temporal statistics were altered (NI-RT) and the 

one where both spatial and temporal statistics were randomized (NI-RST) evoked a lower low 

frequency signal and higher high frequency signal than NI (p < 0.001). On the other hand, NI-SAC 

evoked higher low frequency signal than NI, but a lower high frequency signal (p < 0.001). This 

increase in the low frequencies originates from the very low frequencies and is absent for the other 

stimuli. This suggest that the saccades alone increase the amount of low frequencies and that the 

addition of other eye movements tend to attenuate this increase. This increase could be linked to 

the fact that saccades reduce the adaptation of the response resulting in a stronger impact of low 

frequency content present in NI-SAC. Surprisingly, for the spiking scale, NI-SAC evoked a lower 

signal than the unaltered NI. One could wonder if the low frequency increase observed for the LFP 

is linked to the membrane potential. All stimuli evoked a different low frequency noise than NI (p < 

0.001) while no difference was observed for the high frequency noise (p > 0.05). Both NI-RS and NI-

SAC elicited a higher noise than NI while NI-RT and NI-RST a lower one (figure 3.4.27). This led to 

different SNRs for our different stimuli condition. First, despite the higher noise, NI-RS and NI evoked 

the same low frequency SNR (and high frequency one, p > 0.05). This absence of difference 

probably originates from the fact that the evoked noise by NI-RS was very variable. Second, NI-RT 

and NI-RST evoked a lower low frequency SNR than NI but a higher high frequency one (as expected 

based on the signal and noise values). Third, NI-SAC evoked a higher low frequency SNR but a 

lower high frequency one. These patterns of low and high frequency responses might explain why 

we were not able to detect any difference in the evoked levels of variability when we computed the 

trial-to-trial correlation. In addition, since these differences are absent at the spiking level, we can 

suppose that they do not have an impact on the spiking activity. Finally, these results allow us to 

refine our previous statements. Indeed, these findings suggest that V1 is sensitive to the frequencies 

present in the eye movements. On the first hand, eye movements increase the low frequency signal 

and reliability. They also decrease the response for higher frequencies. Saccades seem to have a 

strong impact on this interplay between high and low frequencies. On the other hand, V1 show a 

more reliable response, in the low frequency range, when the phase is not randomized. However, it 

is important to note that the difference between the evoked reliability levels is small. 
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Figure 3.4.27: Mean SNR of the local field potential in response to our control stimuli. A. Mean signal (top row), 

noise (middle row) and SNR (bottom row) obtained for local field potential in response to our set of control stimuli (shaded 
area: SEM). B. Barplots of the mean signal (top row), noise (middle row) and SNR (bottom row) obtained for local field 

potential in response to our set of control stimuli *: significantly different from NI low frequency; # significantly different from 
NI high frequency. * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. n.s: no significant 
difference. Error bars : SEM. 
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FULL FIELD LOW FREQUENCY SIGNAL   HIGH FREQUENCY SIGNAL  

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 1.3 ± 0.7 60.9 ± 6.2 91.7 ± 8.3 25.1 ± 1.7  0.4 ± 0.2 10.7 ± 0.9 7.7 ± 0.6 9.3 ± 0.6 

Layer 4 11.0 ± 0.9 108.7 ± 3.0 151.8 ± 4.7 60.8 ± 1.6  1.9 ± 0.2 20.1 ± 0.5 14.3 ± 0.4 24.5 ± 0.6 

Layer 5/6 5.1 ± 1.1 103.2 ± 5.1 166.6 ± 9.2 51.5 ± 2.9  1.5 ± 0.2 16.5 ± 0.6 12.5 ± 0.6 15.7 ± 0.6 

Mean 5.8 ± 0.9 90.9 ± 4.8 136.7 ± 7.4 45.8 ± 2.1  1.3 ± 0.2 15.7 ± 0.7 11.5 ± 0.5 16.5 ± 0.6 

          

FULL FIELD LOW FREQUENCY NOISE   HIGH FREQUENCY NOISE  

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 -23.5 ± 2.9 4.6 ± 1.9 9.9 ± 1.6 0.3 ± 3.2  -1.8 ± 0.8 1.2 ± 0.6 -0.9 ± 0.8 -1.6 ± 0.5 

Layer 4 -35.7 ± 2.4 5.7 ± 1.4 15.9 ± 1.6 -12.7 ± 1.7  -1.3 ± 0.6 4.1 ± 0.3 1.6 ± 0.4 -0.7 ± 0.3 

Layer 5/6 -37.4 ± 3.4 6.4 ± 3.0 19.8 ± 2.9 -18.6 ± 2.7  0.9 ± 0.9 7.7 ± 0.5 0.6 ± 0.6 -0.4 ± 0.5 

Mean -32.2 ± 2.9 5.6 ± 2.1 15.2 ± 2.0 -10.3 ± 2.5  -0.7 ± 0.8 4.3 ± 0.5 0.4 ± 0.6 -0.9 ± 0.5 

          

FULL FIELD LOW FREQUENCY SNR  HIGH FREQUENCY SNR 

  DG GEM NI DN  DG GEM NI DN 

Layer 2/3 0.04 ± 0.00 0.39 ± 0.03 0.54 ± 0.05 0.21 ± 0.02  0.01 ± 0.00 0.19 ± 0.01 0.14 ± 0.01 0.23 ± 0.01 

Layer 4 0.12 ± 0.01 0.62 ± 0.02 0.75 ± 0.02 0.42 ± 0.01  0.04 ± 0.00 0.30 ± 0.01 0.22 ± 0.01 0.52 ± 0.01 

Layer 5/6 0.07 ± 0.01 0.54 ± 0.04 0.70 ± 0.04 0.34 ± 0.02  0.02 ± 0.00 0.22 ± 0.01 0.19 ± 0.01 0.29 ± 0.01 

Mean 0.08 ± 0.00 0.51 ± 0.03 0.67 ± 0.0 0.32 ± 0.02  0.02 ± 0.00 0.24 ± 0.01 0.18 ± 0.01 0.35 ± 0.01 

Table 3.4.5: Mean low and high frequency Signal, Noise and SNR of the LFP in response to our stimulus set (Mean ± SEM) 

 

 

FULL FIELD LFP 

  NI NI-RS NI-RT NI-RST NI-SAC 

SIGNAL 85.7 ± 5.4 85.4 ± 6.5 70.7 ± 4.8 66.8 ± 4.8 105.3 ± 8.0 

NOISE 30.0 ± 4.8 38.9 ± 4.8 25.0 ± 7.0 24.1 ± 6.2 41.4 ± 4.8 

SNR 0.38 ± 0.02 0.34 ± 0.02 0.33 ± 0.02 0.32 ± 0.02 0.41 ± 0.02 

Table 3.4.6: Mean low frequency Signal, Noise and SNR of the LFP in response to our control stimulus set (Mean ± SEM) 
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4.1.3 Power Spectral Density and Reliability of the Local Field Potential 

Our previous results showed that each stimulus elicits different levels of reliability. In particular, the 

local field potential that possesses different frequency signatures. The study of the LFP is based on 

a frequency-based decomposition of the response. These different frequencies have been linked to 

different tasks in visual processing. High frequencies, in particular gamma, have been linked to the 

filtering the irrelevant information of the stimulus representation (Brunet et al., 2015, 2014; 

Desimone, 1996; Gray and Singer, 1989) while low frequencies convey the most information about 

the stimulus (Belitski et al., 2008). Because of the importance of the different frequency bands in the 

LFP, we decided to extend the frequency-based analysis of this signal. A classic analysis performed 

on the LFP is to compute its power spectrum density (PSD). By performing a Fourier transform on 

the LFP signal, we obtain the distribution of power into frequency components composing the LFP. 

We can wonder if the frequencies eliciting the highest PSD are also the most reliable ones (The 

reliability of the response will be measured by computing the coherence and the SNR). Moreover, 

based on the frequencies linked to feedback and feedforward interactions, will we observe an 

increase of these frequencies in the layers associated to these interactions? We computed the mean 

PSD and the relative mean PSD (R-PSD) for the complete population and for each layer (Figure 

3.4.28-A). The relative R-PSD was computed by dividing the mean PSD of the spontaneous activity 

of each recording site to the mean evoked PSD of the same recording site. As performed for the 

SNR we divided the frequencies in 3 bands. The low frequency band ranging from 1 to 10 Hz, the 

high frequency band ranging from 11 to 40 Hz and a very high frequency band, i.e. the gamma band, 

ranging from 41 to 150 Hz. 

 Mean Evoked Power Spectral Density 

Regarding the mean PSD and R-PSD (Figures 3.4.28 to 3.4.30; Tables 3.4.7 and 3.4.8) we observed 

that natural images evoked the highest power spectral density in the low frequency range (p < 0.001; 

Wilcoxon test). Animated gratings evoked a higher PSD, in the low frequency range, than dense 

noise and drifting gratings. For low frequencies, DG elicited a PSD above the one of the spontaneous 

activity only at the grating frequency (and its harmonics). This result has been observed in the 

literature (Kayser et al, 2003). The PSD in the high frequency range displayed the same pattern, but 

with lower values, as the one observed for the low frequencies. Surprisingly, all the stimuli evoked 

the same PSD in the gamma range (p > 0.05; Wilcoxon test). Our results show that the suppression 

of low frequencies by the visual stimulation is stimulus dependent.  

A few differences are present between the PSD and R-PSD this is linked to the fact that we divided 

the mean PSD of the spontaneous activity for each channel instead of using the global mean that is 

plotted on figure 3.4.28. 

 Laminar Power Spectral Density 

We then investigated the laminar power spectrum density. Within layers, we found the same pattern 

as in the mean response, with the exception of GEM and NI that evoked a similar high frequency 

PSD (but not R-PSD) within layers 2/3 and 5/6 (p > 0.05). As observed in the other sections, the 

evoked PSD presented a laminar dependency. All stimuli evoked the highest low frequency PSD in 

layer 5/6 while the lowest one was in layer 2/3 (p < 0.001). This is probably linked to the intrinsic 

properties of each layer. Indeed layer 5/6 also evoked the highest PSD for the spontaneous activity. 

Thus, when we computed the R-PSD we were able to reduce the impact of the intrinsic properties 
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of each layer. This resulted in a different laminar response: natural images evoked the highest low 

frequency R-PSD in layers 4 and 5/6 (p < 0.001; Mann Whitney U test). On the other hand, the 

highest low frequency R-PSD evoked by the artificial stimuli was found in layer 4 while the lowest 

one was in layer 2/3 (p < 0.001). This laminar difference between natural and artificial stimuli was 

also observed in the previous sections. In conclusion, we observed, once again, that natural images 

induce a stronger response than the other stimuli. Based on the SNR results obtained in the previous 

section, it would appear that a high PSD in the low frequency range is linked to high levels of reliability 

at the same frequencies. Yet, this does not seem to be true for higher frequencies. 

 Frequency Based Reliability 

In order to confirm (or infirm) these observations we computed another frequency-based reliability 

measurement, the trial-to-trial coherence. The coherence measures the degree of the linear 

relationship between two LFP signals in the Fourier space. A coherence of 1 implies a very 

synchronized (i.e. reliable) for a chosen frequency while a coherence of 0 a very desynchronized 

(i.e. variable) one. The coherence and SNR results are reported in figures 3.4.28-C-D, 3.4.29-C-D 

and 3.4.30-C-D (see also tables 3.4.7 and 3.4.8). These two-analysis resulted in the same 

observations. First, as observed for the SNR natural images evoked the highest coherence in the 

low frequency range (p < 0.001, Wilcoxon test). Second, among the artificial stimuli, animated 

gratings evoked the highest low frequency levels of reliability while drifting gratings evoked the less 

reliable response (p < 0.001). Third, dense noise evoked the highest high frequency reliability (p < 

0.001). The peak value observed at 70Hz for DN, and absent for the other stimuli, might be linked to 

the stimulus frequency. Indeed, dense noise is the only stimulus to evoke a locked and reliable LFP 

response in these frequencies. Unlike the other stimuli, dense noise contains an important amount 

of high frequencies. Another notable difference was the fact that dense noise evoked a low R-PSD 

for frequencies between 10 and 40Hz but a reliable response in this frequency band. This suggest 

that a strong spectral density does not imply a strong reliability and that a locked and reliable 

response to the stimulus does not always evoke an increase in PSD higher than the one observed 

for the spontaneous activity. Thus, only a frequential analysis of the reliability can highlight these 

specific modulations. Regarding the laminar reliability, natural images evoked an equivalent low 

frequency coherence in layers 4 and 5/6 (p = 0.14), higher than the one in layer 2/3 (p < 0.001). The 

artificial stimuli evoked their highest levels of reliability in layer 4 and the lowest in layer 2/3 (p < 

0.001). Dense noise evoked the highest high frequency coherence in layer 4. In addition, when 

dense noise was presented, the LFPs in layer 4 evoked a more reliable response in the high 

frequency range than in the low frequency one (p < 0.01). In conclusion, our coherence results 

confirm the ones obtained by computing the signal to noise ratio and show that the stimuli modulate 

the response reliability in a specific way. 
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Figure 3.4.28: Frequency based analysis of the local field potential in response to our set of stimuli. For all analysis, 
natural images display an increase in the low frequency range. A. Mean Power Spectrum Density across layers and for 
the complete population. B. Mean Relative Power Spectrum Density across layers and for the complete population. C. 
Mean Coherence across layers and for the complete population. D. Mean SNR across layers and for the complete 

population. 
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Figure 3.4.29: Bar plots of the low frequency-based analysis of the LFP in response to our stimulus set. A. Mean 
Power Spectrum Density across layers and for the complete population. B. Mean Relative Power Spectrum Density across 
layers and for the complete population. C. Mean Coherence across layers and for the complete population. D. Mean SNR 

across layers and for the complete population.  *: significantly different from NI * : p < 0.05; ** : p < 0.01;  *** : p < 0.001. 
Error bars : SEM. 
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Figure 3.4.30: Bar plots of the high frequency-based analysis of the LFP in response to our stimulus set. A. Mean 
Power Spectrum Density across layers and for the complete population. B. Mean Relative Power Spectrum Density across 
layers and for the complete population. C. Mean Coherence across layers and for the complete population. D. Mean SNR 

across layers and for the complete population.  *: significantly different from NI  * : p < 0.05; ** : p < 0.01;  *** : p < 0.001. 
Error bars : SEM. 
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 Impact of the natural statistics on the power spectral density 

Since we observed the control stimuli evoked differences in reliability at different frequency ranges 

we wondered if an impact would be observed on the PSD (and R-PSD). For both PSD and R-PSD, 

all altered natural images evoked different power than the unaltered natural image (p < 0.001, 

Wilcoxon test, Figure 3.4.31, table 3.4.9). At the low frequency range, NI-SAC evoked the strongest 

response while NI-RT and NI-RST the lowest one. Unlike what was observed for the SNR, NI-RS 

evoked a higher low frequency response than the unaltered NI (p < 0.001). At the high frequency 

range, NI-SAC evoked the highest PSD while NI-RT and NI-RST the lowest ones. (p < 0.001). 

Finally, at the very high frequency range, all stimuli evoked the same PSD (p > 0.05). 

We then computed the coherence evoked by our control stimuli in order to compare it to the SNR. 

Again, both analyses resulted in the same patterns except between NI-RS and NI. Indeed, with the 

coherence analysis, the unaltered natural images evoked a more reliable response in the low 

frequency range than NI-RS but a less reliable one in the high frequency range (p < 0.001). However 

the levels of reliability evoked by these stimuli are very similar. 

In conclusion, our coherence results confirm the ones obtained by computing the signal to noise ratio 

and validate our previous statements. 
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Figure 3.4.31: A. Mean PSD and barplots for low and high frequencies on response to the set of control stimuli. B. 
Mean R-PSD and barplots for low and high frequencies on response to the set of control stimuli. C. Mean Coherence and 
barplots for low and high frequencies on response to the set of control stimuli. D. Mean SNR and barplots for low and high 

frequencies on response to the set of control stimuli *: significantly different from NI low frequency; # significantly different 
from NI high frequency. * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. n.s: no 
significant difference. Error bars and shaded area : SEM 
.  
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FULL FIELD LOW FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 
8.6e+07 ± 
8.3e+06 

1.5e+08 ± 
1.4e+07 

1.9e+08 ± 
1.8e+07 

1.1e+08 ± 
9.2e+06 

1.1e+08 ± 
1.2e+07 

Layer 4 
1.1e+08 ± 
7.3e+06 

2.2e+08 ± 
1.1e+07 

3.3e+08 ± 
1.6e+07 

1.7e+08 ± 
8.1e+06 

1.5e+08 ± 
1.2e+07 

Layer 5/6 
2.4e+08 ± 
5.7e+07 

3.7e+08 ± 
6.4e+07 

5.4e+08 ± 
7.6e+07 

3.3e+08 ± 
7.3e+07 

3.1e+08 ± 
8.4e+07 

Mean 
1.5e+08 ± 
2.4e+07 

2.5e+08 ± 
3.0e+07 

3.5e+08 ± 
3.7e+07 

2.0e+08 ± 
3.0e+07 

1.9e+08 ± 
3.6e+07 

      
FULL FIELD LOW FREQUENCY Coherence 

 

  DG GEM NI DN 
 

Layer 2/3 0.03 ± 0.00 0.25 ± 0.02 0.33 ± 0.02 0.16 ± 0.01 
 

Layer 4 0.06 ± 0.00 0.44 ± 0.01 0.52 ± 0.01 0.33 ± 0.01 
 

Layer 5/6 0.05 ± 0.00 0.43 ± 0.01 0.55 ± 0.01 0.24 ± 0.02 
 

Mean 0.05 ± 0.00 0.40 ± 0.01 0.49 ± 0.01 0.27 ± 0.01 
 

      
FULL FIELD LOW FREQUENCY R-PSD 

 

  DG GEM NI DN 
 

Layer 2/3 -0.16 ± 0.03 0.72 ± 0.07 1.34 ± 0.22 0.16 ± 0.04 
 

Layer 4 -0.09 ± 0.03 1.66 ± 0.09 2.78 ± 0.26 0.53 ± 0.06 
 

Layer 5/6 -0.17 ± 0.03 1.58 ± 0.14 2.94 ± 0.36 0.43 ± 0.07 
 

Mean -0.14 ± 0.02 1.31 ± 0.07 1.95 ± 0.15 0.36 ± 0.03 
 

      
FULL FIELD LOW FREQUENCY SNR 

 

  DG GEM NI DN 
 

Layer 2/3 0.04 ± 0.00 0.39 ± 0.03 0.54 ± 0.05 0.21 ± 0.02 
 

Layer 4 0.12 ± 0.01 0.62 ± 0.02 0.75 ± 0.02 0.42 ± 0.01 
 

Layer 5/6 0.07 ± 0.01 0.54 ± 0.04 0.70 ± 0.04 0.34 ± 0.02 
 

Mean 0.08 ± 0.00 0.51 ± 0.03 0.67 ± 0.0 0.32 ± 0.02 
 

Figure 3.4.7: Mean low frequency PSD, R-PSD, Coherence and SNR in response to our stimulus set (Mean ± SEM) 
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FULL FIELD HIGH FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 
1.0e+07 ± 
6.0e+05 

2.4e+07 ± 
1.7e+06 

2.7e+07 ± 
2.1e+06 

1.6e+07 ± 
1.1e+06 

1.4e+07 ± 
1.4e+06 

Layer 4 
1.5e+07 ± 
5.5e+05 

5.3e+07 ± 
2.3e+06 

5.3e+07 ± 
2.0e+06 

3.1e+07 ± 
1.2e+06 

2.4e+07 ± 
1.7e+06 

Layer 5/6 
2.0e+07 ± 
1.1e+06 

6.0e+07 ± 
2.8e+06 

6.1e+07 ± 
2.7e+06 

3.2e+07 ± 
1.6e+06 

2.9e+07 ± 
2.3e+06 

Mean 
1.5e+07 ± 
7.6e+05 

4.6e+07 ± 
2.2e+06 

4.7e+07 ± 
2.3e+06 

2.6e+07 ± 
1.3e+06 

2.2e+07 ± 
1.8e+06 

      
FULL FIELD HIGH FREQUENCY R-PSD 

 

  DG GEM NI DN 
 

Layer 2/3 0.03 ± 0.04 0.38 ± 0.05 0.21 ± 0.04 0.30 ± 0.04 
 

Layer 4 0.33 ± 0.04 0.76 ± 0.04 0.55 ± 0.06 0.80 ± 0.05 
 

Layer 5/6 0.13 ± 0.04 0.63 ± 0.05 0.31 ± 0.06 0.29 ± 0.04 
 

Mean 0.21 ± 0.03 0.59 ± 0.03 0.30 ± 0.03 0.50 ± 0.03 
 

      
FULL FIELD HIGH FREQUENCY Coherence 

 

  DG GEM NI DN 
 

Layer 2/3 0.03 ± 0.00 0.15 ± 0.01 0.09 ± 0.01 0.20 ± 0.01 
 

Layer 4 0.04 ± 0.00 0.22 ± 0.01 0.15 ± 0.00 0.40 ± 0.01 
 

Layer 5/6 0.03 ± 0.00 0.16 ± 0.01 0.13 ± 0.01 0.22 ± 0.01 
 

Mean 0.03 ± 0.00 0.19 ± 0.01 0.13 ± 0.00 0.30 ± 0.01 
 

      
FULL FIELD HIGH FREQUENCY SNR 

 

  DG GEM NI DN 
 

Layer 2/3 0.01 ± 0.00 0.19 ± 0.01 0.14 ± 0.01 0.23 ± 0.01 
 

Layer 4 0.04 ± 0.00 0.30 ± 0.01 0.22 ± 0.01 0.52 ± 0.01 
 

Layer 5/6 0.02 ± 0.00 0.22 ± 0.01 0.19 ± 0.01 0.29 ± 0.01 
 

Mean 0.02 ± 0.00 0.24 ± 0.01 0.18 ± 0.01 0.35 ± 0.01 
 

Figure 3.4.8: Mean high frequency PSD, R-PSD, Coherence and SNR in response to our stimulus set (Mean ± SEM) 

 

 

FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
2.4e+08 ± 
2.5e+07 

2.6e+08 ± 
3.6e+07 

2.3e+08 ± 
9.2e+06 

2.5e+08 ± 
1.6e+07 

2.8e+08 ± 
2.3e+07 

1.5e+08 ± 
2.2e+07 

R-PSD 1.07 ± 0.07 1.47 ± 0.11 0.77 ± 0.12 0.59 ± 0.07 1.05 ± 0.08 X 

Coherence 0.37 ± 0.01 0.34 ± 0.01 0.28 ± 0.01 0.26 ± 0.01 0.35 ± 0.01 X 

SNR 0.38 ± 0.02 0.34 ± 0.02 0.34 ± 0.02 0.33 ± 0.02 0.41 ± 0.02 X 

Figure 3.4.9: Mean high frequency PSD, R-PSD, Coherence and SNR in response to our control stimulus set (Mean ± 

SEM) 
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4.1.4 Spectral Analysis of the Unlocked Local Field Potential 

We also computed the frequency content of the non-locked stimulus dependent part of the signal. 

Indeed, by subtracting the mean evoked LFP over trials from each trial, we separated the component 

of the LFP that is stimulus-locked by the stimulus from the component evoked by the presence of 

the stimuli but unlocked to its presentation. Will the different stimuli elicit a particular unlocked 

response or are will they be equivalent? In order to investigate the link between the LFP the unlocked 

LFP and our stimuli we computed the PSD and the R-PSD. To obtain the relative power spectrum 

density (R-PSD), we divided from the mean PSD at each recording site the mean PSD of the 

spontaneous activity. Low and high frequencies have respectively been linked to feedback and 

feedforward processing (Bastos et al., 2015; van Kerkoerle et al., 2014). Precisely, feedback has 

been associated to alpha (Van Kerkoerle et al, 2014) or beta bands (Bastos et al, 2015) while 

feedforward has been associated with gamma bands. Based on these results, we should expect a 

stronger gamma band in the layers receiving feedforward inputs i.e. layers 4 and 6 while a stronger 

alpha/beta band should be observed in layers 2/3 and 5. One could argue that feedback is not 

present in anesthetized animals, however recent studies observed feedback interactions on 

anesthetized monkeys (Bijanzadeh et al., 2018). 

 Mean evoked Unlocked PSD 

Our results are reported in figures 3.4.32 and 3.4.33 table 3.4.10. All stimuli evoked an equally 

negative relative power spectrum density between 1 and 4 Hz. In addition, our results show that the 

main responses are between 4-20 Hz and 40-150 Hz. Therefore, we modified the frequency bands 

of interest. We focused on a mixture between low and high frequencies, ranging from 4 to 20Hz, i.e. 

the alpha band and on a very high frequency band ranging from 40 to 150 Hz i.e. the gamma band. 

These frequencies correspond to the frequencies linked to feedback and feedforward activities, 

respectively (Van Kerkoerle et al. 2014). 

We first computed the mean PSD (and R-PSD) across the complete population. The mean PSD of 

the unlocked LFP resulted in an increase of the power in the alpha for the NI and GEM conditions 

while DN and GEM evoked a PSD lower than the spontaneous one (p < 0.001; Friedman test test). 

Animated gratings and natural images evoked close PSD values in these frequencies. However, 

GEM value was significantly higher than the NI one (p < 0.001). Because only the stimuli that are 

animated with eye movement show this increase, it suggests that the “uncertainty” brought by the 

eye movements this increase. The eye movements might create prediction error message that is 

conveyed by feedback, thus inducing an increase in the alpha band (VanRullen et al., 2011). In the 

gamma band, DG evoked the highest power spectral density. In addition, NI evoked a higher PSD 

than GEM and DN (but GEM and NI power spectrums are similar, as observed for the intermediate 

frequencies (p < 0.001)).  Interestingly, NI and DG evoke the same PSD for frequencies above 100 

Hz. The main difference comes from frequencies between 60 and 100Hz. This could be linked to the 

fact that the repeated presentation of gratings induce an increase in this frequency band (Brunet et 

al., 2011). 

 Laminar Unlocked PSD 

We observed a laminar dependency of the response when we investigated the PSD of the stimulus 

locked LFP. In addition, if feedback messages are visible in the alpha band, the layers receiving 

these inputs should display a strong PSD for these frequencies. 
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We computed the PSD and R-PSD of the unlocked LFP across all layers. Within each layer, the 

power spectrum density resulted in the same pattern of response as the one observed in for the 

mean, except for two exceptions. Indeed, in layer 2/3, GEM and NI evoked the same PSD in the 

alpha band while DG and NI displayed the same PSD in the gamma band (p > 0.05). We then 

compared the PSD between layers. Regarding the PSD, for all stimuli respectively (and for alpha 

and gamma bands), we observed the highest power in layer 5/6 and the lowest in layer 2/3 (p < 

0.001; Kruskal-Wallis test). These results match the findings of Van Kerkoerle and colleagues 

(2014), with a strong PSD in the alpha band, linked to the feedback interactions. However, as 

observed for the locked response, we also observed evoked the highest PSD of the spontaneous 

activity in layer 5/6. Therefore, by computing the relative PSD we were able to reduce the impact of 

the spontaneous activity on the response. This led to a different PSD pattern in the alpha band. 

Indeed, for GEM and NI, the highest power spectrum was found in layer 4 and the lowest in layer 

5/6. At these frequencies, DG and DN showed a similar laminar pattern of PSD and R-PSD. Alpha 

has been linked to prediction error messages and eye movements induce unpredictable responses 

(VanRullen et al., 2011). The fact that only animated gratings and natural images display an increase 

in the alpha band suggest that this boost is linked to a prediction error message. It is important to 

note that we computed the PSD of the complete 10 seconds of stimulation. By computing the PSD 

right after the saccades we might obtain a different laminar pattern with higher PSDs in the layers 

receiving feedback inputs (2/3 and 5/6). On the other hand, at the gamma band, all stimuli evoked 

the highest R-PSD in layer 4 and the lowest in layer 2/3, matching again the observations of Van 

Kerkoerle and colleagues (2014). In conclusion, the unlocked LFP unveiled a possible prediction 

error message induced by eye movements transmitted through feedback. We also observed the 

supposedly impact of the feedforward interactions through the increase in the gamma band. 
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Figure 3.4.32: Spectral density of the unlocked LFP in response to our set of stimuli. An increase in the frequencies 

linked to feedback is observed for GEM and NI. All stimuli displayed an increased linked to the feedforward frequencies. 
A. Spectral density across the population and within layers. B. relative spectral density across the population and within 

layers. 
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Figure 3.4.33: Barplots of the spectral density analysis of the unlocked PSD. A. Bar plots obtained for the alpha band. 

B. Bar plots obtained for the gamma band. 
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 Impact of the natural statistics on the unlocked LFP 

However, we need to confirm that this increase in PSD observed for both GEM and NI is linked to 

the eye movements. In order to investigate this question, we computed the PSD of the unlocked LFP 

that we obtained in response to our control stimuli (Figure 3.4.34; table 3.4.11). 

Again, we did not observe any difference between the stimuli between 1 and 4Hz (p > 0.05).  

For the alpha band, natural images PSD (and R-PSD) was higher than the ones evoked by NI-RT 

and NI-RST (p < 0.001; Wilcoxon test). NI-RS evoked a higher power spectrum than NI. This result 

is in agreement with the prediction error theory. Indeed, by randomizing the phase of the image we 

increase the error messages. Interestingly, the mean PSD of the NI and NI-SAC conditions were 

equal. However, NI-SAC displayed 3 peaks, one at 4Hz, one at 9H and one around 20Hz, absent in 

the NI condition. The natural images showed a smoother response, without peaks. This suggest that 

these peaks are linked to the saccades. In the alpha band, the PSD was or less powerful if the spatio-

temporal statistics were both altered. Thus, the natural images containing unaltered eye movements 

or only saccades displayed the most powerful densities. This suggest a strong impact of the eye 

movements in the prediction error message. In conclusion, we showed that the PSD increase 

observed for NI and GEM in the intermediate frequencies could be linked to the prediction error 

message induced of the eye movements. 

 

 
Figure 3.4.34: Frequency based analysis of the contextual local field potential in response to our set of control 
stimuli. A. Mean Power Spectrum Density for the complete population. Left panels: Mean PSD. Right Panels: Barplots of 

the mean PSD for frequencies between 4-20Hz and 40-150Hz. B. Mean Relative Power Spectrum Density for the complete 
population. Left panels: Mean R-PSD. Right Panels: Barplots of the mean R-PSD for frequencies between 4-20Hz and 40-
150Hz.*: significantly different from NI intermediate frequency; # significantly different from NI very high frequency. * : p < 
0.05; ** : p < 0.01;  *** : p < 0.001; # : p < 0.05; ## : p < 0.01;  ### : p < 0.001. n.s: no significant difference. Error bars and 
shaded area: SEM.  
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FULL FIELD ALPHA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 
4.9e+07 ± 
4.6e+06 

7.5e+07 ± 
6.4e+06 

7.4e+07 ± 
6.6e+06 

5.6e+07 ± 
5.0e+06 

6.0e+07 ± 
6.8e+06 

Layer 4 
6.1e+07 ± 
3.3e+06 

1.1e+08 ± 
4.9e+06 

1.1e+08 ± 
4.2e+06 

7.8e+07 ± 
3.9e+06 

8.7e+07 ± 
7.4e+06 

Layer 5/6 
1.1e+08 ± 
1.2e+07 

1.6e+08 ± 
1.3e+07 

1.5e+08 ± 
1.3e+07 

1.4e+08 ± 
1.6e+07 

1.4e+08 ± 
1.6e+07 

Mean 
7.3e+07 ± 
6.5e+06 

1.1e+08 ± 
8.0e+06 

1.1e+08 ± 
8.0e+06 

9.0e+07 ± 
8.2e+06 

9.5e+07 ± 
1.0e+07 

      
FULL FIELD ALPHA BAND R-PSD 

 

  DG GEM NI DN 
 

Layer 2/3 -0.21 ± -0.02 0.27 ± -0.04 0.25 ± -0.03 -0.06 ± -0.03 
 

Layer 4 -0.32 ± -0.02 0.42 ± -0.06 0.29 ± -0.05 -0.12 ± -0.03 
 

Layer 5/6 -0.25 ± -0.01 0.31 ± -0.04 0.20 ± -0.03 -0.04 ± -0.00 
 

Mean -0.26 ± -0.02 0.33 ± -0.04 0.25 ± -0.04 -0.07 ± -0.02 
 

      

      
FULL FIELD GAMMA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 
2.4e+06 ± 
2.5e+05 

2.1e+06 ± 
1.6e+05 

2.1e+06 ± 
1.8e+05 

1.9e+06 ± 
1.5e+05 

2.0e+06 ± 
2.4e+05 

Layer 4 
4.7e+06 ± 
3.5e+05 

3.7e+06 ± 
1.7e+05 

3.4e+06 ± 
1.6e+05 

2.9e+06 ± 
1.2e+05 

2.8e+06 ± 
2.0e+05 

Layer 5/6 
6.0e+06 ± 
5.4e+05 

5.3e+06 ± 
2.8e+05 

4.2e+06 ± 
2.4e+05 

3.9e+06 ± 
1.8e+05 

4.1e+06 ± 
3.2e+05 

Mean 
4.4e+06 ± 
3.8e+05 

3.7e+06 ± 
2.0e+05 

3.2e+06 ± 
1.9e+05 

2.9e+06 ± 
1.5e+05 

3.0e+06 ± 
2.6e+05 

      
FULL FIELD GAMMA BAND R-PSD 

 

  DG GEM NI DN 
 

Layer 2/3 0.45 ± 0.01 0.13 ± -0.03 0.27 ± -0.02 0.04 ± -0.03 
 

Layer 4 0.89 ± 0.01 0.39 ± -0.04 0.47 ± -0.03 0.10 ± -0.04 
 

Layer 5/6 0.70 ± 0.03 0.38 ± -0.03 0.34 ± -0.02 0.02 ± -0.03 
 

Mean 0.68 ± 0.02 0.30 ± -0.03 0.36 ± -0.02 0.05 ± -0.03 
 

Table 3.4.10: Mean low and high frequency unlocked PSD and R-PSD in response to our stimulus set (Mean ± SEM) 

 

 

FULL FIELD (ALPHA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
1.01e+08 ± 
6.83e+06 

1.20e+08 ± 
1.08e+07 

1.01e+08 ± -
2.99e+05 

8.95e+07 ± 
1.34e+07 

1.17e+08 ± 
1.00e+07 

7.42e+07 ± 
7.71e+06 

R-
PSD 

0.374 ± -0.042 0.601 ± -0.038 0.176 ± 0.035 0.126 ± 0.007 0.384 ± -0.023 X 

       
FULL FIELD (GAMMA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
4.03e+06 ± 
2.94e+05 

4.02e+06 ± 
2.83e+05 

3.33e+06 ± 
2.49e+05 

3.21e+06 ± 
2.34e+05 

4.36e+06 ± 
2.97e+05 

3.29e+06 ± 
2.74e+05 

R-
PSD 

0.447 ± 0.003 0.451 ± -0.003 0.158 ± -0.007 0.131 ± -0.007 0.424 ± -0.013 X 

Table 3.4.11: Mean low and high frequency unlocked PSD and R-PSD in response to our control stimulus set (Mean ± 

SEM) 
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4.2. Impact of the center surround interactions  

In the previous sections, we showed that the center surround interactions modulate the spiking 

activity, in particular when natural images are presented. In addition, we showed, by computing a 

time frequency analysis, that natural images presented full field evoked a reliable response between 

1-10Hz at the opposite of drifting gratings that only evoked a reliable response at the grating 

frequency. Based on these results, we wondered if the center surround interactions modulate the 

reliability in this frequency range or if a different behavior will be observed. In addition, it is known 

that layer 4 responses contain more high frequencies than the other layers (Maier et al., 2010) will 

these center surround interactions impact all the layers in the same frequency ranges?  

4.2.1 Time Frequency Analysis of the Spiking Activity 

We computed the time frequency analysis of the spiking activity (SUA & MUA) evoked by our set of 

stimuli presented full field or only on the center (Figures 3.4.44 to 3.4.49 & Tables 3.4.12 and 3.4.13) 

We did not investigate the response to the surround because, as showed in the previous sections, 

the latter evokes no stimulus locked response. 

 Impact of the center surround interactions on the SNR 

The time frequency analysis of the spiking activity (both SUA & MUA) showed that the center 

conditions evoked a similar response pattern as the full field. Thus, we will only focus on the impact 

of the center surround interactions for each stimulus, respectively. The concomitant stimulation of 

both center and surround with natural images evoked a more reliable response, in the low frequency 

range, than the sole stimulation of the center (p < 0.001; Wilcoxon test). This increase is linked to a 

higher signal evoked by the full field condition, but also a higher noise. Yet, the increase in noise is 

not a strong as the one observed for the signal, leading to a higher SNR for the full field condition 

(Figures 3.4.44 & 3.4.45; table 3.4.12). Dense noise also evoked higher levels of reliability, in the 

low frequency range, for the full field condition. As observed for NI, this is linked to the fact that the 

FF condition evoked a higher signal and noise (p < 0.001). Finally, no significant difference was 

observed between the FF and C conditions when drifting gratings were presented despite a higher 

mean low frequency SNR being observed for the center.   

At the multi-unit level (Figures 3.4.48 & 3.4.49; table 3.4.13), in response to natural images and 

dense noise, we observed the same impact of the center surround interactions as in the single unit 

population. At this scale, drifting gratings evoked a significantly higher low frequency signal and 

noise when presented in the center (p < 0.001). This simultaneous increase led to an absence of 

difference in reliability between the FF and C conditions.  

Our previous results showed that both fast spiking and regular spiking and fast spiking neurons were 

impacted by center surround interactions when natural images were presented. Based on these 

results we wondered if the same pattern would be observed by computing a time frequency analysis 

(Figures 3.4.50 to 3.4.53; Table 3.4.14 and 3.4.15).The two neuronal subtypes displayed the same 

pattern of center surround modulations, in the low frequency range, as the complete single unit 

population. 

At the high frequency level (and for both SUA and MUA), dense noise and natural images evoked 

higher levels of reliability when presented full field. This higher reliability originates from the 

generation a higher noise and a higher signal when both center and surround were stimulate (p < 

0.001). No difference was observed for DG. 
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 Laminar impact of the center surround interactions 

Our previous results showed that the center surround interactions also modulated the reliability levels 

across layers. This was also observed for the signal to noise ratio.  

Indeed, at the single unit level (Figures 3.4.44 & 3.4.45; table 3.4.12), the full field presentation of 

natural images evoked the highest low frequency SNR in both layers 4 and 5/6 (p < 0.001). In both 

layers, this is linked to a higher low frequency signal evoked by the FF condition. The FF condition 

also evoked a higher low frequency noise in layer 4, while no difference was observed between the 

two conditions in layer 5/6 (despite a higher mean low frequency noise evoked by the FF). On the 

other hand, no significant difference in reliability was observed in layer 2/3. This is probably linked 

to the small number of neurons recorded in this layer (10). The Dense noise displayed the same 

response pattern as natural excepts with one exception: the full field condition evoked higher levels 

of reliability in layer 2/3 (p < 0.05). Finally, as observed for the mean population, no significant 

difference in reliability between the two conditions was observed in response to DG (despite a higher 

mean reliability evoked by the center condition). The almost same pattern of responses was 

observed at the multi-unit level. The main difference lied on the fact the differences that were not 

significant for the single unit are for the MUA (Figures 3.4.48 & 3.4.49; table 3.4.13). It is important 

to note that the difference in reliability evoked by the presentation of natural images full field or only 

on the center are higher in the layers containing horizontal connections (table 3.4.13). This suggest 

that in these layers (2/3 and 5/6), these connections play an important part in the generation of a 

reliable response.  

Regarding the single unit subpopulations, regular spiking cells displayed the same modulation as 

the complete population. On the other hand, fast spiking cells were only modulated by the center 

surround interactions in layer 4. 

Across layers, for both SUA and MUA, the high frequency reliability displayed the same pattern as 

the one observed for the complete population ((Figures 3.4.44 & 3.4.46; 3.4.47 & 3.4.49; tables 

3.4.12 and 3.4.13). 

 

In summary, we showed that the spiking activity is modulated by the center surround interactions. 

This modulation is particularly visible at the low frequency range. This suggests that the modulations 

that we observed with non-frequency measurements originate from these frequencies. The reliability 

observed for natural images is the result of the generation of a strong signal in these low frequency 

bands that compensates the noise increase. Finally, we showed again, that the multi-unit activity is 

a more reliable signal than the single unit activity. This suggest that in order to process a visual input 

and transmit it to different visual areas, the activity of many neurons might be needed. 
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Figure 3.4.44.: Mean and laminar SNR of the single unit activity in response to natural and artificial stimuli presented on 

the full field (full line) and center (big dashed lines) conditions. The center surround interactions increase the reliability 
evoked by Natural Images.  
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Figure 3.4.45: Bar plots of the low frequency SNR of the single unit activity in response to our stimulus set. A. 
Mean low frequency Signal  across layers and for the complete population. B. Mean low frequency Noise across layers 
and for the complete population. C. Mean low frequency SNR across layers and for the complete population.(Total neurons 

= 221; L2/3 = 10; L4 = 111; L5/6 = 99 neurons) *: all conditions are significantly different from each other; * : p < 0.05; ** : 
p < 0.01;  *** : p < 0.001; Error bars : SEM. 

  



 

262 

 

 

 
Figure 3.4.46: Bar plots of the high frequency SNR of the single unit activity in response to our stimulus set. A. 
Mean high frequency Signal across layers and for the complete population. B. Mean high frequency Noise across layers 
and for the complete population. C. Mean high frequency SNR across layers and for the complete population.(Total 

neurons = 221; L2/3 = 10; L4 = 111; L5/6 = 99 neurons). *: all conditions are significantly different from each other; * : p < 
0.05; ** : p < 0.01;  *** : p < 0.001; Error bars : SEM. 

  



 

263 

 

 

 
Figure 3.4.47: Mean and laminar SNR of the multi-unit activity in response to natural and artificial stimuli presented on the 

full field (full line) and center (big dashed lines) conditions.  
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Figure 3.4.48: Bar plots of the low frequency SNR of the MUA in response to our stimulus set. A. Mean low frequency 
Signal across layers and for the complete population. B. Mean low frequency Noise across layers and for the complete 
population. C. Mean low frequency SNR across layers and for the complete population. (Total sites = 377; L2/3 = 52; L4 = 

187; L5/6 = 138 sites). *: all conditions are significantly different from each other; * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; 
Error bars : SEM. 
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Figure 3.4.49: Bar plots of the high frequency SNR of MUA in response to our stimulus set. A. Mean high frequency 
Signal across layers and for the complete population. B. Mean high frequency Noise across layers and for the complete 
population. C. Mean high frequency SNR across layers and for the complete population.(Total sites = 377; L2/3 = 52; L4 

= 187; L5/6 = 138 sites). *: all conditions are significantly different from each other; * : p < 0.05; ** : p < 0.01;  *** : p < 
0.001; Error bars : SEM. 
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Figure 3.4.50: Mean and laminar SNR of the fast spiking cells in response to natural and artificial stimuli presented on the 

full field (full line) and center (big dashed lines) conditions.  
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Figure 3.4.51: Bar plots of the low frequency SNR of FS cells in response to our stimulus set. A. Mean low frequency 
Signal across layers and for the complete population. B. Mean low frequency Noise across layers and for the complete 
population. C. Mean low frequency SNR across layers and for the complete population. (Total neurons = 83; L2/3 = 4; L4 

= 61; L5/6 = 18 neurons). *: all conditions are significantly different from each other; * : p < 0.05; ** : p < 0.01;  *** : p < 
0.001; Error bars : SEM. 
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Figure 3.4.52: Mean laminar and SNR of the regular spiking cells in response to natural and artificial stimuli presented on 

the full field (full line) and center (big dashed lines) conditions.  
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Figure 3.4.53: Bar plots of the low frequency SNR of RS cells in response to our stimulus set. A. Mean low frequency 
Signal across layers and for the complete population. B. Mean low frequency Noise across layers and for the complete 
population. C. Mean low frequency SNR across layers and for the complete population.(Total neurons = 138; L2/3 = 7; L4 

= 50; L5/6 = 81 neurons) *: all conditions are significantly different from each other; * : p < 0.05; ** : p < 0.01;  *** : p < 
0.001; Error bars : SEM. 
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Our previous results showed that the alteration of the natural statistics had no impact on the center 

surround interactions observed for natural images. We wondered if these observations were also 

true when computing a time frequency analysis and in which frequency range their impact is the 

higher. At all levels of spiking activity (single and multi-unit activities), the center condition evoked 

the same response pattern as the full field one (table 3.4.16). 

We then investigated the impact of the center surround condition in the low frequency responses. At 

the single unit level (and its subclasses) the full field condition always evoked a higher mean signal, 

noise and SNR than the center condition. However, these differences were not significant. On the 

other hand, the same response pattern was observed at the multi-unit scale, but all the values were 

significantly different (Because of this, we only plotted the MUA results in figure 3.4.54, but all values 

are reported in table 3.4.16). These observations were also true at the high frequency range. This 

suggest that the number of well isolated units used to perform the time frequency analysis is not 

sufficient to reach a significant difference. However, by increasing the number of isolated neurons 

we should reach significantly different values. In summary, our results show that at the spiking level, 

the altered and unaltered natural statistics participate in the same way to the center surround 

modulations. 
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Figure 3.4.54: Time Frequency analysis of the MUA (n =150 sites) in response to natural and artificial stimuli presented 

on the full field (full line) and center (big dashed lines) conditions (top row) and the mean low and high frequencies 
responses (bottow row). 
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FULL FIELD LOW FREQUENCY SIGNAL (SUA)  CENTER  

  DG NI DN  DG NI DN 

L2/3 0.000 ± 0.000 0.010 ± 0.002 0.007 ± 0.001  0.001 ± 0.001 0.009 ± 0.002 0.005 ± 0.001 

L4 0.012 ± 0.001 0.026 ± 0.002 0.012 ± 0.001  0.014 ± 0.002 0.021 ± 0.002 0.010 ± 0.001 

L5/6 0.012 ± 0.004 0.022 ± 0.005 0.014 ± 0.003  0.015 ± 0.005 0.020 ± 0.005 0.014 ± 0.004 

Mean 0.012 ± 0.001 0.024 ± 0.001 0.011 ± 0.001  0.015 ± 0.002 0.019 ± 0.001 0.010 ± 0.001 

        

FULL FIELD LOW FREQUENCY NOISE (SUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 -0.005 ± 0.002 0.014 ± 0.000 0.017 ± 0.001  0.002 ± 0.001 0.013 ± 0.000 0.012 ± 0.000 

L4 0.018 ± 0.002 0.018 ± 0.001 0.007 ± 0.001  0.020 ± 0.002 0.015 ± 0.001 0.006 ± 0.002 

L5/6 0.011 ± 0.003 0.011 ± 0.002 0.006 ± 0.001  0.015 ± 0.003 0.010 ± 0.003 0.006 ± 0.002 

Mean 0.015 ± 0.001 0.015 ± 0.001 0.006 ± 0.001  0.018 ± 0.001 0.012 ± 0.001 0.005 ± 0.001 

        

FULL FIELD LOW FREQUENCY SNR (SUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 0.014 ± 0.001 0.102 ± 0.025 0.063 ± 0.015  0.023 ± 0.005 0.088 ± 0.018 0.051 ± 0.012 

L4 0.091 ± 0.011 0.231 ± 0.011 0.124 ± 0.009  0.102 ± 0.017 0.198 ± 0.010 0.107 ± 0.009 

L5/6 0.068 ± 0.020 0.182 ± 0.034 0.109 ± 0.023  0.083 ± 0.025 0.148 ± 0.032 0.103 ± 0.025 

Mean 0.085 ± 0.007 0.211 ± 0.009 0.106 ± 0.006  0.099 ± 0.011 0.167 ± 0.007 0.096 ± 0.006 

        

FULL FIELD HIGH FREQUENCY SIGNAL (SUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 -0.001 ± 0.000 0.002 ± 0.000 0.004 ± 0.001  0.000 ± 0.000 0.002 ± 0.000 0.003 ± 0.000 

L4 0.006 ± 0.001 0.006 ± 0.001 0.007 ± 0.001  0.006 ± 0.001 0.005 ± 0.000 0.005 ± 0.001 

L5/6 0.004 ± 0.001 0.005 ± 0.002 0.008 ± 0.003  0.005 ± 0.001 0.004 ± 0.001 0.009 ± 0.003 

Mean 0.005 ± 0.000 0.006 ± 0.000 0.007 ± 0.001  0.005 ± 0.000 0.004 ± 0.000 0.006 ± 0.001 

        

FULL FIELD HIGH FREQUENCY NOISE (SUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 -0.007 ± 0.000 0.008 ± 0.001 0.014 ± 0.002  -0.000 ± 0.000 0.007 ± 0.000 0.010 ± 0.001 

L4 0.021 ± 0.003 0.016 ± 0.001 0.008 ± 0.002  0.020 ± 0.002 0.013 ± 0.001 0.007 ± 0.001 

L5/6 0.012 ± 0.003 0.009 ± 0.002 0.007 ± 0.002  0.015 ± 0.003 0.008 ± 0.003 0.006 ± 0.002 

Mean 0.017 ± 0.001 0.013 ± 0.001 0.007 ± 0.001  0.018 ± 0.001 0.010 ± 0.001 0.006 ± 0.001 

        

FULL FIELD HIGH FREQUENCY SNR (SUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 0.005 ± -0.000 0.012 ± 0.000 0.021 ± 0.004  0.005 ± -0.000 0.012 ± 0.000 0.021 ± 0.004 

L4 0.031 ± 0.005 0.032 ± 0.002 0.048 ± 0.004  0.031 ± 0.005 0.032 ± 0.002 0.048 ± 0.004 

L5/6 0.012 ± 0.005 0.022 ± 0.006 0.051 ± 0.018  0.012 ± 0.005 0.022 ± 0.006 0.051 ± 0.018 

Mean 0.023 ± 0.003 0.027 ± 0.001 0.047 ± 0.004  0.023 ± 0.003 0.027 ± 0.001 0.047 ± 0.004 

Table 3.4.12: Mean high and low frequency signal, noise and SNR of the single unit activity in response to our stimulus 

set presented full field or on the center (mean ± SEM) 
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FULL FIELD LOW FREQUENCY SIGNAL (MUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 0.001 ± 0.000 0.059 ± 0.007 0.025 ± 0.003  0.002 ± 0.000 0.006 ± 0.001 0.011 ± 0.002 

L4 0.038 ± 0.002 0.101 ± 0.003 0.054 ± 0.002  0.013 ± 0.000 0.016 ± 0.001 0.030 ± 0.002 

L5/6 0.032 ± 0.001 0.090 ± 0.004 0.036 ± 0.001  0.009 ± 0.000 0.012 ± 0.000 0.018 ± 0.001 

Mean 0.031 ± 0.001 0.089 ± 0.001 0.043 ± 0.001  0.010 ± 0.000 0.014 ± 0.000 0.022 ± 0.001 

        

FULL FIELD LOW FREQUENCY NOISE (MUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 -0.015 ± -0.003 0.024 ± 0.000 0.015 ± 0.001  -0.003 ± -0.002 0.015 ± 0.000 0.012 ± 0.000 

L4 0.036 ± 0.002 0.038 ± 0.001 0.017 ± 0.001  0.045 ± 0.002 0.032 ± 0.001 0.017 ± 0.001 

L5/6 0.030 ± 0.002 0.022 ± 0.002 0.010 ± 0.001  0.030 ± 0.002 0.021 ± 0.002 0.010 ± 0.001 

Mean 0.029 ± 0.001 0.030 ± 0.001 0.015 ± 0.001  0.035 ± 0.001 0.026 ± 0.001 0.015 ± 0.001 

        

FULL FIELD LOW FREQUENCY SNR (MUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 0.013 ± -0.000 0.232 ± 0.015 0.089 ± 0.004  0.021 ± -0.000 0.179 ± 0.011 0.083 ± 0.004 

L4 0.123 ± 0.006 0.382 ± 0.010 0.229 ± 0.008  0.139 ± 0.007 0.331 ± 0.008 0.209 ± 0.008 

L5/6 0.103 ± 0.004 0.342 ± 0.016 0.152 ± 0.003  0.099 ± 0.006 0.275 ± 0.011 0.135 ± 0.004 

Mean 0.101 ± 0.002 0.344 ± 0.005 0.184 ± 0.003  0.107 ± 0.003 0.286 ± 0.004 0.165 ± 0.003 

        

FULL FIELD HIGH FREQUENCY SIGNAL (MUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 0.000 ± 0.000 0.009 ± 0.001 0.013 ± 0.002  0.002 ± 0.000 0.006 ± 0.001 0.011 ± 0.002 

L4 0.013 ± 0.001 0.021 ± 0.001 0.033 ± 0.002  0.013 ± 0.000 0.016 ± 0.001 0.030 ± 0.002 

L5/6 0.010 ± 0.000 0.016 ± 0.001 0.021 ± 0.001  0.009 ± 0.000 0.012 ± 0.000 0.018 ± 0.001 

Mean 0.011 ± 0.000 0.018 ± 0.000 0.025 ± 0.001  0.010 ± 0.000 0.014 ± 0.000 0.022 ± 0.001 

        

FULL FIELD HIGH FREQUENCY NOISE (MUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 -0.002 ± -0.001 0.017 ± -0.000 0.016 ± 0.001  0.006 ± -0.000 0.012 ± 0.000 0.012 ± 0.000 

L4 0.048 ± 0.002 0.031 ± 0.001 0.022 ± 0.000  0.046 ± 0.002 0.025 ± 0.001 0.019 ± 0.000 

L5/6 0.037 ± 0.002 0.026 ± 0.002 0.017 ± 0.001  0.031 ± 0.001 0.022 ± 0.001 0.014 ± 0.001 

Mean 0.039 ± 0.001 0.027 ± 0.000 0.019 ± 0.000  0.037 ± 0.001 0.023 ± 0.000 0.016 ± 0.000 

        

FULL FIELD HIGH FREQUENCY SNR (MUA)  CENTER 

  DG NI DN  DG NI DN 

L2/3 -0.001 ± -0.001 0.023 ± -0.000 0.044 ± 0.002  -0.001 ± -0.001 0.015 ± -0.001 0.041 ± 0.001 

L4 0.017 ± 0.001 0.060 ± 0.002 0.133 ± 0.008  0.017 ± 0.001 0.047 ± 0.002 0.123 ± 0.007 

L5/6 0.011 ± 0.001 0.047 ± 0.002 0.085 ± 0.003  0.010 ± 0.001 0.032 ± 0.001 0.078 ± 0.003 

Mean 0.013 ± 0.001 0.051 ± 0.001 0.101 ± 0.003  0.013 ± 0.001 0.038 ± 0.001 0.093 ± 0.003 

Table 3.4.13: Mean high and low frequency signal, noise and SNR of the multi-unit activity in response to our stimulus set 

presented full field or on the center (mean ± SEM) 
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FULL FIELD LOW FREQUENCY SIGNAL (FS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.001 ± 0.001 0.017 ± 0.004 0.011 ± 0.002 
 

0.002 ± 0.000 0.015 ± 0.003 0.009 ± 0.001 

L4 0.016 ± 0.001 0.035 ± 0.003 0.016 ± 0.001 
 

0.017 ± 0.002 0.027 ± 0.003 0.015 ± 0.001 

L5/6 0.018 ± 0.007 0.031 ± 0.011 0.022 ± 0.007 
 

0.025 ± 0.009 0.031 ± 0.010 0.024 ± 0.008 

Mean 0.018 ± 0.001 0.034 ± 0.003 0.017 ± 0.001 
 

0.020 ± 0.002 0.028 ± 0.002 0.017 ± 0.002 

    
    

FULL FIELD LOW FREQUENCY NOISE (FS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.006 ± 0.004 0.024 ± 0.001 0.024 ± 0.001 
 

0.006 ± 0.002 0.022 ± 0.000 0.020 ± -0.001 

L4 0.024 ± 0.002 0.022 ± 0.001 0.010 ± 0.001 
 

0.025 ± 0.002 0.019 ± 0.001 0.009 ± 0.001 

L5/6 0.015 ± 0.005 0.015 ± 0.003 0.008 ± 0.002 
 

0.022 ± 0.005 0.015 ± 0.004 0.009 ± 0.003 

Mean 0.021 ± 0.001 0.020 ± 0.001 0.010 ± 0.001 
 

0.024 ± 0.001 0.018 ± 0.001 0.010 ± 0.001 

    
    

FULL FIELD LOW FREQUENCY SNR (FS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 0.002 ± -0.001 0.150 ± 0.043 0.090 ± 0.026 
 

0.015 ± 0.002 0.129 ± 0.031 0.080 ± 0.022 

L4 0.112 ± 0.012 0.287 ± 0.017 0.160 ± 0.011 
 

0.114 ± 0.015 0.242 ± 0.013 0.141 ± 0.011 

L5/6 0.093 ± 0.036 0.214 ± 0.062 0.146 ± 0.038 
 

0.123 ± 0.044 0.208 ± 0.059 0.161 ± 0.045 

Mean 0.114 ± 0.010 0.272 ± 0.015 0.151 ± 0.008 
 

0.126 ± 0.014 0.231 ± 0.012 0.146 ± 0.010 

        
FULL FIELD HIGH FREQUENCY SIGNAL (FS) 

 
CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.001 ± 0.000 0.004 ± 0.001 0.007 ± 0.001 
 

0.001 ± 0.000 0.004 ± 0.000 0.005 ± 0.001 

L4 0.009 ± 0.001 0.009 ± 0.001 0.010 ± 0.001 
 

0.008 ± 0.001 0.007 ± 0.001 0.009 ± 0.001 

L5/6 0.006 ± 0.002 0.008 ± 0.003 0.015 ± 0.006 
 

0.008 ± 0.002 0.007 ± 0.003 0.016 ± 0.007 

Mean 0.008 ± 0.000 0.009 ± 0.001 0.012 ± 0.00 
 

0.008 ± 0.001 0.007 ± 0.001 0.011 ± 0.001 

    
    

FULL FIELD HIGH FREQUENCY NOISE (FS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.007 ± 0.002 0.015 ± 0.002 0.021 ± 0.003 
 

0.004 ± 0.001 0.014 ± 0.000 0.016 ± 0.001 

L4 0.030 ± 0.003 0.019 ± 0.001 0.012 ± 0.001 
 

0.028 ± 0.002 0.016 ± 0.001 0.011 ± 0.001 

L5/6 0.015 ± 0.005 0.012 ± 0.004 0.010 ± 0.003 
 

0.021 ± 0.005 0.012 ± 0.004 0.010 ± 0.004 

Mean 0.026 ± 0.002 0.018 ± 0.001 0.012 ± 0.001 
 

0.026 ± 0.001 0.016 ± 0.001 0.011 ± 0.001 

    
    

FULL FIELD HIGH FREQUENCY SNR (FS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 0.004 ± 0.000 0.019 ± 0.005 0.042 ± 0.013 
 

0.003 ± 0.001 0.015 ± 0.002 0.033 ± 0.010 

L4 0.040 ± 0.006 0.059 ± 0.003 0.082 ± 0.005 
 

0.044 ± 0.006 0.049 ± 0.003 0.071 ± 0.005 

L5/6 0.020 ± 0.009 0.044 ± 0.012 0.083 ± 0.031 
 

0.021 ± 0.008 0.037 ± 0.010 0.093 ± 0.035 

Mean 0.031 ± 0.003 0.057 ± 0.003 0.083 ± 0.005 
 

0.035 ± 0.004 0.046 ± 0.002 0.080 ± 0.006 

Table 3.4.14: Mean high and low frequency signal, noise and SNR of the fast spiking neurons in response to our stimulus 

set presented full field or on the center (mean ± SEM) 
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FULL FIELD LOW FREQUENCY SIGNAL (RS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 0.000 ± 0.000 0.003 ± 0.000 0.003 ± 0.001 
 

0.001 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 

L4 0.008 ± 0.001 0.017 ± 0.001 0.007 ± 0.001 
 

0.011 ± 0.002 0.014 ± 0.001 0.006 ± 0.001 

L5/6 0.005 ± 0.000 0.013 ± 0.001 0.006 ± 0.001 
 

0.006 ± 0.001 0.009 ± 0.001 0.005 ± 0.000 

Mean 0.006 ± 0.000 0.014 ± 0.000 0.004 ± 0.000 
 

0.009 ± 0.001 0.010 ± 0.000 0.004 ± 0.000 

    
    

FULL FIELD LOW FREQUENCY NOISE (RS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.005 ± -0.001 0.004 ± 0.000 0.009 ± 0.001 
 

-0.002 ± 0.001 0.003 ± 0.000 0.004 ± 0.001 

L4 0.012 ± 0.002 0.014 ± 0.001 0.003 ± 0.002 
 

0.015 ± 0.002 0.010 ± 0.002 0.002 ± 0.002 

L5/6 0.007 ± 0.001 0.007 ± 0.001 0.003 ± 0.000 
 

0.009 ± 0.001 0.005 ± 0.001 0.003 ± 0.000 

Mean 0.007 ± 0.001 0.009 ± 0.001 0.001 ± 0.001 
 

0.011 ± 0.001 0.006 ± 0.001 0.001 ± 0.001 

    
    

FULL FIELD LOW FREQUENCY SNR (RS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 0.025 ± 0.005 0.055 ± 0.007 0.037 ± 0.003 
 

0.030 ± 0.008 0.046 ± 0.006 0.021 ± 0.002 

L4 0.070 ± 0.011 0.175 ± 0.006 0.089 ± 0.008 
 

0.089 ± 0.019 0.153 ± 0.007 0.074 ± 0.007 

L5/6 0.043 ± 0.005 0.149 ± 0.007 0.072 ± 0.008 
 

0.043 ± 0.006 0.088 ± 0.006 0.046 ± 0.004 

Mean 0.057 ± 0.004 0.150 ± 0.003 0.060 ± 0.003 
 

0.072 ± 0.008 0.104 ± 0.002 0.046 ± 0.002 

        
FULL FIELD HIGH FREQUENCY SIGNAL (RS) 

 
CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.001 ± -0.000 0.001 ± -0.000 0.002 ± 0.000 
 

-0.001 ± -0.000 0.000 ± 0.000 0.001 ± 0.000 

L4 0.003 ± 0.001 0.004 ± 0.000 0.003 ± 0.000 
 

0.004 ± 0.001 0.003 ± 0.000 0.002 ± 0.000 

L5/6 0.002 ± 0.000 0.003 ± 0.000 0.002 ± 0.000 
 

0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 

Mean 0.002 ± 0.000 0.003 ± 0.000 0.002 ± 0.000 
 

0.003 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 

    
    

FULL FIELD HIGH FREQUENCY NOISE (RS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 -0.007 ± -0.002 0.002 ± -0.000 0.007 ± 0.001 
 

-0.004 ± -0.000 0.000 ± -0.000 0.003 ± 0.000 

L4 0.012 ± 0.003 0.012 ± 0.001 0.004 ± 0.002 
 

0.013 ± 0.002 0.009 ± 0.001 0.002 ± 0.001 

L5/6 0.009 ± 0.001 0.007 ± 0.001 0.003 ± 0.000 
 

0.009 ± 0.000 0.004 ± 0.001 0.003 ± 0.000 

Mean 0.008 ± 0.001 0.008 ± 0.000 0.002 ± 0.001 
 

0.010 ± 0.001 0.005 ± 0.001 0.001 ± 0.001 

    
    

FULL FIELD HIGH FREQUENCY SNR (RS) 
 

CENTER 

  DG NI DN 
 

DG NI DN 

L2/3 0.008 ± -0.001 0.012 ± -0.001 0.013 ± -0.000 
 

0.007 ± -0.001 0.008 ± -0.001 0.008 ± -0.001 

L4 0.015 ± 0.003 0.021 ± 0.002 0.028 ± 0.003 
 

0.019 ± 0.005 0.016 ± 0.002 0.025 ± 0.003 

L5/6 0.002 ± 0.001 0.015 ± 0.001 0.018 ± 0.002 
 

0.004 ± 0.001 0.006 ± 0.001 0.009 ± 0.001 

Mean 0.004 ± 0.001 0.015 ± 0.001 0.017 ± 0.001 
 

0.010 ± 0.002 0.007 ± 0.001 0.014 ± 0.001 

Table 3.4.15: Mean high and low frequency signal, noise and SNR of the regular spiking neurons in response to our 

stimulus set presented full field or on the center (mean ± SEM) 
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FULL FIELD SIGNAL 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.027 ± 0.007 0.030 ± 0.008 0.021 ± 0.006 0.028 ± 0.009 0.023 ± 0.007 

RS 0.017 ± 0.001 0.018 ± 0.001 0.015 ± 0.001 0.017 ± 0.001 0.013 ± 0.001 

SUA 0.022 ± 0.004 0.024 ± 0.004 0.018 ± 0.003 0.022 ± 0.005 0.018 ± 0.004 

MUA 0.061 ± 0.004 0.066 ± 0.004 0.051 ± 0.003 0.061 ± 0.003 0.054 ± 0.004 

      
FULL FIELD NOISE 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.016 ± 0.002 0.019 ± 0.003 0.012 ± 0.001 0.015 ± 0.002 0.014 ± 0.003 

RS 0.012 ± 0.001 0.015 ± 0.001 0.011 ± 0.001 0.011 ± 0.001 0.009 ± 0.001 

SUA 0.014 ± 0.001 0.017 ± 0.002 0.011 ± 0.001 0.013 ± 0.001 0.012 ± 0.002 

MUA 0.036 ± 0.001 0.045 ± 0.001 0.028 ± 0.001 0.034 ± 0.001 0.031 ± 0.001 

      
FULL FIELD SNR 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.199 ± 0.038 0.215 ± 0.039 0.169 ± 0.034 0.220 ± 0.045 0.172 ± 0.036 

RS 0.183 ± 0.006 0.189 ± 0.008 0.160 ± 0.009 0.185 ± 0.010 0.139 ± 0.008 

SUA 0.191 ± 0.022 0.202 ± 0.024 0.164 ± 0.022 0.202 ± 0.027 0.156 ± 0.022 

MUA 0.226 ± 0.015 0.232 ± 0.014 0.202 ± 0.014 0.233 ± 0.013 0.203 ± 0.016 

      
CENTER SIGNAL 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.026 ± 0.007 0.029 ± 0.007 0.022 ± 0.006 0.028 ± 0.007 0.022 ± 0.007 

RS 0.012 ± 0.000 0.015 ± 0.001 0.011 ± 0.001 0.013 ± 0.001 0.010 ± 0.001 

SUA 0.019 ± 0.004 0.022 ± 0.004 0.017 ± 0.003 0.020 ± 0.004 0.016 ± 0.004 

MUA 0.057 ± 0.004 0.061 ± 0.003 0.047 ± 0.002 0.058 ± 0.003 0.052 ± 0.003 

      
CENTER NOISE 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.017 ± 0.003 0.018 ± 0.003 0.015 ± 0.002 0.019 ± 0.004 0.0149± 0.003 

RS 0.009 ± 0.002 0.012 ± 0.002 0.007 ± 0.002 0.008 ± 0.002 0.005 ± 0.002 

SUA 0.013 ± 0.002 0.015 ± 0.002 0.011 ± 0.002 0.013 ± 0.003 0.010 ± 0.002 

MUA 0.030 ± 0.001 0.039 ± 0.001 0.029 ± 0.001 0.035 ± 0.001 0.029 ± 0.001 

      
CENTER SNR 

  NI NI-RS NI-RT NI-RST NI-SAC 

FS 0.199 ± 0.038 0.224 ± 0.039 0.180 ± 0.033 0.213 ± 0.041 0.180 ± 0.036 

RS 0.138 ± 0.008 0.156 ± 0.009 0.123 ± 0.009 0.147 ± 0.010 0.115 ± 0.010 

SUA 0.169 ± 0.023 0.190 ± 0.024 0.151 ± 0.021 0.180 ± 0.026 0.148 ± 0.023 

MUA 0.214 ± 0.014 0.222 ± 0.013 0.183 ± 0.012 0.216 ± 0.011 0.194 ± 0.015 

Table 3.4.16: Mean low frequency signal, noise and SNR of the spiking activity in response to our control stimulus set 

presented full field or on the center (mean ± SEM) 
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4.2.2 Time Frequency Analysis of the Local Field Potential 

Our previous measurements showed that at the in response to natural images the reliability of the 

spiking activity is modulated by center surround interactions. This modulation mainly occurs in the 

low frequency range (1-10Hz). We also showed that the reliability of the local field potential is strongly 

modulated by center surround interactions and that the surround takes a major role in the generation 

of a reliable response. However, we did not investigate yet the frequency dependency of the LFP 

reliability. Will we observe an increase in reliability mainly in the low frequency range? Moreover, will 

the frequency content of the reliability be similar across layers? As performed in section 4.1 we 

computed the subtracted the spontaneous activity from the signal, noise and signal to noise ratio, 

yet we will refer to them as signal, noise and signal to noise ratio. 

 Impact of the center surround interactions on the SNR 

We computed the time frequency analysis for all stimuli presented in the center or surround 

conditions (Figure 3.4.55 to 3.4.58; tables 3.4.17 and 3.4.18). The mean responses of the center 

and the surround followed the same pattern as the ones evoked by the full field. 

Natural images evoked the highest low frequency reliability for the full field condition across the 

population (p < 0.001; Friedman test). This higher reliability is the result of a higher low frequency 

signal evoked by the full field condition but also a higher low frequency noise (p < 0.001). Despite 

this increase in noise, the SNR was still higher than the one evoked by the center and the surround. 

Interestingly, the surround stimulation evoked a higher level of low frequency reliability than the 

center (p < 0.001). This increase originates from a higher noise and a higher signal (p < 0.001). Both 

full field and center conditions displayed a higher noise than the center. This suggests that the 

surround participates in the noise increase but also on the signal increase that we observe. All 

artificial stimuli evoked the highest low frequency reliability for the full field condition and the lowest 

for the surround (Figures 3.4.56 and 3.3.57). All stimuli elicited the highest signal and noise when 

presented full field. 

We also investigated the impact of our stimulations on the high frequency reliability (Figures 3.4.55, 

3.4.56 and 3.4.58; table 3.4.18). When presented in the full field condition, DN evoked the highest 

signals while the surround evoked the lowest ones. We also observed an increase of noise at the 

center condition. This led to the highest high frequency reliability being elicited by a full field 

stimulation and the lowest one by the surround. 

 Laminar impact of the center surround interactions 

As observed for the full field condition, natural images evoked, for both center and surround 

conditions, the most reliable response in the low frequency range, within all layers (p < 0.001; 

Friedman test). However, the different conditions of stimulation had different impact across layers. 

Within all layers, the full field presentation of the natural images evoked the most reliable low 

frequency response. Again, this is linked to higher low frequency signal and noise (p < 0.001). In 

layers 2/3 and 5/6, i.e. the layers containing horizontal connections, the surround evoked a more 

reliable low frequency response than the center. On the other hand, in layer 4 no difference in 

reliability was observed between the center and surround conditions (p > 0.05). This absence of 

difference is caused by a high signal and a high noise evoked by the surround condition, while the 

center condition induced a lower noise and a lower signal than the surround condition. This led to 
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similar ratios. This suggest that the surround play an important part in the generation of a highly 

reliable response and that the latter is mediated by horizontal connections.  

The full field presentation of the animated gratings evoked the most reliable low frequency response 

within all layers (p < 0.001). In layer 4, the center condition evoked a higher low frequency response 

than the surround (table 3.4.17). However, in layers 2/3 and 5/6, no difference between the center 

and surround conditions was observed. This is linked the fact that, for the two conditions, almost no 

difference in signal and noise were observed in these layers, leading to an absence of difference in 

the reliability. This result highlights the impact of the horizontal connections in the generation of a 

reliable response. In addition, it shows that the surround is sensitive to natural temporal statistics but 

that natural spatial statistics are also important in the generation of a reliable response.  

Finally, dense noise and drifting gratings evoked, within layers, the same response pattern as the 

one observed for the complete population.  

Regarding the high frequency reliability, the full field condition generally evoked the highest reliability 

levels and the surround the lowest ones. This was not observed in layers 2/3 and 5/6 when NI and 

GEM where presented in the surround. 

 

In summary, we showed that natural images low frequency reliability is strongly modulated by center 

surround interactions. This originates from an interplay between an increase in signal and an 

increase in noise, higher for NI than the other stimuli, thus leading to a higher reliability. In addition, 

we showed that the sole stimulation of the surround with natural images evokes a more reliable 

response than the center stimulation.  
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Figure 3.4.55: Time Frequency analysis of the local field potential in response to natural images presented on the full field 

(full line), center (big dashed lines) and surround (small dashed lines) conditions. The center surround interactions increase 
the reliability evoked by Natural Images. Surround stimulation with NI evoked a higher low frequency reliability than the 
center condition in layers 2/3 and 5/6. 
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Figure 3.4.56: Time Frequency analysis of the local field potential in response to artificial stimuli presented on the full field 

(full line), center (big dashed lines) and surround (small dashed lines) conditions. Artificial stimuli’ reliability is not strongly 
modulated by the surround alone. 
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Figure 3.4.57: Bar plots of the low frequency SNR of LFP in response to our stimulus set. A. Mean low frequency 
Signal across layers and for the complete population. B. Mean low frequency Noise across layers and for the complete 
population. C. Mean low frequency SNR across layers and for the complete population.  *: all conditions are significantly 

different from each other; # Full field is significantly different from the other conditions; § center is significantly different 
from the other conditions.  * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; Error bars : SEM. 

  



 

282 

 

 

 
Figure 3.4.58: Bar plots of the high frequency SNR of LFP in response to our stimulus set. A. Mean high frequency 
Signal across layers and for the complete population. B. Mean high frequency Noise across layers and for the complete 
population. C. Mean high frequency SNR across layers and for the complete population.  *: all conditions are significantly 

different from each other; # Full Field is significantly different from the other conditions; + Surround is significantly different 
from the other conditions; * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; Error bars : SEM. 

 

  



 

283 

 

 

 Impact of the natural statistics on the center surround interactions 

Our results showed that natural images and grating animated with eye movements do not elicit the 

same reliability levels, in particular for the surround only stimulations. Is this difference linked to the 

spatial statistics of the natural images? Will we observe different responses if the temporal or spatial 

statistics are altered? We first compared the low frequency signal evoked by all stimuli for the center 

and surround conditions (Figure 3.4.59; Table 3.4.19). When presented in the center, the unaltered 

natural images evoked a higher SNR than all altered stimuli, except NI-SAC that displayed a higher 

reliability (p < 0.001). For the surround condition, we observed the same reliability pattern, except 

for NI-SAC that evoked the same reliability as NI. Natural images evoked the highest reliability for 

the full field condition and the lowest one for the center (p < 0.001) while NI-RS and NI-SAC displayed 

the highest levels of reliability for the full field condition, but no difference was observed between the 

center and surround conditions (figure 3.4.59). On the other hand, NI-RT and NI-RST displayed no 

difference between the full field and center conditions that evoked a higher level of reliability than 

the surround (p < 0.001). All the reliability levels that we observed originate from a similar response 

patter in the signal and noise values. These results confirm the strong impact of the surround on the 

generation of a reliable response. This reliable response is the result of interactions between natural 

spatial and temporal statistics. 

At the high frequency range, all stimuli evoked the most reliable response for the FF condition and 

the lowest for the surround. Interestingly, the center condition evoked a higher noise level than the 

other conditions.  

In summary our results show that, at the LFP level, in order to elicit reliable responses both center 

and surround need to be stimulated with unaltered spatio-temporal natural statistics. The center is 

more suited to the processing of spatial and temporal statistics while the surround is more suited to 

process temporal statistics.  

 

 
Figure 3.4.59: Time Frequency analysis of the local field potential in response to our set of control stimuli presented on 

the full field (full line), center (big dashed lines) and surround (small dashed lines) conditions. A. Mean Signal. B. Mean 
Noise. C. Mean SNR. *: all conditions are significantly different from each other; # Full field is significantly different from 
the other conditions; + Surround is significantly different from the other conditions.  * : p < 0.05; ** : p < 0.01;  *** : p < 
0.001; Error bars : SEM. 
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In these sections, we computed the time frequency analysis of both LFP and spiking activity. For 

both signals, our results showed that natural images evoked the highest levels of reliability in the low 

frequency range. LFP evoked the higher levels of reliability while SUA the lowest ones, confirming 

the observations previously made with the trial-to-trial cross correlation. For both spiking activities 

and LFP, this increase in reliability comes from a high noise that is compensated by a high signal. 

At the spiking level, we also observed a high level of reliability evoked by DG at the grating frequency. 

This peak was present but reduced for the local field potential since the LFP averages anti-correlated 

signals. At the LFP level, DG evoked a strong reduction in the low frequency noise that was absent 

for the spiking activity. We also observed a high reliability evoked by DN in the high frequency range, 

for both signals. However, this increase was more visible for the LFP than the spiking activity.  

We also showed that in response to NI, layers 4 and 5/6 evoked similar reliability levels. However, 

these two layers did not display the same noise and signals. Indeed layer 5/6 displayed a higher 

noise and signal than layer 4 but resulting in the same ratio. This highlights the different intrinsic 

properties of each layer. We also showed that natural images are strongly modulated by center 

surround interactions at the spiking and LFP levels. However, as observed for the trial-to-trial cross 

correlations the LFP display a stronger modulation than the spiking activity. Moreover, when natural 

images are presented on the surround, a strong low frequency reliability is elicited at the LFP level. 

Finally, our results showed that the alteration of the spatial statistics reduced the low frequency 

reliability and that the temporal statistics seem to be optimally integrated by the surround. 
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FULL FIELD LOW FREQUENCY SIGNAL  

  DG GEM NI DN 

Layer 2/3 1.3 ± 0.7 60.9 ± 6.2 91.7 ± 8.3 25.1 ± 1.7 

Layer 4 11.0 ± 0.9 108.7 ± 3.0 151.8 ± 4.7 60.8 ± 1.6 

Layer 5/6 5.1 ± 1.1 103.2 ± 5.1 166.6 ± 9.2 51.5 ± 2.9 

Mean 5.8 ± 0.9 90.9 ± 4.8 136.7 ± 7.4 45.8 ± 2.1 

 
    

CENTER LOW FREQUENCY SIGNAL  

  DG GEM NI DN 

Layer 2/3 0.6 ± 0.6 38.3 ± 4.4 34.6 ± 3.0 17.9 ± 1.2 

Layer 4 10.8 ± 0.8 80.0 ± 2.2 84.4 ± 1.9 52.3 ± 1.4 

Layer 5/6 3.0 ± 0.8 64.8 ± 3.4 74.5 ± 3.6 40.2 ± 2.1 

Mean 4.8 ± 0.7 61.0 ± 3.3 64.5 ± 2.8 36.8 ± 1.6 

 
    

SURROUND LOW FREQUENCY SIGNAL  

  DG GEM NI DN 

Layer 2/3 1.1 ± 0.5 31.6 ± 2.8 66.2 ± 5.2 12.8 ± 1.3 

Layer 4 1.8 ± 0.3 43.9 ± 1.7 96.0 ± 3.4 17.9 ± 0.7 

Layer 5/6 2.3 ± 0.8 53.6 ± 3.3 107.8 ± 6.4 20.3 ± 2.0 

Mean 1.7 ± 0.5 43.0 ± 2.6 90.0 ± 5.0 17.0 ± 1.4 
     

FULL FIELD LOW FREQUENCY NOISE  

  DG GEM NI DN 

Layer 2/3 -23.5 ± 2.9 4.6 ± 1.9 9.9 ± 1.6 0.3 ± 3.2 

Layer 4 -35.7 ± 2.4 5.7 ± 1.4 15.9 ± 1.6 -12.7 ± 1.7 

Layer 5/6 -37.4 ± 3.4 6.4 ± 3.0 19.8 ± 2.9 -18.6 ± 2.7 

Mean -32.2 ± 2.9 5.6 ± 2.1 15.2 ± 2.0 -10.3 ± 2.5 

 
    

CENTER LOW FREQUENCY NOISE  

  DG GEM NI DN 

Layer 2/3 -15.1 ± 2.3 0.0 ± 1.5 -6.4 ± 1.4 1.3 ± 2.9 

Layer 4 -20.3 ± 1.7 -2.3 ± 1.2 -3.5 ± 1.4 -2.9 ± 1.4 

Layer 5/6 -25.0 ± 1.9 4.6 ± 3.2 -12.8 ± 1.8 -8.4 ± 2.3 

Mean -20.2 ± 2.0 0.8 ± 2.0 -7.6 ± 1.5 -3.3 ± 2.2 

 
    

SURROUND LOW FREQUENCY NOISE 

  DG GEM NI DN 

Layer 2/3 -14.5 ± 2.0 1.7 ± 1.8 3.6 ± 1.4 1.0 ± 2.7 

Layer 4 -19.8 ± 1.7 -8.4 ± 1.0 3.2 ± 1.2 -13.7 ± 1.2 

Layer 5/6 -27.1 ± 2.4 -0.8 ± 3.0 -5.0 ± 2.7 -20.6 ± 2.3 

Mean -20.4 ± 2.0 -2.5 ± 1.9 0.6 ± 1.8 -11.1 ± 2.1 
     

FULL FIELD LOW FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.04 ± 0.00 0.39 ± 0.03 0.54 ± 0.05 0.21 ± 0.02 

Layer 4 0.12 ± 0.01 0.62 ± 0.02 0.75 ± 0.02 0.42 ± 0.01 

Layer 5/6 0.07 ± 0.01 0.54 ± 0.04 0.70 ± 0.04 0.34 ± 0.02 

Mean 0.08 ± 0.00 0.51 ± 0.03 0.67 ± 0.0 0.32 ± 0.02 

     
CENTER LOW FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.25 ± 0.02 0.24 ± 0.02 0.14 ± 0.01 

Layer 4 0.10 ± 0.00 0.48 ± 0.01 0.50 ± 0.01 0.33 ± 0.01 

Layer 5/6 0.05 ± 0.00 0.34 ± 0.02 0.39 ± 0.02 0.25 ± 0.01 

Mean 0.06 ± 0.00 0.36 ± 0.02 0.38 ± 0.02 0.24 ± 0.01 

     
SURROUND LOW FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.26 ± 0.03 0.48 ± 0.05 0.13 ± 0.02 

Layer 4 0.03 ± 0.00 0.32 ± 0.01 0.57 ± 0.03 0.16 ± 0.01 

Layer 5/6 0.04 ± 0.00 0.36 ± 0.04 0.62 ± 0.06 0.19 ± 0.02 

Mean 0.03 ± 0.00 0.31 ± 0.03 0.56 ± 0.04 0.16 ± 0.02 

Table 3.4.17: Mean low frequency signal, noise and SNR of the LFP in response to our stimulus set presented full field, 

on the center or on the surround (mean ± SEM) 
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FULL FIELD HIGH FREQUENCY SIGNAL  

  DG GEM NI DN 

Layer 2/3 0.4 ± 0.2 10.7 ± 0.9 7.7 ± 0.6 9.3 ± 0.6 

Layer 4 1.9 ± 0.2 20.1 ± 0.5 14.3 ± 0.4 24.5 ± 0.6 

Layer 5/6 1.5 ± 0.2 16.5 ± 0.6 12.5 ± 0.6 15.7 ± 0.6 

Mean 1.3 ± 0.2 15.7 ± 0.7 11.5 ± 0.5 16.5 ± 0.6 

 
    

CENTER HIGH FREQUENCY SIGNAL  

  DG GEM NI DN 

Layer 2/3 0.1 ± 0.1 5.6 ± 0.6 3.4 ± 0.2 7.4 ± 0.5 

Layer 4 1.6 ± 0.1 14.9 ± 0.4 8.9 ± 0.2 22.0 ± 0.6 

Layer 5/6 1.4 ± 0.1 10.2 ± 0.5 6.2 ± 0.3 12.9 ± 0.5 

Mean 1.0 ± 0.1 10.3 ± 0.5 6.2 ± 0.3 14.1 ± 0.5 

 
    

SURROUND HIGH FREQUENCY SIGNAL  

  DG GEM NI DN 

Layer 2/3 -0.1 ± 0.1 5.4 ± 0.5 4.7 ± 0.4 3.8 ± 0.4 

Layer 4 -0.3 ± 0.1 6.8 ± 0.3 6.3 ± 0.3 6.3 ± 0.3 

Layer 5/6 0.2 ± 0.2 8.1 ± 0.5 6.9 ± 0.5 6.3 ± 0.4 

Mean -0.1 ± 0.1 6.7 ± 0.4 6.0 ± 0.4 5.4 ± 0.4 
     

FULL FIELD HIGH FREQUENCY NOISE  

  DG GEM NI DN 

Layer 2/3 -1.8 ± 0.8 1.2 ± 0.6 -0.9 ± 0.8 -1.6 ± 0.5 

Layer 4 -1.3 ± 0.6 4.1 ± 0.3 1.6 ± 0.4 -0.7 ± 0.3 

Layer 5/6 0.9 ± 0.9 7.7 ± 0.5 0.6 ± 0.6 -0.4 ± 0.5 

Mean -0.7 ± 0.8 4.3 ± 0.5 0.4 ± 0.6 -0.9 ± 0.5 

 
    

CENTER HIGH FREQUENCY NOISE  

  DG GEM NI DN 

Layer 2/3 -2.2 ± 0.5 -0.2 ± 0.5 -0.5 ± 0.6 -1.3 ± 0.4 

Layer 4 -1.8 ± 0.4 3.1 ± 0.3 1.5 ± 0.3 1.0 ± 0.2 

Layer 5/6 -0.1 ± 0.6 5.4 ± 0.6 2.4 ± 0.5 2.0 ± 0.4 

Mean -1.4 ± 0.5 2.8 ± 0.5 1.1 ± 0.5 0.6 ± 0.4 

 
    

SURROUND HIGH FREQUENCY NOISE 

  DG GEM NI DN 

Layer 2/3 -3.2 ± 0.6 -1.0 ± 0.5 -2.3 ± 0.5 -2.8 ± 0.5 

Layer 4 -4.2 ± 0.4 -1.3 ± 0.2 -2.0 ± 0.2 -3.1 ± 0.3 

Layer 5/6 -1.7 ± 0.7 1.9 ± 0.6 -2.3 ± 0.4 -2.3 ± 0.5 

Mean -3.0 ± 0.5 -0.2 ± 0.4 -2.2 ± 0.4 -2.7 ± 0.4 
     

FULL FIELD HIGH FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.01 ± 0.00 0.19 ± 0.01 0.14 ± 0.01 0.23 ± 0.01 

Layer 4 0.04 ± 0.00 0.30 ± 0.01 0.22 ± 0.01 0.52 ± 0.01 

Layer 5/6 0.02 ± 0.00 0.22 ± 0.01 0.19 ± 0.01 0.29 ± 0.01 

Mean 0.02 ± 0.00 0.24 ± 0.01 0.18 ± 0.01 0.35 ± 0.01 

     
CENTER HIGH FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.01 ± 0.00 0.09 ± 0.01 0.06 ± 0.00 0.16 ± 0.01 

Layer 4 0.04 ± 0.00 0.23 ± 0.01 0.15 ± 0.00 0.44 ± 0.01 

Layer 5/6 0.02 ± 0.00 0.13 ± 0.01 0.09 ± 0.00 0.21 ± 0.01 

Mean 0.02 ± 0.00 0.15 ± 0.01 0.10 ± 0.00 0.27 ± 0.01 

     
SURROUND HIGH FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.01 ± 0.00 0.12 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 

Layer 4 0.01 ± 0.00 0.14 ± 0.01 0.12 ± 0.01 0.15 ± 0.01 

Layer 5/6 0.01 ± 0.00 0.13 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 

Mean 0.01 ± 0.00 0.13 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 

Table 3.4.18: Mean high frequency signal, noise and SNR of the LFP in response to our stimulus set presented full field, 

on the center or on the surround (mean ± SEM) 
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FULL FIELD LFP 

  NI NI-RS NI-RT NI-RST NI-SAC 

SIGNAL 85.7 ± 5.4 85.4 ± 6.5 70.7 ± 4.8 66.8 ± 4.8 105.3 ± 8.0 

NOISE 30.0 ± 4.8 38.9 ± 4.8 25.0 ± 7.0 24.1 ± 6.2 41.4 ± 4.8 

SNR 0.38 ± 0.02 0.34 ± 0.02 0.33 ± 0.02 0.32 ± 0.02 0.41 ± 0.02 

      

CENTER LFP 

  NI NI-RS NI-RT NI-RST NI-SAC 

SIGNAL 57.4 ± 3.8 55.2 ± 3.7 54.8 ± 3.8 54.4 ± 3.9 64.6 ± 4.9 

NOISE 9.2 ± 4.3 23.6 ± 6.2 27.1 ± 7.2 29.6 ± 4.8 22.0 ± 4.1 

SNR 0.25 ± 0.02 0.19 ± 0.02 0.18 ± 0.02 0.19 ± 0.02 0.21 ± 0.03 

      

SURROUND LFP 

  NI NI-RS NI-RT NI-RST NI-SAC 

SIGNAL 64.2 ± 6.6 63.5 ± 6.6 42.6 ± 4.1 34.9 ± 3.9 72.7 ± 7.6 

NOISE 17.9 ± 5.5 27.71 ± 5.9 14.8 ± 5.9 -1.5 ± 4.7 23.6 ± 3.6 

SNR 0.29 ± 0.03 0.26 ± 0.03 0.18 ± 0.02 0.17 ± 0.02 0.32 ± 0.03 

Table 3.4.19: Mean low frequency signal, noise and SNR of the LFP in response to our control stimulus set presented full 

field, on the center or on the surround (mean ± SEM) 
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4.2.3 Power Spectral Density and Reliability of the Local Field Potential 

As shown in the previous section, our different stimuli modulate the LFP in different ways and that 

in different frequency bands. Moreover, we showed that the center surround interactions strongly 

modulate the stimulus locked response and its reliability, in particular when natural images were 

presented. Therefore, we wondered which frequency bands the center surround interactions would 

affect the most. In addition, will we observe the same modulation across layers? In order to answer 

these questions, we first computed the power spectrum density and the relative power spectrum 

density of the stimulus locked response (figures 3.4.60 and 3.4.61; tables 3.4.20 and 3.4.21). 

 Mean evoked PSD 

We first investigated the response in the low frequency range. As observed for the full field condition, 

for both center and surround conditions, natural images always evoked the highest PSD (p < 0.001; 

Friedman test). We then investigated the impact of the center surround interactions on the power 

spectrum density. At the global population level, natural images evoked their highest PSD (and R-

PSD) when they were presented full field (p < 0.001; Friedman test). As observed previously, the 

sole stimulation of the surround with natural images evoked a higher PSD (and R-PSD) than the 

stimulation of the center (p < 0.001; Friedman test). The difference between the spectral density 

evoked by the center and the surround is increased for the R-PSD, compared to the PSD. Indeed, 

the R-PSD evoked by natural images presented on the center is very low (Table 3.4.21). This 

suggest that a great part of the center response emerges from an intrinsic variability present within 

each layer. We then compared the impact of the center surround modulations evoked by artificial 

stimuli. The full field presentation of GEM and DN always evoked a higher PSD (and R-SPD) than 

the other conditions (p < 0.001; Friedman test). Unlike what was observed for NI, for these stimuli, 

the center condition always evoked a higher PSD (and R-PSD) than the surround, except in some 

cases where they were similar (figures 3.4.60 and 3.4.61; tables 3.4.20 and 3.4.21). On the other 

hand, drifting gratings evoked their highest PSD (and R-PSD) when presented on the center. This is 

not surprising since it is known that the stimulation of both center and surround with DG tend to 

suppress the response.  As observed for the full field condition, DG only displayed a positive R-PSD 

at the grating frequency and its harmonics.  

We then investigated the high frequency power spectrum density. As observed for the full field 

condition, GEM evoked the highest and DG the lowest PSD and R PSD (p < 0.001). For all stimuli, 

the full field condition evoked a higher PSD and R-PSD than the center and surround conditions (p 

< 0.001). Unlike what was observed for the low frequencies, the center condition always evoked a 

higher spectral density than the surround, even for NI. This suggest that this frequency range is not 

modulated in the same way by the center surround interactions present in natural scenes. We will 

not describe the very high frequencies power spectrum since at the full field and center conditions 

and within each layer, all stimuli evoked the same mean PSD and R-PSD (p > 0.05). For the surround 

condition, all stimuli evoked the same very high frequency PSD, lower than the one observed for the 

FF and C conditions. 
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 Laminar impact of the center surround interactions 

As observed for the complete population, within all layers natural images evoked their highest PSD 

(and R-PSD) when they were presented full field (p < 0.001; Friedman test).However, unlike what 

was observed when the stimulation was performed on the whole screen, some stimuli, when 

presented on the center, evoked a similar spectrum density as NI.  

At the PSD level, in layer 2/3, dense noise evoked the same PSD as natural images (p = 0.33; 

Friedman test). In addition, in both layers 4 and 5/6, animated gratings evoked the same spectral 

density as natural images (p > 0.23). However, when we looked at the R-PSD, all these equivalent 

responses were different. This implies that the similarity that we observe comes from a strong PSD 

of the spontaneous activity and the stimulus dependent response do not modulate sufficiently this 

PSD in order to reach a significantly different response. The highest PSD was observed, for both 

center and surround conditions and for each stimulus respectively, in layer 5/6 while the lowest in 

layer 2/3 (p < 0.001; Kruskal-Wallis test). This is linked to the spectral density of the spontaneous 

activity in layer 5/6 that is higher than the one recorded in other layers. Indeed, when we compare 

the relative spectral density between layers we end up with different results. For the center condition, 

all stimuli elicited the highest R-PSD in layer 4 and the lowest in layer 2/3 (p < 0.001; Kruskal-Wallis 

test). On the other hand, for the surround condition, both NI and GEM evoked their highest R-PSD 

in layer 5/6 and the lowest in layer 2/3 (p < 0.001). This is probably linked to horizontal connections 

present in this layer that are sensitive to the surround and to temporal frequencies of eye movements. 

Regarding the difference in the spectral density evoked by our different conditions of stimulation, 

within each layer we observed the same response pattern as in the mean response (figures 3.4.60 

and 3.4.61; tables 3.4.20 and 3.4.21). 
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Figure 3.4.60: Power Spectrum density and relative power spectrum density of the LFP in response to our set of stimuli 

presented full field, on the center and surround conditions. The center surround interactions increase the PSD evoked by 
Natural Images. Surround stimulation with NI evoked a higher low frequency PSD than the center condition in layers 2/3 
and 5/6. The power spectrum of the stimuli is shown above. (Shaded Area : SEM) 
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Figure 3.4.61: Barplots of the power Spectrum density and relative power spectrum density of the LFP in response to our 

set of stimuli presented full field, on the center and surround conditions. *: all conditions are significantly different from each 
other; # Full field is significantly different from the other conditions.  * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; Error bars : 
SEM. 
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 Impact of the center surround interactions on the frequency-based reliability 

We then wondered if, as observed for the full field condition, the increase in PSD observed for the 

low frequency range was accompanied by an increase in reliability. Moreover, will we also observe 

a strong center surround modulation in the low frequency range? In order to answer these questions, 

we computed the trial-to-trial coherence and the same time frequency analysis as in section 4.1, in 

order to obtain the SNR. As described in before, we computed the relative SNR. The differences 

between the coherence and SNR analysis will be commented, if no difference is observed the results 

will be described as a whole. These two analyses will indicate the level of reliability of the stimulus 

locked LFP for all frequencies. The results are reported in figures 3.4.61 and 3.4.62 (and tables 

3.4.22 and 3.4.23). We will first describe the results obtained for low frequencies. 

Our results showed that natural images evoked within all layers and at the level of the mean 

population, the highest levels of reliability for both center and surround conditions (p < 0.001; 

Friedman test). However, one exception can be noted. In layer 2/3, for both SNR and Coherence, 

the presentation of NI and GEM on the center evoked the same low frequency reliability (p > 0.05).  

We also compared the reliability evoked by the full field, center and surround conditions. When 

presented full field natural images evoked, within all layers and at the mean population level, a most 

reliable response than the center and surround conditions (p < 0.001; Friedman test). In layers 2/3, 

5/6 and at population level, natural images, when presented on the surround condition evoked a 

more reliable response than the center condition (p < 0.001). However, in layer 4, for the coherence 

the center evoked a more reliable response than the surround, while for SNR, despite a higher mean 

evoked by the center, no significant difference was observed between the two responses (p > 0.05). 

This suggest that the horizontal connections present in layers 2/3 and 5/6 are activated by the 

surround stimulation and elicit a reliable response. On the other hand, layer 4 is more sensitive to 

center stimulations, which explains this increase for the center stimulation. We wondered if the 

artificial stimuli would be impacted the same way by the center surround interactions. For all artificial 

stimuli, the full field condition always evoked the most reliable response (p < 0.001). However, we 

observed a pattern different from NI when we compared the impact of the center and surround 

conditions. Indeed, for DG and DN, the center condition always evoked a more reliable response 

than the surround (p < 0.001). On the other hand, when animated gratings were presented, we 

observed the same reliability for the center and surround conditions in layers 2/3 and 5/6 (p > 0.05). 

This suggest that the eye movements activate in a reliable manner the horizontal connections. 

However, since NI is more reliable than GEM, this implies that the simple spatial statistics of the 

animated gratings are not sufficient to elicit a response as reliable as NI. This suggest that the spatial 

statistics also play a role in the generation of a reliable response and that surround plays a key role 

in the processing of natural scenes, in particular in the low frequency range. 

As observed for the full field condition, dense noise evoked for the center, the highest high frequency 

reliability (p < 0.001; Friedman test). On the other hand, when only the surround was stimulated, the 

levels of reliability evoked by GEM were the highest (p < 0.001). The highest levels of reliability were 

observed in layer 4.  For all stimuli, the highest levels of reliability were observed for the full field 

condition (p < 0.001). When NI was presented on the surround condition, it evoked a higher high 

frequency reliability than the center (p < 0.001). The opposite was observed for the artificial stimuli. 

It is important to note that for all stimuli, except dense noise, the reliability was higher in the low 

frequency than in the high frequency band (p < 0.001; Kruskal-Wallis test). 

Taken together, our results highlight the fact that one of the most commonly used stimuli in the field 

of visual neurosciences, i.e. drifting gratings induce responses that are very different from what we 
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observe with other stimuli. Therefore, in some cases, before drawing new conclusions, studies need 

to investigate V1 responses with more than one simple stimulus such as DG.  

 

 
Figure 3.4.61: Coherence and SNR of the LFP in response to our set of stimuli presented full field, on the center and 

surround conditions. The center surround interactions increase the reliability evoked by Natural Images. Surround 
stimulation with NI evoked a higher low frequency reliability than the center condition in layers 2/3 and 5/6. The power 
spectrum of the stimuli is shown at the top of the figure (Shaded area : SEM) 
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Figure 3.4.62: Barplots of the Coherence and SNR of the LFP in response to our set of stimuli presented full field, on the 

center and surround conditions. *: all conditions are significantly different from each other; # Full field is significantly 
different from the other conditions.  * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; Error bars : SEM. 
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 Impact of the natural statistics on the time frequency response 

Our results showed that animated gratings evoked strong responses and levels of reliability when 

the surround only was stimulated. However, these levels of reliability were lower than the ones 

observed for natural images, suggesting that spatial statistics play a role in the generation of a 

reliable response. We wondered if by altering the spatial and/or temporal statistics we would still the 

same center surround modulations. In order to answer this question, we computed the PSD, R-PSD, 

Coherence and SNR of the LFP response evoked by our set of control stimuli (Figure 3.4.63; table 

3.4.24). 

Our results showed that for both PSD and R-PSD (figure 3.4.63-A-B), when presented in the center, 

the unaltered natural image evoked the same spectral density as the natural image where both 

spatial and temporal statistics were altered (p > 0.55) while all the other altered natural image 

displayed a higher spectral density than NI (p < 0.001). Regarding the surround condition, NI and 

NI-RST displayed the same PSD and R-PSD, higher than the one evoked by the other stimuli (p < 

0.001). For the surround condition, the natural images with altered spatial frequencies displayed the 

lowers PSDs. This suggest that unaltered temporal statistics are necessary in the generation of the 

strong response and that the surround processes them. In addition, the fact that NI-SAC displays a 

lower spectral density than the unaltered NI suggest that all eye movements, not only saccades, are 

important in the generation of strong PSD. The importance of the surround in the processing of eye 

movements in confirmed by the fact that all stimuli containing eye movements displayed a higher 

PSD for the surround than the center condition while those containing altered eye movements 

displayed the opposite behavior (p < 0.001; Friedman test). However, since for all stimuli the full field 

condition evoked a higher PSD than the other conditions, center surround modulations are still 

present even when the statistics are altered.  

We then investigated the levels of reliability evoked by the altered stimuli (Figure 3.4.63-C-D; table 

3.4.24). The coherence and the SNR analysis resulted in the same response patterns. When 

presented on the center condition, the unaltered natural image evoked a higher low frequency 

reliability than the other stimuli (p < 0.001; Friedman test). On the other hand, when presented on 

the surround, NI and NI-SAC evoked equivalent levels of reliability, higher than the other stimuli (p 

< 0.001). We then wondered if the three conditions of stimulation evoked the same levels of reliability. 

Our results showed that, for both the coherence and the SNR, the full field condition evoked, for all 

stimuli respectively, the most reliable response (p < 0.001; Friedman test). With the coherence 

analysis, we observed that the presentation of unaltered NI on the surround evoked a higher 

reliability than the center, while the opposite was observed for natural images. However, the 

difference between the two conditions, for both analyses is very small. This absence of difference 

comes from an oversampling of layer 4. NI-RS and NI-SAC displayed the same results with both 

analyses, i.e. the presentation of these stimuli on the center or the surround evoked the same levels 

of reliability (p > 0.05). Finally, when we computed the coherence and the SNR, NI-RT and NI-RST 

evoked a higher correlation for the center condition than the surround. Despite the differences 

between the coherence and SNR analysis, we obtained the same patterns of responses with both 

analyses. These results confirm the fact that the surround plays a key role in the processing of 

temporal frequencies.  
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Figure 3.4.63: Frequency based analysis of the local field potential in response to our set of control stimuli presented on 

the full field (full line), center (big dashed lines) and surround (small dashed lines) conditions. A. PSD. B. R-PSD C. Mean 
Coherence. D. SNR. *: all conditions are significantly different from each other; # Full field is significantly different from the 
other conditions.  * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; Error bars : SEM. 
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FULL FIELD LOW FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 8.6e+07 ± 8.3e+06 1.5e+08 ± 1.4e+07 1.9e+08 ± 1.8e+07 1.1e+08 ± 9.2e+06 1.1e+08 ± 1.2e+07 

Layer 4 1.1e+08 ± 7.3e+06 2.2e+08 ± 1.1e+07 3.3e+08 ± 1.6e+07 1.7e+08 ± 8.1e+06 1.5e+08 ± 1.2e+07 

Layer 5/6 2.4e+08 ± 5.7e+07 3.7e+08 ± 6.4e+07 5.4e+08 ± 7.6e+07 3.3e+08 ± 7.3e+07 3.1e+08 ± 8.4e+07 

Mean 1.5e+08 ± 2.4e+07 2.5e+08 ± 3.0e+07 3.5e+08 ± 3.7e+07 2.0e+08 ± 3.0e+07 1.9e+08 ± 3.6e+07 

      
CENTER LOW FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 9.4e+07 ± 8.2e+06 1.2e+08 ± 1.0e+07 1.2e+08 ± 1.0e+07 1.1e+08 ± 9.2e+06 1.1e+08 ± 1.2e+07 

Layer 4 1.2e+08 ± 6.6e+06 1.9e+08 ± 9.9e+06 2.1e+08 ± 1.0e+07 1.7e+08 ± 8.3e+06 1.5e+08 ± 1.2e+07 

Layer 5/6 2.6e+08 ± 5.9e+07 3.6e+08 ± 7.7e+07 3.6e+08 ± 7.3e+07 3.3e+08 ± 6.6e+07 3.1e+08 ± 8.4e+07 

Mean 1.6e+08 ± 2.5e+07 2.3e+08 ± 3.2e+07 2.3e+08 ± 3.1e+07 2.0e+08 ± 2.8e+07 1.9e+08 ± 3.6e+07 

      
SURROUND LOW FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 1.0e+08 ± 8.8e+06 1.2e+08 ± 1.0e+07 1.5e+08 ± 1.2e+07 1.1e+08 ± 9.5e+06 1.1e+08 ± 1.2e+07 

Layer 4 1.3e+08 ± 6.0e+06 1.7e+08 ± 9.2e+06 2.3e+08 ± 9.6e+06 1.4e+08 ± 7.3e+06 1.5e+08 ± 1.2e+07 

Layer 5/6 2.5e+08 ± 6.0e+07 3.2e+08 ± 7.2e+07 4.0e+08 ± 6.2e+07 2.9e+08 ± 6.4e+07 3.1e+08 ± 8.4e+07 

Mean 1.6e+08 ± 2.5e+07 2.0e+08 ± 3.0e+07 2.6e+08 ± 2.8e+07 1.8e+08 ± 2.7e+07 1.9e+08 ± 3.6e+07 

      

      
FULL FIELD LOW FREQUENCY R-PSD  

  DG GEM NI DN  
Layer 2/3 -0.16 ± 0.03 0.72 ± 0.07 1.34 ± 0.22 0.16 ± 0.04  
Layer 4 -0.09 ± 0.03 1.66 ± 0.09 2.78 ± 0.26 0.53 ± 0.06  

Layer 5/6 -0.17 ± 0.03 1.58 ± 0.14 2.94 ± 0.36 0.43 ± 0.07  
Mean -0.14 ± 0.02 1.31 ± 0.07 1.95 ± 0.15 0.36 ± 0.03  

      
CENTER LOW FREQUENCY R-PSD  

  DG GEM NI DN  
Layer 2/3 -0.06 ± 0.03 0.35 ± 0.04 0.23 ± 0.04 0.16 ± 0.03  
Layer 4 0.00 ± 0.03 0.89 ± 0.06 0.75 ± 0.06 0.48 ± 0.04  

Layer 5/6 -0.06 ± 0.02 0.68 ± 0.09 0.48 ± 0.06 0.36 ± 0.05  
Mean -0.03 ± 0.02 0.63 ± 0.04 0.50 ± 0.03 0.33 ± 0.02  

      
SURROUND LOW FREQUENCY R-PSD  

  DG GEM NI DN  
Layer 2/3 -0.05 ± 0.03 0.38 ± 0.06 0.85 ± 0.16 0.07 ± 0.03  
Layer 4 -0.13 ± 0.01 0.41 ± 0.04 1.25 ± 0.13 0.06 ± 0.03  

Layer 5/6 -0.16 ± 0.02 0.61 ± 0.09 1.85 ± 0.23 0.18 ± 0.05  
Mean -0.13 ± 0.01 0.44 ± 0.04 1.17 ± 0.10 0.09 ± 0.02  

Table 3.4.20: Mean low frequency PSD and R-PSD in response to our stimulus set presented full field, on the center or 

on the surround (mean ± SEM) 
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FULL FIELD HIGH FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 1.0e+07 ± 6.0e+05 2.4e+07 ± 1.7e+06 2.7e+07 ± 2.1e+06 1.6e+07 ± 1.1e+06 1.4e+07 ± 1.4e+06 

Layer 4 1.5e+07 ± 5.5e+05 5.3e+07 ± 2.3e+06 5.3e+07 ± 2.0e+06 3.1e+07 ± 1.2e+06 2.4e+07 ± 1.7e+06 

Layer 5/6 2.0e+07 ± 1.1e+06 6.0e+07 ± 2.8e+06 6.1e+07 ± 2.7e+06 3.2e+07 ± 1.6e+06 2.9e+07 ± 2.3e+06 

Mean 1.5e+07 ± 7.6e+05 4.6e+07 ± 2.2e+06 4.7e+07 ± 2.3e+06 2.6e+07 ± 1.3e+06 2.2e+07 ± 1.8e+06 

      
CENTER HIGH FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 1.1e+07 ± 6.3e+05 1.9e+07 ± 1.3e+06 1.6e+07 ± 9.8e+05 1.7e+07 ± 1.2e+06 1.4e+07 ± 1.4e+06 

Layer 4 1.8e+07 ± 6.6e+05 3.9e+07 ± 1.7e+06 3.3e+07 ± 1.3e+06 3.3e+07 ± 1.4e+06 2.4e+07 ± 1.7e+06 

Layer 5/6 2.4e+07 ± 1.4e+06 3.9e+07 ± 2.2e+06 3.4e+07 ± 1.6e+06 3.3e+07 ± 1.6e+06 2.9e+07 ± 2.3e+06 

Mean 1.7e+07 ± 8.8e+05 3.2e+07 ± 1.7e+06 2.7e+07 ± 1.3e+06 2.8e+07 ± 1.4e+06 2.2e+07 ± 1.8e+06 

      
SURROUND HIGH FREQUENCY PSD 

  DG GEM NI DN BLK 

Layer 2/3 1.1e+07 ± 6.3e+05 1.7e+07 ± 1.0e+06 1.9e+07 ± 1.2e+06 1.4e+07 ± 7.8e+05 1.4e+07 ± 1.4e+06 

Layer 4 1.6e+07 ± 5.7e+05 2.7e+07 ± 1.2e+06 3.2e+07 ± 1.4e+06 2.0e+07 ± 7.6e+05 2.4e+07 ± 1.7e+06 

Layer 5/6 2.1e+07 ± 1.2e+06 3.7e+07 ± 2.2e+06 4.5e+07 ± 2.1e+06 2.6e+07 ± 1.4e+06 2.9e+07 ± 2.3e+06 

Mean 1.6e+07 ± 8.1e+05 2.7e+07 ± 1.5e+06 3.2e+07 ± 1.5e+06 2.0e+07 ± 9.7e+05 2.2e+07 ± 1.8e+06 

      

      
FULL FIELD HIGH FREQUENCY R-PSD  

  DG GEM NI DN  
Layer 2/3 0.03 ± 0.04 0.38 ± 0.05 0.21 ± 0.04 0.30 ± 0.04  
Layer 4 0.33 ± 0.04 0.76 ± 0.04 0.55 ± 0.06 0.80 ± 0.05  

Layer 5/6 0.13 ± 0.04 0.63 ± 0.05 0.31 ± 0.06 0.29 ± 0.04  
Mean 0.21 ± 0.03 0.59 ± 0.03 0.30 ± 0.03 0.50 ± 0.03  

      
CENTER HIGH FREQUENCY R-PSD  

  DG GEM NI DN  
Layer 2/3 0.01 ± 0.02 0.18 ± 0.03 0.14 ± 0.02 0.29 ± 0.03  
Layer 4 0.17 ± 0.02 0.53 ± 0.03 0.39 ± 0.03 0.70 ± 0.04  

Layer 5/6 0.04 ± 0.02 0.40 ± 0.07 0.21 ± 0.03 0.28 ± 0.03  
Mean 0.09 ± 0.02 0.40 ± 0.03 0.27 ± 0.02 0.44 ± 0.03  

      
SURROUND HIGH FREQUENCY R-PSD  

  DG GEM NI DN  
Layer 2/3 -0.05 ± 0.02 0.11 ± 0.03 0.04 ± 0.03 0.02 ± 0.02  
Layer 4 -0.04 ± 0.01 0.09 ± 0.02 0.06 ± 0.02 0.05 ± 0.02  

Layer 5/6 -0.03 ± 0.02 0.19 ± 0.06 0.01 ± 0.03 0.02 ± 0.02  
Mean -0.04 ± 0.01 0.12 ± 0.03 0.01 ± 0.01 0.02 ± 0.01  

Table 3.4.21: Mean high frequency PSD and R-PSD in response to our stimulus set presented full field, on the center or 

on the surround (mean ± SEM) 
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FULL FIELD LOW FREQUENCY Coherence 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.25 ± 0.02 0.33 ± 0.02 0.16 ± 0.01 

Layer 4 0.06 ± 0.00 0.44 ± 0.01 0.52 ± 0.01 0.33 ± 0.01 

Layer 5/6 0.05 ± 0.00 0.43 ± 0.01 0.55 ± 0.01 0.24 ± 0.02 

Mean 0.05 ± 0.00 0.40 ± 0.01 0.49 ± 0.01 0.27 ± 0.01 

     

CENTER LOW FREQUENCY Coherence 

  DG GEM NI DN 

Layer 2/3 0.04 ± 0.00 0.18 ± 0.02 0.19 ± 0.01 0.12 ± 0.01 

Layer 4 0.06 ± 0.00 0.36 ± 0.01 0.39 ± 0.01 0.26 ± 0.01 

Layer 5/6 0.04 ± 0.00 0.29 ± 0.01 0.31 ± 0.01 0.19 ± 0.01 

Mean 0.05 ± 0.00 0.30 ± 0.01 0.33 ± 0.01 0.21 ± 0.01 

     
SURROUND LOW FREQUENCY Coherence 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.15 ± 0.02 0.24 ± 0.02 0.08 ± 0.01 

Layer 4 0.04 ± 0.00 0.23 ± 0.01 0.36 ± 0.01 0.12 ± 0.01 

Layer 5/6 0.04 ± 0.00 0.28 ± 0.02 0.45 ± 0.02 0.15 ± 0.01 

Mean 0.04 ± 0.00 0.23 ± 0.01 0.37 ± 0.01 0.12 ± 0.01 

     
FULL FIELD LOW FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.04 ± 0.00 0.39 ± 0.03 0.54 ± 0.05 0.21 ± 0.02 

Layer 4 0.12 ± 0.01 0.62 ± 0.02 0.75 ± 0.02 0.42 ± 0.01 

Layer 5/6 0.07 ± 0.01 0.54 ± 0.04 0.70 ± 0.04 0.34 ± 0.02 

Mean 0.08 ± 0.00 0.51 ± 0.03 0.67 ± 0.0 0.32 ± 0.02 

     
CENTER LOW FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.25 ± 0.02 0.24 ± 0.02 0.14 ± 0.01 

Layer 4 0.10 ± 0.00 0.48 ± 0.01 0.50 ± 0.01 0.33 ± 0.01 

Layer 5/6 0.05 ± 0.00 0.34 ± 0.02 0.39 ± 0.02 0.25 ± 0.01 

Mean 0.06 ± 0.00 0.36 ± 0.02 0.38 ± 0.02 0.24 ± 0.01 

     
SURROUND LOW FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.26 ± 0.03 0.48 ± 0.05 0.13 ± 0.02 

Layer 4 0.03 ± 0.00 0.32 ± 0.01 0.57 ± 0.03 0.16 ± 0.01 

Layer 5/6 0.04 ± 0.00 0.36 ± 0.04 0.62 ± 0.06 0.19 ± 0.02 

Mean 0.03 ± 0.00 0.31 ± 0.03 0.56 ± 0.04 0.16 ± 0.02 

Table 3.4.22: Mean low frequency Coherence and SNR in response to our stimulus set presented full field, on the center 

or on the surround (mean ± SEM) 
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FULL FIELD HIGH FREQUENCY Coherence 

  DG GEM NI DN 

Layer 2/3 0.03 ± 0.00 0.15 ± 0.01 0.09 ± 0.01 0.20 ± 0.01 

Layer 4 0.04 ± 0.00 0.22 ± 0.01 0.15 ± 0.00 0.40 ± 0.01 

Layer 5/6 0.03 ± 0.00 0.16 ± 0.01 0.13 ± 0.01 0.22 ± 0.01 

Mean 0.03 ± 0.00 0.19 ± 0.01 0.13 ± 0.00 0.30 ± 0.01 

     

CENTER HIGH FREQUENCY Coherence 

  DG GEM NI DN 

Layer 2/3 0.02 ± 0.00 0.09 ± 0.01 0.05 ± 0.00 0.16 ± 0.01 

Layer 4 0.03 ± 0.00 0.18 ± 0.01 0.11 ± 0.00 0.33 ± 0.01 

Layer 5/6 0.03 ± 0.00 0.11 ± 0.01 0.07 ± 0.00 0.16 ± 0.01 

Mean 0.03 ± 0.00 0.14 ± 0.00 0.08 ± 0.00 0.24 ± 0.01 

     
SURROUND HIGH FREQUENCY Coherence 

  DG GEM NI DN 

Layer 2/3 0.02 ± 0.00 0.08 ± 0.01 0.06 ± 0.01 0.08 ± 0.01 

Layer 4 0.03 ± 0.00 0.08 ± 0.00 0.06 ± 0.00 0.11 ± 0.01 

Layer 5/6 0.03 ± 0.00 0.10 ± 0.01 0.08 ± 0.01 0.10 ± 0.01 

Mean 0.03 ± 0.00 0.09 ± 0.00 0.07 ± 0.00 0.10 ± 0.00 

     
FULL FIELD HIGH FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.01 ± 0.00 0.19 ± 0.01 0.14 ± 0.01 0.23 ± 0.01 

Layer 4 0.04 ± 0.00 0.30 ± 0.01 0.22 ± 0.01 0.52 ± 0.01 

Layer 5/6 0.02 ± 0.00 0.22 ± 0.01 0.19 ± 0.01 0.29 ± 0.01 

Mean 0.02 ± 0.00 0.24 ± 0.01 0.18 ± 0.01 0.35 ± 0.01 

     
CENTER HIGH FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.01 ± 0.00 0.09 ± 0.01 0.06 ± 0.00 0.16 ± 0.01 

Layer 4 0.04 ± 0.00 0.23 ± 0.01 0.15 ± 0.00 0.44 ± 0.01 

Layer 5/6 0.02 ± 0.00 0.13 ± 0.01 0.09 ± 0.00 0.21 ± 0.01 

Mean 0.02 ± 0.00 0.15 ± 0.01 0.10 ± 0.00 0.27 ± 0.01 

     
SURROUND HIGH FREQUENCY SNR 

  DG GEM NI DN 

Layer 2/3 0.01 ± 0.00 0.12 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 

Layer 4 0.01 ± 0.00 0.14 ± 0.01 0.12 ± 0.01 0.15 ± 0.01 

Layer 5/6 0.01 ± 0.00 0.13 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 

Mean 0.01 ± 0.00 0.13 ± 0.01 0.12 ± 0.01 0.13 ± 0.01 

Table 3.4.23: Mean low frequency Coherence and SNR in response to our stimulus set presented full field, on the center 

or on the surround (mean ± SEM) 
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FULL FIELD   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
2.4e+08 ± 
2.5e+07 

2.6e+08 ± 
3.6e+07 

2.3e+08 ± 
9.2e+06 

2.5e+08 ± 
1.6e+07 

2.8e+08 ± 
2.3e+07 

1.5e+08 ± 
2.2e+07 

R-PSD 1.07 ± 0.07 1.47 ± 0.11 0.77 ± 0.12 0.59 ± 0.07 1.05 ± 0.08 X 

Coherence 0.37 ± 0.01 0.34 ± 0.01 0.28 ± 0.01 0.26 ± 0.01 0.35 ± 0.01 X 

SNR 0.38 ± 0.02 0.34 ± 0.02 0.34 ± 0.02 0.33 ± 0.02 0.41 ± 0.02 X 

       

CENTER   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
1.8e+08 ± 
2.3e+07 

1.9e+08 ± 
2.8e+07 

2.2e+08 ± 
5.3e+07 

2.4e+08 ± 
1.4e+07 

2.3e+08 ± 
2.6e+07 

1.5e+08 ± 
2.2e+07 

R-PSD 0.38 ± 0.04 0.60 ± 0.10 0.55 ± 0.13 0.49 ± 0.05 0.48 ± 0.05 X 

Coherence 0.25 ± 0.01 0.21 ± 0.01 0.22 ± 0.01 0.21 ± 0.01 0.22 ± 0.01 X 

SNR 0.31 ± 0.02 0.27 ± 0.02 0.26 ± 0.02 0.27 ± 0.02 0.29 ± 0.02 X 

       

SURROUND   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
2.0e+08 ± 
2.0e+07 

2.4e+08 ± 
4.9e+07 

1.9e+08 ± 
3.7e+07 

1.8e+08 ± 
3.9e+07 

2.4e+08 ± 
3.3e+07 

1.5e+08 ± 
2.2e+07 

R-PSD 0.77 ± 0.08 0.92 ± 0.11 0.35 ± 0.06 0.02 ± 0.03 0.62 ± 0.05 X 

Coherence 0.28 ± 0.02 0.25 ± 0.02 0.18 ± 0.01 0.16 ± 0.01 0.27 ± 0.02 X 

SNR 0.30 ± 0.03 0.29 ± 0.03 0.23 ± 0.02 0.22 ± 0.02 0.31 ± 0.03 X 

Table 3.4.24: Mean low frequency PSD, R-PSD, Coherence and SNR in response to our control stimulus set presented 

full field, on the center or on the surround (mean ± SEM) 
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4.2.4 Spectral Analysis of the Unlocked LFP 

In the previous section, we investigated the impact of unlocked LFP, we showed that the eye 

movements induced a strong increase in the alpha band and that this increase might be a prediction 

error message conveyed by the feedback. It is known that the surround stimulation strongly activates 

the surround (Angelucci et al., 2002). On the other hand, the center stimulation strongly activates 

the feedforward pathway. Thus, we wondered if the sole stimulation of the center or the surround 

would affect the frequency bands linked to the bottom up and top down pathways. 

 Impact of the center surround interactions 

As observed for the full field condition, the presentation of all stimuli in center and the surround 

conditions respectively, evoked the same PSD and R-PSD between 1-4Hz. In addition, our results 

show that the main responses are between 4-20 Hz (alpha band) and 40-150 Hz (gamma band). We 

will first focus on the alpha band (4-20Hz; Figures 3.4.64 and 3.4.65; tables 3.4.25 and 3.4.26). When 

the results are similar, we will comment both PSD and R-PSD together and the differences will be 

commented.  

When stimuli were presented in the center, the highest spectral density was evoked by animated 

gratings and the lowest one by drifting gratings (p < 0.001; Friedman test). This was observed both 

for the PSD and R-PSD. However, it is important to note than in layer 2/3, with the PSD analysis NI, 

GEM and DN evoked the same mean spectral density (p > 0.6). This was not the case for the R-

PSD were all stimuli evoked different values, suggesting that the PSD of the spontaneous activity 

has a strong influence in layer 2/3. When presented in the surround only, natural images evoked, in 

all layers and at the mean population level, the highest spectral density and DG the lowest ones (p 

< 0.001).  

We then compared the impact of the different conditions of stimulation on the response. The full field 

presentation of NI and GEM evoked the highest spectral density (p < 0.001). Regarding NI, the 

surround condition evoked a higher PSD than the center. The presentation of natural images on the 

center evoked lower PSD than the one of the spontaneous activities. On the other hand, for animated 

gratings, the center stimulation evoked a higher spectral density than the surround, except in layer 

2/3 were the opposite was observed. This suggest that the statistics of the two stimuli are not treated 

in the same way. Indeed, since the unlocked LFP evoked by NI is high on the surround and negative 

for the center, it suggests that the surround processes the temporal and spatial statistics in another 

way than the center. Moreover, this is linked to the spatial statistics of the natural scenes since we 

do not observe this for GEM. It is known that the surround activates feedback connections. This 

increase in alpha observed for the surround and not the center stimulation might be the signature of 

the feedback that is only present for highly informative stimuli that allow the generation of a prediction 

error message.  

We then investigated the PSD and R-PSD for the gamma band. For the center condition, NI, GEM 

and DG evoked the same high frequency PSD, higher than the one observed for dense noise (p < 

0.001). For the surround condition, all stimuli evoked the same spectral density in layer 2/3, while in 

the other layers and at the population level, DG evoked the highest values of PSD and DN the lowest 

one.  All stimuli, except DG, displayed their highest spectral density for the center condition and the 

lowest one for the surround. Again, the center is linked to feedforward message that is conveyed by 

gamma bands. This increase in gamma might be the signature of the feedforward message.  
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Figure 3.4.64: Power Spectrum of the unlocked local field potential in response to our set of stimuli presented on the full 

field (full line), center (big dashed lines) and surround (small dashed lines) conditions. The feedback frequencies are 
strongly modulated by the surround condition. *: all conditions are significantly different from each other. * : p < 0.05; ** : p 
< 0.01;  *** : p < 0.001; Error bars : SEM. 
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Figure 3.4.65: Relative Power Spectrum of the unlocked local field potential in response to our set of stimuli presented on 

the full field (full line), center (big dashed lines) and surround (small dashed lines) conditions. The feedback frequencies 
are strongly modulated by the surround condition. *: all conditions are significantly different from each other. * : p < 0.05; 
** : p < 0.01;  *** : p < 0.001; Error bars : SEM. 
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 Impact of the natural statistics on the unlocked LFP response 

We then wondered how the spatial and temporal statistics present on natural images impact the 

unlocked LFP (figure 3.4.66 and table 3.4.27). We first focused on the spectral density of the alpha 

band. 

Our results showed that when presented on the center natural images evoked a lower PSD than NI-

RS and NI-RT but a similar PSD as NI-RST and NI-RT. On the other hand, with the R-PSD analysis, 

natural images evoked the lowest R-PSD (p < 0.001). When presented on the surround, NI and NI-

RS evoked the same spectral density (p = 0.9), higher than the one evoked by the other stimuli (p < 

0.001). The stimuli containing unaltered eye movements displayed the highest PSD when presented 

full field. In addition, the surround condition evoked a higher spectral density than the center (p < 

0.001), except for NI-RS where no significant difference was observed despite a higher mean for the 

surround condition. However, NI-RT and NI-RST displayed the highest spectral density when 

presented on the center only (p < 0.001) and the lowest for the surround only stimulation (p < 0.001). 

This confirms the importance of the surround in the processing of unaltered temporal statistics and 

that high order temporal statistics might strongly activate the feedback and the error message 

conveyed by the alpha band. In addition, this error message seems present only when saccades 

animate the image. This suggest that small eye movements do not generate a prediction error. 

However, this need to be confirmed on awake animals. 

Finally, we investigated the PSD in the gamma band (figure 3.4.66-B; table 3.4.27). For the center 

condition, natural images evoked a lower PSD than NI-RS (p < 0.001), the same as NI-SAC (p = 

0.9) and a higher than NI-RT and NI-RST (p < 0.001).,When the stimuli were presented on the 

surround NI and NI-RS evoked the same PSD, higher than the one evoked by the other stimuli (p < 

0.001). For all stimuli the center condition evoked the highest PSD and the surround the lowest one, 

except for NI-RST, implying that the feedforward message in mainly conveyed by the center 

stimulation.  
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Figure 3.4.66: Spectral analysis of the unlocked the local field potential evoked by our set of control stimuli. A. Power 
spectrum density. Top row: mean plots. Bottom row: bar plots of the mean intermediate and high frequencies PSD. B. 

Relative power spectrum density. Top row: mean plots. Bottom row: bar plots of the mean intermediate and high 
frequencies R-PSD. *: all conditions are significantly different from each other; # Full Field is significantly different from the 
other conditions; * : p < 0.05; ** : p < 0.01;  *** : p < 0.001; Error bars and shaded area : SEM. 
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FULL FIELD ALPHA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 4.9e+07 ± 4.6e+06 7.5e+07 ± 6.4e+06 7.4e+07 ± 6.6e+06 5.6e+07 ± 5.0e+06 6.0e+07 ± 6.8e+06 

Layer 4 6.1e+07 ± 3.3e+06 1.1e+08 ± 4.9e+06 1.1e+08 ± 4.2e+06 7.8e+07 ± 3.9e+06 8.7e+07 ± 7.4e+06 

Layer 5/6 1.1e+08 ± 1.2e+07 1.6e+08 ± 1.3e+07 1.5e+08 ± 1.3e+07 1.4e+08 ± 1.6e+07 1.4e+08 ± 1.6e+07 

Mean 7.3e+07 ± 6.5e+06 1.1e+08 ± 8.0e+06 1.1e+08 ± 8.0e+06 9.0e+07 ± 8.2e+06 9.5e+07 ± 1.0e+07 
       

CENTER ALPHA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 5.2e+07 ± 4.3e+06 6.4e+07 ± 5.0e+06 5.6e+07 ± 4.5e+06 6.0e+07 ± 5.0e+06 6.0e+07 ± 6.8e+06 

Layer 4 7.0e+07 ± 3.4e+06 9.7e+07 ± 4.6e+06 8.6e+07 ± 3.8e+06 8.9e+07 ± 4.3e+06 8.7e+07 ± 7.4e+06 

Layer 5/6 1.2e+08 ± 1.2e+07 1.5e+08 ± 2.0e+07 1.3e+08 ± 1.2e+07 1.5e+08 ± 1.3e+07 1.4e+08 ± 1.6e+07 

Mean 8.1e+07 ± 6.5e+06 1.0e+08 ± 9.8e+06 9.1e+07 ± 6.8e+06 9.8e+07 ± 7.4e+06 9.5e+07 ± 1.0e+07 
      

SURROUND ALPHA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 5.4e+07 ± 4.2e+06 6.9e+07 ± 5.7e+06 7.3e+07 ± 6.0e+06 6.1e+07 ± 5.1e+06 6.0e+07 ± 6.8e+06 

Layer 4 6.9e+07 ± 2.9e+06 9.0e+07 ± 4.5e+06 9.9e+07 ± 4.2e+06 7.7e+07 ± 3.8e+06 8.7e+07 ± 7.4e+06 

Layer 5/6 1.1e+08 ± 1.3e+07 1.5e+08 ± 1.7e+07 1.5e+08 ± 1.1e+07 1.3e+08 ± 1.3e+07 1.4e+08 ± 1.6e+07 

Mean 7.8e+07 ± 6.7e+06 1.0e+08 ± 9.0e+06 1.1e+08 ± 7.1e+06 9.0e+07 ± 7.2e+06 9.5e+07 ± 1.0e+07 
      

FULL FIELD ALPHA BAND R-PSD  

  DG GEM NI DN  

Layer 2/3 -0.21 ± -0.02 0.27 ± -0.04 0.25 ± -0.03 -0.06 ± -0.03  

Layer 4 -0.32 ± -0.02 0.42 ± -0.06 0.29 ± -0.05 -0.12 ± -0.03  

Layer 5/6 -0.25 ± -0.01 0.31 ± -0.04 0.20 ± -0.03 -0.04 ± -0.00  

Mean -0.26 ± -0.02 0.33 ± -0.04 0.25 ± -0.04 -0.07 ± -0.02  

      

CENTER ALPHA BAND R-PSD  

  DG GEM NI DN  

Layer 2/3 -0.15 ± -0.03 0.06 ± -0.03 -0.04 ± -0.03 0.02 ± -0.03  

Layer 4 -0.22 ± -0.03 0.15 ± -0.04 0.02 ± -0.04 0.03 ± -0.04  

Layer 5/6 -0.14 ± -0.01 0.13 ± -0.00 -0.03 ± -0.02 0.05 ± -0.02  

Mean -0.17 ± -0.02 0.11 ± -0.03 -0.02 ± -0.03 0.03 ± -0.03  

      

SURROUND ALPHA BAND R-PSD  

  DG GEM NI DN  

Layer 2/3 -0.11 ± -0.03 0.14 ± -0.04 0.18 ± -0.04 -0.02 ± -0.03  

Layer 4 -0.23 ± -0.03 0.05 ± -0.04 0.12 ± -0.04 -0.16 ± -0.03  

Layer 5/6 -0.21 ± -0.01 0.12 ± -0.01 0.11 ± -0.03 -0.09 ± -0.02  

Mean -0.18 ± -0.02 0.10 ± -0.03 0.14 ± -0.04 -0.09 ± -0.03  

Table 3.4.25: Mean low frequency PSD, R-PSD of the unlocked LFP in response to our stimulus set presented full field, 

on the center or on the surround (mean ± SEM) 
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FULL FIELD GAMMA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 2.4e+06 ± 2.5e+05 2.1e+06 ± 1.6e+05 2.1e+06 ± 1.8e+05 1.9e+06 ± 1.5e+05 2.0e+06 ± 2.4e+05 

Layer 4 4.7e+06 ± 3.5e+05 3.7e+06 ± 1.7e+05 3.4e+06 ± 1.6e+05 2.9e+06 ± 1.2e+05 2.8e+06 ± 2.0e+05 

Layer 5/6 6.0e+06 ± 5.4e+05 5.3e+06 ± 2.8e+05 4.2e+06 ± 2.4e+05 3.9e+06 ± 1.8e+05 4.1e+06 ± 3.2e+05 

Mean 4.4e+06 ± 3.8e+05 3.7e+06 ± 2.0e+05 3.2e+06 ± 1.9e+05 2.9e+06 ± 1.5e+05 3.0e+06 ± 2.6e+05 
      

CENTER GAMMA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 2.2e+06 ± 2.0e+05 2.2e+06 ± 1.8e+05 2.2e+06 ± 2.0e+05 2.1e+06 ± 1.7e+05 2.0e+06 ± 2.4e+05 

Layer 4 3.7e+06 ± 2.1e+05 3.9e+06 ± 1.9e+05 3.7e+06 ± 1.9e+05 3.3e+06 ± 1.5e+05 2.8e+06 ± 2.0e+05 

Layer 5/6 4.8e+06 ± 3.3e+05 5.3e+06 ± 2.8e+05 5.0e+06 ± 3.1e+05 4.6e+06 ± 2.6e+05 4.1e+06 ± 3.2e+05 

Mean 3.6e+06 ± 2.5e+05 3.8e+06 ± 2.2e+05 3.7e+06 ± 2.3e+05 3.3e+06 ± 1.9e+05 3.0e+06 ± 2.6e+05 
      

SURROUND GAMMA BAND PSD 

  DG GEM NI DN BLK 

Layer 2/3 2.0e+06 ± 1.8e+05 2.1e+06 ± 1.7e+05 2.0e+06 ± 1.8e+05 1.9e+06 ± 1.7e+05 2.0e+06 ± 2.4e+05 

Layer 4 3.1e+06 ± 1.8e+05 3.1e+06 ± 1.6e+05 2.9e+06 ± 1.6e+05 2.8e+06 ± 1.4e+05 2.8e+06 ± 2.0e+05 

Layer 5/6 4.7e+06 ± 3.5e+05 4.5e+06 ± 3.1e+05 4.0e+06 ± 2.5e+05 4.0e+06 ± 2.3e+05 4.1e+06 ± 3.2e+05 

Mean 3.3e+06 ± 2.4e+05 3.2e+06 ± 2.1e+05 3.0e+06 ± 1.9e+05 2.9e+06 ± 1.8e+05 3.0e+06 ± 2.6e+05 
      

FULL FIELD GAMMA BAND R-PSD  

  DG GEM NI DN  

Layer 2/3 0.45 ± 0.01 0.13 ± -0.03 0.27 ± -0.02 0.04 ± -0.03  

Layer 4 0.89 ± 0.01 0.39 ± -0.04 0.47 ± -0.03 0.10 ± -0.04  

Layer 5/6 0.70 ± 0.03 0.38 ± -0.03 0.34 ± -0.02 0.02 ± -0.03  

Mean 0.68 ± 0.02 0.30 ± -0.03 0.36 ± -0.02 0.05 ± -0.03  

      

CENTER GAMMA BAND R-PSD  

  DG GEM NI DN  

Layer 2/3 0.32 ± -0.01 0.28 ± -0.03 0.30 ± -0.02 0.13 ± -0.03  

Layer 4 0.57 ± -0.02 0.59 ± -0.04 0.59 ± -0.03 0.28 ± -0.03  

Layer 5/6 0.42 ± -0.01 0.52 ± -0.04 0.50 ± -0.02 0.25 ± -0.02  

Mean 0.43 ± -0.01 0.46 ± -0.04 0.46 ± -0.02 0.22 ± -0.03  

      

SURROUND GAMMA BAND R-PSD  

  DG GEM NI DN  

Layer 2/3 0.11 ± -0.01 0.06 ± -0.03 0.12 ± -0.02 0.05 ± -0.02  

Layer 4 0.21 ± -0.01 0.14 ± -0.02 0.20 ± -0.02 0.09 ± -0.02  

Layer 5/6 0.28 ± 0.01 0.17 ± -0.00 0.17 ± -0.00 0.05 ± -0.01  

Mean 0.20 ± -0.01 0.13 ± -0.02 0.16 ± -0.01 0.06 ± -0.02  

Table 3.4.26: Mean high frequency PSD, R-PSD of the unlocked LFP in response to our stimulus set presented full field, 

on the center or on the surround (mean ± SEM) 
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FULL FIELD (ALPHA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
1.01e+08 ± 
6.83e+06 

1.20e+08 ± 
1.08e+07 

1.01e+08 ± -
2.99e+05 

8.95e+07 ± 
1.34e+07 

1.17e+08 ± 
1.00e+07 

7.42e+07 ± 
7.71e+06 

R-
PSD 

0.374 ± -0.042 0.601 ± -0.038 0.176 ± 0.035 0.126 ± 0.007 0.384 ± -0.023 X 

       

CENTER (ALPHA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
7.34e+07 ± 
5.31e+06 

9.32e+07 ± 
1.31e+07 

9.80e+07 ± 
2.11e+07 

9.90e+07 ± 
1.36e+07 

9.00e+07 ± 
7.65e+06 

7.42e+07 ± 
7.71e+06 

R-
PSD 

0.000 ± -0.033 0.214 ± 0.026 0.199 ± 0.081 0.225 ± 0.002 0.114 ± -0.023 X 

       

SURROUND (ALPHA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
8.83e+07 ± 
5.88e+06 

1.03e+08 ± 
1.32e+07 

7.99e+07 ± 
1.11e+07 

6.97e+07 ± 
8.27e+06 

9.63e+07 ± 
8.47e+06 

7.42e+07 ± 
7.71e+06 

R-
PSD 

0.194 ± -0.036 0.279 ± -0.013 -0.023 ± -0.013 -0.119 ± -0.007 0.212 ± -0.016 X 

       

FULL FIELD (GAMMA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
4.03e+06 ± 
2.94e+05 

4.02e+06 ± 
2.83e+05 

3.33e+06 ± 
2.49e+05 

3.21e+06 ± 
2.34e+05 

4.36e+06 ± 
2.97e+05 

3.29e+06 ± 
2.74e+05 

R-
PSD 

0.447 ± 0.003 0.451 ± -0.003 0.158 ± -0.007 0.131 ± -0.007 0.424 ± -0.013 X 

       

CENTER (GAMMA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
4.66e+06 ± 
3.48e+05 

4.93e+06 ± 
3.67e+05 

4.27e+06 ± 
3.25e+05 

4.24e+06 ± 
3.03e+05 

4.97e+06 ± 
3.59e+05 

3.29e+06 ± 
2.74e+05 

R-
PSD 

0.601 ± 0.001 0.693 ± 0.001 0.436 ± -0.006 0.428 ± -0.009 0.624 ± -0.008 X 

       

SURROUND (GAMMA BAND)   

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

PSD 
3.70e+06 ± 
2.99e+05 

3.73e+06 ± 
2.93e+05 

3.36e+06 ± 
2.65e+05 

3.46e+06 ± 
2.77e+05 

3.89e+06 ± 
3.03e+05 

3.29e+06 ± 
2.74e+05 

R-
PSD 

0.298 ± 0.010 0.257 ± 0.003 0.143 ± 0.000 0.194 ± 0.004 0.259 ± 0.001 X 

Table 3.4.27: Mean low and high frequency PSD, R-PSD of the unlocked LFP in response to our control stimulus set 

presented full field, on the center or on the surround (mean ± SEM) 
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5. CORRELATION OF THE NEURONAL ACTIVITY 

In the previous sections, we investigated different indexes and showed that natural images elicit a 

more reliable and sparser response than the other stimuli. These results are in agreement with 

Barlow’s efficient coding theory stating that exposure to natural-like statistics should decrease the 

stimulus-locked response variability at the single neuron level, increase the sparseness of the global 

population activity and reduce the redundancy present in the spike trains of populations of individual 

neuron. The last step that need to be investigated is if natural images reduce the redundancy in the 

neuronal activity. The seminal work of Vinje and Gallant (2000) showed that natural images 

decorrelate the neuronal response in macaque primary visual cortex. A few years later, Yen and 

colleagues (2006), computed the correlation of neurons recorded in the same tetrode. They obtained 

a heterogeneous distribution of correlations with cell pairs displaying correlation values ranging from 

-0.2 to 0.9. They also observed different levels of correlation for neurons recorded in the same or in 

different tetrodes. Recent studies performed on mice showed that different levels of correlation are 

found across the cortex. Indeed, mouse V1 contains neuronal clusters of low and high correlation 

(Kampa et al., 2011; Rikhye and Sur, 2015). These papers found that the neurons belonging to the 

highly correlated clusters display a higher reliability that those found in poorly correlated clusters. In 

addition, they also observed that neurons spatially closed were more correlated than neurons 

spatially distant. Moreover, it has been found on primates and mice that the levels of correlation are 

linked to the stimulus statistics (Bányai et al., 2019; Rikhye and Sur, 2015). Thus, we should expect 

a higher correlation in response to natural images that are highly correlated stimuli. 

Our recordings allowed a laminar exploration of the correlations while recording hundreds of 

neuronal pairs and LFP sites. Will we observe a decorrelation between neurons for an increase in 

the stimulation size, as observed by Vinje and Gallant (2000)? Moreover, what is the impact of the 

natural spatio-temporal statistics on the neuronal correlation? 

 

In order to answer these questions, we computed the two main types of correlations: signal 

correlation (SC) and noise correlation (NC). 
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5.3. Impact of the Full Field Stimulation 

5.3.1 Correlation of the Spiking Activity 

 Signal Correlation 

We first computed the signal correlation of the spiking activity, which is the correlation between the 

mean responses of two different signals (SUA or MUA) in response to the same stimulus. Signal 

correlation is used to quantify the degree to which different neurons have similar functional 

properties. 

Based on the results of Tanaka et al (20104) and Yen et al (2006) we decided to separate our signal 

correlations into two groups. 

A first one that regroups the signal correlation of neurons belonging to the same layer i.e. the signal 

correlation within layers. 

A second one that regroups the signal correlation of neurons belonging to different layers i.e. the 

signal correlation between layers. 

Based the results of the studies cited above, the signal correlation between layers should be lower 

than the one within layers.  

 

Figures 3.5.1 and 3.5.2 show an example of signal correlation computed for 2 recordings sites for 

both SUA and MUA. The signal correlation corresponds to the value at 0. The reference-recording 

site (red square) has a SC of 1 while the other channels have lower ones. We can observe that for 

the SUA, when DG are presented some neurons will be anti-correlated because a difference in 

phase preference. The signal correlation is higher for the MUA than the SUA. In addition, at the multi-

unit level all channels displayed a very similar signal correlation, which is not the case for the SUA.  
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Figure 3.5.1. Example of signal correlation of the single unit activity across 3 different channels. The PSTHs of each 

channel are displayed below. The signal correlation corresponds to the value at 0. Red square: reference neuron 
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Figure 3.5.2. Example of signal correlation of the multi-unit activity across 3 different channels. The PSTHs of each channel 

are displayed below. The signal correlation corresponds to the value at 0. Red square: reference site 
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We computed the SC for both single and multi-unit populations. We obtained 776 pairs of neurons 

within layers and 694 between layers. Regarding the multi-unit, we computed our analysis on 3710 

pairs of sites within layers and 5132 between layers. The signal correlation of the single unit activity 

is the correlation of all recorded neurons, without any subclass specification.  

The mean signal correlation was plotted with bar plots, in order to be able to determine the stimulus 

eliciting the highest correlations and we also plotted the scatter plots with the distribution in order 

identify the different clusters of correlation, if they are present. Our results are reported in in figures 

3.5.3 to 3.5.5 and table 3.5.1. When we computed the signal correlation within layers, natural images 

evoked the highest values both SUA and MUA (p < 0.001; Friedman test). For both spiking activities, 

the artificial stimuli evoked an equivalent signal correlation (p > 0.05; Friedman test). The multi-unit 

activity was about 5 times more correlated than the single unit was. In our knowledge, no study 

investigated, experimentally, the signal correlation of the MUA. However, a theoretical study 

performed by Cohen and Kohn (2011) showed that by increasing the number of neurons that 

contribute to the multi-unit one will obtain an increase in the correlation levels. Thus, when computed 

on the multi-unit, an increase in the signal correlation is also expected. The fact that natural images 

evoke a higher correlation than the other stimuli is not surprising since the natural image by itself is 

a very correlated stimulus. We confirmed previous results observed in the literature, stating that 

natural images evoke a more correlated mean response than the other stimuli (Yen et al., 2006; 

Martin and Schröder, 2013). Two-photons studies performed on mice observed that neurons 

organize themselves in poorly and highly correlated groups (Kampa et al, 2011; Rikhye and Sur, 

2015). However, do we observe in cats, these highly and poorly correlated clusters? The scatters 

plots and the distribution of the single unit activity in figure 3.5.4 reveal that we do not observe a 

clustering as they did. However, we do observe a great heterogeneity in the obtained values. Martin 

and Schröder (2013) already observed this heterogeneity. However, they obtained higher signal 

correlations than us. This could be linked to three factors. The first one is that they only computed 

the correlation on neurons recorded from the same channel. When we restricted our neuronal 

population with the same criteria, we observed an increase in the signal correlation (SC around 0.2 

for NI). Yet, our values are lower than theirs are. This could either be linked to the chosen PSTH bin 

or the number of pairs that they recorded. In their study, they show that the bin size can increase the 

signal correlation. We chose a bin lower than theirs (5ms vs 10ms), explaining this difference. Finally, 

their small number of pairs (46) might give a biased vision of correlations in V1. In a study performed 

in cat V1, Spacek and Swindale (2016) obtained signal correlation values, in response to NI, similar 

to ours. 

Then, we computed the signal correlation between layers. The correlation between layers is 

computed for neurons that are spatially distant. Thus, it is not surprising that the values of signal 

correlation that we obtained are lower than the ones observed within layers (p < 0.001; Mann 

Whitney U test). For the SUA, the SC between layers is two times lower than the within layers while 

for the MUA the difference is less important (less than two times). Despite this decrease in signal 

correlation, we obtained the same pattern of response both within and between layers. At the single 

unit level, the scatter plot and distribution show no clusters of correlation. This is not surprising since 

distant neurons are poorly correlated. Regarding the MUA the correlation is higher since the multi-

unit activity captures responses shared by many other neurons. Both single unit and multi-unit 

populations sometimes showed, for the same neuron, higher values of signal correlation for DG 

when we compared the response to DG and NI (figure 3.5.4 and 3.5.5). This is caused by the fact 

that two neurons preferentially tuned to the grating will display very high levels of correlation. 

In summary, we showed that natural images evoke a more correlated signal than the other stimuli. 

Unsurprisingly, the multi-unit activity is more correlated than the single unit activity. In addition, we 
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showed that the correlation within layers, i.e. between neurons that are spatially close is higher than 

the correlation between layers i.e. neurons that are spatially apart. This confirms the findings of  Yen 

et al (2006) and Tanaka et al., (2014) 

 
Figure 3.5.3. Signal correlation of the spiking activity within and between layers. Natural images evoke the most correlated 

response. The correlations are higher within layers than between them. Top row: single unit activity. Bottom row: Multi-unit 
activity. Stars indicate a significant statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; 
***: p < 0.001 
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Figure 3.5.4. Scatter plots and distribution of the signal correlation of the single unit activity within and between layers. 

Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between L2/3 and 
L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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Figure 3.4.5. Scatter plots and distribution of the signal correlation of the multi-unit activity within and between layers. Blue: 

correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between L2/3 and L5/6; 
Green: correlation computed within L4 or between L4 and L5/6. 
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We also subdivided our neuronal population into regular and fast spiking neurons (Figures 3.5.6 to 

3.5.8; table 3.5.2). We correlated FS neurons between, them and RS neurons between them. We 

observed that for all stimuli, fast spiking neurons were more correlated than regular spiking neurons 

both between and within layers (p < 0.001; Mann Whitney U test). 

Regular spiking cells displayed the same pattern of response as the one observed for the SUA. 

However, among FS cells no difference in SC was observed for all stimuli, despite a NI evoking a 

higher mean SC (p > 0.05). Since we only have about a hundred pairs of neurons for FS cells, an 

increase in the number in this number will be needed in the future. 

 
Figure 3.5.6. Signal correlation of the spiking activity within and between layers. FS neurons evoke the most correlated 

activity. Top row : Fast spiking neurons. Middle row: regular spiking neurons Bottom row: single unit activity. Stars indicate 
a significant statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.7. Scatter plots and distribution of the signal correlation of the fast spiking neurons within and between layers. 

Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between L2/3 and 
L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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Figure 3.5.8. Scatter plots and distribution of the signal correlation of the regular spiking neurons within and between 

layers. Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between 
L2/3 and L5/6; Green: correlation computed within L4 or between L4 and L5/6. 

  



 

321 

 

 

It has been shown, on mice, that a natural stimulus containing strong low frequency spatial 

correlations will evoke a more correlated (Rikhye and Sur (2015)). We wondered if our control stimuli, 

were we randomized the phase at the spatial level and the eye movements at the temporal one, 

would evoke different levels of correlation (Figure 3.5.9; table 3.5.3). Both within and between layers, 

at the single unit level, all the altered natural images, except NI-RST, evoked a similar correlation 

level that the unaltered natural image (p > 0.05; Friedman test). At a more global level (i.e. the MUA), 

all the altered natural images evoked different correlations that the unaltered natural image (p < 

0.001; Friedman test). At this scale, the differences between the SC evoked by the different stimuli 

are very low (table 3.5.3). The only main difference observed was for the correlations evoked by NI-

RT. No significant difference between the evoked correlations was observed within our RS and FS 

populations (Figure 3.5.10; table 3.5.3; p > 0.05; Friedman test). 

In summary, the signal correlation does not seem strongly impacted by the alterations of the spatio-

temporal statistics of natural images. In their study performed in primate, Freeman et al., (2013), did 

not observe any difference in V1 response for natural and altered natural stimuli. However, they 

observed a difference in V2. Since mice are not visual animals (see table 1.1.1), the different 

response that takes place in V2 in higher mammals might already be present in V1.  
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Figure 3.5.9. Signal correlation of the spiking activity, in response to our control stimuli, within and between layers. Top 

row: single unit activity. Bottom row: Multi-unit activity. Stars indicate a significant statistical difference with the NI condition. 
n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.10. Signal correlation of the spiking activity within and between layers. Top row: Fast spiking neurons. Bottom 

row: regular spiking. Stars indicate a significant statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; 
**: p < 0.01; ***: p < 0.001 
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FULL FIELD Signal Correlation (SUA) 

  DG NI DN BLK 

Within Layers 0.044 ± 0.003 0.075 ± 0.004 0.053 ± 0.003 0.008 ± 0.002 

Between Layers 0.026 ± 0.003 0.04 ± 0.003 0.023 ± 0.002 0.009 ± 0.002 

 
    

FULL FIELD Signal Correlation (MUA) 

  DG NI DN BLK 

Within Layers 0.474 ± 0.004 0.544 ± 0.004 0.454 ± 0.004 0.163 ± 0.004 

Between Layers 0.348 ± 0.003 0.423 ± 0.002 0.314 ± 0.002 0.066 ± 0.001 

Table 3.5.1: Signal correlation of the single and multi-unit activities computed within and between layers in response to 

our stimulus set (Mean ± SEM) 

 

FULL FIELD Signal Correlation (FS) 

  DG NI DN BLK 

Within Layers 0.098 ± 0.014 0.124 ± 0.015 0.108 ± 0.014 0.019 ± 0.008 

Between Layers 0.046 ± 0.013 0.079 ± 0.014 0.047 ± 0.011 0.02 ± 0.005 

     
FULL FIELD Signal Correlation (RS) 

  DG NI DN BLK 

Within Layers 0.032 ± 0.003 0.062 ± 0.005 0.039 ± 0.003 0.01 ± 0.002 

Between Layers 0.026 ± 0.004 0.035 ± 0.004 0.023 ± 0.003 0.006 ± 0.002 

Table 3.5.2: Signal correlation of the fast and regular spiking neurons computed within and between layers in response to 

our stimulus set (Mean ± SEM) 

 

 
FULL FIELD WITHIN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.099 ± 0.016 0.11 ± 0.017 0.093 ± 0.013 0.13 ± 0.018 0.098 ± 0.014 0.012 ± 0.005 

RS 0.061 ± 0.006 0.063 ± 0.005 0.049 ± 0.005 0.068 ± 0.006 0.063 ± 0.005 0.004 ± 0.001 

SUA 0.07 ± 0.004 0.072 ± 0.004 0.061 ± 0.004 0.081 ± 0.005 0.074 ± 0.004 0.007 ± 0.001 

MUA 0.543 ± 0.005 0.518 ± 0.005 0.493 ± 0.006 0.545 ± 0.005 0.522 ± 0.005 0.149 ± 0.003 

       
FULL FIELD BETWEEN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.099 ± 0.026 0.116 ± 0.032 0.122 ± 0.034 0.132 ± 0.034 0.086 ± 0.028 0.021 ± 0.01 

RS 0.04 ± 0.005 0.032 ± 0.004 0.034 ± 0.004 0.052 ± 0.005 0.041 ± 0.005 0.002 ± 0.002 

SUA 0.042 ± 0.004 0.04 ± 0.004 0.039 ± 0.003 0.056 ± 0.004 0.042 ± 0.004 0.003 ± 0.001 

MUA 0.401 ± 0.003 0.37 ± 0.003 0.35 ± 0.004 0.391 ± 0.003 0.369 ± 0.004 0.08 ± 0.002 

Table 3.5.3: Signal correlation of the spiking activity computed within and between layers in response to our control 

stimulus set (Mean ± SEM) 
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 Noise Correlation  

The noise correlation is the measure of the shared fluctuations between two neurons (Martin and 

Schröder, 2013). The latter is the correlation of each trial response (after mean subtraction) between 

two different neurons (SUA or MUA) in response to the same stimulus. An example of two trial 

responses that will be correlated is shown in figure 3.5.11.  

It has been shown that noise correlation is stimulus dependent (Kohn and Smith, 2005; Rikhye and 

Sur, 2015) and that spatially distant pairs of evoke a lower correlation than spatially close pairs of 

neurons (Smith and Kohn, 2008; Rikhye and Sur, 2015). However, these studies were performed on 

primates or mice. On cats, Martin and Schroder (2013), showed artificial and natural stimuli evoked 

the same values of noise correlation. Based on the findings of the literature, we decided to investigate 

in our data if a stimulus and a spatial dependency of the noise correlations were observed. As 

performed for the signal correlation, we divided our analysis into two groups. 

A first one that regroups the noise correlation of neurons belonging to the same layer i.e. the noise 

correlation within layers. 

A second one that regroups the noise correlation of neurons belonging to different layers i.e. the 

signal noise between layers. 

 
Figure 3.5.11. Trial response of three different neurons (in purple, green and orange). These trial responses are correlated 

in order to obtain the noise correlation (reprinted from Martin and Schröder, 2013) 

 

We obtained 776 pairs of neurons within layers and 694 between layers. Regarding the multi-unit 

we computed our analysis on 3710 pairs of sites within layers and 5132 between layers. The noise 

correlation of the single unit activity is the correlation of all recorded neurons, without any subclass 

specification. Our results are reported in in figures 3.5.12 to 3.5.15 and table 3.5.4. 

We first computed the noise correlation within layers. Our results show that, at the single unit level, 

all stimuli evoked a similar noise correlation (p > 0.55; Friedman test; table 3.5.4). The noise 

correlation values that we obtained for the single unit activity are in the range of those obtained in 

the literature (see chapter I section 1. and Cohen and Kohn, 2011). One could argue that our values 

are different from the ones obtained by Ecker et al. (2006), however they used an improved noise 

correlation computation method on the awake primate. They claim that their difference is linked to a 

more efficient spike sorting while the main reason might come from their new method and the animal 

state (they showed later (Ecker et al, 2013) that anesthesia increases the noise correlations). In 

addition, our results match the ones of the literature. Indeed as observed by Martin and Schroder 
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(2013) on cats but also Ecker et al, (2013) on primates, we obtained very heterogeneous values of 

noise correlation. 

On the other hand, we obtained different NC values at multi-unit level: DG evoked the highest noise 

correlation and DN the lowest (p < 0.001). Again, we obtained very heterogeneous noise correlation 

values. The MUA noise correlation is higher than the SUA (p < 0.001; Mann Whitney U test). This is 

not surprising, since the MUA is a signal that regroups the activity of many neurons it averages out 

variability that is independent of each neuron, so the correlation between two clusters of multiunit 

activity will be larger than between pairings of the constituent neurons (Cohen and Kohn, 2011). 

Ecker and colleagues (2014) showed that anesthesia has a strong impact on the variability of the 

response. In addition, Spacek and Swindale (2016) observed that during an experiment, 

anesthetized cats will display different levels of synchronization in V1. These different levels of 

synchronization resulted in different values of NC. Thus, the heterogeneous values that we observed 

could also be linked to the state of the animal across the experiment. 

When computed between layers, at the single unit level, DG and NI evoked a similar noise correlation 

(p = 0.052), higher than the one evoked by DN (p < 0.01). Again, we obtained very heterogeneous 

noise correlation values. We then computed the noise correlation of the MUA, between layers and 

obtained the same response pattern as the one obtained between layers 

For both single unit and multi-unit activities respectively, the correlation within layers evoked a higher 

value than the correlation between layers. These results are in agreement with the ones observed 

by Smith and Kohn (2008) and Rikhye and Sur (2015), showing that distance decreased the noise 

correlation. 

 
Figure 3.5.12. Noise correlation of the spiking activity within and between layers. Small differences are observed between 

the evoked correlations. The correlations are higher within layers than between them. Top row: single unit activity. Bottom 
row: Multi-unit activity. Stars indicate a significant statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; 
**: p < 0.01; ***: p < 0.001 
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Figure 3.5.13. Scatter plots and distribution of the noise correlation of the single unit activity within and between layers. 

Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between L2/3 and 
L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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Figure 3.5.14. Scatter plots and distribution of the noise correlation of the multi-unit activity within and between layers. 

Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between L2/3 and 
L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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We also subdivided our neuronal population into regular and fast spiking neurons. We showed that 

these two neuronal subclasses displayed different signal levels. Will we observe the same behavior 

for the noise correlation? We first computed the correlation within layers (Figures 3.5.15 to .5.17; 

table 3.5.5). When DG was presented fast spiking, cells displayed a higher noise correlation than 

when the other stimuli were (p < 0.01). At the level of the regular spiking population, all stimuli evoked 

a similar noise correlation (p > 0.6). However, for FS cells, when computed between layers, all stimuli 

evoked the same levels of noise correlation (p > 0.5). On the other hand, among RS cells, level, DG 

and NI evoked a similar noise correlation (p = 0.57), higher than the one evoked by DN (p < 0.01). 

For both correlations, fast spiking cells evoked the highest noise while RS the lowest one (p < 0.001; 

Kruskal Wallis test). This was also observed at the level of the time frequency analysis, where FS 

cells evoked the noisiest response but also the strongest signal. The higher levels of noise 

correlation observed for FS neurons are probably linked to their high firing rate. Indeed, the noise 

correlation levels are directly linked to the cells firing rates (Cohen and Kohn, 2011). Interestingly, 

the noise correlations values obtained with the RS neurons is close to the ones obtained by Ecker 

et al (2013) in the anesthetized monkey. Therefore, the low values that they obtained could be linked 

with an oversampling of regular spiking neurons.  

Finally, both subclasses displayed very heterogeneous levels of correlations. Again, this 

heterogeneity could be linked to different dynamic brain states as observed by Spacek and Swindale 

(2016). 

 
Figure 3.5.15. Noise correlation of the spiking activity within and between layers. Top row : Fast spiking neurons. Middle 

row: regular spiking neurons Bottom row: single unit activity. Stars indicate a significant statistical difference with the NI 
condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.16. Scatter plots and distribution of the noise correlation of the fast spiking neurons within and between layers. 

Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between L2/3 and 
L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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Figure 3.5.17. Scatter plots and distribution of the noise correlation of the regular spiking neurons within and between 

layers. Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed within L4 or between 
L2/3 and L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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In their paper De Vries et al. (2019) showed that neurons showing a high level of synchrony exhibited 

positively correlated trial-by-trial fluctuations. In practice this correspond to signal and noise 

correlation being positively correlated. They and others (Cohen and Kohn, 2011), suggested that 

this correlation is a common feature of cortical representations. These two studies were either 

performed on mice or on primates. We wondered if this would be also observed on cat primary visual 

cortex. We compared the signal and noise correlation values for both single and multi-unit activities 

(Figures 3.4.18 and 3.4.19).  Within layers, the SUA the noise and signal correlations exhibited a 

positive correlation, about the same level as the one observed by de Vries et al (p < 0.001; Spearman 

test) On the other hand, the MUA displayed a very high correlation level (p < 0.001).  Between layers, 

a higher correlation was observed for the single unit activity while the same correlation levels were 

observed for the MUA (p < 0.001). The FS and RS neurons displayed similar correlation levels as 

the single unit population, thus we will not plot them. These results show that on cat primary visual 

cortex we also observed a correlation between the signal and noise correlations and this latter is a 

feature of cortical representation. 
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Figure 3.4.18. Correlation between noise and signal correlations of the single unit activity within and between layers (r = 

spearman’s correlation). 



 

334 

 

 

 
Figure 3.4.19. Correlation between noise and signal correlations of the single unit activity within and between layers (r = 

spearman’s correlation). Black curve: exponential fit.  
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In this section, we showed that the noise correlation does not display a stimulus dependency at the 

single unit level. However, we compared the noise correlation evoked by a natural and two artificial 

stimuli. In their study performed on mice, Rikhye and Sur (2015) showed that natural images 

containing highly, or poorly correlated spatial statistics displayed different levels of correlation. We 

wondered if our set of altered natural stimulus would impact the noise correlation of cat V1 neurons 

in the same way as in mouse V1. Within layers, for the single unit activity, we observed that the 

natural image where the spatial phase is randomized displayed a higher noise correlation than the 

other stimuli, that evoked the same NC (p > 0.1; Friedman test: Figure 3.4.20; table 3.5.6). Regarding 

the MUA, all altered stimuli evoked a lower NC than the unaltered natural image (p < 0.001). The 

lowest mean noise correlation was evoked by the natural image where spatial were randomized. 

The other stimuli evoked close, but significantly different noise correlation (p <0.001). When 

computed between layers, all the stimuli evoked the same noise correlation for the single unit 

population (p > 0.18). However, a pattern of response was visible, with NI inducing the highest mean 

correlation and NI-RT the lowest one. Interestingly, the noise correlations of FS cells displayed the 

same patter as the MUA, while the RS cells showed a similar response pattern as the SUA (Figure 

3.5.21). 

The results that we obtain for the SUA are probably biased by the RS cells response since we 

recorded more RS than FS cells. We observed that the phase of the statistics of the natural scene 

have an impact on the noise correlation. In addition, we showed that temporal statistics, and their 

alteration, also impact the noise correlation. However, the alterations of spatial statistics seem to 

have a stronger impact on the noise correlation than the temporal ones. 

 

 
Figure 3.5.20. Noise correlation of the spiking activity, in response to our control stimuli, within and between layers. Top 

row: single unit activity. Bottom row: Multi-unit activity. Stars indicate a significant statistical difference with the NI condition. 
n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 

 



 

336 

 

 

 
Figure 3.5.21. Signal correlation of the spiking activity within and between layers. Top row: Fast spiking neurons. Bottom 

row: regular spiking. Stars indicate a significant statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; 
**: p < 0.01; ***: p < 0.001 
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FULL FIELD Noise Correlation (SUA) 

  DG NI DN BLK 

Within Layers 0.136 ± 0.009 0.113 ± 0.007 0.113 ± 0.008 0.04 ± 0.006 

Between Layers 0.068 ± 0.009 0.082 ± 0.007 0.039 ± 0.006 0.014 ± 0.004 

     
FULL FIELD Noise Correlation (MUA) 

  DG NI DN BLK 

Within Layers 0.788 ± 0.004 0.718 ± 0.004 0.703 ± 0.004 0.238 ± 0.005 

Between Layers 0.714 ± 0.003 0.669 ± 0.003 0.638 ± 0.003 0.131 ± 0.002 

Table 3.5.4: Noise correlation of the fast and regular spiking neurons computed within and between layers in response to 

our stimulus set (Mean ± SEM) 

 

 

FULL FIELD Noise Correlation (FS) 

  DG NI DN BLK 

Within Layers 0.322 ± 0.031 0.214 ± 0.026 0.253 ± 0.028 0.087 ± 0.025 

Between Layers 0.075 ± 0.029 0.164 ± 0.025 0.14 ± 0.022 0.017 ± 0.013 

     
FULL FIELD Noise Correlation (RS) 

  DG NI DN BLK 

Within Layers 0.084 ± 0.011 0.077 ± 0.008 0.077 ± 0.009 0.03 ± 0.008 

Between Layers 0.069 ± 0.012 0.066 ± 0.008 0.031 ± 0.007 0.019 ± 0.006 

Table 3.5.5: Noise correlation of the fast and regular spiking neurons computed within and between layers in response to 

our stimulus set (Mean ± SEM) 

 

 
FULL FIELD WITHIN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.215 ± 0.035 0.199 ± 0.028 0.182 ± 0.029 0.228 ± 0.037 0.15 ± 0.036 0.034 ± 0.014 

RS 0.083 ± 0.01 0.157 ± 0.014 0.091 ± 0.01 0.112 ± 0.013 0.07 ± 0.01 0.035 ± 0.007 

SUA 0.114 ± 0.009 0.174 ± 0.011 0.112 ± 0.009 0.141 ± 0.01 0.091 ± 0.009 0.039 ± 0.005 

MUA 0.751 ± 0.004 0.718 ± 0.004 0.64 ± 0.005 0.719 ± 0.004 0.688 ± 0.004 0.166 ± 0.004 

       
FULL FIELD BETWEEN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.192 ± 0.045 0.118 ± 0.049 0.091 ± 0.035 0.134 ± 0.039 0.176 ± 0.042 0.031 ± 0.022 

RS 0.069 ± 0.011 0.083 ± 0.015 0.042 ± 0.01 0.057 ± 0.011 0.07 ± 0.011 -0.003 ± 0.005 

SUA 0.084 ± 0.009 0.068 ± 0.011 0.053 ± 0.008 0.064 ± 0.009 0.073 ± 0.009 0.004 ± 0.004 

MUA 0.671 ± 0.003 0.601 ± 0.004 0.571 ± 0.004 0.577 ± 0.004 0.576 ± 0.003 0.083 ± 0.002 

Table 3.5.6: Noise correlation of the spiking activity computed within and between layers in response to our control stimulus 

set (Mean ± SEM) 
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5.4. Impact of the Center Surround Interactions 

In their extracellular study performed in the awake monkey, Vinje and Gallant (2000) that in V1 the 

full field stimulation with natural images decorrelate the activity compared to a center stimulation. 

This has also been shown in the primate, where the stimulation of the surround with drifting gratings 

decreased the correlation levels (Snyder et al., 2014). The stimulation of the surround activates the 

feedback pathway (Angelucci et al, 2002). Our study (and others: Huang et al., 2007) showed that 

feedback might be still present in an anesthetized animal. However, the strength of the feedback is 

reduced by anesthesia. The two studies mentioned above were performed on the awake monkey. 

Therefore, we wondered of these effects would still be observed in our preparation. 

5.4.1 Correlation of the Spiking Activity 

 Signal Correlation 

As performed in the previous section we computed the signal correlation within and between layers 

for the single and multi-unit activities. 

Figure 3.5.22 shows an example of signal correlations computed for full field, center and surround. 

In this example, the center surround interactions seem to have no impact on the response. As stated 

before the surround stimulation elicits almost no activity, thus we will not focus on this condition. 

 

 
Figure 3.5.22. Example of signal correlation of the single unit activity computed within and between layers in response to 

full field, center and surround stimulations. 
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The signal correlations evoked by the center condition are reported in figures 3.5.23 to 3.5.25 and 

table 3.5.7. At the single and multi-unit levels, as observed for the full field condition, both within and 

between layers, the presentation of natural images only on the center evoked a more correlated 

activity than the presentation of the other stimuli (p < 0.001; Friedman test). At the single unit level, 

no surround modulation was observed in response to natural images or dense noise (p > 0.25; 

Wilcoxon test). A small decorrelation was observed when drifting gratings were presented on both 

center and surround (p < 0.05; Wilcoxon test). We then compared the correlations between layers. 

As observed within layers, natural images evoked the same level of correlation for both full field and 

center conditions (p = 0.31; Wilcoxon test). However, both drifting gratings and dense noise evoked 

higher levels of correlation for the center condition (p < 0.01). It is important to note that despite an 

absence of significant difference, natural images display a higher mean when both center and 

surround are stimulated. This absence of significant difference could originate from the size of our 

center stimulation that might reduce the effect of the increase, as observed for sparseness.  

We then compared the correlations among the multi-unit population. Both within and between layers, 

drifting gratings and dense noise evoked higher levels of correlation for the center condition (p < 

0.001), while natural images evoked a higher correlation for the full field condition (p < 0.001). This 

confirms the results that we observed at the single unit level and the tendency that we observed for 

natural images. The results obtained in response to natural images are in contradiction to the ones 

observed by Vinje and Gallant (2000). This difference could be linked to the difference in state 

between the two preparations. 

It is important to note, as reported in figures 3.4.24 and 3.2.25 that the correlation between the center 

and full field stimulations is very high. This suggest that the two stimulations evoke small differences.  
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Figure 3.5.23. Signal correlation of the spiking activity within and between layers in response to a center stimulation. Top 

row: single unit activity. Bottom row: Multi-unit activity. FF: full field stimulation. C: center stimulation. n.s: non-significant; 
*: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.24. Scatter plots and distribution of the signal correlation of the single unit activity within and between layers in 

response to full field and center stimulations. Blue: correlation computed within L2/3 or between L2/3 and L4; Red: 
correlation computed within L4 or between L2/3 and L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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Figure 3.5.25. Scatter plots and distribution of the signal correlation of the multi-unit activity within and between layers in 

response to full field and center stimulations. Blue: correlation computed within L2/3 or between L2/3 and L4; Red: 
correlation computed within L4 or between L2/3 and L5/6; Green: correlation computed within L4 or between L4 and L5/6. 
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Our previous results showed that both FS and RS cells were modulated by the center surround 

interactions. Will we also observe a modulation in the signal correlation of these neuron subclasses? 

When presented on the center, all stimuli evoked the same correlation pattern as in the full field 

condition. We observed an absence of difference in the correlations evoked by the full field and 

center conditions (p > 0.05; Wilcoxon test; Figure 3.5.26 and table 3.5.8). Despite this absence of 

significant differences between the two conditions, the tendency was the same as the one observed 

across the complete population. Because of this absence of difference, we did not plot the associated 

the raster plots. By increasing the number of pairs, we should observe the same pattern of 

correlations as in the complete SUA population. 

 
Figure 3.5.26. Signal correlation of the spiking activity within and between layers evoked by a center stimulation. Top row 

: Fast spiking neurons. Middle row: regular spiking neurons Bottom row: single unit activity. Stars indicate a significant 
statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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We then investigated the impact of the center surround interactions on the signal correlation evoked 

by the altered natural stimuli. We observed the same response pattern for the full field and center 

conditions, both for the single unit and multi-unit activities (Figures 3.5.27 to 3.5.29; Table 3.5.9). 

At the single unit level, when computed within layers, only NI-RST displayed a higher correlation for 

the full field condition (p < 0.05; Wilcoxon Test). On other hand, NI-RT evoked higher levels of 

correlation for the center condition (p < 0.001). The other stimuli evoked the same levels of 

correlations for both conditions of stimulation. When computed between layers all stimuli except NI-

RST, evoked the same correlation for the full field and center conditions, respectively (p > 0.25).  

At the multi-unit level, when computed within layers, each stimulus evoked a different level of 

correlation in function of the stimulation condition (p < 0.001; Wilcoxon test). All control stimuli evoked 

the highest signal correlation for the center condition while the unaltered natural image evoked the 

highest correlation for the full field condition (Figure 3.5.27). This suggest that in order to increase 

the level of correlation both spatial and temporal statistics need to be unaltered. As observed for all 

stimuli, the correlation levels between the two conditions are very high for all stimuli (Figures 3.5.28 

and 3.5.29). 

Regular spiking and Fast spiking cells evoked the same response, respectively, for the center and 

full field condition, thus we decided to not display this result (p > 0.05; Wilcoxon test). 

 
Figure 3.5.27. Signal correlation of the spiking activity, in response to our control stimuli presented on the center condition, 

within and between layers. Top row: single unit activity. Bottom row: Multi-unit activity. FF: full field condition. C: center 
condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.28. Scatter plots of the signal correlation of single unit activity within and between layers in response to our set 

of control stimuli presented on the full field and center conditions. Blue: correlation computed within L2/3 or between L2/3 
and L4; Red: correlation computed within L4 or between L2/3 and L5/6; Green: correlation computed within L4 or between 
L4 and L5/6. 
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Figure 3.5.29. Scatter plots of the signal correlation of multi-unit activity within and between layers in response to our set 

of control stimuli presented on the full field and center conditions. Blue: correlation computed within L2/3 or between L2/3 
and L4; Red: correlation computed within L4 or between L2/3 and L5/6; Green: correlation computed within L4 or between 
L4 and L5/6. 
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FULL FIELD Signal Correlation (SUA) 

  DG NI DN BLK 

Within Layers 0.026 ± 0.003 0.04 ± 0.003 0.023 ± 0.002 0.009 ± 0.002 

Between Layers 0.044 ± 0.003 0.075 ± 0.004 0.053 ± 0.003 0.008 ± 0.002 

     

CENTER Signal Correlation (SUA) 

  DG NI DN BLK 

Within Layers 0.051 ± 0.003 0.071 ± 0.003 0.052 ± 0.003 0.009 ± 0.002 

Between Layers 0.031 ± 0.003 0.04 ± 0.002 0.03 ± 0.002 0.008 ± 0.002 

     
FULL FIELD Signal Correlation (MUA) 

  DG NI DN BLK 

Within Layers 0.474 ± 0.004 0.544 ± 0.004 0.454 ± 0.004 0.163 ± 0.004 

Between Layers 0.348 ± 0.003 0.423 ± 0.002 0.314 ± 0.002 0.066 ± 0.001 

     
CENTER Signal Correlation (MUA) 

  DG NI DN BLK 

Within Layers 0.485 ± 0.004 0.529 ± 0.004 0.451 ± 0.004 0.163 ± 0.004 

Between Layers 0.371 ± 0.002 0.403 ± 0.002 0.337 ± 0.002 0.066 ± 0.001 

Table 3.5.7: Signal correlation of the single and multi-unit activities computed within and between layers in response to 

our stimulus set presented full field or on the center (Mean ± SEM) 

 

FULL FIELD Signal Correlation (FS) 

  DG NI DN BLK 

Within Layers 0.098 ± 0.014 0.124 ± 0.015 0.108 ± 0.014 0.019 ± 0.008 

Between 
Layers 

0.046 ± 0.013 0.079 ± 0.014 0.047 ± 0.011 0.02 ± 0.005 

     

CENTER Signal Correlation (FS) 

  DG NI DN BLK 

Within Layers 0.098 ± 0.014 0.128 ± 0.014 0.112 ± 0.013 0.019 ± 0.008 

Between 
Layers 

0.05 ± 0.013 0.077 ± 0.013 0.057 ± 0.012 0.02 ± 0.005 

     
FULL FIELD Signal Correlation (RS) 

  DG NI DN BLK 

Within Layers 0.032 ± 0.003 0.062 ± 0.005 0.039 ± 0.003 0.01 ± 0.002 

Between 
Layers 

0.026 ± 0.004 0.035 ± 0.004 0.023 ± 0.003 0.006 ± 0.002 

     
CENTER Signal Correlation (RS) 

  DG NI DN BLK 

Within Layers 0.026 ± 0.003 0.03 ± 0.003 0.024 ± 0.003 0.01 ± 0.002 

Between 
Layers 

0.041 ± 0.004 0.058 ± 0.004 0.038 ± 0.003 0.006 ± 0.002 

Table 3.5.8: Signal correlation of the regular and fast spiking neurons computed within and between layers in response to 

our stimulus set presented full field or on the center (Mean ± SEM) 
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FULL FIELD WITHIN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.099 ± 0.016 0.11 ± 0.017 0.093 ± 0.013 0.13 ± 0.018 0.098 ± 0.014 0.012 ± 0.005 

RS 0.061 ± 0.006 0.063 ± 0.005 0.049 ± 0.005 0.068 ± 0.006 0.063 ± 0.005 0.004 ± 0.001 

SUA 0.07 ± 0.004 0.072 ± 0.004 0.061 ± 0.004 0.081 ± 0.005 0.074 ± 0.004 0.007 ± 0.001 

MUA 0.543 ± 0.005 0.518 ± 0.005 0.493 ± 0.006 0.545 ± 0.005 0.522 ± 0.005 0.149 ± 0.003 

       
CENTER BETWEEN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.098 ± 0.025 0.12 ± 0.029 0.118 ± 0.03 0.123 ± 0.027 0.093 ± 0.03 0.021 ± 0.01 

RS 0.033 ± 0.004 0.032 ± 0.004 0.036 ± 0.004 0.046 ± 0.005 0.045 ± 0.005 0.002 ± 0.002 

SUA 0.064 ± 0.004 0.068 ± 0.004 0.072 ± 0.004 0.075 ± 0.004 0.079 ± 0.004 0.003 ± 0.001 

MUA 0.401 ± 0.003 0.39 ± 0.003 0.379 ± 0.004 0.415 ± 0.003 0.417 ± 0.003 0.08 ± 0.002 

       
FULL FIELD BETWEEN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.099 ± 0.026 0.116 ± 0.032 0.122 ± 0.034 0.132 ± 0.034 0.086 ± 0.028 0.021 ± 0.01 

RS 0.04 ± 0.005 0.032 ± 0.004 0.034 ± 0.004 0.052 ± 0.005 0.041 ± 0.005 0.002 ± 0.002 

SUA 0.042 ± 0.004 0.04 ± 0.004 0.039 ± 0.003 0.056 ± 0.004 0.042 ± 0.004 0.003 ± 0.001 

MUA 0.401 ± 0.003 0.37 ± 0.003 0.35 ± 0.004 0.391 ± 0.003 0.369 ± 0.004 0.08 ± 0.002 

       
CENTER WITHIN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.107 ± 0.014 0.109 ± 0.016 0.125 ± 0.014 0.119 ± 0.016 0.12 ± 0.015 0.012 ± 0.005 

RS 0.054 ± 0.005 0.059 ± 0.005 0.057 ± 0.005 0.065 ± 0.005 0.07 ± 0.005 0.004 ± 0.001 

SUA 0.041 ± 0.003 0.039 ± 0.004 0.043 ± 0.003 0.05 ± 0.004 0.045 ± 0.004 0.007 ± 0.001 

MUA 0.537 ± 0.005 0.525 ± 0.005 0.516 ± 0.005 0.552 ± 0.004 0.552 ± 0.005 0.149 ± 0.003 

Table 3.5.9: Signal correlation of the spiking activity computed within and between layers in response to our control 

stimulus set presented full field or on the center (Mean ± SEM) 

  



 

349 

 

 

 Noise Correlation  

We also computed the other main correlation analysis, i.e. the noise correlation. Our previous results 

showed that when stimuli were presented full field, they all evoked very similar noise correlation 

values, in particular at the single unit level. A recent study performed on primate (Snyder et al, 2014) 

showed that the surround stimulation tends to decrease, the correlation values. However, their study 

only focused on the response to drifting gratings. We wondered if the noise correlation of the SUA 

and MUA would be impacted the same way by the presentation of a different artificial stimulus (i.e. 

dense noise) and more importantly by the presentation of natural images. 

 

The noise correlation evoked by the center condition are reported in figures 3.5.30 to 3.5.32 and 

table 3.5.10. The center stimulation evoked the same pattern of correlation as the full field 

stimulation, thus we will only focus on the differences between these two stimulations. 

We first investigated the impact of the center surround interactions on the single unit activity. When 

computed within layers, only NI displayed a significantly higher noise correlation for the center 

condition than the surround (p < 0.05; Wilcoxon test). Both artificial stimuli showed no significant 

difference between the two conditions, despite a higher mean evoked by the full field presentation 

of the drifting gratings (Figure 3.5.30; table 3.5.10). This absence of difference might be linked to the 

heterogeneity of the population. Indeed, some neurons are decorrelated by the surround stimulation 

while others are correlated by the later. In addition, the small decorrelation that we observed might 

be linked to the size of our center stimulation. Snyder and colleagues (2014), who recorded in V1 

with a multielectrode array, and observed a decorrelation evoked by the surround, did not separate 

the recorded neurons into close and distant neurons. By combining the noise correlation values 

obtained within and between layers, we observed similar results and similar noise correlation values, 

as the ones observed by Snyder and colleagues. This highlights the importance of dividing the 

neuronal population into close and distant neurons and confirms that our results are consistent with 

theirs. We observed a similar pattern of response when the correlations were computed between 

layers. In this situation, artificial stimuli evoked a different response between the full field and center 

conditions (p < 0.001; Wilcoxon test) while no difference was observed for natural images (p = 0.49). 

However, we observed again the same behavior for the center surround interactions, i.e. a reduction 

of the noise correlation for the full field condition for low noise correlations value and an increase for 

the full field condition for high correlation values.  

Multi and single unit activities were not affected in the same way by the center surround interactions. 

While DG always displayed a more decorrelated response when it stimulated the surround, this was 

not the case for NI and DN. However, the difference observed for the presentation of these two 

stimuli on the center and full field is so small (table 3.5.10) and their correlation so high that we can 

argue that no real difference is observed.  
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Figure 3.5.30. Noise correlation of the spiking activity within and between layers in response to a center stimulation. Top 

row: single unit activity. Bottom row: Multi-unit activity. Stars indicate a significant statistical difference with the NI condition. 
n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.31. Scatter plots of the noise correlation of the single unit activity within and between layers in response to full 

field and center stimulations. Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed 
within L4 or between L2/3 and L5/6; Green: correlation computed within L4 or between L4 and L5/6. r : sperman’s 
correlation 
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Figure 3.5.32. Scatter plots of the noise correlation of the multi-unit activity within and between layers in response to full 

field and center stimulations. Blue: correlation computed within L2/3 or between L2/3 and L4; Red: correlation computed 
within L4 or between L2/3 and L5/6; Green: correlation computed within L4 or between L4 and L5/6. r : sperman’s 
correlation 
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In previous sections we showed that both RS and FS neurons responses were modulated by center 

surround interactions. Thus, we wondered if the noise correlation of these subtypes was impacted 

in the same way. 

Within each subclass, within and between layers respectively, all stimuli evoked an equal noise 

correlation (p > 0.2). We then compared the noise correlation evoked by the center and full field 

conditions (Figure 3.5.33 and 3.5.11). Among fast spiking neurons, within layers, natural images and 

dense noise evoked a higher noise correlation for the full field condition than the center, while drifting 

gratings evoked the opposite behavior. However, these differences were not significant, despite a 

visible trend. An increase in the number of recorded fast spiking cells will be necessary in order to 

confirm these observations. Between layers, the presentation of the artificial stimuli on the center 

condition evoked a higher noise correlation than the full field (p < 0.001; Wilcoxon test). On the other 

hand, NI displayed a higher NC for the full field condition. Among the regular spiking population, all 

stimuli evoked a higher noise correlation for the center condition than the full field. Thus, the absence 

of significant difference observed for the complete single unit population probably could come from 

the difference in these two populations. However, in order to confirm this observation, it would be 

necessary to isolate the noise correlations between pairs of RS and FS neurons. 

 

 
Figure 3.5.33. Noise correlation of the spiking activity within and between layers evoked by a center stimulation. Top row 

: Fast spiking neurons. Middle row: regular spiking neurons Bottom row: single unit activity. Stars indicate a significant 
statistical difference with the NI condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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The alteration of the natural statistics led to different values of noise correlation both at the spiking 

level. In addition, we showed that their alteration impacted the reliability and the signal correlation 

among others. Thus, we wondered if the alteration of the natural statistics would have an impact on 

the center surround modulations of the noise correlation (Figures 3.5.34 to 3.5.36; table 3.5.12). At 

both single unit and multi-unit level, the center stimulation evoked an almost similar noise correlation 

pattern as the full field one. However, two differences happened at the single unit level. The first one, 

within layers, NI-RS evoked the same levels of correlation as all the other stimuli (p > 0.05). The 

second one, between layers, NI-SAC evoked a higher noise correlation than the other stimuli (p < 

0.001)  

At the single unit level, within layers, NI and NI-SAC evoked a higher noise correlation for the center 

condition than the full field, while NI-RS displayed the opposite behavior (p < 0.01; Wilcoxon test). 

On the other hand, NI-RST and NI-RT respectively, evoked the same correlations for the center and 

full field conditions (p > 0.56). The absence of center surround modulation when the temporal 

statistics were randomized was already observed for other measurements. Between layers, all 

stimuli displayed a higher mean noise correlation for the center condition than the full field one. In 

addition, as observed for the other stimuli, the center condition evoked a higher noise correlation for 

low correlation values while the full field condition evoked a higher noise correlation for high 

correlation values. 

At the multi-unit level, both within and between layers, all stimuli displayed a decorrelation for the full 

field condition compared to the center one (p < 0.001; Wilcoxon test). However, for NI-RT and NI-

RST, the difference between these two conditions was very small. Confirming the small impact of 

the altered temporal statistics on the center surround modulation. 
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Figure 3.5.34. Noise correlation of the spiking activity, in response to our control stimuli presented on the center condition, 

within and between layers. Top row: single unit activity. Bottom row: Multi-unit activity. Stars indicate a significant statistical 
difference with the NI condition. n.s: non-significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001 
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Figure 3.5.35. Scatter plots of the noise correlation of single unit activity within and between layers in response to our set 

of control stimuli presented on the full field and center conditions. Blue: correlation computed within L2/3 or between L2/3 
and L4; Red: correlation computed within L4 or between L2/3 and L5/6; Green: correlation computed within L5/6 or between 
L4 and L5/6. 
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Figure 3.5.36. Scatter plots of the noise correlation of multi-unit activity within and between layers in response to our set 

of control stimuli presented on the full field and center conditions. Blue: correlation computed within L2/3 or between L2/3 
and L4; Red: correlation computed within L4 or between L2/3 and L5/6; Green: correlation computed within L5/6 or between 
L4 and L5/6. 
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FULL FIELD Noise Correlation (SUA) 

  DG NI DN BLK 

Within Layers 0.136 ± 0.009 0.113 ± 0.007 0.113 ± 0.008 0.04 ± 0.006 

Between Layers 0.068 ± 0.009 0.082 ± 0.007 0.039 ± 0.006 0.014 ± 0.004 

     

CENTER Noise Correlation (SUA) 

  DG NI DN BLK 

Within Layers 0.143 ± 0.009 0.125 ± 0.007 0.122 ± 0.007 0.04 ± 0.006 

Between Layers 0.089 ± 0.008 0.086 ± 0.007 0.065 ± 0.006 0.014 ± 0.004 

     
FULL FIELD Noise Correlation (MUA) 

  DG NI DN BLK 

Within Layers 0.788 ± 0.004 0.718 ± 0.004 0.703 ± 0.004 0.238 ± 0.005 

Between Layers 0.714 ± 0.003 0.669 ± 0.003 0.638 ± 0.003 0.131 ± 0.002 

     
CENTER Noise Correlation (MUA) 

  DG NI DN BLK 

Within Layers 0.82 ± 0.003 0.726 ± 0.003 0.683 ± 0.004 0.238 ± 0.005 

Between Layers 0.762 ± 0.002 0.66 ± 0.002 0.632 ± 0.003 0.131 ± 0.002 

Table 3.5.10: Noise correlation of the single and multi-unit activities computed within and between layers in response to 

our stimulus set presented full field or on the center (Mean ± SEM) 

 

FULL FIELD Noise Correlation (FS) 

  DG NI DN BLK 

Within Layers 0.322 ± 0.031 0.214 ± 0.026 0.253 ± 0.028 0.087 ± 0.025 

Between Layers 0.075 ± 0.029 0.164 ± 0.025 0.14 ± 0.022 0.017 ± 0.013 

     

CENTER Noise Correlation (FS) 

  DG NI DN BLK 

Within Layers 0.326 ± 0.03 0.194 ± 0.023 0.224 ± 0.024 0.087 ± 0.025 

Between Layers 0.228 ± 0.026 0.16 ± 0.021 0.2 ± 0.024 0.017 ± 0.013 

     
FULL FIELD Noise Correlation (RS) 

  DG NI DN BLK 

Within Layers 0.084 ± 0.011 0.077 ± 0.008 0.077 ± 0.009 0.03 ± 0.008 

Between Layers 0.069 ± 0.012 0.066 ± 0.008 0.031 ± 0.007 0.019 ± 0.006 

     
CENTER Noise Correlation (RS) 

  DG NI DN BLK 

Within Layers 0.102 ± 0.01 0.099 ± 0.009 0.09 ± 0.009 0.03 ± 0.008 

Between Layers 0.064 ± 0.01 0.083 ± 0.01 0.047 ± 0.008 0.019 ± 0.006 

Table 3.5.11: Noise correlation of the fast and regular spiking neurons computed within and between layers in response 

to our stimulus set presented full field or on the center (Mean ± SEM) 
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FULL FIELD WITHIN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.215 ± 0.035 0.199 ± 0.028 0.182 ± 0.029 0.228 ± 0.037 0.15 ± 0.036 0.034 ± 0.014 

RS 0.083 ± 0.01 0.157 ± 0.014 0.091 ± 0.01 0.112 ± 0.013 0.07 ± 0.01 0.035 ± 0.007 

SUA 0.114 ± 0.009 0.174 ± 0.011 0.112 ± 0.009 0.141 ± 0.01 0.091 ± 0.009 0.039 ± 0.005 

MUA 0.751 ± 0.004 0.718 ± 0.004 0.64 ± 0.005 0.719 ± 0.004 0.688 ± 0.004 0.166 ± 0.004 

       
CENTER WITHIN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.196 ± 0.033 0.203 ± 0.035 0.148 ± 0.031 0.214 ± 0.034 0.237 ± 0.029 0.034 ± 0.014 

RS 0.11 ± 0.011 0.14 ± 0.013 0.099 ± 0.01 0.124 ± 0.012 0.13 ± 0.012 0.035 ± 0.007 

SUA 0.132 ± 0.009 0.149 ± 0.01 0.111 ± 0.008 0.139 ± 0.01 0.155 ± 0.009 0.039 ± 0.005 

MUA 0.763 ± 0.003 0.726 ± 0.004 0.649 ± 0.005 0.737 ± 0.003 0.778 ± 0.003 0.166 ± 0.004 

       
FULL FIELD BETWEEN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.192 ± 0.045 0.118 ± 0.049 0.091 ± 0.035 0.134 ± 0.039 0.176 ± 0.042 0.031 ± 0.022 

RS 0.069 ± 0.011 0.083 ± 0.015 0.042 ± 0.01 0.057 ± 0.011 0.07 ± 0.011 -0.003 ± 0.005 

SUA 0.084 ± 0.009 0.068 ± 0.011 0.053 ± 0.008 0.064 ± 0.009 0.073 ± 0.009 0.004 ± 0.004 

MUA 0.671 ± 0.003 0.601 ± 0.004 0.571 ± 0.004 0.577 ± 0.004 0.576 ± 0.003 0.083 ± 0.002 

       
CENTER BETWEEN LAYERS 

  NI NI-RS NI-RT NI-RST NI-SAC BLK 

FS 0.177 ± 0.033 0.137 ± 0.046 0.184 ± 0.047 0.145 ± 0.055 0.236 ± 0.048 0.031 ± 0.022 

RS 0.107 ± 0.013 0.088 ± 0.014 0.047 ± 0.01 0.073 ± 0.013 0.13 ± 0.013 -0.003 ± 0.005 

SUA 0.099 ± 0.01 0.094 ± 0.011 0.069 ± 0.008 0.083 ± 0.01 0.135 ± 0.01 0.004 ± 0.004 

MUA 0.681 ± 0.003 0.668 ± 0.003 0.586 ± 0.004 0.65 ± 0.003 0.702 ± 0.003 0.083 ± 0.002 

Table 3.5.12: Noise correlation of the spiking activity computed within and between layers in response to our control 

stimulus set presented full field or on the center (Mean ± SEM) 
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IV. DISCUSSION 
 

In this study, we performed multiscale recordings where we recorded the response of microscopic 

(SUA) and mesoscopic signals (MUA and LFP) to natural and artificial stimuli.  

These recordings allowed us to address different questions. The first one was to determine if the 

variability of the multiscale response to natural and artificial stimuli was different across the cortical 

microcircuit.  

Another important aspect of our study was to specify the role of signal and noise correlations of the 

microscopic and mesoscopic signals in the process of redundancy reduction. Indeed, in their study, 

Rikhye and Sur (2015) (but also Bányai et al., 2019) showed that the correlation levels are linked to 

the correlations present in the stimulus. Thus, natural images that contain highly correlated features 

evoke a correlated response. It is important to note that Rikhye and Sur only focused on the spatial 

correlations, while we investigated the impact of spatial and temporal statistics on the response. The 

increase in the response correlations result in a larger normalization pool, which allows the 

generation of a reliable response (Figure 4.1). The activation of the normalization pool is mediated 

by an increase of the neuronal ensemble synchronization levels and are not necessarily linked to 

their global activity levels. In their study, Baudot and colleagues (2013) showed that the frequency 

content of the stimuli constrain the response at different frequencies. Therefore, we decided to 

investigate how the spatio-temporal statistics of the stimulus affects the processes described in 

figure 4.1 and their laminar dependency. 

We also investigated the impact of the activation of the center surround interactions on the reliability 

and the correlations. It has been shown that the concomitant stimulation of both the center and the 

surround of the receptive field with natural images increases the reliability and affects the response 

correlations in V1 (Vinje & Gallant, 2000; Haider et al., 2010).  

In this section, we will describe and discuss in detail the main results obtained during this thesis and 

then draw a global picture about natural images and their processing in primary visual cortex. 

 

 
Figure 4.1. Schematic summarizing the main findings of this study. In the low noise regime, strong spatial correlations in 

the stimulus dynamically alter interneuronal correlations to change the normalization pool, ensuring reliable processing. In 
the high noise regime, weak stimulus correlations fail to activate ensembles, resulting in unreliable processing 
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 Main Results 

In this manuscript, we generated a high number of results in order to propose a complete and 

thorough overview of the impact of natural scenes on the reliability and correlations in cat primary 

visual cortex. Because of the different conclusions issued in the previous chapter, we decided to 

summarize our main results in four different figures: One for the SUA (figure 4.2), one for the MUA 

(figure 4.3) and two for the LFP (figures 4.4 and 4.5). These results will first be described in this 

subsection and then discussed throughout this chapter.  

At the spiking level (SUA and MUA), we focused on four main results: the firing rate, the sparseness, 

the reliability and the correlations. It is important to note that MUA exhibits a higher firing rate, 

reliability and correlations than SUA and a lower sparseness. 

At both spiking levels, drifting gratings evoked the highest mean firing rates (Figure 4.2 and 4.3). 

Firing was the highest in layer 4 and the lowest in layer 2/3. We then focused on the sparseness 

since natural images are known to be sparsely coded (Vinje and Gallant, 2000; Haider et al., 2010; 

Baudot et al., 2013). Our results did show that natural images evoked a sparser response than the 

artificial stimuli and that this sparseness was increase when both center and surround were 

stimulated together. While the SUA displayed the highest sparseness in layer 5/6, at the multi-unit 

level the sparsest response was observed in layer 4. Natural images also evoked the highest levels 

of reliability. When presented full field the lowest reliability was observed in layer 2/3 while layers 4 

and 5/6 showed similar levels of reliability. The center stimulation reduced the reliability evoked by 

NI. This decrease was higher in layer 5/6, where horizontal connections are present. In addition, this 

decrease led to a difference in reliability between layer 4 and 5/6 (layer 4 displaying a more reliable 

response than layer 5/6).  

Finally we investigated both signal and noise correlations. Natural images evoked the highest signal 

correlations both within and between layers. Yet, the correlations within layers were higher than the 

ones obtained between. Regarding the noise correlations, all stimuli evoked similar values. However, 

as observed for signal correlations, the correlations within layers were higher than the ones obtained 

between. Both correlations showed a decorrelation when both center and surround were stimulated, 

compared to a center only stimulation. 

 

We also investigated the amplitude of the LFP response, its reliability and its power spectral density 

(Figure 4.4). Our results show that natural images evoke the most synchronized response. The 

amplitude was the highest in layers 4 and 5/6 when NI were presented full field. Surprisingly, the 

stimulation of the surround with NI also evoked a highly synchronized response, in particular in the 

layers containing horizontal connections. Animated gratings also evoked high levels of 

synchronization for the full field stimulation, yet their presentation on the surround had less of an 

impact than NI. The pattern of amplitude exhibited by the LFP was also observed at the power 

spectral density and reliability levels. Indeed, full field natural images evoked the most reliable 

responses (and PSD) in layers 4 and 5/6 and a lower one in layer 2/3. This response was highly 

modulated by the surround. Indeed, when NI were presented on the surround only, the reliability of 

layers 2/3 and 5/6 was higher than in the center condition (no difference was observed in layer 4). 

These results highlight the importance of the surround in the processing of natural scenes. 

In addition, we investigated the time-frequency dependent reliability of the LFP and the spectral 

density of the unlocked LFP response (Figure 4.5). The low frequency reliability displayed a similar 

pattern as the reliability analysis displayed in figure 4.4. On the other hand, dense noise displayed 

the highest reliability between 40 and 120Hz. These differences in reliability as a function of the 

frequency band are directly related to the frequency content of the stimuli. These results highlight 
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the fact that the neuronal ensembles described in figure 4.1 will be more or less synchronized as a 

function of the stimulus frequency content. 

Another striking result is the increase of the alpha and gamma bands of the unlocked PSD. Indeed, 

it has been shown that the alpha and gamma bands are linked to feedback and feedforward 

processing, respectively (Kerkoerle et al., 2014). Our results indicate that only the stimuli containing 

eye movements induce a strong alpha power spectral density. This increase was almost absent for 

the center stimulation, arguing for a strong contribution of the surround, which is known to 

incorporate feedback pathways (Angelucci et al., 2002). In addition, this alpha band increase could 

be linked to an error message created by the eye movements (VanRullen et al., 2011). On the other 

hand, all stimuli evoked an increase in the gamma band. This is strongest for the center stimulation, 

which is associated with feedforward processing (Angelucci et al., 2002). 

 

We will now discuss in detail the results obtained during this PhD. The main results described above 

will be discussed and put in perspective with our other findings. 
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Figure 4.2: Summary of the main results obtained at the single unit level 

 
Figure 4.3: Summary of the main results obtained at the multi-unit level 
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Figure 4.4: Summary of the main results obtained at the local field potential level 

 

 
 

Figure 4.5: Summary of the main results obtained at the unlocked local field potential level 
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 Cell classification 

The first main result obtained in this PhD manuscript is the separation of the single unit population 

into regular spiking and fast spiking cells. Indeed, an intracellular experiment performed by Haider 

et al., (2010) in cat primary visual cortex showed that RS and FS neurons do not respond the same 

way when natural scenes are presented. Yet, they performed an intracellular classification, which 

differs from the extracellular classification (see chapter I-section 2.3 of this manuscript for the 

intracellular classification criteria). Since we recorded the extracellular activity, performing a precise 

classification like Haider and colleagues (2008) would be impossible. Further complicating 

classification, bursting activity of the cells can vary depending on what anesthetic, on the depth of 

anesthesia and on the type of stimulation that is performed. On the other hand, intracellular 

recordings allow the modulation of the spiking activity by current injection. Therefore, extracellularly, 

it is impossible to rely on the bursting activity to reliably classify neurons, hence reducing the number 

of neuronal classes (Bartho et al., 2004). In addition, CH cells are very rare in primary visual cortex 

(Nowak et al., 2003). Moreover, extracellular recordings cause a derivation of the electrical signal 

and change the length of an action potential (Houk et al., 1995). Therefore, it becomes impossible 

to classify chattering and intrinsic bursting cells and more importantly, interneurons that are classified 

as FS cells with the intracellular method can be categorized as RS neurons. Despite this lack of 

precise characterization, many extracellular studies observed functional differences between RS and 

FS cells classified extracellularly (Bartho et al., 2004; Cardin et al., 2009; Isett et al., 2018 in rodents; 

Peyrache et al., 2012 in humans; but see Bachatene et al., 2011 and Chen et al., 2015 for a 

classification in cat primary visual cortex). Because of the existence of functional differences 

observed in the cited studies, we assumed that it was pertinent to perform this RS/FS classification 

of our single unit recordings. However, we decided to develop a new method of classification (see 

the methods section of this manuscript). Indeed, by performing a PCA on many classically used 

criteria (peak-to-peak; half-width; but not the firing rate) we were able to perform a precise 

characterization of the single unit waveforms. 

Thus, we developed a novel and more accurate sorting method than the ones classically used. This 

new technique should be used in other extracellular studies that want to investigate the functional 

impact of FS and RS neurons. These results justify the fact that we computed our analysis for the 

complete single unit population but also for the regular and fast spiking neuronal population. 

However, one complementary analysis needed to be performed in order to refine our cell 

classification. The extracellular classification does not allow the labelling of interneurons or excitatory 

neurons. Yet, by computing the cross correlation between the RS and FS neurons, as performed by 

Peyrache and colleagues (2012), we could determine which FS neurons are inhibitory and which RS 

neurons are excitatory. However, this method does not allow a labelling as precise as the intracellular 

one.  

 Functional differences between fast and regular spiking neurons 

Our study relies on two strong statements that need to be discussed: The separation between regular 

and fast spiking neurons and the laminar identification. Regarding the separation of the two 

subpopulations, if the method commented above is efficient, we should also observe functional 

differences between the two classes. Therefore, in this subsection, we will discuss the differences 

between regular and fast spiking neurons. 

The first observed difference is the firing rate between the neuronal classes. We observed, as 

described in the literature (Nowak et al., 2003; Bachatene et al., 2012), a higher firing rate for the 
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fast spiking neurons than regular spiking ones. It is important to keep in mind that the PCA of our 

sorting method did not take in account the firing rate. Therefore, obtaining this functional result is a 

strong argument for a good separation between FS and RS cells. In their intracellular paper, Haider 

and colleagues (2019) showed that fast and regular spiking neuron sparseness was modulated in 

different ways by the center surround interactions of natural images. Fast spiking neurons showed 

a decrease in sparseness when the surround was stimulated while regular spiking neurons displayed 

an increase. Our results show that FS neurons are not impacted by center surround interactions 

when natural images were presented. On the other hand, these interactions elicited a sparseness 

increase among RS neurons. Despite this significant absence of center surround modulation 

observed among FS cells, the full field condition evoked a higher mean sparseness than the center. 

The same small difference, caused by the size of our center stimulation, was observed for RS cells, 

the main difference between the two populations is the number of recorded cells. Thus, by increasing 

the number of FS neurons we should obtain a significant difference. Fast spiking neurons displayed 

either an increase or decrease in sparseness when the surround was stimulated. A decrease would 

be in agreement with the Haider et al. (2010) results. However, they only recorded 9 FS cells and 

might have missed cells displaying a sparseness increase. Another explanation is that we included 

RS neurons in our FS population. As stated above a classification of inhibitory and excitatory neurons 

among the fast spiking neurons is needed. 

We also observed that fast spiking neurons evoked a more reliable response than regular spiking. 

This was also observed by Haider and colleagues (2010) in their intracellular study. One could argue 

that this higher level of reliability is linked to the difference in firing rate between the two cell types. 

However, we showed that the firing rate and the reliability are not totally correlated. In order to get 

rid of the bin size dependency of the reliability, we carried out a time frequency analysis of the 

reliability. This analysis allowed us to extract the signal, the noise and the SNR of the response. Fast 

spiking neurons evoked a higher signal, a higher noise but also a higher signal to noise ratio, in the 

low frequency range than the regular spiking cells. The increased reliability observed for FS cells 

originates from this high increase in signal that compensates the noise increase and result in a high 

SNR. 

Finally, we investigated both signal and noise correlations among our two neuronal subtypes. Fast 

spiking neurons evoked higher signal and noise correlations than regular spiking neurons. In 

addition, the noise and signal correlations of the two subtypes were positively correlated. Thus, when 

FS cells displayed an increase in noise correlation this was also the case for the noise correlation. 

This can be related to our time frequency analysis results where a high noise is linked to a high 

signal.  

Overall, our different analyses confirm the accuracy of our classification. However, a refinement of 

the separation of inhibitory and excitatory neurons among our cell classes could give additional 

precious insights to our observations. 

 Laminar processing of the visual information  

The second key point of this manuscript is the identification of the laminar compartments. We based 

the characterization on both physiological (CSD) and anatomical (histology) data. Functional 

differences between layers have been identified in V1 (Hansen et al., 2012; Kim and Freeman, 2016; 

Maier et al., 2010). We also observed a laminar specificity of the neuronal response across layers. 

The main differences that we observed were between layers 2/3 and layers 4/5/6. We will focus on 

these differences both at microscopic and mesoscopic levels. Since layer 4 and 5/6 generally evoke 
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a similar response, they will be discussed together. When they display a different behavior, this will 

be discussed.  

The spiking activity displayed the lowest firing rate in layer 2/3 and the highest in layer 4. One could 

think that the low firing rates observed in the supragranular layer is linked to the small amount of 

isolated single units, however the same pattern is observed with the multi-unit activity. This pattern 

of firing rates was also observed in higher mammals and rodents (Sakata and Harris, 2009; Schmidt 

et al., 2018). The characterization of the LFP resulted in a different pattern. Indeed, in response to 

natural images and drifting gratings, the highest levels of energy were observed in layer 5/6. On the 

other hand, dense noise and animated gratings evoked the highest levels of energy in layer 4. These 

differences are linked to the intrinsic properties of each layer and will be discussed below. 

The analysis of the sparseness revealed that, at the single unit level, the sparsest response was 

found in layer 5/6 while no difference was observed in the other layers. On the other hand, the multi-

unit activity displayed the sparsest response in layer 4 and the least sparse response in layer 2/3. 

Interestingly, when natural images were presented, the difference in sparseness between the center 

and full field conditions was the highest in layers 2/3 and 5/6. The neurons in these layers are 

connected by horizontal connections, which are activated by the stimulation of the surround 

(Bringuier et al., 1999; Gerard-Mercier et al., 2016). This suggests that horizontal connections are 

recruited by natural statistics when presented in the surround and that they play a role in the 

generation of a sparse response. 

The analysis of the reliability revealed pronounced laminar dependency. On one hand, as observed 

for the firing rate, artificial stimuli evoked the least reliable response in layer 2/3 and the most reliable 

one in layer 4. On the other hand, no difference was observed for NI between layers 4 and 5/6, which 

evoked a more reliable response than layer 2/3. When natural images are presented, layer 4 displays 

a lower signal and noise than layer 5/6 but a similar ratio, leading to similar levels of reliability. This 

is not the case for artificial stimuli that evoked the highest signal and noise in layer 4 but also a higher 

SNR. This difference likely originates from V1 functional and anatomical properties. Indeed, both 

layers 4 and 6 receive precise and reliable thalamic inputs (Kumbhani et al., 2007). Therefore, a 

more reliable response is expected in these layers. In our study, we did not separate the neurons 

located in layers 5 and 6, instead we considered both as a whole. This could explain why the 

reliability evoked by artificial stimuli in layer 5/6 is lower than in layer 4. However, no difference is 

observed between these two layers when natural images are presented. Thus, this increase in 

reliability could be linked to the fact that natural images optimally activate the thalamic neurons that 

will send a more precise and reliable signal to V1 (Butts et al., 2007; Sedigh-Sarvestani et al., 2019). 

The LFP displayed the same response patterns as the spiking activity. Our signal to noise ratio 

analysis allowed us to remove the variability linked to the intrinsic properties of each layer. It 

confirmed the observations previously made with the energy analysis i.e. a higher signal was 

observed in layer 5/6. A striking result only obtained with the LFP is the strong laminar modulation 

of the response when our stimuli where only presented in the surround. Indeed, the sole stimulation 

of the surround with NI, evokes in layers 2/3 and 5/6 a more reliable response than the center only 

stimulation, while in layer 4 the center and surround induced similar reliability levels. This increase 

in the LFP reliability for the surround only condition suggests horizontal connections play a strong 

role in the processing of the statistics present in the surround.   

We will now discuss all the obtained results and put them in perspective with the previous 

observations.  
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 Characterization of the multiscale response 

Since we recorded the single unit activity, multi-unit activity and local field potential, the first step of 

this study was to simply characterize these response types to our set of stimuli. 

We first computed the firing rate of the single unit activity and the multi-unit activity. As Olshausen 

said in his 2013 review, we need an exploratory based approach to determine the different firing 

rates across layers when a natural image is presented. We did compute the mean firing rate and the 

firing rate for each layer for the SUA and its two subpopulations and the MUA. We used the same 

set of stimuli as Baudot and colleagues (2013) did in their intracellular study performed on the 

anesthetized and paralyzed cat. Therefore, it is natural to directly compare our results with theirs. 

However, it is important to keep in mind that they recorded a low number of cells, without any laminar 

labelling (less than 30) and that we did not used the same anesthesia (Althesin for them, Isoflurane 

for us). Thus, we will limit our comparison to the global population. Both single unit and multi-unit 

activity exhibited a similar firing pattern to the one observed intracellularly, i.e. both gratings evoked 

the higher firing rates. However, the multi-unit activity showed a higher firing rate than the single unit 

activity. This is linked to the fact that the multi-unit activity corresponds to the activity of many 

neurons, thus increasing the mean firing rate (Einevoll et al., 2007; Pettersen et al., 2008). Only 

multi-unit activity displayed center surround modulations; the full field condition evoked a higher firing 

rate than the center condition. This is probably linked to the size of our center stimulation. Indeed, in 

their work, Haider and colleagues (2003) showed that natural images also evoke a plateau of 

maximum suppression. This plateau is reached for stimulations 3 times bigger than the size of the 

receptive field. However, they stopped their analysis at a stimulation 4 times higher than the size of 

the RF. Thus, with a 5° stimulation, we are above this 3-times limit. A visual stimulation with different 

mask sizes would allow us to determine the limit of maximum suppression. However, it is important 

to note that both signals displayed, for all stimuli, either a suppression or a facilitation when the 

surround was stimulated. Guo et al. (2005), showed in monkeys that V1 cells can either be facilitated 

or suppressed when natural images are presented. This phenomena was also observed for gratings 

(Blakemore and Tobin, 1972; Maffei and Fiorentini, 1976). The observed facilitations and 

suppressions could be linked to the size tuning properties of the cells. A quantification of the size 

tuning of each cell and its facilitation or suppression could be performed in order to address this 

question.  

At the laminar level, for both SUA and MUA, the highest firing rates were observed in layer 4 and 

the lowest in layer 2/3. One could argue that the low firing levels could be linked to the reduced 

number of neurons recorded in this layer, yet the multi-unit also displays a strong reduction in the 

firing rate. As observed for the mean response, no mean center surround modulation was observed 

for the SUA. On the other hand, the MUA displayed a modulation in all layers. Again, for both signals 

facilitation and suppression were observed across all layers.  

We observed different results among the regular and fast spiking neurons. Fast spiking neurons 

displayed a higher mean firing rate than the single unit population while regular spiking neurons 

displayed a lower firing rate than the single unit population. This is not surprising, since fast spiking 

neurons are known to display high firing rates (Bachatene et al., 2012; Chen et al., 2015; Nowak et 

al., 2003). As observed for the single unit activity, both subpopulations were not affected by the 

center surround interactions. Yet, among the two cell types, we observed cells displaying facilitation 

and suppression behaviors. This differs from Haider and colleagues’ results (2010). Indeed, they 

observed that all cell types displayed either a facilitation or a suppression in response to natural 

images. This difference could be linked to the fact that they recorded of very small subset of cells 

(less than 20) and mainly recorded cells displaying one of the two mechanisms. The observed 
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difference could also be linked to the cell classification that we performed. Indeed, while intracellular 

recordings allow a precise characterization of the FS and RS cells this is not possible extracellularly. 

The characterization of the inhibitory and excitatory cells among our populations (Peyrache et al., 

2012) could clarify this aspect. 

The single unit activity and its subpopulations displayed similar firing patterns in response to our 

control stimuli while the multi-unit activity displayed a higher firing rate in response to the stimuli 

containing an altered eye movement pattern. This suggests that temporal statistics have a small 

impact on the firing and a great number of neurons is needed in order to observe a difference.  

 

The characterization of the LFP response was performed by computing the energy of the signal. 

Unlike what was observed for the spiking activity, the highest energy was evoked by natural images 

and not drifting gratings. The latter evoked the lowest levels of energy. A high energy implies a very 

synchronized signal while a low energy implies a very desynchronized one. The LFP is a mean field 

signal that records the activity of many neurons, yet neurons responding to DG are regrouped in 

phase columns and display a phase preference (Wang et al., 2015). Thus, the LFP corresponds to 

a mixture of neurons displaying different phase preferences, which leads to a desynchronized signal. 

Moreover, the neurons strongly adapt their response to DG, as shown in chapter II, which is not the 

case for the other stimuli. This results in a total desynchronization of the LFP despite spiking activity 

and a membrane potential locked to the stimulus (as shown in Baudot et al., 2013; Figure 2). This 

suggests that the mesoscopic information carried by LFPs and the local integration of synaptic input 

realized by a single cell are dissociated unlike what was claimed by Kamondi and colleagues (1998). 

Unlike what was observed for the single and multi-unit activity, natural images evoked the highest 

energy in layer 5/6, while the lowest one was found in layer 2/3. This difference in energy observed 

between layers can be linked to the pattern of currents observed in each layer (Jin et al., 2011; 

Mitzdorf, 1985). Indeed, the connectivity present within each layer results in unique sink and source 

currents across the layers. These currents might have an impact on the energy of the LFP. In order 

to test this, a CSD of the response can be performed, and linked to the amplitude of the local field 

potential. In addition, it would be interesting to divide the LFP into different frequency bands and 

investigate the frequency based CSD of the response but also the link between the frequency-based 

energy and the MUA, as performed by Sellers et al. (2015) in the ferret. They showed that changes 

in delta and alpha power are negatively correlated with the MUA responses, whereas increases in 

gamma power are positively correlated with MUA responses. 

A striking result obtained with the LFP, but absent in the spiking activity, is the strong synchronization 

of the response when our animated stimuli where only presented in the surround. Indeed, stimulation 

of the surround with NI and GEM evoked higher levels of energy than stimulation of the center. The 

work performed in the laboratory showed that stimulation of the “silent surround” evokes a response 

at the membrane potential level (Bringuier et al., 1999; Chavane et al., 2011; Gerard-Mercier et al., 

2016). In addition, the stimulation of the silent surround at high speed also evoked an increase in Vm 

(Le Bec et al, in preparation). Thus, the eye movement pattern present in GEM and NI might have a 

strong impact on the neuronal activity and strongly affect the LFP response. This increase in the LFP 

energy for the surround only condition is higher in layers 2/3 and 5/6 where horizontal connections 

are present. This suggests that they play a strong role in the processing of the statistics present in 

the surround.  

 

Finally, at the LFP level, the control stimuli evoked different energy levels. When presented full field, 

the natural images lacking structured eye movements evoked a lower energy than the other stimuli. 

On the other hand, the natural images only animated with saccades evoked a higher energy than all 
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the other stimuli. This implies that saccades evoke a synchronized neuronal response. The unaltered 

eye movements are mainly processed by the surround. Indeed, when presented in the center, all 

stimuli evoked the same energy while the surround stimulation evoked the same response pattern 

as the full field condition. This suggests that the surround is suited to process eye movements and 

shows that temporal statistics have a strong impact on the response and need to be taken in account 

in natural scene studies. 

 Sparseness 

An influential hypothesis in the visual field is that visual processing is adapted to the natural statistics 

of our environment. This hypothesis, proposed by Barlow (1961) and called the “efficient coding 

hypothesis”, suggests that efficient coding should increase the sparseness of individual neurons. 

Many studies have investigated the sparseness of the single unit activity in response to natural 

images. These studies uncovered important functional properties in V1. Two studies reported the 

impact of the center surround interactions on the sparseness of V1 neurons (Vinje & Gallant, 2000, 

in primates; Haider et al., 2010 in cats). They both found that the center surround interactions 

increase the sparseness of V1 neurons (it is important to note that Vinje & Gallant first thought that 

this sparseness increase was linked to attentional effects, but other studies showed that this 

hypothesis was false). In addition, Haider and colleagues (2010) showed that only excitatory cells 

have their sparseness impacted by center surround interactions. In addition to these studies, an 

intracellular study performed in cat primary visual cortex showed that natural images evoke a higher 

sparseness than classic artificial stimuli (Baudot et al., 2013). Finally, two studies performed in mice 

(Froudarakis et al., 2014) and in primates (Tang et al., 2018) showed that sparseness facilitates the 

encoding of natural scenes, as hypothesized by Barlow (1961). In our knowledge, no study 

compared the impact of the center surround interactions on the laminar sparseness, nor compared 

the stimulus dependency of the sparseness across layers.  

When our set of stimuli were presented full field, our results show that at the single unit level, its two 

subpopulations (regular spiking and fast spiking cells) and the multi-unit activity, natural images 

animated with eye movements evoked the sparsest response. 

We first compared our results to those obtained intracellularly by Baudot and colleagues. Despite a 

similar pattern (i.e. natural images evoked the sparsest response), we obtained lower values than 

they did. This can be explained in two ways. First, our results show that different values of 

sparseness are obtained for the SUA, ranging from 0.2 to 0.9. Since we computed the sparseness 

on 99 neurons while they only did it on 26, we might have recorded more low sparseness cells than 

they did. The second source of difference might rely on the different anesthetic used in their study. 

Indeed, Althesin, the anesthetic used by Baudot and colleagues (2013), evokes a higher post 

synaptic depression than isoflurane (El-Beheiry and Puil, 1989).Therefore, a higher inhibition leads 

to sparser spiking activity. 

We also computed the sparseness of the multi-unit activity. As observed by Haider and colleagues 

(2010; supplementary data), the MUA exhibited a lower sparseness than the SUA. We obtained the 

same response pattern for these two signals, i.e. Natural images evoked the sparsest response. Yet, 

unlike the observations made by Haider et al (2010), we did not observe any difference in sparseness 

between regular spiking cells, fast spiking cells and the complete single unit population. The 

differences between our study and their study can be explained by four main arguments. First, we 

recorded more than 200 cells while in their intracellular study less than 40 cells were recorded. Our 

study captures better the diversity of responses present in primary visual cortex. Another strong 

argument is that the natural stimuli used in their study and ours are different. We used animated eye 
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movements while they presented a movie. The difference in the temporal frequencies might impact 

the sparseness. Their recording technique allowed the precise classification of RS and FS cells as 

excitatory and inhibitory neurons. A better determination of the type of neurons among our RS and 

FS cells is necessary. Finally, the brain state of the animal is linked to different sparseness levels 

(Froudarakis et al., 2014; Spacek and Swindale, 2016), thus the difference between our two studies 

might come from different brain states. 

We then compared the sparseness evoked by the stimulation of the center alone and the stimulation 

of both center and surround. When natural images were presented, both single unit and multi-unit 

activity showed a sparsification of the response for the full field condition compared to the center. 

This result, and similar ones obtained in higher mammals (cats and primates) and rodents (Baudot 

et al., 2013; Froudarakis et al., 2014; Haider et al., 2010; Tang et al., 2018; Vinje and Gallant, 2000; 

Yao et al., 2007) argue that sparse encoding of natural scenes could be a hallmark of V1 intracortical 

organization. This general principle of sparsification is thought to be linked to a better readout of 

natural scenes by the cortex (Froudarakis et al., 2014). However, the full field stimulation evoked a 

smaller sparsification of the response than in other studies (Haider et al., 2010; Vinje and Gallant, 

2000). This is linked to the difference in the size of the center stimulation between our study and 

theirs. Indeed, our center stimulation is performed on a mask of 5x5° while these two studies, the 

performed the center stimulation on 2x2°. Therefore, the small difference that we observe, between 

the center surround and center condition sparseness might come from the fact that a 5° center 

stimulation also stimulates the surround. We are probably close to the limit where the sparseness 

will not be strongly modulated anymore by an increase of the stimulation size. Our preliminary 

results, where we compared the sparseness evoked by different center sizes tend to confirm this 

hypothesis.  

Regarding the laminar sparseness, at the single unit level, only layer 5/6 displayed a sparser 

response for the full field stimulation while no difference was observed in the other layers. On the 

other hand, at the MUA level, the full field stimulation with NI evoked the sparsestresponse in all 

layers. The layers where the difference in sparseness between the center and full field conditions 

was the highest are layers 2/3 and 5/6. The neurons in these layers are connected by horizontal 

connections coming from other neurons. These neurons are activated by the stimulation of the 

surround (Bringuier et al., 1999; Gerard-Mercier et al., 2016). Our results suggest that horizontal 

connections are recruited by natural statistics presented in the surround and play a role in the 

generation of a sparse response. While the regular spiking cells displayed the same behavior as the 

complete single unit population, fast spiking cells were not affected by the center surround 

interactions. This result is different from the one obtained by Haider and colleagues (2010) and can 

be explained by the same 4 arguments stated above. 

Finally, we showed that the altered natural stimuli also evoked a higher sparseness when presented 

full field. This suggests that only the higher order correlations present in the natural spatial and 

temporal statistics are necessary for the sparsening of the response. These results are in agreement 

with the findings of Freeman and colleagues (2013) that observed, in the primate, that V1 responds 

the same way to natural stimuli and naturalistic stimuli only containing higher order correlations. 

 Reliability of the evoked visual response 

The second aspect of Barlow’s efficient coding theory is the fact that the variability of the response 

should decrease when primary visual cortex is stimulated with natural images. 

This reduction of response variability (i.e. an increase in the reliability) has been largely studied in 

sensory cortices. The modulation of reliability of the response by natural scenes has been largely 
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studied in the past 20 years in different species (Yao et al., (2007); Haider et al., (2010); Baudot et 

al., (2013): in cats. Goard & Dan (2009); Froudarakis et al., (2014) Rikhye & Sur (2015), De Vries et 

al., (2018): in mice; Montermurro et al., (2008) in primate). All these studies showed in different ways 

that natural images induce a reliable response in primary visual cortex. In this section, we will 

describe and discuss the modulation of variability that we obtained in cat primary visual cortex.  

In this manuscript, we measured the variability in two different ways: by computing the reliability of 

the response, without any frequency aspect, and by computing the frequency dependency of the 

reliability. We will discuss these two measures of variability together since they are complementary.  

Since the Fano Factor and the trial-to-trial reliability of the spiking activity resulted in similar results, 

we will refer to both as the “reliability of the spiking activity”. We will also consider the SNR and the 

trial-to-trial coherence together, since they give similar results. 

Yao et al. (2007) showed, in their extracellular study performed in cat V1, that natural movies evoke 

a higher level of reliability than artificial stimuli. Baudot and colleagues (2013) confirmed this result 

intracellularly. They showed that natural images animated with eye movements induced a more 

reliable response than artificial stimuli. We obtained the same pattern of reliability as they did. 

However, the reliability levels obtained at the single unit level were lower than theirs. This difference 

could be because of the fact that we recorded hundreds of cells, with a low selection bias, while they 

recorded about 30 cells that were selected based on their responses. Among our hundreds of cells, 

we observed very heterogeneous levels of variability. They might have decided not to proceed with 

these cells displaying low levels of variability because intracellular recordings are time consuming 

and it might not be worthwhile to study a cell with only marginal visual responses. The multi-unit 

activity evoked a higher mean reliability than the single unit activity. Yet, we also observed low and 

high levels of reliability among our MUA sites. A cell displaying a high reliability in response to a 

stimulus also displayed a high reliability in response to the other stimuli. This heterogeneity was also 

observed in cat (Yen et al., 2007) and mice primary visual cortex (Kampa et al., 2011). Kampa and 

colleagues showed that in response to both artificial and natural stimuli, a great proportion of cells 

displayed low reliability levels and a small proportion of cells displayed high reliability levels. The 

prediction performance of the complete variable cell population was equivalent to the prediction of 

the performance of the reliable cell population. This result was also observed in cat primary visual 

cortex where we observed similar prediction performances for these two populations in response to 

artificial and natural stimuli (Jonathan Vacher Thesis, 2017). This implies that this reliability 

distribution is a hallmark of primary visual cortex and that the processes occurring in V1 need to be 

considered at the population level and not at the single cell level.  

By computing a time-frequency based analysis, Baudot and colleagues (2013) were able to identify 

the most reliable frequencies and the impact of the signal and the noise on this reliability. In their 

study, the reliability of the spiking activity evoked by drifting gratings was almost equal to 0. The 

frequency-based analysis revealed that DG actually evoke a reliable response but only at the grating 

frequency. They also showed that the levels of reliability observed for GEM and NI originated from 

a decrease in variability in the low frequency range, while dense noise reliability comes from high 

frequencies.  

Our extracellular recordings resulted in similar results. However, one striking difference is that, 

extracellularly, the high reliability observed for NI originates from a high signal and a high noise in 

the low frequency band. Intracellularly, this high reliability is linked to a high signal but mainly to a 

low noise level. We also computed the reliability of the fast and regular spiking cells. The fast spiking 

cells exhibited a higher mean reliability than the single unit population while the regular spiking cells 

exhibited lower levels of reliability than the single unit population. The two cellular subtypes displayed 

the same response frequency dependent pattern as the single unit population. This higher reliability 
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observed for fast spiking neurons, that are supposedly mainly inhibitory neurons, could play a role 

in the generation of sparse and reliable activity among the excitatory neurons (Lee et al., 2012; Zhu 

et al., 2015). A thorough classification of the cell type among our FS and RS populations would allow 

to affirm (or not) this hypothesis.  

The higher low frequency reliability evoked by natural images, at all scales, is reminiscent of the 

demonstration already made in vitro that a broadband somatic current signal is required, covering 

both low and high frequencies, in order to produce reliable spiking activity (Mainen and Sejnowski, 

1995b; Nowak et al., 1997).  

A novelty of our study is the investigation of the reliability across layers. Our results show that across 

all layers natural images evoked the most reliable response and that this reliability is linked to an 

increase of the SNR in the low frequency range. The reliability evoked by NI was similar in layers 4 

and 5/6 (for both SUA and MUA). On the other hand, artificial stimuli evoked the highest levels of 

reliability in layer 4. The highly reliable response observed in layer 4 probably originates from the 

reliable and precise thalamic inputs coming to layer 4 (Desbordes et al., 2008; Kumbhani et al., 2007; 

Nawrot et al., 2009). Layer 5/6, which also receives thalamic inputs, displayed different reliability 

levels than layer 4 when stimulated with artificial stimuli, and similar levels when natural images were 

presented. Despite similar levels of reliability, in response to NI layer 5/6 displayed a higher signal 

and noise than layer 4, but resulted in a similar ratio. On the other hand, for artificial stimuli the 

highest noise and signals were observed in layer 4. The differences between these two layers could 

be linked to the fact that natural images activate more densely the thalamic inputs, leading to a more 

reliable response in layers 4 and 5/6 (Desbordes et al., 2008). This increased response might also 

be combined with the impact of the eye movements present in natural scenes, which might strongly 

activate Y-thalamic axons.  

A striking result is the reduction in reliability observed between layers 4-5/6 and 2/3. A strong 

reduction in the reliability levels is also observed between the thalamus and layers 4 and 5/6. This 

reduction has been linked to a computational function and ethological functions (Evans et al., 2018; 

Sedigh-Sarvestani et al., 2019). Thus the reliability reduction observed in layer 2/3  might serve an 

important function such as the one described above or others like the filtering of irrelevant information 

(Luczak et al., 2013; Vidyasagar, 1998).  

The analysis of the LFP led to similar conclusions as the ones drawn with the MUA and SUA, i.e. 

natural images evoke a more reliable response than the artificial stimuli and we observed a laminar 

difference in the reliability levels. However, the LFP exhibits higher levels of reliability than the spiking 

activity. These levels are close to the ones obtained by Baudot and colleagues (2013) with the 

membrane potential. Yet, these two signals are different. Indeed, the reliability evoked by drifting 

gratings is very low for the LFP and not for the Vm. As explained in the results section, this is linked 

to the fact that the LFP integrates the activity of cells having different phase preferences, thus leading 

to a “flattening” of the signal. This result confirms the fact the mesoscopic information carried by 

LFPs and the local integration of synaptic inputs realized by a single cell are clearly dissociated, 

unlike what has been previously stated (Kamondi et al., 1998). Another important difference between 

the LFP and the spiking activity is that the increased low frequency reliability evoked by NI in layers 

4 and 5/6 originates from equal levels of signal and noise in these two layers. It is important that the 

low frequencies that are more represented in  the natural stimulation happen to be the most 

informative frequencies of the LFP (Belitski et al., 2008). Thus, we can suppose that this increase is 

also associated with an increase in the efficiency of the message transmission. An analysis of the 

information contained in each frequency band should confirm this hypothesis. 

The generation of a reliable response in cat primary visual cortex has been modeled in order to 

unveil the mechanisms underlying this (Antolík et al., 2019; Kremkow et al., 2016). These two papers 
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showed that the reliable response evoked by natural images originates from an interplay between 

inhibitory and excitatory cells (push-pull organization) and a thalamo-cortical feedforward 

depression. Other fundamental mechanisms of V1 such as the spontaneous activity levels, contrast 

and orientation tuning also modulate the reliability. 

 

Our results also showed that the reliability is strongly modulated by center surround interactions. As 

reported in the literature (Haider et al., 2010; Vinje and Gallant, 2000), natural images evoke higher 

reliability levels when both center and surround are stimulated. This was observed at all scales (SUA, 

MUA and LFP). This increase in reliability is linked to an interplay between excitatory and inhibitory 

neurons as described by Haider and colleagues (2010). However, one cannot exclude the impact of 

the horizontal connections, which are known to boost the response when the surround is stimulated 

(Bringuier et al., 1999; Gerard-Mercier et al., 2016). This increase in reliability evoked by the 

surround of natural scenes could also be linked to the statistical properties of the image. It has been 

shown that the non-redundancy between center and surround has an impact on the surround 

modulation that could also affect the reliability (Coen-Cagli et al., 2015). A detailed statistical analysis 

of our natural image could answer this question. By linking the statistics of the image with the 

reliability of the response we could have a more precise insight into the visual features inducing 

highly reliable responses.  

Unlike the spiking activity, the local field potential evoked a highly reliable response when natural 

images were only presented in the surround. The reliability evoked by the surround was higher than 

the one elicited by the center stimulation. This was not observed for the artificial stimuli and suggests 

that surround has a strong impact in the processing of natural scenes. 

We observed, for all signals, a similar response pattern across layers. However, for all signals the 

difference between the full field and center stimulations was higher in layers containing horizontal 

connections. The laminar reliability obtained with the LFP confirms the importance of horizontal 

connections in the generation of a reliable response. Indeed, in layers 2/3 and 5/6 when GEM was 

presented in the center or the surround, the same reliability levels were obtained. On the other hand, 

in layer 4, the center stimulation evoked a more reliable response than the surround. These effects 

were exacerbated when natural images were presented. Indeed, in layers 2/3 and 5/6 the surround 

stimulation evoked a more reliable response than the center, while in layer 4 the center and surround 

induced similar reliability levels. These results were absent for the other stimuli. This suggests that 

eye movements have a strong impact on the surround and that this impact is amplified when the 

stimulus contains natural spatial statistics. 

In order to confirm the impact of the spatio-temporal statistics on the reliability, we investigated it by 

stimulating V1 with altered natural stimuli. At the spiking level, no difference was observed between 

the different control stimuli. This confirms the previous observations made for the sparseness. 

Different results might be obtained with different controls, indeed Rikhye and Sur (2015) showed that 

the level of spatial correlations affected the reliability of the response. In our study, we randomized 

the phase of the natural scenes. However, by modifying their spatial correlations we might influence 

the reliability of the spiking activity in V1. At the LFP level, we observed lower levels of reliability for 

natural stimuli containing altered eye movements. This suggests that the reliability is strongly 

dependent on temporal statistics but that its modulation is only visible at a subthreshold level and/or 

that the difference in reliability is so small that a great number of neurons is needed to unveil it. All 

signals displayed higher levels of reliability for the full field condition compared to the center. 

However, at the LFP level, when eye movements were unaltered, the reliability levels evoked by the 

surround were higher than the ones evoked by the center and the opposite was observed for stimuli 

containing altered eye movements. This suggests that the surround is better suited to process 
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unaltered eye movements than altered ones. A thorough decomposition across time of the altered 

and unaltered artificial eye scan path would allow us to identify the movements eliciting high reliable 

responses and compare it to the observations of Le Bec and colleagues.  

 Power Spectral Density of the Stimulus-locked LFP 

The power spectral density of the local field potential and the signal obtained with the time frequency 

wavelet analysis globally resulted in very similar results. However, some notable differences were 

present. The main difference between these two analyses is the strong PSD increase observed in 

the gamma range (60-150 Hz). This increase is not stimulus dependent but linked to the visual 

processing and has been described in cats (Gray and Singer, 1989; Kayser et al., 2003; Martin and 

Schröder, 2016) and primates (Brunet et al., 2015, 2014; Fries et al., 2007; Maier et al., 2010). This 

increase in the gamma band may generate temporal “windows of opportunity” for neurons to spike 

(Buzsaki, 2006). In order to “use” this window of opportunity, spikes need be locked to different LFP 

phases in order to transmit different stimulus information. Martin and Schröder (2016) showed that 

this locking was absent in cat V1. However, investigating this hypothesis with our set of stimuli 

(different from theirs) could lead to different results. As observed by Maier et al (2010), we observed 

the strongest gamma band PSD in layer 4. This criterion, among others, can be used to determine 

the position of the electrode across layers.  

The other main difference was the PSD evoked by DN in the beta band (10-40Hz). The signal evoked 

by dense noise, in this frequency band, was higher than the one evoked by the other stimuli, while 

the PSD is at the same level as the one computed by the spontaneous activity. This suggests that 

the simple power spectral analysis performed with a Fourier transfer masks some important features 

that are observed with complex analysis. 

 Power Spectral Analysis of the Unlocked LFP 

By subtracting the mean evoked LFP over trials from each trial, we separated the component of the 

LFP that is stimulus-locked from the component evoked by the presence of the stimuli but unlocked 

to its presentation. The analysis of the unlocked LFP recently showed that the alpha/beta band is 

linked to feedback processes while the gamma is linked to feedforward ones (Bastos et al., 2014, 

2015; Kerkoerle et al., 2014). These observations have been made on awake primates and humans. 

One could argue that feedback is absent in anesthetized animals. However, recent studies from the 

Angelucci group showed that feedback is also present on anesthetized animals (Bijanzadeh et al., 

2018; Nurminen et al., 2018). Thus, the analysis of these signals seems pertinent in the anesthetized 

cat. Feedback projections are present in layers 2/3 and 5/6 yet we did not observe a strong laminar 

impact of the feedback message. This could be linked to the fact that we computed the unlocked 

PSD across the complete presentation of the stimulus (10s). In their work, Kerkoerle and colleagues 

(2014) showed that the feedback message (through an increase in the alpha band) propagates to 

all layers. Thus, by computing the PSD across the 10s of stimulation we might lose the laminar 

impact of the response because of this processing. A more precise analysis of the temporal increase 

of the alpha band could unveil the laminar impact of the feedback message. 

Interestingly, only animated gratings and natural images showed an increase in the frequencies 

linked to feedback processes. The increase observed in this frequency band has also been linked to 

prediction error messages (Bastos et al., 2012; VanRullen et al., 2011). Eye movements generate 

unpredictable responses. The fact that only stimuli containing eye movements showed an increase 
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in the alpha/beta band argues for a prediction error message conveyed by the feedback. The center 

condition evoked almost no increase in the alpha/beta band while the surround did. The surround is 

known to activate feedback pathways (Angelucci et al., 2002, 2017). Therefore, we can hypothesize 

that the stimulation of the surround activated more strongly the feedback pathways than the center. 

We also observed that, when presented full field, all stimuli evoked a strong gamma PSD. This was 

particularly strong in layer 4, the main recipient of the feedforward inputs coming from the thalamus. 

This increase in the gamma band was absent for the surround stimulation, which do not stimulate 

the feedforward pathway. 

It is important to note that these hypotheses need to be confirmed in the anesthetized cat. The 

easiest way to perform it in cats would be to do simultaneous paired recordings in V1 and in the LGN 

and evaluate the frequency contentof the communication between the two areas, as performed by 

Bastos and colleagues (2014) or by using the stimuli and CSD analyses contained in Van Kerkoerle 

and colleagues (2014) work. 

 Impact of the correlations in the visual processing 

Our study also focused on both signal and noise correlations of the microscopic and mesoscopic 

neuronal activity. Signal correlations unveil the level of synchrony between two different responses. 

While noise correlations were intensively studied in primary visual cortex, only a few studies focused 

on signal correlation. In addition, because of technical limitations most studies focused on neuronal 

pairs recorded from the same electrode tip. Our dense laminar recordings allowed us to compute 

the signal correlations of hundreds of pairs located in the same layer or in different layers. 

Our results showed that the single units displayed the lowest correlation levels and the MUA the 

highest. This is not surprising because as the scale of the signal is increased, the signal becomes 

more global and shared across recording sites, increasing the correlations levels. In addition, for all 

signals, natural images always evoked the most synchronized response.  

In their extracellular study, Martin and Schröder (2013) obtained a similar correlation pattern in a 

reduced single unit population (n = 15). However, our correlation values are about 10 times lower 

than theirs are. This is linked to the fact that, unlike them, we also computed the correlation of 

neuronal pairs that were not recorded from the same recording site. In our data, the signal 

correlations of neurons recorded from the same recording site resulted in values close to the ones 

observed by Martin and Schröder (but also Yen et al. (2007)). This increase in correlation is thought 

to have a functional purpose. Indeed, correlated neurons are more connected than uncorrelated 

ones (Ko et al., 2011), this results in clusters of functionally coupled neurons that are recruited to 

represent visual features (Miller et al., 2014; Rikhye and Sur, 2015). These neuronal ensembles are 

not set and can be modified by the type of visual stimulus that is presented (Ko et al., 2011; Miller et 

al., 2014) or by the adaptation of V1 neurons to the presented stimulus (Bharmauria et al., 2016). It 

would be interesting to track the same selected neuronal pairs across our stimulus presentations 

and evaluate how the different stimuli modify the correlation strength between these pairs. In their 

study, Rikhye and Sur (2015) showed that these clusters tend to regroup into both highly and poorly 

correlated clusters of neurons. This was not observed in our data. However, they performed 2-photon 

calcium imaging within the same layer in mouse V1. The differences between our studies might 

come from the difference in animal model and/or the measurement spanning one layer for them 

(versus a vertical one of different layers for us). This could be tested by recording the responses 

within the same layer with 8-shank silicon probes. 

Our results also showed that the correlation within layers is higher than the correlation between 

layers  for all stimuli. This has already been observed in cat primary visual cortex by Tanaka et al. 
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(2014). They showed that the signal correlations decrease with the distance for pairs of neurons 

vertically separated. Indeed, pairs located in different layers tend to be less functionally coupled, 

thus a decrease in correlation is expected.  

Finally, we investigated the impact of the center surround interactions on the signal correlations. At 

the spiking level, the stimulation of both center and surround decreased the correlation when artificial 

stimuli were presented. The opposite effect was observed with natural images. An increased signal 

correlation is linked to better signal processing (Miller et al., 2014). Therefore, these results tend to 

confirm the importance of the surround in the efficient processing of natural images.  

One could argue that our results are not in agreement with Barlow’s efficient coding theory. Indeed, 

his theory claims that neuronal pairs should be decorrelated when natural stimuli are presented. Yet, 

the theory fits perfectly with the fact that neighboring neurons sharing functional properties are 

strongly correlated but separated neurons are decorrelated.  

 

We then computed the noise correlations. Again, the SUA exhibited the lowest levels of correlation 

while the MUA showed the highest ones. However, unlike what was observed for the signal 

correlations, the noise correlations evoked by our different stimuli were very close. This absence of 

a marked difference was also observed in the cat by Martin and Schröder (2013). All stimuli evoked 

very heterogeneous values of noise correlation. This great heterogeneity has also been observed in 

other studies performed in anesthetized cats (Martin and Schröder, 2013) and anesthetized primates 

(Ecker et al., 2014). One could argue that this heterogeneity is linked to the up and down states 

present in the anesthetized animals. However, such a distribution was also observed during these 

two states (Spacek and Swindale, 2016) and in awake primates (Ecker et al., 2014). The noise 

correlation levels that we obtained are different from those obtained by Martin and Schröder (2013) 

in cats but also Ecker et al. (2010) in monkeys. As explained for the signal correlations, this is 

probably linked to the fact that we also computed the noise correlations of cells that were not 

recorded from the same site. The noise correlations were higher within layers than between layers, 

indeed neurons spatially close share more inputs and thus more variability (Miller et al., 2014). This 

result was already observed in primate V1 by Smith and Kohn (2008). Our results differ from those 

obtained by Ecker and colleagues (2013) in anesthetized monkeys. Indeed, we obtained higher 

noise correlation values than they did. Different hypotheses can explain this difference. The first one 

is that they used an “improved” noise correlation computation, leading to different values. The 

second one is that during their spike sorting, they oversampled the regular spiking neuron population 

that displays a lower noise correlation than the fast spiking.. Finally, a recent paper by Banyai and 

colleagues (2019) showed that noise correlations are strongly stimulus dependent. The noise 

correlation of the same pair of neurons can be highly increased in function of the stimulus statistics. 

Finally, we showed that the stimulation of the surround decreased the noise correlations. This result 

was already observed by Snyder et al. (2014). A reduction in noise correlations is associated with 

better visual processing. Therefore, our results suggest that the surround stimulation enhances the 

processing of visual stimuli in primary visual cortex. 

 Conclusion 

In this PhD work, we performed a multiscale study of the laminar reliability and the neuronal 

correlations in response to natural and artificial stimuli. By presenting our stimuli on the center 

surround, center or surround of the receptive fields, we also studied the impact of center surround 

interactions on the neuronal response.  



 

378 

 

 

We showed that all signals evoked very heterogeneous levels of reliability but despite this 

heterogeneity, natural images induced the most reliable response in primary visual cortex. In 

addition, we are the first ones to show that reliability is layer dependent, at all scales. We also 

demonstrated that responses to natural images are strongly modulated by the surround at all scales 

and that the “silent surround” evokes reliable responses at the mesoscopic level. 

Finally, we showed that natural scenes evoke more correlated responses than artificial stimuli and 

that this increase in correlation facilitates improved visual processing. 
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V. ANNEX 
 

Electrophysiology started in 1791 with Luigi Galvani. He observed that when the leg nerve and the 

muscle of a frog were connected through a metal conductor a contraction happened (Galviani, 1791). 

After succeeding at recreating this contraction with artificial electricity, he concluded that intrinsic 

electricity was present in the animal and the contraction was induced by the flow of electricity going 

through the conductor. Galvani’s discovery paved the way for the emergence of many 

electrophysiological techniques and tools to record neuronal activity. Among these techniques, two 

of them allow the recording of activity from cortical cells, Intracellular and extracellular recordings.  

1. INTRACELLULAR RECORDINGS 

Intracellular recordings are a technique allowing the precise measurement of electrical currents 

passing through a neuron and its membrane potential by inserting a probe in it. In order to perform 

these types of recording a thin glass pipette with a very sharp tip has to be made. The pipette is filled 

with an electrolyte solution, the tip of the electrode is in continuity with the inside of the cell while the 

other end contains a silver metal wire. This wire is connected to an amplifier that also connects a 

reference electrode placed in an extracellular medium. The amplifier will measure the potential of 

the microelectrode relative to the reference electrode. Spiking activity and membrane potential 

variations can be recorded (Purves, 1981). Two types of pipettes are used for cortical intracellular 

recordings: sharp electrodes and patch clamp electrodes: Sharp electrodes, which are named this 

way because of their very sharp tip (around 0.2 microns), that can penetrate the neuron membrane 

without causing damage. Most recordings are generally done in the soma although intradendritic 

recordings are possible. Patch clamp electrodes reflect the name of the technique developed by 

Neher and Sakmann in 1976, and can be achieved in various parts of the neuropil (soma, dendrite). 

These electrodes have a relatively wide tip lumen (around 2 microns) that is placed on the surface 

of the membrane. Once in position, a suction is applied through the electrode, resulting in a seal 

between the glass tip and the neuron membrane. This recording technique, called “whole-cell” allows 

more stable and less noisy recordings compared to those performed with sharp electrodes (Hamill 

et al., 1981). 

 

Two recording techniques were developed along the use of intracellular electrodes: the voltage 

clamp and the current clamp (Purves, 1981). The voltage clamp technique permits to maintain, 

through the glass pipette, the neuron membrane potential at a fixed value determined by the 

experimenter and allowing him to measure the ionic currents crossing the membrane at any given 

voltage (for an implementation in vivo, see Borg-Graham et al., 1998; Monier et al., 2003). On the 

other hand, the current clamp technique allows the recording of the membrane potential by injecting, 

through the electrode, a chosen amount of current into the neuron.  

 

A very important aspect of the intracellular recordings is the fact that they allow the staining of the 

recorded cell, its dendrites and axons. Indeed, by filling the glass pipette with biocytin, for example, 

the neurons its dendrites and axons are stained. Thus, allowing the complete histological 

reconstruction of the recorded cell (see Fournier et al., 2014 for an example of cell reconstruction).  
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2. EXTRACELLULAR RECORDINGS 

Before the development of intracellular recordings, another method was (and is) still widely used: 

extracellular recordings. This technique consists in recording, with a metal electrode or a glass 

pipette, the currents produced by a neuron and flowing out of this latter. In order to record it, the 

electrode is placed close to a neuron in the extracellular medium. The experimenter will measure 

potential difference between the extracellular currents and a reference (Humphrey & Schmidt, 1990). 

Three types of signals can be recorded extracellularly but unlike intracellular recordings, this 

technique does not give information about membrane potential and ionic currents. The three 

extracellular signals are the local field potential (LFP), the multi-unit activity (MUA) and the single 

unit activity (SUA).  

 

The particularity about these three signals is that they originate from the same raw signal. Indeed, 

an extracellular electrode allows the recording of a signal between 0.3 Hz and 7.5 kHz. The three 

extracellular signals result from different filtering of these signals. The LFP can be extracted from 

the raw extracellular signal by applying a low pass filter at 250 Hz. SUA and MUA are extracted from 

the high frequency band (> 500 Hz) of the raw extracellular signal. Multi-unit activity corresponds to 

a more global activity coming from close and distant neurons. The MUA can be obtained by using a 

less restrictive detection threshold or by integrating the high frequency signal.  

 

Low impedance probes allow far recordings thus give better local field potentials and multi-unit 

recordings. On the other hand, the recording of the single units requires medium range impedance 

probes, indeed high impedance rejects better the signal from the multitude of neurons located around 

the electrode. However, the impedance of extracellular electrodes is lower than the one required for 

intracellular recordings. 

2.1. Single Unit Activity 

The first type of signal is the recording of individual spike activity, also called single unit activity. Two 

types of probes can be used for extracellular recordings glass micropipettes or wire electrodes. By 

placing the electrode tip close enough to a cell (few tens of um), one is able to record action potentials 

produced by one single neuron. The action potentials recorded by an extracellular probe are close 

to those obtained intracellularly but they are about ten times smaller (a few millivolts for an 

extracellular signal vs 80 millivolts for an intracellular one (Heinricher, 2012)). 

 

However, if the tip of the electrode is close to many neurons, many action potentials coming from 

different neurons will be recorded at the same time. If some of these neurons have waveforms having 

the same shape, it will be impossible to separate their activity. Then, two options exist in order to 

isolate the different neurons. The first one is to get the tip of the electrode closer to one of the neurons 

(a few µm, this recording technique is called juxtacellular recording and record only this neuron. 

Interestingly, the polarity in the vicinity of the membrane potential changes during the action potential 

may be the same as for intracellular recordings, but without de d.c. component (“quasi-intracellular” 

recordings in Creutzfeldt and Ito, 1968). 

 

The second technique consists in adding another electrode. Using more recording sites allows 

identifying individual neurons because recorded spike amplitude depends on the distance between 
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the neuron and electrode (Buzsaki, 2004). The first major advance in recording technology was 

made with of stereotrodes and tetrodes. By twisting pairs or tetrads of sharp wires together, 2 or 4 

recording sites very close to each other (the tips are 25µm apart) were obtained (O’Keefe and Recce, 

1993; Wilson and McNaughton, 1993). Increasing the number of closely spaced recording sites 

improves single unit isolation. Two neurons that have the same spike size on one recording site will 

have a different spike size on another recording site, which means that their distance from the second 

recording tip is different. This principle allows a precise triangulation of the recorded neurons and 

their reliable separation (Buzsaki, 2004). Since the beginning of the 2000’s a new type of probe 

started to replace the tetrodes. These new probes, called multi electrode arrays (MEA), have 

electrophysiological recording capabilities way beyond tetrodes. Because of the impedance of their 

recording sites, they record the three types of extracellular signals: LFP, MUA and SUA. 

 

  
Figure 5.1: example of a silicon probe composed of 8 shanks, each having 32 recording sites (reprinted from the 

Neuronexus 2016 catalog) 

 

MEAs, in particular one specific type called silicon probes, can have dozens of recording sites on 

the same electrode, hence record dozens of neurons at the same time (Blanche et al., 2005). These 

silicon probes can be made of many shanks and span a vast cortical region both horizontally and 

vertically (Figure 2.1). Since we are able to record vertically across an entire cortical layer, CSD 

became a standard procedure to determine experimentally in which layers the recordings sites 

across the probe are located.  

 

Silicon probes can record dozens of neurons across the recording sites and many neurons on the 

same recording site. It has become crucial to perfectly isolate each single unit. A technique called 

spike sorting became an essential step in the processing of electrophysiological data. New 

techniques have emerged in order to be able to perform this task in the best possible way (Rossant 

et al., 2016; Yger et al., 2018). These techniques are described in the methods section of this thesis. 
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2.2. Multi-Unit Activity 

Multi-Unit activity is seen as a measure of the firing rate of the neuronal population, about 250 µm, 

around the recording tip (Einevoll et al, 2007; Pettersen et al., 2012). Since MUA is a reflect of the 

neuronal population activity, it gives a better Signal-to noise-ratio than SUA for information shared 

among neurons. It has been largely studied on many species (Gray and Singer, 1989; Berens et al., 

2008 Xing et al., 2009) and its use in highly stratified laminar structures regrouping cells of rather 

uniform morphology such as hippocampus and cerebellum has allowed to extract mesoscopic 

measures of spike potential synchrony (Andersen et al, (1991)).  

2.3. Local Field Potential  

The last type of signal that can be recorded extracellularly is the Local Field Potential (LFP). Local 

field potential is the combined activity of small neuronal populations located hundreds of microns 

around the electrode tip (Xing et al., 2009; Einevoll et al., 2013). A close correspondence between 

LFP and synaptic potentials has been found, indeed the cross correlation between the membrane 

potential and the LFP results in a high correlation value (Kamondi et al., 1998). As a result, LFP is 

considered as a synchronized activity of synaptic currents coming from cortical neurons hundreds of 

microns around the recording site. Nonetheless, even if synaptic currents are the major LFP 

contributors, action potentials (fast sodium spikes, slow calcium spikes and spike 

afterhyperpolarization) still participate to the signal formation (Einevoll et al., 2013).  

 

A study performed on rats compared the LFP and the membrane potential (Okun et al., 2010). They 

showed that the spike-triggered local field potential average (STA-LFP) reflects the synchrony 

between the mean synaptic activity of the population and the membrane potential of the single 

neuron. 

 

In addition, since the LFP is the measure of the electrical activity happening on the extracellular 

medium it is possible to determine the density of current entering or leaving this medium through cell 

membranes. This method, called current source density (CSD), measures CSD as the inverted sign 

value of the double spatial derivative of the LFP signal (Mitzdorf, 1985). The current sink, which is 

when the current leaves the extracellular domain and enter cells and the current source that describe 

when the current leaves the cell to enter the extracellular domain. It has been showed that each 

cortical layer has its own particular signature of sinks and sources. Based on this pattern of currents 

it is possible to experimentally identify the layer position of the recording probe by searching the 

depth at which the CSD sign reverts (layer 4 for cortex, where main thalamic afferents terminate 

(these patterns will be discussed in detail later on this thesis). Since the electrode can be positioned 

within a cortical column spanning in depth all layers, CSD became a standard procedure in cortex 

(but also subcortical structures such as the hippocampus, Buzsáki et al., 1986) to determine 

experimentally in which layers the recordings sites across the probe are located (Jin et al., 2011; 

Dragoi et al., 2012).  

 

Local field potential is commonly divided into several frequency bands, each of them is thought to 

be linked to a physiological property of the brain. Delta band is composed of frequencies between 0 

and 4 Hz, theta band is composed of frequencies between 4 and 7 Hz, alpha band is composed of 

frequencies between 8 and 12 Hz, beta band is composed of the frequencies between 12 and 30 Hz 
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and finally gamma band is composed of all frequencies above 30 Hz. Low frequencies reflect a very 

synchronous neuronal activity whereas high frequencies reflect a desynchronous neuronal activity. 

For the local field potential, the position of the reference has a massive impact on the signal and has 

to be determined carefully in order to avoid a biased recording as described in the work Parabucki 

& Lampl (2017). 
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