
HAL Id: tel-03140355
https://theses.hal.science/tel-03140355

Submitted on 12 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advances in memory forensics
Fabio Pagani

To cite this version:
Fabio Pagani. Advances in memory forensics. Performance [cs.PF]. Sorbonne Université, 2019. En-
glish. �NNT : 2019SORUS299�. �tel-03140355�

https://theses.hal.science/tel-03140355
https://hal.archives-ouvertes.fr

A D VA N C E S I N
M E M O RY F O R E N S I C S

FA B I O PA G A N I

Thèse de doctorat de Informatique et Réseaux

dirigée par

P R O F. D AV I D E B A L Z A R O T T I

présentée et soutenue publiquement le 09/09/2019

devant un jury composé de :
E N G I N K I R D A,
J UA N C A B A L L E R O,
B R E N D A N D O L A N - G AV I T T,
AU R É L I E N F R A N C I L L O N,
C L É M E N T I N E M AU R I C E,
M A R I A N O G R A Z I A N O

Except where otherwise noted this work is licensed under:
https://creativecommons.org/licenses/by-nc-nd/3.0/

I almost wish I hadn’t gone down that rabbit-hole—and
yet—and yet—it’s rather curious, you know, this sort of
life! I do wonder what can have happened to me!

— lewis carroll in “alice’s adventures in

wonderland”

abstract

The adoption of memory forensics - the branch of digital foren-
sics that focuses on extracting artifacts from the volatile memory
of a compromised system - is rapidly spreading in cyber-security
investigations. One of the main reason is that many artifacts that
are extracted from system memory cannot be found elsewhere.
Therefore, by combining these findings with the results of network
and disk analysis, a forensics analysts can better reconstruct the
big picture that describes the evolution and the consequences of a
computer incident. However, the field of memory forensics is less
than two decades old and therefore still has many open challenges
and unanswered questions. This thesis provides a new perspective
and proposes new solutions for three of the major problems and
limitations that affects the area of memory forensics.

The first contribution studies the effects non-atomic acquisition
methods. The root cause of this problem is simple to understand:
while the physical memory is acquired, user and kernel processes
are running and therefore the content of the memory is changing.
For this reason, the resulting memory dump does not represent a
consistent state of the memory in a given point in time, but rather a
mix of multiple chunks acquired at a distance of tens of seconds.

The second contribution focuses on how to automatically extract
a forensics profile from a memory dump. Today, having a valid
profile that describes the layout of kernel data structures and the
location of certain symbols is a mandatory requirement to perform
memory analysis, thus preventing memory forensics to be applied
in those scenarios where such profile is not available.

The third and last contribution of this thesis proposes a new method
to better design and evaluate the heuristics, better known as plu-
gins, that are used to extract information from a memory dump.
Nowadays, these plugins are manually written by kernel experts
and forensics practitioners. Unfortunately, this manual approach
does not provide any guarantee on the quality or on the uniqueness
of these rules. For this reasons, this thesis presents a framework
that can be used to discover, assess, and compare forensics rules.

v

acknowledgements

Completing a PhD sets a milestone in the life of a young re-
searcher but it must not be seen as a one-man’s endeavor – actually
quite the contrary. It requires support, guidance and enthusiasm
from several people without whom, the already steep path leading
here becomes almost impracticable.

First and foremost I want to express my deepest gratitude to
Davide, for raising very high the bar of what I consider being a
good advisor. Apart from your constant presence in the last years
– knocking on your door has always been enough to immediately
have a meeting – I want to thank you for showing me what doing
research looks like and how to approach problems with the right
mindset. But also thank you for introducing me to climbing... even
though I am writing this page with a sling on my right arm!

The colleagues and friends I met during this journey also
played a fundamental role. A big thank you to Emanuele for his
passion about open-source software, Dario the git-master, Savino
the (wannabe) tikz-master, Mariano, Marius, Annalisa, Sebastian,
Alessandro, Davide, Andrea, Onur, Merve, Matteo, Giovanni, Leyla,
Aurelien and the rest of the group because working, playing CTFs
and having fun with you has been an incredible privilege. A per-
sonal shout-out goes to Yanick for his always positive attitude and
for reminding me that even the road of talented researchers can be
quite rough sometimes.

I also want to thank professors Engin Kirda and Juan Caballero
for their insightful reviews and comments about this thesis, and
Brendan Dolan-Gavitt, Aurélien Francillion, Clémentine Maurice
and Mariano Graziano for being part of the thesis committee. I owe
you all a favor!

Many thanks to the Eurecom administration – in particular
to Sophie and Audrey – for dealing with the insane amount of
bureaucracy that comes along with a PhD and therefore saving me
from countless of headaches.

Outside the academic world, I want to acknowledge my parents
Angela and Roberto, my brother Marco, Alessandra and the rest of
the family. Even thought we lived far apart for the last 4 years, I
always felt your constant encouragement and this is what drove me
to always give the best. I was also lucky to be surrounded by long

vii

lasting friendships. In particular Giorgio, Giulia, Daniele, Teona,
Niccolò and Marcello must be mentioned because they did not let
me drown in work, but instead always kept me in touch with the
reality.

Last but not least, a huge thank you to Alice. Because when
I told you of this adventure, you where as ecstatic as I was, even
though we both knew we were going to face a lot of sacrifices. For
your unconditional love and for always been by my side during
these years, I want to dedicate this thesis to you, the love of my life.

viii

contents

C O N T E N T S

Contents ix

1 Introduction 1
1.1 A Quick Introduction to Memory Forensics 2

1.1.1 Memory Imaging . 3
1.1.2 Structured Memory Analysis 5

1.2 Challenges & Open Problems 6
1.3 Contributions . 8

2 Related Work 13
2.1 Atomicity . 13
2.2 Kernel Graphs . 15
2.3 Automatic Profile Extraction 19

3 Introducing the Temporal Dimension to Memory Forensics 21
3.1 Introduction . 21
3.2 Space and Time in Memory Acquisition 23
3.3 Impact of Time in Memory Forensics 26
3.4 Impact Estimation . 29

3.4.1 Fragmentation . 30
3.4.2 Kernel-Space Integrity 32
3.4.3 User-Space Integrity 38

3.5 A New Temporal Dimension 44
3.5.1 Recording Time . 44
3.5.2 Time Analysis . 46
3.5.3 Locality-Based Acquisition 49

3.6 Discussion . 51

4 Towards Automated Profile Generation for Memory Forensics 53
4.1 Introduction . 53

ix

contents

4.2 Recovering Objects Layout from Binary Code 55
4.2.1 Problem Statement 55
4.2.2 Data Structure Layout Recovery 58

4.3 Approach Overview . 59
4.4 Phase I: Kernel Identification and Symbols Recovery . . . 60
4.5 Phase II: Code Analysis . 63

4.5.1 Pre-processor directives 65
4.5.2 Types Definition . 65
4.5.3 Access Chains . 66
4.5.4 Non Unique Functions 69

4.6 Phase III: Profile Generation 69
4.6.1 Binary Analysis . 70
4.6.2 Dealing with Inlined Functions 72
4.6.3 Object Layout Inference 74

4.7 Experiments . 75
4.7.1 Results . 77
4.7.2 Chain Extractions . 80

4.8 Future Work . 82

5 Back to the Whiteboard: a Principled Approach for the As-
sessment and Design of Memory Forensic Techniques 83
5.1 Introduction . 83
5.2 Motivation . 85
5.3 Approach . 86

5.3.1 Memory Forensics as a Graph Exploration Problem 87
5.3.2 Path Comparison . 89

5.4 Graph Creation . 90
5.4.1 Abstract Data Types 91
5.4.2 Uninitialized and Invalid Data 95
5.4.3 Opaque Pointers . 96
5.4.4 Limitations and Manual Fixes 97
5.4.5 Implementation . 98
5.4.6 Final Kernel Graph 99

5.5 Metrics . 101
5.6 Experiments . 106

x

contents

5.6.1 Scenario 1 . 106
5.6.2 Scenario 2 . 112
5.6.3 Scenario 3 . 118

5.7 Discussion and Future Directions 119

6 Future Work 123

Bibliography 125

xi

1I N T R O D U C T I O N

The pervasiveness of software in our daily life is by now undeniable and
consolidated. Even without being fully aware of it, we rely on pieces of
software – that sometimes are executed thousands of kilometers away –
to drive planes, to buy stocks and to protect healthcare data. In only a few
decades, technology advancements have also completely revolutionized
the way human beings interact and share content between themselves.
This had several and important implications on how this information
is managed, both in terms of privacy and confidentiality but also in
terms of the security of the systems storing this data. For this reason, a
considerable workforce coming from academia and industry has spent
more than a half of a century on these topics. The net result of this effort
is that systems are becoming more secure, and defenses are widely spread
in personal and enterprise environments. Unfortunately, in a cat-and-
mouse game fashion, attackers sharpened their knives and continued to
carry on with their malicious activities and breach computer systems.
Last year’s Symantec Threat Report [Sym18] gives a worrisome overview
of these malicious activities, showing how no device or appliance is
spared: cloud machines, IoT devices and mobile phones were targeted
using different attack vectors. In most of the cases these attacks resulted
in serious financial losses for companies and individuals. In others, leaks
of catastrophic proportions happened, and private information became
part of the public domain or was sold by criminal organizations.

A very important lesson in computer security is that learning from
past mistakes is crucial to properly harden systems against future threats.
To this end, establishing a positive feedback loop between collected data
and security defenses is essential. The first edge – connecting data to de-
fenses – ensures that by analyzing the data related to an incident is
possible to identify the root cause of the attack and build stronger de-
fenses. But the other way around is also important: as it is often infeasible
to collect a fine-grained trace of a system execution, it is important to

1

introduction

to carefully selected the information to collect. Moreover, to complicate
the matter, time plays a key role in this equation. In fact, some data is
inherently transient – i.e. network traffic – and if not timely collected
it is lost forever. Similarly, evidences located in unallocated resources –
such as unused disk space – can be overwritten by new data and thus
destroyed. The science that deals with the collection, the analysis, and the
interpretation of the data related to a computer incident is called digital
forensics. Historically speaking, digital forensics sprang as a science to aid
traditional forensics investigation – i.e. to analyze seized devices – but
nowadays its techniques are also part of incident response procedures.
Traditionally, the focus of digital forensics has been on the analysis of
hard drives and only later it shifted to other components of computer
systems. One in particular – the volatile memory – is receiving a lot of
interest from the incident response community. The first reason of this
interest comes from the fact that attackers became more and more aware
of the traces they leave on disks, thus an analysis focused only on data
at rest often times gives an incomplete view over the malicious behavior.
Moreover, many artifacts are not found elsewhere but in the volatile mem-
ory. For example, by only looking at the disk content is impossible to tell
which processes where running or which kernel modules were loaded in
the system. This new branch of digital forensics – called memory forensics
– deals with the analysis of the volatile memory extracted from a running
system.

1 .1 a quick introduction to memory forensics

Memory forensics is only 15 years old and traditionally it has been used as
part of post-mortem investigations. In addition, more recently it has also
been used as a proactive tool to periodically check computers and look
for signs of a possible compromise. In both cases, the first step of memory
forensics involves obtaining a copy of the content of the volatile memory
(represented by the Memory Dump box of Figure 1.1). After this step is
successfully preformed, the analyst has two different ways to proceed.
The first one is to treat the memory dump as an unstructured blob of data

2

1 .1 a quick introduction to memory forensics

Infected
Machine

Profile

Memory
Dump

Analysis Evidences

Figure 1.1: Memory Forensics Overview.

and apply carving techniques – often coming from the network and disk
analysis domains. In this way, it is possible to extract evidences such as
images, open documents, or a chat history. But the true power of memory
forensics lies in the second option, namely structured memory forensics. In
this case, evidences are extracted by parsing and interpreting operating
system constructs. This type of analysis is much more powerful than its
carving counterpart, because it allows to precisely reconstruct the state of
the kernel under analysis and therefore to extract a number of artifacts
which would not be accessible otherwise.

1 .1 .1 Memory Imaging

Similarly to the disk domain, memory imaging is the process of obtaining
a copy of a system’s volatile memory. However, this task is quite challeng-
ing given its central role in a computer system. For instance, the standard
procedure to image a disk is to halt the machine, extract the disk and
connect it to a proper acquisition workstation. On the other hand, this
procedure can not be naively ported in the memory acquisition context,
because the content of a memory chip rapidly decay when it is discon-
nected from its socket. For this reason, most of the existing tools acquire
the memory while the system is running. However, this bring into play
another subtle problem: contrary to disks, imaging the volatile memory

3

introduction

twice never yields the same result. To address this concerns, three criteria
has been proposed [VF12] to evaluate the forensics soundness of memory
acquisition tools:

• Correctness: measures how much a memory dump faithfully repre-
sents the RAM content.

• Atomicity: measures the impact of the system activity while the
dump is taken.

• Integrity: measures the footprint of the acquisition process to the
memory content.

Memory imaging has been a flourish research area and resulted in a
large number of tools that suits different needs and environments, and
fulfill – partially or completely – some of the previous criteria. To give an
idea of the vast array of choices a digital investigator has, a known website
dedicated to digital forensics [Wik] lists more than 20 different tools to
do memory acquisition. While this problem can be tackled from different
angles, these techniques can be divided in two categories: hardware and
software. Hardware acquisition methods rely on a piece of hardware,
i.e. a PCI card, that access the physical memory via Direct Memory Ac-
cess (DMA) thus bypassing the CPU. Nevertheless, hardware acquisition
methods require a kernel driver running in the target system because the
Input Output Memory Management Unit (IOMMU) must be properly
configured to give the devices full access over the memory [LPF19]. More-
over, these cards must be installed before a security incident happens,
because not all of them are hot-pluggable. This limitation is overcome by
software methods, which are the most flexible and commonly adopted
way to acquire physical memory. Available tools work either from kernel
or user space. In the first case, a kernel module is inserted in the running
operating system and, since it runs with the same privileges of the kernel
itself, it can freely access the entire memory. The only caveat when dump-
ing the memory from kernel space is that the module must differentiate
between regions of the physical address space mapped to the RAM and
those belonging to devices – because accessing the latter may crash the

4

1 .1 a quick introduction to memory forensics

system. Fortunately, both Windows and Linux offer a way to access this
information. On the other hand, user space methods read the memory
from special files exported by the kernel - i.e. /dev/kmem in Linux or
\\.\Device\\PhysicalMemory in Windows. Unfortunately, for security
reasons, these files are rarely accessible from user space. Finally, when
dealing with virtual machines, an analyst can use hypervisor-specific
commands to dump the memory. Sadly, this facility is rarely exported by
cloud providers, thus forcing the analyst to fallback to other acquisition
strategies [CR17].

1 .1 .2 Structured Memory Analysis

Once the memory dump is acquired and saved on the analyst worksta-
tion, the real analysis begins. The core idea behind structured memory
forensics is to reconstruct the state of the kernel under analysis, by locat-
ing and interpreting kernel structures. The “entry-points” of an analysis
are located by using different techniques: some structures are pointed by
global variables, other are always at a fixed offset, and some can mod-
eled and carved from raw memory. Once an entry-point structure has
been identified, de-referencing the pointers it contains allows the analysis
system to discover other structures in a recursive fashion.

While the continuous development of an operating system gener-
ally brings new features into its kernel – and new structures that can
potentially contain new interesting artifacts – most of the core struc-
tures and the way the kernel uses them to save information remains
relatively stable across kernel version. For example, in Linux the way
processes are organized by the kernel has not changed since version 2.6,
released on December 2003. Based on this information, memory forensics
frameworks are shipped with several forensics analysis rules – often
implemented as plugins – to aid the analyst with common investigation
tasks. For instance, one of the most common first step in memory analy-
sis consists of running a plugin to list the processes that were running
when the memory was acquired. Under Linux, this requires to locate
a global variable which contains the root node of the list of processes,

5

introduction

and then to traverse this list. This plugin-based architecture (adopted for
instance by the popular open-source frameworks Volatility [Wal07] and
Rekall [Coh14]) is very flexible because it effectively relieves the analyst
from the burden of understanding every low-level detail when she need
to implement a custom analysis plugin. In fact, while the aforementioned
procedure to list processes seems straightforward, it involves solving
several challenges. For example, the kernel page tables must be located to
translate virtual to physical addresses and raw chunks of memory must
be interpreted to extract higher-level information. The latter problem,
known as bridging the semantic gap, afflicts both the forensics and the
virtual machine introspection community. In fact, both of them need a
very precise and detailed model of the kernel structures under analysis
to complete their tasks. In memory forensics terms, this model is called a
profile. The information needed to create a valid profile vary depending
on the operating system, thus the dotted line in Figure 1.1. Building a
profile for a Windows kernel is quite straightforward because Microsoft
releases the debugging symbols of every kernel on a public symbol server.
For example Rekall [Coh14] is able to automatically identify the version
of the kernel contained in a memory dump, download the corresponding
symbols and create a profile. On the other hand, the Linux kernel can be
customized with thousands of configuration options defined by the user
at compile time. Since these options affect the layout of kernel structures,
a profile needs to be created for the specific version of the Linux kernel
running in the system where the memory was acquired.

1 .2 challenges & open problems

Memory forensics is a very active and fast paced topic: analysts have to
continuously look out for new software and operating system versions
to update their tools accordingly. Quite often these advancement gaps
can be fulfilled with a small engineering effort, but in other cases they
require completely new approaches and techniques.

This thesis focuses on three fundamental problems, which are intrinsi-
cally tied to memory forensics. What makes these problems even more

6

1 .2 challenges & open problems

interesting to study is the fact that their existence is well known by mem-
ory forensics practitioners and researchers, but their implications are
often underestimated.

Challenge #1 - Non-Atomic Memory Imaging

The spectrum of choices for memory imaging is very broad but a common
trait among existing tools is that the computer is not halted during the
acquisition process. This means that while memory pages are read, the
operating system and user space programs are running and modifying
the memory. As a result, a non-atomic acquisition contains inconsistencies,
because the dump does not reflect the content of the memory at a precise
point in time, but is instead more similar to a long exposure photograph
of the memory content. While several research papers have tried to define
and quantify this problem, its implications on forensics analysis are still
unclear and existing tools do not provide any way to assess the possible
consequences of a lack of atomicity.

Challenge #2 - Profile Requirement

The existence of a kernel profile plays a central role in memory forensics,
because without it structured memory analysis techniques cannot be
applied. A problem with this profile-centered approach is that profiles are
tightly associated with a specific kernel build. For example, the very same
version of the Linux kernel compiled with two different configurations
can result in dramatic changes in the profiles. This problem is effectively
limiting the scope of applicability of memory forensics, especially when it
comes to analyze IoT devices, network devices or smartphones. In these
situations, creating a valid profile can be extremely challenging or even
impossible.

Challenge #3 - Forensics Rules

Forensics analysis rules, more commonly known as plugins in the Volatil-
ity framework, represent the core of structured memory forensics. By
traversing kernel structures, these rules reconstruct the state of the kernel

7

introduction

under analysis and extract information which are unlikely to be found
elsewhere. For example, Volatility ships with more than 50 plugins to
analyze the Windows kernel. A problem of these rules is that they are
based on a set of heuristics manually defined by experts based on their
own judgment and experience.

However, it is unclear how different heuristics that extract the same
information can be compared against one another. Is it possible, and
under which conditions, for them to reach different conclusions? Is there
a set of metrics we can use to assess their quality? And, even more
important, is it possible to automatically design new and better rules the
provide some form of guarantees over their execution?

1 .3 contributions

This thesis tackles the three aforementioned challenges by making the
following three novel contributions.

Introducing the Temporal Dimension to Memory Forensics

The first contribution of this thesis, presented in Chapter 3, focuses on the
lack of atomicity in memory dumps. This phenomena, also know as “page
smearing”, has been known since the dawn of memory forensics [Car15].
The focus of prior research on this problem has been on defining and
quantifying the level of atomicity of a memory dump, but never on
understanding the consequences on actual forensic analyses. To approach
this problem, this thesis introduces a new dimension – called temporal
dimension – to memory forensics . This dimension gives the analyst a
preliminary way to assess the atomicity of the data structures used during
an analysis. Moreover, we conducted a set of experiments to show that
page smearing does not only introduce inconsistencies in page tables
but instead it indiscriminately affects any analysis traversing structures
located in user and kernel space. The impact of these inconsistencies
can be more or less serious, but our experiments show that the outcome
of a forensics analysis is often impacted. For example, in some tests an

8

1 .3 contributions

inconsistency in the kernel structures used to track the memory mappings
of a process effectively prevented the analysis to locate the code section
of a process.

To limit these negative effects, we propose a new locality-based memory
acquisition method. All memory acquisition tools acquire the physi-
cal pages sequentially which, in other words, means that all pages are
treated with the same importance, regardless of their content. By using
our locality-based acquisition, memory pages containing tightly-related
forensics information – such as the elements of a linked list or the page
tables of a process – are acquired instead in a short amount of time.
This acquisition schema was sufficient to avoid the inconsistencies we
encountered in our experiments.

This contribution has been published in an article appeared in the ACM Transac-
tions on Privacy and Security (TOPS) [PFB19]

Towards an Automated Profile Generation for Memory Forensics

The second contribution of this thesis focus on automatically creating
forensics profiles, which are an essential component of memory forensics.
A Linux profile contains two separate but equally important pieces of
information: the layout of kernel structures and the address of global
symbols. While Microsoft Windows profiles can be automatically created,
when it comes to Linux manual intervention is needed. The process of cre-
ating a profile essentially involves the compilation of a kernel module, out
of which the structures layouts are extracted. While this task may appear
straightforward, the process has several implicit requirements – including
the availability of the kernel configuration options. Moreover, in the last
few years, a new threat to memory forensics is arising in the form of ker-
nel structures layout randomization (RANDSTRUCT). When this hardening
technique is enabled at compile time, the fields of sensitive structures
are shuffled. If the randomization seed is deleted, then a profile cannot
be created. To overcome these problems, Chapter 4 presents a novel way
to automatically reconstruct a profile from a memory dump, without
relying on any other non-public information. The core idea behind this
approach is that, while the layout information is lost during the compi-

9

introduction

lation process, the generated code retains some traces of the position of
each field. More specifically, the displacement used to access structure
members reflect the layout of the structure itself. Therefore, structure
layouts can be recreated by carefully extracting these displacements from
kernel binary code. The presented approach can be conceptually divided
in three phases. In the first, the kernel version and the location of kernel
global variables are extracted from the memory dump. In the second
phase, a custom compiler plugin analyzes the kernel source code and
records where and how kernel structures are used. This information is
stored in a set of models, called access chains which, in the third and last
step, are matched against the kernel binary code extracted from the mem-
ory dump. Experimental results show that this system is effectively able
to recover the layout of structures used in many fundamental forensics
plugins, such as those that list processes, memory mappings, opened files,
and network connections information.

The content of this chapter is current under submission at the 41st IEEE Sympo-
sium on Security and Privacy (S&P 2020)

Back to the Whiteboard: a Principled Approach for the Assessment
and Design of Memory Forensic Techniques

The last contribution of this thesis is presented in Chapter 5 and proposes
a new framework to extract and evaluate the heuristics used for forensics
analysis. The problem with the current approach is that these rules are
manually crafted by experts, following their own personal intuition and
knowledge. This is unfortunately not enough to ensure the uniqueness
nor the quality of a technique that extracts a given information. The fact
that there exists multiple way of reaching the same information is known
in the forensics community. For example, the current version of Volatility
ships with two different plugins to extract the process list under Linux.
However, it is unclear if other (better?) solutions are hidden in the maze of
kernel code just waiting to be discovered. A second orthogonal problem
is how to define the quality of an heuristic. What does it mean that one
is better than another? Sadly, today there is no way to compared different
techniques.

10

1 .3 contributions

To answer these questions, Chapter 5 we describe how we built a directed
graph of kernel structures where nodes represent kernel structures while
edges are pointers from one structure to another. Given this representa-
tion, memory forensics plugins can be seen as paths – or even better as
subgraphs – in a graph. Then, to assess the quality of a given heuristic, a
set of metrics under which a path can be evaluated need to be defined. In
this thesis several metrics related to memory forensics are proposed, but
new ones can be easily plugged into our framework. Example of these
metrics are those that capture the atomicity of a path, or the one used to
express the stability of a path over time. We then study the proprieties
of this graph and show three different applications of our framework. In
the first, the framework is used to study the quality of current memory
forensics plugins under the proposed metrics. In the second, previously
unknown techniques for listing running processes are discovered. Finally,
in the third and last scenario, we compute the optimal paths for each
metric for a particular task.

This contribution has been presented at the 28th Usenix Security Symposium
[PB19]

11

2R E L AT E D W O R K

Structured memory forensics was effectively kickstarted by the DFRWS
Forensics Challenge in 2005. Before this challenge, all the results of
memory analysis were based on carving techniques and string identi-
fication. Over the last decade, the forensics community has grown and
focused on many different problems, including the application of live
forensics [LV08; Ade06; Jon07], the creation of signatures for kernel data
structures [Dol+09; Lin+11; Fen+14], the evaluation of different acquisi-
tion methods [VF11; VS13; LPF19], the de-randomization of the kernel
memory [GL16], the identification of the kernel version [RAS14; BA18],
the extraction of hypervisor-related information [GLB13], the design of a
number of different analysis techniques tailored to common user space
applications [SS10; Al +11; SS11; Ots+18; BD17; AD07; CR16; Mac13] and
the applicability of neural network models to memory forensics [Son+18].

In the next sections we are going to explore some of these papers in
more details, with a focus on the studies related to the three challenges
we are addressing in this thesis.

2 .1 atomicity

Even though the lack of atomicity is mentioned by several studies [HBN09;
LK08; MC13; Kor07] only very few works have focused on this topic. The
first effort to evaluate the consistency of a memory image was done by
Huebner in 2007 [Hue+07]. This work acknowledges that capturing a
memory image from a live system can indeed introduce inconsistencies
between interconnected objects. To resolve this issue the authors explore
the applicability of concepts from the area of orthogonally persistent
operating systems to computer forensics. In these systems, the state of the
kernel and user space applications is captured and recorded periodically.
For this reason, the solution proposed by the authors requires integration
in the operating system, thus resulting in no impact to practical systems.

13

related work

The first systematization of the atomicity concept was published by Vomel
and Freiling [VF12] through a formal definition of three criteria, namely
correctness, integrity, and atomicity. The authors pointed out that an atomic
snapshot is a snapshot which “does not show any signs of concurrent system
activity”. Four years later, Gruhn and Freiling [GF16] returned to the
subject, this time evaluating how those three criteria are respected by
12 different acquisition tools. More recently, Case and Richard [CR17]
brought back under the spotlight the page smearing problem. The authors
argue that - with the current acquisition tools - the smearing effect will
become more and more common, since nowadays servers are equipped
with large amount of RAM that causes longer acquisition time. They also
underline how page smearing “is one of the most pressing issues” in the
field of memory forensics.

The very first software acquisition method that tried to obtain an
atomic snapshot is BodySnatcher [Sch07]. The underlining idea of this
work is to freeze the running operating system by injecting a small custom
acquisition OS. The approach, as acknowledged by the authors, has sev-
eral severe limitations – including the fact of being very operating system
dependent and, in its current implementation, of supporting only systems
with a single CPU core. In 2010, Forenscope [Cha+10] took advantage
of the data remanence effect in memory chips to reboot the system and
divert the boot sequence to the acquisition module. This approach is gen-
erally referred as cold boot memory acquisition [Hal+09]. Unfortunately,
few years later, an in-depth analysis of cold boot practicability in memory
forensics [CBS11] concluded that the data remanence strongly depends
both on the chipset and on the memory modules used and that some
combinations of components do not retain the content of the RAM upon
a reboot.

The next attempt towards a sound memory acquisition was done by
HyperSleuth [Mar+10], a tool based on the Intel virtualization technology.
Working at this high-privileged level, allows HyperSleuth to dump pages
using two different strategies: dump-on-write and dump-on-idle. The first
is triggered whenever a page is modified by the guest operating system,
while the second whenever the guest itself is in an idle state. While this
is resilient against malware which tries to evade the forensics acquisition,

14

2 .2 kernel graphs

it does not avoid data structure inconsistencies. In 2012 Reina et al.
presented SMMDumper [Rei+12]. a special firmware running in System
Management Mode (SMM). Entering this special mode ensures that the
acquisition process is completely atomic, since the operating system has
no chance to gain back the control. Even if this tool satisfies all of the three
forensics criteria, it suffers from the fact that it cannot be hot-plugged in
a running system, and therefore it needs to be pre-installed beforehand.
A similar approach has also been proposed by Sun et al. [Sun+15] for
the ARM architecture. In this case, the authors propose an acquisition
process built on top of the TrustZone technology.

While not directly related to our findings, Bhatia et al. [Bha+18]
and Saltaformaggio et al. [Sal+16; Sal+15a; Sal+15b] studied how it is
possible to create a timeline of past user activities and to extract a number
of photographic evidences and past Android app GUIs.

While all the attempts described above are interesting from a re-
search perspective, many require the system to be carefully configured
beforehand and none is mature enough to be used in real investiga-
tions or production systems. As a consequence, memory acquisition of
non-virtualized systems continues to be performed using kernel-level
solutions that copy the memory content while the system is running.

2 .2 kernel graphs

The analysis of kernel objects and their inter-dependencies has attracted
the interest of both the security and the forensics community. While
the common goal, namely ensuring the integrity of the kernel against
malware attacks using the inter-dependencies between kernel object, is
shared by the majority of works on this topic, the methods and the tools
used to achieve it are often different. Several research papers have also
been published on reconstructing and analyzing data structure graphs
of user-space applications [Coz+08; Bur+11; Urb+14; Sal+14]. However,
most of these techniques are not directly applicable to kernel-level data
structures, because they do not take in account the intricacies present in

15

related work

the kernel, such as resolution of ambiguous pointers to handle custom
data structures. For this reason they will not be discussed in this Section.

To better highlight the different approaches, we decided to divide
them in two distinct categories. The first one covers approaches which
presented the analysis of a running kernel. The second category is focusing
instead on static approaches, which require only a memory snapshot or
the OS binary.

Dynamic Analysis
One of the first example of dynamic kernel memory analysis was

presented by Rhee et al. in 2010 [Rhe+10]. The tool, named LiveDM, places
hooks at the beginning and at the end of every memory-related kernel
functions, to keep track of every allocation and deallocation event. When
these hooks are triggered, the hypervisor notes the address and the size
of the allocated kernel object and the call site. The latter information
is used, along with the result of an offline static analysis of the kernel
source code, to determine the type of the allocated object. A work built
on top of LiveDM is SigGraph [Lin+11]. In this paper the authors generate
a signature for each kernel object, based on the pointers contained in
the data structure. These signatures are then further refined during a
profiling phase, where problematic pointers - such as null pointers - are
pruned. The result can then be used by the final user to search for a kernel
object in a memory dump. The major concern about signature-based
scheme is their uniqueness, that avoids problems related to isomorphism
of signatures. The authors found that nearly the 40% of kernel object
contains pointers and - among this objects - nearly 88% have unique
SigGraph signatures. Unfortunately the uniqueness was reported prior
the dynamic refinement, so it is unclear the percentage of non-isomorphic
signatures. For this reasons a kernel graph built using the approach
adopted by SigGraph would only retrieve a partial view of the entire
memory graph.

Another work focused on signatures to match kernel objects in mem-
ory was done by Dolan-Gavitt et al in 2009 [Dol+09]. The main insight
of this work is that while kernel rootkits can modify certain fields of a
structure - i.e. to unlink the malicious process from the process list - other
fields (called invariants) can not be tampered without stopping the mali-

16

2 .2 kernel graphs

cious behavior or causing a kernel crash. The invariant are determined in
a two steps approach. During the first one every access to a data structure
is logged, using the stealth breakpoint hypervisor technique [VY05]. Then,
the most accessed field identified in the previous step are fuzzed and
the kernel behavior is observed. If the kernel crashes then there are high
chances that this field can not be modified by a rootkit. On the other
hand, if no crash is observed, than the field is susceptible to malicious
alteration. The direct results of these two phases is that highly accessed
field which result in a crash when fuzzed are good candidates to be
used as strong signatures. While this approach looks very promising is
not easily adaptable to our context since, as also noted by the authors,
creating a signature for small structures can be difficult. Furthermore,
generating a signature requires to locate at least one instance of a structure
in memory, which might not be straightforward.

Xuan et al. [XCB09] proposed Rkprofiler. This tool combine a trace of
read and write operations of malicious kernel code with a pre-processed
kernel type graph, to identify the tampered data. The problem of am-
biguous pointers is overcome by annotating the type graph with the real
target of a list pointer. While it is not clearly stated in the paper, it seems
the annotation was manually done. As we discussed in Section 5.4 the
Linux kernel uses a large amount of ambiguous pointers, thus making
the manual annotation approach not feasible anymore.

While more focused on kernel integrity checks, OSck [Hof+11] uses
information from the kernel memory allocator (slab) to correctly label
kernel address with their type. The integrity check are run in a kernel
thread, separated by the hypervisor. This two components allow OSck
to write custom checkers that are periodically run. While this approach
seems promising, only a small subset of frequently-used structures are
allocated using slab (such as task_struct or vm_area_struct), and thus
is unsuitable for our needs.

Another approach to create a graph of Windows kernel objects is
MACE [Fen+14]. Using a pointer-constrain model generated from dy-
namic analysis on the memory allocation functions and unsupervised
learning on kernel pointers, MACE is able to correctly label kernel objects
found in a memory dump. Once again, while the output of the work is a

17

related work

kernel object graph for Windows, the application only focuses on rootkit
detection.

Static Analysis
One of the most prominent work in this field is KOP [Car+09], and

its subsequent refinement MAS [Cui+12]. Very similarly to our approach,
the authors use a combination of static and memory analysis techniques
respectively on the kernel code and on a memory snapshot. In the first
step they build a precise field-sensitive points-to graph, which is then used
during the memory analysis phase to explore and build the kernel objects
graph. Contrary to this solution, ours does not make any assumption
about the kernel memory allocator. While the Windows kernel has only
one allocator, the Linux kernel has three different ones (slab, slub, and
slob). Moreover, only a predefined subset of kernel objects are allocated
in custom slabs, while the vast majority is sorted in generic slabs based
on their size.

Gavitt and Traynor [DT08] also created a graph of kernel structures
with the purpose of detecting dummy objects, i.e. false positives objects
that are matched by memory scanners. As shown by Williams and Tor-
res [WT14] this attack vector can really complicate memory analysis,
because the attacker can inject thousands of fake artifacts to confuse the
analyst. To counter this eventuality, Gavitt and Traynor proposed to use
the PageRank [BP98] algorithms to discard false positive structures. Their
evaluation is promising and shows how this metric is enough to discern
between active and inactive processes.

Gu et al. [Gu+14] presented OS-Sommelier+, a series of techniques to
fingerprint an operating system from a memory snapshot. In particular,
one of these techniques is based on the notion of loop-invariants: a chain
of pointers rooted at a given kernel object that, when dereferenced, points
back to the initial object. Once a ground truth is generated from a set of
known kernels, this loop invariant signatures can be used to fingerprint
unknown kernels. Unfortunately the paper does not mention the problem
of ambiguous pointers, and we believe our graph generation approach
could improve OS-Sommelier+ detection.

Finally, as we already discussed, none of the tools to automatically
build a graph of kernel objects was publicly available.

18

2 .3 automatic profile extraction

2 .3 automatic profile extraction

Type inference on binary code has been a very active research topic in
the past twenty years. In fact, the process of recovering the type infor-
mation lost during the compilation process involves several challenges
and can be tackled from different angles. The applications that benefit
from advances in this field are the most diverse, including vulnerability
detection, decompilation, binary code reuse, and runtime protection mechanisms.
Recently, Caballero and Lin [CL16] have systematized the research in
this area, highlighting the different applications, the implementation de-
tails, and the results of more than 35 different solutions. Among all,
some of these systems are able to recover the layout of records, and in
some cases to associate a primitive type (for example char, unsigned
long..) to every element inside a record. Examples of these systems are
Mycroft, Rewards, DDE, TDA, Howard, SmartDec and ObjDigger [Myc99;
LZX10; SSB10; TDC10; SSB11; Fok+11; Jin+14]. Unfortunately, these ap-
proaches have limited applicability to our problem because they funda-
mentally answer a different question. While our system tries to retrieve,
for example, the offset of a specific field X inside an object Y, previous
approaches were instead interested in retrieving the types of the fields
inside Y. This is the difference between locating a given integer field (e.g.,
a process identifier) among dozen of integer fields within the same data
structure.

On the other hand, the forensics community is well aware of this
problem and over the years proposed some preliminary solutions. The
first attempt at solving this problem was done by Case et al. [CMR10]
in 2010 and, quite similarly, by Zhang et al. [ZMW16] in 2016. Their
approach is quite straightforward: after locating a set of defined func-
tions, the authors extracted the layout of kernel objects by looking at
the disassembly of these functions. While we believe it was a step in
the right direction, these approaches had several limitations. First of all,
both the functions and the corresponding objects were selected manu-
ally. This limited the scalability of the solution, and in fact the authors
were only able to manually recover a dozen fields in total - while our

19

related work

experiments emphasize that volatility uses more than two hundred of
them. Moreover, to locate the functions in the memory dump, previous
solution rely on the content of System.map, therefore suffering from all
the problems and limitations we discussed in Section 3.1. Finally, since
the authors used a simple pattern-matching to extract the offsets from
the disassembled code, those approaches worked only on small functions
and only if the instructions emitted by the compiler followed a certain
predefined pattern.

Case et al. [CMR10] and Zhang et al. [Zha+17] presented also another
approach based on the relationship among global kernel objects. Both
authors noted that, for example, the field comm of the variable init_task

always contains the string swapper or similarly that the field mm of the
same variables always points to another global variable (init_mm). With
this information is trivial to extract offsets, because it is enough to find the
starting address of init_task and scan the following chunk of memory.
Unfortunately, not all the object types in the kernel have a corresponding
global variable, thus limiting this approach to only a narrow subset of
data structures.

Finally, in 2016 Socała and Cohen [SC16] presented an interesting
approach to create a profile on-the-fly, without the need to rely on the
compiler toolchain. Their tool, Layout Expert, is based on a Preprocessor
Abstract Syntax Tree of kernel objects, that retains all the information about
the ifdefs. This special AST is created offline and then specialized to the
system under analysis, only when the analyst has access to it. Neverthe-
less, the specialization process still needs the kernel configuration and
the System.map, making this technique not applicable to our scenario.

20

3I N T R O D U C I N G T H E T E M P O R A L D I M E N S I O N T O
M E M O RY F O R E N S I C S

3 .1 introduction

To date most of the research in memory forensics has focused on tech-
niques to overcome the semantic gap and reconstruct a faithful picture of
the system under analysis. In other words, the main challenge has been
to automatically assign individual bytes to the corresponding high-level
components, such as running processes, device drivers, and open network
connections. This process requires a precise knowledge of the internal
data structures used by the target operating system, combined with a
set of heuristics to locate and traverse these structures and retrieve the
desired information. We call this part the spatial aspect of memory anal-
ysis, as it deals with the location of data objects and with their point-to
relationships in the address space of the system under analysis.

While this spatial analysis still suffers from a number of open prob-
lems [CR17], memory forensics is a mature field and popular tools in this
area are routinely used in a large number of investigations.

In this thesis we introduce a second, orthogonal, dimension that we
believe plays an equally important role in memory analysis: time. If the
spatial dimension deals with the precise localization of key data struc-
tures, the temporal dimension is concerned with the temporal consistency
of the information stored in those structures. This new dimension should
not be confused with the one introduced by Saltaformaggio [Sal18] where
the authors focused on reconstructing a timeline of past user activities.
Instead, our dimension is tightly related with the memory acquisition
process and on how the content of memory changes during this process.
In fact, the most common tools that are regularly used to acquire the
physical memory of a running machine are executed while the rest of
the system is running, and therefore while the content of the memory
itself is rapidly changing. This is the case of software-based solutions, as

21

introducing the temporal dimension to memory

forensics

well as hardware-based approaches that retrieve memory through DMA.
As a result, instead of acquiring a precise snapshot of the memory, these
tools obtain some sort of blurred, long-exposure picture of a moving
target. This issue is well known among practitioners in the field. Already
in 2005, when memory forensics was still in its infancy, Harlan Carvey
posted a message to the Security Incidents mailing list [Car15] pointing
out that the inability of software collection tools to freeze the memory
during the acquisition was going to become a problem for future analysis.
Unfortunately, this warning remained largely unexplored by researchers
for over a decade – while all resources were dedicated to improve the
algorithms used to overcome the semantic gap and recover useful infor-
mation. As a result, existing tools and techniques do not provide any
way to estimate, mitigate, or even simply to understand the presence and
the possible impact of errors introduced by the lack of atomicity in the
collected dumps.

Only recently, researchers have looked at the lack of atomicity in
memory dumps, but previous works have focused only on introducing
definitions and confirming that in fact software acquisitions produce
non-atomic memory images [GF16; VF12]. In these studies, the authors
reported problems of “inconsistent page tables” in 20% of their dumps,
likely due to page smearing [CR17] and resorted to repeat their experiments
when this problem was present. In 2018, Le Berre [Le 18] also confirmed
the astonishing result that about every fifth acquisition results in an unusable
memory dump. Sadly, while this is undeniably one of the “main obstacles to
complete memory acquisition” [CR17], the forensic community is following
a “dump and pray” approach, simply suggesting to collect new snapshots
when there is evidence of incorrect results. Unfortunately, this is a luxury
that is rarely available in a real investigation.

To mitigate this problem, in this thesis we suggest for the first time
that the two dimensions (spatial and temporal) need to be always recorded
and analyzed together. The analysis of the value of memory objects allows
the analyst to reconstruct a picture of the state of the target machine
and its applications. The analysis of the time those values were acquired
provides instead a way to estimate the confidence that the extracted

22

3 .2 space and time in memory acquisition

information (and therefore the result of the entire analysis) is consistent
and correct. Our experiments show that page smearing is just the tip of
the iceberg and similar inconsistencies occurs everywhere in the memory
acquired by live acquisition techniques. In fact, while it is obvious that
memory snapshots taken from inside a running system are always non
atomic, it is still unclear whether (and how often) this can result in wrong
conclusions during an investigation. To answer this question, we present a
number of real examples that we use to pinpoint three main types of time-
based inconsistencies in a number of real memory analysis tasks. Our
experiments show that inconsistencies due to non-atomic acquisitions
are very common and affect several data structures. Moreover, these
inconsistencies often lead to potential errors in the analysis process.

Knowing the extent of the problem is important, but it does not help
to improve the current memory forensic field. Therefore, we argue that
memory acquisition tools should provide the user not only with the raw
data required for the analysis, but also with the necessary information to
clearly estimate the reliability of this data and the possible impact of non-
atomic collection on a given forensic task. To follow this recommendation,
in Section 3.5 we introduce the temporal dimension to two of the most
popular memory forensic tools: the Volatility analysis framework, and the
LiME acquisition tool. Our changes allow for the first time to precisely
record time information in a memory dump and to transparently support
this information during the analysis. Moreover, whenever an atomic
collection is not possible, in Section 3.5.3 we discuss a better algorithm
to decrease the impact of the acquisition time on the memory analysis
process. In particular we propose a simple context-sensitive approach to
improve the “local-atomicity” of a number of relevant data structures.

3 .2 space and time in memory acquisition

Tens of different memory acquisition techniques have been proposed to
date, all with their combination of strengths and weaknesses. The list
includes dedicated hardware solutions [CG04; Cox+18], DMA acquisi-

23

introducing the temporal dimension to memory

forensics

tion via the FireWire bus [BD04; BDK05], and the use of hibernation
files [Ruf08] or crash dumps [Sch06]. Despite this variety of techniques,
software-based acquisition solutions (e.g., LiME [Syl12], WinPMem [Coh12],
and Memoryze [Man]) remain the tool of choice in any scenario that does
not involve emulated or virtual environments – where a consistent snap-
shot can be acquired from the hypervisor while the underlying OS is
frozen.

The first step performed by any kernel-level tool is to retrieve the
system memory layout. The layout specifies which memory region are
usable by the operating system, and which are reserved for memory-
mapped peripherals, such as PCI devices, or for the system BIOS. The
only way to retrieve this information is to ask the BIOS itself, which
can only be queried during the boot phase, when the system is still in
real mode. For this reason, OS kernels maintain a copy of this list, which
in Linux is pointed by the iomem_resource symbol and in Windows
is accessible through the MmGetPhysicalMemoryRanges API. This step is
very important, as any attempt to access reserved regions may result in
unpredictable side effects [Lig+14] as a device can sense and react to the
read requests generated by the acquisition process and place the system
in an unstable state (or force it to crash). Once the memory layout has
been retrieved, the acquisition process can finally start. For each region
assigned to system RAM, the module maps a page of physical memory
and stores it in a file. In Linux this is done using the kmap kernel API1.

For the purpose of this paper we are only interested in two aspects of
the acquisition process. The first is whether the target system is running
while the content of the memory is copied. In the case of OS-based or
hardware-based acquisitions, this is indeed the case. Thus, while the mem-
ory dump is collected, new processes are spawned, incoming connections
are handled, and files are read and written to the disk. The second aspect
is the order in which the individual pages are acquired by the tool. To
the best of our knowledge, for efficiency reasons all solutions acquire the

1 Since on several architectures the Linux kernel maintains a direct mapping to the entire
physical memory, this API just performs an address translation and does not involve the
modification of any paging structure [SC13]

24

3 .2 space and time in memory acquisition

memory sequentially, starting from lower to the higher available page.
Once the acquisition process is completed, the real analysis can finally

begin. Here the main challenge is the fact that while a memory dump
contains a copy of the physical pages, the analyst often needs to reason
in term of OS-provided abstractions, such as processes and their virtual
memory space. To bridge this semantic gap, memory forensic tools (such as
the popular open source Volatility [Wal07] and Rekall [Coh14] frameworks)
require building a profile of the operating system that was running on the
target host. Such profiles contain information related to relevant kernel
data structures and their positions in memory. While the creation of these
profiles and their corresponding analysis, what we call the spatial analysis,
is an active research area (see for instance Socala and Coen [SC16] and
Gavit et al. [Dol+09; Dol+11]), this paper focuses on a different and often
overlooked problem: the fact that all existing analysis algorithms are
based on the assumption that all pages were acquired at the same time in a
single atomic operation. Not only this is never the case in the acquisition
process we described, but as we will see in Section 3.3 and 3.4, this can
have important consequences on the results of the analysis.

Atomic Acquisition and Time-Consistency

An ideal acquisition procedure would collect the entire memory in a
single atomic operation – such that for the system under analysis the
acquisition appears to be performed instantaneously. For all practical
purposes, an acquisition can still be considered atomic if the content
of the memory does not change between the beginning and the end of
the acquisition process – making the result indistinguishable from an
hypothetical snapshot collected in a single operation. Recently, Vomel
et Freiling [VF12] proposed a more permissive definition of Atomicity,
inspired from the theory of distributed systems. This atomicity, which
we call Causal Atomicity, can accommodate pages collected at different
points in time, as long as the procedure satisfies the causal relationships
between memory operations and inter-process synchronization primitives.
While this is a very elegant definition, it is unfortunately also extremely
difficult to measure in practice, as it is almost impossible to enumerate all

25

introducing the temporal dimension to memory

forensics

causal relationships in a complex system. In fact, the same authors later
estimated the atomicity of real dumps by simply computing the time
delta between the first and last acquired pages [GF16]. Note that this is
just an approximation, as even very short time delta may still result in
snapshots that do not satisfy casual relationships.

What matters most is the fact that any kernel-level acquisitions are not
atomic (neither according to the original nor the causal definition) [GF16].
To better examine the consequence of this fact, we need a more fine-
grained measure of the discrepancy between different parts of a memory
dump. For this reason, we introduce the concept of time consistency. A
set of physical pages are time-consistent if exists an hypothetical atomic
acquisition process that could have returned the same result or, in other
words, if there was a point in time during the acquisition process in
which the content of those pages co-existed in the memory of the system.

We argue that time-consistency is a more practical measure of the
quality of a memory snapshot, as it can be accurately measured in an
experiment (as we will describe in Section 3.4). Moreover, while it is
still practically impossible to obtain a complete time-consistent image if
the system is not frozen during the acquisition process, it is still useful
to test this property on a smaller scale. For instance, an analyst may
be interested in knowing if all the EProcess structures contained in a
memory dump are time-consistent. In other words, even if the entire
memory dump contains non-consistent data, individual processes or
particular data structures may locally satisfy this property. Therefore, if
we know that the acquisition of the process list is time-consistent, this
may be enough to guarantee the correctness of a number of important
memory forensic tasks.

3 .3 impact of time in memory forensics

The memory of a running system can be seen as a very large graph of
interconnected objects. This is essentially what makes memory forensics
possible in the first place. However, as we explained in the previous
section, those objects are often collected at different points in time – with

26

P
1

T
0

n
u
l
l

S
t
r
u
c
t
A

P
2

P
3

P
4

Acquisition Time

T
1

S
t
r
u
c
t
A

6
4
0
0

S
t
r
u
c
t
B

A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

B
u
f
f
e
r
C

A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

T
2

S
t
r
u
c
t
A

6
4
0
0

S
t
r
u
c
t
B

A
A
A
A
A
A
A

A
X
X
X
X
X
A

A
A
A
A
A
A
A

B
u
f
f
e
r
C

A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

T
3

S
t
r
u
c
t
A

8
1
9
2

S
t
r
u
c
t
B

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
u
f
f
e
r
C

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
B
B
B
B
B
B

P
1

@
T
1

S
t
r
u
c
t
A

P
2

@
T
0

P
3

@
T
3

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
u
f
f
e
r
C

P
4

@
T
2

A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

F
i
r
s
t
A
c
q
u
i
s
i
t
i
o
n
S
e
q
u
e
n
c
e

P
1

@
T
1

S
t
r
u
c
t
A

P
2

@
T
2

6
4
0
0

S
t
r
u
c
t
B

P
3

@
T
3

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B
u
f
f
e
r
C

P
4

@
T
0

S
e
c
o
n
d
A
c
q
u
i
s
i
t
i
o
n
S
e
q
u
e
n
c
e

Fi
gu

re
3.

1:
Ex

am
pl

e
of

N
on

-A
to

m
ic

A
cq

ui
si

ti
on

s

introducing the temporal dimension to memory

forensics

the result that the values stored in different parts of the memory can
be inconsistent and that pointers (i.e., the edges in the graph) can be
incorrect and point to the wrong destination.

Figure 3.1 shows an example of the problems that can occur during
a non-atomic acquisition. The left of the figure shows (in a simplified
manner) three distinct but interconnected memory objects: a Structure

A, which contains a pointer to a Structure B, which in turn points to a
Buffer C. The two structures are stored in two separate physical pages
(P1 and P2) while the buffer spans two pages (P3 and P4). All pages are
represented sequentially along the X axis of the figure. The Y axis shows
instead how the memory content evolved over time (represented in four
discrete points: T0, T1, T2, and T3). As an example, we can imagine that at
Time T0 only Struct A is allocated. The other two objects are created at
Time 1, when the buffer is also filled with 6400 characters (as indicated in
the first field of Struct B). Part of the buffer is then modified at Time T2,
and finally its entire content is replaced by 8K new characters at Time T3.

The right part of the figure shows two possible acquisition sequences
for the four physical pages. We use the notation Px@Ty to indicate that
Page X is acquired at time Y. For instance, the first dump corresponds to
the acquisition sequence: P1@T1, P2@T0, P3@T3, P4@T2. We now use these
two examples to introduce three types of inconsistencies that can affect a
memory dump.

Fragment Inconsistency – This problem affects large objects that are
fragmented over multiple physical pages, when their content (as acquired
in the memory dump) is not time-consistent. For example, in the first
acquisition in Figure 3.1, the buffer contains half of the content it con-
tained at time T3 and half of the one at time T2. If this was data received
over the network, such as a web page, a forensic investigation would
find a mix of two consecutive messages, or a mix of the HTML code of
two separate pages. While in our example we show a case of fragment
inconsistency on a buffer, this can also affect large structures or arrays
containing multiple elements.

Pointer Inconsistency – The second type of inconsistency affects the
connection between two different objects, when the value of a pointer

28

3 .4 impact estimation

and the data it points to are acquired at different moments in time. This
is the case for Struct A in the first acquisition sequence. Its pointer to
Struct B was acquired at time T2, while the content of the destination
page was acquired at T1, before the second structure was even allocated.
This can have serious and unpredictable effects on memory analysis. In
fact, a forensic tool may try to follow the pointer and cast the destination
bytes to a Struct B type. Sometimes the result can be easily identified
as incorrect, but unfortunately arbitrary sequences of bytes can often be
interpreted as valid data, thus leading to wrong results.

Value Inconsistency – The third and last type of inconsistency we present
in this thesis occurs when the value of one object is not consistent with
the content of one or more other objects. This is the case of P2 and P3 in
the second acquisition sequence of Figure 3.1. The pointer in Struct B

is not affected by the non atomic acquisition and it correctly points to
Buffer C. However, the counter in the structure that keeps track of the
number of characters currently stored in the buffer is not consistent with
the content of the buffer itself (when its value was 6,400 the buffer did
not contain any ‘B’). The page smearing phenomenon recently described
by Case and Richard [CR17] is also an example of value inconsistency, in
this case between the data stored in the page tables and the content of
the corresponding physical pages.

As we already mentioned in the previous section, the fact that two
pages are collected at a different point in time does not necessarily mean
their content is inconsistent. For instance, P1 and P2 in the second dump
of Figure 3.1 are time-consistent. Also pages P1 and P3 are time-consistent.
However, all three of them together (P1, P2, and P3) are not.

3 .4 impact estimation

In this section we evaluate how often the inconsistencies presented in
the previous section are present in a memory dump and what are the
consequences on a number of common memory analysis tasks.

29

introducing the temporal dimension to memory

forensics

All experiments were conducted using a virtual machine equipped
with 4 CPUs, 8GB of RAM and running Ubuntu 16.04 LTS. While the
problem of non-atomic dumps is independent from the operating system,
we decided to base our tests on Linux because the availability of its
source code simplified the task of retrieving and double-checking the
internal state of kernel objects. The physical memory was acquired using
LiME [Syl12], a popular kernel-level acquisition module for Linux and
Android systems.

We want to stress that while our experiments were conducted in a
test environment, we strongly believe that this does not invalidate our
findings. Moreover, the memory acquisition speed of our environment
is comparable with the one exhibited by the fastest tool, as reported
by McDown et al. [McD+16]. This puts our experiments in a best case
scenario, and thus we believe the use of slower tools can increase the
scope and the number of inconsistencies present in a non-atomic memory
dump.

3 .4 .1 Fragmentation

In our first experiment we want to show how fragmented the physical
address space is in an average computer. In fact, consecutive pages in the
virtual address space of a process may be mapped to very distant pages
in the system RAM. The actual location may depend on many factors,
including the OS allocation policy, the number of running processes, the
amount of available memory, and the uptime of the system (memory in
a freshly booted computer is likely to be less fragmented than memory
on a server that has not been restarted for months). For our test we
took a conservative approach, using a Linux VM that had been running
traditional desktop software (e.g., Firefox and VLC media player) for a
period of only three hours. We expect a dump of a real system to be even
more fragmented than what we measured in our test.

Figure 3.2 shows the physical pages assigned to a subset of the pro-
cesses running in the system. The X axis shows the position (all pages
were acquired sequentially) of the physical pages – where blue squares

30

Fi
gu

re
3.

2:
Ex

am
pl

e
of

ph
ys

ic
al

m
em

or
y

fr
ag

m
en

ta
ti

on

introducing the temporal dimension to memory

forensics

represent program code and data, green circles the process stack, and red
triangles heap pages. Since the tool acquired each page in the order in
which they appear, the X axis also measures the time at which each page
was acquired.

Thanks to this figure we can observe several interesting phenomena.
First, for some processes (such as NetworkManager) all pages were located
close to each other in the physical memory. Therefore, these pages were
also acquired in a very short period of time. For other processes (e.g.,
snapd and udevd) the pages were instead scattered through the entire
RAM, thus increasing their inter-acquisition time and the probability of
containing inconsistent data. Another interesting case is given by the
Firefox process, for which our analysis was unable to locate the physical
pages containing the program code section. A closer analysis revealed
that this was due to an inconsistency in the process VMA list (which, as
we explain later in this section, Linux uses to store the memory region
owned by a process).

To investigate this type of issues and better understand how the
fragmentation may affect the results of an analysis, we performed two sets
of experiments – one focusing on the integrity of kernel data structures,
and one focusing on similar issues in the address space of a single process.

3 .4 .2 Kernel-Space Integrity

The OS kernel contains many useful pieces of information which are
required during a forensics investigation. This information is spread
over a multitude of interconnected data structures that evolve over time
to keep track, for example, of resource allocation and the creation of
new processes. These structures are connected by means of pointers in
complex topologies such as linked lists, red-black trees, and graphs. A
classic example of such topologies is the process list. In the Linux kernel
every process is represented by a task_struct, which plays a central
role in the kernel as it stores most of the information associated to each
running process. At the time of writing, this structure contains more than
300 fields, and 90 of them are pointers to other structures. One of these

32

3 .4 impact estimation

struct mm_struct {

/* list of VMAs */

struct vm_area_struct *mmap;

/* RB tree of VMAs */

struct rb_root mm_rb;

...

/* number of VMAs */

int map_count;

...

} ;

Figure 3.3: An excerpt of mm_struct taken from linux/mm_types.h

fields, called tasks, is particularly important because it is by following the
pointers contained therein that a tool can enumerate the active processes
in the system. Another valuable field part of the tast_struct is mm, which
points to a structure (mm_struct) that contains all the information related
to the virtual memory of the process, such as the first and last address
of the stack and the heap, and a reference to every memory mapping
requested by the userspace program.

Because of its central role in inspecting the memory of a process,
we focused our evaluation on this structure. Page tables could have
been another possible candidate for this test, as other researchers al-
ready noted inconsistencies in the page table when they are acquired
non-atomically [CR17; GF16]. However, while this is known, the impact
on other kernel data structures is still, as of today, unclear. Moreover,
all modern operating systems implement demand paging, which means
that user space pages are not loaded and mapped in RAM until they are
needed – thus complicating the task of identifying possible inconsisten-
cies. While this mechanism can be disabled by an application (i.e, using
the mlock Linux system call) this would provide an unrealistic scenario
to carry out our test on.

Figure 3.3 reports an excerpt of the mm_struct definition. The first
important field is the mmap pointer, which points to a vm_area_struct

(VMA). Each of these structures represent a different memory region

33

introducing the temporal dimension to memory

forensics

(such as a shared library, the code of the program, or its stack) and
contain the information about the beginning and the end of a map, the
permissions associated with it and, in case there is one, a pointer to the
mapped file. This is the information that is used to populate the maps file
under the proc filesystem.

A memory forensic analysis tool can reach these structures in two
different ways. The first one is by traversing a linked list containing all
vm_area_struct. The second is by traversing a red-black tree, which con-
tains the same elements of the linked list and is rooted in the mm_struct’s
mm_rb field. This redundant design allows the Linux kernel to search for
a free area using the list, but also to take advantage of the tree topology
to quickly check - for example during a page fault - if an address belongs
or not to a VMA [Gor]. The last field that is important to understand
for our evaluation is map_count, a counter that contains the number of
VMAs associated to the process 2.

We now want to understand what happens to these data structures
when a memory dump is collected in a non-atomic fashion. In fact,
inconsistencies in these structures can result in serious problems during
an investigation, as it would be impossible to know where the memory
containing the program code, the shared libraries, the heap, and the stack
of a process are located in memory. However, it is important to note that
all the structures we mentioned so far are allocated using the kmalloc

function – which ensures that two contiguous pages in the virtual address
space are also contiguous in the physical memory. For this reason, even
large structures cannot be affected by the Fragment Inconsistency problem
we described in the previous section.

Experiments

To mimic different real world scenarios, we performed three experiments.
In the first one we re-created a scenario where the investigator needs to

2 While these structures are specific to the Linux kernel, an equivalent tree is also present
in the Windows operating system, under the name of Virtual Address Descriptor (VAD)
tree. The use of the VAD tree in memory analysis has been previously described by
Dolan-Gavitt [Dol07].

34

3 .4 impact estimation

analyze the memory of a Firefox web browser that was left with five open
tabs. The second scenario involves instead a potentially infected server
machine, hosting a Wordpress installation, and handling a workload
of 15 requests per second. In this case the examiner wants to analyze
the content of the Apache memory, to understand if the server was
compromised. The last scenario involves again a client machine, this time
infected by a real malware.

For each scenario we collected 10 different memory dumps, which
were then analyzed by a custom Volatility plugin designed to look for
inconsistencies among the VMA-related data structures. In particular,
for each process under analysis3, it traverses both the list and the tree of
VMAs, counting the number of elements they contain. It then compares
this two numbers with the map_count field and prints an error message if
the two values are different. The list exploration algorithm implemented
in Volatility was left untouched. On the other hand, we had to fix the
recursive exploration of the tree since the Volatility implementation was
hanging on some memory dumps. We believe this is due to presence of
malformed trees (a consequence of the non-atomic acquisition), for which
the exploration was trapped inside an infinite loop.

The results for all the three scenarios are presented in Table 3.1. The
first row of the table reports the fraction of processes for which the num-
ber of elements contained in the VMAs list and the map_count counter
were inconsistent. Similarly, the second row contains the result of doing
the same comparison, this time counting the number of elements in the
red-black tree. The last row shows how many processes are affected
by one or the other inconsistency. A stunning 78% to 100% of the an-
alyzed processes in the three scenarios contained errors in their VMA
information.

It is important to understand that a mismatch between the counter
and the elements in the list (or in the tree) does not necessarily translates

3 In the malware and browser scenarios we analyzed only one process per memory dump.
However, Apache in its default process management mode, spawns several processes to
simultaneously handle all the incoming connections. Therefore, over the 10 dumps our
tool analyzed the status of 153 apache2 processes. For this reason, all results are reported
as percentages.

35

introducing the temporal dimension to memory

forensics

Table 3.1: Experiment results

Scenario 1
(Firefox)

Scenario 2
(Apache)

Scenario 3
(Malware)

List mismatch 100% 71% 80%

Tree mismatch 100% 73% 80%

Total 100% 78% 80%

into a serious problem or into wrong results, but it should nevertheless
alarm the analyst. It is indeed possible that after the counter was acquired
the process created a new memory mapping, thus increasing the number
of elements in the data structures without seriously affecting the analysis
of the process memory.

We therefore took a closer look at the elements present in those data
structures, searching for some mappings that should always been present:
namely the application code and its stack (we did not include the heap
as programs like Firefox use their own custom dynamic allocator and
therefore there is no corresponding entry in the VMAs structures). Sur-
prisingly, in the Firefox experiment, the list of mappings never contained
any entry for the application code nor for its stack. Being compiled as
position independent code, the program is loaded into a fairly high part
of the virtual address space. The VMA list is sorted according to the
starting address of the memory area and Firefox had over 200 mapped
entries which preceded the code. Therefore, any change in those entries
can result in a corruption of the list that prevents the discovery of the area
where the code is located. A closer look revealed that these mappings
contained the custom heap of Firefox, which changes very rapidly – thus
increasing the probability of an error in a non-atomic acquisition. The
picture was only slightly better for the red-black tree, where the code

36

3 .4 impact estimation

mapping was found three out of ten times, and the stack only once.
A similar result was found in the malware experiment. In this case

the code and stack sections were missing in five out of eight inconsistent
dumps according to the red-black tree. Using the list, it was instead
always possible to retrieve the code entry, while the stack was missing in
three out of eight experiments.

Atomicity and Quiescence

Even a perfectly atomic dump acquired on a frozen OS can contain errors
in some data structures, if the acquisition was performed while the oper-
ating system code was in the middle of a data structure update [Hof+11]
(e.g., while adding or removing an element from a list). Therefore, one
may argue if the inconsistencies we detected in our experiments are due
to the lack of time-consistency or to the fact that the image was taken
while the OS was not in a quiescence (i.e., idle) state.

While it is not possible to distinguish the two cases, we are confident
that time was the culprit of the errors we detected for two important
reasons. First, because while the OS can indeed be in the middle of
updating some pointers, this can only affect a very limited group of data
structures in a dump (i.e., the OS cannot be in the process of updating
the memory maps of all running processes). Second, when we repeat the
same three experiments using a different acquisition strategy that can
preserve the atomicity of certain memory regions (see Section 3.5 for more
details), all the inconsistencies we reported in the previous experiments
disappear.

Impact

To conclude we want to emphasize why this seemingly insignificant prob-
lem can have a serious impact on an investigation. First of all, inspecting
the memory of a malicious process, or of a potentially compromised
application, is a common task in memory forensics. If the analyst cannot
trust the VMA information, important areas of memory can be missed
or wrongly attributed to a different process. On a different example, few
days after the spread of the WannaCry ransomware attack, a decryption

37

introducing the temporal dimension to memory

forensics

tool (wannakey [Gui17]) was published by a security researcher. The tool
works by extracting from the malware memory the prime number of
the private RSA key used by the ransomware to encrypt the victim files.
In a similar attempt, a Volatility plugin [Mar17] searches for the AES

keys used by the NotPetya malware. This shows how memory analysis
often relies on locating and extracting a small amount of data from a
process memory. But our experiment highlights that the apparently trivial
task of retrieving all memory regions mapped by a process results in
wrong information in over 80% of the dumps acquired with a non-atomic
solution.

3 .4 .3 User-Space Integrity

We now shift our focus to userspace applications, to understand if they
are also impacted by similar problems. Most of the data from a running
application can be retrieved by looking at its stack and heap segments. The
heap contains dynamically allocated objects, which are often aggregated
in complex high level structures such as lists and trees. Therefore, the
type of errors introduced by inconsistent pages is similar to what we
already discussed in the kernel-level experiments. On the other hand,
the stack has a special role in the process execution, as it is responsible
for maintaining information about the current state of nested functions
invocations, along with the values of their parameters and local variables.
This is very important to understand what the program was doing at the
time the memory was acquired, and to extract the pointers to dynamic
objects required to initiate a heap analysis. For this reason, in our second
set of experiments we decided to look at the consequences of non-atomic
dumps on the analysis of the stack of a program.

To perform these tests, we need to be able to reliably reconstruct the
stack trace of a process starting from its memory dump. This task may be
complicated by a number of different factors (e.g., library functions that do
not use the frame pointer, or lack of symbols information). However, since
our goal is to investigate inconsistencies in the stack pages, without loss
of generality we can prepare the environment to facilitate this analysis. In

38

3 .4 impact estimation

...

...

parameters

return addr

saved ebp

local vars

foo()

parameters

return addr

saved ebp

local vars

bar()

...

Virtual Memory

...

Page A

...

Page B

...

Page C

T0

T1

T2

...

Physical Memory

A
cquistion

Tim
e

Figure 3.4: Stack layout of the target program. On the left a view from
the virtual memory perspective, on the right from the physical one

particular, we compiled the target application (bzip2) and all its libraries
without any optimization (-O0). We then disabled the stripping of debug
information, to retain the function names and corresponding addresses
in the binary.

Figure 3.4 shows a portion of a stack trace. The initial values of rip
and rbp are obtained from the kernel stack of the process, reachable from
the process’s task_struct. This is where the kernel saves the content
of all registers upon a context switch. Using this information, we can
locate the current function and then walk back to the previous frames
by following the saved rbp field. The left side of the figure shows the

39

introducing the temporal dimension to memory

forensics

activation records of two hypothetical functions (foo() and bar()). It is
important to note that while the two frames are always contiguous in
the virtual memory of the process, the physical pages that contain them
can be quite far apart, and even appear in a different order (right side of
Figure 3.4). Moreover, the frame of foo() in our example spans across
two separate memory pages, thus fragmenting its content in non-adjacent
physical addresses. Finally, the figure also shows the temporal axis that
marks when each part of the memory was collected by a hypothetical
acquisition process. In our case, the first part of foo() activation record
was dumped at time T1 and its second half at time T0.

All three types of inconsistency introduced in Section 3.3 are poten-
tially present in our example: fragment inconsistency in the local variables
of foo(), value inconsistency among the content of the two frames, and
pointer inconsistency between the saved rbp of bar() and the content
of Page B. Moreover, the kernel stack of the process - which is where
the initial value of rbp and rip are extracted from – also lives in another
memory page which could potentially be collected long after or long
before T2. In this section we will therefore try to measure how the lack
of atomicity in the acquisition of the userspace and kernelspace stacks
affects the process of creating a correct backtrace of a running application.

Experiments

To identify which errors are introduced by the non-atomic acquisition
we need a ground truth to compare with. We solve this problem by
modifying the LiME tool to keep track of changes on the stack content
during the acquisition time. In particular, we modified LiME to save an
atomic view of the target process’ stack any time one stack page was
acquired by the normal acquisition process. In our example, this resulted
in acquiring the content of the three pages (Page A, B, and C) at T0, T1,
and T2. The atomic view also included the value of rbp and rip taken
from the kernel stack. To rule out the possibility that our kernel module
and the target program run at the same time on two different CPUs,
therefore invalidating the registers saved in the kernel stack, we executed
this experiment using a VM with a single CPU. Also, to ensure our

40

Ta
bl

e
3.

2:
Ex

pe
ri

m
en

t
re

su
lt

s

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

Fr
am

es
-

6
-

6
8

-
-

-
6

-

Ph
ys

ic
al

Pa
ge

s
4

5
5

4
4

5
4

4
5

5

A
cq

ui
si

ti
on

Ti
m

e
(s

)
3.

2
30

.0
37

.8
37

.0
0.

25
26

.0
28

.6
1.

0
27

.6
39

.9

r
b
p

de
lt

a
(s

)
7.

7
38

.8
49

.6
43

.7
7.

3
43

.4
4.

3
4.

0
15

.1
5.

64

C
or

ru
pt

ed
(r
e
g
i
s
t
e
r
s

)
3

–
3

–
–

3
3

3
–

3

C
or

ru
pt

ed
(f
r
a
m
e

p
o
i
n
t
e
r
s

)
–

–
–

–
–

–
3

–
–

–

In
co

ns
is

te
nt

da
ta

N
/A

3
N

/A
3

–
N

/A
N

/A
N

/A
3

N
/A

introducing the temporal dimension to memory

forensics

kernel module does not get preempted by other code with higher priority
while is acquiring the atomic view, we used the lowlatency version of
the Ubuntu kernel, which is compiled with the CONFIG_PREEMPT kernel
option. This enables two additional macros that allow our code to disable
preemption before acquiring the required elements and to re-enable it
afterwards. These macros are enough to protect a small critical section
but our module calls complex kernel functions that may “intentionally”
call the schedule() function to pass control to another task. When this
happens, the kernel produces a warning message that we can monitor
to discard the image and repeat the test until no warning message is
generated.

This complex set up was required to be able to reliably monitor what
happens to the process stack during the memory acquisition process.
Therefore, we can expect that in a real setting with multiple CPU cores
executing concurrent code, the number of inconsistencies would be sub-
stantially higher.

We repeated the experiment twenty times, ten on an idle system
and ten on a system under a high workload. Since we did not find any
significant difference among the two sets, we present in Table 3.2 only the
result for the idle system. Each column in the table represents a different
memory dump. The first four rows show some statistics about the stack
trace of the target process, including the number of identified frames
and the number of stack pages effectively used by the application. The
third row reports the time difference (in seconds) between the first and
the last acquired page of the stack, while the fourth row contains the
difference between the kernel stack acquisition time and the time the
page containing the top stack frame was acquired. Intuitively, the larger
the two time windows the more likely the process was to modify the
stack during the acquisition, resulting in possible incorrect results for the
analysis.

The bottom half of Table 3.2 reports the problems we run into when
running our Volatility plugin to extract the stack trace on each memory
dump. The table lists three separate cases. In the first two, marked as
Corrupted, our plugin was unable to generate a complete stack trace. This

42

3 .4 impact estimation

was due to two different reasons. The first (marked as registers in
the table) is an inconsistency between the registers stored in the kernel
stack and the state of application stack, which caused rbp to point to an
incorrect location. This was the case for six out of ten dumps. However,
one may argue that an analyst may resort to other heuristics to locate the
top frame on the stack, without the need to recover the registers from the
kernel. Therefore, we re-run our Volatility plugin by providing the initial
correct value for rbp, and therefore the position of the top frame, as a
parameter. The next row in the table (marked as frame pointer) reports
the cases in which, despite the top frame being identified manually, it
was still impossible to retrieve the entire stack trace. In this case the
problem was that adjacent stack frames resided in non-adjacent physical
pages acquired at different points in time. As a consequence, the saved
rbp of one function pointed to a page that had been already overwritten
with other data.

For the four dumps for which it was possible to reconstruct the stack
trace, the last line in Table 3.2 shows the images in which at least one stack
frame spanned multiple physical pages containing inconsistent informa-
tion. This happened in three out of four cases (marked as Inconsistent

data in the result table).
To conclude, only in one out of 10 dumps it was possible to retrieve

a correct backtrace that was neither corrupted nor inconsistent. In other
words, it seems that errors introduced by non-atomic dumps are the rule
and not the exception. Not surprisingly, the only correct case corresponded
to the acquisition in which all the stack pages were collected in less
than 250 milliseconds. This, as we better explain in the Section 3.5,
prompted us to look for possible solutions to minimize the acquisition
time windows.

Impact

Researchers have recently proposed several forensic analysis techniques
tailored for user space applications [Ots+18; BD17; AD07; CR16; Mac13].
Despite this effort, forensic tools still support only a “small percentage of
applications that hold forensic value” [CR17] and experts are thus urging

43

introducing the temporal dimension to memory

forensics

the community to extend existing tools to support web browsers, office
applications, and web and database servers. While the methodology used
to locate and extract information from these applications may be very
different, they all share a common unwritten assumption: they require
a consistent view over the data of a process, whether it is stored on the
stack or on the heap. We believe that our experiments draw attention
to a problem too often overlooked by the forensic community, and will
help researcher to better assess their methodologies in the presence of
non-atomic acquisitions.

3 .5 a new temporal dimension

The importance of the temporal dimension has been largely underesti-
mated in memory forensics. In the previous sections we showed that this
negligence can lead to wrong results during several memory analysis
tasks. While our experiments shed light on an important problem, we
did not discuss possible ways to mitigate the problem.

In this section we tackle the problem by following two different ap-
proaches. First, we discuss how we can record precise timing information
during the memory acquisition phase and integrate this information in
the forensic analysis process. Second, we discuss how the lack of atomicity
can be mitigated, by performing a non-linear acquisition scheme.

3 .5 .1 Recording Time

Given an object and its address in memory, there should be a way for
the analyst to know the exact moment in time in which that part of
the memory was acquired. This gives the forensics analyst the ability
to estimate the degree of atomicity among two or more objects used
during an analysis task. To record this information in the first place we
modified LiME [Syl12] to produce, along with the memory content, a log
file containing precise time information about the acquisition process.
Our implementation allows the user to save a timestamp for each page,

44

3 .5 a new temporal dimension

or to only output the time information at particular intervals (e.g., once
every 10ms).

We then conducted three experiments on a bare metal machine
equipped with 8GB of RAM: a baseline test without any time acqui-
sition, one test that saved a timestamp every 100µs, and one that logged
the actual acquisition time for every page. The baseline acquisition was
completed in 83.92 seconds. The second experiment logged over 85,000
timestamps with an almost negligible overhead of 0.6 seconds (0.7%). Fi-
nally, the third experiment logged over 2M timestamps with 1.98 seconds
(2.4%) overhead. Since any extra time spent to record the dump increases
the likelihood that kernel and application data were modified during the
process, our approach let the user choose the balance between the extra
acquisition time and the precision of the logged timestamps.

At this point one may argue that a much simpler and more efficient
solution exists to the time recording problem. It is in fact possible to
simply take the total time spent to acquire the entire memory, assume it
was uniformly distributed among all pages, and divide it by the number of
physical pages to compute the time required to dump a single page. Given
this number, it is trivial to label each physical page with an estimation
of its acquisition time. This solution is appealing at first glance as it
does not require changing existing tools and does not introduce any
overhead in the acquisition process. However, we observed that in reality
the acquisition code does not always run at the same pace from the
beginning to the end of the dump. This is due to variables related to
the state of the system that are impossible to evaluate a posteriori, such
as the status of disk buffers and caches or the fact that other programs
may suddenly require more CPU or may start writing to the disk, thus
affecting the acquisition speed. To verify what is the error introduced by
using this naive approach, we compared the estimated timestamp with
the real one collected using our version of LiME configured to log the
time for every page. Obviously, the skew between the timestamps of the
first and last page is zero. For the remaining pages, the average skew was
4.4 seconds, with a maximum error of 8 seconds – which is unfortunately
way too high to properly perform any time-based analysis. The modified
LiME software can instead achieve very high precision (less than 1ms

45

introducing the temporal dimension to memory

forensics

error) with less than 1s overhead to acquire 8GB of RAM – which we
believe is perfect to be integrated into production systems.

3 .5 .2 Time Analysis

We now look at how we can integrate in Volatility the time information
we recorded. Our goal is to add this new dimension transparently, in
order to be able to enrich the output of every command and plugin that
is already available for the framework.

Volatility internally represents every OS structure with a dedicated
standalone object, which contains different information such as its name,
the data type of its fields, and the memory address where the structure is
allocated. We modified the constructor of this object’s class to retrieve and
store the timestamp associated to the physical pages where each structure
is stored. As Volatility reads some memory regions without passing
through one of the structure objects (for example when it walks the page
table), we also patched the code responsible to handle direct reads. All
timestamps are then recorded inside an access timeline which is printed,
along with other statistical information, after any Volatility command
is completed. Moreover, the timing API we developed are exported to
plugin developers, so other code can easily perform queries to know
when a particular structure was acquired. Our current prototype presents
to the investigator the number of physical pages accessed by the analysis,
the time window in which those pages were originally acquired, and a
simple graphic representation of the access timeline. A new parameter,
pagetime, enables the timeline tracking and the display of this summary.
Here is an example of the output for the pslist plugin:

$./vol.py -f dump.raw --profile=... --pagetime pslist

<original pslist output>

Accessed physical pages: 171

Acquisition time window: 72s

[XX-------------XxX---xXXX--xX-xX---Xxx-xx-X-XxxX-XXX]

46

Ta
bl

e
3.

3:
Se

le
ct

ed
su

bs
et

of
Vo

la
ti

lit
y

pl
ug

in
s

N
am

e
D

es
cr

ip
ti

on
A

cq
ui

si
ti

on
Ti

m
el

in
e

Ba
r

b
a
s
h

R
ec

ov
er

ba
sh

hi
st

or
y

[
x
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
X
X
X
X
X
X
�
�
�
�
X
X
X
�
�
�
X
�
�
X
�
�
�
X
X
�
�
X
�
X
X
�
�
�
X
X
�
X
X
X
X
X
X
X
X
�
X
X
X
X
�
]

d
m
e
s
g

G
at

he
r

dm
es

g
bu

ff
er

[
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
]

d
u
m
p
_
m
a
p

D
um

p
m

ap
pi

ng
s

to
di

sk
[
X
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
x
X
X
X
X
X
x
X
�
�
�
x
X
X
X
�
�
x
X
�
x
X
�
x
x
x
X
x
x
x
x
x
X
�
�
x
x
X
�
X
X
X
X
X
X
X
x
x
X
X
X
X
X
]

e
l
f
s

Fi
nd

EL
F

bi
na

ri
es

[
X
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
�
X
X
X
X
�
�
�
X
�
�
X
�
�
�
�
X
�
X
�
�
�
�
�
�
�
�
X
�
X
�
X
X
X
X
X
�
�
�
X
X
X
X
]

i
f
c
o
n
f
i
g

G
at

he
rs

ac
ti

ve
in

te
rf

ac
es

[
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
X
X
�
]

i
n
f
o
_
r
e
g
s

Pr
in

t
ke

rn
el

st
ac

k
re

gi
st

er
s

[
x
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
x
�
�
�
�
�
�
�
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
X
�
X
X
X
X
X
�
�
�
�
X
X
�
]

l
s
m
o
d

G
at

he
r

lo
ad

ed
ke

rn
el

m
od

ul
es

[
x
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
�
�
�
�
X
�
�
]

l
s
o
f

Li
st

s
fil

e
de

sc
ri

pt
or

s
[
X
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
X
�
X
�
X
X
X
X
X
�
�
�
�
X
X
�
]

p
r
o
c
_
m
a
p
s

G
at

he
rs

pr
oc

es
s

m
em

or
y

m
ap

s
[
x
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
X
�
X
�
X
X
X
X
X
�
�
�
�
X
X
�
]

p
s
a
u
x

G
at

he
rs

pr
oc

es
s

co
m

m
an

d
lin

e
[
x
X
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
x
�
�
�
x
x
x
x
x
X
x
X
x
x
X
x
X
X
x
x
x
x
�
x
�
X
x
x
�
X
x
x
x
x
x
x
x
x
x
x
x
X
x
X
x
X
X
X
X
X
X
X
x
X
X
X
x
]

introducing the temporal dimension to memory

forensics

This information provides a first insight into the level of atomicity of
the data structures used during a given task. If they are very dispersed
over the memory it means that Volatility traversed structures that were
taken far away in term of acquisition time. On the other hand, a narrow
acquisition time window means that the information required to run the
task is less likely to contain inconsistencies and the final result is therefore
more reliable.

As an example, Table 3.3 shows a subset of common Volatility plugins,
alongside a short description and the barplot of the physical pages used
by the command when executed on our 8GB test machine4. We selected
these particular commands as they traverse a different set of data struc-
tures, related to processes, files, network, and memory management. As
expected, the outcome of this experiment is quite worrying. Only one
plugin out of ten (dmesg) is using structures collected close in time. The
rest relies on structures spread over the entire memory and therefore
collected tens of seconds apart.

Note that our timeline can only suggest the presence of inconsistencies,
pointing the analyst to result that might be incorrect and that therefore
should require extra validation. Unfortunately, it is not possible to detect
the actual presence of inconsistencies, since Volatility has only access to
one dump and has therefore no ground-truth information to compare
it with. However, it is possible to modify individual plugins to detect
and report particular cases of Value Inconsistencies, such as the difference
between the counter of VMAs associated to a process and the number of
entries in the VMA list discussed in Section 3.4. This information could
be used to print more fine-grained warning messages to further alert the
analyst that particular care must be put in validating the obtained results.
However, this process would require manually changing each individual
plugin based on the actual semantics of the information it processes,
which is outside the scope of our paper. Nevertheless, the presence of
our temporal API allows plugin developers to move in this direction.

4 Note that all bar plots have a x in the first position. This is due to an access at the
beginning of the physical memory, that contains the data section of the kernel. This
section contains the init_task variable which is used by almost every plugin as an entry
point for the process list.

48

3 .5 a new temporal dimension

3 .5 .3 Locality-Based Acquisition

So far we discussed how we can enrich a memory dump with timing
information and how this information can be integrated in a memory
forensics analysis tool. We now investigate if it is possible to mitigate the
side effects of the lack of atomicity and reduce the serious inconsistencies
depicted in Section 3.4.

As already explained in Section 3.2, the normal approach adopted by
LiME and other memory acquisition tools is to scan the memory from the
lowest up to the highest physical address assigned to system RAM and
save the content of each page sequentially. This simple approach treats
each memory page as equally important, whether or not it is actually
used by the system and independently from the fact that it may contain
crucial forensic information.

We propose instead a different approach that maximizes the “local
atomicity” by acquiring the memory in consecutive chunks based not on
their position but on their content. The idea is that pages that contain
interconnected data (e.g., the element of a linked list) should be acquired
in a short amount of time to minimize the chance of errors. Our acqui-
sition algorithm is divided in two phases. The first, which we dubbed
as smart dump, uses OS information to locate and dump a number of
physical pages. For instance, it groups together pages that hosts popular
forensic-related information such as the list of processes and the list of
loaded kernel modules. Moreover, for each process it dumps its page
table, the cred structure (which contains the security context of the pro-
cess such as the UID and the GID), the list of memory mappings and the
content of the heap and stack segments, the list of open files and the
related structures, and the kernel stack of the process which contains the
value of its registers after the last context switch. This ensures that while
two different applications can be acquired far apart in time, the data of a
single application is dumped in the minimum amount of time possible.

The second part of the acquisition consist of the traditional sequential
dump of the remaining physical pages. To avoid the overhead of acquiring
the same page twice, the smart dump keeps track of the acquired pages

49

introducing the temporal dimension to memory

forensics

in a bitmap. In this way, no single page of memory is acquired more than
once. Our experiments show that the additional logic in the smart dump
and the bitmap management add a negligible overhead to the acquisition
time. Moreover, the kernel module is only 15 kilobytes larger than the one
used by the traditional linear version. On the memory footprint side, the
biggest object allocated by our module is the bitmap. For 8GB of RAM it
requires 256KB of memory, which are nevertheless allocated in an area
reserved only for kernel modules. Moreover, given that our solution does
not need to allocate specific kernel structures, it does not have any impact
on kernel caches - which often contains valuable information [Cas+10].

Note that our acquisition sequence relies on information provided
by the OS, which are under control of the attacker in a compromised
system. For instance, a rootkit can hide an entire process, which therefore
would not be acquired during the smart dump phase. But even in a
compromised system, our smart dump does not produce worse results
compared with a traditional linear acquisition. In fact, since all the other
processes are acquired in a local-sensitive way, this forces the remaining
pages (including the hypothetical malicious process) to be also acquired
in a shorter time window during the linear phase.

The same effect is obtained if a malware tries to intentionally increase
its memory footprint to force our acquisition algorithm to spend more
time acquiring useless pages. Again, this would force the system to
postpone the acquisition of other kernel data structures in the remaining
time (as the total acquisition time is constant and cannot be manipulated
by a malicious actor) – thus resulting in a more consistent dump overall.
The only successful strategy would be to increase the memory footprint
and position key pointers far away from their targets. This would result
in possible inconsistencies using our solution, but certainly not worse
than what would be experienced with existing approaches.

Finally, we want to stress that our locality-based acquisition does not
require any additional information that is not already used by linear-
based approaches – i.e., the kernel headers.

To test if this solution would be sufficient to avoid the problems we
detected in the experiments presented in Section 3.4, we re-run all user-

50

3 .6 discussion

and kernel-space integrity tests on memory dumps acquired using our
locality-based approach. In all cases we were able to retrieve a correct
stack trace, thanks to the fact that the physical pages containing the
process and kernel stacks were all acquired in less than 40 milliseconds.
Similarly, the VMAs list and tree structures were also collected together,
resulting in no inconsistencies and no missing mapped sections. These
results apply to any other analysis that relies on information extracted
from the stack or heap of a process, or on the content of the kernel data
structure currently supported by our smart dump phase.

3 .6 discussion

While the analysis and the results presented in this chapter are limited
to few selected data structures, it would be extremely difficult to do
otherwise. In fact, extending the test to all data structures is infeasible as
a running Linux kernel includes thousands of different structure types.
Moreover, to detect the presence of a corrupted information we need
to compare against the same information taken from a different source.
For instance, in one of our examples, we compare the VMA counter, the
number of elements present in the list, and the one in the red-black tree.
Unfortunately, this “ground truth” is not always available and ad hoc rules
and experiments would be needed to support each individual structure.
However, since there is nothing special about the VMA structure and
since the lack of atomicity affects equally all memory, there is no reason
to believe that inconsistencies would not affect other data structures
managed by the kernel. We actually believe that our experiments were
very conservative, and a real running system would suffer even more
from this problem.

It is important to stress the fact that the goal of this paper is not
solve the problem of lack of atomicity in memory dumps. It is instead
to draw attention to this important and overlooked problem and show
that it is not simply something we need to accept as a factor out of our
control. Our contribution is to provide the tools to make the lack of
atomicity evident to the analyst so that time becomes an aspect that can

51

introducing the temporal dimension to memory

forensics

be measured and taken into account in an analysis. Second, we show that
a linear acquisition, as implemented by all tools on the market, is not
an optimal solution and better approaches can be easily implemented to
reduce errors due to the passing of time. Therefore, more research and
more papers are certainly needed to improve the forensic field, not just
from its space but also from its time dimension.

52

4T O WA R D S AU T O M AT E D P R O F I L E G E N E R AT I O N
F O R M E M O RY F O R E N S I C S

4 .1 introduction

The main focus of memory forensics is to parse and extract evidences
from the data structures used by the operating system kernel. While some
of these structures can be located by carving the memory for particular
byte patterns, the true power of memory forensics comes from the so-
called structured analysis. In most of the cases, this type of analysis starts
by finding a set of global symbols inside a memory dump. From these
variables, other kernel structures are then discovered by de-referencing
pointers. For example, a common task performed in memory forensics
consists of listing the processes that were running inside the machine
when the memory dump was acquired. Under Linux, a way to retrieve
this information is to find the location of the global variable init_task

and use it to traverse the list of task_structs. However, even this simple
and seemingly straightforward operation can be performed only if the
tool has a very detailed model of the system under analysis. In memory
forensics, this detailed model is called a profile. A typical profile contains
two different pieces of information: the address of kernel global variables
and the layout of kernel objects. The latter is of particular interest because
it is influenced by several different factors, including the kernel version,
the way the kernel was configured at compile time, and the compiler
optimizations. Without a complete profile, none of the existing memory
forensics tool is able to analyze a memory dump [CR17].

For Microsoft Windows operating systems, retrieving the correct pro-
file from the system under analysis is not really a problem, because
the number of different kernels is limited and well known. Moreover
the layout can be retrieved from the kernel debugging symbols, which
are generally available on a public symbols server. On the other hand,
memory forensics is more and more focusing on Linux-based operating

53

towards automated profile generation for memory

forensics

systems, both for the analysis of servers infrastructure and to support a
wide range of appliances, mobile phone, and network devices. Unfortu-
nately, when it comes to Linux there is no central symbol server and the
number of combinations of kernel versions and possible configuration is
countless. Thus, forensics analysts have to manually create a profile for
each and every system they want to analyze. Currently, this is a manual
process that has several implicit requirements. For instance, it requires a
compiler toolchain and the kernel headers to be installed on the system
under analysis. While certain desktop machines might satisfy the pre-
vious constraints, this is seldom the case for IoT devices, smartphones,
or servers – thus effectively limiting the applicability of memory foren-
sics. Moreover, this process involves the compilation of a kernel module,
out of which the layout is extracted. This is indeed a problem because
the module needs to be manually updated every time a new kernel is
released, because not all the structures used by memory forensics tools
are exported in header files. Finally, a new serious “threat” to memory
forensics is arising: structure layout randomization. Originally implemented
by Grsecurity [Spe06], layout randomization is nowadays present in the
latest versions of the Linux kernel as well. This compile-time option
randomizes the layout of sensitive kernel structures, as an effective way
to harden the kernel against exploitation. By their own admission, the
authors say that enabling this option might “prevent the use of forensic
tools like Volatility against the system”.

The memory forensics community is well-aware of all of these prob-
lems, as recently emphasized once again by Case and Richard [CR17] in
their overview of memory forensics open challenges. In the paper, the
authors urge the community to create a public database of Linux pro-
files - which nowadays exists only in the form of a commercial solution.
Unfortunately, they also note how a “considerable amount of monetary
and infrastructure” is needed to create such a database and how, in any
case, this approach can only cover settings used by pre-compiled kernel
shipped as part of Linux distributions.

In the past years, researchers have also proposed partial solutions to
the profile generation problem. For example, Case et al. [CMR10] and

54

4 .2 recovering objects layout from binary code

subsequently Zhang et al. [ZMW16], suggested that the layout can be
retrieved from the analysis of kernel code. Unfortunately, their manual
approach covers only an handful of kernel structures layout, while nowa-
days memory forensics requires several hundreds of them. On the other
hand, approaches such as the proposed one by Socała and Cohen [SC16]
still requires the configuration that was used to build the kernel under
analysis. For these reasons, in this thesis we propose a novel approach
to automatically create a Linux profile, using only information publicly
available or extracted from the memory dump itself.

Our experimental results show how the profile extracted by our frame-
work supports several Volatility plugins - such as those that list the pro-
cesses and the open files - when targeting a very diverse set of kernels.
This set includes a version of the kernel currently shipped by Debian –
used once with structure layout randomization and once without – an
Android kernel, a kernel shipped by Operwrt (a project targeting network
devices) and an version of the Ubuntu kernel released 8 years ago.

4 .2 recovering objects layout from binary code

In this section we discuss a practical example of how the layout of an
object is shaped by the configuration used at compile time, thus making
it impossible to deduce the offsets of its fields by reasoning only on its
definition. We then introduce the core idea behind this paper and how
it can be generalized to recover the layout of all kernel objects used in
memory forensics.

4 .2 .1 Problem Statement

The key ingredient that makes memory forensics possible is the availabil-
ity of the kernel profile: a detailed model of the symbols and data types
required to perform the analysis. In the case of Linux memory forensics,
a profile contains two separate pieces of information: the addresses of
global variables and kernel functions, and the exact layout of kernel ob-
jects. The latter is of particular interest for different reasons. First of all,

55

1
s
t
r
u
c
t

c
r
e
d
s
{

2
u
i
n
t
3
2
_
t

u
i
d
;

3
u
i
n
t
3
2
_
t

g
i
d
;

4
}
;

56
s
t
r
u
c
t

t
a
s
k
{

7
s
t
r
u
c
t

t
a
s
k

*
n
e
x
t
;

8
s
t
r
u
c
t

c
r
e
d
s

c
r
e
d
;

9
#
i
f
d
e
f

C
O
N
F
I
G
_
T
I
M
E

10
u
i
n
t
6
4
_
t

s
t
a
r
t
_
t
i
m
e
;

11
#
e
n
d
i
f

12
c
h
a
r

*
n
a
m
e
;

13
}
;

1415
v
o
i
d

s
e
t
u
p
_
t
a
s
k
(
s
t
r
u
c
t

t
a
s
k

*
t
,

16
c
h
a
r

*
n
e
w
_
n
a
m
e
,

17
i
n
t

g
i
d
)

18
{

19
t
-
>
n
a
m
e

=
n
e
w
_
n
a
m
e
;

20
t
-
>
c
r
e
d
.
g
i
d

=
g
i
d
;

21
#
i
f
d
e
f

C
O
N
F
I
G
_
T
I
M
E

22
t
-
>
s
t
a
r
t
_
t
i
m
e

=
t
i
m
e
(
N
U
L
L
)
;

23
#
e
n
d
i
f

24
}

1
C
O
N
F
I
G
_
T
I
M
E
d
e
f
i
n
e
d

1
p
u
s
h

r
b
x

2
m
o
v

r
b
x
,
r
d
i

3
m
o
v

Q
W
O
R
D

P
T
R

[
r
d
i
+
0
x
1
8
]
,
r
s
i

4
m
o
v

D
W
O
R
D

P
T
R

[
r
d
i
+
0
x
c
]
,
e
d
x

5
x
o
r

e
d
i
,
e
d
i

6
c
a
l
l

0
x
1
0
3
0

<
t
i
m
e
@
p
l
t
>

7
m
o
v

Q
W
O
R
D

P
T
R

[
r
b
x
+
0
x
1
0
]
,
r
a
x

8
p
o
p

r
b
x

9
r
e
t2

C
O
N
F
I
G
_
T
I
M
E
n
o
t

d
e
f
i
n
e
d

1
m
o
v

Q
W
O
R
D

P
T
R

[
r
d
i
+
0
x
1
0
]
,
r
s
i

2
m
o
v

D
W
O
R
D

P
T
R

[
r
d
i
+
0
x
c
]
,
e
d
x

3
r
e
t

Figure
4.1:O

n
the

left
the

C
source

code
w

e
use

in
our

exam
ples,on

the
right

its
com

piled
form

4 .2 recovering objects layout from binary code

this information is lost during the compilation process and the only way
to preserve it is to ask the compiler to emit the debugging symbols. This
is often the case for kernels shipped by common Linux distributions –
usually distributed in a separate debugging package. Moreover, the Linux
kernel is a highly customizable piece of software, designed to run on a
large variety of devices and architectures and to suits different needs. This
means that the very same kernel version tailored to two different systems
can result in dramatic differences between the layout of the kernel objects.

To illustrate how the customization of the Linux kernel is in fact a
problem for memory forensics, we present a practical example in Fig-
ure 4.1. In the left part of this figure we show a short code snippet
responsible for the set up of a task which, in this example, is represented
by the task object. Every task has a pointer to the next task, some creden-
tials, and a name. Moreover, in case the macro CONFIG_TIME was defined
at compile time, a task also includes the field start_time. The function
setup_task initializes a task and its fields. In the right part of the Figure
we instead report the disassembly of two versions of this function, one
in which the macro was defined at compile time 1 , and one in which it
was not 2 .

The first difference between the two versions is present at lines 3 and 1,
respectively. The semantic of this two instructions is equivalent: they store
the argument new_name (passed in the rsi register) into the name field.
However, the offset of this field is different between the two version,
and so is the displacement from rdi (which contains the t argument).
This is a consequence of the fact that in 1 the compiler had to reserve
8 bytes before the field name for the start_time field, while in 2 the
latter was entirely removed by the preprocessor. On the other hand, the
same displacement is used to access the field gid of creds at lines 4
and 2. This is because the field cred - and subsequently the field gid

therein contained - precedes start_time and thus is not concerned by its
presence or by its absence.

While this is a trivial example, it introduces a very common pattern
that is present thousands of times in the kernel codebase. For example, the
definition of the task_struct alone - which is one of the most important
object in memory forensics - is shaped by more than 60 different #ifdef s.

57

towards automated profile generation for memory

forensics

The large number of combinations that derive from these definitions
make it impractical to enumerate all possible offsets where a field can
be located. However, as we saw in our little example, this information
is encoded into the compiled code and therefore we believe the only
practical way to automatically recover the layout of kernel objects is by
extracting it from the kernel binary itself.

4 .2 .2 Data Structure Layout Recovery

The intuition behind this paper is that, while the exact fields location is
lost during the compilation process, it affects the code generated by the
compiler. More specifically, the displacement used to access the fields of
a given object must reflect the layout of the data structures and therefore
can be extracted if we know where each field is used across the entire
codebase, and how the code is accessing the field. These two pieces of
information allow us to locate the functions that operate on the requested
field, and to follow the access pattern that led the code to a particular
object. For example, a piece of data can be passed as parameter, but it can
also being referenced by a global variable, reached by traversing another
object, or obtained by calling a separate function.

Back to our example, let’s assume we want to recover the offset of
the name field. First, by looking at the source code, we can tell that the
function setup_task accesses this field and also that the variable t is
passed as parameter. Given that the Abstract Binary Interface (ABI) of
x86-64 [Mat+13] specifies that the first parameter is passed using the rdi

register, we can perform a data-flow analysis and track every memory
access whose value depends on the rdi register. In version 1 , this
happens at lines 3 and 4, but also at line 7 because rbx was initialized
from rdi.

It is important to note that it is very difficult to tell which of the
three access is the one operating on the field we are interested in. In fact,
functions often access dozens of different fields and compilers optimiza-
tions often change the exact order and number of those accesses in the
binary code. However, we can leverage the fact that the name field is also

58

4 .3 approach overview

Kernel
Source Plugin Chains Exploration

Volatility
Profile

AngrClang

Memory
Dump

Figure 4.2: System Overview.

probably accessed in other functions, and therefore we can combine and
cross-reference multiple candidate locations to narrow down its exact
offset. In Section 4.6.1 we will describe in more details the numerous
challenges the layout recovery algorithm needs to face when dealing with
complex kernel code and the solutions we adopted to overcome these
problems.

4 .3 approach overview

In this section we explain our approach to automatically extract a valid
memory forensics profile from a memory dump. Our system can be con-
ceptually divided in three independent phases, as illustrated in Figure 4.2.
In the first phase, we find the location of all symbols in the memory
dump and we identify the version of the running kernel. During the
second phase we use a compiler plugin to analyze the source code of
the identified version and emit a set of models – which we call access
chains – that describe the way the code operates over a selected set of
kernel objects. It is important to note that we only need access to the
public source code but not to the exact configuration (kernel options,
compiler settings, randomization seed, etc.) that was used to build the
kernel captured in the memory dump. The chains extracted in this phase

59

towards automated profile generation for memory

forensics

are finally fed into the third component, the exploration engine, which
applies them to the actual kernel binary code extracted from the memory
dump. The final output of our tool is a working memory forensics profile,
which can be used with Volatility to extract evidences from a memory
dump.

For example, during the second phase our system would discover that
the field vm_file of the structure vm_area_struct is used in the function
shm_close and that the variable at the base of the access chain is the first
parameter of the function.

Then, during the third phase our tool locates the aforementioned
function by using the symbols extracted in Phase I, and tracks the offsets
of every memory access that depends from the first parameter. This
process produces the position (or a set of candidate positions which are
then compared and intersected with the same information extracted from
other functions) for the vm_file field.

4 .4 phase i : kernel identification and symbols recovery

The goal of the first phase is to recover two key pieces of information:
the version of the kernel and the location of its symbols (functions and
global variables).

Locating Kernel Functions

As we already explained in Section 3.1, existing memory forensic ap-
proaches require to know the location of certain global symbols to boot-
strap their analysis. On top of that, our approach also requires the location
of all kernel functions, which will serve as basis for our analysis to recover
the layout of all data structures.

This recovery is greatly complicated by two different factors. First of
all, unlike other memory forensics tools, we cannot rely on the knowl-
edge of the System.map file, which is instead always part of a mem-
ory forensics profile. Moreover, we want our approach to be resilient

60

4 .4 phase i : kernel identification and symbols recovery

against Kernel Address Space Layout Randomization (KALSR) - which
is nowadays enabled by default by several Linux distributions. To date,
the forensics community already proposed several systems to recover
kernel symbols from a memory dump, for example ksfinder [Gra16],
volatility-android [Svi16], and the solution presented by Zhang et
al. [ZMW16]. These approaches leverage the fact that some symbols of
the kernel are exported using the EXPORT_SYMBOL macro to allow kernel
modules to transparently access kernel objects and functions. Whenever
a symbol is exported with this macro, the kernel initializes and inserts
in the ___ksymtab section a kernel_symbol structure that contains two
fields: one with the virtual address of the exported symbol and the other
one pointing to a string representing the symbol name– which in turn
is placed in the __ksymtab_strings section. To locate a given symbol,
all previous approaches find the physical address of the string repre-
senting the symbol by scanning the memory dump and then assume
they can translate this physical address to a virtual one by adding a
constant, based on the virtual base address of the kernel. With this in-
formation they are then able to scan the memory dump and match the
corresponding kernel_symbol object.

The first problem with this solution is that exported symbols consti-
tute only a tiny subset of all the kernel symbols. For this reason, Zhang
et al. [ZMW16] introduced a way to recover the kallsyms - usually acces-
sible from userspace from a file under /proc. However, since there are
tens of thousands of symbols, in order to save space they are stored in a
compressed form using a table lookup algorithm. As a result, they are
much harder to located in a memory dump, and several kernel global
variables are needed to decode their names. To overcome this problem,
Zhang suggested to find the location of these variables from the disas-
sembly of the function update_iter - which can be found by carving
the corresponding kernel_symbol. Once these variables are found, by
manually re-implementing the decoding algorithm the authors were
finally able to reconstruct the kallsyms. Unfortunately, this approach
requires a considerable manual effort and the authors did not discuss an
automated way to retrieve the address of the global variables. The second,
much more severe, limitations of all existing solutions is that they fail on

61

towards automated profile generation for memory

forensics

modern X86_64 platforms with KASLR, where both the virtual and the
physical base addresses are randomized.

For these reasons, we designed a novel and generic way to automat-
ically extract the addresses of all kernel functions and global variables.
Our approach extends the ideas presented so far, but it relies on auto-
matically finding and executing the kallsyms_on_each_symbol function.
This function is present in the kernel tree since more than 10 years, it is
exported with the EXPORT_SYMBOL macro and it is responsible to handle
the symbol decoding process, making it a perfect match for our pur-
pose. Our technique starts by carving a number of candidate ksymtab

tables based on few constraints (e.g., the structure needs to include in-
clude two side-by-side valid kernel addresses, value and name, greater
than 0xffffffff80000000 and at least 500 contiguous kernel_symbol

objects). Since it is an exported function, we also know that the sym-
bol representing kallsyms_on_each_symbol must be contained in one
of these candidates. To find the correct one, we leverage the fact that
even when KASLR is enabled, the randomization happens at the page
granularity and hence offsets inside a page are left unaltered. So we
scan again the memory and record every physical address matching the
string kallsyms_on_each_symbol. Given the previous fact, we select the
kernel_symbols that have a name pointer with the same page offset of
one of the matched strings. To translate the value field from the virtual to
the physical address space we leverage the fact that the kernel is always
contiguously mapped in the both address spaces. Therefore, by adding
the physical address of the string to the difference between the value

and the name virtual addresses, we can find the physical address of a
candidate kallsyms_on_each_symbol function.

Our system can now extract the function code from the memory
dump and execute its code by using the Unicorn emulator [QV15]. One
of the function’s parameters is a callback function that is called for each
decoded symbol, so we can use this to retrieve the name and the address
of each symbol as it is processed.

For our experiments, we require that the kernel was compiled with
the KALLSYMS_ALL, which includes in the kallsyms all the defined global

62

4 .5 phase ii : code analysis

variables. While for example the Debian kernel ships with configuration,
we acknowledge that this might not be always the case. For the sake of
our experiments we decided to always turn on this configuration and we
defer further discussions on how it might be possible to overcome this
limitation to Section 4.8.

Finally, we plan to release this technique as a standalone tool or to
embedded it in current memory forensics tools to effectively determine
the kernel layout randomization shift.

Kernel Version Identification

Multiple techniques exist to identify the version of a kernel contained in
a memory dump. The straightforward approach consists in grepping for
strings that match the format of a Linux kernel banner. However, even
thought the kernel is generally loaded in the first few megabytes of the
physical address space and therefore the correct version should be in the
first few matches, this technique can potentially result in several false
positives. Because of this, we resort to a more precise identification by
extracting the global variable init_uts_ns and the corresponding textual
representation contained in the variable linux_banner. The location of
these variables is retrieved together with all other symbols as described
in the previous section. Another orthogonal approach to retrieve this
information was presented by Roussev et al. [RAS14] and is based on
matching fuzzy hash signatures generated from the disk image of the
kernel.

4 .5 phase ii : code analysis

At the end of the first phase we identified the version of the running
kernel, which we can use to download its corresponding source code.
In this second phase we automatically analyze the code to extract three
pieces of information: the type definitions, the pre-processor directives,
and a list of access chain models.

63

towards automated profile generation for memory

forensics

1 int free_next(struct task *task){

2 struct task *t = task ->next;

3 int gid = t->cred.gid;

4 if (strcmp(t->name , "init")){

5 free(t)

6 return gid;

7 }

8 return -1;

9 }

Figure 4.3: The example we use to explain how the Clang plugin works

The bulk of our analysis is performed by a custom plugin for the
Clang compiler, which operates on the Abstract Syntax Tree (AST) of the
Linux kernel. While the analysis we need to perform would be much
easier and more practical if performed at a later stage of the compilation
process – i.e. by working on the compiler intermediate representation –
working on the AST provides the advantage of being compatible with all
version of the Linux kernel. In fact, while recent versions of the kernel
can compile with Clang and few older versions are supported through a
set of manually created patches, for the vast majority of kernel versions
Clang is not able to produce an intermediate representation. However,
Clang is “fault tolerant” when it builds the AST and thus it is able to
create one for all versions of the Linux kernel, also when it is not able to
compile the sources.

To recover the aforementioned pieces of information, we compile the
kernel configured with allyesconfig with our plugin, which is triggered
every time an AST representing a function or a record is created. The
choice of this particular configuration comes from the fact that, by turning
on all the configuration options, it increases the coverage of our plugin
over the kernel codebase. The actual analysis starts at the root node of
a function and recursively visits the whole tree by using a depth-first
strategy.

64

4 .5 phase ii : code analysis

4 .5 .1 Pre-processor directives

The first piece of information we save from the compilation process is
the position of macro and ifdef directives. To extract this information we
use pp-trace, a standalone tool from the Clang framework that traces
the preprocessor activity. For each statement pp-trace emits where it
begins, where it ends and, in the case of macros, also their names. This
information is used for several purposes. First of all, we will not extract
chains included in ifdef statements, because their code is dependent
on a specific configuration setting and thus might not be included in
the kernel under investigation. Our tool also saves where the compiler
directives related to structure randomization are used. In this way, by
matching this information with the definition of a structure, our system
knows which structures are affected by layout randomization. Finally,
as we will explain in Section 4.6.1, by combining this information with
the definition of kernel objects, it is possible for our tool to automatically
deduce the offset of certain fields.

4 .5 .2 Types Definition

Along with the function’s AST, our plugin also visits the AST representing
the definition of kernel objects. When traversing this tree it saves the type
of each object along with the name, the type, and the definition line of its
fields. As a special case, when exploring unions, the tool marks the fields
they contain accordingly.

For several reasons, the information gathered from parsing a definition
of a record is very important. First of all, by looking at the definition
order, our exploration system can constrain the candidate offsets for a
given field. Moreover the offset of certain fields can be statically deduced
(e.g., the first field in a structure is always at offset zero).

65

towards automated profile generation for memory

forensics

4 .5 .3 Access Chains

To model the way the code accesses kernel objects we introduce the
concept of access chain, defined as a triple {Location, Transitions, Source}. In
the triple, the Location defines where the access is performed, in terms of a
file name, a function name, and a line number. The Transitions element is
a list containing the type of the objects and the name of the fields of every
data structure involved in the chain. For example, the chain describing
the access at line 3 of Figure 4.3 would contain three elements:

struct task ->next|struct task ->cred|struct creds.gid

Finally, the third element of an access chain is its Source, that represents
how the first variable of the chain was initialized. This information is
essential to select the memory accesses belonging to a target object, while
ignoring all the others. In the previous example, since the base variable is
task, the source of the chain would be marked as the first parameter of the
function free_next. Our system supports three different types of sources:
function parameters, global variables, and values returned from a function
invocation (function returns). The representation of the source depends
on its category: parameters are expressed as numerical position in the
argument list, while the other two categories are expressed respectively
through the name of the global variable or the name of the function.

Local variables, which can be legitimately used as base variables for
an access, are not valid sources. This is because local variables must be
initialized before they can be used and their initialization must fall in
one of the previous categories. As we will explain in the next section, a
core aspect of the plugin is that it keeps a map from variables to their
initialization. This enables the plugin to correctly determine the source
for each access chain.

The plugin extract access chains from the kernel source code by
parsing three types of nodes in the AST: assignments and declarations,
object accesses, and function calls and returns.

Declarations and Assignments are used to maintain a map of all vari-
ables and the way they are initialized. For instance, when we encounter

66

4 .5 phase ii : code analysis

the node representing the declaration at line 2 of Figure 4.3, the plugin
first extracts the variable used in the left-hand side (LHS) of the state-
ment. If the type of the variable is a struct or a void pointer, the plugin
proceeds by analyzing the right-hand side of the statement (RHS). In case
the RHS is already a valid source (parameter, global variable, function
call) or an object access then we update the map with this information.
On the other hand, if the RHS represents another local variable, then we
lookup in the map how this other local variable was initialized and copy
this information in the map entry of the LHS variable. This mechanism
ensure that, at any given point inside a function, our plugins knows how
a variable was initialized.

To simplify the analysis, it is important to note that our analysis only
keeps track of one path, and not all possible paths where a variable can be
assigned. However, to extract the offset corresponding to a given access
is sufficient to find one path inside a function that reaches that access,
rather than exploring all of them.

Object Accesses (as modeled by MemberExpr in Clang terminology)
are the nodes that, for example, represent the right part of the statement
at line 3 of Figure 4.3. Since in this case there are several objects chained
together, the plugin keeps track of every field name and object type
when traversing this sub-tree. When it reaches the base of the access,
represented in this case by the variable t, a number of things can happen.
If the base is a valid source itself (e.g., a parameter, a global variable, or a
function) then the chain can be already emitted. Otherwise, if the base
is a local variable then we recursively visit its initialization, appending
in front of the chain the object types and the field names. This recursive
process ends when a valid source is found and thus the chain can be
emitted. For example, when the plugin traverses the sub-tree representing
line 3, it first extracts the type of the object and the field name, i.e. struct
creds.gid and struct task→ creds, and appends them to the chain.
Then, since the variable t is a local variable, it checks in the definition
map how this variable was initialized. Since t was initialized from an
object access at line 2, it recursively traverses this access and it appends
to the chain the element struct task→ next. At this point the process

67

towards automated profile generation for memory

forensics

ends because the base variable task is a valid source.

When traversing the objects involved in a chain, the plugin keeps
track of how fields are accessed. While the C standard defines the arrow
and the dot operator as the only way to access a field, we are interested
also in other operators that may affect an access. The first is related to
the offset_of extension and in particular to the macro container_of,
which is built on top of it. This macro is extensively used in linked
list and trees implementations, and it defines a sort of parent-child re-
lationship between kernel objects. In fact, given a child structure and
its offset inside the parent structures, the macro is used to retrieve a
pointer to the parent object. For example, supposing that c is a pointer
to a struct creds, the task containing it can be retrieved by calling t =

container_of(c, struct task, cred). A chain containing this macro
needs to be treated carefully – not only because an offset is rather sub-
tracted than added to the base pointer – but also because the compiler
often merges a container_of element and the subsequent displacement
in a single instruction. The other operator the plugin keeps track of is the
reference operator (&). This is of particular importance when joining two
chains, because it may transform an arrow in a dot operator. Finally, fields
defined as array are generally accessed in a different way and thus need
a particular technique during the exploration process. Therefore, if an
element of a chain is a container_of, an array, or it contains a reference
operator we mark it accordingly in our model.

Function Calls and Returns are the last two types of nodes explored
by the plugin. This information is essential to extract accesses in functions
which are inlined by the compiler. In case of a function call, we save the
name of the called function and its arguments. Similarly to how accesses
are represented, every argument is expressed as an access chain. The only
difference is that these chains might have an empty Transitions element.
This happens for example when one function calls another and it passes
as parameter one of its own arguments or a global variable. A similar
approach is applied to return statements.

68

4 .6 phase iii : profile generation

4 .5 .4 Non Unique Functions

Another problem when dealing with projects in the size of the Linux
kernel is that function names are not always unique. In fact, the static

identifier is used to limit to a file the scope of a function. For example, this
happens with the function s_next that, in kernel version 5.1, is defined in
5 different occasions. This is a problem for our system, because whenever
we analyze a function we need to be sure that we are dealing with the
correct “instance” of the function. Since there is no straightforward way
to extract this information using Clang, we employed Joern [Yam+14].
This tool, among other things, contains a fuzzy parser for C and C++. The
output of Joern after parsing the kernel sources, is a list of functions and
the filename where they are defined. This information is used whenever
our system extracts a function from a memory dump. In case the function
has a non-unique name, we exploit the fact that functions defined in the
same compilation unit ends up in the same object file and thus are also
contiguous in the kernel binary. In this way, by checking the functions
in the vicinity of the target one, our system is able to select the correct
function.

Finally, for optimization reasons, the compiler can decide to remove a
parameter from a function or even split a function in two or more parts.
Fortunately, when these optimizations are applied, the compiler also adds
a suffix - respectively .isra and .part - to the name of the function. In
the first case we simply ignore the function, while in the second one our
system is able to extract and join all the different pieces.

4 .6 phase iii : profile generation

It is important to point out that a profile includes the layout of only
a small subset of all kernel data structures – those that are needed to
complete the forensic analysis tasks supported by a given tool. For this
reason, our system focuses on recovering only the information actually
used by Volatility. However, manually listing the objects used by every
Volatility plugin is a tedious and error prone process, and it is further

69

towards automated profile generation for memory

forensics

complicated by the fact that some of these objects vary depending on
the kernel version. Therefore, for our tests we decided to instrument
Volatility to print every field it traverses and then we recovered the full
list by executing each plugin against a memory dump containing the
same kernel version of the one under analysis.

As a result, the actual number of different fields and unique data
structures vary among the experiments, ranging from 220 and 236.

4 .6 .1 Binary Analysis

To match the chains extracted during the source code analysis against the
functions extracted from an actual memory dump we use angr [Sho+16]
and its symbolic execution capabilities. Therefore, we decided to perform
our exploration by symbolizing the source of a chain and run the function
while tracking every time the symbolic variable is used as a base for a
memory access. To avoid state explosion – one of the major problem
of symbolic execution – we wrote a custom exploration technique. An
exploration technique drives how the program is explored by deciding
which states can advance and which should be discarded. In our case, it
keeps track of every state generated by the symbolic execution engine
and prunes those which have already been explored more than a certain
amount of time, effectively limiting the state space. Moreover, we also
instruct angr to check the satisfiability of the constraints belonging to
a state as infrequently as possible, rather than checking them when
a new state is created. For example, assuming two states are created
from a branch instruction then both states will be kept, regardless of
their satisfiability. These two expedients allow the number of state to be
contained but also to entirely cover the code contained in a function.

While tracking the memory accesses is independent from the source of
a chain, it dictates how the system is initialized and run. Parameters and
function returns are the most straightforward sources to handle. In the
first case a symbolic variable is stored in the corresponding register, while
in the second - whenever the function specified in the source is called - we
symbolized the rax register. On the other hand, global variables require

70

4 .6 phase iii : profile generation

two different strategies to handle both pointers and normal variable. In
both cases, whenever the address of the variable is stored in a register
we symbolize the register itself. Moreover, when the variable is not a
pointer, the compiler might have already pre-computed the address of the
field. If this is the case, we directly extract the offset and append it to the
list of results. Since the size of non-pointer variables is known from the
kallsyms – by subtracting the address of the kallsym following the one
representing the global variable – our system can discern cases where
more than one non-pointer variables are accessed in the same function.

Field Dependencies – Our system often needs to deal with chains span-
ning multiple objects. For instance, let us consider again our sample
chain:

struct task ->next|struct task ->cred|struct creds.gid

The code reaches the target gid by first traversing the cred pointer in the
task structure, thus defining a dependency among the two fields. In other
words, we first need to recover the offset of cred and then use that as
input to extract the second half of the chain.

In this case we create multiple symbolic variables and appropriately
store them when a memory access belonging to an element is detected.
However, since the final assignment of a field offset is obtained by a
global algorithm by majority voting, it is possible that a chain cannot be
fully analyzed in one pass, but instead requires a recursive approach to
first identify all its dependencies.

Nested Structures – A particular type of dependency occurs when the
target field is accessed through a nested structure. In C, this may appear
for example in the form of struct_a.struct_b.target. In this case, the
compiler may split the access in two parts, by first loading the base
address of struct_b (for instance located at 0x20 bytes from the beginning
of struct_a) and then adding the offset of the field (e.g., 0x16 bytes into
struct_b). However, this is often optimized by computing the total offset
from the base structure at compile time, resulting in a single instruction
like lea rax, [rsi+0x36].

This requires our tool to keep track of this displacement, as 0x36

71

towards automated profile generation for memory

forensics

is not the correct offset of target, and to obtain the right value we
need to remove the offset of struct_b, which (like in the case of field
dependencies) needs to be computed separately.

4 .6 .2 Dealing with Inlined Functions

Since the kernel is always compiled with the optimizations turned on,
the compiler is quite aggressive when it comes to function inlining. For
example, compiling the Linux kernel 5.1 with the default configuration
results in the inlining of more than 200 thousands call sites. For this
reason, being able to cope with function inlining dramatically increase
the number of chains our exploration system can test.

When we analyze a memory dump and discover that a given function
call has been inlined, we trigger a dedicated routine in charge of merging
and inheriting its chains. Our process starts by labeling every chain of
the target function as forward or backward. Forward chains are those that
starts from a parameter, while backward ones are those that terminates
in return statements. For example, in the following snippet:

1 inline struct task* foo(task *t, char *n){

2 t->name = n;

3 if(t->cred) {

4 return t->next;

5 }

6 else {

7 global_task ->next = 0;

8 ...

the chain at line 2 is a forward chain, while the one at line 4 is both a
forward and backward chain. Our algorithm is divided in two indepen-
dent parts: in the first one chains are joined, while in the second one they
are inherited.

The first one starts by iterating over every pair of caller and callee.
If the callee is not inlined, and thus is present in the list of functions
extracted from the memory dump, then no action is required. Otherwise,
each argument - which is also represented with a chain - is joined with
every forward chain of the callee that starts from the same position.

72

4 .6 phase iii : profile generation

Joining is not a commutative operation: the source and the location of the
argument chain are left untouched, while the list of objects of the callee
chain are appended to the one of the argument chain. A similar treatment
is reserved for backwards chain, but this time in the opposite direction.
Every chain of the caller that has source equal to an inlined function, is
joined with the backward chains of this function. Since the inlining depth
can be greater than 1, i.e. functions called from inlined functions can be
inlined as well, we repeat this process in a loop to propagate the presence
of freshly joined chains, until any new chain is generated.

The second part of the process deals with inheriting from inlined
functions all the chains which are not forward or backwards one, for
example those who access a global object. In this case the chain is left
unaltered and only added to the set of chains of the caller. In our example,
as result of this process, a function that calls foo will have as well the
chain representing the line 7. Similarly to the previous process, we also
propagate inherited chains by repeating this process in a loop.

Once this two steps are finalized, our systems passes over the resulting
chains to clean and adjust them. The cleaning process is needed because a
target can be present in multiple same-source chains of a function. For this
reason, given a target, we delete the chains which are a superset of others
are deleted, thus ensuring that the target is tested only once. On the other
hand, the adjustment deals with chains containing the reference operator
or container_of. In the first case, we translate the arrow following a
reference in a dot, but only if the chain is not used as parameter for a
function. Given the following example:

1 struct creds *c = &t->cred;

2 set_gid(c, 0);

3 ...

4 set_gid(struct creds *c, int g){

5 c->gid = g;

6 }

if set_gid is inlined, then the compiler will most likely merge the accesses
to fields cred and gid in a single one. As we explained in section 4.6.1,
this chain can be explored only if the offset of either cred or gid is known.
On the other hand, if the function is not inlined, no action is required

73

towards automated profile generation for memory

forensics

and the chain containing cred can be safely explored.
The adjustment of container_of deals with a similar problem. In the

following example:

1 t = container_of(c, struct task , cred);

2 t->next = NULL;

the compiler may effectively subtract from c the offset of cred and then
add the offset of next, or merge the previous two operations and add
to c the distance between cred and next. In this case, to represent these
two possibilities, we duplicate the chain, explore both of them and merge
their results.

4 .6 .3 Object Layout Inference

At the end of the binary exploration phase, each target (i.e., each field
whose position we need to locate) has its own list of candidate offsets.
Since the lists associated to different fields can overlap, it is now a global
optimization problem to find the set of offsets that maximizes the number
of recovered fields. For instance, if three fields of the same data structure
can be located respectively at offsets {72, 74}, {40, 72}, and {40} (according
to our chain-matching algorithm) then we can exclude that the second
field can be located at offset 40, and in turn this rules out the possibility
of the first to be at offset 72.

We solve this problem by creating a z3 model [DB08] where all the
fields and respective candidates are added in the form of soft constrains.
Moreover, in case no structure randomization is in place, we also add
hard constraints based on the position of a field, because the order of
the fields in the source code definition must be respected in the offsets
layout, and because the first field in a structure always has offset zero.
Special care is given to unions, since in this case we assume the fields
they contain have the same offset. A problem with this approach is that if
the candidates of a field are wrong and contradict the position constraints,
then the model become unsatisfiable. To overcome this limitation, when
we run into an unsatisfiable model, we explore the solution space by
recursively removing a soft unsatisfiable constraints.

74

4 .7 experiments

Version Release Date Configuration Used Fields Extracted Fields

4.19.37 04/2019 Debian 230 205 (89%)
4.19.37 04/2019 Debian + RANDSTRUCT 230 172 (74%)
4.4.71 06/2017 OpenWrt 231 198 (86%)
3.18.94 05/2018 Goldfish (Android) 236 204 (86%)
2.6.38 03/2011 Ubuntu 220 191 (87%)

Table 4.1: The Linux kernels we use in our experiments.

Finally, the knowledge gained from the previous modeling process is
added to the system. This new piece of information will most likely satisfy
the dependency or the displacement of other chains that were previously
not testable. Hence, we go back and forth between the binary analysis
component that resolve the chains and the layout inference component
that solve the extracted candidates and constraints until no other chain is
available.

4 .7 experiments

To test our approach we collected a number of memory dumps from
systems running different Linux kernels. The list of kernels (summarized
in Table 4.1) was chosen to reflect different major versions (including 2.6,
3.1, 4.4, and 4.19) and different configurations. In particular, the first two
experiments were conducted with the latest version of the kernel shipped
by Debian, with the only difference that the second was recompiled with
structure layout randomization. The last three experiments aimed instead
to test our framework against less common memory forensics scenarios,
when the traditional approach to create a profile would be difficult to
apply. For one test we retrieved the kernel compiled from OpenWrt, a
project that targets network devices; in another we recreated a scenario
involving a memory dump of an Android device, and for our last test we
chose an ancient version of the Linux kernel that does not support Clang.

To run our experiments we downloaded the kernel sources and config-
urations from the respective repositories. We then compiled two versions

75

towards automated profile generation for memory

forensics

of each kernel, one for testing and one to perform our source-code anal-
ysis. We configured the testing version with the configuration shipped
with the distribution, and compiled it with a supported version of gcc.
We obtained instead the second version by configuring the kernel with
allyesconfig and by compiling the sources with our Clang compiler
plugin. We then proceeded by installing the first version in a QEMU virtual
machine, booted the machine and acquired an atomic memory dump
using the QEMU console. Moreover, we also used the first version to
manually create a ground truth Volatility profile. We were able to create
this profile for each experiment except for the one using RANDSTRUCT.
While we empirically checked that the code was correctly affected by this
option and that the randomization seed was present in the kernel tree –
the debugging information did not reflect the change in the structures
layout. We later discovered this to be a known issue already discussed by
several researchers in online forums [Bug18; - M18]. It is still unclear if
the problem is due to a bug in gcc or in the randomization plugin, but in
any case the erroneous information prevents Volatility from generating a
profile even when the randomization seed is available. For this reason,
for this test we decided to reuse the ground truth information from the
Debian experiment, but this time changing the hard constrains associated
to the randomized structures in the z3 model during our profile extrac-
tion. While in a non-randomized setting our system could reason about
the order of fields inside a struct definition, now it could only assert that
two fields needs to have a different offset – or the same one if they are
part of a union.

Building the profiles using our automated approach took approxi-
mately eight hours in each experiment. The first phase was the fastest
and the only one that depends on the size of the memory dump. Our
prototype required around three minutes to analyze 4GB of memory and
retrieve all kernel symbols. The static analysis performed in Phase two
took three hours on a eight-core machine. In this phase, most of the time
is spent compiling the kernel configured with allyesconfig. Finally, the
exploration of kernel functions using angr and the generation of the final
profile is the most time-consuming phase of our experiments and took in

76

4 .7 experiments

average five hours on a cluster of 64 cores.

4 .7 .1 Results

The fourth column of Table 4.1 shows how many unique fields are
used by Volatility for the given image. The value range from 220 to
236 but, quite surprisingly, the intersection of these fields counts almost
180 elements. This means that, even if new features frequently land
in the kernel tree, a large fraction of fields used by memory forensics
is not affected by the kernel development. These fields are mostly re-
lated with process management (e.g., task_struct), process memory
(e.g., mm_struct and vm_area_struct), and filesystem information (e.g.,
dentry and file_operations). The last column of Table 4.1 shows in-
stead how many fields our framework was able to correctly extract in
the generated profile. The recovery rate ranged from 74 to 89%, but this
value alone does not tell us much about how many Volatility plugins
are working with the extracted profile. In fact, in most of the cases it is
enough that one field was wrongly extracted to undermine the result of
an entire plugin.

To answer this question, Table 4.2 breaks down, for each plugin, the
number of fields that were correctly located by our system and the num-
ber of fields for which we extracted a wrong offset. Unfortunately, it is
not sufficient to compare the list of fields accessed by a plugin to tell
which plugin is correctly supported by our profile. For example, our
instrumented version of Volatility reports that the plugin linux_pstree

accesses the field gid of struct cred but this information is never used
in the analysis. Therefore, we decided to compare two runs of Volatility
against the same memory dump: one by using the profile extracted by
our framework and the other by using the one we manually created. The
result of this comparison is shown in ‘Working’ columns in Table 4.2. Each
cell represents whether our profile contains all the necessary information
for a given plugin () or not (#). In addition, in certain cases it is possible
that, even if one field was not correctly extracted, the plugin is still able
to function with reduced functionality (H#). For example, this happens in

77

D
ebian

4.19
R

A
N

D
ST

R
U

C
T

O
penw

rt
A

ndroid
U

buntu
2.6

W
orking

C
orrect

W
rong

W
orking

C
orrect

W
rong

W
orking

C
orrect

W
rong

W
orking

C
orrect

W
rong

W
orking

C
orrect

W
rong

l
i
n
u
x
_
a
r
p

H#
10

2
#

6
6

H#
10

2
H#

11
1

12

0
l
i
n
u
x
_
b
a
n
n
e
r

0

0

0
0

0

0

0
0

0

0
l
i
n
u
x
_
c
h
e
c
k
_
a
f
i
n
f
o

—
5

1
—

5
1

37

3

40
2

#
34

5
l
i
n
u
x
_
c
h
e
c
k
_
c
r
e
d
s

9

0

9
0

9

0

9
0

9

0
l
i
n
u
x
_
c
h
e
c
k
_
f
o
p

#
77

4
#

65
16

#
75

4
#

76
2

#
67

3
l
i
n
u
x
_
c
h
e
c
k
_
m
o
d
u
l
e
s

#
17

1
#

14
4

#
15

2
#

17
0

#
15

2
l
i
n
u
x
_
c
h
e
c
k
_
s
y
s
c
a
l
l

36

1

32
5

H#
31

5

33
3

32

3
l
i
n
u
x
_
c
h
e
c
k
_
t
t
y

#
11

3
#

8
6

#
9

4
#

9
4

#
11

2
l
i
n
u
x
_
c
p
u
i
n
f
o

#
0

2
#

0
2

#
0

2
#

0
2

2

0
l
i
n
u
x
_
d
u
m
p
_
m
a
p

10

0
#

6
4

10

0

10
0

9

1
l
i
n
u
x
_
d
y
n
a
m
i
c
_
e
n
v

29

0

23
6

6

0

29
0

27

1
l
i
n
u
x
_
e
l
f
s

26

0
#

20
6

25

0

26
0

23

4
l
i
n
u
x
_
e
n
u
m
e
r
a
t
e
_
f
i
l
e
s

24

0
#

21
3

#
23

1

24
0

#
22

1
l
i
n
u
x
_
f
i
n
d
_
f
i
l
e
-
L

24

0
#

21
3

#
23

1

24
0

#
22

1
l
i
n
u
x
_
g
e
t
c
w
d

16

0

15
1

10

0

16
0

16

0
l
i
n
u
x
_
h
i
d
d
e
n
_
m
o
d
u
l
e
s

#
7

1
#

6
2

#
3

4
#

4
3

#
5

2
l
i
n
u
x
_
i
f
c
o
n
f
i
g

#
10

2
#

10
2

#
11

1
#

10
2

#
9

3
l
i
n
u
x
_
i
n
f
o
_
r
e
g
s

—
10

0
—

10
0

11

0
H#

10
1

11

0
l
i
n
u
x
_
i
o
m
e
m

5

0

5
0

5

0

5
0

5

0
l
i
n
u
x
_
k
e
y
b
o
a
r
d

1

0

1
0

1

0

1
0

1

0
l
i
n
u
x
_
l
d
r
m
o
d
u
l
e
s

32

0
#

25
7

#
30

1

32
0

29

4
l
i
n
u
x
_
l
i
b
r
a
r
y
_
l
i
s
t

11

0
#

7
4

10

0

11
0

10

4
l
i
n
u
x
_
l
i
b
r
a
r
y
d
u
m
p

11

0
#

7
4

11

0

11
0

10

1
l
i
n
u
x
_
l
i
s
t
_
r
a
w

#
33

2
#

31
4

#
4

2
#

33
2

#
30

4
l
i
n
u
x
_
l
s
m
o
d

#
5

1
#

5
1

#
3

2
H#

3
2

#
4

1
l
i
n
u
x
_
l
s
o
f

24

0
H#

22
2

24

0

24
0

23

0
l
i
n
u
x
_
m
a
l
f
i
n
d

17

0
#

16
1

#
16

1
#

17
0

#
16

1
l
i
n
u
x
_
m
e
m
m
a
p

6

0

6
0

6

0

6
0

6

0
l
i
n
u
x
_
m
o
d
d
u
m
p

#
4

7
#

4
7

#
4

7
#

5
6

#
4

6
l
i
n
u
x
_
m
o
u
n
t

20

0
#

18
2

20

0

20
0

19

0
l
i
n
u
x
_
n
e
t
s
c
a
n

16

1

16
1

15

2

15
2

#
14

3
l
i
n
u
x
_
n
e
t
s
t
a
t

#
28

2
#

27
3

#
28

2
#

28
2

#
27

3
l
i
n
u
x
_
p
i
d
h
a
s
h
t
a
b
l
e

#
22

2
#

21
3

#
22

5
#

22
5

#
19

2
l
i
n
u
x
_
p
l
t
h
o
o
k

26

0
#

20
6

24

0

26
0

22

4
l
i
n
u
x
_
p
l
t
h
o
o
k

-
a

26

0
#

20
6

24

0

26
0

22

4
l
i
n
u
x
_
p
r
o
c
_
m
a
p
s

37

0
#

30
7

H#
36

1

37
0

H#
34

1
l
i
n
u
x
_
p
r
o
c
_
m
a
p
s
_
r
b

#
38

1
#

33
6

#
37

2
#

38
1

#
35

2
l
i
n
u
x
_
p
r
o
c
d
u
m
p

#
6

1
#

7
0

#
6

1
#

6
1

#
6

1
l
i
n
u
x
_
p
s
a
u
x

13

0

12
1

13

0
#

12
1

11

0
l
i
n
u
x
_
p
s
e
n
v

8

0

8
0

8

0

8
0

8

0
l
i
n
u
x
_
p
s
l
i
s
t

H#
17

1
H#

16
2

19

0
H#

16
3

H#
12

1
l
i
n
u
x
_
p
s
s
c
a
n

12

1

11
2

13

0

13
0

12

1
l
i
n
u
x
_
p
s
t
r
e
e

13

0

11
2

#
11

2
#

11
2

11

0
l
i
n
u
x
_
t
h
r
e
a
d
s

6

0

6
0

6

0

6
0

6

0
l
i
n
u
x
_
t
m
p
f
s
-
L

20

0
#

18
2

20

0

20
0

19

0
l
i
n
u
x
_
t
r
u
e
c
r
y
p
t

3

0

3
0

3

0

3
0

3

0

Total
W

orking
Plugins

29
15

25
27

27

Table
4.2:Sym

bol
denotes

plugin
is

w
orking,#

not
w

orking,H#
partially

w
orking,and

—
not

supported
by

volatility

4 .7 experiments

3 out of 5 cases for the linux_pslist process where all the information
except the creation time are listed correctly by using our profile. Finally,
cells containing the dash sing (�) denotes that the corresponding plugin
was not supported on the kernel under analysis.

The only exception to this approach are those plugins that do not
produce any output in our tests. For example, the linux_malfind plugin
searches for traces of malware infection but if the machine is not infected
– like in our experiments – then the plugin does not produce any output.
Similarly the plugin linux_hidden_modules searches for kernel modules
that were un-linked from the modules list. Therefore, for these cases we
resorted to check that the offsets of all fields accessed by the plugins were
correctly recovered to determine whether the plugin was supported or
not by our profile.

Overall, on the non-randomized memory dump, between 57% (for
OpenWRT) and 64% (for Debian) of the plugins worked correctly with our
profile. In particular, the profile automatically created by our framework
was able to support many plugins which are fundamental for a forensics
analysis. This include the support to extract the list of running process and
many related information such as their memory mappings, credentials,
opened files, and environment variables. Moreover, our profile can be
used to successfully recover the content of tmpfs and to retrieve the list
of open network connections in 4 out of 5 memory dumps.

In other cases, our system was not able to recover the right offsets
for the required fields. For instance, the fields related to the list of mod-
ules and to the network interfaces were much harder to extract correctly.
However, even if we report the plugin as not supported in the results of Ta-
ble 4.2, in practice an analyst could often overcome this limitation by test-
ing different profiles. For instance, for the field in_ifaddr->ifa_label,
used by linux_ifconfig, our system extracted two possible offsets, one
of which was the correct one. In other words, our technique could be used
to generate two profiles and simply ask the analyst to try both during the
analysis. Overall, the number of models that contains two or three offsets
– one of which is the correct one – accounts for the 41% of missing fields.

Finally, the experiment on the randomized kernel shows that the hard

79

towards automated profile generation for memory

forensics

constraints play an important role in our system. More than 140 or the
230 fields used by Volatility are contained in structures affected by layout
randomization, and currently our system is able to correctly extract the
offset of 60% of them. However, our system failed to distinguish the offsets
of the vm_start and vm_end fields of vm_area_struct, thus impacting the
result of a large number of plugins that reason on the mappings of
a process and its loaded libraries. While we could not count them as
supported by our fully-automated approach, in reality for an analyst it is
trivial to distinguish among the two fields (as one is always larger than
the second) – again showing that even when the profile could not be
directly used to perform the analysis, it can still serve as an input for
simple manual adjustments and refinements.

4 .7 .2 Chain Extractions

Table 4.3 shows detailed statistics about our analysis. Because of space
constraints we could not include all 230 fields and we decided therefore to
limit the table to the fields belonging to mm_struct and vm_area_struct.
For each field, the table reports the number of chains extracted in Phase
two, the number of chain explored in Phase three, the number of chain
that contained at least one dependency or displacement not satisfied,
and finally the number of offsets generated by our system (a 3 sign
means that the tool identified the right offset, while a number means
that the model was not only containing the correct offsets, but also other
possible candidates). There are several interesting information that can
be deducted from this table. First of all, both the mmap and the vm_start

fields were never explored, because they are the first field of the respec-
tive structures and thus their offset (zero) was automatically deducted.
Moreover, it shows the first two iterations of our recursive approach. For
example, the model of start_brk contained four candidates at the end of
the first step because some chains were not analyzed as they depended
on the offset of other fields that were still unknown. However, at the
second iteration our system was able to analyze seven more chains, and

80

Ta
rg

et
St

ep
1

St
ep

2
To

ta
l

Ex
pl

.
D

ep
.

D
is

p.
M

od
el

To
ta

l
Ex

pl
.

D
ep

.
D

is
p.

M
od

el
m
m
_
s
t
r
u
c
t
→

m
m
a
p

—
—

—
—

3
—

—
—

—
3

m
m
_
s
t
r
u
c
t
→

a
r
g
_
e
n
d

5
3

2
0

3
2

2
0

0
3

m
m
_
s
t
r
u
c
t
→

a
r
g
_
s
t
a
r
t

6
3

3
0

3
3

3
0

0
3

m
m
_
s
t
r
u
c
t
→

b
r
k

9
2

7
0

3
7

7
0

0
3

m
m
_
s
t
r
u
c
t
→

c
o
n
t
e
x
t

34
2

19
13

3
32

0
0

32
3

m
m
_
s
t
r
u
c
t
→

e
n
v
_
e
n
d

5
3

2
0

3
2

2
0

0
3

m
m
_
s
t
r
u
c
t
→

e
n
v
_
s
t
a
r
t

5
3

2
0

3
2

2
0

0
3

m
m
_
s
t
r
u
c
t
→

m
m
_
r
b

13
7

6
0

3
6

6
0

0
3

m
m
_
s
t
r
u
c
t
→

o
w
n
e
r

8
3

5
0

3
5

5
0

0
3

m
m
_
s
t
r
u
c
t
→

p
g
d

77
64

13
0

3
13

11
2

0
3

m
m
_
s
t
r
u
c
t
→

s
t
a
r
t
_
b
r
k

8
1

7
0

4
7

7
0

0
3

m
m
_
s
t
r
u
c
t
→

s
t
a
r
t
_
c
o
d
e

5
4

1
0

2
1

1
0

0
2

m
m
_
s
t
r
u
c
t
→

s
t
a
r
t
_
s
t
a
c
k

7
1

6
0

3
6

6
0

0
3

v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
s
t
a
r
t

—
—

—
—

3
—

—
—

—
3

v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
e
n
d

15
8

12
7

31
0

3
31

22
9

0
3

v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
n
e
x
t

57
48

9
0

3
9

8
1

0
3

v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
m
m

13
5

12
6

9
0

3
9

5
4

0
3

v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
f
l
a
g
s

19
8

18
0

18
0

3
18

15
3

0
3

v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
p
g
o
f
f

10
0

92
8

0
3

8
6

2
0

3
v
m
_
a
r
e
a
_
s
t
r
u
c
t
→

v
m
_
f
i
l
e

13
0

12
4

6
0

3
6

5
1

0
3

Ta
bl

e
4.

3:
A

n
ex

ce
rp

t
of

th
e

fie
ld

s
us

ed
by

Vo
la

ti
lit

y
an

d
so

m
e

st
at

is
ti

cs
as

so
ci

at
ed

to
th

ei
r

ex
pl

or
at

io
n

towards automated profile generation for memory

forensics

that additional information was sufficient to narrow down the choice to
a single, correct, offset.

4 .8 future work

We believe there are several ways to improve the accuracy our framework.
First of all, in the phase one, we assume that the kernel was compiled
with the option KALLSYMS_ALL, so every global variable is included in
the kallsyms. This configuration was turned on by default in 3 out of 5
experiments, but we acknowledge that it might not always be the case. A
way to solve this problem can be to use the information produced by the
compiler plugin to extract from the kernel binary itself the address of the
missing global variables.

Moreover, a major improvement to our framework can come from
saving more details about an access chain. For example, we believe it is
possible to statically determine in our compiler plugin if a particular field
is only read or also written, thus filtering memory accesses belonging
to one type or the other. Finally, also exploring what is written inside
a particular field - for example a constant or a parameter - or how the
content read from the field is used will reduce even more the number of
candidates extracted from a function.

82

5B A C K T O T H E W H I T E B O A R D : A P R I N C I P L E D
A P P R O A C H F O R T H E A S S E S S M E N T A N D
D E S I G N O F M E M O RY F O R E N S I C T E C H N I Q U E S

5 .1 introduction

Modern operating systems are very complex pieces of software whose
memory often contains millions or tens of millions of individual objects
at any moment in time. Even worse, both the fields and the layout of
these objects can change when the kernel is updated or recompiled, and
the connections among them evolves very rapidly – with a considerable
amount of links and pointers that change every few milliseconds.

Currently memory forensics techniques rely on a large number of
rules and heuristics that describe how to navigate through this giant graph
of kernel data structures to locate and extract information relevant to an
investigation. For example an analyst can use rules — commonly known
as plugins in the field terminology — to retrieve the list of processes
running at acquisition time (including their name, starting time, process
ID, and other related information) or the list of open sockets. The result of
the analysis depends on the number and accuracy of these rules. However,
the field today is still in its infancy and each individual technique is
manually written by researchers and practitioners. As a result, it is often
unclear why a particular exploration strategy has been chosen, except
for the fact that some developers found it reasonable based on their
experience. Even worse, how accurate a given heuristic is and how we
can compare it with other candidates to decide which strategy is more
suitable for a given investigation remains an open question.

In fact, we still do not even know how to properly characterize the
accuracy of a technique, as its quality depends on the metric we use to
evaluate it, which in turn depends on the goal of the analyst. For instance,
in an adversarial environment in which the analyst is investigating a
sophisticated attack, a good heuristic would be one that is difficult to

83

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

evade for an attacker. In a different investigation in which there is no risk
of tampered kernel data, a heuristic that only traverses closely-related (in
physical memory) data structures may be preferable as pages acquired
far apart may otherwise contain inconsistent information if the dump
was not acquired atomically.

Contribution: The goal of this paper is to introduce a more principled
way to approach the problem of memory analysis and forensics. Our
plan is articulated around three main points. The first intuition is that
heuristics used to extract information from memory dumps should be
automatically generated by computers and not handpicked by humans.
As we will show in our experiments, the graph of kernel objects is tightly
connected and there are tens of millions of different ways to reach a
given structure by starting from a global symbol. The second point is
the fact that it is very important to be able to quantitatively measure the
properties of each heuristic, so that different options can be compared
against one another and an analyst can decide which technique is more
appropriate for her investigation. Finally, the analyst should be able to
obtain some form of guarantee about the results, to ensure that once a
given quality metric has been chosen, a certain technique is the optimal
solution to navigate the intricacies of runtime OS data structures.

As a step towards these goals, we constructed a complete graph of
the internal data structures used at runtime by the Linux kernel. In our
graph, nodes represent kernel objects and edges a pointer from one object
to another. We chose Linux as the availability of its source code simplifies
the creation of our model. However, a similar graph was also extracted
in the past by Microsoft for the Windows kernel [Car+09] and could
therefore be reused for our purpose. The resulting map of the memory is
a giant network (containing over a million nodes) with a very dynamic
topology that is constantly reshaped as new data structures get allocated
and deallocated.

Memory forensics tools adopts rules to navigate through the data
structures present in a memory dump, and these rules can therefore be
represented as paths in our kernel graph. Nodes and edges can then be
decorated with additional pieces of information that capture different

84

5 .2 motivation

properties an analyst can find important in an analysis routine. In our
study we model this phase by introducing and discussing five different
metrics: Atomicity, Stability, Generality, Reliability, and Consistency. We
used these metrics to compute a score associated to each path, and there-
fore to existing memory analysis techniques, as well as to compute the
optimal solution according to a chosen set of criteria. We then discuss the
intricacies of identifying such optimal paths by performing experiments
with 85 different kernel versions and 25 individual memory snapshots
acquired at regular time intervals.

Building a map of the kernel memory is a very tedious and time-
consuming process. However, we believe this map can have many inter-
esting uses in computer security beyond memory forensics – including
virtual machine introspection (VMI), kernel hardening, and rootkit detec-
tion. Since both the code and the results of the previous attempts to build
this graph [Lin+11; Car+09; Ibr+13] are not publicly available, we decided
to release all our data – hoping it will help other researchers to consider-
ably reduce the time required to investigate and validate techniques that
require information about the content of a running kernel.

5 .2 motivation

Being quite in its infancy, memory forensics has still many open problems,
which have been recently summarized by Case and Richard [CR17]. The
authors divided them in two categories, depending on whether they
are related to the acquisition or the analysis of a memory dump. More
precisely, the first category contains all the practical issues of acquiring
memory from a device under investigation while the second one deals
with the capabilities of memory forensics, such as malware detection and
evidence extraction.

One of the main issues belonging the first category is page smearing,
which is a consequence of the fact that while the acquisition is performed
the underlying system is not frozen and thus the dump may contain in-
consistent information [GF16]. While the term was coined in 2004 [Car15],
its actual implications are still unclear to the community. For instance, a

85

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

recent study from Le Berre [Le 18] pointed out that in real investigations
more than the 10% of memory dumps suffer from this problem and thus
can not be properly analyzed with existing tools. Our work can help
mitigating this issue by assessing how existing techniques are affected by
non-atomic acquisitions, and help design new heuristics which are more
robust against the presence of inconsistent information.

The second category focuses instead on challenges related to memory
analysis. For example, as of today, forensics practitioners lack the nec-
essary tooling for extracting a number of interesting information such
as Powershell activity and evidences related to Office applications and
private browsing sessions, or to analyze sophisticated userland malware.
Finally, a vast range of technologies did not receive any forensics coverage:
Apple iOS, Chromebooks, and IoT devices are still out of scope when it
comes to memory forensics analysis.

While these issues are very different from one another, most of them
share the same underlying assumption: kernel objects must be located,
traversed and interpreted by a set of rules. Our approach enables forensics
practitioners and researchers to evaluate, under different constraints, the
quality of these rules and provide them with a framework to compare
and discover new sets of rules.

5 .3 approach

In this section we describe the four-step approach we propose to precisely
measure and improve the quality of existing memory forensics techniques.
The first step consists of building a precise representation of all data
structures that exists in a running kernel and of the way these structures
are connected to one another. The challenges and the process we followed
to build this kernel graph are described in details in Section 5.4. In
the second phase we map existing forensic analysis techniques into our
model, by representing their algorithms as paths through the kernel
graph. We then color the graph according to different properties that
are relevant for a forensic investigation, and we employ graph-based
algorithms to assess the characteristics of the previously-identified paths

86

5 .3 approach

1 [init_task].tasks.prev 	 → task_struct.mm →
mm_struct.mmap → vm_area_struct.vm_next 	 →
vm_area_struct

2 [root_cpuacct].css.cgroup →
cgroup_root.cgrp.e_csets[2].next → css_set.tasks.next

→ task_struct.mm → mm_struct.mmap →
vm_area_struct.vm_next 	 → vm_area_struct

Figure 5.1: Two different paths that reach the same vm_area_struct

object.

and find new ones that may exhibit better properties. Finally, in the fourth
and final phase of our methodology we translate our findings back to the
memory forensic space by generating improved analysis plugins, thus
increasing the number and quality of the rules that are used today to
analyze memory dumps.

5 .3 .1 Memory Forensics as a Graph Exploration Problem

The goal of memory forensics is to bridge the semantic gap between the
raw bytes that constitute a physical memory’s snapshot and the high-level
abstractions provided by modern operating systems. This task requires
the forensic tool to be able to correctly translate virtual to physical mem-
ory addresses, as well as to identify the data structures that contain the
required information (e.g., the name of the files opened by a given pro-
cess). The latter is typically achieved in two phases. First, the system
locates a known object – either because it resides at a fixed or predictable
location, by using symbols information generated by the compiler when
the kernel was built, or by carving a particular data structure based on a
set of known properties and invariants. Starting from this entry point, the
analysis then traverses different memory regions, moving from one data
structure to the next by following pointers, until it reaches the required
piece of information. For example, we assume the analyst found a sus-

87

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

picious process and she wants to extract its executable code for further
analysis. On Linux, this analysis starts from extracting the position of the
global kernel variable init_task of type task_struct. This is one of the
most important kernel object in terms of Linux memory forensics since
every kernel thread and user space process has its own and it serves as a
hub to reach several other relevant pieces of information. After locating
init_task, the processes list is walked until the task_struct belonging
to the suspicious process is found. From here, the mm_struct is reached
by dereferencing the mm field. Finally, the list of vm_area_struct, each of
which defines a virtual memory area, is retrieved — first by following the
mmap pointer, then by using the vm_next field. With this information, the
analyst can find the executable regions of the process and can proceed to
save their content to disk.

This procedure can be naturally represented as a path on a graph
in which every node is a kernel object, and every link a pointer. While
the final node is dictated by a given forensic task, both the first and the
intermediate nodes are often the result of handcrafted routines based on
the experience and expert judgment of the developers of the forensic tool.

In our graph, the previously presented analysis would correspond to
the path 1 in Figure 5.1. The path contains the names of the structures
and fields that need to be traversed (in square brackets when they refer to
global symbols in the kernel) as well as the type of transition (→: follow
a pointer reference, 	: visit multiple structures of the same type linked
together). For simplicity, we report inner structures in our paths as names
in the edge and not explicitly as standalone nodes. Also, note that in
the example 1 , since the suspicious process was freshly spawned, the
shortest path in our graph traverses the process list backwards — contrarily
to the more common forward walking.

On top of the previous solution, our approach shows that a stunning
2.5 million different sequences of vertices exist in the kernel graph to
reach the very same target object starting from a global variable, only
counting the paths with no more than 10 edges. For example, path 2
in Figure 5.1 begins from the little-known global symbol root_cpuacct,
passes through a number of cgroup-related objects, before finding the
task_struct of the suspicious process.

88

5 .3 approach

The previous two “rules” are both capable of locating a given process
structure in a memory dump. The first is certainly more intuitive and
it may also traverse a lower number of data structures. However, this is
purely a qualitative assessment, and it is unclear if the first solution actually
has any clear advantage or whether it provides any better guarantee then
the second.

5 .3 .2 Path Comparison

As we saw in the previous example, if we want to assess the quality of
a given solution, we first need to define what “quality” means in our
context. In other words, when two paths exist to reach the same target
data structure, we need to define a metric that can tell us which one is
better to follow from a forensic perspective.

A developer may favor the shortest path, as it is simpler to implement
and may appear to be more robust according to the intuition that the
fewer the data structures that need to be parsed, the less likely it is that
something can go wrong while doing that. However, this approach raises
another important issue about today’s approach for memory analysis: its
ad hoc nature and lack of a scientific foundation. In fact, it is not clear
today how different exploration techniques can be compared and how
they can be evaluated against one another in a precise and measurable
way.

A first important observation is that there is not a single, absolute met-
ric that defines the quality of a memory exploration rule. It all depends on
the goal of the analyst, the conditions under which the memory snapshot
was acquired, and the type of threat that is investigated. For example, in
the common case in which a memory snapshot is acquired non-atomically,
the analyst may prefer to adopt an approach that only traverses structure
closely located in memory, thus minimizing the chances of inconsistencies.
On the opposite case in which the memory was acquired atomically in a
lab from a virtual machine used to investigate a possible rootkit, the ana-
lyst would certainly favor a different approach that traverses structures
whose values cannot be tampered with by the attacker. In yet another

89

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

task_struct task_struct task_struct

next

prev

list_head

next

prev

list_head

next

prev

list_head

.

Figure 5.2: task_structs organized in a doubly linked list.

scenario, an investigator may try to analyze a dump for which she was
not able to retrieve a correct OS profile, and therefore she might be in-
terested in paths that traverse structures that have changed very rarely
across different kernels, to maximize her probability of success.

Therefore, it is the analyst who needs to select the more appropriate
fitness function to compare paths according to any combination of desired
properties. And once this function has been chosen, it is possible to use
it to compute the optimal path (and therefore the optimal exploration
strategy) to traverse the kernel graph. In this thesis we explore different
possible scenarios by proposing several metrics to enrich the graph (more
details about this process are presented in Section 5.5) and then use
this information to evaluate existing approaches and discuss other, non-
conventional solutions that can provide better guarantees for the analyst.

5 .4 graph creation

The first step of our methodology consists in building a model of the
operating system kernel, that we can later use to compare different
memory forensic approaches. The model we chose for our analysis is a
graph of kernel objects, in which nodes represent kernel data structures
and edges represent relationships between objects (for example a pointer
from one structure to another).

The core idea is simple and relies on two crucial pieces of information
extracted from the kernel debugging symbols. The first one is the layout,

90

5 .4 graph creation

in terms of the exact type and offset of each field, of all the struct

defined and used by the kernel code. The second information is instead
related to the address, name, and type of global kernel variables that play
the role of entry points for our graph exploration. Starting from these
global pointers, our algorithm can recursively traverse other structures,
each time following a pointer and casting the target memory to the
appropriate type. While this process may seem straightforward at first,
there are many special cases that make the construction of a kernel graph
a complex procedure that requires multiple phases and several dedicated
components.

In the rest of the section we discuss in more details some of these
problems and the way we handled them in our study: abstract data types
(and the issue with non-homogeneous circular lists), opaque pointers,
and the presence of uninitialized or invalid data.

5 .4 .1 Abstract Data Types

Over the years, to maintain a reasonable quality over its code base, the
Linux kernel developers have adopted several design patterns [LWN09].
In particular, the kernel exports a rich set of APIs to manipulate and create
complex data structures, such as double-linked lists and trees of various
types, thus relieving kernel developers from the burden of reinventing
the wheel every time they need to store and organize multiple objects.
For this reason, the existing APIs are not tied to a specific type of kernel
object but rely instead on predefined data types that can be included in
more complex struct objects, and in a number of macros to manipulate
them.

Figure 5.2 shows one of the most common example of this pattern,
in which several task_struct are organized in a doubly linked list us-
ing the list_head type. While this provides a simple and efficient way
to organize data structures, it unfortunately poses a serious challenge
to the automated exploration of kernel objects. In fact, if the leftmost
task_struct in the figure was already identified by other means (for ex-
ample because it was pointed to from a global variable), simply following

91

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

the next pointer would result in the discovery of the inner list_head

structure, but not of the outer task_struct.
In fact, this operation is performed in the source code by using ded-

icated macros. In the case of the previous example, a developer would
invoke:

container_of(var, struct task_struct, task)

that the compiler pre-processor translates to a snippet of code required
to cast the target list_head variable var to the requested type based on
the current offset inside it (as specified by the field task). However, in
our analysis we cannot simply mimic the same behavior by subtracting
the offset of the list field from next pointer and to cast the result to the
correct type to obtain a reference to the outer object. In fact, there are
many cases in which this approach would lead to wrong results and it is
not sufficient to look at the field type or at its value to distinguish these
problematic cases. One example is the list rooted in the field children of
a task_struct. While the field points to another task_struct, it does so
by reaching it at a different offset (in the sibling field). Because of this
and other similar problems (explained in more details later in the paper)
it is not possible to systematically apply the “subtract and cast” strategy.

For each pointer in a data structure we need to know where — in
terms of object type and offset in the target structure — it points to. Other
works that built a map of the Linux kernel [PH07; BGI08; XCB09] solved
the problem by manually annotating the source code. While this was
doable for old kernel versions (e.g., 2.4), it would take many weeks of
tedious work to annotate a recent kernel – which today uses more than
6000 different data structures and more than a thousand instances of
list_heads. Moreover, manual annotations are error prone and are tai-
lored to one specific code base, thus requiring to be verified and modified
whenever a new kernel version is released. The compiler community
has also already extensively studied the points-to problem [Das00; HL07;
HT01; PKH07; Ste96; WL95]. Unfortunately, the techniques they proposed
are not suitable to our work as they tend to favor speed (an important
factor at compile-time) over precision [Car+09] (a more important factor
for our analysis). Only four previous studies automatically extracted a

92

5 .4 graph creation

type graph of a kernel [Car+09; Lin+11; Ibr+13; SPE12]. However, none
of their systems is available: in one case because the authors relied on the
internal source code of the Microsoft Windows operating system [Car+09],
and in the other because the entire work was lost [Ibr+13].

For this reason, we decided to implement our own points-to analysis
– which consists of a clang plugin that reasons on the Abstract Syntax
Tree (AST) of each kernel compilation unit. Contrary to standard points-
to analysis, our approach focuses only on the type information. More
precisely, traditional solutions are designed to identify where each pointer
points to, while in our case we only need to extract the target structure,
and the offset inside that structure. The result is a type graph of the kernel
under analysis. To extract this information we take advantage of the fact
that the information we need can be inferred by analyzing the source
code of the kernel that is in charge of manipulating the data structure
in question. Our plugin explores the AST until it finds a call to a kernel
API related to data structure management. At this point it analyzes the
parameters and resolves their structure type and field name. An example
of API call and respective AST is given in Figure 5.3. In the example, a call
to the API list_add is used to append the new task at the beginning of
the list rooted at head->tasks. This give us the information that the field
tasks of task_struct indeed points to the very same type. Our plugin
current supports list_heads, hlist_heads (used in the implementation
of hash tables), and rb_root (used in the implementation of red-black
trees).

Except for those, the most common type that is still not supported by
our prototype is radix_tree, which however is only used 8 times in the
entire kernel code base.

As we will show in Section 5.4.6, our approach is very effective and
was able to resolve the type pointed by 250 global lists and by more
than 1110 unique object fields in the Linux kernel 4.8, compiled with
the Ubuntu 16.04 kernel configuration. Moreover, while our approach
is tailored to the Linux kernel, it can be adapted to work on any other
operating system, given the availability of its source code. Finally, since
the parameter resolution routine does not perform complex analyses, our

93

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

int foo (..){

struct task_struct *head;

struct task_struct *new;

...

list_add(new ->tasks , head ->tasks);

}

CallExpr 'void'

|-ImplicitCastExpr 'void (*)(struct list_head *, struct list_head *)'

| `-DeclRefExpr 'void (struct list_head *, struct list_head *)' Function

'list_add '

|-UnaryOperator 'struct list_head *' prefix '&'

| `-MemberExpr 'struct list_head ':'struct list_head ' lvalue ->tasks

| `-ImplicitCastExpr 'struct task_struct *' <LValueToRValue >

| `-DeclRefExpr 'struct task_struct *' lvalue ParmVar 'new

`-UnaryOperator 'struct list_head *' prefix '&'

`-MemberExpr 'struct list_head ':'struct list_head ' lvalue ->tasks

`-ImplicitCastExpr 'struct task_struct *' <LValueToRValue >

`-DeclRefExpr 'struct task_struct *' lvalue Var 'head'

[POINTS_TO] struct task_struct.tasks -> struct task_struct.tasks

Figure 5.3: On the top a call to list_add, in the center its simplified AST
representation, and on the bottom the plugin output.

analysis does not introduce any significant overhead at compilation time.

Circular Lists of Non Homogeneous Elements

As we already discussed in the previous section, certain linked list can
chain together object of different types. Since the code must have a way
to determine to which type the target element belongs to, this pattern is
only present in the form of a “root” object which is the first element of a
circular list of otherwise homogeneous objects.

As a consequence, these lists can only be traversed starting from
their root node, as traversing the loop from an intermediary objects can
result into unexpectedly reaching the root node (of a different type)
when dereferencing one of the next pointers. For example, other than the
already cited children field of task_struct, also the thread_node field
of the same structure points inside a signal_struct object.

94

5 .4 graph creation

To avoid this problem, our analysis classifies every list_head field in
one of the following three categories: root pointer, intermediate pointer or
homogeneous pointer. The first two are used to mark list_head fields that
belong to lists that contain mixed types, while the latter describes the more
common case of homogeneous list. For instance, task_struct.children
is a root pointer, task_struct.sibling an intermediate pointer and
task_struct.tasks a homogeneous one. This classification can be auto-
matically derived from the type graph: whenever two objects of different
types are involved we label the first as root and the second as intermediate,
while all the other objects are labeled as homogeneous. During the explo-
ration phase, depending on the type of the pointer, we adopt a different
strategy:

• homogeneous pointers can be explored by our algorithm in any order.

• root pointers require instead our algorithm to immediately walk
and retrieve the objects of the entire circular list.

• intermediate pointers are ignored since we do not know if they point
to another intermediate element or to a root head. This case happens
when we enter a circular list from one of its middle elements. This
pointer will eventually be explored when the corresponding root
node will be visited.

This classification works for every list encountered during the ex-
ploration phase, except for global list_head variables which are always
marked as root node. In this case, during the very first part of the explo-
ration, these lists are walked entirely and their elements appended to the
worklist.

5 .4 .2 Uninitialized and Invalid Data

During our data structure exploration, there are cases that could poten-
tially introduce false nodes to our graph. This is due to pointers that
contain valid memory addresses but are not yet initialized or that were
not valid at the time the snapshot was acquired. One common cause for

95

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

these errors is the fact that most of the memory management kernel APIs
do not initialize to zero the allocated memory. As a result, if an object
contains an array of pointers there is not way to tell if one element points
to an initialized object (except if the pointer has an invalid value). Another
source of false-positives comes from the non quiescent state in which the
kernel might be when the snapshot is taken [Hof+11]. In other words,
this means that the kernel could have been in the middle of updating a
data structure, leaving dangling pointers in the snapshot. Finally, even if
very rare, kernel bugs can contribute to the generation of similar errors.

For these reasons we implemented two sets of heuristics to check if
an object is valid or not. The first soft rule checks that the number of valid
pointers in a kernel object is greater or equal than the number of invalid
ones (after removing null pointers and the pointers which normally point
to userspace memory, such as the ones contained in struct sigaction).
The second, more precise, heuristic immediately flags an object as invalid
if certain conditions are not verified (such as kernel objects that contain
a negative spinlock, or those with function pointers that do not point in
the executable sections of the kernel). Finally, we require that, whenever
present, a list_head has to be valid, i.e. its next and prev pointer must
point to addressable memory. If these rules are not met, we consider the
object invalid and discard it from our analysis.

5 .4 .3 Opaque Pointers

Opaque pointers, as represented by void* fields or by long long integers
that contain at runtime the address of other objects, are traditionally
one of the hardest obstacle to build a complete map of kernel objects.
Luckily, this is not the case in our particular scenario. Since we are
interested in using our graph to analyze and improve existing memory
forensic techniques, opaque pointers play a very marginal role (if any
at all) in this space. As they can point to potentially any structure, and
the actual target type can change over time, traversing these pointers
can be unpredictable during a post-mortem analysis. Even if none of
the heuristics we encountered in our experience make use of them, we

96

5 .4 graph creation

decided to include them in our graph. After the exploration ends, in
case the target of an opaque pointer was discovered by other means, we
create the resulting edge, clearly marking it. In this way, we are able
to detect if any of these edges are traversed during our experiments.
Finally, it is important to understand that these limitations cannot lead to
“wrong” results (since they cannot create erroneous paths in the graph),
but nonetheless restrict the guarantees of optimality we discuss in the
next sections to the constructed graph.

5 .4 .4 Limitations and Manual Fixes

Like all previous attempts to build a map of the kernel memory, two
particular limitations also affect our solution: unions, and dynamically al-
located arrays. Handling the latter case would require more sophisticated
code analysis techniques to identify the variable number of elements
contained in the arrays, which are beyond the scope of this paper. Nev-
ertheless, we identified few cases of dynamically allocated arrays that
contain information that can be relevant for memory forensics and we
decided to handle them by hardcoding a custom logic. The first cases
are global hash tables where often the size is not inferable from the hash
table itself. For example, the pid_hash hash table, used by the kernel to
quickly locate a process given its process id, is implemented by using a
dynamically allocated array where the size is specified in another global
variable (pidhash_shift). The second cases are instead dynamically allo-
cated arrays pointed by a kernel object. For example, the file descriptor
table associated with each process, which contains the files opened by a
process (field fd of struct fdtable). Once again, this is a dynamically
allocated array of struct file pointers, and the size can be retrieved
from the field max_fds of the same structure.

Finally, the handling of per_cpu pointers was also hardcoded in our
implementation. These are special pointers that, thanks to a double indi-
rection mechanism when dereferenced, give to each processor a different
copy of the same variable.

97

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

Kernel
Source Plugin

Type
Graph

Debug
Symbols

Exploration Script Graph

QEMU Snapshot

Clang/LLVM GDB-Python Python

Figure 5.4: System Overview.

However, we want to stress that this limitation does not invalidate
our findings since the graph extracted by our approach is not incorrect,
but only potentially incomplete.

5 .4 .5 Implementation

Our final system is illustrated in Figure 5.4. It consists of an LLVM
compiler plugin to perform the points-to analysis on the kernel code at
compile-time and a set of python gdb extensions that combine the infor-
mation extracted in the previous step with the information provided by
kernel debug symbols to identify all kernel objects contained in a memory
snapshot acquired using the QEMU emulator. The kernel exploration
routine starts by loading a QEMU snapshot, parsing the type graph, and
appending the global object symbols to an internal worklist. At this point
the real exploration begins: an object is fetched from the worklist and
analyzed using the heuristics we adopted to identify invalid or unini-
tialized memory. If it is well-formed, each of its field are processed to
identify structures, pointers to other structures, or arrays of either type.
All them are retrieved and appended to the worklist – paying attention to
implement the techniques described above to handle abstract data types.
These objects are then processed by a separate component responsible

98

5 .4 graph creation

to build the final kernel graph that we will later use to carry out our
experiments.

5 .4 .6 Final Kernel Graph

We built our kernel graph using graph-tool [Pei14], a python library de-
signed to handle large networks. To reduce the size of the graph, we
chose to represent with one vertex each outer structure identified during
the exploration. In other terms we decided to group together, in a single
vertex, all the nested structures (but we keep the nesting information as
it is needed when we need to move from the graph space back to the
memory analysis heuristics). This transformation also makes the graph
directed, and result in only one type of edges that represent pointers
from a structure to another. As we will thoroughly discuss in Section 5.5
we assign a number of different weights to each node and edge to allow
for several comparisons among different paths.

Figure 5.5 shows a kernel graph counting 109,000 nodes and 846,000
edges, plotted using Gephi [BHJ+09]. This graph contains more than
41,000 strongly connected components with the vast majority (95%) con-
taining only one node. On the other hand, the largest one contains 53%
of the vertices and has a diameter of 272 nodes. As we will discuss in
Section 5.6, this has important consequences for memory analysis, as it
results in a multitude of available paths to move from one node to almost
anything else in the kernel memory. The vertex with the highest in-degree
is of type super_block, pointed by more than 11,000 inodes and 11,000
dentrys. If we exclude the file system, the node with the highest degree is
a vm_operations_struct, pointed by more than 4200 vm_area_structs.

In the picture, the size of labels and node is adjusted according to the
betwenees centrality of a node. This type of centrality counts how many
shortest path between every pair of nodes pass through a node. In other
terms, the larger the size the more often a node is present inside every
shortest path. The node color depends instead on the kernel subsystem
the object belongs to. By using the name of the file where the object

99

Figure 5.5: Kernel Graph

5 .5 metrics

is defined we were able to classify them in roughly 7 classes, from file
system to object related to memory or process management.

5 .5 metrics

In the previous section we described how we extracted a global map
of a running kernel that can serve as basis for our analysis. However,
without any further information, the only way we can compare two paths
on the graph is by looking at their length, computed by counting either
the total number of nodes or the total number of unique structures that
need to be traversed. In fact, this simple approach may resemble the one
adopted today by most of the memory forensic tools, where the most
straightforward path is often chosen by the developers. However, this
solution does not tell anything about the quality of a given path, nor
about the presence of better options to solve the same problem. To get a
solid foundation on which we can compare different techniques we need
therefore to define a metric. And since the idea of having an absolute
metric is unrealistic, multiple different metrics can be plugged on our
graph to study the characteristics of each path.

For our experiments we decided to investigate and add to our graph
three numerical and two boolean weights, related to the atomicity, stability,
generality, reliability, and consistency of a path. As described below, all
of them capture different but important aspects of what an analyst may
expect from a memory analysis routine.

Atomicity (numerical)

This weight express the distance in physical memory between two in-
terconnected kernel objects. While this metric is expressed in terms of
distance among physical pages, for an easier interpretation we often ex-
press it in seconds (as distance in time between the acquisition of the
two pages). The atomicity is a very important aspect in most of today’s
investigation that rely on non-atomic dumps. In fact, moving across objects
located far apart in memory - and thus acquired far apart on the time
scale - can introduce inconsistencies. Intuitively, by using this metric the

101

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

best path between a pair of nodes is the one which minimize the time-
delta among all visited structures, thus passing only thorough objects
acquired very close in time. More precisely, we can adopt three distinct
ways to measure Atomicity:

• Acquisition Window (AW) – this is the total window that covers
all data structures traversed in the path. E.g., one path may walk
fifteen objects, all of which were acquired in a period of 23 seconds.

• Cumulative Time Gap (CTG) – this is the sum of the time difference
of each edge traversed in the path. For instance, if a path visits three
consecutive nodes (A, B, and C) and the difference between the
acquisition time of the pointer in A and the content of B was 7
seconds and the difference between B and C was 3, the CTG would
be 10 seconds.

• Maximum Time Gap (MTG) – this just takes into account the longest
“jump” in a path. In the previous example, this would be 7 seconds.

All three measures are related to the Atomicity, but they capture
different aspects. If it is important than none of the visited structures
have changed during the acquisition, AW is the best metric. CTG gives
instead a cumulative probability that things can go wrong by following
links. The more edges are traversed, and the more far apart are the
objects on the end of those edges, the more likely it is than a link can be
corrupted due to the non-atomicity of the dump. Finally, MTG provides
an estimation of the single most fragile edge in a path. This can be an
important information, as traversing 10 edges each one a second apart
can be a better option than traversing a single link with a nine seconds
delay in the acquisition.

This can lead to some counter-intuitive results. For example, let sup-
pose our graph analysis identifies two paths to reach a certain target
structure C namely {A → B → C} and {A → X → Y → B → C} (for
simplicity we ignore the name of the pointers). Both paths start from a
structure A but the first traverses a single node B before reaching the des-
tination while the second takes a detour through two other intermediate

102

5 .5 metrics

A B C

X Y

t0 t0 + 3 t0 + 6 t0 + 10 t0 + 13

Figure 5.6: Time acquisition of nodes belonging to two paths.

data structures Y and Z before re-joining the first path. Figure 5.6 shows
the two paths on a time scale, that represent at which time the memory
containing each data structure was collected.

While the second path is obviously a longer variation of the first, and
therefore seems logical to believe that has nothing better to offer, it is
very well possible that the detour reduces the probability of incurring
in broken links. The pointer A → B was in fact collected 10 seconds
before the object B, while the longest path decreases these time gaps to a
maximum of four seconds. Whether this is an advantage or not depends
on how often those pointers are modified in a running kernel, which we
capture with our next metric.

Stability (numerical)

This weight expresses the stability over time of a given node or edge on the
graph. Some structures are allocated at boot time and are never modified
afterwards, while other parts of the graph are very ephemeral and contain
structures that get allocated and de-allocated multiple times per second.
By computing a heat-map of the stability of each edge (extracted by
processing a number of consecutive snapshots), this weight can provide a
valuable information on how the kernel map evolves over time, on which
paths are more stable, and on which are instead more ephemeral and
may only exists for short periods of time.

We measure Stability by computing the Minimum Constant Time (MCT)
of all links in a path. The MCT can tell, for instance, that over a certain

103

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

number of memory images all edges traversed by a certain heuristic
remain constant for a minimum time of 30 seconds. In our experiments,
we computed this metric by taking a snapshot of the same system at
seconds 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 100, 200, 350, 700,
1000, 3000, 5000, 8000 and 12000.

Surprisingly we found that the 81% of edge are stable, i.e., they never
change across our experiments. The majority of them are objects related
to the file system (inode and dentry), which the kernel caches for per-
formance reasons. But this does not mean the graph does not evolve,
actually quite the opposite. For example, we saw an increase of more
than 60% of both nodes and edges between the graph built at t = 0 and
the one built at t = 700.

Moreover, if we exclude the filesystem subsystem and the paths that
remained stable over all our experiments, 11% of the edges changed in
less than 10 seconds, 12.5% in less than a minute, and 97% in the first
hour.

Generality (numerical)

This weight captures another important problem of memory forensics:
the constant change in the layout of kernel objects. This is due to sev-
eral factors. First of all the kernel is always under active development
which means that fields are continuously added to and removed from
kernel objects definitions. Moreover, the layout is also influenced by the
configuration options chosen at compile time. Existing tools mitigate this
problem by requiring additional compile-time information (part of what
it is normally called an OS Profile). Unfortunately, there are cases in which
this information is not available, which today greatly complicate (if not
completely preclude) the ability of analyzing a particular memory dump.
Therefore, it would be interesting to compute analysis paths that traverse
structures which change very rarely across different distributions, kernel
versions, and enabled kernel options.

For this reason we downloaded 85 kernels from the Ubuntu repository,
spanning from version 4.4.0-21 to 4.15.0-20. For every object defined
in each of these kernels we extracted the offset of the fields required

104

5 .5 metrics

for navigation – such as structure pointers or array of structures. We
aggregated this information in a single Kernels Counter (KC) weight
computed by counting over how many of the 85 kernels an entire path
would remain constant (i.e., all its traversed link were present at the same
offsets in their corresponding structures).

Reliability (boolean)

This is a very important aspect in memory forensics and captures how
tamper-resistant is a given path on the graph, assuming an attacker is
capable of reading and writing arbitrary kernel memory. Some paths
are very easy for an attacker to modify, and therefore cannot be trusted
by an analyst whenever she suspects the attacker might have gained
admin privileges on the machine. On the other hand, other paths are
more robust, as breaking them would make the system unstable. This
can potentially result in programs malfunction or termination and, in the
worst case, in a crash of the entire operating system. The robustness of
individual data structures has already been studied in the past by several
works [BGI08; Dol+09; Pra+13]. But here we are instead interested in the
reliability of a path, i.e., not in the fact that individual fields (such as a
file name) can be modified, but whether an attacker can tamper with the
edges that need to be traversed to prevent a certain heuristic to reach its
destination (to the best of our knowledge, this problem has never been
addressed in the literature). Being able to compute a path on the graph
that only traverses tamper-resistant edges may have a great impact on
memory forensics. While today we still do not have enough information
to color the entire graph according to this metric, we can still compute the
reliability on demand. This means that we cannot compute the optimal
solution according to its reliability, but once we have a candidate solution
we can perform experiments to verify it.

Consistency (boolean)

As a final property in this list we want to show how metrics can also
be aggregated to capture more complex properties of a path. For this
example we chose to combine the stability and atomicity of a path in a

105

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

single measure that captures how likely it is for a given path to traverse
consistent information. Intuitively, traversing a path whose nodes were
acquired over a period of 20 seconds may be acceptable if those structures
change very rarely, but completely unacceptable if its links are modified
every few milliseconds. We capture this aspect by consider a path con-
sistent if and only if the acquisition gap of each edge is lower than the
minimum change time of the edge as computed in all our snapshots.

5 .6 experiments

We now discuss how our graph-based framework can be used in different
scenarios, in which we investigate existing techniques used by Volatil-
ity [Wal07], we discuss the intricacies of computing optimal paths, and we
discover new solutions to reach all processes running in a system. In any
case, these are only examples of what can be achieved by adopting a more
systematic approach to memory forensics, and many more applications
can benefit from our framework.

All experiments were conducted on a QEMU machine equipped with
2GB of RAM and 4 virtual CPUs, running wordpress on top of a LAMP

stack. Before and between the acquisitions, we generated some activity
by visiting the CMS pages and performing basic system administration
task, such as logging in via ssh and updating the list of packages.

5 .6 .1 Scenario 1

In the first scenario we want to apply our methodology to study the qual-
ity of current memory forensics techniques. For our example we selected
seventeen Volatility plugins that explore different subsystems (process,
network, and filesystem) and mapped them as paths in our kernel graph.
To achieve this we manually analyzed each plugin and extracted which
global variables and kernel objects are traversed. With this information
we were able to write a python script which automatically extracts these
paths from our graph. Note that many plugins traverse similar kernel

106

5 .6 experiments

structures (e.g linux_pslist and linux_pstree) so, to avoid duplicates,
we only report results for a subset that rely on different information. The
final list of the plugins we analyzed is reported in Table 5.1.

Before looking at the individual metrics, we wanted to investigate
to which degree the structures traversed by these heuristics are inter-
connected. The total number of unique objects used by this heuristics
depends on the size of the graph. In our experiments they vary from 20 to
hundreds of thousands. As we already introduced in Section 5.4.6, by av-
eraging over the 25 graphs we created, more than 96% of the nodes used
by the heuristics belong to a single giant strongly connected component
that contains on average 53% of all the nodes in the graph. By combining
this information with the nodes visited by Volatility, we found that this
component contains all the information related to running processes,
such as their mapped memory and open files, but also the information
related to the arp table and the ttys. The remaining 4% of the nodes
used by the Volatility rules are instead scattered among several other
components. The biggest one, which contains only 0.5% of the heuristics
nodes, contains the information related to the installed modules and,
more in general, to the kobjects subsystem. Finally, the rest of the nodes
belong to components containing only a single node. These are the nodes
representing, for example, the global pid_hashtable and its associate
hlist_heads.

This is an important finding, as it means that the vast majority of the
information needed for forensic purposes is interconnected and reachable
from one another. Translated in practical terms, the presence of this giant
connected component means that is enough to locate a single kernel object
to reach all the other interesting ones only by dereferencing pointers. This
might be beneficial in scenarios where the position of global kernel objects
is not available to the analyst. In such cases, one entry point can often
be located by memory carving and then used as starting point for every
other analysis.

By looking at the atomicity metrics (columns four-to-six in Table 5.1)
the first thing that stands out is that the values for the Acquisition Window
(AW) and the Maximum Time Gap (MTG) are very similar and relatively
constant across all commands. After further investigation we discovered

107

Table
5.1:C

om
parison

of
Volatility

plugins
im

plem
ented

as
paths

in
our

graph

N
am

e
D

escription
#

N
odes

A
tom

icity
Stability

G
enerality

C
onsistency

A
W

C
TG

M
TG

M
C

T
K

C
Fast

Slow

l
i
n
u
x
_
a
r
p

Prints
the

A
R

P
table

13
16.24

53.25
16.24

12,000
50/85

3
3

l
i
n
u
x
_
c
h
e
c
k
_
a
f
i
n
f
o

Verifies
the

function
pointers

of
netw

ork
protocols

24
16.27

44.55
16.05

700
85/85

3
3

l
i
n
u
x
_
c
h
e
c
k
_
c
r
e
d
s

C
hecks

processes
that

share
credentialstructures

248
16.34

453.92
16.24

2
29/85

3
3

l
i
n
u
x
_
c
h
e
c
k
_
f
o
p

C
heck

file
operation

structures
for

rootkit
m

odifications
16099

16.38
142,856.15

16.38
0

29/85
7

7

l
i
n
u
x
_
c
h
e
c
k
_
m
o
d
u
l
e
s

C
om

pares
m

odule
list

to
sysfs

info,if
available

151
16.27

54.06
16.23

700
85/85

3
3

l
i
n
u
x
_
c
h
e
c
k
_
t
t
y

C
hecks

t
t
y

devices
for

hooks
13

16.26
17.52

15.69
30

85/85
3

3

l
i
n
u
x
_
f
i
n
d
_
f
i
l
e

Lists
and

recovers
files

from
m

em
ory

14955
16.33

35,627.45
16.32

0
85/85

7
7

l
i
n
u
x
_
i
f
c
o
n
f
i
g

G
athers

active
interfaces

12
16.25

44.19
16.25

12,000
50/85

3
3

l
i
n
u
x
_
i
o
m
e
m

Provides
output

sim
ilar

to
/
p
r
o
c
/
i
o
m
e
m

7
16.70

50.09
16.70

12,000
50/85

3
3

l
i
n
u
x
_
l
s
m
o
d

Lists
loaded

kernelm
odules

12
16.23

44.27
16.05

700
85/85

3
3

l
i
n
u
x
_
l
s
o
f

Lists
file

descriptors
and

their
path

821
16.33

19,885.52
16.26

0
29/85

7
7

l
i
n
u
x
_
m
o
u
n
t

Lists
m

ounted
fs/devices

495
16.33

8488.13
16.32

10
85/85

3
7

l
i
n
u
x
_
p
i
d
h
a
s
h
t
a
b
l
e

Enum
erates

processes
through

the
PID

hash
table

469
16.67

451.87
16.67

30
31/85

3
7

l
i
n
u
x
_
p
r
o
c
_
m
a
p
s

G
athers

process
m

em
ory

m
aps

4722
16.27

2629.19
16.24

0
31/85

7
7

l
i
n
u
x
_
p
r
o
c
_
m
a
p
s
_
r
b

G
athers

process
m

aps
through

the
m

appings
rb-tree

4722
16.27

3310.69
16.24

0
31/85

7
7

l
i
n
u
x
_
p
s
l
i
s
t

Lists
active

tasks
by

w
alking

task_struct→
task

list
124

16.27
189.41

16.24
30

31/85
3

3

l
i
n
u
x
_
t
h
r
e
a
d
s

Prints
threads

of
processes

157
16.27

280.68
16.24

30
31/85

3
3

5 .6 experiments

Figure 5.7: View as Hilbert curve of physical memory.

that this is due to the fact that, when compiled with normal configurations,
Linux kernel global variables are located in the low part of the physical
memory while kernel objects are allocated in the higher end. Since all
heuristics start from global symbols, the very first edge already accounts
for the maximum gap between two consecutive kernel objects. This also
influences the acquisition window, since one of the two farthest objects is
always the global variable from where the heuristic starts from. On the
other hand, the Cumulative Time Gap (CTG) shows more variations as it
is also influenced by the number of traversed objects.

To better understand this phenomenon, in Figure 5.7 we plotted the
content of the physical memory as a Hilbert curve. In the graph, each pixel
represents a physical page and its color shows if the page is traversed

109

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

by the Volatility heuristics (red in the graph) or if it contains at least
one node of our connected component of the kernel graph (green). It
is clear that the relevant data structures are not spread equally on the
entire physical memory. Instead, they clearly aggregated around three
main clusters, which we marked respectively as C1, C2, and C3. In our
experiments the kernel global variables are all located in C1 while other
information are often stored in C2 and C3. Therefore, most heuristics start
from C1 and then eventually traverse an edge towards one of the other
regions - which alone is responsible for the entire AW and MTG metrics.
This physical distribution is also very important for the third scenario
presented in Section 5.6.3, where we will encounter heuristics that need
to hop back and forth from the three clusters, significantly impacting the
atomicity metrics.

The second surprising result of this first scenario is the fact that the
Kernel Counters (KC) of six plugins never changed across all the different
kernel versions we used in our analysis. This means that, even when
fields were added or removed from these object, the offsets of the fields
used by the plugins remained constant. This has important implications
for current memory forensics tools where a profile of the kernel is needed
to analyze a memory dump. Our experiment suggests that, at least for
locating certain information, a generic structure layout can be used across
almost 100 kernel versions, released as far as 2 years apart.

Another important propriety we evaluated in this first scenario is the
consistency of the selected techniques. This is especially useful to better
understand how the continuous modifications of kernel objects might
impact memory dumps taken in a non-atomic fashion. This was recently
listed by Case et al. [CR17] as “one of the most pressing issues” of mem-
ory forensics. While Case focused on page smearing (an inconsistency
between the page tables and the referred physical memory), with this
experiment we show that this problem does not affect only page tables
but also references among kernel objects. The most important variable
that influence the consistency of the memory is the duration of the acqui-
sition process. To align with real world scenarios we run two different
tests, by setting the acquisition ratio respectively to the fastest and to the

110

5 .6 experiments

slowest tool as reported by McDown et al. [McD+16]. In that study, the
authors compared seven different memory acquisition tools, chosen from
a survey conducted over 41 companies specialized in memory forensics.

Interestingly, out of the 17 plugins we tested, three have a stability of
12,000 seconds, which means that none of the links they traversed ever
changed over a period of more than three hours. At the other end of
the spectrum, eleven plugins walked links that remained stable for less
than a minute (and in five cases even less than one second). In this case,
this may result in wrong pointers depending on how far in the physical
memory were the page containing the link and the page containing
the linked object. In fact, the last column of Table 5.1 shows that our
analysis found inconsistencies in five (when the fastest tool to acquire the
memory was used) or seven (in the case of the slowest solution was used)
plugins. The affected plugins interest different parts of the kernel, but they
can be divided to three distinct categories: Memory (linux_proc_maps,
linux_proc_maps_rb), File system (linux_check_fop, linux_find_file,
linux_lsof, linux_mount) and Process (linux_pidhashtable)

In the Memory category we found respectively 33 inconsistencies that
affected the connections among vm_area_struct of a process, which are
kept both in a linked list and in a red-black tree. These errors affected
five instances of apache, one of systemd-login and one of agetty. The
filesystem category included 40 unique inconsistencies in the hierarchy
of dentries (fields d_subdirs and d_child) 53 in the mapping from a
dentry to an inode (field d_inode). The latter object was also involved
in 43 cases of inconsistency towards its file_operations object (field
i_fop), while 23 file object had inconsistent edges pointing to their
dentry and its mount objects. (field f_path.dentry and f_path.mnt). The
most interesting cases of inconsistencies in this category – 10 in total
– involved the array containing the pointers to the files opened by a
process. This array belonged to three distinct instances of apache, one
of systemd and one of the mysql database. In the process category, we
only detected one case of inconsistent edge between a struct pid and
the pointed task_struct.

To systematically understand if these inconsistent paths can be avoided,
we used once again our kernel graph – this time by filtering out all the

111

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

5,000 inconsistent edges, and searching for alternative paths to reach the
same objects used by the affected plugins. Our graph exploration was
able to discover alternative paths for 107 out of 213 inconsistent edges. For
example, in the case of inconsistent array of opened files for the systemd

process the alternative path — which traversed 11 additional nodes —
was able to reach the target file by first locating the task_struct of
the same process, then accessing its corresponding files_struct and
from here reaching the file via the fd_array field (an array only used
when the process opens less than 64 files). While these detours were
sufficient in our experiments to retrieve the missing information, more
experiments are required to understand if those alternative paths can be
generalized to other scenarios. In any case, they show once more that the
giant connected component that hosts most of the relevant data structures
may allow analyst to find alternatives solution to mitigate the presence
of wrong pointers and inconsistent information. Sadly, almost 50% of the
affected pointers did not allow for an alternative path, thus emphasizing
again the severe consequences that the lack of atomicity can have on
memory analysis.

5 .6 .2 Scenario 2

In our second case study we want to understand if we can employ
the kernel graph to find new heuristics for common forensics tasks. In
particular, we focus on the starting point of many forensics investigation:
listing the processes running at the acquisition time. Currently Volatility
implements three different plugins1 to list the processes, respectively by
walking the process list, by using the pidhash hashtable, and by parsing
the kernel memory allocator. However, the latter is only applicable if the
kernel uses the SLAB allocator. Unfortunately, many distributions, such as
Ubuntu and Debian, ships by default with the SLUB allocator, which is

1 Volatility also includes a plugin to carve task_struct objects by using a signature, but
this is a parallel approach that does not require exploring memory but relies instead on
pattern-matching.

112

Ta
bl

e
5.

2:
C

om
pa

ri
so

n
be

tw
ee

n
di

ff
er

en
t

he
ur

is
ti

cs
us

ed
to

fin
d

pr
oc

es
se

s

C
at

eg
or

y
R

oo
t

N
od

e
N

ew
#

N
od

es
#

t
a
s
k
_
s
t
r
u
c
t

A
to

m
ic

it
y

St
ab

il
it

y
G

en
er

al
it

y
R

el
ia

bi
li

ty
C

on
si

st
en

cy

A
W

C
TG

M
TG

M
C

T
K

C

sc
he

du
lin

g
r
u
n
q
u
e
u
e
s

3
9

4
16

.7
1

20
.0

8
16

.7
0

0.
00

34
/8

5
—

7

r
o
o
t
_
t
a
s
k
_
g
r
o
u
p

3
10

4
16

.6
5

21
.1

4
16

.2
7

0.
00

18
/8

5
—

7

cg
ro

up
c
s
s
_
s
e
t
_
t
a
b
l
e

3
17

2
15

6
16

.2
7

43
3.

32
16

.2
4

10
.0

0
29

/8
5

7
7

c
g
r
p
_
d
f
l
_
r
o
o
t

3
18

6
15

6
16

.3
0

36
9.

10
16

.3
0

10
.0

0
29

/8
5

7
3

m
em

or
y/

fs
d
e
n
t
r
y
_
h
a
s
h
t
a
b
l
e

3
58

38
3

23
16

.3
1

58
12

0.
38

16
.3

0
0.

00
36

/8
5

7
7

i
n
o
d
e
_
h
a
s
h
t
a
b
l
e

3
14

99
9

23
16

.3
2

31
59

4.
48

16
.3

1
1.

00
36

/8
5

7
7

w
or

ke
rs

w
q
_
w
o
r
k
q
u
e
u
e
s

3
42

7
69

16
.6

8
17

27
.8

9
16

.2
4

20
0.

00
39

/8
5

7
3

pr
oc

es
s

i
n
i
t
_
t
a
s
k

(l
i
n
u
x
_
p
s
l
i
s
t

)
7

12
4

12
4

16
.2

7
18

9.
41

16
.2

4
30

.0
0

31
/8

5
7

3

i
n
i
t
_
t
a
s
k

(l
i
n
u
x
_
t
h
r
e
a
d
s

)
7

15
6

15
6

16
.2

7
28

0.
68

16
.2

4
30

.0
0

31
/8

5
7

3

p
i
d
_
h
a
s
h

(l
i
n
u
x
_
p
i
d
h
a
s
h

)
7

46
9

15
6

16
.6

7
45

1.
87

16
.6

7
30

.0
0

30
/8

5
7

3

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

not supported by Volatility and which does not keep track of full slabs –
thus making this technique not applicable anymore.

The main reason for looking for alternative solutions is that previous
research already pointed out that rootkits are already capable of removing
a process from the process list, but also to unlink a process from the pid
hashtable [Lin+11; RJX09; Rhe+10] thus leaving the forensic analyst
without a reliable method to list processes. Moreover, as we already
discussed in the previous scenario, the lack of atomicity of a memory
dump can introduce inconsistencies and result in broken pointers also in
the list of running processes. For these reason, it is important to find new
ways to locate processes, so that their output can be compared with other
techniques to spot inconsistencies or hidden processes.

This scenario is also interesting as it is harder to translate into a graph
exploration problem. In fact, since we are looking for techniques to list
all (or a part of) the running processes, this is equivalent to a collection
of, possibly not homogeneous, paths. As a result, listing all processes is
not simply equivalent to a path, but more to an algorithm to explore the
graph.

Our approach to find new heuristics is the following. First, we dis-
carded all the global roots that do not have a path to reach all the
task_structs in every graph we created. As a result, we were left with 621
global roots (out of more than 8000 we started with). Second, we modified
the graph to remove the edges already used by known techniques, such
as the tasks field. This helps removing all those paths that would just
find a different way to reach a single process, and then walk the list like
the existing plugins already do. While not useless per se, our goal is to
find new solutions and not variations of the existing ones.

By only considering the shortest paths from every root node to every
task structure, our system found more than 100 million distinct paths,
generated from a set of more than 966,000 sequences of vertices. This
is possible because, as we later discovered, the graph contained many
parallel edges connecting the same nodes. In fact, by putting things in
perspective, on average every sequence of vertices from a root node to
a target object generates more than 100 unique paths. The good news
is that this makes extremely difficult for attackers to modify all edges

114

5 .6 experiments

required to completely hide a process. On the other hand though, this
also makes very hard the task of identifying interesting patterns in this
multitude of options. For simplicity, we first decided to filter out all
similar edges – i.e., parallel edges that shares the same metrics (and that
therefore are equivalent for our purpose). This operation removed more
than 300,000 edges, some of which played an important role in the path
explosion. For example, many entries of the array e_cset_node of the
css_set object pointed multiple times to the same vertex. After this
operation the number of different paths decreased to about 7.5 millions
paths.

We then merged similar paths into templates, constructed by keeping
only the type of the objects present in the path, and by also removing
adjacent nodes with the same type (which capture the 	 link discussed
in Section 5.3). Finally, we removed templates that were subset of other
templates, resulting in a final set of 4067 path templates.

By manually exploring these options, we soon realized that they
belong to only four main families, depending on the kernel subsystem
they live in. The first one is related to the cgroup subsystem, the second to
the memory subsystem through the mm_struct structure, the third passes
through the work queues to reach kernel workers, and the last traverses the
struct rq and follows the curr field, a per-cpu runqueue. The results
are summarized in Table 5.2.

Unfortunately, there are no alternative paths that can improve the
atomicity. In fact, the bulk of the time gap (16.24 seconds) is due to
the difference in the acquisition time of the global entry points (located
in C1 in Figure 5.7) and the first task structure (located in C2 and C3).
However, all these edges are very stable and in only one case (for the
css_set_table) the value of this first connection ever changed during
our memory acquisition.

The memory-based heuristics walked a red-black tree (i_mmap) that
is very ephemeral and, while exploring it, we found more than 30 edges
that could be inconsistent if the memory dump is not taken atomically. A
similar problem affects the scheduler, whose structures also contain links
that change very rapidly. We observed an interesting phenomenon in the
cgroup-related heuristics. The first is inconsistent as it traverses a pointer

115

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

with a very large time gap. However, the second avoid this problem by
reaching the same css_set structures by taking a detour through several
intermediate objects which act as a bridge to lower the time gap. This is
an example of the counter-intuitive behavior we introduced in Section 5.5
(Figure 5.6), where we predicted that the most direct path might not
always be the best in term of consistency. The worker-related approach
was the best in terms of stability, consistency, and generality. However, its
goal is to list all active kernel workers and therefore this heuristic is unable
to capture normal userspace processes. Finally, the two heuristics in the
process category, which represent the Volatility plugins linux_pslist

and linux_threads, had both a stability of 30 seconds. This is strange, as
several processes should have started during this time frame. However,
new processes were all appended to the tail of the process list without
altering the intermediate nodes.

To test the Reliability of the heuristics we wrote a kernel module
that tries to hide an userspace process by unlinking it from the path
required by each heuristic. As a result, each case required a custom
hiding technique. For the cgroup heuristics we deleted the processes
from the cg_list linked list. For the memory we first found every non-
anonymous, i.e. backed by a file, vm_area_structs. We then delete all
this structures from the red black tree rooted in the inode, which keeps
track of all the vm_area_struct which are currently mapping this file.
For the first two process heuristics, we removed the process from the
process list (by unlinking task_struct.tasks), while for the pid_hash

we removed the struct pid from the hashtable. For the workqueue we
instead created a custom workqueue and queued a simple work function
that mimicked the behavior of the userspace process we used in our test.
We then proceeded by unlinking the worker from the linked list rooted
at worker_pool.workers.

In all the cases our program continued to run without observable
side-effects – showing that each path we listed so far can be tampered
with by a properly written rootkit. As we also discussed in Section 5.5,
we believe that more experiments are needed to improve the assessment
of a path’s reliability. While it is true that our program continued to
run, there can be a multitude of events (e.g. the kernel starting to swap

116

5 .6 experiments

Table 5.3: Optimal paths compared with Volatility paths

Name #
Nodes

Atomicity Stability Generality Consistency

AW CTG MTG MCT KC Fast Slow

File A – all structures in one cluster

Volatility 4 0.01 0.01 0.01 700 29/85 3 3

Opt-MTG 4 0.01 0.01 0.01 700 29/85 3 3

Opt-CTG 4 0.01 0.01 0.01 700 29/85 3 3

Opt-MCT 4 0.54 0.54 0.54 12000 29/85 3 3

Opt-KC 4 0.01 0.01 0.01 700 29/85 3 3

File B – structures located in two clusters

Volatility 4 8.72 8.72 8.72 12000 29/85 3 3

Opt-MTG 4 8.72 8.72 8.72 12000 29/85 3 3

Opt-CTG 4 8.72 8.72 8.72 12000 29/85 3 3

Opt-MCT 11 16.23 72.84 16.21 12000 36/85 3 3

Opt-KC 8 9.71 46.15 9.71 0 50/85 7 7

File C – structures located in one cluster, with intermediate steps in the other

Volatility 4 8.73 17.45 8.73 12000 29/85 3 3

Opt-MTG 3 0.003 0.003 0.003 12000 29/85 3 3

Opt-CTG 3 0.003 0.003 0.003 12000 29/85 3 3

Opt-MCT 3 16.23 82 16.20 12000 36/85 3 3

Opt-KC 10 9.71 55.56 9.71 0 50/85 7 7

memory) that might compromise the stability of the altered system.

117

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

5 .6 .3 Scenario 3

In the third scenario we show how we can compute optimal paths, with
respect to the different metrics we proposed in this work. As running
example, we picked this time the problem of finding the files opened by
a given process (identified by its task_struct).

To run our experiments we collected all the task_struct and all the
associated file objects and analyzed the paths Volatility would take to
move from the first to the second. However, we immediately run into a
strange behavior, as the metrics were returning very different results for
different files. To understand the reason we had to look closer at how the
physical pages were assigned to the different kernel objects.

Figure 5.7 explains very well the three classes of behavior we identi-
fied in our experiments. Since the clusters (C1, C2 and C3) are located far
apart in memory (and therefore they can be acquired far apart in time),
whenever a heuristic moves from one structure contained in one cluster
to another contained in a different one, it needs to take a “jump” with
associated a considerable time gap. If a task_struct and all the interme-
diate objects needed to reach the open files are located inside the same
cluster, then time gaps are extremely small and path are always consistent.
In this case paths are already optimal and there is no much room for
improvement. If they are instead located in two different clusters, then the
atomicity increase by almost nine seconds. However, the picture shows
that also in this case it is not possible to find better alternatives, as all
paths would need to cross the gap between the clusters– incurring in the
same penalty. Finally, there are examples in which the task_struct and
the file objects were located in the same cluster, but the intermediate
structures traversed by Volatility resided in the other one. In this case the
Volatility heuristic needs to jump across clusters twice, incurring twice in
the risk of inconsistent links. But in this third case it might be possible
to use our graph to find an alternative path that is fully contained in the
same cluster.

An example of each of these three cases is shown in Table 5.3, along
with the metrics computed on the Volatility heuristic and those computed

118

5 .7 discussion and future directions

on the optimal paths extracted from our graph. Regarding the cumulative
time gap (CTG), our insight was correct and only paths belonging to
the third category could be considerably improved. In fact, the table
shows that from more than 17 seconds in the Volatility case, the optimal
path had a CTG of less than 0.01 seconds. Accordingly, also the MTG
decreased with the same magnitude. As we discussed in the previous
scenario, finding a consistent path for this particular problem is sometimes
possible. Indeed, when this is the case, we were able to find a path that
remained stable for all our experiments. Interestingly, for the second case,
one of the paths with maximum stability has also higher generality than
the one used by Volatility but, since it passes through more nodes, it has
an higher CTG. On the other hand, maximizing the generality of a path
has a serious impact to its consistency and stability. In fact, while we
were able to find paths which are constant over 50 kernels, none of them
was consistent, independently to the speed of acquisition.

5 .7 discussion and future directions

The goal of our work is to provide a principled way to think about mem-
ory forensics as a graph-related optimization task. This way of modeling
the problem opens the door to a multitude of different possibilities to
evaluate and compare existing techniques, design algorithms to compute
new alternative solutions, validate the consistency of kernel structures,
or propose heuristics customized to different experiments setup and
acquired dump.

We tried to discuss some of these opportunities through our exper-
iments, but we are aware that many questions are still open and new
research is needed to shed light to each individual use case. For this
reason, we decided to release our code and data to other researchers,
hoping that this will facilitate new experiments in this field and accelerate
new findings based on our methodology.

In this chapter we focused on the analysis of traditional computers.
This choice was simply dictated by the fact that this is the area where
memory forensics is more mature and for which most of the heuristics

119

back to the whiteboard : a principled approach for the

assessment and design of memory forensic techniques

have been designed so far. Nevertheless, we believe that our system could
be used to help researchers to better design and implement future forensic
frameworks tailored to emerging technologies such as mobile devices
and the Internet of Things (IoT).

Main findings: our experiments show that a large part of the kernel
graph belongs to a giant connected component. This means there are
thousands, or even millions of possible paths that allow an analyst to
move from one node to another. It also means that it is very difficult
for an attacker to completely hide some piece of information from all
possible paths.

Another consequence of the interconnected topology of the graph is
that it is hard for an analyst to simply inspect all possible paths, looking
for new techniques to implement in memory forensic tools. We tried to do
this in our second scenario, and run into a path explosion problem even
by considering only all shortest paths. However, this effort allowed us to
discover two new promising techniques (one based on cgroups and one
on workrqueues) that can complement those used today by Volatility 2.

Sadly, the problem of finding an optimal path turned out to be very
delicate and dependent on multiple factors. In fact, the exact memory
layout when the snapshot is acquired may affect the metrics associated to
different links (e.g., one path may be optimal for one dump but poor in
another). This may suggest that maybe, instead of relaying on a single
solution, new techniques should try to explore the graph by following
many parallel paths.

Moreover, we are aware that some of the metrics we proposed in this
thesis turned out to be ineffective in the evaluation. However, we decided
to include them anyway in the paper for two reasons. First, because we
did not know in advance that (for example the Maximum Time Gap)
would be irrelevant in the analysis of common Linux kernels. This has
nothing to do with the heuristic itself, but with the fact that the kernel
allocates global variables (entry points) very far from other objects. We
believe this fact to be an interesting finding which came as a consequence
of applying our framework. Second, while this is true in our experiments,

2 We implemented both as Volatility plugins

120

5 .7 discussion and future directions

it is probably not the case on other operating systems or OS kernels. So,
we believe it is still interesting to implement and discuss those ineffective
metrics in our framework.

Finally, we want to stress the fact that our main contribution is not
the discovery of new technique, but the introduction of a model that can
be used to reason about memory analysis, explore its complexity, and
perform quantitative measurements.

Future Work: In this thesis we discuss a number of metrics an analyst
can use to compare different solutions. However, the list is certainly not
exhaustive and we expect more to be defined in the future. More work
is also needed to understand which metric is better at capturing certain
aspects of an investigation.

Reliability is certainly one of the most important characteristic of an
analysis technique. Unfortunately, it is also the only one we discussed
that cannot be extracted with automated experiments. More research is
needed to fill this gap and enable to compute the reliability of a large
amount of links among kernel objects.

Finally, to be useful in practice, our prototype should be applied to a
larger number of memory dumps taken from different systems. This could
help generalize the results and customize the analysis to an environment
that resemble the one under investigation.

121

6F U T U R E W O R K

Memory forensics is a constantly evolving field and continuous research
coming from academia and industry is essential for this discipline.

Therefore, a first line of future research focuses on keeping the ex-
isting tools and techniques up to date with new hardware features and
operating systems development. For example, both AMD and Intel have
recently announced the support of physical memory encryption in cloud
environments – respectively under the name of Secure Encrypted Vir-
tualization (SEV) and Multi-Key Total Memory Encryption (MKTME).
To date, it is still unclear how memory acquisition tools will be able
to cope with these new technologies. New operating systems features
also introduce challenges that must be tackled by forensics practitioners.
For example, a compressed in-memory swap has been introduced in the
latest version of the Windows kernel. While this means that the analyst is
relieved from the burden of acquiring the pagefile from the disk, it also
implies that the inner working of the algorithm implementing this fea-
ture must be understood to make this information available to forensics
frameworks.

Another line of research that can have a substantial impact on forensics
investigation concerns Internet of Things devices and networks appli-
ances. For a range of different reasons, memory forensics analyses on
these devices is limited to non-existent. First of all, acquiring the volatile
memory involves generally more challenges than the environments where
memory forensics is nowadays applied. While in this thesis we showed
how to automatically extract profiles to analyze devices running variants
of the Linux operating system, a large number of devices run proprietary
operating systems whom internals are not even public and documented.

While new areas and new technologies are important, we believe that
research in this field should also focus on well known problems that
affect the existing solutions. For example, in the past few years many
anti-memory forensics attacks have been presented by researchers [HS12;

123

future work

Zha+15; Zha+18; Rut07]. To the best of our knowledge, while these attacks
have never been spotted in the wild, we believe the community should
not be caught off guard but rather harden their tools and techniques in
advance to cope with potential evasive behaviors.

The work presented in this thesis also offers several starting points
for future research. For example, a recurring topic in this thesis is the
study of inconsistencies related to non-atomic acquisition. In fact, the
temporal dimension and the kernel graph – discussed respectively in
Chapter 3 and Chapter 5 – are proposed as a way to asses the atomicity
of a memory dump. Nevertheless, the problem of finding inconsistencies
for a generic kernel data structure is still an open problem. Ideally, kernel
lists and trees should be checked with rules before being traversed and
the analyst should be warned if an inconsistency is detected. While in this
thesis we propose an example of this rules, i.e. to check the list and the
tree of memory mappings (Section 3.4.2), it is still unclear if is possible to
automatically extracting similar heuristics for other data structures.

Finally, in Chapter 5, we propose several scenarios where the graph
of kernel structures can be used. One of these scenarios involves finding
new heuristics to perform a forensics task. The way this problem was
solved was to list all the paths from global variables to each task_struct,
extract a path template and manually check these templates. This strategy
was adopted because forensic plugins are not really paths on a graph,
but more precisely they represent some form of pattern, or algorithm,
to explore the nodes in the graph. In practical terms this means that
proving that a global variable is connected to every task does not always
correspond to have found a new heuristic to list the processes. New
research is needed to design new approaches to explore the graph and
mine information and rules in an automated fashion.

Another aspect of our experiments that requires further research is the
fact the Reliability of a path required manual intervention to be evaluated.
Fully automating this step could help to build memory forensics tools
more robust against both current and future malware evasion techniques.

124

bibliography

B I B L I O G R A P H Y

[- M18] Redhat crash utility - Mailing List. Using crash with structure layout
randomized kernel. https://crash-utility.redhat.narkive.com/
WZYTWez6/using-crash-with-structure-layout-randomized-

kernel. 2018.

[AD07] Ali Reza Arasteh and Mourad Debbabi. “Forensic memory analysis:
From stack and code to execution history”. In: digital investigation 4
(2007), pp. 114–125.

[Ade06] Frank Adelstein. “Live forensics: diagnosing your system without
killing it first”. In: Communications of the ACM 49.2 (2006), pp. 63–66.

[Al +11] Noora Al Mutawa et al. “Forensic artifacts of Facebook’s instant
messaging service”. In: Internet Technology and Secured Transactions
(ICITST), 2011 International Conference for. IEEE. 2011, pp. 771–776.

[BA18] Manish Bhatt and Irfan Ahmed. “Leveraging relocations in ELF-
binaries for Linux kernel version identification”. In: Digital Investi-
gation 26 (2018), S12–S20.

[BD04] Michael Becher and Maximillian Dornseif. “Feuriges Hacken-Spaß
mit Firewire”. In: 21C3: Proceedings of the 21st Chaos Communication
Congress. Vol. 10. 2004.

[BD17] Frank Block and Andreas Dewald. “Linux memory forensics: Dis-
secting the user space process heap”. In: Digital Investigation 22
(2017), S66–S75.

[BDK05] Michael Becher, Maximillian Dornseif, and Christian N Klein.
“FireWire: all your memory are belong to us”. In: Proceedings of
CanSecWest (2005).

[BGI08] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. “Automatic in-
ference and enforcement of kernel data structure invariants”. In:
Computer Security Applications Conference, 2008. ACSAC 2008. Annual.
IEEE. 2008, pp. 77–86.

[Bha+18] Rohit Bhatia et al. ““Tipped Off by Your Memory Allocator”: Device-
Wide User Activity Sequencing from Android Memory Images”. In:
(2018).

125

https://crash-utility.redhat.narkive.com/WZYTWez6/using-crash-with-structure-layout-randomized-kernel
https://crash-utility.redhat.narkive.com/WZYTWez6/using-crash-with-structure-layout-randomized-kernel
https://crash-utility.redhat.narkive.com/WZYTWez6/using-crash-with-structure-layout-randomized-kernel

bibliography

[BHJ+09] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. “Gephi:
an open source software for exploring and manipulating networks.”
In: Icwsm 8 (2009), pp. 361–362.

[BP98] Sergey Brin and Lawrence Page. “The anatomy of a large-scale
hypertextual web search engine”. In: Computer networks and ISDN
systems 30.1-7 (1998), pp. 107–117.

[Bug18] GCC Bugzilla. Bug 84052 - Using Randomizing structure layout plugin
in linux kernel compilation doesn’t generate proper debuginfo. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=84052. 2018.

[Bur+11] Elie Bursztein et al. “Openconflict: Preventing real time map hacks
in online games”. In: Security and Privacy (SP), 2011 IEEE Symposium
on. IEEE. 2011, pp. 506–520.

[Car+09] Martim Carbone et al. “Mapping kernel objects to enable systematic
integrity checking”. In: Proceedings of the 16th ACM conference on
Computer and communications security. ACM. 2009, pp. 555–565.

[Car15] Harlan Carvey. Digital forensics of the physical memory. 2015. url:
http://seclists.org/incidents/2005/Jun/22.

[Cas+10] Andrew Case et al. “Treasure and tragedy in kmem_cache mining
for live forensics investigation”. In: digital investigation 7 (2010), S41–
S47.

[CBS11] Richard Carbone, C Bean, and M Salois. An in-depth analysis of the
cold boot attack: Can it be used for sound forensic memory acquisition?
Tech. rep. DEFENCE RESEARCH and DEVELOPMENT CANADA
VALCARTIER (QUEBEC), 2011.

[CG04] Brian D Carrier and Joe Grand. “A hardware-based memory acqui-
sition procedure for digital investigations”. In: Digital Investigation
1.1 (2004), pp. 50–60.

[Cha+10] Ellick Chan et al. “Forenscope: A framework for live forensics”. In:
Proceedings of the 26th Annual Computer Security Applications Confer-
ence. ACM. 2010, pp. 307–316.

[CL16] Juan Caballero and Zhiqiang Lin. “Type inference on executables”.
In: ACM Computing Surveys (CSUR) 48.4 (2016), p. 65.

[CMR10] Andrew Case, Lodovico Marziale, and Golden G Richard III. “Dy-
namic recreation of kernel data structures for live forensics”. In:
Digital Investigation 7 (2010), S32–S40.

126

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84052
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84052
http://seclists.org/incidents/2005/Jun/22

bibliography

[Coh12] M Cohen. WinPMEM. 2012.

[Coh14] Michael Cohen. “Rekall memory forensics framework”. In: DFIR
Prague (2014).

[Cox+18] Guilherme Cox et al. “Secure, Consistent, and High-Performance
Memory Snapshotting”. In: Proceedings if the 8th ACM Conference on
Data and Application Security and Privacy conference. 2018.

[Coz+08] Anthony Cozzie et al. “Digging for Data Structures.” In: OSDI.
Vol. 8. 2008, pp. 255–266.

[CR16] Andrew Case and Golden G Richard III. “Detecting objective-C
malware through memory forensics”. In: Digital Investigation 18
(2016), S3–S10.

[CR17] Andrew Case and Golden G Richard. “Memory forensics: The path
forward”. In: Digital Investigation 20 (2017), pp. 23–33.

[Cui+12] Weidong Cui et al. “Tracking Rootkit Footprints with a Practical
Memory Analysis System.” In: USENIX Security Symposium. 2012,
pp. 601–615.

[Das00] Manuvir Das. “Unification-based pointer analysis with directional
assignments”. In: Acm Sigplan Notices 35.5 (2000), pp. 35–46.

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT
solver”. In: International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

[Dol+09] Brendan Dolan-Gavitt et al. “Robust signatures for kernel data
structures”. In: Proceedings of the 16th ACM conference on Computer
and communications security. ACM. 2009, pp. 566–577.

[Dol+11] Brendan Dolan-Gavitt et al. “Virtuoso: Narrowing the semantic gap
in virtual machine introspection”. In: Security and Privacy (SP), 2011
IEEE Symposium on. IEEE. 2011, pp. 297–312.

[Dol07] Brendan Dolan-Gavitt. “The VAD tree: A process-eye view of physi-
cal memory”. In: digital investigation 4 (2007), pp. 62–64.

[DT08] Brendan Dolan-Gavitt and Patrick Traynor. Using kernel type graphs
to detect dummy structures. Tech. rep. Technical report, Georgia Tech,
2008.

[Fen+14] Qian Feng et al. “Mace: High-coverage and robust memory analysis
for commodity operating systems”. In: Proceedings of the 30th annual
computer security applications conference. ACM. 2014, pp. 196–205.

127

bibliography

[Fok+11] Alexander Fokin et al. “SmartDec: approaching C++ decompila-
tion”. In: 2011 18th Working Conference on Reverse Engineering. IEEE.
2011, pp. 347–356.

[GF16] Michael Gruhn and Felix C Freiling. “Evaluating atomicity, and
integrity of correct memory acquisition methods”. In: Digital Inves-
tigation 16 (2016), S1–S10.

[GL16] Yufei Gu and Zhiqiang Lin. “Derandomizing kernel address space
layout for memory introspection and forensics”. In: Proceedings of
the Sixth ACM Conference on Data and Application Security and Privacy.
ACM. 2016, pp. 62–72.

[GLB13] Mariano Graziano, Andrea Lanzi, and Davide Balzarotti. “Hypervi-
sor memory forensics”. In: International Workshop on Recent Advances
in Intrusion Detection. Springer. 2013, pp. 21–40.

[Gor] Mel Gorman. Understanding the Linux Virtual Memory Manager. url:
http://www.makelinux.net/books/lvmm/understand007#toc31.

[Gra16] Mariano Graziano. ksfinder - Retrieve exported kernel symbols from
physical memory dumps. https://github.com/emdel/ksfinder.
2016.

[Gu+14] Yufei Gu et al. “Multi-aspect, robust, and memory exclusive guest
os fingerprinting”. In: IEEE Transactions on Cloud Computing 2.4
(2014), pp. 380–394.

[Gui17] Adrien Guinet. wannakey. https : / / github . com / aguinet /

wannakey. 2017.

[Hal+09] J Alex Halderman et al. “Lest we remember: cold-boot attacks on
encryption keys”. In: Communications of the ACM 52.5 (2009), pp. 91–
98.

[HBN09] Brian Hay, Matt Bishop, and Kara Nance. “Live analysis: Progress
and challenges”. In: IEEE Security & Privacy 2 (2009), pp. 30–37.

[HL07] Ben Hardekopf and Calvin Lin. “The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code”. In: ACM
SIGPLAN Notices. Vol. 42. 6. ACM. 2007, pp. 290–299.

[Hof+11] Owen S Hofmann et al. “Ensuring operating system kernel integrity
with OSck”. In: ACM SIGARCH Computer Architecture News. Vol. 39.
1. ACM. 2011, pp. 279–290.

[HS12] Takahiro Haruyama and Hiroshi Suzuki. “One-byte modification
for breaking memory forensic analysis”. In: Black Hat Europe (2012).

128

http://www.makelinux.net/books/lvmm/understand007#toc31
https://github.com/emdel/ksfinder
https://github.com/aguinet/wannakey
https://github.com/aguinet/wannakey

bibliography

[HT01] Nevin Heintze and Olivier Tardieu. “Ultra-fast aliasing analysis us-
ing CLA: A million lines of C code in a second”. In: ACM SIGPLAN
Notices. Vol. 36. 5. ACM. 2001, pp. 254–263.

[Hue+07] Ewa Huebner et al. “Persistent systems techniques in forensic ac-
quisition of memory”. In: Digital Investigation 4.3-4 (2007), pp. 129–
137.

[Ibr+13] Amani S Ibrahim et al. “DIGGER: Identifying OS Kernel Objects
for Run-time Security Analysis”. In: International Journal on Internet
and Distributed Computing Systems 3.1 (2013), pp. 184–194.

[Jin+14] Wesley Jin et al. “Recovering C++ objects from binaries using inter-
procedural data-flow analysis”. In: Proceedings of ACM SIGPLAN
on Program Protection and Reverse Engineering Workshop 2014. ACM.
2014, p. 1.

[Jon07] Ryan Jones. “Safer live forensic acquisition”. In: Computer Science
Laboratory, University of Kent at (2007).

[Kor07] Jesse D Kornblum. “Using every part of the buffalo in Windows
memory analysis”. In: Digital Investigation 4.1 (2007), pp. 24–29.

[Le 18] Stefan Le Berre. From corrupted memory dump to rootkit detection.
https://exatrack.com/public/Memdump_NDH_2018.pdf. 2018.

[Lig+14] Michael Hale Ligh et al. The art of memory forensics: detecting malware
and threats in windows, linux, and Mac memory. John Wiley & Sons,
2014.

[Lin+11] Zhiqiang Lin et al. “SigGraph: Brute Force Scanning of Kernel Data
Structure Instances Using Graph-based Signatures.” In: NDSS. 2011.

[LK08] Eugene Libster and Jesse D Kornblum. “A proposal for an integrated
memory acquisition mechanism”. In: ACM SIGOPS Operating Sys-
tems Review 42.3 (2008), pp. 14–20.

[LPF19] Tobias Latzo, Ralph Palutke, and Felix Freiling. “A universal tax-
onomy and survey of forensic memory acquisition techniques”. In:
Digital Investigation 28 (2019), pp. 56–69.

[LV08] Marthie Lessing and Basie Von Solms. “Live forensic acquisition
as alternative to traditional forensic processes”. In: International
Conference on IT Incident Management & IT Forensic. 2008.

[LWN09] LWN. Linux kernel design patterns - Part 2. https://lwn.net/

Articles/336255/. 2009.

129

https://exatrack.com/public/Memdump_NDH_2018.pdf
https://lwn.net/Articles/336255/
https://lwn.net/Articles/336255/

bibliography

[LZX10] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. “Automatic reverse
engineering of data structures from binary execution”. In: Proceed-
ings of the 11th Annual Information Security Symposium. CERIAS-
Purdue University. 2010, p. 5.

[Mac13] Holger Macht. “Live memory forensics on android with volatility”.
In: Friedrich-Alexander University Erlangen-Nuremberg (2013).

[Man] Mandiant. Memoryze.

[Mar+10] Lorenzo Martignoni et al. “Live and Trustworthy Forensic Analy-
sis of Commodity Production Systems.” In: RAID. Springer. 2010,
pp. 297–316.

[Mar17] Jean Marsault. Volatility-notpetyakeys. https : / / github . com /

Iansus/Volatility-notpetyakeys. 2017.

[Mat+13] Michael Matz et al. “System v application binary interface”. In:
AMD64 Architecture Processor Supplement, Draft v0 99 (2013).

[MC13] Andreas Moser and Michael I Cohen. “Hunting in the enterprise:
Forensic triage and incident response”. In: Digital Investigation 10.2
(2013), pp. 89–98.

[McD+16] Robert J McDown et al. “In-Depth Analysis of Computer Memory
Acquisition Software for Forensic Purposes”. In: Journal of forensic
sciences 61 (2016), S110–S116.

[Myc99] Alan Mycroft. “Type-based decompilation (or program reconstruc-
tion via type reconstruction)”. In: European Symposium on Program-
ming. Springer. 1999, pp. 208–223.

[Ots+18] Yuto Otsuki et al. “Building stack traces from memory dump of
Windows x64”. In: Digital Investigation 24 (2018), S101–S110.

[PB19] Fabio Pagani and Davide Balzarotti. “Back to the Whiteboard: a
Principled Approach for the Assessment and Design of Memory
Forensic Techniques”. In: 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, 2019, pp. 1751–
1768. isbn: 978-1-939133-06-9. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/pagani.

[Pei14] Tiago P. Peixoto. “The graph-tool python library”. In: figshare (2014).
doi: 10.6084/m9.figshare.1164194. url: http://figshare.
com/articles/graph_tool/1164194 (visited on 09/10/2014).

130

https://github.com/Iansus/Volatility-notpetyakeys
https://github.com/Iansus/Volatility-notpetyakeys
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
https://www.usenix.org/conference/usenixsecurity19/presentation/pagani
https://doi.org/10.6084/m9.figshare.1164194
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194

bibliography

[PFB19] Fabio Pagani, Oleksii Fedorov, and Davide Balzarotti. “Introducing
the Temporal Dimension to Memory Forensics”. In: ACM Transac-
tions on Privacy and Security (TOPS) 22.2 (2019), p. 9.

[PH07] Nick L Petroni Jr and Michael Hicks. “Automated detection of
persistent kernel control-flow attacks”. In: Proceedings of the 14th
ACM conference on Computer and communications security. ACM. 2007,
pp. 103–115.

[PKH07] David J Pearce, Paul HJ Kelly, and Chris Hankin. “Efficient field-
sensitive pointer analysis of C”. In: ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 30.1 (2007), p. 4.

[Pra+13] Aravind Prakash et al. “Manipulating semantic values in kernel data
structures: Attack assessments and implications”. In: Dependable
Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International
Conference on. IEEE. 2013, pp. 1–12.

[QV15] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn-The ultimate
CPU emulator. 2015.

[RAS14] Vassil Roussev, Irfan Ahmed, and Thomas Sires. “Image-based
kernel fingerprinting”. In: Digital Investigation 11 (2014), S13–S21.

[Rei+12] Alessandro Reina et al. “When hardware meets software: a bullet-
proof solution to forensic memory acquisition”. In: Proceedings of
the 28th annual computer security applications conference. ACM. 2012,
pp. 79–88.

[Rhe+10] Junghwan Rhee et al. “Kernel malware analysis with un-tampered
and temporal views of dynamic kernel memory”. In: International
Workshop on Recent Advances in Intrusion Detection. Springer. 2010,
pp. 178–197.

[RJX09] Ryan Riley, Xuxian Jiang, and Dongyan Xu. “Multi-aspect profiling
of kernel rootkit behavior”. In: Proceedings of the 4th ACM European
conference on Computer systems. ACM. 2009, pp. 47–60.

[Ruf08] Nicolas Ruff. “Windows memory forensics”. In: Journal in Computer
Virology 4.2 (2008), pp. 83–100.

[Rut07] Joanna Rutkowska. “Beyond the CPU: Defeating hardware based
RAM acquisition”. In: Proceedings of BlackHat DC 2007 (2007).

[Sal+14] Brendan Saltaformaggio et al. “DSCRETE: Automatic Rendering of
Forensic Information from Memory Images via Application Logic
Reuse.” In: USENIX Security Symposium. 2014, pp. 255–269.

131

bibliography

[Sal+15a] Brendan Saltaformaggio et al. “GUITAR: Piecing together android
app GUIs from memory images”. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM.
2015, pp. 120–132.

[Sal+15b] Brendan Saltaformaggio et al. “Vcr: App-agnostic recovery of pho-
tographic evidence from android device memory images”. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security. ACM. 2015, pp. 146–157.

[Sal+16] Brendan Saltaformaggio et al. “Screen after Previous Screens:
Spatial-Temporal Recreation of Android App Displays from Mem-
ory Images.” In: USENIX Security Symposium. 2016, pp. 1137–1151.

[Sal18] Brendan Saltaformaggio. “Convicted by Memory: Recovering
Spatial-Temporal Digital Evidence from Memory Images”. In: At-
lanta, GA: USENIX Association, 2018.

[SC13] Johannes Stüttgen and Michael Cohen. “Anti-forensic resilient mem-
ory acquisition”. In: Digital Investigation 10 (2013), S105–S115.

[SC16] Arkadiusz Socała and Michael Cohen. “Automatic profile gener-
ation for live Linux Memory analysis”. In: Digital Investigation 16
(2016), S11–S24.

[Sch06] Andreas Schuster. “Searching for processes and threads in Microsoft
Windows memory dumps”. In: digital investigation 3 (2006), pp. 10–
16.

[Sch07] Bradley Schatz. “BodySnatcher: Towards reliable volatile memory
acquisition by software”. In: digital investigation 4 (2007), pp. 126–
134.

[Sho+16] Yan Shoshitaishvili et al. “SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis”. In: IEEE Symposium on Security and
Privacy. 2016.

[Son+18] Wei Song et al. “DeepMem: Learning Graph Neural Network Mod-
els for Fast and Robust Memory Forensic Analysis”. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2018, pp. 606–618.

[Spe06] Bradley Spengler. “Grsecurity”. In: Internet [May 27, 2006]. Available
on: http://grsecurity. net/lsm. php (2006).

132

bibliography

[SPE12] Christian Schneider, Jonas Pfoh, and Claudia Eckert. “Bridging the
semantic gap through static code analysis”. In: Proceedings of EuroSec
12 (2012).

[SS10] Matthew Simon and Jill Slay. “Recovery of skype application activity
data from physical memory”. In: Availability, Reliability, and Security,
2010. ARES’10 International Conference on. IEEE. 2010, pp. 283–288.

[SS11] Matthew Phillip Simon and Jill Slay. “Recovery of pidgin chat
communication artefacts from physical memory: a pilot test to
determine feasibility”. In: Availability, Reliability and Security (ARES),
2011 Sixth International Conference on. IEEE. 2011, pp. 183–188.

[SSB10] Asia Slowinska, Traian Stancescu, and Herbert Bos. “DDE: dynamic
data structure excavation.” In: ApSys. 2010, pp. 13–18.

[SSB11] Asia Slowinska, Traian Stancescu, and Herbert Bos. “Howard: A
Dynamic Excavator for Reverse Engineering Data Structures.” In:
NDSS. 2011.

[Ste96] Bjarne Steensgaard. “Points-to analysis in almost linear time”. In:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages. ACM. 1996, pp. 32–41.

[Sun+15] He Sun et al. “Reliable and Trustworthy Memory Acquisition on
Smartphones”. In: IEEE Transactions on Information Forensics and
Security 10.12 (2015), pp. 2547–2561.

[Svi16] Pavel Sviderski. Universal memory forensic analysis of Android systems.
https://github.com/psviderski/volatility-android. 2016.

[Syl12] Joe Sylve. “Lime-linux memory extractor”. In: Proceedings of the 7th
ShmooCon conference. 2012.

[Sym18] ISTR Symantec. Internet Security Threat Report. https : / / www .

symantec.com/content/dam/symantec/docs/reports/istr-24-

2019-en.pdf. 2018.

[TDC10] Katerina Troshina, Yegor Derevenets, and Alexander Chernov. “Re-
construction of composite types for decompilation”. In: 2010 10th
IEEE Working Conference on Source Code Analysis and Manipulation.
IEEE. 2010, pp. 179–188.

[Urb+14] David Urbina et al. “Sigpath: A memory graph based approach
for program data introspection and modification”. In: European
Symposium on Research in Computer Security. Springer. 2014, pp. 237–
256.

133

https://github.com/psviderski/volatility-android
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

bibliography

[VF11] Stefan Vömel and Felix C Freiling. “A survey of main memory
acquisition and analysis techniques for the windows operating
system”. In: Digital Investigation 8.1 (2011), pp. 3–22.

[VF12] Stefan Vömel and Felix C Freiling. “Correctness, atomicity, and in-
tegrity: defining criteria for forensically-sound memory acquisition”.
In: Digital Investigation 9.2 (2012), pp. 125–137.

[VS13] Stefan Vömel and Johannes Stüttgen. “An evaluation platform for
forensic memory acquisition software”. In: Digital Investigation 10
(2013), S30–S40.

[VY05] Amit Vasudevan and Ramesh Yerraballi. “Stealth breakpoints”. In:
Computer security applications conference, 21st Annual. IEEE. 2005, 10–
pp.

[Wal07] Aaron Walters. The volatility framework: Volatile memory artifact extrac-
tion utility framework. 2007.

[Wik] Forensics Wiki. Memory Imaging. url: https : / / www .

forensicswiki.org/wiki/Tools:Memory_Imaging.

[WL95] Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer
analysis for C programs. Vol. 30. 6. ACM, 1995.

[WT14] Jake Williams and Alissa Torres. “ADD-Complicating Memory
Forensics Through Memory Disarray”. In: ShmooCon, Jan (2014).

[XCB09] Chaoting Xuan, John A Copeland, and Raheem A Beyah. “Toward
Revealing Kernel Malware Behavior in Virtual Execution Environ-
ments.” In: RAID. Vol. 9. Springer. 2009, pp. 304–325.

[Yam+14] Fabian Yamaguchi et al. “Modeling and discovering vulnerabilities
with code property graphs”. In: 2014 IEEE Symposium on Security
and Privacy. IEEE. 2014, pp. 590–604.

[Zha+15] Ning Zhang et al. “Now you see me: Hide and seek in physical
address space”. In: Proceedings of the 10th ACM symposium on Infor-
mation, computer and communications security. ACM. 2015, pp. 321–
331.

[Zha+17] Shuhui Zhang et al. “Research on Linux Kernel Version Diversity for
Precise Memory Analysis”. In: International Conference of Pioneering
Computer Scientists, Engineers and Educators. Springer. 2017, pp. 373–
385.

134

https://www.forensicswiki.org/wiki/Tools:Memory_Imaging
https://www.forensicswiki.org/wiki/Tools:Memory_Imaging

bibliography

[Zha+18] Ning Zhang et al. “Memory forensic challenges under misused
architectural features”. In: IEEE Transactions on Information Forensics
and Security 13.9 (2018), pp. 2345–2358.

[ZMW16] Shuhui Zhang, Xiangxu Meng, and Lianhai Wang. “An adaptive
approach for Linux memory analysis based on kernel code recon-
struction”. In: EURASIP Journal on Information Security 2016.1 (2016),
p. 14.

135

