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Foreword

The research work presented in this thesis is the result of three collaborations. The first
one concerns the dairy resource monitoring application and is a collaboration between the
French National Institute for Research in Computer Science and Automation (Inria) and
the French National Institute for Agriculture, Food and Environment (INRAE), under
the French Digital Agriculture Convergence Lab (#DigitAg). On the same application,
the second one is a collaboration that I have built between #DigitAg and Zhejiang Uni-
versity, China. The last one concerns the earthquake early warning application and it is a
collaboration that I have jointly built between Inria and the National Science Foundation
(NSF), United States. Information about the collaborations will be given in introduction
of each research work.

This thesis was supported by the French National Research Agency under the Invest-
ments for the Future Program (ANR-16-CONV-0004).

Figure 1 – Logos of the collaborating institutions on the research work of this thesis
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Résumé en Français

Le déploiement massif de capteurs couplé à leur exploitation dans de multiples secteurs
génère une masse considérable de données multivariées qui se sont révélées clés pour la
recherche scientifique, les activités des entreprises et la définition de politiques publiques
[Cussins Newman, 2019; Esteva et al., 2019; Ransbotham et al., 2019]. L’exploitation
de ces données, de nature diverse et en grande quantité, est rendue possible grâce à
l’intelligence artificielle. Prof. Wolfram Burgard propose une définition de l’intelligence
artificielle : “systems that can interpret sensory data, create internal models, and then
develop activities out of this, reason about this and create the next best action to take” 1.
En particulier, nous pouvons observer une tendance cette dernière décennie à utiliser
l’apprentissage automatique pour automatiser la prise de décision. L’apprentissage au-
tomatique est un sous-domaine de l’intelligence artificielle qui se réfère aux algorithmes
capables d’apprendre à partir des données [Goodfellow et al., 2016]. Comme établi dans
[WIPO, 2019], l’apprentissage automatique est la technique la plus représentée dans les
brevets (89% des brevets relatifs à l’intelligence artificielle) et est incluse dans plus d’un
tiers de toutes les inventions identifiées (Mars 2018). Cependant, pour de nombreuses
applications, l’adoption d’algorithmes d’apprentissage automatique ne peut se reposer
uniquement sur la performance. Par exemple, le règlement général sur la protection des
données de l’Union européenne, entré en application le 25 Mai 2018, introduit un droit à
l’explication pour tous les individus afin qu’ils obtiennent des “meaningful explanations
of the logic involved” lorsque la prise de décision automatisée a des “legal effects” sur les
individus ou les affecte significativement 2.

Plus spécifiquement, les données multivariées qui intègrent une évolution temporelle,
c’est-à-dire des séries temporelles, ont reçu une attention toute particulière ces dernières
années, notamment à travers des applications critiques de monitoring (e.g. santé [Li et
al., 2018a], mobilité [Jiang et al., 2019]). Une série temporelle est une séquence de valeurs
réelles ordonnées en fonction du temps; et lorsque que plusieurs séries temporelles sont
enregistrées simultanément par un jeu de capteurs, elles forment une série temporelle mul-
tivariée. Les séries temporelles multivariées associées avec les évènements correspondant

1. https://www.itu.int/en/ITU-T/AI/2018
2. https://ec.europa.eu/info/law/law-topic/data-protection_en
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peuvent être exploitées pour des applications de classification en apprentissage automa-
tique. L’objectif de la classification de séries temporelles multivariées est d’apprendre la
relation entre une série temporelle multivariée et son annotation. Un exemple de série tem-
porelle multivariée annotée est donné en Figure 2. Cette Figure représente la première série
temporelle multivariée du jeu de données test de l’UEA Atrial Fibrilation [Bagnall et al.,
2018] appartenant à la classe Non-Terminating Atrial Fibrilation. Cette série temporelle
multivariée est composée de deux dimensions (deux signaux ECG) avec une longueur
égale à 640 (une période de 5 secondes avec 128 échantillons par seconde). L’objectif d’un
classifieur de séries temporelles multivariées est d’être capable de prédire que cette série
appartient à la classe Non-Terminating Atrial Fibrilation.

Figure 2 – La première série temporelle multivariée du jeu de données test de l’UEA Atrial
Fibrilation. Elle appartient à la classe Non-Terminating Atrial Fibrilation et est composée
de deux signaux ECG sur une période de 5 secondes (128 échantillons par seconde).

Cette thèse étudie la classification de séries temporelles multivariées. Les classifieurs de
séries temporelles multivariées de l’état de l’art [Karim et al., 2019; Schäfer et al., 2017]
sont des modèles difficiles à comprendre (“black-box” [Lipton, 2016]), qui se reposent
sur des méthodes d’explicabilité applicables à n’importe quel modèle d’apprentissage au-
tomatique (post-hoc modèle-agnostique). L’axe de travail principal au sein des méthodes
d’explicabilité post-hoc modèle-agnostique consiste à approximer la surface de décision
d’un modèle en utilisant un modèle de remplacement explicable [Guidotti et al., 2019;
Lakkaraju et al., 2017; Lundberg et al., 2017; Ribeiro et al., 2016, 2018]. Cependant, les
explications du modèle de remplacement ne peuvent pas être parfaitement exactes au re-
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gard du modèle original [Rudin, 2019], ce qui constitue un prérequis pour de nombreuses
applications. Par conséquent, cette thèse a pour objectif d’améliorer la performance et
l’explicabilité des méthodes d’apprentissage automatique de séries temporelles multivar-
iées, et d’établir à partir des méthodes développées de nouvelles connaissances concernant
deux applications réelles. Cette thèse analyse comment la performance et l’explicabilité
peuvent être combinées ensemble, alors que celles-ci sont souvent opposées.

Deux applications réelles sont étudiées dans cette thèse. La première application
étudiée concerne la détection et la caractérisation des séismes au moment où ceux-ci
se déclarent, afin de pouvoir alerter avant que les secousses atteignent des zones sensibles
et de pouvoir prendre des mesures de protection. Le problème réside dans le fait que les
solutions existantes de détection avancée de séismes ne sont pas capables de détecter tout
le spectre de séismes pouvant causer des dommages (séismes moyens et forts) [Allen et
al., 2019]. La seconde application vise à améliorer la détection d’évènements déterminants
pour la production de lait dans les exploitations laitières, ce qui est l’une des étapes les
plus importantes pour atteindre nos objectifs de prodution alimentaire et environnemen-
taux. Comme publié dans le rapport Creating A Sustainable Food Future [Searchinger et
al., 2018], les ruminants (bovins, ovins, caprins) destinés à produire du lait et de la viande
occupent les deux tiers des terres agricoles mondiales et sont responsables d’environ la
moitié des émissions liées à la production agricole. La détection des évènements détermi-
nants pour la production de lait (p. ex. estrus) est cruciale pour une utilisation optimale
des ressources et représente une part importante du travail des éleveurs. Le problème ré-
side dans le fait que les solutions existantes de détection, basées sur des données issues de
capteurs abordables, font face à une adoption limitée [Steeneveld et al., 2015]. En effet, ces
solutions ont des performances insuffisantes (fausses alertes, couverture incomplète). De
plus, l’absence d’explications pour appuyer les alertes de détection génère de la confusion
auprès des éleveurs et une défiance vis-à-vis de ces solutions.

Contributions

Une Grille d’Analyse Performance-Explicabilité

Tout d’abord, une nouvelle grille d’analyse pour évaluer et comparer les méthodes
d’apprentissage automatique est proposée. Compte tenu des différentes catégories de clas-
sifieurs de la thèse et leurs formes d’explications respectives, une grille d’analyse a été
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développée pour comparer et discuter les avantages/limites de ces approches d’apprentissage
automatique au regard de leur performance et explicabilité. Cette grille d’analyse intro-
duit un jeu de caractéristiques qui systématise l’évaluation des méthodes d’apprentissage
automatique. Ces travaux ont été publiés au IJCAI-PRICAI 2020 Workshop on Explain-
able Artificial Intelligence [Fauvel et al., 2020d].

Vers des explications exactes, informatives et accessibles pour des
méthodes ensemblistes performantes

Puis, cette thèse présente trois nouvelles méthodes ensemblistes. Les méthodes en-
semblistes sont les méthodes de référence de l’état de l’art concernant la classification de
données multivariées (Random Forest [Breiman, 2001], Extreme Gradient Boosting [Chen
et al., 2016]) et de séries temporelles univariées (HIVE-COTE [Lines et al., 2016]). Cepen-
dant, elles ne sont pas présentes dans les méthodes de l’état de l’art des classifieurs de
séries temporelles multivariées. Les travaux de cette thèse montrent que les méthodes
ensemblistes peuvent également être performantes sur les séries temporelles multivariées,
tout en offrant une certaine explicabilité.

La première, DMSEEW, est une nouvelle méthode ensembliste, basée sur le stacking,
pour la détection avancée de séismes et qui fournit des explications exactes au niveau
local. DMSEEW améliore la détection des séismes pouvant causer des dommages. Tout
particulièrement, DMSEEW détecte tous les séismes forts avec une précision de 100% sur
un jeu de données réel, ce qui est primordial pour une détection avancée des séismes. Ces
travaux ont été publiés à AAAI 2020 [Fauvel et al., 2020a] et ont reçu le prix “AAAI
2020 Outstanding Paper Award” dans la catégorie “AI for Social Impact”.

La seconde, LCE, est une nouvelle méthode ensembliste hybride pour la gestion des
ressources dans les exploitations laitières. Elle se repose sur une méthode d’explicabilité
applicable à n’importe quelle méthode d’apprentissage automatique (post-hoc modèle-
agnostique), SHAP, qui offre des explications plus informatives et accessibles à une plus
grande audience que celles de la première méthode. Ces travaux ont été publiés à KDD
2019 [Fauvel et al., 2019b].

Cependant, cette amélioration des explications pour LCE s’effectue au détriment de
l’exactitude, ce qui est un prérequis pour de nombreuses applications. Aussi, la troisième
méthode, XEM, est une extension de la méthode ensembliste hybride qui intègre une
explicabilité intrinsèque afin d’assurer l’exactitude des explications. XEM rivalise avec le
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niveau d’information et l’accessibilité de la méthode post-hoc modèle-agnostique tout en
maintenant la performance. XEM est plus performante que les méthodes de l’état de l’art
en classification de séries temporelles multivariées sur les jeux de données publiques UEA.
Ces travaux sont disponibles sur ArXiv [Fauvel et al., 2020b].

Une approche basée sur des motifs fréquents avec une explicabil-
ité intrinsèque exacte, informative et accessible

Ensuite, une nouvelle approche basée sur des motifs fréquents est présentée. Les motifs
sont de petites conjonctions de symboles avec une sémantique prédéfinie. L’utilisation de
ces motifs avec un classifieur facile à comprendre offre un fort potentiel d’explicabilité.
Or, l’état de l’art des classifieurs de séries temporelles multivariées ne comprend pas de
classifieur basé sur des motifs. Aussi, un nouveau classifieur se reposant sur des motifs
fréquents (XPM) est proposé pour la gestion des ressources dans les exploitations laitières,
un classifieur facile à comprendre avec des explications accessibles à une audience plus
large que celles des méthodes ensemblistes.

Un réseau de neurones à convolution combinant la performance
avec une explicabilité post-hoc modèle-spécifique exacte et infor-
mative

Enfin, cette thèse présente un nouveau réseau de neurones à convolution. Suite au suc-
cès des méthodes d’apprentissage profond dans la reconnaissance d’images [Huang et al.,
2017] et dans le traitement automatique du langage naturel [Devlin et al., 2019], celles-
ci ont commencé à être adoptées pour l’analyse de séries temporelles. Le classifieur de
séries temporelles multivariées de l’état de l’art obtenant la meilleure performance sur les
jeux de données publiques de l’UEA est une méthode d’apprentissage profond (MLSTM-
FCN [Karim et al., 2019]). Cependant, les predictions de MLSTM-FCN ne peuvent être
appuyées par des explications parfaitement exactes car MLSTM-FCN se repose sur des
méthodes post-hoc modèle-agnostique [Rudin, 2019], ce qui peut empêcher son utilisa-
tion sur de nombreuses applications. Ainsi, cette thèse présente un nouveau réseau de
neurones à convolution, XCM, se révelant plus performant que XEM sur les jeux de
données publiques UEA. De plus, l’architecture de XCM permet, grâce à l’utilisation
de la méthode Grad-CAM (post-hoc modèle-spécifique), une identification exacte et pré-
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cise des variables observées et des timestamps des données d’entrée importants pour les
prédictions. XCM avec Grad-CAM présente de meilleures performances que la méthode
ensembliste LCE avec SHAP sur l’application relative à la gestion des ressources dans les
exploitations laitières, tout en améliorant l’explicabilité avec des explications exactes et
plus informatives. En outre, XCM détecte environ 20% d’évènements clés en plus qu’une
solution commerciale de référence sur un jeu de données réel en exploitation laitière, tout
en préservant la même précision. Ces travaux sont disponibles sur ArXiv [Fauvel et al.,
2020c].
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Chapter 1

Introduction

1.1 Motivation

The prevalent deployment and usage of sensors in a wide range of sectors generate an
abundance of multivariate data which has proven to be instrumental for researches, busi-
nesses and policies [Cussins Newman, 2019; Esteva et al., 2019; Ransbotham et al., 2019].
The exploitation of the diverse and large amount of data is rendered possible through
Artificial Intelligence (AI). Prof. Wolfram Burgard offered a definition of AI as “systems
that can interpret sensory data, create internal models, and then develop activities out
of this, reason about this and create the next best action to take” 1. In particular, there
has been a trend over the past decade to leverage machine learning to automate decision-
making processes. Machine learning is a subfield of AI which refers to algorithms that are
able to learn from data through experience [Goodfellow et al., 2016]. As stated in [WIPO,
2019], machine learning is the dominant AI technique disclosed in patents (89% of patent
families related to an AI technique) and is included in more than one-third of all identified
inventions (as of March 2018). However, for many applications, the adoption of machine
learning algorithms cannot rely solely on their prediction performance. For example, the
European Union’s General Data Protection Regulation, which became enforceable on 25
May 2018, introduces a right to explanation for all individuals so that they can obtain
“meaningful explanations of the logic involved” when automated decision-making has
“legal effects” on individuals or similarly “significantly affecting” them 2.

More specifically, multivariate data which integrates temporal evolution, i.e. time se-
ries, has received significant interests in recent years, driven by automatic and high res-
olution monitoring applications (e.g. healthcare [Li et al., 2018a], mobility [Jiang et al.,
2019]). A time series is a sequence of real values ordered according to time; and when a
set of co-evolving time series are recorded simultaneously by a set of sensors, it is called
a Multivariate Time Series (MTS). MTS associated with their corresponding events can

1. https://www.itu.int/en/ITU-T/AI/2018
2. https://ec.europa.eu/info/law/law-topic/data-protection_en
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be leveraged in machine learning classification applications. The objective of MTS classi-
fication is to learn the relationship between a MTS sample and its label. An example of a
labeled MTS is given in Figure 1.1. It is the first MTS of the UEA Atrial Fibrilation [Bag-
nall et al., 2018] test set that belongs to the class Non-Terminating Atrial Fibrilation. This
MTS is composed of two dimensions (two channels ECG) with a length of 640 (5 second
period with 128 samples per second). The objective of a MTS classifier is to be able to
predict that this MTS belongs to the class Non-Terminating Atrial Fibrilation.

Figure 1.1 – The first MTS sample of the UEA Atrial Fibrilation test set. It belongs to
the class Non-Terminating Atrial Fibrilation and is composed of two channels ECG on a
5 second period (128 samples per second).

This thesis addresses the issue of MTS classification. The best performing state-of-the-
art MTS classifiers are “black-box” classifiers [Karim et al., 2019; Schäfer et al., 2017],
i.e. complicated-to-understand models [Lipton, 2016], which rely on explainability meth-
ods providing explanations from any machine learning model to support their predictions
(post-hoc model-agnostic). The main line of work in post-hoc model-agnostic explainabil-
ity methods approximates the decision surface of a model using an explainable surrogate
model [Guidotti et al., 2019; Lakkaraju et al., 2017; Lundberg et al., 2017; Ribeiro et
al., 2016, 2018]. However, the explanations from the surrogate models cannot be per-
fectly faithful with respect to the original model [Rudin, 2019], which is a prerequisite
for numerous applications. Therefore, this thesis aims to enhance the performance and
explainability of MTS classifiers, and derive new insights from the new methods devel-
oped about two real-world applications. Performance and explainability are often opposed
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whereas this thesis analyzes how they can be best combined together along their different
aspects.

Two real-world applications will be studied in this thesis. The first application studied
concerns the automatic detection and characterization of earthquakes as they happen, in
order to deliver alerts before the ground motion actually reaches sensitive areas so that
protective measures could be taken. The challenges lies in the fact that current earthquake
early warning solutions are unable to cover the whole spectrum of potentially damaging
earthquakes (medium and large) [Allen et al., 2019]. The second application aims to im-
prove the detection of determining events for milk production in dairy farms, which is
one of the most important steps toward meeting both food production and environmental
goals. As underlined in the report Creating A Sustainable Food Future [Searchinger et al.,
2018], ruminant livestock (cattle, sheep, and goats), used for dairy and meat production,
occupy two-thirds of global agricultural land and contribute roughly half of agriculture’s
production-related emissions. The detection of determining events for milk production
(e.g. estrus) in dairy farms is crucial for an optimal resource use and represents an im-
portant part of dairy farmers’ work. The challenge lies in the fact that current detection
solutions based on affordable sensor data face a moderate adoption rate [Steeneveld et al.,
2015]. First, these solutions lack of performance (false alerts, incomplete coverage). Sec-
ond, the absence of explanations behind detection alerts generate confusion and mistrust
from farmers.

1.2 Overview of the Contributions

1.2.1 A Performance-Explainability Analytical Framework

Firstly, this thesis introduces a new performance-explainability framework in chapter 4
to assess and compare the proposed machine learning methods. The different classifier
categories of this thesis along with their own explainability approach suggested the need
for an analytical framework to compare and discuss the strengths/limitations of these
machine learning approaches with regard to their performance and explainability. The
framework details a set of characteristics that systematize the performance-explainability
assessment of the machine learning methods. It has been published in IJCAI-PRICAI
2020 Workshop on Explainable Artificial Intelligence [Fauvel et al., 2020d].
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1.2.2 Towards Faithful, Informative and Human-Friendly Ex-
plainability in Performant Ensemble Methods

Then, three new ensemble methods are presented in part III. Ensemble methods are the
current state-of-the-art classifiers for traditional multivariate data classification (Random
Forest [Breiman, 2001], Extreme Gradient Boosting [Chen et al., 2016]) as well as for
univariate time series classification (HIVE-COTE [Lines et al., 2016]). However, there is
no ensemble method among the state-of-the-art MTS classifiers. Hence, this part shows
that ensemble methods can also be performant in the MTS classification setting, while
providing some explainability.

This thesis presents:

• DMSEEW in chapter 5, a new stacking ensemble method for earthquake early warn-
ing combining performance with faithful and local explainability by design. It has
been published in AAAI 2020 [Fauvel et al., 2020a] and received the “AAAI 2020
Outstanding Paper Award” in the category “AI for Social Impact”;

• LCE in chapter 6, a new hybrid ensemble method for dairy resource monitoring
combining performance with informative post-hoc model-agnostic explainability. It
has been published in KDD 2019 [Fauvel et al., 2019b];

• XEM in chapter 7, a new ensemble method for MTS classification combining per-
formance with faithful, informative and local explainability by design. It is available
on ArXiv [Fauvel et al., 2020b].

1.2.3 A Pattern-Based Approach with Human-Friendly Explain-
ability by Design

Next, a new pattern-based approach is presented in chapter 8. Patterns are small
conjunctions of symbols with a predefined semantic. The use of patterns with an easy-
to-understand classifier has great potential for explainability. Nonetheless, there is no
pattern-based classifier among the state-of-the-art MTS classifiers. Therefore, this thesis
presents XPM, a new pattern-based approach for dairy resource monitoring providing
faithful, informative and human-friendly explainability.
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1.2.4 A Convolutional Neural Network Combining Performance
with Faithful and Informative Post-Hoc Model-Specific
Explainability

Finally, this thesis presents a new deep learning approach in chapter 9. Following the
good performance of deep learning architectures in image recognition [Huang et al., 2017]
and natural language processing [Devlin et al., 2019], they have started to be adopted
for time series analysis. The current best performing state-of-the-art MTS classifiers on
the public UEA datasets [Bagnall et al., 2018] is a deep learning approach (MLSTM-
FCN [Karim et al., 2019]). However, MLSTM-FCN cannot provide perfectly faithful ex-
planations as it can only rely on post-hoc model-agnostic explainability methods [Rudin,
2019], which could prevent its use on numerous applications. Hence, this thesis presents
XCM, a new convolutional neural network for MTS classification combining performance
with faithful and informative post-hoc model-specific explainability. It is available on
ArXiv [Fauvel et al., 2020c].

Before detailing the different contributions, I present in the next part the state-of-the-
art for the methods and applications of this thesis.
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Methods
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2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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In this chapter, I first define the learning task of this thesis, i.e. supervised learning
for classification, and introduce the current state-of-the-art classifiers on which the new
hybrid ensemble method LCE is positioned. Then, I present the state-of-the-art MTS
classifiers; the machine learning algorithms designed to handle the data type encountered
in the applications of this thesis. Finally, I present the categories of explainability methods
supporting machine learning models predictions.

2.1 Classification

This thesis addresses the issue of supervised learning for classification. Classification
consists in learning a function that maps an input data to its label.

Definition 1 (Classification). Given an input space X, an output space Y , an unknown
distribution P over X × Y , a training set sampled from P , the mathematical expectation
E, compute a function h∗ such as

h∗ = arg min
h

E(x,y)∼P [h(x) 6= y]
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In the traditional multivariate data setting, there is no explicit relationship among
samples or variables and every sample has the same set of variables (also called attributes
or dimensions). The most popular (and often best performing) machine learning classifiers
on the traditional multivariate data belong to the following classes: k-nearest neighbors,
regularized logistic regressions, support vector machines, neural networks and ensemble
methods. Nevertheless, to undertake the task of the general multivariate classification, no
single classifier can claim to be superior to any of the others [Wolpert, 1996] (known as the
“No Free Lunch theorem”). Thus, the combination of different classifiers - an ensemble
method - is often considered a good method to obtain a better generalizing classifier. There
are three main reasons that justify the use of ensembles over single classifiers [Dietterich,
2000]: statistical (reduce the risk of choosing the wrong classifier by averaging when the
amount of training data available is too small compared to the size of the hypothesis
space), computational (local search from many different starting points may provide a
better approximation to the true unknown function than any of the individual classifier),
and representational (expansion of the space of representable functions).

Based on these reasons, I have worked on developing a new ensemble method, called
Local Cascade Ensemble (LCE), which will be presented in the chapter 6. Thus, I detail
in the next section the related work on ensemble methods on which I position the new
ensemble method LCE.

2.1.1 Ensemble Methods

Ensemble methods are structured around two approaches (explicit, implicit) which
have their own strengths and limitations. Therefore a hybrid ensemble method is encour-
aged [Masoudnia et al., 2014]. The implicit approach involves creating diverse classifiers
on the original training data, whereas the explicit approach emphasizes classifiers diversity
through the creation of different training sets by probabilistically changing the distribu-
tion of the original training data.

There are two methods adopting an implicit approach: Mixture of Experts (ME) [Ja-
cobs et al., 1991] and Negative Correlation Learning (NCL) [Liu et al., 1999].
ME uses a divide-and-conquer algorithm to split the problem space, and each individual
classifier learns a part of the training data. The advantage of this method is that each
individual classifier is concerned with its own individual error. However, individual clas-
sifiers are trained independently so there is no control over the bias-variance trade-off.
The bias-variance trade-off defines the capacity of the learning algorithm to generalize
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beyond the training set. The bias is the component of the classification error that results
from systematic errors of the learning algorithm. A high bias means that the learning
algorithm is not able to capture the underlying structure of the training set (underfit-
ting). The variance measures the sensitivity of the learning algorithm to changes in the
training set. A high variance means that the algorithm is learning too closely the training
set (overfitting). The objective is to minimize both the bias and variance.
Next, NCL is an ensemble method which is trained on the entire training data simultane-
ously and interactively to adjust the bias-variance trade-off. Individual classifiers interact
through the correlation penalty terms of their error functions. The correlation penalty
term is a regularization term that is integrated into the error function of each individual
classifier. This term quantifies the amount of error correlation and is minimized during
the training, which leads to negatively correlated individual classifiers and balances the
bias-variance trade-off. The disadvantage of this method is that each classifier is con-
cerned with the whole ensemble error due to the training of each classifier on the same
data. Some studies combine NCL and ME features to address their limitations (Local Cas-
cade [Gama et al., 2000], Mixture of Negatively Correlated Experts - MNCE [Masoudnia
et al., 2012]). For instance, Masoudnia et al. [2012] proposed MNCE, an augmented ver-
sion of ME by integrating a regularization term in the error function (NCL) to better
balance the bias-variance trade-off.

However, a combination of implicit approaches does not benefit from the diversification
of generating classifiers by perturbing the distribution of the original training data (ex-
plicit approach). There are two methods adopting an explicit approach with complemen-
tary effects on the bias-variance trade-off (bagging [Breiman, 1996] - variance reduction,
boosting [Schapire, 1990] - bias reduction). Bagging is a method for generating multiple
versions of a predictor (bootstrap replicates) and using these to get an aggregated pre-
dictor. Boosting is a method for iteratively learning weak classifiers and adding them to
create a final strong classifier. After a weak learner is added, the data weights are read-
justed, allowing future weak learners to focus more on the examples that previous weak
learners misclassified. Bagging and boosting methods have been combined [Kotsiantis et
al., 2005] but without integrating the diversification benefit of an implicit approach.

There is a study which combines the explicit boosting method with the implicit ME
divide-and-conquer principle [Ebrahimpour et al., 2012]. Nonetheless, the only bias reduc-
tion distribution change of boosting does not ensure a bias-variance trade-off. Therefore, a
hybrid ensemble method called Local Cascade Ensemble (LCE) is proposed in this thesis.
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LCE combines an explicit boosting-bagging approach to handle the bias-variance trade-
off and an implicit divide-and-conquer approach (decision tree) to learn different parts
of the training data. LCE algorithm is detailed in the chapter 6 and how it is leveraged
for building a MTS classifier (XEM) in the chapter 7. In the next section, I present the
state-of-the-art MTS classifiers, i.e. the machine learning algorithms designed to handle
the data type and the learning task encountered in the applications of this thesis.

2.2 Multivariate Time Series Classification

The state-of-the-art MTS classifiers can be categorized into three families: similarity-
based, feature-based and deep learning methods.

Before presenting in the following sections the MTS classifiers of each category, I define
the MTS data type which is used in the different applications of this thesis.

Definition 2 (Multivariate Time Series). A multivariate time series (MTS) M =
{x1, ..., xd} ∈ Rd∗l is an ordered sequence of d ∈ N streams with xi = (xi,1, ..., xi,l), where
l is the length of the time series and d is the number of multivariate dimensions.

Figure 2.1 – The first MTS sample of the UEA Atrial Fibrilation test set. It belongs to
the class Non-Terminating Atrial Fibrilation and is composed of two channels ECG on a
5 second period (128 samples per second).

In the different datasets of this thesis, MTS are generated from automatic sensors with
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a fixed and synchronized sampling along all dimensions. An example of a MTS is given
in Figure 2.1, it is the same example as in the Introduction of this thesis.

2.2.1 Similarity-Based Classifiers

Similarity-based methods make use of similarity measures (e.g., Euclidean distance)
to compare two MTS. Dynamic Time Warping (DTW) has been shown to be the best
similarity measure to use along the k-Nearest Neighbors (k-NN) [Seto et al., 2015], this
approach is called kNN-DTW. DTW is not a distance metric as it does not fully satisfy
the required properties (the triangle inequality in particular), but its use as similarity
measure along with the NN-rule is valid [Vidal et al., 1985]. Unlike the Euclidean distance’s
strict one-to-one alignment (see alignment in the top-left corner image of Figure 2.2),
DTW allows a one-to-many alignment (see alignment in the bottom-left corner image of
Figure 2.2). To align Q and C sequences using DTW, an n-by-n matrix is constructed
with the (i, j) element being the squared Euclidean distance (qi, cj) between the points
qi and cj. A warping path P is a contiguous set of matrix elements defining a mapping
between Q and C. The path minimizing the warping cost is selected. Figure 2.2, sourced
in [Seto et al., 2015], illustrates a DTW alignment between two time series.

Figure 2.2 – DTW image showing the alignment procedure. The two original time series
shown on the left (dotted) and bottom (solid) of the image on the right are shown aligned
in the bottom-left image according to the optimal path shown as the dark black line on
the right. Top-left image shows Euclidean distance’s strict one-to-one alignment.

There are two versions of kNN-DTW for MTS: dependent (DTWD) and independent
(DTWI). Neither dominates over the other [Shokoohi-Yekta et al., 2017]. DTWI measures
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the cumulative distances of all dimensions independently measured under DTW. DTWD

uses a similar calculation with single-dimensional time series; it considers the squared
Euclidean cumulated distance over the multiple dimensions.

2.2.2 Feature-Based Classifiers

The feature-based MTS classifiers can be categorized into two families: shapelet/pattern-
based and bag-of-words classifiers. The first family uses subseries (shapelets) or small con-
junctions of symbols with a predefined semantic (patterns) to transform the original time
series into a lower-dimensional space that is easier to classify. The second family breaks
up MTS into windows, converts the windows into a bag of discrete words, and builds
a histogram of feature counts as basis for classification. The state-of-the-art classifiers
belonging to these two families are presented in the next two sections.

Shapelet-Based and Pattern-Based Classifiers

Both shapelet-based and pattern-based classifiers transform the original time series
into a lower-dimensional space that is easier to classify. Nevertheless, shapelet-based clas-
sifiers use subseries to perform classification whereas pattern-based classifiers can exploit
different types of patterns (e.g. itemsets, sequences, chronicles) [Han et al., 2011] and
select the patterns that best describe the phenomenon studied.

Shapelet-Based Classifiers A shapelet is defined as follows [Ye et al., 2009]:

Definition 3 (Shapelet). Given a time series T of length m, a shapelet S of T is a
sampling of length l ≤ m of contiguous positions from T, that is, S = tp, ..., tp + l− 1, for
1 ≤ p ≤ m− l + 1.

An illustration of shapelet is given in Figure 2.3 on the same MTS example as the one
used in section 2.2.

According to the results published, Ultra-Fast Shapelets UFS [Wistuba et al., 2015]
and Generalized Random Shapelet Forest (gRSF) [Karlsson et al., 2016] are the current
state-of-the-art shapelet models in MTS classification. They relax the major limiting
factor of the time to find discriminative subsequences in multiple dimensions (shapelet
discovery) by randomly selecting shapelets.

First, UFS models the input data as a set of distances from shapelets. UFS considers
shapelets globally from a restricted pool of randomly selected shapelets per dimension.
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Figure 2.3 – The first MTS sample of the UEA Atrial Fibrilation test set with a shapelet
highlighted on the red channel (timestamps 256 to 383).

Finally, the classification of the input data with the shapelets as features can be performed
by any classifier.

Then, gRSF creates decision trees over randomly selected MTS instances and randomly
selected shapelets. The decision trees, at each node, locally consider a predefined number
of shapelets randomly selected along the dimensions.

gRSF shows better accuracy results than UFS and kNN-DTW on average (14 public
MTS datasets) [Karlsson et al., 2016]. The accuracy results also exhibits that there is a
statistically significant difference only between gRSF and kNN-DTW.

Pattern-Based Classifiers Since different types of patterns can be informative, mul-
tiple studies have proposed different classification methods based on pattern features,
including itemset-based approaches [Cheng et al., 2007, 2008], sequence-based classifica-
tion [Buza et al., 2010; Fradkin, 2014] and chronicle-based approaches [Dauxais et al.,
2019]. An itemset can be defined as a group of symbols. Then, sequences are ordered
group of symbols and chronicles are patterns with more diverse temporal relations among
the symbols. As far as I have seen, most of the approaches mine frequent patterns. A pat-
tern is frequent if it occurs in at least a predefined percentage (support) of the time series.
In addition, the patterns can be mined in closed-form in order to limit their number. A
closed pattern is a maximal set of patterns common to a set of objects.

The different patterns are defined as follows [Cheng et al., 2008; Dauxais et al., 2019;
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Fradkin, 2014]:

Definition 4 (Itemset). Let D be a training database, I = {i1, i2, ..., im} be the set of
distinct items, and C = {c1, c2, ..., ck} be the set of class labels. Assume D contains a set
of n training instances D = {xi, yi}n

i=1, where xi ⊆ I is a set of items and yi ∈ C is a
class label. An itemset α = {α1, α2, ..., αl} is a subset of I.

Definition 5 (Sequence). A sequence S = {si}, i = {1, ..., k} matches a sequential
pattern P = {pj}, j = {1, ...,m} iff ∃ {i1, ..., im} with pj ⊆ sij

for j = {i, ...,m}, such
that ∀ 1 ≤ j, k ≤ m : pj ≺ pk implies ij < ik.

Definition 6 (Chronicle). Let E be a set of event types and T be a temporal domain
where T ∈ R. A chronicle is a couple (E , T ), where E = {e1, ..., en}, ei ∈ E and ∀(i, j), 1 ≤
i < j ≤ n, ei ≤E ej, T is a temporal constraint set: T = {e[a, b]e′ | (e, e′) ∈ E , e ≤E e

′}.

Therefore, according to these definitions and compared to the shapelets introduced in
the previous section, patterns allows the extraction of ordered/unordered group of symbols
with potential gaps and temporal constraints among these symbols, whereas shapelets are
entire subseries.

There are two types of approaches used for pattern-based classification [Fradkin, 2014]:
indirect and direct. The indirect approach is composed of three stages. First, the candi-
date patterns are mined in an unsupervised manner. Then, feature selection is performed
to reduce the number of patterns and finally, classification is undertaken based on the
remaining features. The direct approach leverages the class label information in the pat-
tern mining stage, therefore suppressing the feature selection stage by generating fewer
patterns. I present in the following paragraphs the state-of-the-art classifiers on each type
of approach and pattern.

According to the results published, the current state-of-the-art approaches for itemset-
based classifiers are a classifier issued in [Cheng et al., 2007] (indirect) and DDPMine
[Cheng et al., 2008] (direct). Firstly, the indirect approach [Cheng et al., 2007] uses FP-
Close [Grahne et al., 2003] to generate closed itemsets [Pasquier et al., 1999] and develops
a new feature selection method (MMRFS). MMRFS selects a feature if it is relevant to
the class label and if it contains very low redundancy to the features already selected.
Finally, it performs classification with a decision tree on the remaining features. Then, the
direct approach DDPMine [Cheng et al., 2008] imposes a branch-and-bound search on the
FP-growth [Han et al., 2000] mining process, which prunes the search space significantly.
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It works in an iterative fashion and reduces the problem size incrementally by eliminat-
ing the instances which are covered by the selected features. Finally, the classification is
performed with a support vector machine.

Concerning sequence-based classifiers, a classifier issued in [Buza et al., 2010] (indi-
rect) and BIDE - Discriminative [Fradkin, 2014] (direct) are the current state-of-the-art
methods according to the results published. In [Buza et al., 2010], the algorithm converts
time series into symbolic sequences using Symbolic Aggregate approXimation [Lin et al.,
2003]. Sequential patterns are then mined using an extended version of Apriori [Agrawal
et al., 1994] with taxonomy. These patterns are used as features for construction of sup-
port vector machines and Bayesian networks. Then, BIDE-Discriminative modifies BIDE
closed sequential pattern mining algorithm [Wang et al., 2004] to integrate class infor-
mation for direct mining of sequences. It relies on pruning statistical measures of feature
predictiveness. Finally, the classification is performed with a support vector machine.

Next, according to the results published, the current state-of-the-art chronicle-based
classifier is DCM [Dauxais et al., 2019] (Indirect). As far as I have seen, there is no
direct approach for chronicle-based classification. DCM extracts frequent multisets, which
are chronicles without temporal constraints, and then it mines discriminant temporal
constraints from these multisets. Finally, the classification is performed by applying an
order on the extracted set.

Some experiments have compared DCM to BIDE-Discriminative [Dauxais et al., 2019].
The results show that discriminant chronicles as rules can produce similar and sometimes
better accuracy than sequential patterns as features (3 public datasets). However, pattern-
based classifiers are usually not considered into the benchmark of the state-of-the-art
MTS classifiers so there is no other basis of comparison available. Indeed, in the case
of time series data, the use of pattern mining algorithms requires a discretization of
the dataset which is application-specific. In addition, pattern-based classifiers are often
seen as less accurate than the state-the-art MTS methods. Nevertheless, I include the
pattern-based classifiers in the MTS classification state-of-the-art as they can propose
other characteristics (e.g. model comprehensibility, accessibility of the patterns) which
could justify their adoption on certain applications. The chapter 8 presents a new pattern-
based classifier suited for the dairy resource monitoring application.
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Bag-of-Words Classifiers

Bag-of-words models (LPS [Baydogan et al., 2016], mv-ARF [Tuncel et al., 2018],
SMTS [Baydogan et al., 2014] and WEASEL+MUSE [Schäfer et al., 2017]) break up MTS
into windows, convert the windows into a bag of discrete words, and build a histogram
of feature counts as basis for classification. Therefore, compared to shapelet-based and
pattern-based models, bag-of-words models extract information on the whole time series
with words on each window.

Firstly, Symbolic representation for Multivariate Time Series (SMTS) trains a random
forest [Breiman, 2001] on an elementary representation of the MTS (time index, values
and derivatives) to partition the MTS into leaf nodes. Each leaf node is then labeled by
a word and a bag-of-words representation is generated from the terminal nodes of the
trees. Each symbol is considered to be a word and the relative frequency vector of the
symbols from each tree are concatenated to form the bag-of-words representation. This
representation is processed with a second random forest for classification.

Learned Pattern Similarity (LPS) extracts all possible windows with a predefined
length from a MTS and trains regression trees to identify structural dependencies be-
tween the time series observations. The regression trees trained in this manner represent
non-linear autoregressive models. Similar to SMTS, LPS next builds a bag-of-words rep-
resentation based on the labels of the leaf nodes. Finally, a similarity measure is defined
on the bag-of-words representation of the MTS for classification.

Next, multivariate AutoRegressive Forest (mv-ARF) trains, for each class, a forest of
regression trees on lagged observations. Then, a bag-of-words representation is generated
based on the concatenation of the different mean squared errors of the models for each
MTS. Finally, any classifier can be applied to this representation.

Lastly, WEASEL+MUSE generates a bag-of-words representation by applying vari-
ous sliding windows with different sizes on each discretized dimension (Symbolic Fourier
Approximation) to capture features (unigrams, bigrams, dimension identification). Each
feature is considered to be a word and the word counts are concatenated to form the bag-
of-words representation. Following a feature selection with chi-square test, it classifies the
MTS based on a logistic regression classifier.

WEASEL+MUSE shows better accuracy results compared to LPS, mv-ARF, SMTS
and gRSF on average (20 public MTS datasets) [Schäfer et al., 2017]. None of these MTS
classifiers exhibits a statistically significant accuracy difference.
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2.2.3 Deep Learning Classifiers

The state-of-the-art deep learning MTS classifiers (FCN [Wang et al., 2017], ResNet [He
et al., 2016], MLSTM-FCN [Karim et al., 2019]) use Convolutional Neural Networks
(CNN) and/or Long-Short Term Memory (LSTM) Neural Networks.

Before presenting the state-of-the-art deep learning MTS classifiers, I introduce some
notions about neural networks as background. A neural network is a composition of L
parametric functions referred to as layers, where each layer is considered a representation
of the input domain [Goodfellow et al., 2016]. One layer li, such as i ∈ {1, ..., L}, contains
neurons, which are small units that compute one element of the layer’s output. The layer
li takes as input the output of its previous layer li−1 and applies a transformation to
compute its own output. The behavior of these transformations is controlled by a set
of parameters θi for each layer and an activation sublayer to shape the non-linearity
of the network. These parameters are called weights and link the input of the previous
layer to the output of the current layer based on matrix multiplication. This process
is also referred to as feedforward propagation in the deep learning literature and is the
constituent of multilayer perceptrons (MLPs). A neural network is usually called “deep”
when it contains more than one layer between its input and output layer.

Following the good performance of CNN architectures in image recognition [Huang
et al., 2017] and natural language processing [Devlin et al., 2019; Sutskever et al., 2014],
CNNs have started to be adopted for time series analysis [Cristian Borges Gamboa, 2017].
CNNs are neural networks that use convolution in place of general matrix multiplication in
at least one of their layers [Goodfellow et al., 2016]. A convolution can be seen as applying
and sliding a filter over the time series. The use of different types, numbers and sequences
of filters allow the learning of multiple discriminative features (feature maps) useful for the
classification task. Thus, a CNN for classification is composed of at least one convolutional
layer to extract features and a classifier (e.g. fully connected layers - MLP, global average
pooling with a softmax layer). Generally, a convolutional block in the MTS classification
setting is made up of three cascading layers: a convolutional layer to extract features
based on a predefined number of convolution filters, a batch normalization layer [Ioffe
et al., 2015] to enable faster convergence and better generalization of the network [Bjorck
et al., 2018], and an activation layer to shape the non-linearity (e.g. ReLU [Nair et al.,
2010]). The use of global average pooling instead of fully connected layers for classification
improves the generalization ability of the network. Taking the average of each feature map
is more robust to spatial translations of the input [Lin et al., 2014]. An illustration of a
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CNN is shown in Figure 2.4.

Figure 2.4 – Example of a convolutional neural network with one padded convolutional
block followed by a global average pooling with a softmax layer for classification. Abbre-
viations: D - number of observed variables, F - number of filters, T - time series length.

LSTM networks are a variant of recurrent neural networks (RNNs), which are designed
for sequential data. When feedforward neural networks/MLPs are extended to include
feedback connections, they are called RNNs [Goodfellow et al., 2016]. LSTM networks have
been developed to address the vanishing/exploding gradient problem of RNNs [Bengio
et al., 1994; Hochreiter, 1991; Pascanu et al., 2013], which are unable to learn long-
term dependencies. RNNs use sequential processing over time and is trained through
backpropagation. So, if the gradient vanishes, it means that the earlier states have no real
effect on the later states as the weights have stopped to be updated. LSTM networks are
able to learn temporal dependencies over arbitrary intervals [Graves, 2012] by keeping the
recursive gradient close to one and perform classification (e.g. softmax layer) on the output
from the LSTM layer. An LSTM has the ability to add, modify or remove information as
it flows through the different steps. Each step is composed of three major gate mechanisms
(input gate, forget gate and output gate).

The following paragraphs present the state-of-the-art deep learning MTS classifiers
(according to the results published): FCN [Wang et al., 2017], ResNet [He et al., 2016]
and MLSTM-FCN [Karim et al., 2019].

Firstly, Fully Convolutional Network (FCN) is composed of three convolutional blocks,
each containing a convolutional layer followed by a batch normalization layer and a ReLU
activation layer. After the convolution blocks, the features generated are fed into a global
average pooling layer and the classification is performed with a softmax layer.

Then, ResNets extend the neural networks to very deep structures which aim to learn
more complex features based on hierarchical feature learning. It introduces a new neural
layer called the residual block. Compared to a convolutional block (such as in FCNs),
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the difference is that a linear shortcut is added to link the output of a residual block to
its input thus enabling the flow of the gradient directly through this connection, which
renders the training of a deep neural network much easier by reducing the vanishing
gradient effect. Wang et al. [2017] propose a ResNet for MTS classification reusing the
structure of the FCN, it is composed of three residual blocks followed by a global average
pooling and a softmax layer.

Finally, MLSTM-FCN consists of the concatenation of a CNN block with a LSTM
block. The CNN block is used as feature extractor and is composed of 3 convolutional
sub-blocks. As FCN, each block contains a convolutional layer followed by a batch normal-
ization layer and a ReLU activation layer. In addition, the first two convolutional blocks
end with a Squeeze-and-Excitation block [Hu et al., 2017]. The Squeeze-and-Excitation
block adaptively recalibrates the input feature maps. After the convolution blocks, the fea-
tures generated are fed into a global average pooling layer and following the concatenation
of the CNN and LSTM blocks, the classification is performed with a softmax layer.

According to the results published in [Karim et al., 2019] and my experiments, MLSTM-
FCN shows better accuracy results than FCN and ResNet on average on the UEA
datasets [Bagnall et al., 2018]. In addition, MLSTM-FCN exhibits better accuracy re-
sults than WEASEL +MUSE on large datasets (relative to the one tested) on average (20
public MTS datasets) [Schäfer et al., 2017]. None of these MTS classifiers (FCN, ResNet,
MLSTM-FCN and WEASEL+MUSE) exhibits a statistically significant accuracy differ-
ence.

2.3 Explainability

The issue of explainability in machine learning has received considerable attention
in recent years. The number of works published concerning methods to support machine
learning predictions is extensive and it is not the objective of this thesis to give an exhaus-
tive list. Instead, I introduce the three commonly recognized categories (explainability by
design, post-hoc model-specific explainability and post-hoc model-agnostic explainabil-
ity) [Du et al., 2020] to which all of the explainability methods are belonging to and give
some examples of methods for each category.

2.3.1 Explainability by Design

First, some machine learning models provide explainability by design. These self-
explanatory models incorporate explainability directly to their structures. This category
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includes, for example, decision trees, rule-based models and linear models. The decision
nodes of a decision tree and the coefficients of a linear model convey the explanations to
support their predictions. For instance, Lakkaraju et al. [2016] present an interpretable
decision sets approach. Decision sets are sets of short, independent and non-overlapping
rules that cover the whole feature space and classes. The rules are extracted based on a
two-step approach where frequent itemsets are mined and then a set of rules is selected
following the maximization of a joint objective that scores decision sets based on both
how interpretable and accurate they are.

Moreover, certain neural networks can provide explainability by design. For exam-
ple, the attention mechanism [Bahdanau et al., 2015] can give users the possibility to
interpret which parts of the input are attended by the model through visualizing the at-
tention weight matrix for individual predictions. In particular, the attention mechanism
is a core component of the Transformer [Vaswani et al., 2017], a state-of-the-art net-
work in neural machine translation. The Transformer has been introduced to replace the
RNN-based sequence-to-sequence model in machine translation, model which is used to
convert sequences of a certain type to sequences of another type. A RNN-based sequence-
to-sequence model is generally composed of two RNNs (an encoder and a decoder) with an
attention mechanism which passes the weighted sum of the hidden states of the encoder
as context vector to the decoder. As presented in previous section, RNNs have problems
dealing with long-term dependencies and the sequential nature of the model prevents its
parallelization. The Transformer is a neural network also composed of a two-part architec-
ture (encoder and decoder) but which learns dependencies based on multi-head attention
mechanisms and feedforward neural networks. The multi-head attention mechanism con-
sists in computing the attention mechanism multiple times, in parallel and independently,
and the outputs are concatenated and linearly transformed. The attention mechanism
used in the Transformer is a self-attention mechanism, sometimes called intra-attention,
which relates different positions of a sequence in order to compute a representation of the
sequence. Thus, Song et al. [2018] present a multivariate time series classifier based on a
multi-head attention mechanism which incorporates temporal order into the sequence rep-
resentation using both positional encoding and dense interpolation embedding techniques.
It has been shown in [Voita et al., 2019] that only a small subset of the attention heads of
the Transformer appears to be important. However, it remains unclear what relationship
exists between attention weights and model predictions [Jain et al., 2019]. Following this
study, Wiegreffe et al. [2019] have provided a suite of experiments that could be used in
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order to make informed decisions about the quality of the models’ attention mechanisms
when used as explanation for model predictions.

2.3.2 Post-Hoc Model-Specific Explainability

Post-hoc model-specific explainability methods are specifically designed to extract
explanations for a particular model. These methods applied on the trained model (post-
hoc) usually derive explanations by examining internal model structures and parameters.

For example, a method has been designed to measure the contribution of each feature
in random forest models [Palczewska et al., 2013]. It extends the computation of feature
contribution [Kuz’min et al., 2011] to random forest models for classification and proposes
three techniques (the analysis of median feature contributions, of clusters and of log-
likelihoods) for discovering class-specific feature contribution “patterns” in the decision-
making process of random forest models.

Some post-hoc model-specific explainability methods also exist for neural networks.
First, perturbation-based methods compute the contribution of a feature by removing,
masking or altering them, and measuring the difference with the original output following
a forward pass on the new input. For instance, Zeiler et al. [2014] analyze the probability of
the correct class given by a CNN as a function of the position of a grey patch occluding part
of the input. However, perturbation-based methods tend to be very slow as the number
of features grows [Zintgraf et al., 2017]. Then, the approaches based on back-propagation
are seen as the state-of-the-art explainability methods for deep learning models [Ancona
et al., 2018]. Methods based on back-propagation [Bach et al., 2015; Erhan et al., 2009;
Selvaraju et al., 2019; Shrikumar et al., 2017, 2016; Springenberg et al., 2015; Sundarara-
jan et al., 2017] calculate the gradient, or its variants, of a particular output with respect
to the input using back-propagation to derive the contribution of features. The Gradi-
ent Explanation [Erhan et al., 2009] quantifies how much a change in each input feature
in a small neighborhood around the input would change the prediction of the model.
Guided Backpropagation [Springenberg et al., 2015] builds on the “DeConvNet” expla-
nation method [Zeiler et al., 2014] and corresponds to the Gradient Explanation where
negative gradient entries are set to zero while back-propagating through a ReLU unit. The
Gradient � Input [Shrikumar et al., 2016] method proposes to address “gradient satura-
tion” by computing the signed partial derivatives of the output with respect to the input
and multiplying them with the input itself, while the Integrated Gradients [Sundarara-
jan et al., 2017] sums over scaled versions of the input. It is has been shown in [Ancona
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et al., 2018] that for ReLU networks some other existing explanation methods (ε-Layer-
wise Relevance Propagation [Bach et al., 2015] and DeepLift (Rescale) [Shrikumar et al.,
2017]) are equivalent to the Gradient � Input. Finally, Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [Selvaraju et al., 2019] has proven to be an adequate method
to support convolutional neural networks predictions. Grad-CAM identifies the regions
of the input data that are important for predictions in convolutional neural networks us-
ing the class-specific gradient information (attribution map). It generates the attribution
maps based on the weighted combination of the feature map activations from the layer of
interest, where the weights are the global average pool of the gradients over each feature
map. The method has been shown to provide faithful explanations with regard to the
model [Adebayo et al., 2018], it passes both the model parameter and data randomization
tests.

2.3.3 Post-Hoc Model-Agnostic Explainability

Finally, post-hoc model-agnostic explainability methods provide explanations from
any machine learning model. These methods treat the model as a black-box and do not
inspect internal model parameters.

For example, the permutation feature importance method [Altmann et al., 2010] pro-
vides the importance of a specific feature to the overall performance of a model. It de-
termines the importance of a feature by calculating how the model prediction accuracy
deviates after permuting the values of that feature.

Some methods [Dhurandhar et al., 2018; Kim et al., 2016] generate contrastive ex-
planations, i.e. positive and negative explanations that support the model’s predictions,
using some representations of the input data. In [Kim et al., 2016], MMD-critic comple-
ments prototypes explanations (representative samples) with critics (samples that do not
quite fit the model). MMD-critic uses the maximum mean discrepancy (MMD) statistic
as a measure of similarity between points and potential prototypes, and selects prototypes
that maximize the statistic. In addition to prototypes, it selects criticism samples using a
regularized witness function score. Then, CEM (Contrastive Explanations Method) [Dhu-
randhar et al., 2018] identifies what should be minimally and sufficiently present to justify
the model’s predictions and analogously what should be minimally and necessarily absent.
CEM finds a minimal amount of features in the input that are sufficient in themselves to
yield the same prediction, and a minimal amount of features that should be absent in the
input to prevent the prediction from changing, based on close perturbations of the data
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manifold leveraging a convolutional autoencoder.
Some other methods use an explainable surrogate model [Guidotti et al., 2019; Lakkaraju

et al., 2017; Lundberg et al., 2017; Ribeiro et al., 2016, 2018] to support the model pre-
dictions. A surrogate model is a model that aims to mimic the predictions of the original
model. LIME (Local Interpretable Model-agnostic Explanations) [Ribeiro et al., 2016],
Anchors [Ribeiro et al., 2018] and LORE (LOcal Rule-based Explanations) [Guidotti et
al., 2019] are local-only approaches. They focus on the behavior of the model in the
neighborhood of a specific instance, without providing a single description of the logic of
the model for all possible instances. These approaches assume that the decision bound-
ary for the model can be arbitrarily complex over the whole data space, but that in the
neighborhood of a data point the decision boundary can be captured by an explainable
model. LIME describes the local behavior of the model using a linearly weighted com-
bination of the input features, learned on perturbations of an instance. Then, Anchors,
as a variant of LIME, uses a set of association rules instead of a linear model as ex-
planation method. LORE learns a local decision tree classifier, generated by a genetic
algorithm, on a synthetic neighborhood of an instance. It derives from the decision tree
an explanation consisting of a decision rule, explaining the factual reasons of the decision
and a set of counterfactuals. Next, BETA (Black Box Explanations through Transparent
Approximations) [Lakkaraju et al., 2017] constructs global-only explanations of a model
predictions. It constructs a small number of compact decision sets that aim to mimic the
model in terms of assigning class labels to instances. Each of these decision sets captures
the behavior of the model in non-overlapping parts of the feature space. Finally, SHAP
(SHapley Additive exPlanations) [Lundberg et al., 2017] provides explanations at both
global and local level. The surrogate explainable model is a linear model: an additive fea-
ture attribution method that uses simplified inputs (conditional expectations) assuming
feature independence. The SHAP values can be averaged per class to obtain the average
impact of each variable on model predictions at global level.

The multiple explainability methods presented in this section reflect the diversity of
explanations generated to support model predictions, therefore the need for a framework
in order to benchmark the machine learning methods explainability. A new framework to
benchmark the performance-explainability of the machine learning methods of this thesis
is presented in chapter 4.

41



Chapter 3

Applications

Contents
3.1 Dairy Resource Monitoring . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Machine Learning Solutions . . . . . . . . . . . . . . . . . . . . 44

3.2 Earthquake Early Warning . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Machine Learning Solutions . . . . . . . . . . . . . . . . . . . . 47

This chapter presents the background and the existing machine learning solutions
concerning the two applications of this thesis: dairy resource monitoring and earthquake
early warning.

3.1 Dairy Resource Monitoring

3.1.1 Background

Nowadays, data (e.g. temperature, activity, body weight, milk production) is collected
in dairy farms through different types of sensors to support farmers’ decision making
in various aspects of management (e.g. reproduction, diseases, feeding, environment).
Machine learning methods can help to exploit the value of this ever-growing volume of
data.

Reproduction is a key factor for dairy farm performance as it directly impacts milk
production. As shown in Figure 3.1, the standard scheme for a cow in dairy farm is one calf
a year (365 days) with 305 days of milk production and 60 days of dry period. Gestation
period is 9 months with an ovarian cycle of more or less 21 days. Following this scheme,
insemination of cows should ideally occur 90 days after the previous calving to allow the
next calving in 9 months. However, in practice, insemination can occur only during estrus
or right after. Estrus is the period preceding the ovulation period and is the only period
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Figure 3.1 – Typical milk productivity evolution during one lactation for a dairy cow.

when the cow is susceptible to pregnancy. For each missed estrus identification, another
21 days is needed for the next attempt. Half of the lactation production is produced in
the first 4 months with a declining productivity after the first 3 months. So, in case of
missed insemination, a sensitive impact on milk production occurs. When compared with
an average calving interval of 362 days, [Inchaisri et al., 2010] estimated that a longer
average calving interval of 407 or 507 days caused an average milk production loss of,
respectively, 4% or 13% per cow per year. In addition, as shown in [Bascom et al., 1998],
the most prevalent reason for cow culling is reproduction issue (e.g. long intervals between
2 calves). Therefore, estrus detection for cow insemination is crucial in dairy farms for an
optimal resource use.

Traditionally, estrus detection relies on visual observation of animal behaviors as ac-
tivity usually increases markedly in cows during estrus [Gaillard et al., 2016]. However,
less than 50% of estrus are detected visually [Peralta et al., 2005]. This low detection
rate can be explained by five main reasons. First, primary sign of estrus (mounting) has
decreased from 80% to 50% over the past 30 to 50 years [Dobson et al., 2008]; second,
35% of estrus are not associated with obvious behavioral signs - a phenomena defined as
silent estrus [Palmer et al., 2010]; third, only 65% of cows have a normal ovarian cyclicity -
postpartum anovulation shorter than 50 days and regular ovarian cycle of 20-25 days [Dis-
enhaus et al., 2009]; fourth, duration of estrus has declined from 18 hours to 8 hours over
the last 50 years [Reames et al., 2011]; and fifth, sexual behaviors mostly expressed from
1am to 7am [Kerbrat et al., 2004].

Different methods have been developed to aid visual detection. Hormonal induction
aims to induce synchronous ovulation and thus allows fixed-time insemination without
the need for estrus detection. This practice is widespread in the United States [Car-
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aviello et al., 2006] but not in Europe due to public reluctance to accept animal products
treated with hormones [Chastant-Maillard, 2006]. Therefore, alternative methods have
been adopted. The gold standard is estrus estimation using automated progesterone anal-
ysis in milk. We observe a consensus around the use of progesterone profiles to identify
estruses [Cutullic et al., 2011; Gilmore et al., 2011; Tenghe et al., 2015]. This option is now
available for the farms but the cost of this solution limits its extensive implementation.
As a result, activity and body temperature are considered having potential for automatic
estrus detection [Fricke et al., 2017; Saint-Dizier et al., 2012; Senger, 1994]. A study shows
that automatic activity measurement (with activity meter or accelerometer) is suitable
for estrus detection and is likely to be gainful for most dairy farms [Rutten et al., 2014].
Some commercial detection solutions based on affordable activity sensors exist. However,
their adoption rate remains moderate [Steeneveld et al., 2015]. First, these solutions lack
of performance (false alerts, incomplete estrus coverage - behavioral estrus only). Second,
the absence of key information behind detection alerts generate confusion and mistrust
from farmers. Therefore, aside from an enhanced performance, key justifications for estrus
alerts are also considered essential to the farmers. In order to train a model that covers
both behavioral and silent estrus, the dataset of this thesis is labeled with progesterone
dosage in milk. The next section presents the related work of automatic estrus detection
solutions based on machine learning.

3.1.2 Machine Learning Solutions

There are multiple studies about the application of machine learning methods on
estrus detection [Dolecheck et al., 2015; Krieter, 2005; Minegishi et al., 2019; Mitchell
et al., 1996]. None of them uses the currently recognized method for behavioral and silent
estrus identification as labels (progesterone profiles), so their estrus labeling methods are
not exhaustive. Moreover, two studies use different variables (milk volume, milking order,
days since last estrus) rather than the affordable activity or temperature measurements.
Finally, none of them gives insights on algorithm predictions based on its explainability.

Mitchell et al. [1996] base the study on time series data of milk volume and milking
order, using visual detection as the ground truth. Two learning schemes were tested -
FOIL and C4.5. Algorithms detected 69% of estruses identified by visual method and a
large number of false positives occurred (74%).

Krieter [2005] learns a multilayer perceptron on time series data of activity and the
number of days since last estrus, using successful insemination as the ground truth. The
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model showed a sensitivity, a specificity and an error rate of 77.5, 99.6 and 9.1% on
373 estrus. The sensitivity, also called recall, measures the proportion of actual positives
that are correctly identified as such, and the specificity measures the proportion of actual
negatives that are correctly identified as such.

Next, Dolecheck et al. [2015] base the study on time series data of activity, using visual
detection as the ground truth (65.6% of all estruses). Three machine learning techniques
were tested - random forest, linear discriminant and MLP. Algorithms showed 91%-100%
accuracy on a limited dataset of 18 cows.

And lastly, Minegishi et al. [2019] learn a logistic regression on activity variables (7 days
moving average/standard deviation, and the daily absolute maximum of 6-hour-window
cumulative change of the data), using the combination of an automatic estrus detection
solution (collar-mounted activity meter) and visual detection as the ground truth. Two
herds have been studied (low-input conventional and organic) with seasonal breeding. The
model shows 51-91% sensitivity and 92-99% specificity (threshold: 0.7) according to the
herd and the season (total dataset: 1,462 estrus, 300 cows).

Therefore, there is a need to enhance the performance of estrus detection solutions
based on affordable sensor data and to support the alerts with explanations. I propose
three new machine learning solutions for estrus detection which are presented and dis-
cussed in the chapters 6, 8 and 9. The next section introduces the second application of
this thesis: earthquake early warning.

3.2 Earthquake Early Warning

3.2.1 Background

Earthquakes are accompanied by a suite of associated hazards. In particular, strong
shaking and large tsunamis can affect regions hundreds of kilometers long causing sub-
stantial loss of life and damage to the built environment. These large ground motions also
trigger secondary hazards such as fires and landslides. In an effort to protect against these
hazards, a number of Earthquake Early Warning (EEW) systems have been built around
the world [Allen et al., 2019]. These critical systems, operating 24/7, are expected to auto-
matically detect and characterize earthquakes as they happen, and to deliver alerts before
the ground motion actually reaches sensitive areas so that protective measures could be
taken.

An EEW system needs to be able to detect both medium (5 ≤ magnitude < 6, Richter
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scale) and large earthquakes (6 ≤ magnitude, Richter scale). Depending on the distance
from the origin of the earthquake, both of these can cause serious damages. Seismometers,
which have long been the bulwark of seismology to detect earthquakes, have a difficulty
to detect and characterize large earthquakes [Melgar et al., 2013] due to a saturation
issue caused by their sensitivity to ground motion velocity. As a result, earthquakes over
magnitude 7.5 tend to be underestimated. A promising solution to this issue [Melgar et al.,
2015] emerged with novel high-precision Global Positioning System (GPS) sensors, with
their millimeter to centimeter accuracy when measuring high ground motion velocity.
However, GPS are unable to characterize medium earthquakes, as they are prone to
containing significant signals from a variety of noise sources, mostly of atmospheric origin.
Consequently, multi-sensor solutions (leveraging both GPS and seismometers) appear as
a promising approach. As EEW can be assimilated as a classification problem, where the
input is sensor data and the output is a class (normal activity/medium earthquake/large
earthquake), recent machine learning approaches designed to combine large volumes of
data from multiple data sources can be applied.

The following paragraphs define the key concepts of earthquake early warning as back-
ground to the presentation in the next section of the existing machine learning solutions.

An earthquake is the shaking of the surface of the Earth caused by seismic waves.
Among these seismic waves, two types stand out: Primary waves (P-waves) and Secondary
waves (S-waves). Both waves have the same origin - most commonly an abrupt movement
of tectonic plates. However, P-waves travel through Earth’s crust around 1.7 times faster
than S-waves which propagate through Earth’s interior. In addition, only S-waves are
responsible for the severe damages. P-waves cause soft shaking due to their longitudinal
shape (they move sideways), whereas S-waves are transverse waves (they move up and
down). Therefore, an Earthquake Early Warning (EEW) system, which aims to provide
an alert before the damaging effects reach sensitive areas, relies on the detection of the
P-wave before the S-wave arrives. This gives communities, organizations and governments
a time window of seconds to minutes to take protective actions.

Traditionally, inertial seismometers are used to detect primary waves. The inertial
mass is designed to remain stationary following sudden movements while the frame and
drum move with the ground to record waves. However, during large earthquakes, ground
motion velocity causes the inertial mass to be displaced above the allowed span. This effect
is called saturation. As a result, earthquakes over magnitude 7.5 (Richter scale) tend to
be underestimated. On the other hand, GPS satellites are not affected by earthquakes,
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so a GPS receiver station on Earth can be used to assess strong ground motion based on
the station displacement. However, GPS is sensitive to a variety of noise sources, mostly
of atmospheric origin, and is unable to characterize moderate earthquakes. Both sensors
produce data in the form of 3D time series indicating the direction of a ground motion
(east-west, north-south and up-down) at a frequency of around 20Hz.

P-waves follow a propagation model (IASP91 [Kennet, 1991]) which is used for labeling
the time series (sequences of measurements) corresponding to an earthquake. Based on the
distance below Earth’s surface where each earthquake happened, the P-wave arrival time
on each sensor (seismometers and GPS stations) is estimated according to its distance to
the epicenter with the propagation model.

The next section presents the existing machine learning solutions to earthquake early
warning which detect P-waves.

3.2.2 Machine Learning Solutions

Machine learning in seismology is still a developing field. There are a couple of stud-
ies [Li et al., 2018b; Perol et al., 2018; Yoon et al., 2015] using machine learning methods
for earthquake characterization based on P-wave detection (EEW). However, none of them
uses a combination of GPS and seismometers data so the whole spectrum of earthquakes
with damaging potential is not appropriately covered. The detection is only based on
seismometers data, so the saturation issue on large earthquakes is present. Moreover, the
three studies adopt a binary classification approach (earthquakes vs. noise) with no dis-
tinction between medium and large earthquakes. Finally, two of these studies [Perol et al.,
2018; Yoon et al., 2015] limit their scope to medium earthquakes.

Yoon et al. [2015] propose a waveform similarity-based method optimized by locality-
sensitive hashing search using seismometers data from California. It presents a precision of
88.1% and a recall of 87.5%. Next, Li et al. [2018] have developed a generative adversarial
network with a random forest on seismometers data from Southern California and Japan.
It obtains an accuracy of 99.2%. And, Perol et al. [2018] train a convolutional neural
network using seismometers data from Oklahoma and show a precision of 94.8% and a
recall of 100%.

Consequently, an EEW machine learning-based solution that can be generalized to the
whole spectrum of earthquakes with damaging potential is necessary and is presented in
chapter 5. The next chapter introduces a performance-explainability framework to assess
and benchmark the machine learning methods of this thesis.
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4.1 Introduction

This part introduces the performance-explainability analytical framework that will
be used in the following parts to benchmark the different machine learning methods.
The next three parts present different classifiers (convolutional neural network classifier,
ensemble methods, pattern-based classifier) with their own explainability approach (by
design, post-hoc model-specific, post-hoc model-agnostic) on two applications (dairy re-
source monitoring and earthquake early warning). Therefore, an analytical framework is
needed to compare and discuss the strengths/limitations of these machine learning ap-
proaches with regard to their performance and explainability.

The performance of a machine learning method can be assessed by the extent to which
it correctly predicts unseen instances. A metric like the accuracy score commonly mea-
sures the performance of a classification model. However, there is no standard approach
to assess explainability. First, there is no mathematical definition of explainability. A def-
inition proposed by [Miller, 2019] states that the higher the explainability of a machine
learning algorithm, the easier it is for someone to comprehend why certain decisions or
predictions have been made. Second, as presented in the state-of-the-art section 2.3, there
are several methods belonging to different categories (explainability by design, post-hoc
model-specific explainability and post-hoc model-agnostic explainability) which provide
their own form of explanations to support their respective predictions.

The requirements for explainable machine learning methods are dependent upon the

49



Chapter 4 – Analytical Framework

application and to whom the explanations are intended for [Bohlender et al., 2019; Tomsett
et al., 2018]. In order to match these requirements and conduct experiments to validate the
usefulness of the explanations by the end-users, there is a need to have a comprehensive
assessment of the explainability of the existing methods. Doshi-Velez et al. [2017] claim
that creating a shared language is essential for evaluation and comparison of machine
learning methods, which is currently challenging without a set of explanation characteris-
tics. As far as I have seen, there is no existing framework which defines a set of explanation
characteristics that systematize the assessment of the explainability of existing machine
learning methods.

Hence, in the next section, I propose a new framework to assess and benchmark the
performance-explainability characteristics of the different machine learning methods of
the thesis. The framework hypothesizes a set of explanation characteristics and, as em-
phasized in [Wolf, 2019], focuses on what people might need to understand about machine
learning methods in order to act in concert with the model outputs. The framework does
not claim to be exhaustive and excludes application-specific implementation constraints
like time, memory usage and privacy. It could be a basis for the development of a com-
prehensive assessment of the machine learning methods with regard to their performance
and explainability and for the design of new machine learning methods.

4.2 Framework

The framework aims to respond to the different questions an end-user may ask to take
an informed decision based on the predictions made by a machine learning model: What
is the level of performance of the model? Is the model comprehensible? Is it possible to get
an explanation for a particular instance? Which kind of information does the explanation
provide? Can we trust the explanations? What is the target user category of the explana-
tions? The performance-explainability analytical framework that I propose is composed
of the following components:

Performance - What is the level of performance of the model?
The first component of the framework characterizes the performance of a machine
learning model. Different methods (e.g. holdout, k-fold cross-validation) and met-
rics (e.g. accuracy, F-measure, Area Under the ROC Curve) exist to evaluate the
performance of a machine learning model [Witten et al., 2016]. However, there is no
consensus on an evaluation procedure to assess the performance of a machine learn-
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ing model. Recent work suggests that the definition of such an evaluation procedure
necessitates the development of a measurement theory for machine learning [Flach,
2019]. Many of the problems stem from a limited appreciation of the importance of
the scale on which the evaluation measures are expressed.
Then, in current practices, the choice of a metric to evaluate the performance of a
machine learning model depends on the application. According to the application,
a metric aligned with the goal of the experiments is selected, which prevents the
performance comparison of machine learning models across applications.
Therefore, in the framework of this thesis, the performance component is defined
as a first step towards a standard procedure to assess the performance of machine
learning models. It corresponds to the relative performance of a model on a particu-
lar application. More specifically, it indicates the relative performance of the models
according to the state-of-the-art model on a particular application and an evalua-
tion setting. This definition allows the categorization of the models’ performance
on an application and an evaluation setting. In the case of different applications
with a similar machine learning task, the performance component can give the list
of models which outperformed current state-of-the-art models on their respective
application. Thus, it points to certain models that could be interesting to evaluate
on a new application, without providing guarantee that these models would perform
the same on this new application. I propose an assessment of the performance in
three categories:
• Best: best performance. It corresponds to the performance of the first ranked

model on the application following an evaluation setting (datasets, evaluation
method, models);
• Similar : performance similar to that of the state-of-the-art models. Based on

the same evaluation setting, it corresponds to all the models which do not
show a statistically significant performance difference with the second ranked
model. For example, the statistical comparison of multiple classifiers on mul-
tiple datasets is usually presented on a critical difference diagram [Demšar,
2006];
• Below: performance below that of the state-of-the-art models. It corresponds

to the performance of the remaining models with the same evaluation setting.

Model Comprehensibility - Is the model comprehensible?

51



Chapter 4 – Analytical Framework

The model comprehensibility corresponds to the ability for the user to understand
how the model works and produces certain predictions. Comprehensibility is tightly
linked to the model complexity; yet, there is no consensus on model complexity as-
sessment [Guidotti et al., 2018]. Currently, two categories of models are commonly
recognized: “white-box” models, i.e. easy-to-understand models, and “black-box”
models, i.e. complicated-to-understand models [Lipton, 2016]. For example, many
rule-based models and decision trees are regarded as “white-box” models while en-
semble methods and deep learning models are “black-box” models. Not all rule-based
models or decision trees are “white-box” models. Cognitive limitations of humans
place restrictions on the complexity of the approximations that are understandable
to humans. For example, a decision tree with a hundred levels cannot be considered
as an easy-to-understand model [Lakkaraju et al., 2017]. However, the distinction
between “white-box” models and “black-box” models is clear among the machine
learning models of this thesis. The models are all “black-box” (ensemble methods,
convolutional neural network) except one which is an easy-to-understand decision
tree with a depth of 4. Therefore, I propose an assessment of the comprehensibility
in two categories:

• Black-Box : “black-box” model;

• White-Box : “white-box” model.

Granularity of the Explanations - Is it possible to get an explanation for a particular
instance?
The granularity indicates the level of possible explanations. Two levels are generally
distinguished: global and local [Du et al., 2020]. Global explainability means that
explanations concern the overall behavior of the model across the full dataset, while
local explainability informs the user about a particular prediction. Some methods
can provide either global or local-only explainability while other methods can pro-
vide both (e.g. decision trees). Therefore, I propose an assessment of the granularity
in three categories:

• Global: global explainability;

• Local: local explainability;

• Global & Local: both global and local explainability.
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Information Type - Which kind of information does the explanation provide?
The information type informs the user about the kind of information communicated.
The most valuable information is close to the language of human reasoning, with
causal and counterfactual rules [Pearl et al., 2018]. Causal rules can tell the user
that certain observed variables are the causes of specific model predictions. However,
machine learning usually leverages statistical associations in the data and do not
convey information about the causal relationships among the observed variables and
the unobserved confounding variables. The usual statistical associations discovered
by machine learning methods highly depend on the machine learning task. Therefore,
I first give a generic high-level definition of the information type and then I detail
and illustrate it for the application case of this thesis (MTS classification). I propose
a generic assessment of the information type in 3 categories from the least to the
most informative:

• Importance: the explanations reveal the relative importance of each dataset
variable on predictions. The importance indicates the statistical contribution
of each variable to the underlying model when making decisions;

• Patterns: the explanations provide the small conjunctions of symbols with a
predefined semantic (patterns) associated with the predictions;

• Causal: the most informative category corresponds to explanations under the
form of causal rules;

In this thesis, the issue of Multivariate Time Series (MTS) classification is addressed.
Thus, considering the MTS data type, the information can be structured around
the features, i.e. the observed variables, and the time. I propose to decompose the
3 categories presented into 8 categories. In addition, I will illustrate each of these
categories with an application in the medical field (see Figure 4.1), which is the
same example as in the Introduction and State-of-the-Art of this thesis. It is worth
noting that the explanations provided to illustrate each category are assumptive
rather than validated, they are given as illustrative in nature.

• Features (Importance): the explanations reveal the relative importance of the
features on predictions. For example, in order to support a model output from
the MTS of the Figure 4.1, the explanations could tell the user that the channel
2 has a greater importance on the prediction than the channel 1;
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Figure 4.1 – The first MTS sample of the UEA Atrial Fibrilation test set. It belongs to
the class Non-Terminating Atrial Fibrilation and is composed of two channels ECG on a
5 second period (128 samples per second).

• Features + Time (Importance): the explanations provide the relative impor-
tance of the features and timestamps on predictions. For example, in order to
support a model output from the MTS of the Figure 4.1, the explanations could
tell the user that the channel 2 has a greater importance on the prediction than
the channel 1 and that the timestamps are in increasing order of importance
on the prediction;

• Features + Time + Values (Importance): in addition to the relative importance
of the features and timestamps on predictions, the explanations indicate the
discriminative values of a feature for each class. For example in Figure 4.1,
the explanations could give the same explanations as the previous category,
plus, it could tell the user that the timestamps with the highest importance
are associated with high values (values above 0.15) on the channel 2;

• Uni Itemsets (Patterns): the explanations provide patterns under the form of
groups of values, also called itemsets, which occur per feature and are associated
with the prediction. For example, in order to support a model output from the
MTS of the Figure 4.1, the explanations could tell the user that the following
itemsets are associated with the prediction: {channel 1: extremely high value
(above 1); channel 1: low value (below -0.05)} and {channel 2: high value (above
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0.15); channel 2: extremely low value (below -0.1)}. The first itemset can be
read as: the prediction is associated with the occurence on the channel 1 of
an extremely high value being above 1 and a low value being below -0.05 at
another moment, without information on which one appears first;
• Multi Itemsets (Patterns): the explanations provide patterns under the form of

multidimensional itemsets, i.e. groups of values composed of different features,
which are associated with the prediction. For example, in order to support a
model output from the MTS of the Figure 4.1, the explanations could tell the
user that the following itemset is associated with the prediction: {channel 1:
extremely high value (above 1); channel 2: high value (above 0.15)};
• Uni Sequences (Patterns): the explanations provide patterns under the form of

ordered groups of values, also called sequences, which occur per feature and are
associated with the prediction. For example, in order to support a model output
from the MTS of the Figure 4.1, the explanations could tell the user that the
following sequences are associated with the prediction: <channel 1: extremely
high value (above 1); channel 1: low value (below -0.05)> and <channel 2: high
values (above 0.15) with an increase during 1 second>. The first sequence can
be read as: the prediction is associated with the occurrence on the channel 1
of an extremely high value being above 1 followed by a low value being below
-0.05;
• Multi Sequences (Patterns): the explanations provide patterns under the form

of multidimensional sequences, i.e. ordered groups of values composed of dif-
ferent features, which are associated with the prediction. For example, in order
to support a model output from the MTS of the Figure 4.1, the explanations
could tell the user that the following sequence is associated with the prediction:
<channel 1: extremely high value (above 1); channel 2: high values (above 0.15)
with an increase during 1 second>;
• Causal: the last category corresponds to explanations under the form of causal

rules. For example, in order to support a model output from the MTS of the
Figure 4.1, the explanations could tell the user that the following rule applies:
if (channel 1: extremely high value (above 1)) & (channel 2: high values (above
0.15) with an increase during 1 second), then the MTS belongs to the class
Non-Terminating Atrial Fibrilation.
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Faithfulness - Can we trust the explanations?
The faithfulness corresponds to the level of trust an end-user can have in the ex-
planations of model predictions, i.e. the level of relatedness of the explanations to
what the model actually computes. An explanation extracted directly from the orig-
inal model is faithful by definition. Some post-hoc explanation methods propose to
approximate the behavior of the original “black-box” model with an explainable
surrogate model. The explanations from the surrogate models cannot be perfectly
faithful with respect to the original model [Rudin, 2019]. The fidelity criteria is used
to quantify the faithfulness by the extent to which the surrogate model imitates the
prediction score of the original model [Guidotti et al., 2018]. In the thesis, there is
only one machine learning method using an explainable surrogate model among the
5 methods presented. Therefore, there is no need to distinguish between the degree
of fidelity of the surrogate models in the framework. I propose an assessment of the
faithfulness in two categories:

• Imperfect: imperfect faithfulness (use of an explainable surrogate model);

• Perfect: perfect faithfulness.

User category - What is the target user category of the explanations? The user cat-
egory indicates the audience to whom the explanations are accessible. The user’s
experience will affect what kind of cognitive chunks they have, that is, how they or-
ganize individual elements of information into collections [Neath et al., 2003]. Thus,
it could be interesting to categorize the user types and associate with the model to
whom the explanations will be accessible to. The broader the audience, the better
are the explanations. Therefore, an assessment in three categories is proposed:

• Machine Learning Expert;

• Domain Expert: domain experts (e.g. professionals, researchers);

• Broad Audience: non-domain experts (e.g. policy makers).

Table 4.1 summarizes the different aspects of the performance-explainability frame-
work. In order to compare the methods visually using the proposed framework, the dif-
ferent aspects can be represented on a parallel coordinates plot. A parallel coordinate
plot allows a 2-dimensional visualization of a high dimensional dataset and is suited for
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Table 4.1 – Performance-explainability analytical framework. The table summarizes the
different components of the framework, the corresponding name used in the figures of the
thesis and the assessment method.

Component Name Assessment

- Below: performance below that of the
state-of-the-art models

Performance Performance - Similar : performance similar to that of the
state-of-the-art models
- Best: best performance

Model Comprehensibility - Black-box : “black-box” model
Comprehensibility - White-box : “white-box” model

Granularity - Global: global explainability

of the Granularity - Local: local explainability
- Global & Local: both global and local
explainabilityExplanations
- Features: ranking of the features
- Features+Time: ranking of the features
and the timestamps
- Features+Time+Values: ranking of the
features and the timestamps with the
discriminative values of the features
- Uni Itemsets: set of values per feature

Information Type Information - Multi Itemsets: multidimensional set of
values
- Uni Sequences: sequence of values per
feature
- Multi Sequences: multidimensional
sequence of values
- Causal: causal rules

Faithfulness Faithfulness - Imperfect: imperfect faithfulness
- Perfect: perfect faithfulness
- Machine Learning Expert

User Category User - Domain Expert
- Broad Audience
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the categorical data of this framework. The next section presents an example of paral-
lel coordinates plots comparing two state-of-the-art MTS classifiers on the public UEA
datasets [Bagnall et al., 2018].

4.3 Example

In this section, I give an example of comparison between two state-of-the art MTS
classifiers with the analytical framework introduced.

The first MTS classifier belongs to the similarity-based category and is the one-Nearest
Neighbor MTS classifier with Dynamic Time Warping distance (DTWI) [Shokoohi-Yekta
et al., 2017]. DTWI classifies MTS samples based on the label of their nearest sample.
The similarity is calculated as the cumulative distances of all dimensions independently
measured under DTW. For an individual MTS, the explanation supporting the predic-
tion is the ranking of features and timestamps in decreasing order of their DTW dis-
tance with the nearest MTS. Figure 4.2 shows DTWI parallel coordinates plot on the
UEA datasets. Based on predefined train/test splits and an arithmetic mean of the ac-
curacies, DTWI underperforms the current state-of-the-art MTS classifiers on the UEA
datasets (Performance: Below). However, DTWI model is comprehensible (Comprehensi-
bility: White-Box) and provides faithful explanations (Faithfulness: Perfect) at local level
(Granularity: Local). Nevertheless, the model DTWI conveys limited information (Infor-
mation: Features+Time) that needs to be analyzed by a domain expert (User: Domain
Expert).

The second MTS classifier belongs to the shapelet-based category and is the Ultra-Fast
Shapelets (UFS) [Wistuba et al., 2015]. UFS models the input data as a set of distances
from shapelets. Then, the classification of the input data with the shapelets as features
can be performed by a decision tree. Figure 4.2 also shows UFS parallel coordinates plot
on the UEA datasets. Based on the same evaluation method as DTWI , UFS has the
same performance level as current state-of-the-art MTS classifiers on the UEA datasets
(Performance: Similar, DTWI : Below). Concerning the explainability, similar to DTWI ,
UFS model is comprehensible (Comprehensibility: White-Box) and provides faithful ex-
planations (Faithfulness: Perfect) which are accessible by a domain expert (User: Domain
Expert). However, UFS provides more informative explanations than DTWI (Informa-
tion: Uni Sequences, DTWI : Features+Time) at all granularity levels (Granularity: Both
Global & Local, DTWI : Local). A set of shapelets, i.e. a set of sequences per feature, can
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Figure 4.2 – Parallel coordinates plot of DTWI and UFS MTS classifiers on the UEA
datasets. Performance evaluation method: predefined train/test splits and an arithmetic
mean of the accuracies on the public UEA datasets. Models evaluated in the benchmark:
DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet, SMTS, UFS and
WEASEL+MUSE.
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be communicated to the domain expert to explain the overall behavior of the classifier or
support the prediction of a particular instance.

Therefore, based on the performance-explainability analytical framework introduced
in this chapter, it would be preferable to choose UFS instead of DTWI on average on
the UEA datasets. In addition to its better level of performance, UFS provides more
informative explanations and at a better granularity level.

4.4 In The Next Parts...

The performance-explainability framework presented is used to compare the machine
learning methods to be presented in the following parts. First, the part III introduces
new ensemble methods and discusses how a faithful explainable by design MTS classi-
fier can compete with the level of information a post-hoc model-agnostic explainability
method could provide, while maintaining performance. Next, a new pattern-based MTS
classifier is presented in the chapter 8 and shows how to widen the audience with an easy-
to-understand model compared to the ensemble methods of the part III. Finally, a new
convolutional neural network MTS classifier is presented in the chapter 9 and shows how
to improve the performance of the ensemble method of the part III, while offering faithful-
ness and more informative explanations than the post-hoc model-agnostic explainability
method based on a post-hoc model-specific explainability method.
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This part is composed of three chapters about ensemble methods. Ensemble methods
are the current state-of-the-art classifiers for traditional multivariate data classification
and univariate time series classification, whereas there is no ensemble method among
the state-of-the-art MTS classifiers. This part shows that ensemble methods can also be
performant in the MTS classification setting, while providing some explainability.

The first chapter presents a new stacking ensemble method to earthquake early warn-
ing, which has been published in AAAI 2020 [Fauvel et al., 2020a]. The performance
criteria has shaped the design of this new stacking ensemble method but it provides
faithful and local explanations. The second chapter introduces a new hybrid ensemble
method for dairy resource monitoring, which has been published in KDD 2019 [Fauvel
et al., 2019b]. The post-hoc model-agnostic explainability method offers more informative
explanations that could be useful to broader audiences compared to the first method. How-
ever, the enhanced explanations come at the cost of faithfulness, which is a prerequisite for
numerous applications. Therefore, the third chapter presents an extension of the hybrid
ensemble method which integrates faithfulness with explainability by design. This method
competes with the level of information and the audience of the post-hoc model-agnostic
explainability method while maintaining performance (available on ArXiv [Fauvel et al.,
2020b]).

62



Chapter 5

A Distributed Multivariate Time Series
Ensemble Method to Earthquake Early

Warning

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 DMSEEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Real-World Dataset . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Sensor-Level Predictions . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Combined Predictions at Central Level . . . . . . . . . . . . . . 72

5.5 Performance-Explainability Analysis . . . . . . . . . . . . . . . 75

The first machine learning method of the thesis aims to improve the accuracy of Earth-
quake Early Warning (EEW) systems (application background presented in section 3.2.1).
The method is the result of a collaboration that I have jointly built with researchers from
different institutions participating in a NSF project: they are researchers from the De-
partment of Earth Sciences of the University of Oregon, USA, researchers in distributed
computing from the Rutgers Discovery Informatics Institute, USA, and the KerData team
at Inria, France, and researchers in machine learning from the LACODAM (“Large Scale
Collaborative Data Mining”) team at Inria, France. During this collaboration, I have had
the chance to be a visiting researcher at the Rutgers Discovery Informatics Institute for a
month in April 2019. This work has been published in AAAI 2020 [Fauvel et al., 2020a]
and received the “AAAI 2020 Outstanding Paper Award” in the category “AI for Social
Impact”.
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5.1 Introduction

As presented in section 3.2.1, the detection of the whole spectrum of earthquakes with
damaging potential, i.e. medium and large earthquakes, is an open problem in the field of
EEW. To tackle this challenge, multi-sensor solutions leveraging GPS and seismometers
complementary characteristics appear as a promising approach. Seismometers have a diffi-
culty to detect and characterize large earthquakes due to a saturation issue caused by their
sensitivity to ground motion velocity. Whereas, GPS stations are unable to characterize
medium earthquakes, as they are prone to containing significant signals from a variety
of noise sources, mostly of atmospheric origin. As EEW can be assimilated as a MTS
classification problem, where the input is sensor data (3 dimensions: east-west, north-
south and up-down) and the output is a class (normal activity/medium earthquake/large
earthquake); machine learning approaches designed to combine large volumes of data from
multiple data sources can be applied.

Integrating and processing high-frequency data streams from multiple sensors scat-
tered over a large territory in a timely manner requires high-performance computing
techniques and equipments. Thus, a machine learning earthquake detection solution has
to be designed with experts in distributed computing and cyberinfrastructure to enable
real-time alerts. A cyberinfrastructure is the set of logical and physical computational
systems onto which a scientific application is deployed. Because of the large number of
sensors and their high sampling rate, a traditional centralized approach which transfers
all data to a single point may be impractical.

Current approaches to EEW in the literature make use of centralized data processing
strategies: all sensors send their data, through a network, to a data center where processing
will take place [Fischer et al., 2012]. This strategy implicitly depends on cyberinfrastruc-
tures supporting almost insignificant network latency and very high bandwidth, often
provided by costly fiber networks. Furthermore a lot of trust is placed in the reliability
of the network and telemetry paths [Allen et al., 2019]. In the case of large earthquakes,
power failures and wiring disconnections can frequently lead to regional shutdowns, as
happened after the magnitude-9 earthquake in Japan in 2011 [Hoshiba et al., 2012].

In this work, a distributed cyberinfrastructure is targeted for executing the proposed
EEW system, meaning that data processing tasks can be performed in different parts of
the infrastructure and at different locations. In particular, processing part of the data at
the edge of the network [Satyanarayanan, 2017; Shi et al., 2016], i.e. as close as possible
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to the sources of data, is favored in order to reduce the amount of data transferred to the
main data center [Yang et al., 2010].

Machine learning in seismology is still a developing field. As presented in section 3.2.2,
there are a couple of studies using machine learning methods for earthquake characteri-
zation based on P-wave detection (EEW). However, none of them used a combination of
GPS and seismometers data so the whole spectrum of earthquakes with damaging poten-
tial is not appropriately covered. Additionally, none of them used a distributed approach.
Consequently, a distributed EEW machine learning-based solution that can be generalized
to the whole spectrum of earthquakes is designed.

5.1.1 Contributions

EEW MTS classification critical problem is particularly interesting to study from the
performance and explainability perspectives of this thesis. The detection performance
is a prerequisite in this application and explanations can support the decision-makers
(communities, organizations and governments) in the short time window of seconds to
minutes they have to take protective actions.

Therefore, in this chapter, MTS machine learning methods are used to address the
most urgent challenges faced by EEW systems, i.e. integrating multiple data sources in
real-time to cover the whole spectrum of potentially damaging earthquakes (medium and
large). The solution relies on two complementary types of sensors (GPS stations and
seismometers). A new machine learning technique specifically tailored to allow efficient
computation on large-scale distributed cyberinfrastructures is introduced. The study will:

• Propose a new EEW approach to characterize the whole spectrum of earthquakes
with damaging potential (both medium and large) using a real-world dataset col-
lected and validated with geoscientists combining two complementary data sources;

• Present DMSEEW (Distributed Multi-Sensor Earthquake Early Warning), a new
stacking ensemble method jointly designed with cyberinfrastructure experts, which
enables real-time earthquake detection and robustness to partial infrastructure fail-
ures;

• Show that DMSEEW is more accurate than both the seismometer-only baseline
approach, the combined sensors (GPS and seismometers) baseline approach that
adopts the rule of relative strength and detects all large earthquakes with a precision
of 100%;
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• Detail how DMSEEW provides local and faithful explanations on its predictions by
design.

5.2 DMSEEW

In this section, I present the Distributed Multi-Sensor Earthquake Early Warning al-
gorithm (DMSEEW), a new two-step stacking ensemble method for earthquake detection.
A stacking ensemble is a method which takes the predictions of sub-models as inputs and
then attempts to learn how to best combine the input predictions to make a better output
prediction. DMSEEW takes sensor-level class predictions (normal activity, medium earth-
quake or large earthquake) based on the data gathered by each individual sensor (GPS
stations and seismometers). It then aggregates those sensor-level class predictions using
a bag-of-words representation in order to calculate a final prediction for the earthquake
category.

Step 1 – Predicting the MTS Category at the Sensor-Level: There are two
types of sensors - GPS stations and seismometers, and one MTS classifier per sensor
type is trained. The classifiers are trained using a dataset composed of time series of
3 dimensions (east-west, north-south and up-down) and fixed time length (60 seconds,
defined in Section 5.3.1). This first step of the approach is illustrated in the upper part
of Figure 5.1.

In order to predict the earthquake category at the individual sensor level, WEASEL
+MUSE [Schäfer et al., 2017] MTS classifier is employed. As presented in section 2.2.2,
WEASEL +MUSE creates a symbolic representation of the MTS (a Symbolic Fourier Ap-
proximation - SFA) on each dimension, then generates a set of features (multiple window
lengths, unigrams, bigrams, dimension identification), and finally performs the classifi-
cation based on a one-hot encoding representation of the MTS (bag-of-words, feature
selection). WEASEL+MUSE fits the approach because (i) its symbolic representation fil-
ters out noise (related to GPS and seismometers sensors) from the dataset; (ii) it is phase
invariant, i.e. features generated do not have to appear at the same time across different
MTS belonging to the same class, which improves generalization; (iii) it keeps the inter-
play of dimensions since features generated by WEASEL+MUSE contain the identifier of
the dimension, which allows the characterization of co-occurrence of events on different
dimensions. As further discussed in the Section 5.4, WEASEL+MUSE outperforms other

66



5.3. Evaluation

……

Seismometers GPS Stations

MTS Classifier
WEASEL+MUSE

STEP 1
Individual Sensor 

Predictions

Bag-of-Words
Representation

Classifier
1-Nearest Neighbor

Combined Prediction

STEP 2
Combined

Prediction at 
Central Level

MTS Classifier
WEASEL+MUSE

… …

Figure 5.1 – Distributed Multi-Sensor Earthquake Early Warning Approach (DMSEEW).

MTS classifiers on both GPS and seismometers data.

Step 2 – Detecting Earthquakes by Combining Sensor-level Predictions: The
class predictions from the different sensors (GPS stations and seismometers) are collected
and a bag-of-words representation is performed. Each sensor-predicted class is considered
to be a word and the relative frequency vector of the words from each earthquake is used
to classify its category. This frequency vector is normalized by the number of instances
(number of MTS per earthquake, i.e. number of sensors) to obtain the relative frequency
vector. The last step consists of combining the bag-of-words of GPS stations and seis-
mometers to characterize the whole spectrum of earthquakes with damaging potential.
This second step of the approach is illustrated in the lower part of Figure 5.1. For exam-
ple, 80% of seismometers and 100% of GPS stations for event 1 predict that the activity
recorded is normal. Finally, a classifier is trained on this bag-of-words representation to
perform the combined class prediction. As presented in section 5.4, 1-nearest neighbor
outperforms other classifiers.

5.3 Evaluation

In this section, the methodology and datasets used for evaluating the work are intro-
duced, as well as the preprocessing routines and experimental setting. In addition, the
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real-world dataset collected and validated with geoscientists is rendered public.

5.3.1 Real-World Dataset

A real-world dataset 1 [Fauvel et al., 2019a] is employed. It is composed of GPS and
seismometers data on normal activity/medium earthquakes/large earthquakes collected
and validated with geoscientists. There are two main difficulties to construct such a
dataset: i) large earthquakes are rare and ii) GPS data is not continuously recorded.
The dataset has been built around the most complete GPS/seismometers dataset of large
earthquakes (29 earthquakes worldwide) which occurred between 2001 and 2018 [Ruhl et
al., 2019] with the corresponding metadata (time, magnitude, and location). A differenti-
ated approach between GPS and seismometers data is adopted to augment the dataset,
which is presented in the following two paragraphs. MTS length is set to 60 seconds for
both GPS and seismometers. This value reflects the relevant time window to distinguish
primary waves from noise across geographical regions, as recognized by the geoscience
community.

First, the two main seismometers data repositories worldwide are the American Incor-
porated Research Institutions for Seismology (IRIS) and the Japanese National Research
Institute for Earth science and Disaster Resilience (NIED). Earthquake origins are defined
differently between the two repositories, preventing a direct comparison of P-wave arrival
time on each seismometer. Therefore, in order to be able to adopt a homogeneous labeling
method, the study is limited to the data available from IRIS (14 large earthquakes re-
maining over 29). Seismometers data corresponding to medium earthquakes are sampled
from medium earthquakes occurring in the same region as large earthquakes (-179 ≤ lon-
gitude ≤ 25, -62 ≤ latitude ≤ 73). The number of medium earthquakes is calculated by
the ratio of medium over large earthquakes during the past 10 years in the region. Then,
a ratio above 30% between the number of MTS corresponding to earthquakes (medium
+ large) and total (earthquakes + normal activity) number of MTS is kept to prevent
a class imbalance issue during the training phase. So, two normal activity MTS for each
medium earthquake MTS (9 and 7 minutes before each medium earthquake) are collected
to respect this ratio. IRIS data (normal activity, medium earthquakes) is collected with
the international Federation of Digital Seismograph Networks (FDSN) client available in
Python package ObsPy 2. Based on geoscience expertise, the relevant region of seismome-

1. https://figshare.com/articles/Earthquake_Early_Warning_Dataset/9758555
2. https://docs.obspy.org/packages/obspy.clients.fdsn.html
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ters is set to 1,000 kilometers around the earthquake epicenter.

Second, unlike seismometers data, GPS displacement data is not continuously recorded.
Furthermore, GPS data outside of large earthquake periods can be considered as normal
activity (noise). Hence, the approach based on GPS sensors characterizes only normal
activity and large earthquakes. I collected GPS normal activity data from an archive of
real-time GPS positions maintained by the University of Oregon 3 which stores a repre-
sentative extract of GPS noise. Normal activity MTS are randomly sampled from the
archive to match the number of seismometers events (255, normal activity and medium
earthquakes) and to keep a ratio above 30% between the number of large earthquakes
MTS and normal activity in order to avoid class imbalance issues.

The number of sensor records available varies between earthquakes according to the
location and the magnitude of the earthquake. The full dataset composition is presented
in Table 5.1.

Table 5.1 – Dataset composition.
# 60s MTS Seismometers (# Events) GPS (# Events)

Normal Activity 7,718 (170) 1,424 (255)
Medium Earthquakes 3,859 (85) None
Large Earthquakes 1,688 (14) 648 (14)

Total 13,265 (269) 2,072 (269)

Preprocessing First, seismometers data are available as digital signal, which is specific
for each sensor. Therefore, each instrument digital signal is converted to its physical signal
(acceleration) to obtain comparable seismometers data. Second, standardization (Stan-
dardScaler [Pedregosa et al., 2011]) of the GPS and seismometers data (fitted on train
sets and applied on test sets) are performed to harmonize the different scales. Standard-
ization procedure allows us to keep outliers, which are fundamental in P-wave detection,
as compared to the normalization procedure. Finally, data aggregation by second (mean)
is performed which permits a common time scale between sensors (frequency between
sensors can differ) without deteriorating the P-wave signal.

3. http://tunguska.uoregon.edu/rtgnss/data/cwu/mseed/
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5.3.2 Experimental Setting

In this section, the algorithms evaluated and the methods used to assess them are
presented.

Algorithms

Different algorithms at sensor-level and central level are evaluated according to the
data type in order to define the two blocks of the machine learning solution (Figure 5.1).

At sensor-level, there is a multivariate time series classification task. As detailed in
section 2.2, MTS classifiers are composed of 3 categories: similarity-based, feature-based
and deep learning methods. In this work, the best-in-class for each category is chosen:
DTWD, DTWI , WEASEL+MUSE and MLSTM-FCN classifiers. Therefore, the following
algorithms are compared:

• DTWD and DTWI : I use the public implementation 4 based on the original pa-
per [Shokoohi-Yekta et al., 2017];

• WEASEL+MUSE: I use the public implementation 5 with the recommended settings
(SFA word lengths l in [2,4,6], windows length in [4:60], chi=2, bias=1, p=0.1, c=5
and a solver equals to L2R LR DUAL) [Schäfer et al., 2017];

• MLSTM-FCN: I test the public implementation 6 based on the original paper [Karim
et al., 2019], using the recommended settings (128-256-128 filters, 250 training
epochs, a dropout of 0.8 and a batch size of 128);

At central level, there is a classification task on a bag-of-words representation (rela-
tive frequency vector) for each earthquake based on individual class predictions of GPS
stations and seismometers. I compare the state-of-the-art classifiers with the following
implementations: K-Nearest Neighbors 7; Elastic Net7; Support Vector Machine7 with a
radial basis function kernel due to the lower number of features than the number of
samples in the dataset; Random Forest7 and Extreme Gradient Boosting 8.

4. https://github.com/DavideNardone/MTSS-Multivariate-Time-Series-Software
5. https://github.com/patrickzib/SFA
6. https://github.com/titu1994/MLSTM-FCN
7. https://scikit-learn.org/stable/
8. https://xgboost.readthedocs.io/en/latest/python/
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Hyperparameters

Firstly, at sensor-level, classifier hyperparameters setting is presented in previous sec-
tion with the public implementations of the algorithms used. Next, hyperparameters of
classifiers at central level are set by hyperopt, a sequential model-based optimization us-
ing a tree of Parzen estimators search algorithm [Bergstra et al., 2013]. Hyperopt chooses
the next hyperparameters decision from the previous choices and a tree-based optimiza-
tion algorithm. Tree of Parzen estimators meet or exceed grid search and random search
performance for hyperparameters setting [Bergstra et al., 2011]. I use the implementa-
tion available in the Python package hyperopt 9. Optimization is undertaken to maximize
accuracy score considering the multiclass study.

Classification Performance

Classifiers are trained with a 3 class labeling on seismometers data (sensor-level, see
section 5.3.1), a 2 class labeling on GPS data (sensor-level, see section 5.3.1) and a 3
class labeling on the bag-of-words representation (central level). A stratified k-fold cross-
validation which kept the same proportion of earthquakes of different categories for each
fold is performed. K is set to 3 considering the number of large earthquakes (14 earth-
quakes). The dataset split is presented in Table 5.2. Therefore, the results presented
corresponds to the 3-fold performance on the test sets.

Table 5.2 – Cross-validation split.
# Events Fold 1 Fold 2 Fold 3 Total

Seismometers 90 90 89 269
Normal Activity 56 57 57 170

Medium Earthquakes 29 28 28 85
Large Earthquakes 5 5 4 14

GPS 90 90 89 269
Normal Activity 85 85 85 255

Medium Earthquakes None None None None
Large Earthquakes 5 5 4 14

5.4 Results

This section first presents the results at sensor-level (DMSEEW step 1). Then, the
performance of the combined approach (DMSEEW steps 1 and 2) is compared to the

9. https://github.com/hyperopt/hyperopt
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traditional seismometers baseline approach and the combined sensors (GPS and seis-
mometers) baseline approach that adopts the rule of relative strength.

5.4.1 Sensor-Level Predictions

The accuracy results of the different MTS classifiers on seismometers (13,265 MTS, 3
classes) and GPS stations (2,072 MTS, 2 classes) are presented in Table 5.3.

Table 5.3 – Accuracy score on test sets of the MTS classifiers trained on GPS or seis-
mometers data.

Accuracy
(%) DTWD DTWI

MLSTM -
FCN

WEASEL
+ MUSE

Seismometers 35.3 35.5 54.6 63.6
GPS 97.9 97.8 98.9 99.5

WEASEL+MUSE outperforms MLSTM-FCN and similarity-based classifiers (DTWD

and DTWI) on both GPS and seismometers data. The difference between WEASEL
+MUSE and other classifiers is particularly important on seismometers data. We can infer
that the noise reduction performed by the truncated Fourier Transform and discretization
of WEASEL+MUSE led to a better exploitation of the P-wave information.

The detection results obtained from both GPS stations and seismometers data con-
firm the complementary performance of these sensors. GPS data distinguishes large earth-
quakes while the detection based on seismometers data performs poorly (F1-score on large
earthquakes: GPS 99%, seismometers 28%). In the next section, I present the results of
a combined prediction benefiting from the complementary performance of these sensors
following the transfer of all sensor-level class predictions to a central computation facility.

5.4.2 Combined Predictions at Central Level

DMSEEW benefits from the complementary performances through the combination of
sensor-level class predictions (GPS and seismometers) using a bag-of-words representation,
followed by the training of a classifier on this representation. There is no state-of-the-art
method covering the whole spectrum of earthquakes with damaging potential (medium
and large). In order to evaluate the performance of DMSEEW, two baselines are defined
at central level.

The first is the traditional seismometer approach which relies on seismometers data
only. I compute the performance of the traditional seismometer approach by calculating
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the arg max directly on the seismometers bag-of-words representation for each of the 269
events in the dataset. The second baseline corresponds to the combined sensors (GPS
and seismometers) baseline approach that adopts the rule of relative strength in order
to assess the value added by DMSEEW combining approach. It is defined based on the
strengths of each sensor type: if the GPS bag-of-words representation indicates that the
event is a large earthquake, a large earthquake is predicted. Else, I calculate the arg
max between normal activity and medium earthquake on the seismometers bag-of-words
representation. Table 5.4 shows the performance of the two baselines and DMSEEW.
The traditional seismometer approach is indicated as “Baseline Seismometer” and the
combined rule-based approach as “Baseline Combined”. The DMSEEW scores correspond
to average results on test sets of the 1-Nearest Neighbors (1NN) trained on the combined
bag-of-words representation (GPS and seismometers representations). 1NN outperforms
other classifiers (Elastic Net, Support Vector Machine, Random Forest, Extreme Gradient
Boosting) on the 3-fold cross-validation.
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Figure 5.2 – Precision-recall curves of DMSEEW.

The dataset has a class imbalance (normal activity 63%/medium earthquakes 32%/large
earthquakes 5%), but it does not affect the detection performance on the least repre-
sented class. DMSEEW detects all the large earthquakes (100.0% recall) without false
alert (100.0% precision). The 1-NN of DMSEEW is always able to closely match an ex-
isting typical distribution of GPS predictions in case of large earthquakes, which allows
the correct 1-NN classification. It is critical for an EEW system to detect all the large
earthquakes with a precision of 100%. The decisions subsequent to a large earthquake
alert imply major mitigation measures for the population possibly impacted. We observe
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Table 5.4 – Performances on test sets of DMSEEW and the two baselines. Standard errors
are presented in parentheses.

Baseline
Seismometer

Baseline
Combined DMSEEW

Normal Activity
Precision (%) 76.2 (1.8) 76.6 (1.5) 75.5 (1.8)

Recall (%) 94.1 (3.2) 94.1 (3.2) 94.1 (3.2)
F1 (%) 84.2 (0.6) 84.4 (0.7) 83.8 (0.9)

Medium Earthquakes
Precision (%) 65.9 (12.2) 70.7 (10.5) 76.7 (9.7)

Recall (%) 34.1 (11.8) 34.1 (11.8) 38.8 (7.3)
F1 (%) 45.0 (11.5) 46.0 (12.0) 51.6 (6.1)

Large Earthquakes
Precision (%) 53.3 (17.9) 63.2 (16.2) 100.0 (0.0)

Recall (%) 57.1 (19.2) 85.7 (13.3) 100.0 (0.0)
F1 (%) 55.2 (11.6) 72.7 (6.1) 100.0 (0.0)

Total
Accuracy (%) 73.2 (1.5) 74.7 (1.8) 76.9 (1.6)

in Table 5.4 that DMSEEW outperforms both baselines (accuracy score: 76.9% versus
74.7% and 73.2%). Moreover, DMSEEW outperforms both baselines on medium and
large earthquakes detection. Figure 5.2 shows the precision-recall curves of DMSEEW
versus both baseline on medium and large earthquakes (second and third plots). Firstly,
DMSEEW obtains an average F1-score on test sets for medium earthquakes detection of
51.6% versus 45.0% for the baseline seismometer and 46.0% for the baseline combined.
The higher F1-score of DMSEEW on medium earthquakes compared to both baselines
is driven by higher performances on both precision and recall (precision: 76.7% versus
65.9% baseline seismometer versus 70.7% baseline rule-based, recall: 38.8% versus 34.1%
baselines). Lastly, DMSEEW obtains an average F1-score on test sets for large earthquake
detection of 100.0% versus 55.2% for the baseline seismometer and 72.7% for the baseline
combined. The higher F1-score of DMSEEW on large earthquakes compared to both base-
lines is also driven by higher performances on both precision and recall (precision: 100.0%
versus 53.3% baseline seismometer versus 63.2% baseline rule-based, recall: 100.0% versus
57.1% baseline seismometer versus 85.7% baseline rule-based). These performances con-
firm the interest of combining GPS stations and seismometers data to cover the whole
spectrum of earthquakes with damaging potential (medium and large). In addition, it re-
veals the benefit of DMSEEW combined approach instead of the combined sensors (GPS
and seismometers) baseline approach that adopts the rule of relative strength.
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5.5 Performance-Explainability Analysis

This section introduces the new ensemble method DMSEEW into the analytical frame-
work of the thesis (part II). The different aspects of the DMSEEW framework can be
visualized in Figure 5.3.
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Figure 5.3 – Parallel coordinates plot of DMSEEW. Performance evaluation method: 3-
fold cross-validation and an arithmetic mean of the accuracies on the Earthquake Early
Warning Dataset. Models evaluated in the benchmark: DTWD, DTWI , FCN, gRSF, LPS,
MLSTM-FCN, mv-ARF, ResNet, SMTS, UFS and WEASEL+MUSE.

DMSEEW is a novel stacking ensemble approach for characterizing the whole spec-
trum of earthquakes with damaging potential by combining both GPS and seismometer
data. The evaluation on a real-world dataset collected with domain experts demonstrates
that the distributed stacking ensemble approach improves the detection of both medium
and large earthquakes compared to traditional seismometer-only approach and the com-
bined sensors (GPS and seismometers) baseline approach that adopts the rule of relative
strength. Therefore, in the framework presented in part II, following a 3-fold cross val-
idation and an arithmetic mean of the accuracies, the performance is better than the
state-of-the-art (Performance: Best).

Concerning the explainability, the stacking ensemble method is a “black-box” model
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(Comprehensibility: Black-Box). However, DMSEEW provides faithful (Faithfulness: Per-
fect) and local (Granularity: Local) explanations even if the level of information is low
(Information: Features). For each event, DMSEEW provides the relative sensor type im-
portance by design. The bag-of-words central representation input to the 1-nearest neigh-
bor classifier gives the proportion of class predictions per sensor type (GPS stations, seis-
mometers). A higher proportion of GPS stations predicting a large earthquake indicates
a higher importance of GPS stations on the prediction compared to seismometers. In any
other case, seismometers carry a higher importance than GPS stations on the prediction.
Nevertheless, these explanations are only accessible to a machine learning expert who can
analyze the bag-of-words central representation (User: Machine Learning Expert).

The next chapter shows how a post-hoc model-agnostic explainability method on a
“black-box” ensemble method can enhance the level of information of the explanations
presented in this chapter and make it accessible to a broader audience.

Summary

• DMSEEW is a new stacking ensemble method which improves the detection of
earthquakes with damaging potential on a real-world dataset.

• DMSEEW provides faithful and local explanations.

• However, the explanations are only accessible to machine learning experts and
the level of information is limited to the relative sensor type importance.
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The second machine learning method of the thesis aims to improve the detection of
determining events for milk production in dairy farms, which is crucial for an optimal
resource use (application background presented in section 3.1.1). It introduces a new
hybrid ensemble method with a post-hoc model-agnostic explainability, which offers more
informative explanations that could be useful to broader audiences compared to the first
method DMSEEW presented in chapter 5. The method is the result of a collaboration
between researchers from the PEGASE (“Physiology, Environment, Genetics for Animals
and rearing systems”) unit at the French National Institute for Agriculture, Food and
Environment (INRAE) and machine learning researchers from the LACODAM (“Large
Scale Collaborative Data Mining”) team at Inria, France. This work has been published
in KDD 2019 [Fauvel et al., 2019b].
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6.1 Introduction

As presented in section 3.1.1, there is a need to enhance the performance of estrus
detection solutions based on affordable sensor data, and to support the alerts with ex-
planations. Affordable activity and body temperature sensor data are considered having
potential for automatic estrus detection [Saint-Dizier et al., 2012]. As detailed in sec-
tion 3.1.2, there are multiple studies about the application of machine learning methods
on estrus detection. However, none of them uses the currently recognized method for
behavioral and silent estrus identification as labels (progesterone profiles), so their es-
trus labeling methods are not exhaustive. Moreover, two studies use different variables
(milk volume, milking order, days since last estrus) rather than the affordable activity or
temperature measurements. Finally, none of them gives insights on algorithm predictions
based on its explainability.

In the experimental farm of INRAE, MTS collected from activity and temperature
sensors can be labeled as either estrus or anestrus, the period of sexual inactivity be-
tween two periods of estrus, using the exhaustive estrus labeling method to cover both
behavioral and silent estrus. Thus, estrus detection can be formulated as a binary MTS
classification problem where both performance and explainability are required. However,
data from sensors are 24hr aggregated, which corresponds to the relevant window for both
estrus detection and, from an alert standpoint, farmers’ needs; and according to animal
scientists, data on the day of estrus and the day before estrus could be sufficient for estrus
detection (time series length equals to two). Such a short time window prevents the use of
most state-of-the-art MTS classifiers (feature-based classifiers, see section 2.2). Therefore,
estrus detection is approached as a traditional multivariate data classification task in this
chapter, where the time aspect is managed by setting the different timestamps as column
variables in the dataset. Following the results presented in this chapter, we will see in the
next chapters about this application (chapter 8 and chapter 9) that the estrus detection
can be approached as a MTS classification task.

As detailed in section 2.1, the combination of different classifiers - an ensemble method
- is often considered a good method to obtain a better generalizing classifier. In particu-
lar, a hybrid ensemble method is encouraged. Therefore, a new hybrid ensemble method
for multivariate data classification, called Local Cascade Ensemble (LCE), is proposed
in this chapter. Concerning the explainability, the problem requires explanations at both
global (estrus/anestrus) and local (behavioral/silent) levels, which are two levels of infor-
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mation interesting for the support of farmers’ decision-making as detailed in section 6.4.2.
LCE “black-box” classifier does not provide explainability by design or have a post-hoc
model-specific explainability method, so it can only rely on post-hoc model-agnostic ex-
plainability methods. As presented in section 2.3.3, the state-of-the-art method meeting
these requirements (both global and local, model-agnostic) is SHapley Additive exPlana-
tions (SHAP) [Lundberg et al., 2017]. Therefore, SHAP is adopted in order to explain the
output of LCE. This technique is inspired by game theory, which is used to determine how
much each player in a collaborative game has contributed to its success. In this study,
SHAP values measure how much an activity or temperature variable impacts estrus pre-
dictions. A higher absolute SHAP value of a variable compared to other variables means
that this variable has a higher predictive or discriminative power in detection algorithm.
SHAP interaction values, an extension of SHAP values based on Shapley interaction in-
dex [Fujimoto et al., 2006], capture pairwise interaction effects.

Consequently, a new hybrid ensemble method (LCE) with a post-hoc model-agnostic
explainability method (SHAP) to enhance estrus detection is proposed.

6.1.1 Contributions

The research of this chapter tackles the challenge of improving the monitoring of
resource use in dairy farms with machine learning methods. Based on affordable data
(activity, temperature), it aims to enhance estrus detection, especially on the currently
undetected silent estrus, and provides explanations to support farmers’ decisions. Thus,
with a real-world data analysis and an exhaustive estrus labeling (behavioral, silent)
approach, the study in this chapter will:

• Present Local Cascade Ensemble (LCE), a new hybrid ensemble method for multi-
variate data classification;

• Show that LCE outperforms the state-of-the-art classifiers on the public UCI datasets
[Dua et al., 2017] and significantly outperforms a commercial reference in estrus de-
tection;

• Evaluate the relevance of deploying a combination of 2 affordable sensors (activity
and temperature) in estrus detection;

• Identify the key drivers supporting estrus alerts at global (estrus/anestrus) and local
(behavioral/silent) levels based on a post-hoc model-agnostic explainability method
(SHAP) and propose an approach to reduce solution mistrust.
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6.2 Local Cascade Ensemble

As introduced in section 2.1.1, a new hybrid ensemble method is proposed, LCE, which
combines a boosting-bagging approach to handle the bias-variance trade-off and a divide-
and-conquer approach to learn different parts of the training data. LCE is an improved
hybrid (explicit and implicit) version of an implicit cascade generalization approach [Ses-
mero et al., 2015]: Local Cascade (LC) [Gama et al., 2000]. Among the implicit approaches,
LC is one of the easiest to augment with explicit techniques. LC uses a decision tree as a
divide-and-conquer method, which is compatible with the explicit bagging/boosting ap-
proaches. This criteria has motivated the choice of LC algorithm as the starting point for
the hybrid ensemble method. In this section, I first introduce LC and then I explain LCE.
Figure 6.1 illustrates the different algorithms.
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Figure 6.1 – Local Cascade LC versus Local Cascade Ensemble LCE. Abbreviations: Hi

- base classifier trained on a dataset at a tree depth of i, Di - dataset at a tree depth
of i augmented with the class probabilities of the base classifier Hi, NCL - Negative
Correlation Learning, ME - Mixture of Experts.

6.2.1 Local Cascade - LC

LC is a combined implicit approach (negative correlation learning and mixture of ex-
perts) based on a cascade generalization [Sesmero et al., 2015]. Cascade generalization
uses a set of classifiers sequentially and at each stage adds new attributes to the original
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dataset. The new attributes are derived from the class probabilities given by a classi-
fier, called a base classifier (e.g. class probabilities H0(D), H1(D01) in Figure 6.1). The
bias-variance trade-off is obtained by negative correlation learning: at each stage of the
sequence, classifiers with different behaviors are selected. It is recommended in cascade
generalization to begin with a low variance algorithm to draw stable decision surfaces (H0

in Figure 6.1) and then use a low bias algorithm to fit more complex ones (H1 in Fig-
ure 6.1). LC applies cascade generalization locally following a divide-and-conquer strategy
based on mixture of experts. The objective of this approach is to capture new relation-
ships that cannot be discovered globally. The LC divide-and-conquer method is a decision
tree. When growing the tree, new attributes (class probabilities from a base classifier) are
computed at each decision node and propagated down the tree. In order to be applied as
a predictor, local cascade stores, in each node, the model generated by the base classifier.

6.2.2 Local Cascade Ensemble - LCE

The contribution of LCE intervenes in the explicit manner of handling the bias-
variance trade-off whereas LC approach is implicit, alternating between base classifiers
behaviors (bias reduction, variance reduction) at each level of the tree. LCE is a hybrid
ensemble method which combines an explicit boosting-bagging approach to handle the
bias-variance trade-off and an implicit decision tree divide-and-conquer approach as LC.
Firstly, LCE reduces bias across decision tree divide-and-conquer approach through the
use of boosting-based classifiers as base classifiers (Hb in Figure 6.1). A boosting-based
classifier iteratively changes the data distribution with its reweighting scheme which de-
creases the bias. In addition, boosting is propagated down the tree by adding the class
probabilities of the base classifier as new attributes to the dataset. Class probabilities in-
dicate the ability of the base classifier to correctly classify a sample. At the next tree level,
class probabilities added to the dataset are exploited by the base classifier as a weighting
scheme to focus more on previously misclassified samples. Then, the overfitting generated
by the boosted decision tree is mitigated by the use of bagging. Bagging provides variance
reduction by creating multiple predictors from random sampling with replacement of the
original dataset (see D1. . .Dn in Figure 6.1). Trees are aggregated with a simple majority
vote.

The hybrid ensemble method LCE allows to balance bias and variance while benefit-
ing from the improved generalization ability of explicitly creating different training sets
(bagging, boosting). Furthermore, LCE implicit divide-and-conquer method ensures that
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classifiers are learned on different parts of the training data.
I present LCE pseudocode in Algorithm 1. A function (LCE_Tree) builds a tree and

the second one (LCE) the forest of trees through bagging.

Algorithm 1 LCE: Local Cascade Ensemble
Require: A dataset D, a set of classifiers H, maximum depth of a tree max_depth,

number of trees n_trees
1: function LCE(D, H, n_trees, max_depth)
2: F ← ∅
3: for each i in [1, n_trees] do
4: S ← A bootstrap sample from D
5: t← LCE_Tree(S, H, max_depth, 0)
6: F ← F ∪ t
7: return F
8: function LCE_Tree(D, H, max_depth, depth)
9: if max_depth or uniform class then
10: return leaf
11: else
12: D′ ← Concatenate(D,Hdepth(D))
13: Split D′ on attribute maximizing Gini criterion
14: depth← depth+ 1
15: for D′(j) ∈ P(D′) do
16: Treej = LCE_Tree(D′(j), H, max_depth, depth)
17: return tree containing a decision node, storing classifier Hdepth(D) and descen-

dant subtrees Treej

There are 2 stopping criteria during a tree building phase: when a node has an unique
class or when the tree reaches the maximum depth. The range of tree depth is set from 0
to 3 in LCE instead of 0 to 5 in LC. This hyperparameter is used to control overfitting.
The choice of low bias boosting base classifiers justifies the maximum depth adjustment
to 3. In this study, the set of low bias base classifiers is limited to the best performing
state-of-the-art boosting algorithm (extreme gradient boosting - XGB [Chen et al., 2016]).

In addition, two rules implemented in LC to reduce variance are removed: the maxi-
mum base classifier error rate and the minimum class representation in a node. The first
rule requires the stopping of propagation down the tree to prevent overfitting if the base
classifier, in a node, had an error rate below a certain threshold (0.5). LCE approach
suggests a variance reduction through bagging, and not during a tree construction; so this
rule is not kept. In order to restrict the attention to well populated classes, the second
rule requires considering a class in a node if the number of examples belonging to this
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class is greater than N times (3) the number of attributes. The second rule is not kept
for the same reason.

6.3 Evaluation

In this section, I introduce the datasets and methodology used for evaluating LCE
approach.

6.3.1 Datasets

LCE is first evaluated on a public multivariate data classification benchmark and then
on the real-world application dataset.

Public Datasets

In the experiments, LCE is benchmarked on the UCI datasets [Dua et al., 2017]. I
have randomly selected one dataset per category available on the repository and obtained
26 UCI datasets. The categories are defined according to the dataset topic (life sciences,
physical sciences, computer science/engineering, social sciences, business and game), the
number of instances (less than 100, 100 to 1,000 and greater than 1,000) and the number
of dimensions (less than 10, 10 to 100 and greater than 100). The characteristics of each
dataset are presented in Table 6.1. There is no train/test split provided on the repository
so a 3-fold cross-validation is performed.

Real-World Dataset

The dataset is offline. From 2014 to 2018, an experiment was conducted at the INRAE
Méjusseaume dairy farm (48°06’ N, 1°47’ W, Brittany, France). This experiment enrolled
162 Holstein cows housed in free stalls representing 214 lactations. The first 3 years
dataset (125 different cows) is used for cross validation and the last year is used for
external validation (61 cows). In the external validation dataset, 24 cows are also in the
cross validation dataset but within a new lactation and 37 are different.

Each cow was equipped with a collar-mounted activity meter (HeatPhone - Medria
Technologies, Châteaubourg, France) and a temperature sensor in first stomach (Ther-
mobolus - Medria Technologies, Châteaubourg, France). Based on its good performance
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Table 6.1 – The UCI datasets. Abbreviations: CS - Computer Science, Dims - Dimensions.
Datasets Type Instances Dims Classes LCE Parameters

Trees Depth

Absenteeism at Work Business 740 19 19 100 2
Banknote Authentification CS/Engineering 1372 4 2 5 1
Breast Cancer Coimbra Life Sciences 116 9 2 60 0
CNAE-9 Business 1,080 856 9 20 2
Congressional Voting Social Sciences 435 16 2 1 1
Drug Consumption (quantified) Social Sciences 1,185 12 7 5 2
Electrical Grid Stability Physical Sciences 10,000 13 2 40 1
Gas Sensor CS/Engineering 58 432 4 100 0
HTRU2 Physical Sciences 17,898 8 2 60 2
Iris Life Sciences 150 4 3 20 2
Leaf CS/Engineering 340 13 30 5 0
LSVT Voice Rehabilitation Life Sciences 126 310 2 5 0
Lung Cancer Life Sciences 32 56 3 60 1
Mice Protein Expression Life Sciences 1,080 77 8 60 1
Musk V1 Physical Sciences 476 166 2 5 2
Musk V2 Physical Sciences 6,598 166 2 5 2
p53 Mutants Life Sciences 31,159 5,408 2 10 1
Page Blocks Classification CS/Engineering 5473 10 5 80 2
Parkinson Disease CS/Engineering 756 753 2 5 2
Semeion Handwritten Digit CS/Engineering 1,593 256 10 20 2
Ultrasonic Flowmeter CS/Engineering 181 43 4 60 1
User Knowledge Modeling CS/Engineering 403 5 5 40 2
Wholesale Customers Business 440 6 2 40 0
Wine Physical Sciences 178 13 3 100 0
Wine Quality Business 1,599 11 6 100 2
Yeast Life Sciences 1,484 8 10 80 2

compared to other solutions [Chanvallon et al., 2014] and its international market pres-
ence, we can hold that Medria estrus detection system is a reasonable basis of comparison.
Medria estrus system has been designed to detect behavioral estrus. In the following sec-
tions, Medria is called the commercial solution (CS). The dataset consists of visual estrus
alerts, Medria estrus alerts and Medria numeric variables with a 5-minute frequency (ru-
mination, ingestion, rest, standing up, over activity, other activity, temperature, and tem-
perature corrected). Temperature corrected takes into account the cooling effect of water
ingestion by the cows. Concerning the visual estrus alerts, visual observation was con-
ducted by farm staffs. Staff also checked the commercial solution alerts before inputting
their visual records, thus these visual estrus alerts are shown as Visual&CS in the study.
The preprocessing applied on the data collected is a 24hr aggregation (activity: sum, tem-
perature: mean). It is assumed that the treatment operated by Medria on raw data to
generate variables is stable during the experiment.

The novel approach addresses both estrus categories detection (behavioral and silent).
Therefore, estrus are labeled by measuring the progesterone concentration in whole milk,
the current reference for an exhaustive estrus identification. This time-effective and non-
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invasive method for the cow induces commonly accepted errors (progesterone measure-
ments, profiles analysis [Adriaens et al., 2018]). Silent estrus is defined by the absence
of obvious behavioral sign and represent around 35% of all estrus [Kerbrat et al., 2004;
Palmer et al., 2010; Ranasinghe et al., 2010]. An estrus is therefore marked as behavioral
estrus when either a visual detection or a CS alert occurred. An estrus is considered silent
when neither visual detection or a CS alert occurred. The proportion of silent estrus in
the dataset is aligned with the literature: the cross-validation dataset is composed of 671
estruses with 37% of silent estrus and the external validation dataset is composed of 321
estruses with 44% of silent estrus.

Days preceding estrus are a valuable source of information for estrus detection, it is set
as a hyperparameter. Every value in the range from 1 to 21 days, the length of a regular
ovarian cycle, are tested. Past days of variables are added as feature columns.

Feature Selection Feature selection is performed in this study because of the sensitiv-
ity of the method chosen to explain the detection algorithm (SHAP) to high correlations
among features. A subset selection is conducted on pairs of collinear features based on the
Pearson correlation coefficient (threshold 0.8). One pair of features is above the thresh-
old (0.9: temperature corrected, temperature). Since temperature is affected by the cooling
effect of water ingestion, the variable temperature corrected is selected. From this point
onwards, temperature corrected is named temperature. After this feature selection, no
Pearson pairwise correlation in the case of the 21 past days dataset is above the thresh-
old.

Dataset Structure A 5-fold cross validation is performed. The dataset split is pre-
sented in Table 6.2.

Table 6.2 – Dataset split. Abbreviations: Ext Val - External Validation
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 All Ext Val

Estrus 126 136 118 141 153 671 321
Silent % 33 40 24 40 46 37 44

The split has kept the same number of days in estrus in each fold (1,144 days). This
choice is made to avoid overfitting on a particular animal. The impact of a split keeping
the same number of animals per fold is discussed in the detection performance section.
Moreover, there is no structural imbalance on silent estrus percentage across the folds.
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6.3.2 Experimental Setting

I present in this section algorithms and methods used in the experiments.

Algorithms

I tested the hybrid ensemble LCE (explicit - implicit approaches) versus the initial
implicit approach (LC) and the state-of-the-art algorithm for each explicit approach (bag-
ging: random forest [Breiman, 2001], boosting: extreme gradient boosting [Chen et al.,
2016]). As presented in section 2.1, the state-of-the-art multivariate data classifiers are also
composed of k-Nearest Neighbors (kNN), regularized logistic regressions, Support Vector
Machines (SVMs) and neural networks. In this work, the best-in-class for each category
is chosen: kNN, elastic net [Zou et al., 2005], SVM [Cortes et al., 1995] and MultiLayer
Perceptron (MLP) [Haykin, 2009] classifiers. Among categories of neural networks, given
the size of the real-world dataset (18,000 samples), small MLPs are chosen.

• k-nearest neighbors - KNN: I use the implementation neighbors.KNeighborsClassifier
in the scikit-learn package for Python 1

• Elastic net - EN: I use the implementation linear model SGDClassifier in the scikit-
learn package for Python1

• Support Vector Machine - SVM: I use the implementation svm.SVC in the scikit-
learn package for Python1

• Random Forest - RF: I use the implementation ensemble.RandomForestClassifier in
the scikit-learn package for Python1

• Extreme Gradient Boosting - XGB: I use the implementation in the xgboost package
for Python 2

• Local cascade - LC: algorithm has been reimplemented in Python 3.6 based on the
description of the paper since no public version available.

• LCE: algorithm implemented in Python 3.6

• Multilayer Perceptron - MLP: I use the implementation available in the package
Keras for Python 3 and limit the neural network architecture to 3 layers

1. https://scikit-learn.org/stable/
2. https://xgboost.readthedocs.io/en/latest/python/
3. https://keras.io/
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Finally, concerning the explainability method, I use the SHAP implementation avail-
able in the Python package shap 4.

Hyperparameters

Hyperparameters of classifiers are set by hyperopt, a sequential model-based optimiza-
tion using a tree of Parzen estimators search algorithm [Bergstra et al., 2011]. Hyperopt
chooses the next hyperparameters decision from the previous choices and a tree-based op-
timization algorithm. Tree of Parzen estimators meet or exceed grid search and random
search performance for hyperparameters setting. I use the implementation available in the
Python package hyperopt 5 and hyperas wrapper for Keras.

Metrics

Public Datasets For each dataset, the classification accuracy is computed. Then, the
average rank and the number of wins/ties are presented to compare the different clas-
sifiers on the same datasets. Finally, I present the critical difference diagram [Demšar,
2006], the statistical comparison of multiple classifiers on multiple datasets based on the
non-parametric Friedman test, to show the overall performance of LCE. I use the imple-
mentation available in R package scmamp 6.

Real-World Application Optimization is undertaken to maximize F1-score. The choice
of this metric is driven by 2 reasons. First, no assumption is made about the dairy man-
agement style; farmers can favor a higher estrus detection rate (higher recall) or fewer
false alerts (higher precision) according to their needs. Second, there is a class imbalance
(33% of estrus days) which renders irrelevant the accuracy metric. Following a 5-fold cross-
validation 60/20/20 train/validation/test split, the best classifier is selected based on the
highest F1-score on validation sets. Then, as recommended by [Dietterich, 1998], a 5× 2
cross validation t-test is used for statistical significance of machine learning algorithms on
one dataset.

The experiments use progesterone profiles as ground truth for exhaustive estrus iden-
tification. The levels of progesterone allow us to identify a time window of 3 days for

4. https://github.com/slundberg/shap
5. https://github.com/hyperopt/hyperopt
6. https://www.rdocumentation.org/packages/scmamp/versions/0.2.55/topics/plotCD
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estrus with a duration of less than 24 hours, in the standard scheme. Adopting a con-
servative approach, it is decided to aggregate by the maximum of the daily predictions
on estrus/anestrus period to calculate the classification performance. In addition, we can
observe that for high thresholds (threshold > 0.95), classifiers performances are unstable
with a significant decrease in estrus detection rate (recall below 70%). In addition, for
low thresholds (threshold < 0.1), classifiers are equivalent to a random classifier. So, it
is decided to adopt a F1-score calculation based on the average of F1-score on threshold
range 0.1-0.95. This calculation does not modify the classifier selection results or the com-
parison result with the commercial solution. Nevertheless, it corresponds to the plausible
range of calibration for dairy management and shows a detection performance closer to
real conditions.

6.4 Results

In this section I first present the performance results of LCE on the public UCI
datasets. Then, this section shows that LCE significantly outperforms a commercial refer-
ence in estrus detection while offering explanations to support farmers’ decisions at both
global (estrus/anestrus) and local (behavioral/silent) levels.

6.4.1 Public Datasets

Table 6.3 shows the classification results of the classifiers on the 26 UCI datasets. The
best accuracy for each dataset is denoted in boldface. We observe that the top 3 classifiers
are the ensemble methods: LCE obtains the best average rank (2.2), followed by RF in
second position (rank: 2.4) and XGB in third position (rank: 2.7).

First of all, LCE obtains the best average rank with the first position on 38% of the
datasets (10 wins/ties). Based on the categorization of the UCI datasets presented in
section 6.3.1, we do not observe any influence of the number of instances, dimensions or
classes on the performance of LCE relative to other classifiers. Nevertheless, LCE exhibits
varying performances across the different dataset types. LCE shows its best performance
on physical sciences (rank: 1.8, 19% of all datasets) and life sciences (rank: 1.9, 27% of all
datasets) datasets while having its worst performance on computer science/engineering
(rank: 2.4, 31% of all datasets), business (rank: 2.5, 15% of all datasets) and social sciences
(rank: 3.5, 8% of all datasets) datasets. However, none of the classifiers shows a better
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average rank than LCE on the business and social sciences datasets.
Then, we observe that the second ranked classifier RF obtains the same number

of wins/ties as LCE. RF exhibits better performance than LCE on the computer sci-
ence/engineering datasets (rank 1.8, 31% of all datasets) which represents half of RF
wins/ties. 80% of the wins/ties of RF on the computer science/engineering category are
obtained on small datasets (train size < 1000). We can infer that the bagging only (vari-
ance reduction) of RF can provide better generalization than LCE bagging-boosting com-
bination on small datasets (wins/ties on small datasets - 54% of the datasets: LCE 6,
RF 6). The third ranked classifier XGB gets 5 wins/ties. There is no influence of the
different dataset categories on XGB wins/ties relative to LCE. Therefore, I conclude that
LCE bagging and boosting combination to handle the bias-variance trade-off exhibits
better generalization on average than the bagging only (RF) and boosting only (XGB)
algorithms on these 26 UCI datasets.

Table 6.3 – Accuracy results on the UCI datasets.
Datasets LCE LC XGB RF MLP SVM EN

Absenteeism at Work 42.7 27.6 44.2 42.0 28.3 28.7 31.7
Banknote Authentification 99.3 98.9 99.6 99.1 89.5 100.0 98.8
Breast Cancer Coimbra 71.4 65.5 64.6 64.5 48.4 55.2 57.5
CNAE-9 86.2 51.0 84.1 91.6 95.6 30.4 92.2
Congressional Voting 97.0 94.0 96.8 96.6 79.5 87.8 91.7
Drug Consumption (quantified) 34.6 27.9 37.8 38.5 40.3 40.3 39.3
Electrical Grid Stability 100.0 99.9 100.0 100.0 88.5 79.3 96.8
Gas Sensor 74.4 63.3 74.6 89.6 78.7 61.5 70.4
HTRU2 97.9 97.8 97.9 97.8 96.8 91.1 97.6
Iris 96.7 90.2 96.7 96.7 44.4 95.4 83.0
Leaf 52.5 48.7 61.6 71.7 8.5 35.2 56.0
LSVT Voice Rehabilitation 81.0 57.1 77.0 81.0 66.7 66.7 66.7
Lung Cancer 41.1 47.2 34.4 37.2 37.2 36.7 52.8
Mice Protein Expression 56.7 40.1 43.1 53.1 13.9 14.4 42.9
Musk V1 73.3 63.5 76.1 72.5 57.4 56.5 72.3
Musk V2 78.8 74.5 78.4 77.5 84.6 84.7 76.3
p53 Mutants 96.6 82.7 94.8 95.6 99.5 86.5 81.7
Page Blocks Classification 97.3 90.8 96.5 96.0 90.4 91.1 94.2
Parkinson Disease 82.7 74.2 82.5 83.2 58.2 74.6 41.4
Semeion Handwritten Digit 90.3 43.2 90.0 92.2 92.1 36.4 75.8
Ultrasonic Flowmeter 59.0 40.2 45.2 49.6 24.4 29.8 45.1
User Knowledge Modeling 85.6 80.4 85.6 85.6 29.8 80.4 74.6
Wholesale Customers 91.8 88.6 92.5 91.6 77.0 67.7 83.0
Wine 92.8 96.1 91.1 92.8 35.4 42.7 75.4
Wine Quality 55.5 49.2 54.5 56.9 42.1 41.9 45.9
Yeast 57.1 35.3 59.2 59.6 28.9 58.9 53.2
Average Rank 2.2 5.0 2.7 2.4 5.3 5.2 4.7
Wins/Ties 10 1 7 10 3 3 1

Next, LC algorithm gets the fifth rank with one win/tie. There is no particular in-
fluence of the different dataset categories on LC performance. So, the outperformance of
LCE compared to LC on the 26 UCI datasets confirms the better generalization ability
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of a hybrid (explicit and implicit) versus an implicit only approach. The comparison in
Table 6.4 aims to underline the superior performance of LCE compared to LC on the UCI
datasets. In order to be comparable, the low bias base classifier in LC is XGB. The depth
of a tree is set to 1 for LCE and LC. The results correspond to the average accuracy
on test sets with the corresponding standard error. Results show a comparable accuracy
variability of LCE compared to LC when the number of trees is set to 1 (standard error
of 4.6% versus 4.8%). However, LCE on 1 tree exhibits a higher accuracy than LC (71.8%
versus 65.9%). Additionally, through bagging, we observe LCE variability reduction as
well as an increase of accuracy (71.8±4.6 with 1 tree versus 74.9±4.1 with 60 trees ver-
sus 65.9±4.8 with LC). Therefore, this comparison affirms the superiority of the explicit
bias-variance trade-off approach compared to the implicit approach of LC on the UCI
datasets.

Concerning the other classifiers, EN obtains only one win/tie but gets a better rank
on average than SVM (3 wins/ties) and MLP (3 wins/ties).

Table 6.4 – Average accuracy score of LCE versus LC on test sets of the UCI datasets
with the corresponding standard error.

Trees 1 5 10 20 40 60 80

LCE 71.8 74.1 73.6 72.8 73.2 74.9 73.9
±4.6 ±4.3 ±4.4 ±4.4 ±4.5 ±4.1 ±4.2

LC 65.9± 4.8

Finally, I analyze a statistical test to evaluate the performance of LCE compared
to other classifiers. Figure 6.2 presents the critical difference plot with alpha equals to
0.05 from results shown in Table 6.3. The values correspond to the average rank and
the classifiers linked by a bar do not have a statistically significant difference. The plot
confirms the top 3 ranking as presented before (LCE: 1, RF: 2, XGB: 3), without showing
a statistically significant difference between each other. We also observe that the ensemble
methods accuracies are statistically different from other classifiers.

6.4.2 Real-World Application

This section is structured into two parts: performance and explainability. The detection
performance part compares LCE to other detection methods (classifiers, commercial solu-
tion) and evaluates the relevance of deploying 2 sensors. Then, the key drivers (variables
impact, temporal interactions) behind the estrus detection alerts are identified at global
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Figure 6.2 – Critical difference plot of the classifiers on the UCI datasets with alpha equals
to 0.05.

(estrus/anestrus) and local (behavioral/silent) levels based on algorithm explainability
(SHAP) and an approach to reduce the solution mistrust is proposed.

Performance

Before presenting the detection performance, I discuss the composition of the dataset
and how it could bias the results.

We can observe in the dataset that more estrus occur in the first lactation (59%,
external validation: 60% of all estrus), and that cows in the first lactation (primiparous)
experience a higher proportion of silent estrus compared to cows in higher lactations
- multiparous (41% vs 31%, external validation: 50% vs 34%). I do not consider that
it could bias the study. In the literature, the effect of parity is unclear on the estrus
detection performance. Some authors reported greater estrus intensity for older cows [De
Silva et al., 1981; Gwazdauskas et al., 1983] while others reported a greater activity
for primiparous [Peralta et al., 2005; Van Vliet et al., 1996; Yániz et al., 2006] or no
difference [Lopez et al., 2004; Van Eerdenburg et al., 2002].

Then, classification results on test sets are presented in Figure 6.3. The best classifier
on validation sets is LCE with the following hyperparameters: 3 past days, depth equals
to 1 and 70 trees. We do not observe an overfit of LCE, the performance observed on test
sets (F1-score: 68.9) is stable compared to the one of the validation sets (F1-score: 68.1)
and the one of the external validation set (F1-score: 71.4).

Furthermore, the performance of LCE responds to the objective of an increase in per-
formance in both estrus detection rate and fewer false alerts compared to the commercial
solution (CS). At the same precision, LCE recall is constantly higher than commercial
solution recall. At a precision of 78%, the precision rate of the commercial solution in this
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Figure 6.3 – Precision-recall curves on test sets of the classifiers versus the commercial
solution.
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study, LCE detects 22% more estrus.

Comparative Analysis I compare the error rate correlation of LCE to those of other
detection methods. This comparison allows us to:

• gain insights into the shortcomings of the commercial solution and LCE detections;

• identify limitations of the approach for deployment.

A low correlation indicates that classifiers err in different regions of the instance space.
Table 6.5 presents Pearson correlations of LCE prediction errors with other detection
methods (classifiers and commercial solution) on test sets. In order to be comparable,
the threshold of each classifier is set with the same precision as the commercial solution
(78%).

Table 6.5 – Pearson pairwise correlations of LCE prediction errors with other detection
methods on test sets.

KNN EN SVM MLP RF XGB LC CS

0.61 0.19 0.57 0.69 0.73 0.8 0.41 0.37

First, the commercial solution shows an intrinsic different behavior from that of LCE
(correlation: 0.37). This low correlation is mainly explained by the null performance of
the commercial solution on silent estrus detection across the herd. On 67% of the cows,
composed of a slighlty higher proportion of silent estrus compared to average (40% versus
37%), predictions correlation of the commercial solution with LCE is 0.21± 0.03.

Next, the low correlation between LCE and LC (0.41) confirms the value added by
the explicit bias-variance trade-off of the LCE approach. This low correlation is explained
by the low recall (11%) of the LC for a precision of 78%. The stable decision surface
drawn by naive Bayes at the root of the LC decision tree substantially limits the range
of performance of the algorithm on the dataset (recall drops with a precision higher than
66%). We observe this performance drop for precision above 66% in Figure 6.3.

Finally, the classifier with the closest behavior to LCE is XGB (0.8). However, the
correlation difference remains substantial and is explained by some divergence among
few cows. The divergence, an error rate correlation below 0.6, concerns 12% of the cows
comprising a proportion of silent estrus aligned with average (35%). Therefore, the bias-
variance approach enhances XGB performance on standard cases (cows with 35% of silent
estrus). Nevertheless, there is a poor performance of LCE on 11% of the cows exhibiting
a high proportion of silent estrus (F1-score < 55%, silent estrus proportion: 54%). Silent
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estrus are not equally distributed among cows. In the dataset, 16% of the cows represent
40% of the silent estrus. LCE performance per cow is exposed to the animal estrus type
proportion. It is confirmed by the LCE performance drop when assessed on the activity
and temperature dataset generated by a stratified 5-fold on animals (66.3±3.4). LCE per-
formance per cow variability according to the animal estrus type proportion is a limitation
of the solution for deployment; meanwhile it is also a driver for detection improvement. It
would be interesting to further investigate by incorporating additional animal individual
features.

One or Two Sensors? In order to answer this question, I compare the detection per-
formance on test sets of LCE on the temperature, the activity and both variables. I also
compare LCE detection results to the commercial solution and visual method.

First, the results confirm the potential of data science techniques for automatic estrus
detection versus visual detection as concluded by [Dolecheck et al., 2015]. We observe that
LCE for both behavioral and silent estrus detection, trained on activity and temperature
data, manifests significantly better performance (F1-score and lower variability) than
Visual&CS (68.9 ± 2.4 versus 60.4 ± 4.6, P < 0.05). The Visual&CS performance is
aligned with the state-of-the-art [Peralta et al., 2005]; the detection rate is slightly below
50% (47%).

Second, there is a better performance (higher F1-score and lower variability) with
the algorithm trained on activity and temperature than activity or temperature alone
(68.9±2.4 versus 67.0±3.0 versus 55.9±2.3). The performance difference is only significant
when compared to the algorithm trained using the temperature. We can infer that, in the
conditions of the experiment, only activity sensor should be deployed: the performance is
not significantly lower than that trained with two sensors (activity and temperature).

Nonetheless, temperature information cannot be excluded. There is a markedly lower
variability of the algorithm based on temperature across folds which allows the algorithm
based on activity and temperature to reduce its variability. It means that the algorithm
based on temperature is consistent on different data. It implies a possible higher discrim-
inative and generalizing power. It would be interesting to further study the potential of
temperature data for estrus detection with a broader data heterogeneity (cows breed,
environment). The next step would consist of a partnership with an automatic detection
solution provider to have access to a more diverse dataset.
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Explainability

In this section, I firstly present the relative impact of variables in LCE predictions
and their temporal interactions. Then, I propose an approach to give insights on estrus
detection to the farmers based on these elements.

Figure 6.4 shows the average impact of each variable on algorithm predictions for
estrus and anestrus by decreasing order (global level).

Figure 6.4 – Average impact of the attributes on algorithm predictions for estrus and
anestrus. Abbreviations: DBE - Day Before Estrus, DOE - Day Of Estrus.

These results confirm the discriminative power of the temperature and its potential
for improving estrus detection performance. The variable with the strongest impact to
algorithm predictions is the temperature on the day of estrus for both estrus and anestrus
classes.

Next, we can observe that the ranking of all activity variables are different with a
significant rank change between estrus and anestrus. Therefore, the relative impact of each
activity variable in LCE predictions differs between estrus and anestrus. Over activity on
the day of estrus, a typical characteristic of most estrus (65%), appears as the third most
impactful variable after temperature for estrus and does not appear on the top 20 of
variables for anestrus.
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By taking the same impact ranking approach locally for behavioral versus silent estrus,
we also observe a significant change on the ranking of activity variables (75% of rank
change). Rumination 2 days before estrus is a key variable in silent estrus detection. It
is the third most impactful activity variable for silent estrus and appears at the 19th
position for behavioral estrus.

Finally, temporal relations among variables differ between behavioral and silent estrus.
SHAP interaction values reveal that algorithm predictions are more impacted by activity
variables further to the day of estrus for silent estrus than behavioral estrus. For example,
the variable of highest interaction with rumination on the day of estrus is the rest 3 days
before estrus for silent estrus versus the rest 2 days before estrus for behavioral estrus.
This observation holds true for over activity, standing up and ingestion (two third of
activity variables).

Therefore, in order to support LCE estrus alerts and ease solution adoption, I propose
an approach based on LCE explainability (activity sensor only). First, communicate to
the farmer the relatedness of the estrus detection to historical cases through a confidence
indicator and the amplitude of differences in the 3 most impactful activity variables (rest
3 days before estrus, over activity 2 days before estrus and over activity on the day of
estrus). The confidence indicator corresponds to the weighted average of absolute SHAP
values differences by the ranking of impact variables for estrus from the reference presented
above (global level). Second, in case of estrus, inform the farmer about the type of estrus
(behavioral/silent) with a confidence level and which temporal interactions are satisfied
(local level). The information about the type of estrus aims to reassure farmers when
they are not able to verify the estrus alert by visual behavioral signs, therefore reduce
potential mistrust. Confidence level is calculated like the previous one but using ranking
of variables impact of silent estrus as a reference. In addition, temporal interactions are
communicated in decreasing order of variable impact.

6.5 Peformance-Explainability Analysis

This section introduces the new ensemble method LCE with SHAP post-hoc model-
agnostic explainability method into the analytical framework of the thesis (part II). The
different aspects of the LCE framework are summarized in the Table 6.6 and can be
visualized in Figure 6.5.

The study of this chapter firstly shows that LCE outperforms the state-of-the-art
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Figure 6.5 – Parallel coordinates plot of LCE with SHAP post-hoc model-agnostic ex-
plainability method on the dairy resource monitoring application. Performance evalua-
tion method: 5-fold cross-validation plus external validation and an arithmetic mean of
the F1-scores on the INRAE proprietary dataset. Models evaluated in the benchmark:
Commercial Solution, EN, kNN, LC, LCE, MLP, RF, SVM and XGB.
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classifiers on the public UCI datasets. Then, it exhibits the significant performance im-
provement of LCE on estrus detection on a real-world dataset compared to a commercial
reference, a result driven by silent estrus detection. Therefore, in the framework presented
in part II, following a 5-fold cross-validation plus external validation and an arithmetic
mean of the F1-scores on the INRAE proprietary dataset, the performance of LCE is
better than the state-of-the-art (Performance: Best).

Table 6.6 – Performance-explainability results of LCE with SHAP post-
hoc model-agnostic explainability method and DMSEEW. Abbrevia-
tions: ML - Machine Learning.

DMSEEW LCE + SHAP

Performance Best1 Best23

Comprehensibility Black-Box Black-Box
Granularity Local Both Global & Local
Information Features Features+Time
Faithfulness Perfect Imperfect
User ML Expert Domain Expert
1 3-fold cross-validation and an arithmetic mean of the accuracies on the Earthquake Early Warn-
ing Dataset. Models evaluated in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-
FCN, mv-ARF, ResNet, SMTS, UFS and WEASEL+MUSE.

2 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the
INRAE proprietary dataset. Models evaluated in the benchmark: Commercial Solution, EN,
kNN, LC, LCE, MLP, RF, SVM and XGB.

3 3-fold cross-validation and an arithmetic mean of the accuracies on the UCI datasets. Models
evaluated in the benchmark: EN, LC, LCE, MLP, RF, SVM and XGB.

Concerning the explainability, as the DMSEEW stacking ensemble method presented
in the previous chapter, the hybrid ensemble method is a “black-box” model (Compre-
hensibility: Black-Box). However, LCE with SHAP post-hoc model-agnostic explainabil-
ity method is more informative than DMSEEW explainability by design (Information:
Features+Time, DMSEEW: Features) and accessible to a wider audience (User: Domain
Expert, DMSEEW:Machine Learning Expert). SHAP provides the features relative impor-
tance on predictions at local level (silent versus behavioral estrus), which can be averaged
for each class to obtain it globally (estrus versus anestrus). Moreover, the time aspect is
managed in this chapter by setting the different timestamps as column variables of the
dataset. Therefore, SHAP provides the features and the timestamps relative importance
on predictions at both local and global level (Granularity: Both Global & Local, DM-
SEEW: Local). This kind of information allows the communication to the end-user of the
relatedness of the predictions to historical cases and the possibility of visually verifying
the estrus (behavioral versus silent). These explanations are accessible to a domain expert
(e.g. a farmer) who is able to analyze the confidence indicator with the amplitude of dif-
ferences in the 3 most impactful variables. Nevertheless, unlike DMSEEW explainability
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by design, the faithfulness of the SHAP explanations is imperfect (Faithfulness: Imperfect,
DMSEEW: Perfect). SHAP approximates the original model using an explainable model.
The explanation model is a linear model, an additive feature attribution method that uses
simplified inputs (conditional expectations) assuming feature independence.

The next chapter shows how to extend LCE hybrid ensemble method for MTS classi-
fication to combine performance with faithful and more informative explanations.

Summary

• LCE is a new hybrid ensemble method which significantly improves the detec-
tion of estrus on a real-world dataset compared to a commercial reference. The
superior performance of LCE also holds on the public UCI datasets.

• LCE with SHAP post-hoc model-agnostic explainability method provides in-
formative explanations accessible to domain experts at all granularity levels.
The explanations provide to the user the features and the timestamps relative
importance on predictions.

• However, the faithfulness of explanations is imperfect.
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An Explainable by Design Ensemble
Method for Multivariate Time Series
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The third machine learning method of the thesis is an extension of LCE to MTS
classification studied on public MTS datasets. The method is the result of a collaboration
between researchers from the PEGASE (“Physiology, Environment, Genetics for Animals
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and rearing systems”) unit at the French National Institute for Agriculture, Food and
Environment (INRAE) and machine learning researchers from the LACODAM (“Large
Scale Collaborative Data Mining”) team at Inria, France. It is available on ArXiv [Fauvel
et al., 2020b].

7.1 Introduction

In chapter 6, driven by the evaluation setting of the dairy resource monitoring ap-
plication (potential time series length equals to 2), the MTS classification task has been
approached as a traditional multivariate data classification and LCE has been developed.
As a hyperparameter of the evaluation, the time series length has finally been set to 4
(see section 6.4.2), which allows the use of most state-of-the-art MTS classifiers. Thus, the
new methods in chapter 8 (pattern-based method) and chapter 9 (deep learning method)
will approach the dairy resource monitoring application as a MTS classification problem.
However, a short time series length of 4 on the dairy resource monitoring application still
prevents the use of interval-based MTS classifiers like WEASEL+MUSE or the LCE ex-
tension to MTS classification proposed in this chapter. Therefore, the study of this chapter
limits the evaluation of the new MTS classifier to the public MTS datasets benchmark
(UEA archive [Bagnall et al., 2018]).

Ensemble methods are the current state-of-the-art classifiers for traditional multivari-
ate data classification (Random Forest [Breiman, 2001], Extreme Gradient Boosting [Chen
et al., 2016]) and univariate time series classification (HIVE-COTE [Lines et al., 2016]),
whereas there is no ensemble method among the state-of-the-art MTS classifiers. The
study in chapter 6 has shown that LCE outperforms the state-of-the-art multivariate
data classifiers on the public UCI datasets. Consequently, this chapter proposes to extend
LCE to MTS classification and benchmark it against the state-of-the-art MTS classifiers
on the public UEA datasets.

Concerning explainability, LCE relies on post-hoc model-agnostic methods. The main
line of work in post-hoc model-agnostic explainability methods approximates the decision
surface of a model using an explainable one. However, the explanations from the surrogate
models cannot be perfectly faithful with respect to the original model [Rudin, 2019],
which is a prerequisite for numerous applications. Thus, the extension of LCE to MTS
classification, XEM, integrates explainability by design in order to ensure perfectly faithful
explanations.
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In addition, XEM has some interesting properties out of its explainability by design.
In particular, XEM is robust with varying MTS input data quality (different MTS length,
missing data and noise), which often arises in continuous data collection systems.

None of the state-of-the-art MTS classifiers (DTWD, DTWI , WEASEL + MUSE,
MLSTM-FCN) reconciles performance and perfectly faithful explainability. The best per-
forming MTS classifiers, WEASEL+MUSE and MLSTM-FCN, cannot provide perfectly
faithful explanations as they can only rely on post-hoc model-agnostic explainability meth-
ods. Similarity-based methods provide by design faithful explainability by revealing the
distance between two MTS for each timestamp. However, they are often less accurate
than other MTS classification methods. Moreover, none of the state-of-the-art MTS clas-
sifiers handles the three varying data quality aspects (different TS length, missing data,
noise). Table 7.1 presents an overview of the challenges addressed by state-of-the-art MTS
classifiers and how is positioned the new ensemble method XEM.

Table 7.1 – The state-of-the-art MTS classifiers - overview.
Similarity Based Deep

Learning
Feature
Based Ensemble

ED DTW MLSTM
FCN

WEASEL+
MUSE XEM

Input
Varying TS Length 3 3 3 3

Missing Data 3
Noise 3 3

7.1.1 Contributions

This chapter presents in detail and thoroughly examines the behavior of XEM. The
study will:

• Present XEM, a new eXplainable by design Ensemble method for MTS classification;

• Show that XEM outperforms the state-of-the-art MTS classifiers on the UEA datasets
[Bagnall et al., 2018];

• Illustrate the explainability by design feature of XEM, which provides the time
window used to classify the whole MTS;

• Show that XEM manifests robust performance when faced with challenges arising
from continuous data collection (different MTS length, missing data and noise);
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7.2 XEM

A subset of the MTS can be characteristic of the event we aim to predict and can be
adequate for the prediction. Therefore, I propose a new MTS classifier, XEM, that gener-
ates features allowing the direct identification of the MTS time window that is important
for prediction. These features correspond to the confidence levels of the classifier LCE
on each MTS subsequence of a predefined length. The subsequence where the classifier
is the most confident is used for classification and provided to the end-user as faithful
explanation to support the MTS prediction. As in [Baydogan et al., 2014], I have chosen
a tabular classifier because it fulfills two needs simultaneously: first, the need to handle
the relationship between the variables; second, the need to handle really small time series
according to the predefined time window length of interest. Most MTS classifiers fail to
meet the second need. More specifically, I have adopted LCE tabular classifier, the best
performing tabular classifier on the public UCI datasets (see section 6.4.1). As a method
aggregating features which are the output of multiple predictors, XEM can be categorized
as an ensemble method. In the following sections, I first present how dividing the time
series into time windows is used to help XEM classify MTS based on their discriminative
part and then how it provides explainability.

7.2.1 Dataset Transformation

In order to classify a MTS, the whole series is not always needed: only some parts
may be relevant for the classification task, while others can be considered as noise and
may even degrade classification performance. Therefore, I introduce a parameter to XEM
defining the time window size, i.e. the size of the subsequence of the MTS expected to
be sufficient to assign a label to the MTS. Suitable methods to set this hyperparameter
are discussed in section 7.2.2. XEM is trained on subsequences of MTS, which require
a transformation of the dataset. This transformation is presented in Figure 7.1. Using a
sliding window, all subsequences corresponding to the time window size (MTS length-
window size+1 subsequences) are generated. The time aspect is managed by setting the
different timestamps as column dimensions. Each subsequence is considered as a new
sample, labeled as the original MTS. For example in Figure 7.1, 4 subsequences (samples)
are generated from the first MTS, composed of 2 timestamps (time window size) with 2
dimensions each (4 attributes columns). The 4 subsequences are calculated as: 5 (MTS
length) - 2 (time window size) + 1. I present in the next section how to compute the
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classification performance with the transformed dataset and how this configuration allows
a better model explainability.

Figure 7.1 – The dataset transformation (from MTS to a traditional multivariate flat
dataset). Abbreviations: ID - MTS identifier, Timestamp - one element of the time series,
AttributeX - value produced by the sensor X at each timestamp, d - number of dimensions,
n - number of MTS, T - time series length, win_size - time window size. In this example:
T=5, d=2 and win_size=2.

7.2.2 Classification

As seen in the previous section, XEM is trained on subsequences of MTS which sizes are
controlled by the time window size parameter. Then, XEM assigns class probabilities to all
subsequences of the MTS. For example, on the upper part of the Figure 7.2, XEM assigns
class probabilities for each of the 4 subsequences of a MTS. Finally, XEM determines the
class of a MTS based on the subsequence on which it is the most confident. For each MTS,
the maximum class probability over the different subsequences is selected to determine
the whole MTS classification output. For example, on the lower part of Figure 7.2, we
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can observe that XEM assigns the class 1 to the first MTS (ID=1) based on the highest
class probability (0.95 versus 0.6 and 0.7) obtained with the classification of the third
subsequence of the MTS. In the case where XEM is the most confident for a subsequence
of a MTS which is not discriminative, it means that the time window size value is not
suited for the classification problem and it would lead to poor classification accuracy of
XEM on the training set. A time window size better suited for the classification problem
would lead to better accuracy on the training set and would therefore be selected. In the
evaluation, without having prior knowledge on the time window size which would suit
the classification tasks, the time window size is set by hyperparameter optimization (see
section 7.3.3). The transformation presented and the performance evaluation procedure
allow any classifier to perform MTS classification. Therefore, I compare in section 7.4.1
the performance of XEM to the best two state-of-the-art classifiers applying the same
transformation as LCE and to the state-of-the-art MTS classifiers.

Figure 7.2 – XEM prediction computation on the example from Figure 7.1 and illustration
of the explainability on the first MTS (ID=1).

7.2.3 Explainability by Design

XEM provides local explainability by design through the identification of the time
window used to classify a MTS. Following the dataset transformation performed (see
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section 7.2.1), we obtain the class probabilities for every subsequences from XEM. As
mentioned, a subset of the MTS can be characteristic of the event we aim to predict and
can be adequate for the prediction. Therefore, the prediction for a MTS is based on the
subsequence that has the highest class probability - the subsequence on which XEM is the
most confident. The explainability of XEM is illustrated with the previous section example
in Figure 7.2. We observe that for the first MTS (ID=1), after performing a grouping by
MTS ID and taking the maximum, class 1 has the highest probability (0.95). We can
trace back to the subsequence from which XEM is predicting this class probability (third
subsequence), and show it to the user. This subsequence can help the user to understand
why the MTS classifier attributed a particular label to the whole MTS (explainability).
The explainability property of XEM is further illustrated in section 7.4.2 on a synthetic
and two UEA datasets.

7.2.4 Properties

In addition to its explainability by design, XEM has other interesting properties:
phase invariance, interplay of dimensions, different MTS length compatibility, missing
data management, noise robustness and scalability.

• Phase Invariance: XEM is not sensitive to the position of the discriminative subse-
quence in the MTS due to the selection of the subsequence which has the highest
class probability to classify the whole MTS. This property improves the generaliza-
tion ability of the algorithm: in the possible cases when the sequences of events in a
MTS change, the classification result is not modified. For example, the classification
result would be the same if the discriminative subsequence appears at the beginning
or at the end of the MTS;

• Interplay of Dimensions: XEM exploits the relationships among the dimensions
through the use of boosting-based classifier as base classifier. It allows XEM to ex-
ploit complex interactions among the dimensions at different timestamps to perform
classification;

• Different MTS Length Compatibility: XEM handles it in two different ways. If a
MTS length is inferior to the maximum length of the MTS in a dataset multiplied
by the window size selected, XEM uses padding of 0 values. Otherwise, no padding
is necessary, less samples are generated per MTS but the performance evaluation
procedure presented in 7.2.2 remains valid;
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• Missing Data Management: XEM naturally handles missing data through its tree-
based learning [Breiman et al., 1984]. Similar to extreme gradient boosting [Chen
et al., 2016], XEM excludes missing values for the split and uses block propaga-
tion. During a node split, block propagation sends all samples with missing data
to the side minimizing the error. This property is evaluated in the experiments in
section 7.4.1;

• Noise Robustness: the bagging component of XEM provides noise robustness through
variance reduction by creating multiple predictors from random sampling with re-
placement of the original dataset. This property is discussed in the experiments in
section 7.4.1;

• Scalability: as a tree-based ensemble method, XEM is scalable. Its time complexity
is detailed in section 7.2.5.

Most of the properties of XEM are coming from LCE. The properties shared between
LCE and XEM are interplay of dimensions, missing data management, noise robustness
and scalability.

7.2.5 Time Complexity

LCE time complexity is determined by the time complexity of multiple decision trees
learning and extreme gradient boosting. The time complexity of building a single tree
is O(n(wd)Dt), where n is the number of samples after the dataset transformation, w
is the time window size, d is the number of dimensions and Dt is the maximum depth
of the tree. So the time complexity of creating multiple decision trees with bagging is
O(Ntn(wd)Dt), where Nt is the number of trees. Extreme gradient boosting has a time
complexity of O(NbDb‖x‖0 log(n)) where Nb is the number of trees, Db is the maximum
depth of the trees and ‖x‖0 is the number of non-missing entries in the data. Therefore,
LCE has a time complexity of O(NtnwdDt2DtNbDb‖x‖0 log(n)), where 2Dt represents the
maximum number of nodes in a binary tree. Table 7.2 shows the time complexity of LCE
in comparison with the state-of-the-art ensemble methods of the benchmark (RF, XGB,
LC).

XEM time complexity is the same as LCE plus the dataset transformation which is
linear in the number of samples.
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Table 7.2 – Time complexities of the ensemble methods. Abbreviations: d - number of
dimensions, d′ - number of dimensions in RF subset of dimensions, D - maximum depth
of a tree, n - number of samples, N - number of trees, TBase - time complexity of a base
classifier, ‖x‖0 - number of non-missing entries in the data.

Algorithm Time Complexity

RF O(Nnd′D)
XGB O(N log(n)‖x‖0D)
LC O(ndD2DTBase)

LCE O(NndD2DTBase)

7.2.6 Implementation

XEM pseudocode is presented in Algorithm 2. XEM implementation is the same as
LCE plus the dataset tranformation. A function (XEM_Tree) builds a tree and the sec-
ond one (XEM) builds the forest of trees through bagging, after having transformed the
dataset. There are 2 stopping criteria during a tree building phase which are the same
as LCE: when a node has an unique class or when the tree reaches the maximum depth.
We set the range of tree depth from 0 to 2 in XEM as in LCE. This hyperparameter is
used to control overfitting. Low bias boosting-based classifier as base classifier justifies the
maximum depth of 2. The set of low bias base classifiers is limited to the best performing
state-of-the-art boosting algorithm (extreme gradient boosting - XGB [Chen et al., 2016]).

7.3 Evaluation

In this section, I present the evaluation method. As explained in section 7.2.2, the
dataset transformation performed and the performance calculation to extend LCE for
MTS classification can be done for any classifier. Therefore, XEM performance is com-
pared to the best two classifiers from LCE evaluation (RF and XGB, see section 6.4.1)
applying the same transformation as LCE and to the state-of-the-art MTS classifiers.

7.3.1 Public Datasets

XEM is benchmarked on the 30 currently available UEA MTS datasets [Bagnall et
al., 2018]. For each dataset, the train/test split provided in the archive is kept. The
characteristics of each dataset are presented in Table 7.3.
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Algorithm 2 XEM
Require: A dataset D, a set of classifiers H, time window size win_size, maximum

depth of a tree max_depth, number of trees n_trees
1: function XEM(D, H, win_size, n_trees, max_depth)
2: D′ ← Dataset_Transformation(D, win_size)
3: F ← ∅
4: for each i in [1, n_trees] do
5: S ← A bootstrap sample from D′

6: t← XEM_Tree(S, H, max_depth, 0)
7: F ← F ∪ t
8: return F
9: function XEM_Tree(D, H, max_depth, depth)
10: if max_depth or uniform class then
11: return leaf
12: else
13: D′ ← Concatenate(D,Hdepth(D))
14: Split D′ on attribute maximizing Gini criterion
15: depth← depth+ 1
16: for D′(j) ∈ P(D′) do
17: Treej = XEM_Tree(D′(j), H, max_depth, depth)
18: return tree containing one decision node, storing classifier Hdepth(D) and de-

scendant subtrees Treej
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Table 7.3 – The UEA MTS datasets. Abbreviations: AS - Audio Spectra, C - Classes, D
- Dimensions, ECG - Electrocardiogram, EEG - Electroencephalogram, HAR - Human
Activity Recognition, L - Length, MEG - Magnetoencephalography.

Datasets Type Train Test L D C
XEM Parameters
Time

Window (%) Trees Depth

Articulary Word Recognition Motion 275 300 144 9 25 40 5 1
Atrial Fibrilation ECG 15 15 640 2 3 20 1 0
Basic Motions HAR 40 40 100 6 4 20 1 0
Character Trajectories Motion 1,422 1,436 182 3 20 80 10 2
Cricket HAR 108 72 1,197 6 12 40 20 0
Duck Duck Geese AS 60 40 270 1,345 5 100 20 0
Eigen Worms Motion 128 131 17,984 6 5 100 20 1
Epilepsy HAR 137 138 206 3 4 20 1 1
Ering HAR 30 30 65 4 6 20 1 2
Ethanol Concentration Other 261 263 1751 3 4 20 1 2
Face Detection EEG/MEG 5,890 3,524 62 144 2 100 5 2
Finger Movements EEG/MEG 316 100 50 28 2 60 5 2
Hand Movement Direction EEG/MEG 320 147 400 10 4 80 20 2
Handwriting HAR 150 850 152 3 26 20 10 2
Heartbeat AS 204 205 405 61 2 80 10 0
Insect Wingbeat AS 30,000 20,000 200 30 10 100 10 1
Japanese Vowels AS 270 370 29 12 9 40 5 1
Libras HAR 180 180 45 2 15 40 60 1
LSST Other 2,459 2,466 36 6 14 60 10 2
Motor Imagery EEG/MEG 278 100 3,000 64 2 100 20 1
NATOPS HAR 180 180 51 24 6 40 10 0
PenDigits Motion 7,494 3,498 8 2 10 80 80 2
PEMSF Other 267 173 144 963 7 100 20 1
Phoneme AS 3315 3353 217 11 39 80 1 2
Racket Sports HAR 151 152 30 6 4 60 20 0
Self Regulation SCP1 EEG/MEG 268 293 896 6 2 100 5 2
Self Regulation SCP2 EEG/MEG 200 180 1152 7 2 100 20 2
Spoken Arabic Digits AS 6,599 2,199 93 13 10 80 10 1
Stand Walk Jump ECG 12 15 2,500 4 3 20 1 1
U Wave Gesture Library HAR 120 320 315 3 8 60 1 0
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7.3.2 Algorithms

As presented in section 2.2, MTS classifiers are composed of 3 categories: similarity-
based, feature-based and deep learning methods. In this work, the best-in-class for each
category is chosen: DTWD, DTWI , WEASEL+MUSE and MLSTM-FCN classifiers. XEM
is also compared to the best two classifiers from LCE evaluation (RF and XGB, see sec-
tion 6.4.1) applying the same transformation as LCE. Thus, the MTS classifiers evaluated
are:

• DTWD with and without normalization: the one nearest neighbor classifier with
DTW distance based on multi-dimensional points instead of treating each dimension
separately. I report the results published in the UEA archive [Bagnall et al., 2018];

• DTWI with and without normalization: the one nearest neighbor classifier based on
the sum of DTW distance for each dimension. I report the results published in the
UEA archive [Bagnall et al., 2018];

• ED with and without normalization: the one nearest neighbor classifier with Eu-
clidean distance. I report the results published in the UEA archive [Bagnall et al.,
2018];

• MLSTM-FCN [Karim et al., 2019]: I use the implementation available 1 and run it
with the setting recommended by the authors in the paper (128-256-128 filters, 250
training epochs, a dropout of 0.8 and a batch size of 128);

• RFM: Random Forest for Multivariate time series classification. I use the public
implementation 2 with the transformation presented in section 7.2.1;

• WEASEL+MUSE [Schäfer et al., 2017]: I use the implementation available 3 and run
it with the setting recommended by the authors in the paper (SFA word lengths l
in [2,4,6], windows length in [4:max(MTS length)], chi=2, bias=1, p=0.1, c=5 and
a solver equals to L2R LR DUAL);

• XGBM: Extreme Gradient Boosting for Multivariate time series classification. I use
the implementation in the xgboost package for Python 4 with the transformation
presented in section 7.2.1.

1. https://github.com/houshd/MLSTM-FCN
2. https://scikit-learn.org/stable/
3. https://github.com/patrickzib/SFA
4. https://xgboost.readthedocs.io/en/latest/python/
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7.3.3 Hyperparameters

The ranges of XEM hyperparameters are the same as LCE: number of trees (n_trees)
[1, 5, 10, 20, 40, 60, 80, 100] and maximum depth (max_depth) [0, 1, 2]. As explained in
section 7.2, the time window size hyperparameter (win_size) is added to XEM. This
parameter is expressed as a percentage of the total size of the MTS and the range of time
window size percentages is [20%, 40%, 60%, 80%, 100%].

The hyperparameters are set by hyperopt, a sequential model-based optimization us-
ing a tree of Parzen estimators search algorithm [Bergstra et al., 2011]. Hyperopt chooses
the next hyperparameters decision from both the previous choices and a tree-based op-
timization algorithm. Tree of Parzen estimators meet or exceed grid search and random
search performance for hyperparameters setting. I use the implementation available in the
Python package hyperopt 5.

7.3.4 Metrics

For each dataset, the classification accuracy is computed. Then, I present the average
rank and the number of wins/ties to compare the different classifiers on the same datasets.
Finally, I present the critical difference diagram [Demšar, 2006], the statistical comparison
of multiple classifiers on multiple datasets based on the non-parametric Friedman test, to
show the overall performance of XEM. I use the implementation available in R package
scmamp 6.

7.4 Results

7.4.1 Performance

The classification results of the 11 MTS classifiers are presented in Table 7.4. A blank
in the table indicates that the approach ran out of memory or the accuracy is not reported
[Bagnall et al., 2018]. The best accuracy for each dataset is denoted in boldface. We observe
that XEM obtains the best average rank (3.0), followed by RFM in second position (rank:
3.7) and MLSTM-FCN in third position (rank: 3.9).

XEM gets the first position in one third of the datasets. Using the categorization of the

5. https://github.com/hyperopt/hyperopt
6. https://www.rdocumentation.org/packages/scmamp/versions/0.2.55/topics/plotCD
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Table 7.4 – Accuracy results on the UEA MTS datasets. Abbreviations: MF - MLSTM-
FCN, n - Normalized, RM - RFM, WM - WEASEL+MUSE, XG - XGBM, XM - XEM.

Datasets XM XG RM MF WM ED DTWI DTWD
ED
(n)

DTWI

(n)
DTWD

(n)

Articulary Word Recognition 99.3 99.0 99.0 98.6 99.3 97.0 98.0 98.7 97.0 98.0 98.7
Atrial Fibrilation 46.7 40.0 33.3 20.0 26.7 26.7 26.7 20.0 26.7 26.7 22.0
Basic Motions 100.0 100.0 100.0 100.0 100.0 67.5 100.0 97.5 67.6 100.0 97.5
Character Trajectories 97.9 98.3 98.5 99.3 99.0 96.4 96.9 99.0 96.4 96.9 98.9
Cricket 98.6 97.2 98.6 98.6 98.6 94.4 98.6 100.0 94.4 98.6 100.0
Duck Duck Geese 37.5 40.0 40.0 67.5 57.5 27.5 55.0 60.0 27.5 55.0 60.0
Eigen Worms 52.7 55.0 100.0 80.9 89.0 55.0 60.3 61.8 54.9 61.8
Epilepsy 98.6 97.8 98.6 96.4 99.3 66.7 97.8 96.4 66.6 97.8 96.4
Ering 20.0 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3
Ethanol Concentration 37.2 42.2 43.3 27.4 31.6 29.3 30.4 32.3 29.3 30.4 32.3
Face Detection 61.4 62.9 61.4 55.5 54.5 51.9 51.3 52.9 51.9 52.9
Finger Movements 59.0 53.0 56.0 61.0 54.0 55.0 52.0 53.0 55.0 52.0 53.0
Hand Movement Direction 64.9 54.1 50.0 37.8 37.8 27.9 30.6 23.1 27.8 30.6 23.1
Handwriting 28.7 26.7 26.7 54.7 53.1 37.1 50.9 60.7 20.0 31.6 28.6
Heartbeat 76.1 69.3 80.0 71.4 72.7 62.0 65.9 71.7 61.9 65.8 71.7
Insect Wingbeat 22.8 23.7 22.4 10.5 12.8 11.5 12.8
Japanese Vowels 97.8 96.8 97.0 99.2 97.8 92.4 95.9 94.9 92.4 95.9 94.9
Libras 77.2 76.7 78.3 92.2 89.4 83.3 89.4 87.2 83.3 89.4 87.0
LSST 65.2 63.3 61.2 64.6 62.8 45.6 57.5 55.1 45.6 57.5 55.1
Motor Imagery 60.0 46.0 55.0 53.0 50.0 51.0 39.0 50.0 51.0 50.0
NATOPS 91.6 90.0 91.1 96.1 88.3 85.0 85.0 88.3 85.0 85.0 88.3
PenDigits 97.7 95.1 95.1 98.7 96.9 97.3 93.9 97.7 97.3 93.9 97.7
PEMSF 94.2 98.3 98.3 65.3 70.5 73.4 71.1 70.5 73.4 71.1
Phoneme 28.8 18.7 22.2 27.5 19.0 10.4 15.1 15.1 10.4 15.1 15.1
Racket Sports 94.1 92.8 92.1 88.2 91.4 86.4 84.2 80.3 86.8 84.2 80.3
Self Regulation SCP1 83.9 82.9 82.6 86.7 74.4 77.1 76.5 77.5 77.1 76.5 77.5
Self Regulation SCP2 55.0 48.3 47.8 52.2 52.2 48.3 53.3 53.9 48.3 53.3 53.9
Spoken Arabic Digits 97.3 97.0 96.8 99.4 98.2 96.7 96.0 96.3 96.7 95.9 96.3
Stand Walk Jump 40.0 33.3 46.7 46.7 33.3 20.0 33.3 20.0 20.0 33.3 20.0
U Wave Gesture Library 89.7 89.4 90.0 85.7 90.3 88.1 86.9 90.3 88.1 86.8 90.3
Average Rank 3.0 4.8 3.7 3.9 4.1 7.5 6.3 5.3 7.9 6.7 5.7
Wins/Ties 10 4 6 11 4 0 1 3 0 1 2
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datasets published in the archive website 7, we do not see any influence from the different
train set sizes, MTS lengths, dimensions and number of classes on XEM performance
relative to the other classifiers on the UEA datasets. Nonetheless, XEM exhibits weaker
performance on average on human activity recognition (rank: 3.6, 30% of all datasets)
and motion classification (rank: 5.0, 13% of all datasets) datasets.

Then, we observe that the better generalization of LCE bagging-boosting combination
compared to bagging only (RF) and boosting only (XGB) is also valid on the MTS
datasets (average rank: XEM 3.0, RFM 3.7, XGBM 4.8). The adaptation of ensemble
methods to the MTS datasets (see section 7.2.1) is well performing: the three ensemble
methods obtain the highest number of wins/ties (ensemble methods for MTS: 17 - 57%
of all datasets, MLSTM-FCN: 11 - 37% of all datasets, WEASEL+MUSE: 4 - 13% of all
datasets). The 6 wins/ties of RFM are obtained on small datasets (train size < 500). As
seen in section 6.4.1, we can infer that the bagging only (variance reduction) of RFM can
provide better generalization than XEM bagging-boosting combination on small datasets
(wins/ties on small datasets - 77% of the datasets: XEM 8, RFM 6). On the time window
sizes used, we observe that the choice of XEM time window is a trade-off between its
bagging and boosting components. XEM and XGBM use the same time window size
on 70% of the datasets. When the time window size is different, XEM obtains a better
accuracy than XGBM on 90% of the cases. Moreover, XEM employs the same time window
size as RFM on half of the UEA datasets. On the other half of the datasets, RFM adopts
a slightly bigger time window size than XEM. RFM uses a bigger time window in 75% of
the time with an average time window difference of 29% between XEM and RFM. The
different choice of XEM time window size leads to a better accuracy on 75% of the cases
compared to RFM. These observations prove that XEM bias-variance trade-off can refine
the time window size of boosting only and bagging only to obtain a better generalization
ability on average.

Specifically, with regard to the hyperparameter win_size of XEM, Figure 7.3 shows
the average relative drop in performance across the datasets when using the other time
window sizes than the one used in the best configuration given in Table 7.3. In order to
evaluate the relative impact with respect to the range of performance, I have defined four
categories of datasets: datasets with XEM original accuracy< 50%, datasets with 50% ≤
accuracy < 90% and datasets with accuracy ≥ 90%. First, as expected, we can observe
that the average relative impact of using suboptimal time window sizes is higher when

7. http://www.timeseriesclassification.com/dataset.php
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XEM level of performance is low (average relative drop in accuracy: 15.1% when XEM
accuracy < 50% versus 4.5% when XEM accuracy ≥ 90%). Then, the average relative
drop in accuracy when using suboptimal time window sizes is not negligible but remains
limited in all the cases. This drop is below 16% on average on the category where XEM
has the lowest level of accuracy (15.1% ± 5.3%) and below 10% on average across all the
datasets (9.9% ± 1.8%).

Figure 7.3 – XEM average relative accuracy drop across the UEA datasets when using
other time window sizes than the one used in the best configuration given in Table 7.3.
The performance drop is presented across three categories of datasets, defined according
to XEM levels of accuracy shown in Table 7.4. Abbreviation: Acc - Accuracy.

Concerning state-of-the-art MTS classifiers, we observe a performance difference be-
tween the third (MLSTM-FCN) and fourth (WEASEL+MUSE) classifiers on datasets
sizes. MLSTM-FCN outperforms WEASEL+MUSE (rank: 2.6 versus 4.6 for WEASEL +
MUSE) on the largest datasets (train size ≥ 500, 23% of all datasets) whereas WEASEL +
MUSE slightly outperforms MLSTM-FCN (rank 3.6 versus 3.8 for MLSTM-FCN) on the
smallest datasets (train size < 500, 77% of all datasets). XEM shows the same performance
as MLSTM-FCN on the largest datasets (rank 2.6) while outperformingWEASEL+MUSE
on the smallest datasets (rank: 3.1 versus 3.6 for WEASEL+MUSE). Therefore, XEM is
better than state-of-the-art MTS classifiers on both small and large UEA datasets. Last,
similarity-based methods obtain the lowest wins/ties counts. Euclidean distance is never
in the first position on the UEA datasets. The wins/ties of DTW (DTWD normalized: 2,
DTWD: 3) stem from their outperformance on human activity recognition datasets.

Next, a statistical test is performed to evaluate the performance of XEM compared
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to other MTS classifiers. I present in Figure 7.4 the critical difference plot with alpha
equals to 0.05 from results shown in Table 7.4. The values correspond to the average rank
and the classifiers linked by a bar do not have a statistically significant difference. The
plot confirms the top 3 ranking as presented before (XEM: 1, RFM: 2, MLSTM-FCN: 3),
without showing a statistically significant difference between each other. As seen in the
evaluation on the UCI datasets, the plot also confirms that there is no statistically signif-
icant difference between the ensemble methods XEM/RFM/XGM on the MTS datasets.
We can notice that XEM is the only classifier with a significant performance difference
compared to DTWD normalized.

Figure 7.4 – Critical difference plot of the MTS classifiers on the UEA datasets with alpha
equals to 0.05.

Effect of Missing Data

None of the state-of-the-art MTS classifiers handles missing data. Missing data are
interpolated, which adds a parameter to the problem. XEM naturally handles missing
data through its tree-based learning [Breiman et al., 1984]. Similar to extreme gradient
boosting [Chen et al., 2016], XEM excludes missing values for the split and uses block
propagation. Block propagation sends all samples with missing data to the side minimizing
the error.

I present in this section an experiment to illustrate the performance of XEM in the case
of missing data. Three datasets have been selected from the most representing type of the
UEA datasets (human activity recognition, 30% of the datasets); it is also a type on which
XEM does not obtain the best performance comparing to the other classifiers (rank: 3.6).
The three datasets are chosen according to the performance of XEM to show the evolution
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Figure 7.5 – Evolution of XEM error rates with standard errors according to the proportion
of missing values on three Human Activity Recognition datasets.

of accuracies according to different starting points: Basic Motions (XEM accuracy: 100%,
no error), Racket Sports (94.1%, ]0,10] percent of error) and U Wave Gesture Library
(89.7%, ]10,100] percent of error). Then, I randomly removed an increasing proportion of
the values for each time series ([5%, 10%, ..., 50%]) of the datasets before transformation
(see section 7.2.1). The error rates on test sets over 10 replications are presented in
Figure 7.5.

First, we observe that missing data does not have an effect on XEM performance
(100% accuracy) on the dataset Basic Motions. On the other two datasets, the error
rates of XEM increase progressively with the proportion of missing data. The error rate
induced by missing data never exceeds 5% on these 2 datasets when half the data is
missing (accuracy difference from 0% to 50% missing data: Racket Sports +3.7% and U
Wave Gesture Library +1.9%). Finally, XEM performance is stable: the error rates remain
roughly the same across the 10 replications on all proportions of missing values (mean of
standard error across Racket Sports/U Wave Gesture Library: 0.34%).

Effect of Gaussian Noise

In this section, I evaluate the robustness of XEM to Gaussian noise compared to the
second and third ranked MTS classifiers according to the number of wins/ties. Therefore,
the performance of XEM is compared to RFM and MLSTM-FCN, with RFM proven to
be robust to noise based on bagging [Breiman, 1996].
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Following the same logic as the section on missing values, an experiment on the same
three datasets is performed. These three datasets are from the most representing type of
the UEA datasets (human activity recognition, 30% of the datasets) and from different
XEM accuracy categories: Basic Motions (XEM accuracy: 100%, no error), Racket Sports
(94.1%, ]0,10] percent of error) and U Wave Gesture Library (89.7%, ]10,100] percent of
error). Then, after z-normalization of these datasets on each dimension (standard devia-
tion of 1), an increasing Gaussian noise is added with a standard deviation of 0 to 1 to
each dimension, which is equivalent to noise levels of 0% to 100%. The average error rates
with standard errors on these three datasets are presented in Figure 7.6.

Figure 7.6 – Evolution of the top three MTS classifiers average error rates with standard
errors on three Human Activity Recognition datasets (Basic Motions, Racket Sports, U
Wave Gesture Library) according to the level of noise.

We observe that XEM fully exploits its bagging component and is as robust to noise as
RFM. XEM shows lower error rates than RFM on 60% of the noise levels, without having
a greater variability across the datasets (average standard error: XEM 3.7% versus RFM
3.5%). Moreover, XEM is more robust to noise than MLSTM-FCN. XEM exhibits lower
error rates than MLTSM-FCN on 80% of the noise levels with a lower variability across
the datasets (average standard error: XEM 3.7% versus MLSTM-FCN 5.3%).

7.4.2 Explainability

XEM provides explainability through the identification of the time window used to
classify the whole MTS. There is no quantitative approach to assess a model explainabil-
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ity. Therefore, a qualitative approach is adopted to analyze XEM explainability. First, I
illustrate the explainability of XEM on a synthetic dataset, then I show which windows
have been used on the UEA datasets of section 7.4.1 and I illustrate it on two UEA
datasets (Atrial Fibrilation and Racket Sports).

Synthetic Dataset First of all, I show that XEM uses and identifies the expected
time window to perform the classification on a MTS synthetic dataset. I design a dataset
composed of 20 MTS (50%/50% train/test split) with a length of 100, 2 dimensions and
2 balanced classes. The difference between the 10 MTS belonging to the negative class
and the one belonging to the positive class stems from a 20% time window of the MTS.
As illustrated in Figure 7.7, negative class MTS are sine waves and positive class MTS
are sine waves with a square signal on 20% of the dimension 1 (see timestamps between
60 and 80).

Figure 7.7 – The two MTS types of the synthetic dataset.

The classification results show that XEM with a time window size parameter set to
20% is enough to correctly classify the 10 MTS of the test set (accuracy: 100% - n_trees:
10, max_depth: 1). Moreover, the classification results for the positive class MTS are
based on the 20% time window with a square signal on dimension 1. We observe that the
maximum class probability for the MTS of positive class is 100% and this probability is
reached for samples on the range [62,100] (maximum class probability on the range [0,61]:
92.6%). This range is the expected range. As explained in section 7.2.1, all the samples of
the dataset obtained with a 20% sliding window have a piece of the square signal for the
timestamps in the range [62,100], which is the information sufficient to correctly classify
the MTS in the positive class. Therefore, by taking all the samples of the dataset with the
maximum class probability, XEM allows the identification of the full parts of the MTS
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which are characteristic of a class (e.g. the square signal on 20% of the dimension 1 in
Figure 7.7).
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Figure 7.8 – Heatmap of the proportion of the time window size percentages used by XEM
per UEA classification type.

Time Window Size Percentages on the UEA I then present the XEM explain-
ability results on the UEA datasets. I begin with illustrating in Figure 7.8 the distribution
of the time window size percentage used by XEM on the UEA archive per dataset type.
We observe that XEM has a tendency to use particular time window size percentages per
dataset type. Most of audio spectra, EEG/MEG and motion datasets have been classified
on a time window size > 60% of the MTS lengths. Meanwhile, most ECG and human
activity recognition datasets have been classified on a time window size ≤ 60% of the
MTS lengths. Therefore, we can induce that the information provided by the whole MTS
is useful to discriminate between the different classes on the audio spectra, EEG/MEG
and motion datasets. Concerning the ECG and human activity recognition datasets, we
can infer that the discriminative information is located in a particular part of the MTS.

Atrial Fibrilation Dataset For example, XEM obtains its best performance on the
two ECG datasets using a time window size of 20%. Therefore, we can assume that the
information necessary for XEM to classify the MTS in ECG datasets are really condensed
compared to the entire MTS available. I illustrate it in Figure 7.9 by highlighting the
20% time window of the first MTS sample per class in the Atrial Fibrilation test set
to gain insights on XEM classification result. Atrial Fibrilation dataset is composed of
two channels ECG on a 5 second period (128 samples per second). MTS are labeled in
3 classes: non-terminating atrial fibrilation, atrial fibrilation terminates one minute after
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Figure 7.9 – First MTS sample per class of Atrial Fibrilation test set with the XEM time
window used for classification.

and atrial fibrilation terminates immediately. XEM correctly predicts the 3 MTS based
on the one second time window (20%) highlighted in Figure 7.9. There is a unique window
for each MTS with the highest class probability (class non-terminating atrial fibrilation:
94.6%, atrial fibrilation terminates one minute after: 97.7%, atrial fibrilation terminates
immediately: 97.4%). We can observe in the non terminating atrial fibrilation MTS that
the time window highlighted reveals an abnormal constant increase on channel 2 (black
line) during one second whereas the other channel keeps the same motif as other windows.
On the atrial fibrilation terminates one minute afterMTS, we observe a smaller decrease in
channel 2 than in other windows and a low peak in channel 1. These particular 20% time
windows inform the user about XEM classification outcome, thus providing important
information to domain experts.

Racket Sports Dataset The second category of datasets where XEM obtains its best
results on a time window size ≤ 60% of the MTS lengths is human activity recognition.
As previously done with Atrial Fibrilation, I illustrate it in Figure 7.10 by highlighting the
60% time window of the first MTS sample per class in the Racket Sports test set to gain
insights on XEM classification result. Racket Sports dataset is composed of 6 dimensions,
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Figure 7.10 – First MTS sample per class of Squash Racket Sports test set with the XEM
time window used for classification.

x/y/z coordinates for both the gyroscope and accelerometer of an android phone, on
a 3 second period (10 samples per second). MTS are labeled in 4 classes: badminton
smash, badminton clear, squash forehand boast and squash backhand boast. I illustrate the
explainability of XEM on the two classes relative to the squash: squash forehand boast
and squash backhand boast. XEM correctly predicts the 2 MTS based on the 1.8 seconds
time window (60%) highlighted in Figure 7.10. There is a unique window for each MTS
with the highest class probability (squash forehand boast: 90.3%, squash backhand boast:
86.7%). We can observe that for these 2 MTS the window highlighted well correspond to
the period of the full movement. Then, we can see a simultaneous steep peak on red and
orange dimensions with a steep decrease on green dimension for squash forehand boast.
Whereas, we can see a simultaneous steep decrease on red and orange dimensions without
a particular variation on the green dimension for squash backhand boast. These particular
60% time windows inform the user about XEM classification outcome, thus providing
important information to domain experts.

These two examples show how XEM outperforms other MTS classifiers (rank 1 on
Atrial Fibrilation and Racket Sports) while offering explainability on its predictions.
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7.4.3 Discussion

I have presented the new explainable ensemble method for multivariate time series
classification XEM. I have shown that XEM outperforms state-of-the-art MTS classifiers
on the UEA datasets. In addition, XEM provides explainability by design and manifests
robust performance when faced with challenges arising from continuous data collection
(different MTS length, missing data and noise).

However, the ensemble method has some limitations. First, XEM predicts the class
of a MTS based on a single window, the one on which it is the most confident, with-
out considering the predictions on the other windows. Some datasets can contain MTS
with different windows close to the characteristics of different classes. Therefore, XEM
can have high class probabilities on different windows and when the window on which
XEM is the most confident is characteristic of another class than the expected one, XEM
incorrectly classifies the MTS. To illustrate it, I present in Figure 7.11 two MTS of the
UEA Libras test set. XEM performed poorly on this dataset and obtained the rank 10/11
(see section 7.4.1). The Libras dataset contains 15 classes of 24 instances each, where each
class references a hand movement type in the Brazilian sign language Libras. The hand
movement is represented as a bi-dimensional curve performed by the hand in a period of
time. We can observe in Figure 7.11 that the two MTS belonging to the same class have
comparable evolution across time but XEM classifies them into two different classes. The
first MTS is correctly classified based on the time window [23,40] with a class probability
equals to 93.5%. We can assume that the evolution on this window is characteristic of
the class 6. The second MTS also contains a comparable window on the range [23,40] but
is incorrectly classified based on another window (range [0,17]) with a class probability
of 94.5%. Therefore, XEM is the most confident on a window characteristic of another
class (class 4). XEM did not considered the predictions on the other windows to take its
decision. More particularly, XEM did not considered the expected window [23,40] to take
its decision, where it also gets a high class probability of 86.3%. So, it would be interesting
to improve the XEM by considering in the final decision the predictions on the different
windows of a MTS.

Moreover, XEM provides explainability through identifying the time window used to
classify the whole MTS. However, the black-box hybrid ensemble method LCE is not an
explainable classifier. So, XEM explainability relies on human visual analysis of the se-
lected window to identify the pattern characteristic of a MTS class. It would be valuable to
integrate into XEM explainability a post-hoc approach to mine the pattern characteristic
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Figure 7.11 – Two MTS samples of Libras test set belonging to the same class with XEM
predictions and the time windows used for classification (40%).

of the time window selected for each MTS.
Finally, I assume in XEM that a unique window size is suitable to discriminate the

different classes. Nonetheless, we can imagine that different classes can be characterized
by signals of different lengths. Therefore, it would also be interesting to improve XEM by
integrating the possibility of multiple windows sizes.

7.5 Performance-Explainability Analysis

This section introduces the new ensemble method XEM into the analytical framework
of the thesis (part II). The different aspects of the XEM framework are summarized in
the Table 7.5 and can be visualized in Figure 7.12.

The study of this chapter shows that XEM exhibits better accuracy than the state-
of-the-art MTS classifiers on the UEA datasets. Therefore, in the framework presented
in part II, following predefined train/test splits and an arithmetic mean of the accuracies
on the UEA datasets, the performance level of XEM is better than the state-of-the-art
(Performance: Best). The category of performance for XEM is the same as the ensemble
methods of the previous chapters (DMSEEW: Best, LCE: Best).

Concerning the explainability, as an ensemble method, XEM is a “black-box” classifier
(Comprehensibility: Black-Box - DMSEEW: Black-Box, LCE: Black-Box). However, XEM
conveys more informative explanations than DMSEEW and LCE with SHAP post-hoc
model-agnostic explainability (Information: Uni Sequences - DMSEEW: Features, LCE +
SHAP: Features+Time). XEM provides the time window used to classify the whole MTS
as explanations to the end-user, i.e. the subseries on each feature. In addition, similar to
DMSEEW, XEM’s explainability by design provides faithful explanations (Faithfulness:
Perfect - DMSEEW: Perfect, LCE + SHAP: Imperfect). As LCE with SHAP post-hoc
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Figure 7.12 – Parallel coordinates plot of XEM on the public UEA MTS datasets. Perfor-
mance evaluation method: predefined train/test splits and an arithmetic mean of the accu-
racies on the UEA datasets. Models evaluated in the benchmark: DTWD, DTWI , FCN,
gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet, RFM, SMTS, UFS, WEASEL+MUSE,
XEM and XGBM.
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model-agnostic method, the explanations are accessible to a domain expert (User: Do-
main Expert - DMSEEW: Machine Learning Expert, LCE + SHAP: Domain Expert).
Nevertheless, unlike LCE with SHAP post-hoc model-agnostic explanations and like DM-
SEEW, XEM can only give explanations for a particular instance and not at global level
(Granularity: Local - DMSEEW: Local, LCE + SHAP: Both Global & Local).

Table 7.5 – Performance-explainability results of the ensemble methods.
Abbreviations: ML - Machine Learning.

DMSEEW LCE + SHAP XEM

Performance Best1 Best23 Best4

Comprehensibility Black-Box Black-Box Black-Box
Granularity Local Both Global & Local Local
Information Features Features+Time Uni Sequences
Faithfulness Perfect Imperfect Perfect
User ML Expert Domain Expert Domain Expert
1 3-fold cross-validation and an arithmetic mean of the accuracies on the Earthquake Early Warn-
ing Dataset. Models evaluated in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-
FCN, mv-ARF, ResNet, SMTS, UFS and WEASEL+MUSE.

2 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the
INRAE proprietary dataset. Models evaluated in the benchmark: Commercial Solution, EN,
kNN, LC, LCE, MLP, RF, SVM and XGB.

3 3-fold cross-validation and an arithmetic mean of the accuracies on the UCI datasets. Models
evaluated in the benchmark: EN, LC, LCE, MLP, RF, SVM and XGB.

4 Predefined train/test splits and an arithmetic mean of the accuracies on the UEA datasets.
Models evaluated in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-
ARF, ResNet, RFM, SMTS, UFS, WEASEL+MUSE, XEM and XGBM.

To further improve the level of information and granularity of XEM explanations,
it would be interesting to analyze the time windows characteristic of each class in the
training set in order to determine if they contain some common multidimensional patterns.
Such patterns could also broaden the audience as they would synthesize the important
information in the discriminative time windows.

The next chapter shows how to make the explanations accessible to a broader audience
with a comprehensible pattern-based classifier.

Summary

• XEM is a new hybrid ensemble method for MTS classification which exhibits
better accuracy than the state-of-the-art MTS classifiers on the UEA datasets.

• XEM provides faithful and informative explanations accessible to domain ex-
perts for each instance. The explanations provide to the user the time window
used to classify the whole MTS.

• However, the audience remains limited and the model is not comprehensible.
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Chapter 8

A Pattern-Based Approach with
Human-Friendly Explainability by Design
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As the second machine learning method in chapter 6 (LCE + SHAP), the fourth ma-
chine learning of the thesis aims to improve the detection of determining events for milk
production in dairy farms, which is crucial for an optimal resource use (application back-
ground presented in section 3.1.1). It aims to enhance the explainability of LCE + SHAP
with an easy-to-understand model providing faithful and more informative explanations,
which are accessible to a broader audience. The method is the result of a collaboration
between researchers from the PEGASE (“Physiology, Environment, Genetics for Animals
and rearing systems”) unit at the French National Institute for Agriculture, Food and
Environment (INRAE) and machine learning researchers from the LACODAM (“Large
Scale Collaborative Data Mining”) team at Inria, France.
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8.1 Introduction

As presented in chapter 6, LCE is the only existing machine learning solution trained
using the method of progesterone dosage in milk as the reference to obtain an exhaustive
estrus labeling which covers both behavioral and silent estrus. LCE significantly improves
the detection of estrus compared to a commercial reference and provides explanations
at all granularity levels with SHAP, which are two levels of information interesting for
the support of farmers’ decision-making. However, LCE is a complicated-to-understand
model (“black-box”). In addition, SHAP post-hoc model-agnostic explainability method
does not provide perfectly faithful explanations and the level of information remains
limited. The results presented in chapter 6 have shown that considering more than one
day preceding the estrus can be valuable for estrus detection, i.e. a time series length
larger than two. Therefore, this chapter studies a new easy-to-understand MTS classifier
for estrus detection providing faithful and more informative explanations than LCE.

The use of patterns with an easy-to-understand classifier has great potential for ex-
plainability, and there is no pattern-based classifier among the state-of-the-art MTS clas-
sifiers. Patterns are small conjunctions of symbols with a predefined semantic. They are
informative and can provide faithful explanations at all granularity levels when used as
features of an easy-to-understand classifier. Moreover, as stated in [Fournier-Viger et al.,
2017], patterns mined on a frequency criterion are understandable by humans. A pattern-
based detection can broaden the audience and avoid assumptions about the user experi-
ence compared to other explainable time series classification methods based on subseries
(e.g. shapelet methods [Karlsson et al., 2016]). The subseries correspond to the parts
used for detection but do not provide information about the relevant relations among the
elements of the subseries like patterns do (e.g. time gap). The diversity of pattern types
available [Han et al., 2011] (e.g. itemsets, sequences, chronicles) allows the selection of pat-
terns that best describe the phenomenon studied. So, I hypothesize that a pattern mining
approach for the detection of the whole coverage of estrus based on affordable sensor data
can provide by design some faithful, informative and widely accessible explanations at all
granularity levels when used with an easy-to-understand classifier.

This study aims to provide explanations in ways that end-users can understand the
alerts based on the patterns they could observe in animals. Therefore, the mining of
frequent patterns seems suited. In addition, as stated in [Cheng et al., 2007], frequent
patterns are high quality features and have good model generalization ability. Therefore,
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the mining of frequent itemsets and sequences is considered. I excluded to mine more
elaborated patterns which could add temporal relations among symbols (e.g. chronicles -
definition in section 2.2.2) due to their limited interest on the short time series considered
(e.g. 4 days with one timestamp per day). Next, sequential patterns as ordered groups
of values provide more informative patterns than itemsets. In addition, a sequence-based
classifier can exhibit better detection performance than an itemset-based classifier as
shown in the experiments in section 8.4.1. So, I limit the discussion to sequence-based
classifiers.

The current state-of-the-art of sequence-based classifiers are not adopted for explain-
ability reasons. As presented in section 2.2.2, the adoption of support vector machines and
Bayesian networks to perform classification in [Buza et al., 2010] limits the comprehensi-
bility of how the patterns are used in the model output. Then, [Fradkin, 2014] classifies
based on discriminant sequential patterns. But, the discriminant sequence mining task ex-
tracts patterns that occur also in other classes than those which are initially discriminated.
Thus, the classification task can lead to unclear explanations supporting predictions in
case of communication to the user of discriminative patterns of other classes than the one
the model is predicting. So, in this chapter, I mine frequent sequences without considering
the class information. In addition, as stated in [Fradkin, 2014], direct methods can reduce
the number of patterns generated but can also lead to significantly worse performance
compared to indirect methods. Therefore, a new indirect sequence-based classifier based
on frequent sequences for estrus detection is proposed in this chapter.

8.1.1 Contributions

The research of this chapter aims to develop an explainable by design pattern-based
estrus detection solution to detect both types of estrus (behavioral/silent) with the com-
bination of data gathered by affordable sensors. This study will:

• Propose XPM, a new eXplainable Pattern-based method for MTS classification, to
detect both types of estrus with combined real-world affordable data (activity, body
temperature);

• Show that XPM performs slightly better than a commercial reference in estrus
detection, driven by the detection of silent estrus;

• Present the limited set of patterns needed for these detections and how it can be
used to support farmers’ decision-making.
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8.2 XPM

8.2.1 Detection Algorithm

Estrus detection can be formulated as a classification problem, where the input is
sensor data and the ouput is a class (estrus/anestrus). More specifically, the problem is
an instance of multivariate time series classification. There are a set of co-evolving time
series (7 dimensions), recorded simultaneously by 2 sensors (activity meter, thermobolus)
which form a multivariate time series (MTS). Time series are 24hr aggregated, which is
sufficient for an estrus alert system. In addition, the 24hr aggregation allows the mining
of patterns that are not affected by the intraday sequence of animals activities, which
is irrelevant to estrus. As illustrated in Figure 8.1, the new indirect and eXplainable
Pattern-based approach for MTS classification (XPM) is composed of the following steps:

Discretization
SAX

Pattern Mining
Itemsets, Sequences

Encoding
Feature

Selection
Chi-Square

Classification
Decision tree

Estrus ?Activity 
Meters

Thermobolus

Ingestion

Discretization
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Itemsets, Sequences
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Pattern Mining
Itemsets, Sequences

Discretization
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Pattern Mining
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Discretization
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Pattern Mining
Itemsets, Sequences
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Pattern Mining
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Other Activity

Over Activity

Rest

Rumination

Standing Up

Temperature

Figure 8.1 – Pipeline of the pattern-based classifier XPM.

• Discretization: SAX [Lin et al., 2002] is applied on each dimension. SAX transforms
a time series into a string using an alphabet of predefined size. Each symbol of the
alphabet corresponds to an interval of a dimension values, therefore SAX symbols
can be interpreted (e.g. alphabet of size 3: {low, medium, high}). Figure 8.2 gives
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a discretization example on a rumination time series of length 7 with an alphabet
of size 8 {− − −, −−, −, = −, = +, +, ++, + + +}. Based on the intervals
defined by SAX, the discretization output is: + + +, + + +, −−, +, = −, ++, ++.
Alphabet size per dimension is a hyperparameter. The alphabet size is limited to
[1,10] to obtain readable patterns and 3 sizes of alphabet are set according to the
type of dimensions (alphabet 1: continuous dimension - temperature, alphabet 2:
integer dimensions - other and over activity, alphabet 3: binary dimensions - the
remaining dimensions). Alphabets are defined on the training set and applied on
validation/test sets;

Figure 8.2 – SAX discretization example on a rumination time series of length 7 with an
alphabet of size 8.

• Pattern Mining: two types of patterns are extracted - frequent itemsets with Eclat
algorithm [Zaki, 2000] and frequent closed sequences with BIDE algorithm [Wang et
al., 2004]. Frequent itemsets are groups of symbols occuring in at least a predefined
percentage (support) of the time series. For example, the itemset {= −, +, ++}
present in the rumination time series of Figure 8.2 is frequent if it occurs in at
least 20% of the time series of the training set. Frequent sequences correspond to
frequent ordered groups of symbols. The type of pattern (itemsets, sequences) and
the support are hyperparameters. Support is restricted to [10%,50%] for itemsets
and [3%,9%] for sequences to not only mine high frequency patterns of length 1;
• Encoding: a matrix encodes which patterns (as columns) are present in which MTS

(as rows) to form the input data of the classifier (see Figure 8.3);
• Feature Selection: before classification, a feature selection is performed to keep a

limited and explainable set of patterns. A filter method is used to select the k-best
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Figure 8.3 – Encoding matrix example. m: number of MTS samples, p: number of patterns
mined

patterns according to a score (Chi-Square). The Chi-Square is chosen because it
is suited for feature selection on booleans data relative to classes. The number of
patterns is a hyperparameter and I limit its range to [10,40];

• Classification: finally, the MTS are classified using a decision tree, i.e. an easy-to-
understand model which provides explanations at all granularity levels. The explain-
ability provided by the decision tree classifier is detailed in section 8.2.2.

8.2.2 Explainability by Design

The explainability of the approach stems from the communication to the farmers
of the presence and/or absence of a limited number of patterns determinant of estrus
detection. Patterns are communicated to the farmers following a decision tree to classify
estrus. I present in this section how to read a pattern and a decision tree. Figure 8.4
shows an example of a one node with two leaves decision tree trained on a dataset of
600 MTS (300 estrus/300 anestrus). The node is composed of the pattern ++++ on the
dimension over activity. In an alphabet of size 9 {−−−−, − − −, −−, −, =, +, ++,
+ + +, ++++}, ++++ refers to the interval of highest values relative to the dimension
over activity. Therefore, we can observe that when a high over activity (pattern ++++
on over activity) is observed in a MTS (pattern present), which is the case for 199 MTS,
most of the MTS correspond to estrus (184 over 199, error rate: 8%). In this case, the
decision tree predicts the class estrus: the most represented class in the leaf. Blue filled
nodes mostly contain estrus and grey filled nodes mostly anestrus. When the pattern
++++ on over activity is not observed in a MTS, the decision tree predicts anestrus but
with a higher error rate (116/401 = 29%). Additional patterns could refine the decision
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and reduce the error of the tree. The explainability results are presented in section 8.4.2.

Figure 8.4 – Explainability - decision tree example with one node and two leaves. Abbre-
viations: T - total number of samples, E - number of estrus

8.3 Evaluation

In this section, I introduce the dataset and methodology used for evaluating the ap-
proach.

8.3.1 Real-World Dataset

The evaluation of XPM is performed on the same real-world dataset as LCE in chap-
ter 6. The dataset is presented in section 6.3.1.

Labeling

The study covers both estrus types (behavioral and silent). Therefore, estrus are la-
beled by measuring the progesterone concentration in whole milk, the costly gold standard
for an exhaustive estrus identification [Martin et al., 2013]. Milk samples were collected
from each cow twice a week on Tuesdays and Thursdays and were immediately frozen at
-20◦C until the dosage. The enzyme-linked immunosorbent assay technique (kit ELISA
Ridgeway Science Ltd) has been used. Then, with preserved and frozen milk, the separa-
tion of basic concentrations of progesterone to estrus period has been determined based
on the quantile method [Cutullic et al., 2011; Petersson et al., 2006]. Figure 8.5 shows
an example of the output from the quantile method applied on the progesterone profile
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of a cow on a one month time period, and how this output is used to label the corre-
sponding time series, in this case of 4-day length (the final configuration - detailed in
section 8.4.1). Two types of labeling are adopted: first, a non-overlapping labeling on the
cross-validation dataset to find patterns on clearly identified periods, which improves the
relevancy of patterns used subsequently for classification; second, a sliding window label-
ing on the external validation dataset to evaluate the performance of the approach on
real-world conditions, i.e. as a daily monitoring solution. The non-overlapping labeling
consists of an equal number of estrus and anestrus time series to avoid class imbalance,
with the estrus MTS ending in the middle of the estrus period and the anestrus MTS
preceding the estrus one. On both labeling, the label of the last day is used to label the
whole time series. Finally, behavioral and silent estrus are labeled based on the same
methodology as the one used to evaluate LCE in section 6.3.1.

Figure 8.5 – Example of the output from the quantile method [Petersson et al., 2006],
applied on the progesterone profile of a cow on a one month time period, with the corre-
sponding non-overlapping and sliding window labeling in the case of time series length of
4 days. Quantile method output: 1 - day of an estrus period, 0 - day of a anestrus period.

Composition

The composition of the cross-validation and external validation datasets are presented
in Table 8.1. The cross-validation dataset was split into five folds. The split has kept the
same number of estrus in each fold (100 days). This split does not lead to an overfit on
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a particular animal. The study in chapter 6 shows that a dataset split on animals has a
negative impact on detection performance (-2.6% impact on F1-score).

Table 8.1 – Dataset split. Abbreviation: Ext Val - external validation
Folds Ext Val1 2 3 4 5 All

Estrus 99 100 100 100 100 499 321
Silent % 32 38 34 30 36 34 44

Lactation 1 64 55 61 58 61 299 193
Silent % 36 36 41 26 43 36 50

Lactation 2+ 35 45 39 42 39 200 128
Silent % 26 40 23 36 26 31 34

8.3.2 Algorithms

I evaluate in section 8.4.1 the performance of XPM on the real-world dataset in com-
parison with a reference commercial solution, the current state-of-the-art estrus detection
algorithm and some variants of XPM:

• CS: commercial reference solution (see section 6.3.1);

• LCE: the current best performing machine learning approach for estrus detection
(see section 6.4.2), which also adopts an exhaustive estrus labeling and affordable
sensor data (activity, temperature);

• XPM: the proposed approach (see section 8.2.1);

• XPM-Derivatives: XPM on a dataset augmented by the derivatives of each dimen-
sion. Górecki et al. (2013) show that using derivatives can be helpful in time series
classification. Derivatives correspond to the value difference of a dimension compared
to the previous day. Figure 8.6 illustrates a dataset augmented by the derivatives of
each dimension.

• XPM-Individual: XPM with animal-specific alphabets in order to evaluate the im-
pact on performance of predicting estrus according to each cow previous activity
and temperature. The discretization is performed on the value difference compared
to the historical mean for each animal.

The pattern-based classifier XPM is implemented in Python 3.6. In the different steps
of XPM pipeline, the following implementations are used:
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Figure 8.6 – MTS sample with derivatives for one animal of the dataset. For each times-
tamp, the 7 attributes of the dataset with their derivatives are represented. Abbreviations:
Der - derivatives, ID - identifier, T - time series length.

• Discretization: a SAX public implementation 1;

• Pattern Mining: public implementations of Eclat 2 and BIDE2;

• Feature Selection: SelectKBest 3 [Pedregosa et al., 2011] public implementation;

• Classification: DecisionTreeClassifier 4 [Pedregosa et al., 2011] public implementa-
tion.

8.3.3 Hyperparameters

The hyperparameters of XPM are:

• Alphabet sizes: 3 alphabets are defined, according to the types of dimensions (alpha-
bet 1: continuous dimension - temperature, alphabet 2: integer dimensions - other
and over activity, alphabet 3: binary dimensions - the remaining dimensions), with
sizes in [1,10];

• Time series length: it ranges from 4 to 21 days - the length of a regular ovarian cycle
([4,21]);

• Patterns: type of patterns (itemsets, sequences);

• Number of patterns: number of patterns kept during the feature selection ([10,40]);

• Support: minimum frequency of patterns (itemsets: [10%,50%], sequences: [3%,9%]);

• Decision tree hyperparameters: depth of the tree [1,ln(number of patterns)], mini-
mum number of samples at a leaf [2,number of patterns].

1. https://github.com/seninp/saxpy
2. http://www.philippe-fournier-viger.com/spmf
3. sklearn.feature_selection.SelectKBest
4. sklearn.tree.DecisionTreeClassifier
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Most of these hyperparameters (alphabet sizes, number of patterns, time series length,
patterns, support) are determined by grid search on the validation sets of the cross-
validation. On the same validation sets, decision tree hyperparameters are determined by
the hyperopt algorithm [Bergstra et al., 2013].

8.3.4 Metrics

I do not make assumptions on dairy herd management, I do not give a preference to
reduce false positives (false estrus alert) or false negatives (estrus not detected) so I have
optimized the F1-score, the harmonic mean between precision and recall. Adopting a con-
servative approach, I decided to aggregate the model daily predictions by the maximum of
the daily predictions on estrus/anestrus period to calculate the classification performance.
Based on a 5-fold cross-validation 60/20/20 train/validation/test split, the algorithm is
selected on the best F1-score on validation sets. I present two levels of performance. First,
I show the F1-score with precision set to the same as CS (78%, threshold: 0.4) to allow
comparison between the approaches. The threshold corresponds to the value from which
the pattern-based classifier class probabilities predict estrus. The second level is the F1-
score across all possible calibrations (threshold range: 0.3-0.75) which corresponds to the
average performance of the solution. We can observe that for high thresholds (threshold
> 0.75), the pattern-based classifier performance is unstable with a significant decrease
in estrus detection rate (recall below 70%). In addition, for low thresholds (threshold <
0.3), the classifier is equivalent to a random classifier. So, I decided to adopt a F1-score
calculation based on the average of F1-score on threshold range 0.3-0.75, which corre-
sponds to the plausible range of calibration for dairy management and shows a detection
performance closer to real conditions.

8.4 Results

In this section I first present the detection performance of the approach and then the
explainability provided.

8.4.1 Performance

In this section, the performance of the pattern-based classifier XPM on the cross-
validation and on the external validation datasets are presented. Then, I compare the
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results to previous studies and finally, I discuss the performance of an individual approach.

Firstly, I have evaluated XPM approach on the cross-validation dataset. The dataset is
composed of non-overlapping periods, with an equal number of estruses and anestruses to
avoid class imbalance. The non-overlapping time windows labeling allows the extraction
of patterns on clearly identified period, which improves the relevancy of patterns used
subsequently for classification (see section 8.3.1). Table 8.2 presents the F1-score on test
sets of XPM approach on the cross-validation dataset. We can observe a better F1-score
with less variability across folds of XPM approach based on sequences than itemsets on
both behavioral and silent estruses (total: 74.5% ± 2.2 versus 73.6% ± 3.9, behavioral:
78.2% ± 3.1 versus 77.4% ± 4.2, silent: 57.7% ± 1.3 versus 56.4% ± 2.9). Thus, according
to the experiments, the most informative patterns (sequences) have to be selected for
estrus detection. Moreover, as presented in section 8.3.2, I have evaluated what would
be the impact of adding as dimensions to the dataset the derivatives of each dimension
(XPM-Derivatives). A dataset with derivatives adds the possibility for a pattern to give
information for example about the activity level of a cow, but also about the variation of
activity compared to the day before. We can observe in Table 8.2 that mining sequences
on both raw dimensions and derivatives improves F1-score compared to sequences on
raw dimensions (total: XPM-Derivatives 75.4% versus XPM 74.5%). Based on the cross-
validation, we obtain the best configuration for the XPM-Derivatives approach (alphabet
1 size: 7, alphabet 2 size: 9, alphabet 3 size: 8, time series length: 4 days, patterns: se-
quences, feature selection: 20, support: 3%). We can notice that the predefined parameter
interval for feature selection ([10,40]) did not affect the selection of the classifier, con-
sidering the set of 20 patterns on the best configuration. To support the decision of a
non-overlapping labeling, I have also evaluated the approach on a cross-validation dataset
generated by a sliding window labeling. XPM with sequential patterns shows poor per-
formance in the sliding window configuration: a F1-score average on test sets of 53.1%,
which underperforms the commercial solution (F1-score 54.3%).

Then, I have evaluated the pattern-based classifier on the external validation dataset.
The estrus detection solution alerts the farmers on a daily basis so the external validation
dataset is generated with a sliding window for results presentation (see section 8.3.1). The
performance presented in XPM-Derivatives with Sequences corresponds to the classifier
with the best configuration obtained on cross-validation. In order to have comparable
results to the commercial solution, I set the value from which the pattern-based classifier
class probabilities predicts estrus to 0.4. It is the threshold for which the classifier shows
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Table 8.2 – Comparison1 of estrus detection F1-score2 with 95% confidence interval and
statistical significance3 on test sets and external validation. Abbreviation: CS - Commer-
cial Solution.

Cross-Validation External Validation

XPM with
Itemsets

XPM with
Sequences

XPM-Derivatives
with Sequences

XPM-Derivatives
with Sequences CS

Total 73.8 ± 3.6 75.2 ± 1.5 78.1 ± 0.9 62.4 60.9
(73.6 ± 3.9) (74.5 ± 2.2) (75.4 ± 1.6) - -

Behavioral 76.1 ± 3.9 78.8 ± 2.5 79.1 ± 1.3 56.3 81.8*
(77.4 ± 4.2) (78.2 ± 3.1) (77.6 ± 1.6) - -

Silent 56.2 ± 2.5 58.4 ± 1.2 55.2 ± 1.5 39.2 0.0***
(56.4 ± 2.9) (57.7 ± 1.3) (57.1 ± 1.8) - -

Lactation 1 73.3 ± 3.5 74.3 ± 1.7 76.4 ± 1.3 58.9 57.3
(72.9 ± 3.8) (73.6 ± 2.3) (74.4 ± 2.3) - -

Lactation 2+ 74.3 ± 4.3 76.1 ± 2.2 80.4 ± 2.2 66.9 65.3
(74.1 ± 4.5) (75.1 ± 2.7) (76.4 ± 1.8) - -

1 Methods compared: XPM based on itemsets/sequences/sequences with derivatives and the commercial solution.
2 Two levels of performance are presented. The first line corresponds to the performance based on the same total precision
as CS (78%, S&D threshold set to 0.4). The second line with parenthesis shows the average performance across all
possible calibrations (threshold range: 0.3-0.75).

3 The P-value represents the 5*2-fold cross-validation paired t-test result of CS compared to XPM-derivatives with se-
quences (*P<0.05, ***P<0.01)

the same precision as the commercial solution on the training set (80%). The performance
on the other thresholds of the range (0.3-0.75) is the same so I do not show it in the Ta-
ble 8.2. First, we can observe that XPM approach has a slightly better F1-score than the
commercial solution (62.4% versus 60.9%, no statistically significant difference), based on
a better estrus coverage (recall: XPM-Derivatives with Sequences 53.0% versus CS 49.1%,
precision: XPM-Derivatives with Sequences 75.9% versus CS 80.0%). In particular, we can
observe a slightly better F1-score of XPM approach on the first lactation (58.9% versus
57.3%, no statistically significant difference), which is crucial for dairy farm viability. The
higher performance of the approach is driven by the detection of silent estrus (F1-score:
39.2% versus 0.0%, P<0.01). I infer that the lower detection performance of the pattern-
based classifier on behavioral estrus than the commercial solution (F1-score: 56.3% versus
81.8%, P<0.05) is due to the non-discriminative patterns mined. I mined patterns based
on a frequency criteria without considering the type of estrus. Therefore, as illustrated
in section 8.4.2, selected patterns are mostly as frequent in behavioral as in silent estrus,
which prevents to fully characterize behavioral estrus. The performance results also man-
ifest the value of combining affordable sensor data in XPM approach (data on activity
and temperature instead of data on activity alone). We can observe that XPM-Derivatives
with Sequences exhibits a better F1-score when trained on both activity and temperature,

140



8.4. Results

while having a performance really close to CS when trained only on activity (activity and
temperature: 62.4%, activity: 61.1%). The role of the pattern related to temperature on
estrus detection is presented in the next section. Nonetheless, we can observe a drop in the
performance of XPM-Derivatives with Sequences on both types of estrus on external vali-
dation compared to cross-validation (total: 62.4% versus 78.1%, behavioral: 56.3% versus
79.1%, silent: 39.2% versus 55.2%), mainly due to a drop in recall. The pattern coverage,
superior to 85% on both cross-validation and external validation, is not responsible for this
performance drop between cross-validation and external validation. The pattern coverage
is the proportion of MTS which contains at least one pattern. However, we can observe
a difference on the average number of patterns used for estrus/anestrus classification in
cross-validation versus external validation (cross-validation: estrus - 7 patterns/anestrus
- 2 patterns, external validation: estrus - 4 patterns/anestrus - 4 patterns). I infer that
the lower average number of patterns in estrus MTS on external validation reduces the
possibilities of XPM approach to classify estrus at the same level of performance as cross-
validation. Therefore, the limited number of samples of the cross-validation dataset (998),
due to the non-overlapping time windows setting, lead to an overfit which impacts the
generalization ability of the pattern-based classifier. The next step would consist of a
partnership with an automatic detection solution provider to have access to a heteroge-
neous dataset. It would allow the evaluation of the performance of XPM approach on a
broader dataset to see if the frequent patterns mined in the cross-validation dataset are
also present with the same proportion in the external validation dataset and what would
be the impact on the performance.

We can compare the performance of XPM approach to one existing study (LCE -
presented in chapter 6). The methodology employed is the same except that the cross-
validation dataset was generated using a sliding window. LCE shows better F1-score than
XPM-Derivatives with Sequences, while having stable results between cross-validation and
external validation (cross-validation: 68.9% ± 2.4, external validation: 71.6% ± 0.4). So,
LCE ensemble method has a better generalization ability than the pattern-based classifier.
Nonetheless, the ensemble approach cannot support its predictions with perfectly faithful
explanations as it relies on a post-hoc model-agnostic explainability method (SHAP),
which can prevent LCE adoption as faithfulness is critical to reduce solution mistrust
from farmers. In addition, SHAP provides the relative importance of observed variables
and timestamps as explanations, which is less informative than supporting the alerts
based on the patterns that the farmers could observe in animals as XPM approach does
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(see section 8.4.2). Therefore, it would be interesting to work on an approach combining
the performance of the ensemble method and the explainability of the pattern-based
approach of this study. Next, we cannot compare the detection results of XPM approach
to the ones from other existing studies using affordable activity measurements because
the labeling method used is not exhaustive (visual detection). Dolecheck et al. (2015)
base the study on time series data of activity, using visual detection as the ground truth
(65.6% of all estruses). The cows were housed with open access to freestalls and estrus
were synchronized. Three machine learning techniques are tested on a limited dataset of
18 estruses (18 cows): random forest, linear discriminant and a neural network (multilayer
perceptron). Minegishi et al. (2019) learn a logistic regression on activity variables (7 days
moving average/standard deviation, and the daily absolute maximum of 6-hour-window
cumulative change of the data), using the combination of an automatic estrus detection
solution (collar-mounted activity meter) and visual detection as the ground truth. Two
herds have been studied (low-input conventional and organic) with seasonal breeding
(total dataset: 1,462 estruses, 300 cows). Ma et al. (2020) trained a neural network (long
short-term memory network along with a convolutional neural network) as estrus detection
solution based on activity, feeding and rumination data (40 cows with 6 estruses labeled
visually). Therefore, I have limited the baselines to the commercial solution CS and LCE.

Lastly, I have experimented an individual approach to evaluate the impact on per-
formance of predicting estrus according to each cow previous activity and temperature
(XPM-Individual). The alphabet sizes remain the same (alphabet 1 size: 7, alphabet 2
size: 9, alphabet 3 size: 8), but each cow has its own alphabets. We can observe a lower
F1-score on cross-validation test sets of the individual approach compared to the com-
mercial solution (52.4% versus 54.3%). I explain the poor performance of the individual
approach by the insufficient data I was able to collect in order to train one classifier per
cow. An estrus detection system needs to operate from the first lactation and the first
estrus phases. Therefore, I have used a unique classifier trained on the encoding of the pat-
terns with the alphabets depending on each cow. The limitation is that the same patterns
are treated similarly by the classifier, while having different meanings across the animals.
Thus, I infer that this limitation affects the performance of the individual approach. It
would be interesting to evaluate an individual approach integrating a priori information
on each animal (e.g. genetic information) to avoid the individual data collection phase to
train a classifier.
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8.4.2 Explainability

In this section I first present the decision tree of patterns used for estrus detection.
Then, I compare the patterns selected to the results from previous studies and finally, I
show how these patterns provide explainability to the farmers on estrus alerts.

Figure 8.7 is the decision tree corresponding to the best configuration determined by
cross-validation and presented in section 8.4.1 - XPM-Derivatives with Sequences (alpha-
bet 1 size: 7, alphabet 2 size: 9, alphabet 3 size: 8, time series length: 4 days, feature
selection: 20, support: 3%). Firstly, we can observe that the presence of a steep peak
in over activity (root node: pattern 〈=,−−−−〉 on over activity derivative) leads to the
identification of 49% of estruses of the training set (244 over 499 estruses) with a low error
rate (3% - 7 anestruses over 251 samples). The simultaneous presence of a pattern con-
firming the first one with a steep decrease followed by a rise in rest (pattern 〈−−−,= +〉
on rest derivative) leads to a refinement of the detection and identifies 38% of all estruses
(191 over 499 estruses) with an error rate of 0.5% (1 anestrus over 192 samples). In the
case of the absence of this confirming pattern (pattern 〈− − −,= +〉 on rest derivative),
the presence of a steep rise of temperature leads to the identification of estrus with a
low error rate of 2.5% (1 anestrus over 40 samples). Then, in the absence of the two pat-
terns relative to over activity (pattern 〈=,−−−−〉 on over activity derivative and pattern
〈−,++++〉 on over activity), a low rumination (pattern 〈− − −〉 on rumination) with a
low rest (pattern 〈−−−〉 on rest) confer the estrus (error rate of 21% - 9 anestruses over
43 samples).

Concerning the different types of estrus (silent/behavioral), some patterns among the
20 patterns are characteristic of behavioral estrus. Three patterns are three times more
frequent in behavioral estrus than in silent estrus MTS: pattern 〈−,++++〉 on over
activity, pattern 〈−−,=〉 on over activity derivative and pattern 〈−,=〉 on over activity
derivative. One of them (pattern 〈−,++++〉 on over activity - a prolonged high over
activity) is used in the decision tree as a splitting dimension and the subsequent leaf
contains, as expected, one of the lowest silent estrus proportion of the leaves (12.5%).
We can observe that most of the patterns used in the decision tree are present in the
same proportion in behavioral as in silent estrus MTS. There is no pattern among the
20 patterns that is characteristic of silent estrus (pattern at least twice more frequent
in silent than in behavioral estrus). Therefore, the pattern-based approach mostly relies
on the identification of patterns that are as much associated to behavioral estrus as to
silent estrus (pattern 〈=,−−−−〉 on over activity derivative, pattern 〈+〉 on temperature
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Over Activity Derivative ----
None [T:998,E:499]

PresenceAbsence

Over Activity ++++
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Rest Derivative =+
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Rest ---
Estrus [T:192,E:191]

Estrus [T:172,E:172]
Silent Estrus: 30,8%

(31,2% of Total Silent)

Estrus [T:20,E:19]
Silent Estrus: 47,4% 

(5,3% of Total Silent)

Estrus [T:19,E:14]
Silent Estrus: 42,9% 

(3,5% of Total Silent)

Estrus [T:36,E:32]
Silent Estrus: 12,5% 

(2,4% of Total Silent)

Rest ---
Estrus [T:40,E:39]

Estrus [T:19,E:18]
Silent Estrus: 61,1%

(6,5% of Total Silent)

Estrus [T:21,E:21]
Silent Estrus: 9,5% 

(1,2% of Total Silent)
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Rest ---
Anestrus [T:518,E:134]

Rest ---
Anestrus [T:193,E:89]

Estrus [T:43,E:34]
Silent Estrus: 17,6% 

(3,5% of Total Silent)

Anestrus [T:111,E:56]
Silent Estrus: 21,4% 

(7,1% of Total Silent)

Anestrus [T:150,E:55]
Silent Estrus: 36,4% 

(11,8% of Total Silent)

Anestrus [T:407,E:78]
Silent Estrus: 60,3% 

(27,6% of Total Silent)

=

- ---

Figure 8.7 – Decision tree on cross validation dataset. Abbreviations: T - total number of
samples, E - number of estrus.
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derivative, pattern 〈− − −〉 on rest, pattern 〈− − −,= +〉 on rest derivative). It allows
me to correctly classify more than half of the estrus type not detected by the commercial
solution (51% of silent estrus). In order to obtain some patterns characteristic of silent
estrus and enhance their detection performance, it would be interesting to work on a three
class classification setting (anestrus/behavioral estrus/silent estrus) with discriminative
patterns.

The patterns observed corroborate some observations from previous studies. First,
over activity is significantly higher in estrus than in anestrus. According to the device
used, activity measured in steps and neck movements increases on the day of estrus from
69 to 170% in [Mayo et al., 2019]. Jónsson et al. (2011) show that during estrus, the
period of time cows spent lying decreases as a result of increased activity and restlessness.
Concerning the low rumination pattern, a study from [Reith et al., 2012] reveals that
rumination reduces on the day of estrus from 7.2 to 5.9 h/d. Mayo et al. (2019) confirm
this reduction by publishing a −2 to −16% change in rumination time on the day of estrus
for both neck and ear-based technologies. Additionally, the period of 4 days of XPM best
configuration is aligned with the study of [Zebari et al., 2018] which demonstrates that
on the day of behavioral estrus, the number of the steps are higher compared to 3 days
before and 3 days after estrus.

With regard to the explainability results of LCE (see section 6.4.2), the temperature
appeared as the most discriminative variable according to the SHAP method [Lundberg
et al., 2017]. SHAP values are calculated by the average marginal contribution of a fea-
ture value towards the prediction over all possible coalitions. Therefore, SHAP values
inform the inclusion/exclusion of a variable’s impact on prediction. In the pattern-based
approach, temperature is part of the top variables used for classification (pattern 〈+〉 on
temperature derivative) but it is not the first splitting variable of the decision tree. The
interpretation of the importance of variables differs between these explainability meth-
ods as SHAP is based on the inclusion/exclusion of the variables and the pattern-based
approach is based on the frequency of the values taken by the variables. Nonetheless, we
can draw the conclusion that temperature plays a key role in estrus detection.

The explainability of the approach stems from the communication to the farmers
of the presence and/or absence of a limited number of patterns determinant of estrus
detection. Patterns are communicated to the farmers following the decision tree shown
in Figure 8.7. On a daily basis, XPM solution informs the farmers about the cows in
estrus, the type of estrus detected with its associated probability and the patterns which
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Alert
Cow 1: Behavioral Estrus

Present Patterns 

Over Activity Steep Peak in the Last 3 Days

Rest
Confirmation of the Pattern Observed in 
Over Activity: Steep Decrease Followed by a 
Rise in Rest in the Last 3 Days

Temperature Steep Rise in the Last 3 Days

Absent Pattern
Rest Extremely Low Level of Rest

Figure 8.8 – Example of a behavioral estrus alert with the corresponding patterns detected.

have generated the alerts. In case of behavioral estrus, these patterns allow the farmers
to confirm the patterns visually sensed. In addition, in case of silent estrus, XPM solution
allows the farmers to save time looking for non visually verifiable behavioral signs and tells
them that a potential insemination would be performed on a silent estrus. For example,
Figure 8.8 illustrates the level of information that a farmer could receive with an estrus
alert. The interface contains the animal identifier, the type of estrus and the patterns
detected. XPM solution predicts that cow 1 is in behavioral estrus on the day of the alert
based on the detection in the last 3 days of a steep peak of over activity, a steep decrease
followed by a rise in rest, a steep rise in temperature and the absence of an extremely low
level of rest. As indicated in the decision tree of XPM approach, the combination of these
3 patterns and the absence of the pattern low rest (rest 〈−−−〉) always lead to an estrus
(0% error rate - 0 anestrus over 21 samples), with a vast majority of behavioral estruses
(<10% of silent estruses).

8.5 Performance-Explainability Analysis

This section introduces the new pattern-based MTS classifier XPM into the analytical
framework of the thesis (part II). The different aspects of XPM framework are summarized
in Table 8.3 and can be visualized in Figure 8.9.

The study of this chapter shows that XPM exhibits comparable performance as a
commercial reference in estrus detection on a real-world dataset. Moreover, XPM performs
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Figure 8.9 – Parallel coordinates plot of XPM on the dairy resource monitoring applica-
tion. Performance evaluation method: 5-fold cross-validation plus external validation and
an arithmetic mean of the F1-scores on the INRAE proprietary dataset. Models evaluated
in the benchmark: Commercial Solution, EN, kNN, LC, LCE, MLP, RF, SVM, XGB and
XPM.
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significantly less than the new hybrid ensemble method LCE (see section 8.4.1). Therefore,
in the framework presented in part II, following a 5-fold cross-validation plus external
validation and an arithmetic mean of the F1-scores on the INRAE proprietary dataset,
the performance level of XPM is the same as the current state-of-the-art (Performance:
Similar, LCE: Best).

Concerning the explainability, unlike the ensemble methods presented in the part III,
XPM is comprehensible (Comprehensibility: White-Box, ensemble methods: Black-Box).
In addition, it provides faithul (Faithfulness: Perfect - DMSEEW: Perfect, LCE + SHAP:
Imperfect, XEM: Perfect) and informative (Information: Uni Sequences - DMSEEW: Fea-
tures, LCE + SHAP: Features+Time, XEM: Uni Sequences) explanations that are acces-
sible to a broad audience (User: Broad Audience - DMSEEW: Machine Learning Expert,
LCE + SHAP: Domain Expert, XEM: Domain Expert). The explanations consist in the
presence and/or absence of a limited number of sequential patterns. These explanations
are accessible to the farmers, but also to a broader audience not familiar with estrus
detection based on the patterns they could observe in animals. Finally, XPM offers ex-
planations both on its overall behavior and on a particular instance (Granularity: Both
Global & Local - DMSEEW: Local, LCE + SHAP: Both Global & Local, XEM: Local).

Table 8.3 – Performance-explainability results of the ensemble methods and
XPM. Abbreviations: ML - Machine Learning, G&L - Global & Local.

Ensemble Methods

DMSEEW LCE + SHAP XEM XPM

Performance Best1 Best23 Best4 Similar5

Comprehensibility Black-Box Black-Box Black-Box White-Box
Granularity Local Both G&L Local Both G&L
Information Features Features + Time Uni Sequences Uni Sequences
Faithfulness Perfect Imperfect Perfect Perfect
User ML Expert Domain Expert Domain Expert Broad Audience
1 3-fold cross-validation and an arithmetic mean of the accuracies on the Earthquake Early Warning Dataset.
Models evaluated in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet,
SMTS, UFS and WEASEL+MUSE.

2 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the INRAE
proprietary dataset. Models evaluated in the benchmark: Commercial Solution, EN, kNN, LC, LCE, MLP,
RF, SVM and XGB.

3 3-fold cross-validation and an arithmetic mean of the accuracies on the UCI datasets. Models evaluated in
the benchmark: EN, LC, LCE, MLP, RF, SVM and XGB.

4 Predefined train/test splits and an arithmetic mean of the accuracies on the UEA datasets. Models evaluated
in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet, RFM, SMTS, UFS,
WEASEL+MUSE, XEM and XGBM.

5 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the INRAE
proprietary dataset. Models evaluated in the benchmark: Commercial Solution, EN, kNN, LC, LCE, MLP,
RF, SVM, XGB and XPM.

The next chapter shows how to reconcile performance with faithful and informative
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explainability at all granularity levels on the dairy resource monitoring application. It
presents a new convolutional neural network with a post-hoc model-specific explainability
method.

Summary

• The new pattern-based classifier XPM demonstrates similar performance as a
commercial reference in estrus detection on a real-world dataset.

• However, XPM is comprehensible. In addition, it provides faithful and informa-
tive explanations at all granularity levels to a broad audience. The explanations
provide to the user the presence and/or absence of a limited number of sequen-
tial patterns to support estrus alerts.
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As the second machine learning method in chapter 6 (LCE + SHAP) and the fourth
machine learning method in chapter 8 (XPM), the fifth machine learning method of the
thesis continues to improve the detection of determining events for milk production in
dairy farms (application background presented in section 3.1.1). It aims to enhance the
performance of LCE and the information level of SHAP explanations, while providing
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faithful explanations as XPM. The method is the result of a collaboration that I have built
between researchers from the College of Biosystems Engineering and Food Science of the
Zhejiang University, China, researchers from the PEGASE (“Physiology, Environment,
Genetics for Animals and rearing systems”) unit at the French National Institute for
Agriculture, Food and Environment (INRAE) and machine learning researchers from the
LACODAM (“Large Scale Collaborative Data Mining”) team at Inria, France. During this
collaboration, I have had the chance to be a visiting researcher at Zhejiang University for
2 months from mid-November 2019 to mid-January 2020. It is available on ArXiv [Fauvel
et al., 2020c].

9.1 Introduction

As far as I have seen, the machine learning solutions introduced in chapter 6 (LCE
+ SHAP) and chapter 8 (XPM) are the only existing ones trained using progesterone
dosage in milk as the reference to obtain an exhaustive estrus labeling which covers both
behavioral and silent estrus. In addition, these two methods provide explanations at all
granularity levels. As presented in chapter 6, the real-world application requires explana-
tions at both global (estrus/anestrus) and local (behavioral versus silent estrus) levels,
which are two levels of information interesting for the support of farmers’ decision-making.
LCE significantly improves the detection of estrus compared to a commercial reference.
However, SHAP, as a post-hoc model-agnostic explainability method, cannot provide per-
fectly faithful explanations, and faithfulness is a prerequisite to reduce solution mistrust
from the farmers. Next, XPM provides faithful and informative explanations to a broad
audience. However, it demonstrates similar performance as a commercial reference in es-
trus detection, and the insufficient performance of current estrus detection commercial
solutions is the first reason of their moderate adoption rate [Steeneveld et al., 2015].
Therefore, this chapter studies a new machine learning method for estrus detection en-
hancing the performance of LCE and the information level of SHAP explanations, while
providing faithful explanations as XPM and at all granularity levels.

As mentioned in chapter 8, estrus detection is addressed as a MTS classification prob-
lem. The most accurate state-of-the-art MTS classifier on average on the UEA datasets
[Bagnall et al., 2018] is a deep learning approach (MLSTM-FCN [Karim et al., 2019]).
Chapter 7 presents that XEM ensemble method outperforms MLSTM-FCN, driven by its
better performance on the small datasets (relatively to the public UEA archive - training
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set size < 500), which represent 77% of the benchmark datasets. However, interval-based
MTS classifiers like XEM could not be evaluated on the estrus detection application due
to the short time windows considered (4 days with one timestamp per day). Hence, I pro-
pose a new explainable deep learning approach for multivariate time series classification
that would perform well on both the large and small datasets, and particularly on the
estrus detection application.

The current state-of-the-art deep learning approach for MTS classification - MLSTM-
FCN, consists of the concatenation of a Long Short-Term Memory (LSTM) block with a
Convolutional Neural Network (CNN) block composed of 3 convolutional sub-blocks. This
approach contains an important number of trainable parameters which could be a signifi-
cant reason of its poor performance on small datasets. In addition, MLSTM-FCN cannot
provide perfectly faithful explanations as it can only rely on post-hoc model-agnostic
explainability methods. CNNs along with post-hoc model-specific saliency methods like
Gradient-weighted Class Activation Mapping - Grad-CAM [Selvaraju et al., 2019] have
the potential to have a compact architecture while enabling faithful explanations at all
granularity levels. As presented in section 2.3.2, Grad-CAM provides explanations for an
individual instance and can offer global explainability by averaging the attribution maps
values per class. A recent CNN, MTEX-CNN [Assaf et al., 2019], proposes to use 2D
and 1D convolution filters in sequence to extract key MTS information, i.e. information
relative to the observed variables and time, respectively. However, as confirmed by my
experiments, the features related to time which are extracted from the output features
of the first stage (relative to each observed variable) cannot fully incorporate the tim-
ing information from the input data, and subsequently yield poor performance compared
to the state-of-the-art MTS classifiers. In addition, the significant number of trainable
parameters of MTEX-CNN affects its generalization ability on small datasets. Finally,
MTEX-CNN requires upsampling processes on feature maps when applying Grad-CAM,
which can lead to an imprecise identification of the regions of the input data that are
important for predictions.

Therefore, I propose an end-to-end new compact and eXplainable Convolutional neural
network for Multivariate time series classification (XCM), which performs the extraction
of information relative to the observed variables and timestamps in parallel and directly
from the input data. XCM architecture enables faithful and precise identification of the
observed variables and timestamps of the input data that are important for predictions
based on the post-hoc model-specific method Grad-CAM.
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9.1.1 Contributions

In this chapter, the study will:

• Present XCM, a new eXplainable Convolutional neural network for MTS classifica-
tion;

• Show that XCM outperforms the state-of-the-art MTS classifiers on both the large
and small UEA datasets [Bagnall et al., 2018];

• Illustrate the performance and explainability of XCM on a small synthetic dataset
and the smallest public UEA dataset. The results demonstrate that XCM enables
a more precise identification of the regions of the input data that are important
for predictions compared to the current faithfully explainable deep learning MTS
classifier MTEX-CNN;

• Show that XCM outperforms LCE and the current most accurate state-of-the-art
algorithm on the dairy resource monitoring real-world application while enhancing
explainability by providing faithful and more informative explanations.

9.2 XCM

In this section I present a new eXplainable Convolutional neural network for Multi-
variate time series classification (XCM) which extracts in parallel information relative to
time and observed variables, before performing the prediction based on the concatenated
features. The first part details the architecture of the network and the second part explains
how XCM can provide explanations by identifying the observed variables and timestamps
of the input data that are important for predictions.

9.2.1 Architecture

My approach aims to design a new compact and explainable CNN architecture that
performs well on both the large and small UEA datasets. As illustrated in Figure 9.1,
a recent explainable CNN, MTEX-CNN [Assaf et al., 2019], proposes to use 2D and 1D
convolution filters in sequence to extract key MTS information, i.e. information relative
to the observed variables and time, respectively. However, CNN architectures like MTEX-
CNN have significant limitations. The use of 2D and 1D convolution filters in sequence
means that the features related to time (features maps from 1D convolution filters) are
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extracted from the processed features related to observed variables (features maps from
2D convolution filters). Therefore, features related to time cannot fully incorporate the
timing information from the input data, and can only partially reflect the necessary infor-
mation to discriminate between the different classes. Thus, my approach XCM extracts
both features related to time (1D convolution filters) and observed variables (2D convolu-
tion filters) directly from the input data, which leads to more discriminative features by
incorporating all the relevant information and ultimately to a better classification perfor-
mance on average than the 2D/1D sequential approach (see results in section 9.4.1). Then,
a CNN architecture using fully connected layers to perform classification, especially with
the size of the first layer depending on the time series length as in MTEX-CNN, is prone
to overfitting and can lead to the explosion of the number of trainable parameters. So, the
output feature maps of XCM are processed with a 1D global average pooling before being
input to a softmax layer for classification. The use of 1D global average pooling followed
by a softmax layer for classification reduces the number of parameters and improves the
generalization ability of the network compared to fully connected layers. Global average
pooling consists in summarizing each feature map by its average. Such operation improves
the generalization ability of the network as it does not have parameter to train and it
provides robustness to spatial translations of the input [Lin et al., 2014]. In the possible
cases when the sequences of events in a MTS change, the robustness to spatial trans-
lation ensures that the classification result is not modified. Finally, the use of non-fully
padded convolution filters as in MTEX-CNN can lead to an imprecise identification of
the regions of the input data that are important for predictions as Grad-CAM is sensitive
to upsampling processes. Therefore, the 2D and 1D convolution filters of XCM are fully
padded. As detailed in the next section, the output feature maps can then be analyzed
with Grad-CAM explainability method without altering the precision of the explanations
through upsampling processes. Figure 9.2 illustrates XCM and the following paragraphs
detail the architecture.

Firstly, XCM extracts information relative to the observed variables with 2D convo-
lution filters (upper green part in Figure 9.2). This upper part is composed of one 2D
convolutional block which is then converted to one feature map to reduce the number of
parameters with a 1 × 1 convolution filter. The convolutional block contains a 2D con-
volution layer followed by a batch normalization layer [Ioffe et al., 2015] and a ReLU
activation layer [Nair et al., 2010]. I set the kernel size of the 2D convolution filters to
Window Size× 1, where Window Size is a hyperparameter which specifies the time win-
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Figure 9.1 – MTEX-CNN architecture. Abbreviations: D - number of observed variables,
de - dense layer size, F - number of filters, k - kernel size, T - time series length.

Figure 9.2 – XCM architecture. Abbreviations: BN - Batch Normalization, D - number
of observed variables, F - number of filters, T - time series length, Window Size - kernel
size which corresponds to the time window size.
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dow size, i.e. the size of the subsequence of the MTS expected to be interesting to extract
discriminative features, and ×1 means for each observed variable. Thus, these 2D con-
volution filters (number: F in Figure 9.2) allow the extraction of features per observed
variable. The features are extracted using a sliding window (strides equal to 1) and I use
padding instead of half padding to keep the dimension of the feature maps the same as the
input data. The padding allows us to avoid using upsampling and interpolation methods
on the features maps when building the attribution maps, i.e. the heatmaps of dimen-
sions T ×D that identify the regions of the input data that are important for predictions
(detailed in the next section). Then, batch normalization brings normalization at layer
level, it enables faster convergence and better generalization of the network [Bjorck et al.,
2018]. And, the ReLU activation layer induces non-linearity in the network. Next, the
output feature maps are fed into a module (1× 1 convolution filter) [Szegedy et al., 2015]
which reduces the number of parameters. It projects the feature maps into one following
a channel-wise pooling.

In parallel, XCM extracts information relative to time with 1D convolution filters
(lower red part in Figure 9.2). This lower part is the same as the upper part, except that the
2D convolution filters are replaced by 1D. I set the kernel size of the 1D convolution filters
to Window Size×D, where Window Size is the same hyperparameter as 2D convolution
filters and D is the number of observed variables of the input data. The 1D convolution
filters slide over the time axis only (stride equals to 1) and capture the interaction between
the different time series. Following the use of padding, the output feature map of this lower
part has a dimension of T × 1, with T the time series length of the input data. The use
of padding, similar to 2D convolution filters, allows us to avoid using upsampling of the
features maps on the dimension related to the information extracted (time - T ) when
building the attribution maps (detailed in the next section).

In the following step, the output feature maps from these two parts are concatenated
and form a feature map of dimensions T × (D + 1). I apply the same 1D convolution
block (1D convolution layer - F filters, kernel size Window Size × (D + 1), stride 1 and
padding + batch normalization + ReLU activation layer) as presented in the previous
paragraph to slide over the time axis and capture the interaction between the features
extracted. Finally, I add a 1D global average pooling on the output feature maps and
perform classification with a softmax layer. As previously introduced, the use of global
average pooling instead of fully connected layers improves the generalization ability of the
network.
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In order to assess the potential advantage of concatenating the 2D and 1D convolution
blocks instead of having them in sequence, independently from the choice of the classifi-
cation layers (fully connected layers as in MTEX-CNN versus 1D global average pooling
with a softmax layer in XCM), I include in the experiments in section 9.4.1 a variant of
XCM (XCM-Seq). XCM-seq is the same as XCM except that the 2D and 1D convolution
blocks are in sequence. The next section presents how the architecture of XCM allows the
communication of explanations supporting the model predictions with Grad-CAM.

9.2.2 Explainability

The new CNN architecture of XCM has been designed to enable the precise identi-
fication of the observed variables and timestamps that are important for predictions by
the use of Gradient-weighted Class Activation Mapping (Grad-CAM) [Selvaraju et al.,
2019]. Grad-CAM identifies the regions of the input data that are important for predic-
tions in convolutional neural networks using the class-specific gradient information. More
specifically, Grad-CAM can output two types of attribution maps from XCM architecture:
one related to observed variables and another one related to time. Attribution maps are
heatmaps of the same size as the input data where some colors indicate features that
contribute positively to the activation of the target output [Ancona et al., 2018]. These
attribution maps constitute the explanations provided to support XCM model predictions
and are available at sample level. The following paragraphs explain how Grad-CAM is
used on XCM.

In order to build the first attribution map related to observed variables, Grad-CAM
is applied to the output feature maps of the 2D convolution layer which uses convolution
filters per observed variable (first block in the upper green part in Figure 9.2). To obtain
the class-discriminative attribution map, Lc

2D ∈ RT×D with T the time series length and
D the number of observed variables, I first compute the gradient of the score for class c
(yc) with respect to feature map activations Ak of the convolutional layer, i.e. ∂yc

∂Ak with
k ∈ [1, ..., F ] the identifier of the feature map. These gradients flowing back are global-
average-pooled over the time series length (T ) and observed variables (D) dimensions
(indexed by i and j respectively) to obtain the weight of each feature map. Thus, as
regards the feature map k, the weight is calculated as:

wc
k = 1

T ×D
∑

i

∑
j

∂yc

∂Ak
ij
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I then use the weights to compute a weighted combination between all the feature
maps for that particular class, and use a ReLU to keep only the positive attributions to
the predictions.

Lc
2D = ReLU

(∑
k

wc
k A

k

)

The second attribution map, Lc
1D, relates to time and is built on the same principle.

Grad-CAM is applied to the output feature maps of the 1D convolution layer which uses
convolution filters sliding over the time axis (first block in the lower red part in Figure 9.2).
With respect to the feature maps activations M and the class c, Lc

1D is calculated as:

qc
k = 1

T

∑
i

∂yc

∂Mk
i

Lc
1D = ReLU

(∑
k

qc
k M

k

)

Thus, Lc
1D has T × 1 as dimensions. I then upsample it to match the input data

dimensions T×D with a bilinear interpolation in order to obtain the attribution map. This
operation does not alter the time attribution results as the padding on the 1D convolution
filters ensured that the feature extraction over the time dimension has kept the time series
length. Therefore, the upsampling only replicates the results over the observed variables.
Example of observed variables and time attribution maps on a synthetic and a public
dataset are presented in section 9.4.2.

Before discussing the performance and explainability results of XCM, I present in the
next section the evaluation setting.

9.3 Evaluation

In this section, I introduce the methodology and datasets used for evaluating the
approach.

9.3.1 Datasets

XCM is benchmarked on the 30 currently available public UEA MTS datasets [Bagnall
et al., 2018]. For each dataset, I keep the train/test split provided in the archive.
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9.3.2 Algorithms

I implemented XCM with Keras in Python 3.6 and I adopted the following setting:

• 2D convolution layers: 128 feature maps, kernel size: Window Size× 1 (see hyper-
parameters in section 9.3.3 for the time window size), strides 1 × 1, padding same
and ReLU activation;

• 1D convolutions layers: 128 feature maps, kernel size: time window size (see hyper-
parameters in section 9.3.3), strides 1, padding same and ReLU activation.

The state-of-the-art MTS classifiers can be categorized into four families: similarity-
based, feature-based, deep learning methods and ensemble methods. In this work I choose
to benchmark XCM to the best-in-class for each similarity-based, feature-based, deep
learning and ensemble method category (DTWI , WEASEL+MUSE, MLSTM-FCN and
XEM classifiers). I also include MTEX-CNN in the benchmark, which is the network from
which the new architecture is derived and which has not been evaluated on the public
UEA datasets. Therefore, XCM algorithm is compared to the following MTS classifiers:

• DTWD without and with normalization (n): the one nearest neighbor classifier with
DTW distance based on multi-dimensional points instead of treating each dimension
separately. I report the results published in the UEA archive [Bagnall et al., 2018];

• DTWI without and with normalization (n): the one nearest neighbor classifier based
on the sum of DTW distance for each dimension. I report the results published in
the UEA archive [Bagnall et al., 2018];

• ED without and with normalization (n): the one nearest neighbor classifier with
Euclidean distance. I report the results published in the UEA archive [Bagnall et
al., 2018];

• MLSTM-FCN [Karim et al., 2019]: I report the results presented in chapter 7. This
study uses the implementation available 1 and runs it with the setting recommended
by the authors in the paper (128-256-128 filters, 250 training epochs, a dropout of
0.8 and a batch size of 128);

• MTEX-CNN [Assaf et al., 2019]: I have implemented the algorithm with Keras in
python 3.6 based on the description of the paper. I use the setting recommended by
the authors (Stage 1: two convolution layers with half padding and ReLU activation,
kernel sizes 8 × 1 and 6 × 1, strides 2 × 1, feature maps 64 and 128, dropout 0.4.

1. https://github.com/houshd/MLSTM-FCN
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Stage 2: one convolution layer with ReLU activation, strides 2, kernel size 2, feature
maps 128, dropout 0.4. Dense layer dimension 128 and L2 regularization 0.2);

• WEASEL+MUSE [Schäfer et al., 2017]: I report the results presented in chapter 7.
This study uses the implementation available 2 and runs it with the setting recom-
mended by the authors in the paper (SFA word lengths l in [2,4,6], windows length
in [4:max(MTS length)], chi=2, bias=1, p=0.1, c=5 and a solver equals to L2R LR
DUAL);

• XCM-Seq: XCM variant with 2D and 1D convolution blocks in sequence (see de-
scription in section 9.2.1). I use the same setting as XCM;

• XEM: I report the results presented in chapter 7.

All the networks in the experiments (XCM, XCM-Seq and MTEX-CNN) are trained
with 100 epochs. The models are compiled with the categorical cross-entropy loss and the
Adam optimization.

9.3.3 Hyperparameters

The first hyperparameter of XCM is Batch Size and the range is [1, 8, 32]. The sec-
ond hyperparameter of XCM is Window Size (the time window size - kernel size). It
is expressed as a percentage of the total size of the MTS and the range of time window
size percentages is [20%, 40%, 60%, 80%, 100%]. For each dataset, hyperparameters are set
by grid search based on the best average accuracy of XCM following a stratified 5-fold
cross-validation on the training set.

9.3.4 Metrics

For each dataset, the classification accuracy is computed. Then, the average rank and
the number of wins/ties are presented to compare the different classifiers on the same
datasets. Finally, I present the critical difference diagram [Demšar, 2006], the statistical
comparison of multiple classifiers on multiple datasets based on the non-parametric Fried-
man test, to show the overall performance of XCM. I use the implementation available in
R package scmamp.

2. https://github.com/patrickzib/SFA
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9.4 Results

In this section I first present the performance results of XCM on the public UEA
datasets. Then, I illustrate how XCM can reconcile performance and explainability on a
synthetic and a public dataset. Finally, I end this section by showing that XCM outper-
forms the current state-of-the-art algorithm on the dairy resource monitoring real-world
application while providing faithful and more informative explanations.

9.4.1 Performance

The accuracy results on the public UEA test sets of XCM and the other MTS classifiers
are presented in Table 9.1. A blank in the table indicates that the approach ran out of
memory or the accuracy is not reported. The best accuracy for each dataset is denoted
in boldface.

Firstly, we can observe that XCM obtains the best average rank (2.7), followed by
XEM in second position (rank: 3.4) and MLSTM-FCN in third position (rank: 4.1). Using
the categorization of the datasets published in the archive website 3, we do not see any
influence from the different train set sizes, MTS lengths, number of dimensions, number
of classes and dataset types on XCM performance relative to the other classifiers on the
UEA datasets.

More specifically, XCM exhibits better performance than XEM and MLSTM-FCN
on both large (rank: 2.3, XEM rank: 3.1, MLSTM-FCN rank: 2.7 - train size ≥ 500,
23% of the datasets) and small datasets (rank: 2.9, XEM rank: 3.5, MLSTM-FCN rank:
4.5 - train size < 500, 77% of the datasets). We can assume that the more compact
architecture of XCM compared to the other deep learning classifiers provides a better
generalization ability on the UEA datasets (average rank on the number of trainable
parameters: XCM 1.7, MLSTM-FCN: 1.9, MTEX-CNN: 2.0). Furthermore, the results
confirm the superiority of XCM approach based on the extraction in parallel and directly
from the input data of features relative to the observed variables and time compared to
the sequential approaches. XCM outperforms both XCM-Seq and MTEX-CNN on average
on the UEA datasets (rank: 2.7, XCM-Seq: 5.6, MTEX-CNN: 8.1).

With regard to the hyperparameter Window Size of XCM, Figure 9.3 shows the av-
erage relative drop in performance across the datasets when using the other time window
sizes than the one used in the best configuration given in Table 9.1. In order to evaluate

3. http://www.timeseriesclassification.com/dataset.php

161



Chapter 9 – A Convolutional Neural Network Combining Performance with Faithful and
Informative Post-Hoc Model-Specific Explainability

Table 9.1 – Accuracy results on the UEA MTS datasets. Abbreviations: BS - Batch Size,
ED - ED, DW - DTW, MC - MTEX-CNN, MF - MLSTM-FCN, Win % - Window Size,
WM - WEASEL+MUSE, X - XCM, XM - XEM, XS - XCM-Seq

Datasets X XS MC XM MF WM ED DW
I

DW
D

ED
(n)

DW
I
(n)

DW
D
(n)

X Params

BS Win
%

Articulary Word Recognition 98.3 92.7 92.3 99.3 98.6 99.3 97.0 98.0 98.7 97.0 98.0 98.7 32 80
Atrial Fibrilation 46.7 33.3 33.3 46.7 20.0 26.7 26.7 26.7 20.0 26.7 26.7 22.0 1 60
Basic Motions 100 100 100 100 100 100 67.5 100 97.5 67.6 100 97.5 32 20
Character Trajectories 99.5 98.8 97.4 97.9 99.3 99.0 96.4 96.9 99.0 96.4 96.9 98.9 32 80
Cricket 100 93.1 90.3 98.6 98.6 98.6 94.4 98.6 100 94.4 98.6 100 32 20
Duck Duck Geese 70.0 52.5 65.0 37.5 67.5 57.5 27.5 55.0 60.0 27.5 55.0 60.0 8 80
Eigen Worms 43.5 45.0 41.9 52.7 80.9 89.0 55.0 60.3 61.8 54.9 61.8 32 40
Epilepsy 99.3 93.5 94.9 98.6 96.4 99.3 66.7 97.8 96.4 66.6 97.8 96.4 32 20
Ering 13.3 13.3 13.3 20.0 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 32 20
Ethanol Concentration 34.6 31.6 30.8 37.2 27.4 31.6 29.3 30.4 32.3 29.3 30.4 32.3 32 80
Face Detection 63.9 63.8 50.0 61.4 55.5 54.5 51.9 51.3 52.9 51.9 52.9 32 60
Finger Movements 60.0 60.0 49.0 59.0 61.0 54.0 55.0 52.0 53.0 55.0 52.0 53.0 32 40
Hand Movement Direction 44.6 40.1 18.9 64.9 37.8 37.8 27.9 30.6 23.1 27.8 30.6 23.1 32 80
Handwriting 41.2 38.6 24.6 28.7 54.7 53.1 37.1 50.9 60.7 20.0 31.6 28.6 32 60
Heartbeat 77.6 74.1 72.2 76.1 71.4 72.7 62.0 65.9 71.7 61.9 65.8 71.7 32 80
Insect Wingbeat 10.5 10.5 10.5 22.8 10.5 12.8 11.5 12.8 32 20
Japanese Vowels 98.6 94.6 95.1 97.8 99.2 97.8 92.4 95.9 94.9 92.4 95.9 94.9 32 80
Libras 84.4 79.4 81.1 77.2 92.2 89.4 83.3 89.4 87.2 83.3 89.4 87.0 32 80
LSST 61.2 54.2 31.5 65.2 64.6 62.8 45.6 57.5 55.1 45.6 57.5 55.1 32 100
Motor Imagery 54.0 53.0 50.0 60.0 53.0 50.0 51.0 39.0 50.0 51.0 50.0 8 40
NATOPS 97.8 93.9 88.3 91.6 96.1 88.3 85.0 85.0 88.3 85.0 85.0 88.3 32 40
PenDigits 99.1 96.7 87.8 97.7 98.7 96.9 97.3 93.9 97.7 97.3 93.9 97.7 8 60
PEMSF 75.7 80.9 11.6 94.2 65.3 70.5 73.4 71.1 70.5 73.4 71.1 32 80
Phoneme 22.5 11.9 2.6 28.8 27.5 19.0 10.4 15.1 15.1 10.4 15.1 15.1 32 40
Racket Sports 89.5 86.8 82.9 94.1 88.2 91.4 86.4 84.2 80.3 86.8 84.2 80.3 32 80
Self Regulation SCP1 87.8 81.6 78.5 83.9 86.7 74.4 77.1 76.5 77.5 77.1 76.5 77.5 32 80
Self Regulation SCP2 54.4 55.0 50.0 55.0 52.2 52.2 48.3 53.3 53.9 48.3 53.3 53.9 32 80
Spoken Arabic Digits 99.5 99.4 98.6 97.3 99.4 98.2 96.7 96.0 96.3 96.7 95.9 96.3 32 80
Stand Walk Jump 40.0 46.7 53.3 40.0 46.7 33.3 20.0 33.3 20.0 20.0 33.3 20.0 32 60
U Wave Gesture Library 89.3 81.9 81.2 89.7 85.7 90.3 88.1 86.9 90.3 88.1 86.8 90.3 32 100
Average Rank 2.7 5.6 8.1 3.4 4.1 4.6 8.0 6.7 5.5 8.3 7.2 6.1
Wins/Ties 12 2 2 13 4 5 0 1 3 0 1 2
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Figure 9.3 – XCM average relative accuracy drop across the UEA datasets when using
other time window sizes than the one used in the best configuration given in Table 9.1.
The performance drop is presented across four categories of datasets, defined according
to XCM levels of accuracy shown in Table 9.1. Abbreviation: Acc - Accuracy.

the relative impact with respect to the range of performance, I have defined four categories
of datasets: datasets with XCM original accuracy< 50%, datasets with 50% ≤ accuracy
< 75%, datasets with 75% ≤ accuracy < 90% and datasets with accuracy ≥ 90%. First,
as expected, we can observe that the average relative impact of using suboptimal time
window sizes is higher when XCM level of performance is low (average relative drop in
accuracy: 13.1% when XCM accuracy < 50% versus 3.0% when XCM accuracy ≥ 90%).
Then, the average relative drop in accuracy when using suboptimal time window sizes is
not negligible but remains limited in all the cases. This drop is below 15% on average on
the category where XCM has the lowest level of accuracy (13.1% ± 3.2%) and below 10%
on average across all the datasets (7.0% ± 1.3%).

Finally, a statistical test is performed to evaluate the performance of XCM compared
to the other MTS classifiers. I present in Figure 9.4 the critical difference plot with alpha
equals to 0.05 from results shown in Table 9.1. The values correspond to the average rank
and the classifiers linked by a bar do not have a statistically significant difference. The
plot confirms the top 3 ranking as presented before (XCM: 1, XEM: 2, MLSTM-FCN: 3),
without showing a statistically significant difference between each other. We can notice
that XCM is the only classifier with a significant performance difference compared to
DTWD.
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Figure 9.4 – Critical difference plot of the MTS classifiers on the UEA datasets with alpha
equals to 0.05.

9.4.2 Explainability

In this section, I illustrate how XCM approach reconciles performance and explainabil-
ity, and show that XCM enables a more precise identification of the regions of the input
data that are important for predictions compared to the current faithfully explainable
deep learning MTS classifier MTEX-CNN. The precision of the explanations provided
by Grad-CAM, i.e. the fraction of explanations that are relevant to a prediction, can
vary across CNN architectures as Grad-CAM is sensitive to the upsampling processes on
feature maps to match the input data dimensions. There is no quantitative approach to
assess a model explainability. Therefore, I adopt a qualitative approach to analyze XCM
explainability. I illustrate XCM explainability on a synthetic dataset and a public one
from the UEA archive. I choose the same synthetic and public dataset (Atrial Fibrilation)
as in XEM study in chapter 7. Thus, it offers a basis of comparison with the current best
performing MTS classifier, XEM, which provides explainability by design through the
identification of the time window used to classify the whole MTS. Therefore, I compare
XCM explainability on the synthetic and public datasets to XEM and MTEX-CNN. As
presented in [Fawaz et al., 2019], it would also be interesting to extend the explainability
analysis to the other state-of-the-art deep learning approaches (FCN, ResNet) and com-
pare the results based on Class Activation Mapping (CAM) [Zhou et al., 2016]. CAM
can also be applied to XCM as XCM uses global average pooling followed by a softmax
layer for classification. However, in the current configuration, FCN/ResNet/XCM use 1D
convolution filters in their last layer so I do not include a study with CAM in this section
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as CAM results would not provide information relative to both the observed variables and
time. In future work, it would be interesting to analyze the performance of these networks
on MTS using 2D convolution filters in the last layer and the associated CAM results.

Synthetic Dataset

Firstly, I show that XCM uses and identifies the expected time window to perform the
classification on a MTS synthetic dataset and compare the results to XEM and MTEX-
CNN. The synthetic dataset is composed of 20 MTS (50%/50% train/test split) with
a length of 100, 2 dimensions, 2 balanced classes. The difference between the 10 MTS
belonging to the negative class and the one belonging to the positive class stems from a
20% time window of the MTS. Negative class MTS are sine waves and, as illustrated in
the plot on the top part of Figure 9.5, positive class MTS are sine waves with a square
signal on 20% of the dimension 1 (see timestamps between 60 and 80).

First, XEM, MTEX-CNN and XCM (Batch Size: 1, Window Size: 20%) correctly
predict the 10 MTS of the test set (accuracy 100%). We can observe that XCM and
MTEX-CNN obtain the same performance whereas XCM has around 10 times fewer
parameters than MTEX-CNN (trainable parameters: XCM 17k, MTEX-CNN 232k).

Moreover, XEM, MTEX-CNN with Grad-CAM and XCM with Grad-CAM all cor-
rectly identify the discriminative time window. However, as shown in Figure 9.5, the
attribution maps of MTEX-CNN and XCM with the same explainability method (Grad-
CAM) are slightly different. Figure 9.5 shows one MTS sample belonging to the class
positive, and the time and observed variables attribution maps supporting the correct
MTEX-CNN and XCM predictions. Attribution maps are heatmaps of the same size as
the input data. The more intense the red, the stronger the features (observed variables,
time) positively contribute to the prediction. We can observe that the attribution maps
drawn from XCM are more precise than the one from MTEX-CNN. On the time attribu-
tion map, high attribution values (above 0.6) for XCM begin on timestamp 63 and end on
timestamp 76 (expected: [60, 80]), whereas for MTEX-CNN they begin later (timestamp
68). Concerning the attribution map of the observed variables, as expected we see that high
attributions values on the discriminative dimension (dimension 1) appears at the same
timestamps as high attribution values on the time attribution map for XCM (timestamps
63 and 76). Nonetheless, the observed variables attribution map of MTEX-CNN shows
high attribution values on a window larger than the discriminative one (timestamps range
[34, 83]). As MTEX-CNN attribution maps exhibit a red color gradient, the precision of
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Figure 9.5 – Observed variables and time attribution maps supporting the correct MTEX-
CNN and XCM predictions of a MTS from the synthetic dataset belonging to the class
Positive. Abbreviation: Dim - Dimension.
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identification of the regions of the input data on MTEX-CNN attribution maps could be
enhanced by setting a higher threshold than 0.6 for the attribution values. However, the
red color gradient is due to the upsampling processes needed to match the 2D/1D output
features maps of MTEX-CNN to the size of the input data when applying Grad-CAM.
Grad-CAM is applied at local level, which means that we would need to potentially set
a different threshold for each instance and that would render MTEX-CNN explainability
method impractical. So, based on the same attribution threshold (0.6), XCM allows a
more precise identification of the regions of the input data that are important for predic-
tions than MTEX-CNN. Both MTEX-CNN and XCM have periodically high attribution
values on the dimension 2 of the observed variables attribution maps. It could be surpris-
ing as the sinusoidal signal on this dimension is the same across all MTS, however the
fact that this information is uniformly high or low renders it irrelevant for explanations.
Therefore, considering that XCM-Seq attributions maps are the same as XCM ones, we
can assume that the use of half padding on the different convolution layers to reduce the
number of parameters in MTEX-CNN, so the use of upsampling to retrieve the input data
dimensions on the attribution maps, can lead to a less precise identification of the regions
of the input data that are important for predictions.

Finally, on the synthetic dataset and as shown in section 7.4.2, XEM explanations
correctly identify the time window [60, 80], while XCM is able to provide the discriminative
dimension in addition to the correct identification of the discriminative time window.

Atrial Fibrilation UEA Dataset

Next, I illustrate XCM explainability on a public dataset. I choose the Atrial Fibrila-
tion dataset [Bagnall et al., 2018], i.e. the smallest one of the public UEA archive, to show
how XCM as a convolutional neural network can also reconcile performance and explain-
ability on small datasets. In addition, this choice is supported by the fact that it is one
of the datasets used to illustrate XEM explainability, so it offers a basis of comparison.

First, as shown in Table 9.1, XEM and XCM are the most accurate models on the Atrial
Fibrilation dataset (XCM: 46.7%, XEM: 46.7%, MTEX-CNN: 33.3%). XCM exhibits bet-
ter performance than MTEX-CNN while having around 10 times fewer parameters (XCM:
100k, MTEX-CNN 1.3m).

Then, same as on the synthetic dataset, we can notice that XCM provides more de-
limited periods with high attribution values compared to MTEX-CNN, which uses half
padding on the different convolution layers. Figure 9.6 shows the first MTS sample from
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Figure 9.6 – Observed variables and time attribution maps supporting the correct MTEX-
CNN and XCM predictions of the first MTS from Atrial Fibrilation test set, which belongs
to the class Non Terminating Atrial Fibrilation. Abbreviation: C - Channel.
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Atrial Fibrilation test set that belongs to the class Non Terminating Atrial Fibrilation, and
the attribution maps of MTEX-CNN and XCM supporting their predictions. This MTS
is composed of two dimensions (two channels ECG) with a length of 640 (5 second period
with 128 samples per second). All the models (XEM, MTEX-CNN and XCM) correctly
predict the sample class. An additional difficulty in the analysis of explainability results
compared to that of the synthetic case is that we do not have the expected discriminative
parts of the MTS that should be used to classify the whole MTS. However, we can see in
Figure 9.6 that MTEX-CNN time attribution map does not identify particular discrimi-
native time windows as it displays high attribution values (above 0.6) all along the time
series on the timestamps corresponding to peaks {110, 202, 227, 266, 387, 429, 530, 571},
whereas we can identify two periods which strongly contribute to the prediction on XCM
attribution map (71-266 and 571-616). Concerning the attribution map of the observed
variables, we see that both MTEX-CNN and XCM use channel 1 as discriminative vari-
able; and the same observation from the time attribution map holds on channel 1. Thus,
the region of the input data identified by Grad-CAM to support XCM prediction is more
precise than that of MTEX-CNN, in the sense that the intersection of XCM attribu-
tion maps highlights a subset of the peaks on channel 1 as important, which reduces the
amount of information that needs to be evaluated by the end-user.

Finally, compared to XEM which uses a unique time window to classify the whole
MTS, XCM can leverage multiple subseries. For example, as presented in section 7.4.1,
XEM obtains its best performance on Atrial Fibrilation (accuracy 46.7%) using a 20%
time window. On the MTS in Figure 9.6, XEM identifies the time window [256, 383]
as discriminative to classify the whole MTS (see Figure 7.9). Thus, XCM uses some
timestamps contained in the same time window as XEM plus some others at the end.
This could be a reason of XCM better performance than XEM on the UEA datasets.

9.4.3 Real-World Application

In this section, I evaluate the new XCM with Grad-CAM approach on the dairy
resource monitoring application of this thesis. The evaluation consists in a comparison
of the XCM approach with the state-of-the-art MTS classifiers and the previous machine
learning methods of the thesis. The next paragraphs present the evaluation setting and
the performance-explainability results.
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Evaluation Setting

Dataset The same real-world dataset as LCE in chapter 6 and XPM in chapter 8 is
employed. In this chapter, I also evaluate the impact of adding the ration and the weight
variables on performance. The delivery of the ration occurs twice daily (9am and 5pm)
and contains on average 65% of maize silage, 10% of dehydrated alfalfa pellets and 25% of
concentrate. Cows are also weighted twice a day (morning and afternoon). The evaluation
method is the same as in chapter 6 and chapter 8: a 5-fold cross-validation plus external
validation and an arithmetic mean of the F1-scores. The dataset split is presented in
Table 9.2.

Table 9.2 – Dataset Split. Abbreviation: Ext Val - External Validation.
Folds Ext Val1 2 3 4 5 All

Estrus 121 129 113 139 149 651 307
Silent % 32 40 24 40 44 37 43

Algorithms Performance is a prerequisite in this application. Therefore, I compare
XCM with Grad-CAM to the current best performing state-of-the-art MTS classifier
MLTSM-FCN with SHAP and the best performing machine learning method on this
application from the previous chapters (LCE with SHAP - see chapter 6). MLSTM-FCN
can only rely on post-hoc model-agnostic explainability methods to support its predic-
tions. I choose SHAP as its granularity of explanation is comparable to Grad-CAM (both
global and local). SHAP provides the relative importance of the observed variables and
timestamps on predictions.

Results

Performance The detection results are presented in Table 9.3. We can observe that
XCM (F1-score 69.7%) shows better performance on the test sets than the current state-
of-the-art deep learning approach MLSTM-FCN (F1-score 63.1%), the best performing
machine learning method from the previous chapters LCE (F1-score 67.5%) and the ref-
erence commercial solution (F1-score 55.3%) by increasing the average F1-score and ob-
taining the lowest variability across folds (1.5%). In addition, the same observation from
the test sets holds on the external validation (68.1 ± 0.3, MLSTM-FCN: 64.8 ± 0.4, LCE:
67.9 ± 0.2 and CS: 59.6 ± 0), even if the performance between XCM and LCE is close.
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XCM generalizes well by maintaining its level of performance on the external validation
set (test: 69.7%, external validation: 68.1%).

Table 9.3 – Average F1-score with corresponding standard error on the activity and tem-
perature dataset. Abbreviations: CS - Commercial Solution, Ext Val - External Validation.

XCM MLSTM-FCN LCE CS

Test 69.7 ± 1.5 63.1 ± 1.5 67.5 ± 1.5 55.3 ± 5.1

Ext Val 68.1 ± 0.3 64.8 ± 0.4 67.9 ± 0.2 59.6 ± 0

Furthermore, I have evaluated the impact of adding the ration and weight variables
on estrus detection. The results of XCM estrus detection on the different datasets are
presented in Table 9.4. We can observe that XCM obtains a slightly better performance
on the test sets when the ration is included in the datasets (AT-R: 70.3%, AT-RW: 70.0%
versus AT: 69.7%). However, this observation does not hold on the external validation.
XCM does not exhibit a better detection performance on the external validation set when
the ration is included (AT-R: 68.0%, AT-RW: 67.8% versus AT: 68.1%). Therefore, based
on my experiments, the interest of adding the ration or the weight to enhance estrus
detection is not demonstrated. Nonetheless, the performance difference is not significant,
it would be interesting to further study the potential of ration data for estrus detection
with a broader data heterogeneity (cows breed, environment).

Table 9.4 – Average F1-score of XCM with corresponding standard error on the different
datasets. Abbreviation: AT - Activity and Temperature, Ext Val - External Validation,
R - Ration, W - Weight.

XCM
AT AT-R AT-W AT-RW

Test 69.7 ± 1.5 70.3 ± 1.3 69.6 ± 1.0 70.0 ± 1.0

Ext Val 68.1 ± 0.3 68.0 ± 1.6 68.1 ± 0.3 67.8 ± 0.2

Explainability Concerning the explainability, Figure 9.7 shows an example of the time
and observed variables attribution maps supporting the correct XCM prediction of a MTS
sample belonging to the class Estrus. I plot the MTS sample with an heatmap to ease the
readability. The intersection of attribution maps and sample values inform us that the
prediction was made mainly based on the presence of a high over activity of the animal
on the day of estrus (attribution values above 0.6 on Day 0 and on the variable over
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Figure 9.7 – Observed variables and time attribution maps supporting the correct XCM
prediction of a MTS from the real-world test set, which belongs to the class Estrus.
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activity, which has a high value). This behavior is aligned with the literature on estrus
detection [Gaillard et al., 2016], it is the behavior associated with most of the estrus.

Thus, in addition to giving the relative importance of observed variables and time
as LCE and MLSTM-FCN with SHAP, XCM with Grad-CAM provides more informa-
tive explanations by supplying the corresponding sample values. Finally, unlike LCE and
MLSTM-FCN with SHAP post-hoc model-agnostic method, XCM with Grad-CAM ap-
proach provides faithful explanations, which is a prerequisite to reduce solution mistrust
from the farmers. Therefore, XCM with Grad-CAM outperforms the current best per-
forming state-of-the-art MTS classifier (MLSTM-FCN) with SHAP and exhibits a slightly
better performance than the previous best machine learning method of the thesis (LCE +
SHAP) on the real-world application, while enhancing explainability by providing faithful
and more informative explanations.

9.5 Performance-Explainability Analysis

This section introduces the new CNN MTS classifier XCM with Grad-CAM post-hoc
model-specific explainability method into the analytical framework of the thesis (part II).
The different aspects of XCM framework are summarized in Table 9.5 and can be visual-
ized in Figure 9.8.

The study of this chapter firstly shows that XCM outperforms the state-of-the-art
MTS classifiers and the best performing method from the previous chapters on the pub-
lic UEA datasets (XEM). Then, it exhibits the superior performance of XCM on the
real-world application of estrus detection compared to a commercial reference and the
best performing method from the previous chapters (LCE). Therefore, in the framework
presented in part II, following a 5-fold cross-validation plus external validation and an
arithmetic mean of the F1-scores on the INRAE proprietary dataset, the performance
level of XCM is better than the state-of-the-art (Performance: Best).

Concerning the explainability, similar to the ensemble methods, XCM is not compre-
hensible (Comprehensibility: Black-Box - ensemble: Black-Box, XPM: White-Box). How-
ever, XCM provides with Grad-CAM post-hoc model-specific explainability method some
faithful (Faithfulness: Perfect - DMSEEW: Perfect, LCE + SHAP: Imperfect, XEM: Per-
fect, XPM: Perfect) and informative (Information: Features+Time+Values - DMSEEW:
Features, LCE + SHAP: Features+Time, XEM: Uni Sequences, XPM: Uni Sequences)
explanations at all granularity levels (Granularity: Both Global & Local - DMSEEW: Lo-
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Figure 9.8 – Parallel coordinates plot of XCM with Grad-CAM on the dairy resource mon-
itoring application. Performance evaluation method: 5-fold cross-validation plus external
validation and an arithmetic mean of the F1-scores on the INRAE proprietary dataset.
Models evaluated in the benchmark: Commercial Solution, EN, FCN, kNN, LC, LCE,
MLP, MLSTM-FCN, MTEX-CNN, ResNet, RF, SVM, XCM, XGB and XPM.
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cal, LCE + SHAP: Both Global & Local, XEM: Local, XPM: Both Global & Local). The
explanations inform the end-user about the important observed variables and timestamps
with the discriminative values to the predictions. These explanations are accessible to
domain experts (e.g. farmers), who are able to analyze the relation between feature high
attribution values and feature discriminative values (User: Domain Expert - DMSEEW:
Machine Learning Expert, LCE + SHAP: Domain Expert, XEM: Domain Expert, XPM:
Broad Audience).

Table 9.5 – Performance-explainability results of the machine learning methods of
the thesis. Abbreviations: Broad - Broad Audience, Domain - Domain Expert, F -
Features, G&L - Global & Local, ML - Machine Learning, T - Time, V - Values.

Ensemble Methods

DMSEEW LCE +
SHAP XEM XPM XCM +

Grad-CAM

Performance Best1 Best23 Best4 Similar5 Best67

Comprehensibility Black-Box Black-Box Black-Box White-Box Black-Box
Granularity Local Both G&L Local Both G&L Both G&L
Information F F + T Uni Sequences Uni Sequences F + T + V
Faithfulness Perfect Imperfect Perfect Perfect Perfect
User ML Domain Domain Broad Domain
1 3-fold cross-validation and an arithmetic mean of the accuracies on the Earthquake Early Warning Dataset.
Models evaluated in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet,
SMTS, UFS and WEASEL+MUSE.

2 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the INRAE propri-
etary dataset. Models evaluated in the benchmark: Commercial Solution, EN, kNN, LC, LCE, MLP, RF, SVM
and XGB.

3 3-fold cross-validation and an arithmetic mean of the accuracies on the UCI datasets. Models evaluated in the
benchmark: EN, LC, LCE, MLP, RF, SVM and XGB.

4 Predefined train/test splits and an arithmetic mean of the accuracies on the UEA datasets. Models evaluated
in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet, RFM, SMTS, UFS,
WEASEL+MUSE, XEM and XGBM.

5 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the INRAE propri-
etary dataset. Models evaluated in the benchmark: Commercial Solution, EN, kNN, LC, LCE, MLP, RF, SVM,
XGB and XPM.

6 5-fold cross-validation plus external validation and an arithmetic mean of the F1-scores on the INRAE pro-
prietary dataset. Models evaluated in the benchmark: Commercial Solution, EN, FCN, kNN, LC, LCE, MLP,
MLSTM-FCN, MTEX-CNN, ResNet, RF, SVM, XCM, XGB and XPM.

7 Predefined train/test splits and an arithmetic mean of the accuracies on the UEA datasets. Models evaluated
in the benchmark: DTWD, DTWI , FCN, gRSF, LPS, MLSTM-FCN, mv-ARF, ResNet, RFM, SMTS, UFS,
WEASEL+MUSE, XCM, XEM and XGBM.

We observe that the new CNN MTS classifier XCM with Grad-CAM post-hoc model-
specific explainability method does not obtain the best categories on all the components
of the performance-explainability framework compared to the other machine learning
methods presented in the thesis. Especially, the level of information conveyed by XCM
approach is lower than the one of XEM and the one of the pattern-based MTS classifier
XPM. Plus, XCM approach explanations are accessible by a lower audience than the ones
from the pattern-based classifier XPM.

175



Nevertheless, XCM with Grad-CAM post-hoc model-specific explainability method is
the best machine learning method on the estrus detection application according to the
performance-explainability framework. First, performance is the primary criteria for the
end-users and XCM is the best performing machine learning method on estrus detection
(second: LCE). The insufficient performance of current estrus detection commercial so-
lutions is the first reason of their moderate adoption rate [Steeneveld et al., 2015]. As
detailed in chapter 7, the other well performing interval-based MTS classifiers DMSEEW
and XEM could not be evaluated on the estrus detection application due to the short time
windows considered. Both XCM and LCE approaches outperform the current commer-
cial reference; and the performance difference between these approaches is not significant.
However, unlike LCE with SHAP, XCM approach provides faithful explanations, which is
a prerequisite to reduce solution mistrust from the farmers. Concerning the limited audi-
ence of XCM explanations, it is not a prohibitive factor as the end-users of the automatic
estrus detection solutions are mainly the farmers, i.e. domain experts. XCM provides to
the farmers the important observed variables and timestamps with the discriminative val-
ues to the predictions at both global (estrus versus anestrus) and local (behavioral versus
silent) levels. It would be interesting to further enhance the explanations of XCM with
Grad-CAM by synthesizing the information with patterns.

Summary

• The new CNN MTS classifier XCM exhibits better performance in estrus de-
tection on a real-world dataset than a commercial solution reference and the
machine learning methods of the previous chapters. The superior performance
of XCM also holds on the public UEA datasets.

• XCM approach provides faithful and informative explanations at all granularity
levels. The explanations inform the user about the important observed variables
and timestamps with the discriminative values to the predictions.

• It would be interesting to further enhance the explanations of XCM with Grad-
CAM by synthesizing the information with patterns.
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Chapter 10

Conclusion

10.1 Summary of the Contributions

The goal of this thesis is to enhance the performance and explainability of multivariate
time series machine learning methods, and derive new insights from the new methods
developed about two real-world applications.

First, I introduced a new performance-explainability framework to assess and bench-
mark machine learning methods. The framework details a set of characteristics that sys-
tematize the performance-explainability assessment of existing machine learning methods.

Then, I presented three new ensemble methods. The first one, DMSEEW, is a new
stacking ensemble method for earthquake early warning. The performance criteria has
shaped the design of this new stacking ensemble method but it provides faithful and local
explanations. DMSEEW improves the detection of earthquakes with damaging potential.
In particular, it detects all the large earthquakes with a precision of 100% on a real-world
dataset, which is critical for an earthquake early warning system. The second one, LCE,
is a new hybrid ensemble method for dairy resource monitoring. It relies on a post-hoc
model-agnostic explainability method, SHAP, which offers more informative explanations
that could be useful to broader audiences compared to the first method. However, the en-
hanced explanations come at the cost of faithfulness, which is a prerequisite for numerous
applications. Therefore, the third method, XEM, is an extension of the hybrid ensemble
method which integrates faithfulness with explainability by design. XEM competes with
the level of information and the audience of the post-hoc model-agnostic explainability
method while maintaining performance. XEM outperforms the current state-of-the-art
MTS classifiers on the public UEA datasets.

Next, I proposed a new pattern-based MTS classifier for dairy resource monitoring,
XPM; an easy-to-understand model with explanations accessible to a wider audience
compared to the ensemble methods.

Lastly, I presented a new convolutional neural network for MTS classification, XCM,
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which outperforms XEM on the public UEA datasets. In addition, XCM architecture
enables faithful and precise identification of the observed variables and timestamps of the
input data that are important for predictions using the gradient-based post-hoc model-
specific method Grad-CAM. XCM with Grad-CAM exhibits better performance than
the ensemble method LCE with SHAP on the dairy resource monitoring application,
while enhancing explainability by providing faithful and more informative explanations.
Furthermore, XCM detects around 20% more determining events for milk production
(estrus) than a commercial solution reference on a real-world dataset, while having the
same precision.

10.2 Perspectives

10.2.1 A Consensus About a Performance-Explainability
Framework

There has been a trend in recent years to leverage machine learning methods to auto-
mate decision-making processes. However, for many tasks, the adoption of such methods
cannot rely solely on their prediction performance; rather, explanations are required.
Some of the main tasks that demand explainability are: model validation, model debug-
ging and knowledge discovery. Model validation uses explanations to examine whether a
machine learning model has employed the true evidences instead of biases which can exist
in training data. Model debugging leverages the explanations to debug and analyze the
misbehavior of models when models give wrong and unexpected predictions. Concerning
knowledge discovery, the derived explanations allow humans to obtain new insights from
machine learning model through comprehending their decision making process. Further-
more, explainability can be legally required as stated in the European Union’s General
Data Protection Regulation, which became enforceable on 25 May 2018 1. Therefore, in
addition to their prediction performance, machine learning methods have to be assessed
on how they can supply their decisions with explanations.

The requirements for explainable machine learning methods are dependent upon the
application and to whom the explanations are intended for [Bohlender et al., 2019; Tomsett
et al., 2018]. In order to match these requirements and then conduct experiments to
validate the usefulness of the explanations by the end-users, there is a need to have a

1. https://ec.europa.eu/info/law/law-topic/data-protection_en
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comprehensive assessment of the explainability of the existing methods. Doshi-Velez et
al. [2017] claim that creating a shared language is essential for evaluation and comparison
of machine learning methods, which is currently challenging without a set of explanation
characteristics.

I proposed a first performance-explainability framework in this thesis. It could be a
basis for the development of a comprehensive assessment of the machine learning meth-
ods with regard to their performance and explainability. This framework could also be
used to inform the design of new machine learning methods. Thus, a consensus about a
set of characteristics and their respective definition would be required. With regard to
the set of characteristics identified in this thesis (Performance, Model Comprehensibility,
Granularity of the explanations, Information Type, Faithfulness, User Category), a few
challenges arise concerning their definitions. First, there is no consensus on an evaluation
procedure to assess the performance of a machine learning model. Recent work suggests
that the definition of such an evaluation procedure necessitates the development of a
measurement theory for machine learning [Flach, 2019]. Many of the problems stem from
a limited appreciation of the importance of the scale on which the evaluation measures
are expressed. Second, model comprehensibility is tightly linked to the model complexity;
yet, there is no consensus on model complexity assessment [Guidotti et al., 2018]. The
current distinction, “black-box” / “white-box” models [Lipton, 2016], does not allow a full
categorization of the different machine learning methods. For example, many rule-based
models and decision trees are regarded as “white-box” models. However, not all rule-
based models or decision trees are “white-box” models. Cognitive limitations of humans
place restrictions on the complexity of the approximations that are understandable to hu-
mans [Lakkaraju et al., 2017]. For instance, a decision tree with a hundred levels cannot be
considered as an easy-to-understand model. There would be a need to further refine this
binary distinction in order to be able to categorize the different machine learning mod-
els with regard to their comprehensibility. Third, the framework introduced in this thesis
proposes to distinguish between perfectly and imperfectly faithful explanations. There are
three commonly recognized categories (explainability by design, post-hoc model-specific
explainability and post-hoc model-agnostic explainability) [Du et al., 2020] to which all
of the explainability methods are belonging to. For example, the main line of work in
post-hoc model-agnostic explainability methods consists in approximating the decision
surface of a model using an explainable one. However, the explanations from surrogate
models cannot be perfectly faithful with respect to the original model [Rudin, 2019]. The
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fidelity criteria is used to quantify the faithfulness by the extent to which the surrogate
model imitates the prediction score of the original model [Guidotti et al., 2018]. But, how
can imperfectly faithful explanations be used to support decisions? Without an associ-
ated guide that could be used to make informed decisions using an imperfectly faithful
explainability method, there would be a need to focus on methods providing perfectly
faithful explanations, and more particularly on explainable by design machine learning
methods and post-hoc model-specific explainability methods.

Finally, following the development of a performance-explainability assessment of ma-
chine learning methods, it would be interesting to systematize a way to match the end-user
needs to this assessment and develop a suite of experiments to test the usefulness of the
machine learning method deployed.

10.2.2 Pattern-Based Post-Hoc Model-Specific Explainability
Methods for Black-Box Machine Learning Models

Performance and explainability are often opposed whereas we should analyze how they
can be best combined together along their different aspects. A performance-explainability
framework like the one introduced in this thesis could be a basis for such analysis and the
design of new machine learning methods.

Performance is usually a prerequisite before discussing explainability. On most appli-
cations and in particular for the MTS classifiers of this thesis, black-box machine learning
models like deep learning models and ensemble methods exhibit the best performance on
average. For example, based on predefined train/test splits and an arithmetic mean of the
accuracies, XEM ensemble method and XCM convolutional neural network introduced in
this thesis are the best performing methods on the public UEA datasets.

Then, as illustrated with XEM and XCM methods, it is possible to reconcile perfor-
mance and faithful explanations by integrating explainability by design or by using post-
hoc model-specific explainability methods. XEM provides explainability by design through
identifying the time window used to classify the whole MTS. XCM with Grad-CAM post-
hoc model-specific explainability method provides the important observed variables and
timestamps with the discriminative values to the predictions.

However, the granularity of these explanations can be only local (e.g. XEM) and the
level of information remains limited. Therefore, in order to further improve the explain-
ability of these black-box classifiers, it would be interesting to develop new post-hoc
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model-specific explainability methods. More specifically, the use of pattern-mining algo-
rithms as post-hoc model-specific explainability methods would be interesting to explore.
For example, to further improve the granularity and the level of information of XEM ex-
planations, it would be valuable to analyze the time windows characteristic of each class
in the training set in order to determine if they contain some common multidimensional
sequential patterns. Such patterns could also broaden the audience as they would syn-
thesize the important information in the discriminative time windows. This observation
holds on the attribution maps for XCM with Grad-CAM.
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Amélioration de la Performance et de l’Explicabilité des Méthodes
d’Apprentissage Automatique de Séries Temporelles Multivariées

Mots-clés : Apprentissage Automatique, Explicabilité de l’Intelligence Artificielle, Portée
Collective, Séries Temporelles Multivariées

Résumé : Cette thèse a pour objectif
d’améliorer la performance et l’explicabilité
des méthodes d’apprentissage automa-
tique de séries temporelles multivariées, et
d’établir à partir des méthodes développées
de nouvelles connaissances concernant deux
applications réelles.

Tout d’abord, une nouvelle grille
d’analyse pour évaluer et comparer les
méthodes d’apprentissage automatique est
proposée. Cette grille d’analyse introduit
un jeu de caractéristiques qui systématise
l’évaluation des méthodes d’apprentissage
automatique.

Puis, cette thèse présente trois nouvelles
méthodes ensemblistes. La première, DM-
SEEW, est une nouvelle méthode ensemb-
liste, basée sur le stacking, pour la détec-
tion avancée de séismes et qui fournit des
explications exactes au niveau local. DM-
SEEW améliore la détection des séismes
pouvant causer des dommages. Tout par-
ticulièrement, DMSEEW détecte tous les
séismes forts avec une précision de 100%
sur un jeu de données réel, ce qui est pri-
mordial pour une détection avancée des
séismes. La seconde, LCE, est une nou-
velle méthode ensembliste hybride pour la
gestion des ressources dans les exploita-
tions laitières. Elle se repose sur une méth-
ode d’explicabilité applicable à n’importe
quelle méthode d’apprentissage automa-
tique (post-hoc modèle-agnostique), SHAP,
qui offre des explications plus informatives
et accessibles à une plus grande audience
que celles de la première méthode. Cepen-
dant, cette amélioration des explications
s’effectue au détriment de l’exactitude, ce
qui est un prérequis pour de nombreuses
applications. Aussi, la troisième méthode,

XEM, est une extension de la méthode en-
sembliste hybride qui intègre une explica-
bilité intrinsèque afin d’assurer l’exactitude
des explications. XEM rivalise avec le niveau
d’information et l’accessibilité de la méth-
ode post-hoc modèle-agnostique tout en
maintenant la performance. XEM est plus
performante que les méthodes de l’état
de l’art en classification de séries tem-
porelles multivariées sur les jeux de données
publiques UEA.

Ensuite, un nouveau classifieur se re-
posant sur des motifs fréquents (XPM)
est proposé pour la gestion des ressources
dans les exploitations laitières, un classifieur
facile à comprendre avec des explications ac-
cessibles à une audience plus large que celles
des méthodes ensemblistes.

Enfin, cette thèse présente un nou-
veau réseau de neurones à convolution,
XCM, se révelant plus performant que
XEM sur les jeux de données publiques
UEA. De plus, l’architecture de XCM per-
met, grâce à l’utilisation de la méthode
Grad-CAM (post-hoc modèle-spécifique),
une identification précise et exacte des vari-
ables observées et des timestamps des don-
nées d’entrée importants pour les prédic-
tions. XCM avec Grad-CAM présente de
meilleures performances que la méthode en-
sembliste LCE avec SHAP sur l’application
relative à la gestion des ressources dans les
exploitations laitières, tout en améliorant
l’explicabilité avec des explications exactes
et plus informatives. En outre, XCM dé-
tecte environ 20% d’évènements clés en plus
qu’une solution commerciale de référence
sur le jeu de données réel en exploitation
laitière, tout en préservant la même préci-
sion.



Enhancing Performance and Explainability of Multivariate Time Series
Machine Learning Methods

Keywords: Explainable AI, Machine Learning, Multivariate Time Series, Social Impact

Abstract: This thesis aims to enhance the
performance and explainability of multivari-
ate time series machine learning methods,
and derive new insights from the new meth-
ods developed about two real-world appli-
cations.

Firstly, a new performance-explainability
framework to assess and benchmark ma-
chine learning methods is introduced. The
framework details a set of characteris-
tics that systematize the performance-
explainability assessment of existing ma-
chine learning methods.

Then, this thesis presents three new en-
semble methods. The first one, DMSEEW,
is a new stacking ensemble method for
earthquake early warning which provides
faithful and local explanations. DMSEEW
improves the detection of earthquakes with
damaging potential. In particular, it detects
all the large earthquakes with a precision of
100% on a real-world dataset, which is criti-
cal for an earthquake early warning system.
The second one, LCE, is a new hybrid en-
semble method for dairy resource monitor-
ing. It relies on a post-hoc model-agnostic
explainability method, SHAP, which offers
more informative explanations that could
be useful to broader audiences compared
to the first method. However, the enhanced
explanations come at the cost of faithful-
ness, which is a prerequisite for numerous
applications. Therefore, the third method,
XEM, is an extension of the hybrid en-

semble method which integrates faithfulness
with explainability by design. XEM com-
petes with the level of information and the
audience of the post-hoc model-agnostic ex-
plainability method while maintaining per-
formance. XEM outperforms the current
state-of-the-art MTS classifiers on the pub-
lic UEA datasets.

Next, a new pattern-based MTS clas-
sifier for dairy resource monitoring is pro-
posed (XPM), an easy-to-understand model
with explanations accessible to a wider au-
dience compared to the ensemble methods.

Lastly, this thesis presents a new con-
volutional neural network for MTS clas-
sification, XCM, which outperforms XEM
on the public UEA datasets. In addition,
XCM architecture enables faithful and pre-
cise identification of the observed vari-
ables and timestamps of the input data
that are important for predictions using
the gradient-based post-hoc model-specific
method Grad-CAM. XCM with Grad-CAM
exhibits better performance than the en-
semble method LCE with SHAP on the
dairy resource monitoring application, while
enhancing explainability by providing faith-
ful and more informative explanations. Fur-
thermore, XCM detects around 20% more
key events than a commercial solution ref-
erence on a dairy resource monitoring real-
world dataset, while having the same preci-
sion.
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