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Résumé ix

Mathematical Modelling of p62-Ubiquitin aggregates involved in cellular
autophagy

Résumé

Cette thèse vise à modéliser l’agrégation de matériel cytoplasmique ubiquitiné par des oligomères de
p62, qui constitue une étape importante dans l’autophagie cellulaire. Un nouveau modèle mathématique
pour la dynamique de ces agrégats hétérogènes sous la forme d’un système d’équations différentielles
ordinaires est obtenu et analysé. La contribution principale de ces nouveau modèle repose sur le fait
que nous considérons deux particules, à savoir p62 et Ubiquitin, liées l’une à l’autre sous une forme très
particulière, qui accroît drastiquement le niveau de complexité du modèle comparé à des modèles plus
classiques. Dans une première partie, on identifie les trois régimes suivants dépendants des paramètres.
Dans le premier régime, les agrégats sont instables. Dans le second, leur taille est bornée à une valeur
limite. Enfin, dans le troisième régime, leur taille croît tant que les particules du milieu sont en quantité
abondante. Les limites de ces régimes tout comme la taille limite du second cas peuvent être calculées
explicitement. La croissance dans le troisième cas (quadratique en temps) peut aussi être explicitée
par des méthodes asymptotiques formelles. Les résultats qualitatifs sont illustrés par des simulations
numériques. Une comparaison avec des résultats expérimentaux récents permets une paramétrisation
partielle du modèle. Dans une deuxième partie, une analyse partielle de ce modèle est réalisée utilisant
des outils issus de la théorie des systèmes dynamiques. La stabilité locale du régime où les agrégats
sont instables est prouvée via la méthode blow-up. La croissance quadratique du troisième régime est
aussi prouvée localement via une analyse de perturbation géométrique singulière. La fin de la thèse
est consacrée à l’amélioration du modèle précédent. En s’appuyant sur des observations biologiques,
un terme de coagulation est ajouté, ce qui conduit à un modèle de croissance coagulation, dont la
complexité est prohibitive. C’est pourquoi une version simplifiée où les agrégats sont décrits uniquement
par un paramètre est formulée grâce à une analyse multi-échelle. En conclusion, une étude élémentaire
des équations de croissance-coagulation unidimensionnelles est réalisée.

Mots clés : autophagie cellulaire, équations différentielles ordinaires, équations différentielles par-
tielles, systèmes dynamiques, blow-up, équations de transport-coagulation

Abstract

This thesis aims to model the aggregation of ubiquitinated cargo by oligomers of the protein p62, which
is an important preparatory step in cellular autophagy. A new mathematical model for the dynamics of
these heterogeneous aggregates in the form of a system of ordinary differential equations is derived and
analyzed. The main contribution of this new model lies on the fact that we are considering two different
particles, namely p62 and Ubiquitin, attaching to each other in a very specific way, which increases
drastically the complexity level of the model compared to classical ones. In a first part, three different
parameter regimes are identified, where either aggregates are unstable, or their size saturates at a finite
value, or their size grows indefinitely as long as free particles are abundant. The boundaries of these
regimes as well as the finite size in the second case can be computed explicitly. The growth in the
third case (quadratic in time) can also be made explicit by formal asymptotic methods. The qualitative
results are illustrated by numerical simulations. A comparison with recent experimental results permits
a partial parametrization of the model. In a second part, a partial analysis of this model using dynamical
systems tools is also made. The local stability of the regime where the aggregates are unstable is proved
using blow-up. The locally quadratic growth in the third regime is also proved using geometric singular
perturbation analysis. The end of the thesis is dedicated to the improvement of the former model.
Based on biological observations, a coagulation term is added, which leads to a prohibitively complex
growth-coagulation model. This is why a simplified version based on a multiscale analysis is formulated
where aggregates are only described by one parameter. To conclude, a first basic study of unidimensional
growth-coagulation equations is made.

Keywords: cellular autophagy, ordinary differential equations, partial differential equations, dy-
namical systems, blow-up, transport-coagulation equations
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Chapitre 1

Introduction

1.1 A biological phenomenon : Autophagy

1.1.1 Presentation of selective autophagy

Autophagy, from the greek αυτoς (self) and ϕαγειν (to eat) is a process during which euka-
ryotic cells degrade unwanted or harmful intracellular substances and recycle their components.
Together with the ubiquitin-proteasome system (UPS), autophagy constitutes one of the two
major routes for the degradation of intracellular material. Several types of autophagy have been
described but hereafter we will only consider macroautophagy, which will be referred to as auto-
phagy. During autophagy, double membrane organelles called autophagosomes are created. Au-
tophagosomes form from vesicular membrane precursors and grow as crescent-shaped membranes
called isolation membranes. Isolation membranes engulf cytoplasmic material (cargo) until they
seal into a closed double membrane vesicle, in which the cargo remains trapped. The autopha-
gosomes then fuse with lysosomes, which contain enzymes able to degrade the autophagosomes’
cargoes. These steps are recalled in Figure 1.1.

Autophagy is thought to be both non-selective and selective towards its cargoes. Non-selective
autophagy happens during starvation and mainly serves to recycle building blocks, while selective
autophagy degrades specific cargoes such as protein aggregates, damaged mitochondria, and
intracellular pathogens. As a consequence, defects in autophagy have been associated with a
wide range of diseases, such as neurodegeneration, cancer, and decreased innate immunity. For the
rest of this dissertation only selective autophagy will be taken into account. Selective autophagic
cargos are typically tagged with poly-ubiquitin (i.e. chains of ubiquitin molecules linked via
different linkage types). Ubiquitinated cargos are then tethered to the isolation membranes by a
cargo receptor protein. The most studied mammalian cargo receptor is p62/SQSTM1.

1.1.2 The cargo receptor p62/SQSTM1

The linking of the ubiquitinated cargo to the isolation membrane through p62/SQSTM1 is
made possible thanks to two sites : the LIR motif, which is a binding site to molecules of the
Atg8 family such as LC3B that are found attached to the membranes of autophagosomes, and
the UBA domain, which is a binding site to Ubiquitin (See Figure 1.2). p62/SQSTM1 possess
also a third site called PB1 domain that mediates self-oligomerization. To bind LC3B molecules,

1



2 CHAPITRE 1. Introduction

Figure 1.1 – Autophagy delivers cytoplasmic material to the lysosomal compartment for de-
gradation. (1) Membrane donors including Atg9 vesicles nucleate an isolation membrane. (2)
The isolation membrane expands and engulfs cytoplasmic cargo material including organelles
and macromolecules. (3) The isolation membrane matures into a closed double- membrane au-
tophagosome. (4) The outer autophagosomal membrane fuses with a lysosome (or the vacuole
in yeast), leading to the degradation of the inner membrane and the cargo. (5) Components are
recycled back into the cytoplasm. This figure and the caption are taken from [49].

it is not enough for p62 to have a functional LIR motif domain (See [47]), it is also required that
the PB1 oligomerization domain of p62 be functional, which means that the ability of p62 to bind
cargoes depends on its ability to self-oligomerize. In addition to this role of cargo receptor, p62
has also been involved in the formation of ubiquitinated protein aggregates, which subsequently
become cargos for autophagy (See [7] and [28]). This activity has been reconstituted in vitro
in [52], which constitutes the object of the model presented in this dissertation. The capacity
of p62 to self-oligomerize plays again an important role for the interaction between p62 and
ubiquitin as discussed in further detail in 1.1.3.

Figure 1.2 – Schematic representation of the p62 domain architecture.

1.1.3 Interaction between p62/SQSTM1 and ubiquitin in vitro

The isolated UBA domain of p62 binds mono-ubiquitin with a relatively low affinity (Accor-
ding to [34], Kd ≈ 540µM). Oligomers of p62 show a higher avidity with ubiquitin chains and

Version intermédiaire en date du 17 décembre 2020



1.2. First model 3

in general with locally concentrated ubiquitin and, thus, stabilize the binding with the ubiqui-
tinated cargo material (See [49]). However, the strength of this interaction depends also on the
form of the ubiquitin with which oligomers of p62 binds. In [52], different forms of ubiquitin have
been tested, among them ubiquitin chains but also mono-ubiquitin and multi-mono-ubiquitin.
The conclusion of the study is that the interaction is the strongest (compared with mono-, bi-
, tri-ubiquitin, and ubiqutin chains K48 and K63), when oligomers of p62 are in presence of
tetra-ubiquitin.

1.2 First model
We designed a new model, which focuses on the interaction in vitro between oligomers of p62

and tetra-ubiquitin in the in vitro reconstitution of [52].

1.2.1 Modelling assumptions

We consider thus two types of basic particles :

1. Oligomers of the protein p62, where we assume for simplicity that all oligomers contain the
same number n ≥ 3 of molecules. These oligomers are denoted by p62n and are assumed
to possess n binding sites for ubiquitin each,

2. Cross-linkers in the form of tetra-ubiquitin, denoted by Ubi and assumed to have two
ubiquitin ends each. When one end of a Ubi is bound to a p62n, we call it one-hand
bound, when both ends are bound we call it both-hand bound.

The modelling of the experiments [47] is quite complex and requires to consider aggregates for-
med from different particles. This corresponds also to a growing concern in Biology, as it is now
clear that the heterogeneity of aggregates plays a major role in some phenomena such as the
explanation of abnormal functionality in amyloid fibrils for instance (See [2]). To our knowledge,
all the existing models in the literature consider aggregates described by one parameter, which is
its unidimensional size (for polymers, it corresponds to the number of monomers it contains). For
the majority of them, the aggregates are formed from one type of particle or species leading to a
huge literature. Considering aggregates coming only from one species, has enabled to investigate
a wide variety of phenomena : nucleation, polymerization (See [6]), depolymerization, fragmen-
tation and coagulation (See [16], [3], [30]), although it does not describe the majority of the
aggregates biologists and physicists face. This is why, reflecting the growing interest in Biology
for taking into account the diversity of aggregates, very recent attempts (2018 for [15] and 2020
for [10]) have been made to take into account the plurality of monomers, such as in [15], where
two types of monomers are considered, or as in [10]. Nevertheless, in the end, these attempts
consider aggregates described by one parameter, and thus fail to take into account the heteroge-
neity of real aggregates. When two types of particles are involved, which affects the structure of
the aggregate as in our model, this is not anymore possible. It should be described at least by
two parameters.
In our model, we decide to describe an aggregate by three parameters, in order to take into
account the two different ways the two particles we are considering (Ubiquitin one-hand bound
or both-hand bound to p62n) could bind. Hence, in our model, an aggregate is represented by a
triplet (i, j, k) ∈ N3

0, where :

1. i denotes the number of one-hand bound Ubi,
2. j denotes the number of both-hand bound Ubi,
3. k denotes the number of p62n.
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4 CHAPITRE 1. Introduction

However, even by taking into account three parameters, our model fails to associate bijectively
an aggregate with a triplet. In other words, as soon as i, j, k > 1, a same triplet represents several
different aggregates.
In the first version of our model, we consider that :

1. aggregates grow in a medium with unlimited quantities of our two basic particles namely
p62n and Ubi

2. they do not interact with each other (no coagulation).
Thus we do not take into account in the first version of our model either coagulation or nucleation
or fragmentation.

1.2.2 Model
To account for growth and shrinking of aggregates, we consider only three possible reactions

that could be related to polymerization in some sense (adding of one of the two basic particles
that play an equivalent role as the one played by monomers) and their reverse counterparts with
associated (positive) kinetic reactions rates κ1, κ2, κ3, κ−1, κ−, that are introduced in Chapter
2. This leads to an infinite discrete system similarly as the Becker-Döring system presented in [5]
or as in [15], that we do not explicitely write because of the complexity brought by the three
instead of one parameters describing one aggregate. We consider the growth of a population
of aggregates of same size (i, j, k) with i, j, k large enough, so that they can be replaced by
continuous parameters p = i

k0
, q = j

k0
and r = k

k0
, with k0 a typical value of [Ubi] and [p62n],

assumed of the same order of magnitude. The system rewritten in terms of these continuous
parameters is a transport equation (See Appendix A for the derivation). Finally, the equation
satisfied by the characteristic curves of this transport equation is given by the following nonlinear
ODE model :

ṗ = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

q̇ = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

ṙ = κ2p− κ−qα(q, r) , r(0) = r0 ,

(1.1)

where
α(q, r) :=

nr − 2q

(n− 2)r
, 0 6 α(q, r) 6 1, nr − p− 2q > 0. (1.2)

1.2.3 Analysis of the first model
We observe numerically three mutually exclusive regimes depending on the values of the

parameters (the reactions rates κ1, κ2, κ3, κ−1, κ−). We make the following conjecture :

Conjecture 1 (Chapter 2). We define

ᾱ =
n

n− 2
+
κ−1 + κ1 −

√
(κ1 + κ−1)2 + 4κ1κ2(n− 1)

κ−(n− 1)
. (1.3)

Then,
1. if 0 < ᾱ < 1, then all solutions of (3.1) converge to (p̄, q̄, r̄) as t→∞,
2. if ᾱ ≥ 1, then all solutions of (3.1) converge to (0, 0, 0) as t→∞,
3. if ᾱ ≤ 0, then for all solutions of (3.1) we have p(t), q(t), r(t)→∞ as t→∞.
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1.3. Dynamical systems tools used for the study of the first model 5

One can note that ᾱ does not depend on the value of κ3. Hence, it could seem that the
different regimes do also not depend of the value of κ3, which may question the relevance of
the third reaction. In fact, the definition of the non-trivial steady-states p̄, q̄ and r̄ as well as
the expressions of p, q and r in the growing polynomial regime involve κ3. The only necessary
condition is that κ3 > 0 (See Chapter ??). In the same chapter, we also study the case where
κ3 = 0 in which we do not observe these three regimes. The aim of the Chapter ?? is to prove
partially this conjecture using dynamical systems tools, that we introduce hereafter in Subsection
1.3.1.

1.3 Dynamical systems tools used for the study of the first
model

Basic notions of dynamical systems will not be recalled. The interested reader could have a
look at [9], [37], [29] and [25].

In the Subsection 1.3.1, we recall the classical method to study of an ODE system, in order
to show in the Subsection 1.3.2 that it does not apply to prove the Conjecture 1. In the Subsec-
tions 1.3.3 and 1.3.4, we introduce other dynamical system tools that enable us to prove partially
the Conjecture 1 in the Chapter ??.

1.3.1 Classical study of the stability of the steady states of a nonlinear
ODE system

We consider the following general ODE system :

ẋ = f(x) (1.4)

with x ∈ Rn is a vector and f : Rn → Rn a continuously differentiable function.

Definition. A steady-state x0 ∈ Rn is called hyperbolic, when all the eigenvalues of the Jacobian
matrix at x0, denoted hereafter Dfx0

, have their real part different from zero.

Theorem (Hartman Grobman - quoted as in [9]). If x0 is a hyperbolic rest point for the autono-
mous differential equation (1.4), then there is an open set U containing x0 and a homeomorphism
H with domain U such that the orbits of the differential equation (1.4) are mapped by H to orbits
of the linearized system ẋ = Dfx0(x− x0) in the set U .

1.3.2 Application to the ODE model

The ODE system (1.1) can be rewritten in the general form (1.4) with n = 3 and x = (p, q, r).
It admits two steady-states (See Section ??) :

1. the origin or zero steady-state (p, q, r) = (0, 0, 0)

2. a non-trivial steady-state (p̄, q̄, r̄) given by :

p̄ = κ−κ2

κ3

(n−(n−2)ᾱ)(1−ᾱ)
2ᾱ(2κ2(n−2)−κ−n+κ−(n−2)ᾱ) ,

q̄ =
κ2
2

κ3

(1−ᾱ)
ᾱ2(2κ2(n−2)−κ−n+κ−(n−2)ᾱ) ,

r̄ = 2
κ2
2

κ3

(1−ᾱ)
ᾱ2(2κ2(n−2)−κ−n+κ−(n−2)ᾱ) .

(1.5)
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6 CHAPITRE 1. Introduction

Study of the zero steady-state

α(0, 0) is not well-defined. Notwithstanding, the zero steady-state can still be defined because
α(q, r) is bounded (see (1.2)), so that we have nevertheless that qα(q, r) is equal to 0 in (q, r) =
(0, 0). However, the derivatives are not smooth. Consequently, the Jacobian matrix cannot be
defined at the origin (0, 0, 0). Thus, the stability of the zero steady-state (0, 0, 0) cannot be
studied using the methods mentioned in 1.3.1. To remove the singularity, we make the following
time-change of variable t→ τ :=

∫ t
0

ds
r(s) , which transforms the system (1.1) into the polynomial

system (1.6), which is well-defined at (p, q, r) = (0, 0, 0) :

dp

dτ
= (κ1 − κ3p)(nr − p− 2q)r + κ−q

(
r − (n− 1)p

(n− 2)

)
− (κ2 + κ−1)pr , p(0) = p0 ,

dq

dτ
= κ2pr + κ3pr(nr − p− 2q)− κ−q , q(0) = q0 ,

dr

dτ
= κ2pr − κ−q(nr − 2q) , r(0) = r0 .

(1.6)

The Jacobian matrix associated with (1.6) at (0, 0, 0) is the zero matrix. Therefore, its three
eigenvalues are zero, which makes (0, 0, 0) a non-hyperbolic point for (1.6). Hence, the theory
introduced in 1.3.1 cannot apply and we cannot study the stability with the classical theory
the stability of the origin of our system. We introduce the blow-up theory that apply for non-
hyperbolic points in the next subsection.

Study of the non-trivial steady-state

Before to studying the stability of the non-trivial steady-state, one should check its existence
conditions. The formulae (1.5) are indeed not always defined. In Section ??, we show that they
are well defined and positive when the quantity ᾱ defined by (1.3) is between 0 and 1. When ᾱ ∈
[0, 1], one could theoretically compute the Jacobian matrix Df(p̄,q̄,r̄) and look at its eigenvalues.
However, because of the formulae (1.5), this computation becomes intractable and not solvable
even using computer tools such as Mathematica. Nevertheless, we conjecture in Section ?? from
simulations of the system (1.1) that the non-trivial steady-state is stable for values of parameters
κ1, κ2, κ3, κ−1, κ−, such that ᾱ ∈ [0, 1].

1.3.3 Blow-up and application to the first model

To have a deeper understanding of blow-up, we refer to [25].

Blow-up enables to gain insight into what is happening in a neighbourhood of a non-hyperbolic
point of a dynamical system. The idea is to blow up the non-hyperbolic point to a higher-
dimensional structure such as a sphere, thanks to a change of variables that is not a diffeomor-
phism. The blow-up of a point into a sphere is called homogeneous blow-up. Although other forms
are possible, we will not consider them as they are not necessary for the understanding of our
case presented in Section ??. Then, one studies the singularities appearing on this new structure.
If these new singularities are still non-hyperbolic, the procedure is repeated. We show hereafter
the different steps of the blow-up of the origin of a vector field in R3 into a sphere S2(R), similar
as the one we do in Section 2.3. The homogeneous blow-up (See Figure 1.3) Γ : S2(R)×R∗+ → R3

is a map that uses the same weights for each coordinate of the vector field :

Γ(p̄, q̄, r̄, ρ) = (ρp̄, ρq̄, ρr̄) = (p, q, r).
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1.3. Dynamical systems tools used for the study of the first model 7

Figure 1.3 – Blow-up of the origin (0, 0, 0) into a sphere of radius ρ.

The dynamics in spherical coordinates is quite difficult to study. This is why often while not
always suitable charts are chosen, where the computations of the blow-up are done in local
coordinates. In R3, this defines the six following usual charts on the sphere S2(R) : Kp defined by
Kp := {(p, q, r) ∈ S2(R) : p > 0}, Kq defined by Kq := {(p, q, r) ∈ S2(R) : q > 0}, Kr defined by
Kr := {(p, q, r) ∈ S2(R) : r > 0}, K−p defined by K−p := {(p, q, r) ∈ S2(R) : p < 0}, K−q defined
by K−q := {(p, q, r) ∈ S2(R) : q < 0}, and K−r defined by K−r := {(p, q, r) ∈ S2(R) : r < 0}.
Only the three charts Kp, Kq and Kr are necessary to describe the dynamics, when p, q, r > 0 as
in Section ??.

Then, we have that for each i = p, q, r,−p,−q,−r, we have Γ = Ki ◦ µi, where µi is the local
blow-up map on Ki. In each blow-up map, the dynamics is studied using the local coordinates.
Typically, for the chart Kq used in Chapter ??, the local coordinates are (p1, q1, r1) = (pq, q, rq).
Then, the dynamics of the local coordinates is computed from the original dynamics in each
chart. In our case, because p,q and r are positive, we only have to consider the first positive
octant of S2(R). This means that we only have to consider the charts Kp, Kq, Kr. Moreover,
because of the two inequalities (1.2), the dynamics evolves only in a subset of this octant, where
all the information could be provided by the chart Kq. Studying the dynamics in the chart Kq,
we are able to prove the following theorem.

Theorem 5 (Chapter 3). Let ᾱ be defined by (1.3). Then the steady state (0, 0, 0) of the system
(1.1) is locally asymptotically stable for ᾱ > 1 and unstable for ᾱ < 1.

It proves partially the local stability of the trivial steady-state (0, 0, 0) under the condition
ᾱ > 1, which is a weakened version of the first conjecture of Conjecture 1. We now present the
tools necessary to understand a proof of a weakened (also local) version of the third conjecture
of Conjecture 1.

1.3.4 Poincaré-compactification, geometric singular perturbation theory
and application to the first model

In fact, the third conjecture of Conjecture 1 can be refined using the following theorem (See
Chapter ??).
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8 CHAPITRE 1. Introduction

Theorem 2 (Chapter 2). If ᾱ < 0, then there exists a formal approximation of a solution of
(3.1) of the form

p(t) = p1t+ o(t) , q(t) = q2t
2 + o(t2) , r(t) =

2q2

n
t2 + o(t2) , as t→∞ , (1.7)

with
p1 = κ−n

κ3(2nκ2+κ−n+4κ−1)

(
κ1κ2 − κ−n

2(n−2)

(
κ1 + κ−1 + κ−n(n−1)

2(n−2)

))
> 0 ,

q2 = n
2 r2 = κ3(n−2)(2nκ2+κ−n+4κ−1)

κ−(4κ1(n−2)+κ−n2) p2
1 .

The approximation is (from a formal point of view) unique, including the choice of the exponents
of t, among solutions with polynomially or exponentially growing aggregate size r.

Hence, we can reformulate the third conjecture of Conjecture 1 by excluding the case ᾱ = 0
into the following :

Conjecture 2. if ᾱ < 0, then all solutions converge towards infinity in the polynomial manner
introduced in Theorem ??.

In Chapter ??, we only prove a local result of this conjecture, which means that we have to
look at p(0), q(0), and r(0) close to infinity (actually, more detailed conditions expressing that
q(0) and r(0) should be of the order of p(0)2 are needed). To do so, we perform the change
of variable (p, q, r) → (u = p√

p+q
, v = 2p+2q−nr√

p+q
, w = 1√

p+q
), which has been inspired by the

Poincaré compactification that we explain hereafter.

Poincaré compactification

The Poincaré compactification allows to look at the behavior near infinity of a dynamical
system. Basically, points x ∈ Rn, with n > 2 are projected onto the sphere Sn. The points
x ∈ Rn that are near infinity, i.e. the points who have at least one of their coordinates xi with
i ∈ J1, nK close to infinity are projected onto the sphere Sn−1 (See Figure 1.4). There is one
projection in the upper-sphere f+(x) and one projection in the lower-sphere f−(x) (See Figure
1.4). Hereafter, we decided to present the theory for n = 2, which, we hope, will help the reader
to better understand. The idea is to consider R2 as a plan in R3. A point (x1, x2) in R2 is thus
bijectively associated to the point (x1, x2, 1).

f+(x) = (
x1

∆(x)
,
x2

∆(x)
,

1

∆(x)
)

f−(x) = (
−x1

∆(x)
,
−x2

∆(x)
,
−1

∆(x)
) (1.8)

with :
∆(x) =

√
x2

1 + x2
2 + 1.

This dynamics is quite complicated to study on S2(R), this is why we consider it in the same
local charts as in Blow-up (See Subsection 1.3.3). In the exact same way as in 1.3.3, the dynamics
of the local coordinates can be rewritten and studied. Typically, in the chart K1 = {(x1, x2) ∈
S2(R) : x1 > 0}, the local coordinates are (x2

x1
, 1
x1

) (For more details, see [25]).
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1.3. Dynamical systems tools used for the study of the first model 9

Figure 1.4 – The point x = (x1, x2) has two projections F1 := f+(x) and F2 := f−(x) defined
by (A.2) on the sphere S2(R). Points at infinity will be projected onto the circle which is the
sphere S1(R).

Application

In our case p+ q goes towards +∞ and plays the role of the variable x1, which goes towards
+∞ Hence, the variable w is equivalent to the variable 1

x1
and w goes to 0. Similarly, assuming

that under the condition ᾱ < 0, the solutions converge towards the formal solution presented
in Theorem ??, then u and v converge towards steady-states, similarly as the variable x2

x1
is

also going towards a steady-state of the sphere S1(R). Thus, we are able to translate the ODE
for (p, q, r) into an ODE for (u, v, w). If we can prove locally that w goes like 1

t2 when t goes
to infinity while u and v go towards steady-states when t goes to infinity, then we would have
proven that (p, q, r) go towards infinity in the manner stated in Theorem ??. This is done in
Chapter ?? using geometric singular perturbation theory, whose basic results are recalled in the
following subsection.

Geometric singular perturbation theory

References for geometric singular perturbation theory are [29] and [24].

Now, we consider dynamical systems of the particular form :

ẋ = εf(x, y, ε) (1.9)
ẏ = g(x, y, ε) (1.10)

where :

x ∈ Rm, y ∈ Rn, 0 < ε� 1, f : Rm × Rn × R→ Rm, g : Rm × Rn × R→ Rn.
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10 CHAPITRE 1. Introduction

x is called the slow variable and y the fast variable. Under the change of variable τ := εt,
(1.9)-(1.10) becomes :

x′ = f(x, y, ε) (1.11)
εy′ = g(x, y, ε) (1.12)

where ′ := d
dτ . The system (1.11)-(1.12) (respectively (1.9)-(1.10)) is called the slow (respectively

fast) system because the time τ is slower than the time t. When ε is equal to zero, on the one
hand (1.9)-(1.10) becomes the system (1.13)-(1.14), which is called the layer problem. On the
other hand, (1.11)-(1.12) becomes (1.15)-(1.16), which is called the reduced problem.

ẋ = 0 (1.13)
ẏ = g(x, y, 0) (1.14)

x′ = f(x, y, 0) (1.15)
0 = g(x, y, 0) (1.16)

Now, we recall some definitions in order to quote the Fenichel’s theorem which links the dynamics
(1.9)-(1.10) and the dynamics (1.15)-(1.16) .

Definition. The manifold C0 defined by (1.16) is called the critical manifold, i.e. C0 = {(x, y) ∈
Rm × Rn : g(x, y, 0) = 0}.
Definition (as in [29]). A subset S ⊂ C0 is called normally hyperbolic if the n × n matrix
(Dyg)(p, 0) of first partial derivatives with respect to the fast variables has no eigenvalues with
zero real part for all p ∈ S.
Definition. A normally hyperbolic subset S ⊂ C0 is called attracting if all eigenvalues of
(Dyg)(p, 0) have negative real parts for p ∈ S.
Theorem (Fenichel - adapted and simplified from [29]). Suppose S = S0 is a compact normally
hyperbolic submanifold (possibly with bound- ary) of the critical manifold C0 of the slow system
(1.11)-(1.12) and suppose that f, g smooth. Then for ε > 0 sufficiently small the following hold :

1. There exists a locally invariant manifold Sε, diffeomorphic to S0. Local invariance means
that trajectories can enter or leave Sε only through its boundaries.

2. Sε is close to S0.
3. The flow on Sε converges to the slow flow as ε→ 0.
4. Sε is normally hyperbolic and has the same stability properties with respect to the fast

variables as S0 (attracting, repelling or saddle-type).

Applying this theorem twice in Chapter ?? enables us to prove the two following theorems.

Theorem 6 (Chapter 3). Let ᾱ < 0 hold. Then, for ε > 0 small enough, the solution of (3.12)
with initial conditions

u(0) = u0 > 0 , v(0) = v0 ∈ R , w(0) = ε ,

satisfies

u(τ) = û(τ)− U(v0) + U(ṽ(ετ)) +O(ε) ,

v(τ) = ṽ(ετ) +O(ε) ,

w(τ) = ε(1 + 2A∗ε2τ)−1/2 +O(ε2) ,
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uniformly in τ ≥ 0, where U , û, ṽ, and A∗ are introduced in Chapter ??.

This theorem states that the variables u and v go towards steady-states and w goes towards
0 when t→∞, under the condition ᾱ < 0, which is exactly what we aimed at using the change
of variable (p, q, r)→ (u, v, w). This allows us to prove the last theorem which proves locally the
third conjecture of Conjecture 1.

Theorem 7 (Chapter 3). Let ᾱ < 0 hold, let c2 ≥ c1 > 0, and let δ > 0 be small enough. Let
the initial data satisfy

p0 =
c1
δ
, q0 =

1

δ2
, r0 =

2

nδ2
+
c2
nδ

Then the solution of (3.1) with (p(0), q(0), r(0)) = (p0, q0, r0) satisfies

p(t) = u∗A∗t+ o(t) , q(t) = (A∗)2t2 + o(t2) , r(t) =
2

n
(A∗)2t2 + o(t2) , as t→∞ .

Hence, we have proven that under the condition ᾱ < 0, starting with initial conditions quoted
as in Theorem 7, the solutions of (1.1) converge towards the formal solutions found in Theorem
??.

1.4 Improved model and perspectives

1.4.1 Adding coagulation

As explained in Chapter ??, it seems biologically relevant to take into account coagula-
tion between aggregates in our model, which leads to unidimensional transport-coagulation or
growth-coagulation equations, which have never been studied to our knowledge. The transport-
coagulation equations that we study can be apparented to the following equation :

∂
∂tf(x, t) + ∂

∂x

(
v(x)f(x, t)

)
= 1

2

x∫
0

k(x− y, y)f(x− y, t)f(y, t)dy

−
∞∫
0

k(x, y)f(y, t)f(x, t)dy,

f(0, t) = f0.

(1.17)

with f0 > 0, v(x) a C1 decreasing function and x0 > 0 such that v(x0) = 0, K(x, y) a symetric
coagulation kernel - we shall consider here only K(x, y) = 2, K(x, y) = x+ y and K(x, y) = xy.
In the following, we present properties of the classical continuous coagulation or Smoluchowski
equation (See [43]) that will be useful for Chapter ??.

1.4.2 Continuous coagulation equations

Coagulation equations and its variant fragmentation-coagulation equations have been extensi-
vely studied in details these last years. Among many other, important references for coagulation
equations are [1], [14] and for fragmentation-coagulation equations [16], [19], [4].

The continuous coagulation equation considers coagulation only between two particles and reads
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as follows :

∂tf(x, t) = C(f, f) (1.18)
f(0, t) = f0,

with :

C(f, f) = C1(f, f)− C2(f, f) (1.19)

C1(f, f) =
1

2

∫ x

0

k(x− y, y)f(x− y, t)f(y, t)dy (1.20)

C2(f, f) = f(x, t)

∫ ∞
0

k(x, y)f(y, t)dy. (1.21)

k is the coagulation kernel, whose form is chosen depending on the physical experiment conside-
red (See [40], [1]). C is the coagulation term. It can be divided in two terms C1(f, f) and C2(f, f),
which expresses respectively how the system can gain (respectively lose) a particle of size x. A
particle of size x is formed by coagulation between two particles of size y 6 x and x − y > 0,
while it is consumed by coagulation with particles of any size y > 0. The coagulation process
decreases the number of particles and formally conserves the mass. Nevertheless, the conservation
of mass can be violated at infinity when coagulation kernels are large enough (typically the mul-
tiplicative kernel K(x, y) = xy). This phenomenon is called gelation (See e.g. [19], [1], [14], [20]).
Necessary and sufficient conditions to lead to gelation have been studied, especially, while adding
other terms such as fragmentation, which is the opposite reaction of coagulation. Fragmentation
counter-balances coagulation and a strong enough fragmentation kernel can prevent gelation
(See [20]). Analogously, in Chapter ??, we proved for the multiplicative kernel that there exists a
unique steady-state under certain assumptions on the transport term, which means that gelation
can be prevented by a strong enough transport term. Other phenomena have been extensively
studied for coagulation and fragmentation-coagulation equations including self-similar solutions
( [21]), stationary solutions ( [31]) and convergence to equilibrium ( [32]). We are especially
interested in studying steady states that are biologically relevant. Steady-states have been pre-
viously studied for fragmentation-coagulation equations (See [17]). In Chapter ??, we find that
transport-coagulation equations can admit exponential steady-states when prescribing very spe-
cial transport speeds. Existence of steady-states for the multiplicative kernel is performed using
a fix point theorem, inspired by [17]. We also studied Laplace transforms such as in [35] and [14],
where the equations for the Laplace transforms (and desingularized Laplace transforms) and
moments derived from the coagulation equation (1.19) are computed for the constant, additive
and multiplicative kernels i.e. respectively K(x, y) = 2, K(x, y) = x + y, K(x, y) = xy. The
equations derived for the desingularized Laplace transforms are particularly simple and allow to
obtain information on the initial equation. Unfortunately, in the case of transport-coagulation
equation, the equations derived from the Laplace transforms (or desingularized transforms) are
far more complicated.

1.4.3 Perspectives

Perspectives of our work is an extensive study of the improved model both theoretically but
also numerically in order to compare with biological data. Theoretically, we expect at short term
to solve the moment problem presented in Chapter ?? and a convergence rate of the convergence
toward the steady state obtained for the multiplicative kernel. At long term, we expect to have
more general results and conditions on mass-conserving solutions and gelation for different types
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of kernels (not necessarily explicit). Numerically, we are currently working on a numerical scheme
of a transport-coagulation equation inspired by [8], [27] and [23]. We expect to obtain simulations
that could help us to make conjectures for the theoretical results but above all that could be
compared to biological videos of G. Zaffagnini.
Other perspectives are adaptation of our model to other problems involving aggregates made out
of two particles in biology.
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Chapitre 2

A mathematical model of
p62-ubiquitin aggregates in
autophagy

This chapter comes from an article that has been submitted to the Journal of Mathematical
Biology and has been written in collaboration with M. Doumic, S. Martens, C. Schmeiser and
G. Zaffagnini.

2.1 Introduction
Autophagy is an intracellular pathway, which targets damaged, surplus, and harmful cy-

toplasmic material for degradation. This is mediated by the sequestration of cytoplasmic cargo
material within double membrane vesicles termed autophagosomes, which subsequently fuse with
lysosomes wherein the cargo is hydrolyzed. Defects in autophagy result in various diseases inclu-
ding neurodegeneration, cancer, and uncontrolled infections [33]. The selectivity of autophagic
processes is mediated by cargo receptors such as p62 (also known as SQSTM1), which link the
cargo material to the nascent autophagosomal membrane [12]. p62 is an oligomeric protein and
mediates the selective degradation of ubiquitinated proteins. Its interaction with ubiquitin is
mediated by its C-terminal UBA domain, while it attaches the cargo to the autophagosomal
membrane due to its interaction with Atg8 family proteins such as LC3B, which decorate the
membrane [36]. Additionally, p62 serves to condensate ubiquitinated proteins into larger conden-
sates or aggregates, which subsequently become targets for autophagy [44,50]. It has been repor-
ted that this condensation reaction requires the ability of p62 to oligomerize and the presence of
two or more ubiquitin chains on the substrates [47,50].

In this chapter a mathematical model for the condensation process is derived and analyzed.
It is based on cross-linking of p62 oligomers by ubiquitinated substrate [50]. A cross-linker is
assumed to be able to connect two oligomers, where each oligomer has a number of binding sites
corresponding to its size. As an approximation for the dynamics of large aggregates, a nonlinear
system of ordinary differential equations is derived.

The oligomerization property of p62 has been shown to be necessary in the formation of
aggregates [50] : too small oligomers of Ubiquitin do not form aggregates [47].

The dynamics of protein aggregation has been studied by mathematical modelling for several
decades, but most models consider the aggregation of only one type of protein, which gives rise to

15



16 CHAPITRE 2. A mathematical model of p62-ubiquitin aggregates in autophagy

models belonging to the class of nucleation-coagulation-fragmentation equations, see e.g. [6,39,48]
for examples in the biophysical literature, and [3, 11, 16, 30] for a sample of the mathematical
literature. Contrary to these studies, the present work considers aggregates composed of two
different types of particles with varying mixing ratios, which drastically increases the complexity
of the problem.

In the following section the mathematical model is derived. It describes an aggregate by
three numbers : the number of p62 oligomers, the number of cross-linkers bound to one oligomer,
and the number of cross-linkers bound to two oligomers. The model considers an early stage of
the aggregation process where the supply of free p62 oligomers and of free cross-linkers is not
limiting. Since no other information about the composition of the aggregate is used, assumptions
on the binding and unbinding rates are necessary. In the limit of large aggregates, whose details
are presented in an appendix, the model takes the form of a system of three ordinary differential
equations. Section 3 starts with a result on the well posedness of the model, and it is mainly
devoted to a study of the long-time behaviour by a combination of analytical and numerical
methods. Depending on the parameter values, three different regimes are identified, where either
aggregates are unstable and completely dissolved, or their size tends to a limiting value, or they
keep growing (as long as they do not run out of free oligomers and cross-linkers). In Section 4
we discuss the parametrization of the model and a comparison with data from [50].

2.2 Presentation of the model

Discrete description of aggregates : We consider two types of basic particles :

1. Oligomers of the protein p62, where we assume for simplicity that all oligomers contain the
same number n ≥ 3 of molecules. These oligomers are denoted by p62n and are assumed
to possess n binding sites for ubiquitin each,

2. Cross-linkers in the form of ubiquitinated cargo, denoted by Ubi and assumed to have
two ubiquitin ends each. When one end of a Ubi is bound to a p62n, we call it one-hand
bound, when both ends are bound we call it both-hand bound.

An aggregate is represented by a triplet (i, j, k) ∈ N3
0, where i denotes the number of one-hand

bound Ubi, j denotes the number of both-hand bound Ubi, and k denotes the number of p62n.
It is a rather drastic step to describe an aggregate only by these three numbers, since the same
triplet might represent aggregates with various forms. This will affect our modelling below.

An aggregate will be assumed to contain at least two p62n, i.e. k ≥ 2, and enough both-hand
bound Ubi to be connected, i.e. j ≥ k − 1. Furthermore, an aggregate contains nk binding sites
for Ubi, implying i+ 2j ≤ nk. A triplet (i, j, k) ∈ N3

0 satisfying the three inequalities

k ≥ 2 , j ≥ k − 1 , i+ 2j ≤ nk , (2.1)

will be called admissible. An example of an admissible triplet describing a unique aggregate shape
is (0, k − 1, k), representing a chain of p62n. Adding one both-hand bound Ubi already creates
a shape ambiguity : The triplet (0, k, k) can be realized by a circular aggregate or by an open
chain, where one connection is doubled.

The reaction scheme : Basically there are only two types of reactions : binding and unbinding
of Ubi to p62n. However, depending on the situation these may have various effects on the
aggregate, whence we distinguish between three binding and three unbinding reactions.
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Figure 2.1 – Examples for Reactions 1 (left) and 2 (right) with p625 in black, one-hand bound
Ubi in green, two-hand bound Ubi in red, free particles in blue. Reaction 1 : Ubi + (1, 3, 3) →
(2, 3, 3). Reaction 2 : p625 + (2, 3, 3)→ (1, 4, 4).

1. Addition of a free Ubi, requiring at least one free binding site, i.e. nk− i− 2j ≥ 1, (see
Fig. 2.1) :

Ubi+ (i, j, k)
κ′1−→ (i+ 1, j, k)

The reaction rate (number of reactions per time) is modeled by mass action kinetics for
a second-order reaction with reaction constant κ′1 and with the number [Ubi] of free Ubi.
Since free Ubi and free p62 oligomers will be assumed abundant, their numbers [Ubi] and
[p62n] will be kept fixed and the abbreviation κ1 = κ′1[Ubi] will be used. This leads to a
first-order reaction rate

r1 = κ1(nk − i− 2j) . (2.2)

2. Addition of a free p62n, requiring at least one one-hand bound Ubi, i.e. i ≥ 1 :

p62n + (i, j, k)
κ′2−→ (i− 1, j + 1, k + 1)

Analogously to above, we set κ2 = κ′2[p62n] and

r2 = κ2i . (2.3)

3. Compactification of the aggregate by a Ubi binding its second hand, requiring at least
one one-hand bound Ubi, i.e. i ≥ 1, and at least one free binding site, i.e. nk− i−2j ≥ 1 :

(i, j, k)
κ′3−→ (i− 1, j + 1, k)

This is a second-order reaction with rate

r3 = κ′3i(nk − i− 2j) . (2.4)

4. Loss of a Ubi, requiring at least one one-handed Ubi, i.e. i ≥ 1. This is the reverse
reaction to 1 :

(i, j, k)
κ−1−−→ Ubi+ (i− 1, j, k)

Its rate is modeled by
r−1 = κ−1i . (2.5)

5. Loss of a p62n (leading to loss of the whole aggregate if k = 2) :

(i, j, k)
κ−αj,k−−−−→ p62n + ` Ubi+ (i+ 1− `, j − 1, k − 1)
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This and the following reaction need some comments. They are actually both the same
reaction, namely breaking of a cross-link, which we assume to occur with rate κ−j. Howe-
ver, this can have different consequences. Here we consider something close to the reverse
of reaction 2. This means we assume that the broken cross-link has been the only connec-
tion of a p62 oligomer with the aggregate, such that the oligomer falls off. This requires
the condition nk − 2j ≥ n− 1, meaning the possibility that the other n− 1 binding sites
of the lost oligomer are free of two-hand bound Ubi. It is not quite the reverse of reaction
2, since we have to consider the possibility that ` one-hand bound Ubi, 0 ≤ ` ≤ n − 1,
are bound to the lost oligomer. The conditional probability αj,k to be in this case, when
a cross-link breaks, is zero for a very tightly connected aggregate where each oligomer is
cross-linked at least twice, i.e. nk − 2j ≤ n − 2, and it is one for a very loose aggregate,
i.e. a chain with j = k − 1. This leads to the model

αj,k =
(nk − 2j − n+ 2)+

(n− 2)k + 4− n
, (2.6)

and to the rate
r−2 = κ−αj,kj . (2.7)

In the framework of our model, ` should be a random number satisfying the restrictions

(n− 1− nk + i+ 2j)+ ≤ ` ≤ min{i, n− 1} , (2.8)

where the upper bound should be obvious and the lower bound implies that the last
condition in (2.1) is satisfied after the reaction. We shall use the choice

` = `i,j,k :=

⌊
(n− 1)i

nk − 2j

⌉
, (2.9)

which can be interpreted as the rounded (b·e denotes the closest integer) expectation value
for the number of one-hand bound Ubi on the lost oligomer in terms of the ratio between
the number n − 1 of available binding sites on the lost oligomer and the total number
nk − 2j of available binding sites for one-hand bound Ubi in the whole aggregate. It is
easily seen that in the relevant situation αj,k > 0, i.e. nk − 2j ≥ n − 1, the choice (2.9)
without the rounding satisfies the conditions (2.8). Since the bounds in (2.8) are integer,
the same is true for the rounded version.

Note that we neglect the possibility to lose more than one oligomer by breaking a cross-
link, i.e. the fragmentation of the aggregate into two smaller ones. This is a serious and
actually questionable modelling assumption. An a posteriori justification will be provided
by some of the results of the following section, showing that growing aggregates are tightly
connected.

6. Loosening of the aggregate by breaking a cross-link, requiring at least one excess
both-hand bound Ubi, i.e. j ≥ k :

(i, j, k)
κ−(1−αj,k)−−−−−−−→ (i+ 1, j − 1, k) .

This is the reverse of reaction 3 with the rate

r−3 = κ−(1− αj,k)j , (2.10)
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which respects the requirement j ≥ k for a positive rate, because of

1− αj,k = min

{
1,

2(j − k + 1)

(n− 2)k + 4− n

}
.

Figure 2.2 – Examples for Reaction 3 (left, (2, 3, 3)→ (1, 4, 3)), Reaction 5 (right, up, (1, 3, 3)→
p625 + (2, 2, 2), ` = 0), and Reaction 6 (right, down, (1, 3, 3)→ (2, 2, 3)).

A deterministic model for large aggregates : The next step is the formulation of an
evolution problem for a probability density on the set of admissible states (i, j, k). In this problem
the discrete state is scaled by a typical value k0 of [Ubi] and [p62n], assumed of the same order
of magnitude :

p :=
i

k0
, q :=

j

k0
, r :=

k

k0
. (2.11)

It is then consistent with the definitions of κ1 and κ2 above to introduce κ3 := κ′3k0. In the
large aggregate limit k0 → ∞, the new unknowns become continuous, and the equation for the
probability density becomes a transport equation (see Appendix A for the details). It possesses
deterministic solutions governed by the ODE initial value problem

ṗ = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

q̇ = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

ṙ = κ2p− κ−qα(q, r) , r(0) = r0 ,

(2.12)

where
α(q, r) :=

nr − 2q

(n− 2)r
(2.13)

is the limit of αj,k as k0 → ∞. The conditions for admissible states (p, q, r) ∈ [0,∞)2 × (0,∞)
are obtained in the limit of (2.1) :

s := nr − p− 2q > 0 , q > r , (2.14)

implying, as expected,

0 6 α(q, r) 6 1 . (2.15)
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The equations satisfied by s and q − r,

ṡ = (n− 1)κ2p+ κ−1p+ κ−q
2(q − r)
(n− 2)r

− s
(
κ3p+ κ1 + κ−q

n− 1

(n− 2)r

)
, (2.16)

(q − r)˙ = κ3ps−
2κ−q

(n− 2)r
(q − r) , (2.17)

show that the conditions (2.14) are propagated by (3.1).

2.3 Analytic results

Global existence : Since the right hand sides of (3.1) contain quadratic nonlinearities, it
seems possible that solutions blow up in finite time. On the other hand, the right hand sides are
not well defined for r = 0. The essence of the following global existence result is that neither of
these difficulties occurs.

Theorem 1. Let 3 ≤ n ∈ N and κ1, κ2, κ3, κ−1, κ− > 0. Let (p0, q0, r0) ∈ (0,∞)3 satisfy (2.14).
Then problem (3.1) has a unique global solution satisfying (p(t), q(t), r(t)) ∈ (0,∞)3 as well as
(2.14) for any t > 0. Also the following estimates hold for t > 0 :

p(t) + q(t) + r(t) 6 (p0 + q0 + r0) exp (t max{κ1n, κ2}) , (2.18)

r(t) >
2

n
q(t) ≥ 2q0

n
exp(−κ−t) . (2.19)

Démonstration. Local existence and uniqueness is a consequence of the Picard-Lindelöf theorem.
Global existence will follow from the bounds stated in the theorem. Positivity of the solution
components, of s = nr − p − 2q, and of q − r is an immediate consequence of the form of the
equations (3.1), (2.16), (2.17). This also implies

ṗ+ q̇ + ṙ ≤ κ1nr + κ2p ≤ max{κ1n, κ2}(p+ q + r) ,

which shows (2.18) by the Gronwall lemma. With (2.14), the equation for q in (3.1) implies

q̇ ≥ −κ−q ,

and another application of the Gronwall lemma and of (2.14) proves (2.19) and, thus, completes
the proof of the theorem.

Long-time behaviour : The first step in the long-time analysis is the investigation of steady
states. Although the right hand sides of (3.1) are not well defined for r = 0, the origin p = q =
r = 0 can be considered as a steady state since

0 ≤ α(q, r) ≤ 1 and
p

r
≤ n

hold for admissible states satisfying (2.14). The origin is the only acceptable steady state with
r = 0, since α(q, r) and p/r are not well defined in this case, so the factor q, multiplying them in
the equations, needs to be zero. Finally, for a steady state this implies also p = 0. The following
result shows that at most one other steady state is possible which, somewhat miraculously, can
be computed explicitly.
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Theorem 2. Let 3 ≤ n ∈ N, κ1, κ2, κ3, κ−1, κ− > 0, and let

ᾱ :=
n

n− 2
+
κ−1 + κ1 −

√
(κ1 + κ−1)2 + 4κ1κ2(n− 1)

κ−(n− 1)
(2.20)

satisfy 0 < ᾱ < 1. Then there exists an admissible steady state (p̄, q̄, r̄) ∈ (0,∞)3 of (3.1) given
by

p̄ =
κ1κ2(n− 2)

κ3(κ−q̂(n− 1) + κ−1(n− 2))

1− ᾱ
ᾱ

,

q̄ =
κ1κ

2
2(n− 2)

κ3κ−(κ−q̂(n− 1) + κ−1(n− 2))

1− ᾱ
ᾱ2

,

r̄ =
κ1κ

2
2(n− 2)

q̂κ3κ−(κ−q̂(n− 1) + κ−1(n− 2))

1− ᾱ
ᾱ2

,

with ᾱ = α(q̄, r̄) and q̂ = (n− (n− 2)ᾱ)/2 ∈ (1, n/2). There exists no other steady state (besides
the origin).

Démonstration. Assuming r̄ > 0, we introduce

p̂ =
p̄

r̄
, q̂ =

q̄

r̄
, (2.21)

and rewrite the steady state equations in terms of p̂ and q̂ :

0 = (κ1 − κ3p̄)(n− p̂− 2q̂) + κ−q̂

(
1− p̂n− 1

n− 2

)
− (κ2 + κ−1)p̂ , (2.22)

0 = κ2p̂+ κ3p̄(n− p̂− 2q̂)− κ−q̂ , (2.23)

0 = κ2p̂− κ−q̂ᾱ , with ᾱ =
n− 2q̂

n− 2
. (2.24)

From (2.24) we obtain

p̂ =
κ−q̂

κ2
ᾱ =

κ−q̂(n− 2q̂)

κ2(n− 2)
, (2.25)

which is substituted into the sum of (2.22) and (2.23) :

(n− 2q̂)

(
κ1 −

κ1κ−
κ2(n− 2)

q̂ −
κ2
−(n− 1)

κ2(n− 2)2
q̂2 − κ−1κ−

κ2(n− 2)
q̂

)
= 0 .

The option n = 2q̂ leads to ᾱ = 0, implying p̂ = 0 and, thus, p̄ = 0, which contradicts (2.23).
Therefore the second paranthesis has to vanish, leading to a quadratic equation for q̂ with the
only positive solution

q̂ =
(n− 2)

(
−κ−1 − κ1 +

√
(κ1 + κ−1)2 + 4κ1κ2(n− 1)

)
2κ−(n− 1)

.

Now (2.24) implies the formula for ᾱ stated in the theorem and we note that 0 < ᾱ < 1 implies
1 < q̂ < n/2. We compute p̂ from q̂ by (2.25) and note that p̂ > 0 since ᾱ > 0. We then compute
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ŝ = s̄/r̄ = n− p̂− 2q̂ from the sum of (2.22) and (2.23) :

ŝ = p̂
κ−1(n− 2) + κ−q̂(n− 1)

(n− 2)κ1
=
κ−q̂ (κ−1(n− 2) + κ−q̂(n− 1))

(n− 2)κ1κ2
ᾱ ,

which proves ŝ > 0. Finally we obtain the formula for p̄ from (2.23) as well as r̄ = p̄/p̂ and
q̄ = r̄q̂.

For convenience below, the conditions in the theorem are made more explicit in terms of the
parameters by

ᾱ < 1 ⇔ q̂ > 1 ⇔ κ1κ2 >
κ−
n− 2

(
κ1 +

n− 1

n− 2
κ− + κ−1

)
, (2.26)

ᾱ > 0 ⇔ q̂ <
n

2
⇔ κ1κ2 <

κ−n

2(n− 2)

(
κ1 +

n(n− 1)

2(n− 2)
κ− + κ−1

)
. (2.27)

The steady state approaches the origin p = q = r = 0 as ᾱ → 1, whereas all its components
become unbounded as ᾱ→ 0. This motivates the following.

Conjecture 1. With the notation of Theorem 2,

1. if 0 < ᾱ < 1, then all solutions of (3.1) converge to (p̄, q̄, r̄) as t→∞,
2. if ᾱ ≥ 1, then all solutions of (3.1) converge to (0, 0, 0) as t→∞,
3. if ᾱ ≤ 0, then for all solutions of (3.1) we have p(t), q(t), r(t)→∞ as t→∞.

The conjecture has been supported by numerical simulations. Figures 2.3, 2.4, and 2.5 show
typical simulation results corresponding to the three cases. The conjecture is open, and its proof
is not expected to be easy. Note for example that not even the local stability of the origin in
Case 2 can be investigated by standard methods, since the right hand side of (3.1) lacks sufficient
smoothness. Partial results will be published in separate work.

0 20 40 60 80 100

0

2

4

t

p
q
r

Figure 2.3 – Convergence to the non-trivial steady state of Theorem 2. Simulation of an
aggregate (p, q, r) of initial size (2, 4, 3) with parameters κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.6,
implying 0 < ᾱ < 1.
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Figure 2.4 – Instability of the aggregate. Simulation of an aggregate (p, q, r) of initial size
(2, 4, 3) with parameters κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.93, implying ᾱ > 1.
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Figure 2.5 – Growth of the aggregate. Simulation of an aggregate (p, q, r) of initial size (2, 4, 3)
with parameters κ1 = κ2 = κ3 = κ−1 = 1 and κ− = 0.2, implying ᾱ < 0.

Closer inspection of the simulation results for growing aggregates (see Figure 2.5) shows that
the growth is polynomial in time. This is verified by the following formal result.

Theorem 3. With the notation of Theorem 2, if ᾱ < 0, then there exists a formal approximation
of a solution of (3.1) of the form

p(t) = p1t+ o(t) , q(t) = q2t
2 + o(t2) , r(t) = r2t

2 + o(t2) , as t→∞ , (2.28)
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with
p1 = κ−n

κ3(2nκ2+κ−n+4κ−1)

(
κ1κ2 − κ−n

2(n−2)

(
κ1 + κ−1 + κ−n(n−1)

2(n−2)

))
> 0 ,

q2 = n
2 r2 = κ3(n−2)(2nκ2+κ−n+4κ−1)

κ−(4κ1(n−2)+κ−n2) p2
1 .

(2.29)

The approximation is (from a formal point of view) unique, including the choice of the exponents
of t, among solutions with polynomially or exponentially growing aggregate size r.

Démonstration. Since 2r ≤ 2q ≤ nr holds for admissible states, when r(t) tends to infinity, then
also q(t) tends to infinity at the same rate, which we write with the sharp order symbol Os as

q(t) = Os(r(t)) as t→∞ . (2.30)

With α = s+p
(n−2)r , we write the equations for r and for p+ q as

ṙ = κ2p− (s+ p)
κ−q

(n− 2)r
, ṗ+ q̇ = κ1s− p

(
κ−(n− 1)q

(n− 2)r
+ κ−1

)
. (2.31)

Since the right hand sides have to be asymptotically nonnegative by the growth of q and r,
taking (2.30) into account, the first equation implies s(t) = O(p(t)), and the second implies
p(t) = O(s(t)), i.e.

s(t) = Os(p(t)) as t→∞ . (2.32)

If the growth were exponential, i.e. r(t), q(t) = Os(e
λt), λ > 0, then (2.31) would imply

p(t), s(t) = Os(e
λt). Then the negative term −κ3p(t)s(t) = Os(e

2λt) in the first equation in
(3.1) could not be balanced by any of the positive terms, and would drive p to negative values.
This contradiction excludes exponential growth.

For polynomial growth, i.e. r(t), q(t) = Os(t
γ), (2.31) implies p(t), s(t) = Os(t

γ−1). In the
equation for q in (3.1), q̇ and p are small compared to q. Therefore it is necessary that s(t)p(t) =
Os(q(t)), implying 2γ− 2 = γ and, thus, γ = 2. This justifies the ansatz (2.28) with the addition
s(t) = s1t+o(t). Substitution into the differential equations and comparison of the leading-order
terms gives equations for the coefficients :

2nd equ. in (3.1) : 0 = κ3p1s1 − κ−q2 ,

(2.17) : 0 = κ3p1s1 − κ−q2 (1− α(q2, r2)) ,

1st equ. in (2.31) : 2r2 = κ2p1 − (s1 + p1)
κ−q2

(n− 2)r2
,

2nd equ. in (2.31) : 2q2 = κ1s1 − p1

(
κ−(n− 1)q2

(n− 2)r2
+ κ−1

)
,

This system can be solved explicitly by first noting that the first two equations imply α(q2, r2) = 0
and, thus, 2q2 = nr2. Using this in the third and fourth equation gives a linear relation between
p1 and s1. This again can be used in the fourth equation to write q2 as a linear function of s1.
The division of the first equation by s1 then gives the formula for p1 in (2.29). The positivity of
p1 is a consequence of (2.27).

For all the results so far the positivity of the rate constant κ− for breaking cross-links has
been essential. Therefore it seems interesting to consider the special case κ− = 0 separately. It
turns out that the dynamics is much simpler. The aggregate size always grows linearly with time.

Theorem 4. Let 3 ≤ n ∈ N, κ1, κ2, κ3, κ−1 > 0, and κ− = 0. Let (p0, q0, r0) ∈ (0,∞)3 satisfy
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(2.14). Then the solution of (3.1) satisfies

lim
t→∞

p(t) = p∞ :=
(n− 2)κ1κ2

κ3(κ2(n− 2) + κ−1)
, lim

t→∞
s(t) = s∞ :=

(n− 2)κ2

2κ3
,

q(t) = p∞(κ2 + κ3s∞)t+ o(t) , r(t) = κ2p∞t+ o(t) , as t→∞ .

Démonstration. For κ− = 0 the right hand sides in (3.1) depend only on p and s = nr − 2q − p,
meaning that these two variables solve a closed system :

ṗ = κ1s− (κ2 + κ−1 + κ3s)p ,

ṡ = ((n− 1)κ2 + κ−1)p− (κ1 + κ3p)s .

The unique nontrivial steady state (p∞, s∞) can be computed explicitly. We prove that it is
globally attracting by constructing a Lyapunov functional. Let a ≥ 1 and

Ra :=
[p∞
a
, ap∞

]
×
[s∞
a
, as∞

]
.

For each point (p, s) ∈ (0,∞)2 there is a unique value of a ≥ 1 such that (p, s) ∈ ∂Ra. Therefore
the Lyapunov function

L(p, s) := a− 1 for (p, s) ∈ ∂Ra ,

is well defined and definite in the sense L(p, s) ≥ 0 with equality only for (p, s) = (p∞, s∞). It
remains to prove that the flow on ∂Ra is strictly inwards. For example, for the left boundary
part,

ṗ
∣∣
(p,s)∈{p∞/a}×[s∞/a,as∞]

>
(
κ1 − κ3

p∞
a

) s∞
a
− (κ2 + κ−1)

p∞
a

=
κ3p∞s∞(a− 1)

a2
> 0 ,

where for the first inequality it has been used that p∞ < κ1/κ3, and the equality follows from
the fact that ṗ vanishes at the steady state. Similarly it can be shown that ṗ < 0 on the right
boundary part, ṡ > 0 on the lower boundary part, and ṡ < 0 on the upper boundary part.

The linear growth of q and r follows from

lim
t→∞

q̇(t) = κ2p∞ + κ3p∞s∞ , lim
t→∞

ṙ(t) = κ2p∞ .

This result shows that the breakage of cross-links has somewhat contradictory effects, depen-
ding on the parameter regime : It can speed-up the aggregation dynamics, producing a quadratic
rather than linear growth of the aggregate size (Case 3 of Conjecture 1). This is linked to the
fact that it allows the aggregates to rearrange in a more compact way. On the other hand, it
may slow down the dynamics, such that the aggregate only reaches a finite size (Case 1) or even
disintegrates completely (Case 2).

2.4 Comparison with experimental data — Discussion
Comparison with experimental data : There are only limited options for a serious com-
parison of the theoretical results with experimental data. We shall use the data shown in Figure
2.6, which have been published in [50]. It provides observed numbers of aggregates in dependence
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of ubiquitin for a fixed concentration of p62. Our results do not permit a direct comparison with
this curve, which would require modelling of the process of nucleation of aggregates. However,
the data provide at least some information about concentration levels of ubiquitin and p62, such
that stable aggregates exist.

Figure 2.6 – Number of aggregates in terms of [Ubi] (or more precisely (4×Ubi−GST−GFP )2)
at fixed [p62]= 2µM [50]. Average and SD among three independent replicates are shown. The
dashed line represents a fitted sigmoidal (more precisely, logistic) function, centered around
[Ubi] = 1.6µM . Note that here p62 monomers are counted. Under the assumption that p62 only
occurs in oligomers of size n we have [p62]=n[p62n]. The regression coefficient R2 measures the
quality of the fit.

For meaningful quantitative comparisons with these scarce data we need to reduce the number
of parameters in our model. As a first step, we fix the value n = 5 of the size of p62 oligomers,
following [50] where values between 5 and 6 for GFP-p62 have been found (although we note that
in [47] an average of about n = 24 has been reported for mCherry-p62 in vitro). This implies
that the experiment corresponds to an oligomer concentration of [p625] = [p62]/5 = 0.4µM .

Concerning the rate constants, we make the assumption that the binding and, respectively,
the unbinding rate constants are equal, i.e. κ′1 = κ′2 = κ′3 and κ−1 = κ−. This will allow to
express all our results in terms of one dissociation constant Kd := κ−1/κ

′
1.

From Figure 2.6 we conclude that for an oligomer concentration of [p625] = 0.4µM the
growth of stable aggregates requires a cross-linker concentration [Ubi] roughly between 0.6µM
and 2.6µM ((1.6± 1)µM). According to the results of the preceding section, these values should
correspond to situations with either ᾱ = 0 or ᾱ = 1, depending on the question, if the equilibrium
aggregate sizes of Case 1 in Conjecture 1 are large enough to be detected in the experiment, or
if we need to be in Case 3 of growing aggregates. Therefore, with the above assumptions, with
κ1 = κ′1[Ubi], κ2 = κ′2[p625], and with (2.26), (2.27), we obtain for ᾱ = 1 :

[p62n] [Ubi] =
Kd

n− 2

(
[Ubi] +

(2n− 3)Kd

n− 2

)
, (2.33)

and for ᾱ = 0 :

[p62n] [Ubi] =
nKd

2(n− 2)

(
[Ubi] +

(n2 + n− 4)Kd

2(n− 2)

)
. (2.34)

Solving these equations for Kd with n = 5, [p62n] = 0.4µM , and with [Ubi] between 0.6µM and
2.6µM , gives estimates for Kd between 0.44µM and 0.73µM for ᾱ = 1, and between 0.20µM
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and 0.31µM for ᾱ = 0. So we claim that at least the order of magnitude is significant. It differs
by three orders of magnitude from published data on the reaction between ubiquitin and the
UBA domain of p62 (Kd ≈ 540µM [34]). This should not be so surprising, since in the context
of growing aggregates the reactions can be strongly influenced by avidity effects.

Discussion : We return to Conjecture 1, where the long-time behaviour is described in terms of
the value of the parameter ᾱ defined in (2.20). With the simplifying assumptions on the reaction
rate constants from above, the statements of the conjecture are depicted in Figure 2.7 for the
fixed values n = 5 and Kd = 0.5µM (motivated by the estimates above) in a bifurcation diagram
in terms of the concentrations [Ubi] and [p62n]. Note the unsymmetry in the dependence on the
two quantities : The critical values for [Ubi] tend to zero as [p62n] tends to infinity, whereas the
critical values for [p62n] tend to the positive values Kd

n−2 for ᾱ = 1 and nKd
2(n−2) for ᾱ = 0, as [Ubi]

tends to infinity.

0 2 4 6 8 10

0.5

1

1.5

[Ubi] (µM)

[p
62

5
](
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M

)

ᾱ = 0
ᾱ = 1

polynomial growth

non-trivial steady-state

no aggregation

Figure 2.7 – Bifurcation diagram corresponding to Conjecture 1 for n = 5, Kd = 0.5µM .

There is a significant uncertainty concerning the oligomer size n, which has so far been
assumed to be 5, according to observations in [50]. Actually, a distribution of oligomer sizes
should be expected in the experiments of Figure 2.6 with the occurrence of much larger oligomers.
For this reason the computation of Kd from (2.33) has been repeated for a range of values of
n between n = 3 and n = 100. The results are depicted in Figure 2.8, which shows that the
predicted values of Kd might be larger by up to an order of magnitude compared to the case
n = 5, but still small compared to [34], if larger oligomer sizes are considered and ᾱ = 1 is
relevant. The asymptotic behaviour for large oligomer sizes is easily seen to be Kd = O(n1/2).
On the other hand, if ᾱ = 0 is relevant, the value of Kd becomes smaller by up to an order of
magnitude for large oligomers with the asymptotic behaviour Kd = O(n−1/2).

2.5 Conclusion

In this chapter, we have proposed an ODE model for the growth and decay of aggregates of
p62 oligomers cross-linked by ubiquitin chains. Under the assumption of unlimited supply of free
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Figure 2.8 – The dissociation constantKd determined from (2.33) (solid line) and (2.34) (dashed
line), depending on the p62 oligomer size n. Ubiquitin and p62 oligomer concentrations from
Figure 2.6 at the onset of aggregation : [Ubi] = 1.6µM , [p62n] = 0.4µM .

oligomers and cross-linkers we found three possible asymptotic regimes : complete degradation
of aggregates, convergence towards a finite aggregate size, and unlimited growth (quadratic in
time) of the aggregate size. In the latter case, growing aggregates are asymptotically tightly
packed with the maximum number of cross-links. These statements are supported by a mixture
of explicit steady state computations, formal asymptotic analysis, and numerical simulations.
The three regimes, which can be separated explicitly in terms of the reaction constants, have
been illustrated by the simulation results. Rigorous proofs of the long-time behaviour in the three
regimes are the subject of ongoing investigations.

A comparison of the theoretical results with data from [50] has provided an estimate for the
dissociation constant of the elementary reaction between ubiquitin and the UBA domain of p62
in the context of growing aggregates.

There are several possible extensions of this work. A limitation of the original discrete mo-
del is that the description of aggregates by triplets (i, j, k) is very incomplete. Typically, very
different configurations are described by the same triplet. For example, we could imagine very
homogeneous or very heterogeneous aggregates, i.e. fully packed in certain regions and very loose
in others. Reaction rates will strongly depend on the configuration, including information about
the geometry of the aggregate. In principle one can imagine an attempt to overcome these dif-
ficulties based on a random graph model [26], but the resulting model describing probability
distributions on the sets of all possible aggregate shapes would be prohibitively complex. An
intermediate solution would be a more serious approach to finding formulas for quantities like
the probability α of losing an oligomer, when a cross-link breaks, based on typical probability
distributions.

The model (3.1) describes an intermediate stage of the aggregation process. On the one hand,
the large aggregate assumption means that we are dealing with the growth of already developed
aggregates, neglecting the nucleation process, which is important for the number of established
aggregates. A model of the nucleation process would be based on the discrete representation and
it would have to be stochastic. On the other hand, we neglect two effects important for a later
stage of the process. The first and obvious one is the limited availability of free p62 oligomers
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and ubiquitin cross-linkers. It would be rather straightforward to incorporate this into the model,
however at the expense of increased complexity. It would also eliminate the dichotomy between
the Cases 1 and 3 of Conjecture 1 since unbounded growth would be impossible. For relatively
large initial concentrations of free particles, one could imagine a two-time-scale behaviour with
an initial quadratic growth and saturation on a longer time scale. The other effect, which is
neglected here but definitely present in experiments, is coagulation of aggregates. This is the
subject of ongoing work, based on the PDE model (A.3) derived in the appendix and enriched
by an account of the coagulation process.

Version intermédiaire en date du 17 décembre 2020



30 CHAPITRE 2. A mathematical model of p62-ubiquitin aggregates in autophagy

Version intermédiaire en date du 17 décembre 2020



Chapitre 3

Study of a mathematical model of
p62-ubiquitin aggregates in
autophagy

This chapter comes from an article that will be submitted soon to Journal of Theoretical
Biology and has been written in collaboration with C. Schmeiser and P. Szmolyan.

3.1 Introduction

We recall the ODE problem governing the evolution of the state variables :

ṗ = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

q̇ = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

ṙ = κ2p− κ−qα(q, r), α(q, r) =
nr − 2q

(n− 2)r
, r(0) = r0 ,

(3.1)

with the inequalities
nr − p− 2q > 0 , q ≥ r , (3.2)

implying
0 6 α(q, r) 6 1 .

We recall from [13, Theorem 1] that for initial data p0, q0, r0 > 0 satisfying (3.2), which we
assume in the following, the initial value problem (3.1) has a unique, global solution propagating
(3.2), the nonnegativity of the components, and in particular

r(t), q(t) > 0 , t ≥ 0 . (3.3)

The search for steady states [13] has suggested a splitting of the parameter space into three
regions. Besides the trivial steady state (p, q, r) = (0, 0, 0), only one other equilibrium may exist,
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which can be computed explicitly :

p̄ = κ−A
κ2

1−ᾱ
ᾱ , q̄ = A 1−ᾱ

ᾱ2 , r̄ = 2A
n−(n−2)ᾱ

1−ᾱ
ᾱ2 , (3.4)

with ᾱ = n
n−2 +

κ−1+κ1−
√

(κ1+κ−1)2+4κ1κ2(n−1)

κ−(n−1) , A =
2κ1κ

2
2(n−2)

κ3κ−(κ−(n−1)(n−(n−2)ᾱ)+2κ−1(n−2)) .

Since ᾱ = α(q̄, r̄) is the equilibrium value of α, the nontrivial steady state is relevant only in the
parameter region defined by 0 < ᾱ < 1. It has been conjectured in [13] that in this parameter
region (p̄, q̄, r̄) is globally attracting, which has been supported by numerical simulations (see
also Chapter ??). Local stability could in principle be examined by linearization. However, the
complexity of the resulting formulas has been prohibitive.

Since (p̄, q̄, r̄) → (0, 0, 0) as ᾱ → 1−, it seems natural to expect a transcritical bifurcation
at ᾱ = 1 with stability of the trivial steady state for ᾱ > 1. Again the conjecture of global
asymptotic stability of (0, 0, 0) for ᾱ > 1 has been supported by simulations (see for example
Fig. 2.4). The right hand sides of (3.1) are continuous up to the origin (when considered as
an element of the set of admissible states), since 0 ≤ α(q, r) ≤ 1 and p/r ≤ n. However, their
nonsmoothness prohibits a standard local stability or bifurcation analysis. The expected local
stability behaviour (asymptotic stability for ᾱ > 1, instability for ᾱ < 1) is proven in Section
3.2. The analysis is based on a regularizing transformation, which makes the steady state very
degenerate, combined with a blow-up analysis [18].

The fact that the components of the nontrivial equilibrium tend to infinity when ᾱ → 0+
suggests that solutions might be unbounded for ᾱ < 0. In this parameter region approximate
solutions with polynomial growth of the form

p(t) = p1t+ o(t) , q(t) = q2t
2 + o(t2) , r(t) =

2q2

n
t2 + o(t2) , as t→∞ , (3.5)

have been constructed in [13] by formal asymptotic methods. It has also been shown that no
other growth behaviour (polynomial with other powers or exponential) should be expected, and
the conjecture that all solutions have the constructed asymptotic behaviour is again verified
by simulations (see Fig. for example 2.5). We justify the formal asymptotics in Section 3.3. A
variant of Poincaré compactification [38] produces a problem with bounded solutions and with
three different time scales, which is analyzed by singular perturbation methods [22]. The final
result is existence and semi-local stability of the polynomially growing solutions, where ’semi-
local’ means that initial data have to be large with relative sizes as in (3.5).

The chapter is concluded by a discussion section about biological interpretation of our results
as well as perspectives.

3.2 Local stability of the zero steady state

In this section, we study under which conditions small aggregates tend to disaggregate. This
is equivalent to studying the stability of the zero-steady-state (p, q, r) = (0, 0, 0) of the system
(3.1). Because of the appearance of the ratios pr and q

r , the Jacobian of the right hand side of (3.1)
is not defined there. As a consequence of (3.3) the regularizing transformation τ :=

∫ t
0
r(s)−1ds
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is well defined and leads to

dp

dτ
= r(κ1 − κ3p)(nr − p− 2q) + κ−q

(
r − (n− 1)p

n− 2

)
− (κ2 + κ−1)pr ,

dq

dτ
= κ2pr + κ3pr(nr − p− 2q)− κ−qr ,

dr

dτ
= κ2pr − κ−q

nr − 2q

n− 2
.

(3.6)

The regularization came at the expense that the zero steady state is degenerate in (3.6), since
the right hand side is of second order in terms of the densities. A classical approach to study
such non-hyperbolic points is blow-up [18]. The standard blow-up transformation would be the
introduction of spherical coordinates, blowing up the origin to the part of S2 in the positive
octant. It is also common to work with charts instead. In our case this preserves the polynomial
form of the right hand side. It has turned out to be convenient to use the q-chart, whence the
blow-up transformation (p, q, r)→ (p1, q1, r1) is given by

p = p1q1 , q = q1 , r = r1q1 , (3.7)

and we also introduce another change of time scale : T :=
∫ τ

0
q1(σ)dσ, again justified by (3.3),

leading to

dq1

dT
= q1r1 (κ2p1 − κ−) + κ3p1r1q

2
1(nr1 − p1 − 2) ,

dp1

dT
= r1(κ1 − κ3p1q1)(nr1 − p1 − 2) + κ−

(
r1 −

n− 1

n− 2
p1

)
− (κ2 + κ−1)p1r1 − p1r1(κ2p1 − κ−)

−κ3p
2
1r1q1(nr1 − p1 − 2) , (3.8)

dr1

dT
= (1− r1)

(
κ2p1r1 + κ−

(
2

n− 2
− r1

))
− κ3p1r

2
1q1(nr1 − p1 − 2) .

The invariant manifold q1 = 0 of this system corresponds to the zero steady state of (3.1). The
inequalities (3.2) become

r1 ≤ 1 , 0 ≤ p1 ≤ nr1 − 2 ,

in terms of the new variables, i.e. the dynamics of (p1, r1) remains in the triangle depicted in Fig.
3.1. Since r1 ≥ 2/n, we conclude from the equation for q1 that the invariant manifold is locally
exponentially attracting in the region to the left of the line p1 = κ−/κ2. Since p1 ≤ n − 2, the
inequality κ− > (n − 2)κ2 already implies local asymptotic stability of the invariant manifold
q1 = 0 of (3.8) and therefore of the zero steady state of (3.1). Note that κ− > (n − 2)κ2 also
implies ᾱ > 1 for ᾱ defined by (3.4).

In the following we therefore consider the case κ− ≤ (n−2)κ2 (see Fig. 3.1) and ᾱ > 1, where
the latter is equivalent to

κ1κ2(n− 2)2 < κ−(κ1 + κ−1)(n− 2) + κ2
−(n− 1) , (3.9)

see also [13, Equ. (26)]. The flow on the invariant manifold q1 = 0 of (3.8) is governed by the
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p1

r1

n− 2

1
2
n

κ−
κ2

Figure 3.1 – The dynamics in the (p1, r1)-plane is limited to the shaded triangle because of the
inequalities (3.2).

system

dp1

dT
= r1κ1(nr1 − p1 − 2) + κ−

(
r1 −

n− 1

n− 2
p1

)
− (κ2 + κ−1)p1r1 − p1r1(κ2p1 − κ−)

dr1

dT
= (1− r1)

(
κ2p1r1 + κ−

(
2

n− 2
− r1

))
. (3.10)

In the right part of the triangle, i.e. for

r1 ≤ 1 ,
κ−
κ2
≤ p1 ≤ nr1 − 2 ,

we have

dp1

dT
≤ r1κ1

(
n− κ−

κ2
− 2

)
+ κ−

(
r1 −

n− 1

n− 2

κ−
κ2

)
− (κ2 + κ−1)

κ−
κ2
r1

=
r1

(
κ1κ2(n− 2)2 − κ−(κ1 + κ−1)(n− 2)

)
− κ2
−(n− 1)

κ2(n− 2)
<

(r1 − 1)κ2
−(n− 1)

κ2(n− 2)
≤ 0 ,

where the strict inequality is due to (3.9). This implies that all trajectories reach the left part of
the triangle, i.e. p1 < κ−/κ2 in finite time.

By standard regular perturbation theory the dynamics for the full system (3.8), when started
close to the invariant manifold q1 = 0, remains close to the dynamics on the invariant manifold
for finite time, until the region p1 < κ−/κ2 is reached, where the invariant manifold is attracting.
Thus q = q1 tends to zero and, by the inequalities (3.2), the same is true for p and r.

Now we consider the case ᾱ < 1, i.e. the opposite of inequality (3.9), and look for a steady
state on the invariant manifold r1 = 1 of the system (3.10). Since

dp1

dT

∣∣∣
r1=1,p1=κ−/κ2

=
κ1κ2(n− 2)2 − κ−(κ1 + κ−1)(n− 2)− κ2

−(n− 1)

κ2(n− 2)
> 0 ,

dp1

dT

∣∣∣
r1=1,p1=n−2

= −(n− 2)(nκ2 + κ−1) < 0 ,

there exists a steady state (p1, r1) = (p∗1, 1) with κ−/κ2 < p∗1 < n− 2, which is stable under the
flow along r1 = 1. On the other hand

1

1− r1

dr1

dT

∣∣∣
r1=1,p1=p∗1

=

(
κ2p
∗
1 + κ−

(
2

n− 2
− 1

))
>

2κ−
n− 2

> 0 ,
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which implies stability of the manifold r1 = 1 close to the steady state, and therefore stability of
the steady state. The existence of a stable steady state on the invariant manifold q1 = 0 of (3.8)
in the region, where the manifold is repulsive, implies instability of the manifold and therefore
also of the zero steady state of (3.1). This completes the proof of the main result of this section.

Theorem 5. Let ᾱ be defined by (3.4). Then the steady state (0, 0, 0) of the system (3.1) is
locally asymptotically stable for ᾱ > 1 and unstable for ᾱ < 1.

3.3 Polynomially growing regime

The goal of this section is a rigorous justification of the formal asymptotics (3.5) (see [13])
under the assumption ᾱ < 0 with ᾱ defined in (3.4), i.e.

4κ1κ2(n− 2)2 > nκ−
(
2(κ1 + κ−1)(n− 2) + κ−n(n− 1)

)
, (3.11)

see also [13, Equ. (27)].
Considering (3.5), it would be natural to write an equation for p(t)/t. It is easily seen from

(3.1) that its derivative contains terms of the order of t2. Similarly the derivative of q(t)/t2 has
contributions up to the order of t, whereas the derivative of r(t)/t2 is a combination of terms
bounded as t→∞. This shows that we are confronted with a problem with different time scales,
which will put us into the realm of singular perturbation theory (see, e.g. [22, 45]). The leading
order term in the fastest equation, i.e. the p-equation, is −κ3p(nr − 2q), from which it has been
concluded in [13] that nr(t) ≈ 2q(t) as t → ∞. In a standard singular perturbation setting,
it should be possible to express p(t) from this relation. Since this is not the case, our problem
belongs to the family of singular singularly perturbed problems (see e.g. [41]) which, however,
can be transformed to the standard regular form in many cases.

The introduction of p(t)/t, q(t)/t2, r(t)/t2, as new variables would lead to a study of bounded
solutions, but to a non-autonomous system. We shall use a variant of the Poincaré compactifica-
tion method [38] instead.

The previous observations led us to the introduction of the new variables

u =
p√
p+ q

, v =
2p+ 2q − nr√

p+ q
, w =

1√
p+ q

,

where we expect that w(t) tends to zero as t−1, and that u(t) and v(t) converge to nontrivial
limits. Since this coordinate change produces a singularity at w = 0, we also change the time
variable by τ =

∫ t
0
ds/w(s). In terms of the new variables system (3.1) becomes

du

dτ
= (κ1w − κ3u)(u− v) + κ−(1− uw)

(
1− n(n− 1)uw

(n− 2)(2− vw)

)
− (κ2 + κ−1)uw

−uw2A(u, v, w) ,

dv

dτ
= w

(
2κ1(u− v)− (2κ−1 + nκ2)u+ κ−(1− uw)n

2u− nv
(n− 2)(2− vw)

)
− vw2A(u, v, w) ,(3.12)

dw

dτ
= −w3A(u, v, w) , A(u, v, w) :=

1

2

(
κ1(u− v)− κ−1u− κ−(1− uw)

n(n− 1)u

(n− 2)(2− vw)

)
.

Our goal is to prove that solutions converge to a steady state (u∗, v∗, w∗) with w∗ = 0, which
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obviously has to satisfy −κ3u
∗(u∗ − v∗) + κ− = 0, implying

u∗ = U(v∗) :=
1

2

(
v∗ +

√
(v∗)2 + 4κ−/κ3

)
, (3.13)

since we need u∗ > 0. We intend to show that v∗ is determined from the requirement that the
large parenthesis in the v-equation vanishes. The argument is essentially that for small values of
w, the variable v evolves much faster than w.

In order to make the slow-fast structure of this system more apparent and to allow the
application of basic results from singular perturbation theory, we assume that the initial value
for w is small and define ε := (p0 + q0)−1/2 � 1 and the rescaled variable W = w/ε, leading to

du

dτ
= −κ3u(u− v) + κ− +O(ε) ,

dv

dτ
= εW

(
2κ1(u− v)− (2κ−1 + nκ2)u+ κ−n

2u− nv
2(n− 2)

)
+O(ε2) , (3.14)

dW

dτ
= −ε2W 3A(u, v, 0) +O(ε3) .

The initial data are denoted by

u(0) = u0 :=
p0√
p0 + q0

> 0 , v(0) = v0 :=
2p0 + 2q0 − nr0√

p0 + q0
, W (0) = 1 ,

where in the following we consider u0 and v0 as fixed when ε→ 0. This is a singular perturbation
problem in standard form, where τ plays the role of an initial layer variable. We pass to the limit
ε→ 0 to obtain the initial layer problem

dû

dτ
= −κ3û(û− v̂) + κ− , (3.15)

dv̂

dτ
=

dŴ

dτ
= 0 ,

subject to the initial conditions. By the qualitative behaviour of the right hand side of the first
equation, the solution satisfies v̂(τ) = v0, Ŵ (τ) = 1, and

lim
τ→∞

û(τ) = U(v0) ,

with exponential convergence, where U has been defined in (3.13). The equation u = U(v) defines
the so called reduced manifold. Since it is exponentially attracting, the Tikhonov theorem [46]
(or rather its extension [22]) implies that, after the initial layer, i.e. when written in terms of the
slow variable σ = ετ , the solution trajectory remains exponentially close to the slow manifold,
which is approximated by the reduced manifold, and the flow on the slow manifold satisfies

dv

dσ
= W

(
2κ1(U(v)− v)− (2κ−1 + nκ2)U(v) + κ−n

2U(v)− nv
2(n− 2)

)
+O(ε) ,

dW

dσ
= −εW 3A(U(v), v, 0) +O(ε2) , (3.16)

with v(0) = v0,W (0) = 1. This is again a singular perturbation problem in standard form, where
now σ is the initial layer variable. We repeat the above procedure and consider the limiting layer
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problem

dṽ

dσ
= W̃

(
2κ1(U(yṽ)− ṽ)− (2κ−1 + nκ2)U(ṽ) + κ−n

2U(ṽ)− nṽ
2(n− 2)

)
, (3.17)

dW̃

dσ
= 0 .

The observations
U(−∞) = 0 , U(∞) =∞ , 0 < U ′(v) < 1 ,

suffice to show that the right hand side of the first equation is a strictly decreasing function of
v with a unique zero v∗, which can actually be computed explicitly :

v∗ = B

(
κ1 − κ−1 −

n

2
κ2 +

n

2(n− 2)
κ−

)

with B = 2

√
κ−
κ3

(
n3

4(n− 2)
κ2
− + 4κ1κ−1 + 2nκ1κ2 + nκ1κ− +

n2

n− 2
κ−1κ− +

n3

2(n− 2)κ2κ−

)−1/2

The solution of (3.17) with ṽ(0) = v0 satisfies limσ→∞ ṽ(σ) = v∗ with exponential convergence.
Another application of the Tikhonov theorem shows that the slowest part of the dynamics with
t = O(ε−1) can be approximated by

dW

dσ
= −εW 3A∗ , W (0) = 1 , (3.18)

with

A∗ := A(U(v∗), v∗, 0) =
nB

16(n− 2)2
(4(n− 2)2κ1κ2− 2n(n− 2)κ−(κ1 +κ−1)−n2(n− 1)κ2

−) > 0 ,

(3.19)
by (3.11). This gives the approximation

W (σ) = (1 + 2A∗εσ)−1/2 .

The results of [22] imply that the approximations are accurate with errors of order ε uniformly
with respect to time.

Theorem 6. Let (3.11) hold. Then, for ε > 0 small enough, the solution of (3.12) with initial
conditions

u(0) = u0 > 0 , v(0) = v0 ∈ R , w(0) = ε ,

satisfies

u(τ) = û(τ)− U(v0) + U(ṽ(ετ)) +O(ε) ,

v(τ) = ṽ(ετ) +O(ε) ,

w(τ) = ε(1 + 2A∗ε2τ)−1/2 +O(ε2) ,

uniformly in τ ≥ 0, where U is given in (3.13), û solves (3.15), ṽ solves (3.17), and A∗ is given
in (3.19).

Actually more can be deduced. In terms of the original time variable t, the equation for w in
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(3.12) becomes
ẇ = −w2A(u, v, w) . (3.20)

Under the assumptions of Theorem 6, A(u, v, w) is uniformly close to the positive constant A∗
and therefore uniformly positive for large enough t. This implies that w tends to zero as t→∞.
The slow manifold of the system (3.16) reduces to the steady state (v,W ) = (v∗, 0) for W = 0.
Therefore v tends to v∗ as t→∞. Analogously, the slow manifold of (3.14) reduces to the steady
state (u, v,W ) = (u∗ = U(v∗), v∗, 0) at W = 0, implying convergence of u to u∗. This in turn
implies convergence of A(u, v, w) to A∗, which can be used in (3.20).

Corollary 1. Let the assumptions of Theorem 6 hold. Then

lim
t→∞

u(t) = u∗ , lim
t→∞

v(t) = v∗ , w(t) =
1

A∗t
+O

(
1

t2

)
as t→∞ .

Finally, we reformulate these results in terms of the original variables, verifying the formal
asymptotics of [13] for initial data, which are in a sense already ’close enough’ to the polynomially
growing solutions.

Theorem 7. Let (3.11) hold, let c2 ≥ c1 > 0, and let δ > 0 be small enough. Let the initial data
satisfy

p0 =
c1
δ
, q0 =

1

δ2
, r0 =

2

nδ2
+
c2
nδ

Then the solution of (3.1) with (p(0), q(0), r(0)) = (p0, q0, r0) satisfies

p(t) = u∗A∗t+ o(t) , q(t) = (A∗)2t2 + o(t2) , r(t) =
2

n
(A∗)2t2 + o(t2) , as t→∞ .

Démonstration. We just need to verify that the assumptions of this theorem imply the assump-
tions of Theorem 6. The result is then a direct consequence of Corollary 1. Actually the assump-
tions of Theorem 6 hold with ε ≈ δ, since

u0 =
c1√

1 + c1δ
, v0 =

2c1 − c2√
1 + c1δ

, w0 =
δ√

1 + c1δ
.

3.4 Discussion

In this work a mathematical model for aggregation via cross-linking has been analyzed. Be-
sides the basic assumption that aggregating particles (here p62 oligomers) need to have at least
n = 3 binding sites for cross-linkers (here ubiqutinated cargo), the rate constants for binding
reactions need to be large enough compared to those for the unbinding reactions (the opposite
of inequality (3.9)) for stable aggregates to exist. Under a stronger condition (inequality (3.11))
aggregates grow indefinitely in the presence of an unlimited supply of free particles and cross-
linkers. These conjectures from [13], where the model has been formulated, have been partially
proven in this work. It has been shown in Section 3.2 that small aggregates get completely de-
graded under the condition (3.9) and that they grow under the opposite condition. In the latter
case, but when (3.11) does not hold, there exists an equilibrium configuration with positive ag-
gregate size. Finally, it has been shown in Section 3.3 that under the condition (3.11) aggregate
size grows polynomially with time (actually like t2) for appropriate initial states.

Version intermédiaire en date du 17 décembre 2020



3.4. Discussion 39

2 4 6 8 10

0.4

0.6

0.8

1

1.2

1.4

1.6

κ1

κ
2
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Figure 3.2 – Bifurcation diagram obtained for κ−1 = κ− = 1

The constants κ1, κ2 in the model have to be interpreted as the products of rate constants
with the concentrations of free cross-linkers and, respectively, of free particles. This means that
the conditions (3.9) and (3.11) are actually conditions for these concentrations. Fig. 3.2 shows a
bifurcation diagram in terms of κ1 and κ2 with the curves ᾱ = 1, corresponding to equality in
(3.9), and ᾱ = 0, corresponding to equality in (3.11). The qualitative behaviour is no surprise :
Close to the origin, i.e. for small concentrations of free particles and cross-linkers, aggregates
are unstable. Moving to the right and/or up we pass through two bifurcations to stable finite
aggregate size and, subsequently, to polynomial growth of aggregates. Less obvious is the fact that
the picture is rather unsymmetric with respect to the two parameters. The condition (n−2)κ2 >
κ− is necessary for the existence of stable aggregates, regardless of the value of κ1, whereas
arbitrarily small values of κ1 can be compensated by large enough κ2. This means that, if
the concentration of free particles is below a threshold, even a large concentration of cross-
linkers does not lead to aggregation, whereas arbitrarily small numbers of cross-linkers are used
for aggregation if the particle concentration is high. For the application in cellular autophagy
this means that aggregation will only happen for large enough concentrations of p62 oligomers.
However, arbitrarily small amounts of ubiquitinated cargo can be aggregated in the presence of
a large enough supply of oligomers.

This work has been motivated by the experimental results of [51], where aggregates have
been detected by light microscopy. If the evolution of single aggregates can be followed, the
growth like t2 might be observed as a fluorescence signal of tagged oligomers, which goes like
t2, or cross section areas going like t4/3, if a roughly spherical shape of aggregates is assumed.
For quantitative predictions of such experiments, the model should be extended in various ways.
First, the limited supply of free p62 oligomers and of free cross-linkers should be taken into
account. This is straightforward for the modeling of a single aggregate, but if many aggregates
develop simultaneously, they will compete for the free particles. Apart from that the number
of aggregates has to be predicted, which requires modeling of the nucleation process. Finally, it
is very likely that the coagulation of aggregates plays an important role. A growth-coagulation
model for distributions of aggregates, based on the growth model (3.1) would be prohibitively
complex. It is therefore the subject of ongoing work to formulate, analyze, and simulate a growth-
coagulation model based on the multiscale analysis of Section 3.3, where aggregates are only
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described by the size parameter r (number of p62 oligomers in the aggregate), whose evolution
is determined by the slow dynamics (3.18), which translates to an equation of the form ṙ = C

√
r

for r. This approach raises several challenging issues such as the development of an efficient
simulation algorithm or the existence and stability of equilibrium aggregate distributions.
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Chapitre 4

Improvement of the model and
study of transport-coagulation
equations

This chapter is an on-going collaboration with M. Doumic and C. Schmeiser.

4.1 Improved model

We take back the model introduced in Chapter ?? and take into account two new phenomena.
Firstly, we consider now that the concentrations of p62 and Ubiquitin (denoted respectively by
a and b) evolve with time, which is expressed by including the equations for the conservation
of mass (4.2) and (4.3), in contrast with the chapter ??, where these quantities were considered
constant over time. Secondly, based on biological observation from G. Zaffagnini, (See e.g. in
Figure 4.1 from [52]), we decide to consider that aggregates can interact together by coagulating
with each other. However, we do not to take into account fragmentation, as according to [52],
p62-Ubiquitin aggregates do not behave as liquid droplets, which means that no rearrangement
of aggregates are observed, what would be the consequence of fragmentation. This leads to the
following nonlocal nonlinear transport-coagulation equation :

∂tf + ∂p(Vpf) + ∂q(Vqf) + ∂r(Vrf) = Q(f, f) (4.1)

with :

Vp = (κ1 − κ3p)(nr − p− 2q) + κ−q

(
1− (n− 1)p

(n− 2)r

)
− (κ2 + κ−1)p , p(0) = p0 ,

Vq = κ2p+ κ3p(nr − p− 2q)− κ−q , q(0) = q0 ,

Vr = κ2p− κ−qα(q, r) , r(0) = r0 ,

41
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where now, κ1 = κ̄1a and κ2 = κ̄2b, with :

a = a0 − ε
∫ ∞

0

(p′ + q′)f(p′, q′, r′)dp′dq′dr′, (4.2)

b = b0 − ε
∫ ∞

0

r′f(p′, q′, r′)dp′dq′dr′, (4.3)

(4.4)

and

C(f, f) = C1(f, f)− C2(f, f),

C1(f, f) =
1

2

∫ p

0

∫ q

0

∫ r

0

k(p− p′, q − q′, r − r′, p′, q′, r′)f(t, p− p′, q − q′, r − r′)f(t, p′, q′, r′)dp′dq′dr′,

C2(f, f) = f(t, p, q, r)

∫ ∞
0

∫ ∞
0

∫ ∞
0

k(p, q, r, p′, q′, r′)f(t, p′, q′, r′)dp′dq′dr′.

The equations (4.2) and (4.3) are derived from the conservation of the mass, p+ q (respectively
r) corresponding to the amount of Ubiquitin (respectively p62) in the aggregates. The factor ε
expresses the fact that in the beginning of the reaction, p62 and Ubiquitin are in large amount,
and so can be considered almost as constant. C(f, f) is the coagulation term that has been
introduced in the Chapter ?? and k is the associated coagulation kernel. (p, q, r) have to satisfy
the inequalities (1.2), which is taken into account in the support of the kernel k. The choice of k
can be done following the physical and chemical literature (A review of different models can be
found e.g. in [40]).

Figure 4.1 – Representative electron micrographs of negatively stained p62 filaments incubated
in the presence or absence of GST-4xUb for the indicated times. Figure and caption from [52].
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4.2. Formal derivation of a one-dimensional transport-coagulation equation from the improved model 43

4.2 Formal derivation of a one-dimensional transport-coagulation
equation from the improved model

In all this section, we use the shorthand notation
∫

for denoting
∫∞

0
.

In this section, we start from (4.1) and derive a one-dimensionaltransport-coagulation equa-
tion, using geometric singular perturbation analysis as in Chapter ??. We make the change of
variable (p, q, r)→ (p, x = p+ q, y = 2p+ 2q−nr), which can be related to the variables (u, v, w)
used in the Chapter ?? in the following way :

u =
p

x
, v =

y

x
, and w =

1

x
,

hence (u, v, w) corresponds to the local coordinates of the Poincaré change of variable associated
with the variables (p, x, y) in the chart Kx. The new density function f̃ associated with the
new variables (p, x, y) is given by f(p, q, r) = f̃(p, x, y). Consequently, the points along the
characteristics of (4.1) satisfy the following nonlocal nonlinear ODE system :

Vp =(κ̄1(ā0 − ε
∫
x′f̃dp′dx′dy′)− κ3p)(p− y) + κ−(x− p)

− (κ̄2(b̄0 − ε
∫

(2x′ − y′)
n

f̃dp′dx′dy′) + κ−1)p

Vx =κ̄1(ā0 − ε
∫
x′f̃dp′dx′dy′)(p− y)− κ−1p− nκ−

(n− 1)(x− p)p
(n− 2)(2x− y)

Vy =2κ̄1(ā0 − ε
∫
x′f̃dp′dx′dy′)(p− y)− 2κ−1p

− nκ2(b̄0 − ε
∫

(2x′ − y′)
n

f̃dp′dx′dy′)p+ nκ−
(2p− ny)(x− p)
(n− 2)(2x− y)

.

The coagulation term reads :

C(f̃ , f̃) = C1(f̃ , f̃)− C2(f̃ , f̃),

C1(f̃ , f̃) =
1

2

∫ p

0

∫ x

0

∫ y

0

k̃(p− p′, x− x′, y − y′, p′, x′, y′)f̃(t, p− p′, x− x′, y − y′)f̃(t, p′, x′, y′)dp′dx′dy′,

C2(f̃ , f̃) = f̃(t, p, x, y)

∫ ∞
0

∫ ∞
0

∫ ∞
0

k(p, x, y, p′, x′, y′)f(t, p′, x′, y′)dp′dx′dy′,

with :
k̃(p, x, y, p′, x′, y′) =

1

n
k(p, q, r, p′, q′, r′).

To make appear different timescales, we make the following change of variable (p, x, y)→ (P =√
εp,X = εx, Y =

√
εy). This allows us to place ourselves artificially close to infinity, as p, x, y →

∞, when ε → 0. The factor
√
ε in front of p and y expresses the assumption to be in the

polynomially growing regime, close to infinity, where p and y = p − (nr − p − 2q) grow like t
while x grows as q like t2 i.e. like the square of p, hence the factor ε in front of x. The density
function reads :

F (P,X, Y ) =
1

ε2
f̃(

P√
ε
,
X

ε
,
Y√
ε

).
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We rescale the coagulation kernel in the following way for convenience :

K(P,X, Y, P ′, X ′, Y ′) = ε
√
εk(p, x, y, p′, x′, y′)

and the term of coagulation reads

q(F, F ) =
√
ε

(
q1(F, F )− q2(F, F )

)
,

q1(F, F ) =
1

2

∫ P

0

∫ X

0

∫ Y

0

K(P − P ′, X −X ′, Y − Y ′, P ′, X ′, Y ′)F (t, P,X, Y )F (t, P ′, X ′, Y ′)dP ′dX ′dY ′,

q2(F, F ) = F (t, P,X, Y )

∫ ∞
0

∫ ∞
0

∫ ∞
0

K(P,X, Y, P ′, X ′, Y ′)F (t, P ′, X ′, Y ′)dP ′dX ′dY ′.

Finally, the system of equations transforms into the following equation :

VP =
√
εp =(κ̄1(ā0 −

∫
X ′FdP ′dX ′dY ′)− κ3

P√
ε

)(P − Y ) + κ−(
X√
ε
− P )

− (κ̄2(b̄0 −
∫

(2X ′ −
√
εY )FdP ′dX ′dY ′) + κ−1)P

VX = εx =
√
ε

(
κ̄1(ā0 −

∫
X ′FdP ′dX ′dY ′)(P − Y )− κ−1P − nκ−

(n− 1)(X −
√
εP )P

(n− 2)(2X −
√
εY )

)
VY =

√
εy =2κ̄1(ā0 −

∫
X ′FdP ′dX ′dY ′)(P − Y )− 2κ−1P − κ̄2(nb̄0 −

∫
(2X ′ −

√
εY ′)FdP ′dX ′dY ′)P

+ nκ−
(2P − nY )(X +

√
εP ))

(n− 2)(2X +
√
εY )

.

We do a first time change of variable τ = t√
ε
, that leads to the following PDE :

∂τF +
√
ε∂P (VPF ) +

√
ε∂X(VXF ) +

√
ε∂Y (VY F ) =

√
εq(F, F ).

We let ε→ 0 and obtain that formally on the critical manifold, the following PDE is satisfied :

∂τF + ∂P

(
(−κ3P (P − Y ) + κ−X)F

)
= 0. (4.5)

The points (P,X, Y ) that belong to the characteristics of (4.5) satisfy :

ṼP = −κ3P (P − Y ) + κ−X,

ṼX = 0,

ṼY = 0.

The steady-states (P,X, Y ) of the characteristics satisfy :

P (X,Y ) =
Y

2
+

√
Y 2

4
+
κ−X

κ3
. (4.6)
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We can now integrate over P , using the formula (4.6) and the assumption that
limP→∞ F (τ, P,X, Y ) = 0, which leads to :∫

∂τFdP +
√
ε

∫
∂X(VXF )dP +

√
ε

∫
∂Y (VY F )dP

=
√
ε

∫
q(F, F )dP.

Let us introduce g =
∫
FdP , so that we obtain :

∂τg +
√
ε∂X(VXg) +

√
ε∂Y (VY g) =

√
εQ(g, g),

with Q(g, g) =
∫
q(F, F )dP . We make the time change of variable τ → t. Let ε → 0, then we

obtain formally that on the critical manifold, the following PDE is satisfied :

∂tg + ∂Y (V̂Y h) = 0.

The characteristics of this PDE satisfy the following ODE :

V̂Y = 2κ̄1(ā0 −
∫
XFdPdXdY )(P − Y )− 2κ−1P − κ̄2n(̄b0 − 2

∫
XFdPdXdY )P +

nκ−
2(n− 2)

(2P − nY ),

V̂X = 0.

After a straightforward computation using the fact that P is given by (4.6), we obtain the
following formula for the steady-states of the previous characteristics :

Y = v∗
√
X. (4.7)

with v∗ has been defined previously in Chapter ??. We draw the attention of the reader toward
the fact that v∗ is not anymore a constant as in the Chapter ?? but a nonlocal term (because of
the term

∫
XFdPdXdY ). We integrate now over Y. In order to do so, we introduce as previously

G =
∫
gdY =

∫ ∫
FdPdY , and make a new change of variable t→ σ =

√
εt , which leads to :

∂σG+ ∂X(V̄XG) = Q(G,G),

where

Q(G,G) = Q1(G,G)−Q2(G,G),

Q1(G,G) =
1

2

∫ X

0

K(X −X ′, X ′)G(t,X −X ′)G(t,X ′)dX ′,

Q2(G,G) = G(t,X)

∫ ∞
0

K(X,X ′)G(t,X ′)dX ′.

Replacing P and Y , by their expressions (4.6) and (4.7), we can compute straightforwardly :

V̄X = A∗
√
X,
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with A∗ defined in Chapter ??, which is now a nonlocal term similarly as v∗. Finally, we derived
formally the following one-dimensional nonlocal transport-coagulation equation :

∂tG+ ∂X(A∗
√
XG) = Q(G,G).

with A∗ whose sign depends on the value of the nonlocal term
∫
X ′FdP ′dX ′dY ′.

4.3 Study of a general one-dimensional transport-coagulation
equation

The one-dimensionaltransport-coagulation equation derived in the previous section can be
simplified as (4.9) (we don’t take into account the non-local term). Our first aim is to explore
the necessary and sufficient conditions of the existence of a non-trivial steady state of (4.9).
Having a non-trivial steady state implies both the conservation of the number of particles in
Equation (4.10) and the conservation of the mass in Equation (4.11). This leads us to impose first
v(0)f0 > 0, in order to compensate the loss of particles due to coagulation in (4.10), and second
the sign of v(x) must change so that

∫
v(x)f(x)dx = 0 is made possible in Equation (4.11).

Furthermore, it is necessary to have a negative speed for large x in order to compensate the
coagulation term that gives rise to increasingly larger particles. As the simplest way to satisfy
all these assumptions, we choose a C1 decreasing function v(x) such that

v(x) > 0, for x < x0

v(x0) = 0, for x0 > 0

v(x) < 0, for x > x0

(4.8)

Further assumptions on the decay rate of v(x) at +∞ may be required (see e.g. Section 4.5 for
the case of the multiplicative kernel).

4.3.1 Model

Let f0 > 0, v(x) a C1 decreasing function and x0 > 0 such that v(x0) = 0, K(x, y) a symetric
coagulation kernel - we shall consider here only K(x, y) = 2, K(x, y) = x+ y and K(x, y) = xy.
We consider the following system :

∂
∂tf(x, t) + ∂

∂x

(
v(x)f(x, t)

)
= 1

2

x∫
0

K(x− y, y)f(x− y, t)f(y, t)dy

−
∞∫
0

K(x, y)f(y, t)f(x, t)dy,

f(0, t) = f0.

(4.9)

4.3.2 Balance equations

Integrating the equation, we find a balance equation for the number of particles

d

dt

∫ ∞
0

f(x, t)dx = v(0)f0 −
1

2

∫ ∞
0

∫ ∞
0

K(x, y)f(x, t)f(y, t)dxdy, (4.10)
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and integrating the equation against the weight x, we have another balance equation for the
mass

d

dt

∫ ∞
0

xf(x, t)dx =

∫ ∞
0

v(x)f(x, t)dx. (4.11)

4.3.3 Examples of steady states

Before looking for necessary and sufficient conditions of the existence of steady states, let us
consider some cases where the explicit steady state f0e

−x is admissible :
1. for K(x, y) = 2 : if v(x) = f0(1− x),

2. for K(x, y) = x+ y : if v(x) = f0(1− x2

2 ),

3. for K(x, y) = xy : if v(x) = f0( 1+x
2 −

x2

4 −
x3

12 ).

4.4 Results with constant kernel
For the constant kernel K(x, y) = 2, we are able to compute all the moments associated with

the density function.

4.4.1 Equation for the zero order moment

The equation (4.10) leads us to the following equation for µ0(t) =
∫∞

0
f(x, t)dx :

d

dt
µ0 = v(0)f0 − µ2

0.

Defining u = e

t∫
0

µ0(s)ds
, we have

u′′(t) = v(0)f0u(t), u(0) = 1, u′(0) = µ0(0),

hence we have, with α =
√
v(0)f0,

u(t) = cosh(αt) +
µ0(0)

α
sinh(αt),

so that
µ0(t) =

α sinh(αt) + µ0(0) cosh(αt)

cosh(αt) + µ0(0)
α sinh(αt)

→t→∞ α =
√
v(0)f0.

4.4.2 Equation for higher-order moments

The equation (4.10) leads to the following equation for µk(t) =
∫∞

0
xkf(x, t)dx with k ∈ N∗ :

d

dt
µk(t) +

∫ ∞
0

xk∂x(vf)dx =

∫ ∞
0

xk
∫ x

0

f(x−y, t)f(y, t)dydx−2

∫ ∞
0

xkf(x, t)dx

∫ ∞
0

f(y, t)dy,

hence

d

dt
µk(t)− k

∫ ∞
0

xk−1(b0− 2x)f(x)dx =

∫ ∞
0

∫ x

0

(x− y+ y)kf(x− y, t)f(y, t)dydx− 2µk(t)µ0(t).
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This equation can be rewritten using the binomial theorem :

d

dt
µk(t)−kb0µk−1(t)+2kµk(t) =

k∑
i=0

∫ ∞
0

∫ x

0

(
k

i

)
(x−y)iyk−if(x−y, t)f(y, t)dydx−2µk(t)µ0(t),

hence
d

dt
µk(t)− kb0µk−1(t) + 2kµk(t) =

k∑
i=0

(
k

i

)
µi(t)µk−i(t)− 2µk(t)µ0(t),

hence
d

dt
µk(t) + 2kµk(t) =

k−1∑
i=1

(
k

i

)
µi(t)µk−i(t) + kb0µk−1(t),

which is an ODE for the variable µk(t) in terms of all the moments (µi(t))i=1,...,k−1, with µ0(t)
that has been previously determined (See 4.4.1). Thus, all the moments for the constant kernel
can be computed by induction. Assuming by induction that all the moments µi for i 6 k − 1
remain bounded and converge to a constant at large times, we have

d

dt
(µke

2kt) = e2ktF (t),

with F a nonnegative bounded function, hence

µk(t) = e−2kt(µ1(0) +

t∫
0

F (s)e2ksds) 6 µ1(0) +
1

2k
max(F ),

so that µk remains positive and bounded. We easily prove that any sequence µk(tn) with tn →∞
is a Cauchy sequence, hence µk converges to a positive limit, defined by induction by

µ̄k =
1

2k

k−1∑
i=1

(
k

i

)
µ̄iµ̄k−i +

b0
2
µ̄k−1. (4.12)

This constitutes a Stieltjes moment problem (See [42]), that we have not solved yet.

4.5 Results for the multiplicative kernel

We now consider the equation (4.9) for the kernelK(x, y) = xy. We aim to prove the existence
and the uniqueness of a steady-state using a fix point argument provided some assumptions on
the transport-speed. In this case, the transport counters the coagulation, similarly as it has been
shown in other papers that fragmentation could counter coagulation under specific conditions.
In the case of the multiplicative kernel, the transport-coagulation rewrites :

∂tf + ∂x(vf) =
1

2

∫ x

0

(x− y)f(x− y)yf(y)dy −
∫ ∞

0

xf(x)yf(y)dy , (4.13)

f(0, t) = f0.
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We work in the following Banach space :

B =

{
f :

∫ ∞
0

xf(x)dx <∞
}
.

Theorem 8. Assuming that v(x) = (x0 − x)w(x) with w(x) > 0 smooth, v(x) decreases in +∞
at least as x−2 with 2 > 2, f0 ∈ B, then, there exists a unique steady state of (4.13).

We consider the sequence
(
fn

)
n∈N

defined by :

∂x(vfn+1)+xfn+1M1(fn) = hn(x) =
1

2

∫ x

0

(x−y)fn(x−y)yfn(y)dy , fn+1(0) = f0 . (4.14)

Let us assume that there exists an n ∈ N s.t. fn ∈ B. For 0 ≤ x < x0 we get (by writing the
equation for vfn+1 and by variation of constants) that :

fn+1(x) =
v(0)f0

v(x)
G(x) +

1

v(x)

∫ x

0

G(x)

G(y)
hn(y)dy ,

with
G(x) = exp

(
−M1(fn)

∫ x

0

y

v(y)
dy

)
M1(fn) =

∫ ∞
0

xfn(x)dx.

Using the assumption,
v(x) = (x0 − x)w(x) (4.15)

with w(x) > 0 smooth, it follows that :∫ x

0

y

v(y)
dy =

x0

w(x0)

∫ x

0

dy

x0 − y
+

∫ x

0

1

x0 − y

(
y

w(y)
− x0

w(x0)

)
dy

= − x0

w(x0)
log(x0 − x) + b(x) ,

where b(x) is a smooth function (up to x = x0). Hence

G(x)

v(x)
= (x0 − x)

M1(fn)x0
w(x0)

−1
c(x) ,

where c(x) > 0 is again a smooth function. It is always integrable, since the exponent is always
larger than −1. Finally, assuming fn ∈ B, we have that :∫ x0

0

xfn+1(x)dx <∞

For x > x0, we get similarly as before that :

fn+1(x) = − 1

v(x)

∫ +∞

x

G(x)

G(y)
hn(y)dy ,
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with

G(x) = exp

(
−M1(fn)

∫ +∞

x

y

v(y)
dy

)
.

The existence of G requires that v decreases at least like x−γ in +∞ with γ > 2. Under this
condition, G is then a decreasing function. To prove fn+1 ∈ B, we need to check the integrability
of xf(x) in x0 and in +∞. The integrability in x0 is guaranteed by the former assumption (4.15).
Let us now consider what is happening in +∞. The integral is convergent, if it decreases in the
following polynomial manner, namely if xfn+1(x) 6 1

1+xγ with γ > 1. Hereafter, we show by
induction that for x close enough to +∞, for all n ∈ N, it holds that :

fn(x) 6
A

(1 + x)α
, (4.16)

for α > 2. Assuming (4.16), it follows that,

hn(y) 6
A2

2

∫ y

0

(y − z)z(1 + y − z)−α(1 + z)−αdz

hn(y) 6
A2y3

3

∫ 1

0

(1− w)w(1 + y(1− w))−α(1 + yw)−αdw

hn(y) 6
A2y3

3
(1 +

y

2
)−α(

∫ 1
2

0

w

(1 + yw)α
dw +

∫ 1

1
2

1− w
(1 + y(1− w))α

dw)

hn(y) 6
A2y3

3
(1 +

y

2
)−α

1

y

∫ 1
2

0

((1 + yw)1−α − (1 + yw)−α)dw

hn(y) 6
A2y

3
(1 +

y

2
)−α[(

(1 + yw)2−α

2− α
− (1 + yw)1−α)

1− α
]
1
2
0

hn(y) 6
A2y

3
(1 +

y

2
)−α(

1

1− α
− 1

2− α
+O(1))

hn(y) 6Ay(1 +
y

2
)−α(

1

(α− 1)(α− 2)
+O(1)).

Finally, assuming that |v(x)| < Bx−2,

fn+1(x) 6
1

Bx2

∫ +∞

x

A22α

(α− 1)(α− 2)
y1−αdy

fn+1(x) 6 x2−α−2 A22α

B(α− 1)2(α− 2)
.

It is necessary that A2α

B(α−1)2(α−2) < 1, so that fn+1 satisfies the property (4.16). Then, xf(x) is
integrable in +∞ and thus, fn+1 ∈ B. By integrating (4.14), it is easily seen that, if M1(f0) =√

2v(0)f0 then ∀n ∈ N,M1(fn) =
√

2v(0)f0. This property implies weak convergence in the
space of measures, so that fn → f∞ 6= 0 will converge tightly for a subsequence.
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Annexe A

Large aggregate limit

We denote by ci,j,k(t) the probability of the aggregate to be in the state (i, j, k) at time t. Its
evolution will be determined by a jump process model of the reactions with the rates given in
(2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.9), and (2.10).

For this purpose the relation between pre-reaction state (i′, j′, k′) and post-reaction state
(i, j, k) needs to be inverted. This is easy except for Reaction 5, where we have j = j′ − 1,
k = k′ − 1, and, with (2.9),

i = i′ + 1− `i′,j′,k′ = i′ + 1−
⌊

(n− 1)i′

nk′ − 2j′

⌉
. (A.1)

The inversion is not possible in general. Occasionally, `i′,j′,k′ will increase by one, when i′ is
increased by one, implying that i might take the same value for two consecutive values of i′.
Even worse : For the extreme case nk′ − 2j′ = n − 1, where after the loss of a p62 oligomer all
binding sites are busy with two-hand bound Ubi except the one remaining after breaking the
connection, i.e. nk − 2j = 1 = i. This state is independent from the number i′ ∈ {0, . . . , n − 1}
of one-hand bound Ubi getting lost with the oligomer. Therefore we introduce

Ii,j,k = {i′ : i = i′ + 1− `i′,j+1,k+1}

The equation for the probability distribution reads

dci,j,k
dt

= (r1c)i−1,j,k − (r1c)i,j,k + (r2c)i+1,j−1,k−1 − (r2c)i,j,k + (r3c)i+1,j−1,k − (r3c)i,j,k

+(r−1c)i+1,j,k − (r−1c)i,j,k +
∑

i′∈Ii,j,k

(r−2c)i′,j+1,k+1 − (r−2c)i,j,k

+(r−3c)i−1,j+1,k − (r−3c)i,j,k . (A.2)

We introduce a typical value k0 for the number k of oligomers in the aggregate and use it also as a
reference value for i and j, leading by the definition (2.11) to the scaled triplet (p, q, r). The latter
lives on a grid with spacing ∆p = ∆q = ∆r := 1/k0 and, thus, becomes a continuous variable in
the large aggregate limit k0 →∞. Therefore we postulate the existence of a probability density
P (p, q, r, t) such that

ci,j,k(t) ≈ k3
0 P

(
i

k0
,
j

k0
,
k

k0
, t

)
.
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Division of (A.2) by k3
0 and the limit k0 → ∞ (∆p = ∆q = ∆r → 0) will lead to an equation

for P . We deal with the six differences on the right hand side of (A.2), corresponding to the six
reactions, separately.
Reaction 1 :

k−3
0 [(r1c)i−1,j,k − (r1c)i,j,k]

≈ 1

∆p
[κ1(nr − p+ ∆p− 2q)P (p−∆p, q, r, t)− κ1(nr − p− 2q)P (p, q, r, t)]

→ −∂p(κ1(nr − p− 2q)P ) .

Reaction 2 :

k−3
0 [(r2c)i+1,j−1,k−1 − (r2c)i,j,k]

≈ 1

∆p
[κ2(p+ ∆p)P (p+ ∆p, q −∆q, r −∆r, t)− κ2pP (p, q −∆q, r −∆r, t)]

+
1

∆q
[κ2pP (p, q −∆q, r −∆r, t)− κ2pP (p, q, r −∆r, t)]

+
1

∆r
[κ2pP (p, q, r −∆r, t)− κ2pP (p, q, r, t)]

→ ∂p(κ2pP )− ∂q(κ2pP )− ∂r(κ2pP ) .

Reaction 3 : Since this is a second-order reaction, it would dominate the dynamics for large k0, if
the reaction constant were of the same order of magnitude as the others. In order to avoid this,
we set κ′3 = κ3/k0 and keep κ3 fixed as k0 →∞.

k−3
0 [(r3c)i+1,j−1,k − (r3c)i,j,k]

≈ 1

∆p

[
κ3(p+ ∆p)(nr − p−∆p− 2q + 2∆q)P (p+ ∆p, q −∆q, r, t)

− κ3p(nr − p− 2q + 2∆q)P (p, q −∆q, r, t)
]

+
1

∆q
[κ3p(nr − p− 2q + 2∆q)P (p, q −∆q, r, t)− κ3p(nr − p− 2q)P (p, q, r, t)]

→ ∂p(κ3p(nr − p− 2q)P )− ∂q(κ3p(nr − p− 2q)P ) .

Reaction 4 :

k−3
0 [(r−1c)i+1,j,k − (r−1c)i,j,k]

≈ 1

∆p
[κ−1(p+ ∆p)P (p+ ∆p, q, r, t)− κ−1pP (p, q, r, t)]

→ ∂p(κ−1pP ) .

Reaction 5 : As preparatory steps, we compute

`i′,j+1,k+1 =

⌊
(n− 1)i′

nk − 2j + n− 2

⌉
=

⌊
(n− 1)p′

nr − 2q + (n− 2)∆p

⌉
.

As a function of p′, this is piecewise constant and equal to
⌊

(n−1)p′

nr−2q

⌉
with jumps (for small ∆p)

close to the set nr−2q
n−1

(
1
2 + N0

)
. Away from these points the map (A.1) from pre- to post-reaction
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states is invertible with

p′ = p+ ∆p (`(p, q, r)− 1) , `(p, q, r) :=

⌊
(n− 1)p

nr − 2q

⌉
.

Note that p′ has been replaced by p in the argument of ` since p − p′ = O(∆p). At all these
generic points the sum in (A.2) has only one term. We shall also need

αj,k →
nr − 2q

(n− 2)r
=: α(q, r) .

Thus,

k−3
0

[
1i≥1(r−2c)Ii,j,k,j+1,k+1 − (r−2c)i,j,k

]
≈ 1

∆p

[
κ−α(q + ∆q, r + ∆r)(q + ∆q)P (p+ ∆p(`− 1), q + ∆q, r + ∆, t)

− κ−α(q + ∆q, r + ∆r)(q + ∆q)P (p, q + ∆q, r + ∆r, t)
]

≈ 1

∆q

[
κ−α(q + ∆q, r + ∆r)(q + ∆q)P (p, q + ∆q, r + ∆, t)

− κ−α(q, r + ∆r)qP (p, q, r + ∆r, t)
]

≈ 1

∆r

[
κ−α(q, r + ∆r)qP (p, q, r + ∆, t)

− κ−α(q, r)qP (p, q, r, t)
]

→ ∂p(κ−α(`− 1)qP ) + ∂q(κ−αqP ) + ∂r(κ−αqP ) .

Note that the factor ` − 1 has been written inside the derivative since ` is constant away from
finitely many critical points. We replace a detailed analysis at these points by the simple argument
that the equation for P has to be in conservation form to preserve the total probability. Finally
we introduce a simplification by dropping the rounding operation in `.
Reaction 6 :

k−3
0 [(r−3c)i+1,j−1,k − (r−3c)i,j,k]

≈ 1

∆p

[
κ−(1− α(q + ∆q, r))(q + ∆q)P (p−∆p, q + ∆q, r, t)

− κ−(1− α(q + ∆q, r))(q + ∆q)P (p, q + ∆q, r, t)
]

+
1

∆q
[κ−(1− α(q + ∆q, r))(q + ∆q)P (p, q + ∆q, r, t)− κ−(1− α(q, r))qP (p, q, r, t)]

→ −∂p(κ−(1− α)qP ) + ∂q(κ−(1− α)qP ) .

Collecting our results, the limiting equation for the evolution of P reads

∂tP + ∂p

((
(κ1 − κ3p)(nr − p− 2q)− (κ2 + κ−1)p+ κ−q

(
1− (n− 1)p

(n− 2)r

))
P

)
+∂q ((κ2p+ κ3p(nr − p− 2q)− κ−q)P ) + ∂r ((κ2p− κ−αq)P ) = 0 . (A.3)

For deterministic initial conditions of the form P (p, q, r, 0) = δ(p−p0)δ(q− q0)δ(r− r0) the state
remains deterministic : P (p, q, r, t) = δ(p−p(t))δ(q−q(t))δ(r−r(t)), where (p(t), q(t), r(t)) solves
the initial value problem (3.1).

Version intermédiaire en date du 17 décembre 2020



56 CHAPITRE A. Large aggregate limit

Version intermédiaire en date du 17 décembre 2020





Mathematical Modelling of p62-Ubiquitin aggregates involved in cellular
autophagy

Résumé

Cette thèse vise à modéliser l’agrégation de matériel cytoplasmique ubiquitiné par des oligomères de
p62, qui constitue une étape importante dans l’autophagie cellulaire. Un nouveau modèle mathématique
pour la dynamique de ces agrégats hétérogènes sous la forme d’un système d’équations différentielles
ordinaires est obtenu et analysé. La contribution principale de ces nouveau modèle repose sur le fait
que nous considérons deux particules, à savoir p62 et Ubiquitin, liées l’une à l’autre sous une forme très
particulière, qui accroît drastiquement le niveau de complexité du modèle comparé à des modèles plus
classiques. Dans une première partie, on identifie les trois régimes suivants dépendants des paramètres.
Dans le premier régime, les agrégats sont instables. Dans le second, leur taille est bornée à une valeur
limite. Enfin, dans le troisième régime, leur taille croît tant que les particules du milieu sont en quantité
abondante. Les limites de ces régimes tout comme la taille limite du second cas peuvent être calculées
explicitement. La croissance dans le troisième cas (quadratique en temps) peut aussi être explicitée
par des méthodes asymptotiques formelles. Les résultats qualitatifs sont illustrés par des simulations
numériques. Une comparaison avec des résultats expérimentaux récents permets une paramétrisation
partielle du modèle. Dans une deuxième partie, une analyse partielle de ce modèle est réalisée utilisant
des outils issus de la théorie des systèmes dynamiques. La stabilité locale du régime où les agrégats
sont instables est prouvée via la méthode blow-up. La croissance quadratique du troisième régime est
aussi prouvée localement via une analyse de perturbation géométrique singulière. La fin de la thèse
est consacrée à l’amélioration du modèle précédent. En s’appuyant sur des observations biologiques,
un terme de coagulation est ajouté, ce qui conduit à un modèle de croissance coagulation, dont la
complexité est prohibitive. C’est pourquoi une version simplifiée où les agrégats sont décrits uniquement
par un paramètre est formulée grâce à une analyse multi-échelle. En conclusion, une étude élémentaire
des équations de croissance-coagulation unidimensionnelles est réalisée.

Mots clés : autophagie cellulaire, équations différentielles ordinaires, équations différentielles par-
tielles, systèmes dynamiques, blow-up, équations de transport-coagulation

Abstract

This thesis aims to model the aggregation of ubiquitinated cargo by oligomers of the protein p62, which
is an important preparatory step in cellular autophagy. A new mathematical model for the dynamics of
these heterogeneous aggregates in the form of a system of ordinary differential equations is derived and
analyzed. The main contribution of this new model lies on the fact that we are considering two different
particles, namely p62 and Ubiquitin, attaching to each other in a very specific way, which increases
drastically the complexity level of the model compared to classical ones. In a first part, three different
parameter regimes are identified, where either aggregates are unstable, or their size saturates at a finite
value, or their size grows indefinitely as long as free particles are abundant. The boundaries of these
regimes as well as the finite size in the second case can be computed explicitly. The growth in the
third case (quadratic in time) can also be made explicit by formal asymptotic methods. The qualitative
results are illustrated by numerical simulations. A comparison with recent experimental results permits
a partial parametrization of the model. In a second part, a partial analysis of this model using dynamical
systems tools is also made. The local stability of the regime where the aggregates are unstable is proved
using blow-up. The locally quadratic growth in the third regime is also proved using geometric singular
perturbation analysis. The end of the thesis is dedicated to the improvement of the former model.
Based on biological observations, a coagulation term is added, which leads to a prohibitively complex
growth-coagulation model. This is why a simplified version based on a multiscale analysis is formulated
where aggregates are only described by one parameter. To conclude, a first basic study of unidimensional
growth-coagulation equations is made.

Keywords: cellular autophagy, ordinary differential equations, partial differential equations, dy-
namical systems, blow-up, transport-coagulation equations
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[16] P. Dubovskĭı and I. Stewart, Existence, uniqueness and mass conservation for the
coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), pp. 571–591.
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